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INTRODUCTION

In the spring of 1990 I gave a graduate course at Princeton Univer-
sity on the arithmetic Riemann-Roch theorem, which had just been shown
by Bismut-Lebeau and Gillet-Soulé. The main purpose was to under-
stand the techniques involved, and to simplify the presentation if possible.

These notes arise from the course, however with some later improvements.
Arakelov theory was invented with the purpose of applying techniques from
algebraic geometry to arithmetic problems, especially to obtain a proof of
the Mordell-conjecture. The main idea is to formulate algebraic properties
at finite places in terms of metrics, and then to try to find analogues at
infinity. In short one has to endow everyting with metrics. Around 1982
some progress was made. [ showed that for arithmetic surfaces there is a
Riemann-Roch theorem, and that one can use it to derive various analogues
of properties of complex surfaces, for example the Hodge-Index theorem
and the positivity of w?. The key to all this was the construction of volume
forms on the cohomology of hermitian bundles. At the same time Quillen
proposed a similar construction, using Ray-Singer analytic torsion.

This lead to new interest in this topic, and soon there was rapid progress:
Deligne generalized the volume forms to more cases, and Gillet and Soulé
developed an arithmetic intersection theory for general varieties, as well as
hermitian K-theory. Then they joined efforts with Bismut and managed to
define the determinant of cohomology of an arithmetic variety. One then
could ask for a Riemann-Roch result for this determinant. It turned out
that even for the projective space the immediate generalization of the clas-
sical Riemann-roch was false. To remedy this they introduced a secondary
class R(z) so that a modified version (using R) remains true. Bismut and
Lebeau could prove a Riemann-Roch result for closed immersions, from
which the Riemann-Roch for determinant bundles follows with some more
work. The methods employed use stochastic integration, and are not easy
to understand for anybody not familiar with this subject.

In these notes we replace all the probability-theory by considerations
about heat kernels, thereby hopefully making the subject accessible to a
wider audience. However I feel that it still remains complicated, and the
reader should have a good general mathematical education. Due to my
background I find algebraic and geometric arguments generally easier than
analytic ones, so I tried to resort to the former as much as possible.

Now let us explain the contents:

In lecture one I give a proof of the classical Riemann-Roch theorem, and
introduce various notation. Nothing at all is original. After that, in lecture
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two, we introduce arithmetric Chern-classes. Here the method is new, more
following the classical procedure of Grothendieck, but the results are all in
(Gsz].

In lecture three we study heat kernels. We avoid using too much tech-
nology, instead relying on a simple cutoff-procedure which works nicely in
all instances we need it. We apply this in lecture four to study asymp-
totics. Especially we prove the index-theorem for the Dirac-operator. All
the ideas are due to Bismut, Gillet, and Soulé and can be found in [BGS1].
Especially impressive is the computation of subdominant terms, which we
reproduce at the end of lecture 4.

After that in lecture five we define direct images in arithmetic K- the-
ory. This can be done only for smooth maps. Attempts to treat closed
immersions have lead to enormous difficulties, and the final results are not
as smooth as one would like them to be. Here our approach seems to be
slightly original, although the main ideas can all be found in [BGS1]. Fi-
nally we prove a general Riemann-Rochin lecture six, of Grothendieck-type.
We prove that there is a unique class R(z) for which the Riemann-Roch is
true. We do not attempt to compute it, except for the fact that it is odd.
The method of proof uses deformation to the normal cone. To control the
analytic singularities in this process we use a d
ing to another deformation with the same singularities, but for which we
already know the result.

Finally we conclude with a last lecture on the theorem of Bismut-Vasserot,
estimating analytic torsion for ample line-bundles. Althrough this result is
somehow disconnected from our main topic, the methods developed earlier
work beautifully and thus it seemed reasonable to include it here. Shouwu
Zhang has written the first two versions of these notes. I thank him very
much for this difficult and demanding task. G. Kings and S. Mochizuki
helped with constructive criticism, and S. Barbu did a great job in the final
preparation of the manuscript.

The author was supported by NSF.

brocess we use a difference method. compar
l“\vr\v“\t\v 111< llvu’ &Ulllp 1=
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LECTURE 1. CLASSICAL RIEMANN-ROCH THEOREM

In this lecture we intend to prove the Riemann-Roch theorem for smooth
morphisms of regular schemes. We define K-groups and Chow groups in
the classical way. Then the Riemann-Roch for projective lines follows di-
rectly from the definitions. By the deformation of a regular embedding of
a scheme to its normal cone, we reduce the problem to the case of projec-
tive bundles. Finally we prove the Riemann-Roch for projective bundles
using flag schemes. We will follow this line when we prove the arithmetic
Riemann-Roch theorem.

All schemes will be essentially of finite type over Z. Reference: [BS].

K-GROUPS

Let X be a Noetherian scheme. Let G(X) be the free abelian group
generated by all coherent sheaves. Let G'(X) be the subgroup of G(X)
generated by the elements of the form [F\] — [F;] — [F3] where F’s form an
exact sequence

0-—+F2—4F1—>F3—'0.

The Grothendieck group K’(X) of X is defined to be the quotient group
of G(X) by G'(X). We get another group K(X) by requiring that all the
sheaves F are locally free. There is a morphism K(X) — K'(X).

Theorem 1.1. If X is regular then K(X) = K'(X).

Proof. We prove the theorem by showing that every coherent sheaf has a
finite resolution by vector bundles. Let {U; : 1 < ¢ < k} be an affine
covering of X such that X — U; is the support set of a Cartier divisor D;.
Let s; be the section 1 of O(D;) . Let F be a coherent sheaf on X. First
of all we want to prove that F is a quotient of a locally free sheaf.

For each i we have that F|U; is generated by finitely many sections
{ei,j : 1 < j <n;}. Since D; is the support set of s; there is a m; > 0 such
that {e; ;s7**} can be extended to sections of F(m;D;) over X. We have a
morphism

O(-m;D;)®™ — F
which is surjective over U;. Combining all these morphisms for all i we
obtain a surjective morphism

®t0(-m, D;)®™ — F.

3



4 Lecture 1

This proves that F is a quotient of a vector bundle.
Let n = projdim(F). This is finite as X is regular. From the above
argument we can find an exact sequence

O-G—FE,—... 2 FEg— F—-0

where the Ejs are vector bundles, and G is locally free. This shows that
the map K(X) — K’'(X) is surjective and similarly one derives injectivity.

By the above theorem when X is regular, the group K’(X) has a com-
mutative ring structure such that [E]-[F] = [E® F] for two vector bundles
[E] and [F].

Equivalently [E]-[F] = 352 ,(~1)*-[TorP* (E, F)] for arbitrary coherent
sheaves E and F.

We want to explain some functorial properties for K-groups.

Let f: X — Y be a proper morphism. We define a push forward
morphism f, from K’(X) to K'(Y) by sending the class of a coherent sheaf
F to Y (-1)'[R'f.F). It is a consequence of the Leray spectral sequence
that (¢f). = g.f. as morphisms of groups. So K is a covariant functor
from the category of Noetherian schemes with proper morphisms to the
category of abelian groups.

Theorem 1.2. Let 7 : P = Projx(F) — X be a projective bundle over X
of rank n. Then we have the following canonical isomorphisms

(1) f.[0(3)] = [Sym" E] ifi > 0.

(2) filO(=9)]=0if0<i<n+1.

Proof. The computation of Cech cohomology of O(n) gives the result.

Let f : X — Y be a morphism of schemes. We define the pull back
morphism f* from K(Y) to K(X) by sending [F]to [f* F] if F is locally free.
f* actually is a morphism of rings. In this way K becomes a contravariant
functor from the category of regular schemes to the category of commutative
rings.

In general K is not a covariant functor to the category of rings. But for
any proper morphism f : X — Y we have f,[EQ® f*F] = f,[E] - [F] so
f+K'(X) is an ideal of K(Y).

Theorem 1.3. Let X be a noetherian scheme. Then we have the following
properties:

(1) Leti:Y — X be a closed subscheme of X. Denote by U the open
scheme X \Y and j : U — X the structure morphism. Then we
have the following exact sequence

K'(Y) 2 K'/(X) 15 K'(U) — 0.
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(2) Let # : Y — X be a affine bundle over X. Then 7* : K'(X) —
K'(Y') is an isomorphism.

(3) Let P = Projx(E) — X be a projective bundle over X of rank n.
Then the morphism @7_oK'(X) — K'(P) sending (zo,- -+ ,Zn) to
S o(m*2:)O(1) is an isomorphism.

Proof. (1) Firstly we prove that j* is surjective. Let F be a coherent sheaf
on U. Then F can be extended to X.

Now we prove that the ker(j*) = Im(z,). It is obvious that j*i, = 0. We
need prove that the kernel of j* is contained in the image of i,. Let z be
an element in K(X) such that j*z = 0. We want to prove that z € Im(s,).
As the extension from U to X is unique up to sheaves supported in Y, we
may assume that ¢ = [F] with F supported in Y. Then F is a successive
extension of sheaves annihilated by the ideal of Y, and thus [F] is in the
image of i,.

(2) Injectivity follows by imbedding into a projective bundle and using
(1), (3). So we need only prove that 7* is surjective. If X’ C X is closed and
U = X — X', then by (1) it suffices to prove the assertion forY xx U — U
and Y xx X’ — X’. By induction and a limit argument we reduce to
the case where X = Spec(A), A an artinian local ring, and ¥ = X x A".
Using also induction over n we may assume that n = 1. Finally we replace
A by its residue field k and remark that any k[t]-module has a finite free
resolution.

(3) We first show that the map is surjective, i.e. K'(P) =3I, x*(K'(X))
O(1). By the previous technique we may assume that X =Spec (k), k a
field, and P = P};. We use induction in n,n = 0 being the trivial case.
If P, = [P”,:_l C P denotes a hyperplane, j : P, < P the inclusion, then
7.(0(1))) = O(1)* — O(1)'". If z is an element of K(P), then the re-
striction of z to P — P; = A} is induced from X. If this restriction
vanishes, then z is in j,K(P;). Thus surjectivity follows. For injectiv-
ity: If ¢ = Y0 7*(2;)O(1)* = 0, choose i maximal with z; # 0. Then
z; = m.(z-O(1)7%) = 0.

Contradiction.

CHOW GROUPS

Let X be a Noetherian scheme. Let p be a non-negative integer. Let
Zy(X) be the free abelian group generated by all integral subvarieties of X
of dimension p. The elements of Z,(X) are called p-cycles.

Let X’ be a closed subscheme of X, let X;,..., X} the irreducible com-
ponents of X and X the maximal reduced subscheme of X;. The local
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rings O; of X; at its generic points are of finite length, say m;. The cycle
[X'] is defined to the cycle . mi[X]].

Let Z,'(X) be the subgroup of Z(X) generated by all [div(f)] for mero-
morphic functions f on a p + 1l-cycle of X. Then the p-th Chow group
Ap(X) is defined to be the quotient of Z,(X) by Z,'(X). Here, for a mero-
morphic function f on an irreducible Y C X, div(f) is a linear combination
of Z C Y of codimension one. The coefficient of Z can be computed as
follows: Let R = Oy, denote the local ring of Y in the generic point z of Z.
Then f = g/h, with g, he R — {0}, and the coefficient of Z is the difference
of lengths I(R/gR) — I(R/hR).

Let f: X — Y be a proper morphism. We can define the push forward
fo 1 Ap(X) — A,(Y) as follows: Let Z an integral subvariety of X, then

7 0, if dim f(Z) < dim(Z2);

f(2) = { (Z)[R(Z) : R(f(Z))], otherwise,

where R(Z) is the field of rational functions on Z. Via this A, becomes
a covariant functor from the category of regular schemes with proper mor-
phisms to the category of abelian groups.

Let f : X — Y be a flat morphism. Then the pull back of cycles
induces a pull back morphism of Chow groups. Such a property enables A.
to become a contravariant functor from the category of schemes with flat
morphisms to the category of abelian groups.

For regular X the A,(X) have a ring structure by intersection theory.
Here we just introduce an action on A.(X) by line bundles. Let Z be an
integral subscheme of X and let L be a line bundle on X. If D denotes the
Cartier divisor of a meromorphic section of L on Z then the class in A, (X)
of [D] does not depend on D. We write this class as ¢, (L)-[Z]. We have the
following projection formula: Let L be a line bundle on X, let f: X' —» X
be a proper morphism and let « be a cycle on X’. Then

folel(f*L) - @) = er(L) - fua.

We have the following fundamental theorem for first Chern classes:

Theorem 1.4. Let X be a scheme. Then c,(L) - [Z] depends only on the
class of [Z] in A,(X). So ci(L) define a linear endomorphism on A.(X).
Morever if M is another line bundle then ¢i(L) - ¢y(M) = ¢1(M) - ¢1(L).

Proof. First of all we claim that for any meromorphic section f of L and
any meromorphic section g of M we have (in 4,(2))

c1(L) - [divz g] = c1(M) - [divz f].
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By the projection formula we need only to prove the theorem after a
proper morphism.

Let I; be the ideal sheaf of Oz consisting of all elements a such that af
is a regular. Let 7 : 2’ — Z be the blowup of Z along I; and let E be the
exceptional divisor. Then

div(z*f)=C—-E

for an effective Cartier divisor C on Z’. This allows us to reduce to the
case that div(f) is effective. Similarly we can reduce to the case that both
div(f) and div(g) are effective.

We now assume that div f and divg are effective. Let 7 : Z' — Z be
the blowup of Z along the ideal sheaf fL=! + gM ~! of Oz. Denote by E
the exceptional divisor of #. Then we have that

x*(div(f)) = E + 4, =°(div(¢)) = E+ B

for effective Cartier divisor A, B on Z’. Define the excess intersection
€(div f,div g) by the formula

€(f, 9) = max{ordp(div(f)) - ordp(div(g))|codimz D = 1}.
It is easy to prove that A and B are disjoint and if
€ = ¢(div f,divg) > 0

then €(E, A) < € and €(E, B) < €. After several blowups we may assume
that e(div f,divg) = 0, or div f and div g meet properly.

We now assume that div f and divg are effective and meet properly.
Especially the restriction of f to div(g) can be used to compute ¢,(L) -
div(g), and similar for ¢y (M) - div(f). We write divf = Y .m,A; and
divg = 3°,n;B;. Let C be a codimension two integral sub-scheme of Z.
We want to prove that the multiplicity of C in ), m;divy, g is equal to
that in Ej n; diVB’ f.

Locally near the generic point of C all line bundles are trivial, so f and
g can be considered as section in R = Oz . If one of f and g is not in
the maximal ideal then the multiplicities above are both zero. So we may
assume that f and g form a system of parameters of R.

Let Kos(f,g; R) be the Koszul complex of R with respect to f,g:

0RYY @ DR o
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Let x(Kos(f,g; R)) is its Euler-Poincaré characteristic:
x(Kos(f,¢; R)) = Y (~1)"lengthp (H:(Kos(f, g; R))).
)

We reduce to prove that both multiplicities are equal to

x(Kos(f,g; R)).
Let Kos(g, R/fR) be the Koszul complex of R/fR with respect to g:

0— R/fR-+R/fR —0.

Define its Euler-Poincaré characteristic x(Kos(g; R/fR)) in the same way.
It is easy to prove that

x(Kos(f,g; R)) = x(Kos(g; R/ fR)).

Now x(Kos(g; M)) is additive in all R modules and vanishes if M is
of finite length. Thus it depends only on the length of M at height one
primes. If m; denotes this length for M = R/fR in a height one prime p;
(corresponding to A;), we have

x(Kos(f,g; R)) = ) m; length(R/(p; + gR)).

This proves our claim.

Now the assertions of the theorem follow. Let W be an integral sub-
scheme of X. Let [div f] be a rational divisor on W then ¢;(L) - [div f] is
equal to ¢;(Ow) -  for some z in ¢;(L) - [W]. So ci(L) - [div f] is rational.
This proves that ¢y(L)-[Z] depends only on the class of {Z] in 4,(X). Also
c1(L)-c1(M)-[Z] and ¢1(M)-cy(L) - [Z] are represented by the same cycle
in A,(X) so they coincide.

Theorem 1.5. Let X be a scheme. Then we have the following properties:

(1) Let i : Y — X be a closed subscheme of X. Denote U the open
scheme X \Y and j : U — X the structure morphism. Then we
have the following exact sequence

A(Y) 5 A(X) 25 A@) — 0.

(2) Let # : Y — X be an affine bundle over X of rank n. Then the
map 7* : Ag(X) = Ag4n(Y) is an isomorphism.

(3) Let P = Projx(E) — X be a projective bundle over X of rank n.
Then we have that the map ®3 A.(X) — A,(P) sending (zo, - ,2n)
to ®T_o7* (2:)c1(O(1))* is an isomorphism.
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Proof.

(1) The assertion is obvious.

(2) We first prove that * is surjective. Let U be an affine open set
of X and X’ = X \ U the closed subscheme of X. By (1) we need only
prove the assertion for Yy — U and Yx: — X’. By induction on dim X
we may assume that X is affine and Y = X x A™. By induction on n may
assume that n = 1 and Y is a trivial line bundle over X. Let Z be an
integral subscheme of Y. We want to prove Z is rationally equivalent to
the pullback of some cycle in X. We may assume the closure of 7(Z) is X
and Z # Y. Let n be a generic point of X and Y; be the generic fiber of
Y over n. Then Z, is a divisor of ¥;, so it must be equivalent to 0. We can
extend Z, to a cycle Z’ on Y wich is equivalent to 0. Now the closure of
the image of support of 7(Z \ Z') is a proper subscheme of X. Injectivity
will follow from (3).

(8) First of all we want to prove this map is a surjective morphism. By
induction on dim(X) and (1) we may assume Y is affine and E is trivial.
So we have a projective subbundle i : P, — P of P of rank n — 1 such that
P\ P’ is an affine bundle over X. The assertion follows from (2) and fact
that 2. (A(P1)) = A(P)-H (H = ¢1(0O(1)).

The injectivity follows from the fact that #(7*(z)-H™) = z and 7. (7*(z)-
H') = 0 for 0 < i < n. We may assume that ¢ = [X] and X is a point. The
assertion follows from the fact that H™ - [P] is represented by any section
of P over X.

CHERN CLASSES

Let X be a regular scheme. Let E be a vector bundle of rank n. Denote
by P the projective bundle Proj x(Sym E). We define the i** Chern class
ci(E) of E as the operator A,(X) — Ap_i(X) such that

n

H™ -7*(z) =) 7" (1) 'c:(E) - z) - H* ™.

1=1
Let us write
Ct(E) = tn ha tn_lcl(E) + ...
as a formal polynomial in t.

Theorem 1.6. If
0—'E1—*E2—’E3—>0

is exact then
ci(E2) = ci(Ey)c(E3).
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Proof. Since everything commutes with base change so we may prove this
formula after any base change which induces an injective map on Chow
groups.
For a vector bundle E on X, let Flag(E) be the scheme which classifies
the filtrations
0O=E"CE*"'C...E'CE°=E

such that E*/E*t! are line bundles. The morphism Flag(E) — X is the
composition of a chain of projective bundles. By theorem 1.5 this morphism
induces an injective map on Chow groups.

Then over Flag(E;) x Flag(E3) the bundles F; and E3; have complete
filtrations, so does Fa.

We claim that if E is a vector bundle over X and

O=E*CE*C...E'CE°=E

is a complete filtration for E then

n-1

co(E) = [] c.(E*/E*FY).

1=0

Obviously this implies our theorem.
The above equation is equivalent to

n-—-1

H a((E' /B2 g 0(1)) = 0.

1=0

We prove this equation by induction on n. P’ = P(E/E™~1) is the zero
set of the map E"~! — O(1). For any cycle « in P,

c1(0(1) ® (E""1)®71) -
represents an element S in A,(P’). By induction we have

T (5 /B4 500) o
- ﬂ ai((BY/EF)RCD @ 0(1))]p -8
=0.

From the above theorem we have that c; is a group homomorphism from
K(X) to End(4.(X)[t])*. To do any computation with Chern-classes one
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uses the splitting principle to reduce to the case that the bundles have com-
plete filtrations, so that in K-theory E = 3. L; with L; line-bundles. Then

1
any symmetric function in the ¢;(L) is a polynomial in the Chern-classes of
E. For example the Chern character ch is defined as a ring homormorphism
from K(X) to End(A.(X)) ® Q such that ch(F) is a polynomial of ¢;(E)
with coefficients in Q and

Ch(E) :Z ea(Ls) _ Z Z Cl(L)

if after a base change E = ), L,.

RIEMANN-RoCH THEOREM

The Todd class of E is defined as a polynomial of ¢;(E) such that

_ (L)
Td(E) = H1 mpe— Ay
if E =Y, L; after a base change.

Assume now f : X — Y be a projective and smooth morphism of relative
dimension d. The main theorem of this lecture is

Theorem 1.7. Assume X and Y are regular.

.(ch(E) - Td(Txv)) = h(f. E)
in A.(Y).

Proof. We prove the theorem in several steps. We first remark that the
assertion is compatible with composition, that is Riemann-Roch for (f, E)
and (g, f«(FE)) implies it for (gf, E).

Riemann-Roch for a projective line bundle.

Let E be a rank two bundle on X. Riemann-Roch is valid for f : X =
P(E)—-Y.

By theorem 1.3 in this lecture we have that K(X) ® () as a module over
K(Y)® Q is generated by Ox and O(—1). We have f.Ox = Oy, and all
other direct images vanish.

Let A’ = ¢;(O(1)) — 3c1(E). From the exact sequence

O—DO—'EV®O(1)—>T)(/Y_>0
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we have T,y = det(E)~! ® O(2) and c¢,(Tx/y) = 2h’. Since

R —k
W= e — 1e
so
2h' , ,
Td(Tx,y) = T e-2w = h'+ (1 + even powers of h’).

As we know h'? = cy(E) + 1c1(E)? so f.h'® = 0 for any n > 0 and
f+h! = 1. So finally
fo(Td(Tx,y)) = 1.
—n!

