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To my parents



Preface to the Second Edition

This is a revised and enlarged version of the second printing (with up-dated
bibliography, 2004) of the first edition, published by Efemeride in 2002.

All chapters of the book were practically revised in a certain extent and
some new Sections were also added with the aim to improve the coverage of
the topic and to attain its main aim: to summarize in a gradual and natural
way the most significant contributions to the approximation of fixed points
of nonlinear contractive type mappings, by presenting, for each important
iterative method, some of the most relevant, interesting and actual results.

Only constructive fixed point theorems are mainly the subject of the book.
A constructive fixed point theorem establishes not only the existence (and
possibly, uniqueness) of the fixed points, but also provides a method for
approximating these fixed points and, moreover, offers information on the
data dependence of the fixed points (or, alternatively, on the stability of the
fixed point iterative methods).

Main Changes in the Second Edition

1. Since the first edition had no exercises explicitly formulated, we selected
and included in the new edition a number of 111 Exercises, Applications and
Miscellaneous Results, distributed to all chapters, which completes the topic
treated in each chapter or indicate other related directions of research.

2. A number of 7 new sections were added (3.5, 5.5, 6.4, 6.5, 9.3, 9.4, 9.5)
or enlarged; section 4.4 merged section 4.2 to form a new section 4.2. Prac-
tically, all sections were significantly revised. Section 6.3 changed the title
from “Ergodic fixed point iteration procedures” to “Ergodic and other fixed
point iteration procedures”; section 7.3 changed the name from “Continu-
ous dependence of the fixed points” to “Data dependence of fixed points”;
Chapter 8 changed the title from “Applications of some fixed point itera-
tion procedures” to “Iterative solution of nonlinear operator equations”, to
indicate more clearer the area of applications.
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3. We also simplified several proofs and corrected many of the typos.
4. We enlarged and improved Chapter 9 with some very recent new results

related to the numerical comparison of fixed point iteration procedures.
5. We added other numerical examples in Chapter 9, obtained by means

of the software package FIXPOINT.
6. We inserted new information in the Bibliographical Comments sections

in Chapters 3-9.
7. We up-dated significantly the bibliography: more than 500 new entries

were added; at the same time, some of the old entries in the first edition,
now considered to be not directly related to the main topic, were eliminated.
In comparison to the first edition, which had about 1050 references at the
bibliography, in the present edition it considerably increased: it contains now
more than 1575 titles. The bibliography itself could show how dynamic this
field of research is: 1481 titles, representing 94% of the whole bibliography,
were published in the last 35 years (1970-2005); 1294 of the latter, representing
82% of the whole bibliography, were published in the last 25 years (1980-2005);
1059 of them, representing 67% of the whole bibliography, were published in
the last 15 years (1990-2005), while 876 titles, that is, almost 50% of the total
bibliography, were published in the last 10 years (1995-2005).

The decade 1990-1999 has doubled the bibliography of the previous one
(1980-1989), while the last half decade 2000-2004 produced much more than
the whole decade 1990-1999.

Note that, the very recent publications (on 2005, 2006 and 2007) are par-
tially covered in the present list of references, with only 54 titles.

Main Merits of the Present Edition

The main merits of the current edition consist not only in a better presen-
tation of the material, but especially in the fact that we tried to introduce and
systematically apply some firm criteria of evaluating, judging and presenting
the vast material existing in literature.

This enabled us, in Sections 5.5, 6.4, 6.5, 9.3, 9.4 and 9.5, to indicate some
new directions of investigation of real and significant interest in the subject,
and also to mention those topics which, in our opinion, are less important for
theoretical and numerical purposes.

Chapter 9, devoted to error analysis of iterative methods, as well as
sections 3.5, 5.5, 6.4, 6.5, include very recent, new and important results that
could put into a new light the future research in the area.

In order to give an overview of the huge research work, see the data above,
emphasis is put mainly on the generic results regarding the main topic, but
the author’s intention was to produce an as in-depth and up-to-date coverage
as possible of the most significant 400 recent articles in that area.
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From a huge amount of bibliography - more than 1575 entries are included
in the present edition, as mentioned before - in principle only innovative
research was selected and presented in the book.

More Acknowledgments

I want to thank again Professor Ioan A. Rus, this time for carefully reading
the first edition and making numerous and valuable remarks and suggestions
for improving the book. I thank also Dr. Sorin Iuliu Pop for the help given at
the completion of the bibliography.

Thanks are due to my PhD students Ioana Banc, Marina Bic, Natalia
Jurja and Monica Lauran for reading the manuscript carefully and providing
a list of typos which have now been corrected.

Baia Mare Vasile BERINDE
December 22, 2006



Preface to the First Edition

The literature of the last four decades abounds with papers which estab-
lish fixed point theorems for selfmaps or nonselfmaps satisfying a variety of
contractive type conditions on several ambient spaces.

Having in view that many of the most important nonlinear problems of
applied mathematics reduce to solving a given equation which in turn may
be reduced to finding the fixed points of a certain operator, on the one hand,
and the fact that contractive (Lipschitzian) type conditions naturally arise for
many of these problems, on the other hand, the metrical fixed point theory
has developed significantly in the second part of the XXth century.

A plethora of metrical fixed point theorems have been obtained, more
or less important from a theoretical point of view, which establish usually
the existence, or the existence and uniqueness of fixed points for a certain
contractive operator. Among these fixed point theorems, only a small number
are important from a practical point of view, that is, they offer a constructive
method for finding the fixed points. Among the last ones only a few give
information on the error estimate (the rate of convergence) of the method.

However, from a practical point of view it is important not only to know
the fixed point exists (and, possibly, is unique), but also to be able to construct
that fixed point(s). As the constructive methods used in metrical fixed point
theory are prevailingly iterative procedures, that is, approximate methods,
it is also of crucial importance to have a priori or / and a posteriori error
estimates (or, alternatively, rate of convergence) for such a method.

Starting from these numerical commands, the book aims to survey some
of the most used fixed point iteration procedures: the Picard iteration, the
Krasnoselskij iteration, the Mann iteration, the Ishikawa iteration etc.

The present version of the book arose out of a rather long personal research
experience as well as of a Master degree course “Methods for approximating
fixed points” and of a graduate course entitled “Fixed point theory”.

The last one was taught by the author to students in the Mathematics
programmes at the North University Baia Mare, since 1996.
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In author’s opinion, the monograph is undoubtedly a provisional introduc-
tory approach to iterative approximation of fixed points.

With a view to its next improved and revised version(s), we shall welcome
any comments, remarks, suggestions and additional bibliographical references
coming with criticism from the readers.
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Introduction

A possible starting point in judging the merits of the book would be the
idea that it is a drop in an ocean of intensive and extensive research work.
Consequently, our aim was to present, as clearly and completely as possible,
a survey of the basic results in iterative approximation of fixed points.

In order to meet the taste of the majority of scientists interested in this
area, our intention was to produce an in-depth and up-to-date coverage of
about 400 recent publications out of more than 1575 entries in the reference
list. However, it would have been impossible to cover consistently the diversity
of research work that has been done in the field of iterative approximation of
fixed points and related areas.

The diversity of results on this topic comes mainly from three directions:
1. The variety of the underlying spaces where the operators are defined;
2. The variety of contractiveness assumptions and/or topological proper-

ties associated with these operators;
3. The variety of assumptions on the parameters that define a certain

fixed point iteration procedure. Sometimes these parameters depend also on
the geometry of the ambient space and/or on the properties of the considered
operator.

Therefore, the author is perfectly aware of the risks he has taken when
designing the book. It is doubtful that the structure, contents and organization
of the material in each Chapter or Section will meet all the needs and horizons
of the specialists working in this area.

As a general rule, emphasis is put only on some generic results regarding
the main topic, since it would be impossible to aim for complete coverage.
Usually, for each iterative fixed point procedure, some of the most interesting,
representative and significant results are completely presented, while some
others are formulated as exercises or are only briefly mentioned.
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Moreover, in some chapters and sections we did not always include the
most general result related to a certain topic, but the most accessible one. In
these circumstances, we tried to stress on the most clear result when possible
and to mention the other more general results. Simultaneously we tried to il-
lustrate the diversity of the results, and so to avoid presenting the convergence
results of different iterative processes in the same or in a similar setting.

No matter how narrow its topic, a book cannot be written in a self-
contained manner when space limits are imposed. This is the reason why we
preferred to include some (auxiliary) results without (detailed) proofs, and
to insert other much more diversified results instead. The readers interested
in knowing the details should consult the appropriate references, as the bib-
liography, with its more than 1575 references, provides additional sources of
results and approaches on the approximation of fixed points.

In order to make reading as fluent as possible, we generally tried to avoid
bibliography citations in the text of the sections. Instead we have supple-
mented each chapter with a special section containing a set of “Bibliograph-
ical Comments”, where many literature citations are given and other related
results are sometimes mentioned. Including a result in a certain section does
not mean it is the most general in that area: in several circumstances the taste
of the author was simply the dominant reason, when we tried to mention the
similar more general or most important results.

Despite the considerable amount of overlapping research work on the
Ishikawa and Mann iteration procedures, we however decided to have a dis-
tinct chapter for each one, where specific results were also included. Apart
from the sections “Exercises ans Miscellaneous results”, in some sections at
least one proof or parts of the proof are left for the reader to be completed.

Throughout the book we adopted the following numbering system: in each
Chapter the Definitions, Lemmas and Theorems are numbered using two
digits, while the equations are numbered using one digit only. For example,
Theorem 3.6 or Definition 4.5 or Lemma 7.2 denote the sixth theorem inc-
luded in Chapter 3, the fifth definition in Chapter 4 and the second lemma
in Chapter 7, respectively. When references to them are needed, examples are
also numbered, in the same described manner. On the contrary, when refer-
ring to a certain equation we shall say, for example, equation (3) in Chapter
4 instead of equation (4.3).

In writing non-English author names, we ignored the specific diacritical
signs. So, Haďzić and Păvăloiu will be written simply as Hadzic and Pavaloiu,
respectively. For Krasnosel’skij we preferred the form Krasnoselskij, even
though in some sources other variants (e.g., Krasnoselskii) can be found.

Concluding the introduction, we want to stress on the main merit of this
book: the very fact that it was written down. However, we hope that, by gath-
ering and systematizing various significant results in the dynamic field of fixed
point iteration procedures, we provide a useful tool for many postgraduate and
PhD students as well as for any interested researchers.



1

Pre-Requisites of Fixed Points

It is the purpose of this chapter to provide the terminology, basic concepts
and notations from fixed point theory used throughout the book. They are
presented without proofs (for their extensive treatment we refer the readers to
any monograph in the list of references). We shall also illustrate how a fixed
point restatement of certain functional equations could be concretely done.

1.1 The Background of Metrical Fixed Point Theory

Let X be a nonempty set and T : X → X a selfmap. We say that x ∈ X
is a fixed point of T if

T (x) = x

and denote by FT or Fix (T ) the set of all fixed points of T .

Example 1.1. 1) If X = R and T (x) = x2 + 5x + 4, then FT = {−2} ;
2) If X = R and T (x) = x2 − x, then FT = {0, 2} ;
3) If X = R and T (x) = x + 2, then FT = ∅;
4) If X = R and T (x) = x, then FT = R.

Let X be any set and T : X → X a selfmap. For any given x ∈ X, we
define Tn(x) inductively by T 0(x) = x and Tn+1(x) = T (Tn(x)) ; we call
Tn(x) the nth iterate of x under T. In order to simplify the notations we will
often use Tx instead of T (x).

The mapping Tn(n ≥ 1) is called the nth iterate of T. For any x0 ∈ X,
the sequence {xn}n≥0 ⊂ X given by

xn = Txn−1 = Tnx0, n = 1, 2, ... (1)

is called the sequence of successive approximations with the initial value x0.
It is also known as the Picard iteration starting at x0.
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For a given selfmap the following properties obviously hold:
1) FT ⊂ FT n , for each n ∈ N

∗ ;
2) FT n = {x} , for some n ∈ N

∗ ⇒ FT = {x} ;
The reverse of 2) is not true, in general, as shown by the next example.

Example 1.2. Let T : {1, 2, 3} → {1, 2, 3} , T (1) = 3, T (2) = 2 and
T (3) = 1. Then FT 2 = {1, 2, 3} but FT = {2}.

The fixed point theory is concerned with finding conditions on the struc-
ture that the set X must be endowed as well as on the properties of the
operator T : X → X, in order to obtain results on:

a) the existence (and uniqueness) of fixed points;
b) the data dependence of fixed points;
c) the construction of fixed points.
The ambient spaces X involved in fixed point theorems cover a variety of

spaces: lattice, metric space, normed linear space, generalized metric space,
uniform space, linear topological space etc., while the conditions imposed
on the operator T are generally metrical or compactness type conditions. In
order to introduce the most important ones, we need some minimal functional
analysis background.

Metric spaces

Definition 1.1. Let X be a non-empty set. A mapping d : X × X → R+

is called a metric or a distance on X provided that
(d1) d(x, y) = 0 ⇔ x = y; (“separation axiom”)
(d2) d(y, x) = d(x, y), for all x, y ∈ X; (“symmetry”)
(d3) d(x, z) ≤ d(x, y) + d(y, z), for all x, y, z ∈ X (“the triangle inequal-

ity”).
A set X endowed with a metric d is called metric space and is denoted by

(X, d).

Example 1.3.
1) X = R; d(x, y) = |x − y| , ∀x, y ∈ R, where |·| denotes the absolute

value, is a metric (a distance) on R;

2) X = R
n; d(x, y) =

[
n∑

i=1

(xi − yi)2
]1/2

, for all

x = (x1, x2, ..., xn), y = (y1, y2, ..., yn) ∈ R
n,

is a metric on R
n, called the euclidean metric. The next two mappings:

δ(x, y) =
n∑

i=1

|xi − yi| , x, y ∈ R
n,

ρ(x, y) = max
1≤i≤n

|xi − yi| , x, y ∈ R
n,

are also metrics on R
n;
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3) Let X = {f : [a, b] → R| f is continuous}. We define d : X × X → R+

by
d(f, g) = max

x∈[a,b]
|f(x) − g(x)| , for all f, g ∈ X.

Then d is a metric on X (called the Chebyshev metric); the metric space (X, d)
is usually denoted by C[a, b];

4)Let X be as at 3) and δ : X × X → R+ be given by

δ(f, g) = max
x∈[a,b]

(
|f(x) − g(x)| e−τ |x−x0|

)
,

for all f, g ∈ X where τ > 0 is a constant and x0 ∈ [a, b] is fixed.
Then δ is a metric on X, called the Bielecki metric, and the metric space

(X, δ) is usually denoted by B[a, b].

Definition 1.2. Let (X, d) be a metric space. The topology having as
basis the family of all open balls, B(x; r), x ∈ X, r > 0, is called the topology
induced by the metric d.

Definition 1.3. Two metrics d1 and d2 defined on the set X are called
equivalent metrics if they induce the same topology on X.

Remarks.
1) Two metrics d1 and d2 are metrically equivalent if there exist two

constants m > 0, M > 0 such that

md1(x, y) ≤ d2(x, y) ≤ Md1(x, y), for all x, y ∈ X;

2) In Example 1.3, the metrics d, δ and ρ from 2) are equivalent; the
metrics d from 3) and ρ from 4) are equivalent as well.

Definition 1.4. Let {xn}∞n=0 be a sequence in a metric space (X, d). We
say that the sequence {xn}∞n=0

a) is convergent to a ∈ X if, for any ε > 0, there exists n0 = n0(ε) such
that

d(xn, a) < ε, for any n ∈ N, n ≥ n0.

b) is fundamental or Cauchy sequence if, for any ε > 0, there exists n0 =
n0(ε) such that

d(xn, xn+p) < ε, for all n ∈ N, n ≥ n0, and any p ∈ N
∗.

Remark. In a metric space, any convergent sequence is a Cauchy sequence,
too, but the reverse is not generally true.

Definition 1.5. A metric space (X, d) is called complete if any Cauchy
sequence in X is convergent.
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1) Using the metrics given in Example 1.3, the following are complete
metric spaces: (R, |·|); (Rn, d); (Rn, δ); (Rn, ρ); C[a, b]; B[a, b];

2) If Q denotes the rationals in R, then (Q, |·|) is not a complete metric
space.

Definition 1.6. Let (X, d) be a metric space. A mapping T : X → X is
called:

(C1) Lipschitzian (or L-Lipschitzian) if there exists L > 0 such that

d(Tx, Ty) ≤ L · d(x, y), for all x, y ∈ X;

(C2) (strict) contraction (or a-contraction) if T is a-Lipschitzian, with
a ∈ [0, 1);

(C3) nonexpansive if T is 1-Lipschitzian;
(C4) contractive if d(Tx, Ty) < d(x, y), for all x, y ∈ X, x 
= y;
(C5) isometry if d(Tx, Ty) = d(x, y), for all x, y ∈ X.

Example 1.5.
1) T : R → R T (x) = x/2+3, x ∈ R, is a strict contraction and FT = {6} ;
2) The function T : [1/2, 2] → [1/2, 2] , T (x) = 1/x, is 4-Lipschitzian with

FT = {1}, while the functions T in Example 1.1, 3)-4) are all isometries;

3) T : [1,+∞] → [1,+∞] , T (x) = x +
1
x

, is contractive and FT = ∅.

The following theorem is of fundamental importance in the metrical fixed
point theory and will be considered in an extended form in Chapter 2.

Theorem 1.1. (Contraction mapping principle)
Let (X, d) be a complete metric space and T : X → X be a given contrac-

tion. Then T has a unique fixed point p, and

Tn(x) → p (as n → ∞), for each x ∈ X.

There are various generalizations of the contraction mapping principle,
roughly obtained in two ways:

1) by weakening the contractive properties of the map and, possibly, by
simultaneously giving to the space a sufficiently rich structure, in order to
compensate the relaxation of the contractiveness assumptions;

2) by extending the structure of the ambient space.
Several fixed point theorems have been also obtained by combining the

two ways previously described or by adding supplementary conditions.

Remarks.
1) The conclusion of Theorem 1.1 is not valid if we consider “T contrac-

tive” instead of “T strict contraction”, as shown by Example 1.5, part 3), but
if we ask that (X, d) is a compact metric space, then the conclusion still holds
(see Theorem 2.2, in Chapter 2);
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2) One of the most important way in extending Theorem 1.1 consists
of replacing the strict contractive condition (C2) by a similar but weaker
condition:

(C6) d(Tx, Ty) ≤ ϕ(d(x, y)), x, y ∈ X,

where ϕ : R+ → R+ is a certain comparison function preserving some essential
properties of the function appearing in (C2), ϕ(t) = at, 0 ≤ a < 1, see
Chapter 2, Definition 2.3;

An alternative is to extend (C2) to the following more general condition:

(C7) d(Tx, Ty) ≤ ϕ(d(x, y), d(x, Tx), d(x, Ty), d(y, Tx), d(y, Ty)), x, y ∈ X,

where ϕ : R
5
+ → R+ stands for a 5-dimensional comparison function (see

Section 2.6).

Normed spaces

Definition 1.7. Let E be a real (complex) vector space. A norm on E is
a mapping ‖·‖ : E × E → R+ having the following properties

(n1) ‖x‖ = 0 ⇔ x = 0, the null element of E;
(n2) ‖λ x‖ = |λ| · ‖x‖ , for any x ∈ E and any scalar λ;
(n3) ‖x + y‖ ≤ ‖x‖ + ‖y‖ , for all x, y ∈ E (“the triangle inequality”).
The pair (E, ‖·‖) is called normed (linear) space.

Remarks.
1) If ‖·‖ is a norm on the (linear) vector space E, then d : E × E → R+,

given by
d(x, y) = ‖x − y‖ , x, y ∈ E, (2)

is a distance on E. This shows that any normed space can be always regarded
as a metric space with respect to the distance induced by the norm;

2) A Banach space is a normed space which is complete (as a metric space).

Example 1.6.
1) The examples given in the previous paragraph, Metric spaces, are in

fact all normed spaces, and the distances introduced in those examples are
obtained from the corresponding norms by the process (2). The normed linear
spaces obtained in this way are complete and hence are Banach spaces;

2) Let I = [a, b] be a closed bounded interval in R and E = CR(I)
the vector space of all real-valued continuous functions on I. Then ‖·‖1 :
E × E → R+,

‖ f ‖1 =

b∫
a

|f(x)| dx, f ∈ E,

is a norm on E. The normed space (E, ‖·‖1) is not complete (i.e., E is not a
Banach space).
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From the previous remark 1) we deduce that all concepts related to the
norm in a normed space could be adapted from the metric space setting,
including the contraction mapping principle (as it was originally formulated by
Banach) and all contractive type conditions. One of these conditions, namely,
the nonexpansiveness condition, is of particular interest in Banach spaces: if
T is assumed to be only nonexpansive, that is

‖Tx − Ty‖ ≤ ‖x − y‖ , for all x, y ∈ E,

then T need not have a fixed point.
By endowing the space with a sufficiently rich geometric structure, it is

however possible to guarantee the existence of fixed points for nonexpansive
operators.

Definition 1.8. A Banach space (E, ‖·‖) is called uniformly convex if,
given any ε > 0, there exists δ > 0 such that for all x, y ∈ E satisfying
‖ x ‖ ≤ 1, ‖ y ‖ ≤ 1, and ‖ x − y‖ ≥ ε , we have

1
2
‖ x + y‖ < 1 − δ.

Example 1.7. E = R
n endowed with the euclidean norm ‖ x ‖ =(∑

x2
i

)1/2
, x = (x1, x2, ..., xn) ∈ R

n, is uniformly convex, while, endowed

with the norm ‖x‖ =
n∑

i=1

|xi|, it is not.

Definition 1.9. A subset C of a real vector space E is called convex if,
for any pair of points x, y in C, the closed segment with the extremities x, y,
that is, the set {λx + (1 − λ) y : λ ∈ [0, 1]} is contained in C. A subset C of a
real normed space is called bounded if there exists M > 0 such that ‖x‖ ≤ M,
for all x ∈ C.

Theorem 1.2. Let C be a closed, bounded, and convex subset of a uni-
formly convex Banach space and T : C → C a nonexpansive map. Then T
has a fixed point.

But, even though T is nonexpansive and has a fixed point, it is possible
that the Picard iteration (1) no longer converge to the fixed point, as shown
by the next example.

Example 1.8. Let C = [0, 1] and T : [0, 1] → [0, 1], Tx = 1 − x, for all

x ∈ [0, 1]. Then T is nonexpansive, T has a unique fixed point, FT =
{

1
2

}
,

but, for any x0 = a 
= 1
2
, the Picard iteration (1) yields an oscillatory sequence

a, 1 − a, a, 1 − a, ... .

Therefore, in order to compute the desired fixed point, it is necessary to
consider other iteration procedures, as it will be shown in the next Section.
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Definition 1.10. A linear normed space E is called strictly convex if
x, y ∈ E with ‖x‖ = ‖y‖ = 1 and ‖(1 − λ) x + λy‖ = 1 for a λ ∈ (0, 1) holds
if and only if x = y.

This is equivalent to the condition that the unit sphere (or any sphere)
contains no line segments. In such a space, any three points x, y, z satisfying
‖x − z‖+‖z − y‖ = ‖x − y‖ must lie on a line, i.e., if ‖x − z‖ = r1, ‖z − y‖ =
r2, and ‖x − y‖ = r = r1 + r2, then z = r1

r x + r1
r y.

Definition 1.11. Let E be a real Banach space. The space E∗ of all linear
continuous functionals on E is called the dual space of E. For f ∈ E∗ and
x ∈ E the value of f at x is denoted by 〈f, x〉 and is called the duality pairing.

1) The dual E∗ is a Banach space with respect to the norm

‖f‖∗ = sup {〈f, x〉 : ‖x‖ ≤ 1} ,

usually denoted by ‖.‖ ;
2) The dual space of E∗ is E∗∗, the bidual space of E. Since, in general,

E ⊆ E∗∗, we say that E is reflexive if E = E∗∗;
3) A uniformly convex Banach space is strictly convex and reflexive. The

concepts of uniformly convex and strictly convex Banach spaces are equivalent
in finite dimensional spaces, since balls in such spaces are compact.

Definition 1.12. Let E∗ be the dual space of a real Banach space. The
multivalued mapping J : E → P(E∗) defined by

Jx = {f ∈ E∗ : 〈f, x〉 = ‖x‖ · ‖f‖ , ‖x‖ = ‖f‖ }

is called the normalized duality mapping of E.

Remarks.
1) It is well known that if E∗ is strictly convex, then J is single-valued. It

will be consequently denoted by j in the sequel;
2) For reflexive Banach spaces, the assumption on strict convexity is not

an essential restriction, since E and E∗ can be equivalently re-normed as
strictly convex spaces such that the duality mapping is preserved.

Example 1.9. 1) The space

lp(R) =

{
x = (xn)n≥1 ⊂ R |

∞∑
n=1

|xn|p < ∞
}

endowed with the norm

‖x‖ =

( ∞∑
n=1

|xn|p
)1/p

, x ∈ lp,

is a Banach space for all p ≥ 1;
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2) Similarly, the space Lp(R) of all p-integrable functions is a Banach
space, for all p ≥ 1, with respect to the corresponding norm (

∑
is replaced

by the integral);
It is well known that, for any reflexive Banach space E, Lp(E) with 1 <

p < ∞ is uniformly convex and hence reflexive, but L1, L∞, as well as C[0, 1],
are not reflexive spaces.

In a Banach space E, beside the strong convergence defined by the norm,
i.e., {xn}∞n=0 ⊂ E converges strongly to a if and only if ‖xn − a‖ → 0, as
n → ∞ (which is denoted by xn → a), we shall often consider the weak
convergence, corresponding to the weak topology in E. We say that {xn} ⊂ E
converges weakly to a if for any f ∈ E∗

〈f, xn〉 → 〈f, a〉, as n → ∞.

We denote this by xn ⇀ x (n → ∞).

Remarks.
1) In Lp spaces the weak convergence of a sequence {xn}∞n=0 to a, to-

gether with the convergence of the norms (‖xn‖ → ‖a‖), implies the strong
convergence of {xn}∞n=0 to a;

2) Any weakly convergent sequence {xn}∞n=0 in a Banach space is bounded.
Further, if xn ⇀ a, then ‖a‖ ≤ lim inf ‖xn‖ .

When the contrary is not explicitly specified, throughout the book we shall
simply consider that the strong convergence is involved.

Since conditions of pseudo-contractive type are very useful additional as-
sumptions in approximating fixed points of Lipschitzian mappings, we sum-
marize in the sequel the most important concepts of this kind.

Definition 1.13. Let E be an arbitrary real Banach space. A mapping
T with domain D(T ) and range R(T ) in E is called

(a) strong pseudocontraction if there exists k > 0 such that for all x, y ∈
D(T ) there exists j(x, y) ∈ J(x − y) such that

〈(I − T )x − (I − T ) y, j(x − y)〉 ≥ k · ‖x − y‖2 ;

(b) pseudocontractive if for each x, y ∈ D(T ) there exists j(x− y) ∈ J(x− y)
such that

〈(I − T )x − (I − T ) y, j(x − y)〉 ≥ 0,

where J is the normalized duality mapping.
Pseudo-contractive mappings are firmly connected with another important

class of operators, i.e., the class of accretive operators.
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Definition 1.14. A mapping U with domain and range in E is called
a) strongly accretive if there exists a positive number k such that for each
x, y ∈ D(U) there is a j(x − y) ∈ J(x − y) such that

〈Ux − Uy, j(x − y)〉 ≥ k ‖x − y‖2 ;

b) accretive if for each x, y ∈ D(U) we have

〈Ux − Uy, j(x − y)〉 ≥ 0.

Remarks.
1) By comparing Definitions 1.13 and 1.14, we remark that an operator T

is (strongly) pseudo-contractive if and only if (I − T ) is (strongly) accretive;
2) The concepts of pseudo-contractive and accretive operators can be

equivalently defined as follows:
(i) T is strongly pseudocontractive if there exists t > 1 such that, for all

x, y ∈ D(T ) and r > 0, the following inequality holds

‖x − y‖ ≤ ‖(1 + r)(x + y) − rt(Tx − Ty)‖ ;

(ii) T is pseudocontractive if t = 1 in the previous inequality;
(iii) T is strongly accretive if there exists k > 0 such that the inequality

‖x − y‖ ≤ ‖x − y + r [(T − kI)x − (T − kI)y]‖

holds for all x, y ∈ D(U) and r > 0;
(iv) T is accretive if k = 0 in the previous inequality.

Definition 1.15. A Banach space E is called smooth if, for every x ∈ E
with ‖x‖ = 1, there exists a unique f ∈ E∗ such that ‖f‖ = 〈f, x〉 = 1. The
modulus of smoothness of E is the function ρE : [0,∞) → [0,∞), defined by

ρE(τ) = sup
{

1
2

(‖x + y‖ + ‖x − y‖) − 1 : x, y ∈ E, ‖x‖ = 1, ‖y‖ = τ

}
.

The Banach space E is called uniformly smooth if

lim
τ→0

ρE(τ)
τ

= 0

and, for q > 1, E is said to be q-uniformly smooth if there exists a constant
c > 0 such that

ρE(τ) ≤ cτ2, τ ∈ [0,∞).

Example 1.10. The Lp and lp spaces have smoothness properties as
follows:

Lp (or lp) is
{

p − uniformly smooth, if 1 < p ≤ 2
2 − uniformly smooth, if p ≤ 2.
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In proving some convergence theorems for various iteration procedures,
the following lemma will be used.

Lemma 1.1. Let E be a uniformly smooth Banach space. Then there ex-
ists a nondecreasing continuous function b : [0,∞) → [0,∞) satisfying the
following conditions:

(i) b(ct) ≤ cb(t), for all c ≥ 1;
(ii) lim

t→0+
b(t) = 0;

(iii) ‖x + y‖2 ≤ ‖x‖2 + 2Re 〈y, j(x)〉 + max{‖x‖ , 1} · ‖y‖ b(‖y‖),
for all x, y ∈ E.

For other results concerning the geometry of Banach spaces, see the mono-
graphs on the subject in the reference list.

Hilbert spaces

Hilbert spaces are the most important examples of uniformly convex Ba-
nach spaces that serve as very natural ambient spaces for various fixed point
iteration procedures.

Definition 1.16. Let H be a real vector space. An inner product is a
functional 〈·, ·〉 : H × H → R satisfying:

(p1) 〈x, x〉 ≥ 0, for all x ∈ H and 〈x, x〉 = 0 if and only if x = 0, the null
vector in H;

(p2) 〈x, y〉 = 〈y, x〉 , for all x, y ∈ H;
(p3) 〈ax + by, z〉 = a 〈x, z〉 + b 〈y, z〉 , for each x, y, z ∈ H and all a, b ∈ R.

If 〈·, ·〉 is an inner product on H, then the function x → 〈x, x〉1/2 defines a
norm on H, called the norm induced by the inner product. The pair (H, 〈·, ·〉)
is called a prehilbertian space.

A prehilbertian space that is complete (with respect to the metric corre-
sponding to the norm induced by the scalar product) is called Hilbert space.

Remarks
1) Any Hilbert space is a uniformly convex Banach space;
2) It is then clear that all notions introduced in Banach spaces can be re-

formulated by replacing the duality pairing by the inner product. The Hilbert
space setting will be preferred for most convergence theorems, even though
these results are valid in a more general setting, i.e., in Banach spaces with
certain geometric properties;

3) For example, in a Hilbert space, a pseudocontraction T is a map satis-
fying

‖Tx − Ty‖2 ≤ ‖x − y‖2 + ‖Tx − Ty − (x − y)‖2
,

which is equivalent to

〈Tx − Ty, x − y〉 ≤ ‖x − y‖2 ⇔ 〈(I − T )x − (I − T ) y, x − y〉 ≥ 0;
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4) T is strictly (strongly) pseudocontractive on C if there exists a constant
k < 1 such that

‖Tx − Ty‖2 ≤ ‖x − y‖2 + k ‖(I − T ) x − (I − T ) y‖2
, ∀x, y ∈ C.

Difference inequalities

In proving several convergence theorems we shall use various elementary
results concerning recurrent inequalities. We collect in the following most of
them as lemmas, without proofs.

Lemma 1.2. Let {xn}∞n=0 be a sequence of nonnegative real numbers and
let {an}∞n=0 be a real sequence in [0, 1] such that

∞∑
n=0

an = ∞.

(i) If for a given ε > 0 there exists a positive integer n0 such that

xn+1 ≤ (1 − an)xn + ε · an, for all n ≥ n0,

then we have 0 ≤ lim sup
n→∞

xn ≤ ε.

(ii) If there exists a positive integer n1 such that

xn+1 ≤ (1 − an)xn + anbn, for all n ≥ n0,

where bn ≥ 0 for all n = 0, 1, 2, ... and bn → 0 as n → ∞, then we have

lim
n→∞

xn = 0.

Lemma 1.3. Let {an}∞n=0, {bn}∞n=0, {cn}∞n=0 be sequences of nonnegative
numbers satisfying

an+1 ≤ (1 − ωn)an + bn + cn, for all n ≥ 0,

where {ωn}∞n=0 ⊂ [0, 1]. If

∞∑
n=0

ωn = ∞, bn = o(ωn) and
∞∑

n=0

cn < ∞,

then
lim

n→∞
an = 0.

Lemma 1.4. Let {an}∞n=0 be a sequence of nonnegative numbers satisfying

an+1 ≤ (1 + δn)an − λn
Φ(an+1)

1 + Φ(an+1) + an+1
· an, for all n ≥ 0,
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where Φ : [0,∞) → [0,∞) is a strictly increasing function with Φ(0) = 0, and
{λn}∞n=0, {δn}∞n=0 are sequences of nonnegative numbers satisfying

(i)
∞∑

n=0

λn = ∞; (ii)
∞∑

n=0

δn < ∞.

Then
lim

n→∞
an = 0.

Lemma 1.5. Let {an}∞n=0 be a sequence of nonnegative numbers satisfying

an+1 ≤ (1 + δn)an − λn
Φ(an+1)

1 + Φ(an+1) + an+1
· an + θn, for all n ≥ 0,

where Φ : [0,∞) → [0,∞) is a strictly increasing function with Φ(0) = 0, and
{λn}∞n=0, {δn}∞n=0, {θn}∞n=0 are sequences of nonnegative numbers satisfying

(i)
∞∑

n=0

λn = ∞; (ii)
∞∑

n=0

δn < ∞; (iii)
∞∑

n=0

θn < ∞.

Then
lim

n→∞
an = 0.

Remarks.
1) It is easy to see that Lemma 1.5 follows by Lemma 1.3 for

ωn = −δn + λn
Φ(an+1)

1 + Φ(an+1) + an+1
, n ≥ 0,

while Lemma 1.4 is obtained from Lemma 1.3 for

ωn = −δn + λn
Φ(an+1)

1 + Φ(an+1) + an+1
and cn = 0, n ≥ 0;

2) In the case ωn = 1− q, for all n ≥ 0, with 0 ≤ q < 1 and cn = 0, n ≥ 0,
we can obtain from Lemma 1.3 a stronger result.

Lemma 1.6. Let {an}∞n=0, {bn}∞n=0 be sequences of nonnegative numbers
and 0 ≤ q < 1, so that

an+1 ≤ qan + bn, for all n ≥ 0.

(i) If lim
n→∞

bn = 0, then lim
n→∞

an = 0.

(ii) If
∞∑

n=0
bn < ∞, then

∞∑
n=0

an < ∞.
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Remark. If q = 1, then the above result holds in a weaker form, as shown
by the next Lemma.

Lemma 1.7. Let {an}∞n=0, {bn}∞n=0 be sequences of nonnegative numbers
satisfying

an+1 ≤ an + bn, for all n ≥ 0.

(i) If
∞∑

n=0
bn < ∞, then lim

n→∞
an exists.

(ii) If
∞∑

n=0
bn < ∞ and {an}∞n=0 has a subsequence converging to zero,

then
lim

n→∞
an = 0.

We end this section by stating a property that holds in any Hilbert space.

Lemma 1.8. Let x, y, z be points in a Hilbert space and λ ∈ [0, 1]. Then

‖λx + (1 − λ) y − z ‖2 = λ ‖x − z ‖2+(1−λ) ‖ y − z ‖2−λ (1−λ) ‖x − y ‖2
.

1.2 Fixed Point Iteration Procedures

Picard iteration

Let (X, d) be a metric space, D ⊂ X a closed subset of X (we often have
D = X) and T : D → D a selfmap possessing at least one fixed point p ∈ FT .
For a given x0 ∈ X we consider the sequence of iterates {xn}∞n=0 determined
by the successive iteration method

xn = T (xn−1) = Tn(x0), n = 1, 2, ... (3)

We are interested in obtaining (additional) conditions on T,D, and X, as
general as possible, and which should guarantee the (strong) convergence of
the iterates {xn}∞n=0 to a fixed point of T in D.

As we already mentioned, the sequence defined by (3) is known as the
sequence of successive approximations or, simply, Picard iteration.

Moreover, if the Picard iteration converges to a fixed point of T , we will
be interested in evaluating the error estimate (or, alternatively, the rate of
convergence) of the method, that is, in obtaining a stopping criterion for the
sequence of successive approximations.

When the contractive conditions are slightly weaker, then the Picard iter-
ations need not converge to a fixed point of the operator T , and some other
iteration procedures must be considered.
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All the next fixed point iteration schemes are introduced in a real normed
space (E, ‖·‖) . Let T : E → E be a selfmap, x0 ∈ E and λ ∈ [0, 1].

The sequence {xn}∞n=0 given by

xn+1 = (1 − λ)xn + λTxn, n = 0, 1, 2, ... (4)

will be called the Krasnoselskij iteration procedure or, simply, Krasnoselskij
iteration.

It is easy to see that the Krasnoselskij iteration {xn}∞n=0 given by (4) is
exactly the Picard iteration corresponding to the averaged operator

Tλ = (1 − λ)I + λ · T, I = the identity operator (5)

and that for λ = 1 the Krasnoselskij iteration reduces to Picard iteration.
Moreover, we have Fix (T ) = Fix (Tλ), for all λ ∈ (0, 1].

In Chapter 2, the Picard iteration will be studied in connection with con-
ditions of strict contractiveness type, while in Chapter 3 the Krasnoselskij
iteration will be mainly associated with Lipschitzian and pseudocontractive
type conditions.

Mann and Ishikawa iterations

The normal Mann iteration procedure or Mann iteration, starting from
x0 ∈ E, is the sequence {xn}∞n=0 defined by

xn+1 = (1 − an)xn + anTxn, n = 0, 1, 2, ..., (6)

where {an}∞n=0 ⊂ [0, 1] satisfies certain appropriate conditions.
If we consider

Tn = (1 − an)I + an · T,

then we have Fix (T ) = Fix (Tn), for all an ∈ (0, 1].
If the sequence an = λ(const), then the Mann iterative process obviously

reduces to the Krasnoselskij iteration.
Originally, the Mann iteration was defined in a matrix formulation, see

Chapter 4 in this book, for more details.
The Ishikawa iteration scheme or, simply, Ishikawa iteration was first used

to establish the strong convergence to a fixed point for a Lipschitzian and
pseudo-contractive selfmap of a convex compact subset of a Hilbert space.

It is defined by x0 ∈ X and

xn+1 = (1 − an)xn + anT [(1 − bn)xn + bnTxn] , n = 0, 1, 2, ..., (7)

where {an}∞n=0, {bn}∞n=0 ⊂ [0, 1] satisfy certain appropriate conditions.
In the last three decades both Mann and Ishikawa schemes have been

successfully used by various authors to approximate fixed points of various
classes of operators in Banach spaces.
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If we rewrite (7) in a system form
{

yn = (1 − bn)xn + bnTxn,
xn+1 = (1 − an)xn + anTyn, n = 0, 1, 2, ...,

(8)

then we can regard the Ishikawa iteration as a sort of two-step Mann iteration,
with two different parameter sequences.

Despite this apparent similarity and the fact that, for bn = 0, Ishikawa
iteration reduces to the Mann iteration, there is not a general dependence
between convergence results for Mann iteration and Ishikawa iteration.

Recently, some authors considered the so called modified Mann iteration,
respectively modified Ishikawa iteration, by replacing the operator T by its
n-th iterate Tn.

For example, the modified Ishikawa iteration is defined by
{

yn = (1 − bn)xn + bnTnxn

xn+1 = (1 − an)xn + anTnyn, n = 0, 1, 2, ....
(9)

Very recently, the so called Ishikawa and Mann iteration procedures with
errors, for nonlinear mappings were introduced as follows:

(a) Let K be a nonempty subset of a Banach space E and T : K → E be
an operator. The sequence {xn}∞n=0 defined by x0 ∈ K and

{
xn+1 = (1 − an)xn + anTyn + un,
yn = (1 − bn)xn + bnTxn + vn, n = 0, 1, 2, ...

(10)

where (i) {an}∞n=0 and {bn}∞n=0 are some sequences in (0, 1), satisfying appro-
priate conditions and (ii) {un}∞n=0, {vn}∞n=0 are sequences in K such that

∑
‖un‖ < ∞,

∑
‖vn‖ < ∞, (11)

is called Ishikawa iteration process with errors.
The Mann iteration with errors is similarly defined and could be obtained

from (10) by taking bn = 0.
In spite of the fact that the fixed point iteration procedures are designed for

numerical purposes, and hence the consideration of errors is of both theoretical
and practical importance, however it seems that the iteration process with
errors introduced by (10) is not quite satisfactory from a practical point of
view.

Indeed, the conditions (11) imply, in particular, that the errors tend to
zero, which is not suitable for the randomness of the occurrence of errors in
practical computations.

As a correction to the previous definition, the same concept was introduced
in a different way.

(b) Let K be a nonempty convex subset of E and let T : K → E be a
mapping. For any given x0 ∈ K, the sequence {xn}∞n=0 defined iteratively by
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{
xn+1 = anxn + bnTyn + cnun

yn = a
′

nxn + b
′

nTxn + c
′

nvn, n = 0, 1, 2, ...
(12)

where {an}∞n=0, {bn}∞n=0, {cn}∞n=0, {a′
n}∞n=0, {b′n}∞n=0, {c′n}∞n=0 are sequences in

the interval (0, 1) such that an + bn + cn = 1 = a
′

n + b
′

n + c
′

n, and
{un}∞n=0, {vn}∞n=0 are bounded sequences in K, for all n = 0, 1, 2, ... , is called
the Ishikawa iteration with errors.

The Mann iteration with errors could be obtained from (12) by taking
formally bn = b

′

n = 0, for all integers n ≥ 0.

Other important fixed point iteration procedures

Let E be a Banach space, and suppose T is a mapping of E into E.
The Kirk’s iteration procedure is defined by x0 ∈ E and

xn+1 = α0xn + α1Txn + α2T
2xn + ... + αkT kxn,

where k is a fixed integer, k ≥ 1, αi ≥ 0, for i = 0, 1, ..., k, α1 > 0 and

α0 + α1 + ... + αk = 1.

This scheme reduces to Picard iteration, for k = 0, and to Krasnoselskij
iteration, for k = 1.

The Kirk, Krasnoselskij, Mann and Ishikawa iteration procedures are
mainly used to generate successive approximations for fixed points of various
classes of mappings in normed linear spaces, for which the Picard iteration
does not converge.

Let H be a Hilbert space and C be a closed, bounded, and convex subset
of H containing 0. The sequence {xn}∞n=0 defined by x0 ∈ C, and

xn = Tn2

n xn−1, n = 1, 2, ...,

where Tnx =
n

n + 1
Tx, n ≥ 1, will be called the Figueiredo iteration proce-

dure.
It is known that the Figueiredo iteration converges strongly to a fixed

point of nonexpansive operators T : C → C.
There are also several other fixed point iteration schemes, constructed as

Cesaro means (ergodic type iterations), as well as both linear and nonlinear
generalizations of them.

Let T be a selfmap of a Hilbert space H, and α = {αn}∞n=0 be a sequence
in [0, 1]. The sequence {Aα

n}∞n=0 defined inductively by Aα
0 x = x and

Aα
n+1x = αn+1x + (1 − αn+1)T Aα

nx, n = 0, 1, 2, ...

will be called the Halpern iteration scheme.
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If T is positively homogeneous (i.e., T (tx) = t Tx, for any t ≥ 0 and

x ∈ H) and αn =
1

n + 1
, n ≥ 0, then we have

Aα
n =

1
n + 1

Snx,

where S0x = x, Sn+1 = x + T (Sn x), which shows that for this special choice
of α = {αn}∞n=0, {Aα

n}∞n=0 is a nonlinear generalization of the Cesaro averages.
One can also consider another iteration scheme, {Aα

n}∞n=0, suggested by
Wittmann, given by

Aα
0 = x, Aα

n+1x = αn+1x + T ((1 − αn+1) Aα
nx) ,

which reduces to the Halpern one if T is positively homogeneous.
The main aim of the next chapters of the book is to survey the most

important convergence theorems for some of the aforementioned fixed point
iteration procedures, in different contexts and under several metrical assump-
tions.

1.3 Fixed Point Formulation of Typical Functional
Equations

Many important nonlinear problems of applied mathematics can be de-
scribed in a unitary manner by the following scheme.

For a given object f , find another object x satisfying two conditions:
(i) The object x belongs to a given class X of objects;
(ii) The object x is in a certain relation R to the object f .
An object x satisfying these conditions will be called the solution of the

given problem. This problem can be described by

{x ∈ X : x R f}. (13)

Examples.
1) Find a real solution of the equation x5 − x − 1 = 0. Here f ≡ f(x) =

x5 − x − 1, X = R and the relation R expresses the fact that x and f are
related by the given equation.

2) The initial value problem for a first order ordinary differential equation
{

y′ = ϕ(t, y)
y(t0) = y0

fit the scheme (13). Indeed, here we have f = (ϕ, t0, y0), X = C(I), where
t0 ∈ I ⊂ R, x is the function y : I → R and R is given by the previous system
of conditions.
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In turn, any problem of the form (13) can be written equivalently as a
fixed point problem

x = Tx, (14)

where T : E → E is a corresponding operator, that allows us to use construc-
tive fixed point tools in obtaining the desired solution.

Consequently, the main aim of the present Section is to illustrate, on some
important typical functional equations from applied mathematics, how we can
convert them into equivalent fixed point problems. This will, in part, motivate
our interest in the study of fixed point iteration procedures.

Single nonlinear equations

Efficiently finding roots of nonlinear equations is of major importance and
has significant applications in numerical mathematics. In contrast to the case
of linear systems of equations, direct methods for solving nonlinear equations
are usually available only for a few special cases. Consequently, we need to
resort to iterative methods. According to the mathematical importance of this
problem, there exists a vast and dense literature related to iterative methods.
Basically, for the equation

F (x) = 0, (15)

where F : D ⊂ R
n → R

n is a given operator, we can consider several iterative
methods for computing approximate solutions of it.

One of the most used method is to write (15) equivalently in the form (14),
where T is a certain operator associated to F, in such a way that, by consid-
ering a certain fixed point iteration scheme (usually the Picard iteration), we
obtain a sequence that converges to a solution of (15).

The operator T is usually called iteration function. There are several meth-
ods for constructing iteration functions. If we restrict to real functions of a
real single-variable, then one of the most used algorithms for obtaining T is
the well-known Newton’s method, which is based on the iteration function

Tx = x − F (x)
F ′(x)

·

Example 1.11. Consider the polynomial equation

x5 − x − 1 = 0 (16)

that can be written in the form (14) in many different ways. Here there are
three of them:

(i) x = x5 − 1; (ii) x = 5
√

x + 1; (iii) x =
4x5 + 1
5x4 − 1

.

It is easy to see that (16) has a unique solution in the interval [1,∞).
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Denote:

T1(x) = x5 − 1, T2(x) = 5
√

x + 1 and T3(x) =
4x5 − 1
5x4 − 1

, x ∈ [1,∞).

Then the Picard iteration associated to T1 does not converge, whatever the
initial approximation x0 ∈ [1,∞), while in the case of T2 or T3, it does. In

fact, it is easy to show that T2 is a
1
5
-contraction.

As it could be verified, the iteration function T3 has been obtained by the
Newton’s algorithm. The next table shows the first iterations for the three
iterative processes defined by the iteration functions T1, T2 an T3, respectively,
and for certain initial guesses x0.

xn+1 = T1 xn xn+1 = T2 xn xn+1 = T3xn

x0 = 1
..........
x1 = 0
x2 = −1
x3 = −2
x4 = −33
x5 = −39135394

x0 = 1
..........
x1 = 1.149
x2 = 1.165
x3 = 1.167
x4 = 1.167
x5 = 1.167

x0 = 1
..........
x1 = 1.25
x2 = 1.178
x3 = 1.168
x4 = 1.167
x5 = 1.167

xn+1 = T1 xn xn+1 = T2 xn xn+1 = T3xn

x0 = 1.167
x1 = 1.164
x2 = 1.141
x3 = 0.936
x4 = −0.282
x5 = −1.002

x0 = 10
x1 = 1.615
x2 = 1.212
x3 = 1.172
x4 = 1.168
x5 = 1.167

x0 = 10
x1 = 8
x2 = 6.401
x3 = 5.121
x4 = 4.098
x5 = 3.282
x6 = 2.632
...
x12 = 1.168
x13 = 1.167

The next Theorem gives a recipe for constructing high-order methods of
Newton type for approximating roots of F.

Theorem 1.3. Set F1(x) = F (x), and for each m ≥ 2 recursively define

Fm(x) =
Fm−1(x)[

F ′
m−1(x)

]1/m
.

Then the function

Gm(x) = x − Fm−1(x)
F ′

m−1(x)

defines an iteration function whose order of convergence for simple roots
is m.
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Remarks.
1) For m = 2, from Theorem 1.3 we obtain the iteration function in the

classical Newton or Newton-Raphson method;
2) For m = 3, we obtain

G3(x) = x − FF ′/(F ′2 − FF ′′/2),

which is the iteration function involved in Halley’s method etc.
The following problem arises: for a given F , how to construct an operator

T, such that the equation (15) is equivalent to the fixed point problem (14) and
T satisfies a certain contractive condition ? (Note that the Newton iteration
function is not a strict contraction but a quasi-contraction).

Integral equations

In the class of operator equations that can be naturally reformulated in
terms of a fixed point problem, the integral and integro-differential equations
play an important role. For f and K given functions, we shall consider here
only a simple integral equation of the form

y(x) = f(x) +

1∫
0

K(x, s, y(x), y(s))ds, x ∈ [0, 1]. (17)

Similar considerations will apply to more general equations involving, for
example, derivatives of the unknown function y, or to higher-dimensional
problems involving unknown functions depending on two or more variables.

Equations of the form (17) arise in a variety of contexts. For example, in
connection with a problem of radiation transfer, we are led to the equation

y(x) = 1 +

1∫
0

s y(s) y(x)
s + x

ϕ(s) ds,

where ϕ is given. A special but important case of (17) is the Urysohn equation

y(x) = 1 +

1∫
0

K ( x, s, y(s) ) ds,

or the nonlinear Fredholm integral equation

y(x) = f(x) + λ

1∫
0

K ( x, s, y(s) ) ds,

where λ ∈ R is a given number.
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If we search a continuous solution for one of the aforementioned equa-
tions, say for (18), then we can reformulate it as a fixed point problem, under
appropriate assumptions.

Let us assume:
(a) K : [0, 1] × [0, 1] × I → R (I ⊂ R) is a continuous mapping, bounded

on this domain; K(x, s, z) is called the kernel of the integral equation;
(b) K is L-Lipschitzian with respect to the third variable, that is, there

exists L > 0 such that

|K(x, s, z1) − K(x, s, z2) | ≤ L | z1 − z2 | , for each x, s ∈ [0, 1] and z1, z2 ∈ I;

(c) f : [0, 1] → R is continuous;
(d) λ ∈ R is a given number;
(e) ϕ : [0, 1] → I is the unknown function, supposed to be continuous.

Let X be the space of all functions ϕ : [0, 1] → R which satisfy:
(i) ϕ is continuous; (ii) ϕ(x) ∈ I ⊂ R, for each x ∈ [0, 1].
We consider X endowed with the (Chebyshev) metric

d(ϕ1, ϕ2) = max
x∈ [0,1]

| ϕ1(x) − ϕ2(x)| , ϕ1, ϕ2 ∈ X.

By Example 1.3, 3) in Section 1.1, we know that X = C[0, 1] is a complete
metric space. We define on X the operator T given by

(Tϕ)(x) = λ

1∫
0

K(x, s, ϕ(s)) ds + f(x), ∀ x ∈ [0, 1]. (19)

It is obvious that T maps X into itself (K and f continuous implies Tϕ is
continuous, too) and hence T (X) ⊂ X.

So, the integral equation (18) is equivalent to the fixed point problem

ϕ = T ϕ,

where T is defined by (19). Moreover, T is Lipschitzian and, under appropriate
assumptions on λ, T is even a strict contraction. Indeed,

|(T ϕ1)(x) − (T ϕ2)(x)| =

∣∣∣∣∣∣λ
⎡
⎣

1∫
0

K(x, s, ϕ1(s)) ds −
1∫

0

K(x, s, ϕ2(s)) ds

⎤
⎦
∣∣∣∣∣∣ ≤

≤ |λ | ·
1∫

0

|K(x, s, ϕ1(s)) − K(x, s, ϕ2(s))| ds ≤ |λ | · L
1∫

0

|ϕ1(s) − ϕ2(s)| ds.

But

|ϕ1(s) − ϕ2(s)| ≤ max
x∈ [0,1]

|ϕ1(x) − ϕ2(x)| = d(ϕ1, ϕ2), for each s ∈ [0, 1]
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and hence, for each x ∈ [0, 1] and all ϕ1, ϕ2 ∈ X, we have

|(T ϕ1)(x) − (T ϕ2)(x)| ≤ L · |λ| · d(ϕ1, ϕ2),

which leads to

max
x∈ [0,1]

|(T ϕ1)(x) − (T ϕ2)(x)| ≤ L · |λ| · d(ϕ1, ϕ2),

that holds for all ϕ1, ϕ2 ∈ X. Therefore, we have

d(T ϕ1, T ϕ2) ≤ L · |λ| · d(ϕ1, ϕ2), ϕ1, ϕ2 ∈ X,

which shows that T is L · |λ|-Lipschitzian.

Remark. If we choose λ such that |λ| <
1
L

, then T is in fact a strict
contraction, and then, by the mapping contraction theorem, T has a unique
fixed point, which is the unique solution of the integral equation (18), and
this solution can be obtained by the Picard iteration.

Similar considerations could be done for Volterra integral equations. We
shall illustrate this for the following Volterra integral equation of the second
kind

y(x) = f(x) + λ

x∫
a

K(x, s, y(s)) ds, x ∈ [0, T ], (20)

where K, f, λ and y are defined similarly to the previous integral equation.
There is a classical way to prove that, if K is Lipschitzian with respect

to the third variable, then (20) has a unique solution in the set of continuous
functions. By denoting

(T ϕ)(x) = λ

x∫
a

K(x, s, ϕ(s)) ds + f(x), for all x ∈ [a, b], (21)

we can write (20) equivalently into the fixed point form

ϕ = T ϕ.

Let us consider B[a, b] = { f : [a, b] → R | f continuous} , the space of all
continuous functions on [a, b], endowed with the Bielecki metric

δ( f, g) = max
x∈ [a,b]

(
| f(x) − g(x)| · e−τ(x−a)

)
, f, g ∈ B[a, b], τ > 0.

Then T : B[a, b] → B[a, b], given by (21), is a strict contraction. Indeed,

|(T ϕ1)(x) − (T ϕ2)(x)| ≤ |λ| ·
x∫

a

|K(x, s, ϕ1(s)) − K(x, s, ϕ2(s))| ds
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≤ |λ|L
x∫

a

|ϕ1(s) − ϕ2(s)| ds = |λ|L
x∫

a

|ϕ1(s) − ϕ2(s)| e− τ(s−a)eτ(s−a) ds ≤

≤ |λ|Lδ(ϕ1, ϕ2)

x∫
a

eτ(s−a)ds ≤ |λ|Leτ(x−a) − 1
τ

δ(ϕ1, ϕ2) <

< |λ|Lδ(ϕ1, ϕ2)
eτ(x−a)

τ
,

for all ϕ1, ϕ2 ∈ B[a, b], x ∈ [a, b] and τ > 0, which leads to

|(T ϕ1)(x)− (T ϕ2)(x)| e− τ(x−a) ≤ |λ| · L
τ

·δ(ϕ1, ϕ2),∀ϕ1, ϕ2 ∈B[a, b], x∈ [a, b].

Taking the maximum in the left-hand side, it results

δ(T ϕ1, T ϕ2) ≤
|λ|L

τ
· δ(ϕ1, ϕ2), ∀ϕ1, ϕ2 ∈ B[a, b], τ > 0.

We now choose a number τ such that τ > |λ| · L, i.e., such that

|λ| · L
τ

< 1,

and then T : B[a, b] → B[a, b] will be a strict contraction.
By applying the contraction mapping principle, we deduce that equation

(20) has a unique solution y∗ ∈ B[a, b]. Moreover, defining a sequence of
functions {yn} inductively by choosing any y0 ∈ B[a, b] and setting

yn+1(x) = f(x) +

x∫
a

K(x, s, yn(s)) ds,

the sequence {yn}, which is actually the associated Picard iteration, converges
uniformly on [a, b] to the unique solution y∗ of the equation.

Ordinary Differential Equations

The initial value problem for a first order O(rdinary) D(ifferential)
E(quation) {

y′ = f(x, y)
y(x0) = y0

(22)

may be written equivalently as a Volterra integral equation

y(x) = y0 +

x∫
x0

f(s, y(s)) ds.
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The initial value problem for the following second order ODE
{

y′′ = f(x)
y(x0) = 0 , y′(x0) = 0 (23)

can be written equivalently in a ready fixed point form as

y(x) =

x∫
x0

(x − s) f(s) ds,

again a Volterra integral equation.
A two-point boundary value problem

{
y′′ = f(x, y)
y(a) = A , y(b) = B

(24)

may be put into the equivalent integral form

y(x) =
x − a

b − a
B +

b − x

b − a
A −

b∫
a

G(x, s) f(s, y(s)) ds,

where G : [a, b] × [a, b] → R

G(x, s) =

⎧⎪⎨
⎪⎩

(s − a)(b − x)
b − a

, if a ≤ s ≤ x ≤ b

(x − a)(b − s)
b − a

, if a ≤ x ≤ s ≤ b
(25)

is the Green function associated to the homogeneous problem

y′′ = 0 , y(a) = 0, y(b) = 0.

Under appropriate assumptions on f (continuous and Lipschitzian with
respect to the last variable), it is an easy task to show that, for all the problems
(22), (23) and (24) considered here, the corresponding integral operators fulfill
a certain contractive condition and hence we can study these equations under
the fixed point formulation, by using an appropriate fixed point technique.
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1.4 Bibliographical Comments

§1.1.

Theorem 1.1 is due to Banach [Ban22]. It is an abstraction of the classical
method of successive approximations, see also the Comments in Chapter 2. In
the metric space setting, Theorem 1.1 is called contraction mapping theorem or
Banach’s theorem or theorem of Picard-Banach or theorem of Picard-Banach-
Caccioppoli. For the complete formulation of Banach’s fixed point theorem,
including both a priori and a posteriori estimates as well as the rate of con-
vergence estimate, see Theorem 2.1 in Chapter 2.

For the general concepts, examples and remarks presented in this Section
we used several monographs and articles in the reference list. For those con-
cepts strictly connected to fixed point theory, see the monographs Berinde
[Be97a], Dugundji and Granas [DuG82], Hadzic [Had77], Istratescu [Ist73],
[Ist81], Rus [Ru79c], [Rus01] and Taskovic [Tas86], where one can also find
various generalizations of the contraction mapping principle.

Important examples of these kind of theorems are associated to names as
Boyd and Wong, Browder, Krasnoselskij and Stechenko, Rhoades, Rus and
many others (see Berinde [Be97a], Rus [Ru79c]). The most important fixed
point theorems of these kind have been obtained by Kannan, Zamfirescu, Ciric,
Reich, Rus and many others (see Berinde [Be97a], Rus [Ru79c], [Rus01]).

The fact that a nonexpansive operator in a Banach space need not have a
fixed point was pointed out in Petryshyn and Williamson [PWi73], p. 460.

Theorem 1.2 was obtained independently by Browder [Br65a], Kirk [Kir65]
and Gohde [Goh65] in 1965. A proof of this result in the Hilbert space setting
is given in Chapter 3, Theorem 3.1.

Example 1.8 is taken from Rhoades [Rho91], while Lemma 1.1 is due to
Reich [Re78a].

The general concepts in metric, Banach and Hilbert spaces are collected
from the monographs and articles in the reference list.

We mention the source of the lemmas presented at the end of the section:
Lemma 1.2 appears in many papers. In the form given here, it corresponds
to Lemma 2 in Sharma, S. and Deshpande [SD02a]; Lemma 1.3 is given in
Liu, L.S. [LL95b]; Lemma 1.4 is taken from Osilike [Os99a]; Lemma 1.5 is
taken from Yin, Liu, Z. and Lee, B.S. [YLL00]; Lemma 1.6 is adapted after
Theorem 1.2.1 in Berinde [Be97a]; Lemma 1.7, part (i) is given in Tan and
Xu, H.K. [TX93a] while part (ii) appears in Chidume and Moore [ChM99];
Lemma 1.8 is taken from Ishikawa [Ish74].

