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27 Algebra in the Stone-Čech Compactification, N. Hindman, D. Strauss
28 Holomorphy and Convexity in Lie Theory, K.-H. Neeb

29 Monoids, Acts and Categories, M. Kilp, U. Knauer, A. V. Mikhalev

30 Relative Homological Algebra, E. E. Enochs, O. M. G. Jenda

31 Nonlinear Wave Equations Perturbed by Viscous Terms, V. P. Maslov, P. P. Mosolov

32 Conformal Geometry of Discrete Groups and Manifolds, B. N. Apanasov

33 Compositions of Quadratic Forms, D. B. Shapiro

34 Extension of Holomorphic Functions, M. Jarnicki, P. Pflug

35 Loops in Group Theory and Lie Theory, P. T. Nagy, K. Strambach

36 Automatic Sequences, F. v. Haeseler

37 Error Calculus for Finance and Physics, N. Bouleau

38 Simple Lie Algebras over Fields of Positive Characteristic. I. Structure Theory, H. Strade

39 Trigonometric Sums in Number Theory and Analysis, G. I. Arkhipov, V. N. Chubarikov,
A. A. Karatsuba

40 Embedding Problems in Symplectic Geometry, F. Schlenk

41 Approximations and Endomorphism Algebras of Modules, R. Göbel, J. Trlifaj

42 Simple Lie Algebras over Fields of Positive Characteristic. II. Classifying the Absolute Toral
Rank Two Case, H. Strade

43 Modules over Discrete Valuation Domains, P. A. Krylov, A. A. Tuganbaev

44 Quasi-Stationary Phenomena in Nonlinearly Perturbed Stochastic Systems, M. Gyllenberg,
D. S. Silvestrov

45 Distribution Theory of Algebraic Numbers, P.-C. Hu, C.-C. Yang

46 Groups of Prime Power Order. Volume 1, Y. Berkovich

47 Groups of Prime Power Order. Volume 2, Y. Berkovich, Z. Janko

48 Stochastic Dynamics and Boltzmann Hierarchy, D. Ya. Petrina

49 Applied Algebraic Dynamics, V. Anashin, A. Khrennikov

50 Ultrafilters and Topologies on Groups, Y. G. Zelenyuk

51 State Observers for Linear Systems with Uncertainty, S. K. Korovin, V. V. Fomichev



Stability Analysis of Impulsive
Functional Differential

Equations

by

Ivanka Stamova

≥
Walter de Gruyter · Berlin · New York



Author

Ivanka Stamova
Department of Mathematics
Bourgas Free University
62 San Stefano Str.
8001 Bourgas, Bulgaria
E-mail: stamova@bfu.bg

Mathematics Subject Classification 2000: 37-02, 34K20, 34K45, 34K60, 93D30

Keywords: Impulsive functional differential equations, Lyapunov method, stability, boundedness.

�� Printed on acid-free paper which falls within the guidelines
of the ANSI to ensure permanence and durability.

ISSN 0938-6572
ISBN 978-3-11-022181-7

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data are available in the Internet at http://dnb.d-nb.de.

� Copyright 2009 by Walter de Gruyter GmbH & Co. KG, 10785 Berlin, Germany.
All rights reserved, including those of translation into foreign languages. No part of this book
may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopy, recording, or any information storage or retrieval system, without permis-

sion in writing from the publisher.

Typeset using the author’s LATEX files: Catherine Rollet, Berlin.
Printing and binding: Hubert & Co. GmbH & Co. KG, Göttingen.

Cover design: Thomas Bonnie, Hamburg.



To my husband, Gani,
and our sons, Trayan and Alex,

for their support and encouragement





Preface

The mathematical investigations of the impulsive ordinary differential equations mark
their beginning with the work of Mil’man and Myshkis [159], 1960. In it some gen-
eral concepts are given about the systems with impulse effect and the first results on
stability of such systems solutions are obtained. In recent years the fundamental and
qualitative theory of such equations has been extensively studied. A number of results
on existence, uniqueness, continuability, stability, boundedness, oscillations, asymp-
totic properties, etc. were published [17, 18, 28–30, 32, 33, 83, 89, 90, 97, 103, 126,
129, 131, 132, 133, 164, 167, 172–174, 178–181, 189, 195, 231].

Scientists have been aware of the fact that many applicable problems are point-
less unless the dependence on previous states is being taken into account. But until
Volterra’s work [212], a bigger part of the obtained results refers to several specific
properties of a narrow type of equations. This work marks the beginning of the devel-
opment of the functional differential equations theory [4, 58, 60, 63, 64, 82, 84, 91,
94, 95, 98, 99, 108, 114, 118–124, 134, 163, 168, 169, 225].

Impulsive functional differential equations are a natural generalization of impulsive
ordinary differential equations (without delay) and of functional differential equations
(without impulses). At the present time the qualitative theory of such equations un-
dergoes rapid development. Many results on the stability and boundedness of their
solutions are obtained. It is natural to ask whether we can find a systematic account
of recent developments in the stability and boundedness theory for impulsive func-
tional differential equations. This is precisely what is planned in this book. Its aim
is to present the main results on stability theory for impulsive functional differential
equations by means of the second method of Lyapunov and provide a unified gen-
eral structure applicable to study the dynamics of mathematical models based on such
equations.

Some important features of the monograph are as follows:

(i) It is the first book that is dedicated to a systematic development of stability theory
for impulsive functional differential equations.

(ii) It fills a void by making available a source book which describes existing lit-
erature on the extensions of stability theory for impulsive functional differential
equations.

(iii) It shows the manifestations of Lyapunov–Razumikhin method by demonstrating
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how this effective technique can be applied to investigate stability and bounded-
ness of the solutions of impulsive functional differential equations and provides
interesting applications of many practical problems of diverse interest.

The book consists of four chapters.
Chapter 1 has an introductory character. In it a description of the systems of impul-

sive functional differential equations and the main results on the fundamental theory
are given: conditions for absence of the phenomenon beating, theorems for existence,
uniqueness, continuability of the solutions. The class of piecewise continuous Lya-
punov functions, which are a basic apparatus in the stability and boundedness theory,
is introduced. Some comparison lemmas and auxiliary assertions, which are used in
the remaining three chapters, are exposed.

In Chapter 2 the main definitions on the Lyapunov stability and boundedness of
the solutions of the impulsive functional differential equations are given. Using the
Lyapunov–Razumikhin technique and comparison technique theorems on Lyapunov
stability, boundedness and global stability are proved. Many examples are considered
to illustrate the feasibility of the results.

Chapter 3 is dedicated to some extensions of Lyapunov stability and boundedness.
Theorems on stability and boundedness of sets, conditional stability, parametric stabil-
ity, eventual stability and boundedness, practical stability, Lipschitz stability, stability
and boundedness in terms of two measures are presented. Many interesting results are
considered in which assumptions allowing the derivatives of Lyapunov function to be
positive are used to impulsively stabilize functional differential equations.

Finally, in Chapter 4, the applications of stability and boundedness theory to Lotka–
Volterra models, neural networks and economic models are presented. The impulses
are considered either as means of perturbations or as control.

Each chapter is supplied with notes and comments.
The book is addressed to a wide audience of professionals such as mathematicians,

applied researches and practitioners.
The author has the pleasure to express her sincere gratitude to Prof. Drumi Bainov

and Prof. Angel Dishliev for their help while she was making her first steps in this
field, and also to Prof. Dr. Mihail Konstantinov, Prof. Angel Dishliev and Prof. Gani
Stamov for their valuable comments and suggestions during the preparation of the
manuscript. She is also thankful to all her co-authors, the work with whom expanded
her experience and gave her opportunities for perfection. In addition, the author is
indebted to Dr. Robert Plato and Ms. Catherine Rollet from Walter de Gruyter for all
their very professional work.

Bourgas, August 2009 I. M. Stamova
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Chapter 1

Introduction

The problems of existence, uniqueness, and continuability of the solutions will be
discussed. The piecewise continuous Lyapunov functions will be introduced and some
main comparison results will be given.

1.1 Preliminary notes

The necessity to study impulsive functional differential equations is due to the fact
that these equations are an useful mathematical machinery in modelling many real
processes and phenomena studied in optimal control, biology, mechanics, medicine,
bio-technologies, electronics, economics, etc.

For instance, impulsive interruptions are observed in mechanics [11, 57, 61], in ra-
dio engineering [11], in communication security [115, 116], in Lotka–Volterra models
[7, 8, 26, 109, 111, 135, 141, 144, 145, 218, 220, 222, 226], in control theory [110,
136, 142, 145, 158, 185], in neural networks [10, 15, 69, 101, 192, 221], in economics
[81, 83, 177, 206]. Indeed, the states of many evolutionary processes are often subject
to instantaneous perturbations and experience abrupt changes at certain moments of
time. The duration of the changes is very short and negligible in comparison with the
duration of the process considered, and can be thought of as “momentary” changes or
as impulses. Systems with short-term perturbations are often naturally described by
impulsive differential equations [30, 32, 33, 129].

On the other hand many models of dynamical systems with delays have been in-
vestigated intensively in population dynamics [4, 8, 85, 91, 105, 113, 127, 140, 157,
165, 166, 176, 211, 214, 230], in medicine [102, 137, 161], in neural networks, signal
theory and control theory [16, 66, 67, 68, 73, 76, 79, 92, 106, 107, 117, 154, 160,
170, 192, 227, 232, 233], in economics and social sciences [62, 86, 96, 105, 151, 162,
175, 176]. Mathematical models with delay take into account the memory (aftereffect,
hereditary effects) of the dynamic system when a sequence of its past states impacts
its future evolution.

Impulsive functional differential equations may be used for the mathematical sim-
ulation of processes which are characterized by the fact that their state changes by
jumps and by the dependence of the process on its history at each moment of time.
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The next examples give a more concrete notion of processes that can be described
by impulsive functional differential equations.

Example 1.1. One of the first mathematical models which incorporate interaction be-
tween two species (predator-prey, or herbivore-plant, or parasitoid-host) was proposed
by Alfred Lotka [147] and Vito Volterra [212]. The classical “predator-prey” model is
based on the following system of two differential equations:´

PH.t/ D H.t/Œr1 � bP.t/�

PP .t/ D P.t/Œ�r2 C cH.t/�;
(1.1)

whereH.t/ and P.t/ represent the population densities of prey and predator at time t ,
respectively; t � 0; r1 > 0 is the intrinsic growth rate of the prey; r2 > 0 is the death
rate of the predator or consumer; b and c are the interaction constants. More concrete,
the constant b is the per-capita rate of the predator predation and the constant c is the
product of the predation per-capita rate and the rate of converting the prey into the
predator.

The product p D p.H/ D bH of b and H is the predator’s functional response
(response function) of type I, or rate of prey capture as a function of prey abundance.

The model (1.1) is derived by making the following assumptions: 1) the prey popu-
lation will grow exponentially when the predator is absent; 2) the predator population
will starve in the absence of the prey population (as opposed to switching to another
type of prey); 3) predators can consume infinite quantities of prey; and 4) there is
no environmental complexity (in other words, both populations are moving randomly
through a homogeneous environment).

It is generally recognized that some kinds of time delays are inevitable in population
interactions. Time delay, due to gestation, is a common example, because generally
the consumption of prey by the predator throughout its past history governs the present
birth rate of the predator. If we take into account the effect of time delays of population
interactions, we will have more realistic Lotka–Volterra models. The model (1.1) can
be improved by the following predator-prey system with distributed delays:8̂̂̂<̂

ˆ̂:
PH.t/ D H.t/

h
r1 � a

Z 0

��1

H.t C s/d�1.s/ � bP.t/
i

PP .t/ D P.t/
h
�r2 C cH.t/ � d

Z 0

��2

P.t C s/d�2.s/
i
;

(1.2)

where �i � 0; �i W Œ��i ; 0�! R is non-decreasing on Œ��i ; 0� , i D 1; 2; a; d are the
intra-species competition coefficients.

There have been many studies in literatures that investigate the population dynam-
ics of the type (1.2) models [91, 105, 127, 157, 211]. However, in the study of the
dynamic relationship between species, the effect of some impulsive factors has been
ignored, which exists widely in the real world. For example, the birth of many species
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is an annual birth pulse or harvesting. Moreover, the human beings have been harvest-
ing or stocking species at some time, then the species is affected by another impulsive
type. Also, impulsive reduction of the population density of a given species is possi-
ble after its partial destruction by catching or poisoning with chemicals used at some
transitory slots in fishing or agriculture. Such factors have a great impact on the pop-
ulation growth. If we incorporate these impulsive factors into the model of population
interaction, the model must be governed by impulsive functional differential system.

For example, if at the moment t D tk the population density of the predator is
changed, then we can assume that

�P.tk/ D P.tk C 0/ � P.tk � 0/ D gkP.tk/; (1.3)

where P.tk � 0/ D P.tk/ and P.tk C 0/ are the population densities of the predator
before and after impulsive perturbation, respectively, and gk 2 R are constants which
characterize the magnitude of the impulsive effect at the moment tk . If gk > 0, then
the population density increases and if gk < 0, then the population density decreases
at the moment tk .

Relations (1.2) and (1.3) determine the following impulsive functional differential
system:8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

PH.t/ D H.t/
h
r1 � a

Z 0

��1

H.t C s/d�1.s/ � bP.t/
i
; t ¤ tk

PP .t/ D P.t/
h
�r2 C cH.t/ � d

Z 0

��2

P.t C s/d�2.s/
i
; t ¤ tk

H.tk C 0/ D H.tk/; P.tk C 0/ D P.tk/C gkP.tk/;

(1.4)

where tk are fixed moments of time, 0 < t1 < t2 < � � � , limk!1 tk D1.
In mathematical ecology the system (1.4) denotes a model of the dynamics of a

predator-prey system, which is subject to impulsive effects at certain moments of time.
By means of such models, it is possible to take into account the possible environmental
changes or other exterior effects due to which the population density of the predator is
changed momentary.

Example 1.2. The most important and useful functional response is the Holling type
II function of the form

p.H/ D
CH

mCH
;

where C > 0 is the maximal growth rate of the predator, and m > 0 is the half-
saturation constant. Since the function p.H/ depends solely on prey density, it is
usually called a prey-dependent response function. Predator-prey systems with prey-
dependent response have been studied extensively and the dynamics of such systems
are now very well understood [112, 127, 165, 176, 211, 219, 222].
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Recently, the traditional prey-dependent predator-prey models have been
challenged, based on the fact that functional and numerical responses over typical
ecological timescales ought to depend on the densities of both prey and predators, es-
pecially when predators have to search for food (and therefore have to share or compete
for food). Such a functional response is called a ratio-dependent response function.
Based on the Holling type II function, several biologists (see [219] and the references
cited therein) proposed a ratio-dependent function of the form

p
�H
P

�
D

C H
P

mC H
P

D
CH

mP CH

and the following ratio-dependent Lotka–Volterra model8̂̂<̂
:̂
PH.t/ D H.t/

h
r1 � aH.t/ �

CP.t/

mP.t/CH.t/

i
PP .t/ D P.t/

h
�r2 C

KH.t/

mP.t/CH.t/

i
;

(1.5)

where K is the conversion rate.
If we introduce time delays in model (1.5), we will obtain a more realistic approach

to the understanding of predator-prey dynamics. Time delay plays an important role in
many biological dynamical systems, being particularly relevant in ecology, where time
delays have been recognized to contribute critically to the stable or unstable outcome
of prey densities due to predation. Also, the population of given species depends on
their maturity and on the natural growth rate of the proceeding generations. Therefore,
it is interesting and important to study the following delayed modified ratio-dependent
Lotka–Volterra system:8̂̂̂<̂

ˆ̂:
PH.t/ D H.t/

h
r1 � a

Z t

�1

k.t � u/H.u/du �
CP.t � �.t//

mP.t/CH.t/

i
PP .t/ D P.t/

h
�r2 C

KH.t � �.t//

mP.t/CH.t � �.t//

i
;

(1.6)

where k W RC ! RC is a measurable function, corresponding to a delay kernel or a
weighting factor, which says how much emphasis should be given to the size of the
prey population at earlier times to determine the present effect on resource availability;
� 2 C ŒR;RC�.

However, the ecological system is often affected by environmental changes and
other human activities. In many practical situations, it is often the case that predator or
parasites are released at some transitory time slots and harvest or stock of the species
is seasonal or occurs in regular pulses. By means of exterior effects we can control
population densities of the prey and predator.
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If at certain moments of time biotic and anthropogeneous factors act on the two
populations “momentary”, then the population numbers vary by jumps. In this case
we will study Lotka–Volterra models with impulsive perturbations of the type8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

PH.t/ D H.t/
h
r1 � a

Z t

�1

k.t � u/H.u/du �
CP.t � �.t//

mP.t/CH.t/

i
; t ¤ tk

PP .t/ D P.t/
h
�r2 C

KH.t � �.t//

mP.t/CH.t � �.t//

i
; t ¤ tk

H.tk C 0/ D .1C hk/H.tk/; k D 1; 2; : : :

P.tk C 0/ D .1C gk/P.tk/; k D 1; 2; : : : ;
(1.7)

where hk; gk 2 R and tk , k D 1; 2; : : : are fixed moments of impulse effects, 0 < t1 <
t2 < � � � , limk!1 tk D1.

By means of the type (1.7) models it is possible to investigate one of the most
important problems of the mathematical ecology – the problem for stability of the
ecosystems and respectively the problem of the optimal control of such systems.

Example 1.3. Mathematical modelling of plankton population is an important alter-
native method of improving our knowledge of the physical and biological processes
relating to plankton ecology. One of the first mathematical representations of allelo-
pathic interactions was proposed by Maynard–Smith [157]. The author considered a
two species Lotka–Volterra competition model and introduced a term to take into ac-
count the effect of a toxic substance, which is released at a constant rate by one species
when the other is present.

Motivated by his work, Xia [218] proposes the following neutral Lotka–Volterra
competition system:8̂̂̂̂

<̂̂
ˆ̂̂̂:
PNi .t/ DNi .t/

"
ri .t/ �

nX
jD1

aij .t/Nj .t/ �

nX
jD1

bij .t/Nj .t � �ij .t//

�

nX
jD1

cij .t/ PNj .t � 
ij .t// �

nX
jD1

dij .t/Ni .t/Nj .t/

#
;

(1.8)

where i D 1; : : : ; n, n � 2; t � 0; Ni .t/ is the population number of the i th species
at the moment t ; ri .t/ are intrinsic growth rates at the moment t ; aij .t/, bij .t/, cij .t/,
dij , �ij .t/ and 
ij .t/ are non-negative continuous functions.

If at certain moments of time the population densities Ni .t/, i D 1; : : : ; n are sub-
ject to pulse perturbations, it is not reasonable to expect a regular solution. Instead,
the solution must have some jumps at these moments and the jumps follow a specific
pattern. An adequate mathematical model of the population dynamics in this situation
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is the following impulsive neutral type functional differential Lotka–Volterra system:8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

PNi .t/ D Ni .t/

"
ri .t/ �

nX
jD1

aij .t/Nj .t/ �

nX
jD1

bij .t/Nj .t � �ij .t//

�

nX
jD1

cij .t/ PNj .t � 
ij .t// �

nX
jD1

dij .t/Ni .t/Nj .t/

#
; t ¤ tk

Ni .tk C 0/ D Ni .tk/C hikNi .tk/; k D 1; 2; : : : ;
(1.9)

where tk (0 < t1 < t2 < � � � < tk < � � � ) are fixed impulsive points, limk!1 tk D 1;
Ni .tk � 0/ D Ni .tk/ and Ni .tk C 0/ are the population densities of i th species be-
fore and after impulsive perturbation at the moment tk , respectively; hik are constants
which characterize the magnitude of the impulsive effect of i th species at the moments
tk .

Example 1.4. One contemporary application of the functional differential equations
is their use for the study of processes involved in HIV infection. The mathematical
model for HIV/AIDS, with explicit incubation period, is presented in [161] as a system
of discrete time delay differential equations. Time delay is due to the long incubation
period (period from the point of infection to the appearance of disease symptoms).
HIV/AIDS models have been studied by several authors [102, 137, 156, 161].

The model in [161] classifies the sexually active population into three classes that
are: susceptibles, infectives and AIDS cases, with population numbers in each class
denoted as functions of time by S.t/, I.t/ and A.t/ respectively. Sexually mature
susceptibles S.t/ contain sexually mature people in the population, who have had no
contact with the virus. This compartment increases through maturation of individu-
als into a sexually mature age group and decreases by contagion going to the next
compartment, emigration to other countries and natural death. Sexually mature in-
fectives I.t/ contain sexually mature individuals, who are infected with the virus but
have not developed AIDS symptoms yet. The number of the people in this group
would decrease through natural death, emigration to other countries and development
to AIDS after a certain stay in this class (develop symptomatic AIDS). AIDS cases
A.t/ are those individuals, who have developed fully symptomatic AIDS and exhibit
specific clinical features and this class would decrease by natural death and AIDS-
related death. The population is assumed to be uniform and homogeneously mixing.
The total adult population and sexually interacting adult population are denoted by
NT .t/ D S.t/C I.t/C A.t/ and N.t/ D S.t/C I.t/, respectively.

A recruitment-death demographic structure is assumed. Individuals enter the sus-
ceptibles class at a constant rate b > 0. The natural death rate is assumed to be
proportional to the population number in each class, with rate constant � > 0. The
model assumes a constant emigration ratem > 0 of individuals to other countries. This
assumption makes the model more appropriate for the developing countries, where a
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significant part of the population emigrates to other countries for better educational
facilities and in search of employment. In addition, there is an AIDS-related death in
the AIDS class which is assumed to be proportional to the population number in that
class, with rate constant � > 0.

The model also assumes: 1) a standard incidence of the form ˇcSI=N where ˇ > 0
is probability of being infected by a new sexual partner, c > 0 is the rate at which an
individual acquires a new sexual partner; and 2) a constant incubation period � > 0.
The probability that an individual remains in the incubation period at least t time units
before developing AIDS is given by a step function with value 1 for 0 � t � � and
value 0 for t > � . The probability that an individual in the incubation period time t
units has survived to develop AIDS and did not emigrate is e�.�Cm/� , � > 0. A latent
period for HIV is not assumed since the latent period is negligible, compared with the
period of infectivity. AIDS cases are taken to be sexually inactive so that there are
no new infections due to the AIDS class. HIV/AIDS is assumed to have been in the
population for at least time � > 0, such that initial perturbations have died out.

The assumptions result in the following HIV/AIDS model for t > � ,8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

PS.t/ D b � ˇc
S.t/I.t/

N.t/
� .�Cm/S.t/

I.t/ D

Z t

t��

ˇc
S.u/I.u/

N.u/
e�.�Cm/.t�u/du

PA.t/ D ˇc
S.t � �/I.t � �/

N.t � �/
e�.�Cm/� � .�C �/A.t/;

(1.10)

where the integral in the second equation represents the summation over the interval
Œt � �; t � of those individuals who become infectives at time u � 0 and have neither
developed AIDS nor died. One equivalent form of the model (1.10) is the following
model:8̂̂̂̂

ˆ̂̂<̂
ˆ̂̂̂̂̂:

PS.t/ D b � ˇc
S.t/I.t/

N.t/
� .�Cm/S.t/

PI .t/ D ˇc
S.t/I.t/

N.t/
� ˇcq

S.t � �/I.t � �/

N.t � �/
� .�Cm/I.t/

PA.t/ D ˇcq
S.t � �/I.t � �/

N.t � �/
� .�C �/A.t/;

(1.11)

where q D e�.�Cm/� .
The model (1.11) does not take into account possible exterior or interior impulsive

effects on the population numbers of the individuals from the three groups. For exam-
ple, we notice that it is reasonable to regard the birth of individuals an impulse to the
population number. Also, there are some other perturbations in the real world such as
fires and floods that are not suitable to be considered continually. These perturbations
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bring sudden changes to the system. A more realistic HIV/AIDS model should take
into account the impulsive effects.

If at the moment tk the population of the individuals from the first class is increased
with magnitude hk > 0, then the adequate model will be the following impulsive
system:8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂:

PS.t/ D b � ˇc
S.t/I.t/

N.t/
� .�Cm/S.t/; t ¤ tk

PI .t/ D ˇc
S.t/I.t/

N.t/
� ˇcq

S.t � �/I.t � �/

N.t � �/
� .�Cm/I.t/; t ¤ tk

PA.t/ D ˇcq
S.t � �/I.t � �/

N.t � �/
� .�C �/A.t/; t ¤ tk

S.tk C 0/ D .1C hk/S.tk/

I.tk C 0/ D I.tk/; A.tk C 0/ D A.tk/; k D 1; 2; : : : :
(1.12)

Example 1.5. Chua and Yang [74, 75] proposed a novel class of information-
processing system called Cellular Neural Networks (CNN) in 1988. Like neural net-
works, it is a large-scale nonlinear analog circuit which processes signals in real time.
Like cellular automata [216] it is made of a massive aggregate of regularly spaced cir-
cuit clones, called cells, which communicate with each other directly only through its
nearest neighbours.

The key features of neural networks are asynchronous parallel processing and global
interaction of network elements. For the circuit diagram and connection pattern, imple-
mentation the CNN can be referred to [74]. Impressive applications of neural networks
have been proposed for various fields such as optimization, linear and nonlinear pro-
gramming, associative memory, pattern recognition and computer vision [72–76, 104,
216]. However, it is necessary to solve some dynamic image processing and pattern
recognition problems by using Delayed Cellular Neural Networks (DCNN) [66, 67,
68, 76, 79, 92, 106, 107, 117, 154, 160, 170, 192, 227, 232, 233].

Zhou and Cao [233] considered the following DCNN:

Pxi .t/ D �cixi .t/C

nX
jD1

aijfj
�
xj .t/

�
C

nX
jD1

bijfj
�
xj .t � �j .t//

�
C Ii ; (1.13)

where i D 1; 2; : : : ; n, n corresponds to the numbers of units in the neural network;
xi .t/ corresponds to the state of the i th unit at time t ; fj .xj .t// denotes the output of
the j th unit at time t ; aij denotes the strength of the j th unit on the i th unit at time
t ; bij denotes the strength of the j th unit on the i th unit at time t � �j .t/; Ii denotes
the external bias on the i th unit; �j .t/ corresponds to the transmission delay along the
axon of the j th unit and satisfies 0 � �j .t/ � � .� D const/; ci represents the rate
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with which the i th unit will reset its potential to the resting state in isolation when
disconnected from the network and external inputs.

On the other hand, the state of DCNN is often subject to instantaneous perturbations
and experiences abrupt changes at certain instants which may be caused by switching
phenomenon, frequency change or other sudden noise, that is, do exhibit impulsive
effects. For instance, according to Arbib [15] and Haykin [101], when a stimulus from
the body or the external environment is received by receptors, the electrical impulses
will be conveyed to the neural net and impulsive effects arise naturally in the net.

Therefore, neural network model with delay and impulsive effects should be more
accurate to describe the evolutionary process of the systems. Since delays and im-
pulses can affect the dynamical behaviors of the system, it is necessary to investigate
both delay and impulsive effects on neural networks stability.

Let at fixed moments tk the system (1.13) be subject to shock effects due to which
the state of the i th unit gets momentary changes. The adequate mathematical model in
such situation is the following impulsive CNNs with time-varying delays:8̂̂̂̂

ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

Pxi .t/ D �cixi .t/C

nX
jD1

aijfj
�
xj .t/

�
C

nX
jD1

bijfj
�
xj .t � �j .t//

�
C Ii ; t ¤ tk; t � 0

�xi .tk/ D xi .tk C 0/ � xi .tk/ D Pik.xi .tk//; k D 1; 2; : : : ;

(1.14)

where tk , k D 1; 2; : : : are the moments of impulsive perturbations and satisfy 0 <
t1 < t2 < � � � , limk!1 tk D 1 and Pik.xi .tk// represents the abrupt change of the
state xi .t/ at the impulsive moment tk .

Such a generalization of the DCNN notion should enable us to study different types
of classical problems as well as to “control” the solvability of the differential equations
(without impulses).

In the examples considered the systems of impulsive functional differential equa-
tions are given by means of a system of functional differential equations and conditions
of jumps.

Let Rn be the n-dimensional Euclidean space with norm k:k, and let RC D Œ0;1/.
We shall make a brief description of the systems of impulsive functional differential
equations.

Let � be the phase space of some evolutionary process, i.e. the set of its states.
Denote by Pt the point mapping the process at the moment t and assume that the
state of the process is determined by n parameters. Then the mapping point Pt can be
interpreted as a point .t; x/ of the .nC 1/-dimensional space RnC1 and � as a set in
Rn. The set R�� will be called an extended phase space of the evolutionary process
considered. Assume that the evolution law of the process is described by:
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(a) the system of functional differential equations

Px.t/ D f .t; xt /; (1.15)

where t0 2 R; x D col.x1; x2; : : : ; xn/ 2 �; f W Œt0;1/ � D ! Rn; r > 0;
D D ¹' W Œ�r; 0�! �º; and for t � t0, xt 2 D is defined by xt .s/ D x.t C s/,
�r � s � 0;

(b) sets Mt , Nt of arbitrary topological structure contained in R ��;

(c) the operator At WMt ! Nt .

Let '0 2 D, xt0 D '0, and x.t0/ D '0.0/. The motion of the point Pt in the extended
phase space is performed in the following way: the point Pt begins its motion from the
point .t0; x.t0// and moves along the curve .t; x.t// described by the solution x.t/ of
system (1.15) with initial conditions xt0 D '0, x.t0/ D '0.0/ till the moment t1 > t0
when Pt meets the set Mt . At the moment t1 the operator At1 “instantly” transfers the
point Pt from the position Pt1 D .t1; x.t1// into the position .t1; xC1 / 2 Nt1 , xC1 D
At1x.t1/. Then the point Pt goes on moving along the curve .t; y.t// described by the
solution y.t/ of system (1.15) with initial conditions y.t/ D x.t/ for t1 � r � t � t1
and y.t1/ D xC1 till a new meeting with the set Mt , etc.

The union of relations (a), (b), (c) characterizing the evolutionary process will be
called a system of impulsive functional differential equations, the curve described by
the point Pt in the extended phase space – an integral curve and the function defining
this curve – a solution of the system of impulsive functional differential equations.
The moments t1; t2; : : : when the mapping point Pt meets the set Mt will be called
moments of impulse effect and the operator At WMt ! Nt a jump operator.

We shall assume that the solution x.t/ of the impulsive system is a left continuous
function at the moments of impulse effect, i.e. that x.tk � 0/ D x.tk/, k D 1; 2; : : : :

The freedom of choice of the sets Mt , Nt and the operator At leads to the great
variety of the impulsive systems. The solution of the systems of impulsive functional
differential equations may be:

– a continuous function if the integral curve does not intersect the set Mt or inter-
sects it at the fixed points of the operator At ;

– a piecewise continuous function with a finite number of points of discontinuity of
first type if the integral curve intersects Mt at a finite number of points which are not
fixed points of the operator At ;

– a piecewise continuous function with a countable set of points of discontinuity of
first type if the integral curve intersects Mt at a countable set of points which are not
fixed points of the operator At .

In the present book systems of impulsive functional differential equations will be
considered for which the moments of impulse effect come when some spatial-temporal
relation ˆ.t; x/ D 0, .t; x/ 2 R � � is satisfied, i.e. when the mapping point .t; x/
meets the surface with the equation ˆ.t; x/ D 0. Such systems can be written in the
form
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Px.t/ D f .t; xt /; ˆ.t; x/ ¤ 0

�x.t/ D I.t; x/; ˆ.t; x/ D 0:

The sets Mt , Nt and the operator At are defined by the relations

Mt D ¹.t; x/ 2 R �� W ˆ.t; x/ D 0º; Nt D R ��;

At WMt ! Nt ; .t; x/! .t; x C I.t; x//;

where I W R ��! � and t D tk is a moment of impulse effect for the solution x.t/
if ˆ.tk; x.tk// D 0. Then

�x.tk/ D I.tk; x.tk//:

Let '0 2 D be a piecewise continuous function with points of discontinuity of the
first kind in the interval .�r; 0/ at which it is continuous from the left. In a particular
case, it is possible '0 to be a continuous function.

We shall give a more detailed description of the following two classes of systems of
impulsive functional differential equations which have particular interest.

I. Systems with fixed moments of impulse effect. For these systems, the set Mt

is represented by a sequence of hyperplanes t D tk where ¹tkº is a given sequence
of impulse effect moments. The operator At is defined only for t D tk giving the
sequence of operators Ak W �! �, x ! Akx D x C Ik.x/:

The systems of this class are written as follows:

Px.t/ D f .t; xt /; t ¤ tk; t � t0 (1.16)

�x.tk/ D Ik.x.tk//; tk > t0; k D 1; 2; : : : ; (1.17)

where �x.tk/ D x.t
C

k
/ � x.tk/; Ik W �! Rn, k D 1; 2; : : : .

Let t0 < t1 < t2 < � � � and limk!1 tk D 1. Denote by x.t/ D x.t I t0; '0/ the
solution of system (1.16), (1.17), satisfying the initial conditions´

x.t I t0; '0/ D '0.t � t0/; t0 � r � t � t0

x.t0 C 0I t0; '0/ D '0.0/:
(1.18)

The solution x.t/ D x.t I t0; '0/ of the initial value problem (1.16), (1.17), (1.18) is
characterized by the following:
(1) For t0 � r � t � t0 the solution x.t/ satisfies the initial conditions (1.18).
(2) For t0 < t � t1, x.t/ coincides with the solution of the problem

Px.t/ D f .t; xt /; t > t0; t ¤ tk

xt0 D '0.s/; �r � s � 0:

At the moment t D t1 the mapping point .t; x.t I t0; '0// of the extended phase
space jumps momentarily from the position .t1; x.t1I t0; '0// to the position .t1;
x.t1I t0; '0/C I1.x.t1I t0; '0///.
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(3) For t1 < t � t2 the solution x.t/ coincides with the solution of´
Py.t/ D f .t; yt /; t > t1

yt1 D '1; '1 2 D;

where

'1.t � t1/ D

8<:
'0.t � t1/; t 2 Œt0 � r; t0� \ Œt1 � r; t1�

x.t I t0; '0/; t 2 .t0; t1/ \ Œt1 � r; t1�

x.t I t0; '0/C I1.x.t I t0; '0//; t D t1:

At the moment t D t2 the mapping point .t; x.t// jumps momentarily, etc.
Thus the solution x.t I t0; '0/ of problem (1.16), (1.17), (1.18) is a piecewise con-

tinuous function for t > t0 with points of discontinuity of the first kind t D tk; k D

1; 2; : : : at which it is continuous from the left, i.e. the following relations are satisfied:

x.t�k / D x.tk/; tk > t0; k D 1; 2; : : :

x.tC
k
/ D x.tk/C Ik.x.tk//; tk > t0; k D 1; 2; : : : :

II. Systems with variable impulsive perturbations. For these systems, the set Mt

is represented by a sequence of hypersurfaces �k W t D �k.x/; k D 1; 2; : : : (or
k D 0;˙1;˙2; : : :). Assume that �k.x/ < �kC1.x/ for x 2 �; k D 1; 2; : : : (or
k D 0;˙1;˙2; : : :) and limk!1 �k.x/ D1 for x 2 � (limk!�1 �k.x/ D �1).

We shall assume that the restriction of the operator At to the hypersurface �k is
given by the operator Akx D x C Ik.x/ where Ik W � ! Rn. The systems of this
class are written in the form

Px.t/ D f .t; xt /; t ¤ �k.x.t//; t � t0 (1.19)

�x.t/ D Ik.x.t//; t D �k.x.t//; k D 1; 2; : : : : (1.20)

Denote by x.t/ D x.t I t0; '0/ the solution of system (1.19), (1.20), satisfying the
initial conditions (1.18).

The solution x.t/ D x.t I t0; '0/ of the initial value problem (1.19), (1.20), (1.18) is
characterized by the following:
(1) For t0 � r � t � t0 the solution x.t/ satisfies the initial conditions (1.18).
(2) Denote by '.t I t0; '0/ the solution of the respective problem without impulses

(1.19), (1.18).
Let t1 D �l1.'.t1I t0; '0// D min¹t W t D �k.'.t I t0; '0//; t > t0; k D 1; 2; : : :º,
i.e. t1 be the first moment when the integral curve of the problem without im-
pulses (1.19), (1.18) meets some of the hypersurfaces �k . The number of this
hypersurface is l1.
Then we have x.t I t0; '0/ D '.t I t0; '0/ for t0 < t � t1. At the moment
t D t1 the mapping point .t; x.t I t0; '0// jumps momentarily from the position
.t1; x.t1I t0; '0// to the position .t1; x.t1I t0; '0/C Il1.x.t1I t0; '0/// D .t1; x

C
1 /.
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(3) Let '1 2 D, '1.0/ D xC1 and t2 D �l2.'.t2I t1; '1// D min¹t W t D �k.'.t I t1;

'1//; t > t1; k D 1; 2; : : :º, i.e. t2 be the first bigger than t1 moment when the
integral curve of (1.19) with initial conditions´

'.t I t1; '1/ D '1.t � t1/; t1 � r � t � t1

'.t1 C 0I t1; '1/ D '1.0/

meets some of the hypersurfaces �k . The number of this hypersurface is denoted
by l2. Then we have x.t/ D x.t I t0; '0/ D '.t I t1; '1/ for t1 < t � t2.

At the moment t D t2 the mapping point .t; x.t I t0; '0// jumps momentarily, etc.
The points t1; t2; : : : (t0 < t1 < t2) are the impulsive moments. Let us note that, in

general, k ¤ lk . In other words, it is possible that the integral curve of the problem
under consideration does not meet the hypersurface �k at the moment tk .

The solutions of systems with variable impulsive perturbations are piecewise con-
tinuous functions but unlike the solutions of systems with fixed moments of impulse
effect, they have points of discontinuity depending on the solutions, i.e. the different
solutions have different points of discontinuity. This leads to a number of difficulties
in the investigation of systems with variable impulsive perturbations. One of the phe-
nomena occurring with such systems is the so called “beating” of the solutions. This
is the phenomenon when the mapping point .t; x.t// meets one and the same hyper-
surface �k several or infinitely many times [21, 22]. Part of the difficulties are related
to the possibilities of “merging” of different integral curves after a given moment, loss
of the property of autonomy, etc.

It is clear that systems of impulsive functional differential equations with fixed mo-
ments of impulse effect can be considered as a particular case of the systems with
variable impulsive perturbations. Indeed, if t D tk; k D 1; 2; : : : are fixed moments of
time and we introduce the notation �k D ¹.t; x/ 2 Œt0;1/ � � W t D tkº, then the
systems of the first class are reduced to the systems of the second class.

Early research results on the theory of impulsive functional differential equations
were published by Anokhin [12], Bainov, Covachev and Stamova [19, 20] and Gopal-
samy and Zhang [93]. In many papers, interesting results on the impulsive functional
differential equations with constant delays have been obtained [20, 23–27, 34–38, 41–
47, 49, 51, 53, 54, 190, 191, 193, 194, 198, 205]. However, in practical evolutionary
processes, absolute constant delay may be scarce and delays are frequently varied with
time.

In spite of the great possibilities for application, the theory of the impulsive func-
tional differential equations is developing rather slowly at the beginning, due to ob-
stacles of theoretical and technical character. The presence of delay and impulses
requires introduction of new and modification of the standard methods for investiga-
tions. Some of the properties, such as existence, continuability, and stability may be
changed greatly by impulses [21, 22, 24, 25, 39, 125, 143, 189, 195, 215, 217].
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In recent years there has been a growing interest in the area of impulsive functional
differential equations by many mathematicians, specialists in the theory of optimal
control, physics, chemical technologies, population dynamics, biotechnologies, indus-
trial robotics, and economics.

An interesting and fruitful technique that has gained increasing significance and has
given decisive impetus for modern development of stability theory of impulsive func-
tional differential equations is the second method of Lyapunov. A manifest advantage
of this method is that it does not require the knowledge of solutions and therefore has
great power in applications.

The study of stability theory of impulsive systems with delay is usually more chal-
lenging than that of systems without delay. Significant progress on stability of impul-
sive functional differential equations has been made during the past decades. Results
have been obtained by using the Lyapunov functions as well as by the Lyapunov–
Krasovskii functionals [13, 14, 59, 69, 146, 155]. When Lyapunov functions are used,
the method is coupled with the Razumikhin technique [169]. This technique is more
appropriate for applications. By means of the Lyapunov–Razumikhin method, many
stability results for impulsive functional differential equations were obtained [24, 26,
27, 34–38, 40–42, 44–46, 48–54, 131, 133, 148, 149, 155, 184, 194, 196, 198–203,
205–210, 213, 229].

Boundedness theory has played a significant role in the existence of periodic so-
lutions and it has many applications in areas such as neural network, biological pop-
ulation management, secure communication and chaos control. The theory has been
greatly developed during the past decades (see [69, 70, 87, 111, 126, 148, 193, 197,
204, 220, 228] and the references cited therein).

The aim of this book is to present a systematic account of the recent developments
in the stability theory for impulsive functional differential equations. Also, we would
like to show the manifestations of Lyapunov–Razumikhin method by demonstrating
how this effective technique can be applied to investigate stability and boundedness of
many practical problems of diverse interest.
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1.2 Existence, uniqueness and continuability

Let t0 2 R, r D const > 0, � � Rn, � ¤ ;. Let J � R. Define the following class
of functions:

PCŒJ;�� D ¹ � W J ! � W �.t/ is a piecewise continuous function with
points of discontinuity Qt 2 J at which �.Qt � 0/ and �.Qt C 0/ exist
and �.Qt � 0/ D �.Qt /º:

Consider the following system of impulsive functional differential equations with vari-
able impulsive perturbations:

Px.t/ D f .t; xt /; t ¤ �k.x.t// (1.21)

�x.t/ D Ik.x.t//; t D �k.x.t//; k D 1; 2; : : : ; (1.22)

where f W Œt0;1/ � PCŒŒ�r; 0�; �� ! Rn; �k W � ! .t0;1/, Ik W � ! Rn; k D
1; 2; : : :; �x.t/ D x.t C 0/ � x.t � 0/; and for t � t0, xt 2 PCŒŒ�r; 0�; �� is defined
by xt .s/ D x.t C s/, �r � s � 0.

Let '0 2 PCŒŒ�r; 0�; ��. Denote by x.t/ D x.t I t0; '0/ the solution of system
(1.21), (1.22), satisfying the initial conditions´

x.t I t0; '0/ D '0.t � t0/; t0 � r � t � t0

x.t0 C 0I t0; '0/ D '0.0/:
(1.23)

Let J1 D Œt0; !/, J2 D Œt0; Q!/, and J1 � J2.

Definition 1.6. If:

(1) x.t/ D x.t I t0; '0/ and y.t/ D y.t I t0; '0/ are two solutions of the system (1.21),
(1.22) on the intervals J1 and J2, respectively;

(2) x.t/ D y.t/ for t 2 J1;

then y.t/ is said to be a continuation of x.t/ on the interval J2 (continuation to the
right).

The solution x.t/ D x.t I t0; '0/ is said to be continuable on the interval J2 if
there exists its continuation y.t/ on J2. Otherwise x.t/ D x.t I t0; '0/ is said to be
noncontinuable and the interval J1 is called a maximal interval of existence of x.t/.

Definition 1.7. The solution x.t/ D x.t I t0; '0/ of the system (1.21), (1.22) is said to
be unique if given any other solution y.t/ D y.t I t0; '0/ of the system (1.21), (1.22),
x.t/ D y.t/ on their common interval of existence.
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The next example illustrates the phenomenon “beating”.

Example 1.8. The initial value problem (1.21), (1.22), (1.23) with:

(a) n D 1, t0 D 0, � D .0;1/;

(b) f .t; xt / D x.t/Œx.t � r.t// � 1�; 0 < r.t/ � r ;

(c) x.t/ D '0.t/ D 1; t 2 Œ�r; 0�;

(d) �k.x/ D arctan x C k� , x 2 �, k D 1; 2; : : :;

(e) Ik 2 C Œ�;R�, k D 1; 2; : : :

has a solution x.t/ D x.t I 0; '0/ D 1 for t > 0 till the first meeting with the hy-
persurface t D �1.x/. Then, for any choice of the functions Ik.x/, k D 1; 2; : : : so
that Ik.x/ > 0 for x 2 �, the integral curve .t; x.t I 0; '0// meets one and the same
hypersurface (in the present case this is the curve �1). Moreover, the solution is not
continuable for t � 3�

2 .

It is clear that the presence of the phenomenon “beating” for impulsive systems con-
siderably complicates their investigation. Efficient sufficient conditions, which guar-
antee the absence of this phenomenon for impulsive functional differential equations
with variable impulsive perturbations, were found by Bainov and Dishliev in [21, 22].

Definition 1.9. The solution x.t/ D x.t I t0; '0/ of the problem (1.21), (1.22), (1.23)
is said to be quasiunique if the solution of the corresponding problem without impulses
(1.21), (1.23) is unique for t � t0.

We specially emphasize that if the solutions of (1.21), (1.22) are quasiunique, then
it is possible for two distinct integral curves to merge after some impulse. We shall
illustrate merging by the following example:

Example 1.10 ([21]). Consider the initial value problem (1.21), (1.22), (1.23) with:

(a) n D 1, � D R;

(b) f .t; xt / D 0, t 2 RC;

(c) �k.x/ D 2k �
1

1C x2 , x 2 R, k D 1; 2; : : :;

(d) Ik.x/ D �x, x 2 R, k D 1; 2; : : : .

From assumptions (b) and (d) it follows immediately that the impulsive system (1.21),
(1.22) has zero solution. Moreover, for any initial function '0 2 PCŒŒ�r; 0�;R� and
for any t0 2 RC, the solution of problem (1.21), (1.22), (1.23) merges with the zero
solution after the first impulse.
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Let �0.x/ � t0 for x 2 �. Introduce the following notation:

�k D ¹.t; x/ W t D �k.x/; x 2 �º; k D 1; 2; : : : ; (1.24)

i.e. �k , k D 1; 2; : : : are hypersurfaces with equations t D �k.x/.

Introduce the following conditions:

H1.1. The function f is continuous in Œt0;1/ � PCŒŒ�r; 0�; ��.

H1.2. The function f is locally Lipschitz continuous with respect to its second ar-
gument in Œt0;1/ � PCŒŒ�r; 0�; ��.

H1.3. There exists a constant P > 0 such that

jjf .t; xt /jj � P <1 for .t; xt / 2 Œt0;1/ � PCŒŒ�r; 0�; ��:

H1.4. The functions �k are Lipschitz continuous with respect to x 2 � with Lips-
chitz constants Lk , 0 � Lk < 1

P
; k D 1; 2; : : : .

H1.5. t0 < �1.x/ < �2.x/ < � � � ; x 2 �.

H1.6. �k.x/!1 as k !1, uniformly on x 2 �.

H1.7. �k.x C Ik.x// � �k.x/ for x 2 �, k D 1; 2; : : : .

H1.8. For each .t0; '0/ 2 R � PCŒŒ�r; 0�; ��, the solution of initial value problem
without impulses (1.21), (1.23) does not leave the domain � for t � t0.

H1.9. .E C Ik/ W �! �; k D 1; 2; : : :, where E is the identity in �.

H1.10. The functions Ik are Lipschitz continuous with respect to x 2 � with
Lipschitz constants ƒk , 0 � ƒk < 1 � LkP; k D 1; 2; : : : .

Theorem 1.11 ([21, 22]). Let conditions H1.1–H1.5 and H1.7 hold. Then the integral
curve .t; x.t// of problem (1.21), (1.22), (1.23) meets each one of the hypersurfaces
(1.24) at most once.

The absence of the phenomenon “beating” does not guarantee the continuability
of the solution of the initial value problem (1.21), (1.22), (1.23) for t � t0. In the
subsequent example the following situation is considered: the solutions of the corre-
sponding system without impulses (1.21) are continuable for all t � t0 for any choice
of the initial data .t0; '0/ 2 R � PCŒŒ�r; 0�; ��. Any solution of the system with im-
pulses (1.21), (1.22) meets each one of the hypersurfaces (1.24) at most once. In spite
of this, some solutions of system (1.21), (1.22) are noncontinuable from a certain time
on.

Example 1.12 ([21]). Consider the initial value problem (1.21), (1.22), (1.23) under
the following assumptions:

(a) n D 1, � D R;
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(b) �k.x/ D 2 � 2�k �
1

1C x2 , x 2 R, k D 1; 2; : : :;

(c) conditions H1.1, H1.2 and H1.3 hold with constant P <
8

3
p

3
;

(d) for any x 2 R and any number k D 1; 2; : : : the following inequalities are valid:

xIk.x/ < 0; jIk.x/j < 2jxjI

(e) �k.x/ < �kC1.x C Ik.x// for x 2 R, k D 1; 2; : : : .

It is easy to check that the functions �k are Lipschitz continuous with respect to x 2 R

with Lipschitz constants Lk D
3
p

3
8 , k D 1; 2; : : : .

Indeed, we can set

Lk D sup¹j P�k.x/j; x 2 Rº D max
° 2jxj
.1C x2/2

; x 2 R
±

D
2jxj

.1C x2/2

ˇ̌̌
xD1=

p
3
D

3
p

3
8
:

Condition H1.5 holds. It follows from (c) that for this choice of the constant P
condition H1.4 holds too. The two inequalities in (d) immediately imply condition
H1.7.

By Theorem 1.11, the integral curve of the problem considered meets each one of
the curves �k at most once. If we suppose that 0 < t0 < �1.'0.0//, then by condition
(e) we conclude that the integral curve .t; x.t I t0; '0//meets each one of the curves �k
exactly once. This means that the solution of the problem considered is noncontinuable
for t � 2.

Under the assumption that conditions H1.4, H1.5 and H1.6 hold, we define the
following notation:

Gk D ¹.t; x/ W �k�1.x/ < t < �k.x/; x 2 �º; k D 1; 2; : : : :

Lemma 1.13 ([21]). Let conditions H1.1–H1.5 and H1.8 hold, and .t0; '0.0// 2 Gk[
�k�1: Then for t > t0 the integral curve of problem (1.21), (1.22), (1.23) meets first
the hypersurface �k .
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Let t1; t2; : : : .t0 < t1 < t2 < � � � / be the moments in which the integral curve
.t; x.t I t0; '0// of the problem (1.21), (1.22), (1.23) meets the hypersurfaces �k , k D
1; 2; : : :, i.e. each of the points tk is a solution of some of the equations t D �k.x.t//,
k D 1; 2; : : : .

Theorem 1.14 ([21]). Let conditions H1.1–H1.9 hold. Then for each .t0; '0/ 2 R �
PCŒŒ�r; 0�; ��:

(1) The integral curve .t; x.t I t0; '0// meets infinitely many hypersurfaces of (1.24).

(2) tk !1 as k !1.

(3) The solution of problem (1.21), (1.22), (1.23) is quasiunique and continuable for
all t � t0.

Theorem 1.15 ([21]). Assume that:

(1) Conditions H1.1–H1.4 and H1.10 hold.

(2) The integral curves .t; x.t I t0; '0//, '0 2 PCŒŒ�r; 0�; �� meet successively the
same hypersurfaces of (1.24).

Then the solution of problem (1.21), (1.22), (1.23) is unique.

Theorem 1.16. Let conditions H1.1–H1.10 and condition (2) of Theorem 1.15 hold.
Then for each .t0; '0/ 2 R � PCŒŒ�r; 0�; �� the solution of problem (1.21), (1.22),
(1.23) is unique and continuable for all t � t0.

Theorem 1.16 follows from Theorem 1.14 and Theorem 1.15.

Consider the system of functional differential equations with fixed moments of im-
pulse effect

Px.t/ D f .t; xt /; t ¤ tk; t � t0; (1.25)

�x.tk/ D Ik.x.tk//; tk > t0; k D 1; 2; : : : : (1.26)

In the present case, �k.x/ � tk; k D 1; 2; : : : and �k are hyperplanes in RnC1.

Denote by x.t/ D x.t I t0; '0/ the solution of the initial value problem (1.25), (1.26),
(1.23) and by JC.t0; '0/ the maximal interval of type Œt0; !/ in which the solution
x.t I t0; '0/ is defined.

Introduce the following conditions:

H1.11. Ik 2 C Œ�;��, k D 1; 2; : : : .

H1.12. t0 < t1 < t2 < � � � < tk < tkC1 < � � � :

H1.13. lim
k!1

tk D1.
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Theorem 1.17. Let conditions H1.1, H1.3, H1.9, H1.11, H1.12 and H1.13 hold.
Then for each .t0; '0/ 2 R � PCŒŒ�r; 0�; ��:

(1) There exists a solution x.t/ D x.t I t0; '0/ of the initial value problem (1.25),
(1.26), (1.23) defined on JC.t0; '0/.

(2) JC.t0; '0/ D Œt0;1/:

(3) If, moreover, condition H1.2 is met then the solution x.t I t0; '0/ is unique.

Proof of Assertion 1. Assertion 1 follows from Theorem 1.14. Indeed, the validity of
H1.1, H1.3, as well as, the existence theorem applied to problem (1.25), (1.23) (cf.
[98, 99]) imply that for each .t0; '0/ 2 R � C ŒŒ�r; 0�; �� there exists a solution ˆ1.t/

of problem without impulses (1.25), (1.23) for t � t0. Moreover, ˆ1.t/ D '0.t � t0/

as t 2 Œt0 � r; t0�, and this solution does not leave the domain �. Let t1 be the first
moment of impulsive perturbation. Setting x.t I t0; '0/ D ˆ1.t/ as t 2 Œt0; t1�, we have
ˆ1.t1 C 0/ D I1.ˆ1.t1//Cˆ1.t1/ D ˆ

C
1 .

Now the above mentioned existence theorem applied to the system (1.25) in the
interval .t1; t2/ ensures that there exists a solution ˆ2.t/ such that ˆ2.t/ D ˆ1.t/ for
t1 � r � t � t1 and ˆ2.t1/ D ˆ

C
1 . The solution x.t/ of problem (1.25), (1.26), (1.23)

can be extended to the moment t D t2 by setting x.t I t0; '0/ D ˆ2.t/ for t1 < t � t2.
In the same way, let us denote by ˆk.t/ the solutions of the system (1.25) in the

intervals .tk�1; tk�, k D 3; 4; : : :, respectively. Then for t D tk we have

ˆk.tk C 0/ D Ik.ˆk.tk//Cˆk.tk/ D ˆ
C

k
:

It follows from the existence theorem for problem (1.25), (1.23) on the interval
.tk; tkC1� that there exists a solutionˆkC1.t/ such thatˆkC1.t/ D ˆk.t/ for tk � r �
t � tk and ˆkC1.tk/ D ˆ

C

k
. Thus, the solution x.t I t0; '0/ of problem (1.25), (1.26),

(1.23) can be extended to the moment tkC1, k D 2; 3; : : :, by setting x.t I t0; '0/ D

ˆkC1.t/ for tk < t � tkC1.
Finally, by means of condition H1.12, solution x.t I t0; '0/ of problem (1.25), (1.26),

(1.23) is defined for t 2 JC.t0; '0/.
In the case when .t0; '0/ 2 R � PCŒŒ�r; 0�; �� and �1; �2; : : : ; �s 2 .t0 � r; t0/ are

the points of discontinuity of first kind of the function '0 at which it is continuous
from the left, the proof of Assertion 1 is similar. We shall note that, in this case, it is
possible that tk D �l C r for some k D 1; 2; : : : and l D 1; 2; : : : ; s.

Proof of Assertion 2. Since the solution x.t/ D x.t I t0; '0/ is defined on Œt0; t1� [
.tk; tkC1�; k D 1; 2; : : :, then from H1.12 and H1.13, we conclude that it can be
continued for all t � t0, i.e. JC.t0; '0/ D Œt0;1/.

Proof of Assertion 3. The validity of condition H1.2 ensures that the above defined
solutionsˆ1.t/; ˆ2.t/; : : : are unique and therefore the solution x.t I t0; '0/ of problem
(1.25), (1.26), (1.23) is unique. �



1.2 Existence, uniqueness and continuability 21

Now we consider an initial value problem for the linear system of functional differ-
ential equations with impulse effects at fixed moments:8̂̂̂̂

<̂
ˆ̂̂:

Px.t/ D A.t/x.t/C B.t/xt ; t � t0; t ¤ tk

x.t/ D '0.t � t0/; t 2 Œt0 � r; t0�

x.t0 C 0/ D '0.0/

�x.tk/ D Bkx.tk/; tk > t0; k D 1; 2; : : : ;

(1.27)

where A.t/; B.t/ and Bk; k D 1; 2; : : : are .n � n/ matrices.

Theorem 1.18. Let the matrix functions A.t/ and B.t/ are continuous for t � t0, t ¤
tk; k D 1; 2; : : : with points of discontinuity at t1; t2; : : : where they are left continuous.

Then for each .t0; '0/ 2 R � PCŒŒ�r; 0�; �� there exists a unique solution x.t/ D
x.t I t0; '0/ of problem (1.27) that is defined for all t � t0.

Theorem 1.18 is a consequence of the theorem on existence and uniqueness for the
solutions of a linear system of functional differential equations [98, 99].

The problem on left-continuability of solutions will be considered now for systems
of type (1.25), (1.26) only.

Assume that x.t/ is a solution of (1.25), (1.26) defined on interval .
; !/.
If 
 ¤ tk , then the problem on continuability of x.t/ on the left of 
 can be solved

in the same way as for functional differential equations without impulses. In this case
the solution x.t/ is continuable on the left of 
 and J� D J�.t0; '0/ D .˛; t0/.

Straightforward calculations show that the solution x.t/ of problem (1.25), (1.26)
satisfies the equation

x.t/ D

8̂̂̂<̂
ˆ̂:
'0.0/C

X
t0<tk<t

Ik.x.tk//C

Z t

t0

f .s; xs/ds; t 2 J
C

'0.0/ �
X

t<tk<t0

Ik.x.tk//C

Z t

t0

f .s; xs/ds; t 2 J
�:

The solution of the linear system (1.27) can be extended to the left of tk if the below
conditions are met:

det.E C Bk/ ¤ 0; k D 1; 2; : : : ; (1.28)

where E is the .n � n/ identity matrix.
Let Uk.t; s/ .t; s 2 .tk�1; tk�/ be the Cauchy matrix [100] for the linear system

Px.t/ D A.t/x.t/; tk�1 < t � tk; k D 1; 2; : : : :

Then by virtue of Theorem 1.18, the solution of the initial problem (1.27) can be
decomposed as

x.t I t0; '0/ D x.t/ D W.t; t0 C 0/'0.0/C
Z t

t0

W.t; s/B.s/xsds; t > t0; (1.29)
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where

W.t; s/ D

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂:

Uk.t; s/ as t; s 2 .tk�1; tk�

UkC1.t; tk C 0/.E C Bk/Uk.tk; s/ as tk�1 < s � tk < t � tkC1

Uk.t; tk/.E C Bk/
�1UkC1.tk C 0; s/ as tk�1 < t � tk < s � tkC1

UkC1.t; tk C 0/
iC1Y
jDk

.E C Bj /Uj .tj ; tj�1 C 0/.E C Bi /Ui .ti ; s/

as ti�1 < s � ti < tk < t � tkC1

Ui .t; ti /

k�1Y
jDi

.ECBj /
�1UjC1.tjC0; tjC1/.ECBk/

�1UkC1.tkC0; s/

as ti�1 < t � ti < tk < s � tkC1;

is the solving operator of the system´
Px.t/ D A.t/x.t/; t ¤ tk

�x.tk/ D Bkx.tk/:

1.3 Piecewise continuous Lyapunov functions

The second method of Lyapunov is one of the universal methods for investigating
the dynamical systems from a different type. The method is also known as a direct
method of Lyapunov or a method of the Lyapunov functions. Put forward in the end of
the XIX century by Lyapunov [150], this method hasn’t lost its popularity today. It has
been applied initially to ordinary differential equations, and in his first work Lyapunov
standardized the definition for stability and generalized the Lagrange’s work [128] on
potential energy. The essence of the method is the investigation of the qualitative prop-
erties of the solutions without an explicit formula. For this purpose we need auxiliary
functions – the so-called Lyapunov functions.