Also f,[O(-1)] = 0 = f,(ch(O(-1)) - Td(Tx/v)), as %r contains only
even powers of h'.
This completes the proof.

Deformation to the normal cone.

Deformation to normal the cone will be a very important tool in the
study of Riemann-Roch.

Let f: Y — X be a proper smooth morphism and F be a coherent sheaf
on Y. We introduce the following notations:

Erry(F) = Erry (F) = f.(ch(F) - Tdy,x) — ch(f. F).

Let f: Y — X be a smooth morphism and Z C Y a closed embedding
such that Z is smooth over X. Let Y be the blow up of Y x P! along
Z x oo. The fiber 170 of Y over 0 is isomorphic to Y. The fiber 1700 of Y
over oo is an union of the two schemes: an exeptional scheme 170’0, which is
isomorphic to P(N* @ Oz), and a scheme Y, which is isomorphic to the
blow up of Y in Z. Here N* = Iz /I% denotes the conormal bundle.

Leti: Zx P! Y be the canonical embeddmg The morphlsm ‘Lo can
be split into 29 : 7 — Yo and jo : Yo — Y. The morphism 14, is split into
Too® Z—»Y' and joo : Y’ —Y.

We claim that

Err;,o(io,F) = Errf,;o(ioo.F)

for any coherent sheaf F on Z.
First we have

El'l'}”/c(io..F) — Err;,, (ioo,F)
=fo.[(ch(i0. F) - Td yo/x] foo[(ch(ico . F) -Tdy /X]
:f' {do.[(ch(i0, F) ’Td}"o/x] — Joou [(ch(ioos F) - Tdy /x]}
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where f is the structure morphism of Y to X.

Secondly, let F’ be the pull back of F to Z x P! and let F be the push
forward of F' to Y. We have iq, F = j3F. Furthermore ch(F) is sup-
ported on (Z x P1), and if T denotes the logarithmic tangent-bundle of

f’/ﬂl’l(f = dual of Q:—//x(d log 1700)/Qi,1(d log 00)), then near io(Z) (respec-

tively 200(Z)) T is isomorphic to Ty (respectively Ty, ). It follows that

the difference of the two errors is the image under f, of the product of
ch(F) - Td(T) and the divisor of the rational function t- X — P! (induced
by second projection). It is thus rationally equivalent to zero.

Riemann-Roch for embeddings into projective bundles.

Let ¢ : Z — X be a smooth morphism. Let E be a vector bundle of
the form Oz @ N. Denote by Y the projective bundle Pz(E) on Z. Let
1: Z — Y be the embedding corresponding to the morphism E — Oz. Let
7 :Y — Z be the structure morphism of the projective bundle. Let f = g«
and consider Y as a scheme over X.

Suppose that Riemann-Roch is valid for the morphism 7. Then for any
coherent sheaf F on Z we have that

Errz(F) = Erry (i, F).
By definition and because «,[Oy] = [Oz] we have

Erl‘y(i. F) = f.(Ch(l,F) . Tdy/)() —ch f.i.F
= g+7u(ch(i, F) - Tdy/z - Tdz/x) — chg. F
—a.(ch(x.1 F) TdZ/X) _Chg'F

= G\ LA\ Txls

= g.(ChF -sz/x) - chg‘F
:Errz F.

Riemann-Roch for projective vector bundles.
Let i : Z — Y be a closed embedding of codimension 1 such that g :
Z — X is smooth. Then for any coherent sheaf F on Z we have

Errz(F) = Erry (i, F).

We have
Erry (i, F) = Erry,_ (10 F).

We thus may assume that Y = Pz(E), where E = Oz @ L be a split rank
2 bundle. The assertion follows from the previous.
Let E be a vector bundle on X of rank n > 2. We want to prove the

LTY <@ 1A 199 43 Cll A

Riemann-Roch for P = P(F) over X. By a base change we may assume
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that E has a quotient bundle E’ of rank n-1. P’ = P(E’) is a Cartier
divisor of Op(1). By theorem 1.3 in this lecture K(P) as a K(X) module
is generated by K(P’) and Op(—1). By induction on the rank of E we need
only to prove Riemann-Roch for O(—1), provided Riemann-Roch is valid
for all projective vector bundles of ranks less than n.

Let Y be the flag scheme which classifies the complete filtrations

0=E,CE, C---CE,=E.

We have a morphism from Y to P which is a composition of projective

bundles of ranks at most n — 1. E; is just the pull back of Op(—1). Since

f+[Opy(r)] = [Oz] for any projective bundle f : Pz(F) — Z the push

forward of [Oy] is [Op]. This implies that the push forward of E; is Op(—1).

Since the Riemann-Roch is valid for the the morphism from Y to P, we

need only to prove Riemann-Roch for E; and the morphism from Y to X.
Let Y’ be the flag scheme which classifies the filtrations

0=FEcCFy---CE,=F

such that E; is of rank j. Then Y is a projective line bundle over Y'. E is
the canonical line bundle Oy (—1). Riemann-Roch is valid for Oy (—1) and
the morphism from Y to Y’ and gives 0 in both sides of the Riemann-Roch
formula. Therefore the Riemann-Roch is valid for Oy (—1) and so for the
morphism from Y to X.

Conclusion.

Now the Riemann-Roch for any projective smooth morphism f: X — Y
follows easily. Let 7 : P — Y be a projective bundle of Y such that f = 7
with 2: X — P a regular embedding. By deformation to the normal cone

Errx (F) = Errp(is F)

for any coherent sheaf on X. Riemann-Roch for P implies the assertion.



LECTURE 2. CHERN CLASSES OF
ARITHMETIC VECTOR BUNDLES

For a regular scheme X which is flat over Z and such that X¢ = X xQ is
smooth over Q) we define the arithmetic K-groups and the arithmetic Chow-
groups and establish a theory of Chern classes. The arithmetic K-group is
a refinement of the ordinary K-group: the arithmetic K-group is generated
by all vector bundles which have a metric at the infinite place and all (p,p)
type differential forms, such that any exact sequence of hermitian bundles
gives the secondary Chern character form. The arithmetic Chow group is
also a refinement of the ordinary Chow group: a cycle is an ordinary cycle
plus a current at the infinite place. We can define the pull back and the
push forward for arithmetic Chow-groups, and the pull back for arithmetic
K-groups. The definition of push forward for arithmetic K-groups needs
more tools. We define it and prove the Riemann-Roch in the next few
lectures.

We use [GS1] and {GS2] as general references.

KAHLER MANIFOLDS

Connections.

Let X be a real smooth manifold and let E be a vector bundle on X.
We may think of E as a sheaf of groups over X and it is a C{ module over
X, where C® is the sheaf of all smooth fuctions over the open sets of X.
A connection V on E is a morphism of group sheaves

V:E-E@Q

such that for any smooth function f on X and any smooth section e of E
we have

V(fe) = d(f)e + fV(e).

Notice that V? is a morphism of bundles (i.e the morphism of C modules.)
E—-E®Q’

and gives a section of End(E)® Q2. We call V? the curvature of E, for any
connection V.
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If E has an inner product <,>: E® E — Ox we say a connection V of
E is Riemannian for <, > if

< V81,82 >+ < 81,Vsa >=d < 51,52 >

where <, > has been extended to an inner product on EQQ* in the canonical
way.

Now we suppose X is a complex manifold and F is a (holomorphic)
vector bundle on X. We have a canonical morphism of group sheaves

8:E — E® Q%

such that for any smooth function f and any holomorphic section e of E
we have 3(fe) = 3(f)e. We say a connection V of E is holomorphic if the
projection of V to the space E ® Q%! is 4.

Suppose now F has a hermitian inner-product metric <,>: EXFE — Ox.
A connection on E is said to be hermitian if

<Vsy1,82 >+ <51,Vsy >=d < 51,5, >

where <, > has been extended to a hermitian inner product on E ® Q in
the canonical way.

Notice that the hermitan metric on E induces a metric on E @ F and
a connection on E also induces a connection on E @ E. It is easy to see
that a connection is hermitian on FE if and only if the induced connection
is Riemannian on E @ E.

It is well known that for any hermitian holomorphic vector bundle F
on a complex manifold X there is an unique holomorphic and hermitian
connection V of E and V? is a (1,1) form.

Kahler manifolds.

Let X be a real manifold with a metric. This means that we have an
inner product on Tx. Then there is a unique Riemannian connection V¢
on Tx such that for any two vector fields z and y on X we have that

Vey—Vyz —[z,y] = 0.
Actually such a connection can be defined by the formula

2<Veyz2>=z<y,z2>+y<z,z>-2<2,y>
+ <[z,yl, 2>+ <[z,2z],y> + <z,[z,9] >.
We call such a connection the Levi-Civita connection. It is well know that

because V c has no torsion, the exterior derivative d on Q2% is induced b
! X y
V.



Chern Classes of Arithmetic Vector Bundles 17

Let X be a complex manifold which has a hermitian metric. This means
that we have a J-invariant hermitian inner product on Tx where J is the
complex structure on X. We define a (1,1)-form by the formula

1
w(e,y) = oo <20y >

We say that the metric on X is Kahler if dw = 0 and we say X is Kahler if
X has a Kahler metric.
Lemma 2.1. The following conditions are equivalent:

(1) The metric is Kahler .
(2) For anyp € X, there is a holomorphic coordinate system z,, - - , 2,
such that ¢ = 1 (mod 2%), where g = (g;,;) with

i}

Gij =< 57—, 7— >
e 32,"32]-

Proof. By definition we have

ag’_"" dz A dz; Adz ).
621

27 ) 995 k
—-dw:—E —22dzy Adzj Adz
: z:‘kz{ oz “ “ B

Thus the Kahler condition is equivalent to

Ogix _ Ogqix 0O9jx 0951
dz ~ 08z ' 8z 0%

Assume (1). By a linear base change we may assume that {;2-} is an
orthonormal basis for Tx at p. Replace z; by

Ogk,;
I . ]
z; = z; + E oz V1% 4]

we will obtain that ¢ = 1 (mod 22). This is (2).
(2)—(1) is clear

Theorem 2.2. Let X be a hermitian manifold. Let V¥ denote the unique
holomorphic hermitian connection on Tx. Then the following conditions
are equivalent:

(1) X is K&hler .

(2) VEC = VH,

(3) VEC(J)=0.

(4) VH has no torsion.
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Proof. 1t is clear that (2) and (4) are equivalent and they imply (3).
Assume (3). Then

Viu(z,y) = 2(w(z,¥)) — w(V:%,y) - w(z, V7 )
=z<z,Jy> - <VECz Jy> - < 2,JVECy >
=0,

since VX€J = 0 and V%€ is Riemannian. This implies that
dw(z,y,2) = Vow(y, 2) — Vyw(z,z) + V,w(z,y) = 0.

This proves that (3) implies (1).

Now we assume (1). By the lemma, for any point p we can choose a
system of coordinates z such that ¢ = 1 (mod z?). If VHE‘:—._ = zo.-,j%
then we have ’

0=08g-9g7'=0. (mod 2)

So the torsion of V¥ is zero. This proves that (1) implies (4).

Hodge theory.
Let X be a real manifold. Denote by Q7 the sheaf of complex smooth
differrential p-forms. Then we have the de Rham complex (Q*, d):

4,02

0-0° -2
This complex is acyclic and gives a resolution of the constant sheaf C.
Take smooth sections of this complex. We obtain a complex (C*(Q*), d).
Denote its cohomology by H}, z(X, C) which agrees with ordinary singular
cohomology.
Suppose X has a Riemannian metric. This induces a metric on Q* and
a pre-Hilbert structure on C*(2*). Let d* be the adjoint of d. We define
the Laplacian Ax on C*®(Q2*) by the formula

Ag=dd" +d'd.

We call H = ker Ay the space of harmonic forms. It is obvious that (H =
kerd Nkerd* and the canonical map H — Hpx(X.C) is an isomorphism.

If X is a compact Riemanian manifold, using the theory of the next
lecture, we can prove that M is finite dimensional and that the restriction
of A4 to the orthogonal complement of H has a smooth inverse G, the
Green’s operator.

Now assume that X is a complex manifold. Denote by 97? the sheaf of
smooth (p,q)-forms of X. For any non-negative integer p we have Dolbeault
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complexes (QP>*, 8) and (Q*7, d). Take smooth sections of these complexes
and denote their cohomologies by Hg"(X, C) and Hy?(X,C). They are
isomorphic to H*(X,Q?) and H*(X, QF).

Suppose X is a hermitian manifold. As for the operator d we can define
operators 8%, 3*, As and Az. We have harmonic spaces s and Hz and
isomorphisms to H*(X,Q*) and H*(X,Q*). If X is a compact hermitian
manifold, using the theory of the next lecture, we can prove that Hs and
M5 are finite dimensional and that the restrictions of A5 and Aj to the
orthozonal complements of H = and H, have smooth inverses.

Tinogona: COompiementis 01 /i3 and /7ig nay IMooua 1INV

If X is a compact Kahler manifold one can prove that

A:r=2A5=2A5
JAY PYAN 205.

Qi

We have the Hodge decomposition theorem:
Hoa=H;="H.

K-GROUPS FOR ARITHMETIC VECTOR BUNDLES

Chern forms.
Let X be real manifold. Let £ be a complex vector bundle on X with a
connection V. We define the Chern polynomial ¢, as

i
2
det(t — —V?)
27
!
and the Chern character form ch'(F) to be

tr exp(‘)—z—Vz).

&N

Notice that for any form ¢ with coeffients in End(E) we have d(tr ¢) =
tr[V, ] so d(tr V2") = 0. In other words c}(E) and ch’(E) are closed forms.
The following formulas are easy to prove:

(1)

/ ) ' .
ci{E1 @ Ez) = ¢,(E1) - cy(E2);

(2)
ch’'(E, ® E;) = ch'(Ey) - ch'(E);

(3) Let f:Y — X be a smooth morphism of complex manifolds then

c(f*E) = f*c(E).
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Secondary Chern forms.

To define K-groups of hermitian vector bundles we need to study exact
sequences of hermitian vector bundles.

Let X be a complex manifold of dimension n. Let p be a non-negative
integer. Let A'P(X) (or A;,_,(X) ) be the space of all (p,p) forms and let

AP(X) (or Zn_p(_X) ) be the quotient of A?(X) modulo the sums of the
images of 8 and 4.

Theorem 2.3. There Is an unique way to attach to each exact sequence
F:0-FE, - FE, > FE3—-0

an element CTI(E) in ,Z"(X) such that
(1) )
/ ’ ’ 90 ~
ch’'(E2) — ch'(E}) — ch’'(E3) = — ch(E);
i

(2) For any map f: X' — X of complex manifolds
ch(f*E) = f* ch(E);
(3) When E is split in the sense of hermitian bundles c‘f](E) =0.

Proof. Let E be an exact sequence as above. Let us construct an exact
sequence E on P! x X:

0—-*E‘1—-*E‘2-—¥E3-—¥0

by E; = Ei(1), E2 = (E1(1) ® E;)/E: and E3 = E;. We identify the E’s
with its pull back on P! x X, and take the embedding E; to E1(1) by the
divisor 0co. Then the restriction of E to 0 x X is E and that to co x X is
split. Choose a metric on E which induces the given metric on 0 x X and
split at oo x X. We define

c‘il(E) :/];1 [ch’(E}) 4 ch’(E3) — ch’(E;)]log |z|.

We need to show that the integral above does not depend on the choice
of the metrics on E. Suppose we have two metrics on E which have same
value at 0 x X and oo x X. As hermitian bundles we denote them by E’
and E”. Put some metric on E on X x P! x P! such that the restriction of
this metric on X x P! x0 is E’ and that on X x P! xoo is E".
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We use the same name for the differential operator and its extension
to distribution. It is easy to see

3_(? log |w| = 60 — bo-
i

So we have

Since ch’(E;)’s are closed

~ ~ _ 09
ch(E’) ~ ch(E") :/ ch’(E;) — log|z|log |w|
P! x Pt Ls

~ [, (B Z ozl log ul
¥ x P! 1

_ .86
[ (B Zioglalog
P! x ! w1

=0,

as [ log |w| = 0 and the rest of the integrand is constant on {z = 0} (resp. {z
o0}). _

1t is easy to check ch(FE) satisfies (1),(2) and (3).

The same result as in the theorem holds if we replace ch’ by any poly-
nomial in the Chern-classes c;.

One can easily show various identities for ch( ) by deforming to the split
case. For example if we tensor with an F, then ch(E® F)= ch(E) ch(F).

Example of a secondary class (without proof).

Assume we are given a hermitian vector bundle £ on X, and change
its metric. Then the above construction (applied to id: E — E) gives a
secondary class ch whose image under 89/7% is the difference of the two
chern-characters. We study this infinitesimally:
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Suppose we have a C®-family of hermitian metris h(t) on E, inducing
holomorphic connections V(t) and chern-characters.

H(E)(t) = tr{exp(- V(t)?))

Then 2 (ch'(E)(t)) = 2 ch(E)(t).
We can compute ;E(E)(t) as follows (for details see lecture 5): There
exists an hermitian C*°-Endomorphism N(t) of E such that

a
5 Seve2 e = < N(t)er, €2 >a) -

Then the derivative of V(8) (8 a holomorphic vector-field) is easily com-
puted to be

;]
a(V(a)) = — [N(t), V(9)] (commutator)

From this one calculates (which we shall do later) that

ch(E)(t) = tr(3N(t) exp(5 V?)) = au — tr(exp ~V? 4+ IN(t)), ie.
the right hand side has the right image under 2 ;i—, and vamshes if N(t) = 0.
A similar formula holds for other characteristic classes.

If for example we scale the metric on E by a factor A%, then the corre-
sponding ch-class is

log(}) - ch/(E)

Arithmetic K-groups.

Let X be a regular scheme which is flat over Z. Then Xp = X xCisa
smooth complex manifold.

Let F be the complex conjugate on X¢. We fix the following nota-
tlons We denote by A"*(X), A’(X) and A® (X) the subspaces of A*(X¢),
A *(Xc) and A‘(X(C) generated by all p-forms a” such that F*a? = (—1)Pa?.
We denote by G(X) the free abelian group generated by all vector bundles
which have a hermitian metric on X¢ which is invariant under F.

Let G(X) be the direct sum of G(X) and A*(X). Let G'(X) be the
subgroup of é(X) generated by the elements with form [E;] — [E,] — [E3] —
CT)(E) where

F:0-FE,—-F, > E;—0

is an exact sequence. The Grothendieck group R(X) is defined to be the
quotient of G(X) by G'(X).
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The group R(X) has a commutative ring structure such that
(B1] - [B) = [E1 ® B,

[E1] - [w1] = [ch'(Ey) Aw)
and
(wi] - [wa] = [;i— w1 A wz],

where E; are hermitian vector bundles and w; are differential forms.

Let f: X — Y be a morphism of schemes. We have a pullback morphism
of rings f* : K(Y) — R(X) by sending a hermitian vector bundle (resp.
differential form) on Y to its pullback on X.

To define the push forward of K we need to study the index theorem.
This will be done in the later lectures.

ARITHMETIC CHOW GROUPS

Arithmetic Chow groups.

Let X be a regular scheme of dimension n + 1 which is proper and flat
over Z. Then X¢ = X ® C is a smooth complex manifold of dimension n.
Let F be the complex conjugation on X¢. We denote by ZP(X) the group
of hermitian p-cycles which is the quotient group of the free abelian group
generated by pairs (Z, gz) of an irreducible subvariety Z of X of dimension
p and an (n-p, n-p) current gz on X¢ such that

88
hze = bz, - 797

is smooth, modulo the subgroup generated by (0, da +9) for some currents

a and B. Here 6z, denotes integration of Z¢, which exists for example by

resolution of singularities. Also Hodge-theory implies that any Z has a

Green’s current gz: Choose as hz, the harmonic representative for éz,..
Let Z;(X) be the subgroup generated by the elements

(div(f), —log|f|- 6z)

where f is a meromorphic function on a subvariety Z of dimension p — 1
and 8z = 6z,. Then the arithmetic Chow group A,(X) is defined to be the
quotient of Z,(X) by Z,(X).
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We have the following maps:
Ap(X) = Ap(X) : (2,92) = 2,

. EE]
h:Ap(X)— A, (X):(Z,92) > hz =62 — 92

and
€: ‘ZP(X) — Ap(X) : g — €(9) = (0,9).

We call h the curvature morphism.

Later we shall prove some equalities in A,(X). In general it will be easy
to show that they hold after mapping to A,(X), or after h. Thus they
hold up to €(H(X)), where H(X) C A.(X) denotes the kernel of 3. At
least this is true if X is compact. In this case H(X) is isomorphic to the
cohomology of X¢, since by Hodge theory of compact Kahler manifolds the
kernel of % is harmonic up to the image of 3 and 3. Note that in this case
we may replace C* —forms by currents, without changing H(X).

We have an exact sequence

-~ € ~

A (X) -5 A,(X) - Ad(X) > 0.

The map € need not to be injective. For example, if I'(Ox) has an invertible
elment o which is not a root of the unity, then €(0,log ja|) = 0.

As for the functor A, we can define the pushforward map and pullback
map. The pullback morphisms of A, can be defined for any smooth mor-
phisms of scheme. The pushforward morphisms can be defined for any
smooth, proper and surjective morphism.

First Chern classes.

The group fi.(X) has a commutative ring structure by intersection the-
ory. We just want to introduce the action on A,(X) by a hermitian line
bundle. Let L be a hermitian line bundle on X. Let (Z, gz) be a cycle such
that Z is irreducible. If s is a meromorphic section of L on Z then the class
of

é1(L)-(Z,9z) = (div(s), —log|s| -6z + hrLgz)

in A, (X)) does not depend on the choice of s, where h; = i—? log [s| + b(aiv 4]
is the curvature form of L. Like theorem 1.3 have

Theorem 2.4. Let X a arithmetic scheme. Then é1(L) - (Z,gz) depends
only on the class of (Z,gz) in A.(X). Morever if M is another hermitian
line bundle then
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Proof. As in theorem 1.3 we need only to prove the following statement:
Suppose L and M have holomorphic sections f and g over Z such that
A = div(f) and B = div(g) are integral and have no common component,
then

&A(L) - (B, ~log lgl67) = &1(M) - (4, ~ log | f162).

