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Preface

The purpose of this book is to provide a comprehensive introduction to the
application of continuous symmetries and their Lie algebras to ordinary
and partial differential equations. The study of symmetries of differential
equations provides important information about the behaviour of differen-
tial equations. The symmetries can be used to find exact solutions. They
can be applied to verify and develop numerical schemes. One can also ob-
tain conservation laws of a given differential equation with the help of the
continuous symmetries. Gauge theory is also based on the continuous sym-
metries of certain relativistic field equations.

Apart from the standard techniques in the study of continuous symmetries,
the book includes: the Painlevé test and symmetries, invertible point trans-
formation and symmetries, Lie algebra valued differential forms, gauge the-
ory, Yang-Mills theory and chaos, self-dual Yang-Mills equation and soliton
equations, Bäcklund transformation, Lax representation, Bose operators
and symmetries, Hirota technique, Sato’s theory, discrete systems and in-
variants and string theory.

Each chapter includes computer algebra applications. Examples are the
finding of the determining equation for the Lie symmetries, finding the
curvature for a given metric tensor field and calculating the Killing vector
fields for a metric tensor field. Each chapter also includes exercises.

The book is suitable for use by students and research workers whose main
interest lies in finding solutions of differential equations. It therefore caters
for readers primarily interested in applied mathematics and physics rather
than pure mathematics. The book provides an application focused text that
is self-contained. A large number of worked examples have been included
in the text to help the readers working independently of a teacher. The
advance of algebraic computation has made it possible to write programs
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vi Preface

for the tedious calculations in this research field. Thus the last chapter
gives a survey on computer algebra packages. Each chapter also includes
useful SymbolicC++ programs.

End of proofs are indicated by ♠. End of examples are indicated by ♣.

I wish to express my gratitude to Yorick Hardy for discussion on this re-
search field and the support for SymbolicC++.

Any useful suggestions and comments are welcome.

The book covers the course on Lie groups and Lie algebras provided by the
International School for Scientific Computing. If you are interest in such a
course please contact the author.

The header files for SymbolicC++ and example programs can be down-
loaded from the home page of the author:

http://issc.uj.ac.za

Email addresses of the author:

steebwilli@gmail.com

steeb_wh@yahoo.com

whsteeb@uj.ac.za
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15 Bäcklund Transformations 259

15.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

15.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

15.3 Computer Algebra Applications . . . . . . . . . . . . . . . . 265

15.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266



x Contents

16 Lax Representations 267
16.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
16.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
16.3 Sato’s Theory . . . . . . . . . . . . . . . . . . . . . . . . . 273
16.4 Computer Algebra Applications . . . . . . . . . . . . . . . 276
16.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

17 Conservation Laws 279
17.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . 279
17.2 Exterior Differential Systems . . . . . . . . . . . . . . . . . 285
17.3 Cartan Fundamental Form . . . . . . . . . . . . . . . . . . 291
17.4 String Theory and Invariants . . . . . . . . . . . . . . . . . 304
17.5 Computer Algebra Applications . . . . . . . . . . . . . . . 307
17.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

18 Symmetries and Painlevé Test 311
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22.3 Discrete Painlevé Equations . . . . . . . . . . . . . . . . . 412
22.4 Computer Algebra Applications . . . . . . . . . . . . . . . 413
22.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414

23 Computer Algebra 415
23.1 Computer Algebra Packages . . . . . . . . . . . . . . . . . 415
23.2 Programs for Lie Symmetries . . . . . . . . . . . . . . . . . 416
23.3 SymbolicC++ and the Symbolic Class . . . . . . . . . . . . 420

23.3.1 Expression Tree . . . . . . . . . . . . . . . . . . . . 420
23.3.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . 423

23.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428

A Differentiable Manifolds 433
A.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433
A.2 Examples of Differentiable Manifolds . . . . . . . . . . . . . 435
A.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441

Bibliography 443

Index 453



This page intentionally left blankThis page intentionally left blank



Notation

∅ empty set
N natural numbers
Z integers
Q rational numbers
R real numbers
R+ nonnegative real numbers
C complex numbers
Rn n-dimensional Euclidean space
Cn n-dimensional complex linear space
G group
M,N manifolds
f : M → N mapping between manifolds
TM tangent bundle
T ∗M cotangent bundle
i :=

√
−1

z complex number
<z real part of the complex number z
=z imaginary part of the complex number z
x ∈ Rn element x of Rn

A ⊂ B subset A of set B
A ∩ B the intersection of the sets A and B
A ∪ B the union of the sets A and B
f ◦ g composition of two mappings (f ◦ g)(x) = f(g(x))
u dependent variable
t independent variable (time variable)
x independent variable (space variable)
xT = (x1, x2, . . . , xm) vector of independent variables, T transpose
uT = (u1, u2, . . . , un) vector of dependent variables, T transpose
‖ . ‖ norm
x · y scalar product (inner product)
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Chapter 1

Introduction

Sophus Lie (1842–1899) and Felix Klein (1849–1925) studied mathemati-
cal systems from the perspective of those transformation groups which left
the systems invariant. Klein, in his famous “Erlanger” program, pursued
the role of finite groups in the studies of regular bodies and the theory of
algebraic equations, while Lie developed his notion of continuous transfor-
mation groups and their role in the theory of differential equations. Today
the theory of continuous groups is a fundamental tool in such diverse ar-
eas as analysis, differential geometry, number theory, atomic structure and
high-energy physics. In this book we deal with Lie’s theorems and exten-
sions thereof, namely its applications to the theory of differential equations.

It is well known that many, if not all, of the fundamental equations of
physics are nonlinear and that linearity is achieved as an approximation.
One of the important developments in applied mathematics and theoretical
physics over the recent years is that many nonlinear equations, and hence
many nonlinear phenomena, can be treated as they are, without approxi-
mations, and be solved by essentially linear techniques.

One of the standard techniques for solving linear partial differential equa-
tions is the Fourier transform. During the past 35 years it was shown that a
class of physically interesting nonlinear partial differential equations can be
solved by a nonlinear extension of the Fourier technique, namely the inverse
scattering transform. This reduces the solution of the Cauchy problem to
a series of linear steps. This method, originally applied to the Korteweg-de
Vries equation, is now known to be applicable to a large class of nonlinear
evolution equations in one space and one time variable, to quite a few equa-
tions in 2 + 1 dimensions and also to some equations in higher dimensions.

1



2 1. Introduction

Continuous group theory, Lie algebras and differential geometry play an
important role in the understanding of the structure of nonlinear partial
differential equations, in particular for generating integrable equations, find-
ing Lax pairs, recursion operators, Bäcklund transformations and finding
exact analytic solutions.

Most nonlinear equations are not integrable and cannot be treated via the
inverse scattering transform, nor its generalizations. They can of course be
treated by numerical methods, which are the most common procedures. In-
teresting qualitative and quantitative features are however often missed in
this manner and it is of great value to be able to obtain, at least, particular
exact analytic solutions of nonintegrable equations. Here group theory and
Lie algebras play an important role. Indeed, Lie group theory was originally
created as a tool for solving ordinary and partial differential equations, be
they linear or nonlinear.

New developments have also occurred in this area. Some of them have their
origins in computer science. The advent of algebraic computing and the
use of such computer languages for symbolic computations such as Sym-
bolicC++, REDUCE, MACSYMA, AXIOM, MAPLE, MATHEMATICA,
MuPAD etc., have made it possible (in principle) to write computer pro-
grams that construct the Lie algebra of the symmetry group of a differential
equation. Other important advances concern the theory of infinite dimen-
sional Lie algebras, such as loop algebras, Kac-Moody and Virasoro algebras
which frequently occur as Lie algebras of the symmetry groups of integrable
equations in 2 + 1 dimensions such as the Kadomtsev-Petviashvili equation.
Furthermore, practical and computerizable algorithms have been proposed
for finding all subgroups of a given Lie group and for recognizing Lie alge-
bras given their structure constants.

In chapter 2 we give an introduction into group theory. Both finite and
infinite groups are discussed. All the relevant concepts and definitions are
introduced.

Lie groups are introduced in chapter 3. In particular, the classical Lie
groups are studied in detail. The Haar measure is also discussed and ex-
amples are provided.

In chapter 4 Lie transformation groups are defined and a large number of
applications are provided.
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Chapter 5 is devoted to the infinitesimal transformations (vector fields) of
Lie transformation groups. In particular, the three theorems of Lie are dis-
cussed.

Chapter 6 gives a comprehensive introduction into Lie algebras. We also
discuss representations of Lie algebras in details. Many examples are pro-
vided to clarify the definitions and theorems. Also concepts important in
theoretical physics such as Casimir operators and Cartan-Weyl basis are
provided.

The form-invariance of partial differential equations under Lie transforma-
tion groups is illustrated by way of examples in chapter 7. This should be
seen as an introduction to the development of the theory of invariance of
differential equations by the jet bundle formalism. The Gauge transforma-
tion for the Schrödinger equation is also discussed. We also show how the
electromagnetic field Aµ is coupled to the wave function ψ.

Chapter 8 deals with differential geometry. This means we consider differ-
ential forms and tensor fields. Theorems and definitions (with examples)
are provided that are of importance in the application of Lie algebras to
differential equations. A comprehensive introduction into differential forms
and tensor fields is given.

The Lie derivative is of central importance for continuous symmetries with
applications to differential equations. In chapter 9 we study invariance and
conformal invariance of geometrical objects, i.e. functions, vector fields,
differential forms, tensor fields, etc..

In chapter 10 the jet bundle formalism in connection with the prolongation
of vector fields and (partial) differential equations is studied. The applica-
tion of the Lie derivative in the jet bundle formalism is analysed to obtain
the invariant Lie algebra. Explicit analytic solutions are then constructed
by applying the invariant Lie algebra. These are the so-called similarity so-
lutions which are of great theoretical and practical importance. The direct
method is also introduced.

In chapter 11 the generalisation of the Lie point symmetry vector fields is
considered. These generalised vector fields are known as the Lie-Bäcklund
symmetry vector fields. Similarity solutions are constructed from the Lie-
Bäcklund vector fields. The connection with gauge transformations is also
discussed.



4 1. Introduction

In chapter 12 the inverse problem is considered. This means that a par-
tial differential equation is constructed from a given Lie algebra which is
spanned by Lie point or Lie-Bäcklund symmetry vector fields.

A list of Lie symmetry vector fields of some important partial differential
equations in physics is included in chapter 13. In particular the Lie sym-
metry vector fields for the Maxwell-Dirac equation have been calculated.

In chapter 14 the Gateaux derivative is defined. A Lie algebra is introduced
using the Gateaux derivative. Furthermore, recursion operators are defined
and applied. Then we can find hierarchies of integrable equations.

In chapter 15 we introduce auto-Bäcklund transformations and Bäcklund
transformations.for partial and ordinary differential equations. We show
that these transformations can be used to construt solutions.

For soliton equations the Lax representations are the starting point for
the inverse scattering method. In chapter 16 we discuss the Lax represen-
tation. Many illustrative examples are given. Sato’s theory is also included.

The important concept of conservation laws is discussed in chapter 17. The
connection between conservation laws and Lie symmetry vector fields is of
particular interest. Extensive use is made of the definitions and theorems
of exterior differential forms. The Cartan fundamental form plays an im-
portant role regarding the Lagrange density and Hamilton density. String
theory and invariants are also discussed.

In chapter 18 the Painlevé test is studied with regard to the symmetries
of ordinary and partial differential equations. The Painlevé test provides
an approach to study the integrability of ordinary and partial differen-
tial equations. This approach is studied and several examples are given.
In particular a connection between the singularity manifold and similar-
ity variables is presented. The connection of the Hirota technique and the
Painlevé test is also discussed in detail.

Ziglin’s theorem can be used to decide whether an ordinary differential
equation can be integrated. This theorem is discussed in chapter 19 to-
gether we many applications.

In chapter 20 the extension of differential forms, discussed in chapter 7,
to Lie algebra valued differential forms is studied. The covariant exterior
derivative is defined. Then the Yang-Mills equations and self-dual Yang-
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Mills equations are introduced. It is conjectured that the self-dual Yang-
Mills equations are the master equations of all integrable equations such as
the Korteweg-de Vries equation. The geometry of the Lie group SU(n) is
also described in detail.

The connection between nonlinear autonomous systems of ordinary differ-
ential equations, first integrals, Bose operators and Lie algebras is studied
in chapter 21. It is shown that ordinary differential equations can be ex-
pressed with Bose operators. Then the time-evolution can be calculated
using the Heisenberg picture. An extension to nonlinear partial differential
equations is given where Bose field operators are considered. Difference
equations and Bose operators are also investigated.

The concepts of invariants for maps are introduced in chapter 22 with a
large number of examples. In particular, the logistic map and the Fibonacci
trace map are investigated. The discrete Painlevé equations are also dis-
cussed and examples are provided.

Chapter 23 gives a survey of computer algebra packages. Of particular
interest are the computer programs available for the calculation of symme-
try vector fields. SymbolicC++, a computer algebra package embedded in
C++, is introduced and a number of SymbolicC++ programs useful for the
different topics in the book are provided.

The appendix provides an introduction to differentiable manifolds.

The emphasis throughout this book is on differential equations and dif-
ference equations that are of importance in physics and engineering. The
examples and applications consist mainly of the following equations: the
Korteweg-de Vries equation, the sine-Gordon equation, Burgers’ equation,
linear and nonlinear diffusion equations, the Schrödinger equation, the non-
linear Klein-Gordon equation, nonlinear Dirac equations, Yang-Mills equa-
tions, the Lorenz model, the Lotka-Volterra model, damped and driven
anharmonic oscillators, and differential equations in string theory.

Each chapter includes a section on computer algebra applications with a
SymbolicC++ programs. Each chapter also includes exercises.
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Chapter 2

Groups

2.1 Definitions and Examples

In this section we introduce some elementary definitions and fundamental
concepts in general group theory. We present examples to illustrate these
concepts and show how different structures form a group.

Let us define a group as an abstract mathematical entity Miller [79], Baum-
slag and Chandler [6].

Definition 2.1 A group G is a set e, g1, g2, · · · ∈ G not necessarily count-
able, together with an operator, called group composition (·), such that

1. Closure: gi ∈ G, gj ∈ G ⇒ gi · gj ∈ G.

2. Assosiativity: gi · (gj · gk) = (gi · gj) · gk.

3. Existence of identity e ∈ G: e · gi = gi = gi · e for all gi, e ∈ G.

4. Existence of inverse g−1
i ∈ G: gi · g−1

i = g−1
i · gi = e for all gi ∈ G.

5. A group that obeys a fifth postulate gi · gj = gj · gi for all gi, gj ∈ G,
in addition to the four listed above is called an abelian group or
commutative group.

The group composition in an abelian group is often written in the form
gi + gj . The element gi + gj is called the sum of gi and gj and G is called
an additive group.

Definition 2.2 If a group G consists of a finite number of elements, then
G is called a finite group; otherwise, G is called an infinite group.

7
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Example. The set of integers Z with addition as group composition is an
infinite additive group with e = 0. ♣

Example. The set {1,−1} with multiplication as group composition is a
finite abelian group with e = 1. ♣

Definition 2.3 Let G be a finite group. The number of elements of G is
called the dimension or order of G.

Definition 2.4 A nonempty subset H of G is called a subgroup of G if H
is a group with respect to the composition of the group G. We write H < G.

Hence a nonempty subset H is a subgroup of G if and only if h−1
i · hj ∈ H

for any hi, hj ∈ H . For a family {Hλ} of subgroups of G, the intersection⋂
λHλ is also a subgroup.

Theorem 2.1 The identity element e is unique.

Proof. Suppose e′ ∈ G such that e′ · gi = gi · e′ = e for all gi ∈ G. Setting
gi = e, we find e ·e′ = e′ ·e = e. But e′ ·e = e′ since e is an identity element.
Therefore, e′ = e. ♠

Theorem 2.2 The inverse element g−1
i of gi is unique.

Proof. Suppose g′i ∈ G such that gi · g′i = e. Multiplying on the left by
g−1
i and using the assosiative law, we get g−1

i = g−1
i · e = g−1

i · (gi · g′i) =
(g−1
i · gi) · g′i = e · g′i = g′i. ♠

Theorem 2.3 The order of a subgroup of a finite group divides the order
of the group.

This theorem is called Lagrange’s theorem. For the proof we refer to
the literature (Miller [79]).

Definition 2.5 Let H be a subgroup of G and g ∈ G. The set

Hg := { hg : h ∈ H }

is called a right coset of H. The set

gH := { gh : h ∈ H }

is called a left coset of H.

Definition 2.6 A subgroup N of G is called normal (invariant, self-
conjugate) if gNg−1 = N for all g ∈ G.
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If N is a normal subgroup we can construct a group from the cosets of N ,
called the factor group G/N . The elements of G/N are the cosets gN ,
g ∈ G. Of course, two cosets gN , g′N containing the same elements of G
define the same element G/N : gN = g′N . Since N is normal it follows
that

(g1N)(g2N) = (g1N)(g2N) = g1Ng2 = g1g2N

as sets. Note that NN = N as sets.

Consider an element gi of a finite group G. If gi is of order d, where the
order of a group element is the smallest positive integer d with gdi = g1
(identity), then the different powers of gi are g0

i (= g1), gi, g
2
i , . . . g

d−1
i . All

the powers of gi form a group < gi > which is a subgroup of G and is called
a cyclic group. This is an abelian group where the order of the subgroup
< gi > is the same as the order of the element gi.

A way to partition G is by means of conjugacy classes.

Definition 2.7 A group element h is said to be conjugate to the group
element k, h ∼ k, if there exists a g ∈ G such that

k = ghg−1.

It is easy to show that conjugacy is an equivalence relation, i.e., (1) h ∼
h (reflexive), (2) h ∼ k implies k ∼ h (symmetric), and (3) h ∼ k, k ∼ j
implies h ∼ j (transitive). Thus, the elements of G can be divided into
conjugacy classes of mutually conjugate elements. The class containing e
consists of just one element since

geg−1 = e

for all g ∈ G. Different conjugacy classes do not necessarily contain the
same number of elements.

Let G be an abelian group. Then each conjugacy class consists of one group
element each, since

ghg−1 = h, for all g ∈ G.

Let us now give a number of examples to illustrate the definitions given
above.

Example. A field is an (infinite) abelian group with respect to addition.
The set of nonzero elements of a field forms a group with respect to multi-
plication, which is called a multiplicative group of the field. ♣
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Example. A linear vector space over a field K (such as the real num-
bers R) is an abelian group with respect to the usual addition of vectors.
The group composition of two elements (vectors) a and b is their vector
sum a + b. The identity is the zero vector and the inverse of an element is
its negative. ♣

Example. Let N be an integer with N ≥ 1. The set

{ e2πin/N : n = 0, 1, . . . , N − 1 }

is an abelian (finite) group under multiplication since

e2πin/Ne2πim/N = e2πi(n+m)/N

where n,m = 0, 1, . . . , N − 1. Note that e2πin = 1 for n ∈ N. We consider
some special cases of N : For N = 2 we find the set {1,−1} and for N = 4
we find {1, i,−1,−i}. These are elements on the unit circle in the complex
plane. For N → ∞ the number of points on the unit circle increases. As
N → ∞ we find the unitary group

U(1) :=
{
eiα : α ∈ R

}
. ♣

Example. The two matrices
(

1 0
0 1

)
,

(
0 1
1 0

)

form a finite abelian group of order two with matrix multiplication as group
composition. The closure can easily be verified

(
1 0
0 1

)(
1 0
0 1

)
=

(
1 0
0 1

)
,

(
1 0
0 1

)(
0 1
1 0

)
=

(
0 1
1 0

)

(
0 1
1 0

)(
0 1
1 0

)
=

(
1 0
0 1

)
.

The identity element is the 2 × 2 unit matrix. ♣

Example. Let M = {1, 2, . . . , n}. The set Bi(M,M) of bijective mappings
σ : M →M so that

σ : {1, 2, . . . , n} → {p1, p2, . . . , pn}

forms a group Sn under the composition of functions. Let Sn be the set of
all the permutations

σ =

(
1 2 · · · n
p1 p2 · · · pn

)
.
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We say 1 is mapped into p1, 2 into p2, . . . , n into pn. The numbers
p1, p2, . . . , pn are a reordering of 1, 2, . . . , n and no two of the pj ’s j =
1, 2 . . . , n are the same. The inverse permutation is given by

σ−1 =

(
p1 p2 · · · pn
1 2 · · · n

)
.

The product of two permutations σ and τ , with

τ =

(
q1 q2 · · · qn
1 2 · · · n

)

is given by the permutation

σ ◦ τ =

(
q1 q2 · · · qn
p1 p2 · · · pn

)
.

That is, the integer qi is mapped to i by τ and i is mapped to pi by σ, so
qi is mapped to pi by σ ◦ τ . The identity permutation is

e =

(
1 2 · · · n
1 2 · · · n

)
.

Sn has order n!. The group of all permutations on M is called the sym-
metric group on M which is non-abelian, if n > 2. ♣

Example. Let N be a positive integer. The set of all matrices

Z2πk/N =

(
cos 2kπ

N − sin 2kπ
N

sin 2kπ
N cos 2kπ

N

)

where k = 0, 1, 2, . . . , N − 1, forms an abelian group under matrix multipli-
cation. The elements of the group can be generated from the transformation

Z2kπ/N =
(
Z2π/N

)k
, k = 0, 1, 2, . . . , N − 1.

For example, if N = 2 the group consists of the elements {(Zπ)0, (Zπ)1} ≡
{−I,+I} where I is the 2 × 2 unit matrix. This is an example of a cyclic
group. ♣

Example. The set of all invertible n × n matrices (i.e. the determinant
is nonzero) form a group with respect to the usual multiplication of matri-
ces. The group is called the general linear group over the real numbers
GL(n,R), or over the complex numbers GL(n,C). This group together
with its subgroups are the so-called classical groups which are Lie groups
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(see chapter 3). ♣

Example. Let

A(α) =

(
cosα sinα
− sinα cosα

)

where α ∈ R. We show that the matrices A(α) form an abelian group under
matrix multiplication, the so-called SO(2) group which is a subgroup of the
group GL(2,R). Since

(
cosα sinα
− sinα cosα

)(
cosβ sinβ
− sinβ cosβ

)
=

(
cos(α+ β) sin(α+ β)
− sin(α + β) cos(α + β)

)

the set is closed under multiplication. Here we have used the identities

cosα cosβ − sinα sinβ ≡ cos(α+ β)

sinα cosβ + cosα sinβ ≡ sin(α + β).

For α = 0 we obtain the identity element of the group, i.e. the 2 × 2 unit
matrix. Since detA(α) = 1 the inverse exists and is given by

A−1(α) = A(−α) =

(
cosα − sinα
sinα cosα

)
.

For arbitrary n× n matrices A, B, C the associative law holds, i.e.,

A(BC) = (AB)C.

Consequently the matrices A(α) form a group. ♣

Example. Let C be the complex plane. Let z ∈ C. The set of Möbius
transformations in C form a group called the Möbius group denoted by
M where m : C → C,

M := {m(a, b, c, d) : a, b, c, d ∈ C, ad− bc 6= 0 }

and

m : z 7→ z′ =
az + b

cz + d
.

The condition ad−bc 6= 0 must hold for the transformation to be invertible.
Here, z = x+iy, where x, y ∈ R. This forms a group under the composition
of functions. Let

m(z) =
az + b

cz + d
, m̃(z) =

ez + f

gz + h
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where ad−bc 6= 0 and eh−fg 6= 0 (e, f, g, h ∈ C). Consider the composition

m (m̃(z)) =
a(ez + f)/(gz + h) + b

c(ez + f)/(gz + h) + d

=
aez + af + bgz + hb

cez + cf + dgz + hd

=
(ae+ bg)z + (af + hb)

(ce+ dg)z + (cf + hd)
.

Thus m(m̃(z)) has the form of a Möbius transformation, since

(ae+ bg)(cf + hd) − (af + hb)(ce+ dg) = ad(eh− fg) + bc(gf − eh)

= (ad− bc)(eh− fg)

6= 0 .

We conclude that m is closed under composition. Associativity holds since
we consider the multiplication of complex numbers. The identity element
is given by

m(1, 0, 0, 1) = z.

To find the inverse of m(z) we assume that

m (m̃(z)) =
(ae+ bg)z + (af + hb)

(ce+ dg)z + (cf + hd)
= z

so that

ae+ bg = 1, af + hb = 0, ce+ dg = 0, cf + hd = 1

and we find

e =
d

ad− bc
, f = − b

ad− bc
, g = − c

ad− bc
, h =

a

ad− bc
.

The inverse is thus given by

(z′)
−1

=
dz − b

−cz + a
. ♣

Example. Let Z be the abelian group of integers under addition. Let E
be the set of even integers. Obviously, E is an abelian group under addition
and is a subgroup of Z. Let C2 be the cyclic group of order 2. Then

Z/E ∼= C2 . ♣

We denote the mapping between two groups by ρ and present the following
definition.



14 2. Groups

Definition 2.8 A mapping of a group G into another group G′ is called
a homomorphism if it preserves all combinatorial operations associated
with the group G so that

ρ(a · b) = ρ(a) ∗ ρ(b)

a, b ∈ G and ρ(a), ρ(b) ∈ G′. Here · and ∗ is the group composition in G
and G′ respectively.

Example. There is a homomorphism ρ from the group GL(2,C) into the
Möbius group M given by

ρ :

(
a b
c d

)
→ m(z) =

az + b

cz + d
.

We now check that ρ is indeed a homomorphism. Consider

A =

(
a b
c d

)

where a, b, c, d ∈ C and ad − bc 6= 0. The matrices A form a group with
matrix multiplication as group composition. We find

AB =

(
a b
c d

)(
e f
g h

)
=

(
ae+ bg af + bh
ce+ dg cf + dh

)

where e, f, g, h ∈ C. Consider the mapping

ρ(AB) =
(ae+ bg)z + (af + bh)

(ce+ dg)z + (cf + dh)

and

ρ(A) =
az + b

cz + d
, ρ(B) =

ez + f

gz + h

so that

ρ (ρ(A)) =
(ae+ bg)z + (af + bh)

(ce+ dg)z + (cf + dh)
.

We have shown that ρ(A ·B) = ρ(A) ∗ ρ(B) and thus that ρ is a homomor-
phism. ♣

An extension of the Möbius group is as follows: Consider the transformation

v =
Aw +B

Cw +D
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where v = (v1, . . . , vn)
T , w = (w1, . . . , wn)

T (T transpose). A is an n× n
matrix, B an n × 1 matrix, C a 1 × n matrix and D a 1 × 1 matrix. The
(n+ 1) × (n+ 1) matrix (

A B
C D

)

is invertible.

In the following let G and G′ be groups.

Definition 2.9 A mapping of all elements in G onto elements of G′ is
called surjective.

Definition 2.10 A one-to-one (or faithful) mapping of elements in G
to elements in G′ is called an injection.

Definition 2.11 A map that is both one-to-one and onto is called a bijec-
tion.

Definition 2.12 If we have a mapping from G to G′ that is a surjective
homomorphism we say that G′ is homomorphic to G.

Definition 2.13 If we have a mapping from G to G′ that is a bijective
homomorphism (isomorphism) we say that G′ is isomorphic to G.
We write G ∼= G′.

Example. An n × n permutation matrix is a matrix that has in each
row and each column precisly one 1. There are n! permutation matrices.
The n×n permutation matrices form a group under matrix multiplication.
Consider the symmetric group Sn given above. It is easy to see that the
two groups are isomorphic. Cayley’s theorem tells us that every finite
group is isomorphic to a subgroup (or the group itself) of these permutation
matrices.

The six 3 × 3 permutation matrices are given by

A =




1 0 0
0 1 0
0 0 1


 , B =




1 0 0
0 0 1
0 1 0


 , C =




0 1 0
1 0 0
0 0 1




D =




0 1 0
0 0 1
1 0 0


 , E =




0 0 1
1 0 0
0 1 0


 , F =




0 0 1
0 1 0
1 0 0
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where A is the identity element of the group. We have

AA = A AB = B AC = C AD = D AE = E AF = F

BA = B BB = A BC = D BD = C BE = F BF = E

CA = C CB = E CC = A CD = F CE = B CF = D

DA = D DB = F DC = B DD = E DE = A DF = C

EA = E EB = C EC = F ED = A EE = D EF = B

FA = F FB = D FC = E FD = B FE = C FF = A .

For the inverse we find

A−1 = A, B−1 = B, C−1 = C, D−1 = E, E−1 = D, F−1 = F.

The order of a finite group is the number of elements of the group. Thus
our group has order 6. Lagrange’s theorem tells us that the order of
a subgroup of a finite group divides the order of the group. Thus the
subgroups must have order 3, 2, 1. From the group table we find the
subgroups

{A, D, E}, {A, B}, {A, C}, {A, F}, {A} . ♣

The order of an element g ∈ G is the order of the cyclic subgroup
generated by {g}, i.e. the smallest positive integer m such that

gm = e

where e is the identity element of the group. The integerm divides the order
of G. Consider, for example, the element D of the permutation group of
3 × 3 matrices. Then

D2 = E, D3 = A, A identity element.

Thus m = 3.

Definition 2.14 A homomorphism of G to itself is called an endomor-
phism of G.

Definition 2.15 An isomorphism of G to itself is called an automor-
phism of G.

Definition 2.16 The kernel K of a mapping ρ between two groups G and
G′ is the set

K = { gi ∈ G : ρ(gi) = e′ }
where e′ is the identity element in G′.
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Note that the set K is a subgroup of G.

Let us give examples of groups which are homomorphic.

Example. The group R and S1 (unit circle) are homomorphic by the
homomorphism ρ : R → S1 defined by

ρ(x) = e2πix.

The transformation is locally one-to-one but globally it is infinite-to-one.
For all points x + n (with n an integer) the map ρ maps onto the same
point exp(2πix) in S1 since e2πin = 1. The kernel of ρ is Z, the discrete
group of integers. ♣

Example. The group of positive real numbers R+ with ordinary multi-
plication being the group operation, is isomorphic to the additive group of
the real numbers R. The exponential function,

ρ(t) = et

with t ∈ R, provides the isomorphism, ρ : R → R+. ♣

2.2 Computer Algebra Applications

In the C++ program we consider the permutation group S3. We give the
composition of the group elements using the map class of the Standard Tem-
plate Library. Then we evaluate the inverse of each group element. Finally
we determine the conjugacy classes. The group consists of six elements
which we denote by a[0], a[1], . . ., a[5]. The neutral (identity) element is
denoted by a[0]. Thus we have

a[0] ∗ a[j] = a[j] ∗ a[0] = a[j]

for j = 0, 1, . . . , 5. The group is nonabelian.

// group.cpp

#include <iostream>

#include <sstream>

#include <map>

#include <string>

#include <vector>

using namespace std;
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map<string,map<string,string> > group;

string operator*(const string &s1,const string &s2)

{ return group[s1][s2]; }

int main(void)

{

int i, j, k, n = 6;

string res;

vector<string> a(n), g(n), cl1(n), cl2(n);

for(i=0;i<n;i++)

{

ostringstream name;

name << "a" << "[" << i << "]";

a[i] = name.str();

}

// a[0] is the neutral element

for(i=0;i<n;i++)

group[a[0]][a[i]] = group[a[i]][a[0]] = a[i];

group[a[1]][a[1]] = a[0];

group[a[1]][a[2]] = a[3]; group[a[2]][a[1]] = a[4];

group[a[1]][a[3]] = a[2]; group[a[3]][a[1]] = a[5];

group[a[1]][a[4]] = a[5]; group[a[4]][a[1]] = a[2];

group[a[1]][a[5]] = a[4]; group[a[5]][a[1]] = a[3];

group[a[2]][a[2]] = a[0];

group[a[2]][a[3]] = a[5]; group[a[3]][a[2]] = a[1];

group[a[2]][a[4]] = a[1]; group[a[4]][a[2]] = a[5];

group[a[2]][a[5]] = a[3]; group[a[5]][a[2]] = a[4];

group[a[3]][a[3]] = a[4];

group[a[3]][a[4]] = a[0]; group[a[4]][a[3]] = a[0];

group[a[3]][a[5]] = a[2]; group[a[5]][a[3]] = a[1];

group[a[4]][a[4]] = a[3];

group[a[4]][a[5]] = a[1]; group[a[5]][a[4]] = a[2];

group[a[5]][a[5]] = a[0];
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res = a[0]*a[1]*a[2]*a[3]*a[4]*a[5];

cout << "res = " << res << endl << endl;

// find the inverse

g[0] = a[0];

for(j=0;j<n;j++)

for(k=0;k<n;k++)

if(a[j]*a[k] == a[0] && a[k]*a[j] == a[0])

{ g[j] = a[k]; k = n; }

for(j=0;j<n;j++) cout << "g[" << j << "] = " << g[j] << endl;

cout << endl;

// conjugacy class of the group element a[1]

for(j=0;j<n;j++) cl1[j] = a[j]*a[1]*g[j];

for(j=0;j<n;j++)

cout << "cl1[" << j << "] = " << cl1[j] << endl;

cout << endl;

// conjugacy class of the group element a[3]

for(j=0;j<n;j++) cl2[j] = a[j]*a[3]*g[j];

for(j=0;j<n;j++)

cout << "cl2[" << j << "] = " << cl2[j] << endl;

return 0;

}

The output is

res = a[2]

g[0] = a[0]

g[1] = a[1]

g[2] = a[2]

g[3] = a[4]

g[4] = a[3]

g[5] = a[5]

cl1[0] = a[1]

cl1[1] = a[1]
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cl1[2] = a[5]

cl1[3] = a[2]

cl1[4] = a[5]

cl1[5] = a[2]

cl2[0] = a[3]

cl2[1] = a[4]

cl2[2] = a[4]

cl2[3] = a[3]

cl2[4] = a[3]

cl2[5] = a[4]

2.3 Exercises

(1) Let p be a prime number with p ≥ 3. Let r and s be rational numbers
with r2 + s2 > 0. Show that the set given by the numbers r + s

√
p form a

group.

(2) Consider the functions defined on R \ { 0, 1 }

f1(x) = x, f2(x) =
1

x
, f3(x) = 1 − x

f4(x) =
x

x− 1
, f5(x) =

1

1 − x
, f6(x) = 1 − 1

x
.

Show that these functions form a group with the composition

fj ◦ fk := fj(fk) .

(3) Consider the 4 × 4 matrix

A =




0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0


 .

Show that the matrices A, A2, A3, A4 form a group. Is the group commu-
tative? Give all subgroups.

(4) Consider the group GL(n,R). Is the subset of GL(n,R) with positive
determinant a subgroup of the general linear group GL(n,R)?



Chapter 3

Lie Groups

3.1 Definitions

First we introduce the definition of a Lie group, and then we give some
examples (Gilmore [51], Von Westenholz [133], Sattinger and Weaver [99],
Choquet-Bruhat et al [17]).

Definition 3.1 An r-parameter Lie group G, which also carries the
structure of an r-dimensional differentiable manifold in such a way that
both the group composition

c : G×G→ G, c(g1, g2) = g1 · g2

with g1, g2 ∈ G, and the inversion

i : G→ G

are smooth maps between manifolds.

From the definition it follows that a Lie group carries the structure of a
differentiable manifold so that group elements can be continuously varied.

A Lie group is a special case of a topological group. A set G together with
a group operation and a topology is said to be a topological group if
the mappings which define its group structure are continuous, i.e. if the
mappings

G×G→ G by (g1, g2) 7→ g1 · g2 = g1g2

G 7→ G by g 7→ g−1

21
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are continuous.

Let us now give a number of examples of Lie groups.

Example. The additive group R is a Lie group since it is a differentiable
manifold (see appendix A). The group composition is analytic. ♣

Example. The general linear group GL(m,R) is a Lie group. The mani-
fold structure can be identified with the open subset

GL(m,R) := {A : detA 6= 0 }

of the linear space of all m × m nonsingular matrices. This space is iso-
morphic to Rm2

with matrix entries aij of A. Thus GL(m,R) is also an
m2-dimensional manifold. The group composition is analytic. ♣

Definition 3.2 A subset H of a Lie group G is a Lie subgroup if H is a
subgroup of the abstract group G and a submanifold of the analytic manifold
G.

Definition 3.3 A morphism between Lie groups G1 and G2 is an analytic
mapping f : G1 → G2 that is a homomorphism of abstract groups. If f is
also bijective and f−1 is analytic, then f is called an isomorphism of Lie
groups.

The sub-Lie groups of GL(m,R) and GL(m,C) are important in the fol-
lowing discussion.

Example. The special linear group defined by

SL(m) := {A ∈ GL(m) : detA = 1 }

is a sub-Lie group of the Lie group GL(m). ♣

Example. The unitary group defined by

U(m,C) := {A ∈ GL(m,C) : A∗A = Im }

is a sub-Lie group of the Lie group GL(m,C). ♣

Example. The special unitary group defined by

SU(m,C) := {A ∈ GL(m,C) : A∗A = Im, detA = 1 }
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is a sub-Lie group of the Lie group GL(m,C). ♣

Example. The orthogonal group defined by

O(m,R) := {A ∈ GL(m,R) : ATA = Im }
is a sub-Lie group of the Lie group GL(m,R). ♣

Example. The special othogonal group defined by

SO(m,R) := {A ∈ GL(m,R) : ATA = Im, detA = 1 }
is a sub-Lie group of the Lie group GL(m,R). ♣

Definition 3.4 The Lie group G is compact if its manifold is a closed
and bounded submanifold of Rm, for some m.

A group is thus compact if all its elements are bounded. In particular, for
a matrix group it must be true for all the matrices of the group that each
entry of the matrices is bounded.

Example. Consider the unitary group U(m) which is discussed in detail
in the next chapter. The group is defined by

U(m) := {A ∈ GL(m,C) : A∗A = Im }
where Im is the m×m unit matrix and ∗ denotes the transpose and complex
conjugate. For A ∈ U(m) it follows that

m∑

k=1

A∗
kiAkj = δij .

For i = j this becomes

|A1j |2 + |A2j |2 + · · · + |Amj |2 = 1

so that |Alj | ≤ 1 for 1 ≤ l, j ≤ m. Thus the entries of all the matrices
in U(m) are bounded by 1. This is also true for the identity element Im
(m×m unit matrix) and so U(m) is compact. ♣

In physics groups emerge as transformations. For applications of Lie groups
to differential equations we consider the transformation of coordinates and
fields. Such transformations form a Lie transformation group. Lie transfor-
mation groups such as the standard matrix groups, also known as classical
groups, will be discussed in the next chapter. GL(n,R), discussed above,
is also a standard matrix group.
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3.2 Concepts for Lie Groups

In this section we introduce important concepts in the study of Lie group.
We introduce cosets, cosets partitions, the centre of a group, conjugacy
classes, invariant sugroups, factor groups and direct product.

Definition 3.5 Any element g ∈ G defines the left \ right translations
by

Lg : x 7→ gx, Rg : x 7→ xg

for all x ∈ G.

If the group is Abelian Rg and Lg are identical.

Definition 3.6 The centre of a group G is defined by

Z(G) := { z ∈ G : zg = gz for all g ∈ G }
= { z ∈ G : Lz = Rz }.

Clearly the identity element e ∈ Z(G). For G Abelian the centre is Z(G) =
G.

Definition 3.7 For H < G and g ∈ G, we define the left \ right coset
of H with coset representative g:

gH =Lg(H) = { gh : h ∈ H }
Hg=Rg(H) = {hg : h ∈ H }.

Note that
(i) if g ∈ H then gH = Hg = H
(ii) if g /∈ H then gH as well as Hg is not a subgroup of G, and in general
gH 6= Hg.
The coset partition G is

G =
⋃

g

gH

where any x ∈ G lies in a unique coset.

Examples. Consider the matrix

S =

(
1 0
0 −1

)

(parity reversal) where S ∈ O(2) but S /∈ SO(2). Then every A ∈ O(2),

A /∈ SO(2) may be expressed as A = ÃS with Ã ∈ SO(2). Thus

O(2) = I · SO(2) ∪ S · SO(2)
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(· denotes matrix multiplication) i.e., cosets of SO(2) with representations
I, S, form a complete partition of O(2). ♣

Example. Consider the Lorentz group O(1, 3). For A ∈ O(1, 3) we have
the condition

ATLA = L ⇐⇒
4∑

α=1

4∑

β=1

AαρLαβAβσ = Lρσ

with ρ, σ = 1, 2, 3, 4 and L = diag (−1, 1, 1, 1) ∈ O(1, 3). The condition on
Aαβ is then given

−A2
11 +A2

21 +A2
31 +A2

41 = −1

which means that A2
11 ≥ 1 or sgnA11 = ±1. We can associate the following

physical meaning with A:

sgnA11 = +1, preserves time direction

sgnA11 =−1, time inversion

also

AP = diag (1,−1,−1,−1), spatial reversal or parity reversal

detAP =−1, sgnA11 = 1

AT = diag (−1, 1, 1, 1), time inversion

detAT =−1, sgnA11 = −1

APT = diag (−1,−1,−1,−1), time and parity reversal

detAPT = +1, sgnA11 = −1.

Thus, the full Lorentz group O(1, 3) can be partitioned with respect to the
subgroup

SO(1, 3)↑ := {A ∈ SO(1, 3) : sgnA11 = +1 }
where APT ∈ SO(1, 3) but APT /∈ SO(1, 3)↑. The group SO(1, 3)↑ is called
the proper Lorentz group. The partition of O(1, 3) is

O(1, 3) = I · SO(1, 3)↑ ∪AP · SO(1, 3)↑ ∪AT · SO(1, 3)↑ ∪APT · SO(1, 3)↑.

The special orthogonal group SO(1, 3) can also be partitioned with the
proper Lorentz group

SO(1, 3) = I · SO(1, 3)↑ ∪APT · SO(1, 3)↑. ♣
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Definition 3.8 A conjugation map (also called inner automorphism)
can be defined by

Ig : x 7→ gxg−1 for all x ∈ G

where g ∈ G.

Every element of the form Igx is conjugate to x. The conjugacy class of
x is

(x) := { Igx : g ∈ G } = all elements of the form gxg−1.

Note that (x) is not a subgroup of G unless x = e. The conjugacy classes
partition the group G.

Example. Consider the group GL(m). The conjugacy class is given by

(A) = { IBA : B ∈ GL(m) } = {BAB−1 : B ∈ GL(m) }

for all A ∈ GL(m). This means that every C ∈ (A) has the same deter-
minant, trace and eigenvalues as A. Note that for any square matrix the
trace is the sum of the eigenvalues and the determinant is the product of
the eigenvalues. ♣

Definition 3.9 For H < G and

IgH = H for all g ∈ G

we call H an invariant subgroup.

Definition 3.10 1. A group G is called simple if G has no invariant
subgroups.

2. G is called semisimple if G has no Abelian invariant subgroups.

3. G is called non-simple if G has an invariant subgroup.

4. G is called non-semisimple if G has an Abelian invariant subgroup.

Example. Consider the group SL(m), which is a subgroup of GL(m). Let
A ∈ GL(m) and S ∈ SL(m). We show that IASL(m) = SL(m) for all
A ∈ GL(m). Since detS = 1 for all S ∈ SL(m) and

det(ASA−1) = det(A) det(A−1) det(S) = det(AA−1) det(S) = 1

which is true for all A ∈ GL(m) and all S ∈ SL(m), we have

IASL(m) = SL(m) for all A ∈ GL(m).
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Thus SL(m) is an invariant subgroup of GL(m) and GL(m) is non-
simple. ♣

Example. Consider the group T (3) which is a subgroup of E(3) where

(A′, a′) · (A, a) = (A′A,A′a + a′)

(A, a)−1 = (A−1,−A−1a)

and A, A′ ∈ O(3) and a, a′ ∈ T (3). We consider a translation (I, a) ∈ T (3)
and calculate

(A,b) · (I, a) · (A,b)−1

for (A,b) ∈ E(3):

(A,b)(I, a)(A,b)−1 = (AI,B +Aa)(A−1,−A−1b)

= (AA−1,b +Aa +A(−A−1b))

= (I, Aa) .

Since (I, Aa) ∈ T (3) for all (A,b) ∈ E(3) and all (I, a) ∈ T (3) it follows
that T (3) is an invariant subgroup of E(3). T (3) is Abelian so that E(3)
is a non-semisimple group. ♣

Let N be an invariant subgroup of G and by G/N we denote the set of
cosets of N in G (there is no need to specify whether the cosets are left or
right - for since N is an invariant subgroup they coincide). Since

(gN)(g′N) = gg′N

the set G/N is closed under elementwise multiplication of its cosets. In
fact G/N forms a group with respect to coset multiplication. The identity
element is the coset N and the coset gH is the coset g−1N .

Definition 3.11 The group G/N is called the quotient or factor group
of the group G by the invariant subgroup N .

Example. SO(3) is an invariant subgroup of O(3). The factor group is
then given by

O(3)/SO(3) = {SO(3), −I · SO(3) } ≡ { I, −I }. ♣

Definition 3.12 A direct product ⊗ between two groups G1 and G2 is
a group

G1 ⊗G2 = { (g1, g2) }
with composition law

(g′1, g
′
2) · (g1, g2) := (g′1g1, g

′
2g2).
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Example. It is obvious that

O(3) = SO(3) ⊗ {I,−I}

where the composition law is

(A′,±I)(A,±I) = (A′A,±I). ♣

Example. For the Euclidean group E(3) the direct product cannot be
used so that

E(3) 6= O(3) ⊗ T (3)

since the subgroup O(3) acts on the subgroup T (3), where the composition
law is given by

(A′, a′) · (A, a) = (A′A, a′ +A′a). ♣

3.3 Haar Measure

We introduce the Haar measure of compact Lie groups and give a number
of examples (Miller [79], Rosen [92]). First we introduce a Banach space
we need in the following. Let p be a positive real number and let (S, µ) be
a measure space. Consider the set of all measurable functions from S to C
(or R) whose absolute value raised to the p-th power has a finite Lebesgue
integral, i.e.

‖f‖p := p

√∫
|f |pdµ <∞ .

The vector
(f + g)(x) = f(x) + g(x)

and it then follows from the inequality

|f + g|p ≤ 2p(|f |p + |g|p)

that the sum of two p-th power integrable functions is again p-th power
integrable. The scalar action on a function f is given by (cf)(x) = cf(x).
This vector space together with the function ‖ . ‖p is a seminormed complete
vector space denoted by Lp(S, µ). To obtain a Banach space one considers
the Kolmogorov quotient of this space. One divides out the kernel of the
norm. Thus one defines

Lp(S, µ) := Lp(S, µ)/ker(‖ . ‖p).

This means we are identifying two functions if they are equal almost every-
where. We consider the Banach space with p = 1 in the following. Let Γ
be a compact Lie group.
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Definition 3.13 A Haar measure on Γ is a measure µ : Σ → [0,∞),
with Σ a σ-algebra containing all Borel subsets of Γ, such that
1) µ(Γ) = 1
2) µ(γS) = µ(S) for all γ ∈ Γ, S ∈ Σ. Here γS := { γα |α ∈ S }.

We may associate to any measure µ on Γ a bounded linear functional E :
L1(Γ,Σ, µ) → C by

E(f) =

∫

Γ

f(γ)dµ(γ) .

In terms of E, the two conditions of the definition map into E(1) = 1
and E(χγS) = E(χS) for all γ ∈ Γ and S ∈ Σ, respectively. We de-
fine (Lαf)(γ) := f(α−1γ). In this notation, E(χγS) = E(χS) becomes
E(LγχS) = E(χS). Since simple functions are dense in the Banach space
L1, the second condition of the definition is equivalent to E(Lγf) = E(f)
for all γ ∈ Γ and f ∈ L1(Γ,Σ, µ). One can prove the existence of a Haar
measure on any compact Lie group Γ, by first constructing a positive linear
functional E : CR(Γ) → R (one cannot use f ∈ L1(Γ,Σ, µ) because µ is
not known ahead of time) that obeys E(1) = 1 and E(Lγf) = E(f) and
then, second, applying the Riesz Representation Theorem.

When a group carries local coordinate systems we can explicitly find the
Haar measure in terms of the local coordinates. Suppose that Γ is a compact
Lie group and that

• Õ is an open neighbourhood in Rn

• Ũ is an open neighbourhood in Γ

• γ̃ : Õ → Ũ is a homeomorphism (1-1, onto, continuous with continu-
ous inverse).

This is called a coordinate patch. A compact Lie group is covered by (the

Ũ ’s of) coordinate patchs. For each coordinate patch, we find a function

∆̃ : Õ → R such that
∫

Γ

f(γ)dµ(γ) =

∫

Õ

f(γ̃(x))∆̃(x)dx

for all functions f ∈ CR(Γ) that are supported in Ũ . The measure ∆̃(x)dx

on Õ ⊂ Rn represents the Haar measure in local coordinates. The idea is
to fix a point in the compact Lie group Γ and use E(Lγf) = E(f) to move
the measure at the fixed point all around the group. One uses the identity
element e ∈ Γ as the fixed point in the Lie group Γ. Suppose that
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• O is an open neighbourhood of the origin in Rn

• U is an open neighbourhood of e in Γ

• γ : O → U is a homeomorphism and obeys γ(0) = e

is a coordinate patch for a neighbourhood of the identity element e. We
also find a function ∆ : O → R such that

∫

Γ

f(α)dµ(α) =

∫

O

f(γ(x))∆(x)dx

for all functions f ∈ CR(Γ) that are supported in U. Fix any y ∈ Õ. If

f ∈ CR(Γ) is supported sufficiently near γ̃(y) ∈ Ũ , then f is supported in

Ũ and L
γ̃(y)−1f is supported in U since L

γ̃(y)−1f(α) = f(γ̃(y)α) vanishes

unless α is close enough to e. Then, in local coordinates, the requirement
that E(f) = E(Lγ(y)−1f) becomes
∫
f(γ̃(x))∆̃(x)dx =

∫
(Lγ(y)−1f)(γ(x))∆(x)dx =

∫
f(γ̃(y)γ(x))∆(x)dx.

Define z(y,x) by γ̃(z(y,x)) = γ̃(y)γ(x). It will be defined for all y ∈ Õ
and all x in a sufficiently small neighbourhood of the origin (depending on

y) that γ̃(y)γ(x) ∈ Ũ . Then the requirement that E(f) = E(Lγ(y)−1f)
becomes ∫

f(γ̃(x))∆̃(x)dx =

∫
f(γ̃(z(y,x)))∆(x)dx.

Making the change of variables x → z(y,x) (with y held fixed) in the
integral on the left hand side, we must have

∫
f(γ̃(z(y,x)))∆̃(z(y,x))

∣∣∣∣∣det

(
∂zi
∂xj

(y,x)

)

1≤i,j≤n

∣∣∣∣∣ dx

=

∫
f(γ̃(z(y,x)))∆(x)dx

for all f supported near γ̃(y). Consequently

∆(x) = ∆̃(z(y,x))

∣∣∣∣∣det

[
∂zi
∂xj

(y,x)

]

1≤i,j≤n

∣∣∣∣∣

for all x sufficiently near 0. In particular, setting x = 0, and observing
that z(y,0) = y, provides

∆(0) = ∆̃(y)

∣∣∣∣∣det

[
∂zi
∂xj

(y,0)

]

1≤i,j≤n

∣∣∣∣∣ .
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This determines ∆̃(y) on Õ, up to the constant ∆(0). Using implicit dif-
ferentiation shows that we do not need to know z(y,x) explicitly. Since
all of Γ is covered by coordinate patchs, this determines the Haar measure
on all of Γ, up to the constant ∆(0). The constant is determined by the
requirement that µ(Γ) = 1.

Let Γ be a compact Lie group. Denote by CR(Γ) the real-valued continuous
functions on Γ and define, for each α ∈ Γ, the maps Lα, Rα, J : CR(Γ) →
CR(Γ) by (L stands for left and R stands for right)

(Lαf)(γ) := f(α−1γ), (Rαf)(γ) := f(γα), (Jf)(γ) := f(γ−1) .

Theorem. (Existence of Haar Measure). Let Γ be a compact Lie
group

1) There exists a unique positive linear functional E : CR(Γ) → R such
that E(1) = 1 and E(Rαf) = E(f) for all α ∈ Γ and f ∈ CR(Γ).
Furthermore E(Lαf) = E(Jf) = E(f) for all α ∈ Γ and f ∈ CR(Γ).

2) There is a σ-algebra, Σ, of subsets of Γ that contains all Borel subsets
of Γ and is invariant under left and right multiplication and under
inversion, i.e.

S ∈ Σ ⇒ γS = { γα |α ∈ S } ∈ Σ

Sγ = {αγ |α ∈ S} ∈ Σ

S−1 = {α−1 |α ∈ S } ∈ Σ

and there is a measure µ on Σ such that

µ(γS) = µ(Sγ) = µ(S−1) = µ(S) for all S ∈ Σ

µ(Γ) = 1, E(f) =

∫

Γ

f(γ)dµ(γ) .

Example. For the Lie group U(1) = { eiθ|0 ≤ θ < 2π } we find
∫

U(1)

f(γ)dµ(γ) =
1

2π

∫ 2π

0

f(eiθ)dθ .

Example. For the Lie group SO(3) we find
∫

SO(3)

f(γ)dµ(γ) =
1

8π2

∫ π

0

dθ

∫ 2π

0

dϕ1

∫ 2π

0

dϕ2 sin(θ) f(γ(ϕ1, ϕ2, θ))

where ϕ1, ϕ2, θ are the Euler angles.

Example. If Γ is a finite group with #Γ elements, the Haar measure is
µ(S) = #S

#Γ .
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3.4 Computer Algebra Applications

In the program we implement the matrix multiplication for the compact
Lie group SO(2). Furthermore we show that the determinant of the matrix
of the four parameter representation of the unitary group U(2) is given by
exp(iβ), where β ∈ R.

// SO2.cpp

#include <iostream>

#include "symbolicc++.h"

using namespace std;

int main(void)

{

// group SO2)

Symbolic A("A",2,2);

Symbolic B("B",2,2);

Symbolic C("C",2,2);

Symbolic x("x"), y("y");

Symbolic result;

A(0,0) = cos(x); A(0,1) = sin(x);

A(1,0) = -sin(x); A(1,1) = cos(x);

B(0,0) = cos(y); B(0,1) = sin(y);

B(1,0) = -sin(y); B(1,1) = cos(y);

C = A*B;

C = C[sin(x)*sin(y)==(cos(x-y)-cos(x+y))/2,

cos(x)*cos(y)==(cos(x-y)+cos(x+y))/2,

sin(x)*cos(y)==(sin(x-y)+sin(x+y))/2,

cos(x)*sin(y)==(-sin(x-y)+sin(x+y))/2];

cout << C << endl;

// group U(2), calculating the determinant

Symbolic i = sqrt(Number<int>(-1));

Symbolic alpha("alpha"), beta("beta"),

gamma("gamma"), nu("nu");

Symbolic U("U",2,2);

U(0,0) = exp(i*alpha)*cos(nu);

U(0,1) = exp(i*gamma)*sin(nu);

U(1,0) = -exp(i*(beta-gamma))*sin(nu);

U(1,1) = exp(i*(beta-alpha))*cos(nu);

result = det(U);
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result = result.subst(cos(nu)*cos(nu), 1 - sin(nu)*sin(nu));

cout << result << endl;

return 0;

}

3.5 Exercises

(1) Show that the set of matrices







1 a c
0 1 b
0 0 1





 , a, b, c ∈ R

form a Lie group under matrix multiplication.

(2) Show that the matrices

(
1 1
0 1

)
,

(
1 −1
0 1

)

are conjugate in SL(2,C) but not in SL(2,R) (the real matrices in SL(2,C)).

(3) Let G denote the five-dimensional manifold C × C × R with multipli-
cation defined as follows

(c1, c2, r)(c
′
1, c

′
2, r

′) = (c1 + e2πirc′1, c2 + e2πihrc′2, r + r′)

where h is a fixed irrational number and c1, c
′
1, c2, c

′
2 ∈ C, r, r′ ∈ R. Show

that G is a Lie group.

(4) The dimension of a Lie group G is the dimension of G as an analytic
manifold. What are the dimensions of GL(n,R) and SL(n,R)?

(5) Find the Haar measure for the compact Lie group SU(2).

(6) Let G be a Lie group and H a closed subgroup. Show that if H is
compact the group G/H has an invariant measure.

(7) The set of matrices (α ∈ R)








cosh(α) 0 0 sinh(α)
0 cosh(α) sinh(α) 0
0 sinh(α) cosh(α) 0

sinh(α) 0 0 cosh(α)
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plays a role in quantum optics. Does this set form a Lie group under matrix
multiplication?

(8) Does the set of matrices (α ∈ R)








cos(α) − sin(α) 0 0
sin(α) cos(α) 0 0

0 0 cos(α) − sin(α)
0 0 sin(α) cos(α)








form a Lie group under matrix multiplication?



Chapter 4

Lie Transformation
Groups

4.1 Introduction

In physics groups emerge as transformations. For applications of Lie groups
to differential equations we consider the transformation of coordinates and
fields. Such transformations form a Lie transformation group. Lie trans-
formation groups such as the standard matrix groups are also known as
classical groups.

Let M be a differential manifold and G be a Lie group.

Definition 4.1 The group G is called a Lie transformation group of
M if there is a differential map

ϕ : G×M →M, ϕ(g,x) = gx

such that

1. (g1 · g2)x = g1 · (g2x) for x ∈ M and g1, g2 ∈ G.

2. ex = x for the identity element e of G and x ∈M

are satisfied. Note that x is now transformed to gx by the transformation
ϕ. This is also known as the group action on x.

The classical groups as well as the affine groups are examples of Lie trans-
formation groups. In most cases we have M = Rn or M = Cn.

35
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4.2 Classical Groups

We consider the canonicalm-dimensional vector space V m ofm×1 matrices
with the standard basis

e1 =




1
0
0
...
0



, e2 =




0
1
0
...
0



, . . . , em =




0
0
...
0
1



.

The vector space V m over the fields R and C is denoted by Rm and Cm,
respectively. Note that the choice of a set of basis vectors {e1, e2, · · · , em}
in a vector space V m is not unique so that every set of basis vectors in V m

can be related to every other coordinate system by an m×m nonsingular
matrix. Let x,y ∈ V m such that

x =




x1

x2
...
xm


 , y =




y1
y2
...
ym


 .

A linear transformation of V m can be represented by an m×m matrix
A over C or R such that

A : x 7→ x′ = Ax

where

A(ax + by) = a(Ax) + b(Ay)

with a, b ∈ C (or R) are constants.

The set of all m×m nonsingular matrices over C or R forms the general
linear group GL(m,C) and GL(m,R), respectively, which is a linear in-
vertible transformation of V m. The group composition is given by matrix
multiplication.

If we do not specify the field the results obtained are valid for real as well
as complex numbers.

Let A,B ∈ GL(m), so that detA 6= 0 and detB 6= 0. Since

det(AB) ≡ (detA)(detB) 6= 0
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we find that the set is closed by matrix multiplication and the inverse matri-
ces exist. The unit matrix I is the identity element. Matrix multiplication is
associative. GL(m,C) has m2 complex parameters and therefore 2m2 real
parameters, we write dim{GL(m,C)} = 2m2 and dim{GL(m,R)} = m2.

The special linear group defined by

SL(m) := {A ∈ GL(m) : detA = 1 }

is a subgroup of GL(m) with the restriction that the determinant of the
matrix elements be equal to one. For A,B ∈ GL(m) and detA = 1,
detB = 1. It follows that

det(AB) = 1

so that AB ∈ SL(m). The subgroups are as follows

SL(m,R) < GL(m,R) < GL(m,C) > SL(m,C)

where
SL(m,R) < SL(m,C).

We find dim{SL(m,C)} = 2(m2 − 1) and dim{SL(m,R)} = m2 − 1.

The other classical groups leave certain bilinear forms (metrics) on the
vector space V m invariant.

Definition 4.2 A bilinear metric function on a vector space V m is a
mapping of a pair of vectors into a number in the field F associated with
the vector space

(v1,v2) = f, v1,v2 ∈ V m, f ∈ F.

The mapping obeys

(v1, av2 + bv3) = a(v1,v2) + b(v1,v3)

and
(av1 + bv2,v3) = a(v1,v3) + b(v2,v3).

Let us now consider the metric preserving groups. Suppose V m has a metric
(x,y). Let H ⊂ G be defined by

H := {A ∈ GL(m,V ) : (Ax, Ay) = (x,y) for all x,y ∈ V m}

i.e., H preserves (leaves invariant) the metric. Then H < GL(m,V ) for
any metric on V m.
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Orthogonal Groups

We consider the Euclidean metric or symmetric bilinear form in Rm: Let
x, y ∈ Rm and Im the m×m identity matrix. Then

(x,y) = xT Imy = (x1, x2, . . . , xm )




y1
y2
...
ym


 =

m∑

j=1

xjyj

where xT denotes the transpose of x and Im is the m × m unit matrix.
Thus (x,y) is the inner or scalar product in Rm. We can now define the
orthogonal group

O(m) := {A ∈ GL(m,R) : A preserves the Euclidean metric }.

Let x,y ∈ Rm so that

(Ax, Ay) = (Ax)TAy = xTATAy = xT Imy = xTy

where A is such that ATA = Im. With the condition detA = 1 we define

SO(m) := {A ∈ O(m) : detA = 1 } < O(m)

which is called the special orthogonal group. The dimension of O(m)
and SO(m) is m(m−1)/2. The group O(m) is compact since every element
is closed and bounded. From ATA = Im it follows that

m∑

k=1

(AT )ikAkj = δij .

Therefore
m∑

k=1

AkiAkj = δij

and consequently |Aij | ≤ 1. Obviously SO(m) is also compact.

Unitary Groups

We consider the Hermitian metric or Hermitian symmetric form in Cm:
Let x,y ∈ Cm and Im the m×m identity matrix. Then

(x,y) = x†Imy = (x∗1, x
∗
2, . . . , x

∗
m)




y1
y2
...
ym


 =

m∑

j=1

x∗jyj
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where the dagger † denotes the transpose and complex conjugate. For ex-
ample, m = 2 is the hermitian inner product defined on the two-component
spinor. We can now define the unitary group

U(m) := {A ∈ GL(m,C) : A preserves the hermitian metric }.

Let x,y ∈ Cm. Then

(Ax, Ay) = (Ax)†Im(Ay) = x†A†Ay = x†y

for all x,y ∈ Cm where A†A = Im. With the condition detA = 1 we define

SU(m) := {A ∈ U(m) : detA = 1 } < U(m)

which is called the special unitary group. U(m) has the dimension m2

and SU(m) the dimension m2 −1. The group U(m) is compact since every
element is closed and bounded. From ATA = Im it follows that

m∑

k=1

(A†)ikAkj = δij .

Therefore
m∑

k=1

A∗
kiAkj = δij

and consequently |Aij | ≤ 1. Obviously SU(m) is also compact.

Pseudo-Orthogonal Groups

We consider the Lorentzian metric in Rm. Let x,y ∈ Rm. Then

(x,y) = xTLy = xT
(
−IP 0

0 Im−P

)
y = −

P∑

j=1

xjyj +

m∑

j=P+1

xjyj

where the m×m matrix L is defined as

L :=

(
−IP 0

0 Im−P

)

and IP is the P × P unit matrix. For example, the metric with P = 1 and
m = 4 is important in the theory of special relativity. We can now define
the pseudo-orthogonal group

O(P,m− P ) := {A ∈ GL(m,C) : A preserves the Lorentzian metric }.
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Let x,y ∈ Rm. Then

(Ax, Ay) = (Ax)TL(Ay) = xTATLAy = xTLy

for all x,y ∈ Rm, where ATLA = L. With the condition detA = 1 we
write

SO(P,m − P ) = {A ∈ O(P,m− P ) : detA = 1 } < O(P,m − P )

which is called the pseudo-special orthogonal group. O(P,m−P ) has
the dimension 1

2m(m−1) which is the same as the dimension of SO(P,m−
P ). O(P,m − P ) (as well as SO(P,m − P )) is not compact since |Aij | is
not bounded by ATLA = L.

Pseudo-Unitary Group

Consider the Hermitian-Lorentzian metric in Cm. Let x,y ∈ Cm.
Then

(x,y) = x†Ly = x†

(
−IP 0

0 Im−P

)
y = −

P∑

j=1

x∗jyj +
m∑

j=P+1

x∗jyj .

We can now define the pseudo-unitary group

U(P,m− P ) := {A ∈ GL(m,C)

: A preserves the hermitian-Lorentzian metric }.

Let x,y ∈ Cm. Then

(Ax, Ay) = (Ax)†L(Ay) = x†A†LAy = x†Ly for all x,y ∈ Cm

where A†LA = L and the m×m matrix L is defined as

L :=

(
−IP 0

0 Im−P

)
.

With the condition detA = 1 we define

SU(P,m− P ) := {A ∈ U(P,m− P ) : detA = 1 } < U(P,m− P )

which is called the pseudo-special unitary group. U(P,m−P ) has the
dimension m2 and SU(P,m− P ) has the dimension m2 − 1. U(P,m− P )
(as well as SU(P,m − P )) is not compact since |Aij | is not bounded by
A†LA = L.
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Symplectic Group

Consider the symplectic metric or skew-symmetric bilinear form. The
elements are in a necessarily even dimensional vector space C2m or R2m,
so that

(x,y) = x†Jy

= x†

(
0 Im

−Im 0

)
y

=

m∑

j=1

x∗jym+j −
m∑

j=1

x∗m+jyj

where we define

J :=

(
0 Im

−Im 0

)
.

An example is the group of canonical transformations in linear Hamilton
systems. We can now define the symplectic group

Sp(2m) := {A ∈ GL(m) : A preserves the symplectic metric }.

Let x,y ∈ C2m. Then

(Ax, Ay) = (Ax)†J(Ay) = x†A†JAy = x†Jy

for all x,y ∈ C2m where A†JA = J . With the condition detA = 1 we
define

SSp(2m) := {A ∈ Sp(2m) : detA = 1 } < Sp(2m)

which is called the special symplectic group. Sp(2m,R) has dimen-
sion m(2m + 1) and Sp(2m,C) has dimension 2m(m2 + 1). The groups
SSp(2m,R) and SSp(2m,C) have dimensionm(2m+1) and 2m(2m+1)−1,
respectively. Sp(2m), as well as SSp(2m), is not compact since |Aij | is not
bounded by

A†JA = J .

To summarize, we represent the classical groups and their properties in
tabular form:
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group invariance condition dimension compact
GL(m,C) — detA 6= 0 2m2 no
GL(m,R) — detA 6= 0 m2 no
SL(m,C) — detA = 1 2(m2 − 1) no
SL(m,R) — detA = 1 m2 − 1 no

O(m) xTy ATA = I m(m− 1)/2 yes
SO(m) xTy ATA = I m(m− 1)/2 yes

detA = 1

U(m) x†y A†A = I m2 yes

SU(m) x†y A†A = I m2 − 1 yes
detA = 1

O(P,m − P ) xTLy ATLA = L m(m− 1)/2 no
SO(P,m− P ) xTLy ATLA = L m(m− 1)/2 no

detA = 1

U(P,m− P ) x†Ly A†LA = L m2 no
SU(P,m− P ) x†Ly A†LA = L m2 − 1 no

detA = 1

Sp(2m,C) x†Jy A†JA = J 2m(2m+ 1) no
Sp(2m,R) x†Jy A†JA = J m(2m+ 1) no

SSp(2m,C) x†Jy A†JA = J 2m(2m+ 1) − 1 no
detA = 1

SSp(2m,R) x†Jy A†JA = J m(2m+ 1) no
detA = 1

Parametrization of Classical Groups

Let us give examples of some well known classical group parametrizations.

Example. Recall that for the pseudo-orthogonal group O(P,m − P ), the
condition on the matrix A is

ATLA = L

with

L :=

(
−IP 0

0 Im−P

)
.

We now consider P = 1 and m = 2 which is the group O(1, 1). It follows
that

2∑

α=1

2∑

β=1

AαρLαβAβσ = Lρσ
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with ρ, σ = 1, 2 and

L =

(
−1 0
0 1

)
.

The conditions on A are then

−A2
11 +A2

21 = −1, −A2
12 +A2

22 = 1, −A11A12 +A21A22 = 0.

Note that dim O(1, 1) = 1 so that a solution is

A11 = coshφ, A21 = sinhφ, A12 = sinhφ, A22 = coshφ

with one independent parameter φ. The group
(
x′1
x′2

)
= A(φ)

(
x1

x2

)
=

(
coshφ sinhφ
sinhφ coshφ

)(
x1

x2

)

is commonly known as the Lorentz boost. Thus

x′1 = x1 coshφ+ x2 sinhφ, x′2 = x1 sinhφ+ x2 coshφ.

It follows that x′21 − x′22 = x2
1 − x2

2. In special relativity the parameter φ
is considered as tanhφ = v/c, where v is the relative velocity between the
moving frames, c is the speed of light and x1 ≡ x, x2 ≡ ct with v < c. ♣

Examples. We give the following classical group parametrizations:

(i) The one-dimensional (one parameter) unitary group,

U(1) := { eiθ : θ ∈ R }.

(ii) The one parameter special orthogonal group,

SO(2) :=

{(
cos θ sin θ
− sin θ cos θ

)
: θ ∈ R

}
.

(iii) The four parameter unitary group

U(2) :=

{(
eiα cos ν eiγ sin ν

−ei(β−γ) sin ν ei(β−α) cos ν

)
: α, β, γ, ν ∈ R

}
.

The determinant of these matrices is eiβ . For the three parameter special
unitary group SU(2) we can set β = 0 in the above parametrization for
U(2). U(2) is sometimes also written as

{(
ei(ψ+φ)/2 cos θ/2 iei(ψ−φ)/2 sin θ/2

iei(β+φ−ψ)/2 sin θ/2 ei(β−φ−ψ)/2 cos θ/2

)
: β, θ, φ, ψ ∈ R

}
.
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This parametrization is called the Euler parametrization.

(iv) Consider the group SO(3). Recall that a rotation through angle φ
about the z-axis is given by

Rz(φ) =




cosφ − sinφ 0
sinφ cosφ 0

0 0 1


 ∈ SO(3)

and rotations through angle φ about the x and y-axis are given by

Rx(φ) =




1 0 0
0 cosφ − sinφ
0 sinφ cosφ


 ∈ SO(3)

Ry(φ) =




cosφ 0 − sinφ
0 1 0

sinφ 0 cosφ


 ∈ SO(3) .

The Euler angles for A ∈ SO(3) are given by

A(φ, θ, ψ) = Rz(φ)Rx(θ)Rz(ψ) =

(
cosφ cosψ − sinφ sinψ cos θ − cos φ sinψ − sinφ cosψ cos θ sinφ sin θ
sinφ cosψ + cosφ sinψ cos θ − sinφ sinψ + cosφ cosψ cos θ − cos φ sin θ

sinψ sin θ cosψ sin θ cos θ

)

where φ, ψ, θ are known as the Euler angles. Every A ∈ SO(3) can be
represented in this form where the Euler angles run over the domain

0 ≤ φ < 2π, 0 ≤ θ ≤ π, 0 ≤ ψ < 2π .

The representation of A be Euler angles is unique except for the case θ =
0, π where only the sum φ + ψ is determined by A, but this exceptional
set is only one-dimensional and does not contribute to an integral over the
group manifold. ♣

Homomorphisms between some Classical Groups

Here we give a list of homomorphisms (which include some isomorphisms)
between some classical groups.

Dimension Homomorphism
1 U(1) ∼ SO(2)

3 SU(2) ∼ SO(3)
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SO(1, 2) ∼ SU(1, 1) ∼ Sp(2,R)

6 SO(1, 3) ∼ SL(2,C)

10 SO(2, 3) ∼ Sp(4,R)

15 SO(6) ∼ SU(4)
SO(2, 4) ∼ SU(2, 2)
SO(3, 3) ∼ SL(4,R)

Classical Groups in Physics

Let us give a list of some important classical groups in physics:

SO(2) — Axial rotation in R2.
SO(3) — Full rotation in R3.
SO(4) — Kepler problem; Quantum gravity.
SO(10) — Great unified theories (GUT’s).
SO(32) — Heterotic superstring theory.
U(1) — Gauge group in electromagnetism.
SU(2) — Isospin; gauge group in Yang-Mills theory.
SU(3) — Gauge group in quantum electrodynamics.
U(3) — Symmetry group for 3 dimensional harmonic oscillator.
O(1, 3) — Lorentz group in special relativity.
Sp(2n) — Hamiltonian canonical transformations.

4.2.1 Affine Groups

The affine groups are also examples of Lie transformation groups. Before
we can define affine groups we must consider the translation groups.

Translation Group

We denote by T (m) the translation group on the vector space Rm

τ(a) : x 7→ x′ = x + a.

Thus the dimension of T (m) is m and

T (m) = { τ(a) : a ∈ Rm }.

T (m) is an abelian group since

τ(a′)·τ(a) = (x+a)+a′ = x+(a+a′) = τ(a+a′) = τ(a′+a) = τ(a)·τ(a′).

The inverse is given by τ(a)−1 = τ(−a) and the identity is e = τ(0).
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Affine Groups

Definition 4.3 An affine group on Rm is a combination of (pseudo-)
orthogonal and translation transformations in the vector space Rm with a
Lorentzian or Euclidean metric.

We denote the general transformation by

g(A, a) : x 7→ x′ = Ax + a

where A ∈ O(P,m − P ) or A ∈ O(m). The transformation is closed

g(A′, a′) ·g(A, a) = A′(Ax+a)+a′ = (A′A)x+A′a+a′ = g(A′A,A′a+a′).

We thus find the composition law for the general transformation to be

g(A′, a′) · g(A, a) = g(A′A,A′a + a′).

This composition law is characteristic of the semidirect product
∧

, where

Affine group = O(P,m − P )
∧
T (m).

Furthermore the identity e is given by e = g(Im, 0) and we can deduce the
inverse g(A, a)−1 from the composition law. Let g(A, a)−1 = g(A′, a′) so
that

g(A′A,A′a + a′) = g(I, 0).

Therefore, A′A = I and A′a + a′ = 0, and we find A′ = A−1 and a′ =
−A−1a, i.e.,

g(A, a)−1 = g(A−1,−A−1a).

The dimension of an affine group is as follows

Dimension of an affine group = dim O(P,m − P ) + dim T (m)

=
1

2
m(m− 1) +m

=
1

2
m(m+ 1).

Euclidean Group E(m)

Them-dimensional Euclidean spaceEm is the space Rm with the Euclidean
metric. The affine group E(m) known as the Euclidean group is defined by

E(m) := { g(A, a) : A ∈ O(m), a ∈ Rm }
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so that
E(m) = O(m)

∧
T (m).

The transformation is

g(A, a) : x 7→ x′ = Ax + a.

The dimension is as follows: dim E(m) = m(m+ 1)/2. We say that E(m)
is the symmetry group of Em, i.e., Em is isotropic about 0, meaning all di-
rections are equivalent (O(m) < E(m)), and Em is homogeneous, meaning
all points are equivalent (T (m) < E(m)).

Example. We consider the affine group on E2, denoted by E(2). Its
dimension is three so that there are three independent parameters. We
have

x′1 = x1 cos θ − x2 sin θ
x′2 = x1 sin θ + x2 cos θ

with x′21 + x′22 = x2
1 + x2

2. Adding the translations we find that the trans-
formation group E(2) is given by

(
x′1
x′2

)
=

(
cos θ − sin θ
sin θ cos θ

)(
x1

x2

)
+

(
a1

a2

)
.

The three independent parameters of the group are θ, a1 and a2. ♣

Poincaré Group P (m)

The affine group P (m) is the symmetry group of the space Mm which is
the space Rm with the Minkowski metric. P (m) is defined by

P (m) := { g(A, a) : A ∈ O(P,m − P ), a ∈ Rm }

so that
P (m) := O(P,m − P )

∧
T (m).

The dimension is as follows: dim P (m) = m(m+1)/2. P (m) is also known
as the inhomogeneous Lorentz group. The transformation is

g(A, a) : x 7→ x′ = Ax + a.

Example. We consider the group P (2) = O(1, 1)
∧
T (2) on the space

M2 = {x1, x2}. Note that dim P (2) = 3. The transformation is

P (2) : xα → x′α =

2∑

β=1

Aαβxβ + aα
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where α = 1, 2 and Aαβ ∈ O(1, 1). Recall that for the one dimensional
pseudo-orthogonal group O(1, 1) we found the Lorentz boost

x′ = A(φ)x =

(
coshφ sinhφ
sinhφ coshφ

)
x.

Adding the translations we find the transformation group

(
x′1
x′2

)
=

(
x1 coshφ+ x2 sinhφ
x1 sinhφ+ x2 coshφ

)
+

(
a1

a2

)

with the three independent parameters φ, a1 and a2. ♣

Galilean Group - A Non-Affine Group

The group of Galilean transformations expresses the invariance of New-
tonian non-gravitational dynamics according to the Galilean principle of
relativity. The Lie transformation group is defined by

G(m) := { g(A, a, τ,u) : A ∈ O(m), u, a ∈ Rm, τ ∈ R }.

Here u is the velocity between frames. The transformation is

g(A, a, τ,u) :=

{
t 7→ t′ = t+ τ
x 7→ x′ = Ax + ut+ a.

The group is also known as the maximal symmetry of Newton’s second
law. Note that G(m) is not affine since we cannot write x′ = Ax + a with
A ∈ O(m) or A ∈ O(P,m−P ). The composition law for the Galilean group
is

g(A′, a′, τ ′,u′) · g(A, a, τ,u) = g(A′A,A′a + u′τ + a′, τ + τ ′, A′u + u′)

and the inverse

g(A, a, τ,u)−1 = g(A−1,−A−1a +A−1uτ,−τ,−A−1u).

4.2.2 Group Actions and Group Representations

We now consider the general group action in more detail.

Definition 4.4 The action or realization of a group G on a set M is
defined as a map ϕg

ϕg : x 7→ x′ = ϕg(x)

where x,x′ ∈ M and g ∈ G.
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With each g a function is identified and

ϕe(x) = x, ϕg2 ◦ ϕg1 = ϕg2g1

for all x ∈M , where g1, g2, e (identity element) ∈ G.

This action, as defined, is also known as the left action, whereas, for the
right action we have ϕg2 ◦ ϕg1 = ϕg1g2 . We conclude that

GM := {ϕg : g ∈ G }

forms a group with identity ϕe and inverse ϕg−1 = (ϕg)
−1. Thus the

mapping ϕg is 1-1. In fact, G is the transformation group of G on M .

Definition 4.5 The action is effective if the only element of G leaving all
M fixed is the group identity element e, i.e., ϕg(x) = x, for all x ∈ M and
so g = e.

Note that for an effective action, GM is isomorphic to G; GM ∼= G.

Example. Consider the group SO(3) on R3 where

ϕA(x) ≡ Ax

with A ∈ SO(3). For an effective action we have

Ax = x for all x ∈ R3

and so A = I . Hence SO(3)R3 ∼= SO(3). ♣

Definition 4.6 The action is free if ϕg(x) = x for any x ∈M .

Example. The left translation

ϕg(x) = gx = Lgx

or self action, is free. ♣

Definition 4.7 An element of the manifold M is a fixed point if

ϕg(x) = x for all g ∈ G.

If the action is free, then there are no fixed points.

Example. For the group SO(3) on R3 the only fixed point is the zero
vector 0 and for SO(3) on M = S2 there are no fixed points. ♣



50 4. Lie Transformation Groups

Definition 4.8 An action is transitive if any y ∈M can be reached from
any x ∈M .

Definition 4.9 An action is simply transitive if g ∈ G is unique, oth-
erwise the action is multiply transitive.

Example. The group E(2) on R2 is transitive, for we have

x′ = ϕa(x) = Ax + a

where A ∈ O(2) and a ∈ R2. SO(3) on R3 is not transitive while SO(3)
on S2 is multiply transitive. ♣

Definition 4.10 The orbit of the point x ∈ M under the group G is the
set G(x) of all points y ∈ M that can be reached by applying some group
operation g ∈ G to the point x.

If an action is transitive we find that

G(x) = M for any x ∈M.

Example. Consider the Lie group SO(2) on the manifold R2. With the
transformation

x′1(x1, x2) = x1 cos θ − x2 sin θ

x′2(x1, x2) = x1 sin θ + x2 cos θ

we find that x′21 + x′22 = x2
1 + x2

2. Thus x2
1 + x2

2 is invariant. ♣

Example. SO(1, 1) on R2. With the transformation

x′1(x1, x2) = x1 cosh θ + x2 sinh θ

x′2(x1, x2) = x1 sinh θ + x2 cosh θ

we find that x′21 − x′22 = x2
1 − x2

2. Thus x2
1 − x2

2 is invariant. ♣

Definition 4.11 A group representation of G is a realization of G as a
group of linear transformations on a vector space, i.e., a representation of
G is a linear (left) action of G on a linear space.

Consider the homomorphism

A : G→ GL(V )
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where A : g → A(g) and A(g)x = y is linear with

A(e) = I

A(g2)A(g1) =A(g2g1) .

In view of our notation for realizations we now set M ≡ V , ϕg ≡ A(g),
where

V : representation space which may be infinite,

A(g) : (matrix) representation of g.

By

D = {A(g) for all g ∈ G }

we denote the representation of G, where D < GL(n).

Definition 4.12 The representation is known to be faithful if D ∼= G,
i.e., the realization is faithful or the action is effective.

Definition 4.13 The representation is unitary if A(g) is unitary for all
g ∈ G.

Definition 4.14 The dimension (degree) of the representation is the
dimension of the vector space V .

Example. The classical groups as matrix groups on Rm or Cm are all
faithful representations of dimension m. ♣

Example. SO(3) on R3 is a three dimensional faithful representation
of SO(3), but SO(3) on S2 is only a realization since S2 is not a vector
space. ♣

Example. A unitary representation of SO(2) is (α ∈ R)

A : R → A(R) = exp(iα) on C1.

This representation is faithful. ♣

Definition 4.15 Two representations D and D′ of G are equivalent if
there exists a fixed linear transformation P : D → D′, such that

A′(g) = P−1A(g)P for all g ∈ G.
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For a given linear vector space V a basis transformation e′ = Pe induces a
transformation

P : V → V ′

:A(g) → A′(g) = P−1A(g)P.

Thus {A′(g)} is equivalent to {A(g)}.

Let V1 be a linear subspace of V .

Definition 4.16 If V1 is invariant under G, i.e.,

A(g)x ∈ V1 for all x ∈ V1 and all g ∈ G

then V1 is called invariant.

Definition 4.17 A representation of G is irreducible if there are no non-
trivial subspaces.

Trivial invariant subspaces of V are {0} and V , so that an irreducible
representation means that the size of the representation space cannot be
decreased.

Suppose V1 is an m-dimensional invariant subspace in an n-dimensional V .
Since A(g)x ∈ V1 for all x ∈ V1 and all g ∈ G, it follows that A(g) is
equivalent to

A(g) =

(
A1(g) Q

0 S

)

where A1(g) is an m×m matrix and A(g) an n×n matrix. By choosing a
basis

{ e1, . . . , em, em+1, . . . , en }
of V such that { e1, . . . , em } is a basis of V1:




A1(g)
... Q

. . .
... . . . . . .
...

0
... S







x1
...
xm
0
...
0




=




y1
...
ym
0
...
0



.

Thus {A1(g)} is an induced lower dimensional representation of G on V1

called D1. D1 may be reducible or not.
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Definition 4.18 A representation of G on V is completely reducible if

V = V1 ⊕ V2 ⊕ · · · ⊕ Vm

where each vector subspace Vi has an irreducible induced representation Di,
(i.e., Vi contains no invariant subspaces), so that

D = D1 +D2 + · · · +Dm.

A completely irreducible representation can be given by

A(g) = diag (A1(g), A2(g), . . . , Am(g)) = A1(g) ⊕A2(g) ⊕ · · · ⊕Am(g).

Example. The compact Lie group SO(3) on R3 is irreducible since the
only invariant linear subspaces are {0} and R3. ♣

Theorem 4.1 Every unitary representation is completely reducible.

The importance of complete reducibility in quantum mechanics is that the
label i of each irreducible subspace Vi, and the induced representations Di,
is a quantum number.

4.3 Computer Algebra Applications

In the program we implement the Lie groups SO(2) and and SO(1, 1) and
show that x2

1 + x2
2 and x2

1 − x2
2 are invariant, respectively.

// transformation.cpp

#include <iostream>

#include "matrix.h"

#include "symbolicc++.h"

using namespace std;

int main(void)

{

// group SO(1,1)

Matrix<Symbolic> A(2,2);

Symbolic x("x"), x1("x1"), x2("x2"), alpha("alpha"),

beta("beta"), gamma("gamma"), nu("nu");

Symbolic result;

A[0][0] = cosh(x); A[0][1] = sinh(x);
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A[1][0] = sinh(x); A[0][1] = cosh(x);

Matrix<Symbolic> v(2,1);

v[0][0] = x1; v[1][0] = x2;

Matrix<Symbolic> w(2,1);

w = A*v;

result = (w[0][0]^2) + (w[1][0]^2);

result = result.subst(cosh(x)*cosh(x),1+sinh(x)*sinh(x));

cout << result << endl;

// group SO(2)

Matrix<Symbolic> B(2,2);

Symbolic i = sqrt(Number<int>(-1));

B[0][0] = cos(x); B[0][1] = -sin(x);

B[1][0] = sin(x); B[0][1] = cos(x);

Matrix<Symbolic> r(2,1);

r[0][0] = x1; r[1][0] = x2;

Matrix<Symbolic> s(2,1);

s = B*r;

result = (s[0][0]^2) + (s[1][0]^2);

result = result.subst(cos(x)*cos(x),1-sin(x)*sin(x));

cout << result << endl;

return 0;

}

4.4 Exercises

(1) Define

M : R3 → V := { a · σ : a ∈ R3 } ⊂ { 2× 2 complex matrices }
a→M(a) = a · σ

where
a · σ := a1σ1 + a2σ2 + a3σ3 .

Show that this is a linear bijection between R3 and the vector space V .
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(2) Let

O(m,n) := {A ∈Mm+n(R) : B(Ax, Ay) = B(x,y) for all x,y ∈ Rm+n }

where B is the bilinear form

B(x,y) =
m∑

i=1

xiyi −
m+n∑

j=m+1

xjyj .

(i) Show that O(m,n) is a group.
(ii) Show that O(m,n) is a smooth manifold.
(iii) Use (i) and (ii) to show that O(m,n) is a Lie group.
(iv) Find the tangent space to O(m,n) at the identity I .

(3) Consider the Lie group SL(n,R) and M = Rn. Let x be a normalized
vector in M , i.e. ‖x‖ = 1. Let A ∈ SL(n,R). Is the vector Ax normalized
in general?

(4) Let A be an n×n matrix over C. Let x be a nonzero vector in Cn such
that (eigenvalue equation)

Ax = λx .

Show that
eAx = eλx .
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Chapter 5

Infinitesimal
Transformations

5.1 Introduction

We consider a one-parameter Lie transformation group in the form (Bluman
and Kumei [7], Gilmore [51], Olver [82])

x′ = ϕ(x, ε) (1)

where x′ = (x′1, . . . , x
′
m) and x = (x1, . . . , xm) lie in an open domain D ⊂

Rm. The group composition is denoted by φ(ε, η), where ε and η are the
group parameters in an open interval S ⊂ R including 0. If x′ = ϕ(x, ε)
and x′′ = ϕ(x′, η), then

x′′ = ϕ(x, φ(ε, η))

where x′ and x′′ lie in D. ϕ is analytic in its domain of definition. We
show how any such group of transformations can be reparametrized such
that the group composition is given by

φ(ε, η) = ε+ η

the identity of the transformation group by ε = 0 and the inverse by −ε.
This will be known as the standard form of a one-parameter Lie transfor-
mation group.

Example. Consider the scaling group in the plane R2, given by

x′1 = αx1, x′2 = α2x2

57
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where 0 < α <∞. The group composition is φ(α, β) = αβ and the identity
element α = 1. This group of transformations can be reparametrized by
ε = α− 1 so that the identity element is ε = 0

x′1 = (1 + ε)x1, x′2 = (1 + ε)2x2

where −1 < ε <∞. The group composition is found by considering

x′′1 = (1 + η)x′1 = (1 + η)(1 + ε)x1 = (1 + ε+ η + εη)x1

so that φ(ε, η) = ε+ η+ εη. The inverse is obtained by finding η such that

(1 + ε+ η + εη)x1 = x1.

The inverse is thus given by

− ε

1 + ε
. ♣

In the example above we note that, although the identity is given by ε =
0, due to the re-parametrization the group composition and inverse are
still not in the standard form. The first theorem of Lie provides us with
an algorithmic method to re-parametrize a one-parameter transformation
group such that it is of the standard form. Before we can state Lie’s first
theorem we have to define an infinitesimal transformation. Expanding (1)
about ε = 0 we obtain, in a neighbourhood of ε = 0

x′ = x + ε
∂ϕ

∂ε
(x, ε)

∣∣∣∣
ε=0

+
ε2

2

∂2ϕ

∂ε2
(x, ε)

∣∣∣∣
ε=0

+O(ε3). (2)

We define

ξ(x) :=
∂ϕ

∂ε
(x, ε)

∣∣∣∣
ε=0

. (3)

Definition 5.1 The transformation

x′ = x + εξ(x) (4)

is called the infinitesimal transformation of the Lie transformation group
(1) and the components of ξ are called the infinitesimals of (1).

Theorem 5.1 (Lie’s first fundamental theorem.) There exists a parametriza-
tion τ(ε) such that the Lie group of transformation (1) is equivalent to the
solution of the initial value problem for the autonomous system of first order
ordinary differential equations

dx′

dτ
= ξ(x′) (5)
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with x′ = x when τ = 0. In particular

τ(ε) =

∫ ε

0

Γ(ε′)dε′ (6)

where

Γ(ε) =
∂φ(a, b)

∂b

∣∣∣∣
(a,b)=(ε−1,ε)

(7)

and Γ(0) = 1. Here ε−1 denotes the inverse parameter. In terms of ε the
one-parameter group is given by the solution of the initial value problem

dx′

dε
= Γ(ε)ξ(x′). (8)

For the proof we refer to Bluman and Kumei [7].

Example. We consider the scaling group from the previous example

x′1 = (1 + ε)x1, x′2 = (1 + ε)2x2

where −1 < ε < ∞. The law of composition is φ(a, b) = a+ b+ ab (where
a and b denote the group parameters) and the inverse is given by

−ε
1 + ε

.

Thus

Γ(ε) =
∂φ(a, b)

∂b

∣∣∣∣
(a,b)=(ε−1,ε)

= (1 + a)|(ε−1,ε) = 1 +

( −ε
1 + ε

)
=

1

1 + ε

and

ξ(x) =
∂ϕ

∂ε
(x, ε)

∣∣∣∣
ε=0

= (x1, 2(1 + ε)x2)|ε=0 = (x1, 2x2)

where
ϕ(x, ε) = ((1 + ε)x1, (1 + ε)2x2)

and ξ = (ξ1, ξ2), x = (x1, x2). From

dx′

dε
= Γ(ε)ξ(x′)

with x′(0) = x, it follows that

dx′1
dε

=

(
1

1 + ε

)
x′1,

dx′2
dε

=

(
1

1 + ε

)
2x′2.
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The solution of this initial value problem will result in the given scaling
group. The parametrization is now given by

τ(ε) =

∫ ε

0

Γ(ε′)dε′ =

∫ ε

0

(
1

1 + ε′

)
dε′

so that τ(ε) = ln(1 + ε) or ε = eτ − 1. The parametrized group is then

x′1 = eτx1, x′2 = e2τx2

where −∞ < τ < ∞. The law of composition for this parametrized group
is φ(a, b) = a+ b. ♣

Example. We consider the group of translations in the plane

x′1 = x1 + ε, x′2 = x2

with law of composition φ(a, b) = a+ b and inverse ε−1 = −ε. Thus

Γ(ε) =
∂φ(a, b)

∂b

∣∣∣∣
(a,b)=(ε−1,ε)

= 1

and the parametrization is

τ(ε) =

∫ ε

0

Γ(ε′)dε′ = ε .