The first more significant development of the Lyapunov second method were made
in the 1930s in the works of Barbashin [55, 56] as well as in the works of Chatayev,
Malkin, and Marachkov [71, 152, 153]. The researches in that period were focused
on simplifying the conditions of Lyapunov theorems and proving the inverse theorems
for ordinary differential equations. Different aspects of the Lyapunov second method
applications for ordinary differential equations are given in [55, 56, 61, 100, 124, 152,
153, 171, 182, 183, 223].

Gradually, there has been an expansion both in the class of the studied objects and
in the mathematical problems investigated by means of the method.

One of the directions in which the method is used is the study of the qualitative
properties of the solutions of functional differential equations. This method allows
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to make a conclusion about the stability (asymptotic stability, instability) of the in-
vestigated systems. Also, the well-constructed Lyapunov function allows the area of
stability to be evaluated in the phase space as well as in the space of the parameters.
The reason for the development of this direction, observed in the middle of the 20th
century, is infiltration of mathematical methods in the study of technical, biological,
ecological and other systems. Today there is a significant amount of articles on the
stability and boundedness of differential equations with constants delays, neutral type
differential equations, integro-differential equations, linear and non-linear functional
differential equations [4, 58, 60, 63, 64, 66–68, 76, 79, 82, 84, 91, 92, 94, 95, 98, 99,
106–108, 114, 118, 119, 131–134, 140, 154, 163, 168–170, 214, 219, 225, 227, 232,
233].

There are two main approaches, when the second method of Lyapunov is applied,
for investigating the stability and boundedness of the solutions of functional differen-
tial equations. The first one is the method of Lyapunov functions. The direct transfer
of the Lyapunov theorems to functional differential equations leads to significant dif-
ficulties when the sign of the derivative of the Lyapunov function with respect to the
system has to be determined. Therefore, in the works [98, 99, 119, 131–134, 169],
it is offered that the derivative of the Lyapunov function should be estimated by the
elements of the minimal subsets of the integral curves of the investigated system. This
technique is known as Razumikhin technique [169].

When using the direct method of Lyapunov for functional differential equations,
Krasovskii [124] approached from a functional analysis point of view. He replaced the
Lyapunov function with a Lyapunov functional. The method of Lyapunov–Krasovskii
functionals has been used by many researchers on the stability theory for functional
differential equations [4, 13, 14, 58, 63, 64, 66, 68, 91, 98, 99, 118, 119, 160, 166].

Gurgulla and Perestyuk were the first who applied the Lyapunov direct method for
impulsive systems. In the work [97] they used classical (continuous) Lyapunov func-
tions. The application of continuous Lyapunov functions to the investigation of im-
pulsive systems restricts the possibilities of Lyapunov second method. The fact that
the solutions of impulsive systems are piecewise continuous functions requires intro-
ducing some analogous of the classical Lyapunov functions which have discontinuities
of the first kind [30]. By means of such functions it becomes possible to solve basic
problems related to the application of Lyapunov second method to impulsive systems.

The presence of impulses as well as the delay in the impulsive functional differ-
ential equations require a combination between the method of piecewise continuous
Lyapunov function and Razumikhin technique. By means of such approach, many in-
teresting results of the stability and boundedness theory of these equations have been
obtained [24, 26, 27, 34–38, 40–46, 48–54, 87, 131, 133, 148, 149, 155, 184, 185,
193, 194, 196–210, 213, 228, 229]. The results obtained in such manner can be ap-
plied more easily in comparison with the method of Lyapunov–Krasovskii functionals.
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Scalar Lyapunov functions

Consider the system (1.21), (1.22). Introduce the following notation:

G D

1[
kD1

Gk :

Definition 1.19. A function V W Œt0;1/ ��! RC belongs to the class V0, if:

(1) V is continuous in G and locally Lipschitz continuous with respect to its second
argument on each of the sets Gk , k D 1; 2; : : : .

(2) For each k D 1; 2; : : : and .t�0 ; x
�
0 / 2 �k there exist the finite limits

V.t�0 � 0; x�0 /D lim
.t;x/!.t�0 ;x

�
0 /

.t;x/2Gk

V.t; x/; V .t�0 C 0; x�0 /D lim
.t;x/!.t�0 ;x

�
0 /

.t;x/2GkC1

V.t; x/

and the equality V.t�0 � 0; x�0 / D V.t
�
0 ; x
�
0 / holds.

Let V 2 V0. For .t; x/ 2 G, we define

PV(1.21);(1.22).t; x/ D lim
h!0C

sup
1
h
ŒV .t C h; x C hf .t; xt // � V.t; x/�:

Note that if x D x.t/ is a solution of system (1.21), (1.22), then for t > t0; t ¤

�k.x.t//, k D 1; 2; : : : we have PV(1.21);(1.22).t; x/ D D
C
(1.21);(1.22)V.t; x.t//, where

DC(1.21);(1.22)V.t; x.t// D lim
h!0C

sup
1
h
ŒV .t C h; x.t C h// � V.t; x.t//� (1.30)

is the upper right-hand Dini derivative of V 2 V0 (with respect to the system (1.21),
(1.22)).

For V 2 V0 and for some t � t0, define the following set:

�1 D ¹x 2 PCŒŒt0;1/ ��� W V.s; x.s// � V.t; x.t//; t � r � s � tº :

In the present book results on stability and boundedness for the systems of the type
(1.21), (1.22) are given where the upper right-hand derivatives of the Lyapunov piece-
wise continuous functions are estimated by means of elements of the sets of the type
�1.

The class of functions V0 is also used for investigation of stability and boundedness
of the systems of impulsive functional differential equations with fixed moments of im-
pulse effect (1.25), (1.26). In this case, �k.x/ � tk; k D 1; 2; : : :, �k are hyperplanes
in RnC1, the sets Gk are

Gk D ¹.t; x/ W tk�1 < t < tk; x 2 �º;

and the condition (2) of Definition 1.19 is substituted by the condition:
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(20) For each k D 1; 2; : : : and x 2 �, there exist the finite limits

V.tk � 0; x/ D lim
t!tk
t<tk

V.t; x/; V .tk C 0; x/ D lim
t!tk
t>tk

V.t; x/;

and the following equalities are valid:

V.tk � 0; x/ D V.tk; x/:

Vector Lyapunov functions

It is well known that employing several Lyapunov functions, in the investigation of
the qualitative properties of the differential equations solutions, is more useful than
employing a single one since each function can satisfy less rigid requirements. Hence,
the corresponding theory, known as the method of vector Lyapunov functions, offers a
very flexible mechanism (see [132] and references therein).

Moreover, by means of the method of vector Lyapunov functions we can prove the
results in some cases in which using the scalar Lyapunov functions is impossible.

In the present book we shall use vector Lyapunov functions V W Œt0;1/��! Rm
C

,
V D col.V1; V2; : : : ; Vm/ such that Vj 2 V0, j D 1; 2; : : : ; m.

1.4 Comparison theorems

In this section we shall present the main comparison results we use. The essence
of the comparison method in the stability theory is in studying the relations between
the given system and a comparison system so that the stability properties of the so-
lutions of comparison system should imply the corresponding stability properties of
the solutions of system under consideration. These relations are obtained employing
differential inequalities. The comparison system is usually of lower order and its right-
hand side possesses a certain type of monotonicity, which considerably simplifies the
study of its solutions.

Consider the system of impulsive functional differential equations´
Px.t/ D f .t; xt /; t ¤ tk

�x.tk/ D x.tk C 0/ � x.tk/ D Ik.x.tk//; tk > t0;
(1.31)

where f W Œt0;1/ � PCŒŒ�r; 0�; �� ! Rn; Ik W � ! Rn; k D 1; 2; : : :; t0 < t1 <

t2 < � � � , limk!1 tk D1.
Denote by x.t/ D x.t I t0; '0/ the solution of problem (1.31), (1.23), and by

JC.t0; '0/ – the maximal interval of type Œt0; !/ in which the solution x.t I t0; '0/

is defined.
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Define the following classes:

PC1ŒJ;�� D ¹� 2 PCŒJ;�� W �.t/ is continuously differentiable everywhere
except the points tk at which P�.tk � 0/ and P�.tk C 0/ exist and
P�.tk � 0/ D P�.tk/; k D 1; 2; : : :º I

and

�P D ¹x 2 PCŒŒt0;1�; �� W V.s; x.s// � P.V.t; x.t///; t � r � s � tº ;

where t � t0, V 2 V0, P.u/ is continuous on RC, non-decreasing in u, and P.u/ > u
for u > 0.

Together with system (1.31) we shall consider the comparison system´
Pu.t/ D F.t; u.t//; t ¤ tk

�u.tk/ D u.tk C 0/ � u.tk/ D Jk.u.tk//; tk > t0;
(1.32)

where F W Œt0;1/ �Rm
C
! RmI Jk W R

m
C
! Rm; k D 1; 2; : : : .

Let u0 2 Rm
C

. Denote by u.t/ D u.t I t0; u0/ the solution of system (1.32) satisfying
the initial condition u.t0 C 0/ D u.t0/ D u0 and by JC.t0; u0/ the maximal interval
of type Œt0; ˇ/ in which the solution u.t I t0; u0/ is defined.

We introduce into Rm a partial ordering in the following way: for the vectors u; v 2
Rm we shall say that u � v if uj � vj for each j D 1; 2; : : : ; m and u > v if uj > vj
for each j D 1; 2; : : : ; m.

Definition 1.20. The solution uC W JC.t0; u0/! Rm
C

of the system (1.32) for which
uC.t0I t0; u0/ D u0 is said to be a maximal solution if any other solution u W Œt0; Q!/!
Rm
C

, for which u.t0/ D u0 satisfies the inequality uC.t/ � u.t/ for t 2 JC.t0; u0/ \

Œt0; Q!/.

Analogously, the minimal solution of system (1.32) is defined.

Definition 1.21. The function  W Rm
C
! Rm is said to be:

(a) non-decreasing in Rm
C

if  .u/ �  .v/ for u � v, u; v 2 Rm
C
:

(b) monotone increasing in Rm
C

if  .u/ >  .v/ for u > v and  .u/ �  .v/ for
u � v, u; v 2 Rm

C
:

Definition 1.22. The function F W Œt0;1/ �Rm
C
! Rm is said to be quasi-monotone

increasing in Œt0;1/ � Rm
C

if for each pair of points .t; u/ and .t; v/ from Œt0;1/ �

Rm
C

and for i 2 ¹1; 2; : : : ; mº the inequality Fi .t; u/ � Fi .t; v/ holds whenever
ui D vi and uj � vj for j D 1; 2; : : : ; m; i ¤ j , i.e. for any fixed t 2 Œt0;1/
and any i 2 ¹1; 2; : : : ; mº the function Fi .t; u/ is non-decreasing with respect to
.u1; u2; : : : ; ui�1; uiC1; : : : ; um/.
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In the case when the function F W Œt0;1/ � Rm
C
! Rm is continuous and quasi-

monotone increasing, all solutions of problem (1.32) starting from the point .t0; u0/ 2

Œt0;1/ �Rm
C

lie between two singular solutions – the maximal and the minimal ones.

Theorem 1.23. Assume that:

(1) Conditions H1.1, H1.3, H1.9, H1.11, H1.12 and H1.13 hold.

(2) The function F is quasi-monotone increasing, continuous in the sets .tk; tkC1�

�Rm
C
; k 2 N [ ¹0º and for k D 1; 2; : : : and v 2 Rm

C
there exists the finite limit

lim
.t;u/!.t;v/
t>tk

F.t; u/:

(3) The maximal solution uC W JC.t0; u0/! Rm
C

of the system (1.32) is defined for
t � t0.

(4) The functions  k W Rm
C
! Rm

C
;  k.u/ D u C Jk.u/; k D 1; 2; : : : are non-

decreasing in Rm
C

.

(5) The function V W Œt0;1/ � � ! Rm
C

, V D col.V1; V2; : : : ; Vm/, Vj 2 V0,
j D 1; 2; : : : ; m, is such that

V.t0 C 0; '0.0// � u0;

V .t C 0; x C Ik.x// �  k.V .t; x//; x 2 �; t D tk; k D 1; 2; : : : ;

and the inequality

DC(1.31)V.t; x.t// � F.t; V .t; x.t///; t ¤ tk; k D 1; 2; : : :

is valid for t 2 Œt0;1/; x 2 �P :

Then
V.t; x.t I t0; '0// � u

C.t I t0; u0/ for t 2 Œt0;1/: (1.33)

Proof. From Theorem 1.17 it follows that JC.t0; '0/ D Œt0;1/ and the solution x D
x.t I t0; '0/ of the problem (1.31), (1.23) is such that

x 2 PCŒ.t0 � r;1/;�� \ PC1ŒŒt0;1/;��:

The maximal solution uC.t I t0; u0/ of the system (1.32) is defined by the equality

uC.t I t0; u0/ D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

r0.t I t0; u
C
0 /; t0 < t � t1

r1.t I t1; u
C
1 /; t1 < t � t2

:::

rk.t I tk; u
C

k
/; tk < t � tkC1

:::
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where rk.t I tk; u
C

k
/ is the maximal solution of the system without impulses Pu D

F.t; u/ in the interval .tk; tkC1�; k D 0; 1; 2; : : :, for which uC
k
D  k.rk�1.tkI tk�1;

uC
k�1//; k D 1; 2; : : : and uC0 D u0:

Let t 2 .t0; t1�. Then, from the corresponding comparison theorem for the continu-
ous case [132], it follows that

V.t; x.t I t0; '0// � u
C.t I t0; u0/;

i.e. the inequality (1.33) is valid for t 2 .t0; t1�.
Suppose that (1.33) is satisfied for t 2 .tk�1; tk�; k > 1. Then, using condition (5)

of Theorem 1.23 and the fact that the function  k is non-decreasing, we obtain

V.tk C 0; x.tk C 0I t0; '0// �  k.V .tk; x.tkI t0; '0///

�  k.u
C.tkI t0; '0// D  k.rk�1.tkI tk�1; u

C

k�1//D u
C

k
:

We apply again the comparison theorem for the continuous case in the interval .tk;
tkC1� and obtain

V.t; x.t I t0; '0// � rk.t I tk; u
C

k
/ D uC.t I t0; u0/;

i.e. the inequality (1.33) is valid for t 2 .tk; tkC1�:

The proof is completed by induction. �

The next theorem follows immediately from Theorem 1.23.

Theorem 1.24. Assume that:

(1) Conditions H1.1, H1.3, H1.9, H1.11, H1.12 and H1.13 hold.

(2) The function g W Œt0;1/ �RC ! R is continuous in each of the sets .tk�1; tk� �

RC; k D 1; 2; : : : .

(3) Bk 2 C ŒRC;RC� and k.u/ D uCBk.u/ � 0; k D 1; 2; : : : are non-decreasing
with respect to u.

(4) The maximal solution uC.t I t0; u0/ of the scalar problem8̂<̂
:

Pu.t/ D g.t; u.t//; t ¤ tk

u.t0/ D u0 � 0

�u.tk/ D Bk.u.tk//; tk > t0; k D 1; 2; : : :

is defined in the interval Œt0;1/.
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(5) The function V 2 V0 is such that V.t0 C 0; '0.0// � u0,

V.t C 0; x C Ik.x// �  k.V .t; x//; x 2 �; t D tk; k D 1; 2; : : : ;

and the inequality

DC(1.31)V.t; x.t// � g.t; V .t; x.t///; t ¤ tk; k D 1; 2; : : :

is valid for t 2 Œt0;1/; x 2 �P .

Then
V.t; x.t I t0; '0// � u

C.t I t0; u0/; t 2 Œt0;1/:

In the case when g.t; u/ D 0 for .t; u/ 2 Œt0;1/ � RC and  k.u/ D u for u 2
RC; k D 1; 2; : : :, we deduce the following corollary from Theorem 1.24.

Corollary 1.25. Assume that:

(1) Conditions H1.1, H1.3, H1.9, H1.11, H1.12 and H1.13 hold.

(2) The function V 2 V0 is such that

V.t C 0; x C Ik.x// � V.t; x/; x 2 �; t D tk; k D 1; 2; : : : ;

and the inequality

DC(1.31)V.t; x.t// � 0; t ¤ tk; k D 1; 2; : : :

is valid for t 2 Œt0;1/; x 2 �P .

Then
V.t; x.t I t0; '0// � V.t0 C 0; '0.0//; t 2 Œt0;1/:

Remark 1.26. All theorems in Section 1.4 are true if we substitute the set �P with
the set �1.

Notes and comments

Conditions for absence of the phenomenon beating were first obtained by Samoilenko
and Perestyuk in [179]. Theorem 1.11 is due to Bainov and Dishliev [21]. A num-
ber of sufficient conditions for the absence of the phenomenon beating for impulsive
functional differential equations were obtained by Bainov and Dishliev [21, 22].

The results on the existence, uniqueness and continuability of the solutions were
taken from Bainov and Dishliev [21]. Analogous results were obtained in the works
[25, 47, 143, 203, 215]. In the particular case, Lakshmikantham and Rao [134] con-
sidered the impulsive integro-differential systems of the type

Px.t/ D f .t; x.t//C

Z t

t0

g.t; s; x.s//ds; t ¤ tk

�x.tk/ D Ik.x.tk//; tk > t0; k D 1; 2; : : : :
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The systems of the type (1.25), (1.26) also include the following systems of impulsive
integro-differential equations with infinite delays:

Px.t/ D �a.t/x.t/C f .t; x.t//C

Z t

�1

c.t � s/x.s/ds; t ¤ tk

�x.tk/ D Ik.x.tk//; tk > t0; k D 1; 2; : : : ;

studied in [148, 149].
The method of piecewise continuous Lyapunov functions for impulsive systems was

introduced by Bainov and Simeonov [30].
The corresponding comparison theorem of the Theorem 1.23 for the continuous

case was proved in [132]. The applied technique is used by many authors [7, 8, 19, 31,
130–134].



Chapter 2

Lyapunov stability and boundedness

The present chapter will deal with basic stability theory for impulsive functional dif-
ferential equations by Lyapunov’s direct method. Applications to real world problems
will also be discussed.

Section 2.1 will offer Lyapunov stability results. The obtained theorems are parallel
to the classical theorems of Lyapunov for ordinary differential equations and show the
role of delay and impulses.

Section 2.2 will deal with boundedness properties for impulsive functional differen-
tial equations. By means of piecewise continuous Lyapunov functions coupled with the
Razumikhin technique, sufficient conditions for equi-boundedness, uniform bound-
edness and uniform-ultimate boundedness of the solutions of such equations will be
given.

Finally, in Section 2.3, we shall continue to use Lyapunov’s direct method and we
shall investigate global stability of the solutions.

2.1 Lyapunov stability of the solutions

Let t0 2 R, r D const > 0, � be a domain in Rn containing the origin and kxk D
.
Pn
kD1 x

2
k
/

1
2 be the norm of the element x 2 Rn. Consider the following system of

impulsive functional differential equations with variable impulsive perturbations:´
Px.t/ D f .t; xt /; t ¤ �k.x.t//

�x.t/ D Ik.x.t//; t D �k.x.t//; k D 1; 2; : : : ;
(2.1)

where f W Œt0;1/ � PCŒŒ�r; 0�; �� ! Rn; �k W � ! .t0;1/, Ik W � ! Rn; k D
1; 2; : : :; �x.t/ D x.t C 0/ � x.t � 0/; and for t � t0, xt 2 PCŒŒ�r; 0�; �� is defined
by xt .s/ D x.t C s/, �r � s � 0.

Let '0 2 PCŒŒ�r; 0�; ��. Denote by x.t/ D x.t I t0; '0/ the solution of system (2.1),
satisfying the initial conditions´

x.t/ D '0.t � t0/; t0 � r � t � t0

x.t0 C 0/ D '0.0/;
(2.2)
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and by JC.t0; '0/ the maximal interval of type Œt0; ˇ/ in which the solution x.t I t0;
'0/ is defined.

Let �0.x/ � t0 for x 2 �. Introduce the following condition:
H2.1. �k 2 C Œ�; .t0;1/�; k D 1; 2; : : : .

Assuming that conditions H2.1, H1.5, and H1.6 are fulfilled, we consider the hyper-
surfaces

�k D
®
.t; x/ W t D �k.x/; x 2 �

¯
; k D 1; 2; : : : :

Introduce the following notations:

k'kr D sup
t2Œt0�r;t0�

k'.t � t0/k is the norm of the function ' 2 PCŒŒ�r; 0�; ��I

K D ¹a 2 C ŒRC;RC� W a.r/ is strictly increasing and a.0/ D 0º:

In the case r D1 we have k'kr D k'k1 D supt2.�1;t0�k'.t � t0/k.

Introduce the following conditions:
H2.2. f .t; 0/ D 0; t � t0.
H2.3. Ik.0/ D 0; k D 1; 2; : : : .
H2.4. The integral curves of the system (2.1) meet successively each one of the hy-

persurfaces �1; �2; : : : exactly once.

Let t1; t2; : : : .t0 < t1 < t2 < � � � / be the moments in which the integral curve
.t; x.t I t0; '0// of problem (2.1), (2.2) meets the hypersurfaces �k , k D 1; 2; : : : .

It follows from Theorem 1.16 that if the conditions H1.1, H1.2, H1.3, H1.5, H1.6,
H1.9, H1.11, H2.1 and H2.4 are met, then tk ! 1 as k ! 1 and JC.t0; '0/ D

Œt0;1/.

We shall use the following definitions of Lyapunov like stability of the zero solution
of (2.1).

Definition 2.1. The zero solution x.t/ � 0 of system (2.1) is said to be:
(a) stable, if

.8t0 2 R/.8"> 0/.9ı D ı.t0; "/ > 0/

.8'0 2 PCŒŒ�r; 0�; �� W k'0kr < ı/.8t � t0/ W kx.t I t0; '0/k < "I

(b) uniformly stable, if the number ı in (a) is independent of t0 2 R;
(c) attractive, if

.8t0 2 R/.9� D �.t0/ > 0/.8'0 2 PCŒŒ�r; 0�; �� W k'0kr < �/ W

lim
t!1

x.t I t0; '0/ D 0I
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(d) equi-attractive, if

.8t0 2 R/.9� D �.t0/ > 0/.8" > 0/.9T D T .t0; "/ > 0/

.8'0 2 PCŒŒ�r; 0�; �� W k'0kr < �/.8t � t0 C T / W kx.t I t0; '0/k < "I

(e) uniformly attractive, if the numbers � and T in (d) are independent of t0 2 R;

(f) asymptotically stable, if it is stable and attractive;

(g) uniformly asymptotically stable, if it is uniformly stable and uniformly attractive;

(h) unstable, if

.9t0 2 R/.9"> 0/.8ı > 0/.9'0 2 PCŒŒ�r; 0�; �� W k'0kr < ı/

.9t � t0/ W kx.t I t0; '0/k � ":

In the proofs of our main theorems in this section we shall use piecewise continuous
Lyapunov functions V W Œt0;1/��! RC, V 2 V0 for which the following condition
is true:

H2.5. V.t; 0/ D 0; t � t0:

Theorem 2.2. Assume that:

(1) Conditions H1.1, H1.2, H1.3, H1.5, H1.6, H1.9, H1.11, H2.1–H2.4 hold.

(2) There exists a function V 2 V0 such that H2.5 holds,

a.kxk/ � V.t; x/; a 2 K; .t; x/ 2 Œt0;1/ ��; (2.3)

V.t C 0; x C Ik.x// � V.t; x/; .t; x/ 2 �k; k D 1; 2; : : : ; (2.4)

and the inequality

DC(2.1)V.t; x.t// � 0; t ¤ �k.x.t//; k D 1; 2; : : :

is valid for t 2 Œt0;1/; x 2 �1:

Then the zero solution of system (2.1) is stable.

Proof. Let " > 0. It follows from the properties of the function V that there exists a
constant ı D ı.t0; "/ > 0 such that if x 2 � W kxk < ı, then supkxk<ı V.t0C 0; x/ <
a."/:

Let '0 2 PCŒŒ�r; 0�; �� W k'0kr < ı: Then k'0.0/k � k'0kr< ı and therefore

V.t0 C 0; '0.0// < a."/: (2.5)

Let x.t/ D x.t I t0; '0/ be the solution of problem (2.1), (2.2). Since all the condi-
tions of Corollary 1.25 are met, then

V.t; x.t I t0; '0// � V.t0 C 0; '0.0//; t 2 Œt0;1/: (2.6)
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From (2.3), (2.5) and (2.6) there follow the inequalities

a.kx.t I t0; '0/k/ � V.t; x.t I t0; '0// � V.t0 C 0; '0.0// < a."/;

whence we obtain that kx.t I t0; '0/k < " for t � t0. This implies that the zero solution
of system (2.1) is stable. �

Theorem 2.3. Let the conditions of Theorem 2.2 hold, and let a function b 2 K exist
such that

V.t; x/ � b.kxk/; .t; x/ 2 .t0;1/ ��: (2.7)

Then the zero solution of system (2.1) is uniformly stable.

Proof. Let " > 0 be given. Choose ı D ı."/ > 0 so that b.ı/ < a."/.
Let '0 2 PCŒŒ�r; 0�; �� W k'0kr < ı and x.t/ D x.t I t0; '0/ be the solution of

problem (2.1), (2.2).
As in Theorem 2.2, we prove that

a.kx.t I t0; '0/k/ � V.t; x.t I t0; '0// � V.t0 C 0; '0.0//; t � t0:

From the above inequalities and (2.7), we get to the inequalities

a.kx.t I t0; '0/k/ � V.t0 C 0; '0.0// � b.k'0.0/k/ � b.k'0kr/ < b.ı/ < a."/;

from which it follows that kx.t I t0; '0/k < " for t � t0. This proves the uniform
stability of the zero solution of system (2.1). �

Theorem 2.4. Assume that:

(1) Condition (1) of Theorem 2.2 holds.

(2) There exists a function V 2 V0 such that H2.5 and (2.4) hold,

a.kxk/ � V.t; x/ � b.kxk/; a; b 2 K; .t; x/ 2 Œt0;1/ ��; (2.8)

and the inequality

DC(2.1)V.t; x.t// � �c.kx.t/k/; t ¤ �k.x.t//; k D 1; 2; : : : (2.9)

is valid for c 2 K, t 2 Œt0;1/ and x 2 �1.

Then the zero solution of system (2.1) is uniformly asymptotically stable.

Proof. 1. Let ˛ D const > 0 : ¹x 2 Rn W kxk � ˛º � �.
For any t 2 Œt0;1/ denote

V �1
t;˛ D ¹x 2 � W V.t C 0; x/ � a.˛/º :
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From (2.8), we deduce

V �1
t;˛ � ¹x 2 Rn W kxk � ˛º � �:

From condition (2) of Theorem 2.4, it follows that for any t0 2 R and any function
'0 2 PCŒŒ�r; 0�; �� W '0.0/ 2 V �1

t0;˛
we have x.t I t0; '0/ 2 V

�1
t;˛ ; t � t0.

Let " > 0 be chosen. Choose � D �."/ so that b.�/ < a."/, and let T > b.˛/
c.�/

.
If we assume that for each t 2 Œt0; t0 C T � the inequality kx.t I t0; '0/k � � is valid,

then from (2.4) and (2.9) we get

V.t; x.t I t0; '0// � V.t0 C 0; '0.0//

�

Z t

t0

c.kx.sI t0; '0/k/ ds � b.˛/ � c.�/T < 0;

which contradicts (2.8). The contradiction obtained shows that there exists t� 2
Œt0; t0 C T � such that kx.t�I t0; '0/k < �.

Then from (2.4), (2.8) and (2.9) it follows that for t � t� (hence for any t � t0 C T )
the following inequalities hold:

a.kx.t I t0; '0/k/ � V.t; x.t I t0; '0// � V.t
�; x.t�I t0; '0//

� b.kx.t�I t0; '0/k/ < b.�/ < a."/:

Therefore, kx.t I t0; '0/k < " for t � t0 C T .

2. Let � D const > 0 be such that b.�/ < a.˛/. Then, if '0 2 PCŒŒ�r; 0�; �� W
k'0kr < �, (2.8) implies

V.t0 C 0; '0.0// � b.k'0.0/k/ � b.k'0kr/ < b.�/ < a.˛/;

which shows that '0 2 PCŒŒ�r; 0�; �� W '0.0/ 2 V �1
t0;˛

. From what we proved in item
1, it follows that the zero solution of system (2.1) is uniformly attractive and since
Theorem 2.3 implies that it is uniformly stable, then the solution x � 0 is uniformly
asymptotically stable. �

Corollary 2.5. If in Theorem 2.4 condition (2.9) is replaced by the condition

DC(2.1)V.t; x.t// � �cV .t; x.t//; t ¤ �k.x.t//; k D 1; 2; : : : ; (2.10)

where t 2 Œt0;1/; x 2 �1; c D const > 0, then the zero solution of system (2.1) is
uniformly asymptotically stable.

Proof. The proof of Corollary 2.5 is analogous to the proof of Theorem 2.4. It uses
the fact that

V.t; x.t I t0; '0// � V.t0 C 0; '0.0// expŒ�c.t � t0/�

for t � t0, which is obtained from (2.10) and (2.4).



36 2 Lyapunov stability and boundedness

In fact, let ˛ D const > 0 W ¹x 2 Rn W kxk � ˛º � �: Choose � > 0 so that
b.�/ < a.˛/. Let " > 0 and T � 1

c
ln a.˛/
a."/

. Then for '0 2 PCŒŒ�r; 0�; �� W k'0kr < �

and t � t0 C T the following inequalities hold:

V.t; x.t I t0; '0// � V.t0 C 0; '0.0// expŒ�c.t � t0/� < a."/;

whence, in view of (2.8), we deduce that the solution x � 0 of system (2.1) is uni-
formly attractive. �

Consider the system of impulsive functional differential equations with fixed mo-
ments of impulsive perturbations´

Px.t/ D f .t; xt /; t ¤ tk

�x.t/ D Ik.x.t//; t D tk; k D 1; 2; : : : ;
(2.11)

where f W Œt0;1/ � PCŒŒ�r; 0�; �� ! Rn; Ik W � ! Rn; k D 1; 2; : : :; t0 < t1 <

t2 < � � � < tk < tkC1 < � � � and limk!1 tk D1.
Let '1 2 PCŒŒ�r; 0�; ��. Denote by x1.t/ D x1.t I t0; '1/ the solution of system

(2.11), satisfying the initial conditions´
x1.t I t0; '1/ D '1.t � t0/; t0 � r � t � t0

x1.t0 C 0I t0; '1/ D '1.0/:

Definition 2.6. The solution x1.t/ of system (2.11) is said to be:

(a) stable, if
.8t0 2 R/.8"> 0/.9ı D ı.t0; "/ > 0/

.8'0 2 PCŒŒ�r; 0�; �� W k'0 � '1kr < ı/

.8t � t0/ W kx.t I t0; '0/ � x1.t I t0; '1/k < "I

(b) uniformly stable, if the number ı in (a) is independent of t0 2 R;

(c) attractive, if
.8t0 2 R/.9� D �.t0/ > 0/

.8'0 2 PCŒŒ�r; 0�; �� W k'0 � '1kr < �/ W

lim
t!1

x.t I t0; '0/ D x1.t I t0; '1/I

(d) equi-attractive, if

.8t0 2 R/.9� D �.t0/ > 0/.8" > 0/.9T D T .t0; "/ > 0/

.8'0 2 PCŒŒ�r; 0�; �� W k'0 � '1kr < �/

.8t � t0 C T / W kx.t I t0; '0/ � x1.t I t0; '1/k < "I
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(e) uniformly attractive, if the numbers � and T in (d) are independent of t0 2 R;

(f) asymptotically stable, if it is stable and attractive;

(g) uniformly asymptotically stable, if it is uniformly stable and uniformly attractive;

(h) unstable, if (a) does not hold.

The following theorems follow directly from Theorems 2.2, 2.3 and 2.4.

Theorem 2.7. Assume that:

(1) Conditions H1.1, H1.2, H1.3, H1.9, H1.11, H1.12 and H1.13 hold.

(2) There exists a function V 2 V0 such that

V.t; x1.t// D 0; t 2 Œt0;1/; (2.12)

a.kx � x1.t/k/ � V.t; x/; a 2 K; .t; x/ 2 Œt0;1/ ��;

V.t C 0; x C Ik.x// � V.t; x/; x 2 �; t D tk; k D 1; 2; : : : ; (2.13)

and the inequality

DC(2.11)V.t; x.t// � 0; t ¤ tk; k D 1; 2; : : :

is valid for t 2 Œt0;1/; x 2 �1:

Then the solution x1.t/ of system (2.11) is stable.

Theorem 2.8. Let the conditions of Theorem 2.7 hold, and let a function b 2 K exist
such that

V.t; x/ � b.kx � x1.t/k/; .t; x/ 2 Œt0;1/ ��:

Then the solution x1.t/ of system (2.11) is uniformly stable.

Theorem 2.9. Assume that:

(1) Condition (1) of Theorem 2.7 holds.

(2) There exists a function V 2 V0 such that (2.12), (2.13) hold,

a.kx � x1.t/k/ � V.t; x/ � b.kx � x1.t/k/; a; b 2 K; .t; x/ 2 Œt0;1/ ��;

and the inequality

DC(2.11)V.t; x.t// � �c.kx.t/ � x1.t/k/; t ¤ tk; k D 1; 2; : : :

is valid for c 2 K, t 2 Œt0;1/ and x 2 �1.

Then the solution x1.t/ of system (2.11) is uniformly asymptotically stable.

We shall apply the obtained results in investigating the stability of the mathematical
models from the population dynamics.
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Example 2.10. Gopalsamy [91] studied the asymptotic behavior of the solutions of
the linear system

Px.t/ D Ax.t/C Bx.t � r/; t � 0;

where x 2 Rn
C

, r > 0, A and B are diagonal constant .n � n/ matrices.
If at certain moments of time the above system is subject to impulsive perturbations,

then the adequate mathematical model is the following impulsive system:´
Px.t/ D Ax.t/C Bx.t � r/; t ¤ tk; t � 0

�x.tk/ D Ckx.tk/; k D 1; 2; : : : ;
(2.14)

where Ck D diag.c1k; c2k; : : : ; cnk/, �1 < cik � 0, i D 1; 2; : : : ; n, k D 1; 2; : : :;
0 < t1 < t2 < � � � < tk < tkC1 < � � � and limk!1 tk D1.

Let V.t; x/ D kxk2 D< x; x >, where < x; y >D x1y1 C x2y2 C � � � C xnyn is
the dot product of x; y 2 Rn. Then the set

�1 D ¹x 2 PCŒRC;RnC� W kx.s/k
2
� kx.t/k2; t � r � s � tº:

Let '0 2 PCŒŒ�r; 0�;Rn
C
�. Denote by x.t/ D x.t I 0; '0/ the solution of system

(2.14) satisfying the initial conditions

x.s/ D '0.s/ � 0; s 2 Œ�r; 0/I x.0/ > 0:

For t ¤ tk , k D 1; 2; : : :, we have

DC(2.14)V.t; x.t// D 2hx.t/; Px.t/i D 2hx.t/; Ax.t/C Bx.t � r/i:

Also, for k D 1; 2; : : :

V .tk C 0; x.tk/C Ckx.tk// D
nX
iD1

.1C cik/
2x2
i .tk/ � V.tk; x.tk//:

If A D diag.a1; a2; : : : ; an/, B D diag.b1; b2; : : : ; bn/, ai � 0, bi � 0, b D
maxi bi and ai � �.b C c/ for i D 1; 2; : : : ; n, then for x 2 �1,

DC(2.14)V.t; x.t// � �2chx.t/; x.t/i D �2cV .t; x.t//; t ¤ tk

and according to Theorem 2.9 the trivial solution of (2.14) is uniformly asymptotically
stable.

Example 2.11. Consider the equation8<:
PN.t/ D mN.t/ŒK � aN.t/C bN.t � �.t//�; t ¤ tk; t � 0

�N.tk/ D ˛kN.tk/ � ˛k
K

a � b
; tk > 0; k D 1; 2; : : : ;

(2.15)
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where m > 0; K > 0; 0 � �.t/ � r ; a � 0; b > 0; a ¤ b; �1 < ˛k � 0,
k D 1; 2; : : :; 0 < t1 < t2 < � � � and limk!1 tk D1.

Let ' 2 PCŒŒ�r; 0�;RC� and N.t/ D N.t I 0; '/ be the solution of equation (2.15)
satisfying the initial conditions

N.s/ D '.s/ � 0; s 2 Œ�r; 0/I N.0/ > 0:

One can show that if a > b the point N � D K
a�b

is a positive equilibrium of (2.15).
Define the function V.t; N / D 1

2.N �N
�/2. Then the set

�1 D ¹N 2 PCŒRC; .0;1/� W .N.s/ �N �/2 � .N.t/ �N �/2; t � r � s � tº:

For t � 0, t ¤ tk , we have

DC(2.15)V.t; N.t// D mN.t/.N.t/ �N
�/ŒK � aN.t/C bN.t � �.t//�:

Since N � is an equilibrium of (2.15), then

DC(2.15)V.t; N.t// D mN.t/.N.t/ �N
�/Œ�a.N.t/ �N �/C b.N.t � �.t// �N �/�:

For t ¤ tk , k D 1; 2; : : : and N 2 �1, we obtain the estimate

DC(2.15)V.t; N.t// � mN.t/Œ�aC b�.N.t/ �N
�/2 � 0:

Also, for t > 0, t D tk , we have

V.tk C 0; N.tk/C�N.tk// D
1
2
Œ.1C ˛k/N.tk/ � ˛kN

�
�N ��2

D
1
2
.1C ˛k/

2ŒN.tk/ �N
��2 � V.tk; N.tk//:

Then all conditions of Theorem 2.8 are satisfied. Hence the equilibrium N � of
(2.15) is uniformly stable.

2.2 Theorems on boundedness

In this section, we shall apply Lyapunov’s second method for investigating the bound-
edness of the solutions of system (2.1) for� D Rn, i.e. we shall consider the following
system: ´

Px.t/ D f .t; xt /; t ¤ �k.x.t//

�x.t/ D Ik.x.t//; t D �k.x.t//; k D 1; 2; : : : ;
(2.16)

where f W Œt0;1/ � PCŒŒ�r; 0�;Rn�! Rn; �k W Rn ! .t0;1/, Ik W Rn ! Rn; k D
1; 2; : : :; �x.t/ D x.t C 0/� x.t � 0/; and for t � t0, xt 2 PCŒŒ�r; 0�;Rn� is defined
by xt .s/ D x.t C s/, �r � s � 0.
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Let '0 2 PCŒŒ�r; 0�;Rn�. Denote by x.t/ D x.t I t0; '0/ the solution of system
(2.16), satisfying the initial conditions´

x.t I t0; '0/ D '0.t � t0/; t0 � r � t � t0

x.t0 C 0I t0; '0/ D '0.0/;
(2.17)

and by JC.t0; '0/ the maximal interval of type Œt0; ˇ/, in which the solution x.t I t0;
'0/ is defined.

Let �0.x/ � t0 for x 2 Rn. Introduce the following conditions:

H2.6. The function f is continuous on Œt0;1/ � PCŒŒ�r; 0�;Rn�.

H2.7. The function f is locally Lipschitz continuous with respect to its second ar-
gument on Œt0;1/ � PCŒŒ�r; 0�;Rn�.

H2.8. There exists a constant P > 0 such that

kf .t; xt /k � P <1 for .t; xt / 2 Œt0;1/ � PCŒŒ�r; 0�;Rn�:

H2.9. �k 2 C ŒR
n; .t0;1/�; k D 1; 2; : : : .

H2.10. t0 < �1.x/ < �2.x/ < � � � ; x 2 Rn.

H2.11. �k.x/!1 as k !1, uniformly on x 2 Rn.

H2.12. The functions Ik , k D 1; 2; : : : are Lipschitz continuous with respect to x 2
Rn.

Assuming that conditions H2.9, H2.10 and H2.11 are fulfilled, we define the fol-
lowing notations:

Gk D
°
.t; x/ W �k�1.x/ < t < �k.x/; x 2 Rn

±
; k D 1; 2; : : :

�k D
°
.t; x/ W t D �k.x/; x 2 Rn

±
; k D 1; 2; : : : :

Introduce the following condition:

H2.13. The integral curves of the system (2.16) meet successively each one of the
hypersurfaces �1; �2; : : : exactly once.

Let t1; t2; : : : .t0 < t1 < t2 < � � � / be the moments in which the integral curve
.t; x.t I t0; '0// of the problems (2.16), (2.17) meets the hypersurfaces ¹�kº1kD1.

We shall use also the following notations:

S˛ D ¹x 2 Rn W kxk < ˛º; ˛ > 0; Sc˛ D ¹x 2 Rn W kxk � ˛º:
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Definition 2.12. We say that the solutions of system (2.16) are:

(a) equi-bounded, if

.8t0 2 R/.8˛ > 0/.9ˇ D ˇ.t0; ˛/ > 0/

.8'0 2 PCŒŒ�r; 0�;Rn� W k'0kr < ˛/.8t � t0/ W kx.t I t0; '0/k < ˇI

(b) uniformly bounded, if the number ˇ in (a) is independent of t0 2 R;

(c) quasi-uniformly ultimately bounded, if

.9B > 0/.8˛ > 0/.9T D T .˛/ > 0/.8t0 2 R/

.8'0 2 PCŒŒ�r; 0�;Rn� W k'0kr < ˛/.8t � t0 C T / W kx.t I t0; '0/k < BI

(d) uniformly ultimately bounded, if (b) and (c) hold together.

In the further considerations, we shall use the class V0 of piecewise continuous
auxiliary functions V 2 V0 for � D Rn:

Theorem 2.13. Assume that:

(1) Conditions H2.6–H2.13 hold.

(2) There exists a function V 2 V0 such that H2.5 holds,

a.kxk/ � V.t; x/; .t; x/ 2 Œt0;1/ �Rn; (2.18)

where a 2 K and a.u/!1 as u!1,

V.t C 0; x C Ik.x// � V.t; x/; .t; x/ 2 �k; k D 1; 2; : : : ; (2.19)

and the inequality

DC(2.16)V.t; x.t// � 0; t ¤ �k.x.t//; k D 1; 2; : : :

is valid for t 2 Œt0;1/; x 2 �P :

Then the solutions of system (2.16) are equi-bounded.

Proof. Let ˛ > 0, t0 2 R, '0 2 PCŒŒ�r; 0�;Rn�. Consider the solution x.t/ D
x.t I t0; '0/ of (2.16) for which k'0kr < ˛:

By Theorem 1.16, we have JC.t0; '0/ D Œt0;1/. From the properties of the
function V , it follows that there exists a constant � D �.t0; ˛/ > 0 such that if
x 2 Rn W kxk < ˛, then supkxk<˛ V.t0 C 0; x/ < �.t0; ˛/:

Since for the function a 2 K we have a.u/ ! 1 as u ! 1, then we can choose
ˇ D ˇ.t0; ˛/ > 0 so that ˇ > ˛ and a.ˇ/ > �.t0; ˛/.

We shall prove that kx.t I t0; '0/k < ˇ for t � t0.
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Suppose that this is not true. Then, there exists t� > t0 such that tk < t� � tkC1
for some fixed k and

kx.t�/k � ˇ; and kx.t I t0; '0/k < ˇ; t 2 Œt0; t
�/: (2.20)

Since the conditions of Corollary 1.25 are met, then

V.t; x.t I t0; '0// � V.t0 C 0; '0.0//; t 2 Œt0;1/:

From the above inequality, (2.18) and (2.20) we have

a.ˇ/ � a.kx.t�I t0; '0/k/ � V.t
�; x.t�I t0; '0// � V.t0 C 0; '0.0// < �.t0; ˛/;

which contradicts the choice of ˇ.
Therefore, kx.t I t0; '0/k < ˇ for t � t0. This implies that the solutions of (2.16)

are equi-bounded. �

Theorem 2.14. Assume that:

(1) Condition (1) of Theorem 2.13 holds.

(2) For � > 0, there exists V 2 V0 such that (2.19) holds,

a.kxk/ � V.t; x/ � b.kxk/; .t; x/ 2 Œt0;1/ � S
c
� ; (2.21)

where a, b 2 K and a.u/!1 as u!1, and the inequality

DC(2.16)V.t; x.t// � 0; t ¤ �k.x.t//; k D 1; 2; : : : (2.22)

is valid for t 2 Œt0;1/; x 2 Sc� \�P :

Then the solutions of system (2.16) are uniformly bounded.

Proof. Let ˛ > 0 and assume, without loss of generality, that ˛ � �. Choose ˇ D
ˇ.˛/ > 0 so that

ˇ > max¹˛; a�1.b.˛//º:

Let t0 2 R and '0 2 PCŒŒ�r; 0�;Rn�. Consider the solution x.t/ D x.t I t0; '0/ of
(2.16) with k'0kr < ˛. Obviously,

kx.t0 C 0I t0; '0/k D k'0.0/k � k'0kr < ˛ < ˇ:

We claim that
kx.t/k < ˇ; t > t0:

If it is not true, then there exists some solution x.t/ D x.t I t0; '0/ of (2.16) with
k'0kr < ˛ and a t� > t0 such that kx.t�I t0; '0/k � ˇ. Thus, there exist s1; s2; t0 �
s1 < s2 � t

� such that

kx.s1 C 0/k � ˛; kx.s1/k � ˛; kx.s2 C 0/k � ˇ
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and
x.t/ 2 Sˇ \ S

c

˛; t 2 Œs1; s2/: (2.23)

First, we shall show that

V.s1 C 0; x.s1 C 0// < a.ˇ/:

If s1 ¤ tk , then kx.s1/k D ˛, and we have by (2.21)

V.s1; x.s1// � b.kx.s1/k/ D b.˛/ < a.ˇ/:

If s1 D tk for some k, then kx.s1/k � ˛, and

V.s1; x.s1// � b.kx.s1/k/ � b.˛/ < a.ˇ/:

Thus, by (2.19) we obtain

V.s1 C 0; x.s1 C 0// < a.ˇ/:

Next, we want to show that

V.t C 0; x.t C 0// < a.ˇ/; t 2 Œs1; s2�: (2.24)

Suppose that this is not true and let

� D inf¹s2 � t > s1 W V.t C 0; x.t C 0// � a.ˇ/º:

We discuss two possibilities:

(A) � ¤ tk , k D 1; 2; : : : . Since V.t; x.t// is continuous at �, we have

V.�C 0; x.�C 0// D V.�; x.�// D a.ˇ/:

Thus, for h > 0 small enough the inequality

V.�C h; x.�C h// � a.ˇ/

holds which implies that

DC(2.16)V.�; x.�// D lim
h!0C

sup h�1ŒV .�C h; x.�C h//� V.�; x.�//� � 0: (2.25)

From the choice of � it is clear that

P.V.�; x.�/// > V.�; x.�// � V.s; x.s//; s1 � s � �:

Thus, we get using (2.22)
DC(2.16)V.�; x.�// � 0;

which contradicts (2.25).
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(B) � D tk for some k D 1; 2; : : : . We must have

V.tk C 0; x.tk C 0// D a.ˇ/:

In fact, if V.tkC0; x.tkC0// > a.ˇ/, then by assumption (2.19) V.tk; x.tk// > a.ˇ/.
Since V.t; x.t// is left continuous at tk , it follows that there exists Q� < tk such that
V. Q�C 0; x. Q�C 0// � a.ˇ/ which contradicts the choice of �.

Hence
V.tk C 0; x.tk C 0// � V.tk; x.tk// � 0: (2.26)

Since
P.V.�; x.�/// > V.�; x.�// � V.s; x.s//; s1 � s � �;

we obtain using (2.19)

V.tk C 0; x.tk C 0// � V.tk; x.tk// � 0

which contradicts (2.26). Therefore (2.24) holds.
On the other hand, using (2.21) we get

V.s2 C 0; x.s2 C 0// � a.kx.s2 C 0/k/ � a.ˇ/;

which contradicts (2.24). Thus

kx.t/k < ˇ; t � t0

for any solution x.t/ D x.t I t0; '0/ of (2.16) with k'0kr < ˛ and the solutions of
(2.16) are uniformly bounded. �

The proof in case ˛ < � is trivial [228] and we omit the details in this book.

Theorem 2.15. If in Theorem 2.14 condition (2.22) is replaced by the condition

DC(2.16)V.t; x.t// � �c.kx.t/k/; t ¤ �k.x.t//; k D 1; 2 : : : ; (2.27)

where t 2 Œt0;1/; x 2 Sc� \ �P , c 2 K, then the solutions of system (2.16) are
uniformly ultimately bounded.

Proof. Let ˛ > 0 and assume, without loss of generality, that ˛ � �. Choose ˇ D
ˇ.˛/ > 0 so that

ˇ > max¹˛; a�1.b.˛//º:

Let t0 2 R and '0 2 PCŒŒ�r; 0�;Rn�. Consider the solution x.t/ D x.t I t0; '0/ of
(2.16) with k'0kr < ˛. Since all conditions of Theorem 2.14 are satisfied the solutions
of (2.16) are uniformly bounded and for t � t0 the following inequalities are valid:

kx.t I t0; '0/k < ˇ; and V.t; x.t// < a.ˇ/: (2.28)
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Now let B D a�1.b.�// and ˇ > B . Let the function P W RC ! RC be a
continuous and non-decreasing on RC, and P.u/ > u as u > 0. We set

� D inf¹P.u/ � u W a.B/ � u � a.ˇ/º:

Then
P.u/ > uC � as a.B/ � u � a.ˇ/; (2.29)

and we choose the integer � such that

a.B/C �� > a.ˇ/: (2.30)

Let us denote
�k D t0 C k

�

c.�/
; k D 0; 1; 2; : : : ; �:

We want to prove

V.t; x.t// < a.B/C .� � k/�; t � �k (2.31)

for all k D 0; 1; 2; : : : ; �:
Indeed, using (2.28) and (2.30) we obtain

V.t; x.t I t0; '0// < a.ˇ/ < a.B/C ��; t � t0 D �0

which means the validity of (2.31) for k D 0.
Assume (2.31) to be fulfilled for some integer k; 0 < k < �, i.e.

V.s; x.s// < a.B/C .� � k/�; s � �k : (2.32)

Suppose now that

V.t; x.t// � a.B/C .� � k � 1/�; �k � t � �kC1: (2.33)

Then (2.28), (2.29) and (2.33) imply

a.B/ � V.t; x.t// < a.ˇ/; �k � t � �kC1

and

P.V.t; x.t/// > V.t; x.t//C � � a.B/C .� � k/�

> V.s; x.s//; �k � s � t � �kC1:

Therefore x.�/ 2 �P as �k � s � t � �kC1: Then (2.21) and (2.33) yield

b.kx.t/k/ � V.t; x.t// � a.B/C .� � k � 1/� � a.B/;
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i.e. x.t/ 2 Sc� , �k � t � �kC1. Then by (2.27) we obtain

V.�kC1; x.�kC1// � V.�k C 0; x.�k C 0// �
Z �kC1

�k

c.kx.s/k/ ds

< a.B/C .� � k/� � c.�/Œ�kC1 � �k� D a.B/C .� � k � 1/�

� V.�kC1; x.�kC1//;

which is a contradiction. Therefore there exists t�; �k � t� � �kC1 such that

V.t�; x.t�// < a.B/C .� � k � 1/�

and condition (2.19) implies

V.t� C 0; x.t� C 0// < a.B/C .� � k � 1/�:

We shall prove that

V.t; x.t// < a.B/C .� � k � 1/�; t � t�:

Supposing the opposite, we set

� D inf¹t � t� W V.t; x.t// � a.B/C .� � k � 1/�º:

We consider two cases:

(A) � ¤ tk , k D 1; 2; : : : . Then for h > 0 sufficiently close to zero, we have

V.�C h; x.�C h// � a.B/C .� � k � 1/�;

whence
DC(2.16)V.�; x.�// � 0:

On the other hand, we can prove, as above, that x.�/ 2 �P as t� � s � t � � and
therefore

DC(2.16)V.�; x.�// � 0:

(B) � D tj for some j 2 ¹1; 2; : : : ; k; : : :º. We can obtain a contradiction by the
analogous arguments, as in the proof of Theorem 2.14.

The contradiction we have already obtained yields

V.t; x.t// < a.B/C .� � k � 1/�; t � �kC1:

It follows that (2.31) holds for all k D 0; 1; 2; : : : ; �:
Let T D T .˛/ D � �

c.�/
. Then (2.31) implies

V.t; x.t// < a.B/ as t � t0 C T
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or
kx.t/k < B as t � t0 C T

for any solution x.t/ D x.t I t0; '0/ of (2.16) with k'0kr < ˛ and the solutions of
(2.16) are uniformly ultimately bounded. �

Theorem 2.16. If in Theorem 2.15 condition (2.27) is replaced by the condition

DC(2.16)V.t; x.t// �M�c.kx.t/k/; t ¤ �k.x.t//; k D 1; 2; : : : ; (2.34)

where t 2 Œt0;1/; x 2 Sc� \�P , c 2 K and M D const > 0, then the solutions of
system (2.16) are uniformly ultimately bounded.

Proof. First, we shall prove the uniform boundedness of the solutions of (2.16).
Let � > 0 be sufficiently large so that M � c.�/ < 0: Let ˛ > max¹�; c�1.M/º be

given. Choose ˇ D ˇ.˛/ > 0 so that ˇ D max¹˛; a�1.b.˛//º.
Let t0 2 R and '0 2 PCŒŒ�r; 0�;Rn�. Consider the solution x.t/ D x.t I t0; '0/ of

(2.16) with k'0kr < ˛. Obviously,

kx.t0 C 0I t0; '0/k D k'0.0/k � k'0kr < ˛ < ˇ:

We claim that
kx.t/k < ˇ; t > t0: (2.35)

If it is not true, then there exists some solution x.t/ D x.t I t0; '0/ of (2.16) with
k'0kr < ˛ and a t� > t0 such that kx.t�I t0; '0/k � ˇ. Thus, there exist s1; s2; t0 �
s1 < s2 � t

�, such that

kx.s1 C 0/k � ˛; kx.s1/k � ˛; kx.s2 C 0/k � ˇ

and
x.t/ 2 Sˇ \ S

c

˛; t 2 Œs1; s2/:

As in the proof of Theorem 2.14, we can show that

V.s1 C 0; x.s1 C 0// < a.ˇ/:

Next, we want to show that

V.t C 0; x.t C 0// < a.ˇ/; t 2 Œs1; s2�: (2.36)

Suppose that this is not true and let

� D inf¹s2 � t > s1 W V.t C 0; x.t C 0// � a.ˇ/º:

We discuss two possibilities:
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(A) � ¤ tk , k D 1; 2; : : : . Since V.t; x.t// is continuous at �, we have V.� C
0; x.�C 0// D V.�; x.�// D a.ˇ/ and

DC(2.16)V.�; x.�// � 0: (2.37)

It is clear, from the choice of �, that

P.V.�; x.�/// > V.�; x.�// � V.s; x.s//; s1 � s � �:

From (2.21) we have

b.kx.�/k/ � V.�; x.�// > b.˛/;

and hence
kx.�/k � ˛: (2.38)

Thus, we get using (2.34) and (2.38)

DC(2.16)V.�; x.�// �M � c.kx.�/k/ �M � c.˛/

< M � c.max¹�; c�1.M/º/ DM �max¹M; c.�/º � 0;

which contradicts (2.37).

(B) � D tj for some j 2 ¹1; 2; : : : ; k; : : :º. We can obtain a contradiction by the
analogous arguments, as in the proof of Theorem 2.14.

On the other hand, using (2.21) we get

V.s2 C 0; x.s2 C 0// � a.kx.s2 C 0/k/ � a.ˇ/;

which contradicts the fact that V.t C 0; x.t C 0// < a.ˇ/; t 2 Œs1; s2�: Thus

kx.t/k < ˇ; t � t0

for any solution x.t/ D x.t I t0; '0/ of (2.16) with k'0kr < ˛ and the system (2.16) is
uniformly bounded.

The uniform boundedness of the solutions of (2.16) means that there exists a positive
number B such that for each t0 2 RC

k'0kr < � implies kx.t I t0; '0/k < B; t � t0:

Let B D a�1.b.�// and ˇ > B . We set � such that (2.29) be true and choose the
integer � such that (2.30) be true.

Let us denote
�k D t0 C k

�

c.�/ �M
; k D 0; 1; 2; : : : ; �:

As in the proof of Theorem 2.15, we can prove that

kx.t/k < B as t � t0 C T

for any solution x.t/ D x.t I t0; '0/ of (2.16) with k'0kr < ˛, where T D T .˛/ D

� �
c.�/�M

. Therefore, the solutions of (2.16) are uniformly ultimately bounded. �
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Example 2.17. Let t0 � 0 and �0.x/ � t0 for x 2 R: Consider the nonlinear equation8̂<̂
: Px.t/ D �3�x4.t/C

Z t

t0

p.t; s/x3.s/ ds C q.t/; t ¤ �k.x.t//

�x.t/ D �ˇkx.t/; t D �k.x.t//; k D 1; 2; : : : ;

(2.39)

where � > 0; 0 � ˇk � 2, k D 1; 2; : : :; q 2 C ŒRC;R�, jq.t/j � M for some
constant M > 0; p 2 C ŒRC �RC;RC�.

Assume that the functions �k are such that the conditions H2.9, H2.10, H2.11 and
H2.13 for system (2.39) are fulfilled and that there exists a constant � > 1 such thatZ t

t0

p.t; s/ ds �
�

�3 : (2.40)

Then (2.40) is a sufficient condition for uniform ultimate boundedness of the so-
lutions of (2.39). In fact, we can choose a.u/ D b.u/ D u, c.u/ D 2�u4. Let
V.t; x/ D jxj, Sc� D ¹x 2 R W jxj � 1º and denote

P.u/ D �:u:

Thus, using (2.40) we have

V C(2.39).t; x.t// � �3�jx4.t/j C

Z t

t0

p.t; s/jx3.s/j ds C jq.t/j

� �3�jx.t/j4 C �3
jx.t/j3

Z t

t0

p.t; s/ ds C jq.t/j

� �3�jx.t/j4 C �3
jx.t/j4:

�

�3 CM

DM � 2�jx.t/j4;

whenever jxj � 1, t ¤ �k.x.t//; k D 1; 2; : : : and P.V.t; x.t/// D �jx.t/j >

jx.s/j D V.s; x.s// for t0 � s � t .
For t D �k.x.t//; k D 1; 2; : : :, we have

V.t C 0; x.t/ � ˇkx.t// D j.1 � ˇk/x.t/j � jx.t/j D V.t; x.t//:

Then all conditions of Theorem 2.16 are satisfied. Hence, the solutions of (2.39) are
uniformly ultimately bounded.