§1.2.

The method of successive approximations appears to have been introduced
by Liouville [Lio37] and used by Cauchy. It was developed systematically for
the first time by Picard [Pic90] in his classical and well-known proof of the
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existence and uniqueness of the solution of initial value problems for ordinary
differential equations, dating back in 1890.

Krasnoselskij iteration, in the particular case λ =
1
2
, was first introduced

by Krasnoselskij [Kra55] in 1955, and in the general form by Schaefer [Sch57]
in 1957.

The original Mann iteration was defined in a matrix formulation by Mann
[Man53] in 1953.

Ishikawa [Ish74] introduced his iteration process in a paper published in
1974. The Ishikawa iterations with errors were considered very recently by
Liu, L.S. [LL95a], [LL95b] in the form (10) and by Xu, Y.G. [XuY98] in
the form (11). For more details on Mann and Ishikawa iterations, see the
Bibliographical Comments in Chapters 4 and 5.

The Halpern fixed point iteration procedure was introduced by Wittmann
[Wit92].

§1.3.

The material in this Section is classical. Some special concepts and results
are taken from Mikhlin [Mik91], Dugundji and Granas [DuG82], Kalantari and
Gerlach [KaG00] (Theorem 1.3), as well as from some author’s unpublished
lectures notes.

Exercises and Miscellaneous Results

1.1. Show that the functions d : X × X → R+ defined in Example 1.3 are
metrics on X = R

n.

1.2. Show that the metrics d, δ, ρ defined in Example 1.3, 2), are (metrically)
equivalent.

1.3. Show that the metrics d in Example 1.3, 3), and ρ in Example 1.3, 4),
are metrically equivalent. Show that a sequence {fn} converges to f in C[a, b]
if and only if {fn} converges uniformly to f .

1.4. Show that the following functions are metrics in the space X = R:
(a) d(x, y) = 2 · |x − y|; (b) d(x, y) =

∣∣x3 − y3
∣∣.

1.5. Show that d(x, y) = |xy| does not define a metric in R.

1.6. Let R
2 \ {O} denote the punctured plane. Define d(x, y) as follows:

d(x, y) = |r1 − r2| + |θ| ,

where r1 = the Euclidean distance from x to O, r2=the Euclidean distance
from y to O, where O is the origin, and θ is the smallest angle subtended
by the two straight lines connecting x and y to the origin. Show that d is a
metric.
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1.7. Two metric spaces (X1, d1) and (X2, d2) are equivalent if there is a func-
tion h : X1 → X2 which is one-to-one and onto (i.e., it is invertible), such
that the metric d̃1 on X1 defined by

d̃1 = d2(h1(x), h2(y)), for all x, y ∈ X1

is equivalent to d1.
Let X1 = [1, 2] and X2 = [0, 1] and let d1 denote the Euclidean metric in
X1 and let d2(x, y) = 2 · |x − y| in X2. Show that (X1, d1) and (X2, d2) are
equivalent metric spaces.

1.8. On the set X = (0, 1] = {x ∈ R : 0 < x ≤ 1} define two metrics by

d1(x, y) = |x − y| and d2(x, y) =
∣∣∣∣ 1x − 1

y

∣∣∣∣ .
Show that (X, d1) and (X, d2) are not equivalent metric spaces.

1.9. Let S ⊂ X be a subset of a metric space (X, d). A point x ∈ X is called
a limit point of S if there is a sequence {xn}∞n=1 of points xn ∈ S \ {x}
such that lim

n→∞
xn = x. The closure of S, denoted by S, is defined by S =

S ∪{limit points of S}. S is closed if S = S. Show that if h : X1 → X2 makes
the metric spaces (X1, d1) and (X2, d2) equivalent, then the statements:
(a) x ∈ X1 is a limit point of S ⊂ X, and (b) h(x) ∈ X2 is a limit point of
h(S) ⊂ X2, are equivalent.

1.10. Let A be the “filled” square in R
2,

A = {x = (x1, x2) ∈ R
2 : 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1}.

Find all of the limit points of the set

{xn =
(
1/n + (−1)n, 1/n + (−1)2n

)
: n = 1, 2, 3 . . . }

in the metric space (A, d), where d is the Euclidean metric.

1.11. Let S be a subset of a complete metric space (X, d). Then (S, d) is a
metric space and (S, d) is complete if and only if S is closed in X.

1.12. A subset S of a metric space (X, d) is compact if every infinite sequence
{xn}∞n=1 in S contains a subsequence having a limit in S.
(a) Let S be a subset of a compact metric space. Show that ∂S (i.e., the
boundary of S) is compact;
(b) Show that any compact metric space is complete.
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1.13. Let d and ρ be as in Example 1.3, 2), and consider T : R
2 → R

2,
given by

T (x, y) =
(

4
5
x +

4
5
y,

1
10

x +
1
10

y

)
, (x, y) ∈ R

2.

(a) Show that T is not a contraction with respect to the metric d;

(b) Show that T is a
9
10

−contraction with respect to the metric δ.

1.14. Show that C[a, b] and B[a, b] defined in Example 1.3 are complete metric
spaces. Are they equivalent metric spaces ?

1.15. Let X = C[−1, 1] and T : X → X be given by

Tx(t) = min {1,max {−1, x(t) + 2t}} , t ∈ [−1, 1].

Show that T is nonexpansive but, due to the fact that T maps unit ball into
its boundary and since either Tx(t) > x(t) for some t > 0 or Tx(t) < x(t) for
some t < 0, T cannot have a fixed point.

1.16. Let C0 be the space of real sequences convergent to 0.
(a) Show that ‖x‖ = supi |xi| , x = (x1, x2, . . . , xn, . . . ), is a norm on C0;
(b) Let K = {x ∈ C0 : ‖x‖ ≤ 1} and define T : K → K by Tx =
(1, x1, x2, . . . , xn, . . . ). Show that T is nonexpansive and has no fixed points.

1.17. Show that R
2 endowed with the Euclidean norm, i.e., that induced by

the metric d from Example 1.3, 2), is uniformly convex and endowed with the
norm induced by the metric δ in the same example, is not.

1.18. Prove individually each of the Lemmas 1.1-1.8.

1.19. For T given in Example 1.8, show that the Krasnoselskij iteration con-
verges to the unique fixed point of T , for any x0 ∈ [0, 1] and any λ ∈ (0, 1],

though Picard iteration does not converges for any x0 
= 1
2
.

1.20. Show that if G(x, s) is the Green function defined by equation (25),
then:
(a) 0 ≤ G(x, s) ≤ b − a

4
, for all x, s ∈ [a, b];

(b)
a∫
b

G(x, s)ds ≤ (b − a)2

8
, for all x ∈ [a, b].

1.21. Show that the mapping T :
[
1
2
, 2
]

→
[
1
2
, 2
]
, Tx =

1
x

, x ∈
[
1
2
, 2
]
,

with the usual norm is not a strict contraction, but is pseudocontractive and
Lipschitzian. Is T strongly pseudocontractive ?
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The Picard Iteration

The main aim of this chapter is to present some basic convergence theorems
regarding the Picard iteration for various contractive type mappings.

2.1 Banach’s Fixed Point Theorem

The contraction mapping principle, whose short statement was given in
Section 1.1 (Theorem 1.1) and usually called theorem of Banach or theorem
of Picard-Banach-Caccioppoli, will be reformulated here in its complete form.

Theorem 2.1. Let (X, d) be a complete metric space and T : X → X be
an a−contraction, that is an operator satisfying

d(Tx, Ty) ≤ a d (x, y) , for any x, y ∈ X (1)

with a ∈ [0, 1) fixed. Then
(i) T has a unique fixed point, that is, FT = {x∗};
(ii) The Picard iteration associated to T , i.e., the sequence {xn}∞n=0,

defined by
xn = T (xn−1) = Tn(x0) , n = 1, 2, . . . , (2)

converges to x∗, for any initial guess x0 ∈ X;
(iii) The following a priori and a posteriori error estimates hold:

d(xn, x∗) ≤ an

1 − a
· d (x0, x1) , n = 0, 1, 2, . . . (3)

d(xn, x∗) ≤ a

1 − a
· d (xn−1, xn) , n = 0, 1, 2, . . . (4)

(iv) The rate of convergence is given by
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d(xn, x∗) ≤ a · d (xn−1, x
∗) ≤ an · d (x0, x

∗) , n = 1, 2, . . . (5)

Proof. There is at most one fixed point, i.e., card FT ≤ 1. Indeed, assum-
ing x∗, y∗ ∈ FT , x∗ 
= y∗, since 0 ≤ a < 1, we get the contradiction

d(x∗, y∗) = d(Tx∗, T y∗) ≤ a · d(x∗, y∗) < d(x∗, y∗).

To prove the existence of the fixed point, we will show that, for any given
x0 ∈ X, the Picard iteration {xn}∞n=0 is a Cauchy sequence.
Notice that, by (1), we have

d(x2, x1) = d(Tx1, Tx0) ≤ a d(x1, x0),

and by induction,

d(xn+1, xn) ≤ an d(x1, x0) , n = 0, 1, 2, . . . (6)

Thus, for any numbers n, p ∈ N , p > 0, we have

d(xn+p, xn) ≤
n+p−1∑

k=n

d(xk+1, xk) ≤
n+p−1∑

k=n

ak d(x1, x0) ≤
an

1 − a
· d(x1, x0).

(7)
Since 0 ≤ a < 1, it results that an → 0 (as n → ∞), which together with (7)
shows that {xn}∞n=0 is a Cauchy sequence. But (X, d) is a complete metric
space, therefore {xn}∞n=0 converges to some x∗ ∈ X.

On the other hand, any Lipschitzian mapping is continuous. So denoting

lim
n→∞

xn = x∗,

we find

x∗ = lim
n→∞

xn+1 = lim
n→∞

T (xn) = T ( lim
n→∞

xn ) = Tx∗,

which gives x∗ = Tx∗, i.e., x∗ is a fixed point of T .
This shows that for any x0 ∈ X, the Picard iteration converges in X and

its limit is a fixed point of T . Since T has at most one fixed point, we deduce
that, for every choice of x0 ∈ X, the Picard iteration converges to the same
value x∗, that is, the unique fixed point of T . So we proved (i) and (ii).

To prove (iii) we use (7),

d(xn+p, xn) ≤ an

1 − a
· d(x0, x1) , for all p ∈ N

∗,

and the continuity of the metric and so, by letting p → ∞, we find

d(xn, x∗) = d(x∗, xn) = lim
p→∞

d(xn+p, xn) ≤ an

1 − a
· d(x0, x1), n ≥ 0

and so (3) is proved.
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To obtain the a posteriori estimation (4), let us notice that by (1) we have

d(xn+1, xn) ≤ a d(xn, xn−1)

and, by induction,

d(xn+k, xn+k−1) ≤ ak d(xn, xn−1), k ∈ N
∗,

so

d(xn+p, xn) ≤ (a + a2 + . . . + ap) d(xn, xn−1) ≤
a

1 − a
d(xn, xn−1).

By letting p → ∞ in the last inequality we get exactly (4). �
Remarks.
1) The a priori estimate (3) shows that, when starting from an initial guess

x0 ∈ X, the approximation error of the nth iterate is completely determined
by the contraction coefficient a and the initial displacement d(x1, x0);

2) Similarly, the a posteriori estimate shows that, in order to obtain the
desired error approximation of the fixed point by means of Picard iteration,
that is, to have d(xn, x∗) < ε, we need to stop the iterative process at the first
step n for which the displacement between two consecutive iterates is at most
(1 − a)ε/a;

So, the a posteriori estimation offers a direct stopping criterion for the
iterative approximation of fixed points by Picard iteration, while the a priori
estimation indirectly gives a stopping criterion;

3) It is easy to see that the a posteriori estimation is better than the a
priori one, in the sense that from (4) we can obtain (3), by means of (6);

4) Each of the three estimations given in Theorem 2.1 shows that the
convergence of the Picard iteration is at least as quick as that of the geometric
series

∑
an. This explains why in Example 1.11 the iterative process defined

by means of the iteration function T2 (that is, the Picard iteration) is so quick
(quicker than Newton’s iteration). However, as shown by (5), the convergence
rate of Picard iteration for any contraction is linear ;

5) In most of the cases, the contraction condition (1) is not satisfied in
the whole space X, but only locally. In this context, a local version of the
contraction mapping principle is very useful for certain practical purposes.

Corollary 2.1. Let (X, d) be a complete metric space and

B(y0, R) = {x ∈ X |d(x, y0) < R}

be the open ball. Let T : B(y0, R) → X be an a-contraction, such that

d(Ty0, y0) < (1 − a)R.

Then T has a fixed point that can be obtained using the Picard iterative
scheme, starting from any x0 ∈ B(y0, r).
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Proof. We show that any closed ball B = B(y0, r), r < R, is an invariant
set with respect to T , that is T (B) ⊂ B. To prove this, let us consider x ∈ B.
Then d(x, y0) ≤ R, and from

d(Tx, y0) ≤ d(Tx, Ty0) + d(Ty0, y0) ≤ a · d(x, y0) + (1 − a) · R

we obtain
d(Tx, y0) ≤ a · R + (1 − a) · R = R,

which shows that Tx ∈ B. Since B is complete, we can apply now Theorem 2.1
to get the conclusion. �

Definition 2.1. Let (X, d) be a complete metric space. A mapping
T : X → X is called (strict) Picard mapping if there exists x∗ ∈ X such that
FT = {x∗} and

Tn(x0) → x∗ (uniformly) for all x0 ∈ X.

Example 2.1. If (X, d) is a complete metric space, then any contraction
T : X → X is a Picard mapping.

The next sections of this chapter will show some other important examples
of Picard mappings.

2.2 Theorem of Nemytzki-Edelstein

By weakening the contraction condition to a contractive one, the conclu-
sions of Theorem 2.1 are no longer valid, as the next example shows.

Example 2.2. If X = [1,∞) and T : X → X, T (x) = x +
1
x

, then:

1) T is not a contraction;
2) T is contractive;
3) FT = ∅;
4) The Picard iteration associated to T does not converge, for any x0 ∈

[1,∞).

Indeed, if the Picard iteration {xn}∞n=0, xn+1 = xn +
1
xn

, n ≥ 0 would

be convergent, then its limit l would satisfy
1
l

= 0, which is impossible.

However, it is possible to impose some additional conditions on the ambient
space, in order to ensure that a contractive mapping is a Picard operator, as
the following theorem shows.

Theorem 2.2. Let (X, d) be a compact metric space and T : X → X be
a contractive operator. Then T is a strict Picard operator.
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Proof. Recall that a metric space is compact if and only if every family of
closed subsets of X with finite intersection property (i.e., any finite number of
sets in the family has a nonempty intersection) has a nonempty intersection.
From the contractiveness of T we have that card FT ≤ 1.

Let x0 ∈ X and {xn}∞n=0, xn = Tnx0, n ≥ 0, be the Picard iteration
associated to T .

Since (X, d) is compact, it results that there exists a subsequence {xnk
}∞k=0

of {xn}∞n=0 such that {xnk
}∞k=0 converges to a certain x∗ ∈ X as n tends

to ∞. As T is contractive, we deduce that T is continuous and that the
sequence { d(xn, xn+1)}∞n=0 has strictly decreasing positive terms and hence
is convergent.

Then, using the continuity of the metric, we have

lim
k→∞

d(xnk
, T xnk

) = d(x∗, Tx∗)

and therefore

d(x∗, Tx∗) = lim
n→∞

d(xn, xn+1) = lim
n→∞

d(xn+1, xn+2) = d(Tx∗, T 2x∗).

If we admit x∗ 
= Tx∗, then from the contractive condition we get the
contradiction

d(x∗, Tx∗) = d(Tx∗, T (Tx∗)) < d(x∗, Tx∗).

Consequently, x∗ = Tx∗, i.e., FT = {x∗}.
This shows that for any x0 ∈ X, the Picard iteration converges in X and

its limit is the unique fixed point of T . �
Corollary 2.2. Let (X, d) be a complete metric space and T : X → X be

a contractive operator. If there exists x0 ∈ X such that the Picard iteration
{Tnx0}∞n=0 has a convergent subsequence, then FT = {x∗} and x∗ is the limit
of this subsequence.

Example 2.3. Let X = l∞ :=
{
u ∈ l2(R) : |uk| ≤ 1/k

}
and T : l∞ → l∞,

defined by T uk =
k

k + 1
· uk. Then:

(i) l∞ is a compact metric space; (ii) T is not a contraction;
(iii) T is contractive; (iv) FT = {0}, the null sequence;
(v) The Picard iteration converges (uniformly) to the null sequence, i.e.,

Tn u
(0)
k =

(
k

k + 1

)n

u
(0)
k → 0 (as n → ∞),

for any u
(0)
k ∈ l∞.

Remark. For a contractive operator, we generally have no information
about the convergence rate of the Picard iteration.
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2.3 Quasi-Nonexpansive Operators

In the previous two sections we have given examples of continuous Picard
operators. The main aim of this section is to prove that a Picard operator
needs not to be continuous.

Theorem 2.3. Let (X, d) be a complete metric space and T : X → X be

a mapping for which there exists a ∈
[
0,

1
2

)
such that

d(Tx, Ty) ≤ a[ d(x, Tx) + d(y, Ty) ], for all x, y ∈ X. (8)

Then T is a Picard operator.

Proof. First we remark that if T satisfies (8), then card FT ≤ 1.
Let x0 ∈ X, and xn = Tnx0, n = 0, 1, 2, . . . be the Picard iteration. Then

by (8) we have

d(xn, xn+1) = d(Txn−1, Txn) ≤ a[d(xn−1, xn) + d(xn, xn+1)],

which implies

d(xn, xn+1) ≤
a

1 − a
· d(xn−1, xn) , n = 1, 2, . . . (9)

Since 0 ≤ a

1 − a
< 1, for a ∈

[
0,

1
2

)
, we deduce, in a similar manner to that

in the proof of Theorem 2.1, that {xn}∞n=0 is a Cauchy sequence, and hence
a convergent sequence, too. Let x∗ ∈ X be its limit. Then we have

d(x∗, Tx∗) ≤ d(x∗, xn)+d(xn, Tx∗) ≤ d(x∗, xn)+a[d(x∗, xn−1)+d(x∗, Tx∗)],

and hence

d(x∗, Tx∗) ≤ 1
a
· d(x∗, xn) +

a

1 − a
· d(xn−1, xn),∀n ∈ N

which, together with (9), gives

d(x∗, Tx∗) ≤ 1
a
· d(x∗, xn) +

(
a

1 − a

)n

· d(x0, x1) , n = 1, 2, . . . (10)

Now, letting n → ∞ in (10), we obtain

d(x∗, Tx∗) = 0 ⇐⇒ x∗ = Tx∗, that is, FT = {x∗}

and therefore,

xn → x∗(n → ∞), for each x0 ∈ X. �



2.3 Quasi-nonexpansive Operators 37

Example 2.4. Let X = R and T : X → X, T (x) = 0, if x ∈ (−∞, 2]

and Tx = −1
2
, if x > 2. Then: (i) T is not continuous; (ii) T fulfills (8) (with

a =
1
5
) and hence, by Theorem 2.3, T is a Picard mapping; (iii) T is not

nonexpansive (to show this, take x = 2 and y = 9/4).

Corollary 2.3. Let the assumptions in Theorem 2.3 be satisfied. Then the
error estimates of the Picard iteration are given by

d(xn, x∗) ≤ αn

1 − α
· d(x0, x1) , n = 0, 1, 2, . . . (11)

d(xn, x∗) ≤ α

1 − α
· d(xn, xn−1) , n = 0, 1, 2, . . . , (12)

where α =
a

1 − a
.

Remarks.
1) If there exists k ∈ N

∗ such that T k is a contraction (or is contractive,
or satisfies (8)), then FT = {x∗}.

The class of contractive operators is included in the class of nonexpansive
operators. For a nonexpansive operator T , however, the conclusion FT 
= ∅ is
not generally true. A generalization of a nonexpansive operator, with at least
one fixed point, is that of the quasi nonexpansive operators.

An operator T : X → X is said to be quasi nonexpansive if T has at least
one fixed point in X and, for each fixed point p, we have

d(Tx, p) ≤ d(x, p), ∀x ∈ X. (*)

The class of quasi-nonexpansive operators is strongly connected to the
Newton’s iterative method. Other examples of quasi-nonexpansive operators
can be found in the class of generalized ϕ-contractions.

2) A contractive definition which is included in the class of quasi-
nonexpansive mappings was obtained by Zamfirescu in 1972. Zamfirescu’s
theorem is a generalization of Banach’s, Kannan’s and Chatterjea’s fixed point
theorems.

Theorem 2.4. Let (X, d) be a complete metric space and T : X → X
be a mapping for which there exist the real numbers α, β and γ satisfying
0 ≤ α < 1, 0 ≤ β < 0.5 and 0 ≤ γ < 0.5, such that, for each x, y ∈ X, at
least one of the following is true:

(z 1) d(Tx, Ty) ≤ α d(x, y);
(z 2) d(Tx, Ty) ≤ β[d(x, Tx) + d(y, Ty)];
(z 3) d(Tx, Ty) ≤ γ[d(x, Ty) + d(y, Tx)].
Then T is a Picard operator.

Proof. We first fix x, y ∈ X. At least one of (z1), (z2) or (z3) is true.
If (z2) holds, then we have
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d(Tx, Ty) ≤ β[d(x, Tx) + d(y, Ty)] ≤
≤ β{d(x, Tx) + [d(y, x) + d(x, Tx) + d(Tx, Ty)]}.

So
(1 − β) d(Tx, Ty) ≤ 2β d(x, Tx) + β d(x, y),

which yields

d(Tx, Ty) ≤ 2β

1 − β
d(x, Tx) +

β

1 − β
d(x, y). (13)

If (z3) holds, then similarly we get

d(Tx, Ty) ≤ 2γ

1 − γ
d(x, Tx) +

γ

1 − γ
d(x, y). (14)

Therefore, denoting

δ = max
{

α,
β

1 − β
,

γ

1 − γ

}
,

we have 0 ≤ δ < 1 and then, for all x, y ∈ X, the following inequality

d(Tx, Ty) ≤ 2δ · d(x, Tx) + δ · d(x, y) (15)

holds. In a similar manner we obtain

d(Tx, Ty) ≤ 2δ · d(x, Ty) + δ · d(x, y), (16)

valid for all x, y ∈ X.
From (15) it follows that card FT ≤ 1. We will show that T has a (unique)

fixed point. Let x0 ∈ X be arbitrary and {xn}∞n=0 ,

xn = Tnx0 , n = 0, 1, 2, . . .

be the Picard iteration associated to T .
If x := xn, y := xn−1 are two successive approximations, then by (16) we

have
d(xn+1, xn) ≤ δ · d(xn, xn−1).

From this we deduce that {xn}∞n=0 is a Cauchy sequence, and hence a
convergent sequence, too. Let x∗ ∈ X be its limit. In particular we have

lim
n→∞

d(xn+1, xn) = 0.

By triangle rule and (15) we get

d(x∗, Tx∗) ≤ d(x∗, xn+1) + d(Txn, Tx∗) ≤

≤ d(x∗, xn+1) + δ d(x∗, xn) + 2 δd(xn, Txn),
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which, by letting n → ∞, yields

d(x∗, Tx∗) = 0 ⇐⇒ x∗ = Tx∗,

since d(xn, Txn) = d(xn, xn+1) → 0, and therefore

FT = {x∗} and xn → x∗(n → ∞),

for each x0 ∈ X. �
Remarks.
1) The error estimate of the Picard iteration associated to a Zamfirescu

mapping is given by the same estimates (11) and (12) in the case of a Kannan
mapping, but with α replaced by

δ = max
{

α,
β

1 − β
,

γ

1 − γ

}
;

2) A generalization of Zamfirescu’s contractiveness definition was obtained
by Ciric in 1974. It will be treated in a unified manner in Section 2.6.

Example 2.5. If T is a Kannan (or Zamfirescu) mapping, then T is a
(strictly) quasi nonexpansive operator.

Indeed, if T is a Kannan operator, then from (8) with y = p ∈ FT we get

d(Tx, p) ≤ a d(x, Tx) ≤ a [d(x, p) + d(p, Tx)]

and hence
d(Tx, p) ≤ a

1 − a
d(x, p) < d(x, p).

For a Zamfirescu operator, we put x := p and y := x in (15) and obtain

d(Tx, p) ≤ δ d(x, p) < d(x, p).

2.4 Maia’s Fixed Point Theorem

Definition 2.2. Let (X, d) be a nonempty set. A map T : X → X is said
to be a Bessaga mapping if there exists x∗ ∈ X such that

FT n = {x∗} , for all n ∈ N. (17)

Example 2.6. It is easy to check that any Picard mapping is a Bessaga
mapping but the reverse is not true. This shows that any mapping satisfying
one of the Theorems 2.1-2.4 is a Bessaga mapping. On the other hand, if T
is a Bessaga mapping on the set X, then X can be organized as a complete
metric space, such that T should be a contraction on X.
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Theorem 2.5. Let X be a nonempty set, T : X → X a mapping satisfying
(17) and a ∈ (0, 1) a given number. Then there exists a metric d on X such
that

(a) (X, d) is a complete metric space;
(b) T is an a-contraction with respect to d.

By combining Theorem 2.5 and Example 2.6 it results that, for any map-
ping T satisfying one of the contractive conditions in Theorem of Kannan or
Zamfirescu (and many other similar conditions), it may be possible to find
another complete metric on X with respect to which the operator T is a
contraction.

Example 2.7. The linear map

T : R
2 → R

2, T (x, y) =
(

8x + 8y

10
,
x + y

10

)

is not a contraction with respect to the Euclidean metric, but is a
9
10

-

contraction with respect to the (equivalent) metric δ defined in Example
1.3, 2).

However, for a certain Bessaga mapping, it is practically not an easy task to
construct this equivalent and complete metric. An alternative to this attempt
is to transfer a part of the assumptions from the metric d to a second metric
ρ, as shown by the Maia’s fixed point theorem.

Theorem 2.6. Let X be a nonempty set, d and ρ two metrics on X and
T : X → X a mapping. Assume that

(i) d(x, y) ≤ ρ(x, y), for all x, y ∈ X;
(ii) (X, d) is a complete metric space;
(iii) T : (X, d) → (X, d) is continuous;
(iv) T : (X, ρ) → (X, ρ) is an a−contraction with a ∈ [0, 1).
Then T is a Picard mapping.

Proof. Let x0 ∈ X be arbitrary and {xn}∞n=0, xn = Tnx0, n = 0, 1, 2, . . . ,
be the Picard iteration associated to T .

From (iv), using the same arguments as in the proof of Theorem 2.1, we
deduce that {xn}∞n=0 is a Cauchy sequence in (X, ρ).

By (i), it results that {xn}∞n=0 is a Cauchy sequence in (X, d) as well, and
by (ii), we deduce that it converges to a certain x∗ in X.

Now, by (iii), x∗ ∈ FT and, by (iv), FT = {x∗}. �

Remarks.

1) Assumption (i) in Theorem 2.6 may be weakened to

(i′) There exists c > 0 such that d(x, y) ≤ c · ρ(x, y) , for all x, y ∈ X,

or to
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(i′′) There exists c > 0 such that d(Tx, Ty) ≤ c · ρ(x, y) , for all x, y ∈ X,

which is particularly useful when dealing with integral equations;
2) Condition (iv) in Theorem 2.6 may be replaced by one of the following

conditions: “T : (X, ρ) → (X, ρ) is a Kannan mapping” or “T : (X, ρ) →
(X, ρ) is a Zamfirescu mapping” or “T : (X, ρ) → (X, ρ) is a ϕ−contraction”,
see the next Section 2.5 etc.

2.5 ϕ-Contractions

Let ϕ : R+ → R+ be a function. In connection with the function ϕ we
consider the following properties:

(iϕ) ϕ is monotone increasing, i.e., t1 ≤ t2 implies ϕ(t1) ≤ ϕ(t2);
(iiϕ) ϕ(t) < t for all t > 0;
(iiiϕ) ϕ(0) = 0;
(ivϕ) ϕ is continuous;
(vϕ) {ϕn(t)} converges to 0 for all t ≥ 0;

(viϕ)
∞∑

n=0
ϕn(t) converges for all t > 0;

(viiϕ) t − ϕ(t) → ∞ as t → ∞;
(viiiϕ) ϕ is subadditive.

The next lemma shows some relationships existing between the above
conditions.

Lemma 2.1.
1) (iϕ) and (iiϕ) imply (iiiϕ);
2) (iiϕ) and (ivϕ) imply (iiiϕ);
3) (iϕ) and (vϕ) imply (iiϕ).

Definition 2.3. 1) A function ϕ satisfying (iϕ) and (vϕ) is said to be a
comparison function;

2) A function ϕ satisfying (iϕ) and (viϕ) is said to be a (c)-comparison
function;

3) A comparison function satisfying (viiϕ) is called strict comparison func-
tion.

Lemma 2.2.
1) Any (c)-comparison function is a comparison function ;
2) Any strict comparison function is a comparison function;
3) Any comparison function satisfies (iiiϕ);
4) Any comparison function satisfying (viiiϕ) satisfies (ivϕ), too;
5) If ϕ is a comparison function, then, for any k ∈ N

∗, ϕk is a comparison
function, too;

6) If ϕ is a (c)-comparison function, then the function
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s : R+ → R+, s(t) =
∞∑

k=0

ϕk(t) , t ∈ R+ (18)

satisfies (iϕ) and (iiiϕ).

Example 2.8.
1) ϕ(t) = at , t ∈ R+ , a ∈ [0, 1) satisfies all the conditions (iϕ)-(viiiϕ);

2) ϕ(t) =
t

1 + t
, t ∈ R+ is a (strict) comparison function but not a

(c)-comparison function;

3) ϕ(t) =
1
2

t, if 0 ≤ t ≤ 1 and ϕ(t) = t − 1
2
, if t > 1 is a (c)-comparison

function but it is not a strict comparison function.

Definition 2.3. Let (X, d) be a metric space. A mapping T : X → X is
said to be a ϕ-contraction if there exists a comparison function ϕ : R+ → R+

such that
d(Tx, Ty) ≤ ϕ(d(x, y)), for all x, y ∈ X. (19)

Theorem 2.7. Let (X, d) be a complete metric space and T : X → X a
ϕ-contraction. Then T is a Picard mapping.

Proof. Let x0 ∈ X and let {xn}∞n=0, xn = Txn−1 = Tnx0, n = 1, 2, . . . ,
be the Picard iteration associated to T . Then

d(xn, xn+1) ≤ ϕn(d(x0, x1))

and by (vϕ), we obtain that d(xn, xn+1) → 0 as n → ∞, that is,

d(Tnx0, T
n+1x0) → 0, as n → ∞, (20)

which means that x0 is asymptotically regular under T .
In fact, any x0 ∈ X is asymptotically regular under T , which means that

T is asymptotically regular.
We show now that B(x; ε), with ε > 0, is an invariant set with respect to

T . Indeed, for ε > 0, let δ(ε) = ε − ϕ(ε) and y ∈ B(x; ε). Then

d(Ty, x) ≤ d(Ty, Tx) + d(Tx, x) ≤ ϕ(d(y, x)) + d(x, Tx) ≤ ϕ(ε) + d(x, Tx).

Hence
d(x, Tx) < δ(ε) =⇒ d(Ty, x) ≤ ϕ(ε) + ε − ϕ(ε) = ε,

which shows that Ty ∈ B(x, ε), that is, B(x, ε) is invariant with respect to T .
By (19), {Tnx0}n∈N is a Cauchy sequence for any x0 ∈ X. For any given

ε > 0, there exists n0 ∈ N such that

d(Tnx0, T
n+1x0) < δ(ε), for all n ≥ n0

and this implies that Tnx0 ∈ B(Tnx0; ε), for all n ≥ n0.
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As (X, d) is a complete metric space, {Tnx0}n∈N is convergent.
Let x∗ = lim

n→∞
Tn(x0). Since any comparison function satisfies (iiϕ), any

ϕ-contraction is continuous. Hence

x∗ = T
(

lim
n→∞

Txn−1

)
= Tx∗,

which shows that x∗ ∈ FT .
Assume there exists y∗ ∈ FT , y∗ 
= x∗. Then d(x∗, y∗) 
= 0 and the condi-

tion of ϕ-contractiveness implies

0 < d(x∗, y∗) = d(Tx∗, T y∗) ≤ ϕ(d(x∗, y∗)) < d(x∗, y∗),

which is a contradiction. �
Corollary 2.4. Let (X, d) be a complete metric space and T : X → X

be a mapping with the property that there exists k ∈ N
∗ such that T k is a

ϕ-contraction. Then FT = {x∗}.
Remarks.
1) The metrical fixed point theory is very rich in fixed point theorems

given for various classes of ϕ-contractions, which are obtained for different
collections of properties of the comparison function ϕ;

2) As Theorem 2.7 illustrates, almost all of them prove only the conver-
gence of the Picard iteration to the unique fixed point of T . Only a few of
these fixed point theorems are able to provide information on the convergence
rate of the Picard iteration;

3) As we have shown, condition (viϕ) is equivalent to the following one:
(c) There exist k0 and α, 0 < α < 1, and a convergent series of nonnegative

terms
∑

vn, such that

ϕκ+1(t) ≤ α · ϕk(t) + vk (21)

holds for all k ≥ k0 and t ∈ R+ .

Condition (21) is in fact the generalized ratio test for series of positive
terms which, for the particular case of series of decreasing positive terms,
gives a necessary and sufficient condition of convergence, since any comparison
series

∑
ϕk(t) consists of decreasing positive terms, see Berinde [Be97a].

The next theorem transposes all the conclusions in Banach’s contraction
mapping principle (Theorem 2.1) to a class of ϕ−contractions.

Theorem 2.8. Let (X, d) be a complete metric space and T : X → X be
a ϕ−contraction with ϕ a (c)-comparison function. Then

(i) FT = {x∗};
(ii) The Picard iteration {xn} = {Tnx0}n∈N converges to x∗ (as n →

∞), for each x0 ∈ X;
(iii) The following estimation holds
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d(xn, x∗) ≤ s(d(xn, xn+1)) , n = 0, 1, 2, . . . , (22)

where s(t) =
∞∑

k=0

ϕk(t) is the sum of the comparison series.

Proof. By Theorem 2.7 we get (i) and (ii).
Let xn = Tnx0 , n = 0, 1, 2, . . . be the Picard iteration associated to T . In

order to prove (iii), we use the ϕ-contractiveness condition and get

d(xn+k, xn+k+1) ≤ ϕk(d(xn, xn+1), n = 0, 1, 2, . . . , k ≥ 1.

So

d(xn+p, xn) ≤
p−1∑
k=0

ϕk(d(xn, xn+1))

and, letting p → ∞, we obtain the estimate (22). �
Remarks.

1) For ϕ(t) = a t , 0 ≤ a < 1, by Theorem 2.8 we obtain Theorem 2.1.
The a posteriori estimate in Theorem 2.1 can be obtained directly by (22),
while the a priori estimate is obtained by means of the inequality

d(xn, xn+1) ≤ ϕn(d(x0, x1));

2) A result similar to Theorem 2.8 may be obtained for the class of ϕ-
contractions with ϕ a strict comparison function.

In this case, the error estimate for the Picard iteration is given by

d(xn, x∗) ≤ ϕn(tx0) , n = 0, 1, 2, . . . ,

where
tx0 := sup {t ∈ R+ |t − ϕ(t) ≤ d(x0, x1)} ,

see Rus [Rus83];
3) We end this section by stating a fixed point theorem of Maia type,

whose proof requires only standard arguments.

Theorem 2.9. Let X be a nonempty set, d and ρ two metrics on X and
T : X → X a mapping. Suppose that:

(i) there exists c > 0 such that

d(Tx, Ty) ≤ c ρ(x, y) , for all x, y ∈ X;

(ii) (X, d) is a complete metric space;
(iii) T : (X, d) → (X, d) is continuous;
(iv) T : (X, ρ) → (X, ρ) is a ϕ-contraction.
Then T : (X, d) → (X, d) is a Picard mapping.
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Example 2.9.
1) If ϕ is right continuous and satisfies (iϕ) and (iiϕ), then from Theorem

2.8 we obtain the fixed point theorem of Browder;
2) If ϕ is upper semicontinuous and satisfies (iiϕ), then from Theorem 2.8

we obtain the fixed point theorem of Boyd-Wong;
3) If ϕ satisfies (iiϕ) and (ivϕ), then by Theorem 2.8 we obtain as a

particular case the fixed point theorem of Krasnoselskij-Stechenko.

2.6 Generalized ϕ-Contractions

Many interesting generalizations of the contraction mapping principle have
been obtained by considering contraction conditions which involve not only
the distance d(x, y) on the right-hand side, but also the displacements of x
and y under the mapping T : d(x, Tx), d(x, Ty) , d(y, Tx) and d(y, Ty).

Typical fixed point theorems in this class are Kannan’s, Zamfirescu’s and
Ciric’s fixed point theorems. The main aim of this section is to unify all these
results in a single theorem, by using the concepts of multivariable comparison
function and generalized ϕ-contraction.

Definition 2.4. A map ϕ : R
5
+ → R+ is called (5-dimensional) com-

parison function (strict comparison function, (c)-comparison function) if
ϕ(u) ≤ ϕ(v), for any u, v ∈ R

5
+ , u ≤ v and

ψ : R+ → R+ , ψ(t) = ϕ(t, t, t, t, t) , t ∈ R+ (23)

satisfies (vϕ) (and (viiϕ), respectively, (viϕ)).

Example 2.10. The following functions ϕ : R
5
+ → R+ are 5-dimensional

comparison functions:
1) ϕ(t) = a ·max{t1, t2, t3, t4, t5}, for each t = (t1, t2, . . . , t5) ∈ R

5
+, where

a ∈ [0, 1) is a constant;

2) ϕ(t) = a · max
{

t1, t2, t3, t4,
t4 + t5

2

}
, a ∈ [0, 1);

3) ϕ(t) = a(t2 + t3) , a ∈ [0, 1/2);
4) ϕ(t) = at1 + b(t2 + t3) , a, b ∈ R+ such that a + 2b < 1;
5) ϕ(t) = a · max{t2, t3} , a ∈ (0, 1);

6) ϕ(t) =
(

5∑
i=1

ait
p
i

)1/p

, where ai ∈ R+ such that
5∑

i=1

ai < 1 and p ≥ 1;

7) ϕ(t) = max{at1, b(t2 + t4), c(t3 + t5)}, where a ∈ [0, 1) , b, c ∈ [0, 1/2).

Definition 2.5. Let (X, d) be a metric space. A mapping T : X → X
is called generalized ϕ-contraction if there exists a 5-dimensional comparison
function ϕ : R

5 → R+ such that
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d(Tx, Ty) ≤ ϕ(d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)), (24)

for all x, y ∈ X.

Lemma 2.3. Let (X, d) be a metric space and T : X → X be a generalized
ϕ-contraction. Then, for all x0 ∈ X and all i, j ∈ {1, 2, . . . n} we have

d(T ix0, T
jx0) ≤ ψ (δ (OT (x0;n) ) ).

Proof. Let us denote as usually xn = T nx0 , n = 0, 1, 2, . . ..
Since for each i, j ∈ {1, 2, . . . , n} we have

{i − 1, j − 1, i, j} ⊂ {0, 1, 2, . . . n},

we deduce that

xi−1, xi, xj−1, xj ∈ OT (x0;n) = {x0, Tx0, . . . , T
nx0}.

Hence, from the generalized contraction condition, we obtain

d(xp, xq) ≤ δ (OT (x0;n)) for each p, q ∈ {i − 1, j − 1, i, j},

where δ (OT (x0;n)) denotes the diameter of OT (x0;n). Then

d(xi, xj) = d(Txi−1, Txj−1) ≤
≤ ϕ(d(xi−1, xj−1), d(xi−1, xj), d(xj−1, xj), d(xi−1, xj), d(xj−1, xi)) ≤
≤ ψ (δ (OT (x0;n))),

due to the monotonicity of ϕ. �
Remark. For each n ∈ N

∗, there exists k ≤ n such that

d(x0, T
kx0) = δ (OT (x0;n)),

since ψ(r) = ϕ(t, t, t, t, t) ≤ t, for all t ≥ 0.

Lemma 2.4. If T : X → X is a generalized ϕ-contraction with respect to
a comparison function ϕ for which the function h : R+ → R+,

h(t) = t − ϕ(t, t, t, t, t) , t ∈ R+, (25)

is an increasing bijection, then, for any n ∈ N, we have

δ (OT (x0;n)) ≤ h−1(d(x0, Tx0)), ∀ x0 ∈ X.

Proof. Let n ∈ N
∗ be arbitrarily taken. The previous remark suggests

that there exists k ≤ n such that

d(x0, T
kx0) = δ (OT (x0;n)),
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and hence, by applying Lemma 2.3, we obtain

δ(OT (x0;n)) = d(x0, T
kx0) ≤ d(x0Tx0) + d(Tx0, T

kx0) ≤
≤ d(x0, Tx0) + ψ(δ (OT (x0;n))),

which leads to

δ(0T (x0;n)) − ψ(δ (0T (x0;n))) ≤ d(x0, Tx0) , x0 ∈ X , n ∈ N.

But h is bijective and monotone increasing, hence h−1 is increasing, too, and
the conclusion follows from the last inequality. �

The main result of this section is given by the following theorem.

Theorem 2.10. Let (X, d) be a complete metric space and T : X → X be
a ϕ-contraction with ϕ such that the function ψ given by (23) is continuous
and the function h given by (25) is an increasing bijection. Then

(i) T is a Picard mapping (let FT = {x∗});
(ii) the following estimate

d(Tnx0, x
∗) ≤ ψn(h−1(d(x0, Tx0))), n = 0, 1, 2 . . . ,

holds, for all x0 ∈ X.

Proof. Let x0 ∈ X , m, n ∈ N, m > n. Put

i = 1, j = m − n + 1 , x = Tn−1x0 = xn−1

and apply Lemma 2.3. It results

d(xn, xm) = d(Txn−1, Txm−1) ≤ ψ(r1), (26)

where
r1 = δ (OT (xn−1;m − n + 1)).

Now, by the Remark before Lemma 2.4, there exists k1 , 1 ≤ k1 ≤ m−n + 1,
such that

δ (OT (xn−1;m − n + 1)) = d(xn−1, T
k1xn−1). (27)

Using again Lemma 2.3 we have

d(xn−1, T
k1xn−1) = d(Txn−2, T

k1+1xn−2) ≤ ψ(r2), (28)

where
r2 = δ(OT (xn−2; k1 + 1)).

Since ψ is monotone increasing and k1 + 1 ≤ m−n + 2, from (26)-(28) we
obtain

d(xn, xm) ≤ ψ2 (δ (OT (xn−2;m − n + 2))),

and, inductively,
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d(xn, xm) ≤ ψn (δ (OT (x0;m))).

Now, using Lemma 2.4, it results

d (xn, xm) ≤ ψn(r3), (29)

where
r3 = h−1(d(x0, x1)).

As ϕ is a comparison function, that is

ψn(r) → 0 (n → ∞) , for each r ∈ R+,

from (29) we deduce that {xn}∞n=0 is a Cauchy sequence and hence it is con-
vergent. Let x∗ = lim

n→∞
xn. We will show that x∗ ∈ FT. Indeed, for each n ∈ N,

d(x∗, Tx∗) ≤ d(x∗, xn+1) + d(Txn, Tx∗) ≤ d(x∗, xn+1)+

+ϕ(d(xn, x∗), d(xn, xn+1), d(x∗, Tx∗), d(xn, Tx∗), d(xn+1, x
∗)). (30)

Assume first that

max{d(xn, x∗), d(xn, xn+1), d(x∗, Tx∗), d(xn, Tx∗), d(xn+1, x
∗)} = d(x∗, Tx∗).

Then, using the monotonicity of ϕ, from (30) we obtain

d(x∗, Tx∗) ≤ d(x∗, xn+1) + ψ(d (x∗, Tx∗)),

which is equivalent to

d(x∗, Tx∗) ≤ h−1(d (x∗, xn−1)). (31)

Since h−1 is monotone increasing, positive and h−1(0) = 0, it results that h−1

is continuous at zero. Letting n → ∞ in (31), we get

d(x∗, Tx∗) = 0,

which means x∗ ∈ FT . Now, if

max{d(xn, x∗), d(xn, xn+1), d(x∗, Tx∗), d(xnTx∗), d(xn+1, x
∗)} = d(xn, x∗),

then, by (30), we obtain

d(x∗, Tx∗) ≤ d(xn+1, x
∗) + ψ (d (xn, x∗)),

which, in view of the continuity of ψ at 0, and by letting n → ∞, yields

d(x∗, Tx∗) ≤ 0

that is, again, d(x∗, Tx∗) = 0.
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If the maximum takes one of the values d(xn+1, x
∗), d(xn, xn+1) or

d(xn, Tx∗), the proof is similar to the previous cases.
Let us discuss the last possibility, i.e.,

max{d(xn, x∗), d(xn, xn+1), d(x∗, Tx∗), d(xn, Tx∗), d(xn+1, x
∗)} = d(xn, Tx∗).

Then, by (30), it results

d(x∗, Tx∗) ≤ d(xn+1, x
∗) + ψ(d(xn, Tx∗)).

Letting n → ∞ in the previous inequality and using the continuity of ψ, we
obtain

d(x∗, Tx∗) − ψ(d(x∗, Tx∗)) ≤ 0,

that is,
h−1(d(x∗, Tx∗)) ≤ 0

which leads to

h−1(d(x∗, Tx∗)) = 0 ⇐⇒ d(x∗, Tx∗) = 0.

In order to prove the uniqueness of the fixed point we proceed as follows. Let
x∗, y∗ ∈ FT , x∗ 
= y∗. Then d(x∗, y∗) > 0 and

d(x∗, y∗) = d(Tnx∗, Tny∗) ≤ ψn(δ(OT (x∗;m))) = ψn(δ({x∗})) = ψn(0) = 0,

a contradiction. Now (i) is proved.
In order to obtain the estimate (ii), we take m → ∞ in (29). �
Particular cases.
1) For ϕ as in Example 2.10., part 1), from Theorem 2.10 we obtain the

Ciric’s fixed point theorem [Cir74];
2) For ϕ as in Example 2.10., 3), from Theorem 2.10 we obtain Kannan’s

fixed point theorem, i.e., Theorem 2.3;
3) For ϕ as in Example 2.10., 4), from Theorem 2.10 we get a fixed point

theorem obtained by Reich (1971) and Rus (1971), see Taskovic [Tas86];
4) For ϕ as in Example 2.10., 5), from Theorem 2.10 we obtain a fixed point

theorem given by Bianchini (1972) and Dugundji (1976), see Rus [Ru79c];
5) For ϕ as in Example 2.10., 7), from Theorem 2.10 we obtain the very

interesting Zamfirescu’s fixed point theorem, i.e., Theorem 2.4 in this Chapter;
6) By considering other particular expressions for ϕ, we may find many other
interesting fixed point theorems.
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2.7 Weak Contractions

Definition 2.5. Let (X, d) be a metric space. A map T : X → X is called
weak contraction if there exist a constant δ ∈ (0, 1) and some L ≥ 0 such that

d(Tx, Ty) ≤ δ · d(x, y) + Ld(y, Tx) , for all x, y ∈ X . (32)

Remark. Due to the symmetry of the distance, the weak contractive con-
dition (32) implicitly includes the following dual one

d(Tx, Ty) ≤ δ · d(x, y) + L · d(x, Ty) , for all x, y ∈ X , (33)

obtained from (32) by formally replacing d(Tx, Ty) and d(x, y) by d(Ty, Tx)
and d(y, x), respectively, and then interchanging x and y.

Consequently, in order to check the weak contractiveness of T , it is neces-
sary to check both (32) and (33);

Obviously, any strict contraction satisfies (32), with δ = a and L = 0, and
hence is a weak contraction (that possesses a unique fixed point).

Other examples of weak contractions are given by the next propositions.

Proposition 2.2. Any Kannan mapping, i.e., any mapping satisfying the
contractive condition (8) in Theorem 2.3, is a weak contraction.

Proof. By condition (8) and triangle rule, we get

d(Tx, Ty) ≤ b
[
d(x, Tx) + d(y, Ty)

]
≤

≤ b
{[

d(x, y) + d(y, Tx)
]
+
[
d(y, Tx) + d(Tx, Ty)

]}

which yields
(1 − b)d(Tx, Ty) ≤ bd(x, y) + 2b · d(y, Tx)

and which implies

d(Tx, Ty) ≤ b

1 − b
d(x, y) +

2b

1 − b
d(y, Tx) , for all x, y ∈ X ,

and hence, in view of 0 < b <
1
2

, (32) holds with δ =
b

1 − b
and L =

2b

1 − b
.

Since (8) is symmetric with respect to x and y, (33) also holds. �
Proposition 2.3. Any mapping T satisfying the contractive condition:

there exists c ∈
[
0,

1
2

)
such that

d(Tx, Ty) ≤ c
[
d(x, Ty) + d(y, Tx)

]
, for all x, y ∈ X, (34)

is a weak contraction.
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Proof. Using d(x, Ty) ≤ d(x, y) + d(y, Tx) + d(Tx, Ty) by (34) we get
after simple computations,

d(Tx, Ty) ≤ c

1 − c
d(x, y) +

2 c

1 − c
d(y, Tx) ,

which is (32), with δ =
c

1 − c
< 1 (since c < 1/2) and L =

2 c

1 − c
≥ 0.

The symmetry of (34) also implies (33). �
An immediate consequence of Propositions 2.2 and 2.3 is the following.

Corollary 2.5. Any Zamfirescu mapping, i.e., any mapping satisfying the
assumptions (z1)-(z3) in Theorem 2.4, is a weak contraction.

In a similar way we can prove that any quasi contraction with 0 ≤ h < 1/2
is a weak contraction.

Having in view the fact that the class of weak contractions properly in-
cludes large classes of quasi contractions and weak contractions and quasi
contractions are independent, see Example 2.12, on the one hand, and the
extensive literature related to quasi contractions, on the other hand, it is the
aim of this section to prove two fixed points theorems in the class of weak
contractions: an existence theorem (Theorem 2.11) as well as an existence
and uniqueness theorem (Theorem 2.12). Their merit is that they extend all
results in Section 2.3 and offer a method for approximating fixed points, for
which both a priori and a posteriori estimates are available.

Theorem 2.11. Let (X, d) be a complete metric space and T : X → X be
a weak contraction, i.e., a mapping satisfying (32) with δ ∈ (0, 1) and some
L ≥ 0. Then

1) Fix (T ) = {x ∈ X : Tx = x} 
= ∅;
2) For any x0 ∈ X, the Picard iteration {xn}∞n=0 given by (2) converges

to some x∗ ∈ Fix (T );
3) The following estimates

d(xn, x∗) ≤ δn

1 − δ
d(x0, x1) , n = 0, 1, 2, . . . (35)

d(xn, x∗) ≤ δ

1 − δ
d(xn−1, xn) , n = 1, 2, . . . (36)

hold, where δ is the constant appearing in (32).

Proof. We shall prove that T has at least one fixed point in X. To this
end, let x0 ∈ X be arbitrary and let {xn}∞n=0 be the Picard iteration defined
by (2). Take x := xn−1, y := xn in (32) to obtain

d(Txn−1, Txn) ≤ δ · d(xn−1, xn) ,

which shows that
d(xn, xn+1) ≤ δ · d(xn−1, xn) . (37)



52 2 The Picard Iteration

Using (37), we obtain by induction

d(xn, xn+1) ≤ δnd(x0, x1) , n = 0, 1, 2, . . .

and then
d(xn, xn+p) ≤ δn

(
1 + δ + · · · + δp−1

)
d(x0, x1) =

=
δn

1 − δ
(1 − δp) · d(x0, x1), n, p ∈ N, p 
= 0 . (38)

Since 0 < δ < 1, (38) shows that {xn}∞n=0 is a Cauchy sequence and hence is
convergent. Denote

x∗ = lim
n→∞

xn . (39)

Then

d(x∗, Tx∗) ≤ d(x∗, xn+1) + d(xn+1, Tx∗) = d(xn+1, x
∗) + d(Txn, Tx∗) .

By (32) we have

d(Txn, Tx∗) ≤ δ d(xn, x∗) + Ld(x∗, Txn)

and hence
d(x∗, Tx∗) ≤ (1 + L)d(x∗, xn+1) + δ · d(xn, x∗) , (40)

valid for all n ≥ 0. Letting n → ∞ in (40) we obtain

d(x∗, Tx∗) = 0

i.e., x∗ is a fixed point of T .
The estimate (35) can be obtained from (38) by letting p → ∞.
In order to obtain (36), observe that by (37) we inductively obtain

d(xn+k, xn+k+1) ≤ δk+1 · d(xn−1, xn) , k, n ∈ N ,

and hence, similarly to deriving (38) we obtain

d(xn, xn+p) ≤
δ(1 − δp)

1 − δ
d(xn−1, xn) , n ≥ 1, p ∈ N

∗ . (41)

Now letting p → ∞ in (41), (36) follows. �
Remarks.
1) Theorem 2.11 is a significant extension of Theorem 2.1, Theorem 2.3,

Theorem 2.4 and many other related results;
2) Note that, although the three particular fixed point theorems mentioned

at 1) actually forces the uniqueness of the fixed point, the weak contractions
need not have a unique fixed point, as shown by Example 2.11;

3) Recall that an operator T : X → X is said to be a weakly Picard
operator if the sequence {Tnx0}∞n=0 converges for all x0 ∈ X and the limits
are fixed points of T , see Definition 2.1 in Section 2.1.
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The fixed point x∗ attained by the Picard iteration depends on the initial
guess x0 ∈ X. Therefore, Theorem 2.11 provides a large class of weakly Picard
operators;

4) It is easy to see that condition (32) implies the so called Banach orbital
condition

d(Tx, T 2x) ≤ a d(x, Tx) , for all x ∈ X,

studied by various authors in the context of fixed point theorems.
It is possible to force the uniqueness of the fixed point of a weak contrac-

tion, by imposing an additional contractive condition, quite similar to (32),
as shown by the next theorem.

Theorem 2.12. Let (X, d) be a complete metric space and T : X → X a
weak contraction for which there exist θ ∈ (0, 1) and some L1 ≥ 0 such that

d(Tx, Ty) ≤ θ · d(x, y) + L1 · d(x, Tx) , for all x, y ∈ X . (42)

Then
1) T has a unique fixed point, i.e. F (T ) = {x∗};
2) The Picard iteration {xn}∞n=0 given by (2) converges to x∗, for any

x0 ∈ X;
3) The a priori and a posteriori error estimates

d(xn, x∗) ≤ δn

1 − δ
d(x0, x1) , n = 0, 1, 2, . . .

d(xn, x∗) ≤ δ

1 − δ
d(xn−1, xn) , n = 1, 2, . . .

hold;
4) The rate of convergence of the Picard iteration is given by

d(xn, x∗) ≤ θ d(xn−1, x
∗) , n = 1, 2, . . . (43)

Proof. Assume T has two distinct fixed points x∗, y∗ ∈ X. Then by (42),
with x := x∗, y := y∗, we get

d(x∗, y∗) ≤ θ · d(x∗, y∗) ⇐⇒ (1 − θ) d(x∗, y∗) ≤ 0 ,

so contradicting d(x∗, y∗) > 0.
Letting y := xn, x := x∗ in (42), we obtain the estimate (43).

The rest of the proof follows by Theorem 2.11. �
Remarks.
1) Note that, by the symmetry of the distance, (42) is satisfied for all

x, y ∈ X if and only if

d(Tx, Ty) ≤ θ d(x, y) + L1d(y, Ty) , (44)

also holds, for all x, y ∈ X.
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So, similarly to the case of the dual conditions (32) and (33), in concrete
applications it is necessary to check that both conditions (42) and (44) are
satisfied;

2) Note that condition (42) has been used to prove stability results for
certain fixed point iteration procedures, see Chapter 7;

3) It is known that condition (42) alone does not ensure that T has a fixed
point. But if T satisfying (42) has a fixed point, it is certainly unique;

4) It is a simple task to prove that any operator T satisfying one of the con-
ditions (1), (8), (34), or the conditions (z1)-(z3) in Theorem 2.4, also satisfies
the uniqueness conditions (42) and (44).

Therefore, in view of Example 2.11, Theorem 2.12 (and also Theorem 2.11)
properly generalizes Zamfirescu’s fixed point theorem.

Moreover, any quasi contraction with 0 ≤ h <
1
2

also satisfies (42) and

(44). This shows that Theorem 2.12 unifies and generalizes the fixed point
theorems of Banach, Kannan, Chatterjea and Zamfirescu and partially covers
the Ciric’s fixed point theorem;

5) As it can be seen, Theorem 2.12 (as well as Theorem 2.11, except
for the uniqueness of the fixed point) preserves all conclusions in the Ba-
nach contraction principle in its complete form, given in Theorem 2.1, under
significantly weaker contractive conditions. Indeed, the metrical contractive
conditions known in literature that involve in the right-hand size the displace-
ments

d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)

with the nonnegative coefficients

a(x, y), b(x, y), c(x, y), d(x, y), e(x, y),

respectively, are commonly based on a restrictive assumption of the form

0 < a(x, y) + b(x, y) + c(x, y) + d(x, y) + e(x, y) < 1,

while, our condition (32) do not require δ + L be less than 1, thus providing
a large class of contractive type mappings.

Example 2.11. Let T : [0, 1] → [0, 1] be the identity map, i.e., Tx = x,
for all x ∈ [0, 1]. Then

1) T does not satisfy the Ciric’s contractive condition

d(Tx, Ty) ≤ h · max
{
d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)

}

since max
{
d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)

}
= |x − y| and

|x − y| > h · |x − y| , for all x 
= y and 0 ≤ h < 1 .

2) T satisfies condition (32) with δ ∈ (0, 1) arbitrary and L ≥ 1−δ. Indeed,
conditions (32) and (33) lead to
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|x − y| ≤ δ|x − y| + L · |y − x|

which is true for all x, y ∈ [0, 1] if we take δ ∈ (0, 1) arbitrary and L ≥ 1 − δ.
3) The set of fixed points of T is the interval [0, 1], i.e., Fix (T ) = [0, 1].
It was an open problem whether any quasi contraction is a weak con-

traction. The next example, together with Example 2.11, shows that Ciric’s
quasi-contractive condition and weak contractive condition are independent.

Example 2.12. Let X = [0, 1] ∪
[
3
2
,
5
3

]
with the usual norm and

T : X → X be given by Tx = 0, if x ∈ [0, 1] and Tx = 1, if x ∈
[
3
2
,
5
3

]
. Then:

(a) T does not satisfy the Banach orbital condition and, therefore, it is not a
weak contraction;
(b) T is a quasi contraction with h = 2/3.

Indeed, for x ∈ [0, 1], Tx = 0, d(x, Tx) = 0, T 2x = 0, d(Tx, T 2x) = 0 and
since 0 ≤ x we have d(Tx, T 2x) ≤ d(x, Tx).

If x ∈
[
3
2
,
5
3

]
, then d(x, Tx) = d(x, 1) ≤ 2

3
and T (Tx) = 0, hence

d(Tx, T 2x) > d(x, Tx)

and so T does not satisfy the Banach orbital condition.

If x, y ∈ [0, 1] or x, y ∈
[
3
2
,
5
3

]
, then d(Tx, Ty) = 0, when the quasi

contractive condition is obviously satisfied.

If x ∈ [0, 1] and y ∈
[
3
2
,
5
3

]
, then d(Tx, Ty) = 1, d(x, y) ≥ 1

2
, d(x, Tx) =

d(x, 0) = x, d(y, Ty) = d(y, 1) = |y − 1| , d(y, Tx) = d(y, 0) = y, d(x, Ty) =
d(x, 1) = |x − 1| and therefore

max
{
d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)

}
= y ≥ 3

2

and so the Ciric’s quasi contractive condition

d(Tx, Ty) ≤ h · max
{
d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)

}

is satisfied with h = 2/3. �
Using the notions and results we introduced in Section 2.5, we now can

extend the main results obtained in the present section, in the following way.

Definition 2.6. Let (X, d) be a metric space. A self operator T : X → X
is said to be a weak ϕ-contraction or (ϕ,L)-weak contraction, provided that
there exist a comparison function ϕ and some L ≥ 0, such that

d(Tx, Ty) ≤ ϕ
(
d(x, y)

)
+ Ld(y, Tx) , for all x, y ∈ X. (45)
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Clearly, any weak contraction is a weak ϕ-contraction, with ϕ(t) = δt,
t ∈ R+ and 0 < δ < 1. There exist weak ϕ-contractions which are not weak
contractions with respect to the same metric. Also, all ϕ-contractions are weak
ϕ-contractions with L ≡ 0 in (32).

Similarly to the case of weak contractions, the fact that T satisfies (45),
for all x, y ∈ X, does imply that the following dual inequality

d(Tx, Ty) ≤ ϕ
(
d(x, y)

)
+ Ld(x, Ty) , (46)

obtained from (45) by formally replacing d(Tx, Ty) and d(x, y) by d(Ty, Tx)
and d(y, x), respectively, and then interchanging x and y, is also satisfied.