We need the following remarks:
The proof of theorem 1.3 implies that divs g = divg f so we need only
prove to that

(1) —log|f|-ép — hrloglgléz = —loglg|- 64 — ha log|fléz.

If Z is smooth and the divisors have normal crossings we may assume
that X = Z. The above equation follows from the definitions of the Ay and
hy and the equality

39 38 -
pry log | f|loglg| = - log|gllog|f]. (modulo Im(3) + Im(9))

In general we use a resolution of singularities Z - Z C X. Write
7*(A) = A1 + Az and 7*(B) = B; + B3, where 4, and B, are coprime
and 7,(A1) = A and 7,(B;) = B, and 7, A; = 7, B, = 0. Also all divisors
should have normal crossings. Put metrics on O(A;) and O(B;) and hence
on O(Az) and O(Bz). Now the assertion is easily shown to be independent
of the choice of metrics, and equation (1) on Z is the pushforward of the

following equation (1) on Z:

(1) —logl|fl-6p, — hy -loglgl-65 = —loglg|- 64, — har log|f|éz

By the previous calculation one shows that (T) holds up to integrations over
components of A; or B,, which vanish under ..

CHERN CLASSES

We want to define the Chern classes for a hermitian bundle E of rank n
. Let f:Y = P(E) be the vector bundle associated to E. On Y we have a
canonical exact sequence

E:O—-»E'—+f'E—>L=O(1)—+0.

Let us put the quotient metric from f*E on L and the subspace metric on
E'.
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Theorem 2.5. Let H = é,(O(1)). Then
(1) the map A.(X)®" to A,(P(E) by sending {zo,z,...} to
Yoz - HY is injective.
(2) the image of the above map is the set of all objects whose curvature
is of the form ¥, z/H".

Proof. The theorem is valid for A, via the forget morphism A, — A,, and
for A: via the morphism h. So we only need prove the theorem for kernel
of %‘? in Ax.

The first assertion follows from the fact that =, (7*a A H""l) = « for
all a, and 7, (7*a AH' ) =0for 0 <i<n—1.

The second assertion follows from the fact that if i—?a = 0 then « is
closed up to the image of 8 and d. This implies that « is of form Y :ciH"'
up to the image of 8 and 4.

We define Chern classes é;(F) as operators on fi.(X) such that if é,(E) =
" — "1 (E) + - - then
f*éu(E) = e(éu(E)).

Here ¢y (E) denotes the secondary characteristic class associated to the
chern-polynomial, evaluated at H. This defines operators é;(E) which in-
duce ¢;(E) on A*(X) and c(E) on curvature.

This definition is natural if corollary 2.7 below should hold for the canon-
ical exact sequence E above.

Theorem 2.6. Suppose E =L, ® L, @ ... then

&(E) = &(L1) - &(Ls)....

Proof. We need to show that

n

[[@(@) - &(L0) = e(@n(B)).

=1

We notice that é&(L) —é;(L:) is represented by E; = (Es,9:) withn;E; = 0
and g; = log|s;| for the morphism

s,;:L,'—>E—>L.

So the left hand side of the above equation is €(a) for a form a. Also
the above equation can be shown in A)(X) via h. Let o’ = (éx(E)) and
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B = a— o then %?;ﬁ = 0. Now this is only a statement at oo, so can be

checked in closed forms. From now on we calculate in 4, (Xc)-
We use induction on n to prove that 8 = 0.
Now

Eio..Bp=(0,iag(Ez ... Enlg)+ 91 Aha A--- A hy)
= (0,2, (1) + g1 Ah2a A---Ahy)

where a1 = [[-,(é1(L) — é1(L:))|, and o} has the analogeous meaning.
If v is any closed form then

39
fo(@ ARy AY) = fu(a' A (88, — Egl) A7)

66
= (fle.)o(¢|BL A ) — (=o' Ag1 A ),
Since a’|g, = hy - @}, and since &} = a; by the induction hypothesis

fllaAhiAY) = {flg, o (@t ARLAY) + fu(ba

-
o~
~.
%

1

>
o~
>

g1A7)

-,
U
[N}

iNgGiAY)

~
o

-

r-j 3
o

= (fle (i ARs AY) + fu(hs -

U
[N}

s
5
>
Q
o,
>
2

-
1l
[

= (flz)- (o1, A7)+ folhs-
= fo(¢' Ah1 A7Y).

Hence f.(8 A h1 Av) = 0 for all closed forms v and so 8 A hy = 0. Sym-
metrically 8 A h; = 0 for all 7.

Write § = Z?;ol B; H*. If B._1 = 0 then we derive that all §; = 0 for
1# 1. But B,-1 has degree 0 so it suffices to show that it vanishes at each
point. We thus may assume that X = SpecC and E = C".

By embedding to P* we may then assume that X = P! and L; = O(1)
and L; = O. Since Bh; = Bhy = 0 so B(h1 — h2) = 0. This implies that
Bc1(Ox (1)) = 0 and this implies that §,_; = 0.

Corollary 2.7. Let E: 0 — E; — E; — E3 — 0 be an exact sequence of
hermitian bundles. Then

&(E2) — é(E1)é(Es) = &(E).
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Proof. The assertion is true if F; = @L; and F; and E3 are subsums. In
general taking the base change

Flag(E;) x Flag(E3) — X

we may assume that E; and E3 have complete filtrations and so does Ej.
We now can construct an exact sequence

E:0-FE, - E;—E;3—0

on X x P! such that over X x 0 this is E and over X x oo the bundle E;
is a direct sum of line bundles and F; and FEj3 are subsums of E;. Now
w = &(E3) - &(E1)é(Es) — &(E) has the property that 22w = 0 and w is
0 over X x oo. This implies that w = 0 on X x 0.

All the usual identities about Chern classes now holds. First of all by
the result in lecture 1 and its anologue in forms they hold up to

e(ker 83)/(Im(d) + Im(3)).

Then we can use the splitting principle and deformation to sums of line
bundles.



LECTURE 3. LAPLACIANS AND HEAT KERNELS

In this lecture we intend to compute the asympototic expression for the
diagonal values of the heat kernel of the Laplacian on Riemannian manifold
X x R* ,where X is compact and the metric is invariant under translation
on R*. First of all we study the Sobolev spaces and Garding’s inequality
and prove the existence of the smooth heat kernel. Then we prove that the
asymptotic formula for the diagonal value e *2(z, z) depends only on local
data when t — 0.

SOBOLEV SPACES

Let f € C§°(IR™). We define the Fourier transformation f of f to be
fley=="% / e~ f(2)dz

where if z = (21, ,Zm), (E = &1, -+ ,€m) then 2€ = 2181 - -+ zmém. It is
easy to see that |f|La = |f|13. So we can extend the Fourier transformation
to an unitary endomorphism of LZ(R™).

Let s be a real number and f € C§*(R™). We define

152 = [+ ePyiie P

The Sobolev space H,(R™) is defined to be the completion of C§°(R™)
with respect to the norm ||,. For example the é-distribution is in H,(R™)
for s < —% as its Fouriertransform is constant.

We fix the following situation :

By a triple (X, E, Vg) we mean a Riemannian manifold X of dimension
m and a metrized vector bundle E and a Riemannian connection Vg on
E. We almost always assume that X is a product ¥ x R* with Y compact,
and that either E and Vg are the pullback of a metrized vector bundle
Ey and Vg, on Y x R or at least a small perturbation of such. (See
below for the definition of “small perturbation.”) In fact what matters
is that we can cover X by finitely many coordinate charts such that all
transition functions have uniformly bounded derivatives, and that X has a
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complete Riemannian metric. The latter condition is necessary to construct
cutoff-functions with small derivatives.

Let D, be the open unit disc in R™. We can find a finite covering U; of
Y and open embeddings {¢; : U; — Dy, X ]R"} such that the restrictions
of E and Vg to U; is the pullback of some pair (E’, Vg') on Dp_.

We have isomorphisms {#; : Ely, = Of_} Let {g;} be a partition of
the unity for {U;}. If e € C§(X,E) then ;.(g9:e) can be witten as
#*(fi,1y- -+, fi,a) where f;;’s are smooth functions on R™ with compact

....... Toat o b o nanl nypmm a2 dofina
5uppu1t. Let s bc a ICa nUulbel‘. We define

|e|3 = Z |fi.j|s
i’j

forand e € C§°(X, E). It is not difficult to prove that the equivalence class
of this norm on C§°(X, E) does not depend on the choice of {U;}, {¢:}, {¥:}
and {g;}. The Sobolev spave H,(X, E) is defined to be the completion of
C& (X, E) under this norm ||,. One easily shows that H,(X, E) is the dual
of H_,(X, E), using cutoff-functions on the R*-factor.

Let a = (a1, -am,) € N™. We fix the following notations:

ol =) " a,

gt tam
d* = ——— .
9z - Bz o

Theorem 3.1.

(1) Let K be any compact set in X. Let s > t. If {f,} is an infinite
sequence of functions in C§¢(X, E) which is bounded in the norm
||s then we can find a subsequence of {f,} which converges under
the norm ||;.

(2) Lett be a positive integer and s >t + ﬂr;;l. Then H, is contained
in C'(X, E) and we have a constant c such that

lefoo,e < clels
where |e|w,¢ is defined in a similar way as |e|,: locally we define

|floo,e = max |d®f(z)|.

z,lal<t

(3) Let u,s,t,¢ be real numbers such that € > 0 and s > t. Then we
can find a constant c such that

IfIE < elfl3 +elfRE-
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Proof. Fix {U;},{¢:},{¥:} and {g;} as above. It is easy to see that we
need only prove the theorem for U; and for the trivial line bundle. We may
assume that X = R™ and F is the trivial line bundle.

For (1) let ¢ € C§°(R™) be a function such that ¢ = 1 in a neighborhood
of K. Then gfn = fn and so

fo(@) = 4% (@) = [ FuW)ile - v)ay.
Hence
|fn(2)]
< [ 13z - il (w)lay

<Ufula] / 16z~ w)I? - (1 + [yf?)~*dy)}
<c-h(z)

where h is a continuous function of z, and similar for all derivatives of
fn(z). So there is a subsequence of f, which we will still label by f,, such
that fn(z) converges uniformly on each compact set of R™. Let s >t and
r be a positive number, then

Ifi — fel?
= / i = FuP(1 + (y]?)'dy
: / i - FelP(1+ ) dy + / 1 — FelP(1+ Iyl dy
lyl<r lyl>r
<cr|fs = feltax,p, +2¢(1+12)0.

We can fix a r so that the second term of the last line is arbitrarily small.
For a fixed r we can choose bigger j, k so that the first term is arbitary
small.

For (2) we notice that if ¢t = 0 then

1£(2)I? = If(2)]?
= f &=V f(y)(1 + [8l?)*(1 + )~ d)?
Scllflfa

since [(1+ |y[?)~*dy is bounded for s > 2. So we obtain that |f|e,0 <
c1]fls. For any a by the same method we can find ¢, such that
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Idafloo.o < Ca|f|s~

Let ¢; = max|q<¢{cac1} then we have that

|f|oo,t < Ctlflﬂ‘

The assertion in (3) follows imediately from the following estimate for
all z € R™:
(1+12*)" < e(1+[2])" + (1 + =)
where
¢ = max(1 + [o2) (1 + o)~ — o).
z

ELLIPTIC DIFFERENTIAL OPERATORS

Let (X, E, V) be a triple as before. Let P be an endomorphism of group
sheaf of E. We say that P is a differential operator if locally when X = R™
and E = O™ then P can be written in the form

P =p(z,D) = ZA

laj<d

where A,(z) € Endo, (F) and p(z,y) € Endo, (E)(y). We alway assume
that A, are bounded in Endo, (E). It is easy to check that P can be
extend to be a bounded morphism from H,_4 to H,(X, E). We say that P
is elliptic if locally

det( > Aaga) #0
la]=d

for € # 0.
We say P is uniformally elliptic if for a fixed data {U;, @i, %:,9:} we can

find a constant ¢ such that

> cl¢|®

D Aat

la|=d

on U;. P has constant coefficients if it is invariant under F*-translations
in X =Y x R*¥, We say that P is close to an operator P, with constant
coefficients if P = Py + 6 P, where P, is constant and §P is small in the
following sense:
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- All derivatives of the coefficients of § P are uniformly bounded on X.
- The coefficients of the leading term (of degree d) have sup-norm < ¢, for
a small
enough e.
Usually assertions for constant P, generalize to such P, by treating § P
as a perturbation. We have the following theorem:

Theorem 3.2. (Garding) Let P be an uniformally elliptic differential op-
erator on E such that P is close to an operator with constant coefficients.
Then there exists a constant ¢ such that

[fls+a < c(|fls + |Pfls)-

Proof. We show that |f|,+4 < ¢(|fls+d-1+|Pfls). Using the trivialisations
on U; it suffices to treat the case where X = R™ % x [&* and f has support
in a product K x R*, K a fixed compact. It suffices to show that any zeK
has a neighborhood U such that the assertion holds for f with support in
U x R*. Also by perturbation we may assume that P = P, is R* invariant.
Let z = 0. We then have the following decomposition

P=Py+ P, +P,

where Py = Z|a|=d AL(0)D*, P, = Z|a|<dAaDa and P; = Zlal:d(Aa -
A«(0))D*. We have

|Pfls > |Pofls — |P1f|s —|Pafls
=) Aa Ols — |P1fls — |P2fl,.

|al=d

Let ¢; be the constant which does not dependent on p such that

| D Aal®] > crlé]®.

|al=d

For ¢, big enough we have
[ e 2
Pfle > 11+ |217)3 £l = calflara-1 = | Pafl,
c
= 5 fleta = e2lflava-r = P21,

It is obvious that |P;| continuously depends on the coefficients of P;.
But P;(0) = 0. So there is a neighborhood U, of p so that (with c; big)

|P2f|a < _lfls+d+02 If|a+d 1
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for all f € C§°(Up). Finally we have

c
[Pfls > Fflova = 2¢al flarar.

Quite similar to this proof one shows that if f and P f are both in H,, then
f lies actually in H, 4.

The following theorem is a beautiful application of theorem 3.2.

Theorem 3.3. Let X be a compact Riemannian manifold. Let E be a
hermitian vector bundle on X. Let P : E — E be an elliptic differential
operator of order d > 0. Then ker P is of finite dimension.

Proof. Let f € Hgq with |flo = 1 and Pf = 0. Then by theorem 3.2
|fla < C. Since Hq C Hp is compact such f’s form a finite dimensional
space.

It also follows that a formally self adjoint elliptic P defines a self adjoint
operator in L?(X,E) = Ho(X,E). More precisely any P has a formal
adjoint P! such that
< Pf,g >=< f, P'g > for f,geC$(X, E), Let <,> denote the L%-inner
product defined by the metric of E and the measure on X given by its
Riemannian metric. Then any pair (f1, f2) of elements of L?(X, E) which
is perpendicular to (—Ptg,g), all g¢ C§°(X, E), is the L2-limit of elements
(f, Pf) with f¢Cg (X, E):

It follows that f; = P f; in the sense of distributions, so f is in Hg(X, E).
Approximate f; in the Hg-norm by elements fe C° (X, E).

Let us recall that an operator A in a Hilbert-space H is selfadjoint if its
domain D(A) is dense, if < Az,y > = < z, Ay > for z,ye D(A), and if
A coincides with its adjoint. If this holds we obtain a spectral measure F
such that A = [ E(d)).
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HEAT KERNELS

Let A be a closed, densely defined self-adjoint operator of a Hilbert space
H such that for any ¢ € domain (A) we have

< Az,z >> —clz|®.
We denote by End H the set of bounded operators of H.

Lemma 3.4. There is an unique smooth map K : (0,00) — End H such

that p
 K()+ AK(t)=0

tlirr(x) K(t)z = z forany zeH

Proof. We could use the spectral theorem. Another approach goes as fol-
lows. It has the advantage that it also works for perturbations A+ 6A of a
selfadjoint A, where § A satisfies || A(z)|| < r||A(z)||+ c||z||, with constants
r,c such that » < 1. (¢ € domain (A)): Define an arc

y={z(t)=|t|—e—c—ti,t e R.}

For any A € v, a € [—c, o) we have |A — a| > €. So we have that A — A4 has
a continous inverse in End H and

A=) <e

We define 1
Kit)=e*=_—= [ e ™) -A4)"1dr
==t [0
Then it is easy to show that e~4? satisfies the conditions of the lemma.
Suppose now that two different operators K;, K, satisfy the lemma.

Then for some z # 0 we have z(t) = (K1 — K2)z # 0 so we have that
{ L2(t) + Az(t) =0
z(0) = 0.
This implies that & |z(t)|?> < 2c|z(t)|?. So
j2(O) < [2(0)/%% = 0.
We get a contradiction.

Let (X, E,V) be a triple as before and P a positive self-adjoint dif-
ferential operator on E. Then by the above lemma e~ ¥ exists. We are
interested to represent e~ by a smooth kernel function, the heat kernel.
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Theorem 3.5. Let P be positive selfadjoint operator on E which is uni-
formly elliptic and close to an operator with constant coefficients. Then
e~ Pt is represented by a smooth kernel

K(z,y,t) € C®(X x X x (0,00), End E).
Proof. For any n > 0 and any t > 0 we have

_—I/A"e-*(x—tp)-‘dx.
Y

" Pne—tP — 8
271

This implies that t* P"e~** as an operator on L? has bounded norm uni-
form in t. By Garding’s inequality we have that e *¥ maps L2 to Hs. So
the morphism f — (e*P f)(z) is represented by an element a(z,t) in L2
Let

K(z,y,t) =< afz, %),a(y, %) >

Then K(z,y,t) is a smooth section of the hermitian vector bundle End E
on X x X x (0,00). It is easy to verify that K(z,y,t) represents e ¥*.

We need to understand how the heat kernels depend on the operators.
We start from the non-homogeneous equation:

{ #2(t) + Az(t) = y(t),
z(0) = z.

Such an equation has the unique solution

z(t) = e Az + /te_"’y(t — s)ds.
0
Now let 6 A be a self-adjoint densely defined operator on H such that there
is r € (0,1) and ¢ with
| < bAz,z>|<r< Az,z > +c<z,z>.
For any z € H, let z(t) = e '4+54)z, Then §Az(t) is defined and
{ %z(t) + Az(t) = —6Az(t)
z(0) = z.
So .
z(t) = e 4z + / e *A(—6Az(t - s))dt
or °

e—t(A+54) _ —tA _ /te—aA6Ae—(t—s)(A+6A)ds_
0

Repeat this several times to obtain
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Lemma 3.6.

e—t{A+64)

=y (1" / e A5 4e" 464 .. e~ 4dayda, - - -day,
k=0

v
a; >0
ag+terap=t

= / e %454 ... As4e~ 1 (At0A) g0 L dadon 1.

a;>0
aotrangy=t

This perturbation expansion will be very important for us. One conse-
quence of it is the formula

dA(s)
Tds

;_(e—A(a)) _ J/ e aA(2) e—bA(8) 4o
S

a+b=1
0<a,b<1

LAPLACIAN FOR RIEMANNIAN VECTOR BUNDLES

Let (X, E,VEg) be a triple as before i.e. the metrics on £ and X are
close to product-metrics. We have an induced metricon EQQx = EQTY

The L? norm

(fxg):/rx <f:g>

induces pre-Hilbert structures on C§°(X, E) and C§°(X,E ® Qx). The
connection Vg becomes a linear operator of pre-Hilbert spaces:

Vg :CP(X,E) - C(X,E ® Qy).

Lemma 3.7.
(1) Vg has an adjoint V.
(2) Ag = Vg - Vg is a positive, self-adjoint, and uniformly elliptic
operator operator on C{°(X, E) close to an operator with constant
coefficients.
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Proof. The inner-product on E induces a pairing
<,>p:(EQQ")®(E®Q") - Q*

such that
<e Qui,e2Quwz >p=<e1,€2 > w; Awy.

If zis in E ® QF then we have

d<z,y>p=<Vz,y>p +(-1)! <2,Vy>gp.

Let dz be the volume form on X induced by the metric on X.

an operator
x:Q -t

such that
< wi,ws > dz = wi A *ws.

This operator induces a * operator from EQ Q to E @ Q™ 1.

Vi by the formula
VE *

dz
Let a € C§°(X,E® Q) and B € C§° (X, E) then we have

Vi(a) =

6,30)= [ <B,Vsa>ds

X

:/ < VgB,*a >g
X

:/d<ﬂ,*a>E—/ <B,Veg*xa>g
b's b's

:/ <ﬁ,V}5a>d:c.
X

This implies that V}, is the adjoint of Vg.

Lecture 3

We define

We define

We want to compute Ag locally. Let p be a point of X. Let VL be the
Levi-Civita connection on Tx. We may choose local coordinates {z;} for p

such that {ain} is an orthonormal basis for T'x (p) and

vke 9 _ vi¢
3:l!j 8

)
3z, (p)=0.

We also choose a local ON-basis for F which has derivatives zero at p.



Laplacians and Heat Kernels 39

Now we have

Ag(a)(p) = —(VEg * Z Via - dz;)/dz
=—(Vg Zvia(~1)i"ldzl .. J?c, -edey,)/dz

= - ZV?O(.

This proves that Ag is uniformly elliptic and positive. The fact Ag is
symmetric on C§°(X, E) follows from the definition.

Let X = Y x R* denote a Riemannian manifold as before, (E,V) a
hermitian bundle with connection. We assume that all metrics are close
to metrics induced from Y, so that all differential operators are close to
constant ones. We consider such an operator P on E of the form P = Ag+
terms of degree < 1. Let K(t) = K(t,z,y) denote the kernel representing
e~ *P. We want to study the behavior of K(t,z,z) as t — 0. For example
for X = R™ with the standard metric we have

K(t,z,y) = (47t)"F - exp (_ (z_;ty)_’)

Our strategy will be to compare K (t,z,y) to this kernel, defined for the
canonical metric on the tangent-space T = Tx,; of X in z. So we choose a
fixed zeX, and all estimates will be uniform in z.

