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Summary.

In this paper the inverse optimal stabilization problem is solved for
nonlinear nonaffine control discrete-time systems which are globally sta-
ble when uncontrolled. Stabilizing feedback laws and nonquadratic cost
functionals are constructed. The result is applied to feedforward systems.

1.1 Introduction

Inverse optimal control problems for linear system have been studied more
than thirty years ago by Kalman [7] and next by Anderson and Moore [1].
However, inverse optimality for nonlinear systems is a more recent subject
studied by Moylan and Anderson [16] and later by Freeman and Kokotović
[2], [3]. Other works have followed [5, Section 3.5], [4, 8, 9]. This area of
the nonlinear control theory arises from the wish to determine for nonlinear
systems stabilizing feedbacks having the good performances of those resulting
from the optimization theory without having to solve the Hamilton-Jacobi-
Bellman equation which is not always a feasible task. In the inverse optimal
approach, a stabilizing feedback is designed first and then it is shown to be
optimal for a cost functional of the form∫ ∞

0

(
l(x) + u>R(x)u

)
dt
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where l(x) is positive and and R(x) is positive definite. In other words, the
functions l(x) and R(x) are a posteriori determined from the data of a par-
ticular stabilizing feedback, rather than a priori chosen by the designer i.e.
regardless of any stabilizing feedback.

So far, to the best knowledge of our, all the works on this subject are con-
cerned with continuous-time systems. The purpose of the present paper is
to address the problem of inverse optimal stabilization for general classes of
nonlinear discrete-time systems. More precisely, its aim is twofold. In a first
part, we show that the stabilizing feedbacks designed in [13, Appendix A]
and in [14, Section 2] for nonlinear discrete-time systems

xi+1 = f(xi) + g(xi, ui)ui (1.1)

with f(0) = 0, x ∈ Rn and u ∈ R which are globally stable when u = 0 also
minimize cost functionals of the form

J =
∞∑

i=0

(
α(xi, ui) + β(xi, ui)|ui|2

)
.

The functions α(x, u) and β(x, u) of the cost functional we consider depend
on u, although in inverse optimal control for continous-time systems, no such
cost functional are in general considered. This is due to the specificities of
discrete-time systems and in Section 1.3 we show how to infer from these costs
(ater a slight modification) disturbance attenuation properties. In a second
part, we apply the results of the first to a particular class of discrete-time
feedforward systems i.e. systems which admit a representation of the form:

zi+1 = F(zi) + ψ(zi, ξi) + g2(zi, ξi, ui)ui +m1(zi, ξi, ui, di)di

ξi+1 = a(ξi) + g1(zi, ξi, ui)ui +m2(zi, ξi, ui, di)di

wherem1(zi, ξi, ui, di)di andm2(zi, ξi, ui, di)di are disturbances, where zi+1 =
F(zi) is globally stable, ξi+1 = a(ξi) is globally asymptotically stable and
locally exponentially stable ψ(z, 0) = 0 for all z. Observe that the study
of this class of systems is, from a practical point of view, appealing. On
the one hand, many physical systems are described by feedforward equa-
tions (Cart-pendulum system, Ball and Beam with friction term, PVTOL)
and, on the other hand the technique provides us with bounded feedbacks
for null-controllable linear systems. These systems, in continuous-time, have
been studied for the first time by A. Teel in [19] where a family of stabilizing
feedbacks is displayed. Many extentions this pioneer work have followed: see
[13, 5, 15, 12, 18] where new family of controls, control Lyapunov functions
and output feedback results are given. A discrete-time version of the main
result of [13] is proved in [14]. In continuous time, it is shown in [17, Sec-
tion 6.2.2] that the forwarding design applied to affine systems has stability
margins. This result is proved via inverse optimal results. This result has
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no direct equivalent in discrete-time because, on the one hand, even affine
discrete-time feedforward systems cannot be rendered passive in the classical
sense and, on the other hand, only bounded stabilizing feedbacks are avail-
able: see [14]. However, our work owes a great deal to the technique of proof
of this result as long as to those of [8], where is stressed the link there is
between inverse optimal control and disturbance attenuation, and [20] where
a disturbance attenuation result for continuous-time feedforward system is
given. To consider a slightly larger class of systems than the one studied in
[14], we propose a discrete-time version of the main result of [5] to construct
a Lyapunov function enabling us to prove disturbance attenuation properties
of the closed-loop systems.

Preliminaries and definitions

1. Throughout the paper we assume that the functions encountered are suf-
ficiently smooth.

2. We denote by χi the solution of the discrete-time system:

χi+1 = H(χi) (1.2)

with the initial condition χ0 = χ.

3. For a sequence χi solution of (1.2) and a function V(χ) we denote by ∆V
the term V(χi+1) − V(χi).

4. A function V(χi) is positive definite if

V(χ) > 0 , ∀χ 6= 0 .

5. The inverse optimal stabilization problem for discrete-time systems (1.1) is
solvable if there exist positive real-valued functions α(x, u) and β(x, u) such
that there exists a feedback law u(x) which globally asymptotically stabilizes
(1.1) and at the same time minimizes the cost functional

J =
∫ ∞

0

(α(x, u) + β(x, u)u2)dt.

1.2 Inverse optimal control

In this section, we study the inverse optimal problem for the discrete-time
nonlinear systems (1.1) and introduce the following assumptions:

H1. There exists a proper, positive definite function V (x) and such that
V (f(x)) − V (x) ≤ 0.

H1’. There exists a positive definite function V (x) such that V (f(x)) −
V (x) ≤ 0.
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H2. The sets

Ω = {x ∈ Rn : V (f i+1(x)) = V (f i(x)) , i = 0, 1, 2, . . .}

S = {x ∈ Rn :
∂V

∂x
(f i+1(x))g(f i(x), 0) = 0 , i = 0, 1, 2, . . .}

are such that
Ω

⋂
S = {0}.

Remark. The system (1.1) is a single-input system. Generalizations of our
results to the case of multi-input systems can be carried out but it turns out
that the proofs are then much more intricate.

1.2.1 Globally asymptotically stabilizing feedback

Let us recall a result which is an immediate consequence of [13, Lemma II.4]
or of the feedback design of [14, Section2] and is an extension of [11, Corollary
3.1].

Theorem 1.2.1. Consider the discrete-time systems (1.1). Assume that As-
sumptions H1 and H2 are satisfied. Then for all function µ(x) > 0, there
exists a smooth function φ(x) such that the following feedback control

u(x) = −φ(x)h(x, 0), 0 < φ(x) ≤ µ(x) (1.3)

h(x, u) =
∫ 1

0

∂V

∂x
(f(x) + g(x, u)uθ)g(x, u)dθ (1.4)

globally asymptotically stabilizes the system (1.1).

Theorem 1.2.2. Consider the discrete-time systems (1.1). Assume that As-
sumptions H1’ and H2 are satisfied. Then, for all function µ(x) > 0 such
that there exists a smooth function φ(x) such that all the solutions of (1.1)
in closed-loop with the following feedback control

u(x) = −φ(x)h(x, 0), 0 < φ(x) ≤ µ(x) (1.5)

h(x, u) =
∫ 1

0

∂V

∂x
(f(x) + g(x, u)uθ)g(x, u)dθ (1.6)

are bounded, the system (1.1) is globally asymptotically stabilizes by the feed-
backs (1.5).
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Discussion of Theorem 1.2.1 and Theorem 1.2.2.

i) Observe that the feedbacks (1.3), (1.5) are given by explicit formulas and
not as the implicit solutions of nonlinear algebraic equations which do not
necessarily admit a solution as those proposed in [10] are.

ii) Theorem 1.2.1 is a discrete-time nonaffine version of the Jurdjevic-Quinn
theorem [6]: Assumption H1 guarantees the global stability of (1.1) with u = 0
and the technical Assumption H2 guarantees that a detectability property
which allows to conclude by invoking the LaSalle invariance principle with
arbitrarily small feedbacks is satisfied.

iii) The main difference there is between Theorem 1.2.1 and Theorem 1.2.2
is clear: the first theorem requires the knowledge of a proper function V (x)
but not the second.

1.2.2 Optimal criterion design for discrete-time systems

Let us state the main result.

Theorem 1.2.3. Consider the system (1.1). Assume that the assumptions of
Theorem 1.2.1 or Theorem 1.2.2 are satisfied. Then, for all function µ(x) > 0
the inverse optimal stabilization problem is solved by the control law

u(x) = −φ(x)h(x, 0), 0 < φ(x) ≤ µ(x) (1.7)

with h(x, u) given in (1.4) and the cost functional

J =
∞∑

i=0

(α(xi, ui) + β(xi, ui)u2
i ) (1.8)

with

α(x, u) = V (x) − V (f(x)) +
1
2
φ(x)ρ(u)h(x, 0)2 (1.9)

β(x, u) = k(x, u) +
ρ(u)
2φ(x)

− h(x, 0)
1 − ρ(u)

u
(1.10)

where ρ(u) is a strictly positive function given by an explicit formula and
such that ρ(0) = 1 and k(x, u) is defined by

−h(x, u) = −h(x, 0) + k(x, u)u . (1.11)

Proof. Theorem 1.2.1 or Theorem 1.2.2 provide us with a globally asymp-
totically stabilizing feedback u(x) of the form (1.3) or (1.5). Let us consider
the following criterion
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S = −
∞∑

i=0

(V (xi+1) − V (xi)) +
∞∑

i=0

ρ(ui)
2φ(xi)

(ui − u(xi))2 .

Observe that, since ρ(u) is a positive function, u = u(x) minimizes S because,
when a globally asymptotically feedback is applied,

S = V (x0) +
∞∑

i=0

ρ(ui)
2φ(xi)

(ui − u(xi))2 .

The function S rewrites as:

S = −
∞∑

i=0

(V (f(xi)) − V (xi)) −
∞∑

i=0

h(xi, ui)ui

+
∞∑

i=0

[
ρ(ui)
2φ(xi)

u2
i −

ρ(ui)
φ(xi)

u(xi)ui +
ρ(ui)
2φ(xi)

u(xi)2
]
.

Using (1.11), we get:

S = −
∞∑

i=0

(V (f(xi)) − V (xi))

+
∞∑

i=0

k(xi, ui)u2
i −

∞∑
i=0

h(xi, 0)ui

+
∞∑

i=0

[
ρ(ui)
2φ(xi)

u2
i + h(xi, 0)ρ(ui)ui +

ρ(ui)
2φ(xi)

u(xi)2
]
.

