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Preface

We are interested in mathematical models of input systems, described by

continuous-time, finite dimensional ordinary differential equations

&= f(t,xz,u) (1)
where t > 0, x = (z1,...,2,) € R”™ represents the state variables, v =
(u1,...,um) € R™ represents the input variables and f = (f1,...,fn) :
[0,400) x R™ x R™ — R™. Together with (1), we will often consider the

unforced associated system

&= f(t,x,0) . (2)

Basically, (2) accounts for the “internal” behavior of the system. More
precisely, (2) describes the natural dynamics of (1) when no energy is supplied
through the input channels. The analysis of the “external” behavior is rather
concerned with the effect of the inputs (disturbances or exogenous signals) on
the evolution of the state response of (1).

Physical systems are usually expected to exhibit a “stable” behavior. A
primary aim of this book is to survey some possible mathematical definitions
of internal and external stability in a nonlinear context and to discuss their
characterizations in the framework of the Liapunov functions method.

We will also consider the problem of achieving a more desirable stability
behavior (both from the internal and the external point of view) by means of
properly designed feedback laws. To this end, it is convenient to think of the
input as a sum u = ue + u.. The term u, represents external forces, while
u. is actually available for control action. Roughly speaking, (1) is said to
be “stabilizable” if there exists a map u. = k(t,z) such that the closed loop

system
T = f(t,x, k(t,x) + ue) (3)

exhibits improved (internal and/or external) stability performances.
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Intimate relationships among all these aspects of systems analysis emerge
with some evidences from classical linear systems theory. In particular, as
we shall see at the beginning of Chapter 2, the external behavior of a linear
system is strongly related to its internal structure. On the contrary, dealing
with nonlinear systems these connections become weaker and need a more
delicate treatment.

We shall see in particular that the approach to stability and stabilizabil-
ity of nonlinear systems rests much more heavily on the method of Liapunov
functions. Thus, we are led to emphasize the interest in a variety of theorems
which state, under minimal assumptions, the existence of Liapunov functions
with suitable properties. These theorems are usually called “converse Liapunov
theorems”. A secondary aim of this book is to illustrate the state of the art on

this subject, and to present some recent developments.

We have not yet specified what kind of assumptions should be made about
the map f which appears at the right hand side of (1) and about the admissible
inputs.

The class of admissible inputs should be so large to include representations
of all signals commonly used in engineering applications. To this purpose, it
is well known that in certain circumstances, a discontinuous function often is
more suited than a continuous one. Thus, throughout these notes, we shall

adopt the following agreement:

(I) the class of admissible inputs is constituted by all measurable, essentially
bounded functions w : [0, +00) — R™.

To establish the assumptions about f is a more delicate task. In a classi-
cal “smooth” setting, it seems natural to ask that f is time invariant, namely
f(t,x,u) = f(z,u), and at least continuous as a function of z, u, though addi-
tional regularity could be required for certain purposes'. This is actually the
point of view we intend to adopt at the beginning but, as long as we proceed in
our exposition, it will become clear that the smooth setting is too conservative
for certain developments. This occurs in particular when we seek Liapunov
functions of (Liapunov or Lagrange) stable systems or when we aim to de-

sign internally asymptotically stabilizing feedback laws. Indeed, the solution of

1Recent results of the so-called geometric control theory apply to systems whose right
hand side can be represented as a family of C° or real analytic vector fields (see [79], [80],
[155]).
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these problems cannot be found in general within a pre-assigned class of time
invariant smooth functions, unless severe restrictions are made on the system
under consideration. We will be so led to introduce in our treatment nondif-
ferentiable functions and differential equations with discontinuous right hand
side.

We remark that differential equations with discontinuous right hand side
arise in many engineering and physical applications. Historically, one of the
main motivation was the study of the motion of a body with one degree of
freedom subject to an elastic force, in presence of both viscous and dry friction
([58], [54]). This is modelled by the second order equation

T4+ kr+bt+asgni =0

or, equivalently, by the two dimensional system

{52 (@)

y=—kxr—by—asgny

(here, k,b and a are positive constants). For y # 0, the motion is correctly
represented by the solutions of the system. But if the body reaches a position
(7,0) with —% < @ < ¢, our intuition suggests that the elastic force is too
weak. It cannot overcome the dry friction, and the body remains at rest. This
intuition is easily confirmed by physical observation, but it is not reflected by
system (4), at least as far as the solutions are intended in the usual sense.
Differential equations with discontinuous right hand side play an important
role also in wvariable structure control methodologies. Consider, for simplicity,

a time-invariant system

= f(z,u) .

In variable structure control theory, the goal is to track a path lying on
a hypersurface ¥ defined by an equation s(x) = 0, where s(x) is a smooth
function. To this purpose, it is often convenient to use discontinuous feedback,

say for instance

1 ifs(x)>0

u:k(x):{_l if s(z) <0 .

Clearly, the closed loop system

&= f(z,k(z))
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turns out to be discontinuous even if f(z,u) is a smooth function. The desired
motion is given by a trajectory sliding on ¥; in general, it is not a solution in
the usual sense of the closed loop system.

We finally remark that discontinuities of the velocity and sometimes also
of the state evolution are a typical feature of the so-called hybrid dynamical
systems: the book [152] provides a nice introduction on this subject, with
many practical examples (manual transmission, temperature control, electric
circuits with diodes, and many others).

These remarks point out that the treatment of differential equations with
discontinuous right hand side requires a generalization of the classical notion
of solution.

To be prepared for this extension, in Chapter 1 we recall some preliminary
material about existence of solutions for ordinary differential equations and
differential inclusions.

The main subject will be addressed starting from Chapter 2. As already
mentioned, in Chapter 2 we focus more precisely on the case where the right
hand side of (1) is time invariant and continuous with respect to both x, u. The
reason why we prefer to begin with such a restricted class of systems is twofold.
First, the more general approach could be felt at that point unmotivated and
too abstract. Second, the main notions, methods and achievements available in
the literature about stability and stabilizability theory of control systems have
been mostly obtained, in the last few years, just for this class of systems. Of
course, the choice of proceeding from the simplest situation to the more general
one, implies also a few of complications (for instance, the need of a progressive
updating of definitions and results when we shall undertake certain extensions)
but gives a clearer perspective of problems and theoretical difficulties.

A first attempt to re-interpret our problems in a more general context is
made in Chapter 3, where we consider time varying systems. We focus in
particular on possible notions of internal stability and on their relationships.
Although we are able to give some more precise results about existence of
Liapunov functions and of stabilizing feedback, we shall see that the picture of
the situation is not yet completely satisfactory.

The goal of replacing the classical smooth setting by a more general time
dependent and “nonsmooth” one, will be fully pursued in Chapter 4, where
we finally consider systems of the general form (1), and f is allowed to be
discontinuous with respect to x. More precisely, in Chapter 4 we discuss direct
and converse theorems about stability and asymptotic stability, together with

their applications to external stabilization. We present also a new approach
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which allows us to prove in a unified manner several recent results. The proof
given here is considerably shorter and easier than other proofs available in the
original papers.

Certain additional properties of Liapunov functions will be discussed in
Chapter 5. Here, we consider again the case of systems of ordinary differential
equations, with time invariant and smooth right hand side. The topics include
existence of analytic or homogeneous Liapunov functions and their symmetries,
and relationship between Liapunov functions and decay of trajectories.

Finally, in Chapter 6 we review some tools from nonsmooth analysis which
can be useful in the investigation of nondifferentiable systems with discontinu-

ous Liapunov functions.
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Chapter 1
Differential equations

In what follows, N, Z, Q, R represent respectively the sets of natural, integer,
rational and real numbers. Sometimes, we may use also the notation RT =
[0,4+00) and N* = N\ {0}.

Let N € N*. The norm of a vector v = (vy,...,vN) € RY is denoted by
[lv]|. As is well known, for finite dimensional vector spaces all the norms are
equivalent. Actually, the choice of the norm does not matter in the first three
chapters. However, in view of the developments of Chapter 4, it is convenient

to take the sup-norm

[|v|]] = max{|v;| : 1 <i < N} .

The Hausdorff distance between nonempty, compact subsets of RV will be
denoted by h. We recall that

h(A, B) = max{sup dist (a, B), sup dist (b, A) }
acA beB

where dist (a, B) = infyep ||a — b]|.

For € RY and r > 0, the open ball of center # and radius r is denoted by

Br(z)={yeR": |ly—a| <r}.

Of course, B,.(x) denotes the closed ball. When x = 0, we shall write simply
B, instead of B,(0). We shall also use the symbol B" for the complement of a

closed ball, namely

B ={yeR": ||y|| >r} =RM\B, .
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Finally, let g : Q@ — RM where Q C RY. The function ¢ is said to be locally
Lipschitz continuous on € if for each T € () there exist positive real numbers
L, such that

', 2" € By(T) NQ = [lg(2’) — g(=")[| < Ll|2" — 2"|| .

1.1 Recall about existence results

The first natural question about a system of the form (1) concerns of course the
existence of (local) solutions corresponding to any admissible input. Through-
out this chapter we assume that u(t) is fixed, so that we can adopt the simplified
notation f(t,x) = f(t,z,u(t)). We are therefore led to consider a system of

ordinary differential equations of the form

i= f(t,z) (1.1)

where f(t,z) is defined for all € R™ and ¢ > 0. As is well known, Peano’s
Theorem states that if f(¢,2) is continuous on [0,+00) x R™, then for each
initial pair (tg,z¢) € [0,400) x R™ there exists at least one local classical
solution x(t) : I — R™ such that z(tg) = xo. Here, I is an interval of real
numbers such that ¢ty € I C [0,+00). The qualifier “classical” emphasizes that
z(t) is of class C! and

B(t) = f(t,z(t)) Vtel.

The continuity assumption required by Peano’s Theorem is too restrictive
for applications to control theory. Indeed, in general admissible inputs are
assumed to be only measurable and essentially bounded. Therefore, even if the
right hand side of (1) is continuous, we cannot hope that the resulting map
f(t,x) = f(t,z,u(t)) is continuous.

The following set of assumptions for (1.1) seems to be more appropriate:
(A1) the function f(t,z) is locally essentially bounded on [0, +00) x R™
(Az) for each x € R™, the function ¢ — f(¢, x) is measurable

(Aj3) for a.e. t > 0, the function x — f(t,x) is continuous.

A function z(t) is called a local Carathéodory solution of (1.1) on the interval

I if it is absolutely continuous on every compact subinterval of I and satisfies
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Z(t) = f(t,z(t)) ae tel.

Carathéodory’s Theorem states that if assumptions (A;), (As), (As) are
fulfilled, then for each initial pair (¢9, zg) € [0, +00) xR™ there exists an interval
I with ty € I and a Carathéodory solution x(t) defined on I.

For a system of the form (1.1), the set of all local Carathéodory solutions
corresponding to a given initial pair (o, x¢) will be denoted by Sy, 4,. When
we need to emphasize the dependence of a particular solution z(t) € Sy, z, on
the initial time and state, we shall use the notation z(t) = x(t; o, xo).

Moreover, when (1.1) results from an input system like (0.1) and we want
to emphasize the dependence of solutions on the input w(t), we shall write
respectively Sy oo () and z(t) = x(t;to, zo, u(-)).

Remark 1.1 Of course, any classical solution is also a Carathéodory solution.
To show that the converse is false, consider the following simple one-dimensional
equation

&= f(t,x) = a(t)x

where

0 ifte@
a<t):{1 iftcR\Q .

For each initial pair (0,z() with z¢o # 0, the set of classical solutions is

empty, but there is a Carathéodory solution of the form = = efxg. [ ]

Peano’s and Carathéodory’s Theorems only guarantee in general the ex-
istence of local solutions. A typical additional assumption is local Lipschitz
continuity with respect to x:

(A4) for each point (¢,Z) € [0,+00) x R™ there exist § > 0 and a positive
function I(t) : [0,4+00) — R such that [(¢) is locally integrable and

£, 2") = f(t2")]] < 1@B)||2" — 2"
for each t,z" and 2" such that |t —¢] < 6, ||2/ —Z|| < § and ||z —z|| < 4.
Under the assumptions (A1), (Az), (As) and (Ay), it is possible to prove

local uniqueness and continuity of solutions with respect to the initial data. In
particular, the following holds.
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(C) let (£,) € [0,+00) x R™ be fixed, and assume that x(t; 7, ) is defined on
some closed interval o, 8] (with o < ¢ < 3). Then for each € > 0 there
exists & > 0 such that for each pair (7,£) with

[r—t<d, lE-2[ <6

the solution x(t; 7, €) is defined for « < ¢ < 3 and

et 7, §) —x(t; 8, 2)|| <e

for each ¢ € [a, §].

These and other results about ordinary differential equations can be found
in many usual textbooks (see for instance [125], [70], [60]).

1.2 Differential inclusions

In this section we illustrate how differential inclusions arise in the mathematical
theory of control systems. Moreover, we recall the main existence results needed
in the following chapters. In particular, we show that the existence of Filippov
solutions for discontinuous differential equations can be actually deduced from

an existence theorem for differential inclusions.

1.2.1 The upper semi-continuous case

As already mentioned in the Introduction, for certain applications of control
theory we need to resort to differential equations whose right hand side is dis-
continuous not only with respect to ¢, but also with respect to the state variable
x. Indeed, even if the system is modeled by smooth vector fields, discontinuities
may be inevitably introduced when closed loop solutions of certain problems
are required.

Note that if the right hand side of (1.1) is not continuous with respect to z,
then the usual notions of solution (classical or Carathéodory) do not apply. The
more common way to overcome the difficulty is to replace (1.1) by a differential

inclusion of the form

i€ F(tx) . (1.2)

A solution of (1.2) is any function z(t) defined on some interval T C [0, +00)

which is absolutely continuous on each compact subinterval of I and such that
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x(t) € F(t,x(t)) a.e.on .

Then, by definition, a function z(t) is a generalized solution of (1.1) if and
only if it is a solution of the associated differential inclusion (1.2).

Of course, to give a precise meaning to the notion of generalized solution
we need to assign a rule which enables us to associate a set valued map F(t, )
to the discontinuous map f(¢,x). This can be done in many way. In this book,
we adopt the approach due to A.F. Filippov ([60], [58]), which is based on the
following idea. Set

Flto) =Kuf (o) = () () @{fEBs@\N)} (13)

6>0 u(N)=0

where €0 denotes the convex closure of a set and p is the usual Lebesgue measure
of R™. The generalized solutions of (1.1) defined according to (1.2), (1.3) will be
called Filippov solutions. When f(t,z) is (Lebesgue) measurable and locally
bounded, there is also an equivalent (perhaps more intuitive) definition (see
[104]). Indeed, it is possible to prove that for each ¢ > 0, there exists a set
N} C R™ (depending on f and t) with u(N{}) = 0 such that, for each N C R"
with ©(N) =0, and for each x € R™,

K.f(t,z) = cofv: IH{a;} witha; — 2
such that z; ¢ N, UN and v = lim f(¢,z;)} . (1.4)

In [104], the reader will find also some useful rules of calculus for the “op-

erator” K.

Remark 1.2 Strictly speaking, Filippov solutions are not a generalization of

classical solutions. Consider for instance the scalar equation

&= f(z)
defined by

1 ifz#0
f(m)_{o ifr=0 .

In the classical sense, the constant function z(t) = 0 is a solution. However, it

is not a solution in Filippov’s sense. On the other hand, if

1 ifx>0

f(x):{1 it <0

then z(t) = 0 is a Filippov solution but not a classical one. u
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The set valued map F'(t, z) associated to a discontinuous equation by virtue
of construction (1.3) has a number of nice properties. The first result is more
or less evident.

Proposition 1.1 Assume that f(t,x) is locally bounded on [0,+00) x R™.
Then, the set valued map F(t,x) = K, f(t,x) is defined for each pair (t,z) €
[0,4+00) x R™ and its values are nonempty, compact and convexr. Moreover, it is
locally bounded on [0,400) X R™ that is, for each compact set K C [0, 4+00) x R™
there exists M > 0 such that

F(t,x) C By

for each (t,x) € K.
From now on, we limit ourselves to compact valued maps.

Definition 1.1 Let A be a o-algebra of subsets of R™. A set valued map G
from R™ to R™ s said to be A-measurable if for each open set Q C R™2, the
set

{x eR™: Gz)NQ #£0}

belongs to A. A set valued map G from R™ to R™ with compact values is
upper semi-continuous if for each xg and for each € > 0 there exists § > 0 such
that

G(x) C G(xg) + Be

provided that x € Bs(xo).

Note that if G is single valued, these definitions agree with the usual defi-

nitions of A-measurable and, respectively, continuous function.

Theorem 1.1 Let f(t,x) be locally bounded and let F(t,x) = K, f(t,z). Then,

F(t,x), as a set valued map of x, is upper semi-continuous for each t.

Theorem 1.2 Let f(t,x) be locally bounded and let F(t,x) = K, f(t,z). If
f(t,z) is Lebesgue measurable (respectively, Borel measurable), then F(t,x) is

Lebesgue measurable (respectively, Borel measurable).
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It follows from Theorem 1.2 that if f(¢,z) is a locally bounded and Borel
measurable map, then F(¢,x), as a function of ¢, is a Borel measurable map
for every x, as well. Indeed for fixed @ = Z, t — F(t,Z) can be seen as the
composite map of t — (¢,z) and (¢t,z) — F(t,z). Hence, we conclude in

particular that:

if f(t,x) is a locally bounded and Borel measurable map,

then t — F(t,x) is Lebesque measurable for each x.

Clearly, the same reasoning does not work if f(¢,x) is assumed to be only

Lebesgue measurable. Nevertheless, the conclusion remains true.

Theorem 1.3 Let f(t,x) be locally bounded and Lebesque measurable with re-
spect to (t,xz). Then, F(t,z) = K, f(t,z) is Lebesque measurable as a function
of t, for each fized x.

Proposition 1.1 and Theorem 1.1 can be proven as in [7] p. 102; the proofs
of Theorems 1.2 and 1.3 are given in the Appendix of this chapter.

Summing up, Proposition 1.1, Theorem 1.1 and Theorem 1.3 together show
that if f(¢,x) is locally bounded and Lebesgue measurable with respect to the
pair (¢,z) on [0, +00) x R™, then F(t,z) = K, f (¢, z) satisfies the following set
of assumptions:

(H;) F(t,z) is a nonempty, compact, convex subset of R", for each ¢ > 0 and
each r € R"

(Hy) F(t,x), as a set valued map of z, is upper semi-continuous for each ¢ > 0
(Hj3) F(t,x), as a set valued map of t, is Lebesgue measurable for each x € R™
(Hy) F(t,z) is locally bounded.

The following theorem can be found for instance in [54], [60].

Theorem 1.4 Let F(t,x) be a set valued map which fulfills all the assumptions
(Hy),...,(Hy). Then, for each pair (ty,xo) € [0,+00) x R™ there exist an
interval I and at least a solution x(t) : I — R™ of (1.2) such that ty € I and

.T(to) = Xo - (15)

Remark 1.3 By virtue of Theorems 1.1 and 1.3, the previous statement pro-

vides also an existence result for Filippov solutions of the initial value problem
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(1.1), (1.5) under the assumption that f is Lebesgue measurable (with respect
to both variables) and locally bounded. Under the same assumptions, an exis-
tence theorem for solutions of discontinuous differential equations is obtained
in [60], p. 85. However, in [60] the theorem is proved in a different way, without

using Theorem 1.4.

1.2.2 The Lipschitz continuous case

In the previous subsection we discovered an important link between control
theory and the theory of differential inclusions. A second, important link is
given by the fact that a system with free inputs can be actually reviewed as a

differential inclusion of a particular type. We need to recall some definitions.

Definition 1.2 A set valued map G from R™ to R™ is Hausdorff continuous
at a point T € R™ if for each € > 0 there exists § > 0 such that x € Bs(Z)
implies h(G(z), G(Z)) < e.

Definition 1.3 A set valued map F from [0,+00) x R™ to R™ is said to be
locally Lipschitz continuous (in Hausdorff sense) with respect to x if for each
point (¢,Z) € [0,400) x R™ there exist § > 0 and a positive function 1(t) :
[0,4+00) — R such that I(t) is locally integrable and

B(F(t,31), F(t,2)) < U(8) |1 — 2] (1.6)
for each t,x1 and zo such that [t —t| <6, ||z1 — Z|| <6 and ||z — z|| < 4.

Consider now a system of the form (1) and assume that f(¢,z,u) is locally
bounded, Lebesgue measurable with respect to ¢ for each pair (x,u) and con-
tinuous with respect to = and u for each t'. Let U be a given subset of R™,
and assume now that an input function w(-) is admissible only if it (is measur-
able, essentially bounded and, in addition) fulfills the constraint u(t) € U, a.e.
t € [0,+00). Then, it is evident that every solution of (1) corresponding to an
admissible input is a solution of a differential inclusion (1.2) where the right
hand side is now defined by

F(t,x) = f(t,z,U) .

A celebrated theorem by Filippov ([57]) states that the converse is also true,
provided that
() f(t,x,u) is continuous and U is a compact set.

IThis implies that for each admissible input f(¢,z, u(t)) satisfies Carathéodory conditions
(A1), (A2), (As) ([60], Lemma 1 p. 3).
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On the other hand, it is not difficult to show that if () holds, then F(t,x) =
f(t,z,U) is Hausdorff continuous. If in addition f(¢,xz,u) is locally Lipschitz
continuous with respect to x (uniformly with respect to u) then F(¢,x) is also
locally Lipschitz Hausdorff continuous with respect to x.

We are now ready to address the existence issue for the initial value problem
(1.2), (1.5) under the alternative assumption that F(¢,x) is locally Lipschitz
continuous with respect to x. The following theorem was proved in [59]: be-
side local Lipschitz continuity, the author requires that F'(¢,z) is Hausdorff
continuous, with nonempty compact values: in fact, the Hausdorff continuity
assumption can be relaxed, by simply requiring that F'(¢,z) is locally bounded
and measurable with respect to t for each x ([21]).

Theorem 1.5 Assume that F(t,x) is locally Lipschitz continuous with respect
to & on [0,4+00) x R™. Assume further that it has nonempty compact values
and that (Hs), (Hy) hold. Let I be a bounded closed interval, I C [0, +00) and
let y(t) : I — R™ be an absolutely continuous function. Let ty € I and assume
that

[v(to) — ol <7 (1.7)

and

dist ((£), F (£, 7(1))) < p(t) (1.8)

for a.e. t € I, where r > 0 and the function p is integrable on I. Then, there
exist an integrable function l(t) : I — R, an interval J C I (to € J) and a
solution z(t) : J — R™ of the initial value problem (1.2), (1.5) such that

l(t) = (DI < L(t) (1.9)

for each t € J, and
1&(t) = (@) < 1(t)L(E) + p(t) (1.10)
for a.e. t € J, where

¢
L(t) = re™® + / emO=m) p(s) ds

to

,oom(t) =

/t:l(s) ds
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Note that Theorem 1.5 provides an existence result (when applied, for in-
stance, with v(¢) = xg) and, at the same time, a result on continuous depen-
dence of solutions with respect to initial data (when applied with p = 0, in
which case « is itself a solution). Note also that no convexity assumption is
needed.

For reader’s convenience, we report a proof of Theorem 1.5.

Proof of Theorem 1.5. Let b > r, and let [(t) : I — RT be an integrable
function such that (1.6) holds for t € T and 1,22 € By(y(t)). Such a function
exists by virtue of the compactness argument. Moreover, let J C I be such
that L(t) < b for each t € J. Such an interval exists, since L(ty) = r.

Let us construct a sequence of absolutely continuous functions {z;(¢)} in
the following way. First, we set xo(t) = ~(¢), and recall that since ~(¢) is
absolutely continuous, then Zo(t) is integrable on I. According to Lemma 1.2

of [72], there exists a measurable function vg(t) such that

vo(t) € F(t, xo(t)) and [[vg(t) — @0 (t)[| = dist (20 (t), F (¢, zo(t)))  (1.11)

a.e. t € I. Since p(t) is integrable on I, it follows from (1.8) that vo(t) is
integrable on I, as well. So, we can define

x1(t) = g —l—/ vo(s)ds . (1.12)

to

Using (1.11) and (1.7), we have
[|21(2) — o (t)]] = llvo(t) — Zo(B)]| < p(t) (1.13)

a.e. t € I and

[|l21 () — 2o ()]l i1(s) — do(s)]] ds

A
B
o

|
)
=
[=)
P
+
=
=

< r+| [ p(s)ds|. (1.14)
Note in particular that r + | ftto p(s)ds| < L(t), so that for t € J we have

[lz1(t) — 20()]| < b . (1.15)

By repeating the same argument as above, we can now take v (¢) in such a

way that
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vi(t) € F(t,z1(t)) and ||v1(t) — 21 (¢)|| = dist (21(t), F (¢, 21(t)))

(1.16)

a.e. t € I. On the other hand, taking into account (1.15), from (1.16), and the

definition of the Hausdorff distance, we deduce

(o1 (8) = & ()] < h(E(E 2o(t)), F (8 21(1))) < U(H)[[xo(t) — 21 (2)]]

(1.17)

and this in turn implies that vy (¢) is integrable on J. Thus, we can iterate the

construction, defining

xo(t) = xo + /t vi(s)ds

to

(1.18)

for t € J. As for x1(t), we need some estimations concerning xs(t) and its

derivative. According to (1.17) and (1.14), we infer

[[#2(t) — @1 (2)]] o1 (t) — 1 (1)]|
L(O)||zo(t) — z1(2)]]

KOP+tM$@q

IN

IN

to

a.e. t € J. Moreover, by (1.19) and (1.13),

|[@2(t) — o (t)]]

IN

[|2(t) = 21 (D] + [|21(8) = Fo(t)]]

[r+|/ ds@—i—p t)

a.e. t € J. We also have, by virtue of (1.19),

IN

t

||562( ) —@1(s)]| ds

ol [una] o

(/mgmw—m@Ms

to

lza(t) =z (D] <

IN

IN

rm(t) +

for each t € J. Moreover, using (1.14),

(1.19)

(1.20)

(1.21)
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[lza(t) — 2o < lz2(t) — 21 ()] + [[21(t) = 2o (B)]]
< r(I+m(t))
+ /t p(s)[L+ (m(t) —m(s))]ds (1.22)

for each ¢ € J. This last expression is less than or equal to L(¢), so that

22 (t) — xo(t)]| < L(t) < b (1.23)

for t € J. Take now vy(¢) in such a way that

va(t) € F(t,za(t)) and ||oa(t) — do(t)|| = dist (i2(t), F(t, 22(t))  (1.24)

a.e. t € J. By repeating again the argument, we get

o2 (t) = @2(8)|| < h(F (£, 21(2)), F(t, 22(t))) < U(E)[|z1(t) —x2(t)]]  (1.25)

a.e. t € J, which allows us to conclude that vy(t) is integrable. Therefore, the
procedure can be further iterated, and it can be formalized by induction. We
finally found that for each 1 = 0,1,2,...,

Zit1(t) = o + / vi(s)ds (1.26)

to

for t € J,

vi(t) € F(t,zs(t)) and ||vi(t) — @:(8)]| = dist (#:(2), F(t,2:(8)))  (1.27)

a.e. teJ,
m(t)) ! t m(t) —m(s)) !
[Ei1(t) — ()| < 1(2) [r% + /t p(s)( (t)(i - 1()')) ds} (1.28)
fori>1 and a.e. t € J,
feisa() —sol] < P | [ @O 0l 1)
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for i > 0 and t € J. Finally, using (1.29), (1.28) and the inequality 1 + z +
...+ 29/j! < e* (2 >0), we obtain for each j =1,2,... and t € J

llz;(t) — zo(t)|| < L(t) < b (1.30)

and

[|2:5(t) = o (B)]| < U(E)L(E) + p(t) (1.31)

for a.e. t € J. We are now ready to get the conclusion. We see from (1.29)
that the sequences {z;(t)} converges (uniformly) on J and from (1.28) that
{vi(t)} = {&;41(t)} converges a.e. on J. Let x(t) and v(t) be the respective
limits. Inequality (1.31) enables us to apply the Lebesgue dominated conver-
gence Theorem to (1.26). So we obtain

t ¢
z(t) =limzj41(t) = xo +1lim | vj(s)ds = zo+ / v(s)ds
J T Jtg to

and we get the first conclusion that xz(t) is absolutely continuous with @(t) =
v(t) a.e. on J. On the other hand, using continuity of F'(¢,x) with respect to
x, from (1.27) we get

v(t) € F(t, z(t))

a.e. t € J. Hence, z(t) is a solution. Inequalities (1.9) and (1.10) easily follow
from (1.30) and (1.31). |

1.3 Appendix

We give here the proofs of Theorems 1.2 and 1.3. Recall that a function is said
to be simple if the set of its values is finite. If C' is a convex set, then by ext C
we denote the set of its extreme points.

We start by the following lemma.

Lemma 1.1 Let g(t,z) be a simple Borel map from [0,1)"T1 to R™. Then,
G(t,r) = K,g(t, ), as a set valued map from [0,1)" Tt to R", is a Borel map.

Proof. Let us denote by A the o-algebra of Borel sets in [0,1)"*!. Let
{a;,1 <4 <1} with [ > 1 be the set of values of g. There exist pairwise disjoint
sets B; € A (i =1,...,1) such that B; C [0,1)"", UB; = [0,1)"*!, and
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l
g(t,z) = ZaiXBi (t,z) .
i=1

By virtue of (1.4), it follows that for each pair (t,z) € [0,1)""! there exists
I C{l,...,1} (I #0) such that

G(t,x) =co{a;,t € 1} .

On the other hand, let (tg, 7o) € [0,1)""1. Let us fix I C {1,...,l} in such
a way that {a;,i € I} = extco{a;,7 € I}. It is clear that G(to, o) = co{a;,i €
I} if and only if:
1) Vi€ I, Vk € N*, one has u({zr € R" : v € By ,(w0) and (to,v) € B;}) >0
2) Vj ¢ I, with a; ¢ ©6{a;,i € I}, Ik € N* such that u({z € R" : z €
Bk (20) and (to, ) € B;}) = 0.

Next we want to prove the following:

Claim {(to,z0) € [0,1)"™! : G(tg,z0) = co{a;,i € I}} € A, where I C
{1,...,1} has been fixed as above.

For each ¢ and k, we define the map

Vi : (to, zo) — p({z € R" 1 2 € By i(20) and (to, ) € Bi}) .
We have

Vi k(to, T0) = / XBi 1. (z0) (%) - XB; (to, ¥) dz
R’VL
= /R X{(x,xo):\\;c—x0||<%}(xv‘TO) .XBi(tO’x) dx .

The map (‘T7z03t0) = X{(m,mo):|\z—z0||<%}(xaZO) " XB; (th Cﬂ) is a Borel map,
hence by Tonelli’s Theorem ([55], p. 85), ¥ k(to,x0) is a Borel map, as well.
Finally, we note that

{(t071'0) S [07 1)n+1 : G(tml’o) = E{ai,i € I}}
= (Mier Nren+ (Yi k) "1 ((0,+00)))
ﬁ(ﬁ{j:a‘je@{ai:iel}} Uren- (¢56) " ({0})) -

The claim easily follows. We are now able to achieve the proof of the

Lemma. Given any open set 2 C R™, we observe that
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G 1 ) ={(t,z) € [0,1)"T!: G(t,z) N Q # B}
U c[0,1)": G(t,z) =co{a;,i € I}}
1

where the union is taken over all the sets I C {1,...,1}, I # (), such that
co{a;,i € I} NQ#Q and {a;,i € I} =extco{a,;,i € I}.

In other words, G~1(£2) is a finite union of sets which belong to the o-algebra
A. Hence, G71(Q2) € A. The Lemma is proved. ]

Proof of Theorem 1.2. Assume first that f(¢,2) is a Borel map. Then,
it is sufficient to prove that for each open set 2 C R™ and each m =

(mg,m1,...,my) € Z"1 we have that

(Fluspoayns1) " (92)

is a Borel set. Indeed,

F Q) = U {(t,r) € m+1[0,1)" T : F(t,2) NQ# D}
mezn+1
= U FEluspyn) ().
meZnt1t

For simplicity we consider only the case m = 0, but the same arguments
apply for each m € Z"™!. Let {f,} be a sequence of simple, Borel maps from
[0,1)"*! to R™ such that

lim f,(¢t,x) = f(t,x) (1.32)

p—o0
uniformly on [0,1)"*1. Such a sequence exists since f is bounded on [0,1)"*1.
Set F,(t,z) = Ky fp(t,z). According to Lemma 1.1, {F),(¢,z)} is a sequence
of Borel set valued maps from [0,1)"*! to R™. For each (¢,z) € [0,1)"*! and

each p, we have

h(Fp(t,l‘)7F(t7$)) < pr - f||L°°([0,1)"+1) : (1'33)

For any y € R™, let us consider now the maps 7,(t,2) = dist (y, F (¢, z))
and y(t, ) = dist (y, F'[[p,1)n+1 (t,7)). From (1.32) and (1.33) it follows that ~,
converges to v, as p — 0.

By Castaing’s Characterization Theorem (see [8], Theorem 8.3.1 p. 319),
for each y € R™ and each p, 7, is a Borel map. Hence, for each y € R", v
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is a Borel map. Using again Castaing’s Characterization Theorem, we finally
conclude that also F'|jg 1y»+1 is a Borel map.

The argument when f is only (Lebesgue) measurable is given in the proof
of Theorem 1.3. |

Proof of Theorem 1.3. Since f = f(¢, z) is locally bounded and measurable,
there exists a locally bounded Borel function f = f (t,x) such that

f(t7$) - f(t,l‘)

for a.e. (t,7) € RT xR™ (see [122], p. 56). Let Ny = {(t,x) : f(t,x) # f(t,z)}.
Then there exists a Borel set N; such that N; C Ny and ,u(Nl) = 0. By Tonelli’s

Theorem,
(o)
0:// Xﬁl(t,x)dtdm:/ (/ X, (t, ) dx)dt .
R+ xR™ 0 n

Note that the map t — fRn X, dr is non-negative. Hence, the Borel set
Ny = {t €[0,400) : [z, X, dz > 0} is of measure zero.
We claim that

YVt ¢ No, Ve € R*  F(t,z) = F(t,x) (1.34)

where F(t,z) = K,f(t,z). Indeed, if t ¢ Ny, then Jan X5, dz = 0, that is
pw({z : (t,z) € N1}) = 0. This means that f(t,z) = f(t,z) for a.e. z € R", and
this in turn implies (1.34) for every z € R™.

As a first consequence, we deduce from (1.34) that Filippov solutions of the

systems

&= f(t,x) and i = f(t,x)
agree. Moreover, according to Proposition 1.1 and Theorem 1.2, the set valued
map F (t,z) is everywhere defined, with nonempty convex, compact values, and
Borel measurable. As already noticed, for fixed x € R™, the map ¢ — F(t,x)
can be reviewed as the composition of F: RT x R — R" and the Borel map
t— (t,z) : RY — R* x R™. Hence, it is a Borel map, as well. But for every
open set ) C R™,

F(-,z)"1(Q) {te RT\ No: F(t,2)NQ#D}UN3
= {teR*\Ny: F(t,2)NQ#0}UN;

where N3 is some set of measure zero, N3 C Ns.
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This implies that the map ¢ — F(¢,z) is (Lebesgue) measurable for each
x € R", as required. In the same way,
F7HQ) ={(t,z) e (RT\ No) xR": F(t,z)NQ#0P}U Ny

where Ny C Ny x R™ is some set of measure 0. It follows that F' is measurable,

which completes the proof of Theorem 1.2. |



Chapter 2

Time invariant systems

In this chapter we use the same notation already introduced at the beginning
of Chapter 1. Moreover, for each Lebesgue measurable, essentially bounded

function w : [0, 400) — R™, we denote the Lo, norm of u(-) by

[u(-)]|oo = esssup [lu(t)|| < +o0o .
t>0

As explained in the Introduction, studies on stability and stabilizability
have been developed first in the framework of linear theory and subsequently,
during the last two decades, for nonlinear control systems which are time in-
variant and sufficiently “smooth”. In order to enlighten the most important
concepts involved and to survey the main results obtained so far, in the present
chapter our exposition will be therefore limited to such a restricted class of sys-
tems. In fact, it seems convenient to start by a short digression about linear
systems: since in this context technical difficulties are highly reduced, we can

take advantage of a more immediate appeal to intuition.

2.1 The linear case

Linear systems have been widely studied for a long time and a rather complete
picture is today available. It is natural to take it as a reference model for

possible nonlinear developments.

2.1.1 Stability

In particular, the relationship between internal and external stability is well

understood in the case of the finite-dimensional, time invariant linear system
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&= Ax + Bu (2.1)

(here, A and B are real matrices of appropriate dimensions). The unforced
associated system has the form

i= Az . (2.2)

It is well known that the asymptotic behavior of its solutions depends on
the eigenvalues of A. More precisely, A is Hurwitz (i.e., all its eigenvalues lie
on the open left half complex plane) if and only if all the solutions converge to
the origin for t — +00. Moreover, A is stable (i.e., all its eigenvalues lie on the
closed left half complex plane and the possible eigenvalues on the imaginary
axis are simple!) if and only if all the solutions are bounded and the solutions
issuing from a sufficient small neighborhood of the origin remain near the origin
for all ¢t > 0.

If A is Hurwitz and if w : [0, +00) — R™ is an admissible input (namely,
a Lebesgue measurable function such that ||u(:)||s < 400), then the variation
of constants formula can be used to prove that there exist positive numbers
a, 71,2 such that

2 (t; 0, w())I < yallzolle™ +yallu() ]l (2.3)

for each zyp € R™ and ¢t > 0. Conversely, if (2.3) holds for each initial state,
each admissible input and each ¢ > 0, then the special choice u = 0 shows that
A must be Hurwitz.

Inequality (2.3) admits the following interpretation: for ¢ large enough, the
effect of the initial conditions is negligible, and the solutions are ultimately
bounded by a term which is related to the input energy (measured by its L
norm) by means of the constant “gain” ~yo. This reflects the distinction between
transient and steady state in the classical engineering literature.

Beside (2.3), we are also interested in the following condition: there exist
some constants 7y, v2 > 0 for which

[l (t; 2o, u(-))[| < Mllzoll + 72 llul-)llo (2.4)

for each ¢t > 0, each xy and each admissible input u(-).
Of course, (2.4) is implied by (2.3) and in turn, (2.4) implies that A is
stable.

IThis means that their algebraic and geometric multiplicities coincide.



The linear case 21

Inequality (2.4) can be interpreted by saying that when the input is
bounded, then the solutions are bounded by a term which depends linearly
on the energy initially stored in the system (measured by the norm of the
initial state) and the energy due to the input supply.

Inequalities (2.3) and (2.4) are appropriate tools in order to describe the
effect of inputs and initial conditions on the evolution of the linear system
defined by (2.1). Sometimes, we will refer to (2.3) [respectively, (2.4)] by saying
that (2.1) has the strong [respectively, weak] finite gain property®.

To resume the previous discussion, we can single out in particular the fol-

lowing conclusions.

Proposition 2.1 If A is Hurwitz, then (2.1) has the (strong, and hence also
the) weak finite gain property.

Proposition 2.2 If (2.1) has the weak finite gain property, then A is a stable
matriz.

The meaning of Proposition 2.1 is captured by the following informal ex-
pression: internal stability implies external stability. The converse is true only
under additional assumptions.

Recall that (2.1) is said to be completely controllable when it happens that
any initial state can be steered to any desired final state in finite time by a suit-
able choice of an open loop control u = u(t). It is well known that (2.1) is com-

pletely controllable if and only if the rank of the matrix [B: AB: ... : A"~ B]
is maximal (i.e., it is equal to n).

Proposition 2.3 Let (2.1) be completely controllable. If it has the weak finite
gain property, then A is Hurwitz.

Proof. It is not difficult to prove that if a linear system has the weak finite
gain property then the so called impulse response

t
/ "4 B]| ds
0

is bounded for ¢ > 0. Arguing as in [133] p. 257, this in turn implies that

2Usually, a complete model of a linear system includes an observation map of the form
y = Cz. The variable y is called the output. In this context, the finite gain property should
be referred to outputs, instead of state evolution, and it is also called bounded input bounded
output (in short, BIBO) stability.
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lim w(t)=0 = lim z(0,u(:))=0.

t——+o0 t——+o0
Pick now an arbitrary zp € R"™. The complete controllability assump-

tion implies that there is an input w;(¢) and some 7' > 0 such that zo =
x(T;0,u1(-)). Define the new input

ui(t) forte[0,T
0 fort >1T .

Clearly, lim;_, 1 o0 2(¢;0,uz(+)) = 0. But for ¢ > T the input vanishes, so
that the motion depends only on the action of the unforced system. It remains
to note that x(T;0,us(+)) = x(T;0,u1()) = xo. [ |

The simple example

T=ar+u
{ . (2.5)
y=0
with a = —1 shows that the controllability assumption cannot be dropped out,

in general.
Also the converse of Proposition 2.2 is false, but as we shall see at the end

of Section 2.1.3, we can obtain a positive result making use of linear feedback.

2.1.2 Internal stabilization

A linear feedback is a feedback law of the form v = Fxz (where F is a matrix
of appropriate dimensions). The effect of applying a linear feedback to (2.1)
consists in replacing the matrix A by the modified matrix A + BF'. Hence, if
A is not Hurwitz, it makes sense to ask whether there exists a linear feedback
u = Fx such that all the trajectories of the associated closed loop system
converge to zero (i.e., the matrix A + BF' is Hurwitz). If this happens we also
say that (2.1) is internally stabilizable, and the linear map v = Fx is called a
stabilizer.

Notice that, according to Proposition 2.1, if the system is internally stabi-
lizable, then the closed loop system has the property (2.4) (in fact, it has the
strong finite gain property). We can also say that internal stabilization implies
external stabilization.

A variety of necessary and sufficient conditions for internal stabilizability
of a linear system can be found in the literature. For the moment, we limit
ourselves to recall the following one (the proof can be found in any common

textbook about linear systems, for instance [156]).
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Proposition 2.4 Let V C R™ be the linear space engendered by all the eigen-
vectors (in the usual and generalized sense) corresponding to eigenvalues of A
with non-negative real part. System (2.1) is internally stabilizable if and only

if
VC[B:AB: ... A"'B].

In particular, we have that complete controllability implies internal stabi-

lizability.

2.1.3 External stabilization

Example (2.5) with a = 1 shows that the weak finite gain property can be
achieved by means of feedback even if the system is not necessarily internally
stabilizable. The aim of this section is to find out a necessary and sufficient
condition for the existence of externally stabilizing (in the sense of the finite
gain property) feedback laws. First of all, we remark that the weak finite gain
property is invariant under linear changes of coordinates in the state space.
Thus, it is not restrictive to assume that (2.1) is in Kalman canonical form,

namely

{ i?l = Alldfl + A12I2 + Blu

2.6
To = Agoxo 26)

where x = (x1,22) € RI x R"? (0 < ¢ < n) and the pair (411, By) define a
g-dimensional completely controllable system
T = A1 + Biu . (27)

Our argument is based on the following lemma.

Lemma 2.1 System (2.1) has the weak finite gain property if and only if Ay
1s Hurwitz and Aso 1s stable.

Proof. Assume that A;; is Hurwitz and A,y stable. Then, in particular, z:5(t)
is bounded for each initial state. Hence, for each admissible input u(-) we can

interpret the subsystem

i’l = Allxl + Alg.’L'Q + Blu (28)

as having a bounded input v(t) = Ajax2(t) + Biu(t). According to Proposition
2.1, since Ay; is Hurwitz, z1(¢) is bounded for each initial state, as well.
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As far as the converse is concerned, we already noticed that if (2.4) holds
then A must be stable and of course the same is true for Ass. To prove that
Ay is Hurwitz, we observe that if the overall system has the weak finite gain
property, then the g-dimensional completely controllable system (2.7) has the
weak finite gain property, as well (this can be seen by considering solutions of
(2.6) which correspond to initial conditions of the form (Z1,0)). The statement
is therefore a consequence of Proposition 2.3. |

It follows immediately from Lemma 2.1 that:

Proposition 2.5 Let the linear system (2.1) be given. There exists a linear
feedback u = Fx such that the closed loop system satisfies (2.4) if and only if
Aso is stable.

Proposition 2.5 implies in particular that whenever A is stable, then it is

possible to recover the weak finite gain property by means of linear feedback.

2.1.4 Quadratic forms

Internal stability analysis of linear systems can be performed also by means of
certain auxiliary quadratic functions i.e., functions of the form V(x) = x*Pu.
Indeed, it is possible to prove that A is Hurwitz [stable] if and only if there
exists a symmetric, positive definite matrix P such that

V(z) =22t PAx = 2*(PA + A*P)zx
def

is negative definite [negative semi-definite].
Quadratic forms can be used to characterize internal stabilizability as well.
We recall the following result, which is of some interest for nonlinear develop-

ments.

Proposition 2.6 The linear system (2.1) is internally stabilizable if and only
if there exists a real, positive definite, symmetric matriz P such that
{r eR": 2*PAx > 0} Nker B*P = {0} . (2.9)
Moreover, if (2.9) holds then there exists ag > 0 such that the stabilizing
feedback can be taken of the form
u=—aB*Px (2.10)

for any a > «g.
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Proof. The “only if” part is easy. If the system admits a linear stabilizer
u = Fz, then the matrix A+ BF of the closed loop system is Hurwitz. Hence,

there is a quadratic function V(z) = 2* Pz such that

V(x) = 2(z*PAz 4+ 2* PBFz) < 0

for each x # 0. When x € ker B P this clearly reduces to 2* PAz < 0.
We prove now the “if” part. Define the feedback law as indicated in (2.10)
and let V(z) = 2* Pz. With respect to the closed loop system, we have

V(z) =22 P(A+ BF)z = 22*P(A — aBB*P)z = 22 PAxz — 2a||B*Pz|? .

This last expression is homogeneous. In order to study its sign, we can limit
ourselves to the set S = {x € R": ||z]| = 1}.

If 2 € SNker Bt P, then V(z) < 0 because of (2.9). Since V() is continuous,
there exists a relatively open set U C S such that Snker B*P C U and V(m) <0
for each x € U.

The complement of U in S is compact. Hence, ming,y || B*Pz||* = m > 0.
Let M = maxg x* PAz. Tt is clear that if o is larger than M /m, then V(z) < 0
also for x € S\ U. The proof is complete. |

For an internally stabilizable system, the matrix P satisfying condition
(2.9) is not unique. In fact, we have a more precise result (see [42]): if (2.1)
is internally stabilizable, then there exists a matrix P for which (2.9) holds,
and the feedback law (2.10) works with o = 1. For such a matrix P, negative

definiteness of V(z) is clearly equivalent to

PA+ A*P — PBB*P = —Q (2.11)

for some symmetric positive definite matrix Q.

Vice-versa, for fixed @, (2.11) can be interpreted as a matrix equation in
the unknown P. If a positive definite solution P = P(Q) of (2.11) exists, then
it is unique and satisfies (2.9). Moreover, it can be used to define a stabilizing
feedback of the form (2.10) with o = 3. This conclusion does not depend on
the choice of @, so that it is usual to take @ = I, the identity matrix.

Equation (2.11) is a form of the so-called algebraic Riccati matriz equation.

Unfortunately, the characterization of external stability by means of auxil-
iary quadratic functions is not as much plain. We already know that (2.3) holds
if and only if A is Hurwitz. It is not difficult to prove the following additional

characterization.
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Proposition 2.7 Inequality (2.3) holds if and only if there exists a positive
definite, symmetric real matrix P which enjoys the following property: for each
R > 0 there exists N > 0 such that

2*P(Ax + Bu) < 0 (2.12)

for each x € R™, u € R™, subject to the conditions ||u|]| < R and ||z|| > N.

At this point, it could be tempting to conjecture that a necessary and
sufficient condition for the weak finite gain property is obtained in a similar
way, by simply substituting the strict inequality in (2.12) by a weak one. As we
shall see later, in this way one obtains a condition which is actually sufficient,
but not necessary, as shown by the extremely simple example (2.5). Indeed, we

already know that (2.5) with « = —1 has the weak finite gain property. Setting
P11 P12

>7 the expression in
P12 P22

for instance u = 1 and given a matrix P = (
(2.12) is easily computed:
(p11z1 + praw2)(1 — 1) .

