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Preface

This handbook contains more than 500 fully solved problems, including 272 diagrams, in
qualitative methods for nonlinear differential equations. These comprise all the end-of-chapter
problems in the authors’ textbook Nonlinear Ordinary Differential Equations (4th edition),
Oxford University Press (2007), referred to as NODE throughout the text. Some of the questions
illustrate significant applications, or extensions of methods, for which room could not be found
in NODE.

The solutions are arranged according to the chapter names question-numbering in NODE.
Each solution is headed with its associated question. The wording of the problems is the same
as in the 4th edition except where occasional clarification has been necessary. Inevitably some
questions refer to specific sections, equations and figures in NODE, and, for this reason, the
handbook should be viewed as a supplement to NODE. However, many problems can be taken
as general freestanding exercises, which can be adapted for coursework, or used for self-tuition.

The development of mathematics computation software in recent years has made the subject
more accessible from a numerical and graphical point of view. In NODE and this handbook,
MathematicaTM has been used extensively (however the text is not dependent on this soft-
ware), but there are also available other software and dedicated packages. Such programs are
particularly useful for displaying phase diagrams, and for manipulating trigonometric formulae,
calculating perturbation series and for handling other complicated algebraic processes.

We can sympathize with readers of earlier editions who worked through the problems, and
we are grateful to correspondents who raised queries about questions and answers. We hope
that we have dealt with their concerns. We have been receiving requests for the solutions to
individual problems and for a solutions manual since the first edition. This handbook attempts
to meet this demand (at last!), and also gave us the welcome opportunity to review and refine
the problems.

This has been a lengthy and complex operation, and every effort has been made to check the
solutions and our LaTeX typesetting. We wish to express our thanks to the School of Computing
and Mathematics, Keele University for the use of computing facilities, and to Oxford University
Press for the opportunity to make available this supplement to Nonlinear Ordinary Differential
Equations.

Dominic Jordan and Peter Smith
Keele, 2007
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1
Second-order differential
equations in the phase
plane

• 1.1 Locate the equilibrium points and sketch the phase diagrams in their neighbourhood
for the following equations:

(i) ẍ− kẋ=0.

(ii) ẍ−8xẋ=0.

(iii) ẍ= k(|x| > 0), ẍ=0 (|x|<1).

(iv) ẍ+3ẋ+2x=0.

(v) ẍ−4x+40x=0.

(vi) ẍ+3|ẋ| +2x=0.

(vii) ẍ+ ksgn (ẋ)+ csgn (x)=0, (c > k). Show that the path starting at (x0, 0) reaches
((c− k)2x0/(c+ k)2, 0) after one circuit of the origin. Deduce that the origin is a spiral
point.

(viii) ẍ+ xsgn (x)=0.

1.1. For the general equation ẍ= f (x, ẋ), (see eqn (1.6)), equilibrium points lie on the x axis,
and are given by all solutions of f (x, 0)=0, and the phase paths in the plane (x, y) (y= ẋ) are
given by all solutions of the first-order equation

dy
dx
= f (x, y)

y
.

Note that scales on the x and y axes are not always the same. Even though explicit equations
for the phase paths can be found for problems (i) to (viii) below, it is often easier to compute and
plot phase paths numerically from ẍ= f (x, ẋ), if a suitable computer program is available. This
is usually achieved by solving ẋ= y, ẏ= f (x, y) treated as simultaneous differential equations,
so that (x(t), y(t)) are obtained parametrically in terms of t . The phase diagrams shown here
have been computed using Mathematica.

(i) ẍ− kẋ=0. In this problem f (x, y)= ky. Since f (x, 0)=0 for all x, the whole x axis consists
of equilibrium points. The differential equation for the phase paths is given by

dy
dx
= k.

The general solution is y= kx+C, where C is an arbitrary constant. The phase paths for k >0
and k <0 are shown in Figure 1.1.
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x

y
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x

y

k < 0

Figure 1.1 Problem 1.1(i): ẍ − kẋ.

(ii) ẍ−8xẋ=0. In this problem f (x, y)=8xy. Since f (x, 0)=0, every point on the x axis is
an equilibrium point. The differential equation for the phase paths is given by

dy
dx
=8x,

which has the general solution y=4x2+C. The phase paths are shown in Figure 1.2.
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Figure 1.2 Problem 1.1(ii): ẍ − 8xẋ = 0.

(iii) ẍ= k (|x| > 1); ẍ=0 (|x| < 1). In this problem

f (x, y)=
{
k (|x| > 1)
0 (|x| < 1).

Since f (x, 0)=0 for |x| < 1, but is non-zero outside this interval, all points in |x| < 1 on the x
axis are equilibrium points. The differential equations for the phase paths are given by

dy
dx
=0, (|x| < 1),

dy
dx
= k
y

, (|x| > 1).
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Figure 1.3 Problem 1.1(iii): ẍ = k (|x| > 1); ẍ = 0 (|x| < 1).

Hence the families of paths are

y=C, (|x| < 1), 1
2y

2= kx+C, (|x| > 1).

Some paths are shown in Figure 1.3 (see also Section 1.4 in NODE).

(iv) ẍ+3ẋ+2x=0. In this problem f (x, y)=−2x−3y, and there is a single equilibrium
point, at the origin. This is a linear differential equation which exhibits strong damping (see
Section 1.4) so that the origin is a node. The equation has the characteristic equation

m2+3m+2=0, or (m+1)(m+2)=0.

Hence the parametric equations for the phase paths are

x=Ae−t +Be−2t , y= ẋ= −Ae−t − 2Be−2t .

The node is shown in Figure 1.4.

– 1.5 1.5
x

– 1.5

1.5
y

Figure 1.4 Problem 1.1(iv): ẍ + 3ẋ + 2x = 0, stable node.
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(v) ẍ−4ẋ+40x= 0. In this problem f (x, y)=−40x+4y, and there is just one equilibrium
point, at the origin. From the results in Section 1.4, this equilibrium point is an unstable spiral.
The general solution is

x= e2t [A cos 6t +B sin 6t],
from which y can be found. Spiral paths are shown in Figure 1.5.

– 1 1
x

– 4

– 2

2

4
y

Figure 1.5 Problem 1.1(v): ẍ − 4ẋ + 40x = 0, unstable spiral.

(vi) ẍ+3|ẋ| +2x=0, f (x, y)=−2x−3|y|. There is a single equilibrium point, at the origin.
The phase diagram is a combination of a stable node for y >0 and an unstable node for y <0
as shown in Figure 1.6. The equilibrium point is unstable.

–1 1
x

–1

1
y

Figure 1.6 Problem 1.1(vi): ẍ + 3|ẋ| + 2x = 0.

(vii) ẍ+ ksgn (ẋ)+ csgn (x)=0, c > k. Assume that k >0 and x0>0. In this problem
f (x, y)=− ksgn (y)− csgn (x), and the system has one equilibrium point, at the origin.
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By writing

y
dy
dx
= 1

2
d

dx
(y2)

in the equation for the phase paths we obtain

y2=2[−ksgn (y)− csgn (x)]x+C,

where C is a constant. The value of C is assigned separately for each of the four quadrants into
which the plane is divided by the coordinate axes, using the requirement that the composite
phase paths should be continuous across the axes. For the path starting at (x0, 0), its equation
in x >0, y <0 is

y2=2(k− c)x+C1.

Therefore C1=2(c− k)x0.
Continuity of the path into x <0, y <0 requires

y2=2(k+ c)x+2(c− k)x0.

On the axis y=0, x=−(c− k)x0/(c+ k).
The path in the quadrant x <0, y >0 is

y2=2(c − k)x+C2.

By continuity, C2= (c − k)2x0/(c+ k).
Finally the path in the quadrant x > 0, y > 0 is

y2=−(c+ k)x+C2.

This path cuts the positive x axis at x= x1= (c− k)2x0/(c+ k)2 as required. Since c > k, it
follows that x1<x0. After n circuits xn= γ nx0 where γ = (c− k)2/(c+ k)2. Since γ <1, then
xn→0. Hence the phase diagram (not shown) is a stable spiral made by matching parabolas
on the axes.
(viii) ẍ+ xsgn (x)=0. The system has a single equilibrium point, at the origin, and
f (x, y)=−xsgn (x). The phase paths are given by

y2=−x2+C1, (x >0), y2= x2+C2, (x <0).

The phase diagram is a centre for x >0 joined to a saddle for x <0 as shown in Figure 1.7.
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–1 1
x

–1

1
y

Figure 1.7 Problem 1.1(viii): ẍ + xsgn (x) = 0.

• 1.2 Sketch the phase diagram for the equation ẍ=−x − αx3, considering all values of α.
Check the stability of the equilibrium points by the method of Section 1.7.

1.2. ẍ=−x−αx3.
Case (i). α >0. The equation has a single equilibrium point, at x=1. The phase paths are
given by

dy
dx
=−x(1+αx

2)

y
,

which is a separable first-order equation. The general solution is given by

∫
ydy=−

∫
x(1+αx2)dx+C, (i)

so that

1
2y

2=−1
2x

2−1
4x

4+C.

The phase diagram is shown in Figure 1.8 with α=1, and the origin can be seen to be a centre.
Case (ii). α <0. There are now three equilibrium points: at x=0 and at x=±1/

√
α. The phase

paths are still given by (i), but computed in this case with α=−1 (see Figure 1.9). There is a
centre at (0, 0) and saddles at (±1, 0).

This equation is a parameter-dependent system with parameter α as discussed in Section 1.7.
As in eqn (1.62), let f (x,α)=−x−αx3. Figure 1.10 shows that in the region above x=0,
f (x,α) is positive for all α, which according to Section 1.7 (in NODE) implies that the origin
is stable. The other equilibrium points are unstable.
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Figure 1.8 Problem 1.2: Phase diagram for α=1.
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Figure 1.9 Problem 1.2: Phase diagram for α=−1.
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Figure 1.10 Problem 1.2: The diagram shows the boundary x(1−αx2)=0; the shaded regions indicate f (x,α)>0.
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• 1.3 A certain dynamical system is governed by the equation ẍ+ ẋ2+ x=0. Show that
the origin is a centre in the phase plane, and that the open and closed paths are separated
by the path 2y2=1−2x.

1.3. ẍ+ ẋ2+ x=0. The phase paths in the (x, y) plane are given by the differential equation

dy
dx
= −y

2 − x
y

.

By putting

y
dy
dx
= 1

2
d

dx
(y2),

the equation can be expressed in the form

d(y2)

dx
+2y2=−2x,

which is a linear equation for y2. Hence

y2=Ce−2x − x+ 1
2 ,

which is the equation for the phase paths.
The equation has a single equilibrium point, at the origin. Near the origin for y small,

ẍ+ x≈0 which is the equation for simple harmonic motion (see Example 1.2 in NODE). This
approximation indicates that the origin is a centre.

If the constant C <0, then Ce−2x→−∞ as x→∞, which implies that−x+ 1
2 +Ce−2x must

be zero for a negative value of x. There is also a positive solution for x The paths are closed for
C <0 since any path is reflected in the x axis. If C ≥0, then the equation −x+ 1

2 +Ce−2x =0
has exactly one solution and this is positive. To see this sketch the line z= x− 1

2 and the
exponential curve z=Ce−2x for positive and negative values for C and see where they intersect.
The curve bounding the closed paths is the parabola y2=−x+ 1

2 . The phase diagram is shown
in Figure 1.11.

• 1.4 Sketch the phase diagrams for the equation ẍ+ ex = a, for a <0, a=0, and a >0.

1.4. ẍ+ ex = a. The phase paths in the (x, y) plane are given by

y
dy
dx
= a − ex , (i)
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Figure 1.11 Problem 1.3.
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x

–2
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1
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y

Figure 1.12 Problem 1.4: a <0.

which has the general solution

1
2y

2= ax − ex +C. (ii)

Case (a), a < 0. The system has no equilibrium points. From (i), dy/dx is never zero, negative
for y >0 and positive for y <0. Some phase paths are shown in Figure 1.12.
Case (b), a=0. The system has no equilibrium points. As in (a), dy/dx is never zero. Some
phase paths are shown in Figure 1.13.
Case (c), a >0. This equation has one equilibrium point at x= ln a. The potential V(x) (see
Section 1.3) of this conservative system is

V(x)=
∫
(−a+ ex)dx=−ax+ ex ,

which has the expected stationary value at x= ln a. Since V ′′(ln a)= eln a =a >0, the stationary
point is a minimum which implies a centre in the phase diagram. Some phase paths are shown
in Figure 1.14 for a=2.
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Figure 1.13 Problem 1.4: a=0.
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1
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Figure 1.14 Problem 1.4: a >0.

• 1.5 Sketch the phase diagrams for the equation ẍ− ex = a, for a <0, a=0, and a >0.

1.5. ẍ− ex = a. The differential equation of the phase paths is given by

y
dy
dx
= a+ ex ,

which has the general solution

1
2y

2= ax+ ex +C.

Case (a), a <0. There is a single equilibrium point, at x= ln(−a). The potential V(x) (see
Section 1.3 in NODE) of this conservative system is

V(x)=
∫
(−a− ex)dx=−ax− ex ,
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which has the expected stationary value at x= ln(−a). Since

V ′′(ln(−a))=−eln(−a)= a <0,

the stationary point is a maximum, indicating a saddle at x= ln(−a). Some phase paths are
shown in Figure 1.15.
Case (b), a >0. The equation has no equilibrium points. Some typical phase paths are shown
in Figure 1.16.
Case (c), a=0. Again the equation has no equilibrium points, and the phase diagram has the
main features indicated in Figure 1.16 for the case a >0, that is, phase paths have positive slope
for y >0 and negative slope for y <0.

– –1 1 2
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–2

–1

1

2
y

2

Figure 1.15 Problem 1.5: a <0.

–3 –1 1 2
x

– 2

– 1

1
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Figure 1.16 Problem 1.5: a >0.
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• 1.6 The potential energy V(x) of a conservative system is continuous, and is strictly
increasing for x <−1, zero for |x| ≤1, and strictly decreasing for x >1. Locate the
equilibrium points and sketch the phase diagram for the system.

1.6. From Section 1.3, a system with potential V(x) has the governing equation

ẍ=−dV(x)
dx

.

Equilibrium points occur where ẍ=0, or where dV(x)/dx=0, which means that all points on
the x axis such that |x| ≤1 are equilibrium points. Also, the phase paths are given by

1
2y

2=V(x)+C.

Therefore the paths in the interval |x| ≤1 are the straight lines y=C. Since V(x) is strictly
increasing for x <−1, the paths must resemble the left-hand half of a centre at x=−1. In the
same way the paths for x >1 must be the right-hand half of a centre. A schematic phase diagram
is shown in Figure 1.17.

–2 –1 1 2
x

1

y

–2 –1 1 2
x

–0.2

–0.1

0.1

0.2

v(x)

–1

Figure 1.17 Problem 1.6: This diagram shows some phase paths for the equation with V(x)= x+1, (x <1),
V(x)=−x+1, (x >1).

• 1.7 Figure 1.33 (in NODE) shows a pendulum striking an inclined wall. Sketch the phase
diagram of this ‘impact oscillator’, for α positive and α negative, when (i) there is no loss
of energy at impact, (ii) the magnitude of the velocity is halved on impact.

1.7. Assume the approximate pendulum equation (1.1), namely

θ̈ +ω2θ =0,

and assume that the amplitude of the oscillations does not exceed θ = 1
2π (thus avoiding any

complications arising from impacts above the point of suspension).
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u
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Figure 1.18 Problem 1.7: Perfect rebound for α >0 and α <0.

u u

u
.

�

u
.

�

Figure 1.19 Problem 1.7: The rebound speed is half that of the impact speed.

(i) Perfect rebound with no loss of energy. In all cases the phase diagram consists of segments
of a centre cut off at θ =α, and the return path after impact will depend on the rebound velocity
after impact. The dashed lines in Figure 1.18 indicate the rebound velocity which has the same
magnitude as the impact velocity.

(ii) In these phase diagrams (see Figure 1.19) the rebound speed is half that of the impact speed.

• 1.8 Show that the time elapsed, T , along a phase path C of the system ẋ= y, ẏ= f (x, y)
is given, in a form alternative to (1.13), by

T =
∫

C
(y2+ f 2)−(1/2)ds,

where ds is an element of distance along C.
By writing δs≈ (y2+ f 2)

1
2 δt , indicate, very roughly, equal time intervals along the phase

paths of the system ẋ= y, ẏ=2x.
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–1 1
x

1

2
y

Figure 1.20 Problem 1.8: The phase path y= (1+2x2)1/2 is shown with equal time steps δt =0.1.

1.8. Let C be a segment of a phase path from A to B, traced out by a representative point P
between times TA and tB , and s(t) be the arc length along C measured from A to P . Along
the path

δs≈[(δx)2+ (δy)2]1/2,

so

δs

δt
≈

[(
δx

δt

)2

+
(
δy

δt

)2
]1/2

.

In the limit δt→0, the velocity of P is ds/dt given by

ds
dt
=[ẋ2+ ẏ2]1/2. (i)

The transient time T is given by

T = tB − tA=
∫ tB

tA

dt =
∫

C
ds

ds/dt
=

∫
C

ds
[ẋ2+ ẏ2]1/2 =

∫
C
(y2+ f 2)−(1/2)ds, (ii)

since ẋ= y and ẏ= f .
For the case ẋ= y, ẏ=2x the phase paths consist of the family of hyperbolas y2−2x2=α,

where α is an arbitrary constant. From (i), a small time interval δt corresponds to a step length
δs along a phase path given approximately by

δs ≈ [ẋ2+ ẏ2]1/2δt = (y2+4x2)1/2δt = (α+6x2)1/2δt .

Given a value of the parameter α, the step lengths for a constant δt are determined by the factor
(α+6x2)1/2, and tend to be comparatively shorter when the phase path is closer to the origin.
This is illustrated in Figure 1.20 for the branch y= (1− 2x2)1/2.

• 1.9 On the phase diagram for the equation ẍ+ x=0, the phase paths are circles. Use
(1.13) in the form δt ≈ δx/y to indicate, roughly, equal time steps along several phase
paths.
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Figure 1.21 Problem 1.9.

1.9. The phase paths of the simple harmonic oscillator ẍ+ x=0 are given by dy/dx= − x/y,
which has the general solution x2+ y2=C2, C >0. The paths can be represented parametrically
by x=C cos θ , y=C sin θ , where θ is the polar angle. By (1.13), an increment in time is
given by

δt ≈ δx
y
= −C sin θδθ

C sin θ
=−δθ .

This formula can be integrated to give t =−θ +B. Hence equal time steps are equivalent to
equal steps in the polar angle θ . All phase paths are circles centred at the origin and the time
taken between radii subtending the same angle, say α, at the origin as shown in Figure 1.21.

• 1.10 Repeat Problem 1.9 for the equation ẍ+9x=0, in which the phase paths are ellipses.

1.10. The phase paths of ẍ+9x=0 are given by dy/dx=−9x/y, which has the general solu-
tion 9x2+ y2=C2, C >0. The paths are concentric ellipses. The paths can be represented
parametrically by x= 1

3C cos θ , y=C sin θ , where θ is the polar angle. By (1.13), an increment
in time is given by

δt ≈ δx

y
= −(1/3)C sin θδθ

C sin θ
=−1

3
δθ .

Hence equal time steps are equivalent on all paths to the lengths of segments cut by equal polar
angles α as shown in Figure 1.22.
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Figure 1.22 Problem 1.10.

• 1.11 The pendulum equation, ẍ+ω2 sin x=0, can be approximated for moderate ampli-
tudes by the equation ẍ+ω2(x− 1

6x
3)=0. Sketch the phase diagram for the latter equation,

and explain the differences between it and Figure 1.2 (in NODE).

1.11. For small |x|, the Taylor expansion of sin x is given by

sin x= x − 1
6x

3+O(x5).

Hence for small |x|, the pendulum equation ẍ+ω2 sin x=0 can be approximated by

ẍ+ω2
(
x − 1

6
x3

)
=0.

If x is unrestricted this equation has three equilibrium points, at x=0 and x= ±√6≈±2.45.
The pendulum equation has equilibrium points at x= nπ , (n=0, 1, 2, . . .). Obviously, the
approximate equation is not periodic in x, and the equilibrium points at x=±√6 differ con-
siderably from those of the pendulum equation. We can put ω=1 without loss since time can
always be rescaled by putting t ′ =ωt . Figure 1.23 shows the phase diagrams for both equations
for amplitudes up to 2. The solid curves are phase paths of the approximation and the dashed
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Figure 1.23 Problem 1.11: The solid curves represent the phase paths of the approximate equation ẍ+ x− 1
6x

3=0,
and the dashed curves show the phase paths of ẍ+ sin x=0.

curves those of the pendulum equation. For |x|<1.5, the phase paths are visually indistin-
guishable. The closed phase paths indicate periodic solutions, but the periods will increase with
increasing amplitude.

• 1.12 The displacement, x, of a spring-mounted mass under the action of Coulomb dry
friction is assumed to satisfy

mẍ+ cx=−F0sgn (ẋ),

where m, c and F0 are positive constants (Section 1.6). The motion starts at t =0, with
x= x0>3F0/c and ẋ=0. Subsequently, whenever x=− α, where (2F0/c)− x0<− α <0
and ẋ >0, a trigger operates, to increase suddenly the forward velocity so that the kinetic
energy increases by a constant amount E. Show that if E>8F 2

0 /c, a periodic motion exists,
and show that the largest value of x in the periodic motion is equal to F0/c+E/(4F0).

1.12. The equation for Coulomb dry friction is

mẍ+ cx=−F0sgn (ẋ)=
{ −F0 ẋ > 0
F0 ẋ < 0

.

For ẋ= y <0, the differential equation for the phase paths is given by

m
dy
dx
= F0 − cx

y
.

Integrating this separable equation, we obtain

1
2my

2=− 1
2c (F0 − cx)2+B1= 1

2c (F0 − cx0)
2 − 1

2c (F0 − cx)2,
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Figure 1.24 Problem 1.12:

using the initial conditions x(0)= x0, y(0)=0. This segment of the path is denoted in
Figure 1.24 by C1. It meets the x axis again where

F0 − cx=−F0+ cx0, so that x= x1= 2F0

c
− x0.

For y >0, phase paths are given by

1
2
my2=− 1

2c
(F0+ cx)2+B2. (i)

Denote this segment by C2. It is the continuation into y >0 of C1 from x= x1, y=0. Hence

B2= 1
2c
(F0+ cx1)

2= 1
2c
(3F0 − x0)

2,

so that

x1= 2F0

c
− x0.

The condition x1=− x0+ (2F0/c)<−α ensures that the ‘trigger’ operates within the range of
x illustrated.

Denote the segment which meets C1 at x= x0 by C3. From (i), its equation is

1
2
my2 = − 1

2c
(F0+ cx)2+B3 = − 1

2c
(F0+ cx)2+ 1

2c
(F0+ cx0)

2.

At x=−α, the energy on C2 is

E2= 1
2c
[(3F0 − cx0)

2 − (F0 − cα)2],

whilst on C3, the energy is

E3= 1
2c
[(F0+ cx0)

2 − (F0 − cα)2].
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At x = −α, the energy increases by E. Therefore

E = E3 − E2

= 1
2c
[(F0+ cx0)

2 − (F0 − cα)2] − 1
2c
[(3F0 − cx0)

2 − (F0 − cα)2]

= 1
2c
[(F0+ cx0)

2 − (3F0 − cx0)
2]

= 1
2c
[−8F 2

0 +8F0cx0]

A periodic solution occurs if the initial displacement is

x0= E

4F0
+ F0

c
.

Note that the results are independent of α. For a cycle to be possible, we must have x0>3F0/c.
Therefore E and F0 must satisfy the inequality

E

4F0
+ F0

c
>

3F0

c
, or E >

8F 2
0

c
.

• 1.13 In Problem 1.12, suppose that the energy is increased by E at x=−α for both ẋ <0
and ẋ >0; that is, there are two injections of energy per cycle. Show that periodic motion
is possible if E>6F 2

0 /c, and find the amplitude of the oscillation.

1.13. Refer to the previous problem for the equations of the phase paths in y >0 and y <0.
The system experiences an increase in kinetic energy for both y positive and y negative. The
periodic path consists of four curves whose equations are listed below:

C1: mcy2+ (F0− cx)2= (F0− cx0)
2

C2: mcy2+ (F0− cx)2= (F0− cx1)
2

C3: mcy2+ (F0+ cx)2= (F0+ cx1)
2

C4: mcy2+ (F0+ cx)2= (F0+ cx0)
2

The paths, the point (x0, 0) where the paths C1 and C4 meet, and the point (x1, 0) where the
paths C2 and C3 meet are shown in Figure 1.24. At x=−α the energy is increased by E for both
positive and negative y. The discontinuities at x= − α are shown in Figure 1.25. Therefore, at
x= −α,

E= 1
2c
[(F0 − cx1)

2 − (F0+ cα)2 − (F0 − cx0)
2+ (F0+ cα)2],

E= 1
2c
[(F0+ cx0)

2 − (F0+ cα)2 − (F0 − cx1)
2+ (F0+ cα)2].
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Figure 1.25 Problem 1.13.

Simplifying these results

E= 1
2c
[−2F0cx1+ c2x2

1 +2F0cx0 − c2x2
0 ],

E= 1
2c
[2F0cx0+ c2x2

0 − 2F0cx1 − c2x2
1 ],

Elimination of E gives x1=−x0, and

x0=−x1= E

2F0
.

• 1.14 The ‘friction pendulum’ consists of a pendulum attached to a sleeve, which embraces
a close-fitting cylinder (Figure 1.34 in NODE). The cylinder is turned at a constant rate
�>0. The sleeve is subject to Coulomb dry friction through the coupleG=−F0sgn (θ̇ −�).
Write down the equation of motion, the equilibrium states, and sketch the phase diagram.

1.14. Taking moments about the spindle, the equation of motion is

mga sin θ +F0sgn (θ̇ −�)=−ma2θ̈ .

Equilibrium positions of the pendulum occur where θ̈ = θ̇ =0, that is where

mga sin θ − F0sgn (−�)=mga sin θ +F0=0,

assuming that �>0. Assume also that F0>0. The differential equation is invariant under the
change of variable θ ′ = θ +2nπ so all phase diagrams are periodic with period 2π in θ .

If F0<mga, there are two equilibrium points; at

θ = sin−1
(
F0

mga

)
and π − sin−1

(
F0

mga

)
:

note that in the second case the pendulum bob is above the sleeve.
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The phase diagram with the parameters �=1, g/a=2 and F0/(ma
2)=1 is shown in

Figure 1.26. There is a centre at θ = sin−1(1
2 ) and a saddle point at x=π − sin−1(1

2 ). Dis-
continuities in the slope occur on the line θ̇ =�=1. On this line between θ = sin−1(−1

2 ) and
θ = sin−1(1

2 ), phase paths meet from above and below in the positive direction of θ .
Suppose that a representative point P arrives somewhere on the segment AB in Figure 1.26.

The angular velocity at this point is given by θ̇ (t)=� (i.e. it is in time with the rotation of
the spindle at this point). It therefore turns to move along AB, in the direction of increasing
θ . It cannot leave AB into the regions θ̇ >� or θ̇ <� since it must not oppose the prevailing
directions. Therefore the representative point continues along AB with constant velocity �,
apparently ‘sticking’ to the spindle, until is arrives at B where it is diverted on to the ellipse. Its
subsequent motion is then periodic.

If F0=mga there is one equilibrium position at θ = 1
2π , in which the pendulum is horizontal.

In this critical case the centre and the saddle merge at θ = 1
2π so that the equilibrium point is a

hybrid centre/saddle point.
If F0>mga, there are no equilibrium positions. The phase diagram for �=1, g/a=1 and

F0/(ma
2)=2 is shown in Figure 1.27. All phase paths approach the line θ̇ =�, which is a

2
3
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Figure 1.26 Problem 1.14: Typical phase diagram for the friction-driven pendulum for F0<mga.
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Figure 1.27 Problem 1.14: Typical phase diagram for the friction-driven pendulum for F0>mga.
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‘singular line’ along which the phase path continues. Whatever initial conditions are imparted
to the pendulum, it will ultimately rotate at the same rate � as the spindle.

• 1.15 By plotting ‘potential energy’ of the nonlinear conservative system ẍ= x4− x2, con-
struct the phase diagram of the system. A particular path has the initial conditions x= 1

2 ,
ẋ=0 at t =0. Is the subsequent motion periodic?

1.15. From NODE, (1.29), the potential function for the conservative system defined by

ẍ= x4 − x2

is given by

V(x)=−
∫
(x4 − x2)dx= 1

3
x3 − 1

5
x5.

Its graph is shown in the upper diagram in Figure 1.28. The system has three equilibrium
points: at x=0 and x=±1. The equilibrium point at x=−1 corresponds to a minimum of
the potential function which generates a centre in the phase diagram, and there is a maximum
at x=1 which implies a saddle point. The origin is a point of inflection of V(x). Near the
origin ẍ=− x2 has a cusp in the phase plane. The two phase paths from the origin are given

–1.5 –1 –0.5 0.5 1 1.5
x

y

–1 1
x

–0.25

0.25

� (x)

–1

–0.75

–0.5

–0.25

0.25

0.5

0.75

1

Figure 1.28 Problem 1.15: Potential energy and phase diagram for the conservative system ẍ= x4− x2.
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by 1
2y

2=−2
3x

3 approximately and they only exist for x ≤0. Generally the equations for the
phase paths can be found explicitly as

1
2y

2+V(x)= 1
2y

2+ 1
3x

3− 1
5x

5=C.

A selection of phase paths is shown in the lower diagram of Figure 1.28 including the path
which starts at x(0)=− 1

2 , y(0)=0. The closed phase path indicates periodic motion.

• 1.16 The system ẍ+ x=−F0sgn (ẋ), F0>0, has the initial conditions x= x0>0, ẋ=0.
Show that the phase path will spiral exactly n times before entering equilibrium (Section 1.6)
if (4n−1)F0<x0<(4n+1)F0.

1.16. The system is governed by the equation

ẍ+ x=−F0sgn (ẋ)=
{ −F0 (ẋ > 0)
F0 (ẋ < 0.

For y >0, the differential equation of the phase paths is

dy
dx
= −x − F0

y
.

Integrating, the solutions can be expressed as

(x+F0)
2+ y2=A. (i)

Similarly, for y <0, the phase paths are given by

(x − F0)
2+ y2=B. (ii)

For y > 0 the phase paths are semicircles centred at (−F0, 0), and for y <0 they are semicircles
centred at (F0, 0). The equation has a line of equilibrium points for which −1<x <1. The
semicircle paths are matched as shown in Figure 1.29 (drawn withF0=1), and a path eventually
meets the x axis between x=−1 and x=1 either from above or below depending on the initial
value x0. We have to insert a path from (−1, 0) to the origin and a path from (1, 0) to the origin
to complete the phase diagram.

Let the path which starts at (x0, 0) next cut the x axis at (x1, 0). From (ii) the path is

(x − F0)
2+ y2= (x0 − F0)

2, (y < 0).
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Figure 1.29 Problem 1.16.

from which it follows that x1=2F0− x0. Assume that 2F0− x0<−F0, that is, x0>3F0 so that
the path continues. The continuation of the path lies on the semicircle

(x+F0)
2+ y2= (x1+F0)

2= (3F0− x0)
2, (y > 0).

Assume that it meets the x axis again at x= x2. Hence x2= x0 − 4F0. The spiral will continue
if x2>F0 or x0>5F0 and terminate if x0<5F0. Hence just one cycle of the spiral occurs if
3F0<x0<5F0.

If the spiral continues then x= x2 becomes the new initial point and a further spiral occurs if

3F0 < x2 < 5F0 or 7F0 < x0 < 9F0.

Continuing this process, a phase path will spiral just n times if

(4n− 1)F0 < x0 < (4n+1)x0.

• 1.17 A pendulum of length a has a bob of mass m which is subject to a horizontal force
mω2a sin θ , where θ is the inclination to the downward vertical. Show that the equation of
motion is θ̈ =ω2(cos θ − λ) sin θ , where λ= g/(ω2a). Investigate the stability of the equilib-
rium states by the method of NODE, Section 1.7 for parameter-dependent systems. Sketch
the phase diagrams for various λ.

1.17. The forces acting on the bob are shown in Figure 1.30. Taking moments about O

mω2a sin θ · a cos θ −mga sin θ =ma2θ̈ ,
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Figure 1.30 Problem 1.17.
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Figure 1.31 Problem 1.17: The graph of f (θ , λ)=0 where the regions in which f (θ , λ)>0 are shaded.

or
θ̈ =ω2(cos θ − λ) sin θ = f (θ , λ),

in the notation of NODE, Section 1.7, where λ/(ω2a). Let ω=1: time can be scaled to eliminate
ω. The curves in the (θ , λ) given by f (θ , λ)=0 are shown in Figure 1.31 with the regions where
f (θ , λ)>0 are shaded. If λ<1, then the pendulum has four equilibrium points at θ = ± cos−1 λ,
θ =0 and θ =π . The diagram is periodic with period 2π in θ so that the equilibrium point
at θ = − π is the same as that at θ =π . Any curves above the shaded regions indicate stable
equilibrium points (centres) and any curves below shaded regions indicate unstable equilibrium
points (saddles). Hence, for λ<1, θ = ± cos−1 λ are stable points, whilst θ =0 and θ =π are
both unstable. The equations of the phase paths can be found by integrating

θ̇
dθ̇
dθ
= sin θ cos θ − λ sin θ .

The general solution is
θ̇2= sin2 θ +2 cos θ +C.

The phase diagram is shown in Figure 1.32 for λ=0.4. As expected from the stability
diagram, there are centres at θ =± cos−1 λ and saddles at x=0 and x=π .

If λ ≥ 1, there are two equilibrium point at θ =π (or −π). The phase diagram is shown in
Figure 1.33 with λ=2. The origin now becomes a stable centre but θ =π remains a saddle.
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Figure 1.32 Problem 1.17: Phase diagram for λ=0.4<1.
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Figure 1.33 Problem 1.17: Phase diagram for λ=2>1.

• 1.18 Investigate the stability of the equilibrium points of the parameter-dependent system
ẍ= (x− λ)(x2− λ).

1.18. The equation is

ẍ= (x− λ)(x2− λ)= f (x, λ)

in the notation of NODE, Section 1.7. The system is in equilibrium on the line x= λ and the
parabola x2= λ. These boundaries are shown in Figure 1.34 together with the shaded regions
in which f (x, λ)>0.
• λ≤0. There is one equilibrium point, an unstable saddle at x= λ.
• 0<λ<1. There are three equilibrium points: at x=−√λ (saddle), x= λ (centre) and
x=√λ (saddle).

• λ=1. This is a critical case in which f (x, λ) is positive on both sides of x=1. The
equilibrium point is an unstable hybrid centre/saddle.

• λ>1. There are three equilibrium points: at x=−√λ (saddle), x=√λ (centre) and x= λ
(saddle).
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Figure 1.34 Problem 1.18.

• 1.19 If a bead slides on a smooth parabolic wire rotating with constant angular velocity
ω about a vertical axis, then the distance x of the particle from the axis of rotation satisfies
(1+ x2)ẍ+ (g−ω2+ ẋ2)x=0. Analyse the motion of the bead in the phase plane.

1.19. The differential equation of the bead is

(1+ x2)ẍ+ (g−ω2+ ẋ2)x=0.

The equation represents the motion of a bead sliding on a rotating parabolic wire with its lowest
point at the origin. The variable x represents distance from the axis of rotation. Put ẋ= y and
g−ω2= λ; then equilibrium points occur where

y=0 and (λ+ y2)x=0.

If λ �=0, all points on the x axis of the phase diagram are equilibrium points, and if λ=0 there
is a single equilibrium point, at the origin.

The differential equation of the phase paths is

dy
dx
=− (λ+ y

2)x

(1+ x2)y
,

which is a separable first-order equation. Hence, separating the variables and integrating

∫
ydy
λ+ y2 =−

∫
xdx

1+ x2 +C,

or
1
2 ln |λ+ y2| =−1

2 ln(1+ x2)+C,

or
(λ+ y2)(1+ x2)=A.



28 Nonlinear ordinary differential equations: problems and solutions

–2 –1 1 2
x

y

–2

–1

1

2

Figure 1.35 Problem 1.19: Phase diagram for λ=1.
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Figure 1.36 Problem 1.19: Phase diagram for λ=−1.

• λ>0. The phase diagram for λ=1 is shown in Figure 1.35 which implies that the origin
is a centre. In this mode, for low angular rates, the bead oscillates about the lowest point
of the parabola.

• λ<0. The phase diagram for λ=−1 is plotted in Figure 1.36 which shows that the origin
is a saddle. For higher angular rates the origin becomes unstable and the bead will theoret-
ically go off to infinity. Note that y= ±1 are phase paths which means, for example, that
the bead starting from x=0 with velocity y=1 will move outwards at a constant rate.

• λ=1. The phase diagram is shown in Figure 1.37. If the bead is placed at rest at any point
on the wire then it will remain in that position subsequently.



1 : Second-order differential equations in the phase plane 29

–2 –1 1 2
x

–2

–1

1

2
y

Figure 1.37 Problem 1.19: Phase diagram for λ=0.

• 1.20 A particle is attached to a fixed point O on a smooth horizontal plane by an elastic
string. When unstretched, the length of the string is 2a. The equation of motion of the
particle, which is constrained to move on a straight line through O, is

ẍ=−x+ a sgn (x), |x|>a (when the string is stretched),
ẍ=0, |x| ≤ a (when the string is slack),

x being the displacement fromO. Find the equilibrium points and the equations of the phase
paths, and sketch the phase diagram.

1.20. The equation of motion of the particle is

ẍ = −x+ a sgn (x), (|x| > a)
ẍ = 0, (|x| ≤ a).

All points in the interval |x| ≤ a, y=0 are equilibrium points. The phase paths as follows.

(i) x >a. The differential equation is

dy
dx
= −x+ a

y
,

which has the general solution

y2+ (x − a)2=C1.

These phase paths are semicircles centred at (a, 0).
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x

y

a–a

Figure 1.38 Problem 1.20.

(ii) −a≤ x ≤ a. The phase paths are the straight lines y=C2.

(iii) x <−a. The differential equation is

dy
dx
= −x − a

y
,

which has the general solution
y2+ (x+ a)2=C3.

These phase paths are semicircles centred at (−a, 0).
A sketch of the phase paths is shown in Figure 1.38. All paths are closed which means that

all solutions are periodic.

• 1.21 The equation of motion of a conservative system is ẍ+ g(x)=0, where g(0)=0,
and g(x) is strictly increasing for all x, and∫ x

0
g(u)du→∞ as x →±∞. (i)

Show that the motion is always periodic.
By considering g(x)= xe−x2

, show that if (i) does not hold, the motions are not all necessarily
periodic.

1.21. The equation for the phase paths is

dy
dx
=−g(x)

y
.

The variables separate to give the general solution in the form

1
2
y2=−

∫ x

0
g(u)du+C. (i)
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Write ∫ x

0
g(u)du=G(x). (ii)

Then (i) defines two families of paths where C >0;

y=√2{C −G(x)}1/2 when G(x) < C; (iii)

and the reflection in the x axis;

y=−√2{C −G(x)}1/2 when G(x) < C. (iv)

Since g(x)<0 when x <0, and g(x)>0 when x >0, then G(x) is strictly increasing to +∞
as x→−∞ and x→∞. Also G(x) is continuous and G(0)=0. Therefore, given any value of
C >0, G(x) takes the value C at exactly two values of x, one negative and the other positive.

Consider the family of positive solutions (iii). Take any positive value of the constant C. At
the two points whereG(x)=C, we have y(x)=0. Between them y(x)>0, and the graph of the
path cuts the x axis at right angles (see Section 1.2). When the corresponding reflected curve
(iv) (y <0) is joined to this one, we have a smooth closed curve. By varying the parameter C
the process generates a family of closed curves nested around the origin (which is therefore a
centre), and all motions are periodic.

If g(x)= xe−x2
, then G(x)= 1

2 (1− e−x2
), which does not go to infinity as x→±∞. The

solutions (iii) and (iv) become

y= ±√2
{
B + 1

2e−x2}1/2, where B =C− 1
2 .

If −1
2 <B <

1
2 (i.e. if 0<C<1) the above analysis holds; there is a family of closed curves

surrounding the origin. These represent periodic motions. However, ifB > 1
2 , the corresponding

paths do not meet the x axis, but run from x=−∞ to x=+∞ outside the central region. These
are not periodic motions.

• 1.22 The wave function u(x, t) satisfies the partial differential equation

∂2u

∂x2 +α
∂u

∂x
+βu3+ γ ∂u

∂t
=0.

where α, β and γ are positive constants. Show that there exist travelling wave solutions of
the form u(x, t)=U(x − ct) for any c, where U(ζ ) satisfies

d2U

dζ 2 + (α − γ c)
dU
dζ
+βU3=0.

Using Problem 1.21, show that when c=α/γ , all such waves are periodic.
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1.22. The wave function u(x, t) satisfies the partial differential equation

∂2u

∂x2 +α
∂u

∂x
+βu3+ γ ∂u

∂t
=0.

Let u(x, t)=U(x− ct) and ζ = x − ct . Then

∂u

∂x
= dU

dζ
,

∂2u

∂x2 =
d2U

dζ 2 ,
∂u

∂t
=−cdU

dζ
,

so that the partial differential equation becomes the ordinary differential equation

d2U

dζ 2 + (α − γ c)
dU
dζ
+βU3=0.

If c=α/γ , the equation becomes
d2U

dζ 2 +βU3=0,

which can be compared with the conservative system in Problem 1.21. In this case g(U)=βU3.
Obviously g(U)<0 for U <0, g(U)>0 for U >0 and g(0)=0. Also

β

∫ U

0
v3dv= β

4
U4→∞, as U →±∞.

Therefore by Problem 1.21 these waves are all periodic.

• 1.23 The linear oscillator ẍ+ ẋ+ x=0 is set in motion with initial conditions x=0,
ẋ= v, at t =0. After the first and each subsequent cycle the kinetic energy is instanta-
neously increased by a constant, E, in such a manner as to increase ẋ. Show that if
E= 1

2v
2(1− e4π/

√
3), a periodic motion occurs. Find the maximum value of x in a cycle.

1.23. The oscillator has the equation ẍ+ ẋ+ x=0, with initial conditions x(0)=0, ẋ(0)= v.
It is easier to solve this equation for x in terms of t rather than to use eqn (1.9) for the phase
paths. The characteristic equation is m2+m+1=0, with roots m= 1

2 (−1±√3i). The general
(real) solution is therefore

x(t)= e− 1
2 t [A cos(1

2

√
3t)+ B sin(1

2

√
3t)]. (i)

Also we shall require ẋ(t):

ẋ(t)= v√
3

e− 1
2 t [√3 cos(1

2

√
3t)− sin(1

2

√
3t)]. (ii)
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x

x
v

u

Figure 1.39 Problem 1.23: The limit cycle, with the jump along the y axis.

The first circuit is completed by time t =4π/
√

3. ẋ is then equal to u, say, where u is
given by

u= ẋ(4π/√3)= ve−2π/
√

3. (iii)

At this moment(see Figure 1.39) the oscillator receives an impulsive increment E of kinetic
energy, of such magnitude as to return the velocity ẋ from its value u to the given initial
velocity v. From (iii)

E= 1
2v

2 − 1
2u

2= 1
2v

2(1− e−4π/
√

3). (iv)

The second cycle then duplicates the first, since its initial conditions are physically equivalent
to those for the first cycle, and similarly for all the subsequent cycles. The motion is therefore
periodic, with period T =4π/

√
3.

The turning points of x(t) occur where ẋ(t)=0; that is, where tan(
√

3/2)=√3 (from (ii)).
This has two solutions in the range 0 and 2π . These are

t = 2π

3
√

3
and t = 4π

3
√

3

(by noting that tan−1
√

3= 1
3π ). From (i) the corresponding values of x are

x= ve−π/(3
√

3) and x=− ve−2π/(3
√

3).

The overall maximum of x(t) is therefore ve−π/(3
√

3).

• 1.24 Show how phase paths of Problem 1.23 having arbitrary initial conditions spiral on
to a limit cycle. Sketch the phase diagram.
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Figure 1.40 Problem 1.24: The limit cycle with the jump along the y axis.

1.24. (Refer to Problem 1.23.) The system is the same as that of Problem 1.23, but with the
initial conditions x(0)=0, ẋ(0)= v0>0, where v0 is arbitrary. Suppose the impulsive energy
increment at the end of every cycle is E, an arbitrary positive constant. vn will represent the
value of ẋ at the end of the nth cycle, following the energy increment delivered at the end of
that cycle, and it serves as the initial condition for the next cycle (see Figure 1.40).

For the first cycle, starting at x=0, ẋ(0)= v0, we have (as in Problem 1.23)

1
2v

2
1 − 1

2v
2
0e−4π/

√
3=E,

or
v2

1 =2E+ v2
0e−4π/

√
3. (i)

For the second cycle (starting at v1)

v2
2 =2E+ v2

1e−4π/
√

3, (ii)

and so on. For the nth cycle

v2
n =2E+ v2

n−1e−4π/
√

3. (iii)

By successive substitution we obtain

v2
n =2E(1+ e−ρ + · · · + e−(n−1)ρ + v2

0e−nρ), (iv)

in which we have written for brevity ρ=4π/
√

3.
By using the usual formula for the sum of a geometric series (iv) reduces to

v2
n − v2

0 = (1− e−nρ)
(

2E
1− e−ρ

− v2
0

)
for all n ≥ 1. (v)
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(A) In the special case when E= 1
2v

2
0(1− e−ρ), the right-hand side of (v) is zero, so

v2
0 = v2

1 = · · · = v2
n , which corresponds to the periodic solution in Problem 1.23.

(B) If v2
0 <2E/(1− e−ρ), the sequence v0, v1, . . . , vn is strictly increasing, and

lim
n→∞ v2

n =
2E

1− e−ρ
.

The limit cycle in (A) is approached from inside.

(C) If v2
0 =2E/(1− e−ρ), the sequence is strictly decreasing and

lim
n→∞ v2

n =
2E

1− eP − ρ ;

so the limit cycle in (A) is approached from the outside.

The more general initial conditions x(0)=X, ẋ(0)=V , where X and V are both arbitrary,
correspond to one of the categories (A), (B) or (C); so the same limit (A) is approached.

• 1.25 The kinetic energy, T , and the potential energy, V , of a system with one degree of
freedom are given by

T = T0(x)+ ẋT1(x)+ ẋ2T2(x), V =V(x).
Use Lagrange’s equation

d
dt

(
∂T
∂ẋ

)
− ∂T
∂x
=−∂V

∂x

to obtain the equation of motion of the system. Show that the equilibrium points are
stationary points of T0(x)−V(x), and that the phase paths are given by the energy equation

T2(x)ẋ
2 − T0(x)+V(x)= constant.

1.25. The kinetic and potential energies are given by

T = T0(x)+ ẋT1(x)+ ẋ2T2(x), V =V(x).

Applying Lagrange’s equation

d
dt

(
∂T
∂ẋ

)
− ∂T
∂x
=−∂V

∂x
,

the equation of motion is

d
dt
(2T2ẋ+ T1)− (T ′2ẋ2+ T ′1ẋ+ T ′0)=−V ′,

or
2T2ẍ+ T ′2ẋ2 − T ′0= − V ′. (i)
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Equilibrium points, where ẍ= ẋ=0, occur where T ′0−V ′ =0, that is, at the stationary points
of the energy function T0(x)−V(x). Let y= ẋ. Equation (i) can be expressed in the form

d
dx
(T2(x)y

2)− T ′0(x)+V ′(x)=0,

which can be integrated to give the phase paths, namely

T2(x)y
2 − T0(x)+V(x)=C.

• 1.26 Sketch the phase diagram for the equation ẍ=−f (x+ ẋ), where

f (u)=


f0 u ≥ c,
f0u/c |u| ≤ c,
−f0 u≤ − c

where f0, c are constants, f0>0, and c >0. How does the system behave as c→0?

1.26. The system is governed by the equation ẍ=−f (x+ ẋ), where

f (u)=


f0 u > c

f0u/c |u| ≤ c
−f0 u < −c

Let y= ẋ. The phase paths are as follows.

• x+ y > c, ẍ=−f0. The equation for the phase paths is

dy
dx
=−f0

y
⇒ 1

2
y2=−f0x+C1.

The phase paths are parabolas with their axes along the x axis.
• |x+ y| ≤ c, ẍ=−f0(x+ ẋ)/c. It is easier to solve the linear equation

cẍ+ f0ẋ+ f0x=0

parametrically in terms of t . The characteristic equation is

cm2+ f0m+ f0=0.

which has the roots

m1,m2= 1
2c
[−f0 ±√(f 2

0 − 4cf0)].
Therefore

x=Aem1t +Bem2t
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–6 –5 –4 –3 –2 –1 1 2 3
x

–1

1

y

x + y = 1

x + y = –1

Figure 1.41 Problem 1.26: The spirals are shown for the parameter values f0=0.25 and c=1. Note that scales on
the axes are not the same in the drawing.

The roots are both real and negative if f0>4c, which means that the phase diagram
between the lines x+ y= c and x+ y=−c is a stable node. If f0<4c, then the phase
diagram is a stable spiral.

• x+ y <−c, ẍ= f0. The phase paths are given by

1
2y

2= f0x+C2,

which again are parabolas but pointing in the opposite direction.

Figure 1.41 shows a phase diagram for the spiral case. The spiral between the lines x= y=1
and x+ y=−1 is linked with the parabolas on either side of the two lines. The total picture is
a stable spiral. A similar matching occurs with the stable node.

As c→0, the lines x+ y= c and x+ c=−1 merge and the spiral disappears leaving a centre
created by the joining of the parabolas.

• 1.27 Sketch the phase diagram for the equation ẍ= u, where

u= −sgn (
√

2|x|1/2sgn (x)+ ẋ).
(u is an elementary control variable which can switch between +1 and −1. The curve√

2|x|1/2sgn (x)+ y=0 is called the switching curve.)

1.27. The control equation is

ẍ=−sgn [√2|x|1/2sgn (x)+ ẋ].

The equilibrium point satisfies

sgn [√2|x|1/2sgn (x)]=0, or |x|1/2sgn (x)=0,
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Figure 1.42 Problem 1.27.

of which x=0 is the only solution. In the phase plane the boundary between the two modes of
the phase diagram is the switching curve

y=− sgn [√2|x|1/2sgn (x)],

which is two half parabolas which meet at the origin as shown in Figure 1.42. There are distinct
families of phase paths on either side of this curve.

• √2|x|1/2sgn (x)+ y >0. The equation is ẍ=−1 so that dy/dx=−1/y and the phase paths
are given by the parabolas y2=−2x+C1

• √2|x|1/2sgn (x)+ y <0. In this case ẍ=1 so that the phase paths are given by y2=2x+C2.

When the parabolic paths reach the switching curve their only exit is along the switching curve
into the equilibrium point at the origin.

• 1.28 The relativistic equation for an oscillator is

d
dt

{
m0ẋ√[1− (ẋ/c)2]

}
+ kx=0, |ẋ| < c

where m0, c and k are positive constants. Show that the phase paths are given by

m0c
2

√[1− (y/c)2] +
1
2
kx2= constant.

If y=0 when x= a, show that the period, T , of an oscillation is given by

T = 4
c
√
ε

∫ a

0

[1+ ε(a2 − x2)]dx√
(a2 − x2)

√[2+ ε(a2 − x2)] , ε= k

2m0c
2 .

The constant ε is small; by expanding the integrand in powers of ε show that

T ≈ π
√

2
c

(
ε−(1/2)+ 3

8
ε1/2a2

)
.
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1.28. The equation of the oscillator is

d
dt

{
m0ẋ√[1− (ẋ/c)2]

}
+ kx=0,

which has one equilibrium point at the origin. Also the phase plane is restricted to |ẋ|<c. Let
y= ẋ and

f (y)= m0y√[1− (y/c)2] .

Then the equation of the oscillator is

y
df (y)

dy
+ kx=0, or yf ′(y)dy

dx
+ kx=0.

This is a separable first-order equation with solution

∫
yf ′(y)dy=−k

∫
dx+C,

which after integration by parts leads to

yf (y)−
∫
f (y)dy=−1

2
kx2+C,

or
m0y

2
√[1− (y/c)2] −

∫
m0ydy√[1− (y/c)2] =−

1
2
kx2+C,

or
m0y

2
√[1− (y/c)2] +m0c

2√[1− (y/c)2]=−1
2
kx2+C,

so that
m0c

2
√[1− (y/c)2] =−

1
2
kx2+C, (i)

as required. A sketch of the phase diagram is shown in Figure 1.43. It can be seen that the
origin is a centre. The particular path through (a, 0) is, from (i),

m0c
2

√[1− (y/c)2] =−
1
2
kx2+m0c

2+ 1
2
ka2,

or
1√[1− (y/c)2] =1+ ε(a2 − x2),
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x

y

2

1

–2

–1

Figure 1.43 Problem 1.28: Phase diagram for k=1, c=1 and m0=1.

where ε= k/(2m0c
2). Solve this equation for y:

y= dx
dt
= c
√
ε
√[a2 − x2]√[2+ ε(a2 − x2)]

1+ ε(a2 − x2)
.

Therefore

T = 4
c
√
ε

∫ a

0

1+ ε(a2 − x2)dx√
(a2 − x2)

√[2+ ε(a2 − x2)] ; (ii)

the integral is multiplied by 4 since integration between 0 and a covers a quarter of the period,
and the time over each quarter is the same by symmetry.

Expand the integrand in powers of ε for small ε using a Taylor series. Then

1+ ε(a2 − x2)√
(a2 − x2)

√[2+ ε(a2 − x2)] ≈ 2−(1/2)
[

1√
(a2 − x2)

+ 3
4
ε
√
(a2 − x2)

]
.

Hence

T ≈ 2
√

2
c
√
ε

∫ a

0

[
1√

(a2 − x2)
+ 3

4
ε
√
(a2 − x2)

]
dx

= 2
√

2
c
√
ε

[
sin−1(x/a)+ 3

8
ε{x√(a2 − x2)+ a2 sin−1(x/a)}

]a
0

= 2
√

2
c
√
ε

(
1
2
π + 3

16
επa2

)

= π
√

2
c

(
1
ε1/2 +

3
8
ε1/2a2

)

as ε→0.
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• 1.29 A mass m is attached to the mid-point of an elastic string of length 2a and stiffness
λ (see Figure 1.35 in NODE or Figure 1.44). There is no gravity acting, and the tension is
zero in the equilibrium position. Obtain the equation of motion for transverse oscillations
and sketch the phase paths.

1.29. Assume that oscillations occur in the direction of x (see Figure 1.44). By symmetry we
can assume that the tensions in the strings on either side ofm are both given by T . The equation
of motion for m is

2T sin θ =−mẍ.

Assuming Hooke’s law,

T = λ× extension= λ[√(x2+ a2)− a].

Therefore

mẍ=−2kx[√(x2+ a2)− a]√
(x2+ a2)

. (i)

There is one expected equilibrium point at x=0. This is a conservative system with potential
(see NODE, Section 1.3)

V(x)=2k
∫ (

x − ax√
(x2+ a2)

)
dx= k[x2 − a√(x2+ a2)]. (ii)

The equation of motion (i) can be expressed in the dimensionless form

X′′ =− X
√
(X2+1)− 1√
(X2+1)

after putting x= aX and t =mτ/(2k). The phase diagram in the plane (X,Y =X′) is shown in
Figure 1.45. From (ii) the potential energy V has a minimum at x=0 (or X=0) so that the
origin is a centre.

x

m
TT

u

Figure 1.44 Problem 1.29.
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Figure 1.45 Problem 1.29: Phase diagram.
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• 1.30 The system

ẍ+ x=F(v0 − ẋ)
is subject to the friction law

F(u)=



1 u > ε

u/ε −ε < u < ε
−1 u < −ε

where u= v0− ẋ is the slip velocity and v0>ε>0. Find explicit equations for the phase
paths in the (x, y= ẋ) plane. Compute a phase diagram for ε=0.2, v0=1 (say). Explain
using the phase diagram that the equilibrium point at (1, 0) is a centre, and that all paths
which start outside the circle (x − 1)2+ y2= (v0− ε)2 eventually approach this circle.

1.30. The equation of the friction problem is

ẍ+ x=F(v0 − ẋ),
where

F(u)=



1 u > ε

u/ε −ε < u < ε
−1 u < −ε.

The complete phase diagram is a combination of phase diagrams matched along the lines
y= v0+ ε and y= v0 − ε.
• y > v0+ ε. In this region F =1. Hence the phase paths satisfy

dy
dx
= − x+1

y
,

which has the general solution
(x+1)2+ y2=C1.

The phase paths are arcs of circles centred at (−1, 0).
• v0 − ε < y < v0+ ε. The differential equation is

ẍ+ x= 1
ε
(v0 − ẋ), or εẍ+ ẋ+ εx= v0,

which is an equation of linear damping. The characteristic equation is

εm2+m+ ε=0,

which has the solutions

m1,m2= 1
2ε
[−1±√(1− 4ε2)].
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Figure 1.46 Problem 1.30: Phase diagram of ẍ+ x=F(v0 − ẋ) for ε=0.2, v0=1.

Since ε is small, the solutions are both real and negative. The general solution is

x=Aem1t +Bem2t + v0

ε
.

which is the solution for a stable node centred at (v0/ε, 0).
• y < v0 − ε. With F =−1, the phase paths are given by

(x − 1)2+ y2=C2,

which are arcs of circles centred at (1, 0).

Figure 1.46 shows a computed phase diagram for the oscillator with the parameters ε=0.2,
v0=1. The equilibrium point at (1, 0) is a centre. The phase paths between y= v0+ ε and
y= v0− ε are parts of those of a stable node centred at x= v0/ε=5, y=0. All paths which
start outside the circle

(x − 1)2+ y2= (v0 − ε)2=0.82,

eventually approach this periodic solution.

• 1.31 The system

ẍ+ x=F(ẋ),
where

F(ẋ)=


kẋ+1 ẋ < v0
0 ẋ= v0
−kẋ − 1 ẋ > v0

,

and k >0, is a possible model for Coulomb dry friction with damping. If k <2, show that the
equilibrium point is an unstable spiral. Compute the phase paths for, say, k=0.5, v0=1.
Using the phase diagram discuss the motion of the system, and describe the limit cycle.
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1.31. The equation for the Coulomb friction is

ẍ+ x=F(ẋ),

where

F(ẋ)=


kẋ+1 ẋ < v0
0 ẋ= v0
−kẋ − 1 ẋ > v0

For y <v0, the equation of motion is

ẍ − kẋ+ x=1.

The system has one equilibrium point at x=1 which is unstable, a spiral if k <2 and a node if
k >2. For y >v0, the equation of motion is

ẍ+ kẋ+ x=−1,

which as part of a phase diagram of a stable spiral or node centred at x=−1. These families
of paths meet at the line y= v0.

Assume that k <2. For y <v0, the phase paths have zero slope on the line −x+ ky+1=0,
which meets the line y= v0 at x= kv0+1. Similarly, the phase paths for y > v0 have zero slope
along the line x+ ky+1=0 which meets the line y= v0 at x=−kv0−1. On the phase diagram
insert a phase path on y= v0 between x=−kv0−1 and x= kv0+1 along which phase paths
meet pointing in the direction of positive x. In this singular situation the only exit is along
the line until x= kv0+1 is reached where the path continues for y <v0. See Figure 1.47. This
particular path continues as the limit cycle. Paths spiral into the limit cycle from external and
internal points.

The section of phase path on y= v0 corresponds to dry friction in which two surfaces stick
for a time. This occurs in every period of the limit cycle.

–3 –2 –1
1

2 3
x

y

y = v0

–2

–1

1

2

Figure 1.47 Problem 1.31: The phase diagram with k=0.5 and v=1. The thickest curve is the limit cycle.
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• 1.32 A pendulum with magnetic bob oscillates in a vertical plane over a magnet, which
repels the bob according to the inverse square law, so that the equation of motion is
(Figure 1.36 in NODE)

ma2θ̈ =−mgasinθ +Fh sinφ,

where h>a and F = c/(a2+h2− 2ah cos θ) and c is a constant. Find the equilibrium posi-
tions of the bob, and classify them as centres and saddle points according to the parameters
of the problem. Describe the motion of the pendulum.

1.32. Take moments about the point of suspension of the pendulum. Then

Fh sinφ −mga sin θ =ma2θ̈ . (i)

where, by the inverse square law,

F = c

a2+h2 − 2ah cos θ
, tanφ= a sin θ

h− a cos θ
. (ii)

Elimination of f and φ in (i) using (ii) leads to an equation in θ

maθ̈ = ch sin θ
(a2+h2 − 2ah cos θ)3/2

−mg sin θ .

There are equilibrium points at θ = nπ , (n=0,±1,±2, . . .) and where

a2+h2 − 2ah cos θ =
(
ch

mg

)2/3

,

that is where

cos θ = a
2+h2 − (ch/mg)2/3

2ah
.

This equation has solutions if

−1≤ a
2+h2 − (ch/mg)2/3

2ah
≤1,

or
mg(a − h)3

h
≤ c≤ mg(a+h)

3

h
. (iii)

If c lies outside this interval then the pendulum does not have an inclined equilibrium position.
If it exists let the angle of the inclined equilibrium be θ = θ1 for 0<θ1<π . Obviously θ =−θ1
and 2nπ ± θ1 will also be solutions.
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This is a conservative system with potential V(θ) (see Section 1.3) such that

V ′(θ)=− ch sin θ
ma(a2+h2 − 2ah cos θ)3/2

+ g sin θ
a

.

The nature of the stationary points can be determined by the sign of the second derivative at
each point. Thus

V ′′(θ)=− ch cos θ
ma(a2+h2 − 2ah cos θ)3/2

+ 3ch2 sin2 θ

m(a2+h2 − 2ah cos θ)5/2
+ g cos θ

a
.

• θ = nπ (n even).

V ′′(nπ)=− ch

ma(h− a)3 +
g

a
.

It follows that θ = nπ is a centre if c <mg(h− a)3/h and a saddle if c >mg(h− a)3/h.
• θ = nπ (n odd).

V ′′(nπ)= ch

ma(h+ a)3 −
g

a
.

Therefore θ = nπ is a centre if c >mg(h+ a)3/h and a saddle if c <mg(h+ a)3/h.
• θ = θ1 subject to mg(a − h)3≤ ch≤mg(a+h)3.

V ′′(θ1) = − ch cos θ1
ma(a2+h2 − 2ah cos θ1)3/2

+ 3ch2 sin2 θ1

m(a2+h2 − 2ah cos θ1)5/2
+ g cos θ1

a

=
(mg
ch

)−(5/3) ch2 sin2 θ1

m

> 0.

Note that V(−θ1) is also positive Therefore, if they exist, all inclined equilibrium points are
centres.

Suppose that the parameters a, h and m are fixed, and that c can be increased from zero. The
behaviour of the bob is as follows:

• 0<c<mg(a−h)3/h. There are two equilibrium positions: the bob vertically below the
suspension point which is a stable centre, or the bob above which is an unstable saddle,

• c takes the intermediate values defined by (iii). Both the highest and lowest points becomes
a saddles. The inclined equilibrium points are centres.

• c >mg(a+h)3/h. The lowest point remains a saddle but the highest point switches back
to a saddle.
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• 1.33 A pendulum with equation ẍ+ sin x=0 oscillates with amplitude a. Show that its
period, T , is equal to 4K(β), where β = sin2 1

2a and

K(β)=
∫ 1

2π

0

dφ√
(1− β sin2 φ)

.

The function K(β)has the power series representation

K(β)= 1
2
π

[
1+

(
1
2

)2

β +
(

1.3
2.4

)2

β2+ · · ·
]

, |β| < 1.

Deduce that, for small amplitudes,

T =2π
(

1+ 1
16
a2+ 11

3072
a4

)
+O(a6).

1.33. The pendulum equation ẍ+ sin x=0 can be integrated once to give the equation of the
phase paths in the form

1
2 ẋ

2 − cos x=C=− cos a, (i)

using the condition that x= a when ẋ=0. The origin is a centre about which the paths are
symmetric in both the x and y= ẋ axes. Without loss of generality assume that t =0 initially.
The pendulum completes the first cycle when x=2π . From (i) the quarter period is

K =
∫ K

0
dt = 1√

2

∫ a

0

dx√
(cos x − cos a)

= 1
2

∫ a

0

dx√
(sin2(1/2)a − sin2(1/2)x)

.

Now apply the substitution sin 1
2x= sin 1

2a sinφ so that the limits are replaced by φ=0 and
φ= 1

2π . Since

1
2 cos 1

2x
dx
dφ
= sin 1

2a cosφ,

then

K(β)=
∫ 1

2π

0

dφ√
(1− β sin2 φ)

.

For small β, expand the integrand in powers of β using the binomial expansion so that

K(β) =
∫ ( 1

2 )π

0

(
1+ 1

2
β sin2 φ+ 3

8
β2 sin4 φ+ · · ·

)
dφ

= 1
2
π + 1

8
πβ + 9

128
β2π + · · ·
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Now expand β in powers of a:

β = sin2 1
2
a= 1

2
a − 1

48
a3+O(a5).

Finally

T = 4K(β)

= 2π
[
1+ 1

4

(
1
4
a2 − 1

48
a4

)
+ 9

1024
a4+O(a6)

]

= 2π
(

1+ 1
16
a2+ 11

3072
a4

)
+O(a6).

as a→0.

• 1.34 Repeat Problem 1.33 with the equation ẍ+ x− εx3=0 (ε >0), and show that

T = 4
√

2√
(2− εa2)

K(β), β = εa2

2− εa2 ,

and that

T =2π
(

1+ 3
8
εa2+ 57

256
ε2a4

)
+O(ε3a6)

as εa2 → 0.

1.34. The damped equation ẍ+ x − εx3=0 has phase paths given by

1
2 ẋ

2= 1
4εx

4 − 1
2x

2+C= 1
4εx

4 − 1
2x

2 − 1
4εa

4+ 1
2a

2,

= 1
2 (x

2 − a2)(εx2+ εa2 − 2)

assuming that x= a when ẋ=0. The equation has equilibrium points at x=0 and x=±1/
√
ε.

Oscillations about the origin (which is a centre) occur if a
√
ε <1. In this case the period T is

given by

T = 4
√

2
∫ a

0

dx√
(a2x2)

√
(2− εa2 − εx2)

= 4
√

2
∫ (1/2)π

0

dφ√
(2− εa2 − εa2 sin2 φ)

(substituting x= sinφ)

= 4
√

2√
(2− εa2)

K(β)
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where β = εa2/(2− εa2) and

K(β)=
∫ (1/2)π

0

dφ√
(1− β sin2 φ)

.

From the previous problem, with µ= εa2,

T = 2π
√

2√
(2− µ)

[
1+ µ

4(2− µ) +
9µ2

64(2− µ)2 +O(µ
3)

]

= 2π
√

2√
(2− µ)

[
1+ 1

8
µ

(
1+ 1

2
µ

)
+ 9µ2

256
+O(µ3)

]

= 2π

(
1+ µ

4
+ 3µ2

32

)(
1+ µ

8
+ 25µ2

256

)
+O(µ3)

= 2π

(
1+ 3µ

8
+ 57µ2

256

)
+O(µ3)

as µ→0.

• 1.35 Show that the equations of the form ẍ+ g(x)ẋ2+h(x)=0 are effectively conserva-
tive. (Find a transformation of x which puts the equations into the usual conservative form.
Compare with NODE, eqn (1.59).)

1.35. The significant feature of the equation

ẍ+ g(x)ẋ2+h(x)=0 (i)

is the ẋ2 term. Let z= f (x), where f (x) is twice differentiable and it is assumed that z= f (x)
can be uniquely inverted into x= f−1(z). Differentiating

ż= f ′(x)ẋ, z̈= f ′(x)ẍ+ f ′′(x)ẋ2.

Therefore

ẋ= ż

f ′(x)
, ẍ= z̈

f ′(x)
− f ′′(x)ẋ2

f ′(x)
= z̈

f ′(x)
− f ′′(x)ż2

f ′(x)3
.

Substitution of these derivatives into (i) results in

z̈− f ′′(x)
f ′(x)2

ż2+ g(x)

f ′(x)
ż2+ f ′(x)h(x)=0.
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The ż2 can be eliminated by choosing f ′(x) so that

f ′′(x)
f ′(x)

= g(x).

Aside from a constant we can put

f ′(x)= exp
[∫ x

g(u)du
]

,

and a further integration leads to

f (x)=
∫

exp
[∫ x

g(u)du
]

dx.

In terms of z the equation becomes

z̈+p(z)=0,

where p(z)= f ′(f−1(z))h(f−1(z)). Obviously this equation is conservative of the form (1.23).

• 1.36 Sketch the phase diagrams for the following.

(i) ẋ= y, ẏ=0, (ii) ẋ= y, ẏ=1, (iii) ẋ= y, ẏ= y.

1.36. (i) ẋ= y, ẏ=0. All points on the x axis are equilibrium points. The solutions are x= t +A
and y=B. The phase paths are lines parallel to the x axis (see Figure 1.48).
(ii) ẋ= y, ẏ=1. There are no equilibrium points. The equation for phase paths is

dy
dx
= 1
y

,

whose general solution is given by y2=2x+C. The phase paths are congruent parabolas with
the x axis as the common axis (see Figure 1.48).
(iii) ẋ= y, ẏ= y. All points on the x axis are equilibrium points. The phase paths are given by

dy
dx
=1 ⇒ y= x+C,

which are parallel inclined straight lines (see Figure 1.49). All equilibrium points are unstable.
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x

y

1 2 3
x

1

2
y

–3 –2 –1

–2

–1

Figure 1.48 Problem 1.36: The phase diagrams for (i) and (ii).

x

y

Figure 1.49 Problem 1.36: The phase diagram (iii).

• 1.37 Show that the phase plane for the equation

ẍ − εxẋ+ x=0, ε > 0

has a centre at the origin, by finding the equation of the phase paths.

1.37. The differential equation for the phase paths of

ẍ − εxẋ+ x=0,

is

y
dy
dx
− εxy+ x=0.

This is a separable equation having the general solution

ε

∫
xdx=

∫
ydy

y − ε−1 +C=
∫ (

1+ ε−1

y − ε−1

)
dy+C,

or

1
2εx

2= y+ ε−1 ln |y − ε−1| +C, (i)

where C is a constant. Note that there is a singular solution y= ε−1. The system has a single
equilibrium point, at the origin.
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To establish a centre it is sufficient to show that all paths in some neighbourhood of the point
are closed, so we may restrict consideration to the region y < ε−1. On this range put

F(y)=−y − ε−1 ln |y − ε−1| =−y − ε−1 ln(ε−1 − y). (ii)

Then from (i) and (ii) we can express the paths as the union of two families of curves:

x=√2ε−(1/2){C − F(y)}1/2 ≥ 0, (iii)

and
x=−√2ε−(1/2){C − F(y)}1/2, (iv)

(wherever C−F(y) is non-negative). The curves in (iv) are the reflections in the y axis of those
in (iii), and the families join up smoothly across this axis.

Evidently, for y < ε−1,
F(0)=−ε−1 ln(ε−1) (v)

and

F ′(y)= y

ε−1 − y =


< 0 if y < 0
zero if y=0
> 0 if y > 0

. (vi)

Therefore F(y) has a minimum at y=0. Also F(y) is strictly increasing in both directions away
from y=0 and (from (ii)) F(y)→+∞ as y→−∞ and as y→ ε−1 from below.

Consider eqn (iii), using (v) and (vi). If

−ε−1 ln(ε−1) < C <∞ (vii)

there are exactly two values in the range−∞<y <ε−1 at which the factor C−F(y), and hence
x, becomes zero, and between these values x >0. The corresponding reflected path segment
given by (iv) completes a closed path, having parameter C. A representative phase diagram is
given in Figure 1.50. The unclosed paths correspond to values of y > ε−1: their boundary is the
singular solution mentioned above.

• 1.38 Show that the equation ẍ+ x+ εx3=0 (ε >0) with x(0)= a, ẋ(0)=0 has phase
paths given by

ẋ2+ x2+ 1
2εx

4= (1+ 1
2εa

2)a2.

Show that the origin is a centre. Are all phase paths closed, and hence all solutions periodic?

1.38. The differential equation of the phase paths of

ẍ+ x+ εx3=0, (ε > 0)
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–1 1
x

–1

1

y

Figure 1.50 Problem 1.37: The phase diagram for ẍ − εxẋ+ x=0 with ε=1.

is given by

y
dy
dx
= − x − εx3.

Given the conditions x(0)= a and ẋ(0)=0, integration of the differential equation gives the
phase paths

ẋ2+ x2+ 1
2εx

4= constant= (1+ 1
2εa

2)a2.

The equation has a single equilibrium point, at the origin. This is a conservative system (see
NODE, Section 1.3) with potential function

V(x)=
∫
(x+ εx3)dx= 1

2
x2+ 1

4
εx4.

Differentiating V(x) twice we obtain

V ′(x)= x+ 1
2εx

3, V ′′(x)=1+ 3
2εx

2.

Therefore V ′(0)=0 and V ′′(0)=1>0 which means that V(x) has a minimum at the origin.
Locally the origin is a centre. However, V ′(x)<0 for x <0 and V ′(x)>0 for x <0, and also
V(x)→∞ as x→±∞. These conditions imply that, for every a, x is also zero at x=−a and
y is continuous between zero at x=−a and x= a. Hence every path is closed and all solutions
periodic.
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• 1.39 Locate the equilibrium points of the equation

ẍ+ λ+ x3 − x=0.

in the x, λ plane. Show that the phase paths are given by
1
2 ẋ

2+ λx+ 1
4λx

4 − 1
2x

2= constant.

Investigate the stability of the equilibrium points.

1.39. Consider the parameter-dependent system

ẍ+ λ+ x3 − x=0.

Using the notation of Section 1.7 (in NODE), let f (x, λ)= x−x3−λ. Equilibrium points occur
where f (x, λ)=0 which is shown as the curve in Figure 1.51. The function f (x, λ) is positive in
the shaded region. Points on the curve λ= x−x3 above the shaded areas are stable and all other
points are unstable. Treating λ as a function of x, x − x3 has stationary points at x=±1/

√
3

where λ=±2/
√

3 as indicated in Figure 1.51. Therefore if −2/
√

3<λ<2/
√

3 the equation
has three equilibrium points; if λ= ± 2/

√
3 the equation has two; for all other values of λ the

equation has one equilibrium point. The phase paths satisfy the differential equation

y
dy
dx
=−x3+ x − λ,

where y= ẋ. Integrating, the phase paths are given by

1
2y

2+ λx+ 1
4x

4 − 1
2x

2= constant.

x

1
�

–1

f (x, �) > 0

1

–1

Figure 1.51 Problem 1.39: Graph showing equilibrium points on λ= x − x3.
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• 1.40 Burgers’ equation

∂φ

∂t
+φ ∂φ

∂x
= c∂

2φ

∂x2

shows diffusion and nonlinear effects in fluid mechanics (see Logan (1994)). Find the equa-
tion for permanent waves by putting φ(x, t)=U(x−ct), where c is the constant wave speed.
Find the equilibrium points and the phase paths for the resulting equation and interpret the
phase diagram.

1.40. Let φ(x, t)=U(x − ct) in Burgers’ equation

∂φ

∂t
+φ ∂φ

∂x
= c∂

2φ

∂x2 ,

so that U(x − ct) satisfies the ordinary differential equation

−cU ′(w)+U(w)U ′(w)= cU ′′(w),
where w= x − ct . All values of w are equilibrium points. Let V =U ′. Then the phase paths in
the (U ,V ) plane are given by

c
dV
dU

=U − c,
which has the general solution

cV = 1
2 (U − c)2+A. (i)

The phase paths are congruent parabolas all with the axis U = c as shown in Figure 1.52. Phase
paths are bounded for V <0 and unbounded for V >0: the latter do not have an obvious
physical interpretation.

1 2 3 4
U

V

u1u2

–2

–1

1

2

Figure 1.52 Problem 1.40: Phase diagram for permanent waves of Burger’s equation.
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w

U
u1

u2

Figure 1.53 Problem 1.40: A permanent waveform of Burgers’ equation.

Burgers’ equation describes a convection-diffusion process, and a solution U(x − ct) is the
shape of a wavefront. ForU ′ < 0, the wavefront starts atU = u1, say, and terminates atU = u2.
We can obtain an explicit form for the wave if we assume that U→ u1 as w→∞, and U→ u2
as w→−∞, and U ′ → 0 in both cases, with u2<u1. Hence from (i),

A=−1
2 (u1 − c)2=−1

2 (u2 − c)2,

so that c= 1
2 (u1+ u2) and A=− 1

8 (u1 − u2)
2. Hence (i) becomes

−cU̇ = (U − u1)(U − u2).

This is a separable equation with solution

w= u1+ u2

u2 − u1

∫ (
dU

U − u1
+ dU
u2 − U

)
= u1+ u2

u2 − u1
ln

[
u2 − U
U − u1

]
.

Solving for U we obtain

U(x − ct)= u1+ u2 − u1

1+ exp[(u2 − u1)(x − ct)/(u1+ u2)] .

The shape of the waveform is indicated in Figure 1.53.

• 1.41 A uniform rod of mass m and length L is smoothly pivoted at one end and held in
a vertical position of equilibrium by two unstretched horizontal springs, each of stiffness
k, attached to the other end as shown in Figure 1.37 (in NODE) or Figure 1.54. The rod
is free to oscillate in a vertical plane through the springs and the rod. Find the potential
energy V(θ) of the system when the rod is inclined at an angle θ to the upward vertical. For
small θ confirm that

V(θ) ≈ (kL− 1
4mg)Lθ

2,

Sketch the phase diagram for small |θ |, and discuss the stability of this inverted pendulum.
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(L sin �, LT cos �)

�
L

Figure 1.54 Problem 1.41: Inverted pendulum inclined at angle θ .

1.41. Let the distance between the supports be 2a, and let the origin be at the hinge with
horizontal and vertical axes. The supports have coordinates (a,L) and (−a,L). The potential
energy includes contributions from the height of the bob and the springs. We assume that the
springs obey Hooke’s law which states that

potential energy= 1
2 (stiffness)× (extension)2.

Therefore the potential energy is

V(θ) = 1
2mgL cos θ − 1

2mgL+ 1
2k{
√[(a − L sin θ)2+ (L− L cos θ)2] − a}2

+ 1
2k{
√[(a+L sin θ)2+ (L− L cos θ)2] − a}2

defined so that V(0)=0.
For |θ | small, use the approximations sin θ ≈ θ and cos θ ≈1− 1

2θ
2. Then

V(θ) ≈ −1
4mgLθ

2+ 1
2k{
√[(a − Lθ)2+Lθ2] − a}2

+ 1
2k{
√[(a+Lθ)2+Lθ2] − a}2,

= −1
4
mgLθ2+ 1

2
k


a

(
1− 2Lθ

a
+ 2L2θ2

a2

)1/2

− a



2

+ 1
2
k


a

(
1+ 2Lθ

a
+ 2L2θ2

a2

)1/2

− a



2

≈ −1
4
mgLθ2+ kL2θ2

as required.
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The potential energy is a minimum if Lk > 1
4mg (springs with strong stiffness) which means

that the bob oscillates about equilibrium in a centre. If Lk < 1
4mg (weak stiffness) then the

potential energy has a maximum (saddle point in the phase diagram) and the bob is in unstable
equilibrium. The phase diagrams are typically those shown in Figure 1.12 in NODE.

• 1.42 Two stars, each with gravitational mass µ, are orbiting each other under their
mutual gravitational forces in such a way that their orbits are circles of radius a. A satellite
of relatively negligible mass is moving on a straight line through the mass centre G such
that the line is perpendicular to the plane of the mutual orbits of this binary system. Explain
why the satellite will continue to move on this line. If z is the displacement of the satellite
from G, show that

z̈=− 2µz
(a2+ z2)3/2

.

Obtain the equations of the phase paths. What type of equilibrium point is z=0?

1.42. Let F be the gravitational force on the satellite S (mass m) due to one of the stars as
shown in Figure 1.55. By the inverse square law

F = mµ

z2+ a2 .

Resolution in the direction GS gives

−2µ cos θ
z2+ a2 =mz̈,

or
2µz

(z2+ a2)
3
2

= z̈. (i)

Transverse forces balance which means that the satellite will continue to move along the z axis.

FF

G

z

a a

S

� �

Figure 1.55 Problem 1.42.
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The satellite has a single equilibrium point, at G. The phase paths are given by

1
2
ż2= − 2µ

∫
zdz

(z2+ a2)3/2
= 2µ
(z2+ a2)1/2

+C.

From (i), near the origin

z̈ ≈ −3µz
a3 ,

which indicates that the equilibrium point is a centre.

• 1.43 A long wire is bent into the shape of a smooth curve with equation z= f (x) in a
fixed vertical (x, z) plane (assume that f ′(x) and f ′′(x) are continuous). A bead of mass m
can slide on the wire: assume friction is negligible. Find the kinetic and potential energies
of the bead, and write down the equation of the phase paths. Explain why the method of
Section 1.3 concerning the phase diagrams for stationary values of the potential energy still
holds.

1.43. The bead and wire are shown in Figure 1.56. The components of the velocity of the bead
are given by (ẋ, ż= f ′(x)ẋ). The kinetic and potential energies are

T = 1
2
m(ẋ2+ ż2)= 1

2
m(1+ f ′(x)2)y2, V =mgy=mgf (x),

where y= ẋ in the phase plane.
Equilibrium points occur where V ′(x)=0, that is, at the stationary points of the curve

z= f (x). Suppose that a stationary value occurs at x= x1, so that f ′(x1)=0. At the equi-
librium point let C1=mgf (x1). Suppose that x= x1 is a minimum. Then for C > C1 but
sufficiently close to C1, the phase path will be

y2= 2[C −mgf (x)]
m[1+ f ′(x)2] ,

x

x

z

z = f (x) y

m

·

·

Figure 1.56 Problem 1.43.
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and y will be zero where x satisfies C1=mgf (x). As in Figure 1.12 (in NODE), the equilibrium
point will be a centre. Similar arguments apply to the other types of stationary values.

• 1.44 In the previous problem suppose that friction between the bead and the wire is
included. Assume linear damping in which motion is opposed by a frictional force pro-
portional (factor k) to the velocity. Show that the equation of motion of the bead is
given by

m(1+ f ′(x)2)ẍ+mf ′′(x)ẋ2+ kẋ(1+ f ′(x)2)+mgf ′(x)=0,

where m is its mass.
Suppose that the wire has the parabolic shape given by z= x2 and that dimensions are

chosen so that k=m and g=1. Compute the phase diagram in the neighbourhood of the
origin, and explain general features of the diagram near and further away from the origin.
(Further theory and experimental work on motion on tracks can be found in the book by
Virgin (2000).)

1.44. Let R be the normal reaction of the bead on the wire and let F be the frictional
force opposing the motion as shown in Figure 1.57. The horizontal and vertical equations of
motion are

−R sin θ − F cos θ =mẍ, (i)

R cos θ −mg − F sin θ =mz̈, (ii)

where θ is the inclination of the tangent of the curve at the bead. Since z= f (x), then ż= f ′(x)ẋ
and z̈= f ′′(x)ẋ2+ f ′(x)ẍ. Eliminate R between (i) and (ii):

−[mg+ kẋf ′(x)] sin θ − F(sin2 θ + cos2 θ)=m[f ′′(x)ẋ2+ f ′′(x)ẍ]+mẍ cos θ , (iii)

where sin θ = f ′(x)/√[1+ f ′(x)2] and cos θ =1/
√[1+ f ′(x)2]. The frictional force F is

proportional to the velocity and opposes the motion: therefore

F = − k(ẋ cos θ + ż sin θ)= − ẋ√[1+ f ′(x)2].

x

z

m x
.

y
.

mg
F

u

R

z = f (x)

Figure 1.57 Problem 1.44.
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–2 –1 1 2
x

–1

1
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Figure 1.58 Problem 1.44: Phase diagram for (1+4x2)ẍ+2ẋ2+ ẋ(1+4x2)=−2x.

Finally, the equation of motion is

m(1+ f ′(x)2)ẍ+mf ′′(x)ẋ2+ kẋ(1+ f ′(x)2)+mgf ′(x)=0.

If f (x)= x2, m= k and g=1, then the equation of motion becomes

(1+4x2)ẍ+2ẋ2+ ẋ(1+4x2)+2x=0.

The phase diagram is shown in Figure 1.58 in the region −2≤ x ≤2, −1.5≤ y ≤1.5. For small
x and y,

ẍ+ ẋ+2x ≈ 0,

neglecting the x2 and y2 terms. Locally the phase diagram is a stable spiral, although further
away from the origin the spiral shape is distorted by the nonlinear terms.
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2 Plane autonomous systems
and linearization

• 2.1 Sketch phase diagrams for the following linear systems and classify the equilibrium
point:

(i) ẋ= x−5y, ẏ= x− y;

(ii) ẋ= x + y, ẏ= x−2y;

(iii) ẋ = −4x+2y, ẏ=3x−2y;

(iv) ẋ= x + 2y, ẏ=2x+2y;

(v) ẋ=4x−2y, ẏ=3x− y;

(vi) ẋ=2x+ y, ẏ= − x+ y.

2.1. A classification table for equilibrium points of the general linear system

ẋ = ax + by, ẏ = cx + dy
is given in Section 2.5 (see also Figure 2.10 in NODE). The key parameters are p = a + d,
q = ad−bc,� = p2−4q. All the systems below have an isolated equilibrium point at the origin.
The scales on the axes are the same for each phase diagram but actual scales are unnecessary
since the equations are homogeneous in x and y. Directions are determined by continuity from
directions of ẋ and ẏ at convenient points in the plane.

Alternatively, classification can be decided by finding the eigenvalues of the matrix of
coefficients:

A =
[
a b

c d

]
.

(i) ẋ = x − 5y, ẏ = x − y. The parameters are

p = 1− 1 = 0, q = −1+ 5 = 4 > 0, � = 0− 16 = −16 < 0.

Therefore the origin is a centre as shown in Figure 2.1(i).
The eigenvalues of

A =
[

1 −5
1 −1

]
are given by ∣∣∣∣ 1− λ −5

1 −1− λ
∣∣∣∣ = λ2 + 4 = 0.

The eigenvalues take the imaginary values ±2i, which is to be expected for a centre.
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x

y
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y

Figure 2.1 Problem 2.1(i): ẋ = x − 5y, ẏ = x − y, centre; (ii) ẋ = x + y, ẏ = x − 2y, saddle.

(ii) ẋ = x + y, ẏ = x − 2y. The parameters are

p = 1− 2 = −1 < 0, q = −2− 1 = −3 < 0, � = 1+ 12 = 13 > 0.

Therefore the origin is a saddle. Its asymptotes can be found by putting y = mx into the
equation for the phase paths which is

dy
dx
= x − 2y

x + y .

The result is

m = 1− 2m
1+m , so that m2 + 3m− 1 = 0.

Therefore the slopes of the asymptotes are

m1,m2 = 1
2 (−3±√13).

The asymptotes and some phase paths are shown in Figure 2.1(ii).

(iii) ẋ = −4x + 2y, ẏ = 3x − 2y. The parameters are

p = −4− 2 = −6 < 0, q = 8− 6 = 2 > 0, � = 36− 8 = 28 > 0.

Therefore the origin is a stable node. The radial straight paths are given by y = mx where

m = 3− 2m
−4+ 2m

or 2m2 − 2m− 3 = 0.

Hence the radial paths are

y = m1x, y = m2x, where m1,m2 = 1
2
(1±√7).

The radial paths and some phase paths are shown in Figure 2.2(iii).

(iv) ẋ = x + 2y, ẏ = 2x + 2y. The parameters are

p = 1+ 2 = 3 > 0, q = 2− 4 = −2 < 0, � = 9+ 8 = 17 > 0.

The origin is a saddle. The slopes of the asymptotes are

m1,m2 = 1
2 (1±

√
17).
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x
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y

Figure 2.2 Problem 2.1(iii) :ẋ = −4x + 2y, ẏ = 3x − 2y, stable node; (iv) ẋ = x + 2y, ẏ = 2x + 2y, saddle.

See Figure 2.2(iv)

(v) ẋ = 4x − 2y, ẏ = 3x − y. The parameters are

p = 4− 1 = 3 > 0, q = −4+ 6 = 2 > 0, � = 9− 8 = 1 > 0.

Therefore the origin is an unstable node. The radial paths have slopes m1 = 1
2 and m2 = 3 and

equations
y = 1

2x, y = 3x.

The phase diagram is shown in Figure 2.3(v).
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y
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y

Figure 2.3 Problem 2.1(v): ẋ = 4x − 2y, ẏ = 3x − y, unstable node; (vi) ẋ = 2x + y, ẏ = −x + y, unstable spiral.

(vi) ẋ = 2x + y, ẏ = −x + y. The parameters are

p = 2+ 1 = 3 > 0, q = 2+ 1 = 3 > 0, � = 9− 12 = −3 < 0.

The origin is an unstable spiral. Some phase paths are shown in Figure 2.3(vi).

• 2.2 Some of the following systems either generate a single eigenvalue, or a zero eigenvalue,
or in other ways vary the types illustrated in Section 2.5. Sketch their phase diagrams

(i) ẋ = 3x − y, ẏ = x + y;

(ii) ẋ = x − y, ẏ = 2x − 2y;

(iii) ẋ = x, ẏ = 2x − 3y;



66 Nonlinear ordinary differential equations: problems and solutions

(iv) ẋ = x, ẏ = x + 3y;

(v) ẋ = −y, ẏ = 2x − 4y;

(vi) ẋ = x, ẏ = y;

(vii) ẋ = 0, ẏ = x.

2.2. Note that the scales on both axes are the same.

(i) ẋ = 3x − y, ẏ = x + y. Using the classification table (See Section 2.5)

p = 3+ 1 = 4 > 0, q = 3+ 1 = 4 > 0, � = 16− 16 = 0.

Hence the origin is an unstable degenerate node with a repeated eigenvalue of m = 1. The
straight line y = x contains radial paths (Figure 2.4).

x

y

x

y
y

Figure 2.4 Problem 2.2(i): ẋ = 3x − y, ẏ = x + y, unstable degenerate node; (ii) ẋ = x − y, ẏ = 2x − 2y, parallel
paths.

(ii) ẋ = x − y, ẏ = 2x − 2y. All points on the line y = x are equilibrium points. The phase
paths are given by

dy
dx
= 2 ⇒ y = 2x + C,

which is a family of parallel straight lines (Figure 2.4(ii)).
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y
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y

Figure 2.5 Problem 2.2(iii): ẋ = x, ẏ = 2x − 3y, saddle; (iv) ẋ = x, ẏ = x + 3y, unstable node with the y axis as
radial paths.
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(iii) ẋ = x, ẏ = 2x − 3y. The parameters are

p = 1− 3 = −2 < 0, q = −3 < 0, � = 4+ 12 = 16 > 0,

which implies that the equilibrium point is a saddle. From the first equation, the axis x = 0 is
a solution, as also is y = 1

2x. These lines are the asymptotes of the saddle point (Figure 2.5).

(iv) ẋ = x, ẏ = x + 3y. The parameters are

p = 1+ 3 = 4 > 0, q = 3 > 0, � = 16− 12 = 4 > 0,

which is an unstable node with radial paths along x = 0 and y = −1
2x (Figure 2.5).

(v) ẋ = −y, ẏ = 2x − 4y. The parameters are

p = −4 < 0, q = 2 > 0, � = 16− 8 = 8 > 0,

This is a stable node but with eigenvalues 2 ± 2
√

2 of differing signs. This produces a similar
phase diagram to that for Problem 1(iii).

(vi) ẋ = x, ẏ = y. The parameters are

p = 2, q = 1, � = 4− 4 = 0,

which makes it a degenerate case between an unstable node and an unstable spiral. The phase
paths are given by

dy
dx
= y

x
⇒ y = Cx,

which is a family of radial straight lines as shown in Figure 2.6(vi): it is a it star-shaped phase
diagram.

(vii) ẋ = 0, ẏ = x. All points on the y axis are equilibrium points. The parameter values are
p = q = � = 0 which makes this a degenerate case. The equations can be solved directly to give

x = C, y =
∫
xdt +D =

∫
Cdt +D = Ct +D.

Hence the phase diagram (shown in Figure 2.6(vii)) consists of all lines x = C parallel to the
y axis.

x

y

x

y

Figure 2.6 Problem 2.2(vi): ẋ = x, ẏ = y, saddle; (vii) ẋ = x, ẏ = x, unstable node with the y axis as radial paths.



68 Nonlinear ordinary differential equations: problems and solutions

• 2.3 Locate and classify the equilibrium points of the following systems. Sketch the phase
diagrams: it will often be helpful to obtain isoclines and path directions at other points in
the plane.

(i) ẋ = x − y, ẏ = x + y − 2xy;

(ii) ẋ = yey , ẏ = 1− x2;

(iii) ẋ = 1− xy, ẏ = (x − 1)y;

(iv) ẋ = (1+ x − 2y)x, ẏ = (x − 1)y;

(v) ẋ = x − y, ẏ = x2 − 1;

(vi) ẋ = −6y + 2xy − 8, ẏ = y2 − x2;

(vii) ẋ = 4− 4x2 − y2, ẏ = 3xy;

(viii) ẋ = −y√(1− x2), ẏ = x√(1− x2) for |x| ≤ 1;

(ix) ẋ = sin y, ẏ = − sin x;

(x) ẋ = sin x cos y, ẏ = sin y cos x.

2.3. For the system ẋ = X(x, y), ẏ = Y (x, y), the equilibrium points are given by solutions of
X(x, y) = 0, Y (x, y) = 0. The linear approximations (Section 2.3) near each equilibrium point
are classified using the table in Section 2.5, or Figure 2.10 (both in NODE). Curve sketching
can be helped by plotting the isoclines Y (x, y) = 0 (phase paths locally parallel to the x axis)
and X(x, y) = 0 (phase paths locally parallel to the y axis). Since these problems are nonlinear,
scales along the axes are now significant.

(i) ẋ = x − y, ẏ = x + y − 2xy. The equilibrium points are given by

x − y = 0, x + y − 2xy = 0.

There are two equilibrium points, at (0, 0) and (1, 1).

(a) (0, 0). The linear approximation is

ẋ = x − y, ẏ ≈ x + y.

Hence the parameters are

p = 2 > 0, q = 1+ 1 = 2 > 0, � = 4− 8 = −4 < 0,

which means that the origin is locally an unstable spiral.

(b) (1, 1). Put x = 1+ ξ and y = 1+ η. The linear approximation is

ξ̇ = ξ − η, η̇ ≈ −ξ − η.

For this linear approximation the parameters are

p = 0, q = −2 < 0, � = 0+ 8 = 4 > 0,
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Figure 2.7 Problem 2.3(i): ẋ = x − y, ẏ = x + y − 2xy.

which means that (1, 1) is locally a saddle point with asymptotes in the directions of the slopes
1±√2.

The zero-slope isocline is the curve x + y − 2xy = 0 and the infinite-slope isocline is the line
y = x. A computed phase diagram is shown in Figure 2.7.

(ii) ẋ = yey , ẏ = 1− x2. The equilibrium points are given by

yey = 0, 1− x2 = 0.

Therefore there are two equilibrium points, at (1, 0) and (−1, 0).

(a) (1, 0). Put x = 1+ ξ . The linear approximation is

ξ̇ ≈ y, ẏ ≈ −2ξ .

The parameters are

p = 0, q = 2 > 0, � = −8 < 0,

from which we infer that the (1, 0) is a centre.

(b) (−1, 0). Put x = −1+ ξ . The linear approximation is

ξ̇ ≈ y, ẏ ≈ 2ξ .

The parameters are

p = 0, q = −2 < 0, � = 8 > 0,

which implies that (−1, 0) is a saddle. The phase diagram is shown in Figure 2.8. Note
that the isoclines of zero slope are the straight lines x = ±1.

(iii) ẋ = 1− xy, ẏ = (x − 1)y. The equilibrium points are given by

1− xy = 0, (x − 1)y = 0,
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Figure 2.8 Problem 2.3(ii) :ẋ = yey , ẏ = 1− x2.
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Figure 2.9 Problem 2.3(iii): ẋ = 1− xy, ẏ = (x − 1)y.

which has the single solution (1, 1). Let x = 1 + ξ and y = 1 + η. Then the linear approxi-
mation is

ξ̇ ≈ −ξ − η, η̇ ≈ ξ .

The parameters are

p = −1 < 0, q = 1 > 0, � = 1− 4 = −3 < 0,

which means that (1, 1) is a stable spiral. Note that y = 0 is a phase path. The phase diagram
is shown in Figure 2.9.

(iv) ẋ = (1+ x − 2y)x, ẏ = (x − 1)y. The equilibrium points are given by

(1+ x − 2y)x = 0, (x − 1)y = 0.

There are three equilibrium points: at (0, 0), (1, 1) and (−1, 0). Note that the axes x = 0 and
y = 0 are phase paths. The straight line x = 1 is an isocline of zero slope.
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(a) (0, 0). The linear approximation is

ẋ ≈ x, ẏ = −y.

The parameters are

p = 0, q = −1 < 0, � = −4 < 0,

which implies that (0, 0) is a saddle.

(b) (1, 1). Let x = 1+ ξ and y = 1+ η. The linear approximation is

ξ̇ = (2+ ξ − 2− 2η)(1+ ξ) ≈ ξ − 2η, η̇ = ξ .

The parameters are

p = 1 > 0, q = 2 > 0, � = 1− 4 = −3 < 0.

Hence (1, 1) is an unstable spiral

(c) (−1, 0). Let x = −1+ ξ . Then the linear approximation is

ξ̇ ≈ −ξ + 2y, ẏ ≈ −2y.

Hence the parameters are

p = −3 < 0, q = 2 > 0, � = 9− 8 = 1 > 0,

which means that (−1, 0) is a stable node.
The phase diagram is shown in Figure 2.10.

(v) ẋ = x − y, ẏ = x2 − 1. The equilibrium points are given by

x − y = 0, x2 − 1 = 0.

Therefore the equilibrium points occur at (1, 1) and (−1,−1). The isoclines of zero slope are
the lines x = ±1, and the isocline of infinite slope is the line y = x.
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Figure 2.10 Problem 2.3(iv): ẋ = (1+ x − 2y)x, ẏ = (x − 1)y.
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(a) (1, 1). Let x = 1+ ξ and y = 1+ η. The linear approximation is

ξ̇ = ξ − η, η̇ ≈ 2ξ ,

which has the parameters

p = 1 > 0, q = 2 > 0, � = 1− 8 = −7 < 0.

Hence (1, 1) is an unstable spiral.

(b) (−1,−1). Let x = −1+ ξ and y = −1+ η. The linear approximation is

ξ̇ = ξ − η, η̇ ≈ −2ξ ,

which has the parameters

p = 1 > 0, q = −2 < 0, � = 1+ 8 = 9 > 0.

Therefore (−1,−1) is a saddle point. The phase diagram is shown in Figure 2.11.

(vi) ẋ = −6y + 2xy − 8, ẏ = y2 − x2. The equilibrium points are given by

−3y + xy − 4 = 0, y2 − x2 = (y − x)(y + x) = 0.

If y = −x, the first equation has no real solutions, whilst for y = x, there are two solutions,
leading to equilibrium points at (−1,−1) and (4, 4).

(a) (−1,−1). Let x = −1+ ξ and y = −1+ η. The linear approximation is

ξ̇ ≈ −2ξ − 8η, η̇ ≈ 2ξ − 2η,

which has the parameters

p = −4 < 0, q = 20 > 0, � = 16− 80 = −64 < 0.

Hence (−1,−1) is a stable spiral.
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Figure 2.11 Problem 2.3(v): ẋ = x − y, ẏ = x2 − 1.
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Figure 2.12 Problem 2.3(vi): ẋ = −6x + 2xy − 8, ẏ = y2 − x2: the dashed lines are the isoclines of zero slope.

(b) (4, 4). Let x = 4+ ξ and y = 4+ η. The linear approximation is

ξ̇ ≈ 8ξ + 2η, η̇ ≈ −8ξ + 8η,

which has the parameters

p = 16 > 0, q = 80 > 0, � = 256− 320 = −64 < 0.

Hence (4, 4) is an unstable spiral.
The phase diagram is shown in Figure 2.12.

(vii) ẋ = 4− 4x2 − y2, ẏ = 3xy. The equilibrium points are solutions of

4− 4x2 − y2 = 0, 3xy = 0.

The complete set of solutions is (0, 2), (0,−2), (1, 0) and (−1, 0). The x axis is a phase path,
and the y axis is a zero-slope isocline.

(a) (0, 2). Let y = 2+ η. The linear approximation is

ẋ ≈ −4η, η̇ ≈ 6x,

which has the parameters

p = 0, q = 24 > 0, � = −96 < 0.

Hence (0, 2) is a centre.

(b) (0,−2). Let y = −2+ η. The linear approximation is

ẋ ≈ 4η, η̇ ≈ −6x,

which has the parameter values

p = 0, q = 24 > 0, � = −96 < 0.

Therefore (0,−2) is also a centre.
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Figure 2.13 Problem 2.3(vii): ẋ = 4− 4x2 − y2, ẏ = 3xy.

(c) (1, 0). Let x = 1+ ξ . Then the linear approximation is

ξ̇ ≈ −8ξ , ẏ ≈ 3y,

which has the parameter values

p = −8+ 3 = −5 < 0, q = −24 < 0,� = 25+ 96 = 121 > 0.

This equilibrium point is a saddle.

(d) (−1, 0). Let x = −1+ ξ . The linear approximation is

ξ̇ ≈ 8ξ , ẏ ≈ −3y,

which has the parameter values

p = 8− 3 = 5 > 0, q = −24 < 0, � = 25+ 96 = 121 > 0.

The equilibrium point is also a saddle.
The phase diagram is shown in Figure 2.13.

(viii) ẋ = −y√(1− x2), ẏ = x√(1− x2), for |x| ≤ 1. The equilibrium points include the origin
(0, 0) and all points on the lines x = ±1. The equations are real only in the strip |x| ≤ 1. The
phase paths are given by

dy
dx
= −x

y
,

which has the general solution x2 + y2 = C. All phase paths in the strip |x| < 1 are circles
which means that the origin is a centre. The phase diagram is shown in Figure 2.14.

(ix) ẋ = sin y, ẏ = − sin x. Equilibrium points occur where both sin y = 0 and sin x = 0.
Hence there is an infinite set of such points at (mπ , nπ) where m = 0,±1,±2, . . . and n =
0 ± 1,±2, . . . . Since the equations are unchanged by the transformations x → x + 2mπ ,
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Figure 2.14 Problem 2.3(viii): ẋ = −y√(1− x2), ẏ = x√(1− x2), for |x| ≤ 1.

y → y+2nπ , the phase diagram is periodic with period 2π in both the x and y directions. The
equations of the phase paths can be found from

dy
dx
= −sin x

sin y
.

This is a separable equation with general solution cos x + cos y = C. Note that this system
is Hamiltonian (Section 2.8) from which we infer that any simple equilibrium points will be
centres or saddle points. Near the origin

ẋ ≈ y, ẏ ≈ −x,

which indicates a centre. Near (π , 0), let x = π + ξ . Then the linear approximation is

ξ̇ ≈ y, ẏ ≈ ξ ,

which indicates a saddle. In fact the centres and saddles alternate in both the x and y directions.
The phase diagram is shown in Figure 2.15.

(x) ẋ = sin x cos y, ẏ = sin y cos x. The consistent pairings of ẋ = 0 and ẏ = 0 are

sin x = 0, sin y = 0, and cos y = 0, cos x = 0.

Therefore there are equilibrium points at

x = mπ , y = nπ , and at x = 1
2 (2p + 1)π , y = 1

2 (2q + 1)π ,

where m, n,p, q = 0,±1,±2, . . .. There are the obvious singular solutions given by the
straight lines x = rπ and y = sπ , where r, s = 0,±1,±2, . . . . Near the origin the linear
approximation is

ẋ ≈ x, ẏ ≈ y
Locally the phase paths are given by

dy
dx
= y

x
⇒ y = Cx.
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Figure 2.15 Problem 2.3(ix): ẋ = sin y, ẏ = − sin x.

π π
x

π

π

y

Figure 2.16 Problem 2.3(x): ẋ = sin x cos y, ẏ = sin y cos x.

Hence the origin (and similarly all other grid points) have locally star-shaped phase diagrams.
It can also be verified that the lines y = x + pπ and y = −x + pπ for p = 0,±1,±2, . . .
are also phase paths (separatrices) and that these equilibrium points are saddle points. The
phase diagram, which is periodic with period 2π in both the x and y directions, is shown in
Figure 2.16.

• 2.4 Construct phase diagrams for the following differential equations, using the phase
plane in which y = ẋ.

(i) ẍ + x − x3 = 0;

(ii) ẍ + x + x3 = 0;

(iii) ẍ + ẋ + x − x3 = 0;

(iv) ẍ + ẋ + x + x3 = 0;

(v) ẍ = (2 cos x − 1) sin x.
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2.4. (i) ẍ + x − x3 = 0, ẋ = y. The system has three equilibrium points: at (−1, 0), (0, 0)
and (1, 0). This is a conservative system with potential V(x) = 1

2x
2 − 1

4x
4, which has a local

minimum at x = 0 and local maxima at x = ±1 (see NODE, Example 1.6). Hence (0, 0) is a
centre, and (±1, 0) are saddles. The phase paths are given by

dy
dx
= −x + x3

y
⇒ 2y2 = −x4 + 2x2 + C.

The phase diagram is shown in Figure 1.13 (in NODE).
(ii) ẍ + x + x3 = 0, ẋ = y. This is a conservative system (see NODE, Section 1.3) with one
equilibrium point at the origin. The potential V(x) = 1

2x
2+ 1

4x
4 has a local minimum at x = 0.

The origin is therefore a centre. The equation for the phase paths is given by

dy
dx
= −x − x3

y
⇒ 2y2 = −x4 − 2x2 + C.

The phase diagram is shown in Figure 2.17.
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Figure 2.17 Problem 2.4(ii): ẋ = y, ẏ = −x − x3.

(iii) ẍ + ẋ + x − x3 = 0, ẋ = y. This is (i) with damping. The system still has three equilibrium
points at (−1, 0), (0, 0) and (1, 0).

(a) (−1, 0). Let x = −1+ ξ . Then the linear approximation is

ξ̇ = y, ẏ ≈ 2ξ − y,

which has the parameter values

p = −1 < 0, q = −2 < 0.

Therefore (−1, 0) is a saddle point.

(b) (0, 0). Then ẋ = y and ẏ ≈ −x − y, which has the parameter values

p = −1 < 0, q = 1 > 0, � = 1− 4 = −3 < 0.

Therefore (0, 0) is a stable spiral.

(c) (1, 0). As in (a) this equilibrium point is a saddle. The phase diagram is shown in Figure 2.18.
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Figure 2.18 Problem 2.4(iii): ẋ = y, ẏ = −y − x + x3.
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Figure 2.19 Problem 2.4(iv): ẋ = y, ẏ = −y − x − x3.

(iv) ẍ + ẋ + x + x3 = 0, ẋ = y. This is (ii) with damping. The system has one equilibrium point
at the origin, where the linear approximation is ẋ = y, ẏ = −x − y. This implies a stable spiral
as shown in Figure 2.19.
(v) ẍ = (2 cos x − 1) sin x, ẋ = y. Equilibrium points occur where sin x = 0, and where
cos x = 1

2 , that is, respectively, at

x = nπ , (n = 0,±1,±2, . . .), and x = ±1
3π + 2mπ , (m = 0,±1,±2, . . .).

This is a conservative system (see Section 1.3) with potential

V(x) = −
∫
(2 cos x − 1) sin xdx = − sin2 x − cos x.

Its second derivative is given by

V ′′(x) = −2+ 4 sin2 x + cos x.
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Figure 2.20 Problem 2.4(v): ẋ = y, ẏ = (2 cos x − 1) sin x.

For the equilibrium points x = nπ ,

V ′′(x) = −2+ cos nπ < 0,

which means that V(x) has maximum values there, giving saddles, whilst at x = (±1
3π+2mπ),

V ′′(x) = −2+ 4 sin2(±1
3π + 2mπ)+ cos(±1

3π + 2mπ)

= −2+ 6+ 1 = 5 > 0,

giving centres at these points. Note that the phase diagram shown in Figure 2.20 is periodic
with period 2π in the x direction.

• 2.5 Confirm that the system ẋ = x − 5y, ẏ = x − y consists of a centre. By substituting
into the equation for the paths or otherwise show that the family of ellipses given by

x2 − 2xy + 5y2 = constant

describes the paths. Show that the axes are inclined at about 13.3o (the major axis) and
−76.7o (the minor axis) to the x direction, and that the ratio of major to minor axis length
is about 2.62.

2.5. The system ẋ= x−5y, ẏ= x− y has also been investigated in Problem 2(i) and the answer
includes the phase diagram which has a centre at the origin. The phase paths are given by

dy
dx
= x − y
x − 5y

,

which is a standard homogeneous equation. The substitution y = zx is required. Then in terms
of z and x, the equation becomes

x
dz
dx
+ z = 1− z

1− 5z
,
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or

x
dz
dx
= 5z2 − 2z+ 1

1− 5z
.

This is a separable equation with solution

∫
(1− 5z)dz

5z2 − 2z+ 1
=

∫
dx
x
+ B.

Hence
− ln |5z2 − 2z+ 1| = 2 ln |x| + C.

which can be simplified to

x2 − 2xy + 5y2 = D. (i)

This quadratic form defines all the phase paths.
Consider orthogonal axes (x′, y′) which are a rotation of (x, y) through an angle α

counterclockwise. Then

x = x′ cosα − y′ sinα, y = x′ sinα + y′ cosα.

Substitute x and y into (i) so that

(x′ cosα − y′ sinα)2 − 2(x′ cosα − y′ sinα)(x′ sinα + y′ cosα)+ 5(x′ sinα + y′ cosα)2 = D,

or
x′2(3− sin 2α − 2 cos 2α)+ 2x′y′(2 sin 2α − cos 2α)

+y′2(3+ sin 2α + 2 cos 2α) = D.

The new axes are in the directions of the major and minor axes of the elliptic paths if the coeffi-
cient of x′y′ is zero. This is so if tan 2α = 1

2 . Hence the directions of the axes are approximately
13.3◦ and −76.7◦. In terms of the new coordinates a typical ellipse is

x′2(3−√5)+ y′2(3+√5) = constant.

Hence the ratio of major and minor axes is

√√√√(
3+√5

3−√5

)
= 2.62.

• 2.6 The family of curves which are orthogonal to the family described by the equation
(dy/dx) = f (x, y) is given by the solution of (dy/dx) = −[1/f (x, y)]. (These are called
orthogonal trajectories of the first family.) Prove that the family which is orthogonal to a
centre that is associated with a linear system is a node.
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2.6. Let the linear system be ẋ = ax+ by, ẏ = cx+ dy with an equilibrium point at (0, 0). The
origin is a centre if

p = a + d = 0, q = ad − bc > 0.,

and it follows that � = p2 − 4q = −4q < 0. The phase paths are given by the differential
equation

dy
dx
= cx + dy
ax + by .

The orthogonal phase paths are given by

dy
dx
= −ax + by

cx + dy .

This equivalent to either of the following linear systems:

ẋ = cx + dy, ẏ = −ax − by, or ẋ = −cx − dy, ẏ = ax + by.

In both cases q = ad − bc which is positive, and

� = p2 − 4q = (c − b)2 − 4(−a2 − bc) = (c − b)2 + 4a2 > 0.

Therefore from the table in Section 2.5, the orthogonal phase diagram is a node which can be
either stable or unstable.

• 2.7 Show that the origin is a spiral point of the system ẋ= − y− x√(x2+ y2),
ẏ= x− y√(x2+ y2), but a centre for its linear approximation.

2.7. The system is

ẋ = −y − x√(x2 + y2), ẏ = x − y√(x2 + y2), (i)

which has one equilibrium point, at the origin. Exact solutions can be found if we switch to polar
coordinates (r, θ) given by x = r cos θ , y = r sin θ . In terms of r and θ , the equations become

ṙ cos θ − r sin θ θ̇ = −r sin θ − r2 cos θ ,

ṙ sin θ + r cos θ θ̇ = r cos θ − r2 sin θ .

Solving for ṙ and θ̇ , we obtain

ṙ = −r2, θ̇ = 1.

The phase paths are given by

dr
dθ
= −r2,

which can be integrated to give the spiral curves r = 1/(θ + C). As θ → ∞, r → 0 which
implies that the origin is a stable spiral.
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The linear approximation to (i) near the origin is, however,

ẋ ≈ −y, ẏ = x,

which is the linear system for a centre.
This problem is a counter-example to the conjecture that a centre for a linear approximation

implies that the full system also has a centre.

• 2.8 Show that the systems ẋ = y, ẏ = −x−y2, and ẋ = x+y1, ẏ1 = −2x−y1−(x+y1)
2,

both represent the equation ẍ+ẋ2+x = 0 in different (x, y) and (x, y1) phase planes. Obtain
the equation of the phase planes in each case.