Regrouping the terms differently, we obtain:

S =
∞∑

i=0

[
(V (xi) − V (f(xi))) +

1
2
φ(xi)ρ(ui)h(xi, 0)2

]

+
∞∑

i=0

[
k(xi, ui) +

ρ(ui)
2φ(xi)

− h(xi, 0)
1 − ρ(ui)

ui

]
u2

i .

Therefore S = J where J is the function defined in (1.8). Assumption
H1 guarantees that α(x, u) is positive. The proof is completed by using the
following lemma

Lemma 1.2.1. Functions φ(x) and ρ(u) such that β(x, u) is a strictly posi-
tive function can be determined.

Proof. Since ρ(u) is smooth and such that ρ(0) = 1, the function
∣∣∣ 1−ρ(u)

u

∣∣∣ is
bounded on a neighborhood of the origin. It follows readily that the expression
of a function φ(x) such that, for all x, u
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ρ(u)
4φ(x)

− h(x, 0)
1 − ρ(u)

u
≥ 0

can be given. Next, let us prove that we may determine φ(x) and ρ(u) so that

k(x, u) +
ρ(u)
4φ(x)

≥ 0. (1.12)

Determining explicit formulas of positive functions λ(x), µ(u) such that
|k(x, u)| ≤ λ(x)µ(u) and µ(0) ≤ 1 is always a feasible task. When this in-
equality holds, (1.12) is satisfied if

1
φ(x)

≥ 4λ(x)
1

ρ(u)
µ(u).

which is met with φ(x) ≤ 1
4λ(x)+1 and ρ(u) ≥ µ(u). This allows us to conclude

our proof.

1.3 Disturbance attenuation for discrete-time systems

1.3.1 Inverse optimal H1 problem

In this part we consider the system

xi+1 = f(xi) + g(xi, ui)ui +m(xi, ui, di)di (1.13)

with f(0) = 0 and x ∈ Rn, u ∈ R, d ∈ R. We assume that m(x, u, d) is
known and that di is an unknown sequence of class L2.

Define a function hd(x, u, d) as:

hd(x, u, d)d =
∫ 1

0

[
∂V

∂x
(f(x) + g(x, u)uθ +m(x, u, d)dθ)

× g(x, u)
]
dθ

−
∫ 1

0

[
∂V

∂x
(f(x) + g(x, u)uθ)g(x, u)

]
dθ

+
∫ 1

0

[
∂V

∂x
(f(x) + g(x, u)uθ +m(x, u, d)dθ)

×m(x, u, d)d
]
dθ

(1.14)

and kd(x, u, d) by

− hd(x, u, d) = − hd(x, u, 0) + kd(x, u, d)d (1.15)
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Lemma 1.3.1. Consider the system (1.13). Assume that the assumptions of
Theorem 1.2.1 or Theorem 1.2.2 are satisfied. Then, for all function µ(x) > 0
the following problem is solved:

The control law

u(x) = −φ(x)h(x, 0) , 0 < φ(x) ≤ µ(x) (1.16)

with h(x, u) given in (1.4) minimizes the cost functional

Jd = sup
{di∈D}

∞∑
i=0

(
α(xi, ui) + β(xi, ui)u2

i − βd(xi, ui, di)d2
i

)
(1.17)

with D the set such that all the solutions of the system (1.1) in closed-loop
with u(x) with distubances (di) ∈ D go to the origin with

α(x, u) = V (x) − V (f(x)) + 1
2φ(x)ρ(u)h(x, 0)2

+ 1
2φd(x, u)hd(x, u, 0)2

(1.18)

β(x, u) = k(x, u) +
ρ(u)
2φ(x)

− h(x, 0)
1 − ρ(u)

u
(1.19)

where ρ(u) is a strictly positive function given by an explicit formula and
such that ρ(0) = 1, k(x, u) is the function defined in (1.11),

βd(x, u, d) = −kd(x, u, d) + ρd(d)
2φd(x,u)

−hd(x, u, 0)1−ρd(d)
d + ρd(d)−1

2d2φd(x,u)d(x, u)
2

(1.20)

where ρd(d) is a strictly positive function given by an explicit formula and
such that ρ(0) = 1, kd(x, u, d) and hd(x, u, d) are the functions given in re-
spectively (1.15), (1.14) and d(x, u) = φd(x, u)hd(x, u, 0) where φd(x, u) is
a stricly positive function given by an explicit formula.

Proof. Theorem 1.2.1 or Theorem 1.2.2 provide us with a globally asymp-
totically stabilizing feedback u(x) of the form (1.3) or (1.5) when di = 0 for
all i. Similarly, let

d(x, u) = φd(x, u)hd(x, u, 0) (1.21)

where φd(x, u) is a stricly positive function to be chosen later. Let us consider
the following criterion

Sd = −
∞∑

i=0

(V (xi+1) − V (xi)) +
∞∑

i=0

ρ(ui)
2φ(xi)

(ui − u(xi, ui))2

−
∞∑

i=0

ρd(di)
2φd(xi, ui)

(di − d(xi, ui))2 .
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Observe that, since ρ(u) is a positive function, u = u(x) minimizes S when
(di) ∈ D because, when a globally asymptotically stabilizing feedback is
applied,

Sd = V (x0) +
∞∑

i=0

ρ(ui)
2φ(xi)

(ui − u(xi, ui))2 −
∞∑

i=0

ρd(di)
2φd(xi, ui)

(di − d(xi, ui))2 .

The function Sd rewrites as:

Sd = −
∞∑

i=0

(V (f(xi)) − V (xi)) −
∞∑

i=0

h(xi, ui)ui −
∞∑

i=0

hd(xi, ui, di)di

+
∞∑

i=0

[
ρ(ui)
2φ(xi)

u2
i −

ρ(ui)
φ(xi)

u(xi)ui +
ρ(ui)
2φ(xi)

u(xi)2
]

−
∞∑

i=0

[
ρd(di)

2φd(xi, ui)
d2

i −
ρd(di)

φd(xi, ui)
d(xi, ui)di +

ρd(di)
2φd(xi, ui)

d(xi, ui)2
]
.

According to (1.11) and (1.15), we have:

Sd = −
∞∑

i=0

(V (f(xi)) − V (xi)) +
∞∑

i=0

k(xi, ui)u2
i −

∞∑
i=0

h(xi, 0)ui

+
∞∑

i=0

[
ρ(ui)
2φ(xi)

u2
i + h(xi, 0)ρ(ui)ui +

ρ(ui)
2φ(xi)

u(xi)2
]

+
∞∑

i=0

kd(xi, ui, di)d2
i −

∞∑
i=0

hd(xi, ui, 0)di

−
∞∑

i=0

[
ρd(di)

2φd(xi, ui)
d2

i −
ρd(di)

φd(xi, ui)
d(xi, ui)di +

ρd(di)
2φd(xi, ui)

d(xi, ui)2
]
.

Regrouping the terms differently, we obtain:

Sd =
∞∑

i=0

[
(V (xi) − V (f(xi))) +

1
2
φ(xi)ρ(ui)h(xi, 0)2

+
ρd(0)

2φd(xi, ui)
d(xi, ui)2

]

+
∞∑

i=0

[
k(xi, ui) +

ρ(ui)
2φ(xi)

− h(xi, 0)
1 − ρ(ui)

ui

]
u2

i

−
∞∑

i=0

[
−kd(xi, ui, di) +

ρd(di)
2φd(xi, ui)

−hd(xi, ui, 0)
1 − ρd(di)

di
+

ρd(di) − 1
2d2

iφd(xi, ui)
d(xi, ui)2

]
d2

i .
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Therefore S = J where J is the function defined in (1.8). Assumption H1
guarantees that α(x, u) is positive. The proof is completed by using the fol-
lowing lemma

Lemma 1.3.2. Functions φd(x, u) and ρd(d) such that βd(x, u, d) is a strictly
positive function can be determined.

Proof. The proof is similar to the proof of Lemma 1.2.1.

1.3.2 An L2 disturbance attenuation result

In this section, we introduce assumptions ensuring that for a system (1.13)
all the sequences di ∈ L2 belong to D.

H3. There exists a function B(x, u) such that

|βd(x, u, d)| ≤ B(x, u)

H4. There exists c > 0 such that,

α(x, u(x)) + β(x, u(x))u(x)2 ≥ c
|x|2

1 + |x|2 (1.22)

We state the main result of the section.

Theorem 1.3.1. Assume that the system (1.13) satisfies the assumption of
Theorem 1.2.3 when di = 0 for all i and the assumptions H3 and H4. Then
there exists C > 0 such that for all sequence di ∈ L2, the solution of (1.13)
with x0 = 0 satisfies:

∞∑
i=0

|xi|2 ≤ C

∞∑
i=0

d2
i

Proof. When u = u(x),

Jd = sup
{di∈D}

∞∑
i=0

[
α(xi, u(xi)) + β(xi, u(xi))u(xi)2

−βd(xi, u(xi), di)d2
i

]
= V (x0)

(1.23)

So when the initial condition is at the origin, we deduce that for all (di) ∈ D,

∞∑
i=0

[
α(xi, u(xi)) + β(xi, u(xi))u(xi)2

] ≤
∞∑

i=0

βd(xi, u(xi), di)d2
i (1.24)
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Using Assumption H3 and Assumption H4, we deduce that there exists C > 0
(which can be explicitly determined) such that

sup
{di∈D}

∞∑
i=0

|xi|2 ≤ C sup
{di∈D}

∞∑
i=0

d2
i

Moreover, according to Assumption H4 and the fact that |βd(x, u(x), d)| is
smaller than a function independent from d, all the sequences di ∈ L2 belong
to D.

This concludes our proof.

1.4 Feedforward discrete-time nonlinear systems

In this section, we particularize the results of Section 1.3 to the class of the
discrete-time feedforward systems i.e. systems having the following represen-
tation:

zi+1 = F(zi) + ψ(zi, ξi) + g1(zi, ξi, ui)ui

ξi+1 = a(ξi) + g2(zi, ξi, ui)ui

(1.25)

with zi ∈ Rnz , ξi ∈ Rnξ , u ∈ R. We introduce the following assumptions

A1. There exists a proper, positive definite function W1(·) which is zero at
the origin and such that for all z,

W1(F(z)) −W1(z) ≤ 0 .

A2. There exist a function W2(·) positive definite radially unbounded zero
at the origin and a function ν(·) positive definite and zero at the origin
such that

W2(a(ξ)) −W2(ξ) ≤ −ν(ξ) .
Moreover both W2(·) and ν(·) are lower bounded on a neighborhood of
the origin by a positive definite quadratic function.