As Figure 2.1 shows, this expression takes both positive and negative values

for ||z|| arbitrarily large, and for any choice of p11, p12.

T2 4

p1171 + pr2x2 =0

€1

.’£1:1

Figure 2.1: Regions where the expression (pi121 + p12x2)(1 — x1) changes sign



Nonlinear systems: stability 27

2.2 Nonlinear systems: stability

From now on, we turn our attention to nonlinear systems. In particular, this
section is devoted to internal and external notions of stability, Liapunov func-
tions and the related theorems.

2.2.1 Internal notions

The internal notions of stability for the input system (1) are nothing else that
the classical notions of stability for the unforced associated system (2). For
the moment, we can therefore limit ourselves to consider systems of ordinary

differential equations of the form

&= f(x), zeR". (2.13)

We assume that f is a continuous vector field. This guarantees that for
each initial state zg, there exists at least one (classical) solution x(¢) such that
x(0) = xy. Moreover, every Carathéodory solution is actually a classical one,
so that throughout this chapter the symbol S;, will denote the set of all the
classical solutions.

Definition 2.1 We say that (2.13) is (Liapunov) stable at the origin (or that
the origin is stable for (2.13)) if for each € > 0 there exists 6 > 0 such that for
each xo with ||zo|| < § and all the solutions z(-) € Sy, the following holds: x(-)
is right continuable for t € [0,+00) and

lz(®)|| < Vt>0.

Note that if the origin is stable, then it is an equilibrium position for (2.13)
ie., f(0)=0.

Definition 2.2 We say that (2.13) is Lagrange stable (or that it has the prop-
erty of uniform boundedness of solutions) if for each R > 0 there exists S > 0
such that for ||xzo|| < R and all the solutions z(-) € Sy, one has that x(-) is
right continuable for t € [0, +00) and

le(t)| < S, V>0

In the linear case Liapunov stability and Lagrange stability imply each

other; in general, it should be clear that they are distinct properties.
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Definition 2.3 We say that system (2.13) is locally asymptotically stable at
the origin (or that the origin is locally asymptotically stable for (2.13)) if it is
stable at the origin and, in addition, the following condition holds: there exists
dg > 0 such that

i a(®)] = 0
for each xo such that ||zo|| < 0o, and all the solutions z(-) € S, .
The origin is said to be globally asymptotically stable if 0g can be taken as

large as desired.

Remark 2.1 When dealing with systems without uniqueness, one should dis-
tinguish between weak and strong notions. The previous definitions are strong
notions in the sense that the properties are required to hold for all the solutions,

and not only for some of them.

Remark 2.2 Definitions 2.1 and 2.3 can be referred to any equilibrium posi-
tion, that is any point xo such that f(z¢) = 0. The choice zy = 0 implies no
loss of generality. |

Speaking about systems with inputs, it may be convenient to adopt a mod-

ified terminology.

Definition 2.4 Consider an input system of the form (1). We say that it is
internally (Liapunov) stable at the origin [respectively, internally Lagrange sta-
ble, internally locally or globally asymptotically stable at the origin/ whenever
the unforced associated system (2) is stable at the origin [respectively, Lagrange

stable, locally or globally asymptotically stable at the origin].

When the system is not linear, and we do not have information about
the structure of the right hand side of (2.13), any attempt to derive stability
criteria of algebraic nature is hopeless. On the contrary, the method of auxiliary
functions can be generalized. Of course, we cannot expect to succeed in stability
analysis of nonlinear systems by means of auxiliary functions which are actually
“quadratic” or polynomial functions (these are obviously non-essential details,
linked to the linearity context of the previous section). Rather, we can try to
figure out a more abstract notion which retains the main features of quadratic

functions. This leads to the idea of Liapunov function.
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Actually, for each concept of stability there is a corresponding concept of

Liapunov function®. Recall the notation B, = {z € R" : ||z|| < r} and

B ={zeR":|z|| >r}.

Definition 2.5 A smooth weak Liapunov function in the small is a real map
V(z) which is defined on B, for somer > 0, and fulfills the following properties:
(i) V(0) =0

(i) V(z) >0 forxz #0

(iii) V (x) is of class C' on B,

(iv) VV(z) - f(z) <0 for each z € B,.

When a real function V(z) satisfies (ii), it is usual to say that it is positive
definite. The function

V(x) = V(@) f(2)
is called the derivative of V with respect to (2.13). Condition (iv) means that
V is semi-definite negative.
A real function V' (x) is said to be radially unbounded if it is defined on B”"

for some r > 0, and

V(z) = +o0 .
)| —+o0

This is equivalent to say that the level sets {x € R : V(z) < a} are
bounded for each a € R.

Definition 2.6 A function V(z) defined on B" for some r > 0, which is radi-
ally unbounded and fulfills (i) and (iv) of Definition 2.5 (with B, replaced by
B"), will be called a smooth weak Liapunov function in the large.

Definition 2.7 A smooth strict Liapunov function in the small is a weak Lia-
punov function such that V(:r) is negative definite; in other words, it satisfies,
instead of (i),

(v) VV(x)- f(z) <0 for each x € B, (z #0).
A function V(z) defined for all x € R™, which is radially unbounded and
fulfills the properties (i), (ii), (iii), (v) with B, replaced by R™, will be called a

smooth global strict Liapunov function.

3 Although the basic notions are absolutely classical, we warn the reader that the termi-
nology we are going to introduce should be intended for the use of the present book. It aims
to emphasize certain features of interest for our purposes and may differ from that more
widely used in the literature.
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Stability properties can be checked by means of appropriate Liapunov func-
tions, according to the following well known criteria.

Theorem 2.1 (First Liapunov Theorem) If there exists a smooth weak Lia-

punov function in the small, then (2.13) is stable at the origin.

Theorem 2.2 (Second Liapunov Theorem) If there exists a smooth strict Li-
apunov function in the small, then (2.13) is locally asymptotically stable at the
origin.

If there exists a smooth global strict Liapunov function, then (2.13) is glob-
ally asymptotically stable at the origin.

Theorem 2.3 If there exists a smooth weak Liapunov function in the large,
then (2.13) is Lagrange stable.

The third theorem is due to Yoshizawa ([159]). The proofs of these theorems
are easy and are not reported here.

Remark 2.3 As far as Liapunov functions are assumed to be of class (at least)

C1!, condition (iv) is clearly equivalent to the following one:

(iv’) for each solution x(-) of (2.13) defined on some interval I and lying in
B,., the composite map t — V (z(t)) is non-increasing on I.

Such a monotonicity condition can be considered as a “nonsmooth analo-
gous” of properties (iii), (iv). Indeed, it can be stated without need of any
differentiability (or even continuity) assumption about V.

As we shall see later, assuming that V' (z) is continuous and replacing (iv)

by (iv’), is actually sufficient in order to prove Theorems 2.1. [ |

Remark 2.4 For certain applications (see for instance [128], [151]), it is not
convenient to work with a Liapunov function which is necessarily positive def-
inite. Stability theorems which make use of a semi-definite Liapunov function
can be found in [82] and [T7]. Of course, in this case one needs to check some

additional assumptions. |

2.2.2 Converse theorems

From a mathematical point of view, the question whether Theorems 2.1, 2.2
and 2.3 are invertible is quite natural. Recently, it has been recognized to be

an important question also for applications to control theory.
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Asymptotic stability

Great contributions to studies about the invertibility of second Liapunov The-
orem were due to Malkin, Barbashin and Massera, around 1950. In particular,
in [98] Massera proved the converse under the assumption that the vector field
f is locally Lipschitz. For such vector fields, he proved that asymptotic stabil-
ity actually implies the existence of a Liapunov function of class C*°. In 1956,
Kurzweil ([91]) proved that the regularity assumption about f can be relaxed.
The full statement of Kurzweil’s Theorem is postponed to next chapter. For

the moment, we can limit ourselves to the following partial version of it.

Theorem 2.4 Let f be continuous. If (2.13) is locally asymptotically stable at
the origin then there exists a C'* strict Liapunov function in the small.
If the system is globally asymptotically stable at the origin, then there exists

a C global strict Liapunov function.

It is worth noticing that Kurzweil’s Theorem provides a Liapunov function

of class C* in spite of f being only continuous.

Example 2.1 Consider the two-dimensional system

i‘l = —1‘1/3
 a/b 13 (2.14)
Ty —

To = ] Zg .

It is clear that the right hand side is continuous, but not Lipschitz con-
tinuous in any neighborhood of the origin. In particular, forward uniqueness
fails for initial conditions of the form (Z1,0), and backward uniqueness fails
for initial conditions of the form (0, Z3). By direct integration, it is possible to
see that the origin is globally asymptotically stable. The vector field and some
trajectories of system (2.14) are plotted in Figure 2.2. As it is easy to check,
an explicit Liapunov function of class C! for system (2.14) is given by

V(xy,x9) = %x% + Zx;‘/g‘ .
This example has been taken from the recent paper [110].

Stability

Unfortunately, such a strong result does not hold for Liapunov and Lagrange
stability. Indeed, it is well known that there exist stable systems with C" right
hand side, which have no continuous Liapunov functions.
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Figure 2.2: System of Example 2.1

Example 2.2 The example is due to Krasovskii ([88], see also [9]). Let us

consider the two-dimensional system

T1 = T2
{@ = —x1 + 22g(x] + 23)

where g(¢) = &3 sin?(1/€), g(0) = 0. Tt corresponds to the so called center-focus
configuration. The origin is surrounded by infinitely many limit cycles with
common center at the origin and radius which goes to zero. The annular regions
between two consecutive limit cycles are covered by spirals. Each solution
describing a spiral winds round the internal cycle for ¢ — —oo, and round the
external one for t — +o0. Note that since f is of class C!, we have uniqueness
of solutions.

It should be clear that this system is stable at the origin. However, contin-
uous Liapunov functions cannot exist. Indeed, let V(z) be a function for which
the monotonicity condition (iv’) holds. Then, it must be necessarily constant
along every limit cycle. Let in addition V' be continuous, and let I'y, I's be
two consecutive limit cycle (let us agree that I'y lies inside I's). Since I'; and
I’y are asymptotically “joined” by trajectories, the value of V' on I'y cannot

be less than the value of V' on I's. By repeating the argument, we conclude
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that the limit of V(z) as © — 0 coincides with the supremum of V' in some
neighborhood of the origin. This is clearly impossible because of properties (i)
and (ii) of Definition 2.5.

Note that a similar configuration can be obtained by means of vector fields
of an arbitrary degree of smoothness, and even of class C*°. Note also that
there is a 1-dimensional version of this example. The simplest way to construct

it, is to take

& =g(x)

where ¢ is the same as before. However, in the next chapter we consider a
different scalar equation which exhibits an analogous behavior but with the

additional advantage that its solutions can be explicitly computed.

We note finally that similar conclusions hold for the case of Lagrange sta-

bility. This can be seen by an obvious modification of the present example.

The following examples are new. They show that the lack of continuity is

not the only obstruction to the existence of smooth Liapunov functions.

Example 2.3 Let ¢ : R? — R be a C*° function such that v¢(x1,z2) > 0 on
{(z1,22) € R? : @29 # 0}, and 9 (z1, 22) vanishes, together with its partial
derivatives of any order on {(z1,22) € R? : x125 = 0}. Consider the vector
field of R?

Py, 22) = <f1($1,362)) Zw(m,ﬂﬁz)( sgn )
f2(331,$2) —SgNn T

that is, the system

{:‘cl = fi(z1,x2) (2.15)

&y = fa(x1,22)

whose trajectories are shown in Figure 2.3.
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T2

T

Figure 2.3: Trajectories of the system of Example 2.3

It is clear that f € C°°, and that the system is Liapunov stable at the origin
and Lagrange stable.

Assume now that there exists a C! weak Liapunov function V(x1,z2) for
(2.15). Then, for each € > 0 there must exist a number Z; with 0 < 7; < €
such that

ov
= (£1,0)>0. 2.16
- (@1,0) (2.16)

Otherwise, the function z; — V(z1,0) would be non-increasing and since
V(0,0) = 0 the positive definiteness assumption is contradicted. Let us fix such
a point z;. For any x2 > 0, we have also

oV oV
6731(51,352)1/1(551@2) - 6762(@1,962)1/1(5?13902) <0.
Since ¢ > 0, taking the limit for o — 0 we get
ov ov
—( - —(71,0) <0. 2.17
81'1 (-/Ela 81'2 (xla ) = ( )
On the other hand, for zo < 0 we have
oV 2%
8731(51,352)1/1(51,%2) + 67362(@1,962)1/1(5?1,902) <0.
Arguing as before, this yields
ov ov

—_— _— <0. .
81'1 (.1‘1, 0) + 81'2 (1‘1, 0) S 0 (2 18)
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Comparing (2.17) and (2.18), we obtain

which is a contradiction to (2.16).

If we agree to define weak Liapunov functions by requiring (iv’) instead
of (iv), it is immediate to verify that V(z1,x2) = |z1]| + |22| is a continuous
(actually, globally Lipschitz continuous) weak Liapunov function for (2.15).

|

Summing up, we discovered that for stable (or Lagrange stable) C'*° vector
fields, we may have no continuous Liapunov functions, or even Lipschitz con-
tinuous Liapunov functions but not a smooth one. The next example shows
another possibility. There exist stable, C'"* systems which have continuous

Liapunov functions but not a Lipschitz continuous one.

Example 2.4 Asin Example 2.3, we consider a planar vector field (2.15) where
f is of class C'*® and vanishes on the coordinate axes. The difference is that now
the trajectories lying outside the coordinate axes are arcs of circumferences.
More precisely, for any » > 0 we have four solutions whose images can be

re-parametrized in the following way:

x1 =r(cosf +1) <h< 3m
n xo = r(sinf + 1) i 2’

x1 =r(cosh —1) 3
— <0 <27,
2 {xg = r(sinf 4+ 1) 2 "
x1 =r(cosh — 1) ™
0<f<—,
8 {xg =r(sinfd — 1) 2
21 =7r(cosf + 1) Toeg<
i o =r(sinf — 1) 2 T

We emphasize that the re-parametrizations preserve the orientation of the

trajectories.
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T2

T

Figure 2.4: Trajectories of the system of Example 2.4

The system is stable at the origin (and Lagrange stable). A continuous
Liapunov function can be obtained by noticing that for fixed » > 0, v =
71 + 72 + 73 + 71 is a closed curve which surrounds the origin. So, we can set
V(z) = r for z € Im~.

Assume now that there exists a locally Lipschitz continuous Liapunov func-
tion W (z1,x2). It follows that also the function r — W (r,0) is locally Lipschitz
continuous, and hence a.e. differentiable. Pick any r > 0 such that g—K(r, 0)

exists, and look at the curve v, for which we have

—rsinf
= (o))
rcosf
Fix further R > r, and let L be a Lipschitz constant for W on the region
{(z1,22) « [21] + [22] < R}
Since W is non-increasing along the trajectories, we easily get that W (y1(0))

is non-increasing, as well. It follows that

i W(1(0) = W (F))
im sup T
PR 0—3

2
On the other hand

<0.

W (0) = WmnCE) W) - Wn

_ (
_%ﬂ 0
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But
,W(%(@)) - W(vlg”;); (0-3%) 71(32”))’
<0 2O ) o
as 0 — 37 and

W +r(0 - 32,0) — W (r,0) ra—W(r 0)
N 60— 3 (91’1 ’

as 0 — 2. We infer that %(r, 0) < 0 for a.e. r > 0, hence the locally
Lipschitz continuous map r — W (r,0) is non-increasing and W (r,0) < 0 for

r > 0, which is impossible because of the definition of Liapunov function. [ ]

Converse theorems which guarantee the existence of smooth Liapunov
functions for Liapunov and Lagrange stability are known only in the one-

dimensional case (see [17]) and, of course, in the linear case.

2.2.3 Generalized Liapunov functions

The examples of the previous subsection motivate the need for a more general

definition of Liapunov function, at least for the weak versions.

Definition 2.8 Let r > 0. A function V : B, — R is called a generalized
weak Liapunov function in the small if it satisfies (i), (iv’) and, in addition,
the following two properties:
(ii’) for some n < r and for each o € (0,n) there exists X > 0 such that
V(z) > X when o < |lz|| <n

(iii’) V(x) is continuous at x = 0.

Of course, (ii’) implies that V(x) is positive definite. On the other hand, it
is easy to see that (ii’) is satisfied if V'(z) is, for instance, lower semi-continuous
and positive definite. The definition of weak generalized Liapunov function in

the large is similar. The following theorem is due to Auslander and Seibert

([9)-
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Theorem 2.5 System (2.13) is Liapunov stable at the origin if and only if

there exists a generalized weak Liapunov function in the small.

Proof. Let us prove first the sufficient part. Fix ¢ > 0 and assume, without
loss of generality, that ¢ < 1. According to (ii’), we can find A > 0 such that
V(z) > X for e < ||z|] <. Since V(0) = 0 and V (z) is continuous at z = 0,
there exists 6 > 0 such that V(z) < A for ||z|| < 4.

Now, pick any z¢ with ||zo]| < 0, and assume that there exist a solution
z(+) € Sy, and a time ¢o > 0 such that ||z(t2)|| > €. Since x(-) is continuous
and § < e, we must have ||z(¢;)|| = & for some ¢; € (0,t2). Without loss
of generality, we can also assume that ¢; is the smallest time for which this
happens, so that ||z(t)|| <e <r for all t € [0,;).

We conclude that V(2(0)) < A, while V(z(t1)) > A with t; > 0. A con-
tradiction to (iv’). Thus we see that x(-) cannot leave the ball of radius e, as
required by the definition of stability. In particular, x(-) is right continuable to
the infinity.

As far as the necessary part is concerned, let us define

V(&) = sup{llz(t)[| : £ = 0,2(:) € S¢} -

We prove that such a function satisfies all the required properties. Accord-
ing to the stability assumption, there exists » > 0 such that V(z) < +oo for
x € B,. It is obvious that V(x) > ||z|| if 0 # = € B,, and this in turn implies
(i”). Tt is also clear that V' (0) = 0 because of stability. The stability assump-
tion is invoked also in order to prove that V(z) is continuous at the origin.
Indeed, Ve > 0, 35 > 0 such that

1€l <6, 2(-) € Se = [lz(t)] <&, t =0

and hence V() <e.

The monotonicity condition (iv’) is a trivial consequence of the definition
and the fact that new solutions can be obtained piecing together solutions
defined on consecutive intervals. u

We report also the following results, due to Yorke ([157]).

Theorem 2.6 Assume that the right hand side of (2.13) is locally Lipschitz
continuous. Then, if (2.13) is Liapunov stable at the origin there exists a

lower semi-continuous generalized weak Liapunov function in the small.
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Proof. Define V(z) as in the proof of the previous theorem. It remains to
prove that V' is lower semicontinuous at an arbitrary point z¢ € B,.. Being f lo-
cally Lipschitz continuous, uniqueness of solutions and continuous dependence
with respect to the initial values are guaranteed.

By the definition of V, for each € > 0 there is 7 > 0 such that

Vi(wo) = /2 < |Ja(T;z0)] -

Moreover, there is 6 > 0 such that for all £ with [|§ — 2¢|| < § one has

(73 zo)l| = [l (T I < f|2(m520) — 2(T3 &) < /2.

Hence,

Vo) —&/2 < [lz(r;z0)[| < llz(r; )] +¢/2 .

Again, by the definition of V', we have ||z(7;¢)|| < V(). In conclusion,

V(o) — e < [lz(r; )l < V()

that was required to prove. |

Remark 2.5 Under the same assumptions, it is also possible to construct an

upper semi-continuous Liapunov function, setting

V(€) = f{[lz(t; &) - t <0}
Of course, V(z) < V(x) for each z.

Remark 2.6 Theorems 2.5 and 2.6 refer to local stability, but analogous re-

sults can be formulated for Lagrange stability.

2.2.4 Absolute stability

Auslander and Seibert ([9]) discovered also that the existence of a generalized
Liapunov function continuous in a whole neighborhood of the origin, is equiv-
alent to a stronger form of stability, the so called absolute stability. In order
to illustrate the idea, we find it convenient to begin with some intuitive con-
siderations. Roughly speaking, stability is a way to describe the behavior of
a system in presence of small perturbations of the initial state. Assume now
that perturbations are also allowed at arbitrary positive times: under the effect

of such perturbations, the system may jump from the present trajectory to a
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nearby one. Now, it may happen that an unfortunate superposition of these
jumps results in an unstable behavior even if the system is stable and the am-
plitude of the perturbations tends to zero. In fact, this is actually what occurs
in the center-focus configuration (Example 2.2).

This phenomenon is technically described by the notion of prolongation,
due to T. Ura and deeply studied in [9]. As we shall see, the existence of a
continuous Liapunov function actually prevents the unstable behavior of pro-
longational sets. On the other hand, the possibility of taking under control the
growth of the prolongational sets leads to the desired strengthened notion of
stability.

Throughout this section, we limit ourselves to systems of the form (2.13),
whose right hand side is locally Lipschitz continuous, so that uniqueness of
solutions is guaranteed. Let us recall that in the topological setting, useful
informations about the dynamical behavior of a system can be deduced from
the inspection of certain sets. These sets depend in general on the initial state.
Thus, they can be reviewed as set valued maps. The simplest example is the
positive orbit of a point z( relative to (2.13), namely

I't(zg) = {y €R™: y = x(t;z0) for some t > 0} .

Another example is the positive limit set. We adopt the following agree-
ments about notation. Let Q(z) be a set valued map from R™ to R"™. For
Q C R™, we denote Q(£2) = UzeaQ(x). Powers of @ will be defined iteratively:

Q"(z) = Q(z) and Q"(z) =Q(Q" '(x))

for Kk =1,2,.... Moreover, we need to introduce two operators, denoted by D

and Z, acting on set valued maps. They are defined according to

(DQ)(x) = Ns>0Q(Bs(x))

(ZIQ)(z) = Ug—o,1,2,.Q" (2) .

The following characterizations are straightforward.

Proposition 2.8 Let Q(x) be any set valued map from R™ to R™.

a) y € (DQ)(x) if and only if there exist sequences xx, — = and yr, — y
such that y, € Q(xy) for each k =1,2,....

b) y € (ZQ)(z) if and only if there exists a finite sequence of points
X0, ..., X such that xg =z, y = xx and x € Q(xp—1) for k=1,2,... K.
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The operators D and Z are idempotent. Moreover, for every set valued
map @ and any x the set (DQ)(z) is closed. However, (ZQ)(x) is not closed in
general, not even if Q(z) is closed for each x. When ZQ = @ we say that @ is
transitive. The positive trajectory is an example of a transitive map. In general,

DQ is not transitive, not even if @ is transitive. Hence, the construction

(D(... (Z(D(IZ(DPQ)))) - - ) (x) (2.19)

gives rise to larger and larger sets.

Example 2.5 Consider a one-dimensional equation (2.13), whose dynamics
is described in the following way. All the points of the form P, = i € N
are equilibria. Moreover, for each ¢ > 1, there is a monotonically increasing
such that P,_; < P;; < P; for each i and
J, and lim; P; ; = P;. When z does not belong to the set of points of the type

sequence of equilibria {P; ;};j=12

yees

P; or P;;, we set f(z) > 0. In other words, if  is not an equilibrium then
under the action of the system it moves to the right.

Py P Py
Py PioPri3 Py ProPo3

Figure 2.5: Equilibrium points for the system of Example 2.5

It is easy to recognize the following facts:

Pi71 S (DF+)(H,1) and Pi’j S (DF+)(PZ'J',1)
[Pi—1, P;) = (Z(DTT))(P;1)
P; € (D(Z(DI)))(Pi-1)

fori=1,2,...and j=1,2,.... |

We are now ready to give the definition.

Definition 2.9 A prolongation associated to system (2.13) is a set valued map
Q(z) which fulfills the following properties:
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(i) for each x € R™, T (z) C Q(x)

(ii) (DQ)(x) = Q(x)

(iii) If A is a compact subset of R™ and x € A, then either Q(z) C A, or
Q(z)NIA #0.

If Q is a prolongation and it is transitive, it is called a transitive prolonga-

tion. The following proposition will be used later (see [9]).

Proposition 2.9 Let K be a compact subset of R™ and let Q be a transitive
prolongation. Then Q(K) = K if and only if K possesses a fundamental system
of compact neighborhoods {K;} such that Q(K;) = K;.

Starting from the map I'" and using repeatedly the operators D and Z, we
can construct several prolongational sets associated to (2.13). For instance, it
is not difficult to see that

Dy(z) = (D) ()

is a prolongation, the so called first prolongation of (2.13). The first prolon-
gation characterizes stability. Indeed, it is possible to prove that the origin is
stable for (2.13) if and only if D;(0) = {0}.

The intuitive construction (2.19) can be formalized by means of transfinite
induction. This allows us to speak about higher order prolongations. More
precisely, let a be an ordinal number and assume that the prolongation Dg(z)

of order 3 has been defined for each ordinal number 3 < «. Then, we set

Da(2) = (D(Up<a(TDp)))() -

The procedure saturates when « = =y, the first uncountable ordinal number.
Indeed, it is possible to prove that ZD., = D.,, which obviously implies D, (x) =
D, (z) for each o > .

Since, as already mentioned, (2.13) is stable at the origin if and only if
D;(0) = {0}, it is natural to give the following definition.

Definition 2.10 Let a be an ordinal number. The origin is stable of order «
(or a-stable) for (2.13) if D,(0) = {0}. The origin is said to be absolutely

stable when it is y-stable.

The main result in [9] is as follows.
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Theorem 2.7 The origin is absolutely stable for (2.27) if and only if there
exists a generalized weak Liapunov function which is continuous in a whole
neighborhood of the origin.

Proof. First we give a sketch of the proof of the sufficient part. Let V :
B, — R be a weak Liapunov function: assume that it is continuous on B,
and that liminf),_,- V(x) > 0. For each positive A, we denote by W the
level set {x : V(x) < A}. Moreover, let Ao € (0,liminf),_,~ V(z)). Then,
the family of sets {Wx}o<r<y, is a fundamental system of invariant, compact
neighborhoods of the origin. According to Proposition 2.9, it is sufficient to
prove that D, (W) = Wy for each A < Ag.

Let © € Wy and y € Dy(z). By Proposition 2.8, there exist sequences {z},
{tx} such that

lm x(tg;x) =y

k—o0

where z;, — x and t;, > 0. For sufficiently large k, we have x5, € W), so that,

according to (iv’),

V(;v(tk;xk)) S V({Ek) .

Using the continuity, we conclude that V(y) < V(z), from which it follows
D1 (Wy) = Wy. The argument is easily completed by transfinite induction.

In order to prove the necessary part, let us assume that the origin is abso-
lutely stable. The idea is to construct the Liapunov function by assigning its
level sets for all numbers of the form j/2* (k=0,1,...,j = 1,...,2%), the so
called dyadic rationals. Note that numbers of this type are dense in [0, 1].

Since D, is a transitive prolongation, according to Proposition 2.9 we can
find a sequence of compact neighborhoods of the origin, labeled as W S (k=
0,1,...), such that

Dy(W3)=W. , W_o CltW, , and ﬂwz% = {0}
k
for each kK =0,1,.... Using again Proposition 2.9, we can now find a compact

neighborhood of Wy, labelled Ws, such that DW(W% ) = Ws, and Ws C
Int W;. By iterating the procedure, we then find W%, W% and W% in such a
way that

WiCW%CW%CW%CW%CW%Cwl
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and so on. In this way, we arrive to construct W) for each dyadic ration A.
Note that if M < )\N, then Wy, C Int Wi.

We are now ready to define V(x) as

V(z) =inf{\: 2z € W)}

for all x € Wy. This function satisfies all the required properties. In particular,
it is clear that V(0) = 0 and V(x) > 0 for # # 0. To see that V(x) is not
increasing along the solutions, let us fix 2o € Wi and assume that V(x(t; zo)) >
V(zo) for some t > 0. Let A be a dyadic rational such that V(x(¢;z9)) > A >
V(zo), so that o € Wy. Since D, (Wy) = W), we must have in particular
x(t;z0) € Wy. This implies V(z(t;z9)) < A. A contradiction.

We finally show that V' is continuous on Int W;. Assume the contrary. Then
for some € Int W; there exists a sequence z,, — Z such that V(x,) does not
converge to V(Z). Since V is bounded, by possibly taking a subsequence, we
can assume that lim, V(z,) =1 # V().

Consider first the case V(&) < [, and pick a dyadic rational \ in such a way
that V() < A <l and & € Int W). For every sufficiently large v, we should
have z,, € W) as well. But then, V(z,) < A, and this is a contradiction.

The case V(Z) > [ is treated in a similar way. [ |

Note that the constructions of the Liapunov function in Theorems 2.5 and

2.7 are quite different.

2.2.5 Stability and robustness

As already noticed, the meaning of Liapunov stability can be described as a
sort of robustness with respect to perturbations of the initial state. In general,
a stable system is not robust with respect to perturbations acting on the vector
field f. Rather, robustness with respect to permanently acting disturbances is
a typical property of systems which exhibit stronger stability features, such as
asymptotic stability. In order to recognize it, the method of Liapunov functions
turns out to be the more direct approach.

There are many possible ways to formalize this kind of robustness. The
following definition goes back to J.G. Malkin (see [66], Sect. 6, for other refer-
ences to the Russian literature). Here, together with (2.13), we need to consider

another system

& =g(z), reR". (2.20)
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We adopt the symbol S to denote the set of solutions of (2.20) issuing from
xo. As usual, we locate the equilibrium position at the origin.

Definition 2.11 System (2.13) is said to be totally stable at the origin if for
each € > 0 there exist two numbers 61 > 0 and d2 > 0 such that for each system
of the form (2.20) and each initial state xo one has

If(z) —g(x)|| <61, for|zf <e
lzol| < 62

} = [zl <e
for all x(-) € S and each t > 0.

Malkin proved that if (2.13) is asymptotically stable at the origin, then it
is totally stable. The converse is false, at least for f € C*° (a counter-example
can be obtained by an easy modification of previous Example 2.2, see again
[66]): at the best knowledge of the authors, it is not known if the converse
holds in the analytic case.

Note that the concept of total stability does not say that if (2.13) is stable
then close to f there are vector fields g for which (2.20) possesses some kind of

3 is asymptotically

3

stability property. For instance, the scalar equation & = —x
stable, and hence totally stable, but the equation & = k?z — 3 is unstable, no
matter how small & is.

A different type of notion can be obtained if the number §; in Definition
2.11 is allowed to vary with the point = (and, in particular, to become smaller

and smaller as x tends to zero).

Theorem 2.8 Let the origin be an asymptotically stable equilibrium position
for system (2.13). Then, there exist g > 0 and a positive definite continuous
function 6(x) : Be, — R such that the following holds: if g(x) is any vector
field satisfying the conditions:

e g(x) is continuous
e g(0)=0
o [If(x) = g(2)l| < &(x) for each x € Be,

then the origin is also an asymptotically stable equilibrium position for (2.20).

Proof. According to Kurzweil’s converse theorem, we can find a strict Lia-
punov function V (z) of class at least C'!, defined in a closed neighborhood of the
origin B.,. Let VV () f(z) = —W(z), so that W (z) > 0 for = € B., (z # 0).
Let a(z) be any strictly positive, continuous function (possibly constant) such
that
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IVV ()] < a(x)

for x € B.,. Let finally 6(z) = W(x)/(2na(x)).
Now, assume that g(z) satisfies the required conditions. If we compute the
derivative of V(x) with respect to (2.20) we obtain

Vi) g@) = V() lole) - F)]+ TV () - £(x)
WV (@) o) — £ - W) < -

IN

for each x € B, (recall that we are using the sup-norm). The conclusion is

implied by second Liapunov theorem. -

Disturbances permanently acting on the vector field are also called outer
perturbations *.

In view of practical applications, it is very important to take into consider-
ation also the effect of perturbations due to state measurement errors.

A differential equation like (2.13) can be thought of as rule which supplies
the value of the velocity & when the state x is known. But assume that the
state cannot be measured in exact way: at some instant ¢, the system is actually
at the state x, but we believe that the state is x + s(z), where s(x) is some
(hopefully small) continuous function. Accordingly, we are led to assume for
the velocity & at the instant ¢ the value f(z 4 s(z)) instead of the correct
one f(z). The computed solution will be therefore affected by errors. In this
situation, we say that the system is subject to inner perturbations. If f is
continuous, inner perturbations can be easily reduced to outer perturbations,

by simply writing

fla+s(x) = fz) + [f (@ + s(z)) — f(2)] .

Theorem 2.9 Let the origin be an asymptotically stable equilibrium position
for system (2.13). Then, there exist g > 0 and a positive definite continuous
function o(x) : B., — R such that the following holds: if s(x) is any vector
field satisfying the conditions:

e s(x) is continuous

4We point out that for more generality, outer perturbations are often represented in the
literature by means of functions of time.
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e s(0)=0
o |ls(x)]| < o(x) for each x € By,

then the origin is also an asymptotically stable equilibrium position for the

system

&= fle+s()) .

Global versions of Theorems 2.8 and 2.9 can be obtained by some obvious
modifications of the previous statements.

We remark that the treatment of stability under inner and outer perturba-
tions is much more delicate in the case of discontinuous right hand side. We do
not go into this subject, but we point out some classical work ([69]) and some

recent interesting research papers ([94], and the references therein).

2.2.6 The Invariance Principle

Converse Liapunov Theorem 2.4 about asymptotic stability guarantees the ex-
istence of some strict Liapunov functions, but does not give any general indica-
tion on how to construct one of them. In fact, experience shows that in general
finding explicit Liapunov functions is far from being trivial, even when one is
sure that they exist; from a practical point of view, this is the main drawback
of Liapunov method.

In this subsection we discuss a way to ascertain asymptotic stability which
can be of some advantage when only a weak Liapunov function is available.
The main tool is provided by the well known Invariance Principle, attributed
to Barbashin and Krasowski in the Russian literature, and to LaSalle in the
western literature ([67], [93]).

Let us consider again the time invariant system of ordinary differential equa-
tions (2.13), under the assumption that the vector field f is locally Lipschitz
continuous, so that for each initial state xy there is just a unique solution
x(t; o). Let xo be a point such that x(t;xg) is defined for all ¢ > 0. A point
y is said to be a limit point of xg if there exists a sequence {t;} such that
limy t = +oo and limy x(tg;20) = y. The set of the limit points of xg is
denoted AT (xg) and it is called the (positive) limit set of xg.

Lemma 2.2 (/20]) Assume that the solution x(t;xq) is bounded for t > 0.
Then, AT (o) is nonempty, compact and invariant (that is, if y € AT (xg) then
x(t;y) € A (xg) for each t € R).
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Theorem 2.10 (Invariance Principle) Let Q0 be an open set containing the
origin of R™. Let V(x) be a smooth weak Liapunov function for the system
(2.13), defined for each x € Q and satisfying the conditions (i), (ii), (iii), (iv) of
Definition 2.5 for each x € Q. Let 1 > 0 and let ; be the connected component
of the level set {x € Q: V(x) <1} which contains the origin. Assume that €

is compact, and let

E={zecQ: V(z)=0}.

Let finally K¢ be the union of all the sets M which are compact and invariant
with respect to (2.13) and which are contained in E.
Then, for each xq € €, we have AT (xq) C K.

Proof Since there exists a weak Liapunov function, the origin is stable. In
particular, it is an equilibrium position and constitutes a compact and invariant
set. Clearly V(0) = 0. It follows that 0 € Ko, so that K is nonempty.

First of all, we remark that if zo € €, then x(¢; z¢) € € for each ¢ > 0. This
can be proven by contradiction. Let us assume that for some ¢; > 0, z(¢t1;20) ¢
Q. If V(z(t1;20)) > I, then the monotonicity condition is violated. If instead
V(z(ti;0)) <1, then z(t1;x0) belongs to some other connected component of
the level set. Hence, there exists to € (0,¢;) for which V(z(t2;20)) > I. The
condition follows again by the monotonicity condition.

Since €, is compact, z(t; xo) is bounded for ¢ > 0. By Lemma 2.2, A™(zg) is
nonempty and compact. Moreover, A*(zo) C €. Using again the monotonicity
condition, we see that the limit lp = lim;— o V(z(t;20)) exists. In addition
we have 0 < Iy < [. The definition of limit set implies that V(y) = Iy for any
y € A (20).

Now, using the invariance property, we also see that V' (z(¢;y)) = lp for each
t € R. Finally, a simple computation shows that V(y) =0.

We have so proved that AT (zg) C E. The conclusion easily follows.

|

Roughly speaking, the Invariance Principle states that the trajectory issuing
from each xg € Q; is attracted by Ky. Of course, under the assumptions of
Theorem 2.10 the origin is stable. Thus, if one is able to exclude the existence of
nontrivial invariant subsets of F/, the asymptotic stability of the origin is proven.
Sometimes, this can be done on the basis of simple geometric considerations.
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Example 2.6 The linear system

T4 = —X1 — To
{ To =X .
is asymptotically stable at the origin. It admits V (z1,72) = 22 + 22 as a weak
Liapunov function. The set Q; = {(x1,22) : 27 + 23 < I} is compact for each
1>0,and E = {(21,22) : 1 = 0} N Q. At a point of the form (0,x2), with
zo # 0, the vector field is orthogonal to the ws-axis. Thus, it is clear that no
trajectory of the system (apart from the trivial one) is contained in E. Hence,
K reduces to the origin, and Theorem 2.10 allows us to get the conclusion.

Of course, in this case it is not difficult to find also a strict Liapunov func-

tion (for instance, V(x1,z2) = 327 + z122 + 223). |

A version of the Invariance Principle for systems without uniqueness of

solutions can be found in [60].

2.2.7 The domain of attraction

As in the previous subsection, we consider the time invariant system of ordinary
differential equations (2.13), and we assume that the vector field f is locally
Lipschitz continuous, so that uniqueness of the solution for each initial state is
guaranteed. Moreover, let us assume that the origin is an asymptotically stable

equilibrium point. The set

A={zxg e R": lim x(t;x0) =0}

t—+00
is called the domain of attraction. Clearly, the origin is globally asymptotically
stable if, and only if, A = R™. If it is not the case, it is important for practical
reasons to have information about the size and/or the shape of A. Indeed,
the stability properties could be of scarce utility if the domain of attraction
is very small, or if the origin is very close to its boundary. There is a wide
literature about theoretical methods for the determination of A, and about
numerical methods for its approximate estimation (we refer to [65] for a very
good survey, covering the attempts made until 1985; we refer also to the recent

paper [28]). We start by recalling some geometric properties of A.

Proposition 2.10 Let the origin be (locally) asymptotically stable for (2.13).
Then A and 0A are invariant with respect to the trajectories of (2.18). More-

over, A is diffeomorphic to R™. In particular, A is open and simply connected.
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The most celebrated approach to the characterization of the domain of
attraction is based on the following statement ([163]; see also [67] and [153]).

Theorem 2.11 Let A be an open subset of R™, such that 0 € A. Let us assume
that there exist two functions W : A —[0,1) and h: A — [0, +00) such that:

(i) h is continuous and W is of class C*;

(11) h(0) = 0, and h(x) > 0 for each x € A (x # 0);

(111) W(0) = 0, and W(x) > 0 for each x € A (z #0);

(iv) VIV(x) - f(z) = —h(z)(1 — W(x)) for each x € A;

(v) limy_oo W(zg) = 1 for each sequence {zy} such that x, € A for k =
1,2,..., and either x, — T € OA or ||zk|| — oo.

Then, A coincides with the domain of attraction of (2.13).

Condition (iv) of the previous theorem can be interpreted as a partial dif-
ferential equation of the Hamilton-Jacobi type in the unknown W (z), with an
arbitrary term inside (the positive definite function k). This equation is usually
called Zubov’s equation. Finding explicit solutions of Zubov’s equation is very
hard in general, though an appropriate choice of h may be of some help.

To clarify the link with the Liapunov method, we point out that the sub-

stitution W =1 — e~V put Zubov’s equation in the equivalent form

VV(x) - f(z) = —h(z) .

Accordingly, the boundary condition (v) becomes limy_,o, V(2)) = oco.

Zubov’s equation appears in [163] and [67] in the more involved form

VW(z) - f(x) = =h(x)(1 = W(z)/1+[f(2)]* .

The new multiplicative term is due to a time reparametrization ds =
\/W dt, which may be motivated in general by the need of prevent-
ing finite escape time of solutions. We can limit ourselves to the simpler form
(iv) since the continuability of solutions is implicitly guaranteed a priori by the
regularity of f(z) and the stability assumption.

Theorem 2.11 admits a converse (see [153]), which can be stated in the
following form.

Theorem 2.12 Let the vector field f(x) be of class C*, and assume that the
origin is an asymptotically stable equilibrium point with domain of attraction
A. Then, there exist functions V : A — [0,+00) and h : A — [0,400) such
that:
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(i) h is continuous and V is of class C*;

(ii) h(0) =0, and h(x) > 0 for each z € A (z #0);

(111) V(0) =0, and V(z) > 0 for each x € A (z #0);

(iv’) VV (x) - f(x) < —h(x), for each x € A;

(v’) limg 00 V(x) = +00 for each sequence {xy} such that x, € A for k =
1,2,..., and either x, — T € OA or ||xg|| — oo.

In [153], a function V(z) is called a mazimal Liapunov function if there
exists a function h such that the pair V, h enjoys properties (i), (ii), (iii), (iv’)
and (v') listed in Theorem 2.12. Theorem 2.12 is proven in [153] under the
additional assumption that f is globally Lipschitz continuous on A. We remark
that this assumption can be actually removed without affecting the conclusion,
by virtue of the following Proposition 2.11. Indeed, it is clear that, ¢(x) being
a strictly positive function of class C1, replacing f(z) by f(z) = o(x)f(z) does
not affect inequality (iv’); moreover, the phase portrait of the system remains

unchanged and so does the domain of attraction.

Proposition 2.11 Let Q be open and connected. Let f : Q2 — R™ be a vector
field of class C*. Then there exists a strictly positive function ¢ : Q — (0, +00)
of class C' such that the field f(x) := o(x)f(x) is Lipschitz continuous on Q.

Proof. Without loss of generality we may assume that 0 € Q. Let w: Q — RT

denote a nonnegative function of class C'* such that

wx)=0 < z=0;
w(z) = +oo <= x— I or |z] — +oo.

We seek ¢ in the form
p(r) = o(w(x)),

where § : Rt — (0, +00) is a function of class C*. We set f(z) := d(w(x)) f(z)
and for all r € R

Oow

h(r) :== 1+ max{ g;;f; (m)’ : a—%(x) Afi@)]; xeQ, wx) <r 1<, <n}
As ~

O () = 8 ()2 () i) + D)oL (a)

8.%‘j 6xj ! (%cj ’

we only have to determine the function § in such a way that both functions
dh and &' h are bounded on RT. Thus, we are done if we prove the following

lemma.



52 Time invariant systems

Lemma 2.3 Let h : Rt — [1,4+00) be a continuous and nondecreasing func-
tion. Then there exist a constant C' > 0 and a strictly positive function
§:R*Y — (0,400) of class C' such that for all v > 0

d(r)h(r) < C, |8 (r)|h(r) < C.
It is clear that Lemma 2.3 is a direct consequence of the following result.

Lemma 2.4 Let h be as in Lemma 2.3. Then there exists a strictly positive,
nonincreasing and continuous function v : RT — (0,+0c) such that for all
r>0

+oo
Y(h(r) < 1, / +(s) ds < 34(r).

Indeed, setting §(r) := f+°° ~(s)ds , we have |§'(r)] = ~v(r) and

d(r)h(r) < 3y(r)h(r) < 3.

It remains to prove Lemma 2.4. We first define a sequence (g;);>o of real
numbers by induction on i. We set go = 1/h(0) and for each i > 1

. 1 —i —i
gi:mm{m,goel ,9162 s Gie1 ) (2.21)

Notice that the sequence gg, g1, ... is nonincreasing. Next, we define the linear
piecewise function g : R™ — R™ as follows: g(i) = g; for each i > 0 and g is
linear on each interval [i,74 1]. We are now in a position to define the function
~v. We set

y(r) = min{ﬁ,g(r)} for 0 <r<1;
y(r) = min{ﬁ,g(r},go el=r} for1 <r<2;

’Y(T) :min{ﬁvg(r)790617T791 62_7”7"'797;71 eiir} for S T<Z’+17

and so on. Using (2.21) we readily obtain v(i*) = v(i) = ¢; and v(i~) = g;.
Therefore, the function «y is continuous. Clearly, « is a nonincreasing positive
function such that y(r)h(r) < 1 for any » € R*. Finally, pick any number
r > 0 and let ¢ denote the first integer such that r <7 — 1. We write

/;OO Y(s)ds = /:7(5) ds + /:OO v(s)ds =: I + L.

As ~y is nonincreasing,
Iy < (i =r)y(r) < 29(r).
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On the other hand, it follows from the definition of the function 7 that v(s) <
gi—1€"7° for all s > i. Therefore,

+oo
I, < gi,l/ e Cds=gi1 =70 —-1) <~(r).
i

We conclude that f:roo v(s)ds = I + Iz < 3(r), as desired.

As a nice illustration of Theorem 2.12, we report the following example (see
again [153]).

Example 2.7 Let us consider the two dimensional system

T, =—x1 + 2x%x2
{d:g = —x5 .

It is not difficult to find a strict Liapunov function in the small; for instance,
with V (21, 29) = (234 23)/2 we obtain V (1, z9) = —23(1 — 2z, 25) — 23, which
is negative definite in the region {(x1,z2) : x122 < 1/2}. Hence, the origin is
locally asymptotically stable. On the other hand, the domain of attraction is
not the whole plane, since the solution z; = e!,z9 = e~! does not converge
to the origin. The domain of attraction is actually given by the region A =
{(z1,22) : mixe < 1} (some trajectories are plotted in the Figure 2.6). A
maximal Liapunov function for this system has been computed in [153]: it is
given by

2 2 3
]+ 15 — 175

V(z1,22) = 30— 21m0)

As already noticed, in order to find a maximal Liapunov function one should
solve a partial differential equation, which in general is not easy. As an alter-
native, the following theorem can be used in order to approximate from inside
the domain of attraction of system (2.13) by means of the level sets of any

Liapunov function V(z).

Theorem 2.13 Let Q C R™ be an open set such that 0 € Q. Let V : Q —
[0,4+00) be such that:

(1) V(0) =0, and V(z) > 0 for each x € Q, x # 0;
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-2+

) 2 A 0 1 2 3
Figure 2.6: System of Example 2.6

(2) V is of class C';
(3) VV(z)- f(z) <0, for each x € Q, x # 0.

Let | > 0 and let Q; be the connected component of the level set {x € Q) :
V(z) <1} such that 0 € Q. Assume that € is a compact set. Then, the origin
s asymptotically stable and € C A.

Proof The statement is actually a special instance of Theorem 2.10.

Example 2.8 The two dimensional system

{ i = —x1 + 22323
(tg = —X2
is a classical example ([20], p. 68). A Liapunov function for this system can be
written as
2
2

X
V($17.'L'2) = ?1‘%2 + 2.1'2 .
1
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Figure 2.7: System of Example 2.7

Note that V(z1,xs) is strictly negative for all (z1,z2) € R?; nevertheless,
V(x1,z2) is not radially unbounded, so we cannot conclude that the origin is
globally asymptotically stable. As a matter of fact, even in this case we have
a solution =7 = e,z = e~! which does not converge to the origin. Some
trajectories of this system are shown in Figure 2.7. Figure 2.8 shows some level
curves of the function V(z1,z2). The domain of attraction is actually given by
the region A = {(z1,22) : 2323 < 1}.

This example allows us to emphasize that the assumption about the com-
pactness of €; cannot be dropped in Theorem 2.13.

A completely different method for identifying the boundary of the domain of
attraction, more geometric in nature and apparently not related with Liapunov
method, is proposed in [33] (see also [34]).

2.2.8 Comparison functions

In order to formalize the general notions of external stability, we first intro-

duce certain classes of functions to be used as comparison or “gain” functions.
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0.4 .

0.2r 4

Figure 2.8: Level curves of the Liapunov function of Example 2.7

Comparison functions appear for the first time in the work of W. Hahn, who
proposed for them the generic term “functions of class K”. In order to distin-
guish several types of such functions, we need to adopt here a more specific
notation.

