
Research Notes in Mathematics

Lawrence Dresner

88

Similarity solutions of
nonlinear partial
differential equations

it
Pitman Advanced Publishing Program
BOSTON - LONDONMELBOURNE



Lawrence Dresner
Oak Ridge National Laboratory, Oak Ridge, Tennessee

Similarity solutions of
nonlinear partial
differential equations

it

Pitman Advanced Publishing Program
BOSTON LONDON MELBOURNE



PITMAN BOOKS LIMITED
128 Long Acre, London WC2E 9AN

PITMAN PUBLISHING INC
1020 Plain Street, Marshfield, Massachusetts 02050

Associated Companies
Pitman Publishing Pty Ltd, Melbourne
Pitman Publishing New Zealand Ltd, Wellington
Copp Clark Pitman, Toronto

Oak Ridge National Laboratory 1983

First published 1983

AMS Subject Classifications: (main) 35-02, 35A25, 35G25
(subsidiary) 35G30, 35899, 35C99

Library of Congress Cataloging in Publication Data

Dresner, Lawrence
Similarity solutions of nonlinear partial differential

equations.

(Research notes in mathematics: 88)
"Pitman advanced publishing program."
Bibliography: p.
Includes index.
1. Differential equations, Partial-Numerical

solutions. 2. Initial value problems-Numerical
solutions. 1. Title. II. Series.
QA377.D765 1983 515.3'53 83-7404
ISBN 0-273-08621-9

British Library Cataloguing in Publication Data

Dresner, Lawrence
Similarity solutions of nonlinear partial differential
equations.-(Research notes in mathematics; 88)
1. Differential equations, Partial
2. Differential equations, Nonlinear
1. Title II. Series
515.3'53 QA373

ISBN 0-273-08621-9

All rights reserved. No part of this publication may he reproduced,
stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording and/or
otherwise, without the prior written permission of the publishers.
This book may not be lent, resold, hired out or otherwise disposed
of by way of trade in any form of binding or cover other than that
in which it is published, without the prior consent of the publishers.

Reproduced and printed by photolithography
in Great Britain by Biddies Ltd, Guildford



Research Notes in Mathematics

Main Editors
A. Jeffrey, University of Newcastle-upon-Tyne
R. G. Douglas, State University of New York at Stony Br.,.,,.

Editorial Board
F. F. Bonsall, University of Edinburgh
H. Brezis, Universite de Paris
G. Fichera, Universite di Roma
R. P. Gilbert, University of Delaware
K. Kirchgassner, Universitat Stuttgart
R. E. Meyer, University of Wisconsin-Madison
J. Nitsche, Universitat Freiburg
L. E. Payne, Cornell University
G. F. Roach, University of Strathclyde
I. N. Stewart, University of Warwick
S. J. Taylor, University of Liverpool

Submission of proposals for consideration
Suggestions for publication, in the form of outlines and representative
samples, are invited by the editorial board for assessment. Intending
authors should contact either the main editor or another member of the
editorial board, citing the relevant AMS subject classifications. Refereeing
is by members of the board and other mathematical authorities in the
topic concerned, located throughout the world.

Preparation of accepted manuscripts
On acceptance of a proposal, the publisher will supply full instructions
for the preparation of manuscripts in a form suitable for direct photo-
lithographic reproduction. Specially printed grid sheets are provided
and a contribution is offered by the publisher towards the cost of typing.

Illustrations should be prepared by the authors, ready for direct
reproduction without further improvement. The use of hand-drawn
symbols should be avoided wherever possible, in order to maintain
maximum clarity of the text.

The publisher will be pleased to give any guidance necessary during the
preparation of a typescript, and will be happy to answer any queries.

Important note
In order to avoid later retyping, intending authors are strongly urged
not to begin final preparation of a typescript before receiving the
publisher's guidelines and special paper. In this way it is hoped to
preserve the uniform appearance of the series.



Titles in this series

1 Improperly posed boundary value problems
A Carasso and A P Stone

29 Elongational flows: Aspects of the behaviour
of model elasticoviscous fluids

2 Lie algebras generated by finite dimensional C J S Petrie
ideals
I N Stewart

30 Nonlinear analysis and mechanics:
Heriot-Watt Symposium Volume III

3 Bifurcation problems in nonlinear R J Knops
elasticity
R W Dickey

31 Fractional calculus and integral transforms of
generalized functions

4 Partial differential equations in the complex A C McBride
domain
D L Colton

32 Complex manifold techniques in theoretical
physics

5 Quasilinear hyperbolic systems and waves D E Lerner and P D Sommers
A Jeffrey 33 Hilbert's third problem: scissors congruence

6 Solution of boundary value problems by the C-H Sah
method of integral operators
D L Colton

34 Graph theory and combinatorics
RJ Wilson

7 Taylor expansions and catastrophes
T Poston and I N Stewart

35 The Tricomi equation with applications to the
theory of plane transonic flow

8 Function theoretic methods in differential A R Manwell
equations
R P Gilbert and R J Weinacht

36 Abstract differential equations
S D 7aidman

9 Differential topology with a view to
applications

37 Advances in twistor theory
I- P Hughston and R S Ward

D R J Chillingworth 38 Operator theory and functional analysis
10 Characteristic classes of foliations I Erdelyi

H V Pittie 39 Nonlinear analysis and mechanics:
I 1 Stochastic integration and generalized

martingales
Heriot-Watt Symposium Volume IV
R J Knops

A U Kussmaul 40 Singular systems of differential equations
12 Zeta-functions: An introduction to algebraic S L Campbell

geometry
A D Thomas

41 N-dimensional crystallography
R L E Schwarzenberger

13 Explicit a priori inequalities with applications to
boundary value problems
V G Sig"lito

42 Nonlinear partial differential equations in
physical problems
D Gralll

14 Nonlinear diffusion
W E Fitzgibbon III and H F Walker

43 Shifts and periodicity for right invertible
operators

15 Unsolved problems concerning lattice points D Przeworska-Rolewicz
J Hammer 44 Rings with chain conditions

16 Edge-colourings of graphs A W Chatters and C R Hajarnavis
S Fiorini and R J Wilson 45 Moduli. deformations and classifications

17 Nonlinear analysis and mechanics:
Heriot-Watt Symposium Volume I

of compact complex manifolds
D Sundararaman

R J Knops 46 Nonlinear problems of analysis in
18 Actions of fine abelian groups

C Kosniowski
geometry and mechanics
M Atteia, D Bancel and I Gumowski

19 Closed graph theorems and webbed spaces
M De Wilde

47 Algorithmic methods in optimal control
W A Gruver and E Sachs

20 Singular perturbation techniques applied to
integro-differential equations
H Grabmuller

48 Abstract Cauchy problems and
functional differential equations
F Kappeland W Schappacher

21 Retarded functional differential equations:
A global point of view

49 Sequence spaces

W H Ruckle
S E A Mohammed 50 Recent contributions to nonlinear

22 Multiparameter spectral theory in Hilbert space
B D Sleeman

partial differential equations
H Berestycki and H Brezis

24 Mathematical modelling techniques
R Aris

51 Subnormal operators
J B Conway

25 Singular points of smooth mappings
C G Gibson

52 Wave propagation in viscoelastic media
F Mainardi

26 Nonlinear evolution equations solvable by the
spectral transform
F Calogero

53 Nonlinear partial differential equations and
their applications: College de France
Seminar. Volume I

27 Nonlinear analysis and mechanics: H Brezis and J L Lions
Heriot-Watt Symposium Volume 11
R J Knops

54 Geometry of Coxeter groups
H Hiller

28 Constructive functional analysis
D S Bridges

55 Cusps of Gauss mappings
T Banchoff, T Gaffney and C McCrory



56 An approach to algebraic K-theory
A J Berrick

81 An algorithmic analysis of a communication
model with retransmission of flawed messages

57 Convex analysis and optimization D M Lucantoni
J-P Aubin and R B Vintner 82 Geometric games and their applications

58 Convex analysis with applications in W H Ruckle
the differentiation of convex functions
JRGiles

83 Additive groups of rings
S Feigelstock

59 Weak and variational methods for moving
boundary problems
C M Elliott and J R Ockendon

84 Nonlinear partial differential equations and
their applications: College de France
Seminar. Volume IV

60 Nonlinear partial differential equations and H Brezis and J L Lions
their applications: College de France
Seminar. Volume 11
H Brezis and J L Lions

85 Multiplicative functionals on topological
algebras
T Husain

61 Singular systems of differential equations 11
S L Campbell

86 Hamilton-Jacobi equations in Hilbert spaces
V Barbu and G Da Prato

62 Rates of convergence in the central limit
theorem
Peter Hall

87 Harmonic maps with symmetry, harmonic
morphisms and deformations of metrics
P Baird

63 Solution of differential equations
by means of one-parameter groups
J M Hill

88 Similarity solutions of nonlinear partial
differential equations
L Dresner

64 Hankel operators on Hilbert space
S C Power

89 Contributions to nonlinear partial differential
equations

65 Schrodinger-type operators with continuous
spectra

C Bardos, A Damlamian, J I Diaz and
J Hernandez

M S P Eastham and H Kalf 90 Ranach and Hilbert spaces of vector-valued
66 Recent applications of generalized inverses

S L Campbell
functions
J Burbea and P Masani

67 Riesz and Fredholm theory in Banach algebra
B A Barnes, G J Murphy, M R F Smyth and

91 Control and observation of neutral systems
D Salamon

TT West 92 Banach bundles, Banach modules and
68 Evolution equations and their applications

F Kappel and W Schappacher
automorphisms of C'-algebras
M J Dupre and R M Gillette

69 Generalized solutions of Hamilton-Jacobi
equations
P L Lions

93 Nonlinear partial differential equations and
thcir applications: College de France
Seminar. Volume V

70 Nonlinear partial differential equations and
their applications: College de France
Seminar. Volume III
H Brezis and J L Lions

H Brezis and J L Lions

71 Spectral theory and wave operators for the
Schrodinger equation
A M Berthier

72 Approximation of Hilbert space operators I
D A Herrero

73 Vector valued Nevanlinna Theory
H J W Ziegler

74 Instability, nonexistence and weighted
energy methods in fluid dynamics
and related theories
B Straughan

75 Local bifurcation and symmetry
A Vanderbauwhede

76 Clifford analysis
F Brackx, R Delanghe and F Sommen

77 Nonlinear equivalence, reduction of PDEs
to ODEs and fast convergent numerical
methods
E E Rosinger

78 Free boundary problems, theory and
applications. Volume I
A Fasano and M Primicerio

79 Free boundary problems, theory and
applications. Volume II
A Fasano and M Primicerio

80 Symplectic geometry
A Crumeyrolle and J Grifone



To

Blanche,

Steven, Faye, David, and Eva.



"My simple art ... is but systematized common sense."

A. Conan Doyle, "The Adventure

of the Blanched Soldier"



Preface

The method of similarity solutions for solving nonlinear partial differential

equations has produced a plentiful harvest of results since Birkhoff called

attention to it in 1950. The general references in the bibliography at the

end of this book cite hundreds of successful individual works. In spite of

this success, the method is still not as widely known as equally fruitful

methods for solving linear partial differential equations, e.g., separation

of variables or Laplace transforms. To popularize the method of similarity

solutions, to teach it as a practical technique, to make it a part of the

daily armament of the technologist, is the goal of this book.

In harmony with this goal, I have kept the book short and refrained from

any great mathematical rigor. To keep the pace swift, I have avoided making

an exhaustive survey of the literature. The illustrative examples are drawn

mainly from my own work. For most partial differential equations, I have

sketched as briefly as possible the physical background. I have not dwelt on

it overmuch because our concern here is with the mathematics, but I have not

omitted it either because I believe that knowing the physical background

helps make clear why we proceed as we do.

This book should be of interest to scientific researchers and practitioners,

graduate students, and senior honors undergraduates in the natural sciences,

engineering and mathematics. It can serve as the basis of a 30-hour course

of lectures at the graduate or senior honors level and has already done so in

the Professional Education Program of the Oak Ridge National Laboratory.

To read this book, all one needs to know is the calculus and something

about differential equations. Anyone with a good undergraduate education in

science, engineering or mathematics should have no trouble, though it will

help if he is strong in calculation.

I wish to express my gratitude to Drs Y. Obata and S. Shimamoto of the

Japan Atomic Energy Research Institute for their hospitality during my sojourn

at their laboratory in 1981-82. It was the comfort and tranquility of my

surroundings there that enabled me to do most of the thinking that underlies

this book. To Mr M. S. Lubell of the Magnetics and Superconductivity Section



of Oak Ridge National Laboratory go my thanks for his encouragement and

appreciation and for making available to me the time and resources to prepare

the manuscript. And finally my thanks go to the Reports Office of the Fusion

Energy Division of Oak Ridge National Laboratory for their meticulous editor-

ial work.

Lawrence Dresner

Oak Ridge, Tennessee

January 1983
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1 Introduction

Everyone can remember from his school days that proving geometrical theorems

about triangles or dynamical theorems about planetary orbits is easier if

the triangles are equilateral or the orbits circular. Symmetrical problems

are the simplest ones to solve. The symmetry of the equilateral triangle

and that of the circle are obvious because these figures can readily be vis-

ualized. Less obvious but equally real is the algebraic symmetry of ordinary

and partial differential equations, which, if present, can facilitate the

solution of the equations just as geometrical symmetry can facilitate the

solution of geometrical problems. How to exploit the algebraic symmetry of

differential equations is what this book is about.

What exactly does 'algebraic symmetry' mean? According to usage long

established in mathematics, an object has symmetry if performing certain

operations on it leaves it looking the same. For example, rotating an equi-

lateral triangle by 120° around its centroid does not change its appearance.

If we hide our eyes, we cannot tell afterwards if the triangle has been

rotated. We express the symmetry of the triangle by saying it is invariant

to rotation of 120° around its centroid. It is invariant to other trans-

formations as well: if we reflect it about one of its altitudes, the image

looks the same as the object. The circle, even more symmetric than the tri-

angle, is invariant to all rotations around its centroid and to reflection in

any diameter.

Differential equations, both ordinary and partial, are sometimes invariant

to groups of algebraic transformations, and these algebraic invariances, like

the geometric ones mentioned above, are also symmetries. About a hundred

years ago, the Norwegian mathematician Sophus Lie hit upon the idea of using

the algebraic symmetry of ordinary differential equations to aid him in their

solution [C031, D123]. In the course of his work, he achieved two profoundly

important results: he showed how to use knowledge of the transformation group

(1) to construct an integrating factor for first-order ordinary differential

equations and (2) to reduce second-order ordinary differential equations to

first order by a change of variables. These two results are all the more

1



important because they do not depend on the equation's being linear. Both

play central roles in this book.

Also about a hundred years ago, the Austrian physicist Boltzmann [B094]

used the algebraic symmetry of the partial differential diffusion equation

to study diffusion with a concentration-dependent diffusion coefficient. To

my knowledge, Boltzmann made no explicit mention of transformation groups or

symmetry, but his procedure was the same one that is used today. The crux

of his method is using the symmetry to find special solutions of the partial

differential equation by solving a related ordinary differential equation.

The American mathematician Garrett Birkhoff was first to recognize that

Boltzmann's procedure depended on the algebraic symmetry of the diffusion

equation and could be generalized to other partial differential equations,

including nonlinear ones [BI50]. Using the algebraic symmetry of the partial

differential equation, he showed how solutions can be found merely by solving

a related ordinary differential equation, a much easier task. For reasons

that become clear later, such solutions are called similarity solutions.

After Birkhoff's work called attention to them, similarity solutions were

found for a great many physical problems in such diverse fields as heat and

mass transfer, fluid dynamics, solid mechanics, applied superconductivity

and plasma physics. In most of these problems two common features recurred.

First, the transformation groups leaving the partial differential equation

invariant were families of stretching groups G of the form x' = aax, y' =

Oy,..., 0 < a < Second, the partial differential equations were of second

order.

In problems with the second feature, the related ordinary differential

equation is also of second order. In some cases, this second-order ordinary

differential equation is integrable in terms of elementary or tabulated

functions, but in most cases it is not. Some time ago, I observed that in

problems with the first feature also, the second-order ordinary differential

equation is invariant to a stretching group G' related to the family of

groups G to which the partial differential equation is invariant [DR80]. By

using Lie's second theorem mentioned above, then, the second-order ordinary

differential equation can be reduced to first order by a change of variables.

The first-order equation can be analyzed very conveniently by studying its

direction field.

At this point, it will help to introduce some abbreviations and new terms.

2



Henceforth, the abbreviations pde, ode and deq will stand for partial dif-

ferential equation, ordinary differential equation and differential equation,

respectively. The second-order pde under consideration, being the only one

involved in the problem, will be called simply the pde. The family of

stretching groups G to which the pde is invariant will be called the princi-

pal group , and the second-order ode obtained with the help of the principal

group will be called the principal deq. The stretching group G' to which

the principal ode is invariant will be called the associated group, and the

first-order ode obtained with the help of the associated group will be called

the associated deq. Figure 1 summarizes this scheme of terminology.

BI RKHOFF'S
IDEA

LIES
THEOREM

Fig. 1. Scheme of terminology used in this book

The direction field of the associated deq bears a relation to the princi-

pal deq similar to that which the phase plane bears to an autonomous second-

order deq of motion. For this reason, and because the associated deq is

obtained with the help of Lie's theorem, about ten years ago I proposed

calling this direction field the Lie plane [DR71]. This name is used in

this book.

Not every physical problem describable by the pde is solvable by the pro-

cedure sketched in Fig. 1, i.e., not every solution of the pde is a similar-

ity solution. Whether a particular problem has a similarity solution depends

on the boundary and initial conditions. All other writers on this subject

have concentrated on finding physical problems having similarity solutions

and have usually solved the principal deq numerically. In other words, they

have concentrated exclusively on the left half of Fig. 1. In this book I

place emphasis on the right half of Fig. 1 and especially on analysis of the

Lie plane.

Several substantial benefits arise from the study of the Lie plane.

3



First, the singular points of the associated ode and the separatrices that

may join them occasionally provide the limiting behaviours of the similarity

solution. The illustrative problems in this book contain several practical

results obtained in this way. Second, when the solution of the principal

deq is determined by two-point boundary conditions, study of the Lie plane

sometimes enables us to avoid the trial and error of the usual shooting

method. It also allows us to decide the stable direction of numerical inte-

gration when that is necessary. And last, study of the Lie plane sometimes

allows us to identify special solutions of the pde that might otherwise go

unnoticed.

Because of these benefits and because the method of similarity solutions

is simple and broadly applicable, it can play a role with respect to non-

linear pdes analogous to the role played by separation of variables with

respect to linear pdes, namely, that of a practical workhorse. This is not

now widely appreciated because at present the method of similarity solutions

is not part of our university curricula. I hope that publication of this

book will be the first step in correcting this oversight and in placing in

the practitioner's hands an important tool.

4



2 Ordinary differential equations

2.1 First-order odes

First-order odes differ from higher-order odes in that the condition they

express can be visualized directly: the deq f(x,y,y) = 0 expresses a relation

between the derivative y = dy/dx and the coordinates x, y that we can plot

by drawing a short line segment with the slope y at each point x, Y. From

such a plot we can see at a glance what kind of solutions the deq has. Such

a plot is called the direction field of the deq.

Figure 2 shows by way of illustration the direction field of the simple

equation y = x. The solutions y(x) of the deq are curves in the (x,y)-plane

tangent at every point to the local line segment (integral curves). It is

easy to see that in Fig. 2 these integral curves are a one-parameter family.

The parameter labeling the individual curves can be their y-intercept, for

example.

Fig. 2. Direction field of the deq y = x

The deq y = x is invariant to the group of transformations y' = A2y,

x' = ax, where A can have any value between 0 and -. This means if we

5



substitute for x and y their values in terms of x' and y', the resulting deq

in x' and y' is the same as the original deq in x and y. The integral curve

y = x2/2 + c, labeled by the y-intercept c, on the other hand, is trans-

formed into the integral curve y' = x'2/2 + a2c, labeled by another y-inter-

cept c' = a2c. But a moment's thought shows that these transformations of

the integral curves among themselves leave the farniZy of integral curves

invariant; for if we plot the integral curves on one piece of paper and

their images on another piece of paper, when we are done the two plots look

the same. The deq is the family, so it must remain invariant, even though

individual integral curves do not.

2.2 Lie's formula for the integrating factor

One conventional representation of the deq f(x,y,,') = 0 is

M(x,y)dx + N(x,y)dy = 0. (1)

If the one-parameter family of integral curves of (1) is represented by

4(x,y) = c, then along any such curve

dx + ¢ dy = 0 (P

a

a a

a%
(2)yx X

From (1) and (2) we see that

x yy -

x _ Y
N (3)

The equal ratios (3) are a function of x and y; call it u(x,y). If we multi-

ply (1) by u(x,y), we convert it into (2), a perfect differential. So u is

an integrating factor for (1).