We now find the infinitesimals

ξ(x′) =
∂ϕ(x, ε)

∂ε

∣∣∣∣
ε=0

where ξ = (ξ1, ξ2) and x = (x1, x2). We have

ϕ(x, ε) = (x1 + ε, x2)

so that
∂ϕ

∂ε

∣∣∣∣
ε=0

= (1, 0).

The system of differential equations

dx′

dε
= Γ(ε)ξ(x′)

is thus given by
dx′1
dε

= 1,
dx′2
dε

= 0.

With the initial conditions x′(0) = x the given translation group can be
found by solving this autonomous system of differential equations. ♣
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5.2 Infinitesimal Generators

We now introduce a representation of a local one-parameter Lie group of
transformations by way of a group generator. This will lead us to the
discussion of Lie algebras.

Definition 5.2 The infinitesimal generators also known as the Lie
symmetry vector field of the one-parameter Lie group of transforma-
tions (1) is defined by the linear differential operator

Z ≡ Z(x) := ξ(x) · ∇ ≡
m∑

j=1

ξj(x)
∂

∂xj
(9)

where
ξ := (ξ1, . . . , ξm)

and ∇ is the gradient operator

∇ :=

(
∂

∂x1
, · · · , ∂

∂xm

)T
.

Here T denotes transpose. For a differentiable function f we have

Zf(x) = ξ(x) · ∇f(x) =

m∑

j=1

ξj(x)
∂f(x)

∂xj
.

In particular, for f(x) = xj we find

Zxj = ξj(x).

We are now interested in the relation between the Lie symmetry vector and
a one-parameter Lie group of transformations.

The following theorem shows that use of the Lie symmetry vector field leads
to an algorithm to find the explicit solution of the initial value problem
stated in Lie’s first theorem.

Theorem 5.2 The one-parameter Lie group of transformations (1) can be
written as

x′(x, ε) = eεZx = x + εZx +
ε2

2!
Z2x +O(ε3)x

=

(
1 + εZ +

ε2

2!
Z2 +O(ε3)

)
x

=

∞∑

k=0

εk

k!
Zkx
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where the linear operator Z is defined by (9) and

Zkf(x) = Z(Zk−1f(x)), k = 1, 2, . . . .

Proof. We consider

Z(x) =

m∑

j=1

ξj(x)
∂

∂xj
, Z(x′) =

m∑

j=1

ξj(x
′)

∂

∂x′j
.

The function ϕ in the one-parameter Lie group of transformations

x′ = ϕ(x, ε)

can be expanded about ε = 0 as

x′ =

∞∑

k=0

εk

k!

∂kϕ(x, ε)

∂εk

∣∣∣∣
ε=0

=

∞∑

k=0

εk

k!

dkx′

dεk

∣∣∣∣
ε=0

.

Note that for any differentiable function f we have using the chain rule

df(x′)

dε
=

m∑

j=1

∂f(x′)

∂x′j

dx′j
dε

=

m∑

j=1

ξj(x
′)
∂f(x′)

∂x′j
= Z(x′)f(x′).

We now consider the case f(x′) = x′, so that

dx′

dε
= Z(x′)x′

and
d2x′

dε2
=

d

dε
Z(x′)x′ = Z(x′)Z(x′)x′ = Z2(x′)x′.

In general we have

dkx′

dεk
= Z(x′)Zk−1(x′)x′ = Zk(x′)x′

where k = 1, 2, . . .. Consequently

dkx′

dεk

∣∣∣∣
ε=0

= Zk(ϕ(x, ε))ϕ(x, ε)|ε=0 = Zk(x)x

so that

x′ =

∞∑

k=0

εk

k!
Zk(x)x = eεZx. (10)
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This series is known as a Lie series. ♠

From the proof of theorem 5.2 we have the following

Corollary 5.1 Let f be an analytic function. For a Lie group of transfor-
mations (1) with infinitesimal generator (9) it follows that

f(x′) = f(eεZx) = eεZf(x).

Proof. From the proof of Theorem 5.2 it follows that

df(x′)

dε

∣∣∣∣
ε=0

= Zf(x).

We now consider the Taylor expansion of the function

f(x′) = f(eεZx) = f(x) + ε
df(x′)

dε

∣∣∣∣
ε=0

+O(ε2)

= f(x) + εZf(x) +O(ε2)

=

∞∑

k=0

εk

k!
Zkf(x) .

Thus
f(x′) = eεZf(x) . ♠

Summary. There are two ways to find explicitly a one-parameter Lie group
of transformations with identity ε = 0, group composition φ(ε, δ) = ε + δ,
and inverse −ε from its infinitesimal transformation

x′ = x + εξ(x)

namely:

i) Solve the initial value problem

dx′

dε
= ξ(x′)

with x′ = x at ε = 0.

ii) Express the group in terms of the Lie series

x′ =

∞∑

k=0

εk

k!
Zkx
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which is found from the infinitesimal generator

Z =

m∑

j=1

ξj(x)
∂

∂xj

corresponding to the infinitesimal transformation.

It thus follows that the Lie series in (ii) provides the solution of the au-
tonomous system of differential equations in (i).

Example. Consider the pseudo-orthogonal group O(1, 1), which is a one-
parameter group given by

A(ε) =

(
cosh ε sinh ε
sinh ε cosh ε

)
.

The transformation group is given by

x′ = A(ε)x

so that

x′1 = x1 cosh ε+ x2 sinh ε, x′2 = x1 sinh ε+ x2 cosh ε.

We thus have

ϕ(x, ε) = (x1 cosh ε+ x2 sinh ε, x1 sinh ε+ x2 cosh ε)

so that the infinitesimals are

ξ(x) =
∂ϕ

∂ε

∣∣∣∣
ε=0

= (x2, x1).

The infinitesimal generator is

Z = x2
∂

∂x1
+ x1

∂

∂x2

with corresponding Lie series

(x′1, x
′
2) = (eεZx1, e

εZx2).

For the first component we have

x′1 = eεZx1 = x1+εZx1+
ε2

2!
Z2x1+O(ε3) = x1+εZx1+

ε2

2!
Z(Zx1)+O(ε3)
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where Zx1 = x2, Z(Zx1) = x1, Z(Z(Zx1)) = Zx1 = x2 etc. It follows that

x′1 = x1 + εx2 +
ε2

2!
x1 +

ε3

3!
x2 +O(ε4) = x1 cosh ε+ x2 sinh ε.

Analogously
x′2 = eεZx2 = x1 sinh ε+ x2 cosh ε. ♣

Exanple. Consider the nonlinear differential equation

dx

dε
= x2, x(ε = 0) = x0 > 0.

We find the solution of the initial value problem using the Lie series

exp(εZ)x

where the infinitesimal generator is given by

Z := x2 d

dx
.

We have

exp(εZ)x =

(
1 + εZ +

ε2Z2

2!
+
ε3Z3

3!
+ · · ·

)
x.

Thus

exp(εZ)x = x+ εx2 + ε2x3 + · · · = x(1 + εx+ ε2x2 + · · ·) .

We can write

exp(εZ)x = x

∞∑

j=0

(εx)j .

Direct integration of the nonlinear differential equation yields

x(ε) =
x0

1 − εx0
= x0

(
1

1 − εx0

)
.

For εx0 < 1 we find the series expansion

x(ε) = x0

(
1 + εx0 + ε2x2

0 + · · ·
)
.

Thus the Lie series gives us the solution of the initial value problem

exp(εZ)x|x=x0
= x0

∞∑

j=0

(εx0)
j .

The solution has a singularity at 1 = εx0. ♣
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5.3 Multi-Parameter Lie Groups
of Transformations

We now generalise the first fundamental theorem of Lie by considering an
r-parameter Lie group of transformations, which we denote by

x′ = ϕ(x, ε). (11)

Here x′ = (x′1, . . . , x
′
m), x = (x1, . . . , xm), ϕ = (ϕ1, . . . , ϕm), and the r-

parameters are denoted by ε = (ε1, . . . , εr). The law of composition of
parameters is given by

φ(ε, δ) = (φ1(ε, δ), φ2(ε, δ), . . . , φr(ε, δ))

where δ = (δ1, . . . , δr). φ(ε, δ) satisfies the group axioms with ε = 0
corresponding to the identity

ε1 = ε2 = · · · = εr = 0.

φ(ε, δ) is assumed to be analytic in its domain of definition.

The infinitesimal matrix Ξ(x) is the r ×m matrix with entries

ξαj(x) :=
∂ϕj(x, ε)

∂εα

∣∣∣∣
ε=0

(12)

where α = 1, . . . , r and j = 1, . . . ,m.

Theorem 5.3 (Lie’s first Theorem for an r-parameter group.) Let Θ(ε)
be the r × r matrix with entries

Θαβ(ε) :=
∂φβ(ε, δ)

∂δα

∣∣∣∣
δ=0

, (13)

and let
Ψ(ε) = Θ−1(ε) (14)

be the inverse of the matrix Θ(ε). The Lie transformations group (11) is
equivalent to the solution of the initial value problem for the system of m×r
first order partial differential equations (in some neighbourhood of ε = 0):




∂x′1
∂ε1

∂x′2
∂ε1

· · · ∂x′m
∂ε1

∂x′1
∂ε2

∂x′2
∂ε2

· · · ∂x′m
∂ε2

...
...

. . .
...

∂x′1
∂εr

∂x′2
∂εr

· · · ∂x′m
∂εr




= Ψ(ε)Ξ(x′), (15)
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with x′ = x at ε = 0.

Definition 5.3 The infinitesimal generator Zα, corresponding to the pa-
rameter εα of the r-parameter Lie group of transformations (11) is

Zα :=
m∑

j=1

ξαj(x)
∂

∂xj
, α = 1, 2, . . . , r

so that there are r infinitesimal generators denoted by Z = (Z1, . . . , Zr).

The r-parameter Lie group of transformations can be written as

x′(ε) =
r∏

j=1

exp(εjZj)x.

We now discuss the arguments of Theorem (5.3) in terms of a concrete
example.

Example. Let us consider the Poincaré group P (2). Recall that

P (2) = O(1, 1)
∧
T (2)

where dimP (2) = 3 so that we have a three-parameter group. The trans-
formation group is given by

(
x′1
x′2

)
=

(
cosh ε1 sinh ε1
sinh ε1 cosh ε1

)(
x1

x2

)
+

(
ε2
ε3

)

and for ε = (ε1, ε2, ε3) = (0, 0, 0) we find x′1(0) = x1, x
′
2(0) = x2. To find

the law of composition φ(ε, δ) we consider

x′′1 = x′1 cosh δ1 + x′2 sinh δ1 + δ2, x′′2 = x′1 sinh δ1 + x′2 cosh δ1 + δ3.

It follows that

x′′1 = x1 coshφ1(ε, δ) + x2 sinhφ1(ε, δ) + φ2(ε, δ)

so that

φ1(ε, δ) = ε1 + δ1

φ2(ε, δ) = ε2 cosh δ1 + ε3 sinh δ1 + δ2.

Also
x′′2 = x1 sinhφ1(ε, δ) + x2 coshφ1(ε, δ) + φ3(ε, δ)
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so that
φ3(ε, δ) = ε2 sinh δ1 + ε3 cosh δ1 + δ3.

We now find the system of differential equations that represents the given
transformation group. The entries of the infinitesimal matrix Ξ(x) are given
by

ξαj(x) =
∂x′j
∂εα

∣∣∣∣
ε=0

where α = 1, 2, 3 and j = 1, 2. We find

ξ11(x) =
∂x′1
∂ε1

∣∣∣∣
ε=0

= x2, ξ12(x) =
∂x′2
∂ε1

∣∣∣∣
ε=0

= x1

ξ21(x) =
∂x′1
∂ε2

∣∣∣∣
ε=0

= 1, ξ22(x) =
∂x′2
∂ε2

∣∣∣∣
ε=0

= 0

ξ31(x) =
∂x′1
∂ε3

∣∣∣∣
ε=0

= 0, ξ32(x) =
∂x′2
∂ε3

∣∣∣∣
ε=0

= 1

so that

Ξ(x) =



x2 x1

1 0
0 1


 .

To determine Ψ(ε) we first calculate Θ(ε):

Θ11 =
∂φ1

∂δ1

∣∣∣∣
δ=0

= 1, Θ12 =
∂φ2

∂δ1

∣∣∣∣
δ=0

= −ε3, Θ13 =
∂φ3

∂δ1

∣∣∣∣
δ=0

= −ε2,

Θ21 =
∂φ1

∂δ2

∣∣∣∣
δ=0

= 0, Θ22 =
∂φ2

∂δ2

∣∣∣∣
δ=0

= 1, Θ23 =
∂φ3

∂δ2

∣∣∣∣
δ=0

= 0,

Θ31 =
∂φ1

∂δ3

∣∣∣∣
δ=0

= 0, Θ32 =
∂φ2

∂δ3

∣∣∣∣
δ=0

= 0, Θ33 =
∂φ3

∂δ3

∣∣∣∣
δ=0

= 1

so that

Θ(ε) =




1 −ε3 −ε2
0 1 0
0 0 1




and

Φ(ε) = Θ−1(ε) =




1 ε3 ε2
0 1 0
0 0 1


 .

Then we find that

Ψ(ε)Ξ(x′) =




1 ε3 ε2
0 1 0
0 0 1





x′2 x′1
1 0
0 1


 .
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From Lie’s Theorem it follows that



∂x′1
∂ε1

∂x′2
∂ε1

∂x′1
∂ε2

∂x′2
∂ε2

∂x′1
∂ε3

∂x′2
∂ε3




=



x′2 + ε3 x′1 + ε2

1 0
0 1




so that the initial value problem is

∂x′1
∂ε1

= x′2 + ε3,
∂x′1
∂ε2

= 1,
∂x′1
∂ε3

= 0

∂x′2
∂ε1

= x′1 + ε2,
∂x′2
∂ε2

= 0,
∂x′2
∂ε3

= 1

with initial value x′1(0) = x1 and x′2(0) = x2. We now show that the
solution of this initial value problem gives the transformation group P (2).
It follows from the second and third of each set of equations that

x′1(ε1, ε2) = ε2 + f1(ε1), x′2(ε1, ε3) = ε3 + f2(ε1)

where f1(ε1) and f2(ε1) are arbitrary smooth functions. Inserting these
results into the first of each set of equations we have

df1
dε1

= f2(ε1),
df2
dε1

= f1(ε1)

with solution

f2(ε1) = a1 cosh ε1 + a2 sinh ε1, f1(ε1) = a1 sinh ε1 + a2 cosh ε1.

From the initial values we have that

x′1(0) = f1(0) = x1, x′2(0) = f2(0) = x2

so that
f1(0) = a2 = x1, f2(0) = a1 = x2.

It follows that

f1(ε1) = x2 sinh ε1 + x1 cosh ε1, f2(ε1) = x2 cosh ε1 + x1 sinh ε1

and

x′1 = x2 sinh ε1 + x1 cosh ε1 + ε2, x′2 = x2 cosh ε1 + x1 sinh ε1 + ε3.
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Let us now find the infinitesimal generators Z = (Z1, Z2, Z3) for P (2) to
show that the representation

x′(ε1, ε2, ε3) = eε1Z1eε2Z2eε3Z3x

also leads to the group P (2). The infinitesimal generators are

Z1 = ξ11(x)
∂

∂x1
+ ξ12(x)

∂

∂x2
= x2

∂

∂x1
+ x1

∂

∂x2

Z2 = ξ21(x)
∂

∂x1
+ ξ22(x)

∂

∂x2
=

∂

∂x1

Z3 = ξ31(x)
∂

∂x1
+ ξ32(x)

∂

∂x2
=

∂

∂x2
.

We find

eε1Z1eε2Z2eε3Z3

(
x1

x2

)
= eε1Z1eε2Z2

(
eε3Z3x1

eε3Z3x2

)

= eε1Z1eε2Z2

(
x1

x2 + ε3

)

= eε1Z1

(
eε2Z2x1

eε2Z2(x2 + ε3)

)

= eε1Z1

(
x1 + ε2
x2 + ε3

)

=

(
eε1Z1(x1 + ε2)
eε1Z1(x2 + ε3)

)

=

(
x1 cosh ε1 + x2 sinh ε1 + ε2
x1 sinh ε1 + x2 cosh ε1 + ε3

)
. ♣

Each parameter of an r-parameter Lie group of transformations leads to
an infinitesimal generator. These infinitesimal generators belong to an r-
dimensional linear vector space on which there is an additional structure,
called the commutator. This special vector space is called a Lie algebra
and will be discussed in the next chapter. For our purposes the study of a
local r-parameter Lie group of transformations is equivalent to the study
of its infinitesimal generators and the structure of its corresponding Lie
algebra.

5.4 Computer Algebra Applications

In Lie1.cpp we calculate the Lie series

exp(εZ)x, Z := (x − x2)
d

dx
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up to order four, i.e.

exp(εZ) ≈ 1 + εZ +
ε2Z2

2!
+
ε3Z3

3!
+
ε4Z4

4!
.

In Lie2.cpp we calculate the Lie series

exp(εZ)

(
x1

x2

)
, Z := (x1 − x1x2)

∂

∂x1
+ (−x2 + x1x2)

∂

∂x2

// lie1.cpp

#include <iostream>

#include "symbolicc++.h"

using namespace std;

Symbolic Z(const Symbolic &V,const Symbolic &x,const Symbolic &P)

{ return V*df(P,x); }

int main(void)

{

int n = 4;

Symbolic Q("Q"), V("V"), x("x"), ep("ep");

Q = Q[x]; V = V[x];

Symbolic SD = ep*Z(V,x,Q);

Symbolic RES = Q + ep*Z(V,x,Q);

for(int j=1;j<=n;j++)

{

SD = ep*Z(V,x,SD)/(j+1);

RES = RES + SD;

}

cout << "RES = " << RES << endl << endl;

Symbolic F = RES[V==x-(x^2)];

cout << "F = " << F[Q==x] << endl;

return 0;

}

// lie2.cpp

#include <iostream>
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#include "symbolicc++.h"

using namespace std;

Symbolic Z(const Symbolic &V1,const Symbolic &V2,

const Symbolic &x1,const Symbolic &x2,

const Symbolic &P)

{ return V1*df(P,x1) + V2*df(P,x2); }

int main(void)

{

int n = 4;

Symbolic Q1("Q1"), Q2("Q2"), V1("V1"), V2("V2");

Symbolic x1("x1"), x2("x2"), ep("ep");

Q1 = Q1[x1,x2];

Q2 = Q2[x1,x2];

V1 = V1[x1,x2];

V2 = V2[x1,x2];

Symbolic SD1= ep*Z(V1,V2,x1,x2,Q1);

Symbolic SD2= ep*Z(V1,V2,x1,x2,Q2);

Symbolic RES1 = Q1 + ep*Z(V1,V2,x1,x2,Q2);

Symbolic RES2 = Q1 + ep*Z(V1,V2,x1,x2,Q2);

for(int j=1;j<=n;j++)

{

SD1 = ep*Z(V1,V2,x1,x2,SD1)/(j+1);

SD2 = ep*Z(V1,V2,x1,x2,SD2)/(j+1);

RES1 = RES1 + SD1;

RES2 = RES2 + SD2;

}

cout << "RES1 = " << RES1 << endl << endl;

cout << "RES2 = " << RES2 << endl << endl;

Symbolic F1 = RES1[V1==x1-x1*x2,V2==-x2+x1*x2];

Symbolic F2 = RES2[V1==x1-x1*x2,V2==-x2+x1*x2];

cout << "F1 = " << F1[Q1==x1,Q2==x2] << endl << endl;

cout << "F2 = " << F2[Q1==x1,Q2==x2] << endl;

return 0;

}
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5.5 Exercises

(1) Let α ∈ R and f : R → R be an analytic function. Let D := d/dx.
Calculate

eαDx, eαDf(x) .

(2) Consider the vector field

R = −x1
∂

∂x2
+ x2

∂

∂x1
.

Let ε ∈ R. Calculate

eεR
(
x1

x2

)
≡
(
eεRx1

eεRx2

)
.

Use this result to find a solution of the initial value problem of the linear
system of differential equation

dx1

dε
= x2

dx2

dε
=−x1

with x1(ε = 0) = x1(0), x2(ε = 0) = x2(0).

(3) Consider the vector fields

d

dx
, x

d

dx
, x2 d

dx
.

Calculate the commutators and show that the right-hand sides can be writ-
ten as linear combination of these vector fields.

(4) Consider the nonlinear ordinary differential equation

dx

dt
= cos2(x)

with the initial condition x(t = 0) = x0 = 0.
(i) Find the solution of the initial value problem using the exponential map
(Lie series)

x(t) = exp(tV )x|x→x0

where V is the corresponding vector field

V = cos2(x)
d

dx
.
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(ii) Find the solution of the initial value problem by direct integration of
the differential equation. Compare the results from (i) and (ii).
(iii) Find x(t→ ∞) and compare with the solution of the equation

cos2(x∗) = 0

i.e. we solve for the fixed points of the differential equation. Are the fixed
points stable?



Chapter 6

Lie Algebras

6.1 Definition and Examples

In this section we give the definition of a Lie algebra (Jacobson [63], Miller
[79], Gilmore [51], Olver [82], Sattinger and Weaver [99]) and consider a
few examples.

Definition 6.1 A Lie algebra L is a vector space over a field F on which
a product [ , ] called the Lie bracket or commutator, is defined with the
properties

A1. Closure: For X, Y ∈ L it follows that [X,Y ] ∈ L

A2. Bilinearity:

[X,αY + βZ] = α[X,Y ] + β[X,Z]

for α, β ∈ F and X, Y, Z ∈ L

A3. Antisymmetry: [X,Y ] = −[Y,X ]

A4. Derivation property known as the Jacobi identity:

[X, [Y, Z]] + [Y, [Z,X ]] + [Z, [X,Y ]] = 0 .

L is a real Lie algebra if F is the field of real numbers R and a complex
Lie algebra if F is the field of complex numbers C.

From A3 it follows that [X,X ] = 0.

We now give a few examples of Lie algebras.

75
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Example. Let L be the real vector space R3. Consider the definition

[x,y] := x× y

where x = (x1, x2, x3)
T , y = (y1, y2, y3)

T ∈ L and × denotes the vector
product (or cross product). We now prove that L satisfies all the properties
of a Lie algebra. Property A1 is satisfied since

x× y =



x2y3 − x3y2
x3y1 − x1y3
x1y2 − x2y1


 ∈ L .

For the bilinearity property A2 we consider x,x′,y,y′ ∈ L with the con-
stants α, β ∈ R. It follows that

[αx + βx′,y] = (αx + βx′) × y

=




(αx2 + βx′2)y3 − (αx3 + βx′3)y2
(αx3 + βx′3)y1 − (αx1 + βx′1)y3
(αx1 + βx′1)y2 − (αx2 + βx′2)y1




=



α(x2y3 − x3y2) + β(x′2y3 − x′3y2)
α(x3y1 − x1y3) + β(x′3y1 − x′1y3)
α(x1y2 − x2y1) + β(x′1y2 − x′2y1)




= α[x,y] + β[x′,y].

Analogously,
[x, αy + βy′] = α[x,y] + β[x,y′].

The antisymmetry property A3 is obviously satisfied since

x × y = −y × x.

The Jacobi identity is satisfied since for all x,y, z ∈ L we have

x × (y × z) + y × (z × x) + z× (x × y) =




0
0
0


 .

It follows that L is a Lie algebra. For the elements of the standard basis
{ e1, e2, e3 } we find the commutator

[e1, e2] = e3, [e3, e1] = e2, [e2, e3] = e1. ♣

Example. The set of all m × m matrices form a Lie algebra with the
commutator defined by

[A,B] := AB −BA.



6.1. Definition and Examples 77

Note that tr([A,B]) = 0 for any square matrices A and B.

Example. The set of all traceless m×m matrices form a Lie algebra under
the commutator, since

tr([A,B]) = 0

for two arbitrary m×m matrices. ♣

Example. The set of all upper (lower) triangular matrices form a Lie al-
gebra under the commutator.

Example. The set of diagonal matrices form a Lie algebra under the com-
mutator. ♣

Example. Let L be a Lie algebra with x, y, h ∈ L. Let

[x, h] = 0, [y, h] = 0.

From the Jacobi identity it follows that

[[x, y], h] = 0.

If h describes a Hamilton operator we say that the operators x and y com-
mute with h. Thus the operator [x, y] also commutes with h. ♣

Example. Consider C∞-functions which depend on 2n variables

(q,p) = (q1, . . . , qn, p1, . . . , pn) .

These variables are known as the phase space variables where qj denotes
the position and qj the momentum. The commutator of two such functions
f and g is defined by the Poisson bracket

[f, g] :=

n∑

j=1

(
∂f

∂qj

∂g

∂pj
− ∂f

∂pj

∂g

∂qj

)
.

The vector space of C∞-functions f(q,p) form a Lie algebra under the
Poisson bracket. Let

f(p,q) =
p2
1

2
+
p2
2

2
+

1

12
(q41 + q42) +

1

2
q21q

2
2

and

g(p,q) = 3p1p2 + q1q2(q
2
1 + q22).
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Then we have
[f, g] = 0.

The function f can be considered as a Hamilton function, where p2
1/2+p2

2/2
is the kinetic term. Since [f, g] = 0 we say that g is a first integral of the
Hamiltion system.

6.2 Lie Algebras and Bose Operators

Consider a family of linear operators bi, b
†
j (i, j = 1, 2, . . . , n) on an inner

product space V , satisfying the commutation relations

[bi, bj ] = 0, [b†i , b
†
j ] = 0, [bi, b

†
j ] = δijI

where I is the identity operator. b†i denotes the Bose creation operator
and bi the Bose annihilation operator. The operators

{ b†i bj : i, j = 1, 2, . . . , n }

form a Lie algebra under the commutator. We have

[b†i bj , b
†
kbl] = −δlib†kbj + δjkb

†
i bl.

The vector space V must be infinite-dimensional. For, if A and B are finite-
dimensional square matrices such that [A,B] = λI then tr([A,B]) = 0
implies λ = 0.

6.3 Lie Algebras and Fermi Operators

Consider a family of linear operators ci, c
†
j (i, j = 1, 2, . . . , n) on a finite-

dimensional vector space V satisfying the anticommutation relations

[ci, c
†
j ]+ ≡ cic

†
j + c†jci = δijI

[ci, cj ]+ = [c†i , c
†
j ]+ = 0.

The linear operator c†i is called Fermi creation operator and ci is called
the Fermi annihilation operator. The operators

{ c†i cj : i, j = 1, 2, . . . , n }

form a Lie algebra under the commutator. We have

[c†i cj , c
†
kcl] = −δlic†kcj + δkjc

†
i cl.
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6.4 Lie Algebras and Lie Groups

We recall that a Lie group is a differential manifold (see appendix A) so
that it makes sense to consider the tangent space at a point in the manifold.
In particular we are interested in the tangent space at the identity of the
Lie group.

Let G be an r-dimensional matrix Lie group where A(ε) is a smooth curve
through the identity of G. In the neighbourhood of the identity I = A(0)
we consider the expansion

A(ε) = I + ε
dA

dε

∣∣∣∣
ε=0

+O(ε2)

where

X :=
dA

dε

∣∣∣∣
ε=0

is a tangent vector to A(ε) at ε = 0. X is called the infinitesimal generator
for a matrix Lie group. Note that this is in correspondence with the previous
definition of the infinitesimal ξ for the Lie transformation group which will
be discussed later in this chapter. The set of all X , i.e., the set of all
tangents to all curves through I in G, is a linear vector space of dimension
r, where

L :=

{
X =

dA

dε

∣∣∣∣
ε=0

: A(ε) curve through I

}
.

L is an r-dimensional Lie algebra which is a local representation of the
corresponding Lie group. We can recover all the properties of the local Lie
group from the Lie algebra in the neighbourhood of the identity element
via the exponentiation of the Lie algebra

A(ε) = exp(εX) .

Example. Consider the group SO(3) which is the counter clockwise rota-
tion of R3 about the coordinate axis

A1(ε1) =




1 0 0
0 cos ε1 − sin ε1
0 sin ε1 cos ε1




A2(ε2) =




cos ε2 0 sin ε2
0 1 0

− sin ε2 0 cos ε2
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A3(ε3) =




cos ε3 − sin ε3 0
sin ε3 cos ε3 0

0 0 1


 .

These are all curves through the identity in SO(3). We have

A1(0) = A2(0) = A3(0) = I3 .

The derivatives at the identity

Xj :=
dAj(εj)

dεj

∣∣∣∣
εj=0

are given by the skew-symmetric matrices

X1 =




0 0 0
0 0 −1
0 1 0


 , X2 =




0 0 1
0 0 0
−1 0 0


 , X3 =




0 −1 0
1 0 0
0 0 0


 .

We find for the commutators

[X1, X2] = X3, [X2, X3] = X1, [X3, X1] = X2.

It follows that the matrices Xj form the basis for the Lie algebra so(3). By
exponentiating this Lie algebra we find the group SO(3)

Aj(εj) = eεjXj . ♣

Let us now consider the r-parameter Lie transformation group as given in
the previous chapter

x′ = ϕ(x, ε).

Here x′ = (x′1, . . . , x
′
m), x = (x1, . . . , xm), ε = (ε1, . . . , εr) and ϕ =

(ϕ1, . . . , ϕm). The infinitesimal generators are given by

Zα =

m∑

j=1

ξαj(x)
∂

∂xj

where

ξαj(x) :=
∂ϕj(x, ε)

∂εα

∣∣∣∣
ε=0

with α = 1, . . . , r and j = 1, . . . ,m. We have

x′(ε) =

r∏

α=1

exp(εαZα)x.
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Consider the autonomous system of ordinary differential equations

dx

dεα
= ξα(x), α = 1, . . . , r

(ξα = (ξα1, . . . , ξαm)) with corresponding infinitesimal generators

Zα =

m∑

j=1

ξαj(x)
∂

∂xj

and the autonomous system of ordinary differential equations

dx

dεβ
= ξβ(x)

(ξβ = (ξβ1, . . . , ξβm)) with corresponding infinitesimal generators

Zβ =

m∑

j=1

ξβj(x)
∂

∂xj
.

We show that these infinitesimal generators are closed under the commu-
tator

[Zα, Zβ]f := Zα(Zβf) − Zβ(Zαf)

where f is a C∞-function. It follows that

[Zα, Zβ ]f =

m∑

i=1

m∑

j=1

(
ξαi

∂ξβj
∂xi

∂f(x)

∂xj
− ξβj

∂ξαi
∂xj

∂f(x)

∂xi

)

where ∂2f(x)/∂xi∂xj = ∂2f(x)/∂xj∂xi was used and the second order
derivatives cancel out. It follows that

[Zα, Zβ ] =

m∑

j=1

ηj(x)
∂

∂xj

where

ηj(x) :=

m∑

i=1

(
ξαi(x)

∂ξβj(x)

∂xi
− ξβi(x)

∂ξαj(x)

∂xi

)
.

We conclude that the infinitesimal generators of a Lie group are closed
under the commutator. The bilinearity, antisymmetry and Jacobi identity
can easily be proven for the infinitesimal generators. It follows that the
infinitesimal generators of a Lie group form a Lie algebra.
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For any Lie algebra with basis elements {Zα : α = 1, . . . , r } the commu-
tator may be expanded in terms of the basis

[Zα, Zβ] =
r∑

γ=1

CγαβZγ

( α, β = 1, . . . , r ) where Cγαβ are called the structure constants.

Definition 6.2 Equation (1) is called the commutation relation of an
r-parameter Lie algebra.

Theorem 6.1 (Second Fundamental Theorem of Lie). The structure con-
stants Cγαβ in (1) are constants.

The proof is straightforward and left as an exercise.

Theorem 6.2 (Third Fundamental Theorem of Lie). The structure con-
stants, defined by the commutation relations (1) satisfy the relations

Cγαβ =−Cγβα
r∑

ρ=1

(
CραβC

δ
ργ + CρβγC

δ
ρα + CργαC

δ
ρβ

)
= 0

where α, β, γ = 1, . . . , r.

Proof. Since {Zα : α = 1, . . . , r } form a basis of a Lie algebra it follows
that [Zα, Zβ] = −[Zβ, Zα] where

[Zα, Zβ ] =

r∑

ρ=1

CραβZρ

and

[Zβ , Zα] =

r∑

ρ=1

CρβαZρ

so that Cραβ = −Cραβ . From the Jacobi identity we obtain

[Zγ , [Zα, Zβ]] + [Zβ, [Zγ , Zα]] + [Zα[Zβ, Zγ ]] = 0

⇒ [Zγ ,

r∑

ρ=1

CραβZρ] + [Zβ ,

r∑

ρ=1

CργαZρ] + [Zα,

r∑

ρ=1

CρβγZρ] = 0

⇒
r∑

ρ=1

Cραβ [Zγ , Zρ] +

r∑

ρ=1

Cργα[Zβ , Zρ] +

r∑

ρ=1

Cρβγ [Zα, Zρ] = 0
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⇒
r∑

ρ=1

Cραβ

r∑

δ=1

CδγρZδ +

r∑

ρ=1

Cργα

r∑

δ=1

CδβρZδ +

r∑

ρ=1

Cρβγ

r∑

δ=1

CδαρZδ = 0

⇒
r∑

δ=1

(

r∑

ρ=1

CραβC
δ
γρ +

r∑

ρ=1

CργαC
δ
βρ +

r∑

ρ=1

CρβγC
δ
αρ)Zδ = 0.

Since the Zδ’s are linearly independent the linear combination can only be
zero if

r∑

ρ=1

CραβC
δ
γρ +

r∑

ρ=1

CργαC
δ
βρ +

r∑

ρ=1

CρβγC
δ
αρ = 0. ♠

Example. Consider the three parameter Euclidean group E(2). Recall
that this is an affine group of rigid motions in R2 given by

(
x′1
x′2

)
=

(
cos ε1 − sin ε1
sin ε1 cos ε1

)(
x1

x2

)
+

(
ε2
ε3

)
.

The corresponding infinitesimal generators are

Z1 = −x2
∂

∂x1
+ x1

∂

∂x2
, Z2 =

∂

∂x1
, Z3 =

∂

∂x2
. ♣

It is convenient to display the commutation relation of a Lie algebra through
its commutator table whose (i, j)-th entry is [Zi, Zj ]. From the definition of
the commutator it follows that the table is antisymmetric with its diagonal
elements all zero. The structure constants are easily obtained from the
commutator table. For the given example the commutator table is as follows

Z1 Z2 Z3

Z1 0 −Z3 Z2

Z2 Z3 0 0
Z3 −Z2 0 0.

We have thus found a three dimensional Lie algebra e(2) for the three di-
mensional affine group E(2).

Example. Consider

Z1 = x1
∂

∂x2
+ x2

∂

∂x1
, Z2 = x1

∂

∂x1
+ x2

∂

∂x2
.

Then we have [Z1, Z2] = 0 and therefore

exp(εZ1 + εZ2) = exp(εZ1) exp(εZ2).
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Thus Z1 and Z2 form a basis of an abelian Lie algebra. ♣

Let V , W be to infinitesimal generators. Then, in general,

exp(V +W ) 6= exp(V ) exp(W ).

6.5 Classical Lie Algebras

The classical Lie algebras are associated with the classical Lie groups which
were discussed in chapter 3. Note that the dimensions of the associated Lie
algebras are the same as for the classical Lie groups, as listed in the table
in chapter 4.

The Lie algebras associated with the general linear groups GL(m,C) and
GL(m,R) which consist of all m ×m nonsingular matrices, are given by
the set of all m × m complex and real matrices, respectively. The corre-
sponding Lie algebras are denoted by gl(m,C) and gl(m,R), respectively.
The Lie algebra gl(m,C) thus consists of all linear mappings from Cm to
Cm, where this set is denoted by L(Cm,Cm), and gl(m,R) consists of all
linear mappings from Rm to Rm denoted by L(Rm,Rm).

The Lie algebra associated with the special linear group SL(m,R) is de-
noted by sl(m,R) and defined by

sl(m,R) := {X ∈ L(Rm,Rm) : trX = 0 }.
The condition on X is found as follows. For any arbitrary m ×m matrix
X we have the identity

det(exp(X)) ≡ exp(trX).

Let A ∈ SL(m) and X ∈ gl(m). It follows that

detA = det(exp(εX)) = exp(εtrX) = 1

so that trX = 0.

Example. For m = 2 a basis for the three dimensional Lie algebra sl(2,R)
is given by {(

0 0
1 0

)
,

(
0 1
0 0

)
,

(
1 0
0 −1

)}
. ♣

Similarly, for the complex group SL(m,C) the associated Lie algebra is
defined by

sl(m,C) := { X ∈ L(Cm,Cm) : trX = 0 } .
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Example. A basis for the six dimensional Lie algebra sl(2,C) is given by

{E1, E2, E3, H1, H2, H3 }

where

E1 =
1

2

(
0 −i
−i 0

)
, E2 =

1

2

(
0 −1
1 0

)
, E3 =

1

2

(
−i 0
0 i

)

H1 =
1

2

(
0 1
1 0

)
, H2 =

1

2

(
0 −i
i 0

)
, H3 =

1

2

(
1 0
0 −1

)
.

The commutation relations are

[Ei, Ej ] =

3∑

k=1

εijkEk

[Hi, Hj ] = −
3∑

k=1

εijkHk

[Ei, Hj ] =
3∑

k=1

εijkHk

with i, j = 1, 2, 3. Here ε123 = ε312 = ε231 = +1, ε132 = ε213 = ε321 = −1 is
the totally antisymmetric tensor. ♣

The Lie algebra o(m) associated with the orthogonal group O(m) is given
by

o(m) :=
{
X ∈ L(Rm,Rm) : XT = −X

}
.

Recall that the condition on A ∈ O(m) is ATA = I . To find the associated
condition on the Lie algebra elements we consider

d

dε
(ATA)

∣∣
ε=0

=

(
dAT

dε
A+AT

dA

dε

)∣∣∣∣
ε=0

=XTA(0) +AT (0)X

=XT +X

= 0.

This condition is equivalent to the bilinear metric form

(Xx,y) + (x, Xy) = 0
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where x, y ∈ Rm. The special orthogonal group SO(m) has the additional
condition detA = 1 so that the Lie algebra is defined by

so(m) := {X ∈ L(Rm,Rm) : XT = −X, trX = 0 }.

The Lie algebra consists of all skew-symmetric real matrices.

Example. For m = 2, a basis for the one-dimensional Lie algebra so(m)
is provided by (

0 −1
1 0

)
. ♣

The Lie algebra u(m) associated with the unitary group U(m) is defined
by

u(m) := {X ∈ L(Cn,Cn) : X† = −X }.
It thus consists of all skew-hermitian matrices.

The special unitary group SU(m) has the additional condition detA =
1 (A ∈ U(m)) so that the associated Lie algebra is defined by

su(m) := {X ∈ L(Cm,Cm) : X† = −X, trX = 0 }.

It thus consists of all traceless skew-hermitian matrices.

Example. A basis of the three dimensional Lie algebra su(2) is given by
{iσ1, iσ2, iσ3}, where

σ1 :=

(
0 1
1 0

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
1 0
0 −1

)
.

σ1, σ2 and σ3 are known as the Pauli spin matrices. ♣

Example. Consider su(2) with the basis { Jj : j = 1, 2, 3 } where

[Jj , Jk] = i

3∑

l=1

εjklJl, j, k = 1, 2, 3.

If we define
J± := J1 ± iJ2, J0 := J3

we find the following commutation relations

[J0, J±] = J0J± − J±J0

= J0(J1 ± iJ2) − (J1 ± iJ2)J0
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= J0J1 ± iJ0J2 − (J1J0 ± iJ2J0)

= [J0, J1] ± i[J0, J2]

= [J3, J1] ± i[J3, J2]

= iε312J2 ± i(ε321J1)

= iJ2 ± J1

=±(J1 ± iJ2)

=±J±

and

[J+, J−] = (J1 + iJ2)(J1 − iJ2) − (J1 − iJ2)(J1 + iJ2)

= i(J2J1 − J1J2) + i(J2J1 − J1J2)

= 2i[J2, J1]

= 2i(iε213J3)

= 2J0.

We define the following operators

J+ := b†1b2, J− := b†2b1, J0 :=
1

2
(b†1b1 − b†2b2)

where b1, b2, b
†
1, b

†
2 are Bose annihilation and creation operators. Thus

[J+, J−] = b†1b2b
†
2b1 − b†2b1b

†
1b2

= b†1(I + b†1b2)b1 − b†2(I + b†1b1)b2

= b†1b1 − b†2b2

= 2J0 .

Analogously
[J0, J+] = J+, [J0, J−] = −J−.

This is known as a Bose realization of the Lie algebra su(2). ♣

Let us finally give a list of the classical matrix Lie algebras with the condi-
tions on the matrix X . We recall that

L :=

(
−IP 0

0 Im−P

)
, J :=

(
0 Im

−Im 0

)
.

The Lie algebras of the pseudo-classical groups discussed in chapter 4 are
also given in the following list:
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Lie Algebra Conditions on X
gl(m) -
sl(m) trX = 0
o(m) XT = −X
so(m) XT = −X , trX = 0
u(m) X† = −X
su(m) X† = −X , trX = 0
so(P,m− P ) XTL+ LX = 0, trX = 0
u(P,m− P ) X†L+ LX = 0
su(P,m− P ) X†L+ LX = 0, trX = 0
sp(2m) XTJ + JX = 0.

6.6 Important Concepts

In this section we give a list of some of the important concepts in Lie alge-
bras. Examples are also given to illustrate these concepts.

Let L be a Lie algebra.

Definition 6.3 L′ is a Lie subalgebra of L if L′ is closed under com-
mutation, that is, if [X ′

1, X
′
2] ∈ L′ whenever X ′

1 and X ′
2 belong to L′. We

write [L′, L′] ⊂ L′.

Example. The Euclidean Lie algebra e(3) has the two Lie subalgebras
{R1, R2, R3}, {P1, P2, P3} known as so(3) and t(3) which generate rotations
and translations respectively. In terms of infinitesimal generators we have

R1 = x1
∂

∂x2
− x2

∂

∂x1
, R2 = x1

∂

∂x3
− x3

∂

∂x1
, R3 = x2

∂

∂x3
− x3

∂

∂x2

and

P1 =
∂

∂x1
, P2 =

∂

∂x2
, P3 =

∂

∂x3
. ♣

Definition 6.4 Two Lie algebras L and L′ are isomorphic if a vector
space isomorphism φ : L→ L′ exists such that

φ[X1, X2] = [φ(X1), φ(X2)]

for all X1, X2 ∈ L.

Example. Let {Aij : i, j = 1, . . . ,m } be the basis of a Lie algebra with
commutation relation

[Aij , Akl] = δkjAil − δliAjk
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where δij is the Kronecker delta. The Lie algebra with the basis

{
xi

∂

∂xj
: i, j = 1, . . . ,m

}

as well as the Lie algebra with Bose operator basis

{ b†i bj : i, j = 1, . . . ,m }

are isomorphic to the Lie algebra given above. ♣

Example. The Lie algebra sl(2) is spanned by the matrices

h =

(
1 0
0 −1

)
, e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
.

They satisfy
[h, e] = 2e, [h, f ] = −2f, [e, f ] = h .

The bracket relations are also satisfied by the matrices

ρ2(h) :=




2 0 0
0 0 0
0 0 −2


 , ρ2(e) :=




0 2 0
0 0 1
0 0 0


 , ρ2(f) :=




0 0 0
1 0 0
0 2 0




and the matrices

ρ3(h) :=




3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3




ρ3(e) :=




0 3 0 0
0 0 2 0
0 0 0 1
0 0 0 0


 , ρ3(f) :=




0 0 0 0
1 0 0 0
0 2 0 0
0 0 3 0


 .

This can be extended to (n+ 1) × (n+ 1) matrices.

Definition 6.5 A Lie algebra L is the direct sum of two Lie algebras L′

and L′′ if the sum of L′ and L′′ is a vector space and if [L′, L′′] = 0. We
write

L = A⊕B .

Note that the algebras L′ and L′′ are Lie subalgebras of L.

Example. The Lie algebra t(3) is the direct sum of the three Lie subalge-
bras {P1}, {P2} and {P3}. ♣
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Definition 6.6 A Lie algebra L is the semi-direct sum of two Lie subal-
gebras L′ and L′′ if the sum of L′ and L′′ is a vector space and [L′, L′′] ⊂ L′.
We write

L = L′ ⊕s L′′.

Example. The Lie algebra e(3) is the semi-direct sum of t(3) and so(3) so
that

e(3) = t(3) ⊕s so(3). ♣

Definition 6.7 A Lie subalgebra L′ is an ideal of L if [L′, L] ⊂ L′, that
is, if [X ′

1, X2] ∈ L′ whenever X ′
1 ∈ L′ and X2 ∈ L.

Example. In the Lie algebra, given by the commutation relations

[x1, x2] = x3, [x2, x3] = x1, [x3, x1] = x2

the only ideals are L′ = {0} (0 vector) and L′ = L. ♣

Note that if L = L′ ⊕s L′′ then L′ is an ideal of L. In a direct sum,

L = L′
1 ⊕ L′

2 ⊕ · · · ⊕ L′
n

each of the summands L′
i is an ideal of L.

Example. Consider e(3). It follows that t(3) is an ideal of e(3), but so(3)
is not. ♣

Definition 6.8 The centre of L is the largest ideal L′ such that [L,L′] =
0. It is unique.

Example. The centre of e(3) is zero, while {P3} is the centre of the sub-
algebra L′ of e(3) consisting of R3, P1, P2, P3. ♣

Just as there is a notion of quotient group in the theory of groups there
is a notion of quotient algebra in the theory of Lie algebras. If H is a
subgroup of G we define an equivalence relation on G by

a ≡ b (mod H) if a−1b ∈ H.

The equivalence classes under this relation are called the left cosets of H
and are denoted by aH . Similarly, we may define a second equivalence
relation by

a ≡ b (mod H) if ab−1 ∈ H.

The equivalence classes in this case are the right cosets of H , denoted
by Ha. We say H is normal if aH = Ha for all a ∈ G. In that case
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the cosets of H in G form a group, with the group operation defined by
(aH)(bH) := abH . The fact that H is normal is used to prove that the
operation is well defined. This group is called the quotient group and is
denoted by G/H .

Now suppose L′ is a subalgebra of the Lie algebra L. For any X1 ∈ L define
X1 + L′ to be the equivalence class of X1 under the equivalence relation
X1 ≡ X2(mod L′) if X1 −X2 ∈ L′. In general these equivalence classes do
not form a Lie algebra, but they do if L′ is an ideal. In that case we define
a Lie bracket on the classes by

[X1 + L′, X2 + L′] = [X1, X2] + L′.

This bracket is well defined because L′ is an ideal. The set of equivalence
classes thus forms a new Lie algebra called the quotient Lie algebra. The
quotient algebra is denoted by L/L′.

Example. The quotient algebra e(3)/t(3) is a Lie algebra which is isomor-
phic to so(3). ♣

The analogous group theoretical fact is that the quotient of the Euclidean
group by the translations is the rotation group. In fact, ideals of Lie algebras
always correspond to normal subgroups of the corresponding Lie group.

Definition 6.9 The set of commutators [L,L] is an ideal of L, called L(1).
Similarly L(2) = [L(1), L(1)] is an ideal of L(1). We define

L(n+1) := [L(n), L(n)].

If this sequence terminates in zero, we say L is solvable.

Example. Consider e(3). It follows that e(3)(1) = e(3), so e(3)(n) =
e(3). Hence e(3) is not solvable. On the other hand the subalgebra L′ =
{R3, P1, P2, P3} introduced above is solvable because L′(2) is zero. ♣

Example. The set of all n× n upper triangular matrices




a11 a12 · · · a1n

0 a22 · · · a2n
...

. . .
...

0 · · · 0 ann




is another solvable Lie algebra. Conversely, Lie proved that every com-
plex solvable matrix algebra is isomorphic to a subalgebra of triangular
matrices. ♣
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Definition 6.10 Consider a different sequence of ideals given by

L(1) = [L,L], L(2) = [L,L(1)], · · · , L(n+1) = [L,L(n)].

This is a nested sequence with

L(n+1) ⊆ L(n) ⊆ · · · ⊆ L(1) = L(1) ⊆ L.

We say L is nilpotent if this sequence terminates in zero.

Example. An important nilpotent algebra in quantum mechanics is the
Heisenberg algebra H = {P,Q, I}, where the operators Q = x and
P = ∂/∂x are acting on a smooth function f defined on the real line. The
operator I is the identity operator. The operator Q is multiplication by x,
thus

(Qf)(x) := xf(x) .

The commutation relations are

[P,Q] = I

where I is the identity operator. ♣

Note that L(n) ⊇ L(n), so that nilpotency implies solvability.

Example. A solvable algebra need not be nilpotent. An example of a
solvable algebra which is not nilpotent is the algebra L′ = {R3, P1, P2, P3}
given above. It follows that L′

(1) = {P1, P2} = L′
(n) for all n ≥ 1. ♣

Example. It can be shown that the triangular matrices




λ a12 · · · a1n

0 λ · · · a2n
...

. . .
...

0 λ




form a nilpotent Lie algebra. ♣

Definition 6.11 The radical of a Lie algebra is the maximal solvable
ideal. It is unique and contains all other solvable ideals.

Example. t(3) is the radical of the Lie algebra e(3). ♣

Definition 6.12 A Lie algebra L is simple if it contains no ideals other
than L and {0}; it is semi-simple if it contains no abelian ideals other
than {0}.
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Examples. The Lie algebra su(2) with basis {x1, x2, x3} and commutation
relations

[x1, x2] = x3, [x2, x3] = x1, [x3, x1] = x2

is simple and thus also a semi-simple Lie algebra. ♣

Levi’s decomposition states that every Lie algebra is the semidirect sum
of its radical and a semisimple Lie algebra. The semisimple Lie algebras
constitute an important class of Lie algebras and play a fundamental role
in geometry and physics.

Example. e(3) = t(3) ⊕s so(3) is the Levi decomposition of e(3). ♣

Definition 6.13 A universal algebra of a Lie algebra L is a map f :
L→ UL where UL is an associative algebra with unit such that

1. ε is a Lie algebra homomorphism, i.e. it is linear and

f [x, y] = f(x)f(y) − f(y)f(x) .

2. If A is any associative algebra with unit and g : L→ A is any Lie algebra
homomorphism then there exists a unique homomorphism φ of associative
algebras such that

g = φ ◦ f .

Obviuosly if UL exists, it is unique up to a unique isomorphism. Thus
we may then talk of the universal algebra of L. We call it the universal
enveloping algebra.

6.7 Adjoint Representation

If L is a Lie algebra and X ∈ L, the operator adX that maps Y to [X,Y ]
is a linear transformation of L onto itself, i.e.,

(adX)Y := [X,Y ].

It is easily verified that X → ad X is a representation of the Lie algebra L
with L itself considered as the vector space of the representation. We have
to check that

ad [X,Y ](Z) = [ad X, ad Y ](Z)

where X,Y, Z ∈ L. We have

ad[X,Y ](Z) = [[X,Y ], Z]
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so that

[adX, adY ](Z) = (adX(adY ) − adY (adX))(Z)

= adX(adY )(Z) − adY (adX)(Z)

= adX([Y, Z]) − adY ([X,Z])

= [X, [Y, Z]]− [Y, [X,Z]]

= [[X,Y ], Z].

The last step follows from the Jacobi identity.

Definition 6.14 The representation adX, called the adjoint represen-
tation, provides a matrix representation of the Lie algebra.

Example. Consider sl(2,R) with basis {X,Y,H } where

X =

(
0 1
0 0

)
, Y =

(
0 0
1 0

)
, H =

(
1 0
0 −1

)
.

From
[X,H ] = −2X, [X,Y ] = H, [Y,H ] = 2Y

we find

adX(X) = 0, adH(X) = 2X, adY (X) = −H,
adX(Y ) = H, adH(Y ) = −2Y, adY (Y ) = 0,

adX(H) = −2X, adH(H) = 0, adY (H) = 2Y.

From

(X,H, Y )adX := (adX(X), adX(H), adX(Y )) = (0,−2X,H)

it follows that

ad (X) =




0 −2 0
0 0 1
0 0 0


 .

Analogously

ad (H) =




2 0 0
0 0 0
0 0 −2


 , ad (Y ) =




0 0 0
−1 0 0
0 2 0


 . ♣

If {Xj : j = 1, . . . ,m } is a basis for the Lie algebra L then

(adXi)Xj =

m∑

k=1

CkijXk.
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Therefore the matrix associated with the transformation adXi is

(Mi)jk = Cjik .

Note the transposition of the indices j and k.

Example. The adjoint representation of so(3) is given by

(Mi)jk = Cjik = εikj

so the matrices X1, X2, and X3 of so(3) (first example of this chapter) are
in fact also the matrices of the adjoint representation. ♣

Definition 6.15 The Killing form of a Lie algebra is the symmetric bi-
linear form

K(X,Y ) = tr(adXadY )

where tr denotes the trace.

If ρ is an automorphism of L then

K(ρ(X), ρ(Y )) = K(X,Y ).

Moreover, K has the property

K([X,Y ], Z) = K([Z,X ], Y ) = −K(Y, [X,Z]).

Definition 6.16 If (Xi) (i = 1, 2, . . . ,m) form a basis for L then

gij = K(Xi, Xj)

is called the metric tensor for L. In terms of the structure constants,

gij =
m∑

r,s=1

CrisC
s
jr.

Example. Consider sl(2,R) with basis

X1 =

(
0 1
0 0

)
, X2 =

(
1 0
0 −1

)
, X3 =

(
0 0
1 0

)
.

We calculate the metric tensor gij with i, j = 1, 2, 3. The adjoint represen-
tation for this Lie algebra is given in a previous example. We find

g12 = tr(adX1 adX2) = tr




0 −2 0
0 0 1
0 0 0






2 0 0
0 0 0
0 0 −2


 = 0 .
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Analogously we obtain

g11 = 0, g13 = 4, g21 = 0, g22 = 8

g23 = 0, g33 = 0, g31 = 4, g32 = 0

so that

(gij) =




0 0 4
0 8 0
4 0 0


 . ♣

Note that a Lie algebra is semisimple if and only if the matrix (gij) is
nonsingular, i.e., det((gij)) 6= 0. In the example given above det((gij)) =
−128 which indicates that the Lie algebra is semisimple.

6.8 Casimir Operators

The Casimir operators play an important role in the applications of
Lie algebras to quantum mechanics and elementary particle physics. For
a given semisimple Lie algebra L with basis {Xj : j = 1, . . . ,m}, the
Casimir operator is a quantity (which is not an element of the Lie algebra)
that commutes with each element of the Lie algebra.

Definition 6.17 The Casimir operator C of a given Lie algebra L is de-
fined by

C :=
m∑

i=1

m∑

j=1

(gij)XiXj

where (gij) is the inverse matrix of (gij) and {Xj : j = 1, . . . ,m} is a basis
of the Lie algebra.

Note that the Casimir operator is independent of the choice of the basis.

Example. Consider the Lie algebra so(3)

L1 := −i
(
x2

∂

∂x3
− x3

∂

∂x2

)

L2 := −i
(
x3

∂

∂x1
− x1

∂

∂x3

)

L3 := −i
(
x1

∂

∂x2
− x2

∂

∂x1

)
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with the commutation relations

[L1, L2] = iL3, [L2, L3] = iL1, [L3, L1] = iL2.

The non-zero structure constants are

C3
12 = i, C1

23 = i, C2
31 = i.

It follows that

g11 =

3∑

j=1

3∑

k=1

Ck1jC
j
1k =

3∑

j=1

(C2
1jC

j
12 + C3

1jC
j
13) = C2

13C
3
12 + C3

12C
2
13 = 2.

Analogously g22 = g33 = 2. The remaining elements of the matrix (gjk) are
zero. It follows that

C =

3∑

j=1

3∑

k=1

gjkLjLk = g11L2
1 + g22L2

2 + g33L2
3 =

1

2
(L2

1 + L2
2 + L2

3)

where
3∑

j=1

gijgjk =

3∑

j=1

gkjg
ji = δik . ♣

Remark. For every semisimple Lie algebra of rank r there exist r inde-
pendent Casimir operators. Using the structure constants Ckij they can be
found as

Cn =
∑

...il,kl...

Ck2i1k1C
k3
i2k2

· · ·Ck1inkn
J i1J i2 · · ·J in

where n takes all positive integers. Thus we arbitrarily often obtain every
Casimir operator, or linear combinations of them. We have to choose r
independent values for n (as small as possible). Here Ji are a basis of the
semisimple Lie algebra and J i =

∑
j g

ijJj .

6.9 Cartan-Weyl Basis

Another important tool in the study of Lie algebra is that of the Cartan-
Weyl basis for a semisimple Lie algebra. For a semisimple Lie algebra one
can introduce new basis elements Hj , Eα such that

[Hi, Hj ] = 0
[Hi, Eα] = αiEα
[Eα, Eβ ] =Cα+β

αβ Eα+β
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[Eα, E−α] =
∑

i

αiHi.

Example. Consider

H =

(
1 0
0 −1

)
, E2 =

√
2

(
0 1
0 0

)
, E−2 =

√
2

(
0 0
1 0

)
.

Then
[H,E2] = 2E2, [H,E−2] = −2E−2, [E2, E−2] = H

with α = 2. Thus we have a Cartan-Weyl basis. ♣.

Example. Consider a family of operators cj , c
†
j (j = 1, . . . ,m) on a finite-

dimensional vector space satisfying the anticommutator relations

[cj , ck]+ = [c†j , c
†
k]+ = 0, [cj , c

†
k]+ = δjkI

where I is the identity operator. The operators {cj , c†k} are called Fermi
operators. For the Sakata model of elementary particles we need to con-
sider the Fermi operators c†p, cp which denote the creation and annihilation

of the proton; c†n, cn denote the creation and annihilation of the neutron

and c†Λ, cΛ denote the creation and annihilation of the lambda particle.
The nine operators

c†pcp, c
†
ncn, c

†
ΛcΛ, c

†
pcn, c

†
pcΛ, c

†
ncp, c

†
Λcp, c

†
ncΛ, c

†
Λcn

form a Lie algebra. The centre is given by the operator

c†pcp + c†ncn + c†ΛcΛ

and the zero operator. A Cartan-Weyl basis is given by the following eight
operators

H1 =
1

2
√

3
(c†pcp − c†ncn), H2 =

1

6
(c†pcp + c†ncn − 2c†ΛcΛ)

Eα=
1√
6
c†pcΛ, E−α=

1√
6
c†Λcp

Eβ=
1√
6
c†Λcn, E−β=

1√
6
c†ncΛ

Eγ=
1√
6
c†pcn, E−γ=

1√
6
c†ncp .

Calculating the commutators we find that we have a Cartan-Weyl basis.
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For example

[Eα, E−α] =
1

6
(c†pcp − c†ΛcΛ) =

1

2
√

3
H1 +

1

2
H2

[Eβ , E−β ] =
1

6
(c†ΛcΛ − c†pcp) =

1

2
√

3
H1 −

1

2
H2, [Eγ , E−γ ] =

1√
3
H1

[H1, Eα] =
1

2
√

3
Eα, [H1, Eβ ] =

1

2
√

3
Eβ , [H1, Eγ ] =

1√
3
Eγ

[H2, Eα] =
1

2
Eα, [H2, Eβ ] =

1

2
Eβ , [H2, Eγ ] = 0

with the root vectors

α = (−1/(2
√

3),−1/2), β = (−1/(2
√

3), 1/2), γ = (−1/
√

3, 0) .

Note that γ = α+ β. ♣

Instead of pairs of Fermi operators c†jck we can also consider pairs of Bose

operators b†jbk to built this Cartan-Weyl basis.

6.10 Computer Algebra Applications

In the classical case the angular momentum is given by

L := x × p

where × denotes the cross product. The components of L are given by

L1 := x2p3 − x3p2, L2 := x3p1 − x1p3, L3 := x1p2 − x2p1.

Introducing the quantization

p1 → −ih̄ ∂

∂x1
, p2 → −ih̄ ∂

∂x2
, p3 → −ih̄ ∂

∂x3

yields the differential operators

L̂1 :=
h̄

i

(
x2

∂

∂x3
− x3

∂

∂x2

)

L̂2 :=
h̄

i

(
x3

∂

∂x1
− x1

∂

∂x3

)
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L̂3 :=
h̄

i

(
x1

∂

∂x2
− x2

∂

∂x1

)
.

The angular momentum operators L̂x1 , L̂x2 and Lx3 form a basis of a Lie
algebra under the commutator. The commutators are given by

[L̂1, L̂2] = ih̄L̂3, [L̂3, L̂1] = ih̄L̂2, [L̂2, L̂3] = ih̄L̂1

where [ , ] denotes the commutator.

In the program we evaluate the commutators. We consider the angular
momentum operators as vector fields.

// lxlylz.cpp

#include <iostream>

#include "symbolicc++.h"

using namespace std;

int main(void)

{

Symbolic hb("hb");

Symbolic i = sqrt(Number<int>(-1));

Symbolic x("x",3);

Symbolic LX("LX",3), LY("LY",3), LZ("LZ",3);

LX(0) = 0; LX(1) = i*hb*x(2); LX(2) = -i*hb*x(1);

LY(0) = -i*hb*x(2); LY(1) = 0; LY(2) = i*hb*x(0);

for(int k=0;k<3;k++)

{

LZ(k) = 0;

for(int j=0;j<3;j++)

{

LZ(k) += LX(j)*df(LY(k),x(j)) - LY(j)*df(LX(k),x(j));

}

}

cout << LZ(0) << endl;

cout << LZ(1) << endl;

cout << LZ(2) << endl;

return 0;

}
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6.11 Exercises

(1) Derive the Lie algebras of the Lie groups SO(4) and SU(2) × SU(2)
and show that they are isomorphic.

(2) Let c†j , cj be Fermi creation and annihilation operators, respectively.
Do the operators

{
c†i c

†
jckcl : i, j, k, l = 1, 2, . . . , n

}

form a Lie algebra under the commutator?

(3) Let b†j , bj be Bose creation and annihilation operators, respectively. Do
the operators {

b†i b
†
jbkbl : i, j, k, l = 1, 2, . . . , n

}

form a Lie algebra under the commutator?

(4) Let A, B, C be n× n matrices over C. Show that

tr([A,B]C) = tr(B[C,A]) .

(5) The 2n× 2n real matrices M satisfying

MT ηM = η

where

η :=

(
0n In
−In 0n

)

form a group with In the n × n identity matrix and 0n the n × n zero
matrix. This group is called the symplectic group Sp(2n). Find the Lie al-
gebra sp(2n) of Sp(2n) and its Cartan subalgebra. Determine dim(sp(2n))
and rank(sp(2n)).

(6) Show that any 2× 2 complex matrix has a unique representation of the
form

a0I2 + ia1σ1 + ia2σ2 + ia3σ3

where σ1, σ2, σ3 are the Pauli spin matrices and I2 is the 2 × 2 identity
matrix.

(7) The Lie algebra sl(2,R) is spanned by the matrices

e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
.
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Is a Lie algebra spanned by

e⊗ e, e⊗ f, e⊗ h, f ⊗ e, f ⊗ f, f ⊗ h, h⊗ e, h⊗ f, h⊗ h ?

Here ⊗ denotes the Kronecker product? For two 2 × 2 matrices A, B
the Kronecker product is the 4 × 4 matrix

A⊗B =

(
a11B a12B
a21B a22B

)
.

(8) Show that for the Lie algebra u(1), the trivial and the adjoint represen-
tation are isomorphic.

(9) Let g be a Lie algebra.
(i) Show that a subvector space h ⊂ g is a Lie subalgebra of g if and only if

[h, h] ⊂ h .

(ii) Show that an ideal of g is in particular a Lie subalgebra.
(iii) Show that [g, g] is an ideal of g.

(10) Let g be a Lie algebra and h ⊂ g an ideal. Show that

π : g → g/h

given by
π(x) = x+ h

is a surjective homomorphism of Lie algebras with kernel ker(π) = h.



Chapter 7

Introductory Examples

In this chapter we study, as introductory examples, the following partial
differential equations: the linear one-dimensional wave equation, the linear
one-dimensional diffusion equation, system of equations for stationary flow
and the linear Schrödinger equation in three space dimensions. We intro-
duce the concept of invariance of the equation under the transformation
group. Then we show how these transformation groups are generated by
infinitesimal generators (the so-called vector fields or Lie symmetry vector
fields) and how these vector fields form a Lie algebra under the commutator.
The concept of gauge transformations for the coupling of the electromag-
netic field with the Schrödinger equation is also discussed.

7.1 One-Dimensional Linear Wave Equation

Consider the pseudo-orthogonal group O(1, 1) studied in chapter 4. Its
dimension is one, so that it can be parametrized in the following form (see
examples in chapter 4)

(
x′1
x′2

)
=

(
cosh ε sinh ε
sinh ε cosh ε

)(
x1

x2

)

where ε ∈ R is the group parameter. This transformation is also known as
the Lorentz boost. We find that

x2
1 − x2

2 = x′21 − x′22 .

We now show that the one-dimensional wave equation

∂2u

∂x2
=
∂2u

∂x2
1

(1)

103
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is invariant under the transformation
(
x′1
x′2

)
=

(
cosh ε sinh ε
sinh ε cosh ε

)(
x1

x2

)
(2a)

u′(x′(x)) = u(x) (2b)

where x = (x1, x2) and x′ = (x′1, x
′
2). The transformation group is given

by

x′1(x, u, ε) = x1 cosh ε+ x2 sinh ε

x′2(x, u, ε) = x1 sinh ε+ x2 cosh ε

u′(x, u, ε) = u.

We write
x′ = ϕ(x, u, ε), u′ = φ(x, u, ε)

where ϕ = (ϕ1, ϕ2). This transformation group corresponds to the follow-
ing initial value problem

dx′

dε
= ξ(x′, u′),

du′

dε
= η(x′, u′)

with initial conditions x′ = x and u′ = u for ε = 0. The infinitesimals are

ξ(x, u) =
dϕ

dε

∣∣∣∣
ε=0

, η(x, u) =
dφ

dε

∣∣∣∣
ε=0

.

The infinitesimal generator which is, in this context, also known as the Lie
(point) symmetry vector field is given by (m = 2)

Z =

m∑

j=1

ξj(x, u)
∂

∂xj
+ η(x, u)

∂

∂u
.

To prove the invariance of the wave equation under the transformation (2)
we consider

∂u′

∂x2
=
∂u′

∂x′1

∂x′1
∂x2

+
∂u′

∂x′2

∂x′2
∂x2

=
∂u

∂x2
.

It follows that

∂2u′

∂x2
2

=

(
∂2u′

∂x′21

∂x′1
∂x2

+
∂2u′

∂x′1∂x
′
2

∂x′2
∂x2

)
∂x′1
∂x2

+

(
∂2u′

∂x′1∂x
′
2

∂x′1
∂x2

+
∂2u′

∂x′22

∂x′2
∂x2

)
∂x′2
∂x2

=
∂2u

∂x2
2

.
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Analogously

∂2u′

∂x2
1

=

(
∂2u′

∂x′21

∂x′1
∂x1

+
∂2u′

∂x′1∂x
′
2

∂x′2
∂x1

)
∂x′1
∂x1

+

(
∂2u′

∂x′1∂x
′
2

∂x′1
∂x1

+
∂2u′

∂x′22

∂x′2
∂x1

)
∂x′2
∂x1

=
∂2u

∂x2
1

.

From (2) we have

∂x′1
∂x2

= sinh ε,
∂x′1
∂x1

= cosh ε,
∂x′2
∂x2

= cosh ε,
∂x′2
∂x1

= sinh ε.

Inserting these equations into the wave equation (1) we find

∂2u′

∂x′22
=
∂2u′

∂x′21
.

Equation (1) is thus invariant under the transformation (2). The generator
of the transformation group is given by the symmetry vector field

Z1 = ξ1(x, u)
∂

∂x1
+ ξ2(x, u)

∂

∂x2
+ η(x, u)

∂

∂u

where the functions ξ1, ξ2 and η are given by

ξ1(x, u) =
dϕ1

dε

∣∣∣∣
ε=0

, ξ2(x, u) =
dϕ2

dε

∣∣∣∣
ε=0

, η(x, u) =
dφ

dε

∣∣∣∣
ε=0

= 0.

With

ϕ1(x, u, ε) = x1 cosh ε+ x2 sinh ε

ϕ2(x, u, ε) = x1 sinh ε+ x2 cosh ε

φ(x, u, ε) = u

it follows that ξ1(x, u) = x2, ξ2(x, u) = x1, η(x, u) = 0 so that the symme-
try vector field

Z1 = x2
∂

∂x1
+ x1

∂

∂x2

is the generator of the transformation group.

We also find that the scaling transformation

x′1(x, ε) = eεx1

x′2(x, ε) = eεx2

u′(x′(x), ε) = u(x)
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leaves the wave equation (1) invariant. The symmetry vector field for this
scaling group is given by

Z2 = x1
∂

∂x1
+ x2

∂

∂x2
.

Since the independent variables x1 and x2 do not appear explicitly in the
wave equation it is invariant under the translation groups

x′1(x, u, ε) = x1 + ε, x′2(x, u, ε) = x2, u′(x, u, ε) = u

and

x′1(x, u, ε) = x1, x′2(x, u, ε) = x2 + ε, u′(x, u, ε) = u .

These transformations correspond to the Lie symmetry vector fields

Z3 =
∂

∂x1
, Z4 =

∂

∂x2
,

respectively. We can thus state that the wave equation admits the following
Lie symmetry vector fields

{
∂

∂x1
,
∂

∂x2
, x2

∂

∂x1
+ x1

∂

∂x2
, x1

∂

∂x1
+ x2

∂

∂x2

}
.

These vector fields form a basis of a Lie algebra. The commutators are
[
∂

∂x1
,
∂

∂x2

]
= 0

[
∂

∂x1
, x2

∂

∂x1
+ x1

∂

∂x2

]
=

∂

∂x2[
∂

∂x2
, x2

∂

∂x1
+ x1

∂

∂x2

]
=

∂

∂x1[
x1

∂

∂x1
+ x2

∂

∂x2
,
∂

∂x1

]
=− ∂

∂x1[
x1

∂

∂x1
+ x2

∂

∂x2
,
∂

∂x2

]
=− ∂

∂x2[
x2

∂

∂x1
+ x1

∂

∂x2
, x1

∂

∂x1
+ x2

∂

∂x2

]
= 0.

The commutator table is then given by

Z1 Z2 Z3 Z4

Z1 0 0 −Z4 −Z3

Z2 0 0 −Z3 −Z4

Z3 Z4 Z3 0 0
Z4 Z3 Z4 0 0.
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7.2 One-Dimensional Diffusion Equation

The Lie point symmetry vector fields for the linear diffusion equation in
one space dimension

∂u

∂x2
=
∂2u

∂x2
1

are given by

Z1 =
∂

∂x2
, Z2 =

∂

∂x1
, Z3 = u

∂

∂u

Z4 = x2
∂

∂x1
− 1

2
x1u

∂

∂u
, Z5 = x1

∂

∂x1
+ 2x2

∂

∂x2

Z6 = x2x1
∂

∂x1
+ x2

2

∂

∂x2
−
(

1

4
x2

1 +
1

2
x2

)
u
∂

∂u
.

As an example we find the transformation group which corresponds to the
generatorZ4. The autonomous system associated with the symmetry vector
field Z4 is

dx′2
dε

= 0 (3)

dx′1
dε

= x′2 (4)

du′

dε
= −1

2
x′1u

′ (5)

with initial conditions x′ = x and u′ = u at ε = 0. The solution of this
initial value problem will result in a one-parameter transformation group
for the diffusion equation. Solving (3) we find

x′2(x, u, ε) = x2.

Inserting this into (4) and integrating gives

x′1(x, u, ε) = x2ε+ x1.

Inserting this into (5) and integrating yields

u′(x, u, ε) = u exp

(
−1

2

(
1

2
x2ε

2 + x1ε

))
.

Consequently, the diffusion equation is invariant under the Galilean space-
time transformation

x′2(x, ε) = x2

x′1(x, ε) = x2ε+ x1

u′(x′(x), ε) = u(x) exp

(
−1

2

(
1

2
x2ε

2 + x1ε

))
.
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We can also find this transformation by considering the exponentiation of
the generator Z4 so that



x′1(x, ε)
x′2(x, ε)
u′(x′(x), ε)


 = exp(εZ4)



x1

x2

u



∣∣∣∣∣∣
u→u(x1,x2)

where

eεZ4x1 = x1 + ε

(
x2

∂

∂x1
− 1

2
x1u

∂

∂u

)
x1 +

ε2

2!

(
x2

∂

∂x1
− 1

2
x1u

∂

∂u

)2

x1 + · · ·

= x1 + εx2

eεZ4x2 = x2

eεZ4u= u− ε

2
x1u+

ε2

2!

(
−1

2
x2u+

1

4
x2

1u

)
+
ε3

3!

(
3

4
x1x2u− 1

8
x3

1u

)
+ · · ·

= u exp

(
−1

2

(
1

2
x2ε

2 + x1ε

))
.

This results in the transformation given above.

The Lie point symmetry vector fields Z1, . . . , Z6 form a basis of a non-
abelian Lie algebra.

7.3 Stationary Flow

The following system of partial differential equations play an important role
in hydrodynamics

u1
∂u1

∂x1
+ u2

∂u1

∂x2
+

1

ρ

∂p

∂x1
= 0 (6)

u1
∂u2

∂x1
+ u2

∂u2

∂x2
+

1

ρ

∂p

∂x2
= 0 (7)

∂u1

∂x1
+
∂u2

∂x2
= 0. (8)

This system corresponds to the stationary flow, in the (x1, x2)-plane, for
a nonresistant medium with constant density ρ. Here x1 and x2 are space
coordinates, u1 and u2 are the velocity fields while p and ρ denote the pres-
sure and density, respectively. Consider the transformation group SO(2)

where x2
1 + x2

2 = x′1
2

+ x′2
2
. The angle of rotation (group parameter) is ε.

The transformation is given by
(
x′1(x, ε)
x′2(x, ε)

)
=

(
cos ε sin ε
− sin ε cos ε

)(
x1

x2

)
. (9)
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The velocity vectors, u1(x) and u2(x) in the point (x1, x2), can be trans-
formed to the velocity vectors u′1(x

′) and u′2(x
′) in the point (x′1, x

′
2) in the

rotated coordinate system with the transformation
(
u′1(x

′(x), ε)
u′2(x

′(x), ε)

)
=

(
cos ε sin ε
− sin ε cos ε

)(
u1(x)
u2(x)

)
. (10)

The pressure p is a scalar with

p′(x′(x), ε) = p(x) . (11)

We now show that system (6), (7) and (8) is invariant under the transforma-
tion (9), (10) and (11). First we find the transformation of the derivatives

∂

∂x1
= cos ε

∂

∂x′1
− sin ε

∂

∂x′2

∂

∂x2
= sin ε

∂

∂x′1
+ cos ε

∂

∂x′2
.

The inverse transformation of (10) is given by

(
u1(x)
u2(x)

)
=

(
cos ε − sin ε
sin ε cos ε

)(
u′1(x

′(x), ε)
u′2(x

′(x), ε)

)
.

We find for (8)
∂u1

∂x1
+
∂u2

∂x2
=
∂u′1
∂x′1

+
∂u′2
∂x′2

.

Equation (6) transforms into

(
u′1
∂u′1
∂x′1

+ u′2
∂u′1
∂x′2

+
1

ρ

∂p′

∂x′1

)
cos ε−

(
u′1
∂u′2
∂x′1

+ u′2
∂u′2
∂x′2

+
1

ρ

∂p′

∂x′2

)
sin ε = 0

(12)
and (9) becomes

(
u′1
∂u′2
∂x′1

+ u′2
∂u′2
∂x′2

+
1

ρ

∂p′

∂x′2

)
cos ε+

(
u′1
∂u′1
∂x′1

+ u′2
∂u′1
∂x′2

+
1

ρ

∂p′

∂x′1

)
sin ε = 0 .

(13)
ε can be eliminated from (12) and (13) by multiplying (12) by sin ε and
(13) by cos ε. Subtracting and adding these results one finds

u′1
∂u′1
∂x′1

+ u′2
∂u′1
∂x′2

+
1

ρ

∂p′

∂x′1
= 0

u′1
∂u′2
∂x′1

+ u′2
∂u′2
∂x′2

+
1

ρ

∂p′

∂x′2
= 0
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respectively. System (6), (7), (8) is thus invariant under the transformation
(9) and (10).

Let us now find the Lie symmetry vector field for this transformation group.
We have

Z1 = ξ1(x,u)
∂

∂x1
+ ξ2(x,u)

∂

∂x2
+ η1(x,u)

∂

∂u1
+ η2(x,u)

∂

∂u2
.

The functions ϕ and φ are given by

ϕ1(x,u, ε) = x1 cos ε+ x2 sin ε

ϕ2(x,u, ε) =−x2 sin ε+ x2 cos ε

φ1(x,u, ε) = u1 cos ε+ u2 sin ε

φ2(x,u, ε) =−u1 sin ε+ u2 cos ε

so that

ξ1(x,u) =
dϕ1

dε

∣∣∣∣
ε=0

= x2, ξ2(x,u) =
dϕ2

dε

∣∣∣∣
ε=0

= −x1

η1(x,u) =
dφ1

dε

∣∣∣∣
ε=0

= u2, η2(x,u) =
dφ2

dε

∣∣∣∣
ε=0

= −u1 .

Thus

Z1 = x2
∂

∂x1
− x1

∂

∂x2
+ u2

∂

∂u1
− u1

∂

∂u2
.

Since system (6), (7), (8) does not explicitly depend on x1 and x2, it is also
invariant under the translation groups

x′1(x, u, ε) = x1 +ε, x′2(x, u, ε) = x2, u′1(x, u, ε) = u1, u′2(x, u, ε) = u2

and

x′1(x, u, ε) = x1, x′2(x, u, ε) = x2+ε, u′1(x, u, ε) = u1, u′2(x, u, ε) = u2.

The symmetry vector fields for these transformation groups are

Z2 =
∂

∂x1
, Z3 =

∂

∂x2
,

respectively. System (6), (7), (8) is also invariant under the scaling group

x′1(x, u, ε) = e−εx1, x′2(x, u, ε) = e−εx2

u′1(x, u, ε) = eεu1, u′2(x, u, ε) = eεu2.
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This scaling group corresponds to the Lie symmetry vector field

Z4 = −x1
∂

∂x1
− x2

∂

∂x2
+ u1

∂

∂u1
+ u2

∂

∂u2
.

The symmetry vector fields {Z1, Z2, Z3, Z4 } form a basis of a four-
dimensional non-abelian Lie algebra.

7.4 Gauge Transformation

For a class of field equations, such as the Schrödinger equation, the Dirac
equation and the Klein-Gordon equation, knowledge of the symmetry group
plays an important role in connection with gauge theory.

Here we explain the coupling of the electromagnetic field with the Schrödinger
equation in three space dimensions. The Schrödinger equation is given
by

ih̄
∂ψ(x)

∂x4
= Ĥ0ψ(x) (14)

with

Ĥ0 := − h̄2

2m
∆

where ∆ is the Laplace operator

∆ :=

3∑

j=1

∂2

∂x2
j

.

The Schrödinger equation is invariant under the global gauge transfor-
mation

ψ′(x′(x), ε) = exp (iε)ψ(x) (15a)

x′l(x, ε) = xl (15b)

where l = 1, 2, 3, 4, x = (x1, x2, x3, x4) with x4 = t. ε is a real dimensionless
parameter, h̄ is Planck’s constant divided by 2π. The invariance of (14)
under (15) means that

ih̄
∂ψ′(x′)

∂x′4
= − h̄2

2m

3∑

j=1

∂2ψ′(x′)

∂x′2j
.

We determine the symmetry vector field Z that generates this transforma-
tion. Let

Z =

4∑

l=1

ξl(x, ψ)
∂

∂xl
+ η(x, ψ)

∂

∂ψ
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where
ϕl(x, ψ, ε) = xl φ(x, ψ, ε) = exp(iε)ψ

so that

ξl =
dϕl
dε

∣∣∣∣
ε=0

= 0, η =
dφ

dε

∣∣∣∣
ε=0

= iψ.

Here l = 1, 2, 3, 4. The symmetry vector field is then given by

Z = iψ
∂

∂ψ
. (16)

One can rewrite the Schrödinger equation in its real and imaginary parts
by

ψ(x) = u1(x) + iu2(x)

where u1 and u2 are real fields. The Schrödinger equation then reads

h̄
∂u2

∂x4
= −Ĥ0u1 ≡ h̄2

2m
∆u1 (17a)

h̄
∂u1

∂x4
= Ĥ0u2 ≡ − h̄2

2m
∆u2. (17b)

We want to rewrite the symmetry vector field (16) to find the symmetry
vector fields for (17). Consider a (real or complex) differentiable function
f that depends on u1 and u2. The total derivative of f is given by

df =
∂f

∂u1
du1 +

∂f

∂u2
du2 .

Note that the total derivative of the functions ψ = u1+iu2 and ψ∗ = u1−iu2

(ψ∗ is the conjugate complex of ψ) are given by

dψ = du1 + idu2 , dψ∗ = du1 − idu2

so that

du1 =
1

2
(dψ + dψ∗) , du2 =

1

2i
(dψ − dψ∗) .

Thus we obtain

df =
1

2

(
∂f

∂u1
− i

∂f

∂u2

)
dψ +

1

2

(
∂f

∂u1
+ i

∂f

∂u2

)
dψ∗

so that we can define

∂

∂ψ
:=

1

2

(
∂

∂u1
− i

∂

∂u2

)
,

∂

∂ψ∗
:=

1

2

(
∂

∂u1
+ i

∂

∂u2

)
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where

df =
∂f

∂ψ
dψ +

∂f

∂ψ∗
dψ∗ .

The symmetry vector field (16) now becomes

Z = i(u1 + iu2)
1

2

(
∂

∂u1
− i

∂

∂u2

)
= ZR + iZI

with

ZR =
1

2

(
u1

∂

∂u2
− u2

∂

∂u1

)
, ZI =

1

2

(
u1

∂

∂u1
+ u2

∂

∂u2

)

where ZR is the real and ZI the imaginary part. Thus the system of partial
differential equations (17) admits the symmetry vector fields ZR and ZI ,
where [ZR, ZI ] = 0.

We now describe the coupling of the electromagnetic field with the Schrödinger
equation by considering the local gauge transformation

ψ′(x′(x)) = exp (iε(x))ψ(x) (18a)

x′j(x) = xj (18b)

where ε is a smooth function that depends on x = (x1, x2, x3, x4), and
j = 1, 2, 3, 4. We find

∂ψ′

∂x4
= i exp(iε(x))

∂ε

∂x4
ψ + exp(iε(x))

∂ψ

∂x4

∂ψ′

∂xj
= i exp(iε(x))

∂ε

∂xj
ψ + exp(iε(x))

∂ψ

∂xj

∂2ψ′

∂x2
j

=− exp(iε(x))

(
∂ε

∂xj

)2

ψ + i exp(iε(x))
∂2ε

∂x2
j

ψ

+2i exp(iε(x))
∂ε

∂xj

∂ψ

∂xj
+ exp(iε(x))

∂2ψ

∂x2
j

so that
∂ψ

∂x4
= exp(−iε(x))

(
∂ψ′

∂x′4
− i

∂ε

∂x′4
ψ′

)

∂2ψ

∂x2
j

= exp(−iε(x))


∂

2ψ′

∂x′2j
−
(
∂ε

∂x′j

)2

ψ′ − i
∂2ε

∂x′2j
ψ′ − 2i

∂ε

∂x′j

∂ψ′

∂x′j
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where j = 1, 2, 3. Inserting these expressions into the Schrödinger equation
we obtain

ih̄ exp(−iε(x))

(
∂ψ′

∂x′4
− i

∂ε

∂x′4
ψ′

)

= − h̄2

2m
exp(−iε(x))

3∑

j=1


 ∂2

∂x′2j
− i

∂2ε

∂x′2j
− 2i

∂ε

∂x′j

∂

∂x′j
−
(
∂ε

∂x′j

)2

ψ′

= − h̄2

2m
exp(−iε(x))

3∑

j=1

(
∂

∂x′j
− i

∂ε

∂x′j

)2

ψ′

so that the Schrödinger equation takes the form

ih̄
∂ψ′

∂x′4
= − h̄2

2m

3∑

j=1

(
∂

∂x′j
− i

∂ε

∂x′j

)2

ψ′ − h̄
∂ε

∂x′4
ψ′.

We now make the following mapping

i
∂ε

∂x′j
7−→ i

h̄
qA′

j , h̄
∂ε

∂x′4
7−→ −qU ′

(j = 1, 2, 3) where A′ = (A′
1, A

′
2, A

′
3) is the vector potential, U the scalar

potential and q the charge. The Schrödinger equation for the coupled elec-
tromagnetic field now reads

ih̄
∂ψ′

∂x′4
=

(
− h̄2

2m

(
∇′ − i

h̄
qA′

)2

+ qU ′

)
ψ′ (19)

where ∇′ := (∂/∂x′1, ∂/∂x
′
2, ∂/∂x

′
3).

To find the transformation group that leaves the Schrödinger equation (19)
invariant, we apply the local gauge transformation. We then obtain

ih̄
∂ψ

∂x4
= − h̄2

2m

3∑

j=1

(
∂

∂xj
− i

∂ε

∂xj
− i

q

h̄
A′
j

)2

ψ + qU ′ψ − h̄
∂ε

∂x4
ψ (20)

where (j = 1, 2, 3)

U ′(x′(x)) = U(x) +
h̄

q

∂ε

∂x4

A′
j(x

′(x)) = Aj(x) − h̄

q

∂ε

∂xj
.
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Then (20) becomes

ih̄
∂ψ

∂x4
= − h̄2

2m

3∑

j=1

(
∂

∂xj
− i

q

h̄
Aj

)2

ψ + qUψ

or

ih̄
∂ψ

∂x4
=

(
− h̄2

2m

(
∇− i

q

h̄
A
)2

+ qU

)
ψ (21)

where

∇ :=

(
∂

∂x1
,
∂

∂x2
,
∂

∂x3

)

and
A := (A1, A2, A3).

This equation is invariant under the transformation

x′l(x) = xl

ψ′(x′(x)) = exp (iε(x))ψ(x)

U ′(x′(x)) =U(x) +
h̄

q

∂ε

∂x4

A′
j(x

′(x)) =Aj(x) − h̄

q

∂ε

∂xj

(l = 1, 2, 3, 4 and j = 1, 2, 3) which is called the gauge transformation
for the electromagnetic field.

The approach described above can also be applied to the linear Dirac equa-
tion. The linear Dirac equation with nonvanishing rest mass m0 is given
by

(
ih̄

(
γ0

∂

∂x0
+ γ1

∂

∂x1
+ γ2

∂

∂x2
+ γ3

∂

∂x3

)
−m0c

)
ψ(x) = 0 (22)

where x = (x0, x1, x2, x3), x0 = ct and the complex valued spinor ψ is

ψ(x) :=



ψ1(x)
ψ2(x)
ψ3(x)
ψ4(x)


 .

The gamma matrices are defined by

γ0 ≡ β :=




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


 , γ1 :=




0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0
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γ2 :=




0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0


 , γ3 :=




0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0


 .

The linear Dirac equation and the free wave equation
(
∂2

∂x2
0

− ∂2

∂x2
1

− ∂2

∂x2
2

− ∂2

∂x2
3

)
Aµ = 0

can be derived from Lagrangian densities

LD = cψ̄

(
ih̄γµ

∂

∂xµ
−m0c

)
ψ

LE = − 1

2µ0

(
∂Aµ
∂xν

− ∂Aν
∂xµ

)
∂Aµ

∂xν
,

respectively. We used sum convention and ψ̄ = ψ†γ0, Aµ = (A0, A1, A2, A3),
Aµ = (A0,−A1,−A2,−A3), xµ = (x0,−x1,−x2,−x3), x

µ = (x0, x1, x2, x3).

From gauge theory described above we obtain the Lagrangian density

L = − 1

2µ0

(
∂Aµ
∂xν

− ∂Aν
∂xµ

)
∂Aµ

∂xν
+ cψ̄

(
ih̄γµ

∂

∂xµ
− eγµA

µ −m0c

)
ψ

where
ψ̄ = ψ†γ0 ≡ (ψ∗

1 , ψ
∗
2 ,−ψ∗

3 ,−ψ∗
4)

and

γµA
µ = γ0A

0 + γ1A
1 + γ2A

2 + γ3A
3 = γ0A0 − γ1A1 − γ2A2 − γ3A3.

Here we make use of the sum convention. From this Lagrangian density
and the Euler-Lagrange equation

∂L
∂φr

− ∂

∂xµ
∂L

∂(∂φr/∂xµ)
= 0

we obtain the Maxwell-Dirac equation
(
∂2

∂x2
0

− ∂2

∂x2
1

− ∂2

∂x2
2

− ∂2

∂x2
3

)
Aµ = µ0ecψ̄γµψ


ih̄


γ0

∂

∂x0
+

3∑

j=1

γj
∂

∂xj


−m0c


ψ= e




3∑

j=1

γjA
j + γ0A0


ψ

∂A0

∂x0
+
∂A1

∂x1
+
∂A2

∂x2
+
∂A3

∂x3
= 0 (Lorentz gauge condition)



7.4. Gauge Transformation 117

is the Dirac equation which is coupled with the vector potential Aµ where
A0 = U/c and U denotes the scalar potential. Here µ = 0, 1, 2, 3 and

ψ̄ = (ψ∗
1 , ψ

∗
2 ,−ψ∗

3 ,−ψ∗
4).

Here c is the speed of light, e the charge, µ0 the permeability of free space,
h̄ = h/(2π) where h is Planck’s constant and m0 the particle rest mass. We
set

λ =
h̄

m0c
.