A function « : [0,71) — [0,400) is said to belong to the class Ky if it
is continuous, strictly increasing and «(0) = 0. Here, r; may be a positive
number or +oo and may depend on a. When o € Ky and r; = 400, we say
that o is of class /Cg.

We say that a function a : [rg, +00) — [0, +00) (with 7o > 0) is of class
K if it is continuous, strictly increasing and lim,_, o a(r) = 4o00. If & € £
and it is defined on [0, 4+00), we write o € K

We also set K§° = Ko N> = Ko niK:.

A function a : [0,4+00) — [0,+00) is said to belong to the class £ if it is
continuous, decreasing and satisfies lim,_, o a(r) = 0.

A function 8 : [0,400) x [0,400) — [0, +00) is said to belong to the class
LK if it is of class £ with respect to the first variable and of class Ko with

respect to the second one.

Comparison functions are an useful tool, which allows us to reformulate the

definitions of stability in an elegant and unified way. To give an idea of how it
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works, we report here the following propositions, whose proofs can be found in
[67], [3].

Proposition 2.12 The following statements are equivalent:

(i) system (2.13) is stable at the origin;

(i) there exist ro (0 < rg < 400) and a map «: [0,79) — R, a € Ky, such that
for all xg with ||xo|| < ro, for all x(-) € Sy, and for all t >0

lz@)] < a([zoll) - (2.22)

Proposition 2.13 The following statements are equivalent:
(i) the origin is globally asymptotically stable for (2.13)

(i) there exists a map B : [0,400) x [0, +00) — RT which is of class LK and
such that

lz(®)]] < B(E, [|lzoll) (2.23)

for each xy € R™, each x(-) € Sz, and each t > 0.

Proposition 2.14 The following statements are equivalent:
(i) system (2.13) is Lagrange stable;

(ii) there exist 11 (0 < r; < +00) and a map « : [ry,+00) — R, a € K™, such
that for all xo with ||zo|| > r1, for all x(-) € S, and for all t > 0

lz@)|l < a(llzoll) - (2.24)

In particular, Propositions 2.12 and 2.14 emphasize the analogy (and the
difference) between Liapunov and Lagrange stability. In fact, Lagrange stability
looks like Liapunov stability with respect to the “point at the infinity”. Some
authors consider Liapunov and Lagrange stability as dual properties.

Using comparison functions we can also express in a very useful way some
typical features of Liapunov functions. Let V' (z) be a real function defined on
B, and such that V(0) = 0. If V(x) is continuous and positive definite, then
for 0 < ro < r we can find a function a € Ky defined on [0, 79) such that

a(llz]) < V(x) for ||z|| <ro . (2.25)

Inequality (2.25) in turn implies that V' (z) is positive definite. Moreover, if
V is defined on R™ and it is radially unbounded, then a(-) can be taken in the
class Kg°.
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We finally remark that if V'(z) is defined on B, with V(0) =0 (0 < r < +00)
and continuous, then there exists b € Ky defined on [0,7) such that

Vix) < b(||z]]) for |lz|| <. (2.26)

If in addition V' is defined on R™ and radially unbounded, then b € K§°.

2.2.9 External notions

In this section we come back to the original model of a (time invariant) system
with input

T = f(x,u) (2.27)

where f is a continuous map from R™ x R™ to R™. Note that for a given
admissible input u(t), the right hand side of (2.27) satisfies assumptions (A),
(As) and (Aj3) mentioned in Chapter 1. Therefore, the corresponding solutions
should be intended in the Carathéodory sense.

We present now some extensions of the weak and strong finite gain proper-
ties previously encountered in the case of linear systems.

Definition 2.12 We say that (2.27) is UBIBS-stable (i.e., uniformly bounded-
input bounded-state stable) if for each R > 0, there exists S >0 :

[zoll < B, Ju()llo <R =[x <5,

Vt > 0 and for each solution x(-) € Sy u(.)-

Equivalent definitions can be given in terms of comparison functions (see
31)-
Proposition 2.15 The following statements are equivalent:
(i) system (2.27) is UBIBS-stable;

(ii) there exist functions y1,7v2 € K such that

[z <y (llzoll) + 2 (llul-)l)
for eacht > 0, each initial state xq, each admissible input u(-) and each solution
2(-) € Szou();

(iii) there exists ¥ € K - such that for each R > 0, each xo € R", each

admissible input u(-) and each solution x(-) € Sy, () one has
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lzol| S R, [u()lloo <R, t>0=[lz(t)]| < Z(R) .

It is obvious that if (2.27) is UBIBS-stable, then it is internally Lagrange
stable, but the converse is false in general.
The following notion has been introduced by E. Sontag ([131]).

Definition 2.13 We say that system (2.27) possesses the input-to-state sta-
bility (in short, ISS) property, or that it is 1SS-stable, if there exist maps
B € LK, v € Ko such that, for each initial state xo, each admissible input
u: [0,4+00) — R™, each solution x(-) € Sy, u(.) and each t > 0

l@)] < B llzoll) +~(llulleo) -

Note that if a system is ISS-stable, then the associated unforced system
has a unique equilibrium position at the origin. The ISS stability property
constrains the behavior of the system both for ||z|| small and |z|| large. More

precisely, it is not difficult to see that the ISS property implies that:
1) the system is internally globally asymptotically stable
2) the system is UBIBS-stable

On the contrary, the 1-dimensional example

i = —(cosu)’x
shows that a system may be internally globally asymptotically stable and
UBIBS-stable but not ISS-stable.

Note also that the UBIBS stability property does not impose any constraint
on the behavior of a system in a bounded region of the state space. In particu-
lar, a UBIBS-stable system may exhibit a large variety of nonlinear phenomena:
multiple equilibrium positions, limit cycles, etc..

Even for UBIBS stability and the ISS property we can conceive appropriate
Liapunov-like functions.

Definition 2.14 A smooth UBIBS-Liapunov function for (2.27) is a radially
unbounded C' function V : R® — R which enjoys the following property: for
each R > 0 there exists N > 0 such that

V(x,u) =VV(x) flz,u) <0 (2.28)

for each x € R™ with ||z|| > N and each u € R™ with ||u|| < R.
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Definition 2.15 A smooth ISS-Liapunov function for (2.27) is a positive def-
inite, radially unbounded C* function V : R™ — R with V(0) = 0 which enjoys
further the following property: there exist functions p,x € K§° such that for all
x €R™ (x#0) and u € R™, if ||z|| > p(||u|) then

V(z,u) = VV(2)- fla,u) < —x(llz]]) - (2.29)

The last inequality says that V(z,u) is negative definite uniformly with
respect to u. The following result can be considered as an “external” version of
Theorem 2.3 (the proof is originally given in [11], but see also the elder paper
[154]).

Theorem 2.14 Assume that system (2.27) possesses a smooth UBIBS-
Liapunov function. Then, it is UBIBS-stable.

Proof. Let R be any positive number, and let N be determined according
to Definition 2.14. Without any loss of generality we can assume that N > R.
Let M = max, 5, V(2), and let S > N be such that |[z|| > S = V(z) > M.
Such a positive S exists, since V is radially unbounded. Now, let zy be such
that ||zo]| < R and assume that for some admissible input «(-) with [|[u(t)|| < R

a.e. for t € [0,+00), some z(-) € S;, () and some t5 > 0, one has

lz(t2)]| > 5.

Since z(t) is continuous, we can find ¢; € (0,t2) such that ||z(¢1)|| = N and
[|z(t)|| > N for t € (t1,t2]. Thus, we have V(z(t1)) < M and V(x(t3)) > M.
On the other hand, the map t — V(x(¢t)) is differentiable a.e., and for a.e.
t € [t1,12]

iV(x(t)) = VV(a(t)) - f(a(t), ult) = V(x(t),u(t)) .

dt
By construction, (2.28) applies and we conclude that V(z(t1)) > V(x(t2)), a
contradiction. [

A partial converse of this theorem has been recently given in [15]: under the
assumption that (2.27) admits a unique solution for each admissible input, it
is proven that UBIBS-stability implies the existence of a radially unbounded,
upper semi-continuous function V(z) which satisfies, instead of (2.28), the fol-

lowing monotonicity property:

VR > 0,3N > 0 such that for each admissible input u(-), each solution x(-)

defined on an interval I and corresponding to u(-), one has that the composite
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map t — V(x(t)) is non-increasing on I, provided that ||u(t)|| < R for a.e.
tel and ||z(t)|| > N for each t € I.

As the example at the end of Section 2.1.4 shows, the problem of the in-
vertibility of Theorem 2.14 is far from being trivial even in the linear case.

We want now to present an “external” version of Theorem 2.2. It is essen-
tially due to E. Sontag ([131]): we report a sketch of the proof for the sake of

convenience.

Theorem 2.15 Assume that there exists a ISS-Liapunov function for (2.27);
then the system is 1SS-stable.

Proof. Since V is positive definite and radially unbounded, by (2.25), (2.26)

we can write

all]]) < V() < b([l«)

for each € R™, where a and b are some functions of class K£g°. Let u(-) :
[0,+00) — R™ be a given measurable, essentially bounded input and let g €
R™ be a given initial state. Let finally z(t) € Sy u(.)-

Let ¢ = b(p(]|u(-)|loc)) and consider the compact set

K={zeR":V(z)<c}.

Note that x € K implies ||z]| < a=*(b(p(]|u(+)]|s))), while x ¢ K implies
llz]] > p(JJu(-)]|so). Moreover, K is positively invariant for x(t), namely if for
some to it happens that z(ty) € K, than z(t) € K for each ¢ > to. This can
be proved by contradiction. Let z(t;) ¢ K for some t; > to, which means
V(z(t1)) > c. Since x(t) is continuous, there exists 7 € [tg,t1) such that
(1) € K and z(t) ¢ K for t € (7,t1). In other words, V(z(7)) < ¢ < V(z(t1)).
But for z(t) ¢ K we have

lz@1 > p(lu(-)lle) = p([lu@)])
a.e.. Hence, condition (2.29) applies and V(x(t)) turns out to be decreasing.
This yields V(z(7)) > V(2(t1)), which is a contradiction.

We can now complete the argument. Recall that zo and the admissible
input u(-) are given. If 29 € K, then setting v = a=! 0o b o p we have ||z(t)| <
Y(JJu()|loo) for each t > 0. If zg ¢ K, the existence of a function 5 € LK such
that the inequality

(@)l < B lzoll)
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holds as long as x(t) remains outside K, can be proved by virtue of the com-
parison principle for solutions of differential equations (see for instance [70],
p. 26) and Lemma 1 of [131]. In conclusion,

@ < B, [[zoll) +v([lu(-)ll)
for each ¢ € [0, 4+00). |

In fact, under the assumption that f(xz,w) is locally Lipschitz continuous,
also the converse of Theorem 2.15 holds (see [142], [143], where many other
characterizations of the ISS property are given). Theorem 2.15 can be reviewed
as an extension of Proposition 2.7. Indeed, it is clear that a quadratic function
V(z) = 2* Px such that P satisfies the conditions of Proposition 2.7, is actually

an ISS-Liapunov function for (2.1) in the sense of Definition 2.15.

2.3 Nonlinear systems: stabilization

As explained in the Introduction, and as already illustrated for the linear case,
if the system is not stable (in some sense) we can try to achieve the desired
property by the implementation of a feedback connection. Let us state first the

basic definitions we are interested in.

Definition 2.16 System (2.27) is said to be continuously internally (locally or
globally) stabilizable at the origin if there exists a continuous feedback u = k(x)
such that the closed-loop system

= f(z,k(x)) (2.30)

is (locally or globally) asymptotically stable at the origin.

Note that if the system is stabilized by the feedback u = k() in the sense
of the previous definition, then f(0,%(0)) = 0 i.e., the origin is an equilibrium
position for (2.30). The feedback u = k(x) is also called an internal stabilizer.

Definition 2.17 We say that (2.27) is continuously ISS[UBIBS]-stabilizable

if there exists a continuous feedback w = k(x) such that the closed-loop system

== f(x, k(z) +v) (2.31)

is ISS[UBIBS]-stable (here, v represents the external input).
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Roughly speaking, a feedback v = k(x) which provides ISS-stabilizability or
UBIBS-stabilizability will be also called an external stabilizer. We need finally

the following variant of the notion of Liapunov function (see [5], [132]).

Definition 2.18 We say that (2.27) satisfies a smooth global control Lia-
punov condition (or that (2.27) has a smooth global control Liapunov function)
if there exists a radially unbounded, positive definite, C* function V (x) vanish-
ing at the origin and enjoying the following property: for each x € R™\ {0}
there exists u € R™ such that

VV(z)- f(z,u) <O0. (2.32)

We have already encountered an example of control Liapunov function in
the section concerning linear systems. Indeed, it is not difficult to recognize,
that V(z) = 2* Pz is a global control Liapunov function for (2.1) if and only if
(2.9) holds.

2.3.1 Necessary condition for internal stabilization

Definitions 2.16 and 2.17 above require the existence of a continuous feedback.
This is consistent with the “smooth” setting of the present chapter. Note in
particular that if u = k(z) is continuous, then the right hand side of (2.30) is
continuous, so that existence of solutions is guaranteed for each initial state.

In this section we focus our attention on Definition 2.16. Our purpose is
to discuss the following natural question: how restrictive is it to insist on the
continuity of the feedback law?

It is well known that if a linear system (2.1) can be internally stabilized by
means of a continuous feedback u = k(z), then it admits also a linear stabilizer
u = Fx (see [71]). In other words, stabilizability can be performed in such a
way to preserve the form of the system. Unfortunately, this nice fact cannot
be generalized. The next famous example (due to M. Kawski) shows that in
general a nonlinear system cannot be stabilized by a feedback u = k(x) which
is at least as regular as the right hand side of (2.27) is.

Example 2.9 Consider the two-dimensional system

i’lzu
$2:$2—$:{).
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It cannot be stabilized by a feedback of class C', as a simple lineariza-
tion argument shows, but there are explicit continuous locally asymptotically
stabilizing feedback laws. One such a stabilizer is for instance

4 1
k(x) = —z1 + 20+ gscg —

(see [10] for details). [ |

Similar examples can be given even if the state space is one-dimensional.

For instance, the system

i =x+ 2u°

can be stabilized by setting u = — &z, but not by a feedback of class C'*. Note
however that the right hand side is a nonlinear function of w.
The following examples aim to convince the reader that even the continuity

requirement about the feedback law in Definitions 2.16 is restrictive.

Example 2.10 Let » > 0 be an arbitrary integer, and consider the one-
dimensional example

i =¥ - 2ua? x| . (2.33)

Clearly, it is of class C?". The discontinuous feedback law u = k(z) = sgn
renders the origin asymptotically stable, but if k(x) is continuous, it is not
difficult to see that there is an interval of the form (0,¢) or (—¢,0) where the
right hand side has the same sign than z. Hence, (2.33) is not continuously
stabilizable (this example appears for the first time in [124], with r = 0).

Example 2.11 Another example is given by the one-dimensional equation

&=+ ux® . (2.34)

Whenever u = k(z) is bounded, the linearization of the closed loop system
presents a positive eigenvalue, hence it is unstable. However, the unbounded

feedback u = k(z) = —2/x gives rise to an asymptotically stable equation. W

The non-existence of continuous internal stabilizers for (2.27) is related to
certain obstructions of topological nature. The most famous one is pointed out
by the following result, usually referred to as Brockett’s test (see [26], [161],
[10], [133]).
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Theorem 2.16 Consider the system (2.27) and assume that f is continuous
and that f(0,0) = 0. A necessary condition for the existence of a continuous
internal stabilizer u = k(x) with k(0) = 0, is that for each € > 0 there ewists
0 > 0 such that

Vy € Bs 3z € B., Ju € B such that y = f(z,u) .

In other words, f maps any neighborhood of the origin in R"™™ onto some
neighborhood of the origin in R™. Brockett’s test shows in particular that no

system of the form

@ =Y uifi() (2.35)
i=1

where the vector fields f; are continuous, m < n and the linear subspace
spanned by f1(0),..., f,»(0) has dimension m, can be internally stabilized by
a continuous feedback (the argument can be found in [136]).

Systems of the form (2.35) are sometimes called nonholonomic. Nonholo-
nomic systems model a number of important applications (for instance in
robotics). The prototype of a nonholonomic system is the so-called nonholo-

nomic integrator

1 = Uy
o = ug (2.36)
T3 = T1Ug — TaUq .

Of course, Theorem 2.16 is not invertible. As an example, we can take
equation (2.33): it is not difficult to see that it passes Brockett’s test, and yet
it is not continuously stabilizable. Another interesting example of this type® is
given by the two-dimensional system

- i)
To = 2UuT1To

(see [136] for a thoughtful discussion; see also [138] and [109] for new interesting
facts about this system).

All these examples motivate the interest in stabilizing feedback laws which
are not necessarily continuous or time invariant: a first possible attempt is
of course to relax the continuity requirement. Indeed, the question whether
nonholonomic systems can be stabilized by means of discontinuous feedback has

5Example (2.37) comes back to [67], page 71; its reinterpretation in the framework of
control theory is due to Z. Artstein ([5]), so that it is commonly known as Artstein’s example.
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been addressed by many authors. The answer is linked to the notion of solution
adopted for the closed loop system which, if discontinuous feedback is allowed,
turns out to have, of course, a discontinuous right hand side. Consider for
instance system (2.37). It is clear that if solutions are intended in Carathéodory
sense, then the feedback

—1 foraxy >0

2.38
1 for 1 <0 ( )

u(ry, x2) = {

is actually a stabilizer. However, as we shall see later (as a consequence of next
Theorem 2.18 and Proposition 3.5), if the solutions are intended in Filippov’s
sense then no locally bounded feedback u = k() can stabilize the system at the
origin. As a matter of fact, with the feedback (2.38) all the points of the form
(0,x9) are constant Filippov solutions for (2.37). A similar drawback arises
with other feedback laws proposed in the literature (see for instance [29], [23]).

The following extension of Brockett’s test is an easy consequence of a the-
orem proved by E. Ryan ([124]).

Theorem 2.17 Consider a system of the form (2.27) and assume that the map
flz,u) : R" x R™ — R™ is continuous, with f(0,0) = 0. Assume in addition
that for each subset U C R™ and each x € R",

f(z,coU) =cof(x,U) . (2.39)

Then, a necessary condition for the existence of a locally bounded, mea-
surable feedback u = k(x) which internally stabilizes (2.27) (in the sense of
Filippov solutions) is that for each € > 0 there exists 6 > 0 such that

Vy € Bs 3 € B, Ju € R™ such that y = f(z,u) .

Theorem 2.17 shows for instance that the nonholonomic integrator (2.36)
cannot be stabilized (in Filippov’s sense) by a locally bounded feedback
u = k(z). Another important aspect is the type of discontinuities which can
be admitted for the feedback law. To this respect, note that the stabilizing
feedback found for (2.33) is bounded, and the unique inevitable discontinuity
is at the origin (the point to be stabilized). The stabilizing feedback found
for (2.34) has again a unique discontinuity at the origin, but it is necessarily
unbounded. We present a further example (basically due to E. Sontag, [136]).
It shows that a system can admit a stabilizer which is continuous at the origin,

but with inevitable discontinuities in any neighborhood of the origin.
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Example 2.12 Consider a map f(z,u) : R* — R whose graph can be de-

scribed in the following way. Let {A;} be a sequence of open strips of the plane
(z,u) defined by

and let A = UA;. It is clear that the strips A; “converge” to the positive z-axis

and are pairwise nonoverlapping. Moreover, the projection of A on the positive
x-axis is onto (see Figure 2.9).

u
1 ...
Ao
1/2 """"" Al
1/4 I Aq
1 x

Figure 2.9: Strips where the map f of Example 2.11 is negative

The function f(x,u) is assumed to be strictly negative on A and non-
negative outside A: in particular, strictly positive for x < 0, u < 0. In order
to stabilize the system, we are forced to choose a function u = k(z) in such a
way that

f(z,k(x)) >0 for z <0 and f(x,k(z)) <0 forz>0.



68 Time invariant systems

While there is of course no problems with the first requirement, the second
requirement can be met only if v = k(z) has infinitely many discontinuities
accumulating to the origin. [ |

Note that it makes sense to speak about Filippov solutions only if u = k(x)
is locally bounded.

We suggest to the reader the survey papers [136], [137] for a more exhaustive
discussion about the need of introducing discontinuous feedback in stabilization
theory. See also the recent paper ([31]).

2.3.2 Asymptotic controllability and local controllability

In this section we assume that f(z,u) is continuous with respect to the pair
(z,u) € R® x R™, and Lipschitz continuous with respect to x (uniformly with
respect to u). We assume also that f(0,0) = 0.

System (2.27) is said to be globally asymptotically controllable at the origin
(see [37]) if there exist Cp > 0, C' > 0 such that:

(a) for each zp € R™ there exists an admissible input u.,(t) : [0, +00) — R™
such that the unique solution x(t;0, zg, uy,(+)) is defined for all ¢ > 0 and
satisfies

lm (0, 20, Uz, () =0 (2.40)

t—-+4o0
(b) for each € > 0 it is possible to find n > 0 such that if ||zo|| < 7 then there
exists an admissible input u,, (t) such that (2.40) holds, and in addition

lz(t;0, 20, uz, (+))]| < e forall ¢>0 (2.41)

(c) if, in (b), the state x( satisfies also ||xg|| < Co, then the input wu,,(t) can
be chosen in such a way

[y (B)]| < €

for a.e. t > 0.

If (2.40) is required to hold only for each zy in some neighborhood of the
origin, then we say that the system is locally asymptotically controllable.

The meaning of this definition is that the system is asymptotically driven
toward zero by means of an open loop, bounded control which depends on the
initial state.

Recall also that system (2.27) is said to be small time locally controllable
(in short, STLC) to the origin if for each T > 0, there exists a ¢ > 0 such that
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for each x¢ with ||zl < ¢ there exists an admissible control u,, : [0,7] — R™
such that

(T30, 20, ug,(-)) =0 . (2.42)

As far as linear systems are concerned, STLC is equivalent to complete
controllability. In the framework of geometric control theory, there is a wide
literature about STLC (see [147] and the references therein). In particular,
sufficient (and, separately, necessary) conditions for STLC can be found out by
looking at the structure of the Lie algebra generated by the associated family
of vector fields {X (z) = f(z,u) : u € R™}. Of course, these conditions apply
only under the additional assumption that x — f(z,u) is of class C* for every
ueR™.

We are interested in some refinements of the STLC property. For instance,
we shall say that (2.27) is STLC with bounded controls if there exists C' > 0,
and for each T > 0, there exists § > 0 such that for each z¢ with ||zo|| < ¢ there
exists an admissible control for which (2.42) holds and, in addition, ||u.,(t)| <
C for a.e. t €[0,T7.

We also say that (2.27) is STLC with small controls if for each T > 0, there
exists § > 0 such that for each o with ||2g]] < ¢ there exists an admissible
control for which (2.42) holds and, in addition, ||us,(¢)|| < T for a.e. t € [0,T].

Roughly speaking, the difference between asymptotic controllability and
small time local controllability is that in the first case the origin is “reached”

asymptotically, while in the second case the origin in reached in finite time.

Proposition 2.16 If the system (2.27) is STLC with bounded controls, then

it is locally asymptotically controllable.

Proof. Let C' as in definition of STLC with bounded controls. Given ¢ > 0,
let M > max{||f(z,u)||, for ||z|| < e and ||u|| < C}. Fix T = ¢/(3M) and let
us find a corresponding ¢ according to the definition of STLC. We claim that
(a), (b) and (c) hold with the same C and with 7 < min{e/3,d}.

In order to prove (a), it is sufficient to take a control u,, (t) which steers xg
to the origin at the instant 7', and which vanishes for ¢ > T. We know that
this can be done with ||u.,(t)|| < C.

So, it remains to prove (b). Assume that for some ¢ € [0,7] we may have
[|2(%; 0, 20, ugy (+))]| = €. Since the solution is continuous and n < £ we may
also assume that ¢ is minimal i.e., ||z(¢;0, 2o, uz, (+))|| < € for each t € [0,7).
But
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t
|2(#50, 0, uzo (DI < [[2ol| +/O [ (2(s50, 20, sy (+)), Uso (8))]| ds
€ 2¢e
< -4+ MT=—
- 3 + 3
which is a contradiction. [ ]

It is clear that if (2.27) is continuously internally stabilizable, then it is
asymptotically controllable. The converse is true if the system is linear®, but
not in general. The classical counter-example is given by the nonholonomic
integrator (2.36): it is STLC with bounded controls (it is a driftless system
and its Lie algebra has a maximal rank at the origin, so that Chow’s Theorem
applies [80]) and hence asymptotically controllable: however, we know that it
does not pass Brockett’s test, so that it is not internally stabilizable.

Because of Ryan’s extension of Brockett’s test, it follows that large classes of
asymptotically controllable systems can be stabilized not even by discontinuous
feedback, at least as far as the solutions are intended in Filippov’s sense. It has
been recently proven in [37] that asymptotically controllable systems can be
actually stabilized by time-sampled discontinuous feedback (see [2] and [111]

for different solutions of the same problem).

2.3.3 Affine systems: internal stabilization

For the purposes of the next two subsections, we need to introduce some re-
strictions on the structure of the right hand side of (2.27). Recall that a system
is said to be affine with respect to the input (or simply affine), when it has the

form
&= fole)+ > uifila) (2.43)
i=1
where fo, f1,..., fm are continuous vector fields of R™. There is a wide litera-

ture about internal stabilization of nonlinear (in particular, affine) systems. A
relatively complete description of the state of the art at the end of 80’s can be
found in [134], [10]. However, in the last decade further very important pro-
gresses have been made in several directions, so that carrying out an updated
survey seems to be today a very hard endeavor. It is in any case beyond the

purposes of this book. Rather, we prefer to focus on a few results which fit

5In other words, for the linear case asymptotic controllability, STLC, stabilizability by
continuous feedback and stabilizability by linear feedback are all equivalent: see [71].
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in the thread of our argument, and which seem to be especially relevant for
investigations about discontinuous feedback and Liapunov method.

When we deal with affine systems, it is customary to require fp(0) = 0, and
to look for feedback laws u = k(z) which vanish at the origin .

We note also that affine systems meet the technical assumption (2.39) of
Theorem 2.17.

Continuous stabilizers suffice

The first theorem below is due to Coron and Rosier ([49]). Essentially, it states
that, as far as affine systems and Filippov solutions are concerned, the use of

discontinuous feedback can be avoided.

Theorem 2.18 Assume that system (2.43) can be internally stabilized (in the
sense of Filippov solutions) at the origin by means of a locally bounded, mea-
surable feedback u = k(x) such that

lim esssup |Ju(z)|| =0 . (2.44)
00 o) <s

Then, there exists also a continuous stabilizer u = k(x) for the same system.

The assumption about the form of the system cannot be dropped out. This

is shown by the following example.

Example 2.13 Consider the two-dimensional system

T1=u
{i’g = x% — 2xu? .

An explicit discontinuous stabilizing feedback (in the sense of Filippov so-
lutions) fulfilling (2.44) is constructed in [49]. The system does not admit
continuous stabilizers, since it does not pass Brockett’s test (points of the form
(0, —e) with € > 0 do not belong to the image of f(x,u)). |

The role of control Liapunov functions

We want now to discuss possible generalizations of Proposition 2.6 to nonlinear

systems. First of all, we need to add some new items to our terminology.

"It should be clear that this is actually a restriction. For instance, a simple linearization
argument shows that the one-dimensional system & = x + ux does not admit continuous
stabilizers such that k(0) = 0. Nevertheless, it can be stabilized setting v = —2.



72 Time invariant systems

A feedback law u = k(x) is said to be almost continuous if it is continuous
at every x € R™ \ {0}. Moreover, we say that (2.27) satisfies the small control
property if for each € > 0 there exists 6 > 0 such that for each z € Bs, (2.32)
is fulfilled for some u € B..

System (2.34) provides an example of a system which possesses a smooth
control Liapunov function (take for instance V(x) = 2?) but not one fulfilling
the small control property.

The following result is due to Z. Artstein ([5]; but see also [132])

Theorem 2.19 If there exists a smooth global control Liapunov function for
the affine system (2.43), then the system is globally internally stabilizable by an
almost continuous feedback uw = k(x). If there exists a control Liapunov function
which in addition satisfies the small control property, then it is possible to find
a stabilizer u = k(x) which is everywhere continuous.

Vice-versa, if there exists a continuous global internal stabilizer u = k(x),
then there exists also a smooth global control Liapunov function and the small

control property holds.

We do not report here the proof of this theorem, but some illustrative
comments are appropriate. For the sake of simplicity, we limit ourselves to
the single input case (m = 1). If the vector fields fy and f; are of class C?
(0 < ¢ < 400) and a control Liapunov function of class C" (1 < r < +00) is
known, the stabilizing feedback whose existence is ensured by Theorem 2.19,

can be explicitly constructed according to Sontag’s “universal” formula

0 if b(z) =0
a(z)—+/a?(z)+b*(z 2.45
@)=VP@HE) ey 4 (2.45)

b(x)
where a(x) = —VV(z) - fo(x) and b(x) = VV(x) - fi(z) (see [132] for more
details). We emphasize that such k(z) is of class C'* (with s = min{g,7—1}) on

k(x) =

R™\ {0}. If the small control property is assumed, then the feedback law given
by (2.45) turns out to be continuous also at the origin, but further regularity
at the origin can be obtained only in very special situations.

It is worth noticing that the universal formula above has a powerful regu-
larizing property. Indeed, if a continuous stabilizer for (2.43) is known, then
Kurzweil’s Converse Theorem applies. Hence, the existence of a C°° strict
Liapunov function V(z) for the closed loop system is guaranteed. It is not
difficult to see that the same V(x) is a control Liapunov function for (2.43).
But then, the universal formula can be applied with this V(z), and we obtain

a new stabilizing feedback with the same order of differentiability as fo and fi,
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(at least for x # 0). Feedback laws which are everywhere continuous and C'>°
for x # 0 are also called almost smooth stabilizers.
Theorem 2.19 does not hold for general systems of the form (2.27). This is

shown for instance by the example (see [136]))

il = UaUu3
Ty = uius3
T3 = Uils

which possesses the control Liapunov function V (x1,x2, 23) = 23 + 23 + 23 but
does not pass Brockett’s test. However, the following extension holds (see the

remark after Lemma 2.1 in [49]; see also [113]).

Theorem 2.20 Consider a system of the form (2.27), where [ is conlinuous
and f(0,0) = 0. There exists a discontinuous feedback which stabilizes the
system in Filippov’s sense and which fulfills (2.44) if and only if there exists a

smooth control Liapunov function for which the small control property holds.

It is clear that if an affine system without drift (like the nonholonomic
integrator (2.36) and the Artstein example (2.37)) admits a smooth control
Liapunov function, then the small control property is automatically fulfilled.
It follows from this simple remark and Theorem 2.19, that there exist no smooth
control Liapunov functions for (2.36) and (2.37). Nevertheless, both systems
are asymptotically controllable. This suggests the possibility of characterizing
asymptotic controllability by some weaker notion of control Liapunov function.

Note that if the differentiability assumption about V is relaxed, then the
monotonicity condition can be no more expressed in the form (2.32). In [130]
(see also [134]) E. Sontag proved that if f is locally Lipschitz continuous with re-
spect to both z, u, then the global asymptotic controllability is equivalent to the
existence of a continuous global control Liapunov function. The monotonicity
condition is expressed in [130] by means of Dini derivatives along the solutions
(see Chapter 6). In [141] (see also [37]) it is pointed out that the same condition
can be also expressed by means of contingent directional derivatives. Sontag’s
result has been recently improved ([111], [112]): every (globally) asymptotically
controllable system with f locally Lipschitz continuous with respect to both

x,u admits a locally Lipschitz continuous (global) control Liapunov function,

provided that the monotonicity condition is expressed by means of the proxi-
mal gradient (see again Chapter 6). Note that this result applies in particular
to Artstein’s example (2.37).
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Figure 2.10: Artstein’s example

Example 2.14 An explicit control Liapunov function for system (2.37) is

V(x1,m2) = /422 + 322 — |21] . (2.46)

It is clear that it is Lipschitz continuous. Moreover, for x; > 0, V is

given by

differentiable and we have

VV (21, 22) f(21,22,u) = u [\/Z% (495% + 205 — @1/ daf + 3$%> + a3
Ty T 9T

Since 427 + 223 > x1/427 + 323 for each zp € R and each z; > 0, the
expression in square brackets is always positive and (2.32) is fulfilled with
u = —1. In a similar way, we see that for z; <0, (2.32) is fulfilled with u = 1.
The level curves of (2.46) are drawn in Figure 2.10 (dotted lines), together with
the integral curves of (2.37) (solid lines). We see that (2.46) can be used as a
nonsmooth Liapunov function and this explains why feedback (2.38) works.

For 1 = 0, x5 # 0, the Clarke gradient of V' is given by {(p1,p2) : —1 <
p1 < 1,pa = (sgnaxs)v/3}. In particular, for (p1,p2) = (0,+£v3), (2.32) is
fulfilled for no value of u. On the contrary, (2.32) holds in the sense of proximal
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gradient also at points where 1 = 0, since at these points the proximal gradient
is empty.
A different locally Lipschitz continuous control Liapunov function for (2.37)

is explicitly given in [137].

We emphasize that the tool used to express the monotonicity condition
actually plays a crucial role. In [113] it is proved that if the monotonicity con-
dition for a locally Lipschitz continuous control Liapunov function is expressed

by means of Clarke gradient, then there exists also a smooth control Liapunov

function, so that the system is stabilizable in Filippov sense.

Remark 2.7 It is possible to exhibit an explicit (global) locally Lipschitz Li-

apunov function for the holonomic integrator (2.36). Let us define

V (w1, w2, 23) = [\Ja1 + a3 — |ws|| + 2las] .

This is actually a control Liapunov function according to the definition
of [130]. More precisely, for each nonzero initial state there exists a control
(u1(t),uz(t)) such that the corresponding trajectory is driven to the origin,
and the time derivative 4V (z1(t), z2(t), z3(t)) is strictly negative (condition
(2.4d) of [130]).

More precisely, let r = /23 + 23, U = {r > |z3|} and O = {r < |z3]}. Let
X = (Z1,Z2,73) be given, and let 7 = \/m

If X € O and 7 # 0, we can take (uj,u2) = (21,72), so that dxz/dt =
0,dr/dt = r and dV/dt < 0. After a finite time, we obtain r = |z3|. If 7 =0,
we take (up,us) = (|Z3],0) which implies 29 = 0, z; = t|Z3|, 25 = const,
dVv/dt < 0.

If X €U and 73 # 0, we take (u1,uz) = (sgn(z3)z2, —sgn (v3)wy). It
follows dr/dt = 0, z3 = T3 — (sgn Z3)t72).

Finally, if 3 = 0, we take (u1,us2) = (—Z1, —T2).

Thus, for any initial state X # 0, the origin is reached in finite time by
using at most three different control laws and keeping dV/dt < 0. |

Damping control

Comparing the conclusions of Proposition 2.6 and Sontag’s universal formula,
we notice that there is a difference in the form of the feedback law. To this re-
spect, it is interesting to ask under what assumptions a system can be stabilized

by a feedback law of the simple form
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u; = —aVV(z) - fi(x) (2.47)

which is the natural extension of (2.10). Feedback laws like (2.47) are also
called damping control. They have an important role to play in nonlinear
stabilization.

Assume that the origin is a stable equilibrium for the unforced system as-
sociated to (2.43), and assume that a C! Liapunov function V(z) such that
VV(z)- fo(z) <0 for each = has been found. The set {x: VV(z) - fo(x) = 0}
will be called the bad set. In a similar manner, for any feedback law u = k(z)

we can consider the bad set of the closed loop system (again with respect to
V).

Lemma 2.5 Assume that a weak Liapunov function of class C' for the un-
forced system associated to (2.43) is known, and let uw = k(x) be given by (2.47).
Then, for any a > 0, the bad set of the closed loop system is contained in the
bad set of the unforced system associated to (2.43).

The meaning of Lemma 2.5 is that the stability performances of the closed
loop system are in general better (or at least are not worse) than those of the
unforced associated system.

Lemma 2.5 is a crucial step of the so-called Jurdjevic-Quinn method for
smooth stabilization (see [81], [61], [56] and [10] for related developments). In
fact, using the Invariance Principle and an additional Lie algebraic condition,
Jurdjevic and Quinn were able to prove that the feedback law (2.47) actually
stabilizes the system. More precisely, assume that the vector fields appearing in
(2.43) are C*°. Recall that the Lie bracket operator associates to an (ordered)
pair gg, g1 of vector fields the vector field

[90,91) = Dg1 - 9o — Dgo - g1

(here, Dg; denotes the Jacobian matrix of g;, ¢ = 0,1). The “ad” operator is
iteratively defined by

ady g1 =90, 1] adi g1 = [go, ad} g1] .

Theorem 2.21 (JURDJEVIC-QUINN) Assume that a weak Liapunov function
of class C* for the unforced system associated to (2.43) is known, and let
u = k(z) be given by (2.47). Assume further that for x # 0 in a neighborhood
of the origin
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dimspan{fo(a:),adfcofi(x), t=1,...m, k=1,2,... } =n.

Then, for any « > 0, the system is stabilized by (2.47).

A final comment about Theorem 2.21 is appropriate. According to what
has been already seen in Subsection 2.2.2, when the unforced system has a
Liapunov stable equilibrium position at the origin the existence of a smooth
weak Liapunov function in the small cannot be given for sure. If we have at
our disposal a Liapunov function which is at least locally Lipschitz continuous,
then (2.47) can be defined almost everywhere. It can be proved that if fo(x) is
continuous, then the conclusion of Lemma 2.5 remains valid ([12]). Note that

in these conditions, in general (2.47) turns out to be discontinuous.

2.3.4 Affine systems: external stabilization

The claim that the external behavior is determined by the internal one is no
more valid in the nonlinear case. This is shown for instance by the following

simple example

&= —x+ux® . (2.48)

The unforced system is globally asymptotically stable but with © = 1 there
are unbounded solutions. However, some connections can be recovered provided
that the use of feedback is allowed. The first step on our way is the following
theorem, due to E. Sontag ([131]).

Theorem 2.22 Assume that a smooth global strict Liapunov function V(x)
for the unforced system associated to (2.43) is known. Then, there exists a
continuous feedback u; = k;(xz) (i = 1,...,m) such that the same V(zx) is a

smooth ISS-Liapunov function for the closed loop system

& = fo(x Z ) + vil fi(x) (2.49)

where v = (v1,...,vy) Tepresents the external input.

The proof of the previous theorem is constructive. Focusing again for sim-
plicity on the single input case, one can take for instance k(z) = —a(x)-b(x)/2
where, as before, a(z) = =VV (x)- fo(x) and b(z) = VV (z)- f1(z) (see [131] for
more details). Note that under the assumption of Theorem 2.22 and by virtue
of Theorem 2.15, the closed loop system (2.49) turns out to be ISS-stable.
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Note also that if (2.43) is internally globally asymptotically stabilizable by
a continuous feedback, then Kurzweil’s Theorem guarantees the existence of a
global strict Liapunov function V'(x) of class C* for the (unforced) closed loop
system, so that a ISS stabilizer can be found with the same regularity as f
and fi.

In conclusion, we arrive at the following important result (Sontag, [131]).

Theorem 2.23 Fuvery internally globally stable (or continuously internally
globally stabilizable) affine system of the form (2.43) is ISS-stabilizable.

Next, we want to discuss the possibility of repeating, as far as possible, the
same reasoning concerning the UBIBS property. Looking at Proposition 2.5,
and recalling that in the linear case internal (Liapunov) stability is equivalent
to Lagrange stability, it seems natural to identify Lagrange stability as the
right internal property to be compared with UBIBS-stability.

Next theorem is an analogous of Theorem 2.22 for UBIBS-stability (for a

proof, we refer to [11]).

Theorem 2.24 Assume that a smooth weak Liapunov function in the large
V(z) for the unforced system associated to (2.43) is known. Then, there exists
a feedback law u; = k;i(z) (i =1,...,m) such that the same V(x) is a UBIBS-
Liapunov function for the closed loop system (2.49).

In the single input case, the feedback law mentioned in Theorem 2.24 can

be taken, for instance, of the form

k(z) = —[|z[|sgn (VV (2) - fi(2)) -

It must be emphasized that this expression is not continuous in general.
Fortunately, Theorem 2.14 remains valid even if the right hand side of the
system possesses discontinuities with respect to x and the solutions are intended
in Filippov’s sense.

To complete the picture, one would need a converse theorem for Lagrange
stability. However, we already know that it is possible to construct semi-
continuous Liapunov functions for Lagrange stable systems, but further regu-
larity cannot be guaranteed, in general. In conclusion, the best we can do is
the following.

Theorem 2.25 Assume that the unforced system associated to (2.43) is La-
grange stable and that it admits a smooth weak Liapunov function in the large.
Then, it is UBIBS-stabilizable (in the sense of Filippov solutions).
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2.4 Output systems

An accurate representation of a physical system usually involves a large number
of state variables. However, not all of them can be observed. Moreover, in
general it is not required to control all these variables, but only a few of them
or a combination of them. This leads to consider, together with system (2.27),

an observation map

y = h(x) (2.50)

where h : R™ — RP is at least continuous. The variable y € R? (where p is a
given positive integer) is called the output.

Several notions introduced in the previous sections can be reformulated in
terms of the output. It is worth noticing that the method of Liapunov functions
can be usefully employed also in this setting. A detailed survey on this subject
is out of the aim of this book (we refer the readers to the original research
papers [131], [135], [144], [145], [146]). However, for the sake of completeness,
we recall the following generalization of the ISS property ([144]).

Definition 2.19 System (2.27) is said to be input-to-output stable (in short,
10S-stable) if the following two properties hold:

(i) There exist two maps o1,02 € K§° such that for each admissible input u(-),

each initial state xo € R™, each solution x(-) € Seou(y and each t >0, one has

@) < or(llzoll) + o2(l[ufloc)

(ii) there exist v € Ko and 8 € LK such that for each admissible input u(-),
each initial state xo € R™, each solution x(-) € Sy, (. and eacht >0, one has

[Pz < B, [[zol) +v(lulloo) -

The property (i) above is a strengthened version of the UBIBS property,
since the gain functions 01,09 are required to be of class K£5°. As the UBIBS
property, it expresses the fact that for bounded input, the whole state vector
remains bounded: but, in addition, it imposes that if the initial state and the
input are small, the whole state vector remains small. The second property
(#i) has the same meaning as the ISS property, but it is referred to the output,
instead of the state vector.

In [131], it is proved that IOS and ISS stability are equivalent, provided that

the system satisfies suitable controllability and observability conditions. The
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characterization of the IOS property in terms of Liapunov functions is given in
[146] .

2.5 Cascade systems

In the class of single-input affine systems, special interest is deserved in systems
of the form

{ v =f(y,2) (2.51)

Z=u
where z = (y,2) € R" (n >2), y € R""! and z € R. They can be reviewed as
a description of a plant whose state vector is y and whose input z is generated
by an integrator. For this reason, (2.51) is usually called a cascade connection
or a cascade system. Throughout this section, we always assume for simplicity
that f(0,0) = 0.
The recent paper [30] provides another interesting motivation for systems

of the form (2.51). To describe it, consider a single-input, affine system

&= fo(x) +ufi(z) (2.52)

where fy and f; are analytic vector fields of R™.

Roughly speaking, and according to the differential geometry tradition, a
map which associates to each point of R™ a subspace of R™ will be called a
distribution. Recall that a distribution A is involutive if for each pair of vector
fields f, g, the conditions f(z) € A(z) and g(x) € A(x) for each = imply

[ 9l(x) € A(x).
Special distributions related to (2.52) can be defined by setting

Ao(z) = span {f1(z)}
Ay (x) = span {fi(z), ad}, f1(z)}
An_1(z) = span{fi(z), ad}, fi(z),. .. ,ad?o_lfl (x)} .

The following result is proved in [30].

Proposition 2.17 Assume that (2.52) is STLC, and assume further that there
exists an open set U such that U is a neighborhood of the origin and the dis-

tributions Ag(x), ..., N,_1(x) are involutive and have constant dimensions for
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x € U. Then, up to a local change of coordinates, (2.52) can be put in the
so-called triangular form , that is

&1 = fo(x1, 22)
#2 = fo,2(71,72,73)
(2.53)
ETn—1= fon-1(x1,...,2p)
En = fon(x1, ... 2n) Fufin(zr, ..., 20)
with f1.,(0) # 0.

Note that by possibly applying a further local change of coordinates and a
feedback transformation, (2.53) becomes a particular case of (2.51). The class
of systems identified by the assumptions of Proposition 2.17 includes the class
of affine systems which are linearizable by feedback equivalence.

Another reason of interest in systems of the form (2.51) is the following
result, due to M. Kawski ([85]).

Theorem 2.26 Assume that n = 2 and that the map [ is real analytic. As-
sume also that system (2.51) is STLC. Then, it is locally stabilizable at the

origin by means of a continuous feedback.

Unfortunately, under these assumptions we cannot hope to find in general
differentiable feedback laws: this point has been already discussed in Section
2.3.1 (see in particular Example 2.9).

We consider now the following problem. Assume that the plant

v=1r(yz) (2.54)
is stabilizable at the origin by means of a feedback law z = h(y). Does there
exist a feedback of the form u = k(y, z) stabilizing at the origin the cascade
system (2.51)? In other words, is it possible to inject a stabilizing feedback into
the plant (2.54) through a cascade connection? This problem is also known as

stabilization under addition of an integrator. We report the following theorem,
due to J. Tsinias ([149], but see also [27], [140]).

Theorem 2.27 Assume that in (2.51), f is of class C" (r > 1). If there exists
a map z = h(y) of class C" such that the system

g = [y, h(y)) (2.55)
is locally asymptotically stable at the origin, then the overall system (2.51) is

locally stabilizable at the origin by means of a feedback law of class C™1.
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Theorem 2.27 suggests the idea that stabilization by adding an integrator
is possible in general, but at the cost of a lack of regularity. Nevertheless, we
know several examples which seem to support the opposite intuition.

Example 2.15 It is not difficult to see that the one-dimensional equation

y=y -2
can be stabilized by a continuous feedback (setting for instance z = ¥/2y) but

not by a differentiable one. On the other hand, the cascade system

{ g=y’ -2
Z=u

can be stabilized by the polynomial feedback u = 2y — 3y%z + y> — 2z°. The
argument is based on the local Liapunov function V (y, z) = y?(1 —yz)+2'°/10
and the Invariance Principle ([10], [53]). |

This example shows that at least under certain circumstances, the dynam-
ical extension introduced by adding an integrator enables us to improve the
regularity of the feedback law.

An interesting question, not answered by Theorem 2.27, is what happens
when the (n — 1)-dimensional plant (2.54) can be stabilized by means of a
continuous feedback u = h(y), but not by a differentiable one. It turns out
that the answer depends on the value of n and the type of discontinuities
allowed for the feedback law. The proof of the following proposition can be
found in [150].

Proposition 2.18 Let n be any integer, n > 2. Assume that the map f(y,z)
is continuous. Assume in addition that the plant (2.54) is locally stabilizable at
the origin by a continuous feedback uw = h(y). Then, the cascade system (2.51)
is locally stabilizable by a feedback law u = k(y, z) which may be discontinuous

and unbounded at the origin.

The following result (see [117, Chapter VI]) is useful in situations where the
(n —1)-dimensional plant (2.54) can be stabilized at the origin by a continuous
feedback u = h(y), for which the gradient Vh(y) exists for y # 0 and satisfies
the growth condition

VRl = o(llyl|™") as y — 0.
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Proposition 2.19 Let n be any integer (n > 2) and assume that the map
f(y, 2) is continuous. Assume in addition that there exists a feedback law u =
h(y), h € CY(Q\{0},R)NC (2, R) (2 is some open neighborhood of 0 € R"~1)
stabilizing locally the plant (2.54) at the origin, and fulfilling

sup [Vh(y) - f(y,2)] — 0 as y — 0. (2.56)

{2 0<h(y)z<h(y)?}

Then, the cascade system (2.51) is locally stabilizable by a continuous feedback
law u = k(y, 2).

The proof of Proposition 2.19 is reported in the Appendix of this chapter.
For two-dimensional cascade systems, we have the following result (see [53]).