Consequently, in order to prove that a certain operator T is a weak ϕ-
contraction, we must check the both inequalities (45) and (46).

Theorem 2.11 and Theorem 2.12 could now be easily extended to weak
ϕ-contractions.

Theorem 2.13. Let (X, d) be a complete metric space and T : X → X a
weak ϕ-contraction with ϕ a (c)-comparison function. Then

1) F (T ) = {x ∈ X : Tx = x} 
= ∅;
2) For any x0 ∈ X, the Picard iteration {xn}∞n=0 defined by x0 ∈ X and

xn+1 = Txn , n = 0, 1, 2, . . .

converges to a fixed point x∗ of T ;
3) The following estimate

d(xn, x∗) ≤ s
(
d(xn, xn+1)

)
, n = 0, 1, 2, . . . (47)

holds, where s(t) is given by (18).

Theorem 2.14. Let X and T be as in Theorem 2.13. Suppose T also
satisfies the following condition: there exist a comparison function ψ and some
L1 ≥ 0 such that

d(Tx, Ty) ≤ ψ
(
d(x, y)

)
+ L1d(x, Tx) ,

holds, for all x, y ∈ X.
Then

1) T has a unique fixed point, i.e., F (T ) = {x∗};
2) The estimate (47) holds;
3) The rate of convergence of the Picard iteration is given by

d(xn, x∗) ≤ ϕ
(
d(xn−1, x

∗)
)
, n = 1, 2, . . . .

The proofs of Theorem 2.13 and 2.14 are essentially similar to those of
Theorem 2.11 and 2.12 and, therefore, are omitted here.
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2.8 Bibliographical Comments

§2.1.

Based probably on ideas of Cauchy and Liouville, Picard [Pic90] developed
the method of successive approximations in a series of papers on the existence
of solutions of initial value problems for ordinary differential equations.

For the case of complete normed linear spaces, nowadays called Banach
spaces, Theorem 2.1 was first formulated and proved by Banach [Ban22] in
his famous dissertation from 1922.

Since then, numerous generalizations or extensions of Theorem 2.1 have
been obtained which, together with their various applications, still form a
very dynamical field of research, circumscribed by the fixed point theory. The
interested readers could find very diversified topics in any of the monographs
in the reference list.

The material included in this Section is classical. The method of successive
approximations is also called Picard iteration by many authors, a terminology
that we adopted in this book. The concept of Picard operator was introduced
by Rus [Rus83] and intensively studied, see Rus, Petrusel, A. and Petrusel,
G. [RPP02], for the main results and problems on this topic as well as for a
comprehensive bibliographical list.

§2.2.

The content of Section 2.2 is taken from Rus [Rus01]. Theorem 2.2 is due
to Nemytzki [Nem36] and Edelstein [Ede82]. An extension of this theorem
was obtained by Edelstein [Ede82] who has replaced the compactness of the
space by a weaker assumption of the same kind: “there is a Picard iteration
containing a convergent subsequence”, see Exercise 2.5 at the end of this
chapter.

§2.3.

Theorem 2.3 was given by Kannan [Knn68] in 1968, while Theorem 2.4
was obtained by Zamfirescu [Zam72] in 1972. For some applications of quasi-
nonexpansive operators to the study and convergence of Newton and Newton
type methods, see for example Berinde [Be95a], [Be95c], [Be95d], [Be97b] and
[Be00a].

Condition (∗), generally called “of quasi nonexpansiveness” was introduced
by Tricomi [Trc16] for real functions, and later studied by Diaz and Metcalf
[DiM67], [DiM69] and by Dotson [Dot70] for mappings in Banach spaces.

The convergence ofPicard iteration for thewhole class of quasi-nonexpansive
mappings was established under several additional assumptions on T, i.e., T is
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continuous and asymptotically regular, in Petryshyn and Williamson [PWi73],
see Exercises 2.16 and 2.17.

§2.4.

The content of this Section is basically taken from Rus [Rus83]. Theorem
2.5 was given by Bessaga [Bes59] in 1959. Example 2.7 is taken from Dugundji
and Granas [DuG82], p. 24. Theorem 2.6 is due to Maia [Maa68]. For vari-
ous applications of Maia’s fixed point theorem to concrete problems, see Rus
[Ru79c], [Rus01].

§2.5.

The results presented in this Section are taken from Rus [Rus83], [Rus01]
and Berinde [Be97a]. For the proofs of the Lemmas 2.1 and 2.2, see Rus [Rus83]
and Berinde [Be97a]. Theorem 2.7 rewrites Theorem 3.3.3 in Rus [Rus01],
while Theorem 2.8 adapts Theorem 1.5.1 in Berinde [Be97a]. Theorem 2.9 is
Theorem 3.3.6 in Rus [Rus83]. For other fixed point theorems in this class of
ϕ-contractions, including the ones mentioned in Example 2.9, see Rus [Ru79c],
[Rus01] and Taskovic [Tas86].

§2.6.

The results in this Section are mainly taken from the monograph Berinde
[Be97a]. Lemmas 2.3 and 2.4 are Lemma 1.5.1 and Lemma 1.5.2, respectively,
while Theorem 2.10 is Theorem 1.5.4, in Berinde [Be97a]. A similar result
to that in Theorem 2.10 is obtained in Rus [Rus83] for generalized strict ϕ-
contractions, where an error estimate is also given.

§2.7.

The results in this Section are taken from the papers Berinde [Be04d],
[Be03a]. Theorem 2.11 and Theorem 2.12 are, respectively, Theorem 1 and
Theorem 2 in Berinde [Be04d], while Theorem 2.13 and Theorem 2.14 are,
respectively, Theorem 3 and Theorem 4 in Berinde [Be03a]. For a more de-
tailed treatment and comparison of weak contractions to other contractive
conditions, see also Berinde [Be03c]. Condition (34) appears to have been
first involved in a fixed point theorem by Chatterjea [Cha72].

For the extensive literature related to quasi contractions, a class of opera-
tors in some way related to that of weak contractions see, for example, Ciric
[Cir03] and references therein.

The notion of weakly Picard operator was introduced and intensively
studied by Rus and his collaborators, see [Rus87], [Rus88], [Rus93], [Rus96],
[Rus01], [Ru03a], [Ru03b], [RMu98], [RPS01] and [RPS03].
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The so called Banach orbital condition has been studied by various authors
in the context of fixed point theorems, see for example Hicks and Rhoades
[HiR79], Ivanov [Iva76], Rus [Ru79c] and Taskovic [Tas86].

The general condition (42) has been used by Osilike [Os95c], [Os97a] and
[Os99b] to prove stability results for certain fixed point iteration procedures.

For other metrical contractive conditions known in literature related to
weak contractions and their comparison we refer to the papers by Rhoades
[Rh77b] and Meszaros [Mes92].

Exercises and Miscellaneous Results

2.1. Bryant (1968)
If T is a selfmapping of a complete metric space and, if, for some positive
integer k, T k is a contraction, then T has a unique fixed point.

2.2. Weissinger (1952)
Let (X, d) be a complete metric space and {αn} a sequence of nonnegative

numbers with
∞∑

n=1
αn < ∞. Let T : X → X be such that

d(Tnx, Tny) ≤ αnd(x, y), for all x, y ∈ X.

Prove that T is a Picard operator.

2.3. Let (X, d) be a complete metric space. A map T : X → X is expanding
if d(Tx, Ty) ≥ βd(x, y), for all x, y ∈ X and some β > 1. Prove that if T is
surjective and expanding, then
(a) T is bijective;
(b) T is a Picard operator.

2.4. Let (X, d) be complete and T : X → X a map satisfying

d(Tx, Ty) ≤ α(x, y)d(x, y), for all x, y ∈ X,

where α : X × X → R
+ has the following property: for any closed interval

[a, b] ⊂ R
+ \ {0},

sup{α(x, y) : a ≤ d(x, y) ≤ b} = λ(a, b) < 1.

Then T is a Picard operator.

2.5. Edelstein (1962)
Let (X, d) be a metric space and T : X → X be contractive. If there exists
a point x0 ∈ X such that its sequence of iterates {Tnx0} contains a conver-
gent subsequence {Tnix0}, then {Tnx0} converges and u = lim

n→∞
Tnx0 is the

unique fixed point of T .
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2.6. Converse of Banach’s Fixed Point Theorem (Janos, 1967)
Let (X, d) be a compact metric space and T : X → X a continuous mapping.
Assume ⋂

n∈N

Tn(X) = {x∗}.

Then for each a ∈ (0, 1) there exists a metric ρ on X such that
(a) The metrics d and ρ are equivalent;
(b) T : (X, ρ) → (X, ρ) is an a-contraction.

2.7. Rakotch (1962)
Let (X, d) be a complete metric space. A map T : X → X is said to be weakly
contractive if there exists a function λ : (0,∞) → [0, 1) with sup{λ(r) : 0 <
p ≤ r ≤ q} < 1 and such that

d(Tx, Ty) ≤ λ[d(x, y)]d(x, y), for all x, y ∈ X.

Prove that T has a unique fixed point.

2.8. Boyd-Wong (1969)
Let (X, d) be a complete metric space and let T : X → X satisfy

d(Tx, Ty) ≤ ϕ(d(x, y)), for all x, y ∈ X,

where ϕ : R
+ → R

+ is a real function, upper semicontinuous from the right,
satisfying ϕ(t) < t for t > 0. Then T is a Picard operator.

2.9. Meir-Keeler (1969)
Let (X, d) be a complete metric space and let T : X → X satisfy the following
condition: given ε > 0 there exists δ > 0 such that

ε ≤ d(x, y) < ε + δ ⇒ d(Tx, Ty) < ε.

Then T is a Picard operator.

2.10. Hardy and Rogers (1973)
Let (X, d) be a metric space and T a self-mapping of X satisfying the condi-
tion: for x, y ∈ X

d(Tx, Ty) ≤ ad(x, Tx) + bd(y, Ty) + cd(x, Ty) + ed(y, Tx) + fd(x, y), (#)

where a, b, c, d, e, f are nonnegative and we set α = a+ b+ c+d+ e+ f . Then
(a) If (X, d) is complete and α < 1, then T has a unique fixed point.
(b) If (#) is modified to the condition: x 
= y implies

d(Tx, Ty) < ad(x, Tx) + bd(y, Ty) + cd(x, Ty) + ed(y, Tx) + fd(x, y),

and in this case we assume (X, d) is compact, T is continuous and α = 1, then
T has a unique fixed point.
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2.11. Using T : [0, 1] → [0, 1], T (x) = 1/2, for 0 ≤ x < 1 and T (1) = 1, show
that
(a) T satisfies the Kannan contractive condition (8);
(b) T does not satisfy the Banach contraction condition (1).

2.12. Browder and Petryshyn (1966)
Let E be a Banach space and T a nonexpansive self map of E. T is said to be
asymptotically regular if, for each point x ∈ E, lim(Tn+1x− Tnx) = 0. Let T
be nonexpansive asymptotically regular such that I −T maps bounded closed
subsets of E into closed subsets of E. Suppose T has a fixed point. Then, for
each x0 ∈ E, {Tnx0} converges to a fixed point of T in E.

2.13. Petryshyn and Williamson (1973)
Let X be a Banach space. If A and B are two sets in X, we denote the distance
between A and B by

d(A,B) = inf{‖a − b‖ : a ∈ A, b ∈ B}

and the distance between a point p and A by d(p,A).
Let D be a closed subset of a Banach space X and let T map D continuously
into X such that
(a) FT 
= ∅;
(b) For each x ∈ D and every p ∈ FT , (∗) holds, i.e., T is quasi nonexpansive;
(c) There exists an x0 ∈ D such that xn = Tn(x0) ∈ D, for each n ≥ 1.
Then {xn} converges to a fixed point of T in D if and only if

lim d(xn, FT ) = 0.

2.14. Petryshyn and Williamson (1973)
Let D be a closed subset of a Banach space X and let T map D continuously
into X such that
(a) FT 
= ∅;
(b) T is quasi nonexpansive;
(c) There exists an x0 ∈ D such that xn = Tn(x0) ∈ D, for each n ≥ 1;
(d) T is asymptotically regular at x0;
(e) If {yn} ⊆ D,n ≥ 1, and ‖(I − T )yn‖ → 0 as n → ∞, then

lim inf
n

d(yn, FT ) = 0.

Then {xn} converges to a fixed point of T in D.

2.15. Dotson (1970)
Let X be the real line with the usual metric and let T be defined as follows:

T (x) =

⎧⎨
⎩

0, if x = 0
x

2
sin

1
x

, if x 
= 0
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(a) Show that T is not a nonexpansive function;
(b) Show that T is quasi nonexpansive.
Solution.
(a) Take x =

2
π

and y =
2
3π

to obtain |Tx − Ty| =
8
3π

>
4
3π

= |x − y|;
(b) Since p = 0 is the only fixed point of T , we have to show that |T (x)| ≤ |x|,
which is immediate.

2.16. Petryshyn and Williamson (1973)
Let B = B(0, 1) be the unit ball in R

2 with the usual (Euclidean) norm.
Define T : B → B by

T (x, y) =
(
−x

2
,−y

)

where (x, y) denote the usual coordinates for R
2. Show that:

(a) T is nonexpansive;
(b) FT 
= ∅;
(c) At all points z in B on the line y = 0, T is asymptotically regular at z,
but T is not asymptotically regular at any other points in B.

2.17. Petryshyn and Williamson (1973)
Let D be a closed convex subset of a real Banach space X and let T be
conditionally quasi nonexpansive mapping of D into itself. Suppose further
that T satisfies the following conditions:
(a) There exists a compact set K ⊂ X and a constant k < 1 such that

d(T (x),K) ≤ kd(x,K) for each x ∈ D.

(b) T is conditionally quasi nonexpansive, that is, T is quasi nonexpansive
whenever FT 
= ∅.
Then the sequence {Tn(x0)} converges to a fixed point of T for each x0 in D.

2.18. Ciric (1981)
Let (X, d) be a complete metric space and let T : X → X be contractive,
that is d(Tx, Ty) < d(x, y) for all x, y ∈ X,x 
= y, and satisfies the following
condition: given ε > 0 there exists δ > 0 such that

ε < d(x, y) < ε + δ ⇒ d(Tx, Ty) < ε.

Then T is a Picard operator.

2.19. Show that if T satisfies (#) in Exercise 2.10, with a = b and c = d and
α ≤ 1, then T is a quasi nonexpansive operator.
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The Krasnoselskij Iteration

It is well known that if T is assumed to be only a nonexpansive map, then
the Picard iterations {Tnx0}n ≥ 0 need no longer converge (to a fixed point of
T ). In fact, in general, T need not have a fixed point, as shown by Exercises
1.15, 1.16 and 1.19.

It is the purpose of this chapter to survey some old and new results on the
approximation of fixed points for nonexpansive and pseudocontractive type
operators by means of Krasnoselskij iteration.

The key idea in introducing Krasnoselskij iteration is the fact that, if Tλ

is the averaged mapping associated to T , then if T is nonexpansive, so is Tλ,
and both have the same fixed point set, see Exercise 3.3. Furthermore, Tλ has
much more asymptotic behavior than the original mapping T .

Krasnoselskij was the first to notice the regularizing effect of Tλ in the case
of a uniformly convex Banach space, see also the Bibliographical Comments
at the end of this chapter.

3.1 Nonexpansive Operators in Hilbert Spaces

We begin this section by proving the Browder-Gohde-Kirk fixed point the-
orem (Theorem 1.2), which is a basic fixed point existence result for nonex-
pansive operators. The proof will be given in a Hilbert space setting, suitable
to many convergence theorems for the Krasnoselskij iteration.

Theorem 3.1. Let C be a closed bounded convex subset of the Hilbert
space H and T : C → C be a nonexpansive operator. Then T has at least one
fixed point.

Proof. For a fixed element v0 in C and a number s with 0 < s < 1, we
denote

Us(x) = (1 − s)v0 + s Tx , x ∈ C.
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Since C is convex and closed, we deduce that Us : C → C is a s−contrac-
tion and, in virtue of Theorem 1.1, it has a unique fixed point, say us. On the
other hand, since C is closed, convex and bounded in the Hilbert space H,
it is weakly compact. Hence we may find a sequence {sj} in (0,1) such that
sj → 1 (as j → ∞) and uj = usj

converges weakly to an element p of H.
Since C is weakly closed, p lies in C. We shall prove that p is a fixed point

of T . If u is any arbitrary point in H, we have

‖uj − u‖2 = ‖(uj − p) + (p − u)‖ 2 = ‖uj − p‖2 +‖p − u‖2 +2 〈uj − p, p − u〉 ,

where
2 〈uj − p, p − u〉 → 0 (as j → ∞),

since uj − p converges weakly to zero in H. Setting u = Tp above, we obtain

lim
j→∞

(
‖uj − Tp‖2 − ‖uj − p‖2

)
= ‖p − Tp‖2

.

Moreover, since sj → 1 and Usj
uj = uj , we have

Tuj − uj = [sjTuj + (1 − sj) v0] − uj + (1 − sj)[Tuj − v0] =

= (Usj
uj − uj) + (1 − sj)(Tuj − v0) = 0 + (1 − sj)(Tuj − v0) → 0,

as j → ∞, and therefore lim
j→∞

‖Tuj − uj‖ = 0.

On the other hand, since T is nonexpansive, we have

‖Tuj − Tp‖ ≤ ‖uj − p‖

and hence

‖uj − Tp‖ ≤ ‖uj − Tuj‖ + ‖Tuj − Tp‖ ≤ ‖uj − Tuj‖ + ‖uj − p‖ .

Thus
lim sup (‖uj − Tp‖ − ‖uj − p‖) ≤ lim

j→∞
‖uj − Tuj‖ = 0

and, due to the boundedness of C, we have also

lim sup
(
‖uj − Tp‖2 − ‖uj − p‖2

)
=

= lim sup (‖uj − Tp‖ − ‖uj − p‖) (‖uj − Tp‖ + ‖uj − p‖) ≤ 0,

which yields
lim

j→∞

(
‖uj − Tp‖2 − ‖uj − p‖2

)
= 0

and hence
‖p − Tp‖2 = 0,

that is, p is a fixed point of T. �
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Remark. Even if the proof of Theorem 3.1 is more constructive than
the corresponding version of this result in uniformly convex Banach spaces
(Theorem 1.2), it does not provide a method for computation of fixed points.

Definition 3.1. Let H be a Hilbert space and C a subset of H. A mapping
T : C → H is called demicompact if it has the property that whenever {un} is
a bounded sequence in H and {Tun − un} is strongly convergent, then there
exists a subsequence {unk

} of {un} which is strongly convergent.

We can give now a result on approximating fixed points of nonexpansive
mappings by means of the Krasnoselskij iteration. To this end, we start by
proving the next Lemma.

Lemma 3.1. Let C be a bounded closed convex subset of a Hilbert space
H and T : C → C be a nonexpansive and demicompact operator. Then the
set FT of fixed points of T is a nonempty convex set.

Proof. Since T is nonexpansive, by Theorem 3.1, T has fixed points in C,
that is, FT 
= ∅. Furthermore, FT is convex, i.e., when x, y ∈ FT and λ ∈ [0, 1]
we have

uλ = (1 − λ)x + λy ∈ FT .

Indeed,

‖ Tuλ − x‖ = ‖ Tuλ − Tx‖ ≤ ‖ uλ − x‖ and ‖ Tuλ − y‖ ≤ ‖ uλ − y‖ ,

which imply that

‖ x − y‖ ≤ ‖ x − Tuλ‖ + ‖ Tuλ − y‖ ≤ ‖ x − y‖ .

This shows that for some a, b with 0 ≤ a, b ≤ 1, we have

x − Tuλ = a(x − uλ) and y − Tuλ = b(y − uλ)

from which it follows that Tuλ = uλ ∈ FT . �
Theorem 3.2. Let C be a bounded closed convex subset of a Hilbert space

H and T : C → C be a nonexpansive and demicompact operator. Then the set
FT of fixed points of T is a nonempty convex set and for any given x0 in C
and any fixed number λ with 0 < λ < 1, the Krasnoselskij iteration {xn}∞n=0

given by
xn+1 = (1 − λ)xn + λT xn , n = 0, 1, 2, . . . (1)

converges (strongly) to a fixed point of T .

Proof. The first part follows by Lemma 3.1.
For any x0 ∈ C, the sequence {xn}∞n=0 given by (1) lies in C and is

bounded. Let p be a fixed point of T , and, so of the averaged map Uλ, given by

Uλ = (1 − λ)I + λT (I = the identity map). (2)
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We first prove that the sequence {xn − Txn}n∈N converges strongly to
zero. Indeed

xn+1 − p = (1 − λ)xn + λTxn − p = (1 − λ)(xn − p) + λ(Txn − p).

On the other hand, for any constant a,

a(xn − Txn) = a(xn − p) − a(Txn − p).

Then
‖ xn+1 − p‖2 = (1 − λ)2 ‖xn − p‖2 + λ2 ‖Txn − p‖2 +

+2λ(1 − λ) 〈Txn − p, xn − p〉
and

a2 ‖xn − Txn‖2 = a2 ‖xn − p‖2 + a2 ‖Txn − p‖2 − 2a2 〈Txn − p, xn − p〉 .

Hence, summing up the corresponding sides of the preceding two inequal-
ities and using the fact that T is nonexpansive and Tp = p, we get

‖xn+1 − p‖2 + a2 ‖xn − Txn‖2 ≤ [2a2 + λ2 + (1 − λ)2] · ‖ xn − p‖2 +

+2[λ(1 − λ) − a2] · 〈Txn − p, xn − p〉 .

If we choose now an a such that a2 ≤ λ(1 − λ), then from the last inequality
we obtain

‖xn+1 − p‖2 + a2 ‖xn − Txn‖2 ≤

≤
(
2a2 + λ2 + (1 − λ)2 + 2λ(1 − λ) − 2a2

)
‖xn − p‖2 = ‖xn − p‖2

(we used the Cauchy-Schwarz inequality,

〈Txn − p, xn − p〉 ≤ ‖Txn − P‖ · ‖xn − p‖ ≤ ‖ xn − p‖2
)

.

Letting now a2 = λ(1 − λ) > 0 and summing up the obtained inequality

a2 ‖xn − Txn‖2 ≤ ‖ xn − p‖2 − ‖ xn+1 − p‖2

for n = 0 to n = N we get

λ(1 − λ)
N∑

n=0

‖xn − Txn‖2 ≤
N∑

n=0

[
‖xn − p‖2 − ‖xn+1 − p‖2

]
=

= ‖x0 − p‖2 − ‖xN+1 − p‖2 ≤ ‖ x0 − p‖2
,

which shows that
∞∑

n=0
‖xn − Txn‖2

< ∞ and hence ‖xn − Txn‖ → 0, as
n → ∞.
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As T is demicompact, it results that there exists a strongly convergent
subsequence {xni

} such that xni
→ p ∈ FT .

Since T is nonexpansive, Txni
→ Tp and Tp = p.

The convergence of the entire sequence {xn}∞n=0 to p now follows from the
inequality ‖xn+1 − p‖ ≤ ‖xn − p‖, which can be deduced from the nonex-
pansiveness of T and is valid for each n. �

Remarks.
1) The class of demicompact operators contains the compact operators,

therefore by Theorem 3.2 we obtain, in particular, the result of Krasnoselskij
[Kra55], and that of Schaefer [Sch57], established there in the more general
context of uniformly convex Banach spaces;

2) From the proof of Theorem 3.2 it results that Uλ given by (2) is as-
ymptotically regular , i.e.,

∥∥ Un
λ x − Un+1

λ x
∥∥ → 0, as n → ∞, for any x ∈ C,

that is,
xn − xn+1 → 0, as n → ∞, (3)

for any x0 ∈ C.
The existence of the previous limit alone does not imply generally the con-

vergence of the sequence {xn}∞n=0 to a fixed point of T (in Theorem 3.2 one
additional assumption was the demicompactness of T ). There are other pos-
sible additional assumptions to ensure the convergence of {xn}∞n=0 under the
hypothesis of asymptotic regularity. For example, in the case of the real line,
C = [a, b] the closed bounded interval and T : C → C a continuous function,
Hillam [Hil76] showed that the Picard iteration associated to T converges if
and only if it is asymptotically regular;

3) Let us notice that the Krasnoselskij iteration is in fact the Picard
iteration corresponding to the “averaged operator” Uλ associated to T and
defined by (2);

4) The demicompactness on the whole D may be weakened to 0 by simul-
taneously adding an other assumption, to obtain the next result. A map T of
D ⊂ X into X is demicompact at f if, for any bounded sequence {xn} in D
such that xn − T (xn) → f as n → ∞, there exists a subsequence {xnj

} and
an x in D such that xnj

→ x as j → ∞ and x− T (x) = f. Clearly, when T is
demicompact on D, it is demicompact at 0 but the converse is not true.

Corollary 3.1. Let X be a uniformly convex Banach space, D a closed
bounded convex set in X, and T a nonexpansive mapping of D into D such
that T satisfies any one of the following two conditions:
(i) (I-T) maps closed sets in D into closed sets in X;
(ii) T is demicompact at 0.

Then, for any given x0 in C and any fixed number λ with 0 < λ < 1, the
Krasnoselskij iteration {xn}∞n=0 given by (1) converges (strongly) to a fixed
point of T .

Proof. It suffices to show that the averaged map Tλ satisfies all conditions
(a) − (e) in Exercise 2.14. �



68 3 The Krasnoselskij Iteration

Remarks.
1) Conditions (i) and (ii) in Corollary 3.1 are independent;
2) If in Theorem 3.2 we remove the assumption that T is demicompact,

then the Krasnoselskij iteration does not longer converge strongly, in general,
but it converges (at least) weakly to a fixed point, as shown by the next
theorem.

Theorem 3.3. Suppose T is a nonexpansive operator that maps a bounded
closed convex set C of H into C and that FT = {p}. Then the Krasnoselskij
iteration converges weakly to p,

Un
λ x0 ⇀ p,

for any x0 ∈ C.

Proof. It suffices to show that if {xnj
}∞j=0, xnj

= U
nj

λ x converges weakly
to a certain p0, then p0 is a fixed point of T or of Uλ and therefore p0 = p.
Suppose that {xnj

}∞j=0 does not converge weakly to p. Then
∥∥ xnj

− Uλp0

∥∥ ≤
∥∥ Uλxnj

− Uλp0

∥∥+
∥∥ xnj

− Uλxnj

∥∥ ≤

≤
∥∥ xnj

− p0

∥∥+
∥∥ xnj

− Uλxnj

∥∥
and, using the arguments in the proof of Theorem 3.2, it results

∥∥ xnj
− Uλxnj

∥∥ → 0, as n → ∞,

and so the last inequality implies that

lim sup
( ∥∥ xnj

− Uλp0

∥∥−
∥∥ xnj

− p0

∥∥ ) ≤ 0. (4)

But, like in the proof of Theorem 3.2, we have
∥∥ xnj

− Uλp0

∥∥2 =
∥∥ (xnj

− p0) + (p0 − Uλp0)
∥∥2 =

=
∥∥ xnj

− p0

∥∥2 + ‖p0 − Uλp0‖2 + 2
〈
xnj

− p0, p0 − Uλp0

〉
,

which shows, together with xnj
⇀ p0 (as j → ∞), that

lim
n→∞

[∥∥ xnj
− Uλp0

∥∥2 −
∥∥xnj

− p0

∥∥2
]

= ‖p0 − Uλp0‖2
. (5)

On the other hand, we have
∥∥ xnj

− Uλp0

∥∥2 −
∥∥xnj

− p0

∥∥2 =
( ∥∥ xnj

− Uλp0

∥∥−
∥∥ xnj

− p0

∥∥ ) ·
·
( ∥∥ xnj

− Uλp0

∥∥+
∥∥ xnj

− p0

∥∥ ) . (6)

Since C is bounded, the sequence
{∥∥ xnj

− Uλp0

∥∥+
∥∥ xnj

− p0

∥∥} is bounded,
too, and by the relations (4)-(6) we get
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‖p0 − Uλp0‖ ≤ 0, i.e. Uλp0 = p0 ⇔ p0 ∈ FT = {p},

which ends the proof. �
Remark. The assumption FT = {p} in Theorem 3.3 may be removed in

order to obtain a more general result.

Theorem 3.4. Let C be a bounded closed convex subset of a Hilbert
space and T : C → C be a nonexpansive operator. Then, for any x0 in C, the
Krasnoselskij iteration converges weakly to a fixed point of T.

Proof. Let FT be the set of all fixed points of T in C (which is nonempty,
by Theorem 3.1, and convex, by Lemma 3.1). As T is nonexpansive, for each
p ∈ FT and each n we have

‖ xn+1 − p‖ ≤ ‖ xn − p‖ ,

which shows that the function g(p) = lim
n→∞

‖ xn − p‖ is well defined and is a
lower semicontinuous convex function on FT . Let

d0 = inf{g(p) : p ∈ FT }.

For each ε > 0, the set

Fε = {y : g(y) ≤ d0 + ε}

is closed, convex, nonempty and bounded and, hence, weakly compact. There-
fore ∩

ε>0
Fε 
= ∅, and in fact

∩
ε>0

Fε = {y : g(y) = d0} ≡ F0.

Moreover, F0 contains exactly one point. Indeed, since F0 is convex and closed,
for p0, p1 ∈ F0, and pλ = (1 − λ)p0 + λp1,

g2(pλ) = lim
n→∞

‖ pλ − xn‖2 = lim
n→∞

(‖λ(p1 − xn) + (1 − λ)(p0 − xn)‖2) =

= lim
n→∞

(λ2 ‖p1 − xn‖2 + (1 − λ)2 ‖ p0 − xn‖2 +

+2λ(1 − λ) 〈p1 − xn, p0 − xn〉) = lim
n→∞

(λ2 ‖p1 − xn‖2 +

+(1 − λ)2 ‖ p0 − xn‖2 + 2λ(1 − λ) ‖ p1 − xn‖ · ‖ p0 − xn‖)+
+ lim

n→∞
{2λ(1 − λ) [〈p1 − xn, p0 − xn〉 − ‖ p1 − xn‖ · ‖ p0 − xn‖]} =

= g2(p) + lim
n→∞

{2λ(1 − λ) 〈p1 − xn, p0 − xn〉 − ‖ p1 − xn‖ · ‖ p0 − xn‖} .

Hence

lim
n→∞

{2λ(1 − λ) [〈p1 − xn, p0 − xn〉 − ‖ p1 − xn‖ · ‖ p0 − xn‖]} = 0.
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Since
‖p1 − xn‖ → d0 and ‖ p0 − xn‖ → d0,

the latter relation implies that

‖ p1 − p0‖2 = ‖ (p1 − xn) + (xn − p0‖2 = ‖ p1 − xn‖2 +

+ ‖ xn − p0‖2 − 2 < p1 − xn, p0 − xn >→ d2
0 − d2

0 − 2d2
0 = 0,

giving a contradiction.
Now, in order to show that xn = Un

λ x0 ⇀ p0, is suffices to assume that
xnj

⇀ p for an infinite subsequence and then prove that p = p0. By the
arguments in Theorem 3.3, p ∈ FT . Considering the definition of g and the
fact that xnj

→ p, we have

∥∥ xnj
− p0

∥∥2 =
∥∥ xnj

− p + p − p0

∥∥2 =
∥∥ xnj

− p
∥∥2 + ‖ p − p0‖2 −

−2
〈
xnj

− p, p − p0

〉
→ g2(p) + ‖ p − p0‖2 = g2(p0) = d2

0.

Since g2(p) ≥ d2
0, the last inequality implies that

‖ p − p0‖ ≤ 0,

which means that p = p0. �

3.2 Strictly Pseudocontractive Operators

In this section we present some convergence theorems for the Krasnoselskij
iteration scheme in the class of pseudocontractive operators. The first of them
is concerned with the computation of fixed points of strictly pseudocontractive
operators.

Theorem 3.5. Let C be a bounded closed convex subset of a Hilbert space
and T : C → C be a strictly pseudocontractive operator, i.e., an operator for
which there exists a constant k < 1 such that

‖Tx − Ty‖2 ≤ ‖ x − y‖2 + k ‖ (I − T )x − (I − T ) y‖2
, x, y ∈ C. (7)

Then, for any x0 in C and any fixed µ such that µ < 1−k the Krasnoselskij
iteration {xn}∞n=0, given by x0 ∈ C and

xn+1 = (1 − µ)xn + µT xn , n = 0, 1, 2, . . . , (8)

converges weakly to a fixed point p of T.
If, additionally, we assume that T is demicompact, then {xn}∞n=0 converges

strongly to p.
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Proof. We denote as usually Tt = (1 − t) I + t T and show that Tt is
nonexpansive. Indeed, by the pseudocontractiveness condition (7) it follows
that U = I − T is strongly monotone, i.e.,

< Ux − Uy, x − y > ≥ m ‖ Ux − Uy‖2
, with m =

1 − k

2
> 0.

Then, for any t > 0

‖ Ttx − Tty‖2 = ‖ (I − tU)x − (I − tU) y‖2 =

= ‖x − y‖2 + t2 ‖Ux − Uy‖2 − 2t < Ux − Uy , x − y > ≤

≤ ‖ x − y‖2 + (t2 − 2tm) ‖ Ux − Uy‖2
.

Now, if we take t ≤ 2m = 1 − k, then from the preceding inequality we
obtain

‖ Ttx − λty‖ ≤ ‖ x − y‖ , x, y ∈ C,

which shows that Tt is nonexpansive.
Now, by Theorem 3.4, Tt (and therefore T ) has a fixed point p0 in C and

for any fixed λ with 0 < λ < 1, the Krasnoselskij iteration xn = (Tt)n
λ(x0)

associated to Tt converges weakly to some fixed point p of T in C.
But the iteration function (Tt)λ is in fact

(Tt)λ = (1−λ) I +λTt = (1−λ) I +λ[(1− t) I + t T ] = (1−λt) I +λ t T = Tµ,

with µ = λt < t ≤ 1 − k.
In order to prove the second part of the theorem, based on Theorem 3.3,

it suffices to show that Tµ is demicompact. But this follows immediately from
the demicompactness of T using the equality

Tµx − x = µ (Tx − x),

valid for every x in C. �

3.3 Lipschitzian and Generalized Pseudocontractive
Operators

Even though there is a rather strong connection between strictly pseudo-
contractive operators and generalized pseudocontractive operators, these two
classes are however independent each other.

This is the motivation why, in addition to the short previous section, we
consider here generalized pseudocontractions which are also Lipschitzian, a
class for which we can use the Krasnoselskij iteration in order to approximate
their fixed points.
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Definition 3.2. Let H be a Hilbert space with inner product 〈·, ·〉 and
norm ‖·‖. An operator T : H → H is said to be a generalized pseudo-
contraction if there exists a constant r > 0 such that, for all x, y in H,

‖ Tx − Ty‖2 ≤ r2 ‖x − y ‖2 + ‖Tx − Ty − r(x − y) ‖2
. (9)

Remarks.
1) Condition (9) is equivalent to

〈Tx − Ty, x − y〉 ≤ r ‖ x − y‖2
, for all x, y ∈ H, (10)

or to
〈(I − T )x − (I − T ) y〉 ≥ (1 − r) ‖ x − y‖2

. (11)

Relation (11) implies that U = I − T is strongly monotone for r < 1.
2) If r = 1, then a generalized pseudo-contraction reduces to a pseudo-

contraction;
3) By the Cauchy-Schwarz inequality

| 〈Tx − Ty, x − y 〉| ≤ ‖ Tx − Ty‖ · ‖ x − y‖ ,

we obtain that any Lipschitzian operator T , that is, any operator for which
there exists s > 0 such that

‖ Tx − Ty‖ ≤ s · ‖ x − y‖ , x, y ∈ H, (12)

is also a generalized pseudo-contractive operator, with r = s.
This, however, does not exclude the possibility that a certain operator

T be simultaneously Lipschitzian with constant s, and generalized pseudo-
contractive with constant r, and r < s. The existence of the last inequality is,
in fact, the only reason of considering together Lipschitzian and generalized
pseudo-contractive operators.

4) On the other hand, Theorem 3.6 below is obtained under the essential
assumptions r < 1 and s ≥ 1. Consequently, in the following, we shall assume
that the Lipschitzian constant s and the generalized pseudo-contractivity con-
stant r fulfill the conditions

0 < r < 1 and r ≤ s. (13)

Example 3.1. Let H be the real line R endowed with the Euclidean inner

product and norm, K =
[
1
2
, 2
]

and T : K → K a function given by Tx =
1
x

,

for all x in K.
Then T is Lipschitzian with constant s = 4 (so T is also generalized

pseudo-contractive with constant r = 4).
Moreover, T is generalized pseudocontractive with any constant r > 0. It

is easy to see that T has a unique fixed point, FT = {1}, and that, for any
initial choice x0 = a 
= 1, the Picard iteration yields the oscillatory sequence
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a,
1
a
, a,

1
a
, . . .

Theorem 3.6. Let K be a non-empty closed convex subset of a real Hilbert
space and T : K → K a generalized pseudocontractive and Lipschitzian
operator with the corresponding constants r and s fulfilling (13). Then

(i) T has an unique fixed point p;
(ii) for each x0 in K, the Krasnoselskij iteration {xn}∞n=0, given by

xn+1 = (1 − λ)xn + λTxn , n = 0, 1, 2, . . . , (14)

converges (strongly) to p, for all λ ∈ (0, 1) satisfying

0 < λ < 2(1 − r)/(1 − 2r + s2). (15)

(iii) Both the a priori

‖ xn − p‖ ≤ θn

1 − θ
· ‖ x1 − x0‖ , n = 1, 2, . . . (16)

and a posteriori

‖ xn − p‖ ≤ θ

1 − θ
· ‖ xn − xn−1‖ , n = 1, 2, . . . (17)

estimates hold, with

θ =
(
(1 − λ)2 + 2λ(1 − λ) r + λ2s2

)1/2
. (18)

Proof. We consider the averaged operator F associated to T,

Fx = (1 − λ)x + λ · Tx , x ∈ K, (19)

for all λ ∈ [0, 1]. Since K is convex, we have that F (K) ⊂ K for each λ ∈ [0, 1].
As a closed subset of a Hilbert space, K is a complete metric space. We

claim that F is a θ−contraction with θ given by (18).
Indeed, since T is generalized pseudo-contractive and Lipschitzian, we have

‖Fx − Fy‖2 = ‖ (1 − λ)x + λTx − (1 − λ) y − λTy‖2 =

= ‖ (1 − λ)(x − y) + λ(Tx − Ty)‖2 = (1 − λ)2 · ‖ x − y‖2 +

+2λ(1 − λ) · 〈Tx − Ty, x − y〉 + λ2 · ‖Tx − Ty‖2 ≤

≤
(
(1 − λ)2 + 2λ(1 − λ)r + λ2s2

)
· ‖ x − y‖2

,

which yields

‖Fx − Fy‖ ≤ θ · ‖ x − y‖ , for all x, y ∈ K.
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In view of condition (15), it results that 0 < θ < 1, so the mapping F is a
θ−contraction. In order to obtain the conclusion we now apply the contraction
mapping principle (Theorem 2.1) for the operator F and the complete metric
space K. �

Remarks.
1) The a priori estimate (16) in Theorem 3.6 shows that the Krasnoselskij

iteration converges to p at least as fast as the geometric series of ratio θ;
2) The Krasnoselskij iteration solves several situations when the Picard

iteration does not converge.

Example 3.2. Let K be as in Example 3.1. Here s = 4 and r > 0 arbitrary.
Taking, for example, r = 0.5 we get

2(1 − r)/(1 − 2r + s2) = 1/16,

and so, by Theorem 3.6, the sequence {xn}∞n=0 given by

xn+1 = (1 − λ) · xn + λ · 1
xn

, n = 0, 1, 2, . . . (20)

converges strongly to the fixed point p = 1 of T , for all values of λ in the

interval
(

0,
1
16

)
.

Remark. It is of interest to answer the following question: amongst all the
Krasnoselskij iterations {xn}∞n=0 in the family (14), obtained when λ ranges
the interval (0, a), with

a =
2(1 − r)

(1 − 2r + s2)
,

is there a certain iteration to be the fastest one (in that family) ?
To answer this question, we shall adopt a suitable concept of convergence

rate.
Let {xn} and {yn} be two sequences that converge to p (as n → ∞),

satisfying the estimate (16) with θ = θ1 and θ = θ2, respectively, and such
that θ1, θ2 ∈ (0, 1). We shall say that {xn} converges faster than {yn} if

θ1 < θ2.

Equipped now with this concept of rate of convergence, Theorem 3.7 below
answers in the affirmative the previous question.

Theorem 3.7. Let all assumptions in Theorem 3.6 be satisfied. Then the
fastest iteration {xn}∞n=0 in the family (14), with λ ∈ (0, a), is the one ob-
tained for

λmin = (1 − r) / (1 − 2r + s2). (21)

Proof. We have to find the minimum of the quadratic function
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f(x) = (1 − x)2 + 2x(1 − x) r + x2s2,

with respect to x, that is to minimize the function

f(x) = (1 − 2r + s2)x2 − 2(1 − r)x + 1 , x ∈ (0, a),

with a given by
a = 2(1 − r)/(1 − 2r + s2). (22)

This is an elementary task. Indeed from (13) we have that

1 − 2r + s2 ≥ (1 − r)2 > 0,

and hence f does admit a minimum, which is attained for

x = λmin,

with λmin given by (21). The minimum value of f(x) is then

fmin = (s2 − r2)/(1 − 2r + s2),

which shows that the minimum value of θ given by (18) is

θmin =
(
(s2 − r2) / (1 − 2r + s2)

)1/2
,

that completes the proof. �
Remarks.
1) It is important to notice that if s < 1, that is, T is actually a

s−contraction, then a > 1 and hence λ = 1 ∈ (0, a). This shows that among
all Krasnoselskij iterations (14) that converge to the fixed point of T , we also
find the Picard iteration associated to T , which is obtained from (14) for
λ = 1. (This of course does not happen if s ≥ 1);

2) As for the Picard iteration we have a similar a priori estimation, we
can compare the Picard iteration to the fastest Krasnoselskij iteration in the
family (14), with λ ∈ (0, a) :

a) If r = s2 < 1, then we have

θmin = s,

which means that the fastest Krasnoselskij iteration in the family (14) coin-
cides with the Picard iteration itself;

b) If r 
= s2, then it is easy to check that we have

θmin < s,

(since s < 1), which shows that the Krasnoselskij iteration (14) with λ = λmin

is faster than the Picard iteration associated to T .
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In this case, the fastest iteration from (14) may be regarded as an accel-
erating procedure of the Picard iteration.

Example 3.3. For T and K as in Examples 3.1 and 3.2, and for a certain
r ∈ (0, 1), we obtain the fastest Krasnoselskij iteration for

λ = (1 − r) / (1 − 2r + 16).

If we take r = 0.5, then (14) converges for each λ ∈
(

0,
1
16

)
. The fastest

Krasnoselskij iteration {xn}∞n=0 in this family is then obtained for λ =
1
32

,
and is given by

xn+1 =
1
32

(
31xn +

1
xn

)
, n = 0, 1, 2, . . . .

The averaged operator F,

F (x) =
1
32

(
31x +

1
x

)
,

associated to T is a contraction and has the contraction coefficient

θmin =
√

63
8

= 0.992,

which is very close to 1.
The fastest Krasnoselskij iteration obtained in this way, converges very

slowly to p = 1, the fixed point of T , as shown by the next Example.

Example 3.4. Starting with x0 = 1.5, and x0 = 1.25, respectively, the
first 32 iterations are the following:

n xn n xn

0 1.5 16 1.203
1 1.473 17 1.191
2 1.449 18 1.180
3 1.425 19 1.170
4 1.402 20 1.160
5 1.381 21 1.151
6 1.360 22 1.142
7 1.341 23 1.133
8 1.322 24 1.126
9 1.304 25 1.118
10 1.287 26 1.111
11 1.271 27 1.105
12 1.256 28 1.098
13 1.242 29 1.087
14 1.228 30 1.082
15 1.215 31 1.077

n xn n xn

0 1.25 16 1.0960
1 1.2359 17 1.0902
2 1.2226 18 1.0848
3 1.2100 19 1.0797
4 1.1980 20 1.0749
5 1.1866 21 1.0704
6 1.1759 22 1.0662
7 1.1657 23 1.0584
8 1.1561 24 1.0515
9 1.1470 25 1.0484
10 1.1384 26 1.0454
11 1.1303 27 1.0426
12 1.1226 28 1.0400
13 1.1153 29 1.0376
14 1.1085 30 1.0353
15 1.1021 31 1.0331
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3.4 Pseudo ϕ-Contractive Operators

In this section we want to show how we can unify in a single concept various
notions as nonexpansive, Lipschitzian, pseudo-contractive type operators etc.
For this new class of operators, called pseudo ϕ-contractive, we shall prove a
convergence theorem for the Krasnoselskij fixed point procedure.

Let H be a Hilbert space with the inner product 〈·, ·〉 and the norm ‖·‖.
For the operators T : H → H, let us denote by

1) C0, the class of a−contractions, 0 ≤ a < 1;
2) C1, the class of nonexpansive operators;
3) C2, the class of strictly pseudo-contractive operators;
4) C3, the class of pseudo-contractive operators;
5) C4, the class of generalized pseudo-contractive operators.
The next lemmas are immediate consequences of the results given in the

previous sections and chapters.

Lemma 3.2.
1) T ∈ C3 if and only if

〈Tx − Ty, x − y〉 ≤ ‖ x − y‖2
, for all x, y ∈ H;

2) T ∈ C3 if and only if

〈(I − T )x − (I − T ) y, x − y〉 ≥ 0, for all x, y ∈ H.

Lemma 3.3.
1) T ∈ C4 if and only if there exists r > 0 such that

〈Tx − Ty, x − y〉 ≤ r · ‖ x − y‖2
, for all x, y ∈ H;

2) T ∈ C4 if and only if there exists r > 0 such that

〈(I − T )x − (I − T ) y, x − y〉 ≥ (1 − r) · ‖ x − y‖2
, for all x, y ∈ H.

Lemma 3.4. T ∈ C2 if and only if there exists k > 0 such that

〈(I − T )x − (I − T ) y, x − y〉 ≥ k · ‖ x − y‖2
, for all x, y ∈ H.

Remark. It is also easy to prove the following inclusions

C0 ⊂ C1 ⊂ C2 ⊂ C3 ⊂ C4.

Definition 3.3. An operator T : H → H is said to be (strictly) pseudo ϕ-
contractive if, for any a, b, c ∈ R with a+b+c = 1, there exists a (comparison)
function ϕ : R+ → R+, such that



78 3 The Krasnoselskij Iteration

a · ‖x − y‖2 + b · 〈Tx − Ty, x − y〉 + c · ‖Tx − Ty‖2 ≤ ϕ2 ( ‖ x − y‖ ) ,

(23)

holds, for all x, y in H.

Example 3.4.
1) Any Lipschitzian operator T is pseudo ϕ−contractive with a = 0, b =

0, c = 1 and ϕ(t) = t;
2) Any pseudo-contractive operator is also of pseudo ϕ−contractive type

with a = 0, b = 1, c = 0 and ϕ(t) = t;
3) Any generalized pseudo-contractive operator is a (strictly, if r < 1)

pseudo ϕ−contractive operator, with a = 0, b = 1, c = 0 and ϕ(t) = r·t, r > 0;
4) Any strictly pseudocontractive operator is a pseudo ϕ−contractive op-

erator, with a =
k − 1
2k

, b = 1, c =
1 − k

2k
and ϕ(t) = t;

5) Any strongly pseudocontractive operator is a pseudo ϕ−contractive

operator, with a =
r t

2(1 + r)
, b = 1 , c = − r t

2(1 + r)
, ϕ(u) =

rt2 + 2r + 2
2t(r + 1)

· u.

There are many convergence theorems concerning the approximation of
fixed points for several classes of pseudocontractive type operators. The next
theorem shows that the Krasnoselskij iteration converges to a fixed point of
any strictly pseudo ϕ−contraction.

Theorem 3.8. Let K be a nonempty closed convex subset of a real Hilbert
space H and T : K → K a strictly pseudo ϕ−contractive operator. Then

(i) T has an unique fixed point p in K;
(ii) For each x0 ∈ K, the Krasnoselskij iteration {xn}∞n=0 given by (14)

converges strongly to p, for all λ ∈ (0, 1);
(iii) If, additionally, ϕ is a (c)−comparison function, then

‖ xn − p‖ ≤ s (‖ xn − xn+1‖) , n = 1, 2, . . .

(where s(t) =
∞∑

k=0

ϕk(t) denotes the sum of the comparison series).

Proof. The proof is similar to that of Theorem 3.6. We consider the
associated operator

Fx = (1 − λ)x + λTx , x ∈ K

and show that F : K → K is a ϕ−contraction. Indeed, by (23) we get

‖ Fx − Fy‖2 ≤ ϕ2 (‖ x − y‖) , for all x, y ∈ K,

which shows that F is a ϕ−contraction.
Now, by Theorems 2.7 and 2.8, the conclusion immediately follows. �
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Remarks.
1) If T is not a strictly pseudo ϕ−contraction, then Theorem 3.8 is no

longer valid;
2) We can obtain a result similar to the one given by Theorem 2.10 by

considering in the right hand side of (23) the expression

ϕ2 (‖ x − y‖ , ‖ x − Tx‖ , ‖ y − Ty‖ , ‖ x − Ty‖ , ‖ y − Tx‖) ,

given by a 5-dimensional comparison function rather than a one-dimensional
function;

3) If T is Lipschitzian and generalized pseudocontractive (with r < 1),
then by Theorem 3.8 we obtain exactly Theorem 3.6, by taking the most used
comparison function, i.e.,

ϕ(t) = r · t;
4) The next two examples illustrate why we needed to consider special

classes of pseudocontractive operators and not simply pseudocontractive op-
erators in some of the convergence theorems stated in this chapter.

Example 3.5. Let R denote the reals with the usual norm, K = [0, 1] and

define T : K → R by Tx =
1
2
x + 1. Then T is a

1
2
-contraction and hence is

strongly pseudocontractive, but T has no fixed points in K.

Example 3.6. Let R denote the reals with the usual norm, K = {1, 2}
and define T : K → K by T (1) = 2, T (2) = 1. Then T is strongly pseudocon-
tractive, but T has no fixed point in K.

3.5 Quasi Nonexpansive Operators

The convergence of Picard iteration for two classes of particular quasi
nonexpansive operators was studied in Section 2.3, see also Exercise 2.14,
which gives a convergence theorem for the whole class of quasi nonexpansive
operators, when some additional assumptions are satisfied.

In the case of Hilbert spaces, see Exercise 3.5, it is known that nonexpan-
sive operators are asymptotically regular. Since quasi nonexpansive operators
strictly include the nonexpansive ones, even though a quasi nonexpansive op-
erator is generally not asymptotically regular, however, its averaged operator
is asymptotically regular in the case of uniformly Banach spaces, as the next
Lemma shows.

Lemma 3.5. Let X be a uniformly convex Banach space, D a subset of X,
and T a mapping of D into X such that FT 
= ∅ and T is quasi nonexpansive.
Let Tλ be the averaged operator associated to T , i.e.,

Tλ(x) = (1 − λ)x + λTx, x ∈ D.
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If there exists x0 ∈ D and λ ∈ (0, 1) such that the Krasnoselskij iteration
{Tn

λ (x0)} is defined and lies in D for each n ≥ 1, then Tλ is asymptotically
regular at x0, that is,

lim
n→∞

[Tn
λ (x0) − Tn+1

λ (x0)] = 0.

Proof. Let p be any element in FT and let x0 be a point in D satisfying the
conditions above. Tλ is also quasi nonexpansive since FTλ

= FT 
= ∅ and for
all x in D we have

‖Tλ(x) − p‖ = ‖λx − λp + (1 − λ)(Tx − p)‖ ≤ λ ‖x − p‖ + (1 − λ) ‖x − p‖ =

= ‖x − p‖ .

This implies

‖xn+1 − p‖ = ‖Tλxn − p‖ ≤ ‖xn − p‖ , for each n ≥ 1,

and therefore {‖xn − p‖} converges to some d0 ≥ 0.
If d0 = 0, then lim

n→∞
xn = p and so in this case xn − xn+1 = Tn

λ (x0) −
Tn+1

λ (x0) → 0 as n → ∞, as required. In the case d0 > 0, since ‖xn − p‖ → d0,
‖Tλxn − p‖ ≤ ‖xn − p‖ for each n, and

lim
n→∞

‖Tλxn − p‖ = lim
n→∞

‖xn − p‖ = d0,

it follows from the uniform convexity of X that

lim
n→∞

‖(xn − p) − (Tλxn − p)‖ = 0,

i.e.,

lim
n→∞

‖(xn − Tλxn‖ = lim
n→∞

∥∥Tn
λ (x0) − Tn+1

λ (x0)
∥∥ = 0. �

The following Lemma will be also useful to prove the main result of this
section and is important by itself.

Lemma 3.6 Let X be a strictly convex Banach space and D a closed
convex subset of X. If T is a continuous mapping of D into X such that
FT 
= ∅ and

‖Tx − p‖ ≤ ‖x − p‖ , for x ∈ D \ FT and p ∈ FT , (24)

then FT is a convex set.

Proof. Let x and y be any two distinct points of FT and, for t ∈ (0, 1),
denote zt = tx+(1− t)y. Since D is convex, zt ∈ D. Suppose, contrary to our
assertion, that zt /∈ FT for some t ∈ (0, 1). This means zt ∈ D \ FT . Then, it
follows by (24) that
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‖x − y‖ ≤ ‖x − T (zt)‖ + ‖T (zt) − y‖ ≤ ‖x − zt‖ + ‖zt − y‖ .

Since X is strictly convex, we have that

x − T (zt) = a(T (zt) − y), for some a > 0,

from which we obtain

T (zt) =
1

1 + a
x +

a

1 + a
y,

which shows that T (zt) lies on the line determined by x and y. On the other
hand,

‖x − T (zt)‖ ≤ ‖x − zt‖ and ‖T (zt) − y‖ ≤ ‖zt − y‖ .

Thus T (zt) must coincide with zt. �
In the last part of this section we are interested to obtain convergence

theorems for Krasnoselskij iteration under the basic assumption that T or Tλ

is strictly quasi nonexpansive and that T satisfies the so-called Frum-Ketkov
contractive condition. To this end we also need the following lemma.

Lemma 3.7. Let D be a closed convex subset of X and T a selfmap of D
such that

d(T (x),K) ≤ kd(x,K), for all x ∈ D (25)

for some convex compact set K in X and constant k < 1. If Tλ = λI+(1−λ)T
is the averaged mapping and λ ∈ (0, 1), then

d(Tλ(x),K) ≤ kλd(x,K), for each x ∈ D, (26)

where kλ = λ + (1 − λ)k < 1.

Proof. Let λ be fixed in (0, 1), and x ∈ D, fixed. Since clearly 0 < kλ < 1,
it suffices to prove (26).

For a given δ > 0, there exist yδ ∈ K and zδ ∈ K such that

‖x − yδ‖ ≤ d(x,K) + δ/(2λ), ‖Tx − zδ‖ ≤ d(Tx,K) + δ/(2(1 − λ)).

Let wλ = λyδ + (1 − λ)zδ. Since K is convex, we have wλ ∈ K. Then

d(Tλx,K) ≤ ‖Tλx − wλ‖ = ‖λ(x − yδ) + (1 − λ)(Tx − zδ)‖ ≤
≤ λ ‖x − yδ‖ + (1 − λ) ‖Tx − zδ‖ ≤ kλd(x,K) + δ,

and since δ > 0 was chosen arbitrarily, the conclusion follows. �
The main result of this section is given by the next Theorem.

Theorem 3.9. Let D be a closed convex set in a strictly convex Banach
space X and let T : D → D be a conditionally quasi-nonexpansive operator.
Suppose further that there exists a convex compact set K in X and a number
k < 1 such that (25) holds.
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Then, for any x0 ∈ D and any λ ∈ (0, 1), the Krasnoselskij iteration
{Tn

λ (x0)} converges to a fixed point of T .

Proof. By the convexity of D it follows that Tλ maps D into itself. Since
T satisfies (25), by Lemma 3.7, Tλ satisfies (26) and hence, in view of Frum-
Ketkov fixed point theorem, see Exercise 3.20, Fix (Tλ) 
= ∅. Moreover, since
X is strictly convex and T is conditionally quasi-nonexpansive, it results that
Tλ is conditionally strictly quasi nonexpansive, i.e.,

‖Tλx − Tλ‖ < ‖x − y‖

for all x 
= y in D, whenever Fix (Tλ) 
= ∅.
In fact, as Fix (Tλ) 
= ∅, Tλ is strictly nonexpansive.
On the other hand, by the same Frum-Ketkov contractive condition, it

results
d(Tn

λ (x0),K) ≤ kn
λd(x0,K)

and since kλ < 1, this implies lim
n→∞

d(Tn
λ (x0),K) = 0, and since K is compact,

this forces {xn ≡ Tn
λ (x0)} to contain a convergent subsequence {xnj

}j≥1 with
lim

j→∞
= x∗.

The quasi nonexpansiveness condition implies that

lim
n→∞

d(xn, F ix (Tλ)) = d ≥ 0

exists. Therefore, it suffices to prove that d = 0. If x∗ ∈ Fix (Tλ), then d = 0.
If x∗ /∈ Fix (Tλ), then by the strictly quasi nonexpansiveness property, for
every x ∈ D \ Fix (Tλ), there exists p = px ∈ Fix (Tλ) such that

‖Tλx − Tλ‖ < ‖x − y‖ .

This implies that Tλ is continuous at x∗, and hence

‖Tλx∗ − p‖ =
∥∥∥∥Tλ

(
lim

j→∞
xnj

)
− p

∥∥∥∥ = lim
n→∞

‖Tn
λ (x0) − p‖ =

lim
j→∞

∥∥Tnj

λ (x0) − p
∥∥ = lim

j→∞

∥∥xnj
− p

∥∥ =
∥∥∥∥ lim

j→∞
xnj

− p

∥∥∥∥ = ‖x∗ − p‖ , (27)

(where the middle equalities hold since, Tλ quasi nonexpansive implies that
lim

n→∞
‖Tn

λ (x0) − p‖ exists).

But the equality (27) is a contradiction, hence always d = 0.
Now, by lim

n→∞
d(xn, F ix (Tλ)) = 0 we can prove that {xn} is a Cauchy

sequence and, as it contains a convergent subsequence, it is convergent in the
whole and x∗ ∈ Fix (Tλ). �
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3.6 Bibliographical Comments

§3.1.

The first result on the convergence of averaged sequences involving two
successive terms of the Picard iteration, i.e., the expression

1
2
(xn + Txn),

has been obtained by Krasnoselskij [Kra55]. There, it was shown that if K
is a closed bounded convex subset of a uniformly convex Banach space and
T : K → K is a nonexpansive and compact operator (i.e., T is continuous
and T (K) is relatively compact), then the sequence {xn}∞n=0 defined by

xn+1 =
1
2
(xn + Txn), n ≥ 0

converges strongly to a fixed point of T .
Krasnoselskij gave no estimation of the rate of convergence of {xn}∞n=0 and,

in fact, it is typical of iteration methods involving nonexpansive mappings that
their convergence may be arbitrarily slow. Actually, Oblomskaja [Obl68] gave
a linear example where convergence is slower that n−α for all α ∈ (0, 1). In
this context, we also mention the monograph Patterson [Pat74, Chapter 4]
which contains a thorough discussion of successive approximation method for
linear operators, and an extensive bibliography.

Schaefer [Sch57] extended Krasnoselskij’s result to the case when the con-
stant 1/2 is replaced by a λ ∈ (0, 1), obtaining in this way the first result for
the general Krasnoselskij iteration, defined by (1). Then, Edelstein [Ede66]
extended the previous result to the case when E is strictly convex.

Petryshyn [Pt66a] extended the results of Krasnoselskij and Schaefer to
demicompact nonexpansive mappings T : K → E that satisfy a Leray-
Schauder condition on the boundary ∂K of K, using the so-called iteration-
retraction method, that can work only in Hilbert spaces, while the results
of Krasnoselskij and Schaefer were derived in the more general setting of a
uniformly convex Banach space.

A new technique, based on a generalization of the projection method to
Banach spaces was recently developed by Alber [Alb96] and his collaborators.

Browder and Petryshyn [BrP66], [BrP67] carried further the results of
Krasnoselskij and Schaefer, investigating the convergence of the Krasnoselskij
(and Picard) iterations for nonexpansive operators T : E → E which are
asymptotically regular and for which I − T maps bounded closed sets into
closed sets. Further extensions were obtained by Diaz and Metcalf [DiM67],
[DiM69], Dotson [Dot70], Outlaw [Out69] and Petryshyn [Pet67], [Pet71].