Now, we shall give the results on the boundedness for impulsive systems of func-
tional differential equations with fixed moments of impulsive perturbations.

Consider the system´
Px.t/ D f .t; xt /; t ¤ tk

�x.t/ D Ik.x.t//; t D tk; k D 1; 2; : : : ;
(2.41)
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where f W Œt0;1/ � PCŒŒ�r; 0�;Rn�! Rn; Ik W Rn ! Rn; k D 1; 2; : : :; t0 < t1 <

t2 < � � � < tk < tkC1 < � � � and limk!1 tk D1.
Let '0 2 PCŒŒ�r; 0�;Rn�. Denote by x.t/ D x.t I t0; '0/ the solution of system

(2.41), satisfying the initial conditions (2.17).

Since the system (2.41) is a particular case of (2.16), then the following theorems
follow directly from Theorems 2.13, 2.14 and 2.15.

Theorem 2.18. Assume that:

(1) Conditions H1.12, H1.13, H2.6–H2.8 and H2.12 hold.

(2) There exists a function V 2 V0 such that H2.5 and (2.18) hold,

V.t C 0; x C Ik.x// � V.t; x/; x 2 Rn; t D tk; k D 1; 2; : : : ; (2.42)

and the inequality

DC(2.41)V.t; x.t// � 0; t ¤ tk; k D 1; 2; : : :

is valid for t 2 Œt0;1/; x 2 �P :

Then the solutions of system (2.41) are equi-bounded.

Theorem 2.19. Assume that:

(1) Condition (1) of Theorem 2.18 holds.

(2) For � > 0, there exists V 2 V0 such that (2.21) and (2.42) hold, and the inequality

DC(2.41)V.t; x.t// � 0; t ¤ tk; k D 1; 2; : : : (2.43)

is valid for t 2 Œt0;1/; x 2 Sc� \�P :

Then the solutions of system (2.41) are uniformly bounded.

Theorem 2.20. If in Theorem 2.19 condition (2.43) is replaced by the condition

DC(2.41)V.t; x.t// � �c.kx.t/k/; t ¤ tk; k D 1; 2; : : : ;

where t 2 Œt0;1/; x 2 Sc� \ �P , c 2 K, then the solutions of system (2.41) are
uniformly ultimately bounded.

Now, we consider a quasilinear system of functional differential equation with im-
pulse effects at fixed moments´

Px.t/ D Ax.t/C Bx.t � h.t//C f1.x.t/; x.t � h.t///; t ¤ tk

�x.t/ D Ik.x.t//; t D tk; k D 1; 2; : : : ;
(2.44)
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where t � t0; A and B are constant matrices of type .n � n/; f1 W Rn � Rn ! Rn;
Ik W Rn ! RnI h 2 C ŒŒt0;1/;RC�; r D supt�t0 h.t/; t0 < t1 < t2 < � � � < tk <

tkC1 < � � � and limk!1 tk D1.
Let '0 2 PCŒŒ�r; 0�;Rn�. Denote by x.t/ D x.t I t0; '0/ the solution of system

(2.44), satisfying the initial conditions (2.17).

Introduce the notations:

� �max.A/ and �min.A/ are the largest and the smallest eigenvalues of the symmetric
matrix A D .aij /, respectively;

� kAk D
�
�max.A

TA/
� 1

2 is the norm of the matrix A;

� �Œa; b/ is the number of the points tk , contained in the interval Œa; b/.

We need the following conditions in our subsequent analysis.

H2.14. The system
Px.t/ D Ax.t/

has an asymptotically stable zero solution.

H2.15. f1 2 C ŒRn �Rn;Rn�.

H2.16. There exists a constant � > 0 such that

kf1.x; Qx/k < �k Qxk; x; Qx 2 Rn:

H2.17. There exists a constant M > 0 such that

vŒt; t C h.t// < M; t > t0 � r:

H2.18. Ik 2 C ŒRn;Rn�; k D 1; 2; : : : .

H2.19. There exists a constant a > 0 such that

kIk.x/k � akxk; x 2 Rn; k D 1; 2; : : : :

In the sequel, we shall use the following lemmas.

Lemma 2.21 ([31]). Assume that:

(1) Conditions H1.12 and H1.13 hold.

(2) q W Œt0;1/ ! R is a piecewise continuous function with points of discontinuity
of the first kind tk; tkC1; : : : at which it is continuous from the left.

(3) p W Œt0;1/! R is a continuous function.
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(4) For t � t0; ˇk � 0; k D 1; 2; : : : and c0 � 0 the following inequality is valid:

q.t/ � c0 C

Z t

t0

p.s/q.s/ ds C
X

t0<tk<t

ˇkq.tk/:

Then

q.t/ � c0

Y
t0<tk<t

.1C ˇk/ exp
h Z t

t0

p.s/ ds
i
; t � t0:

Lemma 2.22 ([150]). Let the condition H2.14 hold and E be the identity operator in
Rn. Then the Lyapunov matrix equation

ATD C DA D �E (2.45)

has a unique solution D, which is a symmetric positive definite matrix.

Lemma 2.23. Assume that:

(1) D is a constant symmetric positive definite matrix of type .n � n/.

(2) The function V W Rn ! RC is given by V.x/ D xTDx.

Then for each x 2 Rn the following inequalities are valid:

�min.D/kxk
2
� V.x/ � �max.D/kxk

2: (2.46)

Lemma 2.23 is an immediate corollary of the Lagrange theorem for the quadratic
form V.x/ D xTDx.

Lemma 2.24. Let the conditions H1.12, H1.13, H2.14–H2.19 hold.
Then for t0 < t � t0 C r for the solution x.t/ D x.t I t0; '0/ of problem (2.44),

(2.17) the following inequality is valid:

kx.t/k < Œ1C .kBk C �/r�k'0kr expŒkAkr CM ln.1C a/�: (2.47)

Proof. The solution x.t/ D x.t I t0; '0/ of problem (2.44), (2.17) satisfies the equation

x.t/ D x.t0 C 0/C
Z t

t0

ŒAx.s/C Bx.s � h.s//C f1.x.s/; x.s � h.s///� ds

C

X
t0�tk<t

Ik.x.tk//:

From H2.16, it follows for t0 < t � t0 C r

kx.t/k < kx.t0C0/kC
Z t

t0

kAkkx.s/k dsCk'0kr.kBkC�/rC
X

t0�tk<t

kIk.x.tk//k:
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Thus, conditions H2.18 and H2.19 imply that

kx.t/k < kx.t0 C 0/k C
Z t

t0

kAk kx.s/k ds C .kBk C �/k'0krr C
X

t0�tk<t

akx.tk/k:

Hence, Lemma 2.21 yields the estimate

kx.t/k < .kx.t0 C 0/k C .kBk C �/k'0krr/.1C a/�Œt0;t/ekAkr :

Since the moments tk satisfy condition H2.17, we have

�Œt0; t / � �Œt0; t0 C r/ < M; t0 < t � t0 C r:

Therefore, the inequality

kx.t/k < Œ1C .kBk C �/r�k'0kr expŒkAkr CM ln.1C a/�;

holds for t0 < t � t0 C r and the proof is complete. �

Introduce the following condition:

H2.20. The inequality

.x C Ik.x//
TD.x C Ik.x// � x

TDx

is valid for x 2 Rn; k D 1; 2; : : : ; whereD is the solution of equation (2.45).

Introduce the following notation:

˛ D
°
.1C .kBk C �/r/k'0kr expŒkAkr CM ln.1C a/�

±2
�max.D/: (2.48)

Theorem 2.25. Assume that:

(1) Conditions H1.12, H1.13, H2.14–H2.20 hold.

(2) The function V W Rn ! RC is given by V.x/ D xTDx, where D is the solution
of equation (2.45).

(3) The function f1 and the matrix B are such that

2�.D/kDk .kBk C �/ < 1;

where �.D/ D
q
�max.D/
�min.D/

.

Then the solutions of system (2.44) are equi-bounded.
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Proof. By Lemma 2.24 for t0 < t � t0 C r the solution x.t/ of (2.44), (2.17) satisfies
the inequality (2.47).

Let ˛ > 0 is the constant defined by (2.48). Introduce the notations:

v˛ D ¹x 2 Rn W V.x/ < ˛º and @v˛ D ¹x 2 Rn W V.x/ D ˛º:

Then, from (2.47) it follows that x.t/ D x.t I t0; '0/ 2 v
˛ for t0 � r � t � t0 C r .

We shall prove that x.t I t0; '0/ 2 v
˛ for t > t0 C r , too. Suppose that this is not

true.
Note that, from condition H2.20 and from V.x.tk// < ˛, it follows that V.x.tk C

0// � V.x.tk// < ˛, i.e. x.t/ cannot leave v˛ by jump.
Now the assumption that x.t I t0; '0/ 2 v

˛ for t > t0 C r is not true implies the
existence of T > t0C r; T ¤ tk; k D 1; 2; : : : such that x.t/ 2 v˛ for t0� r � t < T
and x.T / 2 @v˛.

Consider the upper right-hand derivative of Lyapunov function V.x/ D xTDx with
respect to system (2.44). For t ¤ tk; k D 1; 2; : : : we derive the estimate

DC(2.44)V.x.t// � �kx.t/k
2
C 2kDBk kx.t/k kx.t � h.t//k

C2kDk kx.t/k�kx.t � h.t//k:
(2.49)

From inequalities (2.46), we deduce the inequalitiess
V.x.t//

�max.D/
� x.t/ �

s
V.x.t//

�min.D/
; t 2 R: (2.50)

For t D T from (2.49) and (2.50), we derive the estimate

DC(2.44)V.x.T // � Œ�kx.T /k C 2kDk.kBk C �/kx.T � h.T //k�kx.T /k

�

"
�

1p
�max.D/

C 2kDk
kBk C �p
�min.D/

#
p
˛kx.T /k:

Since by condition (3) of Theorem 2.25

�
1p

�max.D/
C 2kDk

kBk C �p
�min.D/

< 0;

then, from the above estimate, we obtain DC(2.44)V.x.T // < 0.
Hence the assumption that x.t/ 2 v˛ for t0 � r � t < T and x.T / 2 @v˛ will not

be true, i.e. x.t/ 2 v˛ for all t � t0 � r .
Then from (2.46), we obtain that for t � t0 for the solution x.t/ of problem (2.44),

(2.17) the following estimate

kx.t/k <

�
�.D/C

r

2kDk

�
k'0kr expŒkAkr CM ln.1C a/�

is valid.
Thus, we have kx.t/k <

q
˛

�min.D/
for all t � t0. Therefore, the solutions of (2.44)

are equi-bounded. �
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2.3 Global stability of the solutions

In this section we shall present the main results on the global stability of the zero so-
lution of system (2.16). Here, the results from the previous section will be used.

We shall use the following definitions of global stability of the zero solution of
(2.16).

Definition 2.26. The zero solution x.t/ � 0 of system (2.16) is said to be:

(a) stable, if
.8t0 2 R/.8"> 0/.9ı D ı.t0; "/ > 0/

.8'0 2 PCŒŒ�r; 0�;Rn� W k'0kr < ı/

.8t � t0/ W kx.t I t0; '0/k < "I

(b) uniformly stable, if the number ı in (a) is independent of t0 2 R;

(c) globally equi-attractive, if

.8t0 2 R/.8˛> 0/.8" > 0/.9
 D 
.t0; ˛; "/ > 0/

.8'0 2 PCŒŒ�r; 0�;Rn� W k'0kr < ˛/.8t � t0 C 
/ W kx.t I t0; '0/k < "I

(d) uniformly globally attractive, if the number 
 in (c) is independent of t0 2 R;

(e) globally equi-asymptotically stable, if it is stable and globally equi-attractive;

(f) uniformly globally asymptotically stable, if it is uniformly stable, uniformly glob-
ally attractive and the solutions of system (2.16) are uniformly bounded;

(g) globally exponentially stable, if

.9c > 0/.8˛> 0/.9
 D 
.˛/ > 0/.8t0 2 R/

.8'0 2 PCŒŒ�r; 0�;Rn� W k'0kr < ˛/.8t � t0/ W

kx.t I t0; '0/k � 
.˛/k'0kr expŒ�c.t � t0/�:

In the next theorems, we shall use Lyapunov functions of the class V0, whose deriva-
tives are estimated by the elements of set �P for � � Rn.

Theorem 2.27. Assume that:

(1) Conditions H2.2, H2.3, H2.6–H2.11, H2.13 and H2.18 hold.
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(2) There exists a function V 2 V0 such that H2.5 holds,

a.kxk/ � V.t; x/; a 2 K; .t; x/ 2 Œt0;1/ �Rn; (2.51)

V.t C 0; x C Ik.x// � V.t; x/; .t; x/ 2 �k; k D 1; 2; : : : ; (2.52)

and the inequality

DC(2.16)V.t; x.t// � �cV .t; x.t//; t ¤ �k.x.t//; k D 1; 2; : : : (2.53)

is valid for t 2 Œt0;1/; x 2 �P and c 2 RC.

Then the zero solution of system (2.16) is globally equi-asymptotically stable.

Proof. Let "> 0. From the properties of the function V , it follows that there exists a
constant ı D ı.t0; "/ > 0 such that if x 2 Rn W kxk < ı, then supkxk<ı V.t0C0; x/ <
a."/:

Let '0 2 PCŒŒ�r; 0�;Rn� W k'0kr < ı and x.t/ D x.t I t0; '0/ be the solution of
problem (2.16), (2.17). By Theorem 1.16, JC.t0; '0/ D Œt0;1/.

Since all conditions of Corollary 1.25 are met, then

V.t; x.t I t0; '0// � V.t0 C 0; '0.0//; t 2 Œt0;1/: (2.54)

On the other hand k'0.0/k � k'0kr < ı and hence V.t0 C 0; '0.0// < a."/:
From (2.51), (2.52) and the last inequality, there follow the inequalities

a.kx.t I t0; '0/k/ � V.t; x.t I t0; '0// � V.t0 C 0; '0.0// < a."/;

which imply that kx.t I t0; '0/k < " for t � t0. This implies that the zero solution of
system (2.16) is stable.

Now we shall prove that it is globally equi-attractive.
Let ˛ D const > 0 and '0 2 PCŒŒ�r; 0�;Rn� W k'0kr < ˛.
From conditions (2.53) and (2.52), it follows that for t � t0 the following inequality

is valid
V.t; x.t I t0; '0// � V.t0 C 0; '0.0// expŒ�c.t � t0/�: (2.55)

Let N.t0; ˛/ D sup¹V.t0 C 0; x/ W kxk < ˛º and 
 D 
.t0; ˛; "/ >
1
c

ln N.t0;˛/
a."/

:

Then for t � t0 C 
 from (2.55), it follows that

V.t; x.t I t0; '0// < a."/:

From the last inequality and (2.51) we have

kx.t I t0; '0/k < ";

which means that the zero solution of system (2.16) is globally equi-attractive. �
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Theorem 2.28. Assume that:

(1) Condition (1) of Theorem 2.27 holds.

(2) There exists a function V 2 V0 such that H2.5 and (2.52) hold,

a.kxk/ � V.t; x/ � h.t/b.kxk/; .t; x/ 2 Œt0;1/ �Rn; (2.56)

where a; b 2 K, h W Œt0;1/! Œ1;1/, and the inequality

DC(2.16)V.t; x.t// � �g.t/c.kx.t/k/; t ¤ �k.x.t//; k D 1; 2; : : : (2.57)

is valid for t 2 Œt0;1/; x 2 �P , c 2 K, g W Œt0;1/! .0;1/.

(3)
Z 1
t0

g.s/c
h
b�1

� �

h.s/

�i
ds D1 for each sufficiently small value of � > 0.

Then the zero solution of system (2.16) is globally equi-asymptotically stable.

Proof. We can prove the stability of the zero solution of system (2.16) by the analo-
gous arguments, as in the proof of Theorem 2.27.

Now we shall prove that the zero solution of (2.16) is globally equi-attractive.
Let ˛ > 0 be arbitrary, " > 0 be given and � D a."/

2 . Let the number 
 D

.t0; ˛; "/ > 0 be chosen so thatZ t0C


t0

g.s/c
h
b�1

� �

h.s/

�i
ds > h.t0/b.˛/: (2.58)

(This is possible in view of condition (3) of Theorem 2.28.)
Let '0 2 PCŒŒ�r; 0�;Rn� W k'0kr < ˛ and x.t/ D x.t I t0; '0/ be the solution

of problem (2.16), (2.17). If we assume that for any t 2 Œt0; t0 C 
� the following
inequality holds

kx.t I t0; '0/k � b
�1
� �

h.t/

�
; (2.59)

then by (2.58) and (2.59), it follows that

V.t; x.t I t0; '0// � V.t0 C 0; '0.0// �
Z t

t0

g.s/c.kx.sI t0; '0/k/ ds

� V.t0 C 0; '0.0// �
Z t

t0

g.s/c
h
b�1

� �

h.s/

�i
ds; t 2 Œt0; t0 C 
�:

From the above inequalities, (2.56) and (2.58) for t D t0 C 
 , we obtain

V.t; x.t I t0; '0// � h.t0/b.˛/ �

Z t

t0

g.s/c
h
b�1

� �

h.s/

�i
ds < 0;

which contradicts (2.56). The contradiction obtained shows that there exists t� 2
Œt0; t0 C 
�; such that

kx.t�I t0; '0/k < b
�1
� �

h.t�/

�
:
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Then for t � t� (hence for any t � t0 C 
 as well) the following inequalities are valid

a.kx.t I t0; '0/k/ � V.t; x.t I t0; '0// � V.t
�; x.t�I t0; '0//

� h.t�/b.kx.t�I t0; '0/k/ < � < a."/:

Therefore, kx.t I t0; '0/k < " for t � t0 C 
 , i.e. the zero solution of (2.16) is globally
equi-attractive. �

Theorem 2.29. Assume that:

(1) Condition (1) of Theorem 2.27 holds.

(2) There exists a function V 2 V0 such that H2.5 and (2.52) hold,

a.kxk/ � V.t; x/ � b.kxk/; a; b 2 K; .t; x/ 2 Œt0;1/ �Rn; (2.60)

where a.u/!1 as u!1, and the inequality

DC(2.16)V.t; x.t// � �c.kx.t/k/; t ¤ �k.x.t//; k D 1; 2; : : : (2.61)

is valid for t 2 Œt0;1/; x 2 �P , c 2 K.

Then the zero solution of system (2.16) is uniformly globally asymptotically stable.

Proof. First, we shall show that the zero solution of system (2.16) is uniformly stable.
For an arbitrary " > 0 choose the positive number ı D ı."/ so that b.ı/ < a."/.
Let '0 2 PCŒŒ�r; 0�;Rn� W k'0kr < ı and x.t/ D x.t I t0; '0/ be the solution of

problem (2.16), (2.17). Then by (2.60), (2.61) and (2.52) for any t 2 JC.t0; '0/, the
following inequalities are valid:

a.kx.t I t0; '0/k/ � V.t; x.t I t0; '0// � V.t0 C 0; '0.0//

� b.k'0.0/k/ � b.k'0kr/ < b.ı/ < a."/:

Since by Theorem 1.16 JC.t0; '0/ D Œt0;1/, then kx.t I t0; '0/k < " for t � t0.
Thus, it is proved that the zero solution of system (2.16) is uniformly stable.

Now, we shall prove that the solutions of system (2.16) are uniformly bounded.
Let ˛ > 0 and '0 2 PCŒŒ�r; 0�;Rn� W k'0kr < ˛. Since for the function a 2 K we

have a.u/!1 as u!1, then we can choose ˇ D ˇ.˛/ > 0 so that a.ˇ/ > b.˛/.
Since the conditions of Corollary 1.25 are met, then

V.t; x.t I t0; '0// � V.t0 C 0; '0.0//; t 2 Œt0;1/:

From the above inequality, (2.60) and (2.61) we have

a.kx.t I t0; '0/k/ � V.t; x.t I t0; '0// � V.t0 C 0; '0.0//

� b.k'0.0/k/ � b.k'0kr/ < b.˛/ < a.ˇ/;

for t � t0.
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Therefore, kx.t I t0; '0/k < ˇ for t � t0. This implies that the solutions of system
(2.16) are uniformly bounded.

Finally, we shall prove that the zero solution of system (2.16) is uniformly globally
attractive.

Let ˛ > 0 be arbitrary, " > 0 be given. Let the number � D �."/ > 0 be chosen so
that b.�/ > a."/ and let 
 D 
.˛; "/ > 0 be such that 
 > b.˛/

c.�/
.

Let '0 2 PCŒŒ�r; 0�;Rn� W k'0kr < ˛ and x.t/ D x.t I t0; '0/ be the solution
of problem (2.16), (2.17). If we assume that for any t 2 Œt0; t0 C 
� the inequality
kx.t I t0; '0/k � � holds, then by (2.61) and (2.52) it follows that

V.t; x.t I t0; '0// � V.t0 C 0; '0.0// �
Z t

t0

c.kx.sI t0; '0/k/ ds

� b.˛/ � c.�/
 < 0;

which contradicts (2.60). The contradiction obtained shows that there exists t� 2
Œt0; t0 C 
�; such that

kx.t�I t0; '0/k < �:

Then for t � t� (hence for any t � t0 C 
 as well) the following inequalities are valid:

a.kx.t I t0; '0/k/ � V.t; x.t I t0; '0// � V.t
�; x.t�I t0; '0//

� b.kx.t�I t0; '0/k/ < b.�/ < a."/:

Therefore kx.t I t0; '0/k < " for t � t0C
 , i.e. the zero solution of (2.16) is uniformly
globally attractive. �

Corollary 2.30. If in Theorem 2.29 condition (2.61) is replaced by the condition

DC(2.16)V.t; x.t// � �cV .t; x.t//; t ¤ �k.x.t//; k D 1; 2; : : : ; (2.62)

where t 2 Œt0;1/; x 2 �P ; c D const > 0, then the zero solution of system (2.16) is
uniformly globally asymptotically stable.

This follows immediately from Theorem 2.29. However, the proof can be carried
out using the fact that

V.t; x.t I t0; '0// � V.t0 C 0; '0.0// expŒ�c.t � t0/�

for t � t0 which is obtained from (2.52) and (2.62).

Theorem 2.31. Assume that:
(1) Condition (1) of Theorem 2.27 holds.
(2) There exists a function V 2 V0 such that H2.5, (2.52) and (2.62) hold, and for

any ˛ > 0 there exists 
.˛/ > 0 such that

kxk � V.t; x/ � 
.˛/kxk; .t; x/ 2 Œt0;1/ �Rn: (2.63)

Then the zero solution of system (2.16) is globally exponentially stable.
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Proof. Let ˛ > 0 be arbitrary. Let '0 2 PCŒŒ�r; 0�;Rn� W k'0kr < ˛ and x.t/ D
x.t I t0; '0/ be the solution of problem (2.16), (2.17). From (2.52) and (2.62) we have

V.t; x.t I t0; '0// � V.t0 C 0; '0.0// expŒ�c.t � t0/�; t � t0:

From the above inequality and (2.63), we obtain

kx.t I t0; '0/k � V.t; x.t I t0; '0// � V.t0 C 0; '0.0// expŒ�c.t � t0/�

� 
.˛/k'0.0/k expŒ�c.t � t0/� � 
.˛/k'0kr expŒ�c.t � t0/�; t � t0;

which implies that the zero solution of system (2.16) is globally exponentially stable.
�

Consider impulsive systems of functional differential equations with fixed moments
of impulsive perturbations of type (2.41).

Since the system (2.41) is a particular case of (2.16), then the following theorems
follow directly from the Theorems 2.27–2.31.

Theorem 2.32. Assume that:

(1) Conditions H1.12, H1.13, H2.2, H2.3, H2.6, H2.7, H2.8 and H2.18 hold.

(2) There exists a function V 2 V0 such that H2.5 and (2.51) hold,

V.t C 0; x C Ik.x// � V.t; x/; x 2 Rn; t D tk; k D 1; 2; : : : ; (2.64)

and the inequality

DC(2.41)V.t; x.t// � �cV .t; x.t//; t ¤ tk; k D 1; 2; : : :

is valid for t 2 Œt0;1/; x 2 �P and c 2 RC.

Then the zero solution of system (2.41) is globally equi-asymptotically stable.

Theorem 2.33. Assume that:

(1) Condition (1) of Theorem 2.32 holds.

(2) There exists a function V 2 V0 such that H2.5, (2.56) and (2.64) hold, and the
inequality

DC(2.41)V.t; x.t// � �g.t/c.kx.t/k/; t ¤ tk; k D 1; 2; : : :

is valid for t 2 Œt0;1/; x 2 �P , c 2 K, g W Œt0;1/! .0;1/.

(3)
Z 1
t0

g.s/c
h
b�1

� �

h.s/

�i
ds D1 for each sufficiently small value of � > 0.

Then the zero solution of system (2.41) is globally equi-asymptotically stable.
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Theorem 2.34. Assume that:

(1) Condition (1) of Theorem 2.32 holds.

(2) There exists a function V 2 V0 such that H2.5, (2.60) and (2.64) hold, and the
inequality

DC(2.41)V.t; x.t// � �c.kx.t/k/; t ¤ �k.x.t//; k D 1; 2; : : :

is valid for t 2 Œt0;1/; x 2 �P , c 2 K.

Then the zero solution of system (2.41) is uniformly globally asymptotically stable.

Theorem 2.35. Assume that:

(1) Condition (1) of Theorem 2.32 holds.

(2) There exists a function V 2 V0 such that H2.5, (2.63) and (2.64) hold, and the
inequality

DC(2.41)V.t; x.t// � �cV .t; x.t//; t ¤ tk; k D 1; 2; : : :

is valid for t 2 Œt0;1/; x 2 �P , c > 0.

Then the zero solution of system (2.41) is globally exponentially stable.

Remark 2.36. All theorems in this section are true if instead of the set�P we use the
set �1 for � � Rn.

Example 2.37. Let x 2 R, r > 0, � 2 C ŒRC;RC�, t � �.t/!1 as t !1.
Consider the following impulsive equation:´

Px.t/ D �˛.t/x.t/ � ˇ.t/x.t � r/C g.t/x.t � �.t//; t ¤ tk; t � 0

�x.tk/ D ckx.tk/; tk > 0; k D 1; 2; : : : ;
(2.65)

where ˇ 2 C ŒRC; .0;1/�; ˛; g 2 C ŒRC;RC�; �1 < ck � 0, k D 1; 2; : : :;
0 < t1 < t2 < � � � < tk < tkC1 < � � � and limk!1 tk D1.

Let t�1 D min¹�r; inft�0¹t � �.t/ºº < 0 and '0 2 C ŒŒt�1; 0�;R�.
Define the function V.t; x/ D 1

2x
2. Then the set

�1 D ¹x 2 PCŒRC;R� W x2.s/ � x2.t/; t C t�1 � s � tº:

If there exists a constant c > 0 such that jˇ.t/j C g.t/ � ˛.t/ � c for t � 0, then
for t � 0, x 2 �1 we have

DC(2.65)V.t; x.t// D Œ�˛.t/x.t/ � ˇ.t/x.t � r/C g.t/x.t � �.t//�x.t/

� Œ�˛.t/x.t/C jˇ.t/jx.t � r/C g.t/x.t � �.t//�x.t/

� �2cV .t; x.t//; t ¤ tk :
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Also,

V.tk C 0; x.tk/C ckx.tk// D
1
2
.1C ck/

2x2.tk/ � V.tk; x.tk//; k D 1; 2; : : : :

Thus, all conditions of Theorem 2.32 are satisfied and the zero solution of (2.65) is
globally equi-asymptotically stable.

Example 2.38. Consider the following system:8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

Px.t/ D �y.t/ sin.x.t � 1// � 4x.t/C y.t � 1/; t � 0; t ¤ tk
Py.t/ D x.t/ sin.x.t � 1// � 3y.t/; t � 0; t ¤ tk

x.tk C 0/ D
�

1 �
2
k2

�
x.tk/; tk > 0; k D 1; 2; : : :

y.tk C 0/ D
�

1 �
3
k2

�
y.tk/; tk > 0; k D 1; 2; : : : ;

(2.66)

where x; y 2 R; 0 < t1 < t2 < � � � < tk < tkC1 < � � � and limk!1 tk D1.

Let '0 2 C ŒŒ�1; 0�;R2�. Define the function V.t; x; y/ D x2 C y2. Then the set

�1 D ¹.x; y/ 2 PCŒRC;R2� W x2.s/C y2.s/ � x2.t/C y2.t/; t � 1 � s � tº:

For t ¤ tk , k D 1; 2; : : : and .x; y/ 2 �1, we have

DC(2.66)V.t; x.t/; y.t// D 2x.t/ Px.t/C 2y.t/ Py.t/ D 2x.t/y.t � 1/ � 8x2.t/ � 6y2.t/

� x2.t/C y2.t � 1/ � 8x2.t/ � 6y2.t/ � �5V.t; x.t/; y.t//:

Also, for t D tk , k D 1; 2; : : :, we have

V.t C 0; x.t C 0/; y.t C 0// D x2.t C 0/C y2.t C 0/

D

�
1 �

2
k2

�2
x2.t/C

�
1 �

3
k2

�2
y2.t/

� V.t; x.t/; y.t//:

Thus, all conditions of Theorem 2.35 are satisfied and the zero solution of (2.66) is
globally exponentially stable.

Example 2.39. Consider the following equation:8̂<̂
: Px.t/ D a.t/

x.t/

2x2.t/C 1
C

e�x
2.t/

2x2.t/C 1

Z t

0
b.t; s/ex

2.s/x.s/ ds; t ¤ tk

�x.tk/ D ˛kx.tk/; tk > 0; k D 1; 2; : : : ;

(2.67)

where t � 0; x 2 R; a 2 C ŒRC;R�; b 2 C ŒRC�RC;R�, b.t; s/ D b.t � s/; ˛k 2 R,
k D 1; 2; : : :; 0 < t1 < t2 < � � � < tk < tkC1 < � � � and limk!1 tk D1.
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Let ' 2 PCŒŒ0; t �;R�, t � 0 and x.t/ D x.t I 0; '/ be the solution of (2.67), satis-
fying the initial condition x.s/ D '.s/, s 2 Œ0; t �.

We shall prove that the conditions

(1) sup
t�0

Z t

0
jb.t; s/j ds <1,

(2) a.t/C sup
t�0

Z t

0
jb.t; s/j ds < �c,

(3) �1 < ˛k � 0; k D 1; 2; : : :

are sufficient for global uniform asymptotic stability of the zero solution of (2.67).
Define the function V.t; x/ D jxjex

2
. Then the set

�1 D ¹x 2 PCŒRC;R� W jx.s/jex
2.s/
� jx.t/jex

2.t/; 0 � s � tº:

For t ¤ tk , k D 1; 2; : : :, we have

DC(2.67)V.t; x.t//

D ex
2.t/
h
a.t/

jx.t/j

2x2.t/C 1
C

e�x
2.t/

2x2.t/C 1

Z t

0
jb.t; s/jex

2.s/
jx.s/j ds

i
C 2x.t/jx.t/jex

2.t/
h
a.t/

x.t/

2x2.t/C 1
C

e�x
2.t/

2x2.t/C 1

Z t

0
b.t; s/ex

2.s/x.s/ ds
i

� a.t/jx.t/jex
2.t/
C

Z t

0
jb.t; s/jex

2.s/
jx.s/j ds:

For t ¤ tk , k D 1; 2; : : : and x 2 �1 from (1) and (2) we obtain

DC(2.67)V.t; x.t// � �cV .t; x.t//:

Also, for t D tk , k D 1; 2; : : :, we have

V.tk C 0; x.tk/C ˛kx.tk// D j.1C ˛k/x.tk/je
Œ.1C˛k/x.tk/�2

D j1C ˛kj jx.tk/je
.1C˛k/2x2.tk/ � V.tk; x.tk//:

Thus, all conditions of Theorem 2.34 are satisfied and the zero solution of (2.67) is
uniformly globally asymptotically stable.

Example 2.40. Consider the following equation:8̂<̂
: Px.t/ D x.t/ ln

p
2C

1
10
.ln 2/

Z 0

�1

esx.t C s/ ds; t ¤ tk

�x.tk/ D ˛kx.tk/; tk > 0; k D 1; 2; : : : ;

(2.68)
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where t � 0; x 2 R; �1 < ˛k � 0, k D 1; 2; : : :; 0 < t1 < t2 < � � � < tk < tkC1 <

� � � and limk!1 tk D1.

Let ' 2 PCŒ.�1; 0�;R� and x.t/ D x.t I 0; '/ be the solution of (2.68), satisfying
the initial condition x.s/ D '.s/, s 2 .�1; 0�.

Define the function V.t; x/ D x2 and let P.u/ D 4u2, u � 0. Then the set

�P D ¹x 2 PCŒRC;R� W V.t C s; x.t C s// � P.V.t; x.t///; �1 < s � 0º

D ¹x 2 PCŒRC;R� W x2.t C s/ � 4x2.t/; �1 < s � 0º:

For t ¤ tk , k D 1; 2; : : :, we have

DC(2.68)V.t; x.t// � 2x2.t/ ln
p

2C
1
5
x.t/.ln 2/

Z 0

�1

esjx.t C s/j ds:

For t ¤ tk , k D 1; 2; : : : and x 2 �P , we obtain

DC(2.68)V.t; x.t// � 2x2.t/ ln
p

2C
1
5
x.t/.ln 2/

Z 0

�1

es2jx.t/j ds

D 2x2.t/

"
ln
p

2C
1
5
.ln 2/

Z 0

�1

es ds

#
D

7
5
.ln 2/V .t; x.t//:

Also, for t D tk , k D 1; 2; : : :, we have

V.tk C 0; x.tk/C ˛kx.tk// D .x.tk/C ˛kx.tk//
2

D .1C ˛k/
2x2.tk/ � V.tk; x.tk//:

Thus, all conditions of Theorem 2.32 are satisfied and the zero solution of (2.68) is
globally equi-asymptotically stable.

Notes and comments

Piecewise continuous Lyapunov functions which are applied in Chapter 2 were intro-
duced by Bainov and Simeonov [30]. Moreover, the technique of investigation here
essentially depends on the choice of minimal subsets of a suitable space of functions,
by the elements of which the derivatives of Lyapunov functions are estimated [94, 98,
99, 131–134, 141, 148, 149, 169, 184, 229, 231].

The results exposed in Section 2.1 are of Bainov and Stamova [52] and Stamova
and Stamov [207]. In [148], [149] and [155] the problem of stability for impulsive
functional differential equations with infinite delays is considered and in [38] theorems
on stability of impulsive differential-difference equations are proved. Similar results
are given in [141], [184], [213] and [229].
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The exposition of the problem of boundedness of impulsive functional differential
equations in Section 2.2 is based on the works of Stamova [197] and [204]. Similar re-
sults for impulsive integro-differential systems with fixed moments of impulse effects
are given in [87].

The results of the Section 2.3 are new. Close to them are the results of Bainov and
Stamova [41] and [48].

Similar results for the impulsive functional differential equations with infinite de-
lays are given by Luo and Shen in [148] and [149] and by Martynyuk, Shen and
Stavroulakis in [155].



Chapter 3

Extensions of stability and boundedness theory

In the present chapter, we shall discuss some extensions of Lyapunov stability and
boundedness theory for systems of impulsive functional differential equations.

Section 3.1 will deal with stability, boundedness and global stability of sets with
respect to impulsive functional differential equations. Such results are generalizations
of the stability and boundedness results given in Chapter 2.

In Section 3.2, we shall use vector Lyapunov functions and the comparison principle
and we shall give sufficient conditions for conditional stability of the zero solution of
systems under consideration.

Section 3.3 will investigate parametric stability properties of impulsive functional
differential equations with fixed moments of impulse effect. The obtained results are
parallel to results of Siljak, Ikeda and Ohta [186].

Section 3.4 is devoted to the development of Lyapunov–Razumikhin method in
studying of eventual stability and eventual boundedness for impulsive functional dif-
ferential equations with variable impulsive perturbations. The results for systems with
fixed moments of impulse effect will be also given.

In Section 3.5, we shall continue to use Lyapunov direct method and provide sev-
eral practical stability results. The advantage of using vector Lyapunov functions is
demonstrated.

In Section 3.6, we shall consider a scalar comparison equation and we shall analyze
conditions for Lipschitz stability of the solutions of impulsive functional differential
equations.

Section 3.7 will deal with stability in terms of two measures which unify various
stability concepts for the systems under consideration.

Finally, in Section 3.8, the results on boundedness in terms of two measures will be
given.

3.1 Stability and boundedness of sets

The notion of stability of sets, which includes as a special case stability in the sense
of Lyapunov, is one of the most important notions in the stability theory. The stability
of sets with respect to systems of ordinary differential equations without impulses has
been considered by Yoshizawa in [223]. We refer to [99, 131–134] for the results on
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stability and boundedness of sets for functional differential equations, and to [30, 129,
131, 132] for impulsive differential equations.

In this section, we shall discuss problems related to stability, boundedness and
global stability of sets of a sufficiently general type contained in some domain (an
open connected set) with respect to impulsive functional differential equations with
variable impulsive perturbations. The results for the systems with impulse effect at
fixed moments will also be considered.

Stability of sets

Let t0 2 R, r D const > 0, � � Rn, � ¤ ; and D kxk D
q
x2

1 C x
2
2 C � � � C x

2
n

define the norm of x 2 Rn. Consider the following system of impulsive functional
differential equations with variable impulsive perturbations:´

Px.t/ D f .t; xt /; t ¤ �k.x.t//

�x.t/ D Ik.x.t//; t D �k.x.t//; k D 1; 2; : : : ;
(3.1)

where f W Œt0;1/ � PCŒŒ�r; 0�; �� ! Rn; �k W � ! .t0;1/, Ik W � ! Rn; k D
1; 2; : : :; �x.t/ D x.t C 0/ � x.t � 0/; and for t � t0, xt 2 PCŒŒ�r; 0�; �� is defined
by xt .s/ D x.t C s/, �r � s � 0.

Let '0 2 PCŒŒ�r; 0�; ��. Denote by x.t/ D x.t I t0; '0/ the solution of system (3.1),
satisfying the initial conditions´

x.t I t0; '0/ D '0.t � t0/; t0 � r � t � t0

x.t0 C 0I t0; '0/ D '0.0/;
(3.2)

and by JC.t0; '0/ the maximal interval of type Œt0; ˇ/ in which the solution x.t I t0; '0/

is defined.

Let �0.x/ � t0 for x 2 �. Let M � Œt0 � r;1/ � �: We shall use the following
notations:

M.t/ D ¹x 2 � W .t; x/ 2M; t 2 Œt0;1/º I

M0.t/ D ¹x 2 � W .t; x/ 2M; t 2 Œt0 � r; t0�º I

d.x;M.t// D inf
y2M.t/

kx � yk is the distance between x 2 � and M.t/I

M.t; "/ D ¹x 2 � W d.x;M.t// < "º ." > 0/ is an "-neighbourhood of M.t/I

d0.';M0.t// D sup
t2Œt0�r;t0�

d.'.t � t0/;M0.t//; ' 2 PCŒŒ�r; 0�; ��I
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M0.t; "/ D ¹'2PCŒŒ�r; 0�; �� W d0.';M0.t// < "º is an "-neighbourhood of M0.t/I

S˛ D ¹x 2 Rn W kxk � ˛ºI S˛.PC0/ D ¹' 2 PCŒŒ�r; 0�;Rn� W k'kr � ˛º:

We shall give the following definitions of stability of the set M with respect to
system (3.1).

Definition 3.1. The set M is said to be:

(a) stable with respect to system (3.1), if

.8t0 2 R/.8˛ > 0/.8" > 0/.9ı D ı.t0; ˛; "/ > 0/

.8'0 2 S˛.PC0/ \M0.t; ı//.8t � t0/ W x.t I t0; '0/ 2M.t; "/I

(b) uniformly stable with respect to system (3.1), if the number ı from (a) depends
only on ";

(c) attractive with respect to system (3.1), if

.8t0 2 R/.8˛ > 0/.9� > 0/.8" > 0/.8'0 2 S˛.PC0/ \M0.t; �//

.9� D � > 0/.8t � t0 C �/ W x.t I t0; '0/ 2M.t; "/I

(d) asymptotically stable with respect to system (3.1), if it is stable and attractive;

(e) unstable with respect to system (3.1), if (a) fails to hold.

Introduce the following conditions:

H3.1. M.t/ ¤ ; for t 2 Œt0;1/.

H3.2. M0.t/ ¤ ; for t 2 Œt0 � r; t0�.

H3.3. For any compact subset F of Œt0;1/ � � there exists a constant K1 > 0 de-
pending on F such that if .t; x/; .t 0; x/ 2 F , then the following inequality is
valid:

jd.x;M.t// � d.x;M.t 0//j � K1jt � t
0
j:

In the further considerations, we shall use piecewise continuous auxiliary functions
V W Œt0;1/ ��! RC, which belong to the class V0 and are such that the following
condition holds

H3.4. V.t; x/ D 0 for .t; x/ 2M , t � t0 and V.t; x/ > 0 for .t; x/ 2 ¹Œt0;1/ ��º n
M .
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Theorem 3.2. Assume that:
(1) Conditions H1.1, H1.2, H1.3, H1.5, H1.6, H1.9, H1.10, H2.1, H3.1–H3.3 hold.
(2) There exists a function V 2 V0 such that H3.4 holds,

a.d.x;M.t/// � V.t; x/; a 2 K; .t; x/ 2 Œt0;1/ ��; (3.3)

V.t C 0; x C Ik.x// � V.t; x/; .t; x/ 2 �k; k D 1; 2; : : : ; (3.4)

and the inequality

DC(3.1)V.t; x.t// � 0; t ¤ �k.x.t//; k D 1; 2; : : : (3.5)

is valid for t 2 Œt0;1/; x 2 �1:

Then the set M is stable with respect to system (3.1).

Proof. Let t0 2 R, " > 0; ˛ > 0. From the properties of the function V , it follows
that there exists a constant ı D ı.t0; ˛; "/ > 0 such that if x 2 S˛\M.t0 C 0; ı/, then
V.t0 C 0; x/ < a."/.

Let '0 2 S˛.PC0/ \M0.t; ı/. Then d.'0.0/;M.t0 C 0// < ı; i.e. '0.0/ 2 S˛ \
M.t0 C 0; ı/, hence V.t0 C 0; '0.0// < a."/.

Let x.t/ D x.t I t0; '0/ be the solution of problem (3.1), (3.2). By Theorem 1.16,
it follows that JC.t0; '0/ D Œt0;1/. Since the conditions of Corollary 1.25 are met,
then

V.t; x.t I t0; '0// � V.t0 C 0; '0.0//; t 2 Œt0;1/: (3.6)

From (3.3), (3.4) and (3.6), there follow the inequalities:

a.d.x.t I t0; '0/;M.t/// � V.t; x.t I t0; '0//

� V.t0 C 0; '0.0// < a."/; t 2 Œt0;1/:

Hence, x.t I t0; '0/ 2 M.t; "/ for t � t0, i.e. the set M is stable with respect to system
(3.1). �

Theorem 3.3. Let the conditions of Theorem 3.2 hold, and let a function b 2 K exist
such that

V.t; x/ � b.d.x;M.t///; .t; x/ 2 Œt0;1/ ��: (3.7)

Then the set M is uniformly stable with respect to system (3.1).

Proof. Let " > 0. Choose ı D ı."/ > 0 so that b.ı/ < a."/. Let '0 2 S˛.PC0/ \

M0.t; ı/. Using successively (3.3), (3.6) and (3.7), we obtain

a.d.x.t I t0; '0/;M.t/// � V.t; x.t I t0; '0//

� V.t0 C 0; '0.0// � b.d.'0.0/;M0.t0///

� b.d0.'0;M0.t/// < b.ı/ < a."/;

for t 2 Œt0;1/. Hence, x.t I t0; '0/ 2M.t; "/ for t � t0.
This proves that the set M is uniformly stable with respect to system (3.1). �
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Theorem 3.4. If in Theorem 3.2 condition (3.5) is replaced by the condition

DC(3.1)V.t; x.t// � �cV .t; x.t//; t ¤ �k.x.t//; k D 1; 2; : : : ; (3.8)

where t 2 Œt0;1/; x 2 �1; c D const > 0, then the set M is asymptotically stable
with respect to system (3.1).

Proof. Since the conditions of Theorem 3.2 are met, then the set M is stable with
respect to system (3.1). We shall show that it is an attractive set with respect to system
(3.1).

Let t0 2 R, " > 0; ˛ > 0. From (3.8) and (3.4), we have

V.t; x.t I t0; '0// � V.t0 C 0; '0.0// expŒ�c.t � t0/�; t � t0: (3.9)

Let � D const > 0 W '0 2 S˛.PC0/ \ M0.t; �/ and x.t/ D x.t I t0; '0/ be the
solution of problem (3.1), (3.2). We set N D N.t0; �; "/ D sup¹V.t0 C 0; x/ W x 2
S˛ \M.t0 C 0; �/º.

Choose � > 0 so that

� >
1
c

ln
N.t0; �; ˛/

a."/
:

Then, from (3.3) and (3.9) for t � t0 C � , the following inequalities hold:

a.d.x.t I t0; '0/;M.t/// � V.t; x.t I t0; '0/

� V.t0 C 0; '0.0// expŒ�c.t � t0/� < a."/:

Hence, x.t I t0; '0/ 2 M.t; "/ for t � t0 C � and the set M is an attractive set with
respect to system (3.1). �

Consider the system of impulsive functional differential equations with fixed mo-
ments of impulsive perturbations´

Px.t/ D f .t; xt /; t ¤ tk

�x.t/ D Ik.x.t//; t D tk; k D 1; 2; : : : ;
(3.10)

where f W Œt0;1/ � PCŒŒ�r; 0�; �� ! Rn; Ik W � ! Rn; k D 1; 2; : : :; t0 < t1 <

t2 < � � � < tk < tkC1 < � � � and limk!1 tk D1.

Let '0 2 PCŒŒ�r; 0�; ��. Denote by x.t/ D x.t I t0; '0/ the solution of system
(3.10), satisfying the initial conditions (3.2).

Since (3.10) is a special case of (3.1), the following theorems follow directly from
Theorems 3.2 and 3.3.
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Theorem 3.5. Assume that:

(1) Conditions H1.1, H1.2, H1.3, H1.9, H1.10, H1.12, H1.13, H3.1–H3.3 hold.

(2) There exists a function V 2 V0 such that H3.4 and (3.3) hold,

V.t C 0; x C Ik.x// � V.t; x/; x 2 �; t D tk; k D 1; 2; : : : ;

and the inequality

DC(3.10)V.t; x.t// � 0; t ¤ tk; k D 1; 2; : : :

is valid for each t 2 Œt0;1/, x 2 �1.

Then the set M is stable with respect to system (3.10).

Theorem 3.6. Let the conditions of Theorem 3.5 hold, and let a function b 2 K exist
such that

V.t; x/ � b.d.x;M.t///; .t; x/ 2 Œt0;1/ ��:

Then the set M is uniformly stable with respect to system (3.10).

We shall next consider a result which gives asymptotic stability of the set M with
respect to system (3.10). We shall use two Lyapunov like functions.

Theorem 3.7. Assume that:

(1) Condition (1) of Theorem 3.5 holds.

(2) There exist functions V; W 2 V0 such that H3.4 holds,

a.d.x;M.t/// � V.t; x/; a 2 K; .t; x/ 2 Œt0;1/ ��; (3.11)

b.d.x;M.t/// � W.t; x/; b 2 K; .t; x/ 2 Œt0;1/ ��; (3.12)

sup¹DC(3.10)W.t; x/ W t � t0; t ¤ tkº � N1 <1; (3.13)

V.t C 0; x C Ik.x// � V.t; x/; x 2 �; t D tk; k D 1; 2; : : : ; (3.14)

W.t C 0; x C Ik.x// � W.t; x/; x 2 �; t D tk; k D 1; 2; : : : ;

and the inequality

DC(3.10)V.t; x.t// � �c.W.t; x.t///; t ¤ tk; k D 1; 2; : : : (3.15)

is valid for each t 2 Œt0;1/, x 2 �1 and c 2 K.

Then the set M is asymptotically stable with respect to system (3.10).
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Proof. From Theorem 3.5, it follows that the set M is a stable set of system (3.10).
Let t0 2 R, ˛ D const > 0 W M.t; ˛/ � � for t � t0. For an arbitrary t � t0, we

put
V �1
t;˛ D ¹x 2 � W V.t C 0; x/ � a.˛/º:

From (3.11), we have that for each t � t0 the following inclusions are valid:

V �1
t;˛ �M.t; ˛/ � �:

From (3.14) and (3.15), we obtain that if '0 2 PCŒŒ�r; 0�; ��: '0.0/ 2 V �1
t0;˛

, then
x.t I t0; '0/ 2 V

�1
t;˛ for t 2 Œt0;1/.

Let '0 2 PCŒŒ�r; 0�; ��: '0.0/ 2 V �1
t0;˛

. We shall prove that

lim
t!1

d.x.t I t0; '0/;M.t// D 0:

Suppose that this is not true. Then there exist '0 2 PCŒŒ�r; 0�; �� W '0.0/ 2
V �1
t0;˛
; ˇ > 0; l > 0, and a sequence ¹�kº1kD1 � .t0;1/ such that for k D 1; 2; : : : the

following inequalities are valid:

�kC1 � �k � ˇ

and
d.x.�kI t0; '0/;M.�k// � l:

From the last inequality and (3.12), we have

W.�k; x.�kI t0; '0// � b.l/; k D 1; 2; : : : : (3.16)

Choose the constant 
 W 0 < 
 < min
®
ˇ; b.l/2N1

¯
and from (3.13) and (3.16), we

obtain

W.t; x.t I t0; '0// D W.�k; x.�kI t0; '0//C

Z t

�k

DC(3.10)W.s; x.sI t0; '0// ds

� b.l/ �N1.�k � t / � b.l/ �N1
 >
b.l/

2
for t 2 Œ�k � 
; �k�. From the above estimate and from (3.14) and (3.15), we conclude
that

V.�q; x.�qI t0; '0// � V.t0 C 0; '0.0//C
Z �q

t0

DC(3.10)V.s; x.sI t0; '0// ds

� V.t0 C 0; '0.0// �
Z �q

t0

c.W.s; x.sI t0; '0/// ds

� V.t0 C 0; '0.0// �
qX
kD1

Z �k

�k�


c.W.s; x.sI t0; '0/// ds

� V.t0 C 0; '0.0// � c
�b.l/

2

�

q ! �1 as q !1;

which contradicts (3.11).
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Consequently, limt!1 d.x.t I t0; '0/;M.t// D 0 and since V �1
t0;˛

is a neighbour-
hood of the origin which is contained inM.t0; ˛/, then the setM is an attractive set of
system (3.10). �

In Theorem 3.7 two auxiliary functions of class V0 were used. The functionW.t; x/
may have a special form. In the case when W.t; x/ D d.x;M.t//, we deduce the
following corollary of Theorem 3.7.

Corollary 3.8. Assume that:

(1) Condition (1) of Theorem 3.5 holds.

(2) There exists a function V 2 V0 such that H3.4, (3.11) and (3.14) hold,

d.x C Ik.x/;M.t// � d.x;M.t//; x 2 �; t D tk; k D 1; 2; : : : ;

and the inequality

DC(3.10)V.t; x.t// � �c.d.x.t/;M.t///; t ¤ tk; k D 1; 2; : : :

is valid for each t 2 Œt0;1/, x 2 �1 and c 2 K.

Then the set M is asymptotically stable with respect to system (3.10).

In the case when W.t; x/ D V.t; x/, we deduce the following corollary of Theo-
rem 3.7.

Corollary 3.9. Assume that:

(1) Condition (1) of Theorem 3.5 holds.

(2) There exists a function V 2 V0 such that H3.4, (3.11) and (3.14) hold, and the
inequality

DC(3.10)V.t; x.t// � �c.V .t; x.t///; t ¤ tk; k D 1; 2; : : :

is valid for each t 2 Œt0;1/, x 2 �1 and c 2 K.

Then the set M is asymptotically stable with respect to system (3.10).
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Example 3.10. Consider a system of four biological spaces with impulse effects at
fixed moments of time t1; t2; : : : such that 0 < t1 < t2 < � � � and limk!1 tk D1:8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

Px1.t/ D �a1x1.t/C �1.t/

Z 0

�r

x1.t C s/ds C b1x1.t/x
2
2.t/x

2
3.t/; t ¤ tk

Px2.t/ D �a2x2.t/C �2.t/

Z 0

�r

x2.t C s/ds C b2x2.t/x
2
1.t/x

2
3.t/; t ¤ tk

Px3.t/ D �a3x3.t/C �3.t/

Z 0

�r

x3.t C s/ds C x1.t � r/x2.t � r/x4.t/; t ¤ tk

Px4.t/ D �a4x4.t/C �4.t/

Z 0

�r

x4.t C s/ds � x1.t � r/x2.t � r/x3.t/; t ¤ tk

�x1.tk/ D c1kx1.tk/; �x2.tk/ D c2kx2.tk/

�x3.tk/ D c3kx3.tk/; �x4.tk/ D c4kx4.tk/
(3.17)

where t � 0; r > 0; b1; b2 2 R; xi 2 RC, ai > 0, �i W RC ! RC, �1 < cik � 0
for i D 1; 2; 3; 4 and k D 1; 2; : : : .

Let M D ¹.t; 0; 0; 0; 0/ W t 2 Œ�r;1/º.
Consider the function V.t; x1; x2; x3; x4/ D x

2
1 C x

2
2 C x

2
3 C x

2
4 . Then the set

�1 D
®
col.x1.t/; x2.t/; x3.t/; x4.t// 2 PCŒRC;R4

C� W

x2
1.s/C x

2
2.s/C x

2
3.s/C x

2
4.s/ � x

2
1.t/C x

2
2.t/C x

2
3.t/C x

2
4.t/;

t � r � s � tº :

For t D tk , k D 1; 2; : : :, we have

V.t C 0; x1.t/C c1kx1.t/; x2.t/C c2kx2.t/; x3.t/C c3kx3.t/; x4.t/C c4kx4.t//

D .1C c1k/
2x2

1.t/C .1C c2k/
2x2

2.t/C .1C c3k/
2x2

3.t/C .1C c4k/
2x2

4.t/

� V.t; x1.t/; x2.t/; x3.t/; x4.t//:

Moreover, if b1 C b2 � 0,
R1
r �.t/dt < 1, �.t/ D maxi �i .t/, a D mini ai , i D

1; 2; 3; 4 and a � �.t/r > c � 0, then for t � 0, t ¤ tk and x D col.x1; x2; x3; x4/ 2

�1, we have

DC(3.17)V.t; x1.t/; x2.t/; x3.t/; x4.t//

D 2x1.t/
h
�a1x1.t/C �1.t/

Z 0

�r

x1.t C s/ds C b1x1.t/x
2
2.t/x

2
3.t/

i
C 2x2.t/

h
�a2x2.t/C �2.t/

Z 0

�r

x2.t C s/ds C b2x2.t/x
2
1.t/x

2
3.t/

i
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C 2x3.t/
h
�a3x3.t/C �3.t/

Z 0

�r

x3.t C s/ds C x1.t � r/x2.t � r/x4.t/
i

C 2x4.t/
h
�a4x4.t/C �4.t/

Z 0

�r

x4.t C s/ds � x1.t � r/x2.t � r/x3.t/
i

� �2aV.t; x.t//C 2�1.t/

Z 0

�r

x1.t C s/x1.t/ds C 2�2.t/

Z 0

�r

x2.t C s/x2.t/ ds

C 2�3.t/

Z 0

�r

x3.t C s/x3.t/ds C 2�4.t/

Z 0

�r

x4.t C s/x4.t/ds

C 2.b1 C b2/x
2
1.t/x

2
2.t/x

2
3.t/

� �2aV.t; x.t//C �.t/
Z 0

�r

h
V.t C s; x.t C s//C V.t; x.t//

i
ds

� �2Œa � �.t/r�V .t; x.t// � �2cV .t; x.t//:

Thus, all conditions of Corollary 3.9 are satisfied and the set M is an asymptotically
stable set with respect to system (3.17).

Boundedness with respect to sets

In this part of Section 3.1, we shall apply the direct method of Lyapunov for investi-
gation of boundedness of the solutions of system of the type (3.1) for� � Rn, i.e. we
shall consider the system´

Px.t/ D f .t; xt /; t ¤ �k.x.t//

�x.t/ D Ik.x.t//; t D �k.x.t//; k D 1; 2; : : : ;
(3.18)

where f W Œt0;1/ � PCŒŒ�r; 0�;Rn�! Rn; �k W Rn ! .t0;1/, Ik W Rn ! Rn; k D
1; 2; : : :; �x.t/ D x.t C 0/� x.t � 0/; and for t � t0, xt 2 PCŒŒ�r; 0�;Rn� is defined
by xt .s/ D x.t C s/, �r � s � 0.

Let '0 2 PCŒŒ�r; 0�;Rn�. Denote by x.t/ D x.t I t0; '0/ the solution of (3.18),
satisfying the initial conditions´

x.t I t0; '0/ D '0.t � t0/; t0 � r � t � t0

x.t0 C 0I t0; '0/ D '0.0/;
(3.19)

and by JC.t0; '0/ the maximal interval of type Œt0; ˇ/ in which the solution x.t I t0; '0/

is defined.

LetM � Œt0� r;1/�Rn:We shall use the notations of the first part of this section
for � � Rn.
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Definition 3.11. We say that the solutions of system (3.18) are:

(a) equi-M-bounded, if

.8t0 2 R/.8� > 0/.8˛ > 0/.9ˇ D ˇ.t0; �; ˛/ > 0/

.8'0 2 S˛.PC0/ \M0.t; �//.8t � t0/ W x.t I t0; '0/ 2M.t; ˇ/I

(b) t - (or ˛-) uniformly M-bounded, if the number ˇ from (a) is independent of t0 (or
of ˛);

(c) uniformly M-bounded, if the number ˇ from (a) depends only on �.

In proof of the main results, we shall use piecewise continuous auxiliary functions
V W Œt0;1/ � Rn ! RC, which belong to the class V0 and are such that condition
H3.4 holds for � � Rn.

Theorem 3.12. Assume that:

(1) Conditions H2.6–H2.13 and H3.1–H3.3 for � � Rn hold.

(2) There exists a function V 2 V0 such that H3.4 holds,

V.t; x/ � a.d.x;M.t///; a 2 K; .t; x/ 2 Œt0;1/ �Rn; (3.20)

where a.u/!1 as u!1,

V.t C 0; x C Ik.x// � V.t; x/; .t; x/ 2 �k; k D 1; 2; : : : ;

and the inequality

DC(3.18)V.t; x.t// � 0; t ¤ �k.x.t//; k D 1; 2; : : :

is valid for t 2 Œt0;1/; x 2 �1:

Then the solutions of system (3.18) are equi-M -bounded.

Proof. Let ˛ > 0; � > 0 and t0 2 R. From the properties of the function V , it follows
that there exists a number k D k.t0; �; ˛/ > 0 such that if x 2 S˛\M.t0 C 0; �/, then
V.t0 C 0; x/ � k.