2.8. Eliminate y between ẋ = y and ẋ = −x − y2. Then

ẍ = −x − ẋ2. (i)

The elimination of y1 between ẋ = x + y1 and ẏ1 = −2x − y1 − (x + y1)
2 gives

ẍ − ẋ = −2x − ẋ + x − ẋ2, or ẍ = −x − ẋ2,

which agrees with (i).
Phase paths for ẋ = y, ẋ = −x − y2.

The differential equation of the phase paths in the (x, y) plane is given by

dy
dx
= −x − y2

y
,

or
d(y2)

dx
+ 2y2 = −2x.

This first-order equation has the general solution

y2 = Ae−2x − x + 1
2 . (ii)

Phase paths for ẋ = x + y1, ẏ1 = −2x − y1 − (x + y1)
2.

The phase paths in the (x, y1) plane will be given by (ii) with y replaced by x + y1, that is,

(x + y1)
2 = Ae−2x − x + 1

2 .

• 2.9 Use eqn (2.9) in the form δs ≈ δt√(X2 + Y 2) to mark off approximately equal time
steps on some of the phase paths of ẋ = xy, ẏ = xy − y2.
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1 1
x

1

1

(a) (b)
y

1
x

1

y

a

b

Figure 2.21 Problem 2.9: ẋ = xy, ẏ = xy−y2. (a) Shows the general features of the phase diagram, whilst (b) shows
a smaller section of the phase diagram in the first quadrant marked at equal time intervals.

2.9. All points on the x axis are equilibrium points of the system ẋ = xy, ẏ = xy − y2. The
differential equation for the phase paths is given by

dy
dx
= xy − y2

xy
= x − y

x
,

which is the same equation as that for the linear system ẋ = x, ẏ = x − y. The parameters for
this linear system, which has an equilibrium point at the origin, are p = 0, q = −1 < 0 which
signifies a saddle point. Therefore the phase paths of this saddle point are the same as those of
the nonlinear equation but the sense of the paths are different as shown in Figure 2.21(a), since
the x axis is a line of equilibrium points.

In Figure 2.21(b), the formula for an element of arc of length δs ≈ δt
√
(X2 + Y 2), where

X = xy and Y = xy−y2, has been used. Two sets of equal time steps starting at a : (0.25, 0.125)
and b : (0.1, 1) are shown by the succession of dots in the direction of the paths. For these time
steps δt = 1 was chosen.

• 2.10 Obtain approximations to the phase paths described by eqn (2.12) in the neighbour-
hood of the equilibrium point x = b/d, y = a/c for the predator–prey problem ẋ = ax−cxy,
ẏ = −by+dxy, (a, b, c, d) > 0 (see NODE, Example 2.3). (Write x = b/d+ ξ , y = a/c+η,
and expand the logarithms to second-order terms in ξ and η.)

2.10. The phase paths for the predator–prey problem

ẋ = ax − cxy, ẏ = −by + dxy,

are given by (see eqn (2.12))

a ln y + b ln x − cy − xd = C.
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The equations have an equilibrium point at (b/d, a/c). Close to this equilibrium point let

x = b

d
+ ξ , y = a

c
+ η.

Then

a ln y + b ln x − cy − xd

= a ln
(a
c
+ η

)
+ b ln

(
b

d
+ ξ

)
− c

(a
c
+ η

)
− d

(
b

d
+ ξ

)

= ln
(a
c

)
+ a ln

(
1+ cη

a

)
+ b ln

(
b

d

)
+ b ln

(
1+ dξ

b

)
− a − cη − b − dξ

≈ −(a + b)+ a
(
cη

a
− c2η2

2a2

)
+ b

(
dξ

b
− d2ξ2

2b2

)
− cη − dξ

= −(a + b)− d2ξ2

2b
− c2η2

2a
,

using standard Taylor expansions for the logarithms. Therefore close to the equilibrium point
the phase paths are ellipses with equation

d2ξ2

b
+ c2η2

a
= constant.

• 2.11 For the system ẋ = ax + by, ẏ = cx + dy, where ad − bc = 0, show that all points
on the line cx + dy = 0 are equilibrium points. Sketch the phase diagram for the system
ẋ = x − 2y, ẏ = 2x − 4y.

2.11. For the linear system ẋ = ax+by, ẏ = cx+dy, the parameters are p = a+d, q = ad−bc
and � = p2 − 4q = (a + d)2 > 0. Equilibrium points are given by

ax + by = 0, cx + dy = 0.

Since ad − bc = 0, there are solutions other than x = 0, y = 0 which means that x and y can
satisfy both equations. Hence all points on cx + dy = 0 (or, equivalently, ax + by = 0) are
equilibrium points.

For the particular problem, ẋ = x − 2y, ẏ = 2x − 4y, ad − bc = −4 + 4 = 0, so that all
points on the line x − 2y = 0 are equilibrium points. The phase paths are given by

dy
dx
= 2x − 4y

x − 2y
= 2,

which has the general solution y = 2x+C. The phase paths are parallel straight lines with the
sense of the paths as shown in Figure 2.22.
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y

Figure 2.22 Problem 2.11: ẋ = x − 2y, ẏ = 2x − 4y: equilibrium points lie on the line x = 2y.

• 2.12 The interaction between two species is governed by the deterministic model Ḣ =
(a1 − b1H − c1)H , Ṗ = (−a2 + c2H)P , where H is the population of the host (prey),
and P is that of the parasite (or predator), all constants being positive. (Compare NODE,
Example 2.3: the term −b1H

2 represents interference with the host population when it gets
too large.) Assuming that a1c2 − b1a2 > 0, find the equilibrium states for the populations,
and find how they vary with time from various initial populations.

2.12. The host(H)–parasite(P ) problem is governed by the model

Ḣ = (a1 − b1H − c1P)H , Ṗ = (−a2 + c2H)P .

The system is in equilibrium at the points (order (H ,P))

(0, 0),
(
a1

b1
, 0

)
,

(
a2

c2
,
a1c2 − b1a2

c1c2

)
=

(
a2

c2
,
D

c1c2

)
,

say, where D = a1c2 − b1a2.

I. (0, 0). Near the origin
Ḣ ≈ a1H , Ṗ ≈ −a2P .

This is a saddle point with separatrices P = 0 and H = 0.

II. (a1/b1, 0). Let H = (a1/b1)+ ξ . Then near the equilibrium point,

ξ̇ ≈ −a1ξ − c1a1

b1
P , Ṗ ≈ a1c2 − a2b1

b1
.

The parameters for the linear approximation are

p = −a1 + D

b1
, q = −a1D

b1
< 0.
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Hence this equilibrium point is also a saddle point.

III. (a2/c2,D/(c1c2)). Let
H = a2

c2
+ ξ , P = D

c1c2
+ η.

Then

ξ̇ =
[
a1 − b1

(
a2

c2
+ ξ

)
− c1

(
D

c1c2
+ η

)](
a2

c2
+ ξ

)

≈ −a2b1

c2
ξ − a2c1

c2
η,

and
η̇ ≈ D

c1
ξ .

The parameters associated with this linear approximation are

p = −a2b1

c2
> 0, q = a2D

c2
> 0, � = a2

2b
2
1

c2
2

− 4a2D

c2
.

Therefore the equilibrium point is

a stable spiral if � >
a2b

2
1

4c2
, or a stable node if � <

a2b
2
1

4c2
.

Figure 2.23 shows the phase diagram for the system

Ḣ = (2−H − P)H , Ṗ = (−1+H)P ,

for which p = −1, q = 1 > 0 and � = −3 < 0 at (1, 1). Therefore the equilibrium point is
locally a stable spiral.

1 2
H

1

2

P

Figure 2.23 Problem 2.12: Ḣ = (2−H − P)H , Ṗ = (−1+ xH)P .
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• 2.13 With the same terminology as in Problem 2.12, analyze the system Ḣ = (a1 − b1
H − c1P)H , Ṗ = (a2 − b2P + c2H)P , all the constants being positive. (In this model
the parasite can survive on alternative food supplies, although the prevalence of the host
encourages growth in population.) Find the equilibrium states. Confirm that the parasite
population can persist even if the host dies out.

2.13. In this model of host–parasite (H ,P) populations

Ḣ = (a1 − b1H − c1P)H , Ṗ = (a2 − b2P + c2H)P .

There are equilibrium points at (0, 0), (a1/b1, 0), (0, a2/b2) and

(
a1b2 − c1a2

b1b2 + c1c2 ,
a2b1 + a1c2

b1b2 + c1c2
)

,

provided a1b2 ≥ c1a2.
The parasite population can persist if the parameters satisfy a1b2 = c1a2, which is consistent

with the existence of an alternative food supply.

• 2.14 Consider the host–parasite population model Ḣ = (a1 − c1P)H , Ṗ = (a2 −
c2(P /H))P , where the constants are positive. Analyse the system in the H ,P plane.

2.14. In this model of host–parasite (H ,P) populations

Ḣ = (a1 − c1P)H , Ṗ =
(
a2 − c2P

H

)
P ,

where H > 0. The populations have one equilibrium state, at

(H ,P) =
(
a1c2

a2c1
,
a1

c1

)
.

Note that the P axis is a singular line since Ṗ is unbounded there.
Let

H = a1c2

a2c1
+ ξ , P = a1

c1
+ η.

Then

ξ̇ = (a1 − a1 − c1η)
(
a1c2

a2c1
+ ξ

)
≈ −a1c2η

a2
,
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and

η̇ =
[
a2 − c2

(
a1

c1
+ η

)(
a1c2

a2c1
+ ξ

)−1
](

a1

c1
+ η

)
≈ a2

2

c2
ξ − a2η.

The parameters associated with this linear approximation are

p = −a2 < 0, q = a1a2 > 0, � = a2
2 − 4a1a2.

Therefore by the table in Section 2.5, the equilibrium point is a stable node if a2 > 4a1 and a
stable spiral if a2 < 4a1.

• 2.15 In the population model Ḟ = −αF +βµ(M)F , Ṁ = −αM+γµ(M)F , where α > 0,
β > 0, γ > 0, F and M are the female and male populations. In both cases the death rates
are α. The birth rate is governed by the coefficient µ(M) = 1 − e−kM , k > 0, so that for
large M the birth rate for females is βF and that for males is γF , the rates being unequal
in general. Show that if β > α then there are two equilibrium points, at (0, 0) and at(

− β

γ k
ln

[
β − α
β

]
,−1
k

ln
[
β − α
β

])
.

Show that the origin is stable and that the other equilibrium point is a saddle point, according
to their linear approximations. Verify that M = γF/β is a particular solution. Sketch the
phase diagram and discuss the stability of the populations.

2.15. A male–female population is modelled by the birth and death equations

Ḟ = −αF + βµ(M)F , Ṁ = −αM + γµ(M)F , (i)

where µ(M) = 1− e−kM . Equilibrium occurs where

−F [α + β(1− e−kM)] = 0, −αM + γ (1− e−kM)F = 0.

The equations have two equilibrium points; at

(0, 0) and
(
− β

γ k
ln

[
β − α
β

]
,−1
k

ln
[
β − α
β

])

in the (F ,M) plane.
I. (0, 0). Near the origin

Ḟ ≈ −αF , Ṁ ≈ −αM.

The phase paths are given by

dM
dF

= M

F
,



2 : Plane autonomous systems and linearization 89

so that M = CF , where C is an arbitrary constant. The paths are are straight lines into the
origin, which implies that the origin is stable.

II. For the other equilibrium point, let

(F0,M0) =
(
− β

γ k
ln

[
β − α
β

]
,−1
k

ln
[
β − α
β

])
.

Let F = F0 + ξ and M = M0 + η Then, from (i),

ξ̇ = −α(F0 + ξ)+ β(1− e−k(M0+η))(F0 + ξ)
≈ −αF0 − αξ + β[1− e−kM0(1− kη)](F0 + ξ)
= βkF0e−kM0η

= −β(β − α)
γ

ln
[
β − α
β

]
η.

η̇ = −α(M0 + η)+ γ (1− e−k(M0+η))(F0 + ξ)
≈ −αM0 − αη + γ [1− e−kM0(1− kη)](F0 + ξ)
= αγ

β
ξ + (−α + γ ke−kM0F0)η

= αγ

β
ξ −

(
α + (β − α) ln

[
β − α
β

])
η.

The parameters associated with this linear approximation are

p = −
(
α + (β − α) ln

[
β − α
β

])
, q = α(β − α) ln

[
β − α
β

]
< 0.

Hence (F0,M0) is a saddle point.

1 2 3
F

1

2
M

(F0, M0)

Figure 2.24 Problem 2.15: Population model with α = 0.5, β = 1, γ = 0.5 and k = 1.
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It can be verified by direct substitution in the differential equations that M = γF/β satisfies
both equations, and therefore defines two phase paths which are separatrices through the saddle
point. The phase diagram with parameters α = 0.5, β = 1, γ = 0.5 and k = 1 is shown in
Figure 2.24.

• 2.16 A rumour spreads through a closed population of constant size N + 1. At time t the
total population can be classified into three categories:
x persons who are ignorant of the rumour;
y persons who are actively spreading the rumour;
z persons who have heard the rumour but have stopped spreading it: if two persons who
are spreading the rumour meet then they stop spreading it.
The contact rate between any two categories is a constant, µ.
Show that the equations

ẋ = −µxy, ẏ = µ[xy − y(y − 1)− yz]
give a deterministic model of the problem. Find the equations of the phase paths and sketch
the phase diagram.
Show that, when initially y = 1 and x = N , the number of people who ultimately never
hear the rumour is x1, where

2N + 1− 2x1 +N ln(x1/N) = 0.

2.16. In incremental form the equations are the limits as δt → 0 of

δx = −µxyδt , δy = µ[xy − y(y − 1)− yz]δt .

Contact frequencies between any two groups are assumed to be proportional to the product of
the population sizes. Thus, the decrease in the number of those who do not know the rumour
−δx must be proportional to xyδt , and the number δy of those who are actively spreading the
rumour must increase at a rate proportional to contacts between x and y, and decrease at a rate
proportional to meetings between spreaders, y(y − 1), and between y and those who already
know, z. Hence

δy = µ[xy − y(y − 1)− yz]δt ,
and the differential equation follows in the limit δt → 0. Since the population has constant size
N + 1, the third equation is x + y + z = N = 1.

Substitute for z in the differential equations in the question. Then x and y satisfy

ẋ = −µxy, ẏ = µ[xy − y(y − 1)− y(N + 1− x − y)] = µ(2xy −Ny). (i)

Therefore the differential equation for the phase paths is

dy
dx
= ẏ

ẋ
= N − 2x

x
.
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100 200
x
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y

x+y = N+1

Figure 2.25 Problem 2.16: Epidemic model with N = 200.

This is a separable first-order equation with general solution

y =
∫ (

N

x
− 2

)
dx = N ln x − 2x + C, (x > 0). (ii)

The second equation in (i) has the solution y = 0, which must correspondence to a line of
equilibrium points since ẋ = 0 also. In the model this means that no one is spreading the
rumour, but there may be a (constant) number of individuals who do not know the rumour.
Linearization is not really helpful since the points on the x axis will be non-standard equilibrium
points. The phase paths can be plotted using the curves given by (ii): some phase paths are shown
in Figure 2.25. Note that x + y ≤ N , so that the phase diagram is bounded by this line.

If the initial conditions are y = 1 and x = N , then, from (ii)

1 = N lnN − 2N + C, so that C = 2N + 1−N lnN .

Hence on this path
y = N ln x −N lnN − 2x + 2N + 1.

The number of individuals x1 who never hear the rumour occurs where y = 0. Therefore x1
satisfies

N ln x1 −N lnN − 2x1 + 2N + 1 = 0.

• 2.17 The one-dimensional steady flow of a gas with viscosity and heat conduction satisfies
the equations

µ0

ρc1

dv
dx
= √(2v)[2v −√(2v)+ θ],

k

gRρc1

dθ
dx
= √(2v)

[
θ

γ − 1
− v +√(2v)− c

]
,

where v = u2/(2c1)2, c = c2
2/c

2
1 and θ = gRT /c2

1 = p/(ρc2
1). In this notation, x is measured

in the direction of flow, u is the velocity, T is the temperature, ρ is the density, p the pressure,
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R the gas constant, k the coefficient of thermal conductivity, µ0 the coefficient of viscosity,
γ the ratio of the specific heats, and c1, c2 are arbitrary constants. Find the equilibrium
states of the system.

2.17. The one-dimensional steady flow of a gas satisfies

µ0

ρc1

dv
dx
= √(2v)[2v −√(2v)+ θ ],

k

gRρc1

dθ
dx
= √(2v)

[
θ

γ − 1
− v +√(2v)− c

]
.

where v ≥ 0. Equilibrium points in the (θ , v) plane occur where

√
(2v)[2v −√(2v)+ θ] = 0,

√
(2v)

[
θ

γ − 1
− v +√(2v)− c

]
= 0.

Since both equations are satisfied by v = 0 for all θ , all points on the θ are in equilibrium.
Equilibrium also occurs where

2v −√(2v)+ θ = 0,
θ

γ − 1
− v +√(2v)− c = 0. (i)

Elimination of θ leads to the quadratic equation

(γ + 1)v − γ√(2v)+ c(γ − 1) = 0.

in
√
v. This equation has two solutions

√
(2v) = 1

γ + 1
[γ ±√{γ 2 − 2c(γ 2 − 1)}].

The ratio γ usually satisfies γ > 1. There will be two stationary values for
√
(2v) if

√{γ 2 − 2c(γ 2 − 1)} < γ , or − 2(γ 2 − 1)c < 0,

which is not possible since c > 0. Therefore there is one equilibrium value for v. The
corresponding value for θ can be found from either of the equations in (i).

• 2.18 A particle moves under a central attractive force γ /rα per unit mass, where r, θ are
the polar coordinates of the particle in its plane of motion. Show that

d2u

dθ2 + u =
γ

h2u
α−2.

where u = r−1, h is the angular momentum about the origin per unit mass of the particle,
and γ is a constant. Find the non-trivial equilibrium point in the u, du/dθ plane and classify
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it according to its linear approximation. What can you say about the stability of the circular
orbit under this central force?

2.18. In Figure 2.26, the position of the particle of mass m is (r, θ) in polar coordinates. The
radial and transverse equations of motion are, under the influence of the central forcemγ/rα are

−mγ
rα

= m(r̈ − rθ̇2), (i)

m
d
dt
(r2θ̇ ) = 0. (ii)

From (ii) it follows that
mr2θ̇ = constant = mh, (iii)

say, where mh is the (constant) angular momentum of the particle. Now eliminate θ̇ between
(i) and (ii) so that

r̈ − h2

r3 = −
γ

rα
. (iv)

Using the identity

r̈ = θ̇ d
dθ

(
θ̇

dr
dθ

)
,

and the change of variable u = 1/r, eqn (iv) can be expressed in the form

d2u

dθ2 + u =
γ

h2u
α−2.

Let ν = du/dθ . Then the differential equation of the phase paths in the (θ ,p) plane is

dν
dθ
= k

h2u
α−2 −u.

r

�

m

m��r�

Figure 2.26 Problem 2.18.
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There are equilibrium points; at u = 0 (physically of no interest) and at u = u0 = (h2/k)1/(α−3)

provided α �= 3, in which case there is just one equilibrium point at u = 0.
Let u = u0 + u′,where |u′| is small. Then

dν
dθ
= k

h2

(
u0 + u′

)α−2 − u0 − u′

≈ k

h2u
α−2
0

[
1+ (α − 2)

(
u′

u0

)]
− u0 − u′

= (α − 3)u′

Hence the linear approximation of the equilibrium point indicates that it is a centre if α < 3,
and a saddle point α > 3.

The equilibrium point u = u0, ν = 0 corresponds to a circular orbit of the particle, which is
stable if α < 3 and unstable if α > 3. The gravitational inverse-square law gives a stable orbit.

• 2.19 The relativistic equation for the central orbit of a planet is

d2u

dθ2 + u = k + εu2,

where u = 1/r, and r, θ are the polar coordinates of the planet in the plane of its motion. The
term εu2 is the ‘Einstein correction’, and k and ε are positive constants, with ε very small.
Find the equilibrium point which corresponds to a perturbation of the Newtonian orbit.
Show that the equilibrium point is a centre in the u, du/dθ plane according to the linear
approximation. Confirm this by using the potential energy method of NODE, Section 1.3.

2.19. The relativistic equation is

d2u

dθ2 + u = k + εu2 (i)

(see Problem 2.19). Aside from the correction term k, the polar equation can be derived as in
Problem 2.18 assuming the inverse-square law. The equilibrium points are given by

εu2 − u+ k = 0,

that is,

u =
{
u1
u2

= 1
2ε
[1±√(1− 4kε)).
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Figure 2.27 Problem 2.19: The phase diagram for the relativistic equation has been computed for k = 1 and ε = 0.1:
the equilibrium points are at u = 1.127 and u = 8.873.

Let ν = du/dθ , and u = ui + u′i , (i = 1, 2), where |u′i | is small. Substituting into (i), we have

d2u′i
dθ2 = −ui − u′i + k + ε(ui + u′i )2

≈ −ui − u′i + k + u2
i + 2uiu′i

= ±√(1− 4kε)u′i

Hence u1 is a saddle, and u2 is a centre, assuming that ε is sufficiently small to make 4kε < 1.
In the notation of Section 1.3, the potential associated with eqn (i) is

V(u) = −
∫
(k + εu2 − u)du = −ku− 1

3
εu3 + 1

2
u2.

A graph of the potential V(u) and the corresponding phase diagram are shown in Figure 2.27.
The equilibrium points correspond to circular orbits. In terms of r =1/u, the inner orbit is
unstable whilst the outer orbit is stable.

• 2.20 A top is set spinning at an axial rate n about its pivotal point, which is fixed in space.
The equations of its motion, in terms of the angles θ and µ are (see Figure 2.14 in NODE)

Aθ̈ − A(�+ µ̇)2 sin θ cos θ + Cn(�+ µ̇) sin θ −Mgh sin θ = 0,

Aθ̇2 + A(�+ µ̇)2 sin2 θ + 2Mgh cos θ = E;

where (A,A,C) are the principal moments of inertia about O, M is the mass of the top, h
is the distance between the mass centre and the pivot, and E is a constant. Show that an
equilibrium state is given by θ = α, after elimination of � between

A�2 cosα − Cn�+Mgh = 0, and A�2 sin2 α + 2Mgh cosα = E.



96 Nonlinear ordinary differential equations: problems and solutions

Suppose that E = 2Mgh, so that θ = 0 is an equilibrium state. Show that, close to this
state, θ satisfies

Aθ̈ + [(C − A)�2 −Mgh]θ = 0.

For what condition on � is the motion stable?

2.20. The equations of the motion of the top in terms of the angles θ and µ are

Aθ̈ − A(�+ µ̇)2 sin θ cos θ + Cn(�+ µ̇) sin θ −Mgh sin θ = 0, (i)

Aθ̇2 + A(�+ µ̇)2 sin2 θ + 2Mgh cos θ = E. (ii)

µ̇ can be eliminated between these equations to obtain a second-order differential equation in
θ . The equilibrium states of the top are then given by putting θ̈ = 0 and θ̇ = 0 in this equation
in θ , but this is equivalent to the elimination of � between (i) and (ii) with both θ̇ and µ̇ zero,
that is, between

(−A�2 cos θ + Cn�−Mgh) sin θ = 0, (iii)

and

A�2 sin2 θ + 2Mgh cos θ = E. (iv)

If E = 2Mgh, then eqn (iv) becomes

A�2 sin2 θ = 2Mgh(1− cos θ).

Hence θ = 0 is a solution of this equation and (iii), and must be an equilibrium point in which
the top spins about its axis; which is vertical. Also in this state � = n and µ = 0. For small |θ |,
eqn (i) becomes

θ̈ + [(C − A)�2 −Mgh]θ ≈ 0.

The vertical spin is stable if (C − A)�2 > Mgh.

• 2.21 Three gravitating particles with gravitational masses µ1, µ2, µ3, move in a plane
so that they always remain at the vertices of an equilateral triangle P1P2P3 with varying
side-length a(t) as shown in Figure 2.15 (in NODE). The triangle rotates in the plane with
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spin �(t) about the combined mass-centre G. If the position vectors of the particles are r1,
r2, r3, relative to G, show that the equations of motion are

r̈i = −µ1 + µ2 + µ3

a3 ri , (i = 1, 2, 3).

If |ri | = ri , deduce the polar equations

r̈i − ri�2 = −µ1 + µ2 + µ3

a3 ri , r2
i � = constant, (i = 1, 2, 3).

Explain why a satisfies

ä − a�2 = −µ1 + µ2 + µ3

a2 , a2� = constant = K,

say, and that solutions of these equations completely determine the position vectors. Express
the equation in non-dimensionless form by the substitutions a = K2/(µ1 + µ2 + µ3),
t = K3τ/(µ1 + µ2 + µ3)

2, sketch the phase diagram for the equation in u obtained by
eliminating �, and discuss possible motions of this Lagrange configuration.

2.21. The configuration is shown in Figure 2.28. Since G is the mass-centre,

µ1r1 + µ2r2 + µ3r3 = 0. (i)

The equation of motion fo P1 is

µ1r̈1 = −µ1µ2(r2 − r1)
a3 − µ1µ3(r3 − r1)

a3 ,

or, using (i),

r̈1 = − (µ1 + µ2 + µ3)

a3 r1,

with similar equations for r2 and r3.

G

P1

P3

P2

r1

r2r3 1 2
u

–0.5

0.5

v

Ω

Figure 2.28 Problem 2.21: Lagrange equilateral configuration for a three-body problem with P1P2 = P2P3 =
P3P1 = a(t): phase diagram in (u, v) plane.
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In fixed axes let the polar equations of P1 be r1 = |r1| and θ1. Since the triangle rotates with
spin �, it follows that θ̇1 = �. Similarly for P2 and P3, the other polar angles also satisfy
θ̇2 = θ̇3 = �. The radial and transverse polar equations are therefore

r̈i − ri θ̇2
i = r̈i − ri�2 = −µ1 + µ2 + µ3

a3 ri , (ii)

and
d
dt
(r2
i θ̇i ) = 0, which implies r2

i θ̇i = r2
i � = constant. (iii)

for i = 1, 2, 3.
Throughout the motion, the equilateral triangle varies in size as it rotates, but the ratio r1/a

remains constant with time, and similarly for r2/a and r3/a. From (ii) and (iii), it follows
that

ä − a�2 = −µ1 + µ2 + µ3

a2 , (iv)

and
a2� = constant = K, (say). (v)

Elimination of � between (iv) and (v) leads to

ä − K2

a3 = −
µ1 + µ2 + µ3

a2 , (a > 0).

The equation can be expressed in the dimensionless form

d2u

dτ2 = u′′ =
1− u
u3 , (u > 0),

using the substitutions a = K2u/(µ1 + µ2 + µ3), t = K3τ/(µ1 + µ2 + µ3)
2.

If v = u′, then the equation for the phase paths is

v
dv
du
= 1− u

u3 ,

which has the general solution

v2 = − 1
u2 +

2
u
+ C.

In the (u, v) phase plane, the system has a single equilibrium point at u = 1, which is a
centre (see Figure 2.28). This implies that the lengths of the sides of the equilateral triangle
oscillate with time. The fixed point corresponds to a Lagrange motion in which the three
masses remain at the vertices of a fixed equilateral triangle as they rotate in circular orbits
aboutG. (For information, in general, the orbits are similar ellipses although this is not proved
here.)
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• 2.22 A disc of radius a is freely pivoted at its centre A so that it can turn in a vertical
plane . A spring, natural length 2a and stiffness λ connects a point B on the circumference
of the disc to a fixed pont O, distance 2a above A. Show that θ satisfies

I θ̈ = −T a sinφ, T = λa[(5− 4 cos θ)1/2 − 2],
where T is the tension in the spring, I is the moment of inertia of the disc aboutA, ÔAB = θ ,
and ÂBO = φ. Find the equilibrium states of the disc, and their stability.

2.22. The configuration of the system is shown in Figure 2.29. Taking moments about A,

−T a sin(π − φ) = I θ̈ , or − T a sinφ = I θ̈ , (i)

where, from triangle ABO, using the sine and cosine rules,

OB

sin θ
= 2a

sinφ
, OB2 = 4a2 + a2 − 4a2 cos θ .

Elimination of OB between these equations leads to

sinφ = 2a sin θ
OB

= 2 sin θ√
(5− 4 cos θ)

. (ii)

By Hooke’s law the tension,

T = λ(OB − 2a) = λa[√(5− 4 cos θ)− 2]. (iii)

where λ is a constant. Elimination of T and φ between eqns (i), (ii) and (iii) leads to the
differential equation for θ :

I θ̈ + 2λa2[1− 2{5− 4 cos θ)}−(1/2)] sin θ = 0.

O

A

B

au

f

Figure 2.29 Problem 2.22.
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–2.2

–2.1

–� �

�(u) / (2�a2)

Θ

Figure 2.30 Problem 2.22:

Equilibrium occurs where θ̈ = 0, namely where

[1− 2{5− 4 cos θ)}−(1/2)] sin θ = 0.

The solutions are θ = 0, θ = π and θ = ± cos−1(1
4 ).

This is a conservative system so that we can investigate stability of the equilibrium points by
using the energy method of Section 1.3. The potential energy V(θ) satisfies

dV
dθ

= 2λa2[1− 2(5− 4 cos θ)−(1/2)] sin θ .

Hence, we can choose

V(θ) = 2λa2
∫
[1− 2(5− 4 cos θ)−(1/2)] sin θdθ

= 2λa2[−√(5− 4 cos θ)− cos θ ].

The graph of V(θ) versus θ is shown in Figure 2.30. It can be seen that V(θ) has maxima at
θ = 0 and θ = π . These correspond to unstable positions of equilibrium. Minima occur at
± cos−1(1

4 ) which indicates stable equilibrium.

• 2.23 A man rows a boat across a river of width a occupying the strip 0 ≤ x ≤ a in the x, y
plane, always rowing towards a fixed point on one bank, say (0, 0). He rows at a constant
speed u relative to the water, and the river flows at a constant speed v. Show that

ẋ = −ux/√(x2 + y2), ẏ = v − uy/√(x2 + y2),

where (x, y) are the coordinates of the boat. Show that the phase paths are given by y +√
(x2 + y2) = Ax1−α, where α = v/u. Sketch the phase diagram for α < 1 and interpret it.

What kind of point is the origin? What happens to the boat if α > 1?
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x

y

O

u

u

v

(x,y)

a

Figure 2.31 Problem 2.23.

2.23. A plan view of the river and the boat is shown in Figure 2.31. If (x, y) are the coordinates
of the boat and the θ is the angle between the x axis and the radius to the boat, then the velocity
components (ẋ, ẏ) of the boat are given by

ẋ = −u cos θ = − ux√
(x2 + y2)

,

ẏ = v − u sin θ = v − uy√
(x2 + y2)

,

since the boat always points towards the origin. The phase paths are given by

dy
dx
= ẏ

ẋ
= uy − v√(x2 + y2)

ux
.

This is a first-order homogeneous equation for which we use the substitution y = wx. Therefore
the equation becomes, in terms of w and x,

x
dw
dx
+ w = uw − v√(1+ w2)

u
,

or

x
dw
dx

= −v
u

√
(1+ w2).

This is a separable equation with solution

∫
dw√

(1+ w2)
= −v

u

∫
dx
x
= −v

u
ln x + C, (x > 0),



102 Nonlinear ordinary differential equations: problems and solutions

x

y

O

a

Figure 2.32 Problem 2.23: Phase diagram with α = 1
2 and a = 1.

where C is an arbitrary constant. For the left-hand side use the substitution w = tan θ so that

∫
dw√

(1+ w2)
=

∫
sec θdθ = ln(sec θ + tan θ)

= ln[√(1+ w2)+ w] = [√(x2 + y2)+ y]/x.

Therefore the solution can be expressed in the implicit form

y = −√(x2 + y2)+ Ax1−α. (i)

whereA is a positive constant and α = v/u. The origin is a singular point (i.e. not an equilibrium
point) where solutions of the differential equations cross. A phase diagram for α = 0.5 and
a = 1 is shown in Figure 2.32.

If α > 1, then the river flow speed is greater than the speed of the boat. From (i) it can be
seen that the paths no longer pass through the origin. The rower cannot reach the origin from
any point on the opposite bank.

• 2.24 In a simple model of a national economy, İ = I − αC, Ċ = β(I − C − G), where
I is the national income, C is the rate of consumer spending and G the rate of government
expenditure; the constants α and β satisfy 1 < α < ∞, 1 ≤ β < ∞. Show that if the
rate of government expenditure G0 is constant there is an equilibrium state. Classify the
equilibrium state and show that the economy oscillates when β = 1.

Consider the situation when the government expenditure is related to the national income
by the ruleG = G0+kI , where k > 0. Show that there is no equilibrium state if k ≤ (α−1)/α.
How does the economy then behave?
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Discuss an economy in which G = G0 + kI2, and show that there are two equilibrium
states if G0 < (α − 1)2/(4kα2).

2.24. The economy model is governed by the equations

İ = I − αC, Ċ = β(I − C −G). (i)

(i) G = G0. Equilibrium occurs where

I − αC = 0, and I − C −G0 = 0,

which has the solution

C = G0

α − 1
, I = αG0

α − 1
.

The equations are linear so that we can read off the usual parameters from (i):

p = 1− β < 0, q = −β + αβ > 0,

� = (1− β)2 − 4β(α − 1) = (1+ β)2 − 4βα.

From the table in Section 2.5, the equilibrium point is a stablenode if β > 1 and (1+β)2 > 4βα,
and a stable spiral if β > 1 and (1+β)2 < 4βα. If β = 1, then the equilibrium point is a centre.
In the latter case the economy will oscillate with amplitude which is dependent on the initial
conditions.

(ii) G = G0 + kI . The model now becomes

İ = I − αC, Ċ = β[(1− k)I − C −G0]. (ii)

Equilibrium occurs where

C = G0

α − 1− kα , I = αG0

α − 1− kα .

If k < (α − 1)/α the equilibrium point is in the first quadrant: otherwise the model has no
equilibrium there (since C and I must both be positive). At the equilibrium point the parameter
values are

p = 1− β < 0, q = β(α − 1− αk), � = (1− β)2 − 4β(α − 1− αk).

The point is a saddle point if k > (α − 1)/α (in the third quadrant). If k < (α − 1)/α, then the
equilibrium point, in the first quadrant, is a stable node if (1− β)2 > 4β(α− 1− k) or a stable
spiral if (1− β)2 < 4β(α − 1− k). Two phase diagrams for the case k > (α − 1)/α are shown
in Figure 2.33.



104 Nonlinear ordinary differential equations: problems and solutions

I

C
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4 8
I

4

8

C
(ii)

Figure 2.33 Problem 2.24: The phase diagrams are shown for the following parameters: (i) α = 2, β = 1, k = 2,
G0 = 1; (ii) α = 2, β = 1, k = 3

4 , G0 = 1. The dashed lines show the isoclines of zero and infinite slopes.

(iii) G = G0 + kI2. The equations become

İ = I − αC, Ċ = β(I − C −G0 − kI2).

Equilibrium states are given by

I − αC = 0 β(I − C −G0 − kI2) = 0.

Eliminating I , C satisfies

C = 1
2kα2 {(α − 1)±√[(α − 1)2 − 4G0kα

2]}

and I can be found from I = αC. There are two real positive solutions ifG0 < (α−1)2/(4kα2).

• 2.25 Let f (x) and g(y) have local minima at x = a and y = b respectively. Show that
f (x) + g(y) has a minimum at (a, b). Deduce that there exists a neighbourhood (a, b) in
which all solutions of the family of equations f (x)+g(y) = constant represent closed curves
surrounding (a, b).

Show that (0, 0) is a centre for the system ẋ = y5, ẏ = −x3, and that all paths are closed
curves.

2.25. Define the open intervals I1 : ε > |x − a| > 0 and I2 : ε > |y − b| > 0. Since f (x) has a
minimum at x = a, and g(y) has a minimum at y = b, there exists an ε such that f (x) > f (a)
for all x ∈ I1, and g(y) > g(b) for all y ∈ I2.

For the function of two variables f (x)+ g(y),
f (x)+ g(y) > f (a)+ g(b) for all (x, y) ∈ I1 × I2.

Therefore (a, b) is a local minimum of f (x)+g(y), and for some neighbourhood of (a, b), there
exists a constant c1 > f (a, b) such that the curves f (x) + g(b) = c are closed curves about
(a, b) for all C such that f (a, b) < c < c1.
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For the system

ẋ = y5, ẏ = −x3,

which has a single equilibrium point, at (0, 0), the phase paths are given by

dy
dx
= −x

3

y5 .

The solutions are given by
1
6y

6 + 1
4x

4 = constant.

In the notation above, let f (x) = 1
4x

4, which has a minimum at x = 0, and let g(y) = 1
6y

6,
which has a minimum at y = 0. By the result above 1

6y
6 + 1

4x
4 has minimum at (0, 0). Hence,

the origin is surrounded by a nest of closed paths, and is therefore a centre.

• 2.26 For the predator–prey problem in NODE, Section 2.2, show, by using Problem 2.25,
that all solutions in x > 0, y > 0 are periodic.

2.26. The predator–prey equations are, from Section 2.2,

ẋ = ax − cxy, ẏ = −by + dxy,

and the equation of the phase paths is

b ln x − dx + a ln y − cy = C,

a constant. Equilibrium occurs at (b/d, a/c). In the notation of Problem 2.25, let f (x) =
b ln x − dx and g(y) = a ln y − cy. Since

f ′(x) = b

x
− d, f ′′(x) = − b

x2 , g′(y) = a

y
− c, g′′(y) = − a

y2 ,

it can be verified that f (x) has a minimum at x = b/d, and that g(y) has a minimum at
y = a/c. The level curves of the surface f (x)+g(y) cover the whole of the first quadrant about
a minimum at (b/d, a/c), which is a centre. Hence all solutions are periodic about the centre.

• 2.27 Show that the phase paths of the Hamiltonian system ẋ = −∂H/∂y, ẏ = ∂H/∂x

are given by H(x, y) = constant. Equilibrium points occur at the stationary points of
H(x, y). If (x0, y0) is an equilibrium point, show that (x0, y0) is stable according to the
linear approximation if H(x, y) has a maximum or a minimum at the point. (Assume that
all the second derivatives of H are non-zero at x0, y0.)
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2.27. A first-order system is said to be Hamiltonian if there exists a differentiable function
H(x, y) such that

ẋ = −∂H
∂y

, ẏ = ∂H

∂x
. (i)

The phase paths of the system are given by

dy
dx
= −∂H/∂x

∂H/∂y
,

which, using the chain rule, can be expressed in the form

∂H

∂x
+ ∂H

∂y

dy
dx
= dH(x, y)

dx
= 0,

treating y as a function x. Therefore the general solution is H(x, y) = constant. Equilibrium
points occur at the stationary points of H(x, y).

Let (x0, y0) be a stationary point of H(x, y). Consider the perturbation x = x0 + x′ and
y = y0 + y′. Then eqns (i) become

ẋ = −Hy(x0 + x′, y0 + y′)
≈ −[Hy(x0, y0)+Hyx(x0, y0)x

′ +Hyy(x0, y0)y
′]

= −Hyx(x0, y0)x
′ −Hyy(x0, y0)y

′ = −Bx′ − Cy′,

say, and

ẏ = Hx(x0 + x′, y0 + y′)
≈ Hx(x0, y0)+Hxx(x0, y0)x

′ +Hxy(x0, y0)y
′

= Hxx(x0, y0)x
′ +Hxy(x0, y0)y

′ = Ax′ + By′

say, using the first two terms of the Taylor series in both cases. The second derivative test for
functions of two variables says that (x0, y0) is a maximum or minimum if the second derivatives
satisfy AC−B2 > 0. For the linear approximation above, the parameters are p = −B+B = 0
and q = −B2 + AC. For stability we require q > 0 which is the same condition as for a
stationary maximum or minimum of H(x, y).

• 2.28 The equilibrium points of the nonlinear parameter-dependent system ẋ = y, ẏ =
f (x, y, λ) lie on the curve f (x, 0, λ) = 0 in the x, λ plane. Show that an equilibrium point
(x1, λ1) is stable and that all neighbouring solutions tend to this point (according to the
linear approximation) if fx(x1, 0, λ1) < 0 and fy(x1, 0, λ1) < 0.
Investigate the stability if ẋ = y, ẏ = −y + x2 − λx.
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2.28. Consider the system ẋ = y, ẏ = f (x, y, λ). Equilibrium points occur where y = 0 and
f (x, 0, λ). Let x = x1 + x′ and y = y′. The linear approximation is

ẋ′ = y′, ẏ′ = f (x1 + x′, y′, λ) ≈ fx(x1, 0, λ1)x
′ + fy(x1, 0, λ)y′.

The parameters of the linear approximation are

p = fy(x1, 0, λ1), q = −fx(x1, 0, λ1).

The equilibrium point is stable if p < 0 and q > 0, which is equivalent to

fy(x1, 0, λ1) < 0, fx(x1, 0, λ1) < 0.

In the example

ẋ = y, ẏ = −y + x2 − λx,

f (x, y, λ) = −y+x2−λx. The equilibrium points are at (0, 0) and (λ, 0). The first derivatives are

fx(x, 0, λ) = 2x − λ, fy(x, 0, λ) = −1.

At (0, 0),

fx(0, 0, λ) = −λ < 0

if λ > 0, and

fy(0, 0, λ) = −1 < 0,

for all λ. Hence (0, 0) is stable if λ > 0.
At (λ, 0),

fx

(
1
2λ, 0, λ

)
= λ < 0,

if λ < 0, and

fy

(
1
2λ, 0, λ

)
= −1.

Therefore the point (λ, 0) is stable if λ < 0.

• 2.29 Find the equations for the phase paths for the general epidemic described
(Section 2.2) by the system

ẋ = −βxy, ẏ = βxy − γ y, ż = γ y.

Sketch the phase diagram in the (x, y) plane. Confirm that the number of infectives reaches
its maximum when x = γ /β.
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Figure 2.34 Problem 2.29: The phase diagram is drawn for γ /β = 1.

2.29. The general epidemic equations are

ẋ − βxy, ẏ = βxy − γ y, ż = γ y

(see Example 2.4). From the first two equations equilibrium occurs at y = 0 for all x ≥ 0. The
phase paths in the x, y plane are given by

dy
dx
= ẏ

ẋ
= −βx − γ

βx
.

This is a separable equation with general solution

y = −
∫
βx − γ
βx

dx = −x + γ

β
ln x + C,

noting that both x and y must be positive. A phase diagram is shown in Figure 2.34. From the
equation ẏ = βxy−γ y, ẏ = 0 where x = γ /β. The maxima lie on the line x = 1 in Figure 2.34
where dy/dx = 0.

• 2.30 Two species x and y are competing for a common food supply. Their growth
equations are

ẋ = x(1− x − y), ẏ = y(3− x − 3
2y), (x, y > 0).

Classify the equilibrium points using linear approximations. Draw a sketch indicating the
slopes of the phase paths in x ≥ 0, y ≥ 0. If x = x0 > 0, y = y0 > 0 initially, what do you
expect the long-term outcome of the species to be? Confirm your conclusions numerically
by computing phase paths.

2.30. The system

ẋ = x(1− x − y), ẏ = y
(
3− x − 3

2y
)
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is in equilibrium at (0, 0), (0, 2) and (1, 0), the solutions of

x(1− x − y) = 0, and y
(
3− x − 3

2y
)
= 0.

• (0, 0). The linear approximation is

ẋ ≈ x, ẏ ≈ 3y,

which is an unstable star-shaped equilibrium point;

• (0, 2). Let x = ξ , y = 2+ η. Then

ξ̇ = ξ [1− ξ − (2+ η)] ≈ −ξ , η̇ = (2+ η)
[
3− ξ − 3

2
(2+ η)

]
≈ −2ξ − 3η,

which implies a stable node.

• (1, 0). Let x = 1+ ξ , y = η. The

ξ̇ = (1+ ξ)[1− (1+ ξ)− η] ≈ −ξ − η, η̇ = η
[
3− (1+ ξ)− 3

2
η

]
≈ 2η,

which implies a saddle.

The isoclines on which dy/dx=0 are the straight lines y=0 and 3−x− 3
2y=0, and the isoclines

on which dy/dx=∞ are x = 0 and 1 − x − y=0. These are shown in Figure 2.35 together
with the signs of the slopes of the paths between these lines. The computed phase diagram is
also shown in this figure. For any initial point x= x0 > 0, y= y0 > 0, all phase paths approach
(0, 2) asymptotically, which means that species x ultimately dies out.

1 2 3
x

1

2

y

A B

C

y = 1 – x

3y = 6 – 2x

Figure 2.35 Problem 2.30: The phase diagram for ẋ = x(1− x − y), ẏ = y(3− x − 3
2y). In the phase diagram, A is

the region in which ẋ > 0, ẏ > 0, B is the region in which ẋ < 0, ẏ > 0 and C is the region in which ẋ < 0, ẏ < 0.



110 Nonlinear ordinary differential equations: problems and solutions

• 2.31 Sketch the phase diagram for the competing species x and y for which

ẋ = (1− x2 − y2)x, ẏ = (5
4 − x − y)y.

2.31. The competing species equations are

ẋ = (1− x2 − y2)x, ẏ = (1.25− x − y)y.

In the the quadrant x ≥ 0, y ≥ 0, the equilibrium points are given by

(0, 0), (0, 1.250), (1, 0), (0.294, 0.956), (0.956, 0.294).
A computed phase diagram is shown in Figure 2.36. The dashed line and arc are respectively
the isoclines of zero and infinite slopes. From the figure we can see that (0, 0) is a unsta-
ble star-shaped point. The points (1, 0) and (0.294, 0.956) are saddle points, and (0, 1) and
(0.956, 0.294) are stable nodes. These interpretations from the phase diagram can be confirmed
by finding the linear approximations at each equilibrium point.

1
x

1

y

A B

Figure 2.36 Problem 2.31: The phase diagram for ẋ = x(1− x2 − y2), ẏ = y(1.25− x − y).

• 2.32 A space satellite is in free flight on the line joining, and between, a planet (mass m1)
and its moon (mass m2), which are at a fixed distance a apart. Show that

−γm1

x2 + γm2

(a − x)2 = ẍ,

where x is the distance of the satellite from the planet and γ the gravitational constant.
Show that the equilibrium point is unstable according to the linear approximation.
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2.32. If G1 and G2 are the gravitational forces on the satellite due, respectively, to the planet
and the moon, then the equation of motion is

−G1 +G2 = mẍ,

where m is the mass of the satellite. By the law of gravitation,

G1 = γmm1

x2 , G2 = γmm2

(a − x)2 .

Hence x satisfies the equation

−γm1

x2 + γm2

(a − x)2 = ẍ.

Put the equation in dimensionless form by the changes of variable x = az and t = aτ/√(γm2),
so that z satisfies

− λ
z2 +

1
(1− z)2 =

d2z

dτ2 = z′′, (i)

say. Equilibrium occurs where

− λ
z2 +

1
(1− z)2 = 0, or (λ− 1)z2 − 2λz+ λ = 0.

Therefore

z = λ±√λ
λ− 1

= z1,

say, provided λ �= 1. If λ = 1 (planet and moon have the same masses) then z = 1
2 . If λ > 1, then

for equilibrium between the bodies choose the minus sign, so that the solution being considered
is z = (λ−√λ)/(λ− 1). The case λ < 1 can be deduced using the transformations z→ 1− z
and λ→ 1/λ.

Let z = z1 + ζ . Then (i) becomes

ζ ′′ = − λ

(z1 + ζ )2 +
1

[1− (z1 + ζ )]2

≈ − λ
z2

1

(
1− 2ζ

z1

)
+ 1
(1− z1)

2

(
1+ 2z1ζ

1− z1

)

= 2

(
λ

z3
1

+ z1

1− z3
1

)
ζ

Since 0 < z1 <
1
2 , the coefficient of ζ on the right-hand side of this equation is positive. Hence

the equilibrium is unstable since the solution can have local exponential growth.
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u

f (E–u)

E

su

u

f (u)

Figure 2.37 Problem 2.33.

• 2.33 The system

V̇1 = −σV1 + f (E − V2), V̇2 = −σV2 + f (E − V1), σ > 0,E > 0

represents (Andronov and Chaikin 1949) a model of a triggered sweeping circuit for an
oscilloscope. The conditions on f (u) are: f (u) continuous on −∞ < u < ∞, f (−u) =
−f (u), f (u) tends to a limit as u → ∞, and is monotonic decreasing (see Figure 3.20 in
NODE).

Show by a geometrical argument that there is always at least one equilibrium point (v0, v0)

say, and that when f ′(E − v0) < σ it is the only one; and deduce by taking the linear
approximation that it is a stable node. (Note that f ′(E − v) = −df (E − v)/dv.)

Show that when f ′(E− v0)> σ there are two others, at (V ′, (1/σ)f (E−V ′)) and
((1/σ)f ′(E−V ′),V ) respectively for some V ′. Show that these are stable nodes, and that
the one at (v0, v0) is a saddle point.

2.33. The triggered sweeping circuit is governed by the equation

V̇1 = −σV1 + f (E − V2), V̇2 = −σV2 + f (E − V1).

Typical graphs of f (u) and f (E−u) versus u are shown in Figure 2.37. The point of intersection
of σuwithF(E−u) is shown in the second figure, but there may be further points of intersection.
It is convenient to make changes of variable to standard notation at this point. Let x = V1,
y = V2, g(y) = f (E − y) and g(x) = f (E − x). The equations can then be expressed in the
form

ẋ = −σx + g(y), ẏ = g(x)− σy. (i)

Equilibrium points occur where the curve σx = g(y) intersects its inverse curve σy = g(x)

as shown in Figure 2.38(a). There always exists one point of intersection at x = v0 where v0
satisfies σv0 = g(v0), but there may be two further points as shown in the enlarged section of
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–1 1 2
x

–1

1

2
y

x = g(y) /s

y = g(x)/s

1
x

1
y

v2 v0 v1

(b)(a)

Figure 2.38 Problem 2.33: The figures has been drawn with the value σ = 1 and the function g(x) =
1.163 tanh[1.2(1 − x)]. The intersections occur at v0 = 0.561, v1 = 0.906 and v2 = 0.130, approximately, as
indicated in the enlarged inset shown in (b).

the figure shown in Figure 2.38(b). The latter will occur if the slope of y = g(x)/σ at (v0, v0) is
less than −1, since the curves are mutual inverses. Therefore there are three equilibrium points
if and only if g′(v0) < −σ , and one at x = v0 if g′(v0) > −σ . When there are three such points
they are labelled as (v0, v0), (v1, v2) and (v2, v1) as shown in the figure. Since the curves are
mutual inverse functions, then σv1 = g(v2) and σv2 = g(v1).

(i) 0 > g′(v0) > −σ . For the only equilibrium point x = v0, let x = v0 + ξ and y = v0 + η.
Then the linear approximation of (i) is given by

ξ̇ = −σ(v0 + ξ)+ g(v0 + η) ≈ −σξ + g′(v0)η,

η̇ = g(v0)+ ξ)− σ(v0 + η) ≈ g′(v0)ξ − ση.

The parameters are

p = −2σ < 0, q = σ 2 − g′(v0)
2 > 0, � = 4g′(v0)

2 > 0.

Therefore (v0, v0) is a stable node.

(ii) g′(v0) < −σ . From (i) the equilibrium point (v0, v0) has the parameter values

p = −2σ < 0, q = σ 2 − g′(v0)
2 < 0.

Therefore (v0, v0) is a saddle point.
For the point (v1, v2), let x = v1 + ξ and y = v2 + η. Then substitution in (i) leads to

ξ̇ = −σ(v1 + ξ)+ g(v2 + η) ≈ −σξ + g′(v2)η,

η̇ = g(v1)+ ξ)− σ(v2 + η) ≈ g′(v1)ξ −ση.
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1
x

1

y

Figure 2.39 Problem 2.33: Phase diagram for ẋ = −σx + 1.163 tanh[1.2(1− y)], ẏ = 1.163 tanh[1.2(1− x)] − σy
with σ = 1, showing a saddle and two stable nodes.

The parameters of this linear approximation are

p = −2σ < 0, q = σ 2 − g′(v1)g
′(v2), � = 4g′(v1)g

′(v2) > 0.

Consider the intersection of the curves C1 : y = g(x)/σ and C2 : x = g(y)/σ at x = v1. If the
slope of C1 is m1, and of C2 is m2 at x = v1, then m1 > m2 (see Figure 2.38). Therefore, since

m1 = g′(v1)

σ
and m2 = σ

g′(v2)
,

it follows that g′(v1)g
′(v2) < σ 2 (remember that g′(v1) and g′(v2) are negative which affects

manipulation of the inequalities). Hence for the equilibrium point (v1, v2), q > 0 which means
that the equilibrium point is a stable node.

A similar argument can be used to show that (v2, v1) is also a node: simply interchange v1
and v2 in the analysis above. A phase diagram for case (ii) (three equilibrium points) is shown
in Figure 2.39 for the same parameter values as in Figure 2.38.

• 2.34 Investigate the equilibrium points of ẋ = a − x2, ẏ = x − y. Show that the system
has a saddle and a stable node for a > 0 but no equilibrium points if a < 0. The system is
said to undergo a bifurcation as a increases through a = 0. This bifurcation is an example
of a saddle-node bifurcation. Draw phase diagrams for a = 1 and a = −1.

2.34. The parameter-dependent system is

ẋ = a − x2, ẏ = x − y.
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Equilibrium points occur where a−x2 = 0 and x−y = 0. If a < 0, then there are no equilibrium
points. If a > 0, there are equilibrium points at (

√
a,
√
a) and (−√a,−√a).

(a) (
√
a,
√
a). Let x = √a + ξ , y = √a + η. Then the linear approximation is

ξ̇ ≈ −2
√
aξ , η̇ = ξ − η.

The associated parameters are

p = −2
√
a − 1 < 0, q = 2

√
a > 0, � = 4

√
a + 1 > 0.

Hence (
√
a,
√
a) is a stable node.

(b) (−√a,−√a). Let x = −√a + ξ , y = −√a + η. Then the linear approximation is

ξ̇ ≈ 2
√
aξ , η̇ = ξ − η.

The parameter q is given by q = −2
√
a < 0, so that (−√a,−√a) is a saddle point.

Some phase paths for the case a = 1 are shown in Figure 2.40.

• 2.35 Figure 2.16 (in NODE) represents a circuit for activating an electric arc Awhich has
the voltage-current characteristic shown. Show that Lİ = V −Va(I ), RCV̇ = −RI −V +E
where Va(I ) has the general shape shown in Figure 2.16 (in NODE). By forming the linear
approximating equations near the equilibrium points find the conditions on E, L, C, R and
V ′a for stable working, assuming that V = E−RI meets the curve V = Va(I )in three points
of intersection.

–2 –1 1 2
x

–2

–1

1

2
y

Figure 2.40 Problem 2.34: Phase diagram for ẋ = a − x2, ẏ = x − y for a = 1, showing a stable node at (1, 1) and
a saddle point at (−1,−1).
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2.35. Consult Figure 2.16 in NODE. For the voltage V , we have on the right- and left-hand
sides,

V − LdI
dt
− Va(I ) = 0, (i)

and
E − Ri − v = 0. (ii)

For the circuit including the capacitance C and the inductance L,

− 1
C

∫
(i − I )dt + V = 0, or i = I + C dV

dt
. (iii)

Eliminate i between (ii) and (iii) giving

V̇ + 1
RC

V = E − RI
RC

. (iv)

The required first-order equations are given by (i) and (iv), namely

İ = V

L
− Va(I )

L
, V̇ = − 1

C
I − 1

RC
V + E

RC
. (v)

Let (In,Vn), (n = 1, 2, 3) be the equilibrium points, and consider the perturbations I = In + ξ ,
V = Vn + η. Then, from (iv),

ξ̇ = 1
L

[Vn − Va(In + ξ)] ≈ − 1
L
V ′a(In)ξ +

1
L
η,

η̇ = − 1
C
(In + ξ)− 1

RC
(Vn + η)+ E

RC
= − 1

C
ξ − 1

RC
η,

where Vn and In satisfy Vn−Va(In) = 0 and −RIn−Vn+E = 0 for each value of n. In general
in the linear approximations the parameters are

p = − 1
L
V ′a(In)−

1
RC

, q = V ′a(In)
RCL

+ 1
LC

.

• (I1,V1). From Figure 2.41, V ′a(I1) > 0 so that p < 0 and q > 0, which means that the
equilibrium is either a stable node or spiral depending on the sign of � = p2 − 4q.

• (I2,V2). From Figure 2.41, V ′a(I2) < 0. Stability will depend on the signs of p and q. If
V ′a(I2) < −L, then the equilibrium point is a saddle (and unstable). If Va(I2) < −L/(RC),
then p < 0 so that the equilibrium point is an unstable node or spiral. We can combine
these instability conditions into the single condition V ′a(I2) < max(−L,−L/(RC)). If
V ′a(I2) > max(−L,−L/(RC)), then p < 0 and q > 0 which means that (I2,V2) is stable.

• (I3,V3). From Figure 2.41, it can be seen that V ′a(I3) < 0 also. Therefore, the results are
the same as the previous case with I2, V2 replaced by I3, V3.
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I

V

(I3,V3)

(I2,V2)

(I1,V1)

V = Va(I)

V = E – RI

Figure 2.41 Problem 2.35: This figure was plotted using Va(I ) = 0.05 + xe−2.5x and the line V = 0.2 − 0.06I to
create three points of intersection.

• 2.36 The equation for the current x in the circuit of Figure 2.17(a) (in NODE) is

LCẍ + RCẋ + x = I .

Neglect the grid current, and assume that I depends only on the relative grid potential
eg : I = IS (saturation current) for eg > 0 and I = 0 for eg < 0 (see Figure 2.17(b) in
NODE). Assume also that the mutual indictance M > 0, so that eg <,> 0 according as
ẋ >,< 0. Find the nature of the phase paths. By considering their successive intersections
with the x axis show that a limit cycle is approached from all initial conditions (assume
R2C < 4L).

2.36. The equation for the current x is

LCẍ + RCẋ + x = I ,

where

I =
{
Is ẋ > 0
0 ẋ < 0

.

The (x, y) phase plane equations with y = ẋ are

ẋ = y, ẏ = −ω2x − 2ky +
{
ω2Is(> 0) y > 0
0 y < 0

,

where ω2 = 1/(LC) and k = R/(2L).
The solutions are (for ω2 > k2, that is, R2C > 4L)

x = Ae−kt cos(�t + α) for y < 0,

x = Is + Ae−kt cos(�t + α) for y > 0.
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x

y

xm xm+1

xm+2

Figure 2.42 Problem 2.36: Three successive intersections xm, xm+1, xm+2 with the x axis.

Consider the sequence of intersections xm, xm+1, xm+2 with the y axis as shown in Figure 2.42.
Let t = t0 at x = xm and t = t0 + T , where T = π/�, at x = xm+1. Therefore

xm+1 = −e−kT xm.

Similarly

xm+2 = Is − e−kT xm+1 = Is + λxm, (i)

putting λ = e−kT . Let m be an even number, say, 2n− 2. Then iteration of (i) gives

x2n = Is + λ(Is + λ(Is + λ(· · · + λ(Is + λx0)) · · · ))
= Is + λIs + · · · + λn−1Is + λnx0

= 1− λn
1− λ Is + λ

nx0

→ Is

1− λ

as n→∞ for all x0. Since this limit of x2n exists there must be a limit cycle through x = Is/(1−λ)
It cuts the x axis again at x = −λIs/(1− λ).

• 2.37 For the circuit in Figure 2.17(a) (in NODE) assume that the relation between I and
eg is as in Figure 2.18 (in NODE); that is I = F(eg + kep), where eg and ep are relative
grid and plate potentials, k > 0 is a constant, and in the neighbourhood of the point of
inflection, f (u) = I0+ au− bu3, where a.0, b > 0. Deduce the equation for x when the DC
source E is set so that the operating point is the point of inflection. (A form of Rayleigh’s
equation is obtained, implying an unstable or a stable limit cycle respectively.)
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2.37 As in the previous problem,

LCẍ + RCẋ + x = I ,

where
I = I0 + a(eg + kep − E0)− b(eg + kep − E0)

3,

eg = M dx
dt

, E − Ldx
dt
− Rx − ep = 0.

Therefore

eg + kep − E0 = (M − kL)dx
dt
− kRx + kE − E0 = (M − kL)ẋ − kRx,

when the working point E0 = kE. Finally x satisfies

ẍ + R

L
ẋ + 1

LC
x = 1

LC
[I0 + a[(M − kL)ẋ − kRx] − b[(M − kL)ẋ − kRx]3].

This can be rearranged in the form

ẍ + Aẋ + Bẋ3 + ω2x = D,

where

A = 1
LC

[
R

L
− a(M − kL)

]
, B = b

LC
(M − kL)3, D = I0

LC
.

If the right-hand side is reduced to zero by a suitable translation of x, then the result is Rayleigh’s
equation (see Example 4.6). It has a stable limit cycle if A < 0 and B > 0, that is, if

R < aL(M − kL) and M > kL.

• 2.38 Figure 2.19(a) (in NODE) represents two identical DC generators connected in
parallel, with inductance and resistance L, r. Here R is the resistance of the load. Show that
the equations for the currents are

L
di1
dt
= −(r + R)i1 − Ri2 + E(i1), Ldi2

dt
= −Ri1 − (r + R)i2 + E(i2).

Assuming that E(i) has the characteristics indicated by Figure 2.19(b) (in NODE) show
that

(i) when E′(0) < r the state i1 = i2 = 0 is stable and is otherwise unstable;

(ii) when E′(0) < r there is a stable state i1 = −i2 (no current flows to R);

(iii) when E′(0) > r + 2R there is a state with i1 = i2, which is unstable.
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2.38. For the upper circuit, through generator E(i1) and resistance R,

E(i1)− Ldi1
dt
− ri1 − R(i1 + i2) = 0,

and for the lower circuit through the generator E(i2) and resistance R,

E(i2)− Ldi2
dt
− ri2 − R(i1 + i2) = 0.

These equations can be rearranged into

L
di1
dt
= −(r + R)i1 − Ri2 + E(i1),

L
di2
dt
= −Ri1 − (r + R)i2 + E(i2).

An equilibrium or steady state occurs when the right-hand sides are zero, or when

E(i1) = (r + R)i1 + Ri2,

E(i2) = Ri1 + (r + R)i2.

Let (i1, i2) = (a, b) be an equilibrium point, and let i1 = a + x, i2 = b + y. Then for small |x|
and |y|,

Lẋ ≈ [−(r + R)+ E′(a)]x − Ry,

Lẏ ≈ −Rx + [−(r + R)+ E′(b)]y.

The parameters associated with this linear approximation are

p = E′(a)+ E′(b)− 2(r + R), q = [E′(a)− (r + R)][E′(b)− (r + R)] − R2.

(i) The point (0, 0) is always an equilibrium point. At this point

p = 2E′(0)− 2r − 2R, q = (E′(0)− r − R)2 − R2 = (E′(0)− r − 2R)(E′(0)− r).
For 0 < E′(0) < r, p < 0 and q > 0 which means that the equilibrium point is stable. If
r + 2R > E′(0) > r, then q < 0 which implies that the equilibrium point is a saddle point
(unstable). If E′(0) > r + 2R, then p > 0 and q > 0 which imply that the equilibrium point is
either an unstable node or unstable spiral.

(ii) Since E(i) is an odd function, the equations for equilibrium are unchanged if i1 is replaced
by −i2, and i2 by −i1. Let i1 = −i2 = i0. It follows that (i0,−i0) is an equilibrium state where
E(i0) = ri0. The parameters for the linear approximation are

p = −2(r + R) < 0, q = r2 + 2rR − E′(i0)2 > 0

if E′(0) < r. Hence the equilibrium is a stable node or spiral.
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(iii) If i1 = i2 = i0, say, then both equilibrium equations are the same so that i0 satisfies
E(i0) = (r + 2R)i0. Whether non-zero solutions of this equation exist will depend on the slope
E′(0), which must be less than r + 2R for existence. The parameters in this case are

p = 2[E′(i0)− r − R], q = [E′(i0)− (r + R)]2 − R2 = [E′(i0)− r][E′(i0)− r − 2R].

If r < E′(0) < r + 2R, then p < 0 and q < 0 which implies that the equilibrium point is a
saddle point.

• 2.39 Show that the Emden–Fowler equation of astrophysics

(ξ2η′)′ + ξληn = 0

is equivalent to the predator–prey model

ẋ = −x(1+ x + y), ẏ = y(λ+ 1+ nx + y)
after the change of variable x = ξη′/η, y = ξλ−1ηn/η′, t = ln |ξ |

2.39. The Emden–Fowler equation is

(ξ2η′)′ + ξληn = 0,

or

2ξη′ + ξ2η′′ + ξληn = 0. (i)

Let

x = ξη′

η
, y = ξλ−1ηn

η′
, t = ln |ξ |.

Then, since ξ̇ = ξ ,

ẋ = ξ̇ η′

η
+ ηη′′ξ̇

η
− ξη′2ξ̇

η2

= ξη′

η
+ ξ2η′′

η
− ξ2η′2

η2

= ξη′

η
+ 1
η
[−ξληn − 2ξη′] − ξ2η′2

η2 (using (i))

= −x − x2 − (ξληn−1)

= −x − x2 − xy.
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Similarly

ẏ = (λ− 1)
ξλ−1ξ̇ ηn

η′
+ nξλ−1ηn−1ξ̇ − ξλ−1ηnη′′ξ̇

η′2

= (λ− 1)
ξλ−1ηn

η′
+ nξληn−1 + ξλ−1ηn

η′
(2ξη′ + ξληn)

= (λ+ 1)y + nxy + y2,

as required.

• 2.40 Show that Blasius’ equation

η′′′ + ηη′′ = 0

is transformed by x = ηη′/η′′, y = η′2/(ηη′′), t = ln |η′| into

ẋ = x(1+ x + y), ẏ = y(2+ x − y).

2.40. The Blasius equation is

η′′′ + ηη′′ = 0, (i)

where η′ = dη/dξ . Let

x = ηη′

η′′
, y = η′2

ηη′′
, t = ln |η′|, or η′ = et .

Differentiating η′ = et with respect to t , we have

η′′ξ̇ = et = η′, so that ξ̇ = η′

η′′
. (ii)

Then

ẋ = η′2ξ̇
η′′

+ ηξ̇ − ηη′η′′′ξ̇
η′′2

= η′3

η′′2
+ ηη′

η′′
− ηη′2η′′′

η′′2
(using (ii))

= η′3

η′′2
+ ηη′

η′′
+ η2η′2

η′′2
(using (i))

= xy + x + x2 = x(1+ x + y)
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as required. Similarly

ẏ = 2η′ξ̇
η
− η′3ξ̇
η2η′′

− η′2η′′′ξ̇
ηη′′2

= 2η′2

ηη′′
− η′4

η2η′′2
− η′3η′′′

ηη′′3
(using (ii))

= 2η′2

ηη′′
− η′4

η2η′′2
+ η′3

η′′2
(using (i))

= 2y − y2 + xy = y(2+ x − y).

• 2.41 Consider the family of linear systems

ẋ = X cosα − Y sinα, ẏ = X sinα + Y cosα

where X = ax + by, Y = cx + dy, and a, b, c, d are constants and α is a parameter. Show
that the parameters are

p = (a + d) cosα + (b − c) sinα, q = ad − bc.
Deduce that the origin is a saddle point for all α if ad < bc. If a = 2, b = c = d = 1,
show that the equilibrium point at the origin passes through the sequence stable node, stable
spiral, centre, unstable spiral, unstable node as α varies over range π .

2.41. The linear system is

ẋ = (a cosα − c sinα)x + (b cosα − d sinα)y,
ẏ = (a sinα + c cosα)x + (b sinα + d cosα)y.

The parameters associated with the origin of this linear system are

p = (a + d) cosα + (b − c) sinα,

q = (a cosα − c sinα)(b sinα + d cosα)− (b cosα − d sinα)(a sinα + c cosα)

= ad − bc.

If ad − bc < 0, then q < 0, which means that the origin is a saddle point for all α.
If a = 2, b = c = d = 1, then p = 3 cosα, q = 1 > 0 and � = p2 − 4q = 9 cos2 α − 4.

The different stabilities can be seen most easily by sketching the graphs of p and � against α
as shown in Figure 2.43. The nature of the equilibrium at the origin changes where either p or
� changes sign at A, B and C (q > 0 so that a saddle is not possible). The classification is as
follows:

• Interval OA: p > 0, � > 0, unstable node.
• Point A: p > 0, � = 0, degenerate unstable node.
• Interval AB: p > 0, � < 0, unstable spiral.



124 Nonlinear ordinary differential equations: problems and solutions

p
2

p
a

–4

–2

2

4 �

p

O B
D

CA

Figure 2.43 Problem 2.41: The graphs shows p = 3 cosα and � = 9 cos2 α − 4 for 0 ≤ α ≤ π .

• Point B: p = 0, centre.
• Interval BC: p < 0, � < 0, stable spiral.
• Point C: p < 0, � = 0, degenerate stable node.
• Interval CD, p < 0, � > 0, stable node.

• 2.42 Show that, given X(x, y), a system equivalent to the equation ẍ + h(x, ẋ) = 0 is

ẋ = X(x, y), ẏ = −
{
h(x,X)+X∂X

∂x

}/
∂X

∂y
.

2.42. Consider the equation ẍ + h(x, ẋ) = 0. Let ẋ = X(x, y). Then

ẍ = ∂X

∂x
ẋ + ∂X

∂y
ẏ = −h(x,X).

by applying a chain rule. Therefore

ẏ = −
{
h(x,X)+X∂X

∂x

}/
∂X

∂y
.

This problem illustrates how a given differential equation can be represented in different phase
planes (x, y) where ẋ and ẏ are defined through the function X(x, y).

• 2.43 The following system models two species with populations N1 and N2 competing
for a common food supply:

Ṅ1 = {a1 − d1(bN1 + cN2)}N1, Ṅ2 = {a2 − d2(bN1 + cN2)}N2.

Classify the equilibrium points of the system assuming that all coefficients are positive. Show
that if a1d2 > a2d1 then the species N2 dies out and the species N1 approaches a limiting
size (Volterra’s Exclusion Principle).
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2.43. The two-species model is governed by the equations

Ṅ1 = {a1 − d1(bN1 + cN2)}N1,

Ṅ2 = {a2 − d2(bN1 + cN2)}N2.

Equilibrium occurs where

{a1 − d1(bN1 + cN2)}N1 = 0, {a2 − d2(bN1 + cN2)}N2 = 0.

Assume that a1d2 �= a2d1 (otherwise there is a line of equilibrium points along bN1 + cN2 =
a1/d1). In the (N1,N2) plane, there are three equilibrium points, at

(0, 0), (0, ν2), (ν1, 0),

where ν2 = a2/(cd2) and ν1 = a1/(bd1).

• (0, 0). The linear approximation is

Ṅ1 ≈ a1N1, Ṅ2 ≈ a2N2.

The parameters are (NODE, Section 2.5)

p = a1 + a2 > 0, q = a1a2 > 0, � = (a1 + a2)
2 − 4a1a2

= (a1 − a2)
2 > 0.

Therefore the origin is an unstable node.
• (0, ν2). Let N1 = ξ and N2 = ν2 + η. Then

ξ̇ ≈ a1d2 − a2d1

d2
ξ ,

η̇ ≈ −a2b

c
ξ − a2η.

The parameters are

p = a1d2 − a2d1

d2
− a2, q = − (a1d2 − a2d1)a2

d2
,

where classification depends on the signs of p and q using the table in Figure 2.10 in
Section 2.5 of NODE.

• (ν1, 0). Let N1 = ν1 + ξ and N2 = η. Then

ξ̇ ≈ −a1ξ − ca1

b
η.

η̇ ≈ a2d1 − a1d2

d1
η.
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The parameters are

p = a2d1 − a1d2

d1
− a1, q = − (a2d1 − a1d2)a1

d1
,

where classification depends on the signs of p and q using the table.

If a1d2 > a2d1, then, for (0, ν2), p > 0 and q < 0 making the point a saddle. Also, for (ν1, 0),
p < 0 and q > 0 implying that the equilibrium point is stable, either a node or spiral. This is
the only stable point so that eventually N2 → 0 and N1 → ν1.

• 2.44 Show that the system

ẋ = X(x, y) = −x + y, ẏ = Y (x, y) = 4x2

1+ 3x2 − y

has three equilibrium points, at (0, 0), (1
3 , 1

3 ) and (1, 1). Classify each equilibrium point.
Sketch the isoclines X(x, y) = 0 and Y (x, y) = 0, and indicate the regions where dy/dx is
positive, and where dy/dx is negative. Sketch the phase diagram of the system.

2.44. The system is

ẋ = X(x, y) = −x + y, ẏ = Y (x, y) = 4x2

1+ 3x2 − y.

Equilibrium occurs where

x = y,
4x2

1+ 3x2 = y.

Eliminate y leaving

x = 4x2

1+ 3x2 , or 3x3 − 4x2 + x = 0.

Therefore x = 0, 1, 1
3 and the equilibrium points are (0, 0), (1

3 , 1
3 ) and (1, 1).

• Equilibrium point (0, 0). The linear approximation is

ẋ = −x + y, ẏ ≈ −y.

The associated parameters are

p = −2 < 0, q = 1 > 0, � = p2 − 4q = 0.

Hence (0, 0) is a degenerate stable node.
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Figure 2.44 Problem 2.44: The phase diagram for ẋ = −x + y, ẏ = [4x2/(1 + 3x2)] − y. Equilibrium points lie at
O : (0, 0), A : ( 1

3 , 1
3 ) and B : (1, 1). The shaded regions, bounded by X(x, y) = 0 and Y (x, y) = 0 indicate where

dy/dx > 0.

• Equilibrium point (1
3 , 1

3 ). Let x = 1
3 + ξ and y = 1

3 + η. Then for small |ξ | and |η|, the
linear approximation is

ξ̇ = −ξ + η, η̇ = 4((1/3)+ ξ)2
1+ 3((1/3)+ ξ)2 −

1
3 − η ≈ 3

2ξ − η.

The associated parameters are

p = −2, q = 1− 3
2 = −1

2 .

Therefore (1
3 , 1

3 ) is a saddle point.

• Equilibrium point (1, 1). Let x = 1+ ξ and y = 1+ η. Then the linear approximation is

ξ̇ = −ξ + η, η̇ = 4(1+ ξ)2
1+ 3(1+ ξ)2 ≈

1
2ξ − η.

The parameters are

p = −2 < 0, q = 1− 1
2 = 1

2 > 0, � = 4− 1
4 = 15

16 > 0.

Therefore (1, 1) is a stable node.

The phase diagram is shown in Figure 2.44 together with the isoclines X(x, y) = 0 and
Y (x, y) = 0.

• 2.45 Show that the systems (A) ẋ = P(x, y), ẏ = Q(x, y) and (B) ẋ = Q(x, y), ẏ = P(x, y)
have the same equilibrium points. Suppose that system (A) has three equilibrium points
which, according to their linear approximations are, (a) a stable spiral, (b) an unstable
node, (c) a saddle point. To what extent can the equilibrium points in (B) be classified from
this information?
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2.45. Comparison is to be made between the systems

(A) ẋ = P(x, y), ẏ = Q(x, y)

and

(B) ẏ = Q(x, y), ẏ = P(x, y).

Assume that in a neighbourhood of an equilibrium point

P(x, y) ≈ ax + by, Q(x, y) ≈ cx + dy.

Then the linear approximation for system (A) is

ẋ = ax + by, ẏ = cx + dy,

and for system (B),
ẋ = cx + dy, ẏ = ax + by.

Hence the parameters classifying equilibrium points for (A) are

pA = a + d, qA = ad − bc, �A = (a + d)2 − 4(ad − bc) = (a − d)2 + 4bc,

and for (B) are

pB = b + c, qB = bc − ad, �B = (b + c)2 − 4(bc − ad) = (b − c)2 + 4ad.

(a) A has a stable spiral, which means that

pA = a + d < 0, qA = ad − bc > 0, �A = (a − d)2 + 4bc < 0.

It can be seen that qB = bc− ad < 0. Therefore the corresponding equilibrium point for (B) is
a saddle.

(b) A has a an unstable node, which requires

pA = a + d > 0, qA = bc − ad > 0 and �A = (a − d)2 + 4bc > 0.

As in (a), qB = bc − ad < 0. Hence the equilibrium point in (B) is also a saddle.

(c) (A) has a saddle. Hence qA = ad − bc < 0. It follows that

pB = b + c, qB = bc − ad > 0, �B = (b + c)2 − 4(bc − ad) = (b − c)2 + 4ad.
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All we can say generally is that the equilibrium point is a node or a spiral, where stability will
depend on the sign of pA = b + c.

• 2.46 The system defined by the equations

ẋ = a + x2y − (1+ b)x, ẏ = bx − yx2, (a �= 0, b �= 0)

is known as the Brusselator and arises in a mathematical model of a chemical reaction (see
Jackson (1990)). Show that the system has one equilibrium point at (a, b/a). Classify the
equilibrium point in each of the following cases:

(a) a = 1, b = 2;

(b) a = 1
2 , b = 1

4 .

In case (b) draw the isoclines of zero and infinite slope in the phase diagram. Hence sketch
the phase diagram.

2.46. The system is
ẋ = a + x2y − (1+ b)x, ẏ = bx − yx2.

Equilibrium occurs where

a + x2y − (1+ b)x = 0, x(b − xy) = 0,

which have just one solution x = a, y = b/a.
Let x = a + ξ , y = (b/a)+ η. Then

ξ̇ = a + (a + ξ)2
(
b

a
+ η

)
− (1+ b)(a + ξ) ≈ (b − 1)ξ + a2η,

and

η̇ = (a + ξ)
[
b − (a + ξ)

(
b

a
+ η

)]
≈ bξ − a2η

The parameters associated with the linear approximation are

p = b − 1− a2, q = a2(1− 2b), � = (b − 1)2 + a2(6b − 2+ a2).

(a) Case a = 1, b = 2. The equilibrium point is at (1, 2). The parameters are p = 0,
q = −3 < 0. Therefore (1, 2) is a saddle point.

(b) Case a = 1
2 , b = 1

4 . The equilibrium point is at (1
2 , 1

2 ). The parameters are p = −1 < 0,
q = 1

8 > 0, � = 1
2 > 0. Therefore (1

2 , 1
2 ) is also a stable node.The phase diagram for case (b)

is shown in Figure 2.45.
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Figure 2.45 Problem 2.46: Phase diagram for a = 1
2 , b = 1

4 showing a stable node at ( 1
2 , 1

2 ). The dashed curve
indicates the isocline with infinite slope and the grey curves the isoclines with zero slope (including the y axis).

• 2.47 A Volterra model for the population size p(t) of a species is, in reduced form,

κ
dp
dt
= p − p2 − p

∫ t

0
p(s)ds, p(0) = p0,

where the integral term represents a toxicity accumulation term (see Small (1989)). Let
x = lnp, and show that x satisfies

κẍ + exẋ + ex = 0.

Put y = ẋ, and show that the system is also equivalent to

ẏ = −(y + 1)p/κ, ṗ = yp.

Sketch the phase diagram in the (y,p) plane. Also find the exact equation of the phase paths.

2.47. The Volterra model for the population p(t) satisfies

κ
dp
dt
= p − p2 − p

∫ t

0
p(s)ds, p(0) = p0. (i)

Differentiate equation (i) with respect to t :

κp̈ = ṗ − 2pṗ − ṗ
∫ t

0
p(s)ds − p2

= ṗ − 2pṗ − ṗ

p
[−κṗ + p − p2] − p2, (using (i))

= −pṗ + κ ṗ
2

p
− p2.

Let p = ex so that ṗ = exẋ and p̈ = exẍ + exẋ2. Then the population equation becomes

κ(exẍ + exẋ2) = −e2xẋ + κexẋ2 − e2x ,
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Figure 2.46 Problem 2.47: Phase diagram for the Volterra model with κ = 1.

or

κẍ + exẋ + ex = 0, (ii)

as required.
Let y = ẋ. Then ṗ = exẋ = py. Also

ẏ = ẍ = −1
κ
(exẋ + ex) = −1

κ
(y + 1)p,

using (ii). Equilibrium occurs for all points on the axis p = 0 (for the population model p ≥ 0).
The differential equation for the phase paths in the (y,p) plane is

dy
dp

= −y + 1
κy

.

For t = 0, ṗ(0) = p(0) − p(0)2 < 0 assuming that p(0) > 1. This is a separable equation
with general solution

κ

∫
y

y + 1
dy = −

∫
dp = −p + C,

or

κ(y − ln |y + 1|) = −p + C.

A phase diagram for the model is shown in Figure 2.46 with κ = 1. In fact this includes all non-
zero parameter values for κ, since κ can be eliminated from the from the first-order equations
by the transformation p→ pκ.
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3
Geometrical aspects of
plane autonomous systems

• 3.1 By considering the variation of path direction on closed curves round the equilibrium
points, find the index in each case of Figure 3.29 (in NODE)

3.1. (a) Surround the equilibrium point by a closed curve � (see Figure 3.1). Take any point
P on �, and draw a vector S at P tangential to the phase path at P . Let φ be the angle
between a fixed direction and S measured counterclockwise as shown. As P makes one coun-
terclockwise circuit of �, determine how the angle φ changes as the direction of S changes.
Any change will be a multiple of 2π . In this example φ returns to its original value. Hence the
index I = 0.

Apply the same method to each of the remaining figures. The indices are

(b) I = 0.

(c) I = 1.

(d) I = 1.

(e) I = −2.

P

S

f
Γ

Figure 3.1 Problem 3.1(a)
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• 3.2 The motion of a damped pendulum is described by the equations

θ̇ = ω, ω̇ = −kω − ν2 sin θ ,

where k(> 0) and ν are constants. Find the indices of all equilibrium states.

3.2. The damped pendulum has the equation

θ̇ = ω, ω̇ = −kω − ν2 sin θ .

Equilibrium occurs where ω = 0 and sin θ = 0, that is, at (nπ , 0), (n = 0,±1,±2, . . . ) in the
(θ ,ω) phase plane.

Near the origin,
θ̇ = ω, ω̇ ≈ −ν2θ − kω.

The parameters associated with the linear approximation (see Section 2.5) are

p = −k < 0, q = ν2 > 0, � = k2 − 4ν2.

Hence the equilibrium point is either a stable node or a stable spiral depending on the sign of�.
In both cases, however, the index I = 1. By the 2π periodicity in θ of the differential equation,
the indices of all the equilibrium points (2πn, 0), (n = 0,±1,±2, . . . ) also have index I = 1.

Near θ = π , let θ = π + ξ . Then

ξ̇ = ω, ω̇ = −kω − ν2 sin(π + ξ) ≈ −kω + ν2ξ .

Therefore q = −ν2, that is, the equilibrium point is a saddle point with index I = −1. Similarly
all the points ((2n+ 1)π , 0), (n = 0,±1,±2, . . . ) are saddle points each with index I = −1.

• 3.3 Find the index of the equilibrium points of the following systems: (i) ẋ = 2xy,
ẏ = 3x2 − y2; (ii) ẋ = y2 − x4, ẏ = x3y; (iii) ẋ = x − y, ẏ = x − y2.

3.3. (i) The system
ẋ = 2xy, ẏ = 3x2 − y2

has one equilibrium point, at the origin. Let the curve � surrounding the origin be the ellipse
x = cos θ , y = √3 sin θ for 0 ≤ θ < 2π . Then

X(x, y) = 2xy = 2
√

3 cos θ sin θ = √3 sin 2θ ,

Y (x, y) = 3x2 − y2 = 3(cos2 θ − sin2 θ) = 3 cos 2θ .
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Figure 3.2 Problem 3.3(b)

Then, on �,

tanφ = Y (x, y)
X(x, y)

= 3 cos 2θ√
3 sin 2θ

= √3 cot 2θ = √3 tan[12π − 2θ ].

As θ increases from 0 to 2π , φ decreases 0 to −4π . Hence I = −2.
(ii) The system

ẋ = y2 − x4, ẏ = x3y

has one equilibrium point, at the origin. Let � be a circle centred at the origin. Using the method
of Theorem 3.3, draw the isoclines X(x, y) = 0, that is, y = ±x2, and Y (x, y) = 0, that is, the
axes x = 0 and y = 0, in the phase plane, and mark the regions where X and Y are positive
and negative as shown in Figure 3.2. The circle � cuts the lines Y (x, y) = 0 at the points A, B,
C and D. According to Theorem 3.3 we list the sign changes of tanφ = Y/X at these points
on a counterclockwise circuit of �. The signs of X and Y shown in the figure can be used to
determine the sign changes:

zero of Y (x, y) A B C D

sign change in tanφ +/− +/− +/− +/−
Hence there are P = 4 changes from + to −, and Q = 0 changes from − to +. The index is

given by I = 1
2 (P −Q) = 2.

(iii) The system

ẋ = x − y, ẏ = x − y2
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Figure 3.3 Problem 3.3(c)

has two equilibrium points, at (0, 0) and (1, 1). The isoclinesX(x, y) = x−y = 0 and Y (x, y) =
x − y2 = 0 are shown in Figure 3.3. Surround (0, 0) and (1, 1) by circles �1 and �2 as shown:
(1, 1) should be outside �1 and (0, 0) outside �2. Let �1 cut x = y2 at A and B, and �2 cut
x = y2 at C and D. The sign changes in tanφ = Y/X on a counterclockwise circuit of �1 are

zero of Y (x, y) A B

sign change in tanφ −/+ −/+
Hence P = 2 and Q = 0 so that at (0, 0) the index is I = 1

2 (P −Q) = 1.
For a counterclockwise circuit of �2,

zero of Y (x, y) C D

sign change in tanφ +/− +/−
Hence P = 0 and Q = 2 so that at (1, 1) the index is I = 1

2 (P −Q) = −1.
For the origin use result (3.8) with � the curve given parametrically by x = r cos t , y = r sin t

(0 ≤ t < 2π) in (iii). Then, on �,

X(x, y) = x − y = r(cos t − sin t), Y (x, y) = r cos t − r2 sin2 t .

Therefore

I�= 1
2π

∮
�

XdY − YdX
X2 + Y 2

= 1
2π

∫ 2π

0

X(dY/dt)− Y (dX/dt)
X2 + Y 2 dt
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= 1
2π

∫ 2π

0

(cos t − sin t)(− sin t − 2r sin t cos t)+ (cos t − r sin2 t)(sin t + cos t)

(cos t − sin t)2 + (cos t − r sin2t )2
dt

= 1
2π

∫ 2π

0

1− r sin t(cos2 t + 1− sin t cos t)

(cos t − sin t)2 + (cos t − r sin2 t)2
dt .

Therefore, if 0 < r < 1, � surrounds only the origin for which I� = 1, whilst for r > 1, �
surrounds both equilibrium points for which I� = 0; this is the sum of the indices at (0, 0)
and (1, 1).

• 3.4 For the linear system ẋ = ax + by, ẏ = cx + dy, where ad − bc �= 0, obtain the index
at the origin by evaluating

I� =
∫ s1

s0

XY ′ − YX′
X2 + Y 2 ds,

showing that it is equal to sgn (ad−bc). (Hint: choose � to be the ellipse (ax+by)2+ (cx+
dy)2 = 1.)

3.4. The linear system is

ẋ = ax + by, ẏ = cx + dy, (ad − bc �= 0).

Let � be the ellipse

(ax + by)2 + (cx + dy)2 = 1,

which can be represented parametrically by

X(x, y) = ax + by = cos θ , Y (x, y) = cx + dy = sin θ ,

where 0 ≤ θ < 2π . By solving these equations we obtain

x = d cos θ − b sin θ
ad − bc , y = −c cos θ + a sin θ

ad − bc ,

since ad−bc �= 0. As θ increases, the ellipse is tracked in a counterclockwise sense if ad−bc > 0
and clockwise if ad − bc < 0. From (3.7), since X = ax + by and Y = cx + dy, but taking
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account that � must be traced anticlockwise

I� = 1
2π

∫ s1

s0

XY ′ − YX′
X2 + Y 2 ds

= sgn (ad − bc)
2π

∫ 2π

0

X(dY/dθ)− Y (dX/dθ)
X2 + Y 2 dθ

= sgn (ad − bc)
2π

∫ 2π

0

cos θ(cos θ)− sin θ(− cos θ)

cos2 θ + sin2 θ
dθ

= sgn (ad − bc)
2π

∫ 2π

0
dθ = sgn (ad − bc).

• 3.5 The equation of motion of a bar restrained by springs (see Figure 3.30 in NODE) and
attracted by a parallel current-carrying conductor is

ẍ + c
(
x − λ

a − x
)
= 0,

where c (the stiffness of the spring), a and λ are positive constants. Sketch the phase paths
for −x0 < x < a, where x0 is the unstretched length of each spring, and find the indices of
the equilibrium points for all λ > 0.

3.5. The equation of motion of the bar is

ẍ + c
[
x − λ

a − x
]
= 0. (i)

Equilibrium occurs where

x(a − x)− λ = 0, or x2 − ax + λ = 0. (ii)

If λ > 1
4a

2, there is no equilibrium state. A typical phase diagram is shown in Figure 3.4.
If λ < 1

4a
2, then the solutions of (ii) are given by

x = 1
2 [a ±

√
(a2 − 4λ)].

Both these solutions are positive. Denote them by x1 and x2. Let x = x1 + ξ . Then eqn (i)
becomes

ξ̈ + c
[
x1 + ξ − λ

a − x1 − ξ
]
= 0,
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with linearized approximation

ξ̈ + c
[
1− λ

(a − x1)
2

]
ξ = 0.

Therefore the equilibrium point (x1, 0) is a centre if λ < (a − x1)
2, making the coefficient of

ξ positive, and a saddle point if λ > (a − x1)
2, making it negative. Substituting for x1 these

inequalities become
λ < 1

4 [a −
√
(a2 − 4λ)]2 for a centre,

and
λ > 1

4 [a −
√
(a2 − 4λ)]2 for a saddle,

However, it can be shown that the first inequality (the centre) is not consistent with λ < 1
4a

2,
by considering the sign of

λ− 1
4 [a −

√
(a2 − 4λ)]2.

Hence (x1, 0) is a saddle.
By a similar argument the linearization near x = x2 leads to the equation

ξ̈ + c
[
1− λ

(a − x2)
2

]
ξ = 0.

In this case the critical relation between λ and a is

λ = (a − x2)
2, or λ = 1

4 (a +
√
(a2 − 4λ)),

but since λ < 1
4a

2 this equilibrium point is a centre. Typical phase diagrams are shown in
Figures 3.4 and 3.5.

The index of x1 (the saddle) is −1, and the index of x2 (the centre) is +1.

– 1 1
x

y

a

–x0

S
–1

1

Figure 3.4 Problem 3.5: The phase diagram for the bar with the parameter values λ = 0.5, a = 1, x0 = 1, c = 1.
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–1 1
x

– 1

1
y

a

–x0

x1x2

Figure 3.5 Problem 3.5: The phase diagram for the bar with the parameter values λ = 0.15, a = 1, x0 = 1, c = 1.

• 3.6 Show that the equation

ẍ − ε(1− x2 − ẋ2)ẋ + x = 0

has an equilibrium point of index 1 at the origin of the phase plane x, y with ẋ = y. (It
also has a limit cycle, x = cos t .) Use NODE, eqn (3.7)(see Problem 3.4), with � a circle of
radius a to show that, for all a,∫ 2π

0

dθ

1− 2ε(1− a2) sin θ cos θ + ε2(1− a2)2 sin2 θ
= 2π .

3.6. The equation
ẍ − ε(1− x2 − ẋ2)ẋ + x = 0

has a single equilibrium point, at the origin. Consider first the special case where � is given
parametrically by x = cos θ , y = sin θ . Then

X(x, y) = y = sin θ , Y (x, y) = −x + ε(1− x2 − y2)y = − cos θ ,

on �. By NODE, eqn (3.8) in the text, the index of the origin is given by

I� = [φ]� = 1
2π

∫ 2π

0

X(dY/dθ)− Y (dX/dθ)
X2 + Y 2 dθ

= 1
2π

∫ 2π

0

sin θ(sin θ)+ cos θ(cos θ)

sin2 θ + cos2 θ
dθ

= 1
2π

∫ 2π

0
dθ = 1.
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The system has only one equilibrium point, at the origin. Hence for any simple closed curve �
surrounding the origin, the change in φ in a counterclockwise circuit must be 2π . In particular
for the curve x = a cos θ , y = a sin θ (a > 0),

2π =
∫ 2π

0

a sin θ[a sin θ + ε(1− a2)a cos θ ] − [−a cos θ + ε(1− a2)a sin θ ]a cos θ

a2 sin2 θ + [−a cos θ + ε(1− a2)a sin θ ]2 dθ ,

=
∫ 2π

0

dθ

1− 2ε(1− a2) sin θ cos θ + ε2(1− a2)2 sin2 θ

• 3.7 A limit cycle encloses N nodes, F spirals, C centres, and S saddle points only, all of
linear type. Show that N + F + C − S = 1.

3.7. We can let the chosen curve � be the limit cycle. Taken in either sense the index I� = 1.
By Theorem 3.2, the sum of the indices of the equilibrium points within � must be 1. The
indices of a linear node, spiral and centre are all 1, whilst the index of the linear saddle is
−1. If there are N nodes, F spirals and C centres, then their contribution to the index is
(N + F + C) × 1 = N + F + C. If there are S saddles then their contribution is −S. Hence
N + F + C − S = 1.

• 3.8 Given the system
ẋ = X(x, y) cosα − Y (x, y) sinα, ẏ = X(x, y) sinα + Y (x, y) cosα,

where α is a parameter, prove that the index of a simple closed curve which does not meet
an equilibrium point is independent of α (see Problem 2.41).

3.8. Compare the two systems

ẋ = X(x, y), ẏ = Y (x, y), (A)

and
ẋ = P(x, y) = X(x, y) cosα − Y (x, y) sinα
ẏ = Q(x, y) = X(x, y) sinα + Y (x, y) cosα

}
(B)

The systems (A) and (B) have the same equilibrium points, which satisfy X(x, y) = 0 and
Y (x, y) = 0. Let � be the simple closed curve for both systems. In complex terms

X + iY = (P + iQ)eiα,

so that
|X + iY | = |P + iQ|, arg(X + iY ) = arg(P + iQ)+ α.
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Hence the vector (P ,Q) is the vector (X,Y ) rotated through−α at each point in the phase plane.
Hence the index for � with (P ,Q) is the same as that of (X,Y ) and this is independent of α.

• 3.9 Suppose that the system ẋ = X(x) has a finite number of equilibrium points, each of
which is either a node, a centre, a spiral or a saddle point, of the elementary types discussed
in NODE, Section 2.5, and assume that I∞ = 0. Show that the total number of nodes,
centres and spirals is equal to the total number of saddle points plus two.

3.9. According to the Corollary to Theorem 3.4, the sum of all the indices including the point
at infinity I∞ is 2, that is, if the indices of the equilibrium points are Ii , (i = 1, 2, . . ., n), then

I∞ +
n∑
i=1

Ii = 2.

Let there be a total of r centres, nodes and spirals each of which will have index 1, and s
saddles each of which will have index −1, where r + s = n. Since we are given that I∞ = 0,
then r − s = 2 as required.

• 3.10 Obtain differential equations describing the behaviour of the linear system, ẋ =
ax + by, ẏ = cx + dy, at infinity. Sketch the phase diagram, and analyse the system
ẋ = 2x − y, ẏ = 3x − 2y near the horizon.

3.10. In the equations

ẋ = ax + by, ẏ = cx + dy

let (see NODE, Section 3.2)

x1 = x

x2 + y2 , y1 = − y

x2 + y2 .

With x1 = x/(x2 + y2), y1 = −y/(x2 + y2) and z1 = x1 + iy1, the transformed system is given
by NODE, (3.11)

dz1

dt
= −z2

1(X + iY )

= −(x1 + iy1)
2[ax + by + i(cx + dy)]

= −(x2
1 − y2

1 + 2ix1y1)[ax1 − by1 + i(cx1 − dy1)]/r2
1
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where r2
1 = x2

1 + y2
1 . Therefore, by equating real and imaginary parts of this equation,

ẋ1 = [(y2
1 − x2

1)(ax1 − by1)+ 2x1y1(cx1 − dy1)]/r2
1 , (i)

ẏ1 = [−2x1y1(ax1 − by1)+ (y2
1 − x2

1)(cx1 − dy1)]/r2
1 . (ii)

For the system ẋ = 2x − y, ẏ = 3x − 2y, the coefficients are a = 2, b = −1, c = 3, d = −2.
The origin is a centre with index 1. Hence (i) and (ii) become

ẋ1 = [(y2
1 − x2

1)(2x1 + y1)+ 2x1y1(3x1 + 2y1)]/r2
1

= (−2x3
1 + 5x2

1y1 + 6x1y
2
1 + y3

1)/r
2
1 ,

ẏ1 = [−2x1y1(2x1 + y1)+ (y2
1 − x2

1)(3x1 + 2y1)]/r2
1

= (−3x3
1 − 6x2

1y1 + x1y
2
1 + 2y3

1)/r
2
1

The origin in this system is a singular point since ẋ1 and ẏ1 are not defined at (0, 0). However,
we can define a phase diagram through the equation

dy1

dx1
= ẏ1

ẋ1
= −3x3

1 − 6x2
1y1 + x1y

2
1 + 2y3

1

−2x3
1 + 5x2

1y1 + 6x1y
2
1 + y3

1

.

The origin is a higher-order equilibrium point of the equivalent equations

u̇ = −2u3 + 5u2v + 6uv2 + v3,

v̇ = −3u3 − 6u2v + uv2 + 2v3,

in the (u, v) plane: the phase paths will be identical in the (x1, y1) and (u, v) planes.
We shall try to find any separatrices by putting v = ku. Then

dv
du
= k = −3− 6k + k2 + 2k3

−2+ 5k + 6k2 + k3 ,

or

k4 + 4k3 + 4k2 + 4k + 3 = 0, or (k + 1)(k + 3)(k2 + 1) = 0.

The quartic has two real solutions k = −1 and k = −3. Computed phase paths in the neigh-
bourhood of the origin are shown in Figure 3.6. A counterclockwise circuit of � in the figure
indicates the the point at infinity has an index of 3. Since the saddle at the origin has index −1,
the sum of the indices is 2 which confirms the Corollary to Theorem 3.4.
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x1

y1

–0.5

0.5
Γ

Figure 3.6 Problem 3.10:

• 3.11 A certain system is known to have exactly two equilibrium points, both saddle
points. Sketch phase diagrams in which

(i) a separatrix connects the saddle points,

(ii) no separatrix connects them.

For example, the system ẋ = 1−x2, ẏ = xy has a saddle connection joining saddle points
at (±1, 0). The perturbed system ẋ = 1− x2, ẏ = xy− εx2 for 0 < ε � 1 breaks the saddle
connection (heteroclinic bifurcation).

3.11. Figure 3.28 (in NODE) shows examples of separatrices which connect two saddle points
and separatrices which do not. A possible system to illustrate two saddles is

ẋ = 1− x2, ẏ = xy.

Some phase paths for the system are shown in Figure 3.7: the saddles are at (±1, 0) and these
are the only equilibrium points.

A perturbation of this system can break the link between the saddle points. Consider the
equations

ẋ = 1− x2, ẏ = xy + εx2,

in which ε is a small parameter. With ε = 0.2, the system has saddle equilibrium points at
(1,−0.2) and (−1, 0.2). The separatrices only are shown in Figure 3.8.
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x

y

Figure 3.7 Problem 3.11: Phase paths for the system ẋ = 1− x2, ẏ = xy.

x

y

Figure 3.8 Problem 3.11: ẋ = 1− x2, ẏ = xy + εx2 showing only the separatrices, in the case ε = 0.2.

• 3.12 Deduce the index at infinity for the system ẋ = x − y, ẏ = x − y2 by calculating the
indices of the equilibrium points.

3.12. The system ẋ = x−y, ẏ = x−y2 has equilibrium points where x−y = 0 and x−y2 = 0.
There are two such points, at (0, 0) and (1, 1). Their types are as follows:

• (0, 0). The linear approximations are ẋ = x − y, ẏ ≈ x. The associated parameters are
p = 1 > 0, q = 1 > 0, � = p2 − 4q = 1− 4 = −3 < 0. Hence from Section 2.5, Hence
(0, 0) is an unstable spiral with index I1 = 1.

• (1, 1). Let x = 1 + ξ and y = 1 + η. Then the linear approximations are ξ̇ = ξ − η,
η̇ = 1+ξ−(1+η)2 ≈ ξ−2η. The parameters arep = 1−2 = −1 < 0, q = −2+1 = −1 < 0
which imply that (1, 1) is a saddle point with index I2 = −1.

By Theorem 3.4, I∞ = 2− I1 − I2 = 2− 1+ 1 = 2.

• 3.13 Use the geometrical picture of the field (X,Y ), in the neighbourhood of an ordinary
point (i.e. not an equilibrium point) to confirm Theorem 3.1.
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(X,Y)

P
f

Γ

Figure 3.9 Problem 3.13:

3.13. Figure 3.9 shows on ordinary point P of a phase diagram. Surround P by a closed curve
� (usually a circle centred at P ) so that there are no equilibrium points in or on �. Since ẋ
and ẏ are continuous and ẋP �= 0, ẏP (their values at P ), there exists a neighbourhood of P
in which ẋ and ẏ retain the same signs as ẋP and ẏP respectively. Assume that � is in this
neighbourhood. Then the direction of the vector (X,Y ) points into the same quadrant at every
point of �, which establishes the result that I� = 0.

• 3.14 Suppose that, for two plane systems ẋ1 = X1(x1), ẋ2 = X2(x2), and for a given
closed curve �, there is no point on � at which X1 and X2 are opposite in direction. Show
that the index of � is the same for both systems.

The system ẋ= y, ẏ= x has a saddle point at the origin. Show that the index of the origin
for the system ẋ= y + cx2y, ẏ= x − cy2x is likewise −1.

3.14. Consider the two plane systems ẋ1 = X1(x1), ẋ2 = X2(x2). Let φ(s) be the angle between
X2 and a fixed direction, and let θ(s) be the angle between X1 and X2 (see Figure 3.10), where
s (α ≤ s < β), is the curve parameter for one circuit of �. Since X1 and X2 are never opposite
to each other, that is, −π < θ < π , then θ(α) = θ(β). Then

I�(X1) = 1
2π
[θ(s)+ φ(s)]βα

= 1
2π
{[θ(s)]βα + [φ(s)]βα}

= 1
2π
{θ(β)− θ(α)+ φ(β)− φ(α)}

= 1
2π
[φ(s)]βα = I�(X2),

as required.
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Figure 3.10 Problem 3.14:

The system ẋ = y, ẏ = x has a saddle point at the origin with index −1. The perturbed
system is ẋ = y + cx2y, ẏ = x − cxy2 which also has just one equilibrium point, at the
origin. Let

X1 = (y, x), X2 = (y + cx2y, x − cxy2).

Let � be a circle centre the origin with radius r. On � the angle θ between the vectors X1 and
X2 is given by

cos θ = X1 ·X2

|X1||X2|

= y(y + cx2y)+ x(x − cxy2)√
(x2 + y2)

√[(x − cxy2)2 + (y + cx2y)2]

= r2

r
√[r2 + c2r2x2y2]

= 1√[1+ c2x2y2] ,

where r = √(x2 + y2). It follows that cos θ > 0 for all c so that cos θ can never equal −1, that
is, θ can never be −π on �. By the first part of the problem, the index of the perturbed system
must also be −1.

• 3.15 Use Problem 3.14 to show that the index of the equilibrium point x = 0, ẋ = 0 for
the equation ẍ+ sin x = 0 on the usual phase plane has index 1, by comparing the equation
ẍ + x = 0.
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3.15. The systems ẍ + x = 0 and ẍ + sin x = 0 both have an equilibrium point at the origin,
but the second equation will have further equilibrium points at x = nπ , (n = ±1,±2, . . . ).
Let � be a circle of radius a < π , centre the origin, so that the only equilibrium point inside �
is the origin. Let � be described parametrically by x = a cos θ , y = a sin θ , (0 < θ ≤ 2π). In
the notation of Problem 3.14, let

X1 = (y,−x), X2 = (y,− sin x).

Then, on �,

X1 = (a sin θ ,−a cos θ), X2 = (a sin θ ,− sin(a cos θ)).

Since the vectors X1 and X2 have the same first component for all θ , they can never be in
opposition. Hence, by Problem 3.14, the origin for both systems must have the same index.
With ẋ = y, the origin of the system ẍ+ x = 0 is a centre with index 1. Hence the other system
must have the same index.

• 3.16 The system

ẋ = ax + by + P(x, y), ẏ = cx + dy +Q(x, y)

has an isolated equilibrium point at (0, 0), and P(x, y)=O(r2), Q(x, y)=O(r2) as r→0,
where r2= x2+ y2. Assuming that ad − bc �=0, show that the origin has the same index as
its linear approximation.

3.16. The system

ẋ = ax + by + P(x, y), ẏ = cx + dy +Q(x, y)

has an isolated equilibrium point at the origin. Let

X1 = (ax + by, cx + dy), X2 = X1 + P,

where P = (P (x, y),Q(x, y)). Also let � be the circle of radius ρ centred at the origin. Let θ be
the smaller angle between X1 and X2, then

cos θ = X1 ·X2

|X1||X2| =
|X1|2 + P ·X1

|X1||X2| .

Since |X1| = O(ρ) and |X2| = O(ρ), then

P ·X1 = O(ρ3).
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Therefore if ρ is sufficiently small,

|X1|2 + P ·X1 = O(ρ2)+O(ρ3) > 0.

Hence cos θ > 0 for all θ . The vectors can never point in opposite directions for any point on
�, so that the nonlinear equations have the same index as its linear approximation.

• 3.17 Show that, on the phase plane with ẋ = y, ẏ = Y (x, y), Y continuous, the index I�
of any simple closed curve � that encloses all equilibrium points can only be 1, −1, or zero.

Let ẋ = y, ẏ = f (x, λ), with f , ∂f /∂x and ∂f /∂λ continuous, represent a parameter-
dependent system with parameter λ. Show that, at a bifurcation point (NODE, Section 1.7),
where an equilibrium point divides as λ varies , the sum of the indices of the equlib-
rium points resulting from the splitting is unchanged. (Hint: the integrand in eqn (3.7)
is continuous.)

Deduce that the equilibrium points for the system ẋ = y, ẏ = −λx+x3 consist of a saddle
point for λ < 0, and a centre and two saddles for λ > 0.

3.17. We use Theorem 3.3 in NODE. The system is

ẋ = X(x, y) = y, ẏ = Y (x, y).

Let the closed curve � be chosen to enclose all the equilibrium points (which must be on the
x axis) and to cut the x axis in just two points (see Figure 3.11). In moving from A to B,
X(x, y) = y changes from negative to positive. Whether tanφ changes from −∞ to∞ or from
∞ to −∞ depends on the sign of Y (x, y) in AB. Hence at this transit either P = 1 or Q = 1.
Similarly at the transit of the x axis between C andD either P = 1 orQ = 1. Any combination

x

y

X < 0

X > 0

X = 0

Y = 0

A

BC

D

Γ

Figure 3.11 Problem 3.17: The figure shows a typical case with three equilibrium points surrounded by a closed
curve �. The dashed lines represent the isoclines Y = 0.
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of P and Q at the two intersections are possible. Hence, the index of all the equilibrium
points is

I = 1
2 (P −Q) = 1

2 (±P ±Q) = 1, 0, or −1.

This result is also true for any set of adjacent equilibrium points which can be enclosed by a
curve �.

Consider the system ẋ = y, ẏ = f (x, λ). Equilibrium points occur where f (x, λ) = 0, y = 0.
Suppose that a bifurcation occurs at λ = λ0 where the number of equilibrium points changes as
λ increases through λ0. Consider a closed curve � which surrounds the bifurcation equilibrium
points for all values |λ− λ0| < ε for some ε > 0, and cuts the x axis in just two points. Let �
be described by x = x(s), y = y(s) for s0 ≤ s < s1. The index (which will be a function λ) is
given by eqn (3.7), namely

I�(λ) = 1
2π

∫ s1

s0

XY ′ − YX′
X2 + Y 2 ds

= 1
2π

∫ s1

s0

y(s)df (x(s), λ)/ds − f (x(s), λ)dy(s)/ds
y(s)2 + f (x(s), λ)2 ds

The integrand is a continuous function of λ (the denominator has no zeros) and the value of
the integral, being an index, must be a positive or negative integer or zero for any given value
of λ. By continuity it cannot have any jumps. It must therefore retain the same value over the
interval |λ− λ0| < ε.

Consider the system ẋ = y, ẏ = −λx + x3. Equilibrium occurs where y = 0, −λx + x3 = 0.
If λ ≤ 0, the equations have one equilibrium point, at (0, 0). If λ > 0, then the equations have
three equilibrium points, at (−√λ, 0), (0, 0), (

√
λ, 0). If λ < 0, the equilibrium point is a centre

with index 1. Since this is a conservative system the equilibrium points must be centres (index
1) or saddles (index −1). Hence by the previous theory, the three equilibrium points for λ > 0
must have a combined index of 1. Therefore, the three equilibrium points must consist of one
centre and two saddle points.

• 3.18 Prove a similar result to that of Problem 3.17 for the system ẋ = y, ẏ = f (x, y, λ).
Deduce that the system ẋ = y, ẏ = −λx−ky−x3, (k > 0), has a saddle point at (0, 0)when
λ < 0 which bifurcates into a stable spiral or node and two saddle points as λ becomes
positive.

3.18. Consider the system ẋ = y, ẏ = f (x, y, λ). Equilibrium points occur where f (x, 0, λ) = 0,
y = 0. Suppose that a bifurcation occurs at λ = λ0 where the number of equilibrium points
changes as λ increases through λ0. Consider a closed curve � which surrounds the bifurcation
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equilibrium points for all values |λ − λ0| < ε for some ε > 0, and cuts the x axis in just two
points. Let � be described by x = x(s), y = y(s) for s0 ≤ s < s1. The index (which will be a
function λ) is given by eqn (3.7), namely

I�(λ) = 1
2π

∫ s1

s0

XY ′ − YX′
X2 + Y 2 ds

= 1
2π

∫ s1

s0

y(s)df (x(s), y(s), λ)/ds − f (x(s), y(s), λ)dy(s)/ds
y(s)2 + f (x(s), y(s), λ)2 ds

The integrand is a continuous function of λ (the denominator has no zeros) and the value of
the integral, being an index, must be a positive or negative integer or zero for any given value
of λ. By continuity it cannot have any jumps. It must therefore retain the same value over the
interval |λ− λ0| < ε.

Consider the example ẋ = y, ẏ = −λx − ky − x3, (k > 0). For λ < 0, the equations have
one equilibrium point at the origin. Since ẋ = y, ẏ ≈ −λx, the origin is a saddle point with
index −1. For λ > 0, the system has three equilibrium points, at (−√λ, 0), (0, 0), (

√
λ, 0). As

λ increases through 0, the system bifurcates producing three equilibrium points which, by the
earlier result must still have a combined index of −1. Since the points have non-zero linear
appoximations, we can say that the three equilibrium points must have two points with indices
−1 (saddle points) and one with index 1 (a node or a spiral, or a centre). However, the stability
can only be checked using linear approximations. For (0, 0), the linear approximation is

ẋ = y, ẏ = −λx − ky − x3 ≈ −λx − ky.

The parameters are

p = −k < 0, q = λ > 0, � = k2 − 4λ.

Therefore the origin is a stable node if k2 > 4λ or a stable spiral if k2 < 4λ.
The other two equilibrium points are saddles.

• 3.19 A system is known to have three closed paths, C1, C2 and C3, such that C2 and C3
are interior to C1 and such that C2 and C3 have no interior points in common. Show that
there must be at least one equilibrium point in the region bounded by C1, C2 and C3.

3.19. Figure 3.12 shows a closed phase path C1 with two closed phase paths C2 and C3 within
it. All closed paths may have either sense. Individually each closed path has the index 1. Since
IC2 + IC3 = 2 and IC3 = 1, it follows that IC3 �= IC2 + IC3 . Hence there must be at least one
equilibrium point in D. The sum of the indices of the equilibrium points in D is −1.
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C2

C1

C3

D

Figure 3.12 Problem 3.19: The shaded region between the closed paths is denoted by D.

• 3.20 For each of the following systems yo are given some information about phase paths
and equilibrium points. Sketch phase diagrams consistent with these requirements.

(i) x2 + y2 = 1 is a phase path, (0, 0) a saddle point, (±1
2 , 0) centres.

(ii) x2 + y2 = 1 is a phase path, (−1
2 , 0) a saddle point, (0, 0) and (1

2 , 0) centres.

(iii) x2+ y2 = 1, x2+ y2 = 2 are phase paths, (0,±3
2 ) stabel spirals, (±3

2 , 0) saddle points,
(0, 0) a stable spiral.