The weak convergence of the Krasnoselskij iteration process was first
proved by Schaefer [Sch57], for the class of continuous nonexpansive oper-
ators. The extension of this result to general nonexpansive operators was car-
ried out in two stages by Browder and Petryshyn [BrP66] and Opial [Op67a],
respectively.
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The results included in this Section are taken from the following sources:
Theorem 3.1, which is the well known Browder-Gohde-Kirk fixed point the-
orem in a Hilbert space setting, is Theorem 4 in Browder and Petryshyn
[BrP67]; Theorem 3.2 is Theorem 6 of Petryshyn [Pt66a], reformulated in
Browder and Petryshyn [BrP67], while Theorem 3.3 is Theorem 7 and The-
orem 3.4 is Theorem 8, both taken from the same paper by Browder and
Petryshyn [BrP67], where many other interesting results for approximat-
ing fixed points are given. Corollary 3.1 is Corollary 2.1 in Petryshyn and
Williamson [PWi73], where several results from Browder and Petryshyn
[BrP67] are extended and improved.

§3.2.

Theorem 3.5 in this Section rewrites Theorem 12 in Browder and Petryshyn
[BrP67]. Theorem 14 in the same paper concerns the convergence of a modified
Krasnoselskij iteration, obtained by fixing the first term of the linear convex
combination, i.e., the iterative sequence is defined by means of the iteration
function Fλx := λTx + (1 − λ)u0, λ ∈ (0, 1), where u0 is fixed.

Several other results for this iteration procedure have been also obtained
independently by Browder [Br67b] and respectively by Halpern [Hal67], in
a Hilbert space setting. Their results say that: if xλ is the fixed point of
Fλ (which is a λ-contraction), then the sequence {xλ} converges strongly
to a fixed point of T as λ → 1. Later, Reich [Rei80] extended this result
to uniformly smooth Banach spaces. Thereafter, Singh, S.P. and Watson, B.
[SWa93] extended the result of Browder and Halpern to nonexpansive nonself
operators satisfying Rothe’s boundary condition.

Recently Xu, H.K. and Yin [XYi95] proved the convergence in the case
of nonexpansive nonself operators defined on a nonempty closed convex (not
necessarily bounded) subset of a Hilbert space. By adding the inwardness
condition, Xu, H.K. [XuH97] extended the latter to uniformly smooth Banach
spaces. For other related results, see also Jaggi [Ja77a], [Ja77b], Rhoades, B.E.,
Sessa, S., Khan, M.S., Swaleh, M. [RSK87], Jung and Kim, S.S. [JKS95],
[JK98a] and [JK98b] and Section 6.5.

§3.3.

The content of Section 3.3 is taken from Berinde [Be02e], [Be02a]. Theorem
3.6, without part (iii) regarding error estimates, has been proved by Verma,
R.U. [Ve97a], but the proof given here is at least formally different.

Theorem 3.7 has the merit to find the fastest Krasnoselskij iteration, under
the assumptions of Theorem 3.6. The argument we exploited in order to do
this was mentioned in passing in Browder and Petryshyn [BrP67].

§3.4.

The results in Section 3.4 are taken from Berinde [Be03a]. Various parts
of them were communicated, in different stages of evolution, at some interna-
tional conferences. Examples 3.5 and 3.6 are taken from Osilike [Os97c].
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§3.5.

All results in this section are taken from Petryshyn and Williamson
[PWi73]: Lemmas 3.5, 3.6 and 3.7 are respectively Lemma 2.1, Lemma 2.2
and Lemma 3.1, while Theorem 3.9 is Theorem 3.3 there. Exercise 3.21 is
Example 3.1. Condition (25) was first used in Frum-Ketkov [FrK67], see
Exercise 3.20, but a correct proof of this result was given by Nussbaum
[Nus72]. For a recent result involving a Frum-Ketkov condition see Binh
[Bin04].

Exercises and Miscellaneous Results

3.1. (a) Prove that if H is a Hilbert space then for any u, v ∈ H we have

‖u + v‖2 + ‖u − v‖2 = 2
(
‖u‖2 + ‖v‖2

)
. (*)

(b) Show that a Banach space X is a Hilbert space if and only if the identity
(∗) is satisfied for all u, v ∈ X.

3.2. Let H be a Hilbert space, C ⊂ H a closed bounded convex subset. For a
fixed element v0 in C and a number s ∈ (0, 1), define Us by
Us(x) = (1 − s)v0 + sTx, x ∈ C.
Show that: (a) Us maps C into C; (b) Us is a s-contraction.

3.3. Let H be a Hilbert space, C ⊂ H a closed bounded convex subset,
T : C → C and for λ ∈ (0, 1), define the averaged map
Tλ(x) = (1 − λ)x + λTx, x ∈ C. Show that:
(a) Tλ maps C into C;
(b) If T is nonexpansive then Tλ is nonexpansive as well;
(c) T and Tλ have the same fixed point set, i.e., Fix (T ) = Fix (Tλ).

3.4. Browder and Petryshyn (1967)
Let H be a Hilbert space, C ⊂ H a closed bounded convex subset, T : C → C
nonexpansive and, for λ ∈ (0, 1), define the averaged map

Tλ(x) = (1 − λ)x + λTx, x ∈ C.

Show that if {xn} is the Picard iteration associated to Tλ and x0 ∈ C, that
is, the Krasnoselskij iteration associated to T and x0, then

∞∑
n=0

‖xn+1 − xn‖2
< ∞.

Deduce from the above result that Tλ is asymptotically regular.

3.5. Let H be a Hilbert space, C ⊂ H a closed bounded convex subset. If
T : C → C is nonexpansive, then T is asymptotically regular, i.e., for any
x ∈ C, ∥∥Tn+1x − Tnx

∥∥ → 0 as n → ∞.
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3.6. Let H be a Hilbert space and C ⊂ H be a closed bounded convex subset.
For each x ∈ H define RCx as the nearest point to x in C.
(a) If C = B(x0, r), show that RC : H → C is given by

RCx =

⎧⎨
⎩

x, if ‖x − x0‖ ≤ r
r(x − x0)
‖x − x0‖

, if ‖x − x0‖ ≥ r;

(b) Show that RC is nonexpansive.

3.7. Figueiredo-Karlovitz
If the mapping RC defined in Exercise 3.6 for C = B(0, 1) is nonexpansive for
a Banach space X of dimension > 2, then X is a Hilbert space.

3.8. Let H be a Hilbert space, C ⊂ H a closed bounded convex subset and
T : C → C a strictly pseudo-contractive operator. Show that there exist values
of λ ∈ (0, 1) such that the averaged operator

Tλ(x) = (1 − λ)x + λTx, x ∈ C,

is nonexpansive.

3.9. Let H be a Hilbert space, K ⊂ H a closed bounded convex subset.
Show that any Lipschitzian operator T : K → K is also generalized pseudo-
contractive with the same constant but the reverse is not true.

3.10. If K is a closed convex subset of a strictly convex Banach space X and
T : K → K is nonexpansive, then FT is closed and convex.

3.11. Let X = R
2 be endowed with the norm ‖(x, y)‖∞ = max{|x| , |y|} and

define T : R
2 → R

2 by T (x, y) = (x, |x|). Then
(a) T is nonexpansive;
(b) FT is not convex.

3.12. Consider the unit ball in the space C0 of all sequences of real numbers
with limit 0 endowed with the sup norm and define T : C0 → C0 by

Tx = (x1, 1 − |x1| , x2, x3, . . . ), x = (x1, x2, x3, . . . ).

Show that
(a) T is nonexpansive;
(b) FT = {u,−u}, where u = (1, 0, 0, 0, . . . ) (hence FT is disconnected).

3.13. Let C[0, 1] be endowed with the Chebyshev’s norm and let B be given
by

B = {x : [0, 1] → R |x(0) = 0, x(1) = 1 and 0 ≤ x(t) ≤ 1, t ∈ (0, 1)} .

Define T on B by Tx(t) = tx(t), t ∈ [0, 1]. Then
(a) T has no fixed points in B;
(b) If {xn(t)} is the Krasnoselskij iteration with x0(t) = 0, we have

lim
n→∞

‖Txn − xn‖ = 0.
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3.14. Alspach (1981)

Let X = L1[0, 1] and K =
{

f ∈ X|
1∫
0

f = 1, 0 ≤ f ≤ 2 a.e.
}

. Then

(a) K is a closed convex subset of [0, 2] (and hence it is weakly compact);
(b) The mapping T : K → K given by

Tf(t) =

⎧⎪⎨
⎪⎩

min {2f(2t), 2} , if 0 ≤ t ≤ 1
2

max {2f(2t − 1) − 2, 0} , if
1
2

< t < 1

is isometric on K but has no fixed points. (This shows that a weakly compact
convex set in a Banach space does not have the fixed point property for
nonexpansive operators)

3.15. Let K be a subset of a Banach space X and T : K → K be nonexpansive
and x0 ∈ K. Show that

lim
n→∞

∥∥Tnx0 − Tn+1x0

∥∥
always exists but this limit may be nonzero.

3.16. Baillon, Bruck and Reich (1978)
Let X be a Banach space, K a bounded, closed and convex subset of X,
T : K → K nonexpansive and Tλ the averaged operator, i.e.,

Tλ(x) = (1 − λ)x + λTx, x ∈ K and λ ∈ (0, 1).

Then, for any x ∈ K,

lim
n→∞

∥∥Tn+1
λ x − Tn

λ x
∥∥ =

1
k

lim
n→∞

∥∥Tn+k
λ x − Tn

λ x
∥∥ = lim

n→∞

1
n
‖Tn

λ x‖ .

3.17. Ishikawa (1976)
Let X be a Banach space, K a bounded, closed and convex subset of X and
T : K → K be nonexpansive. For λ ∈ (0, 1), let Tλ be the averaged operator
associated to T , i.e.,

Tλ(x) = (1 − λ)x + λTx, x ∈ K

and define the sequences {xn} and {yn} as follows

xn+1 = Tλxn; yn = Tyn, n = 0, 1, 2, . . .

Then
(a) For each i, n ∈ N,

‖yi+n − xi‖ ≥ (1 − λ)−n [‖yi+n − xi+n‖ − ‖yi − xi‖] + (1 + nλ) ‖yi − xi‖ ;

and
(b) lim

n→∞
‖xn − Txn‖ = 0.
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3.18. Opial (1967)
Let X be a uniformly Banach space having a weakly continuous duality map
and let x∗ be the weak limit of a weakly convergent sequence {xn}. Then

lim sup
n→∞

‖xn − x∗‖ < lim sup
n→∞

‖xn − x‖ , for all x 
= x∗.

(Opial’s condition)

3.19. Browder and Petryshyn (1967)
If X is uniformly convex, C is bounded and T : C → C is asymptotically
regular, then the weak sequential limits of {Tnx} are fixed points of T , i.e.,
ωw(x) ⊂ FT .

3.20. Frum-Ketkov (1967)
Let D be a closed convex subset of a Banach space X and T : D → D
a continuous map. Assume that there exist a compact set K ⊂ X and a
constant k < 1 such that

d(Tx,K) ≤ kd(x,K), for each x ∈ D.

Then T has a fixed point.

3.21. Petryshyn and Williamson (1973)
Let X = lp, 1 < p < ∞ the space of infinite sequences of real numbers

x = (x1, x2, . . . ) whose norm, ‖x‖ ≡
(∑

i≥1

|xi|p
)1/p

is finite. Show that

(a) lp is uniformly convex;
(b) The collection {ei|i ≥ 1} forms a Schauder basis for lp, where ei are the

unit vectors in lp of the form ej = {δij}j≥1, that is, each x ∈ lp has a unique
representation in terms of this collection;
Let B be the unit ball in lp with center 0 and let {fi}i≥1 be a family of
nonexpansive self-mappings of the interval [−1, 1] with fi(0) = 0, i ≥ 1.
Define T for x ∈ B by

Tx ≡ f1(x1)e1 +
1
2

∑
i>1

fi(xi)ei, x = (x1, x2, . . . ) ∈ B.

(c) Show that T is well defined, T (B) ⊂ B and T is nonexpansive;
(d) Show that K ≡ {x ∈ lp|xi = 0, i > 1; |x1| ≤ 1} is convex and compact
and for any x ∈ B, T satisfies the Frum-Ketkov contractive condition:

d(Tx,K) ≤ 1
2
d(x,K);

(e) Apply Theorem 3.8 to show that the Krasnoselskij iteration associated to
T converges for any x0 ∈ B and any λ ∈ (0, 1) to a fixed point of T in B.



4

The Mann Iteration

Although, chronologically, it was introduced two years earlier than the
Krasnoselskij iteration, the Mann iteration is formally a generalization of
the latter and, in its normal form, is obtained by replacing the parameter λ in
the Krasnoselskij iteration formula by a sequence of real numbers {an} ⊂ [0, 1].
Since in many cases the convergence of the normal Mann iteration could
be obtained from the corresponding results proved for the Ishikawa iteration
procedure, the aim of this chapter is to present merely some representative
sample results regarding the Mann iteration, in general, without a (complete)
proof.

4.1 The General Mann Iteration

Definition 4.1. Let E be a linear space, C a convex subset of E and let
T : C → C be a mapping and x1 ∈ C, arbitrary. Let A = [an j ] be an infinite
real matrix satisfying

(A1) an j ≥ 0 for all n, j and an j = 0 for j > n;

(A2)
n∑

j=1

an j = 1 for all n ≥ 1;

(A3) lim
n→∞

an j = 0 for all j ≥ 1.

The sequence {xn}∞n=1 defined by xn+1 = T (vn), where

vn =
n∑

j=1

an j xj ,

is called the Mann iterative process or, simply, the Mann iteration.
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Remark. The Mann iterative process {xn}∞n=1 can be briefly denoted by
M(x1, A, T ) to indicate the initial guess x1, the matrix A and the operator T
to whom the process is associated. Similarly, we can denote the Krasnoselskij
iteration {xn}∞n=0 by K(x0, λ, T ).

There exists a rich literature on the convergence of Mann iteration for
different classes of operators considered on various spaces. We begin by stating
without proof a result on the Mann iteration whose statement is very closed
to the form in which was originally formulated but here in a setting that is
different from that in which the original result of Mann was formulated.

Theorem 4.1. Suppose E is a locally convex Hausdorff linear topological
space, C is a closed convex subset of E, T : C → C is continuous, x1 ∈ C
and A = [an j ] satisfies (A1), (A2) and (A3). If either of the sequences {xn}
or {vn} in the Mann iterative process M(x1, A, T ) converges to a point p, then
the other sequence also converges to p, and p is a fixed point of T .

Definition 4.2. A Mann process M(x1, A, T ) is said to be normal
provided that A = [an j ] satisfies (A1), (A2), (A3), (A4) an+1, j = (1 −
an+1, n+1)an j , j = 1, 2, . . . , n ; n = 1, 2, 3, . . . and (A5) either an n = 1 for
all n, or an n < 1 for all n > 1.

Theorem 4.2. The following are true:
(a) In order that M(x1, A, T ) be a normal Mann process, it is necessary

and sufficient that A = [an j ] satisfies (A1), (A2), (A4), (A5) and

(A′
3)

∞∑
n=1

an n diverges.

(b) The matrices A = [an j ] (other than the infinite identity matrix) in all
normal Mann process M(x1, A, T ) are constructed as follows:

Choose {cn} such that 0 ≤ cn < 1 for all n and the series
∞∑

n=1
cn diverges,

and define A = [an j ] by
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a11 = 1 , a1 j = 0 for j > 1;
an+1,n+1 = cn, n = 1, 2, 3, . . . ;

an+1,j = aj j

n∏
i=j

(1 − ci), for j = 1, 2, . . . , n

an+1,j = 0, for j > n + 1, n = 1, 2, 3, . . .

(1)

(c) The sequence {vn} in a normal Mann process M(x1, A, T ) satisfies

vn+1 = (1 − cn) vn + cnT vn, for all n = 1, 2, 3, . . . , (2)

where
cn = an+1,n+1. (3)

Examples.
1) The simplest example of Mann iteration is obtained by choosing cn = 1

for all n ≥ 1, which corresponds to the Picard iteration.



4.1 The General Mann Iteration 91

Another one is obtained letting cn = 1/(n + 1), when the obtained matrix
A is the Cesaro matrix;

2) If λ ∈ [0, 1] and Aλ = [an j ] is defined by

an 1 = λn−1, an j = λn−j(1 − λ), for j = 2, 3, . . . , n

and
an j = 0 for j > n , n = 1, 2, 3, . . . ,

then M(x1, Aλ, T ) is the normal Mann process. Since the diagonal sequence
for Aλ is given by

cn = an+1,n+1 = 1 − λ, for all n = 1, 2, 3, . . . ,

we see that it actually corresponds to the Krasnoselskij iteration.

Remarks.
1) The matrix A given by (1) is a regular matrix (i.e., A is a bounded

linear operator on l∞ which is limit preserving for convergent sequences);
2) Following Theorem 4.2, we shall consider in the sequel only normal

Mann processes, defined by (2), which will be simply called Mann iteration
procedures;

3) Most of the literature deals with the specialized Mann iteration method
defined by x1 ∈ E and (2), where {cn} satisfies

(i) c1 = 1; (ii) 0 < cn < 1, n ≥ 2 and (iii)
∞∑

n=1
cn = ∞.

However, in the sequel we will start with some results for the general Mann
iteration. The reason is that in the literature there are several theorems of the
following type: T is a selfmap of a complete metric space E, satisfying a
contractive condition that may or may not be strong enough to guarantee the
convergence to a fixed point of the Picard iteration associated to T .

Under these conditions it is also assumed that the Mann iteration associ-
ated to T converges, for a certain {cn}, and it is then shown that, under these
circumstances, it converges to a fixed point of T .

All such kinds of results could be obtained as particular cases of some
generic theorems of the following type.

Theorem 4.3. Let T be a selfmap of a closed convex subset K of a real
Banach space (E, ‖·‖). Let {xn}∞n=1 be a general Mann iteration of T with A
equivalent to convergence. Suppose that {xn}∞n=1 converges to a point p ∈ K.
If there exist the constants α, β, γ, δ ≥ 0, δ < 1 such that

‖Txn − Tp‖ ≤ α · ‖xn − p‖ + β · ‖xn − Txn‖ + γ · ‖p − Txn‖+

+δ · max {‖p − Tp‖ , ‖xn − Tp‖} , (4)

then p is a fixed point of T .
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Proof. The conditions on A, that is, A equivalent to convergence, imply
that it is regular, i.e., A is limit-preserving over c, the space of convergent
sequences. If we define

CA =

⎧⎨
⎩x : Ax =

⎛
⎝ n∑

j=1

an jxj

⎞
⎠ ∈ c

⎫⎬
⎭ , x = (x1, x2, ..., xn, ...),

then the condition that A is equivalent to convergence means that CA = c.
Thus

lim
n→∞

xn = p,

which implies that {Txn} ∈ CA and hence {Txn} ∈ c. Since A is regular, we
must have

lim
n→∞

Txn = p

and therefore
lim

n→∞
‖xn − Txn‖ = 0.

Taking the limit of (4) as n → ∞ yields

‖p − Tp‖ ≤ δ · ‖p − Tp‖ ,

which implies Tp = p. �
Remarks.
1) It has been shown in that the general Mann iteration method can be

written in the form x = Aw, where x = {xn} , w = {Txn}, and A = [ank] is
the weighted mean matrix generated by ank = pk/Pn, where

p1 > 0, pk =
ck p1

k∏
i=2

(1 − ci)
, Pn =

n∑
i=1

pi =
p1

n∏
i=2

(1 − ci)
, k > 1;

2) In all convergence theorems of the type mentioned above, the sequence
{cn} satisfies (i), (ii) and

(iv) lim cn > 0,

or a condition that implies (iv), and (4) can be deduced from a certain par-
ticular contractive condition.

It has been also shown by that condition (iv) implies A is equivalent to
convergence. Therefore, in order to apply Theorem 4.3, it is sufficient only to
show that the given particular condition implies (4).

Example 4.1.
One contractive condition that forces (4) is the following one: there exist

the constants a ≥ 0, 0 ≤ q < 1 such that for all x, y in E,

‖Tx − Ty‖ ≤ q · max {a ‖ x − y‖ ,
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‖x − Tx‖ + ‖ y − Ty‖ , ‖x − Ty‖ + ‖ y − Tx‖} .

Indeed, replacing x by xn and y by p in the preceding inequality, we have

‖Txn − Tp‖ ≤ q max {a ‖xn − p‖ ; ‖xn − Txn‖ + ‖p − Tp‖ ,

‖xn − Tp‖ + ‖p − Txn‖} ≤ qa ‖xn − p‖ + q ‖xn − Txn‖ + q ‖p − Txn‖+

+q max {‖p − Tp‖ , ‖xn − Tp‖}
and so (4) is satisfied.

4.2 Nonexpansive and Quasi-Nonexpansive Operators

Let E be a strictly convex Banach space. The following lemma is an
immediate consequence of strict convexity.

Lemma 4.1. If E is a strictly convex Banach space and u, v ∈ E such
that ‖v‖ ≤ ‖u‖ and for 0 < t < 1, ‖(1 − t)u + tv‖ = ‖u‖ , then u = v.

In order to prove an important result concerning the convergence of the
Mann iteration we also need the next lemma, which holds in any Banach
space.

Lemma 4.2. Let C be a closed convex subset of a Banach space E and
T : C → C be a quasi nonexpansive operator, p a fixed point of T , and x1 ∈ C.
If M(x1, A, T ) is any normal Mann process (with the sequences {xn}, {vn}),
then the following are true:

(i) ‖vn+1 − p‖ ≤ ‖vn − p‖ , for each n = 1, 2, 3, . . .
(ii) If {vn} clusters at p, then {vn} converges to p;
(iii) If {vn} clusters at y and z, then ‖y − p‖ = ‖z − p‖ .

Proof. From part (c) of Theorem 4.2 we deduce that

vn+1 − p = (1 − cn)(vn − p) + cn(Tvn − p),

where cn = an+1,n+1. Since T is quasi-nonexpansive, that is

‖Tx − p‖ ≤ ‖x − p‖ , for all x ∈ C,

we get

‖vn+1 − p‖ ≤ (1 − cn) ‖vn − p‖ + cn ‖vn − p‖ = ‖vn − p‖ ,

which proves (i).
Statements (ii) and (iii) now immediately follow from (i). �
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Theorem 4.4. Let E be a strictly convex Banach space, C be a closed
convex subset of E, and T : C → C be a continuous and quasi nonexpansive
operator, such that T (C) ⊂ K ⊂ C, where K is compact. Let x1 ∈ C and

M(x1, A, T ) be a normal Mann process such that the sequence {cn} given by
(3) clusters at some c ∈ (0, 1).

Then the sequences {xn}, {vn} in the Mann process M(x1, A, T ) converge
strongly to a fixed point of T .

Proof. We denote by co D the closed convex hull of the set D. Since
co K ⊂ C, it results that

T (co K) ⊂ T (C) ⊂ K ⊂ co K,

and so, by Mazur’s theorem, the set co K is compact.
Since T is continuous, by Schauder’s fixed point theorem there exists a

point p ∈ co K such that Tp = p.
On the other hand, there is a subsequence {cnk

} of {cn} such that cnk
→ c

(as k → ∞). The corresponding subsequence {vk} = {vnk
} of {vn} is con-

tained in co (K
⋃
{x1}) which is compact again by Mazur’s theorem.

Hence, there exists a subsequence of {vk}, denoted also by {vk}, which
converges to some y ∈ C. Of course,

ck → c

and so by Theorem 4.2 and the continuity of T we have

vk+1 = (1 − ck) vk + ckT vk → (1 − c) y + c Ty.

Since {vn} clusters at both y and (1− c) y + cTy, and p is a fixed point of
T , part (iii) of Lemma 4.2 gives that

‖y − p‖ = ‖[(1 − c) y + cTy] − p‖ ,

which can be equivalently written as

‖(1 − c) (y − p) + c(Ty − p)‖ = ‖y − p‖ .

Since ‖Ty − p‖ ≤ ‖ y − p‖ and 0 < c < 1, then by Lemma 4.1 it results
that y−p = Ty−p, that is, Ty = y. So y is a fixed point of T , and since {vn}
clusters at y, part (ii) of Lemma 4.2 implies that vn → y.

Now, by Theorem 4.1, we have that xn → y. �
Remarks.
1) If T is nonexpansive and the normal Mann process is M(x1, A1/2, T ),

then from Theorem 4.4 we obtain a result of Edelstein, which in turn is a
generalization of the result of Krasnoselskij;

2) If T is nonexpansive and the Mann iteration process is given by
M(x1, Aλ, T ), with 0 < λ < 1, then from Theorem 4.3 we get as a partic-
ular case the result of Schaefer.
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In fact, Schaefer’s result was obtained in uniformly convex Banach spaces,
while Theorem 4.4 and its special case mentioned above work under the weaker
hypothesis of strict convexity;

3) We can drop the continuity assumption on T if we are working in a
more particular class of Banach spaces, i.e., in uniformly convex Banach spaces
(which are also strictly convex). It is well known that any uniformly convex
Banach space is also reflexive by Pettis-Milman theorem, and consequently
any closed bounded convex set is weakly compact in that ambient space.

We need the following lemma, which is an easy consequence of uniform
convexity.

Lemma 4.3. Let E be a uniformly convex Banach space and {cn} a se-
quence in [a, b], where 0 < a < b < 1. Suppose {wn}, {yn} are sequences in E
such that ‖wn‖ ≤ 1, ‖yn‖ ≤ 1 for all n. We define a sequence {zn} by

zn = (1 − cn)wn + cnyn.

If lim ‖ zn‖ = 1, then lim ‖ wn − yn‖ = 0.

Remark. For the normal Mann process M(x1, A, T ) with the sequence
{cn} given by (3), we shall alternatively use the notation M(x1, cn, T ).

Theorem 4.5. Let C be a closed convex subset of a uniformly convex
Banach space E, T : C → C a quasi-nonexpansive operator on C which has
at least one fixed point p ∈ C. If x1 ∈ C and M(x1, cn, T ) is a normal Mann
process such that the sequence {cn} is bounded away from 0 and 1, then each
of the sequences {vn+1 − vn} and {Tvn − vn} converges (strongly) to 0 ∈ E.

Proof. From part (c) of Theorem 4.2 we have that

‖vn+1 − vn‖ = cn ‖Tvn − vn‖ ,

and hence, having in view that 0 < a ≤ cn ≤ b < 1, if either one of the
sequences {vn+1 − vn} or {Tvn − vn} converges to 0 then the other does also.
If lim ‖vn − p‖ = 0, then obviously lim ‖vn+1 − vn‖ = 0. Otherwise, since
by Lemma 4.2 the sequence (‖vn − p‖ ) is non-increasing, we certainly have
lim ‖ vn − p‖ = d > 0. We define now the sequences {wn}, {yn} and {zn} by

wn = (vn − p)/ ‖ vn − p‖ , yn = (Tvn − p)/ ‖ vn − p‖ ,

and, respectively,
zn = (vn+1 − p)/ ‖ vn − p‖ .

Since, as in the proof of Lemma 4.2, we have

vn+1 − p = (1 − cn)(vn − p) + cn(Tvn − p),

by dividing it by ‖ vn − p‖ it results that

zn = (1 − cn)wn + cn yn.
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Since ‖ wn‖ = 1 , ‖ yn‖ ≤ 1, and ‖ zn‖ → d/d = 1, by Lemma 4.3 we
have that lim ‖ wn − yn‖ = 0, which gives

lim ‖ Tvn − vn‖ = 0,

and this completes the proof. �
Corollary 4.1. Let E be a uniformly convex Banach space and T : E → E

a nonexpansive operator which has at least one fixed point. Then for any
λ ∈ (0, 1), the Krasnoselskij iteration K(x1, λ, T ) is asymptotically regular for
each x1 ∈ E.

Proof. The Krasnoselskij iteration is a particular case of the normal Mann
iteration, with matrix Aλ, and so by Theorem 4.5 we get that for any x1 ∈ E

vn+1 − vn = Tn
λ x1 − Tn−1

λ x1 → 0,

as required. �
Remarks.
1) We know from Chapter 3 of this book that, if T is nonexpansive, then

the iteration function involved in the Krasnoselskij process, that is

Tλ = λI + (1 − λ)T,

is also nonexpansive and has the same fixed points set as T .
2) Using similar arguments, we can prove the next two theorems which

are generalizations of the results of Browder and Petryshyn.

Theorem 4.6. Let C be a closed convex subset of a uniformly convex
Banach space E and T : C → C be a quasi nonexpansive operator on C that
has at least one fixed point p ∈ C.

If I−T is closed and M(x1, cn, T ) is a normal Mann process with x1 ∈ C,
such that {cn} is bounded away from 0 and 1, then for any sequence {vn}
that clusters (strongly) at some y ∈ C, we have Ty = y and the sequences
{xn}, {vn} converge (strongly) to y.

Proof. There exists a subsequence {vnk
} of {vn} such that vnk

→ y. It
follows by Theorem 4.4 that (I − T ) vn → 0, and hence (I − T )vnk

→ 0.
Since I − T is closed, we deduce that (I − T ) y = 0, that is Ty = y and,

as {vn} clusters at y, it follows by Lemma 4.2 that vn → y.
Since vn − xn+1 = vn − Tvn → 0, we finally get xn → y. �
Remarks.
1) Any continuous operator T on C has the property that I −T is contin-

uous on C, and so is closed. Hence, for any nonexpansive operator T , I − T
is closed;

2) In the previous chapter we gave a result, namely Theorem 3.2, on
the approximation of fixed points of demicompact operators by means of the



4.2 Nonexpansive and Quasi-nonexpansive Operators 97

Krasnoselskij iteration. We can improve Theorem 4.5 by considering the demi-
closedness property instead of the closedness of the operator I − T, as in
Theorem 4.7 below.

Definition 4.2. A mapping S : C → E is said to be demiclosed provided
that if {un} is a sequence in C which converges weakly to u ∈ C, and if {Sun}
converges strongly to v ∈ E, then Su = v.

Remark. For a closed and convex set C, every weakly continuous mapping
T : C → C is weakly closed and every weakly closed mapping of T : C → C
is demiclosed. We have

Theorem 4.7. Let C be a closed convex subset of a uniformly convex
Banach space E, T : C → C a nonexpansive operator on C that has at least
one fixed point p ∈ C.

Let x1 ∈ C and M(x1, cn, T ) be the normal Mann process such that {cn}
is bounded away from 0 and 1. Then the following are true:

(i) There exists a subsequence of {vn} which converges weakly to some
y ∈ C, and if I − T is demiclosed then each weak subsequential limit point of
{vn} is a fixed point of T .

(ii) If I −T is demiclosed and T has only one fixed point p ∈ C, then the
sequences {xn}, {vn} converge weakly to p;

(iii) If I − T is weakly closed, then each weak cluster point of {vn} is a
fixed point of T .

Remarks.
1) The assumption “T has at least one fixed point” involved in Theorems

4.1 - 4.7 is very natural in this context. Indeed, if C is bounded and convex and
T : C → C is weakly continuous, then T has at least one fixed point, by the
Tihonov fixed point theorem, while in the case of nonexpansive operators the
conclusion holds by the Browder-Gohde-Kirk fixed point theorem (Theorem
1.2 in this book, see also Theorem 3.1);

2) It is well known (see Opial [Op67a]) that if T is nonexpansive and the
uniformly convex Banach space E has a weakly continuous duality mapping,
then I − T is necessarily demiclosed. However, there exist some uniformly
convex Banach spaces that do not have weakly continuous duality mappings
(e.g. Lp, 1 < p < ∞ , p 
= 2);

3) As T weakly continuous implies I − T demiclosed, by Theorem 4.7
we obtain that, if T has only one fixed point p ∈ C, then the Krasnoselskij
iteration K(x1, λ, T ) converges to this fixed point, i.e., vn+1 = Tn

λ x1 → p,
which is valid in any uniformly convex Banach space;

4) In view of Theorem 4.1 (which extends Mann’s result), in order to
use the Mann iterative process for nonexpansive type mappings all one needs
is to establish the convergence of either {xn} or {vn}. Consequently, in the
following we shall consider only the sequence {vn} which will be denoted by
{xn};
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5) In Theorem 3.2 we used the demicompactness condition in order to
obtain the convergence of Krasnoselskij iteration.

This result could be extended to Mann iteration by simultaneously weak-
ening the demicompactness property.

Definition 4.3. Let E be a Banach space, C a convex subset of E and
T : C → C an operator with FT the set of fixed points. T is said to satisfy
condition (D) on C if there exists a nondecreasing function ϕ : [0,∞) →
[0,∞) with ϕ(0) = 0 and ϕ(r) > 0 for r > 0 such that

‖ x − Tx‖ ≥ ϕ (inf { ‖ x − z‖ : z ∈ FT })

for all x ∈ C.
A relationship between demicompact operators and mappings that satisfy

condition (D) is shown by the next lemma.

Lemma 4.5. Let C be a closed bounded subset of a Banach space E and
T : C → C an operator with FT 
= ∅. If I − T maps closed bounded subsets
of C onto closed subsets of E, then T satisfies condition (D) on C.

Let {xn} be the normal Mann iteration associated to T : C → C and
defined by x1 ∈ C and the sequence {cn}, that is, the iteration M(x1, cn, T )
given by

xn+1 = (1 − cn)xn + cn T xn, (4)

where cn ∈ [a, b] and 0 < a < b < 1.

We state without proof the following result based on condition (D).

Theorem 4.8. Let C be a closed, bounded, convex, nonempty subset of a
uniformly convex Banach space E and T : C → C be a nonexpansive operator
with the fixed point set of T in C denoted by FT . If T satisfies condition (D),
then for any x1 ∈ C the Mann iteration (4) converges to a point of FT .

Remark. The fixed point to which a certain normal Mann iterative
process converges depends, in general, on the initial approximation x1 as well
as on the sequence {cn} that determine the Mann iteration. Moreover, the
Mann iteration need not converge to the fixed point of T nearest x1, as shown
by the following example.

Example 4.2. Let E be the space R
2 equipped with the Euclidean norm

and, with (r, θ) denoting the polar coordinates. Let

C =
{

(r, θ) : 0 ≤ r ≤ 1 ,
π

4
≤ θ ≤ π

2

}
.

The map T : C → C defined by

T ( (r, θ) ) =
(
r,

π

2

)
, for each point (r, θ) in C,

is nonexpansive and the set of its fixed points is the line segment
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FT =
{(

r,
π

2

)
: 0 ≤ r ≤ 1

}
.

Take U0 = (r0, θ0) = (1,
π

4
) and αn ∈ [0, 1] for n ≥ 1, and construct the Mann

sequence {Un} by

Un+1 = (1 − αn)Un + αnTUn, n ≥ 0

which gives

Un+1 ≡ (rn+1, θn+1) =
(
rn, θn + αn

(π

2
− θn

))
.

Hence rn = r0 = 1, n ≥ 0 and

θn+1 = αn
π

2
+ (1 − αn)θn, n ≥ 0 and θ0 =

π

4
.

1) For αn ≡ 1 we get θn =
π

2
, n ≥ 0 and so

Un →
(
1,

π

2

)
∈ FT

which is not the nearest fixed point of T to U0, because the nearest one is the

point p =

(√
2

2
,
π

2

)
.

2) The same happens when αn ≡ 1
2
, when we find

θn =
π

2n+2
+

π

2
· 2n − 1

2n
, n ≥ 0

and hence
Un →

(
1,

π

2

)
∈ FT

which is also not the nearest fixed point of T to U0;
3) For αn ≡ 0, we get θn =

π

4
and hence

lim
n→∞

Un =
(
1,

π

4

)
/∈ C.

An important class of quasi-contractive mappings, which is indepen-
dent of the class of strictly pseudocontractive mappings, is the class of
Zamfirescu mappings. In Section 2.3 we have proved (Theorem 2.4) that for
any Zamfirescu mapping T considered on a complete metric space, the Picard
iteration converges to the unique fixed point of T.

It is the aim of this section to show that, in a more particular ambient
space, suitable for constructing the Mann iteration, the latter iterative proce-
dure also converges to the unique fixed point of T.
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Theorem 4.9. Let E be a uniformly convex Banach space, K a closed
convex subset of E, and T : K → K be a Zamfirescu mapping. Then the
Mann iteration {xn},

xn+1 = (1 − αn)xn + αnTxn , n = 1, 2, . . . (5)

with {αn} satisfying the conditions
(i) α1 = 1; (ii) 0 ≤ αn < 1, for n > 1 and (iii)

∑
αn(1 − αn) = ∞,

converges to the unique fixed point of T .

Proof. Theorem 2.4 shows that T has a unique fixed point in K. Let us
denote it by p. For any x1 ∈ K, we have

‖xn+1 − p ‖ ≤ (1 − αn) ‖xn − p ‖ + αn ‖Txn − p ‖ .

Since any Zamfirescu mapping is quasi-contractive, we deduce that

‖Txn − p ‖ ≤ ‖xn − p ‖ ,

which shows that the sequence {‖xn − p ‖} is decreasing. We also have

‖xn − Txn ‖ = ‖ (xn − p) − (Txn − p) ‖ ≤ 2 ‖xn − p ‖ .

Now let us assume that there exist a number a > 0 such that ‖xn − p ‖ ≥ a,
for all n.

Suppose {‖xn − Txn ‖}n≥1 does not converge to zero. Then there are two
possibilities: either there exists an ε > 0 such that ‖xn − Txn ‖ ≥ ε for all n
or

lim inf ‖xn − Txn ‖ = 0.

In the first case, using Lemma of Groetsch, see Exercise 4.11, with b =
2δX (ε/ ‖x0 − p‖) we get

‖xn+1 − p ‖ ≤ ( 1 − αn(1 − αn) b ) ‖xn − p ‖ ≤

≤ ‖xn−1 − p ‖ − αn−1(1 − αn−1)b ‖xn − p ‖ − bαn(1 − αn) ‖xn − p ‖ ≤
≤ ‖xn−1 − p ‖ − b[αn−1(1 − αn−1) + αn(1 − αn)] · ‖xn − p ‖ .

By induction one obtains

a ≤ ‖xn+1 − p ‖ ≤ ‖x0 − p ‖ − b

n∑
k=0

αk(1 − αk) · ‖xn − p ‖ .

Therefore

a

[
1 + b

n∑
k=0

αk(1 − αk)

]
≤ ‖x0 − p‖ ,

which contradicts (iii).
In the second case, there exists a subsequence {xnk

} such that
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lim
k

‖xnk
− T xnk

‖ = 0. (6)

Using similar arguments to those exploited in proving Theorem 2.4, we get

‖Txnk
− Txnl

‖ ≤ L [ ‖xnk
− Txnk

‖ + ‖xnl
− Txnl

‖ ] ,

where

L = max
{

α

1 − α
, β,

γ

1 − 2γ

}
,

α, β, γ being the constants appearing in conditions (z1) − (z3). The previous
inequality shows that {Txnk

} is a Cauchy sequence, hence convergent.
Let u be its limit. From (6) it results that

lim
k→∞

xnk
= lim

k→∞
Txnk

= u.

Moreover,

‖u − Tu ‖ ≤ ‖u − xnk
‖ + ‖xnk

− Txnk
‖ + ‖Txnk

− Tu ‖ .

We will show that u = Tu, that is, u is a fixed point of T . Indeed, if xnk
, u

satisfy (z1), then
‖Txnk

− Tu ‖ ≤ α ‖xnk
− u ‖ .

If xnk
, u satisfy (z2), then

‖Txnk
− Tu ‖ ≤ β [ ‖xnk

− Txnk
‖ + ‖u − Tu ‖ ]

which leads to

‖u − Tu ‖ ≤ [ ‖u − xnk
‖ + (1 + β) ‖xnk

− Txnk
‖ ] / (1 − β)

and, finally, if xnk
, u satisfy (z3), then

‖Txnk
− Tu ‖ ≤ γ [ ‖xnk

− Tu ‖ + ‖u − Txnk
‖ ] ≤

≤ γ [ ‖xnk
− Txnk

‖ + ‖Txnk
− Tu ‖ + ‖u − Txnk

‖ ] ,

or
‖Txnk

− Tu ‖ ≤ γ(1 − γ)−1 [ ‖xnk
− Txnk

‖ + ‖u − Txnk
‖ ] .

Hence u = Tu.
Now, since p is the unique fixed point of T , it results that p = u and so

the two conditions lim
k

xnk
= u(= p) and {‖xn − p ‖} decreasing with respect

to n yields lim
n

xn = p. �

Remarks.
1) Having in view that any Kannan mapping is a Zamfirescu mapping,

from Theorem 4.9 we obtain the convergence of the Mann iteration in the
class of Kannan mappings;
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2) If αn =
1
2

for all n, from Theorem 4.9 we obtain Theorem 2 and

Theorem 3 of Kannan [Knn71], while if αn = λ for all n, we obtain Theorem 3
of Kannan [Knn73];

3) As both Picard iteration and Krasnoselskij iteration converge in the
class of Zamfirescu mappings, it is natural to try to compare these methods
in order to know which one converges faster to the (unique) fixed point of T ,
see Chapter 9.

Theorem 4.9 can be extended to an arbitrary Banach space, by simul-
taneously weakening the conditions on the sequence involved in the Mann
iteration, as shown by the following theorem whose proof is very simple.

Theorem 4.10. Let E be an arbitrary Banach space, K a closed convex
subset of E, and T : K → K an operator satisfying conditions (z1) − (z3)
in Theorem 2.4 with d(x, y) = ‖x − y‖. Let {xn}∞n=0 be defined by (5) and
x0 ∈ K, with {αn} ⊂ [0, 1] satisfying

(iv)
∞∑

n=0

αn = ∞ .

Then {xn}∞n=0 converges strongly to the unique fixed point of T .

Proof. By Theorem 2.4, we know that T has a unique fixed point in K.
Call it p and consider x, y ∈ K.

By (z1) − (z3), with a ≡ α, b ≡ β, c ≡ γ similarly to the proof of
Theorem 2.4 we find that, denoting

δ = max
{

a,
b

1 − b
,

c

1 − c

}
, (7)

we have 0 < δ < 1 and the inequality

‖Tx − Ty‖ ≤ δ‖x − y‖ + 2δ‖x − Tx‖ (8)

holds, for all x, y ∈ K.
Let {xn}∞n=0 be the Mann iteration (5), with x0 ∈ K arbitrary. Then

‖xn+1 − p‖ =
∥∥(1 − αn)xn + αnTxn − (1 − αn + αn)p

∥∥ =

=
∥∥(1 − αn)(xn − p) + αn(Txn − p)

∥∥ ≤

≤ (1 − αn)‖xn − p‖ + αn‖Txn − p‖ . (9)

Take x := p and y := xn in (8) to obtain

‖Txn − p‖ ≤ δ · ‖xn − p‖,

which together with (9) yields

‖xn+1 − p‖ ≤
[
1 − (1 − δ)αn

]
‖xn − p‖ , n = 0, 1, 2, . . . . (10)
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Inductively we get

‖xn+1 − p‖ ≤
n∏

k=0

[
1 − (1 − δ)αk

]
· ‖x0 − p‖ , n = 0, 1, 2, . . . . (11)

As 0 < δ < 1, αk ∈ [0, 1] and
∞∑

k=0

αk = ∞, by a standard argument it results

that

lim
n→∞

n∏
k=0

[
1 − (1 − δ)αk

]
= 0 ,

which by (11) implies
lim

n→∞
‖xn+1 − p‖ = 0 ,

i.e., {xn}∞n=0 converges strongly to p. �
Remarks.

1) Condition (iv) in Theorem 4.10 is more relaxed than conditions (i) - (iii)
in Theorem 4.9. Indeed, in view of

0 < αk(1 − αk) < αk,

valid for all αk satisfying (i) - (ii), condition (iii) implies (iv).
There also exist values of {αn}, e.g., αn ≡ 1, such that (iv) is satisfied but
(iii) is not;

2) Since the contractive condition of Kannan, i.e., condition (8) in Section
2.3, is a special case of Zamfirescu contractive conditions, Theorems 2 and 3
of Kannan [Knn71] are special cases of Theorem 4.10 or Theorem 4.9 in this
section, with αn = 1/2.

Theorem 3 of Kannan [Knn73] is the special case of Theorem 4.10 or
Theorem 4.9 with αn = λ, 0 < λ < 1. However, note that all the results
of Kannan are obtained in uniformly Banach spaces, like Theorem 4.9, while
Theorem 4.10 is valid in arbitrary Banach spaces;

3) Because of the more restrictive assumptions (i) - (ii), the convergence of
Picard iteration cannot be obtained as a particular case of Theorem 4.9, but,
due to the more natural assumption (iv), it can be obtained by Theorem 4.10,
by taking αn ≡ 1;

4) By Theorem 4.10 we can also obtain, as a particular case, a convergence
theorem for Mann iteration in the class of operators that satisfy Chatterjea’s
contractive condition (34) in Section 2.7.
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4.3 Strongly Pseudocontractive Operators

Let E be a Banach space, K a subset of E, and T : K → K a strongly
pseudocontractive operator, i.e. (see Definition 1.13 and Remark 2 following
it), there exists a number t > 1 such that the inequality

‖ x − y‖ ≤ ‖(1 + r)(x − y) − rt(Tx − Ty)‖ (12)

holds for all x, y ∈ K and r > 0.
As mentioned in Chapter 1, a mapping T is strongly pseudocontractive if

and only if I − T is a strongly accretive mapping, i.e. (see Definition 1.14 in
Chapter 1) there exist j(x− y) ∈ J(x− y) and a positive number k such that

〈(I − T )x − (I − T ) y , j(x − y)〉 ≥ k ‖ x − y‖2 (12′)

that, in turn, is equivalent to the fact that the next inequality

‖x − y‖ ≤ ‖x − y + r [ (I − T − kI)x − (I − T − kI) y ]‖ (12”)

holds for any x, y ∈ K and any r > 0 (where k =
t − 1

t
).

Based on the form (12”) of the strong pseudo-contractiveness property, one
can prove that the Mann iteration process converges strongly to the unique
fixed point of a Lipschitzian and strongly pseudocontractive operator.

Theorem 4.11. Let E be a Banach space and K a nonempty closed
convex and bounded subset of E. If T : K → K is a Lipschitzian strongly
pseudocontractive operator such that the fixed point set of T , FT , is nonempty,
then the Mann iteration {xn} ⊂ K generated by (5) with x1 ∈ K and the
sequence {αn} ⊂ (0, 1], with {αn} satisfying

(i)
∞∑

n=1

αn = ∞ ; (ii) αn → 0 (as n → ∞),

converges strongly to the unique fixed point of T .

Proof. Let p be a fixed point of T . Since T is a strongly pseudocontractive
operator, I − T is strongly accretive, i.e., the inequality (12”) holds for any
x, y ∈ K and r > 0. Let L > 0 be the Lipschitz constant. Then, from the
definition of {xn},

xn+1 = (1 − αn)xn + αn T xn , n = 1, 2, . . . (13)

and therefore we have

xn = xn+1 + αn xn − αn T xn = (1 + αn)xn+1+
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+αn(I − T − kI )xn+1 − (2 − k)αn xn+1 + αn xn + αn(T xn+1 − Txn) =

= (1 + αn)xn+1 + αn(I − T − kI )xn+1 − (2− k)αn[(1− αn)xn + αn T xn]+

+αn xn + αn (T xn+1 − T xn) = (1 + αn)xn+1 + αn(I − T − kI )xn+1−
−(1 − k)αn xn + (2 − k) · α2

n(xn − T xn) + αn(T xn+1 − T xn).

As Tp = p, we have

xn−p = (1+αn)(xn+1−p)+αn(I −T −kI )(xn+1−p)− (1−k)αn(xn−p)+

+(2 − k)α2
n(xn − Txn) + αn(T xn+1 − T xn).

Now, using the inequality (12”), we get

‖xn − p‖ ≥ (1 + αn) ‖ xn+1 − p‖ − (1 − k)αn ‖xn − p‖−

−(2 − k)α2
n ‖xn − Txn‖ − αn ‖ T xn+1 − T xn‖ .

Since T is Lipschitzian, it follows that

‖ T xn+1 − T xn‖ ≤ L ‖xn+1 − xn‖ ≤ L(L + 1) αn ‖ xn − p‖ ,

and then

‖xn − p‖ ≥ (1 + αn) ‖ xn+1 − p‖ − (1 − k)αn ‖xn − p‖−

−(2 − k)α2
n ‖xn − Txn‖ − L(L + 1)α2

n ‖ xn − p‖ .

Hence

‖xn+1 − p‖ ≤ [1 + (1 − k)αn](1 + αn)−1 ‖ xn − p‖ + (2 − k) α2
n(1 + αn)−1·

· ‖xn − Txn‖ + L(L + 1)α2
n( 1 + αn)−1 ‖ xn − p‖ ≤

≤ [1 + (1 − k)αn](1 − αn + α2
n) ‖xn − p‖ + (2 − k)α2

n ‖xn − Txn‖+

+L(L + 1) α2
n ‖ xn − p‖ ,

(14)
and, by using ‖xn − Txn‖ ≤ (L + 1) ‖xn − p‖, we obtain

‖ xn+1 − p‖ ≤ (1 − kαn + Mα2
n) ‖ xn − p‖ ,

for some constant M > 0.
Since αn → 0, there exists N0 ≥ 0 such that

Mαn ≤ k(1 − k),∀n ≥ N0,

we get
‖ xn+1 − p‖ ≤ (1 − k2αn) ‖ xn − p‖ , ∀n ≥ N0.
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Now using Lemma 1.2, it follows that the sequence {‖ xn − p‖} converges
to 0, that is, {xn} converges strongly to the (unique) fixed point p of T . �

By the same technique of proof as above, we can obtain a convergence
theorem for the Krasnoselskij iteration method in the class of Lipschitzian
strictly pseudocontractive operators in a Banach space setting.

Remind that in Section 3.3 we also presented a result for Krasnoselskij iter-
ation (Theorem 3.6) in the class of Lipschitzian generalized pseudocontractive
operators, but in a Hilbert space setting. Note that, due to assumption (ii) in
Theorem 4.11, the next Corollary cannot be obtained directly as a particular
case of this theorem, but can be proved independently.

Corollary 4.2. Let K and T be as in Theorem 4.11. If αn =
k

2(3 + 3L + L2)
,

where k =
t − 1

t
and Fix (T ) = {p}, then the sequence {xn} generated by (13)

converges strongly to the unique fixed point of T and we have the estimate

‖ xn+1 − p‖ ≤ ρn ‖ x1 − p‖ ,

where
ρ = 1 − k2/[4(3 + 3L + L2)].

Proof. We have 0 < αn < 1. As p = Tp, we get

[1 + (1 − k)αn](1 − αn + α2
n) = 1 − kαn + α2

n − (1 − k)α2
n(1 − αn) ≤

≤ 1 − kαn + α2
n

and
‖ xn − Txn‖ ≤ (1 + L) ‖ xn − p‖ .

Hence, by (7) we obtain

‖ xn+1 − p‖ ≤ (1 − kαn) ‖xn − p‖ + [1 + (2 − k)(1 + L)+

+L(L + 1)α2
n] ‖xn − p‖ < [1 − kαn + (3 + 3L + L2)α2

n] ‖ xn − p‖ =

=
[
1 − k2/(4(3 + 3L + L2))

]
‖ xn − p‖ = ρ ‖ xn − p‖ .

Therefore
‖ xn+1 − p‖ ≤ ρn ‖ x1 − p‖ ,

as required. �
Remark.
Even if the great majority of convergence theorems for the Mann iteration

existing in literature are obtained by imposing a condition of the form (ii), this
condition turned out to be artificial and unnecessary, as shown by Example 4.3
in the case of Krasnoselskij iteration, see also Chapter 9, for the more general
Mann iteration.
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Theorem 4.12 illustrates this fact and, moreover, points out that the
boundedness of K in Theorem 4.11 is also unnecessary to get the conver-
gence of Mann iteration. The next example shows that assumptions like (ii)
in Theorem 4.11 are often artificial, being tributary to the particular technique
of proof used.

Example 4.3. Let T be as in Example 3.1, i.e., E = R with the usual

norm, K =
[
1
2
, 2
]

and T : K → K a function given by Tx =
1
x

, for all x in

K. Then:
(a) T is Lipschitzian with constant L = 4;
(b) T is strongly pseudocontractive (with any constant k ∈ (0, 1));
(c) Taking αn = λ ∈ (0, 1), condition lim

n→∞
αn = 0 is not satisfied, but

(d) A certain Mann iteration does converge to the unique fixed point of T .
Indeed, for any t > 1, we have

‖x − y‖ ≤ ‖(1 + r)(x − y) − rt(Tx − Ty)‖

which is equivalent to

|x − y| ≤ |x − y| ·
∣∣∣∣1 + r +

rt

xy

∣∣∣∣

valid for all x, y ∈
[
1
2
, 2
]

and r > 0. Moreover, using Theorem 3.6, which

can be applied here, since T is also generalized pseudo-contractive, we deduce
that Krasnoselskij iteration (which is in fact a Mann-type iteration procedure
with a constant sequence αn ≡ λ ∈ (0, 1)), converges strongly to the unique

fixed point of T , p = 1, for any initial approximation x0 ∈
[
1
2
, 2
]

and λ ∈ I,

I an interval in (0, 1), although lim
n→∞

αn = λ 
= 0.

Theorem 4.12. Let E be a Banach space and K a nonempty closed
convex subset of E. If T : K → K is a Lipschitzian (with constant L) and
strongly pseudocontractive operator (with constant k) such that the fixed point
set of T , FT , is nonempty, then the Mann iteration {xn} ⊂ K generated by
(5) with x1 ∈ K and the sequence {αn} ⊂ (0, 1], satisfying (i) and

αn ≤ k − η

(L + 1)(L + 2 − k)
,

for some η ∈ (0, k), converges strongly to the unique fixed point p of T .
Moreover, there exists {βn}n≥0, a sequence in (0, 1) with βn ≥ (η/(1 +

k))αn, such that for all n ∈ N, the following estimate holds

‖xn+1 − p‖ ≤
n∏

j=1

(1 − βj) ‖x1 − p‖ .
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Proof. Define δn := ‖xn − p‖, for each n ∈ N. Like in the proof of
Theorem 4.11, it follows that

δn ≥ (1+αn)δn+1−(1−k)αnδn−(2−k)α2
n ‖xn − Txn‖−L(L+1)α2

nδn. (15)

Since T is Lipschitzian, we have

‖xn − Txn‖ ≤ (L + 1)δn. (16)

By denoting

An := 1 + (1− k)αn + (2− k + L)(L + 1)α2
n, Bn := 1 + αn and βn := 1− An

Bn

by (15) and (16) we obtain

δn+1 ≤ An

Bn
δn. (17)

On the other hand,

βn =
αn

1 + αn
[k − (L + 1)(L + 2 − k)αn] ≥ αn

1 + αn
η ≥ η

1 + k
αn.

Further, from (17) we have

δn+1 ≤ An

Bn
. . .

A1

B1
=

n∏
j=1

(1 − βj)δ1.

Now, clearly,
∞∑

n=1
βn = ∞, and hence

∞∏
j=1

(1 − βj) = 0. Thus δn → 0, i.e.,

xn → p in norm as n → ∞. �
Now, by Theorem 4.12, we can obtain directly a convergence theorem

regarding the Krasnoselskij iteration procedure, which is given by formula (5)
with αn ≡ λ.

Corollary 4.3. Let E,K, T, L, k, p, η be as in Theorem 4.12. Then the
Krasnoselskij iteration {xn} ⊂ K generated by x1 ∈ K and (18), where λ ∈
(0, a), and

a = k/[(L + 1)(L + 2 − k)],

converges strongly to the (unique) fixed point p of T . Moreover, the following
estimate holds

‖xn+1 − p‖ ≤ qn ‖x1 − p‖ ,

where

q =
1 + (1 − k)λ + (L + 1)(L + 2 − k)λ2

1 + λ
.

Proof. Take αn ≡ λ in Theorem 4.12. �
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If T is not a Lipschitzian operator, we can still prove the convergence of
the Mann iteration, but in some particular Banach spaces as, for example, in
uniformly smooth Banach spaces. A typical result of this kind is given by the
next theorem, which is a particular case of Theorem 5.2 in Chapter 5.

Theorem 4.13. Let E be a real uniformly smooth Banach space and K
a bounded closed convex and nonempty subset of E. Let T : K → K be a
strongly pseudocontractive operator such that Tp = p for some p ∈ K, and
let {xn} be the Mann iteration process generated by x1 ∈ K and the sequence
{αn} satisfying the following conditions:

(i) 0 ≤ αn < 1 for all n ≥ 1;
(ii) lim

n→∞
αn = 0 ;

(iii)
∞∑

n=0
αn = ∞.

Then, for arbitrary x1 ∈ K, the sequence {xn} given by (5) converges
strongly to p and p is unique.

Proof. We use the fact that in a uniformly smooth Banach space
Lemma 1.1 is valid. For the rest of the proof see Theorem 5.2. �

4.4 Bibliographical Comments

§4.1.

The general Mann iterative process given in Definition 4.1 was introduced
in 1953 by Mann [Man53]. Its convergence was stated in a Banach space setting
but, as shown by Dotson [Dot70, Theorem 1], it is valid in the more general
context of a locally convex Haussdorf linear topological space, as stated in
Theorem 4.1.

Definitions 4.1 and 4.2 as well as Theorems 4.1 and 4.2 are taken from
Dotson [Dot70], where they appear as Theorems 1 and 2, respectively. Hints
on the proof of Theorem 4.1 are given in the same paper, Dotson [Dot70].

Theorem 4.3 is in fact Theorem 1 in Rhoades [Rh95b], here with a slight
correction (the Banach space setting put instead of the metric space setting
in original, obviously inappropriate for the Mann iteration).

Example 4.1 is Corollary 1 in Rhoades [Rh95b], where many other special
cases belonging to these type of conditions can be also found.

The notation M(x1, αn, T ) of a normal Mann iterative process appears to
have been first used by Senter and Dotson [SeD74] in 1974.

§4.2.

The content of this Section is taken from Dotson [Dot70], paragraph 3.
Theorem 4.4 is Theorem 3, while Lemma 4.1 and Lemma 4.2 are respectively
Lemma 1 and Lemma 2 in the same paper, Dotson [Dot70].
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The rest of the Section is taken mainly from paragraph 4 in Dotson [Dot70]:
Theorem 4.5 being Theorem 4, while Theorem 4.6 is Theorem 5. Corollary 4.1
is a result due to Browder and Petryshyn [BrP67].

Theorem 4.7 is also taken from Dotson [Dot70], where ii) appears as
Theorem 6, while Theorem 4.8 is Theorem 1 in Senter and Dotson [SeD74],
where a more general result is proved, i.e., Theorem 2, which considers T a
quasi-nonexpansive operator and C not necessarily bounded.

Notice that in the same paper of Dotson [Dot70] one can find similar results
for the Krasnoselskij iteration in Hilbert and Banach spaces.

Example 4.2 is taken from Senter and Dotson [SeD74]. For further results
on the approximation of fixed points of quasi-nonexpansive mappings and gen-
eralized nonexpansive mappings in uniformly Banach spaces satisfying Opial’s
condition, see Park, J.Y. and Jeong, J.U. [PJe94].

Theorem 4.9 in this section is Theorem 4 in Rhoades [Rh74a], slightly refor-
mulated. In the same paper one can find suitable examples illustrating the re-
lationships existing between the classes of nonexpansive, quasi-nonexpansive,
strictly pseudocontractive and generalized contractive mappings, respectively.

The stability of the Mann iteration for Zamfirescu operators was studied
in Harder and Hicks [HH88b].

A survey on the relevant results regarding the convergence of Mann iter-
ation for several classes of Lipschitzian and pseudo-contractive operators in
Hilbert spaces are given in Chidume and Moore [ChM99].

Theorem 4.10 is Theorem 2 in Berinde [Be03e]. The corresponding result
for Ishikawa iteration, that extends Theorem 4.10, was obtained in [Be04c].

§4.3.

The equivalence of the inequalities (12’) and (12”) quoted at the beginning
of this Section is proved in Bogin [Bog74], see lemma of Kato [Kat67] given
as Exercise 4.12.

The first part of this Section, including Theorem 4.11 and Corollary 4.2,
is taken from Liu, Liwei [LiW97].

Some other results related to that in Theorem 4.11, established for various
particular Banach spaces, are given in Chidume [Chi87], [Ch90a], [Ch94b]; Tan
and Xu, H.K. [TX93c]; Weng [We91a]; Bethke [Bet89]; Kang, Z.B. [Kng91];
Schu [Sc91f]; Xu, Z.B. and Roach [XuR92]; Osilike and Udomene [OU01a].

Theorem 4.12 and Corollary 4.3 are taken from Sastry and Babu [SaB00].
Some other extensions of Theorem 4.11 were obtained in Chidume and

Osilike [ChO98]. Theorem 4.13 is a particular case of a more general result
given there (and transcribed as Theorem 5.2 in Chapter 5 of this book).
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Exercises and Miscellaneous Results

4.1. Hicks and Kubicek (1977)
Let H be the complex plane, K = {z ∈ H : |z| ≤ 1} and T : K → K given by

T (reiθ) =

⎧⎪⎨
⎪⎩

2rei(θ+ π
3 ), if 0 ≤ r ≤ 1

2
ei(θ+ 2π

3 ), if
1
2

< r ≤ 1.

Then
(a) T is discontinuous and pseudocontractive;
(b) The origin is the unique fixed point of T ;
(c) The Mann iteration with the sequence αn = 1/(n + 1) does not converge
to (0, 0).

