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Preface

Albert Einstein once said everything should be made as simple as possible, but not simpler.
Einstein could have been talking about programming languages, as the landscape is strewn
with “simple” languages that, several versions later, have 500-page reference manuals!

The truth is that we expect a lot of our programming languages. We demand support for en-
capsulation and abstraction, type checking and exception handling, polymorphism and more.
Ada, unlike other languages which grew by the gradual addition of features, was designed
as a coherent programming language for complex software systems. Ada for Software Engineers
(ASE) is written to equip you with the knowledge necessary to use the Ada programming lan-
guage to develop software systems.

Although Ada never achieved the popularity of Java and the C-something languages, it
remains the programming language of choice for reliable software. Every time you step on an
airplane or a fast train, you are quite literally trusting your life to software written in Ada.
Given the low level of reliability of much of the software we use daily, I can only regret that the
use of Ada is not more widespread, and I hope that this book will encourage more software
engineers to give Ada a chance.

Intended audience

The book is intended for software engineers making the transition to Ada, and for upper-level
undergraduate and graduate students, including those who have had the good fortune to study
Ada as their first programming language. No specific knowledge of Ada is assumed; the pre-
requisites are a basic knowledge of computer science and computer systems, and at least two
years of programming experience. As the title implies, if you are a software engineer or training
to become one, this book is for you.

v
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Structure of the book

The complexity of modern programming languages leaves textbook writers with a painful
dilemma: either gloss over the gory details, or write books that are heavy enough to be classi-
fied as lethal weapons. Is there another way? A concise description of Ada is freely available:
the Ada Reference Manual (ARM) [7], which is the document defining the language standard.
The ARM has a reputation for being ponderous reading meant for “language lawyers.” Never-
theless, I believe that—with a bit of guidance—software engineers can learn to read most of the
ARM. ASE is based upon two premises: (a) it is best to learn the individual language constructs
within the context of actual programs, and (b) if the learning is based upon the terminology
and concepts used in the language standard, you will be able to use the ARM as your primary
reference manual.

The Ada language will be taught using a few relatively large case studies, rather than a
large number of small examples each crafted to demonstrate a particular construct or rule. Ex-
perienced programmers know that the key to mastering a programming language is not to
memorize the syntax and semantics of individual constructs, but to learn how to integrate the
constructs into language-specific paradigms. We will need to gloss over details when explain-
ing a case study; rest assured that everything will eventually be explained. Certain sections are
marked with an asterisk and can be omitted during your initial study of Ada. This material is
not necessarily more difficult, but you can’t learn everything at once, and these are topics that
can be left for your second reading of the book.

The chapters in the book can be divided into five parts and three appendices. The first two
parts contain the core concepts of Ada and should probably be read first and in sequence (skip-
ping the starred sections, of course). The others chapters can be read as necessary.

1. After an introductory chapter, Chapters 2–5 quickly cover elementary language constructs
such as statements, subprograms, arrays, records and pointers that should be familiar from
your previous programming experience.

2. The second part is based upon the progressive development of a case study demonstrating
the Ada constructs for programming-in-the-large (including object-oriented programming):
packages and private types (Chapter 6), type extension, inheritance, class-wide types and
dynamic polymorphism (Chapter 7–8), and generics (Chapter 9).

3. Chapters 10–14 cover other topics and are more or less independent of the previous ones:
exceptions, the type system in depth, access types (pointers), numerics and input–output.

4. The fourth part contains material on program structure (Chapter 15), the container library
(Chapter 16), and interfaces (Chapter 17).

5. Chapters 18–22 include topics broadly covered by the term systems programming: multitask-
ing, hardware interfaces, and real-time and distributed systems.

A special feature of the book is the comprehensive Glossary (Appendix A), which explains
the ARM terminology with examples. In addition, discussions in the text always contain ref-
erences to the relevant paragraphs in the ARM. The Index of ARM Sections will be invaluable
when you begin to use the ARM as a reference manual.
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At the end of each chapter are Projects and Quizzes. Projects are non-trivial programming
exercises, many of which ask you to extend the case studies in the text. Quizzes are not routine
exercises as the term is usually used; they are intended help you understand the finer points
of the Ada language, and can be skipped until you have significant experience programming
with Ada. Each quiz is a small Ada program; you are to examine it and decide what will hap-
pen when the program is compiled, and—if the program contains executable statements and
compiles successfully—the result of the execution. Appendix B Hints refers you to the rele-
vant clauses of the ARM from which you should be able to find the answers to the quizzes
before looking at Appendix C Answers. (To save space, with and use clauses for Ada.Text_IO,
Ada.Integer_IO and Ada.Exceptions are omitted.)

Supplementary material and links

All the case studies, quizzes and programs in the book were compiled and executed. The full
source code is available in the software archive at:

• http://www.springer.com/978-1-84882-313-6.

The programs were developed using the GNAT compiler for Ada 2005. It is available in com-
mercial, academic and free versions; see:

• https://libre.adacore.com.

There are two comprehensive websites on Ada:

• ACM Special Interest Group on Ada (SIGAda), http://www.sigada.org,
• Ada Resource Association (ARA), http://www.adaic.com.

From these websites you can download documents such as the ARM, and find links to compiler
vendors, support software, relevant conferences, and other resources.

Ada 2005

This book was original written for the Ada 95 version of the language. That edition is out of
print and I have used the occasion of the publication of a new version of Ada, Ada 2005, to
expand and improve the book. Constructs of Ada 2005 are freely used, but sections that use
them are annotated to indicate which constructs are new. The software archive for the previous
edition of the book will remain freely available.
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Chapter 1

The Language for a Complex World

1.1 Programming or software engineering?

Computer science students often extrapolate from their demonstrated ability to write small
programs and believe that the same methods and techniques will enable them to develop large
software systems. Only later, when they gain experience and mature into competent software
engineers, do they realize that the real world does not correspond to the ideal setting of a lab.

Modern software systems are built by tens, even hundreds, of software engineers. Inevitably,
a large team will suffer from inconsistencies caused by growth and rapid turnover. Throw in
human personality traits such as ambition and envy, and it is a wonder that a large system can
even be built!

The work of a software engineer is often the most complex in the entire project. The rea-
son is that the tasks that are implemented in software rather than hardware are precisely those
that concern the entire system. Other engineers typically work on individual components and
subsystems, which are then integrated into a software-controlled project. For example, a me-
chanical engineer who designs the landing gear of an airplane is less involved in systems engi-
neering than a software engineer who writes the control program of the aircraft and who must
understand the general principles of all the subsystems. Even in fields not traditionally consid-
ered engineering, the same situation holds: the software engineer working on a stock exchange
must be familiar with the basic principles of the instruments being traded, together with the
communications system and the requirements of the traders using the system. Software engi-
neering is significantly more complex than just programming, and it should not be surprising
that different tools are needed.

1.2 Reliable software engineering

The structure of the software market for personal computers has caused reliability to be con-
sciously neglected. Software packages are compared by lists of features, performance, and
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2 1 The Language for a Complex World

price. Vendors feel pressured to bring new versions to market, regardless of the reliability of
the product. They can always promise to fix the bug in the next version.

But word-processors, presentation graphics and interactive games are not the only type of
software being developed. Computers are now controlling the most complex systems in the
world: airplanes and spacecraft, power plants and steel mills, communications networks, in-
ternational banks and stock markets, military systems and medical equipment. The social and
economic environment in which these systems are developed is totally different from that of
packaged software. Each project pushes forward the known limits of engineering experience,
and delays and cost overruns are frequent, yet the cost cannot be recouped by selling more
copies of the software. A company’s reputation for engineering expertise and sound manage-
ment can be more important in winning a contract than a list of features.

Above all, system reliability cannot be compromised: a bug in a medical system can lead to
loss of life; the crash of a communications system can disrupt an entire economy; the failure of
a spacecraft can cost hundreds of millions of dollars. In fact, all these have occurred because of
software faults.

1.3 Programming languages for software engineering

Software engineering is the term used to denote the ensemble of techniques for developing
large software projects. It includes managerial techniques such as cost estimation, documenta-
tion standards, configuration management and quality assurance procedures. It also includes
notations and methodologies for the analysis, design and testing of the software itself.

In the end, however, a software system is successful if “it”—the “code”—executes reliably
and performs according to the system requirements. The best-managed project with a superb
design is a failure if the delivered code is no good. Managerial techniques and design method-
ologies must be supplemented by the use of a programming language that supports reliable
programming.

The alternative to language support for reliability is “bureaucracy.” The project manager
must write conventions for interfaces and specifications of data representations, and each con-
vention must be checked, possibly by software tools, but often manually in code inspections.
The result is that all the misunderstandings are discovered at best when the software compo-
nents are integrated, and at worst after the software is delivered. Why can’t these conventions
be formalized in a programming language so that they can be checked by the compiler and
run-time system?
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1.4 Ada for software engineering

The Ada language is complex because it is intended for developing complex systems, and its
advantages are only apparent if you are designing and developing such a system. Then, and
only then, will you have to face numerous dilemmas, and you will be grateful for the Ada
constructs that help you resolve them. Here are some questions you face when developing a
large system and the support in Ada for answering the questions:

• Q: How can I decompose the system?
A: Into packages that can be flexibly structured to form the software architecture.

• Q: How can I specify the module interfaces?
A: In a package specification that is separate from its implementation.

• Q: How can I describe the data?
A: With a rich type system.

• Q: How can I ensure independence of the components of my system?
A: By using private types to define abstract data types.

• Q: How can data types relate to one another?
A: Either by composition in records or by inheritance through type extension.

• Q: How can I reuse software components from other projects?
A: By instantiating generic packages.

• Q: How can I synchronize dozens of concurrent processes?
A: Synchronously through rendezvous or asynchronously through protected actions.

• Q: How can I get at the raw machine when I need to?
A: By using representation items.

• A: How can I ensure that scheduling deadlines are met in my real-time system?
A: By specifying scheduling and queuing policies, and by enforcing the use of a subset of
the language constructs whose execution time is predictable.

• Q: How can I make the most efficient use of my expensive testing facility?
A: By testing as much of the software as possible on a host machine using a compiler that
accepts the same standard language as the target machine.

1.5 The development of Ada

The Ada language was developed at the request of the US Department of Defense, which was
concerned by the proliferation of programming languages for mission-critical systems. Military
systems were programmed in languages not commonly used in science, business and educa-
tion, and dialects of these languages proliferated. Each project had to acquire and maintain a
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development environment and to train software engineers to support these systems through-
out decades of deployment. Choosing a standard language would significantly simplify and
reduce the cost of these logistical tasks.

Though Ada was originally intended for military systems, it is now the language of choice
for any critical system.

1.5.1 Ada 83

A survey of existing languages showed that none would be suitable, so it was decided to de-
velop a new language based on an existing language (Pascal). The competition was won by a
team led by Jean Ichbiah, and the language published as an ANSI/MIL standard in 1983 and
as an ISO standard in 1987. There were several unique aspects of the development of Ada:

• The language was developed to satisfy a formal set of requirements. This ensured that from
the beginning the language included the necessary features for its intended applications.

• The language proposal was published for scientific review before it was fully implemented
and used in applications. Many mistakes in the design were corrected before they became
entrenched by widespread use.

• The standard was finalized early in the history of the language, and facilities were estab-
lished to validate compilers against the standard. Adherence to the standard is especially
important for training, software reuse and host/target development and testing.

1.5.2 Ada 95

A decade later, a second round of language design was performed by a team led by S. Tucker
Taft. This design followed the same principles as the previous one: proposals by the design
team were published and critiqued, and finally accepted as an international standard in 1995.
This language is called Ada 95 to distinguish it from the previous version called Ada 83. For
the benefit of readers familiar with Ada 83, we summarize the major differences between that
language and Ada 95:

• In Ada 83, derived types were of limited expressive power and not widely used. In Ada 95,
tagged derived types are the basis for type extension and dynamic polymorphism, which are
the constructs required for object-oriented programming.

• Packages in Ada 83 could be nested, but this introduced excessive dependences among the
packages. Child packages in Ada 95 can be used to construct subsystems as flexible hierarchies
of packages that share abstractions (private types).
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• The rendezvous is an extremely successful construct for task-to-task communication, but it
is rather inefficient for mutual exclusion. Ada 95 introduced protected objects that are far more
efficient for simple synchronization.

• New numeric types were introduced: modular types for unsigned arithmetic and decimal fixed
point types for financial calculations.

• In Ada 83, access types (pointers) were only allowed to point to data allocated on the heap.
General access types were introduced in Ada 95; they enable the creation of pointers to static
data or to data allocated on the stack by the normal declaration of variables. The concept of
accessibility levels ensures that errors such as dangling pointers are detected.

• Ada 95 extended support for hardware interfacing, as well as for programming in a mixed-
language environment. Data types are defined for machine words, as well as for objects
shared with libraries and modules written in Fortran, Cobol and C.

• Libraries for character and string handling, and for mathematical functions are specified
within the standard, and international character sets are supported.

• The language was divided into a core that must be supported by all implementations and
into special-needs annexes that are optional. The core language is of a reasonable size; exten-
sions which are of interest in specialized applications only can be implemented as needed.
There are annexes for systems programming, real-time systems, distributed systems, infor-
mation systems, numerics (scientific computation), and for systems with additional safety
and security requirements.

The Ada Joint Project Office of the US Department of Defense was closed in 1998 and Ada no
longer has any government connection. The Ada Resource Association composed of commercial
companies who develop tools for Ada promotes the use of the language. Standardization of
the language continues under the procedures of the International Organization for Standard-
ization.

1.5.3 Ada 2005

The Ada Working Group (ISO/IEC JTC 1/SC 22/WG 9) has continued to work on interpreting,
refining and extending the Ada language. In 2001, the standard was updated with Technical
Corrigendum 1, reflecting clarifications to the Ada 95 language standard. Subsequent work led
to the publication of Amendment 1 containing modifications to the language; this version of the
language is called Ada 2005 and the updated standard was published in 2007.

The changes from Ada 95 to Ada 2005 are much less extensive than those made in the tran-
sition from Ada 83 to Ada 95. The most significant changes are as follows:

• Ada 2005 supports a 32-bit character set (Wide_Wide_Character and Wide_Wide_String),
in addition to the 16-bit character set (Wide_Character and Wide_String) introduced in
Ada 95.
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• The support for object-oriented programming has been enhanced; for example, the distin-
guished receiver syntax familiar from other languages is now allowed. Interfaces—which
may be familiar to you from the Java language—are supported to enable a form of multiple
inheritance without the complexity of full multiple inheritance as in C++.

• Anonymous access types enable greater flexibility when using pointers. In particular, anony-
mous access-to-subprogram types facilitate the use of iterators.

• Numerous standard libraries have been added to Ada 2005, most importantly, a container
library that supports the data structures vectors, doubly-linked lists, ordered and hashed
maps, and ordered and hashed sets. Libraries for real and complex vectors, including the
basic operations of linear algebra, are supported within the Numerics Annex.

• The Real-Time Systems Annex has been enhanced with new methods of scheduling and new
libraries. It also includes the Ravenscar profile, a specification of requirements and restrictions
that ensures that the performance of a real-time system written in Ada is predictable.

1.6 The Ada Reference Manual

The Ada 2005 programming language is defined by a document called Ada Reference Manual:
International Standard ISO/IEC-8652:1995 with Technical Corrigendum 1 and Amendment 1: Lan-
guage and Standard Libraries. It is freely available online in several formats such as PDF and
HTML, and is published in book form as [7]. Henceforth, we will refer to this document as the
ARM. The ARM is intended to serve as a contract between software engineers writing applica-
tions in Ada and compiler implementors. If you write your program according to the rules in
the ARM, the executable file generated by the compiler will execute as described in the ARM
on any computer, running any operating system. In practice, the ARM does not specify every
aspect of the language so as not to overly constrain the implementors of a compiler, but even
this freedom is carefully documented.

The Ada approach of creating a standard as early as possible can be contrasted with the
situation in other languages such as Fortran or C, which were extensively used before stan-
dardization. By then, quirks of the first implementations had become part of the language, and
the spread of dialects made it extremely difficult to port existing programs. The danger of early
standardization is that constructs that are of little use or are difficult to implement may be re-
quired by the standard. The development of both Ada 95 and Ada 2005 dealt with this danger
by arranging for compiler developers and applications software engineers to study and test
constructs before the standard was finalized.

For all versions of Ada, there is a document called the Rationale that presents the reason-
ing behind the design decisions that were taken. The Rationale for Ada 95 is still relevant for
Ada 2005 because it describes in detail the design of the support for object-oriented program-
ming and the Special Needs Annexes.
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Finally, the Annotated Ada Reference Manual is a version of the ARM containing additional
material that justifies the rules and explains obscure points or implementation aspects. This
document is not normally needed by applications engineers.

Ada 95

The printed version of the ARM for Ada 95 is [6].

1.6.1 The structure of the ARM

The ARM consists of thirteen sections, fifteen annexes and an index. The sections are:

1. General

2. Lexical Elements

3. Declarations and Types

4. Names and Expressions

5. Statements

6. Subprograms

7. Packages

8. Visibility Rules

9. Tasks and Synchronization

10. Program Structure and Compilation Issues

11. Exceptions

12. Generic Units

13. Representation Issues

Sections 1, 2, 4, 5, 6, 11 are relatively straightforward and define the structures used for writing
the declarations and statements of individual units. Section 3 Declarations and Types is quite
complex because the entire Ada type system is defined in a single long Section. It is best read
in parts as you learn the language. Sections 7, 8, 10, 12 describe the structures used to con-
struct large and flexible software systems. Section 9 presents concurrent programming in Ada
and Section 13 shows how to query and specify machine-dependent representations of Ada
programs.

The annexes are:

A. Predefined Language Environment

B. Interface to Other Languages

C. Systems Programming
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D. Real-Time Systems

E. Distributed Systems

F. Information Systems

G. Numerics

H. High Integrity Systems

I. (not used)

J. Obsolescent Features

K. Language-Defined Attributes

L. Language-Defined Pragmas

M. Summary of Documentation Requirements

N. Glossary

O. (not used)

P. Syntax Summary

Q. Language-Defined Entities

Annex A is quite long (about 160 pages) and contains the specification of the standard Ada li-
braries that any implementation must provide. Annexes B and J are also part of the core of Ada.
Annexes C through H are Special Needs Annexes that need not be provided by an implementa-
tion; these annexes specify constructs that are only important for developing certain kinds of
systems, such as real-time systems or numerical libraries. The other annexes are informative and
summarize information given elsewhere.

Annex §A.1 specifies the package Standard that is the parent of all Ada units and contains
the declaration of predefined entities like the type Integer. The other packages in Annex §A are
child packages of a package called Ada. They include libraries for character and string handling,
basic numerics libraries, input–output libraries, and libraries for working with the execution
environment. It also describes the container library.

The sections and annexes of the ARM are divided into clauses and subclauses, which are
in turn divided into numbered paragraphs. We use the notation §C(P) to refer to paragraph(s)
P within clause or subclause C. Framed extracts from the ARM are identified by the clause
number above the box and the paragraph number(s) within the text. An ellipsis (. . . ) indicates
omissions from a paragraph. These selective extracts are intended to simplify your initial un-
derstanding; be sure to read the full paragraphs from ARM when you start to program in Ada.

The numbering of clauses and paragraphs is consistent between Ada 95 and Ada 2005. When
there was a need to add new paragraphs between existing ones, a decimal notation was used;
for example, the return statement has changed, so paragraph 5 of clause 6.5 is now followed by
eight new paragraphs labeled 5.1–5.8. If a paragraph was deleted, the sentence This paragraph
was deleted is used to preserve the numbering scheme.

Changed paragraphs also have /1 or /2 following the paragraph number. The number 1
indicates that the change is associated with the 2001 Technical Corrigendum 1 (still Ada 95),
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while 2 means that the change is associated with Amendment 1 (Ada 2005). Since this informa-
tion is primarily of historical interest, it has been omitted from the text. The ARM for Ada 2005
is available in an edition that highlights the changes from previous editions. This can be useful
if you are familiar with the Ada 95 ARM and are learning Ada 2005.

Most of the text of the ARM is normative, meaning that an implementation must conform to
the text. Annexes K–Q and the index are informative, meaning that they are not part of the con-
tract. For example, Annex §K Language-Defined Attributes is a convenient list of all the attributes
defined throughout the normative text. It is useful if you are searching for an attribute, but the
rules of the language are determined by the normative text where the attribute is defined. In
addition, the text contains Notes and Examples, which are informative. The Examples are usu-
ally too simple to be useful, but the Notes are quite important because they describe rules that
are ramifications of other rules, meaning that they can be deduced from other rules, although it
may be difficult to understand why this is so. For all practical purposes you will be not be led
astray if you trust the Notes.

1.6.2 The terminology of the ARM

Like any contract, the ARM is written in very precise language, and the term “language lawyer”
is used for people who are experts at interpreting the document. Like any legal contract, how-
ever, the rules are binding upon you, even if you don’t exactly understand the text of the rule!
Fortunately, many of the most difficult parts of the ARM are intended for compiler implemen-
tors, and you don’t need to understand them in order to write applications. For example:

§3.2.2

8 A subtype_mark shall resolve to denote a subtype. The type determined by a
subtype_mark is the type of the subtype denoted by the subtype_mark.

is a rule that only a language lawyer could love, but:

§2.4.1

6 An underline character in a numeric_literal does not affect its meaning. The letter E
of an exponent can be written either in lower case or in upper case, with the same
meaning.

is a rule which needs neither explanation nor paraphrasing.

The clauses and subclauses have a common structure §1.1.2:

Syntax The syntax of the constructs is given in BNF. The complete syntax is collected in An-
nex §P.
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Name resolution rules These rules specify requirements on constructs within a certain con-
text. They are also used disambiguate multiple possible interpretations. For example, the name
resolution rule of an if-statement is:

§5.3

4 A condition is expected to be of any boolean type.

This means, first, that the condition must be of a boolean type; furthermore, if the condition in
an if-statement is a function call Func(X,Y) and there are two such functions, one returning the
type Boolean and one returning the type Integer, the compiler will select the one returning
the type Boolean.

Legality rules These rules prescribe what it means for a program to be legal, that is, to compile
successfully. For example, the statement:

case C of
when ’A’ => Proc1(Z);

when ’A’ => Proc2(Y);

when others => null;
end case;

is not legal because:

§5.4

10 Two distinct discrete_choices of a case_statement shall not cover the same value.

Static semantics These clauses define the compile-time effect of a construct and are also used
extensively for defining terms. For example, the rules for a for-loop statement include:

§5.5

6 A loop_parameter_specification declares a loop parameter, . . .

In a for-loop:

for N in 1 .. 10 loop
...

end loop;

the loop parameter N is implicitly declared at the point where the statement is written.
A large part of Section §3 Declarations and Types consists of static semantics rules that define

the compile-time properties of types.

Dynamic semantics These clauses tell you what a construct does at run-time. The following
clause should come as no surprise:
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§5.3

5 For the execution of an if_statement, the condition specified after if, and any
conditions specified after elsif, are evaluated in succession (treating a final else as
elsif True then), until one evaluates to True or all conditions are evaluated and
yield False. If a condition evaluates to True, then the corresponding
sequence_of_statements is executed; otherwise none of them is executed.

1.7 Case studies

Experienced software engineers know that it is relatively easy to learn the syntax and semantics
of a new programming language. It is much more difficult to become a proficient programmer
in a language, in the sense of learning and internalizing the way programs should be designed
and written in the language. Learning Ada can be initially frustrating, because many rules seem
to be arbitrary, but they were put there to make programs more reliable, as well as to make it
easier to read and maintain a program.

I believe that the correct way to learn Ada is through the study of relatively long and rea-
sonably realistic case studies that show the use of the language constructs in context. This facili-
tates learning the motivation behind the language rules and the tradeoffs involved in choosing
among various constructs. The downside is that the presentation is not “linear” and “struc-
tured” with all the explanations pertaining to a certain concept or construct concentrated in a
single section. The Glossary, the Subject Index, and the Index to ARM Sections will help you
find your way around.

The case studies are displayed in numbered listings with the directory name containing the
source code shown above a listing. The listings are interspersed with detailed explanations and
the notation ‡n refers to line numbers in the listing.

All programs have been compiled and executed, and the full source code is available in
the software archive. To save space, some of the source code has been omitted or reformatted.
Hopefully, errors have not been introduced in this process, but in any case, the source code files
should be considered more definitive than the text.



Chapter 2

First Steps in Ada

This chapter presents the basic concepts of Ada starting with a simple program.

2.1 Case study: country of origin

The following program reads the name of a car manufacturer and prints the country of origin.
In this era of globalization, where cars are designed in one country and assembled in several
others, the program is admittedly artificial and incomplete, but it will serve its purpose of
presenting the basics of Ada.

Ada uses the term subprogram to refer to either a procedure or a function. The main subpro-
gram §10.2(7), here Country1, is a subprogram that is not nested within any other unit:

country1

1 with Ada.Text_IO; use Ada.Text_IO;

2 procedure Country1 is

The first line of the program is a context clause, which is used to obtain access to the input–
output library Ada.Text_IO.

A subprogram consists of a subprogram_specification, followed by a declarative_part and a
handled_sequence_of_statements §6.3(2). The declarative part begins with declarations of the
types Cars and Countries, followed by a declaration of the variable Car:

3 type Cars is
4 (Ford, Chevrolet, Pontiac, Chrysler, Dodge,

5 Rover, Rolls_Royce,

6 Peugeot, Renault, Citroen,

7 BMW, Volkswagen, Opel,

8 Honda, Mitsubishi, Toyota,

9 Daewoo, Hyundai

10 );

13
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11 type Countries is (US, UK, France, Germany, Japan, Korea);

12

13 Car: Cars;

There is no required order for the declaration of entities, except that a declaration must appear
before it is used.

The declarative part also includes the declaration of a function Car_to_Country:

14 function Car_to_Country(C: Cars) return Countries is
15 begin
16 case C is
17 when Ford | Chevrolet..Pontiac | Chrysler..Dodge

18 => return US;

19 when Rover | Rolls_Royce => return UK;

20 when Peugeot..Citroen => return France;

21 when BMW..Opel => return Germany;

22 when Honda..Toyota => return Japan;

23 when Daewoo | Hyundai => return Korea;

24 end case;
25 end Car_to_Country;

The structure of the function declaration is the same as that of the main subprogram: a specifi-
cation (here with a parameter and a return type), a declarative part (empty), and a sequence of
statements (here, a single case statement).

The executable part of the subprogram is a sequence of statements, in this case a single loop
statement with other statements nested within:

26 begin
27 loop
28 Put("Enter the make of the car: ");

29 Car := Cars’Value(Get_Line);

30 Put_Line(Cars’Image(Car) & " is made in " &

31 Countries’Image(Car_to_Country(Car)));

32 end loop;
33 exception
34 when Constraint_Error => Put_Line("Car make is not recognized");

35 when End_Error => null;
36 end Country1;

The sequence of statements is followed by two exception handlers. The first, for the predefined
exception Constraint_Error, is used to write an error message if the string entered in the
input does not represent a valid make of a car; the second, for IO exception End_Error, is used
to terminate the program when an end-of-file indication is encountered.
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2.2 Library units and context clauses

Non-nested units such as subprograms are called library units §10.1.1. A compilation unit is a
library unit, optionally preceded by a context clause §10.1.2, which lists packages that are im-
ported into the unit. (A compilation unit can also be a subunit (Section 15.3).) Packages—the
Ada construct for creating modules—will be discussed in depth in Chapter 6; until then we
will only use a context clause to import input–output packages like Ada.Text_IO §A.10.

2.3 Input–output

There are no input–output statements in Ada. Instead, the standard libraries use general lan-
guage constructs such as types and subprograms. The case study used Get_Line ‡29 and
Put_Line ‡30, which are subprograms specified in §A.10.7 Input–Output of Characters and
Strings. The output procedures have only one parameter, unlike the output statements in lan-
guages like C and Pascal, which can take an arbitrary number of parameters. This limitation
can be overcome by the use of the operator "&" ‡30 for string concatenation §4.5.3(3–4).

Ada 95

The function Get_Line is new to Ada 2005. Previously, there was only a procedure Get_Line

with two parameters §A.10.7(18–19), one a buffer into which the input string is placed and
the other the index of the last character of the input. The program, therefore, needs two more
variables:

S: String(1..80); -- Input string

Last: Integer; -- Last character of input string

and the single statement in ‡29 must be replaced by the two statements:

Get_Line(S, Last);

Car := Cars’Value(S(1..Last));

2.4 Attributes for string conversion

To convert from strings to values and back, attributes are used. Given a scalar type T (integer,
real, or enumeration type), the attribute T’Value ‡29 is a function that converts a string to a
value of the type §3.5(52–55). Conversely, the attribute T’Image ‡30–31 converts a value of the
type to a string §3.5(35–37).
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Language Comparison

The attribute Image is similar to the Java function toString with the following
differences: (a) Image is defined only for scalar types; (b) Image cannot be over-
ridden; (c) Image must be explicitly called to convert a value to a string, unlike in
Java where the evaluation of the expression "The answer="+N would automati-
cally invoke the method toString for the type of N.

2.5 Statements

Ada has the usual simple and compound executable statements §5.1: assignment §5.2, if §5.3,
case §5.4, loop (both for and while) §5.5, and even a goto statement §5.8. There is also a null
statement which does nothing §5.1(13).

A loop need not have a termination condition using for or while; this is particularly useful
when writing servers that are not intended to terminate. The exit statement §5.7 may be used
to leave a loop at any point within its execution. There is a special syntax exit when that makes
the termination condition particularly readable. For example, we could add the dummy value
Quit to the types Cars and Countries and then use an exit statement to leave the loop, instead
of terminating the program with the exception End_Error:

exit when Car = Quit;

If you want to leave a nested loop, you can use a loop identifier §5.5(2), §5.7(2).
For-loops are used when you can compute the number of iterations in advance. The follow-

ing statement will print the country of origin of all the cars declared as values of type Cars:

for C in Cars loop
Put_Line(Cars’Image(C) & " is made in " &

Countries’Image(Car_to_Country(C)));

end loop;

The loop parameter C is a constant §3.3(19) that is implicitly declared §5.5(6). Its scope is re-
stricted to the loop statement §8.1(4), so if the value is needed later, an additional variable
must be used:

Found_At: Integer := -1; -- -1 if not found

for I in A’Range loop
if A(I) = Key then

Found_At := I;

exit;
end if

end loop;
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A return statement ‡18–23 §6.5 must be used to return a value from a function. A procedure
is normally left by “falling off” the final statement, but a return statement may be used to
return at any point within the sequence of statements.

There is a rich syntax for case statements §5.4, as demonstrated (somewhat artificially) in
the case study ‡16–24. The basic rule is that each possible value of the expression must be
covered by exactly one of the alternatives. An others alternative is allowed if you do not want
to explicitly list an action for all alternatives. For example, suppose that we wanted to associate
a continent with a car and that we anticipate that most cars would be from Europe; then it
might be reasonable to use others:

type Continents is (North_America, Asia, Europe);

case C is
when Ford .. Dodge => return North_America;

when Honda..Hyundai => return Asia;

when others => return Europe;

end case;

If possible, the use of others should be avoided so that if a value is added to an enumeration
type, a compile-time error will result if you forget to add an alternative for the value. Similarly,
subranges should be avoided if there is no natural ordering of subsequences of values.

Language Comparison

Ada does not have a do–while construct for a termination condition at the end of
a loop. However, exit when can be used to place a termination condition at any
point in a loop, including just before the end loop.

Language Comparison

Case alternatives are not terminated by break statements, as in C and Java. When
the statements of an alternative are completed, execution proceeds with the state-
ment after the case statement. This prevents the serious errors caused by acci-
dently falling through from one alternative to another.

Language Comparison

In C and Java, there is no rule requiring that all values of the expression type
be covered; instead, the execution of a switch statement is silently skipped if
the value of the expression is not covered. Again, the Ada rule causes a serious
run-time error to become a simple compile-time error.
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2.6 Exceptions

§11

1 This section defines the facilities for dealing with errors or other exceptional
situations that arise during program execution. An exception represents a kind of
exceptional situation; an occurrence of such a situation (at run-time) is called an
exception occurrence. To raise an exception is to abandon normal program execution so
as to draw attention to the fact that the corresponding situation has arisen.
Performing some actions in response to the arising of an exception is called handling
the exception.

The main subprogram in the case study has two exception handlers ‡34–35. The predefined
exception Constraint_Error §11.1 will be raised if you enter a string that is not the name of
a car declared in the type declaration. If this occurs, the normal execution will be abandoned
and the sequence of statements in the exception handler will be executed instead. Here, it is the
single statement that calls Put_Line; then, the execution of the subprogram enclosing the ex-
ception handler will terminate. The exception End_Error is defined in the input–output library
§A.13(12) and will be raised if an attempt is made to read beyond the end of a file (or ctrl-z or
ctrl-d is entered interactively).

There are four predefined exceptions §A.1(46):

• Constraint_Error, which you will encounter frequently, because any run-time violation of
the type system will raise this exception;

• Program_Error, which is raised in unusual situations, such as “falling off” the end of a func-
tion without executing a return statement;

• Storage_Error, which is raised if the program runs out of memory;
• Tasking_Error, which is raised for errors in the multitasking constructs (Chapter 18).

Language Comparison

In Java and C++, exception handlers are written within a try–catch construct
that is explicitly written to enclosed a sequence of statements where an exception
might occur. In Ada, exception handlers are associated with a body, generally
of a subprogram. The “try” implicitly covers all the statements in the body. It
is possible to achieve the effect of a try–catch construct within a sequence of
statements by using a block statement §5.6 (Section 3.5).
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2.7 Types

Types are the heart and soul of Ada. The executable statements of the language are almost
indistinguishable from those of other languages, but the type system is rich and, yes, complex.

2.7.1 Why types?

Why are types so important? Experience has shown that the key to good software design is
not in the algorithms but in the data. You can write small programs to manipulate raw data
in memory such as numbers and bytes, but any large program is necessarily modeling some
complex applications area such as banking, medicine or transportation. The only way to write
software that can be understood, validated and maintained is to model the application within
the program.

Types are not merely descriptive. The Ada language provides for type checking. Since each
type is modeling a different kind of real-world data, you cannot assign a value of one type to
a variable of another type, or call a subprogram if the types of the actual parameters do not
match the types of the formal parameters. If Apple_Count contains a value of type Apples and
Orange_Count contains a value of type Oranges, the statement:

Apple_Count := Apple_Count + Orange_Count;

contains an error if the operator "+" is defined for two values of type Apple and two values of
type Orange, but not for mixed fruit. An Ada compiler is required to reject such statements.

The advantage of type checking is a significant reduction in the number of logic and run-
time errors in the software. Errors form a hierarchy defined by the severity of the effects of the
error and the difficulty of discovering and fixing it:

Logic errors

Run-time errors

Compile-time errors

Compile-time errors These are the errors that are the easiest to find and correct. Some
compile-time errors like missing punctuation are trivial; others, like visibility errors caused
by misplaced declarations, are more difficult to find.

Run-time errors These are errors that cause the program to stop running and to display an
error message. (Of course, run-time errors are extremely problematical in embedded systems
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that cannot “print an error.”) Examples are trying to index an array beyond its bounds and
trying to dereference a null pointer. In a language that supports run-time checking, these
errors are relatively easy to diagnose, because you know where the program stopped and
why. If the error is not caught when it occurs, it can cause memory assigned to unrelated
variables to be “smeared.” Such errors are exceedingly difficult to diagnose because the error
is only discovered when the smeared variables are read, and that code is likely to be correct.

Logic errors This is the term used for errors that manifest themselves as incorrect functioning
of a running program. For example, you might compute a thermostat setting that has no
physical meaning even though the value is within the range of an integer variable. These
errors are often found only after the system is delivered and installed.

The philosophy of Ada is to push errors down the hierarchy: to turn logic errors into run-time
errors and if possible into compile-time errors. For critical software systems, logic errors are not
merely embarrassing and expensive, they can be truly dangerous. Because it helps prevent logic
errors, the Ada type system is an excellent technological tool for constructing reliable software.

Effective use of the Ada type system requires an investment of effort on your part:

• During the design of the software system, you must select types that best model the data in
the system and that are appropriate for the algorithms to be used. If you write a program
in which every variable is declared as Integer, Float or Character, you are not taking
advantage of the capabilities of Ada.

• Occasionally, the rules for type checking are too strict and workarounds must be found.
For example, a sequence of raw bytes received from a communications line will need to be
interpreted as a structured message. There is an Ada construct for bypassing type checking
(Section 5.4.4), as well as safer methods of solving some of these problems (Section 11.5).

• Certain language rules are checked at run-time, and the overhead of the checks must be
taken into account, although optimizing compilers can reduce this overhead to a minimum.
If needed, run-time checks can be suppressed (Section 10.7); usually, it will be sufficient to
suppress checks in a small number of “hot spots” in the program.

An investment of the time needed to learn and effectively use the Ada type system will repay
itself many times over in lower rates of logic and run-time errors in your programs.

2.7.2 Definition of types

§3.2

1 A type is characterized by a set of values, and a set of primitive operations which
implement the fundamental aspects of its semantics. . . .

Some types like the type Integer are predefined by the language. The set of values of Integer
is implementation-defined, and the primitive operations include assignment (which is defined
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for all types except for limited types; see Chapter 6), and the arithmetical and relational opera-
tors §4.5. (The concept of primitive operation will be fully explained in Chapter 7.)

2.7.3 Enumeration types

Type Cars ‡3–10 is an enumeration type §3.5.1. The names listed in the type declaration are the
enumeration literals, which are the values of the type. The predefined operations on enumeration
types include assignment and the relational operators such as "=" and "<".

§3.5.1

7 Each enumeration literal corresponds to a distinct value of the enumeration type,
and to a distinct position number. The position number of the value of the first listed
enumeration literal is zero; the position number of the value of each subsequent
enumeration literal is one more than that of its predecessor in the list.

8 The predefined order relations between values of the enumeration type follow the
order of corresponding position numbers.

There are predefined values and functions called attributes §4.1.4 associated with each type; a
list of all attributes is given in §K. Some attributes that are defined for enumeration and integer
types are given in the following table, where T is a type, V is a value of the type, N is an integer
and S is a string:

T’First First value of T
T’Last Last value of T
T’Pred(V)* Previous value before V

T’Succ(V)* Next value after V
T’Pos(V) Position of V
T’Val(N)* Value whose position is N
T’Min(V1,V2) Minimum of V1,V2
T’Max(V1,V2) Maximum of V1,V2
T’Image(V) String denoting the value V

T’Value(S)* Value denoted by S

T’Width Maximum length of T’Image

Attributes marked with an asterisk may raise Constraint_Error, and in certain circumstances,
Pos may raise Program_Error §3.5.5(8).

In the case study we used the attributes Cars’Value and Cars’Image for input–output, as
described above. For extensive input–output of values of an enumeration type, it is better to
instantiate the generic package Enumeration_IO (Chapter 9) for the type.
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The fundamental principle of type checking is that a value of one type may not be assigned
to a variable (or parameter) of another type §5.2(4), §6.4.1(3). This violation of type checking
results in a compile-time error. Thus we cannot write:

Car := France;

because we are attempting to assign a value of type Countries to a variable of type Cars.
Similarly, we cannot write the following function call:

Car_to_Country(63);

because the assignment of an actual parameter of type Integer to a formal parameter of type
Cars is not legal.

2.7.4 Name equivalence*

Given the declarations:

type Countries is (Greenland, Grenada, Guadeloupe, Guam);

type Islands is (Greenland, Grenada, Guadeloupe, Guam);

C: Countries;

I: Islands;

we cannot assign C to I or vice versa. Each type declaration defines a separate type. The name
of the type, rather than its structure, determines type equivalence.

This example demonstrates overloading.

§3.5.1

9 If the same defining_identifier or defining_character_literal is specified in more than
one enumeration_type_definition, the corresponding enumeration literals are said to
be overloaded. At any place where an overloaded enumeration literal occurs in the
text of a program, the type of the enumeration literal has to be determinable from the
context (see 8.6).

The following assignment is legal:

C := Greenland;

The expected type of an expression on the right-hand side of an assignment statement is the
same type as that of the variable that is target of the assignment §5.2(4); this rule can be used
to disambiguate the type of the expression Greenland.
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2.8 Objects

§3.2

1 . . . An object of a given type is a run-time entity that contains (has) a value of the
type.

§3.3

13 An object is either a constant object or a variable object. The value of a constant object
cannot be changed between its initialization and its finalization, whereas the value
of a variable object can be changed. . . .

All objects must be declared and explicitly given a type. An initial value is optional for a vari-
able, but is required for a constant §3.3.1(5-6):

Current_Car: Cars := Opel;

Wanted_Car: constant Cars := Rolls_Royce;

Language Comparison

The term object is used in Ada as a single term to encompass both constant and
variable. As such, it has no relation to the concept of “objects” in object-oriented
programming (OOP). Ada supports OOP through the constructs of tagged types
and type extension (Chapter 6), but the term “objects” is not used in this context
in the ARM.

2.9 Expressions

The syntax and semantics of expressions are similar to those of other programming languages
§4.4. The operators are defined in §4.5 and include arithmetic operators (+, -, *, **, /, rem, mod,
abs), logical operators (and, or, xor), relational operators (=, <, <=, >, >=), and the concatena-
tion operator (&) that can be used with any one-dimensional array type, not just with strings
(Section 4.5). Closely related to operators are the membership tests described in Section 2.10.2.

There is no required order for the evaluation of the operands of the operators §4.5(14).
For the logical operators and and or this can be inconvenient, so the short-circuit control forms
and then and or else §4.5.1(7) can be used when the order is important:

if Pointer /= null and then Pointer.Value < Key then ...

if Size = 0 or else Length / Size > Max then ...
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Membership tests and the short-circuit control forms are not considered to be operators so
they cannot be overloaded.

2.9.1 Elaboration*

§3.1

11 The process by which a construct achieves its run-time effect is called execution. This
process is also called elaboration for declarations and evaluation for expressions. . . .

While we don’t normally think of a declaration as being executed, it is clear that it may have
a run-time effect. For example, array bounds and initial values can be expressions, and the
evaluation of the expressions can raise exceptions:

Default: Float := Get_Initial_Value_From_User;

A: array(1..Get_Bound_From_Property_File) of Float := (others => Default);

The exceptions are raised when the variable declarations are elaborated, and there are rules
governing the handling of such exception occurrences (Section 10.3.2).

Declarations are elaborated in the order of their appearance (linear elaboration):

§3.11

7 The elaboration of a declarative_part consists of the elaboration of the
declarative_items, if any, in the order in which they are given in the declarative_part.

This explains why the variable Default can be used in the declaration of the array A above.
There is one syntactical problem that must be resolved. Since it is possible to declare more

than one object in a single declaration, the question arises whether the initial value is evaluated
once for all objects, or once for each object:

F1, F2, F3: Float := Get_Initial_Value_From_User;

§3.3.1

7 Any declaration that includes a defining_identifier_list with more than one
defining_identifier is equivalent to a series of declarations each containing one
defining_identifier from the list, with the rest of the text of the declaration copied for
each declaration in the series, in the same order as the list. . . .

In the example, the user would be prompted three times for initial values, because the declara-
tion is equivalent to:
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F1: Float := Get_Initial_Value_From_User;

F2: Float := Get_Initial_Value_From_User;

F3: Float := Get_Initial_Value_From_User;

2.10 Subtypes

Pascal was the first language whose design was based on programmer-defined types and
compile-time type checking. However, the rules of (the initial version of) Pascal were too re-
strictive; consider a procedure to sort an array:

type Array_Type = array[1..100] of Real;

procedure Sort(var A: Array_Type);

The procedure is restricted to sorting arrays of type Array_Typewith exactly the bounds 1..100
given for the index. Clearly, an algorithm for sorting arrays is exactly the same whatever the
actual bounds, so some way is needed the separate “inflexible” information about the type (it is
one-dimensional, its indices are integers and its components are real numbers) from “flexible”
information like the bounds. In Ada this is achieved in a generalized way by distinguishing
between a type and a subtype.

§3.2

8 A subtype of a given type is a combination of a type, a constraint on the values of the
type, and certain attributes specific to the subtype. The given type is called the type of
the subtype. Similarly, the associated constraint is called the constraint of the subtype.
The set of values of a subtype consists of the values of its type that satisfy its
constraint and any exclusion of the null value. Such values belong to the subtype.

A constraint that puts a restriction on the values of the type is checked at run-time. In the
next chapter, we will see that the bounds of an array are considered to be a constraint, so a
single procedure Sort can be called with arrays of different sizes. In this section, we will look
at subtypes in the context of enumeration types.

First, some terminology: when declaring an object, we supply a subtype_indication.1

§3.3.1

2 object_declaration ::=
defining_identifier_list : [constant] subtype_indication [:= expression];

1 The syntax has been simplified.
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§3.2.2

3 subtype_indication ::= subtype_mark [constraint]
4 subtype_mark ::= subtype_name

When creating an object, we can append a constraint to a subtype name and thus restrict the
values that can be contained in the object. For an enumeration type, the appropriate constraint
is a range constraint §3.5:

Car: Cars;

French_Car: Cars range Peugeot..Citroen;

German_Car: Cars range BMW..Opel;

When executing an assignment statement, constraints are checked.

§5.2

11 The value of the expression is converted to the subtype of the target. The conversion
might raise an exception (see 4.6).

French_Car := Car; -- Might raise Constraint_Error

French_Car := German_Car; -- Will raise Constraint_Error

Appending a constraint does not affect the type of an object. The second statement above is
not a compile-time error, nor is French_Car := BMW, because the compiler checks only that the
types are the same; in this case, the two variables and the value BMW are of type Cars. It is left to
the executable code to check that the constraints are satisfied.

An Ada compiler is allowed to diagnose source code that necessarily raises an exception,
and to emit machine code that simply raises the exception without doing the check. A friendly
compiler will warn you of the inevitable exception, but a compilation error will not be reported.

2.10.1 Declaration of a named subtype

If you are planning to declare many objects with the same subtype indication, you can declare
a subtype and then use its name, called a subtype mark §3.2.2(2,4). The following program shows
an alternate way of implementing the function associating countries with cars.
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country2

1 function Car_to_Country(C: Cars) return Countries is
2 subtype US_Car is Cars range Ford..Dodge;

3 subtype UK_Car is Cars range Rover..Rolls_Royce;

4 subtype French_Car is Cars range Peugeot..Citroen;

5 subtype German_Car is Cars range BMW..Opel;

6 subtype Japanese_Car is Cars range Honda..Toyota;

7 subtype Korean_Car is Cars range Daewoo..Hyundai;

8 begin
9 case C is

10 when US_Car => return US;

11 when UK_Car => return UK;

12 when French_Car => return France;

13 when German_Car => return Germany;

14 when Japanese_Car => return Japan;

15 when Korean_Car => return Korea;

16 end case;
17 end Car_to_Country;

Lines ‡2–7 contain declarations of subtypes for each country by constraining the range of values
of the type. A choice of a case statement can be a subtype mark; see §5.4(3), §3.8.1(4–5), §3.6.1(3).

A formal parameter must be a subtype mark and not a subtype indication §6.1(15):

function Korean_Car_to_Country(C: Korean_Cars)

return Countries is ... -- OK, subtype mark

function Korean_Car_to_Country(C: Cars range Daewoo..Hyundai)

return Countries is ... -- Error, subtype indication

2.10.2 Membership tests

A membership test can be used to check if an expression is in a subtype §4.5.2:

if C in French_Car then ...

If you want to check membership in a range, a subtype mark need not be given, and there is a
convenient syntax for negations:

if C in Peugeot..Citroen then ...

if not (C in French_Car) then ...

if C not in French_Car then ... -- Nicer syntax
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2.10.3 First subtype*

We noted that paragraph §6.1(15) requires that formal parameters be subtype marks. What
about type marks? That is, what is the name of a type? In order to simplify the presentation
of the language, the phrase “type or subtype” is avoided, essentially by identifying a type with
its first subtype.

§3.2.1

1 A type_declaration declares a type and its first subtype.
6 The defining_identifier of a type_declaration denotes the first subtype of the type. . . .
7 A type defined by a type_declaration is a named type; such a type has one or more

nameable subtypes. . . . For a named type whose first subtype is T, this International
Standard sometimes refers to the type of T as simply “the type T”.

A named type has no name, although it has named subtypes. In normal usage, no confusion
will result if we talk about the type Cars; in fact, such usage is sanctioned as noted above.

2.11 Lexical elements

We conclude this chapter with an overview of the lexical elements of an Ada program §2.
An Ada program is written in free-format:

§2.2

1 The text of a program consists of the texts of one or more compilations. The text of
each compilation is a sequence of separate lexical elements. . . . The meaning of a
program depends only on the particular sequence of lexical elements that form its
compilations, excluding comments.

Reserved words such as begin cannot be used for any other purpose §2.9. Certain identifiers
such as Integer and String are predefined in package Standard §A.1; they can be redefined,
but normally you wouldn’t do that.

Comments are denoted by two minus signs and extend to the end of the line §2.7.
String §2.6 and character §2.5 literals, as well as comments, can use the character set defined

by ISO/IEC 10646:2003 Universal Multiple-Octet Coded Character Set §2.1.
Identifiers are case insensitive §2.3(5.2) so that Current_Value and current_VALUE denote the

same identifier. Similarly, reserved words §2.9(2) are case insensitive. The ARM recommends
that reserved words be written in lower case and that identifiers be written in mixed case with
underscores separating parts of identifiers.

Numeric literals §2.4 can use the underscore character _ ; this can prevent errors when large
numbers appear in a program. Integer literals can have an exponent, and both integer and real
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literals can be written in any base from 2 to 16. Each of the following columns shows three
equivalent numeric literals:

1000000 15 3.75
1_000_000 2#1111# 0.375E1

1E6 16#F# 2#11.11#

Language Comparison

There are no block comments in Ada similar to the /* ... */ notation of lan-
guages descended from C.

Language Comparison

Ada is case insensitive, unlike languages descended from C. The con-
vention is to use title case with underscores separating words. Thus,
an identifier like setCaretPositionInBuffer in Java would be written
Set_Caret_Position_In_Buffer in Ada.

Projects

1. Expand the car-to-country case study so that it takes into account that cars are assembled in
countries other than the countries where the companies have their head offices. For example,
although Nissan is a Japanese company, it assembles cars in the UK.

2. Using the facilities in Ada.Text_IO, write a program that prints out a formatted table of all
the cars, their home countries, and the countries where they are manufactured.

3. Write a program that demonstrates that multiple objects in a single declaration are elabo-
rated as if there were multiple declarations (Section 2.9.1).

Quizzes

Quiz 1:

subtype Letters is Character range ’A’..’Z’;

Put(Letters’Val(42));

Put(Positive’Val(0));
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Quiz 2:

X, Y, Z: Boolean;

B1: Boolean := X and Y and Z;

B2: Boolean := X and Y or Z;

Quiz 3:

Put( 16#a#e2 );

Put( 16#A#E2 );

Put( 16#E#EA );



Chapter 3

Subprograms

The concept of encapsulating local data and a sequence of statements in a subprogram is ubiq-
uitous in all programming languages; nevertheless, there are differences between languages—
especially in the area of parameter passing—that must be carefully studied. There is no separate
case study for this chapter because subprograms appear in all programs in this book.

§6

1 A subprogram is a program unit or intrinsic operation whose execution is invoked
by a subprogram call. There are two forms of subprogram: procedures and
functions. A procedure call is a statement; a function call is an expression and returns
a value. The definition of a subprogram can be given in two parts: a subprogram
declaration defining its interface, and a subprogram_body defining its execution.
Operators and enumeration literals are functions.

The subprogram declaration and body are written separately when the declaration is part of
the declaration of a package specification, while the body is encapsulated in the package body
(Section 6). Another use for separate declarations is to define mutually recursive subprograms.
In the absence of a separate declaration, the subprogram_body by itself can also serve as the
declaration of the subprogram §6.3(4).

The syntax of subprograms holds few surprises §6.1(2–16), §6.3(2). Here are several subpro-
gram declarations from the input–output library:

function Is_Open(File: in File_Type) return Boolean;

procedure Put(Item: in String);

procedure Put_Line(Item: in String);

procedure Get(Item: out String);

function Get_Line return String;

procedure Get_Line(Item: out String; Last: out Natural);

31



32 3 Subprograms

The reserved words in and out (as well as their combination in out) are the parameter modes
discussed in Section 3.1. The function Get_Line and the procedure Get_Line have the same
name; this is an example of overloading (Section 3.2).

A subprogram declaration is a subprogram_specification terminated with a semicolon §6.1(2);
a subprogram body has the reserved word is between the subprogram_specification and the local
declarations and statements of the subprogram §6.3(2):

function Car_to_Country(C: Cars) return Countries is
-- declarative part

begin
-- handled sequence of statements

end Car_to_Country;

The name of the subprogram can be written after the end that terminates the body; although
this is not required, it is good practice to do so, because it makes the program easier to read
and because it can enable the compiler to recover gracefully from missing syntactical tokens.
In the ARM, the “name” of a subprogram is called a designator, because it can also include the
name of the parent library unit §6.1(8) (Section 15.3) or an operator like "+" (Section 3.4).

The return statement is familiar and was discussed briefly in Section 2.5. There is an ex-
tended return statement used primarily with limited types; see Section 6.10.

Language Comparison

The separator between formal parameters is a semicolon, not a comma as in Java.

3.1 Parameter modes

Most programming languages define parameter-passing mechanisms such as call-by-value and
call-by-reference. In call-by-value, the value of the actual parameter is copied into the variable
denoted by the formal parameter, whereas in call-by-reference, the formal parameter contains
a pointer to the actual parameter. In Ada, each parameter has a mode associated with it that
defines the permitted uses of the parameter and the direction of the information flow between
the formal and actual parameters, rather than the mechanism used for passing parameters.

There are three modes:

in The formal parameter is considered to be a constant §3.3(17); the actual parameter must be
an expression §6.4.1(4), which is used to initialize the constant when the subprogram is called.
This is the default mode if no mode is specified. Functions may only have in parameters
§6.1(18).

out The formal parameter is an uninitialized variable §6.4.1(15) and the actual parameter must
also be a variable. When a subprogram is left, the value of variable in the formal parameter
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becomes the value of the variable in the actual parameter. An out parameter is used to pass
data from the subprogram to the calling program.

in out This is like an out parameter, except that the initial value of the variable in the formal
parameter is the value of the variable in the actual parameter.

As a matter of style, we explicitly write the reserved word in for parameters of mode in of
procedure declarations, even though it is the default mode. This helps document the data flow
to and from the procedure. Some people prefer to write in for the parameters of functions; since
a function can only have in parameters, we prefer not to do so. Although functions can only
have in parameters, these parameters can be access types (Section 5.4) or access parameters
(Section 12.6), and the objects designated by these values can be modified.

3.1.1 Implementation of parameter modes*

The three parameter modes, in, out and in out, are defined in terms of how parameters are
used rather than how they are implemented. Parameter modes of Ada facilitate a clear speci-
fication the desired semantics of the program, regardless of the parameter passing mechanism
selected by the compiler. For example, an array may be passed by reference, but if it is an in
parameter, a reader of the program knows that the array will not be modified by the call. Nev-
ertheless, the ARM does specify most aspects of the implementation, and you will occasionally
need to be aware of these details.

There are two mechanisms for passing parameters:

§6.2

2 A parameter is passed either by copy or by reference. When a parameter is passed by
copy, the formal parameter denotes a separate object from the actual parameter, and
any information transfer between the two occurs only before and after executing the
subprogram. When a parameter is passed by reference, the formal parameter
denotes (a view of) the object denoted by the actual parameter; reads and updates of
the formal parameter directly reference the actual parameter object.

An implementation is not always free to choose which method to use:

§6.2

3 A type is a by-copy type if it is an elementary type, . . . . A parameter of a by-copy type
is passed by copy.

4 A type is a by-reference type if it is . . .
10 A parameter of a by-reference type is passed by reference. . . .
11 For parameters of other types, it is unspecified whether the parameter is passed by

copy or by reference.
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Thus elementary types (real and integer types, enumeration types and access types) are passed
by copy. We have not yet studied types that are passed by reference, but these are types like
task types that contain “invisible” data structures that must not be copied.

The language does not specify if arrays and records are passed by copy or by reference.
This decision is left to the implementation. By aliasing two parameters, or a parameter and a
global variable, it is not difficult to create a procedure whose effect depends on whether the
implementation passes those parameters by copy or by reference. To ensure that programs are
portable, never write a program whose effect depends on the implementation of parameter
passing for arrays and records.

Language Comparison

In Java, parameters of primitive types (int, double, etc.) are passed by copy like
in parameters of elementary types in Ada, but there is no equivalent to out and
in out parameters for copying values back to the calling program. At most, a
single value can be returned as a function result. For non-primitive types, the
same rule applies, but what is being copied is an implicit reference to the object
given as the actual parameter, so the object can be modified. This is similar to
passing access types (and access parameters) in Ada, except that the fact that the
parameter is a reference is explicitly written in Ada.

3.2 Overloading

§8.3

6 Two or more declarations are overloaded if they all have the same defining name and
there is a place where they are all directly visible.

Consider:

with Ada.Text_IO; use Ada.Text_IO;

with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;

procedure Main is
begin

Put("The value is ");

Put(42);

end Main;

A use_clause—the reserved word use followed by a list of package names—makes the visi-
ble declarations in the packages directly visible. Here there two subprograms with the name
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Put: one subprogram from Ada.Text_IO performs output of strings, while the other from
Ada.Integer_Text_IO performs output of integer values. The declarations are overloaded.

To give another example, almost every input–output subprogram has one declaration with
an explicit parameter for the file and another that reads or writes to the standard files (usually
connected by default to an interactive device):

procedure Put_Line(File: in File_Type; Item: in String);

procedure Put_Line(Item: in String);

When an overloaded name is used, the context determines which declaration is intended.

§8.6

30 For a complete context, if there is exactly one overall acceptable interpretation . . .
then that one overall acceptable interpretation is chosen. Otherwise, the complete
context is ambiguous.

31 A complete context . . . shall not be ambiguous.

The algorithm used to decide which subprogram to call is called overload resolution and is de-
scribed in detail in clause §8.6; this clause is quite complex but the details are of interest pri-
marily to compiler writers. When writing a program, it is always possible to disambiguate a
call even if you are not sure why it is ambiguous; for example, the possible interpretations can
be restricted to those in a specific package by explicitly writing the package name:

Ada.Integer_Text_IO.Put(...);

Qualification (Section 5.4.5) can be used to disambiguate overloaded calls.

3.2.1 Overloading on the function result*

Two functions with the same name overload each other if they return different result types,
even if the parameter profiles are identical. The following two functions overload each other:

function Func return Integer is
begin

return 1;

end Func;

function Func return Boolean is
begin

return True;

end Func;

and can be disambiguated from the context:



36 3 Subprograms

if Func then -- Boolean type expected

I: Integer := Func; -- Integer type expected

Recall (Section 2.7.4) that enumeration literals can also be overloaded; this is because they are
considered to be parameterless functions §3.5.1(6).

Language Comparison

In Java, the result type of a function is not taken into account when determining
if a function overloads another, so int func() cannot be declared in the same
region as float func().

3.3 Parameter associations and default expressions

Most programming languages use positional association for matching parameters; that is, the
first actual parameter is matched with the first formal parameter and so on:

procedure Put_Line(F: in File_Type; Item: in String);

Put_Line(Error_File, "Execution error has occurred");

Commands of operating systems often use named association, where parameters are intro-
duced by keywords:

java -classpath c:\project\lib\ioLib.jar Main

Named associations are particularly useful when there are a large number of parameters and
the formal parameters have default values. The call will be easy to read if only a few parameters
need be given and they can be written in an arbitrary order.

Ada supports both positional and named association for all subprogram calls, as well as in
other contexts such as aggregates (Section 5.2).

§6.4

5 parameter_association ::=
[formal_parameter_selector_name =>] explicit_actual_parameter

7 A parameter_association is named or positional according to whether or not the
formal_parameter_selector_name is specified. Any positional associations shall
precede any named associations. . . .

9 A subprogram call shall contain at most one association for each formal parameter.
Each formal parameter without an association shall have a default_expression . . .



3.4 Operators 37

Default parameters are extensively used in libraries where you want to supply many options,
but default values are sufficient for most purposes. For example, Ada.Integer_Text_IO.Put is
declared §A.10.8(11) as:

procedure Put(

Item: in Num;

Width: in Field := Default_Width;

Base: in Number_Base := Default_Base);

Normally, you would print an integer with the default field width and the default base (deci-
mal), but either or both can easily be changed:

Put(N, Base => 16); -- Print in hexadecimal

In one style of writing Ada, parameter names are chosen so that they facilitate named asso-
ciation; for example:

procedure Put(Item: in Integer; Into: Queue);

Put(Item => Test_Data(N), Into => Q);

The advantage of this style is improved readability; a disadvantage is that the source code can
become too “wordy.”

Default parameters can cause difficulties with overloading resolution. Given the following
two procedure declarations:

procedure Proc(M: in Integer);

procedure Proc(N: in Integer; K: in Integer := 10);

the call Proc(5) is ambiguous, because it is impossible for the compiler to decide if the call is
to the first procedure or to the second procedure with a default association.

3.4 Operators

While operators such as "+", "and" and "<=" are normally used with specific classes of types
such as numeric or boolean types, they can be defined to apply to any type:

function "+" (Left: Vector; Right: Vector) return Vector;

function "and"(Left: Vector; Right: Vector) return Vector;

A list of operators is given in §4.5(2–7). Only the types of the operands can be redefined, not the
precedence or associativity of the operator (as in Prolog). There are no special restrictions on the
bodies of functions that overload operators, but—just as you would choose good identifiers for
subprogram names—so you should use operators intuitively: the function "+" above should
add two vectors, not multiply them.

Examples of the definition of operators can be found in Sections 4.2.3, 7.2, and 6.8.2.
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3.5 Block statement*

A block is like a parameterless procedure written within a sequence of statements.

§5.6

2 block_statement ::=
[block_statement_identifier:]

[declare
declarative_part]

begin
handled_sequence_of_statements

end [block_identifier];

Blocks are used to localize aspects of a computation. For example, if only a small portion of a
large procedure makes use of some variable, it is preferable to encapsulate that portion of the
code in a block, and to declare the variable local to that block. More importantly, blocks can
have exception handlers so they are often used for computations that may fail and must be
retried until they succeed. Both of these uses are shown in the following example:

country3

1 with Ada.Text_IO; use Ada.Text_IO;

2 procedure Country3 is
3 type Cars is ...

4 type Countries is ...

5 function Car_to_Country(C: Cars) return Countries is ...

6 Car: Cars;

7 begin
8 loop -- Loop begins here

9 Put("Enter the make of the car: ");

10 declare -- Block begins here

11 S: String := Get_Line; -- Declaration local to the block

12 begin
13 Car := Cars’Value(S);

14 Put_Line(...);

15 exception
16 when Constraint_Error => Put_Line(...);

17 when End_Error => exit;
18 end; -- Block ends here

19 end loop; -- Loop ends here

20 end Country3;
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The declaration of the string S within the block allows it to be allocated a different amount of
memory upon each execution of the block in the loop. The length of S will be the same as the
length of the string returned by the function Get_Line. The computation of the make of the
car is within the sequence of statements of the block, so that if Constraint_Error is raised, it
is handled by the exception handler of the block. A computation that successfully completes
the execution of the statements in the exception handler is considered to have successfully
completed the block statement, so the loop can be executed again.

3.6 Implicit dereferencing*

In later chapters we discuss in depth the implicit dereferencing of pointers, called access values
in Ada (Sections 5.4.3). In particular, this can be done for values of access-to-subprogram type
(Section 12.2). We give here a few examples to round out the discussion of subprograms.

The following declaration declares an access-to-subprogram type whose designated type is
a function with two parameters of type Float and with return type Boolean:

type Compare_Float_Access is
access function(Left, Right: Float) return Boolean;

Suppose now that we define such a function:

function Almost_Equal(Left, Right: Float) return Boolean is
begin

return abs (Left-Right) < 1.0e-10;

end Almost_Equal;

A reference to this function can be assigned to a variable of the access type:

F: Compare_Float_Access := Almost_Equal’Access;

The variable can now be used in a context where a function call with this profile is allowed:

if F(10.0, 10.1) then ...

The access value F is implicitly deferenced to obtain a function; since the function takes two
parameters of type Float and returns a value of type Boolean, it is legal in that context.

If the subprogram has no parameters, an explicit dereference using the reserved word all
must be given:

type No_Parameter_Access is access function return Boolean;

function Initial_Value return Boolean is ...

F: No_Parameter_Access := Initial_Value’Access;

if F.all then ...

See the case study in Section 12.2 for a larger example.
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Projects

1. Write a procedure for some command with lots of default parameters. Write a main program
to experiment with positional and named association.

2. Write a program that gives a different result depending on the method of passing arrays and
records is by copy or by reference.

3. Write operators for floating point arithmetic in the range 0..2π.

Quizzes

Quiz 1:

procedure Proc(N1: in Integer; N2: in Integer := N1) is ...

Quiz 2:

function "/="(Left, Right: Integer) return Boolean is
B: Boolean := Left = Right - 1;

begin
return B;

end "/=";

Put_Line(Boolean’Image(4 /= 3));

Quiz 3:

type My_Boolean is new Boolean;

function "="(Left, Right: Integer) return My_Boolean is
B: Boolean := Left = Right + 1;

begin
return My_Boolean(B);

end "=";

function "/="(Left, Right: Integer) return My_Boolean is
B: Boolean := Left = Right - 1;

begin
return My_Boolean(B);

end "/=";

M1: My_Boolean := 4 = 3;

M2: My_Boolean := 3 /= 4;

Put_Line(My_Boolean’Image(M1));

Put_Line(My_Boolean’Image(M2));



Chapter 4

Arrays

In this chapter and the next, we present the basic concepts of composite types (arrays and
records) and access types (pointers). A comprehensive explanation of all the constructs relating
to these types is deferred to Chapters 11 and 12, and numeric types are discussed in Chapter 13.
The intervening chapters present constructs for structuring large programs and for extending
types to support object-oriented programming. The chapter begins with a large case study,
followed by a detailed presentation of the language constructs related to arrays.

4.1 Case study: fill and justify text

The case study is to implement a core algorithm used in word-processors:

Read a text file and write it with the text filled (as many words as possible on a line)
and justified (set flush with both margins). A word is a maximal sequence of non-space
characters.

The following example shows four lines of input data, the two lines of text after filling, and the
text after justification:

The quick brown

fox

jumped over

the lazy dog

The quick brown fox

jumped over the lazy dog

The quick brown fox

jumped over the lazy dog

41
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The program begins with declarations of subtypes, constants and a file object Input. For
simplicity, the file name, the output line length and the margin size are declared as constants:

justify

1 with Ada.Text_IO; use Ada.Text_IO;

2 procedure Justify is
3 subtype Lines is String(1..80);

4 subtype Index is Integer range 0..Lines’Last;

5

6 Margin: constant String(1..10) := (others => ’ ’);

7 Width: constant Index := Lines’Length - 2*Margin’Length;

8

9 File_Name: constant String := "example.tex";

10 Input: File_Type;

Subtype Lines is a constrained array type that will be used to hold the characters of the output
line. When writing algorithms on arrays, it frequently happens that index variables need an
extra value, one less than the index of the first element or one more than the index of the last
element. The subtype Index is defined for this purpose. The variable Margin is a fixed-length
string initialized to blanks; from its length, we can statically compute the Width of the text itself.

Get_Word reads the next word from the input file. See the Ada.Text_IO library §A.10 for the
specification of subprograms called. The parameter Word is used to return the word, and its
length is returned in Index:

11 procedure Get_Word(

12 Word: out Lines; Length: out Index; EOF: out Boolean) is
13 C: Character;

The first loop skips over ends of line and blanks:

14 begin
15 Length := 0;

16 EOF := False;

17 loop
18 if End_Of_File(Input) then
19 EOF := True;

20 return;
21 elsif End_Of_Line(Input) then
22 Skip_Line(Input);

23 else
24 Get(Input, C);

25 exit when C /= ’ ’;

26 end if;
27 end loop;
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The second loop in the procedure reads the characters of the word until a blank is found:

28 loop
29 Length := Length + 1;

30 Word(Length) := C;

31 if Length > Width then
32 Skip_Line(Input);

33 Length := Width;

34 return;
35 end if;
36 exit when End_Of_Line(Input);

37 Get(Input, C);

38 exit when C = ’ ’;

39 end loop;
40 end Get_Word;

In the unlikely case that a single word is longer than a complete line, it is truncated ‡31–35.
The most difficult part of the program is the function Insert_Spaces, which performs justi-

fication. The function receives the output buffer Line, the Length of the valid data in the buffer
and a count of the number of Words in the line; it returns a string containing the justified line:

41 function Insert_Spaces(

42 Line: Lines; Length: Index; Words: Index)

43 return Lines is

The new line is built in the variable Buffer. The indices K1, K2 are used for copying characters
and L holds the length of a word:

44 Buffer: Lines := (others => ’ ’);

45 K1, K2: Index := 1;

46 L: Index;

The algorithm is implemented by creating an array S of the spaces to be inserted after each
word. This array is initialized to the minimum one space, plus the number of extra spaces that
can be evenly distributed among the words:

47 Spaces: Natural := Width - Length;

48 S: array(1..Words) of Natural :=

49 (others => (Spaces / (Words-1)) + 1);

The first loop in the subprogram distributes the remaining spaces by incrementing elements of
the array S. The spaces are placed on the left or the right of alternate lines to avoid excessive
space on one side of the page:
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50 begin
51 for N in 1 .. Spaces mod (Words-1) loop
52 if Ada.Text_IO.Line mod 2 = 1 then
53 S(Words-N) := S(Words-N) + 1;

54 else
55 S(N) := S(N) + 1;

56 end if;
57 end loop;
58 S(Words) := 0; -- Zero spaces after last word

We now construct the justified line in Buffer, using a loop over the number of words. A search
for the end of a word is carried out ‡61–63 and then the word is moved to Buffer and concate-
nated (&) with the number of extra spaces ‡64:

59 for W in 1..Words loop
60 L := 1;

61 while Line(K1+L) /= ’ ’ loop
62 L := L + 1;

63 end loop;
64 Buffer(K2 .. K2+L + S(W)) := Line(K1 .. K1+L) & (1 .. S(W) => ’ ’);

65 K1 := K1 + L + 1;

66 K2 := K2 + L + S(W);

67 end loop;
68 return Buffer;

69 end Insert_Spaces;

The slice construct (Section 4.2.4) is used to assign consecutive elements of one array to match-
ing elements of another without the use of an explicit loop.

Procedure Put_Word implements the fill operation by inserting a Word of length Word_Length

into the output buffer Line at index Position. The number of Words in the buffer and the
Position to insert are updated and returned:

70 procedure Put_Word(

71 Word: in Lines;

72 Word_Length: in Index;

73 Words: in out Index;

74 Line: in out Lines;

75 Position: in out Index) is

If there is no room for the new word, Insert_Spaces is called to justify the line, which is then
printed and the buffer reset:
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76 begin
77 if Position - 1 + Word_Length > Width then
78 if Words >= 2 then
79 Line := Insert_Spaces(Line, Position-2, Words);

80 end if;
81 Put_Line(Margin & Line(1 .. Width));

82 Line := (others => ’ ’);

83 Position := 1;

84 Words := 0;

85 end if;

When there is room in the buffer, the new word can be placed there:

86 Line(Position .. Position+Word_Length) := Word(1 .. Word_Length) & ’ ’;

87 Position := Position + Word_Length + 1;

88 Words := Words + 1;

89 end Put_Word;

The main loop of the program is written as a separate procedure Main_Loop so that its vari-
ables can be encapsulated in a local scope. The variables are just those needed to call Get_Word
and Put_Word as described above:

90 procedure Main_Loop is
91 Word: Lines;

92 Word_Length: Index;

93 EOF: Boolean;

94 Buffer: Lines := (others => ’ ’);

95 Position: Index := 1;

96 Word_Count: Index := 0;

The main loop is very simple and consists of sequential calls to Get_Word and Put_Word. When
EOF is returned from Get_Word, the buffer is flushed before returning from the procedure:

97 begin
98 loop
99 Get_Word(Word, Word_Length, EOF);

100 exit when EOF;

101 Put_Word(Word, Word_Length, Word_Count, Buffer, Position);

102 end loop;
103 Put_Line(Margin & Buffer(1 .. Position-1));

104 end Main_Loop;

The main subprogram opens the input file, calls the main loop and then closes the input file:
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105 begin
106 Open(Input, In_File, File_Name);

107 Main_Loop;

108 Close(Input);

109 end Justify;

We now discuss the array constructs used in the program.

4.2 Array types

4.2.1 Unconstrained arrays

An array is defined by giving the number of dimensions, their types and bounds of the indices,
and the subtype of the component. All these characteristics, except the bounds of the indices,
are declared in an unconstrained array definition:

§3.6

3 unconstrained_array_definition ::=
array(index_subtype_definition {, index_subtype_definition}) of

component_definition
4 index_subtype_definition ::= subtype_mark range <>

7 component_definition ::= [aliased] subtype_indication | [aliased] access_definition

In all the examples in this chapter, the component_definition will be a subtype_indication (Sec-
tion 2.10); aliased objects and access definitions are discussed in Chapter 12.

§3.6

15 An unconstrained_array_definition defines an array type with an unconstrained first
subtype. Each index_subtype_definition defines the corresponding index subtype to
be the subtype denoted by the subtype_mark. The compound delimiter <> (called a
box) of an index_subtype_definition stands for an undefined range (different objects
of the type need not have the same bounds).

The unconstrained array subtype String is predefined §A.1(37) as follows:

type String (Positive range <>) of Character;

Type String is a one-dimensional array type whose index type is Integer constrained to posi-
tive values by the subtype Positive §3.4.5(13); the component type is Character. The bounds
of any particular string are not part of its type, as indicated by the syntax range <>.
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The declaration of the predefined procedure Put for strings §A.10.1(48) is:

procedure Put(Item : in String);

Since the type of the parameter is an unconstrained array type, the procedure can be called
with any string as its actual parameter, regardless of its bounds.

To create an object (variable or constant) of type String, an index constraint §3.6.1 must be
given to specify the bounds. There are three ways to supply an index constraint:

• An explicit index constraint can be given as part of the subtype indication in an object dec-
laration:

S: String(1..80);

The range §3.5(3) 1..80 explicitly gives the lower and upper bounds of the object.
• A constrained subtype can be declared and then used as the subtype of an object declaration:

subtype Lines is String(1..80);

Buffer: Lines := (others => ’ ’);

The lower and upper bounds of the object Buffer are determined by the subtype Lines, so
they need not be explicitly given in the initial value.

• If an initial value is given for an array, the compiler can determine the index constraint
§3.3.1(9) from the number of components in the initial value:

File_Name: constant String := "example.tex";

Current_File_Name: String := File_Name;

The bounds of both objects are 1..11.

The expression in an object declaration need not be a static constant. An input file name can
obtained at run-time by calling a function that returns an argument from the command line:

Input_Name: constant String := Ada.Command_Line.Argument(1);

Then, an output file name can be obtained by modifying the input file name:

Output_Name: constant String := "output-" & Input_Name;

This example emphasizes that the order of the elaboration of declarations is linear §3.11(7). The
elaboration of Input_Name results in the creation of the string object and the assignment of an
initial value; this object can be used in computing the initial value of Output_Name.

4.2.2 Operations on arrays

Assignment and the equality operators are defined for array types: you can assign an array
object to another one, or compare two objects for equality, provided that they are of the same
type.
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An indexed component §4.1.1 is obtained by appending a parenthesized expression (or se-
quence of expressions for multi-dimensional arrays) to the name of an array object.

For any array object A the following attributes are defined §3.6.2:

A’First The lower bound of the index of A
A’Last The upper bound of the index of A
A’Range The range A’First..A’Last

A’Length The number of components in A

Note that A’First and A’Last are indices, not components:

A( (A’First + A’Last) / 2 ); -- Middle element of the array

( A(A’First) + A(A’Last) ) / 2; -- Average of first and last elements

There are versions of the attributes for multi-dimensional arrays §3.6.2(4,6,8,10).
The array attributes are also defined for constrained array subtypes like Lines (‡3 of the case

study justify), but not, of course, for unconstrained subtypes like String.
It is impossible to over-emphasize the importance of using attributes. Once a constrained

array subtype or an array object has been declared, subsequent declarations and statements
should use the attributes, so that changes in the array bounds are automatically reflected in the
source code. For example, given the following declarations ‡7,8,15:

subtype Lines is String(1..80);

subtype Index is Integer range 0..Lines’Last;

Width: constant Index := Lines’Length - 2*Margin’Length;

changing 80 to 120 does not require any additional change to the source code.
Alternatively, you can declare constants for bounds:

Line_Width: constant Integer := 80;

subtype Line_Index is Integer range 1..Line_Width;

subtype Lines is String(Line_Index);

In this case, Line_Width and Lines’Last are two names for the same value.

Language Comparison

Ada, unlike most other languages, uses rounded parentheses rather than square
brackets to denote an indexed component. An array is properly seen as a map-
ping (that is to say, a function) from an index value to a component value, rather
than simply as a contiguous piece of storage. Since the syntax of indexed compo-
nents is the same as that of function calls, reading a component of an array A(I)

can be replaced by a function call, and conversely, without otherwise modifying
the program. See the case study country4 below.
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Language Comparison

In Ada, an entire array can be assigned to a variable of the same array subtype
provided that they are of the same length (see the explanation of sliding in Sec-
tion 4.2.4). In C, the name of an array is a synonym for a pointer to the first
element of the array, so a1 = a2 assigns a pointer, not an element. Similarly, in
Java, a1 = a2 assigns the reference to an array object in a2 to the variable a1, and
the elements are not copied.

4.2.3 Aggregates

Recall that a type consists of a set of values and a set of operations on those values. Strangely,
most programming languages have no way of denoting a value of an array type! You are re-
quired to work explicitly in terms of components:

type Vector (Integer range <>) of Float;

subtype Samples is Vector(0..255);

procedure Set_To_Zero(Sample: in out Samples) is
begin

for S in Sample’Range loop
Sample(S) := 0.0;

end loop;
end Set_To_Zero;

In Ada, values can be dynamically constructed for all composite types.

§4.3

1 An aggregate combines component values into a composite value of an array type,
record type, or record extension.

Array aggregates have a very rich syntax §4.3.3. The simplest form is to use others to give
every component the same value:

Margin: constant String(1..10) := (others => ’ ’);

The procedure Set_To_Zero, above, can be replaced by a simple assignment of an aggregate:

Sample: Samples := (others => 0.0);

Named array aggregates §4.3.3(4–5,18) can be used to associate index values with components:
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country4

1 Car_to_Country: constant array(Cars) of Countries :=

2 ( Ford..Dodge => US,

3 Rover..Rolls_Royce => UK,

4 Honda..Toyota => Japan,

5 Peugeot | Renault | Citroen => France,

6 BMW | Volkswagen | Opel => Germany,

7 Daewoo..Hyundai => Korea);

The function Car_to_Country in the case study country1 has been replaced by an array without
otherwise modifying the program!

When named aggregates are used, the order in which the component associations are written
is not significant; others is allowed as a final component association to cover index values not
explicitly named:

Step: Samples := (32..63 => 0.5, 0..31 => 1.0, others => 0.0);

Positional array aggregates §4.3.3(3) list the values of the components in increasing order of
indices. An others choice is allowed as the final component in a positional aggregate §4.3.3(3):

Initial_Sample: Samples := (0.1, 0.2, 0.3, 0.4, others => 0.0);

Array aggregates cannot mix positional and named notation §4.3.3(2).

Aggregates are expressions §4.4(7) and can be used in any context where an expression is
allowed, such as in an assignment statement, a return statement or as an actual parameter. Fur-
thermore, the components of the aggregate are also expressions, and can be dynamically com-
puted. In the following function, the sequence of statements is a single return statement whose
expression is a positional array aggregate, all of whose components are dynamic expressions
that depend on the formal parameters:

subtype Vector3 is Vector(1..3);

function "+"(Left, Right: Vector3) return Vector3 is
begin

return ( Left(1)+Right(1), Left(2)+Right(2), Left(3)+Right(3) );

end "+";

When others is used, the indices of the aggregate are taken from the subtype indication:

V1: Vector(1..20) := (others => 1.0); -- OK

V2: Vector3 := (others => 1.0); -- OK

V3: Vector := (others => 1.0); -- Error

See Section 4.6 for more detail.
Aggregates for n-dimensional arrays are constructed from subaggregates of n− 1-dimensional

arrays §4.3.3(6):
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type Matrix (Integer range <>, Integer range <>) of Float;

M: Matrix(1..3, 0..2) :=

((1.0, 2.0, 1.0), (2=>1.0, 1=>0.5, 0=>0.0), (others => 0.0));

Aggregates are always to be preferred over explicit loops because of the check that the num-
ber of components of the aggregate matches the context in which it is used.

Language Comparison

Java supports composite values when initializing an array, but not in other con-
texts like expressions in assignment statements and actual parameters.

4.2.4 Slices and sliding

Slices reduce the need for explicit loops when manipulating arrays.

§4.1.2

2 slice ::= prefix(discrete_range)

5 A slice denotes a one-dimensional array formed by the sequence of consecutive
components of the array denoted by the prefix, corresponding to the range of values
of the index given by the discrete_range.

Line ‡64 from the case study justify is repeated here:

Buffer(K2 .. K2 + L + S(W)) := Line(K1 .. K1 + L) & (1 .. S(W) => ’ ’);

A slice can be a variable, as shown on the left-hand side of the assignment statement, where a
subsequence of the components of Buffer is assigned to. A slice can also be an expression, as
shown by the slice of Line, which is concatenated to the aggregate of blanks. Without slices, the
above statement would have to be written as two loops or as a loop with an inner if-statement.
Note that the bounds of the range defining the slice are dynamically computed at run-time.

The following program shows a function that creates a palindrome from the string supplied
as the actual parameter:

palin

1 with Ada.Text_IO; use Ada.Text_IO;

2 procedure Palin is
3 function Palindrome(S: in String) return String is
4 T: String(1..2*S’Length);
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The parameter S is copied twice to the target string T. The first copy in the original order of the
source string can be done using a slice, while the second copy in the reverse order requires an
explicit loop:

5 begin
6 T(1..S’Length) := S;

7 for N in S’Range loop
8 T(T’Length - (N-S’First)) := S(N);

9 end loop;
10 return T;

11 end Palindrome;

The main program calls the function:

12 S1: String := "Hello world";

13 S2: String(100..100+2*S1’Length-1) := Palindrome(S1);

14 S3: String(1..2*S2’Length) := Palindrome(S2);

15 begin
16 Put_Line(S1);

17 Put_Line(S2);

18 Put_Line(S3);

19 end Palin;

The formal parameter of the function Palindrome is of type String, which is an unconstrained
array subtype. The rules of parameter passing §6.4.1 specify that the actual parameter is con-
verted to the formal parameter. For arrays, this means:

§4.6

38 If the target subtype is an unconstrained array subtype, then the bounds of the result
are obtained by converting each bound of the value of the operand to the
corresponding index type of the target type. For each nonnull index range, a check is
made that the bounds of the range belong to the corresponding index subtype.

Therefore, within the function, the indices of the formal parameter are used: from 1 to S’Length.
Recall that a slice can be used either as a variable or as an expression. Consider the following

program for swapping the halves of an even-length array:

swap

1 with Ada.Text_IO; use Ada.Text_IO;

2 procedure Swap is
3 S: String := "HelloWorld";

4 Temp: String := S(1..S’Length/2);

The variable Temp is initialized with the first half of the string S.
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The second half of S is assigned to the first half, and, finally, the string in Temp is assigned to
the second half of S:

5 begin
6 S(1..S’Length/2) := S(S’Length/2+1..S’Length);

7 S(S’Length/2+1..S’Length) := Temp;

8 Put_Line(S);

9 end Swap;

In ‡6, one slice is the source expression of the assignment statement, while the other is the
target variable. The subtype of the target is String(1..5), which is not the same as the sub-
type String(6..10) of the source. Assignment is permitted if the types are the same, while the
subtypes need only be convertible.

§5.2

3 The execution of an assignment_statement includes the evaluation of the expression
and the assignment of the value of the expression into the target. . . .

11 The value of the expression is converted to the subtype of the target. The conversion
might raise an exception (see 4.6).

In the palindrome case study, the formal parameter was unconstrained and took its bounds
from the expression in the actual parameter. For constrained arrays, the actual array will auto-
matically be converted to the subtype of the formal array, and this will succeed if the number
of components is the same in both the source and the target. The operation is called sliding,
because we can think of sliding the indices of the source to match the indices of the target.

§4.6

37 If the target subtype is a constrained array subtype, then a check is made that the
length of each dimension of the value of the operand equals the length of the
corresponding dimension of the target subtype. The bounds of the result are those of
the target subtype.

4.2.5 Names and prefixes*

Much of the syntax of programming languages consists of giving names to entities; in a lan-
guage as rich as Ada, the list of named entities is quite long:
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§4.1

1 Names can denote declared entities, whether declared explicitly or implicitly (see
3.1). Names can also denote objects or subprograms designated by access values; the
results of type_conversions or function_calls; subcomponents and slices of objects and
values; protected subprograms, single entries, entry families, and entries in families
of entries. Finally, names can denote attributes of any of the foregoing.

The ARM frequently uses the syntactic category prefix §4.1(4) as a general term that includes
both names and implicit deferences as explained in Section 5.4.3.

4.3 Constrained array subtypes and objects*

Unconstrained arrays are flexible because you can declare a subprogram with formal param-
eters of the unconstrained subtype, and then call the subprogram with actual parameters that
are of any subtype obtained by constraining the type. Very often, however, the nature of the
problem is such that the bounds will be identical for all arrays of the type. In this case, you can
reduce the number of names in the program and simplify the implementation of parameter
passing by declaring a constrained array subtype §3.6(5,16):

type Spatial_Transform (1..3, 1..3) of Float;

type Telephone_Key is (

One, Two, Three, Four, Five, Six, Seven, Eight, Nine, Star, Zero, Hash);

type Key_State (Telephone_Key) of Boolean;

Pressed: Key_State := (others => False);

Of course, objects and formal parameters of type Key_State or Spatial_Transform are neces-
sarily constrained and cannot have further constraints applied to them §3.6.1(5):

First_Row: Key_State(One..Three); -- Error

Even if an array subtype is constrained, you should always use attributes so that expressions
need not be modified if the bounds are changed.

The following statements show four ways of specifying the range of a loop that traverses the
array Pressed; from top to bottom, they are progressively more robust to possible changes in
the definition of Pressed:

for K in One .. Hash loop Pressed(K) := ...; end loop;
for K in Telephone_Key loop Pressed(K) := ...; end loop;
for K in Key_State’Range loop Pressed(K) := ...; end loop;
for K in Pressed’Range loop Pressed(K) := ...; end loop;
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A further shortcut is possible if you want to declare an array object, that is, a single array. This
is one of four cases in Ada where an object can be declared without giving an explicit type name
§3.3.1(2). (The other cases are tasks, protected objects, and objects of an anonymous access
type.) Since the type is anonymous §3.2.1(7), the array cannot be used as an actual parameter
because all formal parameters have named types; however, a type conversion can be used.
Array objects are primarily used for objects that bear no relation to any other object, such as a
global table of constants:

Sine_Table: constant array (0..90) of Float := (0.0, ..., 1.0);

4.4 Type conversion for arrays*

In Ada, type conversion is allowed only in carefully defined situations that will not break the
type system §4.6. One permissible case is that arrays that “look” the same are convertible §4.6(9–
12); that is, they can be converted to each other §4.6(36–39). Consider, for example, a program
built from a subsystem that samples data from a sensor and then calls a subprogram from a
generalized library:

type Samples is array(Integer range <>) of Float;

Data: Samples(0..1023) := Read_Sensor;

type Vector is array(Integer range <>) of Float;

procedure Transform(V: in out Vector);

Transform(Vector(Data));

The conversion succeeds because the types are both one-dimensional arrays with the same
index type and the same component type.

4.5 Operations on one-dimensional arrays*

Most languages support binary operations that concatenate two strings or a string and a char-
acter. Since a string is nothing more than a one-dimensional array of characters (with a special
syntax for literals), Ada generalizes this operation to all one-dimensional arrays:
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§4.5.3

3 The concatenation operators & are predefined for every nonlimited, one-dimensional
array type T with component type C. They have the following specifications:

4 function "&"(Left : T ; Right : T ) return T

function "&"(Left : T ; Right : C ) return T

function "&"(Left : C ; Right : T ) return T

function "&"(Left : C ; Right : C ) return T

Lexicographic order between two one-dimensional arrays whose component is of a discrete type
may be tested using the relational operators §4.5.2(26). The restriction to discrete components
is required because a predefined relational operator on the components is assumed.

The logical operators may be used on one-dimensional arrays whose component type is a
boolean type §4.5.1. This is not intended for bitwise operations on numbers for which modular
types §3.5.4 (Section 13.4) should be used.

4.6 The context of array aggregates*

Consider the following sequence of declarations:

S1: String(1..5) := (1..5 => ’*’); -- OK

S2: String(1..5) := (2..6 => ’*’); -- OK

S3: String := (1..5 => ’*’); -- OK

S4: String := (2..6 => ’*’); -- OK

S5: String := (0..4 => ’*’); -- Raises Constraint_Error

The index constraints in S1 and S2 match the discrete range defined by the named component
of the aggregate (sliding if necessary). The index constraints of S3 and S4 can be determined
from the ranges of the aggregate. S5 is legal—it will compile correctly—but Constraint_Error
will be raised because zero is not within the range of the index subtype Positive of String
§4.3.3(28).

Consider now declarations with aggregates that have an others choice:

S6: String(1..5) := (others => ’*’); -- OK

S7: String := (others => ’*’); -- Error

The meaning of others in the aggregate for S6 can be determined from the index constraint of
the variable. The declaration of S7 is illegal because it is not possible to determine the bounds
of the aggregate.



4.6 The context of array aggregates* 57

§4.3.3

10 An others choice is allowed for an array_aggregate only if an applicable index
constraint applies to the array_aggregate. An applicable index constraint is a
constraint provided by certain contexts where an array_aggregate is permitted that
can be used to determine the bounds of the array value specified by the aggregate.
. . .

Paragraphs §4.3.3(11–15) go on to specify the contexts where an others choice is permitted,
and §4.3.3(24–27) specifies the method for determining the bounds of an array aggregate.

The basic problem is this: for a named aggregate without others such as (1..5 => ’*’), the
index bounds of the aggregate are obvious. But for a positional aggregate (10.0,6.2,1.4), or
for any aggregate with others, the index bounds cannot be deduced from the aggregate itself.
Instead, they are determined from the index constraint of the object to which the aggregate
is assigned. It is not essential to learn the rules in detail; if the compiler refuses to accept an
aggregate, you can easily specify the bounds in more detail, either in the index constraint (as
for S6) or in the aggregate (as for S3). Specifying both, as in S1, should usually be avoided
so that if the bounds change, you only have to change one or the other. If there is a problem,
qualification (see Section 5.4.5) can sometimes help.

Projects

The following projects ask you to implement algorithms for image processing, where we as-
sume that the data consists of square matrices of values in the range 0..255:

1. Write a function to return the histogram of an image: an array whose index is 0..255 and
whose components are the number of times that each value appears in the image.

2. Write a procedure to return a transformation of an image by replacing each value above the
median of the histogram to 255 and each value below or equal to the median to 0.

3. Write a procedure to smooth the image by replacing each non-edge element by the average
of its four neighbors. Repeat for the eight neighbors, including the diagonal ones.
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Quizzes

Quiz 1:

type Rec is
record

One, Two, Three, Four, Five: Integer;

end record;
R: Rec := (1, 2, Four=>4, Five=>5, Three=>3);

type Vector is array(1..5) of Integer;

V: Vector := (1, 2, 3=>3, 4=>4, 5=>5);

Quiz 2:

type Name is array(Integer range <>, Integer range <>) of Character;

Names: constant Name(1..4, 1..6) :=

("Kirk ", "Spock ", "McCoy ", "Scotty");

Put(Names(4,1));

Quiz 3:

X: String := "abcd";

procedure P(S: String) is
begin

for I in S’Range loop
Put_Line(S(I) & ’*’);

end loop;
end P;

P(X(1..0));

Quiz 4:

type Vector is array(Integer range <>) of Integer;

V1: Vector(1..5) := (6..10 => 0);

V2: Vector(1..5) := (6 => 1, others => 0);

Quiz 5:

N: Integer;

procedure P(T: String) is
begin

Put(T’Last);

end P;

Get(N);

P((1..N => ’X’));

P((1..10 => ’X’, 11..N => ’Y’));



Chapter 5

Elementary Data Structures

This chapter is an introduction to the construction of data structures in Ada using arrays,
records and access types. Here we discuss the language support for implementing data struc-
tures; their encapsulation into abstract data types will be presented in the next chapter.