From the condition a.u/ ! 1 as u ! 1, it follows that there exists a number
ˇ D ˇ.t0; �; ˛/ > 0 such that a.ˇ/ > k.

Let '0 2 S˛.PC0/ \ M0.t; �/. Then '0.0/ 2 S˛ \ M.t0 C 0; �/, hence V.t0 C
0; '0.0// � k.

Let x.t/ D x.t I t0; '0/ be the solution of problem (3.18), (3.19). Since the condi-
tions of Corollary 1.25 are met, then

V.t; x.t I t0; '0// � V.t0 C 0; '0.0//; t 2 Œt0;1/: (3.21)
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From (3.20) and (3.21), we obtain

a.d.x.t/;M.t/// � V.t; x.t// � V.t0 C 0; '0.0// � k < a.ˇ/

for t 2 Œt0;1/. This shows that d.x.t/;M.t// < ˇ for t � t0, hence the solutions of
(3.18) are equi-M -bounded. �

Theorem 3.13. Let the conditions of Theorem 3.12 hold, and let a function b 2 K
exist such that

V.t; x/ � b.d.x;M.t///; .t; x/ 2 Œt0;1/ �Rn: (3.22)

Then the solutions of system (3.18) are uniformly M-bounded.

Proof. Let � > 0. Choose the number ˇ D ˇ.�/ > 0 so that b.�/ < a.ˇ/; ˇ > �.
Let ˛ > 0, t0 2 R and '0 2 S˛.PC0/ \M0.t; �/. Using successively (3.20), (3.21)

and (3.22), we obtain

a.d.x.t/;M.t/// � V.t; x.t// � V.t0 C 0; '0.0//

� b.d.'0.0/;M0.t0/// � b.d0.'0;M0.t/// � b.�/ < a.ˇ/;

for t 2 Œt0;1/. Hence, x.t I t0; '0/ 2M.t; ˇ/ for t � t0. �

In analogous way, the following two theorems are proved which supply sufficient
conditions for t - (respectively for ˛-) uniform M -boundedness of the solutions of
system (3.18).

Theorem 3.14. Let the conditions of Theorem 3.12 hold, condition (3.20) being re-
placed by the condition

a.d.x;M.t/// � V.t; x/ � b.d.x;M.t//; kxk/ for .t; x/ 2 Œt0;1/ �Rn;

where a 2 K; a.u/ ! 1 as u ! 1 and the function b.�; s/ 2 K for each s � 0
fixed.

Then the solutions of system (3.18) are t -uniformly M-bounded.

Theorem 3.15. Let the conditions of Theorem 3.12 hold, condition (3.20) being re-
placed by the condition

a.d.x;M.t/// � V.t; x/ � b.t; d.x;M.t/// for .t; x/ 2 Œt0;1/ �Rn;

where a 2 K; a.u/!1 as u!1 and the function b.t; �/ 2 K for any t � t0 fixed.
Then the solutions of system (3.18) are ˛-uniformly M-bounded.
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Example 3.16. Let �0.x; y/ � 0 for x; y 2 R: Consider the system:8̂̂<̂
:̂
Px.t/ D c.t/y.t/C d.t/x.t/g.�2.t � r//; t ¤ �k.x.t/; y.t//; t � 0

Py.t/ D �c.t/x.t/C ˇ.t/y.t/g.�2.t � r//; t ¤ �k.x.t/; y.t//; t � 0

�x.t/ D ckx.t/; �y.t/ D dky.t/; t D �k.x.t/; y.t//; k D 1; 2; : : : ;

(3.23)

where x; y 2 R; r > 0; the functions c.t/, d.t/ and ˇ.t/ are continuous in .0;1/;
g.u/ is a non-negative continuous function; d.t/ � 0; ˇ.t/ � 0; �1 < ck � 0,
�1 < dk � 0, k D 1; 2; : : :; and �2.s/ D x2.s/C y2.s/.

Assume that the functions �k are such that the conditions H2.9, H2.10, H2.11 and
H2.13 for system (3.23) are fulfilled.

Let M D ¹.t; 0; 0/ W t 2 Œ�r;1/º.
The function V.t; x; y/ D x2 C y2 D �2 satisfies the condition of Theorem 3.13.

In fact,

�1 D
®
col.x.t/; y.t// 2 PCŒRC;R2� W �2.s/ � �2.t/; t � r � s � t

¯
:

Then for t D �k.x.t/; y.t//, k D 1; 2; : : :, we have

V.t C 0; x.t/C ckx.t/; y.t/C dky.t// D .1C ck/
2x2.t/C .1C dk/

2y2.t/

� V.t; x.t/; y.t//:

Also, for t � 0, t ¤ �k.x.t/; y.t//, k D 1; 2; : : : and .x; y/ 2 �1, we have

DC(3.23)V.t; x.t/; y.t// D 2d.t/x2.t/g.�2.t � r//C 2ˇ.t/y2.t/g.�2.t � r//

� 2d.t/x2.t/g.�2.t//C 2ˇ.t/y2.t/g.�2.t//:

Since g.u/ � 0, d.t/ � 0 and ˇ.t/ � 0 it follows that

DC(3.23)V.t; x.t/; y.t// � 0; t ¤ �k.x.t/; y.t//; k D 1; 2; : : : :

Therefore, all conditions of Theorem 3.13 are satisfied and the solutions of system
(3.23) are uniformly M-bounded.

As consequences of Theorem 3.12 and Theorem 3.13 we obtain the next two results
for the system of impulsive functional differential equations with fixed moments of
impulsive perturbations´

Px.t/ D f .t; xt /; t ¤ tk

�x.t/ D Ik.x.t//; t D tk; k D 1; 2; : : : ;
(3.24)

where f W Œt0;1/ � PCŒŒ�r; 0�;Rn�! Rn; Ik W Rn ! Rn; k D 1; 2; : : :; t0 < t1 <

t2 < � � � < tk < tkC1 < � � � and limk!1 tk D1.

Let '0 2 PCŒŒ�r; 0�;Rn�. Denote by x.t/ D x.t I t0; '0/ the solution of system
(3.24), satisfying the initial conditions (3.19).
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Theorem 3.17. Assume that:

(1) Conditions H1.12, H1.13, H2.6, H2.7, H2.8, H2.12 and H3.1–H3.3 for � � Rn

hold.

(2) There exists a function V 2 V0 such that H3.4 and (3.20) hold,

V.t C 0; x C Ik.x// � V.t; x/; x 2 Rn; t D tk; k D 1; 2; : : : ;

and the inequality

DC(3.24)V.t; x.t// � 0; t ¤ tk; k D 1; 2; : : :

is valid for t 2 Œt0;1/; x 2 �1:

Then the solutions of system (3.24) are equi-M-bounded.

Theorem 3.18. Let the conditions of Theorem 3.17 hold, and let a function b 2 K
exist such that

V.t; x/ � b.d.x;M.t///; .t; x/ 2 Œt0;1/ �Rn:

Then the solutions of system (3.24) are uniformly M-bounded.

Global stability of sets

Let M � Œt0 � r;1/ �Rn. We shall use the notations of the first part of this section
for � � Rn as well as the following definition:

Definition 3.19. The set M is said to be:

(a) stable with respect to system (3.18), if

.8t0 2 R/.8˛ > 0/.8" > 0/.9ı D ı.t0; ˛; "/ > 0/

.8'0 2 S˛.PC0/ \M0.t; ı//.8t � t0/ W x.t I t0; '0/ 2M.t; "/I

(b) uniformly stable with respect to system (3.18), if the number ı from point .a/
depends only on ";

(c) uniformly globally attractive with respect to system (3.18), if

.8� > 0/.8" > 0/.9� D �.�; "/ > 0/

.8t0 2 R/.8˛ > 0/.8'0 2 S˛.PC0/ \M0.t; �//

.8t � t0 C �/ W x.t I t0; '0/ 2M.t; "/I

(d) uniformly globally asymptotically stable with respect to system (3.18), if M is a
uniformly stable and uniformly globally attractive set of system (3.18), and if the
solutions of system (3.18) are uniformly M -bounded.
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Definition 3.20. Let � W Œt0;1/ ! RC be a measurable function. Then, we say that
�.t/ is integrally positive, if Z

J

�.t/dt D1

whenever J D
S1
kD1Œ˛k; ˇk�, ˛k < ˇk < ˛kC1, and ˇk�˛k � � > 0; k D 1; 2; : : : .

Theorem 3.21. Assume that:

(1) Conditions H2.6–H2.13, and H3.1–H3.3 for � � Rn hold.

(2) There exists a function V 2 V0 such that H3.4 holds,

a.d.x;M.t/// � V.t; x/ � b.d.x;M.t///; a; b 2 K; .t; x/ 2 Œt0;1/ �Rn;
(3.25)

where a.u/!1 as u!1,

V.t C 0; x C Ik.x// � V.t; x/; .t; x/ 2 �k; k D 1; 2; : : : ; (3.26)

and the inequality

DC(3.18)V.t; x.t// � �p.t/c.d.x.t/;M.t///; t ¤ �k.x.t//; k D 1; 2; : : : (3.27)

is valid for t 2 Œt0;1/, x 2 �1, p W Œt0;1/! .0;1/, c 2 K.

(3)
Z 1

0
p.s/cŒb�1.�/� ds D1 for each sufficiently small value of � > 0.

Then the set M is uniformly globally asymptotically stable with respect to system
(3.18).

Proof. Let " > 0. Choose ı D ı."/ > 0; ı < " so that b.ı/ < a."/.
Let ˛ > 0 be arbitrary, '0 2 S˛.PC0/ \M0.t; ı/ and x.t/ D x.t I t0; '0/.
From condition (2) of Theorem 3.21, it follows that for t 2 JC.t0; '0/ the following

inequalities are valid:

a.d.x.t I t0; '0/;M.t/// � V.t; x.t// � V.t0 C 0; '0.0//

� b.d.'0.0/;M0.t0/// � b.d0.'0;M0.t/// < b.ı/ < a."/:

Since JC.t0; '0/ D Œt0;1/, then x.t/ 2 M.t; "/ for all t � t0. Thus, it is proved
that the set M is uniformly stable with respect to system (3.18).

Now let � > 0 and " > 0 be given and let the number � D �.�; "/ > 0 be chosen
so that Z t0C�

t0

p.s/c
h
b�1

�a."/
2

�i
ds > b.�/: (3.28)

(This is possible in view of condition (3) of Theorem 3.21.)
Let ˛ > 0 be arbitrary, '0 2 S˛.PC0/ \M0.t; �/ and x.t/ D x.t I t0; '0/.
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Assume that for any t 2 Œt0; t0 C �� the following inequality holds:

d.x.t/;M.t// � b�1
�a."/

2

�
: (3.29)

Then, by (3.27), it follows thatZ t0C�

t0

DC(3.18)V.s; x.s// ds � �

Z t0C�

t0

p.s/c
h
b�1

�a."/
2

�i
ds < �b.�/: (3.30)

On the other hand, if t0 C � 2 .tr ; trC1� for some r , then we obtainZ t0C�

t0

DC(3.18)V.s; x.s// ds

D

rX
kD1

Z tk

tk�1

DC(3.18)V.s; x.s// ds C

Z t0C�

tr

DC(3.18)V.s; x.s// ds

D

rX
kD1

ŒV .tk; x.tk// � V.tk�1 C 0; x.tk�1 C 0//�C V.t0 C �; x.t0 C �//

�V.tr C 0; x.tr C 0//

� V.t0 C �; x.t0 C �// � V.t0 C 0; '0.0//;

whence, in view of (3.30), it follows that V.t0 C �; x.t0 C �// < 0, which contradicts
(3.25).

The contradiction obtained shows that there exists t� 2 Œt0; t0 C ��; such that

d.x.t�/;M.t�// < b�1
�a."/

2

�
: (3.31)

Then for t � t� (hence for any t � t0 C � as well) the following inequalities are valid:

a.d.x.t/;M.t/// � V.t; x.t// � V.t�; x.t�//

� b.d.x.t�/;M.t�/// <
a."/

2
< a."/:

Hence, x.t/ 2M.t; "/ for t � t0 C � , i.e. the setM is uniformly globally attractive
with respect to system (3.18).

Finally, since the conditions of Theorem 3.13 are met, then the solutions of system
(3.18) are uniformly M -bounded. �

Theorem 3.22. Assume that:

(1) Condition (1) of Theorem 3.21 holds.
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(2) There exists a function V 2 V0 such that H3.4, (3.25) and (3.26) hold, and the
inequality

DC(3.18)V.t; x.t// � ��.t/c.d.x.t/;M.t///; t ¤ �k.x.t//; k D 1; 2; : : : (3.32)

is valid for t 2 Œt0;1/, x 2 �1, c 2 K, where �.t/ is an integrally positive
function.

Then the set M is uniformly globally asymptotically stable with respect to system
(3.18).

Proof. The fact that the set M is uniformly stable with respect to system (3.18) is
proved as in the proof of Theorem 3.21, and the uniform M -boundedness of the solu-
tions of system (3.18) follows from Theorem 3.13.

Now, we shall prove that the set M is uniformly globally attractive with respect to
the system (3.18).

Let again " > 0 and � > 0 be given. Choose the number ı D ı."/ > 0 so that
b.ı/ < a."/.

We shall prove that there exists � D �."; �/ > 0 such that for any solution x.t/ D
x.t I t0; '0/ of system (3.18) for which t0 2 R, '0 2 S˛.PC0/\M0.t; �/ .˛ > 0
arbitrary) and for any t� 2 Œt0; t0 C �� the following inequality is valid:

d.x.t�/;M.t�// < ı."/: (3.33)

Suppose that this is not true. Then, for any � > 0 there exists a solution x.t/ D
x.t I t0; '0/ of system (3.18) for which t0 2 R, '0 2 S˛.PC0/\M0.t; �/, ˛ > 0, such
that

d.x.t/;M.t// � ı."/; t 2 Œt0; t0 C ��: (3.34)

From (3.32) and (3.26), it follows that

V.t; x.t// � V.t0 C 0; '0.0// �
Z
t0

t

DC(3.18)V.s; x.s// ds

� �

Z t

t0

�.s/c.d.x.s/;M.s/// ds; t � t0: (3.35)

From the properties of the function V.t; x.t// in the interval Œt0;1/, it follows that
there exists the finite limit

lim
t!1

V.t; x.t// D v0 � 0: (3.36)

Then from (3.32), (3.34), (3.35) and (3.36), it follows thatZ 1
t0

�.t/c.d.x.t/;M.t/// dt � b.�/ � v0:
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From the integral positivity of the function �.t/, it follows that the number � can be
chosen so that Z t0C�

t0

�.t/ dt >
b.�/ � v0 C 1
c.ı."//

:

Then, we obtain

b.�/ � v0 �

Z
t0

1

�.t/c.d.x.t/;M.t/// dt

�

Z
t0

t0C�

�.t/c.d.x.t/;M.t/// dt

� c.ı."//

Z t0C�

t0

�.t/ dt > b.�/ � v0 C 1:

The contradiction obtained shows that there exists a positive constant � D �."; �/

such that for any solution x.t/ D x.t I t0; '0/ of system (3.18) for which t0 2 R,
'0 2 S˛.PC0/\M0.t; �/, ˛ > 0, there exists t� 2 Œt0; t0 C �� such that inequality
(3.33) holds.

Then for t � t� (hence for any t � t0 C � as well) the following inequalities are
valid:

a.d.x.t/;M.t/// � V.t; x.t// � V.t�; x.t�//

� b.d.x.t�/;M.t�/// < b.ı/ < a."/;

which proves that the set M is uniformly globally attractive with respect to system
(3.18). �

We shall use Theorem 3.22 to prove the global uniform asymptotic stability of a set
with respect to the system8̂̂̂̂

<̂̂
ˆ̂̂̂:
Px.t/ D

´
A.t/x.t/C B.t/x.t � h.t//; x.t/ > 0; t ¤ �k.x.t//

0; x.t/ � 0; t ¤ �k.x.t//

�x.t/ D

´
Ckx.t/; x.t/ > 0; t D �k.x.t//

0; x.t/ � 0; t D �k.x.t//;

(3.37)

where t � t0; x 2 PCŒŒt0;1/;Rn�; A.t/ andB.t/ are .n�n/-matrix-valued functions,
Ck , k D 1; 2; : : : are .n � n/-matrices; h 2 C ŒŒt0;1/;RC�.

Such systems seem to have application, among other things, in the study of active
suspension height control. In the interest of improving the overall performance of au-
tomotive vehicles, in recent years, suspensions, incorporating active components have
been developed. The designs may cover a spectrum of performance capabilities, but
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the active components alter only the vertical force reactions of the suspensions, not
the kinematics. The conventional passive suspensions consist of usual components
with spring and damping properties, which are time-invariant. The interest in active or
semi-active suspensions derives from the potential for improvements to vehicle ridden
performance with no compromise or enhancement in handling. The full active sus-
pensions incorporate actuators to generate the desired forces in the suspension. The
actuators are normally hydraulic cylinders [205].

Let � D inft�t0.t �h.t// and '1 2 C ŒŒ�; t0�;Rn�. Denote by x.t/ D x.t I t0; '1/ the
solution of system (3.37), satisfying the initial conditions

x.sI t0; '1/ D '1.s/; � � s � t0;

x.t0 C 0/ D '1.t0/:

Theorem 3.23. Assume that:

(1) Conditions H2.9, H2.10, H2.11 and H2.13 hold for the system (3.37).

(2) The matrix functions A.t/ and B.t/ are continuous for t 2 Œt0;1/.

(3) t � h.t/!1 as t !1.

(4) For each k D 1; 2; : : : the elements of the matrix Ck are non-negative.

(5) There exists a continuous real .n�n/-matrixD.t/, t 2 Œt0;1/, which is symmet-
ric, positive definite, differentiable for t ¤ �k.x.t//, k D 1; 2; : : : and such that
for each k D 1; 2; : : :

xT ŒAT .t/D.t/CD.t/A.t/C PD.t/�x � �c.t/kxk2; x 2 Rn; t ¤ �k.x.t//;
(3.38)

xT ŒCTk D.t/CD.t/Ck C C
T
k D.t/Ck�x � 0; x 2 Rn; t D �k.x.t//; (3.39)

where c.t/ > 0 is a continuous function.

(6) There exists an integrally positive function �.t/ such that for t � t0

d.t/ D c.t/ �max¹˛.t/�.t/; ˇ.t/�.t/º � 0; (3.40)

2ˇ1=2.t/

˛1=2.t � h.t//
kD.t/B.t/k � d.t/; (3.41)

where ˛.t/ and ˇ.t/ are, respectively, the smallest and the greatest eigenvalues
of matrix D.t/.

Then the setM D Œ��t0;1/�¹x 2 Rn W x � 0º is uniformly globally asymptotically
stable with respect to system (3.37).
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Proof. Consider the function

V.t; x/ D

²
xTD.t/x; x > 0
0; x � 0:

From the condition that D.t/ is a real symmetric matrix, it follows that for x 2 Rn,
x ¤ 0 the following inequalities hold:

˛.t/kxk2
� xTD.t/x � ˇ.t/kxk2: (3.42)

From the last inequalities, it follows that condition (3.25) is satisfied.
For the chosen function V.t; x/ the set �1 is

�1 D

°
x 2 PCŒŒt0;1/;Rn� W xT .s/D.s/x.s/ � xT .t/D.t/x.t/; � � s � t

±
:

For t � t0 and x 2 �1 the following inequalities are valid:

˛.t � h.t//kx.t � h.t//k2
� xT .t � h.t//D.t � h.t//x.t � h.t//

� xT .t/D.t/x.t/ � ˇ.t/kx.t/k2;

from which we obtain the estimate

kx.t � h.t//k �
ˇ1=2.t/

˛1=2.t � h.t//
kx.t/k: (3.43)

Let t ¤ �k.x.t//, k D 1; 2; : : : ; and x 2 �1. From (3.38), (3.40)–(3.43), we have

DC(3.37)V.t; x.t// D

²
�c.t/kx.t/k2C2kD.t/B.t/kkx.t/kkx.t � h.t//k; x.t/>0;
0; x.t/ � 0

�

²
�Œc.t/ � d.t/�kx.t/k2; x.t/ > 0;
0; x.t/ � 0

� ��.t/V .t; x.t//:

Let t D �k.x.t//, k D 1; 2; : : : . Then from (3.39), we have

V.t C 0; x.t/C Ckx.t// D
²
.xT .t/C xT .t/CT

k
/D.t/.x.t/C Ckx.t//; x.t/ > 0;

0; x.t/ � 0

D

²
xT .t/D.t/x.t/C xT .t/ŒCT

k
D.t/CD.t/Ck C C

T
k
D.t/Ck�x.t/; x.t/ > 0;

0; x.t/ � 0

� V.t; x.t//:

Thus, we have checked that all the conditions of Theorem 3.22 are satisfied.
Hence, the set M D Œ� � t0;1/ � ¹x 2 Rn W x � 0º is uniformly globally asymp-

totically stable with respect to system (3.37). �

As consequences of Theorem 3.21 and Theorem 3.22, we obtain the next two results
for the system (3.24).
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Theorem 3.24. Assume that:

(1) Conditions H1.12, H1.13, H2.6, H2.7, H2.8, H2.12, and H3.1–H3.3 for � � Rn

hold.

(2) There exists a function V 2 V0 such that H3.4 and (3.25) hold,

V.t C 0; x C Ik.x// � V.t; x/; x 2 Rn; t D tk; k D 1; 2; : : : ; (3.44)

and the inequality

DC(3.24)V.t; x.t// � �p.t/c.d.x.t/;M.t///; t ¤ tk; k D 1; 2; : : :

is valid for t 2 Œt0;1/, x 2 �1, p W Œt0;1/! .0;1/, c 2 K.

(3)
Z 1

0
p.s/cŒb�1.�/�ds D1 for each sufficiently small value of � > 0.

Then the set M is uniformly globally asymptotically stable with respect to system
(3.24).

Theorem 3.25. Assume that:

(1) Condition (1) of Theorem 3.24 holds.

(2) There exists a function V 2 V0 such that H3.4, (3.25) and (3.44) hold, and the
inequality

DC(3.24)V.t; x.t// � ��.t/c.d.x.t/;M.t///; t ¤ tk; k D 1; 2; : : :

is valid for t 2 Œt0;1/, x 2 �1, c 2 K, where �.t/ is an integrally positive
function.

Then the set M is uniformly globally asymptotically stable with respect to system
(3.24).

Example 3.26. Consider the system8̂̂<̂
:̂

Px.t/ D a.t/x.t/Œx2.t � r/C y2.t � r/� � b.t/x.t/Œx2.t/C 2y2.t/�; t ¤ tk

Py.t/ D a.t/y.t/Œx2.t � r/C y2.t � r/� � b.t/y3.t/; t ¤ tk

�x.tk/ D ckx.tk/; �y.tk/ D dky.tk/;
(3.45)

where t � 0; x; y 2 R; r > 0; a; b 2 C ŒRC; .0;1/�; �1 < ck � 0; �1 < dk � 0
for k D 1; 2; : : :; 0 < t1 < t2 < � � � and limk!1 tk D1:

Let

X.t/ D col.x.t/; y.t// D '1.t/; t 2 Œ�r; 0�; '1 2 C ŒŒ�r; 0�;R2�:
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Consider the functions V.t; x; y/ D x2 C y2. Then, the set

�1 D
®
X D col.x.t/; y.t// 2 PCŒRC;R2� W

x2.s/C y2.s/ � x2.t/C y2.t/; t � r � s � t
¯
:

Let M D ¹.t; 0; 0/ W t 2 Œ�r;1/º.
For t � 0 and X 2 �1, we have

DC(3.45)V.t; x.t/; y.t//

D 2¹a.t/Œx2.t/C y2.t/�Œx2.t � r/C y2.t � r/� � b.t/Œx2.t/C y2.t/�2º

� 2.a.t/ � b.t//Œx2.t/C y2.t/�2; t ¤ tk; k D 1; 2; : : : :

Also, for k D 1; 2; : : :, we obtain

V.tk C 0; x.tk/C ckx.tk/; y.tk/C dky.tk//

D .1C ck/
2x2.tk/C .1C dk/

2y2.tk/ � V.tk; x.tk/; y.tk//:

If a.t/ � b.t/ D p.t/ < 0 for t � 0, then all the conditions of Theorem 3.24 are
satisfied. Hence, the set M is an uniformly globally asymptotically stable set with
respect to system (3.45).

3.2 Conditional stability

Let t0 2 R, r > 0. Let kxk D jx1j C jx2j C � � � C jxnj be the norm of x 2 Rn.
Consider the system (3.24). Let '0 2 PCŒŒ�r; 0�;Rn�. Denote by x.t/ D x.t I t0; '0/

the solution of system (3.24), satisfying the initial conditions (3.19).
LetM.n� l/; l < n be a .n� l/-dimensional manifold in Rn; containing the origin.

We set
M0.n � l/ D

°
' W ' 2 PCŒŒ�r; 0�;M.n � l/�

±
:

We shall give the following definitions of conditional stability of the zero solution
of system (3.24) with respect to the manifold M.n � l/.

Definition 3.27. The zero solution of system (3.24) is said to be:

(a) conditionally stable with respect to the manifold M.n � l/, if

.8t0 2 R/.8" > 0/.9ı D ı.t0; "/ > 0/

.8'0 2 Sı.PC0/ \M0.n � l//.8t � t0/ W x.t I t0; '0/ 2 S"I

(b) conditionally uniformly stable with respect to M.n� l/, if the function ı in (a) is
independent of t0I
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(c) conditionally globally equi-attractive with respect to M.n � l/; if

.8t0 2 R/.8˛ > 0/.8" > 0/.9T D T .t0; ˛; "/ > 0/

.8'0 2 S˛.PC0/ \M0.n � l//.8t � t0 C T / W x.t I t0; '0/ 2 S"I

(d) conditionally uniformly globally attractive with respect toM.n�l/; if the number
T in (c) is independent of t0I

(e) conditionally globally equi-asymptotically stable with respect to M.n � l/; if it
is conditionally stable and conditionally globally equi-attractive with respect to
M.n � l/I

(f) conditionally uniformly globally asymptotically stable with respect toM.n�l/; if
it is conditionally uniformly stable and conditionally uniformly globally attractive
with respect to M.n � l/I

(g) conditionally unstable with respect to the manifold M.n � l/, if (a) fails to hold.

Remark 3.28. IfM.n� l/ D Rn, then the definitions (a)–(g) are reduced to the usual
definitions of stability by Lyapunov for the zero solution of system (3.24).

Together with the system (3.24), we shall consider the following system of impul-
sive ordinary differential equations:´

Pu.t/ D D.t/u.t/; t ¤ tk; t � t0

�u.tk/ D Dku.tk/; k D 1; 2; : : : ; tk > t0;
(3.46)

where u W Œt0;1/ ! Rm
C

; D.t/ is an .m � m/-matrix valued function; Dk; k D
1; 2; : : : are .m �m/-constant matrices.

Let u0 2 Rm
C
:We denote by u.t/ D u.t I t0; u0/ the solution of system (3.46), which

satisfies the initial condition u.t0/ D u0, and by JC.t0; u0/ the maximal interval of
type Œt0; ˇ/ in which the solution u.t I t0; u0/ is defined.

Let e 2 Rm
C

be the vector .1; 1; : : : ; 1/: We introduce the sets:

B.˛/ D
°
u 2 RmC W 0 � u < ˛e

±
;

B.˛/ D
°
u 2 RmC W 0 � u � ˛e

±
; ˛ D const > 0;

R.m � l/ D
°
u D .u1; : : : ; um/ 2 Rm W u1 D u2 D � � � D ul D 0;

±
; l < m:
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Introduce the following conditions:

H3.5. The matrix-valued .m �m/-function D.t/ is continuous for t 2 Œt0;1/:

H3.6. The functions  k W Rm
C
! Rm

C
,  k.u/ D u C Dku; k D 1; 2; : : : ; are non-

decreasing in Rm
C
:

H3.7. JC.t0; u0/ D Œt0;1/.

We shall consider such solutions u.t/ of the system (3.46) for which u.t/ � 0: That
is why the following definitions on conditional stability of the zero solution of this
system will be used.

Definition 3.29. The zero solution of system (3.46) is said to be:

(a) conditionally stable with respect to the manifold R.m � l/; if

.8t0 2 R/.8" > 0/.9ı D ı.t0; "/ > 0/

.8u0 2 B.ı/ \R.m � l//.8t � t0/ W u
C.t I t0; u0/ 2 B."/I

(b) conditionally uniformly stable with respect to R.m� l/; if the function ı from (a)
does not depend on t0I

(c) conditionally globally equi-attractive with respect to R.m � l/; if

.8t0 2 R/.8˛ > 0/.8" > 0/.9T D T .t0; ˛; "/ > 0/

.8u0 2 B.˛/ \R.m � l//.8t � t0 C T / W u
C.t I t0; u0/ 2 B."/I

(d) conditionally uniformly globally attractive with respect toR.m�l/, if the number
T in (c) does not depend on t0I

(e) conditionally globally equi-asymptotically stable with respect to R.m � l/; if it
is conditionally stable and conditionally globally equi-attractive with respect to
R.m � l/I

(f) conditionally uniformly globally asymptotically stable with respect toR.m�l/; if
it is conditionally uniformly stable and conditionally uniformly globally attractive
with respect to R.m � l/I

(g) conditionally unstable with respect to the manifold R.m � l/, if (a) fails to hold.

In the successive investigations, we shall use piecewise continuous auxiliary vector
functions V W Œt0;1/ � Rn ! Rm

C
; V D col.V1; : : : ; Vm/ such that Vj 2 V0, j D

1; 2; : : : ; m.
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Theorem 3.30. Assume that:

(1) Conditions H1.12, H1.13, H2.2, H2.3, H2.6–H2.8, H2.18, H3.5, H3.6 and H3.7
hold.

(2) There exists a function V W Œt0;1/ �Rn ! Rm
C
; m � n; V D col.V1; : : : ; Vm/,

Vj 2 V0, j D 1; 2; : : : ; m such that supŒt0;1/�RnkV.t; x/k D K � 1,

V.t; 0/ D 0; t � t0;

a.kxk/e � V.t; x/; a 2 K; .t; x/ 2 Œt0;1/ �Rn; (3.47)

V.t C 0; x C Ik.x// �  k.V .t; x//; x 2 Rn; t D tk; k D 1; 2; : : : ;

and the inequality

DC(3.24)V.t; x.t// � D.t/V .t; x.t//; t ¤ tk; k D 1; 2; : : :

is valid for t � t0 and x 2 �1.

(3) The set M.n � l/ D ¹x 2 Rn W Vk.t C 0; x/ � 0; k D 1; 2; : : : ; lº is an
.n � l/-dimensional manifold in Rn, containing the origin, l < n:

Then:

(1) If the zero solution of system (3.46) is conditionally stable with respect to the
manifold R.m� l/, then the zero solution of system (3.24) is conditionally stable
with respect to the manifold M.n � l/.

(2) If the zero solution of system (3.46) is conditionally globally equi-attractive with
respect to the manifold R.m � l/, then the zero solution of system (3.24) is con-
ditionally globally equi-attractive with respect to the manifold M.n � l/:

Proof of Assertion 1. Let t0 2 R and " > 0 (a."/ < K) be given. Let the zero solution
of system (3.46) be conditionally stable with respect to R.m� l/: Then, there exists a
positive function ı1 D ı1.t0; "/ which is continuous in t0 for given " and is such that,
if u0 2 B.ı1/ \R.m � l/, then uC.t I t0; u0/ < a."/e for t � t0:

It follows, from the properties of the function V , that there exists ı D ı.t0; "/ > 0
such that if x 2 Sı then V.t0 C 0; x/ 2 B.ı1/:

Let '0 2 Sı.PC0/ \M0.n � l/: Then '0.0/ 2 Sı and therefore, V.t0 C 0; '0.0//
2 B.ı1/: Moreover, Vk.t0 C 0; '0.0// D 0 for k D 1; 2; : : : ; l; i.e. V.t0 C 0; '0.0// 2
R.m � l/: Thus,

uC.t I t0; V .t0 C 0; '0.0/// < a."/e; t � t0: (3.48)

Let x.t/ D x.t I t0; '0/ be the solution of the initial value problem (3.24), (3.19).
Then, the function V satisfies all conditions of Theorem 1.23 for u0 D V.t0C0; '0.0//
and by (3.47) and (3.48), we arrive at

a.kx.t/k/e � V.t; x.t// � uC.t I t0; V .t0 C 0; '0.0/// < a."/e
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for t � t0: Hence, x.t I t0; '0/ 2 S" for t � t0, i.e. the zero solution of system (3.24) is
conditionally stable with respect to the manifold M.n � l/:

Proof of Assertion 2. Let t0 2 R; ˛ > 0 and " > 0 (a."/ < K) be given.
It follows, from the properties of the function V , that there exists ˛1 D ˛1.t0; ˛/ > 0

such that if x 2 S˛, then V.t0 C 0; x/ 2 B.˛1/:

If the zero solution of system (3.46) is conditionally globally equi-attractive with
respect to R.m � l/; then there exists a number T D T .t0; ˛1; "/ > 0 such that if
u0 2 B.˛1/ \R.m � l/, then uC.t I t0; u0/ < a."/e for t � t0 C T:

Let '0 2 S˛.PC0/\M0.n� l/: Then '0.0/ 2 S˛ and V.t0C 0; '0.0// 2 B.˛1/\

R.m � l/: Therefore,

uC.t I t0; V .t0 C 0; '0.0/// < a."/e; t � t0 C T: (3.49)

If x.t/ D x.t I t0; '0/ is the solution of the initial value problem (3.24), (3.19), then
it follows from Theorem 1.23 that

V.t; x.t// � uC.t I t0; V .t0 C 0; '0.0///; t � t0:

The last inequality, (3.47) and (3.49) imply the inequalities

a.kx.t/k/e � V.t; x.t// � uC.t I t0; V .t0 C 0; '0.0/// < a."/e

for t � t0 C T:
Therefore, kx.t I t0; '0/k < " for t � t0 C T , that leads to the conclusion that the

zero solution of system (3.24) is conditionally globally equi-attractive with respect to
the manifold M.n � l/. �

Corollary 3.31. Let the conditions of Theorem 3.30 be fulfilled.
Then conditional global equi-asymptotic stability of the zero solution of system

(3.46) with respect to the manifold R.m � l/ implies the conditional global equi-
asymptotic stability of the zero solution of system (3.24) with respect to the manifold
M.n � l/:

Theorem 3.32. Let the conditions of Theorem 3.30 be fulfilled, and let a function
b 2 K exist such that V.t; x/ � b.kxk/e for .t; x/ 2 Œt0;1/ �Rn:

Then:

(1) If the zero solution of system (3.46) is conditionally uniformly stable with respect
to the manifold R.m� l/, then the zero solution of system (3.24) is conditionally
uniformly stable with respect to the manifold M.n � l/.

(2) If the zero solution of system (3.46) is conditionally uniformly globally attractive
with respect to the manifold R.m � l/, then the zero solution of system (3.24) is
conditionally uniformly globally attractive with respect to the manifoldM.n� l/:
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The proof of Theorem 3.32 is analogous to the proof of Theorem 3.30. We shall
note that in this case the function ı and the number T can be chosen independently of
t0:

Corollary 3.33. Let the conditions of Theorem 3.32 be satisfied.
Then conditional uniform global asymptotic stability of the zero solution of system

(3.46) with respect to the manifold R.m � l/ implies the conditional uniform global
asymptotic stability of the zero solution of system (3.24) with respect to the manifold
M.n � l/:

Example 3.34. We shall apply Theorem 3.30 to the system8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

Px.t/ D .1C t2/x.t � r.t//C .1 � t2/y.t � r.t//

C .t2 � 1/z.t � r.t//; t ¤ tk
Py.t/ D .1 � e�t /x.t � r.t//C .1C e�t /y.t � r.t//

C .e�t � 1/z.t � r.t//; t ¤ tk

Pz.t/ D .t2 � e�t /x.t � r.t//C .e�t � t2/y.t � r.t//

C .e�t C t2/z.t � r.t//; t ¤ tk

�x.tk/ D a1kx.tk/C b1kŒy.tk/ � z.tk/�; k D 1; 2; : : :

�y.tk/ D a2ky.tk/C b2kŒz.tk/ � x.tk/�; k D 1; 2; : : :

�z.tk/ D a3kz.tk/C b3kŒx.tk/ � y.tk/�; k D 1; 2; : : : ;

(3.50)

where t � 0I 0 � r.t/ � r ;

a1k D
1
2

�p
1C d1k C

p
1C d3k � 2

�
;

a2k D
1
2

�p
1C d2k C

p
1C d1k � 2

�
;

a3k D
1
2

�p
1C d3k C

p
1C d2k � 2

�
I

b1k D
1
2

�p
1C d1k �

p
1C d3k

�
;

b2k D
1
2

�p
1C d2k �

p
1C d1k

�
;

b3k D
1
2

�p
1C d3k �

p
1C d2k

�
I

�1 < dik � 0; i D 1; 2; 3; k D 1; 2; : : :; 0 < t1 < t2 < � � � and limk!1 tk D1.
Consider the manifold M.2/ D ¹col.x; y; z/ 2 R3 W x C y D zº:
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We shall use the vector function

V.x; y; z/ D
�
.x C y � z/2; .�x C y C z/2; .x � y C z/2

�T
:

Then, the set

�1 D

°
.x; y; z/ 2 PCŒRC;R3� W

V.x.s/; y.s/; z.s// � V.x.t/; y.t/; z.t//; t � r � s � t
±
:

For t � 0, t ¤ tk and .x; y; z/T 2 �1, we have

DC(3.50)V.x.t/; y.t/; z.t//

� 2

0@ 1 0 0
0 e�t 0
0 0 t2

1AV.x.t/; y.t/; z.t//
C 2

0@ 1 0 0
0 e�t 0
0 0 t2

1AV.x.t � r.t//; y.t � r.t//; z.t � r.t///
� 4

0@ 1 0 0
0 e�t 0
0 0 t2

1AV.x.t/; y.t/; z.t//:
Also, for k D 1; 2; : : :

V .x.tk C 0/; y.tk C 0/; z.tk C 0//

D V.x.tk/; y.tk/; z.tk//C

0@ d1k 0 0
0 d2k 0
0 0 d3k

1AV.x.tk/; y.tk/; z.tk//:
Since the zero solution of the comparison system8̂̂̂̂

ˆ̂̂<̂
ˆ̂̂̂̂̂:

Pu1.t/ D 4u1.t/; t ¤ tk; t � 0

Pu2.t/ D 4e�tu2.t/; t ¤ tk; t � 0

Pu3.t/ D 4t2u3.t/; t ¤ tk; t � 0

�u1.tk/ D d1ku1.tk/; �u2.tk/ D d2ku2.tk/

�u3.tk/ D d3ku3.tk/; k D 1; 2; : : :

is conditionally stable with respect to the manifold R.2/ D ¹col.0; u2; u3/ 2 R3 W

u2 � 0; u3 � 0º [129] and all the conditions of Theorem 3.30 are fulfilled, the zero
solution of (3.50) is conditionally stable with respect to the manifold M.2/.
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3.3 Parametric stability

The feasibility of equilibria and their stability are two basic problems of analysis of a
wide variety of dynamic models in diverse fields like population biology, economics,
neural networks, and chemical processes. Although in a majority of models the two
problems are strongly interdependent, they are always considered separately. The stan-
dard approach is first to locate the equilibria, then select one that is of interest, translate
it to the origin, and lastly determine its stability properties. The translation of the equi-
librium is justified by the fact that a stability analysis can be developed “without loss
of generality” for the equilibrium at the origin and then universally used for other equi-
libria of the model. This approach may break down when parametric uncertainties are
present because of modelling inaccuracies or changes in the environment of the model.
Each time a parameter is changed, the original equilibrium may either shift to a new
location or disappear, thus making the stability analysis of the translated equilibrium
at the origin either imprecise or entirely useless.

Uncertain parameters appear, in a general way, throughout the models in popula-
tion biology, especially those of Lotka–Volterra type. Siljak, in collaboration with
Ikeda and Ohta, formulated [186] the concept of parametric stability, which addresses
simultaneously the twin problem of existence and stability of a moving equilibrium.

The objective of this section is to extend the notion of parametric stability for im-
pulsive functional differential systems.

Let t0 2 R, r > 0, � be a bounded domain in Rn containing the origin and
kxk D .

Pn
iD1 x

2
i /

1
2 be the norm of x 2 Rn. Consider the system´
Px.t/ D f .t; xt ; p/; t � t0; t ¤ tk

�x.t/ D Ik.x.t/; p/; t D tk; tk > t0; k D 1; 2; : : : ;
(3.51)

where p 2 Rm is a constant parameter vector; f W Œt0;1/ � PCŒŒ�r; 0�; �� � Rm !
Rn; Ik W � �Rm ! �, k D 1; 2; : : :; t0 < t1 < t2 < � � � and limk!1 tk D1.

Let '0 2 PCŒŒ�r; 0�; �� and p 2 Rm be a fixed parameter. Denote by x.t I t0; '0; p/

the solution of system (3.51), satisfying the initial conditions´
x.t I t0; '0; p/ D '0.t � t0/; t0 � r � t � t0

x.t0 C 0I t0; '0; p/ D '0.0/;
(3.52)

and by JC.t0; '0; p/ the maximal interval of type Œt0; ˇ/ in which the solution x.t I t0;
'0; p/ is defined.

We also assume that for some nominal value p� of the parameter vector p, there is
an equilibrium state x�, that is,´

f .t; x�; p�/ D 0; t � t0; t ¤ tk
�x�.tk/ D x

�.tk C 0/ � x�.tk/ D 0; tk > t0; k D 1; 2; : : : ;
(3.53)
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and x� is stable. Suppose that the parameter vector p is changed from p� to another
value. The question arises: Does a new equilibrium x" of (3.51) exist there? If x"

exists, is it stable as x� was, or is its stability destroyed by the change of p?

Consider the equilibrium x" W Rm ! � as a function x".p/ and introduce the
following definitions of parametric stability.

Definition 3.35. The system (3.51) is said to be parametrically stable at p� 2 Rm, if
there exists a neighborhood N.p�/ such that for any p 2 N.p�/:

(i) there exists an equilibrium x".p/ 2 �;

(ii) .8t0 2 R/.8"> 0/.9ı D ı.t0; "; p/ > 0/
.8'0 2 PCŒŒ�r; 0�; �� W k'0 � x

".p/kr < ı/

.8t � t0/ W kx.t I t0; '0; p/ � x
".p/k < ":

Remark 3.36. If the system (3.51) is not stable in the above sense, we say it is para-
metrically unstable at p�. This means that for any neighborhood N.p�/, there exists
a p 2 N.p�/ for which either there is no equilibrium x".p/ of (3.51), or there is an
equilibrium x".p/, which is unstable in the sense of Lyapunov.

Definition 3.37. The system (3.51) is said to be parametrically uniformly stable at
p� 2 Rm, if the number ı from Definition 3.35 is independent of t0 2 R.

Definition 3.38. The system (3.51) is said to be parametrically uniformly asymptot-
ically stable at p� 2 Rm, if there exists a neighborhood N.p�/ such that for any
p 2 N.p�/:

(i) it is parametrically uniformly stable at p�;

(ii) for all p 2 N.p�/, there exists a number � D �.p/ > 0 such that k'0 �

x".p/kr < � implies

lim
t!1
kx.t I t0; '0; p/ � x

".p/k D 0:

We introduce the following conditions:

H3.8. f 2 C ŒŒt0;1/ � PCŒŒ�r; 0�; �� �Rm;Rn�.

H3.9. The functionf .t; �; p/ is Lipschitz continuous with respect to � in PCŒŒ�r; 0�;
�� and p 2 Rm uniformly on t 2 Œt0;1/.

H3.10. There exists a constant P > 0 such that for all .t; �; p/ 2 Œt0;1/ �

PCŒŒ�r; 0�; �� �Rm

kf .t; �; p/k � P <1:

H3.11. Ik 2 C Œ� �Rm;Rn�; k D 1; 2; : : : .
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H3.12. The functions .I C Ik/ map � � Rm into � � Rm; k D 1; 2; : : : where I is
the identity in � �Rm.

In this section, we shall use the Lyapunov functions V W Œt0;1/��! RC, which
belong to the class V0, and satisfy the condition

H3.13. V.t; x".p// D 0; t 2 Œt0;1/; p 2 N.p�/:

Note that if the hypothesis H1.12, H1.13, H3.8, H3.10, H3.11 and H3.12 are met,
then by Theorem 1.17, JC.t0; '0; p/ D Œt0;1/:

In the proof of the main results, we shall use the following lemma.

Lemma 3.39. Assume that:

(1) Conditions H1.12, H1.13, H3.8, H3.10, H3.11 and H3.12 hold.

(2) The solution x.t/ D x.t I t0; '0; p/ of the initial value problem (3.51), (3.52) is
such that x 2 PCŒ.t0 � r;1/;�� \ PC1ŒŒt0;1/;��:

(3) The function F W Œt0;1/ � RC � RC ! R is continuous in each of the sets
.tk�1; tk� � RC � RC; k D 1; 2; : : : and F.t; u; �/ is non-decreasing in u for
each t 2 Œt0;1/ and � 2 RC, where � D �.p/ is a parameter.

(4)  k.u; �/ 2 C ŒRC �RC;RC�; k D 1; 2; : : : are non-decreasing with respect to
u.

(5) The maximal solution R.t I t0; u0; �/ of the problem8̂<̂
:

Pu D F.t; u; �/; t � t0; t ¤ tk

u.t0/ D u0 � 0

u.tk C 0/ D  k.u.tk/; �/; tk > t0; k D 1; 2; : : :

is defined in the interval Œt0;1/.

(6) There exists a function V 2 V0 such that V.t0 C 0; '0.0// � u0,

V.t C 0; x C Ik.x; p// �  k.V .t; x/; �/; p 2 Rm; � 2 RC; x 2 �;

t D tk; k D 1; 2; : : : ; and the inequality

DC(3.51)V.t; x.t// � F.t; V .t; x.t//; �/; t ¤ tk; k D 1; 2; : : :

is valid for each t 2 Œt0;1/ and x 2 �1.

Then
V.t; x.t I t0; '0; p// � R.t I t0; u0; �/; t 2 Œt0;1/:

The proof of Lemma 3.39 is similar to that of Theorem 1.23. We omit it here.

In the case when F.t; u; �/ � 0 for t 2 Œt0;1/, u 2 RC, � 2 RC and  k.u; �/ �
u for u 2 RC, � 2 RC, k D 1; 2; : : :, we deduce the following corollary from
Lemma 3.39.
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Corollary 3.40. Assume that:
(1) Conditions H1.12, H1.13, H3.8–H3.12 hold.
(2) The condition (2) of Lemma 3.39 is satisfied.
(3) There exists a function V 2 V0 such that

DC(3.51)V.t; x.t// � 0; x 2 �1; t � t0; t ¤ tk; k D 1; 2; : : : ;

V .t C 0; x C Ik.x; p// � V.t; x/; p 2 Rm; x 2 �; t D tk; k D 1; 2; : : : :

Then
V.t; x.t I t0; '0; p// � V.t0 C 0; '0.0//; t 2 Œt0;1/:

The following theorem provides sufficient conditions for requirement (i) of Defini-
tion 3.35.

Theorem 3.41. Assume that:
(1) Conditions H1.12, H1.13, H3.8–H3.12 hold.
(2) For some nominal value p� of the parameter vector p, there is an equilibrium

state x� which satisfies (3.53).
(3) detDxf .t; x�; p�/ ¤ 0, t ¤ tk; k D 1; 2; : : : .

Then there exists a neighbourhood N.p�/ of p� such that for any p 2 N.p�/, the
system ´

f .t; xt ; p/ D 0; t � t0; t ¤ tk
�x.tk/ D x.tk C 0/ � x.tk/ D 0; tk > t0; k D 1; 2; : : :

(3.54)

has a solution x".p/ 2 �.

The proof of Theorem 3.41 is similar to the proof of Assertion 1 in Theorem 1.17 for
the existence of a solution of a system of functional differential equations. A theorem
for the existence of an equilibrium x".p/ 2 � in the continuous case is being used
[186].

Theorem 3.42. Assume that:
(1) The conditions of Theorem 3.41 hold.
(2) There exists a function V 2 V0 such that H3.13 holds,

a.kx � x".p/k/ � V.t; x/; a 2 K; .t; x/ 2 Œt0;1/ ��; (3.55)

V.t C 0; x C Ik.x; p// � V.t; x/; x 2 �; p 2 N.p
�/; t D tk; k D 1; 2; : : : ;

(3.56)
and the inequality

DC(3.51)V.t; x.t// � 0; t ¤ tk; k D 1; 2; : : :

is valid for t 2 Œt0;1/; x 2 �1:

Then the system (3.51) is parametrically stable at p�.
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Proof. Let " > 0. From the properties of the function V , it follows that there ex-
ists a constant ı D ı.t0; "; p/ > 0 such that if x 2 � W kx � x".p/k < ı, then
supkx�x".p/k<ı V.t0 C 0; x/ < a."/:

Let '0 2 PCŒŒ�r; 0�; �� W k'0 � x
".p/kr < ı: Then k'0.0/ � x".p/k � k'0 �

x".p/kr < ı hence
V.t0 C 0; '0.0// < a."/: (3.57)

Let x.t/ D x.t I t0; '0; p/ be the solution of problem (3.51), (3.52). Since the con-
ditions of Corollary 3.40 are met, then

V.t; x.t I t0; '0; p// � V.t0 C 0; '0.0//; t 2 Œt0;1/:

From the last inequality and (3.55)–(3.57), there follow the inequalities

a.kx.t I t0; '0; p/ � x
".p/k/ � V.t; x.t I t0; '0; p// � V.t0 C 0; '0.0// < a."/;

which imply that kx.t I t0; '0; p/�x
".p/k < " for t � t0. This implies that the system

(3.51) is parametrically stable at p�. �

Theorem 3.43. Let the conditions of Theorem 3.42 hold, and let a function b 2 K
exist such that

V.t; x/ � b.kx � x".p/k/; .t; x/ 2 Œt0;1/ ��:

Then the system (3.51) is parametrically uniformly stable at p�.

Theorem 3.44. Assume that:

(1) The conditions of Theorem 3.41 hold.

(2) There exists a function V 2 V0 such that H3.13 and (3.56) hold,

a.kx � x".p/k/ � V.t; x/ � b.kx � x".p/k/; a; b 2 K; .t; x/ 2 Œt0;1/ ��;

and the inequality

DC(3.51)V.t; x.t// � �c.k.x.t/ � x
".p/k/; t ¤ tk; k D 1; 2; : : : (3.58)

is valid for c 2 K, t 2 Œt0;1/ and x 2 �1.

Then the system (3.51) is parametrically uniformly asymptotically stable at p�.

Theorem 3.43 and Theorem 3.44 are similar to Theorem 2.3 and Theorem 2.4, re-
spectively.

Corollary 3.45. If in Theorem 3.44 condition (3.58) is replaced by the condition

DC(3.51)V.t; x.t// � �cV .t; x.t//; t 2 Œt0;1/; t ¤ tk; k D 1; 2; : : : ;

where x 2 �1; c D const > 0, then the system (3.51) is parametrically uniformly
asymptotically stable.
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In the next examples we study the parametric stability of two impulsive Lotka–
Volterra models.

Example 3.46. To illustrate the idea of the parametric stability, let us first consider an
impulsive Lotka–Volterra model of two interacting species:8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

Px1.t/ D
r1

K1
x1.t/

�
K1 � x1.t/ � e12˛12x2.t � �2.t//

�
; t ¤ tk

Px2.t/ D
r2

K2
x2.t/

�
K2 � x2.t/ � e21˛21x1.t � �1.t//

�
; t ¤ tk

x1.tk C 0/ D .d1k C 1/x1.tk/ � d1k
K1 �K2e12˛12

1 � e12e21˛12˛21
; k D 1; 2; : : :

x2.tk C 0/ D .d2k C 1/x2.tk/ � d2k
K2 �K1e21˛21

1 � e12e21˛12˛21
; k D 1; 2; : : : ;

(3.59)

where x1.t/ and x2.t/ are populations of the two species at time t ; r1 and r2 are intrin-
sic growth rates; K1 and K2 are the carrying capacities of the environment; ˛12 and
˛21 are inter-specific coefficients, and 0 � �i .t/ � �0, i D 1; 2, t � 0. All parameters
r1, r2, K1, K2 and ˛12 and ˛21 are positive numbers. The uncertain parameters are
e12 and e21, which can take values from the interval Œ0; 1� and represent the interaction
strength between the species. The values xi .tk/ and xi .tkC0/ are the population num-
bers of i th species before and after the impulsive effect at the time tk , respectively; and
dik > �1 for all i D 1; 2 and k D 1; 2; : : : .

It is easy to show that for (3.59) there exists an equilibrium x" at8̂̂̂<̂
ˆ̂:
x"1 D

K1 �K2e12˛12

1 � e12e21˛12˛21

x"2 D
K2 �K1e21˛21

1 � e12e21˛12˛21
;

(3.60)

which is positive for all permissible values of e12 and e21 whenever the carrying ca-
pacity ratio K1=K2 satisfies the condition

e12˛12 <
K1

K2
<

1
e21˛21

: (3.61)

It is known [2, 3, 4, 186] that under the conditions (3.61) for any closed interval
contained in t 2 .tk�1; tk�, k D 1; 2; : : :, there exist positive numbers r� and r� such
that for i D 1; 2,

r� �
rixi

Ki
� r�: (3.62)

Theorem 3.47. Assume that:

(1) Conditions (3.61) and (3.62) hold.
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(2) 0 < t1 < t2 < � � � and limk!1 tk D1:

(3) �1 < d1k � 0, �1 < d2k � 0, k D 1; 2; : : : :

(4) There exists a constant c > 0 such that

r� > c C .˛12 C ˛21/r
�:

Then the system (3.59) is parametrically uniformly asymptotically stable for all per-
missible values of e12 and e21.

Proof. Choose

V.t; x1; x2/ D
�
x1 � x

"
1

�2
C

�
x2 � x

"
2

�2
D d 2:

For t � 0 and t ¤ tk , we have

DC(3.59)V.t; x1.t/; x2.t//

D 2.x1.t/ � x
"
1/
r1x1.t/

K1

h
K1 � x1.t/ � e12˛12x2.t � �2.t//

i
C 2.x2.t/ � x

"
2/
r2x2.t/

K2

h
K2 � x2.t/ � e21˛21x1.t � �1.t//

i
:

Since .x"1 ; x
"
2/ is an equilibrium of (3.59), from (3.62) we obtain

DC(3.59)V.t; x1.t/; x2.t//

� �2r�.x1.t/ � x
"
1/

2
C 2r�j˛12j jx1.t/ � x

"
1 j jx2.t � �2.t// � x

"
2 j

�2r�.x2.t/ � x
"
2/

2
C 2r�j˛21j jx1.t � �1.t// � x

"
1 j jx2.t/ � x

"
2 j;

for t ¤ tk; k D 1; 2; : : : :
Using the inequality 2jaj jbj � a2 C b2, we get

DC(3.59)V.t; x1.t/; x2.t//

� �2r�.x1.t/ � x
"
1/

2
C r�j˛12j

�
.x1.t/ � x

"
1/

2
C .x2.t � �2.t// � x

"
2/

2
�

�2r�.x2.t/ � x
"
2/

2
C r�j˛21j

�
.x2.t/ � x

"
2/

2
C .x1.t � �1.t// � x

"
1/

2
�
;

for t ¤ tk; k D 1; 2; : : : :
The set �1 is

�1 D
®
col.x1.t/; x2.t// 2 PCŒRC;R2

C� W d
2.s/ � d 2.t/; t � �0 � s � t

¯
:
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Then, for .x1; x2/ 2 �1, we have

DC(3.59)V.t; x1.t/; x2.t//

� 2
h
� r� C .˛12 C ˛21/r

�
i�
.x1.t/ � x

"
1/

2
C .x2.t/ � x

"
2/

2
�

< �2cV .t; x1.t/; x2.t//; t ¤ tk; k D 1; 2; : : : :

Also,

V.tk C 0; x1.tk C 0/; x2.tk C 0//

D

�
x1.tk C 0/ � x"1

�2
C

�
x2.tk C 0/ � x"2

�2

D .1C d1k/
2
�
x1.tk/ � x

"
1

�2
C .1C d2k/

2
�
x2.tk/ � x

"
2

�2

� V.tk; x1.tk/; x2.tk//; k D 1; 2; : : : :

Since all conditions of Theorem 3.44 are satisfied, the system (3.59) is parametri-
cally uniformly asymptotically stable for all permissible values of e12 and e21. We
can therefore conclude that the equilibrium x" is uniformly asymptotically stable at
e12 D e21 D 1, i.e. for eij 2 Œ0; 1�, i; j D 1; 2, i ¤ j it remains stable. �

Example 3.48. In this example, we shall consider uncertain parameters in a nonlinear
model, which appear in a general way throughout the model. In the context of ex-
ample 3.46, this means that the carrying capacities and intrinsic growth rates can be
considered as uncertain parameters as well. In this example we consider a very general
class of impulsive Lotka–Volterra models of n species represented by

Sn W

8<: Pxi .t/ D xi .t/
h
gi .xi .t/; p/C hi .xt ; p/

i
; t � 0; t ¤ tk

�xi .tk/ D cik.xi .tk/; p/; tk > 0; k D 1; 2; : : : ;

where the state xi .t/ 2 R ; the functions gi W R �Rm ! R and hi W PCŒŒ�r; 0�; �� �
Rm ! R ; cik 2 R for all i D 1; 2; : : : ; n and k D 1; 2; : : : and 0 < t1 < t2 < � � � ,
limk!1 tk D1:

A compact notation of Sn is

Sn W

8<: Px.t/ D X.t/
h
g.x.t/; p/C h.xt ; p/

i
; t � 0; t ¤ tk

�x.tk/ D Ck.x.tk/; p/; tk > 0; k D 1; 2; : : : ;

where the state x.t/ 2 Rn; X D diag¹x1; x2; : : : ; xnº; the functions g W Rn � Rm !
Rn and h W PCŒŒ�r; 0�; �� � Rm ! Rn are given as g.x; p/ D col.g1.x1; p/;

g2.x2; p/; : : : ; gn.xn; p//; h.xt ; p/ D col.h1.xt ; p/; h2.xt ; p/; : : : ; hn.xt ; p// and
Ck.x.tk/; p/ D col.c1k.x1.tk/; p/; c2k.x2.tk/; p/; : : : ; cnk.xn.tk/; p//:
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We are interested only in the equilibrium of Sn located in the Rn
C

. The following
theorem is a direct consequence of Theorem 3.41.

Theorem 3.49. Assume that:

(1) 0 < t1 < t2 < � � � and limk!1 tk D1:

(2) Ck 2 C ŒRnC �Rm;Rn�; k D 1; 2; : : : .

(3) g 2 C ŒRn
C
�Rm;Rn

C
�.

(4) h 2 C ŒPCŒŒ�r; 0�; �C� �Rm;Rn
C
�.

(5) For some nominal value p� of the parameter vector p, there is an equilibrium
state x� 2 Rn

C
which satisfies´
g.x�; p�/C h.x�; p�/ D 0

�x�.tk/ D 0; tk > 0; k D 1; 2; : : : :

(6) detDxŒg.x�; p�/C h.x�; p�/� ¤ 0.