Choose a small neighborhood U of z, and an open embedding U C T
which sends z to 0 and has differential one at . In the following we consider
a sequence of cutoff-functions ¢,, which have support in an e-neighborhood
of z in U. We also assume that ¢, = 1 near = and on the support of @, ;.
We can choose the ¢,’s such that their k-th derivatives are bounded by a
multiple (depending on n) of e~*. For the moment we choose ¢ fixed, but
later we shall vary it proportional to ¢t*, some o > 0, and thus we have
to keep track of the dependance on ¢ of all constants. We assume that ¢
is bounded below by a multiple of t3. We denote by Al the differential
operator Al = ¢, P+ (1 - ¢,)A7r on T.

Let K, (t,z,y) denote the kernel of e‘mln, defined for z, yeT. It follows
that for £ > n @, - K/ (t) - ¢, and @, - K(t) - ¢, can be considered as
kernels on U x U, and thus as operators on L?(T, E) as well as on Sobolev-
spaces. However before we proceed we scale T by a factor of t3. This
way U now becomes a neighborhood of 0¢T of size ~ t~3, tP becomes
P, = Ar+0(t3), and the heat-kernels K (t), K/,(t) get a factor ¢, because
of the changes in volume-forms. Finally the cutoff-functions ¢, now have
k-th derivatives of size bounded by e << 1.
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Now consider the operators (for 0 < u < 1).
Ki(u) = pre P,
and
K, (u) = pre Yy
Lemma 3.8. Let a < b denote integers
1) As operators from H,(T, E) to (Hy(T, E) the norms of K,(u) and
K], ,(u) are bounded by a mu]tlple of us".
2) Iim K, (u) = lm K, ,(u) =
u—0 u—0
3) (ga +An)K(u ) = [AL,w]e‘“P‘w
(8 oL ANVK! = wile~¥Bnp, forf>n
\Bu 7 “n)*tn l\ l‘—‘n )y FEI© ¥, 105 L 2
Proof. 1) follows easily from Garding’s inequality, 2) is obvious, and so is
"l\ as on
supp (¢¢) A;, and P, coincide.
Note that [A}, @] is an operator of degree < 1, whose coefficients have

1
(100 oo —1a3
C®-norm << €™ 't3 << L.

Theorem 3.9. Assume a < b are integers, n fixed.
As an operator from H,(T, E) to Hy(T, E) the norm of § K(u) = K, ,(u)—

-b

K(u) is forl > n+r bounded by a multiple of e="t5u "3, for any integer
r. The same bound holds for v, 11 K(u) (1 — ) and (1 — @) K¢(u) @e41

/urh‘vrh express T((ql\ away from the diagona])

ress Yy,

Proof. We show the assertion by induction on r. The case r = 0 follows
3.8. As 6K, (t) approaches zero for t — 0, and as

0
(E + A::)éKl+1 = [Ar, pe41)6Ke(w)prsr
we have
§Kyypa(u / K. (u—v)[AL, pe+1)6 Ke(v)pesr - dv
0

Now estimate the norms in the integral as follows:

Note that t"A™e~t2 has norm bounded by sup{A"e~*|A > 0} < oo.

Thus Garding’s inequality implies bounds in Sobolov-norm for e~*2. The
same is true for small enough perturbations.
Ifo<w < :86 K¢(V)pe41 as operator from H, to H, has norm bounded
by =" 7,
K,’,(u — v) as operator from H,_, to Hj has norm bounded by P aall
(A%, pe41]

2
*
u
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as operator from H, to H,_; has norm bounded by € 1t3.So the integrand
has norm << e~ (T+1)p = == 4=

Ifi<z<t
6K(S) as an operator from Hg to Hyyq has norm bounded by et ut . K]
(t—s) as an operator from Hy to H} has bounded norm. Finally [Al, ¢441]
gives a contribution of size e 1t3.

All in all the integrand again has norm << e~ ("+1) . ¢
integrating the result follows.

it a—bir-1
2 .u- 2z . By

The proof of the second assertion is quite analogous.

Corollary. t% (K(t,:c,:c,) - K (t,z,z, )) is C* on [0,00) X X, and has
Taylor-series = 0 at t = 0.

This follows by integrating against é, ® 6, and use of the perturbation
series in lemma 3.6: Only the behavior at ¢t = 0 might cause problems. We
have to show that K (¢, z, z) has an asymptotic expansion ast — 0, and that
the derivatives of this asymptotic expansion coincide with the perturbation
series. But theorem 3.9 tells us that in this series we may neglect terms
K(t,y) where the distance of z and y is >> ¢, and in the remaining terms
we may replace K by K’. A priori it only seems to be C® in t3, but it is
invariant under ¢3 — —t3.

It remains to consider the Taylor-expansion of t3 - K/ (t) at ¢t = 0. For
this we choose € of size t+ (any exponent between 0 and % would do). Then
after scaling tA!, differs from Ar by an operator § P of order < 2, whose
coefficients have C®-norm bounded by a multiple of t4. It follows that the
Taylor-series in question is given by a perturbation expansion as in Lemma
3.6., i.e. by the sum

[ o)
> (-1 J/ e T . §P.....6P e P day.. day.
£=0 ao+ +ag=u

Here the terms e~ *4T are classical heat- kernels, i.e.
o—yl3
e AT (g, y) = (4Te) "7 e~ 2t
As these decrease rapidly off the diagonal one then checks that in the
formal expansion above we may replace § P by its Taylor-series at the origin
(which has only finitely many terms modulo t7, for any 7). That is to
compute the Taylor-series of t 3 - K (t) we may treat P as a perturbation of

Ar and expand everything formally in power-series. As a result we obtain

Theorem 3.10.
a) (47t)3 K(t,z,z) is C*® on [0,00) x X, and has value 1 at t = 0.
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b) Its Taylor-series at t = 0 can be computed as follows: Choose local
coordinates at z and trivialize E. Expand P in a Taylor-series at
z, and set P = P — Ar, where Ar is the constant Laplacian on
T = Te .. Then formally expand e~27+7P) ysing the heat-kernel
for e *A7 and the Taylor-expansion for §P.

The resulting coefficients are polynomials in the coefficients of 6 P.

We also need a relative variant of the theory. Assume f: X — Y is a
submersion of compact Riemannian manifolds, of dimensions m respectively
k. Choose z,y € Y, let Z = f~}(y) C X, and T = Ty,;. The resetriction
of the tangent bundle Tx to Z splits orthogonally into Tx Z = Tz ® Ty,y.
Choose an open neighborhood U of Z in X and embed it into Z x T, with
differential 1 on Z.

For a positive s > 0 consider the metric g, = gx + s~ f*gy on X,
and its Laplacian A,. Its leading term looks like Az + sAy + terms in s2.
We consider the heat kernel e 4+ = K(s,t) on X, and want to compare
to e~t8s+sA7) on Z x T. To do this we now use cutoffs ¢, which are
pullbacks of functions on Y, with support near y. However, as we have to
use the metric g, for Sobolev-norms, we change coordinates on Z x T by
scaling the factor T by 4/s. In the new coordinates U has size ~ 1/4/3 in
the T-direction, and A, = Az + A7+ lower order terms. We then first
compare K(s,t) to the kernel K'(s,t) obtained by cutting of the difference
to Az + Ap. For this one uses the differential equation (in t) satisfied
by wi(K(s,t) — K'(s,t)) ¢, and successive integration as before. The key
is that the coefficients of [A,, ¢,] have the norm bounded by s3. All in
all we see that ¢, (K(s,t) — K'(s,t))p, is O((st)") for any r. Finally we
compare K'(s,t) to the heat-kernel for Az + A7 which is the product of
the heat-kernel on Z with the classical heat-kernel on T'. All in all we easily
obtain:
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Theorem 3.11.

(4xt)% s K(s,t,z,z) is C*™ on [0,00)? x X.

Its Taylor-series at s = 0 (respectively s = t = 0) can be computed by
applying formally the perturbation-series of Lemma 3.6 to the Taylor-series,
comparing to the heat-kernel on Z x T respectively Tz . x T = Tx ¢



LECTURE 4. THE LOCAL INDEX
THEOREM FOR DIRAC OPERATORS

We will prove the local index theorem for Dirac operators on compact
Kahler manifolds in this lecture. After some standard discussion on Dirac
operators we prove the local index theorem in the absolute case by applying
the results of the last lecture. The super-Dirac operators are defined to be
the limits of Dirac operators in the sense of Clifford algebras.

CLIFFORD ALGEBRA

Let V be real vector space of dimension 2n with a quadratic form Q.
The Clifford algebra C(V) = C(V, Q) of V is defined to be

T(V)/ <v’+ Q) eV >

where T'(V') is the tensor algebra ®,>o®" V. (This is the analysts convention.
In algebra one usually uses the opposite sign.) This is an algebra of degree
22" over R and there is a filtration F on C(V) defined by

F(C(V)) = (R+ V),

and grixC(V) = A*V. One example is the case Q = 0 which gives the
exterior algebra A*V. We have a bijective map from A*V to C(V, Q) by
sending A = v; A--- Ay to

a 1
A% = i ngn(a)v,(l) Y1)

where o runs over the set of all permutation of (1,2,---1). In this way we
may think of Clifford algebras as deformations of the exterior algebras.

We assume that Q is non degenerate. Let C(V) = C,(V)® C_(V) be
the decomposition of C(V) into even and odd parts. We say elements in
C4+(V) have degree 0 and those in C_(V) have degree 1. We define the
super-commutator {, } in the following way:

{Z,y} =zy— (_l)degreezdegreeyyz'

It is easy to see F3,_, is generated by super-commutators.
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Let us construct a complex representation for C(V) as follows. Let J
be a complex structure on V, that is an orthogonal endomorphism of V
with the property that J2 = —1. Let Vo = A @® A* be the decomposition
into eigenspaces of J. One obtains an action of Vg on S(V) = A*A: the
elements of A operate by exterior multiplication and those in A* by inner
multiplication:

(—l)i'l<v',vi>v1/\v2/\ﬁ}--~/\vn.
1

n
V(v Ava AcerAy) = =2
1=

By counting dimensions we have that
C(V)(C = End(c(S(V)).

Let S = S, @ S_ be the decomposition into even and odd parts. Let €
be the endmorphism of .S which is 1 in S, and —1 in S_. The super-trace
is then given by

try(z) = trez.

Let v; be a basis in A such that < v,,9; >= §;;, and let w = v, A5, A
«++vp ATn,. Then (——% "wtr, is just the morphism

Tr, : C(V) = C(V)/Fan_y = AT(V).

Now we want to study the limit of Clifford algebras. Let Q,, be a series
of quadratic forms on V. We say a series of Clifford elements ¢, € C(V, Q)
converges if there is a series of elements t,, in A*(V) which converges and
whose elements have images ¢, in C(V,Q,). It is easy to see that if ¢,
converges then Tr,(c,) converges to Tr, to, where o is the limit of the t,.

We assume now that @, has a limit Qo. Then if ¢,, converges then we
have to in T(V) as above whose image co in C(V, Qo) will not depend on
the choice of t,,. We call ¢y the limit of ¢,,. In this case we have

lim(c, + ¢),) = lime, + limc),

and
. P .
limepc), = lime, limc;,.
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DIRAC OPERATORS

Let X be a Kahler manifold of dimension n. Let Qx/3 be the the bundle
of one forms with induced metric. Let

Qx/c = Qx/p 91 C = Q"0 0 Q%!

be the decomposition into holomorphic and anti-holomorphic parts accord-
ing to the complex structure of X. We denote by C(X) the Clifford algebra
with respect to the inner product on Qx/p. Let S(X) = Q* = A*QO! be
the bundle of anti-holomorphic forms. Then we have a complex represen-
tation of C(X) on S(X). As metric on S(X) we choose on Q%7 2P-times
the hermitian metric. In this way Clifford-multiplication by real elements
of Q% is antihermitian.

In the following we shall distinguish between Q* and S(X) as they have
different metrics. With these conventions S(X) is well adapted to the study
of the Dirac-operator.

Let F be a hermitian vector bundle on X with the unique hermitian and
holomorphic connection Vg. Let VLC be the Levi-Civita connection on
Tx which induces a connection on S(X) which we still denote VLC. Let
VIC ®1+1Q® Vg be the induced connection on S ® E which is hermitian
and holomorphic. Locally let e; be a basis for Tx and let f; be the dual

basis for 2x. We have the following definition

Definition: The Dirac operator D associated to Vg: SQE - SQ F is
defined to be
2n
D=) fV.,.
1=1

This is independant of the choices.
We have the following properties for Dirac operators:

Theorem 4.1:
(1) Let D* be the adjoint of D with respect to the L? norm. Then

D' =D.
(2) Let 8* be the adjoint of 8 (for the metric on S(X)). Then

D=8+48".
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Proof: Let = be a vector field on X. Then we have a diffeomorphism for
any smali t > 0:

exp,(z): X = X
by sending (p,t) to exp,(tz(p)). This induces an endomorphism of A*Tx :
y — exp(tz)*y. We denote L. the differential of this morphism:

It is easy to see that L, is a derivation on A*Tx, Lo(f) = z(f) if fisa

function, and L (y) = [z,y] if y is a vector field. In the same way we can

1UnLuilEa, oull gy ) < ne

define a derivation L, on A*Qx:

L (w) =
We have that for any y in Ty and any w in Q*
z((‘)’y) = (sz,y) + ((l), L:By))

and also .

/ Lz(< .f)g>d$):0'
X

In other words

Lg(d
](<sz,g>+<f,V:g>+ 5;) < fg>)dz=0.

This implies that
L (dz)
A v ] ?
Ve dz

Assume that the e; are orthonormal then e; A ---e3, is dual to dz. So

Lydz  L;(ex N --Nezn)
dt =~ e1A---Aeyp

2n
= L < [z,ei], e >
i=1
2n
-
= L < Vee; — V,iz:,e,- >
=1

2n
=—L < V,.z,e>.
=1
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(as < Vze;,e; >= %a: < e;,e; >= 0) Finally

D*=-3"V.fi
= Z‘ngg + Z <Vififi > fi
=ZVi~fe—JE:V:‘fj
- Zf,-vi. J

This proves (1). For (2) we may choose a complex basis e; for Ty and f;
. 1,0
its dual in 2%". Then

D=) fiVe+ ) fiVa.

But Vs, =& so Y fiVe, = 8. (1) is equivalent to

(Y £9.) +6 = (D £9.,) + 6.

Comparing degrees we obtain that

Zfive‘ =8

This proves (2).

Recall that the curvature of a connection V is V2. It is not difficult to
prove that

R;; = (Vz,e,- /\ej) =V;V; - Vjvi - V[e

nwe,lt

Theorem 4.2: (Lichnerowicz) Let A be the Laplacian of the vector bundle
S ® E with connection V. Then

D= A - % Y <Rij(fi), fi >+ ) fifi® (Ris(E) + % tr(R., (Tx'°))
i

i<y
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Proof: Let pin X. We may choose an orthonormal basis of Tx such that
Vie; = 0 at p. Then at p we have

= z fiVif;V

_Zvqu,f,vv

L3

= -—ZV2+Zf,f, (ViV; — V; V)

t<]

:—Zvuzf.f,@&,,w )+ Y fifiRi,(X)®1.

1<y i<y

R,;(X) = R acts as a derivation on § = A*Q%!. Change notations for a
moment and denote by e; a basis of the holomorphic differentials and f;
the dual basis of antiholomorphic differentials, under the complex linear
extension of the metric to Qx,¢c = QL% ® Q2. It then follows easily that
on S

-1
R = TZ < R(fj),ei > fiej

tJ

:%Z<R(fj),eg (CJAft Z<th e; >
t,J

The last term is half the trace of R on 92%! or half the trace of R on the

holomorphic tangent-bundle T;{o. The first term can be rewritten in the
old nnf:f\on where now f. e; denote dual basis of TX QX; as

1
n Z < R(exr),e1 > fefi
Thus
- 1 1,011
=0+ ) fi fi ® (Riy(E) + 5 tr (RByj|Tx "))
i<

1
+3 E < Rij(er),e1 > fifi fufi
4,3,k



50 Lecture 4

In the last term the curvature R;; acts on Q2x. If we instead consider it on
Tx this term changes sign. Using the identity

R; j(er) + Rjk(ei) + Ry,i(ej) =0

(sketch of a proof: Assume that e; = 8/8z; are coordinate-derivatives.
Then the left hand side is the sum of V;(V;exr — Vie;) and its cyclic
permutations)

one easily sees that this becomes a scalar, equal to

1
_Z Z < Rij(fi)vfj >

1,J
This completes the proof of the theorem.
Choose local coordinates z; in which the metric gx is given by the unit-

matrix, up to order > 2, and let e; = 8/8z;. Then in the basis given by e;
the leading terms in V; = 8; + T'; is given by

1
Pi:_EZR‘j.zJ’ + order > 2
j

where Rij = ) Riji, exer + order 0.
kl
Thus the term of Clifford-filtration three in D is given by

1
—3 Z Rk, eizjere;
1,5,k,1
By the symmetries of the Riemann-tensor this has Clifford-degree < 1. This
also illustrates the remarkable cancellation which follow from the Kahler
condition.

INDEX THEOREM -ABSOLUTE CASE

Let X be a compact Kahler manifold of dimension . Let E be a hermit-
ian vector bundle on X. We see from theorem 4.2 that the Dirac operator
D? = D? is an elliptic and self adjoint operator on S(X) ® E. We write
exp(—tD?)(z, z) for the values at the diagonal of its heat kernel. This is an
element in End(S(X) ® F). It is of interest because of the following global
index theorem:
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Theorem 4.3:
tre~D’ = /X tr, e *P’(z, z)dz = x(E)
where x(E) is the Euler characteristic of E:
X(E) =) (-1)}'H'(X, B).

Proof: Consider the operator P = 1+ D? on L*(X,S ® E). By Garding’s
inequality we see that P~! is a compact operator on L?. Since D? is self-
adjoint this implies that L? has a decomposition into eigenspaces of P! and
also of D?. Decomposing L? into eigenspaces we see that all contributions
cancel except those from the kernel of D?, which give the Euler-Poincaré
characteristic x(E).

Although there is no simple formula for tr, e“D:(z, z), we can at least
compute its limit as ¢t — 0.

For this consider e~*P”(z,z) as an element of C(X) ® End(E) ® Q™.

Theorem 4.4: lim tr, (e7*P’(z,z)) = degree (n,n) - part of Td'(Ty°) -
ch'(E).

Proof: We use the scaling and perturbation-expansion of the previous chap-
ter. Choose local coordinates z; = z; + 7 - z;n near z such that the 4/9z;

form an ON-basis of T)l('o, up to order > 2. Then the 8/dz; have norm V2,
so the corresponding Laplacian on the tangent-space is 3 }~(8/8z;)%. Fur-
J

thermore choose a local ON-basis for 2%' (and thus S(X)) and E near z,

parallel up to first order. The ON-basis of Qg(’l will in general be different
from the dz;. In these basis the connections have the form

V= a/azj + Iy,

where T'; e C(X) ® End(E) has Clifford-degree < 2 and vanishes at the
origin. One derives that I'; = 1 3 R - zx+ higher order.
E

In the perturbation expansion we first have to scale coordinates by ¢3.
Thus we have new coordinates z; = t=3 -z;, and derivatives 0; = t3 - 0j.
Also in the :c; the curvature gets a factor ¢, which however is cancelled if we
represent it by an element of the Clifford-algebra acting on E® S(X). We
derive from the Lichnerowicz-formula that in these new coordinates t D?
has the form

1 a t 1
-5 Z(E +3 Y Rij(X)zy)? +t ) dzide; (Ri(E) + Jbr Ri;(Tx"))
3 k 1<)
+ higher order
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The “higher order” terms have a t-power which is greater than one half of

their Clifford-degree. Here the R;;’s are considered as elements of End(E ®
S{ X)), If we represent them bv elements of ﬁ(Y\@End(E) they lose their

~N\**) ) TV AT s TOTes FET AL Ty TATASERASES MR M \=*/ FEERg SR mEEE
factor t.

Also by scaling the super-commutators in C(X) we obtain a factor ¢, so
that in the limit £ — 0 we can work in the exterior algebra A*Qx.

Now in the perturbation-series we obtain elements of Clifford- degree 2n
only with a power t™ in front, and no higher t-power of the “higher order”
terms contributes. Thus for the limit we may neglect these and consider

the operator (defined as a perturbation-series)

1 a 1 ]
eXP{§Z (am‘"j +§Z Rjk-.’l!k)z + E dz.dz; (Rij(E)+-2-tr Ri; (T;{’O))}
J k

i<j

Here the Rj; and dz;,dz; are considered as elements of the Grassmann-

algebra A*Qx. The second summand in the exponent contributes up to
1,0

some scaling a factor ch/(E) - e3°{Tx"). For the first one we proceed as

follows, following Getzler:
For indeterminates R;; satisfying R,y = —Hj, consider the value at

(0,0) of the kernel of
n ,1 T 3 1 — N2y
(211') -exp(EL(gz—J + ELRJk Ek) ).
j k

This is a power-series ®,(R;), with constant term 1, whose coefficients
are polynomials in the Rji. Furthermore this series is invariant under the
orthogonal group 0(2n, R), acting on the R; by identifying them with the
entries of a matrix in the Lie-algebra of so(2n).