The case study is the implementation of a priority queue, first using arrays and then using
pointers. A priority queue is a data structure that stores items so that retrieval of the item of the
highest priority can be done efficiently, although insertion of new items may be less efficient.
In the case study, we assume that the items are simply integers and that higher-priority items
have lower values. This is a common situation: customers in a store take numbered tickets and
the lowest outstanding number is served first.

5.1 Case study: array priority queue

The elements of the priority queue are stored in an array whose lower bound is 0 (the lower
bound of the subtype Natural) and whose upper bound is determined when the array is al-
located. The queue itself is a record with three fields: (a) an array field Data, (b) Size, which
contains the size of the array, and (c) Free, which holds an index to the first free position in the
array:
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The elements of the queue are stored in increasing order as shown in the diagram. The element
with the highest priority (the smallest value) is stored in the first position and can be retrieved
in constant time. Inserting a new element is necessarily less efficient, because a search must be
made for the correct place to insert the element and existing elements must be moved to free
up the space.

59
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The data structure is declared as a record with three components. The component Size is a
discriminant, which is used to specify the index constraint of the component Data. Discriminants
are discussed in detail in Section 11.4; for now, it is sufficient to know that a discriminant is a
read-only component of a record whose value is supplied by a constraint when a record object
is declared ‡41.

progpqa

1 with Ada.Text_IO; use Ada.Text_IO;

2 with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;

3 procedure ProgPQA is
4 type Vector is array(Natural range <>) of Integer;

5 type Queue(Size: Positive) is
6 record
7 Data: Vector(0..Size);

8 Free: Natural := 0;

9 end record;
10

11 Overflow, Underflow: exception;

The component Free has a default expression, which is the initial value given to a compo-
nent whenever a record object is declared §3.8(6), §3.3.1(18). Two exceptions have been de-
clared: Underflow will be raised when attempting to get an element from an empty queue and
Overflow will be raised when attempting to put an element to a full queue.

The operations supported by the queue are: Get the lowest number, Put a new number in
the queue, and check if the queue is Empty. The function Empty is trivial:

12 function Empty(Q: in Queue) return Boolean is
13 begin
14 return Q.Free = 0;

15 end Empty;

Since the Queue is modified by the Put operation, its parameter mode must be in out:

16 procedure Put(I: in Integer; Q: in out Queue) is

The procedure Put first checks if there is room in the queue for more elements; if not, it exe-
cutes the raise statement for the exception Overflow. The exception is propagated to the main
procedure and handled, as discussed below.

17 Index: Integer range Q.Data’Range := 0;

18 begin
19 if Q.Free = Q.Size then
20 raise Overflow;

21 end if;
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The existing items in the queue are stored in Q.Data(0..Q.Free-1). A sentinel search is per-
formed to find the place to put the new element. Data, the array component of the queue, has
Size+1 elements, so there is always a place to store the sentinel. The new element I is placed
in Q.Data(Q.Free) prior to beginning the search for an item greater than or equal to I. The
sentinel ensures that even if I is greater than all existing items, the loop will terminate.

22 Q.Data(Q.Free) := I;

23 while Q.Data(Index) < I loop
24 Index := Index+1;

25 end loop;

When the correct place has been found, the subsequent elements are moved to the right to free
up a position for the new element. Slices and sliding are used.

26 if Index < Q.Free then
27 Q.Data(Index+1..Q.Free) := Q.Data(Index..Q.Free-1);

28 Q.Data(Index) := I;

29 end if;
30 Q.Free := Q.Free+1;

31 end Put;

The element with the highest priority is always in the first position of the array. To remove
it, simply copy the last element and move the other elements one place to the left:

32 procedure Get(I: out Integer; Q: in out Queue) is
33 begin
34 if Q.Free = 0 then
35 raise Underflow;

36 end if;
37 I := Q.Data(0);

38 Q.Free := Q.Free-1;

39 Q.Data(0..Q.Free-1) := Q.Data(1..Q.Free);

40 end Get;

Get is implemented as a procedure rather than as a function, because a function is allowed to
have only in parameters. An alternate solution is to use access parameters (Section 12.6).

To test the program, we declare a queue with ten elements and an array with test data or-
dered arbitrarily:

41 Q: Queue(Size => 10);

42 I: Integer;

43 Test_Data: array(Positive range <>) of Integer :=

44 (10, 5, 0, 25, 15, 30, 15, 20, -6, 40);

These ten elements are inserted into the queue and then removed:
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45 begin
46 for N in Test_Data’Range loop
47 Put(Test_Data(N), Width => 5);

48 Put(Test_Data(N), Q);

49 end loop;
50 New_Line;

51 -- Put(17, Q); -- Test overflow

52

53 while not Empty(Q) loop
54 Get(I, Q);

55 Put(I, Width => 5);

56 end loop;
57 New_Line;

58 Get(I,Q); -- Test underflow

59 exception
60 when Underflow => Put_Line("Underflow from queue");

61 when Overflow => Put_Line("Overflow from queue");

62 end ProgPQA;

The program is correct if the elements are removed in increasing order.
The exception handlers at the end of the procedure print messages and terminate. To test for

overflow, remove the comment from ‡51 and recompile.

5.2 Records

§3.8

1 A record object is a composite object consisting of named components. The value of
a record object is a composite value consisting of the values of the components.

The difference between an array and a record is that a record can have components of differ-
ent types, whereas all the components of an array are of the same type. Arrays enable dynamic
access to an element through indexing, but a record component can be accessed only by select-
ing a component by name. Selection of a record component is done using the familiar dotted
notation §4.1.3(2). The selected component is itself an object or value, and further indexing or
selection operations can be applied as appropriate for the type of the component. In the case
study, Q is of type Queue, Q.Data is of type Vector, and Q.Data(Index) is of type Integer.

Aggregates, both positional and named, can be used to create values of a record type §4.3.1.
others is also permitted, but it is not as useful as it is for array aggregates, because record
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components are normally of different types. In an aggregate, components for the discriminants
must also be given.

The following examples show some legal aggregates for values of the type Queue; note that
either a subaggregate or an array value may be given for the component Data:

V1: Vector(0..10) := (0,-1,-2,-3,-4,-5,-6,-7,-8,-9,-10);

Q1: Queue := (10, (1,2,3,4,5,6,7,8,9,10,11), 0);

Q2: Queue := (10, (1..4 => 7, others => 1), 0);

Q3: Queue := (Data => V1, others => 10);

Q4: Queue := (Size => 10, Data => (others => 1), Free => 0);

Q5: Queue := (Free => V1’First, Data=> V1, Size => V1’Length-1);

An aggregate need not supply an explicit value for a component; instead, a box can be used
to indicate that the value of this component of the aggregate should be the default value
§4.3.1(4,19) that is specified in the declaration of the record type (or the default value for the
subtype if there is no explicit default). Thus Q4 could also be written as:

Q4: Queue := (Size => 10, Data => (others => 1), Free => <>);

The box notation is important for limited types; see Section 6.6.1.

Ada 95

Ada 95 does not have the box notation for default values, so explicit expressions have to be
given for all components in a record aggregate.

Language Comparison

An Ada record is the same as a record in Pascal or a struct in C. In Java there
is no separate construct for creating compound data types from components. An
Ada record would be equivalent to a Java class that contains declarations of fields
but not of methods.

5.3 Case study: tree priority queue

Data structures like lists and trees are created using pointers to memory that is dynamically
allocated. (Pointers to objects declared as variables or constants and to subprograms can also be
created; see Section 12.2.) The second implementation of a priority queue uses an (unbalanced)
binary tree, where the value of the data at a node is greater than all the values in its left subtree,
and less than or equal to all the values in its right subtree:
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A Node is implemented as a record containing one component of type Integer and two
components, Left and Right, of the access type Link:

progpqt

1 with Ada.Text_IO; use Ada.Text_IO;

2 with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;

3 procedure ProgPQT is
4 type Node;

5 type Link is access Node;

6 type Node is
7 record
8 Data: Integer;

9 Left, Right: Link;

10 end record;

The types are recursive since Node contains a component of type Link, which is itself defined
as an access to Node. In general, a declaration is not visible until it is complete; however, it is
possible to give an incomplete type declaration ‡4 §3.10.1 that just names the type and then to
complete it later. Once the type Node has been declared, the access type Link can be declared
and then used within the completion ‡6–10 §3.1.10(3) of Node. (See Section 6.7 for restrictions on
where the completion must occur.)

The queue itself is declared as a separate type even though it is implemented as a record
with just one component of type Link:

11 type Queue is
12 record
13 Root: Link;

14 end record;
15

16 Overflow, Underflow: exception;

The exceptions Overflow and Underflow are declared as before to maintain the same interface
to the data structure, although the check for Overflow will not implemented.

An empty tree is simply a tree with a null root:
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17 function Empty(Q: in Queue) return Boolean is
18 begin
19 return Q.Root = null;
20 end Empty;

A recursive algorithm is used to put elements into the queue. Since the recursion is on the
nodes, not on the queue, the recursive procedure ‡21–30 will overload the interface procedure
‡32–35 and be called from it ‡34 to start the recursion. To insert an element, the tree is traversed
recursively, going left if the new element is less than the value stored in a node, and going right
if it is greater than or equal to the value in the node. When a node is reached whose link is null,
a new node is created for the item and linked into the tree:

21 procedure Put(I: in Integer; Node_Ptr: in out Link) is
22 begin
23 if Node_Ptr = null then
24 Node_Ptr := new Node’(I, null, null);
25 elsif I < Node_Ptr.Data then
26 Put(I, Node_Ptr.Left);

27 else
28 Put(I, Node_Ptr.Right);

29 end if;
30 end Put;

31

32 procedure Put(I: in Integer; Q: in out Queue) is
33 begin
34 Put(I, Q.Root);

35 end Put;

The procedure Get retrieves the smallest element in a tree by recursively traversing the leftmost
path until a leaf is reached; the leaf is then removed and the pointer of its parent updated:

36 procedure Get(I: out Integer; Node_Ptr: in out Link) is
37 begin
38 if Node_Ptr.Left = null then
39 I := Node_Ptr.Data;

40 Node_Ptr := Node_Ptr.Right;

41 else
42 Get(I, Node_Ptr.Left);

43 end if;
44 end Get;
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45 procedure Get(I: out Integer; Q: in out Queue) is
46 begin
47 if Q.Root = null then
48 raise Underflow;

49 end if;
50 Get(I, Q.Root);

51 end Get;

The node becomes garbage and can be deallocated (see Section 5.4).
The main procedure is the same as the one for the array implementation except that the

record for the queue has no discriminant:

52 Q: Queue;

53 I: Integer;

54 Test_Data: array(Positive range <>) of Integer :=

55 (10, 5, 0, 25, 15, 30, 15, 20, -6, 40);

56 begin
57 -- As before

58 end ProgPQT;

Since overflow is not implemented, it needed not be tested for in the main program.

5.4 Access types

In this section, we discuss named access types; anonymous access types, access parameters and
access discriminants are discussed in Chapter 12.

§3.10

1 A value of an access type (an access value) provides indirect access to the object or
subprogram it designates.

The type of the object that is designated is called the designated subtype §3.10(10). In the follow-
ing declarations, Link is an access type and Node is its designated subtype. The variables L1

and L2 are access objects that can hold values designating objects of type Node only:

type Link is access Node;

L1, L2: Link;

As with all (nonlimited) types, pointers can be assigned and compared for equality.
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Language Comparison

The access types described here are similar to pointers in Pascal, while pointers
in C are more flexible because they can point to any object. Chapter 12 discusses
general and anonymous access types in Ada that expand the capabilities of ac-
cess types without allowing the dangerous constructs of C. Java does not have
explicit pointers. Instead, every non-primitive type is implemented with an im-
plicit pointer called a reference.

5.4.1 Null values

§3.10

13 For each access type, there is a null access value designating no entity at all, which
can be obtained by (implicitly) converting the literal null to the access type. The null
value of an access type is the default initial value of the type. . . .

Objects of an access type have a default initial value of null rather than whatever “garbage”
happens to be in memory, so that an attempt to dereference the object will either return a valid
value or raise an exception when the null value is dereferenced.

The type of null is universal_access. The concept of universal types is explained in Sec-
tion 13.1.1, but in this context it simply means that the literal null can be implicitly converted
to any access type §3.10(13). Variables of access types that have no explicit initial value have an
implicit initial value of null §3.3.1(11).

5.4.2 Allocators

§4.8

1 The evaluation of an allocator creates an object and yields an access value that
designates the object.

2 allocator ::=
new subtype_indication | new qualified_expression

4 An initialized allocator is an allocator with a qualified_expression. An uninitialized
allocator is one with a subtype_indication. . . .

The allocation of a designated object can be combined with setting its initial value by using an
initialized allocator as shown in ‡24 of the case study:
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Node_Ptr := new Node’(I, null, null);

This ensures that all components of the designated object are properly initialized.

Language Comparison

An initialized allocator is similar to a constructor in Java that assigns the values
of its parameters to the instance variables. In Ada, you don’t need to write code
to achieve this effect.

5.4.3 Dereference

Dereferencing a value of an access type returns a value of the designated type.

§4.1

13 The evaluation of a dereference consists of the evaluation of the name and the
determination of the object or subprogram that is designated by the value of the
name. A check is made that the value of the name is not the null access value.
Constraint_Error is raised if this check fails. The dereference denotes the object or
subprogram designated by the value of the name.

Since most designated types are records, the dereference is usually followed immediately
by the selection of a component; to simplify the notation, the dereference operation is implicit
in Ada. Thus Node_Ptr.Left denotes an implicit dereference of the access object Node_Ptr,
followed by a selection of the component Left from the designated record.

Occasionally, it is necessary to explicitly write the dereference operation, for example, to
assign the entire contents of one designated object to another. Explicit deference is indicated by
an artificial component named all. Consider the declarations and the statement:

Ptr1: Link := new Node’(1, null, null);
Ptr2: Link := new Node’(2, null, null);

Ptr1 := Ptr2;

After executing this statement, both variables point to the same designated object—the one
whose component Data has the value 2—and the other object is now garbage. On the other
hand, if we had written:

Ptr1.all := Ptr2.all;

the two variables still point to two designated objects, but both of them have 2 for the value of
the component Data.
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If the designated type is elementary, an explicit dereference must be used, because there are
no components to select:

type Integer_Pointer is access Integer;

IP: Integer_Pointer := new Integer’(4);

Put(IP.all);

Language Comparison

Pascal and C both require explicit dereference: Node_Ptr^.Left and
(*Node_Ptr).Left, respectively. C has an alternative syntax for dereferencing
followed by selection: Node_Ptr->Left. In Java, of course, all dereferencing is
implicit.

5.4.4 Unchecked deallocation*

Explicit deallocation can lead to dangling pointers, which can cause serious run-time errors:

Ptr1: Link := new Node’(1, null, null);
Ptr2: Link := new Node’(2, null, null);

Ptr1 := Ptr2;

Deallocate(Ptr2);

-- Lots of statements

Ptr1.Data := 3; -- Where does the 3 go to?!

Designated objects that are no longer accessible become garbage. An Ada implementation is
allowed to—but not required to—support garbage collection §13.11.3(6,8); in practice no imple-
mentation does so.

Explicit deallocation of storage allocated by an allocator is permitted, but the process is
somewhat difficult. There is a generic procedure Ada.Unchecked_Deallocation §13.11.2(3):

generic
type Object(<>) is limited private;
type Name access Object;

procedure Ada.Unchecked_Deallocation(X: in out Name);

Object is the designated subtype and Name is the access subtype. The use of the word Unchecked

is intended to inform the reader of your program that the type system is potentially broken. The
procedure must be instantiated with the appropriate types; for our case study, the instantiation
would be:
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procedure Free is new Ada.Unchecked_Deallocation(Node, Link);

We could then call the procedure Free with a parameter of type Link such as Node_Ptr. The
storage pointed to by Node_Ptr would be freed and Node_Ptr set to null §13.11.2(7).

An implementation is advised to actually reclaim storage when the subprogram is called,
though it is not required to do so §13.11.2(17). In practice, all implementations reclaim storage.

5.4.5 Qualification*

Syntactically, an initialized allocator is a qualified aggregate:

Node_Ptr := new Node’(I, null, null);

§4.7

1 A qualified_expression is used to state explicitly the type, and to verify the subtype, of
an operand that is either an expression or an aggregate.

2 qualified_expression ::=
subtype_mark’(expression) | subtype_mark’aggregate

4 The evaluation of a qualified_expression evaluates the operand (and if of a universal
type, converts it to the type determined by the subtype_mark) and checks that its
value belongs to the subtype denoted by the subtype_mark. The exception
Constraint_Error is raised if this check fails.

Qualification is used to resolve ambiguity in contexts such as overloaded subprograms. For
example, suppose that the following two overloaded procedures have been defined:

procedure Display(Item: Integer);

procedure Display(Item: Long_Integer);

Then the call Display(28) is ambiguous, because 28 is a literal convertible to both Integer

type and Long_Integer type. Qualification can be used to specify which procedure to call:

Display(Long_Integer’(28));

A similar situation can occur with overloaded enumeration literals:

type RGB is {Red, Green, Blue);

type Signal is {Red, Yellow, Green);

procedure Print(C: RGB);

procedure Print(C: Signal);

Print(RGB’(Green));



5.4 Access types 71

Be careful not to confuse qualification with type conversion, which performs a conversion
of a value from one type to another. Qualification is used purely to identify the type or verify
the subtype of an expression or aggregate. For example, if N is a variable of type Integer,
then Float(2*(N+1)) is a legal type conversion, because it is always legal to convert from one
numeric type to another, but Float’(2*(N+1)) is illegal because 2*(N+1) is not of type Float.

Projects

1. Implement a priority queue as a sorted linked list.
2. Implement a priority queue as a binary heap.
3. Add deallocation of nodes to the tree implementation of the priority queue.
4. Rather than deallocate nodes, cache them in a linked list; when a new node is needed, it is

taken from the cache, if possible, and only if the cache is empty is a new node allocated.

Quizzes

Quiz 1:

type Rec is
record

V: String;

end record;

Quiz 2:

type T1 is null record;
X, Y: T1 := (null record);

Put(Boolean’Image( X = Y ));

Quiz 3:

S: String := "Hello world";

S(2..5) := S(1..4);

Put(S);



72 5 Elementary Data Structures

Quiz 4:

procedure Proc(Stop: Character) is
Start: constant Character := ’A’;

type R(C: Character) is
record

case C is
when Start .. Character’Succ(Start) => I: Integer;

when Stop => B: Boolean;

when others => F: Float;

end case;
end record;

begin
null;

end Proc;



Chapter 6

Packages and Abstract Data Types

6.1 Modularization

Since a large software system must be decomposed into modules, the structures in a program-
ming language for creating modules and for describing their interconnections determine the
language’s suitability for the development of complex systems. It is important to distinguish
among three uses of modules:

• A module as a unit of design and management. Even before a single executable statement is
written, the software will be designed as a system of modules. The project manager will
then assign the responsibility for the development of each module to a software engineer or
team of engineers.

• A module as a unit of abstraction. To abstract is to hide details of a resource so that it can be
used without knowledge of its internal structure.

• A module as a physical unit of source code. Configuration management of a large software
system requires a system for storing source code modules and for building versions of the
software.

In Ada, the package is the unit of design. A package is divided into a specification and a body,
which are separate physical units of source code. The specification and the body also serve to
encapsulate abstractions by separating the interface from the implementation. Abstract data
types in Ada are built by combining packages with private types that allow a client of an inter-
face to use the type according to its public properties, while the details of its implementation
remain hidden.

The development of very large programs is facilitated by child units, which provide a hi-
erarchial structure for groups of related packages (Section 7.9). Subunits (Section 15.3) enable
portions of a package to exist as independent physical units, while retaining their semantic sta-
tus as part of the package; they have little use since child packages were introduced in Ada 95.

We will now develop a progression of six packages for priority queues that encapsulate the
array and tree implementations given in the previous chapter. Each version will motivate and
highlight a specific way of programming with packages.

73
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Language Comparison

Most object-oriented languages like Java and C++ have a construct called the
class that is used to declare a single type. The class also serves as the only unit
of design (Java also has interfaces). In Ada, the package construct provides a
rich way of combining related types, because the declaration of types (including
tagged types used for type extension (Chapter 7)) is independent of the software
design expressed in terms of packages. Zero, one or more than one type can be
declared in a single package.

Language Comparison

The class is also the only unit of source code in most OO languages. (C++ has
include files, but these simply insert text.) The source code separation of interface
(the package specification) from implementation (the package body) contributes
to the readability, maintainability and reliability of software written in Ada.

Language Comparison

Java uses the term package for a construct that facilitates controlling the name-
space of large programs; it is not at all related to the package construct in Ada.
(The namespace construct of C++ is similar.) By using import statements, it is pos-
sible to invoke a method like setTitle directly. But no control over encapsula-
tion is provided, because you can always access any entity by writing a full name
like javax.swing.border.TitledBorder.setTitle. Java import statements are
similar to Ada’s use clauses.

6.2 Case study: priority queue package—version 1

We start with a package that encapsulates a priority queue implemented with an array. The
package specification §7.1 contains the declarations of three subprograms and two exceptions:

pqav1

1 package Priority_Queue is
2 function Empty return Boolean;

3 procedure Put(I: in Integer);

4 procedure Get(I: out Integer);

5

6 Overflow, Underflow: exception;
7 end Priority_Queue;
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The declarations in a specification specify the interface to the package; that is, the enti-
ties declared in the specification are exported from the package. The declarations must be
basic_declarative_items §3.11(4); in particular, the specification cannot contain bodies of sub-
programs, packages, etc. §3.1(3).

The package body must contain the bodies of all the subprograms (like Empty) that are de-
clared in the specification; the body may optionally contain other declarations. The body can be
considered to be the implementation of resources promised in the specification, together with
arbitrary encapsulated resources that are needed in the implementation.

§7.1

10 If a declaration occurs immediately within the specification of a package, and the
declaration has a corresponding completion that is a body, then that body has to
occur immediately within the body of the package. [See also §3.11.1]

Here is the body of the package Priority_Queue:

8 package body Priority_Queue is
9 type Vector is array(Natural range <>) of Integer;

10 type Queue(Size: Positive) is
11 record
12 Data: Vector(0..Size);

13 Free: Natural := 0;

14 end record;
15 Q: Queue(Size => 100);

16

17 function Empty return Boolean is ... end Empty;

18 procedure Put(I: in Integer) is ... end Put;

19 procedure Get(I: out Integer) is ... end Get;

20 end Priority_Queue;

The package body starts with the declarations for the queue type and the declaration of a
variable that holds the queue. This is followed by the bodies of the subprograms declared in the
specification. The source code for the bodies is exactly the same as that shown in Section 5.1.

The context clause of the client unit (the main subprogram or another package) must contain
a with_clause for the package §10.1.2:

21 with Priority_Queue;

22 with Ada.Text_IO; use Ada.Text_IO;

23 with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;

24 procedure PQAV1 is

The rest of the main program is unchanged, except that within the client an entity declared in
the package specification is accessed by giving its expanded name—the package name followed
by the entity name, as shown in ‡31, 35, 36, 40, 42, 43:
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25 I: Integer;

26 Test_Data: array(Positive range <>) of Integer :=

27 (10, 5, 0, 25, 15, 30, 15, 20, -6, 40);

28 begin
29 for N in Test_Data’Range loop
30 Put(Test_Data(N), Width => 5);

31 Priority_Queue.Put(Test_Data(N));

32 end loop;
33 New_Line;

34

35 while not Priority_Queue.Empty loop
36 Priority_Queue.Get(I);

37 Put(I, Width => 5);

38 end loop;
39 New_Line;

40 Priority_Queue.Get(I); -- Test underflow

41 exception
42 when Priority_Queue.Underflow => Put_Line("Underflow from queue");

43 when Priority_Queue.Overflow => Put_Line("Overflow from queue");

44 end PQAV1;

The client is said to import these entities from the package.
The client does not have access to declarations within the package body. A clever program-

mer might wish to quickly empty the queue by writing:

Q.Free := 0;

but this will be reported as a compilation error, because neither the variable Q nor the comple-
tion of the type Queue are visible outside of the body where they are declared.

6.2.1 Compilation

The Ada standard specifies that a compiler shall include an environment, whose structure is
implementation-defined §10.1.4(3):

§10.1.4

1 Each compilation unit submitted to the compiler is compiled in the context of an
environment declarative_part (or simply, an environment), . . .

2 The declarative_items of the environment are library_items . . .
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library_items are the specifications and bodies of packages and subprograms that are declared
directly within the environment, and that are not nested within another unit.

The environment is used, among other things, to ensure that both the package body and the
clients are always consistent with respect to the same specification. The rules for consistency
can be understood in terms of the order of compilation, although this is not necessarily the
order in which the files are read by the compiler and is not related to how the machine code is
generated. These implementation-dependent issues are discussed in more detail in Section 15.2.

A package specification must be compiled before the compilation of its body and before the
compilation of any client. However, there is no prescribed order of compilation between the
body and a client. This is shown in the following diagram:

package body
Priority_Queue

with
Priority_Queue

procedure
PQAV1

package
Priority_Queue

�
�
�
��

@
@

@
@I

The arrows indicate semantic dependences:

§10.1.1

26 . . . A library_unit_body depends semantically upon the corresponding
library_unit_declaration, if any.. . .
A compilation unit depends semantically upon each library_item mentioned in a
with_clause of the compilation unit. . . .

§10.1.4

5 When a compilation unit is compiled, all compilation units upon which it depends
semantically shall already exist in the environment; the set of these compilation units
shall be consistent in the sense that the new compilation unit shall not semantically
depend (directly or indirectly) on two different versions of the same compilation
unit, nor on an earlier version of itself.

Clients can be written even before the package body has been written. This is extremely
useful in the management of software development by project teams, because you can use
packages as units of work:

• The designer writes and compiles the package specification.
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• An engineer is assigned to develop the body.
• Engineers who program clients refer to the package specification; they may create simplified

bodies to test their modules before the final package body is completed.

The fact that all programming is done relative to consistent specifications means that integra-
tion of all the packages in a system is immediate. There will be few, if any, last-minute surprises
caused by misunderstandings or inconsistencies in the declarations.

The encapsulation of the implementation in the package body means that the package spec-
ification presents to the user an abstract concept of a priority queue, making available only its
logical characteristics. As long as the semantics of the priority queue are maintained, the im-
plementation in the body can be repeatedly modified with no effect on the clients. In fact, they
need not even be recompiled!

We can demonstrate this by replacing the package body with one that implements the pri-
ority queue using a binary tree (the subprogram bodies are the same as in Section 5.3):

pqtv1

1 package body Priority_Queue is
2 type Node;

3 type Link is access Node;

4 type Queue(Size: Positive) is -- Size is ignored!

5 record
6 Root: Link;

7 end record;
8 type Node is
9 record

10 Data: Integer;

11 Left, Right: Link;

12 end record;
13 Q: Queue(Size => 100);

14

15 function Empty return Boolean is ... end Empty;

16 procedure Put(I: in Integer; Node_Ptr: in out Link) is ... end Put;

17 procedure Put(I: in Integer) is ... end Put;

18 procedure Get(I: out Integer; Node_Ptr: in out Link) is ... end Get;

19 procedure Get(I: out Integer) is ... end Get;

20 end Priority_Queue;

(The discriminant Size is obviously not needed in the tree implementation, but it is retained
for compatibility with subsequent versions of the package that we will develop.)

The package body contains the encapsulated recursive subprograms Put ‡16 and Get ‡18
that are needed to implement the exported subprograms Put ‡17 and Get ‡19 that were
promised in the specification. Check that you can compile this package body in place of the
previous one and proceed immediately to linking and running the program.
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Is this package an adequate implementation of a priority queue in terms of abstraction and
usability? Analyze this program yourself before continuing!

6.3 Case study: priority queue package—version 2

The programs in the previous section are adequate implementations of an abstract data object.
The package declares a single queue, so that if we need several queues, we would have to write
a separate package for each one. Abstract data types make it possible to declare multiple objects
of the type, as well as to declare parameters and components of the type.

Before proceeding, we note that abstract data objects are more common than one would
imagine from the emphasis on data types in OOP. Consider, for example, a air-traffic con-
trol system: while we would need a type Airplanes so that multiple airplane objects could
be tracked, we might only need one data object to store the database of all the airplane objects.
This database can be encapsulated within a package body as we did for the queue, and only
operations such as Get_Track, Update_Track and Delete_Track would be exported.

Let us modify the package so that the declaration of the type Queue is placed in the package
specification where it is visible to client packages. For the array implementation this is:

pqav2

1 package Priority_Queue is
2 type Vector is array(Natural range <>) of Integer;

3 type Queue(Size: Positive) is
4 record
5 Data: Vector(0..Size);

6 Free: Natural := 0;

7 end record;
8

9 function Empty(Q: Queue) return Boolean;

10 procedure Put(I: in Integer; Q: in out Queue);

11 procedure Get(I: out Integer; Q: in out Queue);

12

13 Overflow, Underflow: exception;
14 end Priority_Queue;

We discuss below the changes in the specifications of the subprograms.
The package body contains the bodies of these subprograms:

15 package body Priority_Queue is
16 function Empty(Q: Queue) return Boolean is ... end Empty;

17 procedure Put(I: in Integer; Q: in out Queue) is ... end Put;

18 procedure Get(I: out Integer; Q: in out Queue) is ... end Get;

19 end Priority_Queue;
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The package in the previous section that implemented a single data object contained the dec-
laration of a variable Q of type Queue. In other words, the package has a state which includes the
data maintained within the package, and this state can be modified by calls to the subprograms
of the package. Since the state is associated with the package itself, the exported subprograms
do not need a parameter for the queue:

function Empty return Boolean;

procedure Put(I: in Integer);

procedure Get(I: out Integer);

A package declaring a type usually does not have a state, because the subprograms of the
package are used to process many different objects that are instances of the type. Therefore, the
subprograms must include a parameter specifying which object the subprogram is to process:

function Empty(Q: Queue) return Boolean;

procedure Put(I: in Integer; Q: in out Queue);

procedure Get(I: out Integer; Q: in out Queue);

In the main program, a variable Q of type Queue is declared, and the imported operations are
called with this object as an actual parameter ‡37, 41, 42, 46:

26 with Priority_Queue;

27 with Ada.Text_IO; use Ada.Text_IO;

28 with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;

29 procedure PQAV2 is
30 Q: Priority_Queue.Queue(10);

31 I: Integer;

32 Test_Data: array(Positive range <>) of Integer :=

33 (10, 5, 0, 25, 15, 30, 15, 20, -6, 40);

34 begin
35 for N in Test_Data’Range loop
36 Put(Test_Data(N), Width => 5);

37 Priority_Queue.Put(Test_Data(N), Q);

38 end loop;
39 New_Line;

40

41 while not Priority_Queue.Empty(Q) loop
42 Priority_Queue.Get(I, Q);

43 Put(I, Width => 5);

44 end loop;
45 New_Line;

46 Priority_Queue.Get(I,Q); -- Test underflow

47 exception
48 when Priority_Queue.Underflow => Put_Line("Underflow from queue");

49 when Priority_Queue.Overflow => Put_Line("Overflow from queue");

50 end PQAV2;
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Language Comparison

In Java, a field in a class that is declared static is shared by all objects that
are instances of the class. No special construct is needed in Ada to implement
a variable shared by all instances of a type; simply declare the variable in the
package body.

Analyze this program yourself before continuing!

6.4 Case study: priority queue package—version 3

The package declared a data type, but the type is not an abstract type because it is declared in
the package specification, and, therefore, any modification of the specification potentially inval-
idates all the clients. If the implementation of the type in the package specification is changed
from an array to a tree, all uses of resources of the package by clients must be checked to see
if they need to be modified. Furthermore, since the implementation of the type is not hidden,
unintended manipulation of objects of the type (such as Q.Free := 0) can be done. This creates
unnecessary coupling between the data type and its clients.

We have a dilemma: if the type is declared in the package specification, it is not abstract, but
if it is declared in the package body, clients cannot declare objects. Let us try the solution used
for subprograms: declare the “specification” of the type in the specification of the package:

pqav3

1 package Priority_Queue is
2 type Queue(Size: Positive); -- Type "specification"

3

4 function Empty(Q: in Queue) return Boolean;

5 procedure Put(I: in Integer; Q: in out Queue);

6 procedure Get(I: out Integer; Q: in out Queue);

7

8 Overflow, Underflow: exception;
9 end Priority_Queue;

and place the “implementation” of the type in the body of the package:
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10 package body Priority_Queue is
11 type Vector is array(Natural range <>) of Integer;

12 type Queue(Size: Positive) is -- Type "implementation"

13 record
14 Data: Vector(0..Size);

15 Free: Natural := 0;

16 end record;
17

18 function Empty(Q: in Queue) return Boolean is ... end Empty;

19 procedure Put(I: in Integer; Q: in out Queue) is ... end Put;

20 procedure Get(I: out Integer; Q: in out Queue) is ... end Get;

21 end Priority_Queue;

Clearly, this will achieve the abstraction we desire, because we can replace the package body
with a different implementation of the type without recompiling the clients.

Analyze this program yourself before continuing!

6.5 Case study: priority queue package—version 4

The package in the previous section is just what we need: the clients see the specification of the
type, while its implementation is hidden in the package body. However, if the construct were
legal, it would be impossible to write a compiler to implement it, if the compiler had access
only to the package specification and not to the body (which may not even be written yet).
Consider what must be done when compiling the following declaration:

Q1, Q2: Priority_Queue(100);

The compiler must allocate memory for the variables Q1 and Q2. From the specification alone,
the compiler cannot know how much memory to allocate for the variables. If the type is im-
plemented as an array, memory must be allocated for Size+3 integer values, while if the im-
plementation is changed to the tree implementation, memory for one integer value and one
address is sufficient. Furthermore, compiling an assignment statement such as Q1 := Q2 re-
quires that the size of these variables be known, because assignment is usually implemented
by copying a fixed number of bytes from one location to another.

To summarize, the compiler needs information about the representation of a type that is not
needed by the software engineer, who only needs to know the type name (and its discrimi-
nants, if any (Section 11.4)) in order to declare variables and to pass them as parameters to
subprograms. Since the high level of abstraction in this version leads to a program that cannot
be compiled without seriously compromising the separation between interface and implemen-
tation, we must weaken the abstraction.
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Language Comparison

In a language like Java, this problem does not arise because reference semantics
is used. All variables of non-primitive types are allocated the same amount of
memory (whatever is needed to store a reference), and a parameter of a non-
primitive type is always passed by copying the reference. In Ada, value seman-
tics is used, so issues of memory allocation and parameter passing must be con-
fronted. The equivalent of reference semantics can be obtained by declaring a
type to be an access type, in which case, the representation of the designated
type can be deferred to the package body as shown in Section 6.6.1.

6.5.1 Private types

A package specification is divided into two parts: a visible part and a private part. Declarations
in the visible part of a specification are visible to clients, while those in the private part are not:

§7.1

6 The first list of declarative_items of a basic_package_specification of a
package_specification of a package . . . is called the visible part of the package. The
optional list of basic_declarative_items after the reserved word private (of any
package_specification) is called the private part of the package. . . .

7 An entity declared in the private part of a package is visible only within the
declarative region of the package itself . . . . In contrast, expanded names denoting
entities declared in the visible part can be used even outside the package;
furthermore, direct visibility of such entities can be achieved by means of
use_clauses (see 4.1.3 and 8.4).

Within the visible part, you can declare a private type. The completion of a private type by a
full type declaration must be given in the private part of the same package. The predefined op-
erations on a private type are assignment, equality and inequality; other operations must be
explicitly declared. Of course within the package body, all the operations permitted by the full
type declaration are available.

The following specification shows the declaration of Queue as a private type in the visible
part ‡2, and its completion as a record in the private part ‡11–15:
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pqav4

1 package Priority_Queue is
2 type Queue(Size: Positive) is private;
3

4 function Empty(Q: in Queue) return Boolean;

5 procedure Put(I: in Integer; Q: in out Queue);

6 procedure Get(I: out Integer; Q: in out Queue);

7

8 Overflow, Underflow: exception;
9 private

10 type Vector is array(Natural range <>) of Integer;

11 type Queue(Size: Positive) is
12 record
13 Data: Vector(0..Size);

14 Free: Natural := 0;

15 end record;
16 end Priority_Queue;

The visibility of private types is defined in terms of views:

§7.3

4 A private_type_declaration . . . declares a partial view of the type; such a declaration is
allowed only as a declarative_item of the visible part of a package, and it requires a
completion, which shall be a full_type_declaration that occurs as a declarative_item of
the private part of the package. The view of the type declared by the
full_type_declaration is called the full view. . . .

15 A declaration of a partial view and the corresponding full_type_declaration define
two views of a single type. The declaration of a partial view together with the visible
part define the operations that are available to outside program units; the declaration
of the full view together with the private part define other operations whose direct
use is possible only within the declarative region of the package itself. . . .

If the programmer of a client writes Q.Free := 0, a compilation error would result, because
the source code of the client can only access the partial view in the visible part of the package,
and from the partial view it is not known that Queue is a record, much less that it contains a
component Free.

The designer of an Ada package can place a declaration in three places. The implications of
each choice are as follows (where by “modification” we mean a change of implementation that
is semantically equivalent to the original one):

Visible part of specification The declaration is accessible to clients. A modification poten-
tially affects all clients, which must be recompiled and checked.
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Private part of specification The declaration is not accessible to any client, but the object
code of a client depends on the declaration. A modification never affects the correctness
of a client;1 however, all clients must be recompiled.

Body The declaration cannot be accessed outside the body, so the clients do not depend on
the declaration. If the body is modified, clients need only be relinked, not recompiled.

To demonstrate that a modification of a full type declaration need not affect a client, we
change the package specification to implement the queue using a binary tree. Since the visible
part is not modified, the client need only be recompiled, not modified or checked. Since the
partial view of the type must remain unchanged, the private type of the tree implementation
retains the discriminant Size although it is not used:

pqtv4

1 package Priority_Queue is
2 type Queue(Size: Positive) is private;
3

4 function Empty(Q: in Queue) return Boolean;

5 procedure Put(I: in Integer; Q: in out Queue);

6 procedure Get(I: out Integer; Q: in out Queue);

7

8 Overflow, Underflow: exception;
9 private

10 type Node;

11 type Link is access Node;

12 type Node is
13 record
14 Data: Integer;

15 Left, Right: Link;

16 end record;
17 type Queue(Size: Positive) is -- Size ignored!

18 record
19 Root: Link;

20 end record;
21 end Priority_Queue;

1 Well, hardly ever! See Section 6.6.
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Language Comparison

Private types are similar to Java classes whose fields are declared with the mod-
ifier private. (We ignore here the complication of visibility within Java pack-
ages.) The name of the class is visible, just as the name of an Ada private type is
visible. Methods declared with the modifier public correspond to subprograms
declared in the package specification, while methods declared with the modifier
private correspond to subprograms declared in the package body. However, in
Ada, only the declarations of the subprograms appear in the package specifica-
tion, whereas Java puts all the source code of a class into a single file. Changing
the implementation of a subprogram body that appears in a package body in Ada
does not require recompilation of clients, while changing the implementation of
a method in Java does.

6.6 Case study: priority queue package—version 5

Suppose that we declare two priority queues and assign one to the other:

Q1, Q2: Priority_Queue.Queue(10);

Q1 := Q2;

The assignment operation copies the block of memory allocated to Q2 to the block of memory
(of the same size) allocated to Q1. If the array implementation is used, the assignment correctly
makes a copy of the queue:
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However, if the tree implementation is used, the assignment merely copies the access values so
the two variables point to the same queue:
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We promised that a semantically equivalent modification to the private part cannot affect
the correctness of a client, yet here the meaning of a statement in the client changes when the
implementation is changed. Furthermore, predefined equality, which is defined for all private
types, is not meaningful for either implementation of a priority queue (why?).

6.6.1 Limited types

One solution to this problem is to use a limited type declaration:

§7.5

1 A limited type is (a view of) a type for which copying (such as for an
assignment_statement) is not allowed. A nonlimited type is a (view of a) type for
which copying is allowed.

8 There are no predefined equality operators for a limited type.

For a data structure such as a queue, the meaningful operations are those that are explicitly
declared. Since there is no real need for assignment and equality, they can be made illegal by
declaring the type limited:

pqtv5

1 package Priority_Queue is
2 type Queue(Size: Positive) limited private;
3

4 function Empty(Q: in Queue) return Boolean;

5 procedure Put(I: in Integer; Q: in out Queue);

6 procedure Get(I: out Integer; Q: in out Queue);

7 ...

8 end Priority_Queue;

As with any operator, equality can be overloaded for any type, and this is particularly useful
for limited types that have no predefined equality. However, the assignment symbol is not an
operator in Ada and cannot be overloaded, though you can declare a normal procedure that
implements assignment:
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type Queue(Size: Positive) is limited private;
function "="(Left, Right: Queue) return Boolean;

procedure Assign(Target: out Queue; Source: in Queue);

The semantics of assignment can also be changed by using controlled types (Section 12.9).

6.7 Case study: priority queue package—version 6

Consider the package specification:

pqt

1 package Priority_Queue is
2 type Queue(Size: Positive) is limited private;
3

4 function Empty(Q: in Queue) return Boolean;

5 procedure Put(I: in Integer; Q: in out Queue);

6 procedure Get(I: out Integer; Q: in out Queue);

7

8 Overflow, Underflow: exception;
9 private

10 type Node;

11 type Link is access Node;

12 type Queue(Size: Positive) is limited
13 record
14 Root: Link;

15 end record;
16 end Priority_Queue;

This differs from the previous specification in that a completion for the incomplete type decla-
ration for Node has been omitted. Nevertheless, this specification is legal: type Queue contains
one component of the access type Link and the compiler can determine the amount of mem-
ory to allocate for an object of access type without knowing the type of the designated object.
Therefore, the complete type declaration can appear in the package body:

17 package body Priority_Queue is
18 type Node is -- Completion of the type declaration

19 record
20 Data: Integer;

21 Left, Right: Link;

22 end record;
23 ...

24 end Priority_Queue;
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§3.10.1

3 If the incomplete_type_declaration occurs immediately within the private part of a
given package_specification, then the full_type_declaration shall occur later and
immediately within either the private part itself, or the declarative_part of the
corresponding package_body.

We can freely change the representation of Node in the package body without even recompiling
the clients, since all the client can do is allocate a queue that is a single access value and pass
the value as a parameter.

6.8 Nonlimited private types*

Private types are used not just for complex data structures, but also for simple information
hiding of the components of a record where there is no reason to forbid predefined assignment
and equality. The standard example of a nonlimited private type is the complex numbers. They
have two natural representations (cartesian or polar) and you might want to declare a package
that supplies the type while encapsulating the representation in the private part. Since complex
numbers are predefined in §G.1 of the Numerics Annex,2 we choose to give as an example a
generalization of complex numbers called quaternions.

6.8.1 Case study: quaternions

Complex numbers are written x + iy, where x and y are real numbers and i2 = −1. Quaternions
are written x + iy + jz + kw, where x, y, z, w are real numbers and i2 = j2 = k2 = ijk = −1.
Multiplication of quaternions is not commutative:

ij = k, ji = −k, jk = i, kj = −i, ki = j, ik = −j.

Quaternions have an important theoretical place in algebra, but they are also important in
practice for the computation of three-dimensional rotations in airplane control systems and
graphics software. A 3D rotation can be described by giving its Euler angles: pitch (the airplane
rotates up and down along the axis defined by its wings), roll (the airplane rotates along the
axis of its body), yaw (the airplane rotates left and right). However, computations using Euler
angles are problematic because they are numerically unstable, and because the breakdown of a
rotation into three separate components can cause difficulties in the physical implementation.
These computations are efficient and stable when performed with quaternions. The transfor-

2 The type Complex is not defined there as a private.
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mations from Euler angles to quaternions and back is not difficult, but an explanation is beyond
the scope of this book.

Quaternions were discovered by William R. Hamilton in 1843. For detailed information on
quaternions, see:

• http://mathworld.wolfram.com/Quaternion.html,
• http://www.euclideanspace.com/index.htm,
• http://www.j3d.org/matrix_faq/matrfaq_latest.html.

Here we will just implement addition and multiplication for a private type Quaternion repre-
sented in two different forms.

6.8.2 Quaternions as four-tuples of real numbers

Package QuaternionsR defines the private type Quaternion together with four operations and
four deferred constants:

quat

1 package QuaternionsR is
2 type Quaternion is private;
3 function Construct(X, Y, Z, W: Float) return Quaternion;

4 function "+"(Q1, Q2: Quaternion) return Quaternion;

5 function "*"(Q1, Q2: Quaternion) return Quaternion;

6 procedure Print(Q: in Quaternion);

7

8 One: constant Quaternion;

9 I: constant Quaternion;

10 J: constant Quaternion;

11 K: constant Quaternion;

When a private type is declared, it is often useful to compare values of the type to a constant
of the type, but since the type is private we cannot give the initial value that is required when
a constant is declared §3.3.1(6). The solution is to use deferred constants:
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§7.4

2 A deferred constant declaration is an object_declaration with the reserved word
constant but no initialization expression. The constant declared by a deferred
constant declaration is called a deferred constant. A deferred constant declaration
requires a completion, which shall be a full constant declaration (called the full
declaration of the deferred constant), . . .

3 A deferred constant declaration that is completed by a full constant declaration shall
occur immediately within the visible part of a package_specification. For this case, the
following additional rules apply to the corresponding full declaration:

4 The full declaration shall occur immediately within the private part of the same
package;

The first representation of type Quaternion is as a record with four components of type
Float:

12 private
13 type Quaternion is
14 record
15 X, Y, Z, W: Float := 0.0;

16 end record;
17 One: constant Quaternion := (1.0, 0.0, 0.0, 0.0);

18 I: constant Quaternion := (0.0, 1.0, 0.0, 0.0);

19 J: constant Quaternion := (0.0, 0.0, 1.0, 0.0);

20 K: constant Quaternion := (0.0, 0.0, 0.0, 1.0);

21 end QuaternionsR;

The package body implements the operations: the functions Construct and "+" are straighfor-
ward, as is the procedure Print (omitted, see the software archive):

22 with Ada.Text_IO, Ada.Float_Text_IO;

23 package body QuaternionsR is
24 function Construct(X, Y, Z, W: Float) return Quaternion is
25 begin
26 return (X, Y, Z, W);

27 end Construct;

28

29 function "+"(Q1, Q2: Quaternion) return Quaternion is
30 begin
31 return (Q1.X+Q2.X, Q1.Y+Q2.Y, Q1.Z+Q2.Z, Q1.W+Q2.W);

32 end "+";
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The formula for multiplication is obtained by multiplying the formal expression

(x1 + iy1 + jz1 + kw1) ∗ (x2 + iy2 + jz2 + kw2)

and collecting terms using the definitions given above. The function is written as an extended
return statement §6.5(2.1, 5.8) (Section 6.10):

33 function "*"(Q1, Q2: Quaternion) return Quaternion is
34 begin
35 return Q: Quaternion do
36 Q.X := Q1.X*Q2.X - Q1.Y*Q2.Y - Q1.Z*Q2.Z - Q1.W*Q2.W;

37 Q.Y := Q1.X*Q2.Y + Q1.Y*Q2.X + Q1.Z*Q2.W - Q1.W*Q2.Z;

38 Q.Z := Q1.X*Q2.Z - Q1.Y*Q2.W + Q1.Z*Q2.X + Q1.W*Q2.Y;

39 Q.W := Q1.X*Q2.W + Q1.Y*Q2.Z - Q1.Z*Q2.Y + Q1.W*Q2.X;

40 end return;
41 end "*";

42 end QuaternionsR;

It could also have been written as an aggregate.
We create a library unit that consists only of a package renaming §8.5.3 (Section 15.6). This

will enable us to use different packages for quaternions just by modifying these two lines:

43 with QuaternionsR;

44 package Quaternions renames QuaternionsR;

The following program tests the declaration and use of quaternions.

45 with Quaternions;

46 use type Quaternions.Quaternion;

47 procedure Test_Quaternion is
48 Q: Quaternions.Quaternion :=

49 Quaternions.Construct(0.8224, -0.3604, -0.4397, -0.0223);

50 begin
51 Quaternions.Print(Q);

52 Quaternions.Print(Q + Quaternions.K);

53 Quaternions.Print(Q * Quaternions.One);

54 Quaternions.Print(Q + Q);

55 Quaternions.Print(Q * Q);

56 end Test_Quaternion;

If you use quaternions extensively, you might want to include a use_clause for the package. In
any case, it is essential to include a use_type_clause ‡46 §8.4(4,8) to make the operators visible
(Section 15.7).
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6.8.3 Quaternions as pairs of complex numbers

An alternate representation of quaternions is as a pair of complex numbers. The package
QuaternionsC has the same interface as QuaternionsR, but a different implementation:

57 private with Ada.Numerics.Complex_Types;

58 package QuaternionsC is
59 -- As before

60 private
61 type Quaternion is
62 record
63 Z, W: Ada.Numerics.Complex_Types.Complex;

64 end record;
65 One: constant Quaternion := ((1.0, 0.0), (0.0, 0.0));

66 I: constant Quaternion := ((0.0, 1.0), (0.0, 0.0));

67 J: constant Quaternion := ((0.0, 0.0), (1.0, 0.0));

68 K: constant Quaternion := ((0.0, 0.0), (0.0, 1.0));

69 end QuaternionsC;

We wish to take advantage of the existing implementation of complex numbers in the Ada
library, so a with_clause for Ada.Numerics.Complex_Types is needed. Like Text_IO, Numerics
is a child package (Section 7.9) of the package Ada, and Complex_Types is a child of Numerics.
For now, look upon Ada.Numerics.Complex_Types as simply the name of a package. Since the
package is needed only in the private part and the body, a private with_clause has been used:

§10.1.2

12 A name denoting a library item that is visible only due to being mentioned in one or
more with_clauses that include the reserved word private shall appear only within:

13 • a private part;
14 • a body, . . .

When implementing the bodies of the subprogram in the body of the package, the numeric
operations from Ada.Numerics.Complex_Types are freely used:

70 with Ada.Text_IO, Ada.Complex_Text_IO;

71 package body QuaternionsC is
72 use Ada.Numerics.Complex_Types;

73

74 function Construct(X, Y, Z, W: Float) return Quaternion is ...

75 function "+"(Q1, Q2: Quaternion) return Quaternion is ...

76 procedure Print(Q: in Quaternion) is ...
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77 function "*"(Q1, Q2: Quaternion) return Quaternion is
78 begin
79 return Q: Quaternion do
80 Q.Z := Q1.Z*Q2.Z + Q1.W*Conjugate(-Q2.W);

81 Q.W := Q1.Z*Q2.W + Q1.W*Conjugate(Q2.Z);

82 end return;
83 end "*";

84 end QuaternionsC;

To use the new implementation we only need replace the renaming package declaration by:

85 with QuaternionsC;

86 package Quaternions renames QuaternionsC;

Ada 95

Private with_clauses are not supported in Ada 95, so ordinary with_clauses must be used. Do
not use declarations from Ada.Numerics.Complex in the public part of the package specification
so that the dependence of the quaternion package on the complex number package will not be
exported to clients.

Nested aggregates must be used instead of the extended return statement.

6.9 Limited types that are not private*

Limited types appear most often as limited private types used to create abstract data types.
However, the concept is more general; for example, tasks, synchronized and protected types
(Chapter 18) are considered to be limited types for which assignment and equality are not
available §7.5(4). In addition, explicitly limited record types §3.8(13.1) can be declared. An explicit
declaration of a non-private limited type is useful when you want to hide part of an abstraction,
but not all of it. For example, in a symbol table, we might want to hide the implementation of
the map between symbols and their values, but not the other components of the table:

type Symbol_Map is private;
type Symbol_Table is limited

record
Name: String(1..20);

Capacity: Positive;

Mutable: Boolean;

Map: Symbol_Map;

end record;
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It is reasonable not to define equality and assignment for a symbol table, so it is declared to
be limited, but we choose to hide only the representation of the component Map and not of the
entire table.

If a component type is limited, so is the type itself §7.5(6), as is a type derived from a limited
type §7.5(6.1). Thus, a limited array type can be declared by giving it a limited component:

type Table_Array is array(Integer range <>) of Symbol_Table;

6.10 Initialization of limited types*

Assignment is not allowed for limited types; nevertheless, initialization of limited types is per-
mitted by using an aggregate §7.5(2.1–2.2):

type Symbol is
limited record

Name: String(1..20);

Level: Positive;

Reserved: Boolean;

end record;

S: Symbol := (Name => (others => ’ ’), Level => 1, Reserved => False);

The reason that this is permitted is that no copying need actually be done. It is not necessary
to construct the aggregate and then copy it to the variable; instead, the aggregate value can be
constructed in place. See §7.5(2.1–2.9) for the list of constructs in which expressions of limited
types are permitted.

An object of limited type can be initialized by a function result, provided that no copying is
done:

function Init return Symbol is
begin

return (Name => (others => ’*’), Level => 2, Reserved => True);

end Init;

Suppose, however, that the construction of the aggregate is not simply a matter of assigning
components; for example, an empty doubly-linked list needs several statements to allocate
the sentinels and make them point to each other. Still, it should be possible to construct the
aggregate in place so no copying is needed. The extended-return statement enables a function
to compute in place on the object to which the returned value is “assigned”:
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§6.5

2.1 extended_return_statement ::=
return defining_identifier : [aliased] return_subtype_indication [:= expression] [do

handled_sequence_of_statements
end return];

The identifier represents an object that can be used within the sequence of statements as a
variable:

function Initial return Symbol is
begin

return S: Symbol := (N => (others => ’ ’), C => 10, M => False) do
for I in 1..S.N’Length loop

S.N(I) := ... -- Get the characters of the string

end loop;
end return;

end Initial;

S: Symbol := Initial;

Ada 95

The constructs in this section are new to Ada 2005 and initialization of an object of a limited
type is not permitted. The only workaround is to initialize the components one-by-one (in the
package body if the type is also private):

S: Symbol;

S.Name := (others => ’ ’);

S.Capacity := 10;

S.Mutable := False;
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Projects

1. Implement all the arithmetical operations on quaternions, as well as subprograms to trans-
form Euler angles to and from the equivalent quaternions.

2. Implement a third representation of quaternions as a scalar and a vector with three elements.
You will have to implement arithmetic operations such as the inner product and the cross
product on vectors.

3. Implement a symbol table as outlined in Sections 6.9–6.10.

Quizzes

Quiz 1:

package P is
type T1 is private;
C: constant T1;

V: T1;

private
type T1 is new Integer;

C: constant T1 := 0;

end P;

Quiz 2:

package P is
type Node;

type Ptr is access Node;

end P;

package body P is
type Node is

record
Key: Integer;

Next: Ptr;

end record;
end P;



98 6 Packages and Abstract Data Types

Quiz 3:

package P is
type T is limited private;
type Array_Type is array(0..10) of T;

procedure Proc;

private
type T is

record
X: Integer := 0;

end record;
end P;

package body P is
A1, A2: Array_Type;

procedure Proc is
begin

A1 := A2;

end Proc;

end P;

with P;

procedure Main is
A1, A2: P.Array_Type;

begin
A1 := A2;

end Main;



Chapter 7

Type Extension and Inheritance

Object-oriented programming (OOP) is a widely used approach for software development. In
the terminology of languages like Java and C++, the unit of design in OOP is the class, which
defines a type consisting of data fields and operations called methods. A class is a template from
which objects or instances can be created. Values can be assigned to the fields of an object and
the methods can be invoked on it. Classes can organized into a hierarchy by inheritance: one
class is derived from another parent class, inheriting the parent’s fields and methods, possibly
adding fields and methods, and possibly overriding the parent’s methods.

The constructs we studied in the previous chapter—packages and private types—support
OOP, but without type deriviation and inheritance. This chapter and the next one describe the
Ada constructs that support these concepts. The chapter will introduce a case study for the
discrete event simulation of a rocket; this case study will be used extensively in the rest of the
book. While the details of the case study are artificial, its structure and the use of the language
constructs are realistic. The size of the case study will require quite a few forward references
to concepts discussed later in the chapter and in other chapters, but we prefer to show the
constructs in context, rather than discussing them one-by-one.

Language Comparison

If you are an experienced OOP programmer learning Ada, please note that al-
though the concepts are the same, the constructs and the terminology are quite
different from those in Java or C++. In particular, Ada does not have a class con-
struct that both defines a type and serves as a module. Types in Ada are defined
by type declarations, while packages implement modules. OOP is a style of us-
ing these constructs, not something required (or even strongly encouraged) by
the language definition. Finally, the package construct in Java serves only to or-
ganize the namespace of the program, not to specify what resources are imported
like the Ada with_clause.

99
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7.1 Case study: discrete event simulation

Simulations are invariably used during the design of large embedded systems. You cannot test
or debug the design of a rocket by launching rocket after rocket. Extensive simulation is the
only way to develop enough confidence in the design in order to build and launch one with a
reasonable chance of success.

The case study in this chapter is a framework for a simulation of a rocket; we will omit
all the physical calculations that would require domain-specific knowledge. The method used
is discrete event simulation. Events are generated and placed on a queue, and each event is
time-stamped with the time at which it is to “occur”:
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The program does not attempt to maintain a physical clock. Instead, the events are ordered
by the time-stamps, and the program simply removes the event whose occurrence is “soonest”
in the future and performs the simulation of the event. This is easily done by maintaining a
priority queue, where higher priority is given to earlier events. Conveniently, we have already
implemented a priority queue in the previous case studies, and we will adapt it for use here.

We simplify the program by generating all the events and placing them on the queue before
the simulation begins:

for All_Events loop
Put(Create_Event, Q);

end loop;

while Queue_Not_Empty loop
Simulate(Get(Q));

end loop;

A multitasking simulation that generates and simulates events simultaneously will be devel-
oped in Section 19.9.

How should the events be represented in the program? If all the events were identical, a sim-
ple record would suffice. But, as shown in the diagram above, the event types are heterogeneous,
because different events will have different components associated with them. Some compo-
nents are, of course, identical for all event types: the link and the simulation time. However,
most of the data for the simulation depends on the specific event type. For example, an engine



7.2 Tagged types 101

event will need the fuel flow rate, while a steering event will need the deflection angles of the
nozzles.

The simplest solution is to include all possible components in the record, but this is im-
practical because the records will be too large and confusing. Alternatively, variant records
(Section 11.5) can be used. Each record will contain only the components required by the spe-
cific event type; however, the code that accesses event-dependent components will have to use
a case-statement and this can make maintenance difficult.

Heterogeneous data types can be constructed using derivation. A root event type with the
common components will be defined as a parent type, and additional, event-specific types will
be derived from it for each new kind of event. The derived types for the specific events will
inherit the common fields from the parent type and extend it with event-specific components.

7.2 Tagged types

We start by declaring package Root_Event with a record type Event containing a single com-
ponent Time. Event is declared as a private type with its completion in the private part:

rocket

1 package Root_Event is
2 type Event is abstract tagged private;
3

4 -- Primitive operations

5 function Create return Event is abstract;
6 procedure Simulate(E: in Event) is abstract;
7

8 -- Class-wide operation

9 function "<"(Left, Right: Event’Class) return Boolean;

10 private
11 subtype Simulation_Time is Integer range 0..10_000;

12 type Event is abstract tagged
13 record
14 Time: Simulation_Time; -- Common component of all events

15 end record;
16 end Root_Event;

The type is declared to be abstract; this is a technical term and can be ignored for now (Sec-
tion 8.4). Do not confuse the declaration of an abstract type with the general concept of an
abstract data type that encapsulates the implementation of the type and its operation.

The reserved word tagged indicates that the type Event can be extended. The choice of the
word tagged will be explained in Section 7.7.



102 7 Type Extension and Inheritance

Two kinds of operations have been declared: Create and Simulate, which are primitive op-
erations (Section 7.3), and "<", which is a class-wide operation (Section 7.6).

We now extend the type Event for each event type that is needed in the simulation. Package
Root_Event.Steering declares a new type Steering_Event which is an extension of Event:

17 package Root_Event.Steering is
18 type Steering_Event is new Event with private;
19

20 -- Override primitive operations of Event.

21 function Create return Steering_Event;

22 procedure Simulate(E: in Steering_Event);

23 private
24 type Commands is (Roll, Pitch, Yaw);

25 subtype Degrees is Integer range -90 .. 90;

26 type Steering_Event is new Event with
27 record
28 Command: Commands;

29 Degree: Degrees;

30 end record;
31 end Root_Event.Steering;

The extended name Root_Event.Steering declares that the package is a child package of the
package Root_Event; this concept is explained in Section 7.9.

The extension is a private extension:

§7.3

3 private_extension_declaration ::=
type defining_identifier [discriminant_part] is

[abstract] [limited | synchronized] new ancestor_subtype_indication
[and interface_list] with private;

(Interfaces and synchronized types are the subject of Chapter 17.)
The derived type itself is encapsulated in the private part by declaring that Steering_Event

is a new Event, together with the components that appear in the record definition:

§3.4

2 derived_type_definition ::=
[abstract] [limited] new parent_subtype_indication

[and interface_list] [record_extension_part]
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§3.9.1

2 record_extension_part ::= with record_definition

The two primitive operations Create and Simulate have been overridden (Section 7.4).
Package Root_Event.Telemetry declares the type Telemetry_Event, which is also derived

from Event:

32 package Root_Event.Telemetry is
33 type Telemetry_Event is new Event with private;
34 function Create return Telemetry_Event;

35 procedure Simulate(E: in Telemetry_Event);

36 private
37 type Subsystems is (Engines, Guidance, Communications);

38 type States is (OK, Failed);

39 type Telemetry_Event is new Event with
40 record
41 ID: Subsystems;

42 Status: States;

43 end record;
44 end Root_Event.Telemetry;

More than one derived type can be declared in the same package specification. Package
Root_Event.Engine declares three types: Engine_Event, which is derived directly from Event,
and Main_Engine_Event and Aux_Engine_Event, which are in turn derived from Engine_Event.
The visible part of the package is:

45 package Root_Event.Engine is
46 type Engine_Event is new Event with private;
47 function Create return Engine_Event;

48 procedure Simulate(E: in Engine_Event);

49

50 type Main_Engine_Event is new Engine_Event with private;
51 function Create return Main_Engine_Event;

52

53 type Aux_Engine_Event is new Engine_Event with private;
54 function Create return Aux_Engine_Event;

55 procedure Simulate(E: in Aux_Engine_Event);

There is no declaration Simulate with a parameter of type Main_Engine_Event. This means
that the subprogram will be inherited from the parent type Engine_Event (Section 7.3).

The private part declares the new components of the derived types:
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56 private
57 type Engine_Event is new Event with
58 record
59 Fuel, Oxygen: Natural;

60 end record;
61

62 type Main_Engine_Event is new Engine_Event with
63 null record;
64

65 type Aux_Engine_ID is (Left, Right);

66 type Aux_Engine_Event is new Engine_Event with
67 record
68 Side: Aux_Engine_ID;

69 end record;
70 end Root_Event.Engine;

The syntax null record is simply a shorthand for record null; end record §3.8(15), and
means that the components of the derived type are the same as those of the parent type.

The types derived from Event can be displayed in a tree (Figure 7.1). The components of a
derived type consist of the components inherited §3.4(12) from the parent type, together with
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the additional components, if any, that were added in the extension. Since there is no provision
for removing components upon derivation, we can be sure that every component of a parent
type is also contained in each descendant of the parent; for example, Oxygen, a component of
the parent type Engine_Event, is also a component of the derived types Main_Engine_Event

and Aux_Engine_Event.
A tree of derived types is called a derivation class.

§3.4.1

2 A derived type is derived from its parent type directly; it is derived indirectly from any
type from which its parent type is derived. . . . The derivation class of types for a
type T (also called the class rooted at T) is the set consisting of T (the root type of the
class) and all types derived from T (directly or indirectly) plus any associated
universal or class-wide types (defined below).

Derivation creates a relation of descendant and ancestor between types:

§3.4.1

10 A specific type T2 is defined to be a descendant of a type T1 if T2 is the same as T1, or
if T2 is derived (directly or indirectly) from T1. A class-wide type T2’Class is defined
to be a descendant of type T1 if T2 is a descendant of T1. . . . If a type T2 is a
descendant of a type T1, then T1 is called an ancestor of T2. An ultimate ancestor of a
type is an ancestor of that type that is not itself a descendant of any other type. . . .

7.3 Primitive operations

The primitive operations of a type are operations that are so closely associated with the type
that they are “carried along” with it. The following section of the ARM that defines primitive
operations is extremely important; we quote it in full for future reference, though you may not
understand all the concepts just yet:

§3.2.3

1 An operation operates on a type T if it yields a value of type T, if it has an operand
whose expected type (see 8.6) is T, or if it has an access parameter or access result
type (see 6.1) designating T. A predefined operator, or other language-defined
operation such as assignment or a membership test, that operates on a type, is called
a predefined operation of the type. The primitive operations of a type are the predefined
operations of the type, plus any user-defined primitive subprograms.
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§3.2.3

2 The primitive subprograms of a specific type are defined as follows:
3 • The predefined operators of the type (see 4.5);
4 • For a derived type, the inherited (see 3.4) user-defined subprograms;
5 • For an enumeration type, the enumeration literals (which are considered

parameterless functions—see 3.5.1);
6 • For a specific type declared immediately within a package_specification, any

subprograms (in addition to the enumeration literals) that are explicitly declared
immediately within the same package_specification and that operate on the type;

7 • For a nonformal type, any subprograms not covered above that are explicitly
declared immediately within the same declarative region as the type and that
override (see 8.3) other implicitly declared primitive subprograms of the type.

8 A primitive subprogram whose designator is an operator_symbol is called a primitive
operator.

Predefined operators are always primitive; for example, "+" is a primitive operation of the
type Integer, and "=" is a primitive operation of the type Event. You can declare additional
primitive operations, which are subprograms that are declared immediately within the same pack-
age specification as the type §3.2.3(6) and that have a parameter or result of the type §3.2.3(1).
A primitive operation may also be declared in the private part, but it will not be accessible
outside the package body and the children of the package.

The restriction to the package specification is crucial. It means that once a tagged type—
with its components and primitive operations—is defined in a package specification, all clients
of the package see exactly the same set of entities. Subprograms with a parameter of the type
can be declared elsewhere, such as in clients or in the package body, but they are not primitive.

Primitive operations are inherited §3.4(17) by derived types, just like record components.
Thus, the subprogram Simulate ‡48, which is a primitive operation of Engine_Event, is inher-
ited by Main_Engine_Event. It is as if the declaration:

procedure Simulate(E: in Main_Engine_Event);

were written just after the declaration of the type Main_Engine_Event ‡50. A call to Simulate

with a value of type Main_Engine_Event is a call to the inherited (primitive) subprogram:

M: Main_Engine_Event;

Simulate(M); -- Calls Simulate of Engine_Event

7.4 Overriding an operation

The primitive operations of a parent type are inherited by the derived type, but they can also
be overridden §8.3(10). An operation is overridden by declaring an operation with the same
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name, replacing the parameters of the parent type with parameters of the derived type. The new
operation is used when called with actual parameters of the derived type, while the original
operation is retained for calls with actual parameters of the parent type.

In the case study, the declaration of Aux_Engine_Event ‡53 is followed by declarations of
Create and Simulate that override the inherited subprograms. A call to Simulate with a pa-
rameter type Aux_Engine_Event calls the overridden, not the inherited, subprogram:

M: Main_Engine_Event;

A: Aux_Engine_Event;

Simulate(M); -- Calls inherited Simulate from Engine_Event

Simulate(A); -- Calls overridden Simulate in Aux_Engine_Event

Overriding subprograms are themselves primitive operations §3.2.3(7) and can be overrid-
den upon subsequent derivation. As with components, an operation cannot be removed, so
that given an object of any type descended from Event, the subprogram Simulate is defined
on the object: either it was overridden when the type was declared, or the deepest declaration
of Simulate in the chain of ancestors is inherited.

7.5 The package bodies of the case study

The package body for Root_Event is very simple:

80 package body Root_Event is
81 function "<"(Left, Right: Event’Class) return Boolean is
82 begin
83 return Left.Time < Right.Time;

84 end "<";

85 end Root_Event;

Create and Simulate, the primitive operations of the type Event, are abstract; since abstract
operations cannot be called, they cannot have bodies. The operator "<" is not abstract and a
body must be given: it is implemented by calling "<" on the component Time. The operator is
not primitive, because its operands are of class-wide type (Section 7.6), not of the tagged type.

The bodies of the packages containing the derived types are artificial. Create simply con-
structs an aggregate with random components and Simulate prints the data contained in the
event record. (The bodies of the Simulate procedures have been omitted and can be found in
the software archive.) The body for the engine types is:
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86 with Ada.Text_IO; use Ada.Text_IO;

87 with Root_Event.Random_Time;

88 package body Root_Event.Engine is
89 G: Random_Time.Generator;

90

91 function Create return Engine_Event is
92 begin
93 return (Time => Random_Time.Random(G),

94 Fuel => Random_Time.Random(G) mod 100,

95 Oxygen => Random_Time.Random(G) mod 500);

96 end Create;

97

98 function Create return Main_Engine_Event is
99 begin

100 return Main_Engine_Event’(Engine_Event’(Create) with null record);
101 end Create;

102

103 function Create return Aux_Engine_Event is
104 begin
105 return (Engine_Event’(Create)

106 with Aux_Engine_ID’Val(Random_Time.Random(G) mod 2));

107 end Create;

108

109 procedure Simulate(E: in Engine_Event) is ... end Simulate;

110 procedure Simulate(E: in Aux_Engine_Event) is ... end Simulate;

111 begin
112 Random_Time.Reset(G);

113 end Root_Event.Engine;

Values of types Main_Engine_Event and Aux_Engine_Event are constructed using extension ag-
grgates (Section 8.3). The package Root_Event.Random_Time is discussed below. The procedure
Reset that initializes the random number generator G is put in the sequence of statements of
the package body ‡112, which is executed when the package is elaborated:
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§7.2

2 package_body ::=
defining_program_unit_name is

declarative_part
[begin

handled_sequence_of_statements]
end [[parent_unit_name.]identifier];

6 For the elaboration of a nongeneric package_body, its declarative_part is first
elaborated, and its handled_sequence_of_statements is then executed.

The bodies for Root_Event.Steering and Root_Event.Telemetry are similar and can be
found in the software archive.

7.5.1 The random number generator

We instantiate the generic package Ada.Numerics.Discrete_Random §A.5.2 with the subtype
Simulation_Time to obtain a random number generator type:

114 with Ada.Numerics.Discrete_Random;

115 private package Root_Event.Random_Time is
116 new Ada.Numerics.Discrete_Random(Simulation_Time);

Once the package Random_Time has been declared, we can declare a variable G of type Generator
‡89 and call the function Random ‡93–95 to return a random value of type Simulation_Time. For
simplicity, we use only a single generator and convert the returned random number to other
numeric types.

7.6 Class-wide types

We now return to the problem of constructing a heterogeneous queue. We cannot create a het-
erogenous data structure containing items of arbitrary type; this would not be compatible with
the strong type checking of Ada. Instead, the design of Ada chooses a flexible intermediate
approach: objects of the class of all types derived from a parent type can be stored in a data
structure. The specific type of an object is checked, if necessary, when it is used at run-time.
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§3.4.1

4 Class-wide types

Class-wide types are defined for (and belong to) each derivation class rooted at
a tagged type (see 3.9). Given a subtype S of a tagged type T, S’Class is the
subtype_mark for a corresponding subtype of the tagged class-wide type
T’Class. Such types are called “class-wide” because when a formal parameter is
defined to be of a class-wide type T’Class, an actual parameter of any type in
the derivation class rooted at T is acceptable (see 8.6).

Given the derivation class of types shown in Figure 7.1, the values of the type Event’Class are
the union of the values of all the derived types in the class. As noted in the last sentence of
§3.4.1(4) above, if a formal parameter is of class-wide type, the actual parameter can be of any
type in the class. For example, the function "<" ‡9 in package Root_Event takes two parameters
of the class-wide type Event’Class, so it can be called with actual parameters of any event type.
Of course, the body of the function ‡83 can only reference components that are common to all
types in the class, here the single component Time.

An uninitialized object of a class-wide type cannot be declared:

EC: Event’Class; -- Error!

The situation is analogous to that with unconstrained array types such as String. It is not
possible to declare an uninitialized variable or an unconstained record component of the type:

S1: String; -- Error!

type String_Record is
record

S: String; -- Error!

end record;

An object can be of an unconstrained type provided that it is supplied with a constraint upon
elaboration, either from an initial value or from an actual parameter:

S2: String := "Hello world";

function Palindrome(S: String) return String;

An access type whose designed type is an unconstrained array can be declared, because
the compiler can determine the amount of memory needed to store an access value without
knowing what it points to:

type String_Pointer is access String;
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type String_Record is
record

S: String_Pointer;

end record;

Of course, when an object is allocated, a constraint or an initial value must be given §4.8(4):

P: String_Pointer := new String(1..80);

Class-wide types are very similar to unconstrained array types; their common properties are
defined by the term indefinite type:

§3.3

23 . . . A subtype is an indefinite subtype if it is an unconstrained array subtype, or if it
has unknown discriminants or unconstrained discriminants without defaults (see
3.7); otherwise the subtype is a definite subtype (all elementary subtypes are definite
subtypes). A class-wide subtype is defined to have unknown discriminants, and is
therefore an indefinite subtype. An indefinite subtype does not by itself provide
enough information to create an object; an additional constraint or explicit
initialization expression is necessary (see 3.3.1). A component cannot have an
indefinite nominal subtype.

(Discriminants are discussed in Section 11.4.)
In the implementation of a heterogeneous priority queue, the Put procedure is declared with

a parameter of class-wide type so that an event of any type in the class can be inserted into the
queue. The Get function returns a result of class-wide type so that an event of any type can be
removed from the queue:

135 with Root_Event; use Root_Event;

136 package Event_Queue is
137 type Queue is limited private;
138 type Queue_Ptr is access Queue;

139

140 function Empty(Q: in Queue) return Boolean;

141 procedure Put(E: in Event’Class; Q: in out Queue);

142 function Get(Q: Queue_Ptr) return Event’Class;

143 private
144 type Node;

145 type Link is access Node;

146 type Queue is
147 record
148 Root: Link;

149 end record;
150 end Event_Queue;
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A node of the queue cannot directly contain an item of class-wide type; instead, Node contains
a pointer to the event:

Data

Left Right
�

��	

@
@@R

- Time

Fuel

Oxygen

Main_Engine_Event

This data structure is encapsulated in the body of the package:

151 package body Event_Queue is
152 type Event_Class_Ptr is access Event’Class;

153 type Node is
154 record
155 Data: Event_Class_Ptr;

156 Left, Right: Link;

157 end record;

The allocation of a new node includes a nested allocation for the event itself:

158 procedure Put(E: in Event’Class; Node_Ptr: in out Link) is
159 begin
160 if Node_Ptr = null then
161 Node_Ptr := new Node’(new Event’Class’(E), null, null);
162 elsif E < Node_Ptr.Data.all then
163 Put(E, Node_Ptr.Left);

164 else
165 Put(E, Node_Ptr.Right);

166 end if;
167 end Put;

The other subprograms are implemented as before, except that the function Get dereferences
the designated event object before returning it:

168 procedure Put(E: in Event’Class; Q: in out Queue) is ... end Put;

169 function Empty(Q: in Queue) return Boolean is ... end Empty;

170 procedure Get(Node_Ptr: in out Link; Found: out Link) is ... end Get;

171 function Get(Q: Queue_Ptr) return Event’Class is
172 Found: Link;

173 begin
174 Get(Q.Root, Found);

175 return Found.Data.all;
176 end Get;

177 end Event_Queue;
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7.7 Dynamic dispatching

We are now ready to put the pieces together. The main subprogram follows the outline given at
the beginning of the chapter. First, a queue object is allocated and the access value is assigned
to the variable Q:

178 with Event_Queue;

179 with Root_Event.Engine, Root_Event.Telemetry, Root_Event.Steering;

180 use Root_Event;

181 procedure Rocket is
182 Q: Event_Queue.Queue_Ptr := new Event_Queue.Queue;

Then Create is called fifteen times for each event type and the events put on the queue:

183 begin
184 for I in 1..15 loop
185 Event_Queue.Put(Engine.Main_Engine_Event’(Engine.Create), Q.all);
186 Event_Queue.Put(Engine.Aux_Engine_Event’ (Engine.Create), Q.all);
187 Event_Queue.Put(Telemetry.Create, Q.all);
188 Event_Queue.Put(Steering.Create, Q.all);
189 end loop;

Finally, the events are removed one-by-one from the queue and Simulate is called for each one:

190 while not Event_Queue.Empty(Q.all) loop
191 Root_Event.Simulate(Event_Queue.Get(Q));

192 end loop;
193 end Rocket;

There is a technical reason for the dynamic allocation of the queue. Get must be a function
rather than a procedure so that it can return an indefinite type (see below), but Get modifies the
queue data structure and a function cannot have in out parameters. Instead, an access value is
passed to Get as a parameter of mode in as required by the function; it is permissible to modify
the object designated by constant such as an in parameter. (A better solution is to use access
parameters; see Section 12.6.)

Let us follow the processing of an event from creation to simulation, paying particular atten-
tion to the types of the objects and the parameters. We call a function such as Telemetry.Create
and then pass the returned event to the procedure Event_Queue.Put:

Event_Queue.Put(Telemetry.Create, Q.all);

What is the type of the object that is returned by the function, and what type is expected
for the first formal parameter of the procedure? From the declaration of the function Create

‡34 in package Root_Event.Telemetry, we see that the function returns an object of type
Telemetry_Event. The first formal parameter of Put ‡141 in package Event_Queue is of type
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Event’Class. By §3.4.1(4) (quoted in the previous section), a class-wide formal parameter
matches an actual parameter of any specific type in its class. Therefore, the call is legal because
the actual parameter (the object returned by Telemetry.Create) is of type Telemetry_Event,
which is in the class rooted at Event. Similarly, the calls to the other Create functions all return
objects of types within the class rooted at Event, so they match.

Consider now the removal of events from the queue and the call to the procedure Simulate:

Root_Event.Simulate(Event_Queue.Get(Q));

Again, let us examine what type is returned from the function Event_Queue.Get, and what
type is expected by Simulate. The function Get ‡142 returns an object of type Event’Class:

function Get(Q: Queue_Ptr) return Event’Class;

Since the queue is heterogeneous, before calling Get we cannot know what the specific type of
the returned event will be (the priority queue orders the events according to the Time compo-
nent and these were assigned random numbers). But we do know that it is one of the types
within the class.

The value returned by Get is the actual parameter of the call to the procedure Simulate.
Although the call is written Root_Event.Simulate, the abstract procedure Simulate declared
Root_Event has no body and cannot be called. Instead, we want to call one of the four overrid-
ing procedures declared for the various event types:

procedure Simulate(E: in Engine_Event);

-- Also for Main_Engine_Event, by inheritance

procedure Simulate(E: in Aux_Engine_Event);

procedure Simulate(E: in Steering_Event);

procedure Simulate(E: in Telemetry_Event);

How can the compiler decide which subprogram to call?

procedure
Simulate(E: in
Engine_Event);

procedure
Simulate(E: in
Aux_Engine_Event);

procedure
Simulate(E: in
Steering_Event);

procedure
Simulate(E: in
Telemetry_Event);

Root_Event.Simulate(actual parameter of type Event’Class);
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The answer is that the compiler doesn’t decide! Instead, at run-time, the call checks the spe-
cific type of the actual parameter and jumps to the appropriate procedure for that object. This
is called dynamic dispatching or simply dispatching. Although the actual parameter is of class-
wide type (as returned by Get), the type of the object itself is one of the specific types in the
class, and the call is dispatched to the procedure Simulate that is a primitive operation of the
specific type. For an object of type Main_Engine_Event, this is the procedure inherited from
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Engine_Event, while for the other event types, it is the overriding procedure declared just after
the type.

The advantage of dynamic dispatching is that the simulation loop is written once and never
needs to be changed (or even recompiled), regardless of how many additional event types are
added to the system.

7.7.1 Tags

For dispatching to work, an object must carry with it a run-time indication of its specific type
called a tag. If a primitive subprogram is called with an actual parameter of a specific type (the
parameter is statically tagged), then the compiler can decide which subprogram to bind to the
call. In the following declarations and statements, the types of the variable declarations provide
a context for the compiler to decided which function Create to call and the same types are used
to decide which subprogram Simulate to call:

use Root_Event.Engine;

E: Engine_Event := Create;

A: Aux_Engine_Event := Create;

Simulate(E);

Simulate(A);

This is called early or static binding. However, if the actual parameter is dynamically tagged,
that is, if it is of class-wide type, the compiler cannot bind the call and the binding is done
dynamically at run-time. This is called late or dynamic binding.

§3.9.2

1 The primitive subprograms of a tagged type . . . are called dispatching operations. A
dispatching operation can be called using a statically determined controlling tag, in
which case the body to be executed is determined at compile time. Alternatively, the
controlling tag can be dynamically determined, in which case the call dispatches to a
body that is determined at run time; such a call is termed a dispatching call. . . .

4 • The name or expression is statically tagged if it is of a specific tagged type . . . .
5 • The name or expression is dynamically tagged if it is of a class-wide type, . . . .

Note carefully that dispatching is only done on primitive subprograms. These subprograms
have formal parameters of the tagged type called controlling formal parameters; the correspond-
ing actual parameters are called controlling operands.
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§3.9.2

2 A call on a dispatching operation is a call whose name or prefix denotes the declaration
of a dispatching operation. A controlling operand in a call on a dispatching operation
of a tagged type T is one whose corresponding formal parameter is of type T . . . ; the
corresponding formal parameter is called a controlling formal parameter. . . .

20 For the execution of a call on a dispatching operation, the action performed is
determined by the properties of the corresponding dispatching operation of the
specific type identified by the controlling tag value. . . .

We wrote the dispatching call Root_Event.Simulate as an expanded name §4.1.3(4) to emphasize
that to dispatch with a controlling operand of a class-wide type Root_Event.Event’Class, you
(syntactically) call the primitive operation of the corresponding tagged type Root_Event.Event.

The function:

function "<"(Left, Right: Event’Class) return Boolean;

is not dispatching because the formal parameter is of class-wide type and the actual parameter
may be of any type within the class. The function is not primitive, so overriding and dispatch-
ing are not relevant.

Summary

Let us summarize the rules that govern static vs. dynamic binding of calls:1

• The primitive operations of a tagged type are subprograms that are declared immediately
within the same package specification and that have a parameter of the tagged type; inher-
ited operations are also primitive.

• Primitive operations are dispatching.
• Formal parameters of the tagged type are controlling formal parameters; the actual parame-

ters of the tagged type are controlling operands.
• Names or expressions of a tagged type are:

– Statically tagged if they are of a specific type.
– Dynamically tagged if they are of a class-wide type.

• The call is determined by the controlling tag:

– If the controlling operands (actual parameters) are statically tagged, the call is bound at
compile-time.

– If the controlling operands (actual parameters) are dynamically tagged, the call is dis-
patched at run-time to the subprogram whose controlling formal parameters match the
tags of the operand.

1 The rules are more complicated when there are functions which return a tagged type (Section 8.10).
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The rules for dispatching are displayed in the following table:

actual
specific

actual
class-wide

formal
specific static dynamic

formal
class-wide static static

The terminology of these rules is more complex than the actual concept itself. Think always
of the diagram on page 114: if you have an actual parameter of class-wide type, you cannot know
what the tag (specific type) of the value is, so dispatching at run-time must be done. Any other
combination is statically bound.

7.8 Types and packages

There are no particular encapsulation requirements for tagged types, except that primitive op-
erations need to be declared in the same package specification as the type. The following spec-
ification, with all the types in a single package specification and with all the declarations in the
visible part of the package, is correct:

rocketc

1 package Event_Package is
2 subtype Simulation_Time is Integer range 0..10_000;

3 type Event is abstract tagged ...

4 function Create return Event is abstract;
5 procedure Simulate(E: in Event) is abstract;
6 function "<"(Left, Right: Event’Class) return Boolean;

7

8 type Engine_Event is new Event with ...

9 function Create return Engine_Event;

10 procedure Simulate(E: in Engine_Event);

11

12 type Main_Engine_Event is new Engine_Event with ...

13 function Create return Main_Engine_Event;

14

15 type Aux_Engine_Event is new Engine_Event with ...

16 function Create return Aux_Engine_Event;

17 procedure Simulate(E: in Aux_Engine_Event);
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18 type Steering_Event is new Event with ...

19 function Create return Steering_Event;

20 procedure Simulate(E: in Steering_Event);

21

22 type Telemetry_Event is new Event with ...

23 function Create return Telemetry_Event;

24 procedure Simulate(E: in Telemetry_Event);

25 end Event_Package;

The main program needs only minor modifications due to the change in the package name:

26 with Event_Queue;

27 with Event_Package; use Event_Package;

28 procedure RocketC is
29 Q: Event_Queue.Queue_Ptr := new Event_Queue.Queue;

30 begin
31 for I in 1..15 loop
32 Event_Queue.Put(Main_Engine_Event’(Create), Q.all);
33 Event_Queue.Put(Aux_Engine_Event’(Create), Q.all);
34 Event_Queue.Put(Telemetry_Event’(Create), Q.all);
35 Event_Queue.Put(Steering_Event’(Create), Q.all);
36 end loop;
37

38 while not Event_Queue.Empty(Q.all) loop
39 Simulate(Event_Queue.Get(Q));

40 end loop;
41 end RocketC;

The type of the actual parameter in the call to Simulate is Event’Class, so the call is dispatched
to the appropriate version of Simulate in the derivation class for the type Event.

7.9 Encapsulation and child packages

The limitation that a client can only see the visible part of a package is too inflexible for some
applications. Consider the declaration of Root_Event.Event:
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package Root_Event is
type Event is abstract tagged private;

private
type Event is abstract tagged

record
Time: Simulation_Time; -- Common component of all events

end record;
end Root_Event;

On the one hand, we wish to restrict the accessibility of the implementation of the type (the
component Time), but, on the other hand, derived types should be able to access this compo-
nent, because computations within Simulate may be time-dependent.

The solution is to use child packages to form a subsystem of packages §10.1(3), consisting of a
root library package and all its children, their children and so on. (Subprograms may also be
children of packages §6.1(4,7).) Packages within the subsystem share abstractions by granting
child packages visibility of the private parts of their specifications. Child packages are denoted
syntactically by concatenating the child’s name to the parent’s name using dotted notation. The
hierarchy of descendants may be carried to any depth.

The visibility rules can be understood by pretending that a child package is declared after
the parent’s specification but before its body:

package body
Root_Event

package
Root_Event.
Engine

package
Root_Event.
Steering

package
Root_Event.
Telemetry

private package
Root_Event.
Random_Time

package
Root_Event

The diagram is intended to show that the children can see the private part but not the body.

§8.1

7 The declarative region includes the text of the construct together with additional text
determined (recursively), as follows:

9 If the declaration of a library unit . . . is included, so are the declarations of any child
units . . . . The child declarations occur after the declaration.
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A package can have a with_clause for any package even if it is a child package. For example,
the case study in Section 6.8.3 had a with_clause for Ada.Numerics.Complex_Types, which is in
an entirely separate hierarchy of packages. In the simulation case study, Root_Event.Steering
has a with_clause for its sibling Root_Event.Random_Time. The parent body has no special priv-
ileges and must also contain a with_clause for a child if it needs to access it.

Writing a with_clause for a package is the same as writing with_clauses for the package and
for all its parents §10.1.2(6). In the main subprogram of the simulation, there are with_clauses
for the child packages:

with Root_Event.Engine, Root_Event.Telemetry, Root_Event.Steering;

use Root_Event;

These clauses enable the use of resources in the parent clause Root_Event. The context clause
also contains a use_clause for Root_Event, so we can directly refer to the child package (for
example, Telemetry.Create):

§8.1

16 The children of a parent library unit are inside the parent’s declarative region, even
though they do not occur inside the parent’s declaration or body. This implies that
one can use (for example) "P.Q" to refer to a child of P whose defining name is Q, and
that after "use P;" Q can refer (directly) to that child.

The private part of a child package can see the private part of the parent package, although
we did not make use of this in the case study. However, we must prevent exporting of declara-
tions from the private part:

package Root_Event.Telemetry_Event is
subtype Telemetry_Time is Simulation_Time; -- Error!

private
...

end Root_Event.Telemetry_Event;

because that would negate the purpose of private parts. There is a special rule that excludes
the visible part of a child package specification from seeing the private part of its parent:

§8.2

4 • The immediate scope of a declaration in the private part of a library unit does not
include the visible part of any public descendant of that library unit.

Consider, however, the random number generator package Root_Event.Random_Time. The
package is declared as a generic instantiation of a package from the standard libraries, but in
the context of our simulation program, an equivalent specification is as follows:
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package Root_Event.Random_Time is
type Generator is private;
function Random(Gen: Generator) return Simulation_Time;

procedure Reset(Gen: in Generator);

private
...

end Root_Event.Random_Time;

The function Random in the visible part returns a value of type Simulation_Time that is declared
in the private part of its parent, in effect exporting the type. However, this will not be a problem
in our case study, provided that we promise to restrict the use of Simulation_Time to children
of Root_Event that already have visibility of its private part.

Ada defines two types of child packages: public and private. The rule in §8.2(4) that prevents
visibility of the private part of a package in the visible part of a child holds only for public
children. The visible part of a private child is allowed access to the private part of a parent.
However, to prevent exporting the private declarations, a unit that has a with_clause for a
private child must be within the family that already has access to the private part:

§10.1.2

8 If a with_clause of a given compilation_unit mentions a private child of some library
unit, then the given compilation_unit shall be one of:

9 • the declaration, body, or subunit of a private descendant of that library unit;
10 • the body or subunit of a public descendant of that library unit, . . .

In the simulation, Root_Event.Random_Time is declared to be a private child:

private package Root_Event.Random_Time is
function Random(Gen: Generator) return Simulation_Time;

end Root_Event.Random_Time;

so the use of Simulation_Time is legal. However, a with_clause for Root_Event.Random_Time
is only allowed for child packages rooted at Root_Event.

Library packages are children of the predefined package Standard §10.1.1(1). This explains
the visibility of predefined entities like the type Integer.

Projects

1. Implement separate random number generators for each component of the events.
2. Use the array implementation of the priority queue instead of the tree implementation.
3. Implement the function

function Get(Q: Queue_Ptr) return Event’Class;

using an extended return statement.
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Quizzes

Quiz 1:

package P is
type T1 is tagged

record I: Integer := 0; end record;
type T2 is new T1 with

record N: Integer := 0; end record;
end P;

with P; use P;

procedure Main is
A: T2’Class := (I => 2, N => 4);

begin
null;

end Main;

Quiz 2:

package P is
type T1 is tagged

record I: Integer := 0; end record;
function "="(Left, Right: T1) return Boolean;

type T2 is new T1 with
record N: Integer := 0; end record;

end P;

package body P is
function "="(Left, Right: T1) return Boolean is
begin

return abs(Left.I-Right.I) < 2;

end "=";

end P;

with P; use P;

procedure Main is
A: T2 := (I => 2, N => 4); B: T2 := (I => 3, N => 4);

C: T2 := (I => 3, N => 4); D: T2 := (I => 3, N => 5);

begin
Put_Line(Boolean’Image(A = B));

Put_Line(Boolean’Image(C = D));

end Main;
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Quiz 3:

type T is new Integer;

function "="(Left, Right: T) return Boolean is
begin

return Integer(Left) /= Integer(Right);

end "=";

type Vector is array(1..2) of T;

A: Vector := (1, 2);

B: Vector := (3, 4);

Put_Line(Boolean’Image(A(1) = B(1)));

Put_Line(Boolean’Image(A = B));

Quiz 4:

package P is
type T is private;

private
type Ptr is access T’Class;

type T is tagged
record

Next: Ptr;

end record;
end P;



Chapter 8

Type Extension and Inheritance (Continued)

8.1 Designated receiver syntax

In most languages that support object-oriented programming, the syntax for invoking meth-
ods (subprograms) is designed so that there is a designated receiver, that is, an object that is the
“receiver” of the method:

event.simulate();

Within the method, the designated receiver is an implicit parameter that is known by a special
name (usually, this). Distinguished receiver syntax is also supported in Ada:

rocketp

1 with Event_Queue;

2 procedure Rocket is
3 Q: Event_Queue.Queue_Ptr := new Event_Queue.Queue;

4 procedure Create(Q: in Event_Queue.Queue_Ptr) is separate;
5 begin
6 Create(Q);

7 while not Event_Queue.Empty(Q.all) loop
8 Event_Queue.Get(Q).Simulate;

9 end loop;
10 end Rocket;

Event_Queue.Get(Q).Simulate denotes a prefixed view §4.1.3(9.1–9.2). The prefix must be of a
specific or class-wide tagged type; in this case, Event_Queue.Get(Q) is of type Event’Class.
The selector must denote a primitive or class-wide operation for the tagged type whose first
parameter is of this type; here, Simulate is a primitive operation of the tagged type Event

whose first parameter is of this type. The value returned by the call to Event_Queue.Get(Q)

becomes the implicit first (and only) parameter in the (dispatching) call to Simulate §6.4(10.1).

125
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Within the subprogram, there is no need for a special name for the implicit parameter, be-
cause it has an explicit declaration with the formal parameter name E:

procedure Simulate(E: in Event) is abstract;

The distinguished receiver syntax is not just syntactic sugar; recall that the other syntax
required a with_clause for Root_Event:

Root_Event.Simulate(Event_Queue.Get(Q));

This is no longer required. The main subprogram has been modified to move the creation of
the events to a subunit ‡4 (Section 15.3), so we can remove the context clauses that mentioned
them. The source code of the main subprogram is no longer dependent on the precise nature of
the events, and can be re-used without modification as a framework for simulation of events
of a totally different nature.

Ada 95

The designated receiver syntax does not exist in Ada 95.

Language Comparison

The designated receiver syntax is the only syntax for invoking methods in Java
and many other languages for OOP. The advantage has just been discussed. One
advantage of the normal subprogram call in Ada is that you can supply your own
(meaningful) name for the formal parameter. Another advantage is that multiple
controlling operands (Section 8.9) can be used to dispatch to binary operators. In
Java this cannot be done, while in C++ the friend construct must be used.

8.2 Type conversion

A value of a type in a derivation class can be converted to a value of another type in the class
subject to the following rule:

§4.6

21 If there is a type that is an ancestor of both the target type and the operand type, or
both types are class-wide types, then at least one of the following rules shall apply:

22 • The operand type shall be covered by or descended from the target type; or
23 • The operand type shall be a class-wide type that covers the target type; or

Cover is defined as follows:
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§3.4.1

9 A class-wide or universal type is said to cover all of the types in its class. A specific
type covers only itself.

A value of type Aux_Engine_Event can be converted to a value of type Engine_Event or to a
value of type Event, since Aux_Engine_Event is descended from those types §4.6(22). The effect
is simply to ignore the extra components that were added during the type derivation. By the
same clause, a value of type Aux_Engine_Event can be converted to Engine_Event’Class or
Event’Class which cover Aux_Engine_Event, as explained in Section 8.8. However, we cannot
convert a value of type Engine_Event to Aux_Engine_Event or to Aux_Engine_Event’Class,
because it has no Side component that is part of every value of these types. This can be ex-
pressed by saying that it is permissible to convert up, but not down, the hierarchy of the deriva-
tion class, as shown in Figure 7.1.

Consider now converting a class-wide type to a specific type that it covers §4.6(23):

EV_CL: Event’Class := ...;

Eng: Engine_Event := Engine_Event(EV_CL);

EV_CL contains a value of some specific type within Event’Class. If we are “lucky” and the
value of E_CL is in fact of type Engine_Event (or Main_Engine_Event or Aux_Engine_Event),
the conversion will succeed; otherwise, the conversion will fail and raise Constraint_Error

§4.6(42). Do not do such a conversion unless you know that the conversion will succeed; for
example, a membership test §4.5.2(30) can be used to check the type before performing the
conversion:

if EV_CL in Engine_Event’Class then
Eng := Engine_Event(EV_CL); -- OK

else
-- Do something else

end if;

8.3 Extension aggregates

Though a value of a parent type cannot be converted to a value of a type derived from it, it is
possible to create a value of the derived type by supplying the additional components that are
“missing” from the parent type:
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§4.3.2

1 An extension_aggregate specifies a value for a type that is a record extension by
specifying a value or subtype for an ancestor of the type, followed by associations
for any components not determined by the ancestor_part.

2 extension_aggregate ::=
(ancestor_part with record_component_association_list)

3 ancestor_part ::= expression | subtype_mark

6 For the record_component_association_list of an extension_aggregate, the only
components needed are those of the composite value defined by the aggregate that
are not inherited from the type of the ancestor_part, . . .

An extension aggregate was used to create a value of type Aux_Engine_Event:

return (Engine_Event’(Create)

with Aux_Engine_ID’Val(Random_Time.Random(G) mod 2));

The ancestor_part of the aggregate is the expression Engine_Event’(Create) that returns a
value of the ancestor type Event_Event; this is followed by an association that gives a value for
the component Side that was added during the derivation.

A value of type Main_Engine_Event adds no components to the parent value; nevertheless,
a null record association must be given §4.3.2(9):

return (Engine_Event’(Create) with null record);

An extension aggregate built from a subtype_mark is intended to be used when the ancestor
type is abstract. For example, an extension aggregate for Engine can be written:

return (Event with
Fuel => Random_Time.Random(G) mod 100,

Oxygen => Random_Time.Random(G) mod 500);

Since Event is abstract, a value of the type cannot be created; instead, the subtype_mark is used
to indicate that the default values of the ancestor type should be used.

§4.3.2

7 . . . if the ancestor_part is a subtype_mark, the components of the value of the
aggregate not given by the record_component_association_list are initialized by
default as for an object of the ancestor type.

In the case study, the declaration of Event should have contained a meaningful default value
for the component Simulation_Time:

Time: Simulation_Time := 0;
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8.4 Abstract types

We will now explain abstract types and subprograms in more detail. The specification of the
package Root_Event is repeated here for convenience:

rocket

1 package Root_Event is
2 type Event is abstract tagged private;
3

4 function Create return Event is abstract;
5 procedure Simulate(E: in Event) is abstract;
6

7 function "<"(Left, Right: Event’Class) return Boolean;

8 private
9 subtype Simulation_Time is Integer range 0..10_000;

10 type Event is abstract tagged
11 record
12 Time: Simulation_Time; -- Common component of all events

13 end record;
14 end Root_Event;

The abstract type Event serves as the ancestor of all the event types. Promoting one of the
actual event types to be the parent of all the other types would be arbitrary and inappropriate,
so we declare an abstract event type, even though objects of this type are meaningless. In the
simulation program, the abstract type Root_Event.Event is a convenient place to declare the
common component Time. Frequently, an abstract type is declared as a null record.

The abstract primitive subprograms serve as ancestors of the concrete primitive subpro-
grams that will be declared upon derivation.

§3.9.3

1 An abstract type is a tagged type intended for use as an ancestor of other type, but
which is not allowed to have objects of its own. An abstract subprogram is a
subprogram that has no body, but is intended to be overridden at some point when
inherited. Because objects of an abstract type cannot be created, a dispatching call to
an abstract subprogram always dispatches to some overriding body.

The call to Root_Event.Simulate is an example of the last sentence of the above clause (which
is more formally stated in §3.9.3(7)).

The property of being an abstract (primitive) subprogram can be inherited by other abstract
types; however, once a non-abstract type is declared, a nonabstract subprogram must be de-
clared §3.9.3(4–6). For example, it would have been a good idea to declare Engine_Event as
abstract, because any concrete engine is either a main engine or an auxiliary engine:
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type Engine_Event is abstract new Event with private;
function Create return Engine_Event; -- Not abstract

-- Abstract procedure Simulate is inherited from abstract type Event

Now that Engine_Event is abstract, Simulate requires overriding §3.9.3(6) for the concrete types:

type Main_Engine_Event is new Engine_Event with private;
function Create return Main_Engine_Event;

procedure Simulate(E: in Main_Engine_Event);

type Aux_Engine_Event is new Engine_Event with private;
function Create return Aux_Engine_Event;

procedure Simulate(E: in Aux_Engine_Event);

An abstract type is like an indefinite type in that objects of the type cannot be declared; see
§3.9.3(8) for the full list of restrictions on abstract types. However:

§3.9.3

13 A class-wide type is never abstract. Even if a class is rooted at an abstract type, the
class-wide type for the class is not abstract, and an object of the class-wide type can
be created; the tag of such an object will identify some nonabstract type in the class.

As shown in the examples in the following sections, there is no problem declaring a variable of
type Event’Class, even though Event is an abstract type.

Interface types (Chapter 17) are also abstract types §3.9.3(1.2).

8.5 Null procedures

Whenever an abstract subprogram is declared for an abstract tagged type, it must be overrid-
den in all nonabstract types that extend it §3.9.3(6). It may happen, however, that only a few
of the derived types require that the subprogram actual perform a computation. To save writ-
ing empty subprograms, a null procedure—equivalent to a procedure whose only statement is
null—can be used instead. The null procedure can be inherited without overriding, but if it is
called nothing happens.

Let us add a null procedure Start as a primitive subprogram for type Event:

rocketp

1 type Event is abstract tagged private;
2 procedure Start(E: in out Event) is null;

and encapsulate the creation of events on the queue in a subunit (Section 8.1):
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3 with Root_Event.Engine, Root_Event.Telemetry, Root_Event.Steering;

4 use Root_Event;

5 separate(Rocket)
6 procedure Create(Q: in Event_Queue.Queue_Ptr) is
7 procedure Create_Event(E: in Event’Class) is
8 Ev: Event’Class := E;

9 begin
10 Ev.Start;

11 Event_Queue.Put(Ev, Q.all);
12 end Create_Event;

13 begin
14 for I in 1..15 loop
15 Create_Event(Engine.Main_Engine_Event’(Engine.Create));

16 Create_Event(Engine.Aux_Engine_Event’(Engine.Create));

17 Create_Event(Telemetry.Create);

18 Create_Event(Steering.Create);

19 end loop;
20 end Create;

(The formal parameter of Start is of mode in out, so its actual parameter must be a variable—
here, Ev—not a constant like the parameter E of mode in.)

The subprogram Start is invoked for every event before it is put on the event queue. It mat-
ters not at all whether the subprogram was ever overridden in any of the specific types derived
from Event. In the full program in the software archive, the subprogram has, in fact, been im-
plemented for Engine_Event and inherited by Main_Engine_Event and Aux_Engine_Event; for
Steering_Event and Telemetry_Event, the null procedure is called.

Ada 95

Null procedures do not exist in Ada 95, so abstract subprograms must be explicitly overridden
for concrete types.

Language Comparison

Java uses adapter classes for this purpose. For example, there are three lis-
tener interfaces that contain methods that are invoked when mouse events
occur (MouseListener, MouseWheelListener, MouseMotionListener); together
they define nine methods. The class MouseAdapter declares empty methods that
implement the methods declared in these interfaces, so only those methods that
need to be overridden must be written.
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8.6 Overriding indicators

You have just returned from a heavy lunch and decide to extend the type:

type Engine_Event is new Event with private;
procedure Simulate(E: in Engine_Event);

but, by mistake, you write Simulates instead of Simulate:

type Center_Engine_Event is new Engine_Event with private;
procedure Simulates(E: in Center_Engine_Event);

What happens? The procedure Simulates is simply a new (primitive) subprogram for the de-
rived type. Any dispatching call to Simulate with an object of type Center_Engine_Event will
invoke the subprogram that was inherited from Engine_Event. Such a bug will be difficult to
diagnose because you will look at Simulates and see what you want to see: Simulate.

Overriding indicators §8.3.1 can be used to make this a simple compile-time error. Add the
reserved word overriding in front of a subprogram:

type Engine_Event is new Event with private;
overriding
procedure Simulate(E: in Engine_Event);

type Center_Engine_Event is new Engine_Event with private;
overriding
procedure Simulates(E: in Center_Engine_Event);

The above declaration of Simulates is now a compilation error, because the compiler can diag-
nose that Simulates does not actually override any primitive subprogram.

A similar situation can occur if the number or types of the parameters change:

procedure Simulate(E: in String);

This subprogram—a non-primitive one—will simply overload the inherited subprogram. There
is an indicator not overriding for situations where overloading, rather than overriding of a
primitive subprogram, is intended:

not overriding
procedure Simulate(E: in String);

If, by accident, you write Center_Engine_Event instead of String as the type of the formal
parameter, a compilation error will result, because the subprogram is overriding.

Overriding indicators can also be used on the instantiation of a generic subprogram §12.3(2)
(Section 9.4).

Ada 95

Overriding indicators do not exist in Ada 95.
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8.7 Objects of class-wide type

Why didn’t we use a procedure for Event_Queue.Get?

procedure Get(E: out Event’Class; Q: in Queue_Ptr);

The type of the first formal parameter is a class-wide type and all such types are indefinite;
however, the actual parameter for an out parameter must be a variable and the variable will
contain an object with some tag. Any attempt to assign to this variable a value with some other
tag will raise the exception Constraint_Error:

EV_CL: Event’Class := Engine_Event’(100, 4102, 5335);

Get(EV_CL, Q); -- Suppose a Telemetry_Event is removed from the queue

With a function there is no problem, because when a function returns an object it allocates
storage for the object. This object can then be used in an expression, for example, as an actual
parameter of a dispatching subprogram call.

As with any other indefinite type, one way to create a class-wide object that can have values
of different types within the class is to make it a formal parameter of a subprogram. The formal
parameter is elaborated anew in each call and the constraint is taken from the actual parameter:

procedure Do_Simulation(EV_CL: in Event’Class) is
begin

Root_Event.Simulate(EV_CL);

Write_Event_to_Log(EV_CL);

end Do_Simulation;

while not Event_Queue.Empty(Q.all) loop
Do_Simulation(Event_Queue.Get(Q));

end loop;

Alternatively, you can use a block statement:

while not Event_Queue.Empty(Q.all) loop
declare

EV_CL: Event’Class := Event_Queue.Get(Q);

begin
Root_Event.Simulate(EV_CL);

Write_Event_to_Log(EV_CL);

end;
end loop;

In each iteration of the loop, EV_CL is allocated and initialized with the object returned from
Event_Queue.Get(Q). This object is discarded when leaving the block, just as local variables are
discarded when leaving a subprogram. See Section 8.10 for another example of this technique.
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8.8 View conversion and redispatching*

Type conversion of tagged types is quite different from what you normally think of as type
conversion. A new value is not created; instead, you get a new view of the original value which
hides components that are not part of the target type.

§4.6

5 A type_conversion whose operand is the name of an object is called a view conversion if
both its target type and operand type are tagged, or if it appears in a call as an actual
parameter of mode out or in out; other type_conversions are called value conversions.

42 • The tag of the result is the tag of the operand. . . .
55 • If the target type is tagged, then an assignment to the view assigns to the

corresponding part of the object denoted by the operand; . . .

Since neither the tag §4.6(42) nor the value of the operand is changed by the conversion, you
can always recover the original value and type.

During an assignment, both the source and the target objects retain their tags, and only the
relevant components are copied:

E: Engine_Event := ...; -- Tagged as Engine_Event

A: Aux_Engine_Event := ...; -- Tagged as Aux_Engine_Event

E := Engine_Event(A); -- Side component ignored

Engine_Event(A) := E; -- Side component not assigned to

View conversions can be used for redispatching. Consider the following tagged type Parent,
where the derived type Derived inherits the primitive procedure Proc1 but overrides Proc2:

type Parent is tagged ...;

procedure Proc1(V: in Parent);

procedure Proc2(V: in Parent);

type Derived is new Parent with ...;

procedure Proc2(V: in Derived);

Suppose that P_CL is a class-wide object containing a value of type Derived:

D: Derived := ...;

P_CL: Parent’Class := Parent’Class(D);

What happens when Proc1(P_CL) is called? The value P_CL of class-wide type will be con-
verted to the specific type Parent of the formal parameter V §4.6(42). However, the conversion
is only a view conversion and V remains tagged as Derived. Within Proc1, the following state-
ment will redispatch to the procedure Proc2 that was overridden for type Derived:

Proc2(Parent’Class(V));
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because the tag of the result is taken from the tag of the operand, namely Derived. Redispatch-
ing works because tagged types are passed by reference §6.2(5), so that within Proc1 the tag of
its actual parameter exists unchanged.

8.9 Multiple controlling operands*

A primitive operation is allowed to have more than one controlling formal parameter. This is
particularly useful for dispatching on binary operators:

type T is tagged ...;

function "<"(Left: T; Right: T) return Boolean;

This operator is primitive since its parameters are of the specific tagged type T, unlike the
operator "<" in the case study, which had parameters of the class-wide type Event’Class.

Suppose now that a class of types T1, T2, . . . , has been derived from T. Given two values X

and Y of some types within T’Class, what is the meaning of X < Y? Clearly, if both X and Y are
of the same specific type:

X: T2 := ...;

Y: T2 := ...;

the compiler binds to the function declared for the type, either the inherited function or an
overriding function. It is equally obvious that if X and Y are of different specific types:

X: T1 := ...;

Y: T3 := ...;

no appropriate function exists. However, what happens if either X or Y, or both, are of the class-
wide type T’Class?

§3.9.2

16 . . . If there is more than one dynamically tagged controlling operand, a check is
made that they all have the same tag. If this check fails, Constraint_Error is raised . . .

Given the declarations:

X: T’Class := T3’(...);

Y: T’Class := T3’(...);

Z: T’Class := T4’(...);

X < Y dispatches to the operation for T3, while X < Z raises Constraint_Error. You can com-
pare the tags of values of class-wide type §3.9(17–18) before calling the operation:
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if X’Tag = Z’Tag then
if X < Z then ... -- OK, dispatch!

else ...

end if;
else ... -- Different types, do something else

end if;

Since we are only comparing tags for equality and not asking if a value of class-wide type has
a specific tag, the statement need not be modified if additional derivations are done.

Suppose, now, that one operand is of a specific type and one is of class-wide type:

V: T3 := T3’(...);

W: T’Class := T3’(...);

The expression V < W is illegal:

§3.9.2

8 A call on a dispatching operation shall not have both dynamically tagged and
statically tagged controlling operands.

There is a special rule concerning the inheritance of the equality operator; see Quiz 2.

8.10 Dispatching on the function result*

So far, we have used expanded names and qualified expressions to indicate to the compiler
which version of Create to call; no dispatching is required:

Event_Queue.Put(Engine.Aux_Engine_Event’(Engine.Create), Q.all);
Event_Queue.Put(Telemetry.Create, Q.all);

However, a call to a primitive function can be a controlling operand of a dispatching call.

§3.9.2

2 . . . If the call is to a (primitive) function with result type T, then the call has a
controlling result — the context of the call can control the dispatching. . . .

Such a function call is called tag indeterminate §3.9.2(3,6); a tag-indeterminate operand is legal
only if there is sufficient context to determine which function to call. In a call Simulate(Create),
there is not enough context to dispatch Create because there are several procedures Simulate
for the different types in the class.

To demonstrate dispatching on the function results, let us modify the rocket simulation so
that whenever an event is removed from the queue, a new event of the same type is inserted into
the queue. This can be done by dispatching Create using a technique that we now describe. We
declare a primitive subprogram Another with two controlling parameters, Original and Copy:
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rocketf

1 package Root_Event is
2 type Event is abstract tagged private;
3

4 function Create return Event is abstract;
5 procedure Simulate(E: in Event) is abstract;
6 function Another(Original: Event; Copy: Event) return Event’Class;

7 function "<"(Left, Right: Event’Class) return Boolean;

8 private
9 ...

10 end Root_Event;

Next, we modify the main loop of the simulation to call the function Another with two param-
eters: First, which is dynamically tagged of class-wide type, and Root_Event.Create, which
is a tag-indeterminate function call:

11 loop
12 declare
13 First: Event’Class := Event_Queue.Get(Q);

14 Second: Event’Class := Another(First, Root_Event.Create);

15 begin
16 Event_Queue.Put(Second, Q.all);
17 Root_Event.Simulate(First);

18 end;
19 end loop;

There is now sufficient context to disambiguate the call to Create: since all dynamically tagged
controlling operands (including calls to functions with controlling results §3.9.2(5)) must have
the same tag, Create is dynamically dispatched to the version appropriate for the specific type
contained in First.

The function Another is just a framework for this dispatching. All it does is convert the
second parameter to the class-wide type; the first parameter is not used:

20 function Another(Original: Event; Copy: Event) return Event’Class is
21 begin
22 return Event’Class(Copy);

23 end Another;

A tag indeterminate operand is statically bound if all other parameters are statically bound:

T: Telemetry_Event;

E: Event’Class := Another(T, Create); -- Bound to Telemetry.Create
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Dispatching on a function call can also occur in the default expression for a control-
ling formal parameter §3.9.2(11), in an assignment statement §5.2(9), and in enclosing tag-
indeterminate calls §3.9.2(6). A program in the software archive demonstrates these features.

8.11 Indirect derivation*

The full and partial views of extensions need not be derived from the same tagged type. The full
view of a private extension can be indirectly derived from any ancestor of the type §7.3(8). In the
following specification, the partial view of Main_Engine_Event is derived directly from Event,
while the full view is derived directly from Engine_Event and only indirectly from Event:

package Root_Event.Engine is
type Engine_Event is new Event with private;
type Main_Engine_Event is new Event with private;

private
type Engine_Event is new Event with ...

type Main_Engine_Event is new Engine_Event with ...;

end Root_Event.Engine;

8.12 Freezing*

Can we rearrange the declarations in Event_Package so that all the type derivations are de-
clared before the primitive operations?

package Event_Package is
type Event is abstract tagged ...

type Engine_Event is new Event with ...

type Main_Engine_Event is new Engine_Event with ...

type Steering_Event is new Event with ...

type Telemetry_Event is new Event with ...

procedure Simulate(E: in Event) is abstract;
procedure Simulate(E: in Engine_Event);

procedure Simulate(E: in Aux_Engine_Event);

procedure Simulate(E: in Steering_Event);

procedure Simulate(E: in Telemetry_Event);

end Event_Package;

The answer is no. As discussed in the next section, the implemention of dispatching calls re-
quires that the entire set of primitive operations for a type be known when the type is extended.
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It follows that the declarations of primitive operations must be “close to” the declaration of the
tagged type or extension. The rule is expressed in terms of a concept called freezing §13.14:

§13.14

7 The declaration of a record extension causes freezing of the parent subtype.
16 The explicit declaration of a primitive subprogram of a tagged type shall occur

before the type is frozen (see 3.9.2).

See §13.14 for the complete set of constructs that cause freezing.

8.13 Implementation of dispatching*

This book presents the Ada language as seen by a programmer, not the implementation tech-
niques used in the compiler and run-time system. Nevertheless, an outline of a possible im-
plementation of dynamic dispatching will enable you to understand the run-time overhead
that is incurred. The following diagram shows a data structure that can be used to implement
dispatching:

Tags Dispatch Tables Subprograms

Engine

Main_Engine

Aux_Engine -

-

-

Simulate

Create

Simulate

Create

Simulate

Create

-

-
-

-

-

-

Dispatch tables for each specific type are created by the compiler and loaded at run-time. (To
save space, some subprograms and the dispatch tables for Telemetry and Steering have been
omitted.) Each object has a tag for its specific type; the tag is a pointer to the dispatch table for
that type. When a dispatching call is made, the pointer is used to obtain the address of the dis-
patch table corresponding to the specific type of the controlling operands. The table contains
a pointer to each primitive subprogram, and an indirect call on this pointer calls the subpro-
gram. Since Main_Engine_Event inherits Simulate from Engine_Event, a new procedure is not
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created for the derived type; instead, the dispatch table pointer for Main_Engine.Simulate is
directed to the procedure already declared for the parent type Engine_Event.

The implementation outlined in the diagram shows that the run-time overhead of dispatch-
ing is small and, more importantly, fixed. A few machine instructions will suffice for doing
the indirect call to the subprogram, and for any processor and compiler the overhead can be
computed or measured. All dispatching calls will have exactly this overhead, so there is no
uncertainty that would prevent the use of dispatching in a real-time system.

Once a tagged type or extension is declared, additional derived descendants can be de-
clared without recompiling the package specification that declares the ancestor. Each addi-
tional derivation will add a new dispatch table, and the code for any primitive subprograms
overridden or added upon derivation. Existing tags and dispatch tables are not affected.

This explains why primitive subprograms must be declared in the package specification. A
basic design principle of Ada is that clients of a package can be developed once the specification
is written; the source code of clients is to be independent of the package body (unless there
are generics or inlined subprograms). By forbidding the declaration of primitive subprograms
outside the specification containing the tagged type definition, the dispatch table can be created
during the compilation of the specification.

An additional requirement is that a derivation can only add primitive operations, not re-
move them, and that any operation that is not overridden is inherited. If a primitive operation
Proc is defined for a tagged type T, then Proc will also be defined for any type in the derivation
class; therefore, no run-time check is needed for a dispatching call of Proc with an operand of
type T’Class.

Projects

1. Add overriding indicators to the rocket simulation.
2. Implement the rocket simulation with Write_Event_to_Log as outlined in Section 8.7.
3. Restructure the rocket simulation so that Telemetry_Event is derived from Root_Event and

all other events are derived from Telemetry_Event. There will be a primitive subprogram
Format_Event of type Telemetry_Event that will be overridden by each of the other event
types to construct a string for each call of Create and Simulate; these strings will then be
sent by the telemetry subsystem.
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Quizzes

Quiz 1:

package P is
type T1 is tagged null record;
procedure Proc1(X: in out T1);

type T2 is new T1 with null record;
procedure Proc1(X: in out T2);

procedure Proc2(X: in out T1);

end P;

Quiz 2:

package P is
type Parent is tagged record N: Integer; end record;
type Derived is new Parent with record M: Integer;

end record;
end P;

with P; use P;

with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;

procedure Main is
P: Parent := (N=>1);

D: Derived := (N=>2, M=>3);

begin
Parent(D) := P;

Put(D.N);

Put(D.M);

end Main;

Quiz 3:

package P is
type T1 is tagged

record I: Integer; end record;
function F return T1;

type T2 is new T1 with
record N: Integer; end record;

end P;
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Quiz 4:

package P is
type T1 is tagged

record
N: Integer;

end record;
procedure Proc2(X: T1 := (N=>1));

end P;

Quiz 5:

package P is
type T1 is tagged

record
N: Integer;

end record;
procedure Proc1(X: T1);

Empty: constant T1;

procedure Proc2(X: T1);

private
Empty: constant T1 := (N => 1);

end P;



Chapter 9

Generics

In Chapter 5 we developed a priority queue abstract data type and showed how to change the
implementation of the queue from an array to a tree without changing the client interface sup-
plied by the package specification. However, that data structure was specialized for elements
of type Integer, so when a priority queue was needed in Chapter 7 for elements of type Event,
a new package was written.

Generic units enable the parameterization of data structures and algorithms by parameteriz-
ing packages and subprograms. A generic unit is a template from which instances can be created
at compile-time by supplying actual parameters, which can be types, subprograms or even other
generic units. The creation of an instance—called instantiation—is done at compile time. The
compiler enforces type checking on the generic unit, and verifies that the actual parameters
used in the instantiation match the formal parameters of the generic unit.

Generics are an alternative to heterogenous types that were discussed in the previous chap-
ter. There are two drawbacks to heterogenous types: (a) additional overhead is required be-
cause indirect allocation must be used, and (b) a potentially dangerous type conversion must
be done on all elements retrieved from the data structure.

This chapter presents generic units in Ada except for generic tagged and interface types,
which are discussed separately in Chapter 17 on multiple inheritance.

Language Comparison

C++ supports templates, which are similar to Ada generics, although explicit in-
stantiation is not supported, so every occurrence of a type must be written in
the form Priority_Queue<Event>; this makes it difficult to read the source code.
There is no contract model in C++, so the entire instance must be checked for
legality. In Ada, most error messages will result from the actual parameters sup-
plied in the instantiation not matching the formal parameters. In C++, error mes-
sages will refer the source code of the template, making it difficult to treat the
template as an abstraction.

143
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Language Comparison

Java supports heterogenous data structures, based upon defining every type to
be an extension of a root type Object. Starting with Java 5, generics are supported
in a manner similar to that of C++, but the generic parameters in Java can only
be classes, not primitive types, arrays or other constructs, as in Ada.

9.1 Generic declaration and instantiation

A generic declaration declares a generic package or subprogram. Syntactically, a generic speci-
fication is a specification preceded by a generic formal part:

§12.1

4 generic_package_declaration ::= generic_formal_part package_specification;
5 generic_formal_part ::= generic {generic_formal_parameter_declaration | use_clause}

use_clauses can be helpful when there are many formal parameters that depend on the context
clause or on a previous generic formal package parameter (Section 9.8).

9.1.1 Case study: generic priority queue

Here is a generic version of the specification of the package Priority_Queue:

pqgen

1 generic
2 type Item is private;
3 with function "<"(Left, Right: Item) return Boolean is <>;

4 package Priority_Queue is
5 type Queue(Size: Positive) is limited private;
6 function Empty(Q: in Queue) return Boolean;

7 procedure Put(I: in Item; Q: in out Queue);

8 procedure Get(I: out Item; Q: in out Queue);

9 Overflow, Underflow: exception;
10 private
11 -- as before except for the substitution of Item for Integer

12 end Priority_Queue;
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The generic formal part is explained below. The package specification is unchanged except for
the substitution of the generic formal parameter Item for Integer, and similarly for the generic
body:

13 package body Priority_Queue is
14 -- as before except for the subsitution of Item for Integer

15 end Priority_Queue;

§12.2

1 The body of a generic unit (a generic body) is a template for the instance bodies. The
syntax of a generic body is identical to that of a nongeneric body.

The generic package can be compiled although this simply checks the legality of the code.

§12.3

12 A generic_instantiation declares an instance; it is equivalent to the instance
declaration (a package_declaration or subprogram_declaration) immediately followed
by the instance body, both at the place of the instantiation.

13 The instance is a copy of the text of the template. Each use of a formal parameter
becomes (in the copy) a use of the actual, as explained below. An instance of a
generic package is a package, that of a generic procedure is a procedure, and that of
a generic function is a function.

Here is the outline of the main program (the complete program is in the software archive):

16 with Priority_Queue;

17 ...

18 procedure PQGEN is
19 package Integer_Queue is new Priority_Queue(Item => Integer);

20 package Float_Queue is new Priority_Queue(Item => Float);

21 QI: Integer_Queue.Queue(10);

22 QF: Float_Queue.Queue(10);

23 begin
24 Integer_Queue.Put(Integer_Test_Data(N), QI);

25 Float_Queue.Put(Float_Test_Data(N), QF);

26 Integer_Queue.Get(I, QI);

27 Float_Queue.Get(F, QF);

28 exception
29 when Integer_Queue.Underflow | Float_Queue.Underflow => ...

30 end PQGEN;

The program instantiates Priority_Queue twice, once with Integer and once with Float. (The
syntax of instantiations in given in §12.3(2–5).) As for any other library unit, a with_clause must
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be given for the generic package. The instances are normal packages and the entities declared
in the visible part of the package can be accessed by using expanded names or use_clauses and
direct names.

9.2 The contract model

Suppose that we try to instantiate the generic package Priority_Queue with the record:

type Point is
record

X: Float;

Y: Float;

end record;

as the generic actual parameter:

package Point_Queue is new Priority_Queue(Item => Point);

Since the package body of the instantiation Point_Queue is a copy of the text of the template
with Point is substituted for Item, the body effectively includes the subprogram:

procedure Put(I: in Point; Node_Ptr: in out Link) is
begin

if Node_Ptr = null then
Node_Ptr := new Node’(I, null, null);

elsif I < Node_Ptr.Data then
Put(I, Node_Ptr.Left);

else
Put(I, Node_Ptr.Right);

end if;
end Put;

Unfortunately, the program is now illegal: the expression I < Node_Ptr.Data is illegal since
the operator "<" is not defined on the type Point.

It would be preferable if this error were discovered before compilation of the body in the in-
stantiation. The whole point of separating the package specification from the body is to ensure
that errors in the use of the package by clients are diagnosed from the declarations in the spec-
ification. The contract model in Ada has been designed to eliminate the problem with generic
units. The idea is that the generic formal parameters contain sufficient information so that:1

• The generic unit can be compiled, that is, checked for legality.

1 This explanation of the contract model is only approximate (see Section 9.10).
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• The compilation of the instantiation may fail if the generic actual parameters do not match
the generic formal parameters, but no other errors will occur in the instantiation. In particu-
lar, the body of the instance is semantically legal if the generic unit is legal and the generic
contract is obeyed by the actuals.

Generic formal parameters form a contract between the programmer writing the generic unit and
the programmers using the unit. The contract model is illustrated in the following diagram:
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A generic formal parameter declaration (left side of the figure) specifies a category of types. The
generic unit is allowed to use at most the operations common to all types in the category. The
generic actual parameter must be a type which supplies at least those operations.

For example, if the generic formal parameter is declared private, the generic unit is allowed
to create objects of the type, to perform assignments and to use the equality and inequality op-
erators. In an instantiation, the generic actual parameter can be any nonlimited type. The actual
parameter may, of course, be the type Integer, which also supplies operations like addition,
but the generic unit is not allowed to use such operations, only those operations that are com-
mon to all types in the category of nonlimited types.

Similarly, if the formal parameter Item is in the category denoted by (<>)—the category of
all discrete types—the generic unit could contain the statement:

for N in Item’Range loop

because any discrete type can be used as the type of a loop parameter. We could instantiate the
unit with Character or Cars or even Integer, but not with Point.

Categories of types do not always form a simple inclusion hierarchy as implied by diagram;
for example, floating point operations are neither a superset nor a subset of integer operations,
so they have distinct formal parameter declarations, and a generic floating point formal param-
eter cannot be associated with an actual parameter of type Integer.

The generic formal parameters for scalar types are as follows:
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§12.5.2

1 A formal scalar type is one defined by any of the formal_type_definitions in this
subclause. The category determined for a formal scalar type is the category of all
discrete, signed integer, modular, floating point, ordinary fixed point, or decimal
types.

2 formal_discrete_type_definition ::= (<>)
3 formal_signed_integer_type_definition ::= range <>
4 formal_modular_type_definition ::= mod <>
5 formal_floating_point_definition ::= digits <>
6 formal_ordinary_fixed_point_definition ::= delta <>
7 formal_decimal_fixed_point_definition ::= delta <> digits <>

Do not try to read too much into the syntax of generic formal parameters like (<>). Familiar
reserved words and symbols are reused in a manner that hints at the semantics, but you must
learn the exact meaning of each construct.

Let us return to the problem of the priority queue. One possibility would be to declare the
generic formal parameter Item to be of the category discrete:

generic
type Item is (<>);

This would allow us to instantiate the package for any discrete type such as Character or
Integer. The package would compile correctly, because "<" is predefined for every discrete
type. However, it would not allow us to create a priority queue of floating point values; al-
though "<" is predefined for floating point types, they are not in the category of discrete types.
Nor would it allow us to create a priority queue of objects of type Point or Event, even as-
suming that "<" were defined (though not predefined) for the type. What is needed is a way of
supplying a generic actual function that will be substituted for "<", and this can be done using
generic subprogram parameters.

9.3 Generic formal subprogram parameters

A generic formal subprogram parameter declares a subprogram that can be invoked within the
generic unit. An instantiation must supply as an actual parameter a matching subprogram that
will be called by the instance. A generalized generic priority queue package can obtained by
declaring the type Item as private so that a queue can be instantiated for any nonlimited type,
together with a generic formal function for the less-than operator:
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generic
type Item is private;
with function "<"(Left, Right: Item) return Boolean is <>;

package Priority_Queue is ...

The reserved word with is reused here as a syntactic marker to indicate that the subprogram
specification is that of a formal parameter, not of a generic subprogram.

§12.6

2.1 formal_concrete_subprogram_declaration ::=
with subprogram_specification [is subprogram_default];

3 subprogram_default ::= default_name | <> | null

The contract requires that the instantiation supply as an actual parameter a subprogram that
is mode-conformant with the formal parameter §12.6(8). (See the Glossary for the definition of
mode-conformant.)

Let us declare a function that compares two values of type Point:

function Less_Than(Left, Right: Point) return Boolean is
begin

return Left.X < Right.X or (Left.X = Right.X and Left.Y < Right.Y);

end Less_Than;

Now the generic priority queue package can be instantiated for type Point:

package Point_Queue is new Priority_Queue(Item => Point, "<" => Less_Than);

The declaration of the formal subprogram for "<" used a box <> as the default.

§12.6

10 If a generic unit has a subprogram_default specified by a box, and the corresponding
actual parameter is omitted, then it is equivalent to an explicit actual parameter that
is a usage name identical to the defining name of the formal.

This means that if there is a visible conforming function, it will be used by default; for example,
"<" for type Float is always visible, so it is sufficient to give a generic actual parameter for Item:

package Float_Queue is new Priority_Queue(Float);

If the function Less_Than for type Point is declared by overloading the "<" operator, and if
this declaration is visible, we do not have to give it explicitly as an actual parameter:

type Point is ...

function "<"(Left, Right: Point) return Boolean is ...

package Point_Queue is new Priority_Queue(Item => Point);
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If the subprogram_default is null, there is no need to provide an actual parameter §12.6(10.1);
a null procedure (Section 8.5) is provided automatically.

A generic formal subprogram can be declared to be abstract, in which case it must have a
parameter of a controlling type and the generic actual parameter must be dispatching on this
type; see Section 14.4 for an example.

Ada 95

Ada 95 does not have null or abstract formal subprogram parameters.

9.4 Generic formal array types

The generic formal function "<" has parameters which are of the formal type Item that was
declared previously in the same generic_formal_part. Dependence of one generic formal pa-
rameter on another is common, in particular, when the parameter is of an array type §12.5.3 or
an access type §12.5.4. This can be seen in the declaration of the generic procedure for sorting
Ada.Containers.Generic_Array_Sort §A.18.16(3) from the container library (Chapter 16):

generic
type Index_Type is (<>);

type Element_Type is private;
type Array_Type is array (Index_Type range <>) of Element_Type;

with function "<" (Left, Right : Element_Type) return Boolean is <>;

procedure Ada.Containers.Generic_Array_Sort(Container : in out Array_Type);

The generic formal array type Array_Type depends on previous formal parameters for both
its Index_Type and its component type Element_Type. The procedure can be instantiated with
any discrete type D for the index type (as indicated by (<>)) and with any nonlimited type P

for the component type (as indicated by private); the actual parameter matching Array_Type

must be an array whose index type is D and whose component type is P.
If Index_Type had been declared to be a (signed) integer type range <>, the implementation

of the sort procedure could be as it appears in textbooks:

for I in Container’First .. Container’Last - 1 loop

But this cannot be done here, since the generic actual type given for Index_Type can be any
discrete type, including enumeration types such as Character or Cars, for which arithmetic
operations are not defined. Instead, it is necessary to use the attributes Pred and Succ that are
defined for every discrete type (Section 2.7.3). If you have to do more complicated arithmetic—
such as computing the midpoint of a range for Quicksort—you will have to convert the indices
to positions and back using the attributes Pos and Val.
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§12.5.3 gives the rules for matching actual array types with formal array types; in particular,
both types must be either unconstrained (as in the example) or constrained. If the formal is
unconstrained then any object of the type declared in the generic must have explicit constraints,
so actual must also be unconstrained; the converse applies if the formal is constrained. For this
reason, there is a separate generic procedure §A.18.16(7):

Ada.Containers.Generic_Constrained_Array_Sort

for sorting when the index type is constrained.

9.4.1 Case study: sorting

Here is an example of instantiating the sort subprogram from the container library. First the
component type and the unconstrained array type are declared:

sort

1 with Ada.Containers.Generic_Array_Sort;

2 procedure Sort is
3 type Point is
4 record
5 X, Y: Float;

6 end record;
7 type Point_Vector is array(Character range <>) of Point;

Then, a function for comparing components is declared:

8 function "<"(Left, Right: Point) return Boolean is
9 begin

10 return Left.X < Right.X or
11 (Left.X = Right.X and Left.Y < Right.Y);

12 end "<";

Now, the generic subprogram can be instantiated:

13 procedure Point_Sort is
14 new Ada.Containers.Generic_Array_Sort(Character, Point, Point_Vector);

and called:

15 A: Point_Vector := ((10.0,1.0), (4.0,2.0), (5.0,3.4), (10.0,0.5));

16 begin
17 Point_Sort(A);

18 -- Print the array A

19 end Sort;
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9.5 General access types*

Named and anonymous access types can be given as general formal parameters; the types
can be access-to-object or access-to-subprogram. Null exclusions can also be given on generic
access types §12.5.4(4).

9.5.1 Case study: sorting with access types

We show how to write a generic procedure to sort an array of accesses to objects.

sortacc

1 generic
2 type Index is (<>);

3 type Node is private;
4 type Item is access Node;

5 type Vector is array(Index range <>) of Item;

6 with function "<"(Left, Right: Item) return Boolean is <>;

7 procedure SelectionSort(A: in out Vector);

The procedure body is written just as it would be for a sort subprogram that does not use
access types, because automatic dereferencing is done when a component of an array is read or
written. The changes to the main program are shown here:

8 with SelectionSort;

9 procedure SortAcc is
10 type Point is ...

11 type Point_Link is access Point;

12 type Point_Vector is array(Character range <>) of Point_Link;

13

14 function "<"(Left, Right: Point_Link) return Boolean is ...

15

16 procedure Point_Sort is
17 new SelectionSort(Character, Point, Point_Link, Point_Vector);

18

19 A: Point_Vector :=

20 (new Point’(10.0,1.0), new Point’(4.0,2.0),

21 new Point’(5.0,3.4), new Point’(10.0,0.5));

22 begin
23 Point_Sort(A);

24 -- Print the array A

25 end SortAcc;
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9.6 Generic formal objects*

Objects, both constants and variables, can be generic parameters.

§12.4

1 A generic formal object can be used to pass a value or variable to a generic unit.

2 formal_object_declaration ::=
defining_identifier_list : mode [null_exclusion] subtype_mark [:= default_expression];
defining_identifier_list : mode access_definition [:= default_expression];

7 For a generic formal object of mode in, the actual shall be an expression. For a generic
formal object of mode in out, the actual shall be a name that denotes a variable for
which renaming is allowed (see 8.5.1).

10 In an instance, a formal_object_declaration of mode in is a full constant declaration
and declares a new stand-alone constant object whose initialization expression is the
actual, whereas a formal_object_declaration of mode in out declares a view whose
properties are identical to those of the actual.

A generic formal object of mode in can be used to pass configuration data to a generic unit,
while a formal object of mode in out might be used to give the unit access to a variable in the
unit enclosing the instantiation:

generic
Size: in Integer := 100;

Current: in out Integer;

package P is
subtype Name is String(1..Size);

procedure Increment_State;

end P;

package body P is
procedure Increment_State is
begin

Current := Current + 1;

end Increment_State;

end P;

Note the difference between the use of Size as a generic formal object and the use of Size as a
discriminant of the type Priority_Queue in the case study in Section 9.1.1. All objects of type
Name from a single instantiation of package P will have the same Size, while we can declare
queues of different sizes from a single instantiation of Priority_Queue.
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9.7 Indefinite type parameters*

Can we instantiate the priority queue package with type Event’Class?

package Event_Queue is new Priority_Queue(Event’Class);

The answer is no, because the instantiation would declare a record type with components of an
indefinite type (here, a class-wide type) and this is illegal:

type Node is
record

Data: Item; -- Illegal if Item is Event’Class

Left, Right: Link;

end record;

To preserve the contract model, it is illegal to use an indefinite type as the actual parameter for
a definite generic formal private parameter §12.5.1(6).

A generic priority queue package that will accept items of type Event’Class can be written
by changing the body to use indirect allocation as we did in Chapter 7, and then declaring the
formal parameter to have unknown discriminants:

rocketq

1 generic
2 type Item(<>) is private;
3 with function "<"(Left, Right: Item) return Boolean is <>;

4 package Heterogeneous_Priority_Queue is
5 type Item_Ptr is access Item; -- OK if Item is Event’Class

6 type Node is
7 record
8 Data: Item_Ptr;

9 Left, Right: Link;

10 end record;
11 ...

12 end Heterogeneous_Priority_Queue;

The contract is now valid: objects of type Item are subject to the rules for indefinite types
within the generic package, so there is no reason to forbid instantiation with indefinite types
§12.5.1(15).
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9.8 Formal package parameters*

Composing abstractions is an important programming technique. With generic package pa-
rameters, you can supply one abstraction with a second abstraction, without listing all the
types and operations of the second abstraction as separate parameters.

§12.7

1 Formal packages can be used to pass packages to a generic unit. The
formal_package_declaration declares that the formal package is an instance of a given
generic package. Upon instantiation, the actual package has to be an instance of that
generic package.

2 formal_package_declaration ::=
with package defining_identifier is

new generic_package_name formal_package_actual_part;
3 formal_package_actual_part ::=

([others =>] <>)
| [generic_actual_part]
| (formal_package_association , formal_package_association [, others => <>])

4 The generic_package_name shall denote a generic package (the template for the formal
package); the formal package is an instance of the template.

5 The actual shall be an instance of the template. . . .

The syntax for the actual part is complex; in the following case study, we use only the simplest
alternative: (<>), while the other possibilities are discussed in Sections 9.8.2, 9.8.3.

Section 13.11 contains an example of the direct composition of generics. The following case
study demonstrates the use of an empty generic package to specify an abstraction needed by
another generic unit.

Language Comparison

A generic package parameter is similar to a class parameter in a C++ or Java
template.

9.8.1 Case study: generic simulation

We generalize the rocket simulation by declaring a generic simulation package that can be in-
stantiated for any event type and any implementation of a priority queue. We start by declaring
a Root_Event package:
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rocket1

1 package Root_Event is
2 type Event is abstract tagged private;
3 function Create return Event is abstract;
4 procedure Simulate(E: in Event) is null;
5 function "<"(Left, Right: Event’Class) return Boolean;

6 private
7 -- as before

8 end Root_Event;

The procedure Simulate is declared to be a null procedure (Section 8.5), but a primitive fun-
tion like Create must return a value so it cannot be null. This is discussed in more detail in
Section 8.4.

The next stage is to declare an empty generic package (often called a signature) for a generic
event priority queue. The meaning of the signature is that an event priority queue is any pack-
age that supplies the type and subprograms declared as generic formal parameters.

9 with Root_Event; use Root_Event;

10 generic
11 type Queue(Size: Positive) is limited private;
12 with function Empty(Q: access Queue) return Boolean is <>;

13 with procedure Put(E: in Event’Class; Q: access Queue) is <>;

14 with function Get(Q: access Queue) return Event’Class is <>;

15 package Generic_Event_Priority_Queue is
16 end;

The signature is used as a generic formal package parameter for the Generic_Simulator:

17 with Root_Event;

18 with Generic_Event_Priority_Queue;

19 generic
20 with package Event_Queue is new Generic_Event_Priority_Queue(<>);

21 package Generic_Simulator is
22 procedure Add_Event(E: in Root_Event.Event’Class);

23 procedure Run;

24 end Generic_Simulator;

The meaning of (<>) as the formal_package_actual_part is that the package used as the actual
parameter in the instantiation can be any instantiation of Generic_Event_Priority_Queue.

The body of Generic_Simulator uses the subprograms Empty, Put and Get promised by the
signature:
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25 package body Generic_Simulator is
26 Q: aliased Event_Queue.Queue(100);

27 procedure Add_Event(E: in Root_Event.Event’Class) is
28 begin
29 Event_Queue.Put(E, Q’Access);

30 end Add_Event;

31 procedure Run is
32 begin
33 while not Event_Queue.Empty(Q’Access) loop
34 Root_Event.Simulate(Event_Queue.Get(Q’Access));

35 end loop;
36 end Run;

37 end Generic_Simulator;

In terms of the contract model, the formal package parameter specifies the types and subpro-
grams that the package will supply for use within the generic unit; the actual parameter must
be a package that provides at least those types and subprograms.

Generic_Simulator is instantiated in three stages.
First, we need a package that supplies the resources declared in the formal part of the signa-

ture Generic_Event_Priority_Queue. It is convenient to obtain that package by instantiating
the generic package described above in Section 9.7:

38 generic
39 type Item(<>) is private;
40 with function "<"(Left, Right: Item) return Boolean is <>;

41 package Tree_HPQ is
42 ...

43 end Tree_HPQ;

This generic package is instantiated for the type Event’Class:

44 with Tree_HPQ;

45 with Root_Event; use Root_Event;

46 package Event_Tree_Queue is new Tree_HPQ(Event’Class);

This package is now used to instantiate the signature Generic_Event_Priority_Queue to
obtain Event_Queue_1:

47 with Event_Tree_Queue; use Event_Tree_Queue;

48 with Generic_Event_Priority_Queue;

49 package Event_Queue_1 is new Generic_Event_Priority_Queue(Queue);

The use_clause for Event_Tree_Queue makes the subprograms visible so they are used by de-
fault as the actual subprogram parameters in the instantiation.
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Third, we instantiate the generic simulator package with Event_Queue_1:

50 with Generic_Simulator;

51 with Event_Queue_1;

52 package Simulator_1 is new Generic_Simulator(Event_Queue_1);

As required by §12.7(4–5), the actual package parameters are themselves instantiations of the
generic formal package parameters.

So far we have not said anything about the rocket! The hierarchy of events for the rocket
simulation is defined in a child of Root_Event. Except for the package names, the source code
for the rest of the rocket packages is unchanged and is omitted here.

53 package Root_Event.Rocket_Event is
54 type Event is abstract new Root_Event.Event with null record;
55 ...

56 end Root_Event.Rocket_Event;

Let us define another priority queue, Event_Queue_2, by instantiating the signature with
Event_Array_Queue, obtained by instantiating a generic package Array_HPQ with the type
Root_Event.Event’Class. The tree and the array implementations have the same visible
part and they both match the signature package Generic_Event_Priority_Queue. A sec-
ond simulator package, Simulator_2, is obtained by instantiating Generic_Simulator with
Event_Queue_2. The main subprogram can use both simulators:

57 with Simulator_1; with Simulator_2;

58 with Root_Event.Rocket_Event.Engine;

59 with Root_Event.Rocket_Event.Telemetry;

60 with Root_Event.Rocket_Event.Steering;

61 procedure Rocket1 is
62 use Root_Event.Rocket_Event;

63 begin
64 for I in 1..15 loop
65 Simulator_1.Add_Event(Engine.Main_Engine_Event’(Engine.Create));

66 ...

67 end loop;
68 for I in 1..15 loop
69 Simulator_2.Add_Event(Engine.Main_Engine_Event’(Engine.Create));

70 ...

71 end loop;
72

73 Simulator_1.Run;

74 Simulator_2.Run;

75 end Rocket1;
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Although the sequence of instantiations may seem complex, it is quite straightforward. Formal
package parameters facilitate the composition of abstractions.

9.8.2 Parameterization of package parameters

In the above examples, the box notation (<>) was used as the formal_package_actual_part in
the declaration of the formal package parameters. The meaning is that any instantiation of the
formal package is acceptable as an actual parameter when the generic unit is instantiated. Here
we present the two other alternatives in §12.7(3) that are used to create a dependence among
generic parameters.

The case study in Section 13.10.1 contains a generic unit Generic_Complex_Vectorswith two
generic package parameters: Complex_Types for the type for the complex numbers themselves
and Complex_Functions for the elementary functions on the complex numbers:

with Ada.Numerics.Generic_Complex_Types;

with Ada.Numerics.Generic_Complex_Elementary_Functions;

generic
use Ada.Numerics;

with package Complex_Types is new Generic_Complex_Types (<>);

with package Complex_Functions is
new Generic_Complex_Elementary_Functions(Complex_Types);

package Generic_Complex_Vectors is

The actual parameter matching the formal parameter Complex_Types must be obtained by in-
stantiating Ada.Numerics.Generic_Complex_Types §G.1.1(2), which takes a parameter of any
floating point type §3.5.7. The actual parameter matching Complex_Functions must be ob-
tained by instantiating Ada.Numerics.Generic_Elementary_Functions §G.1.2(2), which itself
takes a formal package parameter that is any instantiation of the complex number package:

with package Complex_Types is new Ada.Numerics.Generic_Complex_Types (<>);

We would not use one precision for the operations of Complex_Types used directly in the vector
package and another precision for the operations of Complex_Types used indirectly through the
instantiation of the elementary functions package. Therefore, the formal package parameter
for the complex functions uses a generic_actual_part for the formal_package_actual_part (the
second alternative of §12.7(3)):

with package Complex_Functions is
new Generic_Complex_Elementary_Functions(Complex_Types);

The effect is to limit instantiations of Generic_Complex_Vectors to those where the elementary
functions package is an instantiation obtained using the same generic actual parameter as that
used for the formal Complex_Types.
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It is also possible to specify restrictions on some of the actual parameters used in the instan-
tiation of an actual package parameter, as we show in the following case study.

9.8.3 Case study: generic simulation with signatures

We start with a signature for a generic event:

rocket2

1 generic
2 type Event(<>) is tagged private;
3 with function Create return Event is abstract <>;

4 with procedure Simulate(E: in Event) is abstract <>;

5 with function "<"(Left, Right: Event’Class) return Boolean is <>;

6 package Generic_Root_Event is end;

and a signature for a generic priority queue for events:

7 generic
8 type Event(<>) is tagged private;
9 type Queue(Size: Positive) is limited private;

10 with function Empty(Q: access Queue) return Boolean is <>;

11 with procedure Put(E: in Event’Class; Q: access Queue) is <>;

12 with function Get(Q: access Queue) return Event’Class is <>;

13 package Generic_Event_Priority_Queue is end;

Then we declare a generic simulator that has these signatures as formal package parameters:

14 with Generic_Root_Event;

15 with Generic_Event_Priority_Queue;

16 generic
17 with package Root_Event is new Generic_Root_Event(<>);

18 with package Event_Queue is
19 new Generic_Event_Priority_Queue(

20 Event => Root_Event.Event, others => <>);

21 package Generic_Simulator is
22 procedure Add_Event(E: in Root_Event.Event’Class);

23 procedure Run;

24 end Generic_Simulator;

Line ‡20 uses a formal_package_association (the third alternative of §12.7(3)) to require that
the type used as the actual parameter for the formal parameter Event ‡2 in the instantia-
tion of the actual package parameter for Generic_Root_Event be the same as that used as the
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actual parameter for the formal parameter Event ‡8 in the instantiation of the actual pack-
age parameter for Generic_Event_Priority_Queue. In this context, the difference between a
generic_actual_part and a formal_package_association is that the latter can use the box notation
to specify that an actual parameter is not restricted.

The simulation program is obtained by a sequence of instantiations. We start by instantiating
the signature for Generic_Root_Event with an event package; for simplicity, we use the one
with all event types in a single package (Section 7.8):

25 package Rocket_Event is
26 subtype Simulation_Time is Integer range 0..10_000;

27 type Event is tagged ...

28 function Create return Event;

29 procedure Simulate(E: in Event) is null;
30 function "<"(Left, Right: Event’Class) return Boolean;

31 ...

32 end Rocket_Event;

33

34 with Generic_Root_Event;

35 with Rocket_Event; use Rocket_Event;

36 package Rocket_Root_Event is new Generic_Root_Event(Rocket_Event.Event);

Next we instantiate the signature for Generic_Event_Priority_Queue with a package that is
itself an instantiation of the generic package introduced in the previous case study:

37 with Tree_HPQ;

38 with Rocket_Event; use Rocket_Event;

39 package Rocket_Tree_Queue is new Tree_HPQ(Event’Class);

40

41 with Rocket_Event;

42 with Rocket_Tree_Queue; use Rocket_Tree_Queue;

43 with Generic_Event_Priority_Queue;

44 package Rocket_Event_Queue is
45 new Generic_Event_Priority_Queue(Rocket_Event.Event, Queue);

Finally, we obtain a simulator by instantiating Generic_Simulator:

46 with Rocket_Root_Event;

47 with Rocket_Event_Queue;

48 with Generic_Simulator;

49 package Rocket_Simulator is
50 new Generic_Simulator(Rocket_Root_Event, Rocket_Event_Queue);

You can trace back through the instantiations to verify that the actual parameters matching the
formal parameters Event in both Rocket_Root_Event and Rocket_Event_Queue are the same.

The complete source code for this case study can be found in the source code archive.
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9.9 Generic children*

A non-generic package may have generic children §10.1.1(13); for example, Ada.Numerics is
not generic but its children are. However, the child of a generic unit must itself be generic
§10.1.1(17). If the child package were not generic, the child would have to be compiled for
every instantiation of the parent, whether it is needed or not. By requiring that the child be
generic, instances are created only when explicitly requested.

The following example demonstrates generic children (a realistic application will be given
in Section 13.11). A generic child of a generic parent package is declared:

genchild

1 generic
2 type T is private;
3 package Parent is
4 V1: T;

5 end Parent;

6

7 generic
8 package Parent.Child is
9 V2: T;

10 end Parent.Child;

Then an instance of the parent is declared:

11 with Parent;

12 package Parent_Instance is new Parent(Integer);

followed by an instance of the child:

13 with Parent.Child;

14 with Parent_Instance;

15 package Child_Instance is new Parent_Instance.Child;

The instantiation of the generic child package requires two with_clauses. The first is the usual
with_clause for Parent.Child, the generic package being instantiated. However, what is ac-
tually being instantiated is the generic child of the instance of the parent, which is implic-
itly present in each instance of the parent §10.1.1(19), so there must also be a with_clause for
Parent_Instance. This enables the instance to access the generic actual parameter of the in-
stance, so that the compiler can know that the variable Child_Instance.V2 is of type Integer.
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9.10 The fine print in the contract model*

The explanation of the contract model in Section 9.2 was only approximate. Occasionally, you
will have to understand the precise details of the model as discussed in this section.

Consider the following rule on type derivations:

§3.9.1

3 . . . If the parent type or any progenitor type is nonlimited, then each of the
components of the record_extension_part shall be nonlimited. . . .

This rule makes sense. If a type is declared to be nonlimited:

type Parent is tagged
record

Time: Integer;

end record;

the reason is that equality and copying are assumed to be meaningful operations on objects of
the type. If we add a limited component:

type Stack is limited
record

...

end record;

type Derived is new Parent with
record

S: Stack;

end record;

then it is impossible to decide the legality of the following construct at compile time:

procedure P(A: in Parent’Class) is
B: Parent’Class := A;

because some calls are with an actual parameter of type Parent for which copying is legal,
while others have a parameter of type Derived for which it is not. Nor does it make sense to
implement the check at run-time, because limitedness is a compile-time concept with no effect
on the execution of a program.

Now, does §3.9.1(3) apply to the declaration of T1 in the following generic package?
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legal

1 generic
2 type Parent is tagged limited private;
3 type Component_Type is limited private;
4 package P is
5 type T1 is new Parent with
6 record
7 X: Component_Type;

8 end record;
9 procedure Proc(A: T1);

10 end P;

The formal type Parent is limited, so the component X in the extension can be of the formal
limited type Component_Type. This generic package specification compiles successfully. The
technical term is “assume-the-best”: since the formal parameters are declared to be limited, the
compiler assumes that the actual parameters will also be limited. The compiler will also verify
that the generic body does not contain illegal operations on such types.

Consider, however, an instantiation of the package P where the actual parameter associated
with Parent is nonlimited and the actual parameter associated with Component_Type is limited:

11 with P;

12 package Legal is
13 type Non_Lim is tagged null record;
14 type Lim is tagged limited null record;
15 package Instance is new P(Parent => Non_Lim, Component_Type => Lim);

16 end Legal;

The type Instance.T1 is an extension of the nonlimited type Non_Limwith a limited component
of type Lim—clearly, a violation of the Legality Rule §3.9.1(3).

§12.3

11 In a generic unit Legality Rules are enforced at compile-time of the
generic_declaration and generic body, given the properties of the formals. In the
visible part and formal part of an instance, Legality Rules are enforced at
compile-time of the generic_instantiation, given the properties of the actuals. . . .

According to the second sentence of this rule, legality rules such as §3.9.1(3) are enforced
during the compilation of the instantiation; therefore, the declaration of T1 in the instance is a
compile-time error. This is somewhat surprising, since there is nothing wrong with the instan-
tiation in terms of matching the generic formal part with the actual parameters in the instanti-
ation, and, furthermore, the generic specification itself compiles correctly.

The contract model is between the author of the generic and the author of the instance: if
the right parameters are provided, a semantically correct instance will be constructed. In most
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cases the contract is enforced by checking the actuals, but in some cases it requires checking
the specification of the instance, including the private part §7.3(8). Furthermore, in some cases
there is a preemptive check that forbids some constructs in the generic body,

An instantiation will never cause the generic body to become illegal; conversely, a modifica-
tion of the body cannot make an instantiation illegal. Almost all violations of the contract will
be caught as conflicts between the generic actual parameters and the generic formal parame-
ters, but occasionally—as shown here—the conflict may be with the specification.

Suppose that a similar record T2 were declared in the private part of the package:

17 generic
18 type Parent is tagged limited private;
19 type Component_Type is limited private;
20 package P is
21 ...

22 private
23 type T2 is new Parent with
24 record
25 X: Component_Type;

26 end record;
27 end P;

In general, Legality rules are not enforced in the private part of a generic package; however,
the final sentence of the above rule reads as follows:

§12.3

11 . . . In other parts of an instance, Legality Rules are not enforced; this rule does not
apply when a given rule explicitly specifies otherwise.

Therefore, the declaration of T2 would not be rejected, except for the fact that it is explicitly
specified that this Legality rule be checked:

§3.9.1

3 . . . In addition to the places where Legality Rules normally apply (see 12.3), these
rules apply also in the private part of an instance of a generic unit.

A list of the legality rules that apply in the private part of a generic instance can be found in
the index of the ARM under the entry generic contract issues.

Finally, what happens if the extension T3 is declared in the body of package P? It appears
that the instantiation will cause the body to be illegal—precisely the situation that the contract
model was intended to avoid. The solution is simply to forbid this construct so that the compi-
lation of the generic body is already illegal, regardless of the actual parameters supplied during
the instantiation.
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§3.9.1

4 A type extension shall not be declared in a generic body if the parent type is declared
outside that body.

This is known as “assume-the-worst.” Though it is unlikely that an extension of a formal type
in the body will cause a problem, it is in fact possible, so all such extensions are forbidden. The
workaround in this case is to move the extension to the private part of the specification.

To summarize, the generic contract specifies the rules that make an instantiation legal. Most
of these rules are enforced when matching the actual parameters of the instantiation with the
formal parameters of the generic part. Some of the rules require that the specification of the
instance itself be checked, and, in some cases, the private part of the instance as well.

Projects

1. Implement your own generic procedure for sorting an array using the generic formal part
shown in Section 9.4.

2. Develop a rocket simulation where engine events are declared in a generic child package so
that many types of such events can be implemented by instantiation.

3. Write a generic package that uses a generic formal object for maintaining the state of a com-
putation, as outlined in Section 9.6.

Quizzes

Quiz 1:

generic
type Item is private;
type Vector is array(1..10) of Item;

procedure Proc;

Quiz 2:

package P is
Local_Max: Integer := 100;

generic
Max: Integer := Local_Max;

package GP is
procedure Proc;

end GP;

end P;
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package body P is
package body GP is

procedure Proc is
begin

Put(Max);

end Proc;

end GP;

end P;

with P;

procedure Main is
package First_GP is new P.GP;

function Init return Integer is
begin

P.Local_Max := 200;

return 1;

end Init;

N: Integer := Init;

package Second_GP is new P.GP;

begin
First_GP.Proc;

Second_GP.Proc;

end Main;

Quiz 3:

generic
type T(A: Integer) is private;

procedure Proc;

procedure Proc is
begin

null;
end Proc;

type Base(D: Integer) is null record;
type R(Disc: Integer) is new Base(D => Disc);

type S is new Base(D => 10);

procedure Proc1 is new Proc(T => R);

procedure Proc2 is new Proc(T => S);
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Quiz 4:

generic
type T is range <>;

with function Formal(Left, Right: T) return T;

package GP is
function Func(Left, Right: T) return T;

end GP;

package body GP is
function Func(Left, Right: T) return T is
begin

return 2*(Left+Right);

end Func;

end GP;

with GP;

generic
with package GFP is new GP(<>);

-- with package GFP is new GP(Integer, "+");

procedure Proc;

procedure Proc is
package GIO is new Ada.Text_IO.Integer_IO(GFP.T);

begin
GIO.Put(GFP.Func(1,2));

GIO.Put(GFP.Formal(1,2));

end Proc;

with GP; with Proc;

procedure Main is
function Actual(Left, Right: Long_Integer) return Long_Integer is
begin

return 4*(Left+Right);

end Actual;

package GP_Instance is new GP(Long_Integer, Actual);

procedure Proc_Instance is new Proc(GP_Instance);

begin
Proc_Instance;

end Main;

What happens if the generic formal package parameter were changed to the commented line?
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Quiz 5:

package Q is
type Parent is null record;
procedure Proc(A: in Parent);

type Actual is new Parent;

procedure Proc(A: in Actual);

end Q;

package body Q is
procedure Proc(A: in Parent) is
begin Put_Line("Parent"); end Proc;

procedure Proc(A: in Actual) is
begin Put_Line("Actual"); end Proc;

end Q;

with Q;

generic
type Formal is new Q.Parent;

package P is
type Derived is new Formal;

procedure Inside;

end P;

package body P is
procedure Inside is

D: Derived;

begin
Proc(D);

end Inside;

end P;

with P; with Q;

procedure Main is
package Instance is new P(Q.Actual);

D: Instance.Derived;

begin
Instance.Inside;

Instance.Proc(D);

end Main;
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Quiz 6:

package P is
type T is array(0..5) of Natural;

end P;

with P;

generic
with procedure Proc(Parm: in P.T);

package Gen is
procedure ProcG;

end Gen;

package body Gen is
type TG is array(0..10) of Natural;

GG: TG := (0,1,2,3,4,5,6,7,8,9,10);

procedure ProcG is
begin

Proc(P.T(GG));

end ProcG;

end Gen;

with P, Gen, Ada.Text_IO;

procedure Main is
procedure M(PP: in P.T) is
begin

for I in P.T’Range loop
Ada.Text_IO.Put(Natural’Image(PP(I)));

end loop;
end M;

package GM is new Gen(Proc => M);

begin
GM.ProcG;

end Main;
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Exceptions and Run-Time Checks

Type checking in Ada is designed to discover and prevent compile-time errors. However, there
are some errors that can occur only at run-time; for example, input that is not in the expected
format or that exceeds the range of an input variable. Run-time errors cause exceptions to be
raised during execution, and the exception occurrences can be handled in order to recover from
the error or to display information that will help diagnose the error.

10.1 Declaring and raising exceptions

Exceptions are declared with an object-like syntax:

§11.1

1 An exception_declaration declares a name for an exception.

2 exception_declaration ::= defining_identifier_list : exception;

In the priority queue case study in Section 5.1, two exceptions were declared:

Overflow, Underflow: exception;

There are also predefined exceptions §11.1(4) (see Section 2.6) that are raised by the run-time
system. Exceptions that are not predefined must be explicitly raised using a raise_statement:

§11.3

1 A raise_statement raises an exception.

2 raise_statement ::= raise;
| raise exception_name [with string_expression];

171
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A raise_statement without an exception_name is called a re-raise statement (Section 10.5.1).
When the second form of the statement raises the named exception, the optional string fol-
lowing the with can be retrieved by Ada.Exceptions.Exception_Message (Section 10.4).

Raising an exception causes the computation to be abandoned:

§11.4

3 When an exception occurrence is raised by the execution of a given construct, the
rest of the execution of that construct is abandoned; that is, any portions of the
execution that have not yet taken place are not performed. . . .

In the priority queue case study, an attempt to Get an element from an empty queue should
raise an exception:

if Q.Free = 0 then
raise Underflow;

end if;
I := Q.Data(0);

Q.Free := Q.Free-1;

Q.Data(0..Q.Free-1) := Q.Data(1..Q.Free);

If Q.Free is zero, the exception Underflow is raised and the rest of the computation is aban-
doned; this prevents the execution of the last assignment statement which is meaningless when
the queue is empty.

Here is another example from the country of origins case study (Section 2.1):

begin
loop

Put("Enter the make of the car: ");

Car := Cars’Value(Get_Line);

Put_Line(Cars’Image(Car) & " is made in " &

Countries’Image(Car_to_Country(Car)));

end loop;
exception

when Constraint_Error =>

Put_Line("Car make is not recognized");

when End_Error =>

null;
end Country1;

The function Get_Line will raise the exception Ada.Text_IO.End_Error §A.10.1(85) if an end-
of-file indication (ctrl-z or ctrl-d) is encountered. Evaluation of the attribute Cars’Value

will raise the predefined exception Constraint_Error if the input string does not match one of
the values of the enumeration type Cars. In either case, the execution of the subprogram body
is abandoned.
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Associating a message with an exception (with string_expression) is not allowed. The procedure
Raise_Exception §11.4.1(4) in package Ada.Exceptions can be used instead:

procedure Raise_Exception(E: in Exception_Id; Message: in String := "");

10.2 Handling exceptions

Exceptions enable the continuation of the computation in spite of the occurrence of an error. The
executable statements of a subprogram (or a block) form a handled_sequence_of_statements,
and exception handlers can be written to specify what is to be done when an exception is raised
within the sequence:

§11

2 When an exception arises, control can be transferred to a user-provided
exception_handler at the end of a handled_sequence_of_statements, or ...

A separate handler can be given for each exception or group of exceptions:

§11.2

3 exception_handler ::=
when [choice_parameter_specification:] exception_choice | exception_choice =>

sequence_of_statements

An exception is handled by executing the sequence of statements associated with the handler
for the exception:

§11.4

5 • If the construct is the sequence_of_statements of a
handled_sequence_of_statements that has a handler with a choice covering the
exception, the occurrence is handled by that handler;

7 When an occurrence is handled by a given handler, . . . the sequence_of_statements of
the handler is executed; this execution replaces the abandoned portion of the
execution of the sequence_of_statements.

The subprogram where the exception occurred is left after executing the statements of the han-
dler. If you want to retry the computation, you can use a block statement within a loop as
shown in Section 3.5.
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10.3 Propagating exceptions

It is not required that there be an exception handler associated with every sequence of state-
ments, nor is it required that the handlers cover every exception. If there is no handler covering
an exception, the exception is propagated to the caller.

§11.4

6 Otherwise, the occurrence is propagated to the innermost dynamically enclosing
execution, which means that the occurrence is raised again in that context.

For data structures like the priority queue, the conditions that raise the exceptions Overflow

and Underflow depend on the implementation of the package, which is not known to the clients
using the package. On the other hand, the package providing the queue should not decide how
to handle the exceptions; that should be left to the clients to decide. For example, displaying
an error message would be appropriate in an interactive application but not in a real-time ap-
plication. Therefore, the exceptions Overflow and Underflow are not handled within the sub-
programs where they are raised, but instead are propagated to the caller, in this case the main
subprogram (Section 6.3):

with Priority_Queue;

procedure PQAV2 is
begin

-- Priority_Queue.Get and Priority_Queue.Put can propagate exceptions

exception
when Priority_Queue.Underflow => Put_Line("Underflow from queue");

when Priority_Queue.Overflow => Put_Line("Overflow from queue");

end PQAV2;

In general, exceptions are declared in the visible part of package specifications so that they can
appear in exception_choices of exception handlers of clients of the packages.

Exceptions are propagated up the dynamic chain of calls, starting with the innermost dynam-
ically enclosing execution:

§11.4

2 Within a given task, if the execution of construct a is defined by this International
Standard to consist (in part) of the execution of construct b, then while b is executing,
the execution of a is said to dynamically enclose the execution of b. The innermost
dynamically enclosing execution of a given execution is the dynamically enclosing
execution that started most recently.
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10.3.1 Case study: propagating exceptions

Propagation of exceptions is demonstrated in the following program. The operations on the
queue are not called directly from the main program, but from the procedure Get_And_Process,
which is also responsible for handling the exceptions:

propagate1

1 with Array_Priority_Queue; use Array_Priority_Queue;

2 with Ada.Text_IO; use Ada.Text_IO;

3 procedure Propagate1 is
4 Q: Queue(Size => 10);

5 I: Integer;

6

7 procedure Get_And_Process is
8 procedure Get_The_Data is
9 begin

10 Get(I, Q);

11 end Get_The_Data;

12

13 procedure Process is
14 begin
15 Get_The_Data;

16 exception
17 when Underflow => Put("Underflow handled in Process");

18 end Process;

19

20 begin -- Get_And_Process;

21 Process;

22 exception
23 when Underflow => Put("Underflow handled in Get_And_Process");

24 end Get_And_Process;

25 begin
26 Get_And_Process;

27 end Propagate1;

Get_And_Process contains two nested procedures: Process and Get_The_Data which is called
from Process. The exception Underflow is raised within Get and propagated to the caller
Get_The_Data. There is no handler within Get_The_Data either, so the exception is propagated
again. We now ask: What execution encloses Get_The_Data? The procedure Get_And_Process,
where Get_The_Data is declared, or the procedure Process, which calls Get_The_Data. By
§11.4(2), the answer is the dynamically enclosing execution, namely, that of Process. Check that
the program prints Underflow handled in Process.
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10.3.2 Exceptions in the declarative part

An exception can be raised during the elaboration of the declarative part of subprogram. Sup-
pose that the priority queue package contained a function Get:

function Get(Q: access Queue) return Integer is
I: Integer;

begin
Get(I, Q.all);
return I;

end Get;

An access parameter (Section 12.6) has been used because the parameter Q is modified but a
function cannot have a parameter of mode in out.

Consider, now, a call to this function in the declaration of a variable in Process:

propagate2

1 procedure Get_And_Process is
2 procedure Process is
3 I: Integer := Get(Q’Access);

4 begin
5 Put_Line(Integer’Image(I));

6 exception
7 when Underflow => Put("Underflow handled in Process");

8 end Process;

9 begin -- Get_And_Process;

10 Process;

11 exception
12 when Underflow => Put("Underflow handled in Get_And_Process");

13 end Get_And_Process;

The exception is not handled in the exception handler for Process, but rather is propagated to
the calling procedure Get_And_Process and handled there. By §11.4(5), handlers are associated
with a handled_sequence_of_statements and these do not include the declarations of a subpro-
gram or block. Since the exception handler can use the variables and constants declared in the
subprogram, it is important to delay the transfer of responsibility for exception handling until
all the declarations have been elaborated.

10.4 Package Exceptions*

Package Ada.Exceptions §11.4.1 declares two types: the private type Exception_Id and the
limited private type Exception_Occurrence. There is a value of type Exception_Id for each
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distinct exception, both predefined and declared. The attribute E’Identity §11.4.1(9) returns
the identity associated with exception E. Since an exception can be raised many times, each
occurrence gives rise to a value of type Exception_Occurrence. The package Ada.Exceptions

contains functions for converting between exceptions and their occurrences, and for obtaining
information about them in the form of strings.

Within the handler, we can obtain information about the exception occurrence E. The func-
tion Exception_Identity(X) §11.4.1(5,11) returns the Exception_Id of E, and this we can con-
vert to a string by calling Exception_Name §11.4.1(2,12,12.1). As a shortcut, Exception_Name is
overloaded for a parameter of type Exception_Occurrence to return the string identifying the
exception of the exception occurrence §11.4.1(5).

The function Exception_Message §11.4.1(4,10.1) returns the message associated with the
exception occurrence; this is the string given after the with in a raise statement (or the sec-
ond parameter of the procedure Raise_Exception). The function Exception_Information

§11.4.1(5,13,19) returns more extensive (implementation-defined) information about an excep-
tion occurrence, which can be useful for debugging.

10.4.1 Case study: information about exceptions

The following program demonstrates the use of Exception_Information:

info

1 with Array_Priority_Queue; use Array_Priority_Queue;

2 with Ada.Text_IO; use Ada.Text_IO;

3 with Ada.Exceptions; use Ada.Exceptions;

4 procedure Info is
5 Q: Queue(10);

6 I: Integer;

7 Queue_Error: exception;
8

9 procedure Get_The_Data is
10 begin
11 Get(I, Q);

12 exception
13 when E: Overflow | Underflow =>

14 Put(Exception_Information(E));

15 raise Queue_Error;

16 end Get_The_Data;

Although Overflow cannot occur when calling Get, let us assume that it can be, and let us
further assume that we want both exceptions to be handled by the same handler. This is easy
to do because a handler can be associated with more than one exception_choice §11.2(3). The
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handler prints the exception information and raises a new exception called Queue_Error, which
is handled in the main program:

17 begin
18 Get_The_Data;

19 exception
20 when E: Queue_Error =>

21 Put(Exception_Information(E));

22 end Info;

The handler for Queue_Error also prints the exception information; for the compiler that I used,
the output is:

Exception name: ARRAY_PRIORITY_QUEUE.UNDERFLOW

Message: array_priority_queue.adb:29

Exception name: INFO.QUEUE_ERROR

Message: info.adb:15

An exception handler can have a choice parameter (E in the program above) that can be used
as a parameter to the subprograms of package Ada.Exceptions:

§11.2

9 A choice_parameter_specification declares a choice parameter, which is a constant
object of type Exception_Occurrence (see 11.4.1). During the handling of an
exception occurrence, the choice parameter, if any, of the handler represents the
exception occurrence that is being handled.

Exception occurrences can be written to streams §11.4.1(6.1,6.2,15.1); see Section 14.3.

10.5 Re-raising exceptions*

A raise statement that names an exception is permitted within an exception handler §11.3(3,4);
it raises a new occurrence of the named exception. A statement consisting of the reserved word
raise alone is called a re-raise statement; it raises the same occurrence of the exception. In both
cases, the exception is propagated to the caller of the subprogram.

10.5.1 Case study: re-raising an exception

The following program demonstrates the difference between raising a new exception and re-
raising the same exception:
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reraise

1 with Array_Priority_Queue; use Array_Priority_Queue;

2 with Ada.Text_IO; use Ada.Text_IO;

3 procedure Reraise is
4 Q: Queue(Size => 10);

5 I: Integer;

6 Queue_Error: exception;

To keep track of the exception occurrences, we will write a time-stamp with each one using the
function Time_Stamp that can be found in the software archive. The raise statements call this
function:

7 procedure Get(I: out Integer; Q: in out Queue) is
8 begin
9 if Q.Free = 0 then

10 raise Underflow with Time_Stamp;

11 end if;
12 ...

13 end Get;

There are three versions of the procedure Get_The_Data. In the first one, the exception is
handled within the procedure, and the main procedure will not know that an exception has
occurred:

14 procedure Get_The_Data0 is
15 begin
16 Get(I, Q);

17 exception
18 when E: Underflow =>

19 Put_Line("Underflow from 0 at " & Exception_Message(E));

20 end Get_The_Data0;

In the second version, the exception is re-raised and will be propagated:

21 procedure Get_The_Data1 is
22 begin
23 Get(I, Q);

24 exception
25 when E: Underflow =>

26 Put_Line("Underflow from 1 at " & Exception_Message(E));

27 raise;
28 end Get_The_Data1;

In the third version, a different exception, Queue_Error, is raised and propagated:
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29 procedure Get_The_Data2 is
30 begin
31 Get(I, Q);

32 exception
33 when E: Underflow =>

34 Put_Line("Underflow from 2 at " & Exception_Message(E));

35 raise Queue_Error with Time_Stamp;

36 end Get_The_Data2;

Here is the main procedure:

37 begin
38 begin
39 Get_The_Data0;

40 exception
41 when E: Underflow =>

42 Put_Line("Underflow from main at " & Exception_Message(E));

43 end;
44 begin
45 Get_The_Data1;

46 exception
47 when E: Underflow =>

48 Put_Line("Underflow from main at " & Exception_Message(E));

49 end;
50 begin
51 Get_The_Data2;

52 exception
53 when E: Queue_Error =>

54 Put_Line("Queue_Error from main at " & Exception_Message(E));

55 end;
56 end Reraise;

Check that the output (except for the absolute values of the time-stamps) is:

Underflow from 0 at 2008-9-27-51380.088049397

Underflow from 1 at 2008-9-27-51380.107685971

Underflow from main at 2008-9-27-51380.107685971

Underflow from 2 at 2008-9-27-51380.109337857

Queue_Error from main at 2008-9-27-51380.109368028

The time stamps of the two lines for Get_The_Data1 have the same time-stamp, showing that
re-raise raises the same exception occurrence, whereas for Get_The_Data2, the time-stamps are
different since the exception occurrences are different.
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10.6 Saving exceptions*

Exception occurrences can be saved in data structures and then retrieved for later analysis or
even in order to be re-raised. Since the type Exception_Occurrence is limited private, it cannot
be copied using normal assignment statements.

§11.4.1

3 type Exception_Occurrence_Access is access all Exception_Occurrence;

6 procedure Save_Occurrence(

Target : out Exception_Occurrence;

Source : in Exception_Occurrence);

function Save_Occurrence(Source : Exception_Occurrence)

return Exception_Occurrence_Access;

15 The Save_Occurrence procedure copies the Source to the Target. The
Save_Occurrence function uses an allocator of type Exception_Occurrence_Access to
create a new object, copies the Source to this new object, and returns an access value
designating this new object; the result may be deallocated using an instance of
Unchecked_Deallocation.

10.6.1 Case study: saving exceptions

In the following program, three subprograms P1, P2, P3 are called and all the exception occur-
rences are saved in a priority queue. We declare a record type Exception_Record that contains
a numeric field representing the “priority” associated with an occurrence; the second field is
an access to the exception occurrence:

save

1 with Priority_Queue;

2 with Ada.Text_IO; use Ada.Text_IO;

3 with Ada.Exceptions; use Ada.Exceptions;

4 procedure Save is
5 type Exception_Record is
6 record
7 Priority: Positive;

8 Occurrence: Exception_Occurrence_Access;

9 end record;

Function "<" compares values of the type by comparing the Priority components:
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10 function "<"(Left, Right: Exception_Record) return Boolean is
11 begin
12 return Left.Priority < Right.Priority;

13 end "<";

The generic priority queue package from Section 9.1 is instantiated with Exception_Record

and (as a default actual parameter) with this function:

14 package Exception_Queue is new Priority_Queue(Exception_Record);

15 use Exception_Queue;

Then a queue is declared as are three exceptions:

16 Q: aliased Queue;

17 Ex1, Ex2, Ex3: exception;

In the body of the main procedure, the exceptions are raised, and in their handlers, an aggregate
of type Exception_Record is put on the queue. The function Save_Occurrence allocates an
exception occurrence object and returns an access value that is stored in the record that is saved
in the queue:

18 begin
19 begin
20 raise Ex1;

21 exception
22 when E: others => Put(Exception_Record’(13, Save_Occurrence(E)), Q);

23 end;
24 begin
25 raise Ex2;

26 exception
27 when E: others => Put(Exception_Record’(6, Save_Occurrence(E)), Q);

28 end;
29 begin
30 raise Ex3;

31 exception
32 when E: others => Put(Exception_Record’(8, Save_Occurrence(E)), Q);

33 end;

The elements of type Exception_Record are removed from the queue in numerical order of
their Priority components. The function Exception_Information is used to obtain a string
containing information about the occurrence:
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34 while not Empty(Q) loop
35 Put(Exception_Information(Get(Q’Access).Occurrence.all));
36 end loop;
37 end Save;

Check that the exception occurrences are printed in ascending order of Priority:

Exception name: SAVE.EX2

Message: save.adb:27

Exception name: SAVE.EX3

Message: save.adb:32

Exception name: SAVE.EX1

Message: save.adb:22

Alternatively, we could have re-raised the exception occurrences §11.4.1(4,10.2):

while not Empty(Q) loop
begin

Reraise_Occurrence(Get(Q’Access).Occurrence.all);
exception

when EE: others => Put(Exception_Information(EE));

end;
end loop;

Note that the same occurrences are re-raised and they will contain the same information that
they had when they were raised. To raise a new occurrence of the same exception, we call
Exception_Identity to obtain the Exception_Id and then call Raise_Exception §11.4.1(4,10):

Raise_Exception(

Exception_Identity(Get(Q’Access).Occurrence.all),
Message => " from main procedure");

The software archive contains complete programs with these modifications.

Ada 95

In Ada 95:

• If the function Exception_Message is called for an exception occurrence raised by a raise
statement, the string returned is implementation-defined because the with form is not al-
lowed. The workaround is to call Raise_Exception.

• There are no procedures for writing exceptions to streams.
• There are no functions returning Wide_String or Wide_Wide_String. The workaround is to

convert a value of type String to these types; however, Raise_Exception must always be
called with a value of type String.



184 10 Exceptions and Run-Time Checks

10.7 Suppressing checks*

A frequent complaint against languages like Ada is that programs are inefficient because they
require run-time checks, such as checking if the indices of arrays are out of bounds. Consider a
program that does image processing, where one way of improving an image is to replace every
pixel by the average of its neighbors:

type Image is array(0..1023, 0..1023) of Byte;

A: Image;

Get_Image(A);

for I in Image’First(1)+1 .. Image’Last(1)-1 loop
for J in Image’First(2)+1 .. Image’Last(2)-1 loop

A(I,J) := (A(I-1,J) + A(I+1,J) + A(I,J-1) + A(I,J+1)) / 4;

end loop;
end loop;

If a check is made that the indices of the array A are in bounds for each of the four reads and
the single write, the program will be inefficient.

The inefficiency associated with type checking is highly exaggerated. First, a good optimiz-
ing compiler can remove many of the checks. In the above example, it is clear from the loop
bounds that no index will be outside the array bounds. Second, efficiency problems almost
invariably arise from “hot spots” in the program such as inner loops. In those cases where
inefficiency has been measured and its cause identified, the language-defined checks can be sup-
pressed. If you suppress checks, the program will become erroneous §1.1.5(9–10) if the error
occurs §11.5(26).

§11.5

1 Checking pragmas give instructions to an implementation on handling
language-defined checks. A pragma Suppress gives permission to an implementation
to omit certain language-defined checks, while a pragma Unsuppress revokes the
permission to omit checks.

2 A language-defined check (or simply, a “check”) is one of the situations defined by this
International Standard that requires a check to be made at run-time to determine
whether some condition is true. A check fails when the condition being checked is
false, causing an exception to be raised.

Paragraphs §11.5(9–25) define the checks; for example, Index_Check §11.5(14) checks the
bounds of an array value against its index constraint. A failure of this check will cause
Constraint_Error to be raised. There is also a check All_Checks §11.5(25) that can be used
to suppress all of the specific checks.

A check is suppressed by using pragma Suppress with the name of the check; if a check has
been suppressed, pragma Unsuppress can be used to restore the check:
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§11.5

4 pragma Suppress(identifier);
4.1 pragma Unsuppress(identifier);

8 A pragma Suppress gives permission to an implementation to omit the named check
(or every check in the case of All_Checks) for any entities to which it applies. If
permission has been given to suppress a given check, the check is said to be
suppressed.

8.1 A pragma Unsuppress revokes the permission to omit the named check (or every
check in the case of All_Checks) given by any pragma Suppress that applies at the
point of the pragma Unsuppress.

You should not make any semantic use of pragma Suppress, because an implementation is
allowed to ignore it:

§11.5

29 There is no guarantee that a suppressed check is actually removed; hence a pragma
Suppress should be used only for efficiency reasons.

Two checks that are often suppressed are Overflow_Check §11.5(16), because it is inefficient
to implement without hardware support, and Elaboration_Check §11.5(20), since it is unlikely
to occur once you have successfully built and tested a system (Section 15.5).

Transformations performed by the compiler for the purpose of optimization may subtly
effect the semantics of a program, especially where exceptions are involved. For example, a
compiler could “optimize away” the creation of the variable H, provided that H is not used
elsewhere in the program:

subtype Hex is Character range ’A’..’F’;

H: Hex := Char’Succ(’F’);

C: Character := H;

In doing so, the compiler has “optimized away” the exception that would be raised as a result
of assigning ’G’, the result of Char’Succ(’F’), to the variable H of subtype Hex. Furthermore,
optimization that involves moving code may cause an exception to occur in an unexpected
location in the program. An implementation is permitted to perform such optimizations §11.6.
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10.8 Assertions*

Assertions §11.4.2 are an alternative to explicit if-statements that raise exceptions if a boolean
condition is false. In the array priority queue, we could replace the explicit checks for underflow
and overflow by using pragma Assert:

assert

1 pragma Assert(Free < Q.Size);

2

3 pragma Assert(Q.Free > 0);

If the expression ever becomes false, the exception Ada.Assertions.Assert_Error is raised;
the exception is defined in package Ada.Assertions §11.4.2(11–15), which also contains proce-
dures for checking assertions.

Checking assertions is controlled by pragma Assertion_Policy §11.4.2(5–7,10):

pragma Assertion_Policy(Check);

pragma Assertion_Policy(Ignore);

The default policy is implementation-defined, so a program will be portable only if the policy
is specified explicitly.

The advantage of assertions over if-statements is that they can be ignored at compilation
time just by changing the policy pragma. In general, assertions should not be ignored; however,
if you can prove that an assertion is always true, it is reasonable to ignore it. For example, the
following Get statement will never cause the underflow assertion to be false:

while not Empty(Q) loop
Get(I, Q);

...

end loop;

If all Get statements appear in such contexts, the assertion can safely be ignored.

Ada 95

Assertions were not included in the Ada 95 standard although some implementations sup-
ported them. The workaround is to use explicit if-statements and exceptions; the if-statement
can check a global variable or constant to see if the expression should be checked:

if Configuration.Check_Assertions and then Q.Free = 0 then ...

Note the use of the short-circuit control form and then to avoid evaluating a possibly complex
expression if assertions are not to be checked.
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Projects

1. In the image-processing algorithms that you developed as projects in Chapter 4, try sup-
pressing checks and see if the running time is reduced. Check both for optimized and unop-
timized compilations.

2. Add assertions wherever relevant in the case study for filling and justifying text (Section 4.1).

Quizzes

Quiz 1:

package P is
procedure Proc;

end P;

package body P is
Inner: exception;
procedure Proc is
begin

raise Inner;

end Proc;

end P;

with P; use P;

procedure Main is
begin

Proc;

exception
when E: others => Put(Ada.Exceptions.Exception_Name(E));

end Main;



Chapter 11

Composite Types

11.1 Characters and strings

The support for character and string handling in Ada is extensive. In this section we discuss
“ordinary” characters and strings, while in the next section we give an overview of multibyte
characters and their strings; these are used in programs that process text in non-European nat-
ural languages and other notations. This is followed by a case study that demonstrates string
handling as well as the container library.

Ada.Characters.Latin_1 §A.3.3 supplies names for all the characters in the ISO 8859-1 set,
except for the digits ’0’ through ’9’ and the upper case letters ’A’ through ’Z’, which are
assumed to be directly available on any keyboard.

Ada.Characters.Handling §A.3.2 contains functions like Is_Upper and Is_Alphanumeric

for classifying characters, as well as conversion functions such as To_Upper. Note that the cat-
egory letters includes international characters such as the French letter ç (named LC_C_Cedilla

in Ada.Characters.Latin_1); the predefined upper/lower case conversion functions take ac-
count of these characters.

Ada.Strings §A.4.1 has child packages that provide operations for three string types:

Fixed
This is the predefined type String; the length of a string value is fixed when it is allocated,
as for all array types.

H e l l o W o r l d

Bounded
A bounded string object is declared with a maximum length; the current length is automati-
cally maintained by the library subprograms. A bounded string object can vary in size dur-
ing its lifetime, up to the declared maximum.

11 H e l l o W o r l d

189
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Unbounded
An unbounded string has no fixed or maximum length; an operation that causes the length
of the string to be changed will cause storage to be allocated. Typically, unbounded strings
are implemented as controlled types (Section 12.9), and finalization takes care of reclaiming
storage.

11 - H e l l o W o r l d

Ada supports null-terminated strings (see Interfaces.C.Strings §B.3.1) that are used to
manipulate strings passed to or received from external subprograms written in C or in any
language that uses that representation.

- H e l l o W o r l d 0

Obviously, the more flexible the string type, the more overhead is required. For bounded
strings, the maximum length must be at least as large as the longest string of the type that
will be used; this will waste memory if many of the strings are much shorter. For unbounded
strings, allocation and deallocation of memory may be needed for each operation. The subpro-
gram libraries for all three types are very similar, so it is easy to change the string type without
extensive modifications to a program.

Package Ada.Strings.Maps §A.4.2 implements operations on type Character_Set, which
will be familiar if you have used a string processing language like SNOBOL or Icon, or li-
braries for pattern matching in other languages. Character sets are used as patterns in search
operations such as “find the first occurrence of any upper case character.” The package also
declares the type Character_Mapping, which can be used to translate one set of characters to
another. The case study in Section 11.3 demonstrates the use of these packages.

11.2 Multibyte characters and strings*

Once upon a time, the 7-bit ASCII code sufficed for representing characters and strings. Today,
there is a demand for software that can manipulate text in all natural languages, as well as other
notations like that used for musical scores. Because writing systems have been developing for
thousands of years, text processing is a complex subject that should be studied in detail before
you undertake to write multilingual software. The Unicode website (http://unicode.org) is
a good place to start.

In Ada 83, the only character and string types were the one-byte Character type, and the
type String, which is a packed array of components of type Character. Ada 95 added the
two-byte Wide_Character type and the associated type Wide_String, while Ada 2005 sup-
ports the four-byte Wide_Wide_Character type and the associated type Wide_Wide_String. The
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Ada 2005 reference manual defines the types in terms of the ISO/IEC 10646 international stan-
dard, the Universal Character Set (UCS). (UCS is similar to the Unicode standard.)

§3.5.2

2 The predefined type Character is a character type whose values correspond to the
256 code positions of Row 00 (also known as Latin-1) of the ISO/IEC 10646:2003
Basic Multilingual Plane (BMP). . . .

3 The predefined type Wide_Character is a character type whose values correspond to
the 65536 code positions of the ISO/IEC 10646:2003 Basic Multilingual Plane (BMP).
. . . The first 256 values of Wide_Character have the same character_literal or
language-defined name as defined for Character. . . .

3.1 The predefined type Wide_Wide_Character is a character type whose values
correspond to the 2147483648 code positions of the ISO/IEC 10646:2003 character
set. . . . The first 65536 values of Wide_Wide_Character have the same
character_literal or language-defined name as defined for Wide_Character.

The values of Character form an initial subsequence of the values of Wide_Character, which
in turn form an initial subsequence of the values of Wide_Wide_Character. This means that it is
straightforward to convert a value of type Character to Wide_Character and a “small” value
of type Wide_Character to Character. Similar conversions can be done between Character or
Wide_Character and Wide_Wide_Character.

Any of these characters can be used when writing a program §2.1(1). However, these stan-
dard character sets only define the abstract lexical units of an Ada program, not the actual
encoding of the source files. An implementation is free to use any encoding such as UTF-8, the
popular Unicode encoding. To faciliate the maintenance of programs in an international envi-
ronment, it is recommended that wide and wide-wide characters not be used outside of strings
and comments.

11.2.1 Case study: currency symbols

If you need only a few characters and strings belonging to a local writing system, it is pos-
sible to write a portable program that uses them. We will demonstrate this by showing how
to display currency symbols. (These symbols can be used in the case study in Section 13.8.1.)
The 256 values of type Character defined in the ISO 8859-1 encoding are given names in the
package Ada.Characters.Latin_1 §A.3.3. This set includes characters needed to write Euro-
pean languages (like French, German and the Scandinavian languages), as well as many useful
symbols such as those for the British Pound and the Japanese Yen §A.3.3(21).
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curr

1 with Ada.Wide_Text_IO; use Ada.Wide_Text_IO;

2 with Ada.Characters.Conversions, Ada.Characters.Latin_1;

3 procedure Curr is
4 Yen: constant Character := Ada.Characters.Latin_1.Yen_Sign;

5 S: String := "The symbol for the Yen is " & Yen;

The Euro symbol did not exist when the ISO 8859-1 encoding was created. (It does exist
at position 164 in the ISO 8859-9 encoding, which your implementation may support.) The
code for the symbol is 20AC (in hexadecimal), which can be stored in a constant of type
Wide_Character. The attribute Val §3.5.5(5–7) can be used to convert the integer code to a
value of type Wide_Character:

6 Euro1: constant Wide_Character := Wide_Character’Val(16#20AC#);

7 WS1: Wide_String := "The symbol for the Euro is " & Euro1;

There is also a language-defined name (string) that uses hexadecimal numbers for all characters
whose code is greater than 256 §3.5.2(3.2). This string can be converted by the attribute Value

§3.5(40–43) to a value of type Wide_Character:

8 Euro2: constant Wide_Character := Wide_Character’Value("Hex_000020AC");

9 WS2: Wide_String := "The symbol for the Euro is " & Euro2;

As mentioned above, an implementation may support any representation for the characters in
a source file. For example, the GNAT implementation supports a convenient syntax for wide
characters that is useful when strings rather than individual characters are needed:

10 Euro3: constant Wide_Character := ’["20AC"]’;

11 WS3: Wide_String := "The symbol for the Euro is " & Euro3;

12

13 Euro_Rupee_Yuan: Wide_String :=

14 "Euro is ["20AC"], Rupee is ["20A8"], Yuan is ["5143"]";

Values of type Wide_String can be printed out using the package Ada.Wide_Text_IO, which
is similar to Ada.Text_IO. The variable S ‡5 is of type String so we first convert it to
Wide_Character before calling Put_Line:

15 begin
16 Put_Line(Ada.Characters.Conversions.To_Wide_String(S));

17 Put_Line(WS1);

18 Put_Line(WS2);

19 Put_Line(WS3);

20 Put_Line(Euro_Rupee_Yuan);

21 end Curr;
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These characters may not actually be displayed on your computer if they do not exist in the font
you are using, but you are assured that they will be on an appropriately localized computer.

Do not try to mix output of type String, Wide_String and Wide_Wide_String in the same
file; files can carry an indication of their encoding and an encoding appropriate for one type
may not be appropriate for another.

Ada 95

The hexadecimal names "Hex_nnnnnnnn" are not in Ada 95, nor are Wide_Wide_Character and
Wide_Wide_String. Check what encodings your implementation supports.

11.3 Case study: dot2dot

This case study demonstrates the use of the libraries for strings and containers. Chapter 16 is
an overview of the container library that you may wish to read before this case study.

The program reads a file in the format of the DOT language for describing graphs, which is
used by the GRAPHVIZ suite of tools. The dot program employs sophisticated algorithms to lay
out graphs described in the DOT language, and to generate the output in a variety of graphics
formats like PNG. Here is an example of a directed graph described in DOT:

digraph "third" {

graphs [ ranksep = .25 size = "16,12" ];

nodes [ fontsize = 14 height = 1.2 width = 1.6 ];

edges [ style = bold ];

0 [ color = red label = "11. wantq = 1\n" ];

1 [ color = red label = "12. !wantp\n" ];

...

6 [ label = "6. wantp = 0\n" ];

7 [ label = "6. wantp = 1" ];

0 -> 1 [ color = red ];

0 -> 4;

...

6 -> 7;

7 -> 1;

}

(This is a simplified form of the state graph of a concurrent program.)
The first line gives the name of the directed graph. This is followed by a sequence of one or

more lines specifying global attributes of the graph, the nodes or the edges. Next is a list of the
nodes in the graph; each node has a name (here, a number), and is optionally followed by a list
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of attributes local to the node. The edges are given by a pair of node names, separated by the
token ->, and optionally followed by a list of attributes local to the edge.

The program in the case study reads a file in DOT format and writes a file with the elements
sorted and formatted in a uniform manner. The program accepts a subset of the DOT language,
and you may wish to extend it to accept the full language as described in the documentation on
the GRAPHVIZ website (http://graphviz.org). In particular, we limit the attributes and their
names to fixed-length strings, and use bounded strings with a maximum length for statements
in the source file.

11.3.1 Defining the data structures

Subtype Name will be used for the attributes, and the fixed-length strings will be padded with
spaces. The length of an input line is limited to Line_Length:

dot2dot

1 package Config is
2 subtype Name is String(1..20);

3 Line_Length: constant Positive := 120;

4 end Config;

Package Lines, an instantiation of Ada.Strings.Bounded.Generic_Bounded_Length §A.4.4,
contains the type Bounded_String; its maximum length is Config.Line_Length:

5 with Config;

6 with Ada.Strings.Bounded;

7 package Lines is
8 new Ada.Strings.Bounded.Generic_Bounded_Length(Config.Line_Length);

Ada.Text_IO.Bounded_IO §A.10.11 for input–output of bounded strings is instantiated:

9 with Lines; with Ada.Text_IO.Bounded_IO;

10 package Lines_IO is
11 new Ada.Text_IO.Bounded_IO(Lines);

This generic package has a formal package parameter, which must be a generic package:

generic
with package Bounded is

new Ada.Strings.Bounded.Generic_Bounded_Length (<>);

The actual parameter must be an instantiation of the formal parameter (Section 9.8).
A list of attributes (associated either globally with all nodes or edges, or locally with a single

node or edge) is stored in an ordered map (Section 16.4.2) that associates values called elements
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with keys. The generic package Ada.Containers.Ordered_Maps has the formal type parameters
Key_Type and Element_Type. Here, the keys are the attribute names and the elements are the
attribute values; for our simplified program, both are fixed strings of subtype Config.Name:

15 with Config;

16 with Ada.Containers.Ordered_Maps;

17 package Attribute_Maps is
18 new Ada.Containers.Ordered_Maps(Config.Name, Config.Name);

The package declares the (tagged) private type Map and a large set of operations §A.18.4. An
instantiation of Ada.Containers.Ordered_Maps requires an actual parameter that is a function
"<" for comparing values of type Key_Type. Here, it is implicitly supplied (Section 9.3) as the
function "<" for type String, which is declared in package Standard and always visible.

Our next task is to design a data structure for storing the elements of the graph—the nodes
and edges; the same record type Element is used for both. It has three components: a node
Source, a second node Target (which is blank for nodes), and a map of attributes, initialized
to the empty map §A.18.6(6):

19 with Config; with Attribute_Maps;

20 package Elements is
21 Blanks: constant Config.Name := (others => ’ ’);

22 type Element is
23 record
24 Source: Config.Name;

25 Target: Config.Name := Blanks;

26 Attributes: Attribute_Maps.Map := Attribute_Maps.Empty_Map;

27 end record;

For the purpose of storing the elements in a data structure and sorting them, we define the
operators "=" and "<".

28 function "="(Left, Right: Element) return Boolean;

29 function "<"(Left, Right: Element) return Boolean;

30 end Elements;

They are implemented in the package body by comparing the source and target nodes; the
attribute map is ignored by these functions. (The source code is in the software archive.)

The data structure that we choose for graph elements is the vector, which is an array that
expands automatically as needed (Section 16.2). This is implemented in the container library
Ada.Container.Vectors §A.18.2, which is a generic package that takes three formal parame-
ters: a discrete Index_Type, a private Element_Type and an equality function "=" for the ele-
ments. In the following instantiation, the actual parameter for the equality function is implicitly
taken as the function that is made visible by the use_clause for the package Elements:
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31 with Ada.Containers.Vectors;

32 with Elements; use Elements;

33 package Element_Vectors is
34 new Ada.Containers.Vectors(Natural, Element);

The package defines the (tagged) private type Vector and a set of operations on the type.
We are finally ready to define the data structure that will hold the global attributes and the

elements of the graph. The record type Table contains four components: the name of the graph,
an array of three maps for the global attributes (of the graph, the nodes and the edges), a vector
of elements for the nodes, and another vector for the edges:

35 with Ada.Text_IO;

36 with Element_Vectors, Attribute_Maps, Lines, Config;

37 package Dot_Tables is
38 type Attribute is (Graphs, Nodes, Edges);

39

40 type Attribute_Map_Arrays is array(Attribute) of Attribute_Maps.Map;

41

42 type Table is
43 record
44 Graph_Name: Config.Name;

45 Attribute_Map_Array: Attribute_Map_Arrays;

46 Nodes: Element_Vectors.Vector;

47 Edges: Element_Vectors.Vector;

48 end record;

In our simplified program, the only operations on a table are to sort it and to write the data to
an output file:

49 procedure Sort(T: in out Table);

50 procedure Put(T: in Table; Output: in Ada.Text_IO.File_Type);

51 end Dot_Tables;

11.3.2 Reading, sorting and writing the graph files

The generic package Generic_Sorting (declared locally within both Ada.Containers.Vectors

§A.18.2(75–79) and Ada.Containers.Doubly_Linked_List §A.18.3(47–52)) is used to sort the
node and edge vectors. It is instantiated with the "<" operator as the actual parameter:
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52 with Ada.Text_IO, Ada.Characters.Handling, Ada.Strings.Fixed;

53 with Elements, Element_Vectors;

54 package body Dot_Tables is
55 package Element_Sort is
56 new Element_Vectors.Generic_Sorting(Elements."<");

57

58 procedure Sort(T: in out Table) is
59 begin
60 Element_Sort.Sort(T.Nodes);

61 Element_Sort.Sort(T.Edges);

62 end Sort;

We will be using the function Ada.Strings.Fixed.Trim §A.4.3(31,89) frequently. The func-
tion is renamed as a local function for two reasons. First, it shortens the name of the function
without employing a use_clause. Second, since the second parameter will always be the same,
the renaming declaration can specify it as a default parameter §8.5.4(7):

63 function Trim(

64 Source: in String;

65 Side: in Ada.Strings.Trim_End := Ada.Strings.Right) return String

66 renames Ada.Strings.Fixed.Trim;

To implement the function Put, we need to iterate over all the elements in each of the maps
and vectors. Each container has a first and last element and, in addition, a (private) type Cursor
is defined for references to the “current” Position in the container:

First Position Last

6 6 6

Given a position in a map, it is easy to obtain the values of the key and element at that position
§A.18.4(31–34). These are used in Put_Attribute, which is to be called for the attribute at each
position in each of the maps:

67 procedure Put(T: in Table; Output: in Ada.Text_IO.File_Type) is
68 use Ada.Text_IO;

69 procedure Put_Attribute(Position: in Attribute_Maps.Cursor) is
70 begin
71 Put(Output,

72 Trim(Attribute_Maps.Key(Position)) & " = " &

73 Trim(Attribute_Maps.Element(Position)) & ’ ’);

74 end Put_Attribute;



198 11 Composite Types

The procedure Put_Element is to be called for the element at each position in the two vectors
Nodes and Edges of a table. First, the source node and the target node for an edge are printed:

75 procedure Put_Element(Position: in Element_Vectors.Cursor) is
76 E: Elements.Element renames Element_Vectors.Element(Position);

77 begin
78 Put(Output, Trim(E.Source));

79 if E.Target /= Elements.Blanks then
80 Put(Output, " -> " & Trim(E.Target));

81 end if;

Next, E.Attributes, the map of attributes for the element must be printed. Printing of all the at-
tributes in the map is accomplished automatically by calling the procedure Iterate §A.18.4(74–
75) with a pointer to the procedure Put_Attribute that prints each attribute. The Access at-
tribute returns the address of the subprogram:

82 if not Attribute_Maps.Is_Empty(E.Attributes) then
83 Put(Output, " [ ");

84 Attribute_Maps.Iterate(E.Attributes, Put_Attribute’Access);

85 Put(Output, "]");

86 end if;
87 Put_Line(Output, ";");

88 end Put_Element;

The body of the procedure Put begins with calls to Iterate with Put_Attribute’Access for
each list of global attributes:

89 begin
90 Put_Line(Output, "digraph " & Trim(T.Graph_Name) & " {");

91 for A in Attribute loop
92 Put(Output, " " &

93 Ada.Characters.Handling.To_Lower(Attribute’Image(A)) & " [ ");

94 Attribute_Maps.Iterate(

95 T.Attribute_Map_Array(A), Put_Attribute’Access);

96 Put_Line(Output, "]");

97 end loop;

Iterate is called to execute Put_Element for each node and edge. This results in nested calls
to Iterate for each element of the map contained in each element of the vector.

98 Element_Vectors.Iterate(T.Nodes, Put_Element’Access);

99 Element_Vectors.Iterate(T.Edges, Put_Element’Access);

100 Put_Line(Output, "}");

101 end Put;

102 end Dot_Tables;
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The main procedure Dot2Dot contains four local subprograms:

• Function Pad, which calls the Head subprogram §A.4.3(97–98) to pad strings;
• Procedure Get_Name, which gets the next token from the input;
• Procedure State_Machine, which parses the input;
• Procedure Main_Loop, which calls Get_Name and State_Machine as long as there is input.

The full source code of the first three of these subprograms and the global declarations for the
parser are omitted and can be found in the software archive.

103 with Ada.Text_IO, Ada.Exceptions, Ada.Command_Line;

104 with Ada.Strings.Fixed, Ada.Strings.Bounded;

105 with Config, Lines, Lines_IO, Dot_Tables;

106 procedure Dot2Dot is
107 -- The declarations for the parser are omitted

108 Syntax_Error: exception;
109 Table: Dot_Tables.Table;

110

111 function Pad(S: in String) return Config.Name is ...

112 procedure State_Machine(N: in Config.Name) is separate;
113 procedure Get_Name(

114 L: in out Lines.Bounded_String;

115 Finish: in out Natural;

116 N: out Config.Name) is separate;

The bodies of the subprogram Get_Name and State_Machine are declared as subunits with
separate §10.1.3, partly to reduce the size of the source file and partly to limit the number
of with clauses needed on each unit (Section 15.3).

The main loop is straightforward:

117 procedure Main_Loop(Input, Output: in Ada.Text_IO.File_Type) is
118 S: Lines.Bounded_String;

119 N: Config.Name;

120 Finish: Natural := 0;

121 begin
122 loop
123 S := Lines_IO.Get_Line(Input);

124 loop
125 Get_Name(S, Finish, N);

126 exit when Finish = 0;

127 State_Machine(N);

128 end loop;
129 end loop;
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When a syntax error is encountered by the parser, an exception is raised and propagated to this
procedure, where it is handled by printing an error message (see Section 10.4):

130 exception
131 when E: Syntax_Error =>

132 Ada.Text_IO.Put_Line(

133 Ada.Exceptions.Exception_Message(E) & " expected");

134 Lines_IO.Put_Line(S);

When the entire input has been parsed and the data from the file placed in Table, exception
End_Error is raised and its exception handler calls subprograms to sort and print the data:

135 when Ada.Text_IO.End_Error =>

136 Dot_Tables.Sort(Table);

137 Dot_Tables.Put(Table, Output);

138 end Main_Loop;

The body of the main subprogram Dot2Dot (omitted here) gets the file name from the com-
mand line (see Ada.Command_Line §A.15) and constructs a name for the output file using the
functions Index §A.4.3(57) and Insert §A.4.3(77).

We present here an outline of the procedure Get_Name that is called when parsing the input.
String maps (Ada.Strings.Maps §A.4.2) are used to identify classes of characters. We use three
sets that are defined according to the syntax of DOT:

• Space_Set, which includes commas and tabs in addition to the space character;
• Word_Set, which includes underscores and the decimal point;
• Punc_Set for the punctuation characters.

139 with Ada.Characters.Latin_1, Ada.Characters.Handling;

140 with Ada.Strings.Maps.Constants;

141 separate (dot2dot)

142 procedure Get_Name(

143 L: in out Lines.Bounded_String;

144 Finish: in out Natural; N: out Config.Name) is
145 use Lines, Ada.Strings.Maps;

146

147 Space_Set: constant Character_Set :=

148 To_Set(" ," & Ada.Characters.Latin_1.HT);

149 Word_Set: constant Character_Set :=

150 Constants.Alphanumeric_Set or To_Set("._");

151 Punc_Set: constant Character_Set :=

152 To_Set("{}[];=");

153 First: Positive; -- For call of Find_Token
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The function To_Set §A.4.2(44-47) is used to transform a string into a set of characters.
Here is one case of Get_Name that demonstrates how to use the subprograms in the string

library. Function Is_In §A.4.2(40–41) checks if the first Element §A.4.4(96–97) of the (rest of the)
input string is within Word_Set. If so, it calls Find_Token §A.4.4(51,103), §A.4.3(67–68) to find
the indices of the beginning and end of the longest consecutive sequence of characters that are
Inside the set Word_Set.

154 elsif Is_In(Element(L, 1), Word_Set) then
155 Find_Token(L, Word_Set, Ada.Strings.Inside, First, Finish);

156 if Finish = 0 then return; end if;

Once a token is found, it is extracted from the bounded string into a fixed string by calling
Slice §A.4.4(100–101) and then Move §A.4.3(44-56):

157 Ada.Strings.Fixed.Move(Slice(L, 1, Finish), N);

158 end Get_Name;

The procedure State_Machine is fairly long and we will limit ourselves to presenting two
statements that insert values into the data structures: inserting a node into a vector and adding
an attribute to the node. Recall that a line describing a node looks like:

1 [ color = red label = "12. !wantp\n" ];

When the string "1" is read into the variable Current_Name, a node with that name will be
entered into the vector Nodes of the variable Table of type Dot_Tables.Table:

159 Element_Vectors.Append(

160 Table.Nodes,

161 (Source => Current_Name, Target => <>, Attributes => <>));

The subprogram Append places the node at the end of the vector:

§A.18.2

172 procedure Append(Container : in out Vector; New_Item : in Vector);

173 Equivalent to Insert (Container, Last_Index (Container) + 1, New_Item).

Note that many operations like Append are defined in terms or other operations, in this case
Insert and Last_Index.

Since there are default values for the components Target and Attributes, they can be ini-
tialized using the box symbol in the aggregate §4.3.1(19.1).

Following the name of the node is the list of the attributes, in this case, one for the color of the
node and one for its label. The list appears in the same DOT statement as the name, so we know
that the attributes are to be placed in the last element appended to the vector §A.18.2(205–206).
The vector element is copied into a local variable:
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162 E := Element_Vectors.Last_Element(Table.Nodes);

Then the attribute name and value are inserted into the attribute map component of the vector
element §A.18.4(48–49).

163 Attribute_Maps.Insert(E.Attributes, Current_Name, N);

Finally, the vector element is replaced back into the vector §A.18.2(134–135).

164 Element_Vectors.Replace_Element(

165 Table.Nodes, Element_Vectors.Last(Table.Nodes), E);

The function Last §A.18.2(61) returns the position of the last element in the vector.

Ada 95

Ada 95 does not have the box notation for aggregates; this is not a problem here since the
default values are visible.

The Container library is new in Ada 2005, as is Ada.Text_IO.Bounded_IO §A.10.11.

11.4 Discriminants

Discriminants are used for parameterizing types. We have met known discriminants in the im-
plementation of a queue by an array:

type Queue(Size: Positive) is
record

Data: Vector(0..Size);

Free: Natural := 0;

end record;

and unknown discriminants in generic formal parameters:

generic
type Item is (<>);

package Priority_Queue is ...
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§3.7

1 A composite type (other than an array type or interface type) can have discriminants,
which parameterize the type. A known_discriminant_part specifies the discriminants
of a composite type. A discriminant of an object is a component of the object, and is
either of a discrete type or an access type. An unknown_discriminant_part in the
declaration of a view of a type specifies that the discriminants of the type are
unknown for the given view; all subtypes of such a view are indefinite subtypes.

3 unknown_discriminant_part ::= (<>)
4 known_discriminant_part ::=

(discriminant_specification {; discriminant_specification})
5 discriminant_specification ::=

defining_identifier_list: [null_exclusion] subtype_mark [:= default_expression]
| defining_identifier_list: access_definition [:= default_expression]

Discriminants are primarily used to parameterize record types, but they can also parameter-
ize tasks and protected objects (Sections 18.1, 19.9). A discriminant in a record type declaration
declares a constant §3.3(18) component of the record §3.8(9). When an object of a discriminated
type is created, a value must be given for each discriminant either by a discriminant constraint
§3.7.1 as we did in the priority queue programs:

Q: Queue(Size => 4);

or by an initial value:

Q: Queue := (Size => 4, Data => (0, 1, 2, 3, 4), Free => <>);

As with unconstrained arrays, a formal parameter with a discriminant takes its constraint
from an actual parameter, so we can call the procedure Put:

procedure Put(I: in Integer; Q: in out Queue);

with queues whose Size discriminant takes on different values.
Since discriminants are constants, it is illegal to assign a value to them. The reason is that

discriminants are used to control which components exist in a record and changing the dis-
criminant would break type-checking:

Q: Queue(Size => 10);

Q.Size := 100; -- Illegal, otherwise ...

Q.Data(62) := 35; -- ... this would be legal

While it is not possible to change the discriminant alone, a discriminated record can be as-
signed to as a whole in an assignment statement or during the assignment of an actual param-
eter to a formal parameter. There is a check that the discriminants match to ensure that the two
records have the same components:
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Q1: Queue := (Size => 4, Data => (0, 1, 2, 3, 4), Free => <>);

Q2: Queue := (Size => 4, Data => (4, 3, 2, 1, 0), Free => <>);

Q3: Queue := (Size => 3, Data => (4, 3, 2, 1), Free => <>);

Q2 := Q1; -- OK

Q3 := Q1; -- Error

Assignment statements (and parameter passing §6.4.1(10,11,14)) include a type conversion:

§5.2

11 The value of the expression is converted to the subtype of the target. The conversion
might raise an exception (see 4.6).

and constraints are checked during type conversion:

§4.6

51 After conversion of the value to the target type, if the target subtype is constrained, a
check is performed that the value satisfies this constraint. . . .

57 . . . Any other check associated with a conversion raises Constraint_Error if it fails.

Within a record declaration, a discriminant can be used in a default expression for another
component, but if it is used to constrain a component it must appear directly and not as part of
a larger expression §3.8(12):

type Queue(Size: Positive) is
record

Data: Vector(0..Size+1); -- Error

Free: Natural := 0;

end record;

11.5 Variant records

Discriminants can be used to create variant records, where the existence of some of the record
components depends on §3.7(20,22) the discriminants. An important use of variant records is in
the conversion of unstructured data to a structured record. For example, a buffer of bytes from
a communications link can be converted to any one of a set of structures depending upon a
discriminant.
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11.5.1 Case study: message conversion

The following program shows how to use variant records for structuring a sequence of bytes.
The case study also demonstrates modular types (Section 13.4) and representation attributes
(Section 20.2).

First we define a type Byte as one storage unit and an input–output package for the type:

message

1 with Ada.Text_IO; use Ada.Text_IO;

2 with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;

3 with System; with Ada.Unchecked_Conversion;

4 procedure Message is
5 type Byte is mod 2**System.Storage_Unit;

6 for Byte’Size use System.Storage_Unit;

7

8 package Byte_IO is new Ada.Text_IO.Modular_IO(Byte);

9 use Byte_IO;

Type Structured_Message is a variant record whose discriminant is the enumerated type
Codes. The record has four common components: the discriminant Code, Addressee, Sender
and Sequence_Number; the other components depend on the discriminant:

10 type Codes is (M0, M1, M2, M3);

11 for Codes’Size use System.Storage_Unit;

12

13 type Structured_Message(Code: Codes) is
14 record
15 Addressee: Byte;

16 Sender: Byte;

17 Sequence_Number: Byte;

18 case Code is
19 when M0 => null;
20 when M1 => A: Integer;

21 when M2 => B: Character;

22 when M3 => C: Integer; D: Integer;

23 end case;
24 end record;
25 pragma Pack(Structured_Message);

(See Section 20.2.1 for an explanation of pragma Pack.)
Type Raw_Message is an array of bytes of exactly the size needed to hold a value of type

Structured_Message:
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26 Max_Bytes: constant Integer :=

27 Structured_Message’Size/System.Storage_Unit;

28 type Raw_Message is array(1..Max_Bytes) of Byte;

29 pragma Pack(Raw_Message);

Type conversion between Structured_Message and Raw_Message must be done by instantiat-
ing the generic function Ada.Unchecked_Conversion §13.9:

30 function To_Raw is new Ada.Unchecked_Conversion(

31 Source => Structured_Message, Target => Raw_Message);

32

33 function To_Structured is new Ada.Unchecked_Conversion(

34 Source => Raw_Message, Target => Structured_Message);

While the size of Raw_Message was computed from the size of Structured_Message, there is
no assurance that the value of the byte for the message code corresponds to the value of the
discriminant for the message structure.

To send a message over a communications line requires only that a structured message be
converted to a raw message:

35 function Send_Message(S: Structured_Message) return Raw_Message is
36 begin
37 return To_Raw(S);

38 end Send_Message;

The procedure Process_Message receives a raw message, converts it to a structured messages
and “processes” it (prints the values of the components) using a case-statement that takes the
variants into account:

39 procedure Process_Message(R: Raw_Message) is
40 S: Structured_Message := To_Structured(R);

41 begin
42 -- Put common components, then

43 case S.Code is
44 when M0 => null;
45 when M1 => Put(S.A);

46 when M2 => Put(S.B);

47 when M3 => Put(S.C); Put(S.D);

48 end case;
49 New_Line;

50 end Process_Message;

To test the program, aggregates for messages are created, sent and then processed:
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51 begin
52 Process_Message(Send_Message((M1, 11, 32, 1, 54)));

53 Process_Message(Send_Message((M2, 32, 11, 2, ’X’)));

54 Process_Message(Send_Message((M3, 32, 11, 3, 45, 68)));

55 end Message;

In an aggregate, the discriminant is just another component with the restriction that it must be
static since it determines which components are needed §4.3.1(17). In order to verify that the
remaining components have the proper type, we need to know statically what components are
present, and thus the value of the discriminant must be static as well.

11.6 Unconstrained types

§3.7.2

1 If a discriminated type has default_expressions for its discriminants, then
unconstrained variables of the type are permitted, and the discriminants of such a
variable can be changed by assignment to the variable. . . .

Such objects are often called mutable records.
The default expression serves two purposes: it gives the initial value of the discriminant so

it won’t have an undefined value, and it is a syntactic marker that unconstrained records of this
type can be created.

Unconstrained records can be used to implement bounded strings:

subtype Index is Natural range 0..255;

type Bounded_String(Length: Index := 80) is
record

S: String(1..Length);

end record;

Let us declare the constrained variables B1 and B2, and the unconstrainted variable B3:

B1: Bounded_String(90) := (90, (others => ’ ’));

B2: Bounded_String(50) := (50, (others => ’ ’));

B3: Bounded_String;

Assignment of B1 to B2 or conversely will raise Constraint_Error. The declaration of B3 is
legal because its discriminant has a default expression (of 80). Either of the variables B1 or B2
can be assigned to B3. It is still illegal to assign to the discriminant alone, but by assigning to the
entire record, we ensure the consistency of the discriminant with the components that depend
upon it.
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There is no difficulty in understanding how B2 with 50 characters can be assigned to B3, but
how can we assign B1 with 90 characters to B3, which has only 80 characters? One possibility
is to allocate and deallocate memory as needed, but this is inefficient. Instead, the maximum
amount of memory needed to contain any value of the type can be allocated:

80 A X W R ? ?· · · · · ·

Length 1 2 3 80 81 255

The discriminant exists solely for the purposes of type-checking that the value of Length is less
than or equal to the size of the string.

Sharp-eyed readers will have noted that we defined the subtype of the discriminant to be
Index, which is constrained to 256 values, rather than, say, Positive. If Positive were used,
your implementation will probably try to allocate Positive’Last bytes to each unconstrained
variable of this type, raising Storage_Error!

Language Comparison

Unconstrained variant records in Ada are similar to union types in C in that both
enable an object of a type to hold differently structured values at different times
during the execution of a program. One difference is that the discriminants in
Ada are components that require memory. For interfacing with C, Ada 2005 sup-
ports unchecked unions (Section 20.3.4).

11.7 Discriminants of private types*

Discriminants are allowed for private types so that a private type can be parameterized even
though the client does not know what use is made of the discriminant.

§7.3

9 If the declaration of a partial view includes a known_discriminant_part, then the
full_type_declaration shall have a fully conforming (explicit)
known_discriminant_part (see 6.3.1, “Conformance Rules”). . . .

This construct was used in the priority queue package, where the type Queue had the same
discriminant, both in its partial view and its full type declaration:

type Queue(Size: Positive) is private;
private

type Queue(Size: Positive) is ...
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Consider now:

type Queue is private;
private

type Queue ???

If the partial view has no discriminant, the client can create an object of the type, so the full
type declaration must be for a definite subtype:

§7.3

12 If a partial view has neither known nor unknown discriminants, then the
full_type_declaration shall define a definite subtype.

A partial view may also have unknown discriminants:

§7.3

11 If a partial view has unknown discriminants, then the full_type_declaration may
define a definite or an indefinite subtype, with or without discriminants.

Since the type is indefinite §3.3(23), the client cannot declare uninitialized objects of this type,
and there need be no restrictions on the full type. You can use unknown discriminants to force
the client to call an explicit initialization function:

package Priority_Queue is
type Queue(<>) is private;
function Init return Queue;

private
type Queue is array(Natural range <>) of Integer;

end Priority_Queue;

Q1: Priority_Queue.Queue; -- Error, indefinite

Q2: Priority_Queue.Queue := Init; -- OK, constrained by initial value

11.8 Inheriting discriminants*

What happens if the parent type in a type extension has a discriminant:

type T(Size: Positive) is tagged
record

S: String(1..Size);

end record;

Certainly, the following declaration is illegal:
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type T1(Count: Positive) is new T with ...

because the parent type T must be constrained §3.7(13) so that the implementation can know
how much memory to allocate its components. The discriminant of the parent type must be
used in one of three ways.

§3.7

18 For a type defined by a derived_type_definition, each discriminant of the parent type
is either inherited, constrained to equal some new discriminant of the derived type,
or constrained to the value of an expression. . . .

The three cases are demonstrated in the following modification of the simulation case study.

11.8.1 Case study: simulation with discriminants

Suppose that each object of type Event can represent multiple real events, where the number
of events is given by the discriminant Number:

rocketd

1 package Event_Package is
2 type Event(Number: Positive) is abstract tagged
3 record
4 Time: Simulation_Time;

5 Code: String(1..Number);

6 end record;

The discriminant is used to constrain a string of codes containing one character for each of the
multiple events.

Engine_Event replaces the discriminant Number with new ones, and one of them is used to
constrain the parent type:

7 type Engine_Event(Count: Positive; Engines: Positive) is
8 new Event(Number => Count) with ...

Steering_Event inherits the discriminant Number:

9 type Steering_Event is new Event with ...

Telemetry_Event has no discriminants; instead it constrains the discriminant of the parent with
an expression:

10 type Telemetry_Event is new Event(Number => 4) with ...
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11.9 Untagged derived types*

A new type can be derived from any type, not just from a tagged type. The concepts of prim-
itive operation, inheritance and overriding are the same; however, untagged types cannot be
extended, class-wide types cannot be declared, and there is no dynamic polymorphism.

Derived types are used among other things to define numeric types (Chapter 13). Derived
types can also be used to declare a new type with the same structure as an existing type. Con-
sider the definition of the type Queue in the tree implementation of a priority queue:

type Queue is
record

Root: Link;

end record;

The purpose of the definition is to ensure that Queue and Link are different types, even though
Queue is implemented as a single Link. This improves type checking and makes it possible to
overload a subprogram name on both types. The same effect could be achieved by deriving
Queue from Link:

type Queue is new Link;

although Queue would inherit the primitive subprograms defined for Link, which we do not
want here.

11.9.1 Case study: representation conversion

A derived type can have a different representation §13.6 from the parent type, and type con-
version between the two record types will convert between representations.

In the following program, the record Instruction has two fields:

rep

1 with Ada.Text_IO; use Ada.Text_IO;

2 procedure Rep is
3 type Operators is (Op0, Op1, Op2, Op3, Op4, Op5, Op6, Op7);

4 type Byte is mod 256;

5 type Instruction is
6 record
7 Op_Code: Operators;

8 Operand: Byte range 0..31;

9 end record;

An implementation will typically store values of type Instruction in two words or bytes, but
suppose that a packed representation is needed, where an 8-bit instruction stores Op_Code in



212 11 Composite Types

three bits and Operand in five. This is implemented by deriving a new type, and then providing
a record representation clause §13.5.1 to lay out the record and a representation attribute §13.3 for
the size (Section 20.2):

10 type Packed_Instruction is new Instruction;

11 for Packed_Instruction use
12 record
13 Op_Code at 0 range 0..2;

14 Operand at 0 range 3..7;

15 end record;
16 for Packed_Instruction’Size use 8;

Now values can be converted from one type to the other and their components can be accessed
in either representation, although it is to be expected that accessing the packed components
will be less efficient:

17 PI: Packed_Instruction := (Op3, 26);

18 I: Instruction := Instruction(PI);

19 begin
20 Put(Operators’Image(PI.Op_Code));

21 Put(Byte’Image(PI.Operand));

22 Put(Operators’Image(I.Op_Code));

23 Put(Byte’Image(I.Operand));

24 end Rep;

Language Comparison

Most programming languages do not allow records to be packed. When multiple
bit fields within a byte or word are necessary, they must be accessed using shift
and mask instructions, which are quite error-prone.

11.10 Untagged derived types and discriminants*

Since no components can be added upon derivation of an untagged type, any new discrimi-
nants must use the same memory that was reserved for the old discriminants:

§3.7

14 If the parent type is not a tagged type, then each discriminant of the derived type
shall be used in the constraint defining the parent subtype;

Suppose that the types in the Event were untagged:
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type Event(Number: Positive) is -- Untagged

record
Time: Integer;

Code: String(1..Number);

end record;

The following declaration is an error:

type Engine_Event(Count: Positive; Engines: Positive) is
new Event(Number => Count);

because there is nowhere to store the discriminant Engines. The following derivations are legal:

type Aux_Engine_Event(Count: Positive) is new Event(Number => Count);

type Steering_Event is new Event;

type Telemetry_Event is new Event(Number => 4);

The derived type can have fewer discriminants than the parent type, as long as all are used
to constrain the parent:

type Event(Number: Positive; Kind: Character) is
record

Code: String(1..Number);

Symbol: Character := Kind;

end record;

type Engine_Event(Count: Positive) is
new Event(Number => Count, Kind => ’X’);

Projects

1. Modify the dot2dot case study so that a discriminated record is used to store nodes with
less memory than the edges.

2. Extend the dot2dot case study to recognize more of the dot graphics language.
3. Implement the tree priority queue using an untagged derived type as outlined in Sec-

tion 11.9.
4. Find out how floating point numbers are stored on your computer and, using the techniques

in Section 11.5, write a subprogram to construct a floating point value from a sign, an expo-
nent and a mantissa. Write a subprogram to unpack these values from a floating point value.
You many want to use unchecked unions (Section 20.3.4).

5. One way of implementing a text editor is to use an array, storing the characters in front of
the cursor at the beginning of the array and the characters after the cursor at the end of the
array. Define an appropriate data structure using a discriminated record and implement the
relevant operations on the data structure.
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Quizzes

Quiz 1:

type Rec(D: Positive := 100) is
record

V: String(1..D);

end record;
R: Rec;

Quiz 2:

type Rec(D: Positive) is
record

V: String(1..D-1);

end record;

Quiz 3:

subtype Index is Integer range 1..100;

type Rec(Disc: Index := 100) is
record

Data: String(1..Disc);

end record;
R1: Rec(100);

C1: Character renames R1.Data(100);

R2: Rec;

C2: Character renames R2.Data(100);

Quiz 4:

subtype Sizes is Integer range 1..5000;

type Queue(Size: Sizes := 100) is tagged null record;

Quiz 5:

subtype S is Integer range 0..127;

type T(First: S := 0; Second: S) is
record

C1: S := First;

C2: S := Second;

end record;
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Quiz 6:

type Parent(Number: Positive; Size: Positive) is
record

X: String(1..Number);

Y: String(1..Size);

end record;
type Derived(Count: Positive) is new Parent(Count, Count);

P: Parent := (2, 3, "ab", "cde");

D: Derived := (3, "uvw", "xyz");

D := Derived(P);

Put_Line(D.X); Put_Line(D.Y);

Quiz 7:

package Inst is
type Operators is (Op0, Op1, Op2, Op3, Op4, Op5, Op6, Op7);

type Byte is mod 256;

type Instruction is -- as in Section 11.9.1

procedure Print_Instruction(I: Instruction);

end Inst;

with Inst;

procedure Main is
type Packed_Instruction is new Inst.Instruction;

for Packed_Instruction use -- as in Section 11.9.1

begin
null;

end Main;



Chapter 12

Access Types

12.1 General access types

The access types we have been using are called pool-specific access types, because every access
value points to a designated object that is allocated in a storage pool on the heap.

§3.10

8 Access-to-object types are further subdivided into pool-specific access types, whose
values can designate only the elements of their associated storage pool, and general
access types, whose values can designate the elements of any storage pool, as well as
aliased objects created by declarations rather than allocators, and aliased
subcomponents of other objects.

General access types can be used just like pool-specific access types to hold pointers to allocated
objects:

type Pointer is access all Integer;

P1: Pointer := new Integer;

The reserved word all indicates that Pointer is a general access-to-variable type §3.10(10).
In addition, they can be used to create pointers to declared objects:

N: aliased Integer;

P2: Pointer := N’Access;

P2 contains a pointer to a declared object N; it is created by applying the attribute Access

§3.10.2(24) to the object. The attribute can only be used on objects that are aliased §3.10(9). This
property is usually specified explicitly by including the reserved word aliased §3.3.1(2) in the
declaration of an object. The explicit declaration is a warning to the programmer reading the
code that there might be more than one way of accessing the variable (the variable name N and
the dereference P2.all). It is also an indication to the compiler that optimization techniques
such as storing the value of the variable in a register may not be appropriate.

217
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The rules for determining if an object is aliased (and hence if the attribute Access can be
applied) are contained in §3.10(9). The dereference of an access-to-object value is aliased, so if
X is a parameter of an access type or an access parameter (Section 12.6), X.all’Access is legal.

A formal parameter of any tagged type is aliased.
A general access type can be an access-to-constant type §3.10(10). Access values of these types

cannot be used to modify the designated object:

type Pointer is access constant Integer;

N: aliased Integer := 4;

P3: Pointer := N’Access;

P3.all := 5; -- Error

Do not confuse an object of an access-to-constant type with a constant object that happens to
be of an access type:

type Pointer1 is access Integer;

N: aliased Integer := 4;

P4: Pointer1 := N’Access;

P5: constant Pointer1 := N’Access;

P5 := P4; -- Error

P5.all := 5; -- OK

The object P5 is an ordinary constant object that cannot be assigned to, but it is of type access-
to-variable so the designated object may be assigned to.

A value of a general or pool-specific access to a type T1 can be converted to a value of a
general access to a type T2, provided certain rules are followed §4.6(24.11–24.27). The converse
is not possible: you cannot convert a general access type to a pool-specific access type.

12.1.1 Case study: ragged arrays

General access types can be used to implement ragged arrays. A ragged array is an array whose
components are of different sizes. Recall that you cannot create an array of strings, because the
component of an array or record must be definite:

String_Array: constant array(Positive range <>) of String := -- Error

("Hello ", "World");

To create an array of strings of arbitrary length, an array of pointers to strings can be declared:

type String_Pointer is access String;

String_Array: constant array(Positive range <>) of String_Pointer :=

(new String’("Hello "), new String’("World"));
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But now every string might be stored twice: once as constant data (possibly in read-only mem-
ory (ROM)), and once on the heap when the aggregate is created. This is unacceptable in em-
bedded systems for two reasons: first, there may not be enough memory to store every string
twice; second, copying the strings from ROM to the heap may take too much time upon start
or restart of the system. (Implementations are encouraged to be more efficient in this case (Sec-
tion 12.8), so check if double allocation and copying are done in your implementation.)

By using values of access-to-constant type, the double allocation can be avoided:

ragged

1 with Ada.Text_IO;

2 procedure Ragged is
3 OK_EN: aliased constant String := "OK";

4 Apply_EN: aliased constant String := "Apply";

5 Help_EN: aliased constant String := "Help";

6 Cancel_EN: aliased constant String := "Cancel";

7

8 type Label_Pointer is access constant String;

9

10 Labels: constant array(Natural range <>) of Label_Pointer :=

11 (OK_EN’Access, Apply_EN’Access, Help_EN’Access, Cancel_EN’Access);

12 begin
13 for L in Labels’Range loop
14 Ada.Text_IO.Put_Line(Labels(L).all);
15 end loop;
16 end Ragged;

12.2 Access-to-subprogram types

An access-to-subprogram type is used to define pointers to subprograms:

§3.10

11 An access_to_subprogram_definition defines an access-to-subprogram type and its
first subtype; the parameter_profile or parameter_and_result_profile defines the
designated profile of the access type. . . .

An object of this type can be assigned an access value obtained by applying the attribute Access
to any subtype-conformant subprogram §3.10.2(32):

type Func_Pointer is access function(L, R: Float) return Boolean;

function Compare(Left, Right: Float) return Boolean is ...

F: Func_Pointer := Compare’Access;
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Access-to-subprogram types can be used to implement downward closures (Section 16.1.5).

12.2.1 Case study: callbacks

The following case study demonstrates the use of access-to-subprogram types to implement
callbacks. This is a programming technique used in event-driven software such as graphical
user interfaces. A subprogram is associated with an object such as a “button,” and when the
button is activated by a mouse click the subprogram is called.

Let us start by declaring two enumeration types, one for buttons and one for mouse clicks:

callb

1 with Ada.Text_IO;

2 procedure CallB is
3 type Buttons is (OK, Apply, Help, Cancel);

4 package Buttons_IO is new Ada.Text_IO.Enumeration_IO(Buttons);

5

6 type Clicks is (Left, Middle, Right);

7 package Clicks_IO is new Ada.Text_IO.Enumeration_IO(Clicks);

Next, the callback procedures are declared. To simplify the program, all the procedures will
just display the button labels and the mouse clicks, so a generic procedure can be used:

8 generic
9 B: in Buttons;

10 procedure Proc(C: in Clicks);

11 procedure Proc(C: in Clicks) is
12 begin
13 Ada.Text_IO.Put("Clicked ");

14 Clicks_IO.Put(C);

15 Ada.Text_IO.Put(" on ");

16 Buttons_IO.Put(B);

17 Ada.Text_IO.New_Line;

18 end Proc;

19

20 procedure Proc_OK is new Proc(OK);

21 procedure Proc_Apply is new Proc(Apply);

22 procedure Proc_Help is new Proc(Help);

23 procedure Proc_Cancel is new Proc(Cancel);

An access-to-subprogram type is now declared. The designated subprogram of a value of this
type can be any procedure with exactly one parameter of type Clicks. A constant array of
pointers to callback procedures is declared and initialized with accesses to the four procedures:
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24 type Callback_Pointer is access procedure(C: in Clicks);

25

26 Callbacks: constant array(Buttons) of Callback_Pointer :=

27 (Proc_OK’Access, Proc_Apply’Access,

28 Proc_Help’Access, Proc_Cancel’Access);

The main program simulates the event-driven software by asking the user for the name of a
button and mouse click, and then calling the appropriate callback procedure:

29 begin
30 loop
31 declare
32 B: Buttons;

33 C: Clicks;

34 use Ada.Text_IO;

35 begin
36 Put("Click mouse: ");

37 Clicks_IO.Get(C);

38 Put("on button: ");

39 Buttons_IO.Get(B);

40 Skip_Line;

41 Callbacks(B)(C);

42 exception
43 when Data_Error => Put_Line("Invalid button pressed");

44 when End_Error => exit;
45 end;
46 end loop;
47 end CallB;

In Callbacks(B)(C), the access-to-subprogram value Callbacks(B) is implicitly dereferenced
before the parameter is passed; to call a parameterless subprogram pointed to by an access
value, explicit dereferencing with all must be used.

12.3 Null exclusions

One of the worst run-time errors is dereferencing a null pointer:

Pointer: Link := Init(...) ; -- Suppose Init returns null

Pointer.Data := 5; -- Where is the value 5 stored???
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The null value may be zero or some other value that does not designate any object. An at-
tempt to store a value using this address can cause the computer to crash. Therefore, Ada
requires that access values be checked for null before they are dereferenced; if the check fails,
Constraint_Error is raised.

Null values are frequently used when building a data structure like a tree, but—just as
frequently—the program is designed so that an access object cannot receive a null value. One
example is a doubly-linked list that uses sentinel nodes which point to themselves to denote the
ends of the list. Consider, also, what happens when an access object is passed as a parameter:

type Queue_Pointer is access all Queue;

procedure Put(I: in Item; Q: in Queue_Pointer);

It should be possible to prove that this procedure would never be called with a null value for
Q. Furthermore, even if this is possible, the queue pointer is not “suddenly” going to become
null; a single check at the point of call should be sufficient.

Access types and subtypes, as well as subtype indications and parameters of access type,
can be given a null exclusion, denoted by the pair of reserved words not null, which specifies
that values of the type or object cannot have the value null. Constraint_Error is raised if this
restriction is violated. Given:

type Queue_Pointer is not null access all Queue;

values of this type cannot have the value null. This forbids:

Q: Queue_Pointer;

because the default value of an access object is null, so an initializing expression must be given,
as for a constant:

The_Queue: aliased Queue;

Q: Queue_Pointer := The_Queue’Access;

Alternatively, the parameter can be given a null exclusion:

type Queue_Pointer is access all Queue;

procedure Put(I: in Item; Q: in not null Queue_Pointer);

In this case:

Q: Queue_Pointer;

is legal, but we have to ensure that Q is given a non-null value before the procedure is called.
Within the procedure, the compiler can omit all checks for null pointers when deferencing the
parameter, although it must ensure, of course, that Q is not assigned the value null. Clearly,
Q := null is an error, but what about Q := Get_Queue? If the function is declared:

function Get_Queue return not null Queue_Pointer;
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all is well. If the null exclusion is not given, the value returned by the function has to be checked
at run time.

Null exclusions should have been used in the previous case studies:

type Label_Pointer is not null access constant String;

for the ragged array case study, and:

type Callback_Pointer is not null access procedure(C: in Clicks);

for the callback case study.
Null exclusions can also be used with generic formal objects §12.4(8.3–8.5) and generic ac-

cess types §12.5.4(4).

Ada 95

Null exclusions are new to Ada 2005.

12.4 Accessibility rules

Consider the following short program:

level

1 with Ada.Text_IO;

2 procedure Level is
3 type Pointer is access all Integer;

4 Global: aliased Integer := 6;

5

6 function F return Pointer is
7 begin
8 return Global’Access;

9 end F;

10

11 P: Pointer := F;

12 begin
13 Ada.Text_IO.Put_Line(Integer’Image(P.all));
14 end Level;

An access to the variable Global ‡4 is returned by the function F ‡8 and used to initialize the
access object P ‡11. The program runs as expected and prints 6.

Consider now the following version of the program:
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level

1 with Ada.Text_IO;

2 procedure Level is
3 type Pointer is access all Integer;

4

5 function F return Pointer is
6 Local: aliased Integer := 7;

7 begin
8 return Local’Access;

9 end F;

10

11 P: Pointer := F;

12 begin
13 Ada.Text_IO.Put_Line(Integer’Image(P.all));
14 end Level;

This program should not be legal: the pointer P is initialized with the access value returned
by the function; it points to the variable Local, but the variable Local no longer exists. Local
variables are allocated on the stack when a subprogram is called and deallocated upon return
from the subprogram. An interrupt handler, for example, could have overwritten the stack
memory between the return from F and the use of the value P.all in the put statement.

An access object whose value points to an address that is no longer a valid designated object
is called a dangling pointer. Assigning a value to the object designated by a dangling pointer
(P.all := 10) can cause a catastrophic failure of the software.

One way of creating a dangling pointer is to deallocate a designated object that is pointed to
by a pool-specific type (Section 5.4.4):

Link1: Link := new Node’(...);

Link2: Link := Link1;

-- Deallocate object designated by Link1 using Ada.Unchecked_Deallocation

The node pointed to by Link1 is deallocated and Link1 set to null, but Link2 retains an ac-
cess to the node which no longer exists. The word unchecked in Ada.Unchecked_Deallocation

emphasizes that this serious error is not checked for.
As shown above, for general access types, dangling pointers can be created by seemingly

innocent constructs such as applying the attribute Access to an object. To prevent such errors,
accessibility rules are used to forbid such constructs.



12.5 Anonymous access types* 225

§3.10.2

3 The accessibility rules, which prevent dangling references, are written in terms of
accessibility levels, which reflect the run-time nesting of masters. As explained in 7.6.1,
a master is the execution of a certain construct, such as a subprogram_body. An
accessibility level is deeper than another if it is more deeply nested at run-time. For
example, an object declared local to a called subprogram has a deeper accessibility
level than an object declared local to the calling subprogram. The accessibility rules
for access types require that the accessibility level of an object designated by an
access value be no deeper than that of the access type. This ensures that the object
will live at least as long as the access type, which in turn ensures that the access
value cannot later designate an object that no longer exists. The attribute
Unchecked_Access may be used to circumvent the accessibility rules.

(Unchecked_Access is defined in §13.10.)
In the second version of the program, the accessibility level of the access type Pointer is one

level deeper than that of the environment task that calls the main program Level. Since the
run-time call to F is nested within Level, the accessibility level of Local, the object designated
by the return value, is one level deeper than that of Pointer, the access type of the value returned
by the function. Therefore, it is illegal apply the attribute Access to the local variable.

The rules for determining the accessibility level of each construct are given in §3.10.2. Viola-
tions of the accessibility rules can generally be determined at compile-time §3.10.2(4). In a few
cases, the check is made at run-time and a violation will cause the exception Program_Error to
be raised §3.10.2(29). Unfortunately, the rules in §3.10.2 are extremely complex. If you receive a
compile-time or run-time error related to accessibility levels, try to move the designated object
to a more global scope, even to the library level, if possible.

12.5 Anonymous access types*

In Section 6.7, we noted that the full type definition corresponding to an incomplete type defi-
nition in the private part of a package can be given in the package body §3.10.1(3). The incom-
plete definition can only be used as the designated type of an access type, because all pointers
to values in a single storage pool have the same representation, so it really doesn’t matter what
they point to.

Given two general access types:

type Pointer1 is access all Integer;

type Pointer2 is access all Integer;

values of either type can be converted to the other one because all pointers are alike and, as
long as the designated types are the same (or have convertible tags), no problems will arise:
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P1: Pointer1 := new Integer’(1);

P2: Pointer2 := Pointer2(P1);

An access value cannot be converted to a pool-specific access type, because we do not know if
it is in the same pool.

The next step is to remove the type declarations altogether and to use anonymous access types,
in which case, no explicit type conversion is required:

P1: access Integer := new Integer’(1);

P2: access Integer := P1;

For example, in the ragged array case study, there is no reason to declare a named access
type; an anonymous access type for the array component would simplify the program:

Labels: constant array(Natural range <>) of
not null access constant String := ( ... );

A similar situation holds for the callback case study:

Callbacks: constant array(Buttons) of
not null access procedure(C: in Clicks) := ( ... );

Anonymous access types can be used in place of incomplete views, for example, in the tree
implementation of a priority queue (Section 5.3):

type Node is
record

Data: Integer;

Left, Right: access Node; -- Instead of Link

end record;

But this raises a new problem: since the type is anonymous, it has no name that can be used as
the subtype mark of a parameter:

procedure Put(I: in Integer; Node_Ptr: in out ????) is ...

The solution is to use access parameters as described in the next section.

Ada 95

The only anonymous types in Ada 95 are access parameters (Section 12.6) and access discrimi-
nants (Section 12.7). The workaround is to use named types and explicit type conversion.

12.6 Access parameters

Access parameters §6.1(24) allow a subprogram to be called with actual parameters of more
than one access type, as well as with parameters of anonymous access types.
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§6.4.1

6 The type of the actual parameter associated with an access parameter shall be
convertible (see 4.6) to its anonymous access type.

The accessibility level is passed along with the access parameter and is dynamically checked.

§3.10.2

13 • The accessibility level of the anonymous access type of an access parameter
specifying an access-to-object type is the same as that of the view designated by the
actual.

Consider:

procedure Main is
I: aliased Integer;

A: access Integer;

procedure Proc1(P: access Integer) is
begin

A := P; -- Accessibility level of P is that of the actual parameter

end Proc1;

begin
Proc1(I’Access);

end Main;

The program will run without error because the accessibility level of I is the same at that of A,
and this level is passed to the procedure Proc1 in the access parameter. However, if Proc1 is
called with an access value to an object at a deeper access level:

procedure Proc2 is
J: aliased Integer;

begin
Proc1(J’Access);

end Proc2;

Constraint_Error will be raised at run-time.
For subprograms, the rule is different:

§3.10.2

13.1 • The accessibility level of the anonymous access type of an access parameter
specifying an access-to-subprogram type is deeper than that of any master; all such
anonymous access types have this same level.
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In the following code:

A: access procedure;

procedure Proc1(AP: access procedure) is
begin

A := AP; -- Accessibility level of AP is always deeper than that of A

end Proc1;

the assignment of the access parameter AP to the variable A is a compile-time error, because
the accessibility level of AP is deeper than any other level, including the level of the actual
parameter, whatever it may be.

Dynamic dispatching can be done on an access parameter §6.1(24). In the following declara-
tions, Proc1 is a primitive subprogram for the tagged type Parent:

type Parent tagged null record;
procedure Proc1(X: access Parent);

It can be overridden when deriving a type:

type Derived is new Parent with null record;
procedure Proc1(X: access Derived);

If the actual parameter is any access to a type in Parent’Class, dispatching will be done. Dis-
patching is not done if named access types are used for the formal parameter.

The software archive contains a version of the event simulation using an access parameter:

procedure Simulate(E: not null access Event) is abstract;

12.6.1 Case study: priority queue with an anonymous access type

The following program implements the tree priority queue of Section 5.3 using anonymous
access types and access parameters.

An anonymous access type is used instead of the named type Link for the node:

pqtaccess

1 procedure PQTAccess is
2 type Node is
3 record
4 Data: Integer;

5 Left, Right: access Node;

6 end record;
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and for the root node of the queue:

7 type Queue is
8 record
9 Root: access Node;

10 end record;

An access parameter is of mode in §6.1(24), so it is a constant §3.3(17) that cannot be used to
return a value. This requires a redesign of the algorithm; instead of using in out parameters
to modify the pointers, the access parameter is passed a pointer to the parent of a node:

11 procedure Put(I: in Integer; Node_Ptr: access Node) is
12 begin
13 if I < Node_Ptr.Data then
14 if Node_Ptr.Left = null then
15 Node_Ptr.Left := new Node’(I, null, null);
16 else
17 Put(I, Node_Ptr.Left);

18 end if;
19 else
20 if Node_Ptr.Right = null then
21 Node_Ptr.Right := new Node’(I, null, null);
22 else
23 Put(I, Node_Ptr.Right);

24 end if;
25 end if;
26 end Put;

27

28 procedure Put(I: in Integer; Q: in out Queue) is
29 begin
30 if Q.Root = null then
31 Q.Root := new Node’(I, null, null);
32 else
33 Put(I, Q.Root);

34 end if;
35 end Put;

The changes to the rest of the program are similar; see the full source code in the software
archive. The archive also contains a version of the event simulation that uses access parameters.
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Ada 95

In Ada 95, the actual parameter corresponding a formal access parameter cannot be null; in
Ada 2005, an explicit null exclusion must be used if a null formal parameter is to be excluded.

12.7 Access discriminants*

Both named and anonymous access types can also be used as discriminants. In Section 19.10,
we will demonstrate the use of access discriminants to pass configuration data to a task or
synchronized object.

12.7.1 Case study: simulation with access discriminant

Access discriminants can be used to implement a self-referential data structure:

Extensions

Time

Left Right

E

-

rocketad

1 package Root_Event is
2 type Event is tagged;
3 type Event_Ptr is access Event;

4

5 type Node;

6 type Link is access all Node;

7 type Node(E: access Event’Class) is
8 record
9 Left, Right: Link;

10 end record;
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The type Node has an access discriminant E, which is an access to Event’Class.
The type Event has a component of type Node and the discriminant of this component is an

access to the same type Event:

11 subtype Simulation_Time is Integer range 0..10_000;

12 type Event is abstract tagged limited
13 record
14 Inner: aliased Node(Event’Access);

15 Time: Simulation_Time;

16 end record;
17 ...

18 end Root_Event;

The name Event in Event’Access refers to the current instance §8.6(17) of the type, not to the
type itself. When an event object is allocated, the discriminant is set to point to the object itself
as shown in the diagram above.

The queue package links the events by linking the contained nodes. Given a pointer to a node,
the enclosing event is accessed by using the discriminant, as shown in the right operand of "<":

19 package body Event_Queue is
20 procedure Put(E: access Event’Class; Node_Ptr: in out Link) is
21 begin
22 if Node_Ptr = null then
23 Node_Ptr := E.Inner’Access;

24 elsif E.all < Node_Ptr.E.all then
25 Put(E, Node_Ptr.Left);

26 else
27 Put(E, Node_Ptr.Right);

28 end if;
29 end Put;

30 ...

Similarly, when a search of the tree returns the smallest node, the discriminant is used to return
the enclosing event Found.E.all:

31 function Get(Q: access Queue) return access Event’Class is
32 Found: Link;

33 begin
34 Get(Q.Root, Found);

35 return Found.E.all;
36 end Get;

37 end Event_Queue;
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Ada 95

In Ada 95, an access discriminant can only be given for a limited type.

12.8 Storage pools*

Allocation of dynamic memory need not be done from a single heap.

§13.11

1 Each access-to-object type has an associated storage pool. The storage allocated by
an allocator comes from the pool; instances of Unchecked_Deallocation return
storage to the pool. Several access types can share the same pool.

A derived access type shares a single storage pool with its parent access type §3.10(7).
For each access type, the attribute Storage_Size §13.11(14) enables you to define the size

of the pool for objects of the designated type. Package System.Storage_Pools §13.11(5–10)
defines an abstract type Root_Storage_Pool that you can override to define your own storage
allocation scheme. The attribute Storage_Pool §13.11(13) can then be used to assign different
storage pools to different types.

12.9 Controlled types*

§7.6

1 Three kinds of actions are fundamental to the manipulation of objects: initialization,
finalization, and assignment. Every object is initialized, either explicitly or by
default, after being created (for example, by an object_declaration or allocator). Every
object is finalized before being destroyed (for example, by leaving a
subprogram_body containing an object_declaration, or by a call to an instance of
Unchecked_Deallocation). An assignment operation is used as part of
assignment_statements, explicit initialization, parameter passing, and other
operations.

In other languages, these actions are performed by constructors, destructors and copy construc-
tors. In Ada, user-defined actions for a type can be defined for controlled types.



12.9 Controlled types* 233

§7.6

2 Default definitions for these three fundamental operations are provided by the
language, but a controlled type gives the user additional control over parts of these
operations. In particular, the user can define, for a controlled type, an Initialize
procedure which is invoked immediately after the normal default initialization of a
controlled object, a Finalize procedure which is invoked immediately before
finalization of any of the components of a controlled object, and an Adjust procedure
which is invoked as the last step of an assignment to a (nonlimited) controlled object.

These operations are primitive operations of the abstract tagged type Controlled defined in
package Ada.Finalization §7.6(4–8). You can derive from this type and override one or more
of these operations. There is also a type Limited_Controlled without the Adjust operation,
since limited types cannot be assigned.

12.9.1 Case study: priority queue with controlled type

The following version of the priority queue package demonstrates the use of controlled types.
Type Node is derived from Controlled:

pqtct

1 with Ada.Finalization;

2 package Priority_Queue is
3 type Node is new Ada.Finalization.Controlled with private;
4 function Create(I: Integer) return Node;

5 function Value(N: Node) return Integer;

6

7 type Queue(Size: Positive) is limited private;
8 ...

9 private
10 type Link is access Node;

11 type Node is new Ada.Finalization.Controlled with
12 record ... end record;
13 procedure Initialize(Object: in out Node);

14 procedure Adjust(Object: in out Node);

15 procedure Finalize(Object: in out Node);

16

17 type Queue(Size: Positive) is ...

18 end Priority_Queue;
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Procedures to create a node from an integer value and return the value from a node are defined;
these will simplify the explanations below:

19 with Ada.Text_IO; use Ada.Text_IO;

20 with Ada.Unchecked_Deallocation;

21 package body Priority_Queue is
22 function Create(I: Integer) return Node is
23 begin
24 return (Ada.Finalization.Controlled with I, null, null);
25 end Create;

26

27 function Value(N: Node) return Integer is
28 begin
29 return N.Data;

30 end Value;

Since Controlled is abstract §7.6(5), an extension aggregate with a subtype mark for the ancestor
part §4.3.2(3) must be used to create a value of type Node.

The three procedures Initialize, Adjust and Finalize are overridden to print messages
so that we can trace the execution:

31 procedure Initialize(Object: in out Node) is
32 begin
33 Put_Line("Initialize " & Integer’Image(Object.Data));

34 end Initialize;

35

36 procedure Adjust(Object: in out Node) is
37 begin
38 Put_Line("Adjust " & Integer’Image(Object.Data));

39 end Adjust;

40

41 procedure Finalize(Object: in out Node) is
42 begin
43 Put_Line("Finalize " & Integer’Image(Object.Data));

44 end Finalize;

The rest of the package body can be found in the software archive.
The main subprogram inserts elements in the queue and then retrieves them:
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45 with Priority_Queue;

46 with Ada.Text_IO; use Ada.Text_IO;

47 procedure PQTCT is
48 Q: Priority_Queue.Queue(10);

49 Test_Data: array(Positive range <>) of Integer := (10, 5, 25, 15);

50 begin
51 for I in Test_Data’Range loop
52 Put_Line("Put " & Integer’Image(Test_Data(I)));

53 Priority_Queue.Put(Priority_Queue.Create(Test_Data(I)), Q);

54 end loop;
55

56 declare
57 N: Priority_Queue.Node;

58 begin
59 while not Priority_Queue.Empty(Q) loop
60 Priority_Queue.Get(N, Q);

61 Put_Line("Get " & Integer’Image(Priority_Queue.Value(N)));

62 end loop;
63 end;
64 end PQTCT;

Each call to Put shows that Adjust is called once and Finalize twice:

Put 10

Adjust 10

Finalize 10

Finalize 10

Initialize is not called because the allocator is explicitly initialized with an aggregate §7.6(10).
However, the value returned by Create is used as an actual parameter when Put is called; this
is an assignment operation so Adjust is called §7.6(13–15). Finalize is called twice: once when
the aggregate object is finalized and once when the formal parameter is finalized.

When N is declared, Initialize is called:

Initialize 0

Then, for each call to Get, the following messages are printed:

Finalize 0

Adjust 5

Finalize 5

Get 5
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Finalize is called to finalize the “old” value of N. Then the assignment to the out parameter of
Get is made and Adjust is called. Unchecked_Deallocation is used to deallocate the node and
Finalize is called when this happens.

12.10 Mutually dependent types*

The tree implementation of a priority queue (Section 5.3) uses the mutually dependent types
Node and Link, where an incomplete view of the type Node is declared §3.10.1. The rule that
makes this possible is that the completion must be declared in the same package §3.10.1(3).

Suppose, however, that two mutually dependent types represent different abstractions that
should appear in two separate packages. This is possible using limited_with_clauses that enable
one package to obtain a limited view of another §10.1.2(4.1,17).

§10.1.1

12.1 . . . The limited view of a package contains:
12.3 For each type_declaration in the visible part, an incomplete view of the type; if the

type_declaration is tagged, then the view is a tagged incomplete view.

12.10.1 Case study: automata

Mutually dependent types will be demonstrated using a case study for implementing nonde-
terminisitic finite automata (NDFA). Here is a very simple NDFA:

q0

q2

q1

q3
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The automaton is nondeterministic because in states q0 and q1, if the next input symbol is a,
there are two choices for the transition to the next state.

An NDFA is defined by sets of states and transitions:

States:

q0 (initial), q1, q2, q3 (final)

Transitions:

(q0, a, q1) (q0, a, q2) (q1, a, q1), (q1, a, q2) (q1, b, q3) (q2, b, q3)
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Fig. 12.1 Mutually references between data structures

Clearly, a transition is defined in terms of states (source and target). An efficient implemen-
tation will want to maintain a data structure that holds the set of outgoing transitions from each
state (Figure 12.1). Therefore, states are defined in terms of transitions and the types are mu-
tually dependent. Let us assume that associated with each state and transition are additional
data, so that we wish to encapsulate the states and transitions in separate packages.

First, we define a state as a record containing the name, indications of whether it is a start or
final state, and a set of pointers to the outgoing transitions from this state:

ndfa

1 limited with Transitions;

2 package States is
3 subtype State_Name is String (1 .. 3);

4 type Transition_Set is array(0..10) of access Transitions.Transition;

5 type State is
6 record
7 Name: State_Name;

8 Is_Start: Boolean := False;

9 Is_Final: Boolean := False;

10 Num_Outgoing: Natural := 0;

11 Outgoing: Transition_Set;

12 end record;
13 end States;
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A limited_with_clause is used to obtain a partial view of the type Transition and this partial
view is sufficent to declare an access to the type.

The components of the type Transition are the symbol labeling the transition and the point-
ers to the source and target states:

14 limited with States;

15 package Transitions is
16 type Transition is
17 record
18 From: access States.State;

19 Symbol: Character;

20 To: access States.State;

21 end record;
22 end Transitions;

Here, too, a limited_with_clause is used.
An NDFA is declared as a limited type because there is no reason to copy values of the type;

it is a private type because operations on the type will be implemented in child packages:

23 with States; with Transitions;

24 package NDFAs is
25 type NDFA is limited private;

The first two procedures insert states and transitions into the data structure, while the third
uses the transitions to set the Outgoing component in a state:

26 procedure Insert_State

27 (A: access NDFA; N: in States.State_Name; S, F: in Boolean);

28 procedure Insert_Transition

29 (A: access NDFA; F : in Integer; S: in Character; T: in Integer);

30 procedure Generate_Transitions_At_States(A: access NDFA);

The type NDFA is completed by a record containing arrays of states and transitions:

31 private
32 type State_Array is array(0..20) of aliased States.State;

33 type Transition_Array is array(0..50) of aliased Transitions.Transition;

34 type NDFA is
35 record
36 Num_States: Natural := 0;

37 States: State_Array;

38 Num_Transitions: Natural := 0;

39 Transitions: aliased Transition_Array;

40 end record;
41 end NDFAs;
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Procedure Insert_State and Insert_Transition are straightforward, except that the com-
ponent Outgoing of a state is initialized with an array of null; the correct value of the compo-
nent will be computed later:

42 package body NDFAs is
43 procedure Insert_State

44 (A: access NDFA; N: in States.State_Name; S, F: in Boolean) is
45 begin
46 A.States (A.Num_States) := (N, S, F, 0, (others => null));
47 A.Num_States := A.Num_States + 1;

48 end Insert_State;

49

50 procedure Insert_Transition

51 (A: access NDFA; F: in Integer; S: in Character; T: in Integer) is
52 begin
53 A.Transitions (A.Num_Transitions) :=

54 (A.States (F)’Access, S, A.States(T)’Access);

55 A.Num_Transitions := A.Num_Transitions + 1;

56 end Insert_Transition;

Procedure Generate_Transitions is called for each state to compute the value of the compo-
nent Outgoing. Each transition is examined to see if its source state is equal to this state; if so, a
pointer is added to Outgoing:

57 procedure Generate_Transitions

58 (N: access States.State; T: access Transition_Array) is
59 begin
60 for I in T’Range loop
61 if (T(I).From = N) then
62 N.Outgoing(N.Num_Outgoing) := T(I)’Access;

63 N.Num_Outgoing := N.Num_Outgoing + 1;

64 end if;
65 end loop;
66 end Generate_Transitions;

67

68 procedure Generate_Transitions_At_States(A: access NDFA) is
69 begin
70 for I in 0 .. A.Num_States - 1 loop
71 Generate_Transitions(A.States (I)’Access, A.Transitions’Access);

72 end loop;
73 end Generate_Transitions_At_States;

74 end NDFAs;
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A subprogram to run the NDFA is given in a child package so that its body can have access
to the private part of the package NDFAs:

75 package NDFAs.Run_NDFA is
76 procedure Run(A : access NDFAs.NDFA; Input : in String);

77 end NDFAs.Run_NDFA;

The rest of the source code for this case study is in the software archive.

Ada 95

limited_with_clauses do not exist in Ada 95. To implement the NDFA program, the two mutu-
ally dependent types must be declared in the same package:

ndfa95

1 package States_Transitions is
2 type Transition;

3 type Transition_Ptr is access all Transition;

4

5 type State is record ... end record;
6 type State_Ptr is access all State;

7

8 type Transition is record ... end record;
9 end States_Transitions;

Since there are no anonymous access types, named access types must be used.
The source code of this version is given in the software archive.

Projects

1. Combine the ragged-array and callbacks case studies so that each button has a string of
arbitrary length as its name.

2. Extend the above project to support multiple languages for the buttons that can be changed
at run-time.

3. Implement callbacks using a tagged type and dispatching.
4. Write a program to implement addition and multiplication of polynomials represented as

linked lists. Be sure to simplify a polynomial before storing it; for example, (x3 + x + 1) +
(x3 − x + 1) = (2x3 + 2), not (2x3 + 0x + 2).

5. Declare the polynomials as controlled types where simplification is performed as part of the
Adjust operation.

6. Write a program for simulating a nondeterministic Turing Machine.
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Quizzes

Quiz 1:

N1: Integer := 5;

type Pointer is access Integer;

N2: Pointer := new Integer’(5);

procedure Proc(K: out Integer; P: out Pointer) is
begin

Put_Line(Integer’Image(K));

Put_Line(Integer’Image(P.all));
end Proc;

Proc(N1, N2);

Quiz 2:

package P is
type Pointer is access all Integer;

end P;

with P;

procedure Main is
N: aliased Integer;

Q: P.Pointer := N’Access;

begin
null;

end Main;
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Quiz 3:

package P is
type Parent is tagged null record;
type Parent_Pointer is access all Parent;

procedure Proc1(X: Parent_Pointer);

procedure Proc2(X: access Parent);

type Derived is new Parent with null record;
D: aliased Derived;

end P;

with P; use P;

procedure Main is
begin

Proc1(D’Access);

Proc2(D’Access);

end Main;

Quiz 4:

type String_Pointer is access String;

S: String_Pointer := new String’("Hello world");

type Integer_Pointer is access Integer;

I: Integer_Pointer := new Integer’(10);

Put_Line(S(1..5));

Put(I);

Quiz 5:

type Int_Pointer is access all Integer;

N: aliased Integer;

function Func return Int_Pointer is
begin

return N’Access;

end Func;

Func.all := 5;

Put(N);
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Quiz 6:

package P is
protected type PT is

entry E(X: access Integer);

end PT;

task type T is
entry E(X: access Integer);

end T;

end P;

Quiz 7:

package P is
type Rec(D: access Integer) is limited null record;
type Pointer is access Rec;

end P;

with P; use P;

procedure Main is
N: aliased Integer;

R: Pointer := new Rec(N’Access);

begin
null;

end Main;

Quiz 8:

type AV is access Integer;

type AC is access constant Integer;

P: AV := new Integer’(1);

C: AC := new Integer’(2);

C := AC(P);

P := AV(C);
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Numeric Types

There are three approaches to defining the precision of numeric types:

• In C, the precision is not part of the type; for example, the type int might be implemented
with 16 bits on one computer and 64 bits on another. Programs in C are, therefore, not
portable, although clever use of macros can work around this problem.

• Java specifies the precision of each type. Values of type int are required to be 32-bit signed
integers, so Java programs are portable. However, this may result in reduced performance,
because a choice of precision might not be optimal for a particular computer. For example, if
the values of a variable are bounded by 10, 000, type int will be optimal for a 32-bit machine,
while short will be optimal for a 16-bit controller. The program will be portable regardless
of which type you choose, but the performance on one machine can be suboptimal.

• In Ada, you can declare the required precision of a numeric type. When the program is com-
piled, the implementation will choose a representation that is appropriate for the machine.
For example, a type declared as an integer type with a range of 1 to 100, 000 will be repre-
sented as a double word on a 16-bit machine and as a single word on a 32-bit machine. To
port the program to another machine requires only recompilation.

Ada supports the definition of both integer and real types with a specified precision. Both
floating point and fixed point real types are supported. Fixed point types are not found in
most programming languages, but they are useful in applications where absolute, rather than
relative, precision is required.

13.1 Basic concepts

13.1.1 Universal types

The numeric types in Ada form derivation hierarchies, similar to classes of tagged types (Fig-
ure 13.1). The classes are called universal types §3.4.1(6–7) and the specific types at the roots of

245
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Fig. 13.1 Numeric types: universal and root types

the derivation trees are called root types §3.4.1(8). These types are conceptual; you cannot ex-
plicitly declare an object or parameter to be of type root_integer or universal_integer. The specific
types Integer and Float are predefined, and an implementation can predefine other types
such as Short_Integer and Long_Integer. You can declare new integer, float point, ordinary
fixed point and decimal fixed point types as indicated by the dashed boxes in the Figure.

§3.4.1

6 Universal types are defined for (and belong to) the integer, real, fixed point, and
access classes, and are referred to in this standard as respectively, universal_integer,
universal_real, universal_fixed, and universal_access. These are analogous to class-wide
types for these language-defined elementary classes. As with class-wide types, if a
formal parameter is of a universal type, then an actual parameter of any type in the
corresponding class is acceptable. In addition, a value of a universal type (including
an integer or real numeric_literal, or the literal null) is “universal” in that it is
acceptable where some particular type in the class is expected (see 8.6).
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§4.2

8 An integer literal is of type universal_integer. A real literal is of type universal_real.
The literal null is of type universal_access.

The expression N+27 is legal for N of any integer type, because the literal 27 of type univer-
sal_integer is converted in its context as an operand of the operator to the type of N. Note that
some attributes have parameters of universal type; for example, Pos returns a value of type
universal_integer and Val takes a parameter of type universal_integer §3.5.5. Character’Pos(C)
for a variable C is an example of an expression that is of universal type but not static.

13.1.2 Type conversion

Ada does not usually allow implicit conversion between numeric types. Not only would this
defeat type checking, but the rules for implicit type conversion can be complex, especially in
the presence of overloading. For example, given that N is of type Integer, is Put(N) a call
to the procedure Put with a parameter of type Integer, or is it an implicit conversion of N to
Long_Integer, followed by a call to the procedure Put with a parameter of type Long_Integer?

Explicit conversion between two numeric types is always allowed.

§4.6

2 type_conversion ::=
subtype_mark(expression)
| subtype_mark(name)

3 The target subtype of a type_conversion is the subtype denoted by the subtype_mark.
The operand of a type_conversion is the expression or name within the parentheses; its
type is the operand type.

24.1 • If the target type is a numeric type, then the operand type shall be a numeric type.

Type conversion is not restricted to conversion within a universal class, as the analogy with
derivation classes of tagged types would imply. It is perfectly legal to convert an integer type
to a real type, and conversely.

13.1.3 Named numbers

Constants of universal numeric types are called named numbers:
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§3.3.2

1 A number_declaration declares a named number.

2 number_declaration ::=
defining_identifier_list : constant := static_expression;

5 The named number denotes a value of type universal_integer if the type of the
static_expression is an integer type. The named number denotes a value of type
universal_real if the type of the static_expression is a real type.

The following declaration appears in Ada.Numerics §A.5(3):

Pi: constant :=

3.14159_26535_89793_23846_26433_83279_50288_41971_69399_37511;

The value of a named number need not be a literal and can be any static expression:

Two_Pi: constant := 2.0 * Ada.Numerics.Pi;

Be careful not to confuse named numbers with constant objects:

Two_Pi: constant := 2.0 * Ada.Numerics.Pi;

Float_Two_Pi: constant Float := 2.0 * Ada.Numerics.Pi;

Two_Pi is of type universal_real and will be implicitly converted to a specific type in each con-
text in which it appears. Float_Two_Pi is a constant object of type Float. Its initial value
2.0*Ada.Numerics.Pi of type root_real is converted to type Float—losing precision—when
the object is elaborated:

L1: Long_Float := Two_Pi; -- Maximal precision

L2: Long_Float := Long_Float(Float_Two_Pi); -- Lower precision

Language Comparison

In C and Java, a numeric literal has a type. By default, an integer literal is of
type int and a floating point literal is of type double. The notations 28L and
2.8F are used for literals of type long int and float, respectively. Ada uses
the context where a literal appears to convert a literal of a universal type to a
value of a specific type. If, for example, the type of a variable is changed, all the
assignments of literals to the variable are automatically changed.

13.2 Signed integer types

Signed integer types are familiar from all programming languages. An implementation must
support at least one predefined (sub)type called Integer.
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§3.5.4

3 signed_integer_type_definition ::=
range static_simple_expression .. static_simple_expression

9 A signed_integer_type_definition defines an integer type whose base range includes
at least the values of the simple_expressions and is symmetric about zero, excepting
possibly an extra negative value. A signed_integer_type_definition also defines a
constrained first subtype of the type, with a range whose bounds are given by the
values of the simple_expressions, converted to the type being defined.

11 There is a predefined signed integer subtype named Integer, declared in the visible
part of package Standard. It is constrained to the base range of its type.

12 Integer has two predefined subtypes, declared in the visible part of package
Standard:

13 subtype Natural is Integer range 0 .. Integer’Last;

subtype Positive is Integer range 1 .. Integer’Last;

Base range is discussed in Section 13.11 and can be ignored for now.
Given the following type and variable declarations:

type Altitude is range 0 .. 100_000;

A: Altitude;

the compiler can allocate a single word for A on a 32-bit machine and a double word on a 16-bit
machine. There is no need to modify the source code when porting the program.

The range of predefined Integer and its subtypes Natural and Positive is implementa-
tion-defined, and programs using them are not strictly portable. It is reasonable to use Integer
for array indices because their ranges almost invariably fall within the minimum range (16-
bits) of Integer §3.5.4(21), but for integer computation you should define your own types.
An implementation is permitted §3.5.4(25) to provide additional predefined integer types with
names like Long_Integer, Short_Integer and Long_Long_Integer, though they need not be
implemented with different precisions. Needless to say, such types are not portable.

13.3 Types versus subtypes

Recall that types are checked at compile-time, while subtypes are checked at run-time. The vari-
able A of type Altitude defined above cannot be assigned to a variable I of type Integer be-
cause the types are different. The type conversions I := Integer(A) and A := Altitude(I)

are, of course, legal, because they are conversions between numeric types (Section 13.1.2).
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Computation (expressions, assignment, parameters) involving different subtypes is always
legal at compile type, although Constraint_Error may be raised at run-time. Consider the
following declarations:

type Altitude is range 0 .. 100_000;

subtype Low_Altitude is
Altitude range Altitude’First .. 35_000;

subtype High_Altitude is
Altitude range Low_Altitude’Last+1 .. Altitude’Last;

Num: Integer := 1_000;

Low: Low_Altitude := 1_000;

High: High_Altitude := 50_000;

In the assignment statement:

High := High_Altitude(Num + Integer(Low));

the exception Constraint_Error will be raised when trying to convert 2000 of type Integer

(the result of the addition) to the subtype High_Altitude, while in the following statement:

High := Altitude(Num + Integer(Low));

the type conversion to Altitude will succeed but the assignment will raise the exception.

13.4 Modular types

When an arithmetic operation on an integer type produces a value outside the range of the
type, Constraint_Error will result when assigning the value to a variable of the type (see
Section 13.11.3):

type Integer_Byte is range 0..255;

B: Integer_Byte := 255;

B := B + 1; -- Raises Constraint_Error

Computation on modular types is performed with “wrap-around” semantics:

type Byte is mod 2**8;

B1: Byte := 255;

B2: Byte := 200;

B1 := B1 + 1; -- B1 is now 0

B2 := B2 + 100; -- B2 is now 44
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§3.5.4

1 . . . A modular type is an integer type with all arithmetic modulo a specified positive
modulus; such a type corresponds to an unsigned type with wrap-around semantics.

4 modular_type_definition ::= mod static_expression

10 A modular_type_definition defines a modular type whose base range is from zero to
one less than the given modulus. . . .

19 For a modular type, if the result of the execution of a predefined operator (see 4.5) is
outside the base range of the type, the result is reduced modulo the modulus of the
type to a value that is within the base range of the type.

The modulus need not be a power of two; a prime modulus can be used as the index of an
array implementing a hash table.

Constraint_Error will never be raised when computing with a modular type, though it
may be raised if you try to convert another type to the modular type.

The logical operators and, or, xor and not can be used on modular types §4.5.1(2); they
perform bit-wise boolean operations.

13.4.1 Case study: checksum

The following program computes the checksum of an array of bytes. The type Byte is declared
as a modular type with a range from 0 to 255:

check

1 with Ada.Text_IO; use Ada.Text_IO;

2 procedure Check is
3 type Byte is mod 2**8;

4

5 type Byte_Array is array(Natural range <>) of Byte;

6 for Byte_Array’Component_Size use 8;

7 pragma Pack(Byte_Array);

Line ‡5 is an attribute definition clause §13.3(68–70) that directs the implementation to choose a
size of 8 bits for components of the array Byte_Array. pragma Pack requests the compiler to
pack the bytes of the array into words.

Function Checksum computes the modular sum of the components of the array and returns
the result:
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8 function Checksum(A: Byte_Array) return Byte is
9 C: Byte := 0;

10 begin
11 for I in A’Range loop
12 C := C + A(I);

13 end loop;
14 return C;

15 end Checksum;

Check that the following call prints the value 160:

16 Message: Byte_Array := (134, 56, 121, 38, 206, 117);

17 begin
18 Put_Line(Byte’Image(Checksum(Message)));

19 end Check;

13.4.2 Mixed signed and modular computation

Sometimes there is a need to mix computation of signed integers and modular integers. For
example, suppose that we have an array of 8-bit signed integers (range −128..127), and we
want to consider them as unsigned bytes for computing a checksum:

check-signed

1 type Short is range -(2**7)..2**7-1;

2

3 type Short_Array is array(Natural range <>) of Short;

4 for Short_Array’Component_Size use 8;

5 pragma Pack(Short_Array);

To compute the checksum we have to convert each signed value to the modular value repre-
sented by the same sequence of bits; this is done using the attribute S’Mod §3.5.4(16.1–16.3):

6 function Checksum(A: Short_Array) return Byte is
7 C: Byte := 0;

8 begin
9 for I in A’Range loop

10 C := C + Byte’Mod(A(I));

11 end loop;
12 return C;

13 end Checksum;
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Ada 95

The attribute S’Mod is not available in Ada 95, so Ada.Unchecked_Conversion must be used.

13.5 Real types

Ada uses the term real types to including both floating point and fixed point types.

§3.5.6

1 Real types provide approximations to the real numbers, with relative bounds on
errors for floating point types, and with absolute bounds for fixed point types.

2 real_type_definition ::=
floating_point_definition | fixed_point_definition

3 A type defined by a real_type_definition is implicitly derived from root_real, an
anonymous predefined (specific) real type. Hence, all real types, whether floating
point or fixed point, are in the derivation class rooted at root_real.

4 Real literals are all of the type universal_real, the universal type (see 3.4.1) for the
class rooted at root_real, allowing their use with the operations of any real type.
Certain multiplying operators have a result type of universal_fixed (see 4.5.5), the
universal type for the class of fixed point types, allowing the result of the
multiplication or division to be used where any specific fixed point type is expected.

The conceptual difference between floating point and fixed point types is whether the error
bound is relative or absolute.

§3.5.7

1 For floating point types, the error bound is specified as a relative precision by giving
the required minimum number of significant decimal digits.

§3.5.9

1 A fixed point type is either an ordinary fixed point type, or a decimal fixed point
type. The error bound of a fixed point type is specified as an absolute value, called
the delta of the fixed point type.

Suppose that the precision of a floating point type is six digits. An error of 1 in the least
significant digit of 0.123456× 1012 is an absolute error of 1, 000, 000, while the same error in
0.123456× 107 is an absolute error of only 10. Though the absolute error varies widely, in both
cases the error is a constant relative error of 0.0008%.
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Consider now a six-digit fixed point type with a delta of 0.01 and a range of 0.00 to 9999.99.
An error of one in the least significant digit causes an absolute error of 0.01, which is indepen-
dent of the value of the number. The drawback of fixed point types is that the range of values
for a given number of bits is limited.

Floating point types are usually used in scientific computation, where we may want to com-
pute the thrust of a rocket to a relative accuracy of, say, 0.01%. Fixed point types are used in
financial calculations, where the absolute error must be limited to 0.01 or 0.0001 of the currency
unit. The range limitation is usually not a problem in financial applications.

Fixed point types are further divided into ordinary fixed point types whose delta is usually
a power of two, and decimal fixed point types whose delta is a power of ten. The former are
used for hardware interfacing and the latter for financial calculations. Fixed point types are
also used for measuring time in Ada (Section 19.3).

13.6 Floating point types

§3.5.7

2 floating_point_definition ::=
digits static_expression [real_range_specification]

3 real_range_specification ::=
range static_simple_expression .. static_simple_expression

12 There is a predefined, unconstrained, floating point subtype named Float, declared
in the visible part of package Standard.

A floating point type declaration declares a new type that is represented in the machine with
at least the precision requested. The type is explicitly convertible to all other numeric types,
including integer types. There is one predefined (sub)type Float, though the implementation
may define others such as Long_Float. For serious computational tasks, you should avoid the
non-portable predefined types and define your own.

13.6.1 Case study: Euler’s method

The following program computes a solution to an elementary differential equation using Eu-
ler’s method. It solves an equation:

dy
dx

= f (y)
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by dividing the range into steps, and then starting from an initial value, computing each suc-
cessive point by extending the tangent of the previous one. The example used is dy/dx = y on
the interval 0.0 to 1.0; given an initial condition of 1.0, the answer is y = ex.

The procedure Euler is generic in the floating point type, an array type for returning the
results, and an access type for passing the function:

diff

1 generic
2 type Float_Type is digits <>;

3 type Vector is array(Integer range <>) of Float_Type;

4 type Function_Ptr is access function (X: Float_Type) return Float_Type;

5 procedure Euler(

6 F: in Function_Ptr; Init, H: in Float_Type; Result: out Vector);

The computation in the body of the generic procedure uses attributes to get the indices of
formal parameter Result. F is implicitly dereferenced when it is called with a parameter ‡12:

7 procedure Euler(

8 F: in Function_Ptr; Init, H: in Float_Type; Result: out Vector) is
9 begin

10 Result(Result’First) := Init;

11 for N in Result’First+1..Result’Last loop
12 Result(N) := Result(N-1) + H * F(Result(N-1));

13 end loop;
14 end Euler;

The procedure is tested with a 6-digit floating point type Real, for which we also instantiate
the package Float_IO:

15 with Ada.Text_IO; with Euler;

16 procedure Diff is
17 type Real is digits 6;

18 package Real_IO is new Ada.Text_IO.Float_IO(Real);

19 use Real_IO;

After declaring appropriate types for the array and the function access, the generic procedure
is instantiated:

20 type Vector is array(Integer range <>) of Real;

21 type Ptr is access function (X: Real) return Real;

22

23 procedure Solve is new Euler(Real, Vector, Ptr);

The function Ident is the function that will be passed to the procedure Solve:
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24 function Ident(X: Real) return Real is
25 begin
26 return X;

27 end Ident;

Check that it matches the profile of the access type.
Solve is called with an access to the function; the results will be returned in the array Answer:

28 Answer: Vector(1..21);

29 begin
30 Solve(Ident’Access, 1.0, 0.05, Answer);

31 for N in Answer’Range loop
32 Put(0.05 * Real(N-1), Exp => 0);

33 Put(Answer(N), Exp => 0);

34 Ada.Text_IO.New_Line;

35 end loop;
36 end Diff;

13.6.2 Numerical libraries

Generic units with formal parameters of floating point type can be used to create numerical
libraries. A library can be instantiated with types of different precisions, and the different in-
stantiations used within the same program.

Elementary functions such as the trigonometric functions are predefined in the generic pack-
age Ada.Numerics.Generic_Elementary_Functions §A.5.1, which can be instantiated with
any floating point type. Ada.Numerics.Elementary_Functions is a predefined instantiation
for Float.

A package generating random numbers of type Float is defined in §A.5.2. There is also a
generic package for random numbers that can be instantiated with a discrete type; we used this
package in the rocket simulation. An unusual feature of these packages is the ability to save
and reset the state of a random number generator §A.5.2(35–56).

Annex §G Numerics has three sections:

• §G.1 Complex Arithmetic defines packages for complex numbers, including elementary
functions and input–output.

• §G.2 Numeric Performance Requirements gives a detailed model of computation with real
types. The Annex is briefly discussed in Section 13.11.

• §G.3 Vector and Matrix Manipulation describes two generic packages:

– §G.3.1 Ada.Numerics.Generic_Real_Arrays;
– §G.3.2 Ada.Numerics.Generic_Complex_Arrays.
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As well as the appropriate declarations of types and elementary objects, these packages in-
clude the basic operations of linear algebra, such as solving and inverting matrices, and
computing determinants and eigenvalues.

13.7 Ordinary fixed point types

§3.5.9

3 ordinary_fixed_point_definition ::=
delta static_expression real_range_specification

8 The set of values of a fixed point type comprise the integral multiples of a number
called the small of the type. . . . For a type defined by an
ordinary_fixed_point_definition (an ordinary fixed point type), the small may be
specified by an attribute_definition_clause (see 13.3); if so specified, it shall be no
greater than the delta of the type. If not specified, the small of an ordinary fixed point
type is an implementation-defined power of two less than or equal to the delta.

The small of an ordinary fixed point type is normally a power of two, so that values of the
type can be exactly represented in binary. Ordinary fixed point types are extremely useful for
programming embedded systems for two reasons: (a) computers for embedded systems may
not have floating point hardware, and (b) external peripherals transfer binary numbers that
represent physical quantities.

13.7.1 Case study: conversion to fixed point

The following program shows how a 16-bit word received from a sensor can be converted to
an ordinary fixed point value:

temp

1 with Interfaces; with Ada.Unchecked_Conversion;

2 with Ada.Text_IO; use Ada.Text_IO;

3 procedure Temp is
4 Sensor: Interfaces.Integer_16 := 2#0001_0001_0001_1100#;

Let us assume that the least significant bit represents 1/16 of a degree of temperature; then the
value that initializes the variable Sensor represents:

256 + 16 + 1 + 1/2 + 1/4 = 273.75.
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A fixed point type Temperature is declared, followed by representation attributes that request
that 16 bits should be used for objects of the type and that specify that the least significant
(binary) digit represents 1/16:

5 type Temperatures is delta 2.0**(-4) range -2048.0..2047.0;

6 for Temperatures’Size use 16;

7 for Temperatures’Small use 2.0**(-4);

Ada.Unchecked_Conversion is used to convert between the two representations:

8 function To_Temp is new Ada.Unchecked_Conversion(

9 Source => Interfaces.Integer_16, Target => Temperatures);

and the result of the conversion is printed:

10 begin
11 Put_Line(Temperatures’Image(To_Temp(Sensor)));

12 end Temp;

The definition of the multiplication and division operators for fixed point operations is dis-
cussed below in Section 13.9 in the context of decimal fixed point types, but the principles are
the same for ordinary fixed point types.

13.8 Decimal fixed point types*

§3.5.9

4 decimal_fixed_point_definition ::=
delta static_expression digits static_expression [real_range_specification]

8 The set of values of a fixed point type comprise the integral multiples of a number
called the small of the type. . . .

9 For a decimal fixed point type, the small equals the delta; the delta shall be a power of
10. . . .

The values of the following type are in the range ±9,999,999,999.99:

type Money is delta 0.01 digits 12;

Multiplication and division are problematical for fixed point types. Suppose that M1 and M2

are two variables of type Money that both contain the value 0.25. What is the type of M1*M2 which
equals 0.0625? This answer is that the type must be given by the context; the rules are given
in §4.5.5 and will be demonstrated in the case study in the next subsection. If the expression
M1*M2 were assigned to a variable of type Money, the value will be truncated to 0.06 §4.5.5(21).
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Historically, there has been a large gap between the world of scientific and systems pro-
gramming, and business programming. Of course, most of the requirements for a language for
business programming are not different from those of other fields: reliability, efficiency, sys-
tem interfaces and support for software engineering. The primary extension needed is in the
area of decimal types. The decimal fixed point types in Ada provide this basic functionality,
though an implementation need not support such types §3.5.9(21). Implementations conform-
ing to Annex §F Information Systems are required to implement decimal fixed point types, as
well as several packages: (a) Ada.Decimal, which contains named numbers specifying prop-
erties of the decimal types and a generic procedure for arbitrary decimal fixed point division;
(b) Ada.Text_IO.Editing for formatted input–output, together with versions for wider strings
and characters: Ada.Wide_Text_IO.Editing and Ada.Wide_Wide_Text_IO.Editing.

13.8.1 Case study: currency conversion

The program in this case study reads a currency and an amount, and writes the equivalent
value in six other currencies (US Dollar, British Pound, Euro, Japanese Yen, Swiss Franc, Indian
Rupee, Chinese Yuan Renminbi). Currencies is an enumeration type that declares the standard
three-letter codes. Ada.Text_IO.Enumeration_IO §A.10.10 is instantiated to facilitate input–
output of these codes:

convert

1 with Ada.Strings.Bounded;

2 with Ada.Characters.Latin_1;

3 with Ada.Text_IO.Editing;

4 use Ada.Text_IO;

5 procedure Convert is
6 type Currencies is (USD, GBP, EUR, JPY, CHF, INR, CNY);

7

8 package Currency_IO is new Enumeration_IO(Currencies);

Currencies have a sign, such as the dollar sign $, that is used when displaying monetary
amounts. Signs is an array of bounded strings for display of the currency symbols:

9 package Sign_Strings is
10 new Ada.Strings.Bounded.Generic_Bounded_Length(10);

11 use Sign_Strings;

Package Ada.Characters.Latin_1 §A.3.3 contains the names of the characters for the Dollar,
the Pound and the Yen:
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12 Signs: constant array(Currencies) of Bounded_String := (

13 To_Bounded_String((1=>Ada.Characters.Latin_1.Dollar_Sign)),

14 To_Bounded_String((1=>Ada.Characters.Latin_1.Pound_Sign)),

15 To_Bounded_String("Euro"),

16 To_Bounded_String((1=>Ada.Characters.Latin_1.Yen_Sign)),

17 To_Bounded_String("SF"),

18 To_Bounded_String("Rupee"),

19 To_Bounded_String("Yuan"));

The signs for the Euro, Rupee and Yuan are not within the type Character; to display them
you will have to use type Wide_Character as described in Section 11.2.

Amounts of money are stored in variables of type Money, and Ada.Text_IO.Decimal_IO

§A.10.9 is instantiated to read and write these values:

20 type Money is delta 0.01 digits 12;

21 package Money_IO is new Decimal_IO(Money);

A separate decimal fixed point type is used for the conversion rates, since they need to be
represented with greater precision than amounts of money. Fortunately, the range of values
is not very large. The rates in the table were obtained from a website and are certainly not
up-to-date by the time you read this:

22 type Rates is delta 0.00000001 digits 11;

23

24 Conversion: constant array(Currencies, Currencies) of Rates :=

25 (( 1.0, 0.5059, 0.6775, 108.645, 1.1126, 5.4004, 7.2735),

26 (1.9767, 1.0, 1.3392, 214.4697, 2.1993, 77.6415, 14.3775),

27 (1.4760, 0.7467, 1.0, 160.2895, 1.6423, 58.0039, 10.7358),

28 (0.0092043, 0.00466267, 0.0062387,

29 1.0, 0.0101983, 0.361912, 0.066988),

30 (0.8989, 0.4547, 0.6087, 98.0551, 1.0, 35.3045, 6.5374),

31 (0.0255, 0.0129, 0.0172, 2.7631, 0.0283, 1.0, 0.1852),

32 (0.1375, 0.0696, 0.0931, 14.9281, 0.1530, 5.4004, 1.0));

The editing package for values of decimal fixed point types is explained in Section 13.8.2:

33 package Edit is new Editing.Decimal_Output(Money);

34 Money_Picture: Editing.Picture :=

35 Editing.To_Picture("#####*_***_***_**9.99");

The main subprogram performs the interactive dialog within a block so that if an exception is
raised, a new transaction can be carried out. The user is prompted to enter a currency code and
an amount of money in that currency:
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36 begin
37 loop
38 declare
39 Source: Currencies;

40 Amount: Money;

41 begin
42 Put("Currency ( ");

43 for C in Currencies loop
44 Currency_IO.Put(C);

45 Put(" ");

46 end loop;
47 Put(") and amount: ");

48 Currency_IO.Get(Source);

49 Money_IO.Get(Amount);

50 Skip_Line;

The amount of money is displayed after formatting with the picture; then the conversions are
performed for each other currency and similarly displayed. The expression in ‡55 is discussed
in depth in Section 13.9:

51 Edit.Put(Amount, Money_Picture, To_String(Signs(Source)));

52 Put_Line(" is worth ");

53 for Target in Currencies loop
54 if Source /= Target then
55 Edit.Put(Conversion(Source, Target) * Amount,

56 Money_Picture, To_String(Signs(Target)));

57 New_Line;

58 end if;
59 end loop;

Entering an invalid code for a currency will raise Data_Error §A.13(6). If the value is too large,
either Constraint_Error will be raised during the computation, or Picture_Error §F.3.3(9)
will be raised during formatting. To terminate the program, pressing a key (ctrl-z or ctrl-d)
will cause End_Error §A.13(12) to be raised and the loop is exited:

60 exception
61 when Data_Error => Skip_Line; Put_Line("Illegal input");

62 when Editing.Picture_Error => Put_Line("Formatting error");

63 when Constraint_Error => Put_Line("Computation error");

64 when End_Error => exit;
65 end;
66 end loop;
67 end Convert;
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13.8.2 Editing

The display of amounts of money uses package Ada.Text_IO.Editing.Decimal_Output §F.3.3,
which is instantiated with type Money ‡33. This package supplies a private type Picture that is
used for format control. A value of type Picture is created by calling To_Picture with a string
of format control characters ‡34–35. The syntax and semantics of formatting are specified in
§F.3.1 and §F.3.2. The picture used is "###*_***_**9.99", where the meaning of each character
is as follows:

• ’9’ Decimal digit
• ’.’ Radix mark (“decimal point”)
• ’_’ Separator character
• ’*’ Fill character
• ’#’ Currency string

The amount of 4156.34 Swiss Francs will be written as SF***4,156.34.
Fill characters are used instead of blanks to prevent forgery. The picture characters listed

above are fixed in the language, but the characters that are actually displayed are parameters
of the procedure Put and can be changed for localization. Alternatively, new default values can
be specified when Decimal_IO is instantiated.

Language Comparison

Ada’s picture construct was inspired by COLBOL, but localization features are
not found in COBOL, and the language does not have the ’#’ currency string,
which allows a fixed-width currency field (unlike ’$’).

13.9 Fixed point multiplication and division*

Addition and subtraction pose no difficulties for fixed point types and are specified in Ada as
for the other numeric types §4.5.3. The result of an addition like:

$123.45 + $67.89 = $191.34

can, at worst, overflow the range, but that can happen with any arithmetic operation. Nor is it
a problem to multiply or divide a fixed point type by an integer §4.5.5(13–14):

$123.45 ∗ 5 = $617.25.

The difficult is with multiplication and division of one fixed point number by another. The
problem is that the precision of the result is greater than that of either operand:
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0.5059 ∗ $123.45 = £ 62.453355.

In Ada, these fixed point operations are performed by implicitly converting each operand to
the type universal_fixed:

§4.5.5

18 Multiplication and division between any two fixed point types are provided by the
following two predefined operators:

19 function "*"(Left, Right : universal_fixed) return universal_fixed

function "/"(Left, Right : universal_fixed) return universal_fixed

As explained in Section 13.1.1, you cannot declare an object or parameter of a universal type, so
an expression of universal type must appear in a context where an implicit conversion is made
to the appropriate type. For example:

Converted_Amount: Money := Conversion(Source, Target) * Amount;

The result of multiplying an expression of type Rates (the component type of Conversion)
by one of type Money (the type of the variable Amount) is implicitly converted to a value
of type Money and assigned to the variable. Similarly, since the procedure Put of package
Ada.Text_IO.Editing.Decimal_IO §F.3.3(15) expects that its first parameter be of the generic
fixed point type parameter (here Money), this also provides a context for the implicit conversion
in ‡55.

Suppose, now, that a foreign exchange office has a special offer: on weekends, each conver-
sion rate is multiplied by ten percent. For simplicity, we model this as a constant:

Special: constant Rates := 1.1;

that is used when the conversion is performed:

Conversion(Source, Target) * Special * Amount

Unfortunately, this statement is illegal because we have lost the context: whichever multiplica-
tion is done first, the result is used as an operand in a subsequent multiplication, rather than
being copied into a variable or parameter. In the absence of a context that will allow implicit
type conversion, an explicit type conversion must be done:

Rates(Conversion(Source, Target) * Special) * Amount

The situation becomes more difficult if you overload these operators (see Section 13.11).

13.10 Complex numbers*

Annex §G Numerics defines support for complex arithmetic including elementary functions
and IO. Here is an outline of the generic package Ada.Numerics.Generic_Complex_Types:
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§G.1.1

2 generic
type Real is digits <>;

package Ada.Numerics.Generic_Complex_Types is
3 type Complex is

record
Re, Im : Real’Base;

end record;
4 type Imaginary is private;

5 i : constant Imaginary;

j : constant Imaginary;

22 private
type Imaginary is new Real’Base;

23 i : constant Imaginary := 1.0;

j : constant Imaginary := 1.0;

24 end Ada.Numerics.Generic_Complex_Types;

The type Complex is visible so values can be constructed using ordinary aggregates such as
(5.0, 6.3) or (Re => 5.0, Im => 6.3). Imaginary is declared as a separate type in order to
allow expressions of the form R1 + I1*i. Not shown are the arithmetical operators, which are
overloaded for all combinations of parameters of types Real’Base, Complex and Imaginary.

§G.1.2 declares a generic package for complex elementary functions and §G.1.3 declares a
generic package for IO. These packages have a single generic formal parameter, which is the
package Ada.Numerics.Generic_Complex_Types; the actual parameter can be any instantiation
of the package obtained by supplying a floating point type for the formal parameter Real.

Ada.Numerics.Complex_Types is a predefined instantiation of the generic package for type
Float §G.1.1(25). Similarly, there exist predefined instantiations of the package for complex IO
§G.1.3(9.1) and complex elementary functions §G.1.2(9).

Ada 95

A predefined instantiation of Complex_IO for type Float was not included in Ada 95.

13.10.1 Case study: complex vectors

Here is the outline of a package for complex vectors. There are two generic formal package
parameters, one for the complex type and one for the elementary functions:
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complex

1 with Ada.Numerics.Generic_Complex_Types;

2 with Ada.Numerics.Generic_Complex_Elementary_Functions;

3 generic
4 use Ada.Numerics;

5 with package Complex_Types is
6 new Generic_Complex_Types (<>);

7 with package Complex_Functions is
8 new Generic_Complex_Elementary_Functions(Complex_Types);

The generic package exports the type Vector and two subprograms:

9 package Generic_Complex_Vectors is
10 type Vector(<>) is private;
11 function Initialize return Vector;

12 function Distance(Left, Right: Vector) return Complex_Types.Real’Base;

13 private
14 type Vector is array(Integer range <>) of Complex_Types.Complex;

15 end Generic_Complex_Vectors;

The generic package body uses the functions Compose_From_Cartesian and Sqrt that are de-
fined in the generic package parameters:

16 package body Generic_Complex_Vectors is
17 use Complex_Types;

18 function Initialize return Vector is ... end Vector;

19

20 function Distance(Left, Right: Vector) return Real is
21 Sum: Complex := Compose_From_Cartesian(0.0);

22 begin
23 for N in Left’Range loop
24 Sum := Sum + Left(N) * Right(N);

25 end loop;
26 return abs(Complex_Functions.Sqrt(Sum));
27 end Distance;

28 end Generic_Complex_Vectors;

Let us define our own floating point type:

29 package Signals is
30 type Real is digits 12;

31 end Signals;

Now, in sequence, we instantiate the generic package for complex types:
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32 with Signals;

33 with Ada.Numerics.Generic_Complex_Types;

34 package Signals_Complex is
35 new Ada.Numerics.Generic_Complex_Types(Signals.Real);

then the generic package for complex elementary functions:

36 with Signals;

37 with Signals_Complex;

38 with Ada.Numerics.Generic_Complex_Elementary_Functions;

39 package Signals_Complex_EF is new
40 Ada.Numerics.Generic_Complex_Elementary_Functions(Signals_Complex);

and finally the generic package for complex vectors:

41 with Signals_Complex;

42 with Signals_Complex_EF;

43 with Generic_Complex_Vectors;

44 package Signals_Complex_Vectors is new
45 Generic_Complex_Vectors(

46 Signals_Complex, Signals_Complex_EF);

Once all the instantiations have been done, these packages can be used like any other:

47 with Signals, Signals_Complex, Signals_Complex_Vectors;

48 with Ada.Text_IO;

49 procedure Signal_Test is
50 V1: Signals_Complex_Vectors.Vector := Initialize;

51 V2: Signals_Complex_Vectors.Vector := Initialize;

52 R: Signals.Real;

53 begin
54 R := Signals_Complex_Vectors.Distance(V1, V2);

55 Ada.Text_IO.Put_Line(Signals.Real’Image(R));

56 end Signal_Test;

In Section 9.9, we noted that a generic package can have a generic child. The following
package extends the complex vector abstraction by creating an abstraction of a pair of vectors.
Its implementation ‡62–65 is allowed to use the full view of the type Vector ‡14, because the
private part of the parent is visible in the private part of a child package:
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57 generic
58 package Generic_Complex_Vectors.Generic_Pair is
59 type Pair is private;
60 private
61 subtype Max is Integer range 0..100;

62 type Pair(Size: Max := 10) is
63 record
64 First, Second: Vector(1..Size);

65 end record;
66 end Generic_Complex_Vectors.Generic_Pair;

Signals_Complex_Vectors.Pair is created by instantiating the generic child Generic_Pair of
the instance Signals_Complex_Vectors.

67 with Signals_Complex_Vectors;

68 with Generic_Complex_Vectors.Generic_Pair;

69 package Signals_Complex_Vectors.Pair is
70 new Signals_Complex_Vectors.Generic_Pair;

13.11 Advanced concepts*

Ada is perhaps unique among programming languages in its support for portable numeric
computation, in particular, portable computation with real numbers. This section presents
some of the finer details of numeric computation in Ada. Most software engineers will not
need to read this material.

13.11.1 Attributes

There are a large number of attributes associated with floating point (§3.5.8, §A.5.3) and fixed
point types (§3.5.10, §A.5.4). The ones in the body of the ARM concern properties seen by
the programmer; for example, a fixed point type S is declared with a delta and the attribute
S’Delta §3.5.10(3) returns this value at run-time. The attributes in Annex §A are representation-
oriented, relating to the implementation of the types; for example, S’Machine_Rounds and
S’Machine_Overflows §A.5.3(11–12), §A.5.4(3–4) enable you to write a program that takes into
account the computational properties of the machine executing the program.
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13.11.2 Rounding

When converting from a real type to an integer type, the real type is rounded:

§4.6

33 If the target type is an integer type and the operand type is real, the result is rounded
to the nearest integer (away from zero if exactly halfway between two integers).

Some machines have a built-in rounding operation that rounds toward zero instead of away
from zero. You can take advantage of such a fast hardware instruction using the attribute
S’Machine_Rounding §A.5.3(41.1), though that will make your application non-portable.

Ada 95

S’Machine_Rounding does not exist in Ada 95.

Language Comparison

Java specifies rounding toward zero. In Ada, 1.5 will be rounded to 2, whereas in
Java, it will be rounded to 1.

13.11.3 Base range

Clearly, a computer will not support different hardware formats for each floating point type
such as digits 6, digits 7, digits 8. The implementation will represent values of each type in
a hardware format that can contain at least the values of the type, but possibly more. Similarly,
an enumeration or integer type will be stored in a hardware format whose range of values may
be significantly more than the minimum required.

§3.5

6 The base range of a scalar type is the range of finite values of the type that can be
represented in every unconstrained object of the type; it is also the range supported
at a minimum for intermediate values during the evaluation of expressions
involving predefined operators of the type.

15 S’Base—S’Base denotes an unconstrained subtype of the type of S. This
unconstrained subtype is called the base subtype of the type.

Of course the base range is implementation dependent, so S’Base should not normally be used
in writing Ada programs.
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Overflow checks are based on the base range and are typically checked by the CPU itself.
Range checks, which are done for assignment statements, parameter passing, etc., are based
on the subtype’s range as defined by the programmer. Range checks never apply to an uncon-
strained subtype; consider:

type Altitude is range 0 .. 30_000;

A1: Altitude := 25_000;

A2: Altitude := 20_000;

A3: Altitude := (A1 + A2) / 2;

Suppose that Altitude’Base has a 32-bit range because all computation is performed in 32-bit
registers. If "+" were defined on parameters of type Altitude, the addition would be required
to raise Constraint_Error. However, addition is defined on the base range, so no range check
need be done until the assignment to A3 and Constraint_Error will not be raised. You can
declare variables of the unconstrained subtype to explicitly hold intermediate values:

Temp: Altitude’Base := A1 + A2;

A3: Altitude := Temp / 2;

The predefined subtype Integer is constrained §3.5.4(11) to its base range, while the pre-
defined subtype Float is unconstrained §3.5.7(12). Predefined arithmetical operators are de-
fined §A.1(15–18) for the unconstrained subtype Integer’Base, not for the constrained subtype
Integer.

13.11.4 Preference for root types

What is the type of N in the following loop statement?

for N in 1..100 loop

Since the literals are of type universal_integer, the type should be ambiguous, because there
is no context that can be used to convert the range to a specific type such as Integer or
Short_Integer.

§8.6

29 There is a preference for the primitive operators (and ranges) of the root numeric types
root_integer and root_real. In particular, if two acceptable interpretations of a
constituent of a complete context differ only in that one is for a primitive operator
(or range) of the type root_integer or root_real, and the other is not, the interpretation
using the primitive operator (or range) of the root numeric type is preferred.

It follows from this rule that the range 1..100 is of type root_integer.
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§3.6

18 If the type of the range resolves to root_integer, then the discrete_subtype_definition
defines a subtype of the predefined type Integer with bounds given by a conversion
to Integer of the bounds of the range;

Since 1..100 is of type root_integer, the discrete_subtype_definition §3.6(6) of the for-loop §5.5(4)
is a subtype of type Integer.

13.11.5 Case study: preference for root types

In the following program, the variables I and J are declared to be of type Integer, so the
function overriding predefined "<" is called. However, the literals 5 and 4 are of type univer-
sal_integer §3.4(6), so the predefined operator for root_integer §3.4(7) is preferred over the new
one for Integer:

pref

1 with Ada.Text_IO; use Ada.Text_IO;

2 procedure Pref is
3 function "<"(Left, Right: Integer) return Boolean is
4 begin
5 return Left >= Right;

6 end "<";

7 I: Integer := 5;

8 J: Integer := 4;

9 begin
10 if I < J then Put("Strange "); else Put("OK "); end if;
11 if 5 < 4 then Put("Strange "); else Put("OK "); end if;
12 end Pref;

Check that the program prints "Strange OK ".

13.11.6 Overloading fixed point operators

Consider, again, the multiplication in the currency conversion case study discussed in Sec-
tion 13.9. We modified the program so that the conversion rates were multiplied by a constant
Special:

Rates(Conversion(Source, Target) * Special) * Amount
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Suppose, now, that valued customers are to have the constant Special increased by an ex-
tra percent. To encapsulate this arrangement, the higher rate is computed by overloading the
predefined multiplication operator:

function "*"(Left, Right: Rates) return Rates is ... end "*";

The expression:

Rates(Conversion(Source, Target) * Special) * Amount

is now illegal. To understand this, recall that multiplication of fixed-point types needs a context:

§4.5.5

18 Multiplication and division between any two fixed point types are provided by the
following two predefined operators:

19 function "*"(Left, Right : universal_fixed) return universal_fixed

function "/"(Left, Right : universal_fixed) return universal_fixed

19.1 The above two fixed-fixed multiplying operators shall not be used in a context
where the expected type for the result is itself universal_fixed—the context has to
identify some other numeric type to which the result is to be converted, either
explicitly or implicitly. . . .

The paragraph now continues:

§4.5.5

19.1 . . . Unless the predefined universal operator is identified using an expanded name
with prefix denoting the package Standard, an explicit conversion is required on the
result when using the above fixed-fixed multiplication operator if either operand is
of a type having a user-defined primitive multiplication operator such that:

19.2 • it is declared immediately within the same declaration list as the type; and
19.3 • both of its formal parameters are of a fixed-point type.
19.4 A corresponding requirement applies to the universal fixed-fixed division operator.

The first operand Rates(...*...) of the outer multiplication is of a type Rates having a user-
defined primitive multiplication operator and the conditions §4.5.5(19.2–19.3) are satisfied.
Therefore, the universal operator defined in §4.5.5(18) is no longer available without an ex-
plicit conversion, and it is this universal operator that we need to multiply the left operand of
type Rates by the variable Amount of type Money.

Reading §4.5.5(19.1) carefully, we see that an explicit conversion of the result to the type Money:

Money(Rates(Conversion(Source, Target) * Special) * Amount)

will make the predefined operator available. But the same reasoning applies to the inner mul-
tiplication of two expressions of type Rates: because of the explicit conversion of the result, both
the predefined operator and the overloaded one are available and the expression is ambiguous.
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The problem can be solved as follows:

Money(Conversion(Source, Target) * Special * Amount)

For the two leftmost operands, there is the overloaded operator for "*"; furthermore, by the
second sentence of §4.5.5(19.1) it is the only one available. Now the result of type Rates and
the rightmost operand of type Money have to be multiplied, and the only possibility is the
predefined one, which (again by the second sentence of §4.5.5(19.1)) we can use by supplying
an explicit conversion (here to the type Money).

Another possibility is to use the expanded name for the operator:

Standard."*"(Conversion(Source, Target) * Special, Amount)

Before leaving this complicated subject, let us consider the implementation of the overloaded
operator:

Extra: Boolean := True;

function "*"(Left, Right: Rates) return Rates is
begin

if Extra then
return Left * (Right+0.01);

else
return Left * Right;

end if;
end "*";

The expressions in the return statements are ambiguous because two multiplication operators
are visible: the predefined one and the operator just overloaded for Rates. Clearly, we don’t
want the latter, because that would lead to unbounded recursion, so we need to specify that
the standard operator is to be used:

Standard."*"(Left, Right+0.01);

13.11.7 Model numbers

The definition of floating point computation is very difficult because even simple numbers like
0.2 do not have a finite representation on a binary computer. The value actually used depends
on exactly how floating point numbers are represented, so floating point computation is neces-
sarily machine-dependent:

§3.5.7

8 The set of values for a floating point type is the (infinite) set of rational numbers. The
machine numbers of a floating point type are the values of the type that can be
represented exactly in every unconstrained variable of the type. . . .
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Nevertheless, it is possible to give a portable definition of the accuracy of floating point com-
putation, and this is done in Annex §G using an idealization of machine numbers called model
numbers. Some values of floating point type, such as 0.510 = 0.12, are equal to model numbers;
others, such as 0.210 = 0.00110011 . . .2, do not equal model numbers, and are represented by
the model interval between the model numbers closest to the value. An arithmetical operation
applied to two model intervals yields another model interval.

An implementation may find some accuracy requirements difficult to achieve efficiently. In
addition to the required strict mode of computation that fully conforms with the standard, an
implementation may offer a relaxed mode of computation §G.2(1–3).

Floating point computation is explained in detail in Annex §G of the Rationale for Ada 95.

Projects

1. In the simulation case study, change the type Simulation_Type from a subtype to an integer
type.

2. Use modular types to implement the calculation of cyclic redundency checks.
3. Implement Euler’s method using access-to-subprogram types.
4. Implement algorithms for inertial navigation. If you are not familiar with the concept, do

the following one-dimensional computation. Given a position x0, read a series of values of
velocities v0, v1, v2, . . . that are sampled at a fixed interval ∆t. Compute xi+1 = xi + vi ·∆t. Do
the computations in fixed point arithmetic and assume that the samples are 12 bits, where
the first six bits represent numbers from−32 to 31 and the next six bits represent the fractions
0

64 to 63
64 .

5. Certain currencies like the Japanese Yen do not have fractional parts; modify the currency
conversion case study so that a different picture can be associated with each currency.

Quizzes

Quiz 1:

type T1 is range 5..10;

type T2 is new T1 range 50..100;

Quiz 2:

type My_Boolean is new Boolean;

I, J: Integer := 1;

M: My_Boolean := My_Boolean(I = J);

if M then Put("Equal"); else Put("Not equal"); end if;
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Quiz 3:

type Int is range 0..10_000;

A: Int := 1_000;

B: Int := 20;

C: Int := (A * B) / 5;

Put_Line( Int’Image(C) );

Quiz 4:

Put( "+"(Left => 2, Right => 3) );

Quiz 5:

type M is mod 23;

X1: M := 21;

X2: M := 10;

Put_Line( M’Image( X1 xor X2 ) );

Quiz 6:

type Fixed is delta 0.5 range 0.0 .. 10.1;

Put_Line(Fixed’Image(10.1));

Quiz 7:

N1: aliased constant Integer := 1;

N2: aliased constant := 1;

Quiz 8:

I: Integer;

case Integer’Pos(I) is
when Integer’First..Integer’Last => null;

end case;
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Quiz 9:

package P is
type T1 is range 1..100;

procedure Proc(X: T1; Y: T1);

type T2 is new T1 range 1..50;

end P;

package body P is
procedure Proc(X: T1; Y: T1) is
begin

Put(Integer(X));

Put(Integer(Y));

end Proc;

end P;

with P; use P;

procedure Main is
Z: T2 := 10;

begin
Proc(Z, 99);

end Main;
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Quiz 10:

package P is
type T1 is range 1..100;

subtype Sub is T1 range 1..50;

procedure Proc(X: Sub; Y: Sub);

type T2 is new T1 range 51..100;

end P;

package body P is
procedure Proc(X: Sub; Y: Sub) is
begin

Put(Integer(X));

Put(Integer(Y));

end Proc;

end P;

with P; use P;

procedure Main is
Z1: T2 := 88;

Z2: T2 := 99;

begin
Proc(Z1, Z2);

end Main;

Quiz 11: On page 272, we showed that the following expression is legal and unambiguous:

Money(Conversion(Source, Target) * Special * Amount)

What about:

Money(Conversion(Source, Target) * (Special * Amount))



Chapter 14

Input–Output

14.1 Libraries for input–output

Sections §A.6–§A.14 of Annex §A describe the input–output facilities of Ada. We have used
Ada.Text_IO §A.10 extensively for input and output of characters and strings. There are pack-
ages of identical functionality for Wide_Character, Wide_String, Wide_Wide_Character, and
Wide_Wide_String in §A.11:

• Ada.Wide_Text_IO

• Ada.Wide_Wide_Text_IO

Subprograms for IO of characters and strings are declared directly within Ada.Text_IO; for
bounded and unbounded strings, generic subpackages must be instantiated §A.10.11, §A.10.12:

• Ada.Text_IO.Bounded_IO

• Ada.Text_IO.Unbounded_IO

The following generic subpackages of Ada.Text_IO can be instantiated for IO of scalar types:

• Ada.Text_IO.Integer_IO

• Ada.Text_IO.Modular_IO

• Ada.Text_IO.Float_IO

• Ada.Text_IO.Fixed_IO

• Ada.Text_IO.Decimal_IO

• Ada.Text_IO.Enumeration_IO

If you are going to use these packages frequently in your system, it is more efficient at compile-
time if you instantiate them once, for example, as library packages:

package P is
type Countries is (US, UK, France, Germany, Japan, Korea);

end P;

277
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with P;

with Ada.Text_IO;

package Countries_IO is
new Ada.Text_IO.Enumeration_IO(P.Countries);

For each predefined integer type §A.10.8(20–22) and floating point type §A.10.9(32–34), non-
generic packages are predefined which are equivalent to instantiations with these types. For
example, Ada.Integer_Text_IO is predefined for type Integer.

Here is an overview of Ada.Text_IO:

• Most subprograms are overloaded with one declaration containing a parameter of type
File_Type §A.10.1(3) for IO to a file and another for IO to a default file. The default files are
usually the keyboard and screen, but this can be changed using the subprograms described
in §A.10.3.

• Text files are considered to be composed of logical pages, lines and columns §A.10(7–11). Sub-
programs that query and modify the logical structure of the file are described in §A.10.4 and
§A.10.5. For example, function End_Of_File §A.10.5(24) checks if the end of an input file has
been reached, and procedure New_Page §A.10.5(15) causes a page terminator (however that is
implemented) to be written to an output file.

• Input–output may be done to internal strings as well as to external files §A.10(3).
• Ordinary parameters are used to specify format information. A simple subprogram call like

Put(N) uses default values for format parameters. Named parameter association can be used
to change just one of these values: Put(N, Base=>16).

• There is no support for output of more than one value in a single subprogram call. A work-
around is to construct a single string using the attribute Image for scalar types and functions
for other types.

Binary input–output can be done using the generic packages Ada.Sequential_IO §A.8.1 and
Ada.Direct_IO §A.8.4. The packages have a generic formal private type parameter that is used
to specify the type of the file elements.

Other sections of Annex §A pertaining to input–output are:

• §A.7 defines the terminology used for files and §A.8.2 describes subprograms that perform
file management such as opening and closing a file.

• Package Ada.Storage_IO §A.9 implements input–output to and from a memory buffer
rather than an external file. It can be used to create your own input–output package, since
it translates from an internal representation which includes dope vectors and tags to a flat
buffer of storage elements.

• Exceptions that may be raised upon input–output are declared in Ada.IO_Exceptions §A.13.
Other packages rename the exceptions so you don’t need a with_clause for this package.

• §A.14 discusses what happens if an external file is associated with more than one internal
file object.

• Stream input–output §A.12 is discussed in Section 14.3.
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Ada 95

Ada.Text_IO.Unbounded_IO, Ada.Text_IO.Bounded_IO, and Ada.Wide_Wide_Text_IO are new
for Ada 2005.

14.2 Interface with the operation system

There are three packages for interfacing with the operating system environment:

• Ada.Command_Line §A.15 enables reading the name of the command that invoked the pro-
gram and the command-line arguments.

• Ada.Directories §A.16 contains a comprehensive set of types and subprograms such as
Current_Directory, Set_Directory, and Create_Directory for working within an operat-
ing system’s file system.

• Ada.Environment_Variables §A.17 provides constructs for using the system’s environment
variables that form a persistent store. Environment variables are stored associatively, that
is, parameter values are accessed by providing the name of the parameter. The package
includes the subprograms Value, Exists, Set, and Clear, as well as an iterator over all vari-
ables.

Clearly, there will be implementation dependences in these packages.

Ada 95

The packages Ada.Directories and Ada.Environment_Variables are new for Ada 2005. If you
need this functionality, check if your implementation has non-standard packages for Ada 95.

Language Comparison

A source of difficulty in file processing is that the separator characters are impl-
mentation dependent. The Java class java.io.File declares static fields such
as pathSeparator to facilitate portability. While similar declarations do not
exist in Ada, you can portably construct a full file name using the function
Ada.Directories.Compose §A.16(81–82).

14.3 Streams*

Ada.Sequential_IO performs input–output on values of a single type. Streams are used for
input–output of values of more than one type to a single file. Values of all types are written
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as a sequence of bytes that can be reconstructed into values of the same types when read. A
stream file is much more portable than a binary file; while the encoding of elementary types
is implementation dependent, there is a canonical order defined for encoding composite types
§13.13.2(9). Streams are used not only to create files, but also to pass data between the partitions
of a distributed system (Section 22.1).

Package Ada.Streams §13.13.1 declares type Root_Stream_Type as an abstract tagged type
from which all streams are derived. A stream is composed of a sequence of values of the mod-
ular type Stream_Element. The following diagram shows how streams work:

Value of
subtype S

Variable of
subtype S

Stream
elements Stream

Stream
elements Stream- -

S’Write Write

� �
S’Read Read

Two operations are involved in writing to a stream. The attribute S’Write transforms values of
a subtype S into stream elements, which the subprogram Write writes to the stream. Reading
does these steps in the opposite direction.

§13.13.2

3 S’Write S’Write denotes a procedure with the following specification:

4 procedure S’Write(

Stream : not null access Ada.Streams.Root_Stream_Type’Class;

Item : in T)

5 S’Write writes the value of Item to Stream.
6 S’Read S’Read denotes a procedure with the following specification:

7 procedure S’Read(

Stream : not null access Ada.Streams.Root_Stream_Type’Class;

Item : out T)

8 S’Read reads the value of Item from Stream.

The subprograms Write and Read are not explicitly called; instead, the attributes call
them automatically §13.13.1(1). You can override the abstract subprograms Write and Read

§13.13.1(5–6) when you define a stream for a new type, and you can supply an attribute defini-
tion clause to specify the attributes §13.13.2(38).

The following case study shows how you can use streams without a detailed knowledge of
package Ada.Streams. To create a stream file, you do not need to explicitly declare a stream. In-
stead, you can declare a file of type File_Type from package Ada.Streams.Stream_IO §A.12.1.
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This package declares a function that returns an access to the stream associated with the file,
and this access is then used as the first actual parameter of the Read and Write attributes.

§A.12.1

4 type Stream_Access is access all Root_Stream_Type’Class;

13 function Stream (File : in File_Type) return Stream_Access;

- - Return stream access for use with T’Input and T’Output

§A.12.1

29 The Stream function returns a Stream_Access result from a File_Type object, thus
allowing the stream-oriented attributes Read, Write, Input, and Output to be used on
the same file for multiple types. Stream propagates Status_Error if File is not open.

Finally, package Ada.Text_IO.Text_Streams §A.12.2 enables you to obtain a stream associ-
ated with a text file, which can be used to include binary data within the file.

14.3.1 Case study: simulation with streams

This version of the discrete event simulation creates and writes events to a file. The file can then
be repeatedly read to rerun the same simulation scenario. The attributes Input and Output are
used instead of Read and Write for reasons explained below.

After the preliminary declarations:

rocketst

1 with Event_Queue;

2 with Root_Event.Engine, Root_Event.Telemetry, Root_Event.Steering;

3 use Root_Event;

4 with Ada.Streams.Stream_IO; use Ada.Streams.Stream_IO;

5 procedure RocketST is
6 Q: Event_Queue.Queue_Ptr := new Event_Queue.Queue;

7 Event_File: File_Type;

8 S: Stream_Access;

9 begin
10 Create(Event_File, Name=>"Event.Str");

the function Stream returns a value of type Stream_Access which is assigned to S:

11 S := Stream(Event_File);
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S is then used as a parameter of attribute Event’Class’Output to output events to the stream:

12 for I in 1..15 loop
13 Event’Class’Output(S,

14 Event’Class(Engine.Main_Engine_Event’(Engine.Create)));

15 Event’Class’Output(S,

16 Event’Class(Engine.Aux_Engine_Event’(Engine.Create)));

17 Event’Class’Output(S, Event’Class(Telemetry.Create));

18 Event’Class’Output(S, Event’Class(Steering.Create));

19 end loop;
20 Close(Event_File);

The same stream variable is then used to read the events from the stream:

21 Open(Event_File, In_File, Name=>"Event.Str");

22 S := Stream(Event_File);

23 for I in 1..45 loop
24 Event_Queue.Put(Event’Class’Input(S), Q.all);
25 end loop;
26 Close(Event_File);

27

28 while not Event_Queue.Empty(Q.all) loop
29 Root_Event.Simulate(Event_Queue.Get(Q));

30 end loop;
31 end RocketST;

§13.13.2 describes how values are transformed to stream elements by Write and how stream
elements are transformed to values by Read. Given:

subtype Line is String(1..120);

Line’Write will write 120 stream elements and Line’Read will read the same 120 stream ele-
ments.

Consider now the following procedure with the unconstrained formal parameter of type
String:

procedure Write_String(S: in Stream_Access; Str: in String) is
begin

String’Write(S, Str);

end Write_String;

Each call to the procedure will write just the stream elements that represent the current value
of Str. To recover the string, you would need to explicitly write additional information on the
stream (such as the length of the string) in order to read it correctly. This can be done auto-
matically by using the attribute S’Output §13.13.2(19–21), which is the same as S’Write except
that array bounds and discriminants, if any, are automatically written to the stream. Similarly,
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S’Input §13.13.2(22–24) is like S’Read, except that it can use this information to determine how
much data to read and how to arrange it in an object.

For class-wide types, the attributes S’Class’Write and S’Class’Read §13.13.2(10–16) dis-
patch to the attributes S’Write and S’Read according to the specific type of the actual param-
eter. S’Class’Output and S’Class’Input §13.13.2(28–34) are similar except that a represen-
tation of the tag is written to the stream and used upon input to reconstruct a value of the
corresponding specific type. This is clearly what was required in the case study, so that the
tag of each event will be written and then restored upon reading. Fortunately, S’Input and
S’Class’Input are functions, rather than procedures, so we can use the result to give an initial
value to an indefinite type, or as an actual parameter to a subprogram with a formal parameter
of indefinite type ‡24.

Since streams are written in a canonical format, they are portable and a stream written by one
implementation can be read by another. The only problem is with numerical and enumeration
types, where the implementation is allowed to choose the representation. Suppose that we
define Simulation_Time in the simulation case study as a new integer type, rather than as a
subtype of Integer:

type Simulation_Time is range 0..10_000;

If values of the type are represented on one machine using 16 bits and on another using 32
bits, the streams will not be compatible. We can solve this problem by adding a representation
attribute §13.13.2(1.1–1.5):

for Simulation_Time’Stream_Size use 16;

This ensures that values of the type will be represented using 16 bits in the stream; the imple-
mentation is responsible for converting the stream elements to and from its internal represen-
tation.

Ada 95

The attribute Stream_Size is not available in Ada 95 and there is no portable workaround.

14.4 Generic dispatching constructors*

The attributes S’Input and S’Output support I/O of different types of a class of types to a
stream. Suppose, however, that we wish to construct a value of a type within a class as a func-
tion of arbitrary data. A good example is selecting an item from a list on a pulldown menu,
where the menu listener returns the index of the selected item. The obvious way to do this is to
write a case- or if-statement:



284 14 Input–Output

Value: access T’Class;

case Selection is
when 0 => Value := new T0’Create(...);

when 1 => Value := new T1’Create(...);

...

end case;

This technique is frowned upon in object-oriented programming where polymorphism is sup-
posed to facilitate type derivation with minimal modification of existing code.

Generic dispatching constructors, also known as factory functions, take the tag of a type and
optional additional parameters and dispatch to a constructor function:

§3.9

18.2 generic
type T (<>) is abstract tagged limited private;
type Parameters (<>) is limited private;
with function Constructor (Params : not null access Parameters)

return T is abstract;
function Ada.Tags.Generic_Dispatching_Constructor

(The_Tag : Tag; Params : not null access Parameters)

return T’Class;

The generic function has three formal parameters. The first is the tagged type whose values
are to be constructed, and the second is for additional data that can be a parameter of the
constructor. The third parameter is the function that is to be called. The formal function is
declared abstract, which means that the generic actual parameter has to be a dispatching
operation of the controlling return type T §12.6(8.4–8.5).

Generic dispatching constructors can also be used to write your own stream functions (see
Section 2.6 of the Ada 2005 Rationale).

Ada 95

Generic dispatching constructors are new to Ada 2005.
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14.4.1 Case study: simulation with a generic dispatching constructor

Let us modify the simulation so that events can be created interactively. First, the constructor
Create has to be modified so that its profile fits the formal function parameter Constructor. In
this program, no additional data is needed, so the parameter is simply a null record:

rocketfac

1 package Root_Event is
2 type Event is abstract tagged private;
3 type Parameters is null record;
4 function Create(Params: not null access Parameters)

5 return Event is abstract;
6 procedure Simulate(E: in Event) is abstract;
7 end Root_Event;

In the main program, the generic dispatching constructor is instantiated:

8 -- with’s as needed

9 use Root_Event;

10 procedure RocketFAC is
11 Q: Event_Queue.Queue_Ptr := new Event_Queue.Queue;

12 function Constructor is
13 new Ada.Tags.Generic_Dispatching_Constructor(Event, Parameters, Create);

An array is used to map the index of an item selected from a menu into a tag:

14 T: array(Natural range <>) of Ada.Tags.Tag :=

15 (Engine.Main_Engine_Event’Tag, Engine.Aux_Engine_Event’Tag,

16 Telemetry.Telemetry_Event’Tag, Steering.Steering_Event’Tag);

A dummy value is used for the additional parameters:

17 Dummy: aliased Parameters := (null record);

The selection from a menu is represented by the input of the value of the index, which is used
as an index into the array of tags:

18 begin
19 for I in 1..5 loop
20 Ada.Text_IO.Put("Click on event: ");

21 Event_Queue.Put(

22 Constructor(

23 T(Integer’Value(Ada.Text_IO.Get_Line)), Dummy’Access), Q.all);
24 end loop;
25 end RocketFAC;

If event types are added, the only change needed is to add the tag to the array.
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Projects

1. Use the Iterate procedure of Ada.Environment_Variables to fetch and display all the en-
vironment variables on your system. Write an interactive program to update the variables.

2. Extend the case study in Section 14.4 so that the parameters of each event can be entered
interactively and then passed to dispatching constructors.

3. Reimplement the stream case study in Section 14.3 by overriding the subprograms Input

and Output so that the elements of the stream are written as strings.

Quizzes

Quiz 1:

File1, File2: File_Type;

File1 := File2;

Quiz 2:

File: File_Type;

procedure Get_Data(F: in File_Type) is
begin

Open(F, In_File, "name.txt");

Close(F);

end Get_Data;

Get_Data(File);

Quiz 3:

with Ada.Text_IO; use Ada.Text_IO;

with Ada.IO_Exceptions;

procedure Main is
File: File_Type;

begin
Open(File, In_File, "name.txt");

exception
when Name_Error => Put_Line("File not found");

end Main;



Chapter 15

Program Structure

15.1 Compilation and execution

This section discusses topics from Section §10 Program Structure and Compilation Issues. The
basic definitions are given in §10.1.

§10.1

1 A program unit is either a package, a task unit, a protected unit, a protected entry, a
generic unit, or an explicitly declared subprogram other than an enumeration literal.
Certain kinds of program units can be separately compiled. Alternatively, they can
appear physically nested within other program units.

2 The text of a program can be submitted to the compiler in one or more compilations.
Each compilation is a succession of compilation_units. A compilation_unit contains
either the declaration, the body, or a renaming of a program unit. The representation
for a compilation is implementation-defined.

A context clause is associated with a single compilation_unit §10.1.1(3), §10.1.2, so if several
units that are semantically dependent the same package are contained in one compilation, each
unit must have a with_clause for the package.

§10.1

3 A library unit is a separately compiled program unit, and is always a package,
subprogram, or generic unit. Library units may have other (logically nested) library
units as children, and may have other program units physically nested within them.
A root library unit, together with its children and grandchildren and so on, form a
subsystem.

A task is not a library unit.

287
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§10.1

4 An implementation may impose implementation-defined restrictions on
compilations that contain multiple compilation_units.

The GNAT compiler exploits the permission given in §10.1(4) and forbids multiple compilation
units in a compilation; instead, a tool is provided for “chopping” a file containing several units
into files with one unit apiece.

Semantic dependences §10.1.1(23–26) are used to determine both visibility and the compile-
time dependence of one unit on another. Before a unit can be compiled, consistent versions of
all units upon which the unit depends semantically must exist §10.1.4(5) and must be legal for
the compilation to succeed.

Compiled units are stored an environment §10.1.4(1). The environment is usually the operat-
ing system’s file system, but the rules are intentionally vague to allow any implementation that
can satisfy the requirements of dependence and consistency.

15.1.1 Inline subprograms

pragma Inline §6.3.2 is a recommendation §6.3.2(6) to the compiler that the code for a subpro-
gram be expanded inline at the points where it is called. This saves the overhead of a jump
to and return from the subprogram, and can also facilitate optimization because the code of
the subprogram is compiled within a larger context. Improved optimization can reduce both
the time and the space of a program, although excessive inlining can significantly increase the
amount of memory needed, so be sure to measure what happens when you specify inline.

Check also if your compiler can turn inlining on and off by using a compiler switch and if
your compiler performs inlining automatically.

You may wish to defer the use of inlining until late in the development of a program. The
reason is that recompilation of a package body containing an inlined subprogram may require
recompilation of every unit that depends on the package specification, even if the subprogram
body was not modified §10.1.4(7).

15.2 Compilation and the environment of compilation*

The language specifies that every compilation takes place within an environment of compila-
tion. This environment includes, among other things, the predefined units of the language, as
described in Annex §A: the package Standard, and packages for strings, input-output, numeric
computations, containers, etc.

The environment has another function: it ensures that when an executable file is created by
compiling a main program and all the units on which it semantically depends (transitively),
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the resulting executable is consistent, that is, no portion of that executable contains code that
originates from a source file that is out of date. In other languages, this consistency may be
ensured by a make tool, which is not defined by the language. In Ada, consistency is a formal
requirement of the software that manages the environment. When compiling a single unit, say
some package P, all that needs to be present in the environment are the declarations for the units
P1, P2, . . . on which it depends; these are the specifications of the packages that are mentioned
in the context clause of P. This requirement ensures that the legality of P can be verified even
before the bodies of P1, P2, . . . are written.

As noted in the previous section, if P specifies that calls to some subprogram defined in P1

are to be inlined, then P also depends on the body of P1, and that body must be present as well
when compiling P. The same applies if P contains an instance of a generic unit declared in P1.

The requirement that compilation be done in the context of an environment (Section 6.2.1,
§10.1.4(1)) does not require that the environment be implemented as a place to store the results
of compilations, such as the symbol tables that result from parsing package specifications. The
only important concept is that of semantic dependences: when a package body or a client of
the package is compiled, there must be a legal package specification in the environment.

An alternate method of implementation is used, for example, by the GNAT compiler. There
is no environment other than the file system of the operating system that stores the source and
object files. Whenever a package body is compiled, its package specification is compiled also.
Similarly, whenever a unit is compiled, the specifications of all the packages in its with_clauses
are read and analyzed. There is no need to explicitly compile package specifications.

Normally, the implementation of the environment is transparent to the programmer, because
the compiler will decide by itself what units must be compiled or re-compiled, taking into
account the semantic dependences and the time-stamps of the source files.

15.3 Subunits*

If a unit becomes very large, it is possible to “break off” enclosed bodies into subunits §10.1.3.
Subunits are transparent in terms of visibility §10.1.3(16–17). A subunit is created by writing a
stub in place of a body, and then creating additional compilation_units for the bodies. The case
study in the following subsection shows some of the rules that apply to subunits.

Subunits may have their own context clauses §10.1.1(3), so they can be used to reduce the de-
pendences of a unit. A subunit depends semantically on its parent §10.1.1(26), so any change in
the parent requires recompilation of all subunits. The GNAT compiler simply copies the text of
the subunit into its parent so any change to the subunit requires that the parent be recompiled.
In such implementations, there is no advantage to subunits in terms of reduced compilation
time.

Child units are a superior way of structuring programs and have made subunits almost
obsolete.
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15.3.1 Case study: subunits

The body of package P has two stubs, one for the body of procedure Proc1 and one for the body
of package Inner:

subunit

1 package P is
2 procedure Proc1;

3 end P;

4

5 package body P is
6 S: String := "Global variable";

7

8 package Inner is
9 procedure Proc2;

10 end Inner;

11

12 procedure Proc1 is separate;
13 package body Inner is separate;
14 end P;

The subunit for Proc1 has its own context clause with a with_clause for Ada.Text_IO that was
not needed in the enclosing unit:

15 with Ada.Text_IO; use Ada.Text_IO;

16 separate(P)
17 procedure Proc1 is
18 begin
19 Put_Line(S & " visible from Proc1");

20 Inner.Proc2;

21 end Proc1;

Proc1 was declared after the specification for package Inner, so Inner.Proc2 is visible.
The package body of Inner is also a subunit, and it, in turn, declares the procedure Proc2

whose body is a subunit:

22 separate(P)
23 package body Inner is
24 procedure Proc2 is separate;
25 end Inner;

The body of Inner cannot be placed within P, because it contains a stub and stubs must appear
immediately within a compilation unit body §10.1.3(13).

Although Proc2 is a subunit of a subunit, the global variable S remains visible:
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26 with Ada.Text_IO; use Ada.Text_IO;

27 separate(P.Inner)
28 procedure Proc2 is
29 begin
30 Put_Line(S & " visible from Proc2");

31 end Proc2;

32

33 with P;

34 procedure Test_Subunit is
35 begin
36 P.Proc1;

37 end Test_Subunit;

15.3.2 Summary of package organization

There are four ways of organizing packages:

• Root library packages
• Nested packages
• Child packages
• Subunits

A root library package, one that is a child only of Standard, achieves maximum compilation in-
dependence, but it can only access declarations in the visible part of another package, and then
only after a with_clause is given. A nested package can be used to reduce name-space clutter
by encapsulating declarations, but the package is still part of the unit’s compilation so neither
independence nor compilation time is improved. A child package has visibility of the declara-
tions in the entire package specification including its private part, but not of the declarations in
the body. The compilation of a child is relatively independent from that of its parent, because
it only depends on its parent’s specification, not its body. A subunit has visibility of the decla-
rations in its parent’s body, but it is tightly coupled to the parent. Although an implementation
may support separate compilation of subunits, any change in the parent requires recompilation
of all its subunits. In practice, nested packages and subunits are of little use; programs should
be structured as a small number of root library packages, together with child packages to the
depth that is needed.
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15.4 Pragmas

Pragmas are directives to the compiler §2.8. Special rules apply to the placement of certain
pragmas §10.1.54.

Configuration pragmas apply to an entire program. The pragma declaration is itself a compi-
lation unit §10.1.5(8–9), which is normally the first unit that is compiled. For example, pragma
Restrictions §13.12 is a configuration pragma used to inform the compiler that you intend to
restrict the use of the language. For example, if:

pragma Restrictions(No_Allocators);

is given, the use of an allocator anywhere within the program would be diagnosed as an error.
A program unit pragma §10.1.5(2–6) applies only to a single program unit. Such pragmas can

be placed either within the unit they apply to or after the unit. If the pragma is the first entity
within a unit, you can sometimes omit the name of the unit. A program unit pragma is called a
library unit pragma if it applies only to library units. In the next section, you will see two possible
placements of the library unit pragma Elaborate_Body.

A list of language-defined pragmas can be found in Annex §L.

15.5 Elaboration*

Elaboration §3.1(11) is the process by which a declaration has its run-time effect (Section 2.9.1).
Declarations are elaborated in the order in which they appear. We now ask: when are library
units elaborated? The answer is that they are considered to be declared local to an environment
task §10.2(8) whose execution is initiated by the operating system. The units are elaborated in
any order that is consistent with their semantic dependences §10.2(9). However, semantic de-
pendence is not always strong enough to resolve dependences that are relevant to elaboration,
and, occasionally, stronger control over the elaboration order is required, as we now demon-
strate. Section 22.2.5 discusses the interaction between elaboration and concurrency.

15.5.1 Case study: elaboration order

Package P declares the function Func that encapsulates a “complicated” computation:

elab

1 package P is
2 function Func return Integer;

3 end P;

In our program, the computation is represented by a single return statement:
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4 package body P is
5 function Func return Integer is
6 begin
7 return 10;

8 end Func;

9 end P;

The function is used to initialize the variable N in the specification of package Q:

10 with P;

11 package Q is
12 N: Integer := P.Func;

13 end Q;

The main program uses the value of this variable that was declared in package Q:

14 with Q; with Ada.Text_IO;

15 procedure Elab is
16 begin
17 Ada.Text_IO.Put_Line(Integer’Image(Q.N));

18 end Elab;

The semantic dependences require that the body of package P be elaborated after the specifi-
cation of P, and that the specification of P be elaborated before the specification of Q because of
the with_clause for Q. However, the body of P may be elaborated before or after the specification
of Q. If the specification of Q is elaborated before the body of P, then the call to the initialization
function Func will be a call to a subprogram that does not yet exist! Elaboration_Check will
fail and Program_Error will be raised §11.5(19–20).

15.5.2 Case study: table package

A similar problem occurs when the package specification consists of a variable whose initial
value is set by a complicated computation during the initialization of the package:

table

1 package Table is
2 Translate: array(1..10) of Character;

3 end Table;

4

5 package body Table is
6 begin
7 Translate := (others => ’X’);

8 end Table;
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A library package is not allowed to have a body unless one is actually needed §7.2(4), usually
to contain the bodies of subprograms declared in the specification. This rule simplifies config-
uration management. The above package body containing the initialization is illegal because
the specification is legal without the body.

15.5.3 Elaboration pragmas

Elaboration pragmas can be used to solve the above problems. pragma Elaborate_Body spec-
ifies that the body of the package must be elaborated immediately after its specification
§10.2.1(19–26). It is a library unit pragma §10.2.1(24), so it can be placed either within the pack-
age declaration:

package P is
pragma Elaborate_Body;

function Func return Integer;

end P;

or immediately following the declaration §10.1.5(4):

package Table is
Translate: array(1..10) of Character;

end Table;

pragma Elaborate_Body(Table);

Alternatively, we could use pragma Elaborate(P) in the context clause of package Q of the first
example to specify that P be completely elaborated before Q. The pragma Elaborate_All(P) is
a transitive version of Elaborate(P) and specifies that all units upon which P depends must
be elaborated before Q. The advantage of this pragma over Elaborate is that Q does not have
to know about the dependences of P.

Elaboration checks can be very expensive because the code for the check is executed for every
call of a subprogram declared in a package specification, even though it is only relevant during
the first call. If you are satisfied that you have solved every possible elaboration problem (using
elaboration pragmas, if necessary), you may want to suppress the check.

15.5.4 Elaboration control

pragma Pure §10.2.1(13–19) declares that a library unit is pure. This means that it has no state at
run-time; note that any variable declared in the unit gives rise to state. Since it has no state, a
pure unit can be replicated in a distributed system (Section 22.1).
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pragma Preelaborate §10.2.1(2–12) declares that a unit is preelaborable. Such a unit contains
no executable statements, so the elaboration can be done as part of the construction of the
executable program. A unit with the following declaration:

V: T := F;

is not preelaborable unless the function F itself is computable at compile-time. An implemen-
tation should be able to store the elaborated unit in ROM so that its initialization need not be
performed each time the system is reset.

pragma Preelaborable_Initialization §10.2.1(11.1–11.8) is used with a private type to
indicate that a unit that uses that type can be preelaborable. Examples are the types imple-
mented by the container libraries; for example, Ada.Containers.Doubly_Linked_Lists de-
clares §A.18.3(6):

type List is tagged private;
pragma Preelaborable_Initialization(List);

The default initialization of an object of type List can be done at compile-time, so:

with DLL; -- some instantiation of doubly-linked lists

package P

Max: Natural := 1000;

L: DLL.List;

end P;

is preelaborable.
All pure units are elaborated before all preelaborable units, which, in turn, are elaborated

before a unit to which neither of the pragmas applies §10.2(13–17).
Package Ada §A.2 and some of its children are declared pure. Other children are preelab-

orable, while some, such as Ada.Text_IO, are neither.

Ada 95

Preelaborable_Initialization is new to Ada 2005.

15.6 Renamings

Objects, exceptions, packages, subprograms, and generic units and instances can be renamed
§8.5. Renaming can be used to declare an additional, shorter, name for an entity, especially if
you do not want to employ a use_clause:

package LEF renames Ada.Numerics.Long_Elementary_Functions;
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In the quaternion case study (Section 6.8.1), renaming was used to change the implementation
in one place without otherwise modifying the program.

Object renamings can be used to improve readability and (depending on the optimizer) run-
time efficiency when accessing complex data structures:

for N1 in A1’Range loop
for N2 in A2’Range loop

declare
V: Integer renames A1[N1].Field1.A2[N2].Field2.all;

begin
V := (V + K1) * (V - K2) / 4*V;

end;
end loop;

end loop;

Subprogram renamings §8.5.4 come in two flavors: renaming-as-declaration and renaming-as-
body. The former gives a new name (and new parameter names and default expressions if
needed) to a subprogram or entry. We used renaming-as-declaration in the case study in Sec-
tion 11.3 to obtain a function Trim with a default value for the parameter Side.

Renaming-as-body completes the declaration of a subprogram with an existing subprogram
so you don’t have to write a trivial subprogram to call it. Renaming-as-body makes it easy to
export a different or partial view of an abstraction, as shown in the following case study.

15.6.1 Case study: renaming

Package Java_IO exports string output procedures from Ada.Text_IO with the names expected
by a Java programmer:

renam

1 package Java_IO is
2 procedure print(S: in String);

3 procedure println(S: in String);

4 procedure println;

5 end Java_IO;

Ada.Text_IO.Put_Line and Ada.Text_IO.Put can be exported by renaming-as-body to com-
plete the subprogram declarations in the package specification:

6 with Ada.Text_IO;

7 package body Java_IO is
8 procedure print(S: in String) renames Ada.Text_IO.Put;

9 procedure println(S: in String) renames Ada.Text_IO.Put_Line;
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For Ada.Text_IO.New_Line, however, this cannot be done, because the subprogram has a pa-
rameter Spacing §A.10.5(2). Although the parameter has the default value 1 that we want,
nevertheless, renaming-as-body requires that the renamed subprogram fully conform §8.5.4(5)
to the declaration it completes. Therefore, we have to write a body to call it:

10 procedure println is
11 begin
12 Ada.Text_IO.New_Line;

13 end println;

14 end Java_IO;

15.7 Use type clause

Is the following program legal?

question

1 package P is
2 type T is (A, B, C, D);

3 end P;

4

5 with P;

6 procedure Question is
7 V: P.T;

8 begin
9 if V = P.A then null; else null; end if;

10 end Question;

The answer is no! The problem is with the expression in the condition of the if-statement.
V and P.A are both of type P.T, but the operator "=" for the type is not directly visible. A
use_clause for the package P would, of course, make it directly visible, but many Ada pro-
grammers prefer to minimize the number of use_clauses. It would also be possible to use pre-
fix notation: P."="(V,P.A), but this syntax is unnatural. A better solution is furnished by the
use_type_clause:

use type P.T;

The primitive operators of the type, but not other entities of the package, become visible §8.4(8).
More exactly, they become potentially use-visible, as described in the next section.
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15.8 Visibility rules*

Visibility of entities in Ada has been informally discussed throughout the text. The rules in
§8.1–§8.4 are among the most difficult in the ARM, but fortunately you can usually write correct
programs without understanding them in detail. Here we will survey the terminology used in
case you need to study the rules; in addition, we will point out a few details worth knowing.

15.8.1 Declarative regions and scope

A declarative region §8.1 is a portion of the program text that can contain other declarations. Most
declarative regions are declarations: packages, procedures, records and so on, but so is a for-
loop statement that declares its loop parameter. The declarative region of a package includes
its body, children and subunits.

The scope §8.2 of a declaration is the portion of a program text where it is legal to refer to
the declared entity. The scope includes the immediate scope, which extends from the declaration
itself until the end of the immediately enclosing declarative region. For example, the immediate
scope of a type declared in a package specification comprises the remainder of the package
specification, as well as the package’s body, children and subunits. The scope of the type in-
cludes its immediate scope and extends to include the scope of the package itself §8.2(10) and
of its semantic dependents §8.2(3).

The following diagram shows the scope of the declaration of the variable N declared in the
visible part of package P. The scope includes the rest of the specification, the body (including
subunits), child packages and other units that have a with_clause for the package. The thick
arrows below show the scope, while the thin arrows show the dependences:

package P is

N: Natural;

?

?
package body P is

procedure Proc
is separate;

?

with P;
package Q is

?

-

separate(P)
procedure Proc is

?

package P.Child is

?

?
package body
P.Child is

?

- -
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If the declaration is in the private part of the package, its scope does not include the visible
part of child packages (although it does include the private parts and the bodies), nor does it
include units that have a with_clause for the package:

package P is

private
N: Natural;

?

?
package body P is

procedure Proc
is separate;

?

with P;
package Q is

-

separate(P)
procedure Proc is

?

package P.Child is

private

?

?
package body
P.Child is

?

- -

The scope of a declaration in the private part includes the visible part of private child packages:

package P is

private
N: Natural;

?

?
package body P is

procedure Proc
is separate;

?

with P;
package Q is

-

separate(P)
procedure Proc is

?

private package
P.Child is

private

?

?
package body
P.Child is

?

- -

15.8.2 Visibility

Within its immediate scope, a declaration is normally directly visible so it can be referred to
by using its direct name alone. A declaration can be directly visible because it is immediately
visible, or because it is use-visible. For example, a type declared in a package specification is
immediately visible within the package itself; outside the package, it is directly visible only
if a use_clause has been given for the package. Within its scope but not its immediate scope,
selector syntax P.T must be used to access an entity.
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A use_clause only makes the names in a package specification potentially use-visible §8.4(8).
Name conflicts—use_clauses for two packages that both declare the same name, or a local dec-
laration with the same name as one in a package mentioned in a use_clause—will prevent direct
visibility, and you will have to use selector syntax.

§8.3

8 Two declarations are homographs if they have the same defining name, and, if both
are overloadable, their profiles are type conformant. An inner declaration hides any
outer homograph from direct visibility.

9 Two homographs are not generally allowed immediately within the same
declarative region unless one overrides the other . . .

Are the following two declarations homographs?

procedure Proc(A: Integer);

procedure Proc(B: Positive);

The answer is yes because: (a) they have the same defining name Proc, (b) as procedures they
are overloadable, and (c) they are type-conformant because Positive is a subtype of type
Integer. Since they are homographs, they cannot appear in the same declarative region. If
Positive were changed to Float, the second declaration would no longer be type-conformant,
and the overloaded declarations could appear in the same declarative region.

A declaration can be hidden by an inner homograph; in this case, it is hidden from direct visi-
bility, but not hidden from all visibility, and can be accessed using selector syntax:

procedure P is
X: Integer;

procedure Q is
X: Integer; -- Local declaration hides the outer declaration

begin
X := 2; -- The local declaration is directly visible

P.X := 3; -- The global declaration is visible, but not directly

end Q;

begin
Q;

end P;

Some declarations are hidden from all visibility §8.3(4–20); in particular, once an inherited decla-
ration is overridden, there is no way to name it.

There are special visibility rules for context clauses §10.1.6.
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15.9 Overloading

The rules for overloading are described in §8.6. As with the visibility rules, they are quite com-
plex, but you will rarely need to understand the details. At worst, the compiler will be unable
to disambiguate the use of a name, and you can supply additional syntax such as an expanded
name or a qualification.

Overloading resolution is done within each complete context §8.6(4–6) such as a declaration
or a statement. An interpretation of the context is determined by first using the syntax and the
visibility rules to list the possible interpretations. A possible interpretation is acceptable if it obeys
the overloading rules, that is, if the interpretation fits the expected type or profile defined in the
Name Resolution Rules. The concept of expected type must be extended to consider the cases
of class-wide, universal and access types; see §8.6(25) for details. Overloading is also affected
by the preference for root numeric types §8.6(29) as discussed in Section 13.11.

15.9.1 Case study: overloading

Consider the following program:

over

1 procedure Over is
2 function F(A: Integer) return Boolean is
3 begin
4 return False;

5 end F;

6

7 function F(A: Integer) return Integer is
8 begin
9 return 1;

10 end F;

11

12 function F(A: Long_Integer) return Boolean is
13 begin
14 return False;

15 end F;

16 begin
17 if F(1) then null; else null; end if;
18 end Over;

The syntax rules of the if-statement ‡17 require that the condition be an expression §5.3(3).
Therefore, all three functions are possible interpretations. However, the Name Resolution Rule
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§5.3(4) specifies that the condition must be of a boolean type. Therefore, only the first and third
functions are acceptable interpretations. Since there must be only one acceptable interpretation
§8.6(28, 31), the call to F is ambiguous and the program illegal. If the third function were not
declared, overloading resolution would succeed, choosing the first function as the only ac-
ceptable interpretation. Alternatively, you could write the parameter as a qualified expression
F(Long_Integer’(1)) to disambiguate the call.

Projects

1. Experiment with pragma Inline and see how it affects running time and memory require-
ments.

2. Extend the case study in Section 15.6 and implement as many of the methods of the Java
class System as you can; use renaming wherever possible.

3. Develop a package that uses table lookup to compute sine, cosine and tanget for each degree
in the range 0..90. Modify the package so that it works for any value, positive or negative,
and use interpolation for fractions of a degree.

Quizzes

Quiz 1:

procedure Proc1(I: in Integer) is
begin

Put(I);

end Proc1;

procedure Proc2(I: in Positive) renames Proc1;

Proc2(0);
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Quiz 2:

package P is
Mode: Integer;

end P;

package body P is
begin

Mode := 777;

end P;

with P; use P;

procedure Main is
begin

Put(Mode);

end Main;

Quiz 3:

package P is
procedure Proc1(I: in Positive);

procedure Proc2(I: in Natural);

procedure Proc3(I: in Natural) renames Proc1;

end P;

package body P is
procedure Proc1(I: in Positive) is
begin

null;
end Proc1;

procedure Proc2(I: in Natural) renames Proc1;

end P;

Quiz 4:

N: Integer := 5;

procedure Proc is
N: Integer := 10;

begin
Put(N);

Put(Main.N);

end Proc;

Proc;
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Quiz 5:

procedure Proc(X: in Integer; Y: in Integer := 2) is
begin

Put(X*Y);

end Proc;

procedure Proc(Z: in Integer; Y: in Float := 3.0) is
begin

Put(Z*Integer(Y));

end Proc;

procedure Proc(X: in out Integer) is
begin

Put(X);

end Proc;

Proc(Z => 4);

Proc(X => 5);

Quiz 6:

package P is
procedure Proc;

end P;

package body P is
procedure Proc is
begin

Put_Line("Hi from Proc in the package");

end Proc;

end P;

with P; use P;

procedure Main is
procedure Proc is
begin

Put_Line("Hi from Proc in the main subprogram");

end Proc;

begin
Proc;

end Main;
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Quiz 7:

package P is
type T is tagged null record;
procedure Proc(X: T);

end P;

package body P is
procedure Proc(X: T) is
begin

Put_Line("Parent");

end Proc;

end P;

with P; use P;

package Q is
type T1 is new T with null record;

private
procedure Proc(X: T1);

end Q;

package body Q is
procedure Proc(X: T1) is
begin

Put_Line("Derived");

end Proc;

end Q;

with Q; use Q;

procedure Main is
A: T1;

begin
Proc(A);

end Main;
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Quiz 8:

function F return Integer is
begin

return 1;

end F;

function F return Float is
begin

return 1.0;

end F;

Put(F);

Put(Integer(F));

Quiz 9:

package Names is new Ada.Strings.Bounded.Generic_Bounded_Length(16);

Hello: String := "Hello";

use type Names.Bounded_String;

Put_Line(Names.To_String(2 * Hello));

Put_Line(2 * Hello);

Quiz 10:

with Ada.Text_IO;

package P is
procedure Proc(N: Ada.Text_IO.Count);

end P;

use Ada.Text_IO;

package body P is
procedure Proc(N: Ada.Text_IO.Count) is
begin

for I in 1..N loop
Put_Line("*");

end loop;
end Proc;

end P;
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Containers

The Ada library contains packages for data structures called containers §A.18. The containers are
generic packages that can be instantiated for any nonlimited type. There are separate packages
for definite and indefinite types, because indefinite types must be implemented using pointers
and thus are less efficient. The container library also includes generic procedures for sorting
arrays §A.18.16 (see Section 9.4).

The subprograms in the container packages are required to be reentrant, as are all subpro-
grams in Annex A §A(3). The containers are not “thread-safe,” so subprograms that operate on
a single object should not be called from different tasks without additional synchronization.

The description of the container library takes over 50 pages of the ARM. In this chapter, we
limit the presentation to the concepts that you need to know in order to use containers; a case
study using containers was given in Section 11.3.

There are six containers. Two are encapsulations of physical data structures: Vector imple-
ments extensible arrays, and Doubly_Linked_List implements what its name says it does. A
map is a data structure that associates values with keys. The container Hashed_Maps uses a
hashing function on the keys to efficiently store and retrieve the values, while Ordered_Maps

maintains a data structure that enables efficient sequential access. A set is a data structure that
contains only values with no duplication. Here, too, there are two containers: Hashed_Sets and
Ordered_Sets.

Ada 95

There are several open source container libraries for Ada 95:

• Ada 95 Booch Components
http://sourceforge.net/projects/booch95;

• Ada Structured Library
http://sourceforge.net/projects/adasl;

• Charles Container Library
http://home.earthlink.net/~matthewjheaney/charles/index.html.

307
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16.1 Concepts

16.1.1 The root package

The root package Ada.Containers declares two types: a modular type Hash_Type for defining
the result returned by a hash function, and an integer type Count_Type for parameters and
results representing the number of elements in a container or the number of elements to insert
into a container or to delete from it.

16.1.2 Comparing elements and keys

Each of the container packages has a generic formal function parameter for equality of elements
of the container:

§A.18.2

83 The actual function for the generic formal function "=" on Element_Type values is
expected to define a reflexive and symmetric relationship and return the same result
value each time it is called with a particular pair of values. . . .

Ordered maps have a generic formal function parameter for comparing keys:

§A.18.6

56 The actual function for the generic formal function "<" on Key_Type values is
expected to return the same value each time it is called with a particular pair of key
values. It should define a strict ordering relationship, that is, be irreflexive,
asymmetric, and transitive. . . .

and there is a similar parameter for comparing elements of ordered sets §A.18.9(79).
Hashed maps have a generic formal function parameter for computing the equivalence of

keys:

§A.18.5

42 Two keys K1 and K2 are defined to be equivalent if Equivalent_Keys (K1, K2) returns
True.

44 The actual function for the generic formal function Equivalent_Keys on Key_Type
values is expected to return the same value each time it is called with a particular
pair of key values. It should define an equivalence relationship, that is, be reflexive,
symmetric, and transitive.
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and there is a similar parameter for for computing the equivalence of elements in hashed sets
§A.18.8(64,66).

The distinction between equal keys and equivalent keys is that unequal keys can have the
same hash values if different representations of the same key are allowed. For example, two
strings might be hashed to the same value if one is the same as the other except for case
("Current_Value" is equivalent to "current_value"), and dates could be in different formats
("11/12/1948" is equivalent to "11.12.1948").

To facilitate changing the data structure in a program from a hashed container to an ordered
container, the ordered containers declare (non-generic) functions for computing equivalence
defined in terms of the generic formal function for "<". For ordered maps, the definition is:

§A.18.6

55 Two keys K1 and K2 are equivalent if both K1 < K2 and K2 < K1 return False, using the
generic formal "<" operator for keys. Function Equivalent_Keys returns True if Left
and Right are equivalent, and False otherwise.

There is a similar definition for Equivalent_Elements in ordered sets §A.18.9(78).

16.1.3 Cursors

Cursors are used to “point to” elements of a container:

§A.18

2 . . . Each container includes a cursor type. A cursor is a reference to an element within
a container. Many operations on cursors are common to all of the containers. . . .

All container packages declare functions First and Last which return values of type Cursor:

First Position Last

? ? ?

Many subprograms take a parameter Position of type Cursor. The concept is a generalization
of an index into an array or an access value that points to a node in a linked list. When deleting
an element from a container, a value of type cursor must be supplied to indicate which element
to delete, and, similarly, a value of type cursor indicates the place to insert a new element.
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16.1.4 Iterators

An iterator is a procedure that receives as parameters a container and an access to a procedure
with a parameter of type Cursor; it automatically invokes the procedure with the parameter
pointing to each element of the container. For ordered containers, the cursor will reference the
elements in the natural order of the elements. Iterators were demonstrated in the case study in
Section 11.3.

16.1.5 Copying vs. in-place processing

The container packages all declare the function:

function Element(Position: Cursor) return Element_Type;

for returning an element of a container, and a procedure:

procedure Replace_Element(

Container: in out Vector; Position: in Cursor; New_Item: in Element_Type);

for replacing an element of a container with a new value.
Both of these subprograms involve copying an element. Sometimes, we may wish to avoid

this; for example, suppose that the element of a container is:

type Data_Type is
record

Empty: Boolean;

Data: String(1..4095);

end record;

Evaluating the expression Element(Position).Empty is very inefficient because entire record
will be copied just to read a single component.

The following procedures perform in-place read and write of the values of an element:

procedure Query_Element(

Position: in Cursor;

Process: not null access procedure(Element: in Element_Type));

procedure Update_Element(

Container: in out Vector;

Position: in Cursor;

Process: not null access procedure(Element: in out Element_Type));

Their use is somewhat complicated, because Query_Element has no provision for returning the
element and Update_Element cannot be called with new components to update the element.
Instead, nested subprograms are used, as shown in the following program.
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First, we declare the type and a container:

query

1 with Ada.Text_IO, Ada.Containers.Doubly_Linked_Lists;

2 procedure Query is
3 type Data_Type is
4 record
5 Empty: Boolean;

6 Data: String(1..4095);

7 end record;
8

9 package Data_Lists is
10 new Ada.Containers.Doubly_Linked_Lists(Element_Type => Data_Type);

11 List: Data_Lists.List;

Next, a function is defined that takes a cursor and returns the value of the component Empty:

12 function Is_Empty(Position: in Data_Lists.Cursor) return Boolean is
13 Empty_Element: Boolean;

14

15 procedure Is_Element_Empty(D: Data_Type) is
16 begin
17 Empty_Element := D.Empty;

18 end Is_Element_Empty;

19

20 begin
21 Data_Lists.Query_Element(Position, Is_Element_Empty’Access);

22 return Empty_Element;

23 end Is_Empty;

Query_Element is called with an access to the nested procedure Is_Element_Empty, which
copies the value of the component to the variable Empty_Element that is global to the nested
procedure. When Query_Element returns, this value is then returned by the outer function.

This technique is called downward closure: the closure—the procedure Is_Element_Empty,
together with its context, the variable Empty_Element—is passed “down” into the procedure
Query_Element as a parameter of access-to-subprogram type.

The main program inserts two elements and then queries the Empty components:

24 begin
25 List.Append(Data_Type’(True, (others => ’ ’)));

26 List.Append(Data_Type’(False, "Hello World" & (12..4095 => ’ ’)));

27 Ada.Text_IO.Put_Line(Boolean’Image(Is_Empty(List.First)));

28 Ada.Text_IO.Put_Line(Boolean’Image(Is_Empty(List.Last)));

29 end Query;
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16.1.6 Tampering with cursors and elements

Some subprograms of the container libraries take parameters that are of access-to-subprogram
type; for example, Iterate applies the subprogram to all elements of a container. It is important
that a procedure passed as a parameter not tamper with the cursor of the container, in the sense
of modifying the cursor when the container implementation does not expect it to be done.
Similarly, some subprograms require that the subprogram passed as a parameter not tamper
with the elements of the container. For each of the containers, the precise meaning of “tamper
with” is defined.

The procedures Query_Element and Update_Element for reading and writing elements in-
place do not tamper with elements.

16.2 Vectors

§A.18.2

1 . . . A vector container allows insertion and deletion at any position, but it is
specifically optimized for insertion and deletion at the high end (the end with the
higher index) of the container. A vector container also provides random access to its
elements.

4 A vector container may contain empty elements. Empty elements do not have a
specified value.

A vector is similar to an array, allowing both sequential and random access to its elements:

564 (empty) 214 (empty)

First Last

? ?

The main difference between a vector and an array is that a vector can expand automatically,
so we don’t have to choose a maximum size when an object is declared.

§A.18.2

2 A vector container behaves conceptually as an array that expands as necessary as
items are inserted. The length of a vector is the number of elements that the vector
contains. The capacity of a vector is the maximum number of elements that can be
inserted into the vector prior to it being automatically expanded.

When using vectors it is important to be aware of the overhead associated with the expan-
sion of the data structure. One way to implement expansion is simply to allocate a new, larger,
array and to copy the elements of the smaller array to the new one:
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564 (empty) 214 (empty)

First Last

? ?

? ? ? ?

564 (empty) 214 (empty) (empty) (empty) (empty)

First Last

? ?

This retains the efficiency of accessing individual elements, but will be inefficient for large
arrays; furthermore, the processing required to copy the array elements can occur at an unpre-
dictable time, which can make vectors inappropriate for real-time systems.

Ada.Containers.Vectors is a generic package with the following formal parameters:

§A.18.2

6 generic
type Index_Type is range <>;

type Element_Type is private;
with function "=" (Left, Right : Element_Type) return Boolean is <>;

package Ada.Containers.Vectors is ...

The package defines the private type Vector (with deferred constant Empty_Vector), the pri-
vate type Cursor (with deferred constant No_Element), a generic package for sorting, and nu-
merous subprograms for manipulating vectors. When a position in a vector is required—for
example, Replace_Element needs a parameter telling it which element to replace—it may be
given either as an index value or as a cursor value.

16.3 Doubly-linked lists

The doubly-linked list is a familiar data structure:

-
�

-
�

-
�

564 214 332 928

First Last

? ?

Compared with arrays and vectors, lists have a number of important disadvantages: significant
overhead for the pointers and the inefficiency of locating a specific element since there are no
indices. The advantages of the list data structure are:
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• Memory is allocated only for elements that are created; there are no “empty” elements.
• It is possible to insert and delete arbitrary elements of the list very efficiently by just copying

a few pointers.

Since there is no index type, there are only two generic formal parameters:

§A.18.3

5 generic
type Element_Type is private;
with function "=" (Left, Right : Element_Type) return Boolean is <>;

package Ada.Containers.Doubly_Linked_Lists is ...

16.4 Maps

Maps are used when there is a many-one relationship between keys and elements; that is, every
key maps into exactly one element, but many keys may map into the same element.

§A.18.4

5 A map contains pairs of keys and elements, called nodes. Map cursors designate
nodes, but also can be thought of as designating an element (the element contained
in the node) for consistency with the other containers. There exists an equivalence
relation on keys, whose definition is different for hashed maps and ordered maps. A
map never contains two or more nodes with equivalent keys. The length of a map is
the number of nodes it contains.

Definitions and subprograms common to hashed and ordered maps are given in §A.18.4.

16.4.1 Hashed maps

In a hashed map, an element is stored at a location based upon the result of a hash function that
is computed from the key associated with the element. An array can be used to store the key-
element pairs and the value returned by the hash function is used as an index into the array.
However, it is possible for two different keys to result in the same hash value, in which case
we say that the two keys clash. One way of to handle clashes is for the array to hold pointers to
linked lists for key-element pairs that hash to the same value:
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? ? ?

null null

27.65
564

null

13.39
332

null

10.32
928

null

27.65
214

?

If the hash function results in few clashes, the data structure is very efficient, because most
elements can be retrieved in a constant amount of time: the time needed to compute the hash
function plus the time required to check the key that the hash array points to. If the number of
clashes is large, the data structure is less efficient, because the correct key must be found by a
linear search of the keys that hash to the same value.

The range of values of the keys can be much larger than the number of “slots” in the data
structure. For example, if the keys are long strings, the range of values is extremely large, but
the number of slots needed for efficient hashing is a small multiple of the number of key-
element pairs to be stored.

The hash function is given as a generic actual parameter, so different functions can be used
in different instantiations:

§A.18.5

2 generic
type Key_Type is private;
type Element_Type is private;
with function Hash (Key : Key_Type) return Hash_Type;

with function Equivalent_Keys (Left, Right : Key_Type) return Boolean;

with function "=" (Left, Right : Element_Type) return Boolean is <>;

package Ada.Containers.Hashed_Maps is ...

For strings, there is a predefined library hash function Ada.Strings.Hash:

§A.4.9

1 The library function Strings.Hash has the following declaration:

2 with Ada.Containers;

function Ada.Strings.Hash (Key : String) return Containers.Hash_Type;
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Similar functions exist for bounded and unbounded strings, as well as for the wide and wide-
wide types.

Writing good hash functions is not an easy task, especially since the performance of a hash
function depends on the data that is stored in the hashed data structure.

16.4.2 Ordered maps

In an ordered map, the elements are stored in a data structure that allows efficient retrieval of
the elements in the order of the value of their keys. An ordered map could be stored as a sorted
array, as we did in our first implementation of priority queues in Chapter 5, but that would be
inefficient because inserting a new element would require that an arbitrary number of elements
be moved. A better implementation is to use a linked list whose elements are maintained in
sorted order:

- - -

214 332 564 928
27.65 13.39 27.65 10.32

First Last

? ?

The smallest element can be retrieved in contstant time, but inserting a new element requires
a linear search of the list. For that reason, trees are the preferred implementation of ordered
maps. If balanced trees (such as red-black trees) are used, inserting a new element can be done
in time proportional to the logarithm of the number of elements in the tree.

The generic formal part is as expected:

§A.18.6

2 generic
type Key_Type is private;
type Element_Type is private;
with function "<" (Left, Right : Key_Type) return Boolean is <>;

with function "=" (Left, Right : Element_Type) return Boolean is <>;

package Ada.Containers.Ordered_Maps is ...



16.5 Sets 317

16.5 Sets

§A.18.7

1 . . . A set container allows elements of an arbitrary type to be stored without
duplication. . . .

There are hashed and ordered sets; see §A.18.7 for the common definitions and declarations.
Hashed sets are like hashed maps except that values are stored without separate keys:

? ? ?

null null

27.65

null

13.39

null

10.32

null

The element 27.65 appeared twice with different keys in the hashed map above, but here only
the value is of interest.

The hash function is from elements to hash values:

§A.18.8

2 generic
type Element_Type is private;
with function Hash (Element : Element_Type) return Hash_Type;

with function Equivalent_Keys (Left, Right : Key_Type) return Boolean;

with function "=" (Left, Right : Element_Type) return Boolean is <>;

package Ada.Containers.Hashed_Sets is ...

Ordered sets can be stored as linked lists ordered by the values of the elements:

- -

10.32 13.39 27.65

First Last

? ?

As for ordered maps, balanced trees should be used for an efficient implementation.
The generic formal part is very simple:
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§A.18.6

2 generic
type Element_Type is private;
with function "<" (Left, Right : Element_Type) return Boolean is <>;

with function "=" (Left, Right : Element_Type) return Boolean is <>;

package Ada.Containers.Ordered_Sets is ...

16.6 Indefinite containers

For each container Ada.Containers.X, there is a container Ada.Containers.Indefinite_X.
The generic formal parameter:

type Element is private;

is declared with unknown discriminants:

type Element(<>) is private;

so that it can be instantiated with indefinte types, such as unconstrained arrays like String or
discriminated records with no defaults. For the map containers, the type Key_Type is similarly
defined to be indefinite. The subprograms for indefinite containers are almost exactly the same
as those for the definite containers.

Indefinite containers require an extra level of indirection, so they require more processing
time and memory than definite containers:

"the" "quick" "brown" "fox"
? ? ? ?

-
�

-
�

-
�

First Last

? ?
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16.6.1 Case study: simulation with containers

The rocket simulation can use an indefinite ordered set to store the events:

rocketcon

1 with Ada.Containers.Indefinite_Ordered_Sets;

2 with Root_Event;

3 package Event_Queue is new
4 Ada.Containers.Indefinite_Ordered_Sets(

5 Root_Event.Event’Class, Root_Event."<", Root_Event."=");

The main program must be modified to call the subprograms of the container library instead
of the previous implementations of priority queues:

6 with Event_Queue;

7 with Root_Event.Engine, Root_Event.Telemetry, Root_Event.Steering;

8 use Root_Event;

9 procedure RocketCon is
10 Q: Event_Queue.Set;

11 Position: Event_Queue.Cursor;

12 begin
13 for I in 1..15 loop
14 Event_Queue.Insert(Q, Engine.Main_Engine_Event’(Engine.Create));

15 ...

16 end loop;
17

18 while not Event_Queue.Is_Empty(Q) loop
19 Position := Event_Queue.First(Q);

20 Root_Event.Simulate(Event_Queue.Element(Position));

21 Event_Queue.Delete(Q, Position);

22 end loop;
23 end RocketCon;

Language Comparison

The Ada library is based upon the Charles Container Library, which, in turn, was
based on the Standard Template Library (STL) of C++. This library, originally de-
signed by Alex Stepanov and influenced by the earlier Booch Components for Ada,
includes sequential and associative structures, all of which are templates param-
eterized by component type (like Ada’s generic units).
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Language Comparison

Since Java uses reference semantics, all containers are indefinite with the extra
time and space overhead. Since the elements of definite containers in Ada can
be of elementary types like Integer, there is no need for “autoboxing” that is
used in Java to facilitate the use of containers containing primitive types. There
is no universal type in Ada comparable to the type Object in Java, so truly het-
erogenous containers whose elements are of any type are not possible in Ada.
However, closely related types like discriminated and class-wide types can be
used as elements of indefinite containers, as was demonstrated in the simulation
case study (Section 7.1).

Projects

1. Modify the simulation case study in Section 7.1 to use an ordered map container instead of
an ordered set.

2. An indefinite container can be used even if the elements are definite like fixed strings. Mea-
sure the time and space overhead of using indefinite instead of definite containers.

3. Write a program to demonstrate the difference between equal keys and equivalent keys in
hashed containers.

Quizzes

Quiz 1:

package Float_Vector is new Ada.Containers.Vectors(Natural, Float);

V: Float_Vector.Vector;

Put_Line(Ada.Containers.Count_Type’Image(V.Length));
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Quiz 2:

package Float_Map is
new Ada.Containers.Ordered_Maps(Natural, Float);

V: Float_Map.Map;

P: Float_Map.Cursor;

B: Boolean;

V.Insert(1, 1.0, P, B);

V.Insert(1, 2.0, P, B);

V.Insert(1, 3.0);

Quiz 3:

subtype Name is String(1..8);

package Name_Set is
new Ada.Containers.Hashed_Sets(Name, Ada.Strings.Hash, "=");

S: Name_Set.Set;

S.Insert("Goodbye ");

S.Insert("Earth ");

S.Insert("Hello ");

S.Insert("World ");

Put_Line(Name_Set.Element(S.First));
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Interfaces and Multiple Inheritance

A derived type inherits the components and primitive subprograms defined in its ancestor
types; it can add new components and subprograms, as well as override the inherited sub-
programs. Dynamic dispatching within a derivation class can be efficiently implemented using
dispatch tables (Section 8.13).

Suppose that we wish to derive a type from more than one parent type; for example:

type Root_Event is tagged
record

Time: Simulation_Time;

end record;
procedure Simulate(E: Root_Event);

type Thermodynamic_Model is tagged
record

Temperatures: Temperature_Array;

end record;
procedure Update(M: in out Thermodynamic_Model);

type Engine_Event is new
Root_Event and Thermodynamic_Model with ... -- ???

This is called multiple inheritance (MI) and is supported by languages like C++ and Eiffel.
It is not easy to give a clear definition of the semantics of multiple inheritance. The problems

arise when the same component is inherited from more than one ancestor:

type T1 is tagged record A: Integer; end record;
type T2 is tagged record A: Integer; end record;

type T3 is new T1 and T2 with ... --- ???

Which component A is inherited?

323
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The same problem can occur if a concrete subprogram is inherited from two ancestors.
To avoid these semantic difficulties, Ada supports a limited form of MI that is well known

from Java. Components can only be inherited from a single ancestor called its parent, while sub-
programs can be inherited from its parent (including subprograms that were inherited from the
parent’s parent and so on), as well as from other ancestors called its progenitors that are not
related to the parent. More precisely, progenitors declare abstract or null subprograms that the
derived type must implement.

An object of a derived type can be used in any context where the progenitor type is expected:

type Derived_Type is new Parent_Type and Progenitor_Type;

procedure Proc(P: Progenitor_Type’Class) is
begin

P.Any_Operation; -- Any primitive operation for Progenitor_Type

end Proc;

D: Derived_Type := ...

Proc(D); -- OK, because Derived_Type is derived from

-- Progenitor_Type

Since Progenitor_Type is a progenitor of Derived_Type, we are assured that Any_Operation is
either null or overridden by the derived type.

Ada has a construct called interfaces for declaring types to be used as progenitors of derived
types. The first part of this chapter presents the rules for interfaces, followed by two case stud-
ies; then interfaces for concurrent programming are discussed. The final part of the chapter
presents generic formal private and tagged types that can be used—at some inconvenience—to
implement a form of MI.

Ada 95

Interfaces are new in Ada 2005. Generics can be used for MI as shown in Sections 17.5–17.6.

17.1 Interfaces

The declaration of an interface type consists of the reserved word interface, optionally pre-
ceeded by a reserved word that characterizes the interface, and optionally followed by a list of
other interface types:
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§3.9.4

2 interface_type_definition ::=
[limited | task | protected | synchronized] interface [and interface_list]

3 interface_list ::= interface_subtype_mark { and interface_subtype_mark }

An interface type is an abstract tagged type §3.9.4(4) with the following limitations:

§3.9.4

8 An interface type has no components.
10 All user-defined primitive subprograms of an interface type shall be abstract

subprograms or null procedures.

Since an interface type is a tagged type, the normal rules for defining primitive operations hold.
A derived type must be derived from a single tagged type, but it can also be derived from

an arbitrary number of interface types.

§3.4

2 derived_type_definition ::=
[abstract][limited] new parent_subtype_indication

[[and interface_list] record_extension_part]

3 The parent_subtype_indication defines the parent subtype; its type is the parent type.
The interface_list defines the progenitor types (see 3.9.4). A derived type has one
parent type and zero or more progenitor types.

The derived type inherits the primitive operations of each of its progenitor types §3.4(17); since
the operations are primitive they can, of course, be overridden. In fact, operations that are not
null procedures are abstract and must be overridden, unless the derived type is itself abstract.

As can be seen from the syntax in §3.9.4(2–3), an interface type can itself have progenitors:

§3.9.4

9 An interface_subtype_mark in an interface_list names a progenitor subtype; its type is
the progenitor type. An interface type inherits user-defined primitive subprograms
from each progenitor type in the same way that a derived type inherits user-defined
primitive subprograms from its progenitor types (see 3.4).

This can be used to “group” sets of operations from several interfaces into one interface.
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17.1.1 Limited interfaces

An interface type can be declared to be limited, meaning, as usual, that predefined equality
and copying are not defined for the type. While a type that is derived from a limited type is
automatically limited, this is not true for a type derived from a limited interface type §7.5(6):

type Parent is tagged ...

type Limited_Interface is limited interface;

type Derived is Parent and Limited_Interface;

If an object of type Derived is used in a context that expects Limited_Interface, predefined
equality and copying are simply not used.

Conversely, however, a type that implements a nonlimited interface must be non-limited,
because it can be used in a context where predefined equality and copying are expected to be
available.

17.2 Case study: displayable events

We define an interface Displayable that is intended for types that can be displayed, perhaps
by a graphical user interface:

inter

1 package Display is
2 type Displayable is interface;
3 function Format(D: Displayable) return String is abstract;
4 procedure Set_Size(D: in out Displayable; N: Natural) is abstract;
5 function Get_Size(D: Displayable) return Natural is abstract;
6

7 procedure Display_Item(D: in Displayable’Class);

8 end Display;

A type implementing this interface is required to supply a function Format that returns a string
representation of the type. Since an interface cannot have components, the implementing type
must contain a component for the size of a displayed object; the display software can access
this components through the subprograms Set_Size and Get_Size that must also be supplied
by the implementing type.

The display software itself is represented by the subprogram Display_Item. Its parameter
is of type Displayable’Class so it is not primitive and thus need not be null or abstract. It
can be called with an actual parameter that is of any type that implements Displayable. In the
case study, this subprogram simply prints the object and its size using the subprograms that
are guaranteed to be implemented:
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9 with Ada.Text_IO;

10 package body Display is
11 procedure Display_Item(D: in Displayable’Class) is
12 begin
13 Ada.Text_IO.Put_Line(

14 "Size = " & Integer’Image(D.Get_Size) & ", " & D.Format);

15 end Display_Item;

16 end Display;

Since Format and Get_Size are declared abstract, these calls need to be dispatching. Distin-
guished receiver syntax (Section 8.1) is used; alternatively, we could have written:

Ada.Text_IO.Put_Line(

"Size = " & Integer’Image(Get_Size(D)) & ", " & Format(D));

This syntax clarifies that the call is dispatching: the actual parameter D is class-wide ‡11, while
the formal parameters of the two subprograms are of specific types ‡27,41.

To demonstrate the use of the interface, we naturally turn to the discrete event simulation,
and declare a type Displayed_Event with parent Event and with one progenitor Displayable:

19 with Display;

20 package Root_Event is
21 type Event is abstract tagged private;
22 -- Primitive operations for Event

23

24 type Displayed_Event is abstract
25 new Event and Display.Displayable with private;
26 procedure Set_Size(D: in out Displayed_Event; N: Natural);

27 function Get_Size(D: Displayed_Event) return Natural;

Since Displayed_Event is declared abstract, the function Format is inherited as an abstract
function. The other subprograms are overridden with concrete subprograms.

The private tagged type Displayed_Event is completed with a record containing the com-
ponent Size that is needed to implement the subprograms Set_Size and Get_Size:

28 private
29 type Event is abstract tagged record ... end record;
30

31 type Displayed_Event is abstract
32 new Event and Display.Displayable with
33 record
34 Size: Natural := 10;

35 end record;
36 end Root_Event;
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The implementation of the package body can be found in the software archive.
We can now derive concrete event types from Displayed_Event; for simplicity, the imple-

mentation is limited to the engine event types:

37 package Root_Event.Engine is
38 type Engine_Event is new Displayed_Event with private;
39 function Create return Engine_Event;

40 procedure Simulate(E: in Engine_Event);

41 function Format(D: Engine_Event) return String;

42

43 -- Declare Main_Engine_Event and Aux_Engine_Event as usual

44 private
45 ...

46 end Root_Event.Engine;

In the package body, Format is represented by a function that returns the external tag of its
parameter. The other modification is to include a value for the component Size when creating
an object of type Displayed_Event.

The main program creates events and sets their sizes before putting them on the queue:

47 with Priority_Queue; with Root_Event.Engine;

48 use Root_Event;

49 with Display;

50 procedure Inter is
51 package Event_Queue is new Priority_Queue(Event’Class);

52 Q: aliased Event_Queue.Queue;

53 begin
54 for I in 1..5 loop
55 declare
56 M: Engine.Main_Engine_Event :=

57 Engine.Main_Engine_Event’(Engine.Create);

58 A: Engine.Aux_Engine_Event :=

59 Engine.Aux_Engine_Event’(Engine.Create);

60 begin
61 Set_Size(Displayed_Event(M), 100+I);

62 Event_Queue.Put(M, Q);

63 Set_Size(Displayed_Event(A), 200+I);

64 Event_Queue.Put(A, Q);

65 end;
66 end loop;

When the events are removed from the queue, the primitive operation Simulate of the parent
type Root_Event is called, followed by the subprogram Display_Item. This subprogram takes
a class-wide parameter so a type conversion must be done:
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67 while not Event_Queue.Empty(Q) loop
68 declare
69 EC: Event’Class := Event_Queue.Get(Q’Access);

70 begin
71 Root_Event.Simulate(EC);

72 Display.Display_Item(Display.Displayable’Class(EC));

73 end;
74 end loop;
75 end Inter;

The conversion to Displayable’Class succeeds because the object is of a type derived from
Displayable_Event, which has as a progenitor the interface Displayable. We are also as-
sured that it implements the primitive operations of the interface needed by the procedure
Display_Item.

17.3 Case study: storable interface*

The section contains a large case study that demonstrates that entirely different types can im-
plement the same interface. We implement a store that can hold values of any type and then use
it to store values of two quite different types.

17.3.1 The store

Values can be stored if they are of a type that implements the interface Storable:

store

1 package Store is
2 type Storable is interface;
3 function Default(S: Storable) return Storable’Class is abstract;
4 procedure Copy(From: in Storable; To: out Storable) is abstract;

Any type that wishes to be stored must implement the procedure Copy to copy elements to
and from the store. The function Default returns a value of class-wide type that is of the same
type as the formal parameter and initialized to a default value. It is used for technical reasons
discussed below.

The store is defined in this package as the private type Table. The elements that are placed
in the store will be identified using a fixed string type Handle_Type:
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5 type Table (Size: Natural) is private;
6 subtype Handle_Type is String(1..8);

7

8 procedure Insert(

9 Handle: in Handle_Type; S: in Storable’Class; T: in out Table);

10 procedure Remove(

11 Handle: in Handle_Type; S: out Storable’Class; T: in out Table);

12 function Has_Element(

13 Handle: in Handle_Type; T: Table) return Boolean;

14

15 Table_Overflow, Copy_Error: exception;

The store is an array of records, where each record contains a handle and a reference to the
value it stores. Indirect allocation has to be used because Storable’Class is not definite:

16 private
17 Blanks: constant Handle_Type := (others => ’ ’);

18 type Item is
19 record
20 Handle: Handle_Type := Blanks;

21 Reference: access Storable’Class;

22 end record;
23

24 type Item_Array is array(Natural range <>) of Item;

25 type Table(Size: Natural) is
26 record
27 Contents: Item_Array(0 .. Size);

28 end record;
29 end Store;

The function Has_Element searches for a matching handle:

30 package body Store is
31 function Has_Element(

32 Handle: in Handle_Type; T: Table) return Boolean is
33 begin
34 for I in T.Contents’Range loop
35 if Handle = T.Contents(I).Handle then
36 return True;

37 end if;
38 end loop;
39 return False;

40 end Has_Element;
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Remove and Insert use the procedure Copy to copy values to and from the store. Remove is
simple, because we assume that Handle identifies an element of Table that matches the con-
crete type supplied for the formal parameter S. If not, Constraint_Error will be raised and
propagated to the caller:

41 procedure Remove(

42 Handle: in Handle_Type; S: out Storable’Class; T: in out Table) is
43 begin
44 for I in T.Contents’Range loop
45 if Handle = T.Contents(I).Handle then
46 T.Contents(I).Handle := Blanks;

47 Copy(From => T.Contents(I).Reference.all, To => S);

48 return;
49 end if;
50 end loop;
51 end Remove;

Inserting a value is more difficult. Once we find the index I of an unused table entry, we have
to allocate an object whose access is assigned to T.Contents(I).Reference ‡57, and then copy
the value in S to that object using Copy ‡58:

52 procedure Insert(

53 Handle: in Handle_Type; S: in Storable’Class; T: in out Table) is
54 begin
55 for I in T.Contents’Range loop
56 if T.Contents(I).Handle = Blanks then
57 T.Contents(I) := (Handle, new Storable’Class’(Default(S)));

58 Copy(From => S, To => T.Contents(I).Reference.all);
59 return;
60 end if;
61 end loop;
62 raise Table_Overflow;

63 end Insert;

64 end Store;

We must ensure that the allocated object is of the same concrete type as the type of the actual
parameter supplied for the class-wide formal parameter S. The function Default is overridden
for each type that implements Storable. Since the formal parameter S of Insert is of class-wide
type, when used as an actual parameter to Default, it dispatches to the overriding subprogram
for its type. The function returns a value of the same type and this is used in the allocator to
allocate an object of the correct type. This is not dispatching on a function result as described
in Section 8.10, because the dispatching is determined by the parameter S of Default.
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Let use now turn to implementing two types whose values can be stored. The first type will
be our events, while the second will be matrices of two representations. The next subsection
presents a program for the matrices. Following that we will show the modifications needed so
that the two types can implement the interface Storable.

17.3.2 Matrices

Two common representations of matrices are dense matrices and sparse matrices. The former are
stored as two-dimensional arrays: 

1.0 0.0 0.0

0.0 4.0 0.0

0.0 0.0 9.0


For a sparse matrix, a record is defined for each non-zero element of the matrix:

type Item is record
Value: Float;

X, Y: Natural;

end record;

and these elements are stored in a data structure like a one-dimensional array or a linked list.
Clearly, if there are very few non-zero elements in the matrix, even very large matrices can be
stored using little memory, although the time required for reading and writing elements of the
matrix will be larger than for a two-dimensional array, where elements can be read and written
in constant time by indexing. Regardless of the representation chosen, the set of subprograms
used to work with a matrix is uniform, so we declare an interface:

store

1 package Matrices is
2 type Matrix is interface;
3 function Element(M: Matrix; X, Y: Natural) return Float is abstract;
4 procedure Set_Element(

5 M: in out Matrix; X, Y: in Natural; Value: in Float) is abstract;
6

7 function Rows(M: Matrix) return Natural is abstract;
8 function Cols(M: Matrix) return Natural is abstract;
9 procedure Zero(M: in out Matrix) is abstract;

10 function "="(M1, M2: Matrix) return Boolean is abstract;
11 end Matrices;

The visible part of the package specification of the implementation for dense matrices is:
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12 with Matrices;

13 package Dense_Matrices is
14 type Dense_Matrix(Rows, Cols: Natural) is new Matrices.Matrix with private;
15

16 function Element(M: Dense_Matrix; X, Y: Natural) return Float;

17 procedure Set_Element(

18 M: in out Dense_Matrix; X, Y: Natural; Value: Float);

19 procedure Zero(M: in out Dense_Matrix);

20

21 function Rows (M: Dense_Matrix) return Natural;

22 function Cols (M: Dense_Matrix) return Natural;

23 function "="(M1, M2: Dense_Matrix) return Boolean;

24 private
25 ...

26 end Dense_Matrices;

The interface is implemented by a private extension Dense_Matrix, while the subprograms are
non-abstract subprograms with the same profiles except for the type name. For sparse matrices,
the visible part of the package specification is exactly the same except that Dense is replaced
by Sparse. The representations of the types in the private parts and the implementations of the
subprograms can be found in the software archive.

A package of matrix operations can be implemented using only the subprograms provided
by the interface Matrix. Here are a few examples:

27 with Matrices;

28 package Matrix_Operations is
29 function Trace(M: Matrices.Matrix’Class) return Float;

30 function "="(M1, M2: Matrices.Matrix’Class) return Boolean;

31 procedure Display(M: Matrices.Matrix’Class);

32 end Matrix_Operations;

These operations are implemented by dispatching the class-wide formal parameter to the spe-
cific subprograms for Element, Set_Element and so on:

33 package body Matrix_Operations is
34 function Trace(M: Matrices.Matrix’Class) return Float is
35 Result : Float := 0.0;

36 begin
37 for J in 1 .. M.Rows loop
38 Result := Result + M.Element (J, J);

39 end loop;
40 return Result;

41 end Trace;
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42 function "="(M1, M2: Matrices.Matrix’Class) return Boolean is ...

43

44 procedure Display(M: Matrices.Matrix’Class) is ...

45 end Matrix_Operations;

17.3.3 Deriving the types from Storable

The matrix and event packages must be modified so that the types are derived (also) from
the interface Storable and implement the abstract subprograms Default and Copy. For dense
matrices, the package specification is:

46 with Matrices, Store;

47 package Dense_Matrices is
48 type Dense_Matrix (Rows, Cols: Natural) is
49 new Matrices.Matrix and Store.Storable with private;
50

51 -- Override the primitive subprograms of the interface Matrix

52 ...

53

54 -- Override the primitive subprograms of the interface Storable

55 procedure Copy(From: in Dense_Matrix; To: out Dense_Matrix);

56 function Default(S: Dense_Matrix) return Store.Storable’Class;

57 private
58 -- as before

59 end Dense_Matrices;

The implementation of Copy for two-dimensional arrays is very simple:

60 package body Dense_Matrices is
61 -- Other subprograms as before

62

63 procedure Copy(From: in Dense_Matrix; To: out Dense_Matrix) is
64 begin
65 if From.Rows /= To.Rows or From.Cols /= To.Cols then
66 raise Store.Copy_Error;

67 else
68 To.Contents := From.Contents;

69 end if;
70 end Copy;
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The function Default builds an aggregate with zero content whose number of rows and num-
ber of columns are taken from the formal parameter. The value is converted to Storable’Class

before returning:

71 function Default(S: Dense_Matrix) return Store.Storable’Class is
72 begin
73 return Store.Storable’Class(

74 Dense_Matrix’(S.Rows, S.Cols, Contents => (others => (others => 0.0)))

75 );

76 end Default;

77 end Dense_Matrices;

The modifications to Sparse_Matrices are similar, although the implementation of Copy is no
longer a simple assignment; see the software archive for details.

Events are now derived from Storable_Event which has Event as its parent and Storable

as its progenitor:

78 with Store;

79 package Event_Package is
80 type Event is abstract tagged record ... end record;
81

82 type Storable_Event is
83 abstract new Event and Store.Storable with null record;
84

85 type Engine_Event is new Storable_Event with
86 record
87 Fuel, Oxygen: Natural := 0;

88 end record;
89 function Create return Engine_Event;

90 procedure Simulate(E: in Engine_Event);

91 function Default(S: Engine_Event) return Store.Storable’Class;

92 procedure Copy(From: in Engine_Event; To: out Engine_Event);

93

94 -- Other types and primitive operations

95 end Event_Package;

Each event type must override the primitive subprograms of Storable as well as those of
Event. The implementation of these subprograms is straightforward and can be found in the
software archive. The archive also contains two main programs, one for testing the matrix im-
plementations, and another that tests that the store can hold both matrices and events.
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17.4 Synchronized interfaces

This Section depends on the concepts and case studies in Chapter 18.
Synchronized, task, and protected interfaces are intended to group families of types that

share run-time behavior in a concurrent program.

§3.9.4

5 An interface with the reserved word limited, task, protected, or synchronized in
its definition is termed, respectively, a limited interface, a task interface, a protected
interface, or a synchronized interface. In addition, all task and protected interfaces are
synchronized interfaces, and all synchronized interfaces are limited interfaces.

Task interfaces must be implemented by task types, protected interfaces by protected types,
while synchronized types can be implemented by either tasks or protected types §3.9.4(13–15).

For a task interface, the primitive operations of the progenitors will be implemented by
entries of a task type:

§9.1

9.2 For a task declaration with an interface_list, the task type inherits user-defined
primitive subprograms from each progenitor type (see 3.9.4), in the same way that a
derived type inherits user-defined primitive subprograms from its progenitor types
(see 3.4). If the first parameter of a primitive inherited subprogram is of the task type
or an access parameter designating the task type, and there is an entry_declaration
for a single entry with the same identifier within the task declaration, whose profile
is type conformant with the prefixed view profile of the inherited subprogram, the
inherited subprogram is said to be implemented by the conforming task entry.

Similarly, for a protected interface, the primitive operations will be implemented by protected
subprograms or entries of a protected type §9.4(11.1).

17.4.1 Case study: synchronized buffer

In this case study, we declare a Buffer as an interface type and show how it can be implemented
by either a task type or a protected type; the implementations are adapted from the case studies
in Chapter 18. Let us start with a protected interface:
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protectpc

1 package Buffer_Interface is
2 type Buffer is protected interface;
3 procedure Append(B: in out Buffer; N: in Integer) is abstract;
4 procedure Take (B: in out Buffer; N: out Integer) is abstract;
5 end Buffer_Interface;

As with all interfaces, the subprograms must be abstract (or null procedures).
This interface is the progenitor of a protected type:

6 with Buffer_Interface;

7 package Protected_Buffer is
8 type Index is mod 8;

9 type Buffer_Array is array(Index) of Integer;

10

11 protected type Buffer is new Buffer_Interface.Buffer with
12 entry Append(I: in Integer);

13 entry Take (I: out Integer);

14 private
15 B: Buffer_Array;

16 In_Ptr, Out_Ptr, Count: Index := 0;

17 end Buffer;

18 end Protected_Buffer;

The body of the package simply encapsulates the body of the protected type taken from the
source code of the case study in Section 18.1.1.

To use the protected type, a protected object is allocated:

19 with Ada.Text_IO; use Ada.Text_IO;

20 with Buffer_Interface, Protected_Buffer;

21 procedure ProtectPC is
22 Buffer: access Buffer_Interface.Buffer’Class :=

23 new Protected_Buffer.Buffer;

24 task Producer;

25 task body Producer is
26 begin
27 for N in 1..200 loop
28 Put_Line("Producing " & Integer’Image(N));

29 Buffer.Append(N);

30 end loop;
31 end Producer;

32 ...

33 end ProtectPC;
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Buffer is of type Buffer_Interface.Buffer’Class, so the call to Append is a dispatching.
Alternatively, the buffer can be declared as a task interface:

taskpc

1 package Buffer_Interface is
2 type Buffer is task interface;
3 procedure Append(B: in out Buffer; N: in Integer) is abstract;
4 procedure Take (B: in out Buffer; N: out Integer) is abstract;
5 end Buffer_Interface;

and implemented by a task type:

6 with Buffer_Interface;

7 package Task_Buffer is
8 task type Buffer is new Buffer_Interface.Buffer with
9 entry Append(I: in Integer);

10 entry Take (I: out Integer);

11 end Buffer;

12 end Task_Buffer;

Of course, the best design is to declare the interface as a synchronized interface that can be
implemented by either a task type or a protected type:

syncpc

1 package Buffer_Interface is
2 type Buffer is synchronized interface;
3 procedure Append(B: in out Buffer; N: in Integer) is abstract;
4 procedure Take (B: in out Buffer; N: out Integer) is abstract;
5 end Buffer_Interface;

The choice of implementation can be made at run-time and the call will be dispatched:

6 with Ada.Text_IO; use Ada.Text_IO;

7 with Buffer_Interface, Protected_Buffer, Task_Buffer;

8 procedure SyncPC is
9 use Buffer_Interface;

10 function Get_Buffer return access Buffer’Class is
11 begin
12 if ... then
13 return B: access Buffer’Class := new Protected_Buffer.Buffer;

14 else
15 return B: access Buffer’Class := new Task_Buffer.Buffer;

16 end if;
17 end Get_Buffer;
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18 Buffer: access Buffer’Class := Get_Buffer;

19 ...

20 end SyncPC;

17.5 Generic formal tagged private types*

A generic formal private type can be declared as tagged §12.5.1(2):

generic
type Item is tagged private;

The category of types for the actual parameter is the category of all nonlimited tagged types.
As with ordinary formal private types, limited may be specified in the formal parameter
§12.5.1(17), in which case any tagged type may be the actual parameter. What can you do with
any tagged type? Obviously, you cannot call any of its primitive operations, since these will be
different for different tagged types, but any tagged type can be extended.

17.5.1 Case study: generic tagged types

In the following program, an arbitrary tagged type Item is extended to define a new type
Displayed_Item with an additional component and primitive subprograms:

mixin1

1 generic
2 type Item is tagged private;
3 with function Format(D: Item) return String is <>;

4 with function Create return Item is <>;

5 package Display is
6 type Displayed_Item is new Item with private;
7 function Create return Displayed_Item;

8 procedure Display_Item(D: in Displayed_Item);

9 procedure Set_Size(D: in out Displayed_Item; N: Natural);

10 function Get_Size(D: Displayed_Item) return Natural;

11 private
12 type Displayed_Item is new Item with
13 record
14 Size: Natural := 10;

15 end record;
16 end Display;



340 17 Interfaces and Multiple Inheritance

The new subprograms are implemented in the package body:

17 with Ada.Text_IO;

18 package body Display is
19 function Create return Displayed_Item is
20 begin
21 return (Item’(Create) with Size => <>);

22 end Create;

23

24 procedure Display_Item(D: in Displayed_Item) is ...

25 procedure Set_Size(D: in out Displayed_Item; N: Natural) is ...

26 function Get_Size(D: Displayed_Item) return Natural is ...

27 end Display;

Display is instantiated with Root_Event.Event:

28 with Display;

29 with Root_Event; use Root_Event;

30 package Displayed_Event is new Display(Event);

The package declaration Root_Event must be modified so that the type and subprograms are
no longer abstract because the parameters of the generic package are not abstract. The events
themselves are now derived from the type in the instantiation Displayed_Event:

31 with Displayed_Event;

32 package Root_Event.Engine is
33 type Engine_Event is new Displayed_Event.Displayed_Item with private;
34 ...

35 end Root_Event.Engine;

The functions Create use extension aggregates:

36 with Ada.Text_IO; use Ada.Text_IO;

37 with Root_Event.Random_Time;

38 package body Root_Event.Engine is
39 G: Random_Time.Generator;

40 function Create return Engine_Event is
41 begin
42 return (Displayed_Event.Create with
43 Fuel => Random_Time.Random(G) mod 100,

44 Oxygen => Random_Time.Random(G) mod 500);

45 end Create;

46 ...

47 end Root_Event.Engine;
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The main subprogram is similar to that used in the interface case study and can be found in the
software archive.

This programming paradigm is a form of MI called mixin inheritance. We have no inten-
tion of creating objects of type Display.Displayed_Item; instead, we “mix in” the prop-
erties of this type with an existing parent type (here Event) to derive a new type (here
Displayed_Event.Displayed_Item).

17.6 Generic formal derived types*

A generic formal derived type can be declared §12.5.1(3):

with Root_Event;

generic
type Item is new Root_Event.Event with private;

The actual parameter can be Event or any type descended from it. According to the contract,
within the generic unit any primitive operation of Event can be used, since any descendant
of Event is certain to supply that operation, either by inheritance or by overriding. Additional
operations that were declared for the descendants upon extension are of course not available,
since they are different for each type.

17.6.1 Case study: generic derived types

We now give another version of the mixin program where the generic formal parameter is
derived from Event, rather than from an unspecified tagged type:

mixin2

1 with Root_Event;

2 generic
3 type Item is new Root_Event.Event with private;
4 package Display is
5 type Displayed_Item is new Item with private;
6 function Create return Displayed_Item;

7 procedure Display_Item(D: in Displayed_Item);

8 procedure Set_Size(D: in out Displayed_Item; N: Natural);

9 function Get_Size(D: Displayed_Item) return Natural;

10 private
11 -- as before

12 end Display;
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The primitive operations of the tagged type are copied into the instance §12.3(16), so Create

can be used directly in the generic package body, and need not be supplied as an additional
generic parameter.

Projects

1. Implement sparse matrices using a two-dimensional list structure.

type Element;

type Element_Ptr is access all Element;

type Element is record
Value: Float;

X, Y: Natural;

Next_In_Row, Next_In_Col: Element_Ptr;

end record;

type Row_Or_Col is array (Natural range <>) of Element_Ptr;

type Sparse_Matrix (Rows, Cols: Natural) is
new Matrix and Storable with record

Row_Array: Row_Or_Col(0 .. Rows);

Col_Array: Row_Or_Col(0 .. Cols);

end record;

2. Implement the store as a hash table. The function Hash will be a primitive operation of the in-
terface Storable and each type implementing the interface must override it with a concrete
function.

3. Implement a Linda tuple space [2, Chapter 9] using a synchronized interface.

Quizzes

Quiz 1: The equality operation from Matrix_Operations is called with an expanded name in
the main program of the storable case study:

MD: Dense_Matrices.Dense_Matrix(3,3);

MS: Sparse_Matrices.Sparse_Matrix(3,3);

IO.Put(Matrix_Operations."="(MD1, MS1));

Can a use_type_clause be given so that it can be called in infix notation: MD1 = MS1?
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Quiz 2:

package Buffer_Interface is
type Buffer is task interface;
procedure Append(B: in Buffer; N: in Integer) is abstract;
procedure Take (B: in Buffer; N: out Integer) is abstract;

end Buffer_Interface;

Quiz 3:

type T is limited interface;

protected type P is new T with
procedure Proc;

end P;

protected body P is ...

Put_Line(P’External_Tag);

Quiz 4:

type T is task interface;
type P is protected interface;
type G is tagged null record;
type D is new G and T and P with null record;



Chapter 18

Concurrency

An Ada program contains one or more tasks that execute concurrently. (Tasks are called processes
or threads in other languages; the distinctions are not important in this context.) We use the
term concurrent in preference to “parallel” to emphasize that the parallelism is conceptual,
not necessarily physical. A correct multitasking Ada program will produce the same result,
whether it is run on a multiprocessor system or on a time-shared single processor, though the
multiprocessor system will (hopefully) be significantly faster.

For convenience, the material on concurrency is divided into two chapters, with more ad-
vanced material in Chapter 19. Multitasking programs are frequently written for embedded
computer systems where hardware interfaces and program performance are critical; the con-
structs in Ada that support embedded systems are discussed in Chapters 20–21.

Chapters 18–21 are not an introduction to concurrent programming, for which the reader is
referred to the author’s textbook [2]. The software archive accompanying that book contains
implementations in Ada of many concurrent and distributed algorithms. More advanced text-
books are [4] on concurrent and real-time programming in Ada 2005, and [5] on algorithms for
building real-time systems.

A task is like a subprogram because it has data declarations, a sequence of statements and ex-
ception handlers; the difference is that a thread of control is associated with each task. The thread
is implemented using a data structure containing pointers to the task’s current instruction and
to local memory such as a stack segment. If each task is assigned a processor, the processors will
execute the instructions of the tasks simultaneously. If there are more tasks than processors—at
worst, if there is only one processor—a scheduler will assign processors to tasks according to
some scheduling algorithm.

In Ada, there are three main constructs for writing concurrent programs:

• Load and store of shared variables (Section 20.7); these are usually too low-level.
• Protected objects for asynchronous sharing of resources.
• Rendezvous for direct task-to-task synchronous communication.

(See Sections 21.11–21.12 for other, low-level, constructs defined in the Real-Time Annex.)

345
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The term asynchronous means that different tasks need not access the protected object at
the same time. In fact, a task can insert data into a protected object and then terminate, while
a second task later extracts the data from the object. The rendezvous is synchronous because
both tasks must participate in the synchronization and communication at the same time. In the
next two sections we will solve a simple problem, once using protected objects and once using
rendezvous so that we can compare the constructs.

18.1 Tasks and protected objects

The problem that we will solve is called the producer–consumer problem. One or more tasks pro-
duce data elements which must be transferred to one or more consumer tasks. An example is
a network interface that “produces” data downloaded from the net and a web browser that
“consumes” the data. A buffer is used for data structure transformation (the data may arrive
in large blocks, which must be stored in a data structure so that the browser can process one
element at a time), and for flow control (the browser must be blocked if no data is currently
available, and, similarly, the interface must not download data if the data structure is full).

18.1.1 Case study: producer–consumer (protected object)

The following program solves the producer–consumer problem. For simplicity, the data ele-
ments are integer values and the array data structure can hold 8 elements:

protectpc

1 with Ada.Text_IO; use Ada.Text_IO;

2 procedure ProtectPC is
3 type Index is mod 8;

4 type Buffer_Array is array(Index) of Integer;

Buffer is a protected object. Syntactically, a protected unit (which can be either a single object, or
a type that can be used to declare objects §9.4(1)) is like a package, with a declaration divided
into a visible part and a private part, and a body §9.4(2–9).

5 protected Buffer is
6 entry Append(I: in Integer);

7 entry Take (I: out Integer);

8 private
9 B: Buffer_Array;

10 In_Ptr, Out_Ptr, Count: Index := 0;

11 end Buffer;
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A protected unit cannot contain type declarations, so the data types used to implement the
buffer have been declared in the enclosing procedure. The visible part of the protected object
contains the declaration of two entries Append and Take. The private part contains the decla-
ration of the components belonging to the protected object. Components can only be declared
in the private part, while operations such as entries can be declared anywhere in the protected
unit declaration §9.4(4–6).

The bodies of the entries are contained within the body of the protected unit:

12 protected body Buffer is
13 entry Append(I: in Integer) when Count < Index’Last is
14 begin
15 B(In_Ptr) := I;

16 Count := Count + 1;

17 In_Ptr := In_Ptr + 1;

18 end Append;

19

20 entry Take(I: out Integer) when Count > 0 is
21 begin
22 I := B(Out_Ptr);

23 Count := Count - 1;

24 Out_Ptr := Out_Ptr + 1;

25 end Take;

26 end Buffer;

The statements in the entries are the usual ones used to append data to a buffer and to take
data from a buffer. The boolean-valued expressions after the word when are called barriers and
are used to ensure that data will not be appended to a full buffer or taken from an empty buffer.
The synchronization of calls to the entries and subprograms of a protected object is described
in detail in the next subsection.

Protected objects are passive and just “sit there” waiting for their entries and subprograms to
be called. Threads of control are associated with tasks. In this case study, there is one producer
task which produces 200 integer values and appends them to the buffer:

27 task Producer;

28 task body Producer is
29 begin
30 for N in 1..200 loop
31 Put_Line("Producing " & Integer’Image(N));

32 Buffer.Append(N);

33 end loop;
34 end Producer;

A task body is syntactically like a procedure body §9.1(6). The task declaration ‡27 must be
present even if it is empty §9.1(8).
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For the consumers, we declare a task type so that more than one consumer can be declared:

35 task type Consumer(ID: Integer);

36 task body Consumer is
37 N: Integer;

38 begin
39 loop
40 Buffer.Take(N);

41 Put_Line(Integer’Image(ID) & " consuming " & Integer’Image(N));

42 end loop;
43 end Consumer;

The task type ‡35 has a discriminant §9.1(2,16), which is used for configuring the tasks with ID
numbers when they are declared. The consumer tasks contain infinite loops: as long as there is
data that can be taken from the buffer, they will do so. When the producer task terminates after
appending 200 values to the buffer, the consumer tasks will be blocked.

We can now declare the two consumer tasks C1 and C2:

44 C1: Consumer(1);

45 C2: Consumer(2);

46 begin
47 null;
48 end ProtectPC;

The main program has just the null statement, because all the execution is performed by the
threads of control associated with the other three tasks. These tasks are activated just after the
begin of the main subprogram, which must wait until the tasks have terminated. Since the
consumer tasks do not terminate, make sure that you know how to break the execution of a
program on your computer (usually ctrl-c) before running this example. See Section 19.1 for
details on task activation and termination.

Task units and protected units are not compilation units; they must be declared within a
compilation unit such as a subprogram or a package. However, a task or protected body can be
separately compiled as a subunit §10.1.3(10).

18.1.2 Protected actions

How is a protected unit different from a package? The subprograms of a package can be called
concurrently from multiple tasks §6.1(35), possibly leading to race conditions. The operations
of a protected unit are mutually exclusive, meaning that only one will be executed at a time.
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§9.5.1

4 A new protected action is not started on a protected object while another protected
action on the same protected object is underway, unless both actions are the result of
a call on a protected function. This rule is expressible in terms of the execution
resource associated with the protected object:

5 • Starting a protected action on a protected object corresponds to acquiring the
execution resource associated with the protected object, either for concurrent
read-only access if the protected action is for a call on a protected function, or for
exclusive read-write access otherwise;

6 • Completing the protected action corresponds to releasing the associated execution
resource.

The statements of Append in the producer task and those of Take in a consumer task should not
be executed simultaneously so that they will not try to update Count simultaneously. In fact,
this will not occur, because one of the tasks will acquire the lock (“execution resource”) granting
it exclusive read-write access. The other task must wait until the entry body is complete and
the lock released.

Functions allow multiple read-only access to the data of a protected object, provided that no
subprogram or entry has access to the protected object. See Section 18.6 for more on protected
subprograms.

In addition to mutual exclusion, a protected object can also provide flow control.

§9.5.3

7 • An entry of a protected object is open if the condition of the entry_barrier of the
corresponding entry_body evaluates to True; otherwise it is closed. . . .

8 For the execution of an entry_call_statement, evaluation of the name and of the
parameter associations is as for a subprogram call (see 6.4). The entry call is then
issued: For a call on an entry of a protected object, a new protected action is started on
the object (see 9.5.1). The named entry is checked to see if it is open; if open, the entry
call is said to be selected immediately, and the execution of the call proceeds as follows:

10 • For a call on an open entry of a protected object, the corresponding entry_body is
executed (see 9.5.2) as part of the protected action.

12 If the named entry is closed, the entry call is added to an entry queue (as part of the
protected action, for a call on a protected entry), and the call remains queued until it
is selected or cancelled; there is a separate (logical) entry queue for each entry of a
given task or protected object (including each entry of an entry family).

The barrier when Count > 0 ‡20 closes the Take entry when the buffer is empty; a con-
sumer calling Take will be enqueued on the entry queue for Take. Similarly, the barrier
when Count < Index’Last ‡13 closes the Append entry when the buffer is full. Suppose that
the buffer is empty and that one or more calls from consumer tasks are enqueued on the queue
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for Take. In this state, only the producer will now succeed in passing its barrier and commenc-
ing the execution of its protected action Append.

Since the completion of a protected operation can potentially change the value of a barrier,
the barriers are reevaluated, so that if one of them is now open, its entry queue can be serviced:

§9.5.3

13 When a queued call is selected, it is removed from its entry queue. Selecting a queued
call from a particular entry queue is called servicing the entry queue. An entry with
queued calls can be serviced under the following circumstances:

15 • If after performing, as part of a protected action on the associated protected object,
an operation on the object, other than a call on a protected function, the entry is
checked and found to be open.

To continue with the example, when Append completes, the value of Count is now 1, the
barrier when Count > 0 evaluates to true, and the entry queue for the Take operation will be
serviced as part of the same protected action. Count will become 0 again, closing the barrier, so
that additional calls from consumer tasks that are on the queue remain blocked. The protected
action is now completed.

18.1.3 Preference for servicing queues

Consider the following scenario, where we assume that there are multiple producer tasks. First,
a consumer task attempts to Take an element from an empty buffer and blocks on the entry
queue; then, several producers attempt to Append elements to the buffer. One will acquire the
lock and be allowed to execute the entry, appending its element to the buffer. When the entry
body is completed, there are two ways to continue:

• Another producer can be allowed into the entry body to append its element.
• The queue can be serviced so that a call from the enqueued consumer can take the newly

appended element.

§9.5.3

18 For a protected object, the above servicing of entry queues continues until there are
no open entries with queued calls, at which point the protected action completes.

An entry call (here from a producer) will not begin a new protected action until the ongoing
protected action is completed; in other words, there is a preference for servicing calls already
enqueued on an entry queue.

Figure 18.1 shows how protected objects should be viewed: an outer shell protecting access
to the resources, and an inner set of operations and entry queues. Entry calls, represented by
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parallelograms with arrows, may be in one of three places: (i) executing an entry body (such
as Append), (ii) blocked in an entry queue (the one for Take), or (iii) attempting to enter the
protected object. Calls that have already passed the outer shell are considered part of the “club”
and have preference over calls that have not yet been commenced.

Buffer
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Fig. 18.1 Protected object

The preference for serving entry queues implements immediate resumption of blocked tasks.
This is done for two reasons:

• If one task modifies a variable that will open the barrier for a blocked task, the awakened task
can assume that no third task will intervene and change the state. Therefore, the condition
need not be checked again.

• Blocked tasks will not be starved by a stream of new entry calls.

There is no queue associated with the mutual exclusion on the access to the protected object
itself. This will not be a problem if protected entries and subprograms are kept very short, so
that a call either quickly executes the entry body or is quickly enqueued because its barrier is
false; in either case the mutual exclusion is released.
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Language Comparison

A protected object is similar to a Java class, all of whose methods are
synchronized. A synchronized method cannot be executed unless the caller has
obtained the lock associated with an object, just as the execution of a protected
entry or subprogram requires that the calling task obtain the “associated execu-
tion resource.” In Java, however, there are no queues, no barriers and hence no
immediate resumption of an unblocked process. java.util.concurrent (added
to version 5 of Java) is an extensive library of constructs for implementing syn-
chronization of concurrent programs.

18.2 Rendezvous

Let us examine more closely the body for the entry Append:

entry Append(I: in Integer) when Count < Index’Last is
begin

B(In_Ptr) := I;

Count := Count + 1;

In_Ptr := In_Ptr + 1;

end Append;

The parameter I and the assignment of its value to a component of the buffer B are used to
communicate—to pass data—between the calling task and the protected object. But increment-
ing the values of Count and In_Ptr is solely concerned with updating the internal data struc-
ture of the protected object. Nevertheless, the calling task is responsible for executing these
statements, so there is less potential for concurrent execution. There would be no point in uti-
lizing the extra concurrency for two short instructions, but one can imagine that the buffer is
stored in a data structure that requires significant internal processing between insertions and
extractions.

Additional concurrency can be implemented by making the buffer itself a task:
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Synchronization and communication is done directly with the buffer task. The producer and
consumer both initiate calls on entries of the buffer task, but in the case of the consumer, the
direction of the data flow (denoted by the small arrow) is opposite the direction of the call.



18.2 Rendezvous 353

18.2.1 Case study: producer–consumer (rendezvous)

The following program solves the producer–consumer problem using a buffer task, whose dec-
laration contains the declaration of the two entries Append and Take:

taskpc

1 with Ada.Text_IO; use Ada.Text_IO;

2 procedure TaskPC is
3 type Index is mod 8;

4 type Buffer_Array is array(Index) of Integer;

5

6 task Buffer is
7 entry Append(I: in Integer);

8 entry Take (I: out Integer);

9 end Buffer;

Unlike protected units, the declaration of a task can contain only entries and representation
clauses §13.1(2), even in the private part §9.1(4–5).

A task is an active entity and its body contains declarations and a sequence of statements
just like a procedure. The body of the task consists of a single nonterminating loop statement:

10 task body Buffer is
11 B: Buffer_Array;

12 In_Ptr, Out_Ptr, Count: Index := 0;

13 begin
14 loop
15 select
16 when Count < Index’Last =>

17 accept Append(I: in Integer) do
18 B(In_Ptr) := I;

19 end Append;

20 Count := Count + 1;

21 In_Ptr := In_Ptr + 1;

22 or
23 when Count > 0 =>

24 accept Take(I: out Integer) do
25 I := B(Out_Ptr);

26 end Take;

27 Count := Count - 1;

28 Out_Ptr := Out_Ptr + 1;

29 end select;
30 end loop;
31 end Buffer;
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Synchronization and communication with the buffer task are done using a selective accept
statement that is described later in this section.

The producer and consumer tasks are unchanged from the previous solution.

18.2.2 Accept statements

The task Producer calls the entry Append of the task Buffer. The calling task and the called task
must execute a rendezvous at an accept_statement.

§9.5.2

3 accept_statement ::=
accept entry_direct_name [(entry_index)] parameter_profile [do

handled_sequence_of_statements
end [entry_identifier]];

24 For the execution of an accept_statement, the entry_index, if any, is first evaluated
and converted to the entry index subtype; this index value identifies which entry of
the family is to be accepted. Further execution of the accept_statement is then
blocked until a caller of the corresponding entry is selected (see 9.5.3), whereupon
the handled_sequence_of_statements, if any, of the accept_statement is executed,
with the formal parameters associated with the corresponding actual parameters of
the selected entry call. Upon completion of the handled_sequence_of_statements, the
accept_statement completes and is left. . . .

25 The above interaction between a calling task and an accepting task is called a
rendezvous. After a rendezvous, the two tasks continue their execution
independently.

(Entry indices are discussed in Section 18.5).
The basic principle of a rendezvous is that the first party to reach the rendezvous point must

wait until the second party arrives. The semantics of a rendezvous are illustrated by the time
lines below, where solid lines indicate intervals during which the process is ready or executing
and dashed lines indicate intervals when the process is blocked on the statement written within
parentheses.

Let us ignore the selective_accept statement for now and consider the following diagram,
where task Buffer executes until it reaches the accept statement for Append ‡17, at which point
it is blocked:
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Buffer - - -
(accept Append) accept Append

Producer - -
(Buffer.Append)

The task Producer executes concurrently until it reaches the entry call Buffer.Append. Now
the producer is blocked and the buffer executes the sequence of statements within the accept
statement. When the rendezvous is completed, both tasks are made ready; in a single-processor
system, the scheduler will have to choose one of them.

The following diagram shows another possibility. Here the producer task blocks when it
calls the entry, because the buffer task has not yet reached the accept statement. The producer
task is made ready again only when the accept statement has been completed.

Buffer - - -
accept Append

Producer - -
(Buffer.Append)

Before commencing the rendezvous, in and in out parameters are transferred to the accept-
ing task; upon completion, out and in out parameters are transferred back to the calling task.
Data transfer is bidirectional even though the entry call is unidirectional. Furthermore, the call
is asymmetrical: the calling task knows the name of the accepting task but not conversely.

When the rendezvous is complete, both tasks can proceed independently, so the producer is
not blocked while the internal data structure is updated ‡20–21. The increased concurrency has
been obtained at the price of additional overhead associated with the extra task, and additional
context switches to block the caller and then resume it.

18.2.3 Selective accept

Suppose that the task Buffer arrives at the rendezvous, but neither producers nor consumers
have yet issued a call. We would like Buffer to serve the first task that calls one of its entries;
however, a task body is just a sequence of statements that have to be executed one after another.
If we had written:

loop
accept Append do ...

accept Take do ...

end loop;
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the Buffer would block pending a call from a producer, even if there were waiting consumers
and data in the buffer.

The selective accept statement enables a task to carry out a rendezvous with any waiting
calling task, or, if there are none, to wait simultaneously for calls to multiple entries.

§9.7.1

2 selective_accept ::=
select

[guard] select_alternative
{ or

[guard] select_alternative }
[ else

sequence_of_statements ]
end select;

3 guard ::= when condition =>
4 select_alternative ::= accept_alternative | delay_alternative | terminate_alternative
5 accept_alternative ::= accept_statement [sequence_of_statements]

(The delay_alternative, terminate_alternative, and the else-part are discussed in Section 19.3.)
The semantics of the selective accept statement are as follows:

§9.7.1

14 A select_alternative is said to be open if it is not immediately preceded by a guard, or
if the condition of its guard evaluates to True. It is said to be closed otherwise.

15 For the execution of a selective_accept, any guard conditions are evaluated; open
alternatives are thus determined. . . . Selection and execution of one open alternative,
or of the else part, then completes the execution of the selective_accept; the rules for
this selection are described below.

The entry Append is guarded by Count < Index’Last ‡16, which is true only if the buffer is not
full; if so, the alternative is open. Similarly, the entry Take is guarded by Count > 0 ‡23, which
is true only if the buffer is not empty; if so, the alternative is open. If the buffer is neither full
nor empty, both guards are true and both alternatives are open.

§9.7.1

21 The exception Program_Error is raised if all alternatives are closed and there is no
else part.

Show that it is impossible for both alternatives to be closed; therefore, Program_Error will not
be raised in this program.
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Once the set of open alternatives is determined, the execution of the selective_accept state-
ment proceeds as follows:

§9.7.1

16 Open accept_alternatives are first considered. Selection of one such alternative takes
place immediately if the corresponding entry already has queued calls. If several
alternatives can thus be selected, one of them is selected according to the entry
queuing policy in effect (see 9.5.3 and D.4). When such an alternative is selected, the
selected call is removed from its entry queue and the
handled_sequence_of_statements (if any) of the corresponding accept_statement is
executed; after the rendezvous completes any subsequent sequence_of_statements of
the alternative is executed. If no selection is immediately possible (in the above
sense), and there is no else part, the task blocks until an open alternative can be
selected.

The buffer task will select one of the open alternatives with enqueued calls, if any, and per-
form a rendezvous. If there are no enqueued calls it will block, waiting for either a producer
or a consumer to call an entry. If one alternative is closed (say, the buffer is full, so the Append

alternative is closed), the buffer task will rendezvous with a task blocked on the entry for the
open alternative Take, if any, or it will block pending an entry call on that open alternative. A
new call by a producer to Append will be ignored because the alternative is closed.

The default entry queuing policy is FIFO_Queuing §D.4(7), so if there are two consumer tasks
waiting on the entry Take, they will be accepted in the order that they arrived. Other queuing
policies are discussed in Section 21.5.

18.3 Implementation of entry calls

Paragraph §9.5.3(13) (see page 350) talks about servicing a queued entry call, not a queued task.

§9.5.3

22 An implementation may perform the sequence of steps of a protected action using
any thread of control; it need not be that of the task that started the protected action.
. . .

Assume that the producer in the program using protected objects attempts to append an
item to a full buffer. The entry call Buffer.Append will be enqueued, the producer task will
be blocked and a consumer task will be allowed to execute. Eventually, the consumer task will
take an item from the buffer. Upon completion of the body of Take, servicing of the entry queue
can be done by the consumer task, as shown in the following diagram:
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Consumer - - - -
Buffer.Take Buffer.Append

Producer - -
(Buffer.Append)

In effect, appending an item is executed by the consumer on behalf of the producer. Upon
completion of the entry call, both tasks become ready.

In contrast, a rendezvous normally requires context switches:

Consumer -

6

-
(Buffer.Take)

Buffer - - - -

6
(select) accept Take accept Append

Producer - -
(Buffer.Append)

Assume that the buffer task is blocked on the selective accept statement and that the alterna-
tive for Append is closed because the buffer is full. The producer task blocks on the entry call
Buffer.Append. When the consumer task executes the call Buffer.Take, the rendezvous takes
place, removing an item from the buffer. When the selective accept is executed again, the al-
ternative for the entry Buffer.Append is now open and the entry call can be accepted. Two
extra context switches are needed (vertical arrows): one for the buffer task to execute its accept
statement and another to switch either to the producer or to the consumer task.

18.4 Case study: synchronization with rendezvous and protected objects

The concurrent program presented in this section employs both rendezvous and protected ob-
jects for synchronization. The case study will be used to present important constructs in Ada
tasking: entry families, the requeue statement and the abort statement. The problem is to im-
plement a synchronization scheme described by the following story:

The CEO (Chief Executive Officer) of a company likes to play golf. He does not allow him-
self to be interrupted by single employees with problems; instead, they must form them-
selves into groups before coming to consult him. The size of the group depends on the
department to which the employee belongs: engineering, marketing, finance. A waiting
group from finance has precedence over a group from marketing, which has precedence
over an engineering group.

Let us look first at the structure of the program (Figure 18.2). There will be one task for the
CEO and one task for each employee: engineers, salespersons in the marketing department,
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Fig. 18.2 The CEO program

and accountants in the finance department. These are declared as task types, and the tasks
themselves are dynamically allocated in the main subprogram. Protected objects of type Room

are used to synchronize the groups.
The program is contained within a main procedure; we start with the global declarations:

ceot

1 pragma Queuing_Policy(Priority_Queuing);

2 with Ada.Text_IO; use Ada.Text_IO;

3 procedure CEOT is
4 type Departments is (Engineering, Finance, Marketing);

5 type ID_Numbers is range 0..10;

6 Group_Size: constant array(Departments) of
7 ID_Numbers range 2..ID_Numbers’Last := (

8 Engineering => 5, Finance => 3, Marketing => 2);

The enumeration type Departments declares the groups and the integer type ID_Numbers is
used for the size of the groups. pragma Queuing_Policy is discussed Section 21.5.

The declaration of the CEO task contains three entry families: Wake to awaken the CEO
task, Invite_In, which each employee task calls to enter the CEO’s office, and Show_Out, upon
which employee tasks block until the consultation is finished:

9 task CEO is
10 entry Wake(Departments);

11 entry Invite_In(Departments)(ID: ID_Numbers);

12 entry Show_Out (Departments)(ID: ID_Numbers);

13 end CEO;
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Groups are synchronized in a waiting room that is implemented by a protected type. Its
body is placed in a subunit (Section 15.3) which will be explained later:

14 type Door_State is (Open, Closed);

15 protected type Room(Department: Departments; Size: ID_Numbers) is
16 entry Register;

17 procedure Open_Door;

18 private
19 entry Wait_for_Last_Member;

20 Waiting: ID_Numbers := 0;

21 Entrance: Door_State := Open;

22 Exit_Door: Door_State := Closed;

23 end Room;

24 protected body Room is separate;

The protected type has two discriminants that are used to specify the department and the size
of the group. Entry Register is called by an employee task wishing to join a group. Once the
correct number of employees for a group of this department is in the room, the Entrance is
closed and the group waits for the CEO to receive them. Procedure Open_Door is called by the
CEO to reset Entrance to True so that a new group can register.

The protected type has a private entry Wait_for_Last_Member that is used to block regis-
tering tasks until the last member of the group has arrived, at which point Exit_Door will be
opened. The component Waiting counts the number of waiting employee tasks.

The room for each department is an object of the protected type Room:

25 Engineering_Room: Room(Engineering, Group_Size(Engineering));

26 Finance_Room: Room(Finance, Group_Size(Finance));

27 Marketing_Room: Room(Marketing, Group_Size(Marketing));

The task body for the CEO is straightforward, consisting of a selective accept with an alter-
native for each of the three departments. The body of the accept statement for Wake is empty
because it serves simply as a synchronization point; no processing is done and no data is ex-
changed with the caller:

28 task body CEO is
29 I: ID_Numbers;

30 begin
31 loop
32 select
33 accept Wake(Finance);

The sequence of statements following the accept statement implements the CEO’s algorithm:
the employees are invited in, consult with the CEO and are then shown out. The syntax of the
selective accept statement is such that a (possibly guarded) accept statement must immediately
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follow select and each or, but an arbitrary sequence of statements may be included in the
alternative following the accept §9.7.1(5–6):

34 for N in 1..Group_Size(Finance) loop
35 accept Invite_In(Finance)(ID: ID_Numbers) do
36 I := ID;

37 end Invite_In;

38 end loop
39 -- Consult

40 for N in 1..Group_Size(Finance) loop
41 accept Show_Out(Finance)(ID: ID_Numbers) do
42 I := ID;

43 end Show_Out;

44 end loop;
45 Finance_Room.Open_Door;

For the other groups, the guards ‡47,51 in the selective accept statement use the Count attribute:
E’Count gives the number of tasks currently waiting in the queue for entry E §9.9(4–5):

46 or
47 when Wake(Finance)’Count = 0 =>

48 accept Wake(Marketing);

49 -- As above with Marketing replacing Finance

50 or
51 when Wake(Finance)’Count = 0 and Wake(Marketing)’Count = 0 =>

52 accept Wake(Engineering);

53 -- As above with Engineering replacing Finance

54 or
55 terminate;
56 end select;
57 end loop;
58 end CEO;

This is used to implement the precedence requirement: if the CEO finds that more than one
group is attempting to wake him, he will rendezvous with Wake(Marketing) only if there are
no tasks waiting in the queue for Wake(Finance). The guard for Wake(Engineering) is cor-
respondingly more complex. (There is a subtle race condition that prevents the precedence
requirement from being fulfilled without the use of pragma Queuing_Policy as explained in
Section 21.5.)

The employee tasks are very simple: an employee who needs to consult with the CEO reg-
isters at the department waiting room, waits until invited in and then consults with the CEO
until shown out. Each task declaration has a discriminant, which is used to give the task its ID
number. Delay statements of different durations are used to introduce some asymmetry into
the execution of the program:
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59 task type Finance_Task(ID: ID_Numbers);

60 task body Finance_Task is
61 begin
62 loop
63 delay 4.0;

64 Finance_Room.Register;

65 CEO.Invite_In(Finance)(ID);

66 CEO.Show_Out(Finance)(ID);

67 end loop;
68 end Finance_Task;

69

70 task type Marketing_Task(ID: ID_Numbers);

71 task body Marketing_Task is
72 -- As above with Marketing replacing Finance

73 task type Engineer_Task(ID: ID_Numbers);

74 task body Engineer_Task is
75 -- As above with Engineering replacing Finance

The tasks are allocated dynamically in loops so that each employee receives a distinct ID as
a discriminant constraint in the allocator.

76 type Finance_Ptr is access Finance_Task;

77 type Marketing_Ptr is access Marketing_Task;

78 type Engineer_Ptr is access Engineer_Task;

79 Accountants: array(1..5) of Finance_Ptr;

80 Salespersons: array(1..8) of Marketing_Ptr;

81 Engineers: array(1..7) of Engineer_Ptr;

82 begin
83 for I in Accountants’Range loop
84 Accountants(I) := new Finance_Task(ID_Numbers(I));

85 end loop;
86 -- Similarly for Salespersons and Engineers

Accesses to the tasks are stored in arrays so that the employees can be fired by using the
abort statement. The CEO task will terminate because it has a terminate alternative ‡55.
These constructs are explained in Section 19.1.

87 delay 15.0;

88 for I in Engineers’Range loop
89 abort Engineers(I).all;
90 end loop;
91 -- Similarly for Salepersons and Accountants

92 end CEOT;
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18.5 Entry families

Entry families are used to declare sets of related entries:

task CEO is
entry Wake(Departments);

entry Invite_In(Departments)(ID: ID_Numbers);

entry Show_Out(Departments)(ID: ID_Numbers);

end CEO;

§9.5.2

2 entry_declaration ::=
[overriding_indicator]
entry defining_identifier [(discrete_subtype_definition)] parameter_profile;

(On overriding indicators see Section 8.6; overriding of entries is discussed in Section 17.4.)

§9.5.2

20 An entry_declaration with a discrete_subtype_definition (see 3.6) declares a family of
distinct entries having the same profile, with one such entry for each value of the
entry index subtype defined by the discrete_subtype_definition. A name for an entry of
a family takes the form of an indexed_component, where the prefix denotes the
entry_declaration for the family, and the index value identifies the entry within the
family. The term single entry is used to refer to any entry other than an entry of an
entry family.

Each entry of the family is a distinct entry with its own queue. Entry families are somewhat
like arrays of entries: calls and accept statements for an entry of a family use indexed notation as
shown, for example, in ‡33, 35, 41, 65, 66. The index need not be constant, but it is not possible
to write an accept statement that will wait simultaneously on all the entries of a family. If D is
a variable, accept Wake(D) waits for an entry call on the queue corresponding to the current
value of D. This construct is used to perform a rendezvous sequentially with each member of
the family ‡34–44. Of course you would only use this construct if you knew that each entry
would actually be called; otherwise, the program could deadlock. See Section 19.3 for other
polling techniques, and Section 18.8 for the rules for entry families of protected objects.
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18.6 Protected subprograms

Let us now study the body of the protected object Room. The CEO task calls the protected proce-
dure Open_Door to indicate that the waiting room for this group can be re-opened:

98 separate(CEOT)
99 protected body Room is

100 procedure Open_Door is
101 begin
102 Entrance := Open;

103 end Open_Door;

§9.5.1

2 Within the body of a protected function (or a function declared immediately within a
protected_body), the current instance of the enclosing protected unit is defined to be
a constant (that is, its subcomponents may be read but not updated). Within the
body of a protected procedure (or a procedure declared immediately within a
protected_body), and within an entry_body, the current instance is defined to be a
variable (updating is permitted).

Unlike entries, protected procedures have no queues associated with them and a call is not
blocked once it passes the outer exclusion “shell” of the protected object.

Several tasks can execute protected functions concurrently provided that no other task is
executing a protected procedure or entry §9.5.1(4–5). The current instance of a protected unit is
a constant §9.5.1(2), so a function cannot modifying its components and no race conditions can
result. Protected functions are used to return a value that depends on the private components:

function Crowded return Boolean is
begin

return Waiting >= Group_Size / 2;

end Crowded;

An access to a protected subprogram §3.10(11) can be declared.

18.7 The requeue statement

As employee tasks call the entry Register to enter the Room, the calls will be enqueued upon
the private entry Wait_for_Last_Member until the last member of the group has entered. At
that point, it closes the Entrance door and opens the Exit_Door:
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108 entry Register when Entrance = Open is
109 begin
110 Waiting := Waiting + 1;

111 if Waiting < Size then
112 requeue Wait_for_Last_Member with abort;
113 else
114 Waiting := Waiting - 1;

115 Entrance := Closed;

116 Exit_Door := Open;

117 end if;
118 end Register;

The barrier of Wait_for_Last_Member is initially closed so that the tasks will be blocked until
the last task of the group has registered and opened the barrier:

119 entry Wait_for_Last_Member when Exit_Door = Open is
120 begin
121 Waiting := Waiting - 1;

122 if Waiting = 0 then
123 Exit_Door := Closed;

124 requeue CEO.Wake(Department) with abort;
125 end if;
126 end Wait_for_Last_Member;

127 end Room;

The implementation of the protected object Room is based on the concept of cascaded wakeup
and uses the requeue statement to move calling tasks from one entry to another. Initially,
tasks calling Register are requeued on the entry Wait_for_Last_Member ‡112. The barrier
of this entry Exit_Door=Open is false, so the calls will be enqueued. When the last member
of the group executes Register, it will set Exit_Door to Open ‡116, making the barrier of
Wait_for_Last_Member true. As each task completes its execution of this entry, the barrier is
re-evaluated and since it remains true, another waiting task will be unblocked. This cascade of
awakened tasks continues until all tasks enqueued on Wait_for_Last_Member are released and
their protected actions completed. The last released task will close Exit_Door ‡123 and awaken
the CEO by requeuing itself on the entry CEO.Wake for its department ‡124.
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§9.5.4

2 requeue_statement ::= requeue entry_name [with abort];

8 For the execution of a requeue on an entry of a target task, after leaving the enclosing
callable construct, the named entry is checked to see if it is open and the requeued
call is either selected immediately or queued, as for a normal entry call (see 9.5.3).

9 For the execution of a requeue on an entry of a target protected object, after leaving
the enclosing callable construct:

10 • if the requeue is an internal requeue (that is, the requeue is back on an entry of the
same protected object—see 9.5), the call is added to the queue of the named entry
and the ongoing protected action continues (see 9.5.1);

(with abort is discussed in Section 19.1.3.)
Room contains examples of requeue on both task entries ‡124 and protected entries ‡112.
Closing the entrance door ‡115 closes the barrier Entrance=Open of entry Register and pre-

vents other employees of the same type from overtaking the group that has been formed.
Requeue is also essential to avoid overtaking when awakening the CEO. Suppose that

a group of accountants has been formed, that is, the last task of the group has completed
Wait_for_Last_Member. Without requeue, the last accountant task would have to complete
the protected action and then call the entry CEO.Wake(Finance) from within the sequence of
statements of its task body:

Finance_Room.Register;

if I_Am_Last_Member then
CEO.Wake(Finance);

end if;

This task could be preempted—and a group of engineers could be formed and enqueued on
CEO.Wake(Engineering)—after the protected action Finance_Room.Register completes, but
before the call to CEO.Wake(Finance) is issued. With requeue, the protected action of the last ac-
countant task is not completed until the task entry call has been made and immediately selected
or enqueued. If it is enqueued, the guards on the accept statements of the selective accept pre-
vent overtaking.
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18.8 Additional rules for protected types*

The following subsections present addition rules for protected types.

18.8.1 Formal parameters in barriers

§9.5.2

18 A name that denotes a formal parameter of an entry_body is not allowed within the
entry_barrier of the entry_body.

In the protected object Buffer, we cannot refuse to append negative numbers by writing:

entry Append(I: in Integer)

when Count < Index’Last and I >= 0 is
-- Error, the barrier cannot use the formal parameter I

The reason is that all calls on the queue for an entry are considered to be waiting for the same
event to occur. If you want calls to wait for distinct events, you should use different entries or
an entry family. Furthermore, allowing formal parameters in barrier would make it inefficient
to evaluate barriers, because the run-time system would have to scan the entry queue and
re-evaluate the barrier for each call. With this rule, the code executed for each barrier is fixed
regardless of how many calls are enqueued.

If blocking of a call really does depend on the formal parameters, call an entry with the
barrier True, examine the formal parameters within the body and requeue on other private
entries. For example, in the CEO case study, we might have considered passing a parameter to
the Register entry so that last caller need not register:

entry Register(Is_Last: Boolean) when not Is_Last is -- Error

Instead, all members of a group call this entry and a decision to requeue or not is made by
performing the computation Waiting < Size on a component of the protected object and a
discriminant.

18.8.2 Potentially blocking operations

A protected action is not allowed to invoke an operation that could result in blocking the calling
task within the protected action.
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§9.5.1

8 During a protected action, it is a bounded error to invoke an operation that is
potentially blocking. . . .

Potentially blocking operations are listed in §9.5.1(9–16); in particular, calling an entry is po-
tentially blocking. The bounded error need not be detected by the implementation §9.5.1(17),
though Annex §H High Integrity Systems contains pragma Detect_Blocking §H.5, which re-
quires an implementation to to detect this error.

Ada 95

pragma Detect_Blocking is not in Ada 95.

18.8.3 Parameters of the requeue target

The requeue statement is restricted as follows:

§9.5.4

3 The entry_name of a requeue_statement shall resolve to denote an entry (the target
entry) that either has no parameters, or that has a profile that is type conformant (see
6.3.1) with the profile of the innermost enclosing entry_body or accept_statement.

12 If the new entry named in the requeue_statement has formal parameters, then during
the execution of the accept_statement or entry_body corresponding to the new entry,
the formal parameters denote the same objects as did the corresponding formal
parameters of the callable construct completed by the requeue. In any case, no
parameters are specified in a requeue_statement; any parameter passing is implicit.

In the case study, both requeues are to entries without parameters. The entry family index in
requeue CEO.Wake(Group) is not a parameter.

18.8.4 Internal and external requeues

A call or requeue can be to the same protected object—an internal call or requeue—or it can
be to a subprogram or entry of a different object—an external call or requeue §9.5(2–7). (A call
must be to a subprogram, because a call to an entry is potentially blocking, as noted previ-
ously). An external call or requeue uses the syntax of a selected component to distinguish it
from an internal call or requeue: requeue Wait_for_Last_Member is internal and correct, but
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requeue Room.Wait_for_Last_Member is an external call to the same protected object and thus
incorrect because it is potentially blocking §9.5.1(15).

There is an important difference between the semantics of internal and external requeues:

§9.5.4

10 • if the requeue is an internal requeue (that is, the requeue is back on an entry of the
same protected object—see 9.5), the call is added to the queue of the named entry
and the ongoing protected action continues (see 9.5.1);

11 • if the requeue is an external requeue (that is, the target protected object is not
implicitly the same as the current object—see 9.5), a protected action is started on the
target object and proceeds as for a normal entry call (see 9.5.3).

An external call or requeue will initiate a new protected action so it may have to wait to obtain
exclusive access to the protected object. An internal requeue is immediately enqueued on the
existing queue; then, as part of the completion of the protected action, the barriers will be
re-evaluated. The requeued task will receive no precedence over tasks already enqueued on
entries, but we are assured that if some entry is open, a protected action will be immediately
executed for some task.

18.8.5 Families of protected entries

An entry family can be declared in a protected unit; like an entry family for a task, it can be
considered as if it were an array of entries, but the syntax of the entry body is more flexible.
One entry body with an entry_index_specification defines the common code for processing all
entries in the family.

§9.5.2

6 entry_body_formal_part ::= [(entry_index_specification)] parameter_profile
7 entry_barrier ::= when condition
8 entry_index_specification::= for defining_identifier in discrete_subtype_definition

In the following declarations, E1 is a family of entries each with one formal parameter, while
E2 a single entry with two formal parameters:

entry E1(Departments)(I: in Integer);

entry E2(D: in Departments; I: in Integer);

There is a separate queue for each member of the family E1, but only one queue for E2. The
barrier of E1 can depend on its entry index D, but, as we have seen, the barrier of E2 cannot
depend on its formal parameter D.
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Projects

1. Implement a solution to the problem of the Readers and Writers using protected objects.
In this problem, exclusive write-access to a resource is required although multiple tasks can
have read-only access. This is trivial to implement using a protected object (a function is used
for reading and a procedure for writing) as long as there are no requirements for preventing
starvation. State the requirement that your solution fulfils.

2. Write a program that demonstrates that the preference for serving entry queues is essential
for the correctness of the case study in Section 18.1.1.

3. If the Real-Time Annex is not included in an Ada implementation, the entry queuing policy
Priority_Queuing may not be available. Modify the CEO case study so that it works even
if FIFO_Queuing is in effect.

4. Write a program to demonstrate how to work around the limitation that barriers cannot
depend on formal parameters (Section 18.8).
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Quizzes

Quiz 1:

procedure Main is
task T is

entry E1(N: Integer);

entry E2;

end T;

task body T is
begin

accept E1(N: Integer) do
select

when N > 0 => accept E2;

end select;
end E1;

exception
when Ex: others =>

Put_Line("Task T " & Exception_Name(Ex));

end T;

task A;

task body A is
begin

T.E1(0);

exception
when Ex: others =>

Put_Line("Task A " & Exception_Name(Ex));

end A;

begin
T.E2;

exception
when Ex: others =>

Put_Line("Main " & Exception_Name(Ex));

end Main;
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Quiz 2:

task type T is
entry E;

end T;

task body T is
procedure P is
begin

accept E;

end P;

begin
begin

accept E do
accept E;

end E;

end;
end T;

Quiz 3:

protected P is
entry E1;

entry E2;

end P;

procedure Proc renames P.E1;

protected body P is
entry E1 when True is
begin

null;
end E1;

entry E2 when True is
begin

Proc;

requeue Proc;

end E2;

end P;
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Quiz 4:

procedure Main is

protected PO is
entry E;

private
C: Character := Character’First;

end PO;

protected body PO is
entry E when Character’Pred(C) < ’A’ is
begin

null;
end E;

end PO;

begin
PO.E;

exception
when Ex: others =>

Put_Line("Main " & Exception_Name(Ex));

end Main;

Quiz 5:

task type T;

type Ptr is access T;

function F return Ptr is
begin

return new T;

end;

task body T is
X: Ptr := F;

Y: Ptr := new T;

begin
null;

end T;

Z: Ptr := new T;
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Concurrency (Continued)

19.1 Activation and termination

Tasks must be activated and terminated. It is important to specify what happens if an exception
is raised during activation and to define when a task can participate in a rendezvous. We have
to specify what happens if a task is terminated during the execution of a protected action or a
rendezvous. Finally, the termination of a task must take into account the tasks that it activated.

§9

10 Over time, tasks proceed through various states. A task is initially inactive; upon
activation, and prior to its termination it is either blocked (as part of some task
interaction) or ready to run. While ready, a task competes for the available execution
resources that it requires to run.

19.1.1 Activation

It is important to distinguish between the elaboration of a task and its activation. Elaboration is
performed as part of the elaboration of the enclosing package, subprogram or task. Elaboration
of the task declaration can set its priority §D.1 and the amount of storage allocated for the
task §13.3(61); elaboration of the task body essentially does nothing §9.1(13). Activation creates
the task and allows it to begin execution, or at least to compete for the available execution
resources. The rules for task activation §9.2 can be summarized as follows:

• Task that are declared within a unit (such as the producer and consumer tasks) are activated
before the enclosing unit begins executing its statements §9.2(3). The task executing the en-
closing unit waits at the begin until all its tasks have been activated §9.2(5).

• Task created by allocators (such as the employee tasks in the CEO program) are activated as
part of the evaluation of the allocator §9.2(4).

375
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The rationale for these rules is that during the activation of a task, the elaboration of the decla-
rations in the task body §9.2(1) may raise an exception; similarly, the enclosing unit may raise
an exception after elaborating the task §9.2(5–6). The rules ensure that in such cases the task is
not activated, but instead the exception is propagated to the enclosing unit.

19.1.2 Termination

Termination of tasks is defined in terms of a dependence tree. Each task depends on one or
more masters §9.3(1), which are the enclosing dynamic constructs such as subprograms or tasks
§7.6.1(3). The main subprogram is called by an anonymous environment task §10.2(8). Tasks
declared in library packages are considered to be dependent on this master. The producer,
consumer and buffer tasks in the case studies were declared within the main subprogram and
depend upon it.

Tasks created by allocators (such as the employee tasks) depend on the master containing
the declaration of the access type §9.3(2). The reason is that the task can live as long as the type
lives; it can even become a garbage task:

E := new Engineer_Task(7);

E := null;

A task cannot terminate until all its dependent tasks have terminated.

§9.3

5 A task is said to be completed when the execution of its corresponding task_body is
completed. A task is said to be terminated when any finalization of the task_body has
been performed (see 7.6.1). The first step of finalizing a master (including a
task_body) is to wait for the termination of any tasks dependent on the master. The
task executing the master is blocked until all the dependents have terminated. Any
remaining finalization is then performed and the master is left.

The rules in §9.3(5) explain why we could write a null body for the main subprogram of
the producer–consumer program. The main subprogram is a master, and the producer and
consumer tasks depend on it, so the main subprogram cannot terminate until they do. The
producer completes when it completes the statements of its task body. Since the consumer
tasks never complete, the main subprogram waits indefinitely. The program is deadlocked and
the execution must be stopped by an operating system command.

How can server tasks such as Buffer and CEO be terminated? Almost by definition, a server
task does not know when it has finished serving all potential clients. One possibility is to de-
clare a special entry that can be used to signal the server:
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loop
select

accept Append(I: in Integer) do ...

or
accept Take(I: out Integer) do ...

or
accept Stop;

exit;
end select;

end loop;

A better solution is to use the terminate alternative §9.7.1(7) on the selective accept statement
(‡55 of the CEO program). If every task that could possibly call the entries of the server task
is completed (or also waiting on a selective accept statement with a terminate alternative), the
server task becomes completed §9.3(6).

A protected object is not a task and therefore it is meaningless to ask about its termination.
However, tasks can be executing protected actions and they can be blocked on entry queues.
Protected actions will always complete, either normally or by requeue, but it is possible that a
task will be enqueued indefinitely on an entry queue. This happens, for example, in the case
study of the producer–consumer in Section 18.1.1: the producer task produces a finite number
of items, but the consumer tasks call the Take entry in a non-terminating loop.

19.1.3 Aborting a task

Any task, including one blocked on an entry queue, can be terminated with an abort statement:

§9.8

1 An abort_statement causes one or more tasks to become abnormal, thus preventing
any further interaction with such tasks. . . .

2 abort_statement ::= abort task_name {, task_name};

In the CEO program, we abort all the employee tasks because they contain infinite loops.
Task CEO need not be aborted, because it contains a selective accept statement with a terminate
alternative. Once the employee tasks are terminated and the main subprogram is completed,
there are no longer any potential callers, so the CEO task will terminate.

The semantics of the abort statement ensure—as far as practicable—that the overall consis-
tency of the tasks in a program is maintained.
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§9.8

5 When the execution of a construct is aborted (including that of a task_body or of a
sequence_of_statements), the execution of every construct included within the
aborted execution is also aborted, except for executions included within the
execution of an abort-deferred operation; the execution of an abort-deferred operation
continues to completion without being affected by the abort; the following are the
abort-deferred operations:

Abort-deferred operations are listed in §9.8(6–11). In particular, protected actions and ren-
dezvous are abort-deferred.

The implementation need not perform the abort immediately; instead, it can defer the abort
to places that actually affect the synchronization of the program.

§9.8

15 If the execution of an entry call is aborted, an immediate attempt is made to cancel
the entry call (see 9.5.3). If the execution of a construct is aborted at a time when the
execution is blocked, other than for an entry call, at a point that is outside the
execution of an abort-deferred operation, then the execution of the construct
completes immediately. For an abort due to an abort_statement, these immediate
effects occur before the execution of the abort_statement completes. Other than for
these immediate cases, the execution of a construct that is aborted does not
necessarily complete before the abort_statement completes. However, the execution
of the aborted construct completes no later than its next abort completion point (if any)
that occurs outside of an abort-deferred operation; the following are abort
completion points for an execution:

Abort completion points are listed in §9.8(16–19); examples are the start or end of an entry call
or accept statement.

A task that is in an entry queue is immediately aborted, because the task has yet to affect the
accepting task or protected object. The question now arises: what about a task that has executed
a requeue? On the one hand, the task has already started a protected action and should be al-
lowed to complete it. On the other hand, the task could be indefinitely blocked and presumably
we had a good reason to abort it. The Ada language standard does not attempt to choose be-
tween these alternatives; instead, when you write a requeue statement, you can choose whether
to allow the abort to cancel the call, or whether the call should be protected from cancellation
§9.5.4(13–16). In the CEO program, the abort statement is used when all employees are being
fired and the company shut down, so we choose to allow cancellation by specifying with abort
on the requeue statement ‡112,124.
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19.1.4 Task attributes

The attribute T’Callable §9.9(2) can be used to check if an entry of task T can be called, that is,
if the task is not completed or abnormal. T’Terminated §9.9(3) checks if T is terminated or not.

19.2 Exceptions

There are special rules for exceptions that occur in multitasking programs. An exception in one
task should not affect another task:

§11.4

3 When an exception occurrence is raised by the execution of a given construct, the
rest of the execution of that construct is abandoned; that is, any portions of the
execution that have not yet taken place are not performed. The construct is first
completed, and then left, as explained in 7.6.1. Then:

4 • If the construct is a task_body, the exception does not propagate further;

If two tasks are engaged in a rendezvous, the accepting task is given the opportunity to han-
dle the exception within the accept statement; if the exception propagates outside the statement,
the calling task is also notified:

§9.5.2

24 . . . When an exception is propagated from the handled_sequence_of_statements of
an accept_statement, the same exception is also raised by the execution of the
corresponding entry_call_statement.

The predefined exception Tasking_Error is used to signal inconsistencies in the tasks of a
program; in particular, calling a task that has already completed or become abnormal raises
Tasking_Error §9.5.3(21). The exception is also raised in case of problems during task activa-
tion; see §9.2(5) for details. Certain catastrophic errors cause Program_Error to be raised, for
example, an exception in the evaluation of a barrier §9.5.3(17), and a selective accept state-
ment with no open alternatives §9.7.1(21). You should keep barrier and guard expressions very
simple so that you can prove that these problems will not occur.

Every task body should include an exception handler. In the absence of a handler, an exception
will cause the task to terminate silently while the rest of the program continues to execute.
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19.3 Time

So far we have discussed concurrency in terms of synchronization constructs (protected actions
and rendezvous) that do not take time into account. However, many programs, in particular,
real-time systems, will have timing constraints. In this section, we present the core concepts of
time in Ada; extensions for real-time programming are discussed in Section 21.8.

There are two concepts that must be clearly distinguished: a point in time and an interval
between two points in time. Points of time are declared to be of the private type Time in package
Ada.Calendar §9.6(8,10), while intervals are declared to be of the predefined fixed point type
Duration §A.1(43) and §9.6(7):

T1: Time T2: Time

D: Duration

D := T2 − T1;

T2 := T1 + D;

Duration is in seconds so the value 0.000_001 of the type represents one microsecond.
Function Clock §9.6(12,23) returns the current time, and the package Ada.Calendar contains

subprograms §9.6(13–15, 24–25) for decomposing a value of type Time into year, month, day
and seconds, and conversely for creating a value of type Time from these values. The package
also has the expected arithmetical and relational operations on values of the types Time and
Duration §9.6(16–17); for example:

function "-"(Left: Time; Right: Time) return Duration;

returns the interval between two points of time.
Values of types Time and Duration are used to specify delays.

§9.6

1 A delay_statement is used to block further execution until a specified expiration time
is reached. The expiration time can be specified either as a particular point in time
(in a delay_until_statement), or in seconds from the current time (in a
delay_relative_statement). The language-defined package Calendar provides
definitions for a type Time and associated operations, including a function Clock
that returns the current time.

2 delay_statement ::= delay_until_statement | delay_relative_statement
3 delay_until_statement ::= delay until delay_expression;
4 delay_relative_statement ::= delay delay_expression;

21 The task executing a delay_statement is blocked until the expiration time is reached,
at which point it becomes ready again. If the expiration time has already passed, the
task is not blocked.

A task is unblocked upon expiration of the delay, but there is no guarantee that the task is
scheduled immediately; other, higher-priority, tasks can be scheduled instead. In other words,
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the delay is a lower bound on the interval that the task will not be running. Even if the task
is not blocked—because the delay is zero or negative—the delay statement is meaningful; it is
an abort completion point §9.8(18), and it can cause a context switch. In fact, delay 0.0 is a
convenient way to call the scheduler.

19.3.1 Case study: periodic task with delay

Control algorithms that are implemented by periodic tasks can use delay statements to execute
subprograms at predetermined time intervals. The following program prints ’*’ 50 times, once
every 0.2 seconds; in addition, it prints the Start and Stop times so that we can check that it
executes for about 50× 0.2 = 10 seconds:

period

1 with Ada.Text_IO; use Ada.Text_IO;

2 with Ada.Calendar; use Ada.Calendar;

3 procedure Period is
4 Start, Stop: Time;

The periodic task calls Clock to obtain the current time; then the Interval of type Duration is
added to obtain the time of the Next execution of the periodic task ‡8. The program executes a
delay_until_statement with this time ‡12:

5 task Periodic;

6 task body Periodic is
7 Interval: constant Duration := 0.2;

8 Next: Time := Clock + Interval;

9 begin
10 Start := Clock;

11 for N in 1..50 loop
12 delay until Next;

13 Put(’*’);

14 Next := Next + Interval;

15 end loop;
16 Stop := Clock;

17 end Periodic;

Upon expiration of the delay, the “algorithm” of the task (to put a character) is executed ‡13
and the Next wakeup time is computed ‡14.

The main program checks for the termination of the periodic task. Additional computation
could be done in the meantime (perhaps by additional tasks), but we have simply used a delay
statement to ensure that the scheduler can be allowed to schedule the periodic task:
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18 begin
19 loop
20 exit when Periodic’Terminated;

21 delay 0.01;

22 end loop;
23 Put_Line("Elapsed time = " & Duration’Image(Stop-Start));

24 end Period;

Do not replace the delay_until_statement with a delay_relative_statement:

delay Interval;

The periodic task will then be executed once every Interval seconds plus the number of sec-
onds it takes to execute the computation plus the number of seconds that the task is ready but
not scheduled! It is less obvious, but you also don’t want to write:

delay Next - Clock;

because a race condition could occur. Suppose that the task were preempted after evaluating
Clock, but before evaluating the subtraction. The interval during which the task was blocked
would not be taken into account in the computation of the delay.

The delay_until_statement ensures that the program is self-synchronizing, regardless of the
variability of the computation represented by the Put statement.

19.4 Time formatting and time zones*

Global software systems like reservation systems need to take account of the time zone in which
a program is executing. The package Ada.Calendar.Time_Zones §9.6.1(2–7) declares a function
UTC_Time_Offset §9.6.1(6), which returns a value of type Time_Offset §9.6.1(4), the number
of minutes between the local time and Coordinated Universal Time (UTC). Greenwich Mean Time
(GMT) is sometimes used in place of UTC, but the term GMT is outdated.

The package Ada.Calendar.Arithmetic §9.6.1(8–14) extends the arithmetic capabilities of
Ada.Calendar to include arithmetic on days in addition to arithmetic on seconds.

Ada.Calendar.Formatting §9.6.1(15–39) includes further utilities for working with time:
procedure Split §9.6(29) extends Split in Ada.Calendar §9.6(14) and further breaks down
a value into hours, minutes, the number of seconds in a day and “sub-seconds.” Other sub-
programs can now take time zones into account. The functions Image and Value §9.6.1(35–38)
support conversion between times and strings like the attributes of scalar types.

Ada.Calendar.Arithmetic and Ada.Calendar.Formatting both support leap seconds. Since
1960, time standards have been based upon atomic clocks, rather than on astronomical obser-
vations (International Atomic Time (TAI)). However, the rotation of the earth is slowing down,
primarily because of tidal friction, so a day as measured by the rotation of the earth is always a
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bit longer than that measured by an atomic clock. To maintain synchronization between them,
UTC is corrected by adding a leap second every year or two to the TAI year. Leap seconds are
problematic to implement because it is impossible to predict when they will occur.

Ada 95

These packages are new for Ada 2005.

19.5 Representation of Time and Duration*

As with all fixed point types, there is a tradeoff between range and precision in the implemen-
tation of Duration. The requirements are as follows:

§9.6

27 The implementation of the type Duration shall allow representation of time intervals
(both positive and negative) up to at least 86400 seconds (one day); Duration’Small
shall not be greater than twenty milliseconds. The implementation of the type Time
shall allow representation of all dates with year numbers in the range of
Year_Number; it may allow representation of other dates as well (both earlier and
later).

30 Whenever possible in an implementation, the value of Duration’Small should be no
greater than 100 microseconds.

Twenty milliseconds is achievable using the 50–60 Hz frequency of ordinary alternating-current
electricity. However, almost all computers have an electronic time base, so the 100 microsecond
precision should be easy to implement. The subtype Year_Number requires that the type Time

represent at least all dates between the years 1901 and 2399.
There is an additional tradeoff between efficiency and the rate at which the clock is updated.

This is specified by the value System.Tick:

§9.6

23 The time base associated with the type Time of package Calendar is implementation
defined. The function Clock of package Calendar returns a value representing the
current time for this time base. The implementation-defined value of the named
number System.Tick (see 13.7) is an approximation of the length of the real-time
interval during which the value of Calendar.Clock remains constant.
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§9.6

35 There is no necessary relationship between System.Tick (the resolution of the clock
of package Calendar) and Duration’Small (the small of type Duration).

Duration might have enough precision to store time intervals down to single microseconds,
but for efficiency, the clock may be “ticked” only once every 50 microseconds.

A time base is monotonic if the value of its clock never decreases, but this may not be true for
the function Clock if the computer system clock is adjusted, for example, because of daylight
savings time.

§9.6

31 The time base for delay_relative_statements should be monotonic; it need not be the
same time base as used for Calendar.Clock.

Time and Duration have relatively large ranges with reasonable precision, and are sufficient
for “ordinary” timing requirements, such as financial computations and tasks with periods in
the tens of milliseconds. More precise timing is available if your system supports Annex §D
Real-Time Systems (Chapter 21).

19.6 Timed and conditional entry calls*

When a task calls an entry of another task or a protected object, it risks being blocked indefi-
nitely. An alternate programming technique is for a task to specify a time limit on how long it
is willing to wait for an entry call to be accepted. The timed_entry_call cancels a entry call if it
is not accepted by the time that a delay expires.

§9.7.2

2 timed_entry_call ::=
select

entry_call_alternative
or

delay_alternative
end select;

A conditional_entry_call is equivalent to a timed_entry_call with a delay of zero.
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§9.7.3

2 conditional_entry_call ::=
select

entry_call_alternative
else

sequence_of_statements
end select;

Of course, it will take some time to determine if an entry call is ready, because the barriers will
have to be evaluated and a check has to be made if the task or protected object is ready to accept
the call. But if the entry can be called, the else-part or delay alternative will not be taken.

Conditional entry calls can be used to implement polling, where a task checks for the occur-
rence of an event and continues to execute if the event has not occurred.

Be careful not to confuse these constructs with the selective accept statement, which has a
similar syntax (Sections 18.2 and 19.8). A timed or conditional entry call is used in the calling
task, not the accepting task. There is no construct in Ada that enables a calling task to block
waiting for one of several calls to be accepted.

The semantics of a timed_entry_call is defined as follows.

§9.7.2

4 For the execution of a timed_entry_call, the entry_name, procedure_name, or
procedure_prefix, and any actual parameters are evaluated, as for a simple entry call
(see 9.5.3) or procedure call (see 6.4). The expiration time (see 9.6) for the call is
determined by evaluating the delay_expression of the delay_alternative. If the call is
an entry call or a call on a procedure implemented by an entry, the entry call is then
issued. Otherwise, the call proceeds as described in 6.4 for a procedure call, followed
by the sequence_of_statements of the entry_call_alternative; the
sequence_of_statements of the delay_alternative is ignored.

5 If the call is queued (including due to a requeue-with-abort), and not selected before
the expiration time is reached, an attempt to cancel the call is made. If the call
completes due to the cancellation, the optional sequence_of_statements of the
delay_alternative is executed; if the entry call completes normally, the optional
sequence_of_statements of the entry_call_alternative is executed.

The complexity of the rules in §9.7.2(4) is due to the possibility that a primitive procedure of a
synchronized, task or protected interface may be implemented by an entry (Section 17.4).

Do not use a timed or conditional entry call if the guard of the entry uses the entry attribute
E’Count §9.9(7–8). It is possible that between the time that the accepting task evaluates E’Count
and the time it executes the accept statement, the task on the queue was cancelled. This can lead
to deadlock.
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19.6.1 Case study: periodic task with conditional entry call

The technique of polling is demonstrated in the following program that is a modification of the
case study in Section 19.3. A task User waits for the user to enter a string and then accepts the
entry Trigger:

cond

1 with Ada.Text_IO; use Ada.Text_IO;

2 with Ada.Calendar; use Ada.Calendar;

3 procedure Cond is
4 task User is
5 entry Trigger;

6 end User;

7 task body User is
8 begin
9 declare

10 S: String := Get_Line;

11 begin
12 null;
13 end;
14 accept Trigger;

15 Put_Line("User trigger");

16 end User;

The periodic task (putting a character) now appears within a conditional entry call that at-
tempts to call the entry Trigger of the task User:

17 Period: constant Duration := 0.2;

18 Next: Time := Clock + Period;

19 begin
20 loop
21 select
22 User.Trigger;

23 exit;
24 else
25 delay until Next;

26 Put(’*’);

27 Next := Next + Period;

28 end select;
29 end loop;
30 end Cond;
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Until a string is entered, the call will not be immediately accepted so the sequence of statements
following the else is executed. After a string is entered, the next entry call will succeed and the
loop will be exited.

19.7 Asynchronous transfer of control*

In the case study in the previous section, the periodic task must explicitly poll the user task to
check for the trigger. Another possibility is to have the user task interrupt the execution of the
periodic task when the triggering event occurs. This can be done with an asynchronous transfer
of control (ATC).

§9.7.4

2 asynchronous_select ::=
select

triggering_alternative
then abort

abortable_part
end select;

The first statement of the triggering_alternative is called the triggering_statement and it can be an
entry call or a delay statement. As with a conditional entry call, if the entry call can be selected
immediately or the delay is expired, then the abortable part is not executed. Otherwise, it begins
it execution; there are now two possibilities.

§9.7.4

8 If the abortable_part completes and is left prior to completion of the
triggering_statement, an attempt to cancel the triggering_statement is made. If the
attempt to cancel succeeds (see 9.5.3 and 9.6), the asynchronous_select is complete.

9 If the triggering_statement completes other than due to cancellation, the
abortable_part is aborted (if started but not yet completed—see 9.8). If the
triggering_statement completes normally, the optional sequence_of_statements of the
triggering_alternative is executed after the abortable_part is left.

19.7.1 Case study: periodic task with ATC

The periodic task can be written as an abortable_part:
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async

1 with Ada.Text_IO; use Ada.Text_IO;

2 with Ada.Calendar; use Ada.Calendar;

3 procedure Async is
4 task User is -- as before

5 task body User is -- as before

6

7 Period: constant Duration := 0.2;

8 Next: Time := Clock + Period;

9 begin
10 select
11 User.Trigger;

12 then abort
13 for I in 1 .. 50 loop
14 delay until Next;

15 Put(’*’);

16 Next := Next + Period;

17 end loop;
18 end select;
19 end Async;

When a string is entered, the entry call User.Trigger is accepted and the abortable part is
aborted. The loop in this program is finite so that the abortable part can complete, after which
an attempt is made to cancel the triggering statement, the entry call. While this will succeed,
the task User will still be blocked waiting for input and must be terminated manually.

Asynchronous transfer of control can be used to implement a watchdog task that terminates
a computation that has overrun the amount of time allocated for its execution. In a real-time
system, ATC can be used to terminate an iterative computation when a time interval expires or
an event occurs; the “best available” result is then used:

Result: Float := ...; -- Initial estimate of the result

Needed: Time := ...; -- Time when the result is needed

select
delay until Needed; -- Use current Result

then abort
loop

Refine_The_Value(Result, Error);

exit when Error < ... ; -- Result is good enough

end loop;
end select;

Section 21.9 describes other constructs that can limit the execution time of a task.
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19.8 Alternatives for selective accept

In place of a terminate alternative, a selective accept statement may have a delay alternative or
an else-part; these can be used to implement timeouts or polling in an accepting task §9.7.1(10–
11). For example, we could modify the CEO task to include a delay alternative:

ceod

1 select
2 accept Wake(Finance_Group);

3 ...

4 or
5 when Wake(Finance_Group)’Count = 0 =>

6 accept Wake(Marketing_Group);

7 ...

8 or
9 when Wake(Finance_Group)’Count = 0 and

10 Wake(Marketing_Group)’Count = 0 =>

11 accept Wake(Engineering_Group);

12 ...

13 or
14 delay 1.0;

15 ...

16 end select;

If no group calls one of the Wake entries within one second, the CEO performs some other
activity instead of being blocked waiting for entry calls.

A realistic application of this technique would be in an alarm system that receives periodic
messages from a sensor. If no message is received within a given time interval, the system can
assume that the line has been cut and can raise an alarm.

An else-part can be used to allow the accepting task to perform a computation if there are
no calling tasks that can be immediately accepted. If all alternatives are closed and there is an
else-part, Program_Error will not be raised §9.7.1(21).

The terminate alternative, one or more delay alternatives and the else-part are mutually
exclusive §9.7.1(12).

19.9 Case study: concurrent simulation

This section presents a concurrent version of the discrete event simulation. Instead of creating
all the events before running the simulation, separate tasks will create the events and simulate
them. In fact, a separate task will be used to create events of each subsystem of the rocket.
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type Event
procedure Simulate

type Producer
Queue

Lock
Generator
Latest

procedure Put
function Get

type X_Event
procedure Simulate

task type Create
(P: access Producer)

Root_Event
Root_Event.
Simulation

Root_Event.
Simulation.X

Root_Event.
Simulation.X.Creator

Fig. 19.1 Concurrent simulation framework

The program will be sufficiently general so that several independent simulations could be run
within the same program.

Figure 19.1 shows the simulation framework. As before, package Root_Event provides the
abstract tagged type Event and the abstract procedure Simulate. A simulation is defined by a
child package Root_Event.Simulation that declares a Producer type. This type contains the
data associated with a single simulation: a Queue with a protected component Lock to synchro-
nize access between the event creators and the task doing the simulation, a random number
Generator, and an indication of the Latest simulated time already used, so that a monotonic
sequence of events can be created. The interface to the queue is through subprograms Put and
Get that take parameters of type Producer, rather than of the encapsulated Queue.

For each subsystem X to be simulated, a child package Root_Event.Simulation.X is de-
clared containing the derived events and the overridden Simulate procedure. A further child
package declares a type for a task that Create’s events. This task takes an access discriminant
(Section 12.7) to the Producer object where the task will enqueue its events.

We now specialize the simulation framework for the rocket. The usual derived types and
simulation subprograms are declared, followed by package Rocket_Simulation (Figure 19.2).
This package contains a Producer object and Create objects (tasks) for each derived type. The
tasks create objects concurrently and enqueue them.

The main subprogram Rocket contains the standard simulation loop. It removes the events
from the producer R one-by-one and dispatches them to the appropriate Simulate procedure.
The creators have infinite loops with delay statements to regulate the rate of event creations;
the simulation loop runs continuously, blocking on the queue’s Lock if the queue is empty.

To generalize to more than one simultaneous simulation, another simulation package with
a Producer object can be declared. Instead of a single loop directly within the main subpro-
gram (which is executed by the environment task), each simulation loop would be placed in a
separate task.
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Rocket_Simulation

R: Producer
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loop

Simulate(Get(R’Access));
end loop;

-

Fig. 19.2 Concurrent rocket simulation

We now present the essential part of the source code for the concurrent rocket simulation,
starting with the package Root_Event.Simulation. The visible part of the package specifica-
tion declares the type Producer and the two subprograms Put and Get:

rockett

1 with Heterogeneous_Priority_Queue;

2 with Ada.Numerics.Discrete_Random;

3 package Root_Event.Simulation is
4 type Producer is limited private;
5

6 procedure Put(E: in Event’Class; P: in out Producer);

7 function Get(P: access Producer) return Event’Class;

The rest of the declarations can be in the private part because they are used only by child pack-
ages. Type Producer has three fields: a Queue implemented by instantiating a generic package,
a random number Generator obtained by instantiating the library package Discrete_Random,
and the Latest time component:

8 private
9 package Event_Queue is new Heterogeneous_Priority_Queue(Event’Class);

10 package Random_Time is new Ada.Numerics.Discrete_Random(Natural);

11 type Producer is
12 record
13 Queue: aliased Event_Queue.Queue;

14 Generator: Random_Time.Generator;

15 Latest: Simulation_Time := Simulation_Time’First;

16 end record;
17 function Random(P: Producer) return Natural;

18 function Random_Update(P: access Producer) return Simulation_Time;

19 end Root_Event.Simulation;
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The generic package Heterogeneous_Priority_Queue (not shown) contains, in addition to the
binary tree, a protected type Lock. The private subprograms Random and Random_Update are
used by the (grand-)child packages to create events.

The child packages that declare the event types are familiar except that they contain only the
Simulate procedure:

20 package Root_Event.Simulation.Steering is
21 type Steering_Event is new Event with private;
22 procedure Simulate(E: in Steering_Event);

23 private
24 -- as before

25 end Root_Event.Simulation.Steering;

Creation of events is done in a Creator child package, which exports a type Create that is
implemented by a task type. The access discriminant P is used to pass the Producer object to
the task:

26 package Root_Event.Simulation.Steering.Creator is
27 type Create(P: access Producer) is limited private;
28 private
29 task type Create(P: access Producer);

30 end Root_Event.Simulation.Steering.Creator;

The task itself simply executes a loop calling Create_Event to create a random event and plac-
ing the event on the queue encapsulated in the producer:

31 package body Root_Event.Simulation.Steering.Creator is
32 task body Create is
33 function Create_Event return Steering_Event is ...

34 begin
35 loop
36 Put(Create_Event, P.all);
37 delay 1.0;

38 end loop;
39 end Create;

40 end Root_Event.Simulation.Steering.Creator;

Package Rocket_Simulation declares and exports a Producer object R:

41 with Root_Event.Simulation;

42 package Rocket_Simulation is
43 pragma Elaborate_Body;

44 R: aliased Root_Event.Simulation.Producer;

45 end Rocket_Simulation;
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The package body declares and hides the creators. An access to the producer object R is passed
to each creator:

46 with Root_Event.Simulation.Telemetry.Creator;

47 with Root_Event.Simulation.Engine.Creator;

48 with Root_Event.Simulation.Steering.Creator;

49 package body Rocket_Simulation is
50 use Root_Event.Simulation;

51 T: Telemetry.Creator.Create(R’Access);

52 E: Engine.Creator.Create(R’Access);

53 S: Steering.Creator.Create(R’Access);

54 end Rocket_Simulation;

pragma Elaborate_Body is required because there are no declarations in the package specifica-
tion that require completions in the body. The pragma forces the elaboration of the body.

Finally, the main subprogram just contains the simulation loop:

55 with Root_Event.Simulation, Rocket_Simulation;

56 procedure RocketT is
57 begin
58 loop
59 Root_Event.Simulate(

60 Root_Event.Simulation.Get(Rocket_Simulation.R’Access));

61 end loop;
62 end RocketT;

19.10 Tasks as access discriminants*

An access discriminant can be an access to a task type. The following program shows how ac-
cess discriminants can be used to configure a set of tasks at run-time. A task of type Main_Task

has two access discriminants Left and Right that will be initialized with accesses to tasks of
type Worker_Task:

config

1 package Tasks is
2 task type Worker_Task(ID: Character) is
3 entry Input;

4 end Worker_Task;

5

6 task type Main_Task(Left, Right: access Worker_Task);

7 end Tasks;
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Main_Task calls the entry Input of these two worker tasks in succession. Note the implicit
dereferencing in the entry calls to the worker tasks:

8 with Ada.Text_IO;

9 package body Tasks is
10 task body Main_Task is
11 begin
12 Left.Input;

13 Right.Input;

14 end Main_Task;

15

16 task body Worker_Task is
17 begin
18 accept Input do
19 Ada.Text_IO.Put_Line(ID & " called");

20 end Input;

21 end Worker_Task;

22 end Tasks;

In the main program, worker tasks are declared and used to initialize the main task:

23 with Tasks;

24 procedure Config is
25 W1: aliased Tasks.Worker_Task(’A’);

26 W2: aliased Tasks.Worker_Task(’B’);

27 M: Tasks.Main_Task(W2’Access, W1’Access);

28 begin
29 null;
30 end Config;

The worker tasks are declared as aliased so that the attribute Access can be applied to them.
In a realistic application, the tasks would be dynamically allocated and the worker tasks used
to initialize each main task would be determined at run-time.

19.10.1 Simulating dispatching on entries

Access discriminants can be used to simulate dispatching on entry calls. An access value to a
task can be obtained from a heterogeneous data structure and used to call an entry:
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Two task types Worker_1 and Worker_2 are declared, together with their access types:

disptask

1 package Tasks is
2 task type Worker_1 is
3 entry Input;

4 end Worker_1;

5 type W1_Ptr is access Worker_1;

6

7 task type Worker_2 is
8 entry Input;

9 end Worker_2;

10 type W2_Ptr is access Worker_2;

11 end Tasks;

The task bodies just print their identifications and the source code is omitted here.
Dispatching will be done on the tagged type Channel by calling the subprogram Output:

12 package Channels is
13 type Channel is abstract tagged limited null record;
14 procedure Output(C: access Channel) is abstract;
15 type Channel_Ptr is access all Channel’Class;

16 end Channels;

Types W1_Channel and W2_Channel are derived from abstract type Channel and contain an
access discriminant to the respective task types:

17 with Tasks;

18 package Channels.Workers is
19 type W1_Channel(W: access Tasks.Worker_1) is
20 new Channel with null record;
21 procedure Output(C: access W1_Channel);

22

23 -- Similarly for W2_Channel

24 end Channels.Workers;



396 19 Concurrency (Continued)

This overridden subprogram calls an entry of the task pointed to by the access discriminant:

25 package body Channels.Workers is
26 procedure Output(C: access W1_Channel) is
27 begin
28 C.W.Input;

29 end Output;

30

31 procedure Output(C: access W2_Channel) is
32 begin
33 C.W.Input;

34 end Output;

35 end Channels.Workers;

In the main subprogram, two workers W1 and W2 are dynamically allocated, as well as two
channels—one for each worker task. The channels are stored in a heterogenous data structure;
for simplicity, we use just two variables C1 and C2 of access to class-wide type:

36 with Tasks;

37 with Channels.Workers; use Channels;

38 procedure DispTask is
39 W1: Tasks.W1_Ptr := new Tasks.Worker_1;

40 W2: Tasks.W2_Ptr := new Tasks.Worker_2;

41 C1: Channel_Ptr := new Workers.W1_Channel(W1);

42 C2: Channel_Ptr := new Workers.W2_Channel(W2);

The variable Get_Channel is initialized by the value of one of the channels; this is intended to
represent getting an arbitrary channel from the data structure. Procedure Output, whose formal
parameters are of access to a tagged type, is called with an actual parameter of access to the
class-wide type:

43 Get_Channel: Channel_Ptr := C2;

44 begin
45 Output(Get_Channel);

46 end DispTask;

By §3.9.2(2), this is a dispatching call on the designated type. Whichever version of Output that
is dispatched to now calls the entry for the task pointed to by the channel, so in effect we have
dispatched an entry call.

This technique is not needed in Ada 2005, which supports interfaces (Section 17.4).
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Projects

1. Write a program that is correct only because of the rule for task activation that the main
program does not begin executing until the enclosed tasks have been activated.

2. Write a program to demonstrate that timed or conditional entry calls can cause the Count

attribute to be incorrect.
3. Modify the case study in Section 19.7.1 so that updating the value of Result is within an

(abort-deferred) protected action; therefore, if the abort is executed the value is not de-
stroyed.

4. Reimplement the case study in Section 19.10 using interfaces instead of access discriminants.

Quizzes

Quiz 1:

procedure Main is
task type T(ID: Integer);

task body T is
N: Positive := ID;

begin
for I in 1 .. 4 loop

Put_Line("Hi from task " & Integer’Image(ID));

end loop;
end T;

T0: T(0);

T1: T(1);

begin
null;

exception
when Tasking_Error => Put_Line("A task has died");

end Main;
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Quiz 2:

procedure Main is

task type T(ID: Integer);

type Ptr is access T;

task body T is
begin

for I in 1 .. 5 loop
Put_Line("Hi from task " & Integer’Image(ID));

delay 0.5*ID;

end loop;
end T;

begin
Put_Line("Main subprogram");

declare
P: Ptr := new T(1);

-- type New_Ptr is access T;

-- New_P: New_Ptr := new T(2);

begin
null;

end;
Put_Line("Back from block");

end Main;

What would happen if the commented lines were added to the program?
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Quiz 3:

procedure Main is

task T1 is
entry E;

end T1;

task body T1 is
begin

delay 0.2;

accept E do
Put_Line("Starting T1.E");

delay 0.8;

Put_Line("Finishing T1.E");

end E;

end T1;

task T2 is
entry E;

end T2;

task body T2 is
begin

delay 0.4;

accept E do
Put_Line("Starting T2.E");

delay 0.1;

Put_Line("Finishing T2.E");

end E;

end T2;

begin
select

T1.E;

Put_Line("Finished triggering");

then abort
T2.E;

Put_Line("Finished abortable");

end select;
end Main;



Chapter 20

Systems Programming

20.1 Implementation dependences

Ada is rooted in the requirements of computer systems with their hardware and operating
systems, and in the requirements of projects for performance, reliability and reuse. The design
of a programming language for complex projects must cope with conflicting requirements:

• If the language is small, implementation-specific extensions and third-party add-ons will be
needed, making the software non-portable. If the language is large, it may be too difficult to
implement fully for important target computers and operating systems.

• If the language specification is too general, implementations will fill in the details as they see
fit and the software developer will not be able to rely on a portable behavior. If the language
specification is very detailed, there may be difficulty implementing the language as specified
on a target architecture.

The Ada approach to implementation dependency can be summarized as follows: certain fea-
tures in the language need not be implemented, but if you do implement them, it must be done
as described in the standard. Where the standard leaves a decision up to the implementation,
the decision must be documented. The standard specification of “optional” features means that
programming techniques and even existing source code can be easily adapted to a new imple-
mentation. Furthermore, little retraining is necessary for software engineers moving from one
implementation to another, because the concepts, the terminology, and even the type and sub-
program declarations will be almost identical across all implementations. There are two levels
of implementation dependency in Ada. First, there are six Specialized Needs Annexes:

• Annex C Systems Programming
• Annex D Real-Time Programming
• Annex E Distributed Systems
• Annex F Information Systems
• Annex G Numerics
• Annex H Safety and Security

401
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An implementation need not provide any of these annexes. The marketing literature for an
implementation will list which annexes are supported and which are not.

The second level of support for flexibility in an implementation are paragraphs entitled Im-
plementation Permissions and Implementation Advice that appear throughout the ARM. In addi-
tion, the annexes contain paragraphs entitled Documentation Requirements, requiring an impl-
mentation to supply information about individual constructs. A centralized list of this material
appears in Annex §M Summary of Documentation Requirements. Once you have chosen candi-
date implementations that support the annexes your project requires, you can further compare
the level of support for individual constructs.

In time-critical systems, you need to be able to predict the performance of the software. Para-
graphs entitled Metrics require the implementation to document performance characteristics,
mostly bounds on execution time in terms of processor cycles. This information will be use-
ful when you are choosing the language constructs to be used. For example, you may want to
compare the overhead of an entry call of a protected object with that of a task.

The Information Systems Annex was discussed in Section 13.8 and the Numerics Annex in
Section 13.11. This chapter and the next will present the other Specialized Needs Annexes, as
well as parts of Section §13 Representation Issues and Annex §B Interface to Other Languages.

Since the Annexes were introduced in Ada 95, you will want to read the chapters of the
Ada 95 Rationale concerning the Annexes; they are quite extensive: discussing goals, justifica-
tions, tradeoffs, and examples.

20.2 Representation items

Basic information about the implementation is given in package System §13.7; the most im-
portant is the constant System.Storage_Unit §13.7(13), which gives the number of bits in the
smallest addressable storage element such as an 8-bit byte or a 32-bit word, depending on
the architecture. Type Address §13.7(12) represents actual machine addresses as opposed to
language-defined access values. You can obtain the address of an object or a subprogram by
using the attribute Address §13.3(10–12). Conversion between access values and machine ad-
dresses is supported by package System.Address_To_Access_Conversions §13.7.2.

Type Storage_Element §13.7.1(5) is defined in System.Storage_Elements §13.7.1:

type Storage_Element is mod implementation-defined;

together with operations for address arithmetic.
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20.2.1 Representation attributes

Most representation characteristics are given as attributes §13.3 and can be specified using
attribute definition clauses §13.3(2). The use of representation attributes was shown in the case
study in Section 11.5:

type Byte is mod 2**System.Storage_Unit;

for Byte’Size use System.Storage_Unit;

The modular type Byte is to be represented in the number of bits in one storage unit. These
declarations are portable, though there is no assurance that the type is stored in 8 bits.

Similarly, the enumeration type Code is also represented in one storage unit:

type Codes is (M0, M1, M2, M3);

for Codes’Size use System.Storage_Unit;

Of course, if there are more values in the type than there is space in a storage unit (256 for an
8-bit byte), the clause would be illegal §13.1(12) and the program would not compile.

An enumeration representation clause §13.4 can be used to specify the representation of
enumeration literals in place of the default representation—the position numbers §13.4(8). The
following clause specifies that each message code is assigned a separate bit:

for Codes use (M1 => 2#0001#, M2 => 2#0010#, M3 => 2#0100#, M4 => 2#1000#);

This construct is particularly useful for hardware interfacing.
Enumeration representation clauses do not change the position numbers that are returned

by the attribute Pos, so if C is a variable of type Codes, the value of C’Pos is in the range 0..3.
For the record type Structured_Message an attribute definition clause is not given, because

we are not interested in the details of its representation. Instead, pragma Pack §13.2, a represen-
tation pragma, is used to specify that storage for objects of type Structured_Message should be
minimized:

pragma Pack(Structured_Message);

The meaning of “minimized” is implementation-defined; if you need a precise representation,
use record layout clauses §13.5 as shown in Section 11.9.

The declaration of the type Raw_Message is interesting:

Max_Bytes: constant Integer :=

Structured_Message’Size/System.Storage_Unit;

type Raw_Message is array(1..Max_Bytes) of Byte;

pragma Pack(Raw_Message);

Objects of the type should be represented as arrays with just enough memory to store a value
of type Structured_Message. This can be computed using the Size attribute so the declaration
is not only portable, but need not be changed if Structured_Message is modified.
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20.3 Interfaces to other languages

Few software systems are developed in a vacuum. Your program will almost certainly have to
call operating-system services and library subprograms; it may also need to be integrated with
existing “legacy” code. To facilitate software development in such environments, Ada supports
mixed-language programming. There are two technical problems that must be solved:

• The representation of similar types may differ from one language to another. Two well
known examples are the use of null-terminated strings in C instead of storing the current
length of the string as is common in other languages, and the storage of multi-dimensional
arrays in Fortran in column-major order rather than in row-major order.

• There are many different subprogram naming and calling conventions. For example, C++

uses a language-specific encoding of the external names of subprograms called “name man-
gling” to perform type-safe linkage.

In Ada, there are two approaches to solving these problems:

• A convention can be specified for a type, object or subprogram, requesting that the represen-
tation of the entity be appropriate for the specified language.

• Language-specific child packages of package Interfaces §B.2 declare Ada types that are
represented in the same way as types in other languages.

With these constructs, an Ada object that is a null-terminated C string can be declared, an
Ada string converted to this object, and then the object passed to a system service that expects
parameters in the C convention.

20.3.1 Interfacing pragmas

§B.1

2 A pragma Convention is used to specify that an Ada entity should use the
conventions of another language. It is intended primarily for types and “callback”
subprograms. For example, “pragma Convention(Fortran, Matrix);” implies that
Matrix should be represented according to the conventions of the supported Fortran
implementation, namely column-major order.

Predefined conventions, such as the default convention Ada, are defined in §6.3. An imple-
mentation may define other conventions, such as language-specific conventions.
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§B.1

1 A pragma Import is used to import an entity defined in a foreign language into an
Ada program, thus allowing a foreign-language subprogram to be called from Ada,
or a foreign-language variable to be accessed from Ada. In contrast, a pragma Export
is used to export an Ada entity to a foreign language, thus allowing an Ada
subprogram to be called from a foreign language, or an Ada object to be accessed
from a foreign language. The pragmas Import and Export are intended primarily for
objects and subprograms, although implementations are allowed to support other
entities.

pragma Import and pragma Export take two required parameters, the convention and the entity
it applies to, as well as one of two optional parameters, either an External_Name §B.1(34) or a
Link_Name §B.1(35):

pragma Import(C, CFunc, Link_Name => "_cfunc");

If the system can guess the link name of the imported entity from the local name, neither is
needed; if not, the system may be able to deduce it from the external name in the foreign
language; finally, you can give the exact name expected by the linker. Obviously, each option
in this sequence is less portable than the previous one.

§B.1

22 A pragma Import shall be the completion of a declaration. . . .

For example:

package Fortran_Matrices is
type Matrix is array(Integer range <>, Integer range <>) of Long_Float;

pragma Convention(Fortran, Matrix);

Identity: constant Matrix;

function Determinant(M: Matrix) return Long_Float;

private
pragma Import(Fortran, Identity);

pragma Import(Fortran, Determinant);

end Fortran_Matrices;

An Ada subprogram can be exported and called from a foreign language; in fact, the main
program may be in the foreign language. Implementations are advised to supply two subpro-
grams adainit and adafinal that can be called from the foreign-language main program to
perform elaboration of Ada library units and finalization of the environment task §B.1(39).
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20.3.2 Package Interfaces

Package Interfaces §B.2 declares types and subprograms for interfacing to other languages.
There are declarations of numeric types of all precisions directly supported by the target com-
puter: signed Integer_n and modular Unsigned_n integer types, as well as floating point types.
There are Shift and Rotate operations for each modular type. Clearly, using these types will
tend to make the program non-portable and they should only be used to declare objects that
are passed directly to the hardware.

An implementation may provide child packages of Interfaces §B.2(11) for interfacing to
other languages; interfaces for C/C++, COBOL and Fortran are defined in Annex §B. The inter-
faces declare types corresponding to the types in the languages, as well as functions To_Lang
and To_Ada for converting the types of language Lang to and from Ada.

20.3.3 C and C++

Package Interfaces.C §B.3 contains declarations of types corresponding to C’s types such as
int and unsigned_char. Type char_array is a character array, and the conversion functions
To_Ada and To_C can deal with the null terminator §B.3(25–28). The correspondence between
Ada subprograms and parameters and those of C is given in §B.3(63–71). For example, a C
function that returns void corresponds to an Ada procedure, and a parameter of type T* corre-
sponds to an in out parameter of type T in Ada.

String processing in C is usually done on dynamically allocated objects rather than on static
arrays. The declarations:

char s1[ ] = "Hello world";

char *s2 = "Hello world";

give rise to the data structures shown in the following diagram:

s2

- Hello world

Hello world

s1

The declaration of s1 corresponds to a value of type char_array.
Package Interfaces.C.Strings declares a private type chars_ptr for pointers to C strings

of type char* such as s2 in the diagram, and chars_ptr_array for arrays of pointers. The
Ada program can manage the storage for these strings. Function New_Char_Array §B.3.1(9)
and procedure New_String §B.3.1(10) allocate a C string initialized by an existing value of type
char_array and String, respectively. The procedure Free §B.3.1(11) releases the storage.
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Given an access to an object S of type char_array, To_Chars_Ptr §B.3.1(8) returns a value
of the C type chars_ptr pointing to S. There are also subprograms for the reverse conversion
and subprograms for directly updating C strings.

Generic package Interfaces.C.Pointers §B.3.2 declares type Pointer as an access to a
generic formal parameter, and provides subprograms for pointer arithmetic and copying arbi-
trary arrays.

Ada 95

C++ was not mentioned in Ada 95, although implementations are allowed to provide inter-
faces for constructs of C++ that extend C. Ada 2005 added subprograms for converting the
types char16_t and char32_t to and from Ada’s Wide_Wide_Character and Wide_Character,
respectively.

20.3.4 Unchecked unions

Variant records are similar to C’s union types, except that variant records are required to store
the discriminant, which does not exist in union types. Unchecked unions §B.3.3 create variant
records without storing the discriminant so that they can be passed to C programs.

§B.3.3

5 The first_subtype_local_name of a pragma Unchecked_Union shall denote an
unconstrained discriminated record subtype having a variant_part.

The type must be unconstrained with a default value for the discriminant.
Consider declaring the type Structured_Message as an unchecked union:

union

1 with Ada.Text_IO; use Ada.Text_IO;

2 procedure Union is
3 type Codes is (M1, M2);

4 type Structured_Message(Code: Codes := M1) is
5 record
6 case Code is
7 when M1 => A: Integer;

8 when M2 => B: Float;

9 end case;
10 end record;
11 pragma Unchecked_Union(Structured_Message);
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Both unconstrained and constrained objects of the type can now be declared:

12 S1: Structured_Message := (M1, 44);

13 S2: Structured_Message := (M2, 12.34);

14 T1: Structured_Message(M1) := (M1, 44);

15 T2: Structured_Message(M2) := (M2, 12.34);

What will happen when we try to read each of the components of these records?

16 begin
17 -- Put the components A and B of each record

18 end Union;

For the unconstrained records S1 and S2, all components except the discriminant can be read.
S1.A and S2.B are read with their intended values. Reading the value of S1.B is erroneous,
although if Float and Integer are the same size, the result is likely to be whatever floating
point number corresponds to the bits representing the integer 44, and conversely for S2.A.
The components T1.A and T2.B are read with their intended values, but T1.B and T2.A cause
Constraint_Error to be raised. Even though the discriminants are not stored, since the records
are constrained, the compiler knows that the “wrong” components cannot be accessed.

Ada 95

pragma Unchecked_Union is new in Ada 2005.

20.3.5 COBOL

Package Interfaces.COBOL §B.4 defines interfaces with the COBOL language. It includes
Interfaces.COBOL.Decimal_Conversions §B.4(31), a generic package for converting between
an Ada decimal type value and COBOL representations.

Recall that decimal fixed point arithmetic is supported in the Ada language (Section 13.8),
and picture editing is supported in Annex §F Information Systems (Section 13.8), so you do not
need to write COBOL code to obtain this functionality.

20.3.6 Fortran

Package Interfaces.Fortran §B.5 declares types corresponding to Fortran types such as
Double Precision and Logical. There is very little functionality in the Fortran language that
does not exist in Ada, so the primary use of this interface will be to access numerical and sci-
entific libraries, and to integrate legacy software.
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20.4 Annex C Systems Programming

Annex §B describes interface capabilities at the applications software level. Annex §C speci-
fies capabilities needed to interface with the hardware and the underlying operating system (if
any). Many of the features needed for hardware interface are specified in Section §13 Represen-
tation Issues, but the core language does not require §13.1(20) that the implementation actually
support the features described in Section §13. This permission is not available if Annex §C is
supported.

§C.2

2 The implementation shall support at least the functionality defined by the
recommended levels of support in Section 13.

The recommended level is that specified in the Implementation Advice paragraphs of Section §13.

20.4.1 Discard_Names

Some Ada constructs have a string associated with them so that they can be displayed:

• The attributes Image and Value, and IO for enumeration types.
• Ada.Exceptions.Exception_Name §11.4.1(5).
• Ada.Tags.Expanded_Name §3.9(10).

pragma Discard_Names §C.5 allows the implementation to save storage by not storing these
strings at run-time; if you do call these functions the result is implementation defined. This
feature is important for saving memory in embedded computer systems that have no display
device, or no use for the constructs listed above.

20.4.2 Preelaboration

Embedded computer systems need the ability to quickly restart a program in case of a failure
such as loss of power. In Ada, the time to start a program includes the elaboration time, which
may be significant. Elaboration time can be reduced by preelaborating as much of the program
as possible (Section 15.5.4). An implementation may be able to store the constants of a preelab-
orated unit in ROM, further reducing startup time.

Paragraphs §10.2.1(2–12) specify restrictions that a library unit must satisfy for it to be pre-
elaborable. Roughly, a unit can be preelaborated if no “code” need be executed at run-time. For
example, tasks are illegal because they require run-time structures that must be initialized.
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The core language does not specify what “privileges” a preelaborable unit has—only that it
is elaborated after a pure unit and before an ordinary unit. Annex §C imposes requirements on
the implementation of preelaborated units.

§C.4

2 The implementation shall not incur any run-time overhead for the elaboration
checks of subprograms and protected_bodies declared in preelaborated library units.

3 The implementation shall not execute any memory write operations after load time
for the elaboration of constant objects declared immediately within the declarative
region of a preelaborated library package, so long as the subtype and initial
expression (or default initial expressions if initialized by default) of the
object_declaration satisfy the following restrictions. The meaning of load time is
implementation defined.

The restrictions given in §C.4(4–11) are intended to ensure that expressions are static.

20.5 Machine code*

The architecture of most computers includes specialized instructions; use of these instructions
can be essential when implementing time-critical algorithms. Of course, hardly anything makes
a program less portable than the use of machine code!

§C.1

2 The implementation shall support machine code insertions (see 13.8) or intrinsic
subprograms (see 6.3.1) (or both). Implementation-defined attributes shall be
provided to allow the use of Ada entities as operands.

4 The interfacing pragmas (see Annex §B) should support interface to assembler; the
default assembler should be associated with the convention identifier Assembler.

Suppose that the machine includes an atomic increment instruction, and that to implement a
concurrent algorithm it is essential that this instruction be used to implement the statement
X:=X+1. There are three ways in which this could be supported. The implementation could
simply allow to program to call an assembly language subprogram. The problem with this
method is that there may be significant overhead associated with subprogram call and return.
A better method is to have the implementation simply supply an intrinsic subprogram: Inc(X).

§6.3.1

4 The Intrinsic calling convention represents subprograms that are “built in” to the
compiler. . . .
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Intrinsic subprograms are probably the best solution when there are a few commonly used
machine-code instructions. However, to access the full set of instructions and addressing
modes, support for machine code insertions §13.8 is a better solution. The implementation sup-
plies a package System.Machine_Code that defines types that allow qualified expressions to
be written for each instruction and addressing mode. Attributes must also be defined for ad-
dressing ordinary objects of the Ada program. For example, if an object is addressed by a page
number and an offset, the implementation could support a statement like:

Instruction’(Inc, X’Page, X’Offset);

20.6 Interrupts*

In this section, we describe a simple model for interrupts and the constructs that can be used to
implement an interrupt handler. There is an extensive discussion in the ARM and the Ada 95
Rationale on adapting the constructs to support other architectures. Note in particular the ex-
tensive documentation requirements associated with interrupt support §C.3(12–22).

§C.3

2 An interrupt represents a class of events that are detected by the hardware or the
system software. Interrupts are said to occur. An occurrence of an interrupt is
separable into generation and delivery. Generation of an interrupt is the event in the
underlying hardware or system that makes the interrupt available to the program.
Delivery is the action that invokes part of the program as response to the interrupt
occurrence. Between generation and delivery, the interrupt occurrence (or interrupt)
is pending. Some or all interrupts may be blocked. When an interrupt is blocked, all
occurrences of that interrupt are prevented from being delivered. Certain interrupts
are reserved. The set of reserved interrupts is implementation defined. A reserved
interrupt is either an interrupt for which user-defined handlers are not supported, or
one which already has an attached handler by some other implementation-defined
means. Program units can be connected to non-reserved interrupts. While
connected, the program unit is said to be attached to that interrupt. The execution of
that program unit, the interrupt handler, is invoked upon delivery of the interrupt
occurrence.

In a common architecture, when an interrupt occurs, the hardware looks in a fixed memory
location called a vector for the address of a subprogram called the handler:
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00111001

Mask

Vector Handler
-

Delivery of the interrupt consists of preempting the currently executing task and executing the
statements of the handler; any needed stack space is “borrowed” from the current task. Upon
completion of the handler, a return-from-interrupt instruction restores the stack and registers
of the preempted task. A bit may be set in a mask register to block a pending interrupt.

Interrupts implement a simple form of mutual exclusion: during the execution of the han-
dler, software tasks are blocked because interrupts execute at a higher priority than any soft-
ware task. If a task wishes to update a variable shared with an interrupt handler, it simply sets
the mask register to block the interrupt.

This interrupt model maps onto procedures of protected objects. The interrupt is modeled
as an anonymous hardware task executing a protected procedure, and mutual exclusion with
other protected operations is implemented by masking the interrupt.

§C.3.1

2 pragma Interrupt_Handler(handler_name);
4 pragma Attach_Handler(handler_name, expression);

5 For the Interrupt_Handler and Attach_Handler pragmas, the handler_name shall
resolve to denote a protected procedure with a parameterless profile.

9 If the pragma Interrupt_Handler appears in a protected_definition, then the
corresponding procedure can be attached dynamically, as a handler, to interrupts
(see C.3.2). Such procedures are allowed to be attached to multiple interrupts.

10 As part of the initialization of that object, if the Attach_Handler pragma is specified,
the handler procedure is attached to the specified interrupt. . . .

13 When a handler is attached to an interrupt, the interrupt is blocked . . . during the
execution of every protected action on the protected object containing the handler.

The difference between the two pragmas is that Attach_Handler attaches the interrupt han-
dler when the protected object is initialized, whereas Interrupt_Handler simply notifies the
compiler that a protected procedure is an interrupt handler. Subprograms in the package
Ada.Interrupts §C.3.2 must be used to attach the handler. In this case, the handler may be
dynamically attached and detached.
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20.7 Shared variables*

If several tasks are declared within a subprogram or package, they can all read and write vari-
ables declared previously in the enclosing declarative region. Such variables are called shared
variables. Similarly, sharing of variables can occur if a subprogram that reads or writes a global
variable is called by several tasks. Normally, sharing variables is not considered a good pro-
gramming technique, because the variables should be encapsulated in protected objects or
tasks. For reasons of efficiency, low-level systems programming can require this capability. The
problem is only in sharing variables; the executable code is assumed not to modify itself (“pure
code”) and can be executed concurrently by several tasks §6.1(35).

There are two potential problems that can arise from concurrent access to shared variables.
First, the variable may not be atomic; this is likely to happen if more than one memory word
is needed to store the variable, such as with high-precision floating point numbers and with
arrays and records. Suppose that a task updates one word of a two-word variable and then it is
preempted by another task that updates both words of the same variable. When the first task
is resumed, it will update the second word, leaving the variable with a mixture of two values.

The second problem is that code generators, in particular optimizers, make assumptions that
may not be valid in the presence of concurrency. For example, given the statements:

X := Y + 4;

Z := X + Y;

the code generator might not write to the memory word for X immediately after the first state-
ment; instead, when computing the expression X+Y, it will use the value of Y+4 that was stored
in a register. Then another task might use the old value in X.

An extreme case of this problem is shown by the sequence of instructions:

Mem := 16#F000#;

Mem := 16#000C#;

where the assignment is done solely for the side effect of issuing a command to a memory-
mapped peripheral. An optimizer will simply discard the first assignment.

Clause §9.10 defines what it means for two actions to be sequential. Roughly, they are se-
quential if they are part of the same task, or if they are synchronized by a task rendezvous or
protected action. Reading and updating an unprotected shared variable is erroneous unless the
actions are sequential §9.10(11).

For systems programming, we may want to read and update shared variables without the
overhead of rendezvous or protected actions. This is done by using pragmas to specify that an
object or all objects of a type are atomic or volatile.
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§C.6

15 For an atomic object (including an atomic component) all reads and updates of the
object as a whole are indivisible.

16 For a volatile object all reads and updates of the object as a whole are performed
directly to memory.

17 Two actions are sequential (see 9.10) if each is the read or update of the same atomic
object.

pragma Atomic specifies that an object can be read and updated indivisibly, and thus can be
accessed concurrently §9.10. If the implementation cannot ensure this, the program is illegal
§C.6(10). pragma Volatile (which is also implied by Atomic §C.6(8)) specifies that no temporary
copies of the variable are kept and that no reads or updates will be discarded. Volatile can be
used on a compound object that cannot be accessed atomically; you will have to use other
means to ensure that the object contains a consistent value.

It is possible to specify that the components of an array are atomic or volatile (even if the
entire array is not) with pragma Atomic_Compoments §C.6(5) or pragma Volatile_Compoments

§C.6(6). These pragmas can be applied to a constant object §C.6(13), provided that Import is
also applied so that an external program (or perhaps the hardware) can modify it. The rules for
passing atomic or volatile objects as parameters are discussed in §C.6(12,18,19).

20.8 Task identification and attributes*

Dynamic data structures containing tasks can be created by declaring a record or an array
with a component of a task type. However, since tasks are typed, you cannot create a data
structure that contains tasks of different types, as would be needed, for example, when writing
an operating system. Package Ada.Task_Identification §C.7.1 declares a nonlimited private
type Task_ID that can hold the identification of a task regardless of its type.

§C.7.1

5 A value of the type Task_ID identifies an existent task. The constant Null_Task_ID
does not identify any task. Each object of the type Task_ID is default initialized to
the value of Null_Task_ID.

8 The function Current_Task returns a value that identifies the calling task.

The function Current_Task §C.7.1(8) is not well-defined within a protected entry body. The
reason is that when a blocked task is awakened, the entry body will probably be executed by
the awakening task to avoid a context switch.
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Several attributes are defined that return values of type Task_ID:

§C.7.1

12 T’Identity Yields a value of the type Task_ID that identifies the task denoted by T.
14 E’Caller Yields a value of the type Task_ID that identifies the task whose call is

now being serviced. Use of this attribute is allowed only inside an entry_body or
accept_statement corresponding to the entry_declaration denoted by E.

Data can be associated with a task by declaring discriminants; again, however, this is type-
specific. Instead, we may need to add data items to the “task control block” that contains the
data associated with each task, such as its priority. This is done instantiating the generic pack-
age Ada.Task_Attributes §C.7.2 one or more times to create user-defined attributes. The at-
tributes can be written and read using the procedure Set_Value and the function Value, re-
spectively. Task identification and attributes are demonstrated in the following case study.

20.8.1 Case study: task identification and attributes

The program in this case study models a server receiving requests from an arbitrary set of client
tasks. At any point in time, the server stores the Task_ID of the two “most important” tasks,
where importance is an attribute associated with each task. The most important tasks will be
released before other tasks.

Importance is an instantiation of Ada.Task_Attributes with an attribute of type Integer:

id

1 with Ada.Numerics.Discrete_Random;

2 with Ada.Task_Identification; with Ada.Task_Attributes;

3 procedure ID is
4 package Importance is new Ada.Task_Attributes(Integer, 0);

Clients will call entries Request and Release of the task Server:

5 task Server is
6 entry Request;

7 entry Release;

8 private
9 entry Slow_Release;

10 end Server;
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The task stores the IDs and attributes of the two most important tasks:

11 task body Server is
12 use Ada.Task_Identification;

13 ID1, ID2: Task_ID;

14 Importance1, Importance2: Integer := 0;

The attribute E’Caller is used to obtain the ID of the calling task. If it has a higher value of
Importance than the currently stored tasks, its ID and importance replace existing ones:

15 begin
16 loop
17 select
18 accept Request do
19 if Importance.Value(Request’Caller) > Importance1 then
20 Importance2 := Importance1;

21 ID2 := ID1;

22 ID1 := Request’Caller;

23 Importance1 := Importance.Value(ID1);

24 elsif Importance.Value(Request’Caller) > Importance2 then
25 ID2 := Request’Caller;

26 Importance2 := Importance.Value(ID2);

27 end if;
28 end Request;

When a client calls Release, its ID is compared with the stored ID to see if it is one of the two
most important tasks. If so, the rendezvous is completed; if not, the entry call is requeued on
the private entry Slow_Release, whose guard ensures that it is only executed if no important
tasks are being served:

29 or
30 accept Release do
31 if Release’Caller /= ID1 and Release’Caller /= ID2 then
32 requeue Slow_Release;

33 else
34 -- Perform service

35 end if;
36 end Release;

37 or
38 when Release’Count = 0 =>

39 accept Slow_Release do
40 -- Perform service

41 end Slow_Release;
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Note that tasks, not just protected objects, can have private entries.
Finally, the server has a terminate alternative for its selective accept statement:

42 or
43 terminate;
44 end select;
45 end loop;
46 end Server;

Clients set their own importance by calling a random number generator:

47 subtype Numbers is Integer range 1..100;

48 package Random_Numbers is new Ada.Numerics.Discrete_Random(Numbers);

49 G: Random_Numbers.Generator;

We now declare two task types, which are used to declare ten client tasks; all of them, however,
can use the same types for their IDs and importance attributes:

50 task type Client1;

51 task body Client1 is
52 begin
53 Importance.Set_Value(Random_Numbers.Random(G));

54 Server.Request;

55 -- Do something while waiting

56 Server.Release;

57 end Client1;

58

59 task type Client2;

60 task body Client2 is -- similar

61

62 C1: array(1..5) of Client1;

63 C2: array(1..5) of Client2;

64 begin
65 null;
66 end ID;

20.9 Detecting task termination*

We noted in Section 19.2 that exceptions raised in a task do not affect other tasks unless these
tasks are in a rendezvous or on an entry queue for the task. Sometimes, however, a task does
wish to be informed when another task terminates; package Ada.Task_Termination supports
this capability.
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A termination handler can be attached to a task. This is a protected procedure that will be
executed when the task terminates:

§C.7.3

3 type Cause_Of_Termination is (Normal, Abnormal, Unhandled_Exception);

4 type Termination_Handler is access protected procedure
(Cause : in Cause_Of_Termination;

T : in Ada.Task_Identification.Task_Id;

X : in Ada.Exceptions.Exception_Occurrence);

8 The type Termination_Handler identifies a protected procedure to be executed by
the implementation when a task terminates. Such a protected procedure is called a
handler. In all cases T identifies the task that is terminating. If the task terminates due
to completing the last statement of its body, or as a result of waiting on a terminate
alternative, then Cause is set to Normal and X is set to Null_Occurrence. If the task
terminates because it is being aborted, then Cause is set to Abnormal and X is set to
Null_Occurrence. If the task terminates because of an exception raised by the
execution of its task_body, then Cause is set to Unhandled_Exception and X is set to
the associated exception occurrence.

The handler shown here is called a specific handler that is called when the task it is attached
to terminates. A handler can also be attached as a fallback handler §C.7.3(5,9), in which case it
applies to the dependents of a task. When a task terminates, a search for a specific handler is
made; if one is not found, a search commences for a fallback handler in the task’s master (and
recursively its master) §C.7.3(14).

Ada 95

This package is new for Ada 2005.

20.9.1 Case study: detecting task termination

Recall that in the case study for the producer–consumer problem (Section 18.1), the producer
terminated but the consumers were blocked indefinitely. We now use Ada.Task_Termination

to force termination if the producer terminates for any cause except Normal. To make the prob-
lem more realistic, we put the two task types in separate packages. This modification is straight-
forward and can be seen in the source code archive.

A package is declared that contains a protected object with a procedure having the profile
required by §C.7.3(4):
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67 with Ada.Task_Identification; with Ada.Task_Termination;

68 with Ada.Exceptions;

69 package Termination is
70 protected Termination_Object is
71 procedure Handle_Termination

72 (Cause : in Ada.Task_Termination.Cause_Of_Termination;

73 T : in Ada.Task_Identification.Task_Id;

74 X : in Ada.Exceptions.Exception_Occurrence);

75 entry Watchdog;

76 private
77 Unexpected_Termination: Boolean := False;

78 end Termination_Object;

79 end Termination;

The protected object also has an entry Watchdog, which will be called by a task that wants to be
notified when termination occurs. The variable Unexpected_Termination will be used as the
barrier of this entry, and will be set by the termination handler if the cause of termination is not
normal:

80 package body Termination is
81 protected body Termination_Object is
82

83 procedure Handle_Termination

84 (Cause : in Ada.Task_Termination.Cause_Of_Termination;

85 T : in Ada.Task_Identification.Task_Id;

86 X : in Ada.Exceptions.Exception_Occurrence) is
87 use Ada.Task_Termination;

88 begin
89 Unexpected_Termination := Cause /= Normal;

90 end Handle_Termination;

91

92 entry Watchdog when Unexpected_Termination is
93 begin
94 null;
95 end Watchdog;

96

97 end Termination_Object;

98 end Termination;

The procedure Handle_Termination is set to be the specific handler of the producer task and a
fault is introduced into the code (a range error when assigning to N):
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99 with Ada.Task_Identification; with Ada.Task_Termination;

100 with Buffer, Termination;

101 package body Producer is
102 task body Producer_Task is
103 subtype Value_Range is Integer range 1..20;

104 N: Value_Range := 1;

105 begin
106 Ada.Task_Termination.Set_Specific_Handler(

107 Ada.Task_Identification.Current_Task,

108 Termination.Termination_Object.Handle_Termination’Access);

109 loop
110 Buffer.Buffer_Task.Append(N);

111 N := N + 1;

112 end loop;
113 end Producer_Task;

114 end Producer;

The main program declares the producer and consumer tasks, and calls the entry Watchdog

of the termination handler. When it returns, it aborts the three tasks:

115 with Consumer, Producer, Termination;

116 procedure TaskPC is
117 C1: Consumer.Consumer_Task(1);

118 C2: Consumer.Consumer_Task(2);

119 P: Producer.Producer_Task;

120 begin
121 Termination.Termination_Object.Watchdog;

122 abort P, C1, C2;

123 end TaskPC;

Run the program and check that it terminates. Next, add an exception handler to the task
Producer and explain happens:

exception
when Constraint_Error => null;



20.9 Detecting task termination* 421

Projects

1. If your computer has a C compiler, check that you can call C functions from an Ada program.
Check, also, that unchecked union works correctly.

2. Examine the machine code produced by your compiler to see the effect of using pragmas
Atomic and Volatile.

3. Modify the case study in Section 20.8.1 so that a linked list of tasks is maintained by the
server.

Quizzes

Quiz 1: Add the following declaration to the program Union in Section 20.3.4 and try to access
its components A and B:

U: Structured_Message(M1) := (M2, 12.34);

Quiz 2:

pragma Preelaborate;

Strange: Float :=

Ada.Numerics.Elementary_Functions.Sqrt(

Ada.Numerics.Pi + Ada.Numerics.E);



Chapter 21

Real-Time Systems

21.1 Annex D Real-Time Systems

The essence of real-time systems is predictability. The software requirements of these systems
include reactive time constraints: when an input event occurs, the system must react within
a specified time by computing and sending the correct output. Real-time systems frequently
need to be very efficient—reacting to a large number of events within a very short time—but
there is no necessary relationship between the two concepts. Annex §D goes into great detail on
two main topics: task scheduling and time. The Annex includes documentation requirements
and metrics, which supply the systems engineer with information needed to design a real-time
program using a specific implementation.

An implementation that implements Annex D is also required to implement Annex §C Sys-
tems Programming.

21.2 Scheduling and priorities

Recall (Section 19.1) that a ready task competes for resources such as processors that it needs to
run. However, the core language does not specify how a ready task is chosen if there are more
ready tasks than resources. Similarly, the language does not specify how a task blocked on an
entry queue is chosen if there is more than one open protected entry §9.5.3(17) or selective
accept alternative §9.7.1(16), although paragraph §9.5.3(17) does specify that any particular
entry queue will be served in first-in, first-out (FIFO) order of the arrival of the calling tasks.
There could also be more than one expired delay §9.7.1(18) to choose from.

§D.1 through §D.5 describe how priorities are used with scheduling rules. For portability, an
implementation must support these rules, though it is free to support other scheduling rules
needed by applications.

423
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Ada is designed to be “multiprocessor-friendly,” but for simplicity, we will describe the stan-
dard rules for a single processor and refer you to the ARM and the Ada 95 Rationale for the
modifications needed for multiprocessors.

Each task has a priority and there is a queue of tasks for each priority:

§D.2.1

5 Task dispatching policies are specified in terms of conceptual ready queues and task
states. A ready queue is an ordered list of ready tasks. The first position in a queue is
called the head of the queue, and the last position is called the tail of the queue. A task is
ready if it is in a ready queue, or if it is running. Each processor has one ready queue
for each priority value. At any instant, each ready queue of a processor contains
exactly the set of tasks of that priority that are ready for execution on that processor,
but are not running on any processor; that is, those tasks that are ready, are not
running on any processor, and can be executed using that processor and other
available resources. A task can be on the ready queues of more than one processor.

The following diagram shows the conceptual queues of ready tasks:

Interrupt_Priority’Last

Interrupt_Priority’First

Priority’Last

Priority’First �� ��
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�� �� ��

-

-

-

-
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(The diagram is conceptual because the ARM does not specify the data structures that an im-
plementation must use.)

Priority (more precisely, base priority) is specified by pragma Priority in the declaration of
a task or protected unit §D.1(3–13). pragma Interrupt_Priority is usually used to specify
the priority of an interrupt handler (Section 20.6) or the ceiling priority of a protected object
(Section 21.7). Interrupts have higher priority than tasks. The priority is fixed when a task or
protected object is declared, although it can be changed as explained in Section 21.6. The prior-
ity can depend on a discriminant §D.1(27), so different tasks of the same type can be assigned
different priorities.
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Priorities are used to control task dispatching.1

§D.2.1

6 Each processor also has one running task, which is the task currently being executed
by that processor. Whenever a task running on a processor reaches a task
dispatching point it goes back to one or more ready queues; a task (possibly the
same task) is then selected to run on that processor. The task selected is the one at the
head of the highest priority nonempty ready queue; this task is then removed from
all ready queues to which it belongs.

Normally, a task will run until it reaches a task dispatching point such as an entry call.

§D.2.1

4 Task dispatching is the process by which one ready task is selected for execution on a
processor. This selection is done at certain points during the execution of a task
called task dispatching points is the process by which one ready task is selected for
execution on a processor. This selection is done at certain points during the
execution of a task called task dispatching points. A task reaches a task dispatching
point whenever it becomes blocked, and when it terminates. Other task dispatching
points are defined throughout this Annex for specific policies.

Tasks can also be preempted if a delay expires or if an interrupt causes some blocked task of a
higher priority to become ready.

21.3 Task dispatching policies

A task dispatching policy specifies the transitions of tasks to and from the ready queues. The
policy is specified by pragma Tasking_Policy; this is a configuration pragma (Section 15.4).

21.3.1 Preemptive dispatching

The default policy is implementation defined §D.2.2(6.1). A commonly used one is the preemp-
tive scheduling policy FIFO_Within_Priorities §D.2.3 that can be specified by:

pragma Tasking_Policy(FIFO_Within_Priorities);

The policy is illustrated in Figure 21.1.

1 This use of the term dispatching has nothing to do with the concept of dynamic dispatching of subprograms.
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Fig. 21.1 FIFO_Within_Priorities policy

Let us first consider the transition in the lower right of the figure:

§D.2.3

4 • When a blocked task becomes ready, it is added at the tail of the ready queue for its
active priority.

This is reasonable since there are other tasks of the same priority which have been ready, pos-
sibly for quite some time. The transition is also taken for a delay statement whose expiration
time has already passed when it is executed §D.2.3(7), for example, if delay 0.0 is used by a
task to voluntarily relinquish the processor.

The essence of preemptive scheduling is the replacement of the running task by a ready task
of higher priority (the upper left of Figure 21.1):

§D.2.3

9 A task dispatching point occurs for the currently running task of a processor
whenever there is a nonempty ready queue for that processor with a higher priority
than the priority of the running task. The currently running task is said to be
preempted and it is added at the head of the ready queue for its active priority.

If a task is preempted—say by an interrupt—there is no reason to “punish” it, so it goes back
on the head of the queue. Of course, it may not become the next running task after the preempt-
ing task completes its execution, because a higher-priority task may have become ready in the
meantime.

The other transitions show what happens when priorities are changed (Section 21.4).
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21.3.2 Non-preemptive dispatching

The task dispatching policy Non_Preemptive_FIFO_Within_Priorities §D.2.4 is similar to the pre-
vious policy FIFO_Within_Priorities except that the running task is never interrupted just be-
cause a higher priority task becomes ready. If a task never becomes blocked, scheduling only
occurs if it voluntarily executes a statement like delay 0.0.

§D.2.4

9 For this policy, a non-blocking delay_statement is the only non-blocking event that is
a task dispatching point (see D.2.1).

21.3.3 Round robin dispatching

The task dispatching policy Round_Robin_Within_Priorities §D.2.5 is a modification of preemp-
tive scheduling. In addition to the scheduling rules for FIFO_Within_Priorities, a task can be
placed back on the ready queue if it takes “too long” to execute, where “too long” is defined by a
quantum of time that can be set separately for each priority level §D.2.5(6). The subprograms for
doing this are given in package Ada.Dispatching.Round_Robin. When a task becomes ready, it
is given an execution time budget equal to the quantum for its priority level §D.2.5(11). The task
is allowed to execute until its budget is reduced to zero, at which point the task is placed on the
tail of the ready queue for its priority level §D.2.5(13–14). If the task is preempted by a higher
priority task, it retains its budget §D.2.5(12).

21.3.4 Earliest deadline first dispatching

The task dispatching policy EDF_Across_Priorities §D.2.6 is an optimal policy in the sense that
if it is at all possible to schedule a set of tasks, then it is possible to do so using Earliest Deadline
First (EDF) scheduling. In EDF, there is no meaning to a fixed assignment of priorities to tasks,
where a higher priority task is considered to be more important and preempts tasks of lesser
importance. Instead, “priority” is assigned in terms of the time remaining until the deadline by
which a task must complete its execution.

Consider two periodic tasks, T1 and T2. T1 needs 2 seconds of execution time out of every 5
seconds of real time, while T2 needs 1 second out of every 2 seconds. For simplicity, suppose
that both tasks are released at time 0 when the system begins to run. According to EDF, since
the deadline of T2 is sooner (2 < 5), it is given priority over T1, regardless of the “importance”
of the tasks. It is easy to see that this assignment of priorities enables both tasks to execute by
their deadlines.
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Conceptually, EDF is like FIFO_Within_Priorities, except that there is only one priority level
and one ready queue. When a task becomes ready, it is inserted into the ready queue at a posi-
tion determined by its deadline. The EDF tasking policy is more complex than this because it
must take into account interactions with priority ceiling locking (Section 21.7). This is described
by the preemption level control protocol (also called the stack-based priority-ceiling protocol); see [4,
Chapter 14] and [5, Chapter 8].

Types and subprograms for EDF scheduling can be found in package Ada.Dispatching.EDF.

Ada 95

The only standard task dispatching policy in Ada 95 is FIFO_Within_Priorities.

21.4 Base and active priorities

Suppose that task T1 with priority 1 begins executing an entry E of a protected object PO, and
suppose that T1 is preempted by task T2 with priority 2. Next, T2 in turn is preempted by task
T3 with priority 3, which immediately calls the same entry E of PO:

�
�

�
� -T3

POE

T1 T2�
�

�
�

T3 will be queued pending the completion of the entry body, but this will not occur as long as
T2 continues to execute because T2 has a higher priority than T1. Only when T2 blocks, perhaps
by calling an entry, will it relinquish the processor to T1 and the entry will be completed. The
state of the computation is that a high-priority task T3 is waiting for a lower-priority task T2 to
block. This situation is called priority inversion. Priority inheritance, which distinguishes between
the base priority and the active priority of a task, can be used to prevent priority inversion.
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§D.1

15 A task priority is an integer value that indicates a degree of urgency and is the basis
for resolving competing demands of tasks for resources. Unless otherwise specified,
whenever tasks compete for processors or other implementation-defined resources,
the resources are allocated to the task with the highest priority value. The base
priority of a task is the priority with which it was created, or to which it was later set
by Dynamic_Priorities.Set_Priority (see D.5). At all times, a task also has an active
priority, which generally reflects its base priority as well as any priority it inherits
from other sources. Priority inheritance is the process by which the priority of a task
or other entity (e.g. a protected object; see D.3) is used in the evaluation of another
task’s active priority.

The active priority of a task is either its base priority or an inherited priority.

§D.1

20 At any time, the active priority of a task is the maximum of all the priorities the task
is inheriting at that instant. For a task that is not held (see D.11), its base priority is a
source of priority inheritance unless otherwise specified for a particular task
dispatching policy. Other sources of priority inheritance are specified under the
following conditions:

21 • During activation, a task being activated inherits the active priority that its
activator (see 9.2) had at the time the activation was initiated.

22 • During rendezvous, the task accepting the entry call inherits the priority of the
entry call (see 9.5.3 and D.4).

23 • During a protected action on a protected object, a task inherits the ceiling priority
of the protected object (see 9.5 and D.3).

24 In all of these cases, the priority ceases to be inherited as soon as the condition
calling for the inheritance no longer exists.

(Ceiling priority is discussed in detail in Section 21.7.)
In the example above, let us assume that the protected object has a priority such as 5 that is

higher than any of the calling tasks. When the low priority task T1 executes the entry, it inherits
this priority, which becomes its active priority. Therefore, T2 with priority 2 will not preempt
T1 when it is executing the protected action. Upon completion of the protected action, T1 loses
its inherited priority and returns to its low base priority. Since T3 has a higher priority than T2
it will now execute the entry call before T2 is allowed to execute.

Priority inversion still occurs, but it is bounded by the maximum duration of the protected
action. By analyzing all protected operations, a bound on the maximum duration of a prior-
ity inversion can be obtained and used to ensure that a real-time system meets its deadlines
§D.2.3(11–13).
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When a task’s priority is reduced by the loss of the inherited priority (Figure 21.1, top left),
the task goes to the head of the ready queue for its priority §D.2.3(5). This can prevent an
additional context switch if no higher-priority tasks are ready.

21.5 Entry queuing policies

By default, the queuing policy is FIFO_Queuing §D.4(7), where entry queues are served in FIFO
order. This can cause a form of priority inversion if a high-priority task is enqueued behind a
long series of lower-priority tasks:
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Priority inversion can also occur if there is more than one open alternative in a selective
accept statement or more than one entry with an open barrier. Since the choice among the
open alternatives or the entries is not specified by the language §9.5.3(17), a queue with a
low-priority task could be served before a queue with a high-priority task. Annex §D specifies
an additional queuing policy called Priority_Queuing, which can be chosen by using pragma
Queuing_Policy §D.4(2–4). To define this policy, the priority of an entry call is first defined.

§D.4

9 • The calls to an entry (including a member of an entry family) are queued in an
order consistent with the priorities of the calls. The priority of an entry call is
initialized from the active priority of the calling task at the time the call is made, but
can change later. Within the same priority, the order is consistent with the calling (or
requeuing, or priority setting) time (that is, a FIFO order).

The rules for open alternatives and entry calls are now given.

§D.4

12 • When more than one condition of an entry_barrier of a protected object becomes
True, and more than one of the respective queues is nonempty, the call with the
highest priority is selected. If more than one such call has the same priority, the call
that is queued on the entry whose declaration is first in textual order in the
protected_definition is selected. For members of the same entry family, the one with
the lower family index is selected.

14 • When more than one alternative of a selective_accept is open and has queued calls,
an alternative whose queue has the highest-priority call at its head is selected. If two
or more open alternatives have equal-priority queued calls, then a call on the entry
in the accept_alternative that is first in textual order in the selective_accept is selected.
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(The rule for delay_alternatives is given in §D.4(13).)
The rule that ties among priorities of entry calls are broken by the textual order of the entries

or the accept statements may seem arbitrary, but it does ensure that the servicing of the queues
is fully deterministic when using priority queuing.

In the CEO case study (Section 18.4), Priority_Queuing prevents the following race condi-
tion. The guard when Wake(Finance)’Count = 0 of the alternative accept Wake(Marketing)

is evaluated and found to be true; that is, there is no higher-priority accountant group waiting
to wake the CEO. But before the CEO task can execute the accept statement, it is preempted
and an accountant task is enqueued on Wake(Finance). To ensure that the precedence specifi-
cation is fulfilled, the rendezvous should be made with the accountant task, but this cannot be
guaranteed with arbitrary selection of alternatives. Priority_Queuing ensures that the accoun-
tant task is accepted before the salesperson task, because it is waiting on an alternative that is
textually before the other.

The queuing policy applies only to calls that are enqueued on an entry queue. If several
tasks are trying to start a protected action, they are not queued and nothing can be said about
the order in which they will begin the protected action §9.5.1(19).

Do not specify Priority_Queuing if you don’t need it, because maintaining the entry queues
in order of priority will be less efficient than simply adding a task to the tail of a FIFO queue.

21.6 Dynamic priorities*

Package Ada.Dynamic_Priorities §D.5.1 defines subprograms that set and return the base pri-
ority of a task. A change of the base priority will send the task to the tail of the ready queue
for the new priority §D.2.2(9–10) (bottom center of Figure 21.1). The priority change is deferred
during a protected action §D.5(10).

The attribute Priority §D.5.2 can be used to dynamically modify the ceiling priority of a
protected object (see the following section).

Dynamic priority modification can be inefficient if Priority_Queuing is in effect, because
the entry queues must be reordered. Furthermore, there are complications in the interaction
between dynamic priority modification and protected objects.

21.7 Priority ceiling locking

Priority ceiling locking is an algorithm that enables priorities and preemptive scheduling to
implement protected objects on a single processor without an additional locking construct. It
is specified by pragma Locking_Policy with the argument Ceiling_Locking §D.3(3–4). In the
absence of the pragma, the locking policy is implementation defined.
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An implementation is required to support the specification of the ceiling locking policy to-
gether with all the task dispatching policies described in Section 21.3 §D.2.3(10), §D.2.4(10),
§D.2.5(15), §D.2.6(10–11); in fact, ceiling locking must be specified if EDF scheduling is used.

A protected object is assigned a ceiling priority which is inherited by tasks executing pro-
tected actions of the object:

§D.3

8 • Every protected object has a ceiling priority, which is determined by either a
Priority or Interrupt_Priority pragma as defined in D.1, or by assignment to the
Priority attribute as described in D.5.2. The ceiling priority of a protected object (or
ceiling, for short) is an upper bound on the active priority a task can have when it
calls protected operations of that protected object.

12 • While a task executes a protected action, it inherits the ceiling priority of the
corresponding protected object.

The following rule ensures that a task executing a protected object is not preempted by any
task that could enter the protected object:

§D.3

13 • When a task calls a protected operation, a check is made that its active priority is
not higher than the ceiling of the corresponding protected object; Program_Error is
raised if this check fails.

Assume that task T1 is executing a protected action with ceiling priority PC. We show that
another task T2 cannot start a protected action of the same object, assuming that the task dis-
patching policy is FIFO_Within_Priorities:

• T1 is executing a protected action at the inherited ceiling priority PC §D.3(12).
• T1 cannot block §9.5(8).
• T2 cannot preempt T1 to start the protected action: its priority must be less than or equal to

PC §D.3(13), but this is the priority of T1, and a running task can only be preempted by a task
of higher priority §D.2.3(9).

Therefore, T1 cannot be directly preempted by T2, but it is possible for T1 to be preempted by
a third task of priority higher than PC, which could change the priority of T2 to an arbitrary
priority P2. In that case:

• If P2 > PC, T2 is not allowed to call the protected action §D.3(13).
• If P2 < PC, the scheduler will choose to run T1, which has the higher, inherited, priority PC.
• If P2 = PC, T2 will be queued at the tail of the ready queue for this priority §D.2.3(5), but T1

is at the head of the queue §D.2.3(9), so it will be chosen in preference to T2.
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21.8 Monotonic time

The package Ada.Real_Time §D.8 specifies a high-resolution monotonic clock. There is a pri-
vate type Time and a function Clock that returns the current time. The unit of Time is an
implementation-defined real number called Time_Unit.

Intervals of time are given by the private type Time_Span, rather than the predefined fixed
point type Duration used in Ada.Calendar. The unit of Time_Span is called Time_Span_Unit

and it represents the same interval as Time_Unit.
The type Time has no connection with astronomical or geographical time; instead, it is mea-

sured from an arbitrary point called the epoch:

-� ≤ 20µsecEpoch

?

Time_Span_Unit
Time_Unit

? ?

T1 T2

-�
T2−T1

The epoch might be the time at which the system is switched on. Clock will return the integral
number of Time_Units from the epoch until “just before now” §D.8(19). Intervals are measured
in terms of the integral number of Time_Span_Units between two Times §D.8(20–23). In the
diagram, at real times T1 and T2, the clock returns an integral number of units less than or
equal to the time, so the time span T2-T1 is also integral. Subprograms are provided to do the
usual arithmetical and relational operations on the private types.

The following table shows the required range and precision of time for both Ada.Calendar

and Ada.Real_Time:

Calendar Real_Time

Range of time 500 years 50 years
Range of interval 1 day ± 1 hour
Precision 20 msec 20 µsec

It is recommended that the precision of calendar time be no less than 100 µsec and it is permit-
ted that real time can have a smaller range and precision in implementations with a word size
of less than 32 bits §D.8(46).

A value of type Time_Span can be converted to and from a value of type Duration §D.8(13),
but there is no direct way to convert between Ada.Calendar.Time and Ada.Real_Time.Time.
Instead, procedure Split §D.8(16) converts a value T of type Ada.Real_Time.Time measured
in implementation-dependent Time_Units into SC of type Seconds_Count, which is the integral
number of seconds since the epoch, and TS of type Time_Span, the remainder:

Epoch
-� SC � -1 sec-�TS

?

T
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If you call Ada.Calendar.Clock once at the beginning of the program, you can use the seconds
count to compute a calendar time based on real time.

Values of type Ada.Real_Time.Time can be used in a delay_until_statement §D.8(18), but to
use values of type Ada.Real_Time.Time_Span in delay_relative_statements, delay alternatives
or timed entry calls, they must be converted into values of type Duration.

21.8.1 Timing events*

Computational requirements that take into account absolute or relative time can be pro-
grammed using delay statements (Section 19.3), delay alternatives (Section 19.8) and timed
entry calls (Section 19.6). These constructs are used with tasks, but it can be useful to have
timing events even in programs that do not use tasks. Timing events are supported by package
Ada.Real_Time.Timing_Events §D.15.

Consider a long computation and suppose that we need to be notified if it takes more than
one second. A timing event Watchdog is declared, and—before starting the computation—a
handler for the event is set to be invoked in one second:

event

1 with Ada.Real_Time.Timing_Events;

2 with Watchdogs;

3 procedure Event is
4 function Is_Prime(I: in Positive) return Boolean is ...

5

6 Watchdog: Ada.Real_Time.Timing_Events.Timing_Event;

7 begin
8 Ada.Real_Time.Timing_Events.Set_Handler(

9 Event => Watchdog,

10 In_Time => Ada.Real_Time.Seconds(1),

11 Handler => Watchdogs.Watchdog_PO.Watchdog_Handler’Access);

12 if Is_Prime(179_424_673) then ... end if;
13 end Event;

The handler is an access to a protected subprogram:

14 with Ada.Real_Time.Timing_Events;

15 package Watchdogs is
16 protected Watchdog_PO is
17 procedure Watchdog_Handler(

18 Event: in out Ada.Real_Time.Timing_Events.Timing_Event);

19 end Watchdog_PO;

20 end Watchdogs;
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The full program in the software archive simply prints a message if the handler is called.

Ada 95

Timing events are new for Ada 2005.

21.9 Execution time*

The constructs in Ada.Calendar and Ada.Real_Time measure the passage of “real” time; this is
normally the output of a hardware counter that is transformed into points and intervals of time.
Execution time is a measure of the time that a CPU is actually executing instructions of a task.
The sum of the execution times of all the tasks of a partition (including the idle task) should
more or less equal the passage of real time. Package Ada.Execution_Time §D.14 declares the
type CPU_Time and subprogram Clock to measure execution time.

Package Ada.Execution_Time.Timers §D.14.1 declares a type Timer that can be used to
handle timing events as in the previous case study, except that the time used is CPU_Time

rather than Ada.Real_Time.Time. Package Ada.Execution_Time.Group_Budgets supports the
creation of a budget of execution time that can be shared by a group of tasks. It declares the type
Group_Budget, as well as subprograms for adding tasks to the budget and removing them, set-
ting the budget, and defining a handler to call when the budget expires. These packages might
not be implemented in an Ada implementation that runs on top of an operating system.

21.9.1 Case study: execution time

In this case study, worker tasks randomly receive computational tasks to perform; at the end of
the program, the execution time for each task is printed, together with the total execution time
for all the tasks. A worker task has two entries: Input to receive computational tasks and Stop

to terminate the task and return its execution time:

total

1 with Ada.Real_Time;

2 package Worker is
3 task type Worker_Task is
4 entry Input(I: Positive);

5 entry Stop(CPU: out Ada.Real_Time.Time_Span);

6 end Worker_Task;

7 end Worker;
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When the declarations in the task body are elaborated, Ada.Execution_Time.Clock §D.14.5 is
called to obtain the initial CPU time which is stored in the variable Start:

8 with Ada.Execution_Time;

9 package body Worker is
10 task body Worker_Task is
11 Local: Natural;

12 Start: Ada.Execution_Time.CPU_Time := Ada.Execution_Time.Clock;

13 use type Ada.Execution_Time.CPU_Time;

When Stop is called, the task calls Clock again and returns the difference between it and Start:

14 begin
15 loop
16 select
17 accept Input(I: Positive) do
18 Local := I;

19 end Input;

20 -- Compute computational task in Local

21 or
22 accept Stop(CPU: out Ada.Real_Time.Time_Span) do
23 CPU := Ada.Execution_Time.Clock - Start;

24 end Stop;

25 exit;
26 end select;
27 end loop;
28 end Worker_Task;

29 end Worker;

The type CPU_Time returned by Ada.Execution_Time.Clock is very similar to the type Time

returned by Ada.Real_Time.Clock. It represents a point in time, rather than an interval of time
as you might expect. To obtain the total execution time, we cannot add values of type CPU_Time;
instead, the start and stop execution times are obtained and subtracted using the operator "-"
§D.14(6) to give a value of type Ada.Real_Time.Time_Span that measures intervals ‡23.

An array W of Worker tasks is declared:

30 with Worker;

31 with Ada.Text_IO, Ada.Numerics.Discrete_Random, Ada.Real_Time;

32 procedure Total is
33 subtype Group is Natural range 0..9;

34 W: array(Group) of Worker.Worker_Task;

Generic package Ada.Numerics.Discrete_Random is instantiated with the subtype Group and
Ada.Text_IO.Fixed_IO is instantiated with the predefined fixed point type Duration that will
be used to print the values of the execution times:
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35 package Random_Numbers is new Ada.Numerics.Discrete_Random(Group);

36 G: Random_Numbers.Generator;

37

38 package Duration_IO is new Ada.Text_IO.Fixed_IO(Duration);

Two variables of type Ada.Real_Time.Time_Span are declared: CPU receives the CPU time from
the task and Total_CPU is used to accumulate the CPU time:

39 CPU: Ada.Real_Time.Time_Span;

40 Total_CPU: Ada.Real_Time.Time_Span := Ada.Real_Time.Time_Span_Zero;

41 use type Ada.Real_Time.Time_Span;

A use_type_clause is needed to make the subtraction operator visible.
The computational tasks are randomly allocated to worker tasks:

42 begin
43 for I in 1 .. 100_000 loop
44 W(Random_Numbers.Random(G)).Input(I);

45 end loop;

Then, the system is shut down and the execution times are displayed:

46 for I in Group loop
47 W(I).Stop(CPU);

48 Total_CPU := Total_CPU + CPU;

49 Duration_IO.Put(Ada.Real_Time.To_Duration(CPU), Fore => 2, Aft => 5);

50 end loop;
51 Duration_IO.Put(Ada.Real_Time.To_Duration(Total_CPU), Fore => 2, Aft => 5);

52 end Total;

Ada 95

These packages are new for Ada 2005.

21.10 Preemptive abort*

Recall (Section 19.1.3, §9.8(15)) that the execution of the aborted construct completes no later
than its next abort completion point. In a real-time system, it can be important that a task be
aborted as soon as possible in order to release the resources it holds. Furthermore, a task in
an infinite loop may never reach an abort completion point. §D.6(2) requires that an aborted
construct be completed immediately, provided that it is not within an abort-deferred operation.
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21.11 Synchronous task control*

A task that wishes to suspend itself can call a protected entry with a barrier that evaluates to
false, and wait until another task changes the value of the variables in the barrier so that it
evaluates to true. In §D.10, a lower-level primitive that can be used for this purpose is defined.
Package Ada.Synchronous_Task_Control defines a limited private type Suspension_Object

and subprograms that can be used to implement two-stage suspension: a task indicates that it is
about to suspend on an object of the type and then it suspends itself. Another task will eventu-
ally release the suspension. The construct is equivalent to a binary semaphore with a queue of
size one for blocked tasks. A suspension object is a very low-level, but very efficient construct.
The use of suspension objects is demonstrated below in Section 21.14 on the Ravenscar profile.

21.12 Asynchronous task control*

Just as a task may want to suspend itself, it may need to suspend another task without its
cooperation through an entry call. Package Ada.Asynchronous_Task_Control §D.11 declares
the subprogram Hold for changing the priority of an arbitrary task to the held priority. This
priority is defined to be lower than the priority of a conceptual idle task, which in turn is below
the value of System.Priority’First. Such a task will never be scheduled until its priority is
explicitly reset by calling Continue. The rules for held tasks follow naturally from this model
as detailed in §D.11(14–19).

21.13 Tasking restrictions

There are no predefined limits to tasking in Ada: you can allocate an arbitrary number of tasks
at run-time, any number of which can be blocked on a queue. Furthermore, the program text
is not limited in terms of the number of select alternatives, nor in the number of task and
protected entries. An implementation may need to use dynamic data structures to support
this flexibility. In addition, certain features like abort can impose significant overhead on the
algorithms that implement tasking. Full support of all the Ada constructs can conflict with the
development of efficient run-time systems.

Tasking restrictions can be specified with pragma Restrictions (Section 22.2.4). Paragraphs
§D.7(2–19) list restrictions that can be placed on the use of tasking in a program, for example:

pragma Restrictions(No_Task_Allocators, Max_Tasks => 10);

The implementation is required to enforce the restrictions, but the intention is that the restric-
tions be used to configure efficient run-time systems, although this is not required §D.7(20–21).
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With the restrictions in the above pragma, the run-time system can use a static data structure
to store task control blocks and this is likely to be more efficient than dynamic data structures.
Even if your implementation does not create a more efficient run-time system when restrictions
are requested, you may want to use the pragma to flag uses of features that you have decided
to refrain from using in your design.

21.14 The Ravenscar profile

A profile enables a coordinated set of configuration pragmas to be concisely specified §D.13(5)
by a single pragma:

pragma Profile(Ravenscar);

The one language-defined profile is the Ravenscar profile2 §D.13.1 that is intended for use in
building high integrity and high performance real-time systems. The profile includes the fol-
lowing three pragmas (see Sections 21.3.1, 21.7, 18.8.2):

pragma Task_Dispatching_Policy (FIFO_Within_Priorities);

pragma Locking_Policy (Ceiling_Locking);

pragma Detect_Blocking;

The first two enable task synchronization using the highly efficient ceiling locking protocol for
synchronized objects, while the third ensures that a serious run-time error is actually detected.

In addition, the Ravenscar profile includes 23 restrictions on tasking §D.13.1(4), which facil-
itate the construction of small, efficient run-time systems. The inclusion of many of the restric-
tions such as No_Task_Allocators is obvious, because these constructs can seriously degrade
performance or reliability. Others, however, will seem overly restrictive at first sight. Tasks can
only be non-terminating loops with no entries, select statements, etc., because the rendezvous
is considered to involve too much overhead and unpredictability. This leaves only protected
objects and the very low-level suspension objects (Section 21.11, §D.10) for synchronization.

Protected objects are further restricted:

pragma Restrictions(

Simple_Barriers,

Max_Entry_Queue_Length => 1,

Max_Protected_Entries => 1);

This means that a protected object can have at most one entry §D.7(14), that at most one task
at a time can be enqueued on that entry §D.7(19.1), and that the barrier on the entry must be a
Boolean component of the protected object or a static Boolean expression §D.7(10.8):

2 Ravenscar is the name of a village in Yorkshire, England, where the first meeting was held to define the profile.
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protected PO is
entry E; -- Only one entry

procedure Proc;

private
Signal: Boolean := False;

end PO;

protected body PO is
entry E when Signal is -- Simple barrier

begin
...

end E;

procedure Proc is
begin

...

end;
end PO;

Synchronization algorithms have been developed that respect these restrictions. We give a se-
ries of case studies here and refer the reader to the Ravenscar guide [3] for further examples.

Ada 95

The Ravenscar profile is new to Ada 2005, but it is can be used to guide software develop-
ment in Ada 95. The task dispatching policy FIFO_Within_Priorities and the locking policy
Ceiling_Blocking were already defined in Ada 95, and an implementation is allowed to de-
tect blocking with protected objects. The rest of the profile consists of restrictions that can be
adhered to in Ada 95, whether or not your implementation enforces the restrictions.

21.14.1 Case study: the Ravenscar profile

We now present a sequence of case studies of algorithms for real-time systems in order to
demonstrate what Ada constructs are consistent with the Ravenscar profile and how to work
around those that are not.
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A periodic task

A periodic task implemented with delay statements is consistent with the profile. The dif-
ference between the following program and the one in Section 19.3.1 is that we have used
Ada.Real_Time instead of Ada.Calendar:

raven1

1 with Ada.Real_Time; use Ada.Real_Time;

2 procedure Raven1 is
3 Interval: constant Time_Span := Milliseconds(200);

4 Next: Time := Clock + Interval;

5 begin
6 loop
7 delay until Next;

8 -- Do something

9 Next := Next + Interval;

10 end loop;
11 end Raven1;

Sharing global data

Transferring simple data from one task to another can be done using global objects:

raven2

1 package Periodic is
2 Data: Natural := 0;

3 pragma Atomic(Data);

4 task Periodic_Task;

5 end Periodic;

The pragma Atomic ensures that every read and write to Data is atomic and—since atomic also
implies pragma Volatile—that accesses to the data are directly to memory.

Because of the restriction No_Task_Hierarchy, tasks cannot be declared local to the main
subprogram; instead, tasks will be declared in library-level packages.

The task body is a periodic task that reads a value from a sensor and stores it in Data:
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6 with Ada.Text_IO;

7 with Ada.Real_Time; use Ada.Real_Time;

8 package body Periodic is
9 task body Periodic_Task is

10 Interval: constant Time_Span := Milliseconds(200);

11 Next: Time := Clock + Interval;

12 begin
13 loop
14 delay until Next;

15 Data := ...

16 Next := Next + Interval;

17 end loop;
18 end Periodic_Task;

19 end Periodic;

The main program is as before, except that it reads the variable Data.

Synchronization

Suppose now that the value from the sensor should not be saved in the variable Data until the
previously value has been read. A suspension object (Section 21.11) can be used to implement
this synchronization efficiently. A suspension object is added to the package specification:

raven3

1 with Ada.Synchronous_Task_Control;

2 package Periodic is
3 Data: Natural := 0;

4 pragma Atomic(Data);

5 task Periodic_Task;

6

7 S: Ada.Synchronous_Task_Control.Suspension_Object;

8 end Periodic;

The periodic task suspends itself on the suspension object until the main task sets it to true. If
the delay has already expired by the time that the task is released from suspension, the delay
statement will have no effect (except possibly to enable the task to be preempted):
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9 with Ada.Text_IO;

10 with Ada.Real_Time; use Ada.Real_Time;

11 package body Periodic is
12 task body Periodic_Task is
13 Interval: constant Time_Span := Milliseconds(200);

14 Next: Time := Clock + Interval;

15 begin
16 loop
17 Ada.Synchronous_Task_Control.Suspend_Until_True(S);

18 delay until Next;

19 Data := ...

20 Next := Next + Interval;

21 end loop;
22 end Periodic_Task;

23 end Periodic;

The main task will release the suspension after it has read the variable Data:

24 with Ada.Real_Time; use Ada.Real_Time;

25 with Ada.Synchronous_Task_Control;

26 with Periodic;

27 procedure Raven3 is
28 Interval: constant Time_Span := Milliseconds(400);

29 Next: Time := Clock + Interval;

30 begin
31 loop
32 delay until Next;

33 ... := Periodic.Data;

34 Ada.Synchronous_Task_Control.Set_True(Periodic.S);

35 Next := Next + Interval;

36 end loop;
37 end Raven3;

Protecting data

Leaving synchronization for now, suppose that we need to read and write multiword data,
which cannot be accessed atomically just by using the pragma. The standard way to do this in
Ada is to use protected objects, and this is consistent with the Ravenscar profile:
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raven4

1 package Periodic is
2 type Data_Type is array(0..1) of Natural;

3 protected Protected_Data is
4 procedure Write(D: in Data_Type);

5 procedure Read (D: out Data_Type);

6 private
7 Data: Data_Type := (others => 0);

8 end Protected_Data;

9 task Periodic_Task;

10 end Periodic;

The body of the protected object is straightforward:

11 with Ada.Real_Time; use Ada.Real_Time;

12 package body Periodic is
13 protected body Protected_Data is
14 procedure Write(D: in Data_Type) is
15 begin
16 Data := D;

17 end Write;

18 procedure Read (D: out Data_Type) is
19 begin
20 D := Data;

21 end Read;

22 end Protected_Data;

The periodic task reads the individual input words and calls Write to transfer the data to the
component of the protected object:

23 task body Periodic_Task is
24 Interval: constant Time_Span := Milliseconds(200);

25 Next: Time := Clock + Interval;

26 Data: Data_Type := ...;

27 begin
28 loop
29 delay until Next;

30 Data(0) := ...;

31 Data(1) := ...;

32 Protected_Data.Write(Data);

33 Next := Next + Interval;

34 end loop;
35 end Periodic_Task;

36 end Periodic;
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The main program calls Read to obtain the multiword data:

37 with Ada.Real_Time; use Ada.Real_Time;

38 with Periodic;

39 procedure Raven4 is
40 Interval: constant Time_Span := Milliseconds(400);

41 Next: Time := Clock + Interval;

42 Data: Periodic.Data_Type;

43 begin
44 loop
45 delay until Next;

46 Periodic.Protected_Data.Read(Data);

47 -- Compute something with Data

48 Next := Next + Interval;

49 end loop;
50 end Raven4;

Protecting data with synchronization

Let us now add synchronization to the protected object. Suppose that the requirement is that
data not be read until it is ready, although older data may be written with new data sampled
from the sensor. The protected procedure Read now becomes an entry and a Boolean compo-
nent is used to signal that data is ready:

raven5

1 package Periodic is
2 type Data_Type is array(0..1) of Natural;

3

4 protected Protected_Data is
5 procedure Write(D: in Data_Type);

6 entry Read (D: out Data_Type);

7 private
8 Data: Data_Type := (others => 0);

9 Data_Ready: Boolean := False;

10 end Protected_Data;

11

12 task Periodic_Task;

13 end Periodic;

The task body is the same except that procedure Write sets Data_Ready to true and this com-
ponent is used in a barrier for entry Read:
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14 with Ada.Text_IO;

15 with Ada.Real_Time; use Ada.Real_Time;

16 package body Periodic is
17 protected body Protected_Data is
18 procedure Write(D: in Data_Type) is
19 begin
20 Data := D;

21 Data_Ready := True;

22 end Write;

23

24 entry Read (D: out Data_Type) when Data_Ready is
25 begin
26 D := Data;

27 Data_Ready := False;

28 end Read;

29 end Protected_Data;

30

31 task body Periodic_Task is -- as before

32 end Periodic;

This is consistent with the Ravenscar profile since there is only one entry, its barrier is simple
and only one task can be queued on the entry.

Working around the limitations on protected objects

Suppose that requirements are modified so that the two words of the data are obtained from
two different sensors, sampled in separate tasks. Furthermore, the sampling tasks are to over-
write Data only after its value has been read. It is not at all difficult to implement this algorithm
in Ada (raven6 in the software archive), but the natural implementation violates the restrictions
of the Ravenscar profile just mentioned:

entry Write(D: in Natural; ID: in Natural) when not Data_Ready is
entry Read (D: out Data_Type);

There are now two entries, the barrier is not simple (though this is easy to fix by changing
Data_Ready to Data_Not_Ready), and two tasks can be queued on an entry.

The workaround is to use protected objects only for protecting data (as in raven4) and to
implement the synchronization of the sampling tasks using suspension objects (as in raven3).
The synchronization of the main task can still be done using an entry (as in raven5).

For each word of the data (and periodic task), a suspension object is declared:
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raven7

1 with Ada.Synchronous_Task_Control;

2 package Periodic is
3 type Data_Type is array(0..1) of Natural;

4 type SO_Type is
5 array(Data_Type’Range) of Ada.Synchronous_Task_Control.Suspension_Object;

6 S: SO_Type;

A component is added to the protected object to count the number of Updates to words of data:

7 protected Protected_Data is
8 procedure Write(D: in Natural; ID: in Natural);

9 entry Read (D: out Data_Type);

10 private
11 Data: Data_Type := (others => 0);

12 Data_Ready: Boolean := False;

13 Updates: Natural := 0;

14 end Protected_Data;

15

16 task type Periodic_Task(ID: Natural);

17 T0: Periodic_Task(0);

18 T1: Periodic_Task(1);

19 end Periodic;

The protected procedure Write counts the number of updates and opens the barrier of the entry
Read when the writing is completed:

20 with Ada.Real_Time; use Ada.Real_Time;

21 package body Periodic is
22 protected body Protected_Data is
23 procedure Write(D: in Natural; ID: in Natural) is
24 begin
25 Data(ID) := D;

26 Updates := Updates + 1;

27 if Updates = Data_Type’Length then
28 Data_Ready := True;

29 Updates := 0;

30 end if;
31 end Write;
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Entry Read releases all the sampling tasks once it has read the data:

32 entry Read (D: out Data_Type) when Data_Ready is
33 begin
34 D := Data;

35 Data_Ready := False;

36 for I in SO_Type’Range loop
37 Ada.Synchronous_Task_Control.Set_True(S(I));

38 end loop;
39 end Read;

40 end Protected_Data;

The periodic tasks suspend until released when the data is read. Initially, the suspension objects
are released to enable initial samples to be written:

41 task body Periodic_Task is
42 Interval: constant Time_Span := Milliseconds(200);

43 Next: Time := Clock + Interval;

44 D: Natural := 0;

45 begin
46 Ada.Synchronous_Task_Control.Set_True(S(ID));

47 loop
48 Ada.Synchronous_Task_Control.Suspend_Until_True(S(ID));

49 delay until Next;

50 D := (D + 1) mod 10;

51 Protected_Data.Write(D, ID);

52 Next := Next + Interval;

53 end loop;
54 end Periodic_Task;

55 end Periodic;

Clearly, this algorithm is less elegant and requires more work than the direct use of pro-
tected objects, but it demonstrates how concurrent algorithms for high integrity systems can be
developed within the restrictions of the Ravenscar profile.

Projects

1. Study the Extended Example of the use of the Ravenscar Profile [3, Chapter 7].
2. Write a program that demonstrates each of the transitions that are shown in Figure 21.1 on

the FIFO_Within_Priorities tasking policy.
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Quizzes

Quiz 1:

procedure Main is
function F return Natural is
begin

return 4;

end F;

pragma Priority(F);

task T is
pragma Priority(F);

end T;

task body T is ...

begin
null;

end Main;

Quiz 2:

pragma Priority_Specific_Dispatching(

FIFO_Within_Priorities, 5, 10);

pragma Priority_Specific_Dispatching(

Round_Robin_Within_Priorities, 10, 15);

Quiz 3:

pragma Profile(Ravenscar);

package Pack is
protected P is

entry E;

private
Flag: Boolean := False;

end P;

end Pack;

package body Pack is
protected body P is

entry E when not Flag is
begin

null;
end E;

end P;

end Pack;
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Quiz 4:

SO: Ada.Synchronous_Task_Control.Suspension_Object;

task type T;

task body T is
begin

Ada.Synchronous_Task_Control.Suspend_Until_True(SO);

end T;

A: array(0..1) of T;



Chapter 22

Distributed and High Integrity Systems

22.1 Distributed systems

A distributed system consists of several computers running their own programs that commu-
nicate with each other over a network. The terms used in Ada are:

§E

2 A distributed system is an interconnection of one or more processing nodes (a system
resource that has both computational and storage capabilities), and zero or more
storage nodes (a system resource that has only storage capabilities, with the storage
addressable by one or more processing nodes).

3 A distributed program comprises one or more partitions that execute independently
(except when they communicate) in a distributed system.

4 The process of mapping the partitions of a program to the nodes in a distributed
system is called configuring the partitions of the program.

5 The implementation shall provide means for explicitly assigning library units to a
partition and for the configuring and execution of a program consisting of multiple
partitions on a distributed system; the means are implementation defined.

What is normally called a “program” is called a partition §10.2 in Ada, while a program is a
set of partitions that can be assigned to the nodes of a distributed system. One or more or
all (active) partitions may be assigned to a (processing) node. The versions of the units of a
distributed system must be consistent, as defined in §E.3.

22.1.1 Categorization

A central problem that arises in the development of a distributed system is to establish the
semantic connections between units assigned to different active partitions §E.1(2). If a type T is

451
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declared in a package P, and the package is used in more than one active partition, is one type
defined for all partitions, or does each partition define its own type which may not be consistent
with the others? The solution in Ada is to categorize library units §E.2(1–2). A categorization
pragma restricts the entities that can be declared within a unit; more restrictive categories can
be used to maintain consistency across partitions.

There are five categories that are specified by pragmas:

• pragma Pure §10.2.1(14): A pure unit has no state so it can be consistently replicated in more
than one partition.

• pragma Shared_Passive §E.2.1: A shared passive unit has only passive data (variables) and
subprograms, but not tasks or protected objects with entries. A passive partition can contain
only pure and shared passive units, and can be assigned to a storage node.

• pragma Remote_Types §E.2.2: Remote types units are used to contain declarations of access-
to-subprogram types or access-to-class-wide types that are used as encodings for communi-
cations between active partitions. They can also be consistently replicated in more than one
partition. Variables cannot be declared in the visible part of the unit.

• pragma Remote_Call_Interface §E.2.3: RCI units are split across partitions: all partitions
share the package specification, but the package body is assigned to one partition. If a visible
subprogram of an RCI unit is called from a partition not containing the body, the call is
transparently forwarded to the partition containing the body. Variables cannot be declared
in the visible part of the unit.

• Normal: No restrictions. A type declaration in a normal unit gives rise to distinct types in
each partition containing the unit.

A unit can only depend on units of categories that appear above it in the hierarchy.

22.1.2 Remote subprogram calls

§E.4

1 A remote subprogram call is a subprogram call that invokes the execution of a
subprogram in another partition. The partition that originates the remote
subprogram call is the calling partition, and the partition that executes the
corresponding subprogram body is the called partition. Some remote procedure calls
are allowed to return prior to the completion of subprogram execution. These are
called asynchronous remote procedure calls.

The mechanics of a remote subprogram call—also known as a remote procedure call (RPC)—are
described in §E.4(9–20) and illustrated in Figure 22.1. The calling partition (on the left side of
the Figure) contains the specification of an RCI package P that contains a procedure Proc. Re-
placing the body of the package is a calling stub. The stub is the interface between the calling
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PCS

Calling stub P
Write
Do_RPC

package P
pragma RCI
procedure Proc

?

?

PCS

Receiving stub P
RPC_Receive
Read

package body P
procedure Proc

package P
pragma RCI
procedure Proc

6

6

-

Fig. 22.1 Remote procedure call

partition and the underlying partition communication subsystem (PCS) §E.5. The calling stub mar-
shals the parameters of the procedure call, that is, it translates them into stream elements using
the attribute Write, as was described in Section 14.3. The stream is passed to the PCS by call-
ing Do_RPC (or Do_APC for a non-blocking asynchronous call) declared in package System.RPC

§E.5(17–20).
When the call is received by the PCS of the called partition, the receiving stub is notified

by calling an RPC_Receiver procedure §E.5(21) and the parameters are unmarshalled from the
stream. Finally, the receiving stub calls the subprogram body in the package body. If the RPC
has out or in out parameters, they are returned to the calling partition in a similar manner.

This processing is transparent to the programmer; you only have to declare the units with
pragmas such as Remote_Call_Interface (respecting the restrictions, of course), and configure
the units into partitions using an implementation-supplied tool. The stubs, streams and PCS are
the responsibility of the implementation. Only the PCS is non-portable, since it must implement
the transmission of a stream over a physical communications channel.
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§E.4

2 There are three different ways of performing a remote subprogram call:
3 • As a direct call on a (remote) subprogram explicitly declared in a remote call

interface;
4 • As an indirect call through a value of a remote access-to-subprogram type;
5 • As a dispatching call with a controlling operand designated by a value of a remote

access-to-class-wide type.
6 The first way of calling corresponds to a static binding between the calling and the

called partition. The latter two ways correspond to a dynamic binding between the
calling and the called partition.

We now give an example demonstrating the third technique.

22.1.3 Case study: distributed simulation

Suppose that our rocket simulation can no longer be run on a single computer; we redesign it
for a system with a separate node (computer) for simulating each event type (here limited to
telemetry and engine events) and an additional node to create the scenario:

Root_Event
Engine_Event

Root_Event
Telemetry_Event

Root_Event
Simulation_Server
(body)

Root_Event
Dist
Simulation_Server
(stub)

� -

?

A remote types package Root_Event is shared by all partitions. Package Simulation_Server is
a remote call interface package assigned to another partition and is responsible for dispatching
calls from the client Dist to the Simulate subprogram.

The normal declarations of a tagged type and primitive subprograms are declared in the
remote types package Root_Event:
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dist

1 package Root_Event is
2 pragma Remote_Types;

3 type Event is abstract tagged limited private;
4 type Event_Ptr is access all Event’Class;

5 procedure Simulate(E: in Event) is abstract;
6 private
7 type Event is abstract tagged limited null record;
8 end Root_Event;

pragma Remote_Call_Interface is specified in the Simulation_Server to enable it to be split
between the partition containing the client Dist and its own partition:

9 with Root_Event;

10 package Simulation_Server is
11 pragma Remote_Call_Interface;

12 procedure Go_Simulate(E_Ptr: Root_Event.Event_Ptr);

13 end Simulation_Server;

14

15 package body Simulation_Server is
16 procedure Go_Simulate(E_Ptr: Root_Event.Event_Ptr) is
17 begin
18 Root_Event.Simulate(E_Ptr.all);
19 end Go_Simulate;

20 end Simulation_Server;

The child packages of Root_Event for each subsystem are as before.
Function Get_Event, which returns a pointer to the class-wide type, stands for the Get func-

tion of the heterogeneous priority queue. It prompts you to enter a character, which is used to
decide which specific type to return:

21 -- with’s as needed

22 procedure Dist is
23 function Get_Event return Root_Event.Event_Ptr is
24 C: Character;

25 begin
26 Put(" Choose system ");

27 Get(C);

28 if C = ’e’ then
29 return Root_Event.Engine.Create( ... );

30 else
31 return Root_Event.Telemetry.Create( ... );

32 end if;
33 end Get_Event;
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The value returned is sent to the Simulation_Server, which derefences the pointer and dis-
patches the call to one of the derived classes on another partition:

34 begin
35 Simulation_Server.Go_Simulate(Get_Event);

36 end Dist;

22.2 High integrity systems

Annex §H and parts of Section §13 address support in Ada for high integrity systems.
SPARK [1] is an Ada-based language designed for the development of high integrity sys-

tems. It extends a subset of Ada with annotations for static analysis that can be analyzed by
software tools.

22.2.1 Program validation

Annex §M summarizes implementation-defined characteristics that must be documented. An-
nex §H imposes additional documentation requirements.

§H.2

1 The implementation shall document the range of effects for each situation that the
language rules identify as either a bounded error or as having an unspecified effect.
If the implementation can constrain the effects of erroneous execution for a given
construct, then it shall document such constraints. . . .

pragma Reviewable §H.3.1 requires that an implementation produce an object code listing,
and information on memory requirements and error situations; these documents should be
human-readable, as well as machine-readable so that they can be processed by automated tools
§H.3.1(19).

A valuable tool for testing and debugging programs is a hardware analyzer that—with little
or no effect on the behavior of the computer—can save some or all of the state of a computation
for later analysis. pragma Inspection_Point §H.3.2 can be used within a sequence of decla-
rations or statements to require the implementation to make some or all objects available for
inspection. The pragma is not just a documentation requirement telling you where to find each
object; it can modify code generation by requiring that a value be stored in memory rather than
retained in a register when an inspection point is reached.
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22.2.2 Abnormal objects

When you create and initialize an object, it is in a normal state §13.9.1(4). An object can become
abnormal in certain circumstances; for example, if an assignment is interrupted by an abort
statement, a discriminant might be updated but not a variant that depends on the discriminant.
It is erroneous to use an abnormal object §13.9.1(8).

22.2.3 Invalid representations

A scalar object can have an invalid representation §13.9.1(9). Consider:

subtype Index is Integer range 0..200;

The unit of memory allocation is at least one byte, so variables of the subtype Index can hold
values like 231 that do not represent values of the subtype. Sources of invalid data are primarily
input data and the results of Ada.Unchecked_Conversion; for example, a byte received from a
communications line might have any of the 256 bit patterns, although it is intended to contain
values of a subtype like Index with fewer values. You can explicitly check the validity of a
scalar object by using the attribute Valid §13.9.2. The attribute never raises an exception.

Many languages and compilers automatically zero uninitialized variables. This can actu-
ally reduce reliability, because zero is often a valid, though unintended, value of the subtype!
pragma Normalize_Scalars §H.1 requests the compiler to set uninitialized objects to a pre-
dictable, possibly invalid, representation. The idea is to “flush out” the error as soon as possible
by increasing the likelihood that Constraint_Error will be raised, rather than continuing the
computation with an incorrect value.

22.2.4 Restrictions

Validation of a program requires validation not just of your code, but also of the code of the
run-time system and standard libraries. By restricting the language features in a program, an
implementation can support a smaller run-time system and set of libraries, greatly reducing
the validation effort. Furthermore, a program that is guaranteed not to use a construct (like
dynamic allocation) need not be checked for problems that can occur if it is used (storage leaks).

pragma Restrictions §13.12 specifies the restrictions that a program can take upon itself.
Paragraph §13.12.1 defines four language-defined pragmas in the core language:

• No_Implementation_Attributes

• No_Implementation_Pragmas

• No_Obsolescent_Features

• No_Dependence
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The first three are intended to ensure greater portability of the program. No_Dependence is used
to specify that the program does not depend on a certain library unit.

An implementation that supports Annex §H is required to support certain restrictions such
as No_Allocators §H.4. In addition, the restrictions described in §D.7 must be supported,
in particular, restricting Max_Tasks to zero §H.4(2). This allows an implementation to re-
move support for tasking from the run-time system, making its validation significantly easier.
Check your implementation’s documentation to see what effect restrictions have on a program
§13.12(9). Much of the Ravenscar Profile §D.13.1 (Section 21.14) for developing real-time sys-
tems with predictable performance consists of about two dozen restriction pragmas.

Ada 95

The four restrictions in §13.12.1 are new to Ada 2005. See §H.4 for the changes in the restrictions
for high integrity systems. The Ravenscar Profile is also new.

22.2.5 Elaboration policy

As discussed in Section 15.5 and in §10.2, the order of elaboration is implementation-dependent
as long as it respects the semantic dependences of the library units. When a task is declared in
a library unit, it begins to execute as soon as the package body is elaborated (Section 19.1) and
this can give rise to race conditions. Library-level tasks are common in real-time systems and,
in fact, the Ravenscar profile (Section 21.14) includes the restriction No_Task_Hierarchy.

pragma Partition_Elaboration_Policy §H.6 can be used to specify an alternate policy for
the order of elaboration of library-level tasks.

§H.6

8 If the partition elaboration policy is Sequential, then task activation and interrupt
attachment are performed in the following sequence of steps:

9 • The activation of all library-level tasks and the attachment of interrupt handlers
are deferred until all library units are elaborated.

The default policy is Concurrent.

Projects

1. Many algorithms for distributed systems are presented in [2] and the software archive for
that book contains implementations where each node is represented as a task. Implement
some of these algorithms on a distributed system using the constructs in Annex §G.



Appendix A

Glossary of ARM Terms

The ARM is written in a precise style, with specialized terms defined and then used consistently
throughout the document; this glossary collects the definitions of these terms. For brevity, the
glossary does not include well known terms like procedure and terms from the Annexes. Source
code examples will help you understand and remember the definitions. The following decla-
rations will be used in the examples:

type Piece is (Pawn, Knight, Bishop, Rook, Queen, King);

type Matrix (Integer range <>, Integer range <>) of Piece;

type Game_Board(Size: Positive) is
record

B: Matrix(1..Size, 1..Size);

end record;

type Node;

type Ptr is access Node;

type Node is
record

Key: Integer;

Next: Ptr;

end record;

package P is
type Parent is tagged null record;
procedure Primitive(X: Parent);

type Derived is new Parent with null record;
procedure Primitive(X: Derived);

end P;
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abandoned §11.4(3) See exception.

abort-deferred §9.8(5) When an abort statement is executed, if a task is executing one of the
operations listed in this section, the operation is allowed to complete before the abort takes
effect. For example, a protected action is abort-deferred and will be allowed to complete.

abnormal completion §7.6.1(2) The execution of a task completes abnormally if an exception
is raised and not handled, or if a task is aborted.

abnormal object §13.9.1(1) If an assignment statement is interrupted by an abort statement
or if a non-scalar object is returned from an imported subprogram, the bits representing the
object might not form a value of the object’s type. The object is abnormal and certain uses
are erroneous. A scalar object that does not contain a value of its subtype is said to have an
invalid representation. For example, an uninitialized variable of subtype Natural has an invalid
representation if the initial contents of the variable represent a negative number.

accessibility §3.10.2(3) Accessibility is defined by the nesting levels of masters at run-time. They
are used to prevent dangling pointers when general access types are used. It is illegal to apply
the Access attribute to an object that has a deeper accessibility level than the access type. Usually,
accessibility levels are known at compile-time, in which case one level can be determined to be
statically deeper than another §3.10.2(4). A library unit is at library level §3.10.2(22).

type Pointer is access all Integer;

-- General access type

function F return Ptr is
N: Integer; -- Statically deeper than Pointer

begin
return N’Access; -- Error !

end F;

actual subtype §3.3(23) See nominal subtype.

adjust §7.6(15–16) The operation performed on the target object of a controlled type after the
new value is copied during assignment. Procedure Adjust can be overridden.

ambiguous §8.6(30) See overloading.

ancestor §3.4.1(10) See derived type.

ancestor §10.1.1(11) See unit.

anonymous type §3.2.1(7) Single arrays, tasks and protected objects are objects of anonymous
type. Since the type has no name, you cannot declare other objects of the type; however, you
can convert an anonymous array to a named array type §4.6(9–12).

applicable index constraint §4.3.3(10) This is an index constraint that is used to determine the
bounds of an array aggregate with others. In the following declaration, the index constraint
(1..100) is the applicable index constraint for the aggregate used as its initial value:

S: String(1..100) := (others => ’*’);
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aspect clause §13.1 An aspect clause is used to specify a representation item or an operational
item. A representation item is used to specify an object’s run-time representation, such as the
size, alignment and placing of the object. An operational item specifies an aspect of a type such
as the external tag (string representation) of a tagged type §13.3(13.1) and stream attributes
§13.13.2(1).

base range §3.5(6) Scalar types are usually implemented in a larger range than that needed to
store values of the type; this range is called the base range of the type. Computations involving
predefined operators are done in the base range. The attribute S’Base gives the base subtype of
the type of S.

type My_Integer is range 0..10_000;

K1, K2: My_Integer := 8_000;

K: My_Integer := K1 + K2;

B: My_Integer’Base := K1 + K2;

The computation K1 + K2 will not cause an error in any implementation that represents inte-
gers with at least 16 bits. Constraint_Error will be raised when the result is assigned to K,
though not when assigned to B.

bounded error §1.1.5(7–8) See error.

by copy §6.2(2–3) Parameters of elementary types must be passed by copy, that is, by creating
a local object and copying the actual parameter in and/or out. The types listed in §6.2(5–9)
must be passed by reference; a reference to the entity is passed rather than a copy of the entity’s
contents. By-reference types include types such as tagged types and task types that have data
structures (jump tables and task control blocks) associated with them. An implementation may
choose to pass types such as records and arrays either by copy or by reference.

by reference §6.2(4) See by copy.

callable §6(2) A callable entity is a subprogram or entry. A callable construct defines the action
taken when the entity is called; it is a subprogram or entry body, or an accept statement.

category of types §3.4(1.1) The term category of types is includes classes of types, and, in ad-
dition, sets of types with similar characteristics that are not necessarily related by derivation;
examples are limited and abstract types. When instantiating a generic unit, an actual type must
be in the category determined by the formal generic type §12.5(7). (This term is not used in
Ada 95.)

check §11.5(2) A language-defined check such as Index_Check can fail, raising an exception.

class §3.4(1.1) A class of types is a set of types that is closed under derivation; for example,
if we derive the type My_Integer from Integer, the two form a class. Classes derived from a
tagged type are particularly important because class-wide types can be defined.

class-wide type §3.4.1(4) A type whose values are the union of the values of all the specific types
within a derivation class.

compatible §3.2.2(12) See constraint.
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compilation §10.1(2) See unit.

complete context §8.6(4) See overloading.

completely defined §3.11.1(8) See full type.

completion §3.11.1 Some declarations can be written in two parts: the first part is said to require
a completion. An example is a subprogram that is declared in a package specification; it requires
a completion (subprogram body) in the package body.

completion §7.6.1(2) The end of the execution of an entity. Completion may occur either by exe-
cuting the last statement, or by a transfer of control caused by raising an exception or executing
a statement such as return statement. After completion, a construct is left §7.6.1(3), meaning that
execution continues with the next action. Before leaving a master, finalization §7.6.1(4) must be
performed: waiting for a dependent task, and—for controlled types—execution of the Finalize

procedure. A master §7.6.1(2) is the execution of certain constructs such as a subprogram or a
task body.

composite type §3.2(4) Composite types are types that can have components: record types
and their extensions, array types, task types and protected types. Private types and their exten-
sions are also considered to be composite types. Composite types (except for arrays) may have
discriminants.

conformance §6.3.1 Two subprogram profiles conform to each other in one of four ways, each
one adding additional requirements:

• type conformant The number and types of the parameters are the same. Two subprogram
declarations are homographs if they are type conformant §8.3(8); they cannot be overloaded.

procedure Proc(X: in Integer := 5);

procedure Proc(Y: out Positive); -- Error

The parameter Y has a different mode and subtype than X, but the declarations are type con-
formant and overloading is not legal.

• mode conformant The profiles have identical modes. Mode conformance is sufficient for
generic instantiation §12.6(8).

generic
with procedure Formal(X: in Integer);

procedure Gen;

procedure Actual(Z: in Positive);

procedure Instance Gen(Formal => Actual);

The call Formal(-1) is legal within the body of Gen, although it will raise Constraint_Error
in the instantiation Instance.

• subtype conformant Subtypes of the profile must statically match. Subtype conformance is suf-
ficient for overriding §3.9.2(10). The declaration of Primitive for Derived overrides the par-
ent’s subprogram even though the formal parameter name has changed:
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type Parent is tagged null record;
procedure Primitive(X: Parent);

type Derived is new Parent with null record;
procedure Primitive(XXX: Derived);

• fully conformant The formal parameter names must be identical and the default expressions
must be fully conformant §6.3.1(19–22). A completion must be fully conformant §6.3(4):

package P is
procedure P1(X: Integer; Y: Integer);

procedure P2(X: Integer := 5);

procedure P3(X: Integer := 5);

end P;

package body P is
procedure P1(XX: Integer; YY: Integer) is ... -- Error

procedure P2(X: Integer := 10) is ... -- Error

procedure P3(X: Integer := 2#101#) is ... -- OK

end P;

constant §3.3(13) See object.

constraint §3.2(7) A restriction on the possible values of a type. A value satisfies a constraint if
it satisfies the restriction. A constraint applied to a subtype must be compatible with the subtype.
There are three types of constraints:

• range constraint §3.5(2)

subtype Moves_Far is Piece range Knight..Queen;

subtype Important1 is Piece range Queen..King;

subtype Important2 is Moves_Far range Queen..King;

-- Error, the constraint is not compatible with the subtype

• index constraint §3.6.1(2)

Rectangle: Matrix(1..4, 1..8);

• discriminant constraint §3.7.1(2)

Board: Game_Board(Size => 8);

constrained subtype §3.2(9) See unconstrained subtype.

controlled type §7.6(2) A controlled type is a type descended from the abstract tagged type
Controlled or Limited_Controlled declared in Ada.Finalization. These types have primi-
tive procedures Initialize, Adjust and Finalize, which are called when a value of the type
is elaborated, assigned or finalized, respectively. The procedures are declared null and can be
overridden if needed.
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controlling formal parameter §3.9.2(2) If T is a tagged type and S is a primitive subprogram of
T, then the formal parameters of S of type T are controlling. A call will be statically bound or dy-
namically dispatched depending on the corresponding controlling operands (actual parameters)
of the call (see the glossary entry for dynamically tagged). A function may also have a controlling
result. If the following declaration is placed after the declaration of the tagged type Parent,
then P1 and P3 are controlling, but P2 is not:

procedure S(P1: in Parent; P2: out Integer; P3: in out Parent);

convention §6.3.1(2) A convention defines how a callable entity is invoked at the machine-code
level. Ada is the convention for subprograms defined in Ada and Intrinsic is the convention
for built-in operations. Protected operations have their own convention. Conventions are also
used to specify the interfaces with other programming languages §B.1(2). Some language rules
refer to the convention of a subprogram; for example, you cannot use the Access attribute on a
subprogram of Intrinsic convention §3.10.2(32), such as predefined "+" on type Integer.

convertible §4.6(4) A type—the operand type—is convertible to another type—the target type—if
type conversion can be performed according to the rules in §4.6. The conversion may be either
a value conversion, which creates a new value of the target type, or a view conversion, which
denotes the same object as the operand.

cover §3.8.1(9–12) A discrete choice such as 5..10 or others is said to cover a set of values of a
subtype. In contexts such as aggregates, variant records and case statements, a discrete choice list
must cover all the values of the subtype. The term is also used for exception choices §11.2(6).

cover §3.4.1(9) A class-wide type is said to cover all the types in the class, while a specific type
covers only itself. Membership tests such as E in Main_Engine’Class are defined in terms of
covering §4.5.2(2).

current instance §8.6(17–18) In contexts such as task types, protected types and generic units,
the name of a type denotes a value or an object of the type rather than the type itself. This object
or value is the one currently being executed. In the following protected type, the call PT.E refers
to the entry of the current instance of the protected object:

protected type PT is
procedure P;

entry E;

end PT;

protected body PT is
procedure P is
begin

PT.E;

end P;

entry E ...

end PT;
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declaration §3.1(5) A declaration defines a view of an entity and associates a name with the
view; it usually defines the entity itself. Entity is a general term used for “things” like objects,
subprograms, exceptions, etc. A declaration may be explicit or implicit:

type Piece is (Pawn, Knight, Bishop, Rook, Queen, King);

-- Explicitly defines the type Piece and the enumeration literals

-- Piece’First is an implicitly declared attribute

function EOL return Boolean renames Ada.Text_IO.End_Of_Line;

-- EOL is a new view of an existing subprogram

declarative region §8.1(1) A place where a nested declaration can occur; examples are dec-
larations of subprograms and record types. A for-loop statement is also a declarative region,
because the loop parameter is nested within. The declarative region of a package includes its
body and children.

deeper than §3.10.2(3) See accessibility.

deferred constant §7.4(2) A constant can be declared before the full type is declared. The value
of the constant must be completed following the full type declaration:

package P is
type ID is private;
Null_ID: constant ID;

private
type ID new String(1..5);

Null_ID: constant ID := "*****";

end P;

defining name §3.1(10) The occurrence of a name where it is defined is its defining name. Sub-
sequent occurrences of the name are called usage names. Syntactic categories for defining names
start with defining_, while categories for usage names are direct_name and selector_name.

definite subtype §3.3(23) See indefinite subtype.

definition §3.1(7) See declaration.

dereference §4.1(8) A dereference of an access value returns a view of the designated object or
subprogram. A dereference may be either explicit or implicit:

Head: Ptr := new Node;

N: Node := Head.all; -- Explicit dereference

I: Integer := Head.Key; -- Implicit dereference

derivation class §3.4.1(1) See class-wide type.

derived type §3.4 A derived type is a new type derived from an existing parent type. It is said to
be a descendant of its parent type, which is the derived type’s ancestor. These terms are extended
transitively: if a type is derived from a descendant of a parent type, it is also a a descendant of
the parent type. An “ancestor” that is an interface (not a tagged type) is called a progenitor.
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descendant §3.4.1(10) See derived type.

descendant §10.1.1(11) See unit.

designate §3.10(1) An access value designates the object or subprogram that it points to. The
subtype of a designated object is called the designated subtype §3.10(10), and the profile of a
subprogram that is designated is called the designated profile §3.10(11). If P is an access object,
then P.all is the object it designates.

determined class §12.5(6) A generic formal parameter determines a class of types; a matching
generic actual parameter must be in this class. For example, the class determined by private
is the class of all nonlimited types §12.5.1(17).

generic
type T is private;

procedure Gen;

with Gen;

with Ada.Exceptions;

package Instance is new Gen(Ada.Exceptions.Exception_Id);

By §11.4.1(2), Exception_Id is a private type so the actual parameter is legal even though we
do not know how the type is implemented. Exception_Occurrence is limited private §11.4.1(3)
and would not be a legal actual parameter for an instantiation of Gen.

direct name §4.1(3) See name.

directly visible §8.3(2) See scope.

discrete choice §3.8.1(5) A discrete choice is a range of values in a case statement, array aggre-
gate or variant record declaration:

type Values (Piece) of Integer;

V: Values :=

( Pawn => 1, -- Discrete choice is an expression

Knight..Bishop => 3, -- Discrete choice is a discrete range

Rook => 5, -- Discrete choice is an expression

others => 10); -- Discrete choice is others

discrete type §3.2(3) The discrete types are the integer types and the enumeration types (in-
cluding Character and Boolean). Discrete types are used for loop parameters §5.5(4) and array
index types §3.6(5).

dynamically tagged §3.9.2(5) A controlling operand of class-wide type is said to be dynamically
tagged and causes dispatching at run-time. If the operand is of a specific type, it is said to be
statically tagged and the subprogram can be statically bound at compile-time. If the operand is
a function call that returns a class-wide type (and no operands of the function call are either
statically or dynamically tagged), the operand is said to be tag indeterminate.
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elaboration §3.1(11) See execution.

elaboration dependences §10.2(9) See semantic dependences.

elementary type §3.2(3) The elementary types are the scalar types and the access types. Elemen-
tary types are definite §3.3(23) and are passed by copy §6.2(3). The scalar types are the discrete
types and the real types (floating point and fixed point). Scalar types are ordered §3.5(1) and can
have range constraints §3.5(7).

environment §10.1.4(1) The environment of a compilation is the context in which the compila-
tion takes place.

environment task §10.2(8) The execution of a partition takes place within an environment task,
which elaborates all the library units and the main subprogram.

erroneous §1.1.5(9–10) See error.

error §1.1.5 A violation of a language rule. Errors are classified into four categories:

• Errors that must be detected prior to run-time:

procedure Proc(X: out Integer);

Proc(17); -- Illegal, must be a variable 6.4.1(5)

• Errors that must be detected at run-time; these errors will raise exceptions.
• Bounded errors need not be detected by the implementation, but the range of possible effects

is limited. For example, it is a bounded error to access a formal parameter by an alias such
as a global variable §6.2(12):

S: String := "Hello world";

procedure Proc(T: in String) is
begin

S(1..5) := "Bye ";

Put(T); -- Is T a reference to S or a copy of S?

end Proc;

Proc(S);

The possible effects are: read the old value, read the new value, and raise Program_Error.
• erroneous execution An error that need not be detected and whose effect is unspecified. Exam-

ples are: dereferencing a dangling pointer, unsynchronized access to a shared variable, and
suppressing a check that can fail.

evaluation §3.1(11) See execution.

exception §11(1) An exception has a name (predefined or user-defined). Each time that an ex-
ception is raised, it creates a new occurrence of the exception and the execution of the enclosing
construct is abandoned §11.4(3). The occurrence may be handled or propagated.

execution §3.1(11) A construct achieves its run-time effect when it is executed. Execution of
an expression is called evaluation and execution of a declaration is called elaboration.
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expanded name §4.1.3(4) A selected_component of the form prefix.selector_name denotes a
component of an object or of a value of composite type such as a record, or an operation of
some task or protected object. The same syntax is also used for an expanded name, in which
case the prefix denotes a named construct such as a package and the name denotes an entity
declared in the package. See §4.1.3(10–13) for a list of constructs that the prefix can denote in
an expanded name.

R: Ada.Strings.Maps.Character_Range; -- expanded name

R.Low := R.High; -- prefix.selector_name

expected type §8.6(20) The expected type appears in the Name Resolution Rules for a construct
and is used for overload resolution. See §8.6(21–25) for the definition of expected type when
class-wide types are concerned. Similarly, a context can have an expected profile §8.6(26) for a
callable entity.

function F return Duration;

function F return Float;

delay F; -- Delay expects Duration so the first F is chosen

expiration time §9.6(1) The time at which a delay will expire.

external call §9.5(4) An external call is a call on a task entry or protected operation that
explicitly mentions the target object. An internal call §9.5(3) is also allowed, in which case the
call is to the current task or protected object. The meanings of external requeue and internal
requeue are similar §9.5(7). An external requeue on the same protected object is a bounded
error, because it is a potentially blocking operation §9.5.1(15).

external effect §1.1.3(8) The effect of an Ada program on its external environment. Optimiza-
tions are permitted §11.6(3) provided that they don’t change the external effect of the program.

fail §9.2(1) The activation of a task can fail, in which case the task becomes completed.

finalization §7.6.1(4) See completion.

first subtype §3.2.1(6) Types are not considered to have names; instead, types that are not
anonymous are called named types and have nameable subtypes. A type declaration declares both
the type and the name of a first subtype. Informally, the name is also the name of the type. In
the following declaration, Vector is the name of the first subtype of the named array type:

type Vector is array(Integer range <>) of Float;

freezing §13.14 An entity is frozen at a point when its representation must be fully determined;
constructs that freeze entities are listed in §13.14. For example, a tagged type is frozen by an
extension and after it is frozen primitive operations cannot be added.

full type §3.2.1(8) Some type declarations do not define a type; for example, a private type
declaration just declares a partial view of the corresponding full type declaration. The type is
completely defined after the full type definition.
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full type declaration §3.2.1(3) See incomplete type declaration.

full view §7.3(4) See partial view.

global §8.1(15) See immediately within.

hidden §8.3(5) See scope.

homograph §8.3(8) Two declarations are homographs if they have the same name, and, for
callable entities (subprograms, entries and enumeration literals), if they have type conformant
parameter profiles. One homograph can hide or override another; otherwise, it is usually ille-
gal for two homographs to be immediately within the same declarative region. The following
declarations are illegal because types and variables are not overloadable:

type T is ...

T: Integer;

immediately within §8.1(13) A declaration is immediately within the innermost enclosing dec-
laration. For example, an accept statement must be immediately within a task body §9.5.2(14):

task body T is
procedure Proc is
begin

accept E; -- Error, not immediately within task body T

end Proc;

begin
accept E; -- OK

end T;

A declaration D1 that is immediately with a declarative region D2 is local to D2; otherwise—if
it is immediately within some other declaration region D3—it is global to D2 §8.1(14–15).

implementation-defined §1.1.3(18) A rule may specify a set of possible effects that a construct
may have, and an implementation may choose any of these possible effects. For example, an
implementation may supply predefined integer types in addition to Integer §3.5.4(25). Unspec-
ified is the same as implementation-defined, except that the choice need not be documented. For
example, it is unspecified if an array parameter is passed by copy or by reference §6.2(11).

incomplete type declaration §3.10.1 Recursive type definitions such as Node are implemented
by declaring just the type name (and the discriminants, if any). This incomplete type declaration
must eventually be completed by a full type declaration.

indefinite subtype §3.3(23) There are three categories of indefinite subtypes:

• Unconstrained array subtypes, for example, Matrix.
• Unconstrained discriminated record subtypes without defaults, for example, Game_Board.
• Subtypes with unknown discriminants (including class-wide types):

type Data_Structure(<>) is private;



470 A Glossary of ARM Terms

All other subtypes, in particular, all elementary types, are definite.
If you declare an object of an indefinite subtype, you must supply a constraint either explic-

itly, or implicitly from an initial value or an actual parameter.

internal call §9.5(3) See external call.

intrinsic §6.3.1(4) See calling convention.

invalid representation §13.9.1(2) See abnormal object.

left §7.6.1(3) See completion.

library unit §10.2 See unit.

limited type §7.5 A type for which neither copying nor predefined equality is allowed. The
reserved word limited can be used to explicitly denote that a record or private type is limited;
in addition, task and protected types are limited.

task type Producer; -- Limited type

type R is -- Limited type because ...

record
P: Producer; -- ...this component is limited

end record;

local §8.1(14) See immediately within.

master §7.6.1(3) See completion.

mode §6.1(18) An indication of the direction of the data flow from the actual parameter to the
formal parameter and back. There are three modes: in, out and in out, which allow the sub-
program to read from the actual parameter, write to the actual parameter, or both, respectively.

name §4.1(2) A name denotes a declared entity such as a variable or a component of a record.
A direct name is either an identifier or an operator symbol such as "+". A name can also be a
prefix of another name. An implicit dereference can also be a prefix.

N: Node;

Head: Ptr := new Node;

N and Head are direct names. Head.all is a name that is an explicit dereference. In the name
N.Key, N is a prefix that is a name, while in the name Head.Next, Head is a prefix that is an
implicit dereference.

named number §3.3.2 See object.

nominal subtype §3.3(23) A nominal subtype is the subtype specified for (a view of) an object
when the view is defined. The actual subtype of the object is determined when the object is
created:
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type Vector (Integer range <>) of Float;

procedure Proc(Parm: in Vector);

V: Vector(5..10);

Proc(V);

The nominal subtype of the formal parameter Parm is Vector, but during the call Proc(V), the
actual subtype is Vector(5..10).

numeric type §3.5(1) The numeric types are the integer types and the real types. Real types can
be either fixed point types (ordinary or decimal) or floating point types.

object §3.3 An object is an entity created at run-time to contain a value. A list of objects in Ada
is given in §3.3(2-12). Objects may be variable objects, or constant objects whose value cannot
be changed. A list of constants is given in §3.3(16–22). A named number §3.3.2 is not a constant
object; it is just a compile-time name for a static value of universal type. A view of an object
may also be constant, even if the object isn’t:

Length: Natural := 100; -- A variable object

Max_Length: constant Natural := 100; -- A constant object

Max: constant := 100; -- A named number, not a constant

procedure P(X: in Parent) is ...

-- Within P, X is a view conversion which is a constant

operational item §13.1(1.1) See aspect clause.

operator §6.6 An operator is a function whose name is one of the symbols listed in §4.5(2–7)
such as "+" and "=". The words in, not in, and then and or else do not denote operators
and cannot be overloaded.

overloading §8.3(6) A set of declarations is overloaded if they have the same name and are di-
rectly visible at some place in the program. Name Resolution Rules are used to resolve a refer-
ence, that is, to choose one of the possible interpretations §8.6(10–15). Preference can be given
to root types §8.6(29). Overload resolution is done by examining a complete context §8.6(4). A
complete context should have only one acceptable interpretation; otherwise it is ambiguous
§8.6(30). For example, the procedure call statement Ada.Text_IO.Put("Hello world") is a
complete context, and the possible interpretations are the Put procedures for characters and
for strings. The interpretation of the statement as a call to Put for strings is chosen because
String, the type of "Hello world", is the expected type §8.6(20) for that procedure.

overriding §8.3(9) A declaration of a subprogram with the same name as the implicit declara-
tion of an inherited primitive subprogram overrides the implicit declaration.

parent type §3.4(1) See derived type.

part §3.2(6) See subcomponent.
partial view §7.3(4) The declaration of a private type declares a partial view of the type; its full
view is given by the full declaration in the private part.
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package P is
type Parent is private;
type Not_Derived is new Parent with null record; -- Error

private
type Parent is tagged null record;
type Derived is new Parent with null record; -- OK

end P;

The partial view of Parent is not tagged, so the extension in the declaration of Not_Derived is
illegal, even though Parent “really” is tagged as shown in the full view.

partition §10.2(2) An Ada program consists of a set of partitions, which can be executed in a
distributed environment by assigning each partition to a node.

per-object constraint §3.8(18) A constraint in a component of a discriminated record is a per-
object constraint if it depends on a discriminant. If so, it is evaluated only when the object is created,
not when the type declaration is elaborated. In the following example, the discriminant D is a
per-object expression:

G: Integer := 11;

type Rec(D: Integer) is
record

Field1: String(1..G); -- Not a per-object constraint

Field2: String(1..D); -- Per-object constraint

end record;

R: Rec := (10, "Hello world", "Hello world");

The constraint of Field1 is elaborated when the type declaration is elaborated and is (1..11)
for all objects. The per-object constraint of Field2 is elaborated when an object is elaborated.
For the object R, the constraint (1..10) will cause Constraint_Error to be raised.

pool-specific §3.10(8) See storage pool.

potentially blocking §9.5.1(8) It is a bounded error for a protected action to invoke an operation
such as a call to an entry that could cause the task executing the action to block.

prefix §4.1(4) See name.

primitive operation §3.2.3 The primitive operations on a type include the predefined opera-
tions on the type, as well as user-defined primitive subprograms, which are subprograms that
have a formal parameter or result of the type and are declared along with the type. Inherited
and overriding subprograms are primitive operations.

private part §7.1(6) See visible part.

profile §6.1(22) The profile of a callable entry such as a subprogram or entry is defined by the
declaration of the formal parameters. For a function, the profile includes the result type.
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progenitor §3.9.4(9) See derived type.

protected action §9.5.1(3) The execution of a protected subprogram or entry, including ac-
quiring and releasing the lock.

range §3.5(4) A range is subset of a scalar type defined by a lower and an upper bound. A discrete
range or discrete subtype indication is specified by giving either a range or a subtype indication
of a discrete subtype:

for P in Piece loop ... -- subtype indication

for P in Knight..Rook loop ... -- discrete range

representation clause §13.1 This term was used in Ada 95. In Ada 2005 the term has been
changed to aspect clause because these clauses are used to define more than just representations.

representation item §13.1(1) See aspect clause.

root type §3.4.1(8) See universal type.

root library unit §10.1.1(1) See unit.

scalar type §3.2(3) See elementary type.

scope §8.2 The scope of a declaration is the portion of the program where the declaration
might be visible §8.3. A declaration is directly visible §8.3(4) either because it is immediately visible
and can be referred to by a direct name, or because it is use-visible §8.4(9). A declaration is use-
visible if it has been made potentially use-visible by a use_clause §8.4(8) and there are no name
conflicts §8.4(10–11). Within its scope, a declaration may be hidden §8.3(5), either from direct
visibility or from all visibility.

type Index is Integer range 1..100;

type T(D1: Index := 10; D2: Index := D1) is ...

-- Error, D1 is hidden from all visibility 8.3(19)

Head: Ptr := new Node;

First: Integer := Head.Key;

-- Key is visible but not directly visible 8.3(2)

semantic dependence §10.1.1(24) One compilation unit may depend on another; this depen-
dence is used to determine the correctness of a unit and the visibility of declarations. Elaboration
dependences include semantic dependences, but they can be changed by using pragmas §10.2(9).
For example, a package body depends on the corresponding package declaration. Elaboration
dependences are used to determine the possible orders in which units can be elaborated at
run-time.

short-circuit control form §4.5.1(1) The constructs and then and or else do not evaluate their
second operand if the value of the form can be determined from the first one:

while P /= null and then P.Key /= Value loop
-- If P is null, P.Key is not evaluated
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specific type §3.4.1(3) See class-wide type.

stand-alone object §3.3.1(1) An object (a constant or a variable) declared in an object decla-
ration is a stand-alone object. Paragraph §3.3.1(23) lists objects that are not stand-alone, such as
the loop parameter of a for-loop and parameters of subprograms.

static §4.9 A static expression is one whose value can be determined at compile-time. Similarly,
a subtype whose constraint can be determined at compile-time is called a static subtype §4.9(26).
The choices of a case statement must be static §5.4(5).

procedure Proc(Parm: Piece) is
subtype R1 is Piece range Pawn..Bishop; -- Static

subtype R2 is Piece range Pawn..Parm; -- Not static

begin
case P is

when Pawn => ...; -- OK

when Parm => ...; -- Error

when R1 => ...; -- OK

when R2 => ...; -- Error

end case;
end Proc;

statically match §4.9.1 Certain language constructs require that a pair of subtypes or con-
straints statically match so that the compiler can determine that they are the same: either they
are both static and equal, or they are both derived from the same definition. For example, array
type conversion is permitted only if the subtypes of the components statically match §4.6(12)
(and the index subtypes are convertible).

procedure P(N: in Positive) is
subtype R is Integer range 1..N;

type AT1 is array(1..10) of R;

type AT2 is array(1..10) of R;

type AT3 is array(1..10) of Integer range 1..N;

A1: AT1 := ...;

A2: AT2 := AT2(A1); -- OK

A3: AT3 := AT3(A1); -- Error

Although AT1 and AT2 are not static, they statically match because they are derived from the
same subtype R. AT3 is structurally the same, but does not statically match the other two.

statically tagged §3.9.2(4) See dynamically tagged.

storage element §13.3(8) A storage element is an addressable element of memory. Although
on most computers, storage elements are eight-bit bytes, it is best to use System.Storage_Unit
to obtain the number of bits in a storage element:

for Ptr’Storage_Size use 1000 * (Node’Size / System.Storage_Unit);

-- Storage pool for 1000 nodes
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storage pool §13.11(2) Allocation of memory using new is done from an area of memory called
a storage pool. A storage pool can be associated with a pool-specific access type §3.10(8). Normally,
all storage is allocated from one or more standard pools, but the user can define other pools and
memory allocation schemes. An object of a general access type can contain a value of any access
type that has the same designated type.

stub §10.1.3(1) See subunit.

subcomponent §3.2(6) A subcomponent is a component of an object of composite type, or,
recursively, a component of a subcomponent. A part is an entire object or any set of its subcom-
ponents.

subsystem §10.1(3) See unit.

subtype §3.2(8) A subtype is a type together with a constraint on the values of the type.
The subtype of an entity is determined at run-time and violations of subtype matching cause
Constraint_Error.

subtype Strong is Piece range Knight..Queen;

Current: Strong := Pawn; -- Compiles OK, raises Constraint_Error

subunit §10.1.3 A subunit is a separately compiled unit that is a body corresponding to a stub
in the parent unit.

package body P is
Title: constant String := ...;

procedure Display is separate; -- Stub

end P;

with Ada.Text_IO; -- A subunit can have a context clause

separate(P)
procedure Display is
begin

Ada.Text_IO.Put(Title); -- A subunit retains visibility

end Display;

syntactic category §1.1.4(15) A syntactic category is a nonterminal appearing in the BNF gram-
mar notation under the heading Syntax. The term is sometimes used in ARM rules; for exam-
ple, §8.3(3) states that the syntactic category direct_name is used whenever direct visibility is
required.

tag indeterminate §3.9.2(6) See dynamically tagged.

target object §9.5(2) The task or protected object called in an entry or protected subprogram
call is the target object.

terminated §9.3(5) A task is in the terminated state after it has been completed and finalized.

type §3.2(1) A type is a set of values and a set of primitive operations on these values. The type
of an object is determined at compile-time.
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unconstrained subtype §3.2(9) An unconstrained subtype is a subtype that allows constraints,
but for which no constraints have been defined:

type Game_Board(Size: Positive) is ... -- Unconstrained subtype

subtype Chess_Board is Game_Board(8); -- Constrained subtype

Subtypes with unknown discriminants are also unconstrained §3.7(26). Integer’Base and dis-
criminated records with defaults are examples of unconstrained subtypes that are not indefinite,
so uninitialized objects of these types can be declared.

unit §10.1(1) Ada programs (more exactly, partitions) are composed of (possibly nested) units
such as packages, tasks and subprograms. A compilation consists of a set of one or more com-
pilation units, which are either library units or subunits. A library unit is a unit not physically
nested within another (except Standard). Library units that are not children of another pack-
age except Standard are called root library units §10.1.1(1). A unit may be a parent unit or a child
unit §10.1.1(1), and the terms ancestor and descendant §10.1.1(11) are used transitively for this
relation. A root library unit and its descendants form a subsystem §10.1(3).

universal type §3.4.1(6) A universal type is the conceptual class-wide type for a class of numeric
types. The conceptual specific type at the root of a universal type is called a root type §3.4.1(8).

unspecified §1.1.3(18) See implementation defined.

usage name §3.1(10) See defining name.

use-visible §8.4(9) See scope.

view §3.1(7) A declaration defines a view, which is a way of “looking at” an entity. There may
be several views for the same entity:

• A private type is a partial view of the full type whose definition is given in its completion
§7.3(4).

• A formal parameter that is passed by reference is a view of the actual parameter §6.2(2).
• A type conversion to a tagged type is a view of the object §4.6(5,26).

visible §8.3 See scope.

visible part §7.1(6) The declarations in a package specification before the reserved word
private form the visible part of the specification. Declarations following private (if any) form
the private part of the specification.
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5.1. §3.6(10), §3.3(23)
5.2. §4.3.1(15), §4.5.2(22)
5.3. §5.2(7,13)
5.4. §4.3.1(17), §4.9(6,21–22)

6.1. §7.3(5)
6.2. §3.10.1(3)
6.3. §7.3.1(3,5)

7.1. §4.3(4), §3.9(29)
7.2. §3.4(17), §4.5.2(14)
7.3. §4.5.2(24)

7.4. §7.3.1(8–9)

8.1. §13.14(7,16), §3.9.2(13)
8.2. §3.3(12), §4.6(5), §5.2(5)
8.3. §3.9.3(4,6)
8.4. §3.9.2(11)
8.5. §13.14(6)

9.1. §12.5.3(3)
9.2. §12.1(10), §12.3(20)
9.3. §3.4(6), §12.5.1(11–14)
9.4. §12.7(10)
9.5. §12.3(16–17)
9.6. §12.6(9)

10.1. §11.4.1(12)

11.1. None
11.2. §3.8(12)
11.3. §8.5.1(5)
11.4. §3.7(11)
11.5. §3.7(9.1)
11.6. §4.6(43)
11.7. §13.1(10)

12.1. §6.4.1(12–15)
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12.2. §3.10.2(6,22), §10.2(8)
12.3. §3.4(18), §6.1(27)
12.4. §4.1(12)
12.5. §3.3(9)
12.6. §9.5.2(13)
12.7. §3.10.2(28)
12.8. §3.10(4,10), §4.6(24.11,12,18)

13.1. §3.5(9),§3.4(26)
13.2. §3.5.3(1), §5.3(4)
13.3. §3.5(6), §3.5.4(21)
13.4. §4.5(9)
13.5. §4.5.1(5)
13.6. §3.5.9(13)
13.7. §3.3.1(2), §3.3(24)
13.8. §3.5.5(3), §5.4(8)
13.9. §3.4(19)

13.10. §3.4(6,19,34)
13.11. §4.5.5(19.1–19.3)

14.1. §A.10.1(3)
14.2. §A.10.1(10–11), §3.3(17), §6.4.1(5)
14.3. §A.13(4), §A.10.1(85)

15.1. §8.5.4(7)
15.2. §7.2(4)
15.3. §8.5.4(4–5)
15.4. §8.3(22), §4.1.3(4)
15.5. §6.4(6,9), §6.4.1(5), §8.6(2,14)
15.6. §8.4(10)

15.7. §3.2.3(7), §8.1(9)
15.8. §8.6(7,27)
15.9. §8.4(8), §3.2.3(1,6), §A.4.4(76)

15.10. §10.1.6(3)

16.1. §A.18.2(85)
16.2. §A.18.4(44–49)
16.3. §A.18.8(68)

17.1. §8.4(8), §3.2.3(6)
17.2. §9.4(11.9)
17.3. §3.9.4(6)
17.4. §3.9.4(16)

18.1. §9.7.1(21), §9.5.2(24), §9.5.3(21)
18.2. §9.5.2(14–15), §5.6
18.3. §8.5.4(7)
18.4. §9.5.3(7)
18.5. §8.6(17)

19.1. §9.2(1,5), §9.3(5)
19.2. §9.3(2)
19.3. §9.7.4(6,9), §9.5.3(20)

20.1. §B.3.3(16,18)
20.2. §10.2.1(7,8)
21.1. §D.1(7–8)
21.2. §D.2.2(4.1)
21.3. §D.13(4), §D.7(10.8)
21.4. §D.10(10)



Appendix C

Answers

2.1. Prints an asterisk that is at position 42 in the enumeration type Character and then
prints zero. The position of an enumeration value is its position within the type, not the
subtype, and the position of an integer is its value. Val returns a value of the base type.

2.2. Compile-time error. The declaration of B1 is legal because repetitions of and (or or) are
allowed by the syntax. The declaration of B2 is illegal because combining operators re-
quires the syntax of a parenthesized expression.

2.3. Compile-time error. The third statement is a parse error because the exponent must be
decimal. With the third statement deleted, the program prints 2560 (= 10 · 162) twice:
exponent letters and hexadecimal digits can be of either case.

3.1. Compile-time error. A formal parameter cannot be used in the formal part.
3.2. Compile-time error. An explicit declaration of "/=" for predefined Boolean is illegal.
3.3. Prints True twice. Except for predefined Boolean type, there is no relationship between

"=" and "/=".

4.1. Compile-time error. While record aggregates can have named associations after posi-
tional associations, array aggregates must be either positional or named (except for
others).

4.2. Prints S. The bottom subaggregate can be a string literal if the component is of type
Character.

4.3. Prints nothing. A null slice does not cause Constraint_Error.
4.4. Raises Constraint_Error. The declaration of V1 is legal: the aggregate bounds are taken

from the discrete choice list and then converted during the assignment (sliding). Because
of the others, the bounds of the aggregate for V2 are taken from the index constraint,
and 6 is not within the bounds of the constraint. Aggregates with others do not slide.

4.5. Compile-time error. The second aggregate is illegal, because a choice may not be dy-
namic unless it is the only choice.
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5.1. Compile-time error. A component must be of a definite subtype; an unconstrained array
type is indefinite.

5.2. Prints True. Equality of a composite types returns true if there are no components.
5.3. Prints HHell world. There is no “overlap” because both sides of the assignment state-

ment are evaluated before the target variable receives the value of the expression.
5.4. Compile-time error. The discrete choices must be static: Character’Succ(Start) is

static, but Stop is not.

6.1. Compile-time error. An object cannot be declared before the full declaration of its type.
6.2. Compile-time error. The completion of an incomplete type declaration can be in the body

only if the incomplete declaration is in the private part.
6.3. Compile-time error. The assignment of objects of limited type in the main progam is

illegal. The package body is legal, because the completion of T by a nonlimited type is
allowed to add equality and assignment. Of course, these are visible only within the
declarative region of the package.

7.1. Compile-time error. Since an aggregate cannot be of class-wide type, a qualified expres-
sion like T2’(I=>2, N=>4) should be used to give the aggregate a specific type.

7.2. The first statement prints True because the first components 2 and 3 of A and B are equal
by the overridden equality function, and the second components, which are both 4, are
equal by predefined equality which is used on non-inherited components. The second
statement prints False because 4 is not equal to 5 using predefined equality. We say
that predefined equality is incorporated. Without the special rule, the second component
N would be ignored by the inherited equality and both statements would print True.

7.3. Prints True then False. Predefined, rather than overridden, equality is used for un-
tagged components of a composite type.

7.4. The specification is legal. Even though the partial view of T untagged, you can apply
the attribute T’Class provided that the full view is tagged.

8.1. Compile-time error. The declaration of the extension T2 freezes the type T1, and a prim-
itive subprogram such as Proc2 cannot be declared after the type is frozen.

8.2. Prints 1 3. A type conversion to a tagged type is a view conversion, and a view conver-
sion of a variable is a variable as required for the target of an assignment statement.

8.3. Compile-time error. The function must be overridden, otherwise the inherited function
would return a value of type T1, which cannot be assigned to an object of type T2.

8.4. Compile-time error. A default expression must be tag indeterminate.
8.5. A deferred constant does not freeze a type, so the declaration of Proc2 is legal.

9.1. Compile-time error. The index of a generic formal array type parameter must be a sub-
type mark.

9.2. Prints 100 then 200. Generic parameter associations are evaluated when the generic unit
is instantiated, not when it is declared.
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9.3. Compile-time error. The discriminated record R is unconstrained, but S is constrained by
a discriminant constraint. Since T is a generic formal parameter with a known discrim-
inant part, the instantiation of Proc1 is legal because R is unconstrained and supplies a
discriminant, while the instantiation of Proc2 is not legal because S is constrained with-
out a discriminant.

9.4. Prints 6 12. The formal part of the formal package parameter (function Formal) is visible
only if the formal package actual part is (<>). If the actual part supplies parameters as
in the commented instantiation, a compile-time error results because Integer and "+"

are used, and the formals T and Formal are not visible.
9.5. Prints Parent, then Actual. The copied operations from Formal are the only ones visible

within the instantiation. Outside the instantiation, the whole new set is visible and can be
overridden.

9.6. An array parameter of a generic formal parameter is considered to be unconstrained.
Therefore, in the subprogram ProcG the conversion of an array of type TG to type P.T is
not illegal. However, at run-time, Constraint_Error will be raised.

10.1. Prints P.INNER. The function Exception_Name returns the fully expanded name of the
exception even though the exception itself is not visible.

11.1. This might raise the exception Storage_Error if the implmentation allocates the maxi-
mum space that might be needed by any value of the discriminant subtype.

11.2. Compile-time error. A discriminant must be used directly in a constraint, not as part of
a larger expression.

11.3. Compile-time error. The declaration of C2 is illegal, because you can’t rename something
that might cease to exist.

11.4. Compile-time error. Default expressions are not allowed for discriminants of tagged
type.

11.5. Compile-time error. Defaults must be given for all discriminants or for none.
11.6. The declaration of D raises Constraint_Error. When a discriminant of the target type

corresponds to more than one discriminant of the operand, they must both be equal.
11.7. A compile-time error occurs in the main program. Changing the representation is a po-

tentially expensive operation. It is not allowed when a subprogram is primitive and can
be inherited so that the conversion is not easy to see.

12.1. K is uninitialized, so the first statement will print garbage or whatever the default initial-
ization of an integer is. The second statement will print 5 because P is initialized to the
actual parameter. The special rule exists so that uninitialized pointers will never exist, as
this can break the type system.

12.2. Compile-time error. Ptr is at library level and Main is deeper than the master which calls
it, namely, the library level environment task.

12.3. Compile-time error. The call to Proc1 is a call to an unknown subprogram. Parent_Ptr
is not of type Parent, so it is not inherited by the derived type. The call to Proc2 is
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legal, because the profile of a subprogram includes the designated subtype of an access
parameter.

12.4. Compile-time error. An implicit dereference is a prefix, thus S(1..5) returns a slice of
a string, which is an acceptable parameter for Put_Line. However, there is no implicit
dereference of I and a pointer is not an acceptable parameter for Put. The subprogram
call Put(I.all) is legal.

12.5. Prints 5. The dereference is a variable, and it does not matter that the access object is re-
turned by a function. However, you cannot assign directly to the function result, because
it is a constant §3.3(21).

12.6. Compile-time error. An entry for task cannot have an access parameter, because imple-
mentation of accept statements would be too difficult. An entry for a protected object is
not subject to this restriction.

12.7. Compile-time error. The view D of N is of the accessibility level of the main program,
which is deeper than the library access level of the anonymous type of the discriminant.

12.8. Compile-time error. We do not want to be able to convert an access-to-constant to an
access-to-variable, in order to prevent modification of constant; the reverse conversion
makes sense. The rules are somewhat complex. A type that is an access-to-constant type is
a general access type by §3.10(4,10). Therefore, by §4.6(24.11) the conversion C := AC(P)

is permitted. The conversion P := AV(C) is not permitted, because the only type that
can be converted to a pool-specific access type is universal_access §4.6(24.18) (of which null
is the only value). If type AV were declared access all Integer so that it would be a
general access type, then §4.6(24.11) would permit the conversion, but only if the rule in
§4.6(24.12) holds; this is not the case since an access-to-constant type cannot be converted
to an access-to-variable.

13.1. This is not a compile-time error; instead, Constraint_Error is raised at run-time.
13.2. Prints Equal. The descendant of Boolean is also a boolean type and the condition of an

if-statement can be any boolean type.
13.3. Probably prints 4000. Although 20_000 is not within the range of the type Int, the ex-

pression is evaluated using the base range of the type; there will be no error in any imple-
mentation that allocates at least 16 bits for the base range.

13.4. Prints 5. The implicit parameter names of the predefined binary operators are Left and
Right.

13.5. Prints 8 since 01010 xor 10101 = 11111 = 31 and 31 mod 23 = 8.
13.6. The program is correct even if it prints 10.0. The bounds of fixed point type are not

necessarily values of the type.
13.7. Compile-time error. The first declaration declares an aliased object. The second declara-

tion declares a named number, which is a value, not an object that is allocated storage
and thus cannot be aliased.

13.8. Compile-time error. The attribute Pos returns a value of type universal integer. A case
statement needs an others alternative if the expression is of universal type.
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13.9. Prints 10 99. The subtypes of the subprogram for the derived type are taken from the
parent type.

13.10. Raises Constraint_Error. There is no way to call the inherited subprogram, because
the parameters are constrained by 1..50, while the derived values are constrained by
51..100.

13.11. Compile-time error. Special is of type Rates and Amount is of type Money. There is no
multiplication operator for types Rates and Money, so the only possibility is the standard
multiplication for universal_fixed §4.5.5(19). There is no context for using the standard
operator so the first sentence of §4.5.5(19.1) doesn’t hold. The declaration of the operator
for Rates means that the conditions in §4.5.5(19.2–19.3) hold, so the standard operator
cannot be used without an explicit conversion.

14.1. Compile-time error. Ada.Text_IO.File_Type is limited.
14.2. Compile-time error. The File parameter of the subprograms is of mode in out and the

actual parameter must be a variable, but the parameter F is of mode in and thus is a
constant.

14.3. Prints File not found. The exception Name_Error is declared in Ada.IO.Exceptions,
but it is renamed with the same same in Ada.Text_IO and thus visible by the use_clause
for this package.

15.1. Prints 0. The subtype is taken from the renamed procedure, not the renaming declara-
tion.

15.2. A body is not allowed unless needed; if you delete the body, the result of the pro-
gram depends on the implementation. It probably prints a garbage value. Use pragma
Elaborate_Body §10.2.1(26) in the specification to require that the package have a body.

15.3. Compile-time error. The declaration of Proc2 is a renaming-as-body which must be sub-
type conformant. The declaration of Proc3 is correct because mode conformance is suf-
ficient for a renaming-as-declaration.

15.4. Prints 10 5. The homograph is hidden from direct visibility, but not from all visibility.
An expanded name can be used to access the outer declaration.

15.5. Compile-time error. Overloading resolution can make use of the names in a named asso-
ciation §6.4(9), so the first call is unambiguous. However, the only way to disambiguate
the second call is to note that the actual parameter of an out or in out formal parameter
must be a variable. But this is a legality rule, not an overload resolution rule §6.4.1(5).
§8.6(14) only requires that a possible interpretation satisfy the syntax rule—here §6.4(6).
So overloading fails even before the legality is checked §8.6(2).

15.6. Prints Hi from Proc in the main subprogram. A use_clause will not cause ambiguity
with a homograph declared directly in a declarative region.

15.7. Prints Derived even though the overridden subprogram is not visible. Overriding sub-
programs need not be declared in the visible part of the specification, only immediately
within the same declarative region as the parent type, which includes the private part.
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15.8. Compile-time error. The second call is ambiguous because a type conversion does not
provide an expected type for overload resolution. The first statement by itself would
print 1, because the call to Ada.Integer_Text_IO.Put is a context for overloading reso-
lution.

15.9. Compile-time error on the second statement. There is no "*" operator declared for the
operand types Natural and String in package Standard so that 2 * Hello would be
always visible. The first statement is correct: there is an operator "*" that returns a
bounded string, and the call to To_String provides a context. The operator returns a
value of type Names.Bounded_String so it is primitive and the use_type clause makes it
potentially use-visible.

15.10. Compile-time error. There are special visibility rules for context clauses; a use_clause can
only be given for a package that appears in a with_clause within the same context clause.

16.1. Prints 0. The default initialization of a vector is the empty vector of length 0.
16.2. Raises Constraint_Error. A map cannot have more than one element associated with

each key. There are two versions of the procedure Insert: one that returns a Boolean
value if the insertion is successful or not, and another that raises an exception if the
insertion in unsuccessful.

16.3. All sets and maps, not just ordered ones, have first and last elements, as well as sub-
programs Next defined on them. For hashed containers, the results are unspecified. The
program obtained by compiling with GNAT prints Hello.

17.1. A use_type_clause clause makes primitive operations visible, but the "=" we want is de-
clared in Matrix_Operations, not in Matrices where the type Matrix is declared, so it
is not primitive.

17.2. Compile-time error. The first parameter of the inherited subprogram of a task, protected
or synchronized interface is used for a task or protected object and must not be an in
parameter, because the state of the task or protected object will probably be changed by
the call.

17.3. Prints P. A task or protected type derived from an interface is a tagged type.
17.4. Compile-time error. A type cannot be derived from both a task and a protected interface.

18.1. Prints

Task T Program_Error

and then

Task A Program_Error

Main Tasking_Error
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in some order.1 The exception Program_Error is raised in T because there is no open
alternative in the selective accept. The exception in the rendezvous between A and T is
propagated to the caller A. Tasking_Error is raised in the main subprogram because the
called task A completes before the call is accepted.

18.2. Compile-time error. An accept statement must be immediately within a task body, not
within a nested subprogram body such as P. Furthermore, an accept statement cannot
contain another accept for the same entry. Note that a block is a statement, not a body, so
the outermost accept in the task body is legal.

18.3. Compile-time error. A renamed entry is a procedure, not an entry, so it cannot appear in
a requeue statement.

18.4. Program_Error is propagated to the caller Main because an exception is raised when
evaluating the barrier.

18.5. Compile-time error. The use of T within the declarative region of T denotes the current
instance, not the type, so in the declaration of Y is not legal. The uses of T within the func-
tion F and the object declaration Z are legal because they are not within the declarative
region of T.

19.1. Prints (in some order) A task has died and four times Hi from task 1. The exception
in the elaboration of task T0 causes it to become completed and raise Tasking_Error in
the main subprogram, but the main subprogram cannot terminate until all its depen-
dents including T1 have terminated.

19.2. Prints Main subprogram and then Hi from task 1 five times and Back from block in
some order. The termination of a dynamically allocated task depends on the master
declaring the access type, in this case the main subprogram. The task is a garbage task
which runs but is not accessible after the termination of the block. If the commented
lines are added, the block becomes the master containing the declaration of the access
type New_Ptr and will await the termination of T(2). Back from block will be printed
only after the ten lines of output from the tasks.

19.3. Because of the delay 0.2 in the body of T1, the call T1.E is queued; thus the abortable part
is started, calling T2.E. When the delay expires, T1.E is accepted and prints Starting

T1.E. Because of the subsequent delay 0.8 within the accept statement, the call does not
finish before the call to T2.E is started and finishes, printing the lines Starting T2.E and
Finishing T2.E. When the call T2.E and the rest of the abortable part finishes (printing
Finished abortable), an attempt is made to cancel T1.E, but, by §9.5.3(20), the attempt
fails since the call is not on an entry queue. Thus the triggering statement is not can-
celled §9.7.4(9), and the rest of the triggering alternative is eventually executed, printing
Finishing T1.E and Finish triggering.

1 The quizzes on tasking assume that the implementation ensures that a call to Put is executed in its entirety
without a context switch; otherwise, the individual characters could be interspersed in the output.
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20.1. The declaration is correct because the discriminant check is suppressed in an unchecked
union. However, an attempt to access U.B raises Constraint_Error: because U is con-
strained by M1, the compiler knows that component B will not exist and emits code to
raise the exception. An attempt to access U.A is erroneous; one possibility is that it inter-
prets the floating point value as integer.

20.2. The declaration is legal because the initial value is static and can be computed at
compile-time.

21.1. Compile-time error. A priority for a subprogram must be static. The pragma with a non-
static priority for the task is legal.

21.2. Compile-time error. The priority ranges for priority-specific dispatching must not over-
lap.

21.3. Compile-time error. The barrier must be simple, not one which computes a non-static
expression.

21.4. Only one task can be suspended on a suspension object. The first task to execute blocks
on the suspension object, but the second one raises Program_Error. The program then
blocks because the first task is still blocked.
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4.5, 21, 23, 37, 471, 478
4.5.1, 23, 56, 251, 473, 478
4.5.2, 27, 56, 127, 464, 477
4.5.3, 15, 56, 262
4.5.5, 258, 262, 263, 271, 272, 478, 483
4.6, 52, 53, 55, 126, 127, 134, 204, 218, 247,

268, 460, 464, 474, 476–478, 482
4.7, 70
4.8, 67, 111
4.9, 474, 477
4.9.1, 474

5.1, 16
5.2, 16, 22, 26, 53, 138, 204, 477
5.3, 10, 11, 16, 301, 302, 478
5.4, 10, 16, 17, 27, 474, 478
5.5, 10, 16, 270, 466
5.6, 18, 38, 478
5.7, 16
5.8, 16

6, 31, 461
6.1, 27, 28, 31, 32, 119, 226, 228, 229, 348, 413,

470, 472, 477, 478
6.2, 33, 135, 461, 467, 469, 476
6.3, 13, 31, 32, 404, 463
6.3.1, 410, 462–464, 470
6.3.2, 288
6.4, 36, 125, 478, 483
6.4.1, 22, 32, 52, 204, 227, 477, 478, 483
6.5, 17, 92, 96
6.6, 471, 477

7.1, 74, 75, 83, 472, 476
7.2, 109, 294, 478
7.3, 84, 102, 138, 165, 208, 209, 469, 471, 476,

477
7.3.1, 477

7.4, 91, 465
7.5, 87, 94, 95, 326, 470
7.6, 232–235, 460, 463
7.6.1, 376, 460, 462, 468, 470

8.1, 16, 119, 120, 298, 465, 469, 470, 478
8.2, 120, 121, 298, 473
8.3, 34, 106, 300, 462, 466, 469, 471, 473, 475,

476, 478
8.3.1, 132
8.4, 92, 297, 298, 300, 473, 476, 478
8.5, 295
8.5.1, 477
8.5.3, 92
8.5.4, 197, 296, 297, 478
8.6, 35, 231, 269, 301, 302, 460, 462, 464, 468,

471, 478, 483

9, 375
9.1, 336, 347, 348, 353, 375
9.2, 375, 376, 379, 468, 478
9.3, 376, 377, 475, 478
9.4, 336, 346, 347, 478
9.5, 368, 432, 468, 470, 475
9.5.1, 349, 364, 368, 369, 431, 468, 472, 473
9.5.2, 354, 363, 367, 369, 379, 469, 478
9.5.3, 349, 350, 357, 379, 423, 430, 478, 485
9.5.4, 366, 368, 369, 378
9.6, 380, 382–384, 468
9.6.1, 382
9.7.1, 356, 357, 361, 377, 379, 389, 423, 478
9.7.2, 384, 385
9.7.3, 385
9.7.4, 387, 478, 485
9.8, 377, 378, 381, 437, 460
9.9, 361, 379, 385
9.10, 413, 414

10, 287
10.1, 119, 287, 288, 462, 475, 476
10.1.1, 15, 77, 121, 162, 236, 287–289, 460,

466, 473, 476
10.1.2, 15, 75, 93, 120, 121, 236, 287
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10.1.3, 199, 289, 290, 348, 475
10.1.4, 76, 77, 288, 289, 467
10.1.5, 292, 294
10.1.6, 300, 478
10.2, 13, 292, 295, 376, 451, 458, 467, 470, 472,

473, 478
10.2.1, 294, 295, 409, 452, 478, 483

11, 18, 173, 467
11.1, 18, 171
11.2, 173, 177, 178, 464
11.3, 171, 178
11.4, 172–176, 379, 460, 467
11.4.1, 173, 176–178, 181, 183, 409, 466, 477
11.4.2, 186
11.5, 184, 185, 293, 461
11.6, 185, 468

12.1, 144, 477
12.2, 145
12.3, 132, 145, 164, 165, 342, 477
12.4, 153, 223
12.5, 461, 466
12.5.1, 154, 339, 341, 466, 477
12.5.2, 148
12.5.3, 150, 151, 477
12.5.4, 150, 152, 223
12.6, 149, 150, 284, 462, 477
12.7, 155, 158–160, 477

13, 402, 409, 456
13.1, 353, 403, 409, 461, 471, 473, 477
13.2, 403
13.3, 212, 251, 375, 402, 403, 461, 474
13.4, 403
13.5, 403
13.5.1, 212
13.6, 211
13.7, 402
13.7.1, 402
13.7.2, 402
13.8, 411
13.9, 206

13.9.1, 457, 460, 470
13.9.2, 457
13.10, 225
13.11, 232, 475
13.11.2, 69, 70
13.11.3, 69
13.12, 292, 457, 458
13.12.1, 457, 458
13.13.1, 280
13.13.2, 280, 282, 283, 461
13.14, 139, 468, 477

A, 8, 267, 277, 278, 288, 307
A.1, 8, 18, 28, 46, 269, 380
A.2, 295
A.3.2, 189
A.3.3, 189, 191, 259
A.4.1, 189
A.4.2, 190, 200, 201
A.4.3, 197, 199–201
A.4.4, 194, 201, 478
A.4.9, 315
A.5, 248
A.5.1, 256
A.5.2, 109, 256
A.5.3, 267, 268
A.5.4, 267
A.6, 277
A.7, 278
A.8.1, 278
A.8.2, 278
A.8.4, 278
A.9, 278
A.10, 15, 42, 277, 278
A.10.1, 47, 172, 278, 478
A.10.3, 278
A.10.4, 278
A.10.5, 278, 297
A.10.7, 15
A.10.8, 37, 278
A.10.9, 260, 278
A.10.10, 259
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A.10.11, 194, 202, 277
A.10.12, 277
A.11, 277
A.12, 278
A.12.1, 280, 281
A.12.2, 281
A.13, 18, 261, 278, 478
A.14, 277, 278
A.15, 200, 279
A.16, 279
A.17, 279
A.18, 307, 309
A.18.2, 195, 196, 201, 202, 308, 312, 313, 478
A.18.3, 196, 295, 314
A.18.4, 195, 197, 198, 202, 314, 478
A.18.5, 308, 315
A.18.6, 195, 308, 309, 316, 318
A.18.7, 317
A.18.8, 309, 317, 478
A.18.9, 308, 309
A.18.16, 150, 151, 307

B, 402, 406, 409, 410
B.1, 404, 405, 464
B.2, 404, 406
B.3, 406
B.3.1, 190, 406, 407
B.3.2, 407
B.3.3, 407, 478
B.4, 408
B.5, 408

C, 409, 410, 423
C.1, 410
C.2, 409
C.3, 411
C.3.1, 412
C.3.2, 412
C.4, 410
C.5, 409
C.6, 414
C.7.1, 414, 415

C.7.2, 415
C.7.3, 418

D, 384, 423, 430
D.1, 375, 423, 424, 429, 478
D.2.1, 424, 425
D.2.2, 425, 431, 478
D.2.3, 425, 426, 429, 430, 432
D.2.4, 427, 432
D.2.5, 427, 432
D.2.6, 427, 432
D.3, 431, 432
D.4, 357, 430, 431
D.5, 423, 431
D.5.1, 431
D.5.2, 431
D.6, 437
D.7, 438, 439, 458, 478
D.8, 433, 434
D.10, 438, 439, 478
D.11, 438
D.13, 439, 478
D.13.1, 439, 458
D.14, 435, 436
D.14.1, 435
D.14.5, 436
D.15, 434

E, 451
E.1, 451
E.2, 452
E.2.1, 452
E.2.2, 452
E.2.3, 452
E.3, 451
E.4, 452, 454
E.5, 453

F, 259, 408
F.3.1, 262
F.3.2, 262
F.3.3, 261–263
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G, 256, 263, 273, 458
G.1, 89, 256
G.1.1, 159, 264
G.1.2, 159, 264
G.1.3, 264
G.2, 256, 273
G.3, 256
G.3.1, 256
G.3.2, 256

H, 368, 456, 458
H.1, 457
H.2, 456

H.3.1, 456
H.3.2, 456
H.4, 458
H.5, 368
H.6, 458

K, 9, 21

L, 292

M, 402, 456

P, 9
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abandoned, 172, 467
abort, 377–378

completion point, 378, 437
deferred, 378
preemptive, 437
of requeued task, 378

abort-deferred, 460
abstract data type, 79
accessibility, 460

level, 225, 481, 482
of an access parameter, 227

rules, 223–225
Ada

Ada 2005, 5–6
Ada 83, 4
Ada 95, 4–9, 63, 73, 94, 126, 131, 132, 150,

183, 186, 190, 193, 202, 226, 230, 232,
240, 253, 264, 268, 273, 279, 283, 307,
368, 402, 407, 411, 424, 428, 440, 461,
473

Annotated Reference Manual, 7
history of, 3–6
Rationale, 6
Reference Manual, 6–11

Ada, 8, 295
.Assertions, 186
.Assert_Error, 186

.Asynchronous_Task_Control, 438

.Calendar, 380, 433
.Arithmetic, 382
.Formatting, 382
.Time_Zones, 382

.Characters

.Handling, 189

.Latin_1, 189, 191, 259
.Command_Line, 200, 279

.Container

.Vectors, 195
.Containers, 308
.Doubly_Linked_List, 196
.Generic_Array_Sort, 150
.Generic_Constrained_Array_Sort, 151
.Ordered_Maps, 195
.Vectors, 196, 313

.Decimal, 259

.Direct_IO, 278

.Directories, 279

.Dispatching

.EDF, 428

.Round_Robin, 427
.Dynamic_Priorities, 431
.Environment_Variables, 279
.Exceptions, 173, 176, 177
.Exception_Message, 172
.Exception_Name, 409

.Execution_Time, 435
.Group_Budgets, 435
.Timers, 435

.Finalization, 233, 463

.Integer_Text_IO, 35

.IO

.Exceptions, 483
.IO_Exceptions, 278
.Numerics, 248
.Complex_Types, 93, 264
.Discrete_Random, 109, 436
.Elementary_Functions, 256
.Generic_Complex_Arrays, 256
.Generic_Complex_Types, 159, 263, 264
.Generic_Elementary_Functions, 159,

256
.Generic_Real_Arrays, 256

495
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.Real_Time, 433, 441
.Timing_Events, 434

.Sequential_IO, 278

.Storage_IO, 278

.Streams, 280
.Stream_IO, 280

.Strings, 189
.Bounded.Generic_Bounded_Length, 194
.Fixed.Trim, 197
.Hash, 315
.Maps, 190, 200

.Synchronous_Task_Control, 438

.Task_Attributes, 415

.Task_Identification, 414

.Task_Termination, 417, 418

.Text_IO, 13, 15, 35, 42, 277, 278, 295
.Bounded_IO, 194, 202, 277, 279
.Decimal_IO, 260, 277
.Editing, 259
.Editing.Decimal_IO, 263
.Editing.Decimal_Output, 262
.Enumeration_IO, 259, 277
.Fixed_IO, 277, 436
.Float_IO, 277
.Integer_IO, 277
.Modular_IO, 277
.Text_Streams, 281
.Unbounded_IO, 277, 279

.Unchecked_Conversion, 206, 253, 258, 457

.Unchecked_Deallocation, 69, 224

.Wide_Text_IO, 192, 277
.Editing, 259

.Wide_Wide_Text_IO, 277, 279
.Editing, 259

Address, 402
adjust, 460
aggregate

array, 49–51, 466, 479
context of, 56–57
multi-dimensional, 50
named, 49
positional, 50

class-wide, 480
component association with <>, 63, 201
dynamic choice, 479
extension, 108, 127–128, 234
initialization of limited type, 95
record, 62–63, 479
string, 479

aliased, 217, 218, 482
allocator, 67–68

of task, 485
alternative

delay, 389
select, 356, 485
terminate, 377

ambiguous, 35, 37, 70, 269, 271, 302, 471, 484
ancestor, 105, 126, 476

part of aggregate, 128
ancestor type, see type, ancestor
array, 41–58

aggregate, see aggregate, array
anonymous subtype, 55
constrained, 42
constrained subtype, 54–55
convertible, 55
index subtype, 46
operation, 47–49

one dimensional, 55–56
ragged, 218
slice, 44, 51, 61, 482

null, 479
sliding, 53, 479
unconstrained, 46–47, 110, 111

aspect clause, 461
assertion, 186
assignment, 20, 134, 480

of access types, 86
of controlled types, 232
of limited types, 87
is primitive, 105

asynchronous transfer of control, 387–388,
485

attribute, 15, 21
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Access, 198, 256, 460
of access type, 217, 225
Address, 402
of array objects and types, 48
Class, 110
Class’Input, 283
Class’Output, 283
Class’Read, 283
Class’Write, 283
definition clause, 251, 257, 403
of enumeration type, 21, 482
First, 21, 48
Image, 15, 21
Input, 283
Last, 21, 48
Length, 48
Max, 21
Min, 21
Output, 282
Pos, 21, 150, 403
Pred, 21, 150
Priority, 431, 432
Range, 48
Read, 280
real types, 267
representation, 212
Small, 383
Stream_Size, 283
Succ, 21, 150
of tagged type, 135
of task, 361, 414–417
Val, 21, 150
Valid, 457
Value, 15, 21
Width, 21
Write, 280

barrier, see entry, barrier
base range, 268–269, 461, 482
base subtype, 461

C, 69, 406–408

call
dispatching, 115
external, 468
implicit first parameter, 125–126
internal, 468

callable, 461
callback, 220
cascaded wakeup, 365
case insensitive, 28
case study

automata, 236–240
callbacks, 220–221
checksum, 251–252
complex vectors, 159, 264–267
conversion to fixed point, 257–258
country of origin, 13–14
currency converter, 259–262
currency symbols, 191–193
detecting task termination, 418–420
displayable events, 326–329
dot2dot, 193–202
elaboration order, 292–293
Euler’s method, 254–256
exceptions

information, 177–178
propagating, 175–176
re-raising, 178–180
saving, 181–183

execution time, 435–437
fill and justify, 41–46
generic derived types, 341–342
generic tagged types, 339–341
message conversion, 205–207
overloading, 301–302
palindrome, 51–52
periodic task

ATC, 387–388
conditional entry, 386–387
delay, 381–382

preference for root types, 270
priority queue

anonymous access type, 228–229
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array, 59–62
controlled type, 233–236
generic, 144–146
package, 74–89
tree, 63–66

producer–consumer
protected object, 346–348
rendezvous, 353–354

quaternions, 89–94
ragged arrays, 218–219
Ravenscar profile, 440–448
renaming, 296–297
representation conversion, 211–212
simulation, 100–115

access discriminant, 230–231
access parameter, 229
concurrent, 389–393
with containers, 319
with discriminants, 210
distributed, 454–456
generic, 155–158, 160–161
generic dispatching constructor, 285
streams, 281–283

sort, 151
with access types, 152–153

storable interface, 329–335
subunits, 290–291
swap array halves, 52
synchronization with rendezvous and pro-

tected objects, 358–366
synchronized buffer, 336–339
table package, 293–294
task identification and attributes, 415
timing events, 434

categorization of units, 451–452
category of types, see type, category of
character, 189–191, 259

hexadecimal name, 192
maps, 190
set, 190, 201
wide, 190–192, 260, 277
wide-wide, 190, 191, 277

check, 184, 461
All_Checks, 184
Elaboration_Check, 185, 294
Overflow_Check, 185

class, 105, 461
determined by, 466

COBOL, 262, 408
command-line arguments, 200, 279
comment, 28
compilation, 76–78, 287, 476

environment of, 288–289
compilation unit, see unit, compilation
complete context, 35, 301, 471
completion, 64, 83, 88, 405, 462, 480

abnormal, 460
component, 475, 480

indexed, 48
selected, 62

concurrency, 345–396
conformant

fully, 208, 297, 463
mode, 149, 462
subtype, 462, 483
type, 300, 368, 462, 469

constant, 16, 23, 482
deferred, 90, 91, 465, 480
discriminant is a, 203
formal parameter of mode in is a, 32
full declaration, 91, 153
generic in object is a, 153
and named numbers, 248

constraint, 463
applicable index, 57, 460
compatible, 463
discriminant, 203, 463
index, 47, 56, 57, 463
per-object, 472
range, 26, 463, 483

constructor
generic dispatching, 283–285

containers, 307–320
doubly-linked lists, 313–314
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indefinite, 318–319
maps, 314–316

hashed, 314–316
ordered, 194, 316

sets, 317–318
hashed, 317
ordered, 317, 319

not “thread safe”, 307
vectors, 195, 312–313

context clause, 13, 15, 75
use, 83, 295, 300, 483
with, 75, 77

for child package, 120
private, 93

context switch, 355
convention, 404, 464

Ada, 464
intrinsic, 410, 464

conversion, see type, conversion
convertible, 227, 464
cover, 127, 464
current instance, 364, 464, 485
cursor, 309–312

dangling pointer, 224, see accessibility, rule
declaration, 465
declarative part, 13
declarative region, 298, 465

immediately enclosing, 298
default expression, see expression, default
deferred constant, see constant, deferred
dereference, 68–69, 465, 482

explicit, 39, 68
implicit, 39, 54, 68, 482

derivation class, 105, 110
descendant, 105, 476
descendant type, see type, descendant
descendant unit, see unit, descendant
designated profile, 219
designator, 32
directories, 279
discrete choice, 466

discriminant, 60, 111, 202–204, 481, 482
access, 230–232, 392
from actual parameter, 203
component depends on, 204
used as default expression, 204
with default expression, 207
and derived type, 212–213
inheriting, 209–210
from initial value, 203
known, 202, 203, 208, 481
and per-object constraint, 472
of private type, 208–209
of protected type, 360
of task, 361
tasks as access, 393–396
unknown, 202, 209, 318

in generic formal, 154
in variant records, 204

distinguished receiver syntax, 125–126
distributed systems, 451–456
documentation requirements, 402, 456
dot graphics language, 193
downward closure, 311
Duration, 380
dynamic dispatching, 113–117

of abstract subprogram, 129
on access parameter, 228
in assignment statement, 138
in a distributed system, 454
on the function result, 136–138
implementation of, 139–140

dynamic semantics, 10
dynamically enclosing execution, 174

editing, 262
elaboration, 24–25, 292–295, 467

check, 293, 294, 410
control, 294–295
dependences, 473
order, 24, 47, 292
policy, 458

else part, 389
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entry, 485
barrier, 349
conditional call, 384
dispatching, 394–396
family, 363, 369
implementation of call, 357–358
of protected type, 349, 367–369
queue, 349
queuing policy, 423, 430–431
servicing, 350
of task, 482
timed call, 384–387

environment, 76, 288, 467
implementation of, 289
task, 292, 467
variable, 279

equality operator, see operator, equality
equivalent keys, 308
erroneous, 460, 467
error, 467

bounded, 368, 467
Euler angles, 89
evaluation, 24, 467
exception, 18, 60, 171–183, 467

in barrier, 485
choice parameter, 178
Constraint_Error, 14, 18, 21, 133, 204,

207, 222, 227, 250, 269, 408, 462, 472,
479, 481–484, 486

base range, 461
class-wide type, 127
concrete types don’t match, 331
controlling operands, 135
modular type, 251
qualification, 70
type conversion, 39

declaration, 171
End_Error, 14, 18, 200
handler, 18
handling, 173
occurrence, 18, 176, 178, 181–183
package, 176–183

predefined, 18
Program_Error, 18, 21, 225, 293, 356, 379,

389, 432, 467, 485, 486
propagation, 174–176
raise, 18
re-raise, 178–180, 183
retry after, 38
saving, 181–183
Storage_Error, 18
in task elaboration, 485
Tasking_Error, 18, 379, 485
visibility, 481

execution, 24, 467
exponent, 28, 479
expression, 23–25, 50

default, 37, 60, 138, 204, 207, 296, 463, 480,
481

per-object, 472
qualified, 67, 70–71, 136, 302, 411, 480

extension aggregate, see aggregate, exten-
sion

external effect, 468

finalization, 232
Fortran, 408
freezing, 138–139, 468, 480
function, see subprogram, function

dispatching on, see dynamic dispatching,
function

elementary, 256, 264
enumeratin literal is a, 31
operator is a, 31

garbage collection, 69
garbage task, 485
generic, 143–170

body, 145, 164
child package, 162, 266–267
contract model, 146–148, 154, 163–166
declaration, 144, 164
formal

access type, 152–153
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array type, 150–151, 480
derived type, 341–342
object, 153
package, 155–161, 194, 481
part, 144
private type, 148, 339–341
scalar type, 148
subprogram, 148–150
subprogram default, 149
tagged type, 339–341
type, 148

implicit actual subprogram parameter, 195
instantiation, 145, 164, 462, 480
parameterization of formal package, 159–

161
type

indefinite, 154
GNAT, 192, 288, 289, 484
Graphviz, 193
guard, 356

hash
function, 315, 317

predefined, 315
type, 308

heterogeneous data structure, 111
hidden, 300, 469, 473
high integrity systems, 456–458
homograph, 300, 462, 469, 483

immediate resumption, 351
immediately within, 469, 485
implementation

advice, 402
defined, 469
permissions, 402

Information Systems, 258–262
informative, 9
inheritance, 480, 483

of components, 104
of discriminants, 209–210
function, 480

mixin, 341
multiple, 323–324
of primitive operations, 106
priority, see priority, inheritance

initial value, 23, 47
of access type, 67
of controlled type, 235
of normalized scalar, 457

initialization, 232
inline, see subprogram, inline
innermost dynamically enclosing execution,

174
input–output, 15, 277–285

binary, 278
exceptions, 278
to memory, 278
text, 278

inspection point, 456
instantiation, see generic, instantiation
interface, see type, interface

to other languages, 404–408
pragma, 404–405
synchronized, 484

Interfaces, 404, 406
.C, 406
.Pointers, 407
.Strings, 190, 406

.COBOL, 408
.Decimal_Conversions, 408

.Fortran, 408
interrupt, 411–412

priority, see priority, interrupt
item

declarative, 76
library, 76, 77

iterator, 198, 310

language comparison
aggregates, 51
allocators, 68
array assignment, 49
array syntax, 48
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case insensitive, 29
case statements—covering all values, 17
case statements—no break, 17
classes, 74
comments, 29
dereference, 69
editing, 262
exceptions, 18
generic package parameters, 155
generics, C++, 143
generics, Java, 144
Image vs. toString, 16
indefinite containers, 320
Java package, 74
loop structure, 17
method call syntax, 126
monitors, 352
null procedures, 131
numeric literals, 248
objects are not “objects”, 23
OOP concepts, 99
overloading on the function result, 36
packages, 74
packed records, 212
parameter passing, 34
parameter separator, 32
path names, 279
pointers, 67
private types, 86
records, 63
rounding, 268
standard template library, 319
static variables, 81
value vs. reference semantics, 83
variant records, 208

leap second, 382
legality rule, 10, 164, 483
lexical element, 28
lexicographic order, 56
library

level, 460
unit, see unit, library

linear algebra, 257
literal, 246, 247, 253

character and string, 28, 479
enumeration, 21, 70

is primitive, 106
numeric, 28

locking policy, 431
loop parameter, 10

machine code, 410–411
map

string, 200
master, 225, 227, 376, 460, 462, 485
mathematical functions, see function, ele-

mentary
membership test, 27, 127, 464

is primitive, 105
metrics, 402
mode, see parameter, mode
multiple inheritance, see inheritance, multi-

ple

name, 54, 470
defining, 465
direct, 299, 470
of enumeration literals, 409
equivalence, 22
of exception, 409
expanded, 75, 116, 468
resolution rule, 10, 301
tag, 409
usage, 465

nondeterministic finite automata, 236
normative, 9
null

exclusion, 152, 221–223
procedure, see subprogram, procedure, null
value, 67

number
complex, 93, 263–267
machine, 272
model, 272–273
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named, 247–248, 471, 482

object, 23, 471
abnormal, 457, 460
atomic, 414
composite, 62, 468
constant, 471
stand-alone, 474
target, 475
variable, 471
volatile, 414

operand
controlling, 115, 116, 136, 454, 464, 466

multiple, 135–136
operating systems interface, 279
operation

abort-deferred, 378
dispatching, 115
potentially blocking, 367–368, 468, 472
predefined, 105
primitive, 20, 105–107, 472
whole new set, 481

operational item, 461
operator, 37, 471, 482

boolean, 479
concatenation, 15, 44, 56
dispatching on, 135
equality, 66, 87, 136, 308, 479, 480

is incorporated, 480
fixed point, 258, 262–263, 270–272
logical, 56, 251, 479
predefined is primitive, 105
primitive, 106, 297, 484
relational, 56
visibility, 297

optimization, 185
overload, 22, 24, 34–36, 70, 278, 301–302,

471, 483, 484
fixed point operator, 270–272
on function result, 35
resolution, 35, 471

override, 106–107, 300, 462, 469, 471, 480,
483

indicator, 132
required, 130

package, 73, 75
body only if needed, 294
child, 118–121, 291

generic, 162
private, 121
private part of, 120

elaboration, 109
library, 291
nested, 291
specification, 83

parameter
access, 226–229, 482
array and record, 34
in barrier, 367
by copy, 33, 461
by reference, 33, 135, 461
with default expression, 37
formal, 479

controlling, 115, 116, 464
must be subtype mark, 27

of function, 32
implementation, 33–34
initialization, 481
mode, 32–34, 470
named association, 36
positional association, 36
view conversion, 134

partition, 472
partition communication subsystem, 453
Pascal, 25, 69
picture, 262
pointer, see type, access
polling, 385
position, 21, 150, 403, 479
potentially blocking operation, see opera-

tion, potentially blocking
pragma, 292
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Assert, 186
Assertion_Policy, 186
Atomic, 414, 441
Atomic_Compoments, 414
Attach_Handler, 412
categorization, 452
configuration, 292, 425
Convention, 404
Detect_Blocking, 368
Discard_Names, 409
Elaborate, 294
Elaborate_All, 294
Elaborate_Body, 294, 393, 483
Export, 405
Import, 405
Inline, 288
Inspection_Point, 456
Interrupt_Priority, 424, 432
Interrupt_Handler, 412
library unit, 292
Locking_Policy, 431
Normalize_Scalars, 457
Pack, 205, 251, 403
Partition_Elaboration_Policy, 458
Preelaborable_Initialization, 295
Preelaborate, 295
Priority, 424, 432
Profile, 439
program unit, 292
Pure, 294, 452
Queuing_Policy, 359, 361, 430
Remote_Call_Interface, 452, 455
Remote_Types, 452
representation, 403
Restrictions, 438, 457
Reviewable, 456
Shared_Passive, 452
Suppress, 184
Tasking_Policy, 425
Unchecked_Union, 407, 408
Unsuppress, 184
Volatile, 414, 441

Volatile_Compoments, 414
preelaboration, see unit, preelaborable
preempt, 382
preference

for root types, 269–270
for servicing the entry queue, 350–351

prefix, 54, 470
prefixed view, 125
primitive operation, see operation, primi-

tive
priority, 424–430

active, 429
base, 424, 429, 431
ceiling locking, 428, 431–432
dynamic, 431
held, 438
inheritance, 428, 429, 432
interrupt, 424
inversion, 428

private part, 83, 120, 299, 476, 480
procedure, see subprogram, procedure
profile, 472

designated, 466
expected, 301, 468

progenitor, see type, progenitor
protected

action, 348–351
object, 346–348

in Ravenscar profile, 439, 443, 446
protected action, 473
pure, see unit, pure

qualification, see expression, qualified
quaternion, 89
queuing policy, 430

race condition, 382
random numbers, 109
range, 47, 473
Ravenscar profile, 439–448
real-time system, 423–448
record, 60, 62–63
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aggregate, see aggregate, record
mutable, 207
representation clause, 212
unconstrained, 481
variant, 204–207, 466, 480

redispatching, 134
reentrant, 307
renaming, 92, 197, 295–297, 481, 483, 485

as-body, 296
as-declaration, 296

rendezvous, 352–355
representation

clause, 473
invalid, 457, 460
item, 211, 402–403, 461, 481

requeue, see statement, requeue
reserved word, 28
abort, 366, 378, 387
abs, 23
abstract, 284
accept, 354
access, 418
aliased, 217
all, 39, 68, 217
and, 23, 251, 479
and then, 23, 186
case, 17
constant, 248
delay, 380
delta, 257, 258
digits, 258
else, 356
exit, 16
for, 16, 369
generic, 144
in, 32, 153, 369
in out, 153
interface, 324
limited, 336
loop, 16
mod, 23
new, 102, 155

not, 251
not null, 222
not overriding, 132
null, 16, 67, 130, 149, 247, 348
null record, 104
or, 23, 251, 356, 479
or else, 23
others, 17, 49, 50, 56, 57, 62, 155, 479, 482
out, 32
overriding, 132
package, 155
pragma, 292
private, 83, 93
procedure, 418
protected, 336, 418
raise, 171, 178
range, 46
rem, 23
requeue, 366, 378
return, 17
select, 356, 384, 385, 387
separate, 199
synchronized, 336
tagged, 101
task, 336
type, 418
until, 380
use, 34
when, 16, 173, 347, 356, 369
while, 16
with, 102, 149, 155, 171, 172, 366, 378
xor, 23, 251

restrictions, 438–439, 457–458
result

controlling, 136, 464
ROM, 219, 295, 409
rotate, 406
rounding, 268

scope, 120, 298, 473
immediate, 298

self-referential data structure, 230
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semantic dependence, 77, 288, 292, 473
sentinel search, 61
sequential, 413
shift, 406
short-circuit control form, 23, 186, 473
signature, 156, 160
slice, see array, slice
sliding, see array, sliding
sorting, 196, 307, 313
SPARK, 456
Standard, 28, 121, 195, 249, 254, 271, 272,

476
Standard, 8
statement

abort, 377–378, see abort
accept, 354–355, 485
block, 38–39, 133
case, 10, 17, 466, 482
delay, 380
exit, 16
exit when, 16
extended return, 92
for loop, 16
if, 11
loop, 16
raise, 60
raise with, 172
re-raise, 172, 178
requeue, 364–366

external, 368–369, 468
internal, 368–369, 468
parameters of, 368

return, 17
extended, 95–96

selective accept, 355–357, 360, 389
static, 474
static semantics, 10
statically deeper than, 460
statically match, 474
storage element, 474
storage pool, 217, 232, 475
stream, 279–283, 453

string, 46, 189–193
bounded, 189
maps, 190
null-terminated, 190
unbounded, 190
wide, 190, 192, 277
wide-wide, 190, 277

stub
body, 289, 475
calling, 452
receiving, 453

subcomponent, 475
subprogram, 13, 31–40

abstract, 129
body, 31, 32
declaration, 31, 32
function, 31

protected, 364
inline, 288
intrinsic, 410
main, 13
procedure, 31

null, 130–131
protected, 364

remote call, 452–454
specification, 32

subsystem, 119, 287, 476
subtype, 25–28, 47, 475

actual, 470
base, 268
compared with type, 249–250
convertible, 53
designated, 66, 466
first, 28, 468
indication, 25–27, 47, 50, 270, 473
mark, 26, 27, 70, 128, 234, 480
nominal, 470
static, 474
unconstrained, 476

subunit, 199, 289–291, 475, 476
suppress, 184–185
suspension object, 439
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in Ravenscar profile, 442, 446
syntactic category, 475
System, 402
.Address_To_Access_Conversions, 402
.Machine_Code, 411
.RPC, 453
.Storage_Elements, 402
.Storage_Pools, 232
.Storage_Unit, 402, 474

systems programming, 409–420

tag, 115–117
controlling, 115, 116
explicit, 409
indeterminate, 136, 137, 466, 480
not changed by view conversion, 134

tagged
dynamically, 115, 136, 466
statically, 115, 136, 466

tampering with cursors and elements, 312
task, 346–348

abnormal, 377
activation, 375–376
asynchronous control, 438
attribute, 379
completed, 376
detecting termination, 417–420
dispatching point, 425
dispatching policy, 424–428

EDF_Across_Priorities, 427
FIFO_Within_Priorities, 425
Non_Preemptive_FIFO_Within_Priorities,

427
Round_Robin_Within_Priorities, 427

environment, 292, 376, 467, 481
and exceptions, 379
identification, 414–417
periodic, 381–388
ready queue, 424
restrictions, 438–439
states, 375, 424
synchronous control, 438

terminated, 376
termination, 376–377, 475, 485

time, 380–384
arithmetic, 380, 382
Coordinate Universal, 382
execution, 435–437
expiration, 380, 468
formatting, 382
International Atomic, 382
monotonic, 433–434
representation of, 383–384
timing event, 434–435
zones, 382

two-stage suspension, 438
type, 19–22, 475

abstract, 129–130
and extension aggregate, 128

access, 66–67
anonymous, 225–226
general, 217–219, 482
pool-specific, 217, 482
to-constant, 218, 482
to-subprogram, 39, 219–221, 255, 364,

454
to-variable, 217, 482

ancestor, 465
anonymous, 55, 460
boolean, 479, 482
by-copy, 33
by-reference, 33
category of, 147, 461
checking, 19
class-wide, 105, 109–111, 126, 127, 283,

461, 480
is not abstract, 130
covers, 464
object of, 133

completely defined, 468
composite, 41, 203, 280, 462, 468, 475, 480
controlled, 232–236, 460, 462, 463
conversion, 55, 484

of access type, 218
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actual parameter, 52
assignment, 53, 204
compared with qualification, 71
within derivation class, 126–127
with discriminants, 481
explicit, 263, 271
implicit, 263
numeric, 247
for representation change, 211
unchecked, 206, 258, 457
value, 134, 464
view, 134–135, 464, 480

definite, 111, 209, 470
definition of, 20
derived, 102, 465, 482, 483

and discriminant, 212–213
generic formal, 341
indirectly, 138
untagged, 211–212

descendant, 465
discrete, 466
elementary, 34, 467, 470
enumeration, 21–22, 70, 479

representation, 403
expected, 22, 301, 468
extension

private, 102
record, 103, 139, 163

fixed point, 380, 482
decimal, 258
delta of, 253, 257, 258
multiplication and division, 262–263, 270–

272
ordinary, 257–258
small of, 257, 258
universal, 483

floating point, 254–257
full, 83, 208, 209, 468, 480
heterogeneous, 100
incomplete, 64, 469

in private part, 89
view, 236

indefinite, 111, 133, 209, 283, 318, 469
generic actual, 154

integer
modular, 250–253, 482
signed, 248–249
universal, 482

interface, 130, 324–339
is abstract, 325
limited, 326, 336
protected, 336
synchronized, 336–339
task, 336

limited, 87–88, 163, 470
initialization of, 95
non-private, 94–95

mutually dependent, 236–240
numeric, 245–273, 471
predefined

float, 254
integer, 249, 270

private, 83–86
and discriminants, 208–209
nonlimited, 89

progenitor, 324, 325, 465
real, 253–254
root, 105, 246, 476

integer, 269, 270
preference for, 269–270
real, 253, 269

scalar, 473
specific, 461
tagged, 101, 126, 480, 481

formal parameter is aliased, 218
generic formal, 339

task, 348
unconstrained, 207–208
universal, 127, 245–247, 269, 476

access, 67, 246, 482
fixed, 246, 253, 263, 271
integer, 246
real, 246, 253

untagged, 480
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unchecked
conversion, see type, conversion, unchecked
deallocation, 69–70, 232, 236
union, 407

Unicode, 190, 191
unit, 476

child, 476
compilation, 15, 121, 287, 348, 476
consistent version, 288
library, 15, 120, 287, 476

root, 476
parent, 476
preelaborable, 295, 409–410
program, 287
pure, 294, 452
remote call interface, 452
remote types, 452
shared passive, 452

Universal Character Set, 191
unspecified, 469
use type clause, 92, 297, 484

value
composite, 49, 62, 128, 468
default, 481

variable, 23
actual parameter of mode out, 32
environment, 279
shared, 413–414

view, 134, 465, 476
full, 84, 471

of private extension, 138
generic in out object is a, 153
incomplete, 236
partial, 84, 208, 209, 471, 480

visibility, 483
of child packages, 119
in context clauses, 300, 484
rule, 298–300

visible, 473
directly, 299, 473
immediately, 299, 473
part, 83, 120, 164, 298, 476
potentially use-, 300
use-, 299, 473

watchdog, 388, 420