Suppose now that (1) is invariant to the stretching transformations

y' = x y
(4)

(Note that we lose no generality by choosing the exponent of A in the second

equation to be 1.) Then individual integral curves transform into other

integral curves:

Wx,XSY) = c(a) (5)

6



If we differentiate (5) with respect to A and set x = 1, we get

x$x + SY( (dc1
Y ` )a=1

which can be written as

Thus

x(iM) + 3y(uN) _ 1

(dc/dA)a=1

xM + (3yN

(6)

(7)

(8)

Since (dc/da),=1 is a constant, we can ignore it and use the expression

(xM + 3yN)-1 as an integrating factor.

Lie did not restrict himself to stretching transformations but dealt with

more general groups of transformations. He obtained a formula, of which (8)

is a special case, applicable to any group. Since the groups dealt with in

this book are stretching groups, we have no need for the more general formula.

2.3 Example

As an example, let us consider the deq

Y=Y(

x

which can be written in the standard form (1) as follows

y(y2 - x)dx + x2dy = 0.

It is invariant to the group of transformations

Y =

Al/2Y

In<A<co
x' = ax

According to Lie's theorem

u =
(xy(y2

- x) +
1 2\-1 =

\xy
3 _

1

X Y)x y
l ` /l

is an integrating factor. Then

(9)

(10)

(12)

7



4 =
x2 2 2y

ay xy 1 2y y
+ X

so that

_ -2kny + kn`y2 - x) + F(x)

(13)

(14)

where F(x), an arbitrary function of x, plays the role of integration con-

stant. Differentiating partially with respect to x we find

30 dF 1

(15)
ax &x

2

Comparing this with p M, we see that

dF I- 16)
xx x

so that

F(x) = knx + knA (17)

where knA is an integration constant.

Ax(y2 - xi
(x ) = kn

Then

(18)o ,y

Y

If we set O(x,y) equal to a constant, and write for convenience eo/A = -c/2,

where c is a new constant, we can solve (18) for y and find

x
= (19)Y

x+c

The reader may verify by differentiation that (19) satisfies (9). In so

doing, let the reader note that there are no restrictions on c so that it

may be positive or negative.

2.4 Analysis of the direction field

With the formula (19) available to help us check our conclusions, let us see

what we can learn about the solutions of (9) from its direction field, pro-

ceeding as though we did not have a closed formula for the integral curves.

8



In analyzing a direction field, the first thing to do is to locate the curves

on which dy/dx = 0 or -, i.e., on which M = 0 or N = 0. Only on these lines

does dy/dx change sign so, in the regions between, the sign of dy/dx is

fixed. Shown in Fig. 3 is a sketch of the upper half of the direction field

Fig. 3. Sketch of the direction field and integral curves
(light lines) of Eq. (9)

and integral curves of Eq. (9). Since (9) is invariant to the transformation

y' = -y, x' = x, the upper and lower halves of the direction field are mirror

images of one another; thus we need consider only the upper half. The slope

y is zero on the x-axis and on the curve y = Tx; it is infinite on the y-axis.

It is easy to see from (9) that the slope has the sign in each region shown

in the diagram.

Only one integral curve passes through each point in the direction field,

with the possible exception of those points at which both M and N simultane-

ously vanish. Such points, at which many slopes are possible, are called

singular points. The origin 0 in Fig. 3 is such a singular point. Do inte-

gral curves pass through 0? If so, how do they behave?

Near the origin both x and y become very small. Along any integral curve

approaching the origin, one of three mutually exclusive alternatives must

hold, namely, y << vx, y ti 5, and y >> v. If y >> V, then (9) becomes

-y3/x2, which is easily solvable. It gives 1/2y2 + 1/x = A, a constant.

Thus when x becomes <1/A, y can no longer be real. This contradiction rules

out the possibility of integral curves on which y >> v approaching the

origin.

If y << x, the deq (9) becomes y/x, which again is easily solvable

and gives y = Bx, B = a constant. This behaviour is consistent with the

9



hypothesis y << x and is therefore possible. If y ti A-, we can set y =

and substitute in (9). We find that D can only have the value J7/2, so we

have found the special solution to (9), y = vrx-17. It is shown in Fig. 3

marked S.

The same three possibilities exist as x But now only the possi-

bility y = 7£ avoids a contradiction. This means all integral curves in

the first quadrant asymptotically approach the curve S.

The only possibility for integral curves lying above the line S is y >> Tx,

so that each integral curve in this region crosses y = A_ and has a vertical

asymptote at some finite value of x.

With these facts at hand, we can sketch the first quadrant of the direc-

tion field shown in Fig. 3. It is easy to see that S corresponds to c = 0,

the integral curves above S correspond to c < 0, and those below S to c > 0.

A similar analysis shows that the second quadrant must also look as sketched,

and reference to (19) shows that in the second quadrant c > 0 and the nega-

tive sign of the square root must be used.

2.5 Separatrices

According to transformation (11),
x-112

y. Therefore, integral curves

whose slope is positive everywhere can only transform into other integral

curves whose slope is positive everywhere. The same is true for integral

curves whose slope is negative everywhere, and also for integral curves

whose slope is zero somewhere. This means that the integral curves in the

first quadrant lying below S transform into themselves, whose lying above S

transform into themselves, and those lying in the second quadrant transform

into themselves. The separatrix S, being the only integral curve having an

infinite slope at the origin, must be its own image under (11). This is

easily verified.

Being its own image is a general property of separatrices that we can

employ to calculate them without solving the differential equation. If

g(x,y) = 0 represents the separatrix, then g(x',y') = 0 does as well. Thus

on the separatrix

g(hx,ABY) = 0. (20)

Again we differentiate with respect to x and set A = 1. We can rearrange

the result in the form

10



_ag/ax=By
ag/ay x

(21)

Now the left-hand side of (21) is the slope dy/dx of g(x,y) at the point

x,y. The separatrix, lying infinitesimally close to other integral curves,

must also be an integral curve. Hence, it must be given by the equivalent

algebraic equations

f`x,y. SY) = 0 (22)

or

xM + ByN = 0. (23)

In the case of deq (10), (23) gives x = 0, y = 0, and y = x 2 as invariant

curves, i.e., curves that are their own images. All are separatrices.

2.6 Separation of variables

An alternative to introducing an integrating factor in first-order odes is

to separate variables. Here, too, group invariance can help. In general,

to separate variables one must introduce new "canonical" coordinates calcu-

lablefrom the transformation group of the ode. But in the case of a stretch-

ing group, it is sufficient to replace the dependent variable by a group

invariant u = y/xB. For, suppose we write the deq in the form

y - F(x,y) (24)

Then,

- B
x

( - Bud. (25)

xdx

Now when x and y transform according to (4), then

of (24) to the transformation (4) means

0-1y = F(ax,ABy)

Differentiating (26) with respect to a and setting A

xFx + ByFy = (3 - 1)F.

The invariance
y, = AB-ly.

= 1, we find

(26)

(27)

11



The standard method of finding the general solution of (27) is to find two

integrals of the associated characteristic equations

dx _ dy dF

X sY 6-)F (28)

and set one equal to an arbitrary function of the other. Two such integrals

are F/xs-1 and y/x8. Thus, most generally,

xsf = G(L) = G(u).

Then we can write (25) as

dx du

X G(u) - SU

(29)

(30)

in which the variables are separated.

It follows from (30) that the variables will also separate if we use any

arbitrary function of u as the new dependent variable. If the reader will

return now to the example of Eq. (9) and use the invariant y2/x as the new

dependent variable, he will find the labour of calculation required to obtain

(19) somewhat reduced.

2.7 Second-order odes

The idea of using a group invariant as a new variable can be extended to

second-order odes. Lie proposed using an invariant u(x,y) and a first

differential invariant v(x,y,y) as new independent and dependent variables.

For the stretching group (4), u = y/x8 and v =
y/xs-1

are an invariant and

a first differential invariant. Differentiating them along an

curve we find

x dx = x S-22 - ( S - 1) S 11

- X - ( S - 1) v

x du
dx-xgy1 -8 =v-(3u

so that

integral

(31a)

(31b)

12



dv _ y/xB-2 - (B - 1)v

TU_ -Bu

Suppose we write the second-order ode as

Y = F(x,y,y)

Invariance of this deq to the transformations (4) means

0-2y
= F(ax,ABy, 6-1y)

Again differentiating with respect to A and setting A = 1, we find

x Fx + RyFy + ( B - 1),y Fy = (S - 2) F

The characteristic equations of (34) are

dx day dyy - dF
x Py IN - fly 7(B - 2)

(31c)

(32)

(33)

(34)

(35)

Equations (35) have three independent integrals which can be taken as

y/xB = u,
y/xR-1

= v, and F/x6-2. The most general solution of (34) is

obtained by setting one of these integrals equal to an arbitrary function of

the other two, namely,

F/xB-2 = G(u,v).

Noting that y = F, we see that in view of (36), we can write (31c) as

dv - G(u,v) - (S - 1)v
du v- u

(36)

(37)

a first-order deq for v in terms of u.

If we succeed in integrating (37) we then obtain v as a function of u.

This relation represents a first-order deq for y in terms of x and so must

be integrated again to obtain y as a function of x. But it, too, is invar-

iant to (4) and so may be dealt with either by applying an integrating factor

or by separating variables. If we cannot integrate the first-order deq (37),

by far the commonest case, we proceed by studying its direction field. In

this way, we can learn much useful information about the solutions of the

second-order deq (32).

13



2.8 Example: Emden-Fowler equation

The Emden-Fowler equation

Y+2y+yn =0x
(38)

arises in the study of the equilibrium mass distribution in a cloud of gas

with adiabatic exponent (n+1)/n held together by gravitational force. Equa-

tion (38) is invariant to a stretching group like (4) with S = -2/(n-1).

Taking u =
yx2/(n-1)

and v =
yx(n+1)/(n-1),

we find

dv (n - 1)un + (n - 3)v
_d _u (n 1)v +

When n = 5, (39) is integrable and gives

3uv + 3v2 + u6 = constant

or, in terms of x and y,

(39)

(40a)

3x2yy + 3x3 y2 + x 3 y 6 = constant. (40b)

Now the solutions we want must be finite and have zero derivative at the

origin x = 0 because y is the gravitational potential. So the constant in

(40b) must be zero.

Equation (40b) is also invariant to group (4) with 6 = -1/2 (n = 5). If

we introduce the invariant w = u2 = xy2, we can separate variables. After a

short calculation, we find

dw

x w13-w2)1/2
(41)

which can be integrated after making the substitution w = (,T3/2) sin (e/2).

After some further computation we find

w = 2 2, a = constant
x + 3a

or

y _ ( 3a 11/2

x2 2

(42a)

(42b)

14



This solution is already known (DA 601.

When n = 3, (39) is not simply integrable, and the analysis of its direc=tion

field provides an illustration of the subtleties we may encounter in the

analysis of nonlinear first-order deqs. Equation (39) becomes

dv u3cTuu+v
the direction field of which is shown in Fig. 4.

2

i

V 0

-i

-2

-------------

-2 0

u

i 2

Fig. 4. Direction field of Eq. (43)

(43)

The integral curves circle the origin at large enough radii, but once within

a critical radius they approach the origin, drawing ever nearer to the line

v = -u as they do so. Curves intersecting the line v = -u at abscissas whose

absolute value is greater than some value u0, make one more counterclockwise

circuit of the origin, shrinking as they do so; curves intersecting v = -u

at abscissas whose absolute value is less than u0 approach the origin along

the line v = -u. What about the exceptional integral curve that intersects

the line v = -u at u = ±u0? It approaches the origin along the u-axis, i.e.,

with zero slope.

Because y is finite and y = 0 at x = 0, the origin u = xy = 0, v = x2jr = 0

in the u,v plane must lie on the integral curve of (43) that we want. How do

15



x and y behave as the various integral curves approach the origin? The

integral curves that approach the line v = -u near the origin have equations

of the form v = -u + c(u) where c has the same sign as u and approaches zero

faster than u. Then

x =x2y+xy=u+v=F
TX-

Rn x = lu
du

c

(44)

(45)

As u -> 0, the right-hand side of (45) approaches -- so that x 0. Further-

more, since E + 0 faster than u does, x must approach zero faster than u

does. But since y = u/x, y -, ± = as x -. 0, the sign depending on the sign

of u. So the integral curves that approach the origin along v = -u cannot

be the ones we want.

What about the exceptional curve that approaches the origin with zero

slope? Zero slope means that near the origin u >> v, so that (43) becomes

dv/du = -u2. Thus v = -u3/3 is the equation of this integral curve near the

origin. Written in terms of x and y, this becomes y/x = -y3/3 near x = 0.

This result gives us the otherwise indeterminate limit of y/x, and substitu-

tion into the Emden-Fowler equation itself shows that y(0) = -y3(0)/3.

As we advance away from the origin in the Lie plane, the integral curves

spiral out from the origin. Each time they cross the line u = 0, y = 0; each

time they cross the line v = 0, y = 0. So the solutions oscillate as x in-

creases. In the physical application of the Emden-Fowler equation to stellar

constitution, only the part out to the first root is of importance.

In this case, we cannot profitably go further without some numerical work,

which we shall not undertake here. The points of the present discussion are

two: first, to show how the desired solution to a physical problem may cor-

respond to an exceptional solution of the associated first-order ode, and

second, how knowing this we may sometimes obtain the limiting behaviour of

the desired solution (in this case, y = y(0) - x2y3(0)/6 + ...). In the

solution of problems governed by pdes, such limiting behaviours sometimes

provide us with useful physical information.

16



3 Linear diffusion

3.1 Birkhoff's idea

We saw in Chapter 2 that if a symmetry group of the deq is known, it is

possible to calculate an invariant integral curve such as a separatrix

algebraically, i.e., without integrating the deq. Of course this procedure

is useful only if the invariant curve obeys boundary conditions that make it

the solution of a physically interesting problem. Birkhoff [BI50] pointed

out that a similar thing occurs for partial differential equations in two

independent variables: if we know a symmetry group for the pde, we can cal-

culate invariant solutions by solving a related ode rather than the pde it-

self. Again this procedure is useful only if the invariant solution de-

scribes a physically interesting situation.

Although this idea makes its major impact in the realm of nonlinear pdes,

where it has no competitor as widely applicable, it also can be used with

great effect on linear pdes. To show the peculiar features of the method,

we start with the ordinary diffusion equation

Ct = Czz (1)*

It is invariant to the group of transformations

C' = aaC

t'= A 2 t 0 < A< W (2)

z' = az

where a can have any value. Any solution of (1), C = f(z,t), will become

another solution under the transformation (2). If the image solution is

the same as the object, then the solution is invariant to (2). The condition

for this is

* This is the form the diffusion equation takes in special units in which
the diffusivity equals 1. We shall make extensive use of such special
units in this book. Formulas valid in ordinary units, e.g., mks units,
can always be recovered from their more succinct counterparts written in
special units.

17



Aaf(z,t) = f(az,a2t) (3)

(The way to understand condition (3) is as follows. Suppose the point

(z,t,C) lies on an invariant integral surface S, i.e., suppose C = f(z,t).

Its image (z', t', C') also lies on S, so that C' = f(z', t'). Then from

(2) we have x C = f(Xz,a2t). If we now replace C by f(z,t), we get (3).)

If we differentiate (3) with respect to A and set x = 1, we get

zfz + 2tft = af. (4)

The characteristic equations

dz = dt _ df
(5)i of

have the two independent integrals z/t1/2 and f/ta/2, so the most general

form f can take if it is to be invariant to (2) is

f = to/Z

y is an arbitrary function.

If there are invariant solutions they must have the form (6); if we sub-

stitute (6) into (1) it will have to satisfy (1). But the partial deriva-

tives of f are expressible in terms of the ordinary derivatives of y, so (1)

will become an ode for y. Thus

t(a/2)-1 I z
= fC

(O,

(7a)t j7 yft t Z

C = t(a-1)/2
, (7b)

.
z

C =
t(a/2)-1

Y (7c)
zz

and (1) becomes

Y 7ma (8)
t

Now the quantity z/t1/2, which we henceforth abbreviate as x, is the argument

of the function y. So (8) can be written as

18



(9)

an ode for y(x).

In passing from (1) to (9), the various powers of z and t that appeared

in the derivatives of C either cancelled or could be combined into powers of

x. This could only happen because (6) was written in terms of the correct

variables C/ta/2 and z/t1/2. The central role of the group invariance is to

help us discover the correct variables. These correct variables are called

similarity variables.

What about the value of a? It is determined by the boundary and initial

conditions and will be different for different physical problems. We shall

consider several problems here, and we begin with one that is relatively

simple, namely, a half-space,in which initially C = 0,has its face suddenly

raised and held at C = 1. (Think of C as temperature.) The boundary and

initial conditions for this problem are these:

C(O,t) = 1 t > 0 (10a)

C(z,O) = 0 z > 0 (10b)

C(co,t) = 0 t > 0. (10c)

For (6) to satisfy (10a), we must have a = 0 and y(0) = 1. To satisfy (10b)

and (10c), we must have y(am) = 0. This "collapse" of two conditions for the

pde into one condition for the ode is vital. In general, more conditions are

needed to specify a solution of a pde than to specify a solution of an ode.

If some of the conditions for the pde do not collapse to the same condition

for the ode, there may be too many mutually inconsistent conditions to deter-

mine a solution of the ode. What this means simply is that the pde has more

solutions than those that can be represented in the form (6).

For the clamped-temperature problem we now have

y+0
Y(O) = 1, y(°°) = 0.

This equation can easily be integrated twice to give

y=erfc`EE
(l

(11a)

(11b)

(12)
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where erfc is the complementary error function. It follows from (12), fur-

thermore, that C
Z
(O,t) =

-(Yrt)-1/2

so the heat flux through the front surface

falls as t-1j2. This result, without the value of the constant could

have been deduced from (7b) without solving the ode (11a).

When a = 1, we have the case in which the heat flux at the wall is sud-

denly clamped, for then Cz(0,t) = y(0), a constant independent of t. Then

(9) becomes

y+y--7y=0. (13)

Now y = x is a special solution of (13), and because (13) is linear, we can

find a second, independent solution by the classical procedure of setting

y = wx. Then we find the following soparab1e equation for w:

w 2 x
x 2

Then

Y =

(14)

= Ax
e-x2/4 dx _

A`e-x2/4 - x
2

a-x2/4 dx) (15)

x x x

wx

where A is a constant of integration. If we choose y(0) = -1, then we must

take A = 2//i.
When a / 0,1 (9) can be solved in terms of the confluent hypergeometric

function:

= exp (_ x2 U(a + 1 1 x2y \
) T J

(16)

where U is the function defined by M. Abramowitz and I. A. Stegun [AB68,

p. 504, 13.1.3]. The reader can verify this by substitution. It follows

after a straightforward calculation that

,(a + 21
Y(0)

Y (0) 1'`J (17)

which agrees with the results 1/v and r/2 we just found in the cases a = 0

and a = 1, respectively. Because the diffusion equation is linear and solu-

tions can be superposed, we can use (17) to find the heat flux into the sur-

face z = 0 when the time dependence of the temperature there is expressed as

20



an arbitrary sum of powers of t. Conversely, given the heat flux as such a

sum, we can find the temperature. Superposability is the most important

thing we lose when we deal with nonlinear equations.

The case a = -1 corresponds to heating of the whole space by an instan

taneousunit heat pulse delivered at the plane z = 0 at time t = 0, for con-

servation of energy requires

1 = J- C dx = to/2
( y( z ) dz (18)

and the right-hand side can only be independent of t if a = -1, in which case

it becomes f+- y(x)dx. Equation (9) can easily be integrated when a = -1,

and gives y = constant x exp(-x2/4). To satisfy the requirement of unit inte-

gral over all space, we must choose the constant to be (4ir)-112, so that

C = exp(-x2/4) (19)
(4,t) 172

a well-known result.

3.2 Recapitulation

The essential points of the foregoing procedure are the following:

(1) Substitution of a trial solution such as (6) made up of group invar-

iants reduces the pde to an ode. Such solutions are called similarity solu-

tions because they have the property that the profiles of C versus z at var-

ious t are geometrically similar, i.e., can be obtained from one another by

stretching ordinate and abscissa appropriately.

(2) The values of any remaining constants such as a are determined by

the boundary conditions (all of which, it goes without saying, must also be

invariant to the transformation group).

(3) Some of the boundary conditions "collapse" to the same condition for

the ode so that its solution is not overdetermined.