Such a matrix has eigenvalues +;,...,+),, and the invariant polyno-
mials are polynomials in the symmetric functions of the A;2. Furthermore
by decomposing R2" into an orthogonal direct sum of even-dimensional
subspaces we see that there is an even Power-series ®(t)el+t% - R[[t?]] such
that

n

®a(tR;e) = [ 2t )

Now in our case the R;; define the curvature-form of Tx and T;{’O (using

NO-Mm\ N Ir(. O IP e dako Inmbo aaans he knoawn SYM atriac
S50(2nR) 2 U{n, \\,)), if we take into account the known symmetries of

the curvature-tensor. Finally to compute the super-trace tr; we have to
collect terms of Grassmann-degree 2n. Up to some scaling-factor these are
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given as follows: The power-series ® defines a characteristic class <I>( %)
of the holomorphic tangent-bundle of X. Then the super-trace in questlon
is equal to the highest-degree term in

3(TE°) - ch/(E) - e3 +(Tx")

Thus x(F) is obtained by integrating this over X. If we apply this to
projective algebraic manifolds X and compare to the Riemann-Roch we
obtain that there are no scaling-factor, that ®(t) = mﬁ defines the

A-genus, and finally that the assertion of theorem 4.4 holds.
Remark 4.5.

a) One shows in the same way the following generalization: Suppose
a is a (p, p)-form on X, defining an element a® in C(X). Then

lim tr, (2rit)y? -a®e tP”) = /a Td(Ty°) - ch(E)
X

The factor 2wt comes from the fact that in one complex variable
the heat-kernel has as leading term (4wit)~'dzAdz, and that dzAdz
has supertrace 2.

b) We have also computed the series . We can apply this result to
any Laplacian of the form

2
‘Z 5;;—5 k Rji-2i)"

SUPER CONNECTIONS

Suppose E = E, @ E_ is a superbundle (i.e. Z/2Z-graded) on a C*-
manifold X. A superconnection on E is an odd X-endomorphism V of E®
A*Qx, satisfying the usual connection rule. Then V? € End(E) @ A*Qx is
A*Qx-linear and even. Locally a superconnection is the sum of an ordinary
connection and an odd A*Q x-linear endomorphism.

A holomorphic analogue is given as follows: Suppose X is a complex
manifold. Z-grade A*Qx by the rule that Q™7 has degree ¢ — p. If E =
®nez E™ is a Z-graded C*-bundle, then V should be a superconnection
which is a sum V = V' 4+ V", where V' has degree - 1 and V" degree +
1. For example if (E",v) is a complex of holomorphic hermitian bundles,
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Vo the hermitian connection on E = @E™, then V = Vg + v+ v* is a
super connection, V' = V§ + v*,V” = V{ + v. If v is holomorphic then
v'?=v"? = 0, so that V? has degree 0. We say in general that V is
holomorphic if V2 preserves degrees.

Suppose f: X — Y is a proper and smooth holomorphic map of Kahler-
manifolds of dimension n respectively r, and E a holomorphic hermitian
bundle on X. We intend to define a holomorphic superconnection V on the
C®- direct image f}(E@/\‘QSE;Y) or better f,(EQS(X/Y)), considered as
an infinite-dimensional bundle on Y. This superconnection will be a limit
of the holomorphic connections associated to the metrics gx + s~ gy on
Tx, as s — 0. There are two ways to describe v:

a) Let S(Y) = A*Qp" and S(X) = A*Q%" denote the spin-bundles,
equipped with the metrics scaled by s (i.e. on Qg,’l the met-
ric has a factor s, etc.). Let D, denote the Dirac-Operator as-
sociated to f* (S(Y))‘ ® E, that is D, is an endomorphism of
Hom (f*S(Y), E ® S(X)). (Although this is not really necessary,
one can endow the dual of S(Y') with the holomorphic structure
given by identifying it (via the metric) with its complex conjugate
/\‘Q;,’O.) Now Qx splits orthogonally into Qx = f*Qy © Qx/v,
where the first direct summand is a holomorphic subbundle. Also
the splitting is independent of s and gy. This induces S(X) =
£(S(Y)) @ S(X/Y), and

Hom (f*(S(Y)),E® S(X)) X E®C(Y)® S(X/Y)

As s — 0 the Clifford-algebra C(Y') converges to the exterior al-
gebra A*Qy, and the Dirac-operators D, have a limit which is the
superconnection V acting on the C*®-sheaf E® f*Q} @ S(X/Y)
and also its direct image under f,.

From this description we derive that V is holomorphic (as D,
has degrees +1 and D? degree 0). Also on f.(E ® A*Qx) the
antiholomorphic part V" coincides with d, which determines it
uniquely and also shows that V” commutes with base change Y, —
Y (replacing X by X; = X Xy Y;), and is independent of gy.
Applying this to E* ~ E and using complex conjugation we derive
that this remains true for V’. (The complex conjugate of EQ S(X)
is C®-isomorphic to E* ® Q}’o ® S(X), respecting connections.)

However we still have to check that the limit actually exists. To
do this we use the other description.

b) Let zeX and y = f(z)eY. Choose local coordinates z — a near y
such that dz, is parallel on Y at y, i.e. gy is given by a Kahler-
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potential gy = Y |2z4|? + (order > 4). Then extend the z, (or

a
better z40f) by local coordinates w; near z such that the dw; form
an ON-basis of 2x,y at X, and are orthogonal f*Qy. Finally we
modify the w; in such a way that the Kahler-potential ¢y is of the
form gy = ¥ |wi|? + (terms of order > 2 in z,) + (order > 4).

1

If we use the dw; and dz, as a local basis for S(X) = /\‘Qg(’l, then in
this basis the covariant derivatives are of the form V, = 8, + ', (¢ =
a or i) where 9, denotes the usual derivative and the Christoffel-symbol
T, eF? (C(Qx)) is given by third-order derivatives of px. If we scale by s
we obtain px, = ¢x + s 1f*py. So Tus =Tux + s‘lf‘l‘,,,y. However
the action of ',y on C(Y') is via commutators, which introduces an extra
factor s and thus the limit exists.

This description is especially simple if Y is flat near y (which we can
always achieve by additing a term 89y to py): Write V, = 8, + ', with
I',eéC(X), and let s — 0: Then C(X) converges to C(X/Y) ® A*Qy, and
the T, to f“. Thus the superconnection is given by 6,‘d =0, + f“.
However one has to be careful: In general (if Y is not locally flat) there is
no well-defined 6“. Only the combination Eeﬂeﬂ exists.

m

Thus:

Theorem 4.6: V is holomorphic, independent of gy, and commutes with
base-change.

There is also a “super-Lichnerowicz formula,” where the Laplacian be-
comes - 3 V}oV;, the summation running over on ON-frame e; for Tz(Z =

1
fibre of f). Note that the change of volume-forms from X to Z does not
change the definition of 6:, as the e; respect the volume on Y.

Also note that the V; changes Grassmann-degrees by at most two, and
the degree two part is determined by the difference between the pullback-
metric on f*Ty and the quotient-metric (from Tx). Finally the part of
degree one ccodifies the fact that the extention 0 = T3 — Tx — f*Ty — 0
does not split metrically.

Finally we can relate the heat-kernels for D? and V2. Note that as oper-

atoron f, (EQS(X/Y)) @A Qy V2 is of the form V3y,y T+ nilpotent terms.

Thus by perturbation-theory we may define the supertrace tr, (exp(—ez)),
which is a C®-section of A*Qy.
We define ch' (f.(E ® S(X/Y))) as the C*®-section of A*Qy which in

degree (p, p) differs from tr, e~V by a factor (3% )P. We then have:
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Lemma 4.6:

lim tr, e~ D?(z, z)dz = degree(r, r)— part of ch'(f.(E®S(X/Y)))-Tdy

X/Y

Proof: We now use the relative perturbation argument of the previous chap-
ter: Choose local coordinates z; near yeY such that the 8/82; form on a
parallel ON-basis of Ty up to order > 2, and also choose local frames. Fi-
nally in the Lichnerowicz-formula for D? scale the z;-coordinates by +/s,
and compare the powers of s and the Clifford-degrees relative Qy, i.e. the
number of factors Qy in C(X) = C(X) = C(Y)®C(X/Y): One finds again
that the s-power is at least half the Clifford-degree. By the same argument
as before we then may replace the Clifford-algebra C(Y) by the exterior
algebra A*Qly, and do perturbation theory. The relevant operator is then
the sum of V2, the horizontal Laplacian, and the horizontal contribution
to cl(T)l('o).

To describe the horizontal Laplacian we use local coordinates z, as before
(so that @y = 3" |24|®+ (order > 4)), and extend by adding w;’s. One then

sees that up toaterms disappearing in the scaling limit we may replace the
Christoffel-symbols I', on X by those on Y.

Now our perturbation-calculation proceeds as before, except that now
on Y we have the infinite-dimensional bundle f,(E ® S(X/Y)), whose

curvature is given formally by V2. However all the necessary algebraic
identities continue to hold in this context, and so we obtain the same result.
Namely the super trace converges to

ch'(f.(E') R S(X/Y)) -Tdy .
So the lemma has been shown.

Remark 4.8.
Similar we obtain the following generalization: Assume that a is a (p, p)-
form on Y. Then

lirr(1)(21ris)” / tr, (a“eDf(z, z))dz = highest-degree part in
X/Y
o' (£.(E @ S(X/Y))) -a- Tdy .
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The relative index theorem.

We now also scale the metric on X, replacing gx by t"!¢gx and letting
t — 0. This way we obtain a family of superconnections V. on f. (E®
S(X/Y)) and chern-characters ch’ (f.(E ® S(X/Y))). By the previous
chapter these have asymptotic expansions in t. Note that 6,2 differs from
t- 63 by a factor ¢t~ % for each Grassmann-degree in Sy .

Theorem 4.9:

lim o' (£(B@ S(X/Y))) = [ ob'(B)-Ta(}")
XY

Proof: It suffices to show that both sides have the same integrals over Y
against any (p, p)-form a on Y, with compact support. Instead we also may
integrate against o - Tdy. By the previous lemma on the left we obtain for
a fixed t > 0 the limit

lim(21rst)”/tr,(a“e_w")(z,z)dz,
8§—
X
Taking into account that the action of a® is scaled by tP).
g

By remark 4.5 the inner term converges for fixed sand ¢t — 0 to f o ch’(E) Tdx.

X
(Again the a®-action is scaled as it depends on the metric. Now the factor
is s.) On the other hand one checks that as s — 0 Tdx converges to
f«(Tdy) - Tdx;y. Thus on the left we obtain

/a Ch(E) de/y -f‘(Tdy),
X

which coincides with the integral on the right.

COMPUTATION OF SUBDOMINANT TERMS

We have seen that tr,(a® -e'w:) has an asymptotic expansion in t. The

leading term has been computed. Here we want to consider the next term.
However we can do this only if a is a closed (p, p)-form, i.e., da = 0. To
describe the result we first need some notation:

Denote by wx the Kahler-form on X. If dz; is a local ON-base of T}'o,
then
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1 -
wxy = ﬂZde /\de
J

If éwx is a real (1,1)-form we can change the metric gx to gx + €bgx (€
small) such that wxfi changes to wx + éwx. In this procedure the A-class
Ax changes by ¢ - 6Ax, and the theory of lecture 2 provides us the a class
}i(&dx), uniquely defined modulo Im(8) + Im(8), such that up to higher
order in €

R 88 -
6Ax = —,Ax(&u)x)
e

We extend Ax (bwx) to orbitrary (1, 1)-forms by linearity. Finally if o is a

(p, p)-form, we define as follows Ax ():
Express o in a local ON-basis dzj, and write for any pair (j, k) o =
dzj A dZ A ajk+ terms not involving dz; or not involving dZx. Then

fi(a) = Z}ix (dZJ' /\dfk) Aok
Ik

With this notation we have

Theorem 4.10: Assume o is a closed (p, p)-form. Then

t—0

a 2 x 1
277 - lim % (2mit)? tr, (a“e_w )=2- /A(a) ce3 e (Tx) ch'(E)
X

Proof: We show that this holds up to an universal factor. That this factor
must be 1 will be seen later, be computing an example. We compute
as follows, using the fact the tr, vanishes on super commutators. In the
following da, db will denote Grassmann-variables, and ( )45 will denote the
term involving db, etc.:
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9 3 a 9 3 .

— tr.(tPale” Py = — — tr, —tD?+btPa

5 r,(tPa’e ) 3t Bbrco " (e )
a

1 3 ,,
— tr, ((—= D.D tp_l a\,—tD?*+btPa
Bbi=o (( 2{ » D} + pht"™ o) )
7]

1 .
= tr,(ptPa%e ™) + oo in,(—; DD, e DY)

—tD? -1 1 oy p3asP .
= tr,(e tD+pt “d“d")dadb +tr,(§De tD?4t*{D,a }db)db

- 2_1 P a P—1_a
— tr,(e tD*—1Dda+t?{D,a"}db+pt a dadb)dadb

— tr (e-w’— Y Dda+t?" 3 {D,a'}db+pt"‘a°dadb)
- 8

dadb

The exponent can be written as in a Lichnerowicz-formula. We define a
super-connection V; with coefficients in C[da, db] by the following rule:
Choose a local ON-basis e; of Tx. Then

1

’ 173 =3 a
V=V, - e da + —Z——{ej,a }db

If we assume in addition that V;(ex) = 0 at the origin, then we compute,
using that ) e; V;(a®) has degree < 2p — 1 (as da = 0) and that
j

> (ej{ej,a®} — {ej,a}e;) = —4pa®

J

( expand o« as monimial in e’s).
that

' t3 .

tY V7 =td Vi- = Dda+t""3{D,a"}db+pt" ‘atdadb

; ;
+(?) db,

where (?) is a term which has Clifford-degree < 2p — 1, has a t*P=3 in
front, and involves no da. It thus follows that the exponent in our previous
formula is of the type Laplacian + curvature, where the Laplacian is formed
with V! instead of V. Thus the limit as t — 0 should be given by a product
A-class - Chern-class. However, we first have to clear up a small point: If
in local coordinates V; = 0; +T;, the Christoffel-symbols I'; do not vanish
at the origin. However, if we formally conjugate with exp(}_z; T, (0)) we

j
do not change the trace, remove the constant term, and do not disturb the
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curvature-term because commuting with I';(0) reduces Clifford-degrees (as
the entries are of the form (degree one) Ada or (degree one) Adb). Also
commuting with a quadratic exponent we get after conjugation

1
V;- =8; + 5 sz . R;.k + higher order,
k

where R}, = [V}, V)] denotes the curvature. In our case we compute

Riy =Ry — o ({ey {ena®}} — {er,{ej,0%}}) dads
+ (?7)db,

where the (??) db-term will disappear at the end. Namely the limitas¢ — 0
is obtained by substituting R}, into the Todd-class (considering R, as a
show-symmetric matrix) and the curvature of E + the term (?)db into the
chern-class. The db-terms disappear because they find no da, so finally we
only have to find the dadb-term in

/ A (R;-k) .e3c(Tx), ch(E).
X

It remains to use linear algebra to see that this is what we want it to be.
First of all one easily sees that it suffices to check the assertion for (1,1)-
forms, as the extension to higher degrees is the same on both sides. Now
if a is a (1,1)-form, we calculate in a local good basis z;: a determines
a change in metric §gx, and the change in curvature corresponding to it
is given by A the derivatives 896gx. Thus the change 6/1’)( is equal to a
derivative of the A-polynomial, multiplied with 86gx. One derives that

A () is proportional to the derivative at € = 0 of fi'(Rx +1€Q), where Rx
is the curvature of X and égx is given by a hermitian endomorphism @ of
T)l(’o. But this just corresponds to the change from R, to R;-k.

Thus finally the theorem has been shown, up to a scalar factor which we
shall work out later.

THE RELATIVE CASE

Finally we show a relative version of Theorem 4.9. Let f: X — Y
denote a smooth map of compact Kahler- manifolds, and consider the metric
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9x,s =gx+s f*gy on X. Ifaisa (p, p)-formon X the action a® depends
on s, so we denote it by af.

We also obtain a superaction a® on f, (E® S(X/Y)). According to the
decomposition Qx = f*Qy @ Qx,y elements of A*Qy act by Grassmann-
multiplication, and A*Qx,y by Clifford-action as before. If we scale gx to
t~lgx, the action of f*Qy gets a factor t3. _

As before the supertrace tr,(a@®-e~V") of *-e~V on LH(E®S(X/Y))
can be obtained by passing to the limit s — 0, if we scale it by factor (5%)”
in degrees (p, p):

liII(l) try(aj - e_Df)(z, z) = tr,(a®- e_aj) - Tdy,
§—
x/Y

up to scaling.
Now we also change the metric gx to t~! gx, and let t — 0. We obtain:

Theorem 4.11: -,
Suppose a is a closed (p,p)-form on X. Let tr,(a® - e~ V¢ )*3led denote
the supertrace modified by multiplying the (p, p)-part by (ﬁ)”. Then

3 ~ Vi ~ 1
27 tlirré % (2wit)P tr,(a® - e_vz) =2 / f,(/y (a) -e3 a(Tx/v . ch’'(E).

X/Y
modulo Im(8) + Im(d)

Proof: It suffices to show that both sides have the same integral against any
closed (g, g)-form B on Y (using that Y is Kahler). But then the assertion
amounts to theorem 4.10, applied to a A f*(8).



LECTURE 5. NUMBER OPERATORS
AND DIRECT IMAGES

In this lecture we define the direct image, for a smooth proper map of
arithmetic varieties. The idea is as follows: If E is an acyclic bundle on X,
endow F = f,(E) with some hermitian metric. Then f,([E]) is the sum
of [F] and a secondary characteristic class which measures the difference
between F and f.(E @ S(X/Y)). To define this class we need number-
operators and various estimates for Laplacians, which make up the bulk
of this chapter. There is aiso such a definition in [GS3]. I do not know
whether it coincides with ours. At the end we consider composition of
maps. References: [BFS1], [GS3], [Q1]

NUMBER-OPERATORS

We start with the finite-dimensional case. Suppose X is a complex
manifold and (E*,v) a finite complex of holomorphic vectorbundles on X
(v: E™ — E™*! denotes the differential, which is a holomorphic map). Sup-
pose each E™ has a hermitian metric, and thus £ = @ E™ has a metric and
and connection V. Extend v and its adjoint v* to E ® Q2 by the rule that
they supercommute with Qy. Then V, = V 4 v 4 v* becomes a supercon-
nection on E, which is holomorphic as V2 is of type (1,1) (the part of hype
(0,2) is V"v +vV” = 0, and similar for type (2,0)). One thus derives that
tr,(exp(—V2)) represent the Chern-character ch(E*) = 3 (—1)" ch(E™) in

cohomology. We want to study its behavior under changenof metrics. How-
ever we only treat infinitesimal variations:

A one-parameter family of metrics on E® is of the form < e;, e; >.=<
€1, ez > +e€-

< e1, N(ez) > +O(€?), where N is a selfadjoint endomorphism of E* re-
specting the grading. For the connection V., = V” +v remains unchanged,
while Vi, = V’+v* changes by —e{N, V,}. We get a more symmetric pic-
ture by conjugating with 14+ £ N, which does not change traces. Then the
variation in connections is given by

§V,y = %{N,V;’—V;}

Thus we compute:
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8 /]
try (exp(=V3,)) = 3= trs (exp(=V] = {Vu, {N, V] = V\}}))

— 5t ({VoN, V2 = V.}} exp(~V2)

3 e=0

I

= 2 tr ({Vao {¥4 = Vi, NYexp(~V2)})
- %d(tr, ({V4 - Vi, N}exp(-V2)})
To go on we note that
d(tr, (N exp(—=V2))) = tr, ({Vy, N}exp(-V3))

= tr, ({Vi, N}exp(—=V2)) + tr, ({VL, N}exp(-V2))

Comparing holomorphic and antiholomorphic degrees we see that the two
terms are J respectively 9 applied to tr, (N exp(—V?,)). Thus finally

tr, (exp(—V2,))

I

%d(g —~ 8) tr, (N exp(V2))
= 8dtr, (N exp(—V2)).

Oe €=0

If we denote as usual ch(E*) = tr, (exp(5= V2)) and

~ 1 ;
ch(E*,N) = 3 try (N exp(—é?;V?,)),

we get %e:O ch(E?) = 3—? ch(E®, N). That is we have found a new con-
struction for the secondary classes of lecture 2.

We also need some compatability for a two-parameter family of metrics:
Suppose we have metrics

<ep,e; >5.= <ejez> +6<e, Niea > +e<e;,Nyex > +€b<ey,Nizea >
+ higher order

For each 6 the change in € is given by an infinitesimal generator

a
Nz(&) = _8-6-5—0(1+6N1)—1 (1+6N1 + €N, +€6N12)

= N3 + §(N12 — N1N2) (+ higher order)

and similar Ny(e) = N; + €(Ny2 — N2 Ny).
Now:
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Lemma 5.1.
At € = § = 0 we have modulo Im(3) + Im(9):

b% tr, (N2(6) exp(-V:‘:,e,é)) = gztr, (N1(e) exp(—V:‘:,e,é))

Proof.

We show that the lefthand side is symmetric in 1,2. After conjugating
with 1 4+ % N, we have to compute the supertrace of

5 5
666=0((N2 +6-Nyp — §(N1N2 + N2Ny)) exp(—V32 — 5{v,,,{Nl,v;' -V

1
Ny, — E(NlNz + NQNI)) exp(——V?,)

6
o (Naexp(=V2 = 2{V,, {Ny, v} - V.}})

The first term is symmetric in 1,2. The second is up to a factor —% equal
to

/ Ny exp(—a V2){V,, {N1, V" — V' }} exp(~bV?) da
a+b=1 )

Up to a commutator with V, this is
{V,, N} exp(—a V2){V, — V! N }exp(-bV3)da
a+b=1

The terms of type (p, p) in this are

/ {V" N;}exp(-aVZ){V., N1} exp(—bV?Z)da

a+b=1
- / {V., N3} exp(—a VZ){V., N1} exp(—b V2)da
a+b=1

Their supertrace is symmetric in (1,2). Thus the whole result is sym-
metric up to the image of d and terms of type (p,q) with p # ¢. As

tr, (N exp(—V?2)) is pure of type (p,p) comparing elements of this type
completes the proof of the lemma.
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Lemma 5.1. can be interpreted as follows: We have defined a 1-form on
the space of metrics, with values in differential forms / Im(3) + Im(9), and
this 1-form is closed. Thus we obtain global secondary classes by integrating
along a path connecting two metrics, and the result is independant of the
path chosen.