The Maxwell-Dirac equation can be written as the following coupled system
of thirteen partial differential equations

(
∂2

∂x2
0

− ∂2

∂x2
1

− ∂2

∂x2
2

− ∂2

∂x2
3

)
A0 = (µ0ec)

4∑

j=1

(u2
j + v2

j )

(
∂2

∂x2
0

− ∂2

∂x2
1

− ∂2

∂x2
2

− ∂2

∂x2
3

)
A1 = (2µ0ec)(u1u4 + v1v4 + u2u3 + v2v3)

(
∂2

∂x2
0

− ∂2

∂x2
1

− ∂2

∂x2
2

− ∂2

∂x2
3

)
A2 = (2µ0ec)(u1v4 − u4v1 + u3v2 − u2v3)

(
∂2

∂x2
0

− ∂2

∂x2
1

− ∂2

∂x2
2

− ∂2

∂x2
3

)
A3 = (2µ0ec)(u1u3 + v3v1 − u2u4 − v2v4)

λ
∂u1

∂x0
+ λ

∂u3

∂x3
+ λ

∂u4

∂x1
+ λ

∂v4
∂x2

− v1 =
e

m0c
(A0v1 −A3v3 −A1v4 +A2u4)

−λ ∂v1
∂x0

− λ
∂v3
∂x3

− λ
∂v4
∂x1

+ λ
∂u4

∂x2
− u1 =

e

m0c
(A0u1 −A3u3 −A1u4 −A2v4)

λ
∂u2

∂x0
+ λ

∂u3

∂x1
− λ

∂v3
∂x2

− λ
∂u4

∂x3
− v2 =

e

m0c
(A0v2 −A1v3 −A2u3 +A3v4)

−λ ∂v2
∂x0

− λ
∂v3
∂x1

− λ
∂u3

∂x2
+ λ

∂v4
∂x3

− u2 =
e

m0c
(A0u2 −A1u3 +A2v3 +A3u4)

−λ∂u1

∂x3
− λ

∂u2

∂x1
− λ

∂v2
∂x2

− λ
∂u3

∂x0
− v3 =

e

m0c
(A3v1 +A1v2 −A2u2 −A0v3)

λ
∂v1
∂x3

+ λ
∂v2
∂x1

− λ
∂u2

∂x2
+ λ

∂v3
∂x0

− u3 =
e

m0c
(A3u1 +A1u2 +A2v2 −A0u3)

−λ∂u1

∂x1
+ λ

∂v1
∂x2

+ λ
∂u2

∂x3
− λ

∂u4

∂x0
− v4 =

e

m0c
(A1v1 +A2u1 −A3v2 −A0v4)

λ
∂v1
∂x1

+ λ
∂u1

∂x2
− λ

∂v2
∂x3

+ λ
∂v4
∂x0

− u4 =
e

m0c
(A1u1 −A2v1 −A3u2 −A0u4)

∂A0

∂x0
+
∂A1

∂x1
+
∂A2

∂x2
+
∂A3

∂x3
= 0.
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7.5 Computer Algebra Applications

Let

ih̄
∂ψ(x, t)

∂t
= − h̄2

2m
∆ψ(x, t)

be the Schrödinger equation of the free particle in three-space dimensions.
The equation is invariant under the transformation

ψ′(x′(x, t), t′(x, t)) = exp(iε)ψ(x, t)

x′j(x, t) = xj , t′(x, t) = t

where j = 1, 2, 3 and ε is independent of x and t. This transformation is
called a global gauge transformation. Let

ih̄
∂ψ

∂t
= − h̄2

2m

3∑

j=1

(
∂

∂xj
− i

q

h̄
Aj

)2

ψ + qUψ

where A = (A1, A2, A3) is the vector potential and U the scalar potential.
We show that this equation is invariant under the transformation

x′j(x, t) = xj , t′(x, t) = t

ψ′(x′(x, t), t′(x, t)) = exp(iε(x, t))ψ(x, t)

U ′(x′(x, t), t′(x, t)) = U(x, t) − h̄

q

∂ε(x, t)

∂t

A′
j(x

′(x, t), t′(x, t)) = Aj(x, t) +
h̄

q

∂ε(x, t)

∂xj
,

where j = 1, 2, 3 and q is the charge. This transformation is called a local
gauge transformation, where ε depends on x and t. We show in the program
that

ih̄
∂ψ′

∂t′
= − h̄2

2m

3∑

j=1

(
∂

∂x′j
− i

q

h̄
A′
j

)2

ψ′ + qU ′ψ′.

// gauge.cpp

#include <iostream>

#include "symbolicc++.h"

using namespace std;

int main(void)

{
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Symbolic i = sqrt(Number<int>(-1));

Symbolic x1("x1"), x2("x2"), x3("x3"), t("t");

Symbolic h("h"), m("m"), q("q");

Symbolic G("G"), GP("GP"), p("p"), pp("pp");

Symbolic A1("A1"), A2("A2"), A3("A3"),

AP1("AP1"), AP2("AP2"), AP3("AP3"), U("U"), UP("UP");

Symbolic ep("ep");

G = G[x1,x2,x3,t]; GP = GP[x1,x2,x3,t];

p = p[x1,x2,x3,t]; pp = pp[x1,x2,x3,t]; ep = ep[x1,x2,x3,t];

A1 = A1[x1,x2,x3,t]; AP1 = AP1[x1,x2,x3,t];

A2 = A2[x1,x2,x3,t]; AP2 = AP2[x1,x2,x3,t];

A3 = A3[x1,x2,x3,t]; AP3 = AP3[x1,x2,x3,t];

U = U[x1,x2,x3,t]; UP = UP[x1,x2,x3,t];

GP = i*h*df(pp,t)+

h*h/(2*m)*(df(pp,x1,2)+df(pp,x2,2)+df(pp,x3,2)) +

(-i*q*h)/(2*m)*(AP1*df(pp,x1)+AP2*df(pp,x2)+AP3*df(pp,x3))+

(-i*q*h)/(2*m)*(df(pp*AP1,x1)+df(pp*AP2,x2)+df(pp*AP3,x3))-

q*q/(2*m)*(AP1*AP1*pp+AP2*AP2*pp+AP3*AP3*pp)-q*UP*pp;

cout << GP << endl << endl;

G = GP[pp==p*exp(i*ep),AP1==A1+h/q*df(ep,x1),

AP2==A2+h/q*df(ep,x2),AP3==A3+h/q*df(ep,x3),

UP==U-h/q*df(ep,t)];

cout << G << endl << endl;

G = G*exp(-i*ep);

G = G[p==pp,A1==AP1,A2==AP2,A3==AP3,U==UP];

Symbolic R = GP - G;

cout << "R = " << R << endl;

return 0;

}

7.6 Exercises

(1) Show that the Chazy equation

d3u

dx3
= 2u

d2u

dx2
− 3

(
du

dx

)2

admits the infinitesimal generators

∂

∂x
, x

∂

∂x
− u

∂

∂u
, x2 ∂

∂x
− (2xu+ 6)

∂

∂u
.
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(2) Show that the linear third order ordinary differential equation

d3u

dx3
+ u = 0

admits the Lie symmetry vector fields

V1 =
∂

∂x
, V2 = u

∂

∂u
, V3 = f(x)

∂

∂u

where f is a solution of the third order differential equation. Find the
general solution of the third order differential equation.



Chapter 8

Differential Forms and
Tensor Fields

8.1 Vector Fields and Tangent Bundles

We begin the discussion by defining the tangent bundle on a differentiable
manifold. For more details on differentiable manifolds we refer to appendix
A.

Let I be an open interval including {0}. Suppose C is a smooth curve on
a manifold M with dimension m, parametrized by

ϕ : I →M .

In local coordinates x = (x1, . . . , xm), C is given by the smooth function
ϕ(ε) = (ϕ1(ε), . . . , ϕm(ε)) of the real variable ε ∈ I . At each point x = ϕ(ε)
of C the curve has a tangent vector, namely the derivative

ϕ̇(ε) ≡ dϕ

dε
≡ (ϕ̇1(ε), . . . , ϕ̇m(ε))

where ϕ̇j(ε) ≡ dϕj/dε, j = 1, . . . ,m. The collection of all tangent vectors to
all possible curves passing through a given point x in M is called a tangent
space to M at x and is denoted by TM |x. If M is an m-dimensional
manifold, then TM |x is an m-dimensional vector space, with

{
∂

∂x1
, . . . ,

∂

∂xm

}

providing a basis for TM |x in the given local coordinates.

121
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Definition 8.1 The collection of all tangent spaces corresponding to all
points x in M is called the tangent bundle of M , denoted by

TM =
⋃

x∈M

TM |x.

The tangent vector ϕ̇(ε) ∈ TM |ϕ(ε) will vary smoothly from point to point
so that the tangent bundle TM is a smooth manifold of dimension 2m.

Example. Consider M = Rm. We can thus identify the tangent space
TRm|x at any x ∈ R with Rm itself. This is true since the tangent vector
ϕ̇(ε) to a smooth curve ϕ(ε) can be realized as an actual vector in Rm,
namely (ϕ̇1(ε), . . . , ˙ϕm(ε)). Another way of looking at this identification is
that we are identifying the basis vector ∂/∂xi of TRm|x with the standard
basis vector ei of Rm. The tangent bundle of Rm is thus a Cartesian
product

TRm ' Rm ×Rm .

If S is a smooth surface in R3, then the tangent space TS|x can be identi-
fied with the usual geometric tangent plane to S at each point x ∈ S. This
again uses the identification TR3|x and so TS|x is a plane in R3. ♣

In local coordinates, x = (x1, . . . , xm), a vector field Z ∈ TM |x has the
form

Z = ξ1(x)
∂

∂x1
+ · · · + ξm(x)

∂

∂xm

where each ξi is a smooth function of x. An integral curve of a vector
field Z is a smooth parametrized curve x = ϕ(ε) whose tangent vector at
any point coincides with the value of Z at the same point

ϕ̇(ε) = Z|ϕ(ε)

for all ε. In local coordinates

x = ϕ(ε) = (ϕ1(ε), . . . , ϕm(ε))

must be a solution of the autonomous system of ordinary differential equa-
tions

dxj
dε

= ξj(x) j = 1, 2, . . . ,m.

For ξi smooth the standard existence and uniqueness theorems for systems
of ordinary differential systems guarantee that there is a unique solution
to the above autonomous system for each set of initial data ϕ(0) = x0.
This implies the existence of a unique maximal integral curve ϕ : I → M
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passing through a given point x0 = ϕ(0) ∈M , where maximal means that
it is not contained in any other integral curve. For the vector field Z, the
parametrized maximal integral curve passing through x in M is denoted
by ϕ(x, ε). This is known as the action on x or the flow of the vector field
vector Z, and is discussed in detail in chapters 4 and 5.

8.2 Differential Forms and Cotangent Bundles

We begin with the basic definition of differential k-forms.

Definition 8.2 Let M be a smooth manifold and TM |x its tangent space
at x. The space

∧
k T

∗M |x of differential k-forms at x is the set of all
k-linear alternating functions

ω : TM |x × · · · × TM |x → R.

If we denote the evaluation of ω on the tangent vectors Z1, . . . , Zk ∈ TM |x
by 〈ω;Z1 . . . , Zk〉, the basic requirements are that for all tangent vectors at
x,

〈ω;Z1, . . . , cZi + c′Z ′
i, . . . , Zk〉= c〈ω;Z1, . . . , Zi, . . . , Zk〉

+c′〈ω;Z1, . . . , Z
′
i, . . . , Zk〉

for c, c′ ∈ R, 1 ≤ i ≤ k, and

〈ω;Zi1 , . . . , Zik 〉 = εi1...ik 〈ω;Z1, . . . , Zk〉

where εi1···ik is the total antisymmetric tensor (ε12...k = +1). The space∧
k T

∗M |x is a vector space under the operation of addition and scalar
multiplication.

Definition 8.3 The cotangent vector space T ∗M |x ≡ ∧
1 T

∗M |x, is
the space of 1-forms that is dual to the tangent vector space TM |x at x. In
particular the 0-form is just a smooth real-valued function f ∈ C∞(M).

Definition 8.4 A smooth differential k-form ω on M is a collection
of smoothly varying k-linear alternating maps ω|x ∈ ∧

k T
∗M |x for each

x ∈ M , where we require that for all smooth vector fields Z1, . . . , Zk

〈ω;Z1, . . . , Zk〉(x) ≡ 〈ω|x;Z1|x, . . . , Zk|x〉

be a smooth, real-valued function of x.
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Definition 8.5 The cotangent bundle is the union of all cotangent vec-
tor spaces

T ∗M =
⋃

x∈M

T ∗M |x.

If ω ∈ T ∗M |x, then a point in T ∗M is 〈ω;Z〉.

If (x1, . . . , xm) are local coordinates on M , then the basis of the cotangent
vector space T ∗M |x is given by

{ dx1, . . . , dxm }

which is dual to the basis of the tangent vector space TM |x, given in the
same local coordinate system by

{
∂

∂x1
, . . . ,

∂

∂xm

}
.

Thus

〈dxi;
∂

∂xj
〉 = δij

for all i, j, where δij is the Kronecker delta

δij =

{
1 for i = j
0 for i 6= j

.

A differential one-form ω has the local coordinate expression

ω = h1(x)dx1 + · · · + hm(x)dxm

where each coefficient function hj ∈ C∞(M) and x = (x1, . . . , xm). Thus,
for any vector field

Z =

m∑

i=1

ξi(x)
∂

∂xi

it follows that

〈ω;Z〉 =

m∑

i=1

hi(x)ξi(x)

is a smooth function. Consider the differential form

df(x) :=

m∑

i=1

∂f

∂xi
dxi .
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Thus we find

〈df(x);Z〉 = 〈
m∑

i=1

∂f

∂xi
dxi;

m∑

i=1

ξi(x)
∂

∂xi
〉 =

m∑

i=1

ξi(x)
∂f

∂xi
= Z(f).

For a k-form we refer to k as the rank of the form. Among differential forms
there is an algebraic operation ∧, called the exterior product (also known
as the wedge product or Grassman product) for making higher-rank
forms out of ones with lower rank. Given a collection of differential 1-forms
ω1, . . . , ωk, we can form a differential k-form

ω1 ∧ · · · ∧ ωk
as follows

〈ω1 ∧ · · · ∧ ωk;Z1, . . . , Zk〉 := det(〈ωi;Zj〉)
the right-hand side being the determinant of a k× k matrix with indicated
(i, j) entry. Note that the exterior product is both multilinear and alter-
nating.

Example. Consider the one-forms ω and σ. The 2-form ω ∧ σ is then
defined as follows

〈ω ∧ σ;Z1, Z2〉 := det

(
〈ω;Z1〉 〈ω;Z2〉
〈σ;Z1〉 〈σ;Z2〉

)

where Z1 and Z2 are arbitrary vectors from TM |x. This is a real-valued
mapping on TM |x ×TM |x, it is linear in each argument, and changes sign
when Z1 and Z2 are interchanged. If ω and σ are one-forms, then

ω ∧ σ = −σ ∧ ω .
It follows that ω ∧ ω = 0 for differential one-forms. ♣

In local coordinates,
∧
k T

∗M |x is spanned by the basis k-form

dxI ≡ dxi1 ∧ · · · ∧ dxik
where I ranges over all strictly increasing multi-indexes 1 ≤ i1 < i2 < · · · <
ik ≤ m. Thus

∧
k T

∗M |x has dimension
(
m
k

)
.

In particular,
∧
k T

∗M |x ' {0} if k > m. Any smooth differential k-form
on M has the local coordinate expression

ω =
∑

I

αI(x)dxI
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where, for each strictly increasing multi-index I , the coefficient αI is a
smooth, real-valued function. If

ω = ω1 ∧ · · · ∧ ωk, σ = σ1 ∧ · · · ∧ σl
their wedge product is the (k + l)-form

ω ∧ σ = ω1 ∧ · · · ∧ ωk ∧ σ1 ∧ · · · ∧ σl
with the definition extending bilinear to more general types of forms

(cω + c′ω′) ∧ σ = c(ω ∧ σ) + c′(ω′ ∧ σ)

ω ∧ (cσ + c′σ′) = c(ω ∧ σ) + c′(ω ∧ σ′)

for c, c′ ∈ R. It can be shown that the wedge product is associative

ω ∧ (σ ∧ θ) = (ω ∧ σ) ∧ θ

and anti-commutative,

ω ∧ σ = (−1)klσ ∧ ω

where ω is a k-form and σ is an l-form.

Example. A basis for two-forms on R3 is given by

{ dx1 ∧ dx2, dx2 ∧ dx3, dx3 ∧ dx1 }.

A general two-form in R3 can then be written as

h1(x)dx1 ∧ dx2 + h2(x)dx2 ∧ dx3 + h3(x)dx3 ∧ dx1

where hi ∈ C∞(R3) (i = 1, 2, 3) and x = (x1, x2, x3). The most general
three form in R3 is

h(x)dx1 ∧ dx2 ∧ dx3

where h(x) ∈ C∞(R3) and the basis is

{ dx1 ∧ dx2 ∧ dx3 }. ♣

Example. Let M = R2. In Cartesian coordinates in the x1x2-plane
dx1 ∧ dx2 should be regarded as the (oriented) area element. In polar
coordinates

x1(r, θ) = r cos θ, x2(r, θ) = r sin θ

we have

dx1 = −r sin θdθ + cos θdr, dx2 = r cos θdθ + sin θdr .
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Thus

dx1 ∧ dx2 = (−r sin θdθ + cos θdr) ∧ (r cos θdθ + sin θdr)

= r cos2 θdr ∧ dθ − r sin2 θdθ ∧ dr
= rdr ∧ dθ

since dr ∧ dr = 0, dθ ∧ dθ = 0 and dθ ∧ dr = −dr ∧ dθ. ♣

8.3 Exterior Derivative

We have already defined the exterior derivative d on
∧

0 T
∗M |x, namely

(df)(Z) = Zf.

The operator d can also be extended to all k-forms. We consider the smooth
differential k-form in local coordinates

ω =
∑

I

αI(x)dxI

on a manifold M where I is the multi-index I = (i1, . . . , ik) and αI is a
smooth real-valued function. Its exterior derivative is the (k + 1)-form

dω =
∑

I

dαI ∧ dxI =
∑

I,j

∂αI
∂xj

dxj ∧ dxI .

The operator d is a linear map that takes k-forms to (k + 1)-forms

d :
∧

k

T ∗M |x →
∧

k+1

T ∗M |x.

This map is subject to the following requirements:

1. If f ∈ ∧0 T
∗M |x, df ∈ ∧1 T

∗M |x, with values df(Z) = Zf (which is
nothing other than our original definition of df).

2. Linearity: If ω ∈ ∧k T ∗M |x, σ ∈ ∧k T ∗M |x, then

d(c1ω + c2σ) = c1dω + c2dσ

where c1, c2 are constants.

3. Anti-derivation: If ω ∈ ∧k T ∗M |x, σ ∈ ∧s T ∗M |x, then

d(ω ∧ σ) = (dω) ∧ σ + (−1)kω ∧ (dσ).
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4. Closure (Lemma of Poincaré): If ω ∈ ∧k T ∗M |x, then d(dω) ≡ 0.

Example. The closure properties of d translates into the familiar calculus
identities:

∇× (∇f) = 0, ∇ · (∇× f) = 0.

In particular ifM = R3 and fi ∈ C∞(R3) (i = 1, 2, 3) with x = (x1, x2, x3),
then for the differential of the one-form

α = f1(x)dx1 + f2(x)dx2 + f3(x)dx3

we obtain

dα= df1 ∧ dx1 + df2 ∧ dx2 + df3 ∧ dx3

=
∂f1
∂x2

dx2 ∧ dx1 +
∂f1
∂x3

dx3 ∧ dx1 +
∂f2
x1

dx1 ∧ dx2

+
∂f2
∂x3

dx3 ∧ dx2 +
∂f3
∂x1

dx1 ∧ dx3 +
∂f3
∂x2

dx2 ∧ dx3

=

(
∂f2
∂x1

− ∂f1
∂x2

)
dx1 ∧ dx2 +

(
∂f3
∂x2

− ∂f2
∂x3

)
dx2 ∧ dx3

+

(
∂f1
∂x3

− ∂f3
∂x1

)
dx3 ∧ dx1

which can be identified with the curl, ∇×f , where f = (f1, f2, f3). Similarly,
if gi ∈ C∞(R3) (i = 1, 2, 3) the differential of the two-form

g1(x)dx2 ∧ dx3 + g2(x)dx3 ∧ dx1 + g3(x)dx1 ∧ dx2

results in the following

d(g1dx2 ∧ dx3 + g2dx3 ∧ dx1 + g3dx1 ∧ dx2)

=

(
∂g1
∂x1

+
∂g2
∂x2

+
∂g3
∂x3

)
dx1 ∧ dx2 ∧ dx3

which can be identified with ∇ · g, where g = (g1, g2, g3). Consider

g1 =
∂f3
∂x2

− ∂f2
∂x3

, g2 =
∂f1
∂x3

− ∂f3
∂x1

, g3 =
∂f2
∂x1

− ∂f1
∂x2

so that

d(d(f1dx1 + f2dx2 + f3dx3)) =

(
∂g1
∂x1

+
∂g2
∂x2

+
∂g3
∂x3

)
dx1 ∧ dx2 ∧ dx3 = 0

which is equivalent to
∇ · (∇× f) = 0.
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Note also that df can be identified with ∇f , so that ddf = 0 as in

∇× (∇f) = 0

where f ∈ C∞(R3). ♣

8.4 Pull-Back Maps

We consider the smooth map F : M → N between the manifolds M and N .
There is an induced linear map F ∗, called the pull-back or codifferential
of F , which takes differential k-forms on N back to differential k-forms on
M ,

F ∗ :
∧

k

T ∗N |F (x) →
∧

k

T ∗M |x .

If f ∈ ∧0 T
∗N |F (x), then F ∗f is the 0-form on M defined by

(F ∗f)(x) := f(F (x))

so that F ∗f = f ◦ F , where ◦ denotes the composition of functions. If
x = (x1, . . . , xm) are local coordinates on M and y = (y1, . . . , yn) local
coordinates on N , then

F ∗(dyi) = d(F ∗yi) =

m∑

j=1

∂yi
∂xj

dxj

where y = F (x) gives the action of F ∗ on the basis one-forms. In general

F ∗(
∑

I

αI(y)dyI ) =
∑

I,J

αI(F (x))
∂yI
∂xJ

dxJ

where ∂yI/∂xJ stands for the Jacobian determinant det(∂yik/∂xjν ) corre-
sponding to the increasing multi-indexes I = (i1, . . . , in), J = (j1, . . . , jm),
so that, if y = F (x) determines a change of coordinates on M , then the
above relation provides the corresponding change of coordinates for differ-
ential k-forms on M . The codifferential of F has the following properties

F ∗(ω + σ) = F ∗ω + F ∗σ

F ∗(ω ∧ σ) = (F ∗ω) ∧ (F ∗σ)

F ∗(dω) = d(F ∗ω)

F ∗(df) = d(f ◦ F )

F ∗(fω) = (f ◦ F )F ∗ω

(F ◦G)∗ω= (G∗ ◦ F ∗)ω
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where f ∈ ∧0 T
∗N |F (x), ω, σ ∈ ∧k T ∗N |x and

F : M → N, G : Q→M.

Example. If G : R2 → R2 is given by y1(x1, x2) = x2
1 − ax2, y2(x1, x2) =

x3
2 (a is a constant) it follows that

G∗dy1 = d(y1 ◦G) = d(x2
1 − ax2) = 2x1dx1 − adx2

G∗dy2 = d(y2 ◦G) = dx3
2 = 3x2

2dx2 .

8.5 Interior Product or Contraction

Let ω be a differential k-form and Z a smooth vector field. Then we can
form a (k − 1)-form Z ω, called the interior product (also called the
contraction) of Z with ω, defined so that

〈Z ω;Z1, . . . , Zk−1〉 = 〈ω;Z,Z1, . . . , Zk−1〉

for every set of vector fields Z1, . . . , Zk−1. If Z ∈ TM |x and f ∈ C∞(M)
is any 0-form, then we set

Z f := 0.

It follows from the linearity properties of k-forms that

(f1Z + f2Y )(f3ω + f4σ)

= f1f3(Z ω) + f1f4(Z σ) + f2f3(Y ω) + f2f4(Y σ)

where fi (i = 1, 2, 3, 4) are smooth functions or 0-forms and Z, Y ∈ TM |x.
In addition one can show that

Z (Z ω) = (Z Z) ω = 0

Z (ω ∧ σ) = (Z ω) ∧ σ + (−1)kω ∧ (Z σ)

Z Y ω=−Y Z ω

and
〈ω;Z1, . . . , Zk〉 = Zk Zk−1 · · · Z1 ω

where Z,Z1, . . . , Zk, Y ∈ TM |x, ω is a differential k-form and σ a differen-
tial l-form. In the case k = 1, Z ω is a 0-form (i.e, a function)

Z ω = 〈Z;ω〉.

Obviously
∂

∂xi
dxj = δij .
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Example. Let

Z =

m∑

j=1

ξj
∂

∂xj

and ω = dxi ∧ dxj with i 6= j. Then we find

Z (dxi ∧ dxj) = (Z dxi) ∧ dxj − dxi ∧ (Z dxj) = ξidxj − ξjdxi.

Consider the k-form
ω = dx1 ∧ · · · ∧ dxk .

Then

Z ω =
k∑

i=1

(−1)i+1ξi(x) dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxk.

The circumflex indicates omission. ♣

Let Z be a smooth vector field. If f : M → N is an orientation preserving
diffeomorphism, then

f∗(Z ω) = (f∗Z) (f∗ω) .

8.6 Riemannian Manifolds

In this section study Riemannian and pseudo-Riemannian manifolds which
have a metric tensor field structure. In order to understand these concepts
we define tensor bundles and tensor fields. Let f be any r-linear function

f : TM |x × · · · × TM |x → R

and g be any s-linear function

g : T ∗M |x × · · · × T ∗M |x → R.

Definition 8.6 With the functions f and g the tensor product of f and
g is the map

(f ⊗ g)(Z1, . . . , Zr, ω1, . . . , ωs) = f(Z1, . . . , Zr)g(ω1, . . . , ωs).

Definition 8.7 A tensor bundle of type (r, s) over M is given by

T rsM :=
⋃

x∈M

T rsM |x

where T rsM |x is given by

T rsM |x := TM |x ⊗ · · · ⊗ TM |x ⊗ T ∗M |x ⊗ · · · ⊗ T ∗M |x.
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Example. For (r, s) = (0, 0) the tensor fields

T 0
0M = M × R

are real-valued functions on M . For (r, s) = (1, 0) the tensor fields

T 1
0M = TM

are C∞(M) vector fields on M and for (r, s) = (0, 1) the tensor fields

T 0
1M = T ∗M

are covariant vector fields or differential 1-forms on M . ♣

The local representation of tensor fields leads to the classical notation of
tensors. For the local coordinates x1, . . . , xm with basis

{∂/∂xi}1≤i≤m

of TM |x, the basis
{dxi}1≤i≤m

yields a basis for T rsM |x by r-fold tensor product

∂

∂xi1
⊗ · · · ⊗ ∂

∂xir

and s-fold tensor product

dxj1 ⊗ · · · ⊗ dxjs .

Thus

T =
m∑

i1,...,ir=1

m∑

j1,...,js=1

ti1,...,irj1,...,js
(x)

∂

∂xi1
⊗ · · · ⊗ ∂

∂xir
⊗ dxj1 ⊗ · · · ⊗ dxjs

so that the local field of type (r, s), T rsM |x, has local basis

{
∂

∂xi1
⊗ · · · ⊗ ∂

∂xir
⊗ dxj1 ⊗ · · · ⊗ dxjs

}

1≤ik≤m, 1≤jk≤m

.

Covariant tensor fields of order s are given by

T =

m∑

j1,...,js=1

tj1,...,js(x)dxj1 ⊗ · · · ⊗ dxjs
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and contravariant tensor fields of order r are given by

T =
m∑

i1,...,ir=1

ti1,...,ir (x)
∂

∂xi1
⊗ · · · ⊗ ∂

∂xir
.

Example. The Riemann curvature tensor

R(x) :=

m∑

i,j,k,l=1

Rijkl(x)dxj ⊗ dxk ⊗ dxl ⊗
∂

∂xi

is a tensor field of type (1, 3) on M . ♣

Definition 8.8 An m-dimensional manifold M is said to be orientable if
and only if there is a volume-form on M that is an m-form

Ω ∈
∧

m

T ∗M |x

such that Ω|x 6= 0 for all x ∈ M .

Definition 8.9 A Riemannian manifold is a differentiable manifold M
with dimension m on which there is given, in any local coordinate system, a
metric tensor field which is a covariant tensor field of type (0, 2), denoted
by

g =
m∑

i=1

m∑

j=1

gij(x)dxi ⊗ dxj .

The function gij(x) of x ∈M determines a Riemannian metric on M . The
volume form Ω on M determined by this Riemannian metric is then given
in local coordinates (x1, . . . , xm) by

Ω :=
√
| det(gij)|dx1 ∧ · · · ∧ dxm

and is called the Riemannian volume form. If the determinant of the
matrix (gij) is negative, the manifold is called pseudo-Riemannian.

Example. Let M = R3. For the Euclidean metric tensor field

g = dx1 ⊗ dx1 + dx2 ⊗ dx2 + dx3 ⊗ dx3

we have

det(gij) = det




1 0 0
0 1 0
0 0 1


 = 1
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so that M is a Riemannian manifold. ♣

Example. Let M = R4. For the Minkowski metric in relativity theory

g = dx1 ⊗ dx1 + dx2 ⊗ dx2 + dx3 ⊗ dx3 − dx4 ⊗ dx4

we have

det(gij) = det




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


 = −1

so that M is a pseudo-Riemannian manifold. ♣

8.7 Hodge Star Operator

For Riemannian or pseudo-Riemannian manifolds the Hodge star opera-
tor ∗ (duality operation) is defined as a linear transformation between the
spaces

∧
k(T

∗M) and
∧
m−k(T

∗M), i.e.

∗ :
∧

k

(T ∗M) →
∧

m−k

(T ∗M)

where k = 0, 1, . . . ,m. The operator has the ∗-linearity which can be
expressed as

∗(fω + gσ) = f(∗ω) + g(∗σ)

for all f, g ∈ ∧
0(T

∗M) and all ω, σ ∈ ∧
k(T

∗M). The ∗ operator ap-
plied to a p-form (p ≤ m) defined on an arbitrary Riemannian (or pseudo-
Riemannian) manifold with metric tensor field g is given by

∗(dxi1 ∧ dxi2 ∧ · · · ∧ dxip)

:=
m∑

j1···jm=1

gi1j1 · · · gipjp 1

(m− p)!

g√
|g|
εj1···jmdxjp+1 ∧ · · · ∧ dxjm

where εj1···jm is the totally antisymmetric tensor

ε12...m = +1

g ≡ det(gij) and

m∑

j=1

gijgjk = δik (Kronecker symbol).
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The double duality (composition of ∗ with itself) for ω ∈ ∧k T ∗M is given
by

∗ ∗ (ω) = (−1)k(m−k)ω.

The inverse of ∗ is
(∗)−1 = (−1)k(m−k) ∗ .

Moreover,
ω ∧ (∗σ) = σ ∧ (∗ω)

for ω, σ ∈ ∧k T ∗M .

Example. Consider the Euclidean space (R3, g) where the metric tensor
field g is given by

g = dx1 ⊗ dx1 + dx2 ⊗ dx2 + dx3 ⊗ dx3.

Let f ∈ C∞(R3). Since f is a 0-form, we have k = 0 and m = 3. Applying
the above we find

∗f = f(∗1)

= f

3∑

j1,j2,j3=1

1

3!
εj1j2j3dxj1 ∧ dxj2 ∧ dxj3

= fdx1 ∧ dx2 ∧ dx3.

Analogously

∗(fdx1 ∧ dx2 ∧ dx3) = f ∗ (dx1 ∧ dx2 ∧ dx3) = f. ♣

Example. Consider the Euclidean space (R3, g) with the 1-form ω given
by

ω = a1(x)dx1 + a2(x)dx2 + a3(x)dx3

where ai ∈ C∞(R3) and x = (x1, x2, x3). Now

dω =

(
∂a2

∂x1
− ∂a1

∂x2

)
dx1 ∧ dx2 +

(
∂a1

∂x3
− ∂a3

∂x1

)
dx3 ∧ dx1

+

(
∂a3

∂x2
− ∂a2

∂x3

)
dx2 ∧ dx3.

To find ∗dω we need to calculate

∗(dx1 ∧ dx2) =

3∑

j1,j2,j3=1

g1j1g2j2
1

(3 − 2)!
εj1j2j3dx3 = g11g22ε123dx3 = dx3.
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Analogously

∗(dx3 ∧ dx1) = dx2, ∗(dx2 ∧ dx3) = dx1

so that

∗dω =

(
∂a3

∂x2
− ∂a2

∂x3

)
dx1 +

(
∂a1

∂x3
− ∂a3

∂x1

)
dx2 +

(
∂a2

∂x1
− ∂a1

∂x2

)
dx3.

We note that ∗d is the curl-operator, operating on a 1-form. By calculating
∗d(∗ω) we find

∗d ∗ (a1dx1 + a2dx2 + a3dx3) =
∂a1

∂x1
+
∂a2

∂x2
+
∂a3

∂x3

since

∗dx1 = dx2 ∧ dx3, ∗dx2 = dx3 ∧ dx1, ∗dx3 = dx1 ∧ dx2

so that ∗d∗ is the divergence operating on a 1-form. ♣

Example. In the Euclidean space (R3, g), at each point x ∈ R3,

(dx1, dx2, dx3)

is an orientable orthogonal basis of the cotangent space. In spherical coor-
dinates (r, θ, ϕ) the elements

(dr, rdθ, r sin θdϕ)

form another orthogonal basis of the cotangent space. The metric tensor
field is then given by

g = dr ⊗ dr + r2dθ ⊗ dθ + r2 sin2 θdϕ⊗ dϕ.

The volume element Ω is

Ω = r2 sin θ dr ∧ dθ ∧ dϕ

since

(gij) =




1 0 0
0 r2 0
0 0 r2 sin2 θ




where
det(gij) =

√
r4 sin2 θ = r2 sin θ .
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Consider now a function f ∈ C∞(R3). It follows that

df(r, θ, ϕ) =
∂f

∂r
dr +

∂f

∂θ
dθ +

∂f

∂ϕ
dϕ

and

∗df(r, θ, ϕ) = r2 sin θ
∂f

∂r
dθ ∧ dϕ+ sin θ

∂f

∂θ
dϕ ∧ dr +

1

sin θ

∂f

∂ϕ
dr ∧ dθ. ♣

Example. We consider M = R4 with the Minkowski metric tensor field
(pseudo-Riemannian manifold)

g = dx1 ⊗ dx1 + dx2 ⊗ dx2 + dx3 ⊗ dx3 − dx4 ⊗ dx4

and the one-form

du =

4∑

j=1

∂u

∂xj
dxj .

We have

∗du =

4∑

j=1

∂u

∂xj
(∗dxj)

with

∗dx1 = −dx2 ∧ dx3 ∧ dx4, ∗dx2 = dx3 ∧ dx4 ∧ dx1

∗dx3 = −dx4 ∧ dx1 ∧ dx2, ∗dx4 = −dx1 ∧ dx2 ∧ dx3

so that

d(∗du) = −
(
∂2u

∂x2
1

+
∂2u

∂x2
2

+
∂2u

∂x2
3

− ∂2u

∂x2
4

)
Ω

where

Ω = dx1 ∧ dx2 ∧ dx3 ∧ dx4

is the volume element in Minkowski space. From the condition d(∗du) = 0
we obtain the linear wave equation

(
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

− ∂2

∂x2
4

)
u = 0

with the Minkowski metric as underlying metric tensor field. ♣
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8.8 Pseudospherical Surfaces

Soliton equations can be derived from pseudospherical surfaces. Extensions
to other soliton equations are straightforward. Soliton equations have sev-
eral remarkable properties in common: (i) the initial value problem can be
solved exactly in terms of the inverse scattering methods, (ii) they have
an infinite number of conservation laws, (iii) they have Bäcklund trans-
formations, (iv) they pass the Painlevé test. Furthermore they describe
pseudospherical surfaces, i.e. surfaces of constant negative Gaussian curva-
ture. An example is the sine-Gordon equation

∂2u

∂x1∂x2
= sin(u).

The metric tensor field for the sine-Gordon equation is given by

g = dx1⊗dx1+cos(u(x1, x2))dx1⊗dx2+cos(u(x1, x2))dx2⊗dx1+dx2⊗dx2

i.e. the line element is

(
ds

dλ

)2

=

(
dx1

dλ

)2

+ 2 cos(u(x1, x2))
dx1

dλ

dx2

dλ
+

(
dx2

dλ

)2

.

Here u is a smooth function of x1 and x2. First we have to calculate the
Riemann curvature scalar R from g. Then the sine-Gordon equation follows
when we impose the condition R = −2. We have

g11 = g22 = 1, g12 = g21 = cos(u(x1, x2)).

The quantity g can be written in matrix form

g =

(
g11 g12
g21 g22

)
.

Then the inverse of g is given by

g−1 =

(
g11 g12

g21 g22

)

where

g11 = g22 =
1

sin2 u
, g12 = g21 = −cosu

sinu
.

Next we have to calculate the Christoffel symbols. They are defined as

Γamn :=
1

2
gab(gbm,n + gbn,m − gmn,b)
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where the sum convention is used and

gbm,1 :=
∂gbm
∂x1

gbm,2 :=
∂gbm
∂x2

.

Next we have to calculate the Riemann curvature tensor which is given
by

Rrmsq := Γrmq,s − Γrms,q + ΓrnsΓ
n
mq − ΓrnqΓ

n
ms.

The Ricci tensor follows as

Rmq := Ramaq = −Ramqa
i.e. the Ricci tensor is constructed by contraction. From Rnq we obtain
Rmq via

Rmq = gmnRnq .

Finally the curvature scalar R is given by

R := Rmm.

With the metric tensor field given above we find that

R = − 2

sinu

∂2u

∂x1∂x2
.

If R = −2, then we obtain the sine-Gordon equation.

8.9 Computer Algebra Applications

Let V be a finite dimensional vector space over R. Let r be an integer ≥ 1.
Let V (r) be the set of all r-tuples of elements of V , i.e. V (r) = V ×· · ·×V .
An element of V (r) is therefore an r-tuple (v1, . . . , vr) with vi ∈ V . Each
component of the r-tuple is an element of V . Let U be a finite dimensional
vector space over R. By an r-multilinear map of V into U one means a
map

f : V × · · · × V → U

of V (r) into U which is linear in each component. In other words, for each
i = 1, . . . , r we have

f(v1, . . . , vi + v′i, . . . , vr) = f(v1, . . . , vr) + f(v1, . . . , v
′
i, . . . , vr)

f(v1, . . . , cvi, . . . , vr) = cf(v1, . . . , vr)

for all vi, v
′
i ∈ V and c ∈ R. We say that a multilinear map f is alter-

nating if it satisfies the condition f(v1, . . . , vr) = 0 whenever two adjacent
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components are equal, i.e. whenever there exists an index j < r such that
vj = vj+1. We see that a multilinear map satisfies conditions completely
similar to the properties satisfied by determinants.

Let V be a finite dimensional vector space over R, of dimension n. Let
r be an integer 1 ≤ r ≤ n. There exists a finite dimensional space over
R, denoted by

∧r V , and an r-multilinear alternating map V (r) → ∧r V ,
denoted by

(u1, . . . , ur) 7→ u1 ∧ · · · ∧ ur,
satisfying the following properties: If U is a vector space over R, and
g : V (r) → U is an r-multilinear alternating map, then there exists a unique
linear map g∗ :

∧→ U such that for all u1, . . . , ur ∈ V we have

g(u1, . . . , ur) = g∗(u1 ∧ · · · ∧ ur).

If {v1, . . . , vn} is a basis of V , then the set of elements

{ vi1 ∧ · · · ∧ vir (1 ≤ i1 < · · · < ir ≤ n) }

is a basis of
∧r

V . Using the exterior product we evaluate the determinant
of the 4× 4 matrix

A =




1 2 5 2
0 1 2 3
1 0 1 0
0 3 0 7


 .

// grassmann.cpp

#include <iostream>

#include "vector.h"

#include "matrix.h"

#include "symbolicc++.h"

using namespace std;

int main(void)

{

int c, i, j, n=4;

Symbolic e0("e0"), e1("e1"), e2("e2"), e3("e3");

e0 = ~e0; e1 = ~e1; e2 = ~e2; e3 = ~e3; // non-commutative

Symbolic result;

Matrix<Symbolic> A(n,n);

Vector<Symbolic> e(n);
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A[0][0] = 1; A[0][1] = 2; A[0][2] = 5; A[0][3] = 2;

A[1][0] = 0; A[1][1] = 1; A[1][2] = 2; A[1][3] = 3;

A[2][0] = 1; A[2][1] = 0; A[2][2] = 1; A[2][3] = 0;

A[3][0] = 0; A[3][1] = 3; A[3][2] = 0; A[3][3] = 7;

e[0] = e0; e[1] = e1; e[2] = e2; e[3] = e3;

result = 1;

for(i=0;i<n;i++) result *= (A[i]|e); // matrix times vector

cout << result << endl << endl;

do

{

c = 0;

// for all i>j set e[i]*e[j] to -e[j]*e[i]

for(i=0;i<n;i++)

for(j=0;j<i;j++)

result = result.subst(e[i]*e[j],-e[j]*e[i],c);

} while(c!=0);

// set e[i]*e[i] to 0

for(i=0;i<n;i++) result = result.subst(e[i]*e[i],0);

for(i=0;i<n;i++) result = result.subst(e[i]*e[i]*e[i],0);

cout << "result = " << result << endl;

return 0;

}

Let E3 be the three-dimensional Euclidean space. The metric tensor field
is given by

g = dx1 ⊗ dx1 + dx2 ⊗ dx2 + dx3 ⊗ dx3.

The two-dimensional unit sphere

S2 := { (x1, x2, x3) : x2
1 + x2

2 + x2
3 = 1 }

is embedded into E3. We evaluate the metric tensor field for the unit
sphere. A parameter representation is given by

x1(u, v) = cos(u) sin(v), x2(u, v) = sin(u) sin(v), x3(u, v) = cos(v)

where 0 < v < π. Since

dx1 =− sin(u) sin(v)du+ cos(u) cos(v)dv

dx2 = cos(u) sin(v)du+ sin(u) cos(v)dv

dx3 =− sin(v)dv
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we obtain for the metric tensor field of the unit sphere

g̃ = sin2(v)du⊗ du+ dv ⊗ dv.

In the program we calculate g̃. The tensor product ⊗ is denoted by ∗.

// metrics.cpp

#include <iostream>

#include "symbolicc++.h"

using namespace std;

int main(void)

{

Symbolic u("u"), v("v");

Symbolic du("du"), dv("dv");

du = ~du; dv = ~dv; // du and dv are not commutative

Symbolic x1 = cos(u)*sin(v);

Symbolic x2 = sin(u)*sin(v);

Symbolic x3 = cos(v);

Symbolic dx1 = df(x1,u)*du + df(x1,v)*dv;

Symbolic dx2 = df(x2,u)*du + df(x2,v)*dv;

Symbolic dx3 = df(x3,u)*du + df(x3,v)*dv;

Symbolic GT = dx1*dx1 + dx2*dx2 + dx3*dx3;

GT = GT[(cos(u)^2)==1-(sin(u)^2),(cos(v)^2)==1-(sin(v)^2)];

cout << GT << endl;

return 0;

}

8.10 Exercises

(1) Let z = x+ iy with x, y ∈ R. Find dz ∧ dz.

(2) Given the metric tensor field

g = dx1 ⊗ dx1 + dx2 ⊗ dx2 − dx3 ⊗ dx3 − dx4 ⊗ dx4 .

Calculate

∗(dx1 ∧ dx2), ∗(dx1 ∧ dx3), ∗(dx1 ∧ dx4)
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and
∗(dx1 ∧ dx2 ∧ dx3 ∧ dx4) .

(3) Consider the manifold M = R2 and the metric tensor field

g = dx1 ⊗ dx1 + dx2 ⊗ dx2 .

Let
ω = ω1(x)dx1 + ω2(x)dx2

be a differential one-form in M . Show that ω can be written as

ω = dα+ δβ + γ

where α is a C∞(R2 function, β is a two-form given by β = b(x)dx1 ∧ dx2

(b(x) ∈ C∞(R2)) and γ = γ1(x)dx1 +γ2(x)dx2 is a harmonic one-form, i.e.
(dδ + δd)γ = 0. We define

δβ := (−1) ∗ d ∗ β .

(4) To find the extrema of the function

f(x1, x2, x3) = x1x2x3

subject to the constraints

x2
1 + x2

2 + x2
3 = 4

x2
1 + x2

2 − x2
3 = 0

one has to solve these two equations together with the equation result from
df ∧ dg ∧ dh = 0, where

g(x1, x2, x3) = x2
1 + x2

2 + x2
3, h(x1, x2, x3) = x2

1 + x2
2 − x2

3 .

Find this equation.

(5) Show that the tangent space to the manifold given by the sphere

S2 = {x ∈ R3 : ‖x‖ = 1 }

at the point u consists of all vectors in R3 perpendicular to u. Consider
Euler’s parametrization of the sphere

Ψ : (θ, φ) → (sinφ cos θ, sinφ sin θ, cosφ)
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where −π < θ < π and 0 < φ < π. Compute

Ψ∗

(
∂

∂θ

)
, Ψ∗

(
∂

∂φ

)
.

Show that these are vectors in the tangent space of the sphere.

(6) Show that the metric tensor field

g = dx1 ⊗ dx1 + dx2 ⊗ dx2 + dx3 ⊗ dx3 + dx4 ⊗ dx4

takes the form

g̃ = r2(dχ⊗ dχ+ sin2 χ(dθ ⊗ dθ + sin2 θdφ⊗ dφ))

using spherical coordinates (χ, θ, φ) in R4

x1(r, χ, θ, φ) = r sinχ cos θ

x2(r, χ, θ, φ) = r sinχ sin θ cosφ

x3(r, χ, θ, φ) = r sinχ sin θ sinφ

x4(r, χ, θ, φ) = r cosχ

where 0 ≤ χ ≤ π, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π.

(7) Consider the n-form in Rn

ω = dx1 ∧ · · · ∧ dxn .

Let

V =

n∑

j=1

Vj(x)
∂

∂xj

be a smooth vector field defined on Rn. Calculate V ω and d(V ω).

(8) Consider the n− 1 form α defined on Rn

α =
n∑

j=1

(−1)j+1Vj(x)dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxn

where ̂ denotes omission and the Vj ’s are smooth functions. Calculate dα.
Give an interpretation of dα = 0.



Chapter 9

Lie Derivative and
Invariance

9.1 Introduction

The concept of the Lie derivative of functions, vector fields, differential

forms and tensor fields with respect to a vector field plays an important

role in many domains in physics. Applications have been made to classical

mechanics, hydrodynamics, optics, quantum mechanics, theory of relativity,

statistical mechanics and supergravity. The Lie derivative also plays a

leading role in the study of symmetries of differential equations. This will

be discussed in detail in the next chapter. In the present chapter we give

a survey on the geometrical setting of the Lie derivative, (Choquet-Bruhat

et al [17], von Westenholz [133], Olver [82], Steeb [109], [114]). For the

applications of the differential forms and the Lie derivative we show how

some physical laws can be derived within this approach.

9.2 Definitions

In this section we discuss the Lie derivative of functions, vector fields,

differential forms and tensor fields on a differentiable manifold M . The

Lie derivative of a certain geometrical object on a manifold M gives the

infinitesimal change of these objects under the flow exp(εZ) induced by Z,

where Z is a vector field on M . By a geometrical object we mean that σ

can be a smooth function, a smooth vector field, a smooth differential form

or a smooth metric tensor field.

145
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Let us first define the Lie derivative of a C∞-function which is a 0-form on
M .

Definition 9.1 Let Z be a vector field on M and {ϕ(ε)} the local 1-
parameter group of transformations generated by Z. This vector field in-
duces a differential operator LZ on the C∞-function f referred to as the
Lie derivative of f with respect to Z, defined by

(LZf)(x) := lim
ε→0

1

ε
[f(ϕ(x, ε)) − f(x)]

= lim
ε→0

1

ε
[(ϕ(ε)∗f)(x) − f(x)]

=
d

dε
f(ϕ(x, ε))

∣∣∣∣
ε=0

where ϕ∗(ε) is the pull back map.

For differential forms we define

Definition 9.2 If ω is any k-form on M , and Z any vector field on M ,
the Lie derivative LZω of ω with respect to Z is the k-form

(LZω)(x) := lim
ε→0

1

ε
[(ϕ(ε)∗ω)(x) − ω(x)]

where {ϕ(ε)} is the local 1-parameter group generated by Z.

It can be shown that the Lie derivative of k-forms with respect to a vector
field Z can be written in terms of the exterior derivative and interior product

LZω := Z dω + d(Z ω).

We now give the properties of the Lie derivative. Let Z and Y be any two
vector fields on M

1. If f1, f2 ∈ ∧0 T
∗M , then using the product rule

LZ(f1f2) = f1(LZf2) + f2(LZf1)

where
LZfi = Z dfi + d(Z fi) = Zfi i = 1, 2.

Obviously with f = c where c is a constant it follows that LZc = 0.

2. The operators d and LZ commute, i.e.,

LZdω = d(LZω)
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for any ω ∈ ∧T ∗M . This can be seen by direct calculation

LZdω = Z d(dω) + d(Z dω) = d(Z dω)

and
d(LZω) = d(Z dω) + d(d(Z ω)) = d(Z dω).

3. If ω, σ ∈ ∧k T ∗M and c1, c2 are constants, then

LZ(c1ω + c2σ) = c1LZω + c2LZσ

and
L(c1Z+c2Y )ω = c1LZω + c2LY ω.

4. If ω ∈ ∧k T ∗M and θ ∈ ∧r T ∗M , then the product rule holds, i.e.,

LZ(ω ∧ θ) = (LZω) ∧ θ + ω ∧ (LZθ).

5. If f ∈ ∧0 T
∗M and ω ∈ ∧k T ∗M , then

LZ(fω) = (Zf)ω + f(LZω)

and
LfZω = f(LZω) + df ∧ (Z ω).

6. If ω ∈ ∧k T ∗M , then

L[Z,Y ]ω = (LZLY − LY LZ)ω = [LZ , LY ]ω.

7. If f : M → N is an orientation preserving diffeomorphism, then

f∗(LZα) = Lf∗Z(f∗α) .

Let us now investigate how a Lie derivative of a vector field with respect
to a vector field can be defined. Let Z and Y be any two vector fields on
M . We define the Lie derivative of Y with Z by requiring that LZ , when
applied to Y ω, be a derivation in the sense that

LZ(Y ω) = (LZY ) ω + Y LZω

for all ω ∈ ∧T ∗M . We now consider a 0-form f where we put ω = df . It
follows that

LZ(Y ω) = LZ(Y df) = LZ(Y f) = ZY f
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while

Y LZω = Y (LZdf) = Y {Z d(df) + d(Z df)} = Y d(Zf) = Y Zf.

Substituting into the above yields

Z(Y f) = (LZY ) df + Y (Zf).

Since
(LZY ) df = (LZY )f = (ZY − Y Z)f

it follows that LZY = [Z, Y ] where [ , ] is the commutator.

Example. Consider the vector fields Z and Y in local coordinates so that

Z =

m∑

j=1

ξj(x)
∂

∂xj
, Y =

∂

∂xi

where x = (x1, . . . , xm). Since

LZ
∂

∂xi
=



m∑

j=1

ξj(x)
∂

∂xj
,
∂

∂xi


 = −

m∑

j=1

(
∂ξj(x)

∂xi

)
∂

∂xj

and

LY Z =


 ∂

∂xi
,

m∑

j=1

ξj(x)
∂

∂xj


 =

m∑

j=1

(
∂ξj(x)

∂xi

)
∂

∂xj

we obtain
LZY + LY Z = 0. ♣

Example. Let V , X be two vector fields defined onM . Let α be a one-form
defined on M and let f be a function f : M → R. If

LXα = df and V dα = 0

then
LV (f −X α) = 0 and LX(f −X α) = 0.

The vector field V describes a dynamical system and V dα = 0 is the
equation of motion, where α is the Cartan form

α :=

N∑

i=1

3∑

j=1

pijdqij −H(p,q)dt.
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The assumption LXα = df is the invariance requirement of α under the
vector field X . The equation LV (f − X α) = 0 tells that the function
f −X α is a constant of motion. The Cartan form given above applies in
non-relativistic classical mechanics. In relativistic classical mechanics we
have

α :=

N∑

i=1

3∑

j=1

pijdqij −
N∑

i=1

Eidti −K(p,E,q, t)dλ. ♣

Some physical quantities, for example the energy-momentum tensor, cannot
be expressed as a differential form. It is a tensor field. We thus give the
following definition for the Lie derivative of a tensor field of type (r, s) on
M .

Definition 9.3 Let Z be a vector field on M , {ϕ(ε)} the 1-parameter group
of transformation generated by Z and T a tensor field of type (r, s) on M .
Then the Lie derivative of T with respect to Z is a tensor field of type (r, s)
on M defined by

(LZT )(x) := lim
ε→0

1

ε
[(ϕ(ε)∗T )(x) − T (x)] .

Let S and T be (r, s) tensor fields and Z and Y vector fields on M . Then

LZ(T + S) =LZT + LZS

LZ+Y S =LZS + LY S

LZ(fT ) =Z(f)T + f(LZT ).

Let S be a (r, s) tensor field and T be a (u, v) tensor field. Then (product
rule)

LZ(T ⊗ S) = (LZT ) ⊗ S + T ⊗ (LZS).

Let T be a tensor field and f : M → N be an orientation preserving
diffeomorphism. Then

f∗(LZT ) = Lf∗Zf
∗T .

Application of the Lie derivative will be discussed in the next section.

9.3 Invariance and Conformal Invariance

Let Z be a vector field on M and σ some geometrical object on M . Let us
first give the definitions of conformal invariance and invariance. Then we
give some examples to illustrate these definitions for various geometrical
objects (i.e., functions, differential forms, vector fields and tensor fields).
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Definition 9.4 The geometrical object σ is called conformal invariant
w.r.t. the vector field Z if

LZσ = ρσ

where ρ ∈ C∞(M).

Definition 9.5 The geometrical object σ is called invariant w.r.t. the
vector field Z if

LZσ = 0.

Geometrically the condition of invariance implies that the object σ does
not change as it propagates down the trajectories of Z. For short, σ is
sometimes called Z-invariant.

Let f be an invariant w.r.t the vector field

Z =

m∑

i=1

ξi(x)
∂

∂xi

on M = Rm so that LZf = 0. It follows that f is a first integral of the
autonomous system of differential equations

dx

dε
= ξ(x)

where x = (x1, . . . , xm) and ξ = (ξ1, . . . , ξm). This follows from straight-
forward calculations

LZf(x) ≡ Zf(x) =

m∑

i=1

ξi(x)
∂f

∂xi
= 0.

For f to be a first integral we have

df

dε
=

m∑

i=1

∂f(x)

∂xi

dxi
dε

=

m∑

i=1

∂f(x)

∂xi
ξi(x) = 0.

An important observation is that if some invariant quantities are known,
other invariants can be calculated. We have the following properties: Let
LZ1σ = 0 and LZ2σ = 0. Then

L[Z1,Z2]σ = 0.

Let Z be a vector field onM , and ω, θ invariant forms of Z. Then Z ω, dω,
and ω ∧ θ are invariant forms of Z. This follows from the properties of the
Lie derivative given in the previous section. For the conformal invariance
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the following can easily be shown. If ω is conformal invariant w.r.t Z then
Z ω is also conformal invariant w.r.t the same Z. Applying the properties
of the Lie derivative with LZω = fω we find

LZ(Z ω) = [Z,Z] ω + Z (fω) = f(Z ω).

If ω and θ are conformal invariants w.r.t Z then ω ∧ θ is also conformal
invariant w.r.t the same Z. Applying the properties of the Lie derivative
with LZω = fω and LZθ = gθ we find

LZ(ω ∧ θ) = (LZω) ∧ θ + ω ∧ (LZθ) = fω ∧ θ + ω ∧ gθ = (f + g)(ω ∧ θ).
In general dω is not a conformal invariant w.r.t. Z if ω is a conformal
invariant w.r.t. Z. Consider d(LZω) = LZ(dω) and the relation

d(fω) = (df) ∧ ω + fdω .

It follows that only if f is constant we find that LZdω = fdω.

We now give some examples to illustrate the definitions given above.

Example. We find that the quadratic form x2
1 + x2

2 + x2
3 − x2

4 is invariant
under the vector fields associated with the Lorentz group, given by

Z1 = x4
∂

∂x1
+ x1

∂

∂x4
, Z2 = x4

∂

∂x2
+ x2

∂

∂x4

Z3 = x4
∂

∂x3
+ x3

∂

∂x4
, Z4 = x2

∂

∂x1
− x1

∂

∂x2

Z5 = x3
∂

∂x2
− x2

∂

∂x3
, Z6 = x1

∂

∂x3
− x3

∂

∂x1
.

This means LZj
(x2

1 + x2
2 + x2

3 − x2
4) = 0, where j = 1, . . . , 6. ♣

Example. Let f, g be smooth functions. We find that the differential
one-form

ω = (x1f(r) − x2g(r))dx2 − (x2f(r) + x1g(r))dx1

is invariant w.r.t the vector field

Z = x2
∂

∂x1
− x1

∂

∂x2

where r2 := x2
1 + x2

2. Straightforward calculation yields

LZω=LZ(x1f(r)dx2) − LZ(x2g(r)dx2) − LZ(x2f(r)dx1) − LZ(x1g(r)dx1)

= (x2f(r)dx2 − x1f(r)dx1) − (−x1g(r)dx2 − x2g(r)dx1)

−(−x1f(r)dx1 + x2f(r)dx2) − (x2g(r)dx1 + x1g(r)dx2).
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Thus LZω = 0. ♣

Example. We consider the one forms

ω= dΦ − u1dx2 − u2dx1

σ = du1 ∧ dx1 + du2 ∧ dx2 −m2Φdx1 ∧ dx2

and the vector field

Z = x1
∂

∂x2
+ x2

∂

∂x1
− u2

∂

∂u1
− u1

∂

∂u2

where m2 is a constant. To obtain LZω we make use of LZω ≡ d(Z ω) +
Z (dω). Straightforward calculations yield

Z ω=−u1x1 − u2x2

d(Z ω) =−x1du1 − u1dx1 − x2du2 − u2dx2

dω=−du1 ∧ dx2 − du2 ∧ dx1

Z (dω) =Z (−du1 ∧ dx2 − du2 ∧ dx1).

We recall that Z (α ∧ β) = (Z α) ∧ β + (−1)rα ∧ (Z β) where α is an
r-form and β an s-form. It follows that

Z (dω) = u2dx2 + x1du1 + u1dx1 + x2du2

so that LZω = 0 which implies that LZdω = 0. In the same way it can also
be shown that LZσ = 0. The example has physical meaning. It describes
the one-dimensional Klein-Gordon equation

∂2Φ

∂x2
1

− ∂2Φ

∂x2
2

+m2Φ = 0

in the so called geometrical approach of partial differential equations. Within
this approach the partial differential equation is cast into an equivalent set
of differential forms. In the present case we have put

∂Φ

∂x2
= u1,

∂Φ

∂x1
= u2.

The vector field Z is associated with the Lorentz transformation. The con-
clusion is then that the differential equation is invariant under the Lorentz
transformation described by the vector field Z. ♣
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The invariance of differential equations under transformation groups is dis-
cussed in detail in the next chapter where we consider the jet bundle for-
malism.

Let us now consider the invariance of vector fields. The trajectories of a
vector field Z2 will be invariant under a one-parameter group of transfor-
mation generated by a vector field Z1, if

[Z1, Z2] = fZ2.

Obviously, any vector parallel to Z2 trivially satisfies this equation. The
special case

[Z1, Z2] = 0

is an integrability condition. The geometrical meaning is that the (local)
flows (ϕ1, ϕ2) associated with Z1 and Z2 commute

ϕ1 ◦ ϕ2 = ϕ2 ◦ ϕ1.

Example. Consider the vector fields

Z1 = x1
∂

∂x2
− x2

∂

∂x1
, Z2 = x1

∂

∂x1
+ x2

∂

∂x2
.

Obviously [Z1, Z2] = 0. The vector fields can be cast into a matrix form
(
Z1

Z2

)
=

(
−x2 x1

x1 x2

)(
∂/∂x1

∂/∂x2

)
.

The determinant of the 2 × 2 matrix gives the function

I(x1, x2) = −(x2
1 + x2

2)

where I is an invariant w.r.t the vector field Z1

LZ1I = 0

and conformal invariant w.r.t the vector field Z2

LZ2I = 2I. ♣

The relation between the conformal invariance LZ1σ = fσ and [Z1, Z2] =
fZ2 can be stated as the following

Theorem 9.1 Let M = Rm (or an open subset of Rm) and θ = dx1 ∧
· · · ∧ dxm. Let Z1 =

∑m
i=1 ξi∂/∂xi and Z2 =

∑m
i=1 ηi∂/∂xi be two vector

fields such that [Z1, Z2] = fZ2. Then

LZ1(Z2 θ) = (f + divξ) Z2 θ.
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Proof. We have

LZ1(Z2 θ) = (LZ1Z2) θ + Z2 (LZ1θ)

= [Z1, Z2] θ + Z2 (LZ1θ)

= (fZ2) θ + Z2 {d(Z1 θ) + Z1 dθ}
= f(Z2 θ) + Z2 (divξ)θ

= (f + div ξ)(Z2 θ).

We now consider the definition for invariance and conformal invariance
for the metric tensor field g on a Riemannian manifold. In particular we
consider the metric tensor field on Rm given by

g =
1

2

m∑

i,j=1

gij(x)dxi ⊗ dxj .

Definition 9.6 The vector fields Zj on Rm are called Killing vector
fields if

LZj
g = 0

for all j = 1, . . . , p. These vector fields span a p-dimensional Lie algebra.

Definition 9.7 The vector fields Zj on Rm are called conformal vector
fields if

LZj
g = ρg

for all j = 1, . . . , p with ρ ∈ C∞(Rm). These vector fields span a p-
dimensional Lie algebra under the commutator.

Example. Consider the vector space R3 and the vector field

Z =

3∑

j=1

ξj(x)
∂

∂xj
.

We also make the assumption that gjk = δjk where δjk is the Kronecker
symbol. We now calculate the Lie derivative. Then we give an interpreta-
tion of LZg = 0. Since

LZg=LZ(dx1 ⊗ dx1 + dx2 ⊗ dx2 + dx3 ⊗ dx3)

=LZ(dx1 ⊗ dx1) + LZ(dx2 ⊗ dx2) + LZ(dx3 ⊗ dx3)

LZ(dxj ⊗ dxk) = (LZdxj) ⊗ dxk + dxj ⊗ (LZdxk)

and

LZdxj = d(Z dxj) = dξj =

3∑

k=1

∂ξj
∂xk

dxk
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we find

LZg =
1

2

3∑

j,k=1

(
∂ξj
∂xk

+
∂ξk
∂xj

)
dxj ⊗ dxk .

Since dxj⊗dxk (j, k = 1, 2, 3) are basic elements, the right-hand side of the
above equation can also be written as a symmetric 3 × 3 matrix, namely

1

2




2∂ξ1/∂x1 ∂ξ1/∂x2 + ∂ξ2/∂x1 ∂ξ1/∂x3 + ∂ξ3/∂x1

∂ξ1/∂x2 + ∂ξ2/∂x1 2∂ξ2/∂x2 ∂ξ2/∂x3 + ∂ξ3/∂x2

∂ξ1/∂x3 + ∂ξ3/∂x1 ∂ξ2/∂x3 + ∂ξ3/∂x2 2∂ξ3/∂x3


 .

The physical meaning is as follows: Consider a deformable body B in R3,
B ⊂ R3. A displacement with or without deformation of the body B is a
diffeomorphism of R3 defined in a neighbourhood of B. All such diffeomor-
phisms form a local group generated by the so-called displacement vector
field Z. Consequently, the strain tensor field can be considered as the Lie
derivative of the metric tensor field g in R3 with respect to the vector field
Z. The metric tensor field gives rise to the distance between two points,
namely

(ds)2 =

3∑

j,k=1

gjkdxjdxk .

The strain tensor field measures the variation of the distance between two
points under a displacement generated by Z. Then the equation LZg = 0
tells us that two points of the body B do not change during the displace-
ment. The strain tensor is the Lie derivative of the metric tensor field with
respect to the deformation (or exactly the displacement vector field). ♣

Example. Here we consider the Gödel metric tensor field which is
given by

g = a2[dx⊗dx− 1

2
e2xdy⊗dy+dz⊗dz− c2dt⊗dt− cexdy⊗dt− cexdt⊗dy]

where a and c are constants. One can show that the vector fields

Z1 =
∂

∂y
, Z2 =

∂

∂z
, Z3 =

∂

∂t

Z4 =
∂

∂x
− y

∂

∂y

Z5 = y
∂

∂x
+ (e−2x − 1

2
y2)

∂

∂y
− 2

c
e−x

∂

∂t
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are Killing vector fields of the Gödel metric tensor. Since the functions gjk
do not depend on y, z and t it is obvious that Z1, Z2 and Z3 are Killing
vector fields. Applying the product rule and

L∂/∂xe
2xdt= 2e2xdt L∂/∂xe

2xdy = 2e2xdy

Ly∂/∂ydy= dy Ly∂/∂ye
xdy = exdy

we find that
LZ4g = 0.

For Z5 we apply the product rule and obtain

LZ5g = 0.

The Gödel metric tensor field contains closed timelike lines; that is, an ob-
server can influence his own past. ♣

Example. Consider the Minkowski metric

g = dx1 ⊗ dx1 + dx2 ⊗ dx2 + dx3 ⊗ dx3 − dx4 ⊗ dx4.

The vector fields with the corresponding functions ρ in LZg = ρg are listed
below.

T =
∂

∂x4
ρT = 0

Pi =
∂

∂xi
ρPi

= 0 i = 1, 2, 3

Rij = xi
∂

∂xj
− xj

∂

∂xi
ρRij

= 0 i 6= j, i, j = 1, 2, 3

Li = xi
∂

∂x4
+ x4

∂

∂xi
ρLi

= 0 i = 1, 2, 3

S = x1
∂

∂x1
+ x2

∂

∂x2
+ x3

∂

∂x3
+ x4

∂

∂x4
ρS = 2

I4 = 2x4

(
x1

∂

∂x1
+ x2

∂

∂x2
+ x3

∂

∂x3

)

+ (x2
1 + x2

2 + x2
3 + x2

4)
∂

∂x4
ρI4 = 4x4
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Ii = −2xi

(
x1

∂

∂x1
+ x2

∂

∂x2
+ x3

∂

∂x3
+ x4

∂

∂x4

)

+ (x2
1 + x2

2 + x2
3 − x2

4)
∂

∂xi
ρIi

= −4xi, i = 1, 2, 3.

Note that the vector fields T , Pi, Rij and Li are the Killing vector fields
for the Minkowski metric. The physical interpretation of the given vector
fields (Lie group generators) is the following: T generates time translation;
Pi space translation; Rij space rotation; Li space-time rotations, and S the
uniform dilatations (x 7→ εx, ε > 0). I4 is the conjugation of T by the
inversion in the unit hyperboloid

Q : (x) 7→ (x)/(x2
1 + x2

2 + x2
3 − x2

4)

and the Ii are the conjugations of the Pi by Q. ♣

Finally we give some examples which illustrate the application to physics.

Example. In physics we study problems in space-time so that the vector
field under investigation takes the form

Z =

3∑

j=1

ξj(x, t)
∂

∂xj
+
∂

∂t
.

The above vector field is usually called the Eulerian (velocity) field. We
can apply the vector field, via the Lie derivative, to 0-forms, 1-forms, 2-
forms, 3-forms and 4-forms. We require that LZω = 0 and identify both
the vector field Z and the form ω with physical quantities. The invariance
requirement will then result in physical laws. As useful abbreviations we
introduce

Ω = dx1 ∧ dx2 ∧ dx3 ∧ dt

and

ω = dx1 ∧ dx2 ∧ dx3

where Ω is the volume element in space-time and ω the spatial volume
element. Consider first the vector field f(x, t)Z and the 4-form Ω. It
follows that

LfZΩ =

(
∂f

∂t
+ ξ1

∂f

∂x1
+ ξ2

∂f

∂x2
+ ξ3

∂f

∂x3
+ fdiv ξ

)
Ω
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where ξ = (ξ1, ξ2, ξ3). Demanding that LfZΩ = 0 we obtain, after a little
algebraic manipulation, the relation

∂f

∂t
+

3∑

j=1

∂(fξj)

∂xj
= 0

since Ω is a basis element in R4. If we identify the quantity f with the
mass density and Z with the velocity vector field, then the above equation
describes nothing more than the well-known continuity equation in local
(differential) form. Obviously we get the same result when we consider the
field Z and the form fΩ. ♣

Example. The energy equation can be obtained by slightly modifying the
example given above. Now we start with the vector field

f(x, t)g(x, t)Z1 + Z2

where

Z2 = a1(x, t)
∂

∂x1
+ a2(x, t)

∂

∂x2
+ a3(x, t)

∂

∂x3

and x = (x1, x2, x3). We require that

L(fgZ1+Z2)Ω = (fp)Ω

so that we consider conformal invariance. By straightforward calculation
we find that

∂(fg)

∂t
+

3∑

i=1

∂(fgξi)

∂xi
+

3∑

i=1

∂ai
∂xi

= fp.

In the above equation we make the following identification: f is identified
with the mass density, g with the total energy per unit mass, Z2 with the
heat flux density, and fp the internal heat generation rate per unit volume.
Requiring that

LZ1(fω) = 0

we also obtain the continuity equation. However, an additional condition
appears. Since

LZ1fω=

(
∂f

∂t
+

3∑

i=1

∂(fξi)

∂xi

)
ω

+ f

(
∂ξ1
∂t

dx2 ∧ dx3 +
∂ξ2
∂t

dx3 ∧ dx1 +
∂ξ3
∂t

dx1 ∧ dx2

)
∧ dt
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we obtain, besides the continuity equation, the conditions

∂ξ1
∂t

=
∂ξ2
∂t

=
∂ξ3
∂t

= 0

which state that the flow is steady. ♣

9.4 Computer Algebra Applications

We give an application of the Lie derivative and Killing vector field. In the
SymbolicC++ program we calculate the Lie derivative

LV g =

4∑

j=1

4∑

k=1

[
4∑

l=1

(
Vl
∂gjk
∂xl

+ glk
∂Vl
∂xj

+ gjl
∂Vl
∂xk

)]
dxj ⊗ dxk

for the Gödel metric tensor field.

// liederivative.cpp

#include <iostream>

#include "symbolicc++.h"

#include "matrix.h"

#include "vector.h"

using namespace std;

int main(void)

{

Symbolic* x = new Symbolic[4];

x[0] = Symbolic("x[0]"); x[1] = Symbolic("x[1]");

x[2] = Symbolic("x[2]"); x[3] = Symbolic("x[3]");

Matrix<Symbolic> g(4,4);

g[0][0]=1; g[0][1]=0;

g[0][2]=0; g[0][3]=0;

g[1][0]=0; g[1][1]=-exp(2*x[0])/2;

g[1][2]=0; g[1][3]=-exp(x[0]);

g[2][0]=0; g[2][1]=0;

g[2][2]=1; g[2][3]=0;

g[3][0]=0; g[3][1]=-exp(x[0]);

g[3][2]=0; g[3][3]=-1;

Vector<Symbolic> V(4);

V[0] = x[1]; V[1] = exp(-2*x[0]) - x[1]*x[1]/2;
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V[2] = 0; V[3] = -2*exp(-x[0]);

Matrix<Symbolic> LD(4,4);

for(int j=0;j<=3;j++)

{

for(int k=0;k<=3;k++)

{

LD[j][k] = 0;

for(int l=0;l<=3;l++)

{

LD[j][k] += V[l]*df(g[j][k],x[l]) + g[l][k]*df(V[l],x[j])

+ g[j][l]*df(V[l],x[k]);

}

}

}

for(int m=0;m<=3;m++)

for(int n=0;n<=3;n++)

cout << "LD[" << m << "][" << n << "]=" << LD[m][n] << endl;

delete x;

return 0;

}

9.5 Exercises

(1) Consider the system of nonlinear differential equations

du1

dt
= u1u2 − u1u3

du2

dt
= u2u3 − u1u2

du3

dt
= u3u1 − u2u3

with the vector field

V = (u1u2 − u1u3)
∂

∂u1
+ (u2u3 − u1u2)

∂

∂u2
+ (u3u1 − u2u3)

∂

∂u3
.

Show that

I1 = u1 + u2 + u3, I2 = u1u2u3
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are first integrals by calculating the Lie derivative.

(2) Consider the manifold M = R3. Let

V =

n∑

j=1

Vj(x)
∂

∂xj

and
ω = dx1 ∧ dx2 + dx2 ∧ dx3 + dx3 ∧ dx1 .

(i) Find the conditions on Vj such that

LV ω = 0 .

(ii) Find the condition on Vj such that

LV ω = f(x)ω

where f is a smooth function.

(3) Consider the manifold M = Rn. Let

V =

n∑

j=1

xj
∂

∂xj

and

α =

n∑

j=1

(−1)jdx1 ∧ dx2 ∧ · · · ∧ d̂xj · · · ∧ · · ·dxn

where caret indicates omission. Calculate LV α.

(4) Consider the space-time described by the metric tensor field

g = −dt⊗ dt+ dr ⊗ dr + (b+ r2)(dθ ⊗ dθ + sin2 θdφ⊗ dφ)

where −∞ < r < ∞. This metric tensor field describes a space-time that
consists of two asymptotically flat space-times (at r → ∞ and r → −∞)
connected by a throat at r = 0 of radius 2πb. Find the Killing vector fields
for this metric tensor field.

(5) Consider the manifold M = Rn. Let

V =

n∑

j=1

Vj(x)
∂

∂xj
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be a smooth vector field. Let ω be a differential one-form. Assume that ω
is conformal invariant, i.e. LV ω = fω with f ∈ C∞(M). Is the two-form

α = dω + ω ∧ ω

conformal invariant?

(6) Prove the Jacobi identity

[X, [Y, Z]] + [Y, [Z,X ]] + [Z, [X,Y ]] = 0

for smooth vector fields X , Y , Z as follows. Let ϕt : M → M be the
one-parameter group of diffeomorphisms generated by the vector field X
and take the time derivative at t = 0 of the invariance of the Lie bracket
under diffeomorphism equation

ϕ∗
t [Y, Z] = [ϕ∗

tY, ϕ
∗
tZ] .



Chapter 10

Invariance of Differential
Equations

10.1 Prolongation of Vector Fields

10.1.1 Introductory Example

Consider an ordinary first order differential equation of the form

F

(
x, u(x),

du

dx

)
= 0. (1)

The set

F (x, u, u1) = 0

is assumed to be a smooth submanifold of R3. A solution of the differential
equation is a curve (x, u(x), u1(x)) on the surface F = 0 such that

u1(x) =
du

dx
.

Let us assume that the differential equation is invariant under the group of
rotations (ε ∈ R)

x′ = x cos ε− u sin ε, u′ = x sin ε+ u cos ε (2)

where

ϕ(x, u, ε) = x cos ε− u sin ε, φ(x, u, ε) = x sin ε+ u cos ε (3)

163
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are acting in the (x, u)-plane. From (2) we obtain the transformation

x′(x) = x cos ε− u(x) sin ε, u′(x′(x)) = x sin ε+ u(x) cos ε. (4)

It follows that
du′

dx
=
du′

dx′
dx′

dx
= sin ε+

du

dx
cos ε.

Consequently
du′

dx′
=

sin ε+ (du/dx) cos ε

cos ε− (du/dx) sin ε
.

Thus the action induced on the (x, u, u1)-space is given by

ϕ(x, u, ε) = x cos ε− u sin ε

φ(x, u, ε) = x sin ε+ u cos ε

φ(1)(x, u, u1, ε) =
sin ε+ u1 cos ε

cos ε− u1 sin ε

which form a one-parameter transformation group on R3

x′ = ϕ(x, u, ε) (5a)

u′ = φ(x, u, ε) (5b)

u′1 = φ(1)(x, u, u1, ε). (5c)

Thus the group action (ϕ, φ) on R2 has induced a group action (ϕ, φ, φ(1))
on R3 called the first prolongation.

The symmetry vector field (infinitesimal generator) of the transformation
group (2) is given by

Z = −u ∂
∂x

+ x
∂

∂u
.

Let us now find the vector field for the prolonged transformation group (5).
We consider

Z̄(1) = ξ(x, u)
∂

∂x
+ η(x, u)

∂

∂u
+ γ(x, u, u1)

∂

∂u1

with the infinitesimals

ξ(x, u) =
dϕ

dε

∣∣∣∣
ε=0

= −u

η(x, u) =
dφ

dε

∣∣∣∣
ε=0

= x

γ(x, u, u1) =
dφ(1)

dε

∣∣∣∣
ε=0

= 1 + u2
1.
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The vector field for the prolonged transformation is then given by

Z̄(1) = Z + (1 + u2
1)

∂

∂u1
. ♣

Definition 10.1 The vector field Z̄(1) is called the first prolonged vec-
tor field of Z.

It should be clear that the condition of invariance on the function F , given
in (1), w.r.t. the transformation (2) is obtained by calculating the Lie
derivative of F w.r.t. the above prolonged vector field Z̄(1), i.e.,

LZ̄(1)F = 0

whereby F =̂ 0. Thus, the condition of invariance of (1) under the trans-
formation (2), is given by

(
−u∂F

∂x
+ x

∂F

∂u
+ (1 + u2

1)
∂F

∂u1

)∣∣∣∣
F=0

= 0.

Example. Let
F ≡ u1 − f(x, u) .

Then the condition of invariance becomes the partial differential equation

u
∂f

∂x
− x

∂f

∂u
+ (1 + f2) = 0

with general solution

f(x, u) = tan

(
arcsin

(
u√

u2 + x2

)
+ g(u2 + x2)

)
.

The conclusion is that the differential equation

du

dx
= tan

(
arcsin

(
u√

u2 + x2

)
+ g(u2 + x2)

)

is invariant under the transformation (2), whereby g is an arbitrary func-
tion of one variable. ♣

Remark. Several authors use the notation pr(r)Z for the r-th prolongation
Z̄(r).

This prolongation can, in general, be found for any Lie transformation
group. Moreover, the above argument can be extended to include all deriva-
tives of all orders of the initial function u(x). What we are, however, inter-
ested in is to find the prolonged vector fields for r-th order partial differ-
ential equations with n dependent variables and m independent variables.
To study this problem it is useful to consider the jet bundle formalism for
differential equations.
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10.1.2 Local Jet Bundle Formalism

Here the jet bundle formulation (Rogers and Shadwick [91]) for differential
equations is discussed.

In general, the utility of jet bundles in this connection is due to the fact
that they have local coordinates which adopt the roles of the field variables
and their derivatives. In this context the derivatives may then be regarded
as independent quantities.

Let us begin the discussion with some definitions.

Let M and N be smooth manifolds of dimension m and n respectively. In
most cases we consider M = Rm, N = Rn with local coordinates x =
(x1, . . . , xm) and u = (u1, . . . , un), respectively. Let C∞(M,N) denote the
set of smooth maps from M to N . Then, if

f ∈ C∞(M,N)

is defined at x ∈ M , it follows that f is determined by n coordinate func-
tions

uj := fj(x). (6)

Definition 10.2 If f, g ∈ C∞(M,N) are defined at x ∈ M , then f and
g are said to be r-equivalent at x if and only if f and g have the same
Taylor expansion up to order r at x, i.e.,

fj(x) = gj(x)

∂kfj(x)

∂xi1∂xi2 . . . ∂xik
=

∂kgj(x)

∂xi1∂xi2 . . . ∂xik

where i1, . . . , ir ∈ {1, . . . ,m}, j ∈ {1, . . . , n}, 1 ≤ i1 · · · ≤ ir ≤ m, k ∈
{1, . . . , r}.

Definition 10.3 The r-equivalent class of f at x is called the r-jet of f
at x and is denoted by jrxf .

Definition 10.4 The collection of all r-jets jrxf as x ranges over M and
f ranges over C∞(M,N) is called the r-jet bundle of maps from M to N
and is denoted by Jr(M,N). Thus

Jr(M,N) :=
⋃

x∈M, f∈C∞(M,N)

jrxf.
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From the definitions above it follows that if p is a point in J r(M,N),
then p = jrxf for some x ∈ M and f ∈ C∞(M,N). Consequently p is
determined uniquely by the numbers

xi, uj , uj,i, uj,i1i2 , . . . , uj,i1...ir (7)

where xi, uj (i = 1, . . . ,m and j = 1, . . . , n) are the coordinates of x and
f , respectively and

uj,i1...ir =
∂rfj(x)

∂xi1∂xi2 · · · ∂xir
.

The conditions on i1, . . . , ir are given in definition (10.2). Note that the lat-
ter quantities are, by definition, independent of the choice of f in the equiv-
alence class jrxf . Any collection of numbers xi, uj , uj,i1...ik , k = 1, . . . , r
with the uj,i1...ik symmetric in the indices i1, . . . , ik determines a point of
Jr(M,N).

Remark. The r-jet bundle Jr(M,N) with M = Rm, N = Rn may, accord-
ingly, be identified by RdimJr

with coordinates (7).

Example. Let M = R2, N = R, and choose coordinates x1, x2 on M and
u1 on N . Then, if f, g ∈ C∞(M,N) are given by

f(x1, x2) = x2
1 + x2, g(x1, x2) = x2

f and g belong to the same 1-jet bundle J1(M,N) at (0, 1) but not to the
same 2-jet. The 2-jet bundle J2(M,N) may be identified with R8 with the
coordinates

x1, x2, u1, u1,1, u1,2, u1,11, u1,12, u1,22. ♣

If two maps are r-equivalent at x ∈ M they are also j-equivalent for all
j ≤ r. We can now state the following

Definition 10.5 The map

πrr−l : jrxf → jr−lx f

is defined as the canonical projection map from J r(M,N) to Jr−l(M,N),
where
l = 0, 1, . . . , r − 1. Here J0(M,N) is identified with M ×N and

πr0 : jrxf → (x, f(x)).
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Definition 10.6 The two maps

α : Jr(M,N) →M, β : Jr(M,N) → N

defined by
α : jrxf → x, β : jrxf → f

are called the source and target maps, respectively.

Definition 10.7 A map

h : M → Jk(M,N)

which satisfies
α ◦ h = idM

where idM is the identity map on M , is called the cross section of the
source map α.

Definition 10.8 A cross section of a map f ∈ C∞(M,N) which is denoted
by jrf and defined by

jrf : x → jrxf

is known as the r-jet extension of the map f . For r = 0, jrf is the graph
of f .

Example. Let M = R2 and N = R with the same coordinates as in the
previous example. The 1-jet extension j1f of f ∈ C∞(R2,R) is defined by

j1f : (x1, x2) →
(
x1, x2, f(x1, x2),

∂f

∂x1
,
∂f

∂x2

)

and the 2-jet extension j2f is

j2f : (x1, x2) →
(
x1, x2, f(x1, x2),

∂f

∂x1
,
∂f

∂x2
,
∂2f

∂x2
1

,
∂2f

∂x1∂x2
,
∂2f

∂x2
2

)
. ♣

Those cross sections of the source map α that are r-jet extensions of maps
from M to N may be conveniently characterized in terms of differential
forms on Jr(M,N).

Let us first consider the case r = 1 and define differential 1-forms θj , j =
1, . . . , n, on J1(M,N) by

θj := duj −
m∑

i=1

uj,idxi.
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Since uj and uj,i are coordinates on J1(M,N), the 1-forms θj are not
identically zero. There are, however, certain privileged submanifolds on
J1(M,N) on which the θj vanish. Consider

g : M → J1(M,N)

as a cross section of α which is given in coordinates by

g : x → (xi, gj(x), gj,i(x)).

We now consider the 1-forms g∗θj on M where g∗ is the pull-back map.
We have

g∗θj = dgj −
m∑

i=1

gj,idxi =

m∑

i=1

(
∂gj
∂xi

− gj,i

)
dxi

so that g∗θj = 0, if and only if

gj,i =
∂gj
∂xi

and this, in turn, holds if and only if g = j1(β ◦ g) where β ◦ g : M → N
and is given in coordinates by

β ◦ g : x → gj(x).

Definition 10.9 The one-forms θj are called contact forms and the set
of all finite linear combinations of the differential one-form θj over the ring
of C∞ functions on J1(M,N) is called the first order contact module
and is denoted by Ω1(M,N). Thus

Ω1(M,N) :=





n∑

j=1

fjθj : fj ∈ C∞(J1(M,N),R)



 .

The set of differential one-forms {θj} is called the standard basis for Ω(M,N).

We can now generalize the above discussion to the case k > 1 by introducing
the differential one-forms θj , θj,i1...il , l = 1, . . . , r − 1, according to

θj := duj −
m∑

k=1

uj,kdxk

θj,i1 := duj,i1 −
m∑

k=1

uj,i1kdxk

...

θj,i1...ir−1 := duj,i1...ir−1 −
m∑

k=1

uj,i1...ir−1kdxk.
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It follows that if g : M → Jr(M,N) is a cross section of the source map α,
then

g∗θj,i1...il = 0

with l = 1, . . . , r − 1, if and only if

g = jr(β ◦ g).

Thus, if g is given in coordinates by

g : x → (xi, gj(xi), gj,i1...ip(xi))

with p = 1, . . . , r, it follows that g∗θj = 0, if and only if

gj,i =
∂gj
∂xi

and then iteratively that g∗θj,i1...il = 0 if and only if

gj,i1...il+1
=

∂l+1gj
∂xi1 . . . ∂xil+1

with l = 1, . . . , r − 1.

Definition 10.10 The collection

Ωr(M,N) :=





n∑

j=1

fjθj +

n∑

j=1

m∑

i1,...,ip=1

(fj,i1...ipθj,i1...ip)





is called the r-th order contact module, where i1 ≤ i2 ≤ · · · ≤ ip.

One may equally characterize k-jet extensions in terms of differential m-
forms on Jr(M,N) or in terms of differential p-forms with 1 ≤ p ≤ m.

10.1.3 Prolongation of Vector Fields

We are now interested in the r-th prolongation of a vector field Z onM×N .

Definition 10.11 We introduce the total derivative operator D
(r)
i de-

fined on Jr(M,N) for r ≥ 1 by (i1 ≤ . . . ≤ ir−1)

D
(r)
i :=

∂

∂xi
+

n∑

j=1

uj,i
∂

∂uj
+ · · · +

n∑

j=1

m∑

i1,...,ir−1=1

uj,ii1...ir−1

∂

∂uj,i1...ir−1

.

The operator D
(r)
i denotes the r-th prolonged total derivative operator.
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D
(r)
i acts as the total derivative d/dxi on sections.

Example. If (xi, uj , uj,i, . . . , uj,i1...ir ) is a section then

Dif(xi, uj , uj,i, . . . , uj,i1...ir ) =
d

dxi
f(xi, uj , uj,i, . . . , uj,i1...ir ). ♣

Now, consider a general one parameter transformation group

x′i = ϕi(x,u, ε), u′j = φj(x,u, ε) (8)

where i = 1, . . . ,m and j = 1, . . . , n. Let Z, defined on M ×N , be a vector
field (infinitesimal generator) of this one parameter group given by

Z =

m∑

i=1

ξi(x,u)
∂

∂xi
+

n∑

j=1

ηj(x,u)
∂

∂uj
(9)

where
dϕi
dε

∣∣∣∣
ε=0

= ξi,
dφj
dε

∣∣∣∣
ε=0

= ηj .

Definition 10.12 Associated with the vector field Z is a vector field ZV
on J1(M,N) which is vertical over M and given by

ZV =

n∑

j=1

(
ηj −

m∑

i=1

ξiuj,i

)
∂

∂uj
. (10)

ZV is known as the vertical vector field of Z.

Since

Z θj =




m∑

i=1

ξi
∂

∂xi
+

n∑

j=1

ηj
∂

∂uj




(
duj −

m∑

i=1

uj,idxi

)
= ηj−

m∑

i=1

ξiuj,i

it follows that

ZV θj = (Z θj)
∂

∂uj
θj = Z θj .

Definition 10.13 The r-th prolongation of the vector field Z, denoted by
Z̄(r), is defined by

Z̄(r) := Z +

n∑

j=1

m∑

i=1

γj,i
∂

∂uj,i
+ · · · +

n∑

j=1

m∑

i1...ir=1

γj,i1...ir
∂

∂uj,i1...ir
(11)
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where

γj,i =Di(ηj) −
m∑

k=1

uj,kDi(ξk)

...

γj,i1...ir =Dir (γj,i1...ir−1) −
m∑

k=1

uj,i1...ir−1kDir (ξk).

Definition 10.14 The prolongation of the vertical vector field ZV ,denoted
by Z̄V , up to infinite order, is defined by

Z̄V :=

n∑

j=1

Uj
∂

∂uj
+

n∑

j=1

m∑

i=1

Di(Uj)
∂

∂uj,i
+ · · ·

+

n∑

j=1

m∑

i1,...,ir

Di1...ir (Uj)
∂

∂uj,i1,...,ir
+ · · ·

where i1 ≤ · · · ≤ ir and

Uj := ηj −
m∑

i=1

ξiuj,i.

Now an action ϕ = (ϕ1, . . . , ϕm, φ1, . . . , φn) on M ×N induces, by means

of the r-th prolongation, an action ϕ(r) = (ϕ
(r)
1 , . . . , ϕ

(r)
m , φ

(r)
1 , . . . , φ

(r)
n ) on

Jr(M,N). In particular, if G is a Lie group of transformations acting on
M ×N , then transformations sufficiently close to the identity will induce a
transformation on Jk(M,N).

Since the group composition is preserved by the prolongation the prolonged
vector field Z̄(k) will form a representation of the Lie algebra L, i.e.,

[Z̄
(k)
1 , Z̄

(k)
2 ] = [Z1, Z2]

(k)
.

10.1.4 Partial Differential Equations on Jet Bundles

Consider a general system of partial differential equations of order r

Fν

(
xi, uj ,

∂uj
∂xi

, . . . ,
∂ruj

∂xi1∂xi2 . . . ∂xir

)
= 0 (12)

where ν = 1, . . . , q and ik = 1, . . . ,m, j = 1, . . . , n. Such a system deter-
mines a submanifold of the r-jet bundle Jr(M,N), namely, the submanifold
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Rr given by the constraint equations

Fν(xi, uj , uj,i, . . . , uj,i1...ir ) = 0. (13)

This submanifold, being a geometric object, provides a convenient setting
whereby transformation properties of this system may be analyzed.

Definition 10.15 A solution of Rr is defined as a map s ∈ C∞(M,N)
where

s : U ⊂M → N

such that
(jks)∗ ⊂ Rr.

Thus, if s is a solution of Rr and if s is given in coordinates by uj = sj(xi),
then it follows that

Fν

(
xi, sj ,

∂sj
∂xi

, . . . ,
∂rsj

∂xi1 . . . ∂xir

)
= 0

and s is a solution of system (12).

Example. LetM = R2, N = R, and choose coordinates xi, u, ui, ui1i2 , ui1i2i3 ,
on J3(M,N). The Korteweg-de Vries equation

∂u

∂x2
+ u

∂u

∂x1
+ σ

∂3u

∂x3
1

= 0

(σ is a constant) determines the submanifold R3 of J3(M,N) given by

u2 + uu1 + σu111 = 0.

A solution of R3 is a map s ∈ C∞(M,N) such that, if x ∈ M , then
j3s(x) ∈ R3, that is,

∂s(x1, x2)

∂x2
+ s(x1, x2)

∂s(x1, x2)

∂x1
+ σ

∂3s(x1, x2)

∂x3
1

= 0. ♣

We have thus replaced the system of partial differential equations by a sub-
manifold and an appropriate jet bundle. This will be the setting of the
investigation of symmetries and conservation laws for partial differential
equations.

We now discuss the important notion of the prolongation of a system of
differential equations. Thus we want to characterize a system of differential
equations and its derivatives as a new system in terms of jets. Here we
make use of the total differential operator D(r).
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Definition 10.16 The l-th prolongation of Rr is the submanifold

Rr+l ⊂ Jr+l(M,N)

defined by the constraint equations

Fν = 0

D
(r+l)
i Fν = 0

...