Proposition 2.20 Let n = 2 and assume that f(y,z) is real analytic in a
neighborhood of the origin. Assume further that there exists a feedback law z =
h(y) (possibly discontinuous) such that the one-dimensional closed loop system
(2.55) is locally asymptotically stable at the origin in the sense of Filippov
solutions. Then, system (2.51) is locally stabilizable at the origin by means of

a continuous feedback.

If the right hand side of the plant f(y, z) is assumed to be only continuous
instead of analytic, then it may happen that the plant is stabilizable by a
continuous feedback, but the cascade system (2.51) is stabilizable not even by a
discontinuous feedback which satisfies condition (2.44) (see [49] for an example).
In [49] we can find also an example of a real analytic system with n = 3 (i.e., the
cascade connection of a two-dimensional plant and an integrator) such the plant
is stabilizable by a discontinuous feedback which satisfies condition (2.44), but
the overall system is not stabilizable by a discontinuous feedback which satisfies
condition (2.44) (here again, stabilization is intended in the sense of Filippov

solutions).

2.6 Appendix

Before giving the proof of Proposition 2.19, we say a few words about the

condition (2.56). Along any trajectory y(t) of (2.55) we have

%y) = Vh(y) - f(y, h(y)).

Since h(y(t)) — 0 as t — 400, it is quite natural to expect that d h(y)/dt — 0,
too. Therefore, the assumption

lim Vh(y) - £(y, h(y)) = 0 (2.57)
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seems not to be too restrictive in practice. The assumption (2.56) is just a
strengthened version of (2.57). The following lemma gives a natural framework
in which Proposition 2.19 may be applied.

Lemma 2.6 Let the functions f(y,z) and h(y) fulfill the following properties:
(i) limy—o ||yl - [[VA(y)|| = 0;
(i) 3C >0, |[f(y h)II < Cllyll  Vy €

(iii)  f is Lipschitz continuous in a neighborhood of the origin.
Then the condition (2.56) is satisfied.

Proof. Let y € Q and let z be any number between 0 and h(y). According
to the intermediate value theorem, there exists some point 7 in the segment
[0,y] such that h(y) = z. If L denotes some Lipschitz constant for f in a
neighborhood of the origin, we may write

[Vh(y) - f(y,2)] IVh(y) - (f(y,2) = [(5,2)) + Vh(y) - f(5, ()|

< NVRWI - f (. 2) = @2+ VR - L (5 h(@))]]
< (Llly =gl +Cllgl) - VAl
< (L4 Oyl - IVR(y)l],

as [ly — gl| < ||y||- Then, letting y — 0 and using (i), we obtain (2.56). [ |

At this point it is worth noticing that the conclusion of Proposition 2.19 is
no longer true if we replace (2.56) by (2.57), or (i)-(ii) (see [117]). We now
turn to the proof of Proposition 2.19. We aim to design a piecewise continuous
feedback law k(y, z) satisfying the condition

and stabilizing the system

k(y,2) — 0 as [[(y,2)|] = 0,
fy;2),
k

{y
i =k(y,2)

at the origin, the solutions being taken in the Filippov sense. As (2.58) is affine

vz (2.58)
Y.z

in the control this guarantees, according to [49, Theorem 1.5], the existence of
a continuous feedback k(y, z) law stabilizing (2.58) at the origin. The discon-
tinuous feedback k(y, z) is designed in such a way that the manifold {z = h(y)}
is positively invariant by the flow of (2.58), and it is reached in finite time by
any trajectory issued from an initial position close to the origin. This implies
that on the invariant manifold

. dh(y)
Tt

= Vh(y) - f(y, h(y)).
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We now define the piecewise continuous feedback law k(y,z) in the following
way. If h(y) > 0, we set

1 (VA + 1) - [f(y, 2)| if h(y) < z;
k(y,z) = —(2 = My))s + ¢ IVh(y) - f(y,2)] if 0 <z < h(y);
|f(y,z)| if z <0,

and if h(y) < 0, we set

(w2 it0 < 2
b ) = —(: = h@) +§ ~IVh) - f2)| i hly) <2 <0
(VRG] +1) 1w 2] i = < h(y).

Recall that the value of the function k on the zero measure set {z =0} U {z =

h(y)} plays no role in the construction of the Filippov solutions to (2.58). Let
G={(y,2) e A xR; 0<z<h(y) or h(y) <z<0}.

Let 29 = (yo,20) € 2 xR, and let (t) = (y(t), 2(t)) denote a Filippov solution
of (2.58) issuing from z¢ at t = 0.

CraM 1. If zg € G, then the positive orbit {z(¢); ¢ > 0} reaches G in finite
time.

Indeed, it follows from the definition of the function k(y, z) that

2]l = M9l + [z = h(y)[5, (2.59)

hence there exists some time T' > 0 such that z(T) = 0 or z(T) = h(y(T)).
Integrating in (2.59) we obtain

2(t) = 20 = [ly(t) —wol| 0<t<T,

which, when combined to the fact that the function |z(¢)| is nonincreasing,
yields
ly(®) = ol +|2(H)] < 20| 0<t<T.

Therefore the stability property is fulfilled up to the time T when the trajectory
reaches 0G.

CLAIM 2. The manifold My := {(y,z) € Q@ x R; z = h(y)} is invariant.
Assume e.g. that h(y) < 0. As the number Vh(y) - f(y, h(y)) belongs to the
segment

[(=IVR(y) - f(y, k)], VR + 1) - [ £y, h(y)l] =2 Ky k(y, h(y)),
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we infer that for any trajectory y(t) of (2.55), the map x(t) = (y(¢), h(y(t))) is
a Filippov solution of (2.58). Furthermore, as

d|z — h(y . . 1
B2 =TI _ s (=~ ) (2 - Vh(w) - 5) < 1z~ b))
we see that every trajectory touching M, stays actually on M; in the future.

The situation is quite different for the submanifold My = {(y,0); h(y) # 0}.
Indeed, the trajectory issued from an initial point (yo, z0) satisfying zg < 0 <

h(yo), after reaching Ms, goes into G, since
$2—(z—h(y)* >0.

By symmetry, the same situation occurs for a trajectory issued from an
initial point (yo, z0) satisfying h(yo) < 0 < zp.
It remains to deal with the case where zog € G. Let us consider a small

number « > 0 such that

£ @y, )l <1 if |y, 2)l| <« (2.60)

and

B,(0) C Q. (2.61)
(In what follows, we denote by B a ball in R™, and by B a ball in R"*1.) Let
D = B,((0,0)) NG, and let x(-) = (y(:),2(-)) : I — D denote a maximal
solution (in the Filippov sense) to the Cauchy problem

v = f(y,2) (y,2) € D
z =k(y,z2)
(y(0),2(0)) = (yo,20) € D.

(We stress that the property (y(t),z(t)) € D is required for all ¢t € I.) Set
It :=INR*. Aslong as (y,z) € D we have

d|z = h(y)|

S <~z h(y)|

Recall that the unique solution to the Cauchy problem

b = —v3
v(0) =wvy >0

is given by
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Setting

w(no

3
Tyo,Zo = 5(20 - h(yO)) )

we conclude that if Ty, ., € I' then for all ¢ > T, .., z(t) — h(y(t)) = 0
and §(t) = f(y,h(y)), hence IT = RT, y(t) — 0 and z(t) = h(y(t)) — 0 as
t — +oo, provided that y(Ty, ) is small enough. To complete the proof we
need to justify the following

CramM 3. For (yo,20) close enough to 0, Ty, ., € I and ||y(T)y, 2, )| < o

Pick a number £ > 0 such that
B.(0) x (—¢,e) C B,((0,0)),

and a number R < ¢ such that every maximal solution of (2.55) issuing from
the ball Br(0) at t = 0 is defined on R, stays within B.(0), and tends to 0
as t — 4o0o. The feedback h being continuous at the origin, we may define a
function 7(d) such that 0 < r(d) < R for each §, r(6) — 0 as § — 0, and

lly|| < r(0) = |h(y)| < 6.

Pick some number §; € (0,¢/2), and write 4 = r(61). If ||yo||] < 1 and
|z0] < 01, then |z — h(yo)| < 241, hence

3 s 3 N
Tyo,z = 5(30 - h(yO))g < 5(2(51)5.
Using (2.60), we get for any ¢t € I N[0, Ty, 2]

t
3 2
y@OI < [lyoll +/0 1 (y(s), z(s))ll ds < 11+ Tyg 20 <11+ 5(201)3.

Let now d2 > 0 be such that d; < min(d1,&/4) and ro + %(262)% < rq, where
ro denotes the number 7(d3). According to the previous computation (applied
to (d2,72) instead of (d1,71)), we obtain for ||yg|| < re and |zo| < 82

l|ly(t)|| <riand |h(y(t))] < o1 Vte€[0,Ty, ] NI

As

[2(6) = h(y()] < |20 — hyo)| < 262 < 3,

we infer that

(y(£), 2(1)) € K =B, (0) x [~(01 + )01 + 5]

As §; < e/2, we readily see that K is a compact set contained in the ball
B,((0,0)). It follows that Ty, ., € I and ||y(Ty,.z,)|| < ™1 < R. Therefore,
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we conclude that It = R™, ||y(t)|| < ¢ for all ¢ > 0 (distinguish the two cases
t < Tyyzy and t > Ty 2, ),

i <
L)< © ML= Ty 2
Supp,_ (o) |h(-)] ift>T,

0,20

0,207

and that (y(t), z(t)) — (0,0) as t — 4o00. The proofs of Claim 3 and of Propo-
sition 2.19 are completed. |



Chapter 3
Time varying systems

The discussion of the previous chapter shows that there are at least two prob-
lems of interest in nonlinear control theory, namely the existence of Liapunov
functions for Liapunov stable or Lagrange stable systems and the existence of
internal stabilizers, which in general do not have a solution in the class of C*
or even continuous functions.

Semi-continuous Liapunov functions are easier to construct, but then, it
becomes more difficult to check that they are non-increasing along the trajec-
tories. To this purpose, we can try to make use of nonsmooth analysis methods:
this aspect of the problem will be considered later in Chapter 6.

As far as the stabilization problem is concerned, we know examples of sys-
tems which are stabilized by discontinuous feedback, but not by a continuous
one. Moreover, there are also classes of systems (for instance, nonholonomic
systems), that can’t even be stabilized by a discontinuous feedback.

In this chapter we explore an alternative way to address the aforementioned
problems. We ask whether more regularity can be achieved, provided that
solutions are sought in some larger classes of functions. More precisely, from
now on we shall admit Liapunov functions and stabilizing feedback laws which
depend explicitly on time, that is of the form V'(¢,x) or, respectively, u =
k(t,x).

3.1 Two examples

The aim of next two examples is to show that, by removing the time-invariance

constraint, we actually have better chances of success.
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Example 3.1 Consider the scalar equation

i= (@) (3.1)

where f(x) = zcos?(log|z|) for x # 0, and f(0) = 0. It is clear that f(x) is
continuous at the origin, and analytic for x # 0. Moreover, the origin is stable,

since it is a limit point of two sequences of equilibria

(G fon o),

Actually, equation (3.1) exhibits the same features as Example 2.2 in Chap-
ter 2. In particular, we know that there exists no time invariant Liapunov
function which is continuous in a whole neighborhood of the origin. Neverthe-
less, we claim that there exists a function V (¢, ) which is positive, everywhere
continuous and, at the same time, non-increasing along the solutions of (3.1).

The construction of such a function can be accomplished according to an
idea of Yoshizawa ([160]; see also the following Theorem 3.5). Let top > 0 and
o € R be given, and define

V(to, o) = min |z(s)] (3.2)

0<s<to

where 2(t) denotes the (unique) solution of (3.1) such that x(tg) = x¢. In order
to prove that (3.2) fulfills all the mentioned requirements, it would be desirable
to have a more explicit expression. This is possible, by virtue of the particular
choice of f(z). We can limit ourselves to = > 0 (since f is odd, we clearly
have V(t,—x) = V(t,x)). Provided that xy is not an equilibrium of (3.1), by
separation of variables we obtain

z(s) 1 s
—  dr= dt=s—1.
/wo x cos?(log ) v /to st

Using the change of variable y = log x, we have

z(s) 1 log z(s) 1
76135:/ dy = tan (log z(s)) — tan (log zq) .
/Jco x cos?(log x) loga,  COS2Y Yy (logz(s)) (log o)

Hence,

tan (log z(s)) = tan (log zp) + s — to . (3.3)
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Let us set for simplicity

1 1
o= [0 1]
s 2

where the square brackets [ . ] denote the integer part. Since zy is not an

equilibrium, we have

kom — g <logxy < kom + g . (3.4)

In fact, because of the uniqueness of solutions, the same inequalities are
fulfilled by log x(s), for each s € R. From (3.4) it follows

log zg = ko7 + arctan (tan (log o)) (3.5)

and, from (3.3),

log z(s) = kom + arctan (s — to + tan (log zg)) .

Finally,

x(s) = exp(kom + arctan (s — to + tan (log xq))) .

This is an increasing function of s. Hence, substituting in (3.2), we get

V(to,x0) = exp (koﬂ' + arctan (—to + tan (log xo))) .

Summing up, for ¢ > 0 and 2 > 0 the values of V(t,z) are determined
according to the following rule:

0 ifex=0
x ifz=exp(§ +kr), keZ
exp ([F%5% + 3]

+arctan (—t + tan (logz))) otherwise .

Vt,x) =

Next, we verify that V (¢, x) possesses all the required properties. By direct
computation, it is not difficult to see that 2%V (¢,z(t)) exists and vanishes, for
every solution z(t) of (3.1). It is obvious that V' is positive: in fact, from (3.4),
it follows that

exp(logz —7) < V(t,z) . (3.6)

In other words, V' is positive uniformly with respect to ¢. From (3.2), it is

also clear that
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Vit,z)<x. (3.7)

This implies in particular that V' is continuous at every point of the form
(to,0). Continuity at the points of the form (tg,x), where xg is an equilibrium
of (3.1), can be directly verified by using the explicit expression of V. If zg is

not an equilibrium, continuity of V' at (¢, z¢) is obvious.

Example 3.2 This example is taken from [106]. It concerns a three-
dimensional time invariant system with two independent inputs which cannot
be stabilized at the origin by means of a time invariant continuous feedback.
Nevertheless, a continuous time dependent (actually periodic) stabilizing feed-
back can be explicitly constructed. The system is

T=u
Y= v (3.8)
=0

where u, v represent the inputs. It is clear that the right hand side does
not meet Brockett’s test (no vector of the form (0,e,0) belongs to its image).
According to the method developed in [106], let us define

u=ysint — (x + ycost) and v=—x(x+ycost)cost — (zy + z) .

In order to verify that this is actually a stabilizer, we introduce the following

(time varying) Liapunov function

(x + ycost)? N y? + 22

V(t,z,y,2) = 5 5

Note that

u = sint—a—V(ta? 2) and U——xa—v(tx z)—a—v(tx 2)
_y ax ) ?y? - 8y ) 7y7 aZ 9 7y? -

Let us denote by V (¢, z,y, z) the function

5_V(t )_|_8_V(t ) _|_8_V(t ) _|_8_V(t )
6t ?$?y72 8:}_’: 7x7yﬂzu 6y 7z7y7z‘rv 82’ 7$7y7ZU~
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A simple computation yields

V(t,z,y,2) = —y(x+ycost)sint+ Z—Z(t,%y72) [ysint — g—‘;(t,w,y,@]
—|—x(:;—‘y/(t7x7y, z)[ - x%—Z(b%% z) — %—‘:(t,%% 2)]
—|—aa—‘:(t,x, y,2)| — x%—‘y/(t,x,y, z) - %_‘z/(t’x’y’ z)]
S = e S PR )

= —[z+ycost]? — [x(z +ycost)cost + xy + 2]? .

Now it is easily recognized that this last expression is negative semi-definite,
but actually not negative definite. More precisely, we have

V(t,z,y,2) =0+

. x+ycost =0
{ Y (3.9)

zy+2=0.

According to the periodic time version of the LaSalle invariance principle
(see [121], p. 50], we can conclude that the origin is asymptotically stable
provided that two further conditions are fulfilled. The first condition requires
that no positive trajectory (except the trivial one) is contained in the set where
V vanishes. This condition is actually satisfied in our case. Indeed, on this set
the closed loop system reduces to

T =ysint
y=0
z2=0

whose solutions are of the form ©z = a — bcost, y = b and z = ¢. It is not
difficult to check that no such curve (except the case a = b = ¢ = 0) lies on
(3.9).

The second condition requires that V' (t,z,y,z) > a(||(z,y, 2)||) for some
function of class Ky. To this end, we observe that for any fixed point (z,y, z) #
0, m(z,y, z) = min, V (¢, x,y, 2) is strictly positive and continuous, as a function
of (x,y,z). Hence, for each r > 0 we can find A > 0 and a positive number
m(r) such that

m(r) < V(t,z,vy,z2)

for each ¢, and each (z,y, z) such that r —h < ||(x,y, 2)|| < r+h. The required
function a can now be constructed by standard technical arguments.
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Remark 3.1 It is well known that the change of coordinates

Ty =2z, Xo=x, T3=xZ—2

transforms (3.8) into (2.36) (with u; = v, us = u). Thus, we see that the
nonholonomic integrator (2.36) can be globally stabilized by means of a time

varying feedback

up = —x5cost— %(:1:15@ —23)(cos?t + 1) — x4
T1X9 — I3

uy = T(sint—cost)—xz.

3.2 Reformulation of the basic definitions

The extension of the stability notions and the definitions of Liapunov function
in a time varying context is not straightforward at all. Indeed, new delicate as-
pects emerge, especially related to uniformity with respect to time. Of course,
there are many good books devoted to this topic (among them, we recall [67],
[121]). However, for reader’s convenience we collect here the main definitions
and a short discussion about their relationships. We also report some interest-
ing counter-examples which are essentially well known but not easy to locate
in the classical literature, and we finally present a complete “map” of the sit-

uation.

3.2.1 Stability and attraction

In this section we are mainly interested in the characterization of the internal
behavior of a time varying system. We know that this is the same as studying
classical stability properties of a system without input. In view of the main
purposes of this book, a system of this type should be always thought of as
the unforced system associated to some system of the form (1). However,
for simplicity, throughout the present and the next five sections we adopt the
shortened notation

&= f(t,x) (3.10)

with z € R™ and ¢ € [0, +00). According to the notation introduced in Chapter
1, for any given pair of initial conditions (tg,zg) € [0, +00) x R™, the set of all
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local Carathéodory solutions z(-) of (3.10) such that x(tp) = xo is denoted by
Sto,zo- Moreover, in order to guarantee that S ., is nonempty for each pair
(to, o), we limit ourselves to systems whose right hand side f(¢,x) satisfies at
least conditions (A;), (Ag) and (Ag) (see again Chapter 1). This has to be
considered as a standing assumption throughout the present section.

The origin is said to be an equilibrium position for (3.10) if f(¢,0) = 0 for
a.e. t > 0.

Definition 3.1 We say that (3.10) is stable at the origin (or that the origin
is stable for (3.10)) if for each ty > 0 and for each € > 0 there exists & > 0
such that for each ||xo|| < 0 and each solution z(-) € S, », one has that x(-)
is continuable on [to,+00) and

[lz(t)|] <e for each t > tg .

Note that in Definition 3.1 existence of solutions is not strictly necessary
from an abstract point of view. However, existence of solutions is a quite
natural requirement, especially in view of applications. Note also that if the
origin is stable then for each tg, x(¢) = 0 is the unique solution such that
x(tg) = 0. Hence, the origin is an equilibrium position.

In Definition 3.1, § may depend on both e and t.

Definition 3.2 We say that (3.10) is uniformly stable at the origin (or that
the origin is uniformly stable for (3.10)) if for each € > 0 there exists 6 > 0
such that for each to > 0, each ||xo|| < § and each solution x(-) € Siy.z, one
has that x(-) is continuable on [ty,+00) and

[|lz(t)|| <e for each t > tq .

Definition 3.3 System (3.10) is said to be locally attractive at the origin if
for each ty > 0 there exists &g > 0 such that for each xo with ||zo|| < do and
each x(-) € Siy.,, One€ has

lim [[z(t)]] =0 .

t——+oo

Note that the origin may be attractive without being an equilibrium point.

As an example, we can take the scalar equation

& =—x+etcost

(incidentally, we observe that the origin cannot be stable in this case).
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Again, we can conceive more specific notions by requiring that the limit in
Definition 3.3 is uniform with respect to the initial state, or with respect to
both the initial state and the initial time.

Definition 3.4 We say that system (3.10) is locally equi-attractive at the ori-
gin (or that the origin is locally equi-attractive for (3.10)) if for each to > 0
there exists g > 0 such that for each o > 0 there exists T = T (o,ty) > 0 such
that for each ||zo|| < 0o, and each solution x(-) € Sy .4, one has that x(-) is

continuable on [ty,+00) and

lz(t)] <o for each t > tg + T .

Definition 3.5 We say that system (3.10) is uniformly locally attractive at
the origin (or that the origin is uniformly locally attractive for (3.10)) if there
exists 8o > 0 such that for each o > 0 there exists T =T (o) > 0 such that for
each ||zo|| < do, each to > 0, and each solution x(-) € Sty 4, one has that x(-)

is continuable on [tg,+00) and

lz@®)| < o foreach t >ty + 1T . (3.11)

The origin is uniformly globally attractive if for each o > 0 there exists
T = T(o) > 0 such that (3.11) holds for each xq € R™, each ty > 0, each
t>1to+ T, and each solution x(-) € Sty z,-

The definitions above can be combined in several ways. We are in particular
interested in the following properties.

Definition 3.6 We say that system (3.10) is locally [globally] asymptotically
stable at the origin (or that the origin is locally [globally] asymptotically stable
for (3.10)) if (3.10) is stable and locally [globally] attractive.

We say that system (3.10) is uniformly locally [globally] asymptotically sta-
ble at the origin (or that the origin is uniformly locally [globally] asymptotically
stable for (3.10)) if (3.10) is uniformly stable and uniformly locally [globally]

attractive.

It is evident that uniform stability implies stability. Moreover, uniform at-
traction implies equi-attraction which in turn implies attraction. The situation
further simplifies for those systems which satisfy a local Lipschitz continuity
condition.

Let us recall in particular that under assumptions (A1), ..., (A4), solutions
are locally unique and the property of continuity with respect to the initial
data holds (property (C) of Chapter 1).
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Proposition 3.1 Assume that the origin is an equilibrium position, and as-
sume that (A1), ..., (Ay) are satisfied for (3.10). Then, equi-attraction implies
stability.

Proof. Let tg and € > 0 be fixed, and apply Definition 3.4 with ¢ = . We
find dg and T'(e, ) such that the inequality

||zt to, o)l < e (3.12)

holds for t > tg + T'(e,tp), provided that ||zg|| < dp. On the other hand,
applying (C) with ¢ = ¢ty and Z = 0, we can find § = §(e,tg) such that if
[|zo]| < 0 then (3.12) holds for t € [tg,to + T(g,t0)]. The statement follows,
since it is not restrictive to assume § < dg. [ |

Proposition 3.2 Assume that (Ay), ..., (A4) are satisfied. If (3.10) is uni-

formly stable and attractive at the origin, then it is equi-attractive at the origin.

Proof. Assume that the origin is not equi-attractive for (3.10). Then, there
is an instant to such that for each > 0 there exists o = o(n) > 0 and there
exist two sequences {xy}, {tx} such that ||zx|| <n, tx > to + k and

|| (trs to, mx)|| = o (n) (3.13)
for each integer k. Since the origin is attractive for our system, we can associate
to such tg a number d; > 0 such that

lim ||z(t;to,2)|| =0 (3.14)
t—+o00
for any © € Bj,. Let us choose now n < dp, and apply Definition 3.2 with
e = o(n). We obtain § = 6(n) > 0 such that
|zl < 6(n) = [lz(t; 7, z)[| < o(n) (3.15)

for each 7 and each ¢ > 7. Since the sequence {zj} is bounded, it admits a
limit point 2 (without loss of generality, we can assume that {z;} actually
converges to xg). Of course, ||zg|| < dp. Hence, by (3.14) there exists T > 0
such that for each t > tg + T, we have

[|2(8; 2o, o)l < 6(n)/2 .
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@

Figure 3.1: Map of stability notions (US=uniform stability, EA=equi-

attraction, UA=uniform attraction)

Apply now property (C), and so find p > 0 such that
[l —zol| < p=>||x(to + T;to, o) — x(to + Tito,x)|| < (n)/2 .
That is,

2(to + T to, )| < 8(1) (3.16)

Now, let k be so large that ||xx — xo|| < p and tg > to+ k > to + T. Then,
(3.16) holds with x = xj, and hence, according to (3.15),

[lz(tsto + T, x(to + Tsto, xi)|| = [|x(t; to, z1)|| < o(n)

fort >ty +T.
This last inequality must be true in particular for ¢ = t;, but this is impos-
sible because of (3.13). |

If we limit ourselves to the class of systems for which the origin is an equi-
librium position and (Ay), ..., (A4) are valid, we can therefore represent the

relationships among all these notions in the picture of Figure 3.1.

Remark 3.2 None of the regions displayed in Figure 3.1 is nonempty, in gen-
eral. To show that this is actually the case, we have to point out the existence

of at least one explicit example for each region. As far as Regions 2 and 6
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are concerned, there are trivial time invariant examples. Time invariant ex-
amples exist for Region 8, as well (the most famous one is due to Vinograd,
[67] p. 191). In order to construct examples for the other regions, consider the

scalar equation

- fo)
T = """ 3.17
) 17
where f(t) is defined and positive for ¢ € [0,+00). Note that any function of
the form
ft)
x(t;t, &) = =

is a solution of (3.17). If we specify f(t) = a='"** with a > 1, we obtain
a system which belongs to the Region 1, while taking f(t) = 1/(t + 1) we
get a system for the Region 5 (see [42] for details). Moreover, if we specify
f(t) = a=tmt+2) (g > 1), then the system belongs to the Region 4. Finally,
an example for the Region 7 is obtained again in the form (3.17) with f(¢) =
absint=6teost=t* " \ith again @ > 1 (see [98]). Figures 3.2, 3.3, 3.4 present
respectively the graphs of the functions f(t) = a=*5"°t (with a = e), f(t) =
g —t(sint+2) (with @ = 61/10)7 flt) = 6 sint—6tcost—t%) (with a = 61/3): the
numerical values of the bases have been chosen in order to enhance the features
of such functions.

The last example concerning the Region 3 is more involved (see [97]). The

system is two-dimensional and it is defined in polar coordinates by the equations

where

sin? @ N 1 1
sin® 4 (1 —tsin?0)2 1 4sin*0 1+

g(t7 9) =

The definitions above are classical and all of them are of interest in stability
theory. They have been recalled here for sake of completeness, but in this book
we focus in particular on uniform stability and uniform asymptotic stability.
We need also an updated version of the definition of Lagrange stability (a

property often referred to also as uniform boundedness of solutions).
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Figure 3.4: Example for region 7

Definition 3.7 System (3.10) is said to be uniformly Lagrange stable if for
each R > 0 there exists S > 0 such that for each pair (ty,xo) with to > 0 and

each solution x(-) € Sty 4, one has that x(-) is continuable on [ty, +00) and that

[lzo]| < R = ||z(t)|| < S for each t >ty .

We finally point out that as in the time invariant case, these definitions can

be characterized by functions of class KC (see [67], p. 170).

3.2.2 Time dependent Liapunov functions

We introduce now the appropriate generalizations of the definition of Liapunov
function (for systems without inputs). We recall that in this section, solutions

are intended in Carathéodory sense.

Definition 3.8 A weak Liapunov function in the small for (3.10) is a real
map V (t,x) which is defined on [0,+00) X B,. for some r > 0, and fulfills the

following properties:
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(i) there exist a,b € Koy such that
allz]]) < V(t,2) <b(|lz|])  for ¢ €[0,+00), x € B,

(ii) for each Carathéodory solution x(-) of (3.10) and each interval I C [0, +00)
one has

ti,to €1, t1 <ty = V(tl,x(tl)) > V(tg,x(tg))

provided that x(-) is defined on I and x(t) € B, fort e I.

It follows from (i) that V'(¢,0) = 0. If there exists a weak Liapunov function
in the small for (3.10), then for each ¢y, (t) = 0 is the unique solution such

that x(t9) = 0. Hence the origin is an equilibrium position.

Definition 3.9 A function V(t,x) which fulfills the same properties as in Def-
inition 8.8, but with a,b € K™ instead of Ky, and with B, replaced by B", will

be called a weak Liapunov function in the large for system (3.10).

Definition 3.10 A strict Liapunov function in the small for (3.10) is a real
map V (t,x) defined on [0,+00) X B, for some r, which fulfills property (i) and,
in addition,

(1i1) there exists ¢ € Ko such that for each Carathéodory solution x(-) of (3.10)

and each interval I C [0,400) one has

bots €1, <ty = Vi(te, 2(ta)) — V1, 2(tr)) < —/ "ol @)l dt

ty1

provided that x(-) is defined on I and z(t) € B, fort e I.
Condition (iii) of Definition 3.10 trivially implies (ii) of Definition 3.8.

Definition 3.11 A function V(t,xz) which fulfills the same properties as in
Definition 3.10, but with B, replaced by R™, a,b € K§° instead of Ko and
¢ € Ko, will be called a global strict Liapunov function for (5.10).

Note that if V' is differentiable and f(¢, ) is continuous, then conditions
(ii) and (iii) above can be checked by looking at the sign of the function

. oV "oV
Vt,2) = Zr(62) + 3 5 (o) filt,)
i=1 "

(which reduces to VV (z) - f(z) in the time invariant case). Indeed, it is easily

seen that
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(ii) is equivalent to V (t,z) < 0
and, respectively,
(i) is equivalent to require V (t,z) < —c(||z|)

for each ¢ > 0 and each x € B,. However, we emphasize that in the definitions
above it is not even required that V'(¢,x) is continuous.

The function V(t,x), when it exists, will be denoted again by the term
derivative of V (t,x) with respect to system (3.10).

The following comments concern the inequalities in (i). When

V(t, ) = a(||zl)) (3.18)

for some a € Ky [respectively, a € K], we usually say that V (¢, z) is positive
definite [respectively, radially unbounded]. This is consistent with the termi-
nology already used in Chapter 2. Indeed, if V' is continuous and it does not
depend on t (i.e., V(t,z) = V(z)), (3.18) with a € Ky is equivalent to V(z) > 0
for  # 0 in a neighborhood of the origin, while (3.18) with a € K is equivalent
to lim| |- 400 V(2) = 400 (actually, (3.18) reduces to (2.25)).

The condition V (¢, z) < b(||z||) for b € Ky is sometimes referred to by saying
that V' admits an infinitesimal upper bound, or that it is decrescent. As already
noticed, it implies that V(¢,0) = 0 for each t € [0,400) and that V(¢,z) is

continuous at the points of the form (¢,0).

Remark 3.3 Inequality (3.18) states that V(¢,z) is positive for = # 0, uni-
formly with respect to time. It must be emphasized that the weaker require-

ment

V(t,0)=0 and V(t,z) >0 (x#0)

is not sufficient in general, not even if V (¢, x) is continuous. This is shown by

the following example. Consider the one-dimensional equation

T=x (3.19)

which is obviously unstable at the origin. Now take the function V' (¢, x) defined
by

z° forz >0
V(t,z) =<0 for x =0
V(t,—z) forxz<O0 .
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As required, V (¢, z) is positive if & # 0. Moreover, it is differentiable (at
least for z # 0) and a simple computation shows that

V(t,z)= et:ret(l +logx) .
This last expression is negative for x € (0, 1/e), and hence V (¢, z) is decreas-
ing along nontrivial solutions of (3.19). This apparently paradoxical conclusion

is explained by the fact that V(¢,2) does not admit a uniform estimate from
below. |

Finally, we point out that not even the uniform estimate from above
V(t,z) < b(]|z]]) can be suppressed in Definition 3.8 (see the example in [121],
p. 27).

3.3 Sufficient conditions

We are now in a position to state the classical first and second Liapunov the-
orems for the time dependent case, which generalize the analogous theorems
presented in Chapter 2. Throughout this section, we still assume that the right
hand side of (3.10) meets the conditions (A;), (Az2) and (As).

Theorem 3.1 Assume that there exists a weak Liapunov function in the small

for system (3.10). Then the origin is uniformly stable.

Theorem 3.2 Assume that there exists a strict Liapunov function in the small
for system (3.10). Then the origin is uniformly locally asymptotically stable.
If in addition there is a global strict Liapunov function, then the origin is

uniformly globally asymptotically stable.

We do not give here the proof of these theorems, which are well known and
can be found in many textbooks, for instance in [67]. On the other hand, we
notice that Theorem 3.1 is a corollary of next Theorem 3.6 and Proposition
3.3.

As far as Lagrange stability is concerned, we have the following theorem,

due to Yoshizawa.

Theorem 3.3 Assume that there exists a weak Liapunov function in the large

for system (3.10). Then the system is Lagrange stable.

We finally notice that, in spite of the enormous literature about Liapunov
method appeared in more than one century, there are still new interesting

developments (see for instance [1]).
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3.4 Converse theorems

This section is a short survey about converse theorems for stability and uniform
stability in the time varying case. As already observed in the time invariant
case (Chapter 2), the regularity of f(¢,2) does not play a significant role in the
proof of direct theorems, but when we deal with converse theorems, it becomes
a critical issue. As a consequence, assumptions (A;), (Az) and (Ajs) about

f(t,x) turn out to be no more sufficient in general.

3.4.1 Asymptotic stability

One reason why it is convenient to deal with uniform properties is that (non-
uniform) asymptotic stability in general does not imply the existence of any
reasonable Liapunov function (see Example 2 in [97], p. 711), not even for
systems with analytic right hand side.

The general form of Kurzweil’s converse Theorem actually refers to time
varying systems and time dependent Liapunov functions (see [91]). The original

statement follows: it includes as a particular case Theorem 2.4 of Chapter 2.

Theorem 3.4 Assume that the origin is an equilibrium position and that the
right hand side of (3.10) is continuous with respect to the pair (t,x) € [0, +00) X
R™. Assume further that the origin is uniformly locally asymptotically stable.
Then, there exists a strict Liapunov function in the small of class C°.

In addition, if the origin is uniformly globally asymptotically stable, then it
can be found a global strict Liapunov function of class C*°.

Moreover, if f(t,x) is periodic with respect to t, then the Liapunov function
turns out to be periodic with respect to t, and if the system is time invariant

then the Liapunov function is time invariant.

The proof of Kurzweil’s Theorem will be obtained later as a by-product of
a more general result. Note that since in Theorem 3.4 the right hand side of
the differential system is assumed to be continuous, then all its solutions are

classical.

3.4.2 Uniform stability

As in the time invariant case, when dealing with stability or Lagrange stability
the existence of Liapunov functions is more delicate, the critical issue being

again the relationship between the regularity of f and the regularity of V.



106 Time varying systems

Earliest studies about converse theorems come back to Persidskii (1936).
He actually proved that if a system is stable and if f(¢,x) is at least of class
C', then there exists a C'! function V(t,z) such that (3.18) holds with a € Ky
and V(t,z) < 0 for each pair (¢,#) (which of course implies property (ii) of
Definition 3.8). Moreover, Persidskii introduced the notion of uniform stability
and gave the first proof of Theorem 3.1. The converse of Theorem 3.1 was ob-
tained later, around 1955, independently by Krasovski ([88]), Kurzweil ([90])
and Yoshizawa ([158]). It should be emphasized that Kurzweil’s construction
applies when f is of class C!, while for Yoshizawa’s construction, f continu-
ous and locally Lipschitz continuous with respect to x, suffices. The precise

statement of Yoshizawa’'s result is as follows.

Theorem 3.5 Consider the system (3.10), and assume that f(t,x) is contin-
uwous on [0,400) x R™. Assume further that it is locally Lipschitz continuous
with respect to x. If the origin is uniformly stable, then, there exists a weak Li-
apunov function in the small which is locally Lipschitz continuous with respect
to both t and x.

If in addition f(t,x) is locally Lipschitz continuous with respect to both t

and x, then there exists a weak Liapunov function in the small of class C'*°.

Remark 3.4 Having in mind the last sentence in the statement of Theorem
3.4, one can be tempted to conjecture that if f is sufficiently regular, periodic
with respect to ¢ (or independent of ¢) and uniformly stable, then it is possible
to find a periodic smooth Liapunov function. This is false, as the following
argument shows.

Consider a time invariant stable system

i = f(x) (3.20)

which does not admit a continuous Liapunov function (e.g., the system in Ex-
ample 2.2), and assume that we can find a continuous, weak Liapunov function
V(t,z), periodic with respect to t. Let T' > 0 be a period for V (¢,z). Let us
define

T
W) = /0 V(s,z)ds (3.21)

It is clear that W (x) is positive definite and continuous. Let us prove that

for any solution z(t) such that 2(0) = z and for each ¢ > 0, we have

W (a(t)) < W(3) .
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To this end, let 24(t) = z(t—s). Of course, x4(t) is a solution of (3.20) such
that z4(s) = Z. Therefore, for each ¢t > 0 and each s € [0,T] we have

V(s,2) = V(s,zs(s)) = V(s +tay(s +1) = V(s +t,(t)) .

Hence,

T t+T
W(z) > /OV(ert,yc(t))ds:/t V(o,x(t)) do

/0 V(e o(t)) do = W(z(t)) .

In conclusion, W (z) is a continuous, weak Liapunov function for our system,
which is a contradiction.

Note that (3.21) allows us to define a time invariant Liapunov function
W (z) which is as regular as V (¢, ) is (continuous, Lipschitz continuous or C”
with 1 <r < 4+00). [ |

As a consequence of Theorem 3.5, we see that a continuous time dependent
Liapunov function must exist for the center-focus configuration considered in
Chapter 2 (Example 2.2) and for its one-dimensional version. In fact, a con-
tinuous Liapunov function has been explicitly found in Example 3.1. The
construction performed in Example 3.1 illustrates Yoshizawa’s idea on which
the proof of Theorem 3.5 is based.

If the system is stable and f is merely continuous, the same construction
can be adapted and gives rise again to a weak Liapunov function in the small:
however, in general, there exists no continuous such a Liapunov function. This
is shown by a counter-example due to Kurzweil and Vrko¢ (see [92]). We present

here a slightly modified version.
Example 3.3 Consider the time invariant one-dimensional equation

i = f(z) (3.22)

where

2n (/11— (27mz —3)?  for3.2" <z < 2nt2
f(z) = N , n e Z
21— (2 —3)°)° for2vt <z <3




108 Time varying systems

f(0) = 0 and f(—x) = —f(x). Note that the right hand side of (3.22) is
continuous, but not Lipschitz continuous.

The behavior of solutions can be described in the following way. For x >
0, there are infinitely many equilibrium positions P,, n € Z. The sequence
diverges when n — +oo, and converges to the origin when n — —oo. The
corresponding graphs divide the region « > 0, ¢ > 0 into infinitely many strips.
Any solution whose graph is contained in one of these strips is increasing and
collapses with the graph of the upper equilibrium solution in finite time.

This situation looks like the one-dimensional version of center-focus configu-
ration, but with the fundamental difference that in the latter case the solutions
do not collapse: they approach the upper one in an asymptotic way.

It is evident that this system is uniformly stable at the origin and Lagrange
stable. It should be also clear that a continuous (time varying) Liapunov

function cannot exist for this system.

3.5 Robust stability

Kurzweil and Vrko¢ proved in [92] that the existence of a continuous weak
Liapunov function becomes necessary and sufficient when the definition of sta-
bility is conveniently strengthened. We report here their definition, which will

71 Also in this section, solutions are al-

be referred to as “robust stability
ways intended in Carathéodory sense, and conditions (A4), (Az) and (Ag) are

assumed to hold.

Definition 3.12 We say that (3.10) is robustly locally stable at the origin
if there exist a sequence {G;}i=01.2,... of open sets in [0,+00) x R" and two

sequences of real numbers {a;}i=o01,2,... and {b;}i=0.1,2,... such that

(I) 0 < bip1 < a; <b; for eachi=0,1,2,..., and b; — 0 for i — 400

(II) [0,400) x {z : |z| < a;} € G; C [0,400) x {x : |z] < b;} for each
i=0,1,2,...

(II1) for each i = 0,1,2,..., each initial pair (tg,x0) € G; and each solution
z(+) € Sty 0ne has that xz(-) is continuable on [tg, +00) and (t,z(t)) € G; for
each t > tg.

IThe term “robust stability” is often used in control theory to denote stability with respect
to external disturbances or uncertainty of structural parameters, as in previous Section 2.2.5.
From now on, robust stability will be rather used with the meaning of Definition 3.12. Thus,

no confusion is possible.
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Next two propositions clarify the relations between uniform stability and
robust stability.

Proposition 3.3 If the origin is robustly stable for (3.10), then it is uniformly
stable.

Proof. Let € > 0 be given, and let ¢ € N be such that b; < e. We claim that
the choice 6 = a; works. Indeed, for any ¢ty > 0 and any xg with ||2o|| < 4, we

have

(to,z0) € [0,+00) x {z: ||z]| < a;} C G .

According to (III), this implies that (¢,z(t)) € G; for each z(-) € Sy, 4, and
each t > tg. Hence, ||z(t)|| < b; < e for each t > 1. ]

Example 3.3 shows that the converse of Proposition 3.3 is false, in general.

Proposition 3.4 Assume that f(t,x) satisfies condition (Ay) (local Lipschitz
continuity with respect to x), besides (A1), (As) and (Asz). Then, uniform
stability at the origin implies robust stability.

Proof. We start by setting by = 1. According to Definition 3.2, to ¢ = by
there corresponds a number 6 > 0. We take ag = 9.

It is clear that ag < by. Next, we define Gy as the set of all points of the
form (¢, z(t)) with z(-) € Sy;.z0, t > to > 0 and ||zo|| < ao.

It follows immediately that

[0,+00) x {z: ||z|]| <ao} C Go C[0,+00) x {z: ||z]| <bo} .

It remains to prove that G is open. To this purpose, we can use property
(C) (which is guaranteed under our assumptions) and the fact that [0, 400) x
{z: ||z|| < ap} is open.

Assume now that a;, b; and G; have been constructed. We can choose any

bi+1 € (0,a;) and repeat inductively the previous construction. |

We state now the analogous of first Liapunov’s theorem for robust stability.

Theorem 3.6 Assume that there exists a continuous weak Liapunov function
in the small for (3.10). Then, (3.10) is robustly stable at the origin.

Proof. First of all we observe that under the assumptions of the theorem any

solution issuing from a sufficiently small neighborhood of the origin is right
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continuable to +oo. To prove it, let 79 be any positive number such that a(rg)
is defined. Since b(r) — 0 for r — 0T, there exists dy > 0 such that

a(To) Z b(§0) .

Without loss of generality, we can assume that g < 79. Let ||zg] < do.
We claim that for each to > 0, each z(-) € Sy, and each ¢ > ty one has
z(t) € By,. In the opposite case, we should have

()] = o

for some t; > ty. Hence,

V(tr, 2(t1)) = a([le(t)]]) = a(ro) = b(do) > b([|zoll) = V(to, zo)

which is a contradiction to Definition 3.8(ii).

Next we define G, a; and b; for ¢ = 0. Let by = §p and let \g = a(bo).
Since b(0) = 0, and \g = a(dg) < b(dp), it makes sense to take ag = b=1(Xg).
We finally set

Go={(t,x): V(t,x) < Mo} .

Since V is continuous, Gy is open in [0,400) x R™. Clearly, ag < bo.
Moreover, by construction, we have by = dy < 7¢.

If ||z|| < ag, then b(]|x|]) < Ao. Hence, for each t > 0, V(t,x) < A\g. On
the other hand, if V(¢,z) < Ag for some pair (¢, x), then a(||z|]) < Ao, so that
[|[z]| < a=*(Ag) = dp = bo. This shows that Gy satisfies condition (II). Finally,
condition (IIT) follows from the definition of Gy and property (ii) of Definition
3.8. In particular, we note that all the solutions starting from G are right

continuable to +o0.

Now, assume that

ap, a1, -..,0;—-1, b07bl7--~,bi—1, Go,Gl,...,Gi_l

have been defined for some ¢ > 1, in such a way that

O<a¢_1Sbi_1<...<a1§b1<a0§b0,

G is open in [0,400) x R™ and (II), (III) hold (j =0,1,...,i—1)
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and, in addition,

Let us define

- i1 ro
Al—mln{a( 5 )’b(2i>} , (3.23)
a; = b71(>\i), b; = ail()\i) and ﬁnally G;, = {(t,l‘) : V(t,CC) < )\7}
Of course, a; < b;. Moreover, according to (3.23), we have

Aj—1

b; = a_l(/\i) < < Qj—1 .

Using again (3.23), we have also b=1()\;) < ro/2¢ and hence

a; < ;ﬁ . (3.24)
To prove that the open set G; meets conditions (II) and (III), we proceed
as in the case i = 0.
To complete the proof, it remains to notice that a; and b; converge to zero,

as required, by virtue of (3.24). |

Under the assumption that f(¢, ) is continuous, Kurzweil and Vrko¢ proved
in [92] that also the converse of Theorem 3.6 holds.

Theorem 3.7 Let f(t,x) be continuous on [0, +00) x R"™. Assume that (3.10)
s robustly locally stable at the origin. Then, there exists a C'° weak Liapunov

function in the small.

It is worth noticing that the Liapunov function provided by Kurzweil and
Vrko¢ converse theorem is of class C'°°. We do not report the proof of Theorem
3.7. Indeed, even in this case a more general statement will be given and
proved in the next chapter, in the more general context of systems defined by
differential inclusions.

Remark 3.5 It should be noticed that the new restrictions introduced in the
definition of robust stability, when applied to the case of time invariant systems,
turn out to be weaker than the conditions about prolongations (absolute stabil-
ity) discussed in Chapter 2. Consider for instance the system in Example 3.1.
A continuous, time dependent Liapunov function was explicitly constructed.
Hence, from Theorem 3.6, the system is robustly stable at the origin. However,
we know that a continuous time invariant weak Liapunov function cannot exist,
so that the system is not absolutely stable at the origin.
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3.6 Lagrange stability

In analogy with the case of uniform stability, Yoshizawa proved that a conclu-
sion similar to that of Theorem 3.5 is valid also for uniform Lagrange stability.

Theorem 3.8 Consider the system (3.10), and assume that f(t,x) is con-
tinuous on [0,400) x R™, and locally Lipschitz continuous with respect to x
(condition (Ay)). Assume further that the system is Lagrange stable. Then,
there exists a weak Liapunov function in the large which is locally Lipschitz
continuous with respect to both t and x.

If in addition f(t,x) is locally Lipschitz continuous with respect to the pair

(t,x), then there exists a weak Liapunov function in the large of class C™°.

Example 3.3 can be used to show that Lagrange stability does not imply
the existence of a continuous weak Liapunov function in the large, if the right
hand side of the system is assumed to be only continuous.

The existence of a continuous weak Liapunov function in the large turns
out to be actually equivalent to a stronger type of Lagrange stability, that we
agree to call “robust Lagrange stability”.

Definition 3.13 We say that (3.10) is robustly Lagrange stable if there exist
a sequence {G; }i=01,2.... of open sets in [0, +00) x R"™ and two sequences of real

numbers {a;}i=o01,2,... and {b;}i=01,2,.. such that

(1) 0 < a; <b; < ajpq for eachi=0,1,2,..., and a; — +0o0 for i — +00
(II) [0,400) x {z : ||z|| < a;} € G;i C [0,400) x {z : |lz|| < b;} for each
i=0,1,2,...

(II) for each i = 0,1,2,..., for each initial pair (to, z0) € G; and each solution
x(+) € Sty.20, 0ne has that z(-) is continuable on [0,4+00) and (t,x(t)) € G; for
each t > tg.

As in the case of local stability (see Propositions 3.3 and 3.4) it is possible
to prove that the robust Lagrange stability implies the usual Lagrange stability
property. The two properties are actually equivalent when f satisfies conditions
(Aq), ..., (Ay).

Theorem 3.9 Assume that there exists a continuous weak Liapunov function
in the large for (3.10), Then, (3.10) is robustly Lagrange stable.