Then there exists a neighbourhood N.p�/ such that for any p 2 N.p�/, the system´
g.x.t/; p/C h.xt ; p/ D 0; t � 0; t ¤ tk

�x.tk/ D x.tk C 0/ � x.tk/ D 0; tk > 0; k D 1; 2; : : : ;

has a solution x".p/ 2 Rn
C

.

Once existence of an equilibrium x".p/ is established, we turn our attention to the
second part of the parametric problem, which is stability of x".p/.

Definition 3.50. A matrix An�n D .aij /n�n, ai i > 0, aij � 0, i ¤ j is said to be
an M-matrix if, there exists is a positive diagonal matrix Qn�n such that the matrix
QAC ATQ is positive definite.

Define a Lyapunov function

V.t; x/ D

nX
iD1

qi

�
xi � x

"
i .p/ � x

"
i .p/ ln

xi

x"i .p/

�
;

where qi , i D 1; 2; : : : ; n are all positive numbers. Obviously, the function V.t; x/ 2
V0 and there exist comparison functions a, b 2 K such that

a.kx � x".p/k/ � V.t; x/ � b.kx � x".p/k/; t � 0: (3.63)

Theorem 3.51. Assume that:

(1) The conditions of Theorem 3.49 hold.
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(2) For any p 2 N.p�/, there exist positive continuous functions ci 2 K, i D
1; 2; : : : ; n, such that

.xi � x
"
i .p//Œgi .xi ; p/ � gi .x

"
i .p/; p/� � �ci

2.jxi � x
"
i .p/j/: (3.64)

(3) For any p 2 N.p�/, there exist positive definite functions ei 2 K, i D 1; 2; : : : ;
n, such that

.xi � x
"
i .p//Œhi .xt ; p/ � hi .x

".p/; p/� � ei .kx.s/ � x
".p/k/ (3.65)

for all t � r � s � t; t 2 RC and all i D 1; 2; : : : ; n.

(4) For any p 2 N.p�/, there exists a matrix W D .wij /, such that

ei

�
a�1.b.kx � x".p/k//

�
� ci .jxi � x

"
i .p/j/

nX
jD1

wij cj .jxj � x
"
j .p/j/; (3.66)

where wij are nonnegative numbers, i; j D 1; 2; : : : ; n.

(5) The matrix .E �W / is an M-matrix.

(6) For any p 2 N.p�/ there exist constants Lik , 0 < Lik < 1, i D 1; 2; : : : ; n,
k D 1; 2; : : :, such that

Likxi � xi C cik.xi / � xi C x
"
i ln.Lik/:

Then the system Sn is parametrically uniformly asymptotically stable at p�.

Proof. With respect to the system Sn for t � 0 and t ¤ tk , we compute

DC
.Sn/

V.t; x.t// D

nX
iD1

qi .xi .t/ � x
"
i .p//. Pxi .t/=xi .t//

D

nX
iD1

qi .xi .t/ � x
"
i .p//

h
gi .xi .t/; p/C hi .xt ; p/

i

D

nX
iD1

qi .xi .t/ � x
"
i .p//

h
.gi .xi .t/; p/ � gi .x

"
i .p/; p//

C .hi .xt ; p/ � hi .x
".p/; p//

i
:

From (3.64) and (3.65), we deduce the inequality

DC
.Sn/

V.t; x.t// �

nX
iD1

qi

h
� c2

i .jxi .t/ � x
"
i .p/j/C ei

�
kx.s/ � x".p/k

�i
:

for all t � r � s � t; t 2 RC.
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Consider the set �1, where

�1 D
®
x 2 PCŒ.0;1/;RnC� W V.s; x.s// � V.t; x.t//; t � r � s � t

¯
:

For all x 2 �1, t ¤ tk from (3.63), we have

a.kx.s/ � x".p/k/ � V.s; x.s// � V.t; x.t//

� b.kx.t/ � x".p/k/; t � r � s � t

and then

kx.s/ � x".p/k � a�1.b.kx.t/ � x".p/k//:

Now, from the last inequality and from (3.66) for t ¤ tk , k D 1; 2; : : :, we have

DC
.Sn/

V.t; x.t//

� �c.jjx.t/ � x".p/jj/ŒQ.E �W /C .E �W /TQ�c.jjx.t/ � x".p/jj/=2;

where

c.kx � x".p/k/ D .c1.jx1 � x
"
1.p/j/; : : : ; cn.jxn � x

"
n.p/j//

and

Q D diag¹q1; q2; : : : ; qnº:

Since .E �W / is an M -matrix, the condition (3.58) of Theorem 3.44 is satisfied.
Also, from the condition (6) of Theorem 3.51, we have

V.tk C 0; x.tk/C Ck.x.tk/; p// � V.tk; x.tk//

D

nX
iD1

qi

�
xi .tk C 0/ � xi .tk/ � x

"
i .p/ ln

xi .tk C 0/
xi .tk/

�

D

nX
iD1

qi

�
cik.xi .tk/; p/ � x

"
i .p/ ln

xi .tk/C cik.xi .tk/; p/

xi .tk/

�

�

nX
iD1

qi
�
cik.xi .tk/; p/ � x

"
i .p/ lnLik

�
� 0; k D 1; 2; : : : :

Since all conditions of Theorem 3.44 are satisfied, the system Sn is parametrically
uniformly asymptotically stable at p�. �
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3.4 Eventual stability and boundedness

In many real cases, it is obligatory to study the stability of such sets, which are not
invariant with respect to a given system of differential equations. This immediately
excludes the stability in the sense of Lyapunov. Examples for that can be found when
self-controlled systems of management are being studied. For the problem, arisen in
this situation, to be solved, a new notion is introduced – eventual stability [131, 132,
223]. In this case, the set under consideration, despite not being invariant in the usual
sense, is invariant in the asymptotic sense.

In this section, we shall discuss questions related to eventual stability of x D 0 and
eventual boundedness of the solutions with respect to impulsive functional differential
equations with variable impulsive perturbations. The results for the systems with im-
pulse effect at fixed moments will also be considered.

Let t0 2 R, r D const > 0, � be a domain in Rn containing the origin and

kxk D

q
x2

1 C x
2
2 C � � � C x

2
n define the norm of x 2 Rn.

Eventual stability

Consider the system of impulsive functional differential equations with variable im-
pulsive perturbations (3.1). Let '0 2 PCŒŒ�r; 0�; ��. Denote by x.t/ D x.t I t0; '0/

the solution of system (3.1), satisfying the initial conditions (3.2).

We shall use also the following notations:

B˛ D ¹.t; x/ 2 Œt0;1/ �Rn W kxk < ˛ºI

B˛ D ¹.t; x/ 2 Œt0;1/ �Rn W kxk � ˛º; ˛ > 0:

We shall use the following definitions of eventual stability of x D 0 for the system
(3.1).

Definition 3.52. The set x.t/ � 0 is said to be:

(1) eventually stable of system (3.1), if

.8" > 0/.9T D T ."/ > 0/.8t0 � T /.9ı D ı.t0; "/ > 0/

.8'0 2 PCŒŒ�r; 0�; �� W k'kr < ı/.8t � t0/ W kx.t I t0; '0/k < "I

(2) uniformly eventually stable of system (3.1), if the number ı in (a) is independent
of t0 2 R.

In the proofs of our main theorems, we shall use the piecewise continuous Lyapunov
functions V W Œt0;1/ ��! RC, V 2 V0 for which the condition H2.5 is true.
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Theorem 3.53. Assume that:

(1) Conditions H1.1, H1.2, H1.3, H1.5, H1.6, H1.9, H1.11, H2.1–H2.4 hold.

(2) There exists a function V 2 V0 such that H2.5 holds,

a.kxk/ � V.t; x/; a 2 K; .t; x/ 2 Œt0;1/ ��; (3.67)

V.t C 0; x C Ik.x// � V.t; x/; .t; x/ 2 �k; k D 1; 2; : : : ; (3.68)

and the inequality

DC(3.1)V.t; x.t// � p.t/q.t; x.t//; t ¤ �k.x.t//; k D 1; 2; : : : ; (3.69)

is valid for t 2 Œt0;1/; x 2 �1; p W Œt0;1/! R, q W Œt0;1/ ��! R:

(3) There exists a number � > 0 such that

jq.t; x/j � �; .t; x/ 2 Œt0;1/ ��:

(4)
Z 1
t0

jp.t/jdt <1:

Then the set x D 0 is an eventually stable set of system (3.1).

Proof. Let " > 0 be such that S" � � and � > 0. Let the number T D T ."/ > 0 be
chosen so that for t � T Z 1

t

jp.s/j ds <
a."/

2�
: (3.70)

(This is possible in view of condition (4) of Theorem 3.53.)
Let t0 � T . From the properties of the function V , it follows that there exists a

constant ı D ı.t0; "/ > 0 such that if .t0C 0; x/ 2 Bı , then V.t0C 0; x/ < 1
2a."/: Let

'0 2 PCŒŒ�r; 0�; �� W k'0kr < ı and x.t/ D x.t I t0; '0/ be the solution of problem
(3.1), (3.2). Then k'0.0/k � k'0kr < ı, .t0 C 0; '0.0// 2 Bı , hence

V.t0 C 0; '0.0// <
1
2
a."/: (3.71)

From condition (3) of Theorem 3.53, (3.69) and (3.71), we haveZ t

t0

DC(3.1)V.s; x.s// ds � �

Z t

t0

jp.s/j ds <
1
2
a."/; t � t0: (3.72)

Let t1; t2; : : : .t0 < t1 < t2 < � � � / be the moments in which the integral curve
.t; x.t I t0; '0// of problem (3.1), (3.2) meets the hypersurfaces �k , k D 1; 2; : : : and
let tkCl < t < tkClC1.
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Then, we haveZ t

t0

DC(3.1)V.s; x.s// ds

D

Z t1

t0

DC(3.1)V.s; x.s// ds C

kClX
jD2

Z tj

tj�1

DC(3.1)V.s; x.s// ds

C

Z t

tkCl

DC(3.1)V.s; x.s// ds

D V.t1; x.t1// � V.t0 C 0; '0.0//C
kClX
jD2

ŒV .tj ; x.tj //

� V.tj�1 C 0; x.tj�1//�C V.t; x.t// � V.tkCl C 0; x.tkCl C 0//

� V.t; x.t// � V.t0 C 0; '0.0//: (3.73)

From (3.67), (3.70)–(3.73), we obtain

a.kx.t I t0; '0/k/ � V.t0 C 0; '0.0//C
Z t

t0

DC(3.1)V.s; x.s// ds

< V.t0 C 0; '0.0//C
1
2
a."/ < a."/:

Therefore, kx.t I t0; '0//k < " for t � t0. �

Theorem 3.54. Assume that:

(1) Condition (1) of Theorem 3.53 holds.

(2) There exists a function V 2 V0 such that H2.5 and (3.68) hold,

V.t; x/ � 0; .t; x/ 2 Œt0;1/ ��; (3.74)

kx C Ik.x/k � kxk; .t; x/ 2 �k; k D 1; 2; : : : ; (3.75)

and the inequality

DC(3.1)V.t; x.t// � jp1.t/j; t ¤ �k.x.t//; k D 1; 2; : : : (3.76)

is valid for t 2 Œt0;1/; x 2 �1; p1 W Œt0;1/! R.

(3) For each "1, "2, 0 < "1 < "2 there exist ı1 D ı1."1; "2/ > 0 and T1 D

T1."1; "2/ > 0 such that

DC(3.1)V.t; x.t// � �ı1kf .t; xt /k C jp2.t/j; t ¤ �k.x.t//; k D 1; 2; : : :

for t � T1, x 2 �1 \ .S"2 n S"1/, p2 W Œt0;1/! R.
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(4)
Z 1
t0

jpi .t/j dt <1; i D 1; 2:

Then the set x D 0 is an eventually stable set of system (3.1).

Proof. Let " > 0 be such that S" � � and let ı1 D ı1.
"
2 ; "/ > 0, T1 D T1.

"
2 ; "/ > 0

are the numbers from the condition (3) of Theorem 3.54. Let the number T2 D T2."/ >

0 be chosen so that Z 1
t

h
jp1.s/j C jp2.s/j

i
ds <

ı1"

4
; t � T2 (3.77)

and set T D T ."/ D max
�
T1.

"
2 ; "/; T2."/

�
.

Let t0 � T . Since V.t0 C 0; 0/ D 0, there exists ı D ı.t0; "/ > 0 such that if
.t0 C 0; x/ 2 Bı , then

V.t0 C 0; x/ <
ı1"

4
:

Let '0 2 PCŒŒ�r; 0�; �� W k'0kr < ı. Then k'0.0/k � k'0kr < ı, .t0 C 0; '0.0// 2
Bı , hence

V.t0 C 0; '0.0// <
ı1"

4
: (3.78)

Let x.t/ D x.t I t0; '0/ be the solution of problem (3.1), (3.2). We shall prove that
kx.t I t0; '0/k < " for t � t0.

Suppose that this is not true. Then there exist a solution x.t I t0; '0/ of (3.1) with
k'0kr < ı and a t� > t0 such that tk < t� � tkC1 for some fixed k and

kx.t�/k � "; and kx.t I t0; '0/k < "; t 2 Œt0; tk�: (3.79)

From (3.79) and (3.75) for each k D 1; 2; : : :, we have

kx.tk C 0/k D kx.tk/C Ik.x.tk//k � kx.tk/k < "

and hence
kx.tk C 0/k < ":

Set t 00 D inf¹t � t0 W kx.t/k � "º. Since t 00 ¤ tk , k D 1; 2; : : :, then the function
x.t/ is continuous at t D t 00 and

kx.t 00/k D ":

By the similar arguments, we can prove the existence of t 0, t0 < t 0 < t 00, t 0 ¤ tk ,
k D 1; 2; : : : such that kx.t 0/k D "

2 and "
2 < kx.t/k < " for t 2 .t 0; t 00/: (It is enough

to set t 0 D sup¹t � t0 W kx.t/k � "
2º.) Therefore

"

2
� kx.t 00/ � x.t 0/k: (3.80)
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Using (3.76) and (3.68) as in the proof of Theorem 3.53, we can show thatZ t 00

t0

DC(3.1)V.t; x.t//dt � V.t
00; x.t 00// � V.t0 C 0; '0.0//: (3.81)

From (3.81), (3.80), (3.78), (3.76) and condition (3) of Theorem 3.54, we obtain

V.t 00; x.t 00// � V.t0 C 0; '0.0//C
Z t 00

t0

DC(3.1)V.t; x.t// dt

D V.t0 C 0; '0.0//C
Z t 0

t0

DC(3.1)V.t; x.t//dt C

Z t 00

t 0
DC(3.1)V.t; x.t// dt

� V.t0 C 0; '0.0//C
Z t 0

t0

jp1.t/jdt � ı1

Z t 00

t 0
kf .t; xt /k dt

C

Z t 00

t 0
jp2.t/j dt

� V.t0 C 0; '0.0//C
Z 1
t0

Œjp1.t/j C jp2.t/j�dt � ı1kx.t
00/ � x.t 0/k

<
ı1"

4
C
ı1"

4
�
ı1"

2
;

which contradicts (3.74). �

Theorem 3.55. Let the conditions of Theorem 3.53 hold, and let a function b 2 K
exist such that

V.t; x/ � b.kxk/; .t; x/ 2 Œt0;1/ ��: (3.82)

Then the set x D 0 is an uniformly eventually stable set of system (3.1).

Proof. Let " > 0 be given. Choose ı D ı."/ < b�1
�

1
2a."/

�
, 0 < ı < " and

� D �."/ > 0 so that jq.t; x/j � � for .t; x/ 2 Bı . Let the number T D T ."/ > 0
be chosen so that Z 1

t

jp.s/j ds <
b.ı/

�
; t � T: (3.83)

Let t0 � T , '0 2 PCŒŒ�r; 0�; �� W k'0kr < ı and let x.t/ D x.t I t0; '0/ be the
solution of problem (3.1), (3.2). From (3.67)–(3.69), (3.82) and (3.83), we have

a.kx.t I t0; '0/k/ � V.t0 C 0; '0.0//C
Z t

t0

DC(3.1)V.s; x.s// ds

� b.k'0.0/k/C �
Z t

t0

jp.s/jds < 2b.ı/ < a."/

for t � t0. Therefore, kx.t I t0; '0//k < " for t � t0. �
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Since (3.10) is a special case of (3.1), the following theorems follow directly from
Theorems 3.53–3.55.

Theorem 3.56. Assume that:

(1) Conditions H1.1, H1.2, H1.3, H1.9, H1.11, H1.12, H1.13, H2.2 and H2.3 hold.

(2) There exists a function V 2 V0 such that H2.5 and (3.67) hold,

V.t C 0; x C Ik.x// � V.t; x/; x 2 �; t D tk; k D 1; 2; (3.84)

and the inequality

DC(3.10)V.t; x.t// � p.t/q.t; x.t//; t ¤ tk; k D 1; 2; : : :

is valid for t 2 Œt0;1/; x 2 �1; p W Œt0;1/! R, q W Œt0;1/ ��! R:

(3) Conditions (3) and (4) of Theorem 3.53 hold.

Then the set x D 0 is an eventually stable set of system (3.10).

Theorem 3.57. Assume that:

(1) Condition (1) of Theorem 3.56 holds.

(2) There exists a function V 2 V0 such that H2.5, (3.74) and (3.84) hold,

kx C Ik.x/k � kxk; x 2 �; t D tk; k D 1; 2; : : : ;

and the inequality

DC(3.10)V.t; x.t// � jp1.t/j; t ¤ tk; k D 1; 2; : : :

is valid for t 2 Œt0;1/; x 2 �1; p1 W Œt0;1/! R.

(3) For each "1, "2, 0 < "1 < "2 there exist ı1 D ı1."1; "2/ > 0 and T1 D

T1."1; "2/ > 0 such that

DC(3.10)V.t; x.t// � �ı1kf .t; xt /k C jp2.t/j; t ¤ tk; k D 1; 2; : : :

for t � T1, x 2 �1 \ .S"2 n S"1/, p2 W Œt0;1/! R.

(4)
Z 1
t0

jpi .t/jdt <1; i D 1; 2:

Then the set x D 0 is an eventually stable set of system (3.10).

Theorem 3.58. Let the conditions of Theorem 3.56 hold, and let a function b 2 K
exist such that

V.t; x/ � b.kxk/; .t; x/ 2 Œt0;1/ ��:

Then the set x D 0 is an uniformly eventually stable set of system (3.10).
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Example 3.59. Consider the equation:´
Px.t/ D p.t/x.t � r.t//; t ¤ tk

�x.tk/ D ck; tk > 0; k D 1; 2; : : : ;
(3.85)

where t � 0; x 2 RC; 0 < r.t/ � r ; p 2 C ŒRC;R�; ck < 0 and jck C xj < jxj for
k D 1; 2; : : :, 0 < t1 < t2 < � � � and limk!1 tk D1:

The set x D 0 is not stable in the sense of Lyapunov, because it is not an equilibrium
for the equation (3.85).

Let ˛ > 0. Consider the function V.t; x/ D jxj. Then the set

�1 D ¹x 2 PCŒRC; S˛� W jx.s/j � jx.t/j; t � r � s � tº :

For t � 0, t ¤ tk and x 2 �1, we have

DC(3.85)V.t; x.t// D sgn.x.t//Œp.t/x.t � r.t//�

D jp.t/j jx.t � r.t//j � jp.t/j jx.t/j:

Also, for t D tk , k D 1; 2; : : :, we obtain

V.t C 0; x.t/C ck/ D jck C x.t/j < V.t; x.t/:

If
R1

0 jp.t/jdt < 1; then all conditions of Theorem 3.56 are satisfied, and the set
x D 0 is an eventually stable set with respect to (3.85).

Eventual boundedness

Consider the system of impulsive functional differential equations with variable im-
pulsive perturbations (3.18). Let '0 2 PCŒŒ�r; 0�;Rn�. Denote by x.t/ D x.t I t0; '0/

the solution of system (3.18) satisfying the initial conditions (3.19).

Definition 3.60. The solutions of (3.18) are said to be:

(a) eventually equi-bounded, if

.8˛> 0/.9T D T .˛/ > 0/.8t0 � T /.9ˇ D ˇ.t0; ˛/ > 0/

.8'0 2 PCŒŒ�r; 0�;Rn� W k'0kr < ˛/.8t � t0/ W kx.t I t0; '0/k < ˇI

(b) uniformly eventually bounded, if the number ˇ in (a) is independent of t0 2 R.

The proofs of the next theorems are similar to the proofs of Theorems 3.53 and 3.55.
Piecewise continuous Lyapunov functions V W Œt0;1/ �Rn ! RC, V 2 V0 are used.
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Theorem 3.61. Let the conditions of Theorem 3.53 hold for� � Rn, and a.u/!1
as u!1.

Then the solutions of system (3.18) are eventually equi-bounded.

Theorem 3.62. Let the conditions of Theorem 3.61 hold, and let a function b 2 K
exist such that

V.t; x/ � b.kxk/; .t; x/ 2 Œt0;1/ �Rn:

Then the solutions of system (3.18) are uniformly eventually bounded.

The next results for the impulsive system of functional differential equations (3.24)
follow directly from Theorem 3.61 and Theorem 3.62.

Theorem 3.63. Let the conditions of Theorem 3.56 hold for� � Rn, and a.u/!1
as u!1.

Then the solutions of system (3.24) are eventually equi-bounded.

Theorem 3.64. Let the conditions of Theorem 3.63 hold, and let a function b 2 K
exist such that

V.t; x/ � b.kxk/; .t; x/ 2 Œt0;1/ �Rn:

Then the solutions of system (3.24) are uniformly eventually bounded.

Remark 3.65. As in the continuous case [223], similar definitions apply for eventual
stability and boundedness with respect to sets of a sufficiently general type.

3.5 Practical stability

In the study of Lyapunov stability, an interesting set of problems deals with bringing
sets close to a certain state, rather than the state x D 0. The desired state of a system
may be unstable in sense of Lyapunov and yet a solution of the system may oscillate
sufficiently near this state that its performance is acceptable. Such considerations led to
the notion of practical stability. The main results in this prospect are due to Martynyuk
and his collaborators [131, 132, 155]. See, also [89, 133] and the references cited
therein.

In this section, we shall use piecewise continuous vector Lyapunov functions to
study practical stability of impulsive functional differential systems.

Let t0 2 R, r > 0, � be a bounded domain in Rn containing the origin, and
kxk D .

Pn
iD1 x

2
i /

1
2 be the norm of the element x 2 Rn. Consider the system of im-

pulsive functional differential equations (3.10). Let '0 2 PCŒŒ�r; 0�; ��. Denote by
x.t I t0; '0/ the solution of system (3.10), satisfying the initial conditions (3.2).

We shall give the following definitions of practical stability of system (3.10).
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Definition 3.66. The system (3.10) is said to be:

(a) practically stable with respect to .�; A/, if given .�; A/ with 0 < � < A, we
have that k'0kr < � implies kx.t I t0; '0/k < A, t � t0 for some t0 2 R;

(b) uniformly practically stable with respect to .�; A/, if (a) holds for every t0 2 R;

(c) practically asymptotically stable with respect to .�; A/, if (a) holds and
limt!1kx.t I t0; '0/k D 0;

(d) practically unstable with respect to .�; A/, if (a) does not hold.

Together with system (3.10) we shall consider the system (1.32).

In the successive investigations, we shall use piecewise continuous auxiliary vector
functions V W Œt0;1/ � � ! Rm

C
; V D col.V1; : : : ; Vm/ such that Vj 2 V0, j D

1; 2; : : : ; m and the comparison principle.

Theorem 3.67. Assume that:

(1) The conditions of Theorem 1.23 and H2.2, H2.3 hold.

(2) 0 < � < A is given and SA � �.

(3) F.t; 0/ D 0 for t 2 Œt0;1/.

(4) Jk.0/ D 0, k D 1; 2; : : : :

(5) There exist functions a; b 2 K such that

a.kxk/ � L0.t; x/ � b.kxk/; .t; x/ 2 Œt0;1/ ��; (3.86)

where L0.t; x/ D
Pm
iD1 Vi .t; x/.

(6) b.�/ < a.A/.

Then, the practical stability properties of the system (1.32) with respect to .b.�/; a.A//
imply the corresponding practical stability properties of the system (3.10) with respect
to .�; A/.

Proof. We shall first prove practical stability of (3.10). Suppose that (1.32) is practi-
cally stable with respect to .b.�/; a.A//. Then, we have that

mX
iD1

ui0 < b.�/ implies
mX
iD1

uCi .t I t0; u0/ < a.A/; t � t0 (3.87)

for some given t0 2 R, where u0 D .u10; : : : ; um0/
T and the maximal solution

uC.t I t0; u0/ of (1.32) is defined in the interval Œt0;1/.
Setting u0 D V.t0 C 0; '0.0//, we get by Theorem 1.23,

V.t; x.t I t0; '0// � u
C.t I t0; V .t0 C 0; '0.0/// for t � t0: (3.88)
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Let
k'0kr < �: (3.89)

Then, from (3.86) and (3.89), it follows

L0.t0 C 0; '0.0// � b.k'0.0/k/ � b.k'0kr/ < b.�/

which due to (3.87) implies

mX
iD1

uCi .t I t0; V .t0 C 0; '0.0/// < a.A/; t � t0: (3.90)

Consequently, from (3.86), (3.88) and (3.90), we obtain

a.kx.t I t0; '0/k/ � L0.t; x.t I t0; '0//

�

mX
iD1

uCi .t I t0; V .t0; '0.0/// < a.A/; t � t0:

Hence, kx.t I t0; '0/k < A, t � t0 for the given t0 2 R, which proves the practical
stability of (3.10).

Suppose now, that (1.32) is uniformly practically stable with respect to .b.�/; a.A//.
Therefore, we have that

mX
iD1

ui0 < b.�/ implies
mX
iD1

uCi .t I t0; u0/ < a.A/; t � t0 (3.91)

for every t0 2 R.
We claim that k'0kr < � implies kx.t I t0; '0/k < A, t � t0 for every t0 2 R. If

the claim is not true, there exists t0 2 R, a corresponding solution x.t I t0; '0/ of (3.10)
with k'0kr < �, and t� > t0 such that,

kx.t�I t0; '0/k � A; kx.t I t0; '0/k < A; t0 � t � tk;

where t� 2 .tk; tkC1� for some k. Then, due to H1.9 and condition (5) of Theo-
rem 1.23, we can find t0 2 .tk; t�� such that

kx.t0I t0; '0/k � A and x.t0I t0; '0/ 2 �: (3.92)

Hence, setting u0 D V.t0; '0.t
0� tk//, since all the conditions of Theorem 1.23 are

satisfied, we get

V.t; x.t I t0; '0// � u
C.t I t0; V .t0; '0.t

0
� tk/// for t0 � t � t0: (3.93)
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From (3.92), (3.86), (3.93) and (3.91), it follows that

a.A/ � a.kx.t0I t0; '0/k/ � L0.t
0; x.t I t0; '0//

�

mX
iD1

uCi .t
0
I t0; V .t0; '0.t

0
� tk/// < a.A/:

The contradiction obtained proves that (3.10) is uniformly practically stable. �

Remark 3.68. In Theorem 3.67, we have used the function L0.t; x/ D
Pm
iD1 Vi .t; x/

as a measure and, consequently we need to modify the definition of practical sta-
bility of (1.32) as follows: for example, (1.32) is practically stable with respect to
.b.�/; a.A// if (3.87) is satisfied for some given t0 2 R. We could use other conve-
nient measures such as

L0.t; x/ D max
1�i�m

Vi .t; x/;

L0.t; x/ D

mX
iD1

diVi .t; x/;

where d 2 Rm
C

, or
L0.t; x/ D Q.V.t; x//;

whereQ W Rm
C
! RC andQ.u/ is non-decreasing in u, and appropriate modifications

of practical stability definitions are employed for the system (3.86).

The following example will demonstrate Theorem 3.67.

Example 3.69. Consider the system8̂̂<̂
:̂

Px.t/ D n.t/y.t/Cm.t/x.t/Œx2.t � h/C y2.t � h/�; t ¤ tk; t � 0

Py.t/ D �n.t/x.t/Cm.t/y.t/Œx2.t � h/C y2.t � h/�; t ¤ tk; t � 0

�x.tk/ D ckx.tk/; �y.tk/ D dky.tk/ ; k D 1; 2; : : : ;

(3.94)

where x; y 2 R; h > 0; the functions n.t/ and m.t/ are continuous in RC; �1 <
ck � 0, �1 < dk � 0, k D 1; 2; : : :; 0 < t1 < t2 < � � � ; limk!1 tk D1.

Let ²
x.s/ D '1.s/; s 2 Œ�h; 0�
y.s/ D '2.s/; s 2 Œ�h; 0�;

where the functions '1 and '2 are continuous in Œ�h; 0�.
Choose

V.t; x; y/ D x2
C y2

D �2:

Then

�1 D
®
col.x.t/; y.t// 2 PCŒRC;R2� W �2.s/ � �2.t/; t � h � s � t

¯
; (3.95)
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and for t � 0, t ¤ tk , .x; y/ 2 �1, we have

DC(3.94)V.t; x.t/; y.t// D 2m.t/x2.t/�2.t � h/C 2m.t/y2.t/�2.t � h/

� 2m.t/V 2.t; x.t/; y.t//:

Also,

V.tk C 0; x.tk/C ckx.tk/; y.tk/C dky.tk// D .1C ck/
2x2.tk/C .1C dk/

2y2.tk/

� V.tk; x.tk/; y.tk//; k D 1; 2; : : : :

Consider the comparison system8̂̂<̂
:̂

Pu.t/ D 2m.t/u2.t/; t ¤ tk; t � 0

u.0/ D u0

u.tk C 0/ D u.tk/; k D 1; 2; : : : ;

(3.96)

where u 2 RC and u0 D '
2
1.0/C '

2
2.0/ D �

2.0/.
The general solution of the system (3.96) is given by

u.t/ D
�
u�1

0 � 2
Z t

0
m.s/ ds

��1
: (3.97)

It is clear that the trivial solution of (3.96) is stable ifm.t/ � 0; t � 0. Ifm.t/ > 0,
t � 0 , then the trivial solution of (3.96) is stable when the integralZ t

0
m.s/ ds (3.98)

is bounded and unstable when (3.98) is unbounded.
Let A D 2�. We can take a.u/ D b.u/ D u2. Suppose that

R t
0 m.t/ dt D ˇ > 0.

It therefore follows, from (3.97), that the system (3.96) is practically stable if ˇ � 3
8�2

and practically unstable if ˇ > 3
8�2 .

Hence, we get, by Theorem 3.67, that the system (3.94) is practically stable if ˇ �
3

8�2 and practically unstable if ˇ > 3
8�2 .

In Example 3.69, we have used the single Lyapunov function V.t; x/. In this case
the function L0.t; x/ D V.t; x/. To demonstrate the advantage of employing several
Lyapunov functions, let us consider the following example.

Example 3.70. Consider the system8̂̂̂̂
<̂̂
ˆ̂̂̂:

Px.t/ D e�tx.t � h.t//C y.t � h.t// sin t � .x3
C xy2/ sin2 t; t ¤ tk

Py.t/ D x.t � h.t// sin t C e�ty.t � h.t// � .x2y C y3/ sin2 t; t ¤ tk

�x.t/ D akx.t/C bky.t/; t D tk; k D 1; 2; : : :

�y.t/ D bkx.t/C aky.t/; t D tk; k D 1; 2; : : : ;

(3.99)
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where t � 0I 0 < h.t/ < hI ak D 1
2

�p
1C ck C

p
1C dk � 2

�
, bk D 1

2

�p
1C ck �p

1C dk
�
; �1 < ck � 0; �1 < dk � 0; k D 1; 2; : : : I 0 < t1 < t2 < � � � and

limk!1 tk D1.
Suppose that we choose a single Lyapunov function V.t; x; y/ D x2Cy2. Then the

set �1 is given by (3.95). Hence, using the inequality 2jabj � a2 C b2 and observing
that .x2 C y2/2 sin2 t � 0, we get

DC(3.99)V.t; x.t/; y.t// D 2x.t/ Px.t/C 2y.t/ Py.t/

� 2
�
je�t j C j sin t j

�
V.t; x.t/; y.t//;

for t � 0, t ¤ tk and .x; y/ 2 �1.
Also,

V.tk C 0; x.tk/C akx.tk/C bky.tk/; y.tk/C bkx.tk/C aky.tk//

D Œ.1C ak/x.tk/C bky.tk/�
2
C Œ.1C ak/y.tk/C bkx.tk/�

2

� V.tk; x.tk/; y.tk//C 2jck � dkjV.tk; x.tk/; y.tk//; k D 1; 2; : : : :

It is clear that ´
Pu.t/ D 2

�
je�t j C j sin t j

�
u.t/; t ¤ tk; t � 0

�u.tk/ D 2jck � dkju.tk/; k D 1; 2; : : : ;

where u 2 RC, is not practically stable and, consequently we cannot deduce any
information about the practical stability of the system (3.99) from Theorem 3.67, even
though the system (3.99) is practically stable [132].

Now, let us take the function V D .V1; V2/, where the functions V1 and V2 are
defined by V1.t; x; y/ D

1
2.x C y/

2, V2.t; x; y/ D
1
2.x � y/

2 so that L0.t; x; y/ D

x2 C y2. This means that we can take a.u/ D b.u/ D u2. Then

�1 D

°
.x; y/ 2 PCŒRC;R2

C�W V.s; x.s/; y.s// � V.t; x.t/; y.t//; t � h � s � t
±
:

Moreover, for t � 0, the inequalities

DC(3.99)V.t; x.t/; y.t// � F.t; V .t; x.t/; y.t///; .x; y/ 2 �1; t ¤ tk; k D 1; 2; : : : ;

V .tkC 0; x.tk/C�x.tk/; y.tk/C�y.tk// �  k.V .tk; x.tk/; y.tk///; k D 1; 2; : : : ;

are satisfied with F D .F1; F2/, where

F1.t; u1; u2/ D 2.e�t C sin t /u1;

F2.t; u1; u2/ D 2.e�t � sin t /u2;

and  k.u/ D uC Cku; k D 1; 2; : : :, Ck D
�
ck 0
0 dk

�
.



118 3 Extensions of stability and boundedness theory

It is obvious that the functions F and  k satisfy the conditions of Theorem 1.23 and
the comparison system8̂<̂

:
Pu1.t/ D 2

�
e�t C sin t

�
u1.t/; t ¤ tk

Pu2.t/ D 2
�
e�t � sin t

�
u2.t/; t ¤ tk

�u1.tk/ D cku1.tk/; �u2.tk/ D dku2.tk/; k D 1; 2; : : :

is practically stable for any 0 < � < A, which satisfy, for example, exp.e�t0 C 2/ <
.A
�
/2; t0 2 RC [132]. Hence, Theorem 3.67 implies that the system (3.99) is also

practically stable.

We have assumed, in Theorem 3.67, stronger requirements on L0 only to unify all
the practical results in one theorem. This puts burden on the comparison system (3.86).
However, to obtain only non-uniform practical stability criteria, we could weaken cer-
tain assumptions of Theorem 3.67 as in the next result.

Theorem 3.71. Assume that the conditions of Theorem 3.67 hold with the following
changes in conditions (5) and (6):

.5�/ There exist functions a 2 K and b.t; �/ 2 K, such that

a.kxk/ � L0.t; x/ � b.t; kxk/; .t; x/ 2 Œt0;1/ ��:

.6�/ b.t0; �/ < a.A/ for some t0 2 R.

Then, the uniform or non-uniform practical stability properties of the system (1.32)
with respect to .b.t0; �/; a.A// imply the corresponding non-uniform practical stabil-
ity properties of the system (3.10) with respect to .�; A/.

We shall next consider a result which gives practical asymptotic stability of (3.10).
We will use two Lyapunov like functions.

Theorem 3.72. Assume that:

(1) Conditions H2.2, H2.3 hold.

(2) 0 < � < A is given and SA � �.

(3) The functions V;W 2 V0 and a; c 2 K, b.t; :/ 2 K are such that

a.kxk/ � L0.t; x/ � b.t; kxk/; .t; x/ 2 Œt0;1/ ��; (3.100)

c.kxk/e � W.t; x/; .t; x/ 2 Œt0;1/ ��; (3.101)

where e 2 Rm
C

, e D .1; 1; : : : ; 1/,

V.tk C 0; x.tk/C Ik.x.tk/// � V.tk; x.tk//; k D 1; 2; : : : ; (3.102)

W.tk C 0; x.tk/C Ik.x.tk/// � W.tk; x.tk//; k D 1; 2; : : : ; (3.103)
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and the inequality

DC(3.10)V.t; x.t// � �d.L1.t; x.t///e; t ¤ tk; k D 1; 2; : : : ; (3.104)

is valid for t � t0; x 2 �1, L1.t; x/ D
Pm
iD1Wi .t; x/; d 2 K.

(4) The function DC(3.10)W.t; x.t// is bounded in G.

(5) b.t0; �/ < a.A/ for some t0 2 R.

Then the system (3.10) is practically asymptotically stable with respect to .�; A/.

Proof. By Theorem 3.67 with F.t; u/ � �d.u/e and  k.u/ � u, t � t0, k D
1; 2; : : :, it follows because of conditions for the function W 2 V0 that the system
(3.10) is practically stable. Hence, it is enough to prove that every solution x.t/ D
x.t I t0; '0/ with k'0kr < � satisfies limt!1kx.t I t0; '0/k D 0.

Suppose that this is not true. Then there exist '0 2 PCŒŒ�r; 0�; ��: k'0kr < �,
ˇ > 0, 
 > 0 and a sequence ¹�kº1kD1 2 Œt0;1/ such that for k D 1; 2; : : : the
following inequalities are valid:

�k � �k�1 � ˇ; kx.�kI t0; '0/k � 
:

From the last inequality and (3.101), we get

W.�k; x.�kI t0; '0// � c.
/e; k D 1; 2; : : : : (3.105)

From condition (4) of Theorem 3.72, it follows that there exists a constantM 2 RC
such that

sup¹DC(3.10)W.t; x.t// W t 2 Gº �Me: (3.106)

By (3.103), (3.105) and (3.106), we obtain

W.t; x.t I t0; '0// � W.�k; x.�kI t0; '0//C

Z t

�k

DC(3.10)W.s; x.sI t0; '0// ds

D W.�k; x.�kI t0; '0// �

Z �k

t

DC(3.10)W.s; x.sI t0; '0// ds

� c.
/e �Me.�k � t / � c.
/e �Me" >
c.
/e

2

for t 2 Œ�k � "; �k�, where 0 < " < min¹ˇ; c.
/2M º.
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From the estimate obtained, making use of (3.104) and (3.102), we conclude that
for �R 2 ¹�kº1kD1, we have

0 � V.�R; x.�RI t0; '0//

� V.t0 C 0; '0.0//C
Z �R

t0

DC(3.10)V.s; x.sI t0; '0// ds

� V.t0 C 0; '0.0//C
RX
kD1

Z �k

�k�"

DC(3.10)V.s; x.sI t0; '0// ds

� V.t0 C 0; '0.0// �
RX
kD1

Z �k

�k�"

d.L1.s; x.sI t0; '0/// ds

� V.t0 C 0; '0.0// �Rd
�mc.
/

2

�
"e;

which contradicts (3.100) for large R.
Thus, limt!1kx.t I t0; '0/k D 0. �

Corollary 3.73. In Theorem 3.72, the following choices of W.t; x/ are admissible to
yield the same conclusion:

(i) W.t; x/ D kxke provided that f is bounded on .t0;1/ � SA;

(ii) W.t; x/ D V.t; x/.

3.6 Lipschitz stability

In the present section, Lipschitz stability of the zero solution of a system of impulsive
functional differential equations will be considered. For nonlinear systems of differ-
ential equations without impulses, this notion was introduced by Dannan and Elaydi
(1986) [80].

Consider the system of impulsive functional differential equations (3.10) for � �
S�, � D const > 0. Let '0 2 PCŒŒ�r; 0�; S��. Denote by x.t I t0; '0/ the solution of
system (3.10), satisfying the initial conditions (3.2).

Definition 3.74. The zero solution x.t/ � 0 of system (3.10) is said to be uniformly
Lipschitz stable, if

.9M > 0/.9ı > 0/.8'0 2 PCŒŒ�r; 0�; S�� W k'0kr < ı/

.8t � t0/ W kx.t I t0; '0/k �Mk'0kr :
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Together with system (3.10), we shall consider the comparison equation´
Pu.t/ D g.t; u/; t � t0; t ¤ tk

�u.tk/ D Bk.u.tk//; tk > t0; k D 1; 2; : : : ;
(3.107)

where g W Œt0;1/ �RC ! R; Bk W RC ! R; k D 1; 2; : : : .
Let u0 2 RC. Denote by uC.t I t0; u0/ the maximal solution of system (3.107),

satisfying the initial condition uC.t0/ D u0.

Definition 3.75. The zero solution of equation (3.107) is said to be:

(a) uniformly Lipschitz stable, if

.9M > 0/.9ı > 0/.8u0 2 RC W u0 < ı/

.8t � t0/ W u
C.t I t0; u0/ �Mu0I

(b) uniformly globally Lipschitz stable, if

.9M > 0/.8u0 2 RC/.8t � t0/ W

uC.t I t0; u0/ �Mu0:

Introduce the following conditions:

H3.14. g.t; 0/ D 0; t 2 Œt0;1/.

H3.15. Bk 2 C ŒRC;R�, Bk.0/ D 0 and  k.u/ D uC Bk.u/;  k W Œ0; �0/! Œ0; �/,
k D 1; 2; : : : ; are non-decreasing in u, �0 D const > 0.

H3.16. For any x 2 S� and any k D 1; 2; : : :, the following inequalities are valid:
kx C Ik.x/k �  k.kxk/.

H3.17. The zero solution of equation (3.107) is uniformly Lipschitz stable.

In the proofs of the main results, we shall use the piecewise continuous auxiliary
scalar functions V W Œt0;1/ � S� ! RC; such that V 2 V0, and the comparison prin-
ciple.

The main results are obtained by means of Theorem 1.24 for � � S�, and by the
following lemma.

Lemma 3.76 ([31]). Assume that:

(1) The functions u, m satisfy u; m 2 PCŒŒt0;1/;RC�.

(2) c0 D const > 0; ˇk D const � 0; k D 1; 2; : : : .

(3) The function p 2 C ŒRC;RC� is non-decreasing in RC and positive in .0;1/.
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(4) For t � t0, the following inequality is valid:

u.t/ � c0 C

Z t

t0

m.s/p.u.s// ds C
X

t0<tk<t

ˇku.tk/:

(5)  k D
Z u

ck

ds

p.s/
; k D 1; 2; : : : ; where ck D .1C ˇk/ �1

k�1

� Z tk

tk�1

m.s/ ds
�

.

(6)  0 D

Z u

u0

ds

p.s/
; u � u0 > 0:

Then

u.t/ �  �1
k

� Z t

tk

m.s/ ds
�
; tk�1 < t � tk; k D 1; 2; : : : :

Theorem 3.77. Assume that:

(1) Conditions (1), (2) and (4) of Theorem 1.24 and H2.2, H2.3, H3.14–H3.17 hold.

(2) For t � t0; x 2 �1 and for sufficiently small � > 0 the inequality

kx.t/C �f .t; xt /k � kx.t/k C �g.t; kx.t/k/ C ".�/; t ¤ tk; k D 1; 2; : : :

is valid, where ".�/
�
! 0 as � ! 0C:

Then the zero solution of system (3.10) is uniformly Lipschitz stable.

Proof. Let �� D min.�; �0/. From condition H3.17, it follows that there exist con-
stants M > 0 and ı > 0 .Mı < ��/ such that for 0 � u0 < ı and t � t0 we
have

uC.t I t0; u0/ �Mu0: (3.108)

We shall prove that kx.t I t0; '0/k �Mk'0kr for k'0kr < ı and t � t0.
Suppose that this is not true. Then, there exist a solution x.t/ D x.t I t0; '0/ of

system (3.10) for which k'0kr < ı and t� 2 .tk; tkC1� for some positive integer k
such that kx.t�/k > Mk'0kr and kx.t/k �Mk'0kr for t0 � t � tk .

From condition H3.16, it follows that

kx.tk C 0/k D kx.tk/C Ik.x.tk//jj �  k.kx.tk/k/

�  k.Mk'0kr/ �  k.Mı/ �  k.�
�/ < �:

From the above estimate, it follows that there exists t0; tk < t0 � t�; such that

Mk'0kr < kx.t
0/k < � and kx.t/k < �; t0 � t � t

0: (3.109)
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Introduce the notations V.t; x.t// D kx.t/k and u0 D k'0kr . Since condition (2)
of Theorem 3.77 is satisfied, then for x 2 �1, t 2 Œt0; t0�, t ¤ tj , j D 1; 2; : : : ; k, the
following inequalities are valid:

DC(3.10)V.t; x.t// D lim
�!0C

sup
1
�

�
kx.t C �/k � kx.t/k

�
� lim
�!0C

sup
1
�

�
kx.t C �/k C �g.t; kx.t/k/C ".�/ � kx.t/C �f .t; xt /k

�
� g.t; kx.t/k/C lim

�!0C

".�/

�
C lim
�!0C

k
1
�
Œx.t C �/ � x.t/� � f .t; xt /k

D g.t; kx.t/k/ D g.t; V .t; x.t///:

From condition H3.16 for j D 1; 2; : : : ; k, we derive the inequalities

V.tj C 0; x.tj C 0// D kx.tj C 0/k D kx.tj /C Ij .x.tj //k

�  j .kx.tj /k/ D  j .V .tj ; x.tj ///:

Since
V.t0 C 0; '0.0// D k'0.0/k � k'0kr D u0;

then, from Theorem 1.24, there follows the estimate

kx.t/k D V.t; x.t// � uC.t I t0; u0/; t0 � t � t
0: (3.110)

From (3.108), (3.109) and (3.110), we are led to the inequalities

Mk'0kr < kx.t
0/k D V.t0; x.t0// � uC.t0I t0; u0/

�Mu0 DMk'0kr :

The contradiction obtained shows that

kx.t I t0; '0/k �Mk'0kr

for k'0kr < ı and t � t0. �

Theorem 3.78. Assume that:

(1) Condition (1) of Theorem 3.77 holds.

(2) For t � t0 and x 2 �1, the inequality

Œx.t/; f .t; xt /�C � g.t; kx.t/k/; t ¤ tk; k D 1; 2; : : :

is valid, where Œx; y�C D lim�!0C sup 1
�
Œkx C �yk � kxk�; x; y 2 Rn.

Then the zero solution of system (3.10) is uniformly Lipschitz stable.
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The proof of Theorem 3.78 is analogous to the proof of Theorem 3.77.

Consider the system of impulsive functional differential equations (3.24). Let '0 2

PCŒŒ�r; 0�;Rn�. Denote by x.t I t0; '0/ the solution of system (3.24), satisfying the
initial conditions (3.19).

Definition 3.79. The zero solution x.t/ � 0 of system (3.24) is said to be uniformly
globally Lipschitz stable, if

.9M > 0/.8'0 2 PCŒŒ�r; 0�;Rn�/.8t � t0/ W

kx.t I t0; '0/k �Mk'0kr :

Results on the uniform global Lipschitz stability of the zero solution of system
(3.24) can be obtained, if in Theorem 3.77 and in Theorem 3.78, the set S� is replaced
by Rn and the condition H3.17 is replaced by the condition:

H3.17�. The zero solution of equation (3.107) is uniformly globally Lipschitz stable.

Theorem 3.80. Assume that:

(1) Conditions (1), (2), and (4) of Theorem 1.24 and H2.2, H2.3, H3.14, H3.15,
H3.16, H3.17� for x 2 Rn hold.

(2) For t � t0; x 2 �1 and for sufficiently small � > 0, the inequality

kx.t/C �f .t; xt /k � kx.t/k C �g.t; kx.t/k/ C ".�/; t ¤ tk; k D 1; 2; : : :

is valid, where ".�/
�
! 0 as � ! 0C:

Then the zero solution of system (3.24) is uniformly globally Lipschitz stable.

Theorem 3.81. Suppose that condition (1) of Theorem 3.80, and condition (2) of The-
orem 3.78 hold.

Then the zero solution of system (3.24) is uniformly globally Lipschitz stable.

Introduce the following conditions:

H3.18. The function p 2 C ŒRC;RC� is non-decreasing in RC, positive in .0;1/ and
submultiplicative, i.e.

p.�u/ � p.�/p.u/ for � > 0; u > 0:

H3.19. p.�u/ � �.�/p.u/ for � > 0; u > 0, where �.�/ > 0 for � > 0.

H3.20. There exists a function m 2 C Œ.t0;1/;RC� such that the inequality

kf .t; xt /k � m.t/p.kxk/

is valid for .t; xt / 2 Œt0;1/ � PCŒŒ�r; 0�;Rn�.
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H3.21. For x 2 Rn and any k D 1; 2; : : : the inequalities

kIk.x/k � ˇkkxk

are valid, where ˇk D const > 0.

Theorem 3.82. Assume that:
(1) Conditions H1.12, H1.13, H2.2, H2.3, H2.6–H2.8, H2.18, H3.18–H3.21 hold.
(2)  k D

R u
ck

ds
p.s/

, where ck D .1 C ˇk/ �1
k�1

� R tk
tk�1

m.s/ ds
�
; k D 1; 2; : : : and

 0 D
R u
c

ds
p.s/

; u � c > 0:
(3)  k.1/ D1; k D 0; 1; 2; : : : :
(4) For each k D 0; 1; 2; : : : ; t 2 .tk; tkC1� and '0 2 PCŒŒ�r; 0�;Rn� the following

inequalities are valid:

 �1
k

�p.k'0kr/

k'0kr

Z t

tk

m.s/ ds
�
�M; 0 < M D const:

Then the zero solution of system (3.24) is uniformly globally Lipschitz stable.

Proof. For tk < t � tkC1; k D 0; 1; 2; : : : the function x.t/ D x.t I t0; '0/ satisfies the
integral equation

x.t/ D x.tk/C Ik.x.tk//C

Z t

tk

f .s; xs/ ds:

From this, we obtain inductively

x.t/ D x.t0 C 0/C
X

t0<tk<t

Ik.x.tk//C

Z t

t0

f .s; xs/ ds; t > t0:

From conditions H3.18–H3.21 and the above equality, we get to the inequalities

kx.t I t0; '0/k � k'0.0/k C
X

t0<tk<t

kIk.x.tk//k C

Z t

t0

kf .s; xs/k ds

� k'0kr C
X

t0<tk<t

ˇkkx.tk/k C

Z t

t0

m.s/p.kx.s/k/ ds;

from which we obtain the estimates
kx.t I t0; '0/k

k'0kr

� 1C
X

t0<tk<t

ˇk
kx.tkI t0; '0/k

k'0kr
C

Z t

t0

m.s/

k'0kr
p
�
k'0kr

kx.sI t0; '0/k

k'0kr

�
ds

� 1C
X

t0<tk<t

ˇk
kx.tkI t0; '0/k

k'0kr
C

Z t

t0

p.k'0kr/

k'0kr
m.s/p

�
kx.sI t0; '0/k

k'0kr

�
ds;

for t � t0.



126 3 Extensions of stability and boundedness theory

To the last inequality, we apply Lemma 3.76 and we are led to the inequality

kx.t I t0; '0/k � k'0kr 
�1
k

�p.k'0kr/

k'0kr

Z t

t0

m.s/ ds
�
; t 2 .tk; tkC1�; k D 0; 1; 2; : : : :

From the last inequality and condition (4) of Theorem 3.82, it follows that kx.t I t0;
'0/k �Mk'0kr for '0 2 PCŒŒ�r; 0�;Rn� and t � t0. �

Example 3.83. Consider the linear impulsive system of functional differential equa-
tions: ´

Px.t/ D Ax.t/C Bx.t � r.t//; t ¤ tk; t � 0

�x.tk/ D Ckx.tk/; tk > t0; k D 1; 2; : : : ;
(3.111)

where x 2 Rn; 0 < r.t/ � r ; A;B and Ck; k D 1; 2; : : : are constant matrices of
type .n � n/; 0 < t1 < t2 < � � � and limk!1 tk D1.

Consider the Lyapunov function V.t; x/ D kxk. Then, the set �1 is

�1 D ¹x 2 PCŒ.0;1/;Rn� W kx.s/k � kx.t/k; t � r � s � tº :

For x 2 �1 and for t � 0; t ¤ tk; k D 1; 2; : : :, we have

Œx.t/; Ax.t/C Bx.t � r.t//�C � �.AC B/kx.t/k;

where �.A C B/ is Lozinskii’s “logarithmic norm” of the matrix A C B defined by
the equality

�.AC B/ D lim
�!0C

sup
1
�
ŒkE C �.AC B/k1 � 1�;

kGk1 D supkxk�1 jGxj is the norm of the .n � n/-matrix G and E is unit .n � n/-
matrix.

If �.AC B/ � 0 and there exist constants dk > 0; k D 1; 2; : : : such that

kE C Ckk1 � dk;

1Y
kD1

dk <1;

then the zero solution of system´
Pu.t/ D �.AC B/u.t/; t � 0; t ¤ tk

�u.tk/ D .dk � 1/u.tk/; tk > 0; k D 1; 2; : : :

is uniformly globally Lipschitz stable. According to Theorem 3.81, the zero solution
of system (3.111) is uniformly globally Lipschitz stable.
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Example 3.84. Gopalsamy [91] proposed a model of a single-species population ex-
hibiting the so-called Allee effect in which the per-capita growth rate is a quadratic
function of the density and subject to delays. In particular, he studied the equation

PN.t/ D N.t/ŒaC bN.t � r/ � cN 2.t � r/�; t � 0; (3.112)

where a; c 2 .0;1/I b 2 R; and r 2 Œ0;1/.
We consider the following model:´

PN.t/ D N.t/Œa.t/C b.t/N.t � r.t// � c.t/N 2.t � r.t//�; t ¤ tk; t � 0

�N.tk/ D N.tk C 0/ �N.tk/ D Ik.N.tk//; k D 1; 2; : : : ;
(3.113)

where 0 < r.t/ � r I a; b; c are continuous functions, a and c are positive functions;
0 < t1 < t2 < � � � ; limk!1 tk D 1 and Ik W RC ! R are functions which
characterize the magnitude of the impulse effect at the moments tk .

Let � W Œ�r; 0� ! RC be a continuous function. The initial conditions for (3.113)
are assumed to be as follows:

N.s/ D �.s/ � 0 for � r � s < 0; N.0/ > 0:

Define the function V.t; N / D jN j: Then, the set

�1 D ¹N 2 PCŒ.0;1/;RC� W jN.s/j � jN.t/j; t � r � s � tº :

Let the following conditions hold:
(1) There exist functions p 2 C ŒRC;R� and q 2 K such that

ŒN.t/; N.t/.a.t/C b.t/N.t � r.t// � c.t/N 2.t � r.t///�C � p.t/q.N.t//;

for t � 0, N 2 �1 and jN.t/j < �; � D const > 0.
(2) There exist functions Bk 2 K and  k.N / D N CBk.N /,  k W Œ0; �0/! Œ0; �/,

k D 1; 2; : : : such that

jN C Ik.N /j �  k.jN j/; k D 1; 2; : : :

for jN j < �.
(3) For any h 2 .0; �0/, the inequalityZ tkC1

tk

p.s/ ds C

Z  k.h/

h

ds

q.s/
� 0; k D 1; 2; : : :

is valid.
Then, the zero solution of the system´

PN.t/ D p.t/q.N.t//; t � 0; t ¤ tk
N.tk C 0/ D  k.N.tk//; tk > t0; k D 1; 2; : : :

is uniformly Lipschitz stable. According to Theorem 3.78, the zero solution of system
(3.113) is uniformly Lipschitz stable.



128 3 Extensions of stability and boundedness theory

3.7 Stability in terms of two measures

In this section, we shall consider a more general case and develop the stability theory
of the impulsive functional differential equations in terms of two measures. The pri-
orities of this approach are useful and well known in the investigations on the stability
and boundedness of the solutions of differential equations, as well as in the general-
izations obtained by this method [131–133].

Consider the system of impulsive functional differential equations (3.10). Let '0 2

PCŒŒ�r; 0�; ��. Denote by x.t I t0; '0/ the solution of system (3.10), satisfying the ini-
tial conditions (3.2).

In the further considerations, we shall use piecewise continuous auxiliary functions
V W Œt0� r;1/��! RC which belong to the class V0 and the comparison principle.

We shall use the following notations:

CK D ¹a 2 C ŒŒt0 � r;1/ �RC;RC� W a.t; �/ 2 K for any fixed t 2 Œt0 � r;1/ º I

� D ¹h 2 V0 W inf
.t;x/

h.t; x/ D 0º:

Definition 3.85. Let h; h0 2 � and define, for ' 2 PCŒŒ�r; 0�;Rn�,8̂<̂
:
h0.t; '/ D sup

�r�s�0
h0.t C s; '.s//

Nh.t; '/ D sup
�r�s�0

h.t C s; '.s//:
(3.114)

Then:

(a) h0 is finer than Nh, if there exist a number ı > 0 and a function � 2 K such that
h0.t; '/ < ı implies Nh.t; '/ � �.h0.t; '//;

(b) h0 is weakly finer than Nh, if there exist a number ı > 0 and a function � 2 CK
such that h0.t; '/ < ı implies Nh.t; '/ � �.t; h0.t; '//.

Definition 3.86. Let h; h0 2 � and V 2 V0. The function V is said to be:

(a) h-positively definite, if there exist a number ı > 0 and a function a 2 K such that
h.t; x/ < ı implies V.t; x/ � a.h.t; x//;

(b) h0-decrescent, if there exist a number ı > 0 and a function b 2 K such that
h0.t; '/ < ı implies V.t C 0; x/ � b.h0.t; '//;

(c) h0-weakly decrescent, if there exist a number ı > 0 and a function b 2 CK such
that h0.t; '/ < ı implies V.t C 0; x/ � b.t; h0.t; '//.

We shall use the following definitions of stability of the system (3.24) in terms of
two different measures, that generalize various classical notions of stability.
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Definition 3.87. Let h; h0 2 � and h0 be defined by (3.114). The system (3.10) is
said to be:

(a) .h0; h/-stable, if

.8t0 2 R/.8" > 0/.9ı D ı.t0; "/ > 0/

.8' 2 PCŒŒ�r; 0�; �� W h0.t0; '/ < ı/.8t � t0/ W h.t; x.t I t0; '// < "I

(b) .h0; h/-uniformly stable, if the number ı in (a) is independent of t0;

(c) .h0; h/-equi-attractive, if

.8t0 2 R/.9ı D ı.t0/ > 0/.8" > 0/.9T D T .t0; "/ > 0/

.8' 2 PCŒŒ�r; 0�; �� W h0.t0; '/ < ı/.8t � t0 C T / W h.t; x.t I t0; '// < "I

(d) .h0; h/-uniformly attractive, if the numbers ı and T in (c) are independent of t0;

(e) .h0; h/-equi-asymptotically stable, if it is .h0; h/-stable and .h0; h/-equi-attrac-
tive;

(f) .h0; h/-uniformly asymptotically stable, if it is .h0; h/-uniformly stable and .h0;

h/-uniformly attractive;

(g) .h0; h/-unstable, if (a) fails to hold.