3.3 Concentration polarization

A slightly more complex but still linear diffusion problem arises in the

desalting of water by reverse osmosis, i.e., by its passage under pressure

through a semi-permeable membrane [SH65, DR64]. The retained salt builds up
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against the membrane, a phenomenon called concentration polarization. The

excess salt concentration at the wall is a valuable datum in process design.

Figure 5 shows a sketch of a slit-shaped channel. The salty feed water

CONC.

Fig. 5. Sketch explaining concentration polarization in
steady-state reverse osmosis: entrance region

flowing in from the left is assumed to be in fully developed laminar flow.

In the entrance region, the excess salt concentration near the membrane is

governed by the partial differential equation

Cyy = YCx

and the boundary conditions

(20)*

(Cy)y=0 = -1 x > 0 (21a)

C(0,y) = 0 y > 0 (21b)

C(x,co) = 0 x > 0 (21c)

Setting y = - in (21c) is allowed because in the entrance region the thickness

of the concentration boundary layer is very much smaller than the half-thick-

ness of the channel. In a manner of speaking, then, the salt does not "know"

that the channel has an opposite wall. This kind of approximation can often

be made in limiting cases so that the limiting behaviours of the solution

can be expressed as similarity solutions. This point has been especially

* In special units in which x is measured in units of u D2/0, y is measured
in units of D/v, and C is measured in units of CO, wh9re D is the diffus-
ivity of the salt, v is the permeation velocity of the water through the
membrane, uy is the axial flow velocity gradient at the wall, and C0 is
the salt concentration of the feedwater.
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stressed by Barenblatt [BA79].

These equations and boundary conditions are invariant to the group of

transformations

(22)

(We can see now that if a finite value of y appeared in (21c) instead of

infinity, (21c) would not be invariant to (22). So the results we derive

here are only applicable to the entrance region, where the boundary layer is

much thinner than the channel.) Two invariants are y/x1/3 and C/xa/3, so we

set

C = xa/3 9( y \ (23)
X

In order to satisfy (21a), a must equal 1, and g(0) must equal -1. We see

at once, then, that the excess wall concentration rises as the 1/3-power of

the distance down the channel. This conclusion is entirely a consequence of

the group invariance since it did not involve solving any deqs.

Let us digress for a moment and rewrite this formula in ordinary units:

3 1/3
CO

(24)

Y

All that is missing is the unknown constant g(0), so Eq. (24) is very much

like the results one obtains from dimensional analysis. But the reader should

remember that (24) cannot be obtained from purely dimensional considerations

- the fact of group invariance needs to be added. Equation (24) as it stands,

that is, without knowledge of g(0), can be used to correlate data taken for

different salts, different permeation rates and different flow velocities,

for example.

If we substitute (23) with a = 1 into (20) we get

+ _a n2g -
1
ng = 0, n = Y/x1/3. (25)

Again g = n is a special solution of the linear Eq. (25), so we set g = of

and obtain the following separable equation for f:
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of + (2 + n3/3)f = 0.

Then

g = of = A`e-113/9
- 3 J- ne-n3/9

dn)
TI

where A is a constant of integration. Now

g(0) = A

while

so

-1 = 9(0) A j ne-n /9 do

JO

r
g(O)

Ti

3

/9

dn-1

9

1/3

= 1.536.O

(26)

(27)

(28a)

(28b)

(28c)
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4 Nonlinear diffusion

4.1 Boltzmann's problem : Ct = (CCz)z

Boltzmann considered diffusion with a concentration (or temperature) depen-

dent diffusion coefficient [B094]. When the diffusion coefficient is directly

proportional to the concentration (temperature) itself, the diffusion

equation becomes, in suitable special units,

Ct = (CCz)z.

This nonlinear equation is invariant to the group of transformations

C X C

t' =At 0<A<

Z' = AZ

with

(1)*

(2a)

a + 0 = 2 . (2b)

Two invariants are C/ta/B and z/t1/S, so following the steps in the last

chapter we shall take

* Equation (1) arises in other physical phenomena besides heat or chemical
diffusion. For example, consider the isothermal percolation of a perfect
gas through a microporous medium as described by Darcy's law:

at + az (pV) = 0 (continuity)

az + V K = 0 (Darcy's law)

p = pRT (equation of state)

where p is the density, p the pressure, V the percolation velocity, p
the viscosity, K the permeability, T the absolute temperature and R
the gas constant. In special units in which RT = p/K = 1, these three
equations reduce to (1) with p = C.
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(2c)

Let us begin with the problem of an instantaneous heat pulse in the plane

z = 0 at time t = 0. As before, conservation of material (energy) requires

C dz = I (3a)

so that a = -1 and 6 = 3. In addition to (3a), we must satisfy the boundary

and initial conditions

C(z,0) = 0 z > 0 (3b)

C(oo,t) = 0 t > 0 . (3c)

Then

C

_ t-1/3
(

(4)
y - j)

and

3(yy)' + y + xy = 0, x = z/t1/3. (5)

This equation can be integrated to give

3(y') + xy = constant. (6)

Since y(0) = t2/3 Cz(O,t) = 0 by symmetry, the constant in (6) must be zero.

It follows at once that

2 20 - x
_Y -6- (7)

where x0 is a constant of integration. It is determined from the requirement

(3)

r+m +x0
1

=1
Cdz=J- ydx=g2x

-
.

x0

The solution (7) is sketched in Fig. 6.

(8)
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IW

Fig. 6. A sketch of the solution (7)

x

The interesting thing about (7) is that y does not approach zero continu-

ously as x -, - as was the case for the linear diffusion. As before, (3b)

and (3c) collapse to the same condition, namely y(-) = 0, but this is satis-

fied not just for infinite x, but for all x y x0.

The solution (7) was first found by Pattle [PA59].

4.2 Clamped flux

Let us now consider the clamped flux case. The boundary condition (3a) is

then replaced by

(CCz)z=0 = a constant, say, -b.

Now a = 1/2 and a = 3/2 so we set

C = t1/3 Y(z

and obtain for y

3(yY)* = y - 2xy, x = z/t2/3

Condition (9) becomes

(YY)x=0 = -b

while (3b) and (3c) collapse to

(9)

(10)

(12a)
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y(,,) = 0. (12b)

The principal ode (11) is not readily integrable. It is, however, invariant

to the associated group*

Y, = u2Y
0 < u < (13)

X' = uX

so we shall be able to reduce it to a first-order (associated) deq.

An invariant and a first differential invariant of (13) are u = y/x2 and

v = y/x. A short calculation shows that in terms of u and v, (11) becomes

dv u - 2v - 3v2 - 3uv
d u = 3u(v - u

(14)

Equation (14) is reasonably complicated and its direction field, shown in

Fig. 7, is correspondingly complicated. The slope dv/du - 0 on the curve C:

Fig. 7. The direction field of Eq. (14)

u = v(2 + 3v)/(1 - 3v). (The curve C has two branches, one of which is shown

* Later in this chapter, we shall see when such associated groups exist and
how they may be calculated independently of knowing the principal deq.
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in Fig. 7. The other branch is in the second quadrant and is of no concern

to us here since we are only interested in values of u > 0 and v < 0.) The

slope dv/du = - on the lines L1:u = 0 and L2:v = 2u. There are three singu-

lar points, 0:(0,0), P:(0,-2/3), and Q:(-1/6, -1/3), and two separatrices,

S1 and S2:v = u/2.

Following our experience with linear diffusion, we might begin by looking

for a solution for which y and y - 0 as x - - . Such solutions must corre-

spond to integral curves that pass through the origin of the (u,v)-plane.

Since all integral curves entering the origin do so along S2, no curve lying

entirely in the fourth quadrant enters the origin. Furthermore, S2:v = u/2

corresponds to the deq y/2x2 = y/x, which gives upon integration y = const. V.

So the curves entering the origin behave asymptotically as v, which is un-

acceptable.

Thus, there are no solutions of (11) for which y and y approach zero con-

tinuously as x > w . This might have puzzled us if all we had to go on was

the experience we had gained from linear diffusion problems. But now we know

what to do: look for a solution that vanishes at a finite value of x, say x0.

Then at that point, u = y(x0)/x0 = 0 and v = y(x0)/x0 < 0. Only one point

can fill the bill, the singularity P, so the solution we are seeking corre-

sponds to the separatrix S1.

The value of v at P gives the slope of y at x0: y(x0) _ -(2/3)x0. Knowing

this, we can undertake a numerical integration of the second-order principal

deq (11) to find y(x). The results of such an integration for the case x0 = 1

are shown in Fig. 8. The value of (yy)x=0 for this curve is 0.308. We can

transform the solution of Fig. 8 according to the associated group (13) to

obtain another solution having any desired value of (yy)x_O. Now we have a

complete solution to the problem originally stated at the cost of a single

numerical integration of a second-order ode.

Even without undertaking this integration, we can learn useful things

about the concentration (temperature) at the front face z = 0 from Eq. (14).

When z + 0, x + 0 and u , v -. - -. So the behaviour of y near zero

depends on the behaviour of the integral curves of (14) as we approach

infinity through the fourth quadrant. Now when u >> 1 and IvI >>1, v2 >> IvI

and uivI >> u. So (14) can be written
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Fig. 8. The solution y(x) to (11) for which y(l) = 0

dv _ v(v + u)

du = u v - u) (15)

This limiting case of (14) is invariant to the transformation u' = Au,

v' = Xv and so can be treated by the methods of Chapter 2. But even this is

more than we need. We can further simplify (15) by noting from the direction

field in Fig. 7 that on any integral curve in the fourth quadrant, IvI << u

for large enough u.* So (15) further simplifies to

dv -vu v
au - u-u - Tu_

(16)

This integrates at once to give v = -Cy"u-, where C is a (positive) constant

of integration. If we substitute the values of u and v in terms of x and y,

this last relation becomes .y = -CV so that

* Only three possibilities exist: lvi << u, jvj ti u, or lvi >> u. The
first leads to (16). The third leads to dv/du = -v/u, which integrates
to give v = C/u. But this contradicts the hypothesis jvi >> u as u - .

The second alternative is equivalent to v = au, a = a constant. Substi-
tuting this into (15) we find a = -a(a + 1)/(a - 2) so that either a = 0
or a = 1/2, neither of which can be satisfied by an integral curve that
approaches infinity in the fourth quadrant.
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-y(O) = C onst nt (17), a c a

In terms of C, (17) becomes

C(O.t) =
C-2/3

[-(CC z)z=072/3 t1/3 (18a)

= C-2/3 b2/3 t1/3
(18b)

Thus without solving any (but the most trivial) deqs we have discovered that

the temperature at the front face at any time varies as the two-thirds power

of the flux clamped at that face.

We can find the value of C by integrating the first-order deq (14) along

the separatrix. Doing so we find C = 0.679; the same value follows from the

solution to (11) shown in Fig. 8.

4.3 The associated group

The success we had in solving this last case of clamped flux depended on the

existence of the associated group (13) to which the principal ode is invar-

iant. The existence of this group is no accident, and the time has now come

to explain the circumstances under which it exists. We consider pdes in one

dependent and two independent variables, C, t, and z. We assume the pde is

invariant to a one-parameter family of stretching groups

X < eo (19a)

where the exponents a and a obey the linear constraint

Ma + Na = L (19b)

The most general invariant relation connecting C, z, and t is then, by a now

familiar argument,

C = to/S

y is an arbitrary function. The values of a and a are selected to

31



satisfy the boundary conditions. Denote by a0 and 60 the particular values

so selected. Then the solution we are seeking must have the form

C t

a0/60
Yl-17z

S

ta0/60

Y(x)> x = T (21)

t t

Substitution of (21) into the pde yields an ode for y(x).

If we transform C(z,t) given by (21) according to transformations of

family (19a) for which a / a0 and I3 / 60, its image C'(z',t') must also

satisfy the partial differential equation because the latter is invariant

to all transformations (19a), not just those for which a = ao and 5 = 60.

Now

C'(z',t') = as C(z,t) (22a)

_
Aa C(Z' t \ (22b)

a0/60
,

(a0 - yI z/ 0 _ 0
J

(22c)

a A(t') A

(660-606)/60
(t'

)x0/00 yl,(6-130)/60
j (22d)=a

(t')
It is easy to verify that

660 - 0 L

0 - 6
= M (23)

as long as a, 6 and a0, 60 satisfy the linear constraint (19b). If we set
(6-60)/60

P = a , we can write (22d) as

C'(z',t') _
(t')a0/60 u-L/M yL

t)1 %J

or, dropping the primes, as

C(z,t) = t

a
0
/6

0 u-L/M y(ux).

(24a)

(24b)
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Because of the way it was obtained, the C(z,t) of (24b) must be a solution

of the pde. It, like the C(z,t) of (21), is composed of a factor taO/SO

times a function of x = z/t1/BO. Comparing (24b) with (21), we see that if

y(x) is such a function so is 1,-L/M y(ux). Now the function u-L/M y(ux) is

the image of the function y(x) under the transformation

y, = uL/M y

0 < u < '= (25)

For, y'(x') = uL/M y(x) = uL/M y(x'/u), so if we replace a by
u-1

we get

y'(x') =
u-L/M

y(ux'). So each function y(x) satisfying the pde through

Eq. (21) generates a one-parameter family of functions of x that do the same,

namely, its images under the group of transformations (25). Each such family

is invariant to the group (25).

Suppose the ode for y(x) is of nth order. The solutions of such an equa-

tion form an n-parameter family of curves. From what we have just seen, this

n-parameter family must decompose into an (n-1)-parameter set of one-parameter

families, each of which is invariant to (25). But then the entire n-parameter

family is invariant to (25). This means the ode for y(x) is invariant to

(25). The group (25) is the associated group of the principal family of

groups (19).

The chief condition for the existence of an associated group is the invar-

iance of the pde to a one-parameter family of stretching groups. This is a

very high degree of symmetry and is only attained in the simplest of equa-

tions.

Had we known this result when we started the clamped-flux problem, we

could have written down (17) and (18) without ever calculating the principal

deq (11) or the associated deq (14). To see how this works, let us consider

other boundary conditions corresponding to other physical problems.

4.4 Clamped concentration (temperature)

Suppose we clamp the concentration (temperature) on the front face at a fixed

value starting at t = 0. What is the flux through the surface at z = 0?

This particular problem has some practical interest, having been considered

by Nilson in a study of the penetration of pressurized gases into a micro-

porous half-space - see footnote to Equation (1). The clamped concentration
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boundary condition requires a to be zero, so a = 2. Then

C(0,t) = y(0)

and

Cz(O,t) =
t-1/2

y(0)

(26a)

(26b)

(26c)

The boundary and initial conditions that C must obey are (26b) and

C(z,O) = C(=,t) = 0, which collapse to y(°°) = 0. If we transform a solution

y(x) of the principal deq obeying the condition y(-) = 0 according to the

associated group (13), we obtain another solution also obeying the condition

y(c) = 0 but having the value u2y(O) at x = 0. Thus all solutions y(x) that

we are seeking are images of one another under the associated group (13).

Now, the quantity y(x)/V-YFx) is invariant to (13). Since the point x = 0 is

its own image under (13), the solutions we are seeking must all have the

same value of y(0)/v-M); call it -A. Thus

-Cz(O,t) = A C('O,t) t-1/2 (27)

where A is a constant not yet determined. According to (27), aside from its

time dependence (already calculable from the principal group), the flux

through the surface is proportional to the square root of the clamped (con-

stant) surface concentration C(0,t). The constant A can only be determined

by studying the associated ode. The analysis is similar to that employed

in connection with the clamped flux case; A turns out to be 0.452, which

agrees within 1% with the value published by Nilson [NI81].

4.5 Ct =(CCz)z.

By repeating this argument, we see that if the diffusion coefficient is pro-

portional to Cn, then the flux and concentration at the front surface are

related by

* Crank has pointed out that this equation describes diffusion of a species
that can be strongly adsorbed according to a Freundlich isothermal [CR75].
The author has encountered it in the problem of the current distribution
in superconductors undergoing a current ramp.
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(-CnCZ)z=0 ti t-1/2 [C(0,t)J(2+n)/2 (28)

4.6 Exceptional solutions

The existence of the associated group has a further consequence that can

sometimes be of importance, as we shall see subsequently. Following Section

7 of Chapter 2, we see that the associated ode must have the form

dv _ G(u,v) - (B - 1)v
(2 37)

du v - u

with l3 = L/M. If the simultaneous equations

.

G(u0,v0) = (B - 1)v0 (29a)

v0 = Bu0 (29b)

have a solution, it represents a singular point of (2.37) and corresponds to

an exceptional solution y = u0xs = uOxL/M of the principal ode. For, since

u = y/x and v = y/x6-1, the solution y = u0x6 corresponds to u = u0 and

v =
Bu0x6-1/xR-1

= Bu0 = v0. Integral curves in the Lie plane that enter

such a singularity correspond to solutions of the principal ode having

y = u0xL/M as a limiting behaviour.

4.7 CCt
= Czz.

The nonlinear diffusion equation

CCt
= Czz

(30)

occurs in the problem of the thermal expulsion of fluid from a long, slender,

heated tube [DR81J. The quantity C represents the flow velocity induced in

the fluid by the heating of the tube wall.* The boundary and initial condi-

tions are

* In special units in which Dc = 4f, where c is the sonic speed of the fluid

(m s-1), D is the diameter of the tube (m), and f is the Fanning friction

factor.
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C(z,0) = 0 z > 0 (31a)

C(oo,t) = 0 t > 0 (31b)

dan

Cz(O,t) _ -b, t > 0 (31c)

where b is a constant related to the (constant) heating of the tube begun

at t = O.t The space coordinate z measures distance into the tube from the

open end z = 0.

Equation (30) is also invariant to the family of groups (19a), but subject

to the linear constraint

a - 0 = -2 (32)

in place of (19b). The boundary condition (31c) requires a = 1, so 0 = 3.

Thus

C(z,t) = t1/3 y(zJ/ )T
where the ode for y(x) (x = zl / t1/3) is invariant to the associated group

y' = p-2y
0 < p < ° (34)

X' = px

and obeys the collapsed boundary conditions y(0) = -b/3 and y(-) = 0. (The

factor of /3 has been introduced for convenience.) Thus -y/y3J2]x=O is in-

variant to (34) and therefore the same for all solutions irrespective of the

numerical value of y(0); call it A. Then

C(O,t) = t1/3 y(O) = 31/3 A-2/3 t1/3 b2/3 (35)

The physical interpretation of this result is that the velocity of thermal

efflux is proportional to the one-third power of the elapsed time after the

heating has begun and the two-thirds power of the heating rate.

t b = Sq/cp, where B is the volume coefficient of thermal expansion (K-1),

q is the heating rate (W kg-1), and cp is the specific heat (J kg-1 K-1).
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In this case, we shall find and solve the associated first-order ode and

calculate the numerical value of the constant A. This particular problem

has been chosen for complete treatment because its detailed solution will

reveal further interesting features of the method. The principal ode is

Y = Y(Y - xY)

with the boundary conditions

y(0) = -b/3

and

(36a)

(36b)

(36c)

The choice of a differential invariant u and first differential invariant

v is not unique; a convenient choice is

2
u = x y (37a)

v = x2(y - xY) (37b)

After a short calculation, we find the associated ode

dv _ v(2 - u)
(38)

F U 3u - v

Figure 9 shows the Lie plane of Eq. (38). The slope vanishes on the lines

Ll: v = 0 and L2: u = 2 and is infinite on the line L3: v = 3u. Accordingly,

there are two singular points, the origin 0: (0,0) and the point P: (2,6).

The singular point P is a saddle point, the origin 0 is a node. Traversing

P are two separatrices Sl and S2. One of them, Sl, also passes through the

origin. Figure 9 also shows some typical integral curves labeled 11 - I8.