3.20. (i) Figure 3.13 shows a phase diagram with a closed path x2 + y2 = 1, a saddle point at
(0, 0) and centres at (±1

2 , 0).
(ii) Figure 3.14 shows a phase diagram with a closed path x2+y2 = 1, a saddle point at (−1

2 , 0),
and centres at (0, 0) and (1

2 , 0).

– 1 – 0.5 0.5 1
x

– 1

– 0.5

0.5

1

y

Figure 3.13 Problem 3.20(i):
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x

y

Figure 3.14 Problem 3.20(ii):
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x

– 2

– 1

1

2
y

Figure 3.15 Problem 3.20(iii):

(iii) Figure 3.14 shows a phase diagram with a closed path x2 + y2 = 1, a saddle point at
(−1

2 , 0), and centres at (0, 0) and (1
2 , 0). Figure 3.15 shows a possible phase path configuration

which includes two closed paths x2 + y2 = 1 and x2 + y2 = 2, stable spirals at (0, 0) and
(0,±3

2 ) and saddle points at (±3
2 , 0). Note that the outer closed path has an index 1 which

equals the sum of the indices of the five equilibrium points inside the path.

• 3.21 Consider the system

ẋ = y(z− 2), ẏ = x(2− z)+ 1, x2 + y2 + z2 = 1,

which has exactly two equilibrium points, both of which lie on the unit sphere. Project the
phase diagram on to the plane z = −1 through the point (0, 0, 1). Deduce that I∞ = 0
on this plane (consider the projection of a small circle on the sphere with its centre on the
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z axis). Explain, in general terms, why the sum of the indices of the equilibrium points on
a sphere is two.

For a certain problem, the phase diagram on the sphere has centres and saddle points
only, and it has exactly two saddle points. How many centres has the phase diagram?

3.21. The system is

ẋ = y(z− 2), ẏ = x(2− z)+ 1, x2 + y2 + z2 = 1.

These equations represent a phase diagram on a sphere. Equilibrium occurs where

y(z− 2) = 0, x(2− z)+ 1 = 0, x2 + y2 + z2 = 1.

Hence y = 0 from the first equation resulting in

x(z− 2) = 1, x2 + z2 = 1.

Elimination of z leads to
x4 + 3x2 + 4x + 1 = 0.

Solving this equation numerically indicates that there are two real solutions, x = −0.748 and
x = −0.340. The equilibrium points on the sphere have the coordinates P1 : (−0.748, 0, 0.663)
and P2 : (−0.340, 0,−0.940). Figure 3.16 shows the projection of the phase diagram on the
surface of the sphere on to the plane z = −1 with (0, 0, 1) as the centre of projection. The point
P : (x, y, z), (x2 + y2 + z2 = 1) is projected into the point Q : (X,Y ). Figure 3.17 shows the
section through the z axis and the points P and Q. If r and R are, respectively, the distances of

X

Y

x
y

Q : (X, Y)

p : (x, y, z)

U

O

O	 z

R

r

Figure 3.16 Problem 3.21:
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P

Q

O
z

r

R

O	

Figure 3.17 Problem 3.21:

the points P and Q from the z axis then, by similar triangles,

r

1− z =
R

2
, or R = 2r

1− z , (−1 ≤ z < 1).

Using this proportionality rule, it follows that

X = 2x
1− z , Y = 2y

1− z .

Hence the equilibrium points P1 and P2 map into Q1 : (−4.439, 0) and Q2 : (−0.351, 0) in the
(X,Y ) plane.

Points at infinity in the (X,Y ) plane map into the point (0, 0, 1) on the sphere. Surround this
point by a circle C on the sphere with its centre on the z axis and of sufficiently small radius so
that it does not include the equilibrium points P1 and P2. Since C includes no equilibrium points
its index is zero. Hence I∞ for the (X,Y ) plane is also zero. Therefore, by Theorem 3.4, the
sum of the indices of the equilibrium points on the plane is 2. Since the mapping between the
sphere and the plane does not affect the index of any equilibrium point the sum of the indices
on the sphere must also be 2.

Since the index of a saddle is −1 and of a centre is 1, there must be four centres on a sphere
with two saddles. You can imagine possible configurations of the saddles on the sphere. In one
the separatrices of the saddles are connected and divide the surface into four segments with a
centre in each. In another the saddles form two non-intersecting figures-of-eight on the surface.
In a third one figure-of-eight is within a loop of the other figure-of-eight. In each case there are
just four centres.

• 3.22 Show that the following systems have no periodic solutions:

(i) ẋ = y + x3, ẏ = x + y + y3;

(ii) ẋ = y, ẏ = −(1+ x2 + x4)y − x.
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3.22. Use Bendixson’s negative criterion which states that, for the system ẋ = X(x, y), ẏ =
Y (x, y), there are no closed paths in any simply connected region of the phase plane on which
∂X/∂x + ∂Y/∂y is of one sign.

(i) ẋ = y + x3, ẏ = x + y + y3. In this case

∂X

∂x
+ ∂Y

∂y
= 3x2 + 1+ 3y2 ≥ 1 > 0, for all x, y.

Hence this system has no closed paths.

(ii) ẋ = y, ẏ = −(1+ x2 + x4)y − x. In this case

∂X

∂x
+ ∂Y

∂y
= 0− (1+ x2 + x4) ≤ −1 < 0, for all x, y.

Hence this system has no closed paths.

• 3.23 (Dulac’s test) For the system ẋ = X(x, y), ẏ = Y (x, y), show that there are no closed
paths in a simply connected region in which ∂(ρX)/∂x + ∂(ρY )/∂y is of one sign, where
ρ(x, y) is any function having continuous first partial derivatives.

3.23. (Dulac’s test) Let D be a simply connected region and ẋ = X(x, y), ẏ = Y (x, y) a regular
system in D. Suppose there exists a continuously differentiable function ρ(x, y) such that

∂X

∂x
+ ∂Y

∂y

is of one sign in D. Then the system has no closed phase path in D.
Suppose such a closed path does exist. Let R denote its interior. Then (see Section 3.4) the

divergence theorem applied to the vector field (ρX, ρY ) on R takes the form

∮
C
(ρX, ρY ) · n̂ds =

∫ ∫
R

(
∂(ρX)

∂x
+ ∂(ρY )

∂y

)
dxdy, (i)

where ds is an undirected length element on C and n̂ is the outwardly pointing normal. The
vector (ρX, ρY ) points along C, and is therefore perpendicular to n̂. The integral on the left
in (i) is therefore zero. However, the integrand of the double integral is of one sign in R so
the integral on the right of (i) is non-zero, which is a contradiction. Therefore there can be no
closed path in D.



3 : Geometrical aspects of plane autonomous systems 157

• 3.24 Explain in general terms how Dulac’s test (Problem 3.23) and Bendixson’s negative
criterion may be extended to cover the cases when ∂(ρX)/∂x + ∂(ρY )/∂y is of one sign
except on isolated points or curves within a simply connected region.

3.24. Suppose that ∂(ρX)/∂x + ∂(ρY )/∂y has one sign in a closed curve C, except possibly at
a finite number of points or along a finite number of curves, at which it may be zero. These
make zero contribution to the integral over R, the interior of C, so

∫ ∫
R

[
∂

∂x
(ρX)+ ∂

∂y
(ρY )

]
dxdy �= 0.

The proof of Dulac’s theorem, Problem 3.23, then follows without change.

• 3.25 For a second-order system ẋ = X(x), curl (X) = 0 and X �= 0, in a simply connected
region D. Show that the system has no closed paths in D. Deduce that

ẋ = y + 2xy, ẏ = x + x2 − y2

has no periodic solutions.

3.25. We are given that curl X = 0 for the system ẋ = X(x) in a simply connected region D.
Suppose that there exists a closed phase path C in D, whose interior is denoted by R. Then, in
vector form, where X = (X,Y ), Green’s theorem (or Stokes’s theorem in two dimensions) may
be written ∫

C
X · dr =

∫ ∫
R
curl X · k̂dxdy,

where k̂ is a unit vector in the positive z direction. By hypothesis, the integral on the right is
zero. Therefore ∫

C
X · dr =

∫
C
(Xdx + Ydy) = 0.

Let t represent time. Then over one cycle of the path t1 ≤ t ≤ t2,

∫ t2

t1

(Xdx + Ydy) =
∫ t2

t1

(Xẋ + Y ẏ)dt =
∫ t2

t1

(X2 + Y 2)dt ,

so ∫
C
X · dr > 0,

sinceX and Y are not simultaneously zero except possibly at equilibrium points. This contradicts
(i), so there exists no closed path C in D.

In the problem
ẋ = y + 2xy, ẏ = x + x2 + y2.
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Hence X(x) = (y + 2xy, x + x2 − y2), and

curlX =
(
∂(x + x2 − y2)

∂x
− ∂(y + 2xy)

∂y

)
k̂ = (1+ 2x − 1− 2x)k̂ = 0

for all x, y, Therefore the system can have no closed paths.

• 3.26 In Problem 3.25 show that curl X = 0 may be replaced by curl (ψX) = 0, where
ψ(x, y) is of one sign in D.

3.26. The proof follows as in Problem 3.25. Using the same notation by Green’s theorem,
supposing that curl X = 0,

∮
C
ψX · dr =

∫
R
curl(ψX) · k̂ dxdy = 0. (i)

But for any closed phase path C bounding a region D,

∮
C
ψX · dr =

∫
C

(
ψXdx + ψYdy

)

=
∫ t2

t1

(
ψX

dx
dt
+ ψY dy

dt

)
dt

=
∫ t2

t1

ψ(X2 + Y 2)dt �= 0,

since ψ is of one sign in R. This contradicts (i): therefore there are no closed paths in D.

• 3.27 By using Dulac’s test (Problem 3.23) with ρ = e−2x , show that

ẋ = y, ẏ = −x − y + x2 + y2

has no periodic solutions.

3.27. Dulac’s test is given in Problem 3.23. For the system

ẋ = X(x, y) = y, ẏ = Y (x, y) = −x − y + x2 + y2,
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let ρ(x, y) = e−2x . Then

∂(ρX)

∂x
+ ∂(ρY )

∂y
= ∂

∂x
(e−2xy)+ ∂

∂y
[e−2x(−x − y + x2 + y2)]

= −2e−2xy + e−2x(−1+ 2y) = −e−2x < 0

for all x, y. Therefore the system has no closed phase paths.
Note that the system has two equilibrium points, at (0, 0) (stable spiral) and at (1, 0) (saddle

point).

• 3.28 Use Dulac’s test (Problem 3.23) to show that

ẋ = x(y − 1), ẏ = x + y − 2y2,

has no periodic solutions.

3.28. Dulac’s test is given in Problem 3.23. The system is

ẋ = X(x, y) = x(y − 1), ẏ = Y (x, y) = x + y − 2y2.

Equilibrium points occur at (0, 0), (0, 1
2 ) and (1, 1). The axis x = 0 is a solution of the equations.

We conclude that paths cannot cross x = 0, and there can be no phase paths in the half-plane
x < 0 since it contains no equilibrium points.

Using the function ρ(x, y), consider

∂(ρX)

∂x
+ ∂(ρY )

∂y
= ∂ρ

∂x
x(y − 1)+ ρy + ∂ρ

∂y
(x + y − 2y2)+ ρ(x − 4y)

= ∂ρ

∂x
x(y − 1)− 3ρy + ∂ρ

∂y
(x + y − 2y2)+ ρx.

We can eliminate y in this expression by choosing ρ = x3. Then

∂(ρX)

∂x
+ ∂(ρY )

∂y
= −3x3 < 0

in the half-plane x > 0. Therefore there can be no closed paths in x > 0.

• 3.29 Show that the following systems have no periodic solutions:

(i) ẋ = y, ẏ = 1+ x2 − (1− x)y;

(ii) ẋ = −(1− x)3 + xy2, ẏ = y + y3;

(iii) ẋ = 2xy + x3, ẏ = −x2 + y − y2 + y3;
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(iv) ẋ = x, ẏ = 1+ x + y2;

(v) ẋ = y, ẏ = −1− x2;

(vi) ẋ = 1− x3 + y2, ẏ = 2xy;

(vii) ẋ = y, ẏ = (1+ x2)y + x3.

3.29. (i) ẋ = y, ẏ = 1 + x2 − (1 − x)y. The system has no equilibrium points, so by NODE,
Theorem 3.1 every closed path has index zero. Therefore there are no closed paths since any
closed path has the index 1.
(ii) ẋ = −(1 − x)3 + xy2, ẏ = y + y3. The system has one equilibrium point at (1, 0), but
y = 0 consists of two phase path through this equilibrium point. Hence there can be no closed
paths surrounding the equilibrium point.

(iii) ẋ = 2xy + x3, ẏ = −x2 + y − y2 + y3. Note first that x = 0, y > 0 and x = 0, y < 0 are
two phase paths in opposite directions. Equilibrium occurs where

x(2y + x2) = 0, (i)

−x2 + y − y2 + y3 = 0. (ii)

If x = 0 to satisfy (i), then either y = 0 or y2 − y + 1 = 0 from (ii). However, the quadratic
equation has no real solutions, which leaves the equilibrium point (0, 0). Alternatively, if
y = −1

2x
2 in (i), then (ii) becomes x2(x4 + 2x2 + 12) = 0 which has only the solution x = 0.

Hence the only equilibrium point occurs at the origin, but it lies on a phase path. Hence the
system has no closed phase paths.

(iv) ẋ = x, ẏ = 1+x+y2. Note that x = 0 is a phase path. However, x = 0 and 1+x+y2 = 0
have no real solutions for x and y. Hence the system cannot have a periodic solution.

(v) ẋ = y, ẏ = −1 − x2. The system has no equilibrium points, and therefore no periodic
solutions.

(vi) ẋ = 1− x3 + y2, ẏ = 2xy. Note that y = 0, x > 1 and y = 0, x < 1 are two phase paths
in opposite directions. Equilibrium occurs where xy = 0 and 1 − x3 + y2 = 0. Then x = 0
leads to no real y, whilst y = 0 leads to x = 1. Hence there is one equilibrium point, at (1, 0),
but this lies on y = 0. Therefore there can no periodic solutions.

(vii) ẋ = X(x, y) = y, ẏ = Y (x, y) = (1+ x2)y + x3. Use NODE, Theorem 3.5 (Bendixson):

∂X

∂x
+ ∂Y

∂y
= ∂

∂x
(y)+ ∂

∂y
[(1+ x2)y + x3] = 1+ x2 > 0,

for all x, y. Therefore the system can have no periodic solutions.
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• 3.30 Let D be a doubly connected region in the x, y plane. Show that, if ρ(x, y) has
contiuous first partial derivatives and div (ρX) is of constant sign in D, then the system has
not more than one closed path in D. (An extension of Dulac’s test Problem 3.23.)

3.30. Figure 3.18 shows a doubly connected region D. Suppose that L1 and L2 are two closed
paths in D. Obviously they cannot intersect. Join L1 and L2 by two coincident paths AB and
BA as shown. This creates a closed path L1,AB,L2,BA (call it C) which bounds a simply
connected region say S. Apply Green’s Theorem in the plane to this curve C and the vector field
ρX. Then (as in NODE, Theorem 3.5)

∫ ∫
S

div (ρX)dxdy =
∮

C
X · nds, (i)

L1

L2

D

BA

Figure 3.18 Problem 3.30: The dashed curves L1 and L2 are two closed phase paths in D.

where n is the outward normal to C. On L1 and L2, X is perpendicular to n so that X · n = 0,
whilst the contributions from AB and BA cancel. Hence the value of the line integral on the
right of (i) is zero. Therefore ∫ ∫

S
div (ρX)dxdy = 0,

but this contradicts the requirement that div (ρX) is on one sign in D. Hence D can contain at
most one closed path.

• 3.31 A system has exactly two limit cycles with one lying interior to the other and with
no equilibrium points between them. Can the limit cycles be described in opposite senses?

Obtain the equations of the phase paths of the system

ṙ = sinπr, θ̇ = cosπr

as described in polar coordinates (r, θ). Sketch the phase diagram.
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Figure 3.19 Problem 3.31:
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Figure 3.20 Problem 3.31:

3.31. Figure 3.19 shows a phase diagram with an outer counter-clockwise limit cycle and an
inner clockwise limit cycle. Between them there are no equilibrium points and phase paths
reverse direction, approaching the outer cycle as t →∞ and the inner cycle as t → −∞. This
configuration shows that limit cycles in opposite senses are possible.

For the polar system ṙ = sinπr, θ̇ = cosπr, the phase paths are given by

dr
dθ
= tanπr.

This separable equation has the solution∫
cotπr dr =

∫
dθ ,

that is,

1
π

ln | sinπr| = θ + C, or sinπr = Aeπθ .

The system has one equilibrium point at r = 0. Also r = 1, 2, 3, . . . , with θ arbitrary, are
particular solutions. A part of the phase diagram is shown in Figure 3.20. The periodic solutions
alternate in direction with the limit cycles r = 1, 3, 5, . . . stable and r = 2, 4, 6, . . . unstable.
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• 3.32 Using Bendixson’s theorem (Section 3.4) show that the response amplitudes a, b for
the van der Pol equation in the ‘van der Pol plane’ (this will be discussed later in Chapter 7),
described by the equations

ȧ = 1
2
ε

(
1− 1

4
r2

)
a − ω2 − 1

2ω
b, ḃ = 1

2
ε

(
1− 1

4
r2

)
b + ω2 − 1

2ω
a + �

2ω

have no closed paths in the circle r <
√

2.

3.32. The van der Pol equation is given by

ȧ = X(a, b) = 1
2
ε

(
1− 1

4
r2

)
a − ω2 − 1

2ω
b,

ḃ = Y (a, b) = 1
2
ε

(
1− 1

4
r2

)
b + ω2 − 1

2ω
a + �

2ω
,

where r = √(a2 + b2). Use Bendixson’s criterion (Theorem 3.5). Then

∂X

∂a
+ ∂Y

∂b
= ∂

∂a

[
1
2
ε

(
1− 1

4
r2

)
a − ω2 − 1

2ω
b

]

+ ∂

∂b

[
1
2
ε

(
1− 1

4
r2

)
b + ω2 − 1

2ω
a + �

2ω

]

= ε(1− 1
2r

2),

which takes the sign of ε for r <
√

2. Therefore there can be no closed phase paths within this
circle in the (a, b) plane.

• 3.33 Let C be a closed path for the system ẋ = X(x), having D as its interior. Show that∫ ∫
D

div (X)dxdy = 0.

3.33. Suppose that C is a closed path for the system ẋ = X(x), and that D is the interior of C.
By the Divergence Theorem in two dimensions,

∫
D

divXdxdy =
∫

C
X · nds.

This is zero because X is tangential to C at all points on it, and n is a unit normal to C.
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• 3.34 Assume that van der Pol’s equation in the phase plane

ẋ = y, ẏ = −ε(x2 − 1)y − x
has a single closed path, which, for ε small, is approximately a circle, centre the origin of
radius a. Use the result of Problem 3.33 to show that approximately∫ a

−a

∫ √
(a2−x2)

−√(a2−x2)

(x2 − 1)dydx = 0,

and so deduce a.

3.34. The van der Pol system is

ẋ = X(x, y) = y, ẏ = Y (x, y) = −ε(x2 − 1)y − x.

We are given that the system has a closed path which is approximately a circle of radius a. In
this example, divX = −ε(x2 − 1). We can say, approximately, (but not rigorously) that, using
Problem 3.33, the double integral of divX over the interior of the circle is zero, that is,

J =
∫ a

−a

∫ √
(a2−x2)

−√(a2−x2)

(x2 − 1)dydx = 0.

Integrating as a repeated integral

J = 2
∫ a

−a
(x2 − 1)

√
(a2 − x2)dx

= 2a2
∫ 1

2π

− 1
2π

(a2 sin2 θ cos2 θ − cos2 θ)dθ , (x = a sin θ)

= a2

4

∫ 1
2π

− 1
2π

[a2(1− cos 4θ)− 4(1+ cos 2θ)]dθ

= a2π

4
(a2 − 4).

Hence we deduce a ≈ 2.

• 3.35 Following Problems 3.33 and 3.34, deduce a condition on the amplitudes of periodic
solutions of

ẍ + εh(x, ẋ)ẋ + x = 0, |ε| � 1.
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3.35 Express the equation ẍ + εh(x, ẋ)ẋ + x = 0 in the form

ẋ = X(x, y) = y, ẏ = Y (x, y) = −εh(x, y)y − x.

The system has one equilibrium point, at (0, 0), so that any closed phase path must enclose
the origin. For small ε = 0, the equation reduces to that for simple harmonic motion with
unit frequency so that the centre at the origin is a nest of concentric circles. For small |ε| any
possible closed path will be close to one of these circles. Suppose that C is a closed phase path
in the (x, y) plane. In the notation of Problem 3.33, divX = −εh(x, y), so that

∫ ∫
D
[h(x, y)+ hy(x, y)y]dxdy = 0,

which will determine approximately the amplitude of C.

• 3.36 For the system

ẍ + εh(x, ẋ)ẋ + g(x) = 0,

suppose that g(0) = 0 and g′(x) > 0. Let C be a closed path in the phase plane (as all paths
must be) for the equations ẍ + g(x) = 0 having interior D. Use the result of Problem 3.33
to deduce that for small ε, C approximately satisfies∫

D
{h(x, y)+ hy(x, y)y}dxdy = 0.

Adapt this result to the equation

ẍ + ε(x2 − α)ẋ + sin x = 0,

with ε small, 0 < α � 1, and |x| < 1
2π . Show that a closed path (a limit cycle) is given by

y2 = 2A+ 2 cos x

where A satisfies∫ cos−1(−A)

− cos−1(−A)
(x2 − α)√(2A+ 2 cos x)dx = 0.

3.36. Express the equation ẍ + εh(x, ẋ)ẋ + g(x) = 0 in the form

ẋ = X(x, y) = y, ẏ = Y (x, y) = −εh(x, y)y − g(x) = 0.

Since g(0) = 0 and g′(x) > 0, the system has only one equilibrium point, at (0, 0). In particular
for ε = 0 the origin is a centre. The result follows as in the previous problem. The amplitude
of any closed path is given approximately by

∫ ∫
D
[h(x, y)+ hy(x, y)y]dxdy = 0. (i)
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Consider the equation ẍ + ε(x2 − α)ẋ + sin x = 0. In this example

X(x, y) = y, Y (x, y) = −ε(x2 − α)y − sin x.

If ε = 0, then the equation of the phase paths of the centre at (0, 0) is given by

dy
dx
= −sin x

y
,

which has the general solution y2 = 2A+ 2 cos x as required. We assume that any closed path
of the original equation is close to one of these. The region D for eqn (i) is bounded by the
curves y = ±√(2A+ 2 cos x) for − cos−1(−A) ≤ x ≤ cos−1(−A). Equation (i) becomes

∫ cos−1(A)

− cos−1(A)

∫ √
(2A+2 cos x)

−√(2A+2 cos x)
(x2 − α)dydx = 0.

Integration with respect to y leads to the equation

∫ cos−1(A)

− cos−1(A)

(x2 − α)√(2A+ 2 cos x)dx = 0

for the amplitude A.

• 3.37 Consider the system

ẋ = X(x, y) = −(x2 + y2)y, ẏ = Y (x, y) = bx + (1− x2 − y2)y.

Let C be the circle x2 + y2 = a2 with interior R. Show that∫ ∫
R

div (X,Y )dxdy = 0

only if a = 1. Is C a phase path (compare Problem 3.33)?

3.37. For the system

ẋ = X(x, y) = −(x2 + y2)y, ẏ = Y (x, y) = bx + (1− x2 − y2)y (b > 0)

div (X,Y ) = −2xy + 1 − x2 − 3y2. Let C be the circle x2 + y2 = a2 with interior denoted by
R. Then

J (a, b) =
∫ ∫

R
div (X,Y )dxdy =

∫ ∫
R
[−2xy + (1− x2 − 3y2)]dxdy.
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In polar coordinates

J (a, b) =
∫ a

0

∫ 2π

0
[−2r2 sin θ cos θ + (1− r2 cos2 θ − 3r2 sin2 θ)]rdrdθ

becomes

J (a, b) =
∫ a

0

∫ 2π

0
[−2r2 sin θ cos θ + (1− r2 cos2 θ − 3r2 sin2 θ)]rdrdθ

= a2(a2 − 1)π .

It follows that

J (a, b) =
∫ ∫

R
div (X,Y )dxdy = 0,

if a = 1. However it does not follow (see Problem 3.33) that C is a phase path. The converse
is true, that if C is a phase path then J (a, b) = 0.

Describe the circle parametrically by x = a cos t , y = a sin t . Then, if a = 1,

ẋ + x(x2 + y2) = −a sin t + a3 sin t = a(a2 − 1) sin t = 0,

ẏ − bx − (1− x2 − y2)y = a cos t − b cos t − b2(1− a2) sin t = (1− b) cos t .

Therefore, C is only a phase path if b = 1.
This problem confirms that no conclusions can be made about C as a phase path if

∫ ∫
R

div (X,Y )dxdy = 0.

• 3.38 The equation ẍ + F0 tanh k(ẋ − 1) + x = 0, F0 > 0, k  1, can be thought
of as a plausible continuous representation of the type of Coulomb friction problem of
Section 1.6. Show, however, that the only equilibrium point is a stable spiral, and that there
are no periodic solutions.

3.38. The friction equation is

ẍ + F0 tanh k(ẋ − 1)+ x = 0, (F0 > 0, k  1).

In the usual phase plane, let

ẋ = X(x, y) = y, ẏ = Y (x, y) = −F0 tanh k(y − 1)− x.
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Equilibrium only occurs where y = 0, x = −F0 tanh(−k) = F0 tanh k ≈ F0 for large k. Let
x = F0 tanh k + ξ . Then the linear approximations become

ξ̇ = y, ẏ ≈ −ξ − F0kysech 2
k.

The eigenvalues are given by

∣∣∣∣ −λ 1
−1 −F0ksech 2

k − λ
∣∣∣∣ = λ2 + λF0ksech 2

k + 1 = 0.

The eigenvalues are

λ = 1
2
[F0ksech 2

k ±√(F 2
0 k

2sech 4
k − 4)].

For k large the roots are complex with negative real part. Hence the equilibrium point is a
stable spiral.

For the non-existence of periodic solutions, use Bendixson’s Theorem 3.5 (in NODE). Thus

div (X,Y ) = ∂Y

∂y
= −F0ksech 2

k(y − 1) < 0, for all y.

Therefore the system has no periodic solutions.

• 3.39 Show that the third-order system

ẋ1 = x2, ẋ2 = −x1, ẋ3 = 1− (x2
1 + x2

2)

has no equilibrium points but nevertheless has closed paths (periodic solutions).

3.39. The third-order system is

ẋ1 = x2, ẋ2 = −x1, ẋ3 = 1− (x2
1 + x2

2).

Equilibrium points are given by ẋ1 = ẋ2 = ẋ3 = 0, that is,

x2 = x1 = 0, 1− (x2
1 + x2

2) = 0,

which are clearly inconsistent.
From the first two equations

dx2

dx1
= −x1

x2
,

which can be integrated to give x2
1 + x2

2 = c2. This means that all phase paths lie on coaxial
circular cylinders with axis the x3 axis in the (x1, x2, x3) space. The third equation now becomes

ẋ3 = 1− (x2
1 + x2

2) = 1− c2.
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Integration gives x3 = (1− c2)t + b. Generally phase paths are helices on the circular cylinders.
They are only periodic if c = 1 in which case x3 = b, a constant. To summarize, the phase
paths are given by

x2
1 + x2

2 = 1, x3 = b,

for any value of the constant b.
This example shows that the relation between closed paths and equilibrium points does not

immediately generalize to higher dimensions.

• 3.40 Sketch the phase diagram for the quadratic system ẋ = 2xy, ẏ = y2 − x2.

3.40. The system ẋ = 2xy, ẏ = y2 − x2 has one equilibrium point, at the origin, but the linear
approximation there is not helpful. The phase paths are given by

dy
dx
= y2 − x2

2xy
.

This is a first-order equation of homogeneous type. Therefore let y = vx, so that the equation
becomes

x
dv
dx
+ v = v2 − 1

2v
, or

dv
dx
= −1+ v2

2vx
.

This can be integrated to give the general solution x2+ y2 = Ax. Therefore all phase paths are
circles which pass through the origin as shown in Figure 3.21.

x

y

Figure 3.21 Problem 3.40:
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• 3.41 Locate the equilibrium points of the system

ẋ = x(x2 + y2 − 1), ẏ = y(x2 + y2 − 1),

and sketch the phase diagram.

3.41. Consider the system

ẋ = x(x2 + y2 − 1), ẏ = y(x2 + y2 − 1).

Equilibrium occurs where

x(x2 + y2 − 1) = 0, y(x2 + y2 − 1) = 0.

All points on the circle x2+ y2 = 1 in equilibrium points, and the origin is also an equilibrium
point. Phase paths are given by

dy
dx
= y

x
⇒ y = Cx.

The phase diagram is shown in Figure 3.22.

– 1 1
x

– 1

1

y

Figure 3.22 Problem 3.41:

• 3.42 Find the equilibrium points of the system

ẋ = x(1− y2), ẏ = x − (1− ex)y.

Show that the system has no closed paths.

3.42. The system

ẋ = X(x, y) = x(1− y2), ẏ = Y (x, y) = x − (1+ ex)y
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is in equilibrium where
x(1− y2) = 0, x − (1+ ex)y = 0.

Clearly (0, 0) is an equilibrium point (a saddle). If y=1, then x−1−ex<−1 for all x, and
therefore is never zero. If y = −1, then h(x) = x + 1 + ex is zero for only one value (since
h′(x) is always positive and h(x)→∞ as x →∞ and h(x)→−∞ as x →−∞) at x = −1.27
approximately.

To show that there are no closed paths, apply Bendixson’s Theorem 3.5. Then

div (X,Y ) = ∂X

∂x
+ ∂Y

∂y
= 1− y2 − 1− ex = −y2 − ex < 0,

which is of one sign for all x, y.

• 3.43 Show, using Bendixson’s theorem, that the system

ẋ = x2 + y2, ẏ = y2 + x2ex

has no closed paths in x + y > 0 or x + y < 0. Explain why the system has no closed paths
in the x, y plane.

3.43. Apply Bendixson’s Theorem 3.5 to the system

ẋ = X(x, y) = x2 + y2, ẏ = Y (x, y) = y2 + x2ex .

Then
div (X,Y ) = 2x + 2y

which is positive in x + y > 0, and negative in x + y < 0. Therefore, by Bendixson’s Theorem,
the system can have no closed paths in x + y > 0, nor in x + y < 0. The system has an
equilibrium point at (0, 0) so it is possible that a closed path surrounds the origin. However,
dy/dx > 0 (except at (0, 0)). This means that there is no isocline of zero slope, which would
be required of any closed path.

• 3.44 Plot the phase diagram, showing the main features of the phase plane, for the
equation

ẍ + ε(1− x2 − ẋ2)ẋ + x = 0

using ẋ = y, for ε = 0.1 and ε = 5.

3.44. The equation is
ẍ + ε(1− x2 − ẋ2)ẋ + x = 0.
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–2 – 1 1 2
x

–2

– 1

1

2

y

Figure 3.23 Problem 3.44: Phase diagram two phase paths and the limit cycle for ẍ + ε(1− x2 − ẋ2)ẋ + x = 0 with
ε = 0.1.

–2 – 1 1 2
x

–2

– 1

1

2

y

Figure 3.24 Problem 3.44: Phase diagram for ẍ + ε(1− x2 − ẋ2)ẋ + x = 0 with ε = 5.

Assume that ẋ = y. Note that the only equilibrium point is at the origin. Near the origin

ẋ = y, ẏ ≈ −εy − x,

which implies that the origin is stable, a spiral if ε < 2 and a node if ε > 2. Note also that the
circle x2 + y2 = 1 is an unstable limit cycles. Phase diagrams for the cases ε = 0.1 and ε = 5
are shown in Figures 3.23 and 3.24.

• 3.45 Plot a phase diagram for the damped pendulum equation ẍ + 0.15ẋ + sin x = 0.

3.45. The phase diagram for ẍ + 0.15ẋ + sin x = 0 is shown in Figure 3.31 in NODE.
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• 3.46 The system

ẋ = − 1
2ω
y

{
(ω2 − 1)− 3

4
β(x2 + y2)

}
,

ẏ = 1
2ω
x

{
(ω2 − 1)− 3

4
β(x2 + y2)

}
+ �

2ω
,

occurs in the theory of the forced oscillations of a pendulum. Obtain the phase diagram
when ω = 0.975, � = 0.005, β = −1/6.

3.46. The autonomous system

ẋ = − 1
2ω
y

{
(ω2 − 1)− 3

4
β(x2 + y2)

}
,

ẏ = 1
2ω
x

{
(ω2 − 1)− 3

4
β(x2 + y2)

}
+ �

2ω
,

arises from the van der Pol plane for forced oscillations in NODE, Section 7.2. Equilibrium can
only occur where y = 0, in which case x must be obtained by numerical solution of the cubic

3
4
βx3 − (ω2 − 1)x − �

2ω
= 0.

The system has three equilibrium points: at (−0.673, 0), (0.104, 0) and (0.569, 0). The phase
diagram is shown in Figure 7.3 in NODE.

• 3.47 A population of rabbits R(t) and foxes F(t) live together in a certain territory. The
combined birth and death rate of the rabbits due to ‘natural’ causes is α1 > 0, and the
additional deaths due to their being eaten by foxes is introduced through an ‘encounter
factor’ β1, so that

dR
dt
= α1R − β1RF .

The foxes die of old age with death rate β2 > 0, and the live birth rate is sustained through
an encounter factor α2, so that (compare Example 2.3)

dF
dt
= α2RF − β2F .

Plot the phase diagram, when α1 = 10, β1 = 0.2, α2 = 4×10−5, β2 = 0.2. Also plot typical
solution curves R(t) and F(t) (these are oscillatory, having the same period but different
phase).
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3.47. The rabbit R(t) and fox F(t) populations satisfy the differential equations

dR

dt
= α1R − β1RF ,

dF
dt
= α2RF − β2F .

The populations are in equilibrium at (R,F) = (0, 0) and at (R,F) = (β2/α2,α1/β1). Note
also that R = 0 and F = 0 are solutions, and also that R ≥ 0 and F ≥ 0. With the parameters
α1 = 10, β1 = 0.2, α2 = 4 × 10−5, β2 = 0.2. Hence the non-zero equilibrium point is
at (5000, 50). Some typical closed phase paths are shown in Figure 3.25, and solutions in
Figure 3.26.

10 000 20 000
R

50

100

F

Figure 3.25 Problem 3.47: Phase diagram for dR/dt = α1R−β1RF , dF/dt = α2RF −β2F with α1 = 10, β1 = 0.2,
α2 = 4× 10−5, β2 = 0.2.

10 20
t

50

F

10 20
t

5 000

10 000

15 000

R

Figure 3.26 Problem 3.47: Solutions for R(t) and F(t) with R(0) = 5000 and F(0) = 40.
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• 3.48 The system

ẋ = 1
2
α

(
1− 1

4
r2

)
x − ω2 − 1

2ω
y,

ẏ = ω2 − 1
2ω

x + 1
2
α

(
1− 1

4
r2

)
y + �

2ω
,

occurs in the theory of forced oscillations of the van der Pol equation (NODE, Section 7.4,
and see also Problem 3.32). Plot phase diagrams for the cases:

(i) α = 1, � = 0.75, ω = 1.2;

(ii) α = 1, � = 2.0, ω = 1.6.

3.48. The equations in the van der Pol plane for the van der Pol equation are (see
Section 7.4) are

ẋ = 1
2
α

(
1− 1

4
r2

)
x − ω2 − 1

2ω
y, ẏ = ω2 − 1

2ω
x + 1

2
α

(
1− 1

4
r2

)
y + �

2ω
,

where r2 = x2 + y2.

(i) Parameters α = 1, � = 0.75, ω = 1.2. The system has one equilibrium point at
(−0.245,−0.598) found numerically. Some phase paths are shown in Figure 3.27, and the
phase diagram indicates an unstable equilibrium point and a stable limit cycle.

(ii) Parameters α = 1, � = 2, ω = 1.6. The system has one equilibrium point, at
(−0.814,−0.617), and a stable limit cycle. Some phase paths are shown in Figure 3.28.

–3 – 2 –1 1 2 3
x

–3

––2

1

2

3

y

Figure 3.27 Problem 3.48(i): Phase diagram with α = 1, � = 0.75, ω = 1.2.
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–3 –2 –1 1 2 3
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y

Figure 3.28 Problem 3.48(ii): Phase diagram with α = 1, � = 2.0, ω = 1.6.

• 3.49 The equation for a tidal bore on a shallow stream is

ε
d2η

dξ2 −
dη
dξ
+ η2 − η = 0.

where (in appropriate dimensions), η is the height of the free surface, and ξ = x − ct where
c is the wave speed. For 0 < ε � 1, find the equilibrium points of the equation and classify
them according to their linear approximations.
Plot the phase paths in the plane of η, w, where

dη
dξ
= w, ε

dw
dξ

= η + w − η2

and show that a separatrix from a saddle point at the origin reaches the other equilibrium
point. Interpret this observation in terms of the shape of the wave.

3.49. The tidal bore equation is

ε
d2η

dξ2 −
dη
dξ
+ η2 − η = 0.

Let the phase plane be (w, η) where

dη
dξ
= w, ε

dw
dξ

= η + w − η2.

Equilibrium occurs at the points (0, 0) and (0, 1).

• (0, 0). The linearized equations are w′ ≈ (w + η)/ε, η′ = w, so that the origin is a saddle
point.

• (0, 1). Let η = 1+ η1. Then the linearized equations are

w′ = (1+ η1 + w − (1+ η1)
2)/ε ≈ (ws − η1)/ε, η′1 = w.
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–1 1
w

–1

1

h

Figure 3.29 Problem 3.49: Phase diagram for w′ = (η + w − η2)/ε, η′ = w with ε = 0.1.

The usual parameters arep=1/ε >0, q =1/ε >0,�=p2−4q =(1−4ε)/ε2>0 for ε < 1
4 .

Therefore ε >0 small (0, 1) is an unstable node.

A phase diagram with the parameter ε = 0.1 is shown in Figure 3.29. Note that the phase
paths asymptotically approach the the parabola η2 = η + w, obtained by putting ε = 0 in the
equations. A separatrix is shown joining the node to the saddle. The solution corresponding to
this path represents the bore.

• 3.50 Determine the nature of the equilibrium point, and compute the phase diagrams for
the Coulomb friction type problem ẍ + x = F(ẋ), where

F(y) =
{ −6.0(y − 1), |y − 1| ≤ 0.4
−[1+ 1.4 exp{−0.5|y − 1| + 0.2}]sgn (y − 1), |y − 1| ≥ 0.4

(See Figure 3.32 in NODE, and compare the simpler case shown in Section 1.6.)

3.50 Equilibrium occurs where x = x0 = F(0) = (1+ 1.4e1/2 + 0.2) ≈ 2.04. Let x = x0 + ξ .
Then, with ẋ = y,

ẏ = −x0 − ξ + F(y) = −x0 − ξ + [1+ 1.4e−0.3+0.5y] ≈ −ξ + 0.5y.

Therefore the equilibrium point at (x0, 0) is an unstable spiral.
The phase diagram is shown in Figure 3.32 in NODE.

• 3.51 Compute the phase diagrams for the system whose polar representations is
ṙ = r(1− r), θ̇ = sin2(1

2θ).

3.51. The polar equations are

ṙ = r(1− r), θ̇ = sin2(1
2θ).
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–2 –1 1 2

–2

–1

1

2

Figure 3.30 Problem 3.51:

Equilibrium occurs at (r, θ) = (0, 0) and (r, θ) = (1, 0). Note that r = 1 and θ = 0, (r > 0) are
solutions. The phase diagram is shown in Figure 3.30.

• 3.52 Compute the phase diagrams for the following systems: (i) ẋ = 2xy, ẏ = y2 + x2;
(ii) ẋ = 2xy, ẏ = x2 − y2; (iii) ẋ = x3 − 2x2y, ẏ = 2xy2 − y3.

3.52. (i) ẋ = 2xy, ẏ = y2 + x2. The system has one equilibrium point at the origin which is a
higher-order point. The lines x = 0 and y = ±x are solutions. The phase diagram is shown in
Figure 3.31. The origin is a hybrid node/saddle point.
(ii) ẋ = 2xy, ẏ = x2− y2. The system has one equilibrium point, at the origin. The phase paths
are given by

–1 1
x

y

–1

1

Figure 3.31 Problem 3.52(i): Phase paths for ẋ = 2xy, ẏ = y2 + x2.

dy
dx
= x2 − y2

2xy
.
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– 1 1
x

– 1

1

y

Figure 3.32 Problem 3.52(ii): Phase paths for ẋ = 2xy, ẏ = x2 − y2.

– 1 1 x

– 1

1

y

Figure 3.33 Problem 3.52(iii): Phase paths for ẋ = x3 − 2x2y, ẏ = 2xy2 − y3.

Since the equation is homogeneous try the solution y = kx, so that

k = 1− k2

2k
, or 3k2 = 1.

Hence the lines y = ±x/√3 are phase paths: the axis x = 0 is also a path. The computed phase
diagram is shown in Figure 3.32: it can be seen that the origin is a higher-order saddle point.

(iii) ẋ = x3 − 2x2y, ẏ = 2xy2 − y3. This system has one equilibrium point, at the origin. The
phase paths are given by

dy
dx
= 2xy2 − y3

x3 − 2x2y
.

Since the equation is of first-order homogeneous type, we can try solutions of the form y = kx,
where

k = 2k2 − k3

1− 2k
, or k3 − 4k2 + k = 0.

Hence k = 0 and k = 2±√3. Therefore phase paths lie on the straight lines y = 0, y = (2±√3):
phase paths also lie on the x axis. Some paths in the phase diagram are shown in Figure 3.33.
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• 3.53 Obtain the heteroclinic phase paths for the system ẋ = y, ẏ = −x + x3. Show that

their time solutions are given by x = ± tanh
[

1
2
√
(2)(t − t0)

]
.

3.53. The system is ẋ = y, ẏ = −x + x3. Equilibrium points occur at (0, 0) (a centre) and
(±1, 0) (saddle points). A heteroclinic path is a phase path which joins one equilibrium point
to another. The phase paths are given by

dy
dx
= x3 − x

y
,

which is a separable equation with general solution

1
2y

2 = −1
2x

2 + 1
4x

4 + C.

Since there are only two saddle points and a centre, the only possible heteroclinic paths are
ones which link the saddles. A phase path ends at (1, 0) if y = 0 where x = 1. Therefore C = 1

4
so that the phase paths are given by

y = ± 1√
2
(1− x2),

which clearly also start at x = −1. They are symmetric heteroclinic paths.
The time solutions can be obtained by solving the equations

dx
dt
= ± 1√

2
(1− x2).

Hence ∫
dx

1− x2 = ±
1√
2

∫
dt = ± 1√

2
(t − t0),

so that (for |x| < 1)

ln
(

1+ x
1− x

)
= ±√2(t − t0),

or
x = tanh

[
±1

2

√
2(t − t0)

]
= ± tanh

[
1
2

√
2(t − t0)

]
.

• 3.54 Obtain the heteroclinic phase paths of ẍ + sin x = 0, ẋ = y. (This is a periodic
differential equation in x. If the phase diagram is viewed on a cylinder of circumference 2π ,
then heteroclinic paths would appear to be homoclinic.)
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3.54. The system is ẋ = y, ẏ = − sin x. The equilibrium points are at (nπ , 0),
(n = 0,±1,±2, . . .) of which centres occur at (2mπ , 0) and saddles occur at ((2m + 1)π , 0)
where (m = 0,±1,±2, . . .). The phase paths are give by

dy
dx
= −sin x

y
,

which can be integrated with the result

1
2y

2 = cos x + C.

We put y = 0 where x = (2m + 1)π so that C = 1 for all such paths. Hence all heteroclinic
paths are given by

y = ±√2
√
(1+ cos x), ((2m− 1)π ≤ x ≤ (2m+ 1)π).

• 3.55 Find the homoclinic paths of ẍ − x + 3x5 = 0, ẋ = y. Show that the time solutions
are given by x = ±√[sech (t − t0)].

3.55. The system is ẋ = y, ẏ = x − 3x5 has an equilibrium point at (0, 0) (a saddle point), and
at (±31/4, 0) (centres). The differential equation for the phase paths is

dy
dx
= x − 3x5

y
,

which can be integrated to give the phase paths

1
2y

2 = 1
2x

2 − 1
2x

6 + C.

Homoclinic paths are given by choosing C = 0, that is,

y2 = x2 − x6,

and they intersect the x axis at x = ±1.
Time solutions can be found by integrating

y = dx
dt
= ±x√(1− x4),

which separates into ∫
dx

x
√
(1− x4)

= ±
∫

dt = ±(t − t0).
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Using the substitution u = 1/x2, the integral becomes

−
∫

du
2
√
(u2 − 1)

= ±(t − t0).

Hence, for x > 0,
− cosh−1

u = ±(t − t0).
Both signs give the same result u = cosh[2(t − t0)]. For x > 0 the homoclinic path is given by

x = √{sech [2(t − t0)]}.

In a similar manner, the homoclinic path for x < 0 is

x = −√{sech [2(t − t0)]}.

• 3.56 Find all heteroclinic phase paths of ẋ = y(1 − x2), ẏ = −x(1 − y2) (see NODE,
Example 2.1).

3.56. As in Example 2.1, the system is ẋ = y(1− x2), ẏ = −x(1− y2). It was shown that the
equations have five equilibrium points, at (0, 0) and (±1,±1). From Figure 2.1 (in NODE),
it can be seen that (0, 0) is a centre, and the four points (±1,±1) are all saddle points. The
equation defining the phase paths is (1−x2)(1−y2) = C. The heteroclinic paths are the straight
lines

x = ±1, (−1 ≤ y ≤ 1), y = ±1, (−1 ≤ x ≤ 1).

• 3.57 The problem of the bead sliding on a rotating wire was discussed in Example 1.12,
where it was shown that the equation of motion of the bead is

aθ̈ = g(λ cos θ − 1) sin θ .

Find the equations of all homoclinic and heteroclinic paths, carefully distinguishing the
cases 0 < λ < 1, λ = 1 and λ > 1.

3.57. The angle θ giving the inclination of a bead sliding on a rotating wire is given by

aθ̈ = g(λ cos θ − 1) sin θ ,

(see NODE, Example 1.12). Equilibrium points occur where

• for λ ≤ 1: at θ = nπ , (n = 0,±1,±2, . . .), which are centres for n = 0,±2,±4, . . ., and
saddles for n = ±1,±3, . . . ;

• for λ > 1: at θ = nπ , (n = 0,±1,±2, . . .), which are saddles for n = 0,±2,±4, . . . , and
centres for n = ±1,±3, . . . ; also there are centres where cos θ = 1/λ.
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From Example 1.12, the phase paths are given by

1
2aθ̇

2 = g(1− 1
2λ cos θ) cos θ + C. (i)

The phase diagrams shown in Figure 1.30 (in NODE) should be consulted.

• λ < 1. There are no homoclinic paths, but there are heteroclinic paths which connect two
saddle points on either side of a centre. Hence the heteroclinic paths must pass through
θ̇ = 0 at θ = nπ where n = ±1,±3, . . . . Hence, from (i),

0 = −g(1+ 1
2λ)+ C, so that C = g(1+ 1

2λ).

The heteroclinic paths are given by

1
2aθ̇

2 = g(1− 1
2λ cos θ) cos θ + g(1+ 1

2λ).

• λ = 1. There are no homoclinic paths, whilst the heteroclinic paths pass through θ̇ = 0 at
θ = nπ , where n = ±1,±3, . . .. Hence, from (i),

0 = −3
2g + C, so that C = 3

2g.

The heteroclinic paths are given by

1
2aθ̇

2 = g(1− 1
2 cos θ) cos θ + 3

2g.

• λ > 1. Homoclinic paths are given by putting θ̇ = 0 at θ = nπ for n = 0,±2,±4, . . . .
Hence

0 = g(1− 1
2λ cos θ) cos θ + C, so that C = −g(1− 1

2λ).

The homoclinic paths are given by

1
2aθ̇

2 = g(1− 1
2λ cos θ) cos θ − g(1− 1

2λ).

Heteroclinic paths connect the saddles at cos θ = 1/λ. Therefore from (i) C = −g/(2λ).
The heteroclinic paths are given by

1
2
aθ̇2 = g

(
1− 1

2
λ cos θ

)
cos θ − g

2λ
.

• 3.58 Consider the equation ẍ − x(x − a)(x − b) = 0, 0 < a < b. Find the equation of its
phase paths. Show that a heteroclinic bifurcation occurs in the neighbourhood of b = 2a.
Draw sketches showing the homoclinic paths for b < 2a and b > 2a.
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Show that the time solution for the heteroclinic path (b = 2a) is

x = 2a

1+ e−a
√

2(t−t0)
.

3.58. Consider the system

ẍ − x(x − a)(x − b) = 0, 0 < a < b.

Assuming that ẋ = y, the system has equilibrium points at (0, 0) (a saddle), (a, 0) (a centre)
and (b, 0) (a saddle). Phase paths are given by

1
2y

2 −
∫
[x3 − (a + b)x2 + abx]dx = C,

or
1
2y

2 − 1
4x

4 + 1
3 (a + b)x3 − 1

2abx
2 = C.

For the separatrices through the saddle (0, 0), C = 0, so that they are given by

1
2y

2 − 1
4x

4 + 1
3 (a + b)x3 − 1

2abx
2 = 0. (i)

This is generally a homoclinic path, but is heteroclinic if it connects with the saddle at (b, 0).
This occurs if the point (b, 0) also lies on (i), that is, if

−1
4b

4 + 1
3 (a + b)b3 − 1

2ab
3 = 0,

which implies that b = 2a. The equation of the heteroclinic path is

1
2y

2 − 1
4x

4 + ax3 − a2x2 = 0, or y2 − 1
2x

2(x − 2a)2 = 0, (ii)

which is shown in Figure 3.35. For b > 2a the path (i) is homoclinic to the origin as shown in
Figure 3.34, but is not homoclinic there if b ≥ 2a. However, if b ≤ 2a there is a path which
is homoclinic to the saddle point at (b, 0) as illustrated in Figure 3.36. From (ii), the equation
for the heteroclinic solutions is

dx
dt
= ± 1√

2
x(x − 2a).

The equation with the minus sign applies to the heteroclinic path in y > 0. Thus

∫
dx

x(2a − x) =
1√
2

∫
dt ,
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Figure 3.34 Problem 3.58: phase diagram for ẋ = y, ẏ = x(x − a)(x − b) with a = 1, b = 2.2.
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Figure 3.35 Problem 3.58: Phase diagram for ẋ = y, ẏ = x(x − a)(x − b) with a = 1, b = 2.
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Figure 3.36 Problem 3.58: Phase diagram for ẋ = y, ẏ = x(x − a)(x − b) with a = 1, b = 1.8.

which after integration becomes

1
2a

ln
(

x

2a − x
)
= 1√

2
(t − t0).

Solving for x:

x = 2a

1+ e−a
√

2(t−t0)
.
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• 3.59 Show that

ẋ = 4(x2 + y2)y − 6xy, ẏ = 3y2 − 3x2 − 4x(x2 + y2)

has a higher-order saddle at the origin (neglect the cubic terms for ẋ and ẏ, and show that
near the origin the saddle has solutions in the directions of the straight lines y = ±x/√3,
x = 0. Confirm that the phase paths through the origin are given by

(x2 + y2)2 = x(3y2 − x2).

By plotting this curve, convince yourself that three homoclinic paths are associated with the
saddle point at the origin.

3.59 The system is

ẋ = 4(x2 + y2)y − 6xy, ẏ = 3y2 − 3x2 − 4x(x2 + y2). (i)

Equilibrium occurs where

4(x2 + y2)y − 6xy = 0, and 3y2 − 3x2 − 4x(x2 + y2) = 0.

Switch to polar coordinates (r, θ), so that the equations become

r2 sin θ(2r − 3 cos θ) = 0, 3r2(sin2 θ − cos2 θ)− 4r3 cos θ = 0.

From the first equation either r = 0 (the origin) or sin θ = 0 or r = 3
2 cos θ . Since r = 0 also

satisfies the second equation, then (0, 0) is an equilibrium point. If sin θ = 0, then θ = 0 or
θ = π , but only θ = π gives a positive value 3

4 for r. Substitute r = 3
2 cos θ into the second

equation so that
(sin2 θ − cos2 θ)− 2 cos2 θ = 0, or cos θ = 1

2 ,

for r to be positive. Hence θ = 1
3π or θ = 5

3π . For these angles r = 3
2 cos θ = 3

4 . To summarize,

the system has the equilibrium points (0, 0), (−3
4 , 0), (3

8 , 3
√

3
8 ) and (3

8 ,−3
√

3
8 )

Near the origin
ẋ ≈ −6xy, ẏ ≈ 3y2 − 3x2.

One solution is x = 0. Put y = kx; then

dy
dx
= ẏ

ẋ
= −3y2 − 3x2

6xy
,

becomes

k = −3k2 − 3
6k

,

from which it follows that k = ±1/
√

3. Hence locally the separatrices of the origin are in the
directions of the lines x = 0 and y = ±x/√3. The phase diagram displayed in Figure 3.37 shows
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1
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Figure 3.37 Problem 3.59: Phase diagram for ẋ = 4(x2 + y2)y − 6xy, ẏ = 3y2 − 3x2 − 4x(x2 + y2).

three homoclinic paths starting from the origin, each surrounding a centre. The phase diagram
was computed by numerical solution of the differential equations although the equation can
be solved as follows. From (i)

dy
dx
= 3y2 − 3x2 − 4x(x2 + y2)

4(x2 + y2)y − 6xy
,

which can be expressed in the form

4y(x2 + y2)
dy
dx
+ 4x(x2 + y2) = 6xy

dy
dx
+ 3y2 − 3x2.

This an exact differential equation equivalent to

d
dx
[(x2 + y2)2] = d

dx
(3xy2 − x3).

Integrating the phase paths are given by

(x2 + y2)2 = 3xy2 − x3 + C.

• 3.60 Investigate the equilibrium points of

ẋ = y[16(2x2 + 2y2 − x)− 1], ẏ = x − (2x2 + 2y2 − x)(16x − 4),

and classify them according to their linear approximations. Show that homoclinic paths
through (0, 0) are given by

(x2 + y2 − 1
2x)

2 − 1
16 (x

2 + y2) = 0,

and that one homoclinic path lies within the other.
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3.60. The system is

ẋ = P(x, y) = y[16(2x2 + 2y2 − x)− 1],
ẏ = Q(x, y) = x − (2x2 + 2y2 − x)(16x − 4),

say. The equilibrium points are given by

y[16(2x2 + 2y2 − x)− 1] = 0, x − (2x2 + 2y2 − x)(16x − 4) = 0. (i)

From the first equation either y = 0 or 16(2x2 + 2y2 − x) = 1. Substituted into the second
equation, y = 0 leads to

x(32x2 − 24x + 3)x = 0.

The solutions are x = 0, x = (3 ±√3)/8. The other equation is inconsistent with the second
equation in (i). Therefore, there are three equilibrium points at (0, 0), ((3 + √3)/8, 0) and
((3−√3)/8, 0).

The phase paths are given by the differential equation

dy
dx
= Q(x, y)
P (x, y)

= x − (2x2 + 2y2 − x)(16x − 4)
y[16(2x2 + 2y2 − x)− 1] .

This is an exact equation since it can be verified that ∂Q/∂y = −∂P/∂x. Hence there exists a
(Hamiltonian) function H(x, y) such that

P(x, y) = y[16(2x2 + 2y2 − x)− 1] = ∂H

∂y
,

Q(x, y) = x − (2x2 + 2y2 − x)(16x − 4) = −∂H
∂x

.

Integration with respect to y and x of these partial derivatives leads to

H(x, y) = 16x2y2 + 8y4 − 8xy2 − 1
2y

2 + f (x),

and
H(x, y) = 8x4 + 16x2y2 − 8x3 − 8xy2 + 3

2x
2 + g(y).

These equations match if f (x) = −8x3 + 3
2x

2 and g(y) = −8y4 − y, so that

H(x, y) = 16x2y2 − 8xy2 + 8y4 − 1
2y

2 + 8x4 − 8x3 + 3
2x

2

= 8(x2 + y2 − 1
2x)

2 − 1
2 (x

2 + y2).

The phase paths are given by H(x, y) = C, a constant.
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Figure 3.38 Problem 3.60: Phase diagram for ẋ = P(x, y) = y[16(2x2 + 2y2 − x)− 1], ẏ = Q(x, y) = x − (2x2 +
2y2 − x)(16x − 4).

For the phase paths through the origin, the constant C = 0, and the homoclinic paths are
given by

16(x2 + y2 − 1
2x)

2 = x2 + y2.

The paths are symmetric about the x axis and meet it where y = 0, that is, where

16(x2 − 1
2x)

2 = x2,

or, where
16x4 − 16x3 + 3x2 = 0.

The points where the homoclinic paths intersect the x axis are at x = 0, x = 1
4 and x = 3

4 , the
latter two values being positive, which means that one homoclinic path is within the other as
shown in Figure 3.38.

• 3.61 The following model differential equation exhibits two limit cycles bifurcating
through homoclinic paths into a single limit cycle of larger amplitude as the parameter
ε decreases through zero:

ẍ + (ẋ2 − x2 + 1
2x

4 + ε)ẋ − x + x3 = 0.

Let |ε| < 1
2 .

(a) Find and classify the equilibrium points of the equation.

(b) Confirm that the equation has phase paths given by

y2 = x2 − 1
2x

4 − ε, y = ẋ.

Find where the paths cut the x axis.

(c) As ε decreases through zero what happens to the limit cycles which surround the equi-
librium point at x = ±1? (It could be quite helpful to plot phase paths numerically for a
sample of ε values.) Are they all stable?
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3.61. The equation
ẍ + (ẋ2 − x2 + 1

2x
4 + ε)ẋ − x + x3 = 0

has a nonlinear friction term and a nonlinear restoring action. Assuming that ẋ = y, the system
has equilibrium points at (0, 0)) and (±1, 0).
(a) Classification of equilibrium points for |ε| < 1

2 .

• (0, 0). The linearized approximation is ẋ = y, ẏ ≈ x − εy. The parameters are (in the
notation of Section 2.5)

p = ε, q = −1 < 0, � = ε2 + 4 > 0.

Therefore (0, 0) is a saddle point.
• (−1, 0). Let x = −1+ ξ . Then the linearized approximation is

ξ̇ = y, ẏ ≈ −2ξ + (1
2 − ε)y.

The parameters are

p = 1
2 − ε > 0, q = 2 > 0, � = (1

2 − ε)2 − 8 < 0.

Hence (−1, 0) is an unstable spiral.
• (1, 0). Let x = 1+ ξ . Then the linearized approximation is

ẋ = y, ẏ ≈ −2ξ + (1
2 − ε)y,

as in the previous case. Hence (1, 0) is also an unstable spiral.

(b) If y2 = x2 − 1
2x

4 − ε, then the coefficient of ẋ in the differential equation is zero. Also,
differentiation with respect to t gives

2ẋẍ = 2xẋ − 2x3ẋ,

or ẍ = x − x3, (ẋ �= 0). Hence y2 = x2 − 1
2x

4 − ε is a particular solution. When y = 0,

x4 − 2x2 + 2ε = 0,

which has the solutions
x2 = 1±√(1− 2ε).

The equation has four real solutions if 0 < ε < 1
2 , and two real solutions if −1

2 < ε ≤ 0.

(c) If ε = 0, then the equation becomes

ẍ +
(
ẋ2 − x2 + 1

2x
4
)
ẋ − x + x3 = 0,



3 : Geometrical aspects of plane autonomous systems 191

0.5
x

–0.5

0.5

y

Figure 3.39 Problem 3.61: Phase diagram for ẋ = y, ẏ = −(y2 − x2 + 1
2x

4 + ε)y + x − x3 with ε = 0.

0.5
x

–0.5

0.5

y

Figure 3.40 Problem 3.61: Phase diagram for ẋ = y, ẏ = −(y2 − x2 + 1
2x

4 + ε)y + x − x3 with ε = 0.2.
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Figure 3.41 Problem 3.61: Phase diagram for ẋ = y, ẏ = −(y2 − x2 + 1
2x

4 + ε)y + x − x3 with ε = −0.2.

which has the particular phase paths given by y2 = x2 − 1
2x

4: these are homoclinic paths
through the origin a shown in Figure 3.39.

If ε increases from zero, then periodic orbits around the equilibrium points at (−1, 0) and
(1, 0) develop in this process of bifurcation. Stable closed paths for ε = 0.2 are shown in
Figure 3.40.

If ε decreases from zero, then a stable closed path around both spirals and the saddle point
at the origin bifurcates from the homoclinic paths as shown in Figure 3.41 with ε = −0.2.
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• 3.62 Classify the equilibrium points of ẍ = x − 3x2, ẋ = y. Show that the equation has
one homoclinic path given by y2 = x2−2x3. Solve this equation to obtain the (x, t) solution
for the homoclinic path.

3.62. The system is ẋ = y, ẏ = x − 3x2. It has two equilibrium points, at (0, 0) and (1
3 , 0).

• (0, 0). The linearized approximation is ẋ = y ẏ = x which implies that (0, 0) is a saddle
point.

• (1
3 , 0). Let x = 1

3 + ξ . Then the linearized approximation is

ξ̇ = y, ẏ = 1
3 + ξ − 3(1

3 + ξ)2 ≈ −ξ .

Hence (1
3 , 0) is a centre.

The equation for the phase paths is

y
dy
dx
= x − 3x2,

which can be integrated to give the family of phase paths as

y2 = x2 − 2x3 + C.

For the paths through the saddle point at the origin, C = 0, so that the homoclinic path is
given by

y2 = x2 − 2x3,

which lies in x > 0.
The time solution satisfies

dx
dt
= x√(1− 2x).

Let u2 = 1− 2x. Then the differential equation becomes

−udu
dt
= u√

2
(1− u2).

Separating the variables and integrating,

−
∫

du
1− u2 =

1√
2

dt = t√
2
+ C.
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Hence

−1
2

ln
(

1+ u
1− u

)
= 1√

2
t + C

or

u = 1− e
√

2t

1+ e
√

2t
= − tanh

(
1
2

√
2t
)

.

Finally,
x = 1

2 (1− u2) = 1
2 [1− tanh2

(1
2

√
2t)] = 1

2sech 2
(1

2

√
2t).

• 3.63 Classify all equilibrium points of ẋ = y(2y2 − 1), ẏ = x(x2 − 1) according to
their linear approximations. Show that the homoclinic paths are given by 2y2(y2 − 1) =
x2(x2 − 2), and that the heteroclinic paths lie on the ellipse x2 + √2y2 = 1

2 (2 +
√

2) and
the hyperbola x2 −√2y2 = 1

2 (2−
√

2). Sketch the phase diagram.

3.63. The system is ẋ = X(x, y) = y(2y2 − 1), ẏ = Y (x, y) = x(x2 − 1). There are nine
equilibrium points at (0, 0), (0,±1/

√
2), (±1, 0), (±1,±1/

√
2). Since

∂X

∂x
+ ∂Y

∂y
= 0,

the system is Hamiltonian, which implies that the equilibrium points will be either centres or
saddle points (Section 2.8).

The classification of the equilibrium points is as follows.

• (0, 0). The linearized approximation is ẋ = −y, ẏ = −x. Hence (0, 0) is a saddle point.

• (0,±1/
√

2). Let y = ± 1√
2
+ η. Then the linearized approximation is ẋ = 2η, η̇ = −x, so

that (0,±1/
√

2) are centres.

• (±1, 0). Let x = ±1+ ξ . Then the linearized approximation is ξ̇ = −y, ẏ = 2ξ . Therefore
(±1, 0) are centres.

• (±1,±1/
√

2)(all combinations of signs). Let x = ±1 + ξ and y = ± 1√
2
+ η. Then the

linearized approximation is
ξ̇ = 2η, η̇ = 2ξ .

in each case. Elimination of (say) η leads to ξ̈ − 4ξ̇ = 0 in all cases. Hence all these points
are saddles.

Since the Hamiltonian H(x, y) satisfies both ∂H/∂x = −x(x2 − 1) and ∂H/∂y = y(2y2 − 1),
it is obvious that

H(x, y) = −1
4x

4 + 1
2x

2 + 1
2y

4 − 1
2y

2.

The general equation of the phase paths is therefore

−x4 + 2x2 + 2y4 − 2y2 = C.
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Figure 3.42 Problem 3.63: Heteroclinic and homoclinic paths for ẋ = y(2y2 − 1), ẏ = x(x2 − 1).

The saddle point at the origin has homoclinic paths given by C = 0, or

2y2(y2 − 1) = x2(x2 − 2).

The other saddle points at (±1,±1/
√

2) have the heteroclinic paths with C = 1
2 , or

−x4 + 2x2 + 2y4 − 2y2 = 1
2 ,

which factorizes as

[x2 +√2y2 − 1
2 (
√

2+ 2)][x2 −√2y2 − 1
2 (2−

√
2)] = 0.

The heteroclinic paths lie on the ellipse

x2 +√2y2 = 1
2 (
√

2+ 2),

and the hyperbola
x2 −√2y2 = 1

2 (2−
√

2).

The paths are shown in Figure 3.42: there are centres at the enclosed equilibrium points.

• 3.64 A dry friction model has the equation of motion ẍ + x = F(ẋ) where

F(y) =
{ −µ(y − 1) |y − 1| ≤ ε
−µεsgn (y − 1) |y − 1| > ε,

where 0 < ε < 1 (see Figure 3.33 in NODE). Find the equations of the phase paths in each
of the regions y > 1+ ε, 1− ε ≤ y ≤ 1+ ε, y < 1− ε.
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3.64. The dry friction has the equation of motion

ẍ + x = F(ẋ),

where

F(y) =
{ −µ(y − 1) |y − 1| ≤ ε
−µεsgn (y − 1) |y − 1| > ε,

where 0 < ε < 1. Equilibrium occurs where x = F(0), that is, where x = µε.
The equations of the phase paths are as follows:
• y > 1+ ε. The equation of motion is ẍ+x = −µε, so that the phase paths are solutions of

y
dy
dx
= −x − µε.

Hence the phase paths are arcs of circles given by

y2 + (x + µε)2 = A.

• 1− ε ≤ y ≤ 1+ ε. The equation of motion is ẍ + x = −µ(ẋ − 1), or,

ẍ + µẋ + x = µ.

The solution of this equation is

x = Aem1t + Bem2t + µ,

where
m1,m2 = 1

2 [−µ±
√
(µ2 − 4)].

Hence the phase diagram is that of a node, if µ > 2, or a spiral if 0 < µ < 2, both stable
and centred at (µ, 0).

• y < 1− ε. The equation of motion is ẍ + x = µε, so that the phase paths are solutions of

y
dy
dx
= −x + µε.

Hence the phase paths are circles and arcs of circles given by

y2 + (x − µε)2 = B.

The matching of the three phase diagrams is shown in Figure 3.43.

• 3.65 Locate and classify the equilibrium points of

ẋ = x2 − 1, ẏ = −xy + ε(x2 − 1).

Find the equations of all phase paths. Show that the separatrices in |x|<1 which approach

x= ± 1 are given by y= ε
[

1
2x
√
(1− x2)+ 1

2 sin−1 x ∓ 1
4π

]
/
√
(1− x2).
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Figure 3.43 Problem 3.64: Dry friction phase diagram with ε = 0.5 and µ = 1.

Sketch typical solutions for ε >,=,< 0, and confirm that a heteroclinic bifurcation occurs
at ε = 0.

Show that the displacement d(x) in the y direction between the separatrices for −1 <
x < 1 is given by

d(x) = πε

2
√
(1− x2)

.

(This displacement is zero when ε = 0 which shows that the separatrices become a hetero-
clinic path joining (1, 0) and (−1, 0) at this value of ε. This separatrix method is the basis of
Melnikov’s perturbation method in Chapter 13 for detecting homoclinic and heteroclinic
bifurcations.)

3.65. There are two equilibrium points of

ẋ = x2 − 1, ẏ = −xy + ε(x2 − 1),

at (−1, 0) and (1, 0).

• (−1, 0). Let x = −1+ ξ . Then the linear approximation is

ξ̇ = (−1+ ξ)2 − 1 ≈ −2ξ , ẏ = −(−1+ ξ)y + ε[(−1+ ξ)2 − 1] ≈ −2εx + y.

Since the parameter q = −2 (Section 2.5), (−1, 0) is a saddle point.
• (1, 0). Let x = 1+ ξ . Then the linear approximation is

ξ̇ = (1+ ξ)2 − 1 ≈ 2ξ , ẏ = −(1+ ξ)y + ε[(1+ ξ)2 − 1] ≈ 2εx − y.

Since the parameter q = −2 (Section 2.5), (1, 0) is also a saddle point.
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The equation for the phase paths is

dy
dx
= −xy + ε(x2 − 1)

x2 − 1
= − x

x2 − 1
y + ε.

This is a first-order equation with integrating factor

exp
[∫

xdx
x2 − 1

]
= exp

[
1
2

ln |x2 − 1|
]
= √(1− x2),

for |x| < 1. Hence it can be expressed in the form

d
dx
[y√(1− x2)] = ε√(1− x2).

Integrating

y
√
(1− x2) = ε

∫ √
(1− x2)dx = 1

2
ε[x√(1− x2)+ arcsin x] + A. (i)

If |x| > 1, the integrating factor is
√
(x2 − 1), by similar arguments. The general solution is

given by

y
√
(x2 − 1) = ε

∫ √
(x2 − 1)dx = 1

2
ε[x√(x2 − 1)− cosh−1

x] + B. (ii)

Note also that x = ±1 are particular solutions which are separatrices of the saddle points.
For |x| < 1, for the other separatrix through (−1, 0), A = 1

4επ in (i) so that it has the equation

y1(x)
√
(1− x2) = 1

2ε[x
√
(1− x2)+ arcsin x] + 1

4επ .

By a similar argument the separatrix through (1, 0) is, for |x| < 1 is

y2(x)
√
(1− x2) = 1

2ε[x
√
(1− x2)+ arcsin x] − 1

4επ .

If ε = 0, then y = 0 is a solution for all x, and this solution is a heteroclinic path since it
connects the two saddle points.
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The displacement d(x) between the separatrices y1(x) and y2(x) in the y direction is

d(x) = y1(x)− y2(x) = επ

2
√
(1− x2)

.

The heteroclinic bifurcation between the equilibrium points at (−1, 0) and (1, 0) is shown in
the sequence of Figures 3.44, 3.45, 3.46 as ε decreases through zero.

–1 1
x

–1

1

y

Figure 3.44 Problem 3.65: This shows the separatrices for ε = 0.3.

–1 1
x

–1

1

y

Figure 3.45 Problem 3.65: This shows the heteroclinic path for ε = 0.

–1 1
x

–1

1

y

Figure 3.46 Problem 3.65: This shows the separatrices for ε = −0.3.
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• 3.66 Classify the equilibrium points of the system ẋ = y, ẏ = x(1− x2)+ ky2, according
to their linear approximations. Find the equations of the phase paths, and show that, if
k = −√(3/2), then there exists a homoclinic path given by y2 = x2(1−√(2/3)x) in x > 0.
Show that the time solution is given by x = √(3

2 )sech 2 1
2 (t − t0).

3.66. The system ẋ = y, ẏ = x(1 − x2) + ky2 has equilibrium points at (0, 0), (1, 0)
and (−1, 0).

• (0, 0). The linear approximation is ẋ = y, ẏ = x. Hence the origin is a saddle point.

• (1, 0). Let x = 1+ ξ . Then the linear approximation is

ξ̇ = y, ẏ = (1+ ξ)[1− (1+ ξ)2] + ky2 ≈ −2ξ ,

for small |ξ |. Hence (1, 0) is a centre.

• (−1, 0). Let x = −1+ ξ . Then the linear approximation is

ξ̇ = y, ẏ = (−1+ ξ)[1− (−1+ ξ)2] + ky2 ≈ −2ξ ,

so that (−1, 0) is also a centre.

The differential equation for the phase paths is given by

dy
dx
= x(1− x2)+ ky2

y
,

or

y
dy
dx
− ky2 = x(1− x2).

This first-order equation of integrating-factor type is equivalent to

d
dx
(e−2kxy2) = 2x(1− x2)e−2kx ,

which can be separated, and integrated to give the general solution

y2e−2kx = 2
∫
x(1− x2)e−2kxdx + C

= 2e−2kx

[
3+ 6kx + k2(6x2 − 2)+ 4k3x(x2 − 1)

4k4

]
+ C.

or

y2 = 1
2k4 [3+ 6kx + k2(6x2 − 2)+ 4k3x(x2 − 1)] + Ce2kx .
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Figure 3.47 Problem 3.66: Phase diagram for ẋ = y, ẏ = x(1−x2)+ky2 with k = −√(3/2) showing the homoclinic
path in x > 0.

The origin, being a saddle, is the only equilibrium point with which homoclinic paths can be
associated. Paths through the origin are given by the choice

C = −3− 2k2

2k4 .

If k = √(3/2), then C = 0, and the corresponding phase path is

y2 = x2[1−√(2
3 )x].

The homoclinic path is shown in Figure 3.47. For x > 0,

dx
dt
= x√[1−√(2/3)x].

Separating the variables and integrating

∫
dx

x
√[1−√(2/3)x] =

∫
dt + B = t + B,

or
−2 tanh−1√[1−√(2/3)x] = t + B = t − t0,

say. Hence
x = √(3

2 )sech 2[12 (t − t0)].

• 3.67 An oscillator has an equation of motion given by ẍ + f (x) = 0, where f (x) is a
piecewise linear restoring force defined by

f (x) =
{ −x |x| ≤ a
b(xsgn (x)− a)− a |x| > a .

where a, b > 0. Find the equations of the homoclinic paths in the phase plane.
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3.67. An oscillator has the equation of motion ẍ + f (x) = 0, where

f (x) =
{ −x |x| ≤ a
b(xsgn (x)− a)− a |x| > a .

The system has equilibrium points at (0, 0) and [±a(b + 1)/b, 0]. The origin is a saddle point.
For |x| ≤ a, the differential equation is ẍ − x = 0 which is that for the linear saddle point

with separatrices y = ±x in the phase plane.
For x > a, the differential equation is

ẍ + b(x − a)− a = 0.

The phase paths are given by the equation

dy
dx
= a(b + 1)− bx

y
,

with general solution

y2 + b
(
x − a(b + 1)

b

)2

= C,

which are ellipses centred at x = a(b+ 1)/b, y = 0. The particular ellipse which links with the
separatrices in 0 < x < a at (a, 0) and (−a, 0) has the constant C defined by

a2 + b
(
a − a − a

b

)2 = C,

that is, C = a2(1+ b)/b. The separatrices join the ellipse

y2 + b
(
x − a(b + 1)

b

)2

= a2(1+ b)
b

.

Similarly, for x < −a, the matching ellipse is

y2 + b
(
x + a(b + 1)

b

)2

= a2(1+ b)
b

.

The homoclinic paths for a = b = 1 are shown in Figure 3.48.
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Figure 3.48 Problem 3.67: Homoclinic paths with a = 1, b = 1.

• 3.68 Consider the system

ẋ = y(2y2 − 3x2 + 19
9 x

4),

ẏ = y2(3x − 38
9 x

3)− (4x3 − 28
3 x

5 + 40
9 x

7).

Find the locations of its equilibrium points. Verify that the system has four homoclinic paths
given by

y2 = x2 − x4 and y2 = 2x2 − 10
9 x

4.

Show also that the origin is a higher-order saddle with separatrices in the directions with
slopes ±1 and ±√2.

3.68. The system is

ẋ = X(x, y) = y
(

2y2 − 3x2 + 19
9
x4

)
(i)

ẏ = Y (x, y) = y2
(

3x − 38
9
x3

)
−

(
4x3 − 28

3
x5 + 40

9
x7

)
. (ii)

First observe that
∂X

∂x
+ ∂Y

∂y
= 0,

which means that the system is Hamiltonian (see NODE, Section 2.8). A consequence is
that equilibrium points are either centres or saddle points. From (i), either y = 0 or

y2 = 1
2x

2
(
3− 19

9 x
2
)
.

(a) y = 0. Equation (ii) implies

x3(10x4 − 21x2 + 9) = 0.
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Hence x = 0, or x = ±
√

3
2 , or x = ±

√
3
5 . There are five equilibrium points

(0, 0),

(
±
√

3
2

, 0

)
,

(
±
√

3
5

, 0

)
.

(b) y2 = 1
2x

2
(
3− 19

9 x
2
)
. Equation (ii) implies

1
2
x2

(
3− 19

9

)(
3x − 38

9
x3

)
−

(
4x3 − 28

3
x5 + 40

9
x7

)
= 0,

or
x3(2x4 − 27x2 + 81) = 0.

The solutions of this equation x = 0, or x = ±3, or x = ± 3√
2
, but there are corresponding real

values for y if x = ±3, or x = ± 3√
2
.

The Hamiltonian H(x, y) satisfies

∂H

∂y
= y

(
2y2 − 3x2 + 19

9
x4

)
.

Therefore

H(x, y) =
(

1
2
y4 − 3

2
x2y2 + 19

9
x4y2

)
+ q(x),

where

q ′(x) = −4x3 + 28
3
x5 − 40

9
x7.

Finally, after integrating this equation, the Hamilitonian is

H(x, y) = 1
2
y4 − 3

2
x2y2 + 19

18
x4y2 + x4 − 14

9
x6 + 5

9
x8,

so that the phase paths are given by H(x, y) = C. The Hamiltonian can be factorized (use
computer algebra such as Mathematica) into

H(x, y) = 1
18
(−x2 + x4 + y2)(−18x2 + 10x4 + 9y2).

If the constant C = 0, then paths through the origin are

y2 = x2 − x4, y2 = 2x2 − 10
9
x4. (iii)
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Figure 3.49 Problem 3.68:

These are homoclinic paths associated with the origin since they pass through the origin, are
reflected in the x axis, and intersect the x axis so that they are bounded in the x direction.
Since there are four homoclinic paths associated with the origin this indicates that the origin
is a higher-order saddle point. Near the origin the directions of the homoclinic paths are given
approximately by

y2 ≈ x2, y2 ≈ 2x2; or y ≈ ±x, y ≈ ±√2x,

respectively. The phase diagram is shown in Figure 3.49.

• 3.69 Find and classify the equilibrium points of ẋ = a − x2, ẏ = −y + (x2 − a)(1− 2x)
for all a. Show that as a decreases through zero, a saddle point and a node coalesce at
a = 0 after which the equilibrium points disappear. Using the substitution y = z+ x2 − a,
determine the equations of the phase paths. Show that the phase path connecting the saddle
point and the node is y = x2−a for a > 0, Compute phase diagrams for a = 0 and a = ±1

4 .

3.69. The equilibrium points of

ẋ = a − x2, ẏ = −y + (x2 − a)(1− 2x)

occur where
a − x2 = 0, −y + (x2 − a)(1− 2x) = 0.

Hence equilibrium can only occur where x2 = a and y = 0. Thus, if

• a < 0, there are no equilibrium points;
• a = 0, there is one equilibrium point at (0, 0);
• a > 0, there are two equilibrium points at (±√a, 0).

Assume that a > 0. Let x = √a + ξ . Then the linearized approximations are

ξ̇ = a − (√a + ξ)2 ≈ −2
√
aξ ,

ẏ = −y + [(√a + ξ)2 − a] [1− 2(
√
a + ξ)] ≈ 2

√
a(1− 2

√
a)ξ − y.



3 : Geometrical aspects of plane autonomous systems 205

The parameters associated with approximation are

p = −2
√
a − 1 < 0, q = 2

√
a > 0, � = (2√a − 1)2 > 0.

Therefore (
√
a, 0) is an unstable node.

For the other equilibrium point, let x = −√a + ξ . Then the linearized approximations are

ξ̇ = 2
√
aξ , ẏ = −2

√
a(1− 2

√
a)ξ − y.

It follows that q = −2
√
a < 0, so that (−√a, 0) is a saddle point.

The differential equation for the phase paths is

dy
dx
= −y + (x2 − a)(1− 2x)

a − x2 = y

x2 − a + (2x − 1).

Let y = z+ x2 − a. Then the equation becomes

dz
dx
= z

x2 − a . (i)

• a > 0. The separable first-order equation (i) has the solution

ln |z| =
∫

dx
x2 − a =

1
2
√
a

ln
∣∣∣∣x −

√
a

x +√a
∣∣∣∣+ B.

or

|y − x2 + a|2
√
a|x +√a| = C|x −√a|.

• a = 0. Equation (i) becomes

dz
dx
= z

x2 .

The general solution is z = y − x2 + a = De−1/x .
• a < 0. Equation (i) has the general solution

ln |z| = ln |y − x2 − a| = 1√−a tan−1
[

x√−a
]
+ E.

Equation (i) also has the singular solution z = 0, or y = x2 − a, which joins the equilibrium
points (±√a, 0) for a > 0. Some typical phase paths are shown in Figures 3.50, 3.51, 3.52 for
the cases a > 0, a < 0 and a = 0.
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Figure 3.50 Problem 3.69: Phase diagram for ẋ = a − x2, ẏ = −y + (x2 − a)(1− 2x) with a = 1
4 .
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Figure 3.51 Problem 3.69: Phase diagram for ẋ = a − x2, ẏ = −y + (x2 − a)(1− 2x) with a = − 1
4 .
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Figure 3.52 Problem 3.69: Phase diagram for ẋ = a − x2, ẏ = −y + (x2 − a)(1− 2x) with a = 0.
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• 3.70 Locate and classify the equilibrium points of

ẋ = 1− x2, ẏ = −(y + x2 − 1)x2 − 2x(1− x2)

according to their linear approximations. Verify that the phase diagram has a saddle-node
connection given by y = 1−x2. Find the time solutions x(t), y(t) for this connection. Sketch
the phase diagram.

3.70. The system

ẋ = 1− x2, ẏ = −(y + x2 − 1)x2 − 2x(1− x2).

has two equilibrium points, at (1, 0) and (−1, 0).

• At (1, 0). Let x = 1+ ξ . Then the linear approximation is given by

ξ̇ = 1− (1+ ξ)2 ≈ −2ξ ,

ẏ = −[y + (1+ ξ)2 − 1](1+ ξ)2 − 2(1+ ξ)[1− (1+ ξ)2] ≈ 2ξ − y.

Hence (1, 0) is a stable node.
• At (−1, 0). Let x = −1+ ξ . Then the linear approximation is given by

ξ̇ = 1− (−1+ ξ)2 ≈ 2ξ ,

ẏ = −[y + (−1+ ξ)2 − 1](−1+ ξ)2 − 2(−1+ ξ)[1− (−1+ ξ)2] ≈ −2ξ − y.

Hence (−1, 0) is a saddle point.

The phase paths are given by the differential equation

dy
dx
= −(y + x2 − 1)x2 − 2x(1− x2)

1− x2 = − x2y

1− x2 − 2x + x2.

It can be verified that y = 1− x2 satisfies the differential equation above. It also joins the two
equilibrium points, and is, therefore, a saddle–node connection. On this path

y = dx
dt
= 1− x2,

which has the required time-solution

x = 1− e−2(t−t0)

1+ e−2(t−t0) .
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Figure 3.53 Problem 3.70: Phase diagram for ẋ = 1− x2, ẏ = −(y + x2 − 1)x2 − 2x(1− x2).

It follows that

y = ẋ = 4e−2(t−t0)

1+ e−2(t−t0) .

The phase diagram showing the saddle node connection is shown in Figure 3.53.

• 3.71 Consider the piecewise linear system

ẋ = x, ẏ = −y, |x − y| ≤ 1,
ẋ = y + 1, ẏ = 1− x, x − y ≥ 1,
ẋ = y − 1, ẏ = −1− x, x − y ≤ −1.

Locate and classify the equilibrium points of the system. By solving the linear equations in
each region and matching separatrices, show that the origin has two homoclinic paths.

3.71. The piecewise linear system is

ẋ = x, ẏ = −y, |x − y| ≤ 1,
ẋ = y + 1, ẏ = 1− x, x − y ≥ 1
ẋ = y − 1, ẏ = 1− x, x − y ≤ −1.

The system has three equilibrium points: at (0, 0) (a saddle point), at (1,−1) (a centre) and at
(−1, 1) (a centre).

• In the region |x − y| ≤ 1, the phase paths are given by the hyperbolas xy = A: the
separatrices of the saddle point are x = 0 and y = 0.

• In the region x − y ≥ 1, the phase paths are given by the circles

(x − 1)2 + (y + 1)2 = B.
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Figure 3.54 Problem 3.71: Phase diagram showing the homoclinic paths associated with the origin.

• In the region x − y ≤ −1, the phase paths are given by the circles

(x + 1)2 + (y − 1)2 = C.

The homoclinic paths can be constructed by matching circles in −x + y ≥ 1 and −x − y ≤ −1
with the separatrices x = 0, y = 0 on the discontinuity lines. Thus the circle (x−1)2+(y+1)2=1
joins the separatrices of the origin at the points (1, 0) and (0,−1) as shown in Figure 3.54.
Similarly the circles (x + 1)2 + (y − 1)2 = 1 matches the separatrices at (−1, 0) and (1, 1) to
create a second homoclinic path.

• 3.72 Obtain the differential equations for the linear system

ẋ = ax + by, ẏ = cx + dy, (ad �= bc),
in the U -plane (see Figure 3.16 in NODE) using the transformation x = 1/z, y = u/z.
Under what conditions on � = p2 − 4q, p = a + d, q = ad − bc does the system on the
U -plane have no equilibrium points?

3.72. Apply the transformation x = 1/z, y = u/z (see Section 3.3) to the linear system

ẋ = ax + by, ẏ = cx + dy, (ad �= bc).

Then

ẋ = − ż

z2 , ẏ = u̇

z
− uż

z2 ,

so that the equations become

− ż

z2 =
a

z
+ bu

z
,

u̇

z
− uż

z2 =
c

z
+ du

z
,
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or
ż = −z(a + bu), u̇ = u(d − a)+ c − bu2.

Equilibrium points occur where

z(a + bu) = 0, bu2 + (a − d)u− c = 0.

The second equation has the solutions

u = 1
2b

{
−(a − d)±√[(a − d)2 + 4bc]

}
.

This will only have real solutions if

(a − d)2 + 4bc ≥ 0, or (a + d)2 ≥ 4(ad − bc).

This is equivalent to
p2 ≥ 4q, or � ≥ 0.

The corresponding real solutions for u are only consistent with z = 0.

• 3.73 Classify all the equilibrium points of the system

ẋ = X(x, y) = (1− x2)(x + 2y), ẏ = Y (x, y) = (1− y2)(−2x + y).
Draw the isoclines X(x, y) = 0 and Y (x, y) = 0, and sketch the phase diagram for the
system. A phase path starts near (but not at) the origin. How does its path evolve as t
increases? If, on this path, the system experiences small disturbances which cause it to jump
to nearby neighbouring paths, what will eventually happen to the system?

3.73. The system

ẋ = X(x, y) = (1− x2)(x + 2y), ẏ = Y (x, y) = (1− y2)(−2x + y)

has nine equilibrium points, at

(1, 1), (1,−1), (1, 2); (−1, 1), (−1,−1), (−1,−2); (−2, 1), (2,−1); (0, 0).

The linear classification is as follows.

• (1, 1). Let x = 1+ ξ , y = 1+ η. Then the linear approximation is

ξ̇ = −4ξ , η̇ = 2η.

Hence (1, 1) is a saddle point.
• (1,−1), (−1, 1), (−1,−1) are also saddle points.



3 : Geometrical aspects of plane autonomous systems 211

–3 –2 –1 1 2 3
x

–3

–2

1

1

2

3
y

X (x, y) = 0 
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Figure 3.55 Problem 3.73: Phase diagram for ẋ = (1− x2)(x + 2y), ẏ = (1− y2)(−2x + y).

• (1, 2). Let x = 1+ ζ , y = 2+ η. Then the linear approximation is

ξ̇ = −10ξ , η̇ = 6ξ − 3η.

Therefore (1, 2) is a stable node.
• (−2, 1), (−1,−2), (2,−1) are also stable nodes.
• (0, 0). The linear approximations are

ẋ = x + 2y, ẏ = −2x + y.

Hence the origin is an unstable spiral.

Note also that the straight lines x = ±1 and y = ±1 consist of segments of phase paths.
These phase paths are also isoclines with infinite and zero slopes respectively. A further isocline
with zero slope is the line y = 2x, and a further isocline with infinite slope is the line x = −2y.

A phase path starting close to the origin will spiral out and approach asymptotically the
square with sides x = ±1, y = ±1. This path will be increasingly unstable such that a small
disturbance outwards could cause it to jump on to a stable path approaching one of the four
nodes outside the square, as shown in Figure 3.55.
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4
Periodic solutions;
averaging methods

• 4.1 By transforming to polar coordinates, find the limit cycles of the systems

(i) ẋ = y + x(1− x2 − y2), ẏ = −x + y(1− x2 − y2);

(ii) ẋ = (x2 + y2 − 1)x − y√(x2 + y2), ẏ = (x2 + y2 − 1)y + x√(x2 + y2).

and investigate their stability.

4.1. (i) The system is

ẋ = y + x(1− x2 − y2), ẏ = −x + y(1− x2 − y2). (i)

Let x = r cos θ , y = r sin θ . Then, differentiating with respect to t , we have

ẋ = ṙ cos θ − rθ̇ sin θ , ẏ = ṙ sin θ + rθ̇ cos θ .

Solve these equations for ṙ and θ̇ so that

ṙ = ẋ cos θ + ẏ sin θ , θ̇ = − ẋ
r

sin θ + ẏ

r
cos θ .

Substitution for ẋ and ẏ from (i) leads to the polar equations

ṙ = [r sin θ + r(1− r2) cos θ ] cos θ + [−r cos θ + r(1− r2)] sin θ = r(1− r2), (ii)

θ̇ = −[sin θ + (1− r2) cos θ] sin θ + [− cos θ + (1− r2) sin θ ] = −1. (iii)

The system (i) has one equilibrium point at the origin. From (ii) it can be seen that r = 1 is
a phase path representing a periodic solution taken in the clockwise sense since θ̇ is negative.
The path is a stable limit cycle since ṙ > 0 for r < 1 and ṙ < 0 for r > 1. The polar equations
for the phase paths can be obtained by integrating

dr
dθ
= ṙ

θ̇
= r(1− r2)

−1
.
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Figure 4.1 Problem 4.1(i): Phase diagram for ẋ = y + x(1− x2 − y2), ẏ = −x + y(1− x2 − y2).

Hence

ln

[
r2

|1− r2|

]
= −2θ + C,

or

r2 = Ae−2θ

1+ Ae−2θ .

where A is an arbitrary constant (positive if r2 < 1, negative if r2 > 1). The phase diagram is
shown in Figure 4.1.
(ii) The system is

ẋ = (x2 + y2 − 1)x − y√(x2 + y2), ẏ = (x2 + y2 − 1)y + x√(x2 + y2).

As in (i)

ṙ = ẋ cos θ + ẏ sin θ = r2(r2 − 1),

θ̇ = − ẋ
r

sin θ + ẏ

r
cos θ = r.

The system has one equilibrium point, at the origin. Also the circle r = 1 is a limit cycle. Since
ṙ < 0 for r < 1, and ṙ > 0 for r > 1, the limit cycle is unstable. The phase paths are given by
the equation

dr
dθ
= ṙ

θ̇
= r(1− r2)

−1
,

which is the same equation as in (i). Therefore the phase diagram is the same as that shown in
Figure 4.1 except that the direction of the phase paths is reversed.
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• 4.2 Consider the system ẋ = y + xf (r2), ẏ = −x + yf (r2), where r2 = x2 + y2 and f (u)
is continuous on u ≥ 0. Show that r satisfies

d(r2)

dt
= 2r2f (r2).

If f (r2) has n zeros, at r = rk, k = 1, 2, . . . , n, how many periodic solutions has the system?
Discuss their stability in terms of the sign of f ′(r2

k ).

4.2. The system is
ẋ = y + xf (r2), ẏ = −x + yf (r2),

which has one equilibrium point at the origin. From Problem 1(i)

ṙ = ẋ cos θ + ẏ sin θ = rf (r2), (i)

θ̇ = − ẋ
r

sin θ + ẏ

r
cos θ = −1. (ii)

From (i) it follows that

r
dr
dt
= 1

2
d(r2)

dt
= r2f (r2) (iii)

as required. All solutions of f (r2) = 0 will be concentric circular phase paths of the system. If
there are n solutions then there will be n periodic solutions. If f ′(r2

k ) > 0 then there will be a
neighbourhood including the circle in which f (r2

k ) < 0 for r < rk, and f (r2
k ) > 0 for r > rk.

Hence we conclude from (iii) that r is decreasing for r < rk, and increasing for r > rk implying
that r = rk is unstable. By a similar argument r = rk is stable if f ′(r2

k ) < 0.

• 4.3 Apply the energy balance method of NODE, Section 4.1 to each of the following
equations where 0 < ε � 1, and find the amplitude and stability of any limit cycles:

(i) ẍ + ε(x2 + ẋ2 − 1)ẋ + x = 0;

(ii) ẍ + ε(1
3 ẋ

3 − ẋ)+ x = 0;

(iii) ẍ + ε(x4 − 1)ẋ + x = 0;

(iv) ẍ + ε sin(x2 + ẋ2)sgn (ẋ)+ x = 0;

(v) ẍ + ε(|x| − 1)ẋ + x = 0;

(vi) ẍ + ε(ẋ − 3)(ẋ + 1)ẋ + x = 0;

(vii) ẍ + ε(x − 3)(x + 1)ẋ + x = 0.

4.3. The method can be applied to equations of the form (see Section 4.1)

ẍ + εh(x, ẋ)+ x = 0,
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where 0 < ε � 1. An approximate solution x(t) ≈ a cos t , y = ẋ ≈ −a sin t , corresponding to
the unperturbed centre (ε = 0) ẍ + x = 0, is substituted into the energy-balance equation

g(a) = ε
∫ 2π

0
h(x(t), y(t))y(t))dt = 0

to determine any solutions for the amplitude a. All problems have one equilibrium point, at
the origin.

(i) ẍ + ε(x2 + ẋ2 − 1)ẋ + x = 0. In this case h(x, y) = (x2 + y2 − 1)y. Therefore

g(a) = −a2ε

∫ 2π

0
(a2 − 1) sin2 tdt = a2επ(1− a2).

The equation has one non-zero positive solution a = 1 which will be the amplitude, for ε small,
of a limit cycle: note that in this particular example the solution is exact. To investigate its
stability we consider the sign of g′(1). Thus

g′(a) = d
da
[ε(a2 − a4)] = ε(2a − 4a3).

Therefore, g′(1) = −2επ < 0, which implies that the limit cycle is stable

(ii) ẍ + ε(1
3 ẋ

3 − ẋ)+ x = 0. In this example h(x, y) = (1
3y

3 − y). Therefore

g(a) = aε
∫ 2π

0

(
−1

3
a3 sin3 t + a sin t

)
sin tdt

= aε
[
−1

3
a3

∫ 2π

0
sin4 tdt +

∫ 2π

0
sin2 dt

]

= aε
[
−a

3

6

∫ 2π

0
(1+ cos 2t)2dt + a

2

∫ 2π

0
(1+ cos 2t)dt

]

= aεπ [−1
2a

3 + a].

Hence the system has a periodic solution of amplitude a = √2 approximately. The derivative

g′(a) = επ(−2a3 + 2a),

so that g′(
√

2) = −2επ
√

2 < 0. The limit cycle is stable.

(iii) ẍ + ε(x4 − 1)ẋ + x = 0. In this case h(x, y) = (x4 − 1)y. Then

g(a) = εa2
∫ 2π

0
(1− a4 cos4 t) sin2 tdt

= εa2
∫ 2π

0

[
1
2
(1− sin 2t)− a4

8
(1+ cos 2t) sin2 2t

]
dt
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= εa2
∫ 2π

0

[
1
2
(1− sin 2t)− a4

16
(1+ cos 2t)(1− cos 4t)

]
dt

= εa2
[
− 1

16
(a4 − 8)t − 1

64
(16+ a4) sin 2t + 1

64
a4 sin 4t + 1

192
a4 sin 6t

]2π

0

= ε a
2π

8
(8− a4)

Therefore the system has a periodic solution with amplitude a = 23/4 approximately. The
derivative

g′(a) = επ

8
(16a − 6a5),

so that g′(23/4) = −4πε23/4 < 0. The limit cycle is stable.

(iv) ẍ + ε sin(x2 + ẋ2)sgn (ẋ)+ x = 0. In this problem h(x, y) = sin(x2 + y2)sgn (y). Then

g(a) = aε
∫ 2π

0
sin[a2(cos2 t + sin2 t)]sgn (−a sin t) sin tdt

= aε sin(a2)

[∫ π

0
(− sin t)dt +

∫ 2π

π

sin tdt

]

= −2aε sin(a2)

The system has an infinite set of limit cycles, of radius a = an = √nπ , (n = 1, 2, 3, . . .). The
derivative

g′(a) = −2ε[sin(a2)+ 2a2 cos(a2)],

so that g′(an) = −4εnπ cos(nπ), which implies that the limit cycle a = an is unstable if n is
odd, and stable if n is even.

(v) ẍ + ε(|x| − 1)ẋ + x = 0. In this problem h(x, y) = (|x| − 1)y. Then

g(a) = −aε
∫ 2π

0
(a| cos t | − 1) sin2 tdt

= −aε
[∫ 1

2π

0
a cos t sin2 tdt −

∫ 3
2π

1
2π

a cos t sin2 tdt

+
∫ 2π

3
2π

a cos t sin2 tdt −
∫ 2π

0
sin2 tdt

]
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= −aε
[a

3
−

{
−a

3
− a

3

}
+ a

3
− π

]

= −aε
[

4a
3
− π

]

The system has one limit cycle of approximately radius a = 3π/4. The derivative

g′(a) = ε
(
−8

3a + π
)

,

so that g′(3π/4) = −πε < 0 which implies the limit cycle is stable.

(vi) ẍ + ε(ẋ − 3)(ẋ + 1)ẋ + x = 0. In this case h(x, y) = (y − 3)(y + 1)y. Then

g(a) = a2ε

∫ 2π

0
(a sin t + 3)(−a sin t + 1) sin2 tdt

= a2ε

∫ 2π

0
(a sin4 t − 2a sin3 t + 3 sin2 t)dt

= a2ε
[

3
4a

2π + 0+ 3π
]

= 3
4a

2ε(a2 + 4)

There are no non-zero real solutions of g(a) = 0: hence energy-balance suggests that the system
has no limit cycles

(vii) ẍ + ε(x − 3)(x + 1)ẋ + x = 0. In this case h(x, y) = (x − 3)(x + 1)y. Then

g(a) = −a2ε

∫ 2π

0
(a cos t − 3)(a cos t + 1)dt

= −a2ε

∫ 2π

0
(a2 cos2 t sin2 t − 2a cos t sin2 t − 3 sin2 t)dt

= −a2ε
[

1
4a

2π + 0− 3π
]
= 1

4a
2επ(12− a2).

The system has one limit cycle of radius a = 2
√

3. The derivative

g′(a) = επa(6− a2),

so that g′(2
√

3) = −12ε
√

3 < 0. Hence the limit cycle is stable.
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• 4.4 For the equation ẍ+ ε(x2+ ẋ2− 4)ẋ+ x = 0, the solution x = 2 cos t is a limit cycle.
Test its stability, using the method of NODE, Section 4.1, and obtain an approximation to
the paths close to the limit cycle by the method of Section 4.3.

4.4. It can be verified that the equation

ẍ + ε(x2 + ẋ2 − 4)ẋ + x = 0

has the exact periodic solution x = 2 cos t . In this problem

h(x, y) = (x2 + y2 − 4)y

and (see eqn (4.8))

g(a) = εa
∫ 2π

0
h(a cos t ,−a sin t) sin tdt

= −εa2
∫

0
(a cos2 t + a sin2 t − 4) sin2 tdt

= −εa2(a2 − 4)
∫ 2π

0
sin2 tdt

= επa2(4− a2).

Thus g(a) = 0 for a = 2, predicts that the exact solution (above) is the only periodic solution,
and therefore is a limit cycle. The derivative

g′(a) = επ(8a − 4a3),

so that g′(2) = −16πε < 0. Hence the limit cycle is stable.
From NODE, Section 4.3, the amplitude a(θ) of paths close to the limit cycle are given

approximately by the differential equation

da
dθ
= εp0(a),

where (see eqns (4.27a,b) in NODE)

p0(a) = 1
2π

∫ 2π

0
h{a cos u, a sin u} sin udu

= 1
2π
(a2 − 4)a

∫ 2π

0
sin udu

= 1
2 (a

2 − 4)a.
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Hence the equation for a becomes the separable equation

da
dθ
= εp0(a) = 1

2 (a
2 − 4)a.

Separating the variables and integrating

∫
da

a(a2 − 4)
= 1

2
ε

∫
dθ = 1

2
εθ + C,

or
1
8

ln

∣∣∣∣∣a
2 − 4
a2

∣∣∣∣∣ = 1
2
εθ + C.

Hence

1− 4
a2 = Ae4εθ =

(
1− 4

a2
1

)
e4εθ ,

assuming that a = a1 for θ = 0. Finally the polar equation of the phase paths close to the limit
cycle is

a2 = 4a2
1

a2
1 − (a2

1 − 4)e4εθ
.

By NODE, (4.21), the period of the limit cycle is given approximately by

T ≈ 2π − ε

a0

∫ 2π

0
h(a0 cos θ , a0 sin θ) cos θdθ ,

where a0 is the amplitude of the limit cycle. Hence the approximate theory predicts that

T ≈ 2π + ε
∫ 2π

0
(a2

0 − 4)a0 sin u cos udu+O(ε2) = 2π +O(ε2),

since a0 = 2. The time solution x = 2 cos t has period 2π exactly, showing that the error in the
approximation has magnitude of order ε2.

• 4.5 For the equation ẍ + ε(|x| − 1)ẋ + x = 0, find approximately the amplitude of the
limit cycle and its period, and the polar equations for the phase paths near the limit cycle.

4.5. For the equation

ẍ + ε(|x| − 1)ẋ + x = 0,
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h(x, y) = (|x| − 1)y. The unperturbed equation (ε = 0) has the solution x = a cos t . Then the
function g(a) (Section 4.1) is given by

g(a) = εa
∫ 2π

0
h(a cos t ,−a sin t) sin tdt

= −εa2
∫ 2π

0
(|a cos t | − 1) sin2 tdt

= −4εa2
∫ 1

2π

0
(a cos t sin2 t − sin2 t)dt

= −4εa2
(

1
3
a − 1

4
π

)
.

Hence the amplitude of the limit cycle is approximately a = a0 = 3
4π . The derivative of g(a) is

given by
g′(a) = −4εa2 + 2εaπ ,

so that g′(3
4π) = −3

4επ
2 < 0. Hence the limit cycle is stable.

From NODE, Section 4.3, the amplitude a(θ) of paths close to the limit cycle are given
approximately by the differential equation

da
dθ
= εp0(a),

where (see eqns (4.27a,b) in NODE)

p0(a) = 1
2π

∫ 2π

0
h{a cos u, a sin u} sin udu

= a

2π

∫ 2π

0
(a| cos u| − 1) sin2 udu

= 2a
π

(
1
3
a − 1

4
π

)
.

Hence
da
dθ
= 2εa

3π
(a − a0).

Separating and integrating

∫
da

a(a − a0)
= 1
a0

∫ (
1

a − a0
− 1
a

)
da = 2ε

3π

∫
dθ = 2εθ

3π
+ C.

Therefore

ln
∣∣∣∣a − a0

a

∣∣∣∣ = 2a0εθ

3π
+ C,
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or, if a = a1 where θ = 0,

1− a0

a
=

(
1− a0

a1

)
e2a0εθ/(3π).

Finally, the polar equation of the phase paths close to the limit cycle are given by

a = a1a0

a1 − (a1 − a0)e2a0εθ/(3π)
.

The period T is given by

T = 2π − ε

a0

∫ 2π

0
(a0| cos u| − 1)a0 sin u cos udu+O(ε2)

= 2π − 0+O(ε2) = 2π +O(ε2)

• 4.6 Repeat Problem 4.5 with Rayleigh’s equation, ẍ + ε
(

1
3 ẋ

3 − ẋ
)
+ x = 0.

4.6. For Rayleigh’s equation

ẍ = ε
(

1
3
ẋ3 − ẋ

)
+ x = 0,

h(x, y) = 1
3y

2 − y. Follow the method given in Problem 4.5. The function g(a) is given by

g(a) = −εa2
∫ 2π

0

(
1
3
a2 sin4 t − sin2 t

)
dt

= −εa2
[

1
3
a2

(
3
8
t − 1

4
sin 2t + 1

32
sin 4t

)
− 1

2
t + 1

4
sin 2t

]2π

0

= −εa2π(a2 − 4)

Therefore the amplitude of the limit cycle is a = a0 = 2. The derivative

g′(a) = −επ(4a3 − 8a),

so that g′(2) = −16επ < 0. This method implies that the limit cycle is stable.
From NODE, Section 4.3, the amplitude a(θ) of paths close to the limit cycle are given

approximately by the differential equation

da
dθ
= εp0(a),
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where (see eqns (4.27a,b))

p0(a) = 1
2π

∫ 2π

0
h{a cos u, a sin u} sin udu

= 1
2π

∫ 2π

0

(
1
3
a4 sin4 u− a2 sin2 u

)
du

= 1
8 (a

4 − 4a2).

Hence

da
dθ
= ε

8
a2(a2 − 4).

Separating the variables and integrating

∫
da

a2(a2 − 4)
= ε

8

∫
dθ = ε

8
θ + C,

or ∫ [
− 1

4a2 +
1
16

1
a − 2

− 1
16

1
a + 2

]
da = ε

8
θ + C.

Therefore

1
4a
+ 1

16
ln

[
a − 2
a + 2

]
= ε

8
θ + C

is the polar equation of the spiral phase paths close to the limit cycle
The period T is given by

T = 2π − ε

2

∫ 2π

0

(
1
3

8 sin3 u− 2 sin u
)

cos udu+O(ε2) = 2π +O(ε2).

• 4.7 Find approximately the radius of the limit cycle, and its period, for the equation

ẍ + ε(x2 − 1)ẋ + x − εx3 = 0, (0 < ε � 1).

4.7. The van der Pol equation with nonlinear restoring term is

ẍ + ε(x2 − 1)ẋ + x − εx3 = 0.
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Assume that 0 < ε � 1. In the usual notation h(x, y) = (x2 − 1)y − x3. For the approximate
solution x = a cos t , y = ẋ = −a sin t , the energy change equation (4.8) becomes

g(a) = εa
∫ 2π

0
h(a cos t ,−a sin t) sin tdt

= εa
∫ 2π

0
[−a(a2 cos2 t − 1) sin t − a3 cos3 t] sin tdt

= εa2
∫ 2π

0
[−a3 cos2 t sin2 t + sin2 t − a2 cos3 t sin t]dt

= εa2
[
−1

4
a2π + π − 0

]
= 1

4
εa2(4− a2)

Then g(a) = 0 where a = a0 = 2, which is the approximate amplitude of the limit cycle. The
derivative is

g′(a) = εa(2− a2),

so that g′(2) = −4ε < 0. Therefore the limit cycle is stable.
From NODE, (4.21), the period T is given by

T = 2π − ε

a0

∫ 2π

0
h(a0 cos θ , a0 sin θ) cos θdθ

= 2π − ε

2

∫ 2π

0

[
a3 cos3 θ sin θ − a sin θ cos θ − a3 cos4 θ

]
dθ

= 2π − 1
2
ε

∫ 2π

0

[
0− 0− a3 cos4 θ

]
dθ

= 2π + 1
8
εa3

∫ 2π

0
(1+ 2 cos 2θ + cos2 2θ)dθ

= 2π + 3
8
πa3ε +O(ε2).

• 4.8 Show that the frequency-amplitude relation for the pendulum equation, ẍ+sin x = 0,
is ω2 = 2J1(a)/a, using the methods of NODE, Section 4.4 or 4.5. (J1 is the Bessel function
of order 1, with representations

J1(a) = 2
π

∫ 1
2π

0
sin(a cos u) cos udu =

∞∑
n=0

(−1)n(1/2a)2n+1

n!(n+ 1)!

)
.

Show that, for small amplitudes, ω = 1− 1
16a

2.
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4.8. For the pendulum equation ẍ + sin x = 0, assume a solution of the form x = a cosωt .
Expand sin(a cosωt) as a Fourier series of period 2π/ω. Thus

sin(a cosωt) = 1
2a0 + a1 cosωt + b1 sinωt + · · · , (i)

where

a0 = ω

π

∫ 2π/ω

0
sin(a cosωt)dt = 0,

b1 = ω

π

∫ 2π/ω

0
sin(a cosωt) sinωtdt = 0,

a1 = ω

π

∫ 2π/ω

0
sin(a cosωt) cosωtdt

= 1
π

∫ 2π

0
sin(a cos u) cos udu

= 4
π

∫ 1
2π

0
sin(a cos u) cos udu = 2J1(a), (ii)

where J1(a) is the Bessel function of order 1. The Bessel function has the power series expansion

J1(a) =
∞∑
n=0

(−1)n(1/2a)2n+1

n!(n+ 1)!

(see G. N. Watson: A Treatise on the Theory of Bessel Functions, Cambridge University Press
(1966), Ch. 2). Therefore, from (i) and (ii), sin(a cosωt) ≈ 2J1(a) cosωt . The equivalent linear
equation becomes

ẍ + 2J1(a)

a
x = 0,

which has the angular frequency ω where

ω = √2J1(a) ≈ 1− 1
16a

2

for small amplitude a, using the power series for the Bessel function.

• 4.9 In the equation ẍ + εh(x, ẋ) + g(x) = 0, suppose that g(0) = 0, and that in some
interval |x| < δ, g is continuous and strictly increasing. Show that the origin for the equation
ẍ + g(x) = 0 is a centre. Let ζ(t , a) represent its periodic solutions near the origin, where
a is a parameter which distinguishes the solutions, say the amplitude. Also, let T (a) be the
corresponding period.
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By using an energy balance method show that the periodic solutions of the original equation
satisfy∫ T (a)

0
h(ζ , ζ̇ )ζ̇dt = 0.

Apply this equation to obtain the amplitude of the limit cycle of the equation

ẍ + ε(x2 − 1)ẋ + ν2x = 0.

4.9. The conservative system ẍ + g(x) = 0 has one equilibrium point, at the origin. The
associated potential energy can be expressed in the form

V(x) =
∫ x

0
g(u)du

(see NODE, Section 1.3). Since g(x) is continuous and strictly increasing the origin is a minimum
value of the potential energy so that the origin is a centre covering the entire phase plane for
this conservative system.

Let the general periodic solution of this equation be x = ζ(t , a), where a is its amplitude. For
the full equation,

ẍ + εh(x, ẋ)+ g(x) = 0,

the energy change over one period is, as in Sections 1.5 and 4.1 given by,

E(T (a))− E(0) = −ε
∫ T (a)

0
h(ζ(t , a), ζ̇ (t , a))ζ̇ (t , a)dt .

The energy change is zero if

∫ T (a)

0
h(ζ(t , a), ζ̇ (t , a))ζ̇ (t , a)dt = 0,

which determines the parameter a.
In the application, g(x) = ν2x. Therefore ζ(t) = a cos νt , T (a) = 2π/ν and h(x, y) =

(x2 − 1)y. The energy balance equation above becomes

∫ 2π/ν

0
(a2 cos2 νt − 1) sin2 νtdt = π(a2 − 1)

4ν
= 0.

Therefore, approximately, the amplitude of the limit cycle is given by a = 2.
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• 4.10 For the following equations, show that, for small ε the amplitude a(t) satisfies
approximately the equation given.

(i) ẍ + ε(x4 − 1)ẋ + x = 0, 16ȧ = −εa(a4 − 16);

(ii) ẍ + ε sin(x2 + ẋ2)sgn (ẋ)+ x = 0, πȧ = −ε2a sin(a2);

(iii) ẍ + ε(x2 − 1)ẋ3 + x = 0, 16ȧ = −εa3(a2 − 6).

4.10. Use eqns (4.28), (4.24) in NODE, namely

da
dt
= −εp0(a), (i)

p0(a) = 1
2π

∫ 2π

0
h(a cos u, a sin u) sin udu. (ii)

(i) ẍ + ε(x4−)ẋ + x = 0. In this problem, h(x, y) = (x4 − 2)y. Therefore (ii) becomes

p0(a) = a

2π

∫ 2π

0
(a2 cos4 u− 2) sin2 udu = a

16
(a4 − 16).

Hence the differential equation for a is

da
dt
= −εa(a4 − 16),

close to the limit cycle, which has amplitude 2.