4.2. Chidume and Mutangadura (2001)
Let H be the real Hilbert space R

2 endowed with the usual Euclidean inner
product. If x = (a, b) ∈ H, we define x⊥ ∈ H to be (b,−a).

Let K := {x ∈ H : ‖x‖ ≤ 1} and denote

K1 := {x ∈ H : ‖x‖ ≤ 1
2
} , K2 := {x ∈ H :

1
2
≤ ‖x‖ ≤ 1}.

Define T : K → K as follows

Tx =

{
x + x⊥, if x ∈ K1

x

‖x‖ − x + x⊥, if x ∈ K2.

Then: (a) T is Lipschitzian and pseudocontractive; (b) The origin is the
unique fixed point of T ; (c) No Mann sequence converges to the fixed point;
(d) No Mann sequence converges to any x 
= 0.

4.3. (i) Prove Lemma 4.1; (ii) Prove Lemma 4.3; (iii) Prove Theorem 4.7; (iv)
Prove Lemma 4.5; (v) Prove Theorem 4.8.

4.4. Chidume (2001)
Let E = l∞ and K = {x ∈ l∞ : ‖x‖∞ ≤ 1}. Define T : K → K by

Tx = (0, x2
1, x

2
2, x

2
3, . . . ), for x = (x1, x2, x3, . . . ) ∈ K.

Then: (i) T is quasi-nonexpansive; (ii) T is not nonexpansive.

4.5. Chidume (2001)
Let E = l∞ and K = {x ∈ l∞ : ‖x‖∞ ≤ 1}. Define T : K → K by

T (x) =

{
(0, x2

1, x
2
2, x

2
3, . . . ), if ‖x‖ ≤ 1

‖x‖−2
∞ (0, x2

1, x
2
2, x

3
3, . . . ), if ‖x‖ > 1,
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where x = (x1, x2, x3, . . . ) ∈ l∞. Then: (i) T is a quasi-nonexpansive map
with the unique fixed point 0 = (0, 0, . . . );
(ii) T is not uniformly asymptotically regular (to show this, prove that for all
integers n ≥ 1, there exists x ∈ B(0, 1) such that∥∥Tn+1

λ x − Tn
λ x

∥∥ > λ2(1 − λ2),

for arbitrary λ ∈ (0, 1), where Tλ = (1 − λ)I + λT is the averaged map
associated to T ).

4.6. Show that any nonexpansive map is a continuous pseudocontraction (but
the reverse is not true).

4.7. Show that T : [0, 1] → R defined by Tx = 1−x
2
3 is a continuous pseudo-

contraction which is not nonexpansive.

4.8. Osilike and Udomene (2001)
Show that a strictly pseudocontractive map is L-Lipschitzian.

4.9. Rhoades (1974)
Let H be a Hilbert space and K a nonempty compact convex subset of H. Let
T : K → K be a strictly pseudo-contractive map (with a constant k) and let
{αn}∞n=0 be a sequence of real numbers satisfying the conditions: (i) αo = 1;

(ii) 0 < αn < 1 for all n ≥ 1; (iii)
∞∑

n=1
αn = ∞, and (iv) lim

n→∞
αn = α < 1− k.

Then the Mann iteration method generated from an arbitrary x0 ∈ K by

xn+1 = (1 − αn)xn + αnTxn, n ≥ 0,

converges strongly to a fixed point of T .

4.10. Chidume (1994)
Let E = Lp or lp, 1 < p ≤ 2 and let K be a nonempty closed convex subset
of E. Let T : K → K be a continuous strongly pseudo-contractive mapping
of K into itself. Let {αn}∞n=0 be a sequence of real numbers satisfying the

conditions: (i) 0 < αn < 1 for all n ≥ 1; (ii)
∞∑

n=1
αn = ∞, and (iii)

∞∑
n=1

αp
n < ∞.

Then the Mann iteration method generated from an arbitrary x1 ∈ K by

xn+1 = (1 − αn)xn + αnTxn, n ≥ 1,

converges strongly to the unique fixed point of T .

4.11. Groetsch (1972)
Let X be a uniformly convex Banach space and x, y ∈ X such that ‖x‖ ≤ 1,
‖y‖ ≤ 1 and ‖x − y‖ ≥ ε > 0. Then for 0 ≤ λ ≤ 1, ‖λx + (1 − λ)y‖ ≤
1 − 2λ(1 − λ)δX(ε), where δX(.) is the modulus of convexity of X.

4.12. Kato (1967)
Let X be a real Banach space, J be the normalized duality mapping on X
and let x, y ∈ X. Then ‖x‖ ≤ ‖x + λy‖ , ∀λ > 0 if and only if there exists
x∗ ∈ Jx such that 〈y, x∗〉 ≥ 0.



5

The Ishikawa Iteration

As mentioned in the previous chapter, if T is continuous and the Mann
iterative process converges, then it converges to a fixed point of T . But if T
is not continuous, then there is no guarantee that, even if the Mann process
converges, it will converge to a fixed point of T , as shown by the following
example.

Example 5.1. Let T : [0, 1] → [0, 1] be given by T0 = T1 = 0 and
Tx = 1, 0 < x < 1. Then FT = {0} and the Mann iteration M(x1, αn, T )

with 0 < x1 < 1 and αn =
1
n

, n ≥ 1, converges to 1, which is not a fixed
point of T .

If, instead of the Mann iteration we consider another iterative process,
which is in some sense a two-step Mann iterative process, then it is possible
to approximate the fixed point of some classes of contractive mappings T for
which Mann iteration is not known to converge to a fixed point of T .

This new iterative process is called Ishikawa iteration, and was first in-
troduced for the class of Lipschitzian pseudo-contractive operators. Here we
consider some other classes of operators for which not only Mann iteration
but also Ishikawa iteration method can be used to approximate fixed points.

It is nowadays quite clear that, for large classes of contractive type op-
erators, it suffices to consider the simpler Mann iteration, even if Ishikawa
iteration - which is more general but also computationally more complicated
than Mann iteration - could be always used. Actually, having in view some
recent results presented in Chapters 3 and 4, it is also evident that a sim-
pler method than Mann iteration, i.e., the Krasnoselskij iteration - which is a
particular case of Mann iteration - can be used in some cases to approximate
fixed points of some classes of operators.
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5.1 Lipschitzian and Pseudo-Contractive Operators
in Hilbert Spaces

As we have shown in the previous chapter, the Mann iteration process
converges in the special case of Lipschitzian and strongly pseudocontractive
operators.

However, if T is only a pseudocontractive mapping, then generally the
Mann iterative process does not converge to the fixed point, see Exercises 4.1
and 4.2.

Interest in pseudocontractive maps stems mainly from their firm connec-
tion with the class of nonlinear accretive operators, as it was pointed out in
Chapter 1. It is a classical result, see Deimling [Dei74], that if T is an accre-
tive operator, then the solutions of the equations Tx = 0 correspond to the
equilibrium points of some evolution systems.

This explains why a considerable research effort has been devoted to iter-
ative methods for approximating solutions of the equation above, when T is
accretive or, correspondingly, to the iterative approximation of fixed points of
pseudocontractions.

Results of this kind have been obtained firstly in Hilbert spaces, but only
for Lipschitz operators, and then they have been extended to more general
Banach spaces (thanks to several geometric inequalities for general Banach
spaces developed within the past two decades) and to more general classes of
operators.

There are still no results for the case of arbitrary Lipschitzian and pseudo-
contractive operators, even when the domain of the operator is a compact
convex subset of a Hilbert space. This explains the importance, from this
point of view, of the improvement brought by the Ishikawa iteration.

It is the aim of this section to show that, under certain assumptions on
the sequences {αn}, {βn}, the Ishikawa iterative process associated to a Lip-
schitzian pseudocontractive operator converges strongly to a fixed point of T .
The original result of Ishikawa is stated in the following.

Theorem 5.1. Let K be a convex compact subset of a Hilbert space H
and let T : K → K be a Lipschitzian pseudocontractive map and x1 ∈ K.
Then the Ishikawa iteration {xn}, xn = I(x1, αn, βn, T ), i.e., the sequence
defined by

xn+1 = (1 − αn)xn + αnT [(1 − βn)xn + βn T xn], (1)

where {αn}, {βn} are sequences of positive numbers satisfying

(i) 0 ≤ αn ≤ βn ≤ 1, n ≥ 1; (ii) lim
n→∞

βn = 0; (iii)
∞∑

n=1

αnβn = ∞,

converges strongly to a fixed point of T .
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Proof. Since T is pseudocontractive, for any x, y ∈ K we have

‖ Tx − Ty ‖2 ≤ ‖ x − y ‖2 + ‖ (I − T )x − (I − T ) y ‖2
, (2)

where I is the identity map.
From the assumption that T is Lipschitzian, we deduce that there exists

a positive number L such that

‖ Tx − Ty ‖ ≤ L ‖ x − y ‖ , for any x, y ∈ K. (3)

Since K is a convex compact set and T is continuous (being Lipschitzian),
from Schauder’s fixed point theorem we obtain that the set of fixed points of
T , Fix (T ), is nonempty. Let p denote any point of Fix (T ). Recall Lemma
1.8: for any x, y, z in a Hilbert space H and a real number λ, we have

‖λx + (1 − λ) y − z ‖2 = λ ‖x − z ‖2+(1−λ) ‖ y − z ‖2−λ (1−λ) ‖x − y ‖2
.

(4)
Using (4) we obtain the following three equalities

‖xn+1 − p ‖2 = ‖αnT [βnTxn + (1 − βn)xn ] + (1 − αn)xn − p ‖2 =

= αn ‖T [βnTxn + (1 − βn)xn ] − p ‖2 + (1 − αn) ‖xn − p ‖2 −

−αn(1 − αn) ‖ T [βnTxn + (1 − βn)xn ] − xn‖2 ; (5)

‖βn T xn + (1 − βn)xn − p‖2 = βn ‖Txn − p ‖2 + (1 − βn) ‖xn − p ‖2 −

−βn(1 − βn) ‖Txn − xn ‖2
, (6)

and, respectively,

‖βnT xn + (1 − βn)xn − T [βnTxn + (1 − βn)xn]‖2 =

= βn ‖Txn − T [βnTxn + (1 − βn)xn]‖2 + (1 − βn)·

· ‖xn − T [βnTxn + (1 − βn)xn]‖2 − βn(1 − βn) ‖Txn − xn ‖2
. (7)

Applying (2) we deduce the following two inequalities

‖T [βnTxn + (1 − βn)xn] − p‖2 = ‖T [βnTxn + (1 − βn)xn] − Tp‖2 ≤

≤ ‖βnTxn + (1 − βn)xn − p‖2 +

+ ‖βnTxn + (1 − βn)xn − T [βnTxn + (1 − βn)xn‖2
, (8)

and
‖Txn − p‖2 = ‖Txn − Tp‖2 ≤ ‖xn − p‖2 + ‖xn − Txn‖2

. (9)

Now, performing the computations in (5)+αn[(6)+ (7)+ (8)+βn(9)], we get

‖xn+1 − p‖2 ≤ ‖xn − p‖2 − αnβn(1 − 2βn) ‖Txn − xn‖2 +
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+αnβn ‖Txn − T [βnTxn + (1 − βn)xn ] ‖2 −

−αn(βn − αn) ‖xn − T [βnTxn + (1 − βn)xn ] ‖2
,

and so, in view of (i), it follows that

‖xn+1 − p‖2 ≤ ‖xn − p‖2 − αnβn(1 − 2βn) ‖Txn − xn‖2 +

+αnβn ‖Txn − T [βnTxn + (1 − βn)xn ] ‖2
. (10)

Since T is Lipschitzian, we have

‖Txn − T [βnTxn + (1 − βn)xn ] ‖ < Lβn ‖Txn − xn ‖ (11)

and hence, from (10) and (11) we deduce

‖xn+1 − p‖2 ≤ ‖xn − p‖2 − αnβn(1 − 2βn − L2β2
n) ‖Txn − xn ‖2

. (12)

By summing (12) for n ∈ {m,m + 1, . . . , n} we obtain

‖xn+1 − p‖2 ≤ ‖xm − p‖2 −
n∑

k=m

αkβk(1 − 2βk − L2β2
k) ‖Txk − xk ‖2

,

which can be written as∑
αkβk(1 − 2βk − L2β2

k) ‖ Txk − xk ‖2 ≤ ‖xm − p ‖2 − ‖xn+1 − p ‖2
.

Now, by exploiting the assumption (ii), we deduce that there exists a positive
integer N such that

2βk + L2β2
k ≤ 1/2 , for all integers k ≥ N.

Then, for m > N we obtain

1
2

n∑
k=m

αkβk ‖ Txk − xk ‖2 ≤ ‖Txm − p ‖2 − ‖Txn+1 − p ‖2
. (13)

Since K is bounded, the right-hand side quantity in (13) is bounded. This
means that the series in the left-hand side is convergent and therefore, by
(iii), it results that

lim
n

inf ‖Txn − xn ‖ = 0,

which in turn implies (K is compact) that there is a subsequence {xnk
}∞k=1

that converges to a certain point q of Fix (T ).
Now, since q is a fixed point of T , from (12) we obtain for n ≥ N

‖xn+1 − q ‖ ≤ ‖xn − q ‖ ,

that is, the sequence {‖xn − q ‖} is non-increasing.
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Having in view that there is a subsequence {‖xnk
− q ‖} converging to

zero, it finally results that {xn} converges to q. �
Remarks.
1) In its original form, the Ishikawa iteration does not include the Mann

iteration, because of the assumption (i) in Theorem 5.1. Indeed, if one had
βn = 0 (n ≥ 1), then it would results αn = 0, as well;

2) In the effort to obtain an Ishikawa iteration which should include the
Mann iteration as a special case, some authors, amongst them Naimpally
and Singh, K.L. [NaS82] and Liu, Q. [LiQ87], have modified (i) to a weaker
condition of the form 0 ≤ αn, βn ≤ 1;

3) Liu, Q. [LiQ87] extended Theorem 5.1 to the class of Lipschitzian hemi-
contractive maps. A hemicontractive map is a pseudocontractive map with
respect to a fixed point, i.e., if p is a fixed point of T , and x is a point in the
space, then T satisfies

‖Tx − p ‖2 ≤ ‖x − p ‖2 + ‖x − Tx ‖2 ;

4) However, neither the proof of Q. Liu nor that of Ishikawa can be used
to establish a similar result for the Mann iterative process;

5) Since its publication in 1974, as far as we know, Theorem 5.1 has never
been extended to more general Banach spaces in its original formulation.

All extensions obtained so far cover slightly more general classes of oper-
ators and are still confined to Hilbert spaces. To overcome these difficulties
some authors have introduced other iterative processes, see Chapter 6, for a
brief presentation of the most important of them.

5.2 Strongly Pseudo-Contractive Operators in Banach
Spaces

Starting from the results established for the Mann iteration associated to
several classes of Lipschitzian pseudo-contractive operators in Hilbert spaces,
a considerable effort has been devoted to extending these results in Banach
spaces with certain geometric properties. One of the most general results that
were obtained in this class is given by the next theorem.

Theorem 5.2. Let E be a real uniformly smooth Banach space and K a
bounded closed convex and nonempty subset of E. Suppose T : K → K is a
strongly pseudocontractive operator that has at least a fixed point x∗ ∈ FT .
Let {αn}, {βn} be real sequences satisfying the following conditions:

(i) 0 ≤ αn , βn < 1, for all n ≥ 0;
(ii) lim

n→∞
αn = 0 ; lim

n→∞
βn = 0;
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(iii)
∞∑

n=0
αn = ∞.

Then, for arbitrary x0 ∈ K, the Ishikawa iteration I(x0, αn, βn, T ), i.e.,
the sequence {xn} defined iteratively by

xn+1 = (1 − αn)xn + αnTyn, (14)

yn = (1 − βn)xn + βnTxn, n ≥ 0, (15)

converges strongly to x∗ and, moreover, x∗ is unique.

Proof. Using Lemma 1.1 we obtain

‖ xn+1 − x∗‖2 = ‖(1 − αn)(xn − x∗) + αn(Tyn − x∗)‖2 ≤

≤ (1 − αn)2 ‖xn − x∗‖2 + 2αn(1 − αn) 〈Tyn − x∗, j(xn − x∗)〉+

+ max {(1 − αn) ‖xn − x∗‖ , 1} · αn ‖Tyn − x∗‖max {‖Tyn − x∗‖ , 1} ·

·b(αn) ≤ (1 − αn)2 ‖xn − x∗‖2 + M1αnb(αn) + 2αn(1 − αn)δn, (16)

for some constant M1 > 0 (since K is bounded), where

δn := 〈Tyn − x∗, j(xn − x∗)〉 =

= 〈Tyn − x∗, j(xn − x∗) − j(yn − x∗)〉 + 〈Tyn − Tx∗, j(yn − x∗)〉 ≤

≤ 〈Tyn − Tx∗, j(xn − x∗) − j(yn − x∗)〉 + k ‖ yn − x∗‖2 =

= ∆n + k ‖ yn − x∗‖2
,

where we denoted ∆n := 〈Tyn − Tx∗, j(xn − x∗) − j(yn − x∗)〉 and k is the
strong pseudo-contractiveness constant, 0 < k < 1.

We shall prove that ∆n → 0 as n → ∞. Indeed, note that the sequences
{xn − x∗} and {yn − x∗} are bounded subsets of E, and, by (15),

‖(xn − x∗) − (yn − x∗)‖ = βn ‖xn − Txn ‖ ≤ (diam K)βn → 0,

as n → ∞. Hence, by the uniform continuity of j on bounded subsets of E,
and since {Tyn − Tx∗} is bounded, we deduce exactly ∆n → 0 as n → ∞.

Now set M2 := 2(1−αn). Then, by (16) we obtain the following estimates

‖ xn+1 − x∗‖2 ≤ (1 − αn)2 ‖xn − x∗ ‖2 + M1αnb(αn)+

+2kαn(1 − αn) ‖ yn − x∗‖2 + 2αn(1 − αn)∆n ≤ (1 − αn)2 ‖xn − x∗ ‖2 +

+2kαn(1 − αn) ‖ yn − x∗‖2 + αn[M2∆n + M1b(αn)]. (17)

Now, using (15) we have

‖yn − x∗‖2 ≤ (1 − βn)2 ‖xn − x∗‖2 + 2kβn(1 − βn) ‖xn − x∗‖2 + M3βnb(βn),
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for some constant M3 > 0 (again we used the fact that K is bounded).
Hence

‖yn − x∗‖2 ≤ [1 − (1 − k)βn] · ‖xn − x∗‖2 + M3βnb(βn) ≤

≤ ‖xn − x∗‖2 + M3βnb(βn).

Substituting this last inequality in (17) and denoting M4 := 2kM3(1−αn) we
get the following estimates

‖xn+1 − x∗‖2 ≤ (1 − αn)2 ‖xn − x∗‖2 + 2kαn(1 − αn) ‖xn − x∗‖2 +

+M3βnb(βn) + αn [M2∆n + M1b(αn)] ≤

≤ [1 − αn + kαn] ‖xn − x∗‖2 + M4αnβnb(βn)+

+αn[M2∆n + M1b(αn)]. (18)

Set Jn := M4βnb(βn) + M2∆n + M1b(αn). By condition (ii) and the con-
tinuity of the function b(·) we obtain that Jn → 0 as n → ∞.

So, by (18) we get

‖xn+1 − x∗‖2 ≤ [1 − (1 − k)αn] · ‖xn − x∗‖2 + αnJn.

Set λn := ‖xn − x∗‖2
, σn := αnJn and hence the last inequality yields

λn+1 ≤ [1 − (1 − k)αn]λn + σn. (19)

Notice that the sequence {xn} is bounded below. Let a = inf{λn : n ≥ 1}.
We will prove that a = 0. Let us suppose a 
= 0, i.e., a > 0. Then, for all
n ≥ 1, we have λn ≥ a > 0. Note that σn/αn → 0 as n → ∞. Hence there
exists a positive integer N0 such that, for all n ≥ N0, we have

0 <
σn

αn
< a ≤ 1

2
(1 − k)λn.

This implies

σn ≤ 1
2
(1 − k)αnλn , for all n ≥ N0.

We substitute this last inequality in (19) and, since 0 < k < 1, we get

0 ≤ λn+1 ≤ [1 − (1 − k)αn]λn +
1
2
(1 − k)αnλn =

=
[
1 − 1 − k

2
· αn

]
λn ≤

n∏
j=0

[
1 − 1 − k

2
αj

]
λj → 0, as n → ∞,

since αn ∈ (0, 1), for all n ≥ 0, {λn} is bounded and
∞∑

n=0
αn = ∞, by (iii).

This is a contradiction and hence a = 0.
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Now we shall prove that the sequence {λn} converges to zero, as n → ∞.
As inf{λn : n ≥ 1} = 0, there exists a subsequence {λnj

}∞
j=0 of {λn}∞

n=0

such that λnj
→ 0 as j → ∞.

Now, given any ε > 0, there exists a large enough integer j0 such that
σn

(1 − k)αn
< ε and λnj

< ε, ∀n ≥ nj0 .

Inequality (19) yields now

λnj0+1 ≤ [1 − (1 − k)αnj0
]ε + (1 − k)αnj0

ε = ε,

and a simple induction yields λnj0+p ≤ ε, for all p ≥ 1.
This last inequality implies λn → 0 as n → ∞, that is, xn → x∗ as n → ∞.
The uniqueness of the fixed point is a direct consequence of the arguments

above. Indeed, the element p ∈ FT was arbitrarily chosen. Suppose now there
is a p∗ ∈ FT , with p∗ 
= p.

Repeating all computations relative to p∗, we obtain that the sequence
{xn} converges to both p∗ and p, so FT = {p}. �

Remarks.

1) Theorem 5.2 is a significant generalization of most of the related results
in literature. Furthermore, the parameters {αn} and {βn} of the Ishikawa
iteration involved in Theorem 5.2 do not depend neither on the geometry of
the underlying Banach space, nor on other special properties of the operator
T itself;

2) Taking αn = cn and βn = 0 for all n ≥ 0, from Theorem 5.2 we obtain
a general convergence theorem for the Mann iteration.

Corollary 5.1. Let E be a real uniformly smooth Banach space and let
K ⊂ E be a nonempty bounded closed and convex subset. Let T : K → K be
a strongly pseudocontractive map such that there exists x∗ ∈ FT . Let {cn}∞n=0

be a real sequence satisfying the following conditions:
(i) 0 ≤ cn < 1 for all n ≥ 0;

(ii) lim
n→∞

cn = 0; (iii)
∞∑

n=0
cn = ∞.

Then, for arbitrary x1 ∈ K, the Mann iteration M(x1, cn, T ) defined by

xn+1 = (1 − cn)xn + cnTxn, n ≥ 0

converges strongly to x∗, and x∗ is unique.

Remark. In order to prove Theorem 5.2 we used a property that charac-
terizes the uniformly smooth Banach spaces E (equivalently, E∗ is a uni-
formly convex Banach space): the duality mapping J is single-valued and
uniformly continuous on any bounded subset of E, see Exercise 5.3. Similarly
to Theorem 5.2, one obtains a more general result by considering a general-
ization of the concept of strongly pseudocontractive operators.
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Definition 5.1. Let E be a real normed space and let K be a nonempty
subset of E. A single-valued map T : K → E is said to be:

1) ϕ-strongly accretive if for any x, y ∈ K, there exist j(x− y) ∈ J(x− y)
and a strictly increasing function ϕ : [0,∞) → [0,∞) with ϕ(0) = 0 such that

〈Tx − Ty, j(x − y)〉 ≥ ϕ ( ‖x − y‖ ) · ‖x − y‖ ;

2) ϕ-strongly pseudocontractive if I − T is a ϕ-strongly accretive mapping.

Remark. Obviously, every strongly accretive operator is ϕ−strongly ac-
cretive, and every strongly pseudo-contractive operator is also ϕ−strongly
pseudo-contractive with ϕ(t) = kt, 0 < k < 1 and t ≥ 0.

The next result generalizes Theorem 5.2 to ϕ-strongly pseudo-contractive
operators, also removing the boundedness of K. We state it without proof.

Theorem 5.3. Let E be a uniformly smooth Banach space and K be
a nonempty closed convex subset of E. Let T : K → K be a Lipschitzian
ϕ-strongly pseudocontractive operator, with Lipschitz constant L ≥ 1 and
FT 
= ∅.

If {αn} , {βn} are two sequences in [0, 1] satisfying

(i) αn → 0 , βn → 0 (as n → ∞); (ii)
∞∑

n=0

αn = ∞,

then for any given x0 ∈ K the Ishikawa iterative process {xn},

xn = I(x0, αn, βn, T ), n ≥ 0,

converges to the unique fixed point of T in K.
Remark. Since any strongly pseudocontractive operator is also ϕ-strongly

pseudocontractive, Theorem 5.3 improves and extends several related results
in literature.

5.3 Nonexpansive Operators in Banach Spaces Satisfying
Opial’s Condition

The aim of this section is to show that rich (topological) properties of the
ambient Banach space together with weak properties of the operator itself
could still ensure the convergence of the Ishikawa iteration. More specifically,
we will show that if E is a uniformly convex Banach space which satisfies
Opial’s condition or whose norm is Frechet differentiable, K is a bounded
closed convex subset of E, and T : K → K is a nonexpansive operator, then
the Ishikawa iteration I(x0, αn, βn, T ) converges weakly to a fixed point of T ,
provided that the sequences {αn}, {βn} fulfill some appropriate conditions.
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Recall that a Banach space E is said to satisfy Opial’s condition, see also
Exercise 3.18, if for any sequence {xn} in E the condition xn ⇀ x0 (weakly)
implies

lim sup
n

‖xn − x0‖ < lim sup
n

‖xn − y‖ , for all y ∈ E, y 
= x0.

It is known, see, for example, Opial [Op67a], that all lp spaces for 1 < p <
∞ satisfy Opial’s condition but the Lp spaces do not, unless p = 2.

It is also known, see van Dulst [Dul82] that any separable Banach space can
be equivalently re-normed so that it satisfies Opial’s condition. Consequently,
this class of Banach spaces is large enough.

Recall also that E is said to have a Frechet differentiable norm if, for each
x ∈ S(E), the unit sphere of E, the limit

lim
t→0

‖x + ty‖ − ‖x ‖
t

exists and is attained uniformly in y ∈ S(E). In this case we have

1
2
‖x‖2 + 〈h, J(x)〉 ≤ 1

2
‖x + h‖2 ≤ 1

2
‖x ‖2 + 〈h, J(x)〉 + g ( ‖h ‖ ) , (20)

for all bounded x, h in E, where J(x) = ∂
1
2
‖x ‖2 is the Frechet derivative of

the functional
1
2
‖x ‖2 at x ∈ E, 〈·, ·〉 is the duality pairing and the function

g : [0,∞) → [0,∞) satisfies

lim
t→0+

g(t)
t

= 0.

For a bounded closed convex subset K of a uniformly convex Banach space
E and an operator T : K → K, we consider the Ishikawa iterative process
I(x0, αn, βn, T ), that can be written as

xn+1 = Tnxn , n = 0, 1, 2, . . . (21)

where
Tn(x) = (1 − αn)x + αnT [βnTx + (1 − βn)x]. (22)

We know that if T is nonexpansive, then Tn is also nonexpansive and that
FTn

⊇ FT , for all n ≥ 0, where FT denotes the set of all fixed points of T .
We will need the next lemmas.

Lemma 5.1. If T is nonexpansive and p ∈ FT , then

lim
n→∞

‖xn − p‖ exists.

Proof. We have ‖xn+1 − p‖ = ‖Txn − Tp‖ ≤ ‖xn − p‖, which shows that
the sequence { ‖xn − p‖ } is non-increasing. �
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Lemma 5.2. Let {αn} and {βn} ⊂ [0, 1] be such that

(i)
∞∑

n=0

αn(1 − αn) = ∞ ; (ii)
∞∑

n=0

βn(1 − αn) < ∞ ; (iii) lim sup
n

βn < 1.

Then lim
n→∞

‖Txn − xn‖ = 0, provided that T is nonexpansive.

Proof. Set
yn = βnTxn + (1 − βn)xn.

Then
xn+1 = αnTyn + (1 − αn)xn.

Let p ∈ FT . We may assume lim
n→∞

‖xn − p‖ 
= 0.

Then we have ‖yn − p‖ ≤ ‖xn − p‖ and hence

‖xn+1 − p‖ = ‖αn(Ty − p) + (1 − αn)(xn − p)‖ ≤

≤ ‖xn − p‖ ·
[
1 − 2αn(1 − αn)δE

(
‖Tyn − xn‖
‖xn − p‖

)]
, (23)

where δE is the modulus of convexity of E defined by

δE(ε) = inf
{

1 −
∥∥∥∥1

2
(x + y)

∥∥∥∥ : ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x − y‖ ≥ ε

}

for 0 ≤ ε ≤ 2.
Now, it results from (23) that

∞∑
n=0

αn(1 − αn) δE

(
‖Tyn − xn‖
‖xn − p‖

)

converges. But, since
∞∑

n=0
αn(1 − αn) diverges, we must have

lim inf
n

δE

(
‖Tyn − xn‖
‖xn − p‖

)
= 0,

which implies
lim inf

n
‖Tyn − xn‖ = 0, (24)

since δE is strictly increasing and continuous, and

lim
n→∞

‖xn − p‖ > 0.

Since

‖Txn − xn‖ ≤ ‖Txn − Tyn‖ + ‖Tyn − xn‖ ≤ ‖xn − yn‖ + ‖Tyn − xn‖ =
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= βn ‖Txn − xn‖ + ‖Tyn − xn‖ ,

we get

‖Txn − xn‖ ≤ 1
1 − βn

· ‖Tyn − xn‖ ,

and therefore by (24) we deduce that

lim inf
n

‖Txn − xn‖ = 0. (25)

Next

‖Txn+1 − xn+1‖ ≤ αn ‖Txn+1 − Tyn‖ + (1 − αn) ‖Txn+1 − xn‖ ≤

≤ αn ‖xn+1 − yn‖ + (1 − αn) · ( ‖Txn+1 − xn+1‖ + ‖xn+1 − xn‖ ) ≤
≤ αn [αn ‖Tyn − yn‖ + (1 − αn) ‖xn − yn‖] + (1 − αn)·

· ( ‖Txn+1 − xn+1‖ + αn ‖Tyn − xn‖ )

from which we get

‖Txn+1 − xn+1‖ ≤ αn ‖Tyn − xn‖ + (1 − αn) (‖Tyn − xn‖ + ‖xn − yn‖) ≤
≤ αn (βn ‖Tyn − Txn‖ + (1 − βn) ‖Tyn − xn‖) +

+(1 − αn) (‖Tyn − xn‖ + ‖xn − yn‖) ≤
≤ (1 + αnβn − αn) ‖xn − yn‖ + (1 − αnβn) ‖Tyn − xn‖ ≤
≤ βn(1 + αnβn − αn) ‖xn − Txn‖ + (1 − αnβn) ·

· (‖Tyn − Txn‖ + ‖Txn − xn‖) ≤
≤ [βn(1 + αnβn − αn) + (1 − αnβn)(1 + βn)] ‖xn − Txn‖ =
= [1 + 2βn(1 − αn)] ‖xn − Txn‖ .

Since
∞∑

n=0
βn(1 − αn) converges and {‖xn − Txn‖} is bounded, it follows by

Lemma 1.3 that lim
n→∞

‖Txn − xn‖ exists and, by (25), that it equals zero. �

Lemma 5.3. For a nonexpansive map T : C → X, the points x, y ∈ C and
0 ≤ λ ≤ 1, there exists g : [0,∞) → [0,∞) a strictly increasing continuous
function with g(0) = 0 such that

g (‖T [λx + (1 − λ)y] − [λTx + (1 − λ)Ty]‖) ≤ ‖x − y‖ − ‖Tx − Ty‖ .

Lemma 5.4. Suppose in addition to the previous statements that E has
a Frechet differentiable norm. Then for every p1, p2 ∈ FT and 0 < λ < 1

lim
n→∞

‖λxn + (1 − λ)p1 − p2‖

exists.
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Proof. Let’s denote Sn,m = Tn+m−1Tn+m−2 · · ·Tn+1Tn, where Tn is de-
fined by (22). As T and Tn are nonexpansive, Sn,m is nonexpansive as well
and xn+m = Sn,mxn. We also denote

an = an(λ) = ‖λxn + (1 − λ)p1 − p2‖

and
dn,m = ‖Sn,m[λxn + (1 − λ)p1] − [λxn+m + (1 − λ)p1‖ .

By Lemma 5.3 we get

g(dn,m) ≤ ‖xn − p1‖ − ‖Sn,mxn − Sn,mp1‖ = ‖xn − p1‖ − ‖xn+m − p1‖ .

Since lim
n→∞

‖xn − p1‖ exists, by Lemma 5.1 we conclude that

lim
n,m→∞

dn,m = 0. (26)

As
an+m = ‖λxn+m + (1 − λ)p1 − p2‖ ≤

≤ dn+m + ‖Sn,m[λxn + (1 − λ)p1 − p2]‖ ≤ dn,m + an,

it follows by (26) that

lim sup
n

an ≤ lim
n,m→∞

dn,m + lim inf
n→∞

an = lim inf
n

an,

which shows that lim
n→∞

an exists. �

Now we can prove the main results of this section, concerning the weak,
respectively the strong convergence of the Ishikawa iteration process in a uni-
formly convex Banach space, when the operator T is assumed to be only
nonexpansive.

Theorem 5.4. Let E be a uniformly convex Banach space which satisfies
Opial’s condition or whose norm is Frechet differentiable, K be a bounded
closed convex subset of E and T : K → K a nonexpansive mapping.

Then for any initial guess x0 in K, the Ishikawa process {xn} defined by
(21), (22), with {αn} , {βn} ⊂ [0, 1] satisfying (i), (ii), and (iii), converges
weakly to a fixed point of T .

Proof. By Browder’s theorem (Theorem 4.7), we know that if E is uni-
formly convex, then T has a fixed point and I − T is demiclosed at 0, i.e.,
for any sequence {yn} in K, the conditions yn → y and yn − Tyn → 0 imply
y = Ty.

If we denote by ωw(xn) the weak ω-limit set of the sequence {xn}, that is,

ωw(xn) = {u ∈ E : u = weak - lim
k→∞

xnk
, for some nk ↗ ∞},

then, by a direct consequence of Lemma 5.2, we may conclude that
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ωw(xn) ⊂ FT .

To show that {xn} converges weakly to a fixed point of T , it suffices to
show that ωw(xn) consists of exactly one point. To this end, we consider the
case when E satisfies Opial’s condition (the second case is similar).

Let p 
= q in ωw(xn). Then p = weak - lim
k→∞

xnk
and q = weak - lim

j→∞
xmj

, for

some subsequences {nk} and {mj} converging to ∞.
By Lemma 5.1 and Opial’s condition of E, we have

lim
n→∞

‖xn − p‖ = lim
k→∞

‖xnk
− p‖ < lim

k→∞
‖xnk

− q‖ = lim
j→∞

∥∥xmj
− q

∥∥ <

< lim
j→∞

∥∥xmj
− p

∥∥ = lim
n→∞

‖xn − p‖ ,

which is a contradiction.
Therefore, the conclusion of the theorem holds in the case in which E satis-

fies Opial’s condition. �
Remarks.
1) If we take βn = 0, for all n ≥ 0, from Theorem 5.4 we find a result of

Reich [Re79a], regarding the convergence of Mann iterative process;
2) Another generalization of Reich’s theorem has been obtained by Deng

[Dng96] under more general assumptions on the ambient space: E is assumed
to be a (not necessarily uniform convex) Banach space which satisfies Opial’s
condition, while the sequences {αn} , {βn} that define the Ishikawa iteration
process are supposed to satisfy

(a) 0 ≤ αn ≤ α < 1 and
∞∑

n=1

αn = ∞,

respectively

(b) 0 ≤ βn ≤ 1 and
∞∑

n=1

βn < ∞.

However, it is easy to check that conditions (a) and (b) of Deng are more
restrictive than the conditions (i), (ii) and (iii) of Tan and Xu, H.K. [TX93a];

3) In a recent paper, Zeng [Ze02a] showed that Theorem 5.4 is still valid
if we replace conditions (i) and (ii) by the following one:

(c) For any subsequence {nk}∞k=0 of {n}∞n=0, the series

∞∑
k=0

αnk
(1 − αnk

)

diverges.
If, additionally, T (K) is contained in a compact subset of E, then the

Ishikawa iterative process converges strongly, as shown by the next theorem.
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Theorem 5.5. Suppose all assumptions in Theorem 5.4 are satisfied. If
there exists a compact subset C of E such that T (K) ⊂ C, then the Ishikawa
iteration process converges strongly to a fixed point of T .

Proof. By Lemma 5.2 and the precompactness of T (K), we get that {xn}
admits a strongly convergent subsequence {xnk

}, whose limit we shall denote
by p. Then, again by a consequence of Lemma 5.2, it results p = Tp.

Since, by Lemma 5.1, the sequence {‖xn − p‖} is decreasing, it results that
p is actually the strong limit of the sequence {xn}. �

Remark. In relation to similar results obtained by Senter and Dotson
[SeD74] in the case of the Mann iteration process, it can be shown that one
can replace the precompactness condition of T (K) by the so-called condition
A, see Theorem 3 in Tan and Xu, H.K. [TX93a].

5.4 Quasi-Nonexpansive Type Operators

One of the most general contractive-type definitions for which Picard iter-
ation yields a unique fixed point is that of quasi-contractive operators given
by Ciric, see Example 2.10, 1). This class contains, among other classes of
contractive operators, the class of quasi-nonexpansive operators, including in
turn the Kannan and Zamfirescu operators.

As we have shown, the Picard iteration converges for a larger class than
the one of quasi-contractive operators, see Theorem 2.10 in Section 2.6. It
is also known that the Mann iteration converges for this class of operators
(Theorem 7 in Rhoades [Rh74a]) considered in Hilbert spaces. We included
in Section 4.5 the corresponding result for Zamfirescu operators in Theorem
4.10 (4.9), in the case of a (uniformly) Banach space setting.

It is the aim of this section to present a convergence theorem for the
Ishikawa iteration, corresponding to a typical representative of the class of
quasi-contractive operators, i.e., the class of Zamfirescu operators.

Recall that, in a normed space E, an operator T : E → E is said to be
quasi-contractive if there exists a number α, 0 ≤ α < 1 such that for all x, y
in E

‖Tx − Ty‖ ≤ k · M(x, y),

where

M(x, y) := max {‖x − y‖ , ‖x − Tx‖ , ‖y − Ty‖ , ‖x − Ty‖ , ‖y − Tx‖} .

Recall also that T is said to be a Zamfirescu operator if there exist the
numbers α, β and γ , 0 ≤ α < 1 , 0 ≤ β, γ < 0.5 such that for any x, y ∈ E
at least one the following conditions is true:

(z1) ‖Tx − Ty‖ ≤ α ‖x − y‖ ;
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(z2) ‖Tx − Ty‖ ≤ β [‖x − Tx‖ + ‖y − Ty‖] ;
(z3) ‖Tx − Ty‖ ≤ γ [‖x − Ty‖ + ‖y − Tx‖] .
The main result of this section is given by the next theorem.

Theorem 5.6. Let E be a uniformly convex Banach space, K a closed
convex subset of E and T : K → K a Zamfirescu operator. Let {αn}, {βn}
be two sequences in [0, 1] with {αn} satisfying the condition

(i)
∞∑

n=0

αn(1 − αn) diverges.

Then, for any x0 ∈ K, the Ishikawa iteration process I(x0, αn, βn, T ) con-
verges strongly to the unique fixed point of T .

Proof. Let {xn} be the Ishikawa iteration I(x0, αn, βn, T ), i.e., the
sequence defined by

xn+1 = (1 − αn)xn + αnTyn, yn = (1 − βn)xn + βnTxn, n ≥ 0,

with x0 ∈ K, arbitrary. By Theorem 2.4 we know that T has a unique fixed
point in E. Call it p. For any x0 ∈ K we have

‖xn+1 − p‖ ≤ αn ‖Tyn − p‖ + (1 − αn) ‖xn − p‖ .

As any Zamfirescu operator is quasi-nonexpansive, we get

‖Tyn − p‖ = ‖Tyn − Tp‖ ≤ ‖yn − p‖ .

By the definition of {yn} we have

‖yn − p‖ ≤ βn ‖Tyn − p‖ + (1 − βn) ‖xn − p‖ ≤ ‖xn − p‖ ,

and therefore ‖xn+1 − p‖ ≤ ‖xn − p‖ , which shows that {‖xn − p‖} is non-
increasing. For the rest of the proof see that of Theorem 4.9. �

Theorem 5.7. Let K be a nonempty closed convex subset of a Banach
space E and T : K → K a quasi-contraction. Suppose αn > 0, for all n ≥ 0

and
∞∑

n=0
αn = ∞. Let {xn} be the sequence defined by

x0 ∈ K

yn ∈ co
(
{xi}n

i=kn
∪ {Txi}n

i=kn

)
, n ≥ 0 (27)

xn+1 = (1 − αn)xn + αnTyn , n ≥ 0, (28)

where {kn} is a non-decreasing sequence of positive integers such that kn ≤ n
and lim

n→∞
kn = +∞.

Then {xn} converges strongly to the unique fixed point of T .
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Remarks.
1) Rhoades [Rh94a] extended Theorem 5.7 to the more general class of

generalized ϕ-contractions defined by

‖Tx − Ty‖ ≤ ϕ(M(x, y)) ,

where ϕ : [0,∞) → [0,∞) satisfies the following conditions:
(a) 0 < ϕ(t) < t for each t > 0 and ϕ(0) = 0;
(b) ϕ is increasing on (0,∞);
(c) the function g(t) = t/(t − ϕ(t)) is non-increasing on (0,∞);
2) It is important to mention that Rhoades’ result has been proved for the

Ishikawa iteration scheme defined by Xu, i.e., by considering

yn ∈ co ({xi}n
i=0 ∪ {Txi}n

i=0) , n ≥ 0 (27’)

instead of (27);
3) Ciric [Cir97] himself, Mishra and Kalinde [MKa98] extended the previ-

ous results concerning the convergence of the Ishikawa iteration for the class
of quasi-contractive operators, to the general case of convex metric spaces,
which include all normed linear spaces.

The next theorem extends Theorem 5.6 to arbitrary Banach spaces by
simultaneously weakening the assumptions on the sequence {αn}. Theorem 5.8
also extends Theorem 4.10 from Mann iteration to the Ishikawa iteration.

Theorem 5.8. Let E be an arbitrary Banach space, K a closed convex
subset of E, and T : K → K an operator satisfying condition (z1) − (z2). Let
{xn}∞n=0 be the Ishikawa iteration defined by (28) − (29) and x0 ∈ K, where
{αn} and {βn} are sequences of positive numbers in [0, 1] with {αn} satisfying

(ii)
∞∑

n=0

αn = ∞.

Then {xn}∞n=0 converges strongly to the fixed point of T .

Proof. We use similar arguments to those in proving Theorem 4.10. Let
{xn}∞n=0 be the Ishikawa iteration defined by

xn+1 = (1 − αn)xn + αnTyn, (28)

yn = (1 − βn)xn + βnTxn, n ≥ 0, (29)

and x0 ∈ K arbitrary. Then

‖xn+1 − p‖ =
∥∥(1 − αn)xn + αnTyn − (1 − αn + αn)p

∥∥ =

=
∥∥(1 − αn)(xn − p) + αn(Tyn − p)

∥∥ ≤
≤ (1 − αn)‖xn − p‖ + αn‖Tyn − p‖ . (30)
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With x := p and y := yn, from (8) in Chapter 4, we obtain

‖Tyn − p‖ ≤ δ · ‖yn − p‖ , (31)

where δ is given by (7) in the same Chapter 4. Further we have

‖yn − p‖ =
∥∥(1 − βn)xn + βnTxn − (1 − βn + βn)p

∥∥ =

=
∥∥(1 − βn)(xn − p) + βn(Txn − p)

∥∥ ≤
≤ (1 − βn)‖xn − p‖ + βn‖Txn − p‖ . (32)

Again by (8) in Chapter 4, this time with x := p; y := xn, we find that

‖Txn − p‖ ≤ δ‖xn − p‖ (33)

and hence, by (29) - (33) we obtain

‖xn+1 − p‖ ≤
[
1 − (1 − δ)αn(1 + δβn)

]
· ‖xn − p‖ ,

which, by the obvious inequality

1 − (1 − δ)αn(1 + δβn) ≤ 1 − (1 − δ)2αn,

implies

‖xn+1 − p‖ ≤
[
1 − (1 − δ)2αn

]
· ‖xn − p‖ , n = 0, 1, 2, . . . . (34)

Now, by (34) we inductively obtain

‖xn+1 − p‖ ≤
n∏

k=0

[
1 − (1 − δ)2αk

]
· ‖x0 − p‖ , n = 0, 1, 2, . . . . (35)

Using the fact that 0 ≤ δ < 1, αk, βn ∈ [0, 1], and
∞∑

n=0
αn = ∞, by (ii) it

results that

lim
n→∞

n∏
k=0

[
1 − (1 − δ)2αk

]
= 0 ,

which by (35) implies
lim

n→∞
‖xn+1 − p‖ = 0 ,

i.e., {xn}∞n=0 converges strongly to p. �
Remark.
Condition (i) in Theorem 5.6 is slightly more restrictive than condition (iv)

in Theorem 5.8, the latter known as a necessary condition for the convergence
of Mann and Ishikawa iterations. Indeed, by virtue of (i) we cannot have
αn ≡ 0 or αn ≡ 1 and hence
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0 < αn(1 − αn) < αn , n = 0, 1, 2, . . . ,

which shows that (i) always implies (ii).
But there exist values of {αn} satisfying (ii), e.g., αn ≡ 1, such that (i) is

not true.

Corollary 5.2. Let E be an arbitrary Banach space, K a closed convex
subset of E, and T : K → K a Kannan operator, i.e., an operator satisfying
(8) in Chapter 2. Let {xn}∞n=0 be the Ishikawa iteration defined by (28)− (29)
and x0 ∈ K, with {αn}, {βn} ⊂ [0, 1] satisfying (ii).

Then {xn}∞n=0 converges strongly to the fixed point of T .

Corollary 5.3. Let E be an arbitrary Banach space, K a closed convex
subset of E, and T : K → K a Chatterjea operator, i.e., an operator satisfying
(34) in Chapter 2. Then the Ishikawa iteration {xn}∞n=0 defined by (28)− (29)
and x0 ∈ K, with {αn}, {βn} ⊂ [0, 1] satisfying (ii) converges strongly to the
fixed point of T .

Remark.
It is quite obvious that Theorem 4.10 is properly contained in Theorem 5.8,

and it is obtained for βn ≡ 0.
On the other hand, due to the fact that, except for (ii), no other conditions

are required for {αn}, {βn}, by Theorem 5.8 we may obtain, in particular,
the convergence theorem regarding the convergence of Picard iteration in the
class of Zamfirescu operators, see Chapter 2, for αn ≡ 1, βn ≡ 0, as well
as a convergence theorem for the Krasnoselskij iteration, for βn ≡ 0 and
αn = λ ∈ [0, 1], see Chapter 3.

5.5 The Equivalence Between Mann and Ishikawa
Iterations

As shown in Section 5.1, in order to approximate fixed points of Lip-
schitzian pseudo-contractive operators, we really need Ishikawa iteration.
However, this iterative scheme, which is actually a two-step Mann iteration,
is computationally more complicated than the former. Even if in the last two
decades numerous papers were devoted to the study of Ishikawa or very com-
plicated Ishikawa-type iterative methods, from a practical point of view, when
two or more fixed point iterative schemes are known to be convergent in a cer-
tain class of mappings, it is natural to choose the simplest method amongst
them.

This was shown partly in Chapter 4, where we illustrated by Example 4.3
a situation when Krasnoselskij iteration suffices to approximate fixed points.
More discussions can be find in Chapter 9, where we compare some fixed point
iterative methods with respect to their rate of convergence.
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Very recently some new results were published, which show that, for cer-
tain classes of operators, Mann and Ishikawa iterations are actually equiva-
lent. This also points to the conclusion that the use of Mann iteration would
be recommended in those circumstances. It is the aim of this small section
to present a sample result in this field, without proof (the original proof is
extremely long).

Theorem 5.9. Let X be a real Banach space, K a nonempty closed convex
subset of X, and T : K → K be a Lipschitzian, strongly pseudocontractive map
with Fix (T ) 
= ∅. Let {xn}∞n=0 be the Ishikawa iteration defined by

xn+1 = (1 − αn)xn + αnTyn, (36)

yn = (1 − βn)xn + βnTxn, n ≥ 0,

and x0 ∈ K, and {un}∞n=0 be the Mann iteration defined by

un+1 = (1 − αn)un + αnTun, (37)

and u0 = x0 ∈ K, where {αn} and {βn} are sequences of positive numbers in
[0, 1] satisfying

lim
n→∞

αn = lim
n→∞

βn = 0 and
∞∑

n=0

αn = ∞.

Then T possesses a unique fixed point x∗ and the following assertions are
equivalent:
(i) the Mann iteration (37) converges to x∗;
(ii) the Ishikawa iteration (36) converges to x∗.

Remark. Since T in Theorem 5.9 has a unique fixed point, it would be
more natural to consider u0 
= x0 as well as weaker conditions on the sequences
{αn} and {βn} that define the Ishikawa iteration, in light of the results we
presented in Chapter 4, and also to construct the Mann iteration by using a
sequence {α′

n} which is different from the one defining the Ishikawa iteration.

5.6 Bibliographical Comments

Example 5.1 at the beginning of Chapter 5 is due to Rhoades [Rho91].

§5.1.

The Ishikawa iterative process was first introduced by Ishikawa [Ish74] in
1974, in order to approximate fixed points of Lipschitzian pseudocontractive
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operators, because in the case T is only pseudocontractive, the Mann iteration
does not converge generally to the fixed point of T , as it was pointed out by
Hicks and Kubicek [HK77a], see Exercise 4.1.

The Ishikawa iteration is one of the answers that were given by different au-
thors to this problem, until Chidume and Mutangadura [CMu01] constructed
their example, see Exercise 4.2.

The content of this section is mainly taken from Ishikawa [Ish74], except
for Remarks 1-4 which are taken from Rhoades [Rho91].

§5.2.

Theorem 5.2 and Corollary 5.1 are taken from Chidume [Ch98b]. Theorem
5.2 is a significant generalization of most of the related results in literature.
Among these, we mention Theorem 2 of Deng [Dg93b], Theorem 4.2 of Tan
and Xu, H.K. [TX93c], and Theorem 1 of Reich [Re79c].

The other results of this section (Definition 5.1 and Theorem 5.3) are
taken from Gu, Feng [Gu01d]. Several results due to Chang [Ca97b], Chidume
[Ch94b], [Chi95]; Deng and Ding [DDi95]; Ding [Din81], [Din88] and Tan and
Xu, H.K. [TX93a] are generalized or extended by Theorem 5.3.

In q-uniformly smooth Banach spaces, Huang, Z. [HZ00b] weakened the
Lipschitz assumption in Theorem 5.3 to the continuity of the operator T , by
imposing, in compensation, that the range of T is bounded. However, in this
case, the assumptions on the sequences {αn} , {βn} involve the smoothness
order q. A result that extends Theorem 4.12 from Mann iteration to Ishikawa
iteration in the case of Lipschitzian strictly pseudocontractive operators was
obtained in Zeng, L. [Ze02b].

§5.3.

The property of a Banach space to satisfy Opial’s condition was first con-
sidered in Opial [Op67b], see also Exercise 3.18.

All the results contained in this section are taken from Tan and Xu,
H.K. [TX93a]. Thus, Lemma 5.1 is Lemma 2 there, Lemma 5.2 is Lemma
3, Lemma 5.4 is Lemma 4, while Theorem 5.4 is Theorem 1 in the same
paper. Lemma 5.3 is given in Bruck [Bru74].

Theorem 5.5 is Theorem 2 in the same paper by Tan and Xu, H.K. [TX93a].
For details in the case when the norm of E is Frechet differentiable in the

proof of Theorem 5.4, see Tan and Xu, H.K. [TX93a], pp. 306-307.

§5.4.

The main result of the section, i.e., Theorem 5.6, is taken from Rhoades
[Rho76], Theorem 8, while Theorem 5.7 is taken from Xu, H.K. [TX93b], with
the correction indicated by Ciric [Cir97].

For a comparison of different contractive conditions involved in fixed point
theorems, see Rhoades [Rh77b]. The contractive condition in this section is
involved in a fixed point theorem of Ciric [Cir74], regarding the convergence
of Picard iteration, see also Chapter 2.
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Other related results were obtained by Sastry, Babu and Rao [SBS01],
[SBS02]. Theorem 5.7 which gives the convergence of Ishikawa iteration in the
general case of quasi-contractive mappings was obtained (in an incomplete
form) by Xu, H.K. [XuH92] and then completed by Ciric [Cir97]. We gave
here its correct version.

Theorem 5.8 and Corollaries 5.2 and 5.3 are taken from Berinde [Be04c].

§5.5.

Theorem 5.9 is due to Rhoades and Soltuz [RS03c]. For other related
results see also [RS03a], [RS03b], [RS04a]-[RS04e], [So03a], [So04a-So04b] and
[CCK03].

Exercises and Miscellaneous Results

5.1. Prove that for any x, y, z in a Hilbert space H and for any real number
λ, we have

‖λx + (1 − λ) y − z ‖2 = λ ‖x − z ‖2+(1−λ) ‖ y − z ‖2−λ (1−λ) ‖x − y ‖2
.

5.2. Let X be a real Banach space and J be a normalized duality mapping.
Then for any given x, y ∈ X, the following inequality holds:

‖x + y‖2 ≤ ‖x‖2 + 2 〈y, j(x + y)〉 , ∀j(x + y) ∈ J(x + y).

5.3. Prove that X is a uniformly smooth Banach space (or, equivalently, X∗

is a uniformly convex Banach space) if and and only if J is single-valued and
uniformly continuous on any bounded subset of X.

5.4. Gu, Feng (2001)
Let X be a uniformly smooth real Banach space, let K be a nonempty closed
convex subset of X and let T : K → K be a L-Lipschitzian Φ-strongly pseudo-
contractive mapping, with L ≥ 1. Let {αn} and {βn} be two sequences of

positive numbers in [0, 1] satisfying lim
n→∞

αn = lim
n→∞

βn = 0 and
∞∑

n=0
αn = ∞.

If F (T ) 
= ∅, then for any given x0 ∈ K, the Ishikawa iterative sequence
{xn}∞n=0 defined by

xn+1 = (1 − αn)xn + αnTyn,

yn = (1 − βn)xn + βnTxn, n ≥ 0,

converges strongly to the unique fixed point of T in K. (T is said to be
Φ-strongly pseudo-contractive if U := I − T is Φ-strongly accretive, i.e., for
any x, y ∈ K, there exists j(x + y) ∈ J(x + y) and a strictly increasing
function Φ : [0,∞) → [0,∞) with Φ(0) = 0 such that 〈Tx − Ty, j(x + y)〉 ≥
Φ(‖x − y‖) ‖x − y‖).
5.5. Prove Lemma 5.3, Theorem 5.3, Theorem 5.7 and Theorem 5.9.
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Other Fixed Point Iteration Procedures

The aim of this chapter is to present some other iterative procedures, less
frequently used to approximate fixed points: Mann and Ishikawa iterations
with errors, modified Mann and Ishikawa iterations, Kirk’s iteration etc.

6.1 Mann and Ishikawa Iterations with Errors

The idea of considering fixed point iteration procedures with errors comes
from practical numerical computations. Although they are related to the sta-
bility problem of fixed point iterations, see Section 7.1 in the next Chapter, we
however inserted this topic here as a distinct Section, due to the considerable
amount of research done by several authors, that complements in some sense
the stability problem of fixed point iteration procedures.

Definition 6.1. Let K be a subset of a linear normed space E and let
T : K → X be a mapping. The sequence {xn} in E defined by

x0 ∈ K (1)

xn+1 = (1 − αn)xn + αnTyn + un, (2)

yn = (1 − βn)xn + βnTxn + vn , n ≥ 0, (3)

where {αn} and {βn} are two sequences in [0, 1] and {un} and {vn} are two
summable sequences in E, i.e.,

∞∑
n=0

‖un‖ < ∞ ,
∞∑

n=0

‖vn‖ < ∞, (4)

is called the Ishikawa iteration with errors.
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Remark. If we take βn = 0 and vn ≡ 0E , from the Ishikawa iteration with
errors we obtain the Mann iteration with errors.

We give without proof one of the first results of this type on the fixed
point iteration procedures with errors.

Theorem 6.1. Let K be a nonempty closed subset of a uniformly smooth
Banach space E. Let T : K → X be Lipschitzian (with constant L ≥ 1)
and strictly pseudocontractive (with constant t > 1). Let {un} , {vn} be two
summable sequences in E, and let {αn} , {βn} be two real sequences in [0, 1]
satisfying

(i) lim
n→∞

αn = 0 and
∞∑

n=0

αn = ∞; (ii) lim sup
n→∞

βn < k /L(L + 1) ,

where k = (t − 1) / t.
If the range T (K) of T is bounded, then {xn} ⊂ K generated by (1)-(3)

converges strongly to the unique fixed point of T .

Remarks.
1) For null sequences {un} , {vn}, from (1)-(3) we find the usual Ishikawa

iteration;
2) However, there is no explanation how we can take un, vn ∈ E in order

to be sure that xn ∈ K, for all n ≥ 0, see Example 6.1;
3) It was argued that the notion of iterative process with errors given

in Definition 6.1 is not fully satisfactory, because the occurrence of errors
is random, while the conditions (4) imposed on the error terms imply, in
particular, that they tend to zero as n tends to infinity, which is therefore
unreasonable.

Example 6.1. Let E = l2, K = {x ∈ E : ‖x‖ ≤ 1}, and define T : K → E
by Tx = −4x.

Then it is easy to see that T is Lipschitzian and strongly pseudocontractive
with the unique fixed point x∗ = (0, 0, 0, ...). Take x0 = (1, 0, 0, ...) and set
αn = βn = 1/(n + 2). Then

y0 = (1 − β0)x0 + β0Tx0 = −3/2x0 /∈ K.

Thus Ty0 cannot be computed. Observe that neither the Mann nor the
Ishikawa iteration is well defined in this case.

An other concept of iterative process with errors is given by the next
definition.

Definition 6.2. Let K be a nonempty convex subset of a Banach space
E and T : K → X a mapping. The sequence {xn}∞n=1 defined iteratively by

x0 ∈ K, (5)
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xn+1 = anxn + bnTyn + cnun, (6)

yn = a′
nxn + b′nTxn + c′nvn , n ≥ 0, (7)

where {un} , {vn} are bounded sequences in K and {an} , {bn} , {cn} , {a′
n}

{b′n} and {c′n} are sequences in [0, 1] such that

an + bn + cn = a′
n + b′n + c′n = 1 , n ≥ 0, (8)

is still called Ishikawa iteration sequence with errors.

Remark. If b′n = c′n = 0 , n ≥ 0, then the sequence {xn} will be called
Mann iteration with errors. There are however serious objections to the defi-
nition of Xu, too. It was pointed out by that if the range of T is bounded, the
Xu’s definition reduces to that of Liu and moreover, from a practical point of
view, the construction of Xu cannot be carried out.

The following theorem extends Ishikawa’s original result to both the case
of iterative processes with errors and to the slightly more general class of
Lipschitzian hemicontractions (in the case of Hilbert spaces).

Theorem 6.2. Let K be a compact convex subset of a real Hilbert space H
and T : K → K a continuous hemicontractive map. Let {an} , {bn} , {cn},
{a′

n} , {b′n} and {c′n} be real sequences in [0, 1] satisfying the following con-
ditions:

(i) an + bn + cn = a′
n + b′n + c′n = 1 , n ≥ 0;

(ii) lim
n→∞

bn = lim
n→∞

b′n = 0; (iii)
∞∑

n=0
cn < ∞ ;

∞∑
n=0

c′n < ∞;

(iv)
∑

αnβn = ∞;
∞∑

n=0
αnβnδn < ∞, where δn = ‖Txn − Tyn‖2 ;

(v) 0 ≤ αn ≤ βn < 1 , n ≥ 0, where αn = bn + cn; βn = b′n + c′n.
Then the Ishikawa iteration with errors {xn}∞n=0 defined by (5)-(7) con-

verges strongly to a fixed point of T .

Proof. The existence of a fixed point of T follows from Schauder’s fixed
point theorem (since T is continuous). Let x∗ ∈ FT be a fixed point of T . By
Lemma 1.8 we have

‖(1 − λ)x + λy‖2 = (1−λ) ‖x‖2+λ ‖y‖2−λ(1−λ) ‖x − y‖2
, x, y ∈ H,λ ∈ [0, 1]

Since T is hemicontractive, we have

‖Tx − Tx∗‖2 ≤ ‖x − x∗‖2 + ‖x − Tx‖2
.