D
(r+l)
i1...il

Fν = 0

(ν = 1, . . . , q) where repeated total derivatives

D
(r)
i1

◦D(r)
i2

◦ · · · ◦D(r)
ip

are written as D
(r)
i1...ip

. It follows from the above that if s is a solution of

Rr+l, then

Fν

(
xi, sj , . . . ,

∂rsj
∂xi1 . . . ∂xir

)
= 0

∂

∂xi
Fν

(
xi, sj , . . . ,

∂rsj
∂xi1 . . . ∂xir

)
= 0

...
∂r

∂xi1 . . . ∂xir
Fν

(
xi, sj , . . . ,

∂rsj
∂xi1 . . . ∂xir

)
= 0.

Example. Consider again the Korteweg-de Vries equation. The total
derivatives on J4(M,N) are given by

D
(4)
i =

∂

∂xi
+ui

∂

∂u
+

2∑

i1=1

uii1
∂

∂ui1
+

2∑

i1,i2=1

uii1i2
∂

∂ui1i2
+

2∑

i1,i2,i3=1

uii1i2i3
∂

∂ui1i2i3

where i1 ≤ i2 and i1 ≤ · · · ≤ i3. Here uj = u1 ≡ u, where i = 1, 2.
Consequently the first prolongation of the Korteweg-de Vries equation is
given by

D
(4)
i F = 0

where F ≡ u2 + uu1 + σu111 = 0 and i = 1, 2. It follows that

D
(4)
1 (u2 + uu1 + σu111) = u12 + u2

1 + uu11 + σu1111 = 0

and

D
(4)
2 (u2 + uu1 + σu111) = u22 + u2u1 + uu12 + σu1112 = 0. ♣
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10.2 Invariance of Differential Equations

In chapter 8 we introduced the concept of invariance of a geometrical object
σ by LZσ = 0, where LZ(·) is the Lie derivative and Z the vector field for
some one parameter transformation group. This means that σ does not
change as it propagates down the trajectories of Z. We are now concerned
with the invariance of a differential equation, i.e. the submanifold Rr of
the r-jet bundle Jr(M,N) given by the constraint equations

Fν(xi, uj , uj,i, . . . , uj,i1 , . . . , uj,i1...ir ) = 0. (14)

From the definition of invariance and the Lie derivative it should be clear
that this system is invariant under the vector field ZV if the following
condition holds

LZ̄V
Fν =̂ 0 (15)

i.e., the Lie derivative of Fν w.r.t. the vertical vector field ZV , where =̂
stands for the restriction to solutions of Fν = 0 and ν = 1, . . . , q.

Definition 10.17 Vector fields which admit condition (15) for system (14)
are called Lie point symmetry vector fields of system (14).

As was shown in previous chapters, these infinitesimal vector fields generate
local Lie groups. We can thus give the following

Definition 10.18 A local transformation acting on an open subset of the
independent and dependent variables of the system of differential equations,
which is generated by the Lie point symmetry vector fields, form a local Lie
group of transformations called the Lie symmetry group.

A symmetry group G of a system of differential equations has the property
that whenever uj = sj(x) is a solution of that system and whenever g · s is
defined for g ∈ G, then uj = g · sj(x) is also a solution of that system of
differential equations. One can thus use the symmetry group of a system of
differential equations to construct solutions from solutions. In some cases
one can construct multi-parameter solutions from trivial solutions. This
is the subject of the next section. In the current section we need to un-
derstand how to find Lie symmetry vector fields by the use of condition (15).

After applying the Lie derivative of the prolonged vertical vector field on
the constraint equations Fν = 0 of the submanifold Rr, we obtain the
expression

n∑

j=1

Uj
∂Fν
∂uj

+

n∑

j=1

m∑

i=1

Di(Uj)
∂Fν
∂uj,i

+ · · ·+
n∑

j=1

m∑

i1,...,ir=1

Di1...ir (Uj)
∂Fν

∂uj,i1...ir
=̂ 0

(16)
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where

Di(Uj) =Di(ηj −
m∑

k=1

ξkuj,k)

=
∂ηj
∂xi

+

n∑

k=1

uk,i
∂ηj
∂uk

−
m∑

k=1

∂ξk
∂xi

uj,k −
n∑

l=1

m∑

k=1

∂ξk
∂ul

ul,iuj,k

−
m∑

i1=1

n∑

j=1

uj,i1ξi1 .

After insertion of the constraint equations of the l-th prolonged submanifold
Rr+l the so-called determining equations for ξ1, . . . , ξm and η1, . . . , ηn
are found by equating the coefficients of the coordinates uj,i, uj,ii1 , . . ., on
the prolonged jet bundle, to zero so that equation (15) is satisfied. Solution
of the determining equations provide the Lie point symmetry vector fields
of (14).

Definition 10.19 The general solution of the determining equations for a
system (14) provide the Lie point symmetry vector fields which span a Lie
algebra, called the fundamental Lie algebra of system (14).

We now give several examples to illustrate the procedure for calculating Lie
point symmetry vector fields.

Example. We find the Lie point symmetry vector fields for the inviscid
Burgers’ equation

∂u

∂x2
= u

∂u

∂x1
.

Here M = R2 and N = R. This partial differential equation determines
a submanifold R1 on the 1-jet bundle J1(M,N) given by the constraint
equation

F (x1, x2, u, u1, u2) ≡ u2 − uu1 = 0.

The contact form on J1(M,N) is

θ = du− u1dx1 − u2dx2.

The operators of total differentiation are

D1 :=
∂

∂x1
+ u1

∂

∂u
+ u11

∂

∂u1
+ u12

∂

∂u2

D2 :=
∂

∂x2
+ u2

∂

∂u
+ u21

∂

∂u1
+ u22

∂

∂u2
.
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Consider the following Lie point symmetry vector field

Z = ξ1(x1, x2, u)
∂

∂x1
+ ξ2(x1, x2, u)

∂

∂x2
+ η(x1, x2, u)

∂

∂u
.

The corresponding vertical vector field is given by

ZV = (η − ξ1u1 − ξ2u2)
∂

∂u

with the prolonged vertical vector field

Z̄V = U
∂

∂u
+D1(U)

∂

∂u1
+D2(U)

∂

∂u2
.

Here U := η − ξ1u1 − ξ2u2 and

D1(U) =
∂η

∂x1
− ∂ξ1
∂x1

u1−
∂ξ2
∂x1

u2 +
∂η

∂u
u1−

∂ξ1
∂u

u2
1−

∂ξ2
∂u

u1u2− ξ1u11− ξ2u12

D2(U) =
∂η

∂x2
− ∂ξ1
∂x2

u1−
∂ξ2
∂x2

u2 +
∂η

∂u
u2−

∂ξ1
∂u

u1u2−
∂ξ2
∂u

u2
2−ξ1u12−ξ2u22.

We now have to determine the infinitesimals ξ1, ξ2 and η. The prolongations
of F ≡ u2 − uu1 = 0 are

D1(u2 − uu1) = u12 − u2
1 − uu11 = 0

D2(u2 − uu1) = u22 − u2u1 − uu12 = 0

so that we can consider the following relations

u2 = uu1, u12 = u2
1 + uu11, u22 = 2uu2

1 + u2u11.

The invariant condition LZ̄V
F =̂ 0 gives

(
U
∂

∂u
+D1(U)

∂

∂u1
+D2(U)

∂

∂u2

)
(u2−uu1) = U(−u1)−D1(U)(u)+D2(U)

so that

−u1η + ξ2u1u2 −
∂η

∂x1
u+

∂ξ1
∂x1

uu1 +
∂ξ2
∂x1

uu2 −
∂η

∂u
uu1 +

∂ξ1
∂u

uu2
1

+
∂ξ2
∂u

uu1u2 + ξ1u
2
1 + uu12ξ2 +

∂η

∂x2
− ∂ξ1
∂x2

u1 −
∂ξ2
∂x2

u2 +
∂η

∂u
u2

−∂ξ1
∂u

u1u2 −
∂ξ2
∂u

u2
2 − ξ1u12 − ξ2u22 + ξ1uu11 =̂ 0.
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Inserting u2 = uu1, u12 = u2
1 + uu1, u22 = 2uu2

1 + u2u11 into the above
expression we obtain

−u1η −
∂η

∂x1
u+ uu1

∂ξ1
∂x1

+
∂ξ2
∂x1

u2u1 +
∂η

∂x2
− ∂ξ1
∂x2

u1 −
∂ξ2
∂x2

uu1 = 0.

To find the solutions for ξ1, ξ2 and η so that the above relation holds we
recall that on the J1(M,N) jet bundle, the derivatives of u are independent
coordinates, so that the coefficients of the coordinates u0

1, u1 must be equal
to zero. Consequently

∂η

∂x2
− u

∂η

∂x1
= 0

∂ξ1
∂x1

u− ∂ξ1
∂x2

+
∂ξ2
∂x1

u2 − ∂ξ2
∂x2

u− η = 0.

These system of linear differential equations provides the conditions on
ξ1, ξ2 and η for finding symmetry vector fields. We now consider special
solutions for this linear system of partial differential equations.

Case 1: ξ1 = 1, ξ2 = 0, η = 0, so that

Z1 =
∂

∂x1
.

Case 2: ξ1 = 0, ξ2 = 1, η = 0, so that

Z2 =
∂

∂x2
.

Case 3: ξ1 = x1, ξ2 = x2, η = 0, so that

Z3 = x1
∂

∂x1
+ x2

∂

∂x2
.

Case 4: ξ1 = x1, ξ2 = 0, η = u, so that

Z4 = x1
∂

∂x1
+ u

∂

∂u
.

Case 5: ξ1 = x2, ξ2 = 0, η = −1, so that

Z5 = x2
∂

∂x1
− ∂

∂u
.

Case 6: ξ1 = 0, ξ2 = x1, η = u2, so that

Z6 = x1
∂

∂x2
+ u2 ∂

∂u
.
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Case 7: ξ1 = x1x2, ξ2 = x2
2, η = −(x1 + x2u), so that

Z7 = x1x2
∂

∂x1
+ x2

2

∂

∂x2
− (x1 + x2u)

∂

∂u
.

Case 8: ξ1 = x2
1, ξ2 = x1x2, η = (x1 + x2u)u, so that

Z8 = x2
1

∂

∂x1
+ x1x2

∂

∂x2
+ (x1 + x2u)u

∂

∂u
.

Case 9: ξ1 = u, ξ2 = 0, η = 0, where u satisfies the inviscid Burgers
equation, so that

Z9 = u
∂

∂x1
.

Case 10: ξ1 = 0, ξ2 = u, η = 0, where u satisfies the inviscid Burgers
equation, so that

Z10 = u
∂

∂x2
.

The symmetry vector fields {Z1, . . . , Z10} form a ten-dimensional Lie
algebra. ♣

Let us now consider a set of Lie generators which were introduced in chapter
9 as Killing vector fields for the Minkowski metric. It was shown that the
linear wave equation follows from d(∗du) = 0, where ∗ is the Hodge star
operator and d is the exterior derivative. These vector fields are known
as the conformal vector fields. In this section we show how to extend
the Killing vector fields for the Minkowski metric in order to obtain the
conformal Lie symmetry vector fields for particular wave equations of the
form 


m−1∑

j=1

∂2

∂x2
j

− ∂2

∂x2
m


u+ f(x1, . . . , xm, u) = 0 .

In the calculation of the Lie symmetry vector fields of wave equations, the
following set of first order partial differential equations play a fundamental
role

∂ξm
∂xm

− ∂ξj
∂xj

= 0

∂ξj
∂xk

+
∂ξk
∂xj

= 0

∂ξj
∂xm

− ∂ξm
∂xj

= 0
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where j 6= k = 1, . . . ,m − 1. This system is known as the Killing equa-
tions. It is easy to show that the general solution of this set of over
determined equations is given by

ξmu = 2xµ


bmxm −

m−1∑

j=1

bjxj


− bµ


x2

m −
m−1∑

j=1

x2
j


+

m∑

ν=1

cµνxmu+ dµ

where bµ, cµν and dµ are arbitrary real constants with the conditions

cmj = cjm, cij = −cji, cjj = cmm

where i 6= j = 1, . . . ,m − 1, µ = 1, . . . ,m. This solution is known as the
Killing solution. Let us now give some examples of conformal invariant
wave equations.

Example. Let us calculate the Lie symmetries of the simplest wave equa-
tion in Minkowski space, namely



m−1∑

j=1

∂2

∂x2
j

− ∂2

∂x2
m


u = 0.

After applying the invariance condition, the following set of determining
equations is obtained

∂ξm
∂xm

− ∂ξj
∂xj

= 0, 2
∂2η

∂u2
xm −



m−1∑

j=1

∂2

∂x2
j

− ∂2

∂x2
m


 ξm = 0

∂ξj
∂xk

+
∂ξk
∂xj

= 0, 2
∂2η

∂u2
xj +



m−1∑

j=1

∂2

∂x2
j

− ∂2

∂x2
m


 ξj = 0

∂ξj
∂xm

− ∂ξm
∂xj

= 0,
∂2η

∂u2
= 0,



m−1∑

j=1

∂2

∂x2
j

− ∂2

∂x2
m


 η = 0

where j 6= k = 1, . . . ,m− 1. Note the coupling with the Killing equations.
By using the Killing solutions, we are left with the problem of solving the
determining equations for η. Two cases have to be considered.

Case 1. For m ≥ 3 the determining equations are solved by the Killing
solution and

η =


(2 −m)


bmxm −

m−1∑

j=1

bjxj


+ λ


u+ α(x1, . . . , xm)
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where 

m−1∑

j=1

∂2

∂x2
j

− ∂2

∂x2
m


α = 0.

Here λ is an additional real constant. The basis elements of the Lie algebra
are now obtained by choosing one of the arbitrary constants as one, and
the rest as zero. This is done for all constants bµ, cµν , dµ, and λ, where
µ, ν = 1, . . . ,m. The Lie symmetry vector fields are then given by

T =
∂

∂xm

Pi =
∂

∂xj
, i = 1, . . . ,m− 1

Rij = xi
∂

∂xj
− xj

∂

∂xi
, i 6= j = 1, . . . ,m− 1

Li = xi
∂

∂xm
+ xm

∂

∂xi
, i = 1, . . . ,m− 1

Sx =

m∑

µ=1

xµ
∂

∂xµ

Im = 2xm



m−1∑

j=1

xj
∂

∂xj


+


x2

m +

m−1∑

j=1

x2
j


 ∂

∂xm
+ (2 −m)xmu

∂

∂u

and for k = 1, . . . ,m− 1 we have

Ik = −2xk

(
m∑

µ=1

xµ
∂

∂xµ

)
−


x2

m −
m−1∑

j=1

x2
j


 ∂

∂xk
− (2 −m)xku

∂

∂u
.

These vector fields form the basis of an (m+ 1)(m+ 2)/2-dimensional Lie
algebra (with m ≥ 3), which is know as the conformal Lie algebra. The
additional vector fields

Su = u
∂

∂u
, Z∞ = α(x1, . . . , xm)

∂

∂u

where α is an arbitrary solution of



m−1∑

j=1

∂2

∂x2
j

− ∂2

∂x2
m


α = 0
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reflect the linearity of the equation.

Case 2. For m = 2, the wave equation admits the following infinite Lie
symmetry vector field

Z∞ = (f1(x1 + x2) + f2(x1 − x2))
∂

∂x1
+ (f1(x1 + x2) − f2(x1 − x2))

∂

∂x2

+ (f3(x1 + x2) + f4(x1 − x2) + λu)
∂

∂u

where fj (j = 1, . . . , 4) are arbitrary smooth functions. ♣

Example. Consider the two-dimensional wave equation

(
∂2

∂x2
1

− ∂2

∂x2
2

)
u+ g(x1, x2, u) = 0

where g is an arbitrary smooth function. It follows that this equation
admits the Lie symmetry vector fields

L1 = x1
∂

∂x2
+ x2

∂

∂x1

Ĩ1 = (x2
1 + x2

2)
∂

∂x1
+ 2x1x2

∂

∂x2
+ x1

(
λ1

x2
1 − x2

2

+ λ2

)
∂

∂u

Ĩ2 = 2x1x2
∂

∂x1
+ (x2

1 + x2
2)

∂

∂x2
+ x2

(
λ1

x2
1 − x2

2

+ λ2

)
∂

∂u

if and only if,

g(x1, x2, u) =
1

(x2
1 − x2

2)
2
g̃

(
λ1

2(x2
1 − x2

2)
− λ2

2
ln(x2

1 − x2
2) + u

)
.

Here g̃ is an arbitrary smooth function with one argument, as given above.
The vector fields form a three-dimensional Lie algebra, with commutation
relations

[L1, Ĩ1] = Ĩ2, [L1, Ĩ2] = Ĩ1, [Ĩ1, Ĩ2] = 0. ♣
The formalism described above can also be applied to ordinary differential
equations.

Example. For the linear ordinary differential equation d3u/dx3 = 0 we
obtain seven Lie symmetry vector fields

{
∂

∂x
,
∂

∂u
, x

∂

∂u
, x2 ∂

∂u
, x

∂

∂x
, u

∂

∂u
, x2 ∂

∂x
+ 2xu

∂

∂u

}
. ♣
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Example. Consider the Lorenz equations

du1

dx
= σ(u2 − u1),

du2

dx
= −u1u3 + ru1 − u2,

du3

dx
= u1u2 − bu3

where σ, r and b are three real positive parameters. By eliminating u2

and u3 from the above system, we obtain the third-order equation (we put
u1 = u)

u
d3u

dx3
−
(
du

dx
− (σ + b+ 1)u

)
d2u

dx2
− (σ + 1)

(
du

dx

)2

+ (u3 + b(σ + 1)u)
du

dx

+σ
(
u4 + b(1 − r)u2

)
= 0.

The following form of the vertical symmetry vector field is considered

Z = (γ0(x, u, u̇) + γ1(x, u, u̇) ü)
∂

∂u

where u̇ → du/dx and ü → d2u/dx2. The third order ordinary differential
equation given above then admits the following symmetry vector fields

Case I: σ = 1/2, b = 1, r = 0.

Z1 = e5x/2
((

uu̇+
1

2
u2

)
ü− u̇3 +

(
1

4
u4 +

1

2
u2

)
u̇+

1

8
(u5 + u3)

)
∂

∂u

Z2 = e3x/2
((

u̇

u
+

1

2

)
ü+

2

3

u̇2

u
+

(
1

2
u2 +

5

4

)
u̇+

1

4
(u3 + u)

)
∂

∂u

Z3 = ex/2
(
u̇+

1

2
u

)
∂

∂u

Z4 = u̇
∂

∂u

where Z3 and Z4 can equivalently be written as

Z3 = ex/2
(
− ∂

∂x
+

1

2
u
∂

∂u

)
, Z4 =

∂

∂x
.

Case II: b = 0, σ = 1/3, r is arbitrary.

Z1 = e4x/3u̇

(
uü− u̇2 +

1

4
u4

)
∂

∂u

Z2 = u̇
∂

∂u
.
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Case III: b = 6σ − 2, r = 2σ − 1, σ is arbitrary:

Z1 = e4σxu̇

(
uü− u̇2 + (3σ − 1)uu̇+

1

4
u4 + (3σ − 1)(1 − σ)u2

)
∂

∂u

Z2 = u̇
∂

∂u
.

Case IV. b = 4, σ = 1, r is arbitrary.

Z1 = e4xu̇

((
u+

4(1 − r)

u

)
ü− u̇2 + 2

(
u+

4(1− r)

u

)
u̇+

1

4
u4

+ 2(1− r)u2 + 4(1− r)2
) ∂
∂u

Z2 = u̇
∂

∂u
.

Case V. b = 2σ, σ and r are arbitrary

Z1 = e2σxu̇

(
ü

u
+ (σ + 1)

u̇

u
+

1

2
u2 + σ(1 − r)

)
∂

∂u

Z2 = u̇
∂

∂u
.

Remark. The vertical vector field of ∂/∂x is given by −u̇∂/∂u. ♣

10.3 Similarity Solutions

In this section we consider a reduction of the system

Fν

(
xi, uj ,

∂uj
∂xi

, . . . ,
∂ruj

∂xi1∂xi2 . . . ∂xir

)
= 0

(ν = 1, . . . , q, i = 1, . . . ,m, j = 1, . . . , n) by its Lie point symmetry vec-
tor fields. This is made possible by constructing a so-called symmetry
ansatz, i.e., a solution ansatz in terms of new dependent and new inde-
pendent variables (also known as similarity variables) which should be
such that the number of independent variables in this system are reduced.
Inserting this symmetry ansatz into this system results in a reduced sys-
tem of differential equations. Solutions of the reduced system (if any can
be found) will then result in special solutions for the system. These special
solutions for this system are known as similarity solutions or L-invariant
solutions, where L is the fundamental Lie algebra (or a Lie subalgebra) that
is spanned by the symmetry vector fields.
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In our first approach to find a reduced system and thus similarity solutions
we consider L′ to be a p-dimensional Lie subalgebra of the fundamental Lie
algebra L for the system generated by the vector fields

Zl =

m∑

i=1

ξli
∂

∂xi
+

n∑

j=1

ηlj
∂

∂uj

where l = 1, . . . , p. These vector fields form a basis of the Lie algebra L′.

For the invariance we consider the following

Definition 10.20 A function I(x,u) is an invariant of the Lie algebra
L′ if

LZI = 0

for all Z ∈ L′ where I is not identically a constant.

Assume that the rank of the matrix

K =



ξ11 . . . ξ1m η1j . . . η1n
...

...
ξr1 . . . ξrm ηrj . . . ηrn




is equal to p0 and that p0 < n. There exist (locally) exactly (m+ n − p0)
functional independent invariants

I1(x,u), . . . , Im+n−p0(x,u)

of the Lie algebra L′ and any invariant of the Lie algebra L′ is a function
of them. We assume that the invariants can be selected in such a manner
that the determinant of the matrix

(
∂Il
∂uj

)

(Jacobian) l, j = 1, . . . , n, is different from zero. This is necessary for the
existence of a similarity solution under the Lie algebra L′. We introduce
new independent variables ς = (ς1, . . . , ςm−p0) and dependent variables
v = (v1(ς), . . . , vn(ς)) by

ςi = In+i(x,u), vj(ς) = Ij(x,u)

where i = 1, . . . ,m− p0 and j = 1, . . . , n. Now we can express uj in terms
of x, ς and v, such that

uj = ψj(x, ς ,v).
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The derivatives ∂uj/∂xi, ∂
2uj/∂xi1∂xi2 , . . . are computed as derivatives of

the composite function ψj . For example

∂uj
∂xi

=
∂ψj
∂xi

+

m−p0∑

k=1

n∑

l=1

(
∂ψj
∂ςk

+
∂ψj
∂vl

∂vl
∂ςk

)
∂In+k

∂xi
.

If we now insert the obtained expressions for uj and its derivatives into the
initial system, it reduces into a system for the dependent variable v(ς)

F ′
ν

(
ςi, vj ,

∂vj
∂ςi

, . . . ,
∂rvj

∂ςi1 . . . ∂ςir

)
= 0

where the variables x do not appear. We call this system the reduced
system. The number of independent variables in the reduced system is
smaller than in the initial system and in this sense the system is simpli-
fied. In particular, if a partial differential equation with two independent
variables is considered which is invariant under a one-parameter transfor-
mation group, then this partial differential equation can be reduced to an
ordinary differential equation.

If the the system has a solution v(ς), then by making use of invariance
conditions one can find u = ψ(x), i.e., a similarity solution of the initial
system. We must, however, note that the similarity solution thus obtained
is only locally defined via the transformation group which leaves the differ-
ential equation invariant. We say that the solution is L′-invariant.

Example. Let us find the reduced system of the boundary layer equation
given by

∂u1

∂x3
+ u1

∂u1

∂x1
+ u2

∂u1

∂x2
=
∂2u1

∂x2
2

,
∂u1

∂x1
+
∂u2

∂x2
= 0.

This system admits a Lie algebra that is spanned by the vector fields

Z1 = 2x3
∂

∂x3
+ x2

∂

∂x2
− 2u1

∂

∂u1
− u2

∂

∂u2
, Z2 = x3

∂

∂x1
+

∂

∂u1
.

Here N = R2 and M = R3. The matrix K is given by

K =

(
2x3 0 x2 −2u1 −u2

0 x3 0 1 0

)
.

We have rank(K) = 2 so that rank(K) < 3. We thus have m+ n− p0 = 3
functional independent invariants, where

LZ1I1 = 0, LZ2I1 = 0
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LZ1I2 = 0, LZ2I2 = 0

LZ1I3 = 0, LZ2I3 = 0

so that

2x3
∂Ik
∂x3

+ x2
∂Ik
∂x2

− 2u1
∂Ik
∂u1

− u2
∂Ik
∂u2

= 0

x3
∂Ik
∂x1

+
∂Ik
∂u1

= 0

with k = 1, 2, 3. This system has the following solution

I1(x1, x2, x3, u1, u2) = x3u1 − x1

I2(x1, x2, x3, u1, u2) = x2u2

I3(x1, x2, x3, u1, u2) =
x2

2

x3
.

We now introduce the new variables from the given invariant functions

ς1 =
x2

2

x3
, v1(ς1) = x3u1 − x1, v2(ς1) = x2u2

so that

u1(x1, x2) =
v1(ς1) + x1

x3
, u2(x1, x2) =

v2(ς1)

x2

and
∂u1

∂x1
=

1

x3
,

∂u2

∂x1
= 0

∂u1

∂x2
= 2

x2

x2
3

dv1
dς1

,
∂u2

∂x2
= − v2

x2
2

+
2

x3

dv2
dς1

∂u1

∂x3
= − 1

x2
3

(
ς1
dv1
dς1

+ v1 + x1

)
,

∂2u1

∂x2
2

=
2

x2
3

(
2ς1

d2v1
dς21

+
dv1
dς1

)

where i = 1, 2. By inserting u1(x1, x2) and u(x1, x2) into the boundary
layer equation, the system of ordinary differential equations is obtained

4ς1
d2v1
dς21

= (2v2 − ς1 − 2)
dv1
dς1

, 2
dv2
dς1

=
v2
ς1

− 1.

This system can be integrated by quadratures to find a similarity solution
u1(x, v1), u2(x, v2) for the boundary layer equation. ♣

We now describe the method of finding similarity solutions for a system of
partial differential equations by considering the transformation group that
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leaves the system of equations invariant.

Let us consider the following partial differential equation

F

(
x1, x2, u,

∂u

∂xi
, . . . ,

∂ru

∂xi1∂xi2 . . . ∂xir

)
= 0

where i = 1, 2 and r = i1 + i2 + · · · + ir. We assume that this equation
admits the Lie point symmetry vector field

Z = ξ1(x, u)
∂

∂x1
+ ξ2(x, u)

∂

∂x2
+ η(x, u)

∂

∂u

where x = (x1, x2). This vector field can be a combination of different Lie
point symmetry vector fields that span the fundamental Lie algebra L. To
find the associated one-parameter transformation group we have to solve
the initial value problem (see chapter 5)

dx′1
dε

= ξ′1(x
′, u′),

dx′2
dε

= ξ′2(x
′, u′),

du′

dε
= η′(x′, u′)

where ε is the group parameter and x′ = x and u′(x) = u(x) for ε = 0. Let
the solution (one-parameter transformation group) be given by

x′1 = ϕ1(x, u, ε), x′2 = ϕ2(x, u, ε), u′ = φ(x, u, ε).

We consider
xi = ς(x′1, x

′
2), xj = a

where i 6= j = 1, 2 and a ∈ R, i.e. x1 or x2 can be chosen to be the
similarity variable ς . u′ will then result in

u′ = φ(x, v(ς))

which is also known as the similarity ansatz, where

u(x)|xi=ς, xj=a ≡ v(ς)

and ε was eliminated from x′1 and x′2. By insertion of u′(x′) into the
equation

F

(
x′1, x

′
2, u

′,
∂u′

∂x′i
, . . . ,

∂ru′

∂x′i1∂x
′
i2
. . . ∂x′ir

)
= 0

we find a reduced equation

F ′

(
ς, v(ς),

dv

dς
, . . . ,

drv

dςr

)
= 0.
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In solving this ordinary differential equation we find a similarity solution
for the original partial differential equation.

Example. The nonlinear partial differential equation

∂2u

∂x1∂x2
+

∂u

∂x1
+ u2 = 0

describes the relaxation to a Maxwell distribution. The symmetry vector
fields are given by

Z1 =
∂

∂x1
, Z2 =

∂

∂x2
, Z3 = −x1

∂

∂x1
+u

∂

∂u
, Z4 = ex2

∂

∂x2
− ex2u

∂

∂u
.

In order to find a similarity ansatz we consider the symmetry vector field

Z = c1
∂

∂x1
+ c2

∂

∂x2
+ c3

(
−x1

∂

∂x1
+ u

∂

∂u

)

where c1, c2, c3 ∈ R. The corresponding initial value problem is given by

dx′2
dε

= c2,
dx′1
dε

= c1 − c3x
′
1,

du′

dε
= c3u

′.

The solution for this system provides the transformation group

x′1(x, u, ε) =
c1
c3

− c1 − c3x1

c3
e−c3ε

x′2(x, u, ε) = c2ε+ x2

u′(x, u, ε) = uec3ε

where c3 6= 0. Now let x2 = ς/c and x1 = 1 with the constant c 6= 0. It
follows that the similarity variable is

ς = cx′2 +
c2c

c3
ln
c3x

′
1 − c1

c3 − c1

and the similarity ansatz

u′(x′1, x
′
2) = v(ς)

c1 − c3
c1 − c3x′1

.

Inserting this similarity ansatz into

∂2u′

∂x′1∂x
′
2

+
∂u′

∂x′1
+ u′2 = 0
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leads to the nonlinear ordinary differential equation

c
d2v

dς2
+ (1 − c)

dv

dς
− (1 − v)v = 0.

This ordinary equation can be integrated by considering the change of de-
pendent variables dv/dς = V (v(ς)) whereby the similarity solution for the
nonlinear partial differential equation is found from the ordinary differen-
tial equation. ♣

Example. The nonlinear partial differential equation

∂2u

∂x1∂x2
+ u2 = 0

is related to the partial differential equation in the previous example by the
transformation

x1 → x1, x2 → −e−x2 , u→ ex2u.

The Lie point symmetry vector fields are given by

Z1 =
∂

∂x1
, Z2 =

∂

∂x2
, Z3 = x1

∂

∂x1
− x2

∂

∂x2
, Z4 = u

∂

∂u
.

We construct a similarity solution from this nonlinear partial differential
equation by considering the symmetry vector field

Z = c1
∂

∂x1
+ c2

∂

∂x2

where c1, c2 ∈ R. The associated initial value problem is

dx′1
dε

= c1,
dx′2
dε

= c2,
du′

dε
= 0

where x′ = x for ε = 0. The transformation group is thus given by

x′1 = c1ε+ x1, x′2 = c2ε+ x2, u′ = u.

Now let x1 = ς and x2 = 0. It follows that

ς = x′1 −
c1
c2
x′2, u′(x′(x)) = u(x)|x1=ς, x2=0 ≡ v(ς)

where c2 6= 0. The partial differential equation

∂2u′

∂x′1∂x
′
2

+ u′2 = 0
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then becomes the ordinary differential equation

c1
c2

d2v

dς2
− v2 = 0.

The general solution of this nonlinear ordinary differential equation is given
by

v(ς) = c2
( −k

1 + k2
+

1

sn2(c(6c1/c2)−1/2(ς − c3), k)

)

where c and c3 are arbitrary constants, sn is a Jacobi elliptic function and
k2 is the root of the equation 1 − k2 − k4 = 0. A similarity solution for
∂2u/∂x1∂x2 + u2 = 0 is then given by

u(x) = c2
( −k

1 + k2
+

1

sn2(c(6c1/c2)−1/2(x1 − x2c1/c2 − c3), k)

)
. ♣

Note that the autonomous system of differential equations

dx

dε
= ξ(x,u),

du

dε
= η(x,u)

can be written as

dx1

ξ1(x,u)
=

dx2

ξ2(x,u)
= · · · =

dxm
ξm(x,u)

=
du1

η1(x,u)
= · · · =

dun
ηn(x,u)

=
dε

1

where ϕ1(x,u), . . . , ϕm−1(x,u), φ1(x,u), . . . , φn(x,u), are m+ n− 1 inde-
pendent invariants with the Jacobian

∂(φ1, . . . , φn)

∂(u1, . . . , un)
6= 0.

Now, from the invariant conditions of functions

uj = sj(x), j = 1, . . . , n,

it follows that this system is invariant under a vector field) (or in vertical
form) if and only if s satisfies the quasi-linear first order system of partial
differential equations

ηi −
m∑

j=1

ξj(x,u)
∂ui
∂xj

= 0, i = 1, 2, . . . , n

known as the invariant surface condition. Thus

LZv
ui = 0 ⇐⇒ ηi −

m∑

j=1

ξj(x,u)
∂ui
∂xj

= 0, i = 1, . . . , n.
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We say that the graph of a solution uj = sj(x) to the system Fν = 0 defines
an n-dimensional submanifold Ss of the space of dependent and indepen-
dent variables. The solution s will be invariant under the one-paramenter
subgroup generated by Z if and only if Ss is an invariant submanifold of
this group. The invariant surface condition can be written as

js∗(Z θi) = 0, i = 1, . . . , n.

Example. The three-dimensional linear diffusion equation is given by

∂u

∂x4
=
∂2u

∂x2
1

+
∂2u

∂x2
2

+
∂2u

∂x2
3

.

The Lie algebra is spanned by thirteen vector fields which are listed in
chapter 12. We make use of the following Abelian Lie subalgebra. The
basis is spanned by the following vector fields

{Z1, Z4, Z2 + cZ3 }

where c ∈ R and

Z1 =
∂

∂x3
, Z2 =

∂

∂x4
, Z3 = u

∂

∂u
, Z4 = x1

∂

∂x2
− x2

∂

∂x1
.

The transformation groups can easily be calculated. For Z4 we find

(
x′1
x′2

)
=

(
cos ε1 − sin ε1
sin ε1 cos ε1

)(
x1

x2

)
, x′3 = x3, x′4 = x4, u′ = u.

For Z1 we find

x′′1 = x′1, x′′2 = x′2, x′′3 = x′3 + ε2, x′′4 = x′4, u′′ = u′.

For Z2 + cZ3 we find

x′′′1 = x′′1 , x′′′2 = x′′2 , x′′′3 = x′′3 , x′′′4 = x′′4 + ε3, u′′′ = u′′ exp(cε3).

The composition of these transformation groups gives the three-parameter
transformation group

(
x′1
x′2

)
=

(
cos ε1 − sin ε1
sin ε1 cos ε1

)(
x1

x2

)

x′3 = x3 + ε2, x′4 = x4 + ε3, u′ = u exp(cε3)
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where we identify x′′′1 ≡ x′1 etc. We choose x1 = ς (similarity variable) and
x2 = x3 = x4 = 0. Then the above equations can be solved with respect to
ε1, ε2, ε3 and ς so that

ε1 = arctan

(
x′2
x′1

)
, ε2 = x′3, ε3 = x′4.

The similarity variable ς takes the form

ς(x′1, x
′
2) = (x′21 + x′22 )1/2.

Thus we obtain the similarity ansatz

u′(x′) = v(ς) exp(cx′4)

from u′ = u exp(cε3). Inserting this ansatz into the diffusion equation

∂u′

∂x′4
=
∂2u′

∂x′21
+
∂2u′

∂x′22
+
∂2u′

∂x′23

we find the linear ordinary differential equation

d2v

dς2
+

1

ς

dv

dς
= cv

which is of Bessel type and can be solved in terms of Bessel functions. ♣

10.4 Transforming Solutions to Solutions

Since the symmetry of a system of differential equations is a local group of
transformations G, acting on some open set of the independent and depen-
dent variables of that system in such a way that G transforms solutions of
that system to solutions of the same system, we make the conclusion that
if

uj = sj(x), j = 1, . . . , n

is a solution of the system, then

u′j = s′j(x), j = 1, . . . , n

will also be a solution of the same system, where g ∈ G acts such that

s′i = g · si, x′j = g · xj , i = 1, . . . , n, j = 1, . . . ,m.

Note that if Γs denotes the graph of the solution of a system of differential
equations, then the transform of Γs by g ∈ G is not necessarily the graph of
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another single-valued function ui = si(x). However, since the Lie symmetry
group G acts smoothly and the identily element of G leaves Γs unchanged,
by suitably shrinking the domain of definition of si, we ensure that for
elements g near the identity, the transform

g · Γs = Γs′

is the graph of some single valued smooth function

u′i = s′i(x), i = 1, . . . , n.

We now give some examples, where we transform solutions of equations by
their Lie symmetry group.

Example. Consider

∂2u

∂x1∂x2
+

∂u

∂x1
+ u2 = 0

and the linear combination of its two Lie symmetry vector fields Z1 and
Z4, i.e.,

cZ1 + Z4 ≡ c
∂

∂x1
+ ex2

∂

∂x2
− ex2u

∂

∂u
.

The assosiated transformation is

x′1 = cε+ x1, x′2 = ln
(
e−x2 − ε

)
, u′ = (1 − ex2ε)u(x1, x2)

where ε is the group parameter, i.e., a real constant. We can now state
the following. Let u = s(x1, x2) be a solution of the partial differential
equation, then

u′(x′1, x
′
2) = ε

(
1 − 1

ex
′
2 + ε

)
s

(
x′1 − cε, ln

(
ex

′
2 + ε

)−1
)

is also a solution of the partial differential equation. ♣

Example. Consider the three-dimensional diffusion equation

∂u

∂x4
=
∂2u

∂x2
1

+
∂2u

∂x2
2

+
∂2u

∂x2
3

which is invariant under the transformation
(
x′1
x′2

)
=

(
cos ε1 − sin ε1
sin ε1 cos ε1

)(
x1

x2

)
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x′3 = x3 + ε2, x′4 = x4 + ε3, u′ = u(x1, x2, x3, x4) exp(cε3).

Thus, if u = s(x1, x2, x3, x4) is a solution of the partial differential equation,
then

u′(x′1, x
′
2, x

′
3, x

′
4)

= ecε3s (x′1 cos ε1 + x′2 sin ε1,−x′1 sin ε1 + x′2 cos ε1, x3 − ε2, x
′
4 − ε3)

is also a solution of the above linear diffusion equation. Note that the
transformed solution contains the real constants c, ε1, ε2, ε3 ∈ R. ♣

10.5 Direct Method

The classical method for finding symmetry reduction of partial differential
equations is the Lie group method of infinitesimal transformations described
above. An alternative method is the so-called direct method which use
an ansatz for the solution and introduce a so-called reduced variable, which
plays the role of the similiarity variable. We introduce the method with an
example.

Example. Consider the Fitzhugh-Nagumo equation

∂u

∂x2
=
∂2u

∂x2
1

+ u(1 − u)(u− a),

where a is a constant. Without loss of generality we can set −1 ≤ a < 1.
We insert the ansatz

u(x1, x2) = f(x1, x2)w(z(x1, x2)) + g(x1, x2)

into this equation and require that w(z) satisfies an ordinary differential
equation. Here z is the so-called reduced variable. We obtain

f

(
∂z

∂x1

)2
d2w

dz2
+

(
2
∂f

∂x1

∂z

∂x1
+ f

∂2z

∂x2
1

− f
∂z

∂x2

)
dw

dz
− f3w3

+ ((a+ 1 − 3g)f2)w2 +

(
2(a+ 1)gf − 3fg2 − af +

∂2f

∂x2
1

− ∂f

∂x2

)
w

+

(
∂2g

∂x2
1

− ∂g

∂x2
− g(g − a)(g − 1)

)
= 0.

Now we must require that this equation to be an ordinary differential equa-
tion for w(z). The procedure using the direct method is to impose that the
different relationships among the coefficients of this equation to be a second
order ordinary differential equation is the reduction to the travelling-wave
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ansatz. However one can consider to reduce this equation to a first order
ordinary differential equation. Setting

g =
∂z

∂x1

and demanding

3
∂2z

∂x2
1

− ∂z

∂x2
= ±21/2(a+ 1 − 3g)

∂z

∂x1

2(a+ 1)g
∂z

∂x1
− 3

∂z

∂x1
g2 − a

∂z

∂x1
+
∂3z

∂x3
1

− ∂2z

∂x1∂x2
= 0

∂2g

∂x2
1

− ∂g

∂x2
+ g(g − 1)(a− g) = 0

we obtain the ordinary nonlinear differential equation

d2w

dz2
− w3 +

a+ 1 − 3g

∂z/∂x1
(±21/2 dw

dz
+ w2) = 0.

This equation is satisfied if w satisfies the first order ordinary differential
ordinary differential equation

±21/2 dw

dz
+ w2 = 0.

Differentiating once with respect to z and inserting this equation yields

d2w

dz2
− w3 = 0.

This first order differential equation can be integrated yielding

w(z) =
±21/2

z + z0
.

Consequently we can write the solution as

u(x1, x2) =
±21/2

z + z0

∂z

∂x1
+ g(x1, x2).

There is a close connection of the Painlevé truncated expansion and the
direct method.
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10.6 Computer Algebra Application

To find the determining equations for the Lie symmetry vector field of a
differential equation is quite cumbersome since a number of prolongations
have to be calculated. Here computer alegbra is helpful. We consider the
Lorenz model

dx

dt
= σ(y − x),

dy

dt
= −xz + rx − y,

dz

dt
= xy − bz .

The Lorenz system can be written in the form of a third order differential
equation

x
d3x

dt3
−
(
dx

dt
− (σ + b+ 1)x

)
d2x

dt2
− (σ + 1)

(
dx

dt

)2

+ (x3 + b(σ + 1)x)
dx

dt

+σ(x4 + b(1 − r)x2) = 0 .

To study the Lie symmetries we adopt the jet bundle formalism. We con-
sider symmetry vector fields of the form

V = (V0(t, x, ẋ) + V1(t, x, ẋ)ẍ)
∂

∂x
.

To impose the symmetry condition we have to calculate the prolongation
of V using the total differential operator

D :=
∂

∂t
+ ẋ

∂

∂x
+ ẍ

∂

∂ẋ
+ · · · .

To find the condition on V0 and V1 we consider the third order differential
equation as a manifold

∆ ≡ x
...
x −(ẋ− (σ + b+ 1)x)ẍ− (σ + 1)ẋ2 + (x3 + b(σ + 1)x)ẋ

+σ(x4 + b(1 − r)x2) = 0

together with its differential consequences D(∆) = 0, D(D(∆)) = 0. In the
program we show that

V = exp(4t/3)ẋ

(
xẍ− ẋẋ+

x4

4

)
∂

∂x

is a Lie symmetry vector field of the third order differential equation if
b = 0, σ = 1/3 and r arbitrary. In the program we set x = u. Replacing
this vector field by the vector field V = (V0 +V1)∂/∂x we find the condition
on the functions V0 and V1 so that V is a Lie symmetry vector field.
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// prolongation.cpp

#include <iostream>

#include "symbolicc++.h"

using namespace std;

int main(void)

{

Symbolic t("t"), u("u");

Symbolic ud("ud"), udd("udd"), uddd("uddd"), udddd("udddd"),

uddddd("uddddd");

Symbolic Q("Q");

Q = Q[t,u,ud,udd,uddd,udddd,uddddd];

Symbolic D;

// total derivative

D = df(Q,t) + ud*df(Q,u) + udd*df(Q,ud) + uddd*df(Q,udd) +

udddd*df(Q,uddd) + uddddd*df(Q,udddd);

// Lorenz model as third order equation

Symbolic b("b"), s("s"), r("r");

b = 0; s = 1/3;

Symbolic equ;

equ = u*uddd - (ud-(s+b+1)*u)*udd - (s+1)*ud*ud

+ (u*u*u + b*(s+1)*u)*ud + s*(u*u*u*u + b*(1-r)*u*u);

// Prolongation of differential equation

Symbolic equp;

equp = D[Q==equ];

Symbolic equpp;

equpp = D[Q==equp];

// Lie symmetry

Symbolic T1;

T1 = exp(4*t/3)*ud*(u*udd - ud*ud + u*u*u*u/4);

// Prolongation of Lie symmetry

Symbolic T2; T2 = D[Q==T1];

Symbolic T3; T3 = D[Q==T2];

Symbolic T4; T4 = D[Q==T3];

Symbolic result;
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result = T1*df(equ,u) + T2*df(equ,ud) + T3*df(equ,udd)

+ T4*df(equ,uddd);

result = result*exp(-4*t/3);

// Solving for uddd, udddd, uddddd

Symbolic udddddt=-equpp.coeff(uddddd,0)/equpp.coeff(uddddd,1);

Symbolic uddddt=-equp.coeff(udddd,0)/equp.coeff(udddd,1);

Symbolic udddt=-equ.coeff(uddd,0)/equ.coeff(uddd,1);

// Substitution

result = result[uddddd==udddddt,udddd==uddddt,uddd==udddt];

cout << "result = " << result;

return 0;

}

10.7 Exercises

(1) The stationary incompressible Prandtl boundary layer equation

∂3u

∂η3
=
∂u

∂η

∂2u

∂η∂ξ
− ∂u

∂ξ

∂2u

∂ξ∂η
.

Using the Lie method of infinitesimal transformations we obtain the simi-
larity reduction

u(ξ, η) = ξβy(x), x := ηξβ−1 + f(ξ)

where f is an arbitrary smooth function. Find the ordinary differential
equation for y(x). Show that for β = 2 it reduces to the Chazy equation

d3y

dx3
= 2y

d2y

dx2
− 3

(
dy

dx

)2

.

(2) Find the Lie symmetry vector fields for the stationary incompressible
Prandtl boundary layer equation

∂3u

∂η3
=
∂u

∂η

∂2u

∂η∂ξ
− ∂u

∂ξ

∂2u

∂ξ∂η
.

(3) Find the Lie symmetry vector fields for the Hunter-Saxon equation

∂

∂t

∂2u

∂x2
= −2

∂u

∂x

∂2u

∂x2
− u

∂3u

∂x3
.

Construct similarity solutions from the Lie symmetries.
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Chapter 11

Lie-Bäcklund Vector
Fields

11.1 Definitions and Examples

A symmetry of a differential equation was described as a transformation
which maps any solution of a differential equation to another solution of
the same equation. From this point of view we can extend the concept of
symmetries of differential equations to Lie-Bäcklund symmetries (Bluman
and Kumei [7], Olver [83], Olver [82], Anderson and Ibragimov [3], Kumei
[71], Steeb and Euler [116], Steeb and Euler [117], Ibragimov and Shabat
[60]). Invariant solution can also be constructed using Lie-Bäcklund vector
fields (Euler et al [40]).

We consider the transformation

x′ = x + εξ

(
xi, uj ,

∂uj
∂xi

,
∂2uj

∂xi1∂xi2
, . . . ,

∂quj
∂xi1 · · · ∂xiq

)
+O(ε2)

u′ = u + εη

(
xi, uj ,

∂uj
∂xi

,
∂2uj

∂xi1∂xi2
, . . . ,

∂quj
∂xi1 · · · ∂xiq

)
+O(ε2)

that leaves the system of partial differential equations

Fν

(
xi, uj ,

∂uj
∂xi

,
∂2uj

∂xi1∂xi2
, . . . ,

∂ruj
∂xi1 · · · ∂xir

)
= 0

(ν = 1, . . . , n) invariant where ξ[x,u] and η[x,u] are the infinitesimals.
Here

x = (x1, . . . , xm), u = (u1, . . . , un), ξ = (ξ1, . . . , ξm), η = (η1, . . . , ηn)

201
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where i1 ≤ · · · ≤ ir and q > r. The square brackets will serve to remind us
that ξ and η depend on x, u and derivatives of u with respect to xi. In
terms of the infinitesimals we have the following

Definition 11.1 The infinitesimal generator

ZB :=

m∑

j=1

ξj [x,u]
∂

∂xj
+

n∑

i=1

ηi[x,u]
∂

∂ui

is a Lie-Bäcklund symmetry vector field of the above system of partial
differential equations if and only if

LZ̄B
Fν (xi, uj , uj,i, . . . , uj,i1...ir ) =̂ 0

where Z̄B is the prolongation of the given generator ZB. Here =̂ stands for
the restriction to solutions of the equation.

The vertical Lie-Bäcklund symmetry vector field is given by

ZV B :=
n∑

j=1

Uj [x,u]
∂

∂uj

where

Uj [x,u] := ηj [x,u] −
m∑

i=1

ξi[x,u]
∂uj
∂xi

.

Thus one can, in general, consider a Lie-Bäcklund vector field in the form

ZB =
n∑

j=1

gj [x,u]
∂

∂uj

where gj are arbitrary functions of their arguments which have to be de-
termined for a system of partial differential equations.

The algorithm to determine the admitted Lie-Bäcklund symmetry vector
fields of a given system of partial differential equations is essentially the
same as in the case of the Lie point symmetry vector fields. A minor differ-
ence is that the equations resulting from the invariance condition LZ̄B

Fν =̂ 0
involve derivatives to order q + r. By making use of the differential con-
sequences of the submanifold Fν = 0 the determining equations (a linear
system of partial differential equations in ξ and η) can be found.
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Example. We derive a class of analytic functions f for which the evolution
equation

∂2u

∂x1∂x2
= f(u) (1)

admits Lie-Bäcklund vector fields. We apply the jet bundle formalism.
Within this approach we consider the submanifold

F ≡ u12 − f(u) = 0

and all its differential consequences with respect to x1, i.e.

F1 ≡ u112 − u1f
′ = 0, F11 ≡ u1112 − u11f

′ − u2
1f

′′ = 0

etc.. Let

ZB = g(u, u1, u11, u111)
∂

∂u

be a Lie-Bäcklund vector field. The nonlinearity in the partial differential
equation only appears in the function f which depends only on u and the
term where the derivative appears is linear. Consequently we can assume
that the vector field ZB is linear in u111, so that

ZB = (g1(u, u1, u11) + u111)
∂

∂u
.

Furthermore, we can assume, without loss of generality, that the function g1

does not depend on u. If we include the dependence of u, our calculations
show that g1 does not depend on u. Consequently,

ZB = (g2(u1, u11) + u111)
∂

∂u
.

Owing to the structure of the given partial differential equation (1) we are
only forced to include the term of the form (· · ·)∂/∂u12 in the prolonged
vector field Z̄B . From the invariance condition it follows that

u111u1
∂2g2
∂u2

11

f ′ + u111
∂2g2

∂u1∂u11
f + u11

∂2g2
∂u2

1

f + u11u1
∂2g2

∂u1∂u11
f ′

+ (u2
1f

′′ + u11f
′)
∂g2
∂u11

+ 3u11u1f
′′ + u3

1f
′′′ + u1

∂g2
∂u1

f ′ − g2f
′ = 0 (2)

where f ′ = df/du. Separating out the terms with the factors u111u1 and
u111 we obtain

u111u1
∂2g2
∂u2

11

f ′ = 0 (3)
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and

u111
∂2g2

∂u1∂u11
f = 0. (4)

If we assume that the function g2 does not depend on u11, then (3) and (4)
are satisfied. From (2) it follows that

u11

(
3u1f

′′ + f
∂2g2
∂u2

1

)
= 0

and

u3
1f

′′′ + u1f
′ ∂g2
∂u1

− g2f
′ = 0.

Since we assume that the function f is a nonlinear analytic function of u,
it follows that the function g2 must be of the form

g2(u1) =
a

3
u3

1

where a is an arbitrary real parameter (a 6= 0). We obtain

u11u1(3f
′′ + 2af) = 0, u3

1(f
′′′ +

2a

3
f ′) = 0.

For solving both these equations simultaneously, we have to solve the linear
differential equation

f ′′ +
2a

3
f = 0. (5)

We can now state the following: If the function f satisfies the linear ordinary
differential equation (5) then (1) admits Lie-Bäcklund vector fields. For the
solution of this equation we have to distinguish between the cases a > 0
and a < 0. First let a > 0. We put a = 3/2. Then we obtain

f(u) = C1 sinu+ C2 cosu

where C1 and C2 are two real constants. Secondly let a < 0, we put
a = −3/2. Then we obtain

f(u) = C1 coshu+ C2 sinhu.

Thus the evolution equations

∂2u

∂x1∂x2
= C1 sinu+ C2 cosu

and
∂2u

∂x1∂x2
= C1 sinhu+ C2 coshu
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admit Lie-Bäcklund vector fields. The simplest one is given by the vector
field

ZB = (g2(u1, u11) + u111)
∂

∂u

together with g2(u1) = au3
1/3, i.e.

ZB = (
a

3
u3

1 + u111)
∂

∂u
.

A hierarchy of Lie-Bäcklund vector fields can now be obtained with the
help of a recursion operator. Within the technique described above we find
that the evolution equations of the form ∂2u/∂x1∂x2 = f(u), where f is a
polynomial with degree higher than one in u, do not admit Lie-Bäcklund
vector fields. ♣

Example. Consider the diffusion equation

∂u

∂x2
=
∂2u

∂x2
1

+ f(u)

where f is an analytic function. In the jet bundle formalism we have

F ≡ u2 − u11 − f(u) = 0

with all the differential consequences with respect to x1. Owing to the
structure of the diffusion equation we consider the simplified Lie-Bäcklund
vector field ZB without loss of generality, namely

ZB = (g1(u, u1, u11) + u111)
∂

∂u

where g1 is an analytic function. We need only the terms of the form
(· · ·)∂/∂u2 and (· · ·)∂/∂u11 in the prolonged vector field Z̄B. From the
invariance condition LZ̄B

F =̂ 0 it follows that

∂g1
∂u

f + u1
∂g1
∂u1

f ′ + (u2
1f

′′ + u11f
′)
∂g1
∂u11

+ 3u1u11f
′′ + u3

1f
′′′ − u2

1

∂2g1
∂u2

− 2u1u11
∂2g1
∂u∂u1

− 2u1u111
∂2g1
∂u∂u11

− u2
11

∂2g1
∂u2

1

− 2u11u111
∂2g1

∂u1∂u11

−u2
111

∂2g1
∂u2

11

− g1f
′ = 0.

Separating out the term with the factor u2
111 we obtain

u2
111

∂2g1
∂u2

11

= 0.
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Consequently the function g1 takes the form

g1(u, u1, u11) = g2(u, u1)u11 + g3(u, u1).

It also follows that

u1u111
∂2g1
∂u∂u11

= 0, u11u111
∂2g1

∂u1∂u11
= 0.

Thus we find that the function g2 does not depend on u1 and u. Conse-
quently,

g1(u, u1, u11) = C1u11 + g3(u, u1)

and

C1u
2
1f

′′ + 3u1u11f
′′ + u1f

′′ − g3f
′ + f

∂g3
∂u

+ u1f
′ ∂g3
∂u1

−u2
1

∂2g3
∂u2

− 2u1u11
∂2g3
∂u∂u1

− u2
11

∂2g3
∂u2

1

= 0.

From this equation we obtain

u2
11

∂2g3
∂u2

1

= 0

and therefore the function g3 takes the form

g3(u, u1) = g4(u)u1 + g5(u).

We also obtain
u1u11(3f

′′ − 2g′4) = 0

and therefore g4 = 3
2f

′ + C2. It follows that

C1u
2
1f

′′ + u1f
′′′ − g5f

′ +
3

2
u1ff

′′ + fg′5 −
3

2
u3

1f
′′′ − u2

1g
′′
5 = 0.

We see that the following statement holds: The diffusion equation admits
Lie-Bäcklund vector fields if and only if f ′′(u) = 0. Hence the equation
becomes linear. The vector field ZB takes the form

ZB = (u111 + C1u11 + C2u1)
∂

∂u
.

We obtain the same result when we extend the vector field to

ZB = g(x1, x2, u, u1, u11, u111, . . .)
∂

∂u
.
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The diffusion equation belongs to the following class of partial differential
equations which admit a hierarchy of Lie-Bäcklund vector fields, namely

∂u

∂t
=
∂2u

∂x2
+ f1(u)

(
∂u

∂x

)2

+ f2(u)
∂u

∂x
+ f3(u)

and the functions f1, f2 and f3 satisfy the system of differential equations

f ′
2f3 = 0, f ′

2f1 = f ′′
2 , f ′′

3 + (f1f3)
′ = 0.

Thus, if f3(u) = 0, f1(u) = 0 and f2(u) = u, the condition is satisfied
and we obtain the well-known Burgers’ equation. If we put f1(u) = 0 and
f2(u) = 0, then it follows that f ′′

3 (u) = 0. Consequently f3(u) = au + b
(a, b ∈ R). ♣

We now give some more Lie-Bäcklund symmetry vector fields of well known
partial differential equations.

Example. The Burgers’ equation

∂2u

∂x2
1

− u
∂u

∂x1
− ∂u

∂x2
= 0

is written in the form

F ≡ u11 − uu1 − u2 = 0

in the jet bundle formalism. With the Lie-Bäcklund vector field ansatz

ZB = g(x1, x2, u, u1, u11, u111)
∂

∂u

Burgers’ equation admits the following Lie-Bäcklund symmetry vector fields

Z1 = (4u111 − 6uu11 − 6u2
1 + 3u2u1)

∂

∂u

Z2 = (4x2u111 + (2x− 6x2u)u11 − 6x2u
2
1 + (3x2u

2 − 2x1u)u1 − u2)
∂

∂u

Z3 = (4x2
2u111 + (4x2x1 − 6x2

2u)u11 − 6x2
2u

2
1 + (3x2

2u
2 − 4x2x1u+ x2

1)u1

− 2x2u
2 + 2x1u+ 6)

∂

∂u
.

There is a hierarchy of Lie-Bäcklund vector fields. ♣
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Example. The Korteweg-de Vries equation

∂3u

∂x3
1

+ u
∂u

∂x1
+

∂u

∂x2
= 0

is written in the form

F ≡ u111 + uu1 + u2 = 0

in the jet bundle formalism. With the Lie-Bäcklund vector field ansatz

ZB = g(x1, x2, u, u1, u11, u111, u1111, u11111)
∂

∂u
.

The Korteweg-de Vries equation admits the following generators (the first
four are Lie point symmetry vector fields in vertical form)

ZV1 = (x2u1 − 1)
∂

∂u
, ZV2 =

1

3
(x1u1 + 3x2u2 + 2u)

∂

∂u
, ZV3 = u1

∂

∂u

ZV4 = −u2
∂

∂u
, ZB =

(
3

5
u11111 + uu111 + 2u1u11 +

1

2
u2u1

)
∂

∂u
. ♣

Example. For the modified Korteweg-de Vries equation

F ≡ u111 + u2u1 + u2 = 0

the following are the first two Lie-Bäcklund vector fields in a hierarchy of
Lie-Bäcklund vector fields (with the same ansatz given above)

ZB1 =
(
u111 + u2u1

) ∂

∂u

and

ZB2 =

(
u11111 +

5

3
u2u111 +

20

3
uu1u11 +

5

3
u3

1 +
5

6
u4u1

)
∂

∂u
. ♣

Example. The Harry-Dym equation (λ ∈ R)

∂u

∂x2
− λu3 ∂

3u

∂x3
1

= 0

is written in the form
F ≡ u2 − λu3u111 = 0

applying the jet bundle formalism. A Lie-Bäcklund vector field is given by

ZB =

(
u5u11111 + 5u4u1u1111 + 5u4u11u111 +

5

3
u3u2

1u111

)
∂

∂u
. ♣
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Example. The nonlinear system of partial differential equations

∂u1

∂x2
− ∂2u1

∂x2
1

− 1

2
u2

2 = 0,
∂u2

∂x2
− 2

∂2u2

∂x2
1

= 0

is written in the form

F1 ≡ u1,2 − u1,11 −
1

2
u2

2, F2 ≡ u2,2 − 2u2,11

in the jet bundle formalism. There exists only the one Lie-Bäcklund sym-
metry vector field

ZB = (u1,111 + 3u2u2,1)
∂

∂u1
+ 4u2,111

∂

∂u2
. ♣

Let us now discuss the question of obtaining the Lie-Bäcklund transfor-
mation group by considering the Lie-Bäcklund symmetry vector field

ZB =
n∑

j=1

gj [x,u]
∂

∂uj
.

This implies that one has to consider the evolution equation

∂uj
∂ε

= gj [x,u]

where j = 1, . . . , n. The solution (provided it exists) of the initial value
problem u(x, 0) = f(x) will determine the group action

[exp(εZB)f ](x) ≡ u(x, ε).

Here we are forced to assume that the solution to this Cauchy problem is
uniquely determined provided the initial data f(x) is chosen in some ap-
propriate space of functions, at least for ε sufficiently small. The resulting
flow exp(εZ) will then be on the given function space. The verification
of this hypothesis leads to some very difficult problems on existence and
uniqueness of solutions to systems of evolution equations. The problem will
become apparent in the following example.

Example. Consider the Lie-Bäcklund vector field

ZB = u11
∂

∂u
.

The corresponding one-parameter group will be obtained by solving the
Cauchy problem for the partial differential equation

∂u

∂ε
=
∂2u

∂x2
, u(x, 0) = f(x).
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The solution can be given as Lie series

u(x, ε) = exp(εZ)f(x).

Thus exponenting the Lie-Bäcklund vector field is equivalent to solving the
heat equation. Several difficulties are immediately apparent. Firstly, for
ε < 0 we are dealing with the “backwards heat equation” which is a classic
ill-posed problem and may not even have solutions. Thus we should only
expect to have a “semi-group” of transformations generated by Z. Secondly,
unless we impose some growth conditions the solution will not in general
be unique. The formal series solution to the evolution equation is

u(x, ε) = f(x) + ε
∂2f

∂x2
+
ε2

2!

∂4f

∂x4
+ · · · .

However, even if f is analytic, this Lie series for u may not converge. In
fact, it will converge only if f is an entire analytic function satisfying the
growth condition

|f(x)| ≤ C exp(Kx2)

for positive constants C, K, which are the same growth conditions needed
to ensure uniqueness of solutions. ♣

11.2 Invariant Solutions

Lie-Bäcklund vector fields can also be used to construct similarity solu-
tions. We show this with the following example. The jet bundle formalism
is applied.

Example. Consider the nonlinear diffusion equation

∂u

∂x2
=

∂

∂x1

(
1

u2

∂u

∂x1

)
.

Within the jet bundle formalism we have the submanifold

F (x1, x2, u, u1, u11) ≡ u2 −
u11

u2
+ 2

u2
1

u3
= 0

and its differential consequences. The contact form is

θ = du− u1dx1 − u2dx2.

The nonlinear diffusion equation admits the following Lie point symmetry
vector fields (in vertical form)

Xv = −u1
∂

∂u
, Tv = −u2

∂

∂u
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Sv = (−xu1 − 2tu2)
∂

∂u
, Vv = (xu1 + u)

∂

∂u
.

By considering the ansatz

ZB = (g1(u, u1, u11) + g2(u)u111)
∂

∂u

we find the following Lie-Bäcklund vector field

ZB =

(
u111

u3
− 9u1u11

u4
+

12u3
1

u5

)
∂

∂u
.

As a subalgebra we consider a linear combination of the vector fields Tv and
ZB , i.e., aTv + ZB (a ∈ R). The invariant solution for this Lie subalgebra
will now be discussed. The condition

(aTv + ZB) θ = 0

where denotes the contraction, leads to the submanifold

−au2 +
u111

u3
− 9u1u11

u4
+

12u3
1

u5
= 0.

Consequently, it follows that

js∗
[
−a
(
u11

u2
− 2u2

1

u3

)
+
u111

u3
− 9u1u11

u4
+

12u3
1

u5

]
≡ ∂3

∂x3
1

1

2u2
− a

∂2

∂x2
1

1

u

= 0

where s is the cross section s(x1, x2) = (x1, x2, u(x1, x2)) with

js∗θ = 0, js∗θ1 = 0, . . .

and js the extension of s up to infinite order. For deriving this differential
equation we have taken into account the identity

1

u3

∂3u

∂x3
1

− 9

u4

∂u

∂x1

∂2u

∂x2
1

+
12

u5

(
∂u

∂x1

)3

≡ − ∂3

∂x3
1

(
1

2u2

)
.

Since derivatives of u with respect to x2 do not appear in this equation we
are able to consider it as an ordinary differential equation of third order

d3

dx3
1

(
1

2u2

)
− a

d2

dx2
1

1

u
= 0
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where x2 plays the role of a parameter and occurs in the constants of
integration. The integration of this ordinary differential equation yields

du

dx1
+ au2 = (C1(x2)x1 + C2(x2))u

3.

In order to determine the constants of integration C1(x2) and C2(x2) we
must first solve the ordinary differential equation, where a new constant
of integration appears which also depends on x2. Then we insert the so-
lution into the partial differential equation and determine the quantities
C1(x2), C2(x2) and C3(x2). The first order equation is a special case of
Abel’s equation of the first kind and is written in the form

dz

dy
= z3 + P (x1)

where

x1(y) =
1

C1(x2)

[
y(6C1(x2) − 2a2)

]3C1(x2)/(6C1(x2)−2a2)

u(x1(y), x2) =
z(y)

C1(x2)x1 + C2(x2)

+
3

a
[C1(x2)x1(y) + C2(x2)]

(a2−6C1(x2))/(3C1(x2))

P (x1(y)) =
a

3

[
C1(x2) −

2a2

9

]
[C1(x2)x1(y) + C2(x2)]

(a2−3C1(x2))/C1(x2) .

We consider the case C1(x2) = 2a2/9 so that P (x1) = 0. By integrating we
find

z(y) = (−2y − 2C3(x2))
−1/2

.

By now expressing u(x1, x2) in terms of x1, C2(x2) and C3(x2) we insert
this expression into the diffusion equation and find a condition on C2(x2)
and C3(x2). We consider C2(x2) = 0 so that the determining equation
reduces to the linear differential equation

9
dC3

dx2
− 2a2C3(x2) = 0

with solution

C3(x2) = k1 exp

(
2

9
a2x2

)
.

With the given restrictions we find the invariant (similarity) solution of the
nonlinear diffusion equation to be

u(x1, x2) =
3
(
81 − 4a4k1x1 exp

(
2
9a

2x2

)) 1
2 + 27

2ax1

(
81− 4a4k1x1 exp

(
2
9a

2x2

)) 1
2

. ♣
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11.3 Computer Algebra Applications

We show that the sine-Gordon equation

∂2u

∂x1∂x2
= sin(u)

admits the Lie-Bäcklund symmetry vector fields

Z = (ux1x1x1 + (2ux)
3)
∂

∂u
.

From the sine-Gordon equation we obtain the manifold

ux1x2 = sin(u).

Taking the derivatives of the sine-Gordon equation with respect to x1 leads
to the manifolds

ux1x1x2 = ux1 cos(u)

ux1x1x1x2 = ux1x1 cos(u) − (ux1)
2 cos(u)

ux1x1x1x1x2 = ux1x1x1 cos(u) − 3ux1ux1x1 sin(u) − (ux1)
3 cos(u).

We calculate the prolongated vector field Z̄

Z̄ =Z + (4ux1x1x1x2 + 6(ux1)
2ux1x2)

∂

∂ux2

+ (4ux1x1x1x1x2 + 12ux1ux1x1ux1x2 + 6(ux1)
2)

∂

∂ux1x2

.

Taking the Lie derivative yields

LZ̄(ux1x2 − sinu) =

4ux1x1x1x1x2 + 12ux1ux1x1 + ux1x2 + 6u2
x1
ux1x1x2 − (4ux1x1x1 + 2u3

x1
) cosu.

Inserting the manifolds given above into the right-hand side of this equation
leads to

LZ̄(ux1x2 − sin(u)) = 0.

The SymbolicC++ program is

// lb.cpp

#include <iostream>

#include "symbolicc++.h"
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using namespace std;

int main(void)

{

Symbolic x1("x1"), x2("x2");

Symbolic u("u"), u1("u1"), u2("u2");

Symbolic u11("u11"), u111("u111"), u1111("u1111");

Symbolic u22("u22"), u222("u222");

Symbolic u12("u12"), u112("u112"), u1112("u1112"),

u11112("u11112");

Symbolic Q("Q");

Q = Q[x1,x2,u,u1,u2,u11,u22,u12,u111,u222,u1111,u112,u1112,

u11112];

Symbolic D1, D2;

D1 = df(Q,x1)+u1*df(Q,u)+u11*df(Q,u1)+u111*df(Q,u11)+

u1111*df(Q,u111)+u12*df(Q,u2)+u112*df(Q,u12)+

u1112*df(Q,u112)+u11112*df(Q,u1112);

D2 = df(Q,x2)+u2*df(Q,u)+u22*df(Q,u2)+u222*df(Q,u22)+

u12*df(Q,u1)+u112*df(Q,u11)+u1112*df(Q,u111)+

u11112*df(Q,u1111);

Symbolic equ;

equ = u12 - sin(u);

Symbolic V;

V = 4*u111 + 2*u1*u1*u1;

// Prolongation

Symbolic V2, V12;

V2 = D2[Q==V];

V12 = D1[Q==V2];

Symbolic result;

result = V*df(equ,u) + V12*df(equ,u12);

// substitution

result = result[u11112==u111*cos(u)-3*u1*u11*sin(u)

-u1*u1*u1*cos(u),u1112==u11*cos(u)-u1*u1*sin(u),

u112==u1*cos(u),u12==sin(u)];

cout << "result = " << result;
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return 0;

}

11.4 Exercises

(1) The Ernst equation is given by

(E + Ē)

(
∂2E

∂r2
+

1

r

∂E

∂r
+
∂2E

∂z2

)
= 2

((
∂E

∂r

)2

+

(
∂E

∂z

)2
)

for a complex-valued potential E depending on two coordinates (r, z). Does
the partial differential equation admit Lie-Bäcklund vector fields? The
Ernst equation is equivalent to the stationary axially symmetric vacuum
Einstein equation.

(2) Consider a stationary, axisymmetric, vacuum metric in Weyl coordi-
nates in the canonical form

ds2 = f(dt− ωdθ)2 + f̂−1dθ2 − Ω2(dρ2 + dz2)

where ω, f and f̂ depend only on the cylindrical coordinates ρ and z. We
define the matrix

J(ρ, z) :=

(
fω2 + f̂−1 −fω

−fω f

)
.

Then Einstein’s equation implies that the matrix J satisfies

ρ−1 ∂

∂ρ

(
ρJ−1 ∂

∂ρ
J

)
+

∂

∂z

(
J−1 ∂

∂z
J

)
= 0 .

Does this system of nonlinear partial differential equations admits Lie-
Bäcklund vector fields?
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Chapter 12

Differential Equation for a
Given Lie Algebra

Thus far we have constructed Lie point symmetry vector fields and Lie-
Bäcklund symmetry vector fields of a given partial differential equation. In
this chapter we study the inverse problem, i.e., we construct partial differ-
ential equations that admit a given symmetry vector field (Rosenhaus [95]).

Let Z1, . . . , Zq be a set of Lie point symmetry vector fields or Lie Bäcklund
symmetry vector fields. The question is: What is the differential equation
that admits these Lie symmetry vector fields? We restrict ourselves to par-
tial differential equations of second order. An example for a Lie-Bäcklund
vector field is also investigated.

12.1 Lie Point Symmetry Vector Fields

Let us consider the case with one dependent variable u and two independent
variables x1 and x2. We assume that the Lie algebra is spanned by the
following Lie point symmetry vector fields

{
∂

∂x1
,

∂

∂x2
,
∂

∂u
, u

∂

∂x1
, u

∂

∂x2
, u

∂

∂u
, x1

∂

∂x1
+ x2

∂

∂x2

}

and that the partial differential equation is of the form

F

(
x1, x2, u,

∂u

∂x1
,
∂u

∂x2
,
∂2u

∂x2
1

,
∂2u

∂x1∂x2
,
∂2u

∂x2
2

)
= 0.

217
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In the jet bundle J2(R2,R1) we write

F (x1, x2, u, u1, u2, u11, u12, u22) = 0

where we assume that F is an analytic function of its arguments. The
invariance condition is

LZ̄V
F =̂ 0.

The prolonged vector field Z̄V of the vertical vector field

ZV = U(x1, x2, u, u1, u2)
∂

∂u

is given by

Z̄V =U
∂

∂u
+D1(U)

∂

∂u1
+D2(U)

∂

∂u2
+D1(D1(U))

∂

∂u11

+D1(D2(U))
∂

∂u12
+D2(D2(U))

∂

∂u22

where Di is the total derivative operator and

U = b(x1, x2, u) − a1(x1, x2, u)u1 − a2(x1, x2, u)u2.

Recall that this vertical vector field corresponds to the symmetry vector
field

Z = a1(x1, x2, u)
∂

∂x1
+ a2(x1, x2, u)

∂

∂x2
+ b(x1, x2, u)

∂

∂u
.

The prolongation of the symmetry vector field ∂/∂x (in vertical form) is
given by

Z̄V = −u1
∂

∂u
− u11

∂

∂u1
− u12

∂

∂u2
− u111

∂

∂u11
− u112

∂

∂u12
− u122

∂

∂u22
.

From the invariance condition it follows that

u1
∂F

∂u
+ u11

∂F

∂u1
+ u12

∂F

∂u2
+ u111

∂F

∂u11
+ u112

∂F

∂u12
+ u122

∂F

∂u22
=̂ 0. (1)

The first prolongation of the partial differential equation F = 0 is obtained
by applying the operator D1 so that

∂F

∂x1
+u1

∂F

∂u
+u11

∂F

∂u1
+u12

∂F

∂u2
+u111

∂F

∂u11
+u112

∂F

∂u12
+u122

∂F

∂u22
= 0. (2)

Inserting (2) into (1) yields
∂F

∂x1
= 0.
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Analogously it can be shown that

∂F

∂x2
= 0,

∂F

∂u
= 0

which follows from the symmetry vector fields ∂/∂x2 and ∂/∂u respectively.
We conclude that F does not depend explicitly on x1, x2 and u. Thus we
can assume that F is of the form

F (u1, u2, u11, u12, u22) = 0.

For the remaining Lie point symmetry vector fields u∂/∂x1, u∂/∂x2, u∂/∂u,
and x1∂/∂x1 + x2∂/∂x2 we find

u2
1

∂F

∂u1
+ u1u2

∂F

∂u2
+ 3u1u11

∂F

∂u11
+ (u11u2 + 2u1u12)

∂F

∂u12

+ (2u12u2 + u1u22)
∂F

∂u22
= 0

u1u2
∂F

∂u1
+ u2

2

∂F

∂u2
+ (2u1u12 + u11u2)

∂F

∂u11
+ (2u2u12 + u1u22)

∂F

∂u12

+ 3u2u22
∂F

∂u22
= 0

u1
∂F

∂u1
+ u2

∂F

∂u2
+ u11

∂F

∂u11
+ u12

∂F

∂u12
+ u22

∂F

∂u22
= 0

u1
∂F

∂u1
+ u2

∂F

∂u2
+ 2u11

∂F

∂u11
+ 2u12

∂F

∂u12
+ 2u22

∂F

∂u22
= 0.

From the last two equations we obtain

u2
∂F

∂u2
= −u1

∂F

∂u1
. (3)

By making use of this equation we find the following conditions on F

3u1u11
∂F

∂u11
+ (u11u2 + 2u1u12)

∂F

∂u12
+ (2u12u2 + u1u22)

∂F

∂u22
= 0

(2u1u12 + u11u2)
∂F

∂u11
+ (2u2u12 + u1u22)

∂F

∂u12
+ 3u2u22

∂F

∂u22
= 0

u11
∂F

∂u11
+ u12

∂F

∂u12
+ u22

∂F

∂u22
= 0.

These three equations can be expressed in matrix form

A



∂F/∂u11

∂F/∂u12

∂F/∂u22


 =




0
0
0


 (4)
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where

A :=




3u1u11 (u11u2 + 2u1u12) (2u12u2 + u1u22)
(2u1u12 + u11u2) (2u2u12 + u1u22) 3u2u22

u11 u12 u22




with

detA = 2(u22u11 − u2
12)(u

2
2u11 + u2

1u22 − 2u2u1u12).

If det A 6= 0, we obtain the trivial solution. The nontrivial solution for F
is given by

F ≡ detA = 0 (5)

since this is the consistency condition of system (4). Thus, a partial differ-
ential equation that admits the given Lie point symmetry vector fields is
given by

∂2u

∂x2
1

∂u

∂x2
2

−
(

∂2u

∂x1∂x2

)2

= 0.

This equation is known as the Monge-Ampére equation for the surface
u = u(x1, x2) with the Gaussian curvature K = 0. The partial differential
equation

(
∂u

∂x1

)2
∂2u

∂x2
2

− 2
∂u

∂x1

∂u

∂x2

∂2u

∂x1∂x2
+

(
∂u

∂x2

)2
∂2u

∂x2
1

= 0

admits the same Lie point symmetry vector fields. It can be transformed,
via the Legendre transformation, to

∂2x1(x2, u)

∂x2
2

= 0 or
∂2x2(x1, u)

∂x2
1

= 0.

By studying the Lie point symmetry vector fields

Z1 =
∂

∂x1
, Z4 = x1

∂

∂x1
, Z7 = x2

∂

∂x1
, Z10 = u

∂

∂x2

Z2 =
∂

∂x2
, Z5 = x2

∂

∂x2
, Z8 = x1

∂

∂x2
, Z11 = x1

∂

∂u

Z3 =
∂

∂u
, Z6 = u

∂

∂u
, Z9 = u

∂

∂x1
, Z12 = x2

∂

∂u

with the analytic function F (x1, x2, u, u1, u11, u12, u22) = 0, we find the
Monge-Ampére equation. The fundamental Lie algebra of the Monge-
Ampére equation is a fifteen-dimensional Lie algebra spanned by the twelve
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Lie symmetry vector fields given above with the following three symmetry
vector fields

Z13 = x1P, Z14 = x2P, Z15 = uP

where

P := x1
∂

∂x1
+ x2

∂

∂x2
+ u

∂

∂u
.

We now consider m independent variables x1, . . . , xm and one dependent
variable u. The Lie algebra is spanned by the vector fields

{
∂

∂xi
,
∂

∂u
, u

∂

∂u
, xi

∂

∂xj
, xi

∂

∂u
, u

∂

∂xi
: i, j = 1, . . . ,m

}
.

Applying the algorithm given above with

F (ui1i2) = 0

i1 ≤ i2 = 1, . . . ,m leads to the following system of equations

2u11
∂F

∂u11
+ u12

∂F

∂u12
+ u13

∂F

∂u13
+ · · · + u1n

∂F

∂u1n
=̂ 0

2u21
∂F

∂u11
+ u22

∂F

∂u12
+ u23

∂F

∂u13
+ · · · + u2n

∂F

∂u1n
=̂ 0

...

2un1
∂F

∂u11
+ un2

∂F

∂u12
+ un3

∂F

∂u13
+ · · · + unn

∂F

∂u1n
=̂ 0.

The only nontrivial F is given by

F := det




u11 u12 · · · u1n

u21 u22 · · · u2n
...

...
. . .

...
un1 un2 · · · unn


 = 0.

Example. We consider two independent variables x1, x2 and two depen-
dent variables u, v. For the Lie algebra which is assumed to be spanned by
the vector fields

{
∂

∂x1
,
∂

∂x2
, x1

∂

∂x1
, x2

∂

∂x2
, x1

∂

∂x2
, x2

∂

∂x1

}

and
{

∂

∂u
,
∂

∂v
, u

∂

∂v
, v

∂

∂u
, u

∂

∂u
, v

∂

∂v
, xj

∂

∂u
, xj

∂

∂v
, u

∂

∂xj
, v

∂

∂xj

}
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where j = 1, 2. The only nontrivial solution of the conditional equations
for

F (u11, u12, u22, v11, v12, v22) = 0

is given by (
∂2u

∂x2
2

∂2v

∂x2
1

− ∂2u

∂x2
1

∂2v

∂x2
2

)2

+ 4

(
∂2u

∂x2
2

∂2v

∂x1∂x2
− ∂2u

∂x1∂x2

∂2v

∂x2
2

)(
∂2u

∂x2
1

∂2v

∂x1∂x2
− ∂2u

∂x1∂x2

∂2v

∂x2
1

)
= 0. ♣

12.2 Lie-Bäcklund Vector Fields

In this section we study the question of finding a partial differential equation
that admits not only Lie point symmetry vector fields but also Lie-Bäcklund
vector fields. We consider, within the jet bundle J2(R2,R1), the Lie point
symmetry vector field

Z = (αx1 + β1)
∂

∂x1
+ (−αx2 + β2)

∂

∂x2

with α and β1, β2 constants, as well as the Lie-Bäcklund symmetry vector
field

ZB =
(
2u111 + u3

1

) ∂

∂u
.

First we consider the Lie point symmetry vector field with the analytic
function F (u, u12) = 0. From the invariance condition LZ̄F =̂ 0 we find

(−(αx1 +β1)u1 +(αx2−β2)u2)
∂F

∂u
− ((αx1 +β1)u112− (αx2−β2)u122)

∂F

∂u12

=̂ 0.

By considering the differential consequence of F = 0 we obtain

∂F

∂u
u1 +

∂F

∂u12
u112 = 0

∂F

∂u
u2 +

∂F

∂u12
u122 = 0

∂2F

∂u2
u2

1 +
∂F

∂u
u11 +

∂2F

∂u2
12

u2
112 +

∂F

∂u12
u1112 = 0

∂3F

∂u3
u

3

1 + 3
∂2F

∂u2
u1u11+

∂F

∂u
u111+

∂3F

∂u3

12

u
3

112 + 3
∂2F

∂u2

12

u112u1112+
∂F

∂u12

u11112 = 0.
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From these equations we find that

(αx1 + β1)

(
∂F

∂u
u1 +

∂F

∂u12
u112

)
+ (−αx2 + β2)

(
∂F

∂u
u2 +

∂F

∂u12
u122

)

−((αx1+β1)u1−(αx2−β2)u2)
∂F

∂u
−((αx1+β1)u112−(αx2−β2)u122)

∂F

∂u12
= 0

so that no conditions are imposed on F . This means that the partial dif-
ferential equation

F

(
u,

∂2u

∂x1∂x2

)
= 0

admits the symmetry vector field

Z = (αx1 + β1)
∂

∂x1
+ (−αx2 + β2)

∂

∂x2
.

Let us now consider the Lie-Bäcklund vector field given above with the
special case F ≡ u12 −f(u) = 0, where f is an arbitrary function of u. The
invariance condition LZ̄B

F =̂ 0 results in the following condition on F

(2u111 + u3
1)
∂F

∂u
+ (2u11112 + 6u1u11u12 + 3u2

1u112)
∂F

∂u12
=̂ 0 .

By inserting F = u12 − f(u) into this equation we obtain a condition on
f(u), namely

2u3
1

(
df

du
+
d3f

du3

)
+ 6u1u11

(
f +

d2f

du2

)
= 0.

Consequently we obtain the linear differential equation

d2f

du2
+ f = 0.

Thus f is given by
f(u) = c1 sinu+ c2 cosu

where c1, c2 are arbitrary constants. The partial differential equation

∂2u

∂x1∂x2
= c1 sinu+ c2 cosu

known as the sine-Gordon equation thus admits the Lie-Bäcklund symme-
try vector field given above. ZB is the first vector field in a hierarchy of
Lie-Bäcklund vector fields for the sine-Gordon equation. The higher Lie-
Bäcklund vector fields of the sine-Gordon equation can be found with the
help of the recursion operator

R :=

(
∂

∂x1

)2

+

(
∂u

∂x1

)2

− ∂u

∂x1
D−1
x1

∂2u

∂x2
1

.
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12.3 Computer Algebra Applications

We find the determinant of the matrix A.

// detmatrix.cpp

#include <iostream>

#include "symbolicc++.h"

#include "matrix.h"

using namespace std;

int main(void)

{

Matrix<Symbolic> A(3,3);

Symbolic x1("x1"), x2("x2");

Symbolic u("u");

u = u[x1,x2];

Symbolic result;

A[0][0] = 3*df(u,x1)*df(u,x1,2);

A[0][1] = df(u,x1,2)*df(u,x2)+2*df(u,x1)*df(df(u,x1),x2);

A[0][2] = 2*df(df(u,x1),x2)*df(u,x2)+df(u,x1)*df(u,x2,2);

A[1][0] = 2*df(u,x1)*df(df(u,x1),x2)+df(u,x1,2)*df(u,x2);

A[1][1] = 2*df(u,x2)*df(df(u,x1),x2)+df(u,x1)*df(u,x2,2);

A[1][2] = 3*df(u,x2)*df(u,x2,2);

A[2][0] = df(u,x1,2);

A[2][1] = df(df(u,x1),x2);

A[2][2] = df(u,x2,2);

result = A.determinant();

cout << "result = " << result;

return 0;

}

12.4 Exercises

(1) What is the condition on

F

(
x1, x2, u,

∂u

∂x1
,
∂u

∂x2
,
∂2u

∂x2
1

,
∂2u

∂x1∂x2
,
∂2u

∂x2
2

)
= 0

if it admits the Lie symmetries
{

∂

∂x1
,

∂

∂x2
, u

∂

∂u
, u2 ∂

∂u

}
?



Chapter 13

A List of Lie Symmetry
Vector Fields

13.1 Introduction

Lie symmetry groups for a large class of linear and nonlinear partial differ-

ential equations have been calculated and studied in the literature. Many

mathematicians and physicists have contributed to these studies and the

calculations are distributed in a large number of different journals (Ibrag-

imov [59]). Because of the large amount of information contained in the

infinitesimal group generators we give a list of some of the most impor-

tant partial differential equations in physics and their Lie symmetry vector

fields. It is, of course, impossible to make such a list complete.

We adopt the following notation: For the symmetry vector field we write

Z =
m∑

j=1

ξj(x,u)
∂

∂xj
+

n∑

j=1

ηj(x,u)
∂

∂uj

where ξj and ηj are the coefficient functions.

13.2 Listing

The linear wave equation in three spatial dimensions is given by

∂2u

∂x2
1

+
∂2u

∂x2
2

+
∂2u

∂x3
2

− ∂2u

∂x2
4

= 0.

225
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The Lie algebra of the symmetry vector fields is spanned by the fifteen
vector fields

Zxi
=

∂

∂xi
i = 1, . . . , 4

Zrij
= xi

∂

∂xj
− xj

∂

∂xi
i 6= j = 1, 2, 3

Zdi
= xi

∂

∂x4
+ x4

∂

∂xi
i = 1, 2, 3

Zl = x1
∂

∂x1
+ x2

∂

∂x2
+ x3

∂

∂x3
+ x4

∂

∂x4

Zli =−2xi

(
x1

∂

∂x1
+ x2

∂

∂x2
+ x3

∂

∂x3
+ x4

∂

∂x4

)

+ (x2
1 + x2

2 + x2
3 − x2

4)
∂

∂xi
+ 2xiu

∂

∂u
, i = 1, 2, 3

Zl4 = 2x4

(
x1

∂

∂x1
+ x2

∂

∂x2
+ x3

∂

∂x3

)

+ (x2
1 + x2

2 + x2
3 + x2

4)
∂

∂x4
− 2x4u

∂

∂u

which generate the conformal algebra c4 for R4 with the Lorentz metric

g = dx1 ⊗ dx1 + dx2 ⊗ dx2 + dx3 ⊗ dx3 − dx4 ⊗ dx4 .

It includes the ten vector fields of the Poincaré group and the five vector
fields of the conformal transformations. The additional vector fields

u
∂

∂u
, f(x1, x2, x3, x4)

∂

∂u

where f is an arbitrary solution of the wave equation, reflect the linearity
of the equation.

The three-dimensional linear diffusion equation (or linear heat equa-
tion) is given by

∂u

∂x4
=
∂2u

∂x2
1

+
∂2u

∂x2
2

+
∂2u

∂x2
3

.

The diffusion constant D, which is assumed to be constant is included in
the time t→ t/D. The Lie algebra is spanned by the thirteen vector fields

Z1 =
∂

∂x1
, Z2 =

∂

∂x2
, Z3 =

∂

∂x3
, Z4 =

∂

∂x4
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Z5 = u
∂

∂u
, Z6 = x1

∂

∂x1
+ x2

∂

∂x2
+ x3

∂

∂x3
+ 2x4

∂

∂x4

Z7 = x4
∂

∂x1
− x1u

2

∂

∂u
, Z8 = x4

∂

∂x2
− x2u

2

∂

∂u
, Z9 = x4

∂

∂x3
− x3u

2

∂

∂u

Z10 = x1
∂

∂x2
− x2

∂

∂x1
, Z11 = x2

∂

∂x3
− x3

∂

∂x2
, Z12 = x3

∂

∂x1
− x1

∂

∂x3

Z13 = x4

4∑

j=1

xj
∂

∂xj
−
(
x2

1

4
+
x2

2

4
+
x2

3

4
+

3x4

2

)
u
∂

∂u
.

The Potential Burgers’ equation represents the simplest wave equation
combining both dissipative and nonlinear effects and appears in a wide
variety of physical applications. The equation is given by

∂u

∂x2
=
∂2u

∂x2
1

+

(
∂u

∂x1

)2

.

The Lie algebra is spanned by the following six vector fields

Z1 =
∂

∂x1
, Z2 =

∂

∂x2
, Z3 =

∂

∂u

Z4 = x1
∂

∂x1
+ 2x2

∂

∂x2
, Z5 = 2x2

∂

∂x1
− x1

∂

∂u

Z6 = 4x2x1
∂

∂x1
+ 4x2

2

∂

∂x2
− (x2

1 + 2x2)
∂

∂u

and the infinite dimensional subalgebra

Zf = f(x1, x2)e
−u ∂

∂u

where f(x1, x2) is any solution to the linear diffusion equation.

The Korteweg-de Vries equation arises in the theory of long waves
in shallow water and other physical systems in which both nonlinear and
dispersive effects are relevant. It is given by

∂u

∂x2
+ u

∂u

∂x1
+
∂3u

∂x3
1

= 0.

The Lie algebra is spanned by the four vector fields

Z1 =
∂

∂x1
, Z2 =

∂

∂x2
, Z3 = x2

∂

∂x1
+
∂

∂u
, Z4 = x1

∂

∂x1
+3x2

∂

∂x2
−2u

∂

∂u
.
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The two-dimensional generalisation of the Korteweg-de Vries equation or
Kadomtsev-Petviashvili equation is given by

∂

∂x1

(
∂u

∂x3
+

3

2
u
∂u

∂x1
+

1

4

∂3u

∂x3
1

)
+

3

4
σ
∂2u

∂x2
2

= 0

where σ = ±1. The infinite parameter group is generated by

Z1 = f(x3)
∂

∂x3
+

[
1

3
xf ′(x3) −

2

9
σx2

2f
′′(x3)

]
∂

∂x1
+

2

3
x2f

′(x3)
∂

∂x2

+

[
−2

3
uf ′(x3) +

2

9
xf ′′(x3) −

4

27
σx2

2f
′′(x3)

]
∂

∂u

Z2 = g(x3)
∂

∂u
+

2

3
g′(x3)

∂

∂u

Z3 =−2

3
σx2h

′(x3)
∂

∂x1
+ h(x3)

∂

∂x2
− 4

9
σx2h

′′(x3)
∂

∂u

where f(x3), g(x3) and h(x3) are three arbitrary smooth function of the
variable x3 and f ′(x3) ≡ df/dx3, f

′′(x3) ≡ d2f/dx2
3 etc. For the linear

ansatz

f(x3) = c1 + c2x3, g(x3) = c3 + c4x3, h(x3) = c5 + c6x3

the Lie algebra is spanned by the following six infinitesimal generators

Z1 =
∂

∂x3
, Z2 =

∂

∂x1
, Z3 =

∂

∂x2
,

Z4 = 2σx2
∂

∂x1
+ 3x3

∂

∂x2
, Z5 = 3x3

∂

∂x1
− 2

∂

∂u
,

Z6 = 3x3
∂

∂x3
+ x1

∂

∂x1
+ 2x2

∂

∂x2
− 2u

∂

∂u
.