A3. There exist two differentiable positive functions γ0(ξ) and γ1(ξ) zero
at the origin and such that

|ψ(z, ξ)| ≤ γ0(ξ) + γ1(ξ)W1(z)

A4. The following inequality is satisfied:∣∣∣∣∂W1

∂z
(z)

∣∣∣∣ ≤ 1 .
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Discussion of the assumptions.

• The assumptions A1 to A4 are the standard assumptions of the forwarding
approach. We conjecture that they can be relaxed in the time-varying context
as they are relaxed in [15] in the continuous-time context.

• The family of systems (1.25) is slightly larger than the one studied in [14]
since it is not required on zi+1 = F(zi) to be linear.

• As an immediate consequence of A2, we have that the system ξi+1 = a(ξi)
is globally asymptotically stable and locally exponentially stable.

• If is known a function W1(z) such that∣∣∣∣∂W1

∂z
(z)

∣∣∣∣ ≤ L(W1(z))

where L(·) is a positive function such that 1
1+L(·) /∈ L1, then Assumption A4

is satisfied by

W1(z) =
∫ W1(z)

0

1
L(s) + 1

ds .

If W1(z) is a quadratic form, the corresponding function W1(z) satisfies a
linear growth property and Assumption A3 is a linear growth assumption
imposed on the coupling term.

In order to derive inverse optimal controls from the result of the previous
part, we first prove that the assumptions A1 to A4 ensure the Lyapunov
stability of the free system associated with (1.25). We construct a candidate
Lyapunov function depending on the given functions W1(·) and W2(·).
The construction we adopt mimics the one proposed in [5] (see also [15]) for
continuous-time feedforward systems. An alternative construction is given in
[14] in a slightly more restrictive context.

1.4.1 Stability of the uncontrolled system

Let us introduce the notations: x = (z, ξ)>,

f(z, ξ) =
(F(z) + ψ(z, ξ)

a(ξ)

)
,

g(z, ξ, u) =
(
g1(z, ξ, u)
g2(z, ξ, u)

)
.

Theorem 1.4.1. Assume that the system (1.25) satisfies the Assumptions
A1 to A4. Then this system is Lyapunov stable when u = 0 and there exists
a function zero at the origin, positive definite and of the form
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V (x) = W1(z) + Φ(z, ξ) +W2(ξ) (1.26)

such that ∆V ≤ 0 when u = 0.

Remark. One may easily deduce from the forthcoming proof a family of Lya-
punov functions for (1.25): for all real-valued functions k(·), l(·) of class K∞

there exists a cross-term Φkl(z, ξ) such that Vkl(x) = l(W1(z))+Φkl(z, ξ) +
k(W2(ξ)) is proper, positive definite zero at zero and such that ∆Vkl ≤ 0.

Proof. First, let us determine a cross term function Φ(z, ξ) such that the can-
didate Lyapunov function given in (1.26) satisfies ∆V ≤ 0. The expression
of the variation ∆V is

∆V = W1(F(zi) + ψ(zi, ξi)) −W1(zi)
+Φ(zi+1, ξi+1) − Φ(zi, ξi) +W2(a(ξi)) −W2(ξi) .

Since for all z, ξ

W1(F(z) + ψ(z, ξ)) −W1(F(z)) =∫ 1

0

(
∂W1

∂z
(F(z) + ψ(z, ξ)θ)ψ(z, ξ)

)
dθ

Assumption A1 implies that ∆V is negative if

Φ(zi+1, ξi+1) − Φ(zi, ξi) =

−
∫ 1

0

(
∂W1

∂z
(F(zi) + ψ(zi, ξi)θ)ψ(zi, ξi)

)
dθ .

Let us denote the right hand side of this expression by −q(zi, ξi). It straight-
forwardly follows from (1.27) that

Φ(z, ξ) =
∞∑

i=0

q(zi, ξi) (1.27)

provided that the right hand side of (1.27) is a well-defined function.

The next part of the proof consists of showing that this power series converges.
From the definition of q(z, ξ) and Assumptions A3 and A4 we successively
obtain:

|q(z, ξ)| ≤
∣∣∣∣
∫ 1

0

∂W1

∂z
(F(z) + ψ(z, ξ)θ)ψ(z, ξ)dθ

∣∣∣∣
≤ |ψ(z, ξ)| ≤ γ0(ξ) + γ1(ξ)W1(z) .

From Assumption A2, we deduce that there exists a positive and increasing
function γ̃(ξ) zero at the origin and a strictly positive real number r such
that:
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|q(zi, ξi)| ≤ γ̃(ξ)e−ri[W1(zi) + 1] . (1.28)

To conclude, we prove that the sequence W (zi) is bounded.

Using Assumptions A3 and A4, we deduce that

W1(zi+1) −W1(zi) ≤ W1(F(zi) + ψ(zi, ξi)) −W1(F(zi))

≤ γ0(ξi) + γ1(ξi)W1(zi) .

Using Assumption A2, we deduce that there exist a function Γ1(ξ) smooth,
positive, zero at zero and r > 0 such that:

W1(zi+1) + 1
W1(zi) + 1

≤ 1 + Γ1(ξ)e−ri .

It follows that

ln(W1(zi+1) + 1) ≤ ln(W1(z) + 1) +
i∑

j=0

ln
[
1 + Γ1(ξ)e−rj

]

which implies that there exists Γ2(ξ) such that for all integer l,

W1(zl) ≤ (W1(z) + 1)Γ2(ξ) . (1.29)

To show that V (z, ξ) defined in (1.26) is a positive function, consider

W1(z) + Φ(z, ξ) = W1(z) +
∞∑

i=0

[W1(F(zi) + ψ(zi, ξi))

−W1(F(zi))]

= W1(z) +
∞∑

i=0

[W1(zi+1) −W1(F(zi))] .

For all integer J > 0, we have

W1(z) + Φ(z, ξ) =
J∑

i=0

[W1(zi) −W1(F(zi))] +W1(zJ+1)

+
∞∑

i=J+1

[W1(zi+1) −W1(F(zi))] .

According to Assumption A1, the term
J∑

i=0

[W1(zi) −W1(F(zi))] is positive.

On the other hand, using Assumptions A3 and A4, one can prove easily that:
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lim
J→+∞

∞∑
i=J+1

[W1(zi+1) −W1(F(zi))] = 0 .

It follows that W1(z) + Φ(z, ξ) is positive. Since Φ(z, 0) = 0 for all z, it
straightforwardly follows that V (z, ξ) is a positive definite function.

Remark. It is worth noting that surprisingly, Assumptions A1 to A4 do not
guarantee that V (x) is radially unbounded whereas similar assumptions in
the continuous-time context ensure that the corresponding function V (x) is
radially unbounded.

1.4.2 Disturbance attenuation property of feedforward systems

Consider the system

zi+1 = F(zi) + ψ(zi, ξi) + g2(zi, ξi, ui)ui

+m1(zi, ξi, ui, di)di

ξi+1 = a(ξi) + g1(zi, ξi, ui)ui +m2(zi, ξi, ui, di)di

(1.30)

with zi ∈ Rnz , ξi ∈ Rnξ , u ∈ R, d ∈ R. Let us state a disturbance attenuation
result for feedforward systems.

Corollary 1.4.1. Assume that the system (1.30) satisfies the Assumptions
A1 to A4. Assume that the cross term of the function V (x) provided by The-
orem 1.4.1 is continuously differentiable and that Assumption H2 is satisfied.
Then the inverse optimal stabilization problem is solvable. Moreover, if the
system (1.30) satisfies the the assumptions of Theorem 1.2.3 when di = 0 for
all i and the assumptions H3 and H4. Then there exists C > 0 such that for
all sequence di ∈ L2, the solution of (1.13) with x0 = 0 satisfies:

∞∑
i=0

|xi|2 ≤ C

∞∑
i=0

d2
i

Remark. Observe that Corollary 1.4.1 can be applied repeatedly.

Proof. The solvability of the inverse optimal stabilization problem is an
immediate consequence of Theorem 1.2.3 and Theorem 1.4.1 when V (x) is a
proper function. When V (x) is not a proper function then Assumption H1’
and not Assumption H1 is satisfied. To apply Theorem 1.2.2, we have to
prove that there exist feedbacks of the form (1.3) which do not destabilize
the system. This can be done by using the arguments similar to those invoked
above in the proof of Theorem 1.4.1. The disturbance attenuation result is a
consequence of Theorem 1.3.1. This concludes our proof.
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Summary.

The problem of input-output decoupling with stability by, possibly
dynamic, state-feedback is addressed for Hamiltonian systems. As well
known, to decide if the problem is solvable, and which class of state-
feedback has to be used, the stability properties of the P⊥, P ? and ∆mix

dynamics are to be investigated. For this reason, on the way to the main
result, it is shown that, for general Hamiltonian systems, such dynamics
are not necessarily Hamiltonian. On the other hand, it is shown that, for
linear simple Hamiltonian systems, both the P⊥ and the P ∗ dynamics
are Hamiltonian (whereas, as well known, the ∆mix dynamics are empty).
Moreover, for a class of nonlinear simple Hamiltonian systems, a simple
to check necessary and sufficient condition for the solvability of the prob-
lem via dynamic state-feedback is proposed. Several examples, clarifying
the role of different classes of state-feedback control laws (either static or
dynamic) in the solution of the problem, are proposed.
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2.1 Introduction and motivations

The problem of input-output decoupling (or, equivalently, noninteraction)
with stability for nonlinear systems has been studied by several authors, see
[5, 10, 8, 12, 15, 7, 3]. Necessary and sufficient conditions for the existence
of either static or dynamic state-feedback control laws yielding stable non-
interactive closed-loop control systems have been proposed, and systematic
procedures for the design of such control laws have been given. Despite the
elegant characterization of the problem, which is based on geometric control
theory, the applicability of the theory to physical systems has not received (to
the best of the authors knowledge) enough interest. A notable exception is the
paper [6]. Therein, the problem of decoupling with stability is addressed for
the class of (nonlinear) Hamiltonian systems by means of a particular class
of state-feedback control laws. It has been shown in [6] that Hamiltonian
systems can be put in a particular canonical form, which will be exploited
in this chapter too, since it highly facilitates the analysis of the problem.
As a matter of fact, by using such a canonical form, it is easier to take into
account the well known fact, proven in [11, Chapter 12], that the zero dy-
namics of Hamiltonian systems are Hamiltonian. In [6] it is shown that, if a
particular class of static state-feedback control laws is considered, decoupling
and asymptotic stability are not jointly achievable for Hamiltonian systems
whose zero dynamics are non-trivial. Nevertheless, under suitable hypotheses,
decoupling with simple stability can be obtained, as shown in [6], by means
of static state-feedback control laws in the mentioned class.