(ii) ẍ+ ε sin(x2+ ẋ2)sgn (ẋ)+ x = 0. In this example, h(x, y) = sin(x2+ y2)sgn (y). Therefore
(ii) becomes

p0(a) = a

2π

∫ 2π

0
sin(a2 cos2 u+ a2 sin2 u) sin u sgn (−a sin u)du

= −a sin(a2)

2π

∫ 2π

0
sin u sgn (a sin u)du

= − 2
π
a2 sin(a2)

Therefore the differential equation for a is

π
da
dt
= −2aε sin(a2).

The system has an infinite set of limit cycles with amplitudes a = √nπ , (n = 1, 2, 3, . . .).
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(iii) ẍ + ε(x2 − 1)ẋ3 + x = 0. In this example, h(x, y) = (x2 − 1)y3. Therefore (ii) becomes

p0(a) = a3

2π

∫ 2π

0
(a2 cos2 u− 1) sin4 udu

= a3

16
(a2 − 6)

Therefore the differential equation for a is

da
dt
= −a

3ε

16
(a2 − 6).

The limit cycle has amplitude
√

3.

• 4.11 Verify that the equation ẍ + εh(x2 + ẋ2 − 1)ẋ + x = 0 where h(u) is differentiable
and strictly increasing for all u, and h(0) = 0, has the periodic x = cos(t + α) for any α.
Using the method of slowly varying amplitude show that this solution is a stable limit cycle
when ε > 0.

4.11. The system

ẍ + ε(x2 + ẋ2 − 1)ẋ + x = 0

where h(u) is strictly increasing and h(0) = 0, has one equilibrium point, at (x, y) = (0, 0) in
the usual phase plane. That the equation has the periodic solution x = cos(t + α), where α is
arbitrary, can be verified by direct substitution. Since the system is autonomous, we can put
α = 0 without loss. From NODE, eqn (4.8), g(a) is given by

g(a) = −εa2
∫ 2π

0
h(a2 cos2 t + a2 sin2 t − 1) sin2 tdt

= −εa2h(a2 − 1)
∫ 2π

0
sin2 tdt

= −επa2h(a2 − 1)

Its derivative is

g′(a) = −2aεπh(a2 − 1)− 2a3επh′(a2 − 1).

Therefore g′(1) = −2επh′(0) < 0, which implies that the limit cycle is stable.
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• 4.12 Find, by the method of NODE, Section 4.5, the equivalent linear equation for

ẍ + ε(x2 + ẋ2 − 1)ẋ + x = 0.

Show that it gives the limit cycle exactly. Obtain from the linear equation the equations of
the nearby spiral paths.

4.12. Consider the equation

ẍ + ε(x2 + ẋ2 − 1)ẋ + x = 0, (i)

Suppose x ≈ a cosωt (the equation is autonomous, so the phase is immaterial). For this solution
the damping term

ε(x2 + ẋ2 − 1)ẋ = −ε(a2 cos2 ωt + a2ω2 sin2 ωt − 1)aω sinωt

= 1
4aωε[(4− a2 − 3a2ω2) sinωt + (a2ω2 − a2) sin 3ωt],

in terms of multiple angles (really a Fourier series expansion). Neglecting the higher harmonic
(it turns out later that its coefficient is zero anyhow), and using ẋ = −aω sinωt , the damping
term is equivalent to

ε(x2 + ẋ2 − 1)ẋ ≈ 1
4aωε(4− a2 − 3a2ω2) sinωt

= −1
4ε(4− a2 − 3a2ω2)ẋ.

Hence the equivalent linear equation is

ẍ − 1
4ε(4− a2 − 3a2ω2)ẋ + x = 0. (ii)

The damping term vanishes if 4 − a2 − 3a2ω2 = 0 leaving the simple harmonic equation
ẍ + x = 0, which has frequency ω = 1. Hence the amplitude of the limit cycle is a = 1. Since
eqn (i) has the exact solution x = cos t , the equivalent linear equation gives the exact periodic
solution in this case.

Equation (ii) becomes

ẍ − ε(1− a2)ẋ + x = 0. (iii)

Consider a solution on a nearby phase path for which x(0) = a0, ẋ(0) = 0, where |a0 − 1|
is small. Put a = a0 into differential equation (iii). The characteristic equation of this linear
damped equation is

m2 − ε(1− a2
0)ẋ + x = 0, (iv)
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which has the solutions

m1
m2

}
= 1

2

[
ε(1− a2

0)± i
√{4− ε2(1− a2

0)
2}
]
= α ± iβ,

say. The general solution of (iv) is

x = eαt [A cosβt + B sin βt],

for which the initial conditions imply

a0 = A, 0 = αA+ βB.

Hence A = a0 and B = −a0α/β, so that the required solution is

x = a0

β
eαt [β cosβt − α sin βt].

• 4.13 Use the method of equivalent linearization to find the amplitude and frequency of
the limit cycle of the equation

ẍ + ε(x2 − 1)ẋ + x + εx3 = 0, 0 < ε � 1.

Write down the equivalent linear equation.

4.13. (See NODE, Section 4.5.) Consider the equation

ẍ + ε(x2 − 1)ẋ + x + εx3 = 0. (i)

Since the system is autonomous, we need only consider the solution x ≈ a cosωt . Substitute
into (i) so that

ẍ + ε(x2 − 1)ẋ + x + εx3 = 1
4a(4− 4ω2 + 3a2ε) cosωt

+1
4aωε(4− a2) sinωt + higher harmonics

The coefficients of the first harmonics vanish if

4− 4ω2 + 3a2ε = 0, (ii)

4− a2 = 0. (iii)

Hence from (iii), the amplitude of the periodic solution is approximately a = 2 and from (ii)
its frequency is

ω2 = 1+ 3a2ε = 1+ 3ε.
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For small ε, ω ≈ 1+ 3
2ε. The equation has a periodic soltution given approximately by

x = 2 cos
(
1+ 3

2ε
)
t .

Putting x = a cosωt , nonlinear terms in (i) can be expressed as follows:

ε(x2 − 1)ẋ = −εaω(a2 cos2 ωt − 1) sinωt = 1
4aωε(a

2 − 4) sinωt + (higher harmonics),

≈ 1
4ε(a

2 − 4)ẋ

εx3 = εa3 cos3 ωt = 3
4εa

3 cosωt + (higher harmonics) ≈ 3
4εa

2x.

Finally the equivalent linear equation is

ẍ + 1
4ε(4− a2)ẋ +

(
1+ 3

4εa
2
)
x = 0.

• 4.14 The equation ẍ+x3 = 0 has a centre at the origin in the phase plane (with ẋ = y)

(i) Substitute x = a cosωt to find by the harmonic balance method the frequency–amplitude
relation ω = √3a/2.

(ii) Construct, by the method of equivalent linearization, the associated linear equation, and
show how the processes (i) and (ii) are equivalent.

4.14. The equation ẍ + x3 = 0 has one equilibrium point at the origin, which is a centre.

(i) Let x ≈ a cosωt , where a and ω are constants. Then

ẍ + x3 = −aω2 cosωt + 1
4 (3a

3 cosωt + a3 cos 3ωt)

=
(
−aω2 + 3

4a
3
)

cosωt + higher harmonic.

The coefficient of cosωt is zero if ω = 1
2

√
3a, which gives the approximate relation between

amplitude and frequency.

(ii) Since, if x = a cosωt ,

x3 = 1
4 (3a

3 cosωt + higher harmonic),

we replace the cube term by 3
4a

2x. Hence the equivalent linear equation is

ẍ + 3
4a

2x = 0.

From the coefficient of x, it can be confirmed that ω = 1
2

√
3a as in (i).
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• 4.15 The displacement x of relativistic oscillator satisfies

m0ẍ + k(1− (ẋ/c)2)3/2x = 0.

Show that the equation becomes ẍ + (α/a)x = 0 when linearized with respect to the
approximate solution x = a cosωt by the method of equivalent linearization, where

α = 1
π

∫ 2π

0

ka

m0
cos2 θ

(
1− a2ω2

c2 sin2 θ

)3/2

dθ .

Confirm that, when a2ω2/c2 is small, the period of the oscillations is given approximately
by

2π
√(m0

k

)(
1+ 3a2k

16m0c
2

)
.

4.15. The relativistic oscillator has the equation

m0ẍ + k
[

1−
(
ẋ

c

)2
]3/2

= 0.

If x = a cosωt we require the first cosine term, namely α cosωt , of the Fourier series for

q(t) = k

m0

[
1−

(
aω sinωt

c

)2
]3/2

cosωt .

Thus

α = ωak

πm0

∫ 2π/ω

0

[
1− a2ω2

c2 sin2 ωt

]3/2

cos2 ωtdt

= ka

πm0

∫ 2π

0

[
1− a2ω2

c2 sin2 θ

]3/2

cos2 θdθ (putting ωt = θ )

The equivalent linear equation becomes

ẍ +
(α
a

)
x = 0,

as required, so that ω2 = α/a.
For a2ω2/c2 small,

[
1− a2ω2

c2 sin2 θ

]3/2

= 1− 3a2ω2

2c2 sin2 θ + · · · .
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Therefore

α ≈ ka

πm0

∫ 2π

0

[
cos2 θ − 3a2ω2

2c2 sin2 θ cos2 θ

]
dθ

= ka

πm0

[
π − 3a2ω2

8c2

∫ 2π

0
sin2 2θdθ

]

= ka

m0

[
1− 3a2ω2

8c2

]
.

The period T is given approximately by

T = 2π
ω
= 2π

√
a

α
= 2π

√
m0

k

(
1− 3a2ω2

8c2

)−1/2

≈ 2π

√
m0

k

(
1+ 3a2ω2

16c2

)

using the binomial expansion.

• 4.16 Show that the phase paths ẍ + (x2 + ẋ2)x = 0, ẋ = y, are given by

e−x2
(y2 + x2 − 1) = constant.

Show that the surface e−x2
(y2+ x2− 1) = z has a maximum at the origin, and deduce that

the origin is a centre.
Use the method of harmonic balance to obtain the frequency–amplitude relation ω2 =

3a2/(4 − a2) for a < 2, assuming solutions of the approximate form a cosωt . Verify that
cos t is an exact solution, and that ω = 1, a = 1 is predicted by harmonic balance.

Plot some exact phase paths to indicate where the harmonic balance methods likely to be
unreliable.

4.16. The phase paths of the equation

ẍ + (x2 + ẋ2)x = 0, (i)

are given by the differential equation

dy
dx
= − (x

2 + y2)x

y
.

The equation can be reorganized into

d(y2)

dx
+ 2xy2 = −2x3,
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which is of integrating-factor type. Hence

d(y2ex
2
)

dx
= −2x3ex

2
,

which can be integrated as follows:

y2ex
2 = −2

∫
x3ex

2
dx = (1− x2)ex

2 + C.

Hence the phase paths are given by

e−x2
(y2 + x2 − 1) = constant.

The system has one equilibrium point at the origin.
Let z = e−x2

(y2 + x2 − 1). Since

∂z

∂x
= 2e−x2

(2− x2 − y2),
∂z

∂y
= 2ye−x2

.

Clearly z has a stationary point at (0, 0,−1). Near the origin

z = e−x2
(y2 + x2 − 1) ≈ (1− x2)(y2 + x2 − 1) ≈ −1+ 2x2 + y2 > −1

for 0 < |x|, |y| � 1. Hence z has a minimum at (0, 0, 1), which means that locally the phase
paths are closed about the equilibrium point implying that the origin is a centre.

Suppose that x(t) is approximated by its first harmonic, x ≈ a cos t , where a, ω are constant,
with initial conditions x(0) = a > 0, ẋ(0) = 0. Then

(x2 + ẋ2)x = a3(cos2 ωt − ω2 sin2 ωt) cosωt

= 1
4a

3(3+ ω2) cosωt + higher harmonics (ii)

and
ẍ = −aω2 cosωt + higher harmonics. (iii)

Neglecting the higher harmonics, eqn (i) becomes

{
−aω2 + 1

4a
3(3+ ω2)

}
cosωt = 0

for all t. Therefore the relation between the amplitude a and the circular frequency ω on a
particular path is

a2 = 4ω2

3+ ω2 or ω2 = 3a2

4− a2 . (iv)
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–1 1
x

–1

1

y

Figure 4.2 Problem 4.16: Phase diagram for ẋ = y, ẏ = −(x2 + y2)x is given by the solid curves: the dashed curves
represent paths obtained for the equivalent linear equation (v).

In terms of t we than have, from (iv)

x(t) ≈ 2ω
(3+ ω2)1/2

cosωt ,

(or in terms of amplitude, x(t) ≈ a cos
[√

3at/(
√
(4− a2)

]
).

Alternatively, we may use (ii) along with x = a cosωt , giving

(x2 + ẋ2)x = 1
4a

2(3+ ω2)x,

to approximate to (i) by the equivalent linear equation

ẍ + 1
4a

2(3+ ω2)x = 0. (v)

The solutions of (v) take the required form x(t) = a cosωt only if ω and a are related by
a2 = 4ω2/(3+ω2), which is consistent with (iv). The exact phase paths are shown in Figure 4.2,
which can be compared with the dashed lines given by the equivalent linear equation (v).
Inaccuracies grow for amplitudes greater than about 1.2.

• 4.17 Show, by the method of harmonic balance, that the frequency–amplitude relation
for the periodic solutions of the approximate form a cosωt , for

ẍ − x + αx3 = 0, α > 0,

is ω2 = 3
4αa

2 − 1.
By analysing the phase diagram, explain the lower bound 2/

√
(3α) for the amplitude of

periodic motion. Find the equation of the phase paths, and compare where the separatrix
cuts the x-axis. with the amplitude 2/

√
(3α).
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4.17. The system
ẍ − x + αx3 = 0, α > 0

has equilibrium points at x = 0 (saddle point), ±1/
√
α (centres). Let x = a cosωt . Then

αx3 = αa3 cos3 ωt = 3
4αa

3 cosωt + higher harmonic.

The equivalent linear equation becomes

ẍ + (3
4αa

2 − 1)x = 0. (i)

Hence the frequency amplitude relation is

ω2 = 3
4αa

2 − 1. (ii)

The actual phase paths are given by solutions of the equation

dy
dx
= x − αx3

y
, (iii)

which is a separable equation with general solution

y2 = x2 − 1
2x

4 + C.

Paths through the saddle point at the origin occur for C = 0 given by y2 = x2 − 1
2αx

4. These
are two homoclinic paths each surrounding a centre as shown in Figure 4.3, and they intersect
the x axis at x = ±√(2α). There are periodic solutions which surround these homoclinic paths,
and it is these which are approximated to by the harmonic balance above. Since ω2 must be
positive, eqn (ii) implies that these amplitudes must not fall below 2/

√
(3α). There is some

–3 –2 – 1 1 2 3
x

–

y

–6

–4

2

2

4

6

Figure 4.3 Problem 4.17: Phase diagram for ẋ = y, ẏ = x−αx3, with α = 1, is given by the solid curves: the dashed
curves represent paths obtained for the equivalent linear equation (ii).
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discrepancy between these numbers since
√

2 = 1.414 . . . and 2/
√

3 = 1.154 . . . . From (i), the
approximate equations for the phase paths are given by the ellipses

x2

a2 +
y2

a2(3
4αa

2 − 1)
= 1. (iv)

Comparison between the exact phase paths and the approximate ones obtained by harmonic
balance are shown in Figure 4.3. The accuracy improves for larger amplitudes, but is not good
for phase paths outside but near to the homoclinic paths.

Approximations for the phase paths about the centres at (±1, 0) can be found by finding c
and a in the approximation x = c + a cosωt applied in harmonic balance.

• 4.18 Apply the method of harmonic balance to the equation ẍ + x − αx2 = 0, α > 0,
using the approximate form of solution x = c + a cosωt to show that

ω2 = 1− 2αc, c = [1−√(1− 2α2a2)]/(2α).
Deduce the frequency-amplitude relation

ω = (1− 2α2a2)1/4, a = 1/(
√

2α).

Explain, in general terms, why an upper bound on the amplitude is to be expected.

4.18. The system
ẍ + x − αx2 = 0, ẋ = y

has two equilibrium points, at (0, 0) (a centre) and (1/α, 0) (a saddle point). For reasons of
lack of symmetry we choose x = c + a cosωt , and substitute this into the differential equation
so that

x′′ + x − αx2 = 1
2 (2c − αa2 − 2αc2)+ (a − aω2 − 2αac) cosωt−1

2αa
2 cos 2ωt .

Neglecting the second harmonic, the right-hand side satisfies the differential equation if

2c − αa2 − 2αc2 = 0, a(1− ω2 − 2αc) = 0.

Therefore

ω2 = 1− 2αc, c = 1
2α
[1±√(1− 2α2a2)].

The lower sign has to be chosen to ensure ω2 positive. Elimination of c between these equations
leads to the frequency–amplitude equation

ω = (1− 2α2a2)1/4.
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An upper bound on the amplitude a is to be expected since the centre phase paths eventually
encounter the saddle point at x = 1/α as their amplitude increases.

• 4.19 Apply the method of harmonic balance to the equation ẍ − x + x3 = 0 in the
neighbourhood of the centre at x = 1, using the approximate form of solution x = 1+ c+
a cosωt . Deduce that the mean displacement, frequency and amplitude are related by

ω2 = 3c2 + 6c + 2+ 3
4a

2, 2c3 + 6c2 + c(4+ 3a2)+ 3a2 = 0.

4.19. The system

ẍ − x + x3 = 0, ẋ = y,

has three equilibrium points at (0, 0) (a saddle point) and at (±1, 0) (centres). Consider
approximate solutions of the form x ≈ 1+ c + a cosωt . Then

ẍ − x + x3 = 1
2 (3a

2 + 4c + 3a2c + 6c2 + 2c3)

+ 1
4 (8a + 3a3 + 24ac + 12ac2 − 4aω2) cosωt

+3
2a

2(1+ c) cos 2ωt + 1
4a

3 cos 3ωt .

The constant term and the first harmonic are zero if

2c3 + 6c2 + c(4+ 3a2)+ 3a2 = 0,

ω2 = 3c2 + 6c + 2+ 3
4a

2,

as required.

• 4.20 Consider the van der Pol equation with nonlinear restoring force

ẍ + ε(x2 − 1)ẋ + x − αx2 = 0,
where ε and α are small. By assuming solutions approximately of the form x = c+a cosωt+
b sinωt , show that the mean displacement, frequency, and amplitude are related by

c = 2α, ω2 = 1− 4α2, a2 + b2 = 4(1− 4α2).

4.20. The system

ẍ + ε(x2 − 1)ẋ + x − αx2 = 0,

has two equilibrium points at (0, 0) (a centre) and at (1/α, 0) (a saddle point). Substitute into
the equation x = c+ a cosωt + b sinωt and expand in terms of multiple angles, but retain only
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the constant term and the first harmonics. Then

ẍ + ε(x2 − 1)ẋ + x − αx2 = 1
4 [4c − 2α(a2 + b2 + 4c2)] + 1

4 [4a(1− ω2)− 8αac

+ εbω(−4+ a2 + b2 + 4c2)] cosωt

+ 1
4 [4b(1− ω2)− 8αbc + εaω(4− a2 − b2 − 4c2)] sinωt

+ higher harmonics

The constant term and the first harmonics vanish if

2c − α(a2 + b2 + 4c2) = 0, (i)

4a(1− ω2)− 8αac + εbω(−4+ a2 + b2 + 4c2) = 0, (ii)

4b(1− ω2)− 8αbc + εaω(4− a2 − b2 − 4c2) = 0. (iii)

From (ii) and (iii),

(1− ω2) = 2αc, a2 + b2 + 4c2 = 4.

It follows from (i) therefore that

c = 2α, ω2 = 1− 4α2, a2 + b2 = 4(1− 4α2).

Since the system is autonomous any values of a and b which satisfy a2 + b2 = 4(1− 4α2) will
be sufficient. This confirms that we could have chosen b = 0 (say) in our original choice of
solution since the system is autonomous.

• 4.21 Suppose that the nonlinear system

ẋ = p(x), where x =
[
x

y

]
,

has an isolated equilibrium point x = 0, and that solutions exist which are approximately
of the form

x̃ = B
[

cosωt
sinωt

]
, B =

[
a b

c d

]
.

Adapt the method of equivalent linearization to this problem byapproximating p(x̃) by its
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first harmonic terms:

p{x̃(t)} = C
[

cosωt
sinωt

]
,

where C is matrix of the Fourier coefficients. It is assumed that∫ 2π/ω

0
p{x̃(t)}dt = 0.

Substitute in the system to show that

BU = C, where U =
[

0 −ω
ω 0

]
.

Deduce that the equivalent linear system is

˙̃x = BUB−1x̃ = CUC−1x̃,

when B and C are non-singular.

4.21. Consider the general system

ẋ = p(x), x =
[
x

y

]
.

Consider an approximate solution

x̃ ≈ B
[

cosωt
sinωt

]
, B =

[
a b

c d

]
.

Assume that

p{x̃(t)} = C
[

cosωt
sinωt

]
+ higher harmonics

Substitute x̃ into the differential equation so that

ωB
[ − sinωt

cosωt

]
= C

[
cosωt
sinωt

]
+ higher harmonics,

or

BU
[

cosωt
sinωt

]
= C

[
cosωt
sinωt

]
+ higher harmonics,

where

U =
[

0 −ω
ω 0

]
.

Therefore the leading harmonics balance if BU = C. The equivalent linear system is therefore

˙̃x = CB−1x̃ = BUB−1x̃ = CUC−1x̃.
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• 4.22 Use the method of Problem 4.21 to construct a linear system equivalent to the van
der Pol equation

ẋ = y, ẏ = −x − ε(x2 − 1)y.

4.22. For the system
ẋ = y, ẏ = −x − ε(x2 − 1)y,

x =
[
x

y

]
, p(x) =

[
y

−x − ε(x2 − 1)y

]
.

It has one equilibrium point, at (0, 0). Let

x̃ = B
[

cosωt
sinωt

]

in the notation of Problem 4.21. Then,

p(x̃) =




c cosωt + d sinωt
1
4 (−4a + 4εc − 3εa2c − εb2c − 2εabd) cosωt
+1

4 (−4b − 2εabc + 4εd − εa2d − 3εb2d) sinωt+
+ (higher harmonics)


.

Hence

C =

 c

1
4 (−4a + 4εc − 3εa2c

−εb2c − 2εabd)

d
1
4 (−4b − 2εabc + 4εd
−εa2d − 3εb2d)


 .

From Problem 21, we know that

BU =
[
a b

c d

] [
0 −ω
ω 0

]
=

[
bω −aω
dω −cω

]
= C,

given above. Therefore c = bω and d = −aω. Eliminating c and d in the matrix C, we have

C =
[

bω −aω
1
4 (−4a + 4εbω − εbω(a2 + b2)) 1

4 (−4b − 4εaω + εa(a2 + b2))

]
.

Finally from the second rows in BU = C,

−4aω2 = −4a + 4εbω − εbω(a2 + b2),

−4bω2 = −4b − 4εaω + εa(a2 + b2).
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These two equations imply ω = 1 and a2 + b2 = 4. As expected for the van der Pol equation
the frequency of the limit cycle is 1 and its amplitude is 2.

To find the equivalent linear equation go back to the general equation

C = BU =
[
bω −aω
dω −cω

]
.

Its inverse is given by

C−1 = 1
ω(bc − ad)

[
c a

d b

]
.

The equivalent linear equation from Problem 2.21 is

˙̃x = CUC−1x̃ = ω

ad − bc
[
ac + bd −(a2 + b2)

c2 + d2 −(ac + bd)
]
x̃.

• 4.23 Apply the method of Problem 4.21 to construct a linear system equivalent to[
ẋ

ẏ

]
=

[
ε 1
−1 ε

] [
x

y

]
+

[
0

−εx2y

]
,

and show that the limit cycle has frequency given by ω2 = 1− 5ε2 for ε small.

4.23. Consider the system

[
ẋ

ẏ

]
=

[
ε 1
−1 ε

] [
x

y

]
+

[
0

−εx2y

]
.

Equilibrium occurs where

ẋ = εx + y = 0, ẏ = −x + εy − εx2y = 0.

For ε small (< 1), the system has one equilibrium point, at the origin. As in Problem 4.21, let

x̃ = B
[

cosωt
sinωt

]
.

Then

p(x̃) = C
[

cosωt
sinωt

]
,

where

C =

 εa + c

1
4 (−4a + 4εc − 3εa2c

−εb2c − 2εabd)

εb + d
1
4 (−4b − 2εabc + 4εd
−εa2d − 3εb2d)


 .
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The requirement

BU =
[
a b

c d

] [
0 −ω
ω 0

]
=

[
bω −aω
dω −cω

]
= C

implies, from the first row,

bω = εa + c, −aω = εb + d.

Hence c = −εa + bω and d = −aω − εb. Elimination of c and d in C leads to

C =

 bω

1
4 [−4a(1+ ε2)+ 4εωb
+3ε2ar2 − εωbr2]

−aω
1
4 [−4b(1+ ε2)− 4εωa
+3ε2br2 + εωar2]


 ,

where r2 = a2 + b2. The second rows in BU = C imply

−4aω2 − 4εωb = −4a(1+ ε2)+ 4εωb + 3ε2ar2 − εωbr2,

4εωa − 4bω2 = −4b(1+ ε2)− 4εωa + 3ε2br2 + εωar2.

Elimination between these equations leads to

r2 = a2 + b2 = 8, ω2 = 1− 5ε2,

provided ε < 1/
√

5.
We can choose a and b to be convenient values, since the system is autonomous. If b = 0,

then

C =
[

0 −aω
1
4 [−4a(1+ ε2)+ 3ε2a3] 1

4 [−4εωa + εωa3]
]

.

The equivalent linear equation is
˙̃x = CUC−1x̃.

The inverse of C is given by

C−1 =
[ −ε −1
−ω 0

]/
[2√2(1− 5ε2)].

Hence

CUC−1 =
[

ε 1
−1+ 4ε2 −ε.

]
.
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The eigenvalues of CUC−1 are given by

∣∣∣∣ ε − λ 1
−1+ 4ε2 −ε − λ

∣∣∣∣ = 1− 5ε2 + λ2.

Hence the eigenfrequency is given by ω2 = 1− 5ε2, which agrees with the earlier result.

• 4.24 Apply the method of Problem 4.21 to the predator–prey equation (see Section 2.2)

ẋ = x − xy, ẏ = −y + xy,

in the neighbourhood of the equilibrium point (1, 1), by using the displaced approximations

x = m+ a cosωt + b sinωt , y = n+ c cosωt + d sinωt .

Show that m = n, ω2 = 2m− 1 and a2 + b2 = c2 + d2.

4.24. The predator–prey equations

ẋ = x − xy, ẏ = −y + xy, x, y ≥ 0,

have equilibrium points at (0, 0) (a saddle point) and at (1, 1) (a centre) (see Example 2.3). The
equations may be written

ẋ = p(x).

where

p(x) =
[
x − xy
−y + xy

]
.

Since the equilibrium point (1, 1) is not at the origin, let

x̃ =
[
m

n

]
+ B

[
cosωt
sinωt

]
where B =

[
a b

c d

]
.

Then

p(x̃) =
[ 1

2 (−ac − bd + 2m− 2mn)
1
2 (ac + bd − 2n+ 2mn)

]

+
[
a − cm− an b − dm− bn
−c + cm+ an −d + dm+ bn

] [
cosωt
sinωt

]
+ higher harmonics.

Since

˙̃x =
[
bω −aω
dω −cω

] [
cosωt
sinωt

]
,
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comparison of leading harmonics in the two previous terms implies

−ac − bd + 2m− 2mn = 0, ac + bd − 2n+ 2mn = 0, (i)

bω = a − cm− an, −aω = b − dm− bn, (ii)

dω = −c + cm+ an, −cω = −d + dm+ bn. (iii)

From (i) it follows thatm = n. Equations (ii) and (iii) contain four homogeneous linear equations
in a, b, c and d. Non-trivial solutions for these amplitudes exist if, and only if,

� =

∣∣∣∣∣∣∣∣
1−m −ω −m 0
ω 1−m 0 −m
m 0 −(1−m) −ω
0 m ω −(1−m)

∣∣∣∣∣∣∣∣
= 0,

Symbolic computation gives the expansion as

� = (1− 2m+ ω2)2.

Hence
ω2 = 2m− 1. (iv)

Squaring and adding (ii) and (iii) leads to

(r2 − s2)(ω2 − 1+ 2m) = 0, (v)

and
(r2 − s2)(ω2 − 1+ 2m) = 0, (vi)

where r2 = a2 + b2 and s2 = c2 + d2. Hence (v) or (vi) compared with (iv) both imply r = s.

• 4.25 Show that the approximation solution for the oscillations of the equation ẍ = x2−x3

in the neighbourhood of x = 1 is x = c + a cosωt , where

ω2 = c(15c2 − 15c + 4)
2(3c − 1)

, a2 = 2c2(1− c2)

3c − 1
.

4.25. The system ẍ = x2 − x3, where ẋ = y, has equilibrium points at (0, 0) (a higher-order
equilibrium point) and at (1, 0) (a centre). Let x ≈ c + a cosωt . Then

ẍ − x2 + x3 = 1
2 (−a2 + 3a2c − 2c2 + 2c3)

+1
4 (3a

3 − 8ac + 12ac2 − 4aw2) cosωt + higher harmonics.
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Hence the constant term and first harmonic vanish if

−a2 + 3a2c − 2c2 + 2c3 = 0,

a(3a2 − 8c + 12c2 − 4ω2) = 0.

From these equations it follows that (a �= 0),

ω2 = 1
4 (3a

2 − 8c + 12c2), a2 = 2c2(1− c)
3c − 1

.

Elimination of a2 implies

ω2 = c(15c2 − 15c + 4)
2(3c − 1)

.

• 4.26 Use the method of Section 4.2 to obtain approximate solutions of the equation

ẍ + εẋ3 + x = 0, |ε| � 1.

4.26. The system
ẍ + εẋ2 + x = 0

has one equilibrium point, at the origin. Assume a solution of the form

x = c + a cosωt .

Then

ẍ + εẋ2 + x = 1
2 (2c + a2ω2ε)

+ a(1− ω2) cosωt + higher harmonics

The coefficients of the constant term and the first harmonic vanish if

2c + εω2a2 = 0, a(1− ω2) = 0.

Hence
ω = 1, c = −1

2ε
2a2.

Therefore, near the origin the solution by harmonic balance is

x = −1
2εa

2 + a cos t .

• 4.27 Suppose that the equation ẍ + f (x)ẋ + g(x) = 0 has a periodic solution with phase
path C. Represent the equation in the (x, y) phase plane given by

ẋ = y − F(x), ẏ = −g(x), where F(x) =
∫ x

0
f (u)du
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(this particular phase plane is known as the Liénard plane.) Let

v(x, y) = 1
2
y2 +

∫ x

0
g(u)du,

and by considering dv/dt on the closed path C show that∫
C
F(x)dy = 0.

On the assumption that van der Pol’s equation ẍ + ε(x2 − 1)ẋ + x = 0 has a periodic
solution approximately of the form x = A cos t , deduce that and ω ≈ 1, A ≈ 2.

4.27. Consider the equation
ẍ + f (x)ẋ + g(x) = 0.

In the (x, y) phase plane, let
y = ẋ + F(x), ẏ = −g(x),

where

F(x) =
∫ x

0
f (u)du.

Let

v(x, y) = 1
2
y2 +

∫ x

0
g(u)du.

Then

dv
dt
= d

dt

[
1
2 (ẋ + F(x))2 +

∫ x

0
g(u)du

]

= (ẋ + F(x))(ẍ + f (x)ẋ)+ g(x)ẋ
= (ẋ + F(x))(−g(x))+ g(x)ẋ

= −F(x)g(x) = F(x)dy
dt

.

Therefore ∫
C
F(x)dy =

∫
C

dv = 0. (i)

For van der Pol’s equation,
ẍ + ε(x2 − 1)ẋ + x = 0,

the (x, y) phase plane is defined by

ẋ = y − ε
∫ x

0
(u2 − 1)du = yε(1

3x
3 − x), ẏ = −x.
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Equation (i) above applied to this equation with x = A cosωt becomes

∫ 2π/ω

0
F(x)

dy
dt

dt = −ε
∫ 2π/ω

0
(1

3A
3 cos3 ωt − A cosωt)A cosωtdt

= A2πε

4ω
(A2 − 4) = 0.

We conclude that the amplitude of the limit cycle is A = 2.
To obtain the frequency, observe that the period T can be expressed as

T =
∫ T

0
dt = −

∫ 2π/ω

0

1
x

dy
dt

dt (ii)

Now, with x = 2 cosωt ,

y = ẋ + F(x) = −2ω sinωt + ε
(

8
3

cos3 ωt − 2 cosωt
)
≈ −2ω sinωt ,

for small ε. Hence (ii) becomes

T ≈
∫ 2π/ω

0

2ω2 cosωt
2 cosωt

dt =
∫ 2π/ω

0
ω2dt = 2πω.

Since T = 2π/ω, it follows that ω = 1. The limit cycle is therefore given approximately by
x = 2 cos t .

• 4.28 Apply the slowly varying amplitude method of Section 4.3 to

ẍ − ε sin ẋ + x = 0, (0 < ε � 1),

and show that the amplitude a satisfies ȧ = εJ1(a) approximately. [Use the formula

J1(a) = 1
π

∫ π

0
sin(a sin u) sin udu

for the Bessel function J1(a): see Abramowitz and Stegun (1965, p. 360).]
Find also the approximate differential equation for θ . Using a graph of J1(a) decide how

many limit cycles the system has. Which are stable?

4.28. The slowly varying amplitude method is applied to

ẍ − ε sin ẋ + x = 0, (0 < ε � 1).
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J1(a)
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Figure 4.4 Problem 4.28: Bessel function J1(a) plotted against the amplitude a.

The system has one equilibrium point at the origin which is an unstable spiral. In this problem
h(x, y) = sin y. Equation (4.28) (in NODE) becomes

ȧ = −εp0(a) = − ε

2π

∫ 2π

0
sin(−a sin u) sin udu

= ε

2π

∫ 2π

0
sin(a sin u) sin udu

= εJ1(a),

where J1(a) is a Bessel function of order 1. Hence any limit cycles have amplitudes which
are the zeros of the Bessel function J1(a). The graph of J1(a) versus a displaying its oscillatory
character is shown in Figure 4.4. This system has an infinite number of limit cycles. After a = 0,
the first, third, fifth, etc. zeros correspond to stable limit cycles.

The approximate differential equation for θ is (4.29), namely

θ̇ = −1− ε

a
r0(a)

= −1− ε

2πa

∫ 2π

0
sin(−a sin u) cos udu

= −1+ ε

2πa

∫ 2π

0
sin(a sin u) cos udu

= −1+ ε

2πa

[
−cos(a sin u)

a

]2π

0

= −1

Integrating, θ = −t + θ0.
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5 Perturbation methods

Trigonometric identities

The following identities are useful in the application of perturbation methods.

(A) cos3 t = 3
4 cos t + 1

4cos3t ; sin3 t = 3
4 sin t − 1

4 sin 3t .

(B) (a cos t + b sin t)3 = 3
4b(a

2 + b2)+ 1
4a(a

2 + b2) sin t − 1
4b(3a

2 − b2) cos 3t

+1
4a(3b

2 − 1) sin 3t .

(C) (c + a cos t + b sin t)3 = 1
2c(3a

2 + 3b2 + 2c2)+ 3
4b(a

2 + b2 + 4c2) cos t

+3
4a(a

2 + b2 + 4c2) sin t + 3
2c(b

2 − a2) cos 2t

+3abc sin 2t + 1
4b(b

2 − 3a2) cos 3t

+1
4a(3b

2 − a2) sin 3t .

• 5.1 Find all the periodic solutions of ẍ +�2x = � cos t for all values of �2.

5.1. The general solutions of
ẍ +�2x = � cos t

are
x = A cos�t + B sin�t + �

�2 − 1
cos t , (�2 �= 1),

x = A cos�t + B sin�t + 1
2�t sin t , (�2 = 1).

• �2 = 1. There are no periodic solutions.
• � = p, p(�= ±1) an integer. General solution is

x = a cospt + b sinpt + �

p2 − 1
cos t ,

which has period 2π .
• � = 1/q, q �= ±1 an integer. The general solution is

x = a cos(t/q)+ b sin(t/q)+ �q2

1− q2 cos t ,

which has period 2πq.
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• � = p/q, p, q integers, p/q �= 1. The general solution is

x = a cos(pt/q)+ b sin(pt/q)+ �q2

p2 − q2 cos t ,

which has period 2πq.
• � = irrational number. The equation has a only one periodic solution

x = �

�2 − 1
cos t ,

and this has period 2π .

• 5.2 Find the first harmonics of the solutions of period 2π of the following:

(i) ẍ − 0.5x3 + 0.25x = cos t ;

(ii) ẍ − 0.1x3 + 0.6x = cos t ;

(iii) ẍ − 0.1ẋ2 + 0.5x = cos t .

5.2. These problems are of the form

ẍ + εh(x, ẋ)+�2x = � cos t .

In the direct method (see NODE, Section 5.2) we let

x(t) = x0(t)+ εx1(t)+ ε2x2(t)+ · · · .

Direct substitution gives the equations

ẍ0 +�2x0 = � cos t ,

ẍ1 +�2x1 = −h(x0, ẋ0),

and so on.

(i) ẍ − 0.5x3 + 0.25x = cos t . In this problem, h(x, ẋ) = −x3, � = 1, � = 1
2 and ε = 0.5.

Therefore x0 satisfies

ẍ0 + 0.25x0 = cos t .

Therefore

x0 = A0 cos 0.5t + B0 sin 0.5t − 4
3 cos t .
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The constants A0 and B0 must be put equal to zero since otherwise x1 will include non-periodic
terms. The second term satisfies

ẍ1 + 0.25x1 = 1
2

(
4
3

)3

cos3 t = 8
27
(3 cos t + cos 3t).

The general solution is

x1 = A1 cos 0.5t + B1 sin 0.5t − 32
27

cos t − 32
945

cos 3t .

For the same reason A1 = B1 = 0 to avoid non-periodic terms. Finally

x = −4
3

cos t + 0.5
[
−32

27
cos t − 32

945
cos 3t

]
+O(ε2)

= −52
27

cos t − 16
945

cos 3t +O(ε2).

(ii) ẍ − 0.1x3 + 0.6x = cos t . In this problem, h(x, ẋ) = −x3, � = 1, �2 = 3/5 and ε = 1/10.
Then x0 satisfies

ẍ0 + 3
5x0 = cos t .

As in (i), complementary functions must be put equal to zero at each stage to eliminate non-
periodic terms. The first term in the expansion of the forced solution is

x0 = −5
2 cos t .

The second term satisfies

ẍ1 + 3
5
x1 = 1

10

(
5
2

)3

cos3 t = 75
64

cos t + 25
64

cos 3t .

The particular solution is

x1 = −375
128

cos t − 125
2688

cos 3t .
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The expansion is

x = −5
2

cos t + 1
10

[
−375

128
cos t − 125

2688
cos 3t

]
+O(ε2)+O(ε2)

= −765
256

cos t − 25
5376

cos 3t +O(ε2)

≈ −2.99 cos t − 0.005 cos 3t

(iii) ẍ − 0.1ẋ2 + 0.5x = cos t . In this case, h(x, ẋ) = −ẋ3, � = 1, �2 = 1
2 and ε = 1/10. Then

x0 satisfies

ẍ0 + 1
2x0 = cos t .

As in (i), complementary functions must be put equal to zero at each stage to eliminate non-
periodic terms. The leading term is therefore

x0 = −2 cos t .

The second term satisfies

ẍ1 + 1
2x1 = 1

1022 sin2 t = 1
5 (1− cos 2t).

Hence
x1 = 2

5 + 2
35 cos 2t .

The expansion is

x = −2 cos t + 1
10

[
2
5
+ 2

35
cos 2t

]
+O(ε2)

= 1
25
− 2 cos t + 2

35
cos t + 1

175
cos 2t +O(ε2)

• 5.3 Find a first approximation to the limit cycle for Rayleigh’s equation

ẍ + ε
(

1
3 ẋ

3 − ẋ
)
+ x = 0, |ε| � 1,

using the method of NODE, Section 5.9 (Lindstedt’s method).

5.3. In Rayleigh’s equation

ẍ + ε
(

1
3 ẋ

3 − ẋ
)
+ x = 0, |ε| � 1,
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apply the change of scale τ = ωt , so that x satisfies

ω2x′′ − ε
(
1− 1

3ω
2x′2

)
ωx′ + x = 0,

where x′ = dx/dτ . Look for periodic solutions which are perturbations of those having period
2π . Let

ω = 1+ εω1 + · · · ,

x(ε, τ) = x0(τ )+ εx1(τ )+ · · · .

Substituting these expansions into the differential equation, we have

(1+ 2ωε + · · · )(x′′0 + εx′′1 + · · · )− ε
(
1− 1

3x
′2
0 + · · ·

)
(x′0 + · · · )+ x0 + εx1 + · · · = 0.

Equating coefficients of like powers of ε,

x′′0 + x0 = 0, (i)

x′′1 + x1 = −2ω1x
′
0 +

(
1− 1

3x
′2
0

)
x′0. (ii)

Without loss of generality, we may assume the boundary conditions x(0) = a0, ẋ(0) = 0.
Applying the expansions to the boundary conditions, we have

x0(0) = a0; x1(0) = 0; . . . , (iii)

ẋ0(0) = 0; ẋ1(0) = 0; . . . , (iv)

and so on. The solution of (i) and (iii) is

x0 = a0 cos τ .

Equation (iv) for x1 becomes

x′′1 + x1 = 2ω1a0 cos τ +
(
−a0 sin τ + 1

3a
3
0 sin3 τ

)
= 2ω1a0 cos τ + a0

(
1
4a

2
0 − 1

)
sin τ − 1

12a
3
0 sin 3τ .

The coefficients of cos τ and sin τ must be zero to avoid secular (non-periodic) terms for x1.
Therefore ω1 = 0 and a0 = 2. The leading term in the expansion is

x ≈ 2 cos t .



256 Nonlinear ordinary differential equations: problems and solutions

• 5.4 Use the method of Section 5.9 to order ε to obtain solutions of period 2π , and the
amplitude–frequency relation, for

(i) ẍ − εxẋ + x = 0;

(ii) (1+ εẋ)ẍ + x = 0.

5.4. (i) In the equation
ẍ − εxẋ + x = 0,

apply the change of scale τ = ωt , so that

ω2x′′ − εωxx′ + x = 0.

Let
ω = 1+ εω1 + ε2ω2 + · · · ,

x(ε, τ) = x0(τ )+ εx1(τ )+ ε2x2(τ )+ · · · .

Substituting these expansions into the differential equation, it follows that

(1+ εω1 + ε2ω2 + · · · )2(x′′0 + εx′′1 + ε2x′′2 + · · · )
− ε(1+ εω1+ ε2ω2 + · · · )(x0+ εx1+ ε2x2 + · · · )(x′0+ εx′1+ ε2x′2 + · · · )
+ (x0 + εx1 + ε2x2 + · · · ) = 0.

Equating like powers of ε, we obtain the equations

x′′0 + x0 = 0, (i)

x′′1 + x1 = −2ω1x
′′
0 + x0x

′
0, (ii)

x′′2 + x2 = −(ω2
1 + 2ω2)x

′′
0 − 2ω1x

′′
1 + ω1x0x

′
0 + x0x

′
1 + x′0x1. (iii)

Without loss of generality, we may assume the initial conditions x = a, ẋ = 0 when t = 0,
which become x0(0) = a, xi(0) = 0, (i = 1, 2, . . .), x′j (0) = 0, (j = 0, 1, 2, . . .).

Equation (i) has the solution x0 = a cos τ , and (ii) becomes

x′′1 + x1 = 2ω1 cos τ − 1
2a

2 sin 2τ (iv)

Hence x1 will only have a periodic solution if the coefficient of cos τ is zero. Therefore ω1 = 0.
The remaining eqn (iv) has the general solution

x1 = A cos τ + B sin τ + 1
6a

2 sin 2τ .
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From the initial conditions A = 0 and B = −1
3a

2. The required second term is

x1 = −1
3a

2 sin τ + 1
6a

2 sin 2τ .

Now construct the equation for x2 from (iii), which becomes, on reduction

x′′2 + x2 = 1
12a(a

2 + 24ω2) cos τ + 1
3a

3 cos 2τ + 1
4a

3 cos 3τ .

Hence x2 can only be periodic if ω2 = −a2/24. The frequency–amplitude relation, to
order ε2 is

ω = 1+ ε2ω2 = 1− 1
24εa

2.

The differential equation for x2 reduces to

x′′2 + x2 = 1
3a

3 cos 2τ + 1
4a

3 cos 3τ ,

which has the general solution

x2 = C cos τ +D sin τ − 1
9 cos 2τ − 1

32 cos 3τ .

From the initial conditions C = 0 and D = 91/288. To order ε2 the expansion for the periodic
solution is

x = a cos τ + ε
(
−1

3a
2 sin τ + 1

6a
2 sin 2τ

)
+ ε2

(
91
288 sin τ − 1

9 cos 2τ − 1
32 cos 2τ

)
,

where τ = ωt =
(
1− 1

24ε
2a2

)
t .

(ii) For the equation

(1+ εẋ)ẍ + x = 0,

apply the change of scale τ = ωt , so that x satisfies

(1+ εωx′)ω2x′′ + x = 0.

Let

ω = 1+ εω1 + ε2ω2 + · · · ,

x(ε, τ) = x0(τ )+ εx1(τ )+ ε2x2(τ )+ · · · .
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Substituting these expansions into the differential equation, it follows that

[1+ ε(1+ εω1 + · · · )(x′0 + εx′1 + · · · )] (1+ εω1 + ε2ω2 + · · · )2
× (x′′0 + εx′′1 + ε2x′′2 + · · · )+ (x0 + εx1 + εx2 + · · · ) = 0.

Equating like powers of ε we can obtain the differential equations for x0, x1 and x2, namely,

x′′0 + x0 = 0, (i)

x′′1 + x1 = −2ω1x
′′
0 − x′0x′′0, (ii)

x′′2 + x2 = −ω2
1x
′′
0 − 2ω2x

′′
0 − 3ω1x

′
0x
′′
0 − x′′0x′1 − 2ω1x

′′
1 − x′0x′′1. (iii)

Assume the initial conditions x = a, ẋ = 0 when t = 0, which become x0(0) = a, xi(0) = 0,
(i = 1, 2, . . .), x′j (0) = 0, (j = 0, 1, 2, . . .).

From (i) and the initial conditions, x0 = a cos τ so that x1 satisfies

x′′1 + x1 = −2aω1 cos τ − 1
2a

2 sin 2τ .

To avoid a growth term in x1 we must put ω1 = 0, leaving the equation

x′′1 + x1 = −1
2a

2 sin 2τ .

The solution satisfying the initial conditions is

x1 = a2
(
−1

3 sin τ + 1
6 sin 2τ

)
.

The equation for x2 given by (iii) becomes (remember ω1 = 0)

x′′2 + x2 = 1
6 (12aω2 − a3) cos τ − 1

3a
3 cos 2τ + 1

2a
3 cos 3τ . (iv)

The secular term in x2 can be eliminated if ω2 = a2/12. We can now find x2 from (iv), which
is, subject to the specified initial conditions,

x2 = a3
(

1
16 cos τ − 2

9 sin τ + 1
9 sin 2τ − 1

16 cos 3τ
)
.

The perturbation solution is therefore

x = a cos τ + εa2
(
−1

3 sin τ + 1
6 sin 2τ

)
+ ε2a3

(
1
16 cos τ − 2

9 sin τ + 1
9 sin 2τ − 1

16 cos 3τ
)

where ω = 1+ 1
12ε

2a3.
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• 5.5 Apply the perturbation method to the equation ẍ +�2 sin x = cos t by considering

ẍ +�2x + ε�2(sin x − x) = cos t ,

with ε = 1, and assuming that � is not close to an odd integer, to find perod 2π solutions.
Use the Fourier expansion

sin(a cos t) = 2
∞∑
n=0

(−1)nJ2n+1(a) cos{(2n+ 1)t},

where J2n+1 is the Bessel function of order 2n + 1. Confirm that the leading terms are
given by

x = 1
�2 − 1

[1+�2 − 2�2J1{1/(�2 − 1)}] cos t+ 2
�2 − 9

J3{1/(�2
1)} cos 3t .

5.5. Rewrite the equation
ẍ +�2 sin x = cos t (i)

as a member of the family of equations with parameter ε

ẍ +�2x + ε�2(sin x − x) = cos t . (ii)

Substitute the perturbation series

x(ε, t) = x0(t)+ εx1(t)+ · · ·

into the differential equation (ii) and equate like powers of ε. Then

ẍ0 +�2x0 = cos t , (iii)

ẍ1 +�2x1 = −�2(sin x0 − x0). (iv)

For � not an integer, the only periodic solution (of period 2π ) of (iii) is the forced solution

x0 = 1
�2 − 1

cos t .

Equation (iv) becomes

ẍ1 +�2x1 = −�2
[
sin

(
cos t
�2 − 1

)
− 1
�2 − 1

cos t
]

.

The Fourier series expansion

sin(a cos t) = 2
∞∑
n=0

(−1)nJ2n+1(a) cos{(2n+ 1)t}, (v)
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where a = 1/(�2 − 1), is applied to the right-hand side of (v) so that, to leading order,

ẍ1 +�2x1 = − �2

�2 − 1

[
2(�2 − 1)J1

(
1

�2 − 1

)
− 1

]
cos t + 2J3

(
1

�2 − 1

)
cos 3t .

The period-2π solution of this equation is

x1 = − �2

(�2 − 1)2

[
2(�2 − 1)J1

(
1

�2 − 1

)
− 1

]
cos t + 2

�2 − 9
J3

(
1

�2 − 1

)
cos 3t .

If we now combine the first two terms and put ε = 1, the result is the perturbation

x = 1
�2 − 1

[
1+�2 − 2�2J1

(
1

�2 − 1

)]
cos t + 2

�2 − 9
J3

(
1

�2 − 1

)
cos 3t .

• 5.6 For the equation ẍ + �2x − 0.1x3 = cos t , where � is not near 1, 3, 5, . . . , find, to
order ε, the ratio of the amplitudes of the first two harmonics.

5.6. Consider the family of equations

ẍ +�2x − εx3 = cos t ,

and afterwards put ε = 0.1. We are given that � is not close to an odd integer, but it may be
close to an even integer. Let

x = x0 + εx1 + · · · .

Substitution into the differential equation leads to

ẍ0 +�2x0 = cos t ,

ẍ1 +�2x1 = εx3
0 .

The 2π -periodic solution for x0 is

x0 = 1
�2 − 1

cos t .

The equation for x1 is therefore

ẍ1 +�2x1 = 1
4(�2 − 1)

(3 cos t + cos 3t).
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The 2π -periodic solution of this equation is

x1 = 3
4(�2 − 1)2

cos t + 1
4(�2 − 1)(�2 − 9)

cos 3t .

to order ε. The approximate solution including the first two harmonics is

x0 + εx1 = 4+ 3ε
4(�2 − 1)

cos t + ε

4(�2 − 1)(�2 − 9)
cos 3t .

If a3 and a1 are the coefficients of the first two harmonics, then the ratio of the amplitudes is

|a3|
|a1| =

ε

(4+ 3ε)(�2 − 9)
.

• 5.7 In the equation ẍ+�2x+ εf (x) = � cos t , � is not close to an odd integer, and f (x)
is an odd function of x, with expansion

f (a cos t) = −a1(a) cos t − a3(a) cos 3t − · · · .
Derive a perturbation solution of period 2π , to order ε.

5.7. In the equation

ẍ +�2x + εf (x) = � cos t ,

let x = x0 + εx1 + · · · . The two leading terms satisfy

ẍ0 +�2x0 = � cos t , (i)

ẍ1 +�2x1 = −f (x0 + εx1 + · · · ) ≈ −f (x0). (ii)

The 2π -periodic solution of (i) is

x0 = �

�2 − 1
cos t ,

provided � is not close to 1 (or any odd integer for higher-order terms).
The next term x1 in the perturbation satisfies

ẍ1 +�2x1 = −εf
(

�

�2 − 1

)
= −ε[a1(κ) cos t + a3(κ) cos 3t],
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where κ = �/(�2 − 1). The 2π -periodic solution is

x1 = − a1(κ)

�2 − 1
cos t − a3(κ)

�2 − 9
cos 3t .

Hence to order ε,

x = � − εa1(κ)

�2 − 1
cos t − εa3(κ)

�2 − 9
cos 3t .

• 5.8 The Duffing equation near resonance at �=3, with weak excitation, is

ẍ + 9x = ε(γ cos t − βx + x3).

Show that there are solutions of period 2π if the amplitude of the zero-order solution is 0
or 2

√
(β/3).

5.8. The undamped Duffing equation near resonance at � = 3 with weak excitation is

ẍ + 9x = ε(γ cos t − βx + x3).

Let x = x0 + εx1 + · · · . The equations for x0 and x1 are

ẍ0 + 9x0 = 0, (i)

ẍ1 + 9x1 = γ cos t − βx0 + x3
0 . (ii)

We are searching for 2π -periodic solutions. Equation (i) has the periodic solution
x0 = a0 cos 3t + b0 sin 3t . Substituting x0 into (ii) and expanding, x1 satisfies

ẍ1 + 9x1 = γ cos t − β(a0 cos 3t + b0 sin 3t)+ (a0 cos 3t + b0 sin 3t)3

= γ cos t + 1
4a0(3a2

0 + 3b2
0 − 4β) cos 3t+1

4b0(3a2
0 + 3b2

0 − 4β) sin 3t

+1
4a0(a

2
0 − 3b2

0) cos 9t + 1
4b0(3a2

0 − b2
0) sin 9t .

The secular terms can be removed by choosing

a0(3a2
0 + 3b2

0 − 4β) = 0, b0(3a2
0 + 3b2

0 − 4β) = 0.

Possible solutions are a0 = b0 = 0, or

r0 = √(a2
0 + b2

0) = 2
√
(β/3).
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• 5.9 From eqn (5.40), the amplitude equation for the undamped pendulum is

−F = a0

(
ω2 − ω2

0 + 1
8ω

2
0a

2
0

)
.

When ω0 is given, find for what values of ω there are three possible responses. (Find the
stationary values of F with respect to a0, with ω fixed. These are the points where the
response curves of Figure 5.4 (in NODE) turn over.)

5.9. The frequency–amplitude equation is

F = −a0

(
ω2 − ω2

0 + 1
8ω

2
0a

2
0

)
. (i)

We find the stationary points of F with respect to a0 for fixed ω and ω0. Then

dF
da0

= ω2 − ω2
0 + 3

8ω
2
0a

2
0.

Therefore F is stationary where

a0 = ± 2
√

2

ω0
√

3

√
(ω2

0 − ω2),

if ω2 ≤ ω2
0. If ω2 > ω2

0, there are no stationary values. There are three possible responses if
ω2 < ω2

0.
Equation (i) can be expressed in the more convenient form

Q = −a0(a
2
0 − κ),

where Q = 8F/ω2
0 and κ = 8(ω2

0 − ω2)/ω2
0. The surface showing the relation between Q and

a0 and κ is shown in Figure 5.1.

a0

Q

k

Figure 5.1 Problem 5.9: Surface showing the frequency–amplitude relation between Q, a0 and κ.
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• 5.10 From NODE, eqn (5.42), the amplitude equation for the positively damped
pendulum is

F 2 = r2
0

{
k2ω2 +

(
ω2 − ω2

0 + 1
8ω

2
0r

2
0

)2
}

.

By considering d(F 2)/d(r2
0 ), show that if (ω2−ω2

0)
2 ≤ 3k2ω2, then the amplitude equation

has only one real root r0, and three real roots if (ω2 − ω2
0)

2 > 3k2ω2.

5.10. The amplitude equation for the damped pendulum is

F 2 = r2
0

{
k2ω2 +

(
ω2 − ω2

0 +
1
8
ω2

0r
2
0

)2
}

.

Let

G = F 2ω2
0

8ω3k3 , ρ = ω2
0r

2
0

8ωk
, α = ω2 − ω2

0

kω
,

so that
G(ρ) = ρ[1+ (α + ρ)2],

We are only interested in the domain G > 0, ρ > 0.
The derivative of G(ρ) is given by

G′(ρ) = 3ρ2 + 4αρ + 1+ α2.

The equation G′(ρ) = 0 has no real solutions if α2 < 3, one real solution if α2 = 3, and two
real solutions α2 > 3. The cases are discussed below.

• α2 ≤ 3. This is equivalent to

(ω2 − ω2
0)

2 ≤ 3k2ω2 or ω4 − (2ω2
0 + 3k2)ω2 + ω4

0 ≤ 0.

The equation

ω4 − (2ω2
0 + 3k2)ω2 + ω4

0 = 0

has the solutions

ω2 = 1
2 [(2ω2

0 + 3k2)±√(6ω2
0 + 9k2)],

both of which give real solutions for ω (we need only consider positive solutions for ω).
Hence the system has just one real solution for the amplitude if

1
2 [(2ω2

0 + 3k2)−√(6ω2
0 + 9k2)] ≤ ω2 ≤ 1

2 [(2ω2
0 + 3k2)+√(6ω2

0 + 9k2)].
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• α2 > 3. This is equivalent to

ω4 − (2ω2
0 + 3k2)ω2 + ω4

0 > 0.

By an argument similar to above the amplitude has three solutions if

ω2 > 1
2 [(2ω2

0 + 3k2)+√(6ω2
0 + 9k2)],

or
0 < ω2 < 1

2 [(2ω2
0 − 3k2)+√(6ω2

0 + 9k2)].

• 5.11 Find the equivalent linear form (NODE, Section 4.5) of the expression ẍ+�2x−εx3,
with respect to the periodic form x = a cos t . Use the linear form to obtain the frequency–
amplitude relation for the equation

ẍ +�2x − εx3 = � cos t .

Solve the equation approximately by assuming that a = a0+ εa1, and show that this agrees
with the first harmonic in NODE, eqn (5.23). (Note that there may be three solutions, but
that this method of solution shows only the one close to {�/(1−�2)} cos t .)

5.11. We require the equivalent linear form (see Section 4.5) of the left-hand side of

ẍ +�2x − εx3 = � cos t .

Assume x ≈ a cos t . Using the identity

cos3 t = 3
4 cos t + 1

4 cos 3t

and neglecting higher harmonics, we replace −εx3 by

−εa3 cos3 t ≈ −3
4εa

3 cos t = −3
4εa

2x.

Therefore the equivalent linear equation is

ẍ +
(
�2 − 3

4εa
2
)
x = � cos t .

Hence the 2π -periodic solution is

x = �

�2 − 1− 3
4εa

2
cos t ,
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where the frequency-amplitude equation is

a = �

�2 − 1− 3
4εa

2
. (i)

Let a = a0 + εa1 + · · · . Then the expansion of eqn (i) gives

a0 + εa1 + · · · = �

�2 − 1− 3
4ε(a0 + εa1 + · · · )2

= �

�2 − 1

[
1+ 3

4

εa2
0

�2 − 1

]
+O(ε2)

By comparison of the two sides of this equation we deduce

a0 = �

�2 − 1
, a1 = 3

4
�3

(�2 − 1)4)
.

Finally to order ε the first harmonic is

x = �

�2 − 1
cos t + 3

4
ε�3

(�2 − 1)4
cos t ,

which agrees with (5.23).

• 5.12 Generalize the method of Problem 5.11 for the same equation by putting x =
x(0) + x(1) + · · · , where x(0) and x(1) are the first harmonics to order ε, a cos t and b cos 3t ,
say, in the expansion of the solution. Show that the linear form equivalent to x3 is(

3
4a

2 + 3
4ab + 3

2b
2
)
x(0) +

(
1
4a

3 + 3
2a

2b + 3
4b

3
)
x(1)/b.

Split the pendulum equation into the two equations

ẍ(0) +
{
�2 − ε

(
3
4a

2 + 3
4ab + 3

2b
2
)}
x(0) = � cos t ,

ẍ(1) +
{
�2 − ε

(
1
4a

3 + 3
2a

2b + 3
4b

3
)
/b

}
x(1) = 0.

Deduce that a and b must satisfy

a
{
�2 − 1− ε

(
3
4a

2 + 3
4ab + 3

2b
2
)}
= �,

b
{
�2 − 9− ε

(
1
4a

3 + 3
2a

2b + 3
4b

3
)}
= 0.

Assume that a = a0 + εa1 +O(ε2), b = εb1 +O(ε2) and obtain a0, a1 and b1.
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5.12. In the equation

ẍ +�2x − εx3 = � cos t ,

let x ≈ x(0) + x(1), where x(0) = a cos t and x(1) = b cos 3t and a and b are constants. Then

−εx3 = −ε(a cos t + b cos 3t)3

= −ε
[

3
4a(a

2 + ab + 2b2) cos t + 1
4 (a

3 + 6a2b + 3b3) cos 3t + (higher harmonics)
]

.

Therefore, neglecting higher harmonics,

−εx3 ≈ 3
4ε(a

2 + ab + 2b2)x(0) + 1
4ε(a

3 + 6a2b + 3b3)x(1)/b,

and the equivalent linear equations are

ẍ(0) +
[
�2 − 3

4ε(a
2 + ab + 2b2)

]
x(0) = � cos t ,

ẍ(1) +
[
�2 − 1

4ε(a
3 + 6a2b + 3b3)

]
x(1) = 0.

To ensure that x(0) = a cos t and x(1) = b cos 3t satisfy these equations only if

a
[
�2 − 1− 3

4ε(a
2 + ab + 2b2)

]
= �, (i)

b
[
�2 − 9− 1

4ε(a
3 + 6a2b + 3b3)

]
= 0. (ii)

Let a = a0 + εa1 + · · · and b = εb1 + · · · . Then (i) and (ii) become

(a0 + εa1 + · · · )
[
�2 − 1− 3

4ε{(a0 + · · · )2 + · · · }
]
= �,

(εb1 + · · · )
[
(�2 − 9)− 1

4ε{(a0 + · · · )3 + · · · }
]
= 0.

Equating like powers of ε, we have

a0 = �

�2 − 1
, a1 = 3

4
a3

0
�2−1

= 3
4

�3

(�2−1)4
,

b1 = 1
4

a3
0

�2−9
= 1

4
�3

(�2−1)3(�2−1)3
.
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• 5.13 Apply the Lindstedt method, Section 5.9, to van der Pol’s equation ẍ+ ε(x2−1)ẋ+
x = 0, |ε| � 1. Show that the frequency of the limit cycle is given by ω = 1− 1

16ε
2+O(ε3).

5.13. Linstedt’s method (Section 5.9) is applied to the van der Pol’s equation

ẍ + ε(x2 − 1)ẋ + x = 0, |ε| � 1.

Let τ = ωt , so that
ω2x′′ + εω(x2 − 1)x′ + x = 0.

We now seek solutions of period 2π . Apply the perturbation expansions x = x0 + εx1 + · · ·
and ω = ω0 + εω1 + · · · to this equation:

(ω0 + εω1 + ε2ω2 + · · · )2(x′′0 + εx′′1 + ε2x′′2 + · · · )+ ε(ω0 + εω1 + ε2ω2 + · · · )
[(x0 + εx1 + ε2x2 + · · · )2 − 1](x′0 + εx′1 + ε2x2 · · · )+ (x0 + εx1 + ε2x2 + · · · ) = 0

Equating powers of ε, we can obtain the differential equations for the leading terms, namely,

ω2
0x
′′
0 + x0 = 0, (i)

ω2
0x
′′
1 + x1 = −2ω0ω1x

′′
0 − ω0(x

2
0 − 1)x′0, (ii)

ω2
0x
′′
2 + x2 = −2ω0ω1x

′′
1 − (2ω0ω2 + ω2

1)x
′′
0 − (x2

0 − 1)(ω0x
′
1 + ω1x

′
0)− 2ω0x0x

′
0x1. (iii)

We search for solutions of period 2π ; since the system is autonomous we can put x′(0) = 0.
From (i),

x0 = A0 cos[τ/ω0].
We must choose, therefore, ω0 = 1. Substitution of x0 into (ii) leads to

x′′1 + x1 = 2ω1A0 cos τ + (A2
0 cos2 τ − 1)A0 sin τ

= 2ω1A0 cos τ − (A0 − 1
4A

3
0) sin τ + 1

4A
3
0 sin 3τ

Any secular term can be removed by making the coefficients of cos τ and sin τ zero. Therefore
we select A0 = 2 and ω1 = 0. The second term in the expansion is

x1 = A1 cos τ + B1 sin τ − 1
4 sin 3τ .

Equation (iii) becomes

x′′2 + x2 = 1
4 (1+ 16ω2) cos t + 2A1 sin t + higher harmonics.



5 : Perturbation methods 269

Hence there are no secular terms if ω2 = − 1
16 and A1 = 0. Finally the frequency of the limit

cycle is given by
ω = 1− 1

16ε
2 +O(ε3).

• 5.14 Investigate the forced periodic solutions of period 2
3π for the Duffing equation in

the form ẍ + (1+ εβ)x − εx3 = � cos 3t .

5.14. The equation
ẍ + (1+ εβ)x − εx3 = � cos 3t .

has a forcing term of period 2π/3. Let x = x0 + εx1 + · · · . Then

(ẍ0 + εẍ1 + · · · )+ (1+ εβ)(x0 + εx1 + · · · )− ε(x0 + εx1 + · · · )3 = � cos 3t .

Equating powers of ε, the first two terms satisfy

ẍ0 + x0 = � cos 3t , (i)

ẍ1 + x1 = −βx0 + x3
0 . (ii)

Only the forced part of the solution (i) is of period 2π/3, namely,

x0 = −1
8� cos 3t .

Equation (ii) becomes

ẍ1 + x1 = 1
8β� cos 3t − 1

83�
3 cos3 3t

= 1
8β� cos 3t − 1

83�
3
(

3
4 cos 3t + cos 9t

)

= �

8

(
β − 3�2

4× 82

)
cos 3t + higher harmonics

Therefore the leading harmonic in x1 is

x1 = − �82

(
β − 3�2

4× 82

)
cos 3t + · · · .

Therefore up to the first harmonic,

x = −�
8

[
1+ ε

8

(
β − 3�2

4× 82

)]
cos 3t + · · · .
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• 5.15 For the equation ẍ + x + εx3 = 0, |ε| � 1, with x(0) = a, ẋ(0) = 0, assume an
expansion of the form x(t) = x0(t) + εx1(t) + · · · , and carry out the perturbation process
without assuming periodicity of the solution. Show that

x(t) = a cos t + εa3
{
−3

8 t sin t + 1
32 (cos 3t − cos t)

}
+O(ε3).

(This expansion is valid, so far as it goes. Why is it not so suitable as those already obtained
for describing solutions?)

5.15. Apply the expansion x = x0 + εx1 + · · · to the system

ẍ + x + εx3 = 0, x(0) = a, ẋ(0) = 0.

Thus
(ẍ0 + εẍ1 + · · · )+ (x0 + εx1 + · · · )+ ε(x0 + · · · )3 = 0.

Equating to zero the coefficients of like powers of ε, we obtain the equations

ẍ0 + x0 = 0, (i)

ẍ1 + x1 = −x3
0 , (ii)

subject to the given initial conditions x0 = a cos t . Equation (ii) then becomes

ẍ1 + x1 = −x3
0 = a3 cos3 t

= 3
4 cos t + 1

4 cos 3t .

The general solution of this linear second-order equation is

x1 = A1 cos t + B1 sin t + 9
32 cos t + 3

8 t sin t − 1
32 cos 3t .

The expansion of the initial conditions implies x1(0) = ẋ1(0) = 0. Therefore A1 and B1 are
given by

A1 = − 9
32 + 1

32 = −1
4 , B1 = 0.

Finally the expansion takes the non-periodic form

x ≈ x0 + x1 = a cos t + εa3
[
−3

8 t sin t + 1
32 (cos 3t − cos t)

]
.

x1 has a term with the factor εt (and we would find that x2 has a term with factor ε2t2,
and so on). For any fixed order of approximation the error will increase as t increases, and is
unlikely to be small (i.e. the expansion is non-uniform).



5 : Perturbation methods 271

• 5.16 Find the first few harmonics in the solution, period 2π , of ẍ+�2x+εx2 = � cos t , by
the direct method of Section 5.2. Explain the presence of a constant term in the expansion.

For what values of � does the expansion fail? Show how, for small values of �, an
expansion valid near � = 1 can be obtained.

5.16. Apply the expansion x = x0 + εx1 + ε2x2 + · · · to

ẍ +�2x + εx2 = � cos t ,

assuming that |ε| � 1. Thus

(ẍ0 + εẍ1 + ε2ẍ2 + · · · )+�2(x0 + εx1 + ε2x2 + · · · )+ ε(x0 + εx1 + ε2x2 + · · · )2 = � cos t .

The coefficients of the powers ε lead to the perturbation equations

ẍ0 +�2x0 = � cos t , (i)

ẍ1 +�2x1 = −x2
0 , (ii)

ẍ2 +�2x2 = −2x0x1. (iii)

The period 2π solution of (i) is

x0 = �

�2 − 1
cos t .

Equation (ii) then becomes

ẍ1 +�2x1 = − �

2(�2 − 1)
− �

2(�2 − 1)
cos 2t .

The period 2π solution of this equation

x1 = − �

2�2(�2 − 1)
− �

2(�2 − 1)(�2 − 4)
cos 2t .

The equation for x2 is

x′′2 +�2x2 = −2
(

�

�2 − 1
cos t

)(
− �

2�2(�2 − 1)
− �

2(�2 − 1)(�2 − 4)
cos 2t

)

= �2

2�2(�2 − 1)(�2 − 4)
[(8−�2) cos t +�2 cos 3t].
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The 2π periodic solution for x2 is

x2 = �2(8−�2)

2�2(�2 − 1)2(�2 − 4)
cos t + �2�2

2�2(�2 − 1)(�2 − 4)(�2 − 9)
cos 3t .

To order ε2, the 2π periodic solution is

x = − ε�

2(�2 − 1)
+

[
�

�2 − 1
+ ε2�2(8−�2)

2�2(�2 − 1)2(�2 − 4)

]
cos t

− ε�

2(�2 − 1)(�2 − 4)
cos 2t + ε2�2�2

2�2(�2 − 1)(�2 − 4)(�2 − 9)
cos 3t

The appearance of a constant term indicates that the periodic solution is no symmetrically
disposed about x = 0. The expansion will be unreliable if � is close to an integer.

To emphasize that � is small, let � = εγ , so that the differential equation becomes

ẍ +�2x + εx2 = εγ cos t ,

Let � = 1+ ε�1 + · · · and x = x0 + εx1 + · · · . Then

(ẍ0 + εẍ1 + · · · )+ (1+ ε�1 + · · · )2(x0 + εx1 + · · · )+ ε(x0 + εx1 + · · · )2 = εγ cos t .

Equating powers of ε, we obtain
ẍ0 + x0 = 0, (i)

ẍ1 + x1 = −2�1x0 − εx2
0 + γ cos t . (ii)

The general solution of (i) is
x0 = A0 cos t + B0 sin t .

Substitute this solution into (ii) which becomes

ẍ1 + x1 = −2�1(A0 cos t + B0 sin t)− ε(A0 cos t + B0 sin t)3 + γ cos t

= −1
2ε(A

2
0 + B2

0 )− (2�1A0 − γ ) cos t − 2�1B0 sin t + higher harmonics

Secular terms can be removed by putting B0 = 0 and A0 = γ /(2�1), which is the lead-
ing frequency–amplitude relation. Further equations relating amplitude and frequency can be
obtained by continuing the perturbation.

• 5.17 Use the method of amplitude-phase perturbation (NODE, Section 5.8) to approxi-
mate to the solutions, period 2π , of ẍ + x = ε(γ cos t − xẋ − βx).
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5.17. In the equation
ẍ + x = ε(γ cos t − xẋ − βx),

let s = t + α and X(ε, s) = x(ε, t) (see Section 5.8). After the change of variable X satisfies

X′′ +X = ε[γ cos(s − α)−XX′ − βX],

where X′ = dX/ds, etc. Let

X(ε, s) = X0(s)+ εX1(s)+ · · · , α = α0 + εα1 + · · · . (i)

We are searching for a 2π -period solution for X(ε, s) and all its coefficients in its perturbation
series. We can also assume, without loss of generality, that X′i (0) = 0 for all i. Substitute the
series

cos(s − α) = cos(s − α0)+ εα1 sin(s − α0)+ · · ·
into (i) and equate to zero the coefficients of ε: the result is

X′′0 +X0 = 0, (ii)

X′′1 +X1 = γ cos(s − α0)−X0X
′
0 − βX0, (iii)

X′′2 +X2 = γα1 sin(s − α0)−X0X
′
1 −X1X

′
0 − βX1. (iv)

From (i), it follows that X0(s) = r0 cos s. Equation (ii) now becomes

X′′1 +X1 = γ cos(s − α0)+ r2
0 cos s sin s − βr0 cos s

= (cosα0 − βr0) cos s + γ sinα0 sin s + 1
2r

2
0 sin 2s.

We need to eliminate the secular terms on the right, so that

cosα0 − βr0 = 0, γ sinα0 = 0.

We can choose α0 = 0 so that r0 = 1/β. For these values X1 satisfies

X′′1 +X1 = 1
2β2 sin 2s.,

which has the general solution

X1 = a1 cos s + b1 sin s − 1
6β2 sin 2s.

Using the initial condition, X′1(s) = 0,

X1 = −a1 cos s + 1
3β2 sin s − 1

6β2 sin 2s.
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Equation (iv) now becomes

X′′2 +X2 = 1
12β3 (1+ 12a1β

4) cos s + 1
3β
(3α1γβ − 1) sin s + higher harmonics.

Non-periodic solutions arise unless

a1 = 1
12β4 , α1 = 1

3γβ
.

Finally

X1 = − 1
12β4 cos s + 1

3β2 sin s − 1
6β2 sin 2s.

• 5.18 Investigate the solutions, period 2π , of ẍ+9x+ εx2 = � cos t obtained by using the
direct method of NODE, Section 5.2. If x = x0 + εx1 + · · · , show that secular terms first
appear in x2.

5.18. We will use the direct method of Section 5.2 to find, approximately, the 2π period
solutions of

ẍ + 9x + εx2 = � cos t .

Let x = x0 + εx1 + · · · . Then

(ẍ0 + εẍ1 + · · · )+ 9(x0 + εx1 + · · · )+ ε(x0 + εx1 + · · · )2 = � cos t .

Equating like powers of ε, the first few equations are

ẍ0 + 9x0 = � cos t , (i)

ẍ1 + 9x1 = −x2
0 , (ii)

ẍ2 + 9x2 = −2x0x1. (iii)

The period 2π-period solution of (i) is

x0 = a0 cos 3t + b0 sin 3t + 1
8� cos t .

Now substitute this into the equation for x1:

ẍ1 + 9x1 = −1
2
(a2

0 + b2
0)+

�2

128
− �

128
(16a0 + �) cos 2t

−1
8a0� cos 4t + 1

2 (−a2
0 + b2

0) cos 6t − 1
8b0� sin 2t−1

8b0� sin 4t − a0b0 sin 6t

Secular terms of the form t cos 3t and t sin 3t first appear for x2 through the forcing term−2x0x1.
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• 5.19 For the damped pendulum equation with a forcing term

ẍ + kẋ + ω2
0x − 1

6ω
2
0x

3 = F cosωt ,

show that the amplitude–frequency curves have their maxima on ω2 = ω2
0

(
1− 1

8r
2
0

)
− 1

2k
2.

5.19. The damped pendulum equation with a forcing term is

ẍ + kẋ + ω2
0x − 1

6ω
2
0x

3 = F cosωt .

The amplitude–frequency equation for the equation is

r2
0

[
k2ω2 +

(
ω2 − ω2

0 + 1
8ω

2
0r

2
0

)2
]
= F 2, (i)

as given by NODE, (5.42). The family of curves for varying values of F are shown in Figure 5.5
(in NODE). At fixed values of r0, there will be two solutions for ω below the maximum and
one at the maximum. Equation (i) can be rearranged as a quadratic equation in ω2, namely

r2
0ω

4 + r2
0ω

2
[
k2 − 2ω2

0

(
1− 1

8r
2
0

)]
+ r2

0ω
4
0

(
1− 1

8r
2
0

)2 − F 2 = 0. (ii)

This equation has a repeated solution if

r4
0

[
k2 − 2ω2

0

(
1− 1

8r
2
0

)]2 = 4r2
0

[
r2
0ω

4
0

(
1− 1

8r
2
0

)2 − F 2
]

,

or, after rearrangement,

F 2 = 1
4k

2r2
0

[
2ω2

0

(
1− 1

8r
2
0

)
− k2

]
. (iii)

The repeated solution of (ii), which locates the position of the maximum, is given by

ω2 = ω2
0

(
1− 1

8r
2
0

)
− 1

2k
2.

Equation (iii) identifies the value of F and the particular path in Figure 5.5 (in NODE) on which
the maximum occurs.

• 5.20 Show that the first harmonic for the forced van der Pol equation ẍ+ε(x2−1)ẋ+x =
F cosωt is the same for both weak and hard excitation, far from resonance.
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5.20. In the forced van der Pol equation

ẍ + ε(x2 − 1)ẋ + x = F cosωt ,

let τ = ωt . The equation becomes

ω2x′′ + ωε(x2 − 1)x′ + x = F cos τ , (i)

where x′ = dx/dτ . Hard excitation, far from resonance, is covered in Section 5.10, where it is
shown that, in the expansion x = x0 + εx1 + · · · ,

x0 = F

1− ω2 cos τ +O(ε) = F

1− ω2 cosωt +O(ε). (ii)

For soft excitation, let F = εF0, so that (i) becomes

ω2x′′ + ωε(x2 − 1)ẋ + x = εF0 cos τ ,

Let x = x0 + εx1 + · · · for all ε. Then x0 and x1 satisfy the equations

ω2x′′0 + x0 = 0,

ω2x′′1 + ω(x2
0 − 1)x′0 + x1 = F0 cos τ .

Period 2π solutions are

x0 = 0, x1 = F0

1− ω2 cos τ .

Therefore

x = εx1 +O(ε2) = εF0

1− ω2 cos τ +O(ε2) = F

1− ω2 cosωt +O(ε2),

in which the leading term agrees with (ii).

• 5.21 The orbital equation of a planet about the sun is

d2u

dθ2 + u = k(1+ εu2),

where u = r−1 and r, θ , are polar coordinates, k = γm/h2, γ is the gravitational constant,
m is the mass of the planet and h is its moment of momentum, a constant, εku2 is the
relativistic correction term, where ε is a small constant.

Obtain a perturbation expansion for the solution with initial conditions u(0) = k(e+ 1),
u̇(0) = 0. (e is the eccentricity of the unperturbed orbit, and these are initial conditions at
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the perihelion: the nearest point to the sun on the unperturbed orbit.) Note that the solution
of the unperturbed equation is not periodic, and that ‘secular’ terms cannot be eliminated.
Show that the expansion to order ε predicts that in each orbit the perihelion advances
by 2k2πε.

5.21. The orbital equation of a planet is

u′′ + u = k(1+ εu2),

where u = 1/r and r, θ are polar coordinates, and ε is a small constant. The initial conditions
are

u(0) = k(e + 1), u̇(0) = 0,

where e is the eccentricity of the unperturbed orbit. Let u = u0 + εu1 + · · · . The leading terms
satisfy the differential equations

u′′0 + u0 = k, (i)
u′′1 + u1 = ku2

0, (ii)

subject to the initial conditions u0(0) = k(e + 1), u1(0) = 0, u′0(0) = u′1(0) = 0. The general
solution of (i) is

u0 = A0 cos θ + B0 sin θ + k.
From the conditions, A0 = ke, B0 = 0, so that

u0 = k(e cos θ + 1).

Equation (ii) is now

u′′1 + u1 = k3(e cos θ + 1)2 = 1
2k

3[(2+ e2)+ 4e cos θ + e2 cos 2θ ]. (iii)

Since e is specified, the secular term 2e cos θ cannot be eliminated, which indicates that the
solution will not be periodic. The general solution of this equation is

u1 = A1 cos θ + B1 sin θ + 1
2k

3(2+ e2)+ ek3θ sin θ − 1
6e

2k3 cos 2θ .

From the initial conditions A1 = −1
3k

3(3+ e2), B1 = 0. Hence

u1 = 1
2k

3(2+ e2)− 1
3k

3(3+ e2) cos θ + ek3θ sin θ − 1
6e

2k3 cos 2θ ,

so that

u = k(e cos θ + 1)+ εk3
[

1
2 (2+ e2)− 1

3 (3+ e2) cos θ + eθ sin θ − 1
6e

2 cos 2θ
]
+O(ε2).



278 Nonlinear ordinary differential equations: problems and solutions

Let θ = 2π + µ0ε, where |µ| is small. At the next perihelion,

u′(2π + µ0ε) = u′0(2π + µ0ε)+ εu′1(2π + µ0ε)+O(ε2)

= u′0(2π)+ εµ0u
′′
0(2π)+ εu′1(2π)+O(ε2)

= ε[µ0u
′′
0(2π)+ u′1(2π)] +O(ε2)

= ε[µ0(−ke)+ 2ek3π)+O(ε2)

The term of order ε vanishes if µ0=2k2π . Hence the perihelion advances by 2k2πε

approximately.

• 5.22 Use the Lindstedt procedure (NODE, Section 5.9) to find the first few terms in the
expansion of the periodic solutions of ẍ + x + εx2 = 0. Explain the presence of a constant
term in the expansion.

5.22. We apply the Lindstedt procedure (Section 5.9) to the equation

ẍ + x + εx2 = 0. (i)

When ε = 0, the frequency of all solutions is 1. Therefore we let the unknown frequency be

ω = 1+ εω1 + · · · , x(ε, t) = x0(t)+ εx1(t)+ · · · .

Apply the change of variable τ = ωt , so that (i) becomes

ω2x′′ + x + εx2 = 0.

We are searching for 2π periodic solutions. Substitution of the perturbations leads to

(1+ εω1 + · · · )2(x′′0 + εx′′1 + · · · )+ (x0 + εx1 + · · · )+ ε(x0 + εx1 + · · · )2 = 0

for all ε. Therefore the leading terms satisfy

x′′0 + x0 = 0, (ii)

x′′1 + x1 = −2ω1x
′′
0 − x2

0 = 0, (iii)

x′′2 + x2 = −(ω2
1 + 2ω2)x

′′
0 − 2ω1x

′′
1 − x2

0 − 2x0x1. (iv)
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Since it is an autonomous system we can simplify the procedure by assuming x(ε, 0) = a and
x′(ε, 0) = 0, which implies that x0 = a, x′0(0) = 0, and xi(0) = x′i (0) = 0, (i = 1, 2, . . .). The
solution of (i) is

x0 = a cos τ ,

so that x1 satisfies

x′′1 + x1 = 2ω1a cos τ − a2 cos2 τ = 2ω1a cos τ − 1
2a

2(1+ cos 2τ).

To eliminate the secular term put ω1 = 0 (a0 = 0 leads to the solution x = 0). By elementary
integration follows that

x1 = −1
2a

2 + 1
3a

2 cos τ + 1
6a

2 cos 2τ .

With ω1 = 0, eqn (iv) becomes

x′′2 + x2 = −2ω2x
′′
0 − x2

0 − 2x0x1

= 2ω2a cos τ − a2 cos2 τ−2a cos τ
(
−1

2a
2 + 1

3a
2 cos t + 1

6a
2 cos 2t

)

= −1
6a

2(3+ 2a)+ 1
6a(5a

2 + 24ω2) cos t − 1
6a

2(3+ 2a) cos 2t−1
6a

3 cos 3t

The secular term vanishes if the coefficient of cos t is zero, that is, if ω2 = − 5
24a

2. Therefore
the frequency–amplitude relation is given by

ω = 1− 5
24
a2ε2 +O(ε3).

Finally

x = x0 + εx1 +O(ε2)

= a cos
[(

1− 5
24
ε2

)
t

]
+ ε

{
−1

2
a2 + 1

3
a2 cos

[(
1− 5

24
ε2

)
t

]

+1
6
a2 cos

[
2
(

1− 5
24
ε2

)
t

]}
+O(ε2).

The constant term indicates that the solution does not have a mean value of zero.
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• 5.23 Investigate the forced periodic solutions of period 2π of the equation

ẍ + (4+ εβ)x − εx3 = � cos t

where ε is small and β and � are not too large. Confirm that there is always a periodic
solution of the form a0 cos 2t + b0 sin 2t + 1

3� cos t , where

a0

(
3
4r

2
0 + 1

6�
2 − β

)
= b0

(
3
4r

2
0 + 1

6�
2 − β

)
= 0.

5.23. In the equation

ẍ + 4x + εβx − εx3 = � cos t ,

let x = x0 + εx1 + · · · . Then, equating like powers of ε, we have

ẍ0 + 4x0 = � cos t , (i)

ẍ1 + 4x1 = −βx0 + x3
0 . (ii)

The general solution of (i) is

x0 = a0 cos 2t + b0 sin 2t + 1
3� cos t .

Substitution of x0 into (ii) implies

ẍ1 + 4x1 = −β
(
a0 cos 2t + b0 sin 2t + 1

3� cos t
)
+

(
a0 cos 2t + b0 sin 2t + 1

3� cos t
)3

= 1
36�(18r2

0 − 12β + �2) cos t + 1
12 (9r

2
0 − 12β + 2�2)(a0 cos 2t + b0 sin 2t)

+ higher harmonics

where r0 = √(a2
0 + b2

0). The secular terms can be eliminated if

a0

(
3
4r

2
0 − β + 1

6�
2
)
= b0

(
3
4r

2
0 − β + 1

6�
2
)
= 0.

The solutions are a0 = b0 = 0 or any a0, b0 which satisfy

3
4r

2
0 − β + 1

6�
2 = 0.
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• 5.24 Investigate the equilibrium points of ẍ+ ε(αx4− β)ẋ− x+ x3 = 0, (α > β > 0) for
0 < ε � 1. Use the perturbation method of NODE, Section 5.12 on homoclinic bifurcation
to find the approximate value of β/α at which homoclinic paths exist.

5.24. Equilibrium points of

ẍ + ε(αx4 − β)ẋ − x + x3 = 0, ẋ = y, (α > β > 0), (i)

are located at (0, 0), (1, 0) and (−1, 0). Their linear classifications are as follows.

• (0, 0). Near the origin

ẍ − βεẋ − x = 0.

The solutions of the characteristic equation are

m = 1
2 [εβ ±

√
(ε2β2 + 4)],

which are both real but of opposite signs. Hence (0, 0) is saddle point.
• (1, 0). Let x = 1+X. Then the equation becomes

Ẍ + ε[α(1+X)4 − β]Ẋ − (1+X)+ (1+X)3 = 0.

The linear approximation of the equation is

Ẍ + ε(α − β)Ẋ + 2X = 0.

The solutions of its characteristic equation are

m = 1
2 [−ε(α − β)±

√{ε2(α − β)2 − 8}].

For α > β and ε sufficiently small, (1, 0) is a stable spiral.
• (−1, 0). This has the same linearized equation as that for (1, 0). Therefore it is also stable

spiral.

Following the method described in Section 5.12, we let x = x0+ εx1+ · · · and substitute the
series into (i). The differential equations for x0 and x1 are

ẍ0 − x0 + x3
0 = 0,

ẍ1 + (3x2
0 − 1)x1 = −(αx4

0 − β)ẋ0.
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the zero-order equation. As shown in the same section has the homoclinic solution x0 =√
2sech t for x > 0, and x0 = −√2sech t for x < 0. The condition for a homoclinic path

in x > 0 is

∫ ∞

−∞
(β − αx4

0(t))ẋ
2
0(t)dt = 0

as in NODE, eqn (5.105). Since x0(t) =
√

2sech t , the condition becomes

2β
∫ ∞

−∞
sech 4

t sinh2
tdt − 8α

∫ ∞

−∞
sech 8

t sinh2
tdt = 0. (ii)

Use the substitution u = tanh t . Then du/dt = sech 2
t and the integrals become

∫ ∞

−∞
sech 4

t sinh2
tdt =

∫ 1

−1
u2du = 2

3
,

∫ ∞

−∞
sech 8

t sinh2
tdt =

∫ 1

−1
u2(1− u2)du =

∫ 1

−1
(u2 − 2u4 + u6)du = 16

105
.

Hence condition (ii) becomes

4β
3
− 128

105
α = 0,

so that β/α = 32/35.

• 5.25 Investigate the equilibrium points of ẍ+ ε(αx2−β)ẋ− x+3x5 = 0 , (α,β > 0) for
0 < ε � 1. Confirm that the equation has an unperturbed time solution x0 = √[sech 2t]
(see Problem 3.55). Use the perturbation method of Section 5.12 to show that a homoclinic
bifurcation takes place for β ≈ 4α/(3π).

5.25. Equilibrium points of

ẍ + ε(αx2 − β)ẋ − x + 3x5 = 0 (i)

are located at (0, 0), (3−1/4, 0) and (−3−1/4, 0). Their linear classifications are as follows.

• (0, 0). Near the origin

ẍ − εβẋ − x = 0.
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Its characteristic equation has the solutions

m = 1
2 [εβ ±

√
(ε2β2 + 4)].

which are real but of opposite signs. Therefore (0, 0) is a saddle point.
• (3−1/4, 0). Let x = 3−1/4 +X. Then the equation becomes

Ẍ + ε[α(3−1/4 +X)2 − β]Ẋ − (3−1/4 +X)+ 3(3−1/4 +X)5 = 0.

Its linear approximation

Ẍ + ε(3−(1/2)α − β)Ẋ + 4X = 0,

which implies that (3−1/4, 0) is a spiral for ε sufficiently small.
• (−3−1/4, 0). By symmetry (replace x by −x in (i)), this equilibrium point is also a spiral.

If x0 = √(sech 2t), then

ẋ0 = −1
2sech 3/2

t sinh t ,

ẍ0=−2sech 1/22t + 3sech 5/22t sinh2 2t=sech 1/22t − 3sech 5/22t = x0 − 3x5
0 .

The condition for a homoclinic path in x > 0 is

∫ ∞

−∞
(β − αx4

0(t))ẋ
2
0(t)dt = 0

as in eqn (5.15). Since x0 = √(sech 2t), the condition becomes

β

∫ ∞

−∞
sech 32t sinh2 2tdt − α

∫ ∞

−∞
sech 42t sinh2 2tdt = 0.

Use the substitutions u = sinh 2t in the first integral and v = tanh t in the second integral, so
that the integrals become

β

2

∫ ∞

−∞
u2

(1+ u2)2
du− α

∫ 1

−1
v2dv = 0,

or
βπ

4
− α1

3
= 0.

Therefore for a homoclinic connection we require β ≈ 4α/3π .
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• 5.26 The equation ẍ + εg(x, ẋ)ẋ + f (x) = 0, ẋ = y, 0 < ε � 1 is known to have a
saddle point at (0, 0) with an associated homoclinic trajectory with solution x = x0(t) for
ε = 0. Work through the perturbed method of NODE, Section 5.12, and show that any
homoclinic paths of the perturbed system occur where∫ ∞

−∞
g(x0, ẋ0)ẋ

2
0dt = 0.

If g(x, ẋ) = β − αx2 − γ ẋ2
0 and f (x) = −x + x3, show that homoclinic bifurcation occurs

approximately where β = (28α + 12γ )/35 for small ε.

5.26. The equation
ẍ + εg(x, ẋ)ẋ + f (x) = 0,

is known to have a saddle point at the origin, with an associated homoclinic trajectory with
solution x = x0(t) for ε = 0. As in Section 5.12, let x = x0 + εx1 + · · · . Then the differential
equation becomes

(ẍ0 + εẍ1 + · · · )+ εg(x0 + εx1 + · · · , ẋ0 + εẋ1 + · · · )(ẋ0 + εẋ1 + · · · )

+f (x0 + εx1 + · · · ) = 0.

Hence, expanding g(x0 + εx1 + · · · , ẋ0 + εẋ1 + · · · ) and f (x0 + εx1 + · · · ), and equating to
zero the coefficients of powers of ε, we have

ẍ0 + f (x0) = 0, (i)

ẍ1 + f ′(x0)x1 = −g(x0, ẋ0)ẋ0. (ii)

We are given that x0 satisfies (i) identically. Multiply both sides of (ii) by ẋ0 and confirm that

d
dt
[ẋ1ẋ0 + x1f (x0)] = −g(x0, ẋ0)ẋ

2
0 .

Integrate over the infinite interval with respect to t , so that

[ẋ1ẋ0 + x1f (x0)]∞−∞ = −
∫ ∞

−∞
g(x0, ẋ0)ẋ

2
0dt .

A necessary condition for x1 and ẋ1 to both approach zero as t →±∞ is that

∫ ∞

−∞
g(x0, ẋ0)ẋ

2
0dt = 0. (iii)



5 : Perturbation methods 285

In the application, g(x, ẋ)=β −αx2− γ ẋ and f (x)= −x+x3. The unperturbed equation is

ẍ− x+ x3=0,

which has the homoclinic solution x0 =
√

2sech t in x > 0. The homoclinic path remains for
the perturbed system if (see (iii) above)

I =
∫ ∞

−∞
(β − αx2

0 − γ ẋ2
0)ẋ

2
0dt = 0.

Substitution of x0 leads to

I =
∫ ∞

−∞
[2βsech 4

t sinh2
t − 4αsech 6

t sinh2
t − 4γ sech 8 sinh4

t]dt

= 2β
2
3
− 4α

4
15
− 4γ

∫ 1

−1
(1− u2)u4du (using integrals after (5.106))

= 4
3
β − 16

15
α − 4γ

[
2
5
− 2

7

]

= 4
3
β − 16

15
α − 16

35
γ = 0

if β = (28α + 12γ )/35.

• 5.27 Apply Lindstedt’s method to ẍ + εxẋ + x = 0, 0 < ε � 1 where x(0) = a0,
ẋ(0) = 0. Show that the frequency–amplitude relation for periodic solutions is given by
ω = 1− 1

24a
2
0ε

2 +O(ε3).

5.27. Applying Lindtstedt’s (NODE, Section 5.9) method to

ẍ + εxẋ + x = 0, x(0) = a0, ẋ(0) = 0,

let τ = ωt , ω = 1+ εω1 + ε2ω2 + · · · and x = x0 + εx1 + ε2x2 + · · · . The equation becomes

ω2x′′ + εωxx′ + x = 0,

where x′ = dx/dτ . Substitution of the series into the equation leads to

(1+ εω1 + ε2ω2 + · · · )2(x′′0 + εx′′1 + ε2x′′2 + · · · )
+ ε(1+ εω1 + ε2ω2 + · · · )(x0 + εx1 + ε2x2 + · · · )(x′0 + εx′1 + ε2x′2 + · · · )
+ (x0 + εx1 + ε2x2 + · · · ) = 0.
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Equating to zero the coefficients of the powers of ε, we obtain the differential equations

x′′0 + x0 = 0, (i)

x′′1 + x1 = −2ω1x
′′
0 − x0x

′
0, (ii)

x′′2 + x2 = −(ω1x0 + x1)x
′
0 − x0x

′
1 − (ω2

1 + 2ω2)x
′′
0 − 2ω1x

′′
1. (iii)

The perturbation initial conditions for x(0) = a and x′(0) = 0 become

x0(0) = a0, xi(0) = 0, (i = 1, 2, . . .), x′j (0) = 0, (j = 0, 1, 2, . . .).

The solution of (i) subject to the initial conditions is x0 = a cos τ . Equation (ii) then becomes

x′′1 + x1 = 2ω1a0 cos τ + 1
2a

2
0 sin 2τ .

Periodicity for x1 requires ω1 = 0, so that x1 satisfies

x′′1 + x1 = 1
2a

2
0 sin 2τ .

The solution subject to x1(0) = x′1(0) = 0 is

x1 = 1
6a

2
0(2 sin τ − sin 2τ).

Substitution of x0 and x1 into (iii), the equation for x2, gives

x′′2 + x2 = 1
12 (a

3
0 + 24a0ω2) cos τ − 4a3

0 cos 2τ + 3a3
0 cos 3τ .

Secular terms can be eliminated by choosing ω2 = −a2
0/24. Therefore the frequency-amplitude

is given by

ω = 1− 1
24a

2
0ε

2 +O(ε3).

• 5.28 Find the first three terms in a direct expansion for x in powers of ε for period 2π
solutions of the equation ẍ +�2x − εẋ2 = cos t , where 0 < ε � 1 and � �= an integer.

5.28. In the equation

ẍ +�2x − εẋ2 = cos t ,
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let x = x0 + εx1 + ε2x2 + · · · .Therefore

(ẍ0 + εẍ1 + ε2ẍ2 + · · · )+�2(x0 + εx1 + ε2x2 + · · · )− ε(ẋ0 + εẋ1 + ε2ẋ2 + · · · )2 = cos t .

Equating like powers of ε leads to the equations

ẍ0 +�2x0 = cos t , (i)

ẍ1 +�2x1 = ẋ2
0 , (ii)

ẍ2 +�2x2 = 2ẋ0ẋ1. (iii)

The 2π -periodic solution of (i) is

x0 = cos t
�2 − 1

. (iv)

Equation (ii) becomes

ẍ1 +�2x1 = − sin2 t

(�2 − 1)2
= − 1

2(�2 − 1)2
(1− cos 2t).

The 2π periodic solution is

x1 = 1
2(�2 − 1)2

(
1
�2 +

cos 2t
�2 − 4

)
. (v)

Equation (iii) is

ẍ2 +�2x2 = − sin t
2�2(�2 − 1)3

+ sin t cos 2t
2(�2 − 1)3(�2 − 4)

= 7 − 2�2

4�2(�2 − 1)3(�2 − 4)
sin t + 1

4(�2 − 1)3(�2 − 4)
sin 3t

The 2π periodic solution of this equation is

x2 = 7 − 2�2

4�2(�2 − 1)4(�2 − 4)
sin t + 1

4(�2 − 1)3(�2 − 4)(�2 − 9)
sin 3t . (vi)

The periodic solution can be constructed by substituting x, x1, x2 from (iv), (v) and (vi) into

x = x0 + εx1 + ε2x2 +O(ε3).
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6 Singular perturbation
methods

• 6.1 Work through the details of NODE, Example 6.1 to obtain an approximate solution
of ẍ + x = εx3, with x(ε, 0) = 1, ẋ(ε, 0) = 0, with error O(ε3) uniformly on t ≥ 0.

6.1. Substitute the expansion

x(ε, t) = x0(t)+ εx1(t)+ ε2x2(t)+ · · ·

into the equation

ẍ + x = εx3,

to give

(ẍ0(t)+ εẍ1(t)+ ε2ẍ2(t)+ · · · )+ (x0(t)+ εx1(t)+ ε2x2(t)+ · · · ) =
ε(x0(t)+ εx1(t)+ ε2x2(t)+ · · · )3.

The initial conditions are

x0(0) = 1, x1(0) = 0, x2(0) = 0, . . . ;

ẋ0(0) = 0, ẋ1(0) = 0, ẋ2(0) = 0, . . . .

The terms in the perturbation series satisfy the differential equations

ẍ0 + x0 = 0, (i)

ẍ1 + x1 = x3
0 , (ii)

ẍ2 + x2 = 3x2
0x1. (iii)

The solution of (i) which satisfies the initial conditions is x0= cos t . Equation for x1
given by (ii)

ẍ1 + x1 = cos3 t = 3
4 cos t + 1

4 cos 3t .
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Hence

x1 = A cos t + B sin t + 3
8 t sin t − 1

32 cos 3t .

The initial conditions imply A = 1
32 and B = 0, so that

x1 = 1
32 cos t + 3

8 t sin t − 1
32 cos 3t .

In (iii)

3x2
0x1 = 3

128 (2 cos t − cos 3t − cos 5t + 12t sin t + 12t sin 3t),

so that

ẍ2 + x2 = 3x2
0x1 = 3

128 (2 cos t − cos 3t − cos 5t + 12t sin t + 12t sin 3t).

The solution satisfying x2(0) = ẋ′2(0) = 0 is

x2= 1
1024 (23 cos t − 72t2 cos t −24 cos 3t + cos 5t + 96t sin t −36t sin 3t).

Now let

t = τ + εT1(τ )+ ε2T2(τ )+ · · · . (iv)

Substitute for t into the expressions for x0(t), x1(t) and x2(t). They

x0 = cos[τ + εT1(τ )+ ε2T2(τ )] +O(ε3)

= cos τ − εT1(τ ) sin τ + ε2
(
−1

2T1(τ )
2 cos τ − T2(τ ) sin τ

)
+O(ε3).

x1 = 1
32 cos(τ + εT1(τ ))+ 3

8ε(τ + εT1(τ )) sin(τ + εT1(τ ))

− 1
32 cos 3(τ + εT1(τ )) = 1

32 [cos τ − cos 3τ + 12τ sin τ ]
+ 1

32εT1(τ )[11 sin τ + 12τ cos τ + 3 sin 3τ ] +O(ε2).

x2 = 1
1024 (23 cos τ − 72τ2 cos τ − 24 cos 3τ + cos 5τ + 96τ sin τ

− 36τ sin 3τ)+O(ε).
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In the expansion x(ε, t) = x0(t)+ εx1(t)+ ε2x2(t)+ · · · , the zero-order coefficient is cos τ . The
coefficient of ε is

−T1(τ ) sin τ + 1
32 (cos τ − cos 3τ + 12τ sin τ).

The growth term can be eliminated by choosing

T1(τ ) = 3
8τ .

The coefficient of ε2 is

− 1
2T1(τ )

2 cos τ − T2(τ ) sin τ + 1
32T1(τ )[11 sin τ + 12τ cos τ + 3 sin 3τ ]

+ 1
1024 (23 cos τ − 72τ2 cos τ − 24 cos 3τ + cos 5τ + 96τ sin τ − 36τ sin 3τ)

= −T2(τ ) sin τ + 57
256τ sin τ + 23

1024 cos τ − 24
1024 cos 3τ + 1

1024 cos 5τ

after substituting T1(τ ) = 3
8τ . The secular term can be eliminated by choosing T2(τ ) = 57

256τ .
Hence from (iv) the time perturbation is

t = τ + 3
8ετ + 57

256ε
2τ +O(ε3), (v)

and in terms of τ the solution becomes

x = cos τ + 1
32ε(cos τ − cos 3τ)+ 1

1024ε
2(23 cos τ − 24 cos 3τ + cos 5τ)+O(ε3).

The period of this expression in τ is 2π , and the corresponding t-period is obtained from (v).

• 6.2 How does the period obtained by the method of Problem 6.1 compare with that
derived in Problem 1.34?

6.2. The equation in Problem 1.34 is, with a change of notation,

Ẍ +X = ε′X3, (i)

and, the period T of this pendulum equation (as in Problem 6.1) in terms of the amplitude a
was shown to be

T = 2π
(
1+ 3

8ε
′a2 + 57

256ε
′2a4

)
+O(a6).
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In Problem 6.1 the initial condition given is x(0) = 1. This can be changed to a by the
substitution of x = X/a into the differential equation in Problem 6.1, so that

Ẍ +X = ε

a2X
3

andX(0, ε) = a. This is equivalent to (i) if ε′ is replaced by ε/a2. From Problem 6.1, the relation
between t and τ is

t = τ + 3
8ετ + 57

256ε
2τ +O(ε3),

and the solution is 2π periodic in τ . Hence the period T ′, say, is given by,

T ′ = 2π
[
1+ 3

8ε + 57
256ε

2 +O(ε3)
]

= 2π
[
1+ 3

8aε
′ + 57

256a
2ε′2 +O(ε′3)

]
≈ T .

for aε′ small enough.

• 6.3 Apply the method of Problem 6.1 to the equation ẍ+x = εx3+ε2αx5 with x(ε, 0) = 1,
ẋ(ε, 0) = 0. Obtain the period to order ε3, and confirm that the period is correct for the
pendulum when the right-hand side is the first two terms in the expansion of x − sin x.
(Compare the result of Problem 1.33. To obtain the required equations simply add the
appropriate term to the right-hand side of the equation for x2 in Example 6.1 in NODE.)

6.3 The equation

ẍ + x = εx3 + ε2αx5,

is as in Problem 6.1, but with the additional term ε2αx5 which is of order ε2. As in Problem 6.1,
we substitute the expansion

x(ε, t) = x0(t)+ εx1(t)+ ε2x2(t)+ · · · ,

into the equation and apply the initial conditions

x0(0) = 1, x1(0) = 0, x2(0) = 0, . . . ;

ẋ0(0) = 0, ẋ1(0) = 0, ẋ2(0) = 0, . . . .
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The order zero and order ε terms will be the same so that, with

t = τ + εT1(τ )+ ε2T2(τ )+ · · · ,

we also find that x0 = cos τ , T1(τ ) = 3
8τ and

x1 = 1
32 (cos τ − cos 3τ).

The term ε2αx5 will first appear in the equation for x2, which will now become

ẍ2 + x2 = 3x2
0x1 + αx5

0

= 1
128 [(6+ 8α) cos t + (−3+ 40α) cos 3t + (−3+ 8α) cos 5t

+ 36t sin t + 36t sin 3t]

using the expansion

cos5 t = 1
16 (10 cos t + 5 cos 3t + cos 5t),

The solution of the differential equation satisfying the given initial conditions is

x2 = 1
3072 [(69+ 128α − 216t2) cos t − (72+ 120α) cos 3t

+ (3− 8α) cos 5t + (288+ 960α)t sin t − 108t sin 3t].

Putting t = τ + · · · in (i), and using eqn (iv) from Problem 6.1, the coefficient of ε2 becomes

− T2(τ ) sin τ + 1
3072 [(69+ 128α) cos τ − (72+ 120α) cos 3τ

+ (3− 8α) cos 5τ + (684+ 960α)τ sin τ ]

The secular term can be eliminated by choosing

T2(τ ) = 57 + 80α
256

τ .

We can compare the result with that obtained from the pendulum equation in Problem 1.33.
The exact pendulum equation is

ẍ + sin x = 0,
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which can be approximated by

ẍ + x − 1
6x

3 + 1
120x

5 = 0.

This is the same equation as the one in this problem if ε = 1
6 and ε2α = − 1

120 , so that α = − 3
10 .

Therefore the timescale becomes

t = τ + εT1(τ )+ ε2T2(τ )+ · · ·

=
[
1+ 3

8ε + 57+80α
256 ε2

]
τ +O(ε3)

=
[
1+ 1

16 + 11
3072

]
τ +O(ε3).

The period obtained using this timescale agrees with that of Problem 1.33.

• 6.4 Use the substitution to show that the case considered in Problem 6.1 (the equation is
ẍ + x = εx3) covers all boundary conditions x(ε, 0) = a, ẋ(ε, 0) = 0.

6.4. The equation in Problem 6.1 is

ẍ + x = εx3.

Apply the transformation x(ε, t) = X(ε, t)/a. Then the equation becomes

Ẍ +X = εX3/a2,

with the initial conditions X(ε, 0) = a, Ẋ(ε, 0) = 0. Finally replace ε/a2 by ε′ so that X satisfies

Ẍ +X = ε′X3.

This assumes that ε′ remains small. Hence solutions for general initial conditions subject to the
previous restriction are included in Problem 6.1.

• 6.5 The equation for the relativistic perturbation of a planetary orbit is

d2
u

dθ2 + u = k(1+ εu2)

(see Problem 5.21). Apply the coordinate perturbation technique to eliminate the secular
term in u1(θ) in the expansion u(ε, θ) = u0(θ)+ εu1(θ)+ · · · , with θ = φ + εT1(φ)+ · · · .



6 : Singular perturbation methods 295

Assume the initial conditions u(0) = k(1 + e), du(0)/dθ = 0. Confirm that the perihelion
of the orbit advances by approximately 2πεk2 in each planetary year.

6.5. The relativistic equation is

d2u

dθ2 + u = k(1+ εu2),

subject to the initial conditions u(ε, 0) = k(1 + e) and x′(ε, 0) = 0. Let u(ε, θ) = u0(θ) +
εu1(θ)+ · · · , and substitute this series into the differential equation:

d2

dθ2 (u0 + εu1 + · · · )+ (u0 + εu1 + · · · ) = k[1+ ε(u0 + εu1 + · · · )2].

Equating like powers of ε, we have

d2u0

dθ2 + u0 = k, (i)

d2u1

dθ2 + u1 = ku2
0. (ii)

The initial conditions become

u0(0) = k(1+ e), ui(0) = 0, (i = 1, 2, . . . ), u′j (0) = 0, (j = 0, 1, 2, . . . ).

Therefore, from (i),

u0 = k(1+ e cos θ).

Equation (ii) becomes

d2u1

dθ2 + u1 = k3(1+ e cos θ)2 = k3[12 (2+ e2)+ 2e cos θ + 1
2e

2 cos 2θ].

The general solution is

u1(θ) = A cos θ + B sin θ + 1
2k

3(2+ e2)+ k3eθ sin θ − 1
6e

2k3 cos 2θ .

The initial conditions u1(0) = u′1(0) = 0 imply

A+ 1
2k

3(e2 + 2)− 1
6k

3e2 = 0, B = 0.
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Therefore A = −1
3k

3(e2 + 3), and the required solution is

u1(θ) = 1
2k

3(2+ e2)− 1
3k

3(e2 + 3) cos θ + k3eθ sin θ − 1
6e

2k3 cos 2θ .

Finally

u(ε, θ) = u0(θ)+ εu1(θ) · · ·
= +k(1+ e cos θ)+ εk3[12 (2+ e2)− 1

3 (e
2 + 3) cos θ

+eθ sin θ − 1
6e

2 cos 2θ ] +O(ε2)

Now introduce the expansion for the angle θ :

θ = φ + εT1(φ)+ · · · .

where φ is the strained coordinate. Then

u(ε,φ + εT1(φ)+ · · · ) = u0(φ + εT1(φ)+ · · · )+ εu1(φ + εT1(φ)+ · · ·)+ · · ·
= k(1+ e cosφ − eεT1(φ) sinφ)+ εk3[12 (2+ e2)− 1

3 (e
2 + 3) cosφ

+ eφ sinφ−1
6e

2 cos 2φ] +O(ε2)

The non-periodic φ sinφ term can be eliminated by choosing T1(φ) = k2φ. The period in θ is
given by

2πθ = 2π(1+ εk2 + · · ·).

Hence the correction, which is the advance of the perihelion, is approximately 2πεk2.

• 6.6 Apply the multiple-scale method to van der Pol’s equation ẍ + ε(x2 − 1)ẋ + x = 0.
Show that, if x(0) = a and ẋ(0) = 0, then for t = O(ε−1),

x = 2{1+ [(4/a2)− 1]e−εt }−(1/2) cos t .

6.6. The van der Pol equation is

ẍ + ε(x2 − 1)ẋ + x = 0. (i)
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To apply the multiple-scale method of Section 6.4, let

x(t , ε) = X(t , η, ε) = X0(t , η)+ εX1(t , η)+O(ε2), η = εt (ii)

to the equation. The derivatives of x(ε, t) are given by

dx(t , ε)
dt

= d
dt
X(t , εt , ε) = ∂X

∂t
+ ε ∂X

∂η
,

d2x(t , ε)
dt2

= ∂2X

∂t2
+ 2ε

∂2X

∂η∂t
+ ε2 ∂

2X

∂η2 .

The van der Pol equation is transformed into

∂2X

∂t2
+ 2ε

∂2X

∂η∂t
+ ε2 ∂

2X

∂η2 + ε(X2 − 1)
[
∂X

∂t
+ ε ∂X

∂η

]
+X = 0. (iii)

Substitute the series (ii) into (iii), and equate the coefficients of powers of ε to zero. The
coefficients X0 and X1 satisfy

∂2X0

∂t2
+X0 = 0, (iv)

∂2X1

∂t2
+X1 = (1−X2

0)
∂X0

∂t
− 2

∂2X0

∂t∂η
. (v)

The initial conditions are (as in eqn (6.53))

X(0, 0, ε) = a,
∂X

∂t
(0, 0, ε)+ ε ∂X

∂η
(0, 0, ε) = 0.

Substitute into these initial conditions the expansion for x(t , ε) and equate the coefficients of
powers of ε. Then

X0(0, 0) = a, X1(0, 0) = 0,
∂X0

∂t
(0, 0) = 0,

∂X1

∂t
(0, 0)+ ∂X0

∂η
(0, 0) = 0.

The solution of (iv) can be expressed as

X0(t , η) = A(η) cos t + B(η) sin t , A(0) = a, B(0) = 0.



298 Nonlinear ordinary differential equations: problems and solutions

Equation (v) becomes

∂2X1

∂t2
+X1 = [1− (A(η) cos t + B(η) sin t)2](−A(η) sin t + B(η) cos t)

− 2(−A′(η) sin t + B ′(η) cos t)

= 1
4 [4B(η)− A(η)2B(η)− B(η)3 − 8B ′(η)] cos t

+ 1
4 [−4A(η)+ A(η)3 + A(η)B(η)2 + 8A′(η)] sin t

+ 1
4B(η)[B(η)2 − 3A(η)2] cos 3t + 1

4A(η)[A(η)2 − 3B(η)2] sin 3t

To avoid secular growth the coefficients of cos t and sin t are equated to zero so that B and A
satisfy the differential equations

4B(η)− A(η)2B(η)− B(η)3 − 8B ′(η) = 0,

−4A(η)+ A(η)3 + A(η)B(η)2 + 8A′(η) = 0.