This equation also admits Lie-Bäcklund vector fields.

The modified Kadomtsev-Petviashvili equation is given by

∂2u

∂x1∂x3
=
∂2u

∂x2
1

+ 3
∂2u

∂x2
2

− 6

(
∂u

∂x1

)2
∂2u

∂x2
1

− 6
∂u

∂x2

∂2u

∂x2
1

.

The infinite parameter group is generated by

Z1 = f(x3)
∂

∂x3
+

[
1

3
xf ′(x3) +

1

18
x2

2f
′′(x3)

]
∂

∂x1



13.2. Listing 229

+
2

3
x2f

′(x3)
∂

∂x2
+

[
1

18
x1x2f

′′(x3) +
1

324
x3

2f
′′′(x3)

]
∂

∂u

Z2 =
1

6
x2g

′(x3)
∂

∂x1
+ g(x3)

∂

∂x2
+

[
1

12
x1g

′(x3) + x2
2g

′′(x3)

]
∂

∂u

Z3 = h(x3)
∂

∂x1
+

1

6
x2h

′(x3)
∂

∂u

Z4 = k(x3)
∂

∂u
.

The 3 + 1 dimensional Kadomtsev-Petviashvili equation, also known as
Jimbo-Miwa equation is given by

2
∂2u

∂x4∂x2
− 3

∂2u

∂x1∂x3
+ 3

∂u

∂x2

∂2u

∂x2
1

+ 3
∂u

∂x1

∂2u

∂x1∂x2
+

∂4u

∂x3
1∂x2

= 0.

The Lie algebra is spanned by the following ten generators

Z1 =
∂

∂x4
, Z2 =

∂

∂x1
, Z3 =

∂

∂x2
, Z4 =

∂

∂x3

Z5 = x2
∂

∂x2
+ x3

∂

∂x3
, Z6 = x1

∂

∂x1
+ 2x3

∂

∂x3
+ 3x4

∂

∂x4
− u

∂

∂u

Z7 = f1(x4)
∂

∂x1
+

2

3
f ′
1(x4)x1

∂

∂u
, Z8 = f2(x3)

∂

∂x1
− f ′

2(x3)x2
∂

∂u

Z9 = f3(x3)
∂

∂x2
+

3

4
f ′
3(x3)x4

∂

∂x1
−
(

1

2
f ′
3(x3)x1 +

3

4
f ′′
3 (x3)x4x2

)
∂

∂u

Z10 = f4(x3, x4)
∂

∂u
.

f ′ denotes the derivative of f , where f ′
1(x4) 6= 0, f ′(x3) 6= 0 and f1, f2, f3, f4

are arbitrary smooth functions.

The loop group structure that occurs for the Kadomtsev-Petviashvili equa-
tion and other integrable equations in more than 1 + 1 dimensions is absent
here. The reason is that the loop group structure requires the presence of
terms of the type

h(x4)
∂

∂x4
+ · · · or k(x3)

∂

∂x3
+ · · ·

that are absent in this case.
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In the study of the formation of Maxwellian tails the following nonlinear
partial differential equation

∂2u

∂x1∂x2
+

∂u

∂x1
+ u2 = 0

arises. The Lie algebra is spanned by the vector fields

Z1 =
∂

∂x1
, Z2 =

∂

∂x2
, Z3 = −x1

∂

∂x1
+u

∂

∂u
, Z4 = ex2

∂

∂x2
− ex2u

∂

∂u
.

The equation can be simplified using the transformation

x̃1(x1, x2) = x1

x̃2(x1, x2) = −e−x2

ũ(x̃1(x1, x2), x̃2(x1, x2)) = ex2u(x1, x2).

We thus obtain the equation

∂2ũ

∂x̃1∂x̃2
+ ũ2 = 0

where −1 ≤ x̃2 < 0 since 0 ≤ x1 <∞.

The Carleman-Boltzmann equation can be written in the form

∂2u

∂x2
1

− ∂2u

∂x2
2

− 2
∂u

∂x1

∂u

∂x2
= 0.

The Lie algebra is spanned by the four vector fields

Z1 =
∂

∂x2
, Z3 =

∂

∂u
, Z2 =

∂

∂x1
, Z4 = x1

∂

∂x1
+ x2

∂

∂x2
.

The stochastic Fokker-Planck equation in one-space dimension is given
by

∂u

∂x2
= A(x1)u+B(x1)

∂u

∂x1
+ C(x1)

∂2u

∂x2
1

.

Let f, g be smooth functions of x1. It follows that

A(x1) =− df

dx1
+

(
dg

dx1

)2

+
d2g

dx2
1

B(x1) =−f(x1) + 2g
dg

dx1

C(x1) =
1

2
g(x1) 6= 0.
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The following cases are considered:

Case 1: A = A(x1), B = B(x1), C = C(x1). The Lie symmetry genera-
tors are

Z1 =
∂

∂x2
, Z2 = u

∂

∂u
, Z3 = α(x1, x2)

∂

∂u

where α is a solution of the Fokker-Planck equation.

Case 2: f(x1) = 1 and g(x1) = x1. The only Lie symmetry generators are
{Z1, Z2, Z3} which are given above.

Case 3: f(x1) = x1 and g(x1) = 1. In addition to Z1, Z2 and Z3 we have

Z4 = ex2
∂

∂x2
, Z5 = e−x2

∂

∂x1
+ 2x1e

−x2u
∂

∂u

Z6 = x1e
2x2

∂

∂x1
+ e2x2

∂

∂x2
− e2x2u

∂

∂u

Z7 = x1e
−2x2

∂

∂x1
− e−2x2

∂

∂x2
+ 2x2

1e
−2x1u

∂

∂u
.

Case 4: f(x1) = x1 and g(x1) = x1. In addition to Z1, Z2 and Z3 we have

Z4 = x1
∂

∂x1
, Z5 = x1

∂

∂x1
−
(
lnx1 +

x2

2

)
u
∂

∂u

Z6 =
x1

2
lnx1

∂

∂x1
+ x2

∂

∂x2
− 1

4

(
lnx1 +

x2

2

)
u
∂

∂u

Z7 = x1x2 lnx1
∂

∂x1
+ x2

2

∂

∂x2
− 1

2

(
x2 lnx1 + ln2 x1 + x2 +

x2
2

4

)
u
∂

∂u
.

Case 5: f(x1) = x1 and g(x1) = x2 + 1. The only Lie symmetry generators
are {Z1, Z2, Z3}.

The generalized nonlinear Schrödinger equation is given by

i
∂ψ

∂x4
+
∂2ψ

∂x2
1

+
∂2ψ

∂x2
2

+
∂2ψ

∂x2
3

= a0ψ + a1|ψ|2ψ + a2|ψ|4ψ

where ψ is a complex-valued function. We can write

ψ(x1, x2, x3, x4) = u1(x1, x2, x3, x4) + iu2(x1, x2, x3, x4)

where u1 and u2 are real-valued functions and aj ∈ R j = 0, 1, 2.
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Case 1: a1 6= 0, a2 6= 0. The Lie algebra is spanned by the following
eleven generators:

Z1 =
∂

∂x4
+ a0

(
u2

∂

∂u1
− u1

∂

∂u2

)

Z2 =
∂

∂x1
, Z5 = x3

∂

∂x2
− x2

∂

∂x3

Z3 =
∂

∂x2
, Z6 = x1

∂

∂x3
− x3

∂

∂x1

Z4 =
∂

∂x3
, Z7 = x2

∂

∂x1
− x1

∂

∂x2

Z8 = x4
∂

∂x1
− 1

2
x1

(
u2

∂

∂u1
− u1

∂

∂u2

)

Z9 = x4
∂

∂x2
− 1

2
x2

(
u2

∂

∂u1
− u1

∂

∂u2

)

Z10 = x4
∂

∂x3
− 1

2
x3

(
u2

∂

∂u1
− u1

∂

∂u2

)
, Z11 = u2

∂

∂u1
− u1

∂

∂u2
.

Case 2: a1 = 0, a2 6= 0 or a1 6= 0, a2 = 0. The Lie algebra is spanned
by the eleven generators from case 1 and the generator

Z12 = 2x4
∂

∂x4
+

(
x1

∂

∂x1
+ x2

∂

∂x2
+ x3

∂

∂x3

)
− δ

(
u1

∂

∂u1
+ u2

∂

∂u2

)

+ 2a0x4

(
u2

∂

∂u1
− u1

∂

∂u2

)

where δ = 1/2 for a2 6= 0 and δ = 1 for a1 6= 0. The group associated with

case 1 is known as the extended Galilei group G̃, and plays a fundamental
role in non-relativistic quantum mechanics. A large class of equations are
invariant under G̃, in particular any nonlinear Schrödinger equation of the
form

i
∂ψ

∂x4
+
∂2ψ

∂x2
1

+
∂2ψ

∂x2
2

+
∂2ψ

∂x2
3

= F (|ψ|)ψ

where F is a smooth function.

The von Karman equation is given by

∆2F =

(
∂2w

∂x1∂x2

)2

− ∂2w

∂x2
1

∂2w

∂x2
2

∆2w=−∂
2w

∂x2
3

+
∂2F

∂x2
2

∂2w

∂x2
1

+
∂2F

∂x2
1

∂2w

∂x2
2

− 2
∂2F

∂x1∂x2

∂2w

∂x1∂x2
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where

∆2 :=
∂4

∂x4
1

+ 2
∂4

∂x2
1∂x

2
2

+
∂4

∂x4
2

.

There are eleven infinitesimal generators of a finite symmetry group

Z1 =
∂

∂x1
, Z5 = x2

∂

∂x1
− x1

∂

∂x2

Z2 =
∂

∂x2
, Z6 = x3

∂

∂w

Z3 =
∂

∂x3
, Z7 = x2

∂

∂w

Z4 =
∂

∂w
, Z8 = x1

∂

∂w

Z9 = 2x3
∂

∂x3
+ x1

∂

∂x1
+ x2

∂

∂x2

Z10 = x3x2
∂

∂w
, Z11 = x3x2

∂

∂w
.

In addition there are three generators depending on three unconstrained
smooth functions of the variable x3:

Z12 = f(x3)
∂

∂F
, Z13 = x1g(x3)

∂

∂F
, Z14 = x2h(x3)

∂

∂F
.

The three-wave resonant process in (2 + 1) dimensions in the case of
explosive instability is described by the equations

∂u1

∂x3
+ c1

∂u1

∂x1
+ d1

∂u1

∂x2
− iu∗2u

∗
3 = 0

∂u2

∂x3
+ c2

∂u2

∂x1
+ d2

∂u2

∂x2
− iu∗1u

∗
3 = 0

∂u3

∂x3
+ c3

∂u3

∂x1
+ d3

∂u2

∂x2
− iu∗2u

∗
1 = 0

where uj(x1, x2, x3) (j = 1, 2, 3) are the complex amplitudes of the wave
packets, cj , dj are the group velocities and the asterisk denotes complex
conjugate. The infinite dimensional Lie algebra is given by

Z1 = f1(η1)α
−1
23

(
c1

∂

∂x1
+ d1

∂

∂x2
+

∂

∂x3

)

−1

2
f ′
1(η1)

(
u2

∂

∂u2
+ u∗2

∂

∂u∗2
+ u3

∂

∂u3
+ u∗3

∂

∂u∗3

)
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Z2 = f2(η2)α
−1
31

(
c2

∂

∂x1
+ d2

∂

∂x2
+

∂

∂x3

)

−1

2
f ′
2(η2)

(
u1

∂

∂u1
+ u∗1

∂

∂u∗1
+ u3

∂

∂u3
+ u∗3

∂

∂u∗3

)

Z3 = f3(η3)α
−1
12

(
c3

∂

∂x1
+ d3

∂

∂x2
+

∂

∂x3

)

−1

2
f ′
3(η3)

(
u1

∂

∂u1
+ u∗1

∂

∂u∗1
+ u2

∂

∂u2
+ u∗2

∂

∂u∗2

)

where fj are arbitrary smooth functions depending on the variable

ηj = x1 −
ck − cl
dk − dl

x2 +
ckdl − cldk
dk − dl

and

αkl =
d1(c3 − c2) + d2(c1 − c3) + d3(c2 − c1)

dk − dl

with the cyclic indices j, k, l = 1, 2, 3.

The stream function equation describes the motion of an incompressible
constant-property fluid in two dimensions and is given by

∇2 ∂u

∂x3
+

∂u

∂x2
∇2 ∂u

∂x1
− ∂u

∂x1
∇2 ∂u

∂x2
= ν∇4u

where

∇2 :=
∂2

∂x2
1

+
∂2

∂x2
2

, ∇4 :=
∂4

∂x4
1

+ 2
∂4

∂x2
1∂x

2
2

+
∂4

∂x4
2

.

For the case ν = 0 the coefficient functions are

ξ1 = c1x1 + c2x2 + c3x3x2 + f1(x3) + c4

ξ2 =−c2x1 + c1x2 − c3x3x1 + f2(x3) + c5

ξ3 = c1c8x3 + c6

η = c1(2 − c8)u+
1

2
c3(x

2
1 + x2

2) − f ′
2(x3)x1 + f ′

1(x3)x2 + f3(x3) + c7

where f1, f2 and f3 are arbitrary smooth functions of x3. The coefficient
functions are the same for the full viscous equation, where ν = constant



13.2. Listing 235

with c8 = 2. The infinite parameter group is generated by

Z1 =
∂

∂x1
, Z2 =

∂

∂x2
, Z3 =

∂

∂x3
, Z4 =

∂

∂u

Z5 = x1
∂

∂x1
+ x2

∂

∂x2
+ c8x3

∂

∂x3
+ (2 − c8)u

∂

∂u

Z6 = x2
∂

∂x1
− x1

∂

∂x2

Z7 = x3x2
∂

∂x1
− x3x1

∂

∂x2
+

1

2
(x2

1 + x2
2)
∂

∂u

Z8 = f1(x3)
∂

∂x1
+ f2(x3)

∂

∂x2
+ (−f ′

2(x3)x1 + f ′
1(x3)x2 + f3(x3))

∂

∂u
.

The Khokhlov-Zabolotskaya equation in two space dimensions is given
by

∂2u

∂x1∂x3
− ∂

∂x1

(
u
∂u

∂x1

)
=
∂2u

∂x2
2

.

It describes the prolongation of a sound beam in a non-linear medium. The
infinite dimensional Lie algebra is given by the vector fields

Z1 =−1

3
(2uf ′ + x1f

′′ +
1

2
x2

2f
′′′)

∂

∂u
+

1

6
(2x1f

′ + x2f
′′)

∂

∂x1
+ f

∂

∂x2

+
3

2
x2f

′ ∂

∂x2

Z2 =−g′ ∂
∂u

+ g
∂

∂x1

Z3 =−1

2
x2h

′′ ∂

∂u
+

1

2
x2h

′ ∂

∂x1
+ h

∂

∂x2

Z4 = u
∂

∂u
+ x1

∂

∂x1
+

1

2
x2

∂

∂x2

where f, g and h are arbitrary smooth functions of x3.

The real three-dimensional Landau-Ginzburg equation is given by

∂2u

∂x2
1

+
∂2u

∂x2
2

+
∂2u

∂x2
3

+
∂u

∂x4
= a1 + a2u+ a3u

3 + a4u
5.

It describes the kinetics of phase transitions. There are three general cases
to be considered.

Case 1: For the case
1a) a4 6= 0 and at least one of a1, a2 and a3 is nonzero, or
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1b) a4 = 0 and a3 6= 0 and at least one of a1 and a2 is nonzero, the Lie
algebra is spanned by the following seven vector fields

Z1 =
∂

∂x4
, Z2 =

∂

∂x1
, Z3 =

∂

∂x2
, Z4 =

∂

∂x3

Z5 = x2
∂

∂x1
− x1

∂

∂x2
, Z6 = x2

∂

∂x3
− x3

∂

∂x2
, Z7 = x3

∂

∂x1
− x1

∂

∂x3
.

Case 2: For the case when a3 6= 0 and a1 = a2 = a4 = 0 the Lie algebra is
spanned by the following eight vector fields Z1, Z2, Z3, Z4, Z5, Z6, Z7 and

Z8 = x1
∂

∂x1
+ x2

∂

∂x2
+ x3

∂

∂x3
+ 2x4

∂

∂x4
− u

∂

∂u
.

Case 3: For the case when a4 6= 0 and a1 = a2 = a3 = 0 the Lie algebra is
spanned by the following eight vector fields Z1, Z2, Z3, Z4, Z5, Z6, Z7 and

Z8 = x1
∂

∂x1
+ x2

∂

∂x2
+ x3

∂

∂x3
+ 2x4

∂

∂x4
− 1

2
u
∂

∂u
.

The nonlinear Klein-Gordon equation
(

∂2

∂x2
m

+ δ

m−1∑

i=1

∂2

∂x2
i

)
ψ = −2(a2ψ + 2a4ψ

3 + 3a6ψ
5)

where ψ is a complex-valued function and δ = ±1. The differential operator
on the left-hand side is the Laplace-Beltrami operator in Minkowski space
M(m − 1, 1) (δ = −1) or in Euclidean space E(n + 1) (δ = +1). ψ is
a complex valued function. a2, a4 and a6 6= 0 are constants. This is the
equation of motion of the classical ψ6-fields theory.

Case 1: a2 6= 0, a4 6= 0, a6 6= 0. For the case δ = −1 the Lie algebra is
spanned by

Zµ =
∂

∂xµ
, µ = 1, 2, . . . ,m

Rij = xi
∂

∂xj
− xj

∂

∂xi
, i, j = 1, 2, . . . ,m− 1

L0j = x0
∂

∂xj
+ xj

∂

∂x0
j = 1, 2, . . . ,m− 1.

For the case δ = +1 the Lie algebra is spanned by

Zµ =
∂

∂xµ
, µ = 1, 2, . . . , n

Rµν = xµ
∂

∂xν
− xν

∂

∂xµ
, µ, ν = 1, 2, . . . ,m− 1.
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Case 2: a2 = a4 = 0, −6a6 = a. For the case δ = −1 the Lie algebra is
spanned by

Zµ =
∂

∂xµ
, µ = 1, 2, . . . ,m

Rij = xi
∂

∂xj
− xj

∂

∂xi
i, j = 1, 2, . . . , n

L0j = x0
∂

∂xj
+ xj

∂

∂x0
, j = 1, 2, . . . ,m− 1

P =

m−1∑

µ=1

xµ
∂

∂xµ
− ψ

2

∂

∂ψ
.

For the case δ = +1 the Lie algebra is spanned by

Zµ =
∂

∂xµ
, µ = 1, 2, . . . ,m

Rµν = xµ
∂

∂xν
− xν

∂

∂xµ
, µ, ν = 1, . . . ,m− 1

P =

m−1∑

µ=1

xµ
∂

∂xµ
− ψ

2

∂

∂ψ
.

The Navier-Stokes equations for an incompressible viscous fluid, with
velocity field (u, v, w) and pressure p, is given by

∂u

∂x4
+ u

∂u

∂x1
+ v

∂u

∂x2
+ w

∂u

∂x3
+

∂p

∂x1
− ν

(
∂2u

∂x2
1

+
∂2u

∂x2
2

+
∂2u

∂x2
3

)
= 0

∂v

∂x4
+ u

∂v

∂x1
+ v

∂v

∂x2
+ w

∂v

∂x3
+

∂p

∂x2
− ν

(
∂2v

∂x2
1

+
∂2v

∂x2
2

+
∂2v

∂x2
3

)
= 0

∂w

∂x4
+ u

∂w

∂x1
+ v

∂w

∂x2
+ w

∂w

∂x3
+

∂p

∂x3
− ν

(
∂2w

∂x2
1

+
∂2w

∂x2
2

+
∂2w

∂x2
3

)
= 0

∂u

∂x1
+

∂v

∂x2
+
∂w

∂x3
= 0.

The modified pressure has absorbed the density factor, assumed to be con-
stant, and includes also the potential of the external force field, if such is
present. The kinematic viscosity ν is assumed to be constant. The following
Lie symmetry vector fields are found

Z1 =
∂

∂x4
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Z2 = f1(x4)
∂

∂p

Z3 = x1
∂

∂x1
+

∂

∂x2
+ x3

∂

∂x3
+ 2x4

∂

∂x4
− u

∂

∂u
− v

∂

∂v
− w

∂

∂w
− 2p

∂

∂p

Z4 = x1
∂

∂x2
− x2

∂

∂x1
+ u

∂

∂v
− v

∂

∂u

Z5 = x2
∂

∂x3
− x3

∂

∂x2
+ v

∂

∂w
− w

∂

∂v

Z6 = x3
∂

∂x1
− x1

∂

∂x3
+ w

∂

∂u
− u

∂

∂w

Z7 = g1(x4)
∂

∂x1
+ g′1(x4)

∂

∂u
− x1g

′′
1 (x4)

∂

∂p

Z8 = g2(x4)
∂

∂x2
+ g′2(x4)

∂

∂v
− x2g

′′
2 (x4)

∂

∂p

Z9 = g3(x4)
∂

∂x3
+ g′3(x4)

∂

∂w
− x3g

′′
3 (x4)

∂

∂p
.

Under the presence of rotational symmetry the Navier-Stokes equations can
be transformed into the following system of two equations

∂

∂x4
(Dψ) − νD2ψ − r

∂(ψ,Dψ/r2)

∂(r, x3)
− 1

r2
∂

∂x3
(W 2) = 0

∂W

∂x4
− νDW − 1

r

∂(ψ,W )

∂(r,W )
= 0

where ψ(r, x3, x4) is the stream function defined, by virtue of the continuity
equation divV = 0, by the relation

V r :=
1

r

∂ψ

∂x3
; V x3 := −1

r

∂ψ

∂r

and the function W is defined by W := rV ϕ with

D :=
∂2

∂r2
− 1

r

∂

∂r
+

∂2

∂x2
3

∂(f, g)

∂(r, x3)
:=

∂f

∂r

∂g

∂x3
− ∂f

∂x3

∂g

∂r
.

The following Lie symmetry vector fields are found

Z1 =
∂

∂x4

Z2 = x4
∂

∂x4
+

1

2
r
∂

∂r
+

1

2
x3

∂

∂x3
+

1

2
ψ
∂

∂ψ
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Z3 = h1(x4)
∂

∂x3
− 1

2
r2h′1(x4)

∂

∂ψ

Z4 = h2(x4)
∂

∂ψ

where h1 and h2 are arbitrary smooth functions of x4.

For a relativistic particle of mass m in flat space-time the Hamilton-
Jacobi equation is given by

(
∂S

∂τ

)2

−
(
∂S

∂q1

)2

−
(
∂S

∂q2

)2

−
(
∂S

∂q3

)2

− (mc)2 = 0.

Here the independent coordinates are qα (α = 1, 2, 3) and τ = ct, the action
S is the dependent variable and c is the speed of light in vacuum. If we
divide S by mc and call the resulting quantity the new normalised action
(retaining the same symbol S), the differential equation is

(
∂S

∂τ

)2

−
(
∂S

∂q1

)2

−
(
∂S

∂q2

)2

−
(
∂S

∂q3

)2

− 1 = 0.

The Lie algebra is spanned by the following twenty-one generators

Zj =
∂

∂qj
, Z4 =

∂

∂τ
, Z5 =

∂

∂S

Z6 =


S ∂

∂S
+ τ

∂

∂τ
+

3∑

j=1

qj
∂

∂qj




Zrjk
=

(
qj
∂

∂qk
− qk

∂

∂qj

)

Zlj =

(
qj
∂

∂τ
+ τ

∂

∂qj

)

Zqj
=

1

2

(
r2 − τ2 + S2

) ∂

∂qj
− qj

(
S
∂

∂S
+ τ

∂

∂τ
+

3∑

k=1

qk
∂

∂qk

)

Zτ =−1

2

(
r2 − τ2 + S2

) ∂
∂τ

− τ

(
S
∂

∂S
+ τ

∂

∂τ
+

3∑

k=1

qk
∂

∂qk

)

ZS =
1

2

(
r2 − τ2 + S2

) ∂
∂S

− S

(
S
∂

∂S
+ τ

∂

∂τ
+

3∑

k=1

qk
∂

∂qk

)

ZSj =

(
qj
∂

∂S
− S

∂

∂qj

)
, ZSτ =

(
τ
∂

∂S
+ S

∂

∂τ

)
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where j, k = 1, 2, 3.

The classical Euclidean SU(2) Yang-Mills equations in the Lorentz
gauge can be written in the following form

4∑

µ=1

(
∂2Aaν
∂x2

µ

− ∂2Aaµ
∂xµ∂xν

− g

3∑

b=1

3∑

c=1

εabcAcν
∂Abν
∂xµ

+ 2g

3∑

b=1

3∑

c=1

εabcAbµ
∂Acν
∂xµ

+ g

3∑

b=1

3∑

c=1

εabcAbµ
∂Acµ
∂xν

)
= 0

4∑

µ=1

∂Aaµ
∂xµ

= 0

where ν = 1, . . . , 4 and a, b, c,= 1, 2, 3 with εabc the totally antisymmetric
tensor ε123 = +1. The Lie algebra is spanned by

Zµ =
∂

∂xµ

Zµν = xµ
∂

∂xν
− xν

∂

∂xµ
+

3∑

a=1

(
Aaµ

∂

∂Aaν
−Aaν

∂

∂Aaµ

)

Zab =

4∑

µ=1

(
Aaµ

∂

∂Abµ
−Abµ

∂

∂Aaµ

)

Z =

3∑

a=1

4∑

µ=1

(
xµ

∂

∂xµ
−Aaµ

∂

∂Aaµ

)

where µ, ν = 1, . . . , 4 and a, b = 1, 2, 3.

The linear Dirac equation with nonvanishing rest mass is given by

(
ih̄

(
γ0

∂

∂x4
+ γ1

∂

∂x1
+ γ2

∂

∂x2
+ γ3

∂

∂x3

)
−m0c

)
ψ(x) = 0

where x = (x1, x2, x3, x4), x4 = ct and

ψ(x) =



ψ1(x)
ψ2(x)
ψ3(x)
ψ4(x)


 .



13.2. Listing 241

The gamma matrices are defined by

γ0 ≡ β :=




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


 , γ1 :=




0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0




γ2 :=




0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0


 , γ3 :=




0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0


 .

Since ψk(x) (k = 1, 2, 3, 4) is a complex-valued function we put ψk(x) =
uk(x) + ivk(x), where uk and vk are real-valued functions. Then we obtain
the following coupled system of eight partial differential equations

λ
∂u1

∂x4
+ λ

∂u3

∂x3
+ λ

∂u4

∂x1
+ λ

∂v4
∂x2

− v1 = 0

−λ ∂v1
∂x4

− λ
∂v3
∂x3

− λ
∂v4
∂x1

+ λ
∂u4

∂x2
− u1 = 0

λ
∂u2

∂x4
+ λ

∂u3

∂x1
− λ

∂v3
∂x2

− λ
∂u4

∂x3
− v2 = 0

−λ ∂v2
∂x4

− λ
∂v3
∂x1

− λ
∂u3

∂x2
+ λ

∂v4
∂x3

− u2 = 0

−λ∂u1

∂x3
− λ

∂u2

∂x1
− λ

∂v2
∂x2

− λ
∂u3

∂x4
− v3 = 0

λ
∂v1
∂x3

+ λ
∂v2
∂x1

− λ
∂u2

∂x2
+ λ

∂v3
∂x4

− u3 = 0

−λ∂u1

∂x1
+ λ

∂v1
∂x2

+ λ
∂u2

∂x3
− λ

∂u4

∂x4
− v4 = 0

λ
∂v1
∂x1

+ λ
∂u1

∂x2
− λ

∂v2
∂x3

+ λ
∂v4
∂x4

− u4 = 0

where λ = h̄/(m0c). The Lie point symmetry vector fields of this system
are given by the ten generators of the field extended Poincaré group

Zj =
∂

∂xj
, j = 1, . . . , 4

Zr12 = x2
∂

∂x1
− x1

∂

∂x2
− v1

2

∂

∂u1
+
v2
2

∂

∂u2
− v3

2

∂

∂u3
+
v4
2

∂

∂u4

+
u1

2

∂

∂v1
− u2

2

∂

∂v2
+
u3

2

∂

∂v3
− u4

2

∂

∂v4

Zr13 = x3
∂

∂x1
− x1

∂

∂x3
− u2

2

∂

∂u1
+
u1

2

∂

∂u2
− u4

2

∂

∂u3
+
u3

2

∂

∂u4
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−v2
2

∂

∂v1
+
v1
2

∂

∂v2
− v4

2

∂

∂v3
+
v3
2

∂

∂v4

Zr23 = x3
∂

∂x2
− x2

∂

∂x3
− v2

2

∂

∂u1
− v1

2

∂

∂u2
− v4

2

∂

∂u3
− v3

2

∂

∂u4

+
u2

2

∂

∂v1
+
u1

2

∂

∂v2
+
u4

2

∂

∂v3
+
u3

2

∂

∂v4

Zl14 = x4
∂

∂x1
+ x1

∂

∂x4
+
u4

2

∂

∂u1
+
u3

2

∂

∂u2
+
u2

2

∂

∂u3
+
u1

2

∂

∂u4

+
v4
2

∂

∂v1
+
v3
2

∂

∂v2
+
v2
2

∂

∂v3
+
v1
2

∂

∂v4

Zl24 = x4
∂

∂x2
+ x2

∂

∂x4
+
v4
2

∂

∂u1
− v3

2

∂

∂u2
+
v2
2

∂

∂u3
− v1

2

∂

∂u4

−u4

2

∂

∂v1
+
u3

2

∂

∂v2
− u2

2

∂

∂v3
+
u1

2

∂

∂v4

Zl34 = x4
∂

∂x3
+ x3

∂

∂x4
+
u3

2

∂

∂u1
− u4

2

∂

∂u2
+
u1

2

∂

∂u3
− u2

2

∂

∂u4

+
v3
2

∂

∂v1
− v4

2

∂

∂v2
+
v1
2

∂

∂v3
− v2

2

∂

∂v4

and the four additional generators

Z11 = u4
∂

∂u1
− u3

∂

∂u2
− u2

∂

∂u3
+ u1

∂

∂u4
− v4

∂

∂v1
+ v3

∂

∂v2
+ v2

∂

∂v3
− v1

∂

∂v4

Z12 = v1
∂

∂u1
+ v2

∂

∂u2
+ v3

∂

∂u3
+ v4

∂

∂u4
− u1

∂

∂v1
− u2

∂

∂v2
− u3

∂

∂v3
− u4

∂

∂v4

Z13 = v4
∂

∂u1
− v3

∂

∂u2
− v2

∂

∂u3
+ v1

∂

∂u4
+ u4

∂

∂v1
− u3

∂

∂v2
− u2

∂

∂v3
+ u1

∂

∂v4

Z14 = u1
∂

∂u1
+ u2

∂

∂u2
+ u3

∂

∂u3
+ u4

∂

∂u4
+ v1

∂

∂v1
+ v2

∂

∂v2
+ v3

∂

∂v3
+ v4

∂

∂v4
.

The Maxwell-Dirac equation

 ∂2

∂x2
4

−
3∑

j=1

∂2

∂x2
j


Aµ = µ0ecψ̄γµψ


ih̄


γ0

∂

∂x4
+

3∑

j=1

γj
∂

∂xj


−m0c


ψ = e




3∑

j=1

γjA
j + γ0A0


ψ

∂A0

∂x4
+
∂A1

∂x1
+
∂A2

∂x2
+
∂A3

∂x3
= 0

is the Dirac equation which is coupled with the vector potential Aµ where
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A0 = U/c and U denotes the scalar potential. Here µ = 0, 1, 2, 3 and

ψ̄ = (ψ∗
1 , ψ

∗
2 ,−ψ∗

3 ,−ψ∗
4).

c is the speed of light, e the charge, µ0 the permeability of free space,
h̄ = h/(2π), where h is Planck’s constant and m0 the particle rest mass.
This can be written as the following coupled system of thirteen partial
differential equations


 ∂2

∂x2
4

−
3∑

j=1

∂2

∂x2
j


A0 = (µ0ec)(u

2
1 + v2

1 + u2
2 + v2

2 + u2
3 + v2

3 + u2
4 + v2

4)


 ∂2

∂x2
4

−
3∑

j=1

∂2

∂x2
j


A1 = (2µ0ec)(u1u4 + v1v4 + u2u3 + v2v3)


 ∂2

∂x2
4

−
3∑

j=1

∂2

∂x2
j


A2 = (2µ0ec)(u1v4 − u4v1 + u3v2 − u2v3)


 ∂2

∂x2
4

−
3∑

j=1

∂2

∂x2
j


A3 = (2µ0ec)(u1u3 + v3v1 − u2u4 − v2v4)

λ
∂u1

∂x4
+ λ

∂u3

∂x3
+ λ

∂u4

∂x1
+ λ

∂v4
∂x2

− v1 =
e

m0c
(A0v1 −A3v3 −A1v4 +A2u4)

−λ ∂v1
∂x4

− λ
∂v3
∂x3

− λ
∂v4
∂x1

+ λ
∂u4

∂x2
− u1 =

e

m0c
(A0u1 −A3u3 −A1u4 −A2v4)

λ
∂u2

∂x4
+ λ

∂u3

∂x1
− λ

∂v3
∂x2

− λ
∂u4

∂x3
− v2 =

e

m0c
(A0v2 −A1v3 −A2u3 +A3v4)

−λ ∂v2
∂x4

− λ
∂v3
∂x1

− λ
∂u3

∂x2
+ λ

∂v4
∂x3

− u2 =
e

m0c
(A0u2 −A1u3 +A2v3 +A3u4)

−λ∂u1

∂x3
− λ

∂u2

∂x1
− λ

∂v2
∂x2

− λ
∂u3

∂x4
− v3 =

e

m0c
(A3v1 +A1v2 −A2u2 −A0v3)

λ
∂v1
∂x3

+ λ
∂v2
∂x1

− λ
∂u2

∂x2
+ λ

∂v3
∂x4

− u3 =
e

m0c
(A3u1 +A1u2 +A2v2 −A0u3)

−λ∂u1

∂x1
+ λ

∂v1
∂x2

+ λ
∂u2

∂x3
− λ

∂u4

∂x4
− v4 =

e

m0c
(A1v1 +A2u1 −A3v2 −A0v4)

λ
∂v1
∂x1

+ λ
∂u1

∂x2
− λ

∂v2
∂x3

+ λ
∂v4
∂x4

− u4 =
e

m0c
(A1u1 −A2v1 −A3u2 −A0u4)

∂A0

∂x4
+
∂A1

∂x1
+
∂A2

∂x2
+
∂A3

∂x3
= 0.
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We find the following ten field extended generators for the Poincaré group
that leave the coupled Maxwell-Dirac equation invariant

Zi =
∂

∂xi
, i = 1, . . . , 4

Zr12 = x2
∂

∂x1
− x1

∂

∂x2
− v1

2

∂

∂u1
+
v2
2

∂

∂u2
− v3

2

∂

∂u3
+
v4
2

∂

∂u4

+
u1

2

∂

∂v1
− u2

2

∂

∂v2
+
u3

2

∂

∂v3
− u4

2

∂

∂v4
+A2

∂

∂A1
−A1

∂

∂A2

Zr13 = x3
∂

∂x1
− x1

∂

∂x3
− u2

2

∂

∂u1
+
u1

2

∂

∂u2
− u4

2

∂

∂u3
+
u3

2

∂

∂u4

−v2
2

∂

∂v1
+
v1
2

∂

∂v2
− v4

2

∂

∂v3
+
v3
2

∂

∂v4
+A3

∂

∂A1
−A1

∂

∂A3

Zr23 = x3
∂

∂x2
− x2

∂

∂x3
− v2

2

∂

∂u1
− v1

2

∂

∂u2
− v4

2

∂

∂u3
− v3

2

∂

∂u4

+
u2

2

∂

∂v1
+
u1

2

∂

∂v2
+
u4

2

∂

∂v3
+
u3

2

∂

∂v4
+A3

∂

∂A2
−A2

∂

∂A3

Zl14 = x4
∂

∂x1
+ x1

∂

∂x4
+
u4

2

∂

∂u1
+
u3

2

∂

∂u2
+
u2

2

∂

∂u3
+
u1

2

∂

∂u4

+
v4
2

∂

∂v1
+
v3
2

∂

∂v2
+
v2
2

∂

∂v3
+
v1
2

∂

∂v4
+A0

∂

∂A1
+A1

∂

∂A0

Zl24 = x4
∂

∂x2
+ x2

∂

∂x4
+
v4
2

∂

∂u1
− v3

2

∂

∂u2
+
v2
2

∂

∂u3
− v1

2

∂

∂u4

−u4

2

∂

∂v1
+
u3

2

∂

∂v2
− u2

2

∂

∂v3
+
u1

2

∂

∂v4
+A0

∂

∂A2
+A2

∂

∂A0

Zl34 = x4
∂

∂x3
+ x3

∂

∂x4
+
u3

2

∂

∂u1
− u4

2

∂

∂u2
+
u1

2

∂

∂u3
− u2

2

∂

∂u4

+
v3
2

∂

∂v1
− v4

2

∂

∂v2
+
v1
2

∂

∂v3
− v2

2

∂

∂v4
+A0

∂

∂A3
+A3

∂

∂A0
.

13.3 Exercises

(1) Find the Lie symmetry vector field of the partial differential equation

∂2u

∂x1∂x2
+ un = 0

where n = 2, 3, . . ..



Chapter 14

Recursion Operators

14.1 Gateaux Derivative

In this chapter we study symmetries of partial differential equations in con-
nection with the Gateaux derivative (Fokas [46], Fokas and Fuchssteiner
[47], Kowalski and Steeb [70]). In particular we are concerned with the
study of recursion operators. Recursion operators have been used in the
early work on soliton theory for generating symmetries (see Olver [83], Wa-
dati [134], Ibragimov and Shabat [60], Bluman and Kumei [7]).

We consider the manifold N as a topological vector space W . The space
of linear continuous mappings of W into some topological vector space W1

will be denoted by L(W,W1). We consider L(W,W1) as a topological vector
space with the topology of bounded convergence.

Let f be a (nonlinear) mapping f : W → W1. The Gateaux derivative is
defined as follows:

Definition 14.1 f is Gateaux differentiable in u ∈W if there exists a
mapping ϑ ∈ L(W,W1) such that for all v ∈W

lim
ε→0

1

ε
(f(u + εv) − f(u) − εϑv) = 0 (1)

in the topology of W1. The linear mapping ϑ ∈ L(W,W1) is called the
Gateaux derivative of f in u and is written as ϑv = f ′(u)[v], where

f ′(u)[v] :=
∂

∂ε
f(u + εv)|ε=0.

245
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Here u = (u1, . . . , un) and v = (v1, . . . , vn). If f is Gateaux differentiable
in all points u ∈W , we can consider the Gateaux derivative as a (in general
nonlinear) mapping

f ′ : W → L(W,W1).

Suppose f ′ is again Gateaux differentiable in u ∈ W . The second derivative
of f in u ∈W is a linear mapping

f ′′(u) ∈ L(W,L(W,W1)).

The mapping f ′′(u) is considered to be bilinear, i.e.,

f ′′(u) : W ×W →W1.

Under certain assumptions it can be shown that this mapping is symmetric:

f ′′(u)(v,w) = f ′′(u)(w,v)

for all w,v ∈ W .

Definition 14.2 A mapping f : W → W1 is called twice differentiable if
its first and second Gateaux derivatives exist and if f ′′(u) is a symmetric
bilinear mapping for all u ∈W .

Remark. In the limit given in (1) a uniformity in v is not required. If this
limit is uniform on all sequentially compact subsets of W , the mapping f is
called Hadamard differentiable. If the limit is uniform on all bounded
subsets of W , the mapping f is called Fréchet differentiable..

Definition 14.3 An evolution equation is a partial differential equation of
the form

∂u

∂xm+1
= F

(
x, xm+1,u,

∂u

∂x
, . . . ,

∂ru

∂xr

)
(2)

where F = (F1, . . . , Fn), x = (x1, . . . , xm) and u = (u1, . . . , un). In physics
the independent variable xm+1 is associated with time.

Here F is assumed to be a smooth function with respect to x, xm+1, u, ∂u/∂x,
. . ., ∂ru/∂xr.

Definition 14.4 Consider the map f(u)

f(u) :=
∂u

∂xm+1
− F

(
x, xm+1,u,

∂u

∂x
, . . . ,

∂ru

∂xr

)
.

The equation
ϑv = 0

is called the variational equation (or linearized equation) of the evo-
lution equation (2).
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From the definition it follows that

ϑv = lim
ε→0

[
f(u + εv) − f(u)

ε

]

= lim
ε→0

[
1

ε

(
∂(u + εv)

∂xm+1
− F

(
x, xm+1,u + εv,

∂(u + εv)

∂x
, . . . ,

∂r(u + εv)

∂xr

)

− ∂u

∂xm+1
+ F

(
x, xm+1,u,

∂u

∂x
, . . . ,

∂ru

∂xr

))]

=
∂v

∂xm+1
− lim
ε→0

[
1

ε

(
F

(
x, xm+1,u + εv,

∂(u + εv)

∂x
, . . . ,

∂r(u + εv)

∂xr

)

− F

(
x, xm+1,u,

∂u

∂x
, . . . ,

∂ru

∂xr

))]

so that the variational equation can be written as

∂v

∂xm+1
= F′(u)[v]. (3)

Example. Consider the Lorenz model

du1

dx1
− σ(u2 − u1) = 0

du2

dx1
+ u1u3 − ru2 = 0

du3

dx1
− u1u2 + bu3 = 0

where σ, b and r are positive constants. Here m = 0 and n = 3 so that
there is one independent variable x1 and three dependent variables u1, u2

and u3. The left-hand side defines a map f . Since

f(u + εv) − f(u) =




ε
dv1
dx1

− εσ(v2 − v1)

ε
dv2
dx1

+ εu1v3 + εu3v1 + ε2v1v3 − εrv2

ε
dv3
dx1

− εu1v2 − εu2v1 − ε2v1v2 + εbv3




we obtain

ϑv =




dv1
dx1

− σ(v2 − v1)

dv2
dx1

+ u1v3 + u3v1 − rv2

dv3
dx1

− u1v2 − u2v1 + bv3



.
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Thus the variational equation ϑv = 0 takes the form

dv1
dx1

= σ(v2 − v1)

dv2
dx1

=−u1v3 − u3v1 + rv2

dv3
dx1

= u1v2 + u2v1 − bv3.

In order to solve the variational equation, we have to solve the Lorenz
model. For example, the Lorenz model admits the solution u1 = u2 = u3 =
0. This is a fixed point of the Lorenz model. We can insert this solution
in the variational equation and thus study the stability of this fixed point.♣

Example. Consider the Korteweg-de Vries equation

∂u

∂x2
− 6u

∂u

∂x1
− ∂3u

∂x3
1

= 0.

Here m = 2 and n = 1. We put u1 = u and v1 = v. The left hand side
defines the map

f(u) =
∂u

∂x2
− 6u

∂u

∂x1
− ∂3u

∂x3
1

.

It follows that

f(u+ εv) − f(u) = ε
∂v

∂x2
− 6εv

∂u

∂x1
− 6εu

∂v

∂x1
− 6ε2v

∂v

∂x1
− ε

∂3v

∂x3
1

so that

lim
ε→0

1

ε
(f(u+ εv) − f(u)) =

∂v

∂x2
− 6

∂u

∂x1
v − 6u

∂v

∂x1
− ∂3v

∂x3
1

.

Therefore the variational equation of the Korteweg-de Vries equation is

∂v

∂x2
− 6v

∂u

∂x1
− 6u

∂v

∂x1
− ∂3v

∂x3
1

= 0.

Since u(x1, x2) = 0 is a solution of the Korteweg-de Vries equation we can
study its stability by considering the linear partial differential equation

∂v

∂x2
− ∂3v

∂x3
1

= 0 . ♣
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Definition 14.5 The Gateaux derivative of an operator-valued function
R(u) is defined as

R′(u)[v]w :=
∂[R(u + εv)w]

∂ε

∣∣∣∣
ε=0

where R′(u)[v]w is the derivative of R(u) evaluated at v and then applied
to w, where w,v and u are smooth functions of x1, . . . , xm, xm+1 in the
vector space W .

Example. Let m = 2 and

R(u) =
∂

∂x1
+ u +

∂u

∂x1
D−1
x1

where u is a smooth function of x1 and x2, and

D−1
x1
f(x1) :=

∫ x1

f(s)ds.

We calculate the Gateaux derivative of R(u). It follows that

R(u + εv)w =
∂w

∂x1
+ (u + εv)w +

(
∂

∂x1
(u + εv)

)
D−1
x1

w

=
∂w

∂x1
+ uw + εvw +

∂u

∂x1
D−1
x1

w + ε
∂v

∂x1
D−1
x1

w.

Therefore

R′(u)[v]w = vw +
∂v

∂x1
D−1
x1

w. ♣

Let f, g, h : W →W be three maps, where W is a topological vector space
(u ∈ W ). Assume that the Gateaux derivatives of f , g and h exist up to
infinite order. Let

f ′(u)[v] :=
∂f(u + εv)

∂ε

∣∣∣∣
ε=0

g′(u)[v] :=
∂g(u + εv)

∂ε

∣∣∣∣
ε=0

h′(u)[v] :=
∂h(u + εv)

∂ε

∣∣∣∣
ε=0

.

An example of W is the Schwartzian space S(Rn).

Definition 14.6 The Lie product (or commutator) of f and g is de-
fined by

[f, g] := f ′(u)[g] − g′(u)[f ].
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Let f, g and h ∈W . Then we find

[f, g] =−[g, f ]
[f, g + h] = [f, g] + [f, h]

[f, [g, h]] + [g, [h, f ]] + [h, [f, g]] = 0 (Jacobi identity).

From [f, g] = −[g, f ] it follows that [f, f ] = 0. Thus the maps form a Lie
algebra.

Example. Consider m = 2 and n = 1. We put u1 = u and

f(u) :=
∂u

∂x2
− u

∂u

∂x1
− ∂3u

∂x3
1

, g(u) :=
∂u

∂x2
− ∂2u

∂x2
1

.

We calculate the Lie product [f, g]. From

f ′(u)[g] =
∂

∂ε
f(u+ εg(u))|ε=0

we find

f ′(u)[g] =
∂g(u)

∂x2
− g(u)

∂u

∂x1
− u

∂g(u)

∂x1
− ∂3g(u)

∂x3
1

.

Also

g′(u)[f ] =
∂

∂ε
g(u+ εf(u))|ε=0

=
∂

∂ε

[
∂

∂x2
(u+ εf(u)) − ∂2

∂x2
1

(u+ εf(u))

]∣∣∣∣
ε=0

=
∂f(u)

∂x2
− ∂2f(u)

∂x2
1

.

Hence

[f, g] = f ′(u)[g] − g′(u)[f ]

=
∂

∂x2
(g(u) − f(u)) − g(u)

∂u

∂x1
− u

∂g(u)

∂x1
− ∂3g(u)

∂x3
1

+
∂2f(u)

∂x2
1

.

Inserting the given f and g we obtain

[f, g] =
∂

∂x2

(
∂u

∂x2
− ∂2u

∂x2
1

)
−
(
∂u

∂x2
− ∂2u

∂x2
1

)
∂u

∂x1

−u ∂

∂x1

(
∂u

∂x2
− ∂2u

∂x2
1

)
− ∂3

∂x3
1

(
∂u

∂x2
− ∂2u

∂x2
1

)

− ∂

∂x2

(
∂u

∂x2
− u

∂u

∂x1
− ∂3u

∂x3
1

)
+
∂2

∂x2
1

(
∂u

∂x2
− u

∂u

∂x1
− ∂3u

∂x3
1

)
.
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Therefore the commutator of f and g is given by

[f, g] = −2
∂u

∂x1

∂2u

∂x2
1

. ♣

We now give the connection with the Lie-Bäcklund symmetry vector field
as defined in chapter 9. Consider the evolution equation (2).

Definition 14.7 A function

σ

(
x, xm+1,u(x),

∂u

∂x
,
∂2u

∂x2
, . . .

)

(σ = (σ1, . . . , σn)) is called a symmetry of the evolution equation (2) if
and only if σ satisfies the linearized equation

∂σ

∂xm+1
= F′(u)[σ].

F′ is the Gateaux derivative of F, i.e.,

F′(u)[σ] =
∂

∂ε
F(u + εσ)|ε=0.

The Lie-Bäcklund symmetry vector field of the evolution equation (2) is
then given by

ZB =

n∑

j=1

σj
∂

∂uj
.

From this definition it follows that a function σ is a symmetry of the evolu-
tion equation (2) if it leaves (2) invariant within order ε, i.e., the equation

∂

∂xm+1
(u + εσ) = F(u + εσ)

must be correct up to order ε.

In literature a symmetry σ is also defined as a function that satisfies the
equation

∂σ

∂xm+1
= F′[σ] − σ′[F]

where ∂σ/∂xm+1 denotes that σ is only differentiated explicitly with re-
spect to the variable xm+1. Obviously this is only a notational difference.



252 14. Recursion Operators

Example. Let m = 1 and n = 1. We put u1 = u and consider the
Korteweg-de Vries equation

∂u

∂x2
= 6u

∂u

∂x1
+
∂3u

∂x3
1

.

We show that

σ = 3x2
∂u

∂x1
+

1

2

is a symmetry for the Korteweg-de Vries equation where we set σ1 = σ.

In this case the symmetry vector field, given by

ZV =

(
3x2

∂u

∂x1
+

1

2

)
∂

∂u

is the vertical Lie point symmetry vector field that can also be written in
the form

Z = −3x2
∂

∂x1
+

1

2

∂

∂u
.

F is defined by

F := 6u
∂u

∂x1
+
∂3u

∂x3
1

where we set F1 = F . First we calculate the Gateaux derivative of F , i.e.,

F ′(u)[σ] =
∂

∂ε
F (u+ εσ)|ε=0

=
∂

∂ε

[
6(u+ εσ)

(
∂(u+ εσ)

∂x1

)
+

∂3

∂x3
1

(u+ εσ)

]∣∣∣∣
ε=0

.

Therefore

F ′(u)[σ] = 6
∂u

∂x1
σ + 6u

∂σ

∂x1
+
∂3σ

∂x3
1

. (4)

It follows that
∂σ

∂x2
= 3

∂u

∂x1
+ 3x2

∂2u

∂x1∂x2
. (5)

Inserting σ into (4) gives

F ′(u)[σ] = 18x2u
∂2u

∂x2
1

+ 18x2

(
∂u

∂x1

)2

+ 3
∂u

∂x1
+ 3x2

∂4u

∂x4
1

. (6)

From the Korteweg-de Vries equation we obtain

∂2u

∂x1∂x2
= 6

(
∂u

∂x1

)2

+ 6u
∂2u

∂x2
1

+
∂4u

∂x4
1

. (7)
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Inserting (7) into (5) leads to

∂σ

∂x2
= 3

∂u

∂x1
+ 18x2

(
∂u

∂x1

)2

+ 18x2u
∂2u

∂x2
1

+ 3x2
∂4u

∂x4
1

.

From this equation and (6) it follows that σ is a symmetry of the Korteweg-
de Vries equation. ♣

14.2 Definition and Examples

Let us now define a recursion operator.

Definition 14.8 An operator R(u) is called a recursion operator if

R′(u)[F (u)]v = [F ′(u)v, R(u)v]

whenever u is a solution of (2), where

R′(u)[F (u)]v :=
∂

∂ε
(R(u + εF (u))v|ε=0.

The commutator is defined as

[F ′(u)v, R(u)v] :=
∂

∂ε
F ′(u)(v + εR(u)v)|ε=0 −

∂

∂ε
R(u)(v + εF ′(u)v)|ε=0.

Example. We consider Burgers’ equation in the form

∂u

∂x2
=
∂2u

∂x2
1

+ 2u
∂u

∂x1

where m = 1 and n = 1. We put u1 = u. F is given by

F (u) =
∂2u

∂x2
1

+ 2u
∂u

∂x1

where we set F1 = F . We show that

R(u) =
∂

∂x1
+ u+

∂u

∂x1
D−1
x1

is a recursion operator for the given Burgers’ equation, where

D−1
x1
f(x1) :=

∫ x1

f(s)ds.
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First we calculate R′(u)v. When we apply the operator R(u) to v we obtain

R(u)v =
∂v

∂x1
+ uv +

∂u

∂x1
D−1
x1
v.

It follows that

R′(u)[F (u)]v =
∂

∂ε
(R(u+ εF (u)v)|ε=0

=
∂

∂ε

(
∂

∂x1
+ u+ εF (u) +

∂(u+ εF (u))

∂x1
D−1
x1

)
v

∣∣∣∣
ε=0

= F (u)v +
∂F (u)

∂x1
D−1
x1
v

=

(
∂2u

∂x2
1

+ 2u
∂u

∂x1

)
v +

(
∂3u

∂x3
1

+ 2

(
∂u

∂x1

)2

+ 2u
∂2u

∂x2
1

)
D−1
x1
v.

To calculate the commutator [F ′(u)v,R(u)v] we first have to find the Gateaux
derivative of F , i.e.

F ′(u)[v] =
∂F (u+ εv)

∂ε

∣∣∣∣
ε=0

=
∂

∂ε

(
∂2

∂x2
1

(u+ εv) + 2(u+ εv)
∂

∂x1
(u+ εv)

)∣∣∣∣
ε=0

=
∂2v

∂x2
1

+ 2u
∂v

∂x1
+ 2

∂u

∂x1
v.

Therefore

F ′(u)v =
∂2v

∂x2
1

+ 2u
∂v

∂x1
+ 2

∂u

∂x1
v.

For the first term of the commutator we obtain

∂

∂ε
F ′(u)(v + εR(u)v)|ε=0 =

∂

∂ε

[
∂2

∂x2
1

(v + εR(u)v) + 2u
∂

∂x1
(v + εR(u)v)

+ 2
∂u

∂x1
(v + εR(u)v)

]∣∣∣∣
ε=0

=
∂3v

∂x3
1

+ 3
∂2u

∂x2
1

v + 5
∂u

∂x1

∂v

∂x1
+ 3u

∂2v

∂x2
1

+ 6u
∂u

∂x1
v + 2u2 ∂v

∂x1

+

(
∂3u

∂x3
1

+ 2

(
∂u

∂x1

)2

+ 2u
∂2u

∂x2
1

)
D−1
x1
v.
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For the second term of the commutator we obtain

∂

∂ε
R(u)(v + εF ′(u)v)|ε=0 =

∂

∂ε

[
∂

∂x1
(v + εF ′(u)v)

+ u(v + εF ′(u)v) +
∂u

∂x1
D−1
x1

(v + εF ′(u)v)

]∣∣∣∣
ε=0

=
∂F ′(u)v

∂x1
+ uF ′(u)v +

∂u

∂x1
D−1
x1
F ′(u)v.

Using the identity

D−1
x1

(
v
∂u

∂x1
+ u

∂v

∂x1

)
≡ uv

and F ′(u)[v] as defined before, we find

∂

∂ε
R(u)(v + εF ′(u)v)|ε=0

=
∂3v

∂x3
1

+ 2
∂2u

∂x2
1

v + 5
∂u

∂x1

∂v

∂x1
+ 3u

∂2v

∂x2
1

+ 4u
∂u

∂x1
v + 2u2 ∂v

∂x1
.

It follows that

[F ′(u)v,R(u)v] =

(
∂2u

∂x2
1

+ 2u
∂u

∂x1
+

(
∂3u

∂x3
1

+ 2

(
∂u

∂x1

)2

+ 2u
∂2u

∂x2
1

)
D−1
x1

)
v.

This proves that R(u) is a recursion operator for Burgers’ equation. ♣

An important property of the recursion operator is that we can generate
symmetries for an evolution equation by considering

R(u)pσ(u)

where σ is a known symmetry and p is some positive integer. The recursion
operator then generates a hierarchy of evolution equations

∂u

∂xm+1
= R(u)pF(u).

Example. Consider the nonlinear diffusion equation

∂u

∂x2
=
∂2u

∂x2
1

− 1

2

(
∂u

∂x1

)2

.

Two recursion operators are given by

R1(u) =
1

2

∂u

∂x1
−Dx1 , R2(u) =

1

2

(
x2

∂u

∂x1
− x1

)
− x2Dx1 .
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It is clear that this evolution equation is invariant under translation in x1

which corresponds to the symmetry

σ1 =
∂u

∂x1
.

Let us now make use of the given recursion operators in order to generate
more symmetries for Burgers’ equation. We find

R1(u)
∂u

∂x1
=

(
1

2

∂u

∂x1
−Dx1

)
∂u

∂x1
=

1

2

(
∂u

∂x1

)2

− ∂2u

∂x2
1

= − ∂u

∂x2

so that

σ2 = − ∂u

∂x2
.

σ2 corresponds to the translational symmetry in x2. From the second re-
cursion operator we find

R2(u)
∂u

∂x1
=

(
1

2
x2

∂u

∂x1
− 1

2
x1 − x2Dx1

)
∂u

∂x1

=
1

2
x2

(
∂u

∂x1

)2

− x2
∂2u

∂x2
1

− 1

2
x1

∂u

∂x1

=−x2
∂u

∂x2
− 1

2
x1

∂u

∂x1

so that

σ3 = −x2
∂u

∂x2
− x1

∂u

∂x1
.

σ3 corresponds to the scaling symmetry in x1 and x2. We now consider

(R(u))3
∂u

∂x1
=

(
1

2

∂u

∂x1
−Dx1

)3
∂u

∂x1

=

(
1

8

(
∂u

∂x1

)3

− 1

4

(
∂u

∂x1

)2

Dx1 −
1

4

∂u

∂x1

∂2u

∂x2
1

+
1

2

∂u

∂x1
D2
x1

− 1

4

∂u

∂x1

∂2u

∂x2
1

+
1

2

(
∂2u

∂x2
1

Dx1 +
∂u

∂x1
D2
x1

+
∂3u

∂x3
1

)
−D3

x1

)
∂u

∂x1

=
1

8

(
∂u

∂x1

)4

+
3

2

∂u

∂x1

∂3u

∂x3
1

− 1

2

(
∂u

∂x1

)2
∂2u

∂x2
1

+
1

2

(
∂2u

∂x2
1

)2

−∂
4u

∂x4
1
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so that

σ4 =
1

8

(
∂u

∂x1

)4

+
∂u

∂x1

∂3u

∂x3
1

− 3

4

(
∂u

∂x1

)2
∂2u

∂x2
1

+
1

2

(
∂2u

∂x2
1

)2

− ∂4u

∂x4
1

.

σ4 corresponds to a Lie-Bäcklund symmetry vector field for the given Burg-
ers’ equation, i.e.

ZB = σ4
∂

∂u
.

This procedure can be continued to find an infinite hierarchy of Lie-Bäcklund
symmetry vector fields. We can also construct a hierarchy of Burgers’ equa-
tions from the given recursion operators. For example

∂u

∂x2
=R2(u)

(
∂2u

∂x2
1

− 1

2

(
∂u

∂x1

)2
)

=
3

2
x2

∂u

∂x1

∂2u

∂x2
1

− 1

4
x2

(
∂u

∂x1

)3

− x2
∂3u

∂x3
1

− 1

2
x1
∂2u

∂x2
1

+
1

4
x1

(
∂u

∂x1

)2

.

♣
Remark. One may ask the question whether a recursion operator R(u) for
an evolution equation (2) is also a recursion operator for the hierarchy of
evolution equations

∂u

∂xm+1
= R(u)pF(u).

Such conditions on the recursion operator were investigated by Fokas and
Fuchssteiner [47]). They have introduced the name hereditary for those
recursion operators. A consequence of the hereditary property of R(u) is
the fact that the symmetries

R(u)pσ(u)

form an abelian Lie algebra.

14.3 Computer Algebra Applications

In the program we evaluate

d

dε
f(u(x) + εv(x))

∣∣∣∣
ε=0

where

f(u(x)) = u
∂u

∂x1
+ u2 +

∂2u

∂x2
2
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// gateaux.cpp

#include <iostream>

#include "symbolicc++.h"

using namespace std;

int main(void)

{

Symbolic u("u"), v("v"), x1("x1"), x2("x2"), ep("ep");

Symbolic A, B, C;

u = u[x1,x2];

v = v[x1,x2];

A = df(u,x2,2) + u*df(u,x1) + (u^2);

B = A[u==u+ep*v];

C = df(B,ep);

C = C[ep==0];

cout << C << endl;

return 0;

}

14.4 Exercises

(1) Show that a Fréchet derivative is also a Gâteaux derivative.

(2) Consider the maps

f(u) =
∂2u

∂x1∂x2
− sinu, g(u) =

∂2u

∂x1∂x2
− u3 .

Calculate the Lie bracket [f, g].



Chapter 15

Bäcklund Transformations

15.1 Definitions

Bäcklund transformations play an important role in finding solutions of
a certain class nonlinear partial differential equations. From a solution
of a nonlinear partial differential equation, we can sometimes find a re-
lationship that will generate the solution of a different partial differential
equation, which is known as a Bäcklund transformation, or of the same
partial differential equation where such a relation is then known as an auto-
Bäcklund transformation. First we describe the Bäcklund transformation
in the classical notation, Rogers and Shadwick [91] and it may be extended
to incorporate both higher-order and higher-dimensional equations. In par-
ticular Lamb [73] developed Clairin’s method for certain higher-order non-
linear evolution equations while Dodd and Bullough [25]) have considered
Bäcklund transformations for higher-dimensional sine-Gordon equations.
An underlying modern theory of Bäcklund transformations is provided also
provided by Rogers and Shadwick [91] based on the jet bundle formalism
whereby such extensions can be readily accommodated.

We describe first the problem in R3 (Rogers and Shadwick [91]).

Definition 15.1 Let
u = u(x1, x2) (1a)

ũ = ũ(x̃1, x̃2) (1b)

represent two smooth surfaces Λ and Λ̃ respectively, in R3. A set of four
relations

B∗
j

(
x1, x2, x̃1, x̃2, u, ũ,

∂u

∂x1
,
∂u

∂x2
,
∂ũ

∂x̃1
,
∂ũ

∂x̃2

)
= 0 (2)

259
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where j = 1, . . . , 4, which connect the surface elements
{
x1, x2, u,

∂u

∂x1
,
∂u

∂x2

}
(3)

and {
x̃1, x̃2, ũ,

∂ũ

∂x̃1
,
∂ũ

∂x̃2

}
(4)

of Λ and Λ̃ respectively, is called a Bäcklund transformation.

In particular we consider (1) to represent integral surfaces of partial differ-
ential equations. Consider the following explicit form of (2)

∂ũ

∂x̃i
= B̃i

(
x1, x2, u, ũ,

∂u

∂x1
,
∂u

∂x2

)
(5)

and
∂u

∂xi
= Bi

(
x̃1, x̃2, u, ũ,

∂ũ

∂x̃1
,
∂ũ

∂x̃2

)
(6)

together with

x̃i = Xi

(
x1, x2, u, ũ,

∂u

∂x1
,
∂u

∂x2

)
(7)

where i = 1, 2. In order that these relations transform a surface u =
u(x1, x2) with surface element (3) to a surface ũ = ũ(x̃1, x̃2) with surface
element (4) it is required that the relations

du−B1dx1 −B2dx2 = 0, dũ− B̃1dx̃1 − B̃2dx̃2 = 0

be integrable. Hence from

∂2u

∂x1∂x2
=

∂2u

∂x2∂x1
and

∂2ũ

∂x̃1∂x̃2
=

∂2ũ

∂x̃2∂x̃1

we obtain the conditions

∂B1

∂x2
− ∂B2

∂x1
= 0 (8)

∂B̃1

∂x̃2
− ∂B̃2

∂x̃1
= 0 (9)

respectively. Application of (9) to the Bäcklund relations (5) and (7) lead
to a nonlinear partial differential equation of the form

(
∂2u

∂x2
1

∂2u

∂x2
2

−
(

∂2u

∂x1∂x2

)2
)
f1+f2

∂2u

∂x2
1

+2f3
∂2u

∂x2∂x1
+f4

∂2u

∂x2
2

+f5 = 0 (10)
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where

fj

(
x1, x2, u, ũ,

∂u

∂x1
,
∂u

∂x2

)
, j = 1, 2, . . . , 5 .

Thus, if ũ is absent in (10), the Monge-Ampére form is obtained. In a
similar manner, application of (8) to the Bäcklund relations (6) and (7)
leads to

(
∂2ũ

∂x̃2
1

∂2ũ

∂x̃2
2

−
(

∂2ũ

∂x̃1∂x̃2

)2
)
f̃1+f̃2

∂2ũ

∂x̃2
1

+2f̃3
∂2ũ

∂x̃2∂x̃1
+f̃4

∂2ũ

∂x̃2
2

+f̃5 = 0 (11)

where

f̃j

(
x̃1, x̃2, u, ũ,

∂ũ

∂x̃1
,
∂ũ

∂x̃2

)
, j = 1, 2, . . . , 5 .

Thus, if u is absent in (11), the Monge-Ampére form is obtained. In partic-
ular, if the equations for u and ũ as derived in (10) and (11) are both of the
Monge-Ampére form, then the Bäcklund transformation may be regarded
as a mapping between their integral surfaces.

There are certain Monge-Ampére equations of significance which do possess
Bäcklund transformations in the classical sense.

To extend the Bäcklund transformation to more than two independent
variables and more than one dependent variable one introduces jet bundle
transformations known as Bäcklund maps. Bäcklund maps have the feature
of being maps of finite-dimensional spaces that admit a simple geometric
characterization. For details we refer to Rogers and Shadwick [91].

15.2 Examples

Example. We show that an auto-Bäcklund transformation for the sine-
Gordon equation

∂2u

∂x1∂x2
= sinu

is given by

x̃1(x1, x2) = x1

x̃2(x1, x2) = x2

∂ũ

∂x̃1
(x̃1(x1, x2), x̃2(x1, x2)) =

∂u

∂x1
− 2λ sin

(
u+ ũ

2

)

∂ũ

∂x̃2
(x̃1(x1, x2), x̃2(x1, x2)) =− ∂u

∂x2
+

2

λ
sin

(
u− ũ

2

)
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where λ is a nonzero parameter. Thus

B̃1

(
x1, x2, u, ũ,

∂u

∂x1
,
∂u

∂x2

)
=

∂u

∂x1
− 2λ sin

(
u+ ũ

2

)

B̃2

(
x1, x2, u, ũ,

∂u

∂x1
,
∂u

∂x2

)
=− ∂u

∂x2
+

2

λ
sin

(
u− ũ

2

)

B1

(
x̃1, x̃2, u, ũ,

∂ũ

∂x̃1
,
∂ũ

∂x̃2

)
=

∂ũ

∂x̃1
+ 2λ sin

(
u+ ũ

2

)

B2

(
x̃1, x̃2, u, ũ,

∂ũ

∂x̃1
,
∂ũ

∂x̃2

)
=− ∂ũ

∂x̃2
+

2

λ
sin

(
u− ũ

2

)
.

From the condition
∂B1

∂x2
− ∂B2

∂x1
= 0

it follows that

∂2ũ

∂x̃1∂x2
+ λ

(
∂u

∂x2
+

∂ũ

∂x2

)
cos

(
u+ ũ

2

)

−
[
− ∂2ũ

∂x̃2∂x1
+

1

λ

(
∂u

∂x1
− ∂ũ

∂x1

)
cos

(
u− ũ

2

)]
= 0.

By making use of the given transformation we find

2
∂2ũ

∂x̃1∂x̃2
+ 2 sin

(
u− ũ

2

)
cos

(
u+ ũ

2

)
− 2 sin

(
u+ ũ

2

)
cos

(
u− ũ

2

)
= 0

so that
∂2ũ

∂x̃1∂x̃2
= sin ũ.

From the condition
∂B̃1

∂x̃2
− ∂B̃2

∂x̃1
= 0

it follows that
∂2u

∂x1∂x2
= sinu.

This proves that the given transformation is an auto-Bäcklund transforma-
tion of the sine-Gordon equation. ♣

Example. Consider again the sine-Gordon equation with the auto-Bäcklund
transformation given in the previous example. Obviously

u(x1, x2) = 0
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is a solution of the sine-Gordon equation. This is known as the vacuum
solution. We make use of the auto-Bäcklund transformation to construct
another solution of the sine-Gordon equation from the vacuum solution.
Inserting this solution into the given Bäcklund transformation results in

∂ũ

∂x1
= −2λ sin

ũ

2
,

∂ũ

∂x2
=

2

λ
sin

(
− ũ

2

)
.

Since ∫
du

sin(u/2)
= 2 ln

(
tan

u

2

)

we obtain a new solution of the sine-Gordon equation, namely

ũ(x1, x2) = 4 tan−1 exp(λx1 + λ−1x2 + C)

where C is a constant of integration. This new solution may be used to
determine another solution for the sine-Gordon equation and so on. ♣

Example. Consider Burgers’ equation

∂u

∂x2
+ u

∂u

∂x1
= σ

∂2u

∂x2
1

.

If φ(x1, x2) is defined to be the solution of the linear partial differential
equation

∂φ

∂x2
+ u

∂φ

∂x1
= σ

∂2φ

∂x2
1

and ũ(x1, x2) is defined by

ũ(x1, x2) = −2σ
1

φ

∂φ

∂x1
+ u ≡ −2σ

∂

∂x1
lnφ+ u

then ũ(x1, x2) also satisfies Burgers’ equation. Hence, one solution of Burg-
ers’ equation can be used to generate another. Note that, with u(x1, x2) = 0
(which is a solution of Burgers’ equation) φ satisfies the linear diffusion
equation

∂φ

∂x2
= σ

∂2φ

∂x2
1

.

The Bäcklund transformation

ũ = −2σ
1

φ

∂φ

∂x1

is known as the Cole-Hopf transformation. ♣
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Example. The Korteweg-de Vries equation

∂u

∂x2
+ 6u

∂u

∂x1
+
∂3u

∂x3
1

= 0

and the modified Korteweg-de Vries equation

∂ũ

∂x̃2
− 6ũ2 ∂ũ

∂x̃1
+
∂3ũ

∂x̃3
1

= 0

are related by the Bäcklund transformation

x̃1(x1, x2) = x1

x̃2(x1, x2) = x2

∂ũ

∂x̃1
(x̃1(x1, x2), x̃2(x1, x2)) = u+ ũ2

∂ũ

∂x̃2
(x̃1(x1, x2), x̃2(x1, x2)) =−∂

2u

∂x2
1

− 2

(
ũ
∂u

∂x1
+ u

∂ũ

∂x1

)
. ♣

Example. The Liouville equation

∂2u

∂x1∂x2
= eu

and the linear partial differential equation

∂2ũ

∂x̃1∂x̃2
= 0

are related by the Bäcklund transformation

x̃1(x1, x2) = x1

x̃2(x1, x2) = x2

∂ũ

∂x̃1
(x̃1(x1, x2), x̃2(x1, x2)) =

∂u

∂x1
+ λ exp

(
1

2
(ũ+ u)

)

∂ũ

∂x̃2
(x̃1(x1, x2), x̃2(x1, x2)) =− ∂u

∂x2
− 2

λ
exp

(
1

2
(u− ũ)

)

where λ is a nonzero constant. ♣

Example. Bäcklund transformations can also be found for certain ordinary
differential equations. Let

d2u

dx2
= sinu
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and
d2ũ

dx̃2
= sinh ũ

where u and ũ are real valued functions. We show that

x̃(x) = x

du(x)

dx
− i

dũ(x̃(x))

dx̃
= 2eiλ sin

(
1

2
(u(x) + iũ(x̃(x)))

)

defines a Bäcklund transformation, where λ is a real parameter. Taking the
x-derivative of this equation and applying the chain rule gives

d2u

dx2
− i

d2ũ

dx̃2
= eiλ cos

(
1

2
(u+ iũ)

)(
du

dx
+ i

dũ

dx̃

)
.

The complex conjugate of the Bäcklund transform is

du

dx
+ i

dũ

dx̃
= 2e−iλ sin

(
1

2
(u− iũ)

)

where we have used that (sin z)∗ ≡ sin(z∗) and i∗ = −i. The ∗ denotes
complex conjugate. Inserting this equation into the right-hand side yields

d2u

dx2
− i

d2ũ

dx̃2
= 2 cos

(
1

2
(u+ iũ)

)
sin

(
1

2
(u− iũ)

)
.

Using the identity

cos

(
1

2
(u+ iũ)

)
sin

(
1

2
(u− iũ)

)
≡ 1

2
sinu+

1

2
sin(−iũ) ≡ 1

2
sinu−1

2
i sinh ũ

we find that
d2u

dx2
− i

d2ũ

dx̃2
= sinu− i sinh ũ.

Thus equations d2u/dx2 = sinu and d2ũ/dx̃2 = sinh ũ follow. ♣

15.3 Computer Algebra Applications

To apply the Bäcklund transformation it is necessary to implement the
chain rule. We show how this is done for the Bäcklund transformation of

d2u

dx2
= sin(u),

d2ũ

dx̃2
= sinh(ũ)
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// backlund.cpp

#include <iostream>

#include "symbolicc++.h"

using namespace std;

int main(void)

{

Symbolic ut("ut"), xt("xt"), x("x"), u("u");

Symbolic lambda("lambda");

Symbolic res1, res2, i = sqrt(Number<int>(-1));

xt = xt[x];

ut = ut[xt];

u = u[x];

res1 = df(u,x)-i*df(ut,xt)-2*exp(i*lambda)*sin((u+i*ut)/2);

res2 = df(res1,x);

res2 = res2[df(xt,x)==1];

cout << res2 << endl;

return 0;

}

15.4 Exercises

(1) The Ernst equation with the complex Ernst potential E can be written
as

∂2E

∂ξ∂ζ
+

1

2(ξ + ζ)

(
∂E

∂ξ
+
∂E

∂ζ

)
+

2

E +E

∂E

∂ξ

∂E

∂ζ
= 0.

Find an auto-Bäcklund transformation for this equation. Let E, Ẽ be
solutions of the Ernst equation. Start with

∂Ẽ

∂ξ
= γ

∂E

∂ξ
,

∂Ẽ

∂ζ
= δ

∂E

∂ζ

where γ(E,E, Ẽ, Ẽ) and δ(E,E, Ẽ, Ẽ).



Chapter 16

Lax Representations

16.1 Definitions

In this section we consider the Lax representation of differential equations
and give some examples. Most soliton equations admit a Lax representa-
tion. Also for a class of ordinary differential equations Lax representations
can be found. The Lax representation for a soliton equation is the starting
point of the inverse scattering method (Ablowitz and Segur [1]).

Definition 16.1 Let L and M be two linear differential operators. The
spectral problem is given by

Lv = λv (1)

where
∂v

∂xm+1
= Mv (2)

Here v is a smooth function depending on x1, . . . , xm, xm+1 and λ is a
parameter.

We show that the operator equation

∂L

∂xm+1
= [M,L] (3)

holds, where
[L,M ] := LM −ML

is the commutator. Equation (3) is called the Lax representation which
contains a nonlinear evolution equation if L and M are correctly chosen.

267
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Equations (1) and (2) are known as the Lax equations. From (1) we
obtain

∂

∂xm+1
(Lv) =

∂

∂xm+1
(λv).

It follows that

∂L

∂xm+1
v + L

∂v

∂xm+1
= λ

∂v

∂xm+1
. (4)

Inserting (1) and (2) into (4) gives

∂L

∂xm+1
v + LMv = λMv. (5)

From (1) we obtain by applying M

MLv = λMv.

Inserting this expression into (5) yields

∂L

∂xm+1
v = −LMv +MLv.

Consequently

∂L

∂xm+1
v = [M,L]v.

Since the smooth function v is arbitrary we obtain the operator equation
(3).

The Lax representation can also be applied to discrete systems. Let

ψm+1 = Lmψm

and

dψm
dt

= Mmψm.

Then we find the operator equation

dLm
dt

= Mm+1Lm − LmMm.
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16.2 Examples

Example. We consider n = 1 and m = 2, where we put u1 = u and v1 = v.
Let

L=
∂2

∂x2
1

+ u(x1, x2)

M = 4
∂3

∂x3
1

+ 6u(x1, x2)
∂

∂x1
+ 3

∂u

∂x1
.

We now calculate the evolution equation for u. Since

∂L

∂x2
v =

∂

∂x2
(Lv) − L

(
∂v

∂x2

)

we obtain

∂L

∂x2
v =

∂

∂x2

((
∂2

∂x2
1

+ u

)
v

)
−
(
∂2

∂x2
1

+ u

)
∂v

∂x2
=

∂u

∂x2
v.

Now

[M,L]v= (ML)v − (LM)v = M(Lv) − L(Mv)

=

(
4
∂3

∂x3
1

+ 6u
∂

∂x1
+ 3

∂u

∂x1

)(
∂2v

∂x2
1

+ uv

)

−
(
∂2

∂x2
1

+ u

) (
4
∂3v

∂x3
1

+ 6u
∂v

∂x1
+ 3

∂u

∂x1
v

)

= 6u
∂u

∂x1
v +

∂3u

∂x3
1

v.

Since v is arbitrary, we obtain the Korteweg-de Vries equation

∂u

∂x2
= 6u

∂u

∂x1
+
∂3u

∂x3
1

. ♣

Example. We consider n = 1 and m = 3 where we put u1 = u and v1 = v.
Let

L =
∂2

∂x2
1

+ bu(x1, x2, x3) +
∂

∂x2

and

T = −4
∂3

∂x3
1

− 6bu(x1, x2, x3)
∂

∂x1
− 3b

∂u

∂x1
− 3bD−1

x1

∂u

∂x2
+

∂

∂x3
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where b ∈ R and

D−1
x1
f :=

∫ x1

f(s)ds.

The nonlinear evolution equation which follows from the condition

[T, L]v = 0

where v is a smooth function, is given by

∂2u

∂x3∂x1
=
∂4u

∂x4
1

+ 6b

(
∂u

∂x1

)2

+ 6bu
∂2u

∂x2
1

+ 3
∂2u

∂x2
2

.

This is the Kadomtsev-Petviashvili equation. ♣

Consider a system of linear equations for an eigenfunction and an evolution
equation, i.e.,

L(x, D)ψ(x, λ) = λψ(x, λ) (6)

∂ψ(x, λ)

∂xk
= Bk(x, D)ψ(x, λ) (7)

where D ≡ ∂/∂x. We now show that

∂L

∂xk
= [Bk, L] ≡ BkL− LBk

and
∂Bl
∂xk

− ∂Bk
∂xl

= [Bk, Bl]

where 1 ≤ k, l ≤ m. From (6) we obtain

∂

∂xk
(Lψ) =

∂L

∂xk
ψ + L

∂ψ

∂xk
=

∂

∂xk
(λψ) = λ

∂ψ

∂xk
. (8)

Inserting (7) into (8) yields

∂L

∂xk
ψ + LBkψ = λBkψ = Bkλψ

or
∂L

∂xk
ψ = −LBkψ +BkLψ = [Bk, L]ψ. (9)

From (9) we obtain

∂

∂xk
(Lψ) − L

∂ψ

∂xk
= BkLψ − LBkψ (10)
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and
∂

∂xl
(Lψ) − L

∂ψ

∂xl
= BlLψ − LBlψ. (11)

Taking the derivative of (10) with respect to xl and of (11) with respect to
xk gives

∂2

∂xl∂xk
(Lψ) − ∂

∂xl

(
L
∂ψ

∂xk

)
=

∂

∂xl
(BkLψ) − ∂

∂xl
(LBkψ) (12)

∂2

∂xk∂xl
(Lψ) − ∂

∂xk

(
L
∂ψ

∂xl

)
=

∂

∂xk
(BlLψ) − ∂

∂xk
(LBlψ). (13)

Subtracting (13) from (12) we obtain

− ∂

∂xl

(
L
∂ψ

∂xk

)
+

∂

∂xk

(
L
∂ψ

∂xl

)

=
∂

∂xl
(BkLψ) − ∂

∂xl
(LBkψ) − ∂

∂xk
(BlLψ) +

∂

∂xk
(LBlψ). (14)

Inserting
∂ψ

∂xk
= Bkψ,

∂ψ

∂xl
= Blψ (15)

into this equation and taking into account (6) gives

∂

∂xl
(Bkψ) − ∂

∂xk
(Blψ) = 0.

From this equation we obtain

∂Bk
∂xl

ψ +Bk
∂ψ

∂xl
− ∂Bl
∂xk

ψ −Bl
∂ψ

∂xk
= 0.

Inserting (15) into this equation gives

∂Bk
∂xl

ψ +BkBlψ − ∂Bl
∂xk

ψ −BlBkψ = 0.

Since ψ is arbitrary, it follows that

∂Bl
∂xk

− ∂Bk
∂xl

= [Bk, Bl].

Example. Let

L := D + u2(x)D−1 + u3(x)D−2 + u4(x)D−3 + · · ·
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where x = (x1, x2, x3, . . .),

D :=
∂

∂x1

and

D−1f(x) =

∫ x1

f(s)ds.

We define Bn(x, D) as the differential part of (L(x, D))n and show that

B1 =D

B2 =D2 + 2u2

B3 =D3 + 3u2D + 3u3 +
∂u2

∂x1

B4 =D4 + 4u2D
2 +

(
4u3 + 6

∂u2

∂x1

)
D + 4u4 + 6

∂u3

∂x1
+ 4

∂2u2

∂x2
1

+ 6u2
2.

From L it is obvious that B1 = D. Let f be a smooth function. Then

L2f =L(Lf)

=L(Df + u2D
−1f + u3D

−2f + u4D
−3f + u5D

−4f + · · ·)
=D2f + u2f + (Du2)D

−1f + u3(D
−1f) + (Du3)D

−2f

+u4D
−2f + (Du4)D

−2f + · · ·

where

D−2f :=

∫ x1
(∫ s1

f(s2)ds2

)
ds1.

Since f is an arbitrary smooth function we have

B2 = D2 + 2u2.

In the same manner we find B3 and B4. Let us now find the equation of
motion for

∂Bl
∂xk

− ∂Bk
∂xl

= [Bk, Bl]

with k = 2 and l = 3. Since

∂B3

∂x2
ψ=

∂

∂x2
(D3ψ) + 3

∂u2

∂x2
(Dψ) + 3u2D

(
∂ψ

∂x2

)
+ 3

∂u3

∂x2
ψ + 3u3

∂ψ

∂x2

+ 3
∂2u2

∂x1∂x2
ψ + 3

∂u2

∂x1

∂ψ

∂x2

and

−∂B2

∂x3
ψ = −D2 ∂ψ

∂x3
− 2

∂u2

∂x3
ψ − 2u2

∂ψ

∂x3



16.3. Sato’s Theory 273

we find
∂

∂x1

(
∂u2

∂x3
− 1

4

∂3u2

∂x3
1

− 3u2
∂u2

∂x1

)
− 3

4

∂2u2

∂x2
2

= 0

which is the Kadomtsev-Petviashvili equation. ♣

Example. The nonlinear partial differential equation

∂2u

∂x1∂x2
+ α

∂u

∂x1
+ β

∂u

∂x2
+ γ

∂u

∂x1

∂u

∂x2
= 0

is called the Thomas equation. Here α, β and γ are real constants with
γ 6= 0. We show that

∂φ

∂x1
= − ∂u

∂x1
−
(

2β + γ
∂u

∂x1

)
φ,

∂φ

∂x2
=

∂u

∂x2
−
(

2α+ γ
∂u

∂x2

)
φ

provides a Lax representation for the Thomas equation. By taking the
derivative of Lax representation with respect to x1 gives

∂2φ

∂x1∂x2
=

∂2u

∂x1∂x2
− 2α

∂φ

∂x1
− γ

∂2u

∂x1∂x2
φ− γ

∂u

∂x2

∂φ

∂x1

and taking the derivative with respect to x2 gives

∂2φ

∂x2∂x1
= − ∂2u

∂x2∂x1
− 2β

∂φ

∂x2
− γ

∂2u

∂x2∂x1
φ− γ

∂u

∂x1

∂φ

∂x2
.

Subtracting the two equations provides

0 = 2
∂2u

∂x2∂x1
−
(

2α+ γ
∂u

∂x2

)
∂φ

∂x1
+

(
2β + γ

∂u

∂x1

)
∂φ

∂x2
.

Inserting Lax representation into this equation gives the Thomas equation.
The Thomas equation can be linearized by applying the transformation

u =
1

γ
ln v. ♣

16.3 Sato’s Theory

Nonlinear partial differential equations integrable by the inverse spectral
transform method form a wide class of solition equations which possess
many remarkable properties. Soliton equations can be described in differ-
ent ways. The Sato approach [98], [68] is one of them. The eigenfunctions
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of soliton eigenvalue problems also obey nonlinear partial differential equa-
tions and they are also integrable by the inverse spectral transform method.
We consider the soliton eigenfunction equations within the frame of the Sato
theory. We construct the universal nonlinear equation for the eigenfunc-
tion ψ of the Kadomtsev-Petviashvili hierarchy. In such a formulation the
Σ-function is the Kadomtsev-Petviashvili eigenfunction of the second level
and the nonlinear equation for the Σ-function is the universal Kadomtsev-
Petviashvili eigenfunction equation of the second level. The auxiliary linear
problem for the Kadomtsev-Petviashvili equation

∂

∂x

(
∂u

∂t
− 1

4

∂3u

∂x3
− 3

4
u
∂u

∂x

)
− 3

4

∂2u

∂y2
= 0

is of the form (we write ψt ≡ ∂ψ/∂t)

ψy − ψxx − 2uψ= 0

ψt − ψxxx − 3uψx −
3

2
uxψ − 3

2

(
∂−1
x uy

)
ψ = 0.

Elimination of the potential u leads to the Kadomtsev-Petviashvili eigen-
function equation

(ψtψ
−1)x −

1

4

(
ψxψ

−1
)
xxx

+
1

2

((
ψxψ

−1
)3)

x
− 3

4

(
ψyψ

−1
)
y

−3

2
(ψxψ

−1)xψyψ
−1 = 0.

This equation is integrable by the inverse spectral transform method using
the linear problem

ψϕy − ψϕxx − 2ψxϕx = 0

ψϕt − ψϕxxx − 3ψxϕxx −
3

2
(ψxx + ψy)ϕx = 0.

Here ψ plays the role of potential while ϕ is the eigenfunction. Eliminating
now ψ, one arrives at the Kadomtsev-Petviashvili eigenfunction equation of
the second level, i.e. the eigenfunction equation for the eigenfunction equa-
tion. If one continues this process then one finds that the eigenfunction
equations of the third and all higher levels coincide with the second-level
equation. Thus the whole vertical hierarchy of the Kadomtsev-Petviashvili
eigenfunction equations (i.e. the family of eigenfunction equations for eigen-
function equations etc.) contains only the two different members. In the
same manner one can consider all the higher Kadomtsev-Petviashvili equa-
tions and construct the corresponding eigenfunction equations of the first
and second levels. The properties of the vertical hierarchies for all the higher
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Kadomtsev-Petviashvili equations are the same. Within the framework of
the Sato theory the whole horizontal Kadomtsev-Petviashvili hierarchy is
described by the system (Lax equation)

∂L

∂tn
= [L,Bn] , n = 1, 2, 3, . . .

where L is the pseudodifferential operator defined by

L := ∂ + u1∂
−1 + u2∂

−2 + · · · , ∂ ≡ ∂/∂x

the coefficients uk depend on the infinite set of variables t1, t2, t3, . . . (with
t1 = x) and Bn = (Ln)+ is the pure differential part of the operator Ln.
This system is the infinite system of equations of the form

∂u1

∂t2
= u1xx + 2u2x

∂u2

∂t2
= u2xx + 2u3x + 2u1u1x

...
∂u1

∂t3
= u1xxx + 3u2xx + 3u3x + 6u1u1x

...

Elimination of u2, u3, . . . from this system provides the usual Kadomtsev-
Petviashvili hierarchy for u1 with t2 = y. The nonlinear system ∂L/∂tn =
[L,Bn] is the compatibility condition for the linear system

Lψ= λψ

∂ψ

∂tn
=Bnψ n = 1, 2, 3, . . .

It follows that

∂Bm
∂tn

− ∂Bn
∂tm

− [Bn, Bm] = 0, n,m = 1, 2, 3, . . .

the first two equations of ∂ψ/∂tn = Bnψ are of the form

∂ψ

∂t2
=
(
∂2 + 2u1

)
ψ

∂ψ

∂t3
=
(
∂3 + 3u1∂ + 3u2 + 3u1x

)
ψ
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and so on. Next we eliminate the potentials u1, u2, u3, . . . from Lψ = λψ
and ∂ψ/∂t = Bnψ. All the operators Bn = (Ln)+ have a triangular struc-
ture and contain the function un linearly. As a result we obtain

un = Fn(ψ) n = 1, 2, 3, . . .

where Fn are certain explicit functions on ψ, ψt1 , ψt2 , . . .. For example,

u1 = F1(ψ) =
ψt2 − ψxx

2ψ

u2 = F2(ψ) =
2ψt3 − 3ψxt2 − 3ψxxx

6ψ

and so on. Substituting the expressions un = Fn(ψ) into Lψ = λψ, we
obtain the equation

ψx +

∞∑

n=1

Fn(ψ)∂−nψ = λψ.

This is the equation for the common Kadomtsev-Petviashvili hierarch eigen-
function ψ in the Sato approach. In Sato’s theory we have a single eigen-
function equation in contrast to the horizontal hierarchy of eigenfunction
equations. The functions Fn(ψ) depend on ψ, its derivatives with respect to
all the variables t1, t2, t3, . . . and higher-order and cross derivatives. How-
ever from ∂Bn/∂tn − ∂Bn/∂tm = [Bn, Bm] we find that all the derivatives
ψtn at n ≥ 3 can be expressed via ψ, ψx and ψt2 . Therefore we find

ψx +

∞∑

n=1

F̃n(ψ)∂−nψ = λψ

where F̃n are the functions depending only on ψ, ψx, ψt2 and cross deriva-
tives with respect to x and t2.

16.4 Computer Algebra Applications

In our application we calculate the right-hand side of the Korteweg-de Vries
equation

∂u

∂t
= 6u

∂u

∂x
+
∂3u

∂x3

using the Lax pair

L :=
∂2

∂x2
+ u(x, t), M := 4

∂3

∂x3
+ 6u(x, t)

∂

∂x
+ 3

∂u

∂x
.
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// Laxpair.cpp

#include <iostream>

#include "symbolicc++.h"

using namespace std;

int main(void)

{

Symbolic x("x"), u("u"), v("v");

u = u[x];

v = v[x];

Symbolic L = df(v,x,2) + u*v;

Symbolic M = 4*df(v,x,3) + 6*u*df(v,x) + 3*df(u,x)*v;

Symbolic A = M[v==L];

Symbolic B = L[v==M];

Symbolic commutator = A - B;

cout << "commutator = " << commutator << endl;

cout << "coefficient of v = " << commutator.coeff(v,1);

return 0;

}

16.5 Exercises

(1) Show that the system of nonlinear partial differential equations

∂v

∂t
+

∂

∂x
((1 + v)u) +

1

4

∂3u

∂x3
= 0

∂u

∂t
+ u

∂u

∂x
+
∂v

∂x
= 0

admits the Lax pair

∂2φ

∂x2
= (λ2 + λu+

1

4
u2 − v − 1)φ

∂φ

∂t
=

1

4

∂u

∂x
φ+ (λ− 1

2
u)
∂φ

∂x
.