As an example consider the case where E*® is acyclic, and thus the Lapla-
cian vv* + v*v has strictly positive eigenvalues.

If we multiply the metric on E™ by a factor t" (¢t > 0) we obtain a
family of metrics with Laplacian ¢(vv* + v*v), and infinitesimal generator
(corresponding to td/dt) given by the number-operator N which on E7
is multiplication by n. Furthermore exp(—V?) decays exponentially as
t — oo. It follows that formally

tr,(exp (— V3)) = —94 /tr, N exp(—V ))

The lefthand side is (up to 274's) the alternating sum of the chern-characters
of the E™. The integral on the right does not converge as it stands, as
the integrand diverges as 1/t for t — 0. However we can define it as a
regularized integral, as follows:

Suppose f(t) is a continuous function of ¢ > 0, with sufficiently rapid
decay as t — oo. Furthermore we assume that ast — 0 t™ f(t) is C*, so
that ¢ has an asymptotic expansion

fit)y =Y at' + O(t).

l=-n

o o]
Then {(s) = ﬁs J f(t)t*~1dt converges for Re(s) > n, and has an analytic
0

extension to the whole complex plane (use partial integration). Define

| 0% =c¢o

For example if f(t) = e~ !, then ¢(s) = A7, and

T aedt
/e_MT = —log(}).
0

Also if f has a zero at the origin the integral coincides with the usual one.
Finally if f(¢) = tdt g(t), where t"™ - g(t) is C* in 0, then
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(e o]

d . dt .,
/td—tg(t) < = ~limg(t),
0

where on the right-hand side we have the Schwartz-limit: Let g(t) =
-1
3> bit' + g(t), then tlir%’g(t) = tlir%@'(t). This assertion follows by par-

l=—n
tial integration.

Thus finally we can define (for any acylic complex E*) c~h(E') as the
regularized version of our class (adding 2x%’s), so that formally

~ 1 [*® 1 dt
h(E*) = _5/0 tr (N exp (= V) 5,
and obtain that ch(E*) = %‘? - ch(E*).

Also for E°* split exact the ch-class vanishes: We may assume that E°*

~

consists of an isomorphism E = E® = E™*!. Then V2 = V2 + ¢, and
tr, (Nexp(V3) = (—1)"* et - tr, (exp(—VE%)).

(e o]
As [e tdt = —log(1) = 0, we are done.
0

It follows that CT)(E.) coincides with the ch-class of lecture II.

Finally we consider what happens if we change the metric on E*. For
the infinitesimal version we obtain a number-operator N*. Then (using
Lemma 5.1)

3 1 [ , wdt
aezo( 5/0 tr, (N exp(—vt,s))T)
dt

= 1/00 9 tr, (N exp(—V3,)) )
2Jo Oee=0 ° hell g

dt

—_ l/ td/dttr, (N* exp(~V?)) =
2 Jo t

1. .
= 5 lim"tr, (N*exp(-V})),

modulo Im(8) + Im(3).

To do this computation we have to be able to integrate modulo Im(8) +
Im(8), so this group should be closed in a reasonable topology. Thus we
assume that X is compact and Kahler. However one can easily show that
this is not necessary in this case.
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So far we only have recovered results which could be obtained more easily
by the deformation - method of lecture 2. However this method does not
work for infinite- dimensional complexes like I'(X, E ® S(X)), which we
treat now:

Suppose we change the hermitian metric gx, such that the Kahler-form
wx = -2—‘; Y dzj Adz; (dz; a local ON-basis) is changed by eéwx. This
effects the metric on I'(X, E ® S(X) in two ways: First the volume on X
changes, and then also the hermitian metric on Qggl. The first effect is
measured by the scalar N- operator tr Q, where Qe End(T}(’o) denotes the
hermitian operator which infinitesimally generates the change of metrics.
For the second one the N-operator is

1
=3 Z dz; - (—-Q'dz;) = —% tr(Q) + mtdw*

Thus the total N-operator is given by

N = %tr(Q) + 71 bwl.

With this operator the previous formulas for the change of D? remain valid.
Of course there is also a relative version:

If f:X — Y is a smooth map of compact Kahler- manifolds, we may
study the metrics gx,, = gx + s~ f*gy on X, and pass to the limit as
s — 0. Then the operator N as above has a limit ﬁ, where dw$ is now an
element of C(X/Y) ® A*Qy. With this N the previous formulas describe
the dependance of the limiting super-connection V on gx. For example

% tr, (exp(—V?)) = 83 tr, (N exp(—V?))

or formally

Ba;ch (f(E®S(X/Y))) = % tr, (%ﬁ exp(% v2))

For example let us compare the aymptotic expansions as we replace gx by
t"lgx, and let t — 0:

On the left we obtain the derivative of [ Td(X/Y)ch(E), which is 2—?
XY
of
[ Td(X/Y,Q)ch(E).
x/Y _
On the right the t~* term in tr, (3 N exp (5= V?)) isequalto [ wx Td(X/Y)ch(E),

X/Y
which is closed.
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For the t°-term we obtain the sum of

% / t(QITxv) TA(X/Y)ch(E)

X/Y

and

~
~

/ A(Tx/y,Q)ch(E)
x/y

The first term is the contribution of the factor e3°:(T) to the secondary
class

Td(Tx,y,Q) associated to

Td(Tx/y) = A(Tx/y)e:(Tx/v),

so both terms combine to give

[ Tty . en(e)

X/Y

Applying i—f reproduces the left-hand side. This computation also proves
that the factors in lecture 4 are correct: One can easily find an example

where the contribution of the A- class does not vanish.

Now suppose F is a bundle on X such that all direct images R*f, E,0 <
i < oo, vanish, that is E has trivial cohomology on each fibre f~!(y).
Then formally the alternating sum of f,(E ® Qg(';y) is represented by the

secondary chern-class

ch(f.(E® S(X/Y)))
which up to factors 273 is given by the regularized integral
oo ~
-3 Fen(Fexa(-v2)) 4.

Here N denotes the number-operator associated to scaling the metric gx
to t~1gx, and corresponds to the infinitesimal generator t%.

The integral exists as we shall see that the integrand has an asymptotic
expansion for ¢ — 0, and decays exponentially as t — oco.

It also follows that
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i—f ch (f.(E®S(X/Y)) = / Td (Tx/v) - ch(E),
XY

and that under a change of metric ch changes by

[ () ()
XY

(This is true infinitesimally. Now integrate.) However we need a more
general situation. Suppose now that F = f, E is locally free, and that only
the higher direct images R'f,F,0 < i < oo, vanish. Endow F with some
hermitian metric and consider the maps of complexes.

v: I(Y, FO A'QYY) — I'(X, E @ A"Q%Y)
respectively
v: F - f.(E® A" Q%y).

Here we write /\‘Qg(';y instead of S(X/Y) because we do not scale the
metric on Q%;Y by 29/2. Also for the square-integration we multiply the

volume form by (27r)di"‘(Y)"di'“(x). This may seem confusing. However
it makes everything compatible with Serre-duality, and also simplifies the
final formulas (i.e. the class R(z) in lecture 6). The 2x-factor has the
effect that the volume of P' is normalized to 1 (and P" has volume 1/n!).
On their mapping cones we consider the Dirac-operators Dp + Dg + v +
1* resp. V}:‘+€7E +v+7v*. Here v* is the limit of the adjoints v} for s — O.
It contains terms of positive Grassmann-degree because the pullback metric
on f*Qy may not coincide with its subspace metric inducgd from Qx. The
difference is (in the limit) given by a number-operator N, and v* differs
from the naive v* by a factor exp(N).

We are mostly interested in in the second case of superconnections, but to
prove something for it we consider as usual the first and let the metricon Y

degenerate. So let K*® denote the mapping cone of v: F — f.(E®/\‘Q?Y'}Y),

and ex = Vp + Vg + v+ v* its superconnection. We are interested in
what happens if we replace the metric gx by t~'gx, scale the metric on
F = K~1 by tdim(X)-dim(Y)-1" 51 let t approach zero or infinity. The
power t4im(X)-dim(Y) hag heen put in to account for the scaling of volume-
forms. By a perturbation argument one finds that tr,(exp (— V% ,)) has an
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asymptotic expansion as t — 0, and similar for tr,(ﬁ exp ( — 6?0), where

N is the number-operator corresponding to a change of gx. If we replace
v by 0 these asymptotic expansions are the differences between those for
X and for Y, which had been computed previously. We shall see that the
introduction of v does not change them. (Proposition 5.2)

The behavior at t — oo is much simpler: As before everything decays
exponentially, as K*® is acylic on each fibre. As an application we can
introduce a secondary class ch(K*®), which is (with the usual scaling by
(272)7" in degree (p,p)) given by

t\:lr—'

o0

— dt scale
/tr, Nexp V}(,,)) 7) led
0

Here N is the number-operator corresponding to the t-scaling. Then

tlir% % ch(K*) = [ Td( T}(/OY) ch(E) — ch(F), and under a change of the
- X/Y
metric gx cT](K’)
changes by / Td(T;(/OY) -ch(E), modulo Im(8) + Im(8):
X/Y

This is true for infinitesimal changes by the previous computations, and
follows in general by integration.

COMPLEMENTS ON HEAT KERNELS

Consider the previous situation: f: X — Y is a smooth map of compact
Kéahler-manifolds, F a holomorphic hermitian bundle on X such that F =
f«E is locally free, and all higher direct images vanish. For the metric
gs;e = t71(gx + 87! f*gy) we consider the Laplacian A,, = t- A, on
the mapping cone of v: I'(Y, F ® /\‘Q?,‘l) - I'X,EQ® /\‘Qg('l). Here the
metric on (Y, F®A*Q}?) is scaled by an additional factor ¢4im(X)-dim(Y)
to account for the volume- forms. This makes sections of F uniformly
square-integrable on the fibres Z = f~1(y) of f.

As an illumination we treat first the absolute case, where Y is a point.
Then v and all its derivatives are uniformly trace-class, and so is the
difference between A and the direct sums of the Laplacians on F and
I'NX,EQ® /\‘Q(;(’l). Thus we may treat this difference as a perturbation:
exp(—tA) is given by a 2 X 2-matrix whose entries are an endomorphism
of F, an integral operator on X, and a C®-map F — I'(X,E ® /\'Qgr’l),
respectively its adjoint. As t — 0 these have an asymptotic expansion in t,
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and v influences only terms with a positive t-power. Thus all asymptotics
can be computed from the previous formulas.

For t — oo everything decays exponentially, as the complex is acyclic
and thus all eigenvalues of A are positive.

Now we intend to show that this picture also holds in the relative case.
This is not quite as trivial because the higher Grassmann-terms in V2,7
and N scale with negative powers of t. We thus have to go back to the
basics. As usual the superconnection is treated as the limiting case s — 0
of ordinary Laplacians. In addition we shall so consider the question of
what happens if t — oo, but st remains bounded and small. Here everthing
will decay exponentially.

First of all the heat-kernel exp(—A,,;) is again given by a 2 x 2-matrix of
integral operators, with entries in X or Y. After scaling with ¢#m(X) gdim(Y)
respectively (ts)4™(Y) (to account for volume-forms) the restrictions of the
diagonal terms to the diagonals of X respectively ¥ are C* in all arguments,
for s > 0,t > 0:

This follows as before using cutoffs in X and Y, and comparing to Taylor-
expansions. One might worry that the commutator between v and the
cutoff causes trouble, but its norm is 0(+/t) because of the scaling on v.

Next we need to know that the eigenvalues of A, ; are uniformly bounded
below by a fixed € > 0, independent of s. This can be done as follows:
First fix a yeY, and let Z = f~!(y). Identify near Z X with Z x Ty,
scale coordinates on the second factor by /s, and for s = 0 we obtain the
direct sum of the Laplacian of T, , and the relative Laplacian in the fibre
Z. This relative Laplacian has positive eigenvalues, because the complex
on Z is acyclic. It follows by perturbation-theory that for each y we can
find a neighborhood Uy and an €, > 0 such that for any C*-section with
support A in Uy, and small enough s we have

< Asu(h),h>> €, <hh>.

By compactness we can find finitely many y such that the Uy cover Y, and
can choose € independent of y. Now Sobolev-theory works uniformly in s
with the metric g,,1: Use finitely many charts obtained by identifying a
neighborhood of Z = f~!(y) with an open subset of Z x Ty, and scale the
second coordinate by /s. Especially we have a uniform Garding-inequality
for A, 1. Apply this as follows:

Choose a small open cover U; of Y such that for h with support in U; we
have

< Asthyh >> € < h,h >. Choose C*®-functions ¢; with support in U;
such that ¥ ¢? = 1. Then the Sobolev-norm of [A, 1, ¢;] is O(v/3). For a

1
C®-section h on X we now have
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< As,l(h)y h>= Z < ¢iA8,l(h)) ("4 ’f >

1
= Z < Al,l(¢i : h)1 P - h>— Z < [Al,lx Wl](h)) Wth >
4 1
The first term is > ¢ < h, h >, while the second one is bounded by a fixed
multiple of \/s(< A,,1(k),h > + < h,h >). Thus for s small enough we

have

< A a(h),h>> % < hh>,

so all eigenvalues of A, ; are > 3.

It now also follows from Sobolev-estimates that as ¢ — oo, the kernel of
sdi"‘(y)~exp(—tA,,1) decays exponentially together with all its s-derivatives.
In other words the asymptotic s-expansion of exp(—tA, ;) as well as all
remainder term decay exponentially at infinity. At last we want to consider
the superconnection %, as a limit or ordinary connections. We now consider
exp(—tA,,1) as an integral operator on (f,(E ® /\'Q?('}Y)) @ F)® A0t
As thus it has an asymptotic expansion in s, by the usual scaling and
limit arguments. The expansion start with s~ dim(Y) ‘and counting Clifford-
degrees in C(Y) we see as before that the s'~4™(¥)_term has filtration-
degree < 2I. Also its leading term is given by the superconnection 6?
Thus we can as before use the limits s — 0 to deduce statements about
exp(—V?). The same applies to an operator a®* - exp(—tA;,1), where a is
a (p,p)-form on X, and a®*® denotes the action on S(X) with respect to
the metric g,,1. Finally we consider asymptotic expansions as t — 0, for a
fixed s. For this we use a cutoff in Y and scale the Y-coordinates by /2.
Thus A;,; now becomes a perturbation of tAz + Ar, ..

Consider the coefficient of t4™(Y).exp(—tA, ;) which acts on F ® S(Y).
It follows from perturbation-theory that it is C*® in v/t. Furthermore we
can count Clifford- degrees, with the usual result that terms with a low
t-power also have low degree. Finally in the perturbation-expansion the
terms involving v have at least a v/t in front of them, but Clifford-degree
zero. Thus they do not contribute to the leading terms. Integrating against
a (p,p)-form a on Y and letting s — 0 we obtain in a now familiar way
that the supertrace of the part of the kernel of exp(—V?) which acts on F
has on the diagonal of Y X Y no terms with negative t-powers, and that
the t°-term is independent of v. However we can derive that this holds for
the whole kernel.



Number Operators and Direct Images 73

Proposition 5.2.

tr, (exp(—%f)) has an asymptotic expansion in t as t — 0, starting
with a t%-term which is independent of v. Also if N denotes the super-
number operator associated to a change of the metric gx, then modulo
Im(8) + Im(8) tr, (N exp(—V?)) has an asymptotic expansion, starting
with t~1, and t~1- and t°-terms independent of v.

Proof. 1t follow from the previous that we have asymptotic expansions. If
we replace v by s- v the coefficients are polynomials in s. It thus suffices
that for powers t' with I < 0 these coefficients are invariant under s - d/ds.
Now scaling v corresponds to a number-operator Ny which is 1 on F and

vanishes on f,(E ® S(X/Y)). By the previous theory of N-operators we
have to consider t-powers t',! < v, in 88 tr, (Ny exp(—V?)) respectively the

. . w2 .
e-derivative of tr,(Ny -exp(—V?)), where ¢ denotes a parameter describing

the change of metric gx which gives rise to N. However we know that
up to O(t) tr,(Ny - exp(—%f)) is independent of v. We thus may assume
the v = 0. However then everything is invariant under scaling v, thus the
derivatives sdil‘ vanish on terms involving powers t' with [ < 0, and we are
done.

DIRECT IMAGES IN ARITHMETIC K-THEORY

Suppose X and Y are regular projective schemes over Z, f: X — Y
a flat map which is smooth over ). We intend to define a direct image
fo: K(X) — K(Y), as follows:
Suppose first that E is a vectorbundle on X, with hermitian metric on X¢,
such that the higher cohomology of E on each fibre of f vanishes. Then F =
f+(E) is a vectorbundle on Y, which we endow with some hermitian metric.
Over C we have associated to the mapv: F — f, (E®/\’Qg(’;y) a secondary

class cT)(cone(v)). We define f,[E] as the sum of [F] and c~h(cone(v)). We

extend f, to differential forms by the rule f,(a) = [ a-Td(Tx,y). This
X/Y

commutes with base change Y/ — Y.

Theorem 5.3.

a) f.[E] does not depend on the metric on F

b) f. commutes with the forgetful map to K(X) and the curvature-
homomorphism h to A'(X)

c) If £:0 - E;, —» E; — E; — 0 is an exact sequence of acyclic
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bundles on X, then f.([E3]) = f.([E\]) + f.([E3)) + f. (ch(E)).

Proof. b) follows from the curvature computations. For a) the assertion
already holds up to a class in the image of H(Y). Use a metric on the
pullback of F to ¥ x P! which restricts to the two given metrics on Y x {0}
respectively Y x {oo}. Then any class in (Y x P') has the same restriction
to {0} as to {00}, so we are done.

The same argument works for c), deforming E to a split exact sequence.
For a general bundle E on X we can find a resolution

0—-FE— FEy— E; — — E, —0,

with all E; acylic. Define f,([E]) as the sum of Y (—1)"f.([E.]) and the
direct image of the ch-class of this resolution. This is independent of the
choices: Two resolutions map to a common third one, and a map of resolu-
tions can be deformed to a split quasi-isomorphism. Also f, is independent
of gy. If we change the metric gx f, changes by a Td-class. Next we
consider compositions: Suppose we have another map g: Y — Z. It is not
true that (gof). = g.of., because on the curvature side we integrate once
against Td(T'x/z) and on the other side against Td(Tx,y):-Td(Ty,z). This
is because in the definition of superconnections we once let the metric on
X scale to infinity, which is different from first blowing up the metric on
Y and then the metric on X. If we blow up the metric on Y the exact
sequence

0— Tx)y = Tx/z = ["Tyjz = 0

deformes to the split sequence. However we still can show that the now
obvious guess is true. Let Td(X,Y, Z) denote the secondary class associated
to this exact sequence.

Theorem 5.4.

(90)-(1E) = 0.(-((B) +¢( [ o(BYTA(X,Y,2))
X/Y

Proof. We easily reduce to the case where E is acyclic on the fibres of f

and F = f,(E) acyclic on the fibres of g. Let G = ¢.(F) = (gof).(E). On
Z¢ we have maps

G - 0. (F o N03;) 2+ (gof). (B o A*aL)
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By definition (gof). ([E]) = [G]+&x(cone(uov)). We remark that cone(v), cone(uov)

and cone(u) have superconnections, and their associated heat-kernels exp(—V?)
have asymptotic expansions as ¢ — 0: This follows by the usuai cutoff-
procedure. We can thus define their ch-classes. We need

Lemma 5.5.

C‘Tl( cone(uov)) = ch (cone(u)) + ch (cone(v))

Proof. (1,u) induces a map w: cone(v) — cone(uov). As before cone(w) has
a superconnection and an asymptotic expansion for exp(—V?) ast — 0. We
claim that up to positive t-powers tr, (exp(—gf)) is independent of w and
v, i.e. it is the same as for the cone of the zero-map cone(0) — cone(0):
First the previous arguments give that it is independent of scaling in G,
by which we can make v equal to zero. Then w becomes the direct sum of
the identity map on G and the map u. For both of them independence of
scaling foliows from the usual count of Clifford-degrees. Now over Z x P
we can deform v to zero (considering z-v: G — g, (F® A* Q?,/IZ) (1)). The
curvature of the class ch( (cone(w)) is independent of z, thus the restriction
of the ch-class to Z x {0} and Z x {oo} coincide. By the same argument we
also can deform w to zero. But if v = 0 the ch-class is equal to ch( cone(u))—
ch(cone(la)) = ch(cone(u)) where for w = 0 we obtain ch(cone(uov)) -
ch(cone(v)) Thus the assertion follows. (Note that all the complexes
involved are acylic, so the ch-classes exist).

Now using the lemma, changing the metric gx to gx + s~!f*gy and
letting s — 0 (which kills the ﬁ-class) the asertion of the theorem amounts
to checking that the limit of c‘fl(cone('u)) is equal to f &l(?}') Td(Ty,z),

where 7: F — f.(E @ A*Q /y)) denotes the augmentatlon on Y. Both
sides of the hoped for equality are given by regularized integrals

00

jftr, (N exp(— Vz))

where ¢ corresponds to scaling gx to ™! - gx respectively gx + s~ f*(gy)
to t~1gx + (st)"'f*(gy)), and N is the corresponding number-operator.
If in the plane we parametrise the z-axis by t and the y-axis by (st), the
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integral is over the straight line y = sz,0 < z < 0o. By Theorem 5.1. we
can deform the path of integration as follows:

First go from (0,0) to (e, s¢) to € small. Then from (¢, s¢) to (¢,10¢€), Lo big.
Finally vertically from (e,%0€) to (sto €,to€), and from there to infinity as
before. If we first let to — oo the last integrals decay exponentially. So
we can also first move from (0,0) to (e, se¢), then parallel to the z-axis to
(o0, s€). For the latter integral the number-operator corresponds to scaling
gx. It thus converges for € — 0 to the super-number-operator used in the
definition of ¥. So finally we deform to the following path:

0.: From (0,0) in a straight line to (e, se).