The initial condition B(0) = 0 in (vi) implies B(η) = 0 for all η, so that A(η) satisfies

8A′(η) = A(η)(4− A(η)2).

This is a separable equation with solution given by

8
∫

dA
A(4− A2)

=
∫

dη + C = η + C,

so that

A2

|A2 − 4| = eCeη,

where C is a constant. By (vi), A(0) = a, leading to

A2 = 4K
K − e−η

= 4a2

a2 + (4− a2)e−η
= 4a2

a2 + (4− a2)e−εt
.

Finally, form (vi), to the first order

x = X0 = A(η) cos t = 2a
[a2 + (4− a2)e−εt ]1/2 cos t .
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• 6.7 Apply the multiple-scale method to the equation ẍ+x−εx3 = 0, with initial conditions

x(0) = a, ẋ(0) = 0. Show that, for t = O(ε−1), x(t) = a cos
{
t
(
1− 3

8εa
2
)}

.

6.7. Apply the multiple-scale method (Section 6.4) to the system

ẍ + x − εx3 = 0, x(0) = a, ẋ(0) = 0.

As in the previous problem let

x(t , ε) = X(t , η, ε) = X0(t , η)+ εX1(t , η)+O(ε2), η = εt .

in which η = εt , so that

dx(t , ε)
dt

= d
dt
X(t , εt , ε) = ∂X

∂t
+ ε ∂X

∂η
,

d2x(t , ε)
dt2

= ∂2X

∂t2
+ 2ε

∂2X

∂η∂t
+ ε2 ∂

2X

∂η2 .

The initial conditions are

X0(0, 0) = a, X1(0, 0) = 0,
∂X0

∂t
(0, 0) = 0,

∂X1

∂t
(0, 0)+ ∂X0

∂η
(0, 0) = 0.

Hence

∂2X0

∂t2
+X0 = 0, (i)

∂2X1

∂t2
+X1 = −2

∂2X0

∂η∂t
+X3

0. (ii)

In this solution we shall use the alternative approach of complex solutions. Express X0 in the
form

X0 = A0(η)eit + A0(η)e−it .
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Equation (ii) becomes

∂2X1

∂t2
+X1 = −2iA′0(η)+ 2iA

′
0(η)+ [A0(η)eit + A0(η)e−it ]3

= −2iA′0(η)e
it + 2iA

′
0(η)e

−it + A3
0(η)e

3it + 3A2
0(η)A0(η)eit

+ 3A0(η)A
2
0(η)e

−it + A3
0(η)e

−3it

= [−2iA′0(η)+ 3A2
0(η)A0(η)]eit + [2iA

′
0(η)+ 3A0(η)A

2
0(η)]e−it

+ (higher harmonics)

Secular terms can be removed if

−2iA′0(η)+ 3A2
0(η)A0(η) = 0. (iii)

Let A0(η) = ρ(η)eiα(η). Then (iii) becomes

−2i(ρ′eiα + iρα′eiα)+ 3ρ3eiα = 0, or (2ρα′ + 3ρ3)− 2iρ′ = 0.

The real and imaginary parts of this equation are zero if

ρ′(η) = 0, 2α′(η)+ 3ρ(η)2 = 0.

Therefore ρ(η) = k, and α′(η) = −3
2k

2, which implies α(η) = −3
2k

2η +m. Therefore

X0(t , η) = kei(m−(3/2)k2η+t) + ke−i(m−(3/2)k2η+t) = 2k cos(m− 3
2k

2η + t).

The initial conditions imply a = 2k cosm and 2k sinm = 0, so that m = 0 and k = 1
2a. Finally

x ≈ a cos[(1− 3
8εa

2)t]

as required.

• 6.8 Obtain the exact solution of the equation in Example 6.9 namely,

ε
d2y

dx2 + 2
dy
dx
+ y = 0, y(0) = 0, y(1) = 1,

and show that it has the first approximation equal to that obtained by the matching method.
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6.8. Example 6.9 concerns the approximate solution of the boundary-value problem

ε
d2y

dx2 + 2
dy
dx
+ y = 0, y(0) = 0, y(1) = 1, 0 < x < 1.

This a second-order linear differential equation having the characteristic equation

ελ2 + 2λ+ 1 = 0.

The solutions of this equation are

λ1, λ2 = 1
2ε
[−2±√(4− 4ε)] = 1

ε
[−1±√(1− ε)].

Subject to the boundary conditions the solution is

y(x, ε) = eλ1x − eλ2x

eλ1 − eλ2
.

For small ε,

λ1 = 1
ε
[−1+√(1− ε)] = 1

ε
[−1+ 1− 1

2ε +O(ε2)] = −1
2 +O(ε).

Hence, approximately,

y(x, ε) ≈ e−(1/2)x − e−2x/ε

e−(1/2) − e−2/ε . (i)

Since x = O(1) but not o(1), that is, x is not ‘small’, the terms e−2x/ε and e−2/ε are exponentially
small, so that

y(x, ε) ≈ e(1/2)−(1/2)x = yO(ε, x),

the outer solution given by (6.99).
In the boundary layer, let x = ξε. Then, from (i),

y(x, ε) ≈ e−(1/2)ξε − e−2ξ

e−(1/2) − e−2/ε

≈ e−(1/2)ξε − e−2ξ

e−(1/2)
(neglecting the exponentially small term)

= e1/2[1− e−2ξ ] +O(ε)
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Hence

y(x, ε) ≈ e1/2[1− e−2ξ ] = e1/2[1− e−2x/ε] = yI(x, ε),

which agrees with the inner approximation given by (6.113) (in NODE).

• 6.9 Consider the problem

εy′′ + y′ + y = 0, y(ε, 0) = 0, y(ε, 1) = 1,

on 0 ≤ x ≤ 1, where ε is small and positive.

(a) Obtain the outer approximation

y(ε, x) ≈ yO = e1−x , x fixed, ε→ 0+;

and the inner approximation

y(ε, x) ≈ yI = C(1− e−x/ε), x = O(ε), ε→ 0+,

where C is a constant.

(b) Obtain the value of C by matching yO and yI in the intermediate region.

(c) Construct from yO and yI a first approximation to the solution which is uniform on
0 ≤ x ≤ 1.

Compute the exact solution, and show graphically yO, yI, the uniform approximation
and the exact solution.

6.9. The system is

εy′′ + y′ + y = 0, y(ε, 0) = 0, y(ε, 1) = 1.

(a) Put ε = 0 in the equation so that the outer solution satisfies y′O+ yO = 0 subject to yO = 1
at x = 1. Hence

yO = Ae−x = e1−x . (i)

Let x = ξε. Then eqn (i) is transformed into

d2y

dξ2 +
dy
dξ
+ εy = 0

For small ε, the inner approximation yI satisfies

d2y

dξ2 +
dy
dξ
= 0,
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for x = O(ε) and such that yI = 0 at ξ = 0. Hence

yI = C + Be−ξ = C(1− e−ξ ) = C(1− e−x/ε)

for x = O(ε).
(b) The constant C in the previous equation can be found by matching the outer and inner
approximations as follows. Let x = η√ε. Then

yO = e1−x = e1−η√ε = e+O(ε), yI = C(1− e−x/ε) = C(1− e−η/
√
ε)

= C + o(1),

as ε→ 0+. These match to the lowest order if C = e. Therefore the inner approximation is

yI = e(1− e−x/ε). (ii)

(c) Consider

q(x, ε) = yO + yI = e1−x + e(1− e−x/ε).

If x = O(1), then

q(x, ε) = e1−x + e+O(ε) (iii)

as ε→ 0. If x = ξε where ξ = O(1), then

q(ξε, ε) = e1−ξε + e(1− e−ξ ) = e+ e(1− e−ξ )+O(ε). (iv)

Comparison of (i) and (ii) with (iii) and (iv) shows that both contain the unwanted term e.
Hence the composite uniform approximation is

yC = yO + yI − e = e(e−x − e−x/ε).

• 6.10 Repeat the procedure of Problem 6.9 for the problem εy′′ + y′ + xy = 0, y(0) = 0,
y(1) = 1 on 0 ≤ x ≤ 1.

6.10. Consider the system

εy′′ + y′ + xy = 0, y(0) = 0, y(1) = 1.

The outer approximation satisfies y′ + xy = 0 with y(1) = 1, for y = O(1). Therefore

yO = Ae−(1/2)x2 = e(1/2)(1−x2).
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For the inner approximation, let x = ξε, so that

d2y

dξ2 +
dy
dξ
+ ε2y = 0.

For ε small, y satisfies, for ξ = O(1),

d2y

dξ2 +
dy
dξ
= 0, y(0) = 0.

Therefore

yI = C + Be−ξ = C(1− e−ξ ) = C(1− e−x/ε).

To match the outer and inner approximations, let x = η√ε. Then

yO = e(1/2)(1−η2ε) = e1/2 +O(ε),

and

yI = C(1− e−η/
√
ε) = C + o(1).

Hence C = e1/2

To obtain uniform approximation, consider

q(x, ε) = yO + yI = e(1/2)(1−x2) + e1/2(1− e−x/ε).

If x = O(1), then

q(x, ε) = e(1/2)(1−x2) + e1/2 +O(ε). (i)

Let x = ξε where ξ = O(1), then

q(ξε) = e(1/2)−ξ2ε2 + e1/2(1− e−ξ ) = e1/2 + e1/2(1− e−ξ )+O(ε). (ii)

Both (i) and (ii) contain the unwanted term e1/2. Therefore the uniform or composite
approximation is

yC = yO + yI − e1/2 = e1/2(e−(1/2)x2 − e−x/ε).

The inner, outer and composite approximations are shown in Figure 6.1 for ε = 0.1.
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0.5 1
x

y

yO

yI

yC

0.5

1

Figure 6.1 Problem 6.10: The diagram shows the outer approximation yO, the inner approximation yI and the
composite approximation yC; the dashed line is the exact solution computed numerically.

• 6.11 Find the outer and inner approximations of εy′′ + y′ + y sin x = 0, y(0) = 0,
y (π) = 1.

6.11. Consider the system

εy′′ + y′ + y sin x = 0, y(0) = 0, y(π) = 1.

The outer approximation satisfies y′ + y sin x = 0 with y(π) = 1, for y = O(1). Therefore

yO = Aecos x = e1+cos x .

For the inner approximation, let x = ξε, so that

d2y

dξ2 +
dy
dξ
+ ε2y = 0.

For small ε small, y satisfies, for ξ = O(1),

d2y

dξ2 +
dy
dξ
= 0, y(0) = 0.

Therefore

yI = C + Be−ξ = C(1− e−ξ ) = C(1− e−x/ε).

To match the outer and inner approximations, let x = η√ε. Then

yO = e1+cos(η
√
ε) = e2 +O(ε),
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and

yI = C(1− e−η/
√
ε) = C + o(1).

Hence C = e2 and the inner solution is given by

yI = e2(1− e−x/ε).

• 6.12 By using the method of multiple scales, with variables x and ξ = x/ε, obtain a first
approximation uniformly valid on 0 ≤ x ≤ 1 to the solution of

εy′′ + y′ + xy = 0, y(ε, 0) = 0, y(ε, 1) = 1,

on 0 ≤ x ≤ 1, with ε > 0. Show that the result agrees to order ε with that of Problem 6.10.

6.12. As in Problem 6.10, the system is

εy′′ + y′ + xy = 0, y(0) = 0, y(1) = 1. (i)

Let x = ξε, and

y(x, ε) = Y (x, ξ , ε) = Y0(x, ξ)+ εY1(x, ξ)+O(ε2). (ii)

The derivatives transform into

dy
dx
= ∂Y

∂x
+ 1
ε

∂Y

∂ξ
,

d2y

dx2 =
∂2Y

∂x2 +
2
ε

∂2Y

∂x∂ξ
+ 1
ε2

∂2Y

∂ξ2 .

Equation (i) becomes

ε2 ∂
2Y

∂x2 + 2ε
∂2Y

∂x∂ξ
+ ∂2Y

∂ξ2 + ε
∂Y

∂x
+ ∂Y

∂ξ
+ εxY = 0. (iii)

Substitute the series (ii) into eqn (iii), and equate to zero the first two coefficients of ε. Hence

∂2Y0

∂ξ2 + ∂Y0

∂ξ
= 0, (iv)

∂2Y1

∂ξ2 + ∂Y1

∂ξ
= −2

∂2Y0

∂x∂ξ
− ∂Y0

∂x
− xY0. (v)
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The boundary conditions at x = 0 translate into

Y0(0, 0) = 0, Y1(0, 0) = 0,

but the conditions at x = 1 are more complicated. They remain as the series

Y0(1, 1/ε)+ εY1(1, 1/ε)+ · · · = 0, (vi)

since each perturbation contains ε. From (iv) it follows that

Y0 = A0(x)+ B0(x)e−ξ .

From the condition at x = 0,

A0(0)+ B0(0) = 0. (vii)

From(v), the equation for Y1 is

∂2Y1

∂ξ2 + ∂Y1

∂ξ
= −[A′0(x)+ xA0(x)] + [B ′0(x)− xB0(x)]e−ξ .

To avoid growth terms in ξ (and consequently x) we put

A′0(x)+ xA0(x) = 0, and B ′0(x)− xB0(x) = 0.

Integration of these equations leads to

A0 = ae−(1/2)x2
, B0 = be(1/2)x2

.

Condition (vii) implies a + b = 0, so that

Y0(x, ξ) = ae−(1/2)x2 + (1− a)e(1/2)x2
e−ξ .

The boundary condition (vi) becomes

ae−
1
2 + (1− a)e1/2e−1/ε +O(ε) = 1.

The second term is exponentially small as ε→ 0, so that a = e1/2. Finally

Y = e
1
2 (e−(1/2)x2 − e(1/2)x

2
e−x/ε)+O(ε),

which agrees with the approximation obtained in Problem 6.10.
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• 6.13 The steady flow of a conducting liquid between insulated parallel plates at x = ±1
under the influence of a transverse magnetic field satisfies

w′′ +Mh′ = −1, h′′ +Mw′ = 0, w(±1) = h(±1) = 0,

where, in dimensionless form, w is the fluid velocity, h the induced magnetic field, M is the
Hartmann number. By putting p = w + h and q = w − h, find the exact solution. Plot w
and h against x for M = 10. The diagram indicates boundary layers adjacent to x = ±1.
From the exact solutions find the outer and inner approximations.

6.13. The steady rectilinear Hartmann flow of a conducting liquid between parallel plates at
x = ±1 satisfies the simultaneous equations

w′′ +Mh′ = −1, h′′ +Mw′ = 0, w(±1) = h(±1) = 0,

where w is the fluid velocity and h the induced magnetic field. Add and subtract the equations
to obtain

(w + h)′′ +M(w + h) = −1, (w − h)′′ −M(w − h) = −1.

The general solutions of these equations are

w + h = A+ Be−Mx − x

M
, w − h = C +DeMx + x

M
.

The boundary conditions imply

A+ Be−M − 1
M
= A+ BeM + 1

M
= 0,

C +DeM + 1
M
= C +De−M − 1

M
= 0.

The solutions of these conditions are

A = C = 1
M

cothM, B = D = − 1
M sinhM

.

Hence

w + h = 1
M

cothM − e−Mx

M sinhM
− x

M
,

w − h = 1
M

cothM − eMx

M sinhM
+ x

M
.
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Figure 6.2 Problem 6.13:

Solving these equations, we have

w = 1
M sinhM

[coshM − coshMx], h = 1
M sinhM

[sinhMx − x sinhM].

Graphs of w and h are shown in Figure 6.2 for M = 10, indicating boundary layers for both
w and h near the walls at x = ±1.

Let M = 1/ε, and consider the solutions for w and h not close to x = ±1. Then

w = ε
[
coth(1/ε)− cosh(x/ε)

sinh(1/ε)

]
∼ ε,

as ε→ 0. Hence wO ≈ ε, which agrees with w ≈ 0.1 for M = 10 in Figure 6.2. For h,

h = ε
[

sinh(x/ε)
sinh(1/ε)

− x
]
∼ −xε,

as ε→ 0. Hence hO ≈ −xε (see Figure 6.2).
For the boundary layer near x = 1, let 1− x = ξε. Then

w = ε
[
coth(1/ε)− cosh{(1− ξε)/ε}

sinh(1/ε)

]
∼ ε(1− e−ξ )

as ε→ 0. Hence the inner solution wI ≈ ε(1− e−(1−x)/ε). For h,

h = ε
[

sinh{(1− ξε)/ε}
sinh(1/ε)

− (1− ξε)
]
∼ −ε(1− e−ξ )

as ε→ 0. Hence hI ≈ −ε(1− e−(1−x)/ε).
Similar formulas can be found for w and h in the boundary layer close to x = −1.

• 6.14 Obtain an approximation, to order ε and for t = O(ε−1), to the solutions of
ẍ + 2εẋ + x = 0, by using the method of multiple scales with the variables t and η = εt .



310 Nonlinear ordinary differential equations: problems and solutions

6.14. For the equation

ẍ + 2εẋ + x = 0,

introduce the variable η = εt and x = X(t , η, ε), where

ẋ = ∂X

∂t
+ ε ∂X

∂η
, ẍ = ∂2X

∂t2
+ 2ε

∂2X

∂t∂η
+ ε2 ∂

2X

∂η2 .

In terms of X, the differential equation becomes

Xtt + 2εXtη + ε2Xηη + 2εXt + 2ε2Xη +X = 0. (i)

Let X = X0+ εX1+ · · · , and substitute this series into (i). Putting the coefficients of powers of
ε to zero, we have

X0t t +X0 = 0, (ii)

X1t t +X1 = −2X0tη − 2X0t . (iii)

In complex notation, we can express the solution of (ii) as

X0 = A0(η)eit + A0(η)e−it .

Equation (iii) becomes

X1t t +X1 = [−2iA′0(η)− 2iA0(η)]eit + [2iA
′
0(η)+ 2iA0(η)]e−it .

The terms in square brackets on the right are complex conjugates. Secular terms can be removed
if A0 satisfies

A′0(η)+ A0(η) = 0,

which has the general solution A0(η) = a0e−η. Hence

X0 = a0e−ηeit + a0e−ηe−it = 2ae−η cos(t + α),

where a0 = aeiα and a and α are real constants. In terms of x

x = 2e−εt cos(t + α).
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• 6.15 Use the method of multiple scales to obtain a uniform approximation to the solutions
of the equation ẍ + ω2x + εx3 = 0, in the form

x(ε, t) ≈ a0 cos

[{
ω0 + 3εa2

0

8ω0

}
t + α

]
,

where α is a constant. Explain why the approximation is uniform, and not merely valid for
t = O(ε−1).

6.15. In the equation

ẍ + ω2x + εx3 = 0,

introduce the variable η = εt , and let x = X(t , η, ε). The derivatives are

ẋ = ∂X

∂t
+ ε ∂X

∂η
, ẍ = ∂2X

∂t2
+ 2ε

∂2X

∂t∂η
+ ε2 ∂

2X

∂η2 .

In terms of X, the differential equation becomes

Xtt + 2εXtη + ε2Xηη + ω2X + εX3 = 0. (i)

Let X = X0+ εX1+ · · · , and substitute this series into (i). Putting the coefficients of powers of
ε to zero, we have

X0t t + ω2X0 = 0, (ii)

X1t t + ω2X1 = −2X0tη −X3
0. (iii)

The general solution of (ii) in complex form is

X0 = A0(η)eiωt + A0(η)e−iωt .

Equation (iii) becomes

X1t t + ω2X1 = −2(A′0(η)iωeiωt−A′0(η)iωe−iωt )− (A0(η)eiωt − A0(η)e−iωt )3

= [−2A′0(η)iω − 3A2
0(η)A0(η)]eiωt − A3

0(η)e
3iωt + complex conjugate

Secular terms can be eliminated by putting

2A′0(η)iω + 3A2
0(η)A0(η) = 0.
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To solve this complex differential equation, let A0(η) = a(η)eib(η), where the functions a(η)
and b(η) are real. Then

2iω(a′(η)eib(η) + ia(η)b′(η)eib(η))+ 3a(η)3eib(η) = 0,

or

[2ωia′(η)+ (3a(η)3 − 2a(η)ωb′(η))]eib(η) = 0.

The real and imaginary parts must be zero, so that

a′(η) = 0, 3a(η)3 − 2a(η)ωb′(η)) = 0.

Therefore a = 1
2a0, a constant, and b(η) satisfies

b′(η) = 3a2
0

8ω
.

Hence

b(η) = 3a2
0

8ω
η + α.

Finally

x(t) ≈ X0(t , η) = 1
2aei[ωt+b(η)] + 1

2ae−i[ωt+b(η)]

= a cos[ωt + b(η)] = a cos
[{
ω + 3

8 (εa
2
0/ω)

}
t + c

]

Extension of the method to higher-order multiple scales η1= εt , η2= ε2t , . . . leads to equa-
tions in which the derivatives in terms of η2, . . . only appear in higher-order equations. To
order ε the result is unaffected.

• 6.16 Use the coordinate perturbation technique to obtain the first approximation x = τ−1,
t = τ + 1

2ετ(1− τ−2) to the solution of

(t + εx)ẋ + x = 0, x(ε, 1) = 1, 0 ≤ x ≤ 1.

Confirm that the approximation is, in fact, the exact solution, and that an alternative
approximation x = τ−1+ 1

2ετ
−1, t = τ − 1

2ετ
−1 is correct to order ε, for fixed τ . Construct

a graph showing the exact solution and the approximation.
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6.16. Use the coordinate perturbation technique to obtain the first approximation of

(t + εx)ẋ + x = 0, x(ε, 1) = 1, 0 ≤ x ≤ 1.

Apply the straightforward approximation

x(ε, t) = x0(t)+ εx1(t)+ ε2x2(t)+ · · · , (i)

so that

t ẋ0 + x0 = 0, (ii)

t ẋ1 + x1 = −x0ẋ0, (iii)

t ẋ2 + x2 = −x0ẋ1 − x1ẋ0, (iv)

and so on. The boundary condition transform into the sequence of conditions

x0(1) = 1, x1(1) = 0, x2(1) = 0, . . . .

Therefore x0 = 1/t . Equation (iii) becomes

t ẋ1 + x1 = d(tx1)

dt
= 1
t3

,

so that

x1 = − 1
2t3

+ C1

t
= 1

2t

(
1− 1

t2

)
.

From (iv)

t ẋ2 + x2 = d(tx2)

dt
= −x0ẋ1 − x1ẋ0 = −d(x0x1)

dt
.

Therefore

d
dt
(tx2 + x0x1) = 0,

so that

tx2 = −x0x1 + C2 = − 1
2t2

(
1− 1

t2

)
+ C2 = − 1

2t2

(
1− 1

t2

)
.

All these solutions are singular at t = 0.
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To remove the singularities, let

t = τ + εT1(τ )+ ε2T2(τ )+ · · · .

We require expansions for inverse powers of t . Using binomial expansions,

1
t
= 1
τ
− ε T1

τ2 + ε2
(
T1

τ3 −
T2

τ2

)
+O(ε3),

1
t2
= 1
τ2 − 2ε

T1

τ3 + ε2

(
3T 2

1

τ4 − 2T2

τ3

)
+O(ε3),

1
t3
= 1
τ3 − 3ε

T1

τ4 + 3ε2

(
2T 2

1

τ5 − T2

τ4

)
+O(ε3).

In terms of τ ,

x0 = 1
τ
− ε T1

τ2 + ε2
(
T1

τ3 −
T2

τ2

)
+O(ε3),

x1 = 1
2τ
− 1

2τ3 =
1
2

[
1
τ
− ε T1

τ2

]
− 1

2

[
1
τ3 − 3ε

T1

τ4

]
+O(ε2)

= 1
2τ

(
1− 1

τ2

)
− εT1

2τ2

(
1− 3

τ2

)
+O(ε2).

Therefore

x0 + εx1 = 1
τ
+ ε

[
1
2τ

(
1− 1

τ2

)
− T1

τ2

]
+O(ε2).

We can eliminate the O(ε) term by choosing

T1 = τ

2

(
1− 1

τ2

)
,

in which case the approximate solution is given by

x = 1
τ
+O(ε2), t = τ + ετ

2

(
1− 1

τ2

)
+O(ε2).
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Figure 6.3 Problem 6.16: The solid curve shows the exact solution and the dashed curve shows the approximation
given parametrically by x ≈ (1/τ)+ (ε/(2τ)), t ≈ τ − (ε/(2τ)) with ε = 0.2

We can confirm that the approximation is, in fact, exact by substitution into the differential
equation: thus, with x = x0 + εx1,

(t + εx)ẋ =
(
τ + ετ

2
− ε

2τ
+ ε

τ

) dx
dτ

dτ
dt

=
(
τ + ετ

2
+ ε

2τ

)(
− 1
τ2

)/(
1+ ε

2
+ ε

2τ

)
= −1

τ
= −x

as required.
If we put T1 = −1/(2τ), then the approximate solution becomes

x = x0 + εx1 +O(ε2) = 1
τ
+ ε

2τ
+O(ε2), t = τ − ε

2τ
+O(ε2). (v)

Figure 6.3 shows the exact solution and the approximation given by (v).

• 6.17 Apply the method of multiple scales, with variables t and η = εt , to van der Pol’s
equation ẍ + ε(x2 − 1)ẋ + x = 0. Show that, for t = O(ε−1),

x(ε, t) = 2a1/2
0 e(1/2)εt√
(1+ a0eεt )

cos(t + α0)+O(ε),

where a0 and α0 are constants.

6.17. Apply the multiple scale method with η = εt to the van der Pol equation

ẍ + ε(x2 − 1)ẋ + x = 0.
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Let x = X(t , η, ε). The derivatives are

ẋ = ∂X

∂t
+ ε ∂X

∂η
, ẍ = ∂2X

∂t2
+ 2ε

∂2X

∂t∂η
+ ε2 ∂

2X

∂η2 .

In terms of X, van der Pol’s equation becomes

Xtt + 2εXtη + ε2Xηη + (X2 − 1)(Xt + εXη +X) = 0. (i)

Introduce the perturbation series X = X0 + εX1 + · · · into (i) so that the first two coefficients
lead to

X0t t +X0 = 0, (ii)

X1t t +X1 = −2X0tη − (X2
0 − 1)X0t . (iii)

In complex notation, the solution of (ii) can be expressed as

X0 = A0(η)eit + A0(η)e−it .

Equation (iii) is

X1t t +X1 = [−2iA′0(η)e
it + 2iA0(η)eit ] + [2iA

′
0(η)e

−it − iA0(η)e−it ]
− [(A0(η)eit + A0(η)e−it )2 − 1][iA0(η)eit − iA0(η)e−it ]

= [(−2iA′0(η)+ iA0(η)− iA2
0A0(η))eit + (complex conjugate)]

+ (higher harmonics)

Secular terms can be eliminated if

−2A′0(η)+ A0(η)− A2
0A0(η) = 0.

To solve this equation, let A0(η) = a(η)eiα(η), so that

−2[a′eiα + aα′ieiα] + aeiα − a3eiα = 0,

or

[−2a′ + a − a3] + i[2aα′] = 0.

Therefore

α′ = 0, implying α = α0, a constant,
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and a satisfies

2a′ = a − a3.∫
2da

a(1− a2)
= ln

[
a2

|a2 − 1|

]
=

∫
dη + C = η + C.

Therefore,

a = a
1/2
0 e(1/2)η√
(1+ a0eη)

,

where a0 is a constant. Finally

x(t) = X0(t , η)+O(ε) = aei(t+α0) + ae−i(t+α0) = 2A0(η) cos(t + α0)

= 2a1/2
0 e(1/2)εt√

(1+ a0eεt ) cos(t + α0)
.

• 6.18 Use the method of matched approximations to obtain a uniform approximation to
the solution of

ε
(
y′′ + (2/x)y′)− y = 0, y(ε, 0) = 0, y′(ε, 1) = 1,

(ε > 0) on 0 ≤ x ≤ 1. Show that there is a boundary layer of thickness O(ε
1
2 ) near x = 1

by putting 1− x = ξφ(ε).

6.18. Consider the system

ε(xy′′ + 2y′)− xy = 0, y(ε, 0) = 0, y′(ε, 1) = 1.

To obtain the outer expansion for x = O(1), put ε = 0 in the equation, so that y = 0, which
only agrees with boundary condition at x = 0. Hence there must be a boundary layer near
x = 1 since y(ε, 1) = 1.

To investigate the boundary layer, let 1− x = ξφ(ε). The change of variable leads to

ε

φ2

d2y

dξ2 +
2

1− ξφ
ε

φ

dy
dξ
− y = 0.

The highest derivative is O(1) if we choose φ = √ε, so that y satisfies

d2y

dξ2 − y = 0.
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to the lowest order. Therefore the inner approximation is given by

yI = Aeξ + Be−ξ = Ae(1−x)/
√
ε + Be−(1−x)/

√
ε.

The inner approximation has to satisfy the boundary condition y′(ε, 1) = 1, so that

− A√
ε
+ B√

ε
= 1.

Hence

yI = Ae(1−x)/
√
ε + (A+√ε)e−(1−x)/

√
ε.

To match the inner and outer approximations, let 1− x = ηψ(ε). then we require

ψ(ε)

φ(ε)
→ 0,

as ε→ 0. The choice ψ(ε) = ε will be sufficient for this purpose. Hence

yI = Aeη
√
ε + (A+ ε)e−η

√
ε → 2A+√ε = 0,

as ε→ 0 if A = −1
2
√
ε. To summarize

yO = 0, yI = 1
2

√
ε[e−(1−x)/

√
ε − e(1−x)/

√
ε] = −√ε sinh

[
1− x√
ε

]
.

• 6.19 Use the method of matched approximations to obtain a uniform approximation to
the solution of the problem

ε(y′′ + y)− y = 0, y(ε, 0) = 1, y(ε, 1) = 1, (ε > 0),

given that there are boundary layers at x = 0 and x = 1. Show that both boundary layers
have thickness O(ε1/2). Compare with the exact solution.

6.19. We require a uniform approximation to the linear boundary value problem for y(x, ε)

ε(y′′ + y′)− y = 0, y(ε, 0) = 1, y(ε, 1) = 1, 0 ≤ x ≤ 1

Put ε = 0 in the equation, so that the outer approximation in the interval not near the boundaries
x = 0 and x = 1 is given by yO = 0.
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For the inner solution yI1 near x = 0, put x = ξφ(ε), where limε→0 φ(ε) = 0. Apply the
change of variable to the differential equation:

ε

φ2

d2y

dξ2 +
ε

φ

dy
dξ
− y = 0, y(0, ε) = 1.

We choose φ = √ε so that for ε→ 0, yI satisfies

d2yI

dξ2 − yI = 0,

which has the general solution yI = Aeξ + Be−ξ . Hence, using the boundary condition,

yI1 = Aex/
√
ε + (1− A)e−x/

√
ε.

To match this solution with the outer approximation, let x = ηε1/4 so that

yI1 = Aeη/ε
1/4 + (1− A)e−η/ε1/4

.

Matching as ε→ 0 gives A = 0: therefore

yI1 = e−x/
√
ε.

For the inner approximation near x = 1, let x = 1− ξφ, so that

ε

φ2

d2y

dξ2 −
ε

φ

dy
dξ
− y = 0, y(0) = 1.

With φ = √ε, we get the same equation as before, so that, after matching,

yI2 = e(1−x)/
√
ε.

The uniform (or composite) solution is

yC = e−x/
√
ε + e−(1−x)/

√
ε.

The given equation is second-order linear, so we can compare the exact solution yE with the
approximations above. The characteristic equation has the solutions

µ1
µ2

}
=



−1

2 +
√(

1
ε
+ 1

4

)
−1

2 −
√(

1
ε
+ 1

4

)
.
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The exact solution is

yE = 1− eµ2

eµ1 − eµ2
e−µ1x + eµ1 − 1

eµ1 − eµ2
e−µ2x .

• 6.20 Obtain a first approximation, uniformly valid on 0 ≤ x ≤ 1, to the solution of

εy′′ + 1
1+ x y

′ + εy = 0, y(ε, 0) = 0, y(ε, 1) = 1.

6.20. The system is

εy′′ + 1
1+ x y

′ + εy = 0, y(ε, 0) = 0, y(ε, 1) = 1.

Put ε = 0 in the equation. It follows that the outer solution yO(ε, x) satisfies y′ = 0 so that
yO = 1 for all x from the boundary condition at x = 1.

For the inner solution, yI(ε, x), let x = ξφ(ε) so that the differential equation becomes

ε

φ2

d2y

dξ2 +
1

1+ ξφ
1
φ

dy
dξ
+ εy = 0.

Choose φ = ε and select the dominant terms. Then, the inner solution satisfies

d2yI

dξ2 +
dyI

dξ
= 0,

subject to y(0) = 0. Hence

yI = A(1− e−ξ ).

The outer and inner solutions match if A = 1 so that

yI = 1− e−ξ = 1− e−ξ/ε.

The uniform approximation is yC = 1− e−x/ε.

• 6.21 Apply the Lighthill technique to obtain a uniform approximation to the solution of

(t + εx)ẋ + x = 0, x(ε, 1) = 1, 0 ≤ x ≤ 1.

(Compare Problem 6.16.)
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6.21. The Lighthill technique is applied to obtain a uniform approximation to the problem

(t + εx)ẋ + x = 0, x(ε, 1) = 1, (0 ≤ x ≤ 1).

Write

x = X0(τ )+ εX1(τ )+ · · · ,
t = τ + εT1(τ )+ · · · .

The differential equation becomes

[(τ + εT1 + · · · )+ ε(X0 + εX1 + · · · )](X′0 + εX′1 + · · · )(1− εT ′1 + · · · )−1

+ (X0 + εX1 + · · · ) = 0.

Therefore the perturbations satisfy

τ
dX0

dτ
+X0 = 0, (i)

τX′1 +X1 = −X′0(T1 +X0)+ τX′0T ′1. (ii)

As in Section 2.4, the boundary condition becomes

X0(1) = 1, X1(1) = T1(1)X′0(1). (iii)

From (i) it follows that X0 = 1/τ . Equation (ii) is then

τX′1 +X1 = 1
τ2T1 + 1

τ3 −
1
τ
T ′1.

Put the right-hand side equal to zero to remove singularities so that

τ2T ′1 − τT1 − 1 = 0.

The general solution of this equation is

T1 = Aτ − 1
2τ

.

In this case the solution of (ii) is X1 = C/τ . The second boundary condition in (iii) implies

C − (A− 1
2 )(−1) = 0,
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so that C = −(A− 1
2 ). Hence the general formula for the solution is

x = 1
τ
− ε

τ

(
A− 1

2

)
ε +O(ε2), t = τ +

(
Aτ − 1

2τ

)
+O(ε2).

By choosing A = 1
2 , we can eliminate the O(ε) in x so that

x = 1
τ
+O(ε2), t = τ + 1

2

(
τ − 1

2τ

)
ε +O(ε2).

• 6.22 Obtain a first approximation, uniform on 0 ≤ x ≤ 1, to the solution of εy′ + y = x,
y(ε, 0) = 1, using inner and outer approximations. Compare the exact solution and explain
geometrically why the outer approximation is independent of the boundary conditions.

6.22. The system is

εy′ + y = x, y(ε, 0) = 1.

The outer approximation is obtained by putting ε = 0, giving yO = x.
To derive the inner approximation, let x = ξφ(ε), so that

ε

φ

dy
dξ
+ y = φξ .

With φ(ε) = ε, the equation to first order reduces to

dy
dξ
+ y = 0.

Hence y = Ae−ξ = e−ξ using the boundary condition. Therefore yI = e−x/ε,
The uniform approximation is

yC = x + e−x/ε.

The exact solution of the equation is

y = x − ε + Be−x/ε = x − ε + (1+ ε)e−x/ε,

using the boundary condition y(ε, 0) = 1. If x = O(1), then the solution away from the
boundary layer adjacent to x = 1 is x + O(ε provided also that the constant A = O(1)). The
boundary layer has the width O(ε). Some solutions indicating the boundary layer are shown
in Figure 6.4.
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Figure 6.4 Problem 6.22: A selection of exact solutions with ε = 0.1 and various boundary conditions.

• 6.23 Use the method of multiple scales with variables t and η = εt to show that, to a first
approximation, the response of the van der Pol equation to a ‘soft’ forcing term described
by

ẍ + ε(x2 − 1)ẋ + x = εγ cosωt , ε > 0,

is the same as the unforced response, assuming that |ω| is not near 1.

6.23. The van der Pol equation with soft forcing is

ẍ + x = ε{(1− x2)ẋ + γ cosωt},

in the non-resonant case. Let η = εt and x = X(t , η, ε). Then the derivatives become

ẋ = ∂X

∂t
+ ε ∂X

∂η
, ẍ = ∂2X

∂t2
+ 2ε

∂2X

∂t∂η
+ ε2 ∂

2X

∂η2 ,

and the van der Pol equation is transformed into

∂2X

∂t2
+ 2ε

∂2X

∂t∂η
+ ε2 ∂

2X

∂η2 +X = ε
[
(1− x2)

(
∂X

∂t
+ ε ∂X

∂η

)
+ γ cosωt

]
.

Substitute into this equation the series X = X0+ εX1+ · · · , and equate to zero the coefficients
of like powers of ε. The first two equations are

X0t t +X0 = 0, (i)

X1t t +X1 = (1−X2
0)X0t + γ cosωt − 2X0tη. (ii)
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Using complex notation,

X0 = A0(η)eit + A0(η)e−it .

Equation (ii) becomes

X1t t +X1 = i(A0 − A2
0A0 − 2A′0)e

it − i(A0 − A2
0A0 − 2A

′
0)e

−it

− iA3
0e3it + iA

3
0e−3it + γ cosωt

The period 2π terms will be eliminated only if

A0 − A2
0A0 − 2A′0 = 0 (iii)

together with its conjugate. Let A0 = ρ(η)eiα(η), and substitute this form into (iii), resulting in

−2ρ′(η)− 2iρ(η)α′(η)+ ρ(η)− ρ(η)3 = 0.

The real and imaginary parts must vanish so that

2ρ′(η)− ρ(η)− ρ(η)3 = 0, α′(η) = 0.

It follows that α = α0, a constant, and that

ln

[
r2

|1− r2|

]
= η + C.

Hence

A(η) = eit+α0

√
(1+ Ce−η)

.

Finally

x = X0(t , η)+O(ε) = 2 cos(t + tε)+ α0√
(1+ Ce−εt )

+O(ε)

Significantly, X0 is independent of the angular frequency ω and the amplitude γ of the forcing
oscillation, which means the response is independent of the forcing term. This will not be the
case if ω = 1.
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• 6.24 Repeat Problem 6.23 for ẍ + ε(x2 − 1)ẋ + x = � cosωt , (ε > 0), where � = O(1)
and |ω| is not near 1. Show that

x(ε, t) = �

1− ω2 cosωt +O(ε), �2 ≥ 2(1− ω2)2;

and that for �2 < 2(1− ω2)2,

x(ε, t) = 2

(
1− �2

2(1− ω2)2

)1/2

cos t + �

1− ω2 cosωt +O(ε).

6.24. In this problem the van der Pol equation is

ẍ + x = ε(1− x2)ẋ + � cosωt ,

where � = O(1). As in the previous problem, let η = εt and x = X(t , η, ε). The derivatives
ẋ and ẍ in terms of X are given in the previous problem. The equations for X0 and X1 in the
expansion X = X0 + εX1 + · · · are

X0t t +X0 = � cosωt , (i)

X1t t +X1 = (1−X2
0)X0t − 2X0tη. (ii)

The solution of (i) can be expressed in the forms

X0 = a0(η) cos t + b0(η) sin t + κ cosωt ,

where κ = �/(1−ω2). Equation (ii) becomes (symbolic computation for trigonometric identities
eases the working)

X1t t +X1 = −2{[a′0(η)+ b0(η)] cos t + [b′0(η)− a0(η)] sin t}
+ 1− (a0(η) cos t + b0(η) sin t + κ cosωt)2]
× [−a0(η) sin t + b0(η) cos t − κω sinωt]

= 1
4 [(4− 2κ2)b0(η)− b0(η)(a0(η)

2 + b0(η)
2)− 8b′0(η)] cos t

+1
4 [−(4− 2κ2)a0(η)+ a0(η)(a0(η)

2 + b0(η)
2)+ 8a′0(η)] sin t

+ (non-secular periodic terms)

The solution for X1 is periodic if

(4− 2κ2)b0(η)− b0(η)(a0(η)
2 + b0(η)

2)− 8b′0(η) = 0, (iii)

and

−(4− 2κ2)a0(η)+ a0(η)(a0(η)
2 + b0(η)

2)+ 8a′0(η) = 0. (iv)
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Let u0 = a2
0 + b2

0. Then a0×(iv)-b0×(iii) leads to the first-order equation

4
du0

dη
+ u2

0 − (4− 2κ2)u0 = 0.

Note that this equation always has the solution u0 = 0. This equation is separable with solution

4
∫

du0

u0(u0 − λ) = −
4
λ

ln
∣∣∣∣ u0

u0 − λ
∣∣∣∣ = −

∫
dη = −η + constant,

where λ = 4− 2κ2. If u0 = β when t = 0, then

u0 = λ

1+ [(λ/β)− 1]e−(1/4)λη . (v)

If λ < 0, then u0 will ultimately become negative, which is not possible: therefore the only
possible solution in this case is u0 = 0, from which it follows that a0 = b0 = 0. Hence the
forced periodic response is

x = X0 +O(ε) = κ cosωt +O(ε) = �

1− ω2 cosωt +O(ε), �2 ≥ 2(1− ω2)2

If λ > 0, then u0 → λ as t →∞. From (iii), we can find b0. Using (v),

8
db0

dη
= λb0 − b0u0 = [b0(λ/β)− 1]e−(1/4)λη

1+ [(λ/β)− 1]e−(1/4)λη .

Integration of this separable equation leads to the solution

8 ln |b0| = 4
λ

ln

[
e−(1/4)λη

(λ/β − 1)+ e− 1
4λη

]
+ C,

or

b2
0 =

e−(1/4)η

[(λ/β − 1)+ e−(1/4)λη]1/λ .

As t →∞, then b0 → 0, if λ > 0. From the behaviour of u0, it follows that a0 → λ. Hence the
forced output of the oscillator is

x = X0 +O(ε) = 2

[
1− �2

2(1− ω2)2

]1/2

cos t + �

1− ω2 cosωt +O(ε),

if �2 < 2(1− ω2)2.
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If λ = 0, then, from (v), it follows that u0 = 0, so that a0 = b0 = 0. Hence the forced
periodic response is

x = X0 =
√

2 cosωt +O(ε).

• 6.25 Apply the matching technique to the damped pendulum equation

εẍ + ẋ + sin x = 0, x(ε, 0) = 1, x(ε, 0) = 0

for ε small and positive. Show that the inner and outer approximations are given by

xI = 1, xO = 2 tan−1
(
e−t tan 1

2

)
.

(The pendulum has strong damping and strong restoring action, but the damping
dominates.)

6.25. The equation is the damped pendulum equation

εẍ + ẋ + sin x = 0, x(ε, 0) = 1, ẋ(ε, 0) = 1.

For the outer approximation xO, put ε = 0 into the equation so that xO satisfies

ẋO + sin xO = 0.

Hence

∫
dxO

sin xO
= −

∫
dt = −t + C.

Integrating

ln tan(1
2xO) = −t + C,

so that

xO = 2 tan−1(Ae−t ).

For the inner solution, use the transformation t = εξ . The transformed equation becomes

x′′ + x′ + ε sin x = 0.

the derivatives being with respect to ξ . Putting ε = 0, the inner solution xI satisfies

x′′I + x′I = 0.
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Therefore the inner solution is given by

xI = M +Ne−ξ ,

where xI(0) = 1, x′I(0) = 0. Hence M +N = 1 and N = 0. Therefore

xI = 1.

To match the outer and inner approximations, let t = η√ε. Then, expanding both
approximations

lim
ε→0

xO = 2 tan−1A,

lim
ε→0

xI = 1.

Matching we find that A = tan 1
2 and that

xO = 2 tan−1[tan(1
2 )e

−t ].

• 6.26 The equation for a tidal bore on a shallow stream is

ε
d2η

dξ2 −
dη
dξ
− η + η2 = 0,

where (in appropriate dimensions) η is the height of the free surface, and ξ = x − ct , where
c is the wave speed. For 0 < ε � 1, find the equilibrium points for the equation and classify
them according to their linear approximations. Apply the coordinate perturbation method
to the equation for the phase paths,

ε
dw
dη

= w + η − η2

w
, where w = dη

dξ
,

and show that

w = −ζ + ζ 2 +O(ε2), η = ζ − ε(−ζ + ζ 2)+O(ε2).

Confirm that, to this degree of approximation, a separatrix from the origin reaches the
other equilibrium point. Interpret the result in terms of the shape of the bore.

6.26. The tidal bore equation is

ε
d2η

dξ2 −
dη
dξ
− η + η2 = 0.
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Let w = dη/dξ . The system has two equilibrium points in the (η,w) plane, at (0, 0) and (1, 0).
Near the origin η satisfies the linear approximation

εη′′ − η′ − η = 0,

which implies a saddle point. If η = 1+ η, then η has the linear approximation

εη′′ − η′ + η = 0

near (1, 0). Therefore the equilibrium point is an unstable node.
The equation for the phase paths is

ε
dw
dη

= w2 + η − η2

w
. (i)

Let w = w0 + εw1 + · · · and substitute this expansion into (i) so that

ε(w0 + εw1 + · · · )(w′0 + εw′1 + · · · ) = w0 + εw1 + · · · + η − η2.

Equating coefficients of like powers of ε to zero, we obtain

w0 = η2 − η, w1 = w0w
′
0 = (η2 − η)(2η − 1).

Now let η = ζ + εζ1 + · · · . Then

w0 + εw1 = (ζ + εζ1)2 − (ζ + εζ1)+ ε[(ζ + εζ1)2 − (ζ + εζ1)][2(ζ + εζ1)− 1]
= ζ 2 − ζ + ε[2ζ ζ1 − ζ1 + (ζ 2 − ζ )(2ζ − 1)] +O(ε2)

= ζ 2 − ζ + ε(2ζ − 1)(ζ1 + ζ 2 − ζ )+O(ε2)

The order ε term in w can be eliminated by putting ζ1 = ζ − ζ 2. We arrive at the approximate
solution given parametrically by

w = ζ 2 − ζ +O(ε2), η = ζ − ε(ζ 2 − ζ )+O(ε2). (ii)

To order ε2 this solution passes through (0, 0), where ζ = 0, and through (1, 0), where
ζ = 1. In other words a phase path from the unstable node at (1, 1) becomes a separatrix of
the saddle point at the origin as shown in Figure 6.5 with ε = 0.25. For this value of ε the
approximate phase path given by (ii) is virtually indistinguishable form the computed phase
path. The bore consists of wave advancing along a dried bed.
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Figure 6.5 Problem 6.26: The computed phase diagram for εη′′ − η′ − η + η2 = 0 with ε = 0.25: the separatrix
joining the node P to the saddle O is shown.

• 6.27 The function x(ε, t) satisfies the differential equation εẍ+xẋ−x = 0, (t ≥ 0) subject
to the initial conditions x(0) = 0, ẋ(0) = 1/ε. To leading order, obtain inner and outer
approximations to the solution for small ε. Show that the composite solution is

xC = t +√2 tanh(t/(ε
√

2)).

6.27. The system is

εẍ + xẋ − x = 0, x(0) = 0, ẋ(0) = 1/ε.

The outer solution xO satisfies the equation with ε = 0, that is, xOẋO − xO = 0. There are two
possible solutions; either

xO = 0, or xO = t + A. (i)

For the inner solution, let t = εξ , so that

x′′ + xx′ − εx = 0.

The inner solution xI therefore satisfies

x′′I + xIx
′
I = 0.

Hence

dx′I
dxI

= −xI, so that x′I = −1
2x

2
I + C.
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Since x′I(0) = 1 when xI = 0, it follows that C = 1. Separating the variables, we have

∫
2dxI

2− x2
I

=
∫

dξ = ξ + B,

that is,

1√
2

ln

[√
2+ xI√
2− xI

]
= ξ + B = ξ

using the initial condition xI(0) = 0. Therefore, the inner approximation is

xI =
√

2 tanh
(
ξ√
2

)
= √2 tanh

(
t√
ε
√

2

)
. (ii)

To match the outer and inner approximations, let t = η√ε. In (i) try the solution xO = t+A.
Then

xO = η
√
ε + A. (iii)

Apply the same transformation to (ii), so that

xI =
√

2 tanh
(
ηε√

2

)
= η√ε +O(ε) (iv)

for η = O(1). Expansions (iii) and (iv) match to leading order if A = 0. Hence the composite
approximation is

xC = xO + xI = t +
√

2 tanh
(

t

ε
√

2

)
.

• 6.28 Consider the initial-value problem εẍ+ ẋ = e−t , x(0) = 0, ẋ(0) = 1/ε, (0 < ε � 1).
Find inner and outer expansions for x, and confirm that the outer expansion to two terms
is xO = 2− e−t − εe−t .

Compare computed graphs of the composite expansion and the exact solution of the
differential equation for ε = 0.1 and for ε = 0.25.

6.28. The initial-value problem is

εẍ + ẋ = e−t , x(0) = 0, ẋ(0) = 1/ε. (i)
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For the outer expansion, let xO = f0 + εf1 + · · · . Substitute this expansion into the equation,
obtaining

ε(f̈0 + εf̈1 + · · · )+ (ḟ0 + ḟ1ε + · · · ) = e−t .

The first two coefficients satisfy

ḟ0 = e−t , ḟ1 = −f̈0.

The solutions of these equations are

f0 = −e−t + C0, f1 = −e−t + C1.

The outer expansion is therefore of the form

xO = (−e−t + C0)+ ε(−e−t + C1)+O(ε2).

For the inner expansion xI, let t = ετ . Equation (i) becomes

x′′I + x′I = εe−ετ .

Let xI = g0 + εg1 + · · · and expand eετ in powers of ε:

(g′′0 + εg′′1 + · · · )+ (g′0 + εg′1 + · · · ) = ε(1− ετ + · · · ).

The coefficients of the series satisfy

g′′0 + g′0 = 0, g′′1 + g′1 = 1.

Hence

g0 = A0 + B0e−τ , g1 = τ + A1 + B1e−τ .

The initial conditions in (i) become the sequence of conditions

gi(0) = 0 (i = 0, 1, . . . ), g′(0) = 1, g′j (0) = 0, (j = 1, 2, . . . ).

Therefore

A0 + B0 = 0, − B0 = 1, A1 + B1 = 0, − B1 + 1 = 0,

which results in A0 = 1, B0 = −1, A1 = −1, B1 = 1. The inner expansion becomes

xI = g0 + εg1 +O(ε2) = (1− e−τ )+ ε(τ − 1+ e−τ )+O(ε2).
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To match the outer and inner expansions, let t = ε1/2η so that τ = t/ε = ε−(1/2)η, where
η = O(1). Then

xO = [C0 + exp(−ε1/2η)] + ε[C1 + exp(−ε1/2η)] + · · ·
= (C0 − 1)+ ε1/2η + ε(C1 − 1)+ · · · (ii)

Also

xI = [1− exp(−ε−(1/2)η)] + ε[ε−(1/2)η − 1+ exp(−ε−(1/2)η)] + · · ·
= 1+ ε1/2η − ε + · · · , (iii)

the exponential terms being negligible as ε → 0. Comparison of (ii) with (iii) shows that they
match to the lowest orders if C0 = 2 and C1 = 0. To summarize

xO = (2− e−t )− εe−t + · · · , (iv)

xI = (1+ t − e−t/ε)− ε(1− e−t/ε)+ · · · . (v)

For the composite solution, form

xO + xI = (2− e−t )− εe−t + (1+ t − e−t/ε)− ε(1− e−t/ε)+ · · ·

If t = O(1), then, expanding in powers of ε,

xO + xI = (3+ t − e−t )+ ε(−1− e−t )+O(ε2), (vi)

neglecting the exponential terms exp(−t/ε). Comparison of (vi) with (iv) implies that the zero-
order term has the unwanted term 1 + t , and that the first-order term has the unwanted term
−1. Now put t = ετ in (vi) so that

xO + xI = (2− e−ετ )− εe−ετ + (1+ ετ − e−τ )− ε(1− e−τ ).

Now assume that τ = O(1), and expand in powers of ε, so that

xO + xI = (2− e−τ )+ ε(2τ − 2+ e−τ )+ · · ·
= (2+ 2t − e−t/ε)− ε(2− e−t/ε)+ · · · .

Comparison of this expansion with (v) shows the same unwanted terms; of 1 + t and −1.
Therefore the composite solution is

xC = xO + xI − (1+ t)+ ε = (2− e−t − e−τ )− ε(e−t − e−τ )+ · · · .
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1 2 3 4
t

1

2
x

Figure 6.6 Problem 6.28: The graph shows the exact solution (the dashed curve) for ε = 0.25; the outer, inner and
composite approximations can be easily identified.

The differential equation is a linear second-order inhomogeneous equation with the exact
solution

x = 2− e−t

1− ε −
1− 2ε
1− ε e−t/ε.

The exact solution and the various approximations are compared in Figure 6.6 only for the
case ε = 0.25.

• 6.29 Investigate the solution of the initial/boundary-value problem

ε3x··· + εẍ + ẋ + x = 0, 0 < ε � 1,

with x(1) = 1, x(0) = 0, ẋ(0) = 1/ε2 using matched approximations. Start by finding, with
a regular expansion, the outer solution xO and an inner solution xI using t = ετ . Confirm
that xI cannot satisfy the conditions at t = 0. The boundary-layer thickness O(ε) at t = 0
is insufficient for this problem. Hence we create an additional boundary layer of thickness
O(ε2), and a further time scale η where t = ε2η. Show that the leading order equation for
the inner–inner approximation xIIi is x′′′II +x′′II = 0, and confirm that the solution can satisfy
the conditions at t = 0. Finally match the expansions xII and xI and the expansions xI and
xO. Show that the approximations are

xO = e1−t , xI = e+ (1− e)e−t/ε, xII = 1− e−t/ε2

to leading order.
Explain why the composite solution is

xC = e1−t + (1− e)e−t/ε − e−t/ε2
.

Comparison between the numerical solution of the differential equation and the composite
solution is shown in Figure 6.10 in NODE. The composite approximation could be improved
by taking all approximations to include O(ε) terms.

6.29. Consider the third-order system

ε3x··· + εẍ + ẋ + x = 0, x(1) = 1, x(0) = 0, ẋ(0) = 1/ε2.
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The outer approximation xO satisfies the equation ẋO + xO = 0 obtained by putting ε = 0.
Therefore using the condition x(1) = 1,

xO = A0e−t = e1−t . (i)

For an inner approximation try t = ετ with τ = O(1). The differential equation becomes

εx′′′ + x′′ + x′ + εx = 0

in which the derivatives are with respect to τ . The inner approximation xI(τ ) therefore satisfies
x′′I + x′I = 0, so that

xI(τ ) = A1 + B1e−τ = A1 + B1 exp(−t/ε) (iii)

for certain constants A1, B1. However, the condition x(0) = 1/ε2 cannot be satisfied by xI
given by (ii).

This difficulty can be avoided by introducing a further, ‘inner–inner’, approximation, which
will suit the conditions nearer to t = 0. To identify this approximation let t = ε2η, where
η = O(1). The differential equation becomes

x′′′ + x′′ + εx′ + ε3x = 0

in which the derivatives are now with respect to η. The inner–inner approximation xII(η) satsifies
x′′′II + x′′II = 0. Therefore

xII(η) = A2 + B2η + C2e−η.

The conditions at t = 0 (η = 0) require

A2 + C2 = 0, B2 − C2 = 0,

Therefore

xII = A2 + (1− A2)η − A2e−η

= A2 + (1− A2)t/ε
2 − A2 exp(−t/ε2).

The factor t/ε2 →∞ as ε→ 0 for all positive t , so necessarily A2 = 0, and finally we have

xII = 1− exp(−t/ε2). (iv)

We determine the unknown constants in xI (eqn (iii)) by matching it to xO and xII over
intermediate range of t . To match xI to xO put t = ε1/2q(t) in (i) and (ii), where q = O(1).
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Then as ε→ 0

xO = exp(1− ε1/2q) = e+O(ε1/2),

xI = A1 + B1 exp(−q/ε1/2) = A1 + o(1).

Therefore A1 = e, and in terms of t

xI = e+ B1 exp(−t/ε).

To match xI with xII put t = e3/2p(t), where p(t) = O(1). The dominant terms match only if
B1 = 1− e. Therefore

xI = e+ (1− e) exp(−t/ε). (v)

A composite approximation, valid over the whole interval 0 < t < 1 can be constructed
by considering the sum defined by xO + xI + xII on 0 < t < 1. The following table gives the
dominant terms contributed by each of xO, xI and xII as ε → 0, to each of the subintervals
considered above.

t = O(1) but not O(ε) t = O(ε) but not O(ε2) t = O(ε2)

xO(t) e1−t e e

xI(t) e e+ (1− e)e−t/ε 1

xII(t) 1 1 1− e−t/ε2

Therefore the composite first approximation required is given by

xC = xO + xI + xII − (1+ e) = e1−t + e+ (1− e)e−t/ε + 1− e−t/ε2
.

• 6.30 Let y(x, ε) satisfy εy′′ + y′ = x, where y(0, ε) = 0, y(1, ε) = 1. Find the inner and
outer expansions to order ε uisng the inner variable η = x/ε. Apply the van Dyke matching
rule to show that the inner expansion is

yI ≈ (1
2 + ε)(1− ex/ε).

6.30. The system is

εy′′ + y′ = x, y(0, ε) = 0, y(1, ε) = 1.
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We require the first two terms in the outer and inner expansions. Let y = f0+ εf1+ · · · . Then

ε(f ′′0 + · · · )+ (f ′0 + εf ′1 + · · · ) = x.

Equating powers of ε, we have

f ′0 = x, f ′1 = −f ′′0 .

The boundary condition at x = 1 becomes f0(1) = 1, fi(1) = 0, (i = 1, 2, . . . ). Therefore

f0 = 1
2x

2 + A = 1
2x

2 + 1
2 , f1 = −x + B = −x + 1.

The outer expansion is

yO = (1
2x

2 + 1
2 )+ ε(1− x)+O(ε2). (i)

For the inner expansion, let x = εη. Then the equation becomes

y′′ + y′ = ε2η.

Let y = g0 + εg1 + · · · . Then g0 and g1 satisfy

g′′0 + g′0 = 0, g′′1 + g′1 = 0,

subject to g0(0) = 0, g1(0) = 0, . . . . Hence

g0 = C +De−η = C(1− e−η), g1 = E + F e−η = E(1− e−η),

so that the inner expansion is

yI = C(1− e−η)+ εE(1− e−η)+O(ε2). (ii)

Put x = εη in (i) where η(t) = O(1):

yO = (1
2ε

2η2 + 1
2 )+ ε(1− εη)+ · · · = 1

2 + ε + · · · . (iii)

In terms of x, yI given by (ii) becomes

yI = C(1− e−x/ε)+ εE(1− e−x/ε)+ · · · = C + εE + · · · . (iv)

Matching of (iii) and (iv) implies C = 1
2 and E = 1. Therefore

yI = (1
2 + ε)(1− e−x/ε)+ · · · .
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• 6.31 In Example 6.9, a composite solution of

ε
d2y

dx2 + 2
dy
dx
+ y = 0, y(0) = 0, y(1) = 1,

valid over the interval 0 ≤ x ≤ 1, was found to be (eqn (6.114))

yC = e1/2(e−(1/2)x − e−2x/ε)

using matched inner and outer approximations. What linear constant coefficient second-
order differential equation and boundary conditions does yC satisfy exactly?

6.31. The equation

εy′′ + 2y′ + y = 0, y(0) = 0, y(1) = 1,

has the composite solution

yC = e
1
2 (e−(1/2)x − e−2x/ε), (i)

obtained by matched inner and outer expansions. The exponents in (i) are−1
2 and−2/ε, which

could arise from the characteristic equation

(m+ 1
2 )

(
m+ 2

ε

)
= 0,

which defines linearly independent solutions e−(1/2)x , e−2x/ε of the linear differential equation

2εy′′ + (ε + 4)y′ + 2y = 0.



7
Forced oscillations:
harmonic and subharmonic
response, stability, and
entrainment

• 7.1 Show that eqns (7.16) and (7.17), for the undamped Duffing equation in the van der
Pol plane have the exact solution

r2
{
(ω2 − 1)− 3

8βr
2
}
+ 2�a = constant, r = √(a2 + b2).

Show that these approximate to circles when r is large. Estimate the period on such a path
of a(t), b(t).

7.1. Equations (7.16) and (7.17) (in NODE) are

ȧ = − 1
2ω
b{(ω2 − 1)− 3

4β(a
2 + b2)}, (i)

ḃ = 1
2ω
a{(ω2 − 1)− 3

4β(a
2 + b2)} + �

2ω
. (ii)

Form a × (i)+ b × (ii) which results in

d(r2)

dt
= −�b

ω
. (iii)

where r2 = a2 + b2. From (i) and (ii)

d(r2)

da
= d(r2)

dt

/
da
dt
= − 2�

ω2 − 1− 3
4βr

2
.

Separating the variables and integrating, we have

(ω2 − 1)r2 − 3
8βr

4 + 2�a = constant.

From (i) and (ii),
db
da
= −a{(ω

2 − 1)− (3/4)β(a2 + b2)} + �
b{(ω2 − 1)− (3/4)β(a2 + b2)} .
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For r2 is large in comparison with both ω2 − 1 and �, the differential equation is

db
da
≈ −a

b
.

Integration gives the family a2 + b2 = constant, which are concentric circles (approximately).
Let δs be an increment of length on one these circles of radius r Then δs = √[(δa)2 + (δb)2].

Hence the period T is given by

T ≈
∫ 2πr

0
t

ds√
(ȧ2 + ḃ2)

.

For large r,

ȧ ≈ 3βb
8ω

r2, ḃ ≈ 3βa
8ω

r2,

so that

T ≈ 8ω
3βr3

∫ 2πr

0
ds = 8ω

3βr3 · 2πr =
16πω
3βr2 .

• 7.2 Express eqns (7.16) and (7.17) in polar coordinates. Deduce the approximate period
of a(t) and b(t) for large r. Find the approximate equations for these distant paths. Show
how frequency modulation occurs, by deriving an expression for x(t).

7.2. Equations (7.16) and (7.17) (in NODE) are

ȧ = − 1
2ω
b{(ω2 − 1)− 3

4β(a
2 + b2)}, (i)

ḃ = 1
2ω
a{(ω2 − 1)− 3

4β(a
2 + b2)} + �

2ω
. (ii)

Let a = r cos θ and b = r sin θ . Then

aȧ + bḃ = �b

2ω
,

or

dr
dt
= �

2ω
sin θ . (iii)

Also

aḃ − bȧ = 1
2ω

[
r2(ω2 − 1)− 3β

4
r4 + a�

]
.
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In polar form
dθ
dt
= 1

2ωr2

[
r2(ω2 − 1)− 3β

4
r4 − a�

]
≈ −3βr2

8ω
(iv)

for r large. The polar differential equation is, from (iii) and (iv),

dr
dθ
= dr

dt

/
dθ
dt
= −4� sin θ

3βr2 .

Therefore

3β
∫
r2dr = −4�

∫
sin θdθ ,

which can be integrated to give

r3 − 4�
β

cos θ = C, a constant.

which is the polar equation of phase paths in the van der Pol plane for large r. Since |4�
β

cos θ |
is bounded, the paths will be approximately circles for large r, which agrees with the solution
of Problem 7.1.

From (iii) for a fixed and large radius, r will be constant on a path, so that, since θ changes
by 2π in one circuit the period is 16πω/(3βr2). Since the frequency is 3βr2/(8ω),

x ≈ a cos t + b sin t = r
[

cos

(
3βr2

8ω

)
t cos t + sin

(
3βr2

8ω

)
t sin t

]

= r cos

[(
1− 3βr2

8ω

)
t

]
.

The dependence of [1− (3βr2/(16ω))] on the radius r indicates frequency modulation of x for
large r.

• 7.3 Consider the equation ẍ + sgn (x) = � cosωt . Assume solutions of the form x =
a cosωt + b sinωt . Show that solutions of period 2π/ω exist when |�| ≤ 4/π . Show also
that

a(4− πω2|a|) = π�|a|, b = 0.(
Hint: sgn {x(t)} = 4a

π
√
(a2 + b2)

cosωt + 4b
π
√
(a2 + b2)

sinωt

+higher harmonics.
)
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7.3. Consider the equation
ẍ + sgn (x) = � cosωt .

Assume that x = a cosωt + b sinωt . We require the leading terms in the Fourier expansion of

sgn x = sgn (a cosωt + b sinωt) = A cosωt + B sinωt + · · · ,

say. Then, substituting τ = ωt ,

A = ω

π

∫ π/ω

−π/ω
sgn (a cosωt + b sinωt) cosωtdt .

= 1
π

∫ π

−π
sgn (a cos τ + b sin τ) cos τdτ .

Let a = r cosφ, y = r sinφ so that

A = 1
π

∫ π

−π
sgn [r cos(τ − φ)] cos τdτ

Now cos(τ − φ) = 0 where τ = −1
2π + φ and τ = 1

2π + φ. Therefore

A = 1
π

[
−

∫ − 1
2π+φ

−π
cos τdτ +

∫ 1
2π+φ

− 1
2π+φ

cos τdτ −
∫ π

1
2π+φ

cos τdτ

]

= 1
π
[cosφ + 2 cosφ + cosφ]

= 4 cosφ
π

= 4a
πr

.

Similarly

B = 1
π

∫ π

−π
sgn [r cos(τ − φ)] sin τdτ

= 1
π

[
−

∫ − 1
2π+φ

−π
sin τdτ +

∫ 1
2π+φ

− 1
2π+φ

sin τdτ −
∫ π

1
2π+φ

sin τdτ

]

= 1
π
[1+ sinφ + 2 sinφ − 1+ sinφ]

= 4 sinφ
π

= 4b
πr

.

Hence

sgn (x) ≈ 4a
πr

cosωt + 4b
πr

sinωt .
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Substitute x = a cosωt + b sinωt and sgn(x) into the differential equation so that

−aω2 cosωt − bω2 sinωt + 4a
πr

cosωt + 4b
πr

sinωt ≈ � cosωt .

The harmonics balance if

−aω2 + 4a
πr

= �, −bω2 + 4b
πr

= 0.

From the second equation b = 0 (since r = 4/(πω2) is inconsistent with the first equation), so
that

−aω2 + 4a
π |a| = �, or a(4− πω2|a|) = π�|a|,

as required. For a > 0,

a = 1
ω2

(
4
π
− �

)
.

Therefore � < 4/π . Similarly, if a < 0, then � > −4/π . The two inequalities can be combined
into |�| < 4/π .

• 7.4 Show that solutions, period 2π , of the equation ẍ + x3 = � cos t are given
approximately by x = a cos t , where a is a solution of 3a3 − 4a = 4�.

7.4. The differential equation is
ẍ + x3 = � cos t .

Assume that x ≈ a cos t + b sin t . The leading harmonics of x3 are given by

x3 = 3
4ar

2 cos t + 3
4br

2 sin t + · · · ,

where r = √(a2 + b2). The coefficients of cos t and sin t are zero if

−a + 3
4ar

2 = �, −b + 3
4br

2 = 0.

The only solution of these equations is b = 0, 3a3 − 4a = 4�.

• 7.5 Show that solutions, period 2π , of ẍ+ kẋ+ x+ x3 = � cos t are given approximately
by x = a cos t + b sin t , where

ka − 3
4br

2 = 0, kb + 3
4ar

2 = �, r = √(a2 + b2).

Deduce that the response curves are given by r2(k2 + 9
16r

4) = �2.
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7.5. The forced Duffing-type equation is

ẍ + kẋ + x + x3 = � cos t . (i)

Let x ≈ a cos t + b sin t , and use the expansion

x3 = (a cos t + b sin t)3 = 3
4ar

2 cos t + 3
4br

2 sin t +higher harmonics,

where r = √(a2 + b2). Substituting the expansions into (i), we have

(−a cos t − b sin t)+ k(−a sin t + b cos t)+ (a cos t + b sin t)

+(3
4ar

2 cos t + 3
4br

2 sin t +higher harmonics) = � cos t .

The first harmonics balance if

−a + kb + a + 3
4ar

2 = �, −b − ka + b + 3
4br

2 = 0,

or
bk + 3

4ar
2 = �, −ak + 3

4br
2 = 0.

Squaring and adding these equations, we have the response formula

k2r2 + 9
16
r6 = �2.

• 7.6 Obtain approximate solutions, period 2π/ω, of ẍ+αx+βx2 = � cosωt , by assuming
the form x = c + a cosωt , and deducing equations for c and a.

Show that if β is small, � = O(β), and ω2 − α = O(β), then there is a solution with
c ≈ −βa2/(2α) and a ≈ �/(α − ω2).

7.6. Let x ≈ c + a cosωt in the equation

ẍ + αx + βx2 = � cosωt .

Use the identity

x2 = (c + a cosωt)2 = 1
2 (a

2 + 2c2 + 4ac cosωt + a2 cos 2ωt).

The differential equation becomes

−aω2 cosωt ++α(c + a cosωt)+ 1
2β(a

2 + 2c2 + 4ac cosωt + · · · ) = � cosωt ,
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and the translation and first harmonic balance if

αc + 1
2β(a

2 + 2c2) = 0, −aω2 + αa + 2βac = �. (i)

If β is small, � = O(β), and ω2 − α = O(β), then assume that a = O(1) and that c =
κβ +O(β2). Then

ακβ + 1
2βa

2 ≈ 0, −aω2 + αa ≈ �.

Therefore κ = −a2/(2α), so that

c ≈ −βa
2

2α
, a ≈ �

α − ω2 .

• 7.7 Consider the equation ẍ + x3 = � cos t . Substitute x = a cos t + b sin t , and obtain
the solution x = a cos t , where 3

4a
3 − a = � (see Problem 7.4).

Now fit x3, by a least squares procedure, to a straight line of the form px, where p is a
constant on −A ≤ x ≤ A, so that∫ A

−A(x
3 − px)2dx

is a minimum with respect to p. Deduce that this linear approximation to the restoring force
is compatible with an oscillation, period 2π , of amplitude A, provided 3

5A
3 − A = �.

7.7. As in Problem 7.4, the differential equation

ẍ + x3 = � cos t ,

has the approximate solution is x = a cos t , where 3
4a

3 − a = �.
In the least squares procedure, the square of the difference between z = x3 and the line

z = px over the interval −A ≤ x ≤ A is minimized to determine the slope p. The square of the
distance is

F(p) =
∫ A

−A
(x3 − px)2dx = 2

7A
7 − 4

5A
5p + 2

3A
3p2.

Since
F ′(p) = −4

5A
5 + 4

3pA
3,

then F ′(p) is stationary where−4
5A

2+ 4
3p = 0. Therefore p = 3

5A
2 and the best fit is z = 3

5A
2x.

Using this approximation the equivalent linear equation is

ẍ + 3
5A

2x = � cos t .

This equation has the solution x = A cos t if the amplitude A is given by 3
5A

3 − A = �.
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• 7.8 Consider the equation ẍ + 0.16x2 = 1 + 0.2 cos t . By linearizing the restoring force
about the equilibrium points of the unforced system (without cos t), show that there are
two modes of oscillation period 2π , given by x ≈ 2.5− cos t , x ≈ −2.5− 0.11 cos t .

Find to what extent the predicted modes differ when a substitution of the form x =
c + a cos t + b sin t is used instead.

7.8. Consider the equation
ẍ + 0.16x2 = 1+ 0.2 cos t . (i)

Without the 0.2 cos t term, the unforced system has equilibrium points at 0.16x2 = 1, or
x = ±2.5. Let x = ±2.5+X, but retain only linear terms inX. HenceX satisfies the approximate
equation

Ẍ ± 0.8X = 0.2 cos t .

This has the periodic solutions X = K cos t , where K = −1 or K = −0.11 in the two cases.
Hence the two modes of oscillation with period 2π are

x = 2.5− cos t , x = −2.5− 0.11 cos t .

An alternative method assumes that x = c + a cos t + b sin t , and uses the identity

(c + a cos t + b sin t)2 = 1
2 (a

2 + b2 + 2c2)+ 2ac cos t + 2bc sin t + higher harmonics.

Now balance the constant and leading harmonic terms in (i):

0.16(a2 + b2 + 2c2) = 2, −a + 0.16× 2ac = 0.2, −b + 0.16× 2cb = 0.

Since b = 0 is the only consistent solution of the third equation, it follows that a = 0.2/
(−1+ 0.32c) from the second equation. Finally the first equation implies

0.16
(

0.04
(−1+ 0.32c)2

+ 2c2
)
= 2,

which after expansion becomes

0.032768c4 − 0.2048c3 + 0.1152c2 + 1.28c − 1.9936 = 0.

Numerical solution gives two real solutions c = 2.42 and c = −2.50. The corresponding values
for a are a = −0.89 and a = −0.11. Hence the balance method yields the solutions

x = 2.42− 0.89 cos t , x = −2.5− 0.11 cos t

for comparison with the earlier results.
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• 7.9 By examining the non-periodic solutions of the linearized equations obtained from the
first part of Problem 7.8, show that the two solutions, period 2π , obtained are respectively
stable and unstable.

7.9. Refer back to the previous problem and the equation

ẍ + 0.16x2 = 1+ 0.2 cos t .

The equivalent linear equations were shown to be, with x = ±2.5+X,

Ẍ ± 0.8X = 0.2 cos t .

Near x = 2.5, the transient is
X = A cos(

√
0.8t + α).

which is bounded: hence the solution is stable.
Near x = −2.5, the transient is

X = Ae
√

0.8t + Be−
√

0.8t ,

which is unbounded in general: therefore the solution is unstable.

• 7.10 Show that the equations giving the equilibrium points in the van der Pol plane for
solutions period 2π/ω for the forced, damped pendulum equation

ẍ + kẋ + x − 1
6x

3 = � cosωt , k > 0

are

kωa+b
{
ω2−1+1

8 (a
2+b2)

}
=0, −kωb+a

{
ω2−1+1

8 (a
2+b2)

}
=−�.

Deduce that

r2
(
ω2 − 1+ 1

8r
2
)2 + ω2k2r2 = �2, ωkr2 = �b,

where r = √(a2 + b2).

7.10. The forced Duffing equation is

ẍ + kẋ + x − 1
6x

3 = � cosωt , k > 0. (i)

Let x = a cosωt + b sinωt . Then (see NODE, eqn (7.7))

x3 = 3
4ar

2 cosωt + 3
4br

2 sinωt +higher harmonics.
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where r = √(a2 + b2). To the order of the first harmonics, eqn (i) becomes

(−aω2 + kbω + a − 1
8ar

2) cosωt + (−bω2 − kaω + b − 1
8br

2) sinωt ≈ � cosωt .

The harmonics balance if

kωb + a(1− ω2 − 1
8r

2) = �, (ii)

kωa − b(1− ω2 − 1
8r

2) = 0. (iii)

Square and add (ii) and (iii): the result is

ω2k2r2 + r2(ω2 − 1+ 1
8r

2)2 = �2.

Add b×(ii) to a×(iii) to give the second equation

ωkr2 = �b.

• 7.11 For the equation ẍ+ x− 1
6x

3=� cosωt , find the frequency–amplitude equations in
the van der Pol plane. Show that there are three equilibrium points in the van der Pol plane
if ω2 < 1 and |�| > 2

3
√
(8

3 )(1− ω2)3/2, and one otherwise. Investigate their stability.

7.11. The Duffing equation

ẍ + x − 1
6x

3 = � cosωt , (i)

is considered in NODE, Section 7.2 with β = −1
6 . Using the solution x = a cosωt + b sinωt ,

the frequency–amplitude equations, given by (7.16) and (7.17) are

ȧ = − b

2ω
{(ω2 − 1)+ 1

8 (a
2 + b2)}, (ii)

ḃ = a

2ω
{(ω2 − 1)+ 1

8 (a
2 + b2)}+ �

2ω
. (iii)

Equilibrium points in the van der Pol plane occur where b = 0 and a satisfies

(ω2 − 1)a + 1
8a

3 + � = 0.

Let

z(a) = (ω2 − 1)a + 1
8a

3.
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Then
z′(a) = (ω2 − 1)+ 3

8a
2.

• ω2<1. The frequency–amplitude curve in the (a, z) plane has two stationary points at

a=±
√

8
3
√
(1− ω2). Correspondingly, z=∓ 2

3

√
8
3 (1 − ω2)3/2. Therefore there are three

equilibrium points if |�| < 2
3

√
8
3 (1−ω2)3/2, two equilibrium points if |�| = 2

3

√
8
3 (1−ω2)3/2

and one otherwise.
• ω2 > 1. From (ii), z(a) has no stationary points, but since z(a)→ ±∞ as a → ∞, there

will be just one equilibrium point.

Let a = a0 + a1, b = b1, where |a1| and |b1| are small, and (a0, b0) is an equilibrium point.
Then the linearized equations derived from (ii) and (iii) are

ȧ1 = − b1

2ω

{
(ω2 − 1)+ 1

8
a2

0

}
,

ḃ1 =
[
a0

2ω
(ω2 − 1)+ 1

16ω
a2

0 +
�

2ω

]
+ a1

2ω

[
(ω2 − 1)+ 3

8
a2

0

]

= a1

2ω

[
(ω2 − 1)+ 3

8
a2

0

]
.

Write these equations as

ȧ1 = −�1b1, �1 = 1
2ω

{
(ω2 − 1)+ 1

8
a2

0

}
, (iv)

ḃ1 = �2a1, �2 = 1
2ω

[
(ω2 − 1)+ 3

8
a2

0

]
(v)

By elimination a1 satisfies the equation

ä1 +�1�2a1 = 0. (vi)

• ω2 > 1. From (iv) and (v),�1 > 0 and�2 > 0, so that (vi) implies that the only equilibrium
point in the van der Pol plane is a centre. Therefore the corresponding periodic solution is
stable.

• ω2 < 1. The curve in Figure 7.1 typically shows the curve

z(a) = (ω2 − 1)a + 1
8a

3

for a value of ω2 < 1. It is helpful to use the figure. The abscissae of the points on the
curve are

B : a = −√8
√
(1− ω2), C : a = −

√
8
3
√
(1− ω2),

D : a =
√

8
3
√
(1− ω2), E : a = √8

√
(1− ω2).
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a

z

A

B

C

D

E

F

Figure 7.1 Problem 7.11:

From (iv) and (v), we have the following results

a0 < −
√

8
√
(1− ω2) �1�2 > 0 stable

−√8
√
(1− ω2) < a0 < −

√
8
3
√
(1−�2) �1�2 < 0 unstable

−
√

8
3
√
(1− ω2) < a0 <

√
8
3
√
(1−�2) �1�2 > 0 stable√

8
3
√
(1− ω2) < a0 <

√
8
√
(1−�2) �1�2 < 0 unstable

a0 >
√

8
√
(1− ω2) �1�2 > 0 stable

.

To summarize, the periodic solutions are stable in the intervals AE, CD and EF , and
unstable in the intervals BC and DE in Figure 7.1.

• 7.12 For the equation ẍ + αx + βx2 = � cos t , substitute x = c(t)+ a(t) cos t + b(t) sin t ,
and show that, neglecting ä and b̈,

ȧ= 1
2b(α−1+2βc), ḃ=−1

2a(α−1+2βc)+�,

c̈=−αc−β{c2+ 1
2 (a

2+b2)}.
Deduce that if |�| is large there are no solutions of period 2π , and that if α < 1 and � is
sufficiently small there are two solutions of period 2π .

7.12. Substitute x = c(t)+ a(t) cos t + b(t) sin t into the differential equation

ẍ + αx + βx2 = � cos t ,

and neglect the second derivatives ä and b̈. The result is

c̈ + (2ḃ − a) cos t − (2ȧ + b) sin t + αc + αa cos t + αb sin t

+ β(c2 + a2 cos2 t + b2 sin2 t + 2ca cos t + 2cb sin t + 2ab sin t cos t) = � cos t .
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a

c

Figure 7.2 Problem 7.12: The diagram illustrates the intersection of an ellipse and a rectangular hyperbola.

Expanding cos2 t and sin2 t , the translation and first harmonics balance if

c̈ + αc + β(c2 + 1
2a

2 + 1
2b

2) = 0,

2ḃ − a + αa + 2βca = �,

−2ȧ − b + αb + 2βcb = 0.

Equilibrium occurs where
αc + β(c2 + 1

2a
2 + 1

2b
2) = 0, (i)

a(−1+ α + 2βc) = �, (ii)

b(−1+ α + 2βc) = 0. (iii)

Assuming � �= 0, it follows from (ii) and (iii) that b = 0. Therefore (i) becomes

αc + β
(
c2 + 1

2
a2

)
= 0, or βa2 + 2β

(
c + α

2β

)2

= α2

2β
,

which is the equation of an ellipse in the (a, c) plane. Equation (ii) is the equation of a rectangular
hyperbola with centre at [0, (1 − α)/(2β)]. For sufficiently large � this hyperbola will not
intersect the ellipse, since the ellipse is independent of �. Figure 7.2 shows the intersection of
one branch of a rectangular hyperbola and an ellipse which occurs for � sufficiently small.

• 7.13 Substitute x = c(t) + a(t) cos t + b(t) sin t into the equation ẍ + αx2 = 1 + � cos t
(compare Problem 7.8), and show that if ä and b̈ are neglected, then

2ȧ = b(2αc − 1), 2ḃ = a(1− 2αc)+ �, c̈ + α(c2 + 1
2a

2 + 1
2b

2) = 1.

Use a graphical argument to show that there are two equilibrium points, when α < 1
4 and

� <
√
(2/α).

7.13. Substitute x = c(t)+ a(t) cos t + b(t) sin t into the differential equation

ẍ + αx2 = 1+ � cos t ,
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and neglect the second derivatives ä and b̈. The result is

c̈ + (2ḃ − a) cos t − (2ȧ + b) sin t + α(c2 + a2 cos2 t + b2 sin2 t + 2ca cos t + 2cb sin t

+ 2ab sin t cos t) = 1+ � cos t

Expanding cos2 t and sin2 t , the translation and first harmonics balance if

c̈ + α(c2 + 1
2a

2 + 1
2b

2) = 1,

2ḃ = a − 2αca + �,

2ȧ = −b + 2αbc,

as required. Equilibrium occurs where

α(c2 + 1
2a

2 + 1
2b

2) = 1, (i)

a − 2αca + � = 0 (ii)

−b + 2αbc = 0. (iii)

From (ii) and (iii), b = 0 (assuming � �= 0) so that a and c satisfy

αc2 + 1
2αa

2 = 1, (iv)

a(2αc − 1) = �. (v)

Equation (iv) represents an ellipse and (v) a rectangular hyperbola, and any equilibrium points
occurs where (if at all) these curves intersect. The ellipse has semi-axes

√
(2/α) and 1/

√
(α). The

horizontal asymptote of the hyperbola is shown in Figure 7.3. If 1/(2α)>1/
√
α, or α < 1

4 , then
the curves will have at most two intersections. The lower branch of the hyperbola intersects
the a axis at a=−�. Therefore there will be two solutions for (a, c), if �≤√(2/α).

a

c

c = 1/(2a)

Figure 7.3 Problem 7.13: The diagram illustrates the intersection of an ellipse and a rectangular hyperbola.
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• 7.14 In the forced Duffing equation ẍ+ kẋ+ x− 1
6x

3=� cosωt , (k >0), substitute
x= a(t) cosωt + b(t) sinωt to investigate the solutions of period 2π/ω. Assume that a and
b are slowly varying and that kȧ, kḃ can be neglected. Show that the paths in the van der
Pol plane are given by

ȧ = − b

2ω

{
ω2 − 1+ 1

8
(a2 + b2)

}
− 1

2
ka,

ḃ = a

2ω

{
ω2 − 1+ 1

8
(a2 + b2)

}
− 1

2
kb + �

2ω
.

Show that there is one equilibrium point if ω2 > 1.
Find the linear approximation in the neighbourhood of the equilibrium point when

ω2>1, and show that it is a stable node or spiral when k >0.

7.14. The forced Duffing equation is

ẍ + kẋ + x − 1
6x

3 = � cosωt . (i)

In this case, let x = a(t) cosωt + b(t) sinωt , and assume that ä, b̈, kȧ and kḃ are small in
magnitude. Also, as in Problem 7.10,

x3 = 3
4ar

2 cosωt + 3
4br

2 sinωt + higher harmonics.

where r = √
(a2 + b2). Substitute into (i) and equate to zero the coefficients of the first

harmonics: the result is

ȧ = − b

2ω

[
ω2 − 1+ 1

8
r2

]
− 1

2
ka, (ii)

ḃ = a

2ω

[
ω2 − 1+ 1

8
r2

]
− 1

2
kb + �

2ω
, (iii)

as required.
Equilibrium occurs where

b[ω2 − 1+ 1
8r

2] + kaω = 0, (iv)

a[ω2 − 1+ 1
8r

2] − kbω = −�. (v)

Square and add these equations:

r2[ω2 − 1+ 1
8r

2]2 + ω2k2r2 = �2.

Let
f (r) = r2[ω2 − 1+ 1

8r
2]2 + ω2k2r2
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which will only be defined for r ≥ 0. It follows that

f ′(r) = 2r[ω2 − 1+ 1
8r

2]2 = 1
4r

3[ω2 − 1+ 1
8r

2] + 2ω2k2r.

For r > 0 and ω2 > 1, f ′(r) > 0. Therefore, for ω2 > 1, The equation f (r) = �2 has only one
solution.

Assume ω2 > 1. To linearize (ii) and (iii), let a = a0+ u and b = b0+ v, where (a0, b0) is the
only equilibrium point solution of (iv) and (v). Then the linearized approximations for u and v
are

u̇ = − u

2ω

(
1
4
a0b0 + kω

)
− v

2ω

(
ω2 − 1+ 1

8
r2
0 +

1
4
b2

0

)
,

v̇ = u

2ω

(
ω2 − 1+ 1

8
r2
0 +

1
4
a2

0

)
+ v

2ω

(
1
4
a0b0 − kω

)
.

The equilibrium point can be classified by the method of Section 2.5. In the usual notation

p = −k < 0, q = 1
4ω2

[
k2ω2 + (ω2 − 1+ 1

8
r2
0 )

2 + 1
4
r2
0

(
ω2 − 1+ 1

8
r2
0

)]
> 0.

Hence the equilibrium point is either a stable node or spiral.

• 7.15 For the equation ẍ + αx + βx3 = � cosωt , show that the restoring force αx + βx3

is represented in the linear least-squares approximation on −A ≤ x ≤ A by (α + 3
5βA

2)x.
Obtain the general solution of the approximating equation corresponding to a solution of
amplitude A. Deduce that there may be a subharmonic of order 1

3 if α+ 3
5βA

2 = 1
9ω

2 has a
real solution A. Compare NODE, eqn (7.57) for the case when �/(8α) is small. Deduce that
when α ≈ 1

9ω
2 (close to subharmonic resonance), the subharmonic has the approximate

form

A cos(1
3ωt + φ)−

�

8α
cosωt ,

where φ is a constant.
(The interpretation is that when �/(8α) is small enough form the oscillation to lie in

[−A,A], A can be adjusted so that the slope of the straight-line fit on [−A,A] is appropriate
to the generation of a natural oscillation which is a subharmonic. The phase cannot be
determined by this method.)

Show that the amplitude predicted for the equation ẍ+0.15x−0.1x3=0.1 cos t is
A=0.805.

7.15. The undamped forced Duffing equation is

ẍ + αx + βx3 = � cosωt .
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Consider the line z = µx. This becomes the least squares approximation to the restoring term
αx + βx3 over the interval (−A,A), if µ is given by the stationary value of

F(µ) =
∫ A

−A
(µx − αx − βx3)dx

=
∫ A

−A
[(µ− α)2x2 − 2(µ− α)βx4 + β2x6]dx

= 2
3 (µ− α)2A3 − 4

5 (µ− α)βA5 + 2
7β

2A7.

Differentiating
F ′(µ) = 4

3 (µ− α)A3 − 4
5A

5,

so that F ′(µ) = 0 where µ = 3
5A

2. The least squares approximation is z = (α + 3
5βA

2)x. The
equivalent linear equation using this approximation is

ẍ +�2x = � cosωt , � = √(α + 3
5βA

2).

The system could have a subharmonic if �2 = 1
9ω

2, or

α + 3
5βA

2 = 1
9ω

2.

A will have real solutions if α < 1
9ω

2. Solving the linear equation, the subharmonic will have
the approximate form

x = Acos(1
3ωt + φ)+

�

�2 − ω2 cosωt .

If α ≈ 1
9ω

2, then 3
5βA

2 is small, and �2 ≈ α, so that, approximately,

x = A cos(1
3ωt + φ)−

�

8α
cosωt .

The given parameter values are α=0.15, β =−0.1, �=0.1 and ω=1. Then

A2 = 5
27β

(ω2 − 9α) = 0.648.

Hence A = 0.805.

• 7.16 Use the perturbation method to show that ẍ+ kẋ+αx+βx3=� cosωt has no
subharmonic of order 1

2 when β is small and k=O(β). (Assume the expansion
(a cos 1

2τ + b sin 1
2τ + c cos τ)3= 3

4c(a
2− b2)+ 3

4 (a
2+ b2 + 2c2)

(a cos 1
2τ + b sin 1

2τ)+higher harmonics.)
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7.16. In the Duffing equation

ẍ + kẋ + αx + βx3 = � cosωt ,

let k = κβ and τ = ωt . The equation becomes

ω2x′′ + κωβx′ + αx + βx3 = � cos τ .

Let x(τ) = x0 + βx1 + · · · and ω = ω0 + βω1 + · · · , so that the differential equation becomes

(ω0 + βω1 + · · · )2(x′′0 + βx′′1 + · · · )+ κβ(ω0 + · · · )(x′0 + · · · )
+ α(x0 + βx1 + · · · )+ β(x0 + βx1 + · · · )3 = � cos τ

The perturbation coefficients of β in the equation vanish individually if

ω2
0x
′′
0 + αβx0 = � cos τ , (i)

ω2
0x
′′
1 + αβx1 = −2ω0ω1x

′′
0 − κω0x

′
0 − x3

0 , (ii)

etc. For a subharmonic of frequency 1
2 , it follows from all these equations that α = 1

4ω
2
0. In

this case, the general solution of (i) is

x0 = a1/2 cos 1
2τ + b1/2 sin 1

2τ −
4�
3ω2 cos τ .

Using the identity given in the problem, we have

− 2ω0ω1x
′′
0 − κω0x

′
0 − x3

0 = −2ω0ω1

(
−1

4a1/2 cos 1
2τ − 1

4b1/2 sin 1
2τ

)

− κω0

(
−1

2a1/2 sin 1
2τ + 1

2b1/2 cos 1
2τ

)
+ �

ω2
0

(a2
1/2 − b2

1/2)

+ 3
4
a1/2

(
a2

1/2 + b2
1/2 +

32�2

9ω4
0

)
cos 1

2τ+3
4b1/2

(
a2

1/2 + b2
1/2 +

32�2

9ω4
0

)

sin 1
2τ + (higher harmonics).
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The secular term can be removed by putting the coefficients of cos 1
2τ and sin 1

2τ in the identity
equal to zero, that is,

1
2ω0ω1a1/2 − 1

2κω0b1/2 + 3
4a1/2

(
a2

1/2 + b2
1/2 +

32�2

9ω4
0

)
= 0, (iii)

1
2ω0ω1b1/2 + 1

2κω0a1/2 + 3
4b1/2

(
a2

1/2 + b2
1/2 +

32�2

9ω4
0

)
= 0. (iv)

The difference b1/2 × (iii)− a1/2 × (iv) leads to

1
2κω0(b

2
1/2 + a2

1/2) = 0,

which implies that the coefficients of subharmonic of order 1
2 are both zero. In which case there

can be no subharmonic of this order at least in this approximation.

• 7.17 Use the perturbation method to show that ẍ+ kẋ+αx+βx3=� cosωt has no
subharmonic of order other than 1

3 when β is small and k=O(β).
(Use the identity

(a cos 1
n
τ + b sin 1

n
τ + c cos τ)n = 3

4 (a
2 + b2 + 2c2)(a cos τ + b sin τ)

+higher harmonics

for n �= 3.)

7.17. Does the equation

ẍ + kẋ + αx + βx3 = � cosωt

have a subharmonic of order other than 1
3 when β is small and k = O(β)? Let k = κβ and

τ = ωt . The differential equation becomes

ω2x′′ + κωβx′ + αx + βx3 = � cos τ .

As in Problem 7.16, let x(τ) = x0 + βx1 + · · · and ω = ω0 + βω1 + · · · . Equations (i) and (ii)
of Problem 7.16 are

ω2
0x
′′
0 + αx0 = � cos τ , (i)

ω2
0x
′′
1 + αx0 = −2ω0ω1x

′′
0 − κω0x

′
0 − x3

0 , (ii)

Look for subharmonics of order 1/n, where n �= 3. Let α = ω2
0/n

2 so that

x0 = a1/n cos
1
n
τ + b1/n sin

1
n
τ − �

(n2 − 1)ω2
0

sin τ .
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Using the identity given, the right-hand side of (ii) becomes

− 2ω0ω1x
′′
0 − κω0x

′
0 − x3

0

= −2ω0ω1

(
− 1
n2 a1/n cos

1
n
τ − 1

n
b1/n sin

1
n
τ

)
− κω0

(
−1
n
a1/n sin

1
n
τ

+1
2
b1/n cos

1
n
τ

)
+ 3

4
a1/n

(
a2

1/n + b2
1/n +

2n4�2

(n2 − 1)2ω4
0

)
cos

1
n
τ

+3
4
b1/n

(
a2

1/n + b2
1/n +

2n4�2

(n2 − 1)2ω2
0

)
sin

1
n
τ + (higher harmonics).

The secular term can be removed by putting the coefficients of cos 1
n
τ and sin 1

n
τ in the identity

equal to zero, that is,

2
n2ω0ω1a1/n − 1

n
κω0b1/n + 3

4
a1/n

(
a2

1/n + b2
1/n +

2n4�2

(n2 − 1)2ω4
0

)
= 0, (iii)

2
n2ω0ω1b1/n + 1

n
κω0a1/n + 3

4
b1/n

(
a2

1/n + b2
1/n +

2n4�2

(n2 − 1)2ω4
0

)
= 0. (iv)

The difference b1/2 × (iii)− a1/2 × (iv) leads to

1
2κω0(b

2
1/n + a2

1/n) = 0,

which imply that a1/n = b1/n = 0. Therefore there are no subharmonics except when n = 3.

• 7.18 Look for subharmonics of order 1
2 for the equation ẍ+ε(x2−1)ẋ+ x=� cosωt

using the perturbation method with τ =ωt .
If ω = ω0+εω1+· · · , show that this subharmonic is only possible if ω1 = 0 and �2 < 18.

(Hint: let x0 = a cos 1
2τ + b sin 1

2τ − 1
3� cos τ , and use the expansion

(x2
0 − 1)x′0 = 1

72 [−36+ 9(a2 + b2)+ 2�2](b cos 1
2τ − a sin 1

2τ)

+ (higher harmonics).)

7.18. The forced van der Pol equation is

ẍ + ε(x2 − 1)ẋ + x = � cosωt .
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Apply the substitution ωt = τ so that the differential equation becomes

ω2x′′ + ωε(x2 − 1)x′ + x = � cos τ .

Let x = a cosωτ + b sinωτ . Let x = x0+ εx1+· · · and ω = ω0+ εω1+· · · . The first two terms
x0 and x1 satisfy

ω2
0x
′′
0 + x0 = � cos τ , (i)

ω2
0x
′′
1 + x1 = −2ω0ω1x

′′
0 − ω0(x

2
0 − 1)x′0. (ii)

From (i) there could be a subharmonic of order 1
2 if ω2

0 = 4, in which case the solution of (i) is

x0 = a cos 1
2τ + b sin 1

2τ − 1
3� cos τ .

The right-hand side of (ii) becomes

− 2ω0ω1x
′′
0 − ω0(x

2
0 − 1)x′0 = −2ω0ω1

(
−1

4a cos 1
2τ − 1

4b sin 1
2τ

)

− ω0

{
b

72
[−36+ 9(a2 + b2)+ 2�2] cos 1

2τ +
a

72
[36− 9(a2 + b2)

−2�2]sin 1
2τ

}
+ (higher harmonics).

To remove secular terms the coefficients of cos 1
2τ and sin τ must be zero so that

aω1 − b

36
[−36+ 9(a2 + b2)+ 2�2] = 0,

bω1 − a

36
[36− 9(a2 + b2)− 2�2] = 0.

Hence the only solution is

ω1 = 0, 36− 9(a2 + b2 − 2�2 = 0),

assuming a2 + b2 �= 0. The amplitude a2 + b2 is only real if �2 < 18.
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• 7.19 Extend the analysis of the equation ẍ + ε(x2 − 1)ẋ + x = � cosωt in Problem 7.18
by assuming that

x = a(t) cos 1
2ωt + b(t) sin 1

2ωt − 1
3� cosωt ,

where a and b are slowly varying. Show that when ä, b̈, εȧ, εḃ, are neglected,
1
2ωȧ = (1− 1

4ω
2)b − 1

8ωa(a
2 + b2 + 2

9�
2 − 4),

1
2ωḃ = −(1− 1

4ω
2)a − 1

8ωb(a
2 + b2 + 2

9�
2 − 4),

in the van der Pol plane for the subharmonic.
By using ρ = a2 + b2 and φ the polar angle on the plane show that

ρ̇ − 1
4ερ(ρ +K), φ̇ = −(1− 1

4ω
2)/(2ω), K = 2

9�
2 − 4.

Deduce that

(i) When ω �= 2 and K ≥ 0, all paths spiral into the origin, which is the only equilibrium
point (so no subharmonic exists).

(ii) When ω = 2 and K ≥ 0, all paths are radial straight lines entering the origin (so there
is no subharmonic).
(iii) When ω �= 2 and K < 0, all paths spiral on to a limit cycle, which is a circle, radius
−K and centre the origin (so x is not periodic).

(iv) When ω = 2 and K < 0, the circle center the origin and radius −K consists entirely
of equilibrium points, and all paths are radial straight lines approaching these points (each
such point represents a subharmonic).

(Since subharmonics are expected only in case (iv), and for a critical value of ω, entrain-
ment cannot occur. For practical purposes, even if the theory were exact we could never
expect to observe the subharmonic, though solutions near to it may occur.)

7.19. The forced van der Pol equation is

ẍ + ε(x2 − 1)ẋ + x = � cosωt .

Let

x = a(t) cos 1
2ωt + b(t) sin 1

2ωt − 1
3� cosωt .

Neglect the terms ä, b̈, εȧ and εḃ. Then

ẍ ≈ (−1
4aω

2 + 1
2 ḃω) cos 1

2ωt + (−1
2 ȧω − 1

4bω
2) sin 1

2ωt + 1
3ω

2 cosωt .

Also

ẋ = (ȧ + 1
2bω) cos 1

2ωt + (−1
2aω + ḃ) sin 1

2ωt + 1
3ω� sinωt .

≈ 1
2bω cos 1

2ωt − 1
2aω sin 1

2ωt + 1
3�ω sinωt
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in the damping term. Also

ε(x2 − 1)ẋ ≈ ε
(
−1

2
bω + 1

8
a2bω + 1

8
b3ω + 1

36
bω�2

)
cos

1
2
ωt

+ε
(

1
2
aω − 1

8
a3ω − 1

8
ab2ω − 1

36
aω�2

)
sin

1
2
ωt

+ (higher harmonics)

We can now gather together the coefficients of cos 1
2ωt and sin 1

2ωt and put the coefficients
equal to zero with the result

1
2ωȧ = b(1− 1

4ω
2)− 1

8ωaε(−4+ a2 + b2 + 2
9�

2), (i)

1
2ωḃ = −a(1− 1

4ω
2)− 1

8ωbε(−4+ a2 + b2 + 2
9�

2). (ii)

Let ρ = a2 + b2. Then, using (i) and (ii),

ρ̇ = 2aȧ + 2bḃ = −1
8ρ(ρ +K), (iii)

where K = 2
9�

2 − 4. Let tanφ = b/a. Then

φ̇ = aḃ − bȧ
ρ

= − (1−
1
4ω

2)

2ω
. (iv)

(i) If ω �= 2 and K ≥ 0, then the polar form of the equations in the van der Pol plane implies
that the origin is the only equilibrium point, which means that there can be no subharmonic
in this case. From (iii), ρ̇ < 0 which implies that the radial distance decreases from any initial
radius. For 0 < ω < 2, φ̇ < 0, whilst for ω > 2, φ̇ > 0. Therefore the paths in the van der Pol
are spirals into the origin, clockwise if ω > 2 and counterclockwise if ω < 2.

(ii) If ω = 2 and K ≥ 0, then φ̇ = 0 and ρ̇ < 0. Therefore the polar angles are constant and
ρ̇ < 0. Hence the paths are radial and the phase direction is towards the origin. Again there
are no subharmonics.

(iii) If ω �= 2 and K < 0, eqn (iii) has the solution ρ = −K which is a circle and limit cycle in
the van der Pol equation. Since ρ̇ < 0 for ρ > K and ρ̇ > 0 for ρ < K, the limit cycle is stable.

(iv) If ω = 2 and K < 0, all points on the circle ρ = −K are stable equilibrium points. Each
point corresponds to a subharmonic.

• 7.20 Given eqns (7.34), (7.41), and (7.42) (in NODE) for the response curves and the
stability boundaries for the van der Pol’s equation (Figure 7.10 in NODE), eliminate r2 to
show that the boundary of the entrainment region in the γ , ν plane is given by

γ 2 = 8{1+ 9ν2 − (1− 3ν2)3/2}/27.

for ν2 < 1
3 . Show that, for small ν, γ ≈ ±2ν or γ ≈ ± 2

3
√

3
(1− 9

8ν
2).
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7.20. The equation and inequalities cited for the forced van der Pol equation are

r2
0 {ν2 + (1− 1

4r
2
0 )

2} = γ 2, (i)

3
16
r4
0 − r2

0 + 1+ ν2 > 0, (ii)

r2
0 ≥ 2. (iii)

where (a0, b0) is an equilibrium point in the van der Pol plane, and r0=√(a2
0 + b2

0). The
boundary defined by (ii) is given by

r2
0 = 4

3 [2±
√
(1− 3ν2)],

if ν2 < 1
3 . This equation has two positive roots (and therefore real solutions for r0) say r1 and

r2 where 0 < r2
1 < r

2
2 . It follows that inequality (ii) is satisfied if 0 < r2

0 < r
2
1 or r2

0 > r
2
2 .

For r0 = r2,

γ 2 = 4
3 [2+

√
(1− 3ν2)][ν2 + 1− 2

3 {2+
√
(1− 3ν2)} + 1

9 {2+
√
(1− 3ν2)}2]

= 4
3 [2+

√
(1− 3ν2)][23ν2 + 2

9 − 2
9
√
(1− 3ν2)]

= 8
27 [9ν2 + 1− (1− 3ν2)3/2].

If r0 = r1, then
γ 2 = 8

27 [9ν2 + 1+ (1− 3ν2)3/2].
Figure 7.4 shows the entrainment region in the (ν, γ ). I

If |ν| is small, then

γ 2 ≈ 8
27

[
9ν2 + 1±

(
1− 9

2ν
2
)]

,

that is
γ 2 ≈ 4ν2, or γ 2 ≈ 4

27 (4− 9ν2).

–0.5 0.5
υ

11

�

Figure 7.4 Problem 7.20: The shaded area is the entrainment region: the upper boundary is given by γ 2 = 8
27 [9ν2+

1+√(1− 3ν2) and the lower boundary by γ 2 = 8
27 [9ν2 + 1−√(1− 3ν2)].
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Hence

γ ≈ ±2ν2, or γ ≈ 2

3
√

3

(
1− 9

8
ν2

)
.

• 7.21 Consider the equation ẍ + ε(x2 + ẋ2 − 1)ẋ + x = � cosωt . To obtain solutions of
period 2π/ω, substitute x = a(t) cosωt + b(t) sinωt and deduce that, if ä, b̈, εȧ, εḃ can be
neglected, then

ȧ = 1
2ε{a − νb − 1

4µa(a
2 + b2)},

ḃ = 1
2ε{νa + b − 1

4µb(a
2 + b2)} + 1

2εγ ,

where

µ = 1+ 3ω2, ν = (ω2 − 1)/(εω), and γ = �/(εω).
Show that the stability boundaries are given by

1+ ν2 − µr2 + 1
16µ

2r4 = 0, 2− µr2 = 0.

7.21. The equation is

ẍ + ε(x2 + ẋ2 − 1)ẋ + x = � cosωt . (i)

Let x = a(t) cosωt + b(t) sinωt . Then

ẋ = (ȧ + ωb) cosωt + (ḃ − aω) sinωt ,

and, neglecting ä and b̈,

ẍ ≈ (2ωḃ − aω2) cosωt − (2ωȧ + bω2) sinωt .

Substitution of these derivatives into (i) leads to

(2ωḃ − aω2) cosωt − (2ωȧ + bω2) sinωt + ε[(a cosωt + b sinωt)2

+ ((ȧ + ωb) cosωt + (ḃ − aω) sinωt)2 − 1] [(ȧ + ωb) cosωt + (ḃ − aω) sinωt)]
+ a cosωt + b sinωt = � cosωt

Neglecting εẋ and εḃ, the equation simplifies to

(2ωḃ − aω2) cosωt − (2ωȧ + bω2) sinωt + ε[(a cosωt + b sinωt)2

+ (ωb cosωt − ωa sinωt)2 − 1](ωb cosωt − aω sinωt)+ a cosωt + b sinωt

= � cosωt .
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The expansion of the ε term is

ε[(a cosωt + b sinωt)2 + (ωb cosωt − ωa sinωt)2 − 1](ωb cosωt − aω sinωt)

= 1
4εbω[−4ω + (1+ 3ω2)(a2 + b2)] cosωt+1

4εaω[4ω − (1+ 3ω2)(a2 + b2)] sinωt
+ (higher harmonics).

Substitute this into the previous equation and equate the coefficients of cosωt and sinωt to
zero, from which the required equations for a and b follow:

ȧ = 1
2ε[a − νb − 1

4µa(a
2 + b2)],

ḃ = 1
2ε[νa + b − 1

4µb(a
2 + b2)] + 1

2εγ ,

where µ = 1+ 3ν2, ν = (ω2 − 1)/(εω) and γ = �/(εω).
Equilibrium in the van der Pol plane occurs where

a − νb − 1
4µa(a

2 + b2) = 0, (ii)

νa + b − 1
4µb(a

2 + b2) = −γ . (iii)

The equations can be expressed in the form

(1− 1
4µr

2)a − νb = 0,

νa + (1− 1
4µr

2)b = −γ ,

where, after squaring and adding, r is given by

[(1− 1
4µr

2)2 + ν2]r2 = γ 2.

Let a = a0 and b = b0 be a solution of (i) and (ii), and consider the perturbation a = a0 + a1,
b = b0 + b1, where |a1| and |b1| are small. Then, to the first order, a1 and b1 satisfy

ȧ1 = (1− 3
4µa

2
0 − 1

4µb
2
0)a1 − ν(1+ 1

2µa0b0)b1,

ḃ1 = ν(1− 1
2a0b0)a1 + (1− 1

4µa
2
0 − 3

4b
2
0)b1.

Refer back to Chapter 2, Section 2.5. The solutions of the linearized equations are stable if, (in
the notation of Section 2.5),

p = 2− µr2
0 < 0,

and

q = (1− 3
4µa

2
0 − 1

4µb
2
0)(1− 1

4µa
2
0 − 3

4µb
2
0)

+(ν − 1
2µa0b0)(ν + 1

2µa0b0) > 0.
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The latter inequality simplifies to

1+ ν2 − µr2
0 +

3
16
µ2r4

0 > 0.

• 7.22 Show that the equation ẍ(1−xẋ)+ (ẋ2−1)ẋ+x = 0 has an exact periodic solution
x = cost . Show that the corresponding forced equation ẍ(1−xẋ)+(ẋ2−1)ẋ+x = � cosωt
has an exact solution of the from a cosωt + b sinωt , where

a(1− ω2)− ωb + ω3b(a2 + b2) = �, b(1− ω2)+ ωa − ω3a(a2 + b2) = 0.

Deduce that the amplitude r = √(a2 + b2) satisfies

r2{(1− ω2)2 + ω2(1− r2ω2)2} = �2.

7.22. Let x = cos t . Then

L(x) ≡ ẍ(1− xẋ)+ (ẋ2 − 1)ẋ + x
= − cos t(1+ sin t cos t)+ (sin2 t − 1)(− sin t)+ cos t = 0,

which verifies that x = cos t is an exact solution.
Consider now the forced equation

L(x) = � cosωt .

If x = a cosωt + b sinωt , then

L(x)− � cosωt = ω2(a cosωt + b sinωt)

× [1− (a cosωt + b sinωt)(−a sinωt + b cosωt)]
+ ω[ω2(−a sinωt + b cosωt)2−1](−a sinωt + b cosωt)

+ a cosωt + b sinωt − � cosωt

= (1− ω2)(a cosωt + b sinωt)− ω(−a sinωt + b cosωt)

+ ω2(cosωt + b sinωt)2(−a sinωt + b cosωt)

+ ω3(− sinωt + b cosωt)3 − � cosωt

= (1− ω2)(a cosωt + b sinωt)− ω(−a sinωt + b cosωt)

+ ω3(−a sinωt + b cosωt)[(a cosωt + b sinωt)2

+ (−a sinωt + b cosωt)2] − � cosωt

= (1− ω2)(a cosωt + b sinωt)− ω(−a sinωt + b cosωt)

+ ω3(a2 + b2)(−a sinωt + b cosωt)− � cosωt

= 0
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if
a(1− ω2)− ωb + ω3b(a2 + b2) = �,

b(1− ω2)+ ωa − ω3a(a2 + b2) = 0.

These equations are equivalent to
r2(1− ω2) = a�,

and
−ωr2 + ω3(a2 + b2) = b�.

Square and add these two equations so that

r2[(1− ω2)2 + ω2(1− r2ω2)2] = �2.

• 7.23 The frequency–amplitude relation for the damped forced pendulum is (eqn (7.23)
in NODE), with β =− 1

6 ) r2{k2ω2 + (ω2 − 1+ 1
8r

2)2}=�2.
Show that the vertex of the cusp bounding the fold in NODE, Figure 7.7 occurs where

ω = 1
2 {
√
(3k2 + 4)− k√3}.

Find the corresponding value for �2.

7.23. The frequency–amplitude relation for the damped forced pendulum is

r2[k2ω2 + (ω2 − 1+ 1
8r

2)2] = �2.

As in NODE, Section 7.3, let ρ = r2/6 and γ = �/√6, so that

γ 2 = G(ρ) = ρ[k2ω2 + (ω2 − 1+ 3
4ρ)

2]

= 9
16
ρ3 + 3

2
(ω2 − 1)ρ2 + [k2ω2 + (ω2 − 1)2]ρ

Its derivative is

G′(ρ) = 27
16
ρ2 + 3(ω2 − 1)ρ + k2ω2 + (ω2 − 1)2. (i)

The equation G(ρ) = γ 2 will have three real roots if G′(ρ) = 0 has two roots for ρ ≥ 0. The
solutions of this equation are

ρ1, ρ2 = 8
9 (1− ω2)± 4

9
√[(1− ω2)2 − 3k2ω2].

The solutions are real and positive if

0 < ω < 1 and (1− ω2)2 > 3k2ω2.
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The two inequalities are satisfied by

0 < ω < 1
2 [
√
(3k2 + 4)− k√3].

The cusp is located at
ω = 1

2 [
√
(3k2 + 4)− k√3].

For this value of ω, ρ = 8
9 (1− ω2). Therefore

�2 = 6γ 2 = 6G(ρ) = 6ρ[k2ω2 + (ω2 − 1+ 3
4ρ)

2]

= 16
3
(1− ω2)

[
k2ω2 + 1

9
(1− ω2)2

]

= 64
√

3
9

k3ω3,

where ω = 1
2 [
√
(3k2 + 4)− k√3]. In terms of k,

�2 = 8
√

3
9
k3[√(3k2 + 4)−√3k]3.