The work reported in this chapter stems from the consideration that, by us-
ing more general state-feedback control laws, either static or dynamic, the
problem can be solved for larger classes of systems. It is well known (see
[14, 9, 13]) that, in the case of linear systems, the problem can be solved
by means of dynamic state-feedback for all those systems for which the two
problems of stabilization and of input-output decoupling are separately solv-
able. This implies that, if dynamic state-feedback is allowed, the problem of
input-output decoupling with asymptotic stability is generically solvable for
linear controllable Hamiltonian systems.

The importance of Hamiltonian systems in the modeling of practical situa-
tions is well known (see [11, Chapter 12] and the concise exposition in [1]),
hence it seems of interest to investigate if the general results concerning the
problem of noninteracting control with stability, reported in [3, 7], assume
special characterization when applied to general, nonlinear, Hamiltonian sys-
tems, in view of their special properties.

Hamiltonian systems are not asymptotically stable at any equilibrium, al-
though they can be stable. As shown in [6], a sufficient condition for stability
of a Hamiltonian system is that the Hamiltonian function has an isolated lo-
cal minimum at the equilibrium. Hence it is of interest to know whether the
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dynamics of certain subsystems are Hamiltonian, since this fact can highly
facilitate the tests for stability, needed, as will be recalled in the following,
to decide if the considered problem of decoupling with stability is solvable.

In Section 2.3, it is shown that, contrarily to what holds true for the zero
dynamics, the P⊥, P ∗ and ∆mix dynamics1 of general Hamiltonian systems
are not necessarily Hamiltonian. Such facts are shown, by means of a simple
low-order example. In particular, since all these dynamics are contained in
the zero dynamics, they may not be Hamiltonian if their dimension is smaller
than that of the zero dynamics. Since the mentioned dynamics are responsible
for obstructions to the solvability of the problem (if either the P⊥ or the ∆mix

dynamics are not “stable”, then the problem is not solvable, whereas, if the
P ∗ dynamics are not “stable”, then the problem is not solvable by means
of static state-feedback, but may be solvable by means of dynamic state-
feedback), it follows that their “stability” has to be checked (without using
the special results on stability of Hamiltonian systems) in order to decide if
the problem is indeed solvable, and, in case it does, which class of control
laws can be adopted.

The case of simple Hamiltonian systems is considered in detail in Subsec-
tion 2.3.1. As a matter of fact, simple Hamiltonian systems have special geo-
metric properties which are exploited to prove that, under suitable assump-
tions, the submanifolds on which the P ∗ and ∆mix dynamics are defined are
symplectic. For the special case of linear simple Hamiltonian systems, whose
∆mix dynamics are trivial, it is shown that both the P⊥ and P ∗ dynamics
are Hamiltonian.

The main result of this chapter, reported in Section 2.4, consists of a simple to
check condition for the solvability of the problem of decoupling with stability,
which is necessary and sufficient for the class of systems considered and can
be used with respect to different stability requirements. In what follows, when
referred to nonlinear systems, all the proposed results are local, i.e., valid in
a suitable neighborhood of the equilibrium configuration of the system.

Finally, in Section 2.6, two mechanical systems are studied. In the first one the
problem of decoupling with asymptotic stability in the first approximation is
solved by means of static state-feedback for a system having non-trivial zero
dynamics; in the second one, using the results in Section 2.4, it is shown that
the problem of decoupling with (simple) stability can be solved by means of
dynamic state-feedback, for a system having unstable zero dynamics.

A preliminary version of the main results reported in this chapter has been
published in [2].
1 Definitions are reported in Section 2.3
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Notation In what follows, ei denotes the i-th column of the identity matrix
of proper dimension, 0i denotes the zero vector in IRi, Im(M) denotes the
range of matrixM , ∅ denotes the zero distribution and {∅} denotes the empty
set.

2.2 Background on Hamiltonian systems

In this chapter, the problem of input-output decoupling with stability will be
tackled for a class of 2 inputs-2 outputs Hamiltonian systems, namely, systems
described, in Hamiltonian form, by means of the following equations:

q̇i =
∂H(q, p, u)

∂pi
, i = 1, . . . , n,

ṗi = −∂H(q, p, u)
∂qi

, i = 1, . . . , n,

y1 = q1,
y2 = q2,

(2.1)

where the Hamiltonian function H(q, p, u) has the form:

H(q, p, u) = H0(q, p) − q1 u1 − q2 u2, (2.2)

and is assumed to be sufficiently smooth.

The components qi, i = 1, 2, . . . , n, n ≥ 2, of the vector q are suitable
configuration coordinates, whereas the components pi, i = 1, 2, . . . , n, of the
vector p are the corresponding generalized momenta; the first two degrees of
freedom q1 and q2 are actuated by means of the external inputs u1, u2. Note
that y1 and y2 are the so-called “natural outputs” (see [11, Chapter 12]). A
subclass of Hamiltonian systems of special importance is the class of simple
Hamiltonian systems, in which the function H0 has the form:

H0(q, p) =
1
2
pTG(q) p+ V (q). (2.3)

The square n-dimensional symmetric matrix G(q) is assumed to be positive
definite for every q in its domain: this condition is satisfied by many Hamil-
tonian systems of practical interest, e.g., by those representing mechanical

systems, in which the term
1
2
pTG(q) p corresponds to the kinetic energy.

Moreover it is also assumed that
∂V

∂q
(0) = 0, so that the point q = 0, p = 0,

is an equilibrium point for system (2.1).

Let x :=
[
qT pT

]T , and let the vector fields f(x), g1, g2, h1(x), h2(x), be
given by:
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fi(x) :=
∂H0(q, p)

∂pi
, i = 1, 2, . . . , n,

fn+i(x) := −∂H0(q, p)
∂qi

, i = 1, 2, . . . , n,

g1 = en+1,
g2 = en+2,

h1(x) := q1,
h2(x) := q2,

(2.4)

so that equations (2.1) can be rewritten as:

ẋ = f(x) + g1 u1 + g2 u2,

y1 = h1(x),
y2 = h2(x).

Let the characteristic numbers ρ1, ρ2, of system (2.1) at the point q = 0,
p = 0, be defined as in [11, Definition 8.7], i.e.

ρi = min
k∈Z+

{
LgjL

l
fhi(x) = 0, ∀l = 0, 1, . . . , k − 1, ∀j = 1, 2,

∀x in a neighborhood of 0, ∃j : LgjL
k
fhi(0) 6= 0

}
, i = 1, 2,(2.5)

and let the decoupling matrix A(·) be defined, in a neighborhood of the origin,
as the 2-dimensional square matrix

A(x) :=
[
Lg1L

ρ1
f h1(x) Lg2L

ρ1
f h1(x)

Lg1L
ρ2
f h2(x) Lg2L

ρ2
f h2(x)

]
.

In the case of simple Hamiltonian systems, it is well known [11, Chapter 12]
that ρ1 = ρ2 = 1, and that A(x) = G11(q), where G11(q) is the 2× 2 leading
submatrix of G(q). Therefore, the matrix A(x) is nonsingular everywhere.
Consider a feedback control law of the form:

u = α(x) + β(x) v, (2.6)

where α(x) and β(x) are defined as:

α(x) := − (A(x))−1 b(x), β(x) := (A(x))−1 ,

b(x) :=
[
L2

fh1(x)
L2

fh2(x)

]
,

and v = [v1 v2]T is the vector of the new inputs. If the vectors ξi are given
by

ξ1 =
[
h1(x)
Lfh1(x)

]
=

[
q1
q̇1

]
, ξ2 =

[
h2(x)
Lfh2(x)

]
=

[
q2
q̇2

]
, (2.7)
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and the vectors q̃ and p̃ are given by q̃ =
[
q3 · · · qn

]T
, p̃ =

[
p3 · · · pn

]T
,

the closed-loop system can be written as

ξ̇1 = Aξ1 +B v1, (2.8a)
ξ̇2 = Aξ2 +B v2, (2.8b)

˙̃q =
∂Ĥ

∂p̃
(q̃, p̃, ξ1, ξ2) +R1 (q̃, p̃, ξ1, ξ2) , (2.8c)

˙̃p = −∂Ĥ
∂q̃

(q̃, p̃, ξ1, ξ2) +R2 (q̃, p̃, ξ1, ξ2) , (2.8d)

y1 = [1 0] ξ1, (2.8e)
y2 = [1 0] ξ2, (2.8f)

where

A =
[

0 1
0 0

]
, B =

[
0
1

]
,

Ĥ (q̃, p̃, ξ1, ξ2) is the function H0(q, p), written in the new coordinates, and
R1 (q̃ , p̃, ξ1, ξ2), R2 (q̃, p̃, ξ1, ξ2) are suitable functions with the property
that Ri (q̃, p̃, 0, 0) = 0, i = 1, 2, for all q̃, p̃ in a neighborhood of the origin.

For simple Hamiltonian systems, the results in [6], [11, Chapter 12] and [7,
Chapter 6] imply that, if ∆∗ denotes the largest locally controlled invariant
distribution contained in Ker(dh1) ∩ Ker(dh2) then

∆∗ = span
{

∂

∂q̃1
, . . . ,

∂

∂q̃n−2
,
∂

∂p̃1
, . . . ,

∂

∂p̃n−2

}
,

hence q̃ and p̃ can be used to describe the zero dynamics of the system (2.1),
(2.3), i.e.

˙̃q =
∂H̃

∂p̃
(q̃, p̃) ,

˙̃p = −∂H̃
∂q̃

(q̃, p̃) ,
(2.9)

where the restricted Hamiltonian H̃ (q̃, p̃) := Ĥ (q̃, p̃, 0, 0) can be computed
explicitly by means of the following equation (see [11, Chapter 12]):

H̃ (q̃, p̃) =
1
2
p̃T

(
G22 −GT

12G
−1
11 G12

) ([
0
q̃

])
p̃+ V

([
0
q̃

])
.

Note that equations (2.9) coincide with equations (2.8c) and (2.8d) for ξ1 =
ξ2 = 0.