Apart from some obvious modifications, the proof of Theorem 3.9 is very

similar to the proof of Theorem 3.6 and it is left to the reader.
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3.7 Discontinuous right hand side

In the previous sections we considered systems for which at least the conditions
(A1), (A2) and (Ag) are satisfied. Solutions were intended in Carathéodory
sense and the stability notions were consistently defined.

Next step is to remove assumption (As). In other words, we would like to
extend, as far as possible, the results illustrated so far to the case where f (¢, x) is
locally bounded and, say, Lebesgue measurable with respect to both variables.
As explained in Chapter 1, systems with discontinuous right hand side are often
treated as differential inclusions. Although the Liapunov method for differential
inclusions will be fully exploited as the main subject of next chapter, we find
it convenient to anticipate here some comments and one result.

It has been recently proved in [116] that Theorem 3.4 (Kurzweil’s Theo-
rem) extends to discontinuous systems, provided that solutions are intended in
Filippov’s sense.

Let us assume that the definitions of stability and asymptotic stability, as
well as the definitions of Liapunov function, have been updated by replacing
Carathéodory solutions by Filippov solutions. Note that in order to have an
equilibrium position at the origin, x(¢) = 0 must be now a Filippov solution.
This is equivalent to require 0 € K, f(¢t,0) for a.e. t > 0.

Theorem 3.10 Assume that the origin is an equilibrium position and that the
right hand side of (3.10) is locally bounded and measurable with respect to the
pair (t,z) € [0,400) X R™. Assume further that the origin is locally uniformly
asymptotically stable. Then, there exists a strict Liapunov function in the small
which is locally Lipschitz continuous.

In addition, if the origin is globally uniformly asymptotically stable, then it
can be found a locally Lipschitz continuous global strict Liapunov function.

Finally, if the system is time invariant (i.e., f(t,x) = f(z)) then the Lia-

punov function is time invariant.

For the proof of Theorem 3.10 we refer to [116]. Note that the statement
about the regularity of V' (¢, x) cannot be improved in general. An example will
be given in Chapter 4.

3.8 Time varying feedback

It has been shown in the first section of this chapter (Example 3.1) that there
are systems which can be stabilized by a continuous, time varying feedback, but



114 Time varying systems

not by a continuous, time invariant one. In the present section we review some
results by J.M. Coron ([46], [47]). Basically, we shall see that stabilizability
under time dependent (actually periodic) feedback is possible for each system,
provided that the dimension of the state space is sufficiently high and suitable
controllability conditions are satisfied.

First of all, we need a further refinement of the notion of STLC introduced
in Section 2.3.2. Here, an admissible control on a given interval [0,T] will be
thought of as an element of the normed space L1 ([0, 7], R™). We shall say that

a time invariant system

&= f(z,u) (3.25)

is continuously STLC if it is STLC with small controls and, in addition, the
map x — u,(t) from a neighborhood of the origin of R™ to Li([0,7T],R") is
continuous. It is proven in [43] that many well known computable sufficient
conditions for STLC allow us to conclude that the system is actually continu-

ously STLC. The simplest way to state Coron’s result is the following one.

Theorem 3.11 Let n > 4. Assume that f(x,u) is real analytic on R™ x R™,
and assume that (3.25) is continuously STLC. Then, for each T > 0 there exist
e >0 and a function (t,x) — u(t, z) which enjoys the following properties:

e u(t,x) is defined and continuous on R x R™

o u(t,x) is of class C*> on R x (R™\ {0})

o for each x € R™ and each t € R, u(t + T, z) = u(t, x)

e for each solution x(t) of the closed loop system

&= f(z,u(t,z)) , (3.26)
if x(1) =0 for some 7 € R, then x(t) =0 for each t > 7

e for each solution x(t) of (8.26), if ||x(7)|| < e for some 7 € R, then
x(t) =0 for eacht > 7+ T.

It follows from the properties listed above that (3.26) is locally uniformly
asymptotically stable at the origin ([46], Lemma 2.15).

In other words, Coron’s result states that for analytic systems and for n > 4,
a special notion of local controllability implies continuous stabilizability (in fact,
almost smooth stabilizability).

Note that the periodic feedback u(t,z) in Theorem 3.11 guarantees in some
sense more than asymptotic stabilizability: the origin is exactly reached in

finite time.
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Coron’s result remains valid also when n = 1. In fact, in this case it is
possible to construct a time invariant feedback ([45]). Coron’s result is true
without any restriction on the state space dimension in the case of a driftless
affine systems ([44]). However, in the general case it is not known whether
Coron’s result is valid for n = 2, 3.

The statement of Theorem 3.11 can be extended to the case where f is of
class C*°, provided that an extra assumption (implicitly fulfilled in the analytic
case) is explicitly made. This assumption has a Lie algebraic nature. In order
to describe it, we need to introduce some notation. By a € N we mean a
multi-index o = (a1, . . ., @) and by || we mean its length, |a| = ay+. . . 4.
Moreover, if ¥V and W are sets of vector fields, by [V, W] we mean the set of
all vector fields of the form [X,Y], with X € V, Y € W (as usual, [-, -] denotes
the Lie bracket).

We consider some families of vector fields associated to the system (3.25):

lex|
Dy = {guaf(,()) , € Nm}

loe
D, = {af(~,0) , a € N | af >1}

ou™
& = {[Do, Do}
& = {[Do, &}
E=UXLE

and, finally,

D(0) =span{X(0): X € D;UE}.

Note that & represents the set of all iterated Lie brackets of elements of Dy,
but in general Dy is not contained in &.

We are now ready to state Coron’s Theorem in its generality.

Theorem 3.12 Let n > 4. Assume that f(x,u) is of class C*° on R™ x R™,
and assume that (3.25) is continuously STLC. Assume finally that dim D(0) =
n. Then the conclusions of Theorem 3.11 remain valid.
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If f is analytic, or a polynomial with respect to u, then the continuous
STLC assumption implies that dim D(0) = n. The more common criteria for
STLC actually imply that dim D(0) = n.

The first pioneering work about time dependent periodic stabilizing feed-
back is due to Sontag and Sussmann ([139]). We also report the following
theorem ([49]), relating time varying stabilization and discontinuous stabiliza-

tion.

Theorem 3.13 Let f : R™ x R™ — R™ be continuous, and let f(0,0) =
0. Assume that (2.27) can be stabilized in Filippov’s sense by means of a
discontinuous feedback law fulfilling (2.44). Then, for each positive number T,
(2.27) can also be stabilized by means of a continuous time varying (periodic)
feedback law of period T .

We conclude this section by a remark concerning Artstein’s example dis-
cussed in Chapter 2. We prove that it cannot be stabilized by a continuous
time varying feedback.

Proposition 3.5 The Artstein’s system

{ i1 = (23— ad)u,

562 = 21}11’2’&,

(3.27)

is not stabilizable by means of a continuous time varying feedback law u =
u(t, x).

Proof?. Arguing by contradiction, we assume that there exists a continuous
time varying feedback w(t,z), which (locally) stabilizes (3.27) at the origin.
Thanks to Theorem 3.4 we see that u may be smooth out for # # 0. Therefore
we may assume that the vector field f(¢,z) := ((2% — 23)u(t, 2), 2z 1 zou(t, x))T
is in C°(R* x (R™\ {0})), which, together with the stability of the origin,
implies that the solutions of

i = f(t,z) (3.28)

are unique in forward time. It follows that the corresponding flow map
(t, to, zo) is jointly continuous. (Here, (-, tg, o) denotes the solution of (3.28)
issuing from z( at ¢t = tg.)

Set, for any ¢ € [0,1] and any = € B, (r > 0 small enough),

t .
o(:,0,2) f0<t<l,
H(t,z) ;:{ 0(1 t g1

2Communicated to the authors by J.M. Coron.
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Since the origin is (uniformly) asymptotically stable for (3.28), it is clear that
H is also jointly continuous. Pick any number p < r/2 and set z := (0,p)7,
C :=0B,(z) (C By). The circle C is left invariant by the flow of (3.28), since
f(t,z) is tangent to C for any (t,z) € RT x C. Thus H maps continuously
[0,1) x C into C and it fulfills H(0,z) = x, H(1,z) = 0 for all z € C'. It means

that the circle C' is contractile, which is absurd. [ ]



Chapter 4

Differential inclusions

In this chapter, we are concerned with stability properties for a differential
inclusion & € F(t,z). We first investigate the (uniform) global asymptotic
stability. After a brief review of the main contributions in this topic, we give
a complete (and short) proof of a result which generalizes and unifies all the
converses of the second Liapunov theorem in the literature. The second part
of the chapter is devoted to the first Liapunov theorem and its converse (given

together with its proof) for differential inclusions.

4.1 Global asymptotic stability

The reader is referred to Chapter 1 for the notations (namely, || - ||, B.(x),
h(A, B), etc.) and the current assumptions ((Hy),...,(Hy), Hausdorff continu-
ity, etc.), and to Chapter 3 for some definitions of stability, whose extension to

differential inclusions is straightforward.

4.1.1 Sufficient conditions

Let F: Rt x R® — R" be a multivalued map, fulfilling (H;), (Hs), (H3) and
(Hy). It follows that for each pair (tp,z9) € RT x R™, a solution z(-) of the
differential inclusion

€ F(t,x), (4.1)

issuing from zo at ¢t = to, exists, at least locally. (The set of the maximal
solutions of above Cauchy problem is still denoted by S, »,.) Assume that the
origin is an equilibrium position for (4.1), i.e., 0 € F'(¢,0) for a.e. t> 0. We
aim to characterize the (possible) asymptotic stability of the origin by means
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of some (strict) Liapunov function. According to Definition 3.5, (4.1) is said to
be (uniformly) globally asymptotically stable (UGAS, in short), if the origin
is uniformly stable (and Lagrange stable) and uniformly attractive. In other
words, it means that there exist two functions m: (0,400) — (0,400) and
T: (0,+00)? — (0,+00), such that

(i) for each R > 0, each pair (tg,zo) € Rt x R” and each z(-) € S, 4,

|zl <R = |lz(®)] <m(R) Vt> to;

(ii) limp o+ m(R) = 0;
(iii) for each R > 0, each ¢ > 0, each pair ({y,z9) € RT x R" and each
x() € Sto,wo

lzo SR = |lz(®)] <& Vt>to+T(R,e).

The following result is an obvious generalization of Proposition 2.11. Its proof

may be found in [91, Lem. 1].

Proposition 4.1 The following statements are equivalent:

(i) The origin is UGAS for (4.1);

(ii) there exists a function 8 : [0,400) X [0,+00) — RT which is of class LK
and such that

[ (to + R)[| < B, [lzoll)

for each ty € RY, each xg € R", each z(-) € Sty.0, and each h > 0.

The proof of the following theorem is a straightforward extension of the

proof of the classical Theorem 3.2.

Theorem 4.1 (SECOND LIAPUNOV THEOREM) Let F' : [0, +00) x R™ — R"™ be
a set-valued map such that the (local) existence of solutions of (4.1) is insured.
Assume that there exists a strict Liapunov function in the large V, i.e., a
function V.=V (t,x) such that, for some functions a,b,c € K§°,

a(||lz]]) < V(t,z) <b(||x|]) for all t€[0,400), x € R", (4.2)

h<ty = Vits,alts)) — Vit a(t) < —/t2 c(llz(7)]) dr (4.3)

t1

for each pair of times (t1,t2) and each solution x(-) : [t1,t2] — R™ of (4.1).
Then the origin is UGAS for (4.1).
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When V is of class C!, for condition (4.3) to be fulfilled it is sufficient (not
necessary') that the following (strong) infinitesimal decrease condition holds:

oV
oy (6:0) + (VaV(t,2),0) < —c(|l2]])

for a.e. ¢ >0, for all x € R" and all v € F(¢,x).

(Here, (-,-) denotes the usual scalar product in R", and V,V :=
(av oV )T )
dwy 2 Dzy )

Let us end this section by some useful result.

Proposition 4.2 Let F : RT x R® — R"™ be a locally Lipschitz continuous
(for the Hausdorff distance) multivalued map, which assumes nonempty closed
values for each (t,x). If (4.1) is UGAS at the origin, then the same is true for
the system & € To{F'(t,z)}.

Proof. It is sufficient to go back to the definition of the (uniform) global
asymptotic stability for (4.1), expressed in terms of m(R) and T(R,e) (as
above), and to invoke [59, Thm. 3]. ]

4.1.2 Time invariant systems

In this subsection, we limit ourselves to the time independent case, i.e., we

consider differential inclusions of the form
i€ Fl(x), (4.4)

where F' : R™ — R™ takes nonempty compact values. The first converse of
second Liapunov theorem in this context has been given by Lin, Sontag and
Wang in [95, Thm 2.9].

Theorem 4.2 Assume that the origin is UGAS for (4.4), where F is a locally
Lipschitz continuous multivalued map, which takes nonempty compact values.

Then there exists a C™ global strict Liapunov function V', which satisfies
(Vi V(z),v) < —c(||lz]) Vo € R", Yv € F(x),
for some function c € K§°.

Actually, Theorem 4.2 is stated in [95] in a somewhat different manner: (i) F
takes in [95] the special form F(x) := {f(z,d),d € D}, where f : R"xR™ — R"

LIf F is not Lipschitz continuous, there may exist a vector v € F(t, ) which cannot be
written as a derivative #(t) for some solution x of (4.1).



122 Differential inclusions

is a smooth function and D is a compact set in R™; (ii) Theorem 2.9 in [95]
deals with the asymptotic stability with respect to any compact invariant set,
instead of the origin. Theorem 4.2 has been used in [142] to prove that the
converse of Theorem 2.15 holds true, as well.

Another converse Liapunov theorem has been obtained a few years later by

Clarke, Ledyaev and Stern in [38] for another class of multivalued maps.

Theorem 4.3 Assume that the origin is UGAS for (4.4), where F is an upper
semi-continuous (u.s.c.) multivalued map, which takes nonempty compact con-
vezr values. Then there exists a C*° global strict Liapunov function V, which
satisfies (V;V(x),v) < =W (z) for each x € R" and each v € F(z), for some

definite positive continuous function W.

Here, F is only supposed to be u.s.c., but F(x) is convex for each x. Thanks to
Proposition 4.2, Theorem 4.2 turns out to be a direct consequence of Theorem
4.3.

Finally, we recall the recent paper [148], where the authors are interested
in stability with respect to two measures. The existence of smooth Liapunov
functions for (4.4) is related to certain robustness properties.

4.1.3 Time varying systems

In [116], one of the authors proves a converse theorem for global asymptotic
stability, by extending Kurzweil’s proof to Filippov’s solutions of equations
with time dependent, discontinuous right hand side. In fact, using the same

method as in [116] and [16, Lem. 4.1], it is possible to achieve a stronger result.

Theorem 4.4 Assume that the origin is an equilibrium position for (4.1), and
that F fulfills (Hy), (Ha), (Hs) and (Hy4). If (4.1) is UGAS, then there exists
a strict Liapunov function, which is locally Lipschitz continuous with respect to
both wvariables.

Surprisingly enough, the smoothness of the Liapunov function in Theorem 4.4

cannot be improved in general, as it is shown by next result (see [118, Prop.
1))

Proposition 4.3 There exists a bounded Borel map A: R — R such that the
origin is UGAS for the system

T = At)x (4.5)

and such that there does not exist any strict (or weak) Liapunov function V (t, )
in the large (or in the small) of class C*.
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Therefore, if we intend to construct a smooth Liapunov function, some addi-
tional assumption has to be made as far as the regularity of f with respect to
time is concerned. Let us introduce the following

Definition 4.1 Let f € L2 (RT x R",R™), m,n > 1. The function f is said
to be essentially continuous with respect to time (ECT in short) if there exists
a set N C RT x R™ of measure zero such that for each pair (tg,x9) € RT x R®

and for each € > 0, there exists § > 0 such that for each pair (t,z) € RT x R"

[t —tol + llz — zol| <0
(t,x) ¢ N = [If(t,z) — f(to, )|l <e. (4.6)
(t07.');‘) gN

Roughly speaking, the function f is ECT if the restriction of f to the com-
plement of some set of measure zero is continuous with respect to time, in a
(locally) uniform way with respect to z. Such a property is fulfilled when, for
instance, f takes the form

f(ta ‘r) = h(u(t)av(x))a
where u: RY — RP is a (locally) Riemann integrable map, v € £ (R", RY)
and h € CO(RPT4,R™), m,n,p,q > 1. Indeed, a bounded function defined on
a segment of R is Riemann integrable if, and only if, the set of points at which

the function fails to be continuous is of measure zero [123]. Notice that every
vector field f of the form

f( —fO +Zuz

where for each i > 0, f; € L2 (R",R") and for each ¢ > 1, u; is a piecewise
continuous (or piecewise monotone) function, is of the mentioned form.

To state a converse Liapunov theorem which provides a smooth (i.e., C*)
Liapunov function in a set valued context, we need to introduce a strengthened
version of (H), namely the assumption

(H'): There exists a zero measure set Ny C R such that

(H}) For each (t,z) € (RT \ Ng) x R™, F(t,z) is a nonempty convex compact
set in R"™;

(HY) For each R > 0, there exists a number M > 0 such that

(t€[0,R]\ Ny, ||lz|| < R) = F(t,z) C Bu;
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(H%) The restriction B i\ g e 18 UPPET semicontinuous (u.s.c.), i.e., for each
0

pair (tg, zg) € (RT\ Ng) x R™ and each & > 0 there exists § > 0 such that for

any (t,z) € (RT\ Ng) x R"

|t —to,z —x0)|| <6 = F(t,x) C F(to, o) + Be.

The link between the essential continuity with respect to time and (H’)

appears clearly in next

Proposition 4.4 Let f € L2 (RTxR™, R™). If f is ECT, then (H') is fulfilled
by F(t,z) := K, f(t,x).

We are now in a position to state the main result of this section, which contains
Theorems 3.4, and Theorems 4.2 and 4.3.

Theorem 4.5 (CONVERSE OF SECOND LIAPUNOV THEOREM) Assume that
(4.1) is uniformly globally asymptotically stable (UGAS) at the origin and that
(H') is fulfilled. Then for any X > 0 there exist a function V : RT x R"® — R*

of class C*° and two functions a,b in Kg° such that

a(||lz))) < V(t,z) <b(||z]]) forall t>0 and x € R"; (4.7)

%_Y(t’x) + (V. V(t,x),v) < =AV(tx)

for all t e RT\ Ny, z € R" and v € F(t,z). (4.8)

Furthermore, we may also require that V is time-periodic if F is time-
periodic (with the same period), and that V is time-independent if F is time-

independent.

Remark. We infer from (4.7) and (4.8) the standard estimate

ov
E(ta ‘T) + <VTV(t1 'T)7 U> < —c (H.I”),

where ¢(-) denotes some function in K§°. (Take ¢ := Aa.) We may also infer
from (4.8) that V is exponentially decreasing along the trajectories of (4.1),

meaning that for any trajectory x(-): [to, +00) — R™ of (4.1)
V(t,z(t)) < e M0V (g, 2(to)) Yt > to.

The interested reader is referred to next subsection for a detailed proof. Let us

briefly outline this proof. In the first step, using an idea from [38], we show that
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the (uniform) global asymptotic stability also holds true for some perturbed
system
& € Fy(t, ), (4.9)

where F'(t,z) C Fy(t,x) for every x and a.e. t, and Fy is locally Lipschitz con-
tinuous (for the Hausdorff distance) in R* x (R™ \ {0}). The nice property
we gain is that, for each pair (tg,¢1) of times, the flow map z¢ — {z(t1) :
x(-) solves (4.9) and x(tg) = o} is locally Lipschitz continuous for the Haus-
dorff distance. In next step, we adapt some explicit construction by Yoshizawa
in [159] of a locally Lipschitz continuous Liapunov function Vj, to our differen-
tial inclusion setting. In the final step, we smooth Vi by a standard method

using convolution with mollifiers and partition of unity.

4.1.4 Proof of the converse of second Liapunov theorem

The following set is introduced for notational convenience
E = ([-1,400) \ Ny) x R™.

Next a lemma, which is a special instance of Theorem 1.5, is reported here for
the comfort of the reader.

Lemma 4.1 Let F = F(t,z) be a multivalued map fulfilling (Hy), let y :
[Ty, T5] — R™ denote some solution of (4.1) and let b > 0. Assume that F
is Lipschitz continuous in the region t € [T1,Ts], |z — y(¢)|| < b. It means
that there exists some constant K > 0 such that for any t,t € [Ty, T3] and any
z, T € R™ with ||z —y(t)|| < b, ||z — y(t)|| < b we have

h(F(tvx)vF(faj)) < K"(tfzvx*f)”

Let (to,x0) € [T1,T2] x R™ be such that ||zg — y(to)|| < b. Then there exists a
solution x(-) of (4.1) such that x(ty) = xo and

() =yl < llzo —y(to)lle" ! (4.10)
as long as ||xo — y(to)||e1t 1ol < b.

The construction of Fs, V;, and V will be first achieved in the general setting,
i.e., when F(t,x) is any time dependent set valued map. The main modifi-
cations to be brought in the time-periodic or time-independent cases will be
indicated after.
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(Regularization of F')

In order to facilitate the construction of a Liapunov function which is smooth
up to t = 0, we extend F on [—1,0) x R" by setting F(¢t,2) = {—z}. It is easily
seen that F' fulfills (H') on [—1,+00) x R™ (provided that 0 is put into Ny)
and that (4.1) remains UGAS [—1,400) x R™. To smooth F' “from the inside”

we need the following compactness lemma.

Lemma 4.2 Assume that (H') holds true for F on [—1,400) x R™. Let R >0

be given and let (£2);0, ()50 and (67) ;50 be sequences of numbers such that

—1§t{§t§§R for all j,

=0 asj— oo.

Let (acj)jzo be a sequence of absolutely continuous functions 7 [t{,té] — Bg
such that, for a.e. t € [t],t]]

#(t) € @{F(By (t,27(t)) N E)}

(Bsi(t, 27 (t)) denotes the closed ball for the sup-norm in R™"*1 which is cen-
tered at (t,2’(t)) and has &7 as a radius.) Then there exist two numbers
ti,ty € [=1,R], a function x : [t1,t2] — Bgr and a sequence j* — oo such
that x(-) is a solution of (4.1) on [ty,ta], t)F — t1, ) — ty as k — oo and

lim. 2 (H4) = (ty), Jim. 2 (HF) = a(ty).

Proof. In what follows, we sometimes need to take convergent subsequences
of certain sequences of numbers or functions. In these cases, for the sake
of simplicity and without loss of generality, we avoid using multiple indices:
rather, we assume that the given sequence is actually convergent. Thus, since
-1< t{ < té < R, we may assume that t{ — t1 and tg — t2. We may also
assume that 6/ < 1 for any j > 0. According to (Hj) , there exists a constant
M > 0 such that

te[-1,R+1]\ Ny, ||z| < R+1 = F(t,x) C By.

For j > 0 and ¢t € [-1, R] we set

Pd#) it —1<t<d,
Ft)=q 2/(t) i <<t
() if  H<t<R
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Since for any j > 0, ||77(¢)|| < R for every t € [—1, R] and Hij(t)H <M
for a.e. t € [—1, R], we infer that the sequence (#7) is bounded in the Sobolev
space H'((—1,R),R"), hence a subsequence (also denoted by (7)) weakly
converges in H' ((fl,R),R”) towards a function x. It follows that 2/ — x
in CO([—1, R],R") and that & — & in L2((—1, R),R") (see e.g. [25, Thm.
VIIL7]). As an easy consequence, & (t]) — x(t;) and 7 (}) — z(ty). To
prove that x(-) is indeed a solution of (4.1), i.e. that &(t) € F(¢,x(t)) for a.e.
t € [t1,t2], we consider the functional J defined on L?((—1, R),R") by

ta

J(w) = / dist (w(t), F(t, 2(t)) dt.
ty

Notice that the nonnegative map ¢ — dist(w(t), F(t,x(t))) is measurable, ac-

cording to [54, Prop. 3.4] 2. Tt is easily seen that the functional J is well-defined,

convex and continuous for the strong topology of L?((—1, R),R™), hence it is

Ls.c. for the weak topology of L?((—1,R),R™) (see [25, Cor. IIL8]). Since

i = & in L2((~1, R),R"), we get

(0 <) J(&) < liminf J(3).

J—00

To prove J(i&) = 0, which is equivalent to (4.1) on (t;,f2), we only have to
show that lim; J(&)

= 0. Since dist (i’ (t), F(t,(t))) < 2M for a.e. t € (t1,t5) and each j, applying
Lebesgue’s theorem, we are done if we prove that for a.e. t € (t1,t2)

lim dist (3 (£), F(t, 2(t))) = 0.

J—00

For a.e. tg € (t1,12) \ No, there exists an integer j, > 0 such that for any
j > jo, to € (t],t}) (hence the tilde may be dropped) and i/ (t) exists and it
belongs to co{ F(Bg; (to, 27 (tg)) N E)}. Let € > 0. According to (Hj), there
exists ¢ > 0 such that for any (¢,z) € E

[t — to, & — x(to))|| <6 = F(t,x) C F(to, z(to)) + Be.
By increasing jo if needed, we may also assume that for all j > jj

S ) )
o < 3 and |27 (tg) — z(to)] < 3

2To apply this result we need to check that the map ¢ € (t1,t2) +— F(t,x(t)) is measurable.
But the map t € (t1,t2) \ No = (t,z(t)) € £ is continuous and F}, is u.s.c., hence the
composite map t € (t1,t2) \ No — F(t,z(t)) is u.s.c., and therefore measurable. The same is
true for the map ¢ € (¢1,t2) — F (¢, z(t)).
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We infer that for all j > jo, Bsi(to, 27 (to)) C Bs(to,x(tg)) and
@{F(E(y (t(),xj(to)) N E)} C F(to,l‘(to)) —|—§E.

It follows that dist (ij (to), F(to, z(tg))) < & for j > jo, as required. [ |

In what follows, § = (¢, z) denotes any continuous function [—1,400) X
R™ — R™ such that

V(t,z) € [-1,400) x R" §(t,z) =0 <= x=0.
If such a function 0 is given, we set for any (¢,2) € [—1,+00) x R"
Fi(t,z) :==co{F (Bstz)(t,x) NE)}. (4.11)
We aim to prove that, for a suitable choice of 9, the system
ieFtz), t>-1, zcR" (4.12)

inherits the (uniform) global asymptotic stability of (4.1). Before proving such
a property, let us observe that, for any choice of §, the multivalued map F}
fulfills (H') on [—1,4+00) x R™, as well. Indeed,

F(t,0) if t¢& No,
Fi(t,0) =
1(6,0) {(2) if te N,

hence (Hj) and (H)) are obvious. Next (HY) follows easily from the upper-
semicontinuity of the multivalued maps Fj,, and (t,z) — Bs..)(t, ) N E (€
289,

Since (4.1) is UGAS, there exists a sequence (¢; );ez of continuous decreasing
functions [0, +00) — (0, 400) fulfilling the following properties:
(i) For any pair (tg,zg) € [—1,4+00) x R™ and any solution z(-) of (4.1) such
that x(to) = =0,

[zol] <2° = |z(to + h)|| < pi(h) for all h > 0;

(i) For each i € Z, ¢;(t) — 0 as t — o0;

(iii) (goi(()))iez is a nondecreasing sequence such that ¢;(0) — 0 as i — —c0
and ¢;(0) — +o00 as i — +o0.

Indeed, it is sufficient to set ¢;(h) := B(h,2%), where 3 is given by Proposition
4.1. Notice that ¢;(0) > 2. For each i € Z, let p; € Z be the greatest integer
such that ¢,,(0) < 2'71. Clearly, p; < i — 1, the sequence (p;) is nondecreasing
and p;, — +oo as 1 — +oo.
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Remark 4.1 As a direct consequence, any compact set in R™\ {0} intersects
the sets {x: 2Pi < ||z| < p;(0)} for at most a finite number of i.

For each i € Z, pick a number T; > 1 such that o;(7;) < 27! and set 1, =
max(T;, max(T; : p; = i)) when there exists j € Z s.t. p; = i, T, = T,
otherwise.

Lemma 4.3 Leti € Z and k € {—1} UN. Then there exists a constant § > 0

such that, for any solution x(-) of
i € co{F(Bs(t,x) N E)} (4.13)
fulfilling ||z (to)|] < 2¢ for some time to € [k, k + 1], we have
|2(to + )|l < @i(h) Vh € [0,T).

Proof. If the statement of Lemma 4.3 is false, then there exists a sequence
of positive numbers 67 \, 0 and a sequence of absolutely continuous functions
(270, with 27 : [t), 1] — R™ ) € [k, k 4+ 1], t) < tJ <t} + T}, such that

i/ (t) € @{F(Bsi(t,27(t)) N E)} for ae. t€ [t),t]],
|27 () < 27, |27 ()| < @it — 1) for all ¢ € [t,#]), and
[z ()|l = wi(t] — t)-

Using Lemma 4.2 and extracting subsequences if needed, we may also assume
that for some numbers to,t; € [k, k + 1+ T3] and some solution z(-) : [to, 1] —
R™ of (4.1), we have (£}, 27 () — (to,z(to)) and (], 27 (1)) — (t1,z(t1)) as
j — oo0. Hence ||z(to)|| < 2¢ and |lz(t1)| = @i(t1 — to), which contradicts the
definition of ¢;. |

For each pair (i,k) € Z x ({—1} UN), we denote by §¥ the number ¢ > 0
given by Lemma 4.3. Pick any continuous function § : [—1,+00) x R" — R*
fulfilling

0(t,z) =0 <= 2=0 and (4.14)

i(t,z) < min((;f,csgi) whenever k£ <t and 2P <|z] < ¢;(0). (4.15)

Notice that such a function ¢ exists, due to Remark 4.1. Replacing (if needed)

¢ by the inf-convolution function

o(t,z) = inf ) t— -
()= b (@)= s =),
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we may also require that & be Lipschitz continuous, with 1 as a Lipschitz
constant®. To prove the (uniform) global asymptotic stability of (4.12) we
need the

Lemma 4.4 Let §(-) fulfill (4.14)-(4.15), and let x(-) be any solution of (4.12).
Assume that ||z(to)|| < 2¢ for some time to > —1 and some i € Z. Then

(a)  lz(to +h)|l < wi(0) Vhe[0,Ti,
(b)  a(to +To)|| <207

Proof. If (a) is false, then there exist two times t1,ts such that ¢ty < t; <
ty <to+T; and 2' = ||z(t1)]| < [|z(#)]] < |z(t2)]| = i(0) for t; < t < ta. Set
k := [t1]. Since 27 < ||z(t)|| < ¢;(0) for ¢t € [t1,t2], we infer from (4.15) that
x(+) is also a solution of

i € { F(Bgk(t,z) N E) } (4.16)

on [t1,t2], hence, by Lemma 4.3, ||x(t2)|| < @i(ta —t1) < ¢i(0), which con-
tradicts some property of t3. We now turn to the proof of (b). Assume
that ||z(to + T;)|| > 2071 If 2P¢ < ||a(to + h)|| (< 9i(0)) for all h € [0,T;],
then x(-) again solves (4.16) on [tg,to + Tj] (with here k := [to]), hence, by
Lemma 4.3, ||z(to + T3)|| < ¢i(T;) < 2°71 leading to a contradiction. We
infer that there exist two times t1,%o such that tg < t1 < to < tg + T; and
200 = |lz(t1)]| < |lz(t)| < [|x(ta)]| = 271 for t; < t < ta. Set again k := [t4].
Since 8(t,z(t)) < 0% for t; <t < ty and to —t; < Tj < T),, we infer from
Lemma 4.3 (applied with p; instead of i) that [|z(t2)|| < ¢, (0) < 2i71, contra-
dicting some property of t,. |

Corollary 4.1 Let § and Fy be as above. Then (4.12) is UGAS on [—1,4+00)
xR™.

Indeed, we infer from (a) and (b) that ||z(to + h)|| < wi—i(0) for all [ € N and

all h > Z;:¢—1+1 T;.

We are now in position to define the enlarged (and regularized) system
& € Fy(t,z). We need some suitable partition of unity. We set

U= (—1,+00) x (R™\ {0})

3Indeed, S(t,O) =0< S(t,x) < §(t,z) for t > —1, z # 0, and it is easy to see that
Hg(t, z) — S(s,y)” < ||t = s,z — y)|| for all pairs (¢,x), (s,y) € [—1,+00) X R™.
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and, for any (¢,2) € U,
W) = () €U s~ ty -l < 30(a)}  (417)

We have the following

CrLAIM 1. The family (W(t, x)) is an open covering of U.

(t,x)eUNE
To prove the claim, we have to check that for any (to,z¢) € U there exists
some (t,z) € U N E such that (tg,z0) € W(t,z). If (to,z0) € UNE =
((=1,400) \ No) x (R™\ {0}), then (to,z0) € W (to,zo) (since &(to,zo) > 0).
If (to,z0) € No x (R™\ {0}), since Ny, as a set of measure zero, has a dense
complement in (—1,+00), we may find a time ¢ € (—1,+00) \ Ny such that
[t —to] < %(5(t0,x0) and 6(t,xg) > %J(to,xo). Then (tg, zo) € W (t,xo). [ |

Let (;);>1 be some C* partition of unity on U subordinate to the open
covering (W(t,x))(t’z)eUmE of U. Tt means that 1) each ; is a nonnegative
function of class C* on R™*!, with its support contained in W (t;, z;) for some
(ti,z;) € UNE, 2) 72 ¢i(t,x) = 1 for any (t,2) € U and 3) for each
(t,m) € U, there exists a number p > 0 such that ¢; = 0 on B,(t,z) for all
1 > 1 except a finite number.

Set for any (t,z) € (—1,+00) x R”

Fo(t.) ::{ Y Wity 2) @ {F (Busg, a)(ti ) NE) ) if 2 #£0,

F(t,0) if v = 0. (4.18)

Since on compact subsets of U the sum in (4.18) is finite, we infer that Fb
is locally Lipschitz continuous (for the Hausdorff distance) on U. The links

between F', Fy and Fy appear clearly in next claims.
CLAIM 2. Vt € (—=1,400) \ Ng, Yx € R, F(t,x) C Fa(t, z).

The result is obvious for z = 0, so let x # 0 and t € (—1,400) \ No.
Let ¢ > 1 be such that ¢;(t,z) > 0, hence (t,x) € W(t;,z;). By (4.17),
|(t = ti, @ — @) || < £6(t;, ;), hence

F(t,m) C F(Féé(t“%)(t“xl) N E),

from which we infer that F(t,x) C Fy(t, ). ]
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CLAamM 3. V(t,x) € U Fy(t,x) C Fi(t, x).

To prove this claim, consider any pair (¢,2) € U and let ¢« > 1 be such that
;(t,x) > 0. Since ¢ is Lipschitz continuous with 1 as a Lipschitz constant, we

have )

O(tiy ) —o0(t,x) < ||(t — ti,x —x;)|| < §5(ti,xi) (4.19)
hence

E%a(ti,m(tivxi) C E%é(ti,qu)(tvx) C Bs(t0)(t, @),
and we infer that Fy(t, ) C co{ F (Bs(t,z) N E)} = Fi(t, z). [ |

Remark 4.2 (H') is also fulfilled by F; on (—1,+00) x R", with the same
Ny as for F. Indeed (H}) is clear, (H}) follows from Claim 3, and (Hj) is
obvious on U, since Fj is locally Lipschitz continuous on U. Finally, using the
continuity of J, (4.14), (4.19), and the fact that Fj, is u.s.c., we easily check
that Fy|, is u.s.c. at each (to,0) for tg € (=1, +00) \ No.

Corollary 4.2 The origin is UGAS on (—1,+00) x R™ for the system
& € Fy(t,x) (4.20)

Corollary 4.2 is a direct consequence of Corollary 4.1 and Claim 3. This com-

pletes the first step in the proof of Theorem 4.5. We now proceed to the

’ SECOND STEP. ‘ (Construction of a locally Lipschitz continuous strict

Liapunov function)

For any (t9,z9) € (—1,400) x R™, let Sy, 4, denote the set of solutions
x(+): [to, +00) of the Cauchy problem

{ i € Fy(t,z) (421)

%(to) = Xp.
Set for any ¢ € N* and any r € [0, +00),
1
G4(r) == max (0,7‘ - q) . (4.22)
Finally, set for any ¢ € N* and any (¢,x) € (=1, +00) x R™,

Vy(t, ) := sup sup e G, ([lo(t+ 7)), (4.23)
PESt, e 720
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where A > 0 is the number appearing in the statement of Theorem 4.5. The
system (4.20) being UGAS, for any R > 0 and any g € N* there exist positive
numbers m(R) and T(R, q) such that for each pair (t9,z9) € (—1,4+00) x R”
and for each solution ¢ € S 4, if ||zo]| < R then ||¢(to + 7)|| < m(R) for all
7> 0and ||e(to+71)| < % for all 7 > T(R, q). Furthermore, T'(R, ¢) and m(R)
may be chosen in such a way that T'(-,¢) is nondecreasing for each ¢ > 1 and

m(-) is in K§°. As a direct consequence, we obtain the
Lemma 4.5 Let R >0 and (t,x) € (—1,+00) x Br. Then, for each q € N*,

Gy(llzl) < Vot 2)

=  sup sup M Gy(|le(t+ 7))
PEStx T€[0,T(R,q)]

< ATHEDp(R) < 400 . (4.24)

Indeed, for any ¢ € S(; ) and any 7 > T'(R, q), [[¢(t+7)| < %, hence G, (|lp(t+
7)|I) = 0, which implies the equality in (4.24). Next, we remark that G, (||o(t+
) < |le(t 4+ 7)]] < m(R). Finally, the first inequality is obvious (consider
7 =0 in (4.23)). u

Notice that V,(¢,0) = 0 for any ¢ > —1, since S, contains only the trivial
solution z = 0. Another important property of V,, namely the local Lipschitz

continuity, is stated in next

Proposition 4.5 Let ¢ € N* and R > 0 be given. Then there exists a positive

constant Cy(R) such that for any ti,ts € [—Rijrl, R] and any x1,72 € Bp,

[Va(t1, w1) — Vi(ta, 22)| < Cy(R) [[(t1 — to, 1 — z2)]| - (4.25)

The proof of Proposition 4.5 is somewhat long and technical. It will be reported
at the end of Step 2. Without loss of generality, we may assume that for each
g € N* the function R > 0 — Cy(R) > 0 is nondecreasing. We are now in
position to define a locally Lipschitz continuous (strict) Liapunov function for
(4.20). For any (t,z) € (—1,400) x R™ we set

—+o0 _
274 _
VL(t, .’L') = Z m e 22T(9:9) ‘/:Z(t’ .T) (426)
q=1 g

CLAIM 4. There exists a function ar () in K£§° such that

ar(|zl)) < Vi(t,z) Y(t,z) € (=1, +00) x R™. (4.27)
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To prove the claim, set for any r > 0

IX 99227 (q,9)

ar(r) =

Clearly, ar(-) is a well-defined, increasing, Lipschitz continuous function (with
;;Oi %A(T;;w as a Lipschitz constant) such that lim,_, . ar(r) = +o0.
q

(4.27) follows from (4.24) and (4.26). [ |

CLAIM 5. Let R > 0 be given. Then there exists a constant L(R) > 0 such

that for any ¢1,ts € [— R] and any 1,2z € B

_R
R+17
|VL(t1,x1) — VL(t2,$2)| S L(R) ||(t1 - tg,!L‘l - I'Q)H (429)

Indeed,

22T (q,9)

Vi(ti, 1) <VL(t27$2)+Z+M%|V(t17$1)—V:;(t27962)|
< Vi(tz,z2) + ( +O°2 1 ColR) e=AT@D)||(ty — ty, 21 — m2)]|

T+C, () ©
(4.30)
due to Proposition 4.5. For any R > 0, set
)= +ZOO Q*QME*Z\T(‘LQ) (4.31)
B q=1 1 + CQ(q) . .

Let us prove that L(R) < 4oc for any R > 0. Using the fact that Cy(q) >
Cq(R) if ¢ > R, we get

. C(R) _
L(R) <Y 2712 —2MT(a.0) 977 < +toc.
( )_Z 1+Cq q%:+1 < +

Notice also that L(-) is a nondecreasing function. If x5 = 0, then Vi, (t2,22) =0
and it follows from (4.30) (applied with to = t1) that Vi (t1,21) < L(R) ||z1]| <
+00, hence V, is well-defined. Exchanging the roles of (¢1,21) and (t2,x2) in
(4.30), we get (4.29). |

CLAIM 6. There exists a function by () in K£§° such that
Vi(t,2) <bi(lal) V() € (~1,+00) x R™. (432)

Indeed, it follows from (4.24) that for any R > 0 and any (t,x) € (=1, +o0)x Br

2>\(T(R,Q)*T(q,q))
+00 q—ge m(R)
Vi(t,e) <3277 T7C,(0)

2\ T(R,q)—T(q,q)

S [Z([]Ii]l 2_qw + 1]m(R) = m(R)
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(We used the fact that T(R,q) < T(q,q) for ¢ > [R] +1.) Since m(-) is nonde-
creasing and limpz_,g+ m(R) = 0, there exists a function bz () in K5° such that
m(R) < b(R) for all R > 0. Then Vi(t,z) < br(]|z||), as wanted. [ |

The last useful property of Vi we report here is the way V decreases along
the trajectories of (4.20).

CrLamM 7. Let (to, o) € (—1,+00) x R™ and let ¥ € Sy, 4, Then
Vi(to + h,op(to +h)) < e 2V (tg,z0) Vh > 0. (4.33)

This claim is a direct consequence of next result, which will be needed when

proving Proposition 4.5.

Lemma 4.6 Let (tg,x0) € (—1,400) x R" and let ¢ € Sy, »,. Then, for any
q e N,
V,(to + h,9(to + R)) < e 2V, (tg,20) Vh > 0. (4.34)

To prove the lemma, consider for any ¢ € Sy yny(to4+n) the function @ :
[to, +00) — R™ defined by

Sy 4 VO forto<i<ioth
PN o) forto+h <t

Clearly ® € St ,2,, hence

Vq(tm 350) > Sup;>q 62)\qu (H@(to + T)H)
> 2 SUp,>g eQATGq(Hgo(to +h+ 7')||)

© € Stythw(to+h) being arbitrary, we infer that Vi (to,z0) > eV (tg +
h,(to + h)). |

Corollary 4.3 For a.e. (to,xz0) € U,

vy

Yov S FQ(to,ﬂ'Jo), B

(to,l’o) + <V1VL(t0,IL’0),’U> S 72)\VL(t0,$0).

Proof. Since V7, is locally Lipschitz continuous on U (by Proposition 4.5),
we infer from Rademacher’s theorem that V7, is differentiable at (to,xq) for
almost every (to,x9) € U. Therefore, it is sufficient to prove that for every
pair (tg,zo) € U,

to+h hv) — Vi (t
VUGFQ(tova)y limsup VL(0+ 1 %o + ,U) L( OaxO)

< —2A VL(to, xo).
h—0t h
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Notice first that for each v € Fs(to, o), there exists a solution z(t) of (4.20)
such that z(tg) = zo and @(tg) = v. Indeed, we may infer from the local
Lipschitz continuity of F5 that the map

9(57 y) = TRy (s,y) (’U), (57 y) € Ua (435)

(where 7p,(s,,) denotes the projection on the convex compact set Fs(s,y)) is
continuous. Hence, by Peano’s theorem, there exists a solution z(¢) on some

interval [to,to + €] of the (classical) Cauchy problem

{ & =g(t,x) (€ Fa(t,x))

x(ty) = xo.

Obviously, 4(tg) = g(to, o) = v. Now there exists a constant K > 0 such that
for any (¢1,21), (t2,z2) in some neighborhood of (¢, x¢),

VL(t1, 1) = Vi(ta, 22)] < K|[(t1 — t2, 21 — 22) -

It follows that for & > 0 small enough
Vi (to + h, xo + hv) — Vi(to, zo)

h
Vi (to + hyxo + hv) — VL(to + h,z(to + h))

h
+VL(tO + h,x(to + h)) — VL(to,xo)

<K

h
_ —2\h_
W_UH_’_E - 1VL(tO,xO)7

hence

. VL(to + h,zo + hv) — VL(to, SL‘())
lim sup

S —2)\VL (to, 1‘0).
h—0t h

It remains to prove Proposition 4.5. We first need the following elementary

lemma.

Lemma 4.7 Let V be a function defined on a set K := [[_,[a;,b;] C R™.
Assume the existence of a constant L > 0 such that, for any zo € K we may

find a number ng > 0 for which
|V () — V(20)| < Lz — 20| Yz € By, (x0) N K. (4.36)
Then V' is Lipschitz continuous on K, with nL as a Lipschitz constant.

Remark 4.3 (4.56) is weaker than the assumption |V (z) — V(y)| < L|jz —
yl| Va,y € By, (x0) N K, for which Lemma 4.7 is classical.
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Proof. Let x! = (x1,...,2L) and 22 = (2%,...,22) be given in K. Then
|V (z!)— Z xl,...,mj,xjﬂ,...73531)—1/(:1:%,...,x;fl,x?w..,xiﬂ

so we are done if we prove that for any j € [1,n]

|V(:c:1[,...7x;,x?+1,...,xi) — V(x%7...,m}71,x§,...,xi)\ < L|913J1 —x?|

Fix j € [1,n] and assume for instance that le < x? Define a function f :

[z},23] = R by f(s) = V(x1,...,2)_1,827,,...,25). Then it follows from
1,2 1 2 1.2

(4.36) that [D¥ f(s)] < Lforalls € [z}, 25), hence [ f(z;)— f(x7)] < L|z;—aF],

as wanted. |

Proposition 4.5 is a direct consequence of Lemma 4.7 and of the following result.

Proposition 4.6 Let g € N* and R > 0 be given. Then there exists a positive
constant L > 0 such that for any ty € [—
find a number ng > 0 for which

1+R,R] and any o € Br, we may

[Va(t, 2) — Vg(to, o)| < L|(t —to,x — wo)||  V(t,2) € Byy(to, x0).  (4.37)

Proof of Proposition 4.6. We need to introduce some numbers depending
only on R and q. Let T = T(R + 1, ¢). By local Lipschitz continuity of F» on
U, there exists a number K > 0 such that for any pairs (t1, 1), (t2,z2) with

R'H <t;, <R+T+1and mfl( ) < |l@i|| < m(R+2) for i = 1,2, we have

h(Fg(tl,l'l), FQ(tQ, (L‘g)) S K”(tl — t27l‘1 — .%‘2)” (438)
Let M > 1 be such that for any (¢,x) € ([—%,R +T+1]\ No) X Em(RJrg),
we have
FQ(t,l’) C EM (439)
We set
L= T (M +1)efT ) 4 2am(R +1)). (4.40)
Pick a number 7, such that
0<7my < min ﬁ — i
o R+2 R+1

e KT+ min {m(R +2) —m(R+1), %m* CI) } } (4.41)

and set
b= 7,e T+, (4.42)

We begin with the
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Lemma 4.8 Let (tp,x0) € [—%,R] X Br and (t1,z1) € By, (to, o). If
Vy(t1,21) > 0 then for any ©1 € Sy, o fulfilling |lo1(t1 + 7)|| > é for some

T € [0,T] (such functions exist by (4.22) and (4.24)) we have
m~! G) <|le1(tr +h)| <m(R+1) for 0<h<T. (4.43)

Furthermore, the region t1 <t < t; + 7, ||z — @1(t)|| < b is contained in the
region —g—ié <t < R+T+1, %mfl(%) < ||lz|| < m(R + 2), where Fy is
Lipschitz continuous with constant K.

< L <1, weget — 8 <ty <ti+7 < R+T+1. Pick
any function ; as in the statement of the lemma. Since ||z1| < ||xo|| + 70 <
R+ 1 we have ||¢1(t1 + h)|| < m(R+1) Yh > 0. Since |[¢1(t1 +7)| > %, we
must have [[¢1(t1 + h)| > m_l(%) for 0 < h < 7. The remaining part of the

lemma is an easy consequence of (4.41)-(4.43). |

Proof. Since 7,

Let (to, o) € [—%, R] x Bg, be fixed. In what follows, we always assume that

Mo
4
0 <70 <3371 (4.44)

We have to distinguish two cases: V,(to,z0) # 0 or V,(to, o) = 0.

First case: V(to,z0) # 0. ‘

We first prove that V(t,2) # 0 in a neighborhood of (%o, zo).