So, after straightforward calculations we find that

‖xn+1 − x∗‖2 ≤ ‖xn − x∗‖2 − αnβn(1 − 2βn) ‖xn − Txn‖2 +

+αnβn ‖Txn − Tyn‖2 + M(cn + c′n), (8′)

where M > 0 is a constant.
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Since K is compact and T is continuous, the sequence {‖xn − Txn‖} is
bounded. By assumptions (ii)−(iv), the compactness of K and the continuity
of T , we have that lim inf

n→∞
‖xn − Txn‖ = 0.

Again by the compactness of K, this implies that there exists a subse-
quence {xj} of {xn} which converges to a fixed point of T , say x∗.

Let ψn = ‖xn − x∗‖2
, σn = αnβn ‖Txn − Tyn‖2 + M(cn + c′n).

Then ψn ≥ 0 , σn ≥ 0 (n ≥ 0) and
∞∑

n=0
σn < ∞ by conditions (iii) and

(iv). Thus, the inequality (8′) yields ψn+1 ≤ ψn + σn , ∀ n ≥ 0, which, by
Lemma 1.7, part (ii), leads to ψn → 0 as n → ∞, i.e., xn → x∗ as n → ∞. �

Remark.
The second part of assumption (iv) in Theorem 6.2 is rather difficult to

check. Recently, some results based on simpler assumptions on the parameters
that define the iterations were obtained.

Theorem 6.3. Let K be a compact convex subset of a uniformly convex
Banach space E satisfying Opial’s condition and let T : K → K be a nonex-
pansive mapping with FT 
= ∅. Assume that {an} , {bn} , {cn} , {a′

n} , {b′n}
and {c′n} are real sequences in [0, 1] satisfying (i), (ii) and either

1) an ∈ [a, 1] , bn ∈ [a, b] , b′n ∈ [0, b] for some a, b ∈ R with 0 < a ≤ b < 1,
or

2) a′
n, bn ∈ [a, 1] , b′n ∈ [a, b] for some a, b ∈ R with 0 < a ≤ b < 1.

Then the Ishikawa iteration with errors {xn} defined by (5)-(7) converges
weakly to a fixed point of T.

Remark. For two operators S, T : K → K, the iterative process defined
by x0 ∈ K (9)

xn+1 = anxn + bnSyn + cnun, n ≥ 0 (10)

yn = a′
nxn + b′nTxn + c′nvn , n ≥ 0, (11)

where {an} , {bn} , {cn} , {a′
n} , {b′n}, {c′n} are real sequences in [0, 1] satis-

fying (i) and (iii), and {un} , {vn} are bounded sequences in K, is an Ishikawa
type common fixed point iteration that reduces to (5)-(7), if S ≡ T .

Theorem 6.4. Let E be a uniformly convex Banach space. Let K be a
closed convex subset of E and let S, T : K → K be nonexpansive operators
with a common fixed point (i.e., FS ∩ FT 
= ∅). Then for the sequence defined
by (9)-(11) the following hold:

1) If an, a′
n ∈ [a, 1] , bn ∈ [a, 1] , b′n ∈ [0, b] for some a, b ∈ R with

0 < a ≤ b < 1 , then xnj
⇀ p, implies p ∈ FS ;

2) If a′
n, bn ∈ [a, 1] and b′n ∈ [a, b] for some a, b ∈ R with 0 < a ≤ b < 1

then xnj
⇀ p, implies p ∈ FT ;

3) If an, a′
n ∈ [a, 1] and bn, b′n ∈ [a, b] for some a, b ∈ R with 0 < a ≤

b < 1 then xnj
⇀ p, implies p ∈ FS ∩ FT .
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6.2 Modified Mann and Ishikawa Iterations

The aim of this section is to show that, considering the n-th iterate Tn

instead of T in the relations that define the Mann and Ishikawa iterations,
we obtain new iterative processes that converge strongly to the fixed points
of some classes of Lipschitzian and contractive type operators.

Definition 6.3. Let K be a nonempty subset of a normed linear space E
and let T : K → K be a mapping.

1) T is said to be asymptotically nonexpansive if there exists a sequence
{kn}∞n=1 in [1,∞) with lim

n→∞
kn = 1 such that

‖Tnx − Tny‖ ≤ kn ‖x − y‖ , for all x, y ∈ K and n ≥ 1;

2) T is said to be uniformly L-Lipschitzian with constant L > 0 if

‖Tnx − Tny‖ ≤ L ‖x − y‖ , for all x, y ∈ K and n ≥ 1;

3) T is said to be k−strict asymptotically pseudocontractive if there exist
a sequence {kn}∞n=1 in [1,∞) with lim

n→∞
kn = 1 and a constant k in [0, 1) such

that

‖Tnx − Tny‖2 ≤ k2
n ‖x − y‖2 + k ‖(x − Tnx) − (y − Tny)‖2

,

for all x, y ∈ K and n ≥ 1;
4) T is said to be asymptotically demicontractive if FT 
= ∅ and there exist

a sequence {kn}∞n=1 in [1,∞) with lim
n→∞

kn = 1 and a constant k in [0, 1) such
that for all x ∈ K, p ∈ FT and n ≥ 1,

‖Tnx − p‖2 ≤ k2
n ‖x − p‖2 + k ‖x − Tnx‖2

. (13)

Definition 6.4. Let K be a nonempty convex subset of a normed linear
space E, T : K → K a mapping and {αn}∞n=1 and {βn}∞n=1 two sequences in
[0, 1]. The sequence {xn}∞n=0 defined by

⎧⎨
⎩

x0 ∈ K
yn = (1 − βn)xn + βnTnxn,
xn+1 = (1 − αn)xn + αnTnyn , n ≥ 0

(14)

will be called the modified Ishikawa iterative process.

Remarks.
1) If we take βn = 0 for each n ≥ 0 in (14), we find the modified Mann

iteration scheme;
2) If T is asymptotically nonexpansive, then T is both uniformly sup

n≥1
{kn}-

Lipschitzian and 0−strict asymptotically pseudocontractive;
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3) Each k−strict asymptotically pseudocontractive mapping with a non-
empty fixed point set is asymptotically demicontractive.

We will need the following auxiliary result.

Lemma 6.1. Let K be a nonempty convex subset of a normed linear
space E and let T : K → K be a uniformly L-Lipschitzian operator. If
rn = ‖xn − Tnxn‖ , n ≥ 0, where {xn}∞n=0 is the modified Ishikawa itera-
tion associated to T , then

‖xn − Txn‖ ≤ rn + rn−1L(1 + 3L + 2L2) , n ≥ 1.

Theorem 6.5. Let K be a nonempty bounded closed convex subset of a
Hilbert space H and let T : K → K be a completely continuous, uniformly
L-Lipschitzian and asymptotically demicontractive mapping. Suppose that the
sequence {kn} appearing in (13) satisfies

∞∑
n=0

(kn − 1) < ∞. (15)

Assume that {αn}∞n=0 and {βn}∞n=0 are real sequences in [0, 1] satisfying

0 < a ≤ αn , n ≥ 0; (16)

0 < b ≤ βn ≤ min

{
1 − k − c ,

√
1 + 4(1 − d)L2 − 1

2L2

}
, n ≥ 0; (17)

αn − kβn ≤ 1 − k , n ≥ 0, (18)

where k is the constant appearing in (13), and a, b, c are constants with c+d >
0 , 0 ≤ c < 1 − k and 0 ≤ d < 1.

Then the modified Ishikawa iteration {xn}∞n=0 defined by (14) converges
strongly to some fixed point of T in K.

Proof. Since T is asymptotically demicontractive, FT 
= ∅. Let p ∈ FT .
By using (13), (14) and Lemma 1.8 with z = 0), we obtain for n ≥ 0

‖xn+1 − p‖2 = ‖(1 − αn)(xn − p) + αn(Tnyn − p)‖2 =

= (1 − αn) ‖xn − p‖2 + αn ‖Tnyn − p‖2 − αn(1 − αn) ‖xn − Tny‖2

≤ (1 − αn) ‖xn − p‖2 + αn

(
k2

n ‖yn − p‖2 + k ‖yn − Tnyn‖2
)
−

−αn(1 − αn) ‖xn − Tnyn‖2
, (19)

‖yn − p‖2 = ‖(1 − βn)(xn − p) + βn(Tnxn − p)‖2 =

= (1 − βn) ‖xn − p‖2 + βn ‖Tnxn − p‖2 − βn(1 − βn) ‖xn − Tnxn‖2

≤ (1 − βn) ‖xn − p‖2 + βn

(
k2

n ‖xn − p‖2 + k ‖xn − Tnxn‖2
)
−
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−βn(1 − βn) ‖xn − Tnyn‖2 =

= (1 − βn + βnk2
n) ‖xn − p‖2 + βn(k − 1 + βn) ‖xn − Tnxn‖2 (20)

and

‖yn − Tnyn‖2 = ‖(1 − βn)(xn − Tnyn) + βn(Tnxn − Tnyn)‖2 =

= (1 − βn) ‖xn − Tnyn‖2 + βn ‖Tnxn − Tnyn‖2 −

−βn(1 − βn) ‖xn − Tnxn‖2 ≤ (1 − βn) ‖xn − Tnyn‖2 +

+L2βn ‖xn − yn‖2 − βn(1 − βn) ‖xn − Tnxn‖2 ≤

≤ (1 − βn) ‖xn − Tnyn‖2 + [L2β3
n − βn(1 − βn)] ‖xn − Tnxn‖2

. (21)

Substituting (20) and (21) in (19) and canceling, we obtain that

‖xn+1 − p‖2 ≤ [1 − αn + αnk2
n(1 − βn + βnk2

n)] ‖xn − p‖2 +

+αn[k2
nβn(k − 1 + βn) + kβn(L2β2

n − 1 + βn)] ‖xn − Tnxn‖2 +

+[−αn(1 − αn) + αnk(1 − βn)] ‖xn − Tnyn‖2 =

=
{
1 + αn[k2

n(1 + βn(k2
n − 1)) − 1]

}
‖xn − p‖2 −

−αnβn[(1 − k − βn)k2
n + k(1 − βn − L2β2

n)] ‖xn − Tnxn‖2 −

−αn[1 − αn − k(1 − βn)] ‖xn − Tnyn‖2 =

= [1 + αn(k2
n − 1)(1 + βnk2

n)] ‖xn − p‖2 −

−αnβn[(1 − k − βn)k2
n + k(1 − βn − L2β2

n)] ‖xn − Tnxn‖2 −

−αn(1 − k − αn + kβn) ‖xn − Tnyn‖2
, (22)

which is valid for all n ≥ 0 and p ∈ FT .
Since K is bounded, by (15)-(18) and (22) it follows that there exists

M > 0 such that

‖xn+1 − p‖2 ≤ ‖xn − p‖2 + M(kn − 1) − ab(c + kd) ‖xn − Tnxn‖2
, (23)

for all n ≥ 0 and p ∈ FT .
Using again the boundedness of K, by (15) and (23) we obtain that

∞∑
n=0

‖xn − Tnxn‖2
< ∞,

which implies lim
n→∞

‖xn − Tnxn‖ = 0. As T is uniformly L-Lipschitzian, by
Lemma 6.1 we get

lim
n→∞

‖xn − Txn‖ = 0. (24)



142 6 Other Fixed Point Iteration Procedures

Now, since K is bounded and closed and T is completely continuous, it follows
that {Txn}∞n=0 has a subsequence {Txni

}∞i=0 such that lim
i→∞

Txni
= q, for some

q ∈ K.
From (24) it results that lim

i→∞
xni

= q, and as T is continuous, we get
q ∈ FT .

Using (23) with p = q, it results that

‖xn+1 − q‖2 ≤ ‖xn − q‖2 + M(kn − 1) (25)

for all n ≥ 0, hence by virtue of (15), (25) and Lemma 1.7, part (ii), we obtain
that ‖xn − q‖ → 0 as n → ∞, i.e., lim

n→∞
xn = q. �

Remark. In the particular case βn = 0, for all n ≥ 0, by Theorem 6.5 we
obtain a convergence result for the modified Mann iterative process.

6.3 Ergodic and Other Fixed Point Iteration Procedures

In this section we want to survey other important iteration procedures
that have been considered by several authors in order to approximate the
fixed points of several classes of mappings.

Following the idea of Krasnoselskij iteration, which is in fact the Picard
iteration corresponding to the mean operator

Uλ = (1 − λ)I + λT = a0I + a1T,

with a0 +a1 = 1, we can extend it to a convex combination involving the first
k iterates of T . For this iteration we have

Theorem 6.6. Let X be a Banach space and T : X → X a c-contraction.

Let {xn}∞n=0 be the sequence defined by

x0 ∈ X

xn+1 = α0xn + α1Txn + α2T
2xn + . . . + αkT kxn , n ≥ 0,

where k ≥ 1 is an integer and αi ∈ [0, 1], i = 0, 1, . . . , k such that α1 > 0

and
k∑

i=0

αi = 1.

Then the sequence {xn} converges strongly to the unique fixed point of T .

Proof. We define F : X → X by

Fx = α0x + α1Tx + α2T
2x + . . . + αkT kx, for all x in X. (26)
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Then we show that F is a c−contraction and hence, by the mapping con-
traction principle, we get the conclusion. �

Remarks.
1) If we consider in (26) α0 = α1 = . . . = αk =

1
k + 1

, then F will be the

Cesaro mean

Cn[T ]x =
1

k + 1
·

k+1∑
i=0

T ix, for x ∈ X and n ≥ 1;

2) An early result, which opened the general ergodic theory of nonlinear
operators, shows that the Cesaro mean converges weakly to a fixed point of a
nonexpansive self-operator T of a closed bounded convex subset of a Hilbert
space. This reads as follows

Theorem 6.7. Let K be a bounded closed convex subset of a Hilbert space
H and T : K → K a nonexpansive operator. Then for each x ∈ K the Cesaro
means {Cn[T ]x}∞n=0 converge weakly to a fixed point of T .

It was further proved that if T is an odd map, than the convergence in
Theorem 6.7 is strong, and extended this theorem to Lp spaces.

Due to the fact that in the nonlinear case the Cesaro means have usually
only weak convergence for nonexpansive operators, some authors considered
some nonlinear analogues of the ergodic theorems. We shall present here such
an iteration.

Let E be a Banach space and T : E → E a nonexpansive operator. Con-
sider a sequence α = {αn} in [0, 1] and define inductively {Aα

nx} by
{

Aα
0 x = x,

Aα
n+1x = αn+1x + (1 − αn+1)TAα

nx.
(27)

Remarks.
1) If T is positively homogeneous (i.e., T (λx) = λTx, for any λ ≥ 0 and

any x ∈ E) and αn =
1

n + 1
, then by (27) we find

Aα
nx =

1
n + 1

Snx,

where {
S0x = x
Sn+1x = x + T (Snx), (28)

and so {Aα
nx} is a nonlinear generalization of the Cesaro means;

2) If T is linear, then by (27) we find the Cesaro means.

We present here a result for a special class of Banach spaces.
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Theorem 6.8. Let {αn}∞n=1 be a sequence in [0, 1] such that
(i) lim

n→∞
αn = 0;

(ii)
∞∑

n=1
αn = +∞ ; (iii)

∞∑
n=1

|αn+1 − αn| < +∞.

Let E be a uniformly convex and uniformly smooth Banach space with
a weakly sequentially continuous duality mapping J : E → E∗, let K be a
nonempty closed convex subset of E and let T : K → K be a mapping such
that FT 
= ∅.

Then for any x ∈ K, the sequence {Aα
nx}∞n=0 given by (27) converges

strongly to p = Px, where P is a sunny nonexpansive retraction of K
into FT .

(Recall that if P is a sunny retraction of K into FT , then

〈x − p, J(z − p)〉 ≤ 0 , for any z ∈ FT .)

Remark. As we have already seen, there is a close connection between
fixed point iterative processes and summability methods of sequences. In this
context, we want to present an analogous result to Baillon’s nonlinear ergodic
theorem, by using the Abel means (or method of summation).

Theorem 6.9. Let H be a real Hilbert space. Let K be a nonempty
closed convex subset of H and T : K → K be a nonexpansive mapping. If
FT 
= ∅, then for each x ∈ K, the Abel means, i.e., the generalized sequence
{Ar[T ]x}0<r<1 given by

Ar[T ]x = (1 − r)
∞∑

n=0

rnTnx , 0 < r < 1,

converges weakly to a fixed point of T as r ↗ 1.

A Mann-type fixed point iteration procedure, obtained by replacing Txn

in the well-known recurrence

xn+1 = cnxn + (1 − αn)Txn

by a Dirichlet summability method D
(u)
sn [T ]xn, is also known to converge

weakly to a fixed point of T .

Definition 6.5. Let E be a Banach space and {un} a bounded sequence
in a convex subset K of E. Define

rm(x) = sup {‖un − x‖ : n ≥ m} ,

and denote by cm the unique point in K with the property that

rm(cm) = inf{rm(x) : x ∈ K}.

Then lim
n→∞

cn = c, and c is called the asymptotic center of {un}.
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The following two results are interesting by themselves.

Theorem 6.10. Let K be a closed convex subset of a real Hilbert space
and T : K → K be a nonexpansive map with a fixed point. Then for any x in
K and any strongly regular matrix A, the A−transform of {Tnx} converges
weakly to a fixed point p of T , which is the asymptotic center of {Tnx}.

We shall end this section by inserting one result regarding the Figueiredo
fixed point iteration. Let H be a Hilbert space, K a nonempty bounded closed
convex subset of H and T : K → K be a nonexpansive operator.

Theorem 6.11. Let K contain 0 and T : K → K be nonexpansive. Then,
for any x0 ∈ K, the sequence {xn}∞n=0 defined by

xn = T n2

n xn−1 , n = 1, 2, . . . ,

where Tnx = n/(n + 1)Tx, converges strongly to a fixed point of T .

6.4 Perturbed Mann Iteration

It is possible to consider a perturbation of the Mann iteration procedure to
approximate fixed points of several classes of mappings in Banach spaces more
general than Hilbert spaces. The idea in constructing such kind of methods is
to check that such a method provides an approximate fixed point sequence.

Definition 6.6. Let E be a normed linear space and T : E → E be a
mapping. A sequence {xn} ⊂ E satisfying limn→∞ ‖xn − Txn‖ = 0, is called
an approximate fixed point sequence for T .

In the previous Chapters we met several approximate fixed point sequences.
In connection to Exercise 3.17, we give one more example of approximate
sequence.

Example 6.2. Let K be a nonempty subset of a Banach space E and
let T : K → E be a nonexpansive mapping. For x0 ∈ K, define the Mann
sequence {xn} by

xn+1 := (1 − cn)xn + cnTxn, n = 0, 1, 2, . . . (29)

where {cn} ⊂ [0, 1] is a sequence of real numbers satisfying
∞∑

n=0
cn = ∞.

(a) If {xn} ⊂ K for all positive integers and {xn} is bounded, then {xn} is
an approximate fixed point sequence of T ;
(b) If K is closed and T is completely continuous, then T has a fixed point and
the sequence {xn} defined by (29) converges strongly to a fixed point of T .
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As shown by the previous example and other convergence theorems pre-
sented in this book, an approximate fixed point sequence considered in connec-
tion with some compactness-type assumptions either on T or on its domain,
could ensure the convergence of that sequence to a fixed point of T .

This explains why in some convergence theorems for certain classes of
mappings more general than the class of nonexpansive mappings, the condition
lim

n→∞
‖xn − Txn‖ = 0 is explicitly assumed as part of the hypothesis. The

main aim of this section is to consider a perturbed Mann iteration that will
provide approximate fixed point sequences for Lipschitzian pseudocontractive
mappings in Banach spaces.

To this end we need two sequences of real numbers in (0, 1], {λn}
and {θn}, satisfying the following conditions: (i) lim

n→∞
θn = 0; (ii) λn(1 +

θn) ≤ 1,
∑

λnθn = ∞, lim
n→∞

λn

θn
= 0; (iii) lim

n→∞
(
θn−1

θn
− 1)/(λnθn) = 0.

Examples of sequences satisfying these conditions are:

λn =
1

(n + 1)a
, θn =

1
(n + 1)b

, 0 < b < a and a + b < 1.

Lemma 6.2 provides an approximate fixed point sequence for Lipschitzian
pseudocontractive mappings in a real Banach space.

Lemma 6.2. Let K be a nonempty closed convex subset of a real Banach
space E. Let T : K → K be a Lipschitzian pseudocontractive mapping with
Lipschitz constant L ≥ 0 and FT 
= ∅. Let {xn} be a sequence generated from
arbitrary x1 ∈ K by

xn+1 := (1 − λn)xn + λnTxn − λnθn(xn − x1), n = 0, 1, 2, . . . (30)

Then lim
n→∞

‖xn − Txn‖ = 0.

Remark. The sequence {xn} given by (30) will be called in the following a
perturbed Mann iteration. By using Lemma 6.2 and other auxiliary results one
can prove each of the next four sample convergence theorems for perturbed
Mann iteration (proofs which are left to the reader).

Theorem 6.12. Let K be a nonempty closed convex subset of a real Ba-
nach space E. Let T : K → K be a Lipschitzian pseudocontractive mapping
with Lipschitz constant L ≥ 0 and FT 
= ∅. Suppose T is completely contin-
uous. Then the perturbed Mann iteration {xn} given by (30), with {λn} and
{θn}, satisfying (i)-(iii), converges strongly to a fixed point of T .

Theorem 6.13. Let K be a nonempty closed convex and bounded subset
of a real Banach space E. Let T : K → K be a Lipschitzian pseudocontractive
mapping with Lipschitz constant L ≥ 0. Suppose T is completely continuous.
Then T has a fixed point in K and the perturbed Mann iteration {xn} given
by (30), with {λn} and {θn}, satisfying (i)-(iii), converges strongly to a fixed
point of T .
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Theorem 6.14. Let K be a nonempty closed convex subset of a real Ba-
nach space E with uniformly Gateaux differentiable norm. Let T : K → K be
a Lipschitzian pseudocontractive mapping with Lipschitz constant L ≥ 0 and
FT 
= ∅. Suppose every closed convex and bounded subset of K has the fixed
point property for nonexpansive self mappings. Then the perturbed Mann it-
eration {xn} given by (30), with {λn} and {θn}, satisfying (i)-(iii), converges
strongly to a fixed point of T .

Theorem 6.15. Let K be a nonempty closed convex and bounded subset
of a real Banach space E. Let T : K → K be a uniformly continuous pseudo-
contractive map. Let the perturbed Mann iteration {xn} be given by (30), with
{λn} and {θn}, satisfying (i)-(iii). Suppose ‖Txn+1 − Txn‖ = o(θn) and T is
completely continuous. Then T has a fixed point and {xn} converges strongly
to a fixed point of T .

6.5 Viscosity Approximation Methods

In Chapter 3, in order to prove Theorem 3.1 (Browder-Gohde-Kirk fixed
point theorem in Hilbert spaces), we used a particular averaged mapping
Us : C → C, defined by (see also Exercise 3.2)

Us(x) := (1 − s)v0 + sTx, x ∈ C (31)

where v0 ∈ C was fixed and 0 < s < 1, and T : C → C was a certain mapping.
It is known by the proof of Theorem 3.1 that, if T is nonexpansive, then Us is
a s-contraction, and hence Us has a unique fixed point xs, for any s ∈ (0, 1)
and, moreover, that xs → p, as s → 1, where p is a fixed point of T .

As we have remarked in Chapter 3, even if the proof presented there for
Theorem 3.1 is more constructive than that given to the corresponding version
of Theorem 3.1 in uniformly Banach spaces (Theorem 1.2), however, the proof
of Theorem 3.1 does not provide direct information on a certain method for
computing the fixed points of T . The so called viscosity methods are just the
ones appropriate for supplying this situation.

The current development of viscosity approximation methods is based on
replacing the constant v0 in (31) by a certain contraction f . In this way we
obtain a method for selecting a particular fixed point of the nonexpansive
mapping T . To introduce this class of methods, we first remind some known
facts.

Let H be a Hilbert space, C be a closed convex subset of H and f : C → C
a contraction with coefficient α ∈ (0, 1). Denote by C the collection of all
contractions on C. Let now T : C → C be a nonexpansive mapping with
FT 
= ∅.
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For any real number t ∈ (0, 1) and a given contraction f ∈ C, define the
mapping T f

t : C → C by

T f
t x := (1 − t)f(x) + tTx, x ∈ C. (31′)

It is easy to show that T f
t is a contraction with coefficient 1− (1−α)t, where

α is the contraction coefficient of f . Denote by xt := xf
t the unique fixed point

of T f
t in C (by Theorem 1.1).

Definition 6.5. Let H be a Hilbert space, C a closed convex subset of
H. The metric projection or nearest point projection of H onto C, denoted by
PC , is defined, for any x ∈ H, as the only point in C with the property

‖x − PCx‖ = inf{‖x − y‖ : y ∈ C}.

The following well known characterization of the metric projection PC is
useful in proving convergence theorems for viscosity approximation methods.

Lemma 6.3. Let H be a Hilbert space and C a closed convex subset of H.
Given x ∈ H and y ∈ C, then y = PCx if and only if the following inequality
holds

〈x − y, y − z〉 ≥ 0, ∀z ∈ C.

We start with an early result regarding viscosity approximation methods.
Theorem 6.16. Let H be a Hilbert space, C and Ut given by (31) and

t ∈ (0, 1). Let ut be the unique fixed point of Ut, i.e.,

ut = (1 − t)v0 + tTut.

Then, as t → 1, ut converges strongly to a fixed point of T which is closest to
v0, that is, the nearest point projection of v0 onto FT .

Definition 6.6. Let E be a Banach space and C, K subsets of E. A
mapping P : C → K is called sunny if

P [tx + (1 − t)Px] = Px, for x ∈ C with tx + (1 − t)Px ∈ C and t ≥ 0.

Remark. We note that if E is a Hilbert space and K is closed and convex,
then the metric projection and the sunny nonexpansive retraction from C onto
K coincide, that is, when T is a nonexpansive mapping on C, then the sunny
nonexpansive retraction from C onto Fix (T ) is just the metric projection.
This, however, is not valid for an arbitrary Banach space.

Lemma 6.4. Let E be a smooth Banach space and let J be the duality
mapping from E into E∗. Let C be a convex subset of E, let K be a subset of
C and let P be a retraction from C onto K. Then the following are equivalent:

(i) 〈x − Px, J(Px − y)〉 ≥ 0 for all x ∈ C and y ∈ K;
(ii) P is both sunny and nonexpansive.
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Remark. The previous lemma shows that there is at most one sunny
nonexpansive retraction from C onto K. The next lemma transposes Lemma
6.3 from the Hilbert space setting to Banach spaces.

Lemma 6.5. Let C be a closed convex subset of a smooth Banach space E.
Let K be a subset of C and let P be the unique sunny nonexpansive retraction
from C onto K. Let f : C → C be a mapping and let z ∈ K. Then the
following are equivalent:

(i) z is a fixed point of P ◦ f ;
(ii) z is a solution of the variational inequality 〈f(z) − z, J(z − y)〉 ≥ 0,

for all y ∈ K.

Proof. By Lemma 6.5, we immediately deduce that (i) implies (ii). To
prove the converse let us denote y = P ◦ f(z) to get

〈f(z) − z, J(z − P ◦ f(z))〉 ≥ 0.

On the other hand, putting x = f(z) and y = z in (i) of Lemma 6.5, we also
have

〈f(z) − P ◦ f(z), J(P ◦ f(z) − z)〉 ≥ 0.

Now, by the previous two inequalities we obtain

〈P ◦ f(z) − z, J(z − P ◦ f(z))〉 ≥ 0,

which implies (i). �
We now state a result which extend Theorem 6.16 from Hilbert spaces to

uniformly smooth Banach spaces. This result is important by itself and will
be crucial in proving Theorem 6.18.

Theorem 6.17. Let C be a bounded closed convex subset of a uniformly
smooth Banach space E and let T : C → C be a nonexpansive mapping. Fix
u ∈ C and define a net {yα} in C by yα = (1 − α)Tyα + αu for α ∈ (0, 1).
Then {yα} converges strongly to Pu as α tends to +0, where P is the unique
sunny nonexpansive retraction from C onto Fix (T ).

We remark that in Theorem 6.17, the net {yα} is well defined, by Theorem
1.1, see the arguments above.

The main result of this section is contained in the next theorem.

Theorem 6.18. Let C be a bounded closed convex subset of a uniformly
smooth Banach space E. Let T : C → C be a nonexpansive mapping, let P be
the unique sunny nonexpansive retraction from C onto Fix (T ) and let f be
a contraction on C. Define a net {xα} in C by

xα = (1 − α)Txα + αf(xα), for α ∈ (0, 1).

Then as α tends to +0, {xα} converges strongly to the unique point z ∈ C
satisfying P ◦ f(z) = z.



150 6 Other Fixed Point Iteration Procedures

Proof. Define a net {yα} in C by yα = (1−α)Tyα + αf(z), for α ∈ (0, 1)
and z ∈ C satisfying P ◦ f(z) = z. Then by Theorem 6.17, {yα} converges
strongly to P ◦ f(z) = z. For every α ∈ (0, 1), we have

‖xα − yα‖ ≤ (1 − α) ‖Txα − Tyα‖ + α ‖f(xα) − f(z)‖

≤ (1 − α) ‖xα − yα‖ + αr ‖xα − z‖
which yields ‖xα − yα‖ ≤ r ‖xα − z‖. Using the last inequality, we get

‖xα − z‖ ≤ ‖xα − yα‖ + ‖yα − z‖ ≤ r ‖xα − z‖ + ‖yα − z‖ ,

from which we deduce

lim
α→+0

‖xα − z‖ ≤ 1
1 − r

lim
α→+0

‖yα − z‖ = 0,

which completes the proof. �
The result given by Theorem 6.17 can be also established for the Halpern

iteration procedure.

Theorem 6.19. Let E, C, T, P and u be as in Theorem 6.17. Define a
sequence {yn} in C by y1 ∈ C and yn+1 = (1 − αn)Tyn + αnu for n ∈ N,
where {αn} is a real sequence in (0, 1) satisfying

(C1) lim
n→∞

αn = 0; (C2)
∞∑

n=1
αn = ∞ and (C3) Either

∞∑
n=1

|αn+1 − αn| = ∞

or lim
n→∞

αn+1

αn
= 0. Then {yn} converges strongly to Pu.

The previous theorem, established in a Hilbert space setting, can be sim-
ilarly extended to uniformly smooth Banach spaces.

Theorem 6.20. E, C, T, P, f and z be as in Theorem 6.18. Define a
sequence {xn} in C by x1 ∈ C and xn+1 = (1 − αn)Txn + αnf(xn) for
n ∈ N, where {αn} is a real sequence in (0, 1) satisfying (C1), (C2) and (C3)
in Theorem 6.19.

Then {xn} converges strongly to z.

Proof. Define a sequence {yn} in C by yn = (1 − αn)Tyn + αnf(z), for
n ∈ N and z ∈ C satisfying P ◦ f(z) = z. Then by Theorem 6.19, {yn}
converges strongly to P ◦ f(z) = z. For every n ∈ N, we have

‖xn+1 − yn+1‖ ≤ (1 − αn) ‖Txn − Tyn‖ + αn ‖f(xn) − f(z)‖

≤ (1 − αn) ‖xn − yn‖ + αnr ‖xn − z‖
≤ (1 − αn + αnr) ‖xn − yn‖ + αnr ‖yn − z‖

≤ (1 − αn + αnr) ‖xn − yn‖ + (αn − αnr)
r ‖yn − z‖

1 − r
.
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No, by Lemma 1.2, (ii), we obtain lim
n→∞

‖xn − yn‖ = 0,
which implies

lim
n→∞

‖xn − z‖ = 0,

as required. �
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also pointed out that the conditions lim
n→∞

αn = 0 and
∞∑

n=0
αn = ∞ are nec-

essary for the convergence of {xn} to a fixed point of T . It is not known if
generally they are also sufficient.

Ten years later, Lions [Lns77] improved the result of Halpern, still in
Hilbert spaces, by considering the following assumptions on the parameters

sequence {αn}: (i) lim
n→∞

αn = 0; (ii)
∞∑

n=0
αn = ∞; (iii) lim

n→∞
αn−αn−1

α2
n

= 0.

As, both Halpern’s and Lions’ conditions on the sequence {αn} excluded the
common value αn = (1 + n)−1, Wittmann [Wit92] obtained the convergence
of {xn}, again in Hilbert spaces, under the conditions (i) and (ii) above and

(iii’)
∞∑

n=0
|αn+1 − αn| < ∞, see also Theorem 6.8.
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spectively, Theorem 4.1, Theorem 3.2 and Theorem 3.2 in Xu, H.K. [XuH04],
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The convergence theorems of the type considered in Section 6.5 seem to
have been first called of ’viscosity’ type in Moudafi [Mou00]. Many other
authors contributed to this topic, considering non-self mappings or more than
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development of this topic.
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and Prempeh, E. [ZPr02].
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Alber [Alb96], Alber and Guerre-Delabriere [AlG94], [AlG97], [AlG01], Alber,
Guerre-Delabriere and Zelenko [AGZ98], Alber and Notik [AlN95], based on
a generalization of the metric projection in Hilbert spaces - a technique that
was intensively used by Browder and Petryshyn [BrP67].
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Exercises and Miscellaneous Results

6.1. Prove: (a) Theorem 6.1; (b) Theorem 6.3; (c) Theorem 6.4; (d) Theorem
6.7; (e) Theorem 6.8; (f) Theorem 6.9; (g) Theorem 6.10; (h) Theorem 6.11;
(i) Lemma 6.1; (j) Lemmas 6.2-6.6; (k) Theorem 6.18.

6.2. Reinermann (1969)
Let H be a Hilbert space, K ⊂ H be nonempty closed bounded and convex.
Let T be an asymptotically nonexpansive selfmap of K. If

∑
(k2

n − 1) < ∞
and ε ≤ αn ≤ 1 − ε, for all n ∈ N and some ε > 0, then the modified Mann
iteration {xn} defined by x0 ∈ K and

xn+1 = (1 − αn)xn + αnTnxn, n ≥ 0,

is an approximate fixed point sequence of T , that is, lim
n→∞

‖xn − Txn‖ = 0.

6.3. Schu (1991)
Let H be a Hilbert space, K ⊂ H be nonempty closed bounded and convex.
Let T : K → K be an uniformly L-Lipschitzian and asymptotically pseudo-
contractive with {kn} ⊂ [1,∞). Assume

∑
(q2

n − 1) < ∞, where qn = 2kn − 1,
for all n ≥ 1, αn, βn ∈ [0, 1], ε ≤ αn ≤ βn ≤ b, for all integers n ≥ 1 and some
ε > 0, with b ∈ (0, L−1[(1+L2)1/2−1]). Then the modified Ishikawa iteration
{xn} defined by x0 ∈ K and

xn+1 = (1 − αn)xn + αnTnyn, yn = (1 − βn)xn + βnTnxn, n ≥ 0,

is an approximate fixed point sequence of T .
(Recall that T : K → K is called asymptotically pseudocontractive with

{kn} ⊂ [1,∞) if, for all x, y ∈ K,

〈Tnx − Tny, x − y〉 ≤ kn ‖x − y‖2)

6.4. Chidume and Zegeye (2003)
Let K be a nonempty closed bounded and convex subset of a real Banach
space E. Let T : K → K be an uniformly L-Lipschitzian, uniformly asymp-
totically regular with sequence {εn} and asymptotically pseudocontractive
with sequence {kn} such that for λn, θn ∈ (0, 1), ∀n ≥ 0, the following condi-
tions are satisfied:
(i)

∑
λnθn = ∞, lim

n→∞
λn

θn
= 0;λn(1 + θn) ≤ 1;

(ii) lim
n→∞

θn = 0; lim
n→∞

λn/θn = 0; lim
n→∞

( θn−1
θn

− 1)/(λnθn) = 0, lim
n→∞

εn−1
λnθ2

n
= 0;

(iii) kn−1 − kn = o(λnθ2
n);

(iv) kn − 1 = o(θn).
Let a sequence {xn} be iteratively generated from x1 ∈ K by

xn+1 := (1 − λn)xn + λnTxn − λnθn(xn − x1), n = 0, 1, 2, . . .

Then {xn} is an approximate fixed point sequence of T .
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6.5. Bruck (1974)
Let T : K → K be demicontinuous and pseudocontractive. Then T has a fixed
point in K and whenever {λn} and {θn} are acceptably paired,

λn(1 + θn) ≤ 1, for all n ≥ 0,

z ∈ K and x0 ∈ K, the sequence {xn} defined by

xn+1 = (1 − λn)xn + λnTxn + λnθn(z − xn) , n ≥ 0

remains in K and converges strongly to the fixed point of T closest to z.
(For the concept of sequences acceptably paired, see Definition 8.4.)

6.6. Schu (1989)

Let T : K → K be Lipschitzian (with constant L ≥ 0) and pseudocontrac-
tive; let {λn} and {αn} be sequences in (0, 1) with

lim
n→∞

λn = 1 , lim
n→∞

αn = 0

such that ({αn}, {µn}) has property (A), (1−µn)(1−λn)−1 is bounded, and

lim
n→∞

(1 − µn) /αn = 0,

where
kn = (1 + α2

n(1 + L)2)1/2 and µn = λn / kn , n ≥ 0.

Fix z0 ∈ K and define

zn+1 = µn+1[(1 − αn)zn + αnTzn] + (1 − µn+1)ω , n ≥ 0.

Then {zn} converges strongly to the unique fixed point of T closest to ω.
(The previous fixed point iteration procedure is constructed in a similar

manner to that of Ishikawa iteration, i.e., by composing two iterations: a Mann
iteration and a Halpern type fixed point iteration procedure - which is in fact
a Mann type iteration with a fixed term ω, see Section 6.5 in this chapter)
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Stability of Fixed Point Iteration Procedures

Intuitively, a fixed point iteration procedure is numerically stable if,
“small” modifications in the initial data or in the data that are involved in
the computation process, will produce a “small” influence on the computed
value of the fixed point.

It is the aim of this chapter to survey the most significant contributions
to this area. To this end, we shall define a fixed point iteration procedure by
a general relation of the form

xn+1 = f(T, xn), n = 0, 1, 2, ..., (1)

where T : X → X is an operator and x0 ∈ X, by tacitly considering that
f(T, xn) in the right-hand side of (1) does contain all parameters that define
the given fixed point iteration procedure.

For example, in the case of Mann iteration procedure M(x0, αn, T ),
f(T, xn) appearing in (1), given by the formula f(T, xn) = (1−αn)xn+αnTxn

implicitly includes {αn}.

7.1 Stability and Almost Stability of Fixed Point
Iteration Procedures

Let (X, d) be a metric space, T : X → X an operator with FT 
= ∅ and
{xn}∞n=0 a sequence obtained by a certain fixed point iteration procedure that
ensure its convergence to a fixed point p of T.

In concrete applications, when calculating {xn}∞n=0, we usually follow the
steps:

1. We choose the initial approximation x0 ∈ X;
2. We compute x1 = f(T, x0) but, due to various errors that occur during

the computations (rounding errors, numerical approximations of functions,



158 7 Stability of Fixed Point Iteration Procedures

derivatives or integrals etc.), we do not get the exact value of x1, but a different
one, say y1, which is however close enough to x1, i.e., y1 ≈ x1.

3. Consequently, when computing x2 = f(T, x1) we will actually compute
x2 as

x2 = f(T, y1),

and so, instead of the theoretical value x2, we will obtain in fact another value,
say y2, again close enough to x2, i.e., y2 ≈ x2, ..., and so on.

In this way, instead of the theoretical sequence {xn}∞n=0, defined by the
given iterative method, we will practically obtain an approximate sequence
{yn}∞n=0. We shall consider the given fixed point iteration method to be nu-
merically stable if and only if, for yn close enough (in some sense) to xn

at each stage, the approximate sequence {yn}∞n=0 still converges to the fixed
point of T .

Following basically this idea, the next concept of stability was introduced.

Definition 7.1. Let (X, d) be a metric space and T : X → X a map-
ping, x0 ∈ X and let us assume that the iteration procedure (1), that is, the
sequence {xn}∞n=1 produced by (1), converges to a fixed point p of T.

Let {yn}∞n=0 be an arbitrary sequence in X and set

εn = d(yn+1, f(T, yn)), for n = 0, 1, 2, ... (2)

We shall say that the fixed point iteration procedure (1) is T -stable or stable
with respect to T if and only if

lim
n→∞

εn = 0 ⇔ lim
n→∞

yn = p. (3)

Remarks.
1) It is known that the Picard iteration is T -stable with respect to any

α-contraction T and also with respect to any Zamfirescu mapping T , both
these results being established in the framework of a metric space setting;

2) It has also been shown that in a normed linear space setting certain
Mann iterations are T -stable with respect to any Zamfirescu mapping.

In the same setting, a similar result was proved for Kirk’s iteration proce-
dure, in the class of c−contractions (0 ≤ c < 1);

3) One of the most general contractive definition for which corresponding
stability results have been obtained in the case of Kirk, Mann and Ishikawa
iteration procedures in arbitrary Banach spaces appears to be the following
class of mappings: for (X, d) a metric space, T : X → X is supposed to satisfy
the condition

d(Tx, Ty) ≤ a d(x, y) + L d(x, Tx) (4)

for some a ∈ [0, 1), L ≥ 0 and for all x, y ∈ D ⊂ X.
Notice that any a-contractive and any Zamfirescu operator satisfy (4).

Actually, condition (15) in Section 2.3 is exactly condition (4) above, with
a := δ and L = 2δ, where
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δ = max
{

α,
β

1 − β
,

γ

1 − γ

}
,

with α, β, γ the constants that are involved in Zamfirescu’s contractive con-
ditions (z1), (z2) and (z3), respectively.

However, if a mapping T satisfies only (4), it need not have a fixed point
in general. But (as we have seen in Chapter 2, in the case of Zamfirescu
mappings, Kannan mappings or weak contractions) if T has a fixed point and
satisfies (4), then the fixed point is unique.

Consequently, we shall present in the following some general stability
results for mappings satisfying (4).

Theorem 7.1. Let (X, d) be a metric space and T : X → X a mapping
satisfying (4). Suppose T has a fixed point x∗. Let x0 ∈ X and xn+1 =
Txn, n ≥ 0.

Then {xn} converges strongly to x∗ and is stable with respect to T (i.e.,
for {εn} given by (2), the equivalence (3) holds).

Proof. Using triangle rule and (4) we get

d(yn+1, x
∗) ≤ d(yn+1, T yn) + d(Tyn, x∗) ≤ a d(yn, x∗) + εn. (5)

Suppose lim
n→∞

εn = 0. Then, since a ∈ [0, 1), it follows by Lemma 1.6 that

lim
n→∞

yn = x∗. Moreover, since by (4),

d(xn+1, p) ≤ ad(xn, p),

it follows that lim
n→∞

xn = x∗. Conversely, if lim
n→∞

yn = x∗, then

εn = d(yn+1, T yn) ≤ d(yn+1, x∗) + a d(yn, x∗) → 0,

as n → ∞. �
Theorem 7.2. Let E be a normed linear space and T : E → E a mapping

satisfying (4) (with d(u, v) = ‖a − v‖ ). Suppose T has a fixed point x∗. Let
x0 be arbitrary in E and define

zn = (1 − βn)xn + βnTxn, n ≥ 0

and
xn+1 = (1 − αn)xn + αnTzn, n ≥ 0,

where {αn} and {βn} are sequences in [0, 1] such that 0 < α ≤ αn, for some
α. Let {yn} be any given sequence in E and define

sn = (1 − βn)yn + βnTyn, n ≥ 0
εn = ‖yn+1 − (1 − αn)yn − αnTsn‖ , n ≥ 0.

Then {xn} converges strongly to x∗ and is stable with respect to T.
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Proof. We have the following estimate

‖yn+1 − x∗‖ ≤ ‖yn+1 − (1 − αn)yn − αnTsn‖+

+ ‖(1 − αn)(yn − x∗) + αn(Tsn − x∗)‖ ≤
≤ (1 − αn) ‖yn − x∗‖ + αn ‖Tsn − x∗‖ + εn ≤

≤ (1 − αn) ‖yn − x∗‖ + αna [(1 − βn) ‖yn − x∗‖ + βna ‖yn − x∗‖] + εn =

= [(1 − αn) + αna(1 − βn(1 − a))] ‖yn − x∗‖ + εn ≤
≤ [1 − αn(1 − a)] ‖yn − x∗‖ + εn ≤ [1 − α(1 − a)] ‖yn − x∗‖ + εn.

Now, suppose lim
n→∞

εn = 0. Since a < 1 and α > 0, it results by Lemma 1.6,

part (i), that lim
n→∞

yn = x∗. Since ‖xn+1 − (1 − αn)xn − αnTzn‖ = 0, it also
results

lim
n→∞

xn = x∗.

For the converse, assume lim
n→∞

yn = x∗ holds. Then it follows easily that

εn = ‖yn+1 − (1 − αn)yn − αTsn‖ ≤ ‖yn+1 − x∗‖ + ‖yn − x∗‖ → 0

as n → ∞, that completes the proof. �
Remarks
1) A result similar to Theorems 7.1 and 7.2 can be proved in a normed

linear setting for Kirk’s iteration procedure and for a a self-operator T
satisfying (4);

2) There are several examples of fixed point iterations which are not stable
with respect to certain operators;

3) It is well known that neither Picard iteration, nor Mann or Kirk’s
iterations are T -stable with respect to a nonexpansive self-operator of a closed
convex bounded set in a Hilbert space, but the next theorem shows that
Figueiredo’s iteration is T−stable with respect to nonexpansive mappings.

Theorem 7.3. Let K be a closed, bounded and convex subset of a Hilbert
space H containing 0. If T : K → K is a nonexpansive mapping, then for
any x0 ∈ K the sequence {xn}∞n=0, defined by

xn = T n2

n xn−1, n = 1, 2, . . .

and Tnx = n/(n + 1)Tx, is T−stable.

Definition 7.2. Suppose E is a real Banach space and T is a selfmap
of E, with FT 
= φ. Let x0 ∈ E and let {xn}∞n=0 be an iteration procedure
given by

xn+1 = f(T, xn), n = 0, 1, 2, . . . (6)

that converges strongly to a fixed point x∗ ∈ FT .
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Suppose {yn}∞n=0 is a sequence in E and {εn}∞n=0 is a sequence of positive
real numbers given by

εn = ‖yn+1 − f(T, yn)‖ . (7)

If
∞∑

n=0
εn < ∞ implies lim

n→∞
yn = x∗, then the iteration procedure defined

by (6) is said to be almost T-stable or almost stable with respect to T.

Remark. Clearly, any T -stable iteration procedure is almost T -stable, but
an almost T -stable procedure may fail to be T -stable.

The next theorem shows that, under certain assumptions, the Ishikawa
iteration procedure is almost T -stable with respect to a Lipschitz ϕ-strongly
pseudocontractive operator.

Theorem 7.4. Suppose E is a real Banach space and T : E → E is a
Lipschitzian (with constant L) ϕ-strongly pseudocontractive operator. Suppose
FT 
= ∅ and {αn}∞n=0 and {βn}∞n=0 are real sequences in [0, 1] satisfying the
conditions

(i)
∞∑

n=0

αn = ∞; (ii)
∞∑

n=0n

αnβn < ∞; (iii)
∞∑

n=0n

α2
n < ∞.

Let {xn}∞n=0 be the Ishikawa iteration, given by x0 ∈ E and

zn = (1 − βn)yn + βnTyn, n ≥ 0

xn+1 = (1 − αn)xn + αnTzn, n ≥ 0.

Suppose {yn}∞n=0 is a sequence in E and define {εn}∞n=0 by

εn = ‖yn+1 − (1 − αn)yn − αnTsn‖ , n ≥ 0.

sn = (1 − βn)yn + βnTyn, n ≥ 0.

Then
1. The sequence {xn} converges strongly to the fixed point p of T ;
2. We have the error estimate

‖yn+1 − p‖ ≤ [1 − αnr(pn, p)] ‖yn − p‖+

+
[
L3 + 4L2 + 3(L + 1)

]
α2

n ‖yn − p‖ + L(1 + L)αnβn ‖yn − p‖ + εn,

where pn = (1 − αn)yn + αnTsn and

r(pn, p) =
ϕ(‖pn − p‖)

1 + ϕ(‖pn − p‖) + ‖pn − p‖ ;

3.
∞∑

n=0n
εn < ∞ ⇒ lim

n→∞
yn = p; 4. lim

n→∞
yn = p ⇒ lim

n→∞
εn = 0.
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Proof. Since T is ϕ-strongly pseudocontractive, it results that for all
x, y ∈ E there exist j(x − y) ∈ J(x − y) and a strictly increasing function
ϕ : [0,∞) → [0,∞) with ϕ(0) = 0 such that

〈Tx − Ty, j(x − y)〉 ≤ ‖x − y‖2 − ϕ(‖x − y‖) ‖x − y‖ .

This shows that if T has a fixed point, then the fixed point is unique.
The rest of the proof is standard and we omit it. �
Remarks.
1) If we set βn = 0 for all n ≥ 0 in Theorem 7.4, then we obtain a result

which shows that the Mann iteration is almost T -stable;
2) The class of ϕ-strongly pseudocontractive operators with nonempty

fixed point set is a proper subset of the class of ϕ-hemicontractive operators.
However, Theorem 7.4 can be easily extended to the class of ϕ-

hemicontractive operators.

7.2 Weak Stability of Fixed Point Iteration Procedures

In this section we want to show that the concept of (almost) stability
introduced in the previous section is slightly not very precise. As we stressed
at the beginning of this Chapter, it is not natural that the sequence {yn}∞n=0

involved in the definition of (almost) stability be arbitrary taken. From a
numerical point of view {yn}∞n=0 must be, in a certain sense, an approximate
sequence of {xn}.

By adopting a concept of such kind of approximate sequences, it is possi-
ble to introduce a weaker and more natural concept of stability, called weak
stability. So, any stable iteration will be also weakly stable, but the reverse is
not generally true.

Definition 7.3. Let (X, d) be a metric space and {xn}∞n=1 ⊂ X be a
given sequence. We shall say that {yn}∞n=0 ∈ X is an approximate sequence
of {xn} if, for any k ∈ N, there exists η = η(k) such that

d(xn, yn) ≤ η, for all n ≥ k.

Remark. We can have approximate sequences of both convergent and
divergent sequences. The following result will be useful in the sequel.

Lemma 7.1. The sequence {yn} is an approximate sequence of {xn} if
and only if there exists a decreasing sequence of positive numbers {εn} con-
verging to some η ≥ 0 such that

d(xn, yn) ≤ εn, for any n ≥ k (fixed).
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Proof. Sufficiency. We take η(k) = εk, k = 0, 1, 2, ....
Necessity. For k = 1 we find η1 > 0 such that

d(xn, yn) ≤ η1, n = 1, 2, ...

Put ε1 = η1. For k = 2 we find η2 > 0 such that

d(xn, yn) ≤ η2, n = 2, 3, ...

Put ε2 = min{η1, η2}, ...
We obtain in this way a decreasing sequence of positive numbers {εn}

(which is convergent to some η ≥ 0). �
Definition 7.4. Let (X, d) be a metric space and T : X → X be a map.

Let {xn} be an iteration procedure defined by x0 ∈ X and

xn+1 = f(T, xn), n ≥ 0. (8)

Suppose {xn} converges to a fixed point p of T. If for any approximate se-
quence {yn} ⊂ X of {xn}

lim
n→∞

d(yn+1, f(T, yn)) = 0

implies
lim

n→∞
yn = p,

then we shall say that (8) is weakly T -stable or weakly stable with respect to
T. Remarks.

1) It is obvious that any stable iteration procedure is also weakly stable,
but the reverse is generally not true;

2) All examples given by various authors that have studied the stability of
fixed point iteration procedures - examples intended to illustrate non stable
fixed point iteration procedures - do not consider approximate sequences of
{xn}. We present in detail some of the aforementioned examples, in order
to show how important and natural is to restrict the stability concept to
approximate sequences {yn} of {xn}.

Example 7.1.
Let R denote the reals with the usual metric. Define T : R → R by

Tx =
1
2
x. As T is an

1
2
−contraction, it follows by Theorem 7.2 that the

Ishikawa iteration {xn}∞n=1 is T -stable, hence almost T -stable and weakly
T -stable, too.

However, it has been claimed (and “proved” !) that the Ishikawa iteration
is not T -stable. To show this, it was used the sequence {yn}∞n=1 given by

yn =
n

1 + n
, n ≥ 0.
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But this is obviously nonsense, because xn → 0 (the unique fixed point of T ),
while yn → 1 as n → ∞, although, by construction, {yn}∞n=1 would have to
be an approximate sequence of {xn}.

Example 7.2.
Let T : [0, 1] → [0, 1] be given by

Tx =
1
2

if 0 ≤ x ≤ 1
2

and Tx = 0 if
1
2

< x ≤ 1,

where [0, 1] is endowed with the usual metric. We have FT =
{

1
2

}
.

It was shown by that the Picard iteration is not T−stable, by taking {yn}
as an a priori divergent sequence.

We will show that the Picard iteration is also not weakly T−stable. This
will imply, in particular, that it is indeed not T -stable.

Let x0 ∈ [0, 1] and xn+1 = Txn, for n = 0, 1, . . .

If 0 ≤ x0 ≤ 1
2
, then x1 = Tx0 =

1
2

and if
1
2

< x0 ≤ 1, then x1 = Tx0 = 0.

In either case, xn =
1
2

for n ≥ 2 and thus lim
n→∞

xn =
1
2

= T

(
1
2

)
.

Let {yn} be an approximate sequence of {xn}. By Lemma 7.1 it results
that there exists a decreasing sequence of positive numbers {ηn} converging
to some η ≥ 0 such that

|xn − yn| ≤ ηn, for n ≥ k(fixed).

In particular, we can take yn = xn + (−1)n · ηn, n ≥ k which shows that

yn =
1
2

+ (−1)nηn, for each n ≥ 2.

Then

Tyn =

{ 1
2
, if n is odd

0, if n is even

and hence

|yn+1 − Tyn| =

⎧⎨
⎩
∣∣∣∣yn+1 −

1
2

∣∣∣∣ , if n is odd

yn+1, if n is even
=

⎧⎨
⎩
∣∣∣∣y2p+2 −

1
2

∣∣∣∣ , n = 2p + 1

y2p+1, n = 2p.

By lim
n→∞

|yn+1 − Tyn| = 0 it results that

lim
p→∞

y2p+2 =
1
2

and lim
p→∞

y2p+1 = 0

which shows that {yn} is not convergent in the whole.
Consequently, the Picard iteration is not weakly T -stable.
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Example 7.3.
Let T : [0, 1] → [0, 1] be given by

Tx = 0, if 0 ≤ x ≤ 1
2

and Tx =
1
2
, if

1
2

< x ≤ 1,

where [0, 1] is again endowed with the usual metric.
Let x0 ∈ [0, 1] and xn+1 = Txn, for n = 0, 1, 2, . . .

If 0 ≤ x0 ≤ 1
2
, then x1 = Tx0 = 0, while if

1
2

< x0 ≤ 1, we have

x1 = Tx0 =
1
2
. Therefore xn = 0, for n = 2, 3, . . . and thus

lim
n→∞

xn = 0 = T (0).

Let {yn} ⊂ [0, 1] be an approximate sequence of {xn}. It results by
Lemma 7.1 that there exists a decreasing sequence of positive numbers
{ηn} converging to some η ≥ 0 such that

|xn − yn| ≤ ηn, n ≥ 0.

This gives xn − ηn ≤ yn ≤ xn + ηn and since xn = 0, n ≥ 0, we get

0 ≤ yn ≤ ηn, n ≥ 2. We can choose {ηn} such that ηn ≤ 1
2
, for all n ≥ 2.

Hence Tyn = 0, n ≥ 2 and by lim
n→∞

|yn+1 − Tyn| = 0 we get lim
n→∞

yn =

0 = T (0).
This shows that the Picard iteration is weakly T -stable. But, as known,

the Picard iteration is not T -stable.

Remarks.

1) For other examples, see Harder and Hicks [HH88b]. Note that the Picard
iteration is also not weakly T -stable for the operators T in Examples 1 and 2
in Harder and Hicks [HH88b], but is weakly T -stable for T in Example 5;

2) It is now very natural to suggest a comparison of the concepts of almost
stability and that of weak stability. In fact, we can introduce a concept of
almost weak stability.

An open problem.

It is easy to see that any weakly T -stable iteration is almost T -stable and
hence the almost weak stability will be the weakest concept of stability for
fixed point procedures.

It remains the task to identify, amongst the classes of operators for which
a certain iteration is not T -stable or is not almost T -stable, the ones for which
the iteration is weakly T -stable.
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7.3 Data Dependence of Fixed Points

Let (X, d) be a metric space and T : X → X an operator such that FT 
= ∅
and there exists a certain fixed point iteration procedure that converges to
some fixed point p ∈ FT .

Due to various reasons, when computing p we actually use a certain
approximate operator U of T , that is an operator U : X → X , such that
for a suitable η > 0 we have

d(Tx,Ux) ≤ η, for each x ∈ X.

Assume U has a fixed point q that can be computed by a certain method.
Then the following question naturally arises:

Does q approximate p and, if yes, how can we estimate d(p, q) ?
The first part of this section is intended to present some positive answers

to the previous question, in the case of Picard iteration procedure.

Let ϕ : R+ → R+ be a strict comparison function and denote

tη = sup{t ∈ R+ : t − ϕ(t) ≤ η}, η > 0. (9)

Example 7.4. If ϕ(t) = at, a ∈ (0, 1), then tη =
η

1 − a
and if ϕ(t) =

t

1 + t
, t > 0, then tη =

1
2

(
η +

√
η2 + 4η

)
.

Remark. For tη given by (9) we have lim
η→0

tη = 0.

Theorem 7.5. Let (X, d) be a complete metric space and T,U : X → X
be two mappings satisfying

(i) T is a strict ϕ-contraction; (ii) q ∈ FU ;
(iii) there exists η > 0 such that

d(Tx, Ux) ≤ η, for all x ∈ X. (10)

Then
d(p, q) ≤ tη,

where p is the unique fixed point of T , i.e., {p} = FT .

Proof. By (i) and Theorem 2.7 we know that T is a Picard operator, i.e.,
FT = {p} and the Picard iteration {T nx0} converges to p, for any x0 ∈ X.

Using (i), (ii) and (iii) we have that

d(p, q) = d(Tp, Uq) ≤ d(Tp, Tq) + d(Tq, Uq) ≤

≤ ϕ(d(p, q)) + η
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and hence
d(p, q) − ϕ(d(p, q)) ≤ η

which, by (9), gives
d(p, q) ≤ tη,

i.e., exactly the desired conclusion. �
Remark. Theorem 7.5 shows that if U is an approximate operator of T ,

then
d(p, q) → 0 as η → 0.

If T is a (c)-ϕ-contraction (i.e. ϕ is a (c)-comparison function), then we
can give a more detailed estimate.

Theorem 7.6. Let (X, d) be a complete metric space and T : X → X be a
ϕ-contraction with ϕ a subadditive (c)-comparison function. Let U : X → X
be an approximate operator of T , i.e., (10) holds, and {xn}∞n=0 , {yn}∞n=0 be
the Picard iterations associated to T , respectively to U , starting from x0 ∈ X.

If q ∈ FU and FT = {p} then

1) d(yn, p) ≤ s(η) + s(d(xn, xn+1)), n > 1; (11)

2) d(p, q) ≤ s(η),

where s(t) denotes the sum of the comparison series
∞∑

k=0

ϕk(t).

Proof. By Theorem 2.8 we know that FT = {p} and that xn → p as
n → ∞, for any x0 ∈ X.

As y1 = Ux0, y2 = Uy1, . . . , yn = Uyn−1 , n > 1 we have that

d(yn, p) ≤ d(yn, xn) + d(xn, p) (12)

and
d(yn, xn) = d(Uyn−1, Txn−1) ≤

≤ d(Uyn−1, T yn−1) + d(Tyn−1, Txn−1) ≤ η + ϕ(yn−1, xn−1).

By the subadditivity of ϕ and the previous inequality, a simple induction
yields

d(yn, xn) ≤ η + ϕ(η) + . . . + ϕn(η) , n ≥ 1.

Using now the estimate in Theorem 2.8 and taking into account that the
sequence {Sn(η)} of partial sums of the comparison series is nondecreasing,
that is

Sn(η) ≤ s(η) , for each n ∈ N
∗,

from (12) we get exactly

d(yn, p) ≤ s(η) + s(d(xn, xn+1),
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where

s(η) =
∞∑

k=0

ϕk(η) , η ≥ 0.

To prove part 2) of the theorem, take x0 = q, where q ∈ FU . Then

yn = q , for each n ≥ 1

and letting n → ∞ in (11), we get

d(p, q) ≤ s(η) ,

since s is continuous at zero and d(xn, xn+1) → 0 as n → ∞. �
Remarks.
1) Similar results can be obtained for other classes of contractive type

mappings;
2) We can derive an a priori estimate instead of the a posteriori estimate

(11) that involves the displacement d(xn, xn+1).
Indeed, we know by the proof of Theorem 2.8 that

d(xn, xn+1) ≤ ϕn(d(x0, x1))

and hence (11) becomes

d(yn, p) ≤ s(η) + s(ϕn(d(x0, Tx0))) , n ≥ 1; (13)

3) Using the fact that s is continuous at zero, the two estimates previously
proved show that

lim
η→0

d(p, q) = 0,

i.e., for η > 0 small enough, the fixed point q of U does approximate p, the
unique fixed point of T .