• 7.24 (Combination tones) Consider the equation ẍ+αx+βx2=�1 cosω1t+�2 cosω2t ,
α > 0, |β| � 1, where the forcing term contains two distinct frequencies ω1 and ω2. To find
an approximation to the response, construct the iterative process leading to the sequence
of approximations x(0)(t), x(1)(t), . . . , and starting with

ẍ(0) + αx(0) = �1 cosω1t + �2 cosω2t ,

ẍ(1) + αx(1) = �1 cosω1t + �2 cosω2t − β(x(0))2,
show that a particular solution is given by approximately by

x(t)=− β

2α
(a2+ b2)+ a cosω1t + b cosω2t + βa2

2(4ω2
1 −α)

cos 2ω1t

+ βb2

2(4ω2
2 −α)

cos 2ω2t + βab

(ω1+ω2)
2−α cos(ω1+ω2)t

+ βab

(ω1 − ω2)
2 − α cos(ω1 − ω2)t ,

where a ≈ �1/(α − ω2
1), b ≈ �2/(α − ω2

2).
(The presence of ‘sum and difference tones’ with frequenciesω1±ω2 can be detected in sound
resonators having suitable nonlinear characteristics, or as an auditory illusion attributed to
the nonlinear detection mechanism in the ear (McLachlan 1956). The iterative method of
solution can be adapted to simpler forced oscillation problems involving a single input
frequency.)
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7.24. Consider the equation

ẍ + αx + βx2 = �1 cosω1t + �2 cosω2t , α > 0, |β| � 1.

which has two forcing frequencies. Let x(0) be the first approximation, x(1) an improved
approximation. Assume that the first approximation satisfies

ẍ(0) + αx(0) = �1 cosω1t + �2 cosω2t .

The forced solution is
x(0) = a cosω1t + b cosω2t ,

where

a = �1

α − ω2
1

, b = �2

α − ω2
2

.

Assume that x(0) is an approximation to x(1) and use it in the αx2 term. Hence x(1) satisfies

ẍ(1) + αx(1) = �1 cosω1t + �2 cosω2t − βx(0)2

= �1 cosω1t + �2 cosω2t − β(a cosω1t + b cosω2t)
2

= −1
2β(a

2 + b2)+ �1 cosω1t + �2 cosω2t − 1
2βa

2 cos 2ω1t

− 1
2βb

2 cos 2ω2t − βab cos(ω1 − ω2)t − βab cos(ω1 + ω2)t

This is a standard second-order linear differential equation with a constant and cosine forcing
terms. Therefore

x(1) = − β

2α
(a2 + b2)+ a cosω1t + b cosω2t + βa2

2(4ω2
1 − α)

cos 2ω1t

+ βb2

2(4ω2
2 − α)

cos 2ω2t + βab

(ω1 + ω2)
2 − α cos(ω1 + ω2)t

+ βab

(ω1 − ω2)
2 − α cos(ω1 − ω2)t ,

provided that α does not take any of the values 4ω2
1, 4ω2

2, (ω1 + ω2)
2, or (ω1 − ω2)

2.

• 7.25 Apply the method of Problem 7.24 to the Duffing equation

ẍ + αx + βx3 = �1 cosω1t + �2 cosω2t .
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7.25. Use the method of the previous problem for the Duffing equation

ẍ + αx + βx3 = �1 cosω1t + �2 cosω2t .

The first approximation x(0) satisfies

ẍ(0) + αx(0) = �1 cosω1t + �2t ,

which has the forced solution

x0 = a cosω1t + b cosω2t ,

where

a = �1

α − ω2
1

, b = �2

α − ω2
2

.

The equation for the next approximation becomes

ẍ(1) + αx(1) = �1 cosω1t + �2 cosω2t − β(x0)3

= �1 cosω1t + �2 cosω2t − β(a cosω1t + b cosω2t)
3

= (�1−3
4β

3−3
2βab

2) cosω1t+(�2−3
2βa

2b − 3
4βb

3) cosω2t

−1
4βa

3 cos 3ω1t − 1
4βb

3 cos 3ω2t − 3
4βab

2 cos(ω1 − 2ω2)t

−3
4βa

2b cos(2ω1 − ω2)t − 3
4βa

2b cos(2ω1 + ω2)t

−3
4βab

2 cos(ω1 + 2ω2)t .

The forced solution is

x(1) = A cosω1t + B cosω2t + C cos 3ω1t +D cos 3ω2t + E cos(ω1 − 2ω2)t

+ F cos(2ω1 − ω2)t +G cos(2ω1 + ω2)t +H cos(ω1 + 2ω2)t ,

where

A = �1 − (3/4)β3 − (3/2)βab2

α − ω2
1

, B = �2 − (3/2)βa2b − (3/4)βb3

α − ω2
,

C = βa3

4(9ω2
1 − α)

, D = βb3

4(9ω2
2 − α)

, E = 3βab2

(ω1 − 2ω2)
2 − α ,

F = 3βa2b

(2ω1 − ω2)
2 − α , G = 3βa2b

(2ω1 + ω2)
2 − α , H = 3βab2

(ω1 + 2ω2)
2 − α .
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There are obvious conditions on α, ω1 and ω2 to avoid zeros of the denominators: in these
cases the solutions will be covered by various special solutions.

• 7.26 Investigate the resonant solutions of Duffing’s equation in the form

ẍ + x + ε3x3 = cos t , |ε| � 1,

by the method of multiple scales (Section 6.4 in NODE) using a slow time η = εt and a
solution of the form

x(ε, t) = 1
ε
X(ε, t , η) = 1

ε

∞∑
n=0

εnXn(t , η).

show that X0 = a0(η) cos t + b0(η) sin t , where

8a′0 − 3b0(a
2
0 + b2

0) = 0, 8b′0 + 3a0(a
2
0 + b2

0) = 4.

(This example illustrates that even a small nonlinear term may inhibit the growth of resonant
solutions.)

7.26. The Duffing equation is

ẍ + x + ε3x3 = cos t , |ε| � 1.

Use the method of multiple scales and a solution of the form

x(ε, t) = 1
ε
X(ε, t , η) = 1

ε

∞∑
n=0

εnXn(t , η).

In terms of X, the differential equation becomes

∂2X

∂t2
+ 2ε

∂2X

∂η∂t
+ ε2 ∂

2X

∂η2 +X + εX3 = ε cos t .

Substitute the series into this equation and equate to zero the coefficients of ε so that X0 and
X1 satisfy

X0t t +X0 = 0,

X1t t +X1 = −2X0ηt −X3
0 + cos t .

Therefore
X0 = a0(η) cos t + b0(η) sin t .

The equation for X1 becomes

X1t t +X1 = cos t − 2[−a′0(η) sin t + b′0(η) cos t] − (a0(η) cos t + b0(η) sin t)3. (i)
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Using the identity

(a0 cos t + b0 sin t)3 = 3
4a(a

2 + b2) cos t + 3
4b(a

2 + b2) sin t + higher harmonics,

eqn (i) is

X1t t +X1 = [1− 2b′0 − 3
4a0(a

2
0 + b2

0)] cos t +
[
2a′0 − 3

4b0(a
2
0 + b2

0)
]

sin t

+higher harmonics.

Secular terms disappear if the coefficients of cos t and sin t are zero, namely

1− 2b′0 − 3
4a0(a

2
0 + b2

0) = 0, 2a′0 − 3
4b0(a

2
0 + b2

0) = 0.

• 7.27 Repeat the multiple scale procedure of the previous exercise for the equation

ẍ + x + ε3x2 = cos t , |ε| � 1,

which has an unsymmetrical, quadratic departure from linearity. Use a slow time η = ε2t

and an expansion

x(ε, t) = 1
ε2

∞∑
n=0

εnXn(t , η).

7.27. Repeat the method of the previous problem for the equation

ẍ + xε3x2 = cos t .

However, in this case the slow time η = ε2t . Let

x(ε, t) = 1
ε2

∞∑
n=0

εnXn(t , η).

In terms of X, the differential equation becomes

∂2X

∂t2
+ 2ε2 ∂

2X

∂η∂t
+ ε4 ∂

2X

∂η2 +X + εX2 = ε2 cos t .



372 Nonlinear ordinary differential equations: problems and solutions

As will become clear, we require the first three terms in the expansion. The equations for X0,
X1 and X2 are

X0t t +X0 = 0, (i)

X1t t +X1 = −X2
0, (ii)

X2t t +X2 = cos t − 2X0t t − 2X0X1. (iii)

From (i)
X0 = a0(η) cos t + b0(η) sin t .

Equation (ii) is therefore

X1t t +X1 = −(a0 cos t + b0 sin t)2

= −1
2 (a

2
0 + b2

0)− 1
2 (a

2
0 − b2

0) cos 2t − a0b0 sin 2t .

The general solution of this equation is

X1 = a1 cos t + b1 sin t − 1
2 (a

2
0 + b2

0)+ 1
3a0b0 sin 2t+1

6 (a
2
0 − b2

0) cos 2t ,

where a1 and b1 are also functions of η.
Equation (iii) now becomes

X2t t +X2 = cos t − 2(−a′0 sin t + b′0 cos t)− 2(a0 cos t + b0 sin t)

×[a1 cos t + b1 sin t − 1
2 (a

2
0 + b2

0)+ 1
3a0b0 sin 2t + 1

6 (a
2
0 − b2

0) cos 2t]
= −(a0a1 + b0b1)+ 1

6 (−12b′0 + 6+ 5a3
0 + 5a0b

2
0) cos t

+1
6 (12a′0 + 5a2

0b0 + 5b3
0) sin t + higher harmonics.

Finally secular terms do appear in X2 if

a′0 = −
5
12
b0(a

2
0 + b2

0), b′0 =
1
2
+ 5

12
a0(a

2
0 + b2

0).

• 7.28 Let ẍ − x + bx3 = c cos t . Show that this system has an exact subharmonic k cos 1
3 t

if b, c, k satisfy

k = 27
10
c, b = 4c

k3 .

7.28. We have to show that, for what conditions, does

ẍ − x + bx3 = c cos t
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have the exact subharmonic k cos 1
3 t . Substituting

ẍ − x + bx3 − c cos t

= −1
9k cos 1

3 t − k cos 1
3 t + bk3 cos3 1

3 t − c cos t

= −1
9k cos 1

3 t − k cos 1
3 t + 3

4bk
3 cos 1

3 t + 1
4k

3b cos t − c cos t

= 0

if
−1

9k − k + 3
4bk

3 = 0, and 1
4bk

3 − c = 0.

Therefore k = 27c/10 and b = 4c/k3.

• 7.29 Noting that y = 0 is a solution of the second equation in the forced system

ẋ = −x(1+ y)+ γ cos t , ẏ = −y(x + 1),

obtain the forced periodic solution of the system.

7.29. The second equation in

ẋ = −x(1+ y)+ γ cos t , ẏ = −y(x + 1),

obviously has the solution y = 0. For y = 0, the first equation becomes

ẋ = −x + γ cos t .

Let x = α cos t + β sin t . Then the first equation is satisfied if

−α sin t + β cos t = −α cos t − β sin t + γ cos t ,

that is, if
−α = −β, β = −α + γ .

Therefore α = β = 1
2γ , so that

x = 1
2γ (cos t + sin t).

• 7.30 Show that, if

ẋ = αy sin t − (x2 + y2 − 1)x, ẏ = −αx sin t − (x2 + y2 − 1)y,

where 0 < α < π , then 2ṙ = (r2 − 1)r. Find r as a function of t , and show that r → 1 as
t →∞. Discuss the periodic oscillations which occur on the circle r = 1.
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7.30. Consider the equations

ẋ = αy sin t − (x2 + y2 − 1)x,

ẏ = −αx sin t − (x2 + y2 − 1)y,

where 0 < α < π . Even though this is a forced system, it has an equilibrium point at the origin
in the phase plane. It follows that

xẋ + yẏ = 2rṙ = −(x2 + y2 − 1)x2 − (x2 + y2 − 1)y2

= −(r2 − 1)r2.

Separation of variables leads to

∫
2dr

r(r2 − 1)
= −

∫
dt = −t + C.

Routine integration leads to the general solution

r2 = 1
1− e−(t+C)

(r2 > 1), r2 = 1
1+ e−(t+C)

(r2 < 1).

As t →∞, r → 1 in both cases: the circle r = 1 is a closed path in the phase plane.
If r = 1, then

ẋ = αy sin t , ẏ = −αx sin t .

Let x = cos θ , y = sin θ . Then both equations become

θ̇ = α sin,

which has the general solution θ = α cos t + B. Therefore

x = cos(α cos t + B), y = sin(α cos t + B).

If x = 1 at t = 0, then 1 = cos(α + B). Hence B = −α. The solutions ar then

x = cos(α cos t − α), y = sin(α sin t − α).

Solutions for x and y are shown in Figure 7.5 for the case a = 1 and the initial condition
x(0) = 1.
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5 10 15 20
t

x, y

x

y

–1

–0.5

0.5

1

Figure 7.5 Problem 7.30: Solutions for x and y on the circle r = 1 with a = 1 and x(0) = 1 at t − 0.

• 7.31 Show that ẍ+kx+x2 = � cos t has an exact subharmonic of the form x = A+B cos 1
2 t

provided 16k2 > 1. Find A and B.

7.31. Substitute x = A+ B cos 1
2 t into the equation

ẍ + kx + x2 = � cos t .

Then

ẍ + kx + x3 − � cos t = −1
4B cos 1

2 t + k(A+ B cos 1
2 t)

+(A+ B cos 1
2 t)

2 − � cos t

= (−1
4B + Bk) cos t + kA+ A2 + 2AB cos 1

2 t

+1
2B

2(1+ cos t)− � cos t

= (−1
4B + Bk + 2AB) cos 1

2 t + kA+ A2 + 1
2B

2

+(1
2B

2 − �) cos t = 0

if
B(−1

4 + k + 2A) = 0, kA+ A2 + 1
2B

2 = 0, 1
2B

2 = �.

Therefore A = 1
8 − 1

2k. Eliminating B2 and A:

k(1
8 − 1

2k)+ (1
8 − 1

2k)
2 + � = 0.

Hence � = 1
64 (16k2 − 1), and B2 = 2� = 1

32 (16k2 − 1) provided 16k2 > 1. Subharmonics are
of the form

x = (1
8 − 1

2k)± 1
4
√
(8k2 − 1

2 ) cos 1
2 t .
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• 7.32 Computed solutions of the particular two-parameter Duffing equation

ẍ + kẋ + x3 = � cos t

have been investigated in considerable detail by Ueda (1980). Using x = a(t) cos t+b(t) sin t ,
and assuming that a(t) and b(t) are slowly varying amplitudes, obtain the equations for ȧ(t)
and ḃ(t) as in Section 7.2 (in NODE). Show that the response amplitude, r, and the forcing
amplitude, �, satisfy r2{k2 + (1 − 3

4r
2)2} = �2 for 2π -periodic solutions. By investigating

the zeros of d(�2)/d(r2), show that there are three response amplitudes if 0 < k < 1/
√

3.
Sketch this region in the (�, k) plane.

7.32. Apply the approximation x = a(t) cos t + b(t) sin t to the Duffing equation

ẍ + kẋ + x3 = � cos t ,

assuming that ä and b̈ and higher harmonics can be neglected. Using the result (see (7.14))

x3 = 3
4a(a

2 + b2) cos t + 3
4b(a

2 + b2) sin t + higher harmonics,

the amplitudes a and b satisfy, approximately,

(kȧ + 2ḃ − a + bk + 3
4ar

2) cos t + (−2ȧ + kḃ − ak − b + 3
4br

2) sin t = � cos t .

where r2 = a2 + b2. The coefficients of cos t and sin t vanish if

kȧ + 2ḃ − a + bk + 3
4ar

2 = �, −2ȧ + kḃ − ak − b + 3
4br

2 = 0.

Equilibrium in the van der Pol plane occurs where

−a + bk + 3
4ar

2 = �, −ak − b + 3
4br

2 = 0.

Square and add these equations to obtain the amplitude equation

r2[k2 + (1− 3
4r

2)2] = �2. (i)

This equation expresses the relation between response and forcing frequencies and the damp-
ing coefficient. For some values of k and �, the response amplitude can take three values. To
find where these occur, find where d(�)2/d(r2) = 0. Differentiating with respect to r2,

d(�2)

d(r2)
= k2 +

(
1− 3

4
r2

)2

− 3
2
r2

(
1− 3

4
r2

)
,
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Figure 7.6 Problem 7.32.

which is zero where

r4 − 16
9
r2 + 16

27
(k2 + 1) = 0.

The solutions are given by

r2 = 8
9 ± 4

9
√
(1− 3k2), (ii)

provided k2 ≤ 1
3 . Assuming that r, � and k are all positive, the system has three response

amplitudes if 0 < k < 1/
√

3 and one if k > 1/
√

3. The relations between � and k can be found
by eliminating r between eqns (i) and (ii). Computed curves are shown in Figure 7.6. The cusp
is located at k = 1/

√
3, where r = 2

3

√
2 and � = 2

√
2

9
√
(1+ 9k2). The shaded region indicates

the three amplitude responses.

• 7.33 Show that there exists a Hamiltonian

H(x, y, t) = 1
2 (x

2 + y2)− 1
4βx

4 − �x cosωt

for the undamped Duffing equation

ẍ + x + βx3 = � cosωt , ẋ = y (see eqn (7.4))

Show also that the autonomous system for the slowly varying amplitudes a and b in the
van der Pol plane (eqns (7.16) and (7.17)) is also Hamiltonian (see Section 2.8 in NODE).
What are the implications for the types of equilibrium points in the van der Pol plane?

7.33. The Duffing equation can be expressed in the form

ẋ = X(x, y, t) = y, ẏ = Y (x, y, t) = −x − βx3 + � cosωt ,
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As in Section 2.8 (with the extension to time-dependent functions) we can observe that

∂X

∂x
+ ∂Y

∂y
= 0,

which implies that the system is Hamiltonian. Since

X(x, y, t) = ∂H

∂y
= y,

it follows that

H(x, y, t) = 1
2y

2 + F(x, t).

Hence

∂F

∂x
= x + βx3 − � cosωt ,

so that

F(x, t) = 1
2x

2 + 1
4βx

3 − �x cosωt .

Finally the Hamiltonian is

H(x, y, t) = 1
2 (x

2 + y2)+ 1
4βx

4 − � cosωt .

From (7.16) and (7.17) the equations for a and b in the van der Pol plane are

ȧ = − b

2ω
{(ω2 − 1)− 3

4
β(a2 + b2)} ≡ A(a, b),

ḃ = a

2ω
{(ω2 − 1)− 3

4
(a2 + b2)} + �

2ω
≡ B(a, b).

Then

∂A

∂a
+ ∂B

∂b
= 3βba

4ω
− 3βab

4ω
= 0.

Therefore the system in the van der Pol plane is also Hamiltonian (see Section 2.8). The impli-
cation of this result is that the equilibrium points in the van der Pol plane must be either centres
or saddle points, or higher-order versions of centres or saddle points
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• 7.34 Show that the exact solution of the equation ẍ + x = � cosωt , (ω �= 1) is

x(t) = A cos t + B sin t + �

1− ω2 cosωt ,

where A and B are arbitrary constants.
Introduce the van der Pol variables a(t) and b(t) through

x(t) = a(t) cosωt + b(t) sinωt ,

and show that x(t) satisfies the differential equation if a(t) and b(t) satisfy

ä + 2ωḃ + (1− ω2)a = �, b̈ − 2ωȧ + (1− ω2)b = 0.

Solve these equations for a and b by combining them into an equation in z = a + ib. Solve
this equation, and confirm that, although the equations for a and b contain four constants,
these constants combine in such a way that the solution for x still contains just two arbitrary
constants.

7.34. The equation

ẍ + x = � cosωt , (ω �= 1), (i)

has the characteristic equation m2 + 1 = 0, and the complementary function

xf = A cos t + B sin t .

A particular solution is

xp = �

1− ω2 cosωt .

Hence the general solution is

x = xf + xp = A cos t + B sin t + �

1− ω2 cosωt .

Let x(t) = a(t) cosωt + b(t) sinωt . Then

ẋ = (ȧ + ωb) cosωt + (ḃ − ωa) sinωt , (ii)

ẍ = (ä + 2ωḃ − ω2a) cosωt + (b̈ − 2ωȧ − ω2b) sinωt . (iii)

Substitute (ii) and (iii) into (i) and equate to zero the coefficients of cosωt and sinωt with the
results

ä + 2ωḃ − ω2a + a = �,

b̈ − 2ωȧ − ω2b + b = 0.
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Let z = a + ib so that z satisfies

z̈− 2ωiż+ (1− ω2)z = �.

The characteristic equation

λ2 − 2ωiλ+ (1− ω2) = 0,

has the solutions λ = (ω ± 1)i. A particular solution is

zp = �

1− ω2 .

Therefore the general solution is

z = a + ib = A1e(ω+1)it + B1e(ω−1)it . (iv)

Let A1 = α1 + iα2 and B1 = β1 + iβ2. From (iv)

a = α1 cos(ω + 1)t − α2 sin(ω + 1)t + β1 cos(ω − 1)t − β2 sin(ω − 1)t + �

1− ω2 ,

b = α2 cos(ω + 1)t + α1 sin(ω + 1)t + β2 cos(ω − 1)t + β1 sin(ω − 1)t .

Finally

x = a cosωt + b sinωt

= α1[cos(ω + 1)t cosωt + sin(ω + 1)t sinωt]
+ α2[− sin(ω + 1)t cosωt + cos(ω + 1)t sinωt]
+ β1[cos(ω − 1)t cosωt + sin(ω − 1)t sinωt]
+ β2[− sin(ω − 1)t cosωt + cos(ω − 1)t sinωt] + �

1− ω2 cosωt

= α1 cos t − α2 sin t + β1 cos t − β2 sin t + �

1− ω2 cosωt

= (α1 + β1) cos t − (α2 + β2) sin t + �

1− ω2 cosωt

In the final line α1+β1 are α2+β2 are the arbitrary constants A and B in the original solution.
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• 7.35 Show that the system

ẍ + (k − x2 − ẋ2)ẋ + βx = � cos t , (k,� > 0,β �= 1),

has exact harmonic solutions of the form x(t) = a cos t + b sin t , if the amplitude r =√
(a2 + b2) satisfies

r2[(β − 1)2 + (k − r2)2] = �2.

By investigating the solutions of d(�2)/d(r2) = 0, show that there are three harmonic
solutions for an interval of values of � if k2 > 3(β − 1)2. Find this interval if k = β = 2.
Draw the amplitude diagram r against � in this case.

7.35. Let x = a cos t + b sin t . Then

ẍ + (k − x2 − ẋ2)ẋ + βx − � cos t

= −a cos t − b sin t + [k − (a cos t + b sin t)2 − (−a sin t + b cos t)2]
× (−a sin t + b cos t)+ β(a cos t + b sin t)− � cos t

= [−a + b(k − r2)+ βa − �] cos t + [−b − a(k − r2)+ βb] sin t = 0

if

b(k − r2)+ (β − 1)a = �,

−a(k − r2)+ (β − 1)b = 0.

Squaring and adding it follows that

r2[(β − 1)2 + (k − r2)2] = �2,

as required.
The derivative

d(�2)

d(r2)
= (β − 1)2 + (k − r2)2 − 2r2(k − r2)

is zero where

3r4 − 4kr2 + k2 + (β − 1)2 = 0.

This quadratic equation in r2 has the solutions

r2
1 , r2

2 = 1
3 [2k ±

√{k2 − 3(β − 1)2}].

which are real and positive if k2 > 3(β − 1)2.
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1 2

r

0.5

1

1.5

Γ

Figure 7.7 Problem 7.35: Showing the graph of �2 = r2[1+ (2− r2)2].

If k = β = 2, then
�2 = r2[1+ (2− r2)2].

Figure 7.7 shows the relation between � and r.

• 7.36 Show that the equation ẍ+ kẋ−x+ω2x2+ ẋ2 = � cosωt has exact solutions of the
form x = c+ a cosωt + b sinωt , where the translation c and the amplitude r = √(a2 + b2)

satisfy

�2 = r2[{1+ ω2(1− 2c)}2 + k2ω2] and ω2r2 = c(1− cω2).

Sketch a graph showing response amplitude r against the forcing amplitude �.

7.36. Let x = c + a cosωt + b sinωt . Then

ẍ + kẋ − x + ω2x2 + ẋ2 − � cosωt

= −aω2 cosωt − bω2 sinωt − kaω sinωt + kbω cosωt

− c − a cosωt − b sinωt + ω2(c + a cosωt + b sinωt)2

+ (−ωa sinωt + b cosωt)2 − � cosωt

= (−aω2 + bkω − a + 2acω2 − �) cosωt + (−bω2 − akω − b + 2bcω2)

× sinωt + ω2(a2 + b2 + c2)− c = 0

if
−a[1+ (1− 2c)ω2] + ωkb = �, (i)

−ωka − b[1+ (1− 2c)ω2] = 0, (ii)

ω2(r2 + c2)− c = 0, (iii)

where r = √(a2 + b2). Squaring and adding (i) and (ii), we have

�2 = r2[{1+ ω2(1− 2c)}2 + k2ω2]. (iv)
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Figure 7.8 Problem 7.36: Amplitude(r)–amplitude(�) relation defined by (iv) and (v) with ω = 1 and k = 0.2.

From (iii),

r = 1
ω

√[c(1− cω2)]. (v)

which is real for 0 ≤ c ≤ 1/ω2. Using (iv) and (v) both � and r can be expressed in terms of c,
which is used to plot r against � with c as a parameter in Figure 7.8 with ω = 1 and k = 0.2.
The figure shows that for small forcing amplitudes, the system has two (exact) forced periodic
solutions.
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8 Stability

Poincaré or orbital stability is defined by Definition 8.1. A general descriptive or graphical
approach is adopted in Problems 1–4, which are concerned with Poincaré stability.

• 8.1 Use the phase diagram for the pendulum equation ẍ + sin x=0, to say which paths
are not Poincaré stable. (See Figure 1.2 in NODE.)

8.1. Figure 8.1 shows the phase diagram for the pendulum equation

ẍ + sin x = 0, ẋ = y.

Consider the stability of a typical closed path P1, within any strip bounded by two nearby
closed paths (shown shaded). All half-paths starting in the strip remain in it for all time, so P1
is Pincaré stable. The same applies to any typical path P2 in the region describing (periodic)
whirling motion beyond the separatrices. The separatrices are not Poincaré stable, since there
are neighbouring half-paths that deviate unboundedly from any separatrix.

x

y

1

2

Figure 8.1 Problem 1.1(iv): Phase diagram for the pendulum equation ẍ + sin x = 0.
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• 8.2 Show that all the paths of ẋ = x, ẏ = y are Poincaré unstable.

8.2. The phase paths of ẋ = x, ẏ = y are given by y = Cx, a family of straight lines through
the origin as shown in Figure 8.2. All paths diverge from all neighbouring paths starting from
any initial point. Therefore no paths are Poincaré or orbitally stable.

x

y

Figure 8.2 Problem 8.2: Phase diagram of ẋ = x, ẏ = y.

• 8.3 Find the limit cycles of the system

ẋ = −y + x sin r, ẏ = x + y sin r, r = √(x2 + y2).

Which cycles are Poincaré stable?

8.3. Express the equations

ẋ = −y + x sin r, ẏ = x + y sin r, r = √(x2 + y2),

in polar coordinates, so that

ṙ = r sin r, θ̇ = 1.

Limit cycles of the system are given by r = nπ , (n = 1, 2, . . . ) as shown in Figure 8.3. For
(2n − 1)π < r < 2nπ , ṙ < 0, which means that r is decreasing: for 2nπ < r < (2n + 1)π ,
ṙ > 0 and r is increasing. Since θ̇ = 1 solutions on all paths progress progress at a constant rate
in a counterclockwise sense about the origin. Hence all the limit cycles with radius (2n + 1)π
are Poincaré stable since, for example, with n = 1, any path which starts in the circle C will
subsequently remain in the shaded strip.
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Figure 8.3 Problem 8.3: Phase diagram for ẋ = −y + x sin r, ẏ = x + y sin r, r = √(x2 + y2).

• 8.4 Find the phase paths for ẋ = x, ẏ = y ln y, in the half-plane y > 0. Which paths are
Poincaré stable?

8.4. The system
ẋ = x, ẏ = y ln y, (y > 0)

has equilibrium points at (0, 0) and (1, 1). The separable differential equation for the phase
paths is

dy
dx
= y ln y

x
,

which has the general solution

ln |ln y| = ln |x| + C, or y = eAx .

The phase diagram is shown in Figure 8.4. For A < 0, the phase paths all approach the x axis
as x → ∞, that is they all converge to one another. Hence they are all Poincaré stable. For
A ≥ 0, all the paths diverge: hence these paths are all unstable.

–4 –2 2 4
x

1

y

A > 0

A = 0

A < 0

–0.5

0.5

1.5

2

Figure 8.4 Problem 8.4: Phase diagram for ẋ = x, ẏ = y ln y.
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• 8.5 Show that every non-zero solution of ẋ = x is unbounded and Liapunov unstable,
but that every solution of ẋ = 1 is unbounded and stable.

8.5. Consider the one-dimensional system ẋ = x. Its general solution is x = Aet . If A �= 0, the
solution is clearly unbounded. Let x(t) = A1et and x∗(t) = A2et be two solutions with A1 and
A2 both non-zero and A1 �= A2. Then (adapting NODE, (8.3) to the one-dimensional case)

‖ x(t)− x∗(t) ‖ = |x(t)− x∗(t)| = |A1 − A2|et →∞,

as t →∞. Therefore all non-zero solutions are unstable in the Liapunov sense.
The system ẋ = 1 has the general solution x(t) = t + x(0): all solutions are unbounded.

Consider the stability of x∗(t) = t + x∗(0). Then

‖ x∗(t)− x(t) ‖ = |x∗(t)− x(t)| = |x∗(0)− x(0)|.

Given any ε > 0,
|x∗(0)− x(0)| < ε⇒ |x∗(t)− x(t)| < ε for t > 0.

By Definition 8.2 with δ = ε, all solutions are Liapunov stable.

• 8.6 Show that the solutions of the system ẋ = 1, ẏ = 0, are Poincaré and Liapunov stable,
but that the system ẋ = y, ẏ = 0 is Poincaré but not Liapunov stable.

8.6. The system ẋ = 1, ẏ = 0 has the general solution

x(t) = t + x(0), y(t) = y(0).

The phase diagram is shown in Figure 8.5. Consider the shaded strip which contains one of the
solutions. Any neighbouring solution which starts within the shaded region will subsequently

x

y

Figure 8.5 Problem 8.6: Phase diagram of ẋ = 1, ẏ = 0.
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x

y

Figure 8.6 Problem 8.6: Phase diagram of ẋ = y, ẏ = 0.

stay within the shaded region. Therefore all solutions are Poincaré stable. Consider the sta-
bility of x∗(t) = [x∗(t), y∗(t)]. In NODE, Definition 8.2, let t0 = 0 (note that the system is
autonomous). Then

‖ x(0)− x∗(0) ‖=‖ x(t)− x∗(t) ‖= √[(x(0)− x∗(0))2 + (y(0)− y(0))2].

Therefore, given any ε > 0,

‖ x∗(0)− x(0) ‖< ε⇒‖ x∗(t)− x(t) ‖< ε for t > 0,

which implies, with δ = ε, that all solutions are Liapunov stable.
The system ẋ = y, ẏ = 0 has the general solution

x(t) = y(0)t + x(0), y(t) = y(0).

Also all points on the x axis are equilibrium points. The phase diagram is shown in Figure 8.6.
The phase paths are the same as those of the first part of the problem but the sense and phase
speed are different. For the same reasons as for the previous system all solutions except the
equilibrium states along y = 0 are Poincaré stable. For Liapunov stability consider

‖ x∗(t)− x(t) ‖= √[(y∗(0)t − y(0)t + x∗(0)− x(0))2 + (y∗(0)− y(0))2],

which is unbounded in t . Hence all solutions are Liapunov unstable.

• 8.7 Solve the equations ẋ = −y(x2+y2), ẏ = x(x2+y2), and show that the zero solution
is Liapunov stable and that all other solutions are unstable.

Replace the coordinates x,y by r,φ where x = r cos(r2t + φ), y = r sin(r2t + φ) and
deduce that ṙ = 0, φ̇ = 0. Show that in this coordinate system the solutions are stable.
(Change of coordinates can affect the stability of a system. (See Cesari (1971, p. 12).)

8.7. Consider the system

ẋ = −y(x2 + y2), ẏ = x(x2 + y2).
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The phase paths are given by
dy
dx
= −x

y
,

which has the general solution x2 + y2 = c2: the phase paths are circles centred at the origin.
Note that the origin is an equilibrium point. Substituting back into the system, we have

ẋ = −c2y, ẏ = c2x.

Elimination of y leads to ẍ + c4x = 0, which has the general solution

x = α cos(c2t + β), and y = α sin(c2t + β),

where α, c and β are constants. However the three constants are not independent since

x2 + y2 = α2 = c2.

Therefore the general solution is given by

x(t) = c cos(c2t + β), y(t) = c sin(c2t + β). (i)

Observe that
||x(t)|| = √[x2(t)+ y2(t)] = c. (ii)

The system is autonomous, so we need only consider the solutions for t ≥ t0 when t0 = 0 (see
Definition 8.2(ii)).

Consider first the stability of the constant solution

x∗ = 0 = (0, 0).

Choose any ε > 0. Then, for all t ,

||x∗(t)− x(t)|| = ||0− x(t)|| = c, (iii)

and in particular
||x∗(0)− x(0)|| = c. (iv)

Now choose 0 < c < ε, and in NODE, Definition 8.2, eqn (8.5), put

δ = ε (v)

for this case, given any ε > 0, we have:

if ||x∗ − x(0)|| < δ, then ||x∗(t)− x(t)|| < ε for all t .

This proves the Liapunov stability of the constant solution (0, 0).
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For other solutions, consider a solution which starts at (x0, y0). Then x0 = c cos ε and
y0 = c sin ε. Hence c2 = x2

0 + y2
0 . The time taken for the solution to make one circuit of the

origin is 2π/(x2
0 +y2

0), which depends on the initial value. Hence there will always be solutions
which start close together but do not remain so. Hence all non-zero solutions are not Liapunov
stable.

Consider the change of variable (x, y)→ (r,φ) defined by

x = r cos(r2t + φ), y = r sin(r2t + φ).

Obviously r2 = x2 + y2, so that

rṙ = xẋ + yẏ = 0,

and, since r must be a constant in the equation for ẋ,

−r sin(r2t + φ)(r2 + φ̇) = −r sin(r2t + φ)r2, or φ̇ = 0.

The general solution is r = r0, φ = φ0. All solutions are Liapunov stable since

‖ x∗(t)− x(t) ‖ = a constant.

• 8.8 Prove that Liapunov stability of a solution implies Poincaré stability for plane
autonomous systems, but not conversely: see Problem 8.6.

8.8. Briefly, NODE, Definition 8.2 for Liapunov stability for plane autonomous systems states
that given any ε > 0, there exists a δ(ε) > 0 such that

‖ x(0)− x∗(0) ‖< δ⇒ ‖ x(t)− x∗(t) ‖< ε, (i)

for t ≥ 0, where x(t) represents any neighbouring solution. In the notation of NODE, Defini-
tion 8.1 (for orbital stability), let a = x(0), a∗ = x∗ and H∗ be the half-path in the phase plane
defined by x∗ for t ≥ 0. Let

q = max
x∈H

dist(x, H∗).

Then in (i),

‖ x(t)− x∗(t) ‖≤ q < ε,
which establishes that Liapunov stability implies orbital stability.

The counter-example in Problem 8.6 shows that the converse cannot be true: we can have
Poincaré stability without Liapunov stability.
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• 8.9 Determine the stability of the solutions of

(i) ẋ1 = x2 sin t , ẋ2 = 0;

(ii) ẋ1 = 0, ẋ2 = x1 + x2.

8.9. (i) The equations ẋ1 = x2 sin t , ẋ2 = 0 can be expressed as

[
ẋ1
ẋ2

]
=

[
0 sin t
0 0

] [
x1
x2

]
.

The general solution is given by

x1 = −A cos t + B, x2 = A,

and its norm is clearly bounded. By NODE, Theorems 8.9 and 8.1 the solution is Liapunov
stable.
(ii) The equations of the autonomous system ẋ1 = 0, ẋ2 = x1 + x2 has the general solution

x1 = A, x2 = −A+ Bet .

By Theorem 8.1, we need only consider the zero solution 0 = (0, 0). Consider the solution

x∗(t) = [x∗1(0),−x∗1(0)+ (x∗1(0)+ x∗2(0))et ],

which starts close to the origin. Then

‖ 0− x∗(t) ‖ =√[x∗1(0)2 + {−x∗1(0)+ (x∗1(0)+ x∗2(0))et }2],

which is clearly unbounded as t →∞. Hence the system is not Liapunov stable.
The phase paths are straight lines parallel to the x2 axis taken in the same sense. Hence the

paths are Poincaré stable.

• 8.10 Determine the stability of the solutions of

(i)
[
ẋ1
ẋ2

]
=

[ −2 1
1 −2

] [
x1
x2

]
+

[
1
−2

]
et

(ii) ẍ + e−t ẋ + x = et

8.10. (i) By Theorem 8.1, instead of

[
ẋ1
ẋ2

]
=

[ −2 1
1 −2

] [
x1
x2

]
+

[
1
−2

]
et ,
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we need only consider

[
ξ̇1
ξ̇2

]
=

[ −2 1
1 −2

] [
ξ1
ξ2

]
.

The eigenvalues of the matrix are λ1 = −1 and λ2 = −3. Therefore all solutions are
asymptotically stable, which implies that the original system is also asymptotically stable.
(ii) Express the equation

ẍ + e−t ẋ + x = et ,

in the matrix form [
ẋ

ẏ

]
=

[
0 1
−1 −e−t

] [
x

y

]
+

[
0

e−t
]

.

By NODE, Theorem 8.1, we need only consider the zero solution of

[
ξ̇

η̇

]
=

[
0 1
−1 −e−t

] [
ξ

η

]
.

In the notation of NODE, Theorem 8.15, let

A =
[

0 1
−1 0

]
, C(t) =

[
0 0
0 −e−t

]
.

The norm of the matrix C(t) is (see (8.21))

‖ C(t) ‖ =√{e−2t } = e−t .

Then, ∫ t

t0

‖ C(s) ‖ ds =
∫ t

t0

e−sds = −e−t + e−t0 ,

which is bounded. Therefore by the Corollary to Theorem 8.15 all solutions are stable.

• 8.11 Show that every solution of the system ẋ = −t2x, ẏ = −ty is asymptotically stable.

8.11. By Theorem 8.1, the Liapunov stability of any solution of the system

ẋ = −t2x, ẏ = −ty
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is the same as that of the zero solution. The general solution of the system is

x = Ae(1/3)t
3
, y = Be− 1

2 t
2.

Then x → 0 and y → 0 as t → ∞. Therefore the origin is asymptotically stable as are all
solutions.

• 8.12 The motion of a heavy particle on a smooth surface of revolution with vertical axis
z and shape z = f (r) in cylindrical polar coordinates is

1
r4 {1+ f ′2(r)}

d2r

dθ2 +
1
r5 [rf ′(r)f ′′(r)− 2{1+ f ′2(r)}]

(
dr
dθ

)2

− 1
r3 = −

g

h2 f
′(r),

where h is the angular momentum (h = r2θ̇ ). Show that plane, horizontal motion r = a,
z = f (a), is stable for perturbations leaving h unaltered provided 3+ [af ′′(a)/f ′(a)] > 0.

8.12. The equation can be rewritten as

r{1+ f ′2(r)}d
2r

dθ2 + [rf ′(r)f ′′(r)− 2{1+ f ′2(r)}]
(

dr
dθ

)2

− r2 = − g

h2 r
5f ′(r).

In equilibrium r = a, which means that

−a2 = − g

h2 f
′(a)a5 or h2 = ga3f ′(a),

which remains constant. Substitute for h2, and consider the perturbation r = a + ρ in the
differential equation. The linearization leads to

(a + ρ)[1+ f ′2(a)]ρ′′ − a2 − 2aρ ≈ − a2

f ′(a)
[f ′(a)+ f ′′(a)ρ],

or

a[1+ f ′2(a)]ρ′′ + ρ
[

3a + a2f ′′(a)
f ′(a)

]
= 0.

The solution for ρ is bounded and therefore stable if

3+ af ′′(a)
f ′(a)

> 0.
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• 8.13 Determine the linear dependence or independence of the following:

(i) (1, 1,−1), (2, 1, 1), (0, 1,−3);

(ii) (t , 2t), (3t , 4t), (5t , 6t);

(iii) (et , e−t ), (e−t , et ). Could these both be solutions of a 2×2 homogeneous linear systems?

8.13. (i) The vectors (1, 1,−1), (2, 1, 1) and (0, 1,−3) are linearly independent since

∣∣∣∣∣∣
1 1 −1
2 1 1
0 1 −3

∣∣∣∣∣∣ = 0.

(ii) The equations

α1

[
t

2t

]
+ α2

[
3t
4t

]
+ α3

[
5t
6t

]
= 0,

have the non-zero solution α1 = 2, α2 = 1 and α3 = −1 for all t . Then by Definition 8.5, the
vectors are linearly dependent.
(iii) The only solution of the equations

α1

[
et

e−t
]
+ α2

[
e−t
et

]
= 0

is α1 = α2 = 0. Hence the vectors are linearly independent.

• 8.14 Construct a fundamental matrix � for the system ẋ = y, ẏ = −x − 2y. Deduce a
fundamental matrix � satisfying �(0) = I.

8.14. The system ẋ = y, ẏ = −x − 2y is equivalent to

ẍ + 2ẋ + x = 0.

the solution of the characteristic equation is the repeated root x = −1. Therefore, a general
solution is

[
x

y

]
=

[
A

−A+ B
]

e−t + B
[

1
−1

]
te−t .
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Hence a fundamental matrix is (e.g. put B = 0 and put A = 0)

�(t) =
[

e−t te−t
−e−t (1− t)e−t

]
.

Use NODE, Theorem 8.6, the required fundamental matrix is

�(t) = �(t)�−1(0)

=
[

e−t te−t
−e−t (1− t)e−t

] [
1 0
−1 1

]−1

=
[

e−t te−t
−e−t (1− t)e−t

] [
1 0
1 1

]

=
[
(1+ t)e−t te−t
−te−t (1− t)e−t

]

• 8.15 Construct a fundamental matrix for the system ẋ1 = −x1, ẋ2 = x1 + x2 + x3,
ẋ3 = −x2.

8.15. In matrix form the system can be expressed as ẋ1 = −x1, ẋ2 = x1+ x2+ x3, ẋ3 = −x2 as

ẋ = Ax, A =

 −1 0 0

1 1 1
0 −1 0


 .

The eigenvalues of A are given by

∣∣∣∣∣∣
−1− λ 0 0

1 1− λ 1
0 −1 −λ

∣∣∣∣∣∣ = −(λ+ 1)(λ2 − λ+ 1) = 0.

Therefore the eigenvalues are given by λ=−1 and λ= 1
2 ±

√
3

2 i. Corresponding eigenvectors
are given by:

(i) λ = −1. Let u = (u1 u2 u3)
T . Then

[A − λI] =

 0 0 0

1 2 1
0 −1 1




 u1
u2
u3


 = 0.

Choose the solution u1 = −3, u2 = 1, u3 = 1.
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(ii) λ = 1
2 +

√
3

2 i. Let v = (v1 v2 v3)
T . Then

[A − λI] =



3
2 −

√
3

2 i 0 0

1 1
2 −

√
3

2 i 1

0 −1 −1
2 −

√
3

2 i




 v1
v2
v3


 = 0.

Choose the solution v1 = 0, v2 = 1
2 +

√
3

2 i, v3 = −1.

(iii) λ = 1
2 −

√
3

2 i. Let w = (w1 w2 w3). We can choose an eigenvector which is the conjugate

of v in (ii), namely w1 = 0, w2 = 1
2 −

√
3

2 i, w3 = −1.
Finally a fundamental matrix is (see Definition 8.6)

�(t) =




e−t 0 0

e−t
(

1
2 +

√
3

2 i
)

e
(

1
2+

√
3

2 i
)
t

(
1
2 −

√
3

2 i
)

e
(

1
2−

√
3

2 i
)
t

−3e−t −e
(

1
2+

√
3

2 i
)
t −e

(
1
2−

√
3

2 i
)
t


 .

• 8.16 Construct a fundamental matrix for the system ẋ1 = x2, ẋ2 = x1, and deduce the
solution satisfying x1 = 1, ẋ2 = 0, at t = 0.

8.16. The system ẋ1 = x2, ẋ2 = x1 can be expressed in the form

ẋ = Ax, where A =
[

0 1
1 0

]
.

The eigenvalues of A are given by λ = ±1. Corresponding eigenvectors are r = (1, 1)T and
s = (1, −1)T . Hence a fundamental matrix is

�(t) =
[

et e−t
et −e−t

]
.

By NODE, Theorem 8.6, the required solution is

x(t) = �(t)�−1(0)x0,

where x0 = (1, 0)T . Therefore

x(t) =
[

et e−t
et −e−t

] [
1 1
1 −1

]−1 [ 1
0

]
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Therefore

x(t) =
[

et e−t
et −e−t

]
 1

2
1
2

1
2 −1

2



−1 [

1
0

]
=

[
cosh t
sinh t

]
.

• 8.17 Construct a fundamental matrix for the system ẋ1 = x2, ẋ2 = x3, ẋ3 = −2x1 +
x2 + 2x3, and deduce the solution of ẋ1 = x2 + et , ẋ2 = x3, ẋ3 = −2x1 + x2 + 2x3, with
x(0) = (1, 0, 0)T .

8.17. The matrix of coefficients for the system ẋ1 = x2, ẋ2 = x3, ẋ3 = −2x1 + x2 + 2x3 is
given by

A =

 0 1 0

0 0 1
−2 1 2


 .

The eigenvalues of A are given by

|A − λI| =
∣∣∣∣∣∣
−λ 1 0
0 −λ 1
−2 1 2− λ

∣∣∣∣∣∣ = −(λ− 1)(λ+ 1)(λ− 2) = 0.

Corresponding eigenvectors are:

• for λ1 = 1, u = (1, 1, 1)T ;
• for λ2 = −1, v = (1,−1, 1)T ;
• for λ3 = 2, w = (1, 2, 4)T .

A fundamental matrix for the system is therefore

�(t) =

 et e−t e2t

et −e−t 2e2t

et e−t 4e2t


 .

Use NODE, Theorem 8.13 to obtain the solution of the inhomogeneous equation

ẋ(t) = Ax(t)+ f(t),

where f(t) = (et , 0, 0)T . We require

�(0) =

 1 1 1

1 −1 2
1 1 4


 , �−1(0) = 1

6


 6 3 −3

2 −3 1
−2 0 2


 .
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Then

x(t) = �(t)�−1(0)(1, 0, 0)T +
∫ t

0
�(t − s)�−1(0)f(s)ds

=

 et e−t e2t

et −e−t 2e2t

et e−t 4e2t






1

1
3

−1
3




+
∫ t

0


 et−s e−t+s e2t−2s

et−s −e−t+s 2e2t−2s

et−s e−t+s 4e2t−2s






es

1
3es

−1
3es


ds

=

 et e−t e2t

et −e−t 2e2t

et e−t 4e2t






1

1
3

−1
3


+

∫ t

0




et + 1
3e−t+2s − 1

3e2t−s

et − 1
3e−t+2s − 2

3e2t−s

et + 1
3e−t+2s − 4

3e2t+s


ds

=




et + 1
3e−t − 1

3e2t + tet + 1
6 (e

t − e−t )+ 1
3 (e

t − e2t )

et − 1
3e−t − 2

3e2t + tet − 1
6 (e

t − e−t )+ 2
3 (e

t − e2t )

et + 1
3e−t − 4

3e2t + tet + 1
6 (e

t − e−t )− 4
3 (e

t − e2t )




=
[

3
2et + 1

6e−t − 2
3e2t + tet , 3

2et − 1
6e−t − 4

3e2t + tet ,−1
6et + 1

6e−t + tet
]T

• 8.18 Show that the differential equation x(n) + a1x
(n−1) + · · · + anx = 0 is equivalent to

the system

ẋ1 = x2, ẋ2 = x3, · · ·, ẋn−1 = xn, ẋn = −anx1 − · · · − a1xn,

with x = x1. Show that the equation for the eigenvalues is

λn + a1λ
n−1 + · · · + an = 0.

8.18. The matrix of coefficients for the system

ẋ1, ẋ2 = x3, · · · , ẋn−1 = xn, ẋn = −an − · · · − a1xn,
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is

A =




0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
· · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · 1
−an −an−1 −an−2 −an−3 · · · −a1




.

The eigenvalues are given by

∣∣∣∣∣∣∣∣∣∣∣∣

−λ 1 0 0 · · · 0
0 −λ 1 0 · · · 0
0 0 −λ 1 · · · 0
· · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · 1
−an −an−1 −an−2 −an−3 · · · −a1 − λ

∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

Let Dn(λ) denote the determinant in the previous equation. Then expansion by row 1 leads to

Dn(λ) = −λDn−1(λ)+ (−1)nan. (i)

For decreasing n, we have

Dn−1(λ) = −λDn−2(λ)+ (−1)n−1an−1, (ii)

· · ·

D2(λ) = −λD1(λ)+ a2, (iii)

where D1(λ) = −a1 − λ. Now eliminate Dn−1(λ),Dn−2(λ), . . . from eqns (i) through (iii) by
multiplying successive equations by −λ, +λ and so on, and adding them. The result is

Dn(λ) = (−1)n(an + an−1λ+ · · · + a1λ
n−1 + λn).

The required result follows by equating Dn(λ) to zero.

• 8.19 A bird population, p(t), is governed by the differential equation ṗ = µ(t)p − kp,
where k is the death rate and µ(t) represents a variable periodic birth rate with period 1
year. Derive a condition which ensures that the mean annual population remains constant.
Assuming that this condition is fulfilled, does it seem likely that, in practice, the average
population will remain constant? (This is asking a question about a particular kind of
stability.)
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8.19. The general solution of ṗ = µ(t)p − kp is

p = p(0) exp
[∫ t

0
µ(s)dt − ks

]
.

If T represents the duration of one year, then the population is on average constant if

∫ T

0
µ(s)ds = kT ,

where k is the constant population average.
Consider a particular solution

p∗(t) = p∗(0) exp
[∫ t

0
µ(s)dt − ks

]
.

Let K = maxt∈T [
∫ T

0 µ(s)ds − kT ]. Choose any ε > 0, and let δ = εe−K . Choose initial
conditions such that |p(0)− p∗(0)| < δ. Then

‖ p(t)− p∗(t) ‖ = |p(t)− p∗(t)| ≤ |p(0)− p∗(0)|eK = δeK = ε.

Hence every solution is Liapunov stable.

• 8.20 Are the periodic solutions of ẍ+sgn (x) = 0, (i) Poincaré stable, (ii) Liapunov stable?

8.20. Consider periodic solutions of ẍ = sgn (x). The phase diagram of the system is shown in
Figure 8.7. There is one equilibrium point, at the origin, and the paths are given by

y2 = C − 2x, (x > 0); y2 = C + 2x, (x < 0).

x

y

Figure 8.7 Problem 8.20: Phase diagram of ẍ + sgn (x) = 0.
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(i) Paths starting in the shaded region remain within it which implies that the phase paths are
Poincaré stable.

(ii) The origin is a centre which covers the entire (x, y) plane. Hence by NODE, Section 8.4,
all solutions are Liapunov stable.

• 8.21 Give a descriptive argument to show that if the index of an equilibrium point in a
plane autonomous system is not unity, then the equilibrium point is not stable.

8.21. For the equilibrium point to be locally Liapunov stable the phase paths must be either
closed (as in a centre) or approach the equilibrium point (as for a node or spiral), all of which
have index 1. Therefore if the index is not 1, then the equilibrium point must be unstable. Note
that the unstable spiral has index 1 but is obviously unstable in the Liapunov sense.

• 8.22 Show that the system

ẋ = x + y − x(x2 + y2), ẏ = −x + y − y(x2 + y2), ż = −z,
has a limit cycle x2 + y2 = 1, z = 0. Find the linear approximation at the origin and so
confirm that the origin is unstable. Use cylindrical polar coordinates r = √(x2 + y2), z to
show that the limit cycle is stable. Sketch the phase diagram in the x, y, z space.

8.22. The system is given by

ẋ = x + y − z(x2 + y2), ẏ = −x + y − y(x2 + y2), ż = −z,

which has an equilibrium point at the origin. Apply polar coordinates in the (x, y) plane, so
that

2rṙ = 2xẋ + 2yẏ = 2[x2 + y2 − (x2 + y2)2] = 2r2(1− r2),

or

ṙ = r(1− r2),

and

θ̇ sec2 θ = ẏx − ẋy
x2 = − r

2

x2 .

Hence θ̇ = −1. It is obvious that r = 1 is a limit cycle which remains in the (x, y) plane, since
it is consistent with the solution z = 0 of the third equation.
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Near the origin, the linear approximation is

ẋ ≈ x + y, ẏ ≈ −x + y, ż = −z,

or 
 ẋ

ẏ

ż


 =


 1 1 0
−1 1 0
0 0 −1




 x

y

z


 .

The eigenvalues of the matrix are given by

∣∣∣∣∣∣
1− λ 1 0
−1 1− λ 0
0 0 −1− λ


 = 0,

which has the solutions
λ = −1, λ = 1± i.

Since the complex eigenvalues have positive real parts, the equilibrium point at the origin is
unstable.

The equations for the phase paths in cylindrical polar coordinates (r, θ , z) are

ṙ = r(1− r2), θ̇ = −1, ż = −z.

The general solutions are

r = 1/
√
(1− Ae−2t ), θ = −t + B, z = Ce−t .

Some three-dimensional phase paths are shown in Figure 8.8. The system has a stable limit
cycle because all paths approach r = 1, z = 0 as t →∞.

x

y

z

Figure 8.8 Problem 8.22: Phase diagram for ẋ = x + y − z(x2 + y2), ẏ = −x + y − y(x2 + y2), ż = −z.
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• 8.23 Show that the nth-order non-autonomous system ẋ = X(x, t) can be reduced to
an (n + 1)th order autonomous system by introducing a new variable, xn+1 = t . (The
(n+ 1)th order dimensional phase diagram for the modified system is of the type suggested
by Figure 8.9 (in NODE). The system has no equilibrium points.)

8.23. For the nth order system ẋ = X(x, t), let

x = [x1, x2, · · · , xn]T , X = [X1, X2, · · · ,Xn]T .

If we introduce a further variable xn+1 and put it equal to t . Then if we define

y = [x1, x2, · · · , xn, xn+1]T , Y = [X1, X2, · · · ,Xn , 1]T ,

then the system is equivalent to the autonomous system

ẏ = Y(y).

Since ẋn+1 = t , the system can have no equilibrium points.

• 8.24 Show that all phase paths of ẍ = x − x3 are Poincaré stable except the homoclinic
paths (see Section 3.6 in NODE).

8.24. The system ẍ = x − x3 has three equilibrium points, at (0, 0), (1, 0) and (−1, 0). The
phase paths are given by

y2 = x2 − 1
2x

4 + C.

The phase diagram is shown in Figure 8.9. All paths except the homoclinic paths are closed,
and therefore are Poincaré stable.

–1 1
x

y

–1

1

Figure 8.9 Problem 8.24: Phase diagram for ẍ = x − x3.
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Consider any initial point on one of the homoclinic paths. Any neighbouring point not
on the homoclinic path will lie on a periodic path which is either external or internal to the
homoclinic path. In terms of Definition 8.1 a radius δ cannot be found, because as t →∞ the
path periodically departs from the separatrix by a fixed amount.

• 8.25 Investigate the equilibrium points of

ẋ = y, ẏ = z− y − x3, ż = y + x − x3.

Confirm that the origin has homoclinic paths given by

x = ±√2sech t , y = ∓√2sech 2
t sinh t , z = ±√2sech t ∓√2sech 2

t sinh t .

In which directions do the solutions approach the origin as t →±∞?

8.25. The third-order system is

ẋ = y, ẏ = z− y − x3, ż = y + x − x3. (i)

Equilibrium occurs where

y = 0, z− y − x3 = 0, y + x − x3 = 0,

at the points
(0, 0, 0), (1, 0, 1), (−1, 0,−1).

• The point (0, 0, 0). The linear approximation is


 ẋ

ẏ

ż


 =


 0 1 0

0 −1 1
1 1 0




 x

y

z


 .

Its eigenvalues are given by

∣∣∣∣∣∣
−λ 1 0
0 −1− λ 1
1 1 −λ

∣∣∣∣∣∣ = −(λ− 1)(λ+ 1)2 = 0.

Since one eigenvalue is λ = 1, the origin is an unstable equilibrium point.
• The point (1, 0, 1). Let x = 1+ u, y = v, z = 1+w. Hence the linear approximation near

this point is given by 
 u̇

v̇

ẇ


 =


 0 1 0
−3 −1 1
−2 1 0




 u

v

w


 .
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Its eigenvalues are given by

∣∣∣∣∣∣
−λ 1 0
−3 −1− λ 1
−2 1 −λ

∣∣∣∣∣∣ = −(λ− 1)(λ2 + 2) = 0.,

that is, −1 and ±i
√

2. The equilibrium point is stable in the form of a centre/node (but is
not asymptotically stable).

• The point (−1, 0,−1). Let x = −1 + u, y = v, z = −1 + w. The linear approximation is
the same as the previous case so that (−1, 0,−1) is also stable.

Note that on any homoclinic path of the origin, x, y, z→ 0 as t →±∞. From (i)

ż− ẋ − ẏ = (y + x − x3)− y − (z− y − x3) = −(z− x − y),

which has the general solution z − x − y = Ke−t . Homoclinicity is only possible if K = 0, in
which case z = x + y. In (i) eliminate z so that x and y satisfy

ẋ = y, ẏ = x − x3.

Therefore, after elimination of y, x satisfies ẍ = x − x3. The homoclinic solutions are

x = ±√2sech t , y = ẋ = ∓√2sech 2
t sinh t .

Finally
z = x + y = ±√2sech t[1− tanh t].

• 8.26 By using linear approximations investigate the equilibrium points of the Lorenz
equations

ẋ = a(y − x), ẏ = bx − y − xz, ż = xy − cz,
where a, b, c > 0 are constants. Show that if b ≤ 1, then the origin is the only equilibrium
point, and that there are three equilibrium points if b > 1. Discuss the stability of the zero
solution.

8.26. The Lorenz equations are

ẋ = a(y − x), ẏ = bx − y − xz, ż = xy − cz.

Equilibrium occurs where

y − x = 0, bx − y − xz = 0, xy − cz = 0.
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Elimination of y and z leads to

c(b − 1)x − x3 = 0,

which has the solutions x = 0, x = ±√[c(b − 1)]. Therefore the Lorenz equations have up to
three equilibrium points, at

(0, 0, 0), (
√[c(b − 1)],√[c(b − 1)], b − 1), (−√[c(b − 1)],−√[c(b − 1)], b − 1).

It is clear that, if b ≤ 1, the origin is the only equilibrium point: if b > 1 there are three
equilibrium points. Near (0, 0, 0), the linearized equations are


 ẋ

ẏ

ż


 =


 −a a 0

b −1 0
0 0 −c




 x

y

z


 .

Its eigenvalues are given by

∣∣∣∣∣∣
−a − λ a 0
b −1− λ 0
0 0 −c − λ

∣∣∣∣∣∣ = −(λ+ c)(λ2 + aλ+ λ+ a − ab) = 0.

Therefore the eigenvalues are

−c, 1
2
[−(a + 1)±√{(a − 1)2 + 4ab}].

The origin is stable if b ≤ 1, and unstable if b > 1.

• 8.27 Test the stability of the linear system

ẋ1 = t−2x1 − 4x2 − 2x3 + t2,
ẋ2 = −x1 + t−2x2 + x3 + t ,
ẋ3 = t−2x1 − 9x2 − 4x3 + 1.

8.27. The system can be expressed in the form ẋ = A(t)x + f(t), where

A(t) =

 t−2 −4 −2
−1 t−2 1
t−2 −9 −4


 , f(t) =


 t2

t

1


 .
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By NODE, Theorem 8.1, the stability of this system will be the same as the zero solution of
ξ̇ = A(t)ξ . With NODE, Theorem 8.15 in view, let A(t) = B+ C(t), where

B =

 0 −4 −2
−1 0 1
0 −9 −4


 , C(t) =


 t−2 0 0

0 t−2 0
t−2 0 0


 .

Hence

‖C(t)‖ = √[t−4 + t−4 + t−4] =
√

3
t2

.

For any t > t0 > 0, ∫ t

t0

‖C(s)‖ds = √3
∫ t

t0

ds
s2 =

√
3
[

1
t0
− 1
t

]
,

which is bounded in t .
Also the eigenvalues of B are given by

∣∣∣∣∣∣
−λ −4 −2
−1 −λ 1
0 −9 −4− λ

∣∣∣∣∣∣ = −(1+ λ)2(2+ λ) = 0.

The eigenvalues are real and negative.
Hence by Theorem 8.15 all solutions ξ and therefore x are asymptotically stable.

• 8.28 Test the stability of the solutions of the linear system

ẋ1 = 2x1 + e−t x2 − 3x3 + et ,
ẋ2 = −2x1 + e−t x2 + x3 + 1,
ẋ3 = (4+ e−t )x1 − x2 − 4x3 + et .

8.28. The system can be expressed in the form ẋ = A(t)x + f(t), where

A(t) =

 2 e−t −3

−2 e−t 1
(4+ e−t ) −1 −4


 , f(t) =


 et

1
et


 .

By NODE, Theorem 8.1, the stability of this system will be the same as the zero solution of
ξ̇ = A(t)ξ . With NODE, Theorem 8.15 in view, let A(t) = B+ C(t), where

B =

 2 0 −3
−2 0 1
4 −1 −4


 , C(t) =


 0 e−t 0

0 e−t 0
e−t 0 0


 .
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Hence
‖ C(t) ‖= √[e−2t + e−2t + e−2t ] = √3e−t .

Then for any t0, ∫ t

t0

‖ C(s) ‖ ds = √3
∫ t

t0

e−sds = √3[e−t0 − e−t ],

which is bounded in t . Also the eigenvalues of B are given by

∣∣∣∣∣∣
2− λ 0 −3
−2 −λ 1
4 −1 −4− λ

∣∣∣∣∣∣ = −(1+ λ)(4+ λ+ λ2).

Therefore the eigenvalues are

−1, 1
2 (−1±√15),

which all have negative real part.
Hence by Theorem 8.15 all solutions ξ and therefore x are asymptotically stable.

• 8.29 Test the stability of the zero solution of the system

ẋ = y + xy

1+ t2 , ẏ = −x − y + y2

1+ t2 .

8.29. Express the system in the form ẋ = Ax + h(x, t), where

A =
[

0 1
−1 −1

]
, h(x, t) =

[
xy/(1+ t2)
y2/(1+ t2)

]
,

and then apply NODE, Theorem 8.16. The eigenvalues of A are given by

∣∣∣∣ −λ 1
−1 −1− λ

∣∣∣∣ = λ2 + λ+ 1 = 0.

Hence λ = 1
2 (−1±√3i). Hence, as required, the solutions of ẋ = Ax are asymptotically stable.

Also

‖ h(x, t) ‖= √
[
x2y2 + y4

(1+ t2)2
]
≤ |y| ‖ x ‖≤‖ x ‖2 .

Hence

‖ h(x, t) ‖
‖ x ‖ ≤‖ x ‖→ 0
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as ‖ x ‖ →0. The conditions of Theorem 8.16 are satisfied which implies that the zero solution
is asymptotically stable.

• 8.30 Test the stability of the zero solution of the system

ẋ1 = e−x1−x2 − 1, ẋ2 = e−x2−x3 − 1, ẋ3 = −x3.

8.30. The system

ẋ1 = e−x1−x2 − 1, ẋ2 = e−x2−x3 − 1, ẋ3 = −x3

can be expressed in the form ẋ = Ax + h(x, t), where

A =


−1 −1 0

0 −1 −1

0 0 −1


 , h(x) =



x1 + x2 + e−x1−x2 − 1

x2 + x3 + e−x2−x3 − 1

0


 .

We intend to apply Theorem 8.15. The eigenvalue of A is obviously λ = −1 (repeated) which
satisfies (i) of the theorem.

To evaluate the behaviour of ‖ h(x) ‖ note that

u− 1+ e−u = u2

2! −
u3

3! +
u4

4! − · · · ≤
u2

2
, (i)

for 0 ≤ u < 4. Let p = (1, 1, 0) and q = (0, 1, 1). Then

h(x) =



p · x + e−p·x − 1

q · x + e−q·x − 1

0


 .

Using (i),

‖ h(x) ‖ = √[(p · x + e−p·x − 1)2 + (q · x + e−q·x − 1)2]

≤ √
[

1
4 (p · x)4 + 1

4 (q · x)4
]

≤ √[‖ x ‖4 + ‖ x ‖4]
= √2 ‖ x ‖2

since ‖ p · x ‖≤‖ p ‖‖ x ‖= √2 ‖ x ‖, etc. Hence condition (ii) of Theorem 15 is also satisfied.
It follows that the zero solution of the system is asymptotically stable.
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• 8.31 Test the stability of the zero solution of the equation

ẍ +
[

1+(t−1)|ẋ|
1+t |ẋ|

]
ẋ + 1

4x = 0.

8.31. The non-autonomous equation

ẍ + [{1+ (t − 1)|ẋ|}/{1+ t |ẋ|}]ẋ + 1
4x = 0

can be represented by the system ẋ = Ax + h(x, t), where ẋ = y, and

x =
[
x

y

]
, A =

[
0 1

−1
4 −1

]

h(x, t) =
[

0
−[{1+ (t − 1)|y|}/{1+ t |y|}]y + y

]
.

The matrix A has the repeated eigenvalue −1
2 so that condition (i) of Theorem 8.16 is satisfied.

For the other condition

‖ h(x, t) ‖=
∣∣∣∣−1+ (t − 1)|y|

1+ t |y| |y| + y
∣∣∣∣ = |y|2

|1+ t |y| | ≤ |y|
2 ≤‖ x ‖2 .

Therefore condition (ii) is satisfied so that the zero solution is asymptotically stable.

• 8.32 Consider the restricted three-body problem in planetary dynamics in which one body
(possibly a satellite) has negligible mass in comparison with the other two. Suppose that the
two massive bodies (gravitational masses µ1 and µ2) remain at a fixed distance a apart, so
that the line joining them must rotate with spin ω = √[(µ1 + µ2)/a

3]. It can be shown (see
Hill (1964)) that the equations of motion of the third body are given by

ξ̈ − 2ωη̇ = ∂U

∂ξ
, η̈ + 2ωξ̇ = ∂U

∂η
,

where the gravitational field

U(ξ , η) = 1
2
ω2(ξ2 + η2)+ µ1

d1
+ µ2

d2
,

and

d1 = √
[(
ξ + µ1a

µ1 + µ2

)2

+ η2

]
, d2 = √

[(
ξ − µ2a

µ1 + µ2

)2

+ η2

]
.

The origin of the rotating (ξ , η) plane is at the mass centre with the ξ axis along the common
radius of the two massive bodies in the distance of µ2.



412 Nonlinear ordinary differential equations: problems and solutions

Consider the special case in which µ1 = µ2 = µ. Show that there are three equilibrium
points along the ξ axis (use a computed graph to establish), and two equilibrium points at
the triangulation points of µ1 and µ2.

8.32. The equations of motion in the restricted three-body problem are

ξ̈ − 2ωη̇ = ∂U

∂ξ
, η̈ + 2ωξ̇ = ∂U

∂η
,

where
U(ξ , η) = 1

2ω
2(ξ2 + η2)+ µ1

d1
+ µ2

d2
,

and

d1 = √
[(
ξ + µ1a

µ1 + µ2

)2

+ η2

]
, d2 = √

[(
ξ + µ2a

µ1 + µ2

)2

+ η2

]
.

The coordinate scheme is shown in Figure 8.10. Let ξ̇ = σω and η̇ = ρω. Then

ωσ̇ = 2ω2σ + ∂U

∂ξ
, ωρ̇ = −2ω2ρ + ∂U

∂η
.

Therefore the system is fourth-order in (ξ , η,ω, η) phase space. Consider the case µ1 = µ2 = µ.
Equilibrium occurs where σ = 0, ρ = 0 and

∂U

∂ξ
= ω2ξ − µ

d3
1

(
ξ + 1

2a
)
− µ

d3
2

(
ξ − 1

2a
)
= 0, (i)

∂U

∂η
= ω2η − µη

d3
1

− µη

d3
2

= 0. (ii)

From (ii) η = 0 is a solution, in which case in (i) ξ satisfies (with ω2 = 2µ/a3),

h(q) = 2q|q + 1
2 |3|q − 1

2 |3 −
(
q + 1

2

)
|q − 1

2 |3 −
(
q − 1

2

)
|q + 1

2 |3 = 0. (iii)

G

x

h

m1

m2

Satellite

Figure 8.10 Problem 8.32: Coordinate scheme.



8 : Stability 413

–1.5 –1 –0.5 0.5 1 1.5
q

h(q)

–2
–1.5

–1
–0.5

0.5
1

1.5
2

Figure 8.11 Problem 8.32:

where q = ξ/a. The graph of h(q) against q is shown in Figure 8.11. The solutions at q = ±1
2

are discounted since they correspond to the locations of the massive bodies. Numerical solution
equation of (iii) gives to the two solutions ξ = ξ0 = ±1.1984 in addition of course to the origin.

If ξ = 0, eqn (i) is satisfied identically whilst (ii) implies η = ±1
2

√
3. Each of these points

together with the locations of µ1 and µ2 form equilateral triangles. (0,±1
2

√
3) are known as

triangulation points.
To summarize the five equilibrium points are at (0, 0), (±ξ0, 0) and (0,±1

2

√
3).

• 8.33 Express the equations

ẋ= x[1−√(x2 + y2)] − 1
2y[
√
(x2 + y2)− x],

ẏ= y[1−√(x2 + y2)] + 1
2x[
√
(x2 + y2)− x]

in polar form in terms of r and θ . Show that the system has two equilibrium points at (0, 0)
and (1, 0). Solve the equations for the phase paths in terms of r and θ , and confirm that all
paths which start at any point other than the origin approach (1, 0) as t →∞. Sketch the
phase diagram for the system.
Consider the half-path which starts at (0, 1). Is this path stable in the Poincaré sense? Is the
equilibrium point at (1, 0) stable?

8.33. The equations

ẋ = x[1−√(x2 + y2)] − 1
2y[
√
(x2 + y2)− x],

ẏ = y[1−√(x2 + y2)] + 1
2x[
√
(x2 + y2)− x]

in polar coordinates (r, θ), where x = r cos θ and y = r sin θ , become

ṙ = r(1− r), θ̇ = r sin2 1
2θ .

The polar equations have equilibrium points given by

r(1− r) = 0, r sin2 1
2θ = 0.
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The solutions are r = 0, and r = 1, sin 1
2θ = 0. In terms of x and y equilibrium occurs at (0, 0)

and (1, 0).
The phase paths are given by

dr
dθ
= 1− r

sin2 1
2θ

Hence ∫
dr

1− r =
∫

dθ

sin2 1
2θ
=

∫
cosec 2 1

2θdθ ,

so that

ln |1− r| = 2 cot
(

1
2θ

)
+ C.

All solutions are given by

r = 1+ Ae2 cot[(1/2)θ ].

As θ → 2π , cot 1
2θ → −∞ and r → 1: as θ → 0, cot 1

2θ →∞ and r →∞ (A > 0) or r stops
at r = 0 (A < 0) for some value of θ (r cannot be negative). Note that r = 1 is a path but not a
limit cycle since the path passes through the equilibrium point as shown in the phase diagram
in Figure 8.12: it is a separatrix. Also y = 0, x > 0 contains two phase paths which approach
(1, 0). Both equilibrium points are unstable.

x

y

Figure 8.12 Problem 8.33:
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• 8.34 Consider the system

ẋ = −y, ẏ = x + λ(1− y2 − z2)y, ż = −y + µ(1− x2 − y2)z.

Classify the linear approximation of the equilibrium point at the origin in terms of the
parameters λ �= 0 and µ �= 0. Verify that the system has a periodic solution

x = cos(t − t0), y = sin(t − t0), z = cos(t − t0),
for any t0.

8.34. The system

ẋ = y, ẏ = x + λ(1− y2 − z2)y, ż = −y + µ(1− x2 − y2)z,

has one equilibrium point at the origin. Its linear approximation near the origin is

ẋ = y, ẏ ≈ x + λy, ż ≈ −y + µz,

or 
 ẋ

ẏ

ż


 =


 0 −1 0

1 λ 0
0 −1 µ




 x

y

z


 .

The eigenvalues of the matrix of coefficients are given by

∣∣∣∣∣∣
−m −1 0
1 λ−m 0
0 −1 µ−m

∣∣∣∣∣∣ = (µ−m)(m2 − λm+ 1) = 0.

Hence the eigenvalues are µ and 1
2λ ±

√
(λ2 − 4). The classification in three dimensions is as

follows:

• µ < 0, λ > 2. All the eigenvalues are real with 2 positive and 1 negative. The origin is
unstable and is a saddle/node.

• µ > 0, λ > 2. All the eigenvalues are real and positive. Hence the origin is an unstable
node.

• µ < 0, λ < −2. All eigenvalues are real and negative so that the origin resembles a stable
node.

• µ > 0, λ < −2. All eigenvalues are real with 2 negative and 1 positive. The origin is
unstable.

• µ < 0, 0 < λ < 2. One eigenvalue is negative, and the others are complex conjugates with
positive real part so that the origin is an unstable spiral. There are two stable paths which
enter the origin.

• µ > 0, 0 < λ < 2. One eigenvalue is positive, and the others are complex conjugates with
positive real part so that the origin is an unstable spiral.
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• µ < 0, −2 < λ < 0. One eigenvalue is negative, and the others are complex conjugates
with negative real part. The origin is stable with spiral paths.

• µ > 0, −2 < λ < 0. One eigenvalue is positive, and the others are complex conjugates
with negative real part. The origin is unstable with spiral paths.

It can be verified that

x = cos(t − t0), y = sin(t − t0), z = cos(t − t0),

is an exact periodic solution irrespective of the type of equilibrium point at the origin.



9
Stability by solution
perturbation: Mathieu’s
equation

• 9.1 The system

ẋ1 = (− sin 2t)x1 + (cos 2t − 1)x2, ẋ2 = (cos 2t + 1)x1 + (sin 2t)x2,

has a fundamental matrix of normal solutions

�(t) =
[

et (cos t − sin t) e−t (cos t + sin t)
et (cos t + sin t) e−t (− cos t + sin t)

]
.

Obtain the corresponding E matrix (Theorem 9.1 in NODE), the characteristic numbers,
and the characteristic exponents.

9.1. The system has the fundamental matrix of normal solutions

�(t) =
[

et (cos t − sin t) e−t (cos t + sin t)
et (cos t + sin t) e−t (− cos t + sin t)

]

(which can be verified). The matrix E is given by

E = �−1(0)�(π) = 1
2

[
1 1
1 −1

] [ −eπ −e−π
−eπ e−π

]
=

[ −eπ 0
0 −e−π

]
.

The characteristic numbers are the eigenvalues of E, which are obviously µ1 = −eπ and
µ2 = −e−π . The corresponding characteristic exponents are ρ1 = 1+ i and ρ2 = −1+ i.

• 9.2 Let the system ẋ = P(t)x have a matrix of coefficients P with minimal period T (and
therefore also with periods 2T , 3T , . . . ). Follow the argument of Theorem 9.1, using period
mT , m > 1, to show that �(t +mT ) = �(t)Em. Assuming that, if the eigenvalues of E are
µi , then those of Em are µmi , discuss possible periodic solutions.

9.2. Let �(t) be a fundamental matrix of ẋ = P(t)x, where P(t) has a minimal period of T .
From eqn (9.15)

�(t + T ) = �(t)E,
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for all t , where E is a non-singular constant matrix. By repetition of the result

�(t +mT ) = �(t + (m− 1)T )E = �(t + (m− 2)T )E2 = · · · = �(t)Em,

where m is any positive integer.
A well-known result in matrix algebra states that if E has eigenvalues µi , then Em has eigen-

values µmi . The system will only have a solution of period T if there exists a unit eigenvalue. It
will have a solution of period mT if µm = 1, which means that µmust be an mth root of unity.

• 9.3 Obtain Wronskians for the following linear systems

(i) ẋ1 = x1 sin t + x2 cos t , ẋ2 = −x1 cos t + x2 sin t ;

(ii) ẋ1 = f (t)x2, ẋ2 = g(t)x1.

9.3. (i) For the linear system

ẋ1 = x1 sin t + x2 cos t , ẋ2 = −x1 cos t + x2 sin t ,

the matrix of coefficients is

A(t) =
[

sin t cos t
− cos t sin t

]
.

From NODE, (9.25), the Wronskian W(t) is given by

W(t) = W(t0) exp
(∫ t

t0

tr{A(s)}ds
)
= W(t0) exp

(∫ t

t0

2sin s ds
)

= W(t0) exp[2(cos t0 − cos t)].

(ii) For the system ẋ1 = f (t)x2, ẋ2 = g(t)x1, the matrix of coefficients is

A(t) =
[

0 f (t)

g(t) 0

]
.

The Wronskian is given by

W(t) = W(t0) exp
(∫ t

t0

tr{A(s)}ds
)
= W(t0),

a constant, since tr{A(s)} = 0.
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• 9.4 By substituting x = c+a cos t+b sin t into Mathieu’s equation ẍ+ (α+β cos t)x = 0,
obtain by harmonic balance an approximation to the transition curve near α = 0, β = 0
(compare with Section 9.4 in NODE).

By substituting x = c + a cos 1
2 t + b sin 1

2 t , find the transition curves near α = 1
4 , β = 0.

9.4. Substitute x = c + a cos t + b sin t into Mathieu’s equation

ẍ + (α + β cos t)x = 0.

Then

ẍ + (α + β cos t)x = −a cos t − b sin t + (α + β cos t)(c + a cos t + b sin t)

= −a cos t − b sin t + αc + aα cos t + bα sin t

+ cβ cos t + 1
2aβ + (higher harmonics)

= αc + 1
2aβ + (−a + aα + cβ) cos t + (−b + bα) sin t

+ (higher harmonics)

The constant and first harmonic terms vanish if

αc + 1
2
aβ = 0, a(α − 1)+ cβ = 0, b(α − 1) = 0.

Hence b = 0 and

c = −aβ
2α

= −a(α − 1)
β

.

Therefore (with a �= 0), α and β satisfy

α2 − α − 1
2β

2 = 0,

so that

α = 1
2 [1±

√
(1+ 2β2)] ≈




1+ 1
2β

2

−1
2β

2
,

for small β. Near the origin in the (α,β) plane the transition curve is given by α = −1
2β

2 which
agrees with eqn (9.44).
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Substitute x = c + a cos 1
2 t + b sin 1

2 t into Mathieu’s equation so that

ẍ + (α + β cos t)x = −1
4a cos 1

2 t − 1
4b sin 1

2 t + (α + β cos t)(c + a cos 1
2 t + b sin 1

2 t)

= αc + a(−1
4 + α + 1

2β) cos 1
2 t

+ b(−1
4 + α − 1

2β) sin 1
2 t + (higher harmonics)

The constant term and the harmonics of lowest order vanish if

c = 0, a
(
−1

4 + α + 1
2β

)
= 0, b

(
−1

4 + α − 1
2β

)
= 0.

Hence b = 0 leads to α ≈ 1
4 − 1

2β, and a = 0 implies α ≈ 1
4 + 1

2β. These transition curves near
α = 1

4 agree with eqn (9.45) (in NODE).

• 9.5 Figure 9.4 (in NODE) or Figure 9.1 represents a massm attached to two identical linear
strings of stiffness λ and natural length l. The ends of the strings pass through frictionless
guides A and B at a distance 2L, l < L, apart. The particle is set into lateral motion at the
mid-point, and symmetrical tensions a + b cosωt , a > b are imposed on the ends of the
string. Show that, for x � L,

ẍ +
(

2λ(L− l + a)
mL

+ 2λb
mL

cosωt
)
x = 0.

Analyse the motion in terms of suitable parameters, using the information of NODE,
Sections 9.3 and 9.4 on the growth or decay, periodicity and near periodicity of the solutions
of Mathieu’s equation in the regions of its parameter plane.

9.5. Let T be the tension in the string, and let x be the displacement of the particle. The
transverse equation of motion is

−2T sin θ = mẍ.

TT

a+b cosvt a+b cosvt

m

x �� BA

Figure 9.1 Problem 9.5: Transverse oscillations.
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Hence

mẍ = −2λ[√(L2 + x2)+ a + b cosωt − l] x√
(L2 + x2)

= −2λ[1+ (a − l + b cosωt)(L2 + x2)−1/2]x

=

1+ (a − l + b cosωt)

L

(
1+ x2

L2

)−1/2

 x

≈ −2λ
[
1+ a − l

L
+ b cosωt

L

]
x (x � L)

The linearized equation of motion becomes

ẍ +
(

2λ(L− l + a)
mL

+ 2λb
mL

cosωt
)
x = 0.

Introduce the timescale τ where τ = ωt . Hence x satisfies

x′′ +
(

2λ(L− l + a)
mω2L

+ 2λb
mω2L

cos τ
)
x = 0.

We can express this equation in the standard form

x′′ + (α + β cos τ)x = 0,

where

α = 2λ(L− l + a)
mω2L

, β = 2λb
mω2L

.

The stability regions can be seen by consulting Figure 9.3 (in NODE, showing the stability
diagram for Mathieu’s equation). We must assume that α = L+ a− l > 0, since otherwise the
string would become slack. The critical curves on which period 2π solutions exist pass through
the points with β = 0, α = n2, (n = 0, 1, 2, . . . ). In terms of the parameters, β = 0 corresponds
to b = 0.

• 9.6 A pendulum with a light, rigid suspension is placed upside-down on end, and the
point of suspension is caused to oscillate vertically with displacement y upwards given by
y = ε cosωt , ε � 1. Show that the equation of motion is

θ̈ +
(
−g
a
− 1
a
ÿ

)
sin θ = 0,

where a is the length of the pendulum, g is gravitational acceleration and θ the inclination to
the vertical. Linearize the equation for small amplitudes and show that the vertical position
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is stable (i.e. the motion of the pendulum restricts itself to the neighbourhood of the vertical:
it does not topple over) provided ε2ω2/(2ag) > 1. For further discussion of the inverted
pendulum and its stability see Acheson (1997).

9.6. The pendulum and notation are shown in Figure 9.2. Let R be the stress in the pendulum,
and let (x, z) be the coordinates of the bob. The horizontal and vertical equations of motion
are given by

−R sin θ = mẍ = m d2

dt2
(a sin θ) = m(−a sin θ θ̇2 + a cos θ θ̈),

−mg − R cos θ = mz̈ = m
[

d2

dt2
(a cos θ)+ ÿ

]
= m(−a cos θ θ̇2 − a sin θ θ̈ + ÿ).

Elimination of R between these equations leads to

−g sin θ = −aθ̈ + ÿ sin θ ,

or

θ̈ −
(
g + ÿ
a

)
sin θ = θ̈ − 1

a
(g − εω2 cosωt) sin θ = 0.

For small |θ |, sin θ ≈ θ so that the linearized equation is

θ̈ − 1
a
(g − εω2 cosωt)θ = 0.

Let τ = ωt so that, in standard Mathieu form, the equation is

θ ′′ + (α + β cos τ)θ = 0,

x

z

u

 (x,z)

mgR

y = ecosvt

Figure 9.2 Problem 9.6: The inverted pendulum.
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where

α = − g

aω2 , β = ε

a
.

Consult Figure 9.3 (in NODE). Since α < 0, the figure indicates that there is a stability
region for small β. The period 2π solution occurs approximately on α = −1

2β
2 (see eqn (9.44)

in NODE). Hence for sufficiently small ε, stability occurs where

−1
2β

2 < α < 0, or ε2ω2 > 2ag.

• 9.7 Let �(t) = [φij (t)], i, j = 1, 2, be the fundamental matrix for the system ẋ1 = x2,
ẋ2 = −(α+β cos t)x1, satisfying �(0) = I (Mathieu’s equation). Show that the characteristic
numbers µ satisfy the equation

µ2 − µ{φ11(2π)+ φ22(2π)} + 1 = 0.

9.7. Mathieu’s equation in the form

ẋ1 = x2, ẋ2 = −(α + β cos t)x1,

is assumed to have the fundamental matrix �(t) satisfying �(0) = I. The matrix E is given by

E = �−1(0)�(2π) = �(2π),

since �(0) = I. Let µ1 and µ2 be the characteristic numbers. These satisfy

det(E− µI) = det(�(2π)− µI)

=

∣∣∣∣∣∣∣
φ11(2π)− µ φ12(2π)

φ21(2π) φ22(2π)− µ

∣∣∣∣∣∣∣
= µ2 − (φ11(2π)+ φ22(2π))µ+ 1 = 0,

since det(E) = 1, by NODE, Theorem 9.5.
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• 9.8 In Section 9.3, for the transition curves of Mathieu’s equation for solutions period
2π , let

Dm,n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 γm 0
γm−1 1 γm−1

0 γm−2 1
· · ·

γ0 1 γ0
· · ·

γn−1 1 γn−1
0 γn 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
for m ≥ 0, n ≥ 0. Show that Dm,n = Dm−1,n − γmγm−1Dm−2,n. Let En = Dn,n, and verify
that

E0 = 1, E1 = 1− 2γ0γ1, E2 = (1− γ1γ2)
2 − 2γ0γ1(1− γ1γ2).

Prove that, for n ≥ 1,

En+2= (1− γn+1γn+2)En+1− γn+1γn+2(1− γn+1γn+2)En

+ γ 2
n γ

3
n+1γn+2En−1.

9.8. Expansion of the determinant in the problem by its first row gives

Dm,n = Dm−1,n − γmγm−1Dm−2,n. (i)

Let m = n and En = Dn,n. Finite approximations for the transition curves are given by En = 0
for n = 1, 2, 3, . . . . The first three expressions are

E0 = 1, E1 =
∣∣∣∣∣∣

1 γ1 0
γ0 1 γ0
0 γ1 1

∣∣∣∣∣∣ = 1− 2γ0γ1,

E2 =

∣∣∣∣∣∣∣∣∣∣

1 γ2 0 0 0
γ1 1 γ1 0 0
0 γ0 1 γ0 0
0 0 γ1 1 γ1
0 0 0 γ2 1

∣∣∣∣∣∣∣∣∣∣
= (1− γ1γ2)

2 − 2γ0γ1(1− γ1γ2).

Observe that Dm,n = Dn,m. Let En = Dn,n, Pn = Dn−1,n and Qn = Dn−2,n. Put m =
n, n+ 1, n+ 2 in (i) resulting in the three equations

En = Pn − γnγn−1Qn, (ii)

Pn+1 = En − γn+1γnPn, (iii)

Qn+2 = Pn+1 − γn+2γn+1En. (iv)
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Eliminate Qn between (ii) and (iv), so that

En+2 = Pn+2 − γn+2γn+1Pn+1 + γ 2
n+2γ

2
n+1En. (v)

From (iii) and (v) so that

2γn+1γn+2Pn+1 = En+1 − En+2 + γ 2
n+1γ

2
n+2En. (vi)

Finally substitute Pn from (vi) back into (iii) which leads to the third-order difference equation

En+2 = (1− γn+1γn+2)En+1 − γn+1γn+2(1− γn+1γn+2)En + γ 2
n γ

3
n+1γn+2En−1.

• 9.9 In eqn (9.38) (in NODE), for the transition curves of Mathieu’s equation for solutions
of period 4π , let

Fm,n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 δm 0

δm−1 1 δm−1

0 δm−2 1

· · ·
δ1 1 δ1 0

0 δ1 1 δ1

· · ·
δn−1 1 δn−1

0 δn 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Show as in the last exercise that Gn = Fn,n satisfies the same recurrence relation as En for
n ≥ 2 (see Problem 9.8). Verify that

G1 = 1− δ2
1, G2 = (1− δ1δ2)2 − δ2

1,

G3 = (1− δ1δ2 − δ2δ3)2 − δ2
1(1− δ2δ3)2.

9.9. Expansion by the first row gives

Fm,n = Fm−1,n − δmδm−1Fm−2,n,

which is essentially the same difference equation as for Dm,n in the previous problem. Hence if
Gn = Fn,n, then must satisfy the same difference equation as En, that is

Gn+2 = (1− δn+1δn+2)Gn+1 − δn+1δn+2(1− δn+1δn+2)Gn + δ2
nδ

3
n+1δn+2Gn−1.
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However, the initial terms will differ. Thus

G1 =
∣∣∣∣ 1 δ1
δ1 1

∣∣∣∣ = 1− δ2
1, G2 =

∣∣∣∣∣∣∣∣
1 δ2 0 0
δ1 1 δ1 0
0 δ1 1 δ1
0 0 δ2 1

∣∣∣∣∣∣∣∣
= (1− δ1δ2)2 − δ2

1,

G3 =

∣∣∣∣∣∣∣∣∣∣∣∣

1 δ3 0 0 0 0
δ2 1 δ2 0 0 0
0 δ1 1 δ1 0 0
0 0 δ1 1 δ1 0
0 0 0 δ2 1 δ2
0 0 0 0 δ3 1

∣∣∣∣∣∣∣∣∣∣∣∣
= (1− δ1δ2 − δ2δ3)2 − δ2

1(1− δ2δ3)2.

Note that the determinants En in Problem 9.7 are determinants of odd order, but that Gn
are determinants of even order.

• 9.10 Show, by the perturbation method, that the transition curves for Mathieu’s equation

ẍ + (α + β cos t)x = 0,

near α = 1, β = 0, are given approximately by α = 1+ 1
12β

2, α = 1− 5
12β

2.

9.10. In Mathieu’s equation
ẍ + (α + β cos t)x = 0,

assume that |β| is small, substitute the expansions α = α0 + βα1 + β2α2 + · · · and x =
x0 + βx1 + β2x2 + · · · . Therefore

(ẍ0 + βẍ1 + β2ẍ2 + · · · )+ [(α0 + βα1 + β2α2 + · · · )+ β cos t]

(x0 + βx1 + β2x2 + · · · ) = 0.

Equating the coefficients of powers of β to zero we obtain

ẍ0 + α0x0 = 0, (i)

ẍ1 + α0x1 = −α1x0 − x0 cos t , (ii)

ẍ2 + α0x2 = −α2x0 − α1x1 − x1 cos t . (iii)

Since α ≈ 1, we are searching for period 2π solutions. Therefore put α0 = 1, so that (i) implies
x0 = a0 cos t + b0 sin t . Equation (ii) becomes

ẍ1 + x1 = −α1a0 cos t − α1b0 sin t − 1
2a0 − 1

2a0 cos 2t − 1
2b0 sin 2t . (iv)
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Secular terms can only be removed by putting α1 = 0. For this value of α1, eqn (iv) has the
general solution

x1 = a1 cos t + b1 sin t − 1
2a0 + 1

6a0 cos 2t + 1
6b0 sin 2t .

Equation (iii) becomes

ẍ2 + x2 = −α2a0 cos t − α2b0 sin t − a1 cos t + b1 sin t − 1
2a0

+ 1
6a0 cos 2t + 1

6b0 sin 2t cos t

= −α2a0 cos t − α2b0 sin t + 1
2a1 − 5

12a0 cos t + 1
12b0 sin t

+ 1
2a1 cos 2t + 1

2b1 sin 2t + 1
12a0 cos 3t + 1

12b0 sin 3t

Secularity is removed if the coefficients of cos t and sin t are zero. Hence α2 can take two possible
values, namely, α2 = − 5

12 and α2 = 1
12 . Therefore the curves along which period-2π solutions

occur are α ≈ 1− 5
12β

2 and α ≈ 1+ 1
12β

2.

• 9.11 Consider Hill’s equation ẍ + f (t)x = 0, where f has period 2π , and

f (t) = α +
∞∑
r=1

βr cos rt

is its Fourier expansion, with α ≈ 1
4 and |βr | � 1, r = 1, 2, . . . . Assume an approximate

solution eσ tq(t), where σ is real and q has period 4π as in (9.34) (in NODE). Show that

q̈ + 2σ q̇ +
(
σ 2 + α

∞∑
r=1

βr cos rt

)
q = 0.

Take q ≈ sin(1
2 t + γ ) as the approximate form for q and match terms in sin 1

2 t , cos 1
2 t , on

the assumption that these terms dominate. Deduce that

σ 2 = −
(
α + 1

4

)
+ 1

2
√
(4α + β2

1 )

and that the transition curves near α = 1
4 are given by α = 1

4 ± 1
2β1.

9.11. Consider Hill’s equation ẋ + f (t)x = 0, where

f (t) = α +
∞∑
r=1

βr cos rt .

Assume α ≈ 1
4 and |βr | � 1, r = 1, 2, . . . . Let x = eσ tq(t). Then

ẋ = eσ t (q̇ + σq), ẍ = eσ t (q̈ + σ q̇ + σ 2q).
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Therefore q satisfies

q̈ + σ q̇ +
(
σ 2 + α +

∞∑
r=1

βr cos rt

)
q = 0.

Let q ≈ sin(1
2 t + γ ), and substitute q into Hill’s equation so that

−1
4 sin(1

2 t + γ )+ σ cos(1
2 t + γ )+ (σ 2 + α) sin(1

2 t + γ )
+1

2
∑∞
r=1βr [sin{(r + 1

2 ) t + γ } + sin{(1
2 − r)t + γ }] = 0.

The leading harmonics vanish if

(σ 2 + α − 1
4 )(sin

1
2 t cos γ + cos 1

2 t sin γ )+ σ(cos 1
2 t cos γ − sin 1

2 t sin γ )

+1
2β1(− sin 1

2 t cos γ + cos 1
2 t sin γ ) = 0.

Coefficients of cos 1
2 t and sin 1

2 t imply

(σ 2 + α − 1
4 − 1

2β1) cos γ − σ sin γ = 0,

σ cos γ + (σ 2 + α − 1
4 + 1

2β1) sin γ = 0.

These equations are consistent if

(σ 2 + α − 1
4 − 1

2β1)(σ
2 + α − 1

4 + 1
2β1)+ σ 2 = 0,

or
(σ 2 + α − 1

4 )
2 + (σ 2 + α − 1

4 )− (1
4β

2
1 + α − 1

4 ) = 0..

The solutions of this quadratic equation are

σ 2 = −(α + 1
4 )± 1

2
√
(β2

1 + 4α).

For α = 1
4 and β1 = 0, σ 2 = −1

2 ± 1
2 which will only be zero (giving a 4π -periodic solution) if

we choose the + sign. Therefore

σ 2 = −(α + 1
4 )+ 1

2
√
(β2

1 + 4α).

σ real implies unstable solutions, so unstable solutions require σ 2 > 0. Hence instability
occurs if

1
2
√
(β2

1 + 4α) > α + 1
4 , or α2 − 1

2α + 1
16 − 1

4β
2
1 < 0,

or
(α − 1

4 − 1
2β1)(α − 1

4 + 1
2β1) < 0, or 1

2 |β1| > |α − 1
4 |.

The stability boundaries (σ = 0) are α = 1
4 ± 1

2β1.
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• 9.12 Obtain, as in NODE, Section 9.4, the boundary of the stable region in the
neighbourhood of ν = 1, β = 0 for Mathieu’s equation with damping,

ẍ + κẋ + (ν + β cos t)x = 0,

where κ = O(β2).

9.12. The Mathieu equation with damping is

ẍ + κẋ + (ν + β cos t)x = 0. (i)

It is assumed that κ = O(β2). To remove the damping term, let x = e−
1
2κt η(t). Then

ẋ = e−(1/2)κt (η′ − 1
2κη), ẍ = e−(1/2)κt (η′′ − κη′ + 1

4κ
2η).

Therefore eqn (i) is transformed into the Mathieu equation

η̈ + (ν + 1
2κ

2 + β cos t)x = 0.

Solutions of period 2π exist near critical values of ν. In the usual notation α = ν + 1
2κ

2. If
φ(α,β) > 0, then

η = c1eσ tp1(t)+ c2eσ tp2(t),

but

x = c1e(σ−(1/2)κ)tp1(t)+ c2e(−σ−(1/2)κ)tp2(t).

Therefore the boundary of the 2π periodic solution will be σ − 1
2κ = 0.

Consider the perturbation procedure in which

x = x0 + βx1 + β2x2 + · · · , ν = ν0 + ν1β + ν2β
2 + · · · , κ = κ2β

2 + · · · .

Then (i) becomes

(ẍ0 + βẍ1 + β2ẍ2 + · · · )+ (κ2β
2ẋ0 + · · · )

+ (ν0 + βν1 + β2ν2 + · · · + β cos t)(x0 + βx1 + β2x2 + · · · ) = 0

Hence the perturbation equations are

ẋ0 + ν0x0 = 0, (ii)

ẍ1 + ν0x1 = −(ν1 + cos t)x0, (iii)

ẍ2 + ν0x2 = −κ2ẋ0 − ν2x0 − ν1x1 − x1 cos t . (iv)
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For 2π periodicity, ν0 = 1: hence (ii) implies

x0 = a0 cos t + b0 sin t .

From (iii), x1 satisfies

ẍ1 + x1 = −ν1a0 cos t − ν1b0 sin t − 1
2a0 − 1

2a0 cos 2t − 1
2b0 sin 2t .

Must choose ν1 = 0, since otherwise we can only have a0 = b0 = 0 which leads to the trivial
solution x = 0. Hence

x1 = −1
2a0 + 1

6a0 cos 2t + 1
6 sin 2t .

Equation (iv) becomes

ẍ2 + x2 = κ2a0 sin t − κ2b0 cos t − ν2a0 cos t − ν2b0 sin t+
1
2a0 cos t − 1

12a0 cos t − 1
12b0 sin t + (higher harmonics)

=
(
−κ2b0 − ν2a0 + 1

2a0 − 1
12a0

)
cos t+

(
κ2a0 − ν2b0 − 1

12b0

)
sin t + (higher harmonics)

To remove secularity, we must put

(
5
12 − ν2

)
a0 − κ2b0 = 0,

κ2a0 −
(

1
12 + ν2

)
b0 = 0.

These linear equations have non-trivial solutions if

( 5
12 − ν2)

(
1
12 + ν2

)
− κ2

2 = 0.

Therefore
ν2

2 − 1
3ν2 +

(
κ2

2 − 5
144

)
= 0,

so that
ν2 = 1

6 ± 1
4
√
(1− 16κ2

2 ),

where it is required that κ2 <
1
4 . Hence 2π periodic solutions occur on the curves

ν ≈ 1± 1
4
√
(1− 16κ2

2 ).
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• 9.13 Solve Meissner’s equation ẍ + (α + βf (t))x = 0 where f (t) = 1, 0 ≤ t < π ;
f (t) = −1, π ≤ t < 2π and f (t + 2π) = f (t) for all t . Find the conditions on α,β,
for periodic solutions by putting x(0) = x(2π), ẋ(0) = ẋ(2π) and by making x and ẋ
continuous at t = π . Find a determinant equation for α and β.

9.13. Meissner’s equation is
ẍ + [α + βf (t)]x = 0,

where

f (t) = f (t + 2π), f (t) =
{

1 0 ≤ t < π
−1 π ≤ t < 2π

.

Assume that α + β > 0 and α − β > 0. In the interval (0,π), Meissner’s equation is

ẍ + (α + β)x = 0,

which has the general solution

x1 = A cos λt + B sin λt , λ = √(α + β).

In the interval (π , 2π), the equation

ẍ + (α − β)x = 0,

has the general solution

x2 = C cosµt +D sinµt ,µ = √(α − β).

Periodicity occurs if

x1(π) = x2(π), ẋ1(π) = ẋ2(π), x1(0) = x2(2π), ẋ1(0) = ẋ2(2π).

These conditions become

A cos λπ + B sin λπ = C cosµπ +D sinµπ ,

−Aλ sin λπ + Bλ cos λπ = −Cµ sinµπ +Dµ cosµπ ,

A = C cos 2µπ +D sin 2µπ ,

Bλ = −Cµ sin 2µπ +Dµ cos 2µπ .
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These equations have non-trivial solutions for A,B,C,D if

∣∣∣∣∣∣∣∣
cos λπ sin λπ − cosµπ − sinµπ
−λ sin λπ λ cos λπ µ sinµπ −µ cosµπ

1 0 − cos 2µπ − sin 2µπ
0 λ µ sin 2µπ −µ cos 2µπ

∣∣∣∣∣∣∣∣
= 0.

Expansion of the determinant leads to

2λµ− 2λµ cos λπ cosµπ + (λ2 + µ2) sin λπ sinµπ = 0,

or √
(α2 − β2)[1− cos

√
(α + β)π cos

√
(α − β)π ]

+α sin
√
(α + β) sin

√
(α − β)π = 0. (i)

If β = 0, then cos 2
√
απ = 1. Therefore the critical values on the α axis occur at αn2, (n =

0, 1, 2, . . . ). The general solutions of (i) are straight lines β = ±α along which 2π periodic
solutions occur (subject to the restriction α > β).

9.14 By using the harmonic balance method of Chapter 4 in NODE, show that the van der
Pol equation with parametric excitation,

ẍ + ε(x2 − 1)ẋ + (1+ β cos t)x = 0

has a 2π -periodic solution with approximately the same amplitude as the unforced van der
Pol equation.

9.14. The van der Pol equation with parametric excitation is

ẍ + ε(x2 − 1)ẋ + (1+ β cos t)x = 0.

Let x ≈ c + a cos t + b sin t . Then

ẍ + ε(x2 − 1)ẋ + (1+ β cos t)x

= (−a cos t − b sin t)+ ε[(c + a cos t + b sin t)2 − 1](−a sin t + b cos t)

+ (1+ β cos t)(c + a cos t + b sin t)

= (c + 1
2aβ)+ [cβ + bε(−1+ 1

4 (a
2 + b2)+ c2)] cos t

+aε[1− 1
4 (a

2 + b2)− c2] sin t + (higher harmonics)
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The approximation is a solution if the constant term and the coefficients of cos t and sin t are
zero, that is, if

c + 1
2aβ = 0,

cβ + bε(−1+ 1
4 (a

2 + b2)+ c2) = 0,

aε[1− 1
4 (a

2 + b2)− c2] = 0.

The only non-trivial solution of these equations is a = c = 0 and b2 = 4. The solution becomes
x ≈ 2 sin t , which has amplitude 2, the same as that for the unforced van der Pol equation.

• 9.15 The male population M and female population F for a bird community have a
constant death rate k and a variable birth rate µ(t) which has period T , so that

Ṁ = −kM + µ(t)F , Ḟ = −kF + µ(t)F .

The births are seasonal, with rate

µ(t) =
{
δ, 0 < t ≤ ε;
0, ε < t ≤ T .

Show that periodic solutions of period T exist for M and F if kT = δε.

9.15. The male (M) and female (F ) population sizes satisfy

Ṁ = −kM + µ(t)F , Ḟ = −kF + µ(t)F ,

where µ(t), defined by

µ(t) =
{
δ 0 < t ≤ ε
0 ε < t ≤ T ,

is periodic with period T . The equation for F has the general solution

F =
{
Ae(δ−k)t 0 < t ≤ ε
Be−kt ε < t ≤ T .

The function is periodic and continuous if it is continuous at t = ε, and if F(0) = F(T ).
Therefore

Ae(δ−k)ε = Be−kε, or, Aeδε = B, (i)

A = Be−kT . (ii)

From (i) and (ii) if e−kT+δε = 1, or if kT = δε.
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The equation for M is

Ṁ + kM =
{
δAe(δ−k)t 0 < t ≤ ε
0 ε < t ≤ T

The general solution is

M =
{
Ce−kt + Ae(δ−k)t 0 < t ≤ ε
De−kt ε < t ≤ T .

Continuity and periodicity imply

Ce−kε + Ae(δ−k)ε = De−kε, (iii)

C + A = De−kT . (iv)

If kT = δε, then C(1− eδε) = 0. Hence C = 0, and eqns (iii) and (iv) are satisfied. If kT = δε
then both F and M are periodic.

• 9.16 A pendulum bob is suspended by a light rod of length a, and the support is
constrained to move vertically with displacement ζ(t). Show that the equation of motion is

aθ̈ + (g + ζ̈ (t)) sin θ = 0,

where θ is the angle of inclination to the downward vertical. Examine the stability of the
motion for the case when ζ(t) = c sinωt , on the assumption that it is permissible to put
sin θ ≈ θ .

9.16. The suspended pendulum is shown in Figure 9.3: the position of the bob is given by the
coordinates (x, y), and R is the reaction in the rod. The upward displacement of the support
is given by ζ(t). In terms of θ , x = a sin θ and y = ζ(t) − a cos θ . The horizontal and vertical
equations of motion are

−R sin θ = mẍ = m[a cos θ θ̈ − a sin θ θ̇2],

R cos θ −mg = mÿ = m[ζ̈ + a sin θ θ̈ + a cos θ θ̇2].

Elimination of R leads to

−g sin θ = ζ̈ sin θ + aθ̈ or aθ̈ + (g + ζ̈ ) sin θ = 0.

If ζ = c sinωt and sin θ ≈ θ , then

aθ̈ + (g − cω2 sinωt)θ ≈ 0.
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x

y

(x, y)

mg

R

ς(t) = csinvt

�

Figure 9.3 Problem 9.16:

To express this equation in standard Mathieu form, let ωt = τ − 1
2π , where τ is a new variable,

so that

θ ′′ + (α + β cos τ)θ = 0, α = g

aω2 ,β = c

a
.

The stability regions are indicated in the parameter diagram shown in Figure 9.3 (in NODE).
The 2π periodic boundaries pass through the points

α = g

aω2 = n2, β = 0, (n = 0, 1, 2, . . .),

and the 4π periodic boundaries pass through

α = g

aω2 = (n+ 1
2 )

2, β = 0, (n = 0, 1, 2, . . .).

• 9.17 A pendulum, with bob of mass m and rigid suspension of length a, hangs from a
support which is constrained to move with vertical and horizontal displacements ζ(t) and
η(t) respectively. Show that the inclination θ of the pendulum satisfies the equation

aθ̈ + (g + ζ̈ ) sin θ + η̈ cos θ = 0.

Let ζ = A sinωt and η = B sinωt , where ω = √(g/a). Show that after linearizing this
equation for small amplitudes, the resulting equation has a solution θ = −(8B/A) cosωt

9.17. The pendulum is shown in Figure 9.4; the position of the bob is given by the coordinates
(x, y), and R is the reaction in the rod. The upward displacement of the support is ζ(t) and its
horizontal displacement is η(t). In terms of θ , x = η(t) + a sin θ and y = ζ(t) − a cos θ . The
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Figure 9.4 Problem 9.17: Pendulum with horizontal forcing.

horizontal and vertical equations of motion are

−R sin θ = m(η̈ + ẍ) = m(η̈ − a sin θ θ̇2 + a cos θ θ̈),

R cos θ −mg = m(ζ̈ + ÿ) = m(ζ̈ + a cos θ θ̇2 + a cos θ θ̈).

Elimination of R leads to
aθ̈ + (g + ζ̈ ) sin θ + η̈ cos θ = 0.

Assume that |θ | is small, so that sin θ ≈ θ and cos θ ≈ 1. Then, if ω = √(g/a), ζ = A cosωt
and η = B sin 2ωt , the approximate equation of motion is

aθ̈ + g[1− (A/a) sinωt]θ = (8Bg/a) sinωt cosωt .

Apply the change of scale ωt = τ : then θ satisfies

θ ′′ +
(

1− A

a
sin τ

)
θ = 8B

a
sin τ cos τ . (i)

If θ = −(8B/A) cos τ , then

θ ′′ +
(

1− A

a
sin τ

)
θ =

(
8B
A

)
cos τ −

(
1− A

a
sin τ

)(
8B
A

)
cos τ

= 8B
a

sin τ cos τ

which implies that θ = −(8B/A) cos τ is a particular solution.



9 : Stability by solution perturbation: Mathieu’s equation 437

The stability of solutions of eqn (i) is the same as the stability of solutions of the homogeneous
equation (see, NODE, Theorem 8.1)

θ ′′ +
(

1− A

a
sin τ

)
θ = 0.

Express the equation in standard Mathieu form by the transformation τ = s − 1
2π . Therefore

d2θ

ds2 + (α + β cos s)θ = 0,

where α = 1 and β = A/a. From Figure 9.3 (in NODE) it can be seen that solutions will be
unstable.

• 9.18 The equation ẍ + (1
4 − 2εb cos2 1

2 t)x + εx3 = 0 has the exact solution x∗(t) =√
(2b) cos 1

2 t . Show that the solution is stable by constructing the variational equation.

9.18. Consider the equation

ẍ + (1
4 − 2εb cos2 1

2 t)x + εx3 = 0.

Let x∗ = √(2b) cos 1
2 t . Then

ẍ∗ + (1
4 − 2εb cos2 1

2 t)x
∗ + εx∗3 = −1

4
√
(2b) cos 1

2 t

+
[

1
4 − 2εb cos2 1

2 t
]√

(2b) cos 1
2 t

+ ε(2b) 3
2 cos3 1

2 t = 0

which implies that x∗ ia an exact solution.
Let x = x∗ + ξ . Then the linearized variational equation is given by

ξ̈ + (1
4 − 2εb cos2 1

2 t)ξ + 3εx∗2ξ = 0,

or
ξ̈ + (1

4 + 2εb + 2εb cos t)ξ = 0.

In the standard Mathieu format ξ satisfies

ξ̈ + (α + β cos t)ξ = 0,

where α = 1
4 +2εb and β = 2εb. Note that α = 1

4 +β. In Figure 9.3 (in NODE), the boundary
for 4π periodic solutions passes through α = 1

4 , β = 0. From Section 9.4, the boundaries are
approximately given by the lines α = 1

4 ± 1
2β. Therefore we expect the solutions to be stable.
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• 9.19 Consider the equation ẍ+ (α+β cos t)x = 0, where |β| � 1 and α = 1
4 +βc. In the

unstable region near α = 1
4 (NODE, Section 9.4) this equation has solutions of the form

c1eσ tq1(t) + c2e−σ tq2(t), where σ is real, σ > 0 and q1, q2 have period 4π . Construct the
equation for q1, q2, and show that σ ≈ ±β√(1

4 − c2).

9.19. In the equation
ẍ + (α + β cos t)x = 0,

where |β| � 1 and α = 1
4 + βc, let x = eσ tq1(t). Then q1 satisfies

q̈1 + 2σ q̇1 + (σ 2 + 1
4 + βc + β cos t)q1 = 0.

Now assume that, approximately, q1 = a0 cos 1
2 t+b0 sin 1

2 t , that is, q1 is 4π periodic. Therefore

(σb0 + σ 2a0 + βca0 + 1
2βa0) cos 1

2 t

+ (−σa0 + σ 2b0 + βcb0 − 1
2βb0) sin 1

2 t + (higher harmonics) = 0

The coefficients of the first harmonics are zero if, and only if,

(σ 2 + βc + 1
2β)a0 + σb0 = 0,

−σa0 + (σ 2 + βc − 1
2β)b0 = 0.

These equations have non-trivial solutions for a0 and b0 if

∣∣∣∣ σ 2 + βc + 1
2β σ

−σ σ 2 + βc − 1
2β

∣∣∣∣ = 0.

so that
σ 4 + (2βc + 1)σ 2 − β2(1

4 − c2) = 0.

Given that |β| is small it follows that

σ 2 ≈ β2(1
4 − c2),

or
σ = ±β√(1

4 − c2).

The equation for q2 is

q̈2 − 2σ q̇2 + (σ 2 + 1
4 + βc + β cos t)q2 = 0.

However it leads to the same result for σ .
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• 9.20 By using the method of NODE, Section 9.5 show that a solution of the equation

ẍ + ε(x2 − 1)ẋ + x = � cosωt ,

where |ε| � 1, ω = 1+ εω1, of the form x∗ = r0 cos(ωt + α) (α constant) is asymptotically
stable when 4ω2

1 + 3
16r

4
0 − r2

0 + 1 < 0. (Use the result of Problem 9.19.)

9.20. Consider the forced van der Pol equation

ẍ + ε(x2 − 1)ẋ + x = � cosωt , (i)

where |ε| � 1 and ω = 1+ εω1. Let x = x∗ + ξ , where x∗ = r0 cos(ωt + α). Then

ẍ∗ + ξ̈ + ε[(x∗ + ξ)2 − 1](ẋ∗ + ξ̇ )+ x + ξ = � cosωt .,

where

ẍ∗ + ε(x∗2 − 1)ẋ∗ + x∗ = � cosωt ,

Therefore the linearized equation for ξ is

ξ̈ + ε(x∗2 − 1)ξ̇ + (1+ 2εx∗ẋ∗)ξ = 0. (ii)

In the coefficients

x∗2 = r2
0 cos2(ωt + α) = 1

2r
2
0 [1+ cos 2(ωt + α)],

x∗ẋ∗ = −r2
0ω cos(ωt + α) sin(ωt + α) = −1

2r
2
0ω sin 2(ωt + α).