Cram 8. If g is small enough, then V,(t,z) # 0 for each pair (¢,z) €

BTYU (to, .To).

Proof. Let ¢y € Si,u, be such that Vi (to,z0) — e Gy(|lpo(to + 7)) <
M for some 7 € (0,7]. Hence |po(to + 7)|| > % and it follows from

Lemma 4.8 that

1
m~! (—) < llpo(to +R)|| < m(R+1) for 0<h<T. (4.45)
q

By decreasing 7 if needed, we may assume that 1y < 7, that g is defined on
[to — 10, to], that (4.45) holds true for —ny < h < 7 and that [ty — 1o, to + 7] C
[—ﬁ—i‘%J{ + T +1]. Let (t,x) € By, (to, o). Then |t —to| < no (hence ¢ (t) is
meaningful) and, by (4.39),

lpo(t) — x| < llpo(t) = wolto)|l + [lzo — ||
< M|t —to| + 1o
< (M + 1)y <7y < b,
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by (4.44). By Lemmas 4.1 and 4.8, there exists ¢ € S; , such that
lpo(t + ) =t + )| < llpo(t) — || "V (4.46)

as long as mfl(%) < |lpo(t+s)|| <m(R+1) and the right hand side of (4.46)
is less than b. This occurs for any s such that to <t + s <ty + 7, since

lpo(t) — x| X3l < 7 KT+ = p,
We infer from (4.46) that

[t + 1) = llwo(to + 1)l = llpo(t) — a0t
> llpo(to + 1)l = (M + 1)eX T+,
> 2
if no is small enough. This implies V(¢,2) > 0, as required. |

Let 7o be as in Claim 8, and let (t1, 1), (f2, 22) € By, (to, o). (4.37) is a par-
ticular instance of next

CLAIM 9. |V:](t17.%'1) — V;](t27.%‘2)| <L ||(t1 —to, 1 — :L‘Q)H

Without loss of generality we may assume that ¢; < t5. We need some prelim-
inary steps.

Ste[g 1. |Vq(t1, 1‘1) — Vq(tl,xg)‘ S 6(2>‘+K)T ||3?1 — 3?2”

Proof. By definition of V,(t1,21), for each o € (0,V,(t1,21)), there exists
a solution ¢ € S, », and 7 € [0, 7] s.t.

V(t,21) — 0 < e?7Gy(ller(ts + 7)) < Voltr, 21).

Hence Vg(t1,21) — Vy(t1, 2) < e Gy([lp1(ts + 7)||) — Vg(t1,22) + 0. Since
lzr — 22| < 2m9 < Ty < b, we infer from Lemmas 4.1, 4.8 and Claim 8 that
there exists a solution @ € S, ;, such that |1 (t) —@a(t)|| < ||lzg —ao|leXIt 11l
as long as m~'(3) < [lp1(®)[| < m(R+ 1) and [jz1 — zo|left=tl < b, hence
for 7 <t <t +7. Since Vy(t1,22) > "G (||p2(t1 + 7)||) and since G, is

Lipschitz continuous with constant 1, we get

Vo(tr, x1) = Vg(tr,z9) < €7 (Gq(%(tl + 7)) = Gy (llea(ts + T)||)) +o

< ePAMET 2y — || + 0.
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The reasoning can be repeated by exchanging the roles of z; and z3. ¢ being

arbitrary, the proof of Step 1 is completed. |
Ste[g 2. ‘/q(t%l'g) - V:](tl,l'g) S M€(2>‘+K)T|t2 — t1|.

Proof. Pick any ¢ € S, 4,. Set x5 = ¢(f2). Due to Lemma 4.6,
VQ(t23m3) < 672)\(t27t1)‘/q(t17x2) < %(t1712)a

hence

Vo(ta, 2) — Vo(ta, 22) < V(tz, x2) — Vg(ta, x3). (4.47)

Notice that

ta
2 — za < / lo(0)]|dt < Mltz — ta] < 2n0M.
ty

Since, by (4.44), 2noM < 7T, < b we may use the same arguments as in Step 1
to conclude that

Vy(ta, za) — Vy(ta, x3) < ePAEOT |2y — 5] < MM |1y |

which, combined with (4.47), gives the desired result. [ |
Ste[g 3. ‘/q(tl,l’g) - V;](tg,l'g) § (MGKT + 2)\m(R + 1))62/\T|t1 — t2|.

Proof. By definition, for each o € (O,Vq(tl,xg)), there exists a solution
Y € Sy 4, and 7 € [0,T] such that V,(t1,22) < G ([0t + 7)) + 0.

Let us distinguish two cases.

First case: t; +7 > to (> t1).

Set x4 := 1 (t2). Then ||z4 — z2| < f:f sh(t)|| dt < M|ty — t1] < 2Mmng, hence
|4 — mo| < (2M + 1)mo <7y (by (4.44)), and we get (t2,24) € By, (to, z0). It
follows from Lemma 4.8 (with (t2,z4) substituted for (¢1,21)) combined with

Lemma 4.1 that there exists a solution ¢ € S, ,, such that

lo(t) = (O < llwa — w2l X020 forty <t <ty +7.
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Since V,(tg, z0) > e2A0+7=8)G (||p(ty + 7)), we may write

V(ti, z2) — Vo(t2, 22)
< G (|[P(ts + 7)) — e2ATTETRIG (ot + 7)) + o
< PGy (vt +7) H) Gyt +))]|
+(1 = e 2D G (|lp(t + 7))} + o

But

Go(lvt + 1)) = Go(llptr +DI)| < ot +7) — ot + 1)
< g — wo| Xt

< MeET|ty — 4]

and (1 — e~ 2M=2NG ([p(t1 + 7)||) < 2A[t1 — to/m(R + 1). Summing up we
get

Vot m2) — Vy(ta, 22) < e (MeXT +22m(R+1))[t1 — to| + 0. (4.48)

Second case: t; + 7 < to.
Using Vi (t2, 22) > Gy([|[z2]]) we get

Voltr,wa) = Vy(ta,22) <G ([t + 7)) — Gol[l22]) + o
< PTGy ([0t + 1) — Golllz2])]
+H(EPT = 1)Gy([[z2]) + o

Since | [ (t+7) [ =] < || [T d() dtl] < M7 < Mt,—t:] and |27 —1] <
e 2T < 202 M |ty — 1], we ﬁnally obtain

V:Z(tl,l‘g) — V:Z(tg,aﬁg) < 62)‘T(M + 2)\m(R + 1)) ‘tl — t2| + 0o
< A T(MeXT + 2Xm(R + 1)) |t — ta| + 0.

Hence (4.48) holds in both cases and the proof of Step 3 is completed in letting
o — 0. Finally, by Steps 1-3,

Vo(ti,z1) — Vo(ta, 22)| < [Vg(ta,z1) — V(ta, z2)| + [Vo(tr, 22) — Vg(ta, z2)]
< 6(2A+K)TH$1 _ x2||
+(MeXT + 2xm(R + 1)) e [ty — to]
< L[(ty — ta, 21 — z2)]|

This finishes the proof of Claim 9 and the one of Proposition 4.6 when
Vg (to, o) # 0. We now proceed to the
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Second case: V,(tg,x0) =0 ‘

It follows from (4.44) that My < 1. We claim that for any (¢,z) € B, (to, o)
and any ¢ € S, ¢ is defined on [t — g, +00) (hence at time ¢y). Indeed, by
(4.39), for any s € dom(y) N [t — 1o, t]

()l < lle(s)=p(@)[[+]lzl] < M|s—t[+Rtmno < (M+1)no+R < R+1, (4.49)

as long as ||p(s)|| < m(R + 2) (a condition which must be satisfied in order
to apply (4.39)). (Notice that [t — no,t] C [—g—i%,R + 1], since t — g >
to — 219 > to — 7y > ,g_ié,) Since R+ 1 < m(R + 2), a standard argument
shows that [t —n9,t] C dom(y) and that (4.49) holds true on [t —mnp, t]. Pick any
(t,z) € By, (to, o). If Vy(t,z) = 0, then (4.37) is trivial. If V,(¢,2) > 0, then
for any o € (0, V,(t,z)) we may find a solution ¢ € S;, and a time 7 € [0, 7]
such that

Vy(t,z) < e”‘TGq(Hgo(t + 7)) + 0. (4.50)

We again distinguish two cases.

First case: to <t+ 71
Recall that ¢ is defined on [t —ng, +00), hence at time to. Since ||p(t+7)| > %,
we still have m_l(%) < |le()|l < m(R+1) for any s € [t —ng,t + 7]. Further-

more,

le(to) = zoll < lle(to) = p(@)]| + [l = zol < (M + 1)no <y,

according to (4.44). By Lemmas 4.1 and 4.8 there exists a solution 1 € Sy, 4,
such that

lot+7) = ot + 7)< (o) — (ko) eI+t
< (lwo — 2|l + [lo(t) — e (to)||) e T+
<

(M + 1)eXTHV [t — to,x — o).
Notice that G (][4 (t +7)||) = 0, since V,(to, z9) = 0. We obtain

Vo(t,z) < e [Gy(lle(t + 7)) = Go(lwt+7)l)] + o

4.51
< (M + 1)ePATHETHD||(t — tg, 2 — x0)|| + 0. (4:51)

Second case: tg >t+ T

Since

Ga(let+ 1) = Ga(lle(t + 1) = Gqlllzol))
< |Gy (et + 1)) = Gollzl)| + [Go(llz])) = Gy(llzoll)|
<M+ ||z — ol < Mt —to| + ||z — 0|
(4.52)
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we have, by (4.50) and (4.52)
Vy(t,z) < M (M + 1)||(t — to, = — z0)| + 0

Thus, in each case, 0 < V,(t,z) < L||(t — to,x — z0)|| + 0. Letting o — 0 we
get (4.37). The proof of Proposition 4.6 is achieved. This completes Step 2 in
the proof of Theorem 4.5.

(Regularization of V)

The regularization of Vj, is carried out by means of convolution with molli-
fiers and of some partition of unity. Next lemma is similar to [38, Lem. 5.1]
and [118, Lem. 1].

Lemma 4.9 Let S be any compact set in U = (—1,+00) x (R™\ {0}) and let
e > 0. Then there exists a function V of class C™ and with compact support
in (=1,400) X R™, such that

||V - VLHLOO(S) <e and (4.53)

V(to,l‘o) S S7 Yov € FQ(t07$0)7

ov — 3
E(to,l‘o) + <VIV(1‘,0,$0),’U> S —5 )\VL(to, 31‘0). (454)

Proof. Let p € C°(R"*1 R) be a nonnegative function such that supp(p) C
By and [5,., p(t, @) dt dz = 1. For any & > 0, set ps(t,z) := 57p (£, %) and

Vs(t,z): =V xps(t,x)
= Jpnir VL(t — s, 2 — y)ps(s,y) ds dy
= ﬁ\(§7?§)\\§1 VL(t - 557 xr — (57])/)(5, :lj)dg d?j

Then Vs is defined and of class C*° on (=1 + §,4+00) x R, and Vs(t,z) —
VL(t,z) uniformly on S as 6 — 0. If 6 denotes a function of class C*° with
compact support in (—1, +00) x R™ and which assumes the value 1 on a neigh-
borhood of S, then the (smooth) function V' := 6 - Vs has a compact support
in (—1,+00) x R™ and it satisfies (4.53), provided that § be small enough. To
complete the proof of the lemma, it remains to show that there exists dg > 0
such that for any § € (0, dp),

V(t(hl‘o) S S, Yv € FQ(tmxo)

0V 3
a—;(to,iﬁo) + (Vo Vs(to, z0),v) < —5)\VL(tO7CUO)-
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Let 67 > 0 be such that S + §51 C U and let L > 0 be such that for any pairs
(t1,21), (t2,73) in S + Bs, (h denoting the Hausdorff distance between closed

sets)

h(Fa(t, x1), Fa(ta, x2)) + |Vi(t1,x1) — Vi(t2, z2)| < L|(t — t2,z1 — z2)].

(4.55)
It follows that for a.e. (t,x) € S+ By,, Vi is differentiable at (¢,z) and
A%
(5 VaVe) (o) < L. (4.56)

Let 6 € (0,61), (to,z0) € S and v € Fy(to,zo). Applying Lebesgue’s theorem
we infer from (4.55) that

%(to,xo) + (Vo Vs(to, zo0),v)
= limy o0 [ s <1 7 (Ve (to = 65+, 20 — 05 + o)
Vi (to — 65, x0 — 67)] p(5, §)d5 dij (4.57)
= o (%(to — 05,29 — 6y)
(V. Vi (to — 85,20 — 57),0) ) (5, §)d5 d.

g denoting also the map defined by (4.35), we may write, thanks to (4.35),
(4.56), (4.57) and Corollary 4.3,

B2 (to,0) + (Va Vs (to, 20), v)
= [ismi< (B +(VaVi,9)) (to — 65,20 — 67)p(5,7)d5 dj
i< {VaVelto — 35,20 — ), v — g(to — 5, 20 — 67))p(5, §)d5 dy,

< =2AVs(to, 20) + VL [ 55y 1<1 IV — 9(to — 35,20 — 07)||p(5, y)ds dy.
(4.58)

Now, observe that for any [|(5,7)| <1,

lv—g(to — 88,20 — 07)|| = dist(v, Fy(tg — 08,20 — (53]))
< h(FQ(to,l‘o),Fg(to — 08,19 — (5@))
< Lé,

due to (4.55). We obtain

aV, 3
a—:(to,xo) + (VaVa(to, 20),v) < ~2AVa(to,70) + vV L2 6 < —Z AV (to, x0),
if 9 is small enough. |

Let (9;);>1 be a C° partition of unity on U, such that for each i > 1 the
support S; of ¢; is a compact set in U. For each ¢ > 1, set

i
qi ‘= SUP(t,2)€S;, vEF(t,x) ‘a_q/;(ta ) + (Vathi(t, x),v)| < +o0
L S min(tym)egi VL(t, .Z') > 0.

& T 9 FI(Tq) M+
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Lemma 4.9 provides, for each ¢ > 1, a function V; of class C*° on (—1, +00) x R"
such that
V(t, :c) € S; |‘/¢(t, IE) - VL(t,I)| <é€&;

and

V(t,x) € S;, Yv € Fy(t, x), %(t,x) + (V. Vi(t,z),v) < —g AVL(t, x).

ot
We define on (—1,+00) x R" a function V by

V(t,z):= ;;Of i(t, ) Vi(t, o) ?f x#0,
0 if x =0.

It is clear that V is of class C™ on U. Moreover, for each (t,z) e U,

V(t,x) = Vi(t,z)] < S5 vi(t,2)|Vilt, x) — Vi(t,2)|
<IN g Vi(ta) = Vit w),

hence

3 3 ~ 5 5
San(al) < Vilta) < V(t2) < SVilto) < Shu(la]),

where ar,, by, € K§° are defined in Claims 4 and 6, respectively. Clearly, V s
continuous on (—1, +00) x R™. Pick any (¢,x) € U and any v € Fy(t,x). Then

%(t,x) + (fo/(t,x), v) = j_:of (%UZ_I + <Vw1/}i’v>)(vi - Vi)
+ S5 (57 + (VaVi )
< SEY [H e Vil o)
+ 30 i = §AVL(t )
< =SAVi(t,z) < =MV (L, 2).

In order to get a function which is smooth up to 2z = 0, we apply [91, Thm.
6], which asserts the existence of a function v € C*°(R) such that v(r) = 0 for
r <0, VI/R+ is increasing (hence v/(r) > 0, v(r) > 0 for r > 0), v(r) — 400 as
r— +ooand voV € C>°((—1,400) x R™). Moreover, 0%(v o V)(to,0) = 0 for
any to > —1 and any o € N**L. We set V := v oV and a(r) := v(2 ar(r)),
b(r) == v(2by(r)) for all r > 0. Clearly, a,b € K§° and (4.7) holds true. Let
(t,z) € ([0,400) \ Nog) x (R™\ {0}) and let v € F(t,z). According to Claim 2,
v € Fy(t,x), hence

oV

at

On the other hand, since v/ is increasing on RT, we get for each r > 0

v(r) = /O V'(s)ds < /0 V() ds = o/ (r).

(t,z) + (V. V(t,z),v) < =\V(t,z).
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It follows that

%—‘t/(t,:c) + (V. .V (t,x),v) =1 Y (t,x)) - (%‘;/ (t,z) + (VxV(t,x),w)
< MV (t,2) V(t )
< Av(V(t,z)) = =AV(t,z)
The proof of Theorem 4.5 is complete in the general setting. ]

Let us briefly indicate the modifications to be brought in the time periodic

or time independent cases. We begin with the

e TIME INDEPENDENT CASE.

Lemma 4.3 holds true when we replace (4.13) by @ € co{F(Bs(z))} and the
condition tg € [k, k+ 1] by tg = 0. Here, § depends only on i, so we write ¢; in-
stead of 0¥. Next, we pick a Lipschitz continuous function (with 1 as a Lipschitz
constant) § : R™ — R, such that §(z) =0 <= 2z =0 and §(z) < min(d;, d,,)
whenever 271 < |[z| < ¢;(0). F is defined by Fy(z) := €0{F (Bs()(z))}. We
set U := R\ {0}, and, for any x € U, W(z) := B%J(z)(x). We pick a C>
partition of unity (p;);>1 subordinate to the open covering (W(x))er of U.
For each i > 1, we choose some x; # 0 such that supp(p;) C W(z;). Fz is
defined by

Fy(z) = Y21 pi(@) W{F(Bigay (i)} if 2 #0,
2 | F(0) if x =0.

F} is time independent. The same is true for the functions V; and V7, defined
by (4.23), (4.26), respectively. Lemma 4.9 remains valid when S is a compact
set in R™ \ {0} and (4.54) is replaced by (V,V(zg),v) < —3AVy(20) for all
xg € S and all v € Fy(xg). Here, the function V provided by Lemma 4.9 is of
class C* on R™. We set S; := supp (p;), and ¢;, €; are defined as in the general
case, with p;(x) instead of 1;(¢,x). Finally, we set

V(x) { Zz 1 pi(2) Vi(z) iiiig

and we define again V by V:=vo V. We now turn to the

e TIME PERIODIC CASE.

Without loss of generality, we may assume that the period is T = 1, that F
is defined on the whole space R; x R” and that (H’) holds true (on R™*1)
for some Ny C R of measure 0 and such that Ng + 1 = Ny. Here, we take
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E:=(R\ Ng) x R" and U := R x (R™\ {0}). If () is any solution of (4.1)
issuing from xy at some time to € R, then Z(t) := x(t + [to]) is also a solu-
tion of (4.1), issuing from zy at time ty := tq — [to] € [0,1]. Therefore, we
may always assume that ¢y € [0,1]. Thanks to this trivial remark, we see that
Lemma 4.3 is valid with a constant § > 0 which depends only on i (and is
denoted by 9;), whatever be ¢y, € R. Next, the function §(x) is chosen as in the
time-independent case. Fj is defined by

Fy (t, m) = E{F(th(m (t, 3}) N E) }

Clearly, Fj is still 1-periodic in time. In order to construct a multivalued map
F5 which is also 1-periodic in time, we need some partition of unity which is
left “invariant” by the transformation t +— ¢+ 1. Let (x;);>1 and (p;);>1 be as
in the time-independent case. Pick a function w € C*°(]0, 1], [0, 1]) such that

Extend w to R by setting w(—t) :=1—w(1l —1) for 0 <t¢ <1, and w(t) = 0 for
|t| > 1. Obviously, w € D(R) and (w(- — k:))kGZ constitutes a C'° partition of
unity subordinate to the covering ((k—1, k+1))keZ of R. For each i > 1, pick an
integer M; > %' For each k =0,...,M; — 1, pick a time t; ;, € (%, %) \
No, and set t; pypn, := tip +p for any 0 < k < M; — 1 and any p € Z. Notice
that (t;k,2;) € UNE for each pair (i,k). Set ¢y k(t,z) := w(M;t — k) p;(x)
for all (¢t,2) € U. Then (wi’k)i>l,kez

the covering ((%, %) X W(wl)) . of U. We are now ready to define
i i i>1,k€Z
Fy.

is a C'*° partition of unity subordinate to

Eioil ZkeZ wi’k(tvx) ﬁ{F(Féd(m)(ti’k’xi) N E)} if z 7é 0,

oty ) = { F(t,0) if 2 = 0.

Let us check that Claim 2 remains valid. Let © # 0 and let t € R\ Ny. Pick
any pair (i, k) such that v, (¢, z) > 0, hence (¢,z) € (%7 %) X Bis(a,) (@i)-
Since t; 1 € (%,%) and MLL < $6(x;), we conclude that ||(t — t; 5,2 —
z;)|| < £6(x;), hence F(t,x) C F(E%(S(mi)(tm,xi)ﬂE), which implies F (¢, z) C
Fy(t,x). The proof of Claim 3 is as in the general case. Finally, let us check
that Fy is 1-periodic in time. Let x # 0 and ¢ € R. Since ¢, ,(t + 1,2) =

w(M;t+ M; — k) pi(x) = i p—n; (8, ), setting k' = k — M;, we get

+oo

FBy(t+1,2) =Y > tip(t,x) @{F(Byse,) tirsar, x:) N E)}.

i=1k'€Z
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But ¢ p4m, = tip + 1, hence F(E%é(wi)(ti,k/+ﬂ4i,xi) N E) =
F(Bis(a(tig, i) N E). It follows that Fy(t + 1,2) = F(t,x). We read-
ily infer that the functions V; (for each ¢ > 1) and V, defined on R x R™ by
(4.23) and (4.26), respectively, are 1-periodic in time, as well. In the proof of
Lemma 4.9, we observe that Vs(t+1,2) = Vs(t, z) for each (¢,7) € R**!. This
time, we set V := Vj (for § > 0 small enough) instead of V := 6 - Vs, so that V'
is 1-periodic in time. For each pair (¢, k), let .S; ,, denote the support of 9; j and
let V; , be the (periodic) function (associated with S,  and €; 1), which is pro-
vided by Lemma 4.9. Thanks to the periodicity of V7, and V; j, we may in fact
require that V; yypn, = Vig for all p € Z. Setting Vo= Y ois1 Donez VikVik
and V := v oV, we observe that V and V are 1-periodic in time. |

4.2 Robust stability

In this section, we are concerned with the first Liapunov theorem and its
converses for differential inclusions. Even if system (4.1) is autonomous, i.e.,
F = F(z), we do not investigate here the existence of a (continuous or smooth)
weak Liapunov function of z alone. (The interested reader is referred to Sec-
tion 2.2.4 for this issue.) Rather, we focus on the existence of a (possibly
smooth) time dependent weak Liapunov function V (¢, ). The first Liapunov
theorem for differential inclusions is given without proof in subsection 4.2.1. In
the following subsection we state several converses of first Liapunov theorem.
The one which asserts the existence of a smooth Liapunov function is proved
in subsection 4.2.3. Some application to control theory is given in the final
subsection.

4.2.1 Sufficient conditions

Let hg > 0 and let F' : [0,400) X By, — R™ be a set valued map such that the

solutions to the Cauchy problem

{ i€ F(t,z),

x(to) = 2o,

exist, at least locally, for each pair (g, x0) € [0,4+00) X Bp,. We assume that
0 € F(t,0) for a.e. ¢ > 0 and we ask whether the origin is locally (robustly)
stable. This is indeed the case if there exists a weak Liapunov function (in the

small).
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Theorem 4.6 (FIRST LIAPUNOV THEOREM) Let F be as above. Assume that
there exist a number h < hg and a continuous function V : [0,4+00) X B —
Rt which is a weak Liapunov function. That is, we have for some functions

a(),b(:) € Kg°
a(lz]]) < V(t,2) <b(|lz]]) for t >0, 0<|lz]| <h, (4.59)
and for any solution x(-) of (4.1) defined on some interval I, it holds
ti,ta €1, t1 < ta = V(ta,x(t2)) < V(t1,z(t1)). (4.60)
Then the origin is robustly stable for (4.1).

If V turns out to be of class C', then to fulfill (4.60) it is sufficient (not

necessary) that for almost every ¢ > 0,

ov
ot

The proof of Theorem 4.6 is exactly the same as the one of Theorem 3.6.

(t,z) + (V. V(t,z),v) <0, Va € By, Yv e F(t,x). (4.61)

Before passing to the converses of Theorem 4.6 in next section, we provide

a condition under which a uniformly stable system is actually robustly stable.

Proposition 4.7 Let F : [0,+00) X By, — R"™ be a set-valued map which
fulfills the assumptions of Filippov’s Theorem (Theorem 1.5), i.e., F(t,x) is
compact valued, measurable with respect to t and locally Lipschitz continuous
with respect to x. If the origin is uniformly stable for (4.1), then it is also
robustly stable.

Proof. We have to prove the existence of a sequence {G; }i—o.1 2,... of open sets

yLysye

in RT x R™ and of two sequences of real numbers {a;};—01,2,.. and {b;}i=0.1,2, .
such that
1) 0 < bjpq < a; <b; foreach i =0,1,2,..., and b; — 0 as i — +o0;
2) R* x B,, € G; CRT x By, for each i =0,1,2,..;
3) for each i = 0,1,2,..., for each initial pair (tg,x0) € G;, and for each
¢ € Siy.2, One has (t,p(t)) € G; for each t > t.

Let us start the construction with by < hg. Set € = by. According to the
uniform stability, we find a number ag := § < by. Define G as

{(t,z) : I(to,x0) with t > tg > 0,20 € Bay, I € Sty,z, St- v = (t)}

Property 3) is clearly fulfilled. The first inclusion in 2) is trivial and the second

one follows by uniform stability. It remains to prove that G is open. Let
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(t,z) € Go. Let to,x0,p be such that tog < t, g € Bay, ¢ € Sty.z, ¢(t) = Z.
Assume that there is a sequence (tx, ) — (£, %), but (tg,xx) € Go. Let o be
such that B,(xg) C By,. Let L € L(tg,t+ 1) be such that

Vt € [to,t+ 1], Vo', 2" € By,, h(F(t, ), F(t,z")) < L(t) ||2' — 2",

t+1
r

+, L(7)dr. By continuity 3n > 0 such that for t € (t —,%+n)

and let m :=

one has
—m

2

oe

lp(t) — 2| <

Let k be such that
|t — tr| < min{1,n}

and

—m

oe
2

‘.Z‘k—ﬂ <

Now, it is clear that |z, — ¢(tx)] < oe~™. Under the assumption about F', we
can apply Theorem 1.5 to find ¢ € &y, ,, such that

(1) — () <o

for ¢ € [to, tx]. As a consequence, we have |9 (tg) — zo| < o, hence ¢(ty) € B,
and (tg,xr) € Go, a contradiction.

The construction can be iterated by starting each step with a choice of

b; < min{ai,h h0/2z}

We may also wonder if the robust stability of a system is preserved by con-
vexification of the set-valued map. This is indeed the case, as for the asymptotic

stability (see above Proposition 4.2).

Proposition 4.8 Let F : [0,+00) X By, — R"™ be a set-valued map which
fulfills the assumptions of Filippov’s Theorem (Theorem 1.5). If the origin is
robustly stable for

i€ F(t,z), (4.62)

then the same is true for
& €T F(t,x). (4.63)
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Proof. Let {a;}, {b;} and {G;} be sequences of real numbers such that

e 0<biy1 <a; <b;<hyforeachi=0,1,2,..., and b; — 0 as i — +00;

e RT x B,, CG; CRY x By, for each i =0,1,2,..;

e for each i = 0,1,2,..., for each initial pair (¢y,z¢) € G;, and for each ¢ €
Sto.wo On€ has (¢, (t)) € G; for each t > 1.

We claim that the same sequences {a;}, {b;}, {Gi} can be used to check the
robust stability of (4.63). Indeed, assume by contradiction that for some ¢ > 1,

some (to, xg) € G, some solution ¢ (t) of (4.63) and some T' > t; we may have
Y(to) =20 and (T,¢(T)) € 0G;.

Let 9 > 0 be such that {to} x B,,(z9) C G; and r9/2 < b;—1 — b;. Since
F' is locally Lipschitz continuous with respect to x, there exists a function
L € L(to, T + 1) such that

Vt € [to, T+ 1], Va',a" € By, ,, h(F(t,2'), F(t,z")) < L(t) |2’ — 2"].

i—17

Let finally

T _ rT+1
o e

8
By Theorem [59, Thm. 3], there exists a solution ¢(t) of (4.62) such that

[P(t) —o(t)| < for t € [to, T).
In particular, we have (recall that ¥ (tg) = z¢)
~ T ~
7o~ B(t0)l <1 < 2 and [9(T) ~ G(T)] < 1,

hence (to, ¢(to)) € G; and ||p(t)]|| < b; for t > to. The solution 1(t) can be
continued on the right of T, and since it is continuous, we can find 6 € (0,1)
such that

[(t) —@(t)| < 2ry  for t € [to, T + 0.

Recall now that (T,%(T)) € 0G;. This implies that we can find a pair (T3, z1) €
¢@; such that
T —T| <0, |ox = (1) <ryand [O(T) — o (T1)] < 11,
so that
|21 — @(T1)] < 4r1.
Applying Theorem 1.5 we conclude that there exists a solution () of (4.62)
such that o(T1) = x1 (hence (T1, ¢(T1)) € G;) and

To

T1 T)dt
[p(to) = Blto)] < drelia’ OO < gryeli™ HO O
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This yields |¢(to) — zo| < |¢(to) — (o) + |B(to) — @o| < 7o, which implies
(to, p(to)) € Gy, a contradiction to the robust stability of (4.62). [ |

Propositions 4.7 and 4.8 will be used in next subsection.

4.2.2 Converse of first Liapunov theorem

Here, we assume that the origin is robustly stable and we wonder whether
Theorem 4.6 may be inverted, i.e., if there exists a (continuous) weak Liapunov
function V (¢, ) fulfilling (4.59) and (4.60). As it has been shown in Subsection
2.2.2, a smooth autonomous stable ODE (respectively, differential inclusion)
may fail to possess a continuous (weak) Liapunov function of x alone. Moreover
the existence of a continuous weak Liapunov function does not guarantee the
existence of a smooth one. Therefore, in what follows we focus on the existence
of a weak Liapunov function V(¢,z) (with the best regularity as possible) for
(4.1). Proposition 4.3 tells us that some smoothness with respect to time is
required for the existence of a weak Liapunov function which is smooth. The
best result we get in general is as follows.

Theorem 4.7 [16] Let F : [0, +00) X By, — R™ be a set-valued map fulfilling
(Hy), (Ha), (H3) and (Hy). If the origin is robustly stable, then there exists
a weak Liapunov function V : [0,4+00) x B, — Rt (h is some number < hg)

which is locally Lipschitz continuous.

The method of proof is basically inspired by Kurzweil’s ideas ([90], [91], [92]);
however, a number of new nontrivial problems due to the multivalued nature
of the right hand-side of the equation need to be dealt with.

Another converse of the first Liapunov theorem has been obtained for lo-
cally Lipschitz continuous set-valued maps, which assume compact (but not

necessary convex) values.

Theorem 4.8 [6] Let F : [0,+00) X By, — R™ be a set-valued map which is
compact valued, measurable with respect to t and locally Lipschitz continuous
with respect to x. If the origin is uniformly stable for (4.1), then there exists
a weak Liapunov function V : [0,4+00) x B, — Rt (h is some number < hg)

which is locally Lipschitz continuous.

In contrast to Theorem 4.7, Theorem 4.8 may be proved by means of the

following (explicit) Liapunov function candidate

V(t,x) :=inf inf |p(s)],
v  s<t



Robust stability 153

where ¢ ranges over the set of solutions of (4.1) such that ¢(t) = x and s
belongs to the domain of ¢. The details of the proof may be found in [6],
or in the second step of the proof of Theorem 4.9. (See below Subsection
4.2.3.) Alternatively, Theorem 4.8 may be obtained as a direct consequence of
Theorem 4.7 together with Propositions 4.7 and 4.8.

The last converse first Liapunov theorem presented in this section is con-

cerned with the existence of a weak Liapunov function which is smooth.

Theorem 4.9 [118] (CONVERSE OF FIRST LIAPUNOV THEOREM) Assume
that (4.1) is robustly locally stable at the origin (respectively, robustly Lagrange
stable) and that (H') holds true. Then there exists a function V' of class C™ on
R x R™ and two continuous functions a,b € K§° such that, for some number
h >0,

a(llz]) <V(t,2) <b(||zl)),  VE=0, [lz] <h

4.64
(respectively, ||z|| > h), (4.64)
oV N
E(t,x) + (V. V(t,x),v) <0, Vi e RT\ No, ||zl <h
(respectively, ||z|| > h) (4.65)

and v € F(t, x).

Clearly, (4.65) implies that V is a weak Liapunov function for (4.1). The
proof of Theorem 4.9 may be carried out by following the same pattern as for
Theorem 4.5, the main change being in the definition of a locally Lipschitz
continuous (weak) Liapunov function (second step). The proof (for the robust
stability part) is reported in next section. It is shorter than the original one in
[118].

4.2.3 Proof of the converse of first Liapunov theorem

The set F and the multivalued functions F} and F5 are defined as in 4.1.4. We
emphasize, however, that the set U and the functions §(¢,z) and V (¢, ) will
be defined in another way.

(Regularization of F)

Once again, we extend F on [—1,0) x R™ by setting F(t,x) := {—z}, so that the
origin is robustly locally stable for ¢ > —1. Moreover, (H') is fulfilled by F' on
[—1,+00) x R”, provided that 0 € Ny. Let (a;)i>0, (b;)i>0 and (G;)i>0 be as in
Definition 3.12. (Here, we assume that [—1, +00)xB,, C G; C [~1,+00)x By,.)
The following lemma will be used in place of Lemma 4.3.
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Lemma 4.10 Leti > 0, k > —1 and let K C ([k,k + 1] x R™) N G; be any
nonempty compact set. Then there exist two numbers § > 0, a > 0 fulfilling
the following property: for every x(-) : [t1,t2] C [k, k + 1] — R™ such that

e z(-) is absolutely continuous,

o (t1,2(t1)) € K,

e i(t) € {F(Bs(t,z(t)) NE)} for a.e. t € [ty,ta],

we have

in dist((¢t,2(¢)),cG;) > a.
Juin dist((t,2(1),°G1) 2 @

Proof. We argue by contradiction. If the statement is false, then there
exist four sequences of numbers (67);50, (@f);50, (])j>0 and (£);50 with
6 — 0,07 -0, k<t <t <k+1 and a sequence (27) >0 of abso-
lutely continuous functions, 27(-) : [t],#]] — R", such that for all j > 0,
(t,29(t])) € K, i’(t) € w{F(Bs(t,z(t)) N E)} for ae. t € [t],#}] and
teltd 1) dist ((¢,27(t)),“G;) < a’. Replacing t) by some time 77 € [t),1]]
if needed, we may assume that the minimum of the distance of (¢, z7(t)) to

min

¢G; is achieved for ¢ = té. By Lemma 4.2, extracting subsequences, we may
also assume that (], 27 () — (t1,z(t1)), (t, 27 (t})) — (t2,x(t2)) for some
numbers t1,ts € [k, k + 1] and some solution z(-) of (4.1) on [t1,ts]. It follows
that (t1,z(t1)) € K C G; and that dist((t2,z(t2)),° Gi) = 0, i.e., (t2,z(t2)) €
¢G;, contradicting the positive invariance of Gj. |

We are in position to define the function §(¢,z). Let i > 0 be fixed. We
define a sequence {KF};>_1 of compact sets and two sequences (6)g>_1,
(aF)g>_1 of numbers in an inductive way. For k = —1, we set K; ' =
[~1,0] x By, 6;' = ¢ and a;' = «a, where § and a are given in Lemma
4.10, applied with k = —1, K = K, *. Then, assume that K!, 6! and o! have
been defined for —1 <[ < k. Set

K= [k k+1] x B, U{(t,z): t=Fk and dist((t,2),° G;) > ol

7

and set finally 6¥ = §, af = a, where § and « are as given in Lemma 4.10 (with
K = KF).
The function ¢ : [—1,4+00) x R® — R™ is chosen in such a way that

O(t,x) =0 < x=0, (4.66)

5(t,z) < 6F whenever k <t <k+1 and (t,z) € G;\ Gi_1 (i >0), (4.67)

and 0 is Lipschitz continuous with 1 as a Lipschitz constant. Once again, Fj is
defined as F(t,z) := ¢o{F (Bs( . (t,z) N E)} for any (t,z) € [—1,400) x R™.
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To prove that the origin is still robustly stable for the system
reF(tz), t>-1, zeR" (4.68)
we need the following lemma (in place of Lemma 4.4).

Lemma 4.11 Let i > 0, (tg,z0) € [~1,+00) X B,,. Pick any solution z(-) of
(4.68) such that x(tg) = xo. Then (t,z(t)) € G; for all t > ty.

Proof. Otherwise, we may find a solution x(-) of (4.68) issuing from =y at
t = to, and such that (¢1,2(t1)) € G; for some t; > tg. Hence, there exist two
times to, t3 with to < to < t3 < t; and such that [|z(t2)| = a4, (¢, 2(t)) € G; \
[~1,4+00) x By, for t; <t <tz and (t3,z(t3)) € G;. Let ko := [ta] € NU{—1}.
Clearly, (ta,z(t2)) € K and (t,z(t)) € G;\Gi_1 for all t € [ty, min(t3, ko+1)].
It follows from (4.68) that

i(t) € o{F(Bsk(t,2(t)) NE)}  for ace. t € [t2, min(ts, ko + 1)],

hence, by virtue of the definition of 6% and a*, dist ((¢,z(1)),° G;) > ako >0
for to < t < min(ts,ko + 1), whereas diSt((tg,.T(t:;)),cGi) = 0. We in-
fer that t3 > ko + 1. After a straightforward induction argument, we
get mingex k41] dist((t,:c(t)),C Gi) > af > 0 for any k < [t3], and finally
minge (e, its]+1] dist (¢, 2(£)),© G;) > agt?’] > 0, contradicting (t3,x(t3)) € °G;.
|

Corollary 4.4 The origin is locally robustly stable for (4.68).

This result will be obtained as a by-product of next section, where a continuous
weak Liapunov function V (¢, z) will be constructed.
We set
U :=(—1,400) x (B, \ {0}). (4.69)

Let W (t,x) be given by (4.22). The partition of unity (¢;);>0 on U, and the
multivalued map Fs : (—1,4+00) X By, — R™ are defined as in the proof of the
converse of second Liapunov theorem (Subsection 4.1.4).

SECOND STEP. ‘ (Construction of a locally Lipschitz continuous weak

Liapunov function)

From now on, for any (¢, x¢) € (—1,4+00) X By, we denote by Sy, 4, the set of
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all the solutions z(-) of (4.20) such that x(ty) = x¢, and by dom(z) the domain
(C (—1,400)) of z(-). We define the weak Liapunov function candidate as

1

V(t,z):= inf inf lle(s)ll, (t,x) € (—=,4+00) X By,. (4.70)
PESte  se[—1 tjndom(yp) 2

Clearly, 0 < V(t,z) < ||z||. The following result shows that V is positive

definite.

Lemma 4.12 Let a(-) : [0,b9] — [0, a1] be any continuous increasing function
fulfilling a(b;) = ai+1 for all i > 0. Then V(t,x) > a(||lz|) for all (t,x) €
(—%,—l—oo) X Bbo'

Proof. Argue by contradiction, and assume that V (¢, z) < a(||z||) for some pair
(t,x) € (—3,+00) x By,. Then there exists ¢ € Sy, and s € [—1,¢] N dom(yp)
such that V(¢,2) < [|¢(s)]] < a(||z|). Let i € N be such that b;11 < [|z| < b;.
It follows that [|¢(s)|| < a(||z|]) < a(b;) = a;+1. Applying Lemma 4.11, we
infer that (¢t,2) = (¢,¢(t)) € Gi11, hence ||z|| < b;it1, a contradiction.

u

We now check that V' is nonincreasing along the trajectories of (4.20).

Lemma 4.13 Let (to,z9) € (—3,400) X By, and ¢ € Sy a,. Then
V(tl,(p(tl)) < V(to,x()) fOT' all t1 > to.

Proof. Pick any t; > ¢y and any ¢ € S, »,- Then the function

o)) if tedom(y) N (—oo,to],
)= { e(t) if  t e dom(yp)N [tg, +00),

belongs to Sy, ,(4,), hence [[¢(s)|| = |[|@(s)]| > V(t1,¢(t1)) for each s €
[—1.to] N dom(¢)). Taking the definition of V(to,z¢) into account, we get
V(to, o) > V(t1, ¢(t1)), as wanted. [ |

It remains to prove that V is locally Lipschitz continuous on (=%, +00) x (B, \

{0}).

Proposition 4.9 Lett > —1 and z € B,,\{0}. Then there exist three positive
numbers 8§, n, L such that for all pairs (t1,x1), (t2,22) in (E—n,t+n) x Bs(T),
we have

|V (t1,21) = V(ta,x2)| < L([t1 — to| + ||x1 — 22]|)- (4.71)

Proof. TFix ¢, T as in the statement and let i > 1 be such that

(bi+2 <) aiy1 < ||i‘|| < a;. (472)
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F5 being locally Lipschitz continuous on U, there exists a constant K > 0

such that for any pairs (t1,x1), (t2,72) with t1,ts € [—%,f—l— 1, llzll, |2 €

[252, a;_ 1],

h(FQ(tl,Zl),FQ(tQ,ZL’Q)) S K(|t1 — t2| =+ ||£Zfl — IQ”) (473)
Let M > 0 be such that for each pair (¢,z) € [—3,T+ 1] x By,,
Fy(t,z) C Bu. (4.74)

Pick finally ¢ > 0 such that
—K(+3)

2

e

20 < min (ai - ||£177||7 ||(fH —bjt2, 9

min(2*3 ;) — bi)> . (4.75)
and n € (0, min(? + 3, ﬁ, 1)).
We shall need the following result:

Lemma 4.14 Let t1 € [t —n,t + 1] and x1 € Bas(T) be given. Let 1 € Sy, 4,
be defined on some interval [r,t1] C [—1, %+ n] and assume that ||1(7)|| < a;.
Let xo € Bos(Z). Then there exists a trajectory @2 € Sy, 4, defined on [7,t1],
such that

vt e rtl, llei(t) = pa(t)l| < oy —aof| 51701 (4.76)

Proof. Since [|¢1(7)| < a;, we have [|¢1(t)|| < b; for any ¢t € [r,#1]. On the
other hand, for any ¢ € [r, 1],

o1 = V(tr,21) = alleal]) > a((|z]] = 26) > al(bi2) = aiys,  (4.77)

since, by (4.75), bipo < ||Z|| — 26. Let b := 45 K(+32) < min( 2 a1 — by).

Since the domain ¢ € [1,t1], ||z — v1(¢)|| < b is contained in the domain ¢ €

[—3.t+1], ||| € [*42, a;—1] (where F; is Lipschitz continuous with Lipschitz
constant K), it follows from Lemma 4.1 that there exists a solution g € S}, 4,
(defined on the left of t1), such that ||1(t) — @a(t)|| < |1 — z2 K-8 as
long as ||z1 — 2| X111 < b, Since |21 — 22| < 46 and |7 — t1| < T+ £, we
conclude that (4.76) holds true (at least) on [r,t1], as desired. ]
We go back to the proof of Proposition 4.9. Let (t1,z1), (t2,22) € (t — 1, +
7) x Bs(Z). Without loss of generality, we may assume that ¢; < t5. We need

some preliminary steps.

Step 1. [V(t2, 1) = V(ta,22)| < a1 — wol| X3,
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Proof. By definition of V' (t2, 1), for each (small) o > 0 there exists a solution
©1 € Sty 0, and 7 € dom(ip1) N [—1,¢5] such that

V(te,z1) < [lp1(T)|| < V(t2,21) + 0 < ||| + 0 < a;, (4.78)
hence
V(tg,.%g) — V(tg,l‘l) < V(tQ,IEQ) — ||Q01(T)|| + o. (479)

By Lemma 4.14, there exists a solution ¢s € Sy, 4, such that, for all ¢ € [7, 5],
_ Fi3
lp1(8) = a(®)| < [lzn — wa| ¥ 17720 < flay — o] X+ (4.80)

Using the definition of V(t2,x2), we get V(t2,22) < |lp2(7)||, hence, using
(4.79) and (4.80),

V(ta,z2) = V(tz,z1) < |[lp2()ll = ller(m)]| + o

< lg2(m) —er(n)ll + 0
< oy — o] X+ 4 0.

The reasoning can be repeated by exchanging the roles of z; and x2. The proof
of Step 1 is completed by observing that o is arbitrary.

Ste[g 2. V(tg,xl) — V(tl,xl) S MeK ({+%) |t1 — tgl.
Proof. Pick any ¢1 € S;, 5, and set &z = 1(t2). Since V (¢, ¢1(t)) is nonin-
creasing,

V(tg,.%‘l) - V(tl,xl) S V(tg,])l) — V(tg,i‘g).
On the other hand

ta
o1 — & s/ lo1(r)]| dr < M |t — 2] < 2My < 5,

t1

hence Zy € Bos(Z). By repeating the same argument as in Step 1, we get
|V (to, 1) — V(ta, Ta)| < ||x1 — 22| K (E+3)

hence
V(tg,.Tl) - V(tl,l'l) S MeK(H_%) |t1 — t2|.

Step 3. V(ty,x1) — V(tg,21) < M X ) |ty —ty].
By the definition of V (¢2, 1), for each o > 0 there exists a solution ¢ € S, 4,
and a time 7 € dom(t) N [—3, 2] such that

V(tg,l‘l) < H’(/J(T)H < V(tg,l’l) + o < a;,
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hence
V(ty,z1) = V(te,z1) < V(t,z1) — [[U(7)]| + o

Let us distinguish two cases.

First case: 7 <t.

Let @3 = ¢(t1). Then |z3 — 21| < f ()| dT < |t — t1| M < &, hence
xg € Bas(Z). It follows from Lemma 4.14 that there exists a solution ¢ € S, 4,
defined on [7, 1], and such that for all ¢ € [, 1]

() = (@) < flar — s ™01
Since V (t1,21) < [lo(7)ll, we have

V(ti,z1) = V(ta,21) < ()| = ¥ ()] + o
<lle(m) ()l + o
< oy — 5] KD 4 o
S MeK(H' ) |t2 —t1| + 0.
Second case: t1 <71 <ts.

Since V(t1,21) < ||1]|, we have

V(ti,z1) = V(ta, 1) < a1 = [[¥(7)| 4+ 0
< [Pl dr + o
< Mltag —t1]+ 0o
< M eKED) [ty —ty| + 0.

Since the choice of o was arbitrary we conclude that
V(tl,xl) — V(tz,l‘l) S MSK({JF%) |t2 — t1|,

as required.
ConNcLUsION. Using Steps 1, 2 and 3, we get

Vit 1) = Vta,w2)| < |Vt 21) = Vte, 21)| + [V (2, 21) = V(t2, 2]
< M eBED |ty — ty| + KD |2y — 24
< L([lzy = zaf| + [t1 — t2])

where L := max(1, M) eX(+3) . The proof of Proposition 4.9 is completed. M

Corollary 4.5 For a.e. (to,x0) € (—%,+00) X Ba,,

|4
to,l‘o) + <VzV(t0,[EQ),’U> S 0. (481)

0
You EFQ(to,llfo), E(

The proof is the same as for Corollary 4.3.
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(Regularization of V)

To smooth V', we need to strengthen slightly the inequality in (4.81). This
can be done by using (as in [118]) some trick due to Yoshizawa [159]. Set, for
(t,l’) € (_%7—'_00) x Bal

1+t 1

1+2tV(t,x) and Wi(t,z) := ——a(||z]|).

Vit @) = (1 +20)2

Then ia(|lz|) < Vi(t,z) < ||lz|| for each (t,x) and V7 is locally Lipschitz
continuous on (—3%,400) X (Bq, \ {0}). On the other hand, it follows from
Corollary 4.5 that for a.e. (to,z9) € (—3,+00) x (Ba, \ {0}),

vy,
ot

Next lemma is proved along the same lines as for Lemma 4.9.

Yov € FQ(tO,.T()), (to,it()) + <VmVL(t0,x0),v> < —WL(t(hiL'o). (482)

Lemma 4.15 Let S be any compact set in U := (—%,400) X (Ba, \ {0}) and
lete > 0. Then there exists a function V of class C> and with compact support
in (—%,+00) X Bq,, such that

IV = Vllp=(s) <e

and

ov — 1
V(to,Io) S S, You S Fg(to,l‘o), a(to,l’o)+<vm‘/(to7l’o),v> S 7§WL(tQ,$O).

With this lemma at hand we may smooth V7, in exactly the same way as in the

proof of Theorem 4.5. This completes the proof of Theorem 4.9. |

4.2.4 Application to external stabilization

Let us now consider the following control system:
i = f(t,zu), (4.83)

where ¢ > 0 is time, © € R” is the state variable and v € R™ is the control vari-
able. We aim to investigate the links between the (robust) Lagrange stability
of the unforced system

&= f(t,x,0) (4.84)
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and the UBIBS stability of (4.83). Assume that f is affine with respect to
u. Then a result in the same vein as Theorem 2.25 may be proved thanks to
Theorem 4.9.

Theorem 4.10 [118] Consider a system

&= folt,x) + Y u; filt, @) (4.85)

i=1

where for each i € {0,...,m} the field f; € L3S, (RT x R*,R™) and it is ECT.
Assume that the unforced system & = fo(t,xz) is (robustly) Lagrange stable.
Then the system (4.85) is UBIBS stabilizable (in Filippov’s sense) by means of
a feedback law u = k(t,x) + v such that k € LS (RT x R",R™) and k is ECT,

as well. Moreover, if for each i > 0 f; is of class C" for some r € NU {oo},

then k is also of class C".

Notice that here we only assume the (robust) Lagrange stability of the unforced

system.

4.3 Nonsmooth Liapunov functions

In Subsection 2.3.1 we saw that, because of certain topological obstructions,
the problem of the asymptotic stabilization of nonlinear systems leads in a
natural way to deal with discontinuous feedback laws and hence, to systems
of ordinary differential equations with a discontinuous right hand side. As
remarked in Chapter 1, ordinary differential equations with discontinuous right
hand side require a generalization of the usual definition of solution. The
notion of Filippov solution is the most popular approach to this problem. As
already recalled in Subsection 1.2.1, the first step of Filippov’s idea consists
in replacing the discontinuous differential system by a differential inclusion,
whose right hand side can be proven to be convex and compact valued, and
upper semi-continuous. By virtue of Theorem 4.3, it is therefore clear that in
principle, for analyzing the stability properties of a discontinuous differential
equation with respect to Filippov solutions, it is sufficient to look for candidate
Liapunov functions of class C°°. However, for concrete problems the explicit
construction of a Liapunov function with such a high degree of regularity may
be a very hard or even impossible task: sometimes, one can take much more
advantage of the use of a much less regular Liapunov function. In order to
illustrate this statement, we discuss an example, which appears in [60] (with
time reversed) and also in [152], [105].
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Figure 4.1: A discontinuous asymptotically stable system

N
T
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Consider the two-dimensional, discontinuous differential system

{ T = —sgnzx+ 2sgny (4.86)

Y= —2sgnzr —sgny .

The discontinuities are situated at points where either x = 0 or y = 0, and
are of a very simple type. In particular, we see that for each nonzero initial
state there exists one and only one Filippov solution, and that the origin is
globally asymptotically stable (see Figure 4.1; actually, the origin is reached in
finite time from each initial state). We can imagine a candidate C'*° Liapunov
function for this system, as a function V(z,y) whose level curves are drawn in
Figure 4.2: we note in particular that the monotonicity condition is fulfilled
since the trajectories of the system cross the level curves of V(z,y) in the right
way at every point (see Figure 4.3).

Even if we have now conceived a more or less clear idea of the geometric
shape of the graph of V(z,y), it is clear that we have a very little hope to
obtain a useful analytic expression of it. On the contrary, the problem can be
easily handled by resorting to the Lipschitz continuous, but not everywhere
differentiable, candidate Liapunov function V(x,y) = |z| 4 |y|. The level sets
of this function are plotted in Figure 4.4, and Figure 4.5 shows that even in
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_6 I I I I I I

Figure 4.2: Level sets of a smooth candidate Liapunov function

=

_4t 4

Figure 4.3: Level curves crossing
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_6 I I I I I I

Figure 4.4: Level sets of a nonsmooth candidate Liapunov function

_4t 4

Figure 4.5: Level curves crossing
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this case the trajectories of the system cross the level curves in such a way that
the monotonicity condition is fulfilled. The natural objection is, of course, that
at the points where the gradient of V(z,y) does not exist, the monotonicity
condition cannot be reduced to a differential inequality. As a matter of fact,
the difficulty can be overcame by invoking some tools from nonsmooth analysis.
This is actually the subject treated in Chapter 6.



Chapter 5

Additional properties of

strict Liapunov functions

In this chapter, we go back to an ODE of the form

i = f(x), (5.1)

where f is a smooth vector field which is defined in a neighborhood of 0 and
fulfills f(0) = 0. We shall assume throughout that the origin is locally asymp-
totically stable (AS, in short) for (5.1). In this chapter, || - || will denote the
usual Euclidean norm, instead of the sup-norm.

To introduce the issues discussed here, let us consider the (trivial) situation
where f is an analytic vector field in R, i.e., f(z) = ao + a1x + asa® + -+,
for (say) x € (—r,7). Let azz® be the first not vanishing term in the series.

Clearly, 0 is an AS equilibrium position for (5.1) if and only if
k is odd, and aj < 0. (5.2)

(Therefore the asymptotic stability problem is algebraically solvable in the one-
dimensional case.) On the other hand, if 0 is AS for (5.1), then

(i) V(z) := 2? is a convenient strict Liapunov function for (5.1);

(ii) For any (smooth) vector field g such that |g(z)| = O(|z|**!) as = — 0, the
origin is still AS for the perturbed differential equation

&= f(z) + g(x); (5:3)
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(iii) There exist positive constants d, My, My such that for any solution x(-) of
(5.1) fulfilling |z(0)] < 4,
(itk=1)
Mye™ 1z (0)] < |2(t)] < Mae™ " *|(0)], (5:4)

(if £ > 1)

(5.5)

The situation is not so trivial in higher dimension. First of all, for the system
(5.1) to be AS at the origin it is sufficient, but not necessary, that this property
already holds true in the first homogeneous approximation. A trivial example

may be constructed in perturbing the harmonic oscillator.

Example 5.1 Consider the following perturbed harmonic oscillator.

{ oo (56)

To — —X1.

The first not vanishing homogeneous vector field in the Taylor expansion
(namely, the linear part fi(z1,2z2) = xga%l —x a%), gives rise to a system
which is only stable, whereas the whole system is AS. This example shows that
a whole segment of the Taylor series must be considered, in general, to know
whether the asymptotic stability holds true for the whole system. |

On the other hand, if f is a polynomial vector field of degree k such that the
origin is AS for (5.1), then the robustness property (ii) may fail to be true. This
phenomenon occurs in the following example, discovered by the first author in
1985.

Example 5.2 Let m € R be given, and consider the system

{ T = fz:{’ + x%, (5.7)
. _ 5 .
To = —T1 + Mmxs.

Then it is proved in [64] that the origin is a locally (respectively, globally) AS

equilibrium position if, and only if, m < 3/5 (respectively, m < 0). Therefore,

property (ii) is false for k =3, f := (a3 + m%)a%l - x1%7 and g := acga%.
|
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We now turn to the type of decay for the trajectories of (5.1), when f is a
polynomial vector field of degree at most k, with & > 1. It should be tempting

to conjecture that the solutions z(-) decrease at worse as in (iii), i.e.,
1
lz(@)[l < Const.(1 + [la(0)[*~1¢) " * 2 (0)]]. (5:8)

Actually, solutions may decrease more slowly.

Example 5.2 (Continued) Consider system (5.7) with m = 0, i.e.,

= -3 + a3,
jZQ = —X.

(5.9)

(5.9) is an odd polynomial system. Hence, if x(t) is the solution issuing from
some xg at t = 0, then —x(¢) is the solution issuing from —xg at t = 0.
Therefore, the analysis may be restricted to the half-plane x5 > 0. Following
[64], we define “polar” coordinates (r,6) (with r > 0, # € [0,7]) in the half-
plane z9 > 0 by

3 =2rsind.

{ r1 = +2rcos 0,
Then 72 = 22 /2 + 23 /4, and in the (r,6) coordinates (5.9) becomes

{ 7 = —2r3cos*#, (5.10)

6 = —2\/rsin9(1 — 13 cos?  sin? 6).

1
Since 7 > —2r®, we get r(t) > (r(0)72 4 4t) 2 (even if z(t) < 0); hence, if
(tn)n>1 denotes the increasing sequence of times at which the coordinate x1

vanishes, we obtain

|2a(tn)] = v/2r(En) > V2(r(0)2 + 4t,,) " F

Since (t,) is unbounded, (5.8) cannot hold with & = 3. ]

We finish this introduction by pointing out that there exist algebraic AS
systems without any analytic Liapunov function. (See below Subsection 5.2.2.)
Sufficient conditions for the existence of a quadratic Liapunov function will be
given in Subsection 5.1.1.

The chapter is outlined as follows. In the first section, we express the type

of decay of the trajectories by means of some suitable Liapunov function. In
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the following section, we restrict ourselves to analytic systems and we investi-
gate a few natural questions, e.g., the issue whether the asymptotic stability
problem is (or is not) analytically solvable, the issue of the existence of some
analytic Liapunov function, etc. In the third section we introduce the concept
of weighted homogeneity. The key result is that a homogeneous AS system
possesses a homogeneous Liapunov function. Four applications of this result
to the stabilization problem are given. In the last section we extend the above

development to more general symmetries.

5.1 Estimates for the convergence

of trajectories

5.1.1 Exponential stability

Let f: © C R® — R"™ be a vector field of class C!, and let A := (%)Iz:o
be the Jacobian matrix of f at the origin. Recall that if A is Hurwitz (i.e.,
any eigenvalue of A has a negative real part), then the origin is locally AS for
the linear system @ = Az, and also for the nonlinear system (5.1). Moreover,
the solutions decrease exponentially for both systems. Let us introduce some

definition.

Definition 5.1 The origin is said to be exponentially stable for (5.1) if there
exist three numbers w < 0, M > 0 and § > 0 such that for any xo € Bs, the
solution x(-) of (5.1) issuing from x¢ at t = 0 is defined on [0,+00) and it
fulfills

V20, Jlo(®) < Mzl (5.11)

The infimum of the numbers w < 0 for which (5.11) is satisfied (for some
constants M,5 > 0) is called the exponent of 0.

Clearly, if A is Hurwitz, then 0 is exponentially stable for (5.1). It turns out

that the converse is true, as well.

Theorem 5.1 Let f be a vector field of class C' on a neighborhood 2 of 0 in

R™, and assume that f(0) = 0. Then (5.1) is exponentially stable at 0 if and
of

only if the Jacobian matriz A = ( 3%

of 0 is sup{Re X, A € a(A)}.

is Hurwitz. Moreover the exponent
‘m:o

The reader is referred to [162] for a proof of this classical result. As a
byproduct we obtain a useful characterization of exponential stability in terms
of Liapunov functions.
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Theorem 5.2 Let f be a vector field of class C* near 0 and such that f(0) = 0.
Then the following statements are equivalent.

(i) 0 is exponentially stable for (5.1);

(ii) There exists a function V of class Ct in a neighborhood of 0 such that, for

some positive constants C1,Co, C3,7 and 9,
[z <6 = Ciflz]|" < V(z) < Collz||", (5.12)

[zl <6 = (VV(2), f(z)) < =Csll]"; (5.13)

(iii) There exists a symmetric positive definite matriz S € R™*™ such that, for

some positive constants C, 9,
el <6 = (Sz,f(z)) < =Cll|?. (5.14)

Proof. (i)=-(iii): According to Theorem 5.1, the matrix A = (%)\m:o is
Hurwitz, hence there exists a symmetric, positive definite matrix S € R"*"
such that, for some constant C’ > 0, (Sz, Ar) < —C'||z||? for all x € R™. Since
f(z) = Az + o(||z|]), (5.14) follows at once.

(iii)=(ii): It is sufficient to set V' (x) := (Sz,z) and to take r = 2.

(il)=-(i): Pick any trajectory z(-) of (5.1) and set v(t) := V(z(t)). By (5.12)
and (5.13)

hence (using again (5.12))

(@) < (”g) <(2) < # o

Remark 5.1 It follows from Theorem 5.2 that if the equilibrium position 0
is exponentially stable, then there exists a strict Liapunov function which is
a quadratic form: V(x) = (Sxz,z), S > 0. For AS systems, however, the
corresponding strict Liapunov functions are in general not so simple (sometimes

not even analytic: see below Subsection 5.2.2.).

5.1.2 Rational stability

When the Jacobian matrix A is no longer Hurwitz, then the solutions do not
decrease exponentially. Instead, it may sometimes be proved that the solutions
decrease like t=", r > 0.
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Definition 5.2 The origin is said to be rationally stable if there exist positive
numbers M, k,n and § (with n < 1) such that for any xo € Bs, the solution
x() of (5.1) issuing from xo at t =0 is defined on [0, +00) and it fulfills

_1
¥t >0, ()] < M(1+ |l ") F[lzo]"- (5.15)

If V' is any function defined in a neighborhood of 0, we set for all x

V(x(t)) = V(xo)

= limsup ———————-

V(xo) := DV (x(t)) msu .

[t=0
The rational stability may be characterized by means of certain Liapunov func-
tions [66, Theorem 23.1].

Theorem 5.3 Let f be a vector field of class C near 0 and such that f(0) = 0.
Then the origin is rationally stable if and only if there ewxists a continuous
function V' defined in a neighborhood of 0 and such that, for some positive

constants Cy,Cy, C3, 11,79, 73 and §, with r3 > 7o,

[z <6 = Cillz" <V(z) < Coll2|™, (5.16)
|z <6 = V(z)<-Csz||™. (5.17)
Proof. (Sufficient part) Assume the existence of a function V as in the

statement. Pick any trajectory x(-) of (5.1) and set again v(t) = V(x(t)).
Then, by (5.16) and (5.17), for any t > 0
r3
DFu(t) < —Cy (1’(”) o (5.18)
Cy

Integrating (5.18) and using (5.16), we obtain at once (5.15), with k = r1 (72 —
1), n= %, and for M some positive constant depending on C7,C5y, Cs, 71,72
and 3.
(Necessary part) Assume that the estimate (5.15) is valid. Let (¢, ) denote
the flow of (5.1). Pick some r > % and set

+oo
V() = /0 (s, )| ds. (5.19)

We first check that V' is well-defined and continuous on a neighborhood of 0.
Tt follows from (5.15) that

+oo o - » [too _r
[ (s, 2)|[mds < M| [750 (14 (Jxf|Fs) T Fds

5 ) 5.20
= M7 |lal|7F [ (1 + o) Edo >20)
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The last integral term in (5.20) is finite since r > k, hence V' is well-defined and
the right inequality in (5.16) holds true with ro = nr — k, Co = M" 0+°°(1 +
o)~ % do. Using the continuity of the flow and applying Lebesgue’s theorem,
we see that V' is continuous, as well. To prove the left inequality in (5.16), we
fix some x # 0 and we set h(s) = ||¢(s,z)||" for s > 0. Let L > 0 be a Lipschitz
constant for f in a neighborhood of 0, so that || f(¢(s,x))|| < L|j¢(s, )|, Vs >
0. Clearly, h/(s) = r|l¢(s,2)||""2 (¢(s,x), f(¢(s,))), hence |W'(s)| < Lrh(s).

We infer that
“+o00
/ h'(s)ds
0

Hence the left inequality in (5.16) is fulfilled with C; = (Lr)~!, r; = r. On
the other hand, for any =z,

“+oo

V(z) > (Lr)_l/ 1 (s)| ds > (Lr)~2

0

= (Lr) " l=]"-

’ : 1 i r r
V(x) = limsup (— 5/0 llo(s, )| ds) = —|lz||".

t—0t

Hence (5.17) is fulfilled, with C5 =1, r3 =r =1ry. [ ]

Corollary 5.1 Let f be a vector field of class C* near 0, and such that f(0) =
0. Assume that (5.15) is fulfilled, and that for some constants C,p,d > 0,

0
1552 < O+ lle|* 07, vt =0, ] <. (5.21)
x
(||-]] denotes either the usual Fuclidean norm in R™, or the subordinate matriz
norm.) Assume that ||g(z)| = o(||z||*"T"(=")) as x — 0. Then the origin is

still AS for the perturbed system

= f(x)+g(x). (5.22)
Proof. Let V be defined by (5.19). Then V is of class C'!, and for any z close
to the origin, if r is large enough,

VV( T e r—2 Tﬁ_(p d
z)" = rlie(s, 2)II" (s, 2)” 5 (s, 2) ds,
0 X

so that

VVi(x <rM ™ 1C|z n(r=1) [+o0 + ||z|* s =5t ds
| 0 :
= (rM"1C [ (1 + o) do) ||z][7 DK,

and

(VV (), g(2))| = o([lz]")-
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Since, by (5.17) (with 75 =), (VV(z), f(z)) < —Cs]|z||", we get
(VV(2), f(2) + g(x)) < =C5'[|l=|]"

for some constant Cs” > 0 and for all = close to 0. |

Remark 5.2 Even if f is a polynomial vector field, the asymptotic stability
of (5.1) at the origin does not guarantee that Hg—‘;(tw)ﬂ is bounded for ¢t > 0

and x close to 0.

Example 5.2 (Continued) Pick any ¢ € (0,1/2), and consider the solution
of (5.9) issuing from (z1,22)7 = (—¢,0)T at t = 0. It follows from (5.10) that
dr 73 sin"% fcost 0
d9 1 — 13 cos3Osin? 0

as long as 0 < 6(t) < m. We infer that, for some constant C' > 0,

6 < C,

" ™ % gin~2 4
[1n(r(9))]g:/ r*lﬁd(;:/ r3 sin~? f cos* 0
o df ;

, = e‘cs/\/i. Let t; be the first time for which

x7 vanishes. An application of the mean-value theorem yields

3 1
1—7r2cos3f0sinz 0

e
hence r,__, >7,_, =€ "1,

Iy |[z2(t1) — O] 2r(t1) _ 1 _c 1
S ——(t1, 70 > = > 21 2g 2
,g;{’go”ax( 1,21, 0)| 71(0) = 0] . e
Therefore, for any ¢ € (0,1/2),
0
sup || 52 (¢, @) = +oo.

t>0,||z|[<e0  OF

Next proposition gives sufficient conditions for (5.21) to hold.

Proposition 5.1 The growth condition (5.21) is fulfilled in each of the follow-
g situations:

(i) f(z) = Az with A Hurwitz;

(ii) f is of class C2, and f(tz) = t**! f(z) for allt > 0, v € R™.

Indeed, if (i) is satisfied, then ||g—i(t,a:)|| = ||le*4|] < Const. The proof of (5.21)
when f fulfills (ii) may be found in [163, Thm. 38]. Notice, however, that
for homogeneous systems the result in Corollary 5.1 may be proved in another

way. (See below Subsection 5.3.2.)
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5.1.3 Finite-time stability

Due to the uniqueness of solutions in backward time, the trajectories of (5.1)
cannot reach the origin in finite time if the field f is of class C* (or merely, lo-
cally Lipschitz continuous). However, the application of a continuous feedback

law u = u(z) in a smooth control system
& =g(x,u) (5.23)
may result in a closed loop system

i = gla,ulz) = f(x) (5.24)

for which the origin is locally asymptotically stable and it is reached in fi-
nite time by any trajectory. A trivial one-dimensional example is provided by
g(z,u) = z —u®, (z,u € R) and u(z) = 5. (Notice that the feedback law
u(z) = (22)7 stabilizes (5.23) exponentially, but not in finite time.)
Throughout this subsection we assume that (i) f is a continuous vector
field defined on a neighborhood of 0, (ii) f(0) = 0, and (iii) (5.1) possesses
unique solutions in forward time; that is, if two solutions agree at some time
to, then they agree at any time ¢t > tg. Let (¢, ) denote the flow map, which is
continuously defined (thanks to (iii)) on an open set in RT x R™. The following

definition has been first introduced in [19].

Definition 5.3 The origin is finite-time stable for (5.1) if it is stable and
there exist an open neighborhood U of the origin, and a function T : U \
{0} — (0,400) (called the settling-time function) such that, for each x €
U\ {0}, ¢(-,z) is defined on [0, T(x)), ¢(t,z) € U\ {0} Vt e [0,T(x)), and
lithT(w) go(t, l‘) =0.

We set T'(0) = 0. We stress that the settling-time function may fail to be
continuous (or even bounded) at the origin. (See [19, Example 2.2].) A useful
characterization of finite-time stability (together with the continuity of the

settling-time function) is given in the next theorem [19].

Theorem 5.4 Let f be as above. Then the origin is finite-time stable and the
settling-time function is continuous at 0 if, and only if, there exist real numbers
C >0 and a € (0,1), and a continuous positive definite function V defined on
an open neighborhood Q2 of 0, such that

vz e Q\ {0}, V(z)<-CV(z)™ (5.25)
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If this is the case, then the settling-time function T(x) is actually continuous
in a neighborhood of 0, and it fulfills (for ||z| small enough)

T(x) < L

< mV(x)l_o‘. (5.26)

Sufficient conditions for the existence of a Liapunov function fulfilling (5.25)

will be given in Subsection 5.3.2.

5.2 Analyticity

Throughout this section we are given an analytic vector field f on a neighbor-
hood of the origin, such that f(0) = 0.

5.2.1 Analytic unsolvability of the stability problem

Let g be another analytic vector field defined in a neighborhood of 0 (in R™),
and let k € N*. We say that f has kth order contact with g at 0 (and we write
f ~& g at 0) if the Taylor expansions of f and g up to order k are identical at
0; that is
el f; 0) = olelg,
ox® ox®
The equivalence classes (under ~j at 0) are called k—jets (of analytic vector

(0), V]a|<k, 1<i<n.

fields vanishing at the origin). Let j be a k—jet. If for all f in this class
the origin is an AS (respectively, unstable) equilibrium position, then the jet
itself is called asymptotically stable (AS) (respectively, unstable). A jet which
is neither stable nor unstable is called neutral. We denote by J,j: o Jpn and
J ,g,n the spaces of k—jets in R™ which are AS, unstable or neutral, respectively.

They can be reviewed as subspaces of some Euclidean space R™.

Example 5.3 Let ji, jo and j3 be the respective 1—jets of xza%l - xla%z,

d o 0 d ' 0 + ' -
—T1g. — T2, and Ty g + T2 Then j; € J1,2’ Jo € JL2 and j3 € J172-

Example 5.2 (Continued) Let j denote the 3—jet of (—a3 + x%)a%l - :1316%2.
Then j € J§)72.

One may wonder if there exists an algebraic criterion that allows us to
distinguish the AS k—jets from the others. This is not the case, by virtue of
the following theorem due to Arnold [4].

Theorem 5.5 [{]/ Let n >3 and k > 5. Then J,:” is not semialgebraic.
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Recall that a semialgebraic set is a set which can be defined by a finite number

of polynomial equations and inequalities.

Afterwards, this result has been improved by II’jasenko [78].
Theorem 5.6 [78] Let n > 5 and k > 5. Then Jlj’n is not semianalytic.

(A set is semianalytic if it may be defined, in a neighborhood of each of its
points, by a finite number of analytic equations and inequalities.) Thus, in
contrast to what happens in the one-dimensional case, the asymptotic stability

problem fails to be analytically solvable in higher dimension.

5.2.2 Analytic Liapunov functions

Let f be an analytic vector field such that the origin is an AS equilibrium point
for (5.1). A strict Liapunov function of class C*° exists, according to Theorem
2.4. Unfortunately, its definition involves trajectories of (5.1), which are not
analytically known, in general. We may wonder if there exists a “simpler”
Liapunov function, as e.g. a polynomial function or an analytic one. The
following result shows that an analytic strict Liapunov function may fail to

exist.

Proposition 5.2 a) There exists an algebraic vector field fo on R? such that
(i) 0 is a center for (5.1), and (ii) a (non-trivial) analytic first integral fails to
exist. In particular, there does not exist any analytic weak Liapunov function.
b) There exists an algebraic vector field fi on R? such that (i) 0 is an AS
equilibrium point for (5.1), and (i1) an analytic strict Liapunov function fails

to exist.

Proof. a) Let p(z1,x2) := 223 + 232, q(z1,72) 1= 22+ 23 for all z = (w1, 22)T €
R?, and pick any A € (0,+00) \ Q. Set V(x1,z2) := p(x1,22)*q(z1,72). Then

V is a positive definite function of class C'. On the other hand,
AV = p* "t (\gdp + pdq) =: p*Hadz, + bdzs),

where a(z1,22) := 4\x1 (23 + 23) + 221 (223 + 23), b(z1, 22) 1= 2A12 (23 + 23) +
229(22% 4+ 23). (Notice that a and b are homogeneous polynomial functions of
degree 3.) We take fj := —ba% + aa%z, so that Ly V = dV(fy) = 0. Clearly,
0 is the only equilibrium point of fy and it is a center. To prove (ii), we
argue by contradiction. Assume that I = >, . Iy (# Const.) is an analytic

first integral (decomposed as a series of homogeneous polynomial functions,
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Ii, being of degree k for each k). Then 0 = Ly I = >, Ly Ix. Since for
each k Ly I} is a homogeneous polynomial function of deéree k + 2, we infer
that Ly I = 0 for each & > 0, so that we may in fact assume that I is a
homogeneous polynomial function of degree £ > 1. Since Ly, I =0, I = Const.

on the set {p*q = 1}. A homogeneity argument shows that, for some constant

C#0,
I(zy,29) =C [(p)‘q)(xhxg)] 2T Vo = (x1,20)7 € R?

hence,
I(1,2) = C(2+ 22) 7040 (1 4 22)7070 ¥z € R. (5.27)

The function z — (2 + zQ)% may be prolonged as a holomorphic function
on C\ {z=is: s € (—00,—v2]U[V2,+0)} (3 i), and by (5.27) the same
is true for the function z — (1 + 22)% As a consequence, there exist an
integer n > 1 and a number « € C\ {0} such that (1 + 2'2)% ~alz—19)"
as z — i, which yields (when restricting to z = is, s — 17) 2(/\7’11) = n. This
contradicts the assumption A\ ¢ Q. To complete the proof of (ii), we observe
that each orbit of (5.1) is periodic, hence any weak Liapunov function turns
out to be a first integral.

b) Let p,q,\, V,a,b and fy be as above. We take f; = fo — (22 + m%)(aﬁ%l +
bz2). (i) is fulfilled, since Ly, V = —(27 + 23)p* " (a® + b?) is negative defi-
nite. To check (ii), assume the existence of an analytic strict Liapunov func-
tion W = 37,50 Wk. (W is a homogeneous polynomial function of degree
k for each k.) Let Wi, be the first not vanishing term (kg > 2). Clearly,
Ly W = LWy, + R, with the order of R larger that the one of Lz Wy,
(namely, ko + 2). It follows that Ly Wy, < 0 everywhere, hence fy possesses

an analytic first integral, which is impossible according to a). |

Several interesting properties may be proved when an analytic strict Lia-

punov function exists. They rest upon the following well-known result [96].

Lemma 5.1 Let G : R®™ — R be an analytic function defined on an open
neighborhood U of 0. We assume that G is positive definite, i.e., G(0) = 0 and
G(z) > 0Vax € U\{0}. Then G satisfies a Lojasewicz inequality; that is, there
exist an open set U’ (with {0} C U' C U), an integer m > 0, and a real number
C > 0 such that

G(z) > C|z|™, VzelU'. (5.28)

The part (ii) of the following result comes from [14].
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Proposition 5.3 Let f be an analytic vector field defined on an open neigh-
borhood Q@ of 0 in R™ and such that f(0) = 0. Assume that there exists an
analytic strict Liapunov function V- for (5.1). Then the following properties
hold true.

(i) The origin is rationally (possibly exponentially) stable;

(ii) There exists some integer k such that for any vector field g of class C*
fulfilling ||g(z)|| = o(||z||*¥) as x — 0, the origin is still AS for (5.22);

(#ii) There exists also a polynomial strict Liapunov function for (5.1).

Proof. Since —(VV(x), f(x)) and V(x) are analytic functions (in a neighbor-
hood of 0) which are positive definite, there exist (by Lemma 5.1) an open set

Q' C Q, two integers my, ms > 0 and two real numbers C7,Cy > 0 such that
—(VV(z), f(z)) > Cy|lz||™ Vz e, (5.29)

V(z) > Collz||™ Vze Q. (5.30)

(i) Obviously, VV(0) = 0, hence for some constant C3 > 0,
V(z) < Csljz||* Vre Q. (5.31)

Applying Theorems 5.2 and 5.3, we deduce that the origin is exponentially
stable or rationally stable for (5.1), according to m; = 2 or m; > 2.

(i) Let k = my — L. Since [VV(@)]| = O(ll2l)), (VV (@), g(x))] = ollz]™),
hence

(VV(2), f(2) + g(x)) < =Ci]|z[|™ + (VV(2),9(x))| < C[l=™

for some constant C;” > 0 and for all x close enough to the origin. Therefore
V' is also a strict Liapunov function for f + ¢ at the origin.

(iii) Let m = max(my, ms) and let V,, denote the Taylor polynomial of V' of
degree m. Then |V (z) — Vi, (z)] = O(|Jz]|™*) = O(||z||™2"!) and we infer
from (5.30) that for all z in a neighborhood of 0, V,,,(z) > Cy'||z||™2 for some
constant Cy" > 0. On the other hand ||VV (z) — VV,,(2)|| = O(||z||™), whereas
1f (@)l = O(llzl)), hence [{(VV (z) = VVin (@), f())] = O(|lz[™**) which, com-
bined with (5.29), yields (for some constant C;" > 0 and for all x close to
0)

(VVin(@), f(2)) < =C1/[|l[|™.

We conclude that V;, is still a strict Liapunov function for (5.1). u
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5.2.3 Holomorphic systems

In this subsection f : 2 C C" — C" is a holomorphic vector field such that
f(0) = 0. Let A = (g{)‘ )
investigate the links between the asymptotic stability of the origin for the

. be the Jacobian matrix of f at the origin. We

system
dz
g 5.32
“_jea), (532
and the one for the linearized system
dz
— =Az. 5.33
o = Az (5.33)

(The time ¢ is still real.) As for real systems, if (5.33) is AS at 0 (i.e., A is
Hurwitz), then (5.32) is also AS at 0. Surprisingly enough, the converse is still
true, as it is shown by next result due to Krikorian (which improves a previous

result by Dayawansa and Martin [52]).

Theorem 5.7 [89] Let & C C™ be an open set, and let f : Q@ — C™ be a
holomorphic vector field such that f(0) = 0. If 0 is locally attractive for (5.32),
then it is locally asymptotically stable for both (5.82) and (5.33).

In other words, 0 is AS for (5.32) if, and only if, A is Hurwitz. (Recall that this
condition may be checked by means of Routh’s criterion.) We infer that for

holomorphic systems, the asymptotic stability problem is algebraically solvable.

5.3 Weighted homogeneity

Let f be an analytic vector field on R™ for which the origin is an AS equilibrium
position. Often, the asymptotic stability of the origin occurs for an “approx-
imating” system, corresponding to a Taylor segment (not the homogeneous
first approximation, see Example 5.1.) If the components of f are polynomial
functions of degree (at most) k, then the addition of terms of degree k 4 1 in
the r.h.s. of (5.1) may result in a system which is no longer AS. (See Example
5.2.) A criterion involving the rate of convergence for the trajectories of (5.1)
together with the growth of the Jacobian flow (see Corollary 5.1) ensures that
the origin is still AS for (5.22), provided that the perturbation g is made of high
enough order terms. Here, we are interested in a robustness property which
does not involve the flow of (5.1). Such a property may be obtained if the
field f is homogeneous (in the generalized sense defined below). The following
example demonstrates that, sometimes, it is worth giving different weights to

the coordinates.
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Example 5.4 Let us consider the system
i'l = T2 — I?a
) 5 ) (5.34)

For any k < 5 let f; denote the Taylor segment of degree k. (For instance,
fi= xga%l is the linear part.) Then it is easily seen that for any k < 4 the

origin fails to be AS for the approximating system

If, instead, the coordinates x1 and x5 are given different weights (namely, r; = 1

for z1 and ro = 3 for x2), then the homogeneous first approximation becomes

. 3
€r1 = T2 — Ty,
{ . 5 (5.35)

T2 = —Tq.
It follows from LaSalle invariance principle (applied with V (z) = 2§/6 + 23/2)
that (5.35) is AS. It will follow from next development that the same is true
for (5.34). |

Precise definitions of weights, homogeneity, etc. are given in the following

subsection.

5.3.1 A few definitions

Definition 5.4 [8/] Fiz a set of coordinates (x1,...,x,) in R™. Let r =
(r1,...,mn) be a n-uplet of positive real numbers.
e The one-parameter family of dilations (07)eso (associated with r) is defined
by

ol (x) == (eMay, ey e™ay), Vo= (x1,..,2,) € R", Ve > 0.
The numbers r; are the weights of the coordinates.
e A function V : R™ — R is said to be 6"— homogeneous of degree m (m € R)
if

V(6i(z)) =™V (z) VreR" Ve>0.

o A wvector field f =1, fia%i is said to be 6"—homogeneous of degree k if

the component f; is 0" —homogeneous of degree k + r; for each i; that is,

fi(e™ay, . e™ay,) = eFFTifi(x), Vax € R™, Ve >0, Vi€ [[1,n]].
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Example 5.4 (Continued) Pick r = (ry,73) = (1,3), and set f = (xg—m‘;’)a%l—
a:"l’a%z, and g = m%a—‘zz Then f (respectively, g) is 6" —homogeneous of degree
2 (respectively, 3).

If all 7; = 1, we write 6' and call this the standard dilation. Let us stress
that, with this terminology, a homogeneous (in the usual sense) polynomial
function of degree m is 6! —homogeneous of degree m, whereas a homogeneous
polynomial vector field f of degree k (ie., f =", fia%i with deg(f;) = k for
each i) is §'— homogeneous of degree k — 1. /

The weighted homogeneity has been first introduced by Rothschild and
Stein [120] for the analysis of hypoelliptic partial differential operators. Later,
this notion has been extensively used for deriving new nonlinear criteria of
controllability. More precisely, for affine control systems fulfilling a geometric
condition involving Lie brackets (e.g., Hermes’ condition or Sussmann’s con-
dition), the construction of a nilpotent approximating system which is STLC
and homogeneous with respect to a certain family of dilations (not the standard
one, in general), plays a great role in the analysis. (See [74].) Here, however,

we shall only be interested in the stability (or stabilization) problem.

Definition 5.5 The (generalized) Euler vector field e associated with the fam-
ily of dilations (07 )e>o is defined by

" 0
e = E Tili —-"
=1

The following infinitesimal characterization of 0" —homogeneity proves to be
useful in certain circumstances.

Proposition 5.4 Let (67).>0 and e be as in Definition 5.5. Let V (respec-
tively, f) be a function (respectively, a vector field) of class C' in R™, and let
m,k € R. Then

(i) V is 8"—homogeneous of degree m if, and only if, e -V =mV;

(ii) f is 8"—homogeneous of degree k if, and only if, e, f] = kf. (Here,
e f] = Fe= 5 1)

The proof is classical.

Corollary 5.2 Let (67)->0 be any family of dilations in R™. Then any analytic

vector field on R™ can be expanded as a series of 6" — homogeneous vector fields.
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Indeed, each monomial vector field h = Cwo‘% (with C € R, a € N",
i € [[1,n]]) is 6"— homogeneous of degree (r, o) —r;, since [e, h] = (Z;;l rio—

Corollary 5.3 Let (07)s>0 be any family of dilations on R™, and let Vi, Vs
(respectively, f1, f2) be 8" —homogeneous functions (respectively, vector fields)
of degrees my,mo (respectively, ki, ko). Then Vi Vo (respectively, Vi f1, [f1, f2])
is 0" —homogeneous of degree my + ma (respectively, my + ki, k1 + ko).

Proof. The homogeneity of V7 V5, Vi fi follows at once from Definition 5.4.
For [f1, f2], we invoke Jacobi identity and apply Proposition 5.4 (twice):

[6, [fl,f2]] :_[fla[f%e]]*[f27[eaf1]]
= [f1, ka2 fo] + [k1f1, f2]
= (k1 + k2)[f1, f].

By definition, any norm in R™ is §! —homogeneous of degree 1. When working
with 6"—homogeneity, we are led to consider 6" —homogeneous norms, defined

as follows.

Definition 5.6 A 6"—homogeneous norm is ¢ map x — | z||,,, where for any

p=>1
n » )
lzlrp = <Z |2 ”) Vz € R".
i=1
The set Sy, = {z : ||lz|,p = 1} is the corresponding 6" —homogeneous unit
sphere.

Obviously, each §”"—homogeneous norm is §"—homogeneous of degree 1,
and positive definite. (It is not a norm in the usual sense, since it is not
§'—homogeneous.) It may be seen that all " —homogeneous norms are equiva-
lent. Assume in addition that r; € N* for each i. Choosing p in such a way that
all r; divide p/2, we get an homogeneous norm which is analytic on R™ \ {0}.
For such a choice of p, S, is an analytic (n — 1) dimensional submanifold in
R™\ {0}. (Forr=(1,..,1) and p=2, S, , = S" 1)

5.3.2 Homogeneous Liapunov functions

It is well-known that an AS linear system possesses a strict Liapunov function

which is a quadratic form (hence, a §'!—homogeneous function of degree 2.)
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Figure 5.1: The §"-homogeneous unit sphere (with n = 2, r = (1,3), p = 6)
and some homogeneous rays

It turns out that any homogeneous AS system admits a homogeneous strict
Liapunov function. A constructive proof of this result may be found in [66],
[163], when the vector field f is of class C'. When f is merely continuous,
the result has been obtained by Kawski [84] when n = 2, and by Hermes [73]
when solutions are unique in forward time. These assumptions are no longer
required in the next result.

Theorem 5.8 [115] Let f be a continuous vector field on R™ such that the ori-
gin is a locally AS equilibrium point. Assume that f is 0" —homogeneous of de-
gree k for some r € (0,+00)™. Then, for any p € N* and any m > p-max;{r;},
there exists a strict Liapunov function V' for (5.1), which is 6"—homogeneous
of degree m and of class CP. As a direct consequence, the time-derivative

V = (VV, f) is 6"—homogeneous of degree m + k.

The reader is referred to Subsection 5.4.3 for the proof of a more general result
(namely, Theorem 5.13).

The following corollary shows that the rate of convergence of trajectories
for a homogeneous AS system is completely characterized by the degree of the
field. (The last part comes from [75].)
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Corollary 5.4 Let f be as in Theorem 5.8, and let | - ||, be any
6" —homogeneous norm.

o If k > 0 (k is the degree of f), then there exist constants My, Ms > 0 such
that, for any trajectory x(-) of (5.1), for all t >0,

1 1
My (14 [l2(0)]15, 1) [2(0)[lrp < ll2(®)]lrp < Mo (L4 [2(0)[[7, ) [[2(0)]r.p-

(5.36)
e I[f k=0, then there exist constants My, My, D > 0 such that

My exp(=Dt)[|z(0)[|rp < [[2(8)[|rp < Mo exp(=Dt)[|z(0)lrp, V¢ > 0. (5.37)
o If k <0, then the origin is finite-time stable.

Proof. Pick some number m > max{ry, ...,,, —k}. According to Theorem 5.8,
there exists a strict Liapunov function V' for (5.1), which is 6" —homogeneous
of degree m and of class C!. Also, V is 6" —homogeneous of degree m + k. V
being positive definite and continuous, there exist constants C7,Cy > 0 such
that

Ci <V(z) <Oy, VYzeS,.

Since any = # 0 may be written as = 67(6_, x), with 0’_, € S, , for the

choice ¢ := ||z]|,,p, we infer from the homogeneity of V' that
Cillz||7, < Vi(z) < Coflzl|}, Vo (5.38)

The same argument shows that for some constants C3, Cy > 0,
Csllz|;, mk < —V( ) < Cullz[|7) mk g (5.39)
It follows that for some constants Cs, Cg > 0

m+k . m-+4k

< —V(z) < CeV(x) ™

V. (5.40)

If k& > 0 (respectively, k = 0), a direct integration of (5.40) combined with
(5.38) gives at once (5.36) (respectively, (5.37)). The result for k < 0 follows
from (5.40) and Theorem 5.4. |

Next result is often referred to as Hermes’ theorem . It has been proved in [73]
when solutions are unique in forward time, and in [115] without this assump-

tion.

Corollary 5.5 Let f be as in Theorem 5.8, and let g =Y\ | gine aa: be another
continuous vector field on R™. Assume that

Vi, gi(67 ) =o(e"t") ase —0 (5.41)
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uniformly with respect to x on S"~'. Then the origin is still AS for (5.22).
Furthermore, the conclusions drawn in Corollary 5.4 are still valid for the tra-
jectories of (5.22).

Proof. Pick a §"—homogeneous Liapunov function V of degree m >
max; r; and of class C'', as given in Theorem 5.8. Then, for x € S*71!,
(VV(6rz),g9(6"x)) = o(e™**) as ¢ — 0, whereas (VV(§7 ), f(07 x)) =
emtR(VV (z), f(z)). Tt follows that for £ > 0 small enough (say, 0 < & < &g)
and for all z € ™1,

STV (), (@) < (VVLa), (f + )01 w) < 2TV (@), f(a).

In other words, if V denotes here the time derivative of V along (5.22), if we
set Q:={0}U{dlz: 0<e<eg, xS} (Qis aneighborhood of 0), then
(5.39) and (5.40) hold true for all = € Q. This completes the proof. ]

5.3.3 Application to the stabilization problem
Homogeneous feedback law

For the sake of simplicity, consider a single-input, affine control system in R"™

= fo(z) +u fi(z), (5.42)

with fo, f1 real analytic vector fields such that fy(0) = 0 and f1(0) # 0.
Let a family of dilations (67).>o be given, and expand fy and f; into series
of 0" —homogeneous vector fields, say fo = 3,5, f¥ and f; = D kshy fE.
Consider the approximating system

&= J5o (@) + u i (@), (5.43)

If (5.43) is a “good” approximation of (5.42) (e.g., if (5.43) inherits the small-
time local controllability of (5.42)), then it is natural to try to stabilize (5.43)
by means of a ¢"—homogeneous feedback law w of degree ky — kq. If this
can be done, then it follows from Corollary 5.5 that u stabilizes also (5.42).
This strategy, which can be seen as a nonlinear generalization of the classical
linearization procedure, has been used in many papers. (See [85], [86], [73],
[74] to mention but a few.) In particular, Kawski [85] has proved that any
STLC planar system (5.42) admits a homogeneous approximation (5.43) which
is stabilizable by means of a Holder continuous (not C'') homogeneous feedback
law. (See Theorem 2.26, Section 2.5.)
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As stabilizable linear systems may always be stabilized by means of linear
feedback laws, one may wonder if a homogeneous stabilizable system may be
stabilized by means of some homogeneous feedback law; that is, if f: Rt —
R™ is a continuous map such that, for some numbers 71, ...,7,11 > 0 and some
k € R,

fie™ @y, o ey, e ) = R fi (3, g, )
Vo = (z1,....,2,) € R™, Yu € R, Ve >0, Vi € [[1,n]],

and such that the system
&= f(z,u) (5.44)

is (locally) stabilized around 0 by means of some continuous feedback law w :

R™ — R, then the feedback may also be chosen to satisfy
u(emxy, e may) = e (e, .y m,) Vo, Ve > 0.

Actually, it fails to be true in general. First of all, it has been noticed that
the restriction to homogeneous feedback introduces extra necessary conditions
for the stabilization problem (see [86], [50], [127]). Then, a counterexample
was given in [117], for n = 2, r; = ro = r3 = 1, and [ of class CP (p € N*
arbitrary). Thereafter, an algebraic counterexample has been proposed in [126].

To be precise, it is proved in [126] that the following planar system

omm (5.45)
To = 3x9+ x1U

is STLC, stabilizable, while not stabilizable by a homogeneous feedback (i.e., a
feedback u fulfilling u(ex1,e3x2) = cu(z)). (Recall that a counterexample for
which the system is planar, STLC, and affine in the control cannot be found,
according to Kawski’s theorem.) It is also proved in [126] that the following

three-dimensional affine system

T =1+ s,
To = 3x2+ &Ell‘%, (546)
j?g =7

is STLC, stabilizable, while not stabilizable by homogeneous feedback. Ob-
serve that (5.46) is derived from (5.45) by adding an integrator. To prove the
stabilizability of (5.46), the authors show that the feedback u which has been
designed to stabilize (5.45) fulfills the assumptions of Proposition 2.19.
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Cascade systems

The following nice result is due to Coron and Praly [48].

Theorem 5.9 Consider the single input system

iy = fi(z) + o5
= filennm) Ha . 1<j<n, (5.47)
i’n :fn(xl,...,xn)+uP7L+17

where the p;’s are odd integers, f; € C>®(RJ,R) and f;(0,...,0) = 0 for all
J€[[1,n]]. Then (5.47) is locally stabilizable by means of a continuous feedback

law.

Its proof rests on the following key result, which is a “homogeneous” version
of Tsinias’ theorem. (We emphasize that here the feedback laws are merely

continuous, but homogeneous.)

Proposition 5.5 [/8] Let f = (fi)izin : R" x R — R" be a C° map such

that, for some numbers ri,...,mp41 > 0 and some k € (—min{r;}, +00),

fi(eMay, . g™y, g™ ) = ghtri fi(zy, .y xn, u)
Vo = (21,....,2,) €R™, Yu € R, Ve >0, Vi € [[1,n]].

Assume that the system & = f(x,u) is locally stabilizable with a continuous
feedback law v : R™ — R such that

u(eMxy,...,e™mwy,) = e u(x), Ve € R, Ve > 0.

Under these conditions, the system & = f(x,y), y = v is globally stabilizable

with a continuous feedback law v : R*™1 — R such that

U(‘srlxla "'asrnl'nvgrn+ly) = 5k+7"n+1v(1,1, vy Ty y)
Vr e R", Yy e R, Ve > 0.

For a proof of Proposition 5.5 based on Theorem 5.8, see [115].

Time varying feedback

Let us consider a driftless control system of the form
$:U1f1($)+"'+umfm($), (548)

where each vector field f; is analytic in R™ (m < n). Assume that
rank(fl(a:),...,fm(x)) = m and rank Lie{f1, ..., fm}(x) = n for all z € R™.
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(Here, Lie{f1,..., fm} denotes the Lie algebra spanned by the vector fields
fis-es fm-) Then (5.48) is controllable, by Chow’s theorem, and stabilizable
by means of a smooth time varying feedback law, according to Coron’s result
[44]. However, application of a smooth time varying feedback law may result
in a slow convergence. Several studies (originating with [99], and culminating
with [103]) have demonstrated that the speed of convergence may be improved
by using a continuous time varying feedback law which is homogeneous (with
respect to x). Assume, for simplicity, that the vector fields in (5.48) are ho-
mogeneous of degree —1 with respect to a family of dilations (d7).>0, and that
there exists a stabilizing feedback law u = wu(¢,z) which is periodic (with re-
spect to t) and 6" —homogeneous (with respect to x) of degree 1. Then the

following estimate occurs for the trajectories of the closed-loop system
lz)llrp < Mlz(O)rpe™ ", VE=0. (5.49)

(Il - I,p denotes any 6" —homogeneous norm.) The key result to prove such an

estimate is the following extension of Theorem 5.8.

Theorem 5.10 [107] Suppose that the origin is an AS equilibrium position of
&= F(t, x),

with F € C°(R; x R?,R") being T—periodic with respect to t (i.e., F(t +
T,2) = F(t,x) Vt,x) and 6"—homogeneous with respect to x of degree O for
some r € (0,400)" (i.e., Fi(t,0l x) = Fi(t,z) Y(t,x) € R xR", Ve > 0, Vi).
Then, for any p € N and any m > p max;{r;} there exists a function V(t,x)
such that

(i) Ve CP(RxR")NC>®(R x (R™\ {0}));

(i) 0 < V(t,z) Vi, Yo #0;

(i) V' is T—periodic: V(t +T,x) =V (t,x) Vt, Va;

(iv) V is 6" —homogeneous of degree m: V (t,6Tx) = e™V (t,x) Vt, Va, Ve > 0;
(v) V(t,z) = W (t,x)+ (VV(t,z),F(t,x) <0 VteR, Vo 0.

Notice that, by (ii), (iii) and (iv), there exist positive constants C7,Cs such
that

Cillzll7h, < V(t,x) < Cofl=|;7, Vit . (5.50)
(II - llr,p is any dr—homogeneous norm in Rn.) Also, there exists a positive

constant C3 > 0 such that

V(t,z) < —Csll7

p?

Vi, . (5.51)

Then, (5.49) follows at once from (5.50)-(5.51).
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The next result may be applied to design a homogeneous feedback law,

when a (non-homogeneous) feedback law is already known.

Theorem 5.11 [100] Let fi, ..., fm be analytic vector fields on R™, which are
0" —homogeneous of degree —1 for some family of dilations (07)cso. Assume
that (5.48) is stabilized by means of smooth, T—periodic feedback laws u;(t,x),
1 < ¢ < m, and that for some constant C' > 0 and some T —periodic strict
Liapunov function V (t,x) (of class C*) for (5.48), the level sets parametrized
by t

GY ={z: V(t,z) =C}

are transversal to the 0" —Euler vector field. Let p : R x R® — R be the
(uniquely defined) 8" —homogeneous function of degree 1 fulfilling

p(t,x) =1, Vt, Yo e GY,
and let v, : R*\ {0} — G, for each t € R, be defined by
{ve(z)} = {6l x; e >0}NGY, Vo #£0.
Then the following feedback laws
w;(t,x) = p(t, ) ui(t,y(x)), i=1,...,m

stabilize (5.48), while being T—periodic with respect to t and §"— homogeneous
of degree 1 with respect to x. As a consequence, (5.49) holds true for the
trajectories of the closed-loop system & =", u;(t, x) f;(x).

Finite-time stabilization

Let a control system (5.42) be given. To achieve a finite-time stabilization, it is
sufficient to design a stabilizing feedback law u such that the resulting closed-
loop system is homogeneous of negative degree with respect to some family of
dilations. The following example comes from [18].

Example 5.5 The double integrator

:1.71 = T2,
(ﬁg =Uu
is finite-time stabilized under the following feedback law

w(w1,22) = —sign(zs)|z2|® — sign (¢ (z1, 72)) [fa 21, 22)| 7
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for every a € (0,1), where ¢q(z1,x2) := z1 + 5=sign(zs)|z2|>~*. Here, the
closed-loop system is §" —homogeneous of degree o — 1, for the choice (r1,ry) =
(2—a,1). Notice that an explicit homogeneous Liapunov function is also given
in [18]. An output feedback finite-time stabilizing control law (inspired by this
feedback law) is proposed in [75].

Another (somewhat simpler) finite-time stabilizer for the double integrator is

as follows.

Example 5.6 Let us consider the system

1 = T2,
iy = —sign(xy)|x|* — sign(xs)|wa]?

where o > 0, 8 > 0. Taking V(z) = |z1/'7*/(1 + a) + 23/2 as a Liapunov
function candidate and applying LaSalle invariance principle in its extended
form [60], we see that the origin is AS for each pair («, 3). On the other hand,
the vector field “T?a% — (sign(z1)|21|* +sign(as) |z2|?) 8%2 is homogeneous with
H%' If this condition
is fulfilled, then (up to a factor) the weights are (r1,r2) = (1, %), and the
degree is k = anl It follows from Corollary 5.4 that the origin is finite-time
stable whenever a € (0,1) and § = 1-&-% (Notice that we don’t need to

respect to some family of dilations if, and only if, § =

construct an explicit homogeneous strict Liapunov function.) A quite different
analysis [68] shows that the system is still finite-time stable when a € (0,1)
and 0 < 0 < #. |

More generally, for n-dimensional cascade systems it has been proved in the
recent paper [76] that the problem of global finite-time stabilization is solvable

by non-Lipschitz continuous feedback laws.
Theorem 5.12 Consider the single input system

T =x2  + fi(x)
{i;j =Tj1 +fj(1'1,...,$j)7 1<j<n, (552)
[ — + folxy, o p),

where for each j f; : RI — R is a function of class C* with f;(0,...,0) = 0.
Then (5.52) is globally stabilizable in finite time by means of a continuous
feedback law.
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5.4 Symmetries and Liapunov functions

Let f be an analytic vector field on R™ such that the origin is an AS equilibrium
position for (5.1). According to Hermes’ theorem (Corollary 5.5), to prove
that the origin is indeed AS for (5.1), it is sufficient to find some n—uplet
r = (r1,...,r) of positive numbers such that the origin is already AS in the
first §"—homogeneous approximation. In [74], the author asks the question
whether there is an algorithm for finding, for a given real analytic vector field
f that has 0 as an AS equilibrium position, a family of dilations (¢7),~¢ and
an analytic change of coordinates ¢ such that, if one expands f in the new
coordinates into a series of " —homogeneous terms, then the leading term in
the expansion already has 0 as an AS equilibrium position. The algorithmic
question is of course related to the even more basic issue whether 6] and ¢
exist at all. A counterexample was communicated to the second author by H.
Sussmann in 1995, namely the field f := —a$ (23 + :E‘ll)a%l —x3(23 + x%)a%z in

R2. Next counterexample is still simpler.

Example 5.7 Let us consider the following system (which may be seen as a

stabilized double integrator)

{{”1 - (5.53)

Tog = —T1 — 1%332.

The origin is globally AS, thanks to LaSalle invariance principle. Let r =
(r1,72) € (0,+00)% and let a (local) analytic change of coordinates z = ¢(&) be
given. Expand f := xga%l — (z1 + x?xg)% into a series of §"—homogeneous
terms in the new coordinates £ = (£1,&2), and denote by f the leading term
in the expansion. Writing z1 = a; + b + -+, 9 = ¢& + d& + - -+ (where
“...” stands for higher order terms), we have ad — bc # 0 (since ¢ is a dif-
feomorphism), hence ad # 0 or bc # 0. Exchanging & and & if needed, we
may assume that ad # 0. Clearly, the degree of each term in the expansion
of the function —z%zs (expressed in the new coordinates) is larger than the
degree of the leading term in the expansion of —z; (or of z3). If r; = 1o, then
in the (new) coordinates &7 := a&; + b&a, To = &1 + d&o, f takes the form
f = 5028%1 — I 8‘22. Therefore, the origin is not AS for f If 71 > 79, then
we easily see that f - & = ZZf‘zi & (since d # 0). Tt follows that the degree
of f has to be negative. By virtue of Corollary 5.4, if the origin is AS for f,

then it is actually finite-time stable. This cannot occur, since f is of class C*
near 0 (hence the only trajectory reaching the origin is £(¢) = 0). A similar

argumentation may be used when r; < rs. |
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In this example, no one homogeneous approximation may constitute a
“good” approximation of the original system, since the asymptotic stability
of the origin is not preserved. For this reason we are sometimes led to consider
more general symmetries (instead of weighted homogeneity) for the system
(5.1).

5.4.1 Discrete symmetry

To be short, we limit ourselves to discrete symmetries which look like rotations.
It is clear that if (5.1) is AS and odd, then an even strict Liapunov function

exists. This result may be generalized as follows.

Proposition 5.6 Let f € C°(R",R") and M € R™ "™ be such that M* =T
for some k > 1, and
f(Mz)=Mf(x), V. (5.54)

If 0 is globally AS for (5.1), then there exists a strict Liapunov function V' of
class C°° on R™, and such that

V(Mz)=V(x), Va. (5.55)

Proof. It is sufficient to pick any strict Liapunov function W of class C'*° and
to set V(x) := Zi:ol W (M'z). |

This result may easily be extended to the case where (5.54) is fulfilled for each
M in a finite subgroup of GL, (R).

5.4.2 Infinitesimal symmetry

The geometric theory of symmetry, which goes back to Lie, has been developed
to understand and analyze the standard procedure of explicit integration of
ODE. (The reader is referred to [24] for a modern exposition of the theory.)
Here, to avoid useless generality, we shall consider a restricted class of sym-
metries, which is easily defined and contains the (previously defined) weighted
homogeneity. We shall make the following standing assumption: s is a vector
field of class C'' on R™ which is complete, i.e., its flow (denoted by ¢) is defined
on Ry x RZ.

Proposition 5.7 [87] Let V : R® — R be a function of class C and let m € R.

Then the following statements are equivalent
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(i) -V =mV;
(ii) V(e(n(e),z)) =™V (x), Ve>0, Yo eR™

If any of the above is fulfilled, then s is called a symmetry of V, and V' is said
to be s—homogeneous of degree m. An analogous result holds true for vector
fields.

Proposition 5.8 [117], [87] Let f be a vector field of class C* on R™ and let
k € R. Let denote the flow of f. Then the following statements are equivalent
() [s, f1=kf:

(ii) ¥(ta, (t1, ) = @(t1,v(e** 1y, x)), whenever each term is defined.

If any of the above is fulfilled, then s is called a symmetry of f, and f is said

to be s—homogeneous of degree k.

Remark 5.3 Notice that above definitions are coordinate-free.

Example 5.8 Let 7 = (r1,...,7,) € (0,+00)" be given, and assume that f is
6" —homogeneous of degree k. Take as symmetry candidate the Euler vector
field s = >0, rixi%. Then f is s—homogeneous of degree k, according to

Proposition 5.4.

Example 5.9 Consider the system

i = —a3,
To = —To.
We claim that whatever the change of coordinates x = ¢(£) and the family of
dilations (67)e>o (in the new coordinates &) the origin is no longer AS for the
first approximating system. Indeed, writing 1 = a&1+blo+- - -, xo = c&1+dEo+
- (with ad #0), and f = —xzfa%l — :cga%z, we observe that the monomial &;
appears in the £&-component of f, so that the leading §” —homogeneous vector
field in the expansion of f has degree 0. If the origin is AS for the approximating
system, then £(t) has to decrease exponentially. The same has to be true for
x(t), which is absurd.
Let V(z) := e~ + 23. Then f-V = —2V. Set s = —f and F = V f.
Then the vector field F' (of class C* on R?) is s—homogeneous of degree 2.
|

Caution. In contrast to what happens for weighted homogeneity, an analytic
vector field may fail to admit an expansion into a series of homogeneous terms

with respect to a given symmetry.
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Example 5.10 Pick s = (x1 + ox2) Oi + 9 8?0 (o > 0 is some constant) and
assume that the vector field g = a1 -% a -+ a2z, a fulfills the relation [s, g] = kg,
for some number k. It means that

Oda Oda

2 g\ (ovon ) (1o (@) _ (@) ga
das das T 0 1 a a

Oxq Oxo 2 2 2

Expanding ¢ into a series of §'—homogeneous terms, we see that (5.56) is
also fulfilled for each term in the series; hence, we may assume that g is
d'—homogeneous of degree k’ (k' is some number). Therefore, for each i = 1,2,
dim12% gg’ = (k' 4+ 1)a;, and (5.56) reduces to

{ Gt —ay =07 (k— K, 557)
g

T g;f =0k —K)as.

This leads to &k = k' and ay = cacngrl7 then a; = cxioh + c’:v;€+1 for some
constants ¢,c’. The only s—homogeneous vector fields of degree k take the

form

3 / k+1 8
8x2)+c 2 636

Therefore, the only analytic vector fields which can be expanded into a series

0
gfcwg(xla + X9

of s—homogeneous terms may be written as

0 0 0
f= hl(ﬂﬁ2)(9318Tc1 + 90267:62) + ha(z2)T0 57— oz

for some analytic functions h; and hy. Notice that if we perturb slightly s into
se = (1 + ‘7352)5@ +(1+ 6)(% (with 0 < |e] < 1), then the homogeneous ex-
pansion property is recovered, for there exists another set of coordinates (y1,y2)

in which s, = yla%l +(1+ 5)3/28%2' [ ]

If we are given an analytic vector field f, the space
S={seC*R",R"): ILeR, [s,f]=kf}

of the (analytic) symmetries of f is clearly a Lie subalgebra of the Lie algebra
of analytic vector fields. Finding a (not collinear) symmetry is easy to do in
one dimension (use the variation of parameter method), but highly non-trivial
in the higher dimension. When (5.1) is a chain of integrators (i.e., f;(x) = 2,41
for i < n), then the generating function method [24, p. 29] transforms the
search for symmetries into the integration of a n—order (variable coefficients)
linear ODE. If a finite-dimensional Lie algebra L of vectors fields containing f

may be found, then the existence of symmetries in L is quite easy to decide.
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Proposition 5.9 [117] Let L be a finite-dimensional Lie algebra of wvector
fields on R™, and let f € L\ (0). Define the operator Dy by Ds(g) = [f,g],
Vg e L.

(i) If there exists s € L such that [s, f] = f, then Dy is nilpotent as an element
of End(L).

(ii) Conversely, if Dy is nilpotent, then there exists s € L \ span{f} such that

[s, f] € span{f}.

If, moreover, L is a nilpotent (respectively, semisimple) Lie algebra, then we
have [s, f] =0 (respectively, [s, f] = f).

According to [83], a nilpotent (finite-dimensional) Lie algebra of analytic vector
fields is nothing else than the space spanned by the §"—homogeneous (poly-
nomial) vector fields of negative degree, for a convenient choice of coordinates

and of a family of dilations (67)c0.

Example 5.11 Let » = (1,1,3,4), and let L denote the (nilpotent) Lie al-
gebra of analytic vector fields on R* which may be written as sums of

0" —homogeneous vector fields of negative degree. Pick

0 0
f= (43:% +4driT9 + 332 2rq — xg)a— + ( 33:13:2 23:3)(9— c L.
T3 T4

According to Proposition 5.9, there exists a (non-trivial) s € L such that
[s, f] = 0. The set of such symmetries is easily found to be

o 9 9
B2 —|—( lemg)—}EBR?,[JShM]

0
Span{ f, o s

5.4.3 Symmetric Liapunov functions
We first show that Theorem 5.8 may be extended to any infinitesimal symmetry.

Theorem 5.13 [117] Let f and s be two wvector fields of class C' on R".
Assume that

(i) s is a symmetry for [ (i.e., [s, f] = kf for some number k), the origin is
globally AS for & = —s(x), and all solutions of this system are defined on R;
(ii) The origin is globally AS for & = f(x).

Pick any m > 0. Then there exists a strict Liapunov function V € C°(R™) N
CH(R™\ {0}) which is s—homogeneous of degree m.

Proof. Let o(t,x) denote the flow of s. Pick any nondecreasing function
a:RY — [0,1] of class C*°, such that a(t) = 0 for t <1, a(t) = 1 for t > 2
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and @’ > 0 on (1,2). According to Theorem 2.4, there exists a strict Liapunov
function W in the large of class C* for (5.1). We set

+oo
Vix) := / e (aoW)(p(t,z))dt, VreR"
Let a compact set K C R™ \ {0} be given. Clearly, there exist times t; < to
such that, for each z € K, W(p(t,z)) <1 for all t <ty and W(p(t,z)) > 2 for
all t > t5. Therefore

—mto

V(zx) :z/zefmt(GOW)(ga(t,x))dt—&—em , VrekK.

ty

It follows that V is a (well-defined) function of class C' on R™ \ {0}. V is
clearly positive definite. On the other hand, for each pair (T,z) € R x R™,
—+o0
Vie(T,x)) = / e a0 W)(p(t + T, ) dt = ™V (x),
thanks to an obvious change of integration variable. This shows that V is s-
homogeneous of degree m, and continuous at the origin. It remains to prove

that V' is a strict Liapunov function for (5.1). For x # 0, we have

+oo
OV f@) = [ e (Wt o) (TW (ot ). 2 )@ .
- (5.58)
We claim that
flo(t,x)) = ekta—(p(tw)f(x), V(t,z) € R x R™. (5.59)

ox

Indeed, if ¢ is the flow of f, then (by Proposition 5.8) for small enough ¢

U(t, ot 2)) = p(t, ¥(e™, x)). (5.60)

Differentiating (5.60) with respect to £ at £ = 0 gives (5.59). Incorporating
(5.59) into (5.58), we obtain

+oo
(VV(2), f(z)) = / e~ MR (W (8, 2))) (YW, ) ({8, ) dt < 0.

— 00

Remark 5.4 The above proof is suitable for Theorem 5.8, even if f is merely

continuous.
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Remark 5.5 Applying Theorem 5.13 with s = —f, we obtain a strict Lia-
punov function V (of class C! away from 0), such that

(VV(z), f(x)) = —mV (x).
It means that the inequality (4.8) in Theorem 4.5 may be changed into an
equality.

Next result extends Hermes’ theorem.
Corollary 5.6 [117] Let f and s be as in Theorem 5.13. Let g be another

vector field of class C' on R™, fulfilling

(g—i)_l(lns,x)g(go(lne,x)) =o(e") ase—0, (5.61)

uniformly with respect to x on S"~'. Then the origin is still AS for (5.22).

Remark 5.6 Whens =7, rixia%ﬂ o(lne,x) = 07 x, so that (5.61) is nothing
else than (5.41).

Proof. Let V asgiven by Theorem 5.13. Differentiating V (p(t, x)) = ™'V (z)
with respect to x, we get

oV dy B mtal
oy (P(62)) 52 (1 2) = ™' —— (@) W,V £ 0.

Hence, using (5.59),
<VV( (1116 ), (f + 9)(¢(lne, z)))

= ),(—i) 11n£x (’“3“"(

= am+’< ((v (@), (@) + e H(VV(x), (
<0,

)f( ) +g(p(lne, z))))
%2) " (Ine, z) (w(lne,x))))

for € S"71 and ¢ > 0 small enough (say, 0 < £ < &), thanks to (5.61).

Therefore, V is also a strict Liapunov function for (5.22). [ |

Example 5.12 Let [ = —x?a%l — m%a% — xga% in R?, and s = —f. The
above corollary cannot be applied, since s is not complete. Nevertheless, since
we only are concerned with the behavior of trajectories around the origin, we
may modify f and s (away from 0) in such a way that s becomes complete
and the relation [s, f] = 0 still holds true. Let ¢ denote the flow of s. Then

straightforward computations yield, for all x near the origin and all ¢ <0

o(t,x) = ((1—4atad) Fay, (1 - 2ta3) " Txo, elag),
(22) H(ta) = ding((1 — 41T, (1~ 2123)}, ).

The easy proof of next lemma is left to the reader.
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Lemma 5.2 Let p,q,r, s be positive integers such that p# < % + 2. Then

pt

(1= ptla[?) =5 |2)*|(1 = qt|y|") "7y| — 0 ast — —oo,

uniformly with respect to (x,y) on {(z,y) € R?: ||(z,y)|lec = 1}.

With this lemma at hand, we readily infer from Corollary 5.6 that the origin
is still AS for (5.22), provided that the components g; of g fulfill

gi1(z) = 0(2}) + O(aizs) + O(ata3) + O(x3) + O(x3),
g2(x) = O(a]) + O(xx2) + O(xi23) + O(z123) + O(x3) + O(xs3),
g3(z) = O(x3) + O(z123) + O(xax3).

For instance, 0 is AS for

T = —x? + x%,
To = —:17% + x‘i’xz + z123,
i’g = —x3 + T273.

Example 5.13 Let us consider the system

{ T = —x? —&—x%,

1‘2 = —X9.

The origin is AS for this system, according to Corollary 5.6 and Lemma 5.2.
(Take f := —x%a%l—xga%z =: —s.) However, the same reasoning as in Example
5.9 shows that whatever the family of dilations and the new coordinates, the
origin is no longer AS for the first homogeneous approximating system.

|

Example 5.14 Let us consider the single input control system

& = -z + a1 (z2 —x3),
.3

.%‘2 — —1‘2,

1“3 = Uu.

Assume that we are interested in designing a feedback law u which yields the
“best” rate of convergence for only the first coordinate x1. The (natural) choice

u = —kz3 (k> 0 some constant) results in

2t$2(0) . zg(O)
(1+ 2t2(0)2)7 +1 k

x1(t) = x1(0) exp[—t + (1-— e*kt)}7
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hence x1(t) decreases like e~tV2 On the other hand, the choice u = —z3 +

x9 — xg (for which z3 decreases like z9), leads to

21(t) = 21(0) exp[—t + (22(0) — z3(0))(1 — ")),

hence x1(t) decreases like e~ t. (See [108] for another application of symmetries
to the stabilization problem.)

Next corollary extends a result in [51].

Corollary 5.7 [117] Let f and s be as in Theorem 5.13. Let f be a vector
field on RP such that 0 € RP is AS for = f(y) Let h : Ry x RE — R" be a
continuous map such that

(i) 0 € R™ is globally AS for the system & = f(x) + h(z,0);

(i)

Iy
(3

uniformly with respect to (x,y) on each compact set in R"*P. Then (0,0) €
R™P s AS for the system
() + h(z,y),

{ ] (¥)-

Proof. We proceed as in [51]. According to a result in [131], it is sufficient

)_1(1115733) h(p(lne,z),y) = o(c") as e — +oo,

Il
==

to prove that the system
&= f(z) + h(z,u)

is BIBS-stable. Let V be as given in Theorem 5.13. We aim to prove that for
each S > 0, there exists R > 0 such that

(VV(2), f(x) + h(z,u)) <O if [z > R, [lul <S.
The same computation as in the proof of Corollary 5.6 yields

(VV(p(lne, ), f(p(lne, ) + h(p(ne, z), u)) )
— 57”+k{<v‘/(l‘), f(-f» + 5_k<VV(x)’ (g—f)_ (1n5,m)h(gp(ln€,x),u)>}
<0,

if ||z|]| =1, |lul]| < S and € is large enough (say, € > £¢). To complete the proof
it is sufficient to observe that the set {¢p(Ine, z); € > ¢, ||z|| = 1} contains the
complement of the closed ball By, provided that R is large enough. |
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Example 5.15 The system

j?l = —J?“;’ + |1‘1$2|,
.’tz = —X2
is globally AS. (Apply Corollary 5.7 with n =p=1and f = —x?a%l.)

Example 5.16 The system

1 = X9+ x%x‘f,

L .9 4 3 .8
o = —x] —xixe + x3(22] + V),
i‘3 = —l‘g

is globally AS. (Indeed, f = 3628%1 — (2} + 1‘4111“2)8%2 is §(15) —homogeneous of
degree 4.)

Next result shows that it is sometimes possible to construct a strict Liapunov
function inheriting several symmetries of the system (namely, two commuting

symmetries which look like a “rotation” and a “dilation”, respectively).

Corollary 5.8 [117] Let f and s be as in Theorem 5.13, and let r be a vec-
tor field of class C* on R™ such that r(0) = 0, [r,f] = kK'f (K is some
number), [r,s] = 0, and the flow 0 associated with r is T—periodic (i.e.,
O(t+T,x) = 0(t,x) Vt,z). Pick anym > 0. Then there exists a strict Liapunov
function V € CO(R™)NCY(R™\ {0}), which is r—homogeneous of degree 0, and
s—homogeneous of degree m.

Proof. Pick any strict Liapunov function W in the large of class C'*° for

(5.1), as given in Theorem 2.4, and set

Vi(z) ::/0 W(0(r,z)) dr.

Clearly, V; is a positive definite function of class C' on R"™, which fulfills
Vi(0(t,z)) = Vi(z) Vt,z. Vi is also a strict Liapunov function for (5.1),
since for any x # 0

(VVi(z), f(z)) = [} (VW (O(1,)), 2(r,2)f(x)) do
= [ e H (YW, ))(0(r,2)) dr (by (5.59))
< 0.

Then we set
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where a and ¢ are as in the proof of Theorem 5.13. According to this proof,
V is a strict Liapunov function for (5.1), which is continuous and C! away
from 0, and s—homogeneous of degree m. It remains to prove that V' is still

r—homogeneous of degree 0, i.e. that
V(O(t,x)) =V (x) Vt . (5.62)
Since [r, s] = 0, the flows 6 and ¢ commute, hence

Vl(@(Tv e(t’ .13))) = ‘/1(9(25, QO(T’ $)))

= Vi(e(r, 1)),
(since V; is r—homogeneous of degree 0), and (5.62) follows. |
Example 5.17 Consider the system
i = (223 + 23)2 (21 + 32),
iy = (223 + 23)% (221 — x9),
j33 = —Z‘g.
It is globally AS, as may be seen with V (z) := ||z||? as strict Liapunov function.

Let

0 0 . 0
(0.2 2\2 N9 0\ 30
f = (227 + x3) ((:cg xl)axl (221 + x2)6x2> Ty s

be the corresponding vector field. Then f is §(1-1:2)

—homogeneous of degree 4;
that is, [s, f] = 2f for s := xla—‘zl +1:26%2 +2x36—23. Let r := azga—‘; — 23;16%2.
The orbits of r are the ellipses {x = (21, 72,73) € R3: 223+ 23 = ¢, 23 = 2}
with ¢; > 0, ¢z € R some constants. Then [r, f] = 0 = [r,s]. According to
Corollary 5.8, a strict Liapunov function W which is r—homogeneous of degree

0 and s—homogeneous of degree 4 does exist. One easily sees that
W (x) = (201 + 23)* + a3

is convenient. |



Chapter 6

Monotonicity and

generalized derivatives

This chapter is a short survey about the following subject. Let V(t,z) be a
real function, defined for (¢,2) € R™ x R™. Let S be the set of all solutions of
a system of ordinary differential equations or, more generally, of a differential

inclusion

i€ F(t,z) (6.1)

given on R™ x R™. As illustrated in the previous chapters, one crucial step in
stability theory reduces to find conditions which enable us to recognize whether
the composite function g(t) = V(¢,z(t)) is non-increasing on its domain, for
each z(-) € S. When this happens, we shall also say that V is non-increasing
along F. As every student knows, if the function at hand is differentiable,
monotonicity is trivially related to the sign of the derivative. Similar relations
exist also in a nonsmooth context, but they are nontrivial and require the use
of more general concepts.

The results presented in Sections 6.4 and 6.5 are essentially based on [13].
They present the advantage of a simple formulation, but more general and

improved versions can be found in the literature (see [102], [32], [63]).

6.1 Tools from nonsmooth analysis

For reader’s convenience, we report in this section some notions and tools

of nonsmooth analysis which are needed in our exposition. Our approach is
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essentially based on generalized directional derivatives, but we shall also make
use of generalized differentials and gradients.

Let N > 1 be any integer number (in the sequel, we will focus in particular
on the cases N = 1+ n and N = n). Let moreover f(z): RY — R be defined
on an open subset @ of RY. For any choice of x € Q,w € RY and h € R

(h #0), we are interested in the difference quotient

[z + hw) - f(z)
p :

As well known, the usual directional derivative at a fixed point z € Q with

R(h,z,w) =

respect to a fixed direction w € RV is given by

Df(z,@) = lim R(h, z, )

provided that the limit exists and it is finite. When the existence of the limit is
not guaranteed, certain notions of generalized derivatives may represent useful
substitutes. The most popular type of generalized derivatives are the so-called
Dini derivatives. The basic idea is as follows. To f, T and @w we associate
four elements of the extended real line R U {+oco}, denoted respectively by
DY f(z,w), Dt f(z,w), D~ f(Z,w), D~ f(Z,@). The former is defined as

lim sup R(h, Z, @)
h—0t

and the others are defined in similar way, taking the infimum instead of the
supremum and the left limit instead of the right one, according to the notation.

This idea can be exploited further on. The clue for the developments we are
interested in, is the following trivial, but crucial remark: R(h,z,w) depends
not only on h, but also on = and w.

The upper right contingent derivative D_?} f(z,w) is defined as

lim sup R(h, Z,w) .
h—07T

w—w

Analogously, one can define D f(Z,w), D_I}f(;i,u’)), Dy f(z,w). Contin-
gent derivatives are in some WayTelated to the so—calledaltingent cone, in-
troduced by Bouligand in 1930 ([7], p. 190). Contingent derivatives and Dini
derivatives of the same type differ, in general. However, they coincide (and are
finite) when f is locally Lipschitz continuous. They coincide also when N =1
and w # 0.
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The following relations hold:
D} f(7,w) = Di(—f)(&, —w) = — Dy f (7, —) = —Dj(— f)(7,) .

More recently, the upper Clarke directional derivative D¢ f(Z,w) appears
in the context of nonsmooth optimization theory ([36]). It is defined as

limsup R(h, z, w)
h—0

r—x

(in this case we do not distinguish between right and left limits, since they
always coincide). Similarly, we can define D¢ f(Z,w). Note that D¢ f(Z,w) =
_D_Cf(i'v _U_})'

It is not difficult to verify that the map

w — DY f(Z,w)

from RY to R U {£oc} is positively homogeneous. The same is true for any
other type of generalized (Dini, contingent or Clarke, upper or lower, left or
right) derivative. In addition, w + D¢ f(Z,w) is subadditive (and hence a
convex function).

The Clarke generalized gradient of f at x is given by

dcf(z)={peRY : Yw e R one has D¢ f(z,w) <p-w < D f(z,w)} .

The set O¢ f(x) is convex for each 2 € Q). Moreover, if f is locally Lipschitz
continuous, then D¢ f(x,w) is finite for each (x,w) and hence d¢ f(x) turns
out to be compact. The upper Clarke derivative can be recovered from Clarke

gradient. Indeed,

Dcf(z,w)= sup p-w
p€dc f(x)

(and, in a similar way, D¢ f(z,w) = inf,ep (z) P - W)
If f is locally Lipschitz continuous, by Rademacher’s Theorem its gradient
V f(z) exists almost everywhere. Let S be the subset of RV where the gradient
does not exist. Then, it is possible to characterize Clarke generalized gradient
as:
dcf(x) =co {Zlinélovnf(acl)7 x, =, x; ¢ SU 5’1}

where S is any subset of RV, with p(S;) = 0.
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By analogy with Clarke’s theory, we associate with the contingent deriva-
tives the following two sets:

af(w) ={peR": Dyf(w,w)<p w<Dff(z,w), YweR"}  (62)

and

9f(z) = {p €R": Df f(zx,w) <p-w < Dy f(z,w), Yw € R"} .

These sets are both convex and closed and may be empty. In addition, they
are bounded provided that the contingent derivatives take finite values for each
direction. If one of them contains two distinct elements, the other is necessarily
empty.

Note that since the contingent derivatives are not convex functions, it is not
possible in general to recover their values for arbitrary directions from 9f(x)
and Of(x).

It turns out (see [63]) that Of(z) and df(x) coincide respectively with the
so-called generalized super and sub-differentials. They can be defined in an
independent way, by means of a suitable extension of the classical definition of

Fréchet differential. More precisely, one has

fla+h)—flz)—p-h

0f(r) = {p € R": limsup <0}
h—0 |l
and
0f(x) = {p € R": liminf fle+h) |hf(“") Pl gy,

Using this representation, it is not difficult to see that if 9f(x) and df(x)
are both nonempty, then they coincide with the singleton {V f(z)} and f is
differentiable at = in the classical sense.

Clarke gradient and generalized differentials are related by df(z)Udf(x) C
dc f(x).

Beside generalized super and sub-differentials introduced above, we shall
need also the notion of proximal differential. In analytic terms, the prozimal
subdifferential of f at x is the set of all vectors p which enjoy the following
property. There exist 0 > 0 and ¢ > 0 such that for each z with |z — 2| < 4,

fR)—f@)>p (z—2)—olz—a|*.
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The proximal subdifferential is denoted by dp f(). The proximal superdif-
ferential dp f(z) is defined in analogous way. Of course, one has dpf(z) C
Of(z) and 9pf(x) C df(x). The sets dp f(z) and Ip f(x) are convex but not
necessarily closed. They may be both empty even if f admits a differential in
the classical sense at z.

Other relationship among these types of generalized derivatives, gradients
and differentials, and comments on their possible geometric interpretation can
be found in [39], [40], [7], [8], [114].

6.2 Functions of one variable

The composite map g(t) = V (¢, z(t)) we are interested in, is a function of one
real variable. Hence, it is convenient to start by recalling some results about
monotonicity of such functions ([101] p. 207, [121] p. 347).

Lemma 6.1 Let g(t) : I — R be absolutely continuous on each compact subin-
terval of I. Then, g(t) is non-increasing on I if and only if ¢’'(t) < 0 for a.e.
tel.

Note in particular that since the solutions of (6.1) are absolutely continuous,
V(t,x(t)) meets the absolute continuity assumption if V' is locally Lipschitz
continuous.

Lemma 6.2 Let I be an open interval and let g(t) : I — R be continuous on
1. Then, the following statements are equivalent:

(i) g(t) is non-increasing on I

(ii) DY g(t) <0 for allt € T

(i4i) D=g(t) <0 for allt € T

(iv) Dtg(t) <0 forallt €I

(v) D_g(t) <0 forallt e I.

Remark 6.1 We remark that in the previous lemma the inequalities are re-
quired to hold for all ¢, and that the conclusion becomes false if “for all” is
replaced by “almost everywhere” (as an example, consider a double Cantor
stair). [ |

The situation is more involved in the semi-continuous case. Indeed, the
roles played by Dini derivatives become now distinct.
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Lemma 6.3 Let I be an interval of the form I = [a,b). Let g(t) : I — R be
lower semi-continuous on I. Then, the following statements are equivalent:
(i) g(t) is non-increasing on I
(ii) DY g(t) <0 for allt € I
(iii) DT g(t) <0 for allt € 1.

In a similar way, the statement “the lower semi-continuous function g(t) is
non-decreasing” can be equivalently characterized by the inequalities D~ g(t) >
0or D_g(t)>0foralltel.

When ¢(t) is upper semi-continuous, the roles are exchanged: indeed, g(t)
turns out to be non-increasing if and only if D~g(t) < 0 (or D—g(t) < 0)
for all ¢ € I. Analogously, it is non-decreasing if and only if D¥g(t) > 0 (or
Dtg(t)>0) forall t € 1.

For the sake of completeness, we report a simple and direct proof of Lemma,

6.3.
Proof of Lemma 6.3. We shall prove that (i) <= (ii), since the proof that
(i) <= (iii) is completely analogous. In fact, the “(i) = (ii)” part is trivial,
so that we can limit ourselves to the “(i) <= (ii)” part. Our reasoning closely
follows with some modifications the argument of [121], p. 347.

First of all we prove the following claim, where the basic assumption is
strengthened.

Claim: if D¥g(t) < 0 for all t € I, then g is non-increasing.

By contradiction, assume that there exist «, 3 € I such that

a<fB  but  gla)<g(B).

Since g is lower semi-continuous, it has an absolute minimum on [«, 3]. Let

to = sup{t € [, 0] : ¢(t) = the absolute minimum} .

Because of lower semi-continuity, it is clear that the sup in the previous
formula is actually a maximum. Moreover, since the absolute minimum is less
than or equal to g(a) < g(), we see that ty < 3.

At this point it is clear that for h sufficiently small and positive,

g(to +h) — g(to)
h

>0.

Hence, ﬁg(to) > 0, which is impossible in force of the assumption.
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In order to complete the proof, we consider now the auxiliary function
h(t) = g(t) — et, where ¢ is positive and arbitrary. Since —et is differentiable

in the ordinary sense, we have

D¥h(t)=DVg(t) —¢ .

The assumption D¥g(t) < 0 implies therefore DTh(t) < 0. According to
the claim, we see that h(t) is non-increasing and the conclusion follows since

the choice of ¢ is arbitrary. |

6.3 Ordinary differential equations

We are now ready to address the monotonicity problem stated at the beginning
of the chapter. The simplest case occurs when S coincides with the set of

solutions of an autonomous system of ordinary differential equations

i= f(@) (6.3)

f being defined and continuous® for each € R™, and V does not depend on
time (namely, V(¢t,z) = V(x)). If in addition V is defined and everywhere
differentiable for € R™, then clearly the composite function g(t) = V(z(t)) is

non-increasing for each solution z(-) if and only if

VV(z)- f(z) <0

for each x € R™. If we keep the continuity assumption about f but we relax
the differentiability assumption about V' the situation becomes more involved.

The following result is classical (see [121]).

Theorem 6.1 Let [ be continuous and let V' be locally Lipschitz continuous.

The following statements are equivalent:

(i) for each x € R™, DYV (z, f(z)) <0

(i1) V is non-increasing along the solutions of (6.3)

Proof. (i) = (ii). Since V is Lipschitz continuous and the solutions are

C!, the composite function g(t) = V(x(t)) is absolutely continuous, so that its
derivative (in the usual sense) exists for all t € I\ N, where N is a set of zero

measure.

INote that if f is continuous, all the solutions of (6.3) are classical i.e., everywhere differ-

entiable and with a continuous derivative.
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Let t € I\ N. We have

- V(x(t+h) = V()
"t)y=1
g (1) = lim W
To compute the limit, we observe that

Vie(t+h) -V(®) _ V@+i®h+olh)-V(z)
h h
_ V(z+hv) - V(Z)
= 7 7
+V(m+hv+o(i;)) —V(Z + hv) (6.4)

where we set T = z(f) and v = @(t) = f(z). Using the Lipschitz continuity of
V', for some constant L and sufficiently small h we have

[V (z 4+ hv+o(h)) — V(z + hv)| < Lo(h) .
This yields

lim V(z+ hv+o(h)) —V(Z+ ho)

=0.
h—0+ h

We emphasize that the previous limit exists in the usual sense. Coming
back to (6.4), and taking the lower right limit to both sides, we get

D*g(f) = DV (z,v) . (6.5)

In addition, since £ ¢ N, we have that ¢'(f) = DTg(f). Because of the
assumption (i), we have so proved that

g(t) <0
a.e. for t € I. The conclusion follows from Lemma 6.1.
(i) <= (ii). Let us fix # € R"; since f is continuous, there exists a solution
x(t) such that £(0) = Z. From the monotonicity condition, it follows that

D%g(0) < 0. By repeating the same computations as above, from (6.5) we
conclude that

DV (z, f(z) <0.

Since the choice of Z is arbitrary, the proof is complete. |
We want now to generalize this result to the case where the function V is

only semi-continuous.
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Proposition 6.1 Let V' be lower semi-continuous and let f be continuous.

Assume that
DV, f(x)) <0

for each x € R™; then V is non-increasing along each solution of (6.3).

Proof. Let g(t) = V(x(t)), and recall that

D7 g(t) = limsup L EF h)}z V()
h—0+

Since xz(-) is differentiable everywhere,
DF(t) = limsup V(z(t) + hi(t) J;LO(h)) —V(z(t)) '
h—0+

Set now o(h) = y(h)h, where limy_o |y(h)| = 0, and w(h) = &(t) +v(h). It
is clear that limy, o w(h) = (t) = v = f(x(t)). Hence

V(x(t) + hw(h)) — V(z(t))

Dtg(t) = limsup

h—0t h
< s VO 1)~ V((t)
h—0t h

= DiV(x(t),v).

By assumption, we see therefore that D¥g(t) < 0 for all t € I and the proof
is completed by virtue of Lemma 6.3. ]

Proposition 6.2 Assume, as in Proposition 6.1, that f is continuous and that
V' is lower semi-continuous. Assume further that V' is non-increasing along

each solution of (6.3); then, DLV (z, f(z)) <0 for each x € R™.

Proof. Let x(t) be a solution such that x(t) = =, and let as before &(t) = v =
f(x(t)). Arguing as in the proof of Proposition 6.1, we see that

Dtg(t) = lminf V<x<t+h>}z— V(a(t)
_ piming V(@) + hE(t) + o(h)) — V(z(?))
h—0+ h
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lim i V(x(t) + hw) — V(z(t))
h—0" h

Y

w—v

= %V(x,v) .

Using again Lemma 6.3, since g is non-increasing, we have D*tg(t) < 0.
Hence, D}V (x,v) < 0. Since the choice of z is arbitrary, the proof is complete.
o u

Note that there is a gap between the statements of Propositions 6.1 and

6.2. In general, the situation cannot be improved.

Example 6.1 Inspired by a suggestion in [39], we consider a single valued (not

Lipschitz continuous) equation

5= VIl

and a map

V(x):{o itz <0

1 ifxz>0.

Clearly V is increasing along the solution

2
[ <
:L‘(t) - { +2 4 ire 0

2 ift>0 .

Nevertheless, by a direct inspection we can see that DV (z, f(z)) < 0
everywhere. This shows that the converse of Proposition 6.2 is false in general.
To see that also the converse of Proposition 6.1 is false, we can use the same

equation as before and the function

1 ifx<0

V(x)_{o ifx>0 .

The monotonicity property holds, but Dij(V(O, f(0)) = F}V(O, 0)=+cc. W

6.4 Differential inclusions

In this section we address the more general case where S coincides with the
set of solutions of a differential inclusion of the form (6.1) that is, the set of all

absolutely continuous functions x(t) : I — R™ (where I C RT is some interval)
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such that @(t) € F(t,z(t)) for a.e. t € I. Our first goal is to generalize, as far
as possible, Theorem 6.1. We use the shortened notation

DYV (t,x,v) instead of DTV((t,x),(1,v)).

The following theorem is well known ([60], [54]). Its proof can be carried

out as in the proof of Theorem 6.1, apart from some obvious modifications.

Theorem 6.2 Let V be locally Lipschitz continuous on RT x R™, and let

sup DTV (t,z,v) <0
vEF (t,x)

for each t € R™ and each x € R™. Then, V is non-increasing along F.

Upper semi-continuity of set valued maps reduces to the usual notion of
continuity in the single valued case. Nevertheless, Theorem 6.2 is not invertible
not even if F' fulfills assumptions (Hy), ..., (Hy) stated in Chapter 1. The
reason is that in general F' may contain “parasitic” directions: that is, for some
v € F(to, o) it may happen that there is no solution z(¢) such that x(tg) = o

and &(tp) = vp.

Example 6.2 We continue the study of system (4.86), already considered in
Section 4.3 (Chapter 4). There, we noticed that the stability of the origin with
respect to Filippov solutions can be checked by means of the Lipschitz contin-
uous Liapunov function V(z,y) = |z| + |y|. This is clear from a geometrical
point of view, but the following simple remark shows that Theorem 6.2 does
not work in this case. Let F(z,y) be the set valued map associated to (4.86) by
Filippov’s operator (1.3), and let (z,y) = (1,0). We have v = (1, -3) € F(1,0),
but DTV((1,0),(1,—3)) = 4. For this example, the difficulty can be overcame
by using, for instance, the method of [129] (see [12] for an improved version)

based on Clarke gradient. |

A necessary and sufficient condition can be obtained under the additional

assumption that F' is continuous in the Hausdorff sense.

Theorem 6.3 Assume that F' is compact valued and continuous in the Haus-
dorff sense with respect to both t,x. A locally Lipschitz continuous function V

18 non-increasing along F if and only if
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sup DTV (t,z,v) <0
vEF (t,x)

for each t € RT and each x € R".

Note that in the previous theorem, no convexity assumption is made about
F'. Preliminary to the proof of the theorem is the following proposition, which
is a particular case of a result in [35] (see also [22]). A solution x(t) of (6.1) is

said to be regular if
e it is absolutely continuous

e its derivative is continuous, possibly except for a countable set of points,

where only discontinuities of the first kind (jumps) may occur

e i(t) € F(t,z(t)) everywhere, possibly except for a countable set of points.

Proposition 6.3 If the right hand side of (6.1) is compact valued and Haus-
dorff continuous with respect to both t,x, then for each ty, xo and vy € F(tg, o)

there exists a regular solution such that x(tg) = xo and &(ty) = vo.

The following proof of Theorem 6.3 is taken from [13].
Proof. The “if” part is nothing else than Theorem 6.2. As far as the “only

if” part is concerned, since

DTV (t,x,v) < DcV(t,z,v) =max{p- (1,v): p€ IV (t,x)}
for each ¢,z and v € F(t,z), it is sufficient to prove that

V' non-increasing along F' —
p-(1,v) <0 for each p € oV (t,z) and v € F(t,x).

Let us assume by contradiction that there exist t € RT, x € R", v € F(¢,z),
p € ¢V (¢, z) such that p-(1,v) > 0. By the characterization of Clarke gradient,
there exist \; > 0, p; € R"™, (i = 1,...,m) such that p = >, \;p;, where:

DS IPYES

b) there exist sequences {(ti,z})} C RT x R™ such that:

o limy oo (th,2h) = (t,x), Vi=1,....m
e V is differentiable at (i, %), and limg_ 400 VV (ti,2L) = p;, Vi=1,...,m.

Since p - (1,v) = >, Ai(pi - (1,v)) > 0, there exists at least one j €
{1,...,m} such that p; - (1,v) > 0.
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Let us fix € < min {1, %} Since limy, .+ oo VV(t],27) = p;, there

exists k such that
Vk >k, 3w] € By CR™, VV(t,2)) = p; + ewl.
By the continuity of F', there exists k such that

VEk > k, Elvi € F(ti,xi),ﬂzi €eBCR", vl=v+ Ezi.

Then, Yk > max{k, l;:}, we can write

VV(t,al) (Lv]) = (pj+ewl) - ((1,v) +(0,2]))
> ;- (L) —elw] - (1,0) +(0,2]) - p; +ew] - (0,2]))]
. 1
> e (Lv) — (o] + s+ 2) > B S

2

Now we make use of Proposition 6.3. If we fix K > max{k,k} and take
to = ), there exists a regular solution x(t) such that x(tg) = @} and #(tg) =
v}.. Our choice of @, allows us to conclude that V (¢, z(t)) is differentiable at

to, and:

av(t,z(t))

G, = YVt (te)) - (1vg) = YV (e, @) - (1,vg) > 0,

a contradiction to the hypothesis of monotonicity of V' along the solutions of
(6.3). [ ]

6.5 Monotonicity and the proximal gradient

If F is continuous in the Hausdorff sense but V is only semi-continuous, The-
orem 6.3 is no more valid. Weakening the assumptions on V' must be compen-
sated by adding a new assumption on F'. Note also that if V' is no more locally
Lipschitz continuous, D' and D} differs: the right object to be considered in
this setting is actually the ContiTgent derivative.

Moreover, the investigation must be carried out by means of more powerful
tools, such as proximal analysis.

For simplicity, in this section we limit ourselves to the time invariant case.
First of all, we show that the condition of Theorem 6.3 can be reformulated in

terms of proximal analysis.
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Theorem 6.4 Let F' be compact valued and Hausdorff continuous, and let V

be locally Lipschitz continuous. Then,

sup DYV (z,v) <0 VreR" (6.6)
vEF (x)
if and only if
p-v<0 Vp € 0pV(x), Yv € F(x), Vo € R" . (6.7)

Proof. The implication (6.6) = (6.7) follows immediately from (6.2).
So, we prove that if (6.6) is false, then (6.7) is also false.
Let us therefore suppose that there exist z € R", § € F(Z), n > 0 such that

DV (z,y) >n>0.

Since V' is Lipschitz continuous, dpV (z) is locally bounded (see [40]), so
that if we consider a compact neighborhood K of Z, there exists M > 0 such
that

Ve e K, VpedpV(x): |p| <M.

Since F' is lower semicontinuous:

36>0:|o—7| <6 :>3y€F(:c),|y—y|<%. (6.8)

We may take ¢ so that {z: |z — %] < ¢} C K.

Since DTV (z, ) > n, we may apply Subbotin’s Theorem (see [40]). There-
fore, there exist z, | — Z| < 6 and ¢ € dpV (x) such that ¢ -y > n. By (6.8),
there exists y € F(x) such that |y — y| < 547. Then:

- =9I <lally—al <M -5 =2
and
¢y=q-y+q-(y—7) >n—g=g>0.
In such a way we have found that there exist x, y € F(x), ¢ € 0pV (x) such
that ¢ -y > 0, thus contradicting (6.7). |

The following theorem, essentially well known, is a slight generalization of
Theorem 7.2 in [39]. Its proof can be found in [13].
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Theorem 6.5 Let F' be compact valued and locally Lipschitz continuous and
let V : R™ — R be lower semicontinuous. Then, the following statements are
equivalent:

(i) V is non-increasing along all the solutions of (6.1).

(it) sup{p-v : p€ IpV(x),ve F(z)} <0, Vo € R”.

(1) SUD,e () D_}V(a:,v) <0, Vo € R™.
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ODE
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UA
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Asymptotic Stability
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Input to State Stability

Ordinary Differential Equation

Small Time Local Controllability
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Uniformly Bounded-Input Bounded-State
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