The solution we are seeking of the principal deq (36a) is finite and has

a finite derivative at the origin x = 0. So the integral curve in the Lie

plane corresponding to it must pass through the origin. Of the integral

curves passing through the origin, S
1

is the one we want; for in the neigh-

bourhood of the singularity P it will have the limiting behaviour y = 2xL/M =
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Fig. 9. The Lie plane of Eq. (38)

L

2x-2, which will enable it to satisfy the boundary condition (36c).*

The situation we have here, namely, the sought-for integral curve in the

Lie plane being a separatrix, is not at all uncommon, and will recur in other

problems discussed in this book. Near the origin where u << 2, (38) becomes

dv/du = 2v/(3u - v), a homogeneous equation invariant to the stretching

transformation v' = Au. So near the origin the separatrix must

satisfy the algebraic equation

v_ v(2-u)uv
which says simply

v=u

(39)

(40)

* That no other integral curve passing through the origin can satisfy the
boundary condition (36c) can be made plausible as follows. Consider the

integral curves 11 and I2. When u m , v -> 0 as a-u/3, as we can see by

simplifying (38) in the limit. Now v = 0 for large x means y - xy = 0 or
y = This can never obey (36c). This conclusion is satisfying,
but if we believe the deq and boundary conditions specify a unique solution
the identification of Sl as allowing the boundary conditions to be met
should be enough.
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If we substitute v = u + w into (38), then to lowest order we find dw/du =

3w/2u so that w = Cu3/2, where C is a constant of integration. This suggests

that v may be expanded in powers of
u112

near the origin. If we set

v = u + Cu3/2 + Dug + Eu5/2 + ... (41)

substitute into (38), clear fractions and equate equal powers of u, we get

D=2C2- 1, E_-4 (7D-2), (42)

i.e., we get a series in which all the higher coefficients are determined by

the value of the coefficient C. It is easy to see that

C = lim
CV J

_
Y(0) 7 = A (43)U 'O

u [y(0)]

A similar procedure near the singular point P: (2,6) gives for the separatrix

Si

v = 6 + A(u - 2) + B(u - 2) 2 + ... (44)

where

A = (3 + 33)/2, B = A/(3A - 6), ... (45)

We can find the value of C on S1 by using (44) to advance a short distance

along S1 from P. Then we integrate (38) numerically, advancing along S1 to-

wards 0. When we get close to 0, we match the numerical solution to the

series (41) by choosing C correctly. In this way, with a single numerical

integration, we find

C = 0.932 (46)

The numerical integration was carried out in the direction P -+ 0 because

that direction of integration is stable. A glance at the direction field of

Fig. 9 shows that neighbouring integral curves converge on S1 as we move from

P - 0. So small errors caused by roundoff will heal themselves if we inte-

grate from P - 0. On the other hand, if we attempt to integrate from 0 -> P,

eventually we shall be thrown off either to the right or the left. Even if

this difficulty did not occur, determination of C by integration in the di-

rection 0-P would require trial and error, whereas determination of C by
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integration in the direction P -* 0 does not.

Another stability problem occurs near both singular points that has nothing

to do with the direction of integration. Near each singularity, lines on

which dv/du is either 0 or - approach very closely to each other. A small

error that puts us only slightly off the separatrix may cause a big change

in the slope. This means that in the next integration step we shall step in

a severely wrong direction. This causes another big change in slope and

another step in the wrong direction. The net result is an erratic movement

of the point (u,v) as the integration proceeds. To avoid this we must use

the series (41) and (44) to stay away from the singularities. In the cal-

culations leading to (46), I found it necessary to use five terms in

series (44) and nine terms in series (41). Nonetheless, the calculations

were relatively simple.

Once the value of C is in hand, calculation of y(x) by numerical integra-

tion of (36a) is an easy matter because consistent initial values of y(O) and

y(0) can be obtained from (43). Figure 10 shows the curve of y(x) for which

x

Fig. 10. The solution y(x) of (36a) for which y(0) = 1 and y(co) = 0

y(0) = 1. As expected, the curve approaches 2/x2 for large x. This is for-

tunate because integrating in the direction of increasing x is the same as

integrating in the direction 0 - P, so eventually the integration must become

unstable. But we can approach the asymptotic limit 2/x2 closely enough that

there is no difficulty in graphically continuing the solution. It is worth

noting that the simple interpolation formula

40



y = (1 + Cx + x2/2)-1

gives quite a good fit to the results of the numerical integration.

4.8 C
n
C
t = Czz.

The clamped-flux problem can be solved for any value of n. From purely

group-theoretic considerations we can show that

C(O,t) = An
t1/(n+2)ICz(O,t)I2/(n+2)

(47)

(48)

From the linear problem (n=0) worked in Chapter 3, we find that A0 = 1.128.

From the results of the problem just completed we find A
1

= 1.512. The author

also solved the n = 2 case using the power-series method* just described and

found A2 = 1.604.

The author has made a practical application of (48) to transient heat

transfer in near-critical single-phase helium. The specific heat of the

fluid varies strongly with temperature near the pseudo-critical line and can

be fitted, over the limited range of temperature rise of interest in the prob-

lem, by a value of n = 0.45. The corresponding value of An can be found by

three-point interpolation from the values just quoted.

4.9 Transient heat transfer in superfluid helium

Helium has a low-temperature liquid phase (called He-II or superfluid helium)

with rather unusual properties. One of the most unusual is that heat trans-

port in stationary He-Il is described not by Fourier's linear law, but by the

nonlinear Gorter-Mellink law

q = -kl3zf9/3 (49)

Here q is the heat flux (Wm-2), k is a kind of thermal conductivity
(Wm-5/3K-1/3),

and aT/az is the temperature gradient (Km-1). Combined with

the heat balance equation S(aT/at) + (aq/az) = 0 and in suitable special

* The radii of convergence of the two series is great enough in the n = 2
case to allow A2 to be determined directly from the overlapping series

without any need for a numerical integration.
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units,* (49) leads to the nonlinear heat diffusion equation

aT - a aT
1/3

at aZ aZ) I
(50)

This equation, too, is invariant to the family of groups (19a) but subject

to the linear constraint

2a - 3g = -4 (51)

Invariant solutions of (50) take the form

T = to/y(S)

where y(x) is a function whose ode is invariant to the associated group

y' = u-2y

x' _ l,x

(52)

0 < u < W (53)

The quantity a = -y3/2/y]x=0 does not change under transformations of the

associated group (53).

In the foregoing equations T should be thought of as the temperature rise.

4.10 Clamped-flux

The clamped-flux case is of particular interest because it has been studied

experimentally by van Sciver in connection with the stability of superconduct-

ing magnets cooled with superfluid helium [SC79]. The boundary conditions for

this case are

Tz(0,t) _ -(q/k)3 t > 0 (54a)

T(z,0) = 0 z > 0 (54b)

T(o,t) = 0 t > 0 (54c)

* In the special units, k/S = TA - Tb = 1. S is the heat capacity per unit

volume, Tb is the ambient helium temperature, and TA is the (higher) tem-

perature at which the superfluid experiences a phase change and becomes

ordinary liquid He.
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and require a = 1, 8 = 2. Then they collapse to

.Y(O) _ -(q/k)3 (55a)

y(oo) = 0 (55b)

It follows then, as before, that

T(O,t) = t112y(O) = a2/3
(q/k)2 t1/2

corresponding to the solution (52) is

Also as before, the dependence of T(0,t) on q/k follows from the existence

of the associated group (53).

An aspect of the relationship (56) has been checked experimentally by van

Sciver. He measured the time it took for the temperature to rise from Tb to

T.. According to (56), this time should scale as q-4, and this is what van

Sciver observed. If we solve the principal ode we can find the value of a

and consequently calculate the constant of proportionality between t and q-4.

The author has done this and found good agreement with van Sciver's measured

values [DR82].

The principal ode

s

d

Tx- lTx-)

and if we choose u =

tial invariant of the

+xdx-ay=0

(56)

(57)

xy1/2 and v = xy1/3 as an invariant and first differen-

associated group (53), the associated ode is

dv _ u(2Bv - 2v3 + 2au2)
TU

2 su + 8v

When a = 1 and 8 = 2 this becomes

dv _ u(2v - v3 + u2)
TU-

2u + V

(58)

(59)

Figure 11 shows a sketch of the fourth quadrant of the Lie plane of (59).

Only the fourth quadrant is shown because the temperature rise is positive

(u > 0) and falls as we move away from the heated plate (v < 0). The slope

dv/du vanishes on the v-axis and on the curve C1: u2 = v3 - 2v; it is

infinite on the curve C2: 2u2 + V3 = 0. The origin 0 and the point

P: (2
4f/3,-2lv') are singular points.
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u

Fig. 11. Sketch of fourth quadrant of the Lie plane of (59)

When x = 0, u and v also equal 0, so we are interested in integral curves

passing through the origin. Near the origin, one of the following three

alternatives must hold, namely, (i) v << u2, (ii) v ,, u2, and (iii) v >> u2.

In case (i) the deq (59) reduces to dv/du = u/2 which integrates to give

v = (u2/4)+ constant. This contradicts the hypothesis (i) which therefore

cannot hold. Case (ii), v ' u2, means v = bu
2,

where b is a constant. Sub-

stituting into (59) and keeping lowest-order terms we find b = 1/2. But

this curve does not lie in the fourth quadrant, so we are left with alter-

native (iii). When v >> u2, (59) becomes dv/du = 2uv/(2u2 + v3 ). (We cannot

drop the v3 term in the denominator because we do not know yet if v3 << u2,

though subsequently we shall see that this is the case.) The last deq is

invariant to the group u' = Au, v' = a2/3v. Then we find [v(u2 - v3)]-1 is

an integrating factor, and a short computation gives for the integral c(u,v) _

£n[(u2 - v3)/v2 ]. Thus, u2 = A2 v2 + v3, where A2 is an arbitrary constant.

When v is small enough, A2v2 >> v3 so, close enough to the origin, u = -Av.

Referring to the definitions of u and v, we see that A = [-y3/2(O)/y(0)]1/3 =

a1/3

The integral curves that emanate from the origin are of two kinds, those

that eventually intersect the curve C1 and those that eventually intersect
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the curve C2. The two kinds are separated by a separatrix S that joins the

singularities 0 and P. The singular point P corresponds to the exceptional

solution y = 4//9x2, which should then also be the asymptotic behaviour of

the solutions y(x) corresponding to the separatrix S. This behaviour satis-

fies (55b), so again it is the separatrix we want.

The limiting behaviour y = 4/3/9x2, when written in ordinary units is

T = (4//9)(k/S)3"2
(60)

This relationship is independent of a, so we need not perform any detailed

calculations to compare it with experiment. The author has done this with

van Sciver's points and found excellent agreement [DR82].

To find the separatrix, we must perform a numerical integration. The

direction of stable integration is P - 0. We use L'Hospital's rule to find

the slope of S at P and advance a short distance from P towards 0. Integrat-

ing towards 0 we then find without difficulty that A = 0.9132. Once we

know A, we can find consistent initial conditions at x = 0. Then we can

find the integral curves y(x) by integrating the principal deq (57) away

from x = 0. Because we integrate in the direction 0 - P, the integration

eventually becomes unstable. But we can integrate close enough to the

asymptotic limit y = 4/9x2 that there is no difficulty in graphically

continuing the numerical solution valid for small x. We need only do one

integration for one consistent pair of values y(0), y(0). The integral

curves for other pairs of values can be obtained by transformation with the

group (53). Figure 12 shows the integral curve for which y(O) = 1, y(0) _

-1.313.

4.11 Clamped temperature

This case is less interesting because no experimental data exist for it.

It is solvable in simple terms and we quickly sketch the solution. The

boundary condition (54a) is now replaced by the condition T(O,t) = T
0
for

t > 0. To satisfy this condition, a must be zero, and therefore R = 4/3.

Thus T
3/4

= y(z/t ). A point on the self-similar temperature profile marked

by a particular temperature rise advances in a time t a distance z propor-

tional to t3/4. Furthermore,

45



4tr3-/9x

0

Y 0.1

0.01 -
0.01 0.1 1

x

2

10

Fig. 12. The integral curve of (57) (a = 1, 6 = 2) for which
y(0) = 1. The circles have been obtained by a num-
erical integration that eventually becomes unstable.
The dashed part of the curve is a graphical inter-
polation between the circles and the asymptote

4I/9x2.

-TZ(Olt) = t-3/4 T33/2/a (61)

where, as before, a = -y3/2/y1x=0' So the heat flux through the surface is

proportional to the -3/4-power of the elapsed time and the 3/2-power of the

clamped temperature rise.

When a = 0, (57) can be solved easily by introducing
y1/3

as a new depen-

dent variable. The solution for which T
0

= 1 is

xy=1 -r--8 2 1/2

l3 + x
(62)

Solutions for other values of TO can be found by transformation with (53).

From (62) it follows that a = (8/3v1)1'2 = 1.241. Solution (62) has the

asymptotic behaviour x2y = [28/(2+a)]3/2/2 that arises from the singular

point P: vP = -[28/(2+a)]112, uP = v3 P12.
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4.12 Instantaneous heat pulse

This problem, too, is solvable in simple terms. Now the conservation con-

dition (3a) replaces (54a), so a = -1 and B = 2/3. We can integrate (57)

at once to find

2 y1/3+xy=0
(63)

the constant of integration being zero on account of (54b,c) which become

(55b). From this we obtain by another integration

y =
4

(x4 +
b4)-1/2

(64)

where b is a constant determined from the integral condition f4°°ydx = 1. For

other values of the integral, the corresponding solution can

transformation with the group (53). For unit integral,

2

b = 2 = 2.855

be determined by

(65)

3 v7i

Equation (64), too, has the asymptotic behaviour x2y = [26/(2+a)]3/2/2 of the

exceptional solution.

4.13 Isothermal percolation of turbulent liquid into a porous half-space

The next problem we shall deal with in this chapter is the isothermal per-

colation of a turbulent liquid into a porous half-space. The equations

describing the fluid motion are those of continuity, motion and state:

2L + 8Z (pV) = 0 (continuity) (66a)

ap+ V2 = 0 (motion) (66b)
az

dap ! = constant (state) (66c)T`3pP

Here p is the liquid density, V is the interstitial (pore) velocity, p is the

pressure rise, D is the hydraulic diameter of the pores, f is the Fanning

friction factor, and p(ap/ap) T is the bulk modulus of the liquid. In the
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equation of motion (66b), the acceleration term has been dropped because

turbulent friction greatly dominates the inertial force. In other words,

the pressure gradient is largely consumed in overcoming turbulent friction

and not in accelerating the liquid. If we treat both the flow velocity and

the changes in liquid density as small and keep terms only of lowest order,

then in special units in which p = (ap/ap)T = D/2f = 1, (66) become

at+az (67a)

a + V2 = 0 (67b)
az

Either of the variables p or V may now be eliminated. If we eliminate V we

get the pde ap/at = -a/az(-ap/az)112, which is similar to (50). If we

eliminate p, we get the pde 2VVt = VZZ, which is similar to (30). However,

we need not eliminate either variable but can deal directly with the system

(67) of two simultaneous first-order pdes. Equations (67) are invariant to

the transformations

V' = aYV

p' = a°Gp
0<a<W

t` = ast
(68a-d)

Z' = Az

subject to the two linear constraints

a-2S=-3 (68e)

y-6=-2 (68f)

The most general solution invariant to (68) must have the form

= ta; `
(69 )p

y t
a

zV=tY/RW
( (69b)

Substitution of (69) into (67) will result in a pair of coupled odes for

the functions y and w. A repetition of the reasoning in Section 4.3 shows
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that these odes are invariant to the associated group

x' = ux

y' = u-3y

w' = u-2w

(70a-c)

If we imagine the pressure rise on the exposed face of the half-space

suddenly clamped at some value p0, the boundary and initial conditions are

then

p(0,t) = p0 t > 0

V(co,t) = p(m,t) = 0 t > 0 (71a-c)

V(z,0) = p(z,0) = 0 z > 0

Equation (71a) requires a = 0, so that B = 3/2 and y = -1/2. Now since

solutions (69) corresponding to different values of p0 are images of one

another under the associated group (70), they all have the same value of

y(0)/[w(0)]3/2; call it B. Then,

V(0,t) =
w(0)t-1/3 = B-2/3 p2213 t-1/3

(72)

Thus the velocity of infiltration varies inversely as the 1/3-power of the

elapsed time and directly as the 2/3-power of the clamped pressure rise at

the front face. Equation (72), obtained entirely by group-theoretic means,

constitutes a solution for the velocity of infiltration complete up to one

as yet undetermined constant, B.

The coupled odes for y and w in case a = 0 are

3-xy=2w
2y= -w

and are easily solved to give

w 1wWPTj-1

y
dx

x 11
wM _T

(73a)

(73b)

(74a)

(74b)
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It follows from (74b) that

B = y(O) _ ,S

[w(O)]

FO d-x ,-, _ = 1.3603 (75)

FO (1 + x ) 4

Then
B-2/3

= 0.8145; the value 0.816 numerically [NI81].

4.14 Other groups

Barenblatt and Zeldovich [BA72] have studied Eq. (1) in a half-space with the

boundary condition at the front face

C(0,t) = COet - , < t < (76)

Equation (1) is invariant to the one-parameter family of groups of trans-

formations

C' = e('xc

t' =t+a
z' = eaA/2z

(77)

where a is a constant that labels the member groups of the family. The

boundary condition (76) is invariant to (77) when a = 1.

The most general function C(z,t) invariant to (77) must have the form

C = eat Y(ze
at/2)

or, when a = 1,

C = et y(ze-t/2)

(78a)

(78b)

Here, as usual, y is an arbitrary function. If (78b) is a solution of (1),

then its image under (77) must also be a solution of (1). In other words

C(z,t) given by

eaXC = et+X
y(eaa/2

z e-(t+a)/2) (79)

should be a solution of (1), too. If we set
e(a-1)x/2

= u+ then (79) can be

written
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C =
etu-2

Y(ux), 0 < u < x = ze-t/2 (80)

So if y(x) gives a solution of (1), so does
u-2

y(px). Thus if y(x) gives

a solution of (1), so does any image of it under a transformation of the

associated group

Yl _
2
uy

(81)

'x = ux

It follows from (78b) that

Cz(0,t) =
et/2

Y(0) (82a)

C(0,t) = et y(0) (82b)

so that

-Cz(0,t)
_ _ Y(0) (82c)

C 0,t) y

If the solutions y(x) we are seeking are all images of one another under the

associated group (81), the right-hand side of (82c) is simply a constant, A.

Thus -Cz(0,t) = which means, in the case of Darcy-law infiltration (see

footnote to Equation (1) above), that the velocity of infiltration at a fixed

time scales as the square root of the clamped pressure.

To calculate the constant A, we must study the principal ode:

(YY)= Y - -Z xY (83)

As expected, it is invariant to the associated group (81). If we introduce

the invariant and first differential invariant u = y/x2 and v = y/x, we find

the associated, first-order ode

dv_2u-2v2-v-2uv
-a _u 2uv- 2u

The Lie plane of (84) is exactly like that of (14) (see Fig. 7), and we

therefore seek a solution of (83) that vanishes at some finite intercept x0.

There, y(x0) = -x0/2 since there is only one singularity of (84) on the

negative v-axis, namely, (0,-1/2). With these consistent boundary values we

can integrate (83) numerically to find y(x). If all we want is A, we can
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integrate the first-order ode (84) out to large u, where it has the asymp-

totic form v = (For large u and v, (84) reduces to (15), previously

analyzed.) In order to advance away from the singularity on the negative

y-axis we use L'Hospital's rule to find (dv/du)u=O,v=-1/2
= -

3/2-Since the

integral curves converge to the one we are seeking, a simple linear extrap-

olation is sufficient. The value of A so found is A = 0.9075.

4.15 Resemblance to dimensional analysis

The relationships (18), (27), (28), (35), (48), (56) and (72) resemble the

results of dimensional analysis in that they connect products of powers of

quantities of interest with an undetermined constant. They can be derived

by a quick and easy procedure similar to that of dimensional analysis. The

justification of the procedure, given below, is somewhat lengthier than the

procedure itself.

Consider again a problem described by a pde invariant to the one-parameter

family of groups (19). Suppose now we are interested in the relation between

Cz(0,t) and C(0,t) when one or the other is clamped (or some product of

powers of them is made proportional to a power of t, for that matter). For

definiteness, let us take the case of clamped C(0,t). Then

Cz(0,t) = F[C(O,t),t] (85)

since the boundary value C(0,t), the time t and the position z uniquely

determine the entire solution C(z,t) and its derivatives. If we transform

the variables according to the group (19) we get a new problem with a new

clamped boundary value a01C(0,t), but one which should be equally well de-

scribed by the equation (85). So (85) should be invariant to (19). (Note

that z = 0 transforms into z' = 0.) Thus

Aa-1Cz
= F(Aa'C,Ast) 0 < A < (86)

where for convenience we have stopped writing the arguments (0,t) of C and

Cz. By our standard procedure of differentiating with respect to A and

setting A = 1, we find that the most general form Cz may have is

C = t(a-l)/S G( C 1 (87)
Z taT
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If we consider (87) written for one choice of a and 6, say, a = a0 and B = B01

it should be invariant to the transformation (19) for some other value of a

and B. So from

a-1
C t

0-1)/80 AB(a0-1)/60
( A"C

A Z = GxBa o 0 1

and (87) we find

G(x) = u-1+M/L G(ux)

(88a)

(88b)

where x is an abbreviation for Ct
-a 0/80

and u is an abbreviation for

(a80-6a0)/60
Differentiating (88b) with respect to u and setting u = 1

immediately leads to the result

1 M L- /
G(x) = constant x x

(89)

Substituting (89) into (87), we find

CZ = constant x
C1-M/L t-N/L

(90)

Interestingly, the detailed character of the pde survives only through the

coefficients M, N, and L of constraint.