As observed in [6], the zero dynamics of general Hamiltonian systems of the
form (2.1) are Hamiltonian; for simple Hamiltonian systems this implies that,
if n > 2, any “decentralized” feedback control law described by the equations
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v1 = ε11q1 + ε12q̇1,
v2 = ε21q2 + ε22q̇2,

(2.10)

with εij ∈ IR, cannot achieve asymptotic stability for the closed-loop system.
Nevertheless, if (0, 0) is a stable equilibrium point for (2.9), (simple) stability
can be achieved by a proper choice of the gains ε11, ε12, ε21, ε22, as discussed
in [6]. In this chapter, it is shown that, allowing more general state-feedback
control laws, static or dynamic, the problem of input-output decoupling with
stability (simple or asymptotic, depending on the properties of the given
system) can be solved for a wider class of Hamiltonian systems.

2.3 Some geometric properties

Given a general nonlinear system of the form

ẋ = f(x) + g(x)u,
y = h(x),

(2.11)

with x ∈ IRn, u, y ∈ IRm, f(0) = 0, h(0) = 0, satisfying suitable regularity
assumptions (see [3] and [7, Chapter 7]), several approaches can be adopted in
order to solve the problem of noninteraction with stability, depending on the
geometric properties of (2.11). The main results of the general theory will be
now summarized; to this purpose some notations and well-known properties
are recalled. For the sake of simplicity, in the first half of the present section,
the exposition will be limited to the case in which the stability requirement
is that of asymptotic stability in the first approximation. For the objectives
to be pursued in this chapter, it is sufficient to restrict the attention to the
class of systems for which the characteristic numbers ρi, i = 1, 2, . . . , m,
can be defined, similarly to equation (2.5), and the decoupling matrix A(x),
also defined similarly to what has been done for 2 inputs-2 outputs systems,
is non-singular at x = 0. Consider any regular static state-feedback control
law u, of the form:

u = α(x) + β(x)v, (2.12)

such that the closed-loop system is noninteractive (such a control law exists
by virtue of the assumptions on the matrix A(x)) and rewrite the closed-loop
system (2.11), (2.12) as follows:

ẋ = f̃(x) + g̃(x)v,
y = h(x),

i.e. define f̃(x) := f(x)+g(x)α(x) and g̃(x) := g(x)β(x). Let the distributions
P and P ∗ be defined as follows:
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P = 〈f, g1, g2, . . . , gm| span
{
gj , j = 1, 2, . . . , m

}〉,
P ∗ =

m⋂
i=1

P ∗
i ,

where

P ∗
i = 〈f̃ , g̃1, g̃2, . . . , g̃m| span {g̃j, j = 1, 2, . . . , m, j 6= i}〉,

g̃i(x) and gi(x) denote the i-th column of g̃(x) and g(x), respectively, and,
as usual, 〈τ1, τ2, . . . , τq|∆〉 denotes the smallest distribution which contains
∆ and is invariant under the vector fields τ1, τ2, . . . , τq. Assume that the
origin x = 0, is a regular point for P , P ∗

i , i = 1, 2, . . . , m. It is stressed that
the distribution P does not change after a regular state-feedback, i.e.,

P = 〈f̃ , g̃1, g̃2, . . . , g̃m| span {g̃j, j = 1, 2, . . . , m}〉;
moreover, if a suitable set of coordinates φ = [φ1 φ2 . . . φν ]T is chosen
so that P⊥ = span{dφ}, independently of the choice of the state-feedback
(2.12), the subsystem associated with P⊥ is described by equations of the
form

φ̇ = fφ(φ), (2.13)

i.e., it is not affected at all by the inputs. In the following, the improper
notation “P⊥ dynamics” will be used to refer to (2.13), even if, in general,
such a subsystem is not associated to any invariant distribution.

Moreover, if S∗ is the integral submanifold of P ∗ containing the origin x = 0,
it has been proven [7, Lemma 7.3.4] that S∗ is locally invariant under f̃(x)
and the restriction of f̃(x) to S∗ (P ∗ dynamics), i.e.

ẋ = f̃(x)
∣∣∣
S∗
, (2.14)

does not depend on the choice of the particular static state-feedback control
law (2.12), provided that input-output decoupling is achieved.

Finally, let ∆mix be the distribution generated by the vector fields τ defined
as in [7, Section 7.4]:

τ =
[
ad

kq

f̃
g̃iq ,

[
. . . ,

[
adk2

f̃
g̃i2 , ad

k1

f̃
g̃i1

]]]
, q ≥ 2, ki ≥ 0,

ir 6= is for some pair (r, s).

Let L∗ denote the integral submanifold of ∆mix containing the origin x = 0.
The restriction of the closed-loop system to L∗ (∆mix dynamics), i.e.

ẋ = f̃(x)
∣∣∣
L∗

(2.15)
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does not depend on the choice of the particular static or dynamic state-
feedback control law, provided that input-output decoupling is achieved (see
[7, Proposition 7.4.1]).

To decide which class of control laws has to be used to solve the problem
of decoupling with stability for system (2.11), and to decide whether the
problem is indeed solvable, the illustrative diagram reported in Figure 2.3
can be considered. It clarifies the relations existing between the invariant
dynamics and subsystems described above, which are all contained in the
zero dynamics of the system (see [7, Chapter 7] for detail).

Fig. 2.1. Qualitative diagram illustrating the relevant dynamics concerned with
the problem of decoupling with stability.

It is clear that, if the subsystem (2.13) associated with P⊥ is not asymptot-
ically stable in the first approximation, a control law yielding a closed loop
system which is stable and noninteractive does not exist. On the other hand,
if the zero dynamics of the system are stable in the first approximation, the
problem can be solved easily by means of the standard decoupling feedback of
the form (2.12), composed with a linear “decentralized” state-feedback, sim-
ilar to the one considered in (2.10) for Hamiltonian systems. With an abuse
of notation, such a state-feedback will be called in the following “decentral-
ized”, or, in the case of simple Hamiltonian systems, in which, as previously
stated, ρi = 1, “PD-like decentralized”. Such a class of state-feedback has
been used in [6] to solve the problem of input-output decoupling with simple
stability in the case of Hamiltonian systems having stable zero dynamics. As
well known, stability of the zero dynamics is not necessary to solve the non-
interacting control problem with stability. As a matter of fact, as shown in [7,
Chapter 7] and [3], if general static state-feedback control laws are allowed,
the problem is solvable if and only if the system itself is stabilizable in the
first approximation and the P ∗ dynamics (2.14) are asymptotically stable
in the first approximation. If this last condition is not satisfied, the prob-
lem might still be solvable by means of dynamic state-feedback. Under some
regularity assumptions, in [7, 3] it is shown that a necessary and sufficient
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condition for the existence of a dynamic state-feedback control law which
solves the problem of input-output decoupling with asymptotic stability in
the first approximation is that the system itself is stabilizable in the first
approximation and the linearization about the origin of the ∆mix dynamics
(2.15) is asymptotically stable. Observe, finally, that for linear systems the
distribution ∆mix = ∅. Hence, a linear system can be rendered noninterac-
tive and stable, by means of dynamic state-feedback, if and only if the two
problems of stabilization and noninteracting control are separately solvable
[14, 9, 13]. In particular, the problem of decoupling with stability is always
solvable for simple linear controllable Hamiltonian systems, with respect to
the natural outputs.

Hamiltonian systems are not asymptotically stable at any equilibrium, al-
though they can be stable. As mentioned above, it is of interest to know
whether the P⊥, P ∗ and ∆mix dynamics are Hamiltonian, since this fact can
highly facilitate the tests for stability, needed, as described above, to decide
if the considered problem of decoupling with stability is solvable and what
class of control laws has to be considered in order to find a solution.

Despite the fact that the zero dynamics of Hamiltonian systems are Hamil-
tonian, it will be now shown that, for Hamiltonian systems of the form (2.1),
(2.2), neither one of the three subsystems (2.13), (2.14) and (2.15) is Hamil-
tonian, in general. This will be done by means of simple counterexamples.

Example 2.3.1. Consider the following nonlinear system:

q̇1 = p1,
ṗ1 = v1,
q̇2 = p2,
ṗ2 = v2,
q̇3 = p3 + a1q1 + a2q2 + α q1q2,
ṗ3 = q3 − d1q1 − d2q2 − δ q1q2,

(2.16)

with outputs

y1 = q1,

y2 = q2

obtained by means of the static state-feedback control law:

u1 = a1p3 + α q2p3 + d1q3 + δ q2q3 + v1,

u2 = a2p3 + α q1p3 + d2q3 + δ q1q3 + v2,

applied to the Hamiltonian system of the form (2.1), with Hamiltonian func-
tion:

H(q, p, u) =
1
2

(
p2
1 + p2

2 + p2
3

)
+ (a1q1 + a2q2 + α q1q2) p3 −

1
2
q23 + (d1q1 + d2q2 + δ q1q2) q3 − q1u1 − q2u2,
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where ai, di, α, δ, are real parameters of the system. Note that the zero
dynamics of such a system can be simply written as

q̇3 = p3,
ṗ3 = q3.

(2.17)

We are now ready to prove the following facts.

Fact 1 The P⊥ dynamics of Hamiltonian systems of the form (2.1) need not
be Hamiltonian.

Consider system (2.16). Let a1 = a2 = d1 = d2 = 1, α = δ = 0. Simple
calculations show that

P = span {e1, e2, e3, e4, e5 − e6} .
Hence, φ := q3 + p3 is such that P⊥ = span {dφ}; the resulting subsystem
(2.13) is

φ̇ = φ, (2.18)

and it is clearly non-Hamiltonian. Since (2.18) is unstable, the problem of
decoupling with stability is not solvable.

Fact 2 The P ∗ dynamics of Hamiltonian systems of the form (2.1) need not
be Hamiltonian.

Consider system (2.16). Let a1 = d1 = a2 = α = δ = 1, d2 = 0 and observe
that (locally around the origin)

P ∗
1 = span {e3, e4, e5, e6} ,
P ∗

2 = span {e1, e2, e5 − e6} ,
whence

P ∗ = P ∗
1 ∩ P ∗

2 = span {e5 − e6} .
As a consequence, S∗ = {q1 = p1 = q2 = p2 = 0, p3 = −q3} and the dynamics
(2.14) can be written as

q̇3 = −q3,
which is asymptotically stable (and, obviously, non-Hamiltonian). Moreover,
as P⊥ = ∅, the problem of input-output decoupling with asymptotic stability
in the first approximation can be solved by means of a static state-feedback.
On the contrary, since the zero dynamics (2.17) are clearly unstable, the
system cannot be rendered noninteractive and stable with a PD-type decen-
tralized control law.
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Fact 3 The ∆mix dynamics of Hamiltonian systems of the form (2.1) need
not be Hamiltonian.