I.: From (e, se) vertically down to (¢, 0)

II.: Along the z-axis from (¢, 0) to (oo, 0).

Now at the origin all integrands have asymptotic expansions in s and ¢ and
thus also in ¢ and y. Furthermore as the integral over I, exists (the others
do) its integrand has an asymptotic expansion with no negative y-powers.
It follows that the integral over I, converges if s — 0, for € fixed. It follows
that for any € > 0 the difference between the two r"\ classes is mVPn by
the limit (as s — 0) of the difference of regularized integrals over 0, and
0., where 0, denotes the path from (0,0) to (e,0) w1th the integrand given
by the trace of the number-operator for v. Ex he limit exists. We
thus have the following situation:

The difference of integrands is a function f(s,t) which as ¢ — 0 has an

asymptotic expansion

5

T
@
Q.
®

&
[

f(s,t) ~ Z a;(s)t'.

i
€
We know that the limit lirrrl‘f f(s,t)dt exists, and is independent of e.
*=%o

Differentiating with respect to ¢ we derive that the a;(s) are regular as

s — 0, and a;(0) = 0. Thus lim [ f(s,t)dt =0, and we are done.
$—U 0



LECTURE 6. ARITHMETIC RIEMANN-ROCH THEOREM

In this lecture we intend to prove a Riemann-Roch theorem for arith-
metic varieties. After some general discussions we prove the Riemann-Roch
theorem for P! bundles with a modified Todd class. Then we try to reduce
the general Riemann-Roch to some deformation argument to the normal
cone, for closed embeddings. Finally we prove the deformation theorem by
some detailed estimates on heat kernels. References [BL], [F], [GS3], [GS4]

GENERALITIES

We want to prove a Riemann-Roch theorem for a smooth and proper
f:X — Y, where X and Y are regular projective schemes. It has been
shown by Gillet-Soulé ([GS3]) that for this we have to add a secondary class
to the Todd-genus. For any power series ReR [[z]] we have an associated
additive characteristic class R(E). Define

Td"(B) = TA(E) (1 - ¢(R(E)))
We then shall show:

Theorem 6.1.
There exists a unique power-series R(X) such that

R(F.((E)) = f.(h(E)-Td (Tx,v))

Remark. We shall not try to compute R. This has been done by Gillet-
Soulé , by evaluating for X = P*,Y = point, E = Ox. They get

1 1 1
R(X)= ) [(=m)+{(=m)(1+ 5+ 5+ + )X /m!
2 3 m
modd,>1
Here ¢ denotes the Riemann-zetafunction. The even terms can be deter-
mined by considering the effect of Serre-duality for sheaves on P7.
Before we proceed some more general remarks:

1) The assertion holds after composing with the forgetful-map to
A(X) or the
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curvature-homomorphism h. That is the difference of the two sides
lies in e(H(X)).

ii) The assertion is independent of the Kahler-metrics on X and Y, or
the hermitian metrics on E. Thus the error is given by a map

Erry: K(X) — e(H(Y)).

iii) The assertion is compatible with compositions:

Ettgos(E) = g.(Errs(E)) + Err, (f.(E))

iv) Everything is compatible with base-change.
v) Err is K(Y)-linear.

Riemann-Roch theorem for P!-bundles.

Theorem 6.2. There is an unique power series R such that the Riemann-
Roch formula holds for P'-bundles: f: X = Py(E) - Y.

Proof. By the remarks above it suffices to prove that there is an unique
R such that Riemann-Roch formula holds for Ox and Ox(—1), and some
metric on Tx.

We take a metric on E and put the quotient metric on O(1). From the
exact sequence

0—'0—'EV®O(1)—bTx/y —0

we have that Tx;y = (det E)¥ ® O(2). We put a metric on Ty, x such that
is an isometric map.
Let h' = 1c{(Txy) then h'? = —cj(E) + 1ci(E)?. This implies that
f.h'?" = 0 and
f.h,2n+1 — (hl2)nf,.h/ — (h'2)n.

Now let Y¥,, = Grass(2,n) denote the Grassmannian of rank-2-quotients
of Z™*?, and X, = P(FE,) — Y, the projective bundle associated to the
universal E,. For E = Ox or Ox(—1) the Riemann-Roch holds up to an
error in H*(Y,) (there € is an injection, as this holds for Spec (Z)). These
errors correspond under the injections Y;, < Y4, so we obtain universal
classes in imM(Yy) = R[[c}(E), c3(E)]]. They have the property that for
any rank-2-bundle E which is generated by its global section, these classes
define the error in Riemann-Roch for Py (E) — Y. Expecially as this error
remains unchanged if we tensor E,, with a line-bundle, we see that the error
for Ox must be given by a power-series in c;2(E) — 4 ¢;(E) (tensor the E,
with powers of an ample bundle on Y,). The same is true for O(—1) if
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we multiply the error by exp (3¢}(E)). Now we have to check that we can
adjust R uniquely such that both errors become zero.

If we change R by § R than the Riemann-Roch expression for Ox changes
by

2K
fo(f—e=aw - SR(2H))

and for O(—1) (up to exp (3 ¢} (E))) by

2K . e~

A (m SR(2R'))

In the second expression the series before 6 R is even. We thus can choose
the odd part §R°% uniquely such that the error vanishes for O(—1). So
now assume that 6 R is even, and try to cancel the error for Ox. Here only
the odd-part in the power-series matters, that is we have to consider

fo(h' - 6R(2R")).

Again there is a unique 6 R.

So we have shown Riemann-Roch for P'-bundles P(E), if E is globally
generated. But for a projective Y we can always achieve this by tensoring
with an ample line-bundle.

DEFORMATION TO THE NORMAL CONE

Deformation theorem.

We fix an arithmetic variety B and consider only arithmetic varieties
which are smooth over B. As usual we define for such an arithmetic variety
and a hermitian vector bundle E

Errx(E) = ch f.[E] - /X . &(E)-Ta"(E)

where R is the unique power series defined in the last section. Let1: Y — X
be an immersion. Let Err;(E) denote Errx (i, E) — Erry (E) for any vector
bundle E on Y. _

Let X denote the blow-up of X x P! in ¥ x {00}. So X — X x P' is
a birational map such that over P! —{oo} = A! it is an isomorphism and
X is an union of two smooth irreducible components X/ and X/, which
meet transversally. X/, is isomorphic to the blow-up of Y in X, while X,



80 Lecture 6

is a projective bundle over Y, as is X, = X/, N X/, which is also the
exceptional divisor in X/. We have a map Y =Y x F! — X which lifts
the canonical embedding Y x P* — X x P! such that Y is disjoint from
X//

Assume now that Y has codlmenswn one in X. Let Iy denote the
ideal of Y C X. We put on Iy a metric that Iy = 03 (isometric) in a
neighborhood U of X!/ which does not meet Y. Then we only consider the
formal difference [E] — [Iy - E), E a vector bundle on X.

We shall choose E = E(X!), where E is (the pullback to X from) a
hermitian bundle on X such that E and Iy - E are acylic relative B. We
denote by F~1! (respectively F°) the direct image of Iy E (respectively FE)
on B. Those are bundles which we endow with some hermitian metric.
Finally F* denotes the comples F~! <+ F° on B, and E* = [E~! — E°)
the corresponding complex I - E(X,,) — E(X[,) on X. On Bx P! we have
a quasiisomorphism v: F* — f,(E*), for each t a v, = F* — f.(E*|X,),
as well as voo: F* — f.(E*|X)).

'Eheorem 6.3. Suppose Y C X is a divisor. With any Kahler-metric on
X

lim ch; = chg,
t— 00

where ch, denotes the ch -class for cone(v;) that is the regularized integral
J Tr, (Ne v)% as usual.

We claim that this implies the following approximation to Riemann-
Roch:

Theorem 6.4. The error in Riemann-Roch for 1o and i*(E) (that is the
difference of errors for (Y, E|y) and (X,i,i* E)) is the same as that for i
and i, F

Proof. On the RHS of Riemann-Roch we have classes fC’il-TdR. These
concide on Y. On X we first replace the tangent bundle Tx, resp Tx: by
the restriction of the logarithmic tangent bundle T' = Tg, .. We put on
T a metric such that outside U the isomorphism T; = Tx, is an isometry.
Then one shows that in the fiber of 0 or co we have that

G(E*)-Td" (Tx,) = h(E*)- Td (T)

Use that ch(E’) is of the form (Z,gz), where Z is a cycle supported in Y
and gz a Green’s function supported in W = X — U.



‘Arithmetic Riemann-Roch Theorem 81

In fact define a group fiy,w(X) as the quotient of cycles (Z,gz) with
Z C Y, supp(gz) C W, modulo divisors of rational functions on cycles
in Y, and forms da + 88 where o and 3 are currents with support in Y.
One checks that for any hermitian line-bundle L on X & (L) still acts on
fi;,’w (X), and two ¢1(L)‘s commute. Furthermore if we have two embed-
dings ¥ — X; and Y — X, such that there are Zariski-open neighbor-
hoods V; respectively V; of Y and an isomorphism V; = V; respecting Y,
and if W; C Vj,¢ and Wy C V; ¢ are corresponding open neighborhoods,
then naturally A;f,w,(xl) £ "i;’,w,(xl’)- Furthermore this isomorphism re-
spects the operation of &1(L)‘s, if there is an isomorphisms L;|V; = L;|V;
which is an isometry over W; = W,.

Now suppose that we have two hermitian vectorbundles F;, and E; which
are isomorphic over a Zariski-open V C Y, isometric over W C V. Let
(Z,gz) represent a cycle in AEY’W)(X). If X, (respectively X,) denotes the
complete flag-varietites of E; (respectively E3), 7131 X172 — X the pro-

1‘/12(V) etc., then we have corresponding cycles 7rI/2(Z, g9z)

in AZYI/NWI/:) (Xl/g)

Now on X,/2 ﬂ'I/z(El/g) has a complete filtration by line-bundles L;.
Thus we can let any polynomial in the ¢ (L;) operator on our cycle, and
the two results correspond. The same holds for multiplication by ch-classes.
Now suppose P(&(FE)) is a polynomial in the chern-classes of E. Then we
find an operator Q((¢i(L;)) + R on AI/Z(XI/Q), where Q is a polynomial
i£1 Chern-classes and R multiplication by a secondary class, such that in
A*(X).

jections, Vi =7

~

P(&(E12))(21,92) = 7172+ ((Q(&(Ly))) + R) - 7/5(Z, 92))

It follows that bot13 for F, and E; the left-hand sides can be obtained from
the same class in fEYI/:,Wx/:)(Xl/z)’ by first projecting to Aty (X) and
then mapping to A*(X). Thus the operations of P(& (E;/2)) on cycles with
support in (Y, W) coincide.

In the Riemann-Roch for E*® the difference in RHS’s is

ch(E')’faR(T) (0 — 00,0) = (0, ./]rl ch’'(E*) - Td'(T) - log |z|),
using that
div(z) = (0 — oo, —log|z|) = 0.

This is the limit:

1im(0,/]p ch/(E*) - Td'(T) - log | z_t )

z—1
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which is the limit of secondary classes describing the change of metrics

(0 — t) on E*|x, and T|x,. On the LHS we have &(F') + (0,c~h(class)).
The difference between 0 and oo is

(o, /P ch/(F*) - log |2]) + (0, cheo — cho).

This is the limit of secondary classe where we integrate log |;*;
gives the secondary class for base change 0 — t as before. As Riemann-
Roch is compatible with these secondary classes, we derive the assertion.
We also have to use some standard arguments relating the ch(vt) to the
previous ch-classes. This is done by P'-deformations.

We thus can replace o by 1, in the discussion of Riemann-Roch.

Situations.
Let us first deform any ¥ — X to its normal cone ]Py (Oy @ Iy /1}).
Let X= blow-up of X x P! in Y x 00, Xo = fiber of X at 0 = X x 0,
Xo = fiber of X at o0 = X/, U X", X(')'o = blow-upof X inY, X/ =
Py(Oy @Iy /I2), Y =Y xP' C X, Yoo =Y C X/.
If F is any sheaf on Y, F = pri(F) on Y, then F/Xo and F/X,
respresent the same element in K-theory, so the compositions
Joo

Y:-:'»Xf)o;»)‘z

io Jo

Y‘—'Xo‘—bi

induce the same map in K theory , or on cycles.

Thus the Riemann-Roch holds for (F and i,) if it holds for (F and is),
(fc0,+(F) and joo) and (%,,+(F) and j,). Note that for the second and third
immersion the bundle is induced from f‘, so from the big scheme. The same
is true in the first case, as i, is the zero-section in a projective bundle. To
treat general immersions it thus suffices to show that Riemann- Roch holds
for immersions i: Y < X which are either of codimersion one, or such that
X =Py (Oy @ N) is a projectivised affine bundle, and 7 the zero-section.
Also it suffices to treat bundles F = i*(E) which are pullbacks from X. As
usual we may assume that F is acyclic relative B. Finally for the immersion
i: Y < X = Py (Oy @ N) the Riemann-Roch holds for 1 if it holds for the
projection 7: X — Y, as mo: = id. It now follows from Theorem 6.4 that
the Riemann-Roch holds for immersions of codimension one, as it holds for
P'-bundles by Theorem 6.2.

Next we treat the case of a P"-bundle X = Pg(E). We use induction
over the rank of E, starting with rank 2. The map Flag(E) — X thus
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already satisfies Riemann-Roch, and by the Bott trick Riemann-Roch holds
for O(—1) on Flag(F) and thus also on X: Factor Flag(E) — B through a
P'-Bundle Flag(E) — X’ such that O(—1) has trivial direct image.

Finally by the splitting principle we may assume that E contains a line-
bundle L so thatis: Y = P(E/L) — X is a closed immersion of codimersion
one. By induction the Riemann-Roch holds for i, K(Y), which together
with O(—1) generates K(X) over K(B).

This settles the case for projective bundles and thus for arbitrary closed
immersions. Finally any projective morphism can be factored into such, so
we are done and Theorem 6.1 has been shown.

GENERALIZATIONS AND COMMENTS

First we remark that we can generalize the Riemann-Roch slightly: Sup-
pose f: X — Y is a flat morphism of regular projective schemes (over Z)
such that fg is smooth. As before we can define a direct image f.: K(X) —
K(Y') such that for an E on X which is acylic on the fibres, f,([E]) is given
by [f.(E)] + ch-class of (cone f,(E) — f.(E®A® Qg(’;y)) Furthermore we

have a relative Todd-class 'f&x,y, defined as follows:

Factor f as f = goi, where i: X < P = P" xY is a closed immersion, and
g is the projection from P to Y. If N = (Ix;I%)* denotes the normal bun-
dle to i, we have a map :* Tp;y — N which over Q is surjective, with kernel
Tx;y. Now endow Tp;y and N with hermitian metrics, and define Tdx,y
is the quotient 'f:i(i‘ Tey)/ 'i‘Ti(N), modified by the secondary Todd-class
associated to 0 — Tx;y — i*Tp;y — N — O (over X¢). One checks that
this is independent of all choices.

Theorem 6.5. Let z ¢ K(X). Then in A(Y) we have
- ~ —~R
ch (f.(:c)) = f.(ch(:c) 'de/y)

Proof. As before the assertion holds up to a class in H(Y). Furthermore we
may use the same deformation arguments as before to reduce to the case
of smooth projective bundles, for which the result holds already.

We also want to comment on the case where Y = Spec(Ok) is the ring
of integers of a numberfield K. Then A}(Y) = Pic(Ok) = divisor-class
group of K, and the kernel of A;(Y) — A'(Y) is the quotient of R*+
(s +t = number of infinite valuations of K) by the logarithms of units of
Oy . Furthermore K(Y') is generated by projective Ox-modules P which
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have hermitian metrics at the infinite places. These define volume forms on
A(P) = det(P). If P is an acylic complex of such modules its determinant
A(P) = @A(P™)*! is canonically isomorphic to Ok. This isomorphism
has norm exp(A,) at each infinite place v of K, and the secondary class
CTI(E‘) is given by the ),. The normation is that if E*: E° %+ E! is an
isomorphism such that A(a) has norms exp(},), then ch(E°) — ch(E?) is
represented by the A,.

Now suppose we have a bundle E on X such that F is acyclic on the
fibres of f, and let F = f,E by represented by P = I'( X, E). Endow P
with the metric given by L?-integration. Then the direct image f.([E]) is
represented by the sum of [P] and the ch-class of the cone of the inclusion
a: Pp — I‘(X(C, E® S(X)), which in turn is half the regularized integral

o o]
—%Of tr, (N e t2)4t,

As complex of Hilbert-spaces cone(a) splits into the orthogonal direct
sum of the isomorphism P¢ — harmonic 0-forms, and the isomorphism
give by dker(A)t = Im(3), where the left is a subspace of I'(X,E ®
Q%77!) and the right of T'(X, E® Q%7), for 1 < ¢ < dim(X¢). Under these

isomorphisms the A-operators correspond. If {A;.|n = 1,2,...} denotes
the eigenvalues of A on these spaces (¢ = 1,2,...), then the zeta-function

17 dt
— N —ta) 8
()= 57553 [ e
0
is equal to 1 —1)¢ - A7%, so formally its derivative at 0 is {’(0) =
2q

q k]
log ([T 24477"").
aQn

As /\q%’n are the norms of 8 on the various eigenspaces, the right-hand
side is also called the logarithm of the determinant of the d-operator.

A similar statement even holds if F is not acylic:
Over the complex numbers the cohomology H* (X, E) ® C is isomorphic to
the space of A-harmonic forms H* C I‘(X, E® /\'Qg(’l). If we represent
H*(X,E) by a finite complex P* of projective Og-modules, and endow
each P™ with a hermitian metric, then A(P¢) = A(H*). The norms at
the infinite places of this carlonical isomorphism give a secondary class.
Another one is obtained as ch of the cone of H* — I‘(X, E® /\‘Qgr’l),
and is equal to the determinant of § on H*%. We claim that f,([E]) is
represented by the alternating sum ) (—1)"[P"], plus the sum of these two
secondary classes:
By definition f.([E]) is computed by resolving E by acylic bundles, i.e. we
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have a quasi-isomorphism a: E — E* with E™ acylic. Let F*® denote the
complex I'(X, E*) with the L?-norm, and consider the sequence of maps

H - T(X,E@ A" Q%) 25 T(X, B* @ A°Q%Y) & F°

These exists a map of complexes H* LR F* such that jof is homotopic to
aoi. Also one checks that ch (cone (x )) is equal to [ ch (cone( )) Tdx
Xc

(deform a to a split sequence) and thus f. ([E]) is represented by [F*] +
ch (cone(a*)). Also as before one checks that ch (cone(a*)) = ch (cone(a*o

i) — ch (cone(3)), so this can be rewritten as

[F*] + ch (cone(j)) + ch (cone(s)) — ch (cone(a” 0 1))

Also we shall check below that ch is invariant under homotopies. So we
may replace a* ot by j o3, and obtain with the same argument that

f([E) =[F*]+ ch (cone(i)) ~ ch (cone(B)).

That is we represent H*(X, E) by the complex F°*. Thus over C the coho-
mology H*(F¢) is isomorphic to H*, via 8. Combine this with the inclusion
H* — I'(X¢, S(X)). Then f,([E]) is represented by [F*] and the ch-class
of H*(FQ) = H* — T'(X¢, S(X)).

We still have to check the invariance of ch under homotopy. This holds
for finite dimensional complexes, as chis given by the norm of the induced
map on cohomology. If we have two homotopic maps o, 3: K — L*® with
L*® of infinite dimension, but K* finite dimensional, we construct a complex
M*® with M™ = K"®K*@® K™ !, two homotopic maps o', 3': K* — M*,
and 9: M* — L*® with a = Joa’, 8 = 90’. By using the additivity of ch
we may replace (a,3) by (a’,8’), and thus we are done.

Finally suppose that X — Y = Spec(Ok) is a semistable curve of genus
g > 1. Then X has a canonical hermitian metric, the Arakelov-metric.
Furthermore for hermitian bundles L on X, whose curvature satisfies a cer-
tain condition, we have previously defined a volume-form on A(H‘(X@, L)),
unique up to a common constant factor independent of L. (see [F])

If L has degree g — 1 the curvature of the metric on A(L) (which is a line-
bundle on the Jacobian J(X)) has been computed. It coincides with the
curvature of the metric defined via the determinant of 8. (By our methods
this computation is easy. One obtains the direct image (under X x J — J)
of ch’(L) - Tdy). Thus these two metrics coincide up to a factor. For
line-bundles of arbitrary degree one can use that both volumes satisfy a
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Riemann-Roch formula. From this and some approximation argument one
derives that the volumes coincide in general.

ESsTIMATES: PROOF OF THEOREM 6.3

We now supply the necessary analytic details for the proof of Theorem

6.3. Let us recall the situation:
We have a smooth projective C-scheme B as base, a smooth projective
B-scheme X and a smooth relative divisor Y C X. In general f always
denotes the maps into B (so f: X — B and f: Y — B). Furthermore on
X we have a hermitian vectorbundle E such that F and Iy - F are acylic
relative B. X denotes the blow-up of X x P! in ¥ x {oo}. For ¢ # oo the
fibre X; of X over te P! is isomorphic to X, while Xoo = X, UX[, where
X! =X,X!_ NnX"” =Y, and X!_ isa P'-bundle over Y. Also Y = Y x P!
injects into X, and does not meet X.

We let E* denote the complex I - E(X.)) — E(X[)) of bundles on
X. We endow E(X!) and Iy with hermitian metrics such that in an
open neightborhood U of X, the metric of Iy coincides with that on Oz.
This also gives a metric on Iy - E(X,,). Furthermore we denote by F*
the complex f,(Iy - E) — f.(E) on B. Then on B x P! we have an
augmentation v: F* — f,(E*) — f.(E* Q@ A* QX/B) which vanishes on
X! . Also voo: FS — fu(E* /X, ) denotes the augmentation at infinity.

We intend to show that tl_lglo ch (cone(vs)) = ch (cone(veo)). Here the
singularities around 8X, may cause difficulties. Therefore we define a
second family of bundles

E* = (E(Xy,) = E(Xg)), F** = ((0) - (0))

Obviously the conclusion of Theorem 6.3 holds for E*'* as everyting is split
and all ch-classes vanish. Moreover on U E® and E** are isomorphic, and
the augmentation v has small norm. We thus may expect that the smgu-
larities around 8X o, will cancel out if we consider the difference ch, — ch,
The metrics on X; will tend to become singular near dX,,. To remedy
this we introduce a metric on Q%/Bxp (dlogoo) and its dual, the logarith-
mic relative tangent-bundle. We do this by changing the original Kahler-
metric in an open neighborhood of 8X, contained in U. This induces her-
mitian metrics on all X, as well as X/ — 83X, and X/, —8X o, which how-
ever may not be Kahler. Locally X is isomorphic to the product of Y —9X
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with the product of two unit disks {|z| < 1, |w| < 1}, and the projection to
P! is given by 1 = zw. If we use log(z) and log(w) instead, identifying the
punctured unit disc via exp(2xir) with H/Z(H = upper half-plane), then
the metric on X; looks like a small perturbation of a translation-invariant
metric on Y x C, and similar for X!, — 80X and X! — 8X,,. We thus
find a good finite system of coordinate charts, uniform for each X;, and can
define Sobolev-norms with them: For a positive integer s > 0 H, is the
completion of C§° under square-integration of all derivatives up to order s,
and H_, its dual. As the metric is complete. (8Xo has infinite distance
from any point in X, — X ) one checks as before that C§° is also dense
in H_,, that there is a uniform Garding inequality for the d-Laplacian A,
and that A extends to a self adjoint operator whose domain of definition
is the image of Hz — Hy. In short we have smoothed out all singularities
as t — oo. However the price we pay for this is that the volume of X,
approaches infinity as ¢ — oo, so that estimates in sup-norm do not imply
L%-estimates as easily as before. Especially an integral operator may not
be trace-class anymore.

Next we address the fact that our metric is no more Kahler:

The Kahler-condition has been used to compute the singular terms in var-
ious asymptotic expansions. In our case the X; are only non-Kahler in
places where the complex is split, so that all the asymptotics vanish there
anyway.

In more detail one first derives that there is a super- Laplacian Bu, limit
of ordinary Laplacians as we blow up the metric on B. The only new feature
is that some terms in it may have Grassmann-degree > 2 and thus scale
with negative powers of u.

Then we define the ch-class via the regularized integral

oo ~ -~

J tr, (N-exp(Au)) %. Under an infinitesimal change of metric its derivative
0

is the Schwartz-limit

lirr(l) tr, (Q -exp(—Ay )), Q the hermitian operator describing the change. If
u—

Q has support in U this vanishes because of the splitting, except for terms
related to the augmentation v. If we replace v by ;ﬁ -v, with a parameter p
between 0 and 1, the derivation y- 8% of this class is equal to the Schwartz-
limit (}imo' of the derivative (described by Q) of tr, (N - exp(—&u)), where
Nr denotes the number-operator which is identically 1 on F'* and vanishes
on E*. Integrating we obtain that the p.a%-derivative of the effect of change
of metric is given by the difference in Schwartz-limits

1li_r‘r}” tr, (Nr - exp(—Ay)),
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taken once for the original Kahler-metric and once for the logarithmic non-
Kahler-metric. But for the original metric this term does not depend on
p and is equal to the chern-character of F*, while for the new metric the
term converges nicely as ¢t — 0o. (See Lemma 6.8 below) This also holds if
we integrate against du/u. So all in all the change in metrics contributes
a correction-term which converges for t — oo to the corresponding term at
infinity, and thus does not affect the conclusion of the theorem.

Finally we have to consider ch-classes on X/ and X,. Let us concen-
trate on X/, as on the other component everything will cancel out anyway
at the end.

As before A defines a heat-kernel exp(—uA) on X, —8X, and similar
for the super-analogues. However because of the infinite volume this kernel
i8 no more of trace-class. What we shall do is to identify E* and E**
on U N X[, and consider the difference of heat-kernels exp(—uA) and
exp(—uA*). We shall see that it is in fact integrable, and so we can still

define the difference C-iloo — J)Lo, although the individual terms do not make
sense. 5 5 _ .

With this notation we shall show that tl_i‘rg(cht —ch:) = che —chy,.
It remains to relate the right-hand side to what it was claimed to be in
Theorem 6.3. For this we repeat the same procedure with the embedding
Y «— X/ and the original Kahler-metric on X/ . For this deformation all
fibres X, are isomorphic to X, and one sees that Theorem 6.3 holds for
it. But our construction gives the same (logarithmic) cheo — c-B;, as for the
deformation associated to Y «<» X, so that finally adding up all the pieces
the assertion of Theorem 6.3 has been shown.

Now we need some technical results. We formulate them for E°®, but they
also hold for E**. In the following we need operators on F* @ f, (E' ®
/\‘Qg('l). We usually ignore the F®-part. In fact we usually distinguish
between local behavior near X and away from it. Then Y behaves as if it
were in the second category. For example cutoffs near 8.X operate trivially
onY. Let D = 3+ 8* + v+ v* denote the Dirac-operator, and A = D? its
square.

Consider Xo, = X, U XL -8Xo = X, N X! has real codimension 2
in Xeo.

In the degeneration process the covariant derivatives V behave well, as
V = hermitian connection. Similar for volume forms. We need

Lemma 6.6. If ¢, D¢, € L2NC®(X., —8X.), ¥ € C®(X.,) implies that

[ <¢,D¢>:/ <Dév>.
X oo

oo

Proof. Elementary using cutoffs.
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As a corollary, using the above formula we get :

Lemma 6.7. Assume ¢ € C*(X. —8X. ), $, D and A¢ are in L2. Then
A¢ represents the distribution A¢ on X/ .

Of course these assertions also hold for X/ .

Lemma 6.8. Let K,(u,z,y) denote the heat kernel e %2 on X,. We claim
that uniform on any compactum of ]0,00[x(Xoo — 80X )?, the Ki(z,y)
converge to the heat kernel Ko (z,y) on X,  II X .

Proof. By standard arguments, for any sequence of ¢t,, — oo we can find a
subsequence such that K, (u,z,y) converge in the C*-topology, uniformly
on compacta in ]0,00[x (X — 80X )2 We have to show that this limit
K (u) is necessarily Koo (u).

First by passing to lim;_, we have (as C*°-functions on X, — 0X )

(% + A)K(u) = 0.
As
1K (u)() = ¢lizs < ullAg]lZa
(1 — e=>* < Xufor all ) for ¢ € C(X,,), it follows that

lirrz) K(u)¢ = ¢
for ¢ € C°(Xoo — X ). Also for such a ¢ we have that
|IDK(u)4||> and [|AK (u)d||L

are finite (pass to the limit) so by 6.7

(A+ %)K(u) =0

as distributions. This implies that K (u)(¢) = e “2(¢).

Proposition 6.9.

There exists a positive A > 0 such that uniformly in each fibre f~1(b), bin B,
and for each t € P!, the Laplacian on cone(v,) has all eigenvalues > ).
The same is true for cone(v ).

Proof. Let us start with the assertion about the v;. There can only be a
problem as ¢ — 0o. So if the assertion is wrong we can find a sequence ¢, —
oo, and eigenfunctions f, on X, = X, _ with eigenvalues A, — 0. Suppose
||fn]l = 1. Then by Sobolev estimates the f,, are uniformly bounded in the
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C®-topology, and we can choose a subsequence which converges on each
compactum in X - 80X, and on B. The limit must be annihilated by Aj.
We claim that it must vanish identically. If this holds true then the f, must
concentrate their mass around X/, where E* is metrically split. Cutting
them off we can find a new sequence f, with ||f,|| = 1, such that the f, are
supported in UN X,,, and ||A5f,|| < 1. But as E* is split in U, there Aj is
the sum of 1 and a positive operator. Thus < Azfn, fn >>< fo, fn >=1,
a contradiction. It now suffices to treat X/ . Suppose again that we have
a sequence of eigenfunctions f, with ||fa|| = 1, such that Azf, = An - fa,
and A, — 0. Cutting off we see as before that the square-integrals of f,
over U N X,, converge to zero. Passing to a subsequence we may assume
that the f, converge to an f with A5(f) = 0, ||f|| = 1, and f vanishes
identically on U. Then in the original Kahler-metric on X/  f defines also
a harmonic form, so there cone(vo,) has non-trivial cohomology. However
this contradicts our choice of F*.

Theorem 6.10. On compacta in Xo, — 80X we furthermore have uni-
formly

(1) for w — 0 the asymptotic expansion of K.(u,z,y) converges to
Ko (u, z,y) uniformly.
(2) for u — oo Ki(u,z,y) decays uniformly exponentially.

Proof. (1) follows from the local nature of the expansion. (2) follows as
the Sobolov-norms decay exponentially, because all eigenvalues of A are
>A>0.

In short we have complete control on X — 8X, uniform on any com-
pactum.

Using perturbatlon expansions these assertions also hold for the super-
connection V2 as well as operators V2 +a- N a a small parameter. More-
over the result is C* in a. However for small u we have to be careful as V;‘:
and N may contain Grassmann-terms which scale with negative powers of
u as u — 0. One still derives estimates in the sense of asymptotic expan-

-1
sions: A function f(u) = Y a;u'+ g(u) (9(u) regular at u = 0) is small
t=-n
in this sense if all a; as well as g is small. Slightly stronger in all cases of
interest for us it will be true that u™ - f(u) as well as all its u-derivatives are
small. To prove these estimates one uses the usual technique of blowing-up
the metric on B and comparing to the tangent-space.

It remains to consider what happens in the open neighborhood U of X7, .
There we can identify the two complexes E® and E**. Then the Laplacian
A on E* is equal to the sum of a local operator A* which coincides with
the Laplacian for E**, and an integral operator A, which comes from the
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augmentation v. The latter is determined by global sections of F*. Fur-
thermore it is of trace-class norm O(¢) if we restrict to an e-neighborhood
of X!/, in the original metric. This also holds for superconnections if in-
terpreted accordingly: Here the difference 6,2‘ - 6,“2 is a sum of u- (an
integral operator of Grassmann-degree zero) and an integral operator of
Grassmann-degree > 1. The first term is as before, while the second one
is made up from covariant derivatives (in B-direction) of elements of F°.
These vanish on X, (because we use logarithmic metrics), and thus again
the operator has trace-class norm O(e).

Now we come to the proof of Theorem 6.3. Let ¢, denote a cutoff-
function with support in an 2e-neighborhood of X/, which is = 1 at dis-
tance < € from X ,. Also ¢, should have support in U and the C® norm
of @¢ (in the logarithmic norm) should be uniformly bounded. As usual
this also should mean that ¢, acts as zero on F°*. Then as on U we can
identify E® and E**, it makes sense to consider

Li(u) = ¢e(Ki(u) - K7 (u))pes
as an operator on f, (E'" ® /\‘Qg("l/B). Then

(A + 50) Li(w) = A, (Ku(u) - K; (v))
~ pu(B Ki(w) - A K (w)p,
= [A%, ) vz (Ki(u) — K (u))p
— @ Agt Ky(u)pe

where @ A, has trace-class norm 0(e).
As lin}) L,(u) = 0, we obtain
u—

Li(u) =u / K; (au)[A*, p)pze(Ki(bu) — K; (bu)) o, da

a+b=1

—u / K; (au) oAy K, (bu) ¢ da
a+b=1

The second term is of trace-class norm O(e ue™**) uniformly in ¢ for u
big. For small u it is O(€) in the asymptotic sense, that is all terms in the
sympototic expansion will be of trace-class norm O(e). For the first integral
we apply the same procedure from the right, i.e. apply (A* + 5‘%) from the

other side, to obtain
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Lt(u) =

[ RIS, pdon (K(bu) — K () adpe 7K (cu)} dads
a+b+ec=1
+ O(eu?e™ %)
We are interested in tr, (IV Lt(u)), which now turns out to be

tr, (ﬁ . L,(u)) =

u? / tr, (K; (cu)N K} (au))[A", pelpae(Ki(bu) —K; (bu)) p2e[pe, A])dadb
a+b+c=1
+ O(u?ee™

“)
e—auA +aﬁ{ ‘1 ‘pe]¢2e(Kt(bu) - Kt‘(bu’))‘pl’f[pn A‘])da

= —u tr,(am"=0

+ O(u?ee™ )

This also holds for superconnections (pass to the limit), where a u A* has
to be replaced by cﬁ;f‘, etc. Note that the trace is now an integral over
supp(dype)?. Thus for fixed € we are in a compact set of X - 08X oo, SO
everything decays nicely for u — oo, has good asymptotic expansions, etc.
We may thus form the regularized integral

du

/O?trs (N Ly(u))— ”

and it follows that up to a term O(e) this converges for t — oo to the
correspondmg mtegral at co. Moreover these integrals are the contribu-
tion to ch, — ch which comes from integrating the appropriate kernel over
supp(ge). For the rest we have convergance as before, so finally

tlim ch, — c~h: = che — ch

oo *



LECTURE 7. THE THEOREM OF BISMUT-VASSEROT

Suppose X is a projective complex algebraic manifold, L an ample line-
bundle on X, and F a hermitian vectorbundle. Then we know that for big
g E ® L®7 has only cohomology in degree zero. Endow I'(X, E ® L®?) with
its L2-metric. If everything is defined over the integers of a numberfield
we obtain a lattice of integral points in it, and for arithmetic applications
one often needs to know its covolume. This is computed by the arithmetric
Riemann-Roch theorem, up to the ch-class of the cone of v: I'NX,EQ®
L®?) — 1 -complex, which in turn is the regularized integral

c’il(vq) = -

N =

oo
/tr, (Nexp(—qu))dT:f.
o

Here N is the number-operator on the £ -complex. In [BV] Bismut and
Vasserot give bounds for this. The main strategy is as follows:

Split the integral in two parts, one where qu is bounded and the other where
qu approaches oo. For the first part we obtain asymptotic expansions,
uniform in q. In fact for this we need no ampleness. For the second we
have to use that the eigenvalues of A, are sufficiently positive, so that it
decays fast enough. Although this is not necessary we assume for simplicity
that X is Kahler. First we treat small times:

Choose a point z € X. We make a local computation around z, but as usual
everything will be uniform and C* in z. Choose holomorphic coordinates
Z1,...,2n around z(n = dimc(X)) such that the metric is given by a
Kahler- potential

n
px = z |z;|% + (order > 4)
j=1

Also choose an ON-frame for FE near z. Furthermore we can find a local
holomorphic generator f of L for which

lOg”f“z = ‘Zajkzjzk + (order > 3)
7.k

The a;; define a hermitian endomorphism N(L) of T;(’g, independent of
the coordinates. Also the curvature R(L) of L at z is equal to



94 Lecture 7

R(L) = Eajkdzj AdzZ; + (order > 1)
ik

We can choose the z; in such a way that N(L) is diagonal, i.e.

R(L)(z) = Y Ajdz; A dz;.
j
This simplifies the linear algebra below.
Now denote by K,(u,z,y): (volume form) the heat-kernel e

Theorem 7.1.

a) (2ru)"q " K,(q 'u,z,z) = Ly(u,z) € End (E ® S(X))(z) is C*®
for
u € [0,00),z € X, and has a limit L, (u,z) as ¢ — oo

b) On any compactum, Ly(u,z) — Leo(u,z) is O(q™3) in the C™-
topology (in the asymptotic sense as u — 0)

¢) Loo(u,z) = det (T_“Tl_zs%)e“"v([') where N (L) is the derivation
on A‘Qg{'1 which sends dz; to A; - dz;

d) tr, (N Loo(u,z)) = det(uN(L)) - tr (y—2wry) - Tk(E)

Proof: We have already trivialized the bundles near . In these trivializa-
tions the Christoffel-symbols I'(X) and I‘(L) vanish at the origin. Now we
scale the coordinates by a factor (ug=!)3. Then all the curvature terms get
a factor ug~?, so only the curvature of L®’ survives in the limit ¢ — oo.
That is by the Lichnerowicz-formula in the new coordinates the Laplacian
is given by (note that A =  D?)

—-uld,

o=
N

-1 _ v ) 2 a -1
2ug™ Ay = —Xj:(aa -3 Xk: Rjr(L)zi)’ + wR(L)* + O((ug™")
So by the usual perturbation theory of lecture 3 we obtain a) and b), with
the limit determined by the limiting Laplacian above, without the error
term. There the leading term is give by Getzler’s computation [Ge| as

uld; u
I sty e (= 5 DMl A dz))?)
J

: 1—e
j
But 37 Aj(dz; Adz;)* = —tr (N(L)) +2- N(L), and we derive c).

j
For d) we need to do a linear algebra computation:
A* Qg{lz has a basis dz/, I C {1,...,n} any subset. On this basis N acts

as |I|, and N(L) as Y A;. Thus we need to compute
Jjer
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Z( DI 1) exp(~u ) 0 ))

jel

= ditzz-.l H (1 - texp(—u./\j))

H (1 — exp(—u};)) - Z l__—%(l—?rs(————u:j‘;z),

J

which gives the desired result.

Large times.

Next we consider what happens for ug~? big. Let u, denote the infimum
of the eigenvalues of g~*A, on forms of degree > 1. Hq is positive for big
g, as then the complex is acyclic in positive degrees.

Lemma 7.2.

a) Assume p € R is less than the eigenvalues A\; of N(L)(z), for any
z € X. Then for q big enough p, > p.
b) In any case there exists a constant c¢ such that for big q p, >

exp(—c-q)

Proof: Assertion a) holds for the limiting Laplacian
_( Z (3 ——ZR,k(sz )* + R(L)%),

since it respects the basis dz’, is > 0 on scalars (=0-forms), and its action

on dz! differs from that on scalars by the positive constant 5 A; > pu, if
jel

I # 0. (The curvature term R(L)® itself is not positive, but the sum with

the first term is.) It follows by approximation that there is a neighborhood

U, of z such that for any section e of E ® L®! ® S(X , of positive degree

and with support in U, we have

<Agje,e>>qu<ee>

or equivalently

13 +3")ell > v/ |lel
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Choose finitely many C*®-functions g; such that each ¢; has support in
some U, and such that 3" ¢? = 1. Then [8 + 8 , ;] is bounded in L,
T

independently of g. Thus if e is a global section of E ® L®? ® S(X), which
is an eigenvector for 8 + 8" with eigenvalue £, then

£ <ee>=) <pi(3+0 )e,p:;(0+3 )e>
= Z < (@+3 )pie, (343 )pie > +O(VE |lell?)
> ug- Z < pie, pie > +O(VE |le]|?)
= uq - |lell* + O(VE|lell?,

0 € > g + O(E).
Making u a little bit smaller and choosing ¢ big gives the result.
For b) we observe (following [BV]) that the minimal eigenvalue gqu, of

A, in positive degrees occurs in its restriction to Im(8). Now we easily
obtain the following description of pu,:

g is the biggest number such that for any h € Im(8), there exists a g
with ||g||? < (guqe)~" - ||A||* and 8g = h: For one direction decompose into
eigenspaces, and for the other decompose g into Ker(8) ® Ker(8)*.

Now for any two metrics on L there exists a constant ¢ > 0 such that the
metrics on E ® L®? ® S(X) are mutually bounded by exp($ q). From the
above description it follows that the ratio of the minimal q eigenvalue gu,
is bounded by exp(c - ¢). By a) it is bounded below if we choose a metric
with positive curvature (which exists as L is ample), so in general we have
a lower bound exp(—c-g).

Application to analytic torsion.
Finally want to compute the regularized integral

(e

~ 1 du
hy, = —= [ tr,(Ne “89) —,
Gy = =3 [tn(Wean S
0
We fix a big uo, and split into u < uo/q and u > ue/q. For the first integral
we would like to introduce the new variable qu. However as we have a
regularized integral one checks that for such a substitution
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[ran = [ 1% - 1og(a) imy s

where lim’ denotes the Schwartz-limit.

Thus
e d
- t R N —ul, _1_1.'
2 / m ) u
o

is equal to the X-integral of

uo/q

_ % 0/ (571_“)”“, (N Ly(qu, z)) %;—‘
= _-;- (217()" (Ztr, (u™™N L,(u,m))f? - log(q)&i_r.%' try (™™ N Lq(u,:c))>

Up to an error of size o(¢™) we may replace L, by Lo,. It already follows
that the total contribution is O(q™ - log(q)).

If N(L) is positive we can do better. We want to compute everything
modulo O(¢™). Then the integral disappears. Thus we have to consider

1/¢\" . 1
Locally the trace is ZJ: 1—:“‘1 = XJ: uAJ+§_°lx,+...’ which has constant term

%. Thus we obtain

%det (%) q" - log(q™) - rk(F)

By Riemann-Roch the X-integral of ¢" - det (%(,Q) -rk(E) is
dimT (X, E® L®) + O(¢q™"1).
Finally there is the integral

00

(o]
J e S = [unweion S

N =

u 2

uo/q Uo
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At u = up K(%,2,z) is uniformly O(¢").
Furthermore separately in each degree

2 (Ko(5)) < —hgtr (Ko(3)).

It follows that the integrand is uniformly O(g") - e~#«(¥~%0) g0 the in-
tegral is O(q™ - |log puq|). For positive N(L) this is O(¢™), and in general
O(g™*!). Thus

Theorem 7.3.
a) ch(y,) = O(¢"*")
b) If N(L) is positive
T 1 . n N(I’) n
ch(v,) = 29 -log(q™)rk(E) [ det 5 dz + O(q")
Ly
X

= %log(q")-dimF(X,E®L®7) + O(q™)
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