If we review the procedure just followed, we see that we have used it to

conclude that
CZC-1+M/L tN/L

is the only combination of these three variables

that is invariant to (19) for all pairs of values of a and B constrained

by (19b). We could more easily have found this invariant combination by

transforming CZCatb with (19):

CZC,at,b = Aa-1CZ . xaa Ca ,

xb6tb (91)

Thus

as+b6+a-1 = 0 (92a)

Since a and 8 must satisfy

Ma+NB=L (92b)

but are otherwise arbitrary, we find at once that
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a = -1 + M/L, b = N/L (92c)

These last manipulations are exactly analogous to how one proceeds by dimen-

sional analysis.
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5 Boundary-layer problems

5.1 Prandtl-Blasius problem of a flat plate

The celebrated Prandtl boundary-layer equations for a flat plate are

uux + vuy = vuyy

ux + vy = 0

in the coordinate system shown in Fig. 13. Here v is the kinematic viscosity.

INCIDENT
FLOW

U

Fig. 13. Coordinate system used to represent the Prandtl
boundary-layer equations. The origin 0 is at the
leading edge of the flat plate. The incident flow
is parallel to the flat plate with velocity vector
(u,v) = (U,0)

The goal in the problem of the flat plate is the shear at the plate, uy(x,0).

Knowing it, we can easily calculate the viscous drag on the plate,

Eqs (1a,b) are invariant to the groups of stretching transformations

(2a)
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where

a-S=-2 (2b)

The boundary conditions for the problem of the flat plate are

u=0aty=0,x>0 (3a)

v=0aty=0,x>0 (3b)

(3c)

u=Uatx=0,y>0 (3d)

These equations are all invariant to (2) when a = 0 and S = 2. But even when

a # 0, eqs (3a,b) are invariant to (2) while (3c) and (3d) go into u' = AcU.

Thus transformation by (2) carries one flat-plate problem into another with

a different incident velocity.

Since the boundary conditions and pdes determine the shear stress uniquely

at every point along the flat plate, uy(x,0) depends on U and x:

uy(x,0) = F(U,x) (4)

Since transformation by (2) carries one flat-plate problem into another, and

since (4) must hold for both of them, (4) must be invariant to (2) no matter

what the value of a. A short calculation just like that in the previous

section, 4.15, shows that

uy(x,0) = const.
. U3/2x-1/2

(5a)

or in dimensionless form

vu
y

(x,0) 1/2
- U2 const. `Uv (5b)

The reader should note that (5b) cannot be determined by dimensional analysis

alone. Pure dimensional analysis requires only that the two variables in

(5b) be functionally related. Invariance to (2) must be invoked to show that

the function is the square root. Equation (5b), which provides us with

nearly all the information we require for practical purposes, is a pure

group-theoretic consequence of the algebraic symmetry of the boundary-layer
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equations (1). All that is gained by completing the solution is the value

of the constant.

5.2 Blasius's differential equation

To deal with (la,b) it is convenient to introduce the stream function W

defined by

and work in special units in which v = U = 1. The continuity equation (1b)

is identically satisfied by (6), and (1a) becomes

WY q) xY x YY = yyy

Under the transformation group (2), W transforms according to

', = Aa+1

(7)

(8)

When a = 0, the most general invariant form for W in terms of x and y is

rx- f X (9)

where f is a function yet to be determined. Then

u=t =f(n), n- Y (10a)y
YX

= 1 (f - nf)-v=W (10b)x
2 v

and

2 f+ f f= 0 (11)

which is Blasius's differential equation.

collapse to the three conditions

f(0) = 0

The boundary conditions (3)

(12a)
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(12b)

(12c)

which are just sufficient for the third-order equation (11). The shear at

the plate is given by

uy(x,0) = x-112f(0) (13)

so we must determine f(O) in order to find the constants in eqs (5).

At first sight this procedure presents a small difficulty. Because the

boundary conditions (12) are two-point boundary conditions, there is not

sufficient information at n = 0 to undertake a numerical integration. Ordi-

narily in two-point boundary value problems we use the shooting method,

which involves some trial and error. We guess a value of f(0) and then

integrate (11) numerically to large enough abscissas to allow an accurate

estimate of f(=). If it is not correct, we adjust the guessed value of f(0)

and repeat.

We can avoid this troublesome trial and error by exploiting the invariance

of (11) to an associated group. The principal group of (7) is

'P, _ Xa+1

x' =Ax (14a)

Y, = AY
(14b)

(a + 1) - S= -1

The associated group is then

f' = p-1f

n' = un (15)

to which (11) is clearly invariant. According to (15), f' = u-2f and

f' = u-3f; thus f(0)/[f(_)j3/2 is an invariant. The first numerical inte-

gration with any guess for f(O) determines the value of this invariant, which

is the same as that of the constant in eqs (5a) and (5b). The value is 0.33205.
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5.3 The associated differential equation

In the present problem of boundary layer flow, a difficulty arises in the

study of the associated differential equation that does not occur in the

nonlinear diffusion problems dealt with in Chapter 4. Here, the principal

deq is of third order. Invariance to the associated group (15) allows it

to be reduced to a pair of coupled first-order equations. Whereas a single

first-order equation can be studied conveniently by means of its direction

field, a pair of coupled equations cannot so be studied.

In the problem at hand, however, this first difficulty can be circum-

vented. If the von Mises transformation is made in (1a) and (1b), i.e., if

we pass from the independent variables x, y to new independent variables x,

p, (1a) becomes the nonlinear diffusion equation

which is of second order. It, too, is invariant to group (2). Its principal

ode is of second order, too:

ux = (uu,) (16)

(uu)' + nt = 0, n = (17)

The shear uy(x,0) is given by If we write the transformations of

group (2) relevant to (16) as

u
= Xa/(a+1)u

X1
= as/((1+1)x (18a)

and note that

a + 2
a,+ 1 a,+ 1

we see that (17) should be invariant to the associated group

u' = u2u

n' = un

(18b)

(19)
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which is easily verified directly. If we introduce the invariant t = u/n2

and the first differential invariant s = u/n, we obtain the associated deq

ds s(2s + 2t +1)

d f 2t t - s)

Figure 14 shows the Lie plane of eq. (20). We are only interested in the

first quadrant since both u and u are >0. The origin in the (s,t)-plane

corresponds to the limit n - -, since u(oo) = 0 and u(-) = 1. When s and t

are both small, (20) becomes

ds s_

TEM----S)

Fig. 14. The direction field of eq. (20)

(21)

How do the integral curves of (21) approach the origin? Can t >> s on such

integral curves? If t >> s, (21) becomes ds/dt = s/4t2 which integrates to

s = const x exp(-1/4t). On these curves, t is indeed -s when t is small.

Can t ti s, i.e., can s = At? Substitution of this hypothesis into (21) at

once leads to a contradiction. Can s >> t? Then (21) becomes ds/dt = -1/2t

which integrates to give s = const + kn(1/vrt-). This function can never

represent a curve passing through the origin. So only the first alternative

is possible.

If we substitute for s and t in terms of u and u, we then have for the
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first alternative

/ 2

TI

= const x exp - du) (22)

when n is large. Since u(=) = 1, we can set u = 1 on the right-hand side and

integrate again to find

2

u= 1 - const. e-n J4, n>> 1

When s and t are both large, (20) becomes

ds _ s(s + t)

3t t(zt - s

(23)

(24)

Equation (24) is invariant to the stretching group s' = As, t' = At and so

an integrating factor can be found for it by Lie's method (Section 2.2).

A short computation shows its integral curves to be represented by

s4t = C(2s - t)3 (25)

where C is a constant labeling the various integral curves. The family (25)

represents two kinds of curves, those for which C > 0 and those for which

C < 0. When C > 0, all points of an integral curve must lie above the line

s = t/2. When C < 0 all points of an integral curve must lie below the line

s = t/2. The line s = t/2 is the separatrix between these two families (a

fact which can also be found directly by solving (24) with the method of

Section 2.5).

The asymptotic form s = t/2 of the separatrix S between the two families

of curves in Fig. 14 corresponds in terms of u and n to the differential

equation u/n = u/2n2, which integrates to give u = ate, where a is a constant

of integration. Then t = a/n3/2 and s = a/2n3/2. Thus the remote part of S

at large s and t gives the behaviour of u near n = 0. Finally, the constant

a = 2(uu)n=
0

The curves of the upper family (C > 0) all intersect the line s = 2t at

t = 2Tt/4, which marks their maximum extent in t. Eventually, for each of

them, s - - and t - 0, conditions that are inconsistent with a constant value

of uu at Ti = 0. The curves of the lower family, (C < 0), are asymptotic for

large s and t to s = which leads to u = =Cn2/4. This means that
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(uu)n=0 = 0 for all the curves of this family, and they are unsuitable to

represent u(n).

The upshot of this analysis is that

u = aT n<< 1

= 1 - const. e ' 4 n >> 1, (26)

which, though interesting, seems to bring us no closer to determining the

value of a, our goal. I have gone through the details of the Lie plane

analysis of Eq. (20) in order to show how one may use information like that

contained in (26) to finish solving practical problems.

A function which (1) behaves like n for small n and (2) approaches 1 with

a deviation proportional to e-n2/4 for large n is

u = `; Jn dq e-q2/4 (27)
P(1/4) 0 q

For, the function defined by (27) varies as

utiT-) r / for n«1

and

2
7 n-3/2 e-n /4 for n>> 1u

2

F1 74T

(28a)

(28 b)

Equation (28b) represents a somewhat faster approach to unity than required

by (23), but the difference will only be felt at large n, when the deviation

of u from 1 is insubstantial. According to (28a) (u6)n=0 = [2/r(1/4)]2 =

0.30430, which is too low by about 9%. However, the derivative of a fitting

function can be a much worse representation of the derivative of the fitted

function than the representation of the function itself, so a better way to

find (u6)n=0 is to use the integral relation

(uu)n=0 = 7
nudn (29)

that follows from (17). From (29) we find that (u6)n=0 = r(3/4)/r(1/4) =

0.33799, which is too high by only 1.8% and adequate for practical purposes.
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The reader should realize that the analysis of the last paragraph starting

with eq. (27) is based entirely on guesswork.

5.4 Flat plate with uniform suction or injection

According to (10b), the only boundary condition on u at y = 0 other than (3b)

that admits similarity solutions is v(x,0) n x-1/2. So boundary-layer flow

with uniform suction or injection cannot be described by similarity solutions.

But the group (2) carries one case of uniform suction or injection into

another, so the relation analogous to (4), namely

uy(x,0) = F(U,x,vw); vw = v(x,0) (30)

should be invariant to (2). From the four variables in (30), two combinations
112 -312 112 -112

invariant to (2) can be made, say, u
y
x U and v

w
x U . Thus,

1/2

uy(x,0) =
U3/2x-1/2G` w

U J

(31)

where G is an as yet undetermined function.

E.M. Sparrow, H. Quack and C.J. Boerner [SP70], have treated the problem

of the flat plate with uniform suction or injection by changing in (7) to

the variables

and

w_ U (32a)

v x1/2

yU1/2

x

(32b)

both of which are invariant to (2). Then they substitute w = into

(7) obtaining (we pass again to special units in which v = U = 1)

2fnnn + ffnn = ffnn) (33)

The boundary conditions u(n = 0) = 0, u(n

become

fn(n=0)=0

= -) = 1, and v(n = 0) = v w then

(34a)

63



fn(n=-) = 1

f+2E=-cf& at Ti = 0

(34b)

(34c)

Sparrow et al. have tested the so-called method of local similarity on

eqs (33) and (34). The basis of this method is to assume that the c-dependence

of f is very weak. In this case, the right-hand sides of (33) and (34c) can

be dropped, the term 2 on the left-hand side of (34c), however, is retained.

Thus f becomes effectively a function of one variable, n, and plays the

role of a parameter. Equation (33) then becomes the ode (11), and the only

difference from the Blasius problem is that (34c) replaces (12b).

The invariance of (11) to the associated group (15) can also be used in

the method of local similarity to avoid the trial and error that otherwise

would be involved in solving the two-point boundary-value problem we face in

finding fnn(n = 0). If we add to (15) the stipulation that C' = then

the equations of the local similarity theory are invariant. If we then fix

E and guess a value of fnn(n = 0), we can integrate (11) and find fn(n = -).

If this value is not 1, we scale it to 1 using (15), and scale fnn(0) ti
u-3

and C ti u-1 accordingly. Each integration of (11) gives us a pair of values

fnn(n = 0) and E, and it is a relatively simple matter to construct a curve

of fnn(n = 0) vs .

If the c-dependent terms dropped were of smaller order of magnitude then

the one that is kept, the method of local similarity would have some rigorous

validity. One would expect not only the value but also the slope of the

curve of fnn(n = 0) vs C to be correct at C = 0. Figure 15, based on the

work of Sparrow et al. shows that this is not the case. So it would appear

that the terms dropped are of the same order as those kept. For this problem,

at least, then, the method of local similarity is not based on a consistent

approximation.
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Fig. 15. The shear constant as a function of E according to
the method of local similarity. The curves are
taken from the paper of Sparrow et al. [SP70]

5.5 Thermal boundary layers

If the flat plate in Fig. 13 is heated, we must add to Eqs (la,b) the equa-

tion for the temperature rise T

uTx + vTy = DTyy (35)

Here D is the thermal diffusivity. (In special units in which v = 1, it is

numerically equal to the reciprocal of the Prandtl number.) Eq. (35) is

invariant to group (2) as long as T' is linearly related to T (whether or not

the coefficients of the linear relation depend on a). Suppose now we con-

sider the problem in which the plate is held at the same temperature Tw at

every point. The local heat transfer coefficient h = -DT y(y = 0)/Tw* is

independent of Tw because of the linearity of (35) and so can only depend on

U and x.

* The special units can be augmented by choosing the unit of mass so that
Pcp = 1.
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p = F(U,x) (36)

Transformation by (2) changes one boundary-layer problem (characterized by

U) to another (characterized by U'). Since (36) must be true for all such

problems, it is invariant to (2). Because h transforms as y-1, it scales

with A. The only invariant relation of the form (36) is then

h U 1112
= constant x

x )
(37a)

In dimensionless form this becomes

C

= constant x UTx
\1/2

(37b)

the well-known result that the local Nusselt number is proportional to the

square root of the local Reynolds number.

Equation (37b) holds for any problem in which the temperature boundary

condition is carried into a condition of the same type by group (2), e.g.,

clamped wall flux, wall temperature proportional to a power of x, wall flux

proportional to a power of x, etc. Because of the linearity of (35), the

"coefficient of proportionality" in the temperature boundary condition cannot

enter (36), and the rest of the argument proceeds as before. Of course, the

constant is different for different problems, but that is the only change.

To calculate the constant in the clamped-temperature case, we must remember

that a = 0 in the Blasius-Prandtl boundary layer. Thus we set T = g(n) where

n = y/V. This function is the most general invariant to (2) that leaves the

wall-temperature unchanged. A short calculation (again we use special units

with v = U = pcp = 1) then shows

g + g = 0 (38a)

with the boundary conditions

g(O) = Tw, g(co) = 0 (38b)

Here f(n) is the solution of Blasius's deq (11). Equations (38) are easily

integrable and give for the constant in (37b)
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Tw

° 1

99 = {JO exP L- Pr
f9

f(n')dn'Idn} (39)

5.6 Free convection boundary layer

In this problem, the boundary-layer flow is induced by heat transferred from

a vertical plate rather than being imposed from the outside. An additional
*

term, SgT now appears on the right-hand side of (1a), and in the boundary

conditions (3c) and (3d) U is replaced by zero. Owing to the appearance of

the SgT-term, T must transform like T' = as-2T in order that (2) leave (la)

invariant. As before the local heat transfer coefficient h scales as A-1.

Thus, by a now familiar procedure (treating SgT as a new variable in place of

T) we obtain

SgT 1/4
= constant x {Xwl

or in dimensionless form

hx
Sgx3Tw 1/4

= constant x

(40a)

(40b)

i.e., the well-known result that the local Nusselt number is proportional to

the one-quarter power of the Grashof number.

To find the velocity and temperature profiles when the plate temperature

is clamped (a = 2, S = 4), we set

p = x3/4f{- ) (41a)
x

and

yS T = ` (41b)g g -

and find (in special units in which v = 1 and SgTw = 1)

j+3 ff - 1 2 +g = 0 (42a)

Dg+Tfg=0 (42b)

* S = volume coefficient of thermal expansion, g = acceleration due to
gravity.
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with the associated boundary conditions

f(O) = f(0) = 0, f(oo) = 0

g(0) = 1, g(-) = 0 (43)

These equations represent a difficult two-point boundary-value problem

in the solution of which trial and error cannot be avoided. The reasons

for this are worth considering for a moment. The boundary conditions (43) at

infinity are zero boundary conditions, so we cannot alter them by scaling,

in contrast to Blasius's case. So the fact that (42) are invariant to the

associated group

(44)

is not of much help. If we guess f(0) and 6(0) wrongly, so that f(-) and

g(oo) do not vanish, scaling will not help because we cannot scale non-zero

quantities to zero using (44).

In Chapter 4 on nonlinear diffusion we dealt with zero boundary conditions

at infinity successfully. There we used invariance to the associated group

to reduce the principal deq to a first-order associated deq. This equation

could be analyzed by means of its Lie plane, and thus we could find the

proper integral curve (a separatrix) to satisfy the zero boundary condition

at infinity. However, the coupled deq (42) are of third and second order,

respectively, so we cannot reduce their order enough with (44) to help much.

In this problem, then, we seem to have passed limits beyond which the associ-

ated group cannot be used to avoid the trial and error inherent in two-point

boundary problems.
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6 Wave propagation problems

6.1 Introduction

The words "wave propagation" are used to characterize a variety of different

phenomena, all involving the spreading of a disturbance in some medium.

Conventionally, spreading of a disturbance by diffusion is not considered

as wave propagation but, as we have seen in Sections 4.1 and 4.2, even dif-

fusion problems can have solutions marked by sharp moving boundaries, one of

the hallmarks of wave propagation. So we must beware of being too rigid in

our classification of problems as wave propagation problems.

Most of the problems that will be dealt with in this chapter are in fact

characterized by moving boundaries. The classical example of such a wave

propagation problem having a similarity solution is a point explosion in a

gas (Taylor [TA50], von Neumann [NE], Zeldovich [SE59]);the moving boundary

in this case is a shock front. Gas-shock problems are mathematically complex

because they are described by an equation of state and three coupled pdes,

those of continuity, momentum conservation and energy conservation. A

simpler system exhibiting the same mathematical phenomena is one considered

by von Karman-Duwez [KA50] and Taylor [TA50], namely, compression and rare-

faction waves in a nonlinearly elastic medium. Here the system is described

by an equation of state and only two coupled pdes (continuity and momentum

conservation). So we shall begin with the von Karman-Duwez-Taylor problem.

The wave motion in the examples just described can be termed longitudinal

because the material motion is parallel to the direction of propagation of

the moving boundary. A transverse wave is one in which the material motion

is perpendicular to the direction of propagation of the moving boundary. An

interesting transverse-wave problem having a similarity solution is that of

a clamped membrane instantaneously loaded on one side by a pressurized gas

(shock-loaded).

A classical moving-boundary problem based on diffusion as a mechanism is

the Stefan problem: phase change (say, freezing) in a half-space induced by

a sudden decrease in the temperature of the front face. Because this problem
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is not unlike those dealt with in Chapters 3 and 4, it will not be treated

here in detail.

In all of the above problems the symmetry group is a stretching group. In

problems invariant to translation groups, it is possible to have uniform wave

propagation not characterized by a sharp boundary. The classical example is

the solitary waves of hydrodynamics. Another example, dealt with here at

modest length, is the spreading of a normal (non-superconducting) zone in a

quenching superconductor.

. These examples hardly exhaust the physical situations that lead to propa-

gating-wave similarity solutions but their study should serve as a useful

introduction to this interesting field.

6.2 von Karman-Duwez-Taylor problems

Let us consider a long rod of an elastic material (not necessarily Hookean)

undergoing compression or rarefaction (Fig. 16). For simplicity, let us

ignore lateral expansion or contraction, i.e., let us take Poisson's ratio

to be zero. The left-hand shaded square represents an as yet undisturbed

element of the rod with density p0 lying between the Lagrangian coordinates

t=0 t>0

I pa 1 c (a, t) ..;: P

a o+do x(a,t) xtdx

c(a+do,t)

Fig. 16. Sketch to explain the notation used in von
Karman-Duwez-Taylor problems

a and a + da. The right-hand shaded square represents the position of the

same element later when it lies between the Eulerian coordinates x(a,t) and

x + dx. Its density is then p(a,t), the tensile stress at its location

x(a,t) is o(a,t), and its velocity in the positive x-direction is v(a,t).