Consider again system (2.16), with a1 = d1 = a2 = α = δ = 1, d2 = 0.
The vector field

[
g̃1, ad

3
f̃
g̃2

]
= e5 − e6, belongs to ∆mix. As ∆mix ⊂ P ∗, it is

evident that ∆mix ≡ P ∗, hence the ∆mix dynamics are not Hamiltonian.

2.3.1 Simple Hamiltonian Systems

It must be noted that the Hamiltonian system considered in Example 2.3.1
is not simple. The problem of determining if the stronger structure of sim-
ple Hamiltonian systems implies that their P⊥, P ∗ or ∆mix dynamics are
Hamiltonian is investigated in this subsection. A positive answer is given, in
Propositions 2.3.1 and 2.3.2, for the special case of linear simple Hamiltonian
systems (limited to the P⊥ and P ∗ dynamics since the ∆mix dynamics are
defined on a zero dimensional submanifold). For nonlinear simple Hamilto-
nian systems, relatively to the P ∗ and the ∆mix dynamics, which can be seen
as the dynamics of a Hamiltonian system (the zero dynamics) restricted to
the integral submanifold of suitable nonsingular, involutive and invariant dis-
tributions, the following considerations can be carried out, in order to prove
that, under some assumptions, the submanifolds on which they are defined
are symplectic.

Assume that a simple Hamiltonian system is given as in (2.9), with the Hes-

sian matrix with respect to q̃ of the function V (
[

0
q̃

]
) nonsingular at the

origin, which is assumed to be an equilibrium point. Let ∆ be a nonsingu-
lar and involutive distribution of dimension 2 r, r < ñ, with ñ being the
dimension of q̃, which is f -invariant. Let χ1(q̃, p̃), . . . , χs(q̃, p̃) be s smooth
functions such that {χ1(q̃, p̃), . . . , χs(q̃, p̃) , χ̇1(q̃, p̃), . . . , χ̇s(q̃, p̃)} is a set
of 2 s independent functions, where, as usual

χ̇i =
∂χi

∂q̃
˙̃q +

∂χi

∂p̃
˙̃p.

Assume, further, that span {dχ, dχ̇} = ∆⊥, i.e., let s = ñ − r. Observe
that this is true if χ(q̃, p̃) = χ(q̃). In such a case, if dχ ∈ ∆⊥, it is easy
to show that dχ̇ ∈ ∆⊥, and also the independence of the set of functions
{χ1(q̃), . . . , χs(q̃), χ̇1(q̃, p̃), . . . , χ̇s(q̃, p̃)} is easily proven, by virtue of the
fact that the matrix G(q̃) is nonsingular. Under such assumptions, it can be
proven that the 2 s× 2 s-dimensional matrix C(x) defined by

C(x) :=


 {χi, χj} (x) {χi, χ̇j} (x)

{χ̇i, χj} (x) {χ̇i, χ̇j} (x)


 ,
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where {a, b} denotes the standard Poisson bracket of the functions a, b, is
nonsingular at the origin. Hence, by virtue of [11, Remark 12.37], the integral
submanifold of ∆ containing x = 0, is symplectic, for all x in a some neigh-
borhood of the origin. This condition is necessary, but not sufficient, for the
dynamics of the given system restricted to ∆ to be Hamiltonian.

The following result, which can be proved without assuming that the Hessian

matrix with respect to q̃ of the function V (
[

0
q̃

]
) is nonsingular, concerns

linear simple Hamiltonian systems, which are obtained from the general case
(2.1)–(2.3) by letting G(q) be a constant symmetric and positive definite
matrix, G ∈ IRn×n, and V (q) = qTUq, where U ∈ IRn×n is also symmetric.

Proposition 2.3.1. The P⊥ dynamics of linear simple Hamiltonian systems
are Hamiltonian.

Proof. The state space equation of the system are given by:

q̇ = Gp

ṗ = −Uq + e1 u1 + e2 u2,

¿from which it is clear that the dynamic matrix is the Hamiltonian matrix

Θ :=
[

0 G
−U 0

]
. A direct computation shows that

P⊥ =
{[

Gw1

w2

]
, w1, w2 ∈ Im (R)

}
, (2.19)

where R is the reachability matrix of a linear system with two inputs, having
as dynamic matrix UG and as input matrix

[
e1 e2

]
.

The following properties of the Hamiltonian matrix Θ can be easily proven,
by taking into account that the eigenvalues of the matrix GU are all real,
and the matrix GU is diagonalizable:

(P1) if λ ∈ IR, λ 6= 0 is an eigenvalue of Θ, with eigenvector
[
vq

vp

]
∈ IR2 n,

then −λ is also an eigenvalue, with eigenvector
[
vq

−vp

]
;

(P2) if λ ∈ IR, λ 6= 0 is an eigenvalue of Θ, with algebraic multiplicity m,
then Θ has m linearly independent eigenvectors relative to the eigenvalue
λ;

(P3) Θ has null eigenvalues if and only if U has null eigenvalues; moreover, if
m is the algebraic multiplicity of the null eigenvalue for U , and v1, v2, . . . ,
vm ∈ IRn are corresponding m linearly independent eigenvectors, then
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the Jordan structure of Θ relative to the null eigenvalue is constituted
by m 2× 2 Jordan blocks and the generalized eigenspace of Θ relative to
the null eigenvalue is the following:

V0 = span
{[

v1
0

]
,

[
v1

G−1v1

]
, . . . ,

[
vm

0

]
,

[
vm

G−1vm

]}
;

(P4) the eigenvalues of Θ which are not real lie on the imaginary axis; more-
over, ω, ω 6= 0, is a complex eigenvalue of Θ if and only if ω2 is an
eigenvalue of GU ; if m is the algebraic multiplicity of the eigenvalue ω2

for GU , and v1, v2, . . . , vm ∈ IRn are corresponding m linearly inde-
pendent eigenvectors, then Θ admits m linearly independent complex
eigenvectors relative to the eigenvalue  ω and m linearly independent
complex eigenvectors relative to the eigenvalue − ω, and a real basis for
the sum Vω + V−ω of the eigenspaces relative to the eigenvalues ω and
−ω is composed of{[

v1
0

]
,

[
0

G−1v1

]
, . . . ,

[
vm

0

]
,

[
0

G−1vm

]}
.

Since P is Θ-invariant (this is a consequence of the properties of the distri-
bution P in the general case, and, in the case of linear systems can be easily
proven from (2.19)), then, in view of [13, Proposition 0.4], P is a direct sum
of its intersections with eigenspaces (possibly, generalized). Moreover, in view
of (2.19), it is easy to see that[

vq

vp

]
∈ P ⇒

[
vq

−vp

]
∈ P, ∀vq, vp ∈ IRn, (2.20a)[

αvq

G−1vq

]
∈ P ⇒

[
vq

0

]
,

[
0

G−1vq

]
∈ P, ∀vq ∈ IRn, ∀α ∈ IR. (2.20b)

Properties (P1)-(P4) and (2.20a)-(2.20b) imply that a basis for IR2n can be
taken as follows:
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B =




[
vq1

0

]
,

[
0

G−1vq1

]
, . . . ,

[
vqi

0

]
,

[
0

G−1vqi

]
︸ ︷︷ ︸

basis B1 for (Vω1 + V−ω1) ∩ P
, . . . ,

[
vq(i+1)

vp(i+1)

]
,

[
vq(i+1)

−vp(i+1)

]
, . . . ,

[
vqj

vpj

]
,

[
vqj

−vpj

]
︸ ︷︷ ︸

basis for (Vλ1 + V−λ1) ∩ P
, . . . ,

[
vq(j+1)

0

]
,

[
vq(j+1)

G−1vq(j+1)

]
, . . . ,

[
vqk

0

]
,

[
vqk

G−1vqk

]
︸ ︷︷ ︸

basis for V0 ∩ P
,

[
vq(k+1)

0

]
,

[
0

G−1vq(k+1)

]
, . . . ,

[
vqs

0

]
,

[
0

G−1vqs

]
︸ ︷︷ ︸

complement of B1 to a basis for Vω1 + V−ω1

, . . .




where 2k is the dimension of P and vq1, . . . vqn are suitable orthogonal
eigenvectors of GU . When rewritten in the basis B, matrix Θ becomes block
diagonal, with diagonal blocks Θ1 ∈ IR2k×2k and Θ2 ∈ IR2(n−k)×2(n−k). Ma-
trices Θ1 and Θ2 are, in turn, block diagonal, and their diagonal blocks, all
of dimension 2 × 2, are of the following kinds:[

0 −ω2

1 0

]
,

[
λ 0
0 −λ

]
,

[
0 1
0 0

]
, ω2,−λ2 eigenvalues of U.

Hence, it is easily seen that the block diagonal skew symmetric matrix J ∈
IR2(n−k)×2(n−k), having its diagonal blocks all equal to

[
0 1
−1 0

]
is such that

ΘT
2 J + JΘ2 = 0. Now, notice that matrix Θ2 is related through a suitable

similarity transformation Θ̃2 = T−1Θ2T , to any matrix Θ̃2 describing the
P⊥ dynamics, hence, by defining J̃ = T TJT , it follows that Θ̃T

2 J̃ + J̃Θ̃2 = 0.

This last equation proves that the P⊥ dynamics are Hamiltonian. In fact, as
is well known, the dynamics ˙̃x = Θ̃2x̃ can be seen as generated by the Hamil-

tonian function H̃ =
1
2
x̃TMx̃, with M := J̃Θ̃2, and the Poisson structure

corresponding to the skew symmetric matrix J̃−1, in the same coordinates x̃.
ut

Proposition 2.3.2. The P ∗ dynamics of linear simple Hamiltonian systems
are Hamiltonian.

Proof. Partitioning matrices G and U as follows:

G =
[
G11 G

T
21

G21 G22

]
, U =

[
U11 U

T
21

U21 U22

]
,
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where G11, U11 ∈ IR2×2, letting G̃ = G22 −G21G
−1
11 G

T
21 and using the nota-

tions in Section 2.2, after a first state-feedback of the form (2.6), the closed-
loop dynamics are described by

ξ̇1 = Aξ1 +B v1, (2.21a)
ξ̇2 = Aξ2 +B v2, (2.21b)

˙̃q = G21G
−1
11

[
ξ12
ξ22

]
+ G̃p̃, (2.21c)

˙̃p = −U21

[
ξ11
ξ21

]
− U22q̃. (2.21d)

Now, call γ1 and γ2 the two columns of G21G
−1
11 , and U1

21 and U2
21 the two

columns of U21 and define

γ1 := U1
21 + U22γ1,

γ2 := U2
21 + U22γ2.