(2) Inserting the ansatz

u(x, t) =
∂2

∂x2
lnϕ(x, t) + u2(x, t)
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into the Caudrey-Dodd-Gibbon partial differential equation

ut +
∂

∂x

(
uxxxx + 30uux + 60u3

)
= 0

we obtain

u2 = −1

6

ϕxxx
ϕx

and
ϕt
ϕx

+
∂2

∂x2
{ϕ;x} + 4{ϕ;x}2 = 0

where { ; } denotes the Schwarzian derivative. Show that these two equa-
tions can be written as the Lax pair

ϕxxx + 6u2ϕx = 0, ϕt = −18u2xϕxx + 6(u2xx − 6u2
2)ϕx .



Chapter 17

Conservation Laws

17.1 Basic Concepts

Conservation laws describe quantities that remain invariant during the
evolution of a partial differential equation (Ablowitz [1], Zwillinger [146],
Ablowitz et al [2], Calogero and Degasperis [10], Steeb et al [126]). This
provides simple and efficient methods for the study of many qualitative
properties of solutions, including stability, evolution of solitons, and de-
composition into solitons, as well as the theoretical description of solution
manifolds. A soliton equation is a partial differential equation with a wave-
like solution, known as a solitary wave. A solitary wave is a localized,
travelling wave and several nonlinear partial differential equations have a
solution of this type. A soliton is a specific type of stable solitary wave
which is best described in terms of its interaction with other solitary waves.
Conservation laws also allow estimates of the accuracy of a numerical so-
lution scheme. For a partial differential equation that is not written in
conserved form there is a number of ways to attempt to write the equation
in conserved form. These include a change of the dependent as well as the
independent variables and applications of Noether’s theorem (see Bluman
et al [8] for the techniques). Bluman and Kumei [7] have introduced the so
called ‘potential symmetries’ whereby conservation laws can be found. We
also refer to chapter 23 for details on the computer algebra packages for
determining conservation laws. We also discuss Noethers theorem in detail
using the jet bundle formalism (Shadwick [107]).

Let us first consider the case of two independent variables x1 and x2 with
one dependent variable u. Here x2 plays the role of the time variable. We

279
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consider an evolution equation of the form

∂u

∂x2
= F

(
u,

∂u

∂x1
,
∂2u

∂x2
1

, . . . ,
∂ru

∂xr1

)
. (1)

Definition 17.1 A conservation law for (1) is a partial differential equa-
tion of the form

∂

∂x2
T (u(x1, x2)) +

∂

∂x1
X (u(x1, x2)) = 0 (2)

which is satisfied by all solutions of (1). T is defined to be the conserved
density and X the conserved flux or flow. Using differential forms (2)
can also be written as

d(T (u(x1, x2)dx1 −X(u(x1, x2))dx2) = 0.

Definition 17.2 The functional

I(u) ≡
∫ ∞

−∞

T (u(x1, x2)) dx1 (3)

is a constant of the motion since

d

dx2
I(u) = 0 (4)

for all solutions of (1), provided the integral (3) exists and the integrand
satisfies the appropriate boundary conditions at x1 = ±∞.

A standard procedure is to determine a set of conservation laws and then
use (3) to obtain constants of the motion.

Example. The Korteweg-de Vries equation

∂u

∂x2
= u

∂u

∂x1
+
∂3u

∂x3
1

has an infinite set of conservation laws. The first few, in order of increasing
rank, have the conserved densities

T1(u) = u

T2(u) = u2

T3(u) = u3 − 3

(
∂u

∂x1

)2

T4(u) = 5u4 − 60u

(
∂u

∂x1

)2

− 36
∂u

∂x1

∂3u

∂x3
1

...
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Since the Korteweg-de Vries equation can be written as a conservation law

∂u

∂x2
+

∂

∂x1

(
−u

2

2
− ∂2u

∂x2
1

)
= 0

it follows that T (u) = u is a conserved density and the conserved flux is
given by

X(u) = −u
2

2
− ∂2u

∂x2
1

.

To demonstrate that T (u) = u2 is a conserved density, we consider

∂T

∂x2
=
∂(u2)

∂x2
= 2u

∂u

∂x2
= 2u

∂3u

∂x3
1

+ 2u2 ∂u

∂x1

where we make use of the given Korteweg-de Vries equation to replace the
∂u/∂x2 term. The flux X such that (2) is satisfied is given by

X(u) =

(
∂u

∂x1

)2

− 2u
∂2u

∂x2
1

− 2

3
u3. ♣

Example. The Schrödinger equation in one space dimension

i
∂u

∂x2
= −∂

2u

∂x2
1

+ V (x1)u

can be expressed in the conserved form (2) where

T (u) = ig(x1)u, X(u) = g(x1)
∂u

∂x1
− dg

dx1
u

and g(x1) is defined by

d2g

dx2
1

− V (x1)g(x1) = 0. ♣

Example. The sine-Gordon equation

∂2u

∂x1∂x2
= sinu

can be expressed in the conserved form (2) where

T (u) =
1

2

(
∂u

∂x1

)2

, X(u) = cosu. ♣
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Example. Consider the one-dimensional linear diffusion equation

∂u

∂x2
=
∂2u

∂x2
1

.

Let us derive a constant of motion from a given conserved density. Consider

∂

∂x2

(
−x1

∂u

∂x1
− 2x2

∂u

∂x2

)
+

∂

∂x1
(X(u)) = 0 .

Taking into account the diffusion equation and integrating we find the con-
servation law

∂

∂x2

(
−x1

∂u

∂x1
− 2x2

∂u

∂x2

)
+

∂

∂x1

(
∂u

∂x1
+ x1

∂2u

∂x2
1

+ 2x2
∂3u

∂x3
1

)
= 0 .

This leads to the constant of motion

I(u) =

∫ +∞

−∞

(
−x1

∂u

∂x1
− 2x2

∂u

∂x2

)
dx1 =

∫ +∞

−∞

u dx1 = C.

Since u is the concentration of the diffusing substance, the quantity C is
the total amount of the diffusing substance. ♣

We now demonstrate with the help of an example that, in general, one
cannot derive a constant of motion from a conservation law, even if one
assumes that the dependent variable u and all its derivatives with respect
to the space coordinates vanish rapidly as the space coordinates tend to
infinity. In the following we let x2 be fixed but arbitrary. We assume that
the dependent function u is an element of the Schwartz space S(R) with
respect to the space coordinate x1.

Definition 17.3 The functions in the Schwartz space S(R) are those
functions which, together with their derivatives fall off more quickly than
the inverse of any polynomial.

Example. We consider the one-dimensional diffusion equation

∂u

∂x2
=
∂2u

∂x2
1

.

There exist solutions of the diffusion equation which for a fixed time x2

are elements of the Schwartz space S(R). We assume that the conserved
density T has the form

T (u) = u lnu.
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Now the equation
∂

∂x2
(u lnu) +

∂

∂x1
X(u) = 0

can be solved by integration and we find the conservation law

∂

∂x2
(u lnu) +

∂

∂x1

(
−∂

2u

∂x2
1

−
∫ x1

−∞

∂2u(η)

∂η2
lnu(η, x2) dη

)
= 0

where the integral in the second bracket exists. However one cannot con-
clude that the integral

∫ +∞

−∞

u(x1, x2) ln(u(x1, x2)) dx1 (5)

which exists, does not depend on x2, i.e.

d

dx2

∫ +∞

−∞

u(x1, u2) ln(u(x1, x2)) dx1 6= 0.

This can be seen when we insert the following solution of the diffusion
equation (x2 > 0)

u(x1, x2) =
1√
x2

exp

(
− x2

1

4x2

)

into (5). This behaviour is due to the fact that the function f which is
given by

f(x1, x2) =

∫ x1

−∞

(
∂2u(η, x2)

∂η2
lnu(η, x2) dη

)

does not vanish as |x1| → ∞. For the given solution of the diffusion equation
we find

d

dx2

∫ +∞

−∞

u(x1, x2) lnu(x1, x2) dx1 ≤ 0

for x2 > 0 and for sufficiently large x2 we find

∣∣∣∣
d

dx2

∫ +∞

−∞

u(x1, x2) ln(u(x1, x2)) dx1

∣∣∣∣ ≤
2
√

2

exp(x2)
. ♣

We now consider the case of m independent variables x = (x1, . . . , xm) and
one dependent variable u, where xm plays the role of the time variable.
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Definition 17.4 A partial differential equation with m independent variables
and one dependent variable is in conservation form if it can be written in
the form

∂

∂xm
T (u) + divX(u) = 0, divX :=

∂X1

∂x1
+ · · · + ∂Xm−1

∂xm−1
(6)

where X = (X1, . . . , Xm−1).

Example. Consider the three-dimensional diffusion equation

∂u

∂x4
=
∂2u

∂x2
1

+
∂2u

∂x2
2

+
∂2u

∂x2
3

.

Let T (u) = u lnu. Then we find, by integration, the conservation law

∂

∂x4
(u lnu) − divV (u) = 0

where

V (u(x, x4)) = − 1

4π

∫ +∞

−∞

(
∂2u

∂η2
1

+
∂2u

∂η2
2

+
∂2u

∂η2
3

)
ln(u+1)

x − η
|x− η| dη1 dη2 dη3

with x = (x1, x2, x3) and η = (η1, η2, η3) and u = u(η, x4) on the right-
hand side of the equation. ♣
Definition 17.5 A conservation law is called trivial if T (u) is itself the x
derivative of some expression.

Example. Consider again the one-dimensional diffusion equation

∂u

∂x2
=
∂2u

∂x2
1

.

An example of a trivial conservation law is

∂

∂x2

(
−g(u) ∂u

∂x1

)
+

∂

∂x1

(
g(u)

∂u

∂x2

)
= 0

where g is a smooth function of u. This is an identity. Let g be a polynomial
in u. Then integrating by parts we obtain

∫ +∞

−∞

g(u)
∂u

∂x1
dx1 = 0.

The trivial conservation law has no physical meaning. ♣

From the definition of conservation laws a definition of integrability can be
proposed.
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Definition 17.6 If an evolution equation has an infinite sequence of non-
trivial conservation laws, the equation is called formally integrable, some-
times called integrable.

From our previous example of the Korteweg-de Vries equation it follows
from the given definition of integrability that the Korteweg-de Vries equa-
tion is integrable since it has an infinite set of conservation laws. Other ex-
amples of integrable evolution equations are the modified Korteweg-de Vries
equation, the Boussinesq equation, the Calogero-Degasperis-Fokas equa-
tion and the one-dimensional nonlinear Schrödinger equation. These are
examples of soliton equations that can be solved by the inverse scattering
transform. It must be noted that Burgers’ equation (which is not a soliton
equation) does not have an infinite number of conservation laws, but it has
an infinite number of Lie-Bäcklund symmetry vector fields.

17.2 Exterior Differential Systems

In this section the correspondence between conservation laws and Lie sym-
metry vector fields is studied. A definition of higher order conservation
laws (hierarchy of conservation laws) is presented in terms of an exterior
differential system.

Let M be an oriented differentiable manifold of dimension m with local co-
ordinates x = (x1, . . . , xm) and volumem-form ω given in these coordinates
by

ω = dx1 ∧ dx2 ∧ . . . ∧ dxm.

LetN be an n-dimensional manifold with local coordinates u = (u1, . . . , un)
and let (E, π,M) be a fibre bundle with fibre N and E = M × N . The
k-jet bundle of local sections of (E, π,M) is denoted by Jk(E) and J(E)
denotes the infinite jet bundle. The canonical projections from Jk(E) to M
and from J(E) to M are denoted by πkM and πM respectively, and πk is the
canonical projection from J(E) to Jk(E). The k-th order and infinite-order
contact modules are denoted by Ωk and Ω respectively, with standard bases

{
θj , θj,i1 , . . . , θj,i1...ik−1

}

for Ωk, and { θj , θj,i1 , . . . } for Ω. The contact forms are given by

θj,i1...il := duj,i1...il −
m∑

b=1

uj,i1...ilbdxb .
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We consider a system of partial differential equations of order k

Fν

(
xi, uj ,

∂uj
∂xi

, . . . ,
∂kuj

∂xi1∂xi2 . . . ∂xik

)
= 0 (7)

where ν = 1, . . . , q and i = 1, . . . ,m, j = 1, . . . , n. Within the jet bundle
formalism the submanifold Rk, given by the constrained equations

Fν(xi, uj , uj,i, . . . , uj,i1...ik ) = 0 (8)

is then considered.

The modules of contact m-forms Ωk(m) and Ω(m) are the modules generated

by Ωk∧{ωi} and Ω∧{ωi} respectively, where ωi is the (m−1) form defined
by

ωi :=
∂

∂xi
ω.

If s is a local section of (E, π,M) then jks and js are the k-jet and infinite
jet extensions of s, respectively. Obviously

jks∗Ωk(m) = 0, js∗Ω(m) = 0.

Let A denote the Lie algebra of vector fields on J(E), defined by

A := {Z ∈ Ξ(J(E)) : LZΩ ⊂ Ω and πM∗Z = 0 }
where Ξ(J(E)) denotes the vector fields on J(E) and Z is a Lie symmetry
vector field. Clearly the vector fields in A preserve the contact m-forms on
J(E) as well as preserving Ω, that is, if Z ∈ A then

LZΩ(m) ⊂ Ω(m).

The vector field Di, defined on J(N), is referred to as the operator of total
differentiation, and is given by

Di :=
∂

∂xi
+

m∑

j=1

uj,i
∂

∂uj
+· · ·+

m∑

j=1

n∑

i1,...,ir=1

uj,ii1...ik
∂

∂uj,i1...ik
, i1 ≤ · · · ≤ ir.

We now consider conservation laws in connection with exterior differential
forms. The space of sections of a fibred manifold is denoted by S(E).

Definition 17.7 Let (E, π,M) be a fibred manifold and let Σk−1 be a
finitely generated ideal of homogeneous differential forms on Jk−1(E) where
k ≥ 1. If dΣk−1 is contained in Σk−1 then Σk−1 is an exterior differ-
ential system or an exterior ideal. A solution of Σk−1 is a section
s ∈ S(E) such that

jk−1s∗σk−1 = 0.
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Example. The ideal generated by the contact modules

{ θj,i1...ik , dθj,i1...il : l ≤ k − 1 }

is an exterior differential system on Jk−1(E) whose solutions are the sec-
tions s ∈ S(E). ♣

We denote by Rk the differential equation associated with Σk−1.

Definition 17.8 Let Σk−1 be an exterior differential system on Jk−1(E).
A conserved current for Σk−1 is an (m− 1)-form ζ such that

dζ ∈ Σk−1.

Thus for each solution s of Σk−1 the (m− 1)-form jk−1s∗ζ is closed, i.e.,

d
(
jk−1s∗ζ

)
= 0. (9)

Equation (9) is called a conservation law for Σk−1. The local coordinate
expression of this conservation law is

m∑

i=1

∂

∂xi
(jks∗fi) = 0

where the functions fi are given by

πkk−1

∗
ζ =

m∑

i1,...,im−1=1

fi1...im−1dxi1 ∧· · ·∧dxim−1 mod contact forms Ωk.

It is a consequence of Stokes theorem that a conserved current determines
a conserved function on the space of solutions of Σk−1 that can be written
as

s 7→
∫
jk−1s∗ζ .

The integration is understood to be carried out over a suitable (m − 1)-
dimensional submanifold of M .

Example. Let M = R2 and (E, π,M) = (M ×R, pr1,M) with (x1, x2, u)
local coordinates on E and (x1, x2, u, u1, u2) local coordinates on the jet
bundle J2(E). pr1 is the projection map pr1 : R2 ×R → R2. The exterior
differential system Σ1 generated by

du ∧ dx2 − u1dx1 ∧ dx2
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du ∧ dx1 + u2dx1 ∧ dx2

du1 ∧ dx1 + sinudx1 ∧ dx2

du2 ∧ dx2 − sinudx1 ∧ dx2

has as its associated equation the sine-Gordon equation

∂2u

∂x1∂x2
= sinu.

The one-form

ζ :=
1

2
u2

1dx1 − cosu dx2

is a conserved current for Σ1. We find

dζ = u1du1 ∧ dx1 + sinu du ∧ dx2.

Let s be a solution of Σ1. Then s satisfies the conservation law

1

2

∂

∂x2

(
∂s

∂x1

)2

+
∂

∂x1
(cos s) = 0.

Consider the class of solutions of the sine-Gordon equation which has com-
pact support and let Mc be the strip in R2 bounded by x2 = c and x2 = c′.
It follows from Stokes theorem that

∫

∂Mc

j1s∗ζ = 0.

Since

∫

∂Mc

j1s∗ζ =
1

2

∫ +∞

−∞

(
∂s

∂x1
(x1, c)

)2

dx1 −
1

2

∫ +∞

−∞

(
∂s

∂x1
(x1, c

′)

)2

dx1

it follows that the functional defined by

s 7→ 1

2

∫ +∞

−∞

(
∂s

∂x1

)2

dx1

is independent of x2 and is thus conserved. ♣

It is sometimes possible to enlarge the class of conserved functionals by
considering (m−1)-forms which depend on derivatives of higher order than
those which appear on Jk−1(E). Thus it is convenient to extend the defi-
nitions to the prolongation of Σk−1 on the infinite jet bundle J(E).
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Definition 17.9 If ζ is a differentiable (m − 1)-form on J(E) and dζ ∈
Σ∞, then ζ is called a conserved current for Σ∞. It follows from the defi-
nition of smooth forms that ζ is a conserved current for some Σl, i.e.

ζ = π∗
l ζl

and dζl ∈ Σl. If ζ does not factor through Jk−1(E), then it is called a
higher order conserved current for Σk−1. If ζ is a conserved current
for Σ∞ and

js∗ζ = 0

for every solution s of Σ∞, then ζ is called trivial, as the conserved func-
tional determined by ζ is vacuous. The trivial conserved current is denoted
by ζT .

Example. The sine-Gordon equation

∂2u

∂x1∂x2
= sinu

has an infinite hierarchy of higher order conserved currents. The first two
which are non-trivial are

ζ(1) =
1

2
u2

1 dx1 − cosudx2

ζ(3) =

(
1

4
u4

1 + u1u111

)
dx1 + u11 sinudx2 . ♣

We now state the following

Theorem 17.1 Assume that the system of partial differential equations (7)
is invariant under the vector field Z̄. Let ζ be a conserved current of (7).
Then LZ̄ζ is also a conserved current of (7). Since

d(js∗ζ) = 0

is a conservation law, it follows that

d(js∗LZ̄ζ) = 0

is also a conservation law of (7).

Proof. First we note that

d(js∗(·)) = js∗(d(·)).
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Let ζ be a conservation law. Since solutions s : M → N are mapped into
solutions by the Lie transformation group which is generated by Z̄, we
obtain

(j exp(εZ̄)s)∗dζ = 0.

Owing to the identity

d

dε
(j exp(εZ̄)s)∗ζ ≡ (j exp(εZ̄)s)∗LZ̄ζ

we find

0 =
d

dε
(j exp(εZ̄)s)∗dζ = (j exp(εZ̄)s)∗d(LZ̄ζ).

In the last step we used the fact that the Lie derivative and the exterior
derivative commute. Setting ε = 0 it follows that

(js)∗d(LZ̄ζ) = 0

which completes the proof. ♠

We give two examples to illustrate this theorem.

Example. Consider the one-dimensional linear diffusion equation

∂u

∂x2
=
∂2u

∂x2
1

where we set u1 = u. Consequently the submanifold is given by

F ≡ u2 − u11 = 0.

This diffusion equation admits the vertical vector field

ZV = (x1u1 + 2x2u2)
∂

∂u
.

Let D1 and D2 be the total derivative vector fields. The vector field ZV is
associated with the (x1, x2)-scale change. We find that

LV̄ F = 2F + x1(D1F ) + x2(D2F ).

A conserved current of the diffusion equation can be given at once, namely

ζ = udx1 + u1dx2

since
(js)∗dζ = 0
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is the diffusion equation. Straightforward calculation shows that

LZ̄V
ζ = (x1u1 + 2x2u2)dx1 + (u1 + x1u11 + 2x2u12)dx2

where Z̄V is the prolonged vertical vector field. According to the theorem
the conservation law follows from js∗d(LZ̄ζ) = 0. Repeated application of
Z̄V leads to a hierarchy of conservation laws. ♣

Example. Consider the nonlinear diffusion equation

∂u

∂x2
=

(
∂u

∂x1

)2

+
∂2u

∂x2
1

.

Since n = 1 we set u1 = u. The submanifold is given by

F ≡ u2 − u2
1 − u11 = 0.

A conserved current is given by

ζ = x1e
udx1 + (x1u1e

u − eu)dx2

and js∗dζ = 0, where

dζ = x1e
udu∧dx1+x1e

udu1∧dx2+u1e
udx1∧dx2+x1u1e

udu∧dx2−eudu∧dx2.

The nonlinear equation admits the vertical vector field

ZV = (x1u1 + 2x2u2)
∂

∂u
.

Again js∗d(LZ̄V
ζ) = 0 is a conservation law. ♣

17.3 Cartan Fundamental Form

A version of Noether’s theorem appropriate in the context of the Hamilton-
Cartan formalism is given where Cartan’s fundamental form plays a central
role. We study conservation laws for which we let L be a first order La-
grangian

L : J1(E) → R.

Definition 17.10 The Cartan fundamental form associated with L is
the m-form defined in local coordinates by

Θ :=


L −

n∑

j=1

m∑

i=1

∂L
∂uj,i

uj,i


ω +

n∑

j=1

m∑

i=1

∂L
∂uj,i

duj ∧
(
∂

∂xi
ω

)

where ω = dx1 ∧ · · · ∧ dxm.
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We now show that the exterior differential system Σ1 generated by {ZV dΘ},
is equivalent to the Euler-Lagrange equation for L. Here ZV denotes
the vertical Lie symmetry vector fields on J1(E). Let

ZV =

n∑

l=1

ξl(x,u)
∂

∂ul

where x = (x1, . . . , xm) and u = (u1, . . . , un). The Euler-Lagrange
equation is then given by

js∗(ZV dΘ) = 0.

From Θ we obtain

dΘ =


d


L−

n∑

j=1

m∑

i=1

∂L
∂uj,i

uj,i




ω +

n∑

j=1

m∑

i=1

d

(
∂L
∂uj,i

)
duj ∧

(
∂

∂xi
ω

)

=

(
n∑

k=1

∂L
∂uk

duk +

n∑

k=1

m∑

l=1

∂L
∂uk,l

duk,l

)
∧ ω

−




n∑

j=1

m∑

i=1

(
n∑

k=1

∂2L
∂uk∂uj,i

duk +

n∑

k=1

m∑

l=1

∂2L
∂uk,l∂uj,i

duk,l

)
uj,i


ω

−




n∑

j=1

m∑

i=1

∂L
∂uj,i

duj,i


 ∧ ω +

n∑

j=1

m∑

i=1

(
n∑

k=1

∂2L
∂uk∂uj,i

duk

+

n∑

k=1

m∑

l=1

∂2L
∂uj,i∂uk,l

duk,l

)
∧ duj ∧

(
∂

∂xi
ω

)
.

It then follows that

ZV dΘ =




n∑

k=1

n∑

l=1

∂L
∂uk

ξlδlk −
n∑

j=1

m∑

i=1

(
uj,i

n∑

k=1

∂2L
∂uk∂uj,i

n∑

l=1

δlkξl

)
ω

+
n∑

j=1

m∑

i=1

(
n∑

k=1

∂2L
∂uk∂uj,i

n∑

l=1

δlkξl

)
duj ∧

(
∂

∂xi
ω

)

−
n∑

j=1

m∑

i=1

(
n∑

k=1

∂2L
∂uk∂uj,i

duk

)
∧
(

n∑

l=1

δljξl

)
∧
(
∂

∂xi
ω

)

−
n∑

j=1

m∑

i=1

n∑

l=1

δljξl

(
n∑

k=1

m∑

p=1

∂2L
∂uj,i∂uk,p

duk,p

)
∧
(
∂

∂xi
ω

)



17.3. Cartan Fundamental Form 293

=




n∑

k=1

ξk


 ∂L
∂uk

−
n∑

j=1

m∑

i=1

∂2L
∂uk∂uj,i

uj,i




ω

+

n∑

k=1

ξk




n∑

j=1

m∑

i=1

∂2L
∂uk∂uj,i

duj ∧
(
∂

∂xi
ω

)


−
n∑

j=1

ξj

(
n∑

k=1

m∑

i=1

∂2L
∂uk∂uj,i

duk ∧
(
∂

∂xi
ω

))

−
n∑

j=1

ξj

(
n∑

i=1

n∑

k=1

m∑

l=1

∂2L
∂uj,i∂uk,l

duk,l ∧
(
∂

∂xi
ω

))

where we have used the identity (α : r-form)

ZV (α ∧ β) ≡ (ZV α) ∧ β + (−1)rα ∧ (ZV β).

From js∗(ZV dΘ) = 0 we obtain

0 =

n∑

k=1

ξk


 ∂L
∂uk

−
n∑

j=1

m∑

i=1

∂2L
∂uk∂uj,i

∂uj
∂xi


ω

+

n∑

k=1

ξk




n∑

j=1

m∑

i=1

∂2L
∂uk∂uj,i

∂uj
∂xi

dxi ∧
(
∂

∂xi
ω

)


−
n∑

j=1

ξj

(
n∑

k=1

m∑

i=1

∂2L
∂uk∂uj,i

∂uk
∂xi

dxi ∧
(
∂

∂xi
ω

))

−
n∑

j=1

ξj

(
m∑

i=1

n∑

k=1

m∑

l=1

∂2L
∂uj,i∂uk,l

∂2uk
∂xi∂xl

)
dxi ∧

(
∂

∂xi
ω

)

and it follows that

0 =




n∑

k=1

ξk


 ∂L
∂uk

−
n∑

j=1

m∑

i=1

∂2L
∂uk∂uj,i

∂uj
∂xi




+
n∑

k=1

ξk




n∑

j=1

m∑

i=1

∂2L
∂uk∂uj,i

∂uj
∂xi




−
n∑

j=1

ξj

(
n∑

k=1

m∑

i=1

∂2L
∂uk∂uj,i

∂uk
∂xi

)
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−
n∑

j=1

ξj

(
m∑

i=1

n∑

k=1

m∑

l=1

∂2L
∂uj,i∂uk,l

∂2uk
∂xi∂xl

)
ω .

Finally

0 =

n∑

k=1

ξk


 ∂L
∂uk

−
n∑

j=1

m∑

i=1

∂2L
∂uj∂uk,i

∂uj
∂xi

−
n∑

j=1

m∑

i=1

m∑

l=1

∂2L
∂uk,i∂uj,l

∂2uj
∂xi∂xl


 .

Consequently, the Euler-Lagrange equation follows

∂L
∂uk

−
n∑

j=1

m∑

i=1

∂2L
∂uj∂uk,i

∂uj
∂xi

−
n∑

j=1

m∑

i=1

m∑

l=1

∂2L
∂uk,i∂uj,l

∂2uj
∂xi∂xl

= 0

where k = 1, . . . , n.

Definition 17.11 L is called regular if the mn×mn matrix

∂2L
∂uj,i∂uk,l

is non-singular.

We assume here that L is regular.

Example. Consider the sine-Gordon equation

∂2u

∂x1∂x2
= sinu.

Here n = 1 and m = 2 and we have put u1 = u. The sine-Gordon equation
has the Lagrangian

L =
1

2
u1u2 − cosu.

From the Euler-Lagrange equation we obtain

∂L
∂u

−
2∑

i=1

∂2L
∂u∂ui

∂u

∂xi
−

2∑

i=1

2∑

l=1

∂2L
∂ui∂ul

∂2u

∂xi∂xl
= 0

so that the sine-Gordon equation follows. The Cartan fundamental form
for the sine-Gordon equation is given by

Θ =

(
L− ∂L

∂u1
u1 −

∂L
∂u2

u2

)
dx1 ∧ dx2 +

∂L
∂u1

du ∧ dx2 +
∂L
∂u2

du ∧ dx1
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or inserting L

Θ =

(
−1

2
u1u2 − cosu1

)
dx1 ∧ dx2 +

1

2
u2du ∧ dx2 +

1

2
u1du ∧ dx1. ♣

Theorem 17.2 If ζ is a higher-order conserved current for Σ1 then there
is a vector field Z in the Lie algebra L and a trivial conserved current ζT
such that

dζ ≡ Z dΘ + dζT mod π∗
l Ω

l
(m)

for some integer l. The vector field Z satisfies

LZΘ ≡ dχ mod π∗
l Ω

l
(m)

where χ is the (m− 1)-form defined by

χ := ζT + Z Θ.

In addition, Z is a symmetry vector field of Σ∞.

This theorem is the analogue of the converse of the usual Noether theorem
which associates a conserved current to each infinitesimal symmetry of the
Cartan form. The proof of the theorem is left as an exercise.

For higher-order conserved currents we have the following formulation of
Noether’s theorem.

Theorem 17.3 If Z is a vector field in the Lie algebra L and there is an
(m− 1)-form χ such that

LZΘ ≡ dχ mod π∗
l Ω

l
(m)

for some integer l, then the (m− 1)-form ζ defined by

ζ := χ− Z Θ

is a higher-order conserved current for Σ1.

Proof. Obviously
dζ = dχ− d(Z Θ)

so that
dζ ≡ LZΘ − d(Z Θ) mod π∗

l Ω
l
(m)

by the hypothesis. Since

LZΘ = Z dΘ + d(Z Θ)
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we obtain
dζ ≡ Z dΘ mod π∗

l Ω
l
(m).

Consequently dζ ∈ π∗
l Σ

l. ♠

A vector field that satisfies the hypothesis of the above theorem is called
an infinitesimal Noether symmetry.

Example. Consider the following nonlinear Dirac equation that consists
of a system of eight coupled partial differential equations

λ
∂v4
∂x1

+ λ
∂v1
∂x4

+ u1[1 + λεK] = 0

λ
∂v3
∂x1

+ λ
∂v2
∂x4

+ u2[1 + λεK] = 0

−λ ∂v2
∂x1

− λ
∂v3
∂x4

+ u3[1 + λεK] = 0

−λ ∂v1
∂x1

− λ
∂v4
∂x4

+ u4[1 + λεK] = 0

−λ∂u4

∂x1
− λ

∂u1

∂x4
+ v1[1 + λεK] = 0

−λ∂u3

∂x1
− λ

∂u2

∂x4
+ v2[1 + λεK] = 0

λ
∂u2

∂x1
+ λ

∂u3

∂x4
+ v3[1 + λεK] = 0

λ
∂u1

∂x1
+ λ

∂u4

∂x4
+ v4[1 + λεK] = 0

where

K(u,v) ≡
2∑

j=1

(u2
j + v2

j ) −
4∑

j=3

(u2
j + v2

j )

and ui = ui(x1, x4), vi = vi(x1, x4) with u = (u1, u2, u3, u4) and v =
(v1, v2, v3, v4). This system is obtained from the nonlinear Dirac equation
of the form

λ
∂

∂x1
(γ1ψ) − λi

∂

∂x4
(γ4ψ) + ψ(1 + λεψ̄ψ) = 0

where we consider the case with one space dimension x1 and x4 ≡ ct (t is
time and c speed of light). λ := h̄/m0c where m0 > 0 is the rest mass and
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ε is a real parameter (coupling constant). ψ = (ψ1, ψ2, ψ3, ψ4)
T (T means

transpose), ψ̄ ≡ (ψ∗
1 , ψ

∗
2 ,−ψ∗

3 ,−ψ∗
4) and γ1 and γ4 are the following 4 × 4

matrices

γ1 =




0 0 0 −i
0 0 −i 0
0 i 0 0
i 0 0 0


 , γ4 =




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


 .

Now we have to put ψj(x) ≡ uj(x) + ivj(x) where j = 1, . . . , 4 and x =
(x1, . . . , x4). u and v are real fields. This leads to the system. In the jet
bundle formalism we have

F1(u1, . . . , v4, u1,1, . . . , v4,4) ≡ λ(v4,1 + v1,4) + u1(1 + λεK) = 0

F2(u1, . . . , v4, u1,1, . . . , v4,4) ≡ λ(v3,1 + v2,4) + u2(1 + λεK) = 0

F3(u1, . . . , v4, u1,1, . . . , v4,4) ≡ λ(−v2,1 − v3,4) + u3(1 + λεK) = 0

F4(u1, . . . , v4, u1,1, . . . , v4,4) ≡ λ(−v1,1 − v4,4) + u4(1 + λεK) = 0

F5(u1, . . . , v4, u1,1, . . . , v4,4) ≡ λ(−u4,1 − u1,4) + v1(1 + λεK) = 0

F6(u1, . . . , v4, u1,1, . . . , v4,4) ≡ λ(−u3,1 − u2,4) + v2(1 + λεK) = 0

F7(u1, . . . , v4, u1,1, . . . , v4,4) ≡ λ(u2,1 + u3,4) + v3(1 + λεK) = 0

F8(u1, . . . , v4, u1,1, . . . , v4,4) ≡ λ(u1,1 + v4,4) + v4(1 + λεK = 0

with the contact forms

αi ≡ dui − ui,1dx1 − ui,4dx4, βi ≡ dvi − vi,1dx1 − vi,4dx4

where i = 1, . . . , 4. We consider the Lie symmetry vector fields

Z =

4∑

k=1

(
uk

∂

∂vk
− vk

∂

∂uk

)

X =
∂

∂x1
, T =

∂

∂x4

as well as the vertical vector fields

U = −
4∑

i=1

(
ui1

∂

∂ui
+ vi1

∂

∂vi

)
, V = −

4∑

i=1

(
ui2

∂

∂ui
+ vi2

∂

∂vi

)
.
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We now calculate the conservation laws which are associated with the sym-
metries described by the vector fields given above. For the system the
Lagrangian density L takes the form

L= λ(−u4v1,1 + v4u1,1 − u3v2,1 + v3u2,1−u2v3,1 + v2u3,1−u1v4,1 + v1u4,1

−u1v1,4 + v1u1,4 − u2v2,4 + v2u2,4 − u3v3,4 + v3u3,4 − u4v4,4 + v4u4,4)

−K(1 + λεK).

First we calculate the Cartan fundamental form. We obtain
(
L−

4∑

j=1

(
∂L
∂uj,1

uj,1 +
∂L
∂uj,4

uj,4 +
∂L
∂vj,1

vj,1 +
∂L
∂vj,4

vj,4

))
= −K(1+λεK)

and

4∑

j=1

(
∂L
∂uj,1

duj ∧ dx4 −
∂L
∂uj,4

duj ∧ dx1 +
∂L
∂vj,1

dvj ∧ dx4 −
∂L
∂vj,4

dvj ∧ dx1

)

= λ(v4du1 ∧ dx4 + v3du2 ∧ dx4 + v2du3 ∧ dx4 + v1du4 ∧ dx4

− v1du1 ∧ dx1 − v2du2 ∧ dx1 − v3du3 ∧ dx1 − v4du4 ∧ dx1

−u4dv1 ∧ dx4 − u3dv2 ∧ dx4 − u2dv3 ∧ dx4 − u1dv4 ∧ dx4

−u1dv1 ∧ dx1 + u2dv2 ∧ dx1 + u3dv3 ∧ dx1 + u4dv4 ∧ dx1).

Consequently Θ is given by the two-form

Θ =−K(1 + λεK)dx1 ∧ dx4 + λ(v4du1 − u4dv1 + v3du2

−u3dv2 + v2du3 − u2dv3 + v1du4 − u1dv4) ∧ dx4

+λ




4∑

j=1

(ujdvj − vjduj)


 ∧ dx1.

Since

LXΘ = 0, LTΘ = 0, LZΘ = 0

we find that χ = 0. The conserved currents are thus given by

X Θ = −K(1 + λεK)dx4 − λ
4∑

i=1

(uidvi − vidui)

T Θ = K(1 + λεK)dx1 − λ

4∑

i=1

(v5−idui − u5−idvi)
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Z Θ = −2λ(u1u4 + u2u3 + v1v4 + v2v3)dx4 + λ

(
4∑

i=1

(u2
i + v2

1)

)
dx1.

It follows that

−js∗(X Θ) =

[
λ

4∑

i=1

(
ui
∂vi
∂x4

− vi
∂ui
∂x4

)]
dx1

+

[
λ

4∑

i=1

(
ui
∂vi
∂x4

− vi
∂ui
∂x4

)
+K(1 + λεK)

]
dx4

−js∗(T Θ) =

[
λ

4∑

i=1

(
v5−i

∂ui
∂x1

− u5−i
∂vi
∂x1

)
−K(1 + λεK)

]
dx1

+

[
λ

4∑

i=1

(
v5−i

∂ui
∂x4

− u5−i
∂vi
∂x4

)]
dx4

and

−js∗(Z Θ) = −λ
[

4∑

i=1

(u2
i + v2

i )

]
dx1+2λ [u1u4 + u2u3 + v1v4 + v2v3] dx4.

We are interested in solutions ui, vi (i = 1, 2, 3, 4) which vanish at infinity,
i.e., we are looking for localized solutions. Then we have

d

dx4

∫ +∞

−∞

4∑

i=1

(
ui
∂vi
∂x4

− vi
∂ui
∂x4

)
dx1 = 0

d

dx4

∫ +∞

−∞

[
λ

4∑

i=1

(
v5−i

∂ui
∂x1

− u5−i
∂vi
dx1

)
−K(1 + λεK)

]
dx1 = 0

d

dx4

∫ +∞

−∞

[
4∑

i=1

(u2
i + v2

i )

]
dx1 = 0.

We now find conserved currents with the help of the vector fields U and V .
By straightforward calculation we find

LUΘ =

4∑

i=1

ui,1

[
∂

∂ui
(K(1 + λεK))

]
dx1 ∧ dx4

+

4∑

i=1

vi,1

[
∂

∂vi
(K(1 + λεK))

]
dx1 ∧ dx4
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+λ

4∑

i=1

(vidui,1 ∧ dx1 − ui,1dvi ∧ dx1)

+λ

4∑

i=1

(ui,1dv5−i ∧ dx4 − v5−idui,1 ∧ dx4)

+λ

4∑

i=1

(−ui,1dvi,1 ∧ dx1 + vi,1dui ∧ dx1)

+λ

4∑

i=1

(−vi,1du5−i ∧ dx4 + u5−idvi,1 ∧ dx4).

Owing to
4∑

i=1

(
∂

∂ui
K(1 + λεK)

)
αi ∧ dx4 ≡

d(K(1 + λεK)dx4) −
4∑

i=1

ui,1

(
∂

∂ui
K(1 + λεK)

)
dx1 ∧ dx4

and the identities

ui,1dx1 ≡−αi + dui − ui,4dx4

dui,1 ∧ dx1 ≡−dαi − dui,4 ∧ dx4

dui ∧ dx1 ≡ αi ∧ dx1 − ui,4dx1 ∧ dx4

and so on, we obtain

LUθ = dχ mod (contact forms αi, βi)

where

χ=K(1 + λεK)dx4 +

4∑

i=1

((viui,1 − uivi,1)dx1 + (u5−ivi,1 − v5−iui,1)dx4)

+λ

4∑

i=1

(uidvi − vidui).

The conserved current is given by χ − U θ and we find the result given
above. ♣

Example. Consider the nonlinear wave equation

∂2u

∂x2
1

+
∂2u

∂x2
2

+
∂2u

∂x2
3

− ∂2u

∂x2
4

= u3.
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The Lagrangian for this nonlinear wave equation is given by

L =
1

2
(−u2

1 − u2
2 − u2

3 + u2
4) −

1

4
u4

so that the Cartan fundamental form is

Θ =

(
−1

2

(
u2

1 + u2
2 + u2

3 − u2
4

)
+

1

4
u4

)
ω

+u1du ∧ dx2 ∧ dx3 ∧ dx4 − u2du ∧ dx1 ∧ dx3 ∧ dx4

+u3du ∧ dx1 ∧ dx2 ∧ dx4 + u4du ∧ dx1 ∧ dx2 ∧ dx3.

Here we have one dependent variable, where we have put u1 = u, and four
independent variables (x1, . . . , x4). ω = dx1 ∧ . . .∧ dx4 is the volume form.
As an example we calculate the conserved currents associated with the Lie
symmetry vector field

T =
∂

∂x4
.

We find that
LTΘ = 0

so that χ = 0. A conserved current is thus given by

∂

∂x4
Θ =

(
1

2
(u2

1 + u2
2 + u2

3 − u2
4) +

1

4
u4

)
dx1 ∧ dx2 ∧ dx3

−u1du ∧ dx2 ∧ dx3 + u2du ∧ dx1 ∧ dx3 + u3du1 ∧ dx1 ∧ dx2. ♣

Example. Let us again consider the nonlinear Dirac equation. We show
that the conserved current

Z Θ = −2λ(u1u4 + u2u3 + v1v4 + v2v3)dx4 + λ

(
4∑

i=1

(u2
i + v2

1)

)
dx1

can be derived by the use of exterior differential systems. We make the
ansatz

ζ = f1(u,v)dx1 + f2(u,v)dx4

where f1 and f2 are smooth functions. Let

J ≡ 〈F1, . . . , F8, dF1, . . . , dF8, α1, . . . , β4, dα1, . . . , dβ4〉

denote the ideal generated by F1, . . . , dβ4. We recall that the condition for
obtaining the conservation laws is as follows: If

dζ ∈ 〈F1, . . . , F8, dF1, . . . , dF8, α1, . . . , β4, dα1, . . . , dβ4〉,
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then (js)∗(dζ) = 0. We construct a convenient two-form which is an ele-
ment of the ideal generated by F1, . . . , dβ4. Let

σ1 = β1 ∧ dx1 − β4 ∧ dx4, σ2 = β2 ∧ dx1 − β3 ∧ dx4

σ3 = −β3 ∧ dx1 + β2 ∧ dx4, σ4 = −β4 ∧ dx1 + β1 ∧ dx4

σ5 = −α1 ∧ dx1 + α4 ∧ dx4, σ6 = −α2 ∧ dx1 + α3 ∧ dx4

σ7 = α3 ∧ dx1 − α2 ∧ dx4, σ8 = α4 ∧ dx1 − α1 ∧ dx4.

It is obvious that the two-forms σi (i = 1, . . . , 8) are elements of the ideal.
Since both f1 and f2 do not depend on uj,i and vj,i, we have to eliminate
the terms which contain uj,i and vj,i. Therefore we consider the two-forms

τj ≡ λσj − Fjdx1 ∧ dx4

which are elements of the ideal. We find

τ1 = λ(dv1 ∧ dx1 − dv4 ∧ dx4) − u1(1 + λεK)dx1 ∧ dx4

τ2 = λ(dv2 ∧ dx1 − dv3 ∧ dx4) − u2(1 + λεK)dx1 ∧ dx4

τ3 = λ(−dv3 ∧ dx1 + dv2 ∧ dx4) − u3(1 + λεK)dx1 ∧ dx4

τ4 = λ(−dv4 ∧ dx1 + dv1 ∧ dx4) − u4(1 + λεK)dx1 ∧ dx4

τ5 = λ(−du1 ∧ dx1 + du4 ∧ dx4) − v1(1 + λεK)dx1 ∧ dx4

τ6 = λ(−du2 ∧ dx1 + du3 ∧ dx4) − v2(1 + λεK)dx1 ∧ dx4

τ7 = λ(du3 ∧ dx1 − du2 ∧ dx4) − v3(1 + λεK)dx1 ∧ dx4

τ8 = λ(du4 ∧ dx1 − du1 ∧ dx4) − v4(1 + λεK)dx1 ∧ dx4.

We note that the conditions

js∗τj = 0

(j = 1, . . . , 8) lead to the given nonlinear Dirac equation.

We consider now the two-form

τ = λ(v1τ1 + v2τ2 − v3τ3 − v4τ4 − u1τ5 − u2τ6 + u3τ7 + u4τ8)

which is again an element of the ideal. It follows that

τ = 2λ

(
4∑

i=1

(vidvi + uidui) ∧ dx1

)

+ 2λ


−

4∑

j=1

(vjdv5−j + ujdu5−j)


 ∧ dx4.
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Now the two-form τ can be represented as the exterior derivative of the
one-form ζ, i.e., τ = dζ where

f1(u,v) = λ

4∑

i=1

(u2
i + v2

i ),

f2(u,v) =−2λ(u1u4 + u2u3 + v1v4 + v2v3)

and the conserved current follows. ♣

The Cartan fundamental form Θ for the given nonlinear Dirac equation can
be expressed with the help of the two-forms τi (i = 1, . . . , 8), namely

Θ = −u1τ1 − u2τ2 + u3τ3 + u4τ4 − v1τ5 − v2τ6 + v3τ7 + v4τ8.

It follows that Θ ∈ 〈F1, . . . , dβ4〉, but dΘ 6= 0 and therefore Θ cannot be ob-
tained as the exterior derivative of a one-form. For field equations which can
be derived from a Lagrangian density it is obvious that Θ ∈ 〈F1, . . . , dβ4〉.

Example. Thus far we have derived the conserved current for the nonlin-
ear Dirac equation by applying two approaches. In the first approach we
have taken into account the Cartan fundamental form Θ which contains
the Lagrangian density and the Lie symmetry vector field Z. In the second
approach we have only considered the differential forms which are equiva-
lent to the nonlinear Dirac equation. Now we describe a third approach for
obtaining the conserved current, where we take into account the Lie sym-
metry vector field Z and the differential forms which are equivalent to the
nonlinear Dirac equation. Hence we consider the differential forms given
by τ1, . . . , τ8. We consider the two-form

α =

8∑

j=1

hj(u, v)τj

where the two-forms τj are given above. hj are smooth functions. Let Z
be the symmetry generator given above and let J be the ideal given above.
If Z dα ∈ J , then taking into account LZ(J) ⊂ J and the definition of
the Lie derivative

LZα := Z dα+ d(Z α)

it follows that the one-form Z α is a conserved current since d(Z χ) ∈ J .
Now we have to determine the unknown functions hj(u,v) with the help
of the equation Z dα ∈ J . The condition gives the solution

h1(u,v) = u1, h2(u,v) = u2, h3(u,v) = −u3, h4(u,v) = −u4

h5(u,v) = v1, h6(u,v) = v2, h7(u,v) = −v3, h8(u,v) = v4.

Consequently, we find α = Θ, where Θ is the Cartan fundamental form. ♣
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17.4 String Theory and Invariants

String theory considers 2-dimensional surfaces in d-dimensional Minkowski
space called the world sheet of strings. As a string propagates through
space-time, it describes a surface in space-time which is called its world
sheet. The action I is proportional to an area of the world sheet. This
is the simplest generalization of the mechanics of relativistic particles with
action, proportional to the length of the world line.

One considers a fixed background pseudo-Riemannian space-time manifold
M of dimensionD, with coordinatesX = (Xµ) and µ = 0, 1, . . . , D−1. The
metric is Gµν and we take the signature to be mostly plus, i.e. (−, (+)D−1).
In Minkowski space we have D = 4 and (−,+,+,+). The motion of a
relativistic string in M is described by its generalized world line, a two-
dimensional surface Σ, which is called the world-sheet. For a single non-
interacting string the world-sheet has the form of an infinite strip. We
introduce coordinates σ = (σ0, σ1) on the world-sheet. Sometimes one also
write σ0 = τ and σ1 = σ. The embedding of the world-sheet into space-time
is given by the maps

X : Σ →M : σ → X(σ) .

The background metric induces a metric on the world-sheet

Gαβ =
∂Xµ

∂σα
∂Xν

∂σβ
Gµν summation convention

where α, β = 0, 1 are the world-sheet indices. The induced metric is to be
distinguished from the intrinsic metric hαβ on Σ. An intrinsic metric is
used as an auxiliary field in the Polyakov formulation of the bosonic string.

The above setting can be viewed from two perspectives. In the space-time
perspective we interpret the system as a relativistic string moving in the
space-time M . Alternatively we may view it as a two-dimensional field
theory living on the world sheet, with fields X which take values in the
target-space M . This is the world-sheet perspective, which enables us to
use methods of the two-dimensional field theory for the study of strings.

The natral action for a relativistic string is its area, measured with the
induced metric

SNG =
1

2πα′

∫

Σ

dσ0dσ1| detGαβ |1/2 .

This is the Nambu-Goto action. The prefactor (2πα′)−1 is the energy per
length or tension of the string, which is the fundamental parameter of
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the theory. The Nambu-Goto action has a direct geometric meaning but
contains a square root. One prefers to use the Polyakov action, which is
equivalent to the Nambu-Goto action, but is a standard two-dimensional
field theory action. For this action one introduces an intrinsic metric on
the world-sheet, hαβ(σ). The action takes the form of a nonlinear sigma
model on the world-sheet

SP =
1

4πα′

∫

Σ

dσ0dσ1
√
hhαβ

∂Xµ

∂σα
∂Xν

∂σβ
Gµν(X)

where h := | dethαβ| and hαβ is the inverse of hαβ .

The AdS/CFT correspondence is one of the most significant results that
string theory has produced. The AdS/CFT is the equivalence between a
string theory or supergravity defined on some sort of anti de Sitter space
(AdS) and a conformal field theory (CFT) defined on its conformal bound-
ary whose dimension is lower by one. This means it refers to the existence
of amazing dualities between theories with gravity and theories without
gravity, and is also sometimes referred to as the gauge theory-gravity cor-
respondence. The prototype example of such a correspondence is the exact
equivalence between type IIB string theory compactified on AdS5×S5, and
four-dimensional N = 4 supersymmetric Yang-Mills theory. The abbrevia-
tion AdS5 refers to an Anti-de Sitter space in five dimensions, S5 refers to
a five-dimensional sphere

S5 = { (X1, X2, . . . , X6) : X2
1 +X2

2 + · · · +X2
6 = 1 } .

Anti-de Sitter spaces are maximally symmetric solutions of the Einstein
equations with a negative cosmological constant. The large symmetry group
of 5d anti-de Sitter space matches precisely with the group of conformal
symmetries of the N = 4 super Yang-Mills theory, which for a long time
has been known to be conformally invariant. The term AdS/CFT corre-
spondence has its origin in this particular example. Since then, many other
examples of gauge theory/gravity dualities have been found.

Interesting integrable dynamical systems can be derived from this corre-
spondence [39]. Consider the bosonic part of the classical closed string
propagating in the AdS5 × S5 space time. The two metrics have the stan-
dard form in terms of the 5 + 5 angular coordinates

(ds2)AdS5 = − cosh2 ρdt2 + dρ2 + sinh2 ρ(dθ2 + sin2 θdφ2 + cos2 θdϕ2)

(ds2)S5 = dγ2 + cos2 γdϕ2
3 + sin2 γ(dψ2 + cos2 ψdϕ2

1 + sin2 ψdϕ2
2) .
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Consider the Lie groups O(6) and SO(4, 2) We represent the bosonic part
of the sigma model action as an action for the O(6)×SO(4, 2) sigma-model

I =

√
λ

2π

∫
dτdσ(LS + LAdS),

√
λ ≡ R2

α′

where the Lagrangians are

LS = −1

2

6∑

M=1

1∑

α=0

∂αXM∂
αXM +

1

2
Λ

6∑

M=1

(XMXM − 1)

LAdS = −1

2

5∑

M=0

5∑

N=0

1∑

α=0

ηMN∂αYM∂
αYN +

1

2
Λ̃

5∑

M=0

5∑

N=0

(ηMNYMYN + 1) .

Here XM , M = 1, 2, . . . , 6 and YM , M = 0, 1, . . . , 5 are the embedding
coordinates of R6 with the Euclidean metric in LS and with

ηMN = (−1,+1,+1,+1,+1,−1)

in LAdS, respectively. Λ and Λ̃ are the Lagrange multipliers. The world-
sheet coordinates are σα, α = 0, 1 with (σ0, σ1) = (τ, σ) and the world-
sheet metric is diag(−1, 1). The action is to be supplemented with the
usual conformal gauge constraints. The embedding coordinates are related
to the angular ones as follows

X1 + iX2 = sin γ cosψeiϕ1 , X3 + iX4 = sin γ sinψeiϕ2

X5 + iX6 = cos γeiϕ3

Y1 + iY2 = sinh ρ sin θeiφ, Y3 + iY4 = sinh ρ cos θeiϕ

Y5 + iY0 = cosh ρeit .

When the string is located at the centre of AdS5 and rotating in S5, i.e., is
trivially embedded in AdS5 as Y5 + iY0 = eiκτ with Y1 = Y2 = Y3 = Y4 = 0.
The S5 metric has three translational isometries in ϕi which give rise to
three global commuting integrals of motion (spins) Ji. When we consider
period motion with three Ji non-zero, we choose the following ansatz for
XM

X1 + iX2 = x1(σ)eiw1τ , X3 + iX4 = x2(σ)eiw2τ , X5 + iX6 = x3(σ)eiw3τ

where the real radial functions xi are independent of time and should, as a
consequence of the condition X2

M = 1, lie on a 2-sphere S2,

3∑

j=1

x2
j = 1 .
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Then the spins J1 = J12, J2 = J34, J3 = J56 forming a Cartan subalgebra
of the Lie algebra so(6) are

Ji =
√
λwi

∫ 2π

0

dσ

2π
x2
i (σ) .

Substituting the ansatz for X1 + iX2, X3 + iX4 and X5 + iX6 into the
Lagrangian LS we find the Lagrange function of a one-dimensional system

L(x′,x) =
1

2

3∑

i=1

(x′2i − w2
i x

2
i ) +

1

2
Λ

3∑

i=1

(x2
i − 1) .

It describes an n = 3 harmonic oscillator constrained to remain on a unit
n − 1 = 2 sphere. This is the special case of the n-dimensional Neumann
dynamical system which is know to be integrable. Solving the equation
of motion for the Lagrange multiplier Λ we obtain the nonlinear sytem of
ordinary differential equations

x′′j = −w2
jxj − xj

3∑

k=1

(x′2k − w2
kx

2
k), j = 1, 2, 3 .

The canonical momenta conjugate to xj are

πj = x′j ,

3∑

j=1

πjxj = 0 .

The n-dimensional Neumann system has the following n first integrals

Fj = x2
j +

∑

k 6=j

(xjπk − xkπj)
2

w2
j − w2

k

,

n∑

j=1

Fj = 1

where n = 3 for the present case.

17.5 Computer Algebra Applications

We show that the sine-Gordon equation

∂2u

∂x1∂x2
= sin(u)

admits the conservation law

∂

∂x2

1

2

(
∂u

∂x1

)2

+
∂

∂x1
cos(u) = 0.
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// conservation.cpp

#include <iostream>

#include "symbolicc++.h"

using namespace std;

int main(void)

{

Symbolic u("u"), x1("x1"), x2("x2");

u = u[x1, x2];

Symbolic S = df(u,x2);

Symbolic X = df(u,x1);

Symbolic A = S[u==(df(u,x1)^2)/2,df(df(u,x1),x2)==sin(u)];

Symbolic B = X[u==cos(u),df(df(u,x1),x2)==sin(u)];

cout << "A = " << A << endl;

cout << "B = " << B << endl;

Symbolic CL = A + B;

cout << "CL = " << CL << endl;

return 0;

}

We show that the system of differential equations

d2u1

dt2
= ω

du2

dt
,

d2u2

dt2
= −ωdu1

dt

can be derived from the Lagrange function

L=
1

2
(u̇2

1 + u̇2
2) + ω(u1u̇2 − u̇1u2) + ω(u1u̇1 + u2u̇2) tan(ωt)

+
1

2
ω2(u2

1 + u2
2) sec2(ωt).

The system describes the two-dimensional motion of a charged particle in
a plane perpendicular to the direction of a constant magnetic field.

// lagrange.cpp

#include <iostream>

#include "symbolicc++.h"

using namespace std;
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int main(void)

{

Symbolic om("om"), t("t"), u1("u1"), u2("u2");

Symbolic u1d("u1d"), u2d("u2d"), u1dd("u1dd"), u2dd("u2dd");

Symbolic L = ((u1d^2) + (u2d^2))/2

+ om*(u1*u2d - u1d*u2)

+ om*(u1*u1d + u2*u2d)*tan(om*t)

+ (om^2)*((u1^2) + (u2^2))*(sec(om*t)^2)/2;

Symbolic LUD1 = df(L,u1d);

Symbolic res1 = df(LUD1,t)+u1d*df(LUD1,u1)+u1dd*df(LUD1,u1d)

-df(L,u1);

Symbolic LUD2 = df(L,u2d);

Symbolic res2 = df(LUD2,t)+u2d*df(LUD2,u2)+u2dd*df(LUD2,u2d)

-df(L,u2);

res1 = res1[(sec(om*t)^2)==1+(tan(om*t)^2)];

res2 = res2[(sec(om*t)^2)==1+(tan(om*t)^2)];

res1 = res1[(sin(om*t)^2)==1-(cos(om*t)^2)];

res2 = res2[(sin(om*t)^2)==1-(cos(om*t)^2)];

cout << "res1 = " << res1 << endl;

cout << "res2 = " << res2 << endl;

Symbolic v1("v1"), v2("v2");

Symbolic eq1 = res1[u1dd==df(v1[t],t,2),u2d==df(v2[t],t)];

Symbolic eq2 = res2[u2dd==df(v2[t],t,2),u1d==df(v1[t],t)];

cout << "eq1 = " << eq1 << endl;

cout << "eq2 = " << eq2 << endl;

return 0;

}
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17.6 Exercises

(1) Find a conservation law for the partial differential equation

∂u

∂t
= u

∂u

∂x
.

(2) Show that the u4 field equation in one-space dimension

∂2u

∂t2
− ∂2u

∂x2
= au+ bu3

can be derived from the Hamiltonian density

H(u, ∂u/∂t, ∂u/∂x) =
1

2

((
∂u

∂t

)2

+

(
∂u

∂x

)2

+
1

2
u2 +

1

4
bu4

)
.

(3) Show that the Carleman model admits a conservation law

∂u

∂t
+
∂u

∂x
=

1

ε
(v2 − u2)

∂v

∂t
− ∂v

∂x
=

1

ε
(u2 − v2) .

(4) Calculate the Killing vector fields for the anti-de Sitter metric tensor
field

g = − cosh2 ρdt⊗dt+dρ⊗dρ+sinh2 ρ(dθ⊗dθ+sin2 θdφ⊗dφ+cos2 θdϕ⊗ϕ).



Chapter 18

Symmetries and Painlevé
Test

18.1 Introduction

One of the most fundamental, important and fascinating problems in the
investigation of nonlinear dynamical systems is to find a general criterion
which describes integrability. The Painlevé test provides an approach for
the study of integrability (see Steeb and Euler [118]). The basic idea goes
back to Kowalevski [69]. In two celebrated papers she showed that the only
algebraic completely integrable systems among the rigid body motions are
Euler’s rigid body, Lagrange’s top and Kowalevski’s top. Painlevé and
coworkers determined whether or not equations of the form

d2w

dz2
= F (z, w, dw/dz)

exist, where F is rational in dw/dz, algebraic in w, and analytic in z, which
have their critical points (that is their branch points and essential singular-
ities) fixed Ince [61], Davis [24]. In this chapter we give examples of some
applications of the Painlevé test. In particular we are interested in the
connection between the Painlevé test and Lie symmetry vector fields. We
consider nonlinear ordinary and partial differential equations. The Painlevé
test for partial differemtial equations has been introduced by Weiss et al
[139] (see also Weiss [138]). A definition of the Painlevé property for partial
differential equations has been proposed by Ward [136], [137]. Of interest is
also the relation between the Painlevé test for a partial differential equation
and the ordinary differential equation obtained by a similarity reduction
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(group theoretical reduction). A large number of authors investigated the
Painlevé propertry for ordinary and partial differential equations (Steeb
and Euler [118], Steeb [113], Strampp [131]). The Painlevé test has been
applied to Nambu mechanics (Steeb and Euler [118]), Discrete Boltzmann
equations (Euler and Steeb [36], Energy level motion (Steeb and Euler
[114]), Inviscid Burgers’ equation (Steeb and Euler [114]) as well as a class
of scale invariant partial differential equations (Steeb and Euler [125]). For
more details on the Painlevé test for ordinary and partial differential equa-
tions see Steeb and Euler [118] and references therein. We also discuss the
different concepts of integrability in this chapter.

18.2 Ordinary Differential Equations

In classical mechanics (i.e., ordinary differential equations) the so-called
Painlevé test (also called singular point analysis) can serve in a certain
sense to decide between integrable and nonintegrable dynamical systems.
The differential equation is considered in the complex domain (complex
time-plane) and the structure of the singularities of the solution of the
ordinary differential equation is then studied.

Definition 18.1 A system of ordinary differential equations considered in
the complex domain is said to have the Painlevé property when every
solution is single valued, except at the fixed singularities of the coefficients.
This means that the Painlevé property requires that all its solutions be free
of moving critical points.

A necessary condition that an n-th order ordinary differential system of the
form

dw

dz
= g(w) (1)

where g is rational in w, pass the Painlevé test is that there is a Laurent
expansion

wk(z) = (z − z1)
m

∞∑

j=0

akj(z − z1)
j (2)

with n − 1 arbitrary expansion coefficients, besides the pole position z1
which is arbitrary. More than one branch may arise. In these sub-branches
the number of arbitrary expansion coefficients can be smaller than n− 1.

We demonstrate now with the help of an example how the Painlevé test is
performed.
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Example. The semiclassical Jaynes-Cummings model is given by

dS1

dt
= −S2,

dS2

dt
= S1 + S3E,

dS3

dt
= −S2E (3a)

d2E

dt2
+ µ2E = αS1. (3b)

Here t (time) is the independent variable. µ is the dimensionless parameter
given by µ = ω/ω0, and the coupling constant α = Nµ(2λ/ω0)

2. Time is
scaled with the atomic transition frequency ω0 and is therefore dimension-
less. S1, S2 and S3 are components of the Bloch vector and represent atomic
polarization and inversion, whereas the electric field E = −2(λ/ω0)A.
There is numerical evidence that the system shows chaotic behaviour for
certain parameter values and initial conditions.

To perform the Painlevé test we consider system (3) in the complex domain.
For the sake of simplicity we do not change our notation. First we look for
the dominant behaviour. Inserting the ansatz for the dominant behaviour

S1(t) ∝ S10(t− t1)
m1 , S2(t) ∝ S20(t− t1)

m2 , S3(t) ∝ S30(t− t1)
m3

E(t) ∝ E0(t− t1)
m4

into the system (3a) and (3b) we find that the dominant terms given by
the system

dS1

dt
= −S2,

dS2

dt
= S3E,

dS3

dt
= −S2E (4a)

d2E

dt2
= αS1 (4b)

where m1 = −3, m2 = −4, m3 = −4 and m4 = −1. For the expansion
coefficients we obtain

S10 =
8i

α
, S20 =

24i

α
, S30 = −24

α
, E0 = 4i.

From the dominant behaviour we conclude that the system of the dominant
terms (4a) and (4b) is scale invariant under

t→ ε−1t S1 → ε3S1 S2 → ε4S2 S3 → ε4S3 E → εE.

Next we determine the resonances. To find the resonances we insert the
ansatz

S1(t) = S10(t− t1)
−3 +A(t− t1)

−3+r
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S2(t) = S20(t− t1)
−4 +B(t− t1)

−4+r

S3(t) = S30(t− t1)
−4 + C(t− t1)

−4+r

E(t) = E0(t− t1)
−1 +D(t− t1)

−1+r

into the system with the dominant terms, where A, B, C ,D are arbitrary
constants. Taking into account terms linear in A, B, C, D we obtain

A(r − 3)(t− t1)
r−4 =−B(t− t1)

r−4

DS30(t− t1)
r−5 + CE0(t− t1)

r−5 =B(r − 4)(t− t1)
r−5

C(r − 4)(t− t1)
r−5 =−DS20(t− t1)

r−5 −BE0(t− t1)
r−5

D(r − 1)(r − 2)(t− t1)
r−3 = αA(t− t1)

r−3.

The above system can be written in matrix form




(r − 3) 1 0 0
0 −(r − 4) E0 S30

0 E0 (r − 4) S20

−α 0 0 (r − 1)(r − 2)






A
B
C
D


 =




0
0
0
0


 .

Let

Q(r) :=




(r − 3) 1 0 0
0 −(r − 4) E0 S30

0 E0 (r − 4) S20

−α 0 0 (r − 1)(r − 2)


 .

The resonances are the values of r such that detQ(r) = 0. It follows that

(r−3)[−(r−4)2(r−1)(r−2)−E2
0(r−1)(r−2)]−[−S20E0α+S30(r−4)α] = 0

so that the resonances are
{
−1, 4, 8,

3

2
± i

√
15

2

}
.

The Jaynes-Cummings model does not pass the Painlevé test since there
exist complex resonances. The Kowalevski exponents can be found from
the variational equation of system (4a) and (4b). We find that the reso-
nances and the Kowalevski exponents coincide. The two Kowalevski expo-
nents 4 and 8 can be related to first integrals of system (4a) and (4b). We
obtain

I1(S1, S2, S3, E) = S2
2 + S2

3

I2(S1, S2, S3, E) = αS3 − αS1E +
1

2

(
dE

dt

)2
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since

I1(ε
3S1, ε

4S2, ε
4S3, ε

1E) = ε8(S2
2 + S2

3)

I2(ε
3S1, ε

4S2, ε
4S3, ε

1E) = ε4

(
αS3 − αS1E +

1

2

(
dE

dt

)2
)
.

Using the first integrals for the dominant system (4a) and (4b) we find by
inspection that the first integrals for system (3a) and (3b) are given by

I1(S1, S2, S3, E) = S2
1 + S2

2 + S2
3

I2(S1, S2, S3, E) = αS3 − αS1E +
1

2
µ2E2 +

1

2

(
dE

dt

)2

.

From the Painlevé test we find that the system (3) admits a Laurent ex-
pansion of the form

S1(t) =
∞∑

j=0

S1j(t− t1)
j−3

S2(t) =

∞∑

j=0

S2j(t− t1)
j−4

S3(t) =

∞∑

j=0

S3j(t− t1)
j−4

E(t) =
∞∑

j=0

Ej(t− t1)
j−1

with three arbitrary constants (including t1). The expansion coefficients
are determined by a recursion relations

∞∑

j=0

S1j(j − 3)(t− t1)
j−4 = −

∞∑

j=0

S2j(t− t1)
j−4

∞∑

j=0

S2j(j − 4)(t− t1)
j−5 =

∞∑

j=0

S1j(t− t1)
j−3 +

∞∑

i,j=0

S3jEi(t− t1)
i+j−5

∞∑

j=0

S3j(j − 4)(t− t1)
j−5 = −

∞∑

i,j=0

S2jEi(t− t1)
i+j−5

∞∑

j=0

Ej(j − 1)(j − 2)(t− t1)
j−3 = α

∞∑

j=0

S1j(t− t1)
j−3 − µ2

∞∑

j=0

Ej(t− t1)
j−1.
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In particular we find for the first expansion coefficients S11 = S21 = S31 =
E1 = 0. Obviously, this local expansion is not the general solution (owing
to the complex resonances) which requires five arbitrary constants.

Next we show how we find the exact solution from the Laurent expansions.
Let k be the modulus of the Jacobi elliptic functions sn(z, k), cn(z, k)
and dn(z, k). We define

K ′(k) :=

∫ 1

0

(1 − t2)−1/2(1 − k′2t2)−1/2dt

where k′2 := 1−k2. By the addition-theorem of the Jacobi elliptic functions,
we have

sn(z + iK ′, k) =
1

k sn(z, k)
.

Similarly

cn(z + iK ′, k) = − i

k

dn(z, k)

sn(z, k)
, dn(z + iK ′, k) = −icn(z, k)

sn(z, k)
.

For points in the neighbourhood of the point z = 0, the function sn(z, k)
can be expanded by Taylor’s theorem in the form

sn(z, k) = sn(0, k) + zsn′(0, k) +
1

2
z2sn′′(0, k) +

1

3!
z3sn′′′(0, k) + · · ·

where accents denote derivatives. Since sn(0, k) = 0, sn′(0, k) = 1, sn′′(0, k) =
0, sn′′′(0, k) = −(1 + k2) etc. the expansion becomes

sn(z, k) = z − 1

6
(1 + k2)z3 + · · · .

Therefore

cn(z, k) = (1 − sn2z)1/2 = 1 − 1

2
z2 + · · ·

and

dn(z, k) = (1 − k2sn2z)1/2 = 1 − 1

2
k2z2 + · · · .

Consequently

sn(z + iK ′, k) =
1

ksn(z, k)
=

1

kz

(
1 − 1

6
(1 + k2)z2 + · · ·

)−1

=
1

kz
+

1 + k2

6k
z +

1

62k
(1 + k2)2z3 + · · · .
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Similarly, we have

cn(z + iK ′, k) =
−i
kz

+
2k2 − 1

6k
iz +

(1 + k2)(2k2 − 1)

36k
iz3 + · · ·

and

dn(z + iK ′, k) = − i

z
+

2 − k2

6
iz +

(1 + k2)(2 − k2)

36
iz3 + · · · .

It follows that at the point z = iK ′ the functions sn(z, k), cn(z, k) and
dn(z, k) have simple poles, with the residues

1

k
, − i

k
, −i,

respectively. We can focus our attention on the quantityE and (3b) since S1

can be derived from (3b). Then the quantity S2 and S3 can be found from
(3). Comparing the Laurent expansion and the expansion of the eliptic
functions we find that E admits the particular solution (now considered
again in the real domain)

E(t) = E0 dn(Ωt, k)

where E2
0 = 16Ω2 and

k= 2

(
1 +

1

c
(1 −

√
1 + c)

)
, Ω2 =

c(µ2 − 1
3 )

4(
√

1 + c− 1)

c=−(µ2 − 1

3
)−2

(
4

3

(
α2 − 4(µ2 − 1

9
)3
)1/2

+ (µ2 − 1

9
)(µ2 − 17

9
)

)
.

The quantities S1, S2 and S3 can now easily be found from system (3a) and
(3b). ♣

18.3 Invertible Point Transformation

In this section we discuss how the techniques of an invertible point transfor-
mation and the Painlevé test can be used to construct integrable ordinary
differential equations or equations that are related to the Painlevé transcen-
dents (Steeb [113]). We compare both techniques for the second Painlevé
transcendent.
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The most well known second-order ordinary differential equations which
have the Painlevé property are the so-called six Painlevé transcendents PI-
PVI. One finds the classification of all equations of the form d2w/dz2 =
F (dw/dz, w, z) which have the Painlevé property, where F is rational in
dw/dz, algebraic in w and locally analytic in z. Within a Möbius trans-
formation, one finds that there exist fifty such equations. Distinguished
among these fifty equations are PI-PVI. Any other of the fifty equations
can either be integrated in terms of known functions or can be reduced
to one of these six equations. Although PI-PVI were first discovered from
strictly mathematical considerations, they have recently appeared in several
physical applications. The six Painlevé transcendents are given by

I :
d2w

dz2
= 6w2 + az

II :
d2w

dz2
= 2w3 + zw + a

III :
d2w

dz2
=

1

w

(
dw

dz

)2

− 1

z

dw

dz
+

1

z
(aw2 + b) + cw3 +

d

w

IV :
d2w

dz2
=

1

2w

(
dw

dz

)2

+
3

2
w3 + 4zw2 + 2(z2 − a)w +

b

w

V :
d2w

dz2
=

(
1

2w
+

1

w − 1

)(
dw

dz

)2

− 1

z

dw

dz
+

(w − 1)2

z2

(
aw +

b

w

)

+ c
w

z
+ d

w(w + 1)

w − 1

VI :
d2w

dz2
=

1

2

(
1

w
+

1

w − 1
+

1

w − z

)(
dw

dz

)2

−
(

1

z
+

1

z − 1
+

1

w − z

)
dw

dz

+
w(w − 1)(w − z)

z2(z − 1)2

(
a+

bz

w2
+ c

(z − 1)

(w − 1)2
+ d

z(z − 1)

(w − z)2

)
.

For nonlinear ordinary and partial differential equations the general solu-
tion usually cannot be given explicitly. It is desirable to have an approach
to find out whether a given nonlinear differential equation can explicitly be
solved or reduced to one of the six Painlevé transcendents. For ordinary
differential equations the Painlevé test and the invertible point transforma-
tion can be used to construct integrable nonlinear equations or equations
which are related to one of the six Painlevé transcendents.

We consider the second Painlevé transcendent

d2w

dz2
= 2w3 + zw + a (5)
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(a is an arbitrary constant) and perform an invertible point transformation
to find the anharmonic oscillator

d2u

dt2
+ f1(t)

du

dt
+ f2(t)u+ f3(t)u

3 = 0. (6)

This provides a condition on f1, f2 and f3 such that the anharmonic os-
cillator can be transformed to the second Painlevé transcendent. We also
perform the Painlevé test for this differential equation. This gives also con-
ditions on f1(t), f2(t) and f3(t) and it is shown that the two conditions are
the same for the two approaches.

Let us first discuss the Painlevé test. We study the anharmonic oscillator,
where f1, f2 and f3 are smooth functions of t with the help of the Painlevé
test. We assume that f3 6= 0. For arbitrary functions f1, f2 and f3 the
nonlinear equation (6) cannot explicity be solved.

A remark is in order for applying the Painlevé test for non-autonomous
systems. The coefficients that depend on the independent variable must
themselves be expanded in terms of t. If non-autonomous terms enter the
equation at lower order than the dominant balance the above mentioned ex-
pansion turns out to be unnecessary whereas if the non-autonomous terms
are at dominant balance level they must be expanded with respect to t.
Obviously f1, f2 and f3 do not enter the expansion at dominant level.

Inserting the Laurent expansion

u(t) =
∞∑

j=0

aj(t− t1)
j−1

into (6) we find at the resonance r = 4, the condition

9f
(4)
3 f3

3 −54f
(3)
3 f ′

3f
2
3 +18f

(3)
3 f3

3 f1−36(f ′′
3 )2f2

3 +192f ′′
3 (f ′

3)
2f3−78f ′′

3 f
′
3f

2
3 f1

+ 36f ′′
3 f

3
3 f2 +3f ′′

3 f
3
3 f

2
1 −112(f ′

3)
4 +64(f ′

3)
3f3f1 +6(f ′

3)
2f ′

1f
2
3 −72(f ′

3)
2f2

3 f2

+ 90f ′
3f

′
2f

3
3 − 27f ′

3f
′′
1 f

3
3 − 57f ′

3f
′
1f

3
3 f1 + 72f ′

3f
3
3 f2f1 − 14f ′

3f
3
3 f

3
1 − 54f ′′

2 f
4
3

− 90f ′
2f

4
3f1 + 18f

(3)
1 f4

3 + 54f ′′
1 f

4
3 f1 + 36(f ′

1)
2f4

3 − 36f ′
1f

4
3 f2 + 60f ′

1f
4
3 f

2
1

− 36f4
3f2f

2
1 + 8f4

3f
4
1 = 0 (7)

where f ′ ≡ df/dt and f (4) ≡ f ′′′′ ≡ d4f/dt4. This means that if this
condition is satisfied then the expansion coefficient a4 is arbitrary. Now
we ask whether the equation derived above can be found from (5) with
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the help of the invertible point transformation. We consider the invertible
point transformation

z(u(t), t)) = G(u(t), t) w(z(u(t), t)) = F (u(t), t)

where

∆ ≡ ∂G

∂t

∂F

∂u
− ∂G

∂u

∂F

∂t
6= 0.

Since
dw

dt
=
dw

dz

dz

dt
=
dw

dz

(
∂G

∂u

du

dt
+
∂G

∂t

)
=
∂F

∂u

du

dt
+
∂F

∂t

and

d2w

dt2
=
d2w

dz2

dz

dt

(
∂G

∂u

du

dt
+
∂G

∂t

)

+
dw

dz

(
∂2G

∂u∂t

du

dt
+
∂2G

∂u2

(
du

dt

)2

+
∂G

∂u

d2u

dt2
+
∂2G

∂t2
+
∂2G

∂t∂u

du

dt

)

=
∂2F

∂u∂t

du

dt
+
∂2F

∂u2

(
du

dt

)2

+
∂F

∂u

d2u

dt2
+
∂2F

∂u∂t

du

dt
+
∂2F

∂t2

we obtain

d2u

dt2
+ Λ3

(
du

dt

)3

+ Λ2

(
du

dt

)2

+ Λ1
du

dt
+ Λ0 = 0

where

Λ3 =

(
∂2F

∂u2

∂G

∂u
− ∂F

∂u

∂2G

∂u2
− 2F 3

(
∂G

∂u

)3

− FG

(
∂G

∂u

)3

− a

(
∂G

∂u

)3
)

∆−1

Λ2 =

(
−2

∂F

∂u

∂2G

∂u∂t
− ∂F

∂t

∂2G

∂u2
+
∂2F

∂u2

∂G

∂t
+ 2

∂2F

∂x∂t

∂G

∂u
− 6F 3

(
∂G

∂u

)2
∂G

∂t

− 3FG

(
∂G

∂u

)2
∂G

∂t
− 3a

(
∂G

∂u

)2
∂G

∂t

)
∆−1

Λ1 =

(
−∂F
∂u

∂2G

∂t2
− 2

∂F

∂t

∂2G

∂u∂t
+ 2

∂2F

∂u∂t

∂G

∂t
+
∂2F

∂t2
∂G

∂u
− 6F 3 ∂G

∂u

(
∂G

∂t

)2

− 3FG
∂G

∂u

(
∂G

∂t

)2

− 3a
∂G

∂u

(
∂G

∂t

)2
)

∆−1

Λ0 =

(
∂2F

∂t2
∂G

∂t
− ∂F

∂t

∂2G

∂t2
2F 3

(
∂G

∂t

)3

− FG

(
∂G

∂t

)3

− a

(
∂G

∂t

)3
)

∆−1.
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We now make a particular choice for F and G, namely

F (u(t), t) = f(t)u(t), G(u(t), t) = g(t)

where f and g are arbitrary functions of t. With this special ansatz we find
that

Λ3 = Λ2 = 0

and

Λ1 =
2ḟ ġ − fg̈

ġf
, Λ0 =

(
f̈ ġ − ḟ g̈ − fgġ3

)
u− 2f3ġ3u3 − aġ3

ġf

where ḟ = df/dt etc. For a = 0 it follows that

d2u

dt2
+ f1(t)

du

dt
+ f2(t)u+ f3(t)u

3 = 0

where

f1(t) =
2ḟ ġ − fg̈

ġf

f2(t) =
ġf̈ − ḟ g̈ − fgġ3

ġf

f3(t) =−2(fġ)2.

For the case a 6= 0 one obtains the driven anharmonic oscillator. This case
is not discussed here. We are now able to eliminate f and g. We obtain

f(t) = Cf
1/6
3 (t) exp

(∫ t f1(s)ds

3

)
(8)

and

g(t) =
C2

9f
8/3
3 (t)

exp

(
2

∫ t 1

3
f1(s)ds

)
×

(
−3f3f

′′
3 + (f ′

3)
2 − f1f3f

′
3 − 6f1f

2
3 + 18f2f

2
3 − 4f2

1f
2
3

)
.

Inserting f and g in for f1, f2, f3 we find condition (7). Condition (7)
that the anharmonic oscillator passes the Painlevé test is identical to the
condition that the anharmonic oscillator be transformable to the second
Painlevé transcendent. Constraint (7) can be solved in such a way that f2

can be given as a function of f1 and f3. The above approach can also be
applied to the nonlinear ordinary differential equation (Steeb [113])

d2u

dt2
+ f1(t)

du

dt
+ f2(t)u+ f3(t)u

n = 0, (n 6= 0, 1) .
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18.4 Partial Differential Equations

Ward [136],[137] discussed the Painlevé property for partial differential
equations in terms of meromorphic solutions on Cm. The major differ-
ence between analytic functions of one complex variable and several com-
plex variables is that, in general, the singularities of a function of several
complex variables cannot be isolated. If f is a meromorphic function of
m complex variables (2n real variables), the singularities of f occur along
analytic manifolds of (real) dimension 2n− 2. These manifolds are known
as singularity manifolds and are determined by conditions of the form

φ(z1, . . . , zn) = 0

where φ is an analyic function of (z1, . . . , zn) in a neighbourhood of the
manifold.

Suppose that there are m independent variables and that the system of par-
tial differential equations has coefficients that are holomorphic on Cm. We
cannot simply require that all the solutions of this system be holomorphic
on Cm since arbitrarily ‘nasty’ singularities can occur along characteristic
hypersurfaces. The following definition of the Painlevé property avoids this
problem.

Definition 18.2 If S is a holomorphic non-characteristic hypersurface in
Cm, then every solution that is holomorphic on Cm\S extends to a mero-
morphic solution on Cm.

In other words, if a solution has a singularity on a non-characteristic hy-
persurface, that singularity is a pole and nothing worse.

A weaker form of the Painlevé property for partial differential equations,
known as the Painlevé test was formulated by Weiss et al [139]. It involves
looking for solutions φ of the system of partial differential equations in the
form

u = φ−α
∞∑

n=0

unφ
n (9)

where φ is a holomorphic function whose vanishing defines a noncharac-
teristic hypersurface. Substituting this series into the partial differential
equations yields conditions on the number α and recursion relations for
the functions un. The requirements are that α should turn out to be a
non-negative integer, the recursion relation should be consistent and the
series expansion should contain the correct number of arbitrary functions
(counting φ as one of them). If this weaker form of the Painlevé property
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is satisfied, we say that the partial differential equation passes the Painlevé
test. In the following we apply this weaker form of the Painlevé test.

There is a controversy about this definition in the literature. With ref-
erence to the above, we say that a partial differential equation has the
Painlevé property when the solutions of the partial differential equation
are single valued about the movable singularity manifold. For partial dif-
ferential equations we require that the solution be a single-valued functional
of the data, i.e., arbitrary functions. This is a formal property and not a
restriction on the data itself. The Painlevé property requires all movable
singularity manifolds to be single valued, whether characteristic or not. The
Painlevé property is a statement of how the solutions behave as functionals
of the data in a neighbourhood of a singularity manifold and not a state-
ment about the data itself.

Example. Consider Burgers’ equation

∂u

∂x2
+ u

∂u

∂x1
= σ

∂2u

∂x2
1

where σ is a constant. Inserting u ∝ u0φ
n we find that n = −1 and

u0 = −2σ∂φ/∂x. The equation with the dominant terms takes the form

u
∂u

∂x1
= σ

∂2u

∂x2
1

.

The resonances are given by −1 and 2. The Kowalevski exponents are the
same. That r = 2 is a Kowalevski exponent can be seen as follows: The
equation with the dominant behaviour is invariant under u → εu, x1 →
ε−1x1. Thus it can be written as ∂I(u)/∂x1 = 0, where I = u2/2 −
σ∂u/∂x1. Therefore

I

(
εu,

∂εu

∂ε−1x1

)
= ε2I

(
u,

∂u

∂x1

)

and r = 2 has to be a Kowalevski exponent. Inserting the ansatz

u = φ−1
∞∑

j=0

ujφ
j

into Burgers equation it follows that

j = 0 : u0 = −2σ
∂φ

∂x1
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j = 1 :
∂φ

∂x2
+ u1

∂φ

∂x1
− σ

∂2φ

∂x2
1

= 0

j = 2 :
∂F

∂x1
= 0

where F is given by the left hand side of the equation at j = 1. The
compatability condition at the resonance j = r = 2 is satisfied identically.
Consequently, Burgers’ equation passes the Painlevé test. In the series ex-
pansion for u the functions φ and u2 can be chosen arbitrarily.

A Bäcklund transformation can now be found as follows: Let uj = 0 for
j ≥ 2. Then we find the auto-Bäcklund transformation

u = −2σφ−1 ∂φ

∂x1
+ u1 ≡ −2σ

∂(lnφ)

∂x1
+ u1

where u and u1 satisfy Burgers’ equation and

∂φ

∂x2
+ u1

∂φ

∂x1
= σ

∂2φ

∂x2
1

.

The trivial solution to the Burgers’ equation is u1 = 0. Then this equation
simplifies to

∂φ

∂x2
= σ

∂2φ

∂x2
1

(linear diffusion equation) and

u = −2σφ−1 ∂φ

∂x1
.

This is the Cole-Hopf transformation. This equation can be solved with
respect to φ. Let σ = 1. We find

φ(x1, x2) = exp

(
−1

2

∫ x1

−∞

u(x′1, x2)dx
′
1

)
.

Inserting this equation into the equation at j = 1 we arrive at

∫ x1

−∞

∂u(x′1, x2)

∂x2
dx′1 = −1

2
u2 +

∂u

∂x1
.

Taking the derivative with respect to x1 yields Burgers equation (σ = 1).
This enables us to construct a hierarchy of nonlinear partial differential
equations which can be linearized with the help of u = −2φ−1∂φ/∂x1

and pass the Painlevé test. This means that the process of starting from
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∂φ/∂x2 = ∂3φ/∂x3
1, ∂φ/∂x2 = ∂4φ/∂x4

1 and so on and inserting φ yields a
hierarchy of linearizable equations. All these equations pass the Painlevé
test. From

∂φ

∂x2
=
∂3φ

∂x3
1

we find
∂u

∂x2
=

3

4
u2 ∂u

∂x1
− 3

2

(
∂u

∂x1

)2

− 3

2
u
∂2u

∂x2
1

+
∂3u

∂x3
1

. ♣

18.5 Symmetries by Truncated Expansions

In this section we consider partial differential equations which pass the
Painlevé test. In particular we study the following evolution equation

∂u

∂x2
= F (u(x1, x2)) (10)

where F is a polynomial in u and

∂u

∂x1
,
∂2u

∂x2
1

, . . . ,
∂nu

∂xn1
.

Assume that we find a solution of this evolution equation of the form

u = φ−α
∞∑

j=0

ujφ
j . (11)

Let us recall the definition for an equation of the form (10) to pass the
Painlevé test:

(i) There exist integers α > 0, β > 0 such that by insertion of (11) into (10)
yields

∞∑

j=0

Gj(uj , uj−1, . . . , u0, φ)φ−α−β+j = 0 (12)

where Gj are differential polynomials.

(ii) The functions uj can be determined recursively from the equations

Gj(uj , uj−1, . . . , u0, φ) = 0, j ≥ 0 (13)

by purely algebraic manipulations. The functions uj are determined uniquely
with the exception of β = n − 1 resonance functions which can be chosen
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arbitrarily.

The series can be truncated if

(iii) By setting the resonance functions equal to zero, we can achieve that
uj = 0, j > α, in addition to (13).

(iv) Series (11), truncated at the constant level term, yields a solution
to (10) whenever u0, . . . , uα, φ can be determined to satisfy (13) for j =
0, . . . , α+ β.

We recall that the linearized equation (variational equation) of (10) about
a solution u

∂v

∂x2
= F ′(u)[v] ≡ ∂F (u+ εv)

∂ε

∣∣∣∣
ε=0

. (14)

Any solution of this equation yields a symmetry or an infinitesimal trans-
formation about u, i.e., the transformation u+εv leaves (10) form-invariant.

Proposition 1. Assume that (i) ∼ (iv) hold. Then uα−1 will be an in-
finitesimal transformation about uα.

Proof. Write the truncated series as

u = uα + σ

where
σ = u0φ

−α + · · · + uα−1φ
−1.

Inserting this ansatz into (10) yields

∂uα
∂x2

+
∂σ

∂x2
= F (uα) +

∂F (uα)

∂u
σ +

∂F (uα)

∂ux1

∂σ

∂x1
+ · · ·+ ∂F (uα)

∂ux11 ···x1r

∂rσ

∂xr1
+ p

(15)
where

ux11 ···x1r
≡ ∂ru

∂xr1

and p stands for higher terms occurring in the Taylor expansion of F about
(
uα,

∂uα
∂x1

, . . . ,
∂ruα
∂xr1

)
.

Evaluating derivatives of σ gives

∂σ

∂x2
=
∂uα−1

∂x2
φ−1 + terms in φ−c (16a)



18.5. Symmetries by Truncated Expansions 327

∂σ

∂x1
=
∂uα−1

∂x1
φ−1 + terms in φ−c (16b)

∂2σ

∂x2
1

=
∂2uα−1

∂x2
1

φ−1 + terms in φ−c (16c)

where c ≥ 2. Now, by inserting (16) into (15) we obtain

0 =

(
F (uα) − ∂uα

∂x2

)
φ0 +

(
F ′(uα)uα−1 −

∂uα−1

∂x2

)
φ−1 + terms in φ−c

with c ≥ 2. By assumptions (i) to (iv) it follows that

Gα = F (uα) − ∂uα
∂x2

= 0

Gα−1 = F ′(uα)uα−1 −
∂uα−1

∂x2
= 0. ♠

Example. Consider the Korteweg-de Vries equation

∂u

∂x2
+ u

∂u

∂x1
+
∂3u

∂x3
1

= 0 .

It admits the Painlevé expansion

u = φ−2
∞∑

j=0

ujφ
j .

The resonances are j = −1, 4, 6 and we can achieve uj = 0, j > 2, by
setting

u4 = u6 = 0.

The truncated expansion leads to the following conditions Gj = 0, j =
0, . . . , 5,

j = 0 (φ−5) : u0 = −12

(
∂φ

∂x1

)2

(17)

j = 1 (φ−4) : u1 = 12
∂2φ

∂x2
1

(18)

j = 2 (φ−3) :
∂φ

∂x1

∂φ

∂x2
+

(
∂φ

∂x1

)2

u2 + 4
∂φ

∂x1

∂3φ

∂x3
1

− 3

(
∂2φ

∂x2
1

)2

= 0 (19)

j = 3 (φ−2) :
∂2φ

∂x1∂x2
+
∂2φ

∂x2
1

u2 +
∂4φ

∂x4
1

= 0 (20)
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j = 4 (φ−1) :
∂

∂x1

(
∂2φ

∂x1∂x2
+
∂2φ

∂x2
1

u2 +
∂4φ

∂x4
1

)
= 0 (21)

j = 5 (φ0) :
∂u2

∂x2
+ u2

∂u2

∂x1
+
∂3u2

∂x3
1

= 0. (22)

The last equation means that u2 solves the Korteweg-de Vries equation
while (21), according to proposition 1, states that u1 is a solution of the
Korteweg-de Vries equation linearized about u2. Thus by any solution φ of
(19) and (20) we obtain an infinitesimal transformation about u2. ♣

Proposition 1 can be generalized to hold for the following cases: equations
involving higher order time derivatives, systems of equations, equations in
more than one spatial variable and ordinary differential equations.

18.6 Painlevé Test and Recursion Operators

In this section we ask how recursion operators can be obtained from Painlevé
expansions. We recall that a condition for an operator R(u) to be a recur-
sion operator for the evolution equation (10) is that

∂R(u)

∂x2
= [F ′(u), R(u)] (23)

whenever u solves (10).

The following method can be applied for obtaining recursion operators.

Proposition 2. Let
L(u)v = λv (24)

∂v

∂x2
= F (u)v (25)

be a Lax equations for (10). Let Eλ be the eigenspace belonging to the
eigenvalue λ. Assume that the following holds for any solution u of (10)

∂

∂x2
T (v1, . . . , vl, λ) = F ′(u)T (v1, . . . , vl, λ) (26)

R(u)T (v1, . . . , vl, λ) = f(λ)T (v1, . . . , vl, λ) (27)

where R(u) is an operator, f a function and T a transformation defined on
the l-fold product

Eλ × · · · × Eλ .
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Then it holds that(
∂R(u)

∂x2
− [F ′(u), R(u)]

)
T (v1, . . . , vl, λ) = 0 . (28)

Proof. The proof is obvious from the fact that λ is time-independent. ♠

In order to find recursion operators we now proceed as follows:

(1) We must find the transformation T (v1, . . . , vl, λ) mapping Eλ×· · ·×Eλ
into solutions of the linearized equation.