For a concrete choice of the measures h0 and h, Definition 3.87 is reduced to the
following particular cases:

(1) Lyapunov stability of the zero solution of (3.10), if

h0.t0; '/ D k'kr D sup
t2Œt0�r;t0�

k'.t � t0/k; h.t; x/ D kxk:

(2) stability by part of the variables of the zero solution of (3.10), if

h0.t0; '/ D k'kr ; h.t; x/ D kxkk D

q
x2

1 C � � � C x
2
k
;

x D .x1; : : : ; xn/; 1 � k � n:

(3) Lyapunov stability of the non-null solution x0.t/ D x0.t I t0; �0/ of (3.10), if
h0.t0; '/ D k' � �0kr ; h.t; x/ D kx � x0.t/k.

(4) stability of conditionally invariant set B with respect to the set A, where A �
B � Rn, if

h0.t0; '/ D sup
t2Œt0�r;t0�

d.�.t � t0/; A/; h.t; x/ D d.x; B/;

d being the distance function.
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(5) eventual stability of (3.10), if h.t; x/ D kxk and h0.t0; '/ D k'krC˛.t�t0/; ˛ 2

K and limt!1 ˛.t/ D 0.

Together with the system (3.10), we consider the scalar impulsive differential equa-
tion (3.107). Let u0 2 RC. Denote by uC.t I t0; u0/ the maximal solution of (3.107),
satisfying the initial condition uC.t0/ D u0.

Assume � > 0; h; h0 2 � , h0 is defined by (3.114) and let

S.h; �/ D ¹.t; x/ 2 Œt0 � r;1/ �Rn W h.t; x/ < �ºI

S.h0; �/ D ¹.t; '/ 2 Œt0;1/ � PCŒŒ�r; 0�;Rn� W h0.t; '/ < �º:

Introduce the following conditions:

H3.22. Bk 2 C ŒRC;R�, Bk.0/ D 0 and  k.u/ D u C Bk.u/ are non-decreasing
with respect to u, k D 1; 2; : : : .

H2.23. There exists �0; 0 < �0 < �, such that for x 2 �, h.tk; x/ < �0 implies
h.tk C 0; x C Ik.x// < �; k D 1; 2; : : : .

Theorem 3.88. Assume that:

(1) Conditions (1), (2) and (4) of Theorem 1.24 and H2.2, H2.3, H3.14, H3.22, H3.23
hold.

(2) h; h0 2 � and h0 is finer than Nh; where h0; Nh are defined by (3.114).

(3) For � > 0, there exists V 2 V0 such that H2.5 holds, V W S.h; �/ \ S.h0; �/ !

RC, V is h-positively definite and h0-decrescent,

V.t C 0; x C Ik.x// �  k.V .t; x//; x 2 �; t D tk; t > t0;

and the inequality

DC(3.10)V.t; x.t// � g.t; V .t; x.t///; t ¤ tk

is valid for each t � t0, x 2 �1.

Then the stability properties of the trivial solution of the equation (3.107) imply the
corresponding .h0; h/-stability properties of system (3.10).

Proof. Let us first prove .h0; h/-stability.
Since V is h-positively definite on S.h; �/ \ S.h0; �/, then there exists a function

b 2 K such that
V.t; x/ � b.h.t; x// as h.t; x/ < �: (3.115)

Let 0 < " < �0, t0 2 R be given and suppose that the trivial solution of equation
(3.107) is stable. Then for given b D b."/ > 0, there exists ı0 D ı0.t0; "/ > 0 such
that

uC.t I t0; u0/ < b."/ as 0 � u0 < ı0; t � t0: (3.116)
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We choose now u0 D V.t0 C 0; '.0//. Since V is h0-decrescent, there exist a
number ı1 > 0 and a function a 2 K such that, for h0.t; '// < ı1,

V.t C 0; x/ � a.h0.t; '//: (3.117)

On the other hand h0 is finer than Nh and there exist a number ı2 > 0 and a function
� 2 K such that h0.t0; '/ < ı2 implies

Nh.t0; '/ � �.h0.t0; '//; (3.118)

where ı2 > 0 is such that �.ı2/ < �. Hence, by (3.114), we have´
h.t0 C 0; '.0// � Nh.t0; '/ � �.h0.t0; '// < �.ı2/ < �

h0.t0 C 0; '.0// � h0.t0; '/ < ı2:
(3.119)

Setting ı3 D min.ı1; ı2/. It follows, from (3.115), (3.119) and (3.117), that h0.t0;

'/ < ı3 implies

b.h.t0 C 0; '.0/// � V.t0 C 0; '.0// � a.h0.t0; '//: (3.120)

Choose ı D ı.t0; "/ > 0 such that 0 < ı < ı3, a.ı/ < ı0 and let x.t/ D x.t I t0; '/
to be such solution of system (3.10) that h0.t0; '/ < ı. Then (3.120) shows that
h.t0 C 0; '.0// < ", since ı0 < b."/.

We claim that
h.t; x.t// < " as t � t0:

If it is not true, then there would exists a t� > t0 such that tk < t� � tkC1 for some
fixed integer k and

h.t�; x.t�// � " and h.t; x.t// < "; t0 � t � tk :

Since 0 < " < �0, condition H3.23 shows that

h.tk C 0; x.tk C 0// D h.tk C 0; x.tk/C Ik.x.tk/// < �:

Therefore, there exists t0; tk < t0 � t� such that

" � h.t0; x.t0// < � and h.t; x.t// < �; t0 � t � t
0: (3.121)

Applying now Theorem 1.24 for the interval Œt0; t0� and u0 D V.t0 C 0; '.0//, we
obtain

V.t; x.t I t0; '// � u
C.t I t0; V .t0 C 0; '.0///; t0 � t � t

0: (3.122)

So the implications (3.121), (3.115), (3.122) and (3.116) lead to

b."/ � b.h.t0; x.t0/// � V.t0; x.t0//

� uC.t0I t0; V .t0 C 0; '.0/// < b."/:
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The contradiction, we have already obtained, shows that h.t; x.t// < " for each
t � t0. Therefore, the system (3.10) is .h0; h/-stable.

If we suppose that the trivial solution of (3.107) is uniformly stable, then it is clear
that the number ı can be chosen independently of t0 and thus we get the .h0; h/-
uniform stability of the system (3.10).

Let us suppose next that the trivial solution of (3.107) is equi-asymptotically stable,
which implies that the system (3.10) is .h0; h/-stable. So, for each t0 2 R there exists
a number ı01 D ı01.t0; �/ > 0 such that if h0.t0; '/ < ı01 then h.t; x.t I t0; '// < � as
t � t0.

Let 0 < " < �0 and t0 2 R. The equi-asymptotical stability of the null solution of
the equation (3.107) implies that there exist ı02 D ı02.t0/ > 0 and T D T .t0; "/ > 0
such that for 0 � u0 < ı02 and t � t0 C T the next inequality holds:

uC.t I t0; u0/ < b."/: (3.123)

Choosing u0 D V.t0 C 0; '.0// as before, we find ı03 D ı03.t0/; 0 < ı03 � ı02
such that

a.ı03/ < ı02: (3.124)

It follows, from (3.117) and (3.124), that if h0.t0; '/ < ı03 then

V.t0 C 0; '.0// < a.h0.t0; '// � a.ı03/ < ı02:

In the case, by means of (3.123), we would have

uC.t I t0; V .t0 C 0; '.0/// < b."/; t � t0 C T: (3.125)

Assume ı0 D min.ı01; ı02; ı03/ and let h0.t0; '/ < ı0. Theorem 1.24 shows that
if x.t/ D x.t I t0; '/ is an arbitrary solution of the system (3.10), then the estimate
(3.122) holds for all t � t0 C T . Therefore, we obtain from (3.115), (3.122) and
(3.125) that the inequalities

b.h.t; x.t/// � V.t; x.t// � uC.t I t0; V .t0 C 0; '.0/// < b."/

hold for each t � t0 C T: Hence, h.t; x.t// < " as t � t0 C T which shows that the
system (3.10) is .h0; h/-equi-attractive.

In case we suppose that the trivial solution of (3.107) is uniformly asymptotically
stable, we get that (3.10) is also .h0; h/-uniformly asymptotically stable, since ı0 and
T will be independent of t0. �

Remark 3.89. It is well known that, in the stability theory of functional differential
equations, the condition DC(3.10)V.t; x.t// � g.t; V .t; x.t/// allows the derivative of
the Lyapunov function to be positive which may not even guarantee the stability of
a functional differential system (see [98, 99]). However, as we can see from Theo-
rem 3.88, impulses have played an important role in stabilizing a functional differential
system [146, 213].
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We have assumed in Theorem 3.88 stronger requirements on V , h, h0 only to unify
all the stability criteria in one theorem. This obviously puts burden on the comparison
equation (3.107). However, to obtain only non-uniform stability criteria, we could
weaken certain assumption of Theorem 3.88, as in the next result.

Theorem 3.90. Assume that:

(1) Condition (1) of Theorem 3.88 holds.

(2) h; h0 2 � and h0 is weakly finer than Nh; where h0; Nh are defined by (3.114).

(3) For � > 0, there exists V 2 V0 such that H2.5 holds, V W S.h; �/ \ S.h0; �/ !

RC, V is h-positively definite and h0-weakly decrescent,

V.t C 0; x C Ik.x// �  k.V .t; x//; x 2 �; t D tk; t > t0;

and the inequality

DC(3.10)V.t; x.t// � g.t; V .t; x.t///; t ¤ tk

is valid for each t � t0, x 2 �1.

Then the uniform and non-uniform stability properties of the trivial solution of the
equation (3.107) imply the corresponding non-uniform .h0; h/-stability properties of
system (3.10).

The proof of Theorem 3.90 is analogous to the proof of Theorem 3.88. However,
Definition 3.85 (b) is used instead of Definition 3.85 (a), and Definition 3.86 (c) is
used instead of Definition 3.86 (b).

Corollary 3.91. Assume that:

(1) Conditions H1.1, H1.3, H1.9, H1.11, H1.12, H1.13, H2.2, H2.3 hold.

(2) Condition (2) of Theorem 3.88 holds.

(3) For � > 0, there exists V 2 V0 such that H2.5 holds, V W S.h; �/ \ S.h0; �/ !

RC, V is h-positively definite and h0-decrescent,

V.t C 0; x C Ik.x// � V.t; x//; x 2 �; t D tk;

and the inequality

DC(3.10)V.t; x.t// � 0; t ¤ tk; k D 1; 2; : : :

is valid for each t � t0, x 2 �1.

Then the system (3.10) is .h0; h/-uniformly stable.

The proof of Corollary 3.91 could be done in the same way as in Theorem 3.88,
using Corollary 1.25 this time.
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Example 3.92. Consider the impulsive functional differential equation´
Px.t/ D a.t/x3.t/C b.t/x.t/x2.t � r.t//; t � 0; t ¤ tk

�x.tk/ D Ik.x.tk//; k D 1; 2; : : : ;
(3.126)

where x 2 PCŒRC;RC�; 0 < r.t/ � r ; a.t/ and b.t/ are continuous in RC, b.t/ � 0,
a.t/ C b.t/ � �a < 0; Ik.x/; k D 1; 2; : : : are continuous in R and such that
xC Ik.x/ > 0 and jxC Ik.x/j � jxj for x > 0; 0 < t1 < t2 < � � � and limk!1 tk D
1.

Let x.t/ D '1.t/, t 2 Œ�r; 0�. Let h0.t; '1/ D sups2Œ�r;0� j'1.s/j and h.t; x/ D jxj.
We consider the function

V.t; x/ D

´
˛e
� 1
x2 ; for x > 0

0; for x D 0:

The set �1 is defined by

�1 D
®
x 2 PCŒRC;RC� W x2.s/ � x2.t/; t � r < s � t

¯
:

If t � 0 and x 2 �1, we have

DC(3.126)V.t; x.t// D ˛e
� 1
x2.t/ :

2
x3.t/

Œa.t/x3.t/C b.t/x.t/x2.t � r.t//�

� �2aV.t; x.t//; t ¤ tk; k D 1; 2; : : : :

Moreover,

V.tk C 0; x.tk/C Ik.x.tk/// D ˛e
� 1
.x.tk/CIk.x.tk///

2

� V.tk; x.tk//; k D 1; 2; : : : :

Since the trivial solution of the equation´
Pu.t/ D �2au.t/; t � 0; t ¤ tk

�u.tk/ D 0;

is equi-asymptotically stable ([129]), then Theorem 3.90 with g.t; u/ D �2au and
Bk.u/ D 0; k D 1; 2; : : : shows that equation (3.126) is .h0; h/-equi-asymptotically
stable.

Example 3.93. Consider the impulsive functional differential equation´
Px.t/ D �ax.t/C bx.t � r.t// � e.t/g.x.t//; t � 0; t ¤ tk

�x.tk/ D �˛kx.tk/; k D 1; 2; : : : ;
(3.127)
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where x 2 RC; a; b > 0; 0 < r.t/ � r ; e.t/ � 0 is a continuous function; g.0/ D 0
and xg.x/ > 0 if x > 0; 0 � ˛k � 2; k D 1; 2; : : :; 0 < t1 < t2 < � � � and
limk!1 tk D1.

Let x.t/ D '2.t/, t 2 Œ�r; 0�. Let h0.t; �2/ D sups2Œ�r;0� j'2.s/j and h.t; x/ D jxj.
We consider the function V.t; x/ D x2. The set �1 is defined by

�1 D
®
x 2 PCŒRC;RC� W x2.s/ � x2.t/; t � r < s � t

¯
:

If t � 0, we have

DC(3.127)V.t; x.t// D �2ax2.t/C 2bx.t/x.t � r.t// � 2e.t/x.t/g.x.t//

� 2V.t; x.t//Œ�aC b�; x 2 �1; t ¤ tk; k D 1; 2; : : : :

Moreover,

V.tk C 0; x.tk/ � ˛kx.tk// D .1 � ˛k/
2V.tk; x.tk//

� V.tk; x.tk//; k D 1; 2; : : : :

Assume the inequality a � b holds. Then Corollary 3.91 shows that the equation
(3.127) is .h0; h/-uniformly stable.

Let the inequality b � a � " hold for some positive ". Applying Theorem 3.88, we
obtain that (3.127) is .h0; h/-uniformly asymptotically stable.

3.8 Boundedness in terms of two measures

Consider the system of impulsive functional differential equations (3.24). Let ' 2
PCŒŒ�r; 0�;Rn�. Denote by x.t I t0; '/ the solution of system (3.24), satisfying the
initial conditions (3.19).

Definition 3.94. Let h; h0 2 � and h0 be defined by (3.114). The system (3.24) is
said to be:

(a) .h0; h/-uniformly bounded, if

.8˛ > 0/.9ˇ D ˇ.˛/ > 0/.8t0 2 R/

.8' 2 PCŒŒ�r; 0�;Rn� W h0.t0; '/ < ˛/.8t � t0/ W h.t; x.t I t0; '// < ˇI

(b) .h0; h/-quasi-uniformly ultimately bounded, if

.9B > 0/.8˛ > 0/.9T D T .˛/ > 0/.8t0 2 R/

.8' 2 PCŒŒ�r; 0�;Rn� W h0.t0; '/ < ˛/.8t � t0 C T / W h.t; x.t I t0; '// < BI

(c) .h0; h/-uniformly ultimately bounded, if (a) and (b) hold together.
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Let � > 0. We shall use also the following classes of functions:

Sc.h0; �/ D ¹.t; x/ 2 Œt0 � r/;1/ �Rn W h0.t; x/ � �º;

Sc.h0; �/ D ¹.t; '/ 2 Œt0;1/ � PCŒŒ�r; 0�;Rn� W h0.t; '/ � �º.

Introduce the following condition:

H3.24. There exists �0; �0 � � > 0 such that h0.tk; x/ � �0 implies h0.tk C 0; x C
Ik.x// � �; k D 1; 2; : : : :

Theorem 3.95. Assume that:

(1) Conditions H1.1, H1.3, H1.9, H1.12, H1.13, H2.12, H3.22 and H3.24 hold.

(2) h; h0 2 � and Nh.t; '/ � �.h0.t; '// for some � 2 K where h0; Nh are defined by
(3.114).

(3) For � > 0, there exists V 2 V0 such that

V.t; x/ � a.h.t; x// for .t; x/ 2 Sc.h0; �/; (3.128)

V.t C 0; x/ � b.h0.t; '// for .t; '/ 2 Sc.h0; �/; (3.129)

where a, b 2 K and a.u/!1 as u!1,

V.t C 0; x.t/C Ik.x.t/// � V.t; x.t//; x 2 Rn; t D tk; t > t0; (3.130)

and the inequality

DC(3.24)V.t; x.t// � 0; .t; x/ 2 Sc.h0; �/; t ¤ tk (3.131)

is valid for each t � t0, x 2 �1.

Then the system (3.24) is .h0; h/-uniformly bounded.

Proof. Let ˛ > �0 be given. Choose ˇ D ˇ.˛/ > 0 so that

ˇ > max¹�0; �.˛/; a
�1.b.˛//º:

Let t0 2 R and ' 2 PCŒŒ�r; 0�;Rn�. Consider the solution x.t/ D x.t I t0; '/ of (3.24)
with h0.t0; '/ < ˛. By the condition (2) of Theorem 3.95, we have

h.t0 C 0; '.0// � Nh.t0; '/ � �.h0.t0; '// < �.˛/ < ˇ:

We claim that
h.t; x.t// < ˇ; t > t0:

If it is not true, then there exists some solution x.t/ D x.t I t0; '/ of (3.24) with
h0.t0; '/ < ˛ and a t� > t0 such that tk < t� � tkC1 for some fixed integer k
and

h.t�; x.t�// � ˇ and h.t; x.t// < ˇ; t0 � t � tk :
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Applying now Corollary 1.25 for the interval Œt0; tk�, we obtain

V.t; x.t I t0; '// � V.t0 C 0; '.0//; t0 � t � tk : (3.132)

Since h0.tk; x.tk// � �0, condition H3.24 shows that

h0.tk C 0; x.tk C 0// D h0.tk C 0; x.tk/C Ik.x.tk/// � �;

i.e. .tk C 0; x.tk C 0// 2 Sc.h0; �/.
So the implications (3.128), (3.130), (3.132) and (3.129) lead to

a.h.tk C 0; x.tk C 0/// � V.tk C 0; x.tk C 0// D V.tk C 0; x.tk/C Ik.x.tk///

� V.tk; x.tk// � V.t0 C 0; '.0//

� b.h0.t0; '// < b.˛/ < a.ˇ/:

Therefore
h.tk C 0; x.tk C 0// < ˇ:

Thus, there exist t�1 ; t
�
2 ; tk � t

�
1 < t

�
2 � t

� such that

h0.t�1 ; x.t
�
1 // D ˛; h0.t

�
1 ; xt�1 / D ˛;

h.t�2 ; x.t
�
2 // D ˇ;

Nh.t�2 ; xt�2 / D ˇ

and
.t; x.t// 2 S

c
.h0; ˛/ \ S.h; ˇ/;

.t; xt / 2 S
c
.h0; ˛/ \ S. Nh; ˇ/; t 2 Œt

�
1 ; t
�
2 �: (3.133)

By (3.129) we have

V.t�1 C 0; x.t�1 C 0// D V.t�1 ; x.t
�
1 // � b.h0.t

�
1 ; xt�1 // D b.˛/ < a.ˇ/:

We want to show that

V.t; x.t// < a.ˇ/; t 2 Œt�1 ; t
�
2 �: (3.134)

Suppose that this is not true and let

� D inf¹t�2 � t > t
�
1 W V.t; x.t// � a.ˇ/º:

Since V.t; x.t// is continuous at � 2 .t�1 ; t
�
2 �, we see that

V.� C �; x.� C �// � a.ˇ/

holds which implies that
DC(3.24)V.�; x.�// > 0;



138 3 Extensions of stability and boundedness theory

which contradicts to (3.131). Hence, (3.134) holds. On the other hand, using (3.133)
and (3.128), we have

V.t�2 ; x.t
�
2 // � a.h.t

�
2 ; xt�2 // D a.ˇ/;

which contradicts (3.134). Thus

h.t; x.t// < ˇ; t � t0

for any solution x.t/ D x.t I t0; '/ of (3.24) with h0.t0; '/ < ˛ and the system (3.24)
is .h0; h/-uniformly bounded. �

Corollary 3.96. If in Theorem 3.95 condition (3.131) is valid for x 2 �P , then the
conclusion of Theorem 3.95 is still valid.

Theorem 3.97. Assume that:

(1) Conditions (1) and (2) of Theorem 3.95 hold.

(2) For � > 0, there exists V 2 V0 such that (3.130) holds,

a. Nh.t; '// � V.t C 0; x/ � b.h0.t; '// for .t; '/ 2 Sc.h0; �/; (3.135)

where a, b 2 K and a.u/!1 as u!1, and the inequality

DC(3.24)V.t; x.t// � 0; .t; x/ 2 Sc.h0; �/; t ¤ tk

is valid for each t � t0, x 2 �P .

Then the system (3.24) is .h0; h/-uniformly bounded.

The proof of Theorem 3.97 is analogous to the proof of Theorem 3.95 and we shall
omit it.

Theorem 3.98. Assume that:

(1) Conditions (1) and (2) of Theorem 3.95 hold.

(2) For � > 0, there exists V 2 V0 such that (3.130) and (3.135) hold, and the
inequality

DC(3.24)V.t; x.t// � �c.h0.t; xt //; .t; x/ 2 S
c.h0; �/; t ¤ tk (3.136)

is valid for each t � t0, x 2 �P , c 2 K.

Then the system (3.24) is .h0; h/-uniformly ultimately bounded.
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Proof. The system (3.24) is .h0; h/-uniformly bounded by means of Theorem 3.97.
Then, there exists a positive number B such that for each t0 2 R

h0.t0; '/ < ı0 implies h.t; x.t I t0; '// < B; t � t0:

Now, we consider the solution x.t/ D x.t I t0; '/ of (3.24) with h0.t0; '/ < ˛, where
˛ is arbitrary number and ı0 > ˛ > �0. Then there exists a positive number ˇ D
ˇ.˛/ > max¹�0; �.�/; a

�1.b.˛//º and ˇ < B such that

h.t; x.t// < ˇ; t � t0:

Now, let the function P W RC ! RC be continuous and non-decreasing on RC,
and P.u/ > u as u > 0. We set

� D inf¹P.u/ � u W a.�.�// � u � a.ˇ/º:

Then
P.u/ > uC � as a.�.�// � u � a.ˇ/; (3.137)

and we choose the integer � such that

a.�.�//C �� > a.ˇ/: (3.138)

If V.t C 0; x.t C 0// � a.�.�0// for some t � t0 then

V.t; x.t// � V.t C 0; x.t C 0// � a.�.�0// � a.�.�//;

b.h0.t; xt // � V.t C 0; x.t C 0// � a.�.�0// � a.�.�//

and therefore
h0.t; xt / � b

�1.a.�.�/// D ı1:

Hence,
c.h0.t; xt // � c.ı1/ D ı2: (3.139)

Let us denote
�k D t0 C k

�

ı2
; k D 0; 1; 2; : : : ; �:

We want to prove

V.t; x.t// < a.�.�//C .� � k/�; t � �k (3.140)

for all k D 0; 1; 2; : : : ; �:
Indeed, using Corollary 1.25, (3.135) and (3.138), we obtain

V.t; x.t I t0; '// � V.t0 C 0; '.0// � b.h0.t0; '//

< b.˛/ < a.ˇ/ < a.�.�//C ��; t > t0 D �0

that means the validity of (3.140) for k D 0.
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Assume (3.140) to be fulfilled for some integer k; 0 < k < �, i.e.

V.s; x.s// < a.�.�//C .� � k/�; s � �k : (3.141)

We suppose now that

V.t; x.t// � a.�.�//C .� � k � 1/�; �k � t � �kC1:

Then
a.�.�// � V.t; x.t// � V.t0 C 0; '.0// � b.h0.t0; '//

< b.˛/ < a.ˇ/; �k � t � �kC1

and (3.137) and (3.141) imply

P.V.t; x.t/// > V.t; x.t//C � � a.�.�//C .� � k/�

> V.s; x.s//; �k � s � t � �kC1:

Therefore x.�/ 2 �P as �k � s � t � �kC1: Then conditions of Theorem 3.98 and
(3.139) yield

V.�kC1; x.�kC1// � V.�k C 0; x.�k C 0// �
Z �kC1

�k

c.h0.s; xs// ds

< a.�.�//C.� � k/� � ı2Œ�kC1 � �k� D a.�.�//C .� � k � 1/�

< V.�k; x.�k//;

which contradicts to the fact that x.�/ 2 �P as �k � s � t � �kC1: Therefore, there
exists t�; �k � t� � �kC1 such that

V.t�; x.t�// < a.�.�//C .� � k � 1/�

and (3.130) implies

V.t� C 0; x.t� C 0// < a.�.�//C .� � k � 1/�:

We will prove

V.t; x.t// < a.�.�//C .� � k � 1/�; t � t�:

Supposing the opposite, we set

� D inf¹t � t� W V.t; x.t// � a.�.�//C .� � k � 1/�º:

It follows, from (3.130) and (3.136), that � ¤ tk; k D 1; 2; : : : ; whence V.�;
x.�// D a.�.�//C .� � k � 1/�. Then, for sufficiently close to zero � > 0, we have

V.�C �; x.�C �// � a.�.�//C .� � k � 1/�;
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whence
DC(3.24)V.�; x.�// � 0:

On the other hand, we can prove as above that x.�/ 2 �P as t� � s � t � � and
therefore

DC(3.24)V.�; x.�// � �ı2 < 0:

The contradiction we have already obtained yields

V.t; x.t// < a.�.�//C .� � k � 1/�; t � �kC1:

It follows that (3.140) holds for all k D 0; 1; 2; : : : ; �:
Let T D T .˛/ D � �

ı2
. Then (3.140) implies

V.t; x.t// < a.�.�// as t � t0 C T : (3.142)

Finally, the conditions of Theorem 3.98 and (3.142) lead us to

a.h.t; x.t/// � a. Nh.t; xt // � V.t C 0; x.t C 0//

� V.t; x.t// < a.�.�// < a.ˇ/ < a.B/ as t � t0 C T :

Therefore,

h0.t0; '/ < ˛ implies h.t; x.t// < B as t � t0 C T

and (3.24) is a .h0; h/-uniformly ultimately bounded system. �

Example 3.99. Consider the impulsive functional differential equation with an infinite
delay8̂<̂

: Px.t/ D a.t; x.t//C b.t; x.t � r//C

Z 0

�1

h.t; s; x.t C s//ds; t ¤ tk

�x.tk/ D Ik.x.tk//; k D 1; 2; : : : ;
(3.143)

where x 2 R; t � 0; r > 0; a; b 2 C ŒRC � R;R�, a.t; 0/ D 0, jb.t; x/j �
ˇ.t/jxj, ˇ 2 C ŒRC;RC�; h 2 C ŒRC � .�1; 0� � R;R�, jh.t; s; �/j � m.s/j�j,
m 2 C Œ.�1; 0�;RC�; jx C Ik.x/j � jxj, k D 1; 2; : : :; �1 < t1 < t2 < � � � and
limk!1 tk D1.

Let h0.t; x/ D jxj1 D sups2.�1;t� jx.s/j and h.t; x/ D jxj. We consider the
function V.t; x/ D 1

2x
2. Let � D 1. Then Sc� D ¹x 2 R W jxj � 1º.

Suppose that there exist constants � > 1 and L > 0 such that

2�
Z 0

�1

m.s/ds � 2L � �
a.t; x/

x
� �ˇ.t/; t � 0; x ¤ 0; (3.144)
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then the equation (3.143) is .h0; h/-uniformly bounded. In fact, we can choose a.u/ D
b.u/ D u2. Set P.u/ D �2u2. Then the set �P is defined by

�P D
®
x 2 PCŒRC;R� W x2.s/ � �2x2.t/; �1 < s � t

¯
:

From (3.144), we have

DC(3.143)V.t; x.t//

� x.t/a.t; x.t//C ˇ.t/jx.t/j jx.t � r/j C jx.t/j

Z t

�1

m.� � t /jx.�/jd�

� jx.t/j2
ha.t; x.t//

x.t/
C �

�
ˇ.t/C

Z 0

�1

m.s/ds
�i

� �Ljx.t/j2; x 2 �P ; jxj � 1; t � 0; t ¤ tk; k D 1; 2; : : : :

Moreover,

V.tkC0; x.tk/CIk.x.tk/// D
1
2
.x.tk/CIk.x.tk///

2
� V.tk; x.tk//; k D 1; 2; : : : :

Applying Corollary 3.96, we obtain that (3.143) is .h0; h/-uniformly bounded.

Notes and comments

The idea of stability of sets was initiated by Yoshizawa in [223]. Theorems 3.2–3.7
are new. Close to them are the results of Stamova in [196]. Similar results for im-
pulsive differential-difference equations are given by Bainov and Stamova in [44].
Theorems 3.12–3.18 are new. Similar results are given by Stamova in [193]. Theo-
rems 3.21, 3.22 and 3.23 are taken from Stamova and Stamov [210]. Similar results
for impulsive differential-difference equations are given by Bainov and Stamova in
[49] and for linear impulsive differential-difference equations by Bainov, Stamova and
Vatsala in [53].

The results in Section 3.2 are new. Similar results are given by Bainov and Stamova
in [51] and by Stamova and Stamov in [208].

The parametric stability notion was introduced by Siljak in collaboration with Ikeda
and Ohta in [186]. The results on the parametric stability for impulsive functional
differential equations, listed in Section 3.3, are taken from Stamova [203].

The results in Section 3.4 are new.
The systematic study of practical stability was made in [132]. The results in Sec-

tion 3.5 on the practical stability of systems under consideration are due to Stamova
[201]. Similar results for impulsive differential-difference equations are given by
Bainov and Stamova in [37] and by Bainov, Dishliev and Stamova in [26].

The notion of Lipschitz stability was introduced by Dannan and Elaydi [80]. The
contents in Section 3.6 are from Bainov and Stamova [50]. Similar results are given for
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impulsive differential-difference equations in [34] and for linear impulsive differential-
difference equations in [36].

The stability and boundedness notions in terms of two measures, listed in Sec-
tion 3.7 and in Section 3.8, are generalizations of all previously considered notions
of stability and boundedness. See Lakshmikantham and Liu [133]. The results in
Section 3.7 are taken from Stamova [200]. The results in Section 3.8 are from [202].
For related results see Lakshmikantham, Leela and Martynyuk [131] and Stamova and
Eftekhar [205].



Chapter 4

Applications

In the present chapter, we shall consider some applications to real world problems to
illustrate the theory developed in the previous chapters.

Section 4.1 will deal with models of population dynamics. Uniform stability and
uniform asymptotic stability of the equilibria will be discussed for impulsive Lotka–
Volterra models with finite and infinite delays. We shall show that by means of appro-
priate impulsive perturbations we can control the system’s population dynamics.

In Section 4.2, we shall consider impulsive neural networks with delays. The prob-
lems of global asymptotic and global exponential stability will be studied. We shall
establish several stability criteria by employing Lyapunov functions and Razumikhin
technique. These results can easily be used to design and verify globally stable net-
works.

In Section 4.3, we shall present models from economics. We shall again demon-
strate the utility of the Lyapunov direct method. We shall show, also, that the role of
impulses in changing the behavior of solutions of impulsive differential equations is
very important.

4.1 Population models

Impulsive n-species Lotka–Volterra models with finite delays

The dynamical behavior of Lotka–Volterra models have been investigated by many
authors. See, for example, [2–8, 65, 78, 91, 105, 109–112, 127, 135, 138–141, 144,
145, 165, 166, 176, 198, 211, 215, 218–220, 222, 224, 226, 230] and the references
cited therein.

The classical n-species Lotka–Volterra model can be expressed as follows:

Pxi .t/ D xi .t/

"
bi .t/ �

nX
jD1

aij .t/xj .t/

#
; i D 1; : : : ; n; (4.1)

where t � 0; xi .t/ represents the density of species i at the moment t ; bi .t/ is the
reproduction rate function; and aij .t/ are functions which describe the effect of the
j th population upon the i th population, which is positive if it enhances, and negative
if it inhibits the growth.
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The Lotka–Volterra type systems (4.1) are very important in the models of multi-
species population dynamics. During the past few decades, a lot of work has been
done on the problem of stability-complexity relationship in ecosystem’s model, espe-
cially in the case of predator-prey type interactions described by the systems of type
(4.1). These kinds of systems are of great interest not only for population dynamics
or in chemical kinetics, but they are important in ecological modeling and all fields of
science, from plasma physics to neural nets.

It is well known that the time delay is quite common for a natural population. There
are considerable works on the study of the asymptotic stability of Lotka–Volterra type
systems with time delays that have been developed in [4, 85, 105, 135, 138, 165, 166,
211, 214, 215, 218, 219, 222, 230]. In addition to these, the books of Gopalsamy [91]
and Kuang [127] are good sources for these topics of Lotka–Volterra type systems with
time delays,

Pxi .t/ D xi .t/

"
bi .t/ � ai i .t/xi .t/ �

nX
jD1
j¤i

aij .t/xj .t � �ij .t//

#
; (4.2)

where i; j D 1; : : : ; n; aij ; �ij 2 C ŒRC;RC�; bi 2 C ŒRC;R�; 0 � �ij � � , � D
const.

If at certain moments of time the evolution of the process is subject to sudden
changes, then the population numbers vary by jumps. Therefore, it is important to
study the behavior of the solutions of Lotka–Volterra systems with impulsive pertur-
bations.

In this part of Section 4.1, we shall investigate the following n-species Lotka–
Volterra type impulsive system with several deviating arguments:

8̂̂̂<̂
ˆ̂:
Pxi .t/ D xi .t/

"
bi .t/ � ai i .t/xi .t/ �

nX
jD1
j¤i

aij .t/xj .t � �ij .t//

#
; t ¤ tk

xi .t
C

k
/ D xi .tk/C Iik.xi .tk//; i D 1; : : : ; n; k D 1; 2; : : : ;

(4.3)

where n � 2; t � 0; Iik W RC ! R, i D 1; : : : ; n, k D 1; 2; : : :; 0 < t1 < t2 < � � � <
tk < � � � are fixed impulsive points and limk!1 tk D 1. In mathematical ecology,
the system (4.3) denotes a model of the dynamics of an n-species system in which each
individual competes with all others of the system for a common resource and the intra-
species and inter-species competition involves deviating arguments �ij such that 0 �
�ij .t/ � � , where � is a constant. The numbers xi .tk/ and xi .tCk / are, respectively, the
population densities of species i before and after impulse perturbation at the moment
tk; and Iik are functions which characterize the magnitude of the impulse effect on the
species i at the moments tk .
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Let kxk D jx1j C � � � C jxnj denote the norm of x 2 Rn. Let J � R be an interval.
Define the following class of functions:

CBŒJ;R� D ¹� 2 C ŒJ;R� W �.t/is bounded on Jº :

Let ' 2 CBŒŒ��; 0�;Rn�, ' D col.'1; '2; : : : ; 'n/. We denote by x.t/ D x.t I 0;
'/ D col.x1.t I 0; '/; x2.t I 0; '/; : : : ; xn.t I 0; '// the solution of system (4.3), satisfy-
ing the initial conditions´

xi .sI 0; '/ D 'i .s/; s 2 Œ��; 0�

xi .0CI 0; '/ D 'i .0/; i D 1; : : : ; n;
(4.4)

and by JC.0; '/ the maximal interval of type Œ0; ˇ/ in which the solution x.t I 0; '/ is
defined.

Let k'k� D maxs2Œ��;0�k'.s/k be the norm of the function ' 2 CBŒŒ��; 0�;Rn�:

Introduce the following conditions:

H4.1. bi 2 C ŒRC;R�, i D 1; 2; : : : ; n.

H4.2. aij ; �ij 2 C ŒRC;RC�, i; j D 1; 2; : : : ; n.

H4.3. 0 < t1 < t2 < � � � and limk!1 tk D1.

H4.4. Iik 2 C ŒRC;R�, i D 1; 2; : : : ; n, k D 1; 2; : : : .

H4.5. xi C Iik.xi / � 0 for xi 2 RC, i D 1; 2; : : : ; n, k D 1; 2; : : : .

Given a continuous function g.t/ which is defined on J , J � R, we set

gL D inf
t2J

g.t/; gM D sup
t2J

g.t/:

In our subsequent analysis, we shall use piecewise continuous functions V W Œ0;1/�
Rn
C
! RC which belong to the class V0.

For V 2 V0 and for any .t; x/ 2 Œtk�1; tk/ � Rn
C

, the right-hand derivative of the
function V 2 V0 with respect to system (4.3) is defined by

DC(4.3)V.t; x.t// D lim
h!0C

sup
1
h

h
V.t C h; x.t C h// � V.t; x.t//

i
:

For a function V 2 V0 and for some t � 0 we shall use, also, the class

�1 D ¹x 2 PCŒŒ0;1/;RnC� W V.s; x.s// � V.t; x.t//; t � � � s � tº:

In the proofs of the main theorems, we shall use the following lemmas.

Lemma 4.1. Let the conditions H4.1–H4.4 hold. Then JC.0; '/ D Œ0;1/.
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Proof. Lemma 4.1 follows from Theorem 1.17.
Indeed, since the conditions H4.1 and H4.2 hold then from the existence theorem for

the corresponding system without impulses [91, 127, 135], it follows that the solution
x.t/ D x.t I 0; '/ of problem (4.3), (4.4) is defined on Œ0; t1�[.tk; tkC1�, k D 1; 2; : : : .
From conditions H4.3 and H4.4, we conclude that it is continuable for t � 0. �

Lemma 4.2. Assume that:

(1) Conditions H4.1–H4.5 hold.

(2) x.t/ D x.t I 0; '/ D col.x1.t I 0; '/; x2.t I 0; '/; : : : ; xn.t I 0; '// is a solution of
(4.3), (4.4) such that

xi .s/ D 'i .s/ � 0; sup'i .s/ <1; 'i .0/ > 0;

1 � i � n.

Then xi .t/ > 0; 1 � i � n; t 2 Œ0;1/:

Proof. Since 'i .0/ > 0, the condition H4.5 holds, and the solution of (4.3) is defined
by

xi .t/ D 'i .0/ exp

´Z t

0

"
bi .s/ � ai i .s/xi .s/ �

nX
jD1
j¤i

aij .s/xj .s � �ij .s//

#
ds

µ
;

t 2 Œ0; t1�;

xi .t/ D xi .t
C

k
/ exp

´Z t

tk

"
bi .s/ � ai i .s/xi .s/ �

nX
jD1
j¤i

aij .s/xj .s � �ij .s//

#
ds

µ
;

t 2 .tk; tkC1�;

xi .t
C

k
/ D xi .tk/C Iik.xi .tk//; i D 1; 2; : : : ; n; k D 1; 2; : : : ;

then the solution of (4.3) is positive for t 2 Œ0;1/: �

Lemma 4.3. Assume that:

(1) The conditions of Lemma 4.2 hold.

(2) The function Ui .t/ � 0 is the maximal solution of the logistic system8<: PUi .t/ D Ui .t/
h
jbMi j � a

L
iiUi .t/

i
; t ¤ tk

Ui .t
C

k
/ D Ui .tk/C I

M
ik ;

where IM
ik
D max¹Iik.Ui .tk//º for 1 � i � n and k D 1; 2; : : : .



148 4 Applications

(3) The function Vi .t/ � 0 is the minimal solution of the system8̂̂̂<̂
ˆ̂:
PVi .t/ D Vi .t/

"
bLi � a

M
ii Vi .t/ �

nX
jD1
j¤i

aMij sup
t���s�t

Uj .s/

#
; t ¤ tk

Vi .t
C

k
/ D Vi .tk/C I

L
ik;

where IL
ik
D min¹Iik.Vi .tk//º for 1 � i � n and k D 1; 2; : : : .

(4) 0 � Vi .0C/ � 'i .0/ � Ui .0C/, 1 � i � n.

Then
Vi .t/ � xi .t/ � Ui .t/; 1 � i � n; t 2 Œ0;1/: (4.5)

Proof. Since all conditions of Lemma 4.2 are satisfied, the domain ¹col.x1; x2; : : : ;

xn/ W xi > 0; i D 1; 2; : : : ; nº is positive invariant with respect to system (4.3).
From (4.3) for i D 1; 2; : : : ; n, we have8<: Pxi .t/ � xi .t/

h
jbMi j � a

L
iixi .t/

i
; t ¤ tk

xi .t
C

k
/ � xi .tk/C I

M
ik ; k D 1; 2; : : : ;

and 8̂̂̂<̂
ˆ̂:
Pxi .t/ � xi .t/

"
bLi � a

M
ii xi .t/ �

nX
jD1
j¤i

aMij sup
t���s�t

xj .s/

#
; t ¤ tk

xi .t
C

k
/ � xi .tk/C I

L
ik; k D 1; 2; : : : :

Then from the differential inequalities for the piecewise continuous functions Vi .t/,
Ui .t/ and xi .t/ [130], we obtain that (4.5) is valid for t 2 Œ0;1/ and 1 � i � n. �

Lemma 4.4. Let the conditions of Lemma 4.2 hold and

bLi �

nX
jD1
j¤i

aMij b
M
j

aLii
; i; j D 1; 2; : : : ; n:

Then for all t 2 Œ0; t1� [ .tk; tkC1�, k D 1; 2; : : : and 1 � i � n the following
inequalities are valid:

˛i � xi .t/ � ˇi ; (4.6)

where

˛i D

bLi �
Pn

jD1
j¤i

aM
ij
bM
j

aL
ii

aMii
; ˇi D

jbMi j

aLii
:
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If, in addition, the functions Iik are such that

˛i � xi C Iik.xi / � ˇi

for xi 2 RC; i D 1; 2; : : : ; n; k D 1; 2; : : : ; then the inequalities (4.6) are valid for
all t 2 Œ0;1/ and 1 � i � n:

Proof. From Lemma 4.3, we have that (4.5) are valid for t 2 Œ0;1/ and 1 � i � n.
We shall prove that there exist positive constants ˛i and ˇi such that

˛i � Vi .t/ � Ui .t/ � ˇi (4.7)

for all t 2 Œ0; t1� [ .tk; tkC1�, k D 1; 2; : : : and 1 � i � n.
First, we shall prove that

Ui .t/ � ˇi (4.8)

for all t 2 Œ0; t1� [ .tk; tkC1�, k D 1; 2; : : : and 1 � i � n.
If t 2 Œ0;1/, t ¤ tk and for some i , i D 1; 2; : : : ; n, Ui .t/ > ˇi , then for

t 2 Œ0; t1� [ .tk; tkC1�, k D 1; 2; : : :, we will have

PUi .t/ < Ui .t/
h
jbMi j � a

L
iiUi .t/

i
< 0:

This proves that (4.8) holds for all t 2 Œ0; t1� [ .tk; tkC1�, k D 1; 2; : : : and i D
1; 2; : : : ; n, as long as Ui .t/ is defined.

The inequality ˛i � Vi .t/ is proved by analogous way.
Hence, the inequalities (4.7) are valid for all t 2 Œ0; t1� [ .tk; tkC1�, k D 1; 2; : : :

and 1 � i � n.
If, in addition, the functions Iik are such that ˛i � xi .tk/ C Iik.xi .tk// � ˇi

for xi 2 RC, i D 1; 2; : : : ; n; k D 1; 2; : : : ; then inequalities (4.7) are valid for all
i D 1; 2; : : : ; n and t 2 Œ0;1/. �

Corollary 4.5. Let the conditions of Lemma 4.4 hold, and the functions Iik are such
that

˛i � xi C Iik.xi / � ˇi for xi 2 RC; i D 1; 2; : : : ; n; k D 1; 2; : : : :

Then:

(1) The system (4.3) is uniformly ultimately bounded.

(2) There exist positive constants m and M <1 such that

m � xi .t/ �M; t 2 Œ0;1/: (4.9)
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Let � 2 CBŒŒ��; 0�;Rn�, � D col.�1; �2; : : : ; �n/ and x�.t/ D x�.t I 0; �/ D
col.x�1 .t I 0; �/; x

�
2 .t I 0; �/; : : : ; x

�
n.t I 0; �// be a solution of system (4.3), satisfying

the initial conditions ´
x�i .sI 0; �/ D �i .s/; s 2 Œ��; 0�

x�i .0
C
I 0; �/ D �i .0/; i D 1; 2; : : : ; n:

In the next, we shall suppose that

'i .s/ � 0; sup'i .s/ <1; 'i .0/ > 0;

�i .s/ � 0; sup�i .s/ <1; �i .0/ > 0; i D 1; 2; : : : ; n:

Theorem 4.6. Assume that:

(1) The conditions of Lemma 4.4 hold.

(2) m � xi C Iik.xi / �M for m � xi �M; i D 1; 2; : : : ; n; k D 1; 2; : : : .

(3) The following inequalities are valid

m min
1�i�n

ai i .t/ �M max
1�i�n

 
nX
jD1
j¤i

aj i .t/

!
; t ¤ tk; k D 1; 2; : : : :

Then the solution x�.t/ of system (4.3) is uniformly stable.

Proof. Define a Lyapunov function

V.t; x.t// D

nX
iD1

V i .t; x.t// D

nX
iD1

ˇ̌̌
ln
xi .t/

x�i .t/

ˇ̌̌
: (4.10)

By the Mean Value Theorem and by (4.9), it follows that for any closed interval
contained in Œ0; t1� [ .tk; tkC1�, k D 1; 2; : : : and for all i D 1; 2; : : :

1
M
jxi .t/ � x

�
i .t/j � j ln xi .t/ � ln x�i .t/j �

1
m
jxi .t/ � x

�
i .t/j: (4.11)

From the inequalities (4.11), we obtain

V.0C; x.0C// D
nX
iD1

j ln xi .0C/ � ln x�i .0
C/j

�
1
m

nX
iD1

j'i .0/ � �i .0/j �
1
m
k' � �k� : (4.12)
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For t > 0 and t D tk , k D 1; 2; : : :, we have

V.tC
k
; x.tC

k
// D

nX
iD1

ˇ̌̌
ln
xi .t

C

k
/

x�i .t
C

k
/

ˇ̌̌

D

nX
iD1

ˇ̌̌
ln
xi .tk/C Iik.xi .tk//

x�i .tk/C Iik.x
�
i .tk//

ˇ̌̌
�

nX
iD1

ˇ̌̌
ln
M

m

ˇ̌̌
D

nX
iD1

ˇ̌̌
ln
m

M

ˇ̌̌

�

nX
iD1

ˇ̌̌
ln
xi .tk/

x�i .tk/

ˇ̌̌
D V.tk; x.tk//: (4.13)

Consider the upper right-hand derivative DC(4.3)V.t; x.t// of the function V.t; x.t//
with respect to system (4.3). For t � 0 and t ¤ tk , k D 1; 2; : : :, we derive the
estimate

DC(4.3)V.t; x.t// D

nX
iD1

�
Pxi .t/

xi .t/
�
Px�i .t/

x�i .t/

�
sgn

�
xi .t/ � x

�
i .t/

�
�

nX
iD1

"
�ai i .t/jxi .t/ � x

�
i .t/j C

nX
jD1
j¤i

aij .t/jxj .t � �ij .t// � x
�
j .t � �ij .t//j

#

� � min
1�i�n

ai i .t/

nX
iD1

jxi .t/ � x
�
i .t/j

C max
1�i�n

 
nX
jD1
j¤i

aj i .t/

!
nX
iD1

sup
s2Œt��;t�

jxi .s/ � x
�
i .s/j:

From (4.11) for x 2 �1, t � 0, t ¤ tk , k D 1; 2; : : :, we have

1
M

nX
iD1

jxi .s/ � x
�
i .s/j � V.s; x.s//

� V.t; x.t// �
1
m

nX
iD1

jxi .t/ � x
�
i .t/j; s 2 Œt � �; t �;

and hence
nX
iD1

jxi .s/ � x
�
i .s/j �

M

m

nX
iD1

jxi .t/ � x
�
i .t/j:

Then
DC(4.3)V.t; x.t// � 0; (4.14)

t � 0 and t ¤ tk , k D 1; 2; : : : .
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Since all conditions of Theorem 2.8 are true, then the solution x�.t/ of system (4.3)
is uniformly stable.

Indeed, given 0 < " < M , choose ı D "m
2M . Then, from (4.11), (4.14) and (4.13),

for k' � �k� � ı we obtain

kx.t/ � x�.t/k �MV.t; x.t// �MV.0C; x.0C//

�
M

m
k' � �k� � ";

t � 0: This shows that the solution x�.t/ of system (4.3) is uniformly stable. �

Theorem 4.7. In addition to the assumptions of Theorem 4.6, suppose there exists a
nonnegative constant � such that

m min
1�i�n

ai i .t/ � �CM max
1�i�n

 
nX
jD1
j¤i

aj i .t/

!
; t ¤ tk; k D 1; 2; : : : : (4.15)

Then the solution x�.t/ of system (4.3) is uniformly asymptotically stable.

Proof. We consider again the Lyapunov function (4.10). From (4.11) and (4.15), we
obtain

DC(4.3)V.t; x.t// � �
�

m

nX
iD1

jxi .t/ � x
�
i .t/j;

t � 0 and t ¤ tk , k D 1; 2; : : : :
Since all conditions of Theorem 2.9 are satisfied, the solution x�.t/ of system (4.3)

is uniformly asymptotically stable. �

The results obtained can be applied in the investigation of the stability of any solu-
tion which is of interest.

One of the solutions which is an object of investigations for the systems of type
(4.2) is the positive periodic solution. To consider periodic environmental factors,
it is reasonable to study the Lotka–Volterra systems with periodic coefficients. The
assumption of periodicity of the parameters bi , aij , �ij is a way of incorporating of
the environment periodicity (e.g. seasonal effects of weather condition, food supplies,
temperature, etc). A very basic and important ecological problem associated with the
study of multispecies population interaction in a periodic environment is the existence
and asymptotic stability of periodic solutions. Such questions also arise in many other
situations. The problem of existence of periodic solutions of population growth models
without impulsive perturbations has been investigated by many authors [64, 65, 85,
211, 222, 230]. The main results are based on the coincidence degree theory [88].
Efficient sufficient conditions which guarantee the existence of periodic solutions for
impulsive Lotka–Volterra systems are given in [135]. In [109] similar conditions are
proved for neutral impulsive Lotka–Volterra systems.
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The existence and stability of equilibrium states of some special cases of (4.3) with-
out impulses has been studied extensively in the literature. In this case we do not
need of the assumptions of the parameters periodicity. Many authors [2, 91, 127, 139,
140, 157, 211, 230] considered the following two-species competition Lotka–Volterra
system with constant delays²

Px.t/ D x.t/ Œr1 � a11x.t/ � a12y.t � �12/�

Py.t/ D y.t/ Œr2 � a21x.t � �21/ � a22y.t/� ;

where x.t/ and y.t/ represent the population densities of two species at the moment
t ; constants r1 > 0 and r2 > 0 are the intrinsic growth rates; constants a11 > 0
and a22 > 0 are coefficients of intra-species competitions; a12 > 0 and a21 > 0 are
inter-specific coefficients; and �12 > 0 and �21 > 0 are constant delays.

Example 4.8. For the system²
Px.t/ D x.t/ Œ7 � 12x.t/ � y.t � �12/�

Py.t/ D y.t/ Œ8 � 2x.t � �21/ � 7y.t/� ;
(4.16)

with parameters r1 D 7, r2 D 8, a11 D 12, a22 D 7, a12 D 1 and a21 D 2 one can
show that the point .x�; y�/ D .1

2 ; 1/ is an equilibrium which is uniformly asymptoti-
cally stable [85, 91].

Now, we consider the impulsive Lotka–Volterra system8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

Px.t/ D x.t/ Œ7 � 12x.t/ � y.t � �12/� ; t ¤ tk

Py.t/ D y.t/ Œ8 � 2x.t � �21/ � 7y.t/� ; t ¤ tk

�x.tk/ D �
3
5

�
x.tk/ �

1
2

�
; k D 1; 2; : : :

�y.tk/ D �
4
5

�
y.tk/ � 1

�
; k D 1; 2; : : : ;

(4.17)

where 0 < t1 < t2 < � � � and limk!1 tk D1.
For the system (4.17), the point .x�; y�/ D . 1

2 ; 1/ is an equilibrium and all con-
ditions of Theorem 4.7 are satisfied. In fact, for � D 3

2 , m D 1
2 and M D 1, we

have
1
2
� x.tk/C I1k.x.tk// D

4x.tk/C 3
10

� 1;

1
2
� y.tk/C I2k.y.tk// D

y.tk/C 4
5

� 1

for 1
2 � x.tk/ � 1, 1

2 � y.tk/ � 1, k D 1; 2; : : : :
Therefore, the equilibrium .x�; y�/ D . 1

2 ; 1/ is uniformly asymptotically stable.
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If, in the system (4.17), we consider the impulsive perturbations of the form:8̂<̂
:
�x.tk/ D �2

�
x.tk/ �

1
2

�
; k D 1; 2; : : :

�y.tk/ D �
4
5

�
y.tk/ � 1

�
; k D 1; 2; : : : ;

then the point .x�; y�/ D . 1
2 ; 1/ is again an equilibrium, but there is nothing we

can say about its uniform asymptotic stability, because for 1
2 � x.tk/ � 1, we have

0 � x.tk/C I1k.x.tk// �
1
2 , k D 1; 2; : : : .

The example shows that by means of appropriate impulsive perturbations we can
control the system’s population dynamics. We can see that impulses are used to keep
the stability properties of the system. On the other hand, a well-behaved system may
lose its (asymptotic) stability due to uncontrolled impulsive inputs. Theorem 4.7 pro-
vides a set of sufficient conditions under which the asymptotic stability properties of a
Lotka–Volterra system can be preserved under impulsive perturbations.

Example 4.9. The system8̂<̂
:
Px.t/ D x.t/ Œ4 � 12x.t/ � y.t � �12/�

Py.t/ D y.t/

�
61
4
� x.t � �21/ � 15y.t/

�
;

(4.18)

with parameters r1 D 4, r2 D
61
4 , a11 D 12, a22 D 15, a12 D 1 and a21 D 1 has

a uniformly asymptotically stable [85, 91] equilibrium point .x�; y�/ D . 1
3 ; 0/ which

implies the second species will driven to extinction.
However, for the impulsive Lotka–Volterra system8̂̂̂̂

ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

Px.t/ D x.t/ Œ4 � 12x.t/ � y.t � �12/� ; t ¤ tk

Py.t/ D y.t/

�
61
4
� x.t � �21/ � 15y.t/

�
; t ¤ tk

�x.tk/ D �
1
2

�
x.tk/ �

1
4

�
; k D 1; 2; : : :

�y.tk/ D �
1
3

�
y.tk/ � 1

�
; k D 1; 2; : : : ;

where 0 < t1 < t2 < � � � and limk!1 tk D1, the point .x�; y�/ D . 1
4 ; 1/ is an equi-

librium which is uniformly asymptotically stable. In fact, all conditions Theorem 4.7
are satisfied for � D 2, m D 1

4 and M D 1 and

1
4
� x.tk/C I1k.x.tk// D

4x.tk/C 1
8

� 1;

1
4
� y.tk/C I2k.y.tk// D

2y.tk/C 1
3

� 1

for 1
4 � x.tk/ � 1, 1

4 � y.tk/ � 1, k D 1; 2; : : : .
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This shows that the impulsive perturbations can prevent the population from going
extinct.

Impulsive n-species Lotka–Volterra cooperation models with finite delays

In this part of Section 4.1, we shall study asymptotic behavior of some n-species
Lotka–Volterra cooperation systems with finite delays and impulsive perturbations at
fixed moments of time.

Let 0 < t1 < t2 < � � � and limk!1 tk D1. Consider the system:8̂̂<̂
:̂
Pxi .t/ D xi .t/

"
ri .t/ �

xi .t � �i i .t//

ai .t/C
Pn

jD1
j¤i

bj .t/xj .t � �ij .t//
� ci .t/xi .t/

#
; t ¤ tk

xi .t
C

k
/ D xi .tk/C Iik.xi .tk//; i D 1; : : : ; n; k D 1; 2; : : : ;

(4.19)
where t � 0; xi .t/ denotes the density of species i at the moment t ; ri .t/; ai .t/;
bi .t/; ci .t/ .i D 1; 2; : : : ; n/ are the system parameters; 0 � �ij � � , � D const,
i; j D 1; 2; : : : ; n.

Let ' 2 CBŒŒ��; 0�;Rn�, ' D col.'1; '2; : : : ; 'n/. We denote by x.t/ D x.t I 0;
'/ D col.x1.t I 0; '/; x2.t I 0; '/; : : : ; xn.t I 0; '// the solution of system (4.19), satis-
fying the initial conditions´

xi .sI 0; '/ D 'i .s/; s 2 Œ��; 0�

xi .0CI 0; '/ D 'i .0/; i D 1; : : : ; n:
(4.20)

Introduce the following condition:

H4.6. The functions ri .t/; ai .t/; bi .t/ and ci .t/ are continuous, positive and bounded
on RC.

Lemma 4.10. Assume that:

(1) Conditions H4.3–H4.6 hold.

(2) x.t/ D x.t I 0; '/ D col.x1.t I 0; '/; x2.t I 0; '/; : : : ; xn.t I 0; '// is a solution of
(4.19), (4.20) such that

xi .s/ D 'i .s/ � 0; sup'i .s/ <1; 'i .0/ > 0;

1 � i � n.

Then xi .t/ > 0; 1 � i � n; t 2 Œ0;1/:

Proof. The proof of Lemma 4.10 is analogous to the proof of Lemma 4.2. �
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Theorem 4.11. Assume that:

(1) The conditions of Lemma 4.10 hold.

(2) The functions Iik are such that

�xi � Iik.xi / � 0 for xi 2 RC; i D 1; 2; : : : ; n; k D 1; 2; : : : :

Then the system (4.19) is uniformly ultimately bounded.

Proof. From the condition H4.6 and from the corresponding theorem for the continu-
ous case ([214, 219, 222]), it follows that for all t 2 Œ0; t1� [ .tk; tkC1�, k D 1; 2; : : :
and 1 � i � n there exist positive constants m�i and M �i such that the following
inequalities are valid:

m�i � xi .t/ �M
�
i :

Using Lemma 4.10 and condition (2) of Theorem 4.11, we obtain

0 < xi .tk C 0/ D xi .tk/C Iik.xi .tk// � xi .tk/ �M
�
i :

Therefore, there exist positive constants mi and Mi such that

mi � xi .t/ �Mi ;

i D 1; 2; : : : ; n; t 2 Œ0;1/. �

Corollary 4.12. Let the conditions of Theorem 4.11 hold. Then there exist positive
constants m and M <1 such that the inequalities (4.9) are valid.