The continuous dependence of the fixed point on a parameter may be
formulated in the following general context.

Let (X, d) be a metric space, (Y, τ) a topological space and T : X×Y → X
a family of operators depending on the parameter λ ∈ Y .

Assume that Tλ := T ( · , λ) , λ ∈ Y , has a unique fixed point x∗
λ, for any

λ ∈ Y .
If we consider the operator U : Y → X, given by

U(λ) = x∗
λ , ∀ λ ∈ Y,

then we are interested to find sufficient conditions on T that guarantee the
continuity of U .

A typical result for this problem is given by the next theorem. However, all
these results are established for the Picard iteration. To our best knowledge,
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the continuous dependence of the fixed points has not been studied so far for
other fixed point iteration procedures.

Theorem 7.7. Let (X, d) be a complete metric space and (Y, τ) a topo-
logical space. Let T : X × Y → X be a continuous mapping for which there
exists a strict comparison function ϕ such that

d(Tλx1, Tλx2) ≤ ϕ(d(x1, x2)),

for all x1, x2 ∈ X and λ ∈ Y (where Tλx := T (x, λ)). Let x∗
λ be the unique

fixed point of Tλ. Then the mapping U : Y → X, given by

U(λ) = x∗
λ, λ ∈ Y,

is continuous.

Proof. Let λ1, λ2 ∈ Y . Then

d(x∗
λ1

, x∗
λ2

) = d(T (x∗
λ1

, λ1), T (x∗
λ2

, λ2) ≤

≤ d(T (x∗
λ1

, λ1), T (x∗
λ2

, λ1)) + d(T (x∗
λ2

, λ1), T (x∗
λ2

, λ2)) ≤
≤ ϕ(d(x∗

λ1
, x∗

λ2
)) + d(Tλ1x

∗
λ2

, Tλ2x
∗
λ2

).

Hence
d(x∗

λ1
, x∗

λ2
) − ϕ(d(x∗

λ1
, x∗

λ2
)) ≤ d(Tλ1x

∗
λ2

, Tλ2x
∗
λ2

).

Since T is continuous and ϕ is a strict comparison function, for λ2 → λ1 we
get

d(Tλ1x
∗
λ2

, Tλ2x
∗
λ2

) → 0,

which leads to
d(x∗

λ1
, x∗

λ2
) → 0,

and this means that d(U(λ1), U(λ2)) → 0 as λ2 → λ1. �
We end this section by presenting a very general result regarding multi-

valued mappings in metric spaces.
Let (X, d) be a metric space. We denote

P(X) = {A ⊂ X : A 
= ∅}, Pb cl(X) = {A ∈ P(X) : A is closed and bounded}

and define the functional

D : P(X) × P(X) → R+, D(A,B) = inf{d(a, b)|a ∈ A, b ∈ B}.

We also consider the following generalized functionals:

ρ : P(X) × P(X) → R+ ∪ {+∞}, ρ(A,B) = sup{D(a,B)|a ∈ A},

Hd : P(X) × P(X) → R+ ∪ {+∞}, Hd(A,B) = max{ρ(A,B), ρ(B,A)}.
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It is well known that Hd is a metric on Pb cl(X), commonly called Hausdorff-
Pompeiu metric, and that, if (X, d) is complete, then (Pb cl(X),Hd) is a com-
plete metric space, too.

The next two Lemmas can easily be proved and will be needed in the
following.

Lemma 7.2. Let (X, d) be a metric space, A,B ∈ P(X) and q ∈ R, q > 1
be given. Then for every a ∈ A, there exists b ∈ B such that

d(a, b) ≤ qHd(A,B).

Lemma 7.3. Let (X, d) be a metric space, A,B ∈ P(X). Suppose that
there exists η ∈ R, η > 0, such that the following two conditions are satisfied:
(i) for each a ∈ A, there exists b ∈ B such that d(a, b) ≤ η;
(ii) for each b ∈ B, there exists a ∈ A such that d(a, b) ≤ η;
Then Hd(A,B) ≤ η.

Definition 7.5. Let T : X → P(X) be a multivalued operator. An element
x∗ ∈ X is a fixed point of T if and only if x∗ ∈ T (x∗). Denote, as in the single-
valued case, by FT or Fix (T ) the set of all fixed points of T .

Definition 7.6. Let (X, d) be a metric space and T : X → P(X) be a
multivalued operator. T is said to be a (multivalued) weakly Picard operator if
and only if for each x ∈ X and any y ∈ T (x), there exists a sequence {xn}n≥0

such that:
(i) x0 = x, x1 = y;

(ii) xn+1 ∈ T (xn) for all n = 0, 1, 2, . . . ;
(iii) the sequence {xn}n≥0 is convergent and its limit is a fixed point of T .

A sequence {xn}n≥0 satisfying (i)− (ii) in the previous definition is called
sequence of successive approximations of a multivalued operator defined by
the multivalued operator T and starting values (x, y).

Definition 7.7. Let (X, d) be a metric space and T : X → P(X) be a mul-
tivalued weakly Picard operator of graph Graph (T ). Define the multivalued
mapping T∞ : Graph (T ) → P(FT ) by

T∞(x, y) := {z ∈ FT |there exists a sequence of successive approximations of

T starting from (x, y) that converges to z}.
Definition 7.8. Let (X, d) be a metric space and T : X → P(X) be a

multivalued weakly Picard operator. T is said to be a c-weakly Picard operator
if and only if there exists a single-valued selection t∞ of T∞ such that

d(x, t∞(x, y)) ≤ cd(x, y), for all (x, y) ∈ Graph (T ).

Example 7.5. Let (X, d) be a complete metric space and T : X → P(X)
be a multivalued operator.

1) If T is a multivalued a-contraction, i.e., a mapping for which there exists
a constant a, 0 < a < 1, such that
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Hd(T (x), T (y)) ≤ ad(x, y), for all x, y ∈ X,

then T is a c-weakly multivalued Picard operator with c = (1 − a)−1;
2) If T is a multivalued operator for which there exist α, β, γ ∈ R+, with

α + β + γ < 1 such that

Hd(T (x), T (y)) ≤ αd(x, y) + βD(x, T (x)) + γD(y, T (y)), for all x, y ∈ X,

then T is a c-weakly multivalued Picard operator indexsubjectPicard operator!
c-weakly multivaluedwith

c = (1 − γ)(1 − α − β − γ)−1;

3) If T is a multivalued operator which satisfies the following two condi-
tions:
(i) there exist α, β ∈ R+, α + β < 1 such that

Hd(T (x), T (y))≤αd(x, y)+βD(y, T (y)), for every x∈X and every y ∈ T (x);

(ii) T is a closed multivalued operator,
then T is a c-weakly multivalued Picard operator indexsubjectPicard operator!
c-weakly multivaluedwith

c = (1 − β)(1 − α − β)−1.

The next theorem gives a very general result on the data dependence of
fixed points for multivalued mappings.

Theorem 7.8. Let (X, d) be a complete metric space and T1, T2 : X →
P(X) be two multivalued operators. Suppose that
(i) Ti is a ci-multivalued weakly Picard operator, i ∈ {1, 2};

(ii) there exists η > 0 such that for all x ∈ X,

Hd (T1(x), T2(x)) ≤ η.

Then
Hd (Fix (T1), F ix (T2)) ≤ η max{c1, c2}.

Proof. Let ti be a selection of Ti, i ∈ {1, 2}. Then

Hd (Fix (T1), F ix (T2))≤ max

{
sup

x∈Fix (T2)

d(x, t1(x))), sup
x∈Fix (T1)

d(x, t2(x)))

}
.

Let q > 1. Then, by Lemma 7.2, we can choose ti, for i ∈ {1, 2}, such that

d(x, t∞1 (x, t1(x))) ≤ c1qHd (Fix (T2), F ix (T1)), for all x ∈ Fix (T2)

and

d(x, t∞2 (x, t2(x))) ≤ c2qHd (Fix (T1), F ix (T2)), for all x ∈ Fix (T1).

Thus, by Lemma 7.3, we have

Hd (Fix (T1), F ix (T2)) ≤ qη max{c1, c2},
and letting q ↘ 1, the conclusion follows. �
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In particular, by the previous theorem we may obtain a stability result for
two multivalued contractions. A special version of it is the following

Corollary 7.1. Let (X, d) be a complete metric space and T1, T2 : X →
P(X) be two multivalued contractions with contraction coefficient k, k < 1.
Then

Hd (Fix (T1), F ix (T2)) ≤ (1 − k)−1 sup
x∈X

Hd (T1(x), T2(x)).

7.4 Sequences of Applications and Fixed Points

Let (X, d) be a metric space and T : X → X a given operator such that
FT = {p}.

A possible method to approximate the fixed point p of T would be the fol-
lowing one: construct a sequence of operators {Tn} which approximate (uni-
formly) the operator T , i.e.,

Tn → T (Tn ⇒ T ) as n → ∞,

such that for each n the set FTn

= ∅ can be easily computed and, moreover,

for any x∗
n ∈ FTn

, we have

x∗
n → p as n → ∞.

Theorem 7.9. Let (X, d) be a complete metric space and {Tn} a sequence
of operators, Tn : X → X, such that FTn

= {x∗
n}, for each n = 1, 2, . . . .

If the sequence {Tn} converges uniformly to an a-contraction T : X → X
with FT = {x∗}, then

x∗
n → x∗ as n → ∞.

Proof. Let ε > 0 and choose a natural number N such that n ≥ N implies

d(Tnx, Tx) < ε(1 − a) , for all x ∈ X,

where a is the contraction coefficient. Then, for n ≥ N we have

d(x∗
n, x∗) = d(Tnx∗

n, Tx∗) ≤ d(Tnx∗
n, Tx∗

n)+d(Tx∗
n, Tx∗) < ε(1−a)+ad(x∗

n, x∗),

which yields
d(x∗

n, x∗) < ε , for all n ≥ N.

This proves that {x∗
n}∞n=0 converges to x∗ as n → ∞. �
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Remark. The uniform convergence of {Tn}∞n=0 can be weakened to the
pointwise convergence , if the operators Tn possess certain additional contrac-
tive properties, as in the next theorems.

Theorem 7.10. Let (X, d) be a complete metric space and let us consider
Tn, T : X → X (n ∈ N) be operators such that

(i) Tn is a strict ϕ-contraction for all n ≥ 0;
(ii) {Tn}∞n=0 converges pointwisely to T .
Then T is a strict ϕ-contraction and

x∗
n → x∗ as n → ∞,

where FTn
= {x∗

n} and FT = {x∗}.
Proof. We have

d(Tx, Ty) ≤ d(Tx, Tnx) + d(Tnx, Tny) + d(Tny, Ty)

and by (ii) there exists a strict comparison function ϕ : R+ → R+ such that

d(Tnx, Tny) ≤ ϕ(d(x, y)) , ∀ x, y ∈ X,

for each n ∈ N
∗. So

d(Tx, Ty) ≤ d(Tnx, Tx) + ϕ(d(x, y)) + d(Tny, Ty) , ∀ x, y ∈ X

and letting n → ∞ we get by (ii) that

d(Tx, Ty) ≤ ϕ(d(x, y)) , ∀ x, y ∈ X,

i.e., T is a strict ϕ-contraction with the same comparison function that appears
in (i).

By Theorem 2.7 we have FTn
= {x∗

n} , n ≥ 0 and FT = {x∗}. In order to
prove that x∗

n → x∗, we need the following estimate

d(x∗
n, x∗) ≤ d(Tnx∗

n, Tx∗) ≤ d(Tnx∗
n, Tnx∗) + d(Tnx∗, Tx∗) ≤

≤ ϕ(d(x∗
n, x∗)) + d(Tnx∗, Tx∗),

which gives

d(x∗
n, x∗) − ϕ(d(x∗

n, x∗)) ≤ d(Tnx∗, Tx∗) , n ≥ 0. (14)

Since ϕ is a strict comparison function and d(Tnx∗, Tx∗) → 0 as n → ∞, from
(14) we get (see Remark following Example 7.4)

lim
n→∞

d(xn, x∗) = 0,

i.e., x∗
n → x∗ as n → ∞. �
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Theorem 7.11. Let (X, d) be a complete metric space and consider
Tn, T : X → X (n ∈ N) such that

(i) T is a strict ϕ-contraction;
(ii) {Tn}∞n=0 converges uniformly to T ;
(iii) x∗

n ∈ FTn

= ∅ , n ≥ 0.

Then {xn}∞n=0 converges to x∗, the unique fixed point of T .

Proof. Similarly to Theorem 7.10 we get

d(x∗
n, x∗) − ϕ(d(x∗

n, x∗)) ≤ d(Tnx∗, Tx∗) , n ≥ 0

and using (ii), the conclusion follows. �
Remarks.
1) If in Theorem 7.10 the operators Tn are strict ϕn−contractions, where

{ϕn}∞n=0 is a sequence of strict comparison functions, then the conclusion of
Theorem 7.10 is generally not true.

2) In locally compact metric spaces we have the following result.

Theorem 7.12. Let (X, d) be a locally compact metric space and let
Tn, T : X → X be such that

(i) Tn is a strict ϕn−contraction, for all n ∈ N;
(ii) T is a strict ϕ−contraction;
(iii) {Tn}∞n=0 converges pointwisely to T .
If we denote FTn

= {x∗
n}∞n=0 , n ≥ 0 and FT = {x∗}, then

lim
n→∞

x∗
n = x∗.

Remarks.
1) For ϕn(t) = ant , 0 < an < 1 , n ≥ 0 and ϕn(t) = at, 0 < a < 1, from

Theorem 7.12 we find an early result in this respect, i.e., Theorem 2 in Nadler
[Nad69];

2) Nadler [Nad69] also indicated a construction - which can be done in any
infinite dimensional Banach space - of a sequence of contractions that con-
verges pointwisely to a contraction without the sequence of their fixed points
converging and so obtained the following characterization of finite dimensional
Banach spaces by means of a typical property of sequences of contractions.

Theorem 7.13. A separable or reflexive Banach space E is finite dimen-
sional if and only if whenever a sequence of contraction mappings of E into
E converges pointwisely to a contraction mapping T , the sequence of their
fixed points converges to the unique fixed point of T .
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7.5 Bibliographical Comments
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The content of this section is taken from Berinde [Be02b], [Be02d]. For
other related results, see also Berinde [Be03d]. Examples 7.2. and 7.3 are
Examples 3 and 4 in Harder and Hicks [HH88b]. The fact that the class of
ϕ-strongly pseudocontractive operators with nonempty fixed point sets is a
proper subset of the class of ϕ-hemicontractive operators, was shown by an
example in Chidume and Osilike [ChO94].

§7.3.

The first part of this section is taken from Rus [Rus01], Chapter 7:
Theorem 7.5 is Theorem 7.1.1 there. Theorem 7.6, together with the remarks
following its proof, is taken from Berinde [Be97a], Chapter III, Theorem 3.1.2,
while Theorem 7.7 is Theorem 7.1.2 in Rus [Rus01]. The last part of this
section, devoted to data dependence of fixed points for multivalued mappings
is adapted from Rus, Petrusel, A. and Sintamarian [RPS03]. Theorem 7.8 is
actually Theorem 2.1 in that paper, while Corollary 7.1 is taken from Lim
[Lim85]. For other related results, see Berinde [Be97a] and Petrusel, A., Rus,
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§7.4.
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Theorem 7.2.1, Theorem 7.11 is Theorem 7.2.2, while Theorem 7.12 is
Theorem 7.2.3, all in Rus [Rus01]. For other related results, see Rus [Ru04b].
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Exercises and Miscellaneous Results

7.1. If c is a real number such that 0 < |c| < 1 and {bk}∞k=0 is a sequence of

real numbers such that lim
k→∞

bk = 0, then lim
n→∞

(
n∑

k=0

cn−kbk) = 0.

7.2. Harder and Hicks (1988)
Let (X, d) be a complete metric space and T : X → X be a mapping for which
there exist the real numbers α, β and γ satisfying 0 ≤ α < 1, 0 ≤ β < 0.5 and
0 ≤ γ < 0.5, such that, for each x, y ∈ X, at least one of the following is true:
(z1) d(Tx, Ty) ≤ α d(x, y);
(z2) d(Tx, Ty) ≤ β[d(x, Tx) + d(y, Ty)];
(z3) d(Tx, Ty) ≤ γ[d(x, Ty) + d(y, Tx)].
Let p be the fixed point of T (see Theorem 2.4), x0 ∈ X and {xn} be the
Picard iteration associated to T . Let also {yn} be a sequence in X and set
εn = d(yn+1, T yn), n = 0, 1, 2, . . . . Then

d(p, yn+1) ≤ d(p, xn+1)+
n∑

k=0

2δn+1−kd(xk, xk+1)+ δn+1d(x0, y0)+
n∑

k=0

δn−kεk

where

δ = max
{

α,
β

1 − β
,

γ

1 − γ

}
.

and lim
n→∞

yn = 0 if and only if lim
n→∞

εn = 0.

7.3. Lim (1985)
Let (X, d) be a complete metric space and T, Tn : X → Pb cl(X) be multival-
ued k-contractions with contraction coefficient k, k < 1. If

Hd (T (x), Tn(x)) → 0 as n → ∞, uniformly for all x ∈ X,

then
Hd (Fix (T ), F ix (Tn)) → 0 as n → ∞.

7.4. Berinde (2004)
Let (X, d) be a metric space and T : X → X a mapping satisfying

d(Tx, Ty) ≤ ad(x, y) + Ld(x, Tx), ∀x, y ∈ X.

Suppose T has a fixed point p. Let x0 ∈ X and xn+1 = Txn, n ≥ 0. Then
{xn} converges strongly to p and is summable almost stable with respect to T,
i.e., for {εn} given by εn = d

(
yn+1, f(T, yn)

)
, n = 0, 1, 2, . . . , the following

implication holds

∞∑
n=0

εn < ∞ ⇒
∞∑

n=0

d(yn, p) < ∞.
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7.5. Let (X, d) be a metric space, T : X → X a mapping and the following
contractive conditions:
(a) There exist a ∈ [0, 1) and L ≥ 0 such that

d(Tx, Ty) ≤ ad(x, y) + Ld(x, Tx), for allx, y ∈ X; (15)

(b) There exist h ∈ [0, 1) such that

d(Tx, Ty) ≤ h · max
{
d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)

}
,

for all x, y ∈ X . (16)

(c) There exist h ∈ [0, 1) such that

d(Tx, Ty) ≤ h · max
{
d(x, y), d(x, Ty), d(y, Tx)

}
, for all x, y ∈ X . (17)

(d) There exist h ∈ [0, 1) such that

d(Tx, Ty) ≤ h · max
{
d(x, y),

1
2
[d(x, Tx) + d(y, Ty)], d(x, Ty), d(y, Tx)

}
,

for all x, y ∈ X . (18)

1) Show that (18) implies (16), that (17) implies (18) and hence that (17)
implies (16);
2) Using T : [0, 1] → [0, 1] with the usual norm and T (x) = 1/2, if 0 ≤ x < 1
and T (1) = 0, show that conditions (15) and (18) are independent and that
the class of mappings satisfying (18) is a proper subclass of (15);
3) Use an appropriate example to show that the class of Zamfirescu mappings,
that is, those satisfying (z1) − (z3) in Exercise 7.3, is independent of that of
quasi-contractive mappings, that is, those satisfying (16).

7.6. Rhoades (1990)
Let (X, d) be a complete metric space and T : X → X a mapping satisfying
(17). Let p be the fixed point of T . Let x0 ∈ X and xn+1 = Txn, n ≥ 0 be
the Picard iteration. Let {yn} ⊂ X and define {εn} by

εn = d(yn+1, T yn), for n = 0, 1, 2, ...

Show that {xn} converges to p and

lim
n→∞

εn = 0 ⇔ lim
n→∞

yn = p,

that is, the Picard iteration is T -stable if T satisfies (17).

7.7. Rhoades (1990)
Let X be a normed linear linear space and T : X → X a mapping satisfying
(17). Let p be the fixed point of T . Let x0 ∈ X and define the Mann iteration
{xn} by xn+1 = (1−αn)xn +αnTxn, n ≥ 0, where {αn} ⊂ [0, 1] is a sequence
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of real numbers satisfying the following conditions: (i) α0 = 1; (ii)
∑

αn = ∞
and (iii)

n∑
j=0

n∏
i=j+1

(1 − αi + hαi) converges. Let {yn} ⊂ X and define {εn} by

εn = ‖yn+1 − (1 − αn)yn − αnTyn‖ , for n = 0, 1, 2, ...

Show that {xn} converges to p and

lim
n→∞

εn = 0 ⇔ lim
n→∞

yn = p

that is, the Mann iteration is T -stable if T satisfies (17).

7.8. Rhoades (1993)
Let (X, d) be a complete metric space and T : X → X be a mapping satisfying
(18). Let p be the fixed point of T . Let x0 ∈ X and xn+1 = Txn, n ≥ 0 be
the Picard iteration. Let {yn} ⊂ X and define {εn} by

εn = d(yn+1, T yn), for n = 0, 1, 2, ...

Show that {xn} converges to p and

lim
n→∞

εn = 0 ⇔ lim
n→∞

yn = p,

that is, the Picard iteration is T -stable if T satisfies (18).

7.9. Rhoades (1993)
Let X be a normed linear linear space and T : X → X a mapping satisfying
(18). Let p be the fixed point of T . Let x0 ∈ X and define the Mann iteration
{xn} by xn+1 = (1−αn)xn +αnTxn, n ≥ 0, where {αn} ⊂ [0, 1] is a sequence
of real numbers satisfying the following conditions: (i) α0 = 1; (ii)

∑
αn = ∞

and (iii)
n∑

j=0

n∏
i=j+1

(1 − αi + hαi) converges. Let {yn} ⊂ X and define {εn} by

εn = ‖yn+1 − (1 − αn)yn − αnTyn‖ , for n = 0, 1, 2, ...

Show that {xn} converges to p and

lim
n→∞

εn = 0 ⇔ lim
n→∞

yn = p,

that is, the Mann iteration is T -stable if T satisfies (18).

7.10. Osilike (1995)
Let X be a normed linear linear space and T : X → X a mapping satisfying
(18) with FT 
= ∅. Show that the Ishikawa iteration {xn} given by x0 ∈ X
and

xn+1 = (1 − αn)xn + αnT [(1 − βn)xn + βn T xn],

with αn, βn ∈ [0, 1] satisfying (i)-(iii) in Exercise 7.9, is stable with respect
to T . What happens if T satisfies the more general condition (15), instead of
condition (18) ?
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Iterative Solution of Nonlinear Operator
Equations

Let E be a normed linear space, F : E → E an operator and let f ∈ E be
given. In order to solve the equation

Fx = f (1)

we often follow the pattern: a) define an operator T : E → E in a certain
manner (for example by Tx = f +(I −T )x, where I is the identity operator),
and b) rewrite (1) equivalently as a fixed point problem

x = Tx. (2)

Now, to this new problem we can apply a fixed point theorem as those pre-
sented in Chapters 2-6, in order to obtain a certain sequence {xn} that con-
verges in some sense to the (unique) fixed point x∗ of (2), that is to the
(unique) solution x∗ of (1).

At least two reasons motivate this approach.
First, the solvability of equation (1) is ensured if F possesses Lipschitzian

or/and accretive properties. These properties arise naturally in practice: an
early fundamental result of Browder [Br67a] states that the initial value
problem

du

dt
+ Tu = 0; u(0) = u0 (3)

is solvable if T is locally Lipschitzian and accretive. Secondly, there exists an
intimate connection between the class of accretive / monotone type operators
and the class of (pseudo) contractive operators, relationship expressed by the
following statement: T is (strongly) pseudocontractive if and only if U = I−T
is (strongly) accretive. Therefore:

(a) to find a solution of (1) and
(b) to find a fixed point of (2) are, in most of the cases, twin problems and

so the results obtained in approximating fixed points can be applied to solve
nonlinear equations of the form (1), and vice versa.
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It is the aim of this chapter to survey some of the most interesting results
that have been obtained in direct relation to the iterative processes presented
in the previous chapters of the book.

As the applications of Picard iteration are consistently covered in several
monographs published so far, we will restrict our presentation in this chapter
to Mann and Ishikawa iterations.

Actually, by means of some theorems presented in this chapter, one can ob-
tain, as particular cases, the corresponding results for Krasnoselskij iteration
or even for Picard iteration.

8.1 Nonlinear Equations in Arbitrary Banach Spaces

Theorem 8.1. Suppose E is a real Banach space and F : E → E is a
Lipschitzian strongly accretive operator. Let {αn}∞n=0 and {βn}∞n=0 be real
sequences satisfying

(i) 0 ≤ αn, βn < 1, n ≥ 0;
(ii) lim

n→∞
αn = 0; lim

n→∞
βn = 0;

(iii)
∞∑

n=0
αn = ∞.

Then the sequence {xn}∞n=0 generated starting from any x0 ∈ E by

yn = (1 − βn)xn + βn(f + (I − F )xn), n ≥ 0
xn+1 = (1 − αn)xn + αn(f + (I − F )yn), n ≥ 0,

converges strongly to the solution of equation Fx = f .

Proof. The existence of a solution of Tx = f follows from Browder
[Br67a], while the uniqueness follows from the strong accretivity condition
on F :

〈Fx − Fy, j(x − y)〉 ≥ k ‖x − y‖2
, (k > 0). (4)

Let x∗ denote the unique solution of (1). If we define T : E → E by

Tx = f + (I − F )x,

then x∗ is a fixed point of T and T is Lipschitzian with constant L1 = 1 + L,
where L is the Lipschitz constant of F. Furthermore, from (4) we get

〈(I − T )x − (I − T )y, j(x − y)〉 ≥ k ‖x − y‖2
, ∀x, y ∈ E,

which shows that T is strongly pseudo-contractive.
The rest of the proof consists now of standard arguments for a fixed point

convergence theorem involving a Lipschitz strong pseudocontractive operator.
�
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Remark. If we take βn = 0 in Theorem 8.1, then we obtain a convergence
result for the Mann iteration.

Corollary 8.1. Suppose E and F are as in Theorem 8.1. Let {αn}∞n=0 be
a real sequence satisfying the following conditions:

(i) 0 ≤ αn ≤ 1, n ≥ 0; (ii) lim
n→∞

αn = 0; (iii)
∞∑

n=0

αn = ∞.

Then the sequence {xn}∞n=0 given by

xn+1 = (1 − αn)xn + αn(f + (I − F ))xn, n ≥ 0

converges strongly to the (unique) solution of the equation Fx = f, f ∈ E.

Remark. In certain practical circumstances, the operator F has the spe-
cial form Fx := x + Fx. A typical convergence result for this situation is the
next theorem.

Theorem 8.2. Suppose E is a real Banach space and F : E → E is a
Lipschitzian accretive operator.

Let {αn}∞n=0 and {βn}∞n=0 be real sequences satisfying (i)-(iii) in
Theorem 8.1. Then the sequence {xn}∞n=0 generated from an arbitrary x0 ∈ E
by

yn = (1 − βn)xn + βn(f − Txn), n ≥ 0
xn+1 = (1 − αn)xn + αn(f − Tyn), n ≥ 0,

converges strongly to the unique solution of the equation

x + Fx = f, f ∈ E. (5)

Proof. The existence of the solution of equation (5) follows similarly from
Browder [Br67a], while its uniqueness follows from the accretivity condition
of F :

〈Fx − Fy, j(x − y)〉 ≥ 0 , ∀ x, y ∈ E. (6)

Let x∗ denote the unique solution of (5). Define now T : E → E by

Tx = f − Fx.

Then x∗ is a fixed point of T and T is Lipschitzian (with the same constant
as F ). Further, by (6) we have

〈(I − T )x − (I − T )y, j(x − y)〉 ≥ ‖x − y‖2
, for all x, y ∈ E, (7)

which shows that T is strongly pseudocontractive, with constant k = 1.
Then we follow the standard arguments in proving a fixed point convergence
theorem. �
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Remark.
The class of strongly accretive operators is a proper subclass of the class

of ϕ-strongly accretive operators. The next Theorem 8.3 will present a very
general result concerning the solution of nonlinear equations in the class of
ϕ-strongly accretive and Lipschitzian operators.

Theorem 8.3. Suppose E is a real Banach space and T : E → E is a
Lipschitzian ϕ-strongly accretive operator. Suppose the equation Tx = f has
a solution and suppose {αn}∞n=0 and {βn}∞n=0 are real sequences satisfying
the following conditions:

(i) 0 ≤ αn , βn ≤ 1;

(ii)
∞∑

n=0
αn = ∞ ; (iii)

∞∑
n=0

α2
n < ∞ ; (iv)

∞∑
n=0

αnβn < ∞ . Then the

Ishikawa iteration generated from an arbitrary x0 ∈ E by

yn = (1 − βn)xn + βn(f + (I − T )xn) , n ≥ 0, (8)

xn+1 = (1 − αn)xn + αn(f + (I − T )yn) , n ≥ 0 (9)

converges strongly to the solution of the equation Tx = f .

Proof. It follows by the ϕ-accretivity property,

〈Tx − Ty, j(x − y)〉 ≥ φ (‖x − y‖) ‖x − y‖ , x, y ∈ E, (10)

that if Tx = f has a solution, then this is unique. Let x∗ denote this solution
and let L be the Lipschitz constant of T . Define S : E → E by

Sx := f + (I − T )x.

Then x∗ is a fixed point of S and S is Lipschitzian with constant L∗ = 1 + L.
By (10) we have for all x, y ∈ E

〈(I − S)x − (I − S)y, j(x − y)〉 =

〈Tx − Ty, j(x − y)〉 ≥ ϕ (‖x − y‖) ‖x − y‖ ≥

≥ ϕ (‖x − y‖)
1 + ϕ (‖x − y‖) + ‖x − y‖ · ‖x − y‖2

.

Denote

σ(x, y) =
ϕ (‖x − y‖)

1 + ϕ (‖x − y‖) + ‖x − y‖ ∈ [0, 1) , ∀ x, y ∈ E,

and thus we get

〈(I − S)x − σ(x, y)x − ((I − S)y − σ(x, y)y), j(x − y)〉 ≥ 0,

and applying Lemma of Kato, see Exercise 4.12, it results that
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‖x − y‖ ≤ ‖x − y + r[(I − S)x − σ(x, y)x − ((I − S)y − σ(x, y) y )]‖ , (11)

which is valid for all x, y ∈ E and r > 0. By (9) we obtain

xn = xn+1 + αnxn − αnSyn = (1 + αn)xn+1+

+αn[(I − S)xn+1 − σ(xn+1, x
∗)xn+1] − (1 − σ(xn+1, x

∗))αnxn+

+(2 − σ(xn+1, x
∗))α2

n(xn − Syn) + αn(Sxn+1 − Syn).

But

x∗ = (1 + αn)x∗ + αn[(I − S)x∗ − σ(xn+1, x
∗)x∗] − (1 − σ(xn+1, x

∗))αnx∗,

and so

xn − x∗ = (1 + αn)(xn+1 − x∗) + αn[(I − S)xn+1 − σ(xn+1, x
∗)xn+1−

−((I − S)x∗ − σ(xn+1, x
∗)x∗)] − (1 − σ(xn+1, x

∗))αn(xn − x∗)+

+(2 − σ(xn+1, x
∗)α2

n(xn − Syn) + αn(Sxn+1 − Syn).

Hence, using (11), we get

‖xn − x∗‖ ≥ (1 + αn)
∥∥∥∥xn+1 − x∗ +

αn

1 + αn
[(I − S)xn+1−

− σ(xn+1, x
∗)xn+1 − ((I − S)x∗ − σ(xn+1, x

∗)x∗)]‖ −
−(1 − σ(xn+1, x

∗))αn ‖xn − x∗‖ −
−(2 − σ(xn+1, x

∗))α2
n ‖xn − Syn‖ − αn ‖Sxn+1 − Syn‖ ≥

≥ (1 + αn) ‖xn+1 − x∗‖ − (1 − σ(xn+1, x
∗))αn ‖xn − x∗‖ −

−(2 − σ(xn+1, x
∗))α2

n ‖xn − Syn‖ − αn ‖Sxn+1 − Syn‖ ,

so that

‖xn+1 − x∗‖ ≤ 1 + (1 − σ(xn+1, x
∗))αn

1 + αn
· ‖xn − x∗‖+

+2α2
n ‖xn − Syn‖ + αn ‖Sxn+1 − Syn‖ . (12)

On the other hand

‖yn − x∗‖ = ‖(1 − βn)(xn − x∗) + βn(Sxn − x∗)‖ ≤

≤ (1 + βn(L∗ − 1)) ‖xn − x∗‖ ≤ L∗ ‖xn − x∗‖ ,

‖xn − Syn‖ ≤ ‖xn − x∗‖ + L∗ ‖yn − x∗‖ ≤ (1 + L2
∗) ‖xn − x∗‖ (13)

and

‖Sxn+1 − Syn‖ ≤ L∗ ‖(1 − αn)(xn − yn) + αn(Syn − yn)‖ ≤

≤ L∗(1 − αn)βn(1 + L∗) ‖xn − x∗‖ + αn(1 + L∗)L2
∗ ‖xn − x∗‖ ≤
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≤ [L∗(1 + L∗)βn + (1 + L∗)L2
∗αn] ‖xn − x∗‖ . (14)

Now, using (13) and (14) in (12) we obtain

‖xn+1 − x∗‖ ≤ 1 + (1 − σ(xn+1, x
∗))αn

1 + αn
‖xn − x∗‖+

+[L∗(1 + L∗)αnβn + (L3
∗ + 3L2

∗ + 2)α2
n] ‖xn − x∗‖ ≤

≤ [1 + (1 − σ(xn+1, x
∗))αn](1 − αn + α2

n) ‖xn − x∗‖+

+[L∗(1 + L∗)αnβn + (L3
∗ + 3L2

∗ + 2)α2
n] ‖xn − x∗‖ =

≤ [1 − αnσ(xn+1, x
∗)] ‖xn − x∗‖+

+[L∗(1 + L∗)αnβn + (L3
∗ + 3L2

∗ + 3)α2
n] ‖xn − x∗‖ . (15)

Set
an := ‖xn − x∗‖ , δn := L∗(1 + L∗)αnβn + (L3

∗ + 3L2
∗ + 3)α2

n

and then inequality (15) can be written in the form

an+1 ≤ [1 + δn]an − αn
φ(an+1)

1 + φ(an+1) + an+1
· an.

Since by (ii)-(iii) we have
∞∑

n=0
αn = ∞ and

∞∑
n=0

δn = ∞, by Lemma 1.4 it

results that lim
n→∞

an = 0, i.e., lim
n→∞

xn = x∗. �

We shall present now a more general result which extends Theorem 8.3 to
the case of the Ishikawa iteration method with errors. To this end we need
the following lemma.

Lemma 8.1. Let X be a real Banach space and let T : X → X be a
continuous and ϕ-strongly pseudocontractive operator. Then T has a unique
fixed point.

Theorem 8.4. Suppose that E is a real Banach space, T : E → E is
a uniformly continuous and φ-strongly accretive operator, and the range of
either I − T or T is bounded. For f ∈ E, define S : E → E by

Sx = f + x − Tx, for all x ∈ E.

Define the sequence {xn}∞n=0 by x0, u0, v0 ∈ E, and

yn = a′
nxn + b′nSxn + c′nvn, n ≥ 0

xn+1 = anxn + bnSyn + cnun, n ≥ 0,

where {un}∞n=0 and {vn}∞n=0 are arbitrary bounded sequences in X, and
{an}∞n=0, {bn}∞n=0, {cn}∞n=0, {a′

n}∞n=0, {b′n}∞n=0 and {c′n}∞n=0 are real
sequences in [0, 1] satisfying the following conditions:

(a) an + bn + cn = a′
n + b′n + c′n = 1, 0 < an < 1, n ≥ 0;



8.1 Nonlinear Equations in Arbitrary Banach Spaces 185

(b) lim
n→∞

bn = lim
n→∞

b′n = lim
n→∞

c′n = lim
n→∞

cn

bn + cn
= 0;

(c)
∞∑

n=0
bn = +∞.

Then {xn} converges strongly to the unique solution of the equation Tx = f.

Proof. The equation Tx = f is equivalent to the fixed point problem
x = Sx, with Sx = f +x−Tx. Since T is φ−strongly accretive, it results that
S is φ-strongly pseudocontractive. Moreover, as T is uniformly continuous, we
obtain that S is continuous.

Now, applying Lemma 8.1, it results that the equation Tx = f has a
unique solution, for any f ∈ X. The rest of the proof is similar to that of
Theorem 8.3. �

Remarks.
1) A prototype for the numerical sequences that are involved in

Theorem 8.4 is given by

an = 1 − 1
4
√

n + 1
− 1

4(n + 1)
; bn =

1
4
√

n + 1
; cn =

1
4(n + 1)

;

a′
n =

n + 1
n + 3

, b′n = c′n =
1

n + 3
, for all n ≥ 0.

They depend neither on the geometric structure of the ambient Banach space,
nor on the properties of the operator T ;

2) The sequence {xn} defined in Theorem 8.4 is the Ishikawa iteration
with errors associated to S in the sense of Xu, see Definition 6.2.

Note that, if we denote αn = bn + cn, from Definition 6.2 it follows

xn+1 = anxn + bnTxn + cn = (1 − αn)xn + αnTxn + cn(un − Txn)

so that, if the rage of T is bounded, Like in Theorem 8.4, then vn = un −Txn

is a bounded sequence and Xu’s definition reduces to that of Liu, i.e.,
Definition 6.1, since, using the definition of Xu, it always assumed that∑

cn < ∞. Moreover, the construction of Xu cannot be carried out in prac-
tice. Indeed, in order to determine the values of an, bn and cn in Definition 6.2,
it is necessary to know the value of un for each n. But, if un is an unknown
arbitrary bounded sequence, its values are not known;

3) Taking a′
n = 1 , b′n = c′n = 0, for all n ≥ 0, by Theorem 8.4 we obtain

a result regarding the convergence of the Mann iteration with errors to the
unique solution of Tx = f ;

4) The next example illustrates some of the assumptions involved in the
previous theorems.

Example 8.1. Let R denote the reals with the usual norm and define

T : R → R by Tx = x− 1
2

cos x. Then T is Lipschitzian and strongly accretive,
the range of I − T is bounded, but the range of T is not bounded.
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A similar result to that in Theorem 8.4 can be formulated for the equations
of the form x + Tx = f .

Theorem 8.5. Let E be a real Banach space, and T : E → E be a
uniformly continuous and φ-strongly accretive operator, such that the range
of either I + T or T is bounded. For any fixed f ∈ E, define S : E → E
by Sx = f − Tx, for all x ∈ E. Define the sequences {xn}∞n=0, {un}∞n=0,
{vn}∞n=0, {an}∞n=0, {bn}∞n=0, {cn}∞n=0, {a′

n}∞n=0, {b′n}∞n=0, and {c′n}∞n=0 as in
Theorem 8.4.

Then {xn}∞n=0 converges strongly to the unique solution of the equation

x + Tx = f.

Proof. Set A = I + T . Then A : X → X is uniformly continuous and
φ-strongly accretive, and the range of either I − A or A is bounded. Then
x + Tx = f is equivalent to the fixed point problem x = Sx, with

Sx = f − Tx = f − (A − I)x = f + x − Ax , ∀ x ∈ A.

Apply Theorem 8.4 to obtain the conclusion. �

8.2 Nonlinear Equations in Smooth Banach Spaces

The aim of this Section is to show how some assumptions on the operator
T or/and on the parameters that define a certain iteration procedure can
be weakened, by transferring them into restrictions on the geometry of the
underlying Banach space. We shall restrict the presentation to two sample
results. To extend the area of applications, the second convergence theorem
will be given for multivalued mappings.

Theorem 8.6. Let E be a real uniformly smooth Banach space and let
T : E → E be a Lipschitzian (with constant L > 0) φ-strongly accretive map-
ping. For any given f ∈ E, define the mapping S : E → E by Sx = f−Tx+x,
for each x ∈ E.

Let {αn}∞n=0 and {βn}∞n=0 be two sequences of real numbers in [0, 1] sat-
isfying

(i) lim
n→∞

αn = lim
n→∞

βn = 0; (ii)
∞∑

n=0
αn = ∞.

Then the sequence {xn}∞n=0 defined by x0 ∈ E and

yn = (1 − βn)xn + βnSxn , n ≥ 0,

xn+1 = (1 − αn)xn + αnSyn , n ≥ 0

converges strongly to the unique solution of the equation Tx = f.
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Proof. Since T is Lipschitzian and ϕ-strongly accretive, it results that S is
continuous and φ-strongly pseudocontractive. Then by Lemma 8.1 it follows
that S has a unique fixed point, i.e., the equation Tx = f has a unique
solution. The rest of the proof is standard. �

Remarks.
1) If βn = 0 for all n ≥ 0, Theorem 8.6 gives a convergence result for the

Mann iterative process for solving the equation Tx = f ;
2) Theorem 8.6 does not require the unnecessary condition that S(T ), the

set of solutions of S, is nonempty.

In order to ensure the appropriate framework for presenting the next re-
sults in this section, we need to consider some additional notions to those
introduced in Chapter 1.

Let E be a real normed linear space with the dual E∗.

Definition 8.1. For q > 1, the mapping Jq : E → 2E∗
, defined by

Jq(x) =
{

x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2
, ‖x∗‖2 = ‖x‖q−1

}
,

is called the generalized duality mapping (〈·, ·〉 denotes in this context the
generalized duality pairing).

Remarks.
1) For q = 2 we obtain the normalized duality mapping J = J2 that has

been used in several convergence theorems presented in this book;
2) It is well known, see Exercise 8.11, that if E is smooth then Jq is

single-valued and
Jq(x) = ‖x‖q−2

J(x) , x 
= 0.

This will enable us to denote the single-valued generalized duality map by jq.

Definition 8.2. A multivalued mapping A : E → 2E is said to be accretive
if, for all x, y ∈ D(A), there exists j(x − y) ∈ J(x − y) such that

〈u − v, j(x − y)〉 ≥ 0 , for each u ∈ Ax and v ∈ Ay.

The map A is called m−accretive if it is accretive and R(I + rA) = E, for
all r > 0 (R(T ) denotes the range of T ).

The map A is called strongly accretive if for all x, y ∈ D(A), there exist
j(x − y) ∈ J(x − y) and k > 0 such that for all u ∈ Ax and v ∈ Ay :

〈u − v, j(x − y)〉 ≥ k ‖x − y‖2
.

A map T with domain D(T ) in E and range R(T ) in 2E is called pseudo-
contractive if, for each x, y ∈ D(T ), there exists j(x − y) ∈ J(x − y) such
that

〈u − v , j(x − y)〉 ≤ ‖x − y‖2
, for each u ∈ Tx and v ∈ Ty,
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and it is called strongly pseudocontractive if, for each x, y ∈ D(T ), there exists
j(x − y) ∈ J(x − y) and a constant k ∈ (0, 1) such that

〈u − v , j(x − y)〉 ≤ k ‖x − y‖2
, for each u ∈ Tx and v ∈ Ty.

Remarks.
1) If E is a Hilbert space, an accretive mapping is also called monotone.
2) A mapping A is (strongly) accretive if and only if T = I−A is (strongly)

pseudocontractive. As in the case of single-valued operators, a zero of A is a
fixed point of T := I − A and vice versa.

3) In a real q-uniformly smooth Banach space (typical examples of such
spaces are the Lebesgue Lp, the sequences lp and the Sobolev Wm

p spaces, for
1 < p < ∞), see Exercise 8.12, the following inequality holds

‖x + y‖q ≤ ‖x‖q + q 〈y, jq(x)〉 + cq ‖y‖q
, (16)

for all x, y ∈ E and some real constant cq > 0.
4) Note also that the uniformly smooth spaces have norms that are uni-

formly Gateaux differentiable (for some related concepts, see Chapter 6).

Definition 8.3. A mapping A : E → 2E is said to satisfy the linear growth
condition if ‖Ax‖ ≤ c (1 + ‖ x ‖ ) , for all x ∈ D(A) and for some c > 0.

Definition 8.4. Two sequences {λn} and {θn} of positive real numbers
are called acceptably paired if {θn} is non-increasing and there exists a strictly
increasing sequence {n(i)}∞i=1 of positive integers such that

(i) lim inf
i→∞

θn(i)

n(i+1)−1∑
j=n(i)

λj > 0; (ii) lim
i→∞

[θn(i) − θn(i+1)]
n(i+1)−1∑

j=n(i)

λj = 0;

(iii) lim sup
i→∞

θn(i)

n(i+1)−1∑
j=n(i)

λj < ∞.

Remarks.
1) In the previous definition it is not necessary that lim

n→∞
θn = 0;

2) An example of acceptably paired sequences is given by

λn = 1/n , θn = (log log n)−1 , n ≥ 1, n(i) = ii.

Theorem 8.7. Let E be a reflexive Banach space with a uniformly
Gateaux differentiable norm, and such that every weakly compact convex subset
of E has the fixed point property for nonexpansive mappings. Let A : E → 2E

be a m-accretive mapping. If A−1(0) 
= ∅, then, for each x ∈ E, the strong
limit

lim
t→∞

Jt(x) , where Jt = (I − tA)−1, t > 0,
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exists and belongs to A−1(0) and, if A−1(0) = ∅, then for each x ∈ E we
have

lim
t→∞

‖Jt(x)‖ = ∞.

Now we can prove the main result of this section.

Theorem 8.8. Let E be a real q-uniformly smooth Banach space and
A : D(A) = E → 2E a m−accretive mapping which satisfies the linear growth
condition. Suppose that {λn} and {θn} are acceptably paired, with

∑
λq

n < ∞
and lim

n→∞
θn = 0. Let x1 and z be arbitrary in E. Define the sequence {xn}

by
xn+1 = xn − λn(un + θn(xn − z)) , un ∈ Axn, (17)

for all n ≥ 0. If A−1(0) 
= ∅ then {xn} converges strongly to x∗ ∈ A−1(0) ,
and if A−1(0) = ∅, then ‖x‖ → ∞ as n → ∞.

Proof. Note that if A is m−accretive, then θ−1A is also accretive, for
θ > 0. Thus for each i and any z ∈ E, there exists a unique yi ∈ E such that

z ∈ yi + θ−1
i Ayi

and hence
J1 / θi

(z) := (I − (1 / θi)A)−1(z) = yi.

In the sequel yi will be defined as above, while x∗ ∈ A−1(0) will denote the
limit of yi defined by

lim
i→∞

yi = lim
1 / θi→∞

J1 / θi
(z) = lim

t→∞
Jt(z) = x∗,

guaranteed by Reich’s theorem, see Exercise 8.7.
Let n ≥ i ≥ 2. Then, by (17), for un−1 ∈ Axn−1 we have that

xn − yi = xn−1 − yi − λn−1(un−1 + θn−1(xn−1 − z)),

and hence, by (16),

‖xn − yi‖q = ‖xn−1 − yi − λn−1(un−1 + θn−1(xn−1 − z))‖q ≤

≤ ‖xn−1 − yi‖q − qλn−1 〈un−1 + θn−1(xn−1 − z), jq(xn−1 − yi)〉+

+cqλ
q
n−1 ‖un−1 + θn−1(xn−1 − z)‖q ≤

≤ ‖xn−1 − yi‖q − qλn−1 〈un−1 + θi(xn−1 − z), jq(xn−1 − yi)〉−
−qλn−1(θn−1 − θi) 〈xn−1 − z , jq(xn−1 − yi)〉+

+cqλ
q
n−1 ‖un−1 + θn−1(xn−1 − z)‖q

. (18)

Since A is accretive and −θi(yi − z) ∈ Ayi , un−1 ∈ Axn−1, we get

〈un−1 + θi(yi − z) , jq(xn−1 − yi)〉 ≥ 0,
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which gives

〈un−1 + θi(xn−1 − z) , jq(xn−1 − yi)〉 = 〈un−1 + θi(yi − z) , jq(xn−1 − yi)〉+

+θi 〈xn−1 − yi , jq(xn−1 − yi〉 ≥ θi ‖xn−1 − yi‖q
.

For p, q > 1 such that
1
p

+
1
q

= 1 we have

|〈xn−1 − z , jq(xn−1 − yi)〉| ≤ ‖xn−1 − z‖ ‖xn−1 − yi‖q−1 ≤

≤ 1
q
‖xn−1 − z‖q +

1
p
‖xn−1 − yi‖p(q−1) ≤

≤ 1
q

( ‖xn−1 − yi‖ + ‖yi‖ + ‖z‖)q +
1
p
‖xn−1 − yi‖q ≤

≤ 1
q
d1 ( ‖xn−1 − yi‖q + ‖yi‖q + ‖z‖q ) +

1
p
‖xn−1 − yi‖q

,

for some d1 > 0. Now using the linear growth condition we have that

‖un−1 + θn−1(xn−1 − z)‖q ≤ ( ‖un−1‖ + ‖xn−1‖ + ‖z‖)q ≤
≤ d′ (1 + 2 ‖xn−1‖ + ‖z‖)q ≤
≤ d′ (1 + 2 ‖xn−1 − yi‖ + 2 ‖yi‖ + ‖z‖)q ≤
≤ d2 (1 + ‖xn−1 − yi‖q + ‖yi‖q + ‖z‖q) ,

for some d′ , d2 > 0.
These last estimates together with (18) yield

‖xn − yi‖q ≤ ‖xn−1 − yi‖q − qλn−1θi ‖xn−1 − yi‖q +

+qλn−1(θi − θn−1)
1
2
d1 ‖xn−1 − yi‖q +

1
q
d1 ‖yi‖q +

1
q
d1 ‖z‖q +

+
1
p
‖xn−1 − yi‖q + cqλ

q
n−1d2 [1 + ‖xn−1 − yi‖q + ‖yi‖q + ‖z‖q] =

= ‖xn−1 − yi‖q −
[
qλn−1θi − d1λn−1(θi − θn−1) −

q

p
λn−1(θi − θn−1)−

−cqλ
q
n−1d2

]
‖xn−1 − yi‖q + d1λn−1(θi − θn−1) (‖yi‖q + ‖z‖q) +

+cqλ
q
n−1d2 (‖yi‖q + ‖z‖q + 1) ≤ ‖xn−1 − yi‖q −

−qλn−1θi − d1λn−1(θi − θn−1) −
q

p
λn−1(θi − θn−1)−cqλ

q
n−1d2

‖xn−1 − yi‖q + (d1λn−1(θi − θi−1) + cqλ
q
n−1d2) · (‖yi‖q + ‖z‖q + 1) ≤

≤ ‖xn−1 − yi‖q − (qλn−1θi − d3λn−1(θi − θn−1) − cqλ
q
n−1d2) ‖xn−1 − yi‖q +
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+(d1λn−1(θi − θn−1) + cqλ
2
n−1d2) · (‖yi‖q + ‖z‖q + 1) ≤

≤ (1 − bn−1,i) ‖xn−1 − yi‖q + an−1,i (‖yi‖q + ‖z‖q + 1) , (19)

where d3 = max
{

d1,
q

p

}
,

bn−1,i = qλn−1θi − d3λn−1(θi − θn−1) − cqλ
q
n−1d2 and

an−1,i = d1λn−1(θi − θn−1) + cqλ
q
n−1d2.

Let now take i = n(i) and n = n(i + 1) and iterate (19) from n(i) on, to get
that

∥∥xn(i+1) − yn(i)

∥∥2 ≤ exp

⎛
⎝−

n(i+1)−1∑
j=n(i)

bj,n(i)

⎞
⎠∥∥xn(i) − yn(i)

∥∥2 +

+
n(i+1)−1∑

j=n(i)

aj,n(i)

(∥∥yn(i)

∥∥q + ‖z‖q + 1
)
. (20)

Using conditions (i)-(iii) in the definition of acceptably paired sequences, on

the one hand, and the fact that
∞∑

n=1
λq

n < ∞, on the other hand, it results

that there exists δ ∈ (0, 1) such that

exp

⎛
⎝−

n(i+1)−1∑
j=n(i)

bj,n(i)

⎞
⎠ ≤ δ

and that

en(i) =

⎛
⎝n(i+1)−1∑

j=n(i)

aj,n(i)

⎞
⎠ → 0 as i → ∞.

Therefore, (20) yields
∥∥xn(i+1) − yn(i)

∥∥q ≤ δ
∥∥xn(i) − yn(i)

∥∥q + εn(i)

(∥∥yn(i)

∥∥q + ‖z‖q + 1
)
,

and hence
∥∥xn(i+1) − yn(i)

∥∥ ≤ δ1/q
∥∥xn(i) − yn(i)

∥∥+ ε
1/q
n(i)

(∥∥yn(i)

∥∥+ ‖z‖ + 1
)
. (21)

In a similar manner we obtain
∥∥xn − yn(i)

∥∥ ≤ D1/q
∥∥xn(i) − yn(i)

∥∥+ ε
1/q
n(i)

(∥∥yn(i)

∥∥+ ‖z‖ + 1
)

(22)

for some D < ∞.
Using now the accretivity property of A, it results that
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∥∥yn(i) − yn(i+1)

∥∥ ≤
∥∥∥∥yn(i) − yn(i+1) +

1
θn(i+1)

(Ayn(i) − Ayn(i+1))
∥∥∥∥ ≤

≤
θn(i) − θn(i+1)

θn(i+1)

(∥∥yn(i)

∥∥+ ‖z‖
)

=
(

θn(i)

θn(i+1)
− 1

)(∥∥yn(i)

∥∥+ ‖z‖
)
. (23)

Again from (i) − (iii) in the definition of acceptably paired sequences we get
that

lim
i→∞

(
θn(i)

θn(i+1)
− 1

)
= 0.

Hence by (21) and (23) we deduce∥∥xn(i)+1 − yn(i+1)

∥∥ ≤
∥∥xn(i+1) − yn(i)

∥∥+
∥∥yn(i) − yn(i+1)

∥∥ ≤

≤ δ1/2
∥∥xn(i) − yn(i)

∥∥+ αn(i)

(∥∥yn(i)

∥∥+ ‖z‖ + 1
)
, (24)

where αn(i) = ε
1/q
n(i) + θn(i)/θn(i+1) − 1 → 0 as i → ∞. Moreover, by (23) we

obtain
1 − αn(i)∥∥yn(i+1)

∥∥+ ‖z‖ + 1
≤ 1∥∥yn(i)

∥∥+ ‖z‖ + 1

which together with (24) yields

(1 − αn(i)) ·
∥∥xn(i+1) − yn(i+1)

∥∥∥∥yn(i+1)

∥∥+ ‖z‖ + 1
≤ δ1/q ·

∥∥xn(i) − yn(i)

∥∥∥∥yn(i)

∥∥+ ‖z‖ + 1
+ αn(i).

Since αn(i) → 0 as i → ∞ and δ1/q < 1, we get that

lim
i→∞

(∥∥xn(i) − yn(i)

∥∥ /
(∥∥yn(i)

∥∥+ ‖z‖ + 1
)

= 0,

and hence, by (21), it results that

lim
i→∞

max
n(i)≤n≤n(i+1)

∥∥xn − yn(i)

∥∥∥∥yn(i)

∥∥+ ‖z‖ + 1
= 0.

This shows that
∥∥xn − yn(i)

∥∥ → 0 as n, i → ∞. Since the weakly compact
subsets of E have the fixed point property for nonexpansive mappings, and
the uniformly smooth Banach spaces have uniformly Gateaux differentiable
norms, by Theorem 8.7 we get the conclusion. �

Remarks
1) The explicit scheme (17) can be written as an implicit scheme

xn+1 + λn(un+1 + θn(xn+1 − z)) = xn + en,

with the error term en = λn(un+1 − un + θn(xn+1 − xn)), for un ∈ Axn.
It is possible to obtain a convergence result for the implicit scheme if∑
‖en‖ < ∞, see Theorem 3.6 in Chidume and Zegeye [ChZ02];
2) Theorem 8.8 extends several results in literature.
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8.3 Nonlinear m-Accretive Operator Equations
in Reflexive Banach Spaces

We end this chapter with a result that complements the results presented
in the previous sections, for the case of reflexive Banach spaces. An estimation
of the rate of convergence for a Mann type iteration is also obtained in this
case. This will naturally link the material in Chapter 8 to the next one.

Theorem 8.9. Let E be a real reflexive Banach space, and T : D(T ) ⊂
E → E be an m-accretive and locally Lipschitzian operator (with constant L).
Suppose D(T ) is open and denote by x∗ ∈ D(T ) the unique solution of the
equation x + Tx = f, f ∈ E. Suppose {αn}∞n=0 is a real sequence satisfying
the following conditions

(i) 0 ≤ αn ≤ 1/2(L2 + 2L + 2) , n ≥ 0; (ii)
∞∑

n=0
αn = ∞.

Then there exists a closed convex neighborhood V of x∗ contained in D(T )
and, for any x0 ∈ V , a sequence {xn}∞n=0 ⊂ V such that by setting

pn = (1 − αn)xn + αn(f − Tx) , n ≥ 0

the sequence {pn} satisfies the condition

‖pn − xn+1‖ = inf {‖pn − x‖ |x ∈ B} , ∀ n ≥ 0

and converges strongly to x∗. Moreover, if

αn = 1 / 2(L2 + 2L + 2) , for all n ≥ 0,

then
‖pn − x∗‖ ≤ ρn ‖p0 − x∗‖ ,

where ρ = (1 − 1 / 4(L2 + 2L + 2)) ∈ (0, 1).

Proof. Since T is m−accretive, then for any f ∈ E, the equation

x + Tx = f (25)

has a unique solution, x∗ ∈ D(T ).
Define S : D(T ) → E by Sx = f − Tx, for all x ∈ D(T ). Then x∗ is a

fixed point of T and S is locally Lipschitzian (with constant L). Furthermore,
(−S) is accretive and hence for all r > 0 and x, y ∈ D(T ) we have

‖x − y‖ ≤ ‖x − y − r(Sx − Sy‖ . (26)

We may assume L ≥ 1 (if L < 1, then S is a locally L-contraction and the
conclusion follows by the results already established).

Let B(y, r) = {x ∈ E / ‖x − y‖ ≤ r} be the closed ball.
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Since D(T ) is open, there exists r1 > 0 such that B(x∗, r1) ⊂ D(T ). As
S is locally Lipschitzian, there exists r2 > 0 such that S is Lipschitzian on
B(x∗, r2).

Let r = min{r1, r2}. Then B(x∗, r) ⊂ D(T ) and S is Lipschitzian on
B(x∗, r). Let V = B(x∗, r / 2L). For any x0 ∈ V , we have

‖Sx0 − x∗‖ ≤ r / 2 < r

and so Sx0 ∈ B(x∗, r). This shows that

p0 = (1 − α0)x0 + α0Sx0 ∈ B(x∗, r).

Since E is reflexive, there exists x1 ∈ V such that

‖p0 − x1‖ = inf {‖p0 − x‖ : x ∈ V } .

Thus
p1 = (1 − α1)x1 + α1Sx1 ∈ B(x∗, r).

By continuing this process we obtain the sequences {pn} in B(x∗, r} and {xn}
in V satisfying the conditions

pn = (1 − αn)xn + αnSxn , n ≥ 0, (27)

‖pn − xn+1‖ = inf {‖pn − x‖ : x ∈ V } , n ≥ 0.

Thus
‖xn − x∗‖ ≤ ‖pn−1 − x∗‖ , n ≥ 1.

We prove now that lim
n→∞

pn = x∗. Indeed, from (27) we have

xn = pn + αnxn − αnSxn = (1 + αn)pn − αnSpn+

+α2
n(xn − Sxn) + αn(Spn − Sxn). (28)

Using the fact that x∗ = Sx∗, i.e.,

x∗ = (1 + αn)x∗ − αnSx∗,

by (28) and (26) we obtain

‖xn − x∗‖ =
∥∥(1 + αn)(pn − x∗) − αn(Spn − Sx∗) + α2

n(xn − Sxn)+

+αn(Spn − Sxn)‖ ≥ (1 + αn)
∥∥∥∥pn − x∗ − αn

1 + αn
(Spn − Sxn)

∥∥∥∥−
−α2

n ‖xn − Sxn‖ − αn ‖Spn − Sxn‖ ≥
≥ (1 + αn) ‖pn − x∗‖ − α2

n ‖xn − Sxn‖ − αn ‖Spn − Sxn‖ .

Therefore
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‖pn − x∗‖ ≤ 1
1 + αn

‖xn − x∗‖ + α2
n ‖xn − Sxn‖ + αn ‖Spn − Sxn‖ ≤

≤ (1 − αn + α2
n) ‖xn − x∗‖ + (1 + L)α2

n ‖xn − x∗‖+

+L(1 + L)α2
n ‖xn − x∗‖ . (29)

So

‖pn − x∗‖ ≤
[
1 − 1

2
αn

]
‖pn−1 − x∗‖ ≤

≤ exp

⎛
⎝−1

2

n∑
j=0

αj

⎞
⎠ ‖p0 − x∗‖ → 0 as n → ∞.