Therefore (ii) becomes

ξ̈ + ε[(1
2r

2
0 − 1)+ 1

2r
2
0 cos 2(ωt + α)]ξ̇ + [1− εr2

0ω sin 2(ωt + α)]ξ = 0. (iii)

Now let τ = 2(ωt + α) so that (iii) is transformed into

ξ ′′ + ε
[(
r2
0 − 2

4ω

)
+ r2

0

4ω
cos τ

]
ξ ′ +

(
1

4ω2 −
εr2

0

4ω
sin τ

)
ξ = 0. (iv)

Use the perturbation ω = 1+ εω1 and put τ = 1
2π + s so that after expanding in powers of the

small parameter ε to order ε, (iv) is approximately

d2ξ

ds2 + ε[(1
4r

2
0 − 1

2 )− 1
4r

2
0 sin s]dξ

ds
+ [14 (1− 2εω1)− 1

4εr
2
0 cos s]ξ = 0.
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Remove the first derivative by the further change of variable

ξ = ζ exp[−1
2ε

∫
(1

4r
2
0 − 1

2 − 1
4r

2
0 sin s)ds]

= ζ exp[−1
2ε][(1

4r
2
0 − 1

2 )s + 1
4r

2
0 cos s].

Finally ζ satisfies

d2ζ

ds2 + [14 (1− 2εω1)− 1
8εr

2
0 cos s]ξ = 0.

This is Mathieu’s equation with

α = 1
4 (1− 2εω1), β = −1

8εr
2
0 .

For small ε, α is close to the critical value 1
4 . In the notation of (9.53),

σ 2 = 1
4
β2 −

(
α − 1

4

)2

= 1
256

ε2r4
0 −

1
4
ε2ω2

1.

Since the damping in the final transformation is −1
2ε(

1
4r

2
0 − 1

2 ), stability occurs if

σ 2 < [12ε(1
4r

2
0 − 1

2 )]2,

or

1
256r

4
0 − 1

4ω
2
1 <

1
16

(
1
4r

4
0 − r2

0 + 1
)

,

or

4ω2
1 + 3

16r
4
0 − r2

0 + 1 < 0.

• 9.21 The equation ẍ + αx + εx3 = εγ cosωt has the exact subharmonic solution x =
(4γ )1/3 cos 1

3ωt , when

ω2 = 9
(
α + 3

4
1
3
εγ 2/3

)
.

If 0 < ε � 1, show that the solution is stable.
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9.21. Let x = (4γ ) 1
3 cos 1

3ωt . Then

ẍ + αx + εx3 − εγ cosωt

= −1
9ω

2(4γ )1/3 cos 1
3ωt + α(4γ )1/3 cos 1

3ωt + 4εγ cos3 1
3ωt − εγ cosωt

= [−1
9ω

2(4γ )1/3 + α(4γ )1/3] cos 1
3ωt + 4εγ 1

4 (3 cos 1
3ωt + cosωt)− εγ cosωt

= [−1
9ω

2(4γ )1/3 + α(4γ )1/3 + 1
3εγ ] cos 1

3ωt ,

and this is zero if

−1
9ω

2(4γ )1/3 + α(4γ )1/3 + 1
3εγ = 0,

or

ω2 = 9
[
α + 3εγ

(4γ )1/3

]
. (i)

Therefore x = x∗ = (4γ )1/3 cos 1
3ωt is an exact solution subject to condition (i).

Let x = x∗ + ξ . Then the differential equation becomes

ẍ∗ + ξ̈ + α(x∗ + ξ)+ ε(x∗ + ξ)3 = εγ cosωt .

It follows that the linearized equation for ξ is

ξ̈ + αξ + 3x∗2ξ = 0,

or

ξ̈ + [α + 3ε(4γ )2/3 cos2 1
3ωt]ξ = 0.

or

ξ̈ + [α + 3
2ε(4γ )

2/3 + 3
2ε(4γ )

2/3 cos 2
3ωt]ξ = 0.

Let τ = 2
3ωt . Then ξ satisfies

ξ ′′ + 9
4ω2

[
α + 3

2
ε(4γ )2/3 + 3

2
ε(4γ )2/3 cos

2
3
τ

]
ξ = 0.

Now assuming that 0 < ε � 1, expand 1/ω2 in powers of ε. To order ε the equation is
approximately

ξ ′′ +
[{

1
4
+ 3(4γ )2/3ε

16α

}
+ 3

8α
(4γ )2/3ε cos τ

]
ξ = 0.
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This equation is in standard Mathieu form

ξ ′′ + (α1 + β1 cos τ)ξ = 0,

where

α1 = 1
4
+ 3(4γ )2/3ε

16α
,

1
4
adβ1 = 3

8α
(4γ )2/3ε.

It can be checked that α1 = 1
4 + 1

2β1. From Section 9.4, solutions lie on the boundary curve for
4π periodic solutions (see Figure 9.3 in NODE).

• 9.22 Analyse the stability of the equation ẍ+εxẋ2+x = � cosωt for small ε: assume � =
εγ . (First find approximate solutions of the form a cosωt+b sinωt by the harmonic balance
method of Chapter 4, then perturb the solution by the method of NODE, Section 9.4.)

9.22. Consider the equation
ẍ + εxẋ2 + x = � cosωt .

Use harmonic balance with x = a cosωt + b sinωt . The first harmonics balance if

a(1− ω2)+ 1
4εaω

2(a2 + b2) = �,

b(1− ω2)+ 1
4εbω

2(a2 + b2) = 0.

It follows that
b = 0, a(1− ω2)+ 1

4εω
2a3 = �. (i)

Let the unperturbed solution be given approximately by x = x∗ = a cosωt , where a is given by
(i), and let the perturbation be x = x∗ + ξ . Then

ẍ∗ + ξ̈ + ε(x∗ + ξ)(ẋ∗ + ξ)2 + x∗ + ξ = � cosωt .

The linearized equation for ξ is, therefore,

ξ̈ + ε(ẋ∗2ξ + 2x∗ẋ∗ξ̇ )+ ξ = 0,

or
ξ̈ + 2εx∗ẋ∗ξ̇ + (1+ εẋ∗2)ξ = 0,

or

ξ̈ − εa2ω sin 2ωt ξ̇ + (1+ 1
2εa

2ω2 − 1
2a

2ω2 cos 2ωt)ξ = 0.
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To remove the ξ̇ term, let

ξ = η exp
[

1
2εa

2ω
∫

sin 2ωtdt
]
= η exp

[
−1

4εa
2 cos 2ωt

]
= ηeh(t),

say. Since the exponential term is periodic, stability is not affected. Hence

ξ̇ = eh(t)[η̇ + 1
2εa

2ω sin 2ωt η],

and
ξ̈ = eh(t)[η̈ + εa2ω sin 2ωt η̇ + εa2ω cos 2ωt η +O(ε2)].

Elimination of ξ leads to

η̈ + (1+ 1
2εω

2a2 + 1
2εω

2a2 cos 2ωt)η = 0

to order ε. To obtain the standard Mathieu form, let τ = 2ωt , so that

η′′ + (α + β cos τ)η = 0,

where

α = 2+ εa2ω2

8ω2 ,β = 1
8
εa2ω2. (ii)

Assume that � = εγ . Then from (i)

a(1− ω2)+ 1
4εa

3 = εγ .

Therefore

ω2 = 1+
(

1
4
a2 − γ

a

)
ε +O(ε2).

Consequently

α = 1
4
+

(
3a2

16
+ γ

4a

)
ε +O(ε2), β = 1

8
a2ε +O(ε2).

From NODE, Section 9.5, (for small ε) instability occurs in the interval

1
4 − 1

2β < α <
1
4 + 1

2β,

that is, if
1
4
− 1

16
a2ε <

1
4
+

(
3a2

16
− γ

4a

)
ε <

1
4
+ 1

16
a2ε,

or, −a3 < γ < a3.
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• 9.23 The equation ẍ + x + εx3 = � cosωt , (ε � 1) has an approximate solution x∗ =
a cosωt where (eqn (7.10)) 3

4εa
3 − (ω2 − 1)a − � = 0. Show that the first variational

equation (Section 9.4) is ξ̈ + {1 + 3εx∗2(t)}ξ = 0. Reduce this to Mathieu’s equation and
find conditions for stability of x∗(t) if � = εγ .

9.23. By harmonic balance it can be shown that the equation

ẍ + x + εx3 = � cosωt

has the approximate solution x∗ = a cosωt where

3
4
εa3 − (ω2 − 1)a − � = 0. (i)

Let x = x∗ + ξ . Then the linearized equation for ξ is

ξ̈ + (1+ 3εx∗2)ξ = 0,

or
ξ̈ + (1+ 3

2εa
2 + 3

2εa
2 cos 2ωt)ξ = 0.

Let τ = 2ωt so that ξ satisfies the standard Mathieu equation

ξ ′′ + (α + β cos τ)ξ = 0,

where

α = 1+ 3εa2

4ω2 , β = 3εa2

8ω2 . (ii)

We now expand ω2 in powers of ε using (i). Therefore

ω2 = 1+
(

3a2

4
− γ

a

)
ε +O(ε2),

so that

α = 1
4

[
1+

(
9
4
a2 + γ

a

)
ε +O(ε2)

]
, β = 3

8
a2ε +O(ε2).

Instability occurs where
1
4 − 1

2β < α <
1
4 + 1

2β,

that is, where
−3a3 < γ < −3

2a
3.

From Figure 9.3 (in NODE), stability will occur if γ takes values just outside this interval.
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• 9.24 The equation ẍ + x − 1
6x

3 = 0 has an approximate solution a cosωt where ω2 =
1 − 1

8a
2, a � 1 (Example 4.10). Use the method of NODE, Section 9.4 to show that the

solution is unstable.

9.24. Using harmonic balance, it can be shown that the equation

ẍ + x − 1
6x

3 = 0

has the approximate solution x∗ = a cosωt , where

ω2 = 1− 1
8a

2. (i)

Let x = x∗ + ξ . Then the linearized equation for ξ is

ξ̈ + (1− 1
2x
∗2)ξ = 0, or ξ̈ + (1− 1

2a
2 cos2 ωt)ξ = 0,

or

ξ̈ + (1− 1
4a

2 − 1
4a

2 cos 2ωt)ξ = 0.

Let τ = 2ωt so that ξ satisfies the standard Mathieu equation

ξ ′′ + (α + β cos τ)ξ = 0,

where

α = 4− a2

16ω2 ,β = − a2

16ω2 .

Assume that 0 < a � 1. Then, using (i)

α = 1
4 − 1

32a
2 +O(a4),β = − 1

16a
2 +O(a4). (ii)

To order a4, it follows from (ii) that α = 1
4 ± 1

4β, which means that a period 4π solution exists.
However the other solution is unbounded, which implies that the general solution is unstable.
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• 9.25 Show that a fundamental matrix of the differential equation ẋ = Ax, where

A(t) =
[

β cos2 t − sin2 t 1− (1+ β) sin t cos t
−1− (1+ β) sin t cos t −1+ (1+ β) sin2 t

]

is

�(t) =
[

eβt cos t e−t sin t
−eβt sin t e−t cos t

]

Find the characteristic multipliers of the system. For what value of β will periodic solutions
exist?

Find the eigenvalues of A(t) and show that they are independent of t . Show that for
0 < β < 1 the eigenvalues have negative real parts. What does this problem indicate about
the relationship between the eigenvalue of a linear system with a variable coefficients and
the stability of the zero solution?

9.25. Consider the homogeneous equation

ẋ = A(t)x, (i)

where

A(t) =
[

β cos2 t − sin2 t 1− (1+ β) sin t cos t
−1− (1+ β) sin t cos t −1+ (1+ β) sin2 t

]
.

Let

φ1(t) =
[

eβt cos t
−eβt sin t

]
.

Then

A(t)φ1(t) =
[

β cos2 t − sin2 t 1− (1+ β) sin t cos t
−1− (1+ β) sin t cos t −1+ (1+ β) sin2 t

] [
eβt cos t
−eβt sin t

]

=
[

eβt (β cos t − sin t)
eβt (−β sin t − cos t)

]
= φ̇1(t)

Similarly if

φ2(t) =
[

e−t sin t
e−t cos t

]
,

Then

A(t)φ2(t) = φ̇2(t).
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The solution

�(t) = [
φ1(t) φ2(t)

] = [
eβt cos t e−t sin t
−eβt sin t e−t cos t

]
(ii)

is a fundamental matrix of (i).
The constant matrix E is given by

E = �−1(0)�(2π) =
[

1 0
0 1

] [
e2πβ 0

0 e−2π

]
=

[
e2πβ 0

0 e−2π

]
.

The characteristic numbers of E are obviously µ1 = e2πβ and µ2 = e−2π .
From (ii) it can be seen that periodic solutions only exist for β = 0.
The eigenvalues of A(t) are given by

A(t) =
∣∣∣∣ β cos2 t − sin2 t − λ 1− (1+ β) sin t cos t
−1− (1+ β) sin t cos t −1+ (1+ β) sin2 t − λ

∣∣∣∣ .

The eigenvalues are (it is helpful to use a symbolic algebra program)

λ1, λ2 = 1
2 {−1+ β ±√[(β + 3)(β − 1)]},

which are independent of t . Figure 9.5 shows how the real parts of λ1 and λ2 vary in terms of
β. The eigenvalues coincide at β = −3 and at β = 1, and their real parts are the same between
these values of β. It might be inferred that stability of solutions would be indicated by the sign
of the real part of these eigenvalues. Note that λ1 has a negative real part for β < 1, and λ2
has a negative real part for all β except at β = 1. However, (ii) indicates that solutions can be
unstable for 0 < β < 1. Therefore the signs of the eigenvalues of a linear system with variable
coefficients cannot in general indicate stability.

–4 –3 –2 –1 1 2

–4

–3

–2

–1

1

2Re[l2]

Re[l1]

Re[l1], Re[l2]

b

Figure 9.5 Problem 9.25: Re[λ1] and Re[λ2] plotted against β.
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• 9.26 Find a fundamental matrix for the system ẋ = A(t)x where

A(t) =
[

sin t 1
− cos t + cos2 t − sin t

]
.

Show that the characteristic multipliers of the system are µ1 = e2π and µ2 = e−2π . By
integration confirm that

exp(
∫ 2π

0
tr{A(s)}ds) = µ1µ2 = 1.

9.26. The system

ẋ = A(t)x, A(t) =
[

sin t 1
− cos t + cos2 t − sin t

]
, (i)

where x = [x1, x2]T , is equivalent to

ẋ1 = x1 sin t + x2, ẋ2 = (− cos t + cos2 t)x1 − x2 sin t .

Elimination of x2 results in the equation

ẍ1 − x1 = 0,

which has the general solution
x1 = Aet + Be−t .

It follows that
x2 = ẋ1 − x1 sin t = A(1− sin t)et − B(1+ sin t)e−t .

A fundamental matrix is therefore

�(t) =
[

et e−t
(1− sin t)et −(1+ sin t)e−t

]
.

Since A(t) has period 2π , we can define E as

E = �−1(0)�(2π) = 1
2

[
1 1
1 −1

] [
e2π e−2π

e2π −e−2π

]
=

[
e2π 0
0 e−2π

]
.

Obviously the eigenvalues of E are µ1 = e2π and µ2 = e−2π .
From (i), tr{A(s)} = sin t − sin t = 0. Therefore

exp

(∫ 2π

0
tr{A(s)}ds

)
= e0 = 1 = µ1µ2.



10
Liapunov methods for
determining stability of the
zero solution

• 10.1 Find a a simple V orU function (NODE, Theorems 10.5, 10.11 or 10.13) to establish
the stability or instability respectively of the zero solutions of the following equations:

(i) ẋ = −x + y − xy2, ẏ = −2x − y − x2y;

(ii) ẋ = y3 + x2y, ẏ = x3 − xy2;

(iii) ẋ = 2x + y + xy, ẏ = x − 2y + x2 + y2;

(iv) ẋ = −x3 + y4, ẏ = −y3 + y4;

(v) ẋ = sin y, ẏ = −2x − 3y;

(vi) ẋ = x + e−y−1, ẏ = x;

(vii) ẋ = ex − cosy, ẏ = y;

(viii) ẋ = sin(y + x), ẏ = − sin(y − x);
(ix) ẍ = x3;

(x) ẋ = x + 4y, ẏ = −2x − 5y;

(xi) ẋ = −x + 6y, ẏ = 4x + y.

10.1. In each case the origin is an equilibrium point of the autonomous system.

(i) ẋ = −x + y − xy2, ẏ = −2x − y − x2y. Try the Liapunov function V (x, y) = x2+ y2. Then

V̇ = ∂V

∂x
ẋ + ∂V

∂y
ẏ

= 2x(−x + y − xy2)+ 2y(−2x − y − x2y)

= −2x2 + 2xy − x2y2 − 2xy − 2y2 − 2x2y2

= −2(x + y)2 − 4x2y2 ≤ 0,

for all x, y. Hence the origin is stable by Theorem 10.11.
We can cross-check this result by linearization. Near the origin

ẋ ≈ −x + y, ẏ ≈ −2x − y.
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The eigenvalues are given by ∣∣∣∣ −1− λ 1
−2 −1− λ

∣∣∣∣ = 0,

that is, λ = −1± 2i, which confirms the stability.

(ii) ẋ = y3 + x2y, ẏ = x3 − xy2. Let U(x, y) = xy. Consider the conditions of Theorem 13.
Then

U(0, 0) = 0, U(k, k) > 0 for every k > 0,

U̇ = ∂U

∂x
ẋ + ∂u

∂y

ẏ = y(y3 + x2y)+ x(x3 − xy2) = x4 + y4 > 0,

for (x, y) �= (0, 0). Therefore the origin is unstable.

(iii) ẋ = 2x + y + xy, ẏ = x − 2y + x2 + y2. The linearized equations near the origin are

ẋ ≈ 2x + y, ẏ ≈ x − 2y.

Its eigenvalues are given by

∣∣∣∣∣ 2− λ 1
1 −2− λ

∣∣∣∣∣ = λ2 − 5 = 0.

Therefore λ = ±√5, which implies instability at the origin (a saddle).
This can be proved by choosing U(x, y) = xy. Then

U(0, 0) = 0, U(k, k) > 0 for every k > 0,

U̇ = ∂U

∂x
ẋ + ∂u

∂y
ẏ = y(2x + y + xy)+ x(x − 2y + x2 + y2)

= x2 + y2 + 2x2y + x3

The function U̇ has a relative minimum at the origin since, if q(x, y) = x2 + y2 + 2x2y + x3,
then

qxx(0, 0) = qyy(0, 0) = 2, qxy(0, 0) = 0.

By the usual conditions for functions of two variables, q(x, y) has a relative minimum at
(0, 0) if

qxx(0, 0) = 2 > 0, and �(0, 0) = qx,x(0, 0)qy,y(0, 0)− qxy(0, 0)2 = 4 > 0.

Therefore the origin is unstable.
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(iv) ẋ = −x3 + y4, ẏ = −y3 + y4. Let V (x, y) = x2 + y2. Then

V̇ = ∂V

∂x
ẋ + ∂V

∂y
ẏ = 2(−x4 − y4 + xy4 + y5).

We can argue that for |x| and |y| sufficiently small the term −2(x4 + y4) dominates over the
remainder 2y4(x + y). so that V̇ < 0 in some neighbourhood of the origin which implies that
the origin is stable.

To find such a neighbourhood N can be more complicated. In this case try using polar
coordinates x = r cos θ , y = r sin θ . Then

V̇ = −2r4(cos4 θ + sin4 θ)+ 2r5 sin4 θ(cos θ + sin θ).

Since
(cos2 θ + sin2 θ)2 = 1,

then
cos4 θ + sin4 θ = 1− 2 sin2 θ cos2 θ = 1− 1

2 sin2 2θ .

Therefore
1
2 ≤ cos4 θ + sin4 θ ≤ 1.

Finally
V̇ ≤ −r4 + 2r5 sin4 θ cos θ ≤ −r4 + 2r5 ≤ 0,

if r ≤ 1
2 . Hence we could choose the interior of the the circle radius 1

2 as the neighbour-
hood N .

(v) ẋ = sin y, ẏ = 2x−3y. Approximate to the sine function near the origin: sin y = y+O(y3)

as x → 0. We can test the origin by linearization which is

ẋ ≈ y, ẏ = −2x − 3y.

Hence in the standard notation a = 0, b = 1, c = −2, d = −3. The usual parameters are
p = −3 < 0, q = 2 > 0, � = p2 − 4q = 1 > 0, which imply that the origin is a stable node.

An appropriate Liapunov function is given by NODE, (10.27):

V (x, y) = −{(dx − by)2 + (cx − ay)2 + q(x2 + y2)}/(2pq)
= 1

12
{(−3x − y)2 + 4x2 + 2(x2 + y2)}

= 1
4 (5x

2 + 2xy + y2)

Therefore

V̇ = ∂V

∂x
ẋ + ∂V

∂y
ẏ = −x2 − y2.

and the origin is stable.
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(vi) ẋ = x + e−y − 1, ẏ = x. The linearized equations are

ẋ ≈ x − y, ẏ = x.

Let U(x, y) = αx2 + 2βxy + γ y2. Then

U̇ = ∂U

∂x
ẋ + ∂U

∂y
ẏ

= 2(αx + 2βy)(x − y)+ 2(βx + γ y)x
= 2(α + β)x2 + 2(β − α − γ )xy − 2βy2

= x2 + y2

if
α + β = 1

2 , β − α − γ = 0, β = −1
2 .

Therefore α = 1 and γ = −3
2 , and

U(x, y) = x2 − xy − 3
2y

2 = (x − 1
2y)

2 − 7
4y

2.

There are points where U(x, y) is positive. Therefore the origin is unstable.

(vii) ẋ = ex − cos y, ẏ = x. The linearized approximation is

ẋ ≈ x, ẏ = x.

Let
U(x, y) = x2 + 2xy − y2.

Then U(1, 0) > 0 and
U̇ = (2x + 2y)x + (2x − 2y)x = 4x2,

which is positive definite. Hence the origin is unstable.

(viii) ẋ = sin(y + x), ẏ = −sin(y − x). The linear approximation is

ẋ ≈ x + y, ẏ ≈ x − y.

The eigenvalues of this system are λ1,2 = ±
√

2. This is essentially the instability case considered
in NODE, Section 10.5. A suitable U function is

U(x, y) = x2

λ1
+ y2

λ2
= 1√

2
(x2 − y2).
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Therefore

U̇ = ∂U

∂x
ẋ + ∂U

∂y
ẏ = √2(x2 + y2),

which is positive definite. Hence the origin is unstable.

(ix) ẍ = x3, or ẋ = y, ẏ = x3. Let U(x, y) = xy. Then

U̇ = y2 + x4,

which is positive definite. Hence the origin is unstable.

(x) ẋ = x + 4y, ẏ = −2x − 5y. This is a linear system with coefficients a = 1, b = 4, c = −2
and d = −5, and parameters p = −4 < 0, q = 3 > 0 and � = 4 > 0. The origin is therefore a
stable node. By NODE, (10.27), a suitable Liapunov function is

V (x, y) = − 1
2pq

[(c2 + d2 + q)x2 − 2(ac + bd)xy + (a2 + b2 + q)y2]

= 1
6 [8x2 + 11xy + 5y2]

We can check that

V̇ = 1
6 [(16x + 11y)(x + 4y)+ (11x + 10y)(−2x − 5y)] = −6x2 − 6y2,

which is negative definite. The origin is stable.

(xi) ẋ = −x + 6y, ẏ = 4x + y. This is a linear system with coefficients a = −1, b = 6, c = 4
and d = 1, and parameters p = 0, q = −25 > 0, � = −100 < 0. The origin is therefore a
saddle. The eigenvalues are λ1,2 = ±5. As in NODE, Section 10.8, apply the change of variable
x = Cu, where

C =
[ −b −b
a − λ1 d − λ2

]
=

[ −6 −6
−4 4

]
.

Then u satisfies u̇ = Du, where is the D is the diagonal matrix given by

D =
[
λ1 0
0 λ2

]
=

[
5 0
0 −5

]
.

Finally, we choose U = u2
1/λ1 + u2

2/λ2 with the result that U̇ = 2u2
1 + 2u2

2. The origin is
therefore unstable.

• 10.2 Show that α may be chosen so that V = x2 + αy2 is a strong Liapunov function for
the system

ẋ = y − sin3 x, ẏ = −4x − sin3 y.
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10.2. For the system (which has an equilibrium point at (0, 0))

ẋ = y − sin3 x, ẏ = −4x − sin3 y,

let V (x, y) = x2 + αy2. Then

V̇ = 2x(y − sin3 x)+ 2αy(−4x − sin3 y) = (2− 8α)xy − 2x sin3 x − 2αy sin3 y.

The xy terms can be eliminated by choosing α = 1
4 . Also, x sin3 x > 0 and y sin3 y > 0 in the

neighbourhood |x| < π , |y| < π . Therefore V (x, y) is a strong Liapunov function, so that the
zero solution is uniformly and asymptotically stable.

• 10.3 Find domains of asymptotic stability for the following systems, using V = x2+y2:

(i) ẋ = −1
2x(1− y2), ẏ = −1

2y(1− x2);

(ii) ẋ = y − x(1− x), ẏ = −x.

10.3. (i) ẋ = −1
2x(1− y2), ẏ = −1

2y(1− x2). The system has five equilibrium points, at (0, 0)
and at all points (±1,±1). The function V (x, y) = x2+ y2 is positive definite for all x, y. Then

V̇ = −x2(1− y2)− y2(1− x2),

which is negative definite in the square |x| < 1, |y| < 1. The zero solution is asymptotically
stable. The largest domain of asymptotic stability, Nµ, is the largest circle in the square, namely,
x2 + y2 = 1.

(ii) ẋ = y− x(1− x), ẏ = −x. The system has one equilibrium point at the origin. The function
V (x, y) = x2 + y2 is positive definite for all x, y. Then

V̇ = 2x[y − x(1− x)] + 2y(−x) = −2x2(1− x) < 0

which is negative definite for x < 1. Therefore the zero solution is asymptotically stable in the
neighbourhood Nµ: x2 + y2 = 1.

• 10.4 Find a strong Liapunov function at (0, 0) for the system

ẋ = x(y − b), ẏ = y(x − a)
and confirm that all solutions starting in the domain (x/a)2 + (y/b)2 < 1 approach the
origin.
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10.4. ẋ = x(y − b), ẏ = y(x − a). The system has two equilibrium points at (0, 0) and (a, b).
For the origin, the inequality in the question suggests that we try the positive definite function

V (x, y) = x2

a2 +
y2

b2 .

Then

V̇ = 2x2

a2 (y − b)+
2y2

b2 (x − a) < 0,

if x < a and y < b. Hence V̇ is negative definite and the zero solution is asymptotically stable.
The largest domain of asymptotic stability is the largest ellipse centred at the origin which
satisfies x ≤ a, y ≤ b, that is,

Nµ:
x2

a2 +
y2

b2 = 1.

• 10.5 Show that the origin of the system

ẋ = xP (x, y), ẏ = yQ(x, y)

is asymptotically stable when P(x, y) < 0, Q(x, y) < 0 in a neighbourhood of the origin.

10.5. ẋ = xP (x, y), ẏ = yQ(x, y). The origin is an equilibrium point. Choose the positive
definite function V (x, y) = x2 + y2. Then, for (x, y) �= (0, 0),

V̇ = 2x2P(x, y)+ 2y2Q(x, y) < 0

in some neighbourhood of the origin if P(x, y) < 0 andQ(x, y) < 0 in the same neighbourhood.
In this case V̇ will be negative definite, which implies that the origin is asymptotically stable.

•10.6 Show that the zero solution of

ẋ = y + xy2, ẏ = x + x2y

is unstable.

10.6. The system
ẋ = y + x3, ẏ = x − y3

has the zero solution x = 0, y = 0. Let U(x, y) = x2 − y2. Then

U̇ = ∂U

∂x
ẋ + ∂U

∂y
ẏ

= 2x(y + x3)− 2y(x − y3) = 2x4 + 2y4,

which is positive definite. Therefore, by NODE, Theorem 10.13, the origin is unstable.
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• 10.7 Investigate the stability of the zero solution of

ẋ = x2 − y2, ẏ = −2xy

by using the function U(x, y) = αxy2 + βx3 for suitable constants α and β.

10.7. The system

ẋ = x2 − y2, ẏ = −2xy

has a solution x = y = 0. Let U(x, y) = αxy2 + βx3. Then

U̇ = ∂U

∂x
ẋ + ∂U

∂y
ẏ

= (αy2 + 3βx2)(x2 − y2)+ 2αxy(−2xy)

= −3(α + β)x2y2 + 3βx4 − αy4

= −3αx4 − αy4,

if β = −α. Choose α to be a negative number, say, α = −1. Then U̇ (x, y) is positive definite.
Theorem 10.13 applies since U(x, 0) = x3 > 0 for every x > 0. Hence the origin is unstable.

• 10.8 Show that the origin of the system

ẋ = −y − x√(x2 + y2), ẏ = x − y√(x2 + y2)

is a centre in the linear approximation, but in fact is a stable spiral. Find a Liapunov function
for the zero solution.

10.8. Consider the system

ẋ = −y − x√(x2 + y2), ẏ = x −√(x2 + y2).

The linear approximation near the origin is

ẋ = −y, ẏ = x,

which are the equations for a centre in the (x, y) phase plane.
To obtain the exact solution switch to polar coordinates (r, θ). Therefore

rṙ = xẋ + yẏ = −(x2 + y2)3/2 = −r3, θ̇ = 1,

so that ṙ = −r2. Hence r = 1/(t + A) and θ = t + B, which means that the phase paths are
stable spirals.
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To prove this by Liapunov’s method, let V (x, y) = x2 + y2. Then

V̇ = ∂V

∂x
ẋ + ∂V

∂y
ẏ = −x2 − y2,

which is negative definite. The implication is that the origin is asymptotically stable.

• 10.9 Euler’s equations for a body spinning freely about a fixed point under no forces are

Aω̇1− (B −C)ω2ω3=0, Bω̇2− (C−A)ω3ω1=0, Cω̇3− (A−B)ω1ω2 = 0,

where A, B and C (all different) are the principal moments of inertia, and (ω1,ω2,ω3) is
the spin of the body in principal axes fixed in the body. Find all the states of steady spin of
the body.

Consider perturbations about the steady state (ω0, 0, 0) by putting ω1 = ω0+x1, ω2 = x2,
ω3 = x3, and show that the linear approximation is

ẋ1 = 0, ẋ2 = C − A
B

ω0x3, ẋ3 = A− B
C

ω0x2.

Deduce that this state is unstable if C < A < B or B < A < C.
Show that

V (x1, x2, x3) = {B(A− B)x2
2 + C(A− C)x2

3} + {Bx2
2 + Cx2

3 + A(x2
1 + 2ω0x1)}2

is a Liapunov function for the case when A is the largest moment of inertia, so that this
state is stable. Suggest a Liapunov function which will establish the stability of the case in
which A is the smallest moment of inertia. Are these states asymptotically stable?

Why would you expect V as given above to be a first integral of the Euler equations?
Show that each of the terms in braces is such an integral.

10.9. The Euler equations in dynamics for a body spinning about a fixed point under no
forces are

Aω̇1 = (B − C)ω2ω3,

Bω̇2 = (C − A)ω3ω1,

Cω̇3 = (A− B)ω1ω2,

where the spin is (ω1,ω2,ω3). Equilibrium occurs where ω̇1 = ω̇2 = ω̇3 = 0, that is where any
pair of ω1, ω2, ω3 are zero (assuming that A, B and C are all different),

Let ω1 = ω0 + x1, ω2 = x2, and ω3 = x3. Then the linear approximation is

ẋ1 ≈ 0, ẋ2 ≈ C − A
B

ω0x3, ẋ3 ≈ A− B
C

ω0x2.

Therefore

x1 = constant, ẍ2 = (C − A)(A− B)ω2
0

BC
x2.

The zero solution is stable if (C − A)(A− B) < 0, and unstable if (C − A)(A− B) > 0.
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Let A > max(B,C), and consider the Liapunov function (this is an example of a function in
three dimensions)

V (x1, x2, x3) = {B(A− B)x2
2 + C(A− C)x2

3} + {Bx2
2 + Cx2

3 + A(x2
1 + 2ω0x1)}2. (i)

Then

V̇ = 4{Bx2
2 + Cx2

3 + A(x2
1 + 2ω0x1)}(x1 + ω0)(B − C)x2x3

+ [2(A− B)x2 + 4x2{Bx2
2 + Cx2

3 + A(x2
1 + 2ω0x1)}]

(C − A)x3(ω0 + x1)+ [2(A− C)x3 + 4x3{Bx2
2 + Cx2

3

+ A(x2
1 + 2ω0x1)}](A− B)x2x2(ω0 + x1)

= 4{Bx2
2 + Cx2

3 + A(x2
1 + 2ω0x1)}[(B − C)+ (C − A)

+ (A− B)]x2x3(ω0 + x1)

= 0

Hence V (x1, x2, x3) is positive definite and V̇ is negative semidefinite, so that the equilibrium
state (ω0, 0, 0) is uniformly stable.

If A is the smallest moment of inertia choose the Liapunov function

V (x1, x2, x3) = {B(B − A)x2
2 + C(C − A)x2

3} + {Bx2
2 + Cx2

3 + A(x2
1 + 2ω0x1)}2.

Since V̇ =0, then the level curves of V coincide with the solutions of the Euler equations. One
conclusion is that the equilibrium states are not asymptotically stable. The second conclusion
is that V must be composed of first integrals of the Euler equations in some manner. Let

F(x1, x2, x3) = {B(A− B)x2
2 + C(A− C)x2

3}.

Then
dF(x1, x2, x3)

dt
= 2{B(A− B)x2ẋ2 + C(A− C)x3ẋ3} = 0,

by (i). Let

G(x1, x2, x3) = {Bx2
2 + Cx2

3 + A(x2
1 + 2ω0x1)}.

Then
dG(x1, x2, x3)

dt
= 2{Bx2ẋ2 + Cx3ẋ3 + A(x1ẋ1 + 2ω0ẋ1)} = 0,

by (i). These results prove that F(x1, x2, x3) = constant and G(x1, x2, x3) = constant are first
integrals of the Euler equations.
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• 10.10 Show that the zero solution of the equation ẍ + h(x, ẋ)ẋ + x = 0 is stable if
h(x, y) ≥ 0 in a neighbourhood of the origin.

10.10. Express the equation as

ẋ = y, ẏ = −h(x, y)y − x.

Consider the Liapunov function V (x, y) = x2 + y2. Then

V̇ = ∂V

∂x
ẋ + ∂V

∂y
ẏ = 2xy + 2y(−h(x, y)− x) = −2y2h(x, y) ≤ 0.

Therefore V̇ is semidefinite, which implies that the zero solution is uniformly stable.

• 10.11 The n-dimension system ẋ = gradW(x) has an isolated equilibrium point at x = 0.
Show that the zero solution is asymptotically stable if W has a local minimum at x = 0.
Give a condition for instability of zero solution.

10.11. Since the n-dimensional system

ẋ = gradW(x)

has an isolated equilibrium point at x = 0, gradW(x) = 0 at the origin. Consider the Liapunov
function V = W . Then V will be positive definite if W has a local maximum at x = 0. The
derivative of V is

V̇ = gradW(x) · ẋ = gradW(x) · gradW(x) > 0,

except at x=0 where V̇ is zero. Therefore the zero solution is asymp- totically stable.
Instability will occur if W is negative in at least one point in every deleted neighbourhood of

the origin. We can then apply NODE, Theorem 10.13 with U = W : as above U̇ will be positive
definite in some neighbourhood of the origin.

• 10.12 A particle of mass m and position vector r = (x, y, z) moves in a potential field
W(x, y, z), so that its equation of motion is mr̈ = −gradW . By putting ẋ = u, ẏ = v,
ż = w, express this in terms of first-order derivatives. Suppose that W has a minimum
at r = 0. Show that the origin of the system is stable, by using the Liapunov function
V = W + 1

2m(u
2 + v2 + w2). What do the level curves of V represent physically? Is the

origin asymptotically stable?
An additional non-conservative force f(u, v,w) is introduced, so that mr̈ = −gradW + f.
Use the Liapunov function to give a sufficient condition for f to be of frictional type.
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10.12. The equation of motion of the particle is

mr̈ = gradW .

Let ẋ = u, ẏ = v, ż = w, and express the equation of motion as the first-order system

ẋ = u, ẏ = v, ż = w, u̇ = −Wx/m, v̇ = −Wy/m, ẇ = −Wz/m,

which has an equilibrium point at (0, 0, 0, 0, 0, 0). Assume that W has a minimum at r = 0,
and consider the Liapunov function

V = W + 1
2m(u

2 + v2 + w2), (i)

which is positive definite. It follows that

V̇ = Wxẋ +Wyẏ +Wzż+Wuu̇+Wvv̇ +Wwẇ = 0. (ii)

Therefore V is a weak Liapunov function, and the zero solution is stable. The level curves of
V are curves of constant energy, which implies that the zero solution cannot be asymptotically
stable.

Suppose that an additional non-conservative force f(u, v,w) is introduced which is a function
of the ‘velocity’ (u, v,w) = (ẋ, ẏ, ż) only, so that

mr̈ = gradW + f.

Consider the same function V given by (i). Then, using (ii),

V̇ = mu · f,

where u = (u, v,w). V is a strong Liapunov function if u · f < 0 in some deleted neighbourhood
of the origin. In this case the zero solution will be asymptotically stable.

• 10.13 Use the test for instability to show that if ẋ = X(x, y), ẏ = Y (x, y) has an equi-
librium point at the origin, then the zero solution is unstable if there exist constants α and
β such that αX(x, y)+ βY(x, y) > 0 in a neighbourhood of the origin except at the origin
where it is zero.

10.13. Consider the system ẋ = X(x, y), ẏ = Y (x, y). Let U(x, y) = αx + βy, which has
some positive values in every neighbourhood of the origin for any values of α and β such that
(α,β) �= (0, 0). Then

U̇ = Uxẋ + Uyẏ = αX(x, y)+ βY(x, y).

If αX(x, y) + βY(x, y) > 0 in a deleted neighbourhood of the origin, then by NODE,
Theorem 11.13, the zero solution is unstable.



10 : Liapunov methods for determining stability of the zero solution 461

• 10.14 Use the result of Problem 10.13 to show that the origin is unstable for each of the
following:

(i) ẋ = x2 + y2, ẏ = x + y;

(ii) ẋ = y sin y, ẏ = xy + x2;

(iii) ẋ = y2m, ẏ = x2n (m, n positive integers).

10.14. We use the result from Problem 10.13 with U(x, y) = αx + βy.

(i) ẋ = x2 + y2, ẏ = x + y. Put α = 1 and β = 0. Then

U̇ = αX(x, y)+ βY(x, y) = x2 + y2 > 0,

for (x, y) �= (0, 0). Since U̇ is positive definite, the origin is unstable.

(ii) ẋ = y sin y, ẏ = xy + x2. Then, expanding the sine function,

U̇ = αy sin y + β(xy + x2) ≈ αy2 + β(xy + x2)

= β
(
x + 1

2y
)2 +

(
α − 1

4β
)
y2,

which is positive definite if β > 0 and α > 1
4β.

(iii) ẋ = y2m, ẏ = x2n. Then
U̇ = αy2m + βx2n > 0

which is positive definite if α >0 and β >0. Therefore the origin is unstable.

• 10.15 For the system ẋ = y, ẏ = f (x, y) where f (0, 0) = 0, show that V given by

V (x, y) = 1
2y

2 −
∫ x

0
f (u, 0)du

is a weak Liapunov function for the zero solution when

{f (x, y)− f (x, 0)}y ≤ 0,
∫ x

0
f (u, 0)du < 0,

in a neighbourhood of the origin.

10.15. The system is
ẋ = y, ẏ = f (x, y),

where f (0, 0) = 0. Consider the function

V (x, y) = 1
2y

2 −
∫ x

0
f (u, 0)du.
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V (x, y) is positive definite if ∫ x

0
f (u, 0)du < 0

in some neighbourhood of the origin.
The derivative

V̇ = Vxẋ + Vyẏ = −f (x, 0)y + yf (x, y).

This function will be negative semidefinite if

y{f (x, y)− f (x, 0)} ≤ 0.

In this case the origin is uniformly stable.

• 10.16 Use the result of Problem 10.15 to show the stability of the zero solutions of the
following:

(i) ẍ = −x3 − x2ẋ;

(ii) ẍ = −x3/(1− xẋ);
(iii) ẍ = −x + x3 − x2ẋ.

10.16. Use the function V (x, y) defined in Problem 10.15.

(i) ẋ = y, ẏ = −x3 − x2y. In this case f (x, y) = −x3 − x2y. The required conditions are

{f (x, y)− f (x, 0)}y = {−x3 − x2y + x3}y = −x2y2 < 0,

for all (x, y) �= (0, 0). Also

∫ x

0
f (u, 0)du = −

∫ x

0
u3du = −1

4x
4 < 0.

Therefore the origin is stable.

(ii) ẋ = y, ẏ = −x3/(1 − xy). Assume |xy| < 1. In this case f (x, y) = −x3/(1 − xy). The
required conditions are

{f (x, y)− f (x, 0)}y =
(
− x3

1− xy + x
3

)
y = − x4y2

1− xy ≤ 0.

Also ∫ x

0
f (u, 0)du = −

∫ x

0
u3du = −1

4x
4 ≤ 0.

Therefore the origin is stable.
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(iii) ẋ = y, ẏ = −x + x3 − x2y. In this case f (x, y) = −x + x3 − x2y. The required conditions
are

{f (x, y)− f (x, 0)}y = {−x + x3 − x2y + x − x3}y = −x2y2 ≤ 0.

Also ∫ x

0
(−u+ u3)du = −1

2x
2 + 1

4x
4 ≤ 0

for |x| sufficiently small.

• 10.17 Let ẋ = −αx + βf (y), ẏ = γ x − δf (y), where f (0) = 0, yf (y) > 0 (y �= 0), and
αδ > 4βγ , where α,β, γ , δ are positive. Show that, for suitable values of A and B

V = 1
2Ax

2 + B
∫ y

0
f (u)du

is a strong Liapunov function for the zero solutions.

10.17. The system is

ẋ = −αx + βf (y), ẏ = γ x − δf (y),
where f (0) = 0 and yf (y) > 0 (y �= 0). Consider the function

V (x, y) = 1
2Ax

2 + B
∫ y

0
f (u)du.

Since yf (y) > 0 for y �= 0, V (x, y) is positive definite. The derivative

V̇ = Ax[−αx + βf (y)] + Bf (y)[γ x − δf (y)]
= −Aαx2 + (Aβ + Bγ )xf (y)− Bδf (y)2

= −Aα
(
x − Aβ + Bγ

2Aα
f (y)

)2

+ f (y)2

Aα
[−ABαδ + 1

4 (Aβ + Bγ )2],

which is negative definite if A > 0 and

(Aβ + Bγ )2 − 4ABαδ < 0.

The equation

(Aβ + Bγ )2 − 4ABαδ = 0,

or

γ 2B2 + (2βγ − αδ)AB + β2A2 = 0,
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has the solutions
B

A
= 1

2γ 2 [−(2βγ − αδ)±
√{αδ(αδ − 4βγ )}],

which are real if αδ > 4βγ (as given in the question). Therefore B must satisfy

−(2βγ−αδ)−√{αδ(αδ − 4βγ )}
2γ 2 <

B

A
<
−(2βγ − αδ)+√{αδ(αδ − 4βγ )}

2γ 2 .

With the given conditions on A and B, V (x, y) is a strong Liapunov function which means that
the origin is asymptotically stable.

• 10.18 A particle moving under a central attractive force f (r) per unit mass has the
equations of motion

r̈ − rθ̇2 = f (r), d
dt
(r2θ̇ ) = 0.

For a circular orbit, r = a, show that r2θ̇ = h, a constant, and h2 + a3f (a) = 0. The orbit
is subjected to a small radial perturbation r = a+ρ, in which h is kept constant. Show that
the equation for ρ is

ρ̈ − h2

(a + ρ)3 − f (a + ρ) = 0.

Show that

V (ρ, ρ̇) = 1
2
ρ̇2 + h2

2(a + ρ)2 −
∫ ρ

0
f (a + u)du− h2

2a2

is a Liapunov function for the zero solution of this equation provided that 3h2 > a4f ′(a),
and that the gravitational orbit is stable in this sense.

10.18. A particle moving under a central attractive force has the equations of motion

r̈ − rθ̇2 = f (r), d
dt
(r2θ̇ ) = 0.

The second equation implies generally that r2θ̇ = h, a constant. If the orbit is a circle, then

a2θ̇ = h, and − aθ̇2 = f (a),

so that h2 + a3f (a) = 0.
Consider the perturbation r = a + ρ so that ρ = 0 corresponds to the circular orbit. Then,

the equation of motion becomes

ρ̈ − h2

(a + ρ)3 − f (a + ρ) = 0.
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Let σ = ρ̇, and consider the function

V (ρ, σ) = 1
2
σ 2 + 1

2
h2

(
1

(a + ρ)2 −
1
a2

)
−

∫ ρ

0
f (a + u)du

≈ 1
2
σ 2 + h2

2a2

(
1− 2ρ

a
+ 3ρ2

a2

)
− f (a)ρ − 1

2
f ′(a)ρ2 − h2

2a2

= 1
2
σ 2 +

(
3h2

2a4 −
f ′(a)

2

)
ρ2

Therefore V (ρ, σ) is positive definite if 3h2 > a4f ′(a). Also

V̇ =
[
− h2

(a + ρ)3 − f (a + ρ)
]
σ + σ

[
h2

(a + ρ)3 + f (a + ρ)
]
= 0,

which implies that V̇ is negative semidefinite. It follows that ρ = 0 is stable, which, in turn,
implies that the circular orbit is stable.

• 10.19 Show that the following Liénard-type equations have zero solutions which are
asymptotically stable:

(i) ẍ + |x|(ẋ + x) = 0;

(ii) ẍ + (sin x/x)ẋ + x3 = 0;

(iii) ẋ = y − x3, ẏ = −x3.

10.19. These equations are of the Liénard type (see NODE, Section 10.11)

ẍ + f (x)ẋ + g(x) = 0.

In the Liénard plane

ẋ = y −
∫ x

0
f (u)du, ẏ = −g(x).

Then a possible Liapunov function is

V (x, y) = G(x)+ 1
2y

2,

where

G(x) =
∫ x

0
g(u)du,
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if f (x) is positive in a deleted neighbourhood of the origin and if g(x) is positive/negative when
x is positive/negative. In this case

(i) ẍ + |x|(ẋ + x) = 0. In this case f (x) = |x| and g(x) = x|x|. Therefore the Liénard
system is

ẋ = y −
∫ x

0
|u|du = y − 1

2x|x|, ẏ = −x|x|.

Since f (x) and g(x) satisfy (a) and (b) above, the zero solution is asymptotically stable.

(ii) ẍ + (sin x/x)ẋ + x3 = 0. In this case f (x) = sin x/x and g(x) = x3. Therefore the system
in the Liénard plane is

ẋ = y −
∫ x

0

sin u
u

du, ẏ = −x3.

Since f (x) = sin x/x is an even function, and therefore positive in every deleted neighbourhood.
Also g(x) is an odd function so that the conditions for asymptotic stability are satisfied.

(iii) ẋ = y − x3, ẏ = −x3. This is a Liénard system with f (x) = 3x2 and g(x) = x3. The
conditions for asymptotic stability are satisfied.

• 10.20 Give a geometrical account of NODE, Theorem 10.13 (an instability test).

10.20. The geometry of the instability condition of Theorem 10.13 will be illustrated for a
particular example of a linear system with eigenvalues with positive real parts (see Section 10.8,
Case (ii)). Consider the system

ẋ = Ax, A =
[

1 1
−1 1

]
, (i)

which has the eigenvalues λ1 = 1+ i, λ2 = 1− i. A matrix C which diagonalizes A is

C =
[ −1 −1
−i i

]
.

Since the eigenvalues are complex, then we have to use the transformation x = Gu, where

G = C
[

1 i
1 −i

]
=

[ −2 0
0 2

]
,

to obtain the transformed equation

u̇ =
[

1 −1
1 1

]
u.
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u1

u2

Figure 10.1 Problem 10.21: The dashed circles represent the level curves U(u1, u2) = constant: the other curves are
phase paths.

We now choose the function U(u) = uT u = u2
1+ u2

2 (which is positive except at (0, 0)), so that

U̇ (u) = 2(u2
1 + u2

2),

which is positive definite. Therefore Theorem 10.13 can be applied. Figure 10.1 shows the
unstable spiral which cut the curves U = constant from inside to outside, which is implied also
by U̇ positive definite.

• 10.21 For the system ẋ = f (x)+ βy, ẏ = γ x + δy, (f (0) = 0), establish that V given by

V (x, y) = (δx − βy)2 + 2δ
∫ x

0
f (u)du− βγ x2

is a strong Liapunov function for the zero solution when, in some neighbourhood of the
origin,

δ
f (x)

x
− βγ > 0,

f (x)

x
+ δ < 0

for x �= 0. (Barbashin 1970.)
Deduce that for initial conditions in the circle x2 + y2 < 1, the solutions of the system

ẋ = −x3 + x4 + y, ẏ = −x,

tend to zero.

10.21. The system
ẋ = f (x)+ βy, ẏ = γ x + δy, (f (0) = 0)

has an equilibrium point at (0, 0). Consider the function

V (x, y) = (δx − βy)2 + 2δ
∫ x

0
f (u)du− βγ x2,
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which we can express also in the form

V (x, y) = (δx − βy)2 + 2
∫ x

0
[δf (u)− βγu]du.

This function is positive definite if

∫ x

0
[δf (u)− βγu]du > 0,

which is true if (δf (x)/x)− βγ > 0.
The derivative of V is given by

V̇ = [2δ(δx − βy)+ 2δf (x)− 2βδx][f (x)+ βy] − 2β[δx − βy][γ x + δy]
= 2[f (x)δ − xβγ ][f (x)+ δx],

if f (x) + δx < 0 for x �= 0. Therefore V (x, y) is a Liapunov function for this system, which
implies that the zero solution is asymptotically stable.

For the system
ẋ = −x3 + x4 + y, ẏ = −x,

f (x) = −x3 + x4, β = 1, γ = −1, δ = 0,

in the notation above. Then ∫ x

0
[δf (u)− βγu]du = 1

2x
2 > 0,

for x �= 0. Also
f (x)+ δx = −x3 + x4 < 0 for |x| < 1.

The conditions above are satisfied so that the zero solution is asymptotically stable.

• 10.22 For the system

ẋ = f (x)+ βy, ẏ = g(x)+ δy, f (0) = g(0) = 0,

show that V given by

V (x, y) = (δx − βy)2 + 2
∫ x

0
{δf (u)− βg(u)}du

is a strong Liapunov function for the zero solution when, in some neighbourhood of the
origin,

{δf (x)− βg(x)}x > 0, xf (x)+ δx2 < 0

for x �= 0. (Barbashin 1970.)
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Deduce that the zero solution of the system

ẋ = −x3 + 2x4 + y, ẏ = −x4 − y
is asymptotically stable. Show how to find a domain of initial conditions from which the
solutions tend to the origin. Sketch phase paths and a domain of asymptotic stability of the
origin.

10.22. The system

ẋ = f (x)+ βy, ẏ = g(x)δy, f (0) = g(0) = 0,

has an equilibrium point at (0, 0). Consider the possible Liapunov function

V (x, y) = (δx − βy)2 + 2
∫ x

0
{δf (u)− βg(u)}du.

The function is positive definite if

{δf (x)− βg(x)}x > 0. (i)

Its derivative is

V̇ = {2δ(δx − βy)+ 2[δf (x)− βg(x)]}[f (x)+ βy] −2β(δx − βy)[g(x)+ δy]
= 2[δf (x)− βg(x)][δx + f (x)]

which is negative definite if

[δf (x)− βg(x)][δx + f (x)] < 0

in a deleted neighbourhood of the origin. Combined with inequality (i) this is equivalent to

(δx + f (x))x < 0, (x �= 0). (ii)

For the particular system

ẋ = −x3 + 2x4 + y, ẏ = −x4 − y

choose f (x) = −x3 + 2x4, g(x) = −x4, β = 1 and δ = −1. The system has equilibrium points
at (0, 0) and (1,−1). Inequalities (i) and (ii) become

{δf (x)− βg(x)}x = x4 − x5 > 0,
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for 0 < |x| < 1, and

(δx + f (x))x = −x2 − x3 + 2x5 < 0,

in some deleted interval about the origin. Since

2x5 − x3 − x2 = x2(x − 1)(2x2 + 2x + 1)

has only zeros at x = 0 and x = 1 (for real x), we can be more specific and say that V̇ is negative
definite also in 0 < |x| < 1. Therefore the zero solution is asymptotically stable.

The Liapunov function is

V (x, y) = (x + y)2 + 2
∫ x

0
[−(−u3 + 2u4)+ u4]du = (x + y)2 + 2

(
1
4x

4 − 1
5x

5
)

.

A domain of asymptotic stability will be the interior of the largest level curve V (x, y) = constant
which is within |x| < 1. Consider the closed curve

(x + y)2 + 2
(

1
4x

4 − 1
5x

5
)
= C.

The straight line x = 1 will cut this curve in only one point if C = 2
(1

4 − 1
5

) = 1
10 : at this

point y = − 9
10 . Figure 10.2 shows the phase diagram and the level curve V (x, y) = 0.1. All

phase paths which start within this curve will approach the origin asymptotically. A linear
approximation indicates that the equilibrium point at (1,−1) is a saddle point.

–2 –1 1 2
x

–2

–1

1

2
y

Figure 10.2 Problem 10.22: The closed dashed curve shows the domain of asymptotic stability detected.
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• 10.23 Consider van der Pol’s equation ẍ + ε(x2 − 1)ẋ + x = 0, for ε < 0, in the Liénard
phase plane, NODE, eqn (10.83):

ẋ = y − ε(1
3x

3 − 1
)
, ẏ = −x,

Show that, in this plane, V = 1
2 (x

2 + y2) is a strong Liapunov function for the zero
solution, which is therefore asymptotically stable. Show that all solutions starting from
initial conditions inside the circle x2 + y2 = 3 tend to the origin (and hence the limit cycle
lies outside this region for every ε < 0). Sketch this domain of asymptotic stability in the
ordinary phase plane with ẋ = y.

10.23. The van der Pol equation

ẍ + ε(x2 − 1)ẋ + x = 0

can be expressed in the form

ẋ = y − ε
(

1
3x

3 − x
)

, ẏ = −x.

Consider the positive definite function V (x, y) = 1
2 (x

2 + y2). Then

V̇ = ∂V

∂x
ẋ + ∂V

∂y
ẏ = x

[
y − ε

(
1
3x

3 − x
)]
+ y(−x) = ε

(
x2 − 1

3x
4
)
< 0,

for |x| < √
3, (x �= 0) and ε < 0. Therefore V (x, y) is a Liapunov function for this system,

and the zero solution is asymptotically stable. The largest topographic curve of V (x, y) which
can be inserted into |x| < √3 is the circle x2 + y2 = 3, and this is the domain of asymptotic
stability of the origin.

Expressed in the usual phase plane, the van der Pol equation is

ẋ = y, ẏ = −ε(x2 − 1)y − x.

In this phase plane the domain of asymptotic stability detected becomes the interior of the
closed curve

x2 +
[
y + ε

(
1
3x

3 − x
)]2 = 3.

The curve is shown in Figure 10.3 for ε = −1.
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–1 1
x

1

y

–2

–2

2

2

–1

Figure 10.3 Problem 10.23: Phase diagram of ẋ = y, ẏ = −ε(x2 − 1)y − x with ε = −1; the closed dashed closed
curve shows the boundary of the domain of asymptotic stability.

• 10.24 Show that the system ẋ = −x − xy2, ẏ = −y − x2y is globally asymptotically
stable, by guessing a suitable Liapunov function.

10.24. Consider the system

ẋ = −x − xy2, ẏ = −y − x2y.

Let V (x, y) = x2 + y2 > 0 for (x, y) �= (0, 0). Then

V̇ = ∂V

∂x
ẋ + ∂V

∂y
ẏ = 2x(−x − xy2)+ 2y(−y − x2y) = −2(x2 + y2)2 < 0,

for all (x, y), except at (0, 0). Therefore the zero solution is globally asymptotically stable.

• 10.25 Assuming that the conditions of Problem 10.22 are satisfied, obtain further
conditions which ensure that the system is globally asymptotically stable.
Show that the system ẋ = y − x3, ẏ = −x − y is globally asymptotically stable.

10.25. The system is

ẋ = f (x)+ βy, ẏ = γ x + δy, (f (0) = 0).

The Liapunov function is

V (x, y) = (δx − βy)2 + 2δ
∫ x

0
f (u)du− βγ x2,
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where

δ
f (x)

x
− βγ > 0,

f (x)

x
+ δ < 0. (i)

The zero solution is globally asymptotically stable if inequalities (i) are true for all x �= 0.
For the system

ẋ = y − x3, ẏ = −x − y,

f (x) = −x3, β = 1, γ = −1 and δ = −1. Then (i) become

δ
f (x)

x
− βγ = x3

x
+ 1 = x2 + 1 > 0, for all x,

and
f (x)

x
+ δ = −x

3

x
− 1 = −x2 − 1 < 0, for all x.

Therefore the zero solution is globally asymptotically stable.

• 10.26 Assuming that the conditions of Problem 10.23 are satisfied, obtain further
conditions which ensure that the system is globally asymptotically stable.

Show that the system ẋ = −x3 − x + y, ẏ = −x3 − y is globally asymptotically stable.

10.26. For the system

ẋ = f (x)+ βy, ẏ = g(x)+ δy, (f (0) = g(0) = 0),

V (x, y) = (δx − βy)2 + 2
∫ x

0
[δf (u)− βg(u)]du

is a Liapunov function if

[δf (x)− βg(x)]x > 0, xf (x)+ δx2 < 0. (i)

The zero solution is globally asymptotically stable if inequalities (i) are true for all x.
For the system

ẋ = −x3 − x + y, ẏ = −x3 − y,

f (x) = −x3 − x, β = 1, g(x) = −x3 and δ = −1. Then (i) become

[δf (x)− βg(x)]x = (x3 + x + x3)x = 2x4 + x2 > 0, for all x �= 0,

and
xf (x)+ δx2 = −x4 − x2 − x2 = −x4 − 2x2 < 0, for all x �= 0.

Therefore the zero solution is globally asymptotically stable.
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• 10.27 Give conditions on the functions f and g of the Liénard equation, ẍ + f (x)ẋ +
g(x) = 0 which ensure that the corresponding system ẋ = y − F(x), ẏ = −g(x) (NODE,
Section 10.11) is globally asymptotically stable.

Show that all solutions of the equation ẍ + x2ẋ + x3 = 0 tend to zero.

10.27. The equation

ẍ + f (x)ẋ + g(x) = 0,

can be expressed as

ẋ = y − F(x), ẏ = −g(x),

where

F(x) =
∫ x

0
f (u)du.

Let

G(x) =
∫ x

0
g(u)du,

and assume that g(x) is positive/negative when x is positive/negative for all x. It follows that
G(x) > 0 for x �= 0. Therefore the function V (x, y) = G(x)+ 1

2y
2 is positive definite for all x.

Also

V̇ (x, y) = g(x)ẋ + yẏ = −g(x)F (x).

Let f (x) be positive for all x �= 0. Then g(x)F (x) < 0 for all x which implies that V̇ (x, y) is
negative definite for all x. Hence solutions from all initial positions ultimately approach the
origin.

For the equation

ẍ + x2ẋ + x3 = 0,

f (x) = x2 and g(x) = x3, so that

F(x) =
∫ x

0
u2du = 1

3x
3, G(x) =

∫ x

0
u3du = 1

4
x4.

Therefore

V (x, y) = G(x)+ 1
2y

2 = 1
4x

4 + 1
2y

2

is a Liapunov function for all x, from which it follows that the zero solution is globally
asymptotically stable.
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• 10.28 (Zubov’s method.) Suppose that a function W(x, y), negative definite in the whole
plane, is chosen as the time derivative V̇ of a possible Liapunov function for a system
ẋ = X(x, y), ẏ = Y (x, y), for which the origin is an asymptotically stable equilibrium point.
Show that V (x, y) satisfies the linear partial differential equation

X
∂V

∂x
+ Y ∂V

∂y
= W

with V (0, 0) = 0.
Show also that for the path x(t), y(t) starting at (x0, y0) at time t0

V {x(t), y(t)} − V (x0, y0) =
∫ t

t0

W {x(u), y(u)}du.

Deduce that the boundary of the domain of asymptotically stability (the domain of ini-
tial conditions from which the solutions go into the origin) is the set of points (x, y) for
which V (x, y) is infinite, by considering the behaviour of the integral as t →∞, first when
(x0, y0) is inside this domain and then when it is outside. (Therefore the solution V (x, y) of
the partial differential equation above could be used to give the boundary of the domain
directly. However, solving this equation is equivalent in difficulty to finding the paths: the
characteristics are in fact the paths themselves.)

10.28. Suppose that W(x, y) is a negative definite function for the system

ẋ = X(x, y), ẏ = Y (x, y).

Suppose also that W(x, y) = V̇ (x, y). Then

W = ∂V

∂x
ẋ + ∂V

∂y
ẏ = ∂V

∂x
X + ∂V

∂y
Y ,

can be interpreted as a partial differential equation for V .
Since V̇ (x, y) = W(x, y) on a phase path, we can integrate with respect to t from an initial

point (x0, y0) to give

V {x(t), y(t)} − V (x0, y0) =
∫ t

t0

W(x(u), y(u))du.

The initial point (x0, y0) lies within a domain of asymptotic stability if

lim
t→∞

∫ t

t0

W(x(u), y(u))du = −V (x0, y0).

All such points for which this limit is true define the domain of asymptotic stability.
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• 10.29 For the system

ẋ = X(x, y) = −1
2x(1− x2)(1− y2),

ẏ = Y (x, y) = −1
2y(1− x2)(1− y2)

show that the Liapunov function V = x2 + y2 leads to V̇ = −(x2 + y2)(1 − x2)(1 − y2)

and explain why the domain of asymptotic stability (see Problem 10.30) contains at least
the unit circle x2 + y2 = 1.
Alternatively, start with V̇ = −x2 − y2 − 2x2y2, and obtain V from the equation

X
∂V

∂x
+ Y ∂V

∂y
= V̇ , V (0, 0) = 0

(see Problem 10.30). It is sufficient to verify that V = − ln{(1− x2)(1− y2)}. Explain why
the square |x| < 1, |y| < 1 is the complete domain of asymptotic stability for the zero
solution.

10.29. The system is

ẋ = X(x, y) = −1
2x(1− x2)(1− y2), ẏ = Y (x, y) = −1

2y(1− x2)(1− y2).

Equilibrium occurs at the origin (0, 0), and all points on the lines x = ±1, y = ±1. Let
V (x, y) = x2 + y2, a positive definite function. Then

V̇ (x, y) = −x2(1− x2)(1− y2)− y2(1− x2)(1− y2)

= −(x2 + y2)(1− x2)(1− y2),

which is negative definite in |x| < 1, |y| < 1. The largest level curve V (x, y) which lies on or
within this square is the unit circle x2+y2 = 1 within which is a domain of asymptotic stability
of the origin.

Suppose that we approach the problem using Zubov’s method. LetW(x, y) = −x2(1−y2)−
y2(1− x2) which is negative definite in |x| < 1, |y| < 1. From Problem 10.29, V (x, y) satisfies

−1
2x(1− x2)(1− y2)

∂V

∂x
− 1

2
(1− x2)(1− y2)

∂V

∂y
= W(x, y) = −x2 − y2 − 2x2y2.

It can be verified that a solution of this equation is

V (x, y) = − ln[(1− x2)(1− y2)],
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which is positive definite in the square |x| < 1, |y| < 1. Therefore this square is the boundary
of a domain of asymptotic stability of the origin, which is an improvement on the unit circle
in the first part of the problem. This must be the maximum possible domain since x = ±1 and
y = ±1 are lines of equilibrium points.

• 10.30 Use the series definition of eAt to prove the following properties of the exponential
function of a matrix:

(i) eA+B = eAeB if AB = BA;

(ii) eA is non-singular and (eA)−1 = e−A;

(iii)
d
dt

eAt = AeAt = eAtA;

(iv) (eAt )T = eA
T t .

10.30. The exponential matrix is defined by

eAt =
∞∑
n=0

An
tn

n! .

(i) By the product rule for power series

eAteBt =
∞∑
n=0

An
tn

n!
∞∑
n=0

Bn
tn

n! =
∞∑
n=0

Cn
tn

n! ,

where

C =
n∑
k=0

AkBn−k = (A + B)n.

Therefore

eAeB = eA+B.

(ii) By (i)

eAe−A = eA−A = e0 = I,

the identity matrix. Therefore e−A is the inverse of eA.

(iii) Differentiation of the series term by term leads to

d
dt
(eAt ) = d

dt

∞∑
n=0

An
tn

n! =
∞∑
n=1

An
tn−1

(n− 1)! = AeAt .
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(iv) Thus

eA
Tt =

∞∑
n=0

(AT)n
tn

n! =
∞∑
n=0

(An)T
tn

n! =
( ∞∑
n=0

An
tn

n!

)T

= (eAt )T,

using standard algebraic rules for transposes of matrices.

• 10.31 Let the distinct eigenvalues of the n × n matrix A be λ1, λ2, . . . , λn. Show that,
whenever γ > max1≤i≤nRe(λi), there exists a constant c > 0 such that ‖ eAt ‖≤ ceγ t .

10.31. The matrix A has the distinct eigenvalues λ1, λ2, . . . , λn. It is known that there exists a
matrix P such that

PAP−1 =



λ1 0 · · · 0
0 λ2 · · · 0
· · · · · · · · · · · ·
0 0 · · · 0 λn


 ,

a diagonal matrix of the eigenvalues. As a consequence of this

(PAP−1)n = PAnP−1.

Therefore

ePAP
−1t =

∞∑
n=0

1
n! (PAP

−1)ntn = P

( ∞∑
n=0

1
n!A

ntn

)
P−1 = PeAtP−1.

Then, using the matrix norm defined in NODE, Section 8.7,

‖eAt‖ = ‖P−1eAtP‖ ≤ ‖P−1‖‖ePAP−1t‖‖P‖

= ‖P−1‖√
[

n∑
i=1

|eλi t |2
]
‖P‖

= ‖P−1‖√
[

n∑
i=0

e2Re(λi t)

]
‖P‖

≤ ‖P−1‖√
[

n∑
i=0

e2γ t

]
‖P‖

≤ ceγ t

for some constant c. Note that the norms of P and P−1 are constants.
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• 10.32 Express the solution of[
ẋ

ẏ

]
=

[
0 1
1 0

] [
x

y

]
, x(0) = 0, ẋ(0) = 1

in matrix form, and, by calculating the exponential matrix obtain the ordinary form of the
solution.

10.32. The equation is [
ẋ

ẏ

]
=

[
0 1
1 0

] [
x

y

]
.

The eigenvalues of

A =
[

0 1
1 0

]
,

are λ1 = 1 and λ2 = −1. Corresponding eigenvectors are

r1 =
[

1
1

]
, r2 =

[
1
−1

]
.

We can therefore choose

P =
[

1 1
1 −1

]
,

so that

P−1 = −1
2

[ −1 −1
−1 1

]
.

It can be confirmed that

PAP−1 =
[
λ1 0
0 λ2

]
=

[
1 0
0 −1

]
.

In terms of the exponential matrix, the solution can be expressed as

[
x

y

]
= eAt

[
x(0)
ẋ(0)

]
= eAt

[
0
1

]
.
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We can express the solution in the usual form as follows. The exponential matrix becomes

eAt = P−1ePAP
−1
P

= P−1
{

exp
([

1 0
0 −1

]
t

)}
P

= −1
2

[−1 −1
−1 1

] [
et 0
0 e−t

] [
1 1
1 −1

]

= −1
2

[−et − e−t −et + e−t
−et + e−t −et − e−t

]
.

Finally the solution is

[
x

y

]
= −1

2

[ −et − e−t −et + e−t
−et + e−t −et − e−t

] [
0
1

]
= −1

2

[ −et + e−t
−et − e−t

]
.

• 10.33 Evaluate

K =
∫ ∞

0
eA

T teAtdt , where A = 1
2

[ −3 1
1 −3

]
,

and confirm that ATK+ KA = −I

10.33. We wish to evaluate

K =
∫ ∞

0
eA

T teAtdt ,

where

A = 1
2

[ −3 1
1 −3

]
.

The eigenvalues of A are λ1 = −1 and λ2 = −2 with corresponding eigenvectors

r1 =
[

1
1

]
, r2 =

[
1
−1

]
.

Now define the diagonalizing matrix P as

P = [
r1 r2

] = [
1 1
1 −1

]
.
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It follows that

eAt = P−1ePAP
−1
P

= 1
2

[
1 1
1 −1

] [
e−t 0
0 e−2t

] [
1 1
1 −1

]

= 1
2

[
e−t + e−2t e−t − e−2t

e−t − e−2t e−t + e−2t

]
.

By Problem 10.30(iv),

eA
T t = (eAt )T = eAt

in this case. Therefore

K =
∫ ∞

0
eA

T teAtdt

= 1
2

∫ ∞

0

[
e−t + e−2t e−t − e−2t

e−t − e−2t e−t + e−2t

]2

dt

= 1
2

∫ ∞

0

[
e−2t + e−4t e−2t − e−4t

e−2t − e−4t e−2t + e−4t

]
dt

= 1
8

[
3 1
1 3

]
.

Finally

ATK+ KA = 1
8

[−3 1
1 −3

] [
3 1
1 3

]
+ 1

8

[
3 1
1 3

] [−3 1
1 −3

]

=
[−1 0

0 −1

]
= −I.

• 10.34 Show that, if B is an n× n matrix, A = eB and C is non-singular, then C−1AC =
eC

−1BC.

10.34. If C is a non-singular matrix, then

(C−1BC)n = C−1BnC.
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Therefore, using this result,

eC
−1BC = I +

∞∑
n=1

1
n! (C

−1BC)n

= C−1

(
I +

∞∑
n=1

1
n!B

n

)
C

= C−1eBC

= C−1AC,

as required.

• 10.35 (i) Let L = diag(λ1, λ2, . . . , λn), where λi are distinct and λi �= 0 for any i. Show
that L = eD, where D = diag(ln λ1, ln λ2, . . . , ln λn). Deduce that for non-singular A with
distinct eigenvalues, A = eB for some matrix B.
(ii) Show that, for the system ẋ = P(t)x, where P(t) has period T and E (eqn (9.15) in
NODE) is non-singular with distinct eigenvalues, every fundamental matrix has the form
�(t) = R(t)eMt , where R(t) has period T , and M is a constant matrix. (See the result of
Problem 10.35.)

10.35. (i)Let
L = diag(λ1, λ2, . . . , λn),

where the notation on the right denotes the matrix with diagonal elements λ1, λ2, . . . , λn, and
all other elements zero. Let

D = (ln λ1, ln λ2, . . . , ln λn).

Then

eD = I +
∞∑
i=1

1
i!D

i = I +
∞∑
i=1

1
i!diag[ln λ1, . . . , ln λn]i

= I +
∞∑
i=1

1
i!diag[(ln λ1)

i , . . . , (ln λn)i]

= diag[eln λ1 , . . . , eln λn]
= diag[λ1, . . . , λn] = L.

Since the eigenvalues of A are distinct, there exists a matrix P such that

P−1AP = L,
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where L is the diagonal matrix of eigenvalues of A. Then

A = PLP−1 = PeDP−1 = I +
∞∑
i=1

1
i! (PD

iP−1)

= I +
∞∑
i=1

1
i! (PDP

−1)i

= ePDP
−1

.

Therefore there exists a matrix B such that A = eB: in fact B = PDP−1.
(ii) In the equation ẋ = P(t)x, P(t) has minimal period T . Let �(t) be a fundamental matrix of
the system. As in Section 9.2, �(t + T ) is also a fundamental matrix, and

�(t + T ) = �(t)E,

where E is non-singular. Since E is a constant matrix with distinct eigenvalues, there exists a
constant matrix TM, say, such that E = eTM (see (i) above). Express the fundamental matrix
in the form �(t) = R(t)etM. Then

R(t + T ) = �(t + T )e−(t+T )M = �(t)eTMe−(t+T )M = �(t)e−tM = R(t).

Therefore R(t) has period T .

• 10.36 Using the results from Problem 10.35, show that the transformation x = R(t)y
reduces the system ẋ = P(t)x, where P(t) has period T , to the form ẏ =My, where M is a
constant matrix.

10.36. Using the notation of Problem 10.35, substitute x = R(t)y into the equation ẋ = P(t)x,
so that

ẏ = R(t)−1[P(t)R(t)− Ṙ(t)]y. (i)

However, from the previous problem,

R(t) = �(t)e−tM,

so that

Ṙ(t) = �̇(t)e−tM −�(t)Me−tM

= P(t)�(t)e−tM

= P(t)R(t)− R(t)etMMe−tM

= P(t)R(t)− R(t)M

Elimination of Ṙ(t) in (ii) leads to

ẏ = R(t)−1R(t)M =My.
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11 The existence of periodic
solutions

• 11.1 Prove that the equilibrium point of

ẍ + x

1+ x2 ẋ + x ln(1+ x2) = 0, ẋ = y
is a centre in the (x, y) plane. Compute the phase diagram in the neighbourhood of (0, 0).

11.1. The system

ẍ + x

1+ x2 ẋ + x ln(1+ x2) = 0, ẋ = y

has one equilibrium point at (0, 0). Apply NODE, Theorem 11.3 with f (x) = x/(1+ x2) and
g(x) = x ln(1+ x2). It is obvious that f (x) and g(x) are both odd functions, and that f (x) > 0
and g(x) > 0 for x > 0. Then

g(x)− αf (x)F (x) = x ln(1+ x2)− αx

1+ x2

∫ x

0

u

1+ u2 du

= x ln(1+ x2)− αx

2(1+ x2)
ln(1+ x2)

= x ln(1+ x2

1+ x2

[
1+ x2 − 1

2
αx

]

= x ln(1+ x2)

1+ x2

[(
x − 1

4
α

)2

+
(

1− 1
16
α2

)]

> 0

for 1<α<4. The conditions of Theorem 11.3 are satisfied which implies that the origin is a
centre. Some computed phase paths are shown in Figure 11.1.

• 11.2 A system has exactly one equilibrium point, n limit cycles and no other periodic
solutions. Explain why an asymptotically stable limit cycle must be adjacent to unstable
limit cycles, but an unstable limit cycle may have stable or unstable cycles adjacent to it.

Let cn be the number of possible configurations, with respect to stability, of n nested limit
cycles. Show that c1 = 2, c2 = 3, c3 = 5, and that in general cn = cn−1 + cn−2.
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x

–2

–1

1

2

y

–2 1 2–1

Figure 11.1 Problem 11.1: Phase diagram for ẍ + [x/(1+ x2)]ẋ + x ln(1+ x2) = 0.

(This recurrence relation generates the Fibonacci sequence.) Deduce that

cn = 1
2n−1√2

{(2+√5)(1+√5)n−1 + (−2+√5)(1−√5)n−1}.

11.2. Since the system has only one equilibrium point, the n limit cycles must be ‘nested’. List
the limit cycles as L1, L2, . . . , Ln from the inside. Suppose that the limit cycle Lr is stable in an
asymptotic sense so that all adjacent external and internal phase paths approach it as t →∞.
It follows that paths must diverge from Lr+1 and Lr−1 which implies that both these limit
cycles are unstable. On the other hand if Lr is unstable then there are three possibilities (a)
both internal and external phase paths diverge from Lr , in which case it is possible that both
Lr+1 and Lr−1 are stable, or (b) external paths diverge and internal paths converge to Lr in
which case it is possible that Lr+1 is stable, or (c) external paths converge and internal paths
diverge to Lr in which case it is possible that Lr−1 is stable.

If cn is the number of possible configurations, stable(s) or unstable(u), of the first n limit
cycles. Thus c1 = 2 since the limit cycle can be s or u. The possible combinations for c2 are




L1 L2
s → u

u → s

u → u

Therefore c2 = 3. For three limit cycles the possible combinations are




L1 L2 L3
s → u → s

s → u → u

u → s → u

u → u → s

u → u → u.
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Therefore
c3 = 5 = 2+ 3 = c1 + c2.

Generally the value of cn depends on the states of Ln−2 and Ln−1: if Ln−2 is stable then there
are two sequences to the state of Ln, and if Ln−2 is unstable there are three possible sequences
to the state of Ln. Therefore

cn = cn−1 + cn−2, (n ≥ 3).

This difference equation generates the Fibonacci sequence.
To solve the difference equation, let cn = λn. Then

λn − λn−1 − λn−2 = 0, or λ2 − λ− 1 = 0.

The solutions of this equation are

λ1 = 1
2 (1+

√
5), λ2 = 1

2 (1−
√

5).

Therefore

cn = A 1
2n
(1+√5)n + B 1

2n
(1−√5)n.

The initial conditions lead to

c1 = 2 = A

2
(1+√5)+ B

2
(1−√5),

c2 = 3 = A

4
(1+√5)2 + B

4
(1−√5)2 = A

2
(3+√5)+ B

2
(3−√5).

Therefore

A = 1
10
(5+ 3

√
5), B = 1

10
(5− 3

√
5),

and

cn = 1
5 · 2n+1 [(5+ 3

√
5)(1+√5)n + (5− 3

√
5)(1−√5)n]

= 1
2n−1√2

{(2+√5)(1+√5)n−1 + (−2+√5)(1−√5)n−1}.

• 11.3 By considering the path directions across each of the suggested topographic systems
show that in each of the cases given there exists a limit cycle. Locate the region in which
a limit cycle might exist as closely as possible. Show that in each case only one limit cycle
exists:

(i) ẋ = 2x + 2y − x(2x2 + y2), ẏ = −2x + y − y(2x2 + y2),



488 Nonlinear ordinary differential equations: problems and solutions

(topographic system x2 + y2 = constant);

(ii) ẋ = −x − y + x(x2 + 2y2), ẏ = x − y + y(x2 + 2y2),
(topographic system x2 + y2 = constant);

(iii) ẋ = x + y − x3 − 6xy2, ẏ = −1
2x + 2y − 8y3 − x2y,

(topographic system x2 + 2y2 = constant); compute the phase diagram, and show the
topographic system;

(iv) ẋ = 2x + y − 2x3 − 3xy2, ẏ = −2x + 4y − 4y3 − 2x2y,
(topographic system 2x2 + y2 = constant).

11.3. Consult NODE, Example 11.1.

(i) ẋ = X(x, y) = 2x + 2y − x(2x2 + y2), ẏ = Y (x, y) = −2x + y − y(2x2 + y2). A normal to
the topographic system x2 + y2 = constant is n = (x, y). Then

n ·X = (x, y) · [2x + 2y − x(2x2 + y2),−2x + y − y(2x2 + y2)]
= (2x2 + y2)[1− (x2 + y2)].

Hence n · X > 0 for x2 + y2 < 1 and n · X < 0 for x2 + y2 > 1. It follows that the circle
x2 + y2 = 1 is a limit cycle of the system.

(ii) ẋ = −x − y + x(x2 + 2y2), ẏ = x − y + y(x2 + 2y2). A normal to the topographic system
x2 + y2 = constant is n = (x, y). Then

n ·X = (x, y) · [−x − y + x(x2 + 2y2), x − y + y(x2 + 2y2)]
= (x2 + y2)(x2 + 2y2 − 1).

Therefore n ·X > 0 for x2 + 2y2 > 1, and n ·X < 0 for x2 + 2y2 < 1. The ellipse x2 + y2 = 2
is bounded by the circles x2 + y2 = 1 and x2 + y2 = 1

2 , so that the limit cycle must lie on or
within these circles.

(iii) ẋ = x + y − x3 − 6xy2, ẏ = −1
2x + 2y − 8y3 − x2y. A normal to the topographic system

x2 + 2y2 = constant is n = (x, 2y). Then

n ·X = (x, 2y) · (x + y − x3 − 6xy2,−1
2x + 2y − 8y3 − x2y)

= (x2 + 4y2)[1− (x2 + 4y2)].

Therefore n ·X > 0 for x2+ 4y2 < 1, and n ·X < 0 for x2+ 4y2 > 1. The ellipse x2+ 4y2 = 1
is bounded by the ellipses x2 + 2y2 = 1 and x2 + 2y2 = 1

2 from the topographic system. The
position of the stable limit cycle in relation to the two bounding topographic curves is shown
in the computed phase diagram in Figure 11.2.
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y

Figure 11.2 Problem 11.1(iii): Phase diagram for ẋ = x+y−x3−6xy2, ẏ = − 1
2x+2y−8y3−x2y; the topographic

system x2 + 2y2 = constant is shown by dashed curves.

(iv) ẋ = 2x+y−2x3−3xy2, ẏ = −2x+4y−4y3−2x2y. A normal to the topographic system
2x2 + y2 = constant is n = (2x, y). Then

n ·X = (2x, y) · (2x + y − 2x3 − 3xy2,−2x + 4y − 4y3 − 2x2y)

= 4(x2 + y2)[1− (x2 + y2)].

There n · X > 0 for x2 + y2 < 1, and n · X < 0 for x2 + y2 > 1. The circle x2 + y2 = 1 is
bounded by the ellipses 2x2 + y2 = 2 and 2x2 + y2 = 1 from the topographic system. The
phase path of the periodic solution will lie on or between these ellipses.

• 11.4 Show that the equation ẍ + β(x2 + ẋ2 − 1)ẋ + x3 = 0, (β > 0), has at least one
periodic solution.

11.4. Consider the equation

ẍ + β(x2 + ẋ2 − 1)ẋ + x3 = 0, (β > 0).

Apply NODE, Theorem 11.2 after checking the conditions on f (x, y) = β(x2 + y2 − 1) and
g(x) = x3 as follows:

(i) f (x, y) > 0 for
√
(x2 + y2) > 1;

(ii) f (0, 0) = −β < 0;

(iii) g(0) = 0, g(x) > 0 for x > 0 and g(x) is odd;

(iv) G(x) = ∫ x
0 u

3du = 1
4x

4 →∞ as x →∞.

The conditions are satisfied which implies that the system has at least one periodic solution.
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• 11.5 Show that the origin is a centre for the equations:

(i) ẍ − xẋ + x = 0;

(ii) ẍ + xẋ + sin x = 0.

11.5. (i) ẍ − xẋ + x = 0. In the notation of NODE, Theorem 11.3, f (x) = −x and g(x) = x.
Check the conditions required:

(a) f (x) = −x is odd and negative for x > 0;

(b) g(x) = x > 0 for x > 0, and g(x) is odd;

(c) For x > 0

g(x)− αf (x)
∫ x

0
f (u)du = x − α

∫ x

0
udu = x

(
1− 1

2αx
2
)
> 0,

if α = 2 (say) and |x| < 1.

The conditions are satisfied which means that (0, 0) is a centre in the (x, y) plane where ẋ = y.
(ii) ẍ + xẋ + sin x = 0. In the notation of Theorem 11.3, f (x) = x and g(x) = sin x. Check the
conditions of Theorem 11.3

(a) f (x) = x is odd and positive for x > 0;

(b) g(x) = sin x > 0 for 0 < x < π , and g(x) is odd;

(c) For |x| sufficiently small

g(x)− αf (x)
∫ x

0
f (u)du = sin x − 1

2αx
3 > 0

with α = 2 (say).
The conditions are satisfied which means that locally (0, 0) is a centre.

• 11.6 Suppose that f (x) in the equation ẍ + f (x)ẋ + x = 0 is given by f (x) = xn. Show
that the origin is a centre if n is an odd positive integer.

11.6. In the equation
ẍ + f (x)ẋ + x = 0,

the function f (x) = xn, where n is an odd positive integer. In the notation of Theorem 1.3,
g(x) = x, and the required conditions are satisfied as follows:

(i) f (x) = xn is odd and positive for x > 0;

(ii) g(x) = x is odd;
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(iii) The difference

g(x)− αf (x)
∫ x

0
f (u)du = x − αx

2n+1

n+ 1
> 0

in the interval

0 < x <
(
n+ 1
α

)1/(2n)

,

where α is any number greater than 1. The optimal interval occurs for α = 1.
By the Theorem the origin must be locally a centre.

• 11.7 Show that the equation ẍ + β(x2 − 1)ẋ + tanh kx = 0 has exactly one periodic
solution when k > 0, β > 0. Decide on its stability.

The ‘restoring force’ resembles a step function when k is large. Is the conclusion the same
when it is exactly a step function?

11.7. Apply NODE, Theorem 11.4 to the equation

ẍ + β(x2 − 1)ẋ + tanh kx = 0.

In this case f (x) = β(x2 − 1) and g(x) = tanh kx. Check the conditions required by the
theorem:

(i) F(x) = ∫ x
0 f (u)du = β

(1
3x

3 − x) is an odd function;

(ii) F(x) = 0 only at x = 0, x = √3 and x = −√3;

(iii) F(x) is monotonic increasing for x >
√

3;

(iv) g(x) = tanh kx is an odd function, and positive for x > 0.

The theorem then asserts that the system has a unique periodic solution. As explained in the
theorem the limit cycle will be stable.

For the limiting step function

g(x) =
{

1 x > 0
−1 x < 0.

In the Liénard plane the differential equation for the phase paths becomes

dy
dx
= sgn (x)
y − β((1/3)x3 − x) ,

so that there are no points at which dy/dx = 0. Paths can never ‘close’ across the y axis.
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• 11.8 Show that ẍ + β(x2 − 1)ẋ + x3 = 0 has exactly one periodic solution.

11.8. In
ẍ + β(x2 − 1)ẋ + x3 = 0

assume that β > 0. Apply NODE, Theorem 11.4 with f (x) = β(x2−1) and g(x) = x3. Check
the conditions as follows:

(i) F(x) = ∫ x
0 f (u)du = β

(1
3x

3 − x) is an odd function;

(ii) F(x) = 0 only at x = 0, x = √3 and x = −√3;

(iii) F(x) is monotonic increasing for x >
√

3;

(iv) g(x) = x3 is an odd function, and positive for x > 0.

The theorem asserts that the system has a unique limit cycle which is stable.
In the case β < 0, reverse time and re-apply the theorem.

• 11.9 Show that ẍ + (|x| + |ẋ| − 1)ẋ + x|x| = 0 has at least one periodic solution.

11.9. Apply NODE, Theorem 11.2 to

ẍ + (|x| + |ẋ| − 1)ẋ + x|x| = 0,

with f (x, y) = (|x| + |y| − 1) and g(x) = x|x|. The requirements of Theorem 11.2 are as
follows:

(i) f (x, y) > 0 for x2 + y2 > 1, since |x| + |y| = 1 is a square within this circle;

(ii) f (0, 0) = −1 < 0;

(iii) g(x) is an odd function with g(x) > 0 for x > 0;

(iv) G(x) = ∫ x
0 g(u)du =

∫ x
0 u|u|du = 1

3 |x|3 →∞ as x →∞.

Theorem 11.2 implies that the system has at least one periodic solution.

• 11.10 Show that the origin is a centre for the equation ẍ + (kẋ + 1) sin x = 0.

11.10. In the equation

ẍ + (kẋ + 1) sin x = 0,
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let f (x) = k sin x and g(x) = sin x, and apply NODE, Theorem 11.3. The requirements of the
theorem as follows:

(i) f (x) = k sin x is odd, and of one sign in 0 < x < π ;

(ii) g(x) = sin x is also odd and positive in 0 < x < π ;

(iii) For α > 1,

g(x)− αk sin x
∫ x

0
k sin udu = sin x[1− αk2(1− cos x)] > 0

for x sufficiently small. For example, choose α = 2: then the function is positive for cos x >
(k2 − 1)/k2, for which a positive interval can be found for every k.

• 11.11 Using the method of NODE, Section 11.4, show that the amplitude of the limit
cycle of

εẍ + (|x| − 1)ẋ + εx = 0, ẋ = y, (0 < ε � 1)

is approximately a = 1 + √2 to order ε. Show also that the solution for y > 0 is
approximately

εy = (x − a)− 1
2x

2sgn (x)+ 1
2a

2, (−1 < x < a).

Compare this curve with the computed phase path for ε = 0.1.

11.11. In the equation
εẍ + (|x| − 1)ẋ + εx = 0 (i)

ε > 0 is a small parameter. This equation is very similar to the van der Pol equation in
Section 11.4. The solution below follows the method given in the text with the differences
pointed out.

The phase paths are given by
dy
dx
= −|x| − 1

ε
− x

y
.

The isocline of zero slope is the curve

y = εx

1− |x| .

In equation (i) put t = ετ , so that

x′′ + (|x| − 1)x′ + ε2x = 0. (ii)

Therefore to lowest order
x′′ + (|x| − 1)x′ = 0,
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Figure 11.3 Problem 11.11: The computed limit cycle is the solid curve: the approximation given by (iii) is the
dashed curve in the case ε = 0.1.

which can be integrated to give

x′ = x − 1
2x

2sgn (x)+ C = x − a − 1
2x

2sgn (x)+ 1
2a

2 = εy, (iii)

if x = a > 0 where y = 0. This part of the solution must return to the x axis at x = −1.
Therefore a is given by

0 = −1− a + 1
2 + 1

2a
2, or a2 − 2a − 1 = 0.

It follows that a = 1 +√2. The approximate equation for the limit cycle is given by (ii). The
computed limit cycle and the approximation are shown in Figure 11.3 for ε = 0.1.

• 11.12 Let F and g be functions satisfying the conditions of NODE, Theorem 11.4. Show
that the equation ü+ F(u̇)+ g(u) = 0 has a unique periodic solution (put u̇ = z). Deduce
that Rayleigh’s equation ü+ β(1

3 u̇
3 − u̇)+ u = 0 has a unique limit cycle.

11.12. The functions F and g in the equation

ü+ F(u̇)+ g(u) = 0

satisfy the conditions of Theorem 11.4. Put u̇ = −z. Then

ż = −ü = F(u̇)+ g(u) = F(−z)+ g(u) = −F(z)+ g(u),

since F(z) is an odd function. These are simply the equations in the Liénard plane. Hence
Theorem 11.4 applies so that the equation has a stable limit cycle.
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In Rayleigh’s equation

ü+ β
(

1
3 u̇

3 − u̇
)
+ u = 0,

F(u̇) = β
(

1
3 u̇

3 − u̇
)

and g(u) = u. It follows that conditions (i), (ii) and (iii) of the theorem

are satisfied. Stability depends on the sign of β.

• 11.13 Show that the equation ẍ+β(x2−ẋ2−1)ẋ+x = 0, unlike the van der Pol equation,
does not have a relaxation oscillation for large positive β.

11.13. The equation

ẍ + β(x2 + ẋ2 − 1)ẋ + x = 0,

has the exact sinusoidal solution x = cos t , which is not a relaxation oscillation. Damping
ensures that the solution is stable and the only periodic solution.

• 11.14 For the van der Pol oscillator δẍ + (x2 − 1)ẋ + δx = 0 for small positive δ, use
the formula for the period, NODE, eqn (11.13), to show that the period of the limit cycle
is approximately (3− 2 ln 2)δ−1. (Hint: the principal contribution arises from that part of
the limit cycle given in (ii) in Section 11.4.)

11.14. Consider the van der Pol equation

δẍ + (x2 − 1)ẋ + δx = 0,

where δ is large. It can be seen from Figure 11.16 (in NODE) that the main contribution to
the period occurs over the intervals −2 < x < −1 and 1 < x < 2. In the former interval the
relation between x and y (see (ii) in Section 11.4) is given by

y = δx

1− x2 .

If this curve is denoted by C, then by eqn (1.13) (in the book) the elapsed time is

1
2T =

∫
C

dx
y
= 1
δ

∫ −1

−2

(
1
x
− x

)
dx = 1

2δ
(3− 2 ln 2).

The period is therefore T = (3− 2 ln 2)/δ.
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• 11.15 Use the Poincaré–Bendixson theorem to show that the system

ẋ = x − y − x(x2 + 2y2), ẏ = x + y − y(x2 + 2y2)

had at least one periodic solution in the annulus 1/
√

2 < r < 1, where r = √(x2 + y2).

11.15. We apply the Poincaré–Bendixson theorem to

ẋ = X(x, y) = x − y − x(x2 + 2y2), ẏ = Y (x, y) = x + y − y(x2 + 2y2).

The outward normal to the general circle x2+y2 = r2 = constant is n = (x, y). Let X = (X,Y ).
Then

n ·X = x[x − y − x(x2 + 2y2)] + y[x + y − y(x2 + 2y2)]
= r2[1− (x2 + 2y2)]
= r2(1− r2 − y2)

If r = 1 then n ·X = −y2 ≤ 0. Alternatively we can write

n ·X = r2(1− 2r2 + x2).

In this case if r = 1/
√

2, then n · X = 1
2x

2 ≥ 0. We conclude that phase paths cross r = 1
from the outside, whilst on r = 1/

√
2 the phase paths cross from the inside. By the Poincaré–

Bendixson theorem there must be at least one closed path between the circles since the system
has only one equilibrium point at (0, 0).



12 Bifurcations and manifolds

• 12.1 Find the bifurcation points of the linear system ẋ = A(λ)x with x = [x1 x2]T and
A(λ) given by

(i) A(λ) =
[ −2 1

4−1 λ

]
;

(ii) A(λ) =
[
λ λ− 1
1 λ

]
.

12.1. We require the bifurcation points of the linear system ẋ = A(λ)x with x = [x1, x2]T .

(i) A(λ) =
[ −2 1

4−1 λ

]
.

The eigenvalues of A are given by

∣∣∣∣ −2−m 1
4−1 λ−m

∣∣∣∣ = 0, or m2 − (λ− 2)m+ 1
4 − 2λ = 0,

which has the solutions

m1,m2 = 1
2 [λ− 1±√{(λ+ 3)(λ+ 1)}].

The solutions are real for λ ≤ −3 and λ ≥ −1, and complex for −3 < λ < −1. The graphs
of Re(m1) and Re(m2) against λ are shown in Figure 12.1. Noting the signs of m1 and m2, we
can observe that the equilibrium point at the origin is:

• λ < −3, stable node;
• −3 < λ < −1, stable spiral;
• −1 < λ < −1

3 , stable node;
• λ > −1

3 , saddle point.

A bifurcation occurs at the parametric value λ = −1
3 where, as λ increases, the equilibrium

point changes from a stable node to an unstable saddle point.
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Figure 12.1 Problem 12.1(i): m1 and m2 are shown for λ ≤ −3 and for λ ≥ −1: Re(m1) and Re(m2) are shown
between P and Q.
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Figure 12.2 Problem 12.1(ii): Re(m1) and Re(m2) against λ are shown.

(ii) A(λ) =
[
λ λ− 1
1 λ

]
.

The eigenvalues of A are given by

∣∣∣∣ λ−m λ− 1
1 λ−m

∣∣∣∣ = 0 or m2 − 2mλ+ λ2 − λ+ 1 = 0,

which has the solutions
m1,m2 = λ±√(λ− 1).
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The solutions are real for λ ≥ 1 and complex for λ ≤ 1 (see Figure 12.2). The origin is:

• λ < 0, stable spiral;
• 0 < λ < 1, unstable spiral;
• 1 < λ, unstable node.

There is a bifurcation point at λ = 0 where the equilibrium point changes from a stable spiral
to an unstable spiral.

• 12.2 In a conservative system, the potential is given by V(x, λ) = 1
3x

3 + λx2 + λx

(cf, NODE, eqn (12.2)). Find the equilibrium points of the system, and show that it has
bifurcation points at λ = 0 and λ = 1. What type of bifurcations occur for λ < 0 and
λ > 0?

12.2. For the conservative system with potential

V(x, λ) = 1
3x

3 + λx2 + λx,

the corresponding equation is

ẍ = −dV
dx

= −x2 − 2λx − λ.

Equilibrium points occur where

x2 + 2λx + λ = 0.

Its solutions are
x = −λ±√(λ2 − λ),

–1 1 2
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2

x

�

–�x (x, l) > 0

–�x (x, l) > 0

Figure 12.3 Problem 12.2: The curves show locations of the equilibrium points together with the bifurcation points;
the dashed curves indicate stable equilibrium.
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which are real only if λ ≥ 1, or λ ≤ 0. The system has two equilibrium points if λ > 1 or
λ < 0, one equilibrium point if λ = 0 or λ = 1, and none if 0 < λ < 1. Bifurcations occur at
λ = 0 and at λ = 1 as indicated in Figure 12.3. Both these are saddle-node bifurcations (see
Section 12.4). The method of NODE, Section 1.7 indicates that the dashed curves are stable.

• 12.3 Let V(x, λ,µ) = 1
4x

4− 1
2λx

2+µx as in eqn (12.4) (in NODE). Draw projections of
the bifurcations given the cusp surface x3 − λx +µ = 0 on to both the (x, λ) plane and the
(x,µ) plane. Sketch the projection of the cusp on to the (µ, λ) plane.

12.3. For the potential V(x, λ,µ) = 1
4x

4 − 1
2x

2 + µx, the corresponding equation is

ẍ = Vx(x, λ,µ) = −x3 + λx − µ.

The equilibrium points lie on the surface

x3 − λx + µ = 0 (i)

in (λ,µ, x) space as shown in Figure 12.4.
On the tangents (λ fixed)dµ/dx = 0 with slope on the surface (see Figure 12.4). From (i)

dµ
dx

= −3x2 + λ.

The projection on to the (x, λ) plane is given by λ=3x2, shown in Figure 12.5. The projection
on to the (x,µ) plane is given by eliminating λ between (i) and dµ/dx = 0, namely µ = 2x3.
The graph is also shown in Figure 12.5.

x

l

m

Figure 12.4 Problem 12.3: The equilibrium surface µ = x3 − λx is shown.
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Figure 12.5 Problem 12.3: Projections of the cusp on to the (x, λ) and (x,µ) planes.
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Figure 12.6 Problem 12.3: The cusp in the (µ, λ) plane.

The cusp in (λ,µ) plane is obtained by eliminating x between (i) and dµ/dx = 0, namely,

µ = 2
(
λ

3

)3/2

.

The cusp is shown in Figure 12.6.

• 12.4 Discuss the stability and bifurcation of the equilibrium points of the parameter-
dependent conservative system ẍ = −Vx(x, λ), where V(x, λ) = 1

4x
4 − 1

2λx
2 + λx.

12.4. With V(x, λ) = 1
4x

4 − 1
2λx

2 + λx, the equation for x is

ẍ = −x3 + λx − λ.

Equilibrium occurs where
−x3 + λx − λ = 0. (i)

The equilibrium points are shown in Figure 12.7.
The abscissa of the point P in Figure 12.7 is by

dλ
dx
= d

dλ

(
x3

x − 1

)
= x2(2x − 3)

(x − 1)2
= 0.
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Figure 12.7 Problem 12.4: Equilibrium points in the (λ, x) plane.

Therefore x = 0 or x = 3
2 . A bifurcation takes place at the point P which has the coordinates(27

4 , 3
2

)
. The system has one equilibrium state for λ < 27

4 , and three for λ > 27
4 . The regions in

which Vx is negative is also shown in the figure: only equilibrium points on PQ are stable. A
saddle-node bifurcation occurs at P .

• 12.5 Discuss bifurcations of the system ẋ = y2 − λ, ẏ = x + λ.

12.5. ẋ = y2 − λ, ẏ = x + λ. Equilibrium occurs where

x = −λ, y2 = λ.

Parametrically in (x, y, λ) space this can be represented by the curve (x, y, λ) = (−w2,w,w2)

as shown in Figure 12.8. The system has no equilibrium points for λ < 0 and two for λ > 0.
Clearly there is a bifurcation point at λ = 0.

The classification of the equilibrium points for λ > 0 can be done by linearization. Thus,
on the branch x = −λ, y = √

λ, let x = −λ + x′ and y = √
λ + y′. Then equations are

approximately

ẋ′ = (y′ + √λ)2 − λ ≈ 2
√
λy′, ẏ′ = x′ − λ+ λ = x′,

which indicates a saddle point. For the branch x = −λ, y = −√λ,

ẋ′ ≈ −2
√
λy′, ẏ′ = x′,

which indicates a centre but linearization could fail to predict the type. However, the system is
Hamiltonian with function

H(x, y) = 1
3y

3 + λy − 1
2x

2 − λx.

Consequently, any simple equilibrium points are either centres or saddle points.
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Figure 12.8 Problem 12.5.

• 12.6 Find the bifurcation points of ẋ = y2 − λ, ẏ = x + λ.

12.6. The system

ẋ = y2 − λ, ẏ = x(x + λ)

has equilibrium points where

y2 = λ, x(x + λ) = 0.

There are no equilibrium points for λ < 0, and four for λ > 0, on the parabolas

x = −λ, y = ±√λ, and x = 0, y = ±√λ

as shown in Figure 12.9. There is a bifurcation point at the origin. The system is Hamiltonian
which means that the equilibrium points will be either saddles or centres.

The classification of the equilibrium points for λ > 0 can be done by linearization. On x = 0,
y = ±√λ, let y = y′ ± √λ. Then

ẋ = (y′ ± √λ)2 − λ ≈ ±2y′
√
λ, ẏ′ = x(x + λ) ≈ xλ.

The point (0,
√
λ) is a saddle, and (0,−√λ) is a centre.

On x = −λ, y = ±√λ, let x = x′ − λ, y = y′ ± √λ. Then the equations become

ẋ′ = (y′ ± √λ)2 − λ ≈ ±2y′
√
λ, ẏ′ = (x′ − λ)x′ ≈ −λx′.

The point (−λ, 2
√
λ) is a centre, and (−λ,−2

√
λ) is a saddle.
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x

y

l

Figure 12.9 Problem 12.6: Showing the parabolas x = 0, y2 = λ and x = −λ, y2 = λ.

�

x

Figure 12.10 Problem 12.7: Equilibrium points of ẋ = y, ẏ = x(λ− x2).

• 12.7 Consider the system ẋ = y, ẏ = x(λ − x2), −∞ < λ < ∞. Investigate the phase
diagrams for λ < 0, λ = 0 and λ > 0. Describe the bifurcation of the system as λ increases
through zero.

12.7. The system

ẋ = y, ẏ = x(λ− x2),

has equilibrium points:

(i) at (0, 0), (
√
λ, 0), (−√λ, 0) if λ > 0;

(ii) at (0, 0) if λ ≤ 0.

There is a bifurcation point at λ = 0. The bifurcation is shown in Figure 12.10 in the (λ, x) of
the section y = 0. This is a pitchfork bifurcation. The equilibrium point at x = 0 is a centre
for λ < 0, and a saddle for λ > 0. The equilibrium points at x = ±√λ (λ > 0) are centres.
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x

y

�

Figure 12.11 Problem 12.8: Pitchfork bifurcation of the system ẋ = y(y2 − λ), ẏ = x + λ.

• 12.8 Discuss the bifurcations of ẋ = (y2 − λ)y, ẏ = x + λ.

12.8. The system
ẋ = y(y2 − λ), ẏ = x + λ

is in equilibrium if
y(y2 − λ) = 0, x + λ = 0.

In (x, y, λ) equilibrium occurs on the parabola x = −λ, y = ±√λ, and on the line x = −λ,
y = 0 as shown in Figure 12.11. The system is Hamiltonian which implies that the equilibrium
points are either centres or saddle points.

For λ < 0, let x = −λ+ x′. Then the approximate equations are

ẋ′ ≈ −λy, ẏ′ = x′.

The linear equations predict a centre. For λ > 0, x = −λ, y = 0 is a saddle, and x = −λ,
y = ±√λ are centres.

• 12.9 Investigate the bifurcation of the system ẋ = x, ẏ = y2 − λ at λ = 0. Show that, for
λ > 0, the system has an unstable node at (0,

√
λ) and a saddle point at (0,−√λ). Sketch

the phase diagrams for λ < 0, λ = 0 and λ > 0.

12.9. The system
ẋ = x, ẏ = y2 − λ

has two equilibrium points at x = 0, y = ±√λ if λ > 0, and none if λ < 0, as shown in
Figure 12.12. Let y = ±√λ+ y′. Then the equations become

ẋ = x, ẏ′ = (y′ ± √λ)2 − λ ≈ ±2
√
λy′.
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l

y

Figure 12.12 Problem 12.9: equilibrium states for ẋ = x, ẏ = y2 − λ in the x = 0 plane.
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Figure 12.13 Problem 12.9: Phase diagram for λ = −1.
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Figure 12.14 Problem 12.9: Phase diagram for λ = 0.

Hence (0,
√
λ) is an unstable node, and (0,−√λ) is a saddle point. This is an example of a

saddle–node bifurcation.
Phase diagrams for λ = −1, 0, 1 are shown respectively in Figures 12.13, 12.14, 12.15.

In Figure 12.13 (λ = −1) the system has no equilibrium points. The critical case shown in
Figure 12.14 in which the origin is a higher-order saddle–node hybrid. These bifurcate into a
separate node and saddle point for λ > 0.
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–2 –1 1 2
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–2

–1

2

y

1

Figure 12.15 Problem 12.9: Phase diagram for λ = 1.

Note that the differential equation for the phase paths is

dy
dx
= (y2 − λ)

x
,

which is separable, so that the equations for the phase paths can be found explicitly.

• 12.10 A homoclinic path (NODE, Section 3.6) is a phase path which joins an equilibrium
point to itself in an autonomous system. Show that ẋ = y, ẏ = x − x2 has such a path and
find its equation. Sketch the phase paths for the perturbed system ẋ = y+λx, ẏ = x−x2, for
both λ > 0 and λ < 0. (The homoclinic saddle connection is destroyed by the perturbation;
the system undergoes what is known as a homoclinic bifurcation (Section 3.6) at λ = 0.)

12.10. The system

ẋ = y, ẏ = x − x2

has two equilibrium points at (0, 0) (a saddle point) and at (1, 0) (a centre). The phase paths
are given by

dy
dx
= x − x2

y
,

which can be integrated to give

1
2y

2 = 1
2x

2 − 1
3x

3 + C.

The homoclinic path passes through the saddle at the origin so that C = 0 leaving the equation

y2 = x2 − 2
3x

3, (x ≥ 0).
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Figure 12.16 Problem 12.10: Phase paths for ẋ = y, ẏ = x − x2.
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Figure 12.17 Problem 12.10: Phase diagram with λ = −0.1.

The phase diagram is shown in Figure 12.16. For the perturbed system

ẋ = y + λx, ẏ = x − x2,

(0, 0) and (1,−λ) are equilibrium points. The origin remains a saddle point. For the other point,
let x = 1+ ξ , y = −λ+ η. Then the linearized equations are

ξ̇ = λξ + η, η̇ = (ξ + 1)− (ξ + 1)2 ≈ −ξ .

The classification is as follows:

• λ ≤ −2, stable node;
• −2 < λ < 0, stable spiral;
• 0 < λ < 2, unstable spiral;
• 2 ≤ λ, unstable node.

Phase diagrams for λ = −0.1 and for λ = 0.1 are shown in Figures 12.17 and 12.18.
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Figure 12.18 Problem 12.10: Phase diagram with λ = 0.1.

• 12.11 A heteroclinic path (NODE, Section 3.6) is a phase path which joins two different
equilibrium points. Find the heteroclinic saddle connection for the system ẋ = xy, ẏ =
1−y2. Sketch the phase paths of the perturbed system ẋ = xy+λ, ẏ = 1−y2 for both λ > 0
and λ < 0.

12.11. The system
ẋ = xy, ẏ = 1− y2,

has equilibrium points at (0, 1) and at (0,−1). Both equilibrium points are saddle points. Note
also that x = 0 and y = ±1 are phase paths. The phase diagram is shown in Figure 12.19. This
phase diagram has a heteroclinic path joining the saddle points at (0, 1) and (0,−1).

The perturbed system
ẋ = y + λx, ẏ = x − x2

has equilibrium points at (−λ, 1) and (λ,−1), both of which are saddle points. The lines y = ±1
are still phase paths. The phase diagram for λ = 0.2 is shown in Figure 12.20 in which the
saddle connection is broken. The phase diagram for λ = −0.2 is shown in Figure 12.21. The
saddle connection bifurcates in the opposite direction in this case. The three figures indicate a
heteroclinic bifurcation.
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Figure 12.19 Problem 12.11: Phase diagram of ẋ = xy, ẏ = 1− y2.
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Figure 12.20 Problem 12.11: Phase diagram for λ = 0.2 .
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Figure 12.21 Problem 12.11: phase diagram for λ = −0.2.

• 12.12 Let

ẋ = −µx − y + x

1+ x2 + y2 , ẏ = x − µy + y

1+ x2 + y2 .

Show that the equations display a Hopf bifurcation as µ > 0 decreases through µ = 1. Find
the radius of the periodic path for 0 < µ < 1.

12.12. Express the system

ẋ = −µx − y + x

1+ x2 + y2 , ẏ = x − µy + y

1+ x2 + y2

in polar coordinates with x = r cos θ , y = r sin θ . Then

rṙ = xẋ + yẏ = −µr2 + r2

1+ r2 = −
r2

1+ r2 [µr2 + (µ− 1)],

θ̇ = 1
r2 (ẏx − ẋy) = 1.
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For 0 < µ < 1, r = r0 = √[(1− µ)/µ] is a limit cycle which is stable since for r < r0, ṙ > 0,
and for r > r0, ṙ < 0. In other words adjacent paths spiral into the limit cycle. The equilibrium
point at the origin is an unstable spiral.

For µ > 1, the system has a stable equilibrium point at the origin and no limit cycle. The
system passes through a Hopf bifurcation as µ decreases through µ = 1.

• 12.13 Show that the system

ẋ = x − γ y − x(x2 + y2), ẏ = γ x + y − y(x2 + y2)− γ , (γ > 0)

has a bifurcation point at γ = 1
2 , by investigating the numbers of equilibrium points for

γ > 0. Compute the phase diagram for γ = 1
4

12.13. The system

ẋ = x − γ y − x(x2 + y2), ẏ = γ x + y − y(x2 + y2)− γ , (γ > 0)

has equilibrium points where

x − γ y − x(x2 + y2) = 0, γ x + y − y(x2 + y2) = γ (i)

Squaring and adding

[x − γ y − x(x2 + y2)]2 + [γ x + y − y(x2 + y2)]2 = γ 2,

or
r2(1− r2)2 − γ 2(1− r2) = 0,

where r2 = x2 + y2. Therefore

r = 1, or r4 − r2 + γ 2 = 0. (ii)

The cases are as follows:

• γ > 1
2 . Equation (ii) has one real solution where r = 1, which from (i) implies that (1, 0)

is an equilibrium point. To classify the point, let x = 1+ ξ . Then

ξ̇ ≈ −2ξ − γ y, ẏ ≈ γ ξ .

Therefore (1, 0) is a stable node for 1
2 < γ < 1.

• γ = 1
2 . In this case (ii) has the solutions r = 1 and r = 1/

√
2 which lead to equilib-

rium points at (1, 0) and at (1
2 , 1

2 ). As in the previous case (1, 0) remains a stable node.
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Figure 12.22 Problem 12.13.

Linearization is not helpful for (1
2 , 1

2 ) since the equations for the perturbations ξ and η
become

ξ̇ ≈ −η, η̇ ≈ 0,

which is a degenerate case.

• 0 < γ < 1
2 . (ii) now has three real solutions r = 1, and r = r1, r2 = 1

2 (1±
√
(1− 4γ 2)). The

origin remains a stable node. Classification of the other equilibrium points is complicated.

As the parameter γ decreases through γ = 1
2 an equilibrium point appears at (1

2 , 1
2 ) which then

splits into two equilibrium points. The phase diagram for γ = 0.25 is shown in Figure 12.22.
The computed diagram seems to indicate that the bifurcation creates an unstable node at P ,
and a saddle point at Q. The equilibrium point at (1, 0) is a stable node for γ < 1.

• 12.14 Let ẋ = Ax, where x = [x y z]T . Find the eigenvalues and eigenvectors of A in
each of the following cases. Describe the stable and unstable manifolds of the origin.

(a) A =

 1 1 2

1 2 1
2 1 1


.

(b) A =

 3 0 −1

0 1 0
2 0 0


 .

(c) A =

 2 0 0

0 2 2
0 2 −1


.

(d) A =

 6 5 5

5 6 5
5 5 6


.
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12.14. The origin is an equilibrium point for the linear system

ẋ = Ax.

(a)

A =

 1 1 2

1 2 1
2 1 1


 .

The eigenvalues of A are given by

∣∣∣∣∣∣
1− λ 1 2

1 2− λ 1
2 1 1− λ

∣∣∣∣∣∣ = 0, or − (λ− 4)(λ− 1)(λ+ 1) = 0.

Therefore the eigenvalues are −1, 1, 4 with corresponding eigenvectors

(−1, 0, 1)T , (1,−2, 1)T , (1, 1, 1)T .

Hence the general solution is given by


 x

y

z


 = α


 −1

0
1


 e−t + β


 1
−2
1


 et + γ


 1

1
1


 e4t .

The stable manifold is given parametrically by β = γ = 0, that is


 x

y

z


 = α


 −1

0
1


 e−t ,

which is the straight line z = −x, y = 0.
The unstable manifold is given by


 x

y

z


 = β


 1
−2
1


 et + γ


 1

1
1


 e4t ,

which defines the plane x − 3z = 0.

(b)

A =

 3 0 −1

0 1 0
2 0 0


 .
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The eigenvalues of A are given by

∣∣∣∣∣∣
3− λ 0 −1

0 1− λ 0
2 0 −λ

∣∣∣∣∣∣ = 0, or − (λ− 2)(λ− 1)2 = 0.