Let � 2 CBŒŒ��; 0�;Rn�, � D col.�1; �2; : : : ; �n/ and x�.t/ D x�.t I 0; �/ D
col.x�1 .t I 0; �/; x

�
2 .t I 0; �/; : : : ; x

�
n.t I 0; �// be a solution of system (4.19), satisfying

the initial conditions ´
x�i .sI 0; �/ D �i .s/; s 2 Œ��; 0�

x�i .0
C
I 0; �/ D �i .0/; i D 1; 2; : : : ; n:

In the following, we shall suppose that

'i .s/ � 0; sup'i .s/ <1; 'i .0/ > 0;

�i .s/ � 0; sup�i .s/ <1; �i .0/ > 0; i D 1; 2; : : : ; n:

Theorem 4.13. Assume that:

(1) The conditions of Theorem 4.11 hold.

(2) m � xi C Iik.xi / �M for m � xi �M; i D 1; 2; : : : ; n; k D 1; 2; : : : :
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(3) There exists a nonnegative constant � such that

m min
1�i�n

cLi � �CM
2
nX
iD1

max
j¤i

bMj�
aLi Cm

Pn
sD1
s¤i

bLs

�2 > 0:

Then the solution x�.t/ of system (4.19) is uniformly asymptotically stable.

Proof. Consider the Lyapunov function

V.t; x.t// D

nX
iD1

ˇ̌
ln
xi .t/

x�i .t/

ˇ̌
:

For t D tk , k D 1; 2; : : :, (4.13) is valid.
For t � 0 and t ¤ tk , k D 1; 2; : : :, we have

DC(4.19)V.t; x.t// D

nX
iD1

�
Pxi .t/

xi .t/
�
Px�i .t/

x�i .t/

�
sgn

�
xi .t/ � x

�
i .t/

�
�

nX
iD1

´
�ci .t/jxi .t/ � x

�
i .t/j

�
1

ai .t/C
Pn

jD1
j¤i

bj .t/x
�
j .t � �ij .t//

jxj .t � �ij .t// � x
�
j .t � �ij .t//j

C

nX
jD1
j¤i

bj .t/xi .t � �i i .t//jxj .t � �ij .t// � x
�
j .t � �ij .t//j�

ai .t/C
Pn

sD1
s¤i

bs.t/xs.t � �is.t//
��
ai .t/C

Pn
sD1
s¤i

bs.t/x�s .t � �is.t//
�µ

�

nX
iD1

´
�cLi jxi .t/ � x

�
i .t/j

C

nX
jD1
j¤i

MbMj�
aLi Cm

Pn
sD1
s¤i

bLs

�2 jxj .t � �ij .t// � x
�
j .t � �ij .t//j

µ

� � min
1�i�n

cLi

nX
iD1

jxi .t/ � x
�
i .t/j

C

 
nX
iD1

max
j¤i

MbMj�
aLi Cm

Pn
sD1
s¤i

bLs

�2

!
nX
iD1

sup
s2Œt��;t�

jxi .s/ � x
�
i .s/j:

From (4.11) for any solution x.t/ of (4.3) such that

V.s; x.s// � V.t; x.t//; t � � � s � t; t ¤ tk; k D 1; 2; : : : ;
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we have
nX
iD1

jxi .s/ � x
�
i .s/j �

M

m

nX
iD1

jxi .t/ � x
�
i .t/j:

Then

DC(4.19)V.t; x.t// � �
�

m

nX
iD1

jxi .t/ � x
�
i .t/j � ��V.t; x.t//;

t � 0 and t ¤ tk , k D 1; 2; : : : .
From the last estimate and (4.13), we get

V.t; x.t// � V.0C; x.0C//e��t ; t 2 Œ0;1/:

So,

kx.t/ � x�.t/k D

nX
iD1

ˇ̌
xi .t/ � x

�
i .t/

ˇ̌
�MV.t; x.t//

�MV.0C; x.0C//e��t �
M

m
k' � �k�e

��t ; t 2 Œ0;1/;

and this completes the proof of the theorem. �

Example 4.14. The system8̂̂̂<̂
ˆ̂:
Px.t/ D x.t/

�
907
224
�

x.t � �11/

1C 4y.t � �12/
� 16x.t/

�
Py.t/ D y.t/

�
15 �

y.t � �22/

1C 2x.t � �21/
� 14y.t/

�
;

(4.21)

with parameters r1 D
907
224 , r2 D 15, a1 D a2 D 1, b1 D 2, b2 D 4, c1 D 16 and c2 D

14 has a uniformly asymptotically stable [214] equilibrium point .x�; y�/ D .0; 1/
which implies the first species will go extinct.

However, for the impulsive Lotka–Volterra system8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

Px.t/ D x.t/

�
907
224
�

x.t � �11/

1C 4y.t � �12/
� 16x.t/

�
; t ¤ tk

Py.t/ D y.t/

�
15 �

y.t � �22/

1C 2x.t � �21/
� 14y.t/

�
; t ¤ tk

�x.tk/ D �
1
4

�
x.tk/ �

1
4

�
; k D 1; 2; : : :

�y.tk/ D �
11
15

�
y.tk/ �

45
44

�
; k D 1; 2; : : : ;
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where 0 < t1 < t2 < � � � and limk!1 tk D 1, the point .x�; y�/ D .1
4 ;

45
44/ is

an equilibrium which is uniformly asymptotically stable. In fact, all conditions of
Theorem 4.13 are satisfied for � D 1:524, m D 1

4 and M D 45
44 and

1
4
� x.tk/C I1k.x.tk// D

12x.tk/C 1
16

�
45
44
;

1
4
� y.tk/C I2k.y.tk// D

4y.tk/
15

C
3
4
�

45
44

for 1
4 � x.tk/ �

45
44 , 1

4 � y.tk/ �
45
44 , k D 1; 2; : : : .

This example again shows that the impulsive perturbations can prevent the popula-
tion from going extinct. In short, by impulsive controls of the population numbers of
the first and the second species at fixed moments, such as stocking and harvesting, we
can control the system’s population dynamics.

Impulsive n-species Lotka–Volterra models with infinite delays

Gopalsamy [91] studied the existence of periodic solutions of the equation

Pxi .t/ D xi .t/

"
bi .t/�ai i .t/xi .t/�

nX
jD1
j¤i

Z t

�1

ki .t; s/aij .t/xj .s/ ds

#
; t 2 R; (4.22)

i D 1; 2; : : : ; n, when the delay kernel ki .t; s/ D ki .t � s/ is of convolution type.
Ahmad and Rao [4] investigated the existence of asymptotically periodic solutions

of a nonatonomous competitive Lotka–Volterra system of integro-differential equa-
tions with infinite delay

Pxi .t/ D xi .t/

"
bi .t/ � fi .t; xi .t// �

nX
jD1
j¤i

Z t

�1

ki .t; s/hij .t; xj .s// ds

#
; (4.23)

i D 1; 2; : : : ; n, t 2 R. The paper [4] improves the results of Gopalsamy and some of
the earlier results on this topic of interest.

In this part of Section 4.1, we shall consider equation (4.23) with impulsive pertur-
bations of the population density at fixed moments of time. Impulses can be considered
as a control. Sufficient conditions for uniform stability and uniform asymptotic stabil-
ity of solutions will be investigated.

Let kxk D
Pn
iD1 jxi j define the norm of x 2 Rn, t0 2 R and t0 < t1 < t2 < � � � ,

limk!1 tk D1. Consider the impulsive nonautonomous competitive Lotka–Volterra
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system of integro-differential equations with infinite delay8̂̂̂<̂
ˆ̂:
Pxi .t/ D xi .t/

"
bi .t/ � fi .t; xi .t// �

nX
jD1
j¤i

Z t

�1

ki .t; s/hij .t; xj .s// ds

#
; t ¤ tk;

xi .t
C

k
/ D xi .tk/C gikxi .tk/C ci ; k D 1; 2; : : : ;

(4.24)
where i D 1; : : : ; n, n � 2, and t 2 Œt0;1/.

We assume that bi , fi , ki , and hij are nonnegative continuous functions, gik are
real and ci are nonnegative constants.

Let ' 2 CBŒ.�1; 0�;Rn�, ' D col.'1; '2; : : : ; 'n/. We denote by x.t/ D x.t I

t0; '/ D col.x1.t I t0; '/; x2.t I t0; '/; : : : ; xn.t I t0; '// the solution of system (4.24),
satisfying the initial conditions´

xi .t I t0; '/ D 'i .t � t0/; t 2 .�1; t0�

xi .t
C
0 I t0; '/ D 'i .0/; i D 1; : : : ; n;

(4.25)

and by JC D JC.t0; '/ the maximal interval of type Œt0; ˇ/ in which the solution
x.t I t0; '/ is defined.

Let k'k1 D maxt2.�1;t0�k'.t�t0/k be the norm of the function ' 2 CBŒ.�1; 0�;
Rn�.

Introduce the following conditions:
H4.7. The delay kernel ki W R2 ! RC is continuous, and there exist positive num-

bers �i such that Z t

�1

ki .t; s/ ds � �i <1

for all t � t0, t ¤ tk , k D 1; 2; : : : and i D 1; 2; : : : ; n.
H4.8. fi .t; xi / > 0 for xi > 0, fi .t; 0/ D 0, and there exist positive continuous

functions ai i .t/ such that

jfi .t; xi / � fi .t; yi /j � ai i .t/jxi � yi j

for all xi , yi 2 R, t � t0, t ¤ tk , k D 1; 2; : : :, and .xi � yi /Œfi .t; xi /� fi .t;
yi /� > 0 for xi ¤ yi , i D 1; 2; : : : ; n.

H4.9. hij .t; xi / > 0 for xi > 0, hij .t; 0/ D 0, and there exist positive continuous
functions aij .t/ such that

jhij .t; xi / � hij .t; yi /j � aij .t/jxi � yi j

for all xi , yi 2 R, and aij .t/ is non-increasing for t � t0, t ¤ tk , k D 1; 2; : : :
and i; j D 1; 2; : : : ; n, i ¤ j .
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H4.10. cM <1, cL > 0, where cM D max¹ciº and cL D min¹ciº for 1 � i � n.

H4.11. t0 < t1 < t2 < � � � and limk!1 tk D1.

In the proofs of the main theorems we shall use the following lemmas.

Lemma 4.15. Let the conditions H4.7–H4.11 hold, andZ t

�1

ki .t; s/hij .t; xj .s// ds

be continuous for all t � t0, i; j D 1; 2; : : : ; n:
Then JC.t0; '/ D Œt0;1/:

Proof. If conditions H4.7, H4.8 and H4.9 hold and
R t
�1

ki .t; s/hij .t; xj .s// ds is con-
tinuous for all t � t0, then it follows [4, 91] that the solution x.t/ D x.t I t0; '/ of
problem (4.24), (4.25) is defined on Œt0; t1�[ .tk; tkC1�, k D 1; 2; : : : . From conditions
H4.10 and H4.11, we conclude that JC.t0; '/ D Œt0;1/. �

Lemma 4.16. Assume that:

(1) The conditions of Lemma 4.15 hold.

(2) x.t/ D x.t I t0; '/ D col.x1.t I t0; '/; x2.t I t0; '/; : : : ; xn.t I t0; '// is a solution of
(4.24), (4.25) such that

xi .t/ D 'i .t � t0/ � 0; sup'i .s/ <1; 'i .0/ > 0; (4.26)

1 � i � n.

(3) For each 1 � i � n and k D 1; 2; : : :

1C gik > 0:

Then
xi .t/ > 0; 1 � i � n; t � t0:

Proof. By integrating (4.24) in the interval Œt0; t1�, we have

xi .t/ D xi .t
C
0 / exp

�Z t

t0

Fi .s/ ds

�
; t 2 Œt0; t1�;

where

Fi .t/ D bi .t/ � fi .t; xi .t// �

nX
jD1
j¤i

Z t

�1

ki .t; s/hij .t; xj .s// ds; 1 � i � n :

Since, in the interval Œt0; t1� we have no points of discontinuity of xi .t/, from (4.26)
it is obvious that xi .t/ > 0 for t 2 .t0; t1�. Then x.t1/ > 0.
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We have from (4.24) that

xi .t
C
1 / D xi .t1/C gi1xi .t1/C ci ; 1 � i � n:

From condition (3) of Lemma 4.16 and H4.10, it follows that

xi .t
C
1 / D .1C gi1/xi .t1/C ci > 0; 1 � i � n:

We now integrate (4.24) in the interval .t1; t2� and we have

xi .t/ D xi .t
C
1 / exp

�Z t

t1

Fi .s/ ds

�
; t 2 .t1; t2�:

From the above relation it follows that xi .t/ > 0 for t 2 .t1; t2�.
By similar arguments, we can obtain that

xi .t/ D xi .t
C

k
/ exp

�Z t

tk

Fi .s/ ds

�
; t 2 .tk; tkC1�:

for 1 � i � n, k D 1; 2; : : :, so xi .t/ > 0 for t � t0. �

Lemma 4.17. Assume that:

(1) The conditions of Lemma 4.16 hold.

(2) For all i D 1; 2; : : : ; n there exist functions Pi , Qi 2 PC1ŒŒt0;1/;R� such that
Pi .t

C
0 / � 'i .0/ � Qi .t

C
0 /.

Then
Pi .t/ � xi .t/ � Qi .t/ (4.27)

for all t � t0 and i D 1; 2; : : : ; n.

Proof. First we shall proof that

xi .t/ � Qi .t/ (4.28)

for all t � t0 and i D 1; 2; : : : ; n, where Qi .t/ is the maximal solution of the initial
value problem 8̂̂<̂

:̂
Pqi .t/ D qi .t/ Œbi .t/ � fi .t; qi .t//� ; t ¤ tk

qi .t
C
0 / D qi0 > 0

qi .t
C

k
/ D qi .tk/C g

Mqi .tk/C c
M ; k D 1; 2; : : : ;

(4.29)

where gM D max¹gikº for 1 � i � n and k D 1; 2; : : : .
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The maximal solution Qi .t/ D Qi .t I t0; q0/, q0 D col.q10; q20; : : : ; qn0/ of (4.29)
is defined by the equality

Qi .t I t0; q0/ D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

q0
i .t I t0;Q

0
i C 0/; t0 < t � t1

q1
i .t I t1;Q

1
i C 0/; t1 < t � t2

:::

qki .t I tk;Q
k
i C 0/; tk < t � tkC1

:::

where qki .t I tk;Q
k
i C 0/ is the maximal solution of the equation without impulses

Pqi .t/ D qi .t/ Œbi .t/ � fi .t; qi .t//� in the interval .tk; tkC1�; k D 0; 1; 2; : : : ; for which
Qki C 0 D .1C gM /qk�1

i .tkI tk�1;Q
k�1
i C 0/C cM ; k D 1; 2; : : :, 1 � i � n and

Q0
i C 0 D qi0.
By the condition (1) of Lemma 4.17, it follows that

Pxi .t/ � xi .t/ Œbi .t/ � fi .t; xi .t//� ; t ¤ tk; (4.30)

1 � i � n and k D 1; 2; : : : .
Let t 2 Œt0; t1�. If 0 < 'i .0/ � Qi .tC0 /, i D 1; 2; : : : ; n, then elementary differential

inequality [130] yields that
xi .t/ � Qi .t/

for all t 2 Œt0; t1�, i.e. the inequality (4.28) is valid for t 2 Œt0; t1�.
Suppose that (4.28) is satisfied for t 2 .tk�1; tk�, k > 1.
Then, using hypothesis H4.10 and the fact that (4.28) is satisfied for t D tk , we

obtain

xi .t
C

k
/ D xi .tk/C gikxi .tk/C ci � xi .tk/C g

Mxi .tk/C c
M

� Qi .tk/C g
MQi .tk/C c

M
D .1C gM /qk�1

i .tkI tk�1;Q
k�1
i C 0/C cM

D Qki C 0:

We again apply the comparison result (4.30) in the interval .tk; tkC1� and obtain

xi .t I t0; '/ � q
k
i .t I tk;Q

k
i C 0/ D Qi .t I t0; q0/;

i.e. the inequality (4.28) is valid for .tk; tkC1�.
The proof of (4.28) is completed by induction.
Further, by analogous arguments and using H4.7–H4.11, we obtain from (4.24) and

(4.30) that8̂̂̂<̂
ˆ̂:
Pxi .t/ � xi .t/

"
bi .t/ � fi .t; xi .t// �

nX
jD1
j¤i

aij .t/�i sup
�1<s�t

Qi .s/

#
; t ¤ tk

xi .t
C

k
/ � xi .tk/C g

Lxi .tk/C c
L; k D 1; 2; : : : ;
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i D 1; : : : ; n, n � 2, and hence 'i .s/ � Pi .tC0 / for s � t0 implies that

xi .t/ � Pi .t/ (4.31)

for all t � t0 and i D 1; 2; : : : ; n, where Pi .t/ is the minimal solution of the initial
value problem8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:
Ppi .t/ D pi .t/

"
bi .t/ � fi .t; pi .t// �

nX
jD1
j¤i

aij .t/�i sup
�1<s�t

Qi .s/

#
; t ¤ tk

pi .t
C
0 / D pi0 > 0

pi .t
C

k
/ D pi .tk/C g

Lpi .tk/C c
L; k D 1; 2; : : : ;

(4.32)
i D 1; : : : ; n and gL D min¹gikº for 1 � i � n and k D 1; 2; : : : . Thus, the proof
follows from (4.28) and (4.31). �

Lemma 4.18. Let the conditions of Lemma 4.17 hold.
Then for all i D 1; 2; : : : ; n there exist positive constants ˛i and ˇi <1 such that

˛i � xi .t/ � ˇi ; (4.33)

for all t 2 Œt0; t1� [ .tk; tkC1�, k D 1; 2; : : : and if in addition

0 < 1C gik � 1 and � gik˛i � ci � �gikˇi ;

then the inequalities (4.33) are valid for all t � t0 and 1 � i � n:

Proof. From Lemma 4.17, we have

Pi .t/ � xi .t/ � Qi .t/

for all t � t0 and i D 1; 2; : : : ; n, where Pi .t/ is the minimal solution of the logistic
system (4.32) and Qi .t/ is the maximal solution of the logistic system (4.29).

Since [4], under the conditions of Lemma 4.18 for the solutions of (4.32) and (4.29)
with initial functions of the form (4.25), it is valid that

˛i � Pi .t/; Qi .t/ � ˇi ;

˛i > 0, 0 < ˇi <1, for all t 2 Œt0; t1� [ .tk; tkC1�, k D 1; 2; : : : and i D 1; 2; : : : ; n
then

˛i � xi .t/ � ˇi ;

1 � i � n, for all t 2 Œt0; t1� [ .tk; tkC1�, k D 1; 2; : : : .
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If in addition 0 < 1 C gik � 1 and �gik˛i < ci < �gikˇi , then from the left
continuity of xi .t/ at the points tk we have

˛i D .1C gik/˛i � gik˛i � xi .t
C

k
/

� .1C gik/ˇi � gikˇi D ˇi ;

hence
˛i � xi .t/ � ˇi ;

1 � i � n, for all t � t0. �

Corollary 4.19. Let the conditions of Lemma 4.18 hold, and the constants gik and ci
be such that

0 < 1C gik � 1 and � gik˛i � ci � �gikˇi ;

i D 1; 2; : : : ; n, k D 1; 2; : : : .
Then:

(1) The system (4.24) is uniformly ultimately bounded.

(2) There exist positive constants m and M <1 such that the inequalities (4.9) are
valid.

Let � 2 CBŒ.�1; 0�;Rn�, � D col.�1; �2; : : : ; �n/ and x�.t/ D x�.t I t0; �/ D

col.x�1 .t I t0; �/; x
�
2 .t I t0; �/; : : : ; x

�
n.t I t0; �// be a solution of system (4.24), satisfying

the initial conditions ´
x�i .t I t0; �/ D �i .t � t0/; t 2 .�1; t0�

x�i .t
C
0 I t0; �/ D �i .0/; i D 1; 2; : : : ; n:

In the following, we shall suppose that

xi .t/ D 'i .t � t0/ � 0; sup'i .s/ <1; 'i .0/ > 0;

x�i .t/ D �i .t � t0/ � 0; sup�i .s/ <1; �i .0/ > 0; i D 1; 2; : : : ; n:

Theorem 4.20. Assume that:

(1) The conditions of Lemma 4.18 hold.

(2) The following inequalities are satisfied:

mai i .t/ > M

nX
jD1
j¤i

�iaij .t/

for all t 2 Œt0;1/, t ¤ tk , k D 1; 2; : : : and i D 1; 2; : : : ; n.
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(3) For each 1 � i � n and k D 1; 2; : : :

0 < 1C gik � 1 and � gikm � ci � �gikM:

Then the solution x�.t/ of (4.24) is uniformly stable.

Proof. Let t0 2 R. Given 0 < " < M , choose ı D "m
2nM . Let ˛ D "

2M .
Consider the Lyapunov function defined by (4.10). For all i D 1; 2; : : : ; n, we

introduce the notations

v˛i D
°
.xi ; x

�
i / 2 RC �RC W

ˇ̌̌
ln
xi

x�i

ˇ̌̌
<
˛

n

±
;

@v˛i D
°
.xi ; x

�
i / 2 RC �RC W

ˇ̌̌
ln
xi

x�i

ˇ̌̌
D
˛

n

±
;

j'i j1 D sup
t2.�1;t0�

j'i .t � t0/j:

If j'i � �i j1 � ı for all i D 1; 2; : : : ; n, we obtain

V i .tC0 ; x.t
C
0 // D j ln xi .t

C
0 / � ln x�i .t

C
0 /j �

1
m
jxi .t

C
0 / � x

�
i .t
C
0 /j

D
1
m
j'i .0/ � �i .0/j �

1
m
j'i � �i j1 <

˛

n
:

(4.34)

Then .xi .tC0 /; x
�
i .t
C
0 // 2 v

˛
i for all i D 1; 2; : : : ; n.

We shall prove that .xi .t/; x�i .t// 2 v˛i for all t > t0 and all i D 1; 2; : : : ; n.
Suppose that this is not true.

Note that from .xi .tk/; x
�
i .tk// 2 v

˛
i , tk > t0, k D 1; 2; : : :, i D 1; 2; : : : ; n it

follows, from the condition (3) of Theorem 4.20, that

V i .tC
k
; x.tC

k
// D

ˇ̌̌
ln
xi .t

C

k
/

x�i .t
C

k
/

ˇ̌̌
D

ˇ̌̌
ln
.1C gik/xi .tk/C ci
.1C gik/x�i .tk/C ci

ˇ̌̌
�

ˇ̌̌
ln
.1C gik/M � gikM
.1C gik/m � gikm

ˇ̌̌
D

ˇ̌̌
ln
M

m

ˇ̌̌
D

ˇ̌̌
� ln

M

m

ˇ̌̌
D

ˇ̌̌
ln
m

M

ˇ̌̌
�

ˇ̌̌
ln
xi .tk/

x�i .tk/

ˇ̌̌
; (4.35)

i.e. .xi .t/; x�i .t// can not leave v˛i by jump.
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Now the assumption that .xi .t/; x�i .t// 2 v
˛
i for all t > t0 and i D 1; 2; : : : ; n is

not true implies the existence of T > t0, T ¤ tk , k D 1; 2; : : : and l D 1; 2; : : : ; n
such that .xl.t/; x�l .t// 2 v

˛
l

for all �1 < t < T and .xl.T /; x�l .T // 2 @v
˛
l

.
Consider the upper right-hand derivative DC(4.24)V

l.t; x.t// of the function V l.t;
x.t//. For t > t0 and t ¤ tk , k D 1; 2; : : : ; we derive the estimate

DC(4.24)V
l.t; x.t// D

 
Pxl.t/

xl.t/
�
Px�
l
.t/

x�
l
.t/

!
sgn

�
xl.t/ � x

�
l .t/

�
�

"
� jfl.t; xl.t// � fl.t; x

�
l .t//j

C

nX
jD1
j¤l

Z t

�1

kl.t; s/jhlj .t; xj .s// � hlj .t; x
�
j .s//j ds

#
:

From hypotheses H4.7, H4.8 and H4.9, we obtain

DC(4.24)V
l.t; x.t//

�

"
� al l.t/jxl.t/ � x

�
l .t/j C

nX
jD1
j¤l

Z t

�1

kl.t; s/alj .t/jxj .s/ � x
�
j .s/j ds

#

�

"
� al l.t/jxl.t/ � x

�
l .t/j C

nX
jD1
j¤l

�lalj .t/ sup
�1<s�t

jxj .s/ � x
�
j .s/j ds

#
:

From (4.11) for t D T , we deduce the inequality

DC(4.24)V
l.T; x.T //

�

"
� al l.T /mj ln xl.T / � ln x�l .T /j CM j ln xl.T / � ln x�l .T /j

nX
jD1
j¤l

�lalj .T /

#
:

(4.36)

Since, by the condition (2) of Theorem 4.20, the inequalities

mal l.t/ > M

nX
jD1
j¤l

�lalj .t/

are satisfied for all t > t0 and l D 1; 2; : : : ; n, we have DC(4.24)V
l.T; x.T // < 0.

Hence, the assumption that .xi .t/; x�i .t// 2 v
˛
i for all �1 < t < T and .xi .T /;

x�i .T // 2 @v˛i will not be true, i.e. .xi .t/; x�i .t// 2 v˛i for all t > t0 and i D
1; 2; : : : ; n.
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Then from (4.11) and (4.34) it follows that

kx.t/ � x�.t/k �MV.t; x.t// < M˛ < ";

for all t � t0, whenever k' � �k1 � ı1 D
"m
2M and t0 2 R. Since t0 2 R is arbitrary,

the solution x�.t/ of (4.24) is uniformly stable. �

Theorem 4.21. In addition to the assumptions of Theorem 4.20, suppose that:

(1) There exist nonnegative continuous functions �i .t/ such that

mai i .t/ �M

nX
jD1
j¤i

�iaij .t/ > �i .t/

for all t 2 Œt0;1/; t ¤ tk; k D 1; 2; : : : and 1 � i � n.

(2) The function �.t/ D min .�1.t/; : : : ; �n.t// is such thatZ 1
t0

�.s/ ds D1:

Then the solution x�.t/ of (4.24) is uniformly asymptotically stable.

Proof. Since all conditions of Theorem 4.20 are satisfied, the solution x�.t/ of (4.24)
is uniformly stable. We have to prove that

lim
t!1
kx.t/ � x�.t/k D 0:

Let t0 2 R and 0 < " < M . Choose ı D ı."/ D "m
2nM .

We shall prove that there exist � D �."/ > 0 and t� 2 Œt0; t0 C �� such that for
any solution xi .t I t0; '/, i D 1; 2; : : : ; n, .t0; '/ 2 R � CBŒ.�1; 0�;Rn� of (4.24) for
which j'i � �i j1 � ı the following inequalities are valid:

jxi .t
�
C 0/ � x�i .t

�
C 0/j < ı."/; i D 1; 2; : : : ; n: (4.37)

Suppose that this is not true. Then for any � > 0 there exists solution xi .t I t0; '/,
i D 1; 2; : : : ; n, .t0; '/ 2 R � CBŒ.�1; 0�;Rn� of (4.24) for which j'i � �i j1 � ı
and

jxi .t C 0/ � x�i .t C 0/j � ı."/ (4.38)

for any t 2 Œt0; t0 C ��.
Consider the upper right-hand derivative DC(4.24)V.t; x.t// with respect to system

(4.24). For t > t0 and t ¤ tk , k D 1; 2; : : : from hypotheses H4.7, H4.8 and H4.9, we
have

DC(4.24)V.t; x.t// �

nX
iD1

"
�ai i .t/jxi .t/�x

�
i .t/jC

nX
jD1
j¤i

�iaij .t/ sup
�1<s�t

jxj .s/�x
�
j .s/j

#
:
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From the above estimate and from (4.35) we can obtain that for t > t0 and t ¤ tk ,
k D 1; 2; : : :

V .t; x.t// � V.tC0 ; x.t
C
0 // �

Z
t0

t

DC(4.24)V.u; x.u//du

�

Z
t0

1 nX
iD1

"
�ai i .u/jxi .u/ � x

�
i .u/j

C

nX
jD1
j¤i

�iaij .u/ sup
�1<s�u

jxj .s/ � x
�
j .s/j

#
du: (4.39)

From the properties of the function V.t; x.t// in the interval .t0;1/ it follows that
there exists the finite limit

lim
t!1

V.t; x.t// D v0 � 0: (4.40)

Then from (4.11), (4.38), (4.39) and (4.40), it follows thatZ 1
t0

nX
iD1

"
ai i .t/jxi .t/ � x

�
i .t/j �

nX
jD1
j¤i

�iaij .t/ sup
�1<s�t

jxj .s/ � x
�
j .s/j

#
dt

� V.tC0 ; x.t
C
0 // � v0 �

1
m
k' � �k1 � v0 �

nı

m
� v0:

From condition (2) of Theorem 4.21, it follows that the number � > 0 can be chosen
so that Z t0C�

t0

�.t/dt >
m.nı

m
� v0 C 1/
ı

:

Then,

nı

m
� v0

�

Z
t0

1 nX
iD1

"
ai i .t/jxi .t/ � x

�
i .t/j �

nX
jD1
j¤i

�iaij .t/ sup
�1<s�t

jxj .s/ � x
�
j .s/j

#
dt

�

Z
t0

t0C� nX
iD1

"
ai i .t/ı

�

nX
jD1
j¤i

�iaij .t/max¹ sup
�1<s�t0

jxj .s/ � x
�
j .s/jI sup

t0<s�t
jxj .s/ � x

�
j .s/jº

#
dt
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�

Z
t0

t0C� nX
iD1

"
ai i .t/ı

�

nX
jD1
j¤i

�iaij .t/max¹ıIM sup
t0<s�t

j ln xj .s/ � ln x�j .s/jº

#
dt: (4.41)

Since all conditions of Theorem 4.20 are satisfied, we have that (4.34) is true and

j ln xi .t/ � ln x�i .t/j <
˛

n
D
ı

m
(4.42)

for all t � t0 and i D 1; 2; : : : ; n.
From (4.41), (4.42) and from the condition (1) of Theorem 4.21, it follows that

nı

m
� v0 �

ı."/

m

Z t0C�

t0

�.t/dt >
nı

m
� v0 C 1:

The contradiction obtained shows that there exist � D �."/ > 0 and t� 2 Œt0; t0C ��
such that for any solution xi .t I t0; '/, i D 1; 2; : : : ; n, .t0; '/ 2 R � CBŒ.�1; 0�;Rn�
of (4.24) for which j'i � �i j1 � ı the inequalities (4.37) hold.

Then, for t � t� (hence for any t � t0 C � as well) the following inequalities are
valid:

1
M
kx.t/ � x�.t/k � V.t; x.t// � V.t� C 0; x.t� C 0//

�
1
m
kx.t� C 0/ � x�.t� C 0/k <

n

m
ı D

"

2M
;

from which we have limt!1kx.t/ � x
�.t/k D 0:

This shows that the solution x�.t/ of (4.24) is uniformly asymptotically stable. �

Example 4.22. For the nonatonomous competitive Lotka–Volterra system without im-
pulsive perturbations8̂̂̂̂

<̂
ˆ̂̂:
Px1.t/ D x1.t/

�
4 � 7 ln x1.t/ �

Z t

�1

k1.t; s/ ln x2.s/ ds

�

Px2.t/ D x2.t/

�
1
2
�

1
3

Z t

�1

k2.t; s/ ln x1.s/ ds �
4
3

ln x2.t/

�
;

(4.43)

where x W R! RC and
R t
�1

k1.t; s/ ds D 2,
R t
�1

k2.t; s/ ds D 1, one can show that
the point .x�1 ; x

�
2 / D .

p
e; 4
p
e/ is an equilibrium, and it is uniformly asymptotically

stable [4].
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Now, we consider the impulsive nonatonomous competitive Lotka–Volterra system8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

Px1.t/ D x1.t/

�
4 � 7 ln x1.t/ �

Z t

�1

k1.t; s/ ln x2.s/ ds

�
; t ¤ tk

Px2.t/ D x2.t/

�
1
2
�

1
3

Z t

�1

k2.t; s/ ln x1.s/ ds �
4
3

ln x2.t/

�
; t ¤ tk

x1.t
C

k
/ D

2
p
e C x1.tk/

3
; k D 1; 2; : : :

x2.t
C

k
/ D

3 4
p
e C x2.tk/

4
; k D 1; 2; : : : ;

(4.44)

where tk < tkC1 < � � � , k D 1; 2; : : :, limk!1 tk D1.
For the system (4.44), the point .x�1 ; x

�
2 / D .

p
e; 4
p
e/ is an equilibrium and all

conditions of Theorem 4.21 are satisfied. We also have that

0 < 1C g1k D
1
3
< 1; 0 < 1C g2k D

1
4
< 1

and
2
3
m D

2
3
:1 < c1 D

2
3
p
e <

2
3
e D

2
3
M;

3
4
m D

3
4
:1 < c2 D

3
4

4
p
e <

3
4
e D

3
4
M:

Therefore, the equilibrium .x�1 ; x
�
1 / D .

p
e; 4
p
e/ is an uniformly asymptotically

stable solution of (4.44).
If, in the system (4.44), we change the impulsive perturbations as follows:8̂̂<̂

:̂
x1.t

C

k
/ D 3

p
e � 2x1.tk/; k D 1; 2; : : :

x2.t
C

k
/ D

3 4
p
e C x2.tk/

4
; k D 1; 2; : : : ;

(4.45)

we obtain the following system:8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

Px1.t/ D x1.t/

�
4 � 7 ln x1.t/ �

Z t

�1

k1.t; s/ ln x2.s/ ds

�
; t ¤ tk

Px2.t/ D x2.t/

�
1
2
�

1
3

Z t

�1

k2.t; s/ ln x1.s/ ds �
4
3

ln x2.t/

�
; t ¤ tk

x1.t
C

k
/ D 3

p
e � 2x1.tk/; k D 1; 2; : : :

x2.t
C

k
/ D

3 4
p
e C x2.tk/

4
; k D 1; 2; : : : ;

(4.46)
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The point .x�1 ; x
�
2 / D .

p
e; 4
p
e/ is again an equilibrium for the system (4.46), but

there is nothing we can say about its uniform asymptotic stability, because 1C g1k D

�2 < 0.
The example shows that impulses have played an important role in stabilizing a

Lotka–Volterra system.

4.2 Neural networks

Neural networks have been successfully employed in various areas such as pattern
recognition, associative memory and combinatorial optimization [72–75, 104, 187,
216].

One of the most investigated problems in the study of neural networks is the global
asymptotic stability of the equilibrium point. If an equilibrium of a neural network is
globally asymptotically stable, it means that the domain of attraction of the equilibrium
point is the whole space and the convergence is in real time. This is significant both
theoretically and practically. Such neural networks are known to be well-suited for
solving some class of optimization problems. In fact, a globally asymptotically stable
neural network is guaranteed to compute the global optimal solution independently
of the initial condition, which in turn implies that the network is devoid of spurious
suboptimal responses.

While an artificial neural network has been known insofar for its transient process-
ing behavior, its circuit design has never been disentangled from destabilizing factors
such as delays and impulses. In hardware implementation, time delays occur due to
finite switching speed of the amplifiers and communication time. Time delays will af-
fect the stability of designed neural networks and may lead to some complex dynamic
behaviors such as periodic oscillation, bifurcation or chaos. Therefore, the study of
neural dynamics with consideration of the delayed problem becomes extremely im-
portant to manufacture high-quality neural networks. The delayed neural networks
have been widely studied and some progress has been made [66–68, 76, 79, 92, 106,
107, 117, 154, 160, 170, 192, 227, 232, 233].

Impulses can make unstable systems stable so they have been widely used in many
fields such as physics, chemistry, biology, population dynamics, and industrial robot-
ics. The abrupt changes in the voltages produced by faulty circuit elements are ex-
emplary of impulse phenomena that can affect the transient behavior of the network.
Some results for impulsive neural networks have been given, for example, see [9, 10,
15, 101, 199, 209, 221] and references therein.

In this section of Chapter 4, we shall investigate stability of the equilibrium states
in neural network with finite and infinite delays, and neural states that are subject to
impulsive state displacements at fixed instants of time. By applying the Lyapunov–
Razumikhin method, sufficient conditions for global asymptotic stability and global
exponential stability of such neural networks will be obtained.
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Impulsive neural networks with finite delays

Gopalsamy and Leung [92] considered the following scalar autonomous delay equa-
tion with dynamical thresholds

Px.t/ D �x.t/C a: tanh .x.t/ � bx.t � �/ � c/ ; t � 0;

where x W RC ! RI a is a positive constant; b, c and � are nonnegative constants. By
using Lyapunov functions, Gopalsamy and Leung established a sufficient condition for
global asymptotic stability of the equilibrium x� D 0 for the case c D 0.

For the case c ¤ 0 some stability criteria are investigated in [232] for the equilib-
rium of the following more general model

Px.t/ D �x.t/C af .x.t/ � bx.t � �/ � c/ ; t � 0: (4.47)

In this part of Section 4.2, we shall study the global asymptotic stability of the
impulsive generalization of the equation (4.47).

We consider the following impulsive delayed neural network with dynamical thresh-
olds ´

Px.t/ D �x.t/C af .x.t/ � bx.t � �.t// � c/ ; t ¤ tk; t � 0

�x.tk/ D x.tk C 0/ � x.tk/ D Ik.x.tk//; k D 1; 2; : : : ;
(4.48)

where a > 0; b and c are nonnegative constants; f W R! R; �.t/ corresponds to the
transmission delay and satisfies 0 � �.t/ � � .� D const/; t � �.t/!1 as t !1;
Ik W R! R, k D 1; 2; : : :; tk < tkC1 < � � � , limk!1 tk D1.

Let J � R be an interval. Define the following class of functions:

PCBŒJ;R� D ¹� 2 PCŒJ;R� W �.t/ is bounded on J º:

Let ' 2 PCBŒŒ��; 0�;R�: Denote by x.t/ D x.t I 0; '/; x 2 R the solution of equation
(4.48), satisfying the initial conditions´

x.t I 0; '/ D '.t/; �� � t � 0

x.0CI 0; '/ D '.0/:
(4.49)

Introduce the following notation:

j'j� D sup
s2Œ��;0�

j'.s/jis the norm of the function ' 2 PCBŒŒ��; 0�;R�:

We introduce the following conditions:

H4.12. There exists a constant L > 0 such that

jf .u/ � f .v/j � Lju � vj

for all u; v 2 R:
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H4.13. There exists a constant M > 0 such that for all u 2 R

jf .u/j �M <1:

H4.14. a > 0, b � 0, a.1 � b/ < 1.

H4.15. For any k D 1; 2; : : : the functions Ik are continuous in R.

H4.16. 0 < t1 < t2 < � � � < tk < tkC1 < � � � and tk !1 as k !1.

The main results here are obtained by means of piecewise continuous Lyapunov
functions V W Œ0;1/ � R ! RC such that V 2 V0. The derivatives of the functions
V 2 V0 are estimated by the elements of the set

�1 D

°
x 2 PCŒŒ0;1/;R� W V.s; x.s// � V.t; x.t//; t � � � s � t

±
:

Let y.t/ D x.t/ � bx.t � �.t// � c. We transform (4.48) to the form´
Py.t/ D �y.t/ � c C af .y.t// � abf .y.t � �.t///; t ¤ tk; t � 0

�y.tk/ D Jk.y.tk//; k D 1; 2; : : : ;
(4.50)

where Jk.y.tk// D Ik.y.tk/ C bx.tk � �.tk// C c/ � Ik.bx.tk � �.tk// C c/,
k D 1; 2; : : : .

In the proof of the main results we shall use the following lemma.

Lemma 4.23. Let the conditions H4.12–H4.16 hold. Then:

(1) There exists a unique equilibrium x� of the equation (4.48) defined on the interval
Œ0;1/.

(2) lim
t!1

x.t/ D x� as lim
t!1

y.t/ D y�; where y� is the equilibrium of (4.50).

Proof of Assertion 1. Under the hypotheses H4.12–H4.14, the equation without im-
pulses

Px.t/ D �x.t/C af .x.t/ � bx.t � �.t// � c/ ; t � 0;

has [98, 99, 232] a unique equilibrium x� on the interval Œ0;1/. That means that the
solution x� of problem (4.48), (4.49) is defined on Œ0; t1� [ .tk�1; tk�, k D 1; 2; : : : .
From the conditions H4.15 and H4.16 we conclude that it is continuable for t � 0.

Proof of Assertion 2. The proof of Assertion 2 follows from the corresponding asser-
tion for the continuous case [232] and from the fact that if y� denotes an equilibrium
of the equation (4.50), then Jk.y�/ D 0, k D 1; 2; : : : . �
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Set u.t/ D y.t/ � y� and consider the following equation8̂<̂
:

Pu.t/ D �u.t/C aŒf .u.t/C y�/ � f .y�/�

�abŒf .u.t � �.t//C y�/ � f .y�/�; t ¤ tk; t � 0

�u.tk/ D Pk.u.tk//; k D 1; 2; : : : ;

(4.51)

where Pk.u/ D Jk.uC y�/ � Jk.y�/ D Jk.uC y�/, k D 1; 2; : : : .

Theorem 4.24. Assume that:

(1) Conditions H4.12–H4.16 hold.

(2) There exists a constant d > 0 such that

0 < d � 1 � La.1C b/:

(3) The functions Pk are such that

Pk.u.tk// D ��ku.tk/; 0 < �k < 2; k D 1; 2; : : : :

Then the equilibrium x� of (4.48) is globally equi-asymptotically stable.

Proof. We define a Lyapunov function

V.t; u/ D
1
2
u2:

Then for t D tk , from the condition (3) of Theorem 4.24, we obtain

V.tk C 0; u.tk/C Pk.u.tk/// D
1
2
.u.tk/C Pk.u.tk///

2

D
1
2
.1 � �k/

2u2.tk/ < V.tk; u.tk//; k D 1; 2; : : : :

Let t � 0 and t ¤ tk . Then for the upper right-hand derivative DC(4.51)V.t; u.t// of
V with respect to equation (4.51) we get

DC(4.51)V.t; u.t// D u.t/ Pu.t/

D u.t/
�
� u.t/C a

�
f .u.t/C y�/ � f .y�/

�
� ab

�
f .u.t � �.t//C y�/ � f .y�/

� �
D �u2.t/Cau.t/

�
f .u.t/C y�/ � f .y�/

�
�abu.t/

�
f .u.t � �.t//C y�/�f .y�/

�
:

Since for the function f assumption H4.12 is true, we have

f .u.t/C y�/ � f .y�/ D u.t/f 0.�1.t//;

f .u.t � �.t//C y�/ � f .y�/ D u.t � �.t//f 0.�2.t//;
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where �1.t/ lies between y� and u.t/C y�, and �2.t/ lies between y� and u.t � �.t//
and

DC(4.51)V.t; u.t// � �u
2.t/C aLu2.t/C abLu.t/u.t � �.t//; t ¤ tk; k D 1; 2; : : : :

From the above estimate for any solution u.t/ of (4.51) such that u 2 �1 for t ¤
tk; k D 1; 2; : : :, we have

DC(4.51)V.t; u.t// � .�1C aL.1C b//V .t; u.t// � �dV.t; u.t//;

where, by condition (2) of Theorem 4.24, d > 0.
Thus, since all the conditions of Theorem 2.32 are satisfied, the zero solution of

equation (4.51) is globally equi-asymptotically stable, and hence the equilibrium x�

of (4.48) is globally equi-asymptotically stable. �

Let t0 2 RC and let kxk D
Pn
iD1 jxi j define the norm of x 2 Rn. We consider the

following impulsive cellular neural network with time-varying delays:8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

Pxi .t/ D �cixi .t/C

nX
jD1

aijfj
�
xj .t/

�
C

nX
jD1

bijfj
�
xj .t � �j .t//

�
C Ii ; t ¤ tk; t � t0

�xi .tk/ D xi .tk C 0/ � xi .tk/ D Pik.xi .tk//; k D 1; 2; : : : ;

(4.52)

where i D 1; 2; : : : ; n; n corresponds to the numbers of units in the neural network;
xi .t/ corresponds to the state of the i th unit at time t ; fj .xj .t// denotes the output
of the j th unit at time t ; aij , bij , Ii , ci are constants, aij denotes the strength of the
j th unit on the i th unit at time t , bij denotes the strength of the j th unit on the i th
unit at time t � �j .t/, Ii denotes the external bias on the i th unit, �j .t/ corresponds
to the transmission delay along the axon of the j th unit and satisfies 0 � �j .t/ � �
.� D const/, ci represents the rate with which the i th unit will reset its potential to the
resting state in isolation when disconnected from the network and external inputs; tk ,
k D 1; 2; : : : are the moments of impulsive perturbations and satisfy t0 < t1 < t2 < � � �
and limk!1 tk D 1; xi .tk/ D xi .tk � 0/ and xi .tk C 0/ are the states of the i th
unit before and after the impulsive perturbation at tk , respectively; and Pik.xi .tk//
represents the abrupt change of the state xi .t/ at the impulsive moment tk .

Let ' 2 CBŒŒ��; 0�;Rn�: Denote by x.t/ D x.t I t0; '/; x 2 Rn, the solution of
system (4.52), satisfying the initial condition´

x.t I t0; '/ D '.t � t0/; t0 � � � t � t0

x.t0 C 0I t0; '/ D '.0/:
(4.53)
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Let k'k� D maxt2Œt0��;t0�k'.t � t0/k be the norm of the function ' 2 CBŒŒ��; 0�;
Rn�.

We introduce the following conditions:

H4.17. There exist constants Li > 0 such that

jfi .u/ � fi .v/j � Li ju � vj

for all u; v 2 R; i D 1; 2; : : : ; n.

H4.18. There exist constants Mi > 0 such that for all u 2 R and i D 1; 2; : : : ; n

jfi .u/j �Mi <1:

H4.19. The functions Pik are continuous on R, i D 1; 2; : : : ; n, k D 1; 2; : : : .

H4.20. t0 < t1 < t2 < � � � < tk < tkC1 < � � � and tk !1 as k !1.

H4.21. There exists a unique equilibrium

x� D col.x�1 ; x
�
2 ; : : : ; x

�
n/

of the system (4.52) such that

cix
�
i D

nX
jD1

aijfj .x
�
j /C

nX
jD1

bijfj

�
x�j

�
C Ii ;

Pik.x
�
i / D 0; i D 1; 2; : : : ; n; k D 1; 2; : : : :

Remark 4.25. The problems of existence and uniqueness of equilibrium states of neu-
ral networks without impulses have been investigated in [106, 107, 170, 232, 233].
Efficient sufficient conditions for the existence and uniqueness of an equilibrium of
systems of type (4.52) are given in [9, 221].

Further on we shall use piecewise continuous Lyapunov functions V W Œt0;1/ �
Rn ! RC such that V 2 V0.

One can derive from (4.52) that yi .t/ D xi .t/ � x�i satisfies8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

Pyi .t/ D �ciyi .t/C

nX
jD1

aij Œfj

�
x�j C yj .t/

�
� fj .x

�
j /�

C

nX
jD1

bij Œfj

�
x�j C yj .t � �j .t//

�
� fj .x

�
j /�; t ¤ tk; t � t0

�yi .tk/ D Qik.yi .tk//; k D 1; 2; : : : ;

(4.54)

where Qik.yi .tk// D Pik.yi .tk/C x�i /, i D 1; 2; : : : ; n, k D 1; 2; : : : .
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Theorem 4.26. Assume that:

(1) Conditions H4.17–H4.21 hold.

(2) The system parameters ci , aij and bij .i; j D 1; 2; : : : ; n/ satisfy the following
inequalities:

min
1�i�n

0@ci � Li nX
jD1

jaj i j

1A > max
1�i�n

0@Li nX
jD1

jbj i j

1A > 0:

(3) The functions Pik are such that

Pik.xi .tk// D ��ik.xi .tk/ � x
�
i /; 0 < �ik < 2;

i D 1; 2; : : : ; n, k D 1; 2; : : : .

Then the equilibrium x� of (4.52) is globally exponentially stable.

Proof. We define a Lyapunov function

V.t; y/ D

nX
iD1

jyi .t/j:

Then for t D tk , from the condition (3) of Theorem 4.26, we obtain

V.tk C 0; y.tk/C�y.tk// D
nX
iD1

jyi .tk/CQik.yi .tk//j

D

nX
iD1

jxi .tk/ � x
�
i � �ik.xi .tk/ � x

�
i /j

D

nX
iD1

j1 � �ikj jxi .tk/ � x
�
i j

<

nX
iD1

jxi .tk/ � x
�
i j D V.tk; y.tk//; k D 1; 2; : : : :

(4.55)

Let t � t0 and t ¤ tk , k D 1; 2; : : : . Then for the upper right-hand derivative
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DC(4.54)V.t; y.t// of V with respect to system (4.54) we get

DC(4.54)V.t; y.t//

�

nX
iD1

24�ci jyi .t/j C nX
jD1

Lj jaij j jyj .t/j C

nX
jD1

Lj jbij j jyj .t � �j .t//j

35
D �

nX
iD1

24ci � Li nX
jD1

jaj i j

35 jyi .t/j C nX
jD1

nX
iD1

Lj jbij jjyj .t � �j .t//j

� � min
1�i�n

0@ci � Li nX
jD1

jaj i j

1A nX
iD1

jyi .t/j

C max
1�i�n

0@Li nX
jD1

jbj i j

1A nX
iD1

jyi .t � �i .t//j

� �k1V.t; y.t//C k2 sup
t���s�t

V.s; y.s//;

where

k1 D min
1�i�n

0@ci � Li nX
jD1

jaj i j

1A > 0;

k2 D max
1�i�n

0@Li nX
jD1

jbj i j

1A > 0:

From the above estimate for any solution y.t/ of (4.54) such that

V.s; y.s// � V.t; y.t//; t � � � s � t;

we have

DC(4.54)V.t; y.t// � �.k1 � k2/V .t; y.t//; t ¤ tk; k D 1; 2; : : : :

By virtue of condition (2) of Theorem 4.26 there exists a real number ˛ > 0 such
that

k1 � k2 � ˛;

and it follows that

DC(4.54)V.t; y.t// � �˛V.t; y.t//; t ¤ tk; t � t0: (4.56)

Then using (4.56), (4.55), we get

V.t; y.t// � e�˛.t�t0/V.t0 C 0; y.t0 C 0//; t � t0:
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So,

nX
iD1

ˇ̌
xi .t/ � x

�
i

ˇ̌
� e�˛.t�t0/

nX
iD1

ˇ̌
xi .t0 C 0/ � x�i

ˇ̌
� e�˛.t�t0/ max

s2Œt0��;t0�

 
nX
iD1

jxi .s/ � x
�
i j

!
; t � t0;

and this completes the proof of the theorem. �

Theorem 4.27. Assume that:

(1) Conditions (1) and (3) of Theorem 4.26 hold.

(2) The system parameters ci , aij and bij .i; j D 1; 2; : : : ; n/ satisfy the following
inequalities:

min
1�i�n

 
2ci �

nX
jD1

.Lj .jaij j C jbij j/C Li jaj i j/

!
> max

1�i�n

 
Li

nX
jD1

jbj i j

!
> 0:

Then the equilibrium x� of (4.52) is globally exponentially stable.

Proof. We define a Lyapunov function

V.t; y/ D
1
2

nX
iD1

y2
i .t/:

Then for t D tk from the condition (3) of Theorem 4.26, we obtain

V.tk C 0; y.tk/C�y.tk// D
1
2

nX
iD1

.yi .tk/CQik.yi .tk///
2

D
1
2

nX
iD1

�
xi .tk/ � x

�
i � �ik.xi .tk/ � x

�
i /
�2

D
1
2

nX
iD1

.1 � �ik/
2.xi .tk/ � x

�
i /

2

<
1
2

nX
iD1

.xi .tk/ � x
�
i /

2
D V.tk; y.tk//; k D 1; 2; : : : :

(4.57)
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Let t � t0 and t ¤ tk , k D 1; 2; : : : . Then for the upper right-hand derivative
DC(4.54)V.t; y.t// of V.t; y.t// with respect to system (4.54) we get

DC(4.54)V.t; y.t//

D

nX
iD1

"
yi .t/.�ciyi .t/C

nX
jD1

aij .fj .x
�
j C yj .t// � fj .x

�
j //

C

nX
jD1

bij .fj .x
�
j C yj .t � �j .t/// � fj .x

�
j ///

#

�

nX
iD1

"
�ciy

2
i .t/C

nX
jD1

Lj jaij jjyi .t/jjyj .t/j

C

nX
jD1

Lj jbij jjyi .t/jjyj .t � �j .t//j

#

�

nX
iD1

"
�ciy

2
i .t/C

1
2

nX
jD1

Lj jaij j.y
2
i .t/C y

2
j .t//

C
1
2

nX
jD1

Lj jbij j.y
2
i .t/C y

2
j .t � �j .t///

#

D �
1
2

nX
iD1

" 
2ci �

nX
jD1

.Lj .jaij j C jbij j/C Li jaj i j/

!
y2
i .t/

#

C
1
2

nX
iD1

nX
jD1

Li jbj i jy
2
i .t � �i .t//

� � min
1�i�n

 
2ci �

nX
jD1

.Lj .jaij j C jbij j/C Li jaj i j/

!
1
2

nX
iD1

y2
i .t/

C max
1�i�n

 
Li

nX
jD1

jbj i j

!
1
2

nX
iD1

y2
i .t � �i .t//

� �k1V.t; y.t//C k2 sup
t���s�t

V.s; y.s//;

where

k1 D min
1�i�n

 
2ci �

nX
jD1

.Lj .jaij j C jbij j/C Li jaj i j/

!
> 0;
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k2 D max
1�i�n

 
Li

nX
jD1

jbj i j

!
> 0:

From the above estimate for any solution y.t/ of (4.54) such that

V.s; y.s// � V.t; y.t//; t � � � s � t;

we have

DC(4.54)V.t; y.t// � �.k1 � k2/V .t; y.t//; t ¤ tk; k D 1; 2; : : : :

By virtue of condition (2) of Theorem 4.27 there exists a real number ˛ > 0 such
that

k1 � k2 � ˛;

and it follows that

DC(4.54)V.t; y.t// � �˛V.t; y.t//; t ¤ tk; t � t0: (4.58)

Then using (4.57), (4.58), we get

V.t; y.t// � e�˛.t�t0/V.t0 C 0; y.t0 C 0//; t � t0:

So,
nX
iD1

ˇ̌
xi .t/ � x

�
i

ˇ̌
� e�

˛
2 .t�t0/

nX
iD1

ˇ̌
xi .t0 C 0/ � x�i

ˇ̌
� e�

˛
2 .t�t0/ max

s2Œt0��;t0�

 
nX
iD1

jxi .s/ � x
�
i j

!
; t � t0;

and this completes the proof of the theorem. �

In the following, we shall give three examples to show our results.

Example 4.28. Consider the impulsive neural network with time-varying delays8̂̂̂̂
<̂̂
ˆ̂̂̂:
Pxi .t/ D �cixi .t/C

nX
jD1

aijfj
�
xj .t/

�
C

nX
jD1

bijfj
�
xj .t � �j .t//

�
C Ii ; t ¤ tk; t � 0;

(4.59)

where n D 2; I1 D 1, I2 D 1; c1 D c2 D 3; fi .xi / D 1
2.jxi C 1j � jxi � 1j/;

0 � �i .t/ � � .� D 1/, i D 1; 2;

.aij /2�2 D

�
a11 a12
a21 a22

�
D

�
1 1
�1 1

�
I
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.bij /2�2 D

�
b11 b12
b21 b22

�
D

�
0:9 �0:8
�0:05 0:15

�
I

with impulsive perturbations of the form8̂̂<̂
:̂
x1.tk C 0/ D

1:8262806C x1.tk/

3
; k D 1; 2; : : :

x2.tk C 0/ D
0:0668151C x2.tk/

4
; k D 1; 2; : : : ;

(4.60)

where the impulsive moments are such that 0 < t1 < t2 < � � � , and limk!1 tk D1.
It is easy to verify that the condition (2) of Theorem 4.26 is satisfied for L1 D L2 D

1, k1 D 1, k2 D 0:95, and the condition (2) of Theorem 4.27 is not satisfied. We also
have that

0 < �1k D
2
3
< 2; 0 < �2k D

3
4
< 2:

According to Theorem 4.26, the unique equilibrium

x� D .x�1 ; x
�
2 /
T
D .0:9131403; 0:0222717/T (4.61)

of (4.59), (4.60) is globally exponentially stable.
If we consider again system (4.59) but with impulsive perturbations of the form8<:

x1.tk C 0/ D 2:7394209 � 2x1.tk/; k D 1; 2; : : :

x2.tk C 0/ D
0:0668151C x2.tk/

4
; k D 1; 2; : : : ;

(4.62)

the point (4.61) will be again an equilibrium of (4.59), (4.62), but there is nothing we
can say about its exponential stability, because �1k D 3 > 2.

Example 4.29. Consider the impulsive neural network with time-varying delays
(4.59), where n D 2; I1 D I2 D 1; c1 D c2 D 4; fi .xi / D 1

2.jxi C 1j � jxi � 1j/;
0 � �i .t/ � � .� D 1/, i D 1; 2;

.aij /2�2 D

�
a11 a12
a21 a22

�
D

�
2 1
0 2

�
I

.bij /2�2 D

�
b11 b12
b21 b22

�
D

�
0:4 �0:6
�0:4 0:4

�
I

with impulsive perturbations of the form8̂̂<̂
:̂
x1.tk C 0/ D

0:7352941C x1.tk/

2
; k D 1; 2; : : :

x2.tk C 0/ D
1:3235295C 2x2.tk/

5
; k D 1; 2; : : : ;

(4.63)

where the impulsive moments are such that 0 < t1 < t2 < � � � , and limk!1 tk D1.
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It is easy to verify that the condition (2) of Theorem 4.27 is satisfied for L1 D L2 D

1, k1 D 2, k2 D 1, and the condition (2) of Theorem 4.26 is not satisfied. We also
have that

0 < �1k D
1
2
< 2; 0 < �2k D

3
5
< 2:

According to Theorem 4.27, the unique equilibrium

x� D .x�1 ; x
�
2 /
T
D .0:7352941; 0:4411765/T (4.64)

of (4.59), (4.63) is globally exponentially stable.
If we consider again system (4.59) but with impulsive perturbations of the form8<: x1.tk C 0/ D

0:7352941C x1.tk/

2
; k D 1; 2; : : :

x2.tk C 0/ D 5x2.tk/ � 1:764706; k D 1; 2; : : : ;
(4.65)

the point (4.64) will be again an equilibrium of (4.59), (4.65), but there is nothing we
can say about its exponential stability, because �2k D �4 < 0.