(2) We have to derive an eigenequation (27) for the functions T (v1, . . . , vl,
λ) from the eigenequation L(u)vj = λvj .

(3) By the above proposition 2 the condition (28) holds.

(4) Suppose we have enough functions T (v1, . . . , vl, λ) for concluding from
(28) that (23) holds, then R(u) will be a recursion operator.

The most important step is to find the transformation T . The Painlevé
property can be connected with the Lax equations via the Schwarzian
derivative.

Example. Consider the Korteweg-de Vries equation

∂u

∂x2
+ u

∂u

∂x1
+
∂3u

∂x3
1

= 0 .

The Schwarzian derivative of φ is defined as

{φ; x1} :=
∂

∂x1

(
∂2φ

∂x2
1

(
∂φ

∂x1

)−1
)

− 1

2

(
∂2φ

∂x2
1

(
∂φ

∂x1

)−1
)2

.

The resulting equation in terms of the Schwarzian derivative takes the form

∂

∂x1

(
∂φ

∂x2

(
∂φ

∂x1

)−1

+ {φ; x1}
)

= λ

where λ is a constant. This equation is solved by setting φ = v1/v2, where
the function vj satisfy the Lax equations for the Korteweg-de Vries equation

∂2v

∂x2
1

+
1

6
(u2 + λ)v = 0

∂v

∂x2
=

(
−u2

3
+

2

3
λ

)
∂v

∂x1
+
u2

6
v .
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Therefore we obtain

T (v1, v2, λ) =
∂2

∂x2
1

(
v1
v2

)
.

Transformation T then leads to the recursion operator

R(u) = D2 +
2

3
u+

1

3

∂u

∂x1
D−1

for the Korteweg-de Vries equation where D := ∂/∂x1. ♣

18.7 Singular Manifold and Similarity
Variables

The connection of the singular manifold at the resonance and the similarity
variable is investigated with the help of an example. The nonintegrability
of the nonlinear partial differential equation

∂2v

∂η∂ξ
= v3 (29)

is studied with the help of the Painlevé test [38]. The condition at the
resonance is discussed. Particular solutions are also given. The equation is
a nonlinear Klein-Gordon equation using light-cone coordinates

ξ(x1, x2) :=
1

2
(x1 − x2), η(x1, x2) :=

1

2
(x1 + x2)

The rest mass is assumed to be 0. The partial differential equation can
be derived from a Lagrangian density and Hamiltonian density. Equation
(29) is considered in the complex domain. First we investigate whether it
passes the Painlevé test. In particular we give the condition for the singular
manifold at the resonance. This means we insert the expansion

v =

∞∑

j=0

vjφ
j−1 (30)

where φ and uj are locally analytic functions of η and ξ. The resonances
are given by r1 = −1 and r2 = 4. The Kowalevski exponents are the same.
The Kowalevski exponent r2 = 4 is related to the Hamiltonian density. Sec-
ondly we give the Lie symmetry vector fields of (29), construct similarity
ansätze via the similarity variable ς and perform group theoretical reduc-
tions of the partial differential equation to ordinary differential equations.
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The connection of the similarity variables ς and the condition on φ at the
resonance is discussed for every group theoretical reduction. The Painlevé
test is performed for these ordinary differential equations. Then we discuss
the truncated expansion

v = φ−1v0 + v1 (31)

where v1 satisfies (29). The truncated expansion can be considered as an
auto-Bäcklund transformation, where φ satisfies certain conditions. This
condition, i.e., the partial differential equation for φ, is compared with the
condition for φ at the resonance. We make use of the notation

∂φ

∂η
≡ φη ,

∂2φ

∂ξ∂η
≡ φξη , etc.

Inserting expansion (30) into (29) gives for the first four expansion coeffi-
cients

v2
0 = 2φηφξ

−φξηv0 − φξv0η − φηv0ξ = 3v2
0v1

v0ξη = 3v2
0v2 + 3v0v

2
1

2φξφηv3 + φξηv2 + φξv2η + φηv2ξ + v1ξη = 2v2
0v3 + 6v0v1v2.

At the resonance r = 4 we obtain the condition

2φξηv3 + 2φηv3ξ + 2φξv3η + v2ηξ = 6v0v1v3 + 3v2
1v2 + 3v0v

2
2 . (32)

Inserting this system into (32) yields the condition on φ, i.e. a partial
differential equation for φ ([38]). If this condition is satisfied, then the
expansion coefficient v4(ξ, η) is arbitrary. For example this condition cannot
be satisfied when we set φ(ξ, η) = ξη. Consequently we conclude that (29)
does not pass the Painlevé test. If we assume that φξη = 0 the condition
reduces to

3φ2
ξφ

2
η(φξξξξφ

4
η + φηηηηφ

4
ξ)(φξξφ

2
η + φηηφ

2
ξ)

− 24φξφη(φξξξφ
2
ξξφ

7
η + φηηηφ

2
ηηφ

7
ξ) − 6φ4

ξφ
4
η(φξξξφηηηφηφξ + φ2

ξξφ
2
ηη)

+ 3φ2
ξφ

2
η(φ

2
ξξξφ

6
η + φ2

ηηηφ
6
ξ) + 6φ4

ξφ
4
η(φξξξφ

2
ηηφξ + φηηηφ

2
ξξφη)

+ 20(φ4
ξξφ

8
η + φ4

ηηφ
8
ξ) − 18φξξφηηφ

3
ξφ

3
η(φξξξφ

3
η + φηηηφ

3
ξ)

+ 17φξξφηηφ
2
ξφ

2
η(φ

2
ξξφ

4
η + φ2

ηηφ
4
ξ) = 0. (33)

We now consider the reduced singularity manifold φ(η, ξ) = η − g(ξ) = 0.
Then φξη = 0 and φηη = 0. Equation (29) reduces to a condition on g(ξ)
given by

3(g′)2g′′g(4) + 3(g′)2(g(3))2 − 24g′(g′′)2g(3) + 20(g′′)4 = 0 (34)



332 18. Symmetries and Painlevé Test

where g′ ≡ dg/dξ and g(4) ≡ d4g/dξ4. For A = (ln g′)′ the condition
reduces to

3AA′′ + 3(A′)2 − 9A2A′ + 2A4 = 0 . (35)

We now perform a Painlevé test for this equation. Inserting the ansatz
A(ξ) ∝ A0ξ

n we find n = −1 and A0 admits two solutions, namely A0 =
−3/2 and A0 = −3. All terms are dominant. Thus we find two branches in
the Painlevé analysis. For the branch with A0 = −3/2 the resonances are
given by r1 = −1 and r2 = 3/2. Thus the differential equation admits an
expansion of the form

A(ξ) = (ξ − ξ1)
−1

∞∑

j=0

Aj(ξ − ξ1)
j/2

where at the resonance r = 3/2 the expansion coefficient is arbitrary. For
the second branch we find the resonances r1 = −1 and r2 = −3. It follows
that (35) passes the so-called weak Painlevé test. Owing to the two branches
and since all terms are dominant in (35) we find two special solutions for
equation (34) given by

g(ξ) = −2ξ−1/2, g(ξ) = −1

2
ξ−2

so that

φ(ξ, η) = η + 2ξ−1/2, φ(ξ, η) = η +
1

2
ξ−2

satisfy condition at the resonance.

Equation (29) admits the Lie symmetry vector fields

{
∂

∂ξ
,

∂

∂η
, −ξ ∂

∂ξ
+ η

∂

∂η
, −ξ ∂

∂ξ
− η

∂

∂η
+ u

∂

∂u

}
.

The first two Lie symmetry vector fields are related to the fact that (29)
does not depend explicitly on η and ξ. The third Lie symmetry vector field
is related to the Lorentz transformation and the fourth is related to the
scale invariance, i.e.,

η → ε−1η, ξ → ε−1ξ, u→ εu .

No Lie Bäcklund vector fields can be found.

The Lie symmetry vector fields ∂/∂ξ, ∂/∂η lead to the similarity ansatz

v(ξ, η) = f(ς)
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where the similarity variable ς is given by ς = c1ξ + c2η. c1 and c2 are
non-zero constants. Inserting this ansatz into (29) yields

d2f

dς2
=

1

c1c2
f3.

This equation passes the Painlevé test. This is in agreement with the fact
that

φ(ξ, η) = c1η + c2ξ

satisfies the condition at the resonance. The equation can be solved in
terms of Jacobi elliptic functions.

The Lie symmetry vector field −ξ∂/∂ξ+η∂/∂η leads to the similarity ansatz

v(ξ, η) = f(ς)

where the similarity variable ς is given by ς = ηξ. Inserting this ansatz into
(29) yields

d2f

dς2
+

1

ς

df

dς
− 1

ς
f3 = 0.

This equation does not pass the Painlevé test. This is in agreement with
the fact that

φ(ξ, η) = ηξ

does not satisfy the condition at the resonace.

The Lie symmetry vector field −ξ∂/∂ξ − η∂/∂η + u∂/∂u leads to the sim-
ilarity ansatz

v(ξ, η) =
1

ξ
f(ς)

where the similarity variable ς is given by ς = η/ξ. Inserting this ansatz
into (29) yields

d2f

dς2
+

2

ς

df

dς
+

1

ς
f3 = 0.

This equation passes the Painlevé test. This is in agreement that

φ(ξ, η) =
η

ξ

satisfies the condition at the resonance. From the Painlevé test we find a
particular solution, namely

f(ς) =

√−2ς1
ς − ς1

.
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Let us discuss the truncated ansatz (30). Inserting the truncated ansatz
into the condition at the resonance yields

v2
0 = 2φηφξ

−φξηv0 − φξv0η − φηv0ξ = 3v2
0v1

v0ξη = 3v0v
2
1

v1ξη = v3
1 .

It follows that

−4φξφηφηξ − φ2
ηφξξ − φ2

ξφηη = 6v0v1φξφη

and

12φ2
ξφ

2
ηv

2
1 = φηφξφηηφξξ − φ2

ηφηξφξξ − φ2
ξφηξφηη + 2φξφ

2
ηφηξξ

+ 2φ2
ξφηφηηξ + φξφηφ

2
ηξ

where v0 is given by v2
0 = 2φηφξ . The truncated expansion leads to a

different condition on φ compared with condition at the resonance. If φηξ =
0, it follows that

−φ2
ηφξξ − φ2

ξφηη = 6v0v1φξφη

and
12φ2

ξφ
2
ηv

2
1 = φηφξφηηφξξ .

Here, too, the condition on φ is different from condition (33). Solutions can
be constructed when we insert a solution of v1ξη = v3

1 . The simplest case
is v1 = 0. It follows that

v(η, ξ) =

√−2c1c2
c1ξ + c2η

is a special solution to (29). Whether this solution can be used to construct
another solution with the help of the Bäcklund transformation and the
conditions for φ is not obvious since we have to prove that the two conditions
are compatible.

18.8 Hirota Technique and Painlevé Test

18.8.1 Hirota Technique

In 1971 Hirota [57] found an exact solution for the Korteweg-de Vries equa-
tion

∂u

∂t
− 6u

∂u

∂x
+
∂3u

∂x3
= 0
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with the associated boundary condition u(x, t) = 0 at x = ±∞. The
solution is valid for the case of multiple collisions of N solutions (N is an
arbitrary finite integer) with different amplitudes. It can be written as

u(x, t) = −2
∂2

∂x2
ln f(x, t)

where f(x, t) = det |M(z, t)|. The N ×N matrix M has the form

Mij(x, t) = δij +
2(PiPj)

1/2

Pi + Pj
exp

(
1

2
(ξi + ξj)

)

where ξi(x, t) := Pix − Ωit − ξ0i , Ωi := P 3
i . Here Pi and ξ0i are arbitrary

constants which determine the amplitude and phase, respectively, of the
ith soliton. The Pi are assumed to be all different. Inserting the ansatz
u(x, t) into the Korteweg-de Vries equation yields

f
∂2f

∂x∂t
− ∂f

∂t

∂f

∂x
+ f

∂4f

∂x4
− 4

∂f

∂x

∂3f

∂x3
+ 3

(
∂2f

∂x2

)2

= 0.

Introducing the definition

Dn
xD

m
t a ◦ b :=

(
∂

∂x
− ∂

∂x′

)n(
∂

∂t
− ∂

∂t′

)m
a(x, t)b(x′, t′) |x′=x,t′=t

where n,m = 0, 1, 2, . . . we obtain

(
D4
x +DxDt

)
f ◦ f = 0.

The operators Dx and Dt are called Hirota’s bilinear operators. Since
there are N solutions we replace f by

f (N) = 1 +
N∑

m=1

εmf̃ (m).

It follows that

ε :
∂4f̃ (1)

∂x4
+
∂2f̃ (1)

∂x∂t
= 0

ε2 :
∂4f̃ (2)

∂x4
+
∂2f̃ (2)

∂x∂t
= −1

2

(
D4
x +DxDt

)
f̃ (1) ◦ f̃ (1)

ε3 :
∂4f̃ (3)

∂x4
+
∂2f̃ (3)

∂x∂t
= −

(
D4
x +DxDt

)
f̃ (1) ◦ f̃ (2)
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and so on. The single solitary wave solution of the Korteweg-de Vries
equation can be easily be found, namely

f̃ (1)(x, t) = exp(Θ1(x, t))

where
Θi(x, t) := kix+ wit+ δi.

The dispersion relation is given by wi = k3
i . We find that the right-hand

side of the equation at ε2 is equal to zero and so we put f (n) ≥ 0. Therefore
we have an exact solution. For a two parameter solution we can also take a
solution of the equation at ε (notice that this equation is a linear equation)
as

f (1)(x, t) = exp(Θ1) + exp(Θ2).

It follows that

f (2)(x, t) =

(
k1 − k2

k1 + k2

)2

exp(Θ1 + Θ2).

Thus the right-hand side of the equation at ε3 is equal to zero. Conse-
quently we can set f (n)(x, t) = 0 for n ≥ 3. Therefore the series expansion
truncates, leaving an exact two soliton solutions.

f (2)(x, t) = 1 + exp(Θ1) + exp(Θ2) +A12 exp(Θ1 + Θ2)

where

A12 :=

(
k1 − k2

k1 + k2

)2

.

This process can be continued indefinitely and an exact N -parameter solu-
tion can be found and expressed in the determinantal form. We therefore
have a set of solution {f (N)} of (D4

x +DxDt)f ◦ f = 0 which gives a cor-
responding set of solutions {u(N)} of the Korteweg de Vries equation. Let

f be any solution of (D4
x +DxDt)f ◦ f = 0. A different solution f̃ of this

equation is the defined by the auto-Bäcklund transformation

(Dt + 3βDx +D3
x)f ◦ f̃ = 0, (D2

x − β)f ◦ f̃ = 0

where β is an arbitrary parameter.

Thus Hirota’s method is a direct method in the sense that it does not re-
quire a solution of the inverse scattering transform.

Before we consider other soliton equations with Hirota’s technique, let us
summarize some of the properties of Hirota’s bilinear operator



18.8. Hirota Technique and Painlevé Test 337

Dm
x a ◦ a= 0 for odd m

Dm
x a ◦ b= (−1)mDm

x (b ◦ a)
∂2

∂x2
ln f =

1

2f2
(D2

xf ◦ f)

∂2

∂x∂t
ln f =

1

2f2
DxDtf ◦ f

∂4

∂x4
ln f =

1

2f2
D4
xf ◦ f − 6

(
1

2f2
D2
xf ◦ f

)2

Dtab ◦ cd= (Dta ◦ c)cb− ad(Dtc ◦ b)
(Dta ◦ b)cd− ab(Dtc ◦ d) = (Dta ◦ c)bd− ac(Dtb ◦ d) .

Let us now summarize the results for other soliton equations. For these
equations we also perform a Painlevé test.

Example. The Boussinesq equation

∂2u

∂t2
− ∂2u

∂x2
− 3

(
∂2u2

∂x2
− ∂4u

∂x4

)
= 0

arises in the analysis of plane gravity waves, but is not restricted to unidi-
rectional wave propagation. The ansatz

u = 2
∂2(ln f)

∂x2
, f > 0

leads to (
D2
t −D2

x −D4
x

)
f ◦ f = 0.

An auto-Bäcklund transformation for this equation is given by

(Dt + αD2
x)f ◦ f̃ − αβff̃ = 0

((1 + 3β)Dx +D3
x + αDtDx)f ◦ f̃ = 0

where α3 = −3. ♣

Example. The higher order Korteweg-de Vries equation is given by

∂u

∂t
+ 180u2∂u

∂x
+ 30

(
u
∂3u

∂x3
+
∂u

∂x

∂2u

∂x2

)
+
∂5u

∂x5
= 0 .

Inserting the ansatz

u =
∂2 ln f

∂x2
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yields
Dx(Dt +D5

x)f ◦ f = 0.

An auto-Bäcklund transformation is given by

D3
xf̃ ◦ f = λf̃f

Dtf
′ ◦ f =

3

2
D5
xf̃ ◦ f +

15

2
λD2

xf̃ ◦ f

where λ is a Bäcklund parameter. ♣

Example. The Korteweg-de Vries equation with loss and nonuniformity
terms is given by

∂u

∂t
+ γu+ (c0 + αx)

∂u

∂x
+ 6u

∂u

∂x
+
∂3u

∂x3
= 0 .

Here γ and α are parameters describing the relaxation and the nonunifor-
mity of the media, c0 is a constant related to the velocity of the wave. This
equation reduces, through the Hirota ansatz u = 2∂2(ln f)/∂x2 to

(Dt + γ − α+ (c0 + αx)Dx +D3
x)
∂f

∂x
◦ f = 0

with the boundary condition u = 0 at |x| = ∞. Inserting the power series

f (N) = 1 +

N∑

m=1

εmfm

and collecting terms with the same power of ε yields

(
∂

∂t
+ γ − α+ (c0 + αx)

∂

∂x
+

∂3

∂x3

)
f1,x = 0

(
∂

∂t
+ γ − α+ (c0 + αx)

∂

∂x
+

∂3

∂x3

)
f2,x

= −
(
Dt + γ − α+ (c0 + αx)Dx +D3

x

)
f1,x ◦ f1

and so on. First we consider the one-solution. Let

f1(x, t) = a exp(p(t)x+ φ(t)) .

One finds the nonlinear system of ordinary differential equations

dp

dt
+ αp(t) = 0,

dφ

dt
+ c0p(t) + p3(t) = 0
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where γ = 2α. Solving this system of equations with the initial conditions

p(t)|t=0 = p, φ(t)|t=0 = 0

leads to

p(t) = p exp(−αt), φ(t) = c0
p(t) − p

α
+
p3(t) − p3

3α
.

Straightforward calculations provides an exact one-soliton solution

u(x, t) = 2

[
p(t)

2

]2
sech2

(
1

2
(p(t)x + φ(t) + const.)

)

for γ = 2α. the condition γ = 2α is a restriction to the media: there
must be a certain balancing between the loss and the nonuniformity of the
media if they can support solitons propagating without radiation. N -soliton
solutions of this equation with γ = 2α are obtained as follows

u(x, t) = 2
∂2 ln f

∂x2

f(x, t) =
∑

µ=0,1

exp




(N)∑

i>j

Aijµiµj +

N∑

i=1

µiηi




exp(Aij) =
(pi(t) − pj(t))

2

(pi(t) + pj(t))
2

ηi(x, t) = pi(t)x + φi(t) + const.

where pi(t) and φi(t) are given above with p replaced by pi,Σµ=0,1 is the
summation over all possible combinations of µ1 = 0, 1, µ2 = 0, 1, . . . , µN =

0, 1 and Σ
(N)
i>j indicates the summation over all possible pairs chosen from N

elements. With γ = 2α the equation can be transformed into the following
inverse scattering from

(
∂2

∂x2
+ u(x, t)

)
ψ = λ(t)ψ

∂

∂t
ψ +

(
4
∂3

∂x3
+ 3

(
∂

∂x
u+ u

∂

∂x

)
+ (c0 + αx)

∂

∂x

)
ψ = 0

with the linear ordinary differential equation for λ

dλ

dt
+ 2αλ = 0. ♣
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Example. The Kadomtsev-Petviashvili equation is given by

∂2u

∂x∂t
+ α

∂2u

∂y2
+ 3

∂2u2

∂x2
+
∂4u

∂x4
= 0.

The substitution u = 2∂2(ln f)/∂x2 leads, under the boundary condition
u→ 0 as |x| → ∞, to the bilinear representation

(
DxDt +D4

x + αD2
y

)
f ◦ f = 0.

An auto-Bäcklund transformation is given by

(
D2
x − γDy

)
f̃ ◦ f = βf ′f

(
Dt + 3βDx +D3

x + 3γDxDy

)
f̃ ◦ f = 0

where γ = ±(α/3)1/2 and β is a Bäcklund parameter. ♣

18.8.2 Connection with Painlevé Test

When we perform a Painlevé test, for example, on the Kadomtsev-Petviashvili
equation

∂2u

∂x∂t
+ 12

(
∂u

∂x

)2

+ 12u
∂2u

∂x2
+
∂4u

∂x4
+
∂2u

∂y2
= 0

we find that

u0 = −
(
∂φ

∂x

)2

, u1 =
∂2φ

∂x2

and so on. The equation passes the Painlevé test. The resonances are given
by −1, 4, 5 and 6. This means we have an expansion

u =

∞∑

j=0

ujφ
j−2

where u4, u5 and u6 can be chosen arbitrarily. It can be shown that we can
set u2 = u3 = · · · = 0. Then it follows that

u =
∂2

∂x2
lnφ.

Inserting this ansatz into the Kadomtsev-Petviashvili equation leads to

(D4
x +DxDt +D2

y)φ ◦ φ = 0.

Thus the Painlevé analysis provides us with the ansatz to find Hirota’s
bilinear formalism. This was first revealed by Steeb [122]. The equation
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can now be treated with the series expansion technique described by Hirota.

Let us now give some examples.

Example. Consider the Korteweg-de Vries equation

∂u

∂t
+ 12u

∂u

∂x
+
∂3u

∂x3
= 0.

The equation passes the Painlevé test. The resonances are given by −1,4,6.
The Painlevé analysis motivates the ansatz

u =
∂2

∂x2
lnφ+ u2.

Inserting this ansatz into the Korteweg-de Vries equation yields

∂φ

∂x

∂φ

∂t
+ 12u2

(
∂φ

∂x

)2

+ 4
∂φ

∂x

∂3φ

∂x3
− 3

(
∂2φ

∂x2

)2

= 0

∂2φ

∂x∂t
+ 12u2

∂2φ

∂x2
+
∂4φ

∂x4
= 0

since u2 satisfies the Korteweg-de Vries equation. Inserting the ansatz

u =
∂2

∂x2
ln f

into the Korteweg-de Vries equation yields an equation for f which can be
expressed in terms of Hirota’s bilinear operators as

(D4
x +DxDt)f ◦ f = 0.

Let
F̃ := D4

x +DxDt.

The functions u and u2 can be thought of as an adjacent pair of solutions
in a set {u(n)} which are related to Hirota’s f -functions f (n) by

u(n) =
∂2

∂x2
ln f (n).

Relabeling u as u(n), u2 as u(n−1) and φ as φn−1 one has the following

Theorem 18.1 If the function f (n)(n = 1, 2, 3, . . .) satisfy the Hirota equa-
tion

F̃
(
f (n) ◦ f (n)

)
= 0
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for every n and if

f (n) = φn−1f
(n−1)

then the resulting equations in φn−1 and u(n−1) is satisfied by the Painlevé
relations given above. Furthermore

f (n) =
n−1∏

i=0

φi.

Proof. For the proof we refer to Gibbon et al [50]. ♠

Let us now discuss soliton equations. Let F̃ be the Hirota bilinear operator
of the given evolution equation.

Example. For the Boussinesq equation

∂2

∂x2

(
∂2u

∂x2
+ 6u2 + u

)
− ∂2u

∂t2
= 0

the resonances are −1, 4, 5, 6, with n = −2, and

u = u2 +
∂2

∂x2
lnφ

where uj = 0 for j ≥ 3, and

(
∂φ

∂t

)2

−
(
∂φ

∂x

)2

+ 4
∂φ

∂x

∂3φ

∂x3
− 3

∂2φ

∂x2
+ 12u2

(
∂φ

∂x

)2

= 0

∂2φ

∂t2
− ∂2φ

∂x2
+ 12u2

∂2φ

∂x2
+
∂4φ

∂x4
= 0

where

F̃ := D4
x +D2

x −D2
t . ♣

Example. For the Kadomtsev-Petviashvili equation

∂

∂x

(
∂3u

∂x3
+ 12u

∂u

∂x
+
∂u

∂t

)
± ∂2u

∂y2
= 0

one obtains n = −2 and resonances at −1, 4, 5, 6 with

u = u2 +
∂2

∂x2
lnφ
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where uj = 0 for j ≥ 3, and

∂φ

∂x

∂φ

∂t
+ 4

∂φ

∂x

∂3φ

∂x3
− 3

(
∂2φ

∂x2

)3

±
(
∂φ

∂y

)2

+ 12u2

(
∂φ

∂x

)2

= 0

∂2φ

∂x∂t
+
∂4φ

∂x4
± ∂2φ

∂y2
+ 12u2

∂2φ

∂x2
= 0

where

F̃ := D4
x +DxDt ±D2

y. ♣
Example. For the Satsuma-Hirota equation

∂3s

∂x2∂t
− ∂s

∂x
− ∂s

∂t
= 3

(
∂v

∂x

∂s

∂t
+
∂s

∂x

∂v

∂t

)

s = −∂v
∂x

the Painlevé test with an expansion of the form

s =

∞∑

j=0

sjφ
j−2, v =

∞∑

j=0

vjφ
j−1

provides the resonances −1, 1, 4 and 6. One finds

s = s2 +
∂2

∂x2
lnφ

where sj = 0 for j ≥ 3, and

3

(
∂2φ

∂x∂t

∂v1
∂x

+
∂2φ

∂x2

∂v1
∂t

)
=

∂4φ

∂3x∂t
− ∂2φ

∂x2
− ∂2φ

∂x∂t

3

(
∂φ

∂x

∂φ

∂t

∂v1
∂x

+

(
∂φ

∂x

)2
∂v1
∂t

)
=
∂3φ

∂x3

∂φ

∂t
+ 3

∂φ

∂x

∂3φ

∂x2∂t
− 3

∂2φ

∂x2

∂2φ

∂x∂t

−
(
∂φ

∂x

)2

− ∂φ

∂x

∂φ

∂t

with

F̃ = D3
xDt −D2

x −DxDt

where both s and s2 = −v1x are solutions of the Satsuma-Hirota equation.
♣
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One can also study evolution equation which require two component Hirota
equations.

Example. Consider the nonlinear Schrödinger equation

i
∂w

∂t
+
∂2w

∂x2
+ 2w2w∗ = 0.

One finds for the Painlevé expansion

w = φ−1
∞∑

j=0

wjφ
j

where the resonances are at −1, 0, 3 and 4. Furthermore

|w0|2 =−
(
∂φ

∂x

)2

w0w
∗
1 + w∗

0w1 =
∂2φ

∂x2

w0w
∗
1 − w∗

0w1 =−i∂φ
∂t

+

(
∂φ

∂x

)−1(
∂w0

∂x
w∗

0 − w0
∂w∗

0

∂x

)

i
∂w0

∂t
+
∂2w0

∂x2
=−4w0|w1|2 − 2w2

1w
∗
0

with the truncated expansion

w =
w0

φ
+ w1

where wj = 0 for j ≥ 2. The functions w and w1 are both seperate solutions
of the nonlinear Schrödinger equation. In order to show the equivalence of
these results with the Hirota forms given by

(
D2
x + iDt

)
g ◦ f = 0

one starts from one solution w = g/f and another solution u1 = g(1)/f (1).
Since

|w|2 =
∂2

∂x2
ln f

it follows that

|w|2 =
∂2

∂x2
lnφ+ |w1|2.

Now f = φf (1). Then we obtain

g = w0f
(1) + φg(1).
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Relabeling g, f, w, g(1), f (1), and w1 as g(n), f (n), w(n), g(n−1), f (n−1) and
w(n−1), one has

Theorem 18.2 If f (n) and g(n) satisfy

(
D2
x + iDt

)
g(n) ◦ f (n) = 0

|g(n)|2 = f (n) ∂
2f (n)

∂x2
−
(
∂f (n)

∂x

)2

and if

f (n) = φn−1f
(n−1)

g(n) = u0f
(n−1) + φn−1g

(n−1)

then the resulting equations in φn−1, u0, u
(n−1) are satisfied by the Painlevé

relations. Furthermore

f (n) =
n−1∏

i=0

φi.

Proof. For the proof we refer to Gibbon et al [50]. ♠

Example. The modified Korteweg-de Vries equation in two component
form

∂u

∂t
+ 6uv

∂u

∂x
+
∂3u

∂x3
= 0

∂v

∂t
+ 6uv

∂v

∂x
+
∂3v

∂x3
= 0

passes the Painlevé test and a self-consistent system of equations defining
a Bäcklund transformation. One finds

u = φ−1
∞∑

j=0

ujφ
j , v = φ−1

∞∑

j=0

vjφ
j .

The resonances arise at −1, 0, 1, 3, 4 and 5, and all the nontrivial com-
patability conditions at these points are satisfied, thereby demonstrating
that the system passes the Painlevé test. One obtains the following system
of equations

u0v0 = −
(
∂φ

∂x

)2

, u0v1 + u1v0 =
∂2φ

∂x2
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with

∂φ

∂t
+

3

u0

∂2u0

∂x2

∂φ

∂x
− 3

u0

∂u0

∂x

∂2φ

∂x2
+
∂3φ

∂x3
+

6

u0

∂u1

∂x

(
∂φ

∂x

)2

+ 6u1v1
∂φ

∂x
= 0

and a similar condition with u1 and v1 interchanged. Furthermore, vj =
uj = 0 for j ≥ 2, so that

u =
u0

φ
+ u1, v =

v0
φ

+ v1

where u1 and v1 are also solutions of the system. If one equates u and v to
reduce to the standard modified Korteweg-de Vries equation, then

u0 = v0 = i
∂φ

∂x

u1 = v1 =
1

2i

(
∂φ

∂x

)−1
∂2φ

∂x2

and the pair of conditions reduces to one condition

∂φ

∂t
+
∂3φ

∂x3
=

3

2

(
∂φ

∂x

)−1(
∂2φ

∂x2

)2

.

We now have the following. If

v(n) = u(n) =
g(n)

f (n)

and, for every, n, g(n) and f (n) satisfy

(
g(n)

)2

= f (n)∂
2f (n)

∂x2
−
(
∂f (n)

∂x

)2

3

(
∂g(n)

∂x

)2

= f (n)∂
4f (n)

∂x4
− ∂f (n)

∂x

∂3f (n)

∂x3
+ f (n)∂

2f (n)

∂x∂t
− ∂f (n)

∂x

∂f (n)

∂t

and if
f (n) = φn−1f

(n−1), g(n) = u0f
(n−1) + φn−1g

(n−1)

then φn−1 satisfies

∂φ

∂t
+
∂3φ

∂x3
=

3

2

(
∂φ

∂x

)−1(
∂2φ

∂x2

)2

for every n. ♣
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Example. The system of equations

∂2u1

∂x2
− ∂2u1

∂t2
= exp(u1) cosu2 +K exp(−u1)

∂2u2

∂x2
− ∂2u2

∂t2
= exp(u1) sinu2

has been studied by Steeb et al [112]. This equation arises when we study
the relativistic string model. The fundamental differential quartic form of
the world surface of the string are considered as the dynamical variables.
The coefficients of these forms obey the system. Introducing the new fields
v1 := exp(u1) and v2 = exp(iu2) we obtain

v1v2

(
∂2v1
∂x2

− ∂2v2
∂t2

)
− v2

(
∂v1
∂x

)2

+ v2

(
∂u1

∂t

)2

=
1

2
v3
1v

2
2 +

1

2
v3
1 + v1v2

v2

(
∂2v2
∂x2

− ∂2v2
∂t2

)
−
(
∂v2
∂x

)2

+

(
∂v2
∂t

)2

=
1

2
v1v

3
2 − 1

2
v1v2.

Inserting the ansatz

v1 ∝ φnv10, v2 ∝ φmv20

we find more than one branch. If we assume that n,m < 0, then n+m = −2.
Determining the expansion coefficients v10 and v20 we obtain

(n(n− 1) − n2)(φ2
x − φ2

t ) =
1

2
v10v20

(m(m− 1) −m2)(φ2
x − φ2

t ) =
1

2
v10v20.

Consequently, m = n = −1 and v10 or v20 can be chosen arbitrarily. Thus
0 is a resonance. The resonances are −1, 0, 1 and 2. At the resonances the
Painlevé test is passed. Also for the other branches we find that the Painlevé
test is passed. Thus system passes the Painlevé test. This coincides with
the fact that the system admits a Lax representation. Let us now construct
solutions to the system. The Painlevé analysis motivates an ansatz for the
functions v1 and v2, namely

v1 = φ−1v10 + v11, v2 = φ−1v20 + v21

where we assume that v11 and v21 satisfy the system. We choose the trivial
solution v11 = v21 = 0 and obtain

v1 = φ−1v10, v2 = φ−1v20.
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Inserting this ansatz into the system and using the Hirota bilinear operators
we find

φ2
(
D2
x −D2

t

)
v20 ◦ v20 − v2

10

(
D2
x −D2

t

)
φ ◦ φ= v10v

3
20 − v10v20φ

2.

φ2v20
(
D2
x −D2

t

)
v10 ◦ v10 − v2

10v20
(
D2
x −D2

t

)
φ ◦ φ= v3

10v
2
20 + v3

10φ
2

+ 2Kv10v20φ
3 .

This leads to

(
D2
x −D2

t − µ
)
v20 ◦ v20 =−v10v20(

D2
x −D2

t − µ
)
φ ◦ φ=−v10v20

v20
(
D2
x −D2

t − µ
)
v10 ◦ v10 = v3

10 − 2Kv10v20φ

where µ is a constant to be determined. We expand v10, v20 and φ as power
series in ε. Substituting these series in this system and collecting terms
with the same power of ε we obtain a hierarchy of linear partial differential
equations. ♣

Finally, we mention that a partial differential equation which can be ex-
pressed within Hirota’s bilinear formalism does not pass the Painlevé test
in general. An example is

∂u1

∂t
+ c1

∂u1

∂x
= u1(a1 − u2)

∂u2

∂t
+ c2

∂u2

∂x
=−u2(a2 − u1)

where a1 6= 0 and a2 6= 0. This system does not pass the Painlevé test.

Another example is

∂3u

∂x2∂t
− ∂u

∂x
− ∂u

∂t
=

∂

∂x

(
2
∂w

∂x

∂v

∂t
+ 4u2

)

∂v

∂x
= u,

∂w

∂t
= u

where

F̃ := D2
xD

2
t −DxDt −D2

t .

There exists a two-soliton solution, but none higher have been found. The
system does not pass the Painlevé test. At the heighest resonance (r = 6)
the compatibility condition is not identically satisfied.
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18.9 Integrability Concepts

In literature there are different conecpts of integrability. Here we list some
of them.

1. Integrability through linearization, (sometimes called C-integrability)
means that the nonlinear equation may be linearized through a local
transformation. The standard prototype is Burgers equation which
becomes linear by the Cole-Hopf transformation. Integrability through
linearization is close to the original and somehow vague concept of an
integrable dynamical system as a system for which one can find a
suitable transformation to another system with known solutions.

2. Liouville integrability. Liouville’s theorem relates integrability to the
existence of constants or invariants or integrals of the motion for
Hamiltonian systems. Integrals of motion can also be obtained for
dissipative systems such as the Lorenz equation.

3. Poincaré integrability demands that the integrating transformation
be analytic so that pertubation methods provide actual integration.

4. Normal form integrability is a generalization of Poincaré’s idea refer-
ring to the possibility of reducing an equation to the simplest possible
form.

5. Painlevé integrability refers to local analytic properties of differential
equations (singularity structure). This notion has the advantage of
allowing investigations to be made algorithmically (Painlevé test) and
of providing criteria of “partial integrability”. The Painlevé test was
discussed in detail in this chapter.

6. IST-solvability of partial differential equation’s, (sometimes called S-
integrability) corresponds to the fact that the system is associated
with a linear eigenvalue (scattering) problem and that it can be “lin-
earized” through an inverse scattering transform.

7. Lax integrability of partial differential equation’s, is closely related
to the concepts 5, 6, 8 and refers to the possibility of expressing
the equation as the consistency condition for a suitable pair of linear
equations (Lax pair).

8. N -soliton integrability of partial differential equation’s, N = 1, 2, . . .
refers to the existence of multiple parameter families of special so-
lutions (multisoliton solutions). This property is closely related to
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algebraic properties of the equation, such as the existence of an infi-
nite sequence of conserved quantities and can also be tested (to some
extent) in the framework of Hirota’s bilinear forms. This criteria is re-
ferred to in contributions. The Hirota technique is discussed in detail
in Steeb and Euler [118].

18.10 Computer Algebra Applications

For the nonlinear ordinary differential equation

d2u

dx2
= u3

we find the equations for the expansion coefficients a[k]. For the expansion
we can set x0 = 0.

// painleve.cpp

#include <iostream>

#include <sstream>

#include "symbolicc++.h"

using namespace std;

int main()

{

int n = 12;

Symbolic x("x");

Symbolic u("u");

Symbolic* a = new Symbolic[n];

for(int k=0;k<n;k++)

{

ostringstream os;

os << "a" << k;

a[k] = os.str();

}

u = u[x];

u = 0;

for(int j=0;j<n;j++)

{

u += (x^(j-1))*a[j];

}



18.11. Exercises 351

Symbolic expr = df(u,x,2) - u*u*u;

Symbolic* c = new Symbolic[n/2];

for(int k=0;k<n/2;k++)

{

c[k] = expr.coeff(x,-3+k);

}

for(int l=0;l<n/2;l++)

{

cout << "c[" << l << "] = " << c[l] << endl;

}

delete a;

delete c;

return 0;

}

18.11 Exercises

(1) The SO(2, 1) invariant nonlinear sigma model can be written as

(Z + Z)
∂2Z

∂x∂t
− 2

∂Z

∂x

∂Z

∂t
= 0

where Z denotes the complex conjugate of Z. Setting Z = u + iv with
u and v are real fields show that the partial differential equation can be
written as system

u
∂2u

∂x∂t
− ∂u

∂x

∂u

∂t
+
∂v

∂x

∂v

∂t
= 0

u
∂2v

∂x∂t
− ∂u

∂t

∂v

∂x
− ∂u

∂x

∂v

∂t
= 0 .

Perform the Painlevé test for this system and show that the resonances are
−1, 0, 1, 2. Show that the system passes the Painlevé test. Also find the
Kowalevski exponents and associate them with conservations laws.

(2) Consider the Hamilton function

H(p,q) =
1

2

(
p2
1 + p2

2

)
+ q21q2 +

ε

3
q2

where ε ∈ R. Write down the equations of motion. Show that the equations
of motion are invariant under

t→ α−1t, q1 → α2q1, q2 → α2q2
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p1 → α3p1, p2 → α3p2 .

Find the Kowalevski exponents and give an interpretation of the invariance.
Perform a Painlevé analysis of the system.

(3) The Chazy equation is the third order ordinary differential equation
given by

d3u

dx3
= 2u

du

dx
− 3

(
du

dx

)2

.

Perform a Painlevé analysis of this equation. Show that the dominant
behaviour is given by (equation now considered in the complex domain)

u(t) = −6(t− t0)
−1 .

Show that the resonances are given by {−3,−2,−1}.

(4) Show that the partial differential equation

∂

∂x

(
∂3u

∂x2∂z
− 3

4

(
∂2u

∂x∂z

)2
1

∂u/∂z
+ 3

∂u

∂x

∂u

∂z

)
=

∂2u

∂y∂z

passes the Painlevé test and the resonances are given by −1, 1, 3, 4.



Chapter 19

Ziglin’s Theorem and
Integrability

19.1 Introduction

In two famous papers Ziglin [144], [145] studied conditions necessary for
an analytic Hamiltonian system with N ≥ 2 degrees of freedom to possess
single-valued meromorphic first integrals, which are functionally indepen-
dent at the Hamilton function H . Functional dependence means linear
dependence of the differentials at each point. Ziglin did not limit himself
to a local study around a singularity as it is done in the usual Painlevé
test approach. Rather he investigated the monodromy properties around
particular (periodic) solutions of a Hamiltonian system. The central rôle
is played by the normal variational equation. The basic results are two
theorems. The first theorem gives necessary conditions for the existence
of a given number r > 0 of additional meromorphic first integrals for the
Hamiltonian system in terms of the monodromy group of the system in
variations along some phase curve of the system. The second theorem is a
corollary of the first theorem for the most interesting case r = N −1. Then
he applied the theorems to the Euler-Poisson system describing the motion
of a a heavy rigid body around a fixed point, the Hénon-Heiles system and a
Hamilton function which arises in Yang-Mills theory. Now various authors
[140], [141], [142], [143], [125] have applied these theorems to Hamilton sys-
tems in order to find the regions of non-integrability. In particular, Yoshida
[140], [141], [142], [143], simplified the theorems for Hamilton systems with
two degrees of freedom. In particular the case in which the potential U is
a polynomial of respective degrees 3 and 4 has been studied in detail.

353
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19.2 Ziglin’s Theorems

First we consider the special case of a Hamilton function with two degrees
of freedom. This case has been studied by Yoshida [141], [142], [143] in
detail. Let

H(p,q) =
1

2

(
p2
1 + p2

2

)
+ U(q1, q2) (1)

be an analytic Hamilton function with two degrees of freedom and an alge-
braic potential U . Thus the equations of motion are given by

d2q1
dt2

= −∂U

∂q1
,

d2q2
dt2

= − ∂U

∂q2
. (2)

The variational equations take the form

d2y1
dt2

= −
2∑

j=1

∂2U

∂q1∂qj
yj ,

d2y2
dt2

= −
2∑

j=1

∂2U

∂q2∂qj
yj . (3)

It is assumed that the equation of motion (2) admits a periodic solution
(straight-line periodic solution)

q1(t) = c1φ(t), q2(t) = c2φ(t) (4)

where c1 and c2 are constants.

Example. Consider the potential U(q) = 1
2q

2
1q

2
2 for (1). Then a periodic

solution arises for q1(t) = q2(t) = q(t), where d2q/dt2 + q3 = 0. The so-
lution of this nonlinear differential equation can be expressed with Jacobi
elliptic functions. ♣

By an orthogonal transformation of the coordinates it is always possible
that this solution can be reexpressed as

q1(t) = 0, q2(t) = φ(t). (5)

For this particular solution the equation of motion reduces to

d2φ

dt2
= −∂U(0, φ(t))

∂q2
. (6)

The constant of motion of this second order differential equation is given
by

1

2

(
dφ

dt

)2

+ U(0, φ) = I. (7)
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Consequently the function φ is determined by the inverse function of

t =

∫ φ dw

(P (w))1/2
(8)

where
P (w) = 2(I − U(0, w)). (9)

Next we introduce the normal variational equation. The variational
equations given by (3) decouple. By normal (or reduced) variational equa-
tion (with respect to q1(t)) we mean the differential equation for y1, i.e.,

d2y1
dt2

= −∂
2U(0, φ(t))

∂q21
y1 . (10)

A Riemann surface Γ is defined by the function

z :=
√
P (w) (11)

with P (w) given by (9). The roots of P (w) = 0 give branch points at
w = w1, w2, . . .. Next we take an arbitrary closed circuit γ on the Riemann
surface Γ. After this closed circuit, the value of t in (8) is increased by

T =

∮

γ

dw

(P (w))1/2
. (12)

If this value is not equal to zero, T is considered a period of the function
φ(t). For each closed circuit γ on Γ there corresponds a 2× 2 matrix g(γ),
called the monodromy matrix, from the evolution of the fundamental set
of solutions of the normal variational equation (10) along the circuit γ.
The set of all monodromy matrices, which share a common base point of
the closed circuit, from a group G, called the monodromy group of the
normal variational equation.

Definition 19.1 A monodromy matrix g is said to be non-resonant when
the eigenvalues (ρ, 1/ρ) of the 2 × 2 matrix are not roots of unitary.

Then one has the following necessary condition for the existence of an
additional analytic integral.

Theorem 19.1 Suppose the Hamilton function (1) has an additional first
integral I which is holomorphic at least in the neighbourhood of the given
straight-line solution q1(t) = p1(t) = 0. Further, suppose there exists a
non-resonant monodromy matrix g1 in G. Then any monodromy matrix g2
in G must have the property that either
(i) g1 and g2 commute or
(ii) trg2 = 0, where tr denotes the trace.
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A completely self-contained proof is given by Yoshida [141] for the homo-
geneous potential case. This statement can be rephrased as a sufficient
condition for the non-existence of an algebraic integral, i.e.,

Theorem 19.2 If there exist two monodromy matrices g1, g2 in G which
have one of the following properties, then the Hamilton system (1) cannot
have an additional analytic integral:
(i) g1, g2 both non-resonant and [g1, g2] 6= 0 (non-commuting).
(ii) g1 : non-resonant, g2 : trg2 6= 0, and [g1, g2] 6= 0.
(iii) g1: non-resonant, g2 : trg2 = ±2 but non-diagonalizable.

Condition (i) is useful for the nonintegrability proof of homogeneous poten-
tials while condition (ii) and (iii) are used for non-homogeneous potentials
in general.

For homogeneous potential functions U(q1, q2) Yoshida [141] has simplified
the proof for non-integrability. The theorem is as follows:

Theorem 19.3 Let U(q1, q2) be a homogeneous potential function of an
integer degree k and compute the quantity (integrability coefficient) λ
defined by

λ := trUqq(c1, c2) − (k − 1) (13)

where Uqq is the 2× 2 Hessian matrix of U(q1, q2), tr denotes the trace and
c = (c1, c2) is a solution of the algebraic equation

c =
∂U

∂q(c)
. (14)

If λ is the region Sk defined below, then the two degrees of freedom Hamil-
tonian system (1) is non-integrable, i.e., there cannot exist an additional
integral φ which is complex analytic in q and p. the regions Sk are defined
as follows

(i) k ≥ 3

Sk = {λ < 0, 1 < λ < k − 1, k + 2 < λ < 3k − 2, . . . ,

j(j − 1)k/2 + j < λ < j(j + 1)k/2− j, . . .}
(ii) S1 = R \ {0, 1, 3, 6, 10, . . . , j(j + 1)/2, . . .}

(iii) S−1 = R \ {1, 0,−2,−5,−9, . . . ,−j(j + 1)/2 + 1, . . .}
(iv) k ≤ −3

Sk = {λ > 1, 0 > λ > −|k| + 2,−|k| − 1 > λ > −3|k|+ 3,

−3|k| − 2 > λ > −6|k|+ 4, . . . ,−j(j − 1)|k|/2− (j − 1) > λ

> −j(j + 1)|k|/2 + (j + 1), . . .} . (15)
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Let us now consider the general case Ziglin [144], [145]. We recall the
definition of the reduced variational equation. Consider a Hamilton system

du

dt
= F(u) (16)

with a Hamilton function H on the 2N -dimensional complex analytic sym-
plectic manifoldM2N . Let u = φ(t) be a nonconstant solution this equation
and let

dξ

dt
= TF (φ(t))ξ, ξ ∈ TΓM (17)

be the corresponding variational equation. Denote by Γ the phase curve of
the solution and by B the factor bundle TΓM/TΓ (i.e., the normal bundle
of the curve Γ), with π : TΓM → B the corresponding projection. This
equation induces on B the equation in normal variations

dη

dt
= π∗T (F )(π−1η), η ∈ B. (18)

The Hamilton function H induces a first integral of (18), linear on the fibres
of the bundle B. The level surface

Bp = {η ∈ B | dH(η) = p }, p ∈ C

of the integral dH is called the reduced phase space of (18). The restriction
of (18) on Bp is called the variational equations. The fibres of the reduced
phase space are (2N−2)-dimensional affine space, inheriting the symplectic
structure from M2N . Suppose that Γ is not simply connected. Fix a point
u0 ∈ Γ and denote by π1(Γ,u0) the fundamental group of Γ. To every loop
γ ∈ π1 there corresponds a symplectic affine transformation g(γ) defined
as follows: Let u1 ∈ Γ and let α : [0, 1] → Γ be a path connecting u0 with
u1. Let Ω = (t, φ(t)) be the integral curve of the solution u = φ(t) and let
P1, P2 be the projections

P1 : (t, φ(t)) → t, P2 : (t, φ(t)) → φ(t).

Let α̂ : [0, 1] → Ω be a covering path of α, i.e., P2α̂ = α. Denote by ut1t2η

the flow box of (18), i.e. ut1t2η = ψ(t2,η), where ψ(t, η) is a solution of
(18) with initial values ψ(t1,η) = η. Then, if φ(t1) = u0, φ(t2) = u1,
and (t1,φ(t1)) = α̂(0), (t2,φ(t2)) = α̂(1) we define M(α)η = ut1t2η. For
u1 = u0 we obtain the antihomomorphism M : π1(Γ) → Aff(Fp/u0

). The
image G of this representation is called the reduced group of monodromy.
A first integral of (16) gives rise to a first integral of (18). Conversely, a first
integral F (t,η) of (18) induces a first integral (invariant function) F (t0,η)
of the reduced group of monodromy G.
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Definition 19.2 A symplectic linear transformation A : R2k → R2k is
called resonant if its eigenvalues λ1, . . . , λk, λ

−1
1 , . . . , λ−1

k satisfy an equation
of type

λm1
1 · · ·λmk

k = 1

with some integers m1, . . . ,mk and

k∑

j=1

m2
j 6= 0.

Theorem 19.4 If a group G of symplectic affine transformations: G ⊂
Aff(R2r) possesses r holomorphic first integrals and if there exits a nonres-
onant element h ∈ G, then any other transformation h′ ∈ G has the same
fixed point as h and transforms the set of eigenvectors of h into itself. If
any set of k eigenvalues of h′ never forms a regular polygon centered at the
origin, then h and h′ commute.

19.3 Applications

Ziglin [145] considered the Euler-Poisson system describing the motion of
a heavy rigid body around a fixed point

dM

dt
= M×Ω + µγ × l,

dγ

dt
= γ ×Ω (19)

× denotes the cross product. Here M = (M1,M2,M3) is the angular mo-
mentum of the body, Ω = (M1/A,M2/B,M3/C) is the angular velocity,
A, B and C are principal moments of intertia, µ is the weight of the body
multiplied by the distance from the fixed pint to the centre of gravity,
γ = (γ1, γ2, γ3) is the unit vertical vector and l = (X0, Y0, Z0) is the unit
vector with origin at the fixed point and pointing towards the centre of
gravity. All the vectors are considered in the moving system of coordinates
attached to the principal axes of inertia. In the six-dimensional complex
phase space C6 with coordinates M and γ, the system has three function-
ally independent, analytic first integrals. These are

c= γ2 (a geometric integral)

ε= 〈M,γ〉 (the areas integral)

H = 〈M,Ω〉 + µ〈γ, l〉 (the energy integral)

where 〈 , 〉 denotes the scalar product. Let

M5 := {x ∈ C6 | c(x) = 1 }, M4
0 := {x ∈ M5 | ε(x) = 0 } .
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Definition 19.3 A general (partial) first integral of system (19) is any
integral of system (9) on M 5 (respectively, M4

0 ) that is functionally inde-
pendent of ε and H (respectively, of H0 = H |M0).

The result may be stated as two theorems.

Theorem 19.5 System (19) has a general additional first integral only in
the following three cases:
Euler’s case (µ = 0)
Lagrange’s case (A = B,X0 = Y0 = 0)
Kovalevskaya’s case (A = B = 2C,Z0 = 0).

Theorem 19.6 System (19) has a partial additional first integral only in
the following four cases:
Euler’s case
Lagrange’s case,
Kovalevskaya’s case
Goryachev-Chaplygin’s case (A = B = 4C,Z0 = 0).

Ziglin [145] also considered the Hénon-Heiles model

H(p,q) =
1

2

(
p2
1 + p2

2 + q21 + q22
)

+
1

3
q31 − q1q

2
2 .

This system provides a model for the motion of a star in the gravitational
field of a galaxy, as well as for the oscillations of atoms in a three-atomic
molecule. The results of numerical integration show that the Hénon-Heiles
system has no additional analytic first integral on the level surfaces of the
Hamilton function corresponding to the sufficiently high values of H . In
the complex phase space this sytem does not admit a meromorphic first
integral on sufficiently low surfaces level of the Hamilton function. One has
the following.

Theorem 19.7 The Hénon-Heiles system has no meromorphic first inte-
gral on the surfaces

Sε = {x ∈ C4 |H(x) = ε }

where |ε| 6= 0 is small enough.

Ziglin [145] also studied the Hamilton function

H(p,q) =
1

2

(
p2
1 + p2

2

)
+

1

2
q21q

2
2

which arises in Yang-Mills theory.
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Theorem 19.8 The Hamilton equations of motion with this Hamilton func-
tion have no meromorphic first integrals functionally independent of H in
any domain containing the origin of coordinates.

Proof. Assume that such an first integral exists and expand it into a
series of quasihomogeneous functions in the variables p = (p1, p2) and
q = (q1, q2), while the weight of p is 2 and that of q is 1. Since H is
quasihomogeneous, each term of this series is itself a first integral and so
the system under consideration has a rational first integral, functionally
independent of H , in the complex phase space C4. This assumption leads
to a contradiction. Making the symplectic change of variables

p1 =
x1 + x2√

2
, q1 =

y1 + y2√
2

, p2 =
x1 − x2√

2
, q2 =

y1 − y2√
2

yields

H(x,y) =
1

2

(
x2

1 + x2
2

)
+

1

8

(
y2
1 − y2

2

)2

with equations of motion

dy1
dt

= x1,
dy2
dt

= x2

dx1

dt
=−1

2

(
y2
1 − y2

2

)
y1,

dx2

dt
=

1

2

(
y2
1 − y2

2

)
y2.

Obviously, H is invariant under the involutive symplectic diffeomorphism

J : C4 → C4, J : (x1, x2, y1, y2) 7→ (−x1, x2,−y1, y2).

Set

M ′ = { (x,y) ∈ C4 |x1 6= 0 or y1 6= 0 }, M̂ = M ′/J,

and let

π : M ′ 7→ M̂

be the canonical projection. If the system with Hamilton function H has a
rational first integral in C4, functionally independent of H , then the system
induced on M̂ has a meromorphic first integral, functionally independent
of Ĥ = H ◦ π−1. The system has a one-parameter family of particular
solutions x(t) = φ(t,H)(H > 0)

x2(t,H) = y2(t,H) = 0

x1(t,H) =−2
√
Hsn(τ, 1/

√
2)dn(τ, 1/

√
2)

y1(t,H) = (8H)1/4cn(τ, 1/
√

2),
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and τ := t(2H)1/4, where sn, dn and cn are the Jacobi elliptic functions.
The corresponding solutions

x(t) = φ̂(t,H) = π ◦ φ(t,H)

of the induced system are single-valued, meromorphic and double periodic
with respect to t having periods

T̂1(H) = 2K(1/
√

2)(2H)−1/4

and
T̂2(H) = 2iK(1/

√
2)(2H)−1/4 .

The solutions have a single pole

a(H) = iK(1/
√

2)
√

(2H)−1/2 (mod T̂1,2(H))

in each period cell. Consequently, the corresponding phase curves Γ̂(H) are
tori with one point

x′(H) = φ̂(a(H), H)

removed. Let
αj(H) : [0, 1] → Γ̂(H)

j = 1, 2 be loops with common base point x0 ∈ <Γ̂(H) and such that their

lifts relative to φ̂ are rectilinear paths whose origins and end-points differ
by T̂j(H). The eigenvalues of the transformation g(α1(H)) are positive and
distinct. Since

dH(φ(t,H)) = x1(t,H)dx1 +
1

2y3
1(t,H)

dy1

does not depend on x′2 = dx2 and y′2 = dy2, one can take x′2, y
′
2 as coordi-

nates on the fibres of the reduced phase space. Then the reduced linearized
system of differential equations becomes

dy′2
dt

= x′2,
dx′2
dt

=
1

2
y2
1(t,H)y′2

or
d2y′2
dt2

+ b(t,H)y′2 = 0, b(t,H) = − 1

2y2
1(t,H)

.

For real t one has b(t,H) < 0. Therefore the eigenvalues of the transfor-
mation g(α1(H)) are positive and distinct. In order that the system under
consideration has a meromorphic first integral, functionally independent
of H , it is necessary that the transformation g(α2(H)) either preserves
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or permutes the eigendirections of the transformation g(α1(H)). One can
show that the commutator of the transformations g(α1,2(H)) has negative
eigenvalues and so g(a2(H)) can neither preserve nor permute the eigendi-
rections g(α1(H)).

Yoshida [140] studied the Hamilton function

H(p,q) =
1

2

(
p2
1 + p2

2

)
+

1

4

(
q41 + q42

)
+
g

2
q21q

2
2

where g is a real constant For this Hamilton function one finds that except
for the three values g = 0, 1, 3, additional mermomorphic first integrals
cannot exist.

The Hamilton function

H(p,q) =
1

2

3∑

j=1

p2
j +

2m−1

m

(
(q1 − q2)

2m
+ (q2 − q3)

2m
+ (q3 − q1)

2m
)

where m = 1, 2, 3, . . . is non-integrable for m > 2. The exceptional cases
m = 1 and m = 2 are integrable. By a proper canonical transformation
which eliminates the degree of freedom of the centre of mass, we have the
reduced Hamilton function

H(p,q) =
1

2

(
p2
1 + p2

2

)
+

1

2m

(
(
√

3q1 − q2)
2m + (

√
3q1 + q2)

2m + (2q2)
2m
)
.

From m = 1 and m = 2 the potential U in this equation is a central force.
Consequently, the angular momentum

I(p,q) = p1q2 − p2q1

is an additional meromorphic integral.

Horozov [58] studied the following Gross-Neveu models. Let g be a simple
Lie algebra and let R be its entire root system. The equations of motion
are given by

dxj
dt

=
∂H

∂yj
,

dyj
dt

= −∂H

∂xj
, j = 1, . . . , n

where

H(x,y) =
1

2

n∑

j=1

y2
j +

∑

α∈R

exp


ic

n∑

j=1

αjxj
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with a constant c and i =
√
−1. As we are interested in integrability in

the complex domain we can make a linear change of the variables to get
rid of the factor ic. Thus we may assume ic = 1 and let z ∈ Cn,y ∈ Cn.
Horozov showed that the classical Gross-Neveu models corresponding to the
classical Lie algebras so(5), so(6), so(7), sp(4), sp(6), sl(3) and sl(4) do not
possess independent holomorphic first integrals in a quantity required for
their complete integrability.

1. sl(l + 1), 1 ≥ 2. The root system of this simple Lie algebra is ±(αp −
αq), 1 ≤ p < q < l+1, where 〈αm, xp〉 = δm,p, where δm,p is the Kronecker’s
delta. The corresponding Hamilton function is

H(x,y) =
1

2

l+1∑

p=1

y2
p +

∑

p6=q

exp(xp − xq).

2. so(2l+ 1), l ≥ 2. The root system of this simple Lie algebra is ±αp, 1 ≤
p ≤ l, ±αp ± αq , 1 ≤ p < q ≤ l with Hamilton function

H(x,y) =
1

2

l∑

p=1

y2
p +

l∑

p=1

(exp(xp) + exp(−xp))

+
∑

p<q

(exp(xp + xq) + exp(−xp − xq)) +
∑

p6=q

exp(xp − xq).

3. sp(2l), l ≥ 2. The root system of this simple Lie algebra is ±2αp, 1 ≤
p ≤ l, ±αp ± αq , 1 ≤ p < q ≤ l with Hamilton function

H(x,y) =
1

2

l∑

p=1

y2
p +

l∑

p=1

(exp(2xp) + exp(−2xp))

+
∑

p<q

(exp(xp + xq) + exp(−xp − xq)) +
∑

p6=q

exp(xp − xq).

4. so(2l), l ≥ 3. The root system is ±αp±αq , 1 ≤ p < q ≤ l with Hamilton
function H ,

H(x,y) =
1

2

l∑

p=1

y2
p +
∑

p>q

(exp(xp+xq)+exp(−xp−xq))+
∑

p6=q

exp(xp−xq).

Theorem 19.9 The Gross-Neveu models for the Lie algebras so(5), so(6),
so(7), sp(4), sl(3), sl(4), so(6) do not possess enough independent holo-
morphic integrals to match the number of degrees of freedom.
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For the Hamilton function

H(p,q) =
1

2

(
p2
1 + p2

2

)
+
a

4

(
q41 + q42

)
+ cq1q2.

Steeb [125] showed that the system is non-integrable for c 6= 0.

The Toda lattice

H(p,q) =
1

2

(
p2
1 + p2

2

)
+ exp(αq1 − q2) + exp(−αq1 − q2)

has been studied by Yoshida et al [141]. This system is integrable when α =
0, 1 and

√
3. The application of Ziglin’s theorem shows that this Hamilton

function may have an additional first integral only when α2 = n(n − 1)/2
where n ∈ N.

19.4 Computer Algebra Application

We derive the variational equation for a Hamilton system with two degrees
of freedom

// hamiltonvar.cpp

#include <iostream>

#include "symbolicc++.h"

using namespace std;

int main(void)

{

Symbolic H("H"); // Hamilton function

Symbolic q1("q1"), q2("q2"), p1("p1"), p2("p2");

Symbolic u1("u1"), u2("u2"), v1("v1"), v2("v2");

Symbolic q[2]={q1,q2}, p[2]={p1,p2}, u[2]={u1,u2},

v[2]={v1,v2}, qt[2], pt[2], ut[2], vt[2];

// Hamilton function

H = (p[0]*p[0]+p[1]*p[1]+q[0]*q[0]+q[1]*q[1])/2

+ q[0]*q[0]*q[1]-q[1]*q[1]*q[1]/3;

for(int j=0;j<2;j++)

{

pt[j] = -df(H,q[j]); qt[j] = df(H,p[j]);

cout << "dp" << j << "/dt = " << pt[j] <<endl;

cout << "dq" << j << "/dt = " << qt[j] <<endl;
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}

for(int j=0;j<2;j++)

{

ut[j] = v[j]; vt[j] = 0;

for(int l=0;l<2;l++)

{

vt[j] += -df(df(H,q[j]),q[l])*u[l];

}

cout << "du" << j << "/dt = " << ut[j] << endl;

cout << "dv" << j << "/dt = " << vt[j] << endl;

}

return 0;

}

19.5 Exercises

(1) The Störmer problem can be reduced to the Hamilton function (a is
a constant)

H(pρ, pz, ρ, z) =
1

2
(p2
ρ + p2

z) +
aρ2

2(ρ2 + z2)3
.

Show that this Hamilton function has a homogeneous potential with degree
k = −4. Show that the Hessian matrix is given by

(
−5 0
0 3/2

)
.

Apply Ziglin theorem to show that the system is non-integrable.
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Chapter 20

Lie Algebra Valued
Differential Forms

20.1 Introduction

In chapter 8 we introduced differential forms and in chapter 6 Lie algebras.
In this chapter we extend the differential forms over R or C to Lie algebra
valued differential forms which play an important role in the derivation of
the Yang-Mills and self-dual Yang-Mills equations. The Yang-Mills equa-
tions are an extension of Maxwell’s equations. Whereas Maxwell’s equa-
tions are linear the Yang-Mills equations are nonlinear. From the self-dual
Yang-Mills equations we can derive soliton equations via exact reductions.
We also show that a system of ordinary diffferential equation with chaotic
behaviour can be derived from the Yang-Mills equations.

Let M be a C∞ finite-dimensional oriented pseudo-Riemannian manifold
of dimension m and pseudometric signature (k, q), k + q = m. The metric
tensor field is denoted by g. Let us recall the notations that were previously
introduced

α ∧ β, exterior product of the differential forms α and β
dα, exterior derivative of the differential form α
Z α, interior product (contraction)
LZα, Lie derivative of the differential form α with respect to the vector

field Z
f∗α, pull back of a differential form α by a map f
∗α, Hodge star operation
[X,Y ], commutator of two vector fields X and Y .

367
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Denote by
∧
p T

∗M
∣∣∣
x

the set of all C∞ p-differential forms on M for each

p = 0, 1, . . . ,m. Let L be a finite dimensional Lie algebra (dimL = n) over
the real field.

Definition 20.1 A Lie algebra valued p-differential form on M is an

element of the tensor product
∧
p T

∗M
∣∣∣
x
⊗ L. If {Xi, i = 1, . . . , n} is a

basis for L, then a Lie algebra valued p-differential form α̃ can be written
as

α̃ :=

n∑

i=1

αi ⊗Xi (1)

where αi ∈
∧
p T

∗M
∣∣∣
x
.

Throughout the Lie algebra valued differential forms are denoted by Greek
letters with a tilde. Real valued differential forms are denoted by Greek
letters without a tilde.

The actions of the Hodge operator ∗ and the exterior derivative d for a Lie
algebra valued differential form may be consistently defined by

∗α̃ :=

n∑

i=1

(∗αi) ⊗Xi (2)

dα̃ :=

n∑

i=1

(dαi) ⊗Xi (3)

for any choice of a basis X1, . . . , Xn for L. Moreover, we define consistently

Z α̃ :=

n∑

i=1

(Z αi) ⊗Xi (4)

f∗α̃ :=
n∑

i=1

(f∗αi) ⊗Xi (5)

LZ α̃ :=

n∑

i=1

(LZαi) ⊗Xi (6)

β ∧ α̃ :=

n∑

i=1

(β ∧ αi) ⊗Xi (7)

d(β ∧ α̃) := (dβ) ∧ α̃+ (−1)pβ ∧ dα̃ (β : p-form). (8)
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As a consequence of the definition (3) we find that

ddα̃ = 0. (9)

In the following let

α̃ :=

n∑

j=1

αj ⊗Xj , β̃ :=

n∑

j=1

βj ⊗Xj

be two Lie algebra valued differential forms, where αi (i = 1, . . . , n) are
p-forms and βj (j = 1, . . . , n) are q-forms.

Definition 20.2 The bracket [ , ] of Lie algebra valued differential forms

α̃ and β̃ is defined as

[α̃, β̃] :=

n∑

i=1

n∑

j=1

(αi ∧ βj) ⊗ [Xi, Xj ]. (10)

From the definition it follows that the bracket [ , ] has the following prop-
erties

[α̃, β̃ + δ̃] = [α̃, β̃] + [α̃, δ̃]

[α̃, β̃] = (−1)pq+1[β̃, α̃] (11)

(−1)pr[α̃, [β̃, γ̃]] + (−1)pq[β̃, [γ̃, α̃]] + (−1)rq[γ̃, [α̃, β̃]] = 0 (12)

where γ̃ is a Lie algebra valued r-differential form and δ̃ is a Lie algebra
valued q-form. Property (11) is called the Z2-graded anticommutativity
law and property (12) is the Jacobi identity.

As a consequence of the definition of [ , ] and ∗ we find

[α̃, ∗α̃] = 0. (13)

As a consequence of the Jacobi identity we find that

[α̃, [α̃, α̃]] = 0. (14)

Moreover, we obtain
f∗[α̃, β̃] = [f∗α̃, f∗β̃] (15)

LZ [α̃, β̃] = [α̃, LZ β̃] + [LZ α̃, β̃] (16)

d[α̃, β̃] = [dα̃, β̃] + (−1)p[α̃, dβ̃]. (17)
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20.2 Covariant Exterior Derivative

Definition 20.3 Let α̃ be a Lie algebra valued one-form and let β̃ be a
Lie algebra valued p-form. The covariant exterior derivative of a Lie
algebra valued p-form β̃ with respect to a Lie algebra valued one-form α̃ is
defined as

D
α̃
β̃ := dβ̃ − g[α̃, β̃] (18)

where

g :=

{
−1 p even
− 1

2 p odd
. (19)

Thus D
α̃
β̃ is a Lie algebra valued (p+ 1)-form. In particular, we have

D
α̃
α̃ = dα̃+

1

2
[α̃, α̃] (20)

and
D
α̃
(D

α̃
α̃) = 0. (21)

This equation is called the Bianchi identity. The proof is as follows

D
α̃
(D

α̃
α̃) =D

α̃
(dα̃+

1

2
[α̃, α̃])

= d(dα̃+
1

2
[α̃, α̃]) + [α̃, dα̃+

1

2
[α̃, α̃]]

=
1

2
d[α̃, α̃] + [α̃, dα̃]

=
1

2
[dα̃, α̃] − 1

2
[α̃, dα̃] + [α̃, dα̃].

Since
[dα̃, α̃] = −[α̃, dα̃]

which is consequence of (12) it follows that D
α̃
(D

α̃
α̃) = 0.

Theorem 20.1 Let α̃ be a Lie algebra valued one-form. Then

d(D
α̃
α̃) =

1

2
([D

α̃
, α̃] − [α̃,D

α̃
α̃]). (22)

Proof. Since ddα̃ = 0 it follows from (20) that

d(D
α̃
α̃) =

1

2
d[α̃, α̃] =

1

2
[dα̃, α̃] − 1

2
[α̃, dα̃].

Owing to

dα̃ = D
α̃
α̃− 1

2
[α̃, α̃] (23)
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and [α̃, [α̃, α̃]] = 0 we obtain the identity. ♠

Example. Let

α̃ =
dx1

x1
⊗
(

1 0
0 0

)
+
dx2

x1
⊗
(

0 1
0 0

)

where 0 < x1 <∞, −∞ < x2 <∞ and g = −1/2. Then

dα̃ = −dx1 ∧ dx2

x2
1

⊗
(

0 1
0 0

)

and

[α̃, α̃] =
2dx1 ∧ dx2

x2
1

⊗
(

0 1
0 0

)
.

Consequently

D
α̃
α̃ = dα̃+

1

2
[α̃, α̃] = 0.

We used that dx1 ∧ dx1 = 0 and dx2 ∧ dx2 = 0. ♣

20.3 Yang-Mills Equations

Definition 20.4 Let α̃ be a Lie algebra valued one-form. With the defini-
tion

β̃ := D
α̃
α̃ (24)

the Yang-Mills equations are given by

D
α̃
(∗β̃) = 0. (25)

Thus the Yang-Mills equations can be written as

D
α̃
(∗D

α̃
α̃) = 0. (26)

Here α̃ is called the connection and β̃ the curvature form. In physics α̃
is referred to as the vector potential and β̃ the field strength tensor.

Besides the bracket [β̃, γ̃] of two Lie algebra valued forms β̃ and γ̃, we
introduce a further product of two Lie algebra valued forms. Let the Lie
algebra be represented by r × r matrices. Let

β̃ =

n∑

j=1

βj ⊗Xj (βj : p-forms)
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and

γ̃ =

n∑

j=1

γj ⊗Xj (γj : q-forms).

We say that β̃, γ̃ are matrix valued differential forms.

If X is an r × r matrix over R given by

X =



X11 · · · X1r

...
. . .

...
Xr1 · · · Xrr




and α a differential form. Then one also finds the notation



X11α · · · X1rα

...
. . .

...
Xr1α · · · Xrrα




instead of α⊗X . We define

β̃ ∧ γ̃ :=
n∑

i=1

n∑

j=1

(βi ∧ γj) ⊗ (XiXj)

where XiXj is the usual matrix product of Xi and Xj . Obviously β̃∧ γ̃ is a

matrix valued (p+ q)-form. The product β̃ ∧ γ̃ has the following properties

(β̃1 + β̃2) ∧ (γ̃1 + γ̃2) = β̃1 ∧ γ̃1 + β̃1 ∧ γ̃2 + β̃2 ∧ γ̃1 + β̃2 ∧ γ̃2

d(β̃ ∧ γ̃) = (dβ̃) ∧ γ̃ + (−1)p(β̃ ∧ dγ̃).

Let α̃ be a Lie algebra valued differential one-form. Then

α̃ ∧ α̃ =

n∑

i=1

n∑

j=1

(αi ∧ αj) ⊗ (XiXj).

Since αi ∧ αj = −αj ∧ αi we find

α̃ ∧ α̃ =

n∑

i<j

(αi ∧ αj) ⊗ [Xi, Xj ].

Thus the covariant exterior derivative given by (20) can also be written as

D
α̃
α̃ := dα̃ + α̃ ∧ α̃.
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Let X ∈ GL(n,R). Let Ω := X−1dX . Then

dΩ + Ω ∧ Ω = 0

where we used the relation XX−1 = In (In n×n unit matrix) and dIn = 0.
Let

Ω → Ω′ = U−1dU + U−1ΩU

where detU = 1. Then dΩ′ + Ω′ ∧ Ω′ = 0. This is called the gauge
invariance.

Example. Let

Ω =

(
dx1

x1

dx2

x1
0 0

)

where 0 < x1 <∞ and −∞ < x2 <∞. It follows that

dΩ =

(
0 −dx1 ∧ dx2

x2
1

0 0

)

and

Ω ∧ Ω =

(
dx1

x1

dx2

x1
0 0

)
∧
(
dx1

x1

dx2

x1
0 0

)
=

(
0

dx1 ∧ dx2

x2
1

0 0

)
.

Consequently dΩ + Ω ∧ Ω = 0. The matrix X which satisfies the relation
Ω = X−1(dX) is given by

X =

(
x1 x2

1 0

)
.

Since

X−1 =
1

x1

(
1 −x2

0 x1

)
, dX =

(
dx1 dx2

0 0

)

it follows that

X−1(dX) =

( 1

x1
−x2

x1
0 1

)(
dx1 dx2

0 0

)
=

(
dx1

x1

dx2

x1
0 0

)
= Ω. ♣

In physics the matrix valued n-form

α̃ ∧ (∗α̃)
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is important, where ∗ is the Hodge operator. Let

α̃ =

n∑

i=1

αi ⊗Xi

be an arbitrary matrix valued p-form. Then

α̃ ∧ (∗α̃) =

n∑

i=1

n∑

j=1

(αi ∧ ∗αj) ⊗ (XiXj).

Let α̃ be a Lie algebra valued p-form

α̃ =

n∑

j=1

αj ⊗Xj

where Xj (j = 1, . . . , n) are r × r matrices. Then we define the trace of a
Lie algebra valued p-form as follows

trα̃ :=

n∑

j=1

αj(trXj).

In connection with gauge theory we need the following

Theorem 20.2 Let α̃ be a Lie algebra valued differential form. Let the Lie
algebra be represented by r× r matrices. L is associated with the Lie group
G, where G is a Lie subgroup of GL(n,R). Let U ∈ C∞(M,G). We define

α̃ · U := U−1α̃U + U−1dU.

If

D
α̃
(∗D

α̃
α̃) = 0

then

D
α̃·U

(∗D
α̃·U

α̃ · U) = 0.

Note that dU is a matrix valued one-form. For the proof we need

d(In) = d(UU−1) = (dU)U−1 + U(dU−1) = 0

where In is the n × n unit matrix. From this theorem it follows that the
gauge group is an invariance group of the Yang-Mills equation.
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20.4 Maurer-Cartan Equation

A special sort of Lie algebra valued differential forms is important. Let G
be a Lie group whose Lie algebra is L. L is identified with the left invariant
vector fields on G. Now suppose that X1, . . . , Xn is a basis of L and that
ω1, . . . , ωn is a dual basis of left invariant one-forms. There is a natural Lie
algebra valued one-form ω̃ on G which can be written as

ω̃ =

n∑

i=1

ωi ⊗Xi

where the inner product is given by Xi ωj = δij . It can be shown that

D
ω̃
ω̃ = 0

or

dω̃ +
1

2
[ω̃, ω̃] = 0.

This equation is called the Maurer-Cartan equation. Since

[Xi, Xj ] =

n∑

k=1

CkijXk

where Ckij are the structure constants (Ckij ∈ R) and

[ω̃, ω̃] =

n∑

i=1

n∑

j=1

(ωi ∧ ωj) ⊗ [Xi, Xj ]

we can write

dωk = −1

2

n∑

i=1

n∑

j=1

Ckijωi ∧ ωj

for all k = 1, . . . , n.

Let ω1, . . . , ωr (r < n) be one-forms defined on a neighbourhood U of the
origin in Rn and assume that one-forms ωi are linearly independent at each
point of U . We put

Ω = ω1 ∧ · · · ∧ ωr .
The system

ω1 = 0, . . . , ωr = 0

is called completely integrable if it fulfils any of the conditions of the
following lemma.

Lemma. The following conditions are equivalent
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(i) There exist one-forms θij satisfying

dωi =

r∑

j=1

θij ∧ ωj .

(ii) dωi ∧ Ω = 0, i = 1, . . . , r.

(iii) There exist a one-form λ satisfying dΩ = λ ∧ Ω.

For the proof we refer to Choquet-Bruhat et al [17] and Flanders [45].

We now state the Frobenius integration theorem.

Theorem 20.3 Let ωi (i = 1, . . . , r) (r ≤ n) be one-forms defined on a
neighbourhood U of the origin 0 in Rn. Assume that the one-forms ωi are
linearly independent at each point of U and that there are r2 one-forms
θij (j = 1, . . . , r) on U such that

dωi =

r∑

j=1

θij ∧ ωj .

Then there is a neighbourhood V of 0 contained in U, r-functions gk defined
on V , and an r × r matrix (fik) whose entries are r2 functions defined on
V such that det(fik) 6= 0 at each point of V , and

ωi =

r∑

k=1

fikdgk

holds on V .

For the proof we refer to Choquet-Bruhat et al [17] and Flanders [45].

20.5 Application

Let us now give an application of Lie algebra valued differential forms.

Example. Let

α̃ =

n∑

j=1

(aj(x1, x2) dx1 +Aj(x1, x2) dx2) ⊗Xj
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be a Lie algebra valued differential form where {X1, . . . , Xn} form a basis
of a Lie algebra. It follows from (3) that the exterior derivative is given by

dα̃ =

n∑

j=1

(
−∂aj
∂x2

+
∂Aj
∂x1

)
dx1 ∧ dx2 ⊗Xj .

We calculate the covariant derivative of α̃ to obtain the equation which
follows from the condition

D
α̃
α̃ = 0 .

We have

D
α̃
α̃ =

n∑

i=1



(
− ∂ai
∂x2

+
∂Ai
∂x1

)
+

1

2

n∑

k=1

n∑

j=1

(akAj − ajAk)C
i
kj


 dx1∧dx2⊗Xi.

Since {Xi : i = 1, . . . , n } form a basis of a Lie algebra, the condition

D
α̃
α̃ = 0

yields (
− ∂ai
∂x2

+
∂Ai
∂x1

)
+

1

2

n∑

k=1

n∑

j=1

(akAj − ajAk)C
i
kj

for i = 1, . . . , n. Since for the structure constants we have C ikj = −Cijk it
follows that

(
− ∂ai
∂x2

+
∂Ai
∂x1

)
+

n∑

k<j

(akAj − ajAk)C
i
kj = 0

for i = 1, . . . , n. We now consider the case where n = 3 and X1, X2 and X3

satisfy the commutation relation

[X1, X2] = 2X2, [X1, X3] = 2X3, [X2, X3] = X1.

We find the system of partial differential equations

−∂a1

∂x2
+
∂A1

∂x1
+ a2A3 − a3A2 = 0

−∂a2

∂x2
+
∂A2

∂x1
+ 2(a1A2 − a2A1) = 0

−∂a3

∂x2
+
∂A3

∂x1
− 2(a1A3 − a3A1) = 0.
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A convenient choice of a basis {X1, X2, X3} is given by

X1 =

(
1 0
0 −1

)
, X2 =

(
0 1
0 0

)
, X3 =

(
0 0
1 0

)
.

Consequently the Lie algebra under consideration is sl(2,R). We now let

a1 = −η, a2 =
1

2

∂u

∂x1
, a3 = −1

2

∂u

∂x1

A1 = − 1

4η
cosu, A2 = A3 = − 1

4η
sinu

where η 6= 0 is an arbitrary constant. Then we obtain the one-dimensional
sine-Gordon equation

∂2u

∂x1∂x2
= sinu . ♣

20.6 Yang-Mills Equation and Chaos

In this section we show how a Hamilton system with chaotic behaviour can
be derived from the Yang-Mills equations.

We consider the Lie algebra valued differential one-form

α̃ =

3∑

i=1

αi ⊗Xi

with the Lie algebra su(2) and the metric tensor field

g = dx1 ⊗ dx1 + dx2 ⊗ dx2 + dx3 ⊗ dx3 − dx4 ⊗ dx4.

The differential one-form αi is given by

αi =

4∑

j=1

Aij(x) dxj

with x = (x1, . . . , x4). We choose the basis of the Lie algebra su(2) as

X1 =
1

2

(
0 −i
−i 0

)
, X2 =

1

2

(
0 −1
1 0

)
, X3 =

1

2

(
−i 0
0 i

)
.

We now give the explicit form of the Yang-Mills equation for the Lie algebra
su(2). The commutation relations of X1, X2 and X3 are given by

[X1, X2] = X3, [X2, X3] = X1, [X3, X1] = X2.



20.6. Yang-Mills Equation and Chaos 379

From

D
α̃
α̃= dα̃+

1

2
[α̃, α̃]

1

2
[α̃, α̃] = (α1 ∧ α2) ⊗X3 + (α2 ∧ α3) ⊗X1 + (α3 ∧ α1) ⊗X2

dα̃=
3∑

i=1

dαi ⊗Xi

and

∗(D
α̃
α̃) = (∗dα1 + ∗(α2 ∧ α3)) ⊗X1 + (∗dα2 + ∗(α3 ∧ α1)) ⊗X2

+(∗dα3 + ∗(α1 ∧ α2)) ⊗X3

we obtain

D
α̃
(D

α̃
α̃) = d(∗dα1 + ∗(α2 ∧ α3)) ⊗X1

+ d(∗dα2 + ∗(α3 ∧ α1)) ⊗X2 + d(∗dα3 + ∗(α1 ∧ α2)) ⊗X3

+ (α2 ∧ (∗dα3 + ∗(α1 ∧ α2)) − α3 ∧ (∗dα2 + ∗(α3 ∧ α1))) ⊗X1

+ (α3 ∧ (∗dα1 + ∗(α2 ∧ α3)) − α1 ∧ (∗dα3 + ∗(α1 ∧ α2))) ⊗X2

+ (α1 ∧ (∗dα2 + ∗(α3 ∧ α1)) − α2 ∧ (∗dα1 + ∗(α2 ∧ α3))) ⊗X3.

From the condition
D
α̃
(∗D

α̃
α̃) = 0

it follows that

d(∗dα1+∗(α2∧α3))+(α2∧(∗dα3+∗(α1∧α2))−α3∧(∗dα2+∗(α3∧α1))) = 0

d(∗dα2+∗(α3∧α1))+(α3∧(∗dα1+∗(α2∧α3))−α1∧(∗dα3+∗(α1∧α2))) = 0

d(∗dα3+∗(α1∧α2))+(α1∧(∗dα2+∗(α3∧α1))−α2∧(∗dα1+∗(α2∧α3))) = 0.

Now, ∗(αi∧αj) is a two-form and therefore d∗(αi∧αj) is a three form. We
thus obtain 12 coupled partial differential equations. Let us now impose
the gauge condition

Aj4 = 0,

3∑

i=1

∂Aji
∂xi

= 0,
∂Aji
∂xk

= 0, i, k = 1, 2, 3

where j = 1, 2, 3. Thus we eliminate the space dependence of the fields. We
thus arrive at the autonomous system of second order ordinary differential
equations

d2Aji
dx2

4

+

3∑

k=1

3∑

l=1

(AklAklAji −AjlAklAki) = 0
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together with
3∑

k=1

3∑

l=1

3∑

m=1

εjkmAkl
dAml
dx4

= 0.

Further reduction leads to the Hamilton system

d2u1

dt2
= −u1(u

2
2+u2

3),
d2u2

dt2
= −u2(u

2
1+u2

3),
d2u3

dt2
= −u3(u

2
1+u2

2).

This system is nonintegrable (we can apply Ziglin’s theorem) and can be
derived from the Hamilton function

H(u, u̇) =
1

2
(u̇2

1 + u̇2
2 + u̇2

3) +
1

2
(u2

1u
2
2 + u2

1u
2
3 + u2

2u
2
3).

It also shows chaotic behaviour.

20.7 Self-Dual Yang-Mills Equations

From the self-dual Yang Mills equation we can derive by reduction inte-
grable systems such as soliton equations.

Definition 20.5 Let α̃ be a Lie algebra valued one-form. The self-dual
Yang-Mills equations are given by

∗D
α̃
α̃ = D

α̃
α̃.

A large number of complete integrable (soliton) equations (such as the
Korteweg-de Vries equation and the nonlinear one-dimensional Schrödinger
equation) can be derived from the self-dual Yang-Mills equations. Further-
more ordinary differential equations can be derived which are completely
integrable (for example the Euler equation). Thus one can ask the following
question: Is the self-dual Yang Mills equation the “master equation” of all
complete integrable partial differential equations? This question has been
discussed by Ward [135], Mason and Sparling [77] and Chakravarty and
Ablowitz [13]. Here we show that the Korteweg-de Vries equation and the
nonlinear Schrödinger equation can be derived from the self-dual Yang-Mills
equations via exact reductions. We also describe an interesting connection
with the Yang-Mills equations (Steeb et al [121]).

Example. We consider the symmetry reduction of the self-dual Yang-
Mills equation to the Korteweg-de Vries equation and nonlinear Schrödinger
equation. Consider the space R4 with coordinates

xa = (x, y, u, t)
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and metric tensor field

g = dx⊗ dx− dy ⊗ dy + du⊗ dt+ dt⊗ du

and a totally skew orientation tensor

εabcd = ε[abcd].

Let

Da := ∂a −Aa

where the 2 × 2 matrices Aa are basis elements of the Lie algebra sl(2,C)
and ∂a ≡ ∂/∂xa. The Aa are defined up to the gauge transformation

Aa → hAah
−1 − (∂ah)h

−1

where h = h(xa) ∈ SL(2,C). Then the self-dual Yang-Mills equation takes
the form

1

2
εcdab[Dc, Dd] = [Da, Db]

where we used summation convention (summation over c and d). This is
equivalent to the following three commutator equations

[Dx +Dy, Du] = 0
[Dx −Dy, Dx +Dy] + [Du, Dt] = 0

[Dx −Dy, Dt] = 0 .

These equations also follow from the integrability condition of the linear
system

(Dx −Dy + λDu)φ= 0

(Dt + λ(Dx +Dy))φ= 0

where λ is an affine complex coordinate on the Riemann sphere CP 1 (the
so-called spectral parameter) and φ is a two component column vector. We
set

Dx := ∂x −A, Du := ∂u −B, Dt := ∂t − C, Dy := ∂y −D.

We require that the bundle and its connection possess two commuting sym-
metries which project to a pair of orthogonal spacetime translations one
timelike and one null. These are along ∂/∂y and ∂/∂u. Next we assume
that A, B, C and D are independent of u and y. We also impose the
gauge condition A+D = 0. The gauge transformations are now restricted
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to SL(2,C) valued functions of t alone and which A and B transform by
conjugation

B → hBh−1.

Thus we find

∂xB = 0, [∂x − 2A, ∂t − C] = 0, 2∂xA− [B,C] = ∂tB.

These equations follow from the integrability conditions on the reduction
of the linear system

(∂x − 2A+ λB)φ = 0, (∂t − C + λ∂x)φ = 0.

When (∂x − 2A + λB)φ = 0 holds, B depends only on the variable t, so
the gauge freedom may be used to reduce B to a normal form. When B
vanishes, the equations are trivally satisfied. Thus we assume that B is
everywhere non-vanishing. The matrix B then has just two normal forms

B =

(
0 0
1 0

)
, B =

(
1 0
0 1

)
.

The self-dual Yang-Mills equations are solved with the first B by

2A =

(
q 1

qx − q2 −q

)
, 2C =

(
(qx − q2)x −2qx

2w −(qx − q2)x

)

where

4w =
∂3q

∂x3
− 4q

∂q

∂x
− 2

(
∂q

∂x

)2

+ rq2
∂q

∂x

and q satisfies the nonlinear partial differential equation

4
∂q

∂t
=
∂3q

∂x3
− 6

(
∂q

∂x

)2

.

From

u := − ∂q

∂x
= tr(BC)

we obtain the Korteweg-de Vries equation

4
∂u

∂t
=
∂3u

∂x3
+ 12u

∂u

∂x
.

To find the nonlinear Schrödinger equation, we set

2A =

(
0 ψ
−ψ̄ 0

)
, 2κC =

(
ψψ̄ ψx
ψ̄x −ψψ̄

)
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provided ψ and ψ̄ satisfy

2κ
∂ψ

∂t
=
∂2ψ

∂x2
+ 2ψ2ψ̄, 2κ

∂ψ̄

∂t
= −∂

2ψ̄

∂x2
− 2ψ̄2ψ

and 2κ = 1 or κ = −i. ♣

Example. From the self-dual Yang Mills equation we also find, after exact
reduction, the system of ordinary differential equation (Euler equation)

du1

dt
= u2u3,

du2

dt
= u1u3,

du3

dt
= u1u2.

This is an algebraically completely integrable differential equation. The
first integrals are given by

I1 = u2
1 − u2

2, I2 = u2
1 − u2

3.

When we differentiate this system with respect to t and insert it into the
new second order equation we arrive at

d2u1

dt2
= u1(u

2
2 + u2

3)

d2u2

dt2
= u2(u

2
1 + u2

3)

d2u3

dt2
= u3(u

2
1 + u2

2).

Using Ziglin’s theorem we can show that this system is not algebraic com-
plete integrable. Furthermore it does not have the Painlevé property. From
the Yang-Mills equation (26) we find, after reduction, the nonintegrable
system

d2u1

dt2
= −u1(u

2
2 + u2

3)

d2u2

dt2
= −u2(u

2
1 + u2

3)

d2u3

dt2
= −u3(u

2
1 + u2

2).

This system is nonintegrable (again we can apply Ziglin theorem) and can
be derived from the Hamilton function

H(u, u̇) =
1

2
(u̇2

1 + u̇2
2 + u̇2

3) +
1

2
(u2

1u
2
2 + u2

1u
2
3 + u2

2u
2
3).
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It shows chaotic behaviour and therefore is not integrable. Furthermore,
we find that it does not pass the Painlevé test. The resonances are given
by −1, 1 (twofold), 2 (twofold) and 4. Studying the behaviour at the
resonances we find a logarithmic psi-series. For u3 = 0 we find a chaotic
system which is not purely ergodic since it exhibits a very small stable
island. The total area of the elliptic region is very small. Now the second
order systems are equivalent up to the sign on the right hand side. When
we consider the system in the complex domain for the Painlevé test we can
find the first second order system from the second second order system via
the transformation t → it. The first second order system has been derived
from the self-dual Yang-Mills equation and the second second order system
from the Yang-Mills equation. ♣

20.8 Anti-Self Dual Yang-Mills Equation

The anti-self dual equation is defined by

∗D
α̃
α̃ = −D

α̃
α̃ .