Continuity requires that

p0da = pdx

The ratio p0/p = 1 + n, where n(a,t) is the local tensile strain. Thus

ax PO = 1 + n
2a

=

p

(1)

(2)
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or, if we differentiate partially with respect to t,

av _ an

as at

The equation of motion of the element is

p0da at = a(a + da) - o(a)

or

av _ ( 1 da an
at lp0 as

(3)

(4a)

(4b)

if we assume that the local tensile stress a is a function only of the local

tensile strain n. Once a constitutive equation relating a to n (equation of

state) has been chosen, (3) and (4b) can be used to calculate the evolution

of any disturbance from its initial state.

6.3 Elastic (Hookean) wire

The problem we shall be considering in the next few sections is that of a

thin elastic wire from the end of which a large weight is suspended (see Fig.

17). At t = 0, the weight is released and falls under the effect of gravity.

We assume that the elastic restoring force of the wire is so small that the

weight is freely accelerated downwards. What is the subsequent state of

strain in the wire?

In this section we begin with the case of Hookean wire, i.e., one in which

a = En, where E is Young's modulus. In special units in which PO = E = 1,

(3) and (4b) become

av an

_
(5a)

av an

_ - (5b)Ta

The boundary conditions for the problem at hand are

v(O,t) = - gt (6a)

v(°,t) = n(°°,t) = 0 (6b)

v(a,O) = n(a,O) = 0 (6c)
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where g is the acceleration due to gravity, henceforth taken as unity (thus

completely defining the special units). Eqs (5) are invariant to the group

(7)

Fig. 17. Sketch of a large weight suspended from the end of
a thin elastic wire. Shown also is the coordinate
system being used

a=0

and boundary condition (6a) requires a = 1. Thus we take

v = tv (8a)

and

n = tH `a ft/ (8b)
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In terms of V and H, (5) becomes

V=H - xH (9a)

H = V - xV (9b)

where x - a/t, while Eqs (6) collapse to

V(O) = -1 (10a)

V(-) = 0 (10b)

H(W) = 0 (10c)

If we add (9a) and (9b) we get

(V + H)(1 + x) = V + H (11a)

which integrates at once to give

V + H = constant x (1 + x) (11b)

In order to satisfy (10b) and (10c), the constant in Eq. (11b) must be zero,

so V = -H. Then (9a) becomes

V= - V+xV (12a)

which integrates to give

V = const x (x - 1) (12b)

Because of condition (10a), the constant in (12b) equals 1. So

V = x - 1 0< x< 1

=0 1<x
(13)

H=1-x 0<x<1

=0 1<x

The lesson this simple example teaches us is the same lesson that we learned

in Sections 4.1 and 4.2, namely that solutions occasionally satisfy the
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condition that they vanish at infinity by vanishing at some finite abscissa

and remaining zero thereafter. The wave front x = 1 propagates uniformly

with a velocity of VU-po (in ordinary units). The maximum strain occurs at

the end of the wire and is given by

n(O,t) = 9'

E PO

in ordinary units.

(14)

6.4 Non-Hookean wire

If the wire in Fig. 17 is stretched beyond its elastic limit, the tension in

it will no longer be a linear function of the strain, but rather will be a

concave-downward function of the strain. We can try to simulate such behav-

iour by taking o = EV1, in which case (3) and (4b) become

av an

Ta- _ Tt-

and

(15a)

av = 1 an
(15b)

at r as

in special units in which E/2P0 = 1. Eqs (15a,b) are invariant to the group

V. = aav

III
= XYn

(16a-d)
ti

= ast

where

and

(16e)

(16f)

The boundary conditions are again those of Eq. (6) (special units: g = 1);

because of Eq. (6a), a must equal B, so that a = a = 3/2 and Y = 2. In this

case, we can take
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= tV 27 )t
n = t4/3H ( a

(17a)

as the most general invariant form. In view of the linear constraints (16e)

and (16f) we expect that transforming by the associated group

(18a-c)

will carry one pair of acceptable functions V, H into another.

A short calculation shows that the principal odes for H and V are

2
V x H= 7 H- (19a)

H=JFI(V-3x11 (19b)

The boundary conditions (6) become

V(O) = -1 (20a)

V(=) = 0 (20b)

H(-) = 0 (20c)

As anticipated, the principal odes (19) are invariant to the associated group

(18).

It is easy to prove by a repetition of the argument of Section 2.7 that if

we introduce two invariants of the associated group (18) in place of V and

H in (19), then (19) reduce to a single first-order ode for one invariant in

terms of the other. If we take, for example,

h = x4H (21a)

and

w = x3V (21b)

(19) becomes

a/t2/3)
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dw - 3w-2wvFi+3h
(22)

4h-3h +w,F

Figure 18 shows a sketch of the fourth quadrant of the Lie plane of (22).

(We are only interested in the fourth quadrant because v < 0, n > 0.) There

Fig. 18. Fourth quadrant of the Lie plane of Eq. (22)

are two singular points in the fourth quadrant, 0, the origin, and P:(1,-4/3).

The integral curves are of two types, those that cross C', the locus of

infinite slope, and those that cross C", the locus of zero slope. These two

types are separated by a separatrix S which passes through both singular

points. In the fourth quadrant, all integral curves in the neighbourhood of

the origin behave as w = -Ch3/4. Since the origin 0 in the Lie plane corre-

sponds to the point x = 0, the constant C is related to the value of H(0):

H(0) = C-4/3. The singular point P of the separatrix corresponds to the

asymptotic behaviour H % x-4, V ' -(4/3)x-3 and thus fulfills the boundary

conditions (20b,c). If we take the problem to be physically well-determined,

i.e., to have a unique solution, then it must be given by S. Now with a

single numerical integration from P + 0 we can find C. Then we shall have

consistent boundary conditions for the integration of (19), thereby solving
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our two-point boundary problem without any trial and error.

The particular manipulations involved in calculating C (using a series to

advance away from P and then integrating numerically towards 0 and possibly

joining the numerical solution to a series at 0) can be tiresome; and since

this problem has no special practical merit, we shall not perform them. What

is interesting here we already know, namely, that the solution fills all space

right from the start rather than being bounded by a sharp moving front, as in

the preceding section. This happened, too, in the diffusion problems dealt

with earlier, some being bounded and some not, but we made no attempt to

relate this behaviour to the general structure of the pdes. But here we can

do so, and a brief digression is worth while.

6.5 Characteristics and Riemann invariants

If we abbreviate do/p0dn as c2 and add c times eq. (3) to eq. (4b) we get

av+c avl=c(an+cal
at aaJ at aaJ

(23)

The terms in parentheses are the directional derivatives of v and n, respect-

ively, along the direction da/dt = c. So (23) says that the quantity

v - f cdn is conserved along a curve whose slope da/dt equals c(n) at each of

its points. Similarly by subtracting the two equations, we find that v + f cdn

is conserved along a curve whose slope da/dt = -c at each of its points. The

curves are called characteristics, and the quantities v ± f cdn are called

Riemann invariants.

In the case of a Hookean wire c is constant. Thus we can easily solve

the problem of Section 6.3 by means of the wave diagram shown in Fig. 19.

The axes of the wave diagram are a (abscissa) and t (ordinate). The lines

of slope ±1 represent the characteristics (in special units in which E = p0 =

c = 1). Along characteristic AB, v + n is constant and equal to zero (since

v = n = 0 at point A). Thus v = -n on AB and, as a matter of fact, on all

negative-slope characteristics. So v = -n everywhere. On the positive-slope

characteristic, BC,

2v=v-n=vB-nB=2vB=-2tB (24)
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t

0

Fig. 19. Wave diagram for the Hookean wire

so for any point Q

v= - n= -tB

a

(25)

where B is the intercept of the positive characteristic through Q on the

line a = 0. With this established, it is easy to see that (8) and (13) give

the proper solutions for v and n.

We proceed similarly for the non-Hookean wire of Section 6.4. In the

special units we used there, c = n-1/4. On all negative characteristics,

therefore, v + 4 n3/4 = 0 so v = - 4 n3/4 everywhere. Incidentally, from

this we can see at once that

-C = w(O) _
V(O)

- v I

-

h)
4

S (26)

On positive characteristics the quantity v - 3
n3/4 = - n3/4

is conserved.

Since n is then constant on each positive characteristic, so is c =
n-1/4

Thus the positive characteristics are straight lines!

On positive characteristics

_ 8
- 8 n3/4 = v - 4 n3/4 = v

-

4 n3/4 = 2v 2t (27)

-- 3 B B B B
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so c = (4/3t
B)1/3.

Thus the equation of the positive characteristics is

a = l -11/3 ( t -
B

or t = tg +. (x)1/3 a

(28)

Figure 20 shows the wave diagram for this problem with the positive character-

istics sketched in. The smaller the intercept, the smaller the slope, so the

Fig. 20. Wave diagram for the non-Hookean wire showing
the positive characteristics

positive characteristics fan out. In fact, the characteristics with infini-

tesimal t3 are nearly horizontal and shoot almost straight out to infinity.

This is the reason why the disturbance fills all space right from the start.

We can see from the above argument that as long as c is a function only of

n the positive characteristics will be straight lines. The behaviour of the

family of straight lines depends on how c varies with n. If we repeat the

argument given just above, we find that the equation of the positive charac-

teristics can be written as

(29a)

where c and tB are related by

b = tB (29b)
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and the function b is defined by

rn

b =
1

cdn
0

(29c)

What we need now is a plot of c = db/dn versus b. If b is an increasing

concave-downwards function of n (see Fig. 21a), then c will be a decreasing

function of n and therefore of b, too. Thus, since b = tB, c will be a

decreasing function of tB, and the positive characteristics will fan out.

(b)

M

P,v

77

a

77

Fig. 21. Sketches of the behaviour of b and c as functions
of n

What happens if b is an increasing, concave-upwards function of n (Fig.

21b)? Then c will be an increasing function of tB, and the positive charac-

teristics will look as shown in Fig. 22. Positive characteristics cannot

intersect because then v and n are overdetermined. What happens then is

that the positive characteristics are bounded by a moving shock front across

which v and n undergo a discontinuous jump and no positive characteristic

extends beyond its point of contact with the shock front. So now we must

turn to consideration of such shock fronts.
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a

Fig. 22. Wave diagram in the case of intersecting
characteristics

6.6 Shock conditions

The changes in strain and velocity across the shock front and its velocity

of motion are not all independent but are constrained by the requirements of

conservation of mass and momentum. Let us first consider these conservation

conditions for a shock moving uniformly with velocity U in the laboratory

system into an undisturbed medium (Fig. 23a). To simplify our calculations,

(a)

v=0 po
UNDISTURBED REGION

U V-0. P 0 LAB SYSTEM

(b)

SHOCK

--iU tV P Cr
SHOCK STATIONARY

SYSTEM

Fig. 23. Uniformly propagating shock in the lab and shock-
stationary coordinate systems
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let us consider the same shock in a coordinate system moving with the shock

(Fig. 23b). In the shock-stationary system, conservation of mass requires

p0U = P(U + v)

or

(30a)

v = nU (30b)

The momentum equation for the matter crossing the shock front in one second

is

PUUv = o(n)

or

(31a)

(31b)

Eqs (31a) and (31b) are shock conditions analogous to the Rankine-Hugoniot

conditions of gas dynamics.

6.7 "Superelastic" wire

Suppose now we consider a material which becomes stiffer as the strain in-

creases, for example, a rubber band. For such a material, a will be a con-

cave-upwards, increasing function of rj and so therefore will b. So such a

material should show shock formation in our problem of the dropped weight.

Let us take for the sake of argument a = En2 and use special units in

which E/pU = 1. Then (3) and (4b) become

av = air.
as at

aat
The shock condition can be written

'L 3
v n (at the shock)

Un

(32a)

(32b)

(32c)

(32d)
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The deq (32a,b) are invariant to the group

(33a-d)

a' = as

with the linear constraints

a+36=3

y+26=2

The most general solution invariant to (33) is

v to/QV a
t 17J

n = tY/SH(
a 77

The shock front must correspond to a fixed value A

shock velocity will be U -- da/dt =
(A/S)t(1/6)-1,

become

V2(A) = H3(A)

and

A2 = S2H(A)

(33e)

(33f)

(34a)

(34b)

of a/tt/s. Then the

Now the shock conditions

(35a)

(35b)

These relations are clearly invariant to group (33), too.

The linear constraints (33e,f) oblige the functions V and H to transform

according to the associated group

V' = 3V (36a)

H' = 2H (36b)

x' = ux (x -- a/ti/S) (36c)

The boundary condition v = -t at a = 0 (special units: g = 1) requires
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(x = S, so a = //6 = 3/4 and y = 1/2. Then (34) become

v=tVyt
47-1)

n = t2/3H( a
/t

(37a)

(37b)

Inserting these into (32), we find

V = 2 H-_S x H

and

(38a)

2HH=V -4xV (38b)

(which are invariant to the associated group (36) as expected). We must

solve these equations subject to the boundary conditions

V(0) = -1 (39a)

V2(A) = H3(A) (39b)

16A2 = 9H(A) (39c)

At this point, an easy procedure with which to finish this problem is to

guess a value of A and calculate H(A) and V(A) using (39b) and (39c). Now

we have sufficiently many boundary conditions at x = A to integrate inwards

to the origin. Then we can transform the solution just found using the

associated group (36) so that V(0) = -1. Figure 24 shows the results of

such a calculation starting with A = 3, H = 16, V = 64. The value of V(0)

obtained by numerical integration is -134.5. Scaling this to -1 with u =

0.1952, we find A = 0.5855. The shock velocity is then

U = 0.7807
(' tt)1/3

(40)

0

in ordinary units.

As before, invariance of the principal odes to the associated group allows

us to solve a two-point boundary problem without any trial and error.

Suppose we did not know that there was shock formation in this problem and

we proceeded, as with previous problems, to try to find the "right" integral
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Fig. 24. Strain and velocity profiles behind the shock front

curve in the Lie plane. This attempt would have to fail (since no continu-

ous solution exists). How exactly would it fail? The answer to this equa-

tion is interesting because if we can recognize the manner of failure, it

may alert us to shock formation in other problems.

If we use the invariants w = V/x3 and h = H/x2 as new variables, (38)

reduces to the associated ode

dw _ 12w + 4h2 - 18wh
dfi 3w + 8hh

(41)

Since V < 0 and H > 0, we shall be interested in the fourth quadrant of the

Lie plane. It is shown in Fig. 25. There are two singular points, one at

the origin and one at P: (1/2, -1/3). The point P is a saddle point and is
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x=0

Fig. 25. Sketch of the fourth quadrant of the Lie plane
of the associated ode (41)

traversed by two separatrices whose slopes at P are -1 and 10/3, respec-

tively.

When x = 0, w and h must both be infinite, so the point at infinity in

the Lie plane corresponds to the origin of x. Furthermore, when x = W, w

and h are zero, so very large values of x would correspond to the origin

in the Lie plane. We are looking for an integral curve, then, that goes

from the origin in the Lie plane through the fourth quadrant to infinity.

The only such curve is the separatrix S through the critical point P. Now

in deriving (44) we calculated

x
d-x

= 1-3-- (12w + 4h2 - 18wh) (42a)

and

Tx_ _ 3-16 (3w + 8h - 12h2)x

From either of these equations we find that in the neighbourhood of P,

3 dx = dh

x

(42b)

(43)
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which means x must vanish as (h -
1)1/3

at P, which is clearly impossible.

So our effort to find an integral curve in the Lie plane fails.

The shock front is represented by the single point Q: (16/9, -64/27) and

the profiles of Fig. 23 correspond to the part of the integral curve between

Q and infinity. Numerical calculations indicate that Q does not lie on the

separatrix S, a curve which seems to have little practical significance in

this problem.

6.8 Transverse waves

In the commonest transverse wave problem, that of the stretched string, the

string is pretensioned and the tension is considered to remain constant

during the small transverse vibrations. If the string had not been preten-

sioned but had no slack initially, its tension could not have been considered

constant, but would have depended on the amplitude of the transverse motion.

This is because the transverse motion changes the length of the string. Such

problems are more difficult to solve than simple stretched-string problems.

But certain problems of this class exist whose solutions are given by simi-

larity solutions; the problem of the shock-loaded elastic membrane mentioned

in Section 1 of this chapter is the one dealt with by the author [DR70].

Figure 26 shows a schematic diagram of the setup. A completely flexible

Hookean membrane in the form of a long ribbon is clamped along its two long

edges 0 and P. Initially, the membrane has no slack but is under no pre-

tension. At t = 0, the membrane is exposed suddenly to a uniform, steady

Z(t) z

L

P

Fig. 26. Sketch of the shock-loaded membrane
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pressure p. What is its subsequent motion?

The key to analyzing this problem is to realize that the velocity of

transverse motion of the membrane elements is much less than their velocity

of longitudinal motion. Consequently, the surface tension a in the membrane

is effectively uniform, having the instantaneous value

rL

o
L

iJ (1 + Y2)112 dz - Ll

0

(44)

where Y is the elastic modulus of the membrane,L is its unstretched width,

y is the transverse displacement, and z is the longitudinal coordinate (across

the width). The pde of smaZZ transverse motions is, as usual,

uYtt = p + oyzz
(45)

where u is the mass per unit area of the membrane. If we expand (44) and

keep only the leading term, (45) becomes

Y L 2
dz

uytt - p + 2L yzz JO yz

or

1 I1 2

ytt _ p + 1Z yzz J 0 yz dz

(46a)

(46b)

in special units in which u = Y = L = 1.

At time t, the centre part of the membrane Z(t) < z < L - Z(t) has not

yet been affected by the wave running in from the clamped edges.* So here

the membrane is flat, yz = 0, and y = pt2/2. In the region 0 < z < Z(t),

then,

rZ(t)
2

Ytt = p + YzZ JO yz dz, (47a)

the factor of 1/2 having disappeared from the last term because there are

two disturbed regions, one at each edge, that contribute to the integral in

(46b). It is convenient to introduce the auxiliary variable

* So the solution we are finding will describe only the early stage of the
motion until the waves running inward from both clamped edges meet in
the middle.
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U = 1 pt2-y

in terms of which (47a) becomes

1Z(t) 2
dzutt = uzz J0 uz

The equation of motion is then an integro-pde!.

Equation (47c) is invariant to the group

where a and B are subject to the linear constraint

2a+26= 3

(47b)

(47c)

(48a-d)

(48e)

The actual values of a and 6 in this problem are determined by the boundary

condition

u(0,t) =
1

pt2 (49)

which requires a = 26. Then, a = 1 and 6 = 1/2. But before we use this

information to try to find a similarity solution to (47c), let us again use

the method of Section 4.15 to derive some useful information about Z(t).

If we add to (48) the additional transformation equation,

p,
= Aa-26p

(48f)

then (47c) and (49) are invariant to (48a-f). The extended group (48a-f)

carries one problem with a pressure p into another of the same type with a

pressure p'. Now, in general, for all such problems

Z(t) = F(t,p) (50)

where F is an as yet undetermined function. But (50) must be invariant to

(48a-f), from which it follows that
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Z = Bp2/3t2

where B is an as yet undetermined constant.

Now we proceed by setting

u = t2f
t

When we substitute in (47c), we get

2(x2 -
I

X

J

f2dx) f - xf + f = 0, X Bp2/3

(51)

(52)

(53)

The second term in parentheses is a constant independent of x, and its value

can be found by the following argument. When x = X = Bp213, f = 0 since

x = X marks the wave front beyond which the membrane moves as if free. In

order not to have a sharp crease in the membrane at x = X, we must also have

f(X) = 0. Now (53) is a second-order linear deq, so if f = f = 0 at a

regular point the solution must be identically zero. This means X must be

a singular point of (53), and this fixes the value of the integral as

1X

f2dx=X2 (54)
0

Then (53) becomes

2(x2 - X2)f - xf + f = 0 (55)

subject to the boundary conditions

f(X) = 0 (56a)

f(X) = 0 (56b)

f(0) = p/2 (56c)

The easiest way to solve (55) is to use the method of Section 3.1 based

on (55)'s linearity and the fact that f = x is a special solution. A straight-

forward but tedious calculation gives

f = p 1(X2 - x2)1/4 -
x

(X (X2 - x2)-3/4 dx'
2 ,,5( x

(57)
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The reader may verify directly by substitution that (57) is a solution of

(55) and that it does in fact satisfy all of (56a-c). If we now substitute

(57) into (54) to determine X, or equivalently, B, we find (after two inte-

grations by parts*)

1 1

B =
1

{ (0 ds i
1

(1 -
s'2)-3/4

ds'121113

(58a)
s

r 1/3

4
{ 2 ,j

[ T.T7
- , = 0.4035 (58b)

The condition f(X) = 0, related to the membrane's having no crease at the

moving front, has been added in an ad hoc way to the more or less natural

boundary and initial conditions that we expect uniquely to determine the

solution. If the other boundary conditions do in fact uniquely determine

the solution, f(X) = 0 should be a provable consequence of the ode and the

other boundary and initial conditions. This is the case, and we prove it

by noting that the quantity 1 u2dz = c2 is not a function of z. According

to (48), c2 transforms as

c.2 = A2a-1 c2
(59)

Now c2 must be a function only of p and t,

2c = G(p,t) (60a)

and moreover the relation (60a)must be invariant to (48). Therefore the

most general relation (60a) is

c2 = A2p4/3t2 (60b)

where A2 is an as yet undetermined constant.