A direct computation shows that

P ∗ = P ∗
1 ∩ P ∗

2 =





 04

G̃w1

w2


 , w1, w2 ∈ Im (R1) ∩ Im (R2)


 , (2.22)

where R1 and R2 are the reachability matrices of two linear single input
systems of order ñ = n − 2 having the same dynamic matrix U22G̃ and as
input vectors γ1 and γ2, respectively. This clearly shows that P ∗ has even
dimension: let dim(P ∗) = 2r. Moreover, the special structure of P ∗ implies
that, if X is defined as follows:

X :=


vq ∈ IRñ :


 04

vq

0


 ∈ P ∗


 ,

then X is a r-dimensional vector subspace of IRñ. Now, consider the Hamil-
tonian system constituted by the zero dynamics of the given n-dimensional
system, which is an Hamiltonian system with no inputs, characterized by the

Hamiltonian function H(q̃, p̃) =
1
2
p̃T G̃p̃ +

1
2
q̃TU22q̃. Let {`1, `2, . . . , `s},

s = ñ − r, be a basis for X⊥, and define the s functions χ1 := `T1 q̃,
. . . , χs := `Ts q̃. A direct computation shows that χ̇i = `Ti G̃p̃, so that, if
L = [`1 `2 . . . `s], the matrix C defined above (which is constant in view of
the fact that the Hamiltonian system under consideration is linear) is given
by:

C =
[

0 LT G̃L

LT G̃L 0

]
,
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which is clearly nonsingular, thus proving that the integral submanifold of
P ∗ containing the origin is symplectic. Now, since {H, χi} = `Ti G̃p̃ = 0 and

{H, χ̇i} = −`Ti G̃U22q̃ = 0, for all
[
q̃
p̃

]
such that


 04

q̃
p̃


 ∈ P ∗, in view of [11,

Lemma 12.39] the P ∗ dynamics are Hamiltonian. ut

2.4 Decoupling with stability by dynamic state-feedback

In this section, the problem of input-output decoupling with stability will be
dealt with for the class of simple Hamiltonian systems given by (2.1), (2.2),
(2.3), using dynamic state-feedback control laws.

In order to tackle jointly several problems related with different stability
requirements, let the symbol lCg denote the region of the complex plane,
symmetric about the real axis, where the eigenvalues of the linear approx-
imation of the closed-loop system are desired to lie: in particular, let lCg

denote the closed left half-plane, or the open left half-plane, or the half-plane
{s ∈ lC : Re(s) < −α}, if either stability, or asymptotic stability in the first
approximation, or asymptotic stability with a prescribed rate of convergence
α, being α a positive real number, is required, respectively. Moreover, let
lCb := lC − lCg.

It is assumed, without loss of generality, because of the considerations in
Section 2.2, that a suitable static state-feedback control law, of the form
(2.6), has already been applied to the given Hamiltonian system to achieve
noninteraction. Hence, one can start from the equations (2.8a)–(2.8f) for the
closed-loop system, i.e.

ξ̇1 = Aξ1 +B v1,

ξ̇2 = Aξ2 +B v2,
ż = F z + L ξ1 +M ξ2 + ϑ(ξ1, ξ2, z),
y1 = [1 0] ξ1,
y2 = [1 0] ξ2,

(2.23)

where the vector z ∈ IR2 n−4 is given by z := [q̃T p̃T ]T , F , L, M are real
matrices of suitable dimensions, and the vector valued function ϑ(ξ1, ξ2, z)
is such that

∂ϑ

∂ξ1
(0, 0, 0) = 0,

∂ϑ

∂ξ2
(0, 0, 0) = 0,

∂ϑ

∂z
(0, 0, 0) = 0.

In order to restrict the attention to a class of systems which require dynamic
state-feedback control laws in order to be rendered stable and decoupled, the
following two assumptions (a) and (b) are made.
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(a) the two pairs:([
A 0
L F

]
,

[
B
0

])
and

([
A 0
M F

]
,

[
B
0

])

are controllable,

(b) σ(F ) ∩ lCb 6= {∅}, where the symbol σ(·) denotes the spectrum of the
matrix at argument.

Notice that assumption (a) implies that P ∗ ≡ ∆∗ ≡ span{ ∂
∂z

}, hence as-

sumption (b) implies that the problem of decoupling with stability is not
solvable by means of static state-feedback.

Now, let V F
g , V F

b denote the two F -invariant subspaces of IR2 n−4 such that

IR2 n−4 = V F
g ⊕ V F

b ,

σ
(
F |V F

g

)
⊂ lCg,

σ
(
F |V F

b

)
⊂ lCb.

Let a linear coordinate transformation be defined on P ∗ such that, if the new
coordinates z̃ are given by z̃ = T z, then one has

F̃ := T F T−1 =
[
Fg 0
0 Fb

]
,

with σ(Fg) = σ
(
F |V F

g

)
and σ(Fb) = σ

(
F |V F

b

)
.

Let z̃ =:
[
zT

g zT
b

]T be the partition of z̃ corresponding to the block partition
of F̃ , and, finally, let the vector ϑ̃(ξ1, ξ2, z̃), defined by

ϑ̃(ξ1, ξ2, z̃) := T ϑ(ξ1, ξ2, T−1z̃),

be partitioned according to the partition of z̃:

ϑ̃(ξ1, ξ2, z̃) = [ϑT
g (ξ1 ξ2, z̃) ϑT

b (ξ1, ξ2, z̃)]T .

The following assumption (c) considerably simplifies the problem.

(c) The vector ϑb(ξ1, ξ2, z̃) is a function of the variables ξ1, ξ2 only:

ϑb(ξ1, ξ2, z̃) =: ψ(ξ1, ξ2), ∀(ξ1, ξ2, z̃) in a neighborhood of (0, 0, 0).

The following result provides a condition to solve the problem of decou-
pling with stability by means of dynamic state-feedback, which is, in general,
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much easier to check than the necessary and sufficient conditions based on
the explicit computation of the distribution ∆mix. In order to apply the re-
sults recalled in Section 2.3, valid for general nonlinear systems, giving the
necessary conditions for the existence of a solution, the following technical
assumption is introduced:

(d) The origin (ξ1, ξ2, z) = (0, 0, 0) is a regular point of the distribution
∆mix of system (2.23).

We are now ready to state the main result of this section.

Proposition 2.4.1. Under assumptions (a), (b), (c) and (d), a dynamic
state-feedback control law which solves the problem of input-output decoupling
with either

(A) (simple) stability, or

(B) asymptotic stability in the first approximation, or

(C) asymptotic stability with a prescribed convergence rate,

exists only if the following conditions hold in a neighborhood of ξ1 = 0, ξ2 = 0
(it is recalled that ξ1 = [q1 q̇1]T , ξ2 = [q2 q̇2]T ):

(i) ψq̇1 q̇2(ξ1, ξ2) = 0,

(ii) ψq1 q̇2(ξ1, ξ2) = ψq2 q̇1(ξ1, ξ2),

(iii)
1
2
Fb

(
ψq1 q̇2(ξ1, ξ2) + ψq2 q̇1(ξ1, ξ2)

)
+ ψq1 q2(ξ1, ξ2)−

q̇1 ψq1 q2 q̇1(ξ1, ξ2) − q̇2 ψq1 q2 q̇2(ξ1, ξ2) = 0.

In cases (B) and (C), conditions (i), (ii) and (iii) are also sufficient for the
existence of a solution, whereas, in case (A), a set of sufficient conditions is
given by (i), (ii), (iii) and the following condition:

(iv)the equilibrium of the dynamical system

żg = Fg zg + ϑg(0, 0,
[
zg

0

]
) (2.24)

is stable.

ut
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2.5 Proof of proposition 2.4.1

In view of the proposed notations, and of assumption (c), system (2.23) can
be rewritten as follows:

ξ̇1 = Aξ1 +B v1, (2.25a)
ξ̇2 = Aξ2 +B v2, (2.25b)

żg = Fg zg + Lg ξ1 +Mg ξ2 + ϑg(ξ1, ξ2,
[
zg

zb

]
), (2.25c)

żb = Fb zb + Lb ξ1 +Mb ξ2 + ψ(ξ1, ξ2), (2.25d)

where Lg, Lb, Mg and Mb are real matrices of suitable dimensions.

The proof of Proposition 2.4.1 is organized as follows. First, it is shown that
hypotheses (i), (ii) and (iii) are necessary for the existence of a solution of
the given control problem. Secondly, the design procedure of a dynamic state-
feedback compensator is outlined, on the basis of the algorithm proposed in [7,
Chapter 7]. In a third step, it is shown that, under hypotheses (i), (ii) and (iii),
such a compensator solves the problem of decoupling with stability in cases
(B) and (C), i.e. when the stability requirement can be checked on the basis
of the properties of the linearized system. Lastly, by means of some results
from the Center Manifold Theory [4], it is shown that, under hypotheses (i),
(ii), (iii) and (iv), the proposed compensator solves the problem in case (A).

Necessity of (i), (ii) and (iii). In order to see that each of conditions (i), (ii)
and (iii) is necessary for the existence of a solution, rewrite system (2.25a)–
(2.25d) in the general form

ẋ = f̃(x) + g̃1v1 + g̃2v2,

where the state vector x ∈ IR2 n is given by x = [ξT
1 ξ

T
2 z

T
g z

T
b ]T , and compute

the following vectors, which certainly belong to ∆mix[
adf̃ g̃1, g̃2

]
=

[
0 0 0 0 lg10(x) lb10(x)

]T
,[

adf̃ g̃1, adf̃ g̃2

]
=

[
0 0 0 0 lg11(x) lb11(x)

]T
,[

ad2
f̃
g̃1, adf̃ g̃2

]
=

[
0 0 0 0 lg21(x) lb21(x)

]T
,

with

lb10(x) = ψq̇1 q̇2(ξ1, ξ2),
lb11(x) = −ψq̇1q2(ξ1, ξ2) + ψq1 q̇2(ξ1, ξ2),
lb21(x) = Fbψq̇1q2(ξ1, ξ2) − q̇2ψq̇1q2q2(ξ1, ξ2) − q̇1ψq1 q̇1q2(ξ1, ξ2)

+ψq1q2(ξ1, ξ2),
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and with lg10(x), lg11(x) and lg21(x) being suitable vectors of dimension ng.
It is clear that, if any of conditions (i), (ii) and (iii) is not satisfied, then

∆mix ∩ span
{
∂

∂zb

}
6= 0, hence the ∆mix dynamics of system (2.25a)–(2.25d)

cannot be stable, with respect to the given stability requirement.