Consider the Lie algebra u(n) and Aj ∈ u(n). Thus A∗
j = −Aj with

j = 1, 2, 3, 4, where ∗ stands for transpose and conjugate complex. The
curvature

FA =

3∑

j=1

4∑

k>j

Fjkdxj ∧ dxk

of a u(n)-valued connection one-form

A =

4∑

j=1

Ajdxj

on R4 is

Fjk := [Dj , Dk] = − ∂

∂xj
Ak +

∂

∂xk
Aj + [Aj , Ak]

where

Dj :=
∂

∂xj
−Aj .

The connection A is anti-self dual Yang-Mills on R4 if

∗FA = −FA
where ∗ is the Hodge star operator with respect to the Euclidean metric
tensor field

g = dx1 ⊗ dx1 + dx2 ⊗ dx2 + dx3 ⊗ dx3 + dx4 ⊗ dx4
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on R4. Thus the anti-self dual Yang-Mills equation in R4 written in coor-
dinates is

F12 = −F34, F13 = −F42, F14 = −F23 .

This system of partial differential equations has a Lax representation. This
refers to any equation which is written as a zero curvature equation for a
connection, or a portion of a connection. This connection contain an addi-
tional complex parameter λ is variously interpreted as a spectral, twistor,
or Riemann-Hilbert parameter. Now we set

z := x1 + ix2, w := x3 + ix4, x1, x2, x3, x4 ∈ R .

Thus

Dz =
1

2
(D1 − iD2) =

∂

∂z
−Az , Dz̄ =

1

2
(D1 + iD2) =

∂

∂z̄
−Az̄

and Dw, Dw̄ similarly. Since Aj ∈ u(n) we have

Az̄ = −A∗
z, Aw̄ = −A∗

w .

The equation

[Dw̄ + λDz, Dw − 1

λ
Dz̄] = 0

is equivalent to the anti-self dual Yang-Mills equation. This is because
this equation holds for all λ ∈ C \ {0} if and only if the coefficients of λ,
1, and λ−1 of this equation are zero which is F12 = −F34, F13 = −F42,
F14 = −F23. If we assume that the anti-self dual Yang-Mills connection A
is independent of x4, then Aw = 1

2 (At − iΦ) and Aw̄ = 1
2 (At + iΦ), where

Φ = A4 is the Higgs field. Now

A = Atdt+Azdz +Az̄dz̄

is a connection one-form on R3. Then (A,Φ) satisfies the Euclidean monopole
equation

DAΦ = ∗FA
where ∗ is the Hodge star operator with respect to the metric tensor field

dx⊗ dx+ dy ⊗ dy + dt⊗ dt .

The Euclidean monopole equation is an important equation in both geom-
etry and physics. The anti-self dual Yang-Mills on the manifold R2,2 with
the metric tensor field

g = dx1 ⊗ dx1 + dx2 ⊗ dx2 − dx3 ⊗ dx3 − dx4 ⊗ dx4
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is again ∗FA = −FA. For this case we obtain

F12 = F34, F13 = −F42, F14 = −F23 .

This equation has a Lax pair

[Dw̄ + λDz, Dw + λ−1Dz̄] = 0 .

20.9 Geometry of SU(n)

The compact Lie group SU(n) consists of all n × n matrices U such that
U∗U = In and detU = 1. The Lie algebra su(n) is spanned by all n × n
matrices X with X∗ = −X (skew-hermitian) and trX = 0. The dimension
of the Lie algebra is n2 − 1. The Lie group SU(n) display a nontrivial
curved geometry in the angular variable space. The geometrical properties
of the group space define a local metric tensor and through that covari-
ant operations and invariant quantities like the scalar curvature and the
Laplace operator. These can be used for derive formulae for group inte-
grals or Casimir operators and hence lattice Hamilton operators more gen-
erally. The basis of any geometrical description is a measure of distances,
surfaces and volumes which is locally governed by the metric. To measure
distances between two elements of a group we need to know the length of
their displacement vector, which requires the definition of a norm. First we
introduce of scalar product which then implies a norm. Let A, B be n× n
matrices over C. We define

〈A,B〉 :=
tr(AB∗)

trIn
≡ 1

n
tr(AB∗) .

We can easily show that this defines a scalar product. We have the prop-
erties

〈A,A〉 ≥ 0

〈A,B〉= 〈B,A〉 .

A norm is implied by ‖A‖ :=
√
〈A,A〉 For U ∈ SU(n) we have

〈U,U〉 = 1

and
〈UA,UA〉 = 〈A,A〉

for any n × n matrix A (not necessarily a group element). The invariant
infinitesimal distance square

ds2 := 〈dU, dU〉
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defines the components of the metric tensor gij in a given representation

U = exp(i

n2−1∑

j=1

ωjT
j)

through

ds2 =

n2−1∑

j,k=1

gjkdω
jdωk

where ωj are the group parameters (in SU(n) compact angular variables)
and the T j are the basis matrices for a given representation. They satisfy
the commutation relation

[T j , T k] = i

n2−1∑

`=1

Cjk` T
`

with the totally antisymmetric structure constants Cjk` of the associated
Lie algebra. To define a neighbourhood we need a parameterized form,
therefore we would obtain a parametric derivative. Another possibility is
to construct first a one-form, a combination of the coordinate differential
dωj without making reference to a special parameter set, and then consider
the length of this differential. We consider the following action on a matrix
X

DX := U∗d(UX) = U∗UdX + U∗(dU)X = dX + U∗(dU)X

as the covariant differential. We define

D := d+ iσ

with
σ := −iU∗dU

being the parallel transport or connection from. In fact there is an analogy
between the gauge covariant and geometrically covariant derivatives. In
the theory of Lie groups σ is called the Cartan-Maurer one-form. From
U∗U = In it follows that d(U∗U) = 0 and therefore

(dU)U∗ + UdU∗ = 0

or
dU∗ = −U∗(dU)U∗ .

Thus it follows that

σ∗ = (−iU∗dU)∗ = idU∗U = −iU∗dU = σ.
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Thus σ is hermitian. We also find

〈σ, σ〉 = 〈−iU∗dU,−iU∗dU〉
= 〈iU∗dU, iU∗dU〉
= tr(iU∗dU(−i)(dU)∗U)

= tr(dU(dU)∗)

= 〈dU, dU〉 .

The following identity
eABe−A = (eA)adB

where the index ad refers to the adjoint representation, which uses the Lie
algebra structure constants as basis (T i)jk = iCijk and therefore

AadB = [A,B]

for any matrix B, can be used for the evaluation of the covariant derivative.
Thus we can write using n-fold commutators

(eA)adB =
∞∑

n=0

1

n!
[A, [A, . . . [A,B] . . .]]n.

Now using the power series form of the above equation and applying it for
the differential operator B = d we realize that, since

Aadd = [A, d] = −dA

the covariant derivative is

D = eAde−A = (eA)add = d−
(
eA − 1

A

)

ad

dA.

Setting

A = iΩ = −i
n2−1∑

j=1

ωjT
j

in this result we obtain the Maurer-Cartan form

σ =

(
1 − eiΩ

iΩ

)

ad

dΩ .

Writing this in component form

σ =

n2−1∑

k,j=1

MjkT
kdωj
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we obtain the components of the metric tensor

gij =

n2−1∑

k=1

MikM
k
j .

The normalization of the basis matrices

〈T k, T l〉 = cσkl

is representation dependent. If the group elements were represented in the
fundamental representation of SU(n) the normalization is c = 2/n, in the
adjoint representation it is c = n/(n2−1). Once the metric tensor is a given
representation is know, the group integral can be carried out by using the
Jacobian

√
det g which leads to the Haar measure

∫
dn

2−1U =

∫ √
det g

n2−1∏

j=1

dωj .

20.10 Computer Algebra Applications

We consider the matrix

X(α) =

(
cosα sinα
− sinα cosα

)
.

We calculate the inverse ofX(α), namelyX(−α), dX(α) andX−1(α)dX(α).

// cartan1.cpp

#include <iostream>

#include "matrix.h"

#include "symbolicc++.h"

using namespace std;

int main(void)

{

Symbolic alpha("alpha"), dalpha("dalpha");

Matrix<Symbolic> X(2,2), XI(2,2), dX(2,2), result(2,2);

X[0][0] = cos(alpha); X[0][1] = sin(alpha);

X[1][0] = -sin(alpha); X[1][1] = cos(alpha);
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// inverse of X

XI[0][0] = cos(-alpha); XI[0][1] = sin(-alpha);

XI[1][0] = -sin(-alpha); XI[1][1] = cos(-alpha);

// dX

for(int j=0;j<2;j++)

for(int k=0;k<2;k++)

{ dX[j][k] = df(X[j][k],alpha); }

result = XI*dX*dalpha;

for(int m=0;m<2;m++)

for(int n=0;n<2;n++)

{

result[m][n] =

result[m][n].subst((cos(alpha)^2)==1-(sin(alpha)^2));

}

cout << "result = " << result;

return 0;

}

An alternative implementation is

// cartan2.cpp

#include <iostream>

#include "matrix.h"

#include "symbolicc++.h"

using namespace std;

int main(void)

{

Symbolic alpha("alpha"), dalpha("dalpha");

Symbolic X, XI, dX, result;

X = ((cos(alpha),sin(alpha)),(-sin(alpha),cos(alpha)));

XI = X[alpha==-alpha];

dX = df(X,alpha);

result = XI*dX*dalpha;

result = result[(cos(alpha)^2)==1-(sin(alpha)^2)];

cout << result << endl;

return 0;

}
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20.11 Exercises

(1) Let x = (x1, x2, x3, x4) and

g = dx1 ⊗ dx1 + dx2 ⊗ dx2 + dx3 ⊗ dx3 − dx4 ⊗ dx4 .

Let

αi =
4∑

j=1

Aij(x)dxj

and the basis

X1 =




0 0 0
0 0 −1
0 1 0


 , X2 =




0 0 1
0 0 0
−1 0 0


 , X3 =




0 −1 0
1 0 0
0 0 0




of the Lie algebra so(3). Derive the Yang-Mills equation.

(2) Using (1) derive the self-dual Yang-Mills and anti-self dual Yang-Mills
equation.

(3) Let G be a Lie group. Suppose we have a map g : R2 → G, with s, t
coordinates on the plane. Pull

θ = g−1dg, g ∈ G

back to the plane, so

g∗θ = g−1∂g

∂s
ds+ g−1 ∂g

∂t
dt .

We define

α(s, t) := g−1 ∂g

∂s
, β(s, t) := g−1 ∂g

∂t

so that

g∗θ = α(s, t)ds+ β(s, t)dt .

(i) Show that collecting the coefficients of ds ∧ dt in the Maurer-Cartan
equation yields

∂β

∂s
− ∂α

∂t
+ [α, β] = 0 .

(ii) Let C(t) be a curve in the Lie algebra L of the Lie group G. Let

g(s, t) = exp(sC(t)) .
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Show that

α(s, t) = C(t), β(s, t) = exp(−sC(t))
∂

∂t
exp(sC(t))

and
∂β

∂s
− dC(t)

dt
+ [C(t), β] = 0 .



Chapter 21

Bose Operators and Lie
Algebras

21.1 Embedding and Bose Operators

In this chapter we describe a connection between nonlinear autonomous
systems of ordinary differential equations, first integrals, Bose operators
and Lie algebras. An extension to nonlinear partial differential equations
is given by Steeb and Euler [114] and Kowalski and Steeb [70]).

One of the basic tasks in the study of nonlinear dynamical systems is to
find out whether or not the dynamical system is integrable. For systems
of ordinary differential equations one has to find the first integrals (if any
exist) and for partial differential equations one has to find the conservation
laws (if any exist). Here we show that these questions can be investigated
with the help of Bose operators and Bose field operators.

It is well known that nonlinear autonomous systems of first order ordinary
differential equations (initial value problem)

du

dt
= V (u), u(0) = u0 (1)

can be embedded into a linear infinite system. It is assumed that V : Cn 7→
Cn is analytic. The analytic vector fields form a Lie algebra under the com-
mutator.

Steeb [111] and Kowalski and Steeb [70] showed that the infinite system can
be expressed with the help of Bose operators. We show that the associated

393
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Bose operators form an isomorphic Lie algebra.

Let

V :=

n∑

j=1

Vj(u)
∂

∂uj
(2)

be the corresponding analytic vector field of (1). Let W be the corre-
sponding vector field of the system du/dt = W (u). Then we define the
commutator of V and W as

[V,W ] :=
n∑

k=1

n∑

j=1

(
Vj
∂Wk

∂uj
−Wj

∂Vk
∂uj

)
∂

∂uk
. (3)

It is known that the analytic vector fields form a Lie algebra with this com-
position (commutator).

We now describe the embedding. Consider a family of linear operators
bj , b

†
j , 1 ≤ j ≤ n on an inner product space V , satisfying the commutation

relations
[bj , bk] = [b†j , b

†
k] = 0, [bj , b

†
k] = δjkI

where I is the identity operator. Such linear (unbounded) operators appear
in the method of second quantization in quantum mechanics where they are
defined on a Hilbert space H. There b†j is called a creation operator for
bosons and its adjoint bj is called an annihilation operator.

The linear space V must be infinite-dimensional for the commutation rela-
tions to hold. For, if A and B are n × n matrices such that [A,B] = λI
then tr ([A,B]) = 0 implies λ = 0. If V consists of analytic functions in n
variables u1, . . . , un, a realization of the commutation relations is provided
by the assignment

bj =
∂

∂uj
, b†j = uj .

It follows directly from the commutation relations that the operators

Ejk := b†jbk

satisfy relations

[Ejk , Ehl] = δkhEjl − δjlEhk, 1 ≤ j, k, h, l ≤ n.

One can easily construct representations of each of the classical Lie algebras
(see chapter 6) in terms of annihilation and creation operators for bosons.
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Furthermore one can use the models to decompose V into subspaces trans-
forming irreducibly under these representations.

We define

M := b† · V (b) ≡
n∑

j=1

b†jVj(b). (4)

Let

|u(t)〉 = exp

(
−1

2
|u(t)|2

)
exp

(
u(t) · b†

)
|0〉 (5)

be a coherent state, i.e. b satisfies the eigenvalue equation

b|u(t)〉 = u(t)|u(t)〉

where

u(t) · b† :=

n∑

j=1

uj(t)b
†
j (6)

and u satisfies (1) and |0〉 ≡ |0〉 ⊗ |0〉 ⊗ · · · ⊗ |0〉. Furthermore

〈0|0〉 = 1

bj |0〉 = 0

0 = 〈0|b†j
for j = 1, . . . , n. If we define

|ũ(t)〉 := exp

(
1

2
(|u(t)|2 − |u0|2)

)
|u(t)〉 (7)

then
d

dt
|ũ(t)〉 = M |ũ(t)〉 (8)

is the corresponding infinite system. The formal solution of (8) is given by

u(u0, t) = u0 +

∞∑

j=1

(−t)j
j!

〈u0|[M, . . . , [M,b] . . .]|u0〉 .

To find an isomorphic Lie algebra we define

V 7→M † := V (b†) · b ≡
n∑

j=1

Vj(b
†)bj . (9)
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Let

W 7→ N † := W (b†) · b ≡
n∑

j=1

Wj(b
†)bj (10)

then

[M †, N†] =
n∑

k=1

n∑

j=1

(
Vj(b

†)
∂Wk(b

†)

∂b†j
−Wj(b

†)
∂Vk(b

†)

∂b†j

)
bk. (11)

Comparing (11) and (3) we see that the Lie algebra for the analytic vector
fields and the Lie algebra of the Bose operators defined by (9) are isomor-
phic.

21.2 Examples

We give three examples to show how the embedding is performed. More-
over we show how first integrals can be studied.

Example. First we consider the case n = 1 with the vector fields d/du,
ud/du and u2d/du. These vector fields form a basis of a Lie algebra under
the commutator. Owing to (9) we have

d

du
7→ b, u

d

du
7→ b†b, u2 d

du
7→ b†b†b. ♣

Example. Consider the Lotka-Volterra model

du1

dt
= −u1 + u1u2

du2

dt
= u2 − u1u2.

Here the associated vector field is given by

V = (−u1 + u1u2)
∂

∂u1
+ (u2 − u1u2)

∂

∂u2
.

Owing to (9), the corresponding Bose operator is given by

M † = (−b†1 + b†1b
†
2)b1 + (b†2 − b†1b

†
2)b2 .

The first integral of the Lotka-Volterra model takes the form

I(u) = u1u2e
−(u1+u2) .
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In the formulation with Bose operators the first integral is the state vector

b†1b
†
2e

−(b†1+b
†

2)|0〉 .

Consequently,

[(−b†1 + b†1b
†
2)b1 + (b†2 − b†1b

†
2)b2]b

†
1b

†
2e

−(b†1+b†2)|0〉 = 0

since LV I = 0, where LV denotes the Lie derivative. ♣

We now describe the extension to explicitly time-dependent first integrals
for autonomous systems of first-order ordinary differential equations (1).
We extend (1) to

du

dλ
= V (u) (12)

dt

dλ
= 1. (13)

Then

W =

n∑

j=1

Vj(u)
∂

∂uj
+

∂

∂t
(14a)

is the corresponding vector field of this system. An explicitly time-dependent
smooth function I(u(t), t) is a first integral of system (19) if LW I = 0, where
LW (.) denotes the Lie derivative. By (9) the corresponding Bose operator
of the vector field W is

W 7→M † :=

n∑

j=1

Vj(b
†)bj + bn+1 (14b)

where we have identified t with un+1.

Example. Let us consider the Lorenz system

du1

dt
= σu2 − σu1

du2

dt
=−u2 − u1u3 + ru1

du3

dt
= u1u2 − bu3.

For b = 0, σ = 1
3 and r arbitrary we find the explicitly time-dependent first

integral

I(u(t), t) = (−ru2
1 +

1

3
u2

2 +
2

3
u1u2 + u2

1u3 −
3

4
u4

1)e
4t/3
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and the Lorenz system takes the form

du1

dt
=

1

3
u2 −

1

3
u1

du2

dt
=−u2 − u1u3 + ru1

du3

dt
= u1u2 .

Consequently we find that the first integral expressed in Bose operators
takes the form

(
−r(b†1)2 +

1

3
(b†2)

2 +
2

3
b†1b

†
2 + (b†1)

2b†3 −
3

4
(b†1)

4

)
e4b

†

4/3|0〉.

Therefore

M †

(
−r(b†1)2 +

1

3
(b†2)

2 +
2

3
b†1b

†
2 + (b†1)

2b†3 −
3

4
(b†1)

4

)
e4b

†

4/3|0〉 = 0

where

M † = (
1

3
b†2 −

1

3
b†1)b1 + (−b†2 + b†1b

†
3 + rb†1)b2 + (b†1b

†
2)b3 + b4. ♣

21.3 Embedding and Bose Field Operators

The embedding can be extended to partial differential equations. We now
discuss the extension to (nonlinear) partial differential equations. Let

f, g : W →W

be two maps, where W is a topological vector space (u ∈W ). Assume that
the Gateaux derivative of f and g exists, i.e.,

f ′(u)[v] :=
∂f(u+ εv)

∂ε

∣∣∣∣
ε=0

g′(u)[v] :=
∂g(u+ εv)

∂ε

∣∣∣∣
ε=0

.

We introduced the Lie bracket (or commutator) for f and g

[f, g] := f ′(u)[g] − g′(u)[f ]. (15)

The Bose field operators satisfy the commutation relations

[bj(x), b†k(x
′)] = δjkδ(x − x′) (16a)
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[bj(x), bk(x
′)] = [b†j(x), b†k(x

′)] = 0 (16b)

where j = 1, . . . , n and x = (x1, . . . , xm, xm+1). Here δ(x−x′) denotes the
delta function and δij the Kroneker symbol. In order to give the formal
relations a precise mathematical meaning, we need to smear out the field
bj by integrating it against suitable test functions and define the resulting
smeared field

bj(f) :=

∫
dx bj(x)f(x)

as an operator in a Hilbert space.

We define both the Fock-Hilbert space HF and the operators b(f) in HF

by the following standard specifications.

(1) For each square-integrable function f(x) there is an operator b(f) in
HF such that

[b(f),b(g)†] =

∫
dx ḡ(x)f(x)

[b(f),b(g)] = 0.

These relations may be derived by considering

b(f) =

∫
dxb(x)f(x).

(2) There is a vector ΨF in HF such that

b(f)ΨF = 0

for all the square-integrable functions f .

(3) The vectors obtained by application to Ψ of all the polynomials in
the b(f)†’s form a dense subset of HF , i.e., this space is generated by
applying these polynomials to ΨF . Thus, in a standard terminology, ΨF

is a vacuum vector, the b(f)†’s and b(f)’s are creation and annihilation
operators respectively and the various many-particle states are obtained by
applying combinations of creation operators to the vacuum. We represent
space translations by the group of unitary operators {V (x) } which leave
ΨF invariant and implement the formal relation

V (x)b(x′)V (x)† = b(x + x′).

To be precise V (x) is defined by the formula

V (x)ΨF = ΨF
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V (x)b(f1)
† . . .b(fk)

†ΨF = b(f1,x)† . . .b(fk,x)†ΨF

where

fx(x′) = f(x′ − x).

Likewise, we represent gauge transformations by the unitary group

{W (α) : α ∈ R }

which leave ΨF invariant and implement the formal relation

W (α)b(x)W (α)† = b(x)eiα.

The precise definition of W (α) is given by the formula

W (α)ΨF = ΨF

W (α)b(f1)
† . . .b(fk)

†ΨF = e−ikαb(f1)
† . . .b(fk)

†ΨF .

Let
∂u

∂xm+1
− F(u, Dαu; x) = 0 (17)

be a partial differential equation, where

u : Rm ×R → Cn

and the function F is analytic. We set

Dαu := (Dα1u1, . . . , D
αnun)

where the αj ’s are multi-indices and

Dβ :=
∂|β|

∂xβ1

1 · · ·∂xβm
m

, β = β1 + · · · + βm .

The notation F(. . . ;x) indicates that the function F can explicitly depend
on x. Now we introduce the mappings from the right-hand side of (17) to
the Bose field operators, namely

M =

∫
dxb†(x) · F(b(x), Dαb(x); x) .

Then the mappings F and the corresponding Bose field operators M are
isomorphic Lie algebras under the commutator.
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Example. Consider the two mappings

f(u) :=
∂u

∂x2
− u

∂u

∂x1
− ∂3u

∂x3
1

, g(u) :=
∂u

∂x2
− ∂2u

∂x2
1

.

Thus the commutator is given by

[f, g] = −2
∂u

∂x1

∂2u

∂x2
1

.

Then we have

f 7→M :=

∫
dxb†(x)

(
∂b(x)

∂x2
− b(x)

∂b(x)

∂x1
− ∂3b(x)

∂x3
1

)

g 7→ N :=

∫
dxb†(x)

(
∂b(x)

∂x2
− ∂2b(x)

∂x2
1

)

where x = (x1, x2) and
dx = dx1dx2.

The commutator is given by

[M,N ] = −2

∫
dxb†(x)

∂b(x)

∂x1

∂2b(x)

∂x2
1

. ♣

We have shown that dynamical systems given by ordinary differential or
partial differential equations can be expressed with the help of Bose op-
erators and Bose field operators, respectively. The technique can also be
applied to difference equations. The first integrals and conservations laws
can now be found within this approach. The soliton theory (Lax repre-
sentation, conservation laws, recursion operators, master symmetries, etc.)
can also be expressed with the help of Bose field operators. For a detailed
discussion we refer to Kowalski and Steeb [70].

21.4 Bose Operators and Maps

The embedding technique can also be studied for autonomous system of
first-order ordinary difference equations

x1,t+1 = f1(x1,t, x2,t), x2,t+1 = f2(x1,t, x2,t)

where t = 0, 1, 2, . . . and we assume that f1 and f2 are analytic functions
and x1,0, x2,0 are the initial values with x1,t, x2,t ∈ R. They also can be
embedded in a Hilbert space using Bose operators and coherent states. The
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extension to higher dimensions is straightforward. Now we describe how
invariants can be expressed as Bose operators. To embed this system into
a Hilbert space using Bose operators b†j , bj with j = 1, 2 we consider the
Hilbert space states

|x1, x2, t〉 := exp

(
1

2
(x2

1,t + x2
2,t − x2

1,0 − x2
2,0)

)
|x1,t, x2,t〉

where |x1,t, x2,t〉 is the normalized coherent state

|x1,t, x2,t〉 := exp

(
−1

2
(x2

1,t + x2
2,t)

)
exp(x1,tb

†
1 + x2,tb

†
2)|0〉.

Next we introduce the evolution operator

M̂ :=
∞∑

j=0

∞∑

k=0

b†j1
j!

b†k2
k!

(f1(b1, b2) − b1)
j(f2(b1, b2) − b2)

k .

It follows that
|x1, x2, t+ 1〉 = M̂ |x1, x2, t〉

where t = 0, 1, 2, . . .. Thus the system of difference equations is mapped
into a linear difference equation in a Hilbert space. The price to be paid
for linearity is that we have to deal with Bose operators which are linear
unbounded operators. Furthermore we have the eigenvalue equations

b1|x1, x2, t〉 = x1,t|x1, x2, t〉

b2|x1, x2, t〉 = x2,t|x1, x2, t〉
for the states given above, since |x1,t, x2,t〉 is a coherent state. Let K(x1, x2)

be an analytic function of x1, x2. Let K̂(b1, b2) be the corresponding oper-
ator. Thus we have

K̂(b1, b2)|x1, x2, t〉 = K(x1,t, x2,t)|x1, x2, t〉 .

It follows that

[K̂, M̂ ]|x1, x2, t〉 = (K(x1,t+1, x2,t+1) −K(x1,t, x2,t))|x1, x2, t+ 1〉

where [K̂, M̂ ] = K̂M̂ − M̂K̂. Thus K̂ is an invariant, i.e.

K(x1,t+1, x2,t+1) = K(x1,t, x2,t)

if [K̂, M̂ ] = 0.
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As an example consider the logistic equation

xt+1 = 2x2
t − 1, t = 0, 1, 2, . . .

and x0 ∈ [−1, 1]. All quantities of interest in chaotic dynamics can be
calculated exactly. The logistic equation is an invariant of a class of second-
order difference equations

xt+2 = g(xt, xt+1), t = 0, 1, 2, . . . .

This means that if the logistic map is satisfied for a pair (xt, xt+1), then
xt+2 = g(xt, xt+1) implies that (xt+1, xt+2) also satisfies the logistic map.
In general let

xt+1 = f(xt), t = 0, 1, 2, . . .

be a first-order difference equation. Then this equation is called an invariant
of xt+2 = g(xt, xt+1) if

g(x, f(x)) = f(f(x)) .

We find that the logistic map is an invariant of the trace map

xt+2 = 1 + 4x2
t (xt+1 − 1) .

The trace map plays an important role for the study of tight-binding
Schrödinger equations with disorder. This second-order difference equation
can be written as a first-order system of difference equations (x1,t ≡ xt,
x2,t ≡ xt+1)

x1,t+1 = x2,t, x2,t+1 = g(x1,t, x2,t) .

After embedding the two maps into the linear unbounded operators M̂ and
K̂ we can show that [M̂, K̂] = 0 using the commutation relation given
above.

Another example is the Fibonacci trace map

xt+3 = 2xt+2xt+1 − xt .

This map admits the invariant

I(xt, xt+1, xt+2) = x2
t + x2

t+1 + x2
t+2 − 2xtxt+1xt+2 − 1 .

The Fibonacci trace map can be written as a system of three first order dif-
ference equations. After embedding the two maps into the linear unbounded
operators M̂ and K̂ we find that [M̂, K̂] = 0, since I is an invariant.
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21.5 Computer Algebra Applications

Given an expression with Bose creation and annihilation operators, for
example

bb†bb†bbb† + bb† .

We want to order the epression so that all creation operators are on the
left-hand side and the annihilation operators on the right-hand side using
the commutation relation bb† = 1+ b†b. This is achieved with the following
SymbolicC++ program. Here b denotes the Bose annihilation operator and
bd the Bose creation operator.

// bose.cpp

#include <iostream>

#include "symbolicc++.h"

using namespace std;

int main(void)

{

Symbolic b("b"), bd("bd");

b = ~b; bd = ~bd; // non-commutative

Symbolic result("result");

result = ~result;

result = b*bd*b*bd*b*b*bd + b*bd;

result = result.subst_all(b*bd==1+bd*b);

cout << result;

return 0;

}

The output is

(b†)3b4 + 7(b†)2b3 + 10b†b2 + 2b+ b†b+ 1 .

Next we give an implementation of coherent states. The coherent state is
denoted by cs and the dual coherent state is denoted by ds. conj[z] finds
the complex conjugate of z.

// coherent.cpp

#include <iostream>

#include "symbolicc++.h"

using namespace std;
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int main(void)

{

Symbolic b("b"), bd("bd"), cs("cs"), ds("ds");

b = ~b; bd = ~bd; cs = ~cs; ds = ~ds;,

Symbolic z("z"), w("w"), conj("conj");

Equations rules

= (b*cs[z]==z*cs[z],b*cs[w]==w*cs[w],

ds[z]*bd==ds[z]*conj[z],ds[w]*bd==ds[w]*conj[w],

ds[z]*cs[z]==1,ds[w]*cs[w]==1,

ds[w]*cs[z]==exp(-(z*conj[z]+w*conj[w]-2*conj[w]*z)/2),

ds[z]*cs[w]==exp(-(z*conj[z]+w*conj[w]-2*conj[z]*w)/2));

// Example 1

Symbolic r1 = b*(b*cs[z]);

r1 = r1.subst_all(rules);

cout << r1 << endl;

r1 = r1[z == 1];

cout << r1 << endl;

// Example 2

cout << (ds[z]*cs[z]).subst_all(rules) << endl;

// Example 3

Symbolic r2 = b*cs[z];

Symbolic r3 = ds[w]*r2;

cout << r2.subst_all(rules) << endl;

cout << r3.subst_all(rules) << endl;

return 0;

}

21.6 Exercises

(1) Consider the displacement operator

D(β) = exp(βb† − β∗b) .

Show that

D(β)bD(−β) = b− βI

D(β)b†D(−β) = b† − β∗I .
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(2) Consider the system of nonlinear differential equations

du1

dt
= u1u2 − u1u3

du2

dt
= u2u3 − u1u3

du3

dt
= u3u1 − u2u3 .

The first integrals are given by

I1 = u1 + u2 + u3, I2 = u1u2u3 .

Express the first integrals as state in the Hilbert space with Bose operators.

(3) Use the Baker-Campbell-Hausdorff formula

ezXY e−zX = Y + z[X,Y ] +
z2

2!
[X, [X,Y ]] + · · ·

(z ∈ C) to show that

eεbb†e−εb = b† + εI

e−εb
†

beεb
†

= b+ εI .



Chapter 22

Maps and Invariants

22.1 Discrete Dynamical Systems

Let U be an open set in Rn and V an open set in Rm. We consider maps
f : U → V . If m = n and U = V we can consider the sequence x0, f(x0),
f(f(x0)), . . . , where x0 ∈ U . We can also write this as a system of difference
equation

xt+1 = f(xt), t = 0, 1, 2, . . . .

This sequence of points in U is called the forward orbit (or forward trajec-
tory).

Example. Consider the map f : [0, 1] → [0, 1]

f(x) = 4x(1 − x) .

Then with x0 = 1/3 we obtain x1 = 8/9, x2 = 32/91. ♣

We also consider maps g : U → V , where U is an open set of Rn and V is
an open set of R. In most cases we have U = Rn and V = R.

Such a discrete dynamical system (maps) may have various symmetries and
reversing symmetries. Maps also may allow invariants.

Definition 22.1 Consider a map f : Rn → Rn and a map Φ : Rn → R.
The map Φ is called an invariant of f if

Φ ◦ f = Φ (1)

where ◦ denotes the composition of functions.

407
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An important special case is

Definition 22.2 Let f : R → R and g : R2 → R be a maps. A one-
dimensional map f(x) is called an invariant of a two-dimensional map
g(x, y) if

g(x, f(x)) = f(f(x)) .

Example. Consider the function f : R → R given by f(x) = x2 and g :
R2 → R given by g(x, y) = x2y. Then f(f(x)) = x4 and g(x, f(x)) = x4. ♣

Example. One of the most studied trace map is the Fibonacci map
f : R3 → R3

f(x, y, z) = (y, z,−x+ 2yz)

or
x → x′ = y, y → y′ = z, z → z′ = 2yz − x .

The map is volume-preserving, but the change in sign means that the map is
orientation-reversing. All trace maps that arise from invertible substitution
rules have the Fricke character (invariant, invariant surface)

I(x, y, z) = x2 + y2 + z2 − 2xyz − 1 .

The invariant measure is given by

dµ =
dxdy√

(x2 − 1)(y2 − 1) + I
. ♣

Example. Consider the volume preserving map f : R3 → R3

f(x, y, z) = (y, z, x+ F (y, z)) .

Maps of this form are volume and orientation-preserving for any function
F , and are diffeomorphisms whenever F is smooth. Assume that

F (y, z) =
(y − z)(α− βyz)

1 + γ(y2 + z2) + βyz + δy2z2
.

There are three free parameters α, β, γ, and without loss of generality, one
can suppose that δ can only have the values δ = 0,±1. This family of maps
has an invariant, i.e. a function I such that (see definition (1)) I ◦ f = I .
The invariant I has the form

I(x, y, z) = x2 + y2 + z2 + α(xy + yz − zx) + γ(x2y2 + y2z2 + z2x2)

+β(x2yz + z2xy − y2zx) + δx2y2z2 . ♣
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Example. There are also orientation-preserving trace maps, however there
are no nontrivial quadratic one. A cubic example is f : R3 → R3

f(x, y, z) = (−y + 2xz, z,−x− 2yz + 4xz2) .

As for all trace maps, this map preserves the Fricke character (invariant)

I(x, y, z) = x2 + y2 + z2 − 2xyz − 1 . ♣

22.2 Logistic Map

The logistic map

xt+1 = 2x2
t − 1, t = 0, 1, 2, . . . x0 ∈ [−1, 1]

is an invariant of a class of two-dimensional maps. All quantities of in-
terest in chaotic dynamics can be calculated exactly. Examples are the
fixed points and their stability, the periodic orbits and their stability, the
moments, the invariant density, topological entropy, the metric entropy,
Ljapunov exponent, autocorrelation function. We construct a class of
two-dimensional maps which admit the logistic maps as their invariant.
Moreover we calculate their Ljapunov exponents. We show that the two-
dimensional map can show hyperchaotic behaviour. The exact solution
takes the form

xt = cos(2t arccos(x0))

since cos(2α) ≡ 2 cos2(α)− 1. The Ljapunov exponent for almost all initial
conditions is given by ln(2). The logistic equation is an invariant of a class
of second order difference equations

xt+2 = g(xt, xt+1), t = 0, 1, 2, . . . .

This means that if the logistic map is satisfied for a pair (xt, xt+1), then
this equation implies that (xt+1, xt+2) also satisfies the logistic map. In
other words, let

xt+1 = f(xt), t = 0, 1, 2, . . .

be a first order difference equation. Then this is called an invariant of
the second order difference equation if g(x, f(x)) = f(f(x)). The second
order difference equation can be written as a first order system of difference
equations (x1,t ≡ xt)

x1,t+1 = x2,t, x2,t+1 = g(x1,t, x2,t).
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If x0 and x1 are the initial conditions (x0, x1 ∈ [−1, 1]) and assuming that
logistic map is an invariant as well as that x0 and x1 satisfy the logistic
equation, then a one-dimensional Ljapunov exponent of this system is given
by ln(2). Since this system is two-dimensional, we have a second one-
dimensional Ljapunov exponent and a two-dimensional Ljapunov exponent.
Let λI1 and λI2 be the two one-dimensional Ljapunov exponents. Let λII

be the two-dimensional Ljapunov exponent. Then we have λII = λI1 + λI2.
Let us find the two-dimensional Ljapunov exponent. Consider the system
of first order difference equations

x1,t+1 = f1(x1,t, x2,t), x2,t+1 = f2(x1,t, x2,t).

The variational equation is given by (xt = (x1,t, x2,t))

y1,t+1 =
∂f1
∂x1

(xt)y1,t +
∂f1
∂x2

(xt)y2,t, y2,t+1 =
∂f2
∂x1

(xt)y1,t +
∂f2
∂x2

(xt)y2,t.

Let yt and vt be two quantities satisfying the system of variational equation.
Let e1 and e2 be two unit vectors in R2 with e1 · e2 = 0 where · denotes
the scalar product. Let ∧ be the exterior product (Grassmann product).
Then we find

yt ∧ vt = (y1,tv2,t − y2,tv1,t)e1 ∧ e2.

Now we define
wt := y1,tv2,t − y2,tv1,t.

Thus the time evolution of wt is given by

wt+1 =

(
∂f1
∂x1

(xt)
∂f2
∂x2

(xt) −
∂f1
∂x2

(xt)
∂f2
∂x1

(xt)

)
wt.

The two-dimensional Ljapunov exponent is given by

λII = lim
T→∞

1

T
ln |wT |.

Obviously, λI1, λ
I
2 and λII depend on the initial conditions. If f1(x1, x2) =

x2 and f2(x1, x2) = g(x1, x2) we obtain

wt+1 = − ∂g

∂x1
(xt)wt.

Without loss of generality we can set w0 = 1.

We derive now a class of second order difference equation with the logistic
map as an invariant. Our ansatz for g(x1, x2) with f(x) = 2x2 − 1 is given
by

g(x1, x2) = a10x1 + a01x2 + a20x
2
1 + a11x1x2 + a02x

2
2 + d.
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Satisfying the condition for an invariant yields

g(x1, x2) = x2 − 2x2
1 + 2x2

2 + d(1 + x2 − 2x2
1).

Since ∂g/∂x1 = −4x1(d+ 1) we find that wt+1 takes the form

wt+1 = −4x1,t(d+ 1)wt.

Let us now calculate the two-dimensional Ljapunov exponent λII . The
initial values x1,0, x2,0 of the two-dimensional map x1,t+1 = x2,t, x2,t+1 =
g(x1,t, x2,t) satisfy the logistic map in our following calculations. We obtain

λII(θ0) = lim
T→∞

1

T
ln

(
T∏

t=1

4|d+ 1| | cos(2tθ0)|
)
, d 6= −1, θ0 := arccos(x0)

or
λII(θ0) = 2 ln 2 + ln |d+ 1| + γ(θ0)

where

γ(θ0) = lim
T→∞

1

T

T∑

t=1

ln | cos(2tθ0)|.

Now, since cos(2tθ0) = cos(2tθ0 mod 2π), we only need to study the
Bernoulli shift map

θt+1 = 2θt mod 2π.

This map has the solution

θt = 2tθ0 mod 2π.

This map is ergodic with the invariant density

ρ(θ) =
1

2π
χ[0,2π)(θ)

where χ is the characteristic function. Thus we may apply Birkhoff’s
ergodic theorem. This then gives

γ(θ0) =

2π∫

0

ρ(θ) ln | cos θ|dθ =
1

2π

2π∫

0

ln | cos θ|dθ =
2

π

π/2∫

0

ln(cos θ)dθ.

It follows that γ(θ0) = − ln 2, for a.e. θ0 ∈ [0, 2π). Thus

λII = ln 2 + ln |d+ 1|, d 6= −1 .
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Now, since one of the one-dimensional Ljapunov exponent is ln 2, and

λII = λI1 + λI2, λI1 ≥ λI2

we find the two one-dimensional Ljapunov exponent as

λI1 = max{ ln 2, ln |d+ 1| }, λI2 = min{ ln 2, ln |d+ 1| }.

Obviously λII can be made arbitrarily large positive or negative by appro-
priate choice of d. This implies that the spectrum of the one-dimensional
Ljapunov exponents may be (+,−), (+, 0), (+,+). Thus hyperchaos can
occur. Now, let {xn(x0) } denote the orbit originating from x0 for the
logistic map. Then

{xn(x0) } is chaotic ⇔ arccos(x0) ∈ R\Q.

This follows from the fact that the orbit of the Bernoulli shift map is chaotic
if and only if θ0 ∈ R\Q.

22.3 Discrete Painlevé Equations

A discrete Painlevé equation is an integrable (second-order, nonautonomous)
mapping which, at the continuous limit, tends to one of the continuous (six)
Painlevé equations, the later not necessarily in canonical form. Thus the
discrete Painlevé equations constitute the discretizations of the continuous
Painlevé equations. The first Painlevé transcendent is given by

d2x

dt2
= 6x2 + λt .

Shohat [108] obtained as version of the discrete first Painlevé equation

xt+1 + xt−1 = −xt +
αt+ β

xt
+ 1, t = 1, 2, . . . .

Jimbo and Miwa [64] found an alternative discrete form of the first discrete
Painlevé equation

α(t+ 1) + β

xt+1 + xt
+

αt+ β

xt + xt−1
= −x2

t + 1 .

The second Painlevé equation is given by

d2x

dt2
= 2x3 + tx+ µ .
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A discrete version was obtained by Periwal and Schevitz [84]

xt+1 + xt−1 =
(αt + β)xt + a

1 − x2
t

.

There are different approaches to obtain discrete Painlevé equation.

1) The one related to the inverse scattering problem. The discrete AKNS
method, the methods of orthogonal polynomials, of discrete dressing, of
non-isospectral deformations belong to this class.

2) The methods based on same reduction. Similarity reductions of inte-
grable lattice equations is the most important one. It also contains station-
ary reductions of nonautonomous differential-difference equations.

3) The contiguity relations approach. Discrete Painlevé equation can be
obtained from the auto-Bäcklund, Miura and Schlesinger transformations
of both continuous and discrete Painlevé equations.

4) The direct, constructive, approach. One of this methods is the construc-
tion of discrete Painlevé equations from the geometry of some affine Weyl
group. The other is the method of deautonomisation using the singularity
confinement approach.

Another approach is to start from the mapping

xt+1xt−1f3(xt) − (xt+1 + xt−1)f2(xt) + f1(xt) = 0

described by Quispel et al [85]. Here the fj are specific quartic polynomials
involving five parameters. The solution of this difference equation can be
expressed in terms of elliptic functions. One then allows the parameters to
depend on the independent discrete variable t and single out the integrable
cases. The idea behind this choice is that, since the continuous Painlevé
equations are the nonautonomous extensions of the elliptic functions, the
discrete Painlevé equations should follow the same pattern in the discrete
domain.

22.4 Computer Algebra Applications

We show that
Φ(x, y, z) = x2 + y2 + z2 − 2xyz − 1

is an invariant of the Fibonacci trace map.
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// invariant.cpp

#include <iostream>

#include "symbolicc++.h"

using namespace std;

int main(void)

{

Symbolic x("x"), y("y"), z("z");

Symbolic xp("xp"), yp("yp"), zp("zp");

Symbolic Phi = x*x + y*y + z*z - 2*x*y*z - 1;

Symbolic Phip = Phi[x==yp,y==zp,z==2*yp*zp-xp];

cout << "Phip = " << Phip << endl;

Symbolic Phipp = Phip[xp==x,yp==y,zp==z];

if((Phi-Phipp)==0) cout << "Phi is an invariant";

return 0;

}

22.5 Exercises

(1) Consider the trace map

x → x′ = y, y → y′ = z, z → z′ = 2yz − x .

Show that
dx′ ∧ dy′ ∧ dz′ = −dx ∧ dy ∧ dz .

(2) Consider the Lie algebra SL(2,R), i.e. the set of all 2 × 2 matrices M
over R with det(M) = 1. A dynamical system in SL(2,R) defined by

Mt+1 = Mt−1Mt, t = 1, 2, . . .

is called the Fibonacci sequence in a Lie group. Show that there is a
subdynamical system

Ft+2 = Ft+1Ft − Ft−1

where Ft := trMt and tr denotes the trace. Show that this sequence has
the invariant

I(Ft+1, Ft, Ft−1) = F 2
t+1 + F 2

t + F 2
t−1 − Ft+1FtFt−1 − 2 .

(3) Consider the map f : R3 → R3

f(x, y, z) = (y, 2xz − y, 4xyz − 2x2 − 2y2 + 1) .

Show that this map admits the invariant I(x, y, z) = (4x2 − 1)y − 2xz.



Chapter 23

Computer Algebra

23.1 Computer Algebra Packages

Computer algebra systems now available on many computers make it fea-
sible to perform a variety of analytical procedures automatically. In par-
ticular, the construction of Lie and Lie-Bäcklund symmetry vector fields,
commutation relations of Lie algebras, calculation of the Gateaux deriva-
tive, performing the Painlevé test are a small number of applications.

The most important general purpose computer algebra systems currently
available are SymbolicC++ (ISSC), MACSYMA (Math Lab Group MIT),
REDUCE (A.C. Hearn, Rand Corporation), MAPLE (B. Char, University
of Waterloo, Canada), DERIVE (D.R. Stoutemyer, The Software-house,
Honolulu, Hawaii), MATHEMATICA (Wolfram Research, Inc.), AXIOM
(R.D. Jenks and D. Yun, IBM Watson Laboratories), MuPAD (University
of Paderborn). MAXIMA is derived from the MACSYMA system.

SymbolicC++ is based on C++ and uses an object-oriented design based
on abstract data types. MACSYMA, REDUCE, DERIVE and AXIOM
are based on LISP. MAPLE, Mathematica and MuPAD is based on C. All
packages also allow numerical manipulations. AXIOM is also a computer
algebra system based on abstract data types, where the various types are
constructed from elementary data types.

A survey about computer algebra is given by Champagne et al [14]. Dav-
enport et al [22] describe algorithms for algebraic computations. Algebraic
computation with REDUCE is discussed by MacCallum and Wright [76].
Discussions and applications on computer algebra can also be found in

415
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Zwillinger [146] as well as in Rogers and Ames [90]. A general introduction
to applications of computer algebra methods in MACSYMA is given by
Rand [87].

23.2 Programs for Lie Symmetries

A survey of programs calculating Lie symmetry vector fields is given by
Champagne et al [14]. More recently, Hereman [55] gives a comprehensive
review on programs for Lie symmetries. He also discusses other applica-
tions in this field. We give a short excerpt from these articles. The reader
is referred to these articles for a more detailed discussion. For all computer
algebra systems described above programs exist for finding Lie symmetry
vector fields.

The REDUCE program SPDE developed by Schwarz [104] attempts to solve
the determining equations with minimal intervention by the user. Based on
the exterior calculus, Edelen [31] as well as Gragert, Kersten and Martini
[52] did some pioneering work in using REDUCE to calculate the Lie sym-
metry vector fields of differential equations. Kersten [66] later developed
a REDUCE software package for the calculation of the Lie algebra of Lie
symmetry vector fields (and corresponding Lie-Bäcklund transformations)
of an exterior differential system. Eliseev, Fedorova and Kornyak [32] wrote
a REDUCE program to generate (but not solve) the system of determining
equations for point and contact symmetries. Fedorova and Kornyak [44]
generalized the algorithm to include the case of Lie-Bäcklund symmetries.
Nucci [81] developed interactive REDUCE programs for calculating clas-
sical (Lie point), non-classical (generalized) and Lie-Bäcklund symmetry
vector fields.

The program LIE by Head [54] is based on muMATH. Head’s program
calculates and solves the determining equations automatically. Interven-
tions by the user are possible. The SYMCON package written by Vafeades
[132] also uses muMATH to calculate the determining equations (without
solving them). Furthermore, the program verifies whether the symmetry
group is of variational or divergence type and computes the conservation
laws associated with symmetries. Vafeades rewrote his SYMCON program
in MACSYMA syntax (Vafeades [132]).

There are several MACSYMA programs for the calculation of Lie symmetry
vector fields. MACSYMA is currently available for various types of comput-
ers, ranging from PCs to various work stations and main frame computers.
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Apart from a version by Champagne and Winternitz [15] and the work
done by Rosencrans [94], there are three other MACSYMA-based symme-
try programs. The MACSYMA version of SYMCON by Vafeades [132] was
discussed above. Schwarzmeier and Rosenau [105] wrote a program that
calculates the determining equations in their simplest form, but does not
solve them automatically. The program SYM DE by Steinberg [129] was re-
cently added to the out-of-core library of MACSYMA. The program solves
some (or all) of the determining equations automatically and, if needed,
the user can (interactively) add extra information. Champagne et al [14]
have written the program SYMMGRP.MAX in MACSYMA. This program
is a modification of a package that has been extensively used over the last
five years at the University of Montréal and elsewhere. It has been tested
on hundreds of systems of equations and has thus been solidly debugged.
The flexibility of this program and the possibility of using it in a partly
interactive mode, allows us to find the symmetry group of, in principle,
arbitrarily large and complicated systems of equations on relatively small
computers. These are the main justifications for presenting yet another
new symbolic program in a field where several programs already exist. The
program SYMMGRP.MAX concentrates on deriving the determining equa-
tions. The program can also be used to verify calculated solutions of the
determining equations.

Carminati et al [12] present their program LIESYMM in MAPLE for creat-
ing the determining equations via the Harrison-Estabrook technique. Within
LIESYMM various interactive tools are available for integrating the de-
terming equations, and for working with Cartan’s differential forms.

Herod [56] developed the program MathSym for deriving the determin-
ing equations corresponding to Lie-point symmetries, including nonclassical
(or conditional) symmetries. The program Lie.m of Baumann [4] written
in MATHEMATICA follows the MACSYMA progam SYMMGRP.MAX
closely. Baumann [5] also provides a MATHEMATICA programs for find-
ing Lie-Bäcklund symmetries.

Other applications of MACSYMA and REDUCE include the following: In
Schwarz’s paper [101] there is a description of a REDUCE program that
will automatically determine first integrals of an autonomous system of
ordinary differential equations. Schwarz [104] also write a factorization al-
gorithm for linear ordinary differential equations. In Fateman [42] there
is a description of a MACSYMA program that will automatically utilize
the method of multiple scales to approximate the solution of differential
equations. In Lo [75] there is a technique for calculating many terms in
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an asymptotic expansion. The computer language MACSYMA is used to
perform the asymptotic matching at each stage. MACSYMA also pro-
vides us with a function called SERIES that computes the series expansion
of a second order ordinary differential equation. In Rand and Winternitz
[86] there is a MACSYMA program for determining whether a nonlinear
ordinary differential equation has the Painlevé property. Obviously the
differential equation must be a polynomial in both the dependent and inde-
pendent variables and in all derivatives. A computer program in REDUCE
for determining conservation laws is given in Ito and Kako [62]. In Gerdt,
Shvachka and Zharkov [49] there is the description of a computer program
in FORMAC that determines conservation laws, Lie-Bäcklund symmetries
and also attempts to determine when an evolution equation is formally
integrable. A REDUCE package called EXCALC can be used for calcula-
tions in differential geometry. The package is able to handle scalar-valued
exterior forms, vectors and operations between them, as well as non-scalar
valued forms.

To conclude, the availability of efficient computer algebra packages becomes
crucial as the problem size increases. Thus, as the order, dimension and
number of equations increases, so the total number N of the determin-
ing equations rises dramatically. This is readily illustrated for quasi-linear
systems of first order where

N =
1

2
n(mn− n+ 1)(mn− n+ 2),

withm the number of independent variables and n the number of dependent
variables. In the following table values of N are displayed to indicate how
rapidly N increases with problem size.

The Number N of Determining Equations

n 2 3 3 4 4
m 2 3 4 4 5
N 12 84 180 364 680

Let us now describe methods for solving the determining equations. There
are no algorithms to solve an arbitrary system of determining equations,
which consists of linear homogeneous partial differential equations for the
coefficients of the vector field. Most integration algorithms are based on a
set of heuristic rules. Most commonly the following rules are used.

(1) Integrate single term equations of the form

∂|I|f(x1, . . . , xn)

∂xi11 ∂x
i2
2 . . . ∂xinn

= 0



23.2. Programs for Lie Symmetries 419

where |I | = i1 + i2 + · · · + in, to obtain the solution

f(x1, x2, . . . , xn) =

n∑

k=1

ik−1∑

j=0

hkj(x1, . . . , xk−1, xk+1, . . . , xn)(xk)
j .

Thus introducing functions hkj with fewer variables.

(2) Replace equations of type

n∑

j=0

fj(x1, . . . , xk−1, xk+1, . . . , xn)(xk)
j = 0

by fi = 0 (j = 0, 1, . . . , n). More generally, this method of splitting equa-
tions (via polynomial decomposition) into a set of smaller equations is also
allowed when fj are differential equations themselves, provided the variable
xk is missing.

(3) Integrate linear differential equations of first and second order with con-
stant coefficients. Integrate first order equations with variable coefficients
via the integrating factor technique, provided the resulting integrals can be
computed in closed form.

(4) Integrate higher-order equations of type

∂nf(x1, . . . , xn)

∂xnk
= g(x1, x2, . . . , xk−1, xk+1, . . . , xn),

n successive times to obtain

f(x1, . . . , xn) =
xnk
n!
g(x1, . . . , xk−1, xk+1, . . . , xn)

+
xn−1
k

(n− 1)!
h(x1, . . . , xk−1, xk+1, . . . , xn)

+ · · · + r(x1, . . . , xk−1, xk+1, . . . , xn)

where h, . . . , r are arbitrary functions.

(5) Solve any simple equation (without derivatives) for a function (or a
derivative of a function) provided both (i) it occurs linearly and only once,
(ii) it depends on all the variables which occur as arguments in the remain-
ing terms.
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(6) Explicitly integrate exact equations.

(7) Substitute the solutions obtained above in all the equations.

(8) Add differences, sums or other linear combinations of equations (with
similar terms) to the system, provided these combinations are shorter than
the original equations.

With these simple rules, and perhaps a few more, the determining sys-
tem can often be drastically simplified. In many cases nothing beyond the
above heuristic rules is needed to solve the determining equations com-
pletely. If that is not possible, after simplification, the program will return
the remaining unsolved differential equations for further inspection. In
most programs, the user can then interactively simplify and fully solve the
determining equations on the computer, thereby minimizing human errors.

23.3 SymbolicC++ and the Symbolic Class

23.3.1 Expression Tree

For the symbolic system in SymbolicC++ an expression is organized in
a tree-like structure. Every node in the tree may represent a variable,
a number, a function or a root of a subtree. A subtree may represent
a term or an expression. The class SymbolicInterface defines all the
operations for a node in the expression tree. The class Symbolic acts
as a pointer to CloningSymbolicInterface (a SymbolicInterface with
additional memory management routines) and provides methods for con-
venient use of the underlying SymbolicInterface. Classes derived from
CloningSymbolicInterface include Symbol (for symbolic variables), Sum,
Product, Numeric (and its derived classes Number<int>, Number<double>
and Number<void> amongst others), Equation and functions such as Cos

and Sin.

The Symbolic class is the most important class as it defines a symbolic
variable as well as a numeric number or symbolic expression. It can be
added or multiplied by another instance of Symbolic to form an expres-
sion, which is also represented by the Symbolic class. All the operators,
functions and interfaces are defined in the class. The Symbolic class also
defines special functions like sin(x) and cos(x) described in detail in later.

Another important class is Equation. Equation is used primarily for substi-
tution. On the other hand, the other classes (Sum, Product etc.) describes
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terms that are are facilitator classes and their existence is not known by
the users.

Example. Consider the expression

y = (a+b)*(a+c).

The object y has a structure as given in Figure 23.1. The symbolic variables
a, b and c are represented by Symbol nodes. They are the leaf nodes of
the expression tree. The expression a+b is composed of a Sum node which
points at the variables a and b. a+c is constructed similarly. A Symbolic

node y points at the final expression.

Object y, type “Symbolic”

Object of type “Product”

Object of type “Symbolic” Object of type “Symbolic”

Object of type “Sum” Object of type “Sum”

Object a of type “Symbolic” Object b of type “Symbolic” Object a of type “Symbolic” Object c of type “Symbolic”

Object of type “Symbol” Object of type “Symbol” Object of type “Symbol” Object of type “Symbol”

Figure 23.1: Schematic diagram of the expression y = (a+b)*(a+c).

Polymorphism of the Expression Tree

The Symbolic node could either hold a variable, a number or a special
function. This is achieved by using inheritance and polymorphism of object-
oriented techniques.

Inheritance possesses the ability to create new types by importing or reusing
the description of existing types. Polymorphism with dynamic binding en-
ables functions available for the base type to work on the derived types.



422 23. Computer Algebra

Such a function can have different implementations which are invoked by a
run-time determination of the derived types.

The standard arithmetic operators are defined so that knowledge of the
underlying classes is not required. For example the expression

3.0*(cos(a+b)+cos(a-b))

could be written as

Product(Number<double>(3.0),Sum(Cos(Sum(a,b)),Cos(Sum(a-b))))

Different number types and simplification are handled automatically. For
example

Symbolic(1)/2+0.5

is represented as

Sum(Product(Number<int>(1),Power(Number<int>(2),

Number<int>(-1))),Number<double>(0.5))

which after 1 step simplifies to

Sum(Number<Rational<Number<void> > >

(Rational(Number<void>(Number<int>(1)),

Number<void>(Number<int>(2)))),Number<double>(0.5))

and after 2 steps to 1.0.

SymbolicC++ uses arbitrary precision rational numbers by default but con-
verts numbers to the data type doublewhenever arithmetic operations with
type double are involved.

Making use of virtual functions, the properties and behaviours of the de-
rived classes can be determined during run-time.

Any class that declares or inherits a pure virtual function is an abstract
base class. The classes SymbolicInterface, Cloning and Numeric are
abstract base classes. An attempt to create an object of an abstract base
class will cause a compile time error. Thus all the pure virtual functions
have to be overridden in the derived class that is declarable. An abstract
base class is used to declare an interface without declaring a full set of
implementations for that interface. That interface specifies the abstract
operations supported by all objects derived from the class; it is up to the
derived classes to supply implementations for those abstract operations.
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23.3.2 Examples

SymbolicC++ introduces, amongst others, the Symbolic class which is used
for all symbolic computation. The Symbolic class provides almost all of
the features required for symbolic computation including symbolic terms,
substitution, non-commutative multiplication and vectors and matrices.

Header File

All the necessary classes and definitions are obtained by

#include "symbolicc++.h"

in the C++ source file.

Constructors

There are a number of constructors available for Symbolic:

Symbolic zero; // default value is 0

Symbolic int_one1(1); // construction from int

Symbolic int_one2=1; // construction from int

Symbolic dbl_one1(1.0); // construction from double

Symbolic dbl_one2=1.0; // construction from double

Symbolic half = Symbolic(1)/2; // fraction 1/2

Symbolic a("a"); // symbol a

Symbolic b("b",3); // vector (b0,b1,b2)

Symbolic c = b(2); // copy constructor, c=b2

Symbolic A("A",2,3); // matrix A 2 rows, 3 columns

Symbolic d = A(1,2); // copy constructor, d=A(1,2);

Symbolic e = (a,c,d); // vector (a,b2,A(1,2))

Symbolic B = ((half,a), // matrix B = [1/2 a]

(c,A(0,0))); // [ b2 A(0,0)]

The comma operator , operator has been overloaded to create lists of type
STL list<Symbolic> which can be assigned to Symbolic to create vectors
and matrices as shown for v and B. Matrices and vectors are indexed using
the () and (,) operators.

All the standard arithmetic operators are provided for Symbolic as well as
the usual functions cos, sin, exp, tan, cot, sec, csc, sinh, cosh, ln, pow
or alternatively (x^y), and sqrt. The precedence of ^ is lower than |+|so
the parenthesis (x^y) are usually necessary.
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Equations

Symbolic C++ also includes an Equation class for expressing equality (or
substitution) usually constructed using the == operator:

Equation eq = (a==a*c-d);

Equations also serve as logical variables, in the sense that they can be cast
to the data type bool. For example

if(eq) cout << "a==a*c-d"; // a!=a*c-d

else cout << "a!=a*c-d";

if(a==a) // creates the equation (a==a)

cout << "a is a"; // the if statement implicitly

// casts the equation to bool

Lists of equations are created with the comma operator:

list<Equation> rules = ((cos(x)^2)==1-(sin(x)^2),

(sec(x)^2)==1+(tan(x)^2),

(cosh(x)^2)==1-(sinh(x)^2));

Dependency

Symbols can depend on eachother using the [] operator:

Symbolic x("x"), y("y"), t("t");

cout << y; // independent y

cout << y[x]; // y[x] (y dependent on x,explicit)

cout << y; // independent y

cout << y[x,t]; // y[x,t] (y dependent on x and t)

cout << y; // independent y

x = x[t]; // x depends on t (implicit)

y = y[x]; // y depends on x

cout << y; // y[x[t]]

Substitution

Substitution is specified via equations and the [] operator:

Symbolic v("v");

Symbolic u = (v^5)+cos(v-2); // u depends implicitly on v

cout << u[v==2];

cout << u[cos(v-2)==sin(v-2),v==2];

cout << u[v==2,cos(v-2)==sin(v-2)];

cout << u.subst(v==2);
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cout << u.subst_all(v==2);

cout << u.subst(v==v*v);

cout << u.subst_all(v==v*v); // never returns

The above example demonstrates that substitution proceeds from left to
right. The member function subst can also be used for substitution, as
well as subst_all. The difference between the two methods is that subst
substitutes in each component of an expression only once while subst_all

attempts to perform the substitution until the substitution fails, thus for v
→ v*v we have the never ending substitution sequence v → v^2 → v^4 →
v^8 → · · ·.

Commutativity

Symbolic variables can be either commutative or noncommutative. By
default symbolic variables are commutative, commutativity is toggled using
the ~ operator:

Symbolic P("P"), Q("Q");

cout << P*Q - Q*P; // 0

cout << ~P*~Q - ~Q*~P; // P*Q - Q*P

cout << P*Q - Q*P; // 0

P = ~P; // P is noncommutative

cout << P*Q - Q*P; // 0

Q = ~Q; // Q is noncommutative

cout << P*Q - Q*P; // P*Q - Q*P

cout << (P*Q - Q*P)[Q==~Q]; // 0

cout << P*Q - Q*P; // P*Q - Q*P

Q = ~Q; // Q is commutative

cout << P*Q - Q*P; // 0

Symbolic C("C"), D("D"), E("E");

C = ~C; D = ~D; E = ~E; // noncommuting variables

// commutation relations

list<Equation> rules = (D*C==1+C*D,E*D==1+D*E,E*C==1+C*E);

Symbolic F = (C+D-E)^2;

cout << F[rules]; // C^(2)+2*C*D-2*C*E

// + D^(2)-2*D*E+E^(2)-1

Coefficients

It is also possible to determine the coefficient of expressions using the
method coeff, and additional power can be specified:
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Symbolic m("m"), n("n");

Symbolic result = (2*m-2*n)^2; // 4*(m^2)-8*m*n+4*(n^2)

cout << result.coeff(m^2); // 4

cout << result.coeff(n,2); // 4

cout << result.coeff(m); // -8*n

cout << result.coeff(m*n); // -8

cout << result.coeff(m,0); // 4*(n^2)

cout << result.coeff(m^2,0); // -8*m*n+4*(n^2)

cout << result.coeff(m*n,0); // 4*(m^2)+4*(n^2)

Differentiation and Integration

Differentiation and elementary intergration is supported via the functions
df and integrate:

Symbolic p("p"), q("q");

cout << df(p,q); // 0

cout << df(p[q],q); // df(p[q],q)

cout << df(p[q],q,2); // second derivative

cout << integrate(p,q); // p*q

cout << integrate(p[q],q); // integrate(p[q],q)

cout << integrate(ln(q),q); // q*ln(q)-q

Type Cast and Numerical Computation

A number of operations are defined on Symbolic which are dependent on
the underlying value. For example, a symbolic expression which evaluates
to an integer can be cast to the data type int and similarly for the data
type double. Note that double is never simplified to int, for example
2.0 6→ 2 while fractions do 2

2 → 1.

Symbolic z("z");

cout << int(((z-2)^2)-z*(z-4)); // 4

cout << int(((z-2)^2)-z*(z-4.0)); // 4

cout << int(((z-2.0)^2)-z*(z+4)); // error: -8*z

cout << int(((z-2.0)^2)-z*(z-4)); // error: 4.0 not an int

cout << double(((z-2.0)^2)-z*(z-4)); // 4.0

Matrices

The matrix operations det (determinant) and tr (trace), scalar product
a|b, cross product % and methods rows, columns, row, column, identity,
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transpose, vec (vec operator), kron (Kronecker product), dsum (direct
sum) and inverse are only defined on matrices with appropriate properties.

Symbolic X("X",3,3), Y("Y",3,3);

cout << tr(X); // X(0,0) + X(1,1) + X(2,2)

cout << det(Y);

cout << "X: " << X.rows() // X: 3 x 3

<< " x " << X.columns();

cout << X.identity();

cout << X;

cout << X.transpose();

cout << X*Y; // matrix product

cout << X.vec(); // vec operator

cout << X.kron(Y); // Kronecker product

cout << X.dsum(Y); // direct sum

cout << X.inverse(); // symbolic inverse

cout << X.row(0)*Y.column(1);

cout << (X.column(0)|Y.column(0)); // scalar product

cout << (X.column(0)%Y.column(0)); // vector product

Note that there is a Matrix class available in SymbolicC++ which could
be used as follows.

Matrix<Symbolic> X(2,2), Y(2,2);

X[0][0] = "X11"; X[0][1] = "X12";

X[1][0] = "X21"; X[1][1] = "X22";

Y[0][0] = "Y11"; Y[0][1] = "Y12";

Y[1][0] = "Y21"; Y[1][1] = "Y22";

cout << tr(X); // trace of X

cout << det(Y); // determinant of X

cout << "X: " << X.rows() // rows

<< " x " << X.cols(); // columns

cout << X.transpose(); // transpose of X

cout << X*Y; // matrix product

cout << X.vec(); // vec operator

cout << X.kron(Y); // Kronecker product

cout << X.dsum(Y); // direct sum

cout << X.inverse(); // inverse

cout << X[0]*Y(1); // Hadamard product

cout << (X[0]|Y[0]); // scalar product (rows)

cout << (X(0)|Y(0)); // scalar product (columns)

cout << X.identity(); // sets X to the identity

cout << X; // X becomes the identity
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23.4 Examples

(1) We show that
u(x) = iλcn(λ(x − x0), k)

satisfies the nonlinear differential equation

d2u

dx2
= u3 .

We implement the rules for the Jacobi elliptic functions.

// elliptic.cpp

#include <iostream>

#include "symbolicc++.h"

using namespace std;

int main(void)

{

Symbolic cn("cn"), sn("sn"), dn("dn");

Symbolic k("k"), x("x"), x0("x0"), a("a"),

lambda("lambda"), i = ("i");

a = a[x];

Symbolic u = i*lambda*cn[a,k];

Symbolic res1 = df(u,x,2);

res1 = res1.subst_all(

(df(sn[a,k],a)== cn[a,k]*dn[a,k],

df(cn[a,k],a)==-sn[a,k]*dn[a,k],

df(dn[a,k],a)==-(k^2)*sn[a,k]*cn[a,k]));

cout << res1 << endl;

Symbolic res2 = res1 - (u^3);

Symbolic res3 = res2.subst_all((cn[a,k]^2)==

(-1+2*(k^2)-(k^2)*(sn[a,k]^2)+(dn[a,k]^2))/(2*k*k));

Symbolic res4 = res3[a==lambda*(x-x0),

k==1/sqrt(Symbolic(2)),(i^3)==-i];

cout << res4 << endl;

return 0;

}

(2) The following SymbolicC++ program calculates the Lie bracket using
the Gateaux derivative for the following two mappings

f(u) :=
∂u

∂x2
− u

∂u

∂x1
− ∂3u

∂x3
1

, g(u) :=
∂u

∂x2
− ∂2u

∂x2
1

.
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We find

[f, g] = −2
∂u

∂x1

∂2u

∂x2
1

.

// gateauxcom.cpp

#include <iostream>

#include "symbolicc++.h"

using namespace std;

int main(void)

{

Symbolic u("u"), x1("x1"), x2("x2"), ep("ep");

Symbolic A, B;

u = u[x1,x2];

A = A[ep]; B = B[ep];

Symbolic V = df(u,x2) - u*df(u,x1) - df(u,x1,3);

Symbolic W = df(u,x2) - df(u,x1,2);

A = V[u==u+ep*W]; B = W[u==u+ep*V];

Symbolic R = df(A,ep);

Symbolic S = df(B,ep);

R = R[ep==0]; S = S[ep==0];

Symbolic Commutator = R-S;

cout << Commutator;

return 0;

}

(3) The following SymbolicC++ finds the determining equations for the Lie
symmetry vector fields of the inviscid Burgers’ equation

∂u

∂x2
= u

∂u

∂x1
.

// liesymmetries.cpp

#include <iostream>

#include "symbolicc++.h"

using namespace std;

int main(void)

{

Symbolic u("u"), x1("x1"), x2("x2");

Symbolic u1("u1"), u2("u2");

Symbolic u11("u11"), u22("u22"), u12("u12"), u21("u21");
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Symbolic eta("eta"), xi1("xi1"), xi2("xi2");

eta = eta[x1,x2,u];

xi1 = xi1[x1,x2,u];

xi2 = xi2[x1,x2,u];

// vertical vector field

Symbolic uu = eta - xi1*u1 - xi2*u2;

Symbolic D1=df(uu,x1)+u1*df(uu,u)+u11*df(uu,u1)+u12*df(uu,u2);

Symbolic D2=df(uu,x2)+u2*df(uu,u)+u22*df(uu,u2)+u21*df(uu,u1);

// hypersurface

Symbolic hs = u2 - u*u1;

// Lie derivative for symmetry

Symbolic Lie = uu*df(hs,u) + D1*df(hs,u1) + D2*df(hs,u2);

Lie=Lie[u21==u12,u2==u*u1,u*u11==u12-u1*u1,u22==u*u1*u1+u*u12];

cout << "Lie = " << Lie << endl;

Symbolic c1 = Lie.coeff(u1,1);

Symbolic c2 = Lie.coeff(u1,0);

cout << "c1 = " << c1 << endl;

cout << "c2 = " << c2 << endl;

return 0;

}

(4) Given the metric tensor field

g = dx1⊗dx1+cos(u(x1, x2))dx1⊗dx2+cos(u(x1, x2))dx2⊗dx1+dx2⊗dx2

the SymbolicC++ program finds the Christoffel symbols, the Riemann
curvature tensor, the Ricci tensor and the curvature scalar of g.

// tensor.cpp

#include <iostream>

#include "array.h"

#include "symbolicc++.h"

int main()

{

int a,b,m,n,c,K=2;
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Symbolic g("g",K,K), g1("g1",K,K); // g1 inverse of g

Array<Symbolic,2> Ricci(K,K), Ricci1(K,K);

Array<Symbolic,3> gamma(K,K,K);

Array<Symbolic,4> R(K,K,K,K);

Symbolic u("u"), x("x",2);

Symbolic sum, RR;

// u depends on x1 and x2

u = u[x(0),x(1)];

g(0,0) = 1; g(0,1) = cos(u);

g(1,0) = cos(u); g(1,1) = 1;

g1 = g.inverse();

for(a=0;a<K;a++)

for(m=0;m<K;m++)

for(n=0;n<K;n++)

{

sum = 0;

for(b=0;b<K;b++)

sum += g1(a,b)*(df(g(b,m),x(n)) + df(g(b,n),x(m))

- df(g(m,n),x(b)));

gamma[a][m][n] = sum/2;

cout << "gamma(" << a << "," << m << "," << n << ") = "

<< gamma[a][m][n] << endl;

}

cout << endl;

for(a=0;a<K;a++)

for(m=0;m<K;m++)

for(n=0;n<K;n++)

for(b=0;b<K;b++)

{

R[a][m][n][b] = df(gamma[a][m][b],x(n))

-df(gamma[a][m][n],x(b));

for(c=0;c<K;c++)

{

R[a][m][n][b] += gamma[a][c][n]*gamma[c][m][b]

-gamma[a][c][b]*gamma[c][m][n];

}

R[a][m][n][b]

= R[a][m][n][b].subst(cos(u)*cos(u),1-sin(u)*sin(u));
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}

for(m=0;m<K;m++)

for(n=0;n<K;n++)

{

Ricci[m][n] = 0;

for(b=0;b<K;b++) Ricci[m][n] += R[b][m][b][n];

cout << "Ricci(" << m << "," << n << ") = "

<< Ricci[m][n] << endl;

}

cout << endl;

for(m=0;m<K;m++)

for(n=0;n<K;n++)

{

Ricci1[m][n] = 0;

for(b=0;b<K;b++) Ricci1[m][n] += g1(m,b)*Ricci[n][b];

}

RR = 0;

for(b=0;b<K;b++) RR += Ricci1[b][b];

RR = RR[cos(u)*cos(u) == 1-sin(u)*sin(u)];

cout << "R = " << RR << endl;

return 0;

}



Appendix A

Differentiable Manifolds

A.1 Definitions

In order to give a precise formulation of differentiable manifolds (Choquet-
Bruhat et al [17], von Westenholz [133], Matsushima [78]), we require some
preliminary definitions.

Definition A.1 1. A topological space is a pair (X,O) where X is
a set and O a class of subsets, called open sets, such that

(i) The union of any collection of open sets is open;

(ii) The intersection of a finite collection of open sets is open;

(iii) The empty set φ and the set X are both open.

2. A collection B of open sets of X is a basis for the topology of X if
every open set is the union of sets of B. (For instance, the open balls
in Rn form a basis for the (metric) topology of Rn; also the set of all
open balls with rational radii and rational centre coordinates is also a
basis for the topology of Rn which is actually countable.)

3. If X has a countable basis, it is said to be second countable (alterna-
tively, the space satisfies the second axiom of countability).

Remark. This implies that X is separable i.e., X contains a countable
dense set.

4. The topological space X is a Hausdorff space if any two distinct
points have disjoint open neighbourhoods.

433
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5. Let X,Y be topological spaces. A map f : X → Y is continuous if
the inverse image of any open set in Y is open in X.

The map f is a homeomorphism if it is bijective and both f and f−1

are continuous, in which case U ⊂ X is open if and only if f(U) ⊂ Y
is open.

Definition A.2 An n-dimensional topological manifold is a Hausdorff
space M with a countable basis that satisfies the following condition: Every
point p ∈ M has a neighbourhood U which is homeomorphic with an open
subset of Rn

In this case we write dimM = n, and U is called a coordinate neighbour-
hood. (Topological manifolds are often called Euclidean spaces.)

A chart for a topological manifold M is a pair (U, h), where U is an open
subset of M,h : U → h(U) is a homeomorphism, with h(U) open in Rn.

An atlas on an n-dimensional topological manifold is a collection of charts

{ (Uα, hα) : α ∈ A }

where A is some countable index set, such that the sets Uα constitute a
cover of M :

M =
⋃

α∈A

Uα.

The atlas is said to be finite if A is finite. Any compact topological man-
ifold admits a finite atlas. In fact it can be shown that any topological
manifold admits a finite atlas.

Let Uα, Uβ be (coordinate) neighbourhoods of an atlas {Uα, hα} with Uα ∩
Uβ 6= φ. Then hβα := hβ ◦ h−1

α is a homeomorphism hβα : hα(Uα ∩ Uβ) →
hβ(Uα ∩ U)β) with inverse hαβ := hα ◦ h−1

β .

The map hβα is called the identification map for Uα and Uβ . These are
maps between open sets of Rn and can therefore be represented by n real-
valued functions of n real variables. If hβα is a Ck function, the charts
(Uα, hα), (Uβ , hβ) are said to be Ck-compatible. If all overlapping charts
of an atlas are Ck-compatible (respectively, C∞-compatible), the atlas is
said to be Ck-compatible (respectively, C∞-compatible or smooth). Thus
an atlas is smooth if all of its identifiction maps are C∞.
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Let {(Uα, hα)}, {(Vα′ , kα′)} be smooth atlases. These are said to be equiv-
alent if their union is again a smooth atlas, that is, if all the maps

kβ′ ◦ h−1
α : hα(Uα ∩ Vβ′) → kβ′(Uα ∩ Vβ′)

and their inverses are smooth.

A differentiable (or smooth) structure on M is an equivalence class of
smooth atlases on M .

A topological manifold endowed with a differentiable structure is called a
differentiable manifold.

Not every topological manifold can be endowed with a differentiable struc-
ture. A topological manifold may carry differentiable structures that belong
to distinct equivalence classes: for instance S7.

A.2 Examples of Differentiable Manifolds

1. Rn is an analytic manifold. For an open covering take Rn itself. Let r
be the identity mapping from Rn to itself. Then it is clear that {(Rn, r)} is
a Cω coordinate neighbourhood system. The coordinates x1, . . . , xn of Rn

form a (local) coordinate system for the whole Rn. When Rn is considered
as a differentiable manifold, it is called an affine space. Let U be an open
set of Rn, and let f1, . . . , fn be real valued Cr functions defined on U .
Suppose the map x 7→ f(x) = (f1(x), . . . , fn(x)) (x ∈ U) from U into Rn

is a one-to-one map and that the Jacobian

∂(f1, . . . , fn)

∂(x1, . . . , xn)

is not 0 at each point of U . Then by the inverse function theorem, f(U) is
an open set Rn and

f−1 : f(U) → U

is of class Cr. This means that

{ (Rn, r), (U, f) }

is a Cr coordinate neighbourhood system for the affine space. Hence
(f1, . . . , fn) is a local coordinate system of the affine space, and is called
a curvilinear coordinate system. In particular, if each fi is a linear
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function on x, i.e., if

fi(x) =

n∑

j=1

aijxj + bi, i = 1, . . . , n

then ∂(f1, . . . , fn)/∂(x1, . . . , xn) is the determinant det(aij) of the matrix




a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
an1 an2 . . . ann




which is not 0 by assumption. In general, let

yi =

n∑

j=1

aijxj + bi

where i = 1, . . . , n. If det(aij) 6= 0, then (y1, . . . , yn) is a (local) coordinate
system defined on the whole affine space, and is called an affine coordi-
nate system, or a linear coordinate system. We also call (x1, . . . , xn)
the standard coordinate system of the affine space Rn.

2. Let S1 be the circle in the xy-plane R2 centered at the origin and of
radius 1, i.e. S1 = { (x, y) : x2 + y2 = 1 }. Give S1 the topology of a
subspace of R2. Let

U1 :=
{
p = (x, y) ∈ S1 : y > 0

}

V1 :=
{
p = (x, y) ∈ S1 : y < 0

}

U2 :=
{
p = (x, y) ∈ S1 : x > 0

}

V2 :=
{
p = (x, y) ∈ S1 : x < 0

}
.

Then Ui and Vi are open sets of S1, and U1 ∪ U2 ∪ V1 ∪ V2 = S1. Let ψi
and ϕi be the maps from Ui and Vi, respectively, to the open interval

I := { t : −1 < t < 1 }

given by ψ1(x, y) = x, ϕ1(x, y) = x, ψ2(x, y) = y, ϕ2(x, y) = y. The maps
ψi and ϕi are homeomorphisms. Thus S1 is a 1-dimensional topological
manifold and

S := { (Ui, ψi), (Vi, ϕi) }i=1,2

is a coordinate neighbourhood system. Now

U1 ∩ U2 =
{
p = (x, y) ∈ S1 : x, y > 0

}
.
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Thus ψ1(U1 ∩U2) and ψ2(U1 ∩U2) are both equal to J := { t : 0 < t < 1 }.
For t ∈ J , we have

f21(t) = ψ2(ψ
−1
1 (t)) = (1 − t2)1/2

and
f12(t) = ψ1(ψ

−1
2 (t)) = (1 − t2)1/2.

f21(t) and f12(t) are analytic for 0 < t < 1. Similarly the other coordinate
transformations are also analytic. Thus S1 is an analytic manifold.

3. The topological space obtained by giving the subspace topology to the
set of points (x1, . . . , xn+1) in Rn+1 satisfying

x2
1 + x2

2 + · · · + x2
n+1 = r2

is denoted by Sn and called the n-dimensional sphere. The sphere Sn is
an n-dimensional analytic manifold. To verify this we let (i = 1, . . . , n+ 1)

Ui := { p = (x1, . . . , xn+1) ∈ Sn : xi > 0 }
Vi := { p = (x1, . . . , xn+1) ∈ Sn : xi < 0 }

and define maps ϕi and ψi from Ui and Vi to

Bn =
{
y1, . . . , yn) : y2

1 + · · · + y2
n < r2

}
,

the interior of the sphere Sn−1 in Rn, by

p = (x1, x2, . . . , xn+1) → (x1, . . . , xi−1, xi+1, . . . , xn+1) .

Then ϕi and φi are both homeomorphisms from Ui and Vi, respectively,
onto the open set Bn in Rn. Hence Sn is an n-dimensional topological
manifold. As in the case of the circle, the coordinate transformation func-
tions are analytic.

4. Projective spaces. Remove the origin 0 = (0, . . . , 0) from Rn+1, and
define and equivalence relation on the set Rn+1\ {0} as follows. Two points
x = (xi) and y = (yi) are defined to be equivalent if there is a nonzero
real number λ such that x = λy, i.e., xi = λyi where i = 1, . . . , n + 1.
The set of equivalence classes given by this equivalence relation is denoted
by Pn. Let π(x) denote the equivalence class containing the point x of
Rn+1\ {0}. Then π is a map from Rn+1\ {0} onto P n. To an element
π(x) of Pn associate the line tx (t ∈ R) through the origin Rn+1. This
correspondence is one-to-one. Thus we can regard P n as the set of all lines
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passing through the origin in Rn+1. A subset U of P n is defined to be an
open set if the inverse image π−1(U) in Rn+1 \ {0} is an open set. Thus a
topology is defined on P n, and Pn becomes a Hausdorff space. Furthermore
the projection π from Rn+1\ {0} onto P n is continuous. Take a point p of
Pn and let

p = π(x)

where x = (x1, . . . , xn+1). The property that the i-th coordinate xi of x is
not 0 does not depend on the representative x for p. Let Ui (i = 1, . . . , n+1)
be the set of all points p in P n, which are represented by points x in
Rn+1\ {0} whose i-th coordinate xi is not 0. Since

π−1(Ua) = {x : xa 6= 0 }

is an open set in Rn+1\ {0}, Ua is an open set in P n. It can be shown that
Pn is an analytic manifold. P n is called the n-dimensional (real) projec-
tive space.

5. Open submanifolds. Let M be a Cr manifold, D an open set of M ,
and {(Uα, ψα)}α∈A a coordinate neighbourhood system of class Cr. Set

U ′
α = Uα ∩D

and let ψ′
α be the restriction of ψα to U ′

α. Then

{ (U ′
α, ψ

′
α) }α∈A

is a coordinate neighbourhood system of class Cr on D, and D is a Cr

manifold. D is called an open submanifold of M .

6. Product manifolds. Let M and N be Cr manifolds of dimension m
and n, respectively. Let

{ (Uα, ψα) }α∈A
and

{ (Vi, ϕi) }i∈I
be coordinate neighbourhood systems of class Cr of M and N , respectively.
First, if we give the direct product set M ×N the topology of the product
space of M and N , then M ×N becomes a Hausdorff space. Note that

{Uα × Vi }(α,i)∈A×I

is an open cover of M ×N . Let ψα × ϕi be the map that sends the point
(p, q) of Uα × Vi to the point (ψα(p), ϕi(p)) of Rm+n. Then ψα × ϕi is a
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homeomorphism from Uα ×Vi onto an open set ψα(Uα)×ϕi(Vi) of Rm+n.
Hence M ×N is an (m+n)-dimensional topological manifold. The coordi-
nate transformation functions are of class Cr, so M ×N is a Cr manifold.
We call M ×N the product manifold of M and N .

7. The n-dimensional torus. The product S1 × · · · × S1 of n circles S1

is an n-dimensional analytic manifold. We denote this by T n, and call it
the n-dimensional torus (or n-torus). The parameter representation of T 2

is as follows. Let a > b > 0 and define ϕ : R2 → R3

ϕ((a+ b cosφ) cos θ, (a+ b cosφ) sin θ, b sinφ)

where 0 ≤ θ < 2π and 0 ≤ φ < 2π.

8. The group GL(n,R) of all nonsingular n× n matrices with real entries
is a differentiable manifold. This is an open subset of the vector space of all
n× n matrices over R and gets its manifold structure accordingly so that
the entries of the matrix are coordinates on GL(n,R). That the multipli-
cation map GL(n,R) × GL(n,R) → GL(n,R) is differentiable is obvious
and that the inverse map GL(n,R) → GL(n,R) is follows from Cramer’s
formula for the inverse.

Let f : M → R be a function on M , and (Uα, hα) be a chart on M such
that Uα ⊂ domf . The map gα := f ◦ h−1

α : hα(Uα) → R is a real-valued
function on hα(Uα) ⊂ Rn. If hα(p) = (u1, . . . , un) ∈ Rn, then

gα(u1, . . . , un) = f ◦ h−1
α (u1, . . . , un) = f(p).

In this manner the function f : M → R is represented by the real-valued
functions gα on hα(Uα) ⊂ Rn.

The function f is said to be of class Ck (respectively C∞ or smooth) on Uα
if the functions gα are of class Ck (respectively C∞ or smooth) on hα(Uα).
Clearly this definition is independent of the choice of the chart by virtue of
the Ck-compatability of the charts of the atlases. The collection of all Ck

functions defined on a neighbourhood of p ∈ M is denoted by Ckp .

Let (U, h) be a chart, with h(p) = (u1, . . . , un). The assignment to p of the
jth coordinate uj(1 ≤ j ≤ n) is a function x1 : U → R, with

xj(p) = uj .

This function is called the jth coordinate function in the chart (U, h). For
any f : U → R, we write g = f ◦ h−1 : h(U) → R as before, and we define
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the derivatives of f with respect to xj as

∂f

∂xj
=

∂g

∂uj
◦ h, which is a map: U → R

so that
∂f

∂xj
(p) =

∂g

∂uj
(h(p)) =

∂g(u1, . . . , un)

∂uj
.

This definition entails the usual rules: if f, g ∈ C∞
p , and a, b ∈ R

∂

∂xj
(af + bg) = a

∂f

∂xj
+ b

∂g

∂xj
, (linearity)

∂(fg)

∂xj
= f

(
∂g

∂xj

)
+

(
∂f

∂xj

)
g. (derivation property)

Let (Uα, hα), (Uβ , hβ) be a pair of overlapping charts whose coordinate
functions are denoted by {xh : h = 1, . . . , n} and {x̄j : j = 1, . . . , n},
respectively. The identification map

hβα = hβ ◦ h−1
α

being a map between open sets of Rn, is represented by a system of n
equations

x̄j = fj(x1, . . . , xn), j = 1, . . . , n

with inverse hαβ = hα ◦ h−1
β being given by

xh = gh(x̄1, . . . , x̄n).

By hypothesis the functions {fj} and {gh} are smooth on the set hα(Uα ∩
Uβ), hβ(Uα ∩ Uβ) respectively. Thus the Jacobian

J =
∂(x1, . . . , xn)

∂(x̄1, . . . , x̄n)

is defined on hβ(Uα ∩ Uβ). If j > 0, the charts (Uα, hα), (Uβ , hβ) are said
to be oriented consistently. The differerentiable manifold M is said to
orientable if it admits an atlas all of whose overlapping charts are consis-
tently oriented.

Example. A 2-sphere S2 is orientable. ♣

Example. The Möbius band is not orientable. The parameter representa-
tion ϕ : I ×R → R3 of the Möbius band is

ϕ(t, θ) = ((1 + t cos(θ/2)) cos θ, (1 + t cos(θ/2) sin θ, sin(θ/2))
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where I = { t ∈ R : −1/4 < t < 1/4 }. The curves θ → ϕ(t, θ) (t fixed) are
periodic, with period 2π if t = 0 and period 4π if t 6= 0. ♣

A map f : M → N (dimM = m, dimN = n) between two manifolds is a
smooth morphism if for every chart Ui, the composed map

ϕj ◦ f ◦ φ−1
i : φi(Ui) → Ui → Vj → ϕj(Vj)

is a smooth morphism between open sets of Rm and Rn. The map f is an
submersion if the composed map is a projection of open sets, that is it
could be written as (x1, . . . , xm) → (x1, . . . , xn) with m ≥ n in local coordi-
nates. The map f is an immersion if the composed map is an embedding
of open sets. The map f is an embedding if it is an injective immersion
and the topology of M (given by open covering Ui’s) is the pull-back topol-
ogy via f : M → N that’s to say Ui = f−1(V ) for some open set V in
N . We call M an immersive submanifold and an embedding submanifold,
respectively.

An important theorem is Whitney’s embedding theorem: Any mani-
fold M (dimM = m) can be embedded into Rn for some n. This means
that every manifold is an embedding submanifold of a certain Rn.

A.3 Exercises

(1) Let
Hn := { (x1, x2, . . . , xn) ∈ R : xn ≥ 0 } .

(i) Show that every diffeomorpism f : H → H maps the boundaries diffeo-
morphically.
(ii) Deduce that the boundary of a manifold is well defined and is a manifold.

(2) Let M be a smooth manifold without boundary and let g : M → R be
a smooth function which has 0 as a regular value. Show that the set

X = g−1((−∞, 0])

is a smooth manifold whose boundary is g−1(0).

(3) Show that a differentiable manifold M of dimension n is orientable (i.e.
there is an orientation on each tangent space and there is an oriented atlas
compatible with this orientation) if and only if there is a non-vanishing
differential n-form ω ∈ Ωn(M).
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(4) Let M be a Riemann manifold (dimM = n), x : U → Rn a chart on M ,
g = gij) the positive definite symmetric matrix representing the Riemann
metric in the chart.
(i) Show that the differential form

dV =
√

det gdx1 ∧ · · · ∧ dxn

is independent of the chart x.
(ii) Let { e1, . . . , en } denote an orthonormal moving frame on U , with dual
co-frame {ω1, . . . , ωn } and skew-symmetric matrix of connection differen-
tial one-forms ωkj . Show that

ω1 ∧ · · · ∧ ωn = ±
√

det gdx1 ∧ · · · ∧ dxn

the ± depending on whether the frame has the same, or opposite, orienta-
tion as the chart.

(5) Let M and N be differentiable manifolds and f : M → N be a smooth
map. Show that the derivative Tf : TM → TN is smooth, too.

(6) Let M be a differentiable manifold and let TM ∗ = ∪p∈MTpM∗. Fur-
thermore, let π : TM∗ → M be a map which assigns to every ω ∈ TpM

∗

the point p ∈M .
(i) Show that there is a Hausdorff topology on TM ∗ such that the map π
is continuous and open with respect to this topology.
(ii) Show that the topological space TM ∗ has a differentiable structure such
that π is smooth with respect to this structure.

(7) Let Mn be the vector space of n × n real matrices and GL(n,R) the
nonsingular elements of Mn. Let Sym(n) denote the vector space of the
symmetric real n× n matrices.
(i) Show that the inclusion map into Sym(n) →Mn realizes Sym(n) as an
n(n+ 1)/2 dimensional submanifold of Mn.
(ii) Show that the mapping

ψ : GL(n,R) → Sym(n), ψ(A) = AAT

where AT denotes the transpose of A, has the n × n unit matrix In for a
regular value.
(iii) Show that the orthogonal group O(n) = ψ−1[In] is an n(n − 1)/2-
dimensional compact submanifold of GL(n,R).
(iv) Show that the tangent space to O(n) at the identity may be represented
by the skew-symmetric real n× n matrices.
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Monge-Ampére equation, 220
Monodromy group, 355
Multiply transitive, 50

Navier-Stokes equations, 237
Noethers theorem, 295
Nonlinear Klein-Gordon equation,

236
Nonlinear Schrödinger equation,

231
Nonlinear sigma model, 351
Normal, 8
Normal variational equation, 355

One-to-one, 15
Onto, 15
Open submanifold, 438
Orbit, 50
Order of an element, 16
Orientable, 133
Orthogonal group, 38
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