The quantity c is the wave propagation velocity, as we can easily see by

introducing the auxiliary quantities = uz and n = ut and rewriting (47c)

as

Ir1 (1 -
s2)-k ds = F(1 - k)

* 10 P`2 - k
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nz = Ct (61a)

(61 b)

Multiplying (62a) by c and either adding or subtracting we obtain

(n - f t + c(n - / 0 (61c)

(n + / cdF)t - c(n + f 0 (61d)

From (61c,d) we can see that the positive and negative characteristics have

the velocities ±c(= dz/dt), respectively. Using (6(b),then, we see that the

characteristics are given by

z = +

7

p2/3t2 + z0
(62)

where z0 is the intercept of the characteristic on the z-axis.

A moment's thought (or a sketch of the wave diagram) will convince the

reader that the positive characteristic through the origin, z =
(A/2)p2/3t2,

is the moving front dividing the disturbed from the as yet undisturbed part

of the membrane. So A/2 = B, if we refer to (51). Then we find that (47c)

can be written as

utt = 4B2p4/3t2uzz (63a)

If we now substitute (52) into (63a) we find after a short calculation that

2(x2 - 82p4/3)f
- xf + f = 0 (63b)

which is the same result as (53) except that the integral has been given the

value assigned to it in (54). Now we proceed as before, finding again the

solution (57).

6.9 Elastic (Hookean) wire - transverse waves

With the machinery of calculation just established we can deal easily now

with the transverse motion of a completely flexible Hookean wire mentioned

at the beginning of Section 6.8. Figure 27 shows the conceptual setup.

Again a weight is suspended from the wire, which initially is under no tension
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Fig. 27. Sketch of the spring accelerating the weight
to the side

but has no slack. The weight is supported by a table and, starting at t = 0,

it is uniformly accelerated sideways by the spring. Reasoning as before, we

reach pde (47c) as the pde for the transverse displacement u.* The boundary

condition (49) is now replaced by

u(0,t) = gt (64)

where g is the uniform acceleration of the weight and (48f) is replaced by

9' = Aa-69

Now (60b) becomes

c2 = A2g4/3t213

so that (51) must be replaced by

z = 3 Ag2/3t4/3
T

* The special units are now those in which p = L = 1, Y = 2.

(66)

(67)

93



The boundary condition (64) requires that o t= fi = 3/4. Then we must set

u = tf ill
t

After a short calculation we find

(68)

(x2 - X2)f + I xf = 0

where

X E Z/t4/3 _
3 Ag2/3
2r

We must solve (69) subject to the boundary conditions

(69a)

(69b)

f(O) = g (70a)

f(X) = 0 (70b)

The deq (69) and boundary conditions can easily be integrate d to give

f = C X (X2 - x2)-1/8 dx (71)

Jx

as the reader can verify by direct substitution. The constant C is related

to g and X by (70a):

rX

C
J

(X2 - x2)-1/8 dx = g (72)

0

The counterpart of (54) is

C2
Jo
X X2 -

x2)-1/4
dx = jX f2dx =

A294/3 116
2 (73)

0

After some computation we find

A = 1.106 (74a)

C = 1.059 v (74b)

One interesting feature of the solution (71) is that f(X) = -, which

means that at the moving front the wire has a sharp, right-angled kink.

Practically speaking, the kink is hardly discernible, and the profile (71)

turns out to be close to linear in x.
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6.10 Long waves in a channel

Another class of phenomena whose pdes give rise to characteristics is that

of long waves in a channel. If u is the longitudinal flow velocity, h the

local height of the liquid above the channel floor and z the longitudinal

coordinate, then the equations of continuity and motion are, respectively,

ht + (uh)Z = 0

ut+uuz+hz=0

(75a)

(75b)

in special units in which the fluid density p and the acceleration due to

gravity g are taken as unity. If we multiply (75a) by c-1, where c2 = h,

and add (75a) and (75b), we find the characteristic equation

h h

which means

u ± 2 is conserved on dz = c+ dt

and

The pdes (75) are invariant to the group

subject to the linear constraints

(76a)

(76b)

(76c)

(77a-d)

(77e)

y + 2g = 2 (77f)
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A problem in which a similarity solution occurs is the "breaking dam"

problem. A semi-infinite channel is uniformly full of water to a height h0.

At t = 0, the restraining dam at z = 0 is removed. What is the subsequent

motion of the water (see Fig. 28)?

Fig. 28. Sketch of the water profiles behind the breaking
dam at various times

The boundary condition h(-,t)= h0 requires that y be zero, so that then

8 = 1 and a = 0.\ We therefore set

u = U `t> (78a)

h = H `t) (78b)

On account of the linear constraints (77e,f) we expect the odes for U and

H to be invariant to the associated group

U' = pU

H' = p
2
H

(79a)

(79b)

x' = px (x = z/t) (79c)

From (79) it follows that the coordinate x0 of the front separating the

disturbed region from the undisturbed region (where U = 0 and H = h0) must

scale with A, for x can depend only on h0 and its dependence must be

invariant to the associated group (79), which carries any similarity solution

into another one with a different initial height. In fact, it follows from

(76c) that x0 =vi.

The odes for U and H are
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(U - x)H + HO = 0 (80a)

H + (U-x)U = 0 (80b)

Now these equations are homogeneous in U and H so, if they are to have a

nontrivial solution, the determinant of the coefficients must vanish:

(U-x)2- H = 0 (81)

From (81), too, it follows at once that x0 = ,4T, so that even if we had

not found this result in another way above, it would have fallen out at

this point. When (81) is fulfilled, both odes (80) are the same. It is

easy to solve them and find

U = 2(x - h0)/3 (82a)

H = (x + 2x0)2/9 (82b)

6.11 Travelling waves

Suppose a second-order pde in t and z is invariant to the one-parameter fam-

ily of translations

t' = t+A, -co<A < Co

z' = z+ax, 0 <a<Co
(83)

The most general function of z and t invariant to (83) is f(z - at), where f

is as yet undetermined. Such a solution is called a travelling wave solu-

tion. If we substitute this function into the pde we get an ode for f

involving the parameter a. Usually the boundary conditions lead to an

eigenvalue problem for the acceptable values of a. Let one such value be

a0. Then the solution of the ode will have the form f(z - a0t). If we

transform this with the group (83) for a value of a # a0, we must get another

solution of the pde, namely,

f[z + ax - a0(t + )0] = f[z - a0t + (a - a0)A] (84)
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Thus if f(x) is a travelling wave solution so is f(x + u), where p = (a-a0)a.

But this means that the ode for f(x) is invariant to the associated group

f' = f
-M < u < (85)

x'=x+u

An invariant and first differential invariant of (85) are f and f, respec-

tively. The ode for f can then be written as the first-order ode

df = F(f,f) (86)

where F is a function that depends on the form of the pde. The first-order

ode, like all first-order odes, can be studied through its Lie plane.

One application in which the travelling wave is of practical importance

is that of a quenching superconductor. A non-superconducting (high-temper-

ature) zone, once established in a superconducting wire, spreads as a travel-

ling wave. The velocity of the wave front is an important datum in under-

standing heat transfer from the wire to its surroundings and also in the

design of protection circuits for magnets wound with superconducting wire.

The pde that governs this application is

ct = czz + Q(c) (87)

where Q(c) has the form shown in Fig. (29a). Figure (29b) shows the form

C

(o)

co

co \ (b) x=z-ai

Fig. 29. Sketches showing the forms of (a) the function
Q(c) and (b) the travelling wave solution

we seek for the travelling wave solution. Equation (86) has the particular

form
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df Q(f)
df - a

f
(88)

Figure 30 shows the Lie plane of the associated ode (88). There are three

critical points, 0, Q and P, all on the f-axis and located at the three roots

of the function Q(f). The singularities 0 and P are saddle points and the

Fig. 30. The Lie plane of ode (88)

singularity Q is a vortex point. A solution of the type shown in Fig. 29b

must correspond to an integral curve in Fig. 30 that begins at the origin

and ends on the f-axis. The only curve that can do this is a separatrix

going from 0 to P, as shown in Fig. 30. It turns out that the two separa-

trices from 0 and from P only join for a certain value of a, although this

is by no means clear from the analysis carried out so far. (The author has

carried out the solution of the associated ode (88) for a particular form

of Q(c) quantitatively similar to Fig. 29b and of practical importance.)

But one conclusion that has already been proved is that the value of c far

to the left of the travelling front, c0, is the upper root c0 of Q(c).

Another useful conclusion that can be proved about the travelling wave

solutions of (87) concerns the dependence of a on the amplitude of Q(c).

Suppose we replace Q(c) by aQ(c), where 0 < a < - is a multiplier that

changes the amplitude of a. How does a depend on a? Equation (87) is

invariant not only to the translations (83) but also to the stretching

transformations
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C' = C

t' = Alt
(89a-d)

Z' = Az

a' = a-2a

Equations (89a-d) carry any solution of (87) into another solution corre-

sponding to another value of a. If we add to (89a-d) the further equation

a' = a-1a (89e)

then (89a-e) will carry any travelling wave solution f(z' - a't') into

another travelling wave solution f[A(z - at)] corresponding to a different

a. Now for all such solutions, a is a function only of a. Its functional

dependence on a must be invariant to (89a-e), so we quickly find that

a = constant x ra (90)

From (90) it is clear that if a is zero for a particular Q(c), it will

remain zero even if the amplitude of Q(c) changes. So the vanishing of a

depends only on the shape of Q(c). From (88) with a = 0 it follows that

c0
f0

J

Q(f)df = 0 (91)

i.e., the areas of the two lobes of Q(c) must be equal when a vanishes. This

is the famous equal-area theorem of Maddock, James and Norris [MA69].
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7 Miscellaneous topics

7.1 Approximate solutions: diffusion in cylindrical geometry

In Section 5.4, we saw an attempt to apply the methods used for obtaining

similarity solutions in a problem to which they should not strictly apply.

The failure there of the method of local similarity might tempt us to think

that similarity methods are of no help in problems in which all the condi-

tions of applicability are not met. But a deeper look shows that similarity

methods can often be used to get valuable information about asymptotic

behaviour in such problems. An excellent illustration is the clamped-flux

problem in cylindrical geometry.

Suppose that at t = 0 the cylindrical surface r = R suddenly begins

emitting a steady heat flux Q. What is the resulting temperature at the

cylindrical surface? The pde describing the problem is

Tt = r (rTr)r (1)

in special units in which the thermal conductivity, density and specific

heat of the material are taken to be unity. The associated boundary condi-

tions are

Tr(R,t) _ -Q, t > 0 (2a)

T(r,0) = 0, r > R (2b)

T(=,t) = 0, t > 0 (2c)

The pde is invariant to the group

T' =AT (3a)

to
= A2 t (3b)

r' = ar (3c)
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but the boundary conditions are not because of the appearance of the value

r = R.
If we add to (3a-c) the transformation equations

R' = AR (3d)

Q' =
as-1 Q.

(3e)

then equations (3a-e) transform (1) and (2) from the description of a problem

with a flux Q at radius R to the description of a problem with a flux Q' at

radius R'. Now the temperature of the cylindrical surface can only be a

function of t, R, and Q, and the functional relationship must be the same

for all problems of this class. Hence it must be invariant to (3a-c). It

is easy to see, then, that the most general relation possible is

T(R,t) = Q v F ( t
R

(4)

where F is an as yet undetermined function. We shall not be able to determine

F exactly, but we shall be able to determine its asymptopic behaviour for both

large and small t/R2 and thereby to estimate it for all values with accuracy

sufficient for practical purposes.

Very early, the heat from the source surface r = R has not diffused very

far. When the thickness of the heated layer is still << R, the curvature of

the heated surface should not matter. So the problem goes over, for short

times, to its plane analogue

T
= T

(5a)t
zz

Tz(0,t) _ -Q, t > 0 (5b)

T(z,0) = 0, z > 0 (5c)

T(-,t) = 0, t > 0 (5d)

where z = r - R. We solved this problem in Section 3.1; using the results

from there we find F = 2/v-Tr for small t/R2.

For long times we proceed as follows. The "troublesome" boundary condition

(2a) is equivalent to the condition
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d
Tr dr = RQ

dt R

or

r-

JR

Tr dr = RQt

as we can see by integration of the pde (1) over the region R < r < - . Late

in the history of the problem, when the temperature profile has spread very

far from r = R, the value of the integral in (6b) should be little affected

if we extend the lower limit to zero. If we do so we again have a totally

invariant problem. Then equation (6b) requires a = 0, so we takeT=G(7)
and obtain

(6a)

(6b)

+`+X)O x= r (8a)X
At-

TO

G(co) = 0 (8b)

G xdx = RQ (8c)

Equation (8a) integrates at once to give

-x2

/4
G = const. x

e

x

Integrating by parts turns (8c) into

(9)

1 G x2dx = -2RQ (10)

TO

from which it follows that the constant in (9) equals -RQ. Finally, then

r- -x2/4 2

G(x) = RQ I e x dx = E1 ( ) (11)
X \

where E1 is the exponential integral discussed by Abramowitz and Stegun-

[AB68]. By combining (11) with our previous result we get
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E1(1/4T)

2 T

T =
t

R
(12)

Figure 31 shows T(R,t)/QR as a function of t/R2. The solid lines are the

short- and long-time asymptotes calculated from the values of F given in (12).

The dashed curve is a graphical interpolation between the two asymptotes.
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Fig. 31. Wall temperature versus time for constant wall
flux in cylindrical geometry

It is no rare thing for the limiting behaviour of a physical system to be

describable in terms of a similarity solution even though the general behav-

iour is not. For example, in laminar, forced convection heat transfer in a

pipe, the well-known Levich-Leveque [LE62] solution for the entrance region

is a similarity solution valid when the thermal boundary layer is small com-

pared with the pipe radius. The concentration polarization solution of

Section 3.3 is a quite similar entrance-region solution. The solution (6.57)

of the shocked membrane problem is an early-time asymptote. Barenblatt

[BA79] has emphasized the utility of such asymptotic similarity solutions and

discussed them at length in his book.
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7.2 Diffusion in cylindrical geometry (cont'd): clamped temperature

If we clamp the temperature rather than the flux, we have the same pde (1)

and keep the boundary conditions (2b) and (2c), but the boundary condition

(2a) is replaced by

T(R,t) = T
0

t > 0

If we add to (3a-c) the transformation equations

TO = a' TO

R' = aR

(13)

(14a)

(14b)

then equations (3a-c) and (14a,b) transform (1), (2b,c) and (13) from the

description of a problem with a temperature TO at radius R to one with

temperature T6 at radius R'. Then, by a now familiar argument, the surface

flux Q = -Tr(R,t) must be given by

Q = TOt-1/2 F(_) (15)

R

where again F is an as yet undetermined function.

As before, the curvature of the heated surface can be ignored for very

short times. We solved the plane variation of the clamped-temperature pro-

blem in Section 3.1 also. Using those results we find F =
1r-1/2

for short

times.

In the clamped-flux problem, the "troublesome" boundary condition (2a)

could be replaced for long times by another boundary condition that allowed

a similarity solution. But this does not happen with the "troublesome"

clamped-temperature boundary condition (13). However, in this problem we can

use successfully the method of local similarity, which proved so disappointing

in Section 5.4. We proceed by setting

T = H(t) G(:Tr7Z) (16)
t

Substituting (16) into (1), we find the principal ode

(1 x)G
=

Ht
G

rG + `X + H , x =
1 2t

(17)
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If H varies slowly enough with t, the right-hand side of (17) may be neglect-

ed. Then G = E1(x2/4) (any constant of integration may be subsumed in H).

If T(R,t) is to equal T0, then H(t) must equal T0/E1(R2/4t), so that

E (r2/4t)
i

T = T (18)

Then

O E1(R2/4t)

TO
2e-R2/4t

Q = -Tr(R,t) = R (19a)

so that

-1/4T

1(

E1(R /4t)

2F(T) =
E (

for large T = t/R (19b)
)

1

Now we must verify that GH/H is less than the other two (equal) terms in

Eq. (17). A short calculation shows that

G At E1(x2/4) a-R2/4t
(20)

G H
e'4(1

+ 2/x2) E1(

2

Since ex /4E1(x2/4) is a monotone decreasing function of x, its largest value

occurs when x is smallest, i.e., when r = R. Thus

IG _ Ht 2 2< (21)
JG 8t R 8t

Thus for t/R2 >> 1, i.e. for long enough time, the right-hand side of (17)

may be neglected. Figure 32 shows the heat flux at r = R as a function of

t/R2. Again the solid lines are the asymptotic similarity solutions and the

dashed curve is a graphical interpolation. Shown for comparison are exact

results for the slab and sphere. (The sphere problem can be converted to the

slab problem by using rT as a new variable.)

The above analysis is equally valid when T
0

is a sufficiently slowly

varying function of t. How slowly can be determined by noting that if TO is

time dependent, the term Tot/T0 is added to the second factor on the right

in (20). Eventually, for large t, this additional term leads to a second

term on the right-hand side of (21), namely,
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(22)

which must also be small. It is clear from (22) then that the method of

local similarity is valid for a wide variety of boundary values T0(t).

7.3 The method of local similarity

The factorized (variables separated) form (16) works well in linear problems,

but we must return to a more general form to treat nonlinear problems. This

is best illustrated by an example. Consider the nonlinear clamped-flux prob-

lem solved in Section 4.2, but suppose now the flux -(CC z)z=0 is clamped

not at a constant but at some function of time b(t). Following the idea of

Sparrow et al. [SP70], we set

C = t1/3y(x,t), x = z/t2/3

Now we obtain for y the partial differential equation

(23)

3(yyx)x = y - 2xyx + 3tyt (24)
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If we ignore the last term, we get the ordinary differential equation (4.11)

for y. Accordingly, we take for y the solution y(x) of (4.11) corresponding

to the instantaneous value of b(t).

Now we must calculate the magnitude of the term 3tyt. If we had an

explicit solution for y(x) this would be easy. In this case, we do not, but

the invariance of (4.11) to the associated group (4.13) will be all we need.

According to (4.13)

Y(x) = u2 YO iu (25a)

where y (x) is the solution of (4.11) corresponding to b(0). Thus since

y(0) =
C-2/3b213 (Eq. 4.18),

[bTJ1/3

(25b)

Differentiating (25a) partially with respect to t, we find

yt = uu(2y0 - xy0)Ix/u

so that, using the value u in (25b), we find

3tyt Lt
2 -

Y YO

or

(26a)

(26b)

3tyt
bt (_ YO . 1\

(26c)

(-2xyx) b xy0 jIx/u

Thus if bt/b < <1, we can use (26) to show that near x = 0, 3tyt << y, while

near the first root of y0, 3tyt << (-2xyx). Thus, when 6t/b << 1 the term

3tyt is always smaller than one or the other of its companion terms on the

right-hand side of (24) and can be neglected. Then,

C(O,t) = C-213t1/3b213(t), bt/b << 1 (27)

An interesting by-product of the condition bt/b << 1 is that the expression

(27) is always monotone increasing. For,

7 -Z

c-213
(b/t)

213[
1 + bt (28)Ct(0,t) = 2
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so Ct(O,t) can never vanish if bt/b << 1.

We should be able to improve on the estimate (27) if we use a more flex-

ible trial function. A convenient form is p(t) y1[q(t)x] where y1(x) is the

solution of (4.11) corresponding to the instantaneous value of b(t) and p(t)

and q(t) are as yet undetermined functions of t.