Example 4.30. Consider again the impulsive neural network with time-varying delays
(4.59), where n D 2; I1 D I2 D 1; c1 D c2 D 4; fi .xi / D 1

2.jxi C 1j � jxi � 1j/;
0 � �i .t/ � � .� D 1/, i D 1; 2;

.aij /2�2 D

�
a11 a12
a21 a22

�
D

�
2 1
�1 2

�
I

.bij /2�2 D

�
b11 b12
b21 b22

�
D

�
0:2 �0:4
�0:2 0:2

�
I

with impulsive perturbations of the form8̂̂<̂
:̂
x1.tk C 0/ D

1:8181818 � x1.tk/

2
; k D 1; 2; : : :

x2.tk C 0/ D
1:0606064 � x2.tk/

6
; k D 1; 2; : : : ;

(4.66)

where the impulsive moments are such that 0 < t1 < t2 < � � � , and limk!1 tk D1.
It is easy to verify that the conditions (2) of Theorems 4.26 and 4.27 are satisfied

for L1 D L2 D 1. We also have that

0 < �1k D
3
2
< 2; 0 < �2k D

7
6
< 2:

According to Theorem 4.26 (k1 D 1, k2 D 0:6) and according to Theorem 4.27
(k1 D 1:4, k2 D 0:6), the unique equilibrium

x� D .x�1 ; x
�
2 /
T
D .0:6060606; 0:1515152/T (4.67)

of (4.59), (4.66) is globally exponentially stable.
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If we consider again system (4.59) but with impulsive perturbations of the form8<:
x1.tk C 0/ D 6x1.tk/ � 3:030303; k D 1; 2; : : :

x2.tk C 0/ D
1:0606064 � x2.tk/

6
; k D 1; 2; : : : ;

(4.68)

the point (4.67) will be again an equilibrium of (4.59), (4.68), but there is nothing we
can say about its exponential stability, because �1k D �5 < 0.

The examples considered show that by means of appropriate impulsive perturbations
we can control stability properties of the neural networks.

Impulsive Bidirectional Associative Memory (BAM) neural network
models with time delays

Considering the following BAM impulsive system:8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

Pxi .t/ D �cixi .t/C

nX
jD1

wj ifj .yj .t � �j i //C Ii ; t ¤ tk

Pyj .t/ D �djyj .t/C

mX
iD1

hijgi .xi .t � �ij //C Jj ; t ¤ tk

�xi .tk/ D Pik.xi .tk//; �yj .tk/ D Qjk.yj .tk//; k D 1; 2; : : : ;

(4.69)

for t � 0; i D 1; 2; : : : ; m; j D 1; 2; : : : ; n; xi .t/ and yj .t/ are the activations;
ci , dj are positive constants; time delays �j i , �ij are nonnegative constants; wj i , hij
are the connection weights; fj ; gi are activation functions; Ii ; Jj ; denote external in-
puts; Pik;Qjk are the abrupt changes of the states at the impulsive moments tk; and
0 < t1 < t2 < � � � is a strictly increasing sequence such that limk!1 tk D1.

Let ' 2 CBŒŒ��; 0�;Rm�; ' D .'1; '2; : : : ; 'm/
T and � 2 CBŒŒ��; 0�;Rn�; � D

.�1; �2; : : : ; �n/
T . Denote by col.x.t/; y.t// D col.x.t I 0; '/; y.t I 0; �// 2 RmCn,

col.x.t I 0; '/; y.t I 0; �//D .x1.t I 0; '/; : : : ; xm.t I 0; '/; y1.t I 0; �/; : : : ; yn.t I 0; �//T

the solution of system (4.69), satisfying the initial conditions8̂̂<̂
:̂

xi .t I 0; '/ D 'i .t/;�� � t � 0; i D 1; 2; : : : ; m

yj .t I 0; �/ D �j .t/;�� � t � 0; j D 1; 2; : : : ; n

xi .0C; 0; '/ D 'i .0/; yj .0C; 0; �/ D �i .0/;

(4.70)

where � D max1�i�m;1�j�n �j i and � D max1�i�m;1�j�n �ij .
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Note that at the moments of impulse effects tk , k D 1; 2; : : : the following relations
are satisfied:8̂<̂

:
xi .tk C 0/ D xi .tk/C Pik.xi .tk//; i D 1; 2; : : : ; m

yj .tk C 0/ D yj .tk/CQjk.yj .tk//; j D 1; 2; : : : ; n

xi .tk � 0/ D xi .tk/; yj .tk � 0/ D yj .tk/; k D 1; 2; : : : :

(4.71)

Let kzk D .
PmCn
lD1 z2

l
/1=2 define the norm of z 2 RmCn.

We introduce the following conditions:

H4.22. There exist constants aj > 0 such that

jfj .u/ � fj .v/j � aj ju � vj

for all u; v 2 R; j D 1; 2; : : : ; n.

H4.23. There exist constants bi > 0 such that

jgi .u/ � gi .v/j � bi ju � vj

for all u; v 2 R; i D 1; 2; : : : ; m.

H4.24. The functions Pik are continuous on R, i D 1; 2; : : : ; m, k D 1; 2; : : : .

H4.25. The functions Qjk are continuous on R, j D 1; 2; : : : ; n, k D 1; 2; : : : .

H4.26. 0 < t1 < t2 < � � � < tk < tkC1 < � � � and tk !1 as k !1.

H4.27. There exists a unique equilibrium

col.x�; y�/ D col.x�1 ; x
�
2 ; : : : ; x

�
m; y

�
1 ; y
�
2 ; : : : ; y

�
n/

of the system (4.69) such that

cix
�
i D

nX
jD1

wj ifj .y
�
j /C Ii ; djy

�
j D

mX
iD1

hijgi .x
�
i /C Jj ;

Pik.x
�
i / D 0; Qjk.y

�
j / D 0; i D 1; 2; : : : ; m; j D 1; 2; : : : ; n; k D 1; 2; : : : :

Further on we shall use piecewise continuous Lyapunov functions V W Œ0;1/ �
RmCn ! RC such that V 2 V0.

We introduce the following notations:

x.t/ D .x1.t/; x2.t/; : : : ; xm.t//
T ; y.t/ D .y1.t/; y2.t/; : : : ; yn.t//

T ;

f .t � �/ D .fj .yj .t � �j i ///n�m; g.t � �/ D .gi .xi .t � �ij ///m�n;
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C D diag.c1; c2; : : : ; cm/; D D diag.d1; d2; : : : ; dn/; W D .wj i /n�m;

H D .hij /m�n; I D .I1; I2; : : : ; Im/
T ; J D .J1; J2; : : : ; Jn/

T ;

A D .a1; a2; : : : ; an/
T ; B D .b1; b2; : : : ; bm/

T ;

�min.P / is the smallest eigenvalue of matrix P;

�max.P / is the greatest eigenvalue of matrix P;

kP k D
�
�max.P

TP /
� 1

2 is the norm of matrix P:

Theorem 4.31. Assume that:
(1) Conditions H4.22–H4.27 hold.
(2) There exist symmetric, positive definite matrices Pm�m and Qn�n such that

� 2�min.CP /C kW k kAk kP k

 
�max.P /C �min.Q/

�min.Q/

!

C kHk kBk kQk
�max.P /

�min.P /
� �p;

� 2�min.DQ/C kHk kBk kQk

 
�min.P /C �max.Q/

�min.P /

!

C kW k kAk kP k
�max.Q/

�min.Q/
� �q;

where p; q D const > 0:
(3) The functions Pik and Qjk are such that

Pik.xi .tk// D �
ik.xi .tk/ � x
�
i /; 0 < 
ik < 2;

Qjk.yj .tk// D �ıjk.yj .tk/ � y
�
j /; 0 < ıjk < 2;

i D 1; 2; : : : ; m, j D 1; 2; : : : ; n, k D 1; 2; : : : .
Then the equilibrium col.x�; y�/ of (4.69) is uniformly globally asymptotically stable.

Proof. Set u.t/ D x.t/ � x�; v.t/ D y.t/ � y� and consider the following system:8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

Pui .t/ D �ciui .t/C

nX
jD1

wj i Œfj .y
�
j C vj .t � �j i // � fj .y

�
j /�; t ¤ tk

Pvj .t/ D �dj vj .t/C

mX
iD1

hijgi .x
�
i C ui .t � �ij // � gi .x

�
i /�; t ¤ tk

�ui .tk/ D Iik.ui .tk//; �vj .tk/ D Jjk.vj .tk//; k D 1; 2; : : : ;

(4.72)

where Iik.ui .tk// D Pik.ui .tk/ C x
�
i / and Jjk.vj .tk// D Qjk.vj .tk/ C y

�
j /, i D

1; 2; : : : ; m, j D 1; 2; : : : ; n, k D 1; 2; : : : .
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We define a Lyapunov function

V.t; u.t/; v.t// D uT .t/Pu.t/C vT .t/Qv.t/: (4.73)

Then for t D tk , from the condition (3) of Theorem 4.31, we obtain

V.tkC0; u.tkC0/; v.tkC0//

D uT .tkC0/Pu.tkC0/CvT .tkC0/Qv.tkC0/

D..1�
1k/u1.tk/; : : :; .1�
mk/um.tk//
TP..1�
1k/u1.tk/; : : :; .1�
mk/um.tk//

C ..1�ı1k/v1.tk/; : : :; .1�ınk/vn.tk//
TQ..1�ı1k/v1.tk/; : : :; .1�ınk/vn.tk//

< uT .tk/Pu.tk/C v
T .tk/Qv.tk/

D V.tk; u.tk/; v.tk//; k D 1; 2; : : : :

Let t � 0 and t ¤ tk , k D 1; 2; : : : . Then from H4.22 and H4.23, for the up-
per right-hand derivative DC(4.72)V.t; u.t/; v.t// of the function V.t; u.t/; v.t// with
respect to system (4.72) we get

DC(4.72)V.t; u.t/; v.t// D Pu
T .t/Pu.t/C uT .t/P Pu.t/C PvT .t/Qv.t/C vT .t/Q Pv.t/

� .�Cu.t/CWAv.t � �//TPu.t/C uT .t/P.�Cu.t/CWAv.t � �//

C .�Dv.t/CHBu.t � �//TQv.t/C vT .t/Q.�Dv.t/CHBu.t � �//:

From the last estimate and from the inequalities

�min.CP /ku.t/k
2
� uT .t/CPu.t/ � �max.CP /ku.t/k

2;

�min.DQ/kv.t/k
2
� vT .t/DQv.t/ � �max.DQ/kv.t/k

2;

we obtain

DC(4.72)V.t; u.t/; v.t// � �2�min.CP /ku.t/k
2
� 2�min.DQ/kv.t/k

2

C2kW k kAk kP k kv.t � �/k ku.t/k

C2kHk kBk kQk ku.t � �/k kv.t/k

� �2�min.CP /ku.t/k
2
� 2�min.DQ/kv.t/k

2

CkW k kAk kP k.kv.t � �/k2
C ku.t/k2/

CkHk kBk kQk.ku.t � �/k2
C kv.t/k2/; (4.74)

for t ¤ tk; k D 1; 2; : : : .
Since for the function V.t; u.t/; v.t// we have

�min.P /ku.t/k
2
C �min.Q/kv.t/k

2
� uT .t/Pu.t/C vT .t/Qv.t/

� �max.P /ku.t/k
2
C �max.Q/kv.t/k

2; t � 0;
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for u.t/ and v.t/ such that

V.s; u.s/; v.s// � V.t; u.t/; v.t//; t �max¹�; �º � s � t;

we obtain

�min.P /ku.s/k
2
C �min.Q/kv.s/k

2
� uT .s/Pu.s/C vT .s/Qv.s/

� uT .t/Pu.t/C vT .t/Qv.t/

� �max.P /ku.t/k
2
C �max.Q/kv.t/k

2;

and hence 8̂̂̂<̂
ˆ̂:
ku.s/k2

�
�max.P /ku.t/k

2 C �max.Q/kv.t/k
2

�min.P /
;

kv.s/k2
�
�max.P /ku.t/k

2 C �max.Q/kv.t/k
2

�min.Q/
;

(4.75)

for t �max¹�; �º � s � t , t � 0.
From (4.74) and (4.75), we obtain

DC(4.72)V.t; u.t/; v.t//

� �2�min.CP /ku.t/k
2
� 2�min.DQ/kv.t/k

2

CkW k kAk kP k

 
�max.P /ku.t/k

2 C �max.Q/kv.t/k
2

�min.Q/
C ku.t/k2

!

CkHk kBk kQk

 
�max.P /ku.t/k

2 C �max.Q/kv.t/k
2

�min.P /
C kv.t/k2

!

D

"
�2�min.CP /

CkW k kAk kP k

 
�max.P /C �min.Q/

�min.Q/

!
C kHk kBk kQk

�max.P /

�min.P /

#
ku.t/k2

C

"
�2�min.DQ/

CkHk kBk kQk

 
�min.P /C �max.Q/

�min.P /

!
CkW k kAk kP k

�max.Q/

�min.Q/

#
kv.t/k2;

for t ¤ tk; k D 1; 2; : : : .
From the condition (2) of Theorem 4.31, we derive

DC(4.72)V.t; u.t/; v.t// � �pku.t/k
2
� qkv.t/k2; t ¤ tk; k D 1; 2; : : : :
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Thus, since all the conditions of Theorem 2.34 are satisfied, the zero solution of
system (4.72) is uniformly globally asymptotically stable, and hence the equilibrium
col.x�; y�/ of (4.69) is uniformly globally asymptotically stable. �

Example 4.32. Consider the impulsive BAM neural network²
Px.t/ D �Cx.t/CWf .y.t � 0:2//C I; t ¤ tk; t � 0
Py.t/ D �Dy.t/CHg.x.t � 0:1//C J; t ¤ tk; t � 0

(4.76)

with impulsive perturbations of the form8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂:

�x1.tk/ D �
1
2
.x1.tk/ � 0:12542/; k D 1; 2; : : :

�x2.tk/ D �
2
3
.x2.tk/ � 0:12542/; k D 1; 2; : : :

�y1.tk/ D �
2
5
.y1.tk/ � 0:25006/; k D 1; 2; : : :

�y2.tk/ D �
1
3
.y2.tk/ � 0:25006/; k D 1; 2; : : : ;

(4.77)

where the impulsive moments are such that 0 < t1 < t2 < � � � , and limk!1 tk D1,

x.t/ D

�
x1.t/

x2.t/

�
; y.t/ D

�
y1.t/

y2.t/

�
; C D

�
9 0
0 9

�
; W D

�
0:5 �0:5
0:5 0:5

�
;

f .y.t � 0:2// D

0BBB@
sin
�1

3
y1.t � 0:2/

�
C

2
3
y1.t � 0:2/

sin
�1

3
y2.t � 0:2/

�
C

2
3
y2.t � 0:2/

1CCCA ;

g.x.t � 0:1// D

0BBB@
sin
�1

3
x1.t � 0:1/

�
C

2
3
x1.t � 0:1/

sin
�1

3
x2.t � 0:1/

�
C

2
3
x2.t � 0:1/

1CCCA ;

D D

�
5 0
0 5

�
; H D

�
�1=3 1=3
1=3 1=3

�
; I D

�
I1
I2

�
; J D

�
J1
J2

�
;

and initial conditions´
xi .t I 0; '/ D 'i .t/; t 2 Œ�0:1; 0�; i D 1; 2

yj .t I 0; �/ D �j .t/; t 2 Œ�0:2; 0�; j D 1; 2:
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For I1 D 1:12878, I2 D 0:96062, J1 D 1:2503 and J2 D 1:194071 system (4.76),
(4.77) has an equilibrium x�1 D x

�
2 D 0:12542; y�1 D y

�
2 D 0:25006.

Let P D
�

2 0
0 2

�
and Q D

�
1 0
0 1

�
: Since A D B D

�
1 0
0 1

�
; we have

� 2�min.CP /C kW k kAk kP k

 
�max.P /C �min.Q/

�min.Q/

!

C kHk kBk kQk
�max.P /

�min.P /
D �36C

10
p

2
3

< 0;

� 2�min.DQ/C kHk kBk kQk

 
�min.P /C �max.Q/

�min.P /

!

C kW k kAk kP k
�max.Q/

�min.Q/
D �10C

3
p

2
2

< 0:

Also, 
1k D
1
2 , 
2k D

2
3 , ı1k D

2
5 , ı2k D

1
3 .

Since all the conditions of Theorem 4.31 are satisfied, the equilibrium x�1 D x�2 D

0:12542; y�1 D y�2 D 0:25006 of (4.76), (4.77) is uniformly globally asymptotically
stable.

Impulsive neural networks with infinite delays

We consider the following impulsive delayed neural network with dynamical thresh-
olds8̂<̂
: Px.t/ D �x.t/C af

�
x.t/ � b

Z 1
0

m.s/x.t � s/ ds � c

�
; t ¤ tk; t � 0

�x.tk/ D x.tk C 0/ � x.tk/ D Ik.x.tk//; k D 1; 2; : : : ;
(4.78)

where x W RC ! RI m W RC ! RC is the delayed ker-function; a > 0; b
and c are nonnegative constants; f W R ! R; Ik W R ! R, k D 1; 2; : : :;
0 < t1 < t2 < � � � < tk < tkC1 < � � � ; limk!1 tk D1.

Let ' 2 PCBŒ.�1; 0�;R�: Denote by x.t/ D x.t I 0; '/; x 2 R, the solution of
equation (4.78), satisfying the initial conditions´

x.t I 0; '/ D '.t/; �1 < t � 0

x.0CI 0; '/ D '.0/:
(4.79)

Let j'j1 D sups2.�1;0� j'.s/j be the norm of the function ' 2 PCBŒ.�1; 0�;R�:
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We introduce the following conditions:

H4.28.
Z 1

0
m.s/ ds D 1.

H4.29.
Z 1

0
sm.s/ ds <1.

Further on we shall use piecewise continuous Lyapunov functions V W RC �R!
RC such that V 2 V0. The derivatives of the functions V 2 V0 are estimated by the
elements of the set

�1 D

°
x 2 PCŒŒ0;1/;R� W V.s; x.s// � V.t; x.t//;�1 < s � t

±
:

Lemma 4.33. Let the conditions H4.12–H4.16, H4.28 and H4.29 hold. Then there
exists a unique equilibrium x� of the equation (4.78).

Proof. The proof of Lemma 4.33 is similar to the proof of Lemma 4.23. �

Set y.t/ D x.t/ � x� and consider the following equation:8̂̂̂̂
<̂̂
ˆ̂̂̂:

Py.t/ D �y.t/C af
�
y.t/ � b

Z 1
0

m.s/.y.t � s/C x�/ ds

Cx� � c
�
� x�; t ¤ tk; t � 0

�y.tk/ D Jk.y.tk//; k D 1; 2; : : : ;

(4.80)

where Jk.y/ D Ik.y C x�/, k D 1; 2; : : : .

Theorem 4.34. Assume that:

(1) Conditions H4.12–H4.16, H4.28 and H4.29 hold.

(2) La.1C b/ < 1.

(3) The functions Jk are such that

jy.tk/C Jk.y.tk//j � jy.tk/j; y 2 R; tk > 0:

Then the equilibrium x� of (4.78) is globally equi-asymptotically stable.

Proof. We define a Lyapunov function

V.t; y/ D jyj:

Then for t D tk , from the condition (3) of Theorem 4.34, we obtain

V.tk C 0; y.tk/C Jk.y.tk/// D jy.tk/C Jk.y.tk//j � jy.tk/j D V.tk; y.tk//;

for k D 1; 2; : : : :
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Let t � 0 and t ¤ tk . Then for the upper right-hand derivative DC(4.80)V.t; y.t// of
V.t; y.t// with respect to (4.80) we get

DC(4.80)V.t; y.t// D sgn .y.t// Py.t/

D sgn .y.t//
�
�y.t/C af

�
y.t/ � b

Z 1
0
m.s/.y.t � s/C x�/ ds C x��c

�
�x�

�
:

Since x� is the equilibrium of (4.78), for t � 0 and t ¤ tk it satisfies the equation

�x� C af

�
x� � b

Z 1
0

m.s/x� ds � c

�
D 0: (4.81)

From (4.81) and condition H4.12, it follows

DC(4.80)V.t; y.t// � �jy.t/j C aL

ˇ̌̌̌
y.t/ � b

Z 1
0

m.s/y.t � s/ ds

ˇ̌̌̌
� �jy.t/j C aLjy.t/j C abL

Z 1
0

m.s/jy.t � s/j ds:

From the above estimate for any solution y.t/ of (4.80) such that y 2 �1 for t � 0
and t ¤ tk , we have

DC(4.80)V.t; y.t// � .�1C aL.1C b//V .t; y.t// D �ˇV.t; y.t//;

where, by condition (2) of Theorem 4.34, ˇ > 0.
Thus, since all the conditions of Theorem 2.32 are satisfied, the zero solution of

equation (4.80) is globally equi-asymptotically stable, and hence the equilibrium x�

of (4.78) is globally equi-asymptotically stable. �

Impulsive delay neural networks of a general type

Let t0 2 RC and let kxk D
Pn
iD1 jxi j define the norm of x 2 Rn. We consider

the following impulsive nonautonomous cellular neural network with bounded and
unbounded delays:8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

Pxi .t/ D �di .t/xi .t/C

nX
jD1

aijfj
�
xj .t/

�
C

nX
jD1

bijfj
�
xj .t � �j .t//

�
C

nX
jD1

cij

Z t

�1

mj .t; s/fj
�
xj .s/

�
ds C Ii ; t ¤ tk; t � t0

�xi .tk/ D xi .tk C 0/ � xi .tk/ D Pik.xi .tk//; k D 1; 2; : : : ;

(4.82)

where i D 1; 2; : : : ; n; xi .t/ corresponds to the state of the i th unit at time t ; An�n D
.aij /n�n, Bn�n D .bij /n�n, Cn�n D .cij /n�n denote the connection weight matrices;
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0 � �j .t/ � � ; Ii is the external bias on the i th neuron; di .t/ represents the rate
with which the i th unit will reset its potential to the resting state in isolation when
disconnected from the network and external inputs; the delay kernelmj .t; s/ D mj .t�
s/ .j D 1; 2; : : : ; n/ is of convolution type; tk , k D 1; 2; : : : are the moments of
impulsive perturbations and satisfy t0 < t1 < t2 < � � � and limk!1 tk D 1; and
Pik.xi .tk// represents the abrupt change of the state xi .t/ at the impulsive moment
tk .

Let ' 2 CBŒ.�1; 0�;Rn�: Denote by x.t/ D x.t I t0; '/; x 2 Rn, the solution of
system (4.82), satisfying the initial conditions

´
x.t I t0; '/ D '.t � t0/;�1 < t � t0

x.t0 C 0I t0; '/ D '.0/:
(4.83)

Let k'k1 D maxt2.�1;t0�k'.t�t0/k be the norm of the function ' 2 CBŒ.�1; 0�;
Rn�.

We introduce the following conditions:

H4.30. The delay kernel mi W R2 ! RC is continuous, and there exist positive num-
bers �i such that Z t

�1

mi .t; s/ ds � �i <1

for all t � t0, t ¤ tk , k D 1; 2; : : : and i D 1; 2; : : : ; n.

H4.31. There exists a unique equilibrium

x� D col.x�1 ; x
�
2 ; : : : ; x

�
n/

of the system (4.82) such that

di .t/x
�
i D

nX
jD1

aijfj .x
�
j /C

nX
jD1

bijfj .x
�
j /C

nX
jD1

cij

Z t

�1

mj .t; s/fj .x
�
j /CIi ;

Pik.x
�
i / D 0; i D 1; 2; : : : ; n; k D 1; 2; : : : :

Further on we shall use piecewise continuous Lyapunov functions V W Œt0;1/ �
Rn ! RC such that V 2 V0.
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Set yi .t/ D xi .t/ � x�i , i D 1; 2; : : : ; n. Then yi .t/ satisfies8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
:

Pyi .t/ D �di .t/.yi .t/C x
�
i /C

nX
jD1

aijfj

�
x�j C yj .t/

�

C

nX
jD1

bijfj

�
x�j C yj .t � �j .t//

�

C

nX
jD1

cij

Z t

�1

mj .t; s/fj

�
x�j C yj .s/

�
ds C Ii ; t ¤ tk; t � t0

�yi .tk/ D Qik.yi .tk//; k D 1; 2; : : : ;
(4.84)

where Qik.yi .tk// D Pik.yi .tk/C x�i /, i D 1; 2; : : : ; n, k D 1; 2; : : : .

Theorem 4.35. Assume that:

(1) Conditions H4.17–H4.20, H4.30 and H4.31 hold.

(2) For t � t0, t ¤ tk , k D 1; 2; : : : the inequalities

min
1�i�n

 
di .t/ � Li

nX
jD1

jaj i j

!
> max

1�i�n

 
Li

 
nX
jD1

jbj i j C �i

nX
jD1

jcj i j

!!
> 0

are valid.

(3) The functions Pik are such that

Pik.xi .tk// D ��ik.xi .tk/�x
�
i /; 0 < �ik < 2; i D 1; 2; : : : ; n; k D 1; 2; : : : :

Then the equilibrium x� of system (4.82) is globally exponentially stable.

Proof. We define a Lyapunov function

V.t; y/ D

nX
iD1

jyi .t/j:

Then for t D tk , k D 1; 2; : : :, from the condition (3) of Theorem 4.35, we obtain

V.tk C 0; y.tk/C�y.tk// D
nX
iD1

jyi .tk/CQik.y.tk//j

D

nX
iD1

jxi .tk/ � x
�
i � �ik.xi .tk/ � x

�
i /j
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D

nX
iD1

j1 � �ikjjxi .tk/ � x
�
i j

<

nX
iD1

jxi .tk/ � x
�
i j D V.tk; y.tk//; k D 1; 2; : : : : (4.85)

Let t � t0 and t ¤ tk , k D 1; 2; : : : . Then for the upper right-hand derivative
DC(4.84)V.t; y.t// with respect to system (4.84) we get

DC(4.84)V.t; y.t// D

nX
iD1

sgn.yi .t// Pyi .t/

D

nX
iD1

sgn.yi .t//

"
�di .t/.yi .t/C x

�
i /C

nX
jD1

aijfj

�
x�j C yj .t/

�

C

nX
jD1

bijfj

�
x�j C yj .t � �j .t//

�

C

nX
jD1

cij

Z t

�1

mj .t; s/fj

�
x�j C yj .s/

�
ds C Ii

#
:

From the conditions H4.30 and H4.31, we obtain

DC(4.84)V.t; y.t//

�

nX
iD1

"
�di .t/jyi .t/j C

nX
jD1

Lj jaij jjyj .t/j C

nX
jD1

Lj jbij jjyj .t � �j .t//j

C

nX
jD1

Lj jcij j

Z t

�1

mj .t; s/jyj .s/jds

#

D �

nX
iD1

"
di .t/ � Li

nX
jD1

jaj i j

#
jyi .t/j C

nX
jD1

nX
iD1

Lj jbij jjyj .t � �j .t//j

C

nX
jD1

nX
iD1

Lj�j jcij j sup
�1<s�t

jyj .s/j

� �k1V.t; y.t//C k2 sup
�1<s�t

V.s; y.s//;

where

k1 D min
1�i�n

 
di .t/ � Li

nX
jD1

jaj i j

!
> 0;
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k2 D max
1�i�n

 
Li

 
nX
jD1

jbj i j C �i

nX
jD1

jcj i j

!!
> 0:

From the above estimate for any solution y.t/ of (4.84) such that

V.s; y.s// � V.t; y.t//; �1 < s � t;

we have

DC(4.84)V.t; y.t// � �.k1 � k2/V .t; y.t//; t ¤ tk; k D 1; 2; : : : :

By virtue of condition (2) of Theorem 4.35 there exists a real number ˛ > 0 such
that

k1 � k2 � ˛;

and it follows that

DC(4.84)V.t; y.t// � �˛V.t; y.t//; t ¤ tk; t � t0: (4.86)

Then using (4.86) and (4.85), we get

V.t; y.t// � e�˛.t�t0/V.t0 C 0; y.t0 C 0//; t � t0:

So,

nX
iD1

ˇ̌
xi .t/ � x

�
i

ˇ̌
� e�˛.t�t0/

nX
iD1

ˇ̌
xi .t0 C 0/ � x�i

ˇ̌
� e�˛.t�t0/ max

s2.�1;t0�

 
nX
iD1

jxi .s/ � x
�
i j

!
; t � t0;

and this completes the proof of the theorem. �

Example 4.36. Consider the impulsive neural network of type (4.82), where n D 2;
t0 D 0; I1 D 0:35, I2 D 5:825; d1.t/ D d2.t/ D 3; fi .xi / D 1

2.jxi C 1j � jxi � 1j/;
0 � �i .t/ � � .� D 1/, mi .s/ D e�s , i D 1; 2;

.aij /2�2 D

�
a11 a12
a21 a22

�
D

�
0:5 0:5
0:5 0:5

�
I

.bij /2�2 D

�
b11 b12
b21 b22

�
D

�
0:9 �0:8
0:05 0:15

�
I

.cij /2�2 D

�
c11 c12
c21 c22

�
D

�
0:5 0:5
0:5 0:5

�
I
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with impulsive perturbations of the form8̂̂<̂
:̂
x1.tk C 0/ D

1:5C x1.tk/

4
; k D 1; 2; : : :

x2.tk C 0/ D
2:5C x2.tk/

2
; k D 1; 2; : : : ;

(4.87)

where the impulsive moments are such that 0 < t1 < t2 < � � � , and limk!1 tk D1.
It is easy to verify that the condition (2) of Theorem 4.35 is satisfied for L1 D L2 D

1, k1 D 2, k2 D 1:95 and the condition H4.30 is satisfied, since
R1

0 e�sds D 1. We
also have that

0 < �1k D
3
4
< 2; 0 < �2k D

1
2
< 2:

According to Theorem 4.35, the unique equilibrium

x� D .x�1 ; x
�
2 /
T
D .0:5; 2:5/T (4.88)

of (4.82), (4.87) is globally exponentially stable.
If we consider again system (4.82) but with impulsive perturbations of the form8<: x1.tk C 0/ D

1:5C x1.tk/

4
; k D 1; 2; : : :

x2.tk C 0/ D 12:5 � 5x2.tk/; k D 1; 2; : : : ;
(4.89)

the point (4.88) will be again an equilibrium of (4.82), (4.89), but there is nothing we
can say about its exponential stability, because �2k D 3 > 2.

The example again shows that, by means of appropriate impulsive perturbations, we
can control stability properties of the neural networks.

4.3 Economic models

The Solow impulsive model with endogenous delay

The centrality of the Solow neo-classical growth model (1956) [86, 96, 188] for eco-
nomic theory is witnessed by the current persistency of new contributions simulated
by his work.

The original Solow growth model is defined by the ordinary differential equation

Pk D sf .k/ � nsk; (4.90)

where k D K=L denotes the capital-labour ratio; f .k/ is the production per unit
of labour; s is the saving rate (0 < s < 1); ns > 0 is the rate of change of the
labour supply PL=L, which was initially assumed exogenous by Solow. Contrary to
most subsequent developments, where the supply of labour was treated as exogenously
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determined, Solow also tried to endogenise it. He wrote the rate of change of the labour
supply as a function of the current level of per-capita income: ns D ns.f .k//.

It is known that the current rate of change of the labour supply is related to past fer-
tility, and thus to past levels of wage, following a prescribed pattern of delay. There are
two main alternatives: fixed delays and distributed delays. The former is better suited
when there is no variability in the process of transmission of the past into the future;
for instance: when we assume that all individuals are recruited in the labour force at
the same fixed age. Conversely, when recruitment may occur at different ages, i.e. with
different delays (for instance because the time needed to complete formal education is
heterogeneous within the population), distributed delays appear more suitable. The in-
troduction of a distributed delay in the population term in (4.90) leads to the following
integro-differential equation

Pk.t/ D sf .k.t// �
hZ t

�1

ns
�
f .k.�//

�
g.t � �/ d�

i
k.t/; (4.91)

where the term ns
�
f .k.�//

�
, � < t captures past (rather than present), income-related

fertility, and g.t � �/ is the corresponding delaying kernel.
Integral models of type (4.91) are one of the major economic applications, known

as Vintage Capital Models (VCMs). The VCMs bring a new type of stability and
optimization problems that involve the optimal control of an endogenous delay [1, 62,
78, 86, 96, 105, 113, 176, 177].

On the other hand, the state of economic processes is often subject to instantaneous
perturbations at certain instants, which may be caused by population changes, techno-
logical and financial-structural changes, that is, do exhibit impulsive effects. For in-
stance, considering the present empirical results in the German time series Emmeneg-
ger and Stamova [83] show that during the process of growth, the capital can be subject
to short-term perturbations at certain moments of time.

Therefore, VCMs with delay and impulsive effects should be more accurate in de-
scribing the evolutionary process of the systems. Since delays and impulses can affect
the dynamical behaviors of the system, it is necessary to investigate both delay and
impulsive effects on the stability of economic models.

Let t0 2 RC. We consider the following impulsive Solow growth model with en-
dogenous delay:8̂<̂
:

Pk.t/ D sf .k.t// �
hZ t

�1

ns
�
f .k.�//

�
g.t � �/ d�

i
k.t/; t � t0; t ¤ ti

�k.ti / D k.ti C 0/ � k.ti / D Pik.ti /; i D 1; 2; : : : ;
(4.92)

where k W Œt0;1/ ! RI f W R ! R; g W R ! RC is the delay kernel function;
0 < s < 1; ns W R! R; ti < tiC1 < � � � .i D 1; 2; : : :/ are the moments of impulsive
perturbations, due to which the capital-labour ratio k changes from position k.ti / to
position k.ti C 0/; Pi are constants, which represent the magnitude of the impulse
effect at the moments ti and limi!1 ti D1.
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The equation (4.92) is a generalization of the Solow growth equation with endoge-
nous delay (4.91). It can be used in the economic studies of business cycles in situation
when the capital-labour ratio k.t/ is subject to shock effects [81, 177]. Particularly,
the case �k.ti / < 0 corresponds to instantaneous reduction of the capital-labour ratio
at times ti ; while the case �k.ti / > 0 describes heavy intensification of the capital-
labour ratio.

Let k0 2 CBŒ.�1; 0�;R�: Denote by k.t/ D k.t I t0; k0/; k 2 R, the solution of
system (4.92), satisfying the initial conditions´

k.t I t0; k0/ D k0.t � t0/; t 2 .�1; t0�

k.t0 C 0I t0; k0/ D k0.0/;
(4.93)

and by JC D JC.t0; k0/ the maximal interval of type Œt0; ˇ/ in which the solution
k.t I t0; k0/ is defined.

Let jk0j1 D maxt2.�1;t0� jk0.t�t0/j be the norm of the function k0 2 CBŒ.�1; 0�;
R�:

Introduce the following conditions:

H4.32. The delay kernel g W R ! RC is continuous, and there exists a positive
number � such that Z t

�1

g.t � �/ d� � � <1

for all t 2 Œt0;1/, t ¤ ti , i D 1; 2; : : : .

H4.33. The function f is continuous on R, f .k/ > 0 for k > 0, f .0/ D 0, and there
exists a positive continuous function a.t/ such that 

f .k1.t//

k1.t/
�
f .k2.t//

k2.t/

!
1

k1.t/ � k2.t/
� �a.t/

for all k1, k2 2 R, k1; k2 ¤ 0, k1 ¤ k2 and for all t 2 Œt0;1/, t ¤ ti ,
i D 1; 2; : : : .

H4.34. The function ns is continuous on R, ns.f .k// > 0 for k > 0, ns.f .0// D 0,
and there exists a positive continuous function b.t/ such that

jns.f .k1.t/// � ns.f .k2.t///j � b.t/jk1.t/ � k2.t/j

for all k1, k2 2 R and b.t/ is non-increasing for t 2 Œt0;1/, t ¤ ti , i D
1; 2; : : : .

H4.35. t0 < t1 < t2 < � � � and limi!1 ti D1.

In the proofs of our main theorems we shall use the following lemmas.
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Lemma 4.37. Let the conditions H4.32–H4.35 hold, andZ t

�1

ns.f .k.�///g.t � �/d�

be continuous for all t � t0.
Then JC.t0; k0/ D Œt0;1/.

Proof. If
R t
�1

ns
�
f .k.�//

�
g.t � �/d� is continuous for all t � t0, then under the

hypotheses H4.32–H4.34, the equation (4.91) has a unique solution k.t/ D k.t I t0; k0/

with k0 2 CBŒ.�1; t0�;R� on the interval Œt0;1/ [98, 99, 134]. This means that the
solution k.t/ D k.t I t0; k0/ of problem (4.92), (4.93) is defined on Œt0; t1� [ .ti ; tiC1�,
i D 1; 2; : : : . From the hypothesis H4.35, we conclude that it is continuable for
t � t0. �

Lemma 4.38. Assume that:

(1) The conditions of Lemma 4.37 hold.

(2) k.t/ D k.t I t0; k0/ is a solution of (4.92), (4.93) such that

k.t/ D k0.t � t0/ � 0; sup k0.s/ <1; k0.0/ > 0:

(3) For each i D 1; 2; : : :
1C Pi > 0:

Then
k.t/ > 0; t � t0:

Proof. The proof of Lemma 4.38 is analogous to the proof of Lemma 4.16. �

Theorem 4.39. Assume that:

(1) Conditions (1) and (2) of Lemma 4.38 hold.

(2) �1 < Pi � 0 for each i D 1; 2; : : : .

Then the equation (4.92) is uniformly ultimately bounded.

Proof. From the conditions (1) and (2) of Lemma 4.38, it follows [4, 134] that for
t 2 Œt0; t1� [ .ti ; tiC1�, i D 1; 2; : : : there exist positive constants m�i and M �i < 1

such that
m�i � k.t/ �M

�
i :

If we set M � D maxi M �i , i D 1; 2; : : :, then by Lemma 4.38 and condition (2) of
Theorem 4.39, we have

0 < k.ti C 0/ D .1C Pi /k.ti / � k.ti / �M �:

�
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Corollary 4.40. Let the conditions of Theorem 4.39 hold.
Then there exist positive constants m and M <1 such that

m � k.t/ �M; t 2 Œt0;1/: (4.94)

Let Qk0 2 CBŒ.�1; 0�;R�, and let Qk.t/ D Qk.t I t0; Qk0/ be a solution of (4.92) for all
t � t0 with initial conditions

Qk.t I t0; Qk0/ D Qk0.t � t0/; t 2 .�1; t0�I Qk.t0 C 0/ D Qk0.0/:

In the following, we shall suppose that

k.t/ D k0.t � t0/ � 0; sup k0.s/ <1; k0.0/ > 0I

Qk.t/ D Qk0.t � t0/ � 0; sup Qk0.s/ <1; Qk0.0/ > 0:

Theorem 4.41. Assume that:

(1) The conditions of Theorem 4.39 hold.

(2) There exists a nonnegative constant L such that

LmCM� max
�2.�1;t�

b.�/ � msa.t/; t � t0; t ¤ ti ; i D 1; 2; : : : :

Then the solution k.t/ of (4.92) is uniformly asymptotically stable.

Proof. Define the Lyapunov function

V.t; k; Qk/ D
ˇ̌̌
ln
k

Qk

ˇ̌̌
: (4.95)

By the Mean Value Theorem, it follows that for any closed interval contained in
Œt0; t1� [ .ti ; tiC1�, i D 1; 2; : : :, we have

1
M
jk.t/ � Qk.t/j � j ln k.t/ � ln Qk.t/j �

1
m
jk.t/ � Qk.t/j: (4.96)

If jk0 � Qk0j1 < ı <1, then we obtain from the inequalities (4.96)

V.t0 C 0; k.t0 C 0/; Qk.t0 C 0// D j ln k.t0 C 0/ � ln Qk.t0 C 0/j

�
1
m
jk0.t0 C 0/ � Qk0.t0 C 0/j

�
1
m
jk0 � Qk0j1 < ı <1: (4.97)
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Consider the upper right-hand derivative DC(4.92)V.t; k.t/;
Qk.t// of the function V.t;

k.t/; Qk.t// with respect to (4.92). For t � t0 and t ¤ ti , i D 1; 2; : : :, we derive the
estimate

DC(4.92)V.t; k.t/;
Qk.t// D

 
Pk.t/

k.t/
�

PQk.t/

Qk.t/

!
sgn

�
k.t/ � Qk.t/

�
� s

 
f .k.t//

k.t/
�
f . Qk.t//

Qk.t/

!
jk.t/ � Qk.t/j

k.t/ � Qk.t/

C

Z t

�1

jns.f .k.�/// � ns.f . Qk.�///jg.t � �/ d�

� �sa.t/jk.t/ � Qk.t/j C

Z t

�1

b.�/jk.�/ � Qk.�/jg.t � �/ d�

� �sa.t/jk.t/ � Qk.t/j

C max
�2.�1;t�

b.�/

Z t

�1

jk.�/ � Qk.�/jg.t � �/ d�:

From (4.96), using the Razumikhin condition V.�; k.�/; Qk.�// � V.t; k.t/; Qk.t//;

� 2 .�1; t �; t � t0, we have

1
M
jk.�/ � Qk.�/j � V.�; k.�/; Qk.�//

� V.t; k.t/; Qk.t// �
1
m
jk.t/ � Qk.t/j; � 2 .�1; t �;

and hence

jk.�/ � Qk.�/j �
M

m
jk.t/ � Qk.t/j; � 2 .�1; t �; t ¤ ti ; i D 1; 2; : : : : (4.98)

Then, from (4.98) and from condition (2) of Theorem 4.41, we obtain

DC(4.92)V.t; k.t/;
Qk.t// � �Ljk.t/ � Qk.t/j � �LmV.t; k.t/; Qk.t//; (4.99)

for t � t0 and t ¤ ti , i D 1; 2; : : : .
Also, for t D ti , i D 1; 2; : : :, we have

V.ti C 0; k.ti C 0/; Qk.ti C 0// D
ˇ̌̌
ln
k.ti C 0/
Qk.ti C 0/

ˇ̌̌
D

ˇ̌̌
ln
.1C Pi /k.ti /

.1C Pi / Qk.ti /

ˇ̌̌
D V.ti ; k.ti /; Qk.ti //: (4.100)

From (4.99) and (4.100), we obtain

V.t; k.t/; Qk.t// � V.t0 C 0; k.t0 C 0/; Qk.t0 C 0// exp ¹�Lm.t � t0/º (4.101)

for all t � t0:
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Then, from (4.101), (4.96) and (4.97), we deduce the inequality

V.t; k.t/; Qk.t// �
1
m
jk0 � Qk0j1 exp ¹�Lm.t � t0/º ; t � t0:

This shows that the solution k.t/ of equation (4.92) is uniformly asymptotically
stable. �

When a Cobb–Douglas production function f .k/ D k˛, where 0 < ˛ < 1, is
chosen [77], the model (4.91) becomes

Pk.t/ D sk˛.t/ �
hZ t

�1

ns

�
k˛.�/

�
g.t � �/ d�

i
k.t/:

As we are essentially interested in the effects of forces of “fundamental” nature, in
what follows we assume, for simplicity, that the function ns is linear and increasing,
i.e. we consider ns.k˛/ D nsk

˛, where ns � 0 is a constant parameter, tuning the
reaction of the rate of change of the labour supply to changes in per-capita income.
We therefore have the model

Pk.t/ D sk˛.t/ � ns

hZ t

�1

k˛.�/g.t � �/d�
i
k.t/: (4.102)

We consider the impulsive generalization of model (4.102)8̂<̂
:

Pk.t/ D sk˛.t/ � ns

hZ t

�1

k˛.�/g.t � �/d�
i
k.t/; t � t0; t ¤ ti

�k.ti / D k.ti C 0/ � k.ti / D Qi .k.ti //; i D 1; 2; : : : ;
(4.103)

where t0 2 RC; ti , i D 1; 2; : : : are the moments of impulsive perturbations and satisfy
t0 < t1 < t2 < � � � and limi!1 ti D1,Qi .k.ti // represents the abrupt change of the
state k.t/ at the impulsive moment ti .

Introduce the following condition:

H4.36.
Z t

�1

g.t � �/d� D 1, t 2 RC.

It is well known [86, 176] that under the hypothesis H4.36, the equation (4.102) has
the zero equilibrium E0 and a positive equilibrium E1 D s=n on the interval Œt0;1/.
Now, we shall investigate the discontinuous case.

Lemma 4.42. Assume that:

(1) Conditions H4.35 and H4.36 hold.

(2) The functions Qi W R! R are such that

Qi .k.ti // D ��i .k.ti / �E1/; �i D const > 0; i D 1; 2; : : : :

Then there exists a positive equilibrium of the equation (4.103).
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Proof. From H4.36, it follows that E1 D s=n is a positive equilibrium of (4.102) on
the interval Œt0;1/. This means that the solution E1 of (4.103) is defined on Œt0; t1� [
.ti ; tiC1�, i D 1; 2; : : : . Also, we have that the functions Qi are such that

Qi .k.ti // D ��i .k.ti / �E1/:

So,
�E1.ti / D Qi .E1.ti // D 0; i D 1; 2; : : : ;

i.e., E1 is an equilibrium of (4.103). From condition H4.35, we conclude that it is
continuable for t � t0. �

Theorem 4.43. Assume that:

(1) Conditions H4.35 and H4.36 hold.

(2) There exists a positive continuous function a.t/ such that

k˛�1.t/ �E˛�1
1

k.t/ �E1
� �a.t/

for all k 2 R, k ¤ E1 and for all t 2 Œt0;1/, t ¤ ti , i D 1; 2; : : : .

(3) The functions Qi W R! R are such that

Qi .k.ti // D ��i .k.ti / �E1/; 0 < �i < 2; i D 1; 2; : : : :

(4) There exists a nonnegative constant L such that

LC ˛nsm
˛�1
� sa.t/; t � t0; t ¤ ti ; i D 1; 2; : : : :

Then the equilibrium E1 of (4.103) is uniformly asymptotically stable.

Proof. Consider the Lyapunov function

V.t; k/ D jk �E1j:

If jk0 �E1j1 < ı <1, we obtain

V.t0 C 0; k.t0 C 0// D jk.t0 C 0/ �E1j � jk0 �E1j1 < ı <1: (4.104)

Consider the upper right-hand derivativeDC(4.103)V.t; k.t// of the function V.t; k.t//
with respect to (4.103). For t � t0 and t ¤ ti , i D 1; 2; : : :, we derive the estimate

DC(4.103)V.t; k.t// D
Pk.t/sgn .k.t/ �E1/

D k.t/
h
sk˛�1.t/ � ns

Z t

�1

g.t � �/k˛.�/d�
i
sgn .k.t/ �E1/ :
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Since E1 is an equilibrium of (4.103), we obtain

DC(4.103)V.t; k.t//

� k.t/
h
jk.t/ �E1js

k˛�1.t/ �E˛�1
1

k.t/ �E1
C ns

Z t

�1

g.t � �/jk˛.�/ �E˛1 jd�
i
;

for t ¤ ti ; i D 1; 2; : : : .
The function k˛.t/ is differentiable on any closed interval contained in Œt0; t1� [

.ti ; tiC1�, i D 1; 2; : : :, and the inequalities m � k.t/ � M are valid for all t � t0;

t ¤ ti , i D 1; 2; : : : .
Therefore,

jk˛1 .t/ � k
˛
2 .t/j D j˛jjk

˛�1.t/jjk1.t/ � k2.t/j � ˛m
˛�1
jk1.t/ � k2.t/j

for k1.t/ � k.t/ � k2.t/, k1, k2 2 R and for all t � t0; t ¤ ti , i D 1; 2; : : : .
From the last estimate, we obtain

DC(4.103)V.t; k.t// � k.t/
h
�sa.t/jk.t/�E1jCns

Z t

�1

g.t��/˛m˛�1
jk.�/�E1jd�

i
;

for t ¤ ti ; i D 1; 2; : : : :
From condition (4) of Theorem 4.43, for any solution k of (4.103) such that V.�/ �

V.t/; � 2 .�1; t �; t � t0, we have

DC(4.103)V.t; k.t// � �Lk.t/jk.t/ �E1j � �LmV.t; k.t//; (4.105)

t � t0 and t ¤ ti , i D 1; 2; : : : .
Also, for t > t0 and t D ti from the condition (3) of Theorem 4.43, we have

V.ti C 0; k.ti C 0// D jk.ti C 0/ �E1j D jk.ti / � �i .k.ti / �E1/ �E1j

D j1 � �i jjk.ti / �E1j < jk.ti / �E1j D V.ti ; k.ti //: (4.106)

Then for t � t0 from (4.106), (4.104) and (4.105), we deduce the inequality

jk.t/ �E1j � jk0 �E1j1e
�Lm.t�t0/;

which shows that the equilibrium E1 of equation (4.103) is uniformly asymptotically
stable. �

Impulsive functional differential equations modeling price fluctuations in
single commodity markets

First, in a single good market, there are three variables: the quantity demanded qd ,
the quantity supplied qs and its price p. The equilibrium is attained when the excess
demand is zero, qd � qs D 0, that is, the market is cleared. But generally, the market
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is not in equilibrium and at an initial time t0 the price p0 is not at the equilibrium value
p, that is, p0 ¤ p. In such a situation the variables qd , qs and p must change over
time and are considered as functions of time. The dynamic question is: given sufficient
time, how has the adjustment process p.t/! p as t !1 to be described?

The dynamic process of attaining an equilibrium in a single good market model is
tentatively described by differential equations, on the basis of considerations on price
changes, governing the relative strength of the demand and supply forces. In a first
approach and for the sake of simplicity, the rate of price change with respect to time
is assumed to be proportional to the the excess demand qd � qs . Moreover, definitive
relationships between the market price p of a commodity, the quantity demanded and
the quantity supplied are assumed to exist. These relationships are called the demand
curve and the supply curve, occasionally modeled by a demand function qd D qd .p/
or a supply function qs D qs.p/, both dependant of the price variable p. In the case
where the rate of price change with respect to time is assumed to be proportional to
the excess demand, the differential equation belongs to the class

1
p

dp

dt
D f .qs.p/; qd .p//; (4.107)

of differential equations. The question that arises is about the nature of the time path
p.t/, resulting from equation (4.107).

Many authors precisely considered the model (4.107) and its generalizations in or-
der to study the dynamics of the prices, production and consumption for a particular
commodity (see [206] and the references cited therein).

In [162] Muresan studied a special case of a fluctuation model for the price with
delay of the form

Pp.t/ D
� a

b C pq.t/
�

cpr.g.t//

d C pr.g.t//

�
p.t/ (4.108)

where a; b; c; d; r > 0, q 2 Œ1;1/, g 2 C ŒRC;RC� and proved that there exists a
positive, bounded, unique solution.

Rus and Iancu [175] generalized the model (4.108) and studied a model of the form²
Pp.t/ D F.p.t/; p.t � �//p.t/; t � 0
p.t/ D '.t/; t 2 Œ��; 0�:

(4.109)

They proved the existence and uniqueness of the equilibrium solution of the model
considered and established some relations between this solution and coincidence
points.

An empirical time series analysis [83] of German macroeconomic data emphasized
to model capital intensity, subject to short-term perturbations at certain moments of
time. Then it is not reasonable to expect a regular solution of the equation (4.109).
Instead, the solution must have some jumps and the jumps follow a specific pattern.
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In the long-term planning an adequate mathematical model of this case will be the
following impulsive functional differential equation:´

Pp.t/ D F.p.t/; pt /p.t/; t � t0; t ¤ ti

�p.ti / D p.ti C 0/ � p.ti / D Pi .p.ti //; i D 1; 2; : : : ;
(4.110)

where t0 2 RC; t0 < t1 < t2 < � � � , limi!1 ti D 1; � be a domain in RC
containing the origin; F W � � PCŒŒ��; 0�; �� ! R; Pi W � ! R; i D 1; 2; : : : are
functions which characterize the magnitude of the impulse effect at the times ti ; p.ti /
and p.ti C 0/ are respectively the price levels before and after the impulse effects and
for t � t0; pt 2 PCŒŒ��; 0�; �� is degined by pt .s/ D p.t C s/, �� � s � 0.

Let p0 2 CBŒŒ��; 0�; ��. Denote by p.t/ D p.t I t0; p0/; p 2 �, the solution of
equation (4.110), satisfying the initial conditions´

p.t I t0; p0/ D p0.t � t0/; t0 � � � t � t0

p.t0 C 0I t0; p0/ D p0.0/;
(4.111)

JC.t0; p0/ the maximal interval of type Œt0; ˇ/ in which the solution p.t I t0; p0/ is
defined, and by jp0j� D maxt2 Œt0��;t0� jp0.t � t0/j the norm of the function p0 2

CBŒŒ��; 0�; ��.

Introduce the following conditions:

H4.37. The function F is continuous on � � PCŒŒ��; 0�; ��.

H4.38. The function F locally Lipschitz continuous with respect to its second argu-
ment on � � PCŒŒ��; 0�; ��.

H4.39. There exists a constant M > 0 such that

jF.p; pt /j �M <1 for .p; pt / 2 � � PCŒŒ�r; 0�; ��:

H4.40. Pi 2 C Œ�;R�; i D 1; 2; : : : .

H4.41. The functions .I C Pi / W �! �; i D 1; 2; : : : where I is the identity in �.

H4.42. t0 < t1 < t2 < � � � and limi!1 ti D1.

Let p1 2 CBŒŒ��; 0�; ��. Denote by p�.t/ D p�.t I t0; p1/; p
� 2 � the solution of

equation (4.110), satisfying the initial conditions´
p�.t I t0; p1/ D p1.t � t0/; t0 � � � t � t0

p�.t0 C 0I t0; p1/ D p1.0/:

In our subsequent analysis, we shall use piecewise continuous functions V W Œt0;1/�
� ! RC which belong to the class V0 and for which the following condition is
satisfied:

H4.43. V.t; p�.t// D 0, t � t0:
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For a function V 2 V0 and for some t � t0, we shall use also the class

�1 D ¹p 2 PCŒŒt0;1/;�� W V.s; p.s// � V.t; p.t//; t � � � s � tº:

The next theorems follow directly from Theorems 2.7, 2.8 and 2.9.

Theorem 4.44. Assume that:

(1) Conditions H4.37–H4.42 hold.

(2) There exists a function V 2 V0 such that H4.43 holds,

a.jp � p�.t/j/ � V.t; p/; .t; p/ 2 Œt0;1/ ��; a 2 K;

V.t C 0; p C Ik.p// � V.t; p/; p 2 �; t D ti ; i D 1; 2; : : : ;

and the inequality

DC(4.110)V.t; p.t// � 0; t ¤ ti ; i D 1; 2; : : :

is valid for t 2 Œt0;1/; p 2 �1:

Then the solution p�.t/ of equation (4.110) is stable.

Theorem 4.45. Let the conditions of Theorem 4.44 hold, and let a function b 2 K
exist such that

V.t; p/ � b.jp � p�.t/j/; .t; p/ 2 Œt0;1/ ��:

Then the solution p�.t/ of equation (4.110) is uniformly stable.

Theorem 4.46. Assume that:

(1) Conditions H4.37–H4.42 hold.

(2) There exists a function V 2 V0 such that H4.43 holds,

a.jp � p�.t/j/ � V.t; x/ � b.jp � p�.t/j/; .t; p/ 2 Œt0;1/ ��; a; b 2 K;

V.t C 0; p C Ik.p// � V.t; p/; p 2 �; t D ti ; i D 1; 2; : : : ;

and the inequality

DC(4.110)V.t; p.t// � �c.jp.t/ � p
�.t/j/; t ¤ ti ; i D 1; 2; : : :

is valid for c 2 K, t 2 Œt0;1/ and p 2 �1.

Then the solution p�.t/ of equation (4.110) is uniformly asymptotically stable.
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Example 4.47. Let for a, b, c, d > 0, a linear demand function qd D a � bp and
a linear supply function qs D �c C dp be given and the function f D ˛.qd � qs/,
˛ > 0. They can be put into (4.107), giving the linear non homogenous differential
equation dp

dt
D ˛.aCc�p.bCd// D p˛.aCc

p
�.bCd//; corresponding to a special

type of the differential equation (4.107). Its complementary and particular solutions
are immediate.

A special case of the model studied by Mackey and Belair [151] is the following
equation:

Pp.t/ D ˛

"
aC c

p.t/
� b � d

p.t � �.t//

p.t/

#
p.t/;

where 0 � �.t/ � � and � is a constant.
If at the moments t1; t2; : : : .t0 < t1 < t2 < � � � < ti < tiC1 < � � � and limi!1 ti D
1/ the above equation is subject to impulsive perturbations then the adequate mathe-
matical model is the following impulsive equation:8̂̂̂<̂

ˆ̂:
Pp.t/ D ˛

"
aC c

p.t/
� b � d

p.t � �.t//

p.t/

#
p.t/; t ¤ ti ; t � t0

�p.ti / D �ıi

�
p.ti / �

aC c

b C d

�
; i D 1; 2; : : : ;

(4.112)

where t0 2 RC, p.t/ represents the price at the moment t , ıi 2 R are constants,
i D 1; 2; : : : .

It is easy to verify that the point p� D aCc
bCd

is an equilibrium of (4.112).
We shall show that, if there exists a constant ˇ > 0 such that d � b � ˇ and the

inequalities 0 < ıi < 2 are valid for i D 1; 2; : : :, then the equilibrium p� of (4.112)
is uniformly asymptotically stable.

Let V.t; p/ D 1
2.p � p

�/2. Then the set

�1 D ¹p 2 PCŒŒt0;1/; .0;1/� W .p.s/ � p�/2 � .p.t/ � p�/2; t � � � s � tº:

For t � t0, t ¤ ti we have

DC(4.112)V.t; p.t// D ˛.p.t/ � p
�/Œa � bp.t/C c � dp.t � �.t//�:

Since p� is an equilibrium of (4.112), we have

DC(4.112)V.t; p.t// D ˛.p.t/ � p
�/Œ�b.p.t/ � p�/ � d.p.t � �.t// � p�/�:

From the last relation for t � t0, t ¤ ti and p 2 �1 we obtain the estimate

DC(4.112)V.t; p.t// � ˛Œ�b C d�.p.t/ � p
�/2 � �˛ˇ.p.t/ � p�/2:
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Also, if 0 < ıi < 2 for all i D 1; 2; : : :, then

V.ti C 0; p.ti C 0// D
1
2

h
.1 � ıi /p.ti /C ıip� � p�

i2

D
1
2
.1 � ıi /2

�
p.ti / � p

�
�2
< V.ti ; p.ti //:

Since all conditions of Theorem 4.46 are satisfied, the equilibrium p� of (4.112) is
uniformly asymptotically stable.

If the constants ıi are such that ıi < 0 or ıi > 2, then condition (4) of Theorem 4.46
is not satisfied and we can not make any conclusion about the asymptotic stability of
the equilibrium p�.

The example again demonstrates the utility of the second method of Lyapunov. The
main characteristic of the method is the introduction of a function, namely, Lyapunov
function which defines a generalized distance between p.t/ and the equilibrium value
p�.

By means of piecewise continuous functions we give the conditions for uniform
asymptotic stability of the price p�. A technique is applied, based on certain mini-
mal subsets of a suitable space of piecewise continuous functions, by the elements of
which the derivatives of the piecewise continuous auxiliary functions of Lyapunov are
estimated.

It is shown, also, that the role of impulses in changing the behavior of solutions of
impulsive differential equations is very important.

Notes and Comments

Theorems 4.6–4.13 are new. For related results for impulsive Lotka–Volterra models
without delay see Ahmad and Stamova [7] and for Lotka–Volterra models without
impulses see Fan, Wang and Jiang [85] and Wei and Wang [214]. Lemmas 4.15–4.17
and Theorems 4.20 and 4.21 are taken from Ahmad and Stamova [8].

Theorem 4.24 is new. Theorems 4.26 and 4.27 are adapted from Ahmad and Sta-
mova [9]. Theorem 4.31 is new. Theorem 4.34 is taken from Stamova [199]. Theo-
rem 4.35 is new.

Economic models discussed in Section 4.3 are due to Stamova and Emmenegger
[83] and [206]. Theorems 4.39–4.43 are new. Theorems 4.44–4.46 are adapted from
Stamova and Emmenegger [206].
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