Structure of the overall control system. In order to design a dynamic state-
feedback compensator, solving the problem of decoupling with stability, con-
sider the following nonsingular coordinates transformation:

z̃b = zb + τ(q1, q2),

in which the vector τ(q1, q2) is defined as

τ(q1, q2) :=
1
2

∫ q2

0

∫ q1

0

(
ψq1 q̇2

([
η1
q̇1

]
,

[
η2
q̇2

])
+ ψq2 q̇1

([
η1
q̇1

]
,

[
η2
q̇2

]))
dη1 dη2. (2.26)

In the new coordinates, system (2.25a)–(2.25d) is described by equations
(2.25a), (2.25b), (2.25c) and

˙̃zb = Fbz̃b + Lbξ1 +Mbξ2 + ψ̃(ξ1, ξ2),

where, by virtue of hypotheses (i), (ii) and (iii) and of equation (2.26), the
vector ψ̃(ξ1, ξ2) can be seen to satisfy the following four identities

ψ̃q1q2(ξ1, ξ2) = 0, ψ̃q1 q̇2(ξ1, ξ2) = 0,

ψ̃q̇1q2(ξ1, ξ2) = 0, ψ̃q̇1 q̇2(ξ1, ξ2) = 0,

in a neighborhood of ξ1 = 0, ξ2 = 0. This implies that the vector ψ̃(ξ1, ξ2)
can be written as follows:

ψ̃(ξ1, ξ2) = ψ̃1(ξ1) + ψ̃2(ξ2);

whence, it is easy to verify that ∆mix ⊂ span
{

∂

∂zg

}
.

Therefore, on the basis of the synthesis procedure reported in [7, Section 7.5],
valid for general nonlinear systems, it is possible to design a dynamic state-
feedback compensator for the subsystem

ξ̇1 = Aξ1 +B v1,

ξ̇2 = Aξ2 +B v2,
˙̃zb = Fbz̃b + Lbξ1 +Mbξ2 + ψ̃1(ξ1) + ψ̃2(ξ2),

(2.27)

which solves the problem of noninteraction with asymptotic stability in the
first approximation (in both cases (A) and (B)), or with the desired conver-
gence rate (in case (C)). Such a compensator is of the form
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ẋc = γ(ξ1, ξ2, z̃b, xc) +Gcw,
v = η(ξ1, ξ2, z̃b, xc) + w,

(2.28)

where xc is the state vector, xc ∈ IR4+2 nb , with nb := dim
(
V F

b

)
and w is the

vector of the new inputs, w =
[
w1 w2

]T , where w1 does not affect y2 and w2

does not affect y1.

Now, letting xe := [ξT
1 ξ

T
2 z̃

T
b x

T
c ]T , the closed-loop system (2.27), (2.28) can

be written as

ẋe = fe(xe) + g1 e(xe)w1 + g2 e(xe)w2,
y1 = h1 e(xe),
y2 = h2 e(xe),

(2.29)

and, in view of the design procedure adopted, it is decoupled and asymptot-
ically stable in the first approximation (with the desired convergence rate, in
case (C)).

Sufficiency of (i), (ii) and (iii) in cases (B) and (C). Simple considerations rel-
ative to the linearization about the origin of the overall control system, con-
stituted by (2.29) and by

żg = Fgzg + Lgξ1 +Mgξ2 + ϑg

(
ξ1, ξ2,

[
zg

z̃b − τ(q1, q2)

])
, (2.30)

suffice to prove the proposition with respect to the stability requirements (B)
and (C), in view of the fact that the outputs y1 and y2 are not affected by
zg.

Sufficiency of (i), (ii), (iii) and (iv) in case (A). The stability of the origin
xe = 0, zg = 0, for the overall control system, composed of (2.29) and (2.30),
can be proven by means of well known results from the Center Manifold
Theory (see [4] and [7, Appendix B]). To this end, consider a change of coor-
dinates on the state space of system (2.24) such that, if the new coordinates
z̃g are z̃g = T̃ zg, then one has

F̃g := T̃ FgT̃
−1 =

[
Fg− 0
0 Fg0

]
,

with σ (Fg−) ⊂ {λ ∈ lC, Re(λ) < 0} and σ (Fg0) ⊂ {λ ∈ lC, Re(λ) = 0}.
Let z̃g =

[
zT

g− zT
g0

]T be the partition of z̃g corresponding to the block partition
of F̃g. In the new coordinates, system (2.24) can be rewritten as

żg− = Fg−zg− + ϑg− (zg−, zg0) ,
żg0 = Fg0zg0 + ϑg0 (zg−, zg0) ,

(2.31)
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with

ϑg− (zg−, zg0) := T̃−ϑg


0, 0,


 T̃−1

[
zg−
zg0

]

0




 ,

ϑg0 (zg−, zg0) := T̃0ϑg


0, 0,


 T̃−1

[
zg−
zg0

]

0





 ,

where T̃−, T̃0 are the two row blocks of the partition T̃ =:
[
T̃−
T̃0

]
of matrix

T̃ , corresponding to the block partition of F̃g. Since the origin zg = 0 is an
equilibrium point of system (2.24), then it is clear that functions ϑg−(·, ·)
and ϑg0(·, ·) vanish at

[
zg−
zg0

]
=

[
0
0

]
, hence a mapping zg− = π(zg0), defined

on a neighborhood U of zg0 = 0, such that the set

S :=
{[

zg−
zg0

]
∈ IRng : zg0 ∈ U, zg− = π(zg0)

}

is a center manifold for system (2.31), exists. Moreover, by hypothesis (iv), it
follows that the dynamics of system (2.31) restricted to S, described by the
equation

żg0 = Fg0zg0 + ϑg0 (π (zg0) , zg0) , zg0 ∈ U, (2.32)

are necessarily stable. Now, in order to see that this implies stability for the
overall control system, which can be written as

ẋe = fe(xe) + g1 ev1 + g2 ev2,

żg− = Fg−zg− + L−xe + ϑ̃g− (xe, zg−, zg0) ,
żg0 = Fg0zg0 + L0xe + ϑ̃g0 (xe, zg−, zg0) ,

(2.33)

where the matrices L−, L0 take into account the terms linear in ξ1, ξ2 ap-
pearing in equation (2.25c), and

ϑ̃g− (xe, zg−, zg0) := T̃−ϑg


ξ1, ξ2,


 T̃−1

[
zg−
zg0

]

z̃b − τ(q1, q2)




 ,

ϑ̃g0 (xe, zg−, zg0) := T̃0ϑg


ξ1, ξ2,


 T̃−1

[
zg−
zg0

]

z̃b − τ(q1, q2)





 ,

a further linear coordinates transformation is needed. Define
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Fe :=
∂fe(xe)
∂xe

∣∣∣∣
xe=0

,

and let the last vector component of the new coordinates vector
[
xT

e zT
g− z̃T

g0

]T

be given by

z̃g0 = P0xe + zg0,

where the matrix P0 ∈ IR(2 n−4−2 nb)×(8+3 nb) is such that

Fg0P0 − P0Fe = L.

The existence of such a matrix P0 is guaranteed by the fact that

σ(Fg0) ∩ σ(Fe) = {∅}.
System (2.33), with v1 = v2 = 0, can be rewritten as follows:

ẋe = Fexe +∆fe(xe),
żg− = Fg−zg− + L−xe + ϑ̃g− (xe, zg−, z̃g0 − P0xe) ,
˙̃zg0 = ∆f0

e (xe) + Fg0 z̃g0 + ϑ̃g0 (xe, zg−, z̃g0 − P0xe) ,
(2.34)

where the functions ∆fe(xe) := fe(xe) − Fexe and ∆f0
e (xe) := P0fe(xe) −

Fg0P0xe + L0xe, vanish, together with their Jacobian matrices with respect
to xe, at xe = 0.

It is easy to see that the set

Se :=





 xe

zg−
z̃g0


 ∈ IR(8+3 nb+ng) : z̃g0 ∈ U, xe = 0, zg− = π(z̃g0)




is a center manifold for system (2.34), and that the dynamics of system (2.34)
restricted to Se coincide with (2.32) if zg0 is replaced by z̃g0. The claim follows
from the Reduction Principle [4]. ut

2.6 Examples

In this section, two examples, stemming from simple mechanical systems, are
presented and the application of the theory reported in Sections 2.2, 2.3 and
2.4 is discussed.

The first example is concerned with a simple physical system which can
be rendered input-output decoupled and asymptotically stable in the first
approximation by means of a suitable static state-feedback control law, al-
though its zero dynamics are not trivial and, being Hamiltonian, obviously
not asymptotically stable.
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Example 2.6.1. Consider the system represented in Figure 2.6.1, which is
composed of three equal bodies having mass m each, which slide along an
horizontal axis, namely the x axis of some inertial reference frame. Any kind
of friction is neglected in the proposed model of the system. The first body,
whose position at time t is denoted by q1(t), is connected to a fixed point
at x = 0 by means of a nonlinear elastic spring (so-called hardening spring),
having length equal to zero, when undeformed, and exerting a force equal in
modulus to

F (`) = k `+ k′`3,

on the bodies at its extremities, when deformed up to length `. The second
body, whose position is denoted by q2(t), is connected to the first one by
means of a nonlinear elastic spring equal to the one described previously,
whereas the third body, whose position is denoted by q3(t), is connected in
the same way to the second one. The two control inputs of the system are
two external forces, u1(t) and u2(t), applied to the first and to the second
body, respectively. The natural outputs of the system are y1 = q1, y2 = q2.

Fig. 2.2. The mechanical system considered in Example 2.6.1.

Since the kinetic and potential energies of the system are given by

T (q̇) =
1
2
m

(
q̇21 + q̇22 + q̇23

)
,

V (q) =
1
2
k

(
q21 + (q2 − q1)2 + (q3 − q2)2

)
+

1
4
k′

(
q41 + (q2 − q1)4 + (q3 − q2)4

)
,

the equations of motion can be written as
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q̈1 =
1
m

(
k(−2 q1 + q2) + k′

(−q31 + (q2 − q1)3
)

+ u1

)
,

q̈2 =
1
m

(
k(q1 − 2 q2 + q3) + k′

(−(q2 − q1)3 + (q3 − q2)3
)

+ u2

)
,

q̇3 =
1
m
p3,

ṗ3 = k(q2 − q3) + k′(q2 − q3)3,

where p3 := m q̇3.

After a first state-feedback (2.6) the closed-loop system is decoupled and has
the form:

q̈1 = v1, (2.35a)
q̈2 = v2, (2.35b)

q̇3 =
1
m
p3, (2.35c)

ṗ3 = k(x