Therefore the eigenvalues are 1(repeated) and 2 with corresponding eigenvectors

(1, 0, 2)T , (0, 1, 0)T , (1, 0, 1)T .

Hence the general solution


 x

y

z


 = α


 1

0
2


 et + β


 0

1
0


 et + γ


 1

0
1


 e2t .

Since all the eigenvalues are positive there is no stable manifold, and the unstable manifold is
the whole space.

(c)

A =

 2 0 0

0 2 2
0 2 −1


 .

The eigenvalues of A are given by

∣∣∣∣∣∣
2− λ 0 0

0 2− λ 2
0 2 −1− λ

∣∣∣∣∣∣ = 0, or − (λ− 3)(λ− 2)(λ+ 2) = 0.

Therefore the eigenvalues are −2, 2, 3 with corresponding eigenvectors

(0,−1, 2)T , (1, 0, 0)T , (0, 2, 1)T .

Hence the general solution is


 x

y

z


 = α


 0
−1
2


 e−2t + β


 1

0
0


 e2t + γ


 0

2
1


 e3t .

The stable manifold (β = γ = 0, α = 1, say) is the straight line given parametrically by x = 0,
y = −e−2t , z = 2e−2t . The unstable manifold (α = 0) is the plane −y + 2z = 0.

(d)

A =

 6 5 5

5 6 5
5 5 6


 .
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The eigenvalues of A are given by

∣∣∣∣∣∣
6− λ 5 5

5 6− λ 5
5 5 6− λ

∣∣∣∣∣∣ = 0, or − (λ− 16)(λ− 1)2 = 0.

Therefore the eigenvalues are 1(repeated) and 16 with corresponding eigenvectors

(−1, 0, 1)T , (−1, 1, 0)T , (1, 1, 1)T .

Hence the general solution is


 x

y

z


 = α


 −1

0
1


 et + β


 −1

1
0


 et + γ


 1

1
1


 e16t .

Since the eigenvalues are all positive there is no stable manifold, whilst the stable manifold is
the whole space.

• 12.15 Show that ẋ = Ax where x = [x y z]T and

A =

 −3 0 −2
−4 −1 −4
3 1 3




has two imaginary eigenvalues. Find the equation of the centre manifold of the origin. Is
the remaining manifold stable or unstable?

12.15. In the system ẋ = Ax,

A =

 −3 0 −2
−4 −1 −4
3 1 3


 .

The eigenvalues of A are given by

∣∣∣∣∣∣
−3−m 0 −2
−4 −1−m −4
3 1 3−m

∣∣∣∣∣∣ = −(m+ 1)(m2 + 1) = 0.

The eigenvalues are −1,−i, i with corresponding eigenvectors

[−1,−1, 1]T , [−3− i,−6− 2i, 5]T , [−3+ i,−6+ 2i, 5]T .



516 Nonlinear ordinary differential equations: problems and solutions

Therefore the general solution is


 x

y

z


 = α


 −1
−1
1


 e−t + β


 −3− i
−6− 2i

5


 e−it + β


 −3+ i
−6+ 2i

5


 eit ,

where α is a real constant and β is a complex constant.
The system has a stable manifold which is the line given parametrically (put β = 0 and

α = 1) by (x, y, z) = (−e−t ,−e−t , et ). Since the other eigenvalues are imaginary, the origin has
an associated centre manifold defined by α = 0, namely by


 x

y

z


 = β


 −3− i
−6− 2i

5


 e−it + β


 −3+ i
−6+ 2i

5


 eit ,

which defines the plane −2x + y = 0. Depending on the initial values, as t → ∞, solutions
approach a periodic solution of the centre which lies in the plane −2x + y = 0.

• 12.16 Show that the centre manifold of
 ẋ

ẏ

ż


 =


 −1 0 1

0 1 −2
0 1 −1


 =


 x

y

z


,

is given by 2x + y − 2z = 0

12.16. Let

A =

 −1 0 1

0 1 −2
0 1 −1


 .

The eigenvalues of A are given by

∣∣∣∣∣∣
−1−m 0 1

0 1−m −2
0 1 −1−m

∣∣∣∣∣∣ = −(m+ 1)(m2 + 1) = 0.

The eigenvalues are −1,−i, i with corresponding eigenvectors

[1, 0, 0]T , [1+ i, 2− 2i, 2]T , [1− i, 2+ 2i, 2]T .
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Therefore the general solution is


 x

y

z


 = α


 1

0
0


 e−t + β


 1+ i

2− 2i
2


 e−it + β


 1− i

2+ 2i
2


 eit ,

where α is a real constant and β is a complex constant. Solutions for which α = 0 lie on the
centre manifold, that is,


 x

y

z


 = β


 1+ i

2− 2i
2


 e−it + β


 1− i

2+ 2i
2


 eit ,

which is the plane −2x − y + 2z = 0.

• 12.17 Show that the phase paths of ẋ = y(x + 1), ẏ = x(1− y2) are given by

y = ±√[1− Ae−2x(1+ x)2],
with singular solutions x = −1 and y = ±1. Describe the domains in the (x, y) plane of the
stable and unstable manifolds of each of the three equilibrium points of the system.

12.17. The phase paths of

ẋ = y(x + 1), ẏ = x(1− y2),

are given by
dy
dx
= x(1− y2)

y(x + 1)
.

Separating the variables and integrating,

∫
ydy

1− y2 =
∫

xdx
x + 1

+ B.

Therefore

−1
2 ln |1− y2| = − ln[e−x |x + 1|] + B,

or

y = ±√[1− Ae−2x(1+ x)2].
By inspection the equations also have the solutions x = −1 and y = ±1.

The system has equilibrium points at (0, 0), (−1, 1) and (−1,−1). The classification of
the equilibrium points is as follows (easier to use the differential equations rather than the
solutions):
• (0, 0): ẋ ≈ y, ẏ ≈ x – saddle point;
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Figure 12.23 Problem 12.17: Phase diagram for ẋ = y(x + 1), ẏ = x(1− y2).

• (−1, 1): let x = −1+ x′, y = 1+ y′; then ẋ′ ≈ x′, ẏ′ ≈ 2y′ – unstable node;
• (−1,−1); let x′ = 1+ x′, y = −1+ y′; then ẋ′ ≈ −x′, ẏ′ ≈ −2y′– stable node.

For the saddle point at the origin, the stable manifolds are the separatrices EA and BA in
Figure 12.23.

For the equilibrium point at (−1, 1), the domain above GCAD is its unstable manifold.
For the equilibrium point at (−1,−1), the domain below FBAE is its stable manifold.

• 12.18 Show that the linear approximation at (0, 0, 0) of

ẋ = −y+yz+(y−x)(x2+y2), ẏ = x−xz−(x+y)(x2+y2), ż = −z+(1−2z)(x2+y2),

has a centre manifold there. Show that z = x2+y2 is a solution of this system of equations.
To which manifold of the origin is this surface tangential? Show also that, on the surface,
x and y satisfy

ẋ = −y + (2y − x)(x2 + y2), ẏ = x − (2x + y)(x2 + y2).

Using polar coordinates determine the stability of solutions on this surface and the stability
of the origin.

12.18. The linear approximation near (0, 0, 0) of the system

ẋ = −y + yz+ (y − x)(x2 + y2), ẏ = x − xz− (x + y)(x2 + y2),

ż = −z+ (1− 2z)(x2 + y2),

is

ẋ ≈ −y, ẏ ≈ x, ż ≈ −z.
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The eigenvalues of the linear approximation are given by

∣∣∣∣∣∣
−λ −1 0
1 −λ 0
0 0 −1− λ

∣∣∣∣∣∣ = 0, or − (λ+ 1)(λ2 + 1) = 0.

The eigenvalues are −1, i, −i with corresponding eigenvectors

(0, 0, 1)T , (−i, 1, 0)T , (i, 1, 0).

Hence the general solution near the origin is


 x

y

z


 ≈ α


 0

0
1


 e−t + β


 −i

1
0


 eit + γ


 i

1
0


 e−it .

The stable manifold is given by β = 0, γ = 0, that is the line x = y = 0, z = 1. Since two
eigenvalues are imaginary, the linear approximation has a centre manifold given by α = 0
which defines the plane z = 0.

If z = x2 + y2, then

ż = 2xẋ + 2yẏ

= 2x[−y + yz+ (y − x)(x2 + y2)] + 2y[x − xz− (x + y)(x2 + y2)]
= −2(x2 + y2) = −z+ (1− 2z)(x2 + y2)

which confirms that this function is a particular solution. The centre manifold of the linear
approximation is the tangent plane to this paraboloid at the origin.

On the surface z = x2 + y2, x and y satisfy

ẋ = −y + (2y − x)r2, ẏ = x − (2x − y)r2.

where r2 = x2 + y2. Introduce polar coordinates through x = r cos θ , y = r sin θ . Then

rṙ = xẋ + yẏ = x[−y + (2y − x)r2] + y[x − (2x + y)r2 = −r4, or ṙ = −r3.

Also

θ̇ = xẏ − yẋ
r2 = x[x − (2x − y)r2] − y[−y + (2y − x)r2]

r2 = 1− 2r2.

For all r > 0, ṙ < 0 and ṙ → 0, which implies that any solution starting on the paraboloid
will approach the origin, from which we infer that the origin is globally asymptotically stable
since the remaining manifold is stable. This result counters the centre manifold predicted by
linearization.
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Figure 12.24 Problem 12.19: Stability diagram for ẋ = µx − x2, ẏ = y(µ− 2x).

• 12.19 Investigate the stability of the equilibrium points of ẋ = µx − x2, ẏ = y(µ − 2x)
in terms of the parameter µ. Draw a stability diagram in the (µ, x) plane for y = 0. What
type of bifcurcation occurs at µ = 0? Obtain the equations of the phase paths, and sketch
the phase diagrams in the cases µ = −1, µ = 0 and µ = 1.

12.19. The system
ẋ = µx − x2, ẏ = y(µ− 2x)

has equilibrium points at (0, 0) and (µ, 0). The linear classification of the points is as follows.

• (0, 0). The linear approximation is

ẋ ≈ µx, ẏ ≈ µy,

which is a critical node, stable if µ < 0 and unstable if µ > 0.
• (µ, 0). Let x = µ+ ξ . Then

ξ̇ ≈ −µξ , ẏ ≈ −µy,

which is also a critical node, stable if µ > 0 and unstable if µ < 0.

The stability diagram of equilibrium points in the (µ, x) plane is shown in Figure 12.24. The
origin is an example of a transcritical bifurcation.

The phase paths are given by solutions of

dy
dx
= y(µ− x)
x(µ− x) .

Separation of variables leads to

∫
dy
y
=

∫
µ− 2x
x(µ− x)dx,
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Figure 12.25 Problem 12.19: Phase diagrams for, respectively µ = −1 and µ = 0.
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Figure 12.26 Problem 12.19: phase diagram for µ = 1.

or
ln |y| = ln |x(x − µ)| + C, or y = Bx(x − µ).

The straight lines x = 0, x = µ and y = 0 are also phase paths. The phase diagrams for µ = −1
and µ = 0 are shown in Figure 12.25. The phase diagram for µ = 1 is shown in Figure 12.26.

• 12.20 Where is the bifurcation point of the parameter-dependent system

ẋ = x2 + y2 − µ, ẏ = 2µ− 5xy?

Discuss how the system changes as µ increases. For µ = 5, find all linear approximations
for all equilibrium points and classify them.

12.20. The system
ẋ = x2 + y2 − µ, ẏ = 2µ− 5xy,

is in equilibrium where
x2 + y2 − µ = 0, 2µ− 5xy = 0.

Elimination of y leads to

25x4 − 25µx2 + 4µ2 = 0, or (5x2 − 4µ)(5x2 − µ) = 0.
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where y = 2µ/(5x). If µ < 0, the system has no equilibrium points, if µ = 0 the system has
one point, at (0, 0), and if µ > 0, the system has four points, at

(
2
√
µ√
5

,
√
µ√
5

)
,

(−2
√
µ√

5
,
−√µ√

5

)
,

(√
µ√
5

,
2
√
µ√
5

)
,

(−√µ√
5

,
−2
√
µ√

5

)
.

The system has a bifurcation point at µ = 0. As µ increases through zero, a single equilibrium
point emerges at the origin at µ = 0 which splits into four equilibrium points as µ becomes
positive.

If µ = 5, the equilibrium points simplify to the coordinates (2, 1), (−2,−1), (1, 2), (−1,−2).
The linear classification is as follows:

• (2, 1). Let x = 2+ ξ , y = 1+ η. Then

ξ̇ = (2+ ξ)2 + (1+ η)2 − 5 ≈ 4ξ + 2η,

η̇ = 10− 5(2+ ξ)(1+ η) ≈ −5ξ − 10η.

In the usual notation p = −6 < 0, q = −30 < 0, which implies that (2, 1) is a saddle.

• (−2,−1). Let x = −2+ ξ , y = −1+ η. Then

ξ̇ = (−2+ ξ)2 + (−1+ η)2 − 5 ≈ −4ξ − 2η,

η̇ = 10− 5(−2+ ξ)(−1+ η) ≈ 5ξ + 10η.

Therefore p = 6 > 0, q = −30 < 0, which implies that (−2,−1) is a saddle.

• (1, 2). Let x = 1+ ξ , y = 2+ η. Then

ξ̇ = (1+ ξ)2 + (2+ η)2 − 5 ≈ 2ξ + 4η,

η̇ = 10− 5(1+ ξ)(2+ η) ≈ −10ξ − 5η.

Therefore p = −3 < 0, q = 30 > 0, � = −111 < 0, which implies that (1, 2) is a stable
spiral.

• (−1,−2). Let x = −1+ ξ , y = −2+ η. Then

ξ̇ = (−1+ ξ)2 + (−2+ η)2 − 5 ≈ −2ξ − 4η,

η̇ = 10− 5(−1+ ξ)(−2+ η) ≈ 10ξ + 5η.

Therefore p = 3 > 0, q = 30, � = −111, which implies that (−1,−2) is an unstable
spiral.
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Figure 12.27 Problem 12.21:

• 12.21 Obtain the polar equations for (r, θ) of

ẋ = y + x[µ− (x2 + y2 − 1)2], ẏ = −x + y[µ− (x2 + y2 − 1)2],
where |µ| < 1. Show that, for 0 < µ < 1, the system has two limit cycles, one stable and
one unstable, which collide at µ = 0 and disappear for µ < 0. This is an example of a blue
sky catastrophe in which a finite amplitude limit cycles simply disappears as a parameter is
changed incrementally.

12.21. In the system

ẋ = y + x[µ− (x2 + y2 − 1)2], ẏ = −x + y[µ− (x2 + y2 − 1)2],

let x = r cos θ , y = r sin θ . In terms of r and θ the equations become

ṙ = xẋ + yẏ = r[µ− (r2 − 1)2] = f (r) say,

θ̇ = ẏx − ẋy
r2 = −1.

For µ > 0, the general shape of f (r) versus r is shown in Figure 12.27. The zero at r = 0 is
an equilibrium point, whilst the zeros at A and B define limit cycles of the system. For point A,
r = √(1−√µ) and for B, r = √(1+√µ). As µ decreases through zero the two limit cycles
merge at r = 1 and then disappear for µ < 0.

• 12.22 Discuss the bifurcations of the equilibrium points of ẋ = y, ẏ = −x − 2x2 − µx3

for −∞ < µ < ∞. Sketch the bifurcation diagram in the (µ, x) plane. Confirm that there
is a bifurcation at µ = 1. What happens at µ = 0?

12.22. Equilibrium of
ẋ = y, ẏ = −x − 2x2 − µx3,
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Figure 12.28 Problem 12.22.

occurs where y = 0 and µx3 + 2x2 + x = 0. The solutions of the latter equation are

x = 0, x = 1
µ
[−1±√(1− µ)], (µ �= 0, µ < 1).

If µ = 0, the system has two equilibrium points, at x = 0 and x = −1
2 . If µ > 1, then the

system has one equilibrium point, at x = 0
As µ decreases through µ = 1, two additional equilibrium points appear at µ = 1 (point A

in Figure 12.28). One of these disappears as µ → 0 (point O), and x → −∞, but a second
point re-appears immediately for large positive x.

• 12.23 Consider the system ẋ = y − x(x2 + y2 − µ), ẏ = −x − y(x2 + y2 − µ), where µ
is a parameter. Express the equations in polar form in terms of (r, θ) show that the origin
is a stable spiral for µ < 0, and unstable spiral for µ > 0. What type of bifurcation occurs
at µ = 0?

12.23. The system

ẋ = y − x(x2 + y2 − µ), ẏ = −x − y(x2 + y2 − µ)

has one equilibrium point, at (0, 0). Let x = r cos θ and y = r sin θ , so that the polar equations
are

ṙ = −r(r2 − µ), θ̇ = −1.

This system has a stable limit cycle at r = √µ if µ > 0. If µ < 0 the origin is a global stable
spiral. A stable limit cycle appears from the origin as µ increases through zero. This is a Hopf
bifurcation.
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Figure 12.29 Problem 12.24: Phase diagram with µ = 2.3 showing stable and unstable limit cycles.

• 12.24 In polar form a system is given by ṙ = r(r2 − µr + 1), θ̇ = −1, where µ is a
parameter. Discuss the bifurcations which occur as µ increases through µ = 2.

12.24. The polar equations of a system are given by

ṙ = r(r2 − µr + 1), θ̇ = −1.

Equilibrium occurs where r = 0. ṙ = 0 where

r = 1
2 [µ±

√
(µ2 − 4)]. (i)

If µ < −2, then r < 0. If µ > 2 then the system has two limit cycles with radii given by (i). In
this case the origin is an unstable spiral, and the inner limit cycle is stable and the outer one
unstable as shown in Figure 12.29. As µ increases through µ = 2 a limit cycle appears which
immediately bifurcates into two limit cycles.

• 12.25 The equations of a displaced van der Pol oscillator are given by

ẋ = y − a, ẏ = −x + δ(1− x2)y,

where a > 0 and δ > 0. If the parameter a = 0 then the usual equations for the van
der Pol oscillator appear. Suppose that a is increased from zero. Show that the system has
two equilibrium points one of which is a saddle point at x ≈ −1/(aδ), y = a for small a.
Compute phase paths for δ = 2, and a = 0, 1, 0.2, 0.4, and observe that the saddle point
approaches with the limit cycle of the van der Pol equation. Show that at a ≈ 0.31 the
saddle point collides with the limit cycle, which then disappears.
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12.25. The displaced van der Pol equations are

ẋ = y − a, ẏ = −x + δ(1− x2)y, (a > 0, δ > 0).

Equilibrium occurs where

y = a, x − δ(1− x2)a = 0.,

that is, where

x = {x1, x2} = 1
2δa

[−1±√(1+ 4δ2a2)].

Therefore there are two equilibrium points at (x1, a) and (x2, a). The linear classifications at
these points are as follows.

• (x1, a). Let x = x1 + ξ and y = a + η. Then ξ̇ = η, and

η̇ = −(x1 + ξ)+ δ[1− (x1 + ξ)2](a + η)
≈ (−1− 2x1aδ)ξ + δ(1− x2

1)η

In the usual notation

p = δ(1− x2
1) =

x1

a
= 1

2δa2 [−1+√(1+ 4δ2a2)] > 0,

q = 1+ 2aδx1 = √(1+ 4δ2a2) > 0,

which implies that (x1, a) is an unstable node or spiral.
• (x2, a). Let x = x2 + ξ and y = a + η. Then ξ̇ = η, and

η̇ = −(x2 + ξ)+ δ[1− (x2 + ξ)2](a + η)
≈ (−1− 2x2aδ)ξ + δ(1− x2

2)η

In this case

p = δ(1− x2
2) =

x2

a
= 1

2δa2 [−1−√(1+ 4δ2a2)] < 0,

q = 1+ 2aδx1 = −√(1+ 4δ2a2), 0,

which implies that (x2, a) is a saddle.

As a increases from zero, the saddle point B approaches from infinity and collides with the limit
cycle as shown in the sequence of Figures 12.30, 12.31, 12.32. At a = 0 the limit cycle is van
der Pol cycle, which becomes distorted by the approaching saddle, and eventually disappears
at a ≈ 0.31.
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Figure 12.30 Problem 12.25: For δ = 2, a = 0.1, the saddle is at B and the unstable spiral at A.
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Figure 12.31 Problem 12.25: For δ = 2, a = 0.2, the saddle is at B and the unstable spiral at A.
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Figure 12.32 Problem 12.25: For δ = 2, a = 0.4, the saddle is at B and the unstable spiral at A; the limit cycle has
now disappeared.
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• 12.26 Find the stable and unstable manifolds of the equilibrium points of

ẋ = x2 + µ, ẏ = −y, ż = z,
for µ < 0. What type of bifurcation occurs at µ = 0?

12.26. The equilibrium points of the system

ẋ = x2 + µ, ẏ = −y, ż = z

occur at (±√(−µ), 0, 0). The solutions are

x = √(−µ) tanh[−√(−µ)t + A], y = Be−t , z = Cet .

For x with A = 0, as t →∞, x →−√(−µ), and as t →−∞, x →√
(−µ).

• For (
√
(−µ), 0, 0), the stable manifold is the straight line x = √(−µ), z = 0. The unstable

manifold is the half-plane y = 0, x > −√(−µ).
• For (−√(−µ), 0, 0), the unstable manifold is the straight line x = √

(−µ), y = 0. The
stable manifold is the half-plane y = 0, x <

√
(−µ).

• 12.27 Consider the system ẋ = µx − y − x3, ẏ = x + µy − y3. By putting z = µ − x2,
show that any equilibrium points away from the origin are given by the solutions of z4 −
µz3+µz+1 = 0. Plot the graph of µ against z and show that there is only one equilibrium
point at the origin if µ < 2

√
2, approximately, and nine equilibrium points if µ > 2

√
2

Investigate the linear approximation for the equilibrium point at the origin and show that
the system has a Hopf bifurcation there at µ = 0. Compute the phase diagram for µ = 1.5.

12.27. The equilibrium points of

ẋ = µx − y − x3, ẏ = x + µy − y3,

satisfy
µx − y − x3 = 0, x + µy − y3 = 0.

Eliminate y so that

x + µ(µx − x3)− (µx − x3)3 = 0, or x[1+ µ(µ− x2)− x2(µ− x2)3] = 0.

One solution is x = 0. For the others express the remaining equation in the form

1+ µ(µ− x2)+ (µ− x2)4 − µ(µ− x2)3 = 0.
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Figure 12.33 Problem 12.27: Graph of µ = (z4 + 1)/(z(z2 − 1)); only solutions above the dashed line µ = z are of
interest.

Let z = µ− x2, so that z satisfies

z4 − µz3 + µz+ 1 = 0.

Therefore

µ = z4 + 1
z(z2 − 1)

= f (z),

say. Real solutions for x can only occur if µ > z. The graph of µ against z is shown in
Figure 12.33. Stationary values of µ = f (z) occur where f ′(z) = 0, namely where

z6 − 3z4 − 3z2 + 1 = (1+ z2)(1− 4z2 + z4) = 0.

Real solutions can only occur if z4 − 4z2 + 1 = 0, that is where

z2 = 2±√3.

To satisfy µ > z we must choose z = √[2+√3] and z = −√[2−√3]. Both values of z give
the same value for µ, namely µ = 2

√
2. Therefore there is one equilibrium point if µ < 2

√
2,

5 equilibrium points if µ = 2
√

2, and 9 if µ > 2
√

2.
Near the origin

ẋ ≈ µx − y, ẏ ≈ x + µy.

In the usual notation

p = 2µ, q = µ2 + 1 > 0, � = p2 − 4q = −4 < 0.

As µ increases through zero a stable spiral becomes an unstable spiral. Switch to polar
coordinates. Then

rṙ = xẋ + yẏ = µr2 − (x4 + y4).



530 Nonlinear ordinary differential equations: problems and solutions

–2 2
x

–2

2

y

Figure 12.34 Problem 12.27: Limit cycle for ẋ = µx − y − x3, ẏ = x + µy − y3 with µ = 1.5.

With x = r cos θ and y = r sin θ ,

x4 + y4 − µr2 = r4(cos4 θ + sin4 θ)− µr2 ≥ 1
2r

4 − µr2

= 1
2r

2(r2 − 2µ) > 0

for r2 > 2µ. It follows that ṙ < 0 for r sufficiently large which means that the radial paths
are decreasing if µ is positive. Therefore there must be at least one stable periodic solution
generated at the origin at µ = 0. For µ < 0, ṙ > 0 on all paths. Hence this is an example of a
Hopf bifurcation. A phase diagram for the system with µ = 1.5 is shown in Figure 12.34. The
limit cycle has been created by a Hopf bifurcation at µ = 0.

• 12.28 Show that the system ẋ = x2+y+z+1, ẏ = z−xy, ż = x−1 has one equilibrium
point at (1,−1,−1). Determine the linear approximation ẋ′ = Ax′ to the system at this
point. Find the eigenvalues and eigenvectors of A, and the equations of the stable and
unstable manifolds Es and Ec of the linear approximation.

12.28. The system
ẋ = x2 + y + z+ 1, ẏ = z− xy, ż = x − 1,

is in equilibrium where

x2 + y + z+ 1 = 0, z = xy, x = 1.

The only solution is x = 1, y = −1, z = −1. Let x = 1 + x′, y = −1 + y′, z = −1 + z′. Then
the linearized matrix equation is ẋ′ = Ax′, where

A =

 2 1 1

1 −1 1
1 0 0


 .
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The eigenvalues are given by

∣∣∣∣∣∣
2− λ 1 1

1 −1− λ 1
1 0 −λ

∣∣∣∣∣∣ = 0, or − (λ+ 1)(λ2 − 2λ− 2) = 0.

Therefore the eigenvalues are λ1 = −1, λ2 = 1 + √3, λ3 = 1 − √3, and the corresponding
eigenvectors are

r1 = [−1, 2, 1]T , r2 = [1−
√

3, 1, 1]T , r3 = [1+
√

3, 1, 1]T .

The general solution is


 x′
y′
z′


 = α


 −1

2
1


 e−t + β


 1−√3

1
1


 e(1−

√
3)t + γ


 1+√3

1
1


 e(1+

√
3)t .

The stable manifold is given by γ = 0, which is given parametrically by the equations

x′ = −α + (1−√3)β,

y′ = 2α + β,

z′ = α + β.

In terms of x, y, z the stable manifold is the plane

(x − 1)+ (2−√3)(y + 1)+ (2√3− 3)(z+ 1) = 0.

The unstable manifold is defined by α = β = 0, which defines the straight line

x′ = x − 1 = (1+√3)s, y′ = y + 1 = s, z′ = z+ 1 = s.

• 12.29 Consider the equation ż = λz− |z|2z, where z = x + iy is a complex variable, and
λ = α + iβ is a complex constant. Classify the equilibrium point at the origin, and show
that the system has a Hopf bifurcation as α increases through zero for β �= 0. How does
the system behave if β = 0?

12.29. In the equation ż = λz − |z|2z, let z = x + iy and λ = α + iβ. The real and imaginary
equations are

ẋ = αx − βy − (x2 + y2)x,

ẏ = βx + αy − (x2 + y2)y.
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The system has one equilibrium point, at (0, 0). Near the origin

ẋ ≈ αx − βy, ẏ ≈ βx + αy.

In the usual notation, the classification parameters are

p = 2α, q = α2 + β2 > 0, � = p2 − 4q = −4β2 < 0.

As α increases through zero the origin changes from a stable spiral to an unstable spiral. By
Theorem 12.1, a Hopf bifurcation occurs at µ = 0.

In polar coordinates (r, θ),
ṙ = r(α − r2).

If α > 0, the limit cycle is the circle of radius
√
α.

If β = 0, the equations become

ẋ = (α − r2)x, ẏ = (α − r2)y.

Equilibrium occurs at (0, 0) only if α ≤ 0, and at (0, 0) and all points on the circle r = √α if
α > 0. The phase paths are given by

dy
dx
= y

x
,

which has the general solution y = Cx. The phase paths are radial lines through the origin.



13
Poincaré sequences,
homoclinic bifurcation,
and chaos

• 13.1 Obtain the solutions for the usual polar coordinates r and θ in terms of t , for the
system

ẋ = x + y − x(x2 + y2), ẏ = −x + y − y(x2 + y2).

Let � be the section θ = 0, r > 0. Find the difference equation for the Poincaré sequence
in this section.

13.1. In the equations

ẋ = x + y − x(x2 + y2), ẏ = −x + y − y(x2 + y2),

let x = r cos θ , y = r sin θ . Then

ṙ = r(1− r2), θ̇ = xẏ − ẋy
r2 = −1.

Integration of the equations leads to

r = r0√[r2
0 + (1− r2

0 )e
−2t ] , θ = −t + θ0,

where r(0) = r0, θ(0) = θ0. The system has an equilibrium point at the origin, which is an
unstable spiral. The system also has a stable limit cycle given by circle r = 1.

The polar equations of the paths are given by

r = r0√[r2
0 + (1− r2

0 )e
2(θ−θ0)] .

In the section �, θ0 = 0, and successive returns occur at θ = −2π ,−4π , . . . . Denoting these
radii by rn, we have

rn = r0√[r2
0 + (1− r2

0 )e
−4πn] .

As expected, as n→∞, rn→ 1 irrespective of the initial value r0.
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• 13.2 Find the map of 2π first returns on the section � : t = 0 for ẍ + 2ẋ + 2x = 2 sin t in
the usual phase plane. Find also the coordinates of the fixed point of the map and discuss
its stability. Where is the fixed point of the map if the section is t = 1

2π?

13.2. The linear equation
ẍ + 2ẋ + 2x = 2 sin t ,

has the general solution

x = (A cos t + B sin t)e−t − 4
5 cos t + 2

5 sin t . (i)

It follows that

ẋ = [−(A− B) cos t + (A+ B) sin t]e−t + 2
5 cos t + 4

5 sin t . (ii)

Equations (i) and (ii) give represent points parametrically in the phase plane x, ẋ = y. At t = 0,

x(0) = x0 = A− 4
5 , y(0) = y0 = −A+ B + 2

5 .

The first return is given by

x(2π) = x1 = Ae−2π − 4
5 , y(2π) = y1 = (−A+ B)e−2π + 2

5 .

Elimination of A and B leads to

x1 = (x0 + 4
5 )e

−2π − 4
5 , y1 = (y0 + A− B)e−2π + 2

5 .

The fixed point of the map occurs where x1 = x0 and y1 = y0 which results in A = B = 0
leading to the fixed point (−4

5 , 2
5 ).

If the section is t = 1
2π , then from (i) and (ii) again

x(1
2π) = u0 = Be−(1/2)π + 2

5 , y(1
2π) = v0 = (A+ B)e−(1/2)π + 4

5 .

The first return is given by

x(5
2π) = u1 = Be−(5/2)π + 2

5 , y(5
2π) = v1 = (A+ B)e−(5/2)π + 4

5 .

Then u0 = u1 and v0 = v1 if A = B = 0 which leads to the fixed point (2
5 , 4

5 ).
Alternatively for this linear equation the fixed points can be found by simply eliminating the

exponential terms in the solution by putting A = B = 0. All fixed points for any section can
then be read off.



13 : Poincaré sequences, homoclinic bifurcation, and chaos 535

• 13.3 Let x1 satisfy ẍ1 + 1
4ω

2x1 = � cosωt . Obtain the solutions for x1 and x2 = ẋ1 given
that x1(0) = x10 and x2(0) = x20. Let � be the section t = 0 and find the first returns of
period 2π/ω. Show that the mapping is

P�(x10, x20) =
(
−x10 − 8�

3ω2 ,−x20

)
, and that P 2

�(x10, x20) = (x10, x20).

Deduce that the system exhibits period doubling for all initial values except one. Find the
coordinates of this fixed point.

13.3. The equation
ẍ1 + 1

4ω
2x1 = � cosωt ,

has the general solution

x1 = A cos 1
2ωt + B sin 1

2ωt −
4�
3ω2 cosωt . (i)

It follows that

x2 = ẋ1 = −1
2ωA sin 1

2ωt + 1
2ωB cosωt + 4�

3ω
sinωt . (ii)

From the given initial conditions

A = x10 + 4�
3ω2 , B = 2x20

ω
,

so that

x1 =
(
x10 + 4�

3ω2

)
cos 1

2ωt +
2x20

ω
sin 1

2ωt −
4�
3ω2 cosωt ,

x2 = −1
2
ω

(
x10 + 4�

3ω2

)
sin 1

2ωt + x20 cos 1
2ωt +

4�
3ω

sinωt .

At t = 2π/ω,

x1(2π/ω) = x11 = −x10 − 8�
3ω2 , x2(2π/ω) = x21 = −x20.

Therefore

P�(x10, x20) = (x11, x21) =
(
−x10 − 8�

3ω2 ,−x20

)
.

Since (i) and (ii) are both of period 4π/ω, it follows that the mapping P� shows period doubling,
that is,

P 2
�(x10, x2,0) = P�(x11, x21) = (x10, x20).
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The exception occurs if

x10 = −x10 − 8�
3ω2 , and x20 = −x20,

that is, if

x10 = − 4�
3ω2 , x20 = 0,

which is the fixed point of this mapping.

• 13.4 (a) Let ẋ = y, ẏ = −3y − 2x + 10 cos t and assume the initial conditions x(0) = 4,
y(0) = −1. Consider the associated three-dimensional system with ż = 1. Assuming that
z(0) = 0, plot the solution in the (x, y, z) space and indicate the 2π periodic returns which
occur at t = 0, t = 2π , t = 4π , . . . .

(b) Sketch some typical period-1 Poincaré maps in the (x, y, z) space for ẋ = λx, ẏ = λy,
ż = 1 for each of the cases λ < 0, λ = 0, λ > 0. Discuss the nature of any fixed points in
each case. Assume that x(0) = x0, y(0) = y0, z(0) = 0, and show that

xn+1 = eλxn, yn+1 = eλyn, n = 0, 1, 2, . . . .

13.4. The system
ẋ = y, ẏ = −3y − 2x + 10 cos t , ż = 1,

is used as an example of the three-dimensional representation of the first returns. A particular
solution is shown in Figure 13.1 with initial conditions x(0) = 4, y(0) = −1 and T = 2π . The
solution is

x = 2e−t + e−2t + 3 sin t + cos t .

y

z

x

z = 6�

z = 4�

z = 2�

z = 0

Figure 13.1 Problem 13.4: The curve shows a phase path for the system ẋ = y, ẏ = −3y − 2x + 10 cos t , ż = 1,
with initial conditions x(0) = 4, y(0) = −1, z(0) = 0.
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y

z

z = 4

z = 3

z = 2

z = 1

z = 0

x

Figure 13.2 Problem 13.4: Returns for the solution x = 3e−t , y = 3e−t , z = t .

The dots in the figure are the points of intersection of the path with the planes z = 0,
2π , 4π , 6π , . . . . The fixed point lies on the line x = 1, y = 3.

The system

ẋ = λx, ẏ = λy, ż = 1

has the general solution

x = Aeλt , y = Beλt , z = t + C.

The fixed point lies on the line x = y = 0 in the x, y, z space. If λ < 0, the fixed point x = y = 0
is stable since all returns approach it as t → ∞. Returns for the solution with initial values
x(0) = 3, y(0) = 3, z(0) = 0 are shown in Figure 13.2.

If λ = 0, then the general solution is x = A, y = B, z = t + C. Every point is a fixed point.
Paths in the x, y, z space are all straight lines parallel to the z axis.

If λ > 0, the fixed points still lie on the line x = y = 0 but in this case the fixed point is
unstable.

If x(n) = xn and y(n) = yn, then

xn+1 = Aeλ(n+1) = eλxn, yn+1 = Beλ(n+1) = eλyn.

• 13.5 Two rings can slide on two fixed horizontal wires which lie in the same vertical
plane with separation a. The two rings are connected by a spring of unstretched length l
and stiffness µ. The upper ring is forced to move with displacement φ(t) from a fixed point
O as shown below or in Figure 13.41 (in NODE). The resistance on the lower ring which
has mass m is assumed to be mk × speed. Let y be the relative displacement between the
rings. Show that the equation of motion of the lower ring is given by

ÿ + kẏ − µ

ma
(l − a)y + µl

2ma3 y
3 = −φ̈ − kφ̇.
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a

y
x

T

F

O

u

f

Figure 13.3 Problem 13.5: Forced spring-loaded pendulum between fixed horizontal slides.

13.5. Figure 13.3 shows the constraints on the lower bob. Let T be the tension in the spring,
and F the frictional force with directions as shown in the figure. If x is measured from the fixed
origin O, then the horizontal equation of motion for the bob is

−T sin θ − F = mẍ, (i)

where

x = φ + y, sin θ = y√
(y2 + a2)

.

Assuming Hooke’s law, the tension in the spring is given by

T = µ[√(y2 + a2)− l],

whilst the frictional force has magnitude mk|ẋ|, and opposes the direction of motion.
Elimination of T , F , θ and x in (i) leads to

−µy + lµy√
(y2 + a2)

−mk(φ̇ + ẏ) = m(φ̈ + ÿ), (ii)

which is the exact equation for the motion of the bob.
Apply the binomial approximation

(a2 + y2)−1/2 ≈ 1
a

(
1− y2

2a2

)

to (ii) assuming that |y| is small. The result is the Duffing equation

ÿ + kẏ − µ

ma
(l − a)y + µl

2ma3 y
3 = −φ̈ − kφ̇.

The standard equation follows if we put

−φ̈ − kφ̇ = � cosωt .
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• 13.6 Search for period doubling in the undamped Duffing equation ẍ−x+x3 = � cosωt
using the form x = c+a1 cosωt+a2 cos 1

2ωt , where c, a1 and a2 are constants. If frequencies
3
2ω and above are neglected, show that the shift and amplitudes satisfy

c[−1+ c2 + 3
2 (a

2
1 + a2

2)] + 3
4a

2
2a1 = 0,

a1(−ω2 − 1+ 3c2 + 3
4a

2
1 + 3

2a
2
2)+ 3

2a
2
2c = �,

a2(−1
4ω

2 − 1+ 3c2 + 3
2a

2
1 + 3ca1 + 3

4a
2
2) = 0.

Deduce that for harmonic solutions (a2 = 0), c and a1 are given by solutions of

(i) c = 0, a1(−ω2 − 1+ 3
4a

2
1) = �,

or

(ii) c2 = 1− 3
2a

2
1, a1(−ω2 + 2− 15

4 a
2
1) = �.

Sketch the amplitude |a1|/amplitude |�| curves corresponding to NODE, Figure 13.13 for
ω = 1.2.

13.6. In the equation
ẍ − x + x3 = � cosωt ,

let x = c + a1 cosωt + a2 cos 1
2ωt . Then

ẋ = −a1ω sinωt − 1
2a2ω sin 1

2ωt , ẍ = −a1ω
2 cosωt − 1

4a2ω
2 cos 1

2ωt .

We also require the following expansion (computer algebra was used here)

x3 = (c + a1 cosωt + a2 cos 1
2ωt)

3

= 1
4 [3a1a

2
2 + 6c(a2

1 + a2
2)+ 4c3] + 3

4 [a3
1 + 2a1a

2
2 + 2a2

2c + 4a1c
2] cosωt

+3
4 [2a2

1a2 + a3
2 + 4a1a2c + 4a2c

2] cos 1
2ωt +higher harmonics.

The constant term and the coefficients of cosωt and cos 1
2ωt are zero if

−c + c3 + 3
2c(a

2
1 + a2

2)+ 3
4a1a

2
2 = 0, (i)

−a1ω
2 − a1 + 3c2a1 + 3

4a
3
1 + 3

2a1a
2
2 + 3

2a
2
2c = �, (ii)

a2[−1
4ω

2 − 1+ 3c2 + 3
2a

2
1 + 3a1c + 3

4a
2
2] = 0. (iii)

From (iii), one solution is a2 = 0, in which case (i) and (ii) become

c[−1+ c2 + 3
2a

2
1] = 0,

a1[−ω2 − 1+ 3c2 + 3
4a

2
1] = �.
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Hence

(a) c = 0, a1[−ω2 − 1+ 3
4a

2
1] = �,

or

(b) c2 = 1− 3
2a

2
1, a1[−ω2+2− 15

4 a
2
1] = �. This is the case in which no subharmonic is present

which was investigated in NODE, Chapter 7.
The other solution in (iii) is

−1
4ω

2 − 1+ 3c2 + 3
2a

2
1 + 3a1c + 3

4a
2
2 = 0. (iv)

It is possible to eliminate a2
2 between (i), (ii) and (iii) to obtain two equations relating � and a1

implicitly. However from (iv),

a2
2 = 1

3 [ω2 + 4− 12c2 − 6a2
1 − 12a1c], (v)

and a subharmonic will emerge where the right-hand side is zero. Again there will two cases as
in (a) and (b) above.

(c) c = 0, so that from (v) a2
1 = 1

6 (ω
2 + 4), (must have a2

1 <
1
6 (ω

2 + 4) for a2 to be real),
or

(d) c2 = 1− 3
2a

2
1, so that from (v)

1
4ω

2 + 1− 3+ 9
2a

2
1 − 3

2a
2
1 − 3a1

√
(1− 3

2a
2
1) = 0.

(again the right-hand side must be positive for real a2). Rearranging and squaring, we have

(1
4ω

2 − 2+ 3a2
1)

2 = 9a2
1(1− 3

2a
2
1),

1 2

1

2

a1

 (a)

 (b)

a1= 0.952
a1= 0.816

a1= 0.349

�

Figure 13.4 Problem 13.6: Amplitude–amplitude curves for c = 0 (the solid curve) and for c2 = 1− 3
2a

2
1 (the dashed

curve) for ω = 1.2.
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or

45
2 a

4
1 + (3

2ω
2 − 27)+ (1

4ω
2 − 2)2 = 0, (vi)

from which it is possible to find a1.
In our example ω = 1.2. From (c), a2 ≥ 0 where |a1| ≤ 0.9522 on curve (a) in Figure 13.4.

From (d), the solutions of (vi) are |a1| = 0.9911 and |a1| = 0.3488. Real solutions for a2 lie
between these values on curve (b) in Figure 13.4.

• 13.7 Design a computer program to plot 2π/ω first returns for the system ẋ = X(x, y, t),
ẏ = Y (x, y, t) where X(x, y, t) and Y (x, y, t) are 2π/ω-periodic functions of t . Apply the
program to the system

X(x, y, t) = y, Y (x, y, t) = −ky + x − x3 + � cosωt ,

for k = 0.3, ω = 1.2 and � taking a selection of values between 0 and 0.8. Let the initial
section be t = 0.

13.7. The first returns have been computed using aMathematica program. Consider the Duffing
oscillator

ẋ = y, ẏ = −ky + x − x3 + � cosωt .

• Parameter values k=0.3, ω=1, �=0.2 The first returns starting from x(0)=0.9,
y(0)=0.8 are shown in Figure 13.5. The returns approach a fixed point at P which
indicates a stable periodic solution.

• Parameter values k=0.3, ω=1, �=0.28. The returns starting from x(0)=0.5, y(0)=0.4
but delayed by 15 steps are shown in Figure 13.6. The returns oscillate between two points
indicating period doubling.

• Parameters k = 0.3, ω = 1, � = 0.4. The returns start from x(0) = 0.5, y(0) = 0.4 but
are delayed by 10 steps to eliminate transience. The returns are shown in Figure 13.7 and
indicate a strange attractor.

0.5 1

0.5

1

x

y
0

1

2

3

4

5

P

Figure 13.5 Problem 13.7(i): Poincaré section of period 2π/ω with k = 0.3, ω = 1, � = 0.2 and initial values
x(0) = 0.9, y(0) = 0.8; the successive returns are labelled ‘0’,‘1’,‘2’, . . . and approach the fixed point at P .
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0.5 1

0.5

1

x

y

P1

P2

Figure 13.6 Problem 13.7(i): Poincaré section of period 2π/ω with k = 0.3, ω = 1, � = 0.28 and initial values
x(0) = 0.5, y(0) = 0.4; only returns after 15 steps are shown which reveals period doubling between the points P1
and P2.

–1 1

–1

1

x

y

Figure 13.7 Problem 13.1(i): Poincaré section of period 2π/ω with k = 0.3, ω = 1, � = 0.4 and initial values
x(0) = 0.5, y(0) = 0.4: the section contains 300 returns indicating a strange attractor.

• 13.8 Find the equations of the stable and unstable manifolds in the (x, y)-plane of

ẍ + ẋ − 2x = 10 cos t , ẋ = y
for Poincaré maps of period 2π and initial time t = 0.

13.8. The general solution of

ẍ + ẋ − 2x = 10 cos t

is

x = Ae−2t + Bet − 3 cos t + sin t .

The fixed point of the system for sections t = 0, period 2π is at (−3, 1) in the (x, y) plane.
The stable manifold consists of the set of all points for which B = 0 and t = 2nπ , (n = 0,
1, 2, 3, . . . ), that is,

x = Ae−4nπ − 3, y = −2Ae−4nπ + 1.

Elimination of A gives the stable manifold as the line 2x + y + 5 = 0.
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The unstable manifold is given by the set of points for which B = 0, that is

x = Be2nπ − 3, y = Be2nπ + 1.

Elimination of B gives the unstable manifold as the line x − y + 4 = 0.

• 13.9 Apply Melnikov’s method to

ẍ + εκẋ + x3 = εγ (1− x2) cosωωt , κ > 0, ε > 0, γ > 0,

and show that homoclinic bifurcation occurs if, for ω2 � 2,

|γ | ≥ 2
√

2κ
πω(2− ω2)

cosh(1
2ωπ).

13.9. The perturbed system is

ẍ + εκẋ − x + x3 = εγ (1− x2) cosωt .

For ε = 0, the equation ẍ − x + x3 = 0 has the homoclinic solutions x0 = ±
√

2 sech t . We
consider the solution for which x > 0. By NODE, (13.53), the Melnikov function is

M(t0) =
∫ ∞

−∞
ẋ0(t − t0)[−κẋ0(t − t0)+ γ {1− x2

0(t − t0)}] cosωtdt

= √2γ sinωt0

∫ ∞

−∞
sech t tanh t sinωtdt − 2κ

∫ ∞

−∞
sech 2

t tanh2
tdt

− 2
√

2γ sinωt0

∫ ∞

−∞
sech 3

t tanh t sinωtdt

= √2γω sinωt0

∫ ∞

−∞
sech t cosωtdt − 2κ

∫ ∞

−∞
sech 2

t tanh2
tdt

− 2
3

√
2γω sinωt0

∫ ∞

−∞
sech 3

t cosωtdt .

where we have integrated by parts, and eliminated integrals of odd functions. Now use the
known definite integrals ∫ ∞

−∞
sech 2

t tanh2
tdt = 2

3 ;

∫ ∞

−∞
sech t cosωtdt = πsech (1

2ωπ);

∫ ∞

−∞
sech 3

t cosωtdt = 1
2π(1+ ω2)sech (1

2ωπ).
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1 2 3 4

0.5

1
k/g

v

Figure 13.8 Problem 13.9: The shaded region indicates possible homoclinic bifurcation.

Finally

M(t0) = 1
3 [
√

2γωπ(2− ω2)sech (1
2ωπ) sinωt0 − 4κ]. (i)

The Melnikov function for x = −√2sech t is given by (i) with γ replaced by −γ .
Homoclinic bifurcation occurs where the Melnikov function vanishes, namely where

√
2γωπ(2− ω2)sech (1

2ωπ) sinωt0 = 4κ,

or

sinωt0 = 2
√

2κ
πωγ (2− ω2)

cosh(1
2ωπ), (ω2 �= 2).

It follows that homoclinic bifurcation can only occur if

γ ≥ 2
√

2κ
πω|2− ω2|cosh(1

2ωπ), (ω2 �= 2).

The graph of κ/γ against ω is shown in Figure 13.8: the shaded regions indicate possible
homoclinic bifurcation.

• 13.10 The Duffing oscillator with equation ẍ + εκẋ − x + x3 = εf (t), is driven by an
even T -periodic function f (t) with mean value zero. Assuming that f (t) can be represented
by the Fourier series

∞∑
n=1

an cos nωt , ω = 2π
T

,

find the Melnikov function for the oscillator.
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Let

f (t) =
{
γ −1

2 < t <
1
2

−γ 1
2 < t <

3
2

,

where f (t) is a function of period 2. Show that the Melnikov function vanishes if

κ

γ
= − 3π

2
√

2

∞∑
r=1

(−1)rsech [12π2(2r − 1)] sin[(2r − 1)πt0].

Plot the Fourier series as a function of t0 for 0 ≤ t0 ≤ 2, and estimate the value of κ/γ at
which homoclinic tangency occurs.

13.10. In the equation

ẍ + εκẋ − x + x3 = εf (t),
f (t) is an even T -periodic function with zero mean. For ε = 0, the homoclinic solutions
x0 = ±

√
2sech t . We consider the solution for which x > 0. The forcing term is

f (t) =
∞∑
n=1

an cos nωt , ω = 2π/T .

Elimination of odd integrands, leads to the Melnikov function in the form

M(t0) =
∫ ∞

−∞
ẋ0[f (s + t0)− κẋ0]ds

= √2
∞∑
n=1

an

∫ ∞

−∞
sech s tanh s sin nωsds − 2κ

∫ ∞

−∞
sech 2

s tanh2
sds

= √2π
∞∑
n=1

annωsech (1
2πnω) sin nωt0 − 4

3κ.

Homoclinic bifurcation occurs if the equation

2
√

2κ
3π

=
∞∑
n=1

annωsech (1
2πnω) sin nωt0 (i)

can be solved for t0.
Consider the forcing function

f (t) =
{
γ −1

2 < t <
1
2

−γ 1
2 < t <

3
2

,
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0.5 1 1.5 2
t0

–0.04

–0.02

0.02

0.04

k/g

Figure 13.9 Problem 13.10:

where T = 2 so that ω = π . The Fourier coefficients of f (t) are

a1 = γ

π
, a2 = 0, a3 = − γ

3π
, a4 = 0, a5 = γ

5π
, . . . , (ii)

so that

f (t) = −γ
π

∞∑
r=1

(−1)r

2r − 1
cos(2r − 1)πt .

Substitution of the Fourier coefficients given by (ii) into (i) gives the condition

κ

γ
= q(t0) = − 3π

2
√

2

∞∑
r=1

(−1)rsech [12π2(2r − 1)] sin(2r − 1)πt0 (iii)

for the onset of homoclinic bifurcation. The graph of κ/γ against t0 is shown in Figure 13.9.
The first term dominates in the series for q(t0) which accounts for the curve being very close to
a sine curve. Hence

κ

γ
≈ q(0.5) ≈ 0.048.

• 13.11 Melnikov’s method can be applied also to autonomous systems. The manifolds
become the separatrices of a saddle. Let

ẍ + εκẋ − εx2ẋ + x3 = 0.

Show that the homoclinic path exists to order O(ε2) if κ = 4
5α. [The following integrals are

required:∫ ∞

−∞
sech 4

sds = 4
3

;
∫ ∞

−∞
sech 6

sds = 16
15

]
.

13.11. Consider the autonomous equation

ẍ + εκẋ − εαx2ẋ − x + x3 = 0.
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The Melnikov function is given by

M(t0) =
∫ ∞

−∞
ẋ0(t)(αx

2
0 ẋ0 − κẋ0)dt ,

where, for ε = 0, x0 =
√

2 sech t . Therefore

M(t0) = 2
∫ ∞

−∞
sech 2

t tanh2
t(2αsech 2

t − κ)dt

= 4α
∫ ∞

−∞
sech 4

t tanh2
tdt − 2κ

∫ ∞

−∞
sech 2

t tanh2
tdt

= 4α
∫ ∞

−∞
sech 4

tdt − 4α
∫ ∞

∞
sech 6

tdt − 4
3
κ

= 16α
3
− 64α

15
− 4κ

3
= 16α

15
− 4κ

3

Hence M(t0) = 0 where κ = 4α/5.

• 13.12 Show that x = 31/4√(sech 2t) is a homoclinic solution of ẍ+ε(κ−αx2)ẋ−x+x5 = 0
when ε = 0. Use Melnikov’s method to show that homoclinic bifurcation occurs when
κ = 4

√
3α/(3π).

13.12. The given equation is

ẍ + ε(κ − αx2)ẋ − x + x5 = 0.

Let x0 = 31/4√(sech 2t). Then

ẍ0 − x0 + x5
0 = 31/4[−2

√
(sech 2t)+ 3sech 5/22t sinh2 2t] − 31/4√(sech 2t)+ 35/4(sech 2t)5/2

= 0,

which confirms that x0(t) is a homoclinic solution of the unperturbed system. The Melnikov
function is given by

M(t0) =
∫ ∞

−∞
ẋ0(αx

2
0 ẋ0 − κẋ0)dt .
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Hence

M(t0) =
√

3
∫ ∞

−∞
sech 32t sinh2 2t[α√3sech 2t − κ]dt

= 3α
∫ ∞

−∞
sech 42t sinh2 2tdt − κ√3

∫ ∞

−∞
sech 32t sinh2 2tdt

= 3α
∫ ∞

−∞
[sech 22t − sech 42t]dt − κ√3

∫ ∞

−∞
[sech 2t − sech 32t]dt

= 3α(1− 2
3 )− κ

√
3(1

2π − 1
4π)

= α − 1
4κπ

√
3.

Therefore a homoclinic bifurcation first occurs where κ ≈ 4
√

3α/(3π).

• 13.13 Apply Melnikov’s method to the perturbed system ẍ + εκẋ − x + x3 = εγ x cosωt ,
which has an equilibrium point at x = 0 for all t . Show that the manifolds of the origin
intersect if

γ ≥ 4κ
3ω2π

sinh(1
2ωπ).[

Hint :
∫ ∞

−∞
sech 2

u cosωudu = πω

sinh(1
2ωπ)

.

]

13.13. In the Duffing type oscillator

ẍ + εκẋ − x + x3 = εγ x cosωt , ẋ = y

the forcing term depends also on x. In the solution of the problem it is assumed that ε > 0,
κ > 0 and γ > 0. The unperturbed solution is the familiar x0 =

√
2sech t . The Melnikov

function is given by

M(t0) =
∫ ∞

−∞
y0(t − t0)h(x0(t − t0), y0(t − t0), t)dt

=
∫ ∞

−∞
y0(s)h(x0(s), y0(s), s + t0)ds,

after a change of variable, where h(x, y, t) = −κy + γ x cosωt . Therefore

M(t0) = −κ
∫ ∞

−∞
y2

0(s)ds + γ
∫ ∞

−∞
y0(s)x0(s) cos(ωs + t0)ds

= −κ
∫ ∞

−∞
y2

0(s)ds − γ
∫ ∞

−∞
y0(s)x0(s) sinωs sinωt0ds,
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since x0 is an even function. Substitution for x0 gives

M(t0) = −2κ
∫ ∞

−∞
sech 2

s tanh2
sds + 2γ sinωt0

∫ ∞

−∞
sech 2

s tanh s sinωsds

= −2κ
∫ ∞

−∞
[sech 2

s − sech 4
s]ds − γ sinωt0

∫ ∞

∞
d
ds
(sech 2

s) sinωsds

= −2κ(2− 4
3 )+ γω sinωt0

∫ ∞

−∞
sech 2

s cosωsds

= −4
3
κ + γω2π

sinh(1
2ωπ)

.

The stable and unstable manifolds of the origin intersect if M(t0) ≥ 0, that is, if

γ ≥ 4κ
3ω2π

sinh(1
2ωπ).

• 13.14 Show that the logistic difference equation un+1 = λun(1 − un) has the general
solution un = sin2(2nCπ) if λ = 4, where C is an arbitrary constant (without loss C can
be restricted to 0 ≤ C ≤ 1). Show that the solution is 2q -periodic (q any positive integer) if
C = 1/(2q − 1). The presence of all these periodic doubling solutions indicates chaos. (See
the article by Brown and Chua (1996) for further exact solutions of nonlinear difference
equations relevant to this and succeeding problems.)

13.14. In the difference equation

un+1 = λun(1− un),

let un = sin2(2nCπ). Then

λun(1− un) = λ sin2(2nCπ)(1− sin2(2nCπ)) = λ sin2(2nCπ) cos2(2nCπ)

= 1
4λ sin2(2n+1Cπ) = un+1

if λ = 4. Hence un = sin2(2nCπ) is an exact solution. It is sufficient that 0 ≤ C ≤ 1.
A period q solution exists if C satisfies

un = un+q , or sin2(2nCπ) = sin2(2n+qCπ).

where q is a positive integer. Therefore C must satisfy

cos(2n+1Cπ)− cos(2n+1+qCπ) = 0,
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or

sin[2nCπ(2q + 1)] sin[2nCπ(2q − 1)] = 0.

Hence a period q solution exists if C = 1/(2q − 1). Hence these solutions exist for all q which
implies that the solution is chaotic.

• 13.15 Show that the difference equation un+1 = 2u2
n − 1 has the exact solution un =

cos(2nCπ)whereC is any constant satisfying 0 ≤ C ≤ 1. For what values ofC do q-periodic
solutions exist?

13.15. In the difference equation
un+1 = 2u2

n − 1,

let un = cos(2nCπ). Then

2u2
n − 1 = 2 cos2(2nCπ)− 1 = cos(2n+1cπ) = un+1.

Hence un = cos(2nCπ) is an exact solution.
A period q solution exists if C satisfies

un = un−q , or cos(2nCπ) = cos(2n+qCπ),

or

sin[Cπ(2n−1+q + 2n−1)] sin[Cπ(2n−1+q − 2n−1)] = 0.

Since C is independent of n, period q solutions exist if

C = 1
2q + 1

, or C = 1
2q − 1

, (q ≥ 1).

• 13.16 Using a trigonometric identity for cos 3t , find a first-order difference equation
satisfied by un = cos(3nCπ).

13.16. Problems 13.14, 13.15 and this problem follow from trigonometric identities for multi-
ple angles. In this case we require a difference equation which has the solution un = cos(3nCπ).
Consider the identity

cos 3u = 4 cos3 u− 3 cos u.

If we put u = 3nCπ , it follows that

un+1 = 4u3
n − 3un.
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• 13.17 A large number of phase diagrams have been computed and analysed for the two-
parameter Duffing equation

ẍ + kẋ + x3 = � cos t , ẋ = y
revealing a complex pattern of periodic, subharmonic and chaotic oscillations (see Ueda
(1980) for an extensive catalogue of outputs, and also Problem 7.32). Using a suitable
computer package plot phase diagram and time solutions in each of the following cases for
the initial data given, and discuss the type of solutions in each generated:

(a) k = 0.08, � = 0.2; x(0) = −0.205, y(0) = 0.0171; x(0) = 1.050, y(0) = 0.780.

(b) k = 0.2, � = 5.5; x(0) = 2.958, y(0) = 2.958; x(0) = 2.029, y(0) = −0.632.

(c) k = 0.2, � = 10; x(0) = 3.064, y(0) = 4.936.

(d) k = 0.1, � = 12; x(0) = 0.892, y(0) = −1.292.

(e) k = 0.1, � = 12; x(0) = 3, y(0) = −1.2.

13.17. The equation
ẍ + kẋ + x3 = � cos t

has been analysed numerically in some detail by Ueda (1980). Here we display cases (a), (d)
and (e) for various initial values.

• (a) k=0.08, �=0.2, with two sets of initial values x0 = −0.205, y0=0.0171 and
x0=1.050, y0=0.780. These initial values generate approximately two co-existing stable
2π -periodic solutions which are shown in Figure 13.10. The time solutions of the two
periods are shown in Figure 13.11.

• (d) k=0.1, �=12, with initial values x0=0.892, y0 = −1.292. These initial values
generate a 2π periodic solution shown in Figure 13.12. The time solution is shown in
Figure 13.13.

• (e) k=0.1, �=12, with initial values x0=3, y0=1.2. These initial values generate a
chaotic response shown in Figure 13.14. The parameter values are the same as those in
case (d) so that this chaotic solution co-exists with the periodic solution shown in (d). The
time solution is shown in Figure 13.15.

–1 1
x

–1

1

y

Figure 13.10 Problem 13.17(a): Ueda’s equation with k = 0.08, � = 0.2, and the two sets of initial values x0 =
−0.205, y0 = 0.0171 and x0 = 1.050, y0 = 0.780.
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Figure 13.11 Problem 13.17: Periodic time solutions with k = 0.08, � = 0.2.
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Figure 13.12 Problem 13.17: Ueda’s equation with k = 0.1, � = 12, and the initial values x0 = 0.892, y0 = −1.292.
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Figure 13.13 Problem 13.17: Periodic time solution with k = 0.1, � = 12.
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Figure 13.14 Problem 13.17: Ueda’s equation with k = 0.1, � = 12, and the initial values x0 = 3, y0 = 1.2.
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36�
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Figure 13.15 Problem 13.17: Periodic time solutions with k = 0.1, � = 12.

• 13.18 Consider the Hamiltonian system

ṗi = −∂H
∂qi

, q̇i = ∂H

∂pi
, (i = 1, 2)

where H = 1
2ω1(p

2
1 + q2

1 )+ 1
2ω2(p

2
2 + q2

2 ). Show that q1, q2 satisfy the uncoupled system

q̈i + ω2
i qi = 0, (i = 1, 2).

Explain why the ellipsoids
1
2ω1(p

2
1 + q2

1 )+ 1
2ω2(p

2
2 + q2

2 ) = constant

are invariant manifolds in the four-dimensional space (p1,p2, q1, q2). What condition on
ω1/ω2 guarantees that all solutions are periodic? Consider the phase path which satisfies
p1 = 0, q1 = 0, p2 = 1, q2 = 0. Describe the Poincaré section p1 = 0 of the phase path
projected on to the (q1,p2, q2) subspace.

13.18. Consider the mechanical system

ṗi = −∂H
∂qi

, q̇i = ∂H

∂pi
, (i = 1, 2),

where H = 1
2ω1(p

2
1 + q2

1 )+ 1
2ω2(p

2
2 + q2

2 ). The equations of motion are

ṗ1 = −ω1q1, q̇1 = ω1p1, ṗ2 = −ω2q2, q̇2 = ω2p2,

or, equivalently,
q̈1 + ω2

1q1 = 0, q̈2 + ω2
2q2 = 0.

The solutions are

q1 = A1 cosω1t + B1 sinω1t , q2 = A2 cosω2t + B2 sinω2t .

These solutions are periodic if ω1/ω2 is a rational number. If this ratio is not rational then q1
and q2 are uncoupled with periods 2π/ω1 and 2π/ω2.
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Phase paths in p1, q1, p2, q2 space are given by

dp1

dq1
= − q1

p1
⇒ p2

1 + q2
1 = C1, (i)

dp2

dq2
= − q2

p2
⇒ p2

2 + q2
2 = C2. (ii)

Also

H = 1
2ω1(p

2
1 + q2

1 )+ 1
2ω2(p

2
2 + q2

2 ) = constant.

Therefore any path which starts on this surface will stay on it, which means that the ellipsoids
H = constant are invariant manifolds.

Consider the path for which the initial conditions p1 = 0, q1 = 0, p2 = 1, q2 = 0. In (i) and
(ii) C1 = 0 and C2 = 1. Therefore the projection of the manifold on to the (q1,p2, q2) subspace
are the straight lines p2 = q2 = 0, p2 = ±1.

• 13.19 Consider the system

ẋ = −ryz, ẏ = rxz, ż = −z+ cos t − sin t ,

where r = √(x2 + y2). Show that, projected on to the (x, y) plane, the phase paths have
the same phase diagram as a plane centre. Show also that the general solution is given by

x = x0 cosω(t)− y0 sinω(t), y = y0 cosω(t)+ x0 sinω(t), z = z0e−t + sin t .

where ω(t) = r0[1 − cos t + z0(1 − e−t )], and x0 = x(0), y0 = y(0) z0 = z(0), and
r0 = √(x2

0 + y2
0). Confirm that, as t →∞, all solutions become periodic.

13.19. Consider the forced system

ẋ = −ryz, ẏ = rxz, ż = −z+ cost − sin t , r = √(x2 + y2).

From the first two equations,

dy
dx
= −x

y
⇒ x2 + y2 = c2,

say (assume c ≥ 0). Hence, projected on to the x, y plane, the phase paths are the same as those
of simple harmonic motion.

Integration of the equation for z leads to the solution

z = z0e−t + sin t ,

where z(0) = z0. Hence
ẋ = −c(z0e−t + sin t)

√
(c2 − x2).
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This separable equation has the general solution

x = c sin(z0ce−t + c cos t + B).

Also
y = c cos(z0ce−t + c cos t + B).

From the initial conditions

x0 = r0 sin(z0r0 + r0 + B), y0 = r0 cos(z0r0 + r0 + B).

Therefore
x = x0 cosω(t)− y0 sinω(t), y = y0 cosω(t)+ x0 sinω(t),

where
ω(t) = r0[1− cos t + z0(1− e−t )].

As t →∞,

z→ sin t , x → c sin(c cos t + B), y → c cos(c cos t + B),

which are all periodic with period 2π in t .

• 13.20 A common characteristic feature of chaotic oscillators is sensitive dependence on
initial conditions, in which bounded solutions which start very close together utimately
diverge. Such solutions locally diverge exponentially. Investigate time-solutions of Duffing’s
equation

ẍ + kẋ − x + x3 = � cosωt

for k = 0.3, � = 0.5, ω = 1.2, which is in the chaotic parameter region (see Figure 13.15
in NODE), for the initial values (a) x(0) = 0.9, y(0) = 0.42; (b) y(0) = 0.42 but with a
very small increase in x(0) to say 0.90000001. Divergence between the solutions occurs at
about 40 cycles. (Care must be exercised in computing solutions in chaotic domains where
sensitive dependence on initial values and computation errors can be comparable in effect.)

13.20. Consider the Duffing equation

ẍ + kẋ − x + x3 = � cosωt ,

subject to slightly differing initial conditions. Figure 13.16 shows the numerical solution of
the equation with the parameters k=0.3, �=0.5 and ω=1.2 for the initial conditions (a)
x(0)=0.90, y(0)=0.42, denoted by x1; (b) x(0)=0.90000001, y(0)=0.42, denoted by x2.
The difference between the numerical solutions is shown in the third graph. After about 28
cycles the solutions start to diverge.
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Figure 13.16 Problem 13.20:

• 13.21 The Lorenz equations are given by (see Problem 8.26 and Section 13.2 in NODE)

ẋ = a(y − x), ẏ = bx − y − xz, ż = xy − cz,
Compute solutions of these equations in (x, y, z) phase space. Chaotic solutions appear
near parameter values a = 10, b = 27, c = 2.65: a possible initial state is x(0) = −11.720,
y(0) = −17.249, z(0) = 22.870.

13.21. The Lorenz equations are given by

ẋ = a(y − x), ẏ = bx − y − xz, ż = xy − cz.

For the parameters a = 10, b = 27, c = 2.65, a single phase path is shown in Figure 13.17.
Over long runs the solution continues to display chaotic behaviour.

x

y

z

Figure 13.17 Problem 13.21: A single phase path for Lorenz equation ẋ = a(y − x), ẏ = bx − y − xz, ż = xy − cz
with a = 10, b = 27, c = 2.65.
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• 13.22 Show that the system ẋ = −y+� sin t , ẏ = −x+2x3+� cos t , (� > 0), has a limit
cycle x = 0, y = � sin t . Find also the time-solutions for x and y of the paths which are
homoclinic to this limit cycle. Sketch the phase paths of the limit cycle and the homoclinic
paths for � = 1.

13.22. In the system

ẋ = −y + � sin t , ẏ = −x + 2x3 + � cos t ,

it can be seen that x = 0, y = � sin t is a solution. This is obviously a periodic solution of the
system.

Let y = � sin t + z. Then
ẋ = z, ż = x − 2x3.

Hence, eliminating z,
ẍ = x − 2x3.

We can verify that this equation has the solution x = sech t , which has the required property
that x → 0 as t →±∞. Therefore

y = � sin t − z = � sin t − ẋ = � sin t + sech 2
t sinh t .

The homoclinic path is

x = sech t , y = � sin t + sech 2
t sinh t .

Similarly there is a complementary path

x = −sech t , y = � sin t − sech 2
t sinh t .

The homoclinic path in the half-plane x ≥ 0 is shown in Figure 13.18. The periodic solution
lies on the y axis between y = � and y = −�. The homoclinic path for this forced system starts
on the periodic solution and ends there.

0.5 1
x

–1

1

y

Figure 13.18 Problem 13.22: Homoclinic path x = sech t , y = � sin t + sech 2
t sinh t with � = 1.
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Figure 13.19 Problem 13.23: (a) Fixed point of x = cos t , for t0 = 0 and period T = 2π ; (b) period doubling for
x = 3 cos 1

2 t with t0 = 1
2π and period T = 2π .

• 13.23 For each of the following functions and solutions plot the Poincaré sequence in the
x, y = ẋ plane, starting with the given initial time t0 and given period T .

(a) x = 2 cos t ; t0 = 0, T = 2π .

(b) x = 3 cos t ; t0 = 1
2π , T = 2π .

(c) x = sin t + sinπt ; t0 = 1
2π , T = 2π .

(d) The periodic solution of ẍ − (x2 + ẋ2)ẋ + x = cos t , where t0 = 0, T = 2π .

13.23. (a) For x = 2 cos t , y = ẋ = −2 sin t . Therefore if t0 = 0, then

x(2nπ) = 2 cos 2nπ = 2, y(2nπ) = −2 sin 2nπ = 0.

In this section the function has a fixed point at (2, 0) shown as P in Figure 13.19(a).
(b) For x = 3 cos 1

2 t , y = ẋ = −3
2 sin 1

2 t . If t0 = 1
2π and T = 2π , then

x(2n+ 1
2π) = 3 cos[(n+ 1

4 )π ] =
{

3/
√

2 n even
−3/

√
2 n odd

,

y(2n+ 1
2π) = −3

2 sin[(n+ 1
4 )π ] =

{ −3/(2
√

2) n even
3/(2

√
2) even

In this section the solution oscillates between the two fixed points at [3/√2,−3/(2
√

2)] and
[−3/

√
2, 3/(2

√
2)] shown as P1 and P2 in Figure 13.19(b). In this section the function exhibits

period doubling.
(c) For x = sin t + sinπt , y = cos t + π cos t . The function sin t + sinπt is not periodic. With
t0 = 1

2π and T = 2π ,

x0 = x(1
2π) = 1+ sin 1

2π
2, y0 = y(1

2π) = π cos 1
2π

2,

xn = x[(2n+ 1
2 )π ] = 1+ sin[(2n+ 1

2 )π
2],

yn = y[(2n+ 1
2 )π ] = π cos[(2n+ 1

2 )π
2].
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All these points lie on the ellipse

(x − 1)2 + y2

π2 = 1,

but there are no repetitions of points.
(d) In the equation

ẍ − (x2 + ẋ2)ẋ + x = cos t ,

Let x = A cos t . Then

ẍ − (x2 + ẋ2)ẋ + x − cos t = −A cos t − A2(−A cos t)+ A cos t − cos t

= (A3 − 1) cos t = 0,

if A = 1. With t0 = 0 and T = 2π , the periodic solution has a fixed point at (1, 0).

• 13.24 Show that ẍ + k(1− x2 − ẋ2)2ẋ − x = −2 cos t has a limit cycle whose solution is
x0 = cos t . By looking at perturbations x = x0 + x′ where |x′| is small show that the limit
cycle has Poincaré fixed points which are saddles.

13.24. In the forced equation

ẍ + k(1− x2 − ẋ2)2ẋ − x = −2 cos t ,

let x = A cos t . Then

ẍ + k(1− x2 − ẋ2)2ẋ − x + 2 cos t = −A cos t − k(1− A2)2A sin t − A cos t + 2 sin t

= 2(1− A) cos t − k(1− A2)A sin t = 0

if A = 1. Therefore x = x1 = cos t is a limit cycle. For any t0 and period 2π , the limit cycle has
the fixed point (cos t0,− sin t0).

Let x = x1 + x′. The linearized equation for x′ is

ẍ′ − x′ = 0,

which has the general solution

x′ = Bet + Ce−t .

Since this solution has stable and unstable manifolds the fixed points are saddles.
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• 13.25 Consider the system ẋ = y, ẏ = (e−2x − e−x) + ε cos t . For ε = 0, show that
the equations of its phase paths is given by y2 = 2e−x − e−2x + C. Show that the system
has closed paths about the origin if −1 < C < 0 with a bounding separatrix given by
y2 = 2e−x − e−2x . What happens to paths for C > 0? Sketch the phase diagram.
Suppose that the system is moving along the separatrix path, and at some instant the forcing
is introduced. Describe what you expect the behaviour of the system to be after the intro-
duction of the forcing. Compute a Poincaré sequence and a time-solution for ε = 0.5 and
for the initial conditions, x(0) = − ln 2, y(0) = 0.

13.25. The differential equation for the phase paths of

ẋ = y, ẏ = (e−2x − e−x)

is
dy
dx
= e−2x − e−x

y
,

which has the general solution

y2 = −(e−2x − 2e−x)+ C.

This autonomous system has one equilibrium point at (0, 0).
We can determine where paths cut the x axis by putting y = 0, in which case

e−2x − 2e−x − C = 0, or e−x = 1±√(1+ C). (i)

Two real solutions for x occur if −1 < C < 0. Since the paths are reflected in the x axis, this
implies that closed paths enclose the origin which is a centre. If C = 0, then x = − ln 2 is one
solution but for the other x →∞ as C → 0−. The bounding path of the centre is

y2 = −e−2x + e−x .

which is the dashed path in the phase diagram shown in Figure 13.20. If C >0, then paths
approach y=√(2C) as x→∞, and approach y = −√(2C) as x→ −∞.

If forcing is introduced at the point (− ln 2, 0) (on the separatrix), we might expect the
solution to oscillate between the stable centre and the unbounded paths but with x progressively
increasing. Since the width of the centre decreases with x we might also expect the solution to
become unbounded in x. The particular path which starts at (− ln 2, 0) is shown in Figure 13.21,
and confirms the prediction.
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Figure 13.20 Problem 13.25: Phase diagram for ẋ = y, ẏ = e−2x − e−x : the dashed path separates the centre from
unbounded paths.
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Figure 13.21 Problem 13.25:

• 13.26 Apply the change of variable z = u+ a + b to the Lorenz system

ẋ = a(y − x), ẏ = bx − y − xz, ż = xy − cz,
where a, b, c > 0. If s = √(x2 + y2 + z2), show that

1
2s

ds
dt
= −ax2 − y2 − c[u+ 1

2 (a + b)]2 + 1
4c(a + b)2.

What is the sign of ds/dt on the ellipsoid ax2 + y2 + c[u + 1
2 (a + b)]2 = ρ (*), where

ρ > 1
4c(a + b)2?

Show that all equilibrium points are unstable in the case a = 4, b = 34, c = 1
2 . If this

condition is satisfied, what can you say about the attracting set inside the ellipsoid (*) if ρ
is sufficiently large?

13.26. Apply the change of variable z = u+ a + b to the Lorenz system

ẋ = a(y − x), ẏ = bx − y − xz, ż = xy − cz, (a, b, c > 0). (i)

Then
ẋ = a(y − x), ẏ = −y − x(u+ a), u̇ = xy − c(u+ a + b).
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Let s = √(x2 + y2 + z2). Then

s
ds
dt
= xẋ + yẏ + zż
= xa(y − x)− y2 − xy(u+ a)+ uxy − u(u+ a + b)c
= −ax2 − y2 − c[u+ 1

2 (a + b)]2 + 1
4c(a + b)2

On the ellipsoid
ax2 + y2 + c[u+ 1

2 (a + b)]2 = ρ, (ii)

s
ds
dt
= −ρ + 1

4c(a + b)2 < 0

if ρ > 1
4c(a + b)2 = ρ1, say.

From (i), the Lorenz equations have equilibrium points in the (x, y, u) space given by

x = y, bx − y − xz = 0, xy − cz = 0.

• b ≤ 1. The system has one equilibrium point at (0, 0,−a − b).
• b > 1. Equilibrium occurs at the points

(0, 0,−a − b), (
√
c
√
(b − 1),

√
c
√
(b − 1),−a − 1),

(−√c√(b − 1),−√c√(b − 1),−a − 1).

The equilibrium point (0, 0,−a − b) lies on the ellipsoid

ax2 + y2 + c[u+ 1
2 (a + b)]2 = 1

4c(a + b)2 = ρ1,

that is, this equilibrium point lie on the critical ellipsoid. Hence this point always lies within
the ellipsoid defined by (ii) with ρ > ρ1.

The point (
√
c
√
(b − 1),

√
c
√
(b − 1),−a − 1) lies on the ellipsoid

ax2 + y2 + c[u+ 1
2 (a + b)]2 = 1

4c(a
2 + 2b2 + 2ab).

Since 1
4c(a

2+2b2+2ab)> 1
4c(a+ b)2= ρ1, this equilibrium point lies outside the ellipsoid with

ρ= ρ1. The point (−√c√(b − 1),−√c√(b − 1),−a − 1) lies on the same ellipsoid.
The linearized equations associated with the equilibrium points are as follows.

• (0, 0,−a − b). If u = −a − b + u′, the linearized equations are

ẋ = −ax + ay, ẏ = (a + 2b)x − y, u̇′ = −cu.
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The eigenvalues are given by

∣∣∣∣∣∣
−a − λ a 0
a + 2b −1− λ 0

0 0 −c − λ

∣∣∣∣∣∣ = −(λ− c)[λ2 + (a + 1)λ− a2 − 2ab] = 0.

Since one solution for λ is positive this equilibrium point is unstable for all b > 0.
• (√c√(b − 1),

√
c
√
(b − 1),−a−1), (b > 1). Let x = √c√(b − 1)+x′, y=√c√(b − 1)+y′

and u= − a − 1+ u′. The linearized equations are

ẋ′ = −ax′ + ay′, ẏ′ = (b + 1)x′ − y′ − √c√(b − 1)u′, .

u̇′ = √c√(b − 1)x′ + √c√(b − 1)y′ − cu′.

The eigenvalues are given by

∣∣∣∣∣∣
−a − λ a 0
b + 1 −1− λ −√c√(b − 1)√
c
√
(b − 1)

√
c
√
(b − 1) −c − λ

∣∣∣∣∣∣ = 0,

or

λ3 + (a + c + 1)λ2 + c(a + b)λ+ 2ac(b − 1) = 0.

If a = 4, b = 34, c = 1
2 , then λ satisfies

2λ3 + 11λ2 + 38λ+ 264 = (λ+ 6)(2λ2 − λ+ 44) = 0.

This equation has the solution λ= − 6, and two complex solutions which have positive
real part. Therefore this equilibrium point is unstable.

• (−√c√(b − 1),−√c√(b − 1),−a − 1), (b > 1). It can be shown that this equilibrium
point has the same eigenvalues as the previous case.

For the given values of a, b and c there are three equilibrium points all of which are unstable.
Also there is an ellipsoid (ii) which encloses these equilibrium points, and such that all
phase paths pass from the outside to the inside to the outside. Hence subsequently any path
which crosses the ellipsoid either approaches a limit cycle or wanders indefinitely inside the
ellipsoid.
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• 13.27 A plane autonomous system is governed by the equation ẋ = X(x, y), ẏ = Y (x, y).
Consider a set of solutions x(t , x0, y0), y(t , x0, y0) which start at time t = t0 at (x0, y0),
where (x0, y0) is any point in a region D(t0) bounded by a smooth simple closed curve C.
At time t , D(t0) becomes D(t). The area of D(t) is

A(t) =
∫ ∫

D(t)
dxdy =

∫ ∫
D(t0)

dx0dy0

when expressed in terms of the original region. In this integral, the Jacobian J (t) =
det(�(t)), where

�(t) =



∂x

∂x0

∂x

∂y0
∂y

∂y0

∂y

∂y0


.

Show that �(t) satisfies the linear equation �̇(t) = B(t)�(t), (note that �(t) is a fundamental
matrix of this equation) where

B(t) =


∂X

∂x

∂X

∂y
∂Y

∂x

∂Y

∂y


.

Using Theorem 9.4 (on a property of the Wronskian), show that

J (t) = J (t0) exp
[∫ t

t0

(
∂X

∂x
+ ∂Y

∂y

)
ds

]
.

If the system is Hamiltonian deduce that J (t) = J (t0). What can you say about the area
of D(t)? (A(t) is an example of an integral invariant and the result is known as Liouville’s
theorem.)
For an autonomous system in n variables ẋ = X(x), what would you expect the
corresponding condition for a volume-preserving phase diagram to be?

13.27. The plane autonomous system is ẋ = X(x, y), ẏ = Y (x, y). Consider the set of solutions
x(t , x0, y0), y(t , x0, y0) which start at time t = t0 at (x0, y0), where (x0, y0) is any point in
a region D(t0) bounded by a smooth simple C. At time t , D(t0) becomes D(t) as shown in
Figure 13.22. Let A(t) be the area of D(t) so that

A(t) =
∫ ∫

D(t)
dxdy.

The region D(t) is obtained from D(t0) by the change of variable x = x(t , x0, y0), y =
y(t , x0, y0). In terms of the original region

A(t) =
∫ ∫

D(t)
dxdy =

∫ ∫
D(t0)

J (t)dxdy,
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x

y

D(t0)

D (t)

Figure 13.22 Problem 13.27:

where J (t) is the Jacobian
J (t) = det(�(t)),

where

�(t) =



∂x

∂x0

∂x

∂y0
∂y

∂x0

∂y

∂y0


 .

The derivative

�̇(t) =



∂ẋ

∂x0

∂ẋ

∂y0
∂ẏ

∂x0

∂ẏ

∂y0


 =



∂X

∂x0

∂X

∂y0
∂Y

∂x0

∂Y

∂y0




=


∂X

∂x

∂x

∂x0
+ ∂X

∂y

∂y

∂x0

∂X

∂x

∂x

∂y0
+ ∂X

∂y

∂y

∂y0
∂Y

∂x

∂x

∂x0
+ ∂Y

∂y

∂y

∂x0

∂Y

∂x

∂x

∂y0
+ ∂Y

∂y

∂y

∂y0




=


∂X

∂x

∂X

∂y
∂Y

∂x

∂Y

∂y






∂x

∂x0

∂y

∂x0
∂y

∂x0

∂y

∂y0


 = B(t)�(t)

where

B(t) =


∂X

∂x

∂X

∂y
∂Y

∂x

∂Y

∂y


 .

By NODE, Theorem 9.4,

�(t) = �(t0) exp
[∫ t

t0

tr[B(s)]ds
]
= �(t0) exp

[∫ t

t0

{
∂X

∂x
+ ∂Y

∂y

}
ds

]
.



566 Nonlinear ordinary differential equations: problems and solutions

Finally

J (t) = det[�(t)] = det[�(t0)] exp
[∫ t

t0

{
∂X

∂x
+ ∂Y

∂y

}
ds

]

= J (t0) exp
[∫ t

t0

{
∂X

∂x
+ ∂Y

∂y

}
ds

]
. (i)

If the system is Hamiltonian, then

∂X

∂x
+ ∂Y

∂y
= 0,

so that (i) becomes J (t) = J (t0) = 1. Therefore A(t) = A(t0), which means that area is
preserved for all t .

An n dimensional autonomous system is volume-preserving if tr(B) = 0.

• 13.28 For the more general version of Liouville’s theorem (see Problem 13.27) applied
to the case n = 3 with ẋ = X(x, y, z), ẏ = Y (x, y, z), ż = Z(x, y, z), the volume of a region
D(t) which follows the phase paths is given by

W(t) =
∫ ∫ ∫

D(t)
dxdydz =

∫ ∫ ∫
D(t0)

J (t)dx0dy0dz0,

where the Jacobian J (t) = det[�(t)]. As in the previous problem

J (t) = J (t0) exp
[∫ t

t0

(
∂X

∂x
+ ∂Y

∂y
+ ∂Z

∂z

)
ds

]
.

Show that dJ (t)/dt → 0 as t →∞ for the Lorenz system

ẋ = a(y − x), ẏ = bx − y − xz, ż = xy − cz,
where a, b, c > 0. What can be said about the volume of any region following phase paths
of the Lorenz attractor as time progresses?

13.28. For the system ẋ = X(x, y, z), ẏ = Y (x, y, z), ż = Z(x, y, z), the volume of a region D(t)
which follows the phase paths is given by

W(t) =
∫ ∫ ∫

D(t)
dxdydz =

∫ ∫ ∫
D(t0)

J (t)dx0dy0dz0,
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where

J (t) = det[�(t)], �(t) =




∂x

∂x0

∂x

∂y0

∂x

∂z0
∂y

∂x0

∂y

∂y0

∂y

∂z0
∂z

∂x0

∂z

∂y0

∂z

∂z0


 .

It can be shown using a method which parallels that given in the previous problem that

J (t) = J (t0) exp
[∫ t

t0

(
∂X

∂x
+ ∂Y

∂y
+ ∂Z

∂z

)
ds

]
.

A system will be volume-preserving if

∂X

∂x
+ ∂Y

∂y
+ ∂Z

∂z
= 0.

For the Lorenz system

ẋ = a(y − x), ẏ = bx − y − xz, ż = xy − cz,

∂X

∂x
+ ∂Y

∂y
+ ∂Z

∂z
= ∂[a(y − x)]

∂x
+ ∂[bx − y − xz]

∂y
+ ∂[xy − cz]

∂z

= −a − 1− c < 0.

Therefore

J (t) = J (t0) exp
[∫ t

t0

(
∂X

∂x
+ ∂Y

∂y
+ ∂Z

∂z

)
ds

]
= J (t0)e−(a+c+1)t → 0

as t →∞.

• 13.29 Show that ẍ(1 + ẋ) − xẋ − x = −2γ (ẋ + 1) cos t , (γ > 0) has the exact solution
x = Aet + Be−t + γ cos t . What can you say about the stability of the limit cycle? Find the
Poincaré sequences of the stable and unstable manifolds associated with t = 0 and period
2π . Write down their equations and sketch the limit cycle, its fixed Poincaré point and the
stable and unstable manifolds.

13.29. Let x = Aet + Be−t + γ cos t . Then

ẍ(1+ ẋ)− xẋ − x + 2γ (ẋ + 1) cos t = (1+ ẋ)(ẍ − x + 2γ cos t) = 0.

Therefore x = Aet + Be−t + γ cos t is an exact solution. The limit cycle is unstable.
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x

y

Figure 13.23 Problem 13.29: The fixed point is at (γ , 0): the dashed lines indicate the stable and unstable manifolds.

Let x(0) = x0, y(0) = y0. Then, with ẋ = y,

x0 = A+ B + γ , y0 = A− B,

so that
x = 1

2 (x0 + y0 − γ )et + 1
2 (x0 − y0 − γ )e−t + γ cos t .

The Poincaré section with an initial time t = 0 and period 2π . Then

xn = 1
2 (x0 + y0 − γ )e2πn + 1

2 (x0 − y0 − γ )e−2πn + γ ,

yn = 1
2 (x0 + y0 − γ )e2πn − 1

2 (x0 − y0 − γ )e−2πn,

for n = 0, 1, 2, . . . . The stable and unstable manifolds are given respectively by

x0 + y0 = γ , x − y = γ .

These manifolds intersect at the fixed point of the periodic solution, namely, (γ , 0) as shown
in Figure 13.23.

• 13.30 Search for 2π -periodic solutions of ẍ + kẋ − x + (x2 + ẋ2)x = � cos t using x =
c + a cos t + b sin t , and retaining only first harmonics. Show that c, γ satisfy

c(c2 − 1+ 2r2) = 0, (r2 + 3c2 − 2)2 + k2r2 = �2,
and that the formula is exact for the limit cycle about the origin. Plot a response amplitude
(r) against the forcing amplitude (�) figure as in Figure 13.13 (in NODE) for k = 0.25.

13.30. In the equation
ẍ + kẋ − x + (x2 + ẋ2)x = � cos t , (i)
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let x = c + a cos t + b sin t . Then

ẍ + kẋ − x + (x2 + ẋ2)x − � cos t = −a cos t − b sin t − ak sin t + bk cos t − ca cos t − b sin t

+ [(c + a cos t + b sin t)2 + (−a sin t + b cos t)2]
× (c + a cos t + b sin t)− � cos t

= c(c2 − c + 2r2)+ (−2a + bk + 3c2a + ar2 − �) cos t

+ (−2b − ak + 3bc2 + br2) sin t + (higher harmonics)

where r2 = x2 + y2. This is an approximate solution as far as the first harmonics if

c(c2 − 1+ 2r2) = 0, (ii)

−2a + bk + 3ac2 + ar2 − � = 0, (iii)

−2b − ak + 3bc2 + br2 = 0. (iv)

From (iii) and (iv) it follows that

(r2 + 3c2 − 2)2 + k2r2 = �2. (v)

From (ii), one solution is

c = 0, (r2 − 2)2 + k2r2 = �2, (vi)

and the other solution is

c2 = 1− 2r2, (1− 5r2)2 + k2r2 = �2. (vii)

The graphs of r against � are shown in Figure 13.24.

1 2

1

2

r

(a)

(b)

�

Figure 13.24 Problem 13.30: Curve (a) represents (r2−2)2+k2r2=�2 and curve (b) represents (1−5r2)2+k2r2=�2.
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• 13.31 A nonlinear oscillator has the equation ẍ + ε(ẋ2 − x2 + 1
2x

4)ẋ − x + x3 = 0,
0 < ε � 1. Show that the system has one saddle and two unstable spiral equilibrium points.
Confirm that the saddle point has two associated homoclinic paths given by x = ±√2sech t .
If u = ẋ2 − x2 + 1

2x
4, show that u satisfies the equation u̇ + 2εẋ2u = 0. What can you

say about the stability of the homoclinic paths from the sign of u̇? Plot a phase diagram
showing the homoclinic and neighbouring paths.
The system is subject to small forcing εγ cosωt on the right-hand side of the differential
equation. Explain, in general terms, how you expect the system to behave if it is started
initially from x(0) = 0, ẋ(0) = 0. Plot the phase diagram over a long period interval, say
t ∼ 150 for ε = 0.25, ω = 1, γ = 0.2.

13.31. The equilibrium points of

ẍ + ε(ẋ2 − x2 + 1
2x

4)ẋ − x + x3 = 0

occur at x = −1, 0, 1, y = 0. The linearized approximations near the equilibrium points are as
follows.

• (0, 0). The linearized equation are

ẋ = y, ẏ = x.

Therefore the origin is a saddle point.
• (−1, 0). Let x = −1+ x′. Then

ẋ′ = y, ẏ ≈ 1
2y + x′ − 3x′ = −2x′ + 1

2εy.

Hence (−1, 0) is an unstable spiral.
• (1, 0). Let x = 1+ x′. Then

ẋ′ = y, ẏ ≈ −2x′ + 1
2εy.

Therefore (−1, 0) is also an unstable spiral.

Let x = √2sech t . Then

ẍ + ε(ẋ2 − x2 + 1
2x

4)ẋ − x + x3 = √2[sech t − 2sech 3
t]

+ ε[−2sech 2
t + 2sech 4

t + 2sech 2
t tanh2

t] − √2sech t + 2
√

2sech 3
t = 0

Therefore x = √2sech t is an exact solution. Similarly it can be shown that x = −√2sech t is
also an exact solution.
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Figure 13.25 Problem 13.31: Phase diagram with ε = 0.25.

–1 1
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y

Figure 13.26 Problem 13.31: Periodic solutions for the forced system with ε = 0.25, ω = 1, γ = 0.2.

Let u = ẋ2 − x2 + 1
2x

4. Then

u̇ = 2ẋẍ − 2xẋ + 2x3ẋ = 2ẋ(ẍ − x + x3)

= −2εẋ2(ẋ2 − x2 + 1
2x

4)

= −2εẋ2u

Hence u̇ < 0 for u > 0, and u̇ > 0 for u < 0. Therefore, since u = 0 on the homoclinic path,
the sign of u̇ implies that any initial perturbation will cause the phase path to approach the
homoclinic path u = 0. This implies that the homoclinic path is stable as shown in Figure 13.25.
In the forced system

ẍ + ε(ẋ2 − x2 + 1
2x

4)ẋ − x + x3 = εγ cosωt .

the introduction of forcing causes the homoclinic paths to bifurcate into two stable periodic
solutions shown in Figure 13.26.
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• 13.32 Show that, for α > 3, the logistic difference equation un+1 = αun(1 − un) has a
period 2 solution which alternates between the two values

1
2α
[1+ α −√(α2 − 2α − 3)] and

1
2α
[1+ α +√(α2 − 2α − 3)]

Show that it is stable for 3 < α < 1+√6.

13.32. The logistic difference equation is

un+1 = αun(1− un) = f (un),

say. Fixed points of the equation are given by u = f (u), that is, u = αu(1− u). There are two
such points at u = 0 and u = (α − 1)/α, (α > 1).

Period doubling occurs where u = f (f (u)), or

u = α2u(1− u)[1− αu(1− u)],

u[αu− (α − 1)][α2u2 − α(α + 1)+ 1+ α] = 0.

Period doubling will occur if

α2u2 − α(α + 1)u+ 1+ α = 0. (i)

Therefore

u = 1
2α

[
α + 1±√(α2 − 2α − 3)

]
= 1

2α
[α + 1±√(α + 1)(α − 3)],

The solution alternates between these two values of u. However, there can only be real solutions
for u if α ≥ 3.

Stability fails where

d
du
[f (f (u))] = −4α3u3 + 6α3u2 − 2α2(α + 1)u+ α2 = −1, (ii)

where (i) is also satisfied, that is at the period doubling values. For comparison these
equations are

α2u2 − α(α + 1)u+ (1+ α) = 0, (iii)

4α3u3 − 6α3u2 + 2α2(α + 1)u− α2 − 1 = 0. (iv)

Eliminate u3 between (iii) and (iv) by multiplying (iii) by 4α to give

u2 − α + 1
α

u+ α2 + 1
2α2(α − 2)

= 0. (v)
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For comparison (iii) can be expressed as

u2 − α + 1
α

u+ α + 1
α2 = 0. (vi)

Equations (v) and (vi) have the same solutions if

α + 1
α2 = α2 + 1

2α2(α − 2)
= 0,

or
α2 − 2α − 5 = 0.

The critical solution is α = 1+√6. Period doubling is stable for 3 < α < 1+√6.

• 13.33 The Shimizu–Morioka equations are given by the two-parameter system

ẋ = y, ẏ = x(1− z)− ay, ż = −bz+ x2.

Show that there are three equilibrium points for b > 0, and one for b ≤ 0. Show that the
origin is a saddle point for all a and b �= 0. Obtain the linear approximation for the other
equilibrium points assuming b = 1. Find the eigenvalues of the linear approximation at
a = 1.2, a = 1 and at a = 0.844. What occurs at a = 1? For a = 1.2 and a = 0.844
compute the unstable manifolds of the origin by using initial values close to the origin in the
direction of its eigenvector, and plot their projections on to the (x, z) plane (see Figure 13.43
in NODE). Confirm that two homoclinic paths occur for a ≈ 0.844. What happens to the
stability of the equilibrium points away from the origin as a decreases through 1? What
type of bifurcation occurs at a = 1? Justify any conjecture by plotting phase diagrams for
0.844 < a < 1.

13.33. The Shimizu–Morioka equations are

ẋ = y, ẏ = x(1− z)− ay, ż = −bz+ x2.

Equilibrium occurs where

y = 0, x(1− z)− ay = 0, − bz+ x2 = 0.

• b ≤ 0. System has one equilibrium point at (0, 0, 0).
• b > 0. Equilibrium at (0, 0, 0) and (±√b, 0, 1).

The linearized classification is as follows.

• Equilibrium point (0, 0, 0). The linearized equations are

ẋ = y, ẏ = x − ay, ż = −bz.
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The eigenvalues of the coefficients are given by

∣∣∣∣∣∣
−λ 1 0
1 −a − λ 0
0 0 −b − λ

∣∣∣∣∣∣ = 0, or − (b + k)(−1+ ak + k2) = 0.

Therefore the eigenvalues are −b, 1
2 [−a −

√
(a2 + 4)], 1

2 [−a +
√
(a2 + 4)], which are all

real. If b > 0, two eigenvalues are negative and one positive, and if b < 0, two eigenvalues
are positive and one negative. In both cases the origin is a three-dimensional saddle.

• For b = 1, one equilibrium point is (1, 0, 1). Let x = 1+ x′, z = 1+ z′. Then

ẋ′ = y, ẏ = −(1+ x′)z′ − ay ≈ −ay − z′,

ż′ = −(1+ z′)+ (1+ x′)2 ≈ 2x′ − z′.
The eigenvalues are given by

∣∣∣∣∣∣
−λ 1 0
0 −a − λ −1
2 0 −1− λ

∣∣∣∣∣∣ = 0, or − λ3 − (a + 1)λ2 − aλ− 2 = 0.

• For b = 1, the other equilibrium point is (−1, 0, 1). Let x = −1+ x′, z = 1+ z′. Then

ẋ′ = y, ẏ′ ≈ −ay + z′, ż′ ≈ −2x′ − z′.

The eigenvalues are also given by

−λ3 − (a + 1)λ2 − aλ− 2 = 0.

We need only consider the case b = 1. The eigenvalues for the three cases a = 1.2, a = 1,
a = 0.844 are shown in the table.

a eigenvalues at (0, 0, 0) eigenvalues at (1, 0, 1)

1.200 1.766,−1, 0.566 −2.084,−0.058± 0.978i

1.000 −1,1
2 (−1±√5) −2,±i

0.844 −1.507, −1, 0.663 −1.940, 0.048± 1.014

For a = 1.2, the equilibrium points at (1, 0, 1) and (−1, 0, 1) are stable spiral/nodes.
The unstable manifolds of the origin for the case a = 1.2 are shown in Figure 13.27 projected

on to the x, z plane. The stable spiral feature of the equilibrium points at (1, 0, 1) and (−1, 0, 1)
are clearly visible. The value a = 0.844 is the critical case for the appearance of homoclinic
paths of the origin as shown in Figure 13.28.

For a = 1, the eigenvalues of the equilibrium points (±, 0, 1) are −2,±i which indicates a
transition between stable equilibrium points to unstable points as a decreases through 1.
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Figure 13.27 Problem 13.33: Unstable manifolds of the origin for a = 1.2, b = 1 projected on to the x, z plane.
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Figure 13.28 Problem 13.33: Unstable manifolds of the origin for a = 0.844, b = 1 projected on to the x, z plane.

• 13.34 Compute some Poincaré sections given by the plane� : z = constant of the Rössler
system

ẋ = −y − z, ẏ = x + ay, ż = bx − cz+ xz, (a, b, c > 0)

where a = 0.4, b = 0.3 and c takes various values. The choice of the constant for z in
� is important: if it is too large then the section might not intersect phase paths at all.
Remember that the Poincaré sequence arises from intersections which occur as the phase
paths cut � in the same sense. The period-2 solution (Figure 13.12(b) in NODE), with
Poincaré section z = 2 should appear as two dots as shown in Figure 13.44(a) (in NODE)
after transient behaviour has died down. Figures 13.44(a),(b) (in NODE) show a section of
chaotic behaviour at c = 4.449 at z = 4.

13.34. The Rössler system is given by

ẋ = −y − z, ẏ = x + ay, ż = bx − cz+ xz, (a, b, c > 0).

Figure 13.29 shows the section through z = 4 for system with a = 0.4, b = 0.3, c = 4.449,
which is evidence of a strange attractor. Figure 13.30 shows period doubling for a = 0.4,
b = 0.3, c = 2 in the section z = 1.6. The curve shows the actual period time solution. It is
possible to get period-4 returns, for example, in the section z = 1.
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Figure 13.29 Problem 13.34:
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Figure 13.30 Problem 13.34: periodic solution which occurs for a = 0.4, b = 0.3, c = 2, and the section z = 1.6.

• 13.35 For the Duffing oscillator ẍ + kẋ − x + x3 = � cosωt it was shown in NODE,
Section 13.3, that the displacement c and the response amplitude r were related to other
parameters by

c2 = 1− 3
2r

2, r2[(2− ω2 − 15
4 r

2)2 + k2ω2] = �2

for Type II oscillations (eqn (13.25)). By investigating the roots of d(�2)/dr2 = 0, show
that a fold develops in this equation for ω < 1

2 [4 + 3k2 − k√(24+ 9k2)]. Hence there are
three response amplitudes for these forcing frequencies. Design a computer program to plot
the amplitude (�)/amplitude (r) curves; C1 and C2 as in Fig. 13.13. Figure 13.45 (in NODE)
shows the two folds in C1 and C2 for k = 0.3 and ω = 0.9.

13.35. For the Duffing oscillator

ẍ + kẋ − x + x3 = � cosωt
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the displacement c and amplitude r are related by

c2 = 1− 3
2r

2, r2[(2− ω2 − 15
4 r

2)2 + k2ω2] = �2

for Type II oscillations (see Section 13.3). Differentiating the second equation

d(�2)

d(r2)
= (2− ω2 − 15

4 r
2)2 + k2ω2 − 15

2 r
2(2− ω2 − 15

4 r
2).

Folds develop where d(�2)/d(r2) = 0. Let ρ = r2. Then ρ satisfies

(2− ω2 − 15
4 ρ)

2 + k2ω2 − 15
2 ρ(2− ω2 − 15

4 ρ) = 0,

or

675
16 ρ

2 − 15(2− ω2)ρ + (2− ω2)2 + k2ω2 = 0.

Therefore

ρ = 8
45 {(2− ω2)± 1

2
√[(2− ω2)2 − 3k2ω2]}.

This equation will have solutions if ω and k take values which make ρ real and positive. The
general restriction ω2 < 2 (assume that ω > 0) applies. Additionally we require

(2− ω2)2 ≥ 3k2ω2 or ω4 − (4+ 3k2)ω2 + 4 ≥ 0,

which is equivalent to

ω2 < ω2
1 = 1

2 [(4+ 3k2)− k√(24+ 9k2)], (i)

or

ω2 > ω2
2 = 1

2 [(4+ 3k2)+ k√(24+ 9k2)]. (ii)

However, only (i) is consistent with ω2 < 2 so that (i) is the condition for ρ to be real and
positive (see Figure 13.31). The �, r graphs are shown in Figure 13.32: the Type II case is
considered here.
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Figure 13.31 Problem 13.35: Graph shows ω2 = ω2
1, ω2 = ω2

2 and ω2 = 2, all plotted against k: ρ is real and
positive in the shaded region.
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Figure 13.32 Problem 13.35:

• 13.36 It was shown in NODE, Section 13.5 for the Duffing equation ẍ + kẋ − x +
x3 = � cosωt that the perturbation a′ = [a′, b′, c′, d ′]T from the translation c0 =√[1− 3

2 (a
2
0 + b2

0)] and the amplitudes a0 and b0 of the harmonic approximation x =
c0 + a0 cosωt + b0 sinωt satisfies ȧ′ = Aa′ where

A =




R(P − 3
2 ka

2
0 + 3a0b0ω) −R(Q− 3

2 ka0b0 + 3b2
0ω) 6Rc0(−a0k + 2b0ω) 0

R(Q− 3a2
0ω − 3

2 ka0b0) R(P − 3a0b0ω − 3
2b

2
0k) −12Ra0c0k 0

0 0 0 1

−3a0c0 −3b0c0 −(2− 3r20 ) −k


,

where R = 1/(k2 + 4ω2), P = −k(2 + ω2 − 15
4 r

2
0 ), Q = ω(4 − 2ω2 − k2 − 15

4 r
2
0 ), (see

eqn (13.37) in NODE). The constants a0 and b0 are obtained by solving eqns (13.21) and
(13.22). Devise a computer program to find the eigenvalues of the matrix A for k = 0.3
and ω = 1.2 as in the main text. By tuning the forcing amplitude �, find, approximately,
the value of � for which one of the eigenvalues changes sign so that the linear system
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ȧ′ = Aa′ becomes unstable. Investigate numerically how this critical value of � varies with
the parameters k and ω.

13.36. In the Duffing equation

ẍ + kẋ − x + x3 = � cosωt ,

let a = a0+a′(t), b = b0+b′(t), c = c0+ c′(t), d = d ′(t). As in the text, it follows that ȧ′ = Aa′
where

A =




R(P − 3
2 ka

2
0 + 3a0b0ω) −R(Q− 3

2 ka0b0 + 3b2
0ω) 6Rc0(−a0k + 2b0ω) 0

R(Q− 3a2
0ω − 3

2 ka0b0) R(P − 3a0b0ω − 3
2b

2
0k) −12Ra0c0k 0

0 0 0 1

−3a0c0 −3b0c0 −(2− 3r20 ) −k


 ,

where

R = 1
k2 + 4ω2 , P = −k(2+ ω2 − 15

4 r
2
0 ), Q = ω(4− 2ω2 − k2 − 15

4 r
2
0 ).

The amplitudes a0 and b0, and c0 satisfy (13.20), (13.21) and (13.22), namely

c2
0 = 1− 3

2r
2
0 , (i)

a0(2− ω2 − 15
4 r

2
0 )+ kωb0 = �, (ii)

b0(2− ω2 − 15
4 r

2
0 )− kωa0 = 0. (iii)

The procedure is that eqns (i), (ii) and (iii) are solved numerically for a0, b0 and c0 for given
values of the parameters k, ω and �. Then the eigenvalues of A are computed which will then
indicate whether the solutions of ȧ′ = Aa′ are stable or unstable. A table of eigenvalues for
k = 0.3, ω = 1.2 and � = 0.2, 0.25, 0.3, 0.35 is shown below which can be compared with the
computed value of � = 0.27 (see NODE, Section 13.3).

� eigenvalues of A

0.20 −0.202± 1.276i, −0.117 ± 0.350i
0.25 −0.249± 1.149i, −0.054±−0.263
0.30 −0.171± 0.930i, −0.224, 0.052
0.35 −0.408± 1.192i, 0.072± 0.568i

For � = 0.2, 0.25, the first harmonic x = c0+ a0 cosωt + b0 sinωt is stable. Instability arises
at approximately � = 0.3.
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Figure 13.33 Problem 13.37: Periodic solution of the Lorenz system with a = 10, b = 100.5, c = 8/3.

t
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t

x

Figure 13.34 Problem 13.37: Time solutions for a = 10, c = 8/3 with b = 166 in the upper figure and b = 166.1
in the lower figure.

• 13.37 Compute solutions for the Lorenz system

ẋ = a(y − x), ẏ = bx − y − xz, ż = xy − cz,
for the parameter section a = 10, c = 8/3 and various values of b: this is the section
frequently chosen to illustrate oscillatory features of the Lorenz attractor. In particu-
lar try b = 100.5 and show numerically that there is a periodic attractor as shown in
Figure 13.46(a) (in NODE). Why will this limit cycle be one of a pair?
Shows also that at b = 166, the system has a periodic solution as shown in Figure 13.46(b)(in
NODE), but at 166.1 (Figure 13.46(c) in NODE) the periodic solution is regular for long
periods but is then subject to irregular bursts at irregular intervals before resuming its oscil-
lation again. This type of chaos is known as intermittency. (For discussion of intermittent
chaos and references see Nayfeh and Balachandran (1995); for a detailed discussion of the
Lorenz system see Sparrow (1982)).

13.37. The Lorenz system is

ẋ = a(y − x), ẏ = bx − y − xz, ż = xy − cz.
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A computed periodic solution is shown in Figure 13.33 with the parameters a = 10, b = 100.5,
c = 8/3. Time solutions showing intermittency for a small change in the parameter b are
displayed in Figure 13.34.

• 13.38 The damped pendulum with periodic forcing of the pivot leads to the equation
(Bogoliubov and Mitropolski 1961)

ẍ + sin x = ε(γ sin t sin x − κẋ),
where 0 < ε � 1. Apply Melnikov’s method and show that heteroclinic bifurcation occurs
if γ ≥ 4κ sinh 1

2π . [You will need the integral∫ ∞

−∞
sin s sech 2

s tanh sds = π

2 sinh(1
2aπ)

.

]

13.38. The damped pendulum with periodic forcing of the pivot leads to the equation

ẍ + sin x = ε(γ sin t sin x − κẋ),

where it is assumed that 0 < ε � 1. This system has equilibrium points at x = nπ , (n =
0,±1,±2, . . . ). Of these points, those for which n = 0,±2,±4, . . . are saddle points, and
those for which n = ±1,±3, . . . are centres.

The heteroclinic paths for the unperturbed system with ε = 0 are given

x0 = 2 tan−1(sinh t).

The Melnikov function (see NODE, Section 13.7) is given by

M(t0) =
∫ ∞

−∞
y0(t − t0)h[x0(t − t0), y0(t − t0), t]dt ,

where ẋ = y and h(x, y, t) = γ sin t sin x − κy). Therefore

M(t0) = 2
∫ ∞

−∞
sech (t − t0){γ sin t sin[2 tan−1(sinh(t − t0))] − 2κsech (t − t0)}dt

= 4
∫ ∞

−∞
sech (t − t0)[γ sin tsech (t − t0) tanh(t − t0)− κsech (t − t0)]dt
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= 4γ
∫ ∞

−∞
sin(s + t0)sech 2

s tanh sds − 4κ
∫ ∞

−∞
sech 2

sds

= 4γ cos t0

∫ ∞

−∞
sin s sech 2

s tanh sds − 4κ
∫ ∞

−∞
sech 2

sds

= 2γ cos t0
sinh 1

2π
− 8κ,

since ∫ ∞

−∞
sech 2

sds = 2,
∫ ∞

−∞
sin s sech 2

s tanh sds = π

2 sinh(1
2π)

.

A heteroclinic bifurcation occurs if M(t0) = 0, that is, if

γ cos t0 = 4κ sinh(1
2π).

A solution for t0 can only exist if
4κ sinh(1

2π) ≤ γ ,

assuming that the parameters are positive.

• 13.39 An alternative method of visualizing the structure of solutions of difference equa-
tions and differential equations is to plot return maps of un−1 versus un. For example, a
sequence of solutions of the logistic difference equation un+1 = αun(1 − un) the ordinate
would be un−1 and the abscissa un. The return map should be plotted after any initial tran-
sient returns have died out. If α = 2.8 (see Section 13.4), how will the long-term return
amp appear? Find the return map for α = 3.4 also. An exact (chaotic) solution of the
logistic equation is un = sin2(2n) (see NODE, Problem 13.14). Plot the points (un, un−1)

for n = 1, 2, . . . , 200, say. What structure is revealed?
Using a computer program generate a time-series (numerical solution) for the Duffing
equation

ẍ + kẋ − x + x3 = � cosωt

for k=0.3, ω=1.2 and selected values of �, say �=0.2, 0.28, 0.29, 0.37, 0.5 (see
Figures 13.14, 13.15, 13.16 in NODE). Plot transient-free return maps for the interpolated
pairs [x(2πn/ω), x(2π(n−1)/ω)]. For the chaotic case �=0.5, take the time series over an
interval 0 ≤ t ≤ 5000, say. These return diagrams show that structure is recognizable in
chaotic outputs: the returns are not uniformly distributed.

13.39. In this problem return maps are constructed. For the difference equation

un+1 = αun(1− un),

a sequence of solutions are plotted on the (un−1, un) plane.
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Return maps in the (un, un−1) plane are shown in Figure 13.35 for the cases α=2.8 and
α=3.4. The sequence starting with u0=0.5 is shown in the first diagram in Figure 13.35:
the sequence approaches the fixed point (1.8/2.8, 1.8/2.8). In the second figure computed for
α=3.4, only the ultimate period doubling between the points (0.452, 0.842) and (0.842, 0.452)
are marked.

0.6 0.65 0.7
un

0.6

0.7
un-1

0.5 0.7 0.9
un

0.6

0.8

1
un-1

Figure 13.35 Problem 13.39: The return maps for un+1 = αun(1−un) with α = 2.8 and α = 3.4 both starting from
u0 = 0.5 : the arrow points to the limit of the sequence at (1.8/2.8, 1.8/2.8) for the period 1 solution, The two dots
show period doubling after transient effects have been eliminated.

0.2 0.4 0.6 0.8 1
un

0.2

0.4

0.6

0.8

1

un-1

Figure 13.36 Problem 13.39: Return map for the exact solution un = sin2(2n) of the logistic equation.

–1 –0.5 0.5 1
xn

–1

–0.5

0.5

1

xn-1

Figure 13.37 Problem 13.39: Return map for the Duffing equation with axes xn and xn−1 with parameter values
k = 0.3, ω = 1.2, �0.5 .
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The logistic equation has the exact solution un= sin2(2n) (see Problem 13.14). The chaotic
return map for this solution is shown in Figure 13.36. Since un=4un−1(1−un−1), all the points
on the return map lie on the parabola x=4y(1− y) in continuous variables.

The Duffing equation is

ẍ + kẋ − x + x3 = � cosωt , ẋ = y.

We shall only look at the case k = 0.3, ω = 1.2, � = 0.5, and in particular the return
map. This is obtained by computing the solution numerically, and then listing the discrete
values xn = x(2nπ/ω) for n = n0, n0 + 1, . . . , where n0 is some suitable value which reduces
transience. The return map is shown in Figure 13.36 for about 1000 returns. It can be seen that
there is structure in the chaos: the returns are not simply randomly distributed over a region.
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