The boundary condition at z = 0 puts one constraint on p and q:

-b(t) = (CCZ)z=O = p2q y1(O)Y1(O) = -p2q b(t) (29a)

the last equality following because y1 is the similarity solution correspond-

ing to the instantaneous value of b(t). Thus

p2q = 1 (29b)

To determine p and q we need one more relationship, which we get using

the integral method. If we integrate (24) from x = 0 to x = we find, after

an integration by parts,

b(t) = 1 ydx + t 10 ydx

from which it follows easily that

t

f

ydx = t f b(t')dt'

0 0

If we substitute y = py1(gx) for y, we obtain

q
( y1(x')dx' = t

it
b(t')dt'

0 0

(30a)

(30b)

(31)

Now f0 y1(x')dx' = b(t) as we can see, for example, by integrating (4.11)

from x = 0 to x = . Then

3 p - ft b(t')dt'

p q

0

t b(t)

(32)

This leads to the improved estimate

C(O,t) = C-2/3 t1/3 b2/3(t)
It b(t')dt'

t b(t)

11/3

(33)
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We can check the degree of improvement of (33) over (27) by taking b(t) _

t. For this choice, a similarity solution of the form C = ty2(z/t) exists.

The computation of y2 follows closely the method outlined in Section 4.2;

numerical integration of the associated deq along the separatrix gives y2(0)

= 1.000. According to (27), C(0,t) = 1.294 t, whereas according to (33),

C(0,t) = 1.027 t. The error in (27) then is 29% but the error in (33) is

only 2.7%. So the added flexibility of the trial form has enabled us to

reduce the error in our estimate of C(0,t) by about a factor of 10.

Extending the flexibility of the trial function in this way does not

always bring an improvement in accuracy. Consider the problem of the bound-

ary layer on a flat plate with uniform suction or injection (Section 5.4).

Let us try

F[q(F)n] (34a)

where

2F + FF = 0 (34b)

(34c)

(34d)

(34e)

The boundary conditions (5.34) lead to the following connections between p,

q and h:

pq = I (35a)

h d (Ep) + 2 = 0

Substituting (34a) into (5.33) we find

1 - q2+&qp=0

From these equations it follows that, most generally,

1 - p2 = const/E2

(35b)

(35c)

(36)
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Since we want p(O) = 1, we must choose the constant of integration to be

zero, and then p = q = 1 and h = -2g. Thus the only ansatz of the form

(34a) that will work is the one already used in Section 5.4.

7.4 Eigenvalue problems

Perhaps the best-known eigenvalue problem in the literature of mathematical

physics is the one-electron spectrum. For s-waves,

rZ dr `r2 }-rc=Ec (37a)

C(O) = 0, c(=a) = 0 (37b)

Since the eigenvalues do not depend explicitly on r and c, they are at most

functions of the strength V of the interaction. Now (37) is invariant to the

group

C' = A
a
c

r' = ar
(38)

V'
= a-1V

E' = a-2E

The functional relationship of E and V must be invariant to (38), so that,

most generally, E =
constant-V2.

The key point here, as in Section 4.15, is

the dependence of the eigenvalue on sufficiently few parameters that invar-

iance to the principal group serves entirely to determine the functional

dependence.

A more complicated nonlinear eigenvalue problem is one related to the

quenching superconductor studied in Section 6.11. The superconductor there

was supposed to be in contact with liquid helium which gave Q(c) the shape

it had in Fig. (29a). If the superconductor is potted in plastic, also a

case of technological importance, then Q(c) has the shape shown in Fig. 33.
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Fig. 33. Sketch showing the form of Q(c) for a potted
superconductor

Suppose at t = 0 we put an instantaneous pulse of heat q in the plane

z = 0, i.e., suppose we choose the initial distribution of c to be

c = q exp(-z2/4t) (small t)

( 4n
77-

(39)

If q is small enough, diffusion, which dominates the behaviour of (6.87) at

small times when there are large gradients, will reduce the central value

of c below c1 so that Q(c) will be zero everywhere. From that time on, c

will obey the ordinary diffusion equation. If q is large enough, diffusion

will never dominate the source term and Q(c) will never vanish everywhere.

These two qualitatively different regimes are separated by a limiting value

of q, which is of technological significance. How does it depend on the

amplitude of Q(c) (a quantity under the control of the superconductor

designer)?

Equations (6.87) and (39) are invariant to the group of transformations

c' = c

z' = Az

t' = alt (40)

q' = Aq

a' = a-2a

Since the limiting value of q depends only on a (for a fixed form of Q(c))

we have at once

glim =
const x a-1/2 (41)
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Problems

Chapter 2

1. Find a stretching group to which xy = yf(xy) is invariant, use Lie's

formula for the integrating factor, and integrate.

2. Find a translation group to which the Ricatti equation y = (x + y)2 is

invariant, rework the reasoning of Section 2.2 to find an integrating factor,

and solve.

3. Sketch the direction field and integral curves of the equation On y +

2x - 1),y = 2y. Does it have a separatrix? (HINT: Find a mixed stretching-

translation group leaving the deq invariant and repeat the reasoning of

Section 2.5.)

4. Find a stretching group to which the Ricatti equation x2(y - y2) = 1/4

is invariant and use the method of Section 2.6 to separate variables and

integrate.

5. Find a mixed translation-stretching group to which the Poisson-Boltzmann

equation in cylindrical coordinates y +

x

= ey is invariant. Construct a

differential invariant and a first differential invariant and use them to

reduce the order of the deq. Solve the resulting first-order deq and select

the integral curve that corresponds to solutions y = y(x) that are regular

at the origin. Find an integrating factor, integrate again, and find an

explicit formula for these regular solutions.

Chapter 3

6. Solve the linear diffusion equation in a infinite medium with a continuous

source located in the plane z = 0 whose integrated strength is proportional

to the elapsed time. What is the time dependence of the temperature at the

location of the source?

7. The linear partial differential equation Ct = (Ii C
z

)

z
occurs in the

calculation of diffusion to a solid particle freely falling in a viscous
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liquid; the boundary conditions are C(0,t) = 0, C(co,t) = 1, C(z,0) = 1.

The diffusional flux into the particle is proportional to t1/3 z Cz(z,t)Jz=O.

Find this quantity by an analysis similar to that of Section 3.3.

Chapter 4

8. The pde Ct
= (Cm) zz

arises in the calculation of the current distribution

in a superconductor suddenly charged with current. Find the similarity

solution describing the infinite-medium problem of an instantaneous heat

pulse in the plane z = 0 at time t = 0.

9. Integrate eq. (4.15) and show explicitly that v ti u for large u. (HINT:

Consider the three possibilities in the footnote on p. 30.)

10. The ordinary diffusion equation (3.1) is invariant to the one-parameter

family of stretching groups (3.2). Use the reasoning of Section 4.3 to

determine the associated group for eq. (3.9). Introduce an invariant and a

first differential invariant and obtain the associated ode in the case a = 0.

Is it easier to solve than the linear ode (3.11a)? Try using the invariant

and first differential invariant u = x, v = (y/y)ex2/4. Can you solve the

resulting associated ode and eventually obtain eq. (3.12)?

11. Carry out the computations leading to eq. (4.28).

12. Find a family of stretching groups that leaves the pde pt
= -( )z

invariant and show for any similarity solution that V_z=0 is proport-

ional to p2/3(O,t)
t-1/3.

(HINT: Use the associated group.)

13. Consider the clamped-temperature problem for the pde Ct = (eCCz)z;the

boundary conditions are C(0,t) = CO, C(oo,t) = C-, and C(z,0) = C.. Find a

family of groups that leaves the pde invariant. Repeat the reasoning of

Section 4.3 and show that an associated group exists. If y is the dependent

variable in the principal ode, show from the associated group that y(0) -

y(co) is a function of y2(0)ey(O).

Chapter 5

14. When the boundary-layer flow is over a curved surface, the term UUx must

be added to the right-hand side of eq. (5.1a), where U(x) is the potential

flow far from the curved surface. For what functional dependences of U on

x do similarity solutions exist? Does an associated group exist for any of

114



these cases?

15. Write down the appropriate similarity solution for the clamped-flux case

of the thermal boundary-layer problem of Section 5.5. Find the principal ode

for the temperature. What are the boundary conditions? Is the, problem a two-

point boundary-value problem? Use the linearity of the principal deq and the

fact that the Blasius function f ti n - 1.7208 for very large Ti to find the

asymptotic form of the temperature and circumvent the two-point difficulty.

Chapter 6

16. Show that if the coupled pair of first-order odes y = Y(x,y,z),

Z(x,y,z) is invariant to the group of transformations y' = as y, z' = sz,

x' = Ax, then introducing the invariants u = y/xa and v = z/xs as new vari-

ables will reduce the pair of odes to a single, first-order ode for v in

terms of u. (HINT: Proceed as we did in Section 2.7.)

17. Suppose the positive characteristics in the wave diagram of Fig. 20 all

emanated fan-like from the origin 0. What solution for v and n in terms of a

and t would this diagram correspond to? Compare this solution with the

exceptional solution corresponding to point P in Fig. 18.

18. What variations of o with n allow eqs (6.3) and (6.4b) to be invariant

to a stretching group? Show that such a stretching group automatically leaves

the shock conditions (6.31) invariant. What assumption did you have to make

about how the shock velocity transforms under the stretching transformations?

19. Suppose the surface tension in the membrane of Section 6.8 varies as

the mth power of the longitudinal strain. How does the time for the waves

running in from the edges to reach the centre scale with applied pressure?

Chapter 7

20. Repeat the analysis of Section 7.3 for the clamped-flux problem in super-

fluid helium (Section 4.9) and obtain a formula for the wall temperature when

the imposed flux varies slowly with time.
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Solutions to problems

1. The group is x' = ax, y' = a-1y. According to Lie's theorem, Section

2.2, [xy(f(x,y) +
1)]-1

is an integrating factor. The deq can then be

integrated to give In y = fC' u
f(U) du

where C is an arbitrary constant.

2. The group is x' = x + X, y' = y - X. An integrating factor is (M - N)-1

which in the problem at hand turns out to be [(y + x)2 +
1]-1.

Now we inte-

grate to find y = tan (x + C) - x, where C is a constant of integration.

3. The mixed stretching-translation group is x' = x -
1

In a, y' = Ay.

Invariant curves obey the identity g(x - 2 lna, ay) = 0 for any X. From this

it follows that dy/dx = -gx/gy = -2y, so that 2y(In y + 2x) = 0 becomes the

counterpart of eq. (2.22). Thus the invariant curves are y = 0 and y =
e-2x

the latter is the separatrix.

4. The group is x' = ax, y' = a-1y, and a group invariant is u = xy. Using

it as a new dependent variable, we find dx/x = dul(u + 1)2, which is separable.

, where C is a constant of inte-Integrating, we find y = - X (- + n
TTXJTT

gration.

5. The group is x ' = ax, y ' = y - 2 1 n A; the

ential invariant are u = x2ey and v = x,y.

(v +
2)-1

which can be integrated to give

integration has been chosen to make v = 0 when

invariant and first differ-

associated deq is dv/du =

4v = 2u; the constant of

The
2

V +

u = 0 because y and y are

supposed to be regular at x = 0. We can solve for v and find

-2 (the positive sign of the square root is taken so that v =

This can be written xy + 2 - (4 + 2x2ey)1/2 = 0 which is also

the group cited above. Thus [x(4 +
2x2ey)1/2]-1

A lengthy calculation now shows that

2 2 l
y = In (x )2 - i i - In x2 + In 2.

x b
2

J

v = (4 + 2u)1/2

0 when u = 0).
invariant to

is an integrating factor.
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6. The source condition is fC dz = t so a = 1 and we can use eq. (3.15)

for the solution. The source condition in terms of y is f°0 y dx = . Using

(3.15) for y and inverting the order of integration we find A = 1/,r so that

C(0,t) = (th)112. This is not surprising because the source condition is

equivalent to a steady flux of magnitude 1 into each half-space.

7. The principal group is C' = aaC, t' = A3j2t, z' = Az. The second and

third boundary conditions require a = 0 so the most general invariant solution

has the form C = y(z/t2/3) = y(x). The principal deq is ( v y)' + xy = 0

which must be solved with the boundary conditions y(0) = 0 and y(°°) = 1. If

we set x = w2 we can separate variables, integrate, and find eventually that

y(x) = A f e-4w3/9
dw. Then we find t1/3 v

C
z

I

z=O = V y(x)lx=O = A/2,
0

r- -4 3/9 9 1/3 1 1 1w
where A is determined by 1 = y(-) = A

JIO

e dw to be r( )] _

0.855.

8. The principal group is (4.2a) with the relation (m - 1)a + 8 = 2 between

a and S. The source condition
t+-

C dz = 1 obliges a to be -1 so that

8 = m + 1. Then C = t-1/(m+1)y(z/t1/(m+1)) is the most general form an

invariant solution can take. The principal differential equation is

(ym) " + (y + xy)/(m + 1) = 0, where x =
z/t1/(m+1),

and must be solved with

the boundary conditions f,y dx = 1 and y(co) = 0. It can be integrated once

directly to give (ym)' + xy/(m+1) = 0 and then a second time after the vari-

(x
2

- x
2
)]
1/(m-1)

for O< x <xables have been separated to give y = [
m-1

TM-Tm-+-TT 0 0

and y = 0 for x > x0. The constant x0 is determined by the source condition

f_ydx= 1.
9. Since the deq is invariant to the group v' = Av, u' = Au, we can use Lie's

theorem, Section 2.2, to find that [uv(2v -
u)]-1

is an integrating factor.

With it we can integrate (4.15) and obtain v4u = const (2v - u)3. If

lvi << Jul when Jul >> 1, we find that v = const x Au-, which is possible.

If lvi >>Jul when Jul >> 1, then v = const/u, which contradicts the hypo-

thesis. If v ti u, then u5 and u3 must be of the same order, which is imposs-

ible. So only v ti v is possible.

10. Following the reasoning of Section 4.3 we find that the associated group

is y' = py, x' = x. If we introduce the invariant u = x and the first
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differential invariant v = (q/y)ex2/4 we find the associated deq v = -v
2
e-

X2/4

2
when a = 0. Then v = (v---10-j + f,

e-X2/4
dx)-1 so that y/y = e-x /4/(v +

2
fX e-x /4 dx). Thus In Y = In (v- I + fx

e-x2/4

dx) + In A or y = A(v--1-j +

2

fo e-x /4 dx). Since y(-) = 0, v(0) = -1/v'Tr. To make y(0) = 1, A must

equal v(0) = -1/v,-7T-. Then after some easy rearrangement, we find y = erfc(x/2).

11. Taking (4.2a) as the principal group, we find the linear constraint

na + 0 = 2. The most general invariant solution has the form C =

to/s y(z/t11s), where acceptable functions y(x) can be transformed into other

acceptable functions by the transformations of the associated group y' =
p2/ny,

x'= px. The flux at the front face is given by CnC 1 =

y(n
z zgr

=
t[(n+1)a-1]/R-

0)y (0). Images under the associated group all have the

same value of the ratio
y(0)/y(2-n)/2(0);

call it A. Then CnCzIz=O
=

At((n+1)a-1]/Ry(n+2)/2(0)
=

At[(n+1)a-13/S(C(O,t)t-a/s)(n+2)/2
Collecting

all the powers of t and using the linear constraint na + S = 2, we find that

the net exponent of t is -1/2.

12. The principal group is p' = Xap, t' = XSt, z'= az with a - 26 = -3.

Now the most general invariant solution has the form p = to/6 y(z/t11s) and

the principal ode for y(x) is invariant to the associated group y' = u-3y,

x' = px. Images under the associated group all have the same value of

4/3(0); call it -A. Then -pzIz=0
= -t(o-1)'Y(O)/y (O)

_

=
At((X-1)/6(p(0,t)t-1" )4/3 = At-2/3p4/3(0,t).

Extracting a square root now

gives the desired result.

13. The principal group is C' = C + aln A, t' = Ast, z' = Az where a + a = 2.

The most general invariant solution can be written as C = (a0/BO) In t +

y(z/t1/SO). Transforming this with members of the group for which a # a0

and B # SO, we find that C = (a0/SO) In t + y(pz/ti/SO) - 2 In p, where

p = is also a solution. Finally, y(px) - 2 In p is the image of

y(x) under the group of transformations y' = y + 2 In p, x' = px, which is

the associated group. Since the principal ode for y(x) is of second order,

a solution is uniquely determined by two boundary values, say, y(0) and y(0).

So y(co) = F(y(0), y(0)) and this relation must be invariant to the associated

118



group. By a now familiar procedure, we find that the most general invariant

relation among these variables is y(0) - y(co) = G(y2(0)ey(0)), where G is an

arbitrary function.

14. All the terms in eq. (5.1a) are proportional to
a2a-S

under trans-

formation by the group (5.2). For the term UUx to transform in the same

way, it must be proportional to the (2a - g)/8 power of x, i.e., U must be

proportional to a power of x. If U n, xm, then 2a - S = (2m - 1)$ so a = ms.

Together with the linear constraint (5.2b), this last relation determines a

and a uniquely: a = -2m/(m - 1), S = -2/(m - 1). Since now a and S are

uniquely determined by the pde, the latter is invariant only to a single

group of transformations and not to a one-parameter family of groups. So

no associated group exists.

15. The temperature rise in the fluid is given by T = V x_ where Ti = y/rx.

The principal ode for g is 2Dg = fg - gf where f(n) is Blasius's function.

The boundary conditions are g(0) = -q/D, where q is the clamped wall flux,

and g(m) = 0. (Remember to use the same special units as used in Section

5.5!) The problem is a two-point boundary value problem. For very large n

the principal ode becomes 2D6 = g - (n - a)g where a = 1.7208. This deq is

linear and has q - a as a special solution. Using the method of Section

3.1 [cf. eqs. (3.13)-(3.15)] and the boundary condition g(-) = 0, we even-

tually find g = A(n - a) In e-(n-a)2/4D (n - a)-2 dn, n >> 1, where A is

a constant of integration. From this expression we can obtain consistent

values of g and g for some large value of n. Then by integrating inwards

we can find 6(0). Since the pde (5.35) and the principal ode above are

linear, we can scale 6(0) to the correct value by simply multiplying g(x)

by the appropriate factor without disturbing the condition that g(03) = 0.

16. x du/dx = Y/xa-1- au and x dv/dx = Z/x6-1- By so, if Y/xa land Z/x8 Ire

functions only of u and v, du/dv will be, too. Invariance of the deqs to

the group of transformations means that as-lY = Y(ax,a y,A z) from which it

follows that Y/xa-1= G(y/xa,z/x8) = G(u,v). A similar conclusion holds for
Z/x6-1

17. The strain is n on the positive characteristic with constant propagation

velocity c = 9-1/4. So at time t the strain is n at the location a = to
1/4.
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Thus n = (a/t)-4(t). Since v = - 3 n3/4 everywhere, v = - 3 (t)-3. This

is precisely the exceptional solution mentioned in Section 6.4.

18. Suppose the stretching group is v' = aav, n' = Ayn, t' = a6t, and a' = Xa.

Eq. (6.3) requires a - 1 = y - 8; eq. (6.4b) requires a ti nm if it is to be

invariant to the stretching group, in which case a - 8 = my - 1. The shock

conditions can be written p0v2 = an and p0U2 = a/n. The first condition

will be invariant if 2a = (m + 1)y, which follows from the two linear con-

straints given above. Now if the shock front is given by a constant value

A of the similarity variable a/tthen U = da/dt = (A/6)tThen

U' = a1-8U and the second shock condition will be invariant if 2(1 -6) _

(m - 1)y, which also follows from the earlier linear constraints.

19. Following the first part of Section 6.8 we come to utt
=
uzz[f0 uz dz]m.

This integro-pde is invariant to the group (6.48a-d) but with the constraint

2ma + 26 = 2 + m instead of (6.48e). The distance Z advanced by the wave

front at time t is an invariant function of p and t. Since Z scales as A,

t as A8, and p as
Aa'28 = [(2+m)/2m - (2m+1)8/m] (cf.

eq. (6.48f)), we can

use the method of Section 4.15 to show that Z % p2m/(2+m) t(4m+2)/(m+2)

The time we seek is the time at which Z = 1/2, so it must scale as
p-m/(2m+1)

20. If we set T = t1/2y(x,t) where x = z/t1/2, we get for y the pde
2(yx1/3)x

+ xyx - y = 2tyt. Now we set y = p(t) y1(r(t)x) where y1(x) is

the similarity solution corresponding to a fixed value of q/k equal to the

value of q(t)/k at time t. Then yx = pr y1 so that pr = 1 (for yx(0,t) _

y1(0) = -q3(t)/k3). If we integrate the pde for y(x,t) over all x we get

eq. (7.30a) with the left-hand side replaced by q(t)/k. This can be solved

to give p/r = ft q(t') dt'/t q(t) as in Section 7.3. Finally, then,

T(0,t) = a2/3 (q(t)/k)2 t112[fo q(t') dt'/t q(t)]1/2.
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