If we set in (29)
αn = 1 / 2(L2 + 2L + 2) , n ≥ 0,

then we obtain

‖pn − x∗‖ ≤ ρ ‖pn−1 − x∗‖ ≤ ρn ‖p0 − x∗‖ , (30)

that completes the proof. �
Remarks.
1) Note, however, that the iteration {pn} for which the convergence order

estimation (30) is obtained, is actually a Krasnoselskij iteration, with

λ = 1 / (L2 + 2L + 2) , n ≥ 0;

2) The proof of Theorem 8.9 can be adapted to prove a similar result for
an Ishikawa type iteration procedure stated in the following without proof.

Theorem 8.10. Suppose E, T,D(T ), S and x∗ are like in Theorem 8.9.
Suppose {αn}∞n=0 and {βn}∞n=0 are real sequences satisfying the conditions

(i) 0 ≤ αn ≤ 1 / 2(L2 + 2L + 2) , n ≥ 0;
(ii) 0 ≤ βn ≤ 1 / 4(L2 + 2L + 2) , n ≥ 0;

(iii)
∞∑

n=0
αn = ∞.

Then there exists a closed neighborhood V of x∗ contained in D(T ) and,
for any given x0 ∈ V , a sequence {xn}∞n=0 of elements of V such that by
setting

yn = (1 − βn)xn + βnSxn , n ≥ 0,
pn = (1 − αn)xn + αnSyn , n ≥ 0,

the sequence {pn} satisfies the condition

‖pn − xn+1‖ = inf {‖pn − x‖ : x ∈ V } , n ≥ 0

and converges strongly to x∗, the unique solution of x + Tx = f , f ∈ E.
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Moreover, if αn = 1/2(L2 + 2L + 2) and βn = 1/4(L2 + 2L + 2) , n ≥ 0,
then

‖pn − x∗‖ ≤ ρn ‖p0 − x∗‖ , n ≥ 0,

where
ρ = (1 − 1/8(L2 + 2L + 2)) ∈ (0, 1).

8.4 Bibliographical Comments

For a relationship between ϕ-monotone operators and ϕ-contractive oper-
ators, see for example Berinde [Be93a], while for various applications of Picard
iteration in solving nonlinear operator equations, see for instance Rus [Ru79c],
Dugundji and Granas [DuG82], Berinde [Be97a])

§8.1.

Theorem 8.1 is Corollary 6 in Chidume and Osilike [ChO98], Corollary
8.1 is Corollary 7, while Theorem 8.2 is Corollary 9, both in the same paper.
Theorem 8.3 is Theorem 1 in Osilike [Os99a].

Lemma 8.2 is proved in Liu, Z. and Kang, S.M. [LK01c]. Theorems 8.4
and 8.5 are taken from the same work. The example in Remark 1 following
the proof of Theorem 8.4 is also taken from Liu, Z. and Kang, S.M. [LK01c].
For the Remark 2) following Theorem 8.4, see Rhoades [Rho04].

Example 8.1 is taken from Chidume and Osilike [ChO99], while Exercise 8.4
is taken from Corollary 3.2 in Barbu [Bar76].

As shown by Examples 3.1 and 3.2 in Liu, Z. and Kang, S.M. [LK01c],
the assumptions (a) , (b) and (c) in Theorem 8.4 are different from those
of Chidume [Ch98a] and Xu, Y.G. [XuY98]. Nevanlinna [Nev79] indicated a
technique for constructing acceptably paired sequences.

Similar results, but for Ishikawa iteration with errors in the non-convex
form, were obtained in Yin, Liu, Z. and Lee, B.S. [YLL00].

§8.2.

Theorem 8.6 extends Theorem 4.2 in Gu, Feng [Gu01d] (it does not require
FT 
= ∅). The rest of this section is taken from Chidume and Zegeye [ChZ01].

§8.3.

The content of this section is taken from Osilike [Os97d].
For other results on the topic of this Chapter, see the monographs Chang,

S.S., Cho, Y.J., Zhou, Y.Y. [CCZ03] and Chidume, C.E. [Chi05]. Theorem 8.9
extends some results from Liang [Lia94] established there in the case of real
uniformly convex Banach spaces.
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Exercises and Miscellaneous Results

8.1. Let E be a real Banach space and F : E → E be a strongly accretive
(Φ-strongly accretive) operator and let f ∈ E be fixed. Then T : E → E,
defined by

Tx = f + (I − F )x, x ∈ E,

is strongly pseudocontractive (Φ-strongly pseudocontractive).

8.2. Prove Lemma 8.1 and the assertions in Example 8.1.

8.3. Prove Theorem 8.7 and Theorem 8.10.

8.4. Let R denote the reals with the usual norm and define T : R → R by

Tx =

⎧⎪⎪⎨
⎪⎪⎩

−1, x ∈ (−∞,−1)
−
√

1 − (x + 1)2, x ∈ [−1, 0)√
1 − (x − 1)2, x ∈ [0, 1]

1, x ∈ (1,∞)
Show that T is m-accretive and has bounded range.

8.5. Let E be a real normed linear space and J be the normalized duality map.
A map A : D(A) ⊆ E → E is called uniformly accretive if ∀x, y ∈ D(A), there
exist j(x−y) ∈ J(x−y) and a strictly increasing function Ψ : [0,∞) → [0,∞)
with Ψ(0) = 0 such that

〈Ax − Ay, j(x − y)〉 ≥ Ψ(‖x − y‖).

The map T : D(T ) ⊆ E → E is called uniformly pseudocontractive if ∀x, y ∈
D(T ), there exist j(x − y) ∈ J(x − y) and a strictly increasing function Ω :
[0,∞) → [0,∞) with Ω(0) = 0 such that

〈Tx − Ty, j(x − y)〉 ≤ ‖x − y‖2 − Ω(‖x − y‖).

(a) Show that the class of uniformly pseudocontractive maps includes the class
of strongly pseudocontractive maps and the inclusion is proper;

(b) Show that T is uniformly pseudocontractive if and only if A = I − T
is uniformly accretive.

8.6. Show that the sequences {λn} and {θn} given by

λn = 1/n , θn = (log log n)−1 , n ≥ 1, n(i) = ii.

are acceptably paired.

8.7. Reich (1980)
Let E be a uniformly smooth Banach space, and let A ⊂ E×E be m-accretive.
If 0 ∈ R(A), then for each x in E the strong limit lim

t→∞
Jt(x) exists and belongs

to A−10. (R(A) stands for the range of A)
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8.8. Chidume and Zegeye (2003)
Let {λn} and {bn} be sequences of nonnegative numbers and {αn} ⊆ (0, 1)

a sequence satisfying the conditions that {λn} is bounded,
∞∑

n=1
αn = ∞ and

bn → 0, as n → ∞. Let the recursive inequality

λ2
n+1 ≤ λ2

n − 2αnψ(λn+1) + 2αnbnλn+1, n = 1, 2, . . .

be given, where Ψ : [0,∞) → [0,∞) is a strictly increasing function such that
it is positive on (0,∞) with Ψ(0) = 0. Then λn → 0, as n → ∞.

8.9. Chidume and Zegeye (2003)
Let E be a real normed linear space. Suppose A : E → E is a uniformly
quasi-accretive and uniformly continuous map . For arbitrary x1 ∈ E define
the sequence {xn} iteratively by

xn+1 = xn − αnAxn, n ≥ 1,

where lim
n→∞

αn = 0 and
∞∑

n=0
αn = ∞. Then, there exists a constant d0 > 0

such that if 0 < αn ≤ d0, the sequence {xn} converges strongly to the unique
solution of the equation Ax = 0.

8.10. Moore and Nnoli (2001)
Let E be a real normed linear space and let A : E �→ 2E be a uniformly con-
tinuous and uniformly quasi-accretive multivalued operator with nonempty
closed values such that the range of (I − A) is bounded and the inclusion
0 ∈ Ax has a solution x∗ ∈ E. Let {αn}, {βn} ⊂ [0, 1/2) be real sequences

such that (i) lim
n→∞

αn = lim
n→∞

βn = 0, and (ii)
∞∑

n=0
αn = ∞. Then the sequence

{xn} generated from an arbitrary x0 ∈ E by

yn = (1 − βn)xn + βnξn, ξn ∈ (I − A)xn, n ≥ 0,

xn+1 = (1 − αn)xn + αnηn, ηn ∈ (I − A)yn, n ≥ 0,

converges strongly to x∗ as n → ∞.

8.11. Xu, H.K. (1991)

Prove that if E is a smooth Banach space, then the generalized duality
mapping Jq is single-valued and

Jq(x) = ‖x‖q−2
J(x) , x 
= 0.

8.12. Xu, H.K. (1991)

Show that in a real q-uniformly smooth Banach space the following geo-
metric inequality holds

‖x + y‖q ≤ ‖x‖q + q 〈y, jq(x)〉 + cq ‖y‖q
,

for all x, y ∈ E and some real constant cq > 0.
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Error Analysis of Fixed Point Iteration
Procedures

Fixed point iteration procedures are mainly designed to be applied in solv-
ing concrete nonlinear operator equations, variational equations, variational
inequalities etc.

In spite of the great diversity of the theoretical results obtained for the
approximation of fixed points, briefly presented in Chapters 1-6 of this book,
there is no systematic study of the numerical aspects related to the most
recent iteration procedures: Mann, Ishikawa, Mann type and Ishikawa type.

Except for two or three papers by Rhoades [Rho76], [Rh77c] and [Rho91],
this study was not systematically approached so far, even if, in some more
recent papers, the author tried to draw the attention of researchers on this
important numerical topic. This situation is not a natural thing and the in-
congruous unbalance between theoretical / numerical aspects in the field of
approximation of fixed points must be changed at least by empirical studies,
in those cases where theoretical results could not be obtained.

Even if Rhoades’ opinion [Rho91]: “it is doubtful if any global statement
can be made” (with respect to the study of the rate of convergence) should
sound discouragingly for researchers, the poor existing results must be theoret-
ically and empirically improved by further studies. The few results presented
in Sections 9.2-9.5 could be a possible starting point to such approaches.

The opinion “more numerical work is required to gain additional insight
into the [fixed point] iteration schemes”, expressed by Rhoades [Rh77c] in an
article published thirty years ago, is still valid nowadays.

It is the main aim of this chapter to present both theoretical and empirical
results regarding the rate of convergence of the main fixed point iterative
methods presented in the book. By comparing some important fixed point
iterations, with respect to their rate of convergence, we will also be able to
decide about the fastest method for some classes of contractive mappings.
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9.1 Rate of Convergence of Iterative Processes

A fixed point theorem is valuable from a numerical point of view if it
satisfies several requirements, amongst which we mention (see Rus [Ru79b]):

(a) it is able to provide an error estimate for the iterative process used to
approximate the fixed point, and

(b) it can give concrete information on the stability of this procedure or,
alternatively, on the data dependence of the fixed point.

As the second requirement was covered satisfactory in Chapter 7, it is
the aim of this Chapter to briefly discuss some aspects related to the error
estimate or to the rate of convergence of iterative methods.

Only a few fixed point theorems presented in this book do fulfill the two
requirements above and, as it can be observed, the error estimate and data
dependence of fixed points appear to have been given systematically mainly
for Picard iteration, in conjunction with various contraction conditions.

Let (X, d) be a certain metric space and let {xn}∞n=0 be a given fixed point
iteration that converges to x∗, a fixed point of the operator T : X → X.

Since xn → x∗ as n → ∞, it results that, for any ε > 0, there exists a
positive integer N such that

d(xn, x∗) < ε for n ≥ N. (1)

If the rank N , depending on ε, on the initial guess x0 and on the operator T

itself, can be practically determined, then (1) serves as a stopping criterion
for the iterative process.

Example 9.1. As shown by Theorem 2.1, if T is an a-contraction on
a complete metric space, then both the a priori and the a posteriori error
estimates

d(xn, x∗) ≤ an

1 − a
· d(x0, x1) , n = 0, 1, 2, . . . , (2)

d(xn, x∗) ≤ a

1 − a
· d(xn−1, xn) , n = 1, 2, . . . (3)

hold, where {xn}∞n=0 is the Picard iteration associated to the operator T , x0

is the initial guess and x∗ is the unique fixed point of T .
Since 0 < a < 1, from(2), if d(x0, Tx0) 
= 0, we obtain

N = [loga(ε (1 − a) / d(x0, Tx0))] ,

where [x] denotes the integer part of x.
This means that, when starting with the initial guess x0, the N -th Picard

iterate xN approximates x∗ with an error less than ε.
So, the a priori estimates (2) show how many iterations are needed in

order to attain an ε-approximation of the fixed point x∗.
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On the other hand, the estimates (3) directly provide a stopping criterion
for the iterative process: if we want to obtain x∗ with an error less than ε > 0,
then we shall stop the iterations at the first step n for which the displacement
of two successive iterates verifies

d(xn−1, xn) <
ε(1 − a)

a
.

Together with (3), this guarantees that (1) is satisfied.

Remark. For the contraction mapping theorem (Theorem 2.1), (2) shows
that the errors d(xn, x∗) are decreasing as rapidly as the terms of a geometric
progression with ratio a, that is, {xn}∞n=0 converges to x∗ at least as rapidly
as the geometric series converges to its sum.

Definition 9.1. Let {an}∞n=0 , {bn}∞n=0 be two sequences of positive num-
bers that converge to a, respectively b. Assume there exists

l = lim
n→∞

| an − a |
| bn − b | . (4)

1) If l = 0, then it is said that the sequence {an}∞n=0 converges to a faster
than the sequence {bn}∞n=0 to b;

2) If 0 < l < ∞, then we say that the sequences {an}∞n=0 and {bn}∞n=0

have the same rate of convergence.
Remarks.
1) If l = ∞, then the sequence {bn}∞n=0 converges faster than {an}∞n=0,

that is bn − b = o(an − a).
The concept introduced by Definition 9.1 allows us to compare the rate of

convergence of two sequences, and will be useful in the sequel;
2) The concept of rate of convergence given by Definition 9.1 is a relative

one, while in literature there exist concepts of absolute rate of convergence,
see Ortega and Rheinboldt [ORh70]. However, in the presence of an error
estimate of the form (2) or (3), the concept given by Definition 9.1 is much
more suitable.

Indeed, the estimate (2) shows that the sequence {xn}∞n=0 converges to x∗

faster than any sequence {θn} to zero, where 0 < θ < a.
Suppose that for two fixed point iterations {xn}∞n=0, and {yn}∞n=0, con-

verging to the same fixed point x∗, the following a priori error estimates

d(xn, x∗) ≤ an , n = 0, 1, 2, . . . (5)

and
d(yn, x∗) ≤ bn , n = 0, 1, 2, . . . (6)

are available, where {an}∞n=0 and {bn}∞n=0 are two sequences of positive real
numbers (converging to zero). Then, in view of Definition 9.1, the following
concept appears to be very natural.
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Definition 9.2. If {an}∞n=0 converges faster then {bn}∞n=0, then we shall
say that the fixed point iteration {xn}∞n=0 converges faster to x∗ than the fixed
point iteration {yn}∞n=0 or, simply, that {xn}∞n=0 is better than {yn}∞n=0.

Remarks.
1) Rhoades [Rho76] considered that {xn}∞n=0 is better than {yn}∞n=0 if

d(xn, x∗) ≤ d(yn, x∗) , for all n ∈ N,

see the next section, where some fixed point iteration procedures are compared
with respect to the latter concept of rate of convergence.

2) In connection with Q- and/or R-order of convergence, see for example
Ortega and Rheinboldt [ORh70], the estimates of the form

‖xn+1 − x∗ ‖ ≤ c · ‖xn − x∗ ‖ p
, c > 0 (7)

are precise indicators of the asymptotic rate of convergence of the iteration
{xn} at x∗.

Estimates of the form (7) often arise naturally in the study of certain
iterative methods, as, for example, the Newton’s method, which is in fact a
Picard iteration with a particular iteration mapping.

It is also possible to consider estimates of the form (7) in order to define
relative concepts of convergence, similar to that in Definition 9.2, but with
(5) and (6) derived from an estimation of the form (7).

For example, if T is an a-contraction, then in view of Theorem 2.1, we
know that the rate of convergence is expressed by

d(xn, x∗) ≤ a · d (xn−1, x
∗) , n = 1, 2, . . . ,

which shows that the convergence rate of the Picard iteration is linear.

9.2 Comparison of Some Fixed Point Iteration
Procedures for Continuous Functions

It was shown in Section 3.3, Theorem 3.7, that in the class of Lipschitzian
and generalized pseudocontractive selfmaps T of a nonempty closed convex
subset of a real Hilbert space, we can compare the Picard and Krasnoselskij
fixed point iterations with respect to their rate of convergence.

The remarks following Theorem 3.7 express basically (let s be the
Lipschitzian constant and r the generalized pseudo-contractiveness constant
of T ) the fact that, for s < 1, the Picard iteration belongs to the family of
Krasnoselskij iterations, known to converge to the unique fixed point of T .

Moreover, it is shown by Theorem 3.7 that the fastest Krasnoselskij iter-
ation in that family
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1) is faster than the Picard iteration if r 
= s2

and
2) coincides to the Picard iteration, in the case r = s2.

We start this section by presenting some comparison results for the Mann,
Ishikawa and Picard iterations in the class of continuous maps.

Theorem 9.1. Let f : [0, 1] → [0, 1] be a continuous map, let {αn}∞n=0

and {βn}∞n=0 be two sequences satisfying:

(i) 0 ≤ αn, βn ≤ 1 ; (ii) lim
n→∞

αn = 0 ; (iii)
∞∑

n=0
αn = ∞;

(iv) lim
n→∞

βn = 0.

Then the Ishikawa sequence given by x0 ∈ J = [0, 1] and

xn+1 = (1 − αn)xn + αnf [βnf(xn) + (1 − βn)xn] , n ≥ 0 (8)

converges to a fixed point of f .

Proof. It is well known that f has at least one fixed point. Let’s first show
that {xn}∞n=0 converges.

The sequence {xn} is contained in [0, 1] so it has at least one limit point.
For sake of contradiction, assume ξ1, ξ2 are two distinct limit points of {xn}
and ξ1 < ξ2. We will show that, as a consequence of the previous assumption,
we have f(x) = x, for every x in (ξ1, ξ2). Let x∗ ∈ (ξ1, ξ2).

If f(x∗) > x∗, then, by the continuity of the function f , there is a number
δ ∈ (0, (x∗ − ξ1) / 2) such that

|x − x∗| < δ implies f(x) > x.

Since ξ2 is a limit point of {xn}, we can choose an integer N such that
xN > x∗ and βn < δ / 2 , |xn+1 − xn| < δ / 2 , for all n ≥ N.

If xN ≥ x∗ + δ / 2, then xN+1 > xN − δ / 2 ≥ x∗.
If xN < x∗ + δ / 2, then f(xN ) > xN , so that

yN = βNf(xN ) + (1 − βN )xN > xN > x∗.

Besides yN < δ / 2 + (1 − βN )xN < δ/2 + xN , so that

|yN − x∗| < δ and f(yN ) > yN .

Therefore xN+1 − xN = αN (f(yN ) − yN ) > 0, and

xN+1 > xN > x∗.

We obtain by induction that xN > x∗, for n ≥ N , contradicting that ξ1 is a
limit point. Similarly, f(x∗) < x∗ leads to the contradiction that ξ2 is a limit
point. Therefore every point in the interval (ξ1, ξ2) is a fixed point of f .

We will now show that ξ1 and ξ2 are not both limit points.
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Notice that
xn /∈ (ξ1, ξ2), for all n = 1, 2, . . .

since, if f(xn) = xn then, by (8), xm = xn, for all m > n and neither ξ1 nor
ξ2 could be limit points. Also, by the previous results, it follows that there is
a number M such that if xM ≥ ξ2, then xn ≥ ξ2 > ξ1, for all n > M and ξ1

is not a limit point. Similarly, if xM ≤ ξ1, then xn ≤ ξ1 < ξ2, for all n > M
and ξ2 is not a limit point. Either way, {xn} cannot have two distinct limit
points. Therefore {xn} converges to its unique limit point, call it ξ.

Suppose f(ξ) > ξ. Since xn → ξ and f is continuous, with ε = (f(ξ)−ε) / 2
we can find a N such that n > N implies f(yN ) − xN > ε. Thus

lim
m→∞

(xN+m − xN ) ≥ lim
m→∞

ε ·
m−1+N∑

n=N

αn = ∞,

a contradiction to the fact that each xn ∈ I.
The assumption f(ξ) < ξ also leads to a contradiction, so that ξ is a fixed

point of f . �
Remark. For nondecreasing functions the hypotheses of Theorem 9.1 can

be weakened as bellow.

Theorem 9.2. Let f : [0, 1] → [0, 1] be continuous and nondecreasing,
{αn}∞n=0 and {βn}∞n=0 satisfying (i) and (iii) in Theorem 9.1.

Then {xn} given by (8) converges to a fixed point of f .

Proof. Let m,M denote, respectively, the infimum and supremum of the
set of fixed points of f in J . For 0 ≤ x ≤ m we get f(x) > x, while for
M < x ≤ 1 we get f(x) < x.

If p and q are fixed points of f satisfying m ≤ p < q ≤ M and f(x) 
= x for
x ∈ (p, q), then f(x) − x has constant sign in the interval (p, q). These facts,
along with the monotonicity of f , force {xn} to be a monotonic sequence,
hence convergent. It remains to show that {xn} tends to a fixed point of f .

Suppose first that x0 > M . Then {xn} is decreasing, xn ≥ M for each n,
{f(xn)} is decreasing and xn > f(xn) for each n. Thus

f(xn) < yn = βnf(xn) + (1 − βn)xn < xn.

Let l = lim
n→∞

xn. Then f(l) = l. Assume l > f(l). Then f(l) > f(f(l)) = f2(l),

which implies l > f2(l). Set ε = (l− f2(l)) / 2. There exists an integer N such
that xn − f(yn) > ε for all n ≥ N . Hence

xN − xN+m > ε
m−1+N∑

n=N

αn → ∞,

a contradiction. Therefore l = f(l).
For the other choices of x0, the proof is similar. �
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Remark. For any function f , the initial guess x0 determines which fixed
point of f the sequence {xn} will converge. Thus, for some nondecreasing
functions f with three distinct fixed points p, q, r satisfying

0 ≤ p < q < r ≤ 1,

then x0 ∈ [0, q) implies xn → p, whereas x0 ∈ (q, 1] implies xn → r.
The fixed points p and r are attractive fixed points, while q is a repulsive

fixed point, since the sequence {xn} never converges to q unless x0 = q.

Example 9.1. For f(x) = 2x3 − 7x2 + 8x − 2 we have FT = {1/2, 1, 2}
and only 1 is an attractive fixed point of f .

Definition 9.3. If {xn} , {zn} are two iteration schemes which converge
to the fixed point p, we shall say that {xn} is better than {zn} if

|xn − p| ≤ |zn − p| , for all n.

Theorem 9.3. Let f , {αn} and {βn} satisfying the hypotheses of
Theorem 9.2. Then

(a) {xn} given by (8) is better than {zn} given by z0 = x0 and

zn+1 = αnf(zn) + (1 − αn)zn , n ≥ 0 . (9)

(b) If w0 > z0, then wn+1 ≥ xn+1, for each n,
where xn+1 = I(x0, αn, βn, f) and zn+1 = I(z0, αn, βn, f).
(c) If {γn} satisfies βn ≤ γn ≤ 1 for each n and {tn} is given by tn+1 =

I(x0, αn, γn, f), then {tn} is better than {xn}.
(d) If {δn} satisfies αn ≤ δn ≤ 1 for each n and {zn} is given by zn+1 =

I(x0, δn, γn, f), then {zn} is better than {xn}.
Proof. We shall consider the case x0 > M , where M is defined in the

proof of Theorem 9.2 (the other cases are proved similarly).
(a) Let yn = (1 − βn)xn + βnf(xn). As

z1 − x1 = α0(f(z0) − f(y0)),

from x0 > M we obtain f(x0) < x0 and hence y0 < x0. Thus

f(y0) < f(x0) = f(z0) and therefore z1 > x1.

Assume now zn > xn. Then

zn+1 − xn+1 = αn(f(zn) − f(yn)) + (1 − αn)(zn − xn),

and so x0 > M implies xn > M . This means f(xn) < xn and hence yn < xn ,
which leads to the desired conclusion.

(b) The proof is immediate.



206 9 Error Analysis of Fixed Point Iteration Procedures

(c) Let yn = γnf(tn) + (1− γn)tn. Then x0 > M implies that {γn} , {tn}
are monotone decreasing in n and xn, and tn ≥ M for all n. Then

x1 − t1 = α0(f(y0) − f(y0)) and y0 − y0 = (γ0 − β0)(x0 − f(x0)) ≥ 0,

and hence x1 ≥ t1. Assume xn ≥ tn. We have

xn+1 − tn+1 ≥ αn(f(yn) − f(yn)),

and the conclusion follows by

yn − yn = (xn − tn) + βn(f(xn) − xn) + γn(tn − f(tn)) ≥
≥ (xn − tn) + βn(f(xn) − xn) + βn(tn − f(tn)) =
= (1 − βn)(xn − tn) + βn(f(xn) − f(tn)) ≥ 0.

(d) From x0 > M we get that {xn} and {zn} are monotone decreasing to
M . If we denote

yn = βnf(zn) + (1 − βn)zn,

then
x1 − z1 = α0f(y0) − δ0f(y0) + (δ0 − α0)x0 ; f(y0) = f(y0)

and f(x0) < x0, hence x1 > z1. Assume xn > zn. Then

xn+1 − zn+1 = (xn − zn) + αn(f(yn) − yn) + δn(xn − f(yn))

and zn > M implies f(zn) < zn. Therefore yn < zn, which implies
f(yn) < f(zn). Thus zn − f(yn) > zn − f(zn) > 0 and

xn+1 − zn+1 ≥ xn − zn + αn(f(yn) − yn) + αn(zn − f(yn)) =

= (1 − αn)(xn − zn) + αn(f(yn) − f(yn)),

which shows that xn+1 ≥ zn+1. �
Remarks.
1) Part (a) in Theorem 9.3 shows that the Ishikawa iteration is better

than the Mann iteration;
2) Part (b) shows that the closer the initial guess x0 is to a fixed point,

the better the Ishikawa iteration is;
3) Part (c) and (d) in Theorem 9.3 show that the larger αn , βn, the

better the iteration scheme is. Since there is an optimum choice, i.e., αn =
βn = 1, this shows that the best scheme amongst the Ishikawa iterations (8)
for increasing functions is the Picard iteration;

4) For decreasing functions on [0, 1] there is no best scheme but, as shown
in Section 9.6, some empirical comparisons can however be done.
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9.3 Comparing Picard, Krasnoselskij and Mann
Iterations in the Class of Lipschitzian Generalized
Pseudocontractions

As we proved in Chapter 3, Theorem 3.7, amongst all Krasnoselskij iter-
ations associated to a Lipschitzian generalized pseudocontractive operator T ,
with λ ∈ (0, a), where a is given by relation (10), there exists one iteration
method which is the fastest with respect to the concept of rate of convergence
given by Definition 9.2.

Reinterpreting this result, see also the Remarks given after Theorem 3.7,
we can say that if r 
= L2, where r and L are the constants of generalized
pseudocontractivity, and the Lipschitz constant of T , respectively, then the
fastest Krasnoselskij iteration in that family, converges faster than Picard iter-
ation to the unique fixed point of T . The main result of this section compares
Krasnoselskij and Mann iterations for the class of mappings mentioned above.

Theorem 9.4. Let H be a real Hilbert space and K be a nonempty closed
convex subset of H. Let T : K → K be a Lipschitzian and generalized pseudo-
contractive operator with corresponding constants L ≥ 1 and 0 < r < 1.

Then:
1) T has a unique fixed point p in K;
2) For any x0 ∈ K and λ ∈ (0, a), with a given by

a = 2(1 − r)/(1 − 2r + L2) , (10)

the Krasnoselskij iteration {xn}∞n=0 = K(x0, λ, T ) converges strongly to p;
3) For any y0 ∈ K and {αn}∞n=0 in [0, 1] satisfying

∞∑
n=1

αn = ∞, (11)

the Mann iteration {yn}∞n=0 = M(y0, αn, T ) converges strongly to p;
4) For any Mann iteration converging to p, with 0 ≤ αn ≤ b < 1, there

exists a Krasnoselskij iteration that converges faster to p.

Proof. Conclusions 1) and 2) follows by Theorem 3.6 in Section 3.3.
Consider now, for all λ ∈ [0, 1], the operator Tλ on K given by

Tλx = (1 − λ)x + λTx , x ∈ K .

Since λ < a, it was proved in Section 3.3 that we have

‖Tλx − Tλy‖ ≤ θ · ‖x − y‖ , for all x, y in K , (12)

where 0 < θ =
[
(1 − λ)2 + 2λ(1 − λ)r + λ2L2

]1/2
< 1.
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3) Let {yn}∞n=0 = M(y0, αn, T ) be the Mann iteration, with the sequence
{αn}∞n=0 ⊂ [0, 1] satisfying (11). Consider t, 0 < t < 1, and denote

an =
1
t
αn, n = 0, 1, 2, . . . .

Then the Mann iteration will be given by

yn+1 = (1 − tan)yn + tan Tyn , n = 0, 1, 2, . . . .

Let p be the unique fixed point of T . We have

‖yn+1 − p‖ = ‖(1 − an)yn + an

[
(1 − t)yn + t Tyn

]
− p‖ ≤

≤ (1 − an)‖yn − p‖ + an‖(1 − t)(yn − p) + t(Tyn − Tp)‖. (13)

Using the properties of T we find that

‖t(Tyn − Tp) + (1 − t)(yn − p)‖2 = (1 − t)2‖yn − p‖2+

+ 2t(1 − t) 〈Tyn − Tp, yn − p〉 + t2‖Tyn − Tp‖2 ≤
≤ (1 − t)2‖yn − p‖2 + 2t(1 − t)r‖yn − p‖2 + t2L2‖yn − p‖2 =

=
[
(1 − t)2 + 2t(1 − t)r + t2L2

]
‖yn − p‖2 . (14)

By (13) and (14) we get

‖yn+1 − p‖ ≤
{

1 − an + an

[
(1 − t)2 + 2t(1 − t)r + t2L2

]1/2
}
· ‖yn − p‖

=
(
1 − (1 − θ)an

)
‖yn − p‖ ≤

n∏
k=1

(
1 − (1 − θ)ak

)
‖y1 − p‖ , (15)

where
0 ≤ θ =

[
(1 − t)2 + 2t(1 − t)r + t2L2

]1/2
< 1 ,

for all t satisfying 0 < t < 2(1 − r)/(1 − 2r + L2).

Since, by (11),
∞∑

n=0
αn diverges, it follows that

∞∑
n=0

an diverges, too, and in

view of the inequality θ < 1 we get

lim
n→∞

n∏
k=1

[
1 − (1 − θ)ak

]
= 0 ,

which by (15) shows that {yn} converges strongly to p.
4) Take x := xn, y := xn−1 in (12) to obtain

‖xn+1 − xn‖ ≤ θ · ‖xn − xn−1‖,

which inductively yields ‖xn+1 −xn‖ ≤ θn‖x1 −x0‖ and then by triangle rule
we obtain



9.3 Comparing Picard, Krasnoselskij and Mann Iterations 209

‖xn+k − xn‖ ≤ θn
(
1 + θ + · · · + θk−1

)
‖x1 − x0‖ , (16)

valid for all n, k ∈ N
∗.

Now letting k → ∞ in (16), we get

‖xn − p‖ ≤ θn

1 − θ
‖x1 − x0‖ . (17)

Therefore, in view of Definition 9.2, and of previous estimations (16) and
(17), in order to compare the Krasnoselskij and Mann iterations, we have to
compare

θn and
n∏

k=1

[1 − (1 − θ)ak] .

Let {yn}∞n=0 be a certain Mann iteration converging to p, with {αn}∞n=0 sat-
isfying 0 ≤ αn ≤ b < 1. Then ak = αk/t ≤ b/t (denote b/t by b) and for any
m, 0 < m < 1, we may find θ ∈ (0, 1) such that

b(1 − θ) < 1 −
θ

m
.

Indeed, to this end it is enough to take θ <
m(1 − b)
1 − mb

. Using the fact that

ak ≤ b, it results

θ

1 − (1 − θ)ak
≤ m < 1, for all k = 1, 2, . . . ,

which shows that

lim
n→∞

θ
n∏

k=1

[
1 − (1 − θ)ak

] ≤ lim
n→∞

mn = 0 ,

so the Krasnoselskij iteration {xn}∞n=0 = K(x0, θ, T ) converges faster than
the considered Mann iteration, {yn}∞n=0 = M(y0, αn, T ).

To end the proof we still need to show that the interval (0, a), with a given

by (10), and the interval

(
0,

m(1 − b)
1 − mb

)
have nonempty intersection.

But this is immediate, because, under the hypotheses of the theorem,

0 <
m(1 − b)
1 − mb

< 1 and 0 < a =
2(1 − r)

1 − 2r + L2
≤ 1. �

Remark.
Part 4) in Theorem 9.4 shows that, in order to approximate the fixed point

of a Lipschitzian and generalized pseudo-contractive operator T , it is always
more convenient to use a certain Krasnoselskij iteration in the family {xn}∞n=0

given by
xn+1 = (1 − λ)xn + λTxn , n = 0, 1, 2, . . . ,

with λ ∈ (0, a) and a given by (10).
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9.4 Comparing Picard, Mann and Ishikawa Iterations
in a Class of Quasi Nonexpansive Maps

We know from the previous chapters that in the class of Zamfirescu oper-
ators all important fixed point iterative methods, i.e., Picard iteration (The-
orem 2.4), Mann iteration (Theorem 4.10), Ishikawa iteration (Theorem 5.6)
and, in particular, Krasnoselskij iteration, are convergent to the unique fixed
point of such an operator.

In such situations, it is of theoretical and practical importance to compare
these methods in order to establish, if possible, which one converges faster to
the unique fixed. The method we shall find, if any, should be preferentially
used in applications in order to approximate the fixed points.

The next theorem compares Picard and Mann iterations in the class of
Zamfirescu operators.

Theorem 9.5. Let E be a uniformly convex Banach space, K a closed
convex subset of E, and T : K → K a Zamfirescu operator, i.e., an operator
that satisfies (z1)-(z3) in Theorem 2.4. Let {xn}∞n=0 be the Picard iteration
associated with T and x0 ∈ K, given by xn+1 = Txn, and {yn}∞n=0 be the
Mann iteration given by y0 ∈ K and

yn+1 = (1 − αn)yn + αnTyn , n = 0, 1, 2, . . .

where {αn}∞n=0 is a sequence satisfying

(i) α1 = 1; (ii) 0 ≤ αn < 1 , for n ≥ 1; (iii)
∞∑

n=0

αn(1 − αn) = ∞ .

Then:
1) T has a unique fixed point in E, i.e., FT = {p};
2) The Picard iteration {xn} converges to p for any x0 ∈ K;
3) The Mann iteration {yn} converges to p for any y0 ∈ K and {αn}

satisfying (i) - (iii);
4) Picard iteration is faster than any Mann iteration.

Proof. Conclusions 1) - 3) follow by Theorems 2.4 and Theorem 4.10;
4) First of all, we remind, see the proofs of Theorems 2.4 and 4.10, that

any Zamfirescu operator satisfies

‖Tx − Ty‖ ≤ δ · ‖x − y‖ + 2δ · ‖x − Tx‖ , (18)

‖Tx − Ty‖ ≤ δ · ‖x − y‖ + 2δ · ‖y − Tx‖ , (19)

for all x, y ∈ K, where δ is given by

δ = max

{
α,

β

1 − β
,

γ

1 − γ

}
, (20)
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and α, β, γ are the contractiveness constants appearing in (z1) − (z3).
By taking y := xn; x := p in (18) we obtain

‖xn+1 − p‖ ≤ δ · ‖xn − p‖,

which inductively yields

‖xn+1 − p‖ ≤ δn · ‖x1 − p‖ , n ≥ 0. (21)

Now let y0 ∈ K and {yn}∞n=0 be the Mann iteration associated with T , y0 and
the sequence {αn}. Then by the definition of Mann iteration we have:

‖yn+1 − p‖ = ‖(1 − αn)yn + αnTyn −
[
(1 − αn) + αn

]
p‖ ≤

≤ (1 − αn)‖yn − p‖ + αn‖Tyn − p‖.

Using again (18), this time with y := yn; x := p we get

‖Tyn − p‖ ≤ δ · ‖yn − p‖

and therefore

‖yn+1 − p‖ ≤
[
1 − αn + δαn

]
· ‖yn − p‖ , n = 0, 1, 2, . . . ,

which implies that

‖yn+1 − p‖ ≤
n∏

k=1

[
1 − αk + δαk

]
· ‖y1 − p‖ , n = 0, 1, 2, . . . . (22)

By (ii), (iii) and the inequality

αn(1 − αn) < αn,

we obtain that
∞∑

n=0
αn = ∞ which implies

n∏
k=1

(1 − αk + δαk) → 0 as n → ∞.

Therefore, in view of (21) and (22), in order to compare {xn} and {yn}, we

must compare the sequences an = δn and bn =
n∏

k=1

(1 − αk + δαk).

Denote cn = an/bn. Since

cn+1

cn
=

δ

1 − (1 − δ)αn+1
< 1,

which, by the ratio test implies that
∞∑

n=0
cn converges, we conclude that
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lim
n→∞

cn = lim
n→∞

δn

n∏
k=1

(1 − αk + δαk)
= 0.

This shows that Picard iteration converges faster than the Mann iteration. �

Remarks.
1) Theorem 9.5 shows that, to efficiently approximate fixed points of Zam-

firescu operators, one should always use Picard iteration;
2) The uniform convexity of E is not necessary for the conclusion of The-

orem 9.5 to hold, as shown by the next theorem, which also assumes weaker
conditions on the sequence {αn}.

Theorem 9.6. Let E be an arbitrary Banach space, K a closed convex
subset of E, and T : K → K an operator satisfying Zamfirescu’s conditions.
Let {yn}∞n=0 be the Mann iteration associated to T , y0 ∈ K, and sequence
{αn} with {αn} ⊂ [0, 1] satisfying

(iv)
∞∑

n=0

αn = ∞ .

Then {yn}∞n=0 converges strongly to the fixed point of T and, moreover, Pi-
card iteration {xn}∞n=0 defined by x0 ∈ K, converges faster than the Mann
iteration.

Proof. We proceed similarly to the proof of Theorem 9.5. �
Remark.
Condition (iv) in Theorem 9.6 is weaker than conditions (i) - (iii) in The-

orems 9.5. Indeed, in view of the inequality

0 < αk(1 − αk) < αk,

valid for all αk satisfying (i) - (ii), condition (iii) implies (iv).
There also exist values of {αn}, e.g., αn ≡ 1, such that (iv) is satisfied but
(iii) is not.

Using the same arguments as in proving the previous two theorems, we
can compare Mann and Ishikawa iterations in the same class of mappings.

Theorem 9.7. Let E be an arbitrary Banach space, K be a closed convex
subset of E, and T : K → K be a Zamfirescu operator, that is, an operator
that satisfies (z1)-(z3) in Theorem 2.4. Let {xn} be the Mann iteration defined
by x0 ∈ K and {αn} ⊂ (0, 1) satisfying (iv); {yn} be the Ishikawa iteration
defined by y0 ∈ K and {αn}, {βn} satisfying 0 ≤ αn, βn < 1 and (iv).

Then {xn} and {yn} converges strongly to the unique fixed point of T and,
moreover, the Mann iteration converges faster than Ishikawa iteration.
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9.5 The Fastest Krasnoselskij Iteration
for Approximating Fixed Points of Strictly
Pseudo-Contractive Mappings

Let X be a Banach space, K a nonempty closed convex subset of X and
T : K → K a Lipschitzian strictly pseudocontractive mapping. In Chapter
4, Corollaries 4.2 and 4.3, we showed that, in order to approximate the fixed
point of T , instead of the Mann iteration, usually considered by many authors,
we may use a simpler method, i.e., the Krasnoselskij iterative process.

It is the main aim of this section to show that amongst all Krasnoselskij
iterations that converge to the fixed point of such operators, we may select the
fastest iteration, in some sense. This is indeed a very important achievement
in view of concrete applications of fixed point iteration procedures.

The results in this Section open a new important direction of investigation:
to analyze all convergence theorems for Mann iteration, Mann-type iteration
etc. based on condition (23), in order to decide whether or not this assumption
is indeed necessary for the convergence of that iteration and, secondly, to
investigate if Krasnoselskij iteration could really replace Mann iteration for
those classes of operators.

There are a lot of recent papers in literature devoted to obtaining conver-
gence theorems for the Mann iteration, see Chapter 4 and the list of references
in this book, but, as we have seen, the great majority of them are obtained
by imposing the following sharp condition on the sequence {αn}:

lim
n→∞

αn = 0. (23)

As pointed out in Section 9.7 and also shown by Example 9.2 (or Example
4.3), in most cases condition (23) is not necessary for the convergence of Mann
iteration and appears to be an artificial assumption, being tributary to the
technique of proof used by the authors.

Example 9.2. Let X = R with the usual norm, K =
[
1
2
, 2
]

and T : K →

K be a function given by Tx =
1
x

, for all x in K. Then:

(a) T is Lipschitzian with constant L = 4;
(b) T is strictly pseudocontractive, see Example 4.3 for details;
(c) Fix (T ) = {1}, where Fix (T ) = {x ∈ K| Tx = x} ;
(d) The Picard iteration associated to T does not converge to the fixed point
of T , for any x0 ∈ K \ {1};
(e) The Krasnoselskij iteration associated to T converges to the fixed point
p = 1, for any x0 ∈ K and λ ∈ (0, 1/16);
(f) The Mann iteration associated to T with αn =

n

2n + 1
, n ≥ 0 and x0 = 2

converges to 1, the unique fixed point of T (see Example 9.3).

However, αn ↗ 1
2

as n → ∞ and so condition (23) is not satisfied.
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As we argued in the previous sections of this chapter, when two or more
iterative methods are available in order to approximate fixed points of map-
pings in a certain class, from a computational point of view it is natural to
choose a simpler method, when known, in order to avoid complicated com-
putations. On the other hand, it is clear that Krasnoselskij iteration method
defined by the initial guess x0 ∈ K and

xn+1 = (1 − λ)xn + λTxn, n ≥ 0 where λ ∈ [0, 1], (24)

is computationally simpler than the Mann iteration defined by x0 ∈ K and

xn+1 = (1 − αn)xn + αnTxn, n ≥ 0,

where {αn} is a sequence of real numbers in [0, 1].
Starting from the fact that many papers that were published in the last

decade are devoted to the approximation of fixed points of several classes of
mappings that include nonexpansive mappings, in Chapter 4, Corollaries 4.2
and 4.3, we showed that, in the case of Lipschitzian strictly pseudo-contractive
operators, the Krasnoselskij iteration suffices to approximate fixed points.

By Corollary 4.3, we practically obtain a family {xλ
n}, λ ∈ (0, a), of Kras-

noselskij iterative processes such that each of them could be used to approxi-
mate the fixed point p.

A natural question then arises: which Krasnoselskij iteration from the
above family, i.e., which λ, would be more suitable to be considered in order
to obtain the better method, if any ?

The answer is given by Theorem 9.8. To state it, we use the concept of
rate of convergence introduced by Definition 9.2.

Theorem 9.8. Let X be a Banach space and K a nonempty closed convex
subset of X. If T : K → K is a Lipschitzian (with constant L) and strongly
pseudo-contractive operator (with constant k) such that the fixed point set of
T , Fix(T ), is nonempty, then the Krasnoselskij iteration {xn} ⊂ K generated
by x1 ∈ K and (24), with λ ∈ (0, a) and the number a given by

a =
k

(L + 1)(L + 2 − k)
,

converges strongly to the (unique) fixed point p of T . Moreover, amongst all
Krasnoselskij iterations (24), there exists one which is the fastest one. It is
obtained for

λ0 = −1 +
√

1 + a.

Proof. We mainly use the arguments presented in the proof of Theorem 4.12.

The proof is now elementary: we have to find λ for which the function

q(λ) =
1 + (1 − k)λ + (L + 1)(L + 2 − k)λ2

1 + λ
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attains its minimum value when λ ∈ (0, a), if any. Since q′(λ) = 0 is equivalent
to λ2 + 2λ − a = 0, we find that λ0 = −1 +

√
1 + a ∈ (0, a) is the required

value of λ. Then, for any λ ∈ (0, a), λ 
= λ0, we have
q(λ0)
q(λ)

< 1 and hence

lim
n→∞

(
q(λ0)
q(λ)

)n

= 0, which shows that {xλ0
n } converges faster than {xλ

n} to

the unique fixed point of T . �
Remark.
Theorem 9.8 shows that, to efficiently approximate fixed points of Lip-

schitzian and strictly pseudo-contractive operators, one should always use
Krasnoselskij iteration (24) and, more specifically, the one obtained for
λ0 = −1 +

√
1 + a.

It is a current tendency in the field of iterative approximation of fixed
points to consider more and more complicated fixed point iteration procedures:
Ishikawa iteration, Ishikawa iteration with errors, modified Ishikawa iteration
etc., see Berinde [Be02c].

Except for some isolated cases, like the case of Lipschitzian pseudo-
contractive operators (see Theorem 5.1 in Chapter 5), when it was indeed
necessary to consider Ishikawa iteration in order to approximate their fixed
points, the use of these complicated iteration procedures is not motivated
from a numerical point of view and is not suitable for concrete applications.
At most a weak theoretical interest could motivate the numerous papers de-
voted to this direction of research that appeared in the last decade.

Concluding this Section, at least three problems arise:
1. Give an example, if any, of an operator T for which some Mann iteration

converges and no Krasnoselskij iteration converges to the fixed point(s) of T ;
2. Try to transpose known convergence results for Mann iteration based

on condition (23), to Krasnoselskij iteration, whatever possible;
3. There are recent papers, we quote here Rhoades and Soltuz [RS03a-e],

which prove that, for several classes of mappings, Mann iteration is actu-
ally equivalent to the more complicated Ishikawa iteration, in the sense that,
under certain circumstances, Mann iteration converges (to the fixed point)
if and only if Ishikawa converges, too. The challenging problem is then: are
Krasnoselskij iteration and Mann iteration equivalent in this sense, for large
classes of mappings ?

4. The results regarding the equivalence of fixed point iteration procedures,
mentioned before, are actually obtained under a very restrictive assumption
(see also Section 5.5): it is always assumed that the initial guesses are identical
for all iterations.

A more challenging problem would then be to establish equivalence of var-
ious fixed point iteration procedures, without imposing the above restriction.
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9.6 Empirical Comparison of Some Fixed Point Iteration
Procedures

If, for a given class of mappings, two or more fixed point iteration schemes
converge and no analytical information on their rate of convergence is avail-
able, then it is of interest, for computational reasons, to know at least empir-
ically, which of these processes appears to be the most efficient.

Let us consider the Mann iteration scheme,

x0 ∈ [0, 1]

xn+1 = (1 − cn)xn + cnf(xn) , n ≥ 0,

with
cn = [(n + 1)(n + 2)]−1 / k , k ∈ {3, 4, . . . , 8}

for the decreasing functions

f(x) = 1 − xm , g(x) = (1 − x)m , 1 ≤ m ≤ 6.

The fixed point for each function was first found by the bisection method,
accurate to 10 places. Both Mann and Newton-Raphson iteration schemes
were used to find each fixed point to within 8 places, using the initial guesses
x0 = 0.1; 0.2; . . . ; 0.9, respectively.

The output of the computations leads to the following observations:
1) Newton converges faster than Mann. This is not surprising, since Mann

converges linearly, while Newton is a quadratic method for f smooth enough;
2) However, while Newton converges more rapidly for x0 near the fixed

point, Mann iteration appears to converge somewhat independently of the
initial guess. For example, with m = 4 or m = 6, k = 4, Mann scheme
converges to the fixed point of f in exactly 8 iterations, for each choice of x0;

3) The most efficient choice of k is 5, for m < 3, and 4, for m ≥ 3. The
number of iterations required increases with the distance from k to 4 or 5.

For f with m = 2, 3, 4; k = 2 and x0 = 0.9, the Mann scheme needed 400
iterations to find the fixed point accurate to 5 places.

In order to offer a more detailed empirical study of the main fixed point
iterative procedures, we designed a program whose input is a certain function,
the specific iteration parameters and the initial guess from which to start, and
which produces as output a number of iterates, depending on the stopping
criterion adopted. The most significant results are given in the following.

Example 9.3. For the decreasing function T in Examples 3.1-3.3 and 9.2,
the execution of the program FIXPOINT for some input data leads to the
following observations:

1) The Krasnoselskij iteration converges to p = 1 for any λ ∈ (0, 1) and
any initial guess x0 (recall that the Picard iteration does not converge for any
initial value x0 ∈ [1/2, 2] different from the fixed point).
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The convergence is slow for λ close enough to 0 (that is, for Krasnoselskij
iterations close enough to the Picard iteration) or close enough to 1. The closer
to 1/2, the middle point of the interval (0, 1), λ is, the faster it converges.

For λ = 0.5 the Krasnoselskij iteration converges very fast to p = 1, the
unique fixed point of T. For example, starting with x0 = 1.5, only 4 iterations
are needed in order to obtain p within 6 places: x1 = 1.08335, x2 = 1.00325,
x3 = 1.000053, x4 = 1. (Compare these results to that in Example 3.3).

For the same value of λ and x0 = 2, again only 4 iterations are needed
to obtain p with the same precision, even though the initial guess is not very
close to the fixed point: x1 = 1.25, x2 = 1.025, x3 = 1.0003 and x4 = 1;

2) The speed of Mann and Ishikawa iterations also depends on the position
of {αn} and {βn} in the interval (0, 1).

If we take αn = 1/(n + 1), βn = 1/(n + 2) and start with the initial guess
x0 = 1.5, then the Mann and Ishikawa iterations converge (slowly) to p = 1 :
after n = 35 iterations we get x35 = 1.000155 for both Mann and Ishikawa
iterations.

For αn = 1/ 3
√

n + 1, βn = 1/ 4
√

n + 2 we obtain the fixed point within 6
places performing 8 iterations (using the Mann iteration) and, respectively, 9
iterations (using the Ishikawa iteration). Notice that in this case both Mann
and Ishikawa iterations converge not monotonically to p = 1.

Conditions like αn → 0 (as n → ∞) or/and βn → 0 (as n → ∞) are
usually involved in many convergence theorems presented in this book. The
next results show that these conditions are in general not necessary for the
convergence of Mann and Ishikawa iterations.

Indeed, taking

x0 = 2, αn =
n

2n + 1
↗ 1

2
, βn =

n + 1
2n

↘ 1/2,

we obtain the following results.
For the Mann iteration: x1 = 2, x2 = 1.5, x3 = 1.166, x4 = 1.034, x5 =

1.0042, x6 = 1.00397, x7 = 1.000031, x8 = 1.000002 and x9 = 1.
For the Ishikawa iteration: x1 = x2 = 2, x3 = 1.357, x4 = 1.120, x5 =

1.0289, x6 = 1.0047, x7 = 1.0057, x8 = 1.000054, x9 = 1.00004 and x10 = 1.
For all combinations of x0, λ, αn and βn, we notice the following decreas-

ing (with respect to their speed of convergence) chain of iterative methods:
Krasnoselskij, Mann, Ishikawa. Consequently, if for a certain operator in the
same class, all these methods converge, then we shall use the fastest one (em-
pirically deduced).

Remark. In the case of the function considered in Examples 3.1-3.3, p = 1
is a repulsive fixed point of T with respect to the Picard iteration, but, as
shown in the preceding example, it is an attractive fixed point with respect
to Krasnoselskij, Mann and Ishikawa iterations.

The next example presents a function with two repulsive fixed points with
respect to the Picard iteration.
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Example 9.4. Let K = [0, 1] and T : K → K given by Tx = (1 − x)6.
Then T has p1 ≈ 0.2219 and p1 ≈ 2.1347 as fixed points (obtained with

Maple). Both of them are repulsive fixed points with respect to the Picard
iteration. However, p1 is attractive with respect to Krasnoselskij, Mann and
Ishikawa iterations, while p2 stays repulsive.

Here there are some numerical results obtained by running the new version
of the program FIXPOINT, to support the previous assertions.

Krasnoselskij iteration: if we start from x0 = 2 and the parameter that
defines the iteration is λ = 0.5, then we obtain x1 = 1.5, x2 = 0.757, x3 =
0.379, x4 = 0.2181, x5 = 0.2232 and x6 = 0.2214;

Mann iteration: if we start from x0 = 2 and the parameter sequence
is αn = 1/(n + 1), then we obtain x1 = 1.0, x2 = 0.5, x3 = 0.338, x4 =
0.2748, x5 = 0.2489 and x6 = 0.2378;

Ishikawa iteration: if we start from x0 = 2 and the parameter sequences
are αn = 1/(n + 1) and βn = 1/(n + 2), then we obtain x1 = 0.01, x2 =
0.55, x3 = 0.346, x4 = 0.2851, x5 = 0.2527 and x6 = 0.2392;

The previous numerical results suggest that Krasnoselskij iteration con-
verges faster than both Mann and Ishikawa iterations. This fact is more clearer
illustrated if we choose x0 = p2, the repulsive fixed point of T : after 20 it-
erations, Krasnoselskij method gives x20 = 0.2219, while Mann and Ishikawa
iteration procedures give x20 = 0.6346 and x20 = 0.6347, respectively. The
convergence of Mann and Ishikawa iteration procedures is indeed very slow in
this case: after 500 iterations we get x500 = 0.222 for both methods.

Note that for x0 ∈ {−2, 3, 4} and the previous values of the parameters λ,
αn and βn, all three iteration procedures: Krasnoselskij, Mann and Ishikawa,
converge to 1, which is not a fixed point of T .

We may infer that, for the function above and, possibly, for all functions
possessing similar properties, one can expect that always Picard iteration
converges faster than Mann or Ishikawa iterations.

The next step would be of course to try to prove (or disprove) this asser-
tion, if possible, but certainly this is not an easy task.

However, sometimes this approach could be successful. It is perhaps im-
portant to stress on the fact that the conclusions of Theorems 9.5 and 9.6
were reached in this way: we first observed empirically the behavior of Picard
iteration, Mann iteration and Ishikawa iteration for many different sets of ini-
tial data and parameters and then tried to prove analytically the observed
property.

9.7 Bibliographical Comments

§9.1.

The material included in this section is related to that presented in Berinde
[Be02b], [Be02d]. Definitions 9.1 is taken from Berinde [Ber98].
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§9.2.

The content of this section, including Theorems 9.1-9.3, is taken from
Rhoades [Rho76]. In proving Theorem 9.1 we also used several arguments
from the proof in Franks and Mrazec [FrM71].

§9.3.

All results in this section are taken from Berinde [Be04f].

§9.4.

Theorems 9.5 and 9.6 in this section are taken from Berinde [Be04b]. As
indicated in the paper Berinde [Be05a], in a similar manner one can prove
that in the class of Zamfirescu operators, Mann iteration converges faster
than Ishikawa iteration. This was accomplished by Babu and Vara Prasad
[BaV06], a result which is stated in Theorem 9.7.

§9.5.

The content of this section is adapted after the paper with the same title
Berinde, V. and Berinde, M. [BB05a].

§9.6.

The first empirical study of the fixed point iterative procedures is due to
Rhoades [Rh77c], which is the source of the results given at the beginning of
this section. The rest of the empirical studies presented were performed by
the author and were published for the first time in Berinde [Be02c].

The numerical tests reported in Example 9.4 are given here for the first
time. They could suggest new directions of investigation regarding the rate
of convergence for those fixed point iterative procedures. We remind that the
results demonstrated in the paper [Be04b] and announced in [Be05a] were
initially suggested by numerical tests with the program FIXPOINT.

Exercises and Miscellaneous Results

9.1. Let {an} and {bn} be two sequences of real numbers given by

an =
1

nα
, bn =

1
2n

, n ≥ 1.

Find the values of α such that {bn} converges faster than {an} to zero.

9.2. Let {an} be a sequence defined by a0 ∈ [−2,+∞) and

an+1 =
√

2 + an, n ≥ 0.

Show that {an} converges to 2 at least as fast as the sequence {1/4n} to zero.



220 9 Error Analysis of Fixed Point Iteration Procedures

9.3. Let {xn} be given by xn+1 =
1
2

(
xn +

2
xn

)
, n ≥ 1, x1 > 0. Show that

{xn} converges to
√

2 faster than any sequence
{
1/nk

}
n∈N∗ to zero, k ∈ N

∗.

9.4. Rhoades (1977)
Let f : [0, 1] → [0, 1] be continuous and nondecreasing. Denote
M = sup{x|x ∈ Ff}, m = inf{x|x ∈ Ff} and

xc
n+1 = cnf(xc

n) + (1 − cn)xc
n,

where {cn} is a sequence in [0, 1]. Let {αn} be a sequence in [0, 1] with α0 = 1

and
∞∑

n=0
αn = ∞. For xα

0 = xβ
0 , define the sequences {xα

n}, {xβ
n} , n ≥ 0 ,

where 0 ≤ αn ≤ βn ≤ 1. Show that
(a) The sequence {xα

n} converges to a fixed point of f ;
(b) If xα

0 > M , then xα
n ≥ xβ

n , for all n ≥ 0 ;
(c) If xα

0 < m, then xα
n ≤ xβ

n , for all n ≥ 0 ;
(d) If there exists a pair of distinct adjacent fixed points p, q of f satisfying
m ≤ p ≤ q ≤ M , and xα

0 ∈ (p, q), then f(x) > x for x ∈ (p, q) implies
xα

n ≤ xβ
n , n ≥ 0 , and f(x) < x for x ∈ (p, q) implies xα

n ≥ xβ
n , n ≥ 0 ;

(e) Deduce that for nondecreasing continuous functions, Picard iteration is
the best fixed point iteration procedure, in the sense that

|fn(xα
0 ) − p| ≤ |xα

n − p|, for all n ≥ 0,

where p is the fixed point to which {xα
n} converges.

9.5. Let T : [0, 1] → [0, 1] be given by T (x) = (1 − x)6, x ∈ [0, 1].
(a) Show that T has a unique fixed point p ∈ [0, 1];
(b) Prove or disprove the following statements (one can use software packages
like Maple, Mathematica etc. if needed):
(b1) The Picard iteration {xn} converges to p, for any x0 ∈ [0, 1];
(b2) The Krasnoselskij iteration {yn} converges to p, for any y0 ∈ [0, 1] and
appropriate parameter λ;
(b3) The Mann iteration {zn} converges to p, for any z0 ∈ [0, 1] and an ap-
propriate sequence αn;
(b3) The Ishikawa iteration {un} converges to p, for any u0 ∈ [0, 1] and ap-
propriate sequences αn and βn;
(c) Prove or disprove the following statements (one can use software packages
like Maple, Mathematica etc):
(c1) The Picard iteration {xn}, converges to p, for some x0 ∈ [0, 1];
(c2) For any Mann iteration {zn} that converges to p, there exists a Kras-
noselskij iteration {yn} that converges faster than {zn};
(c3) For any Ishikawa iteration {un} that converges to p, there exists a Kras-
noselskij iteration {yn} that converges faster than {zn} to p.
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List of Symbols

N= {0, 1, ..., n, ...} ;
Z= {... − n, ...,−2,−1, 0, 1, 2, ..., n, ...}
N∗ = {1, 2, ..., n, ...} ;
R= the set of all real numbers
[a, b] - the closed interval , a, b ∈ R
(a, b) - the open interval , a, b ∈ R
∂D - the boundary of the domain D
|x| - the absolute value of x, x ∈ R
∅ - the empty set
For T : X → X a mapping,

D(T ) is the domain of T
R(T ) - the range of T
FT = {x ∈ X : Tx = x} or Fix (T ) - the set of fixed points of T
I = IX - the identity map
T 0 = 1X , T 1 = T, ..., Tn = T ◦ Tn−1, ... - the iterates of T
0T (x, n) = {x, Tx, ..., Tnx};

For (X, d) a metric space,
B(a,R) = {x ∈ X : d(x, a) < R}, R > 0 is the open ball
B(a,R) = {x ∈ X : d(x, a) ≤ R}, R > 0 - the closed ball
δ (A) = sup{d(a, b) : a, b ∈ A} - the diameter of A ⊂ X

For (E, ‖·‖) a normed space,
E∗ is the dual of E
E∗∗ - the bidual of E
Jx (jx) - the normalized (single valued) duality mapping
ρE - the modulus of smoothness of E
δE - the modulus of convexity of E
co K - the convex hull of K
diam(K) - the diameter of the set K
xn ⇀ x means that xn converges weakly to x



306 List of symbols

For (E, ‖·‖) a normed space and T : X → X a mapping,
K(x0, λ, T ) is the Krasnoselskij iteration associated to the operator

T , the initial guess x0 and parameter λ

M(x0, A, T ) - the (general) Mann iteration associated to the operator
T , the initial guess x0 and matrix A

M(x0, αn, T ) - the (normal) Mann iteration associated to the operator
T , the initial guess x0 and parameter sequence {αn}

I(x0, αn, βn, T ) - the Ishikawa iteration associated to the operator T ,
the initial guess x0 and parameter sequences {αn}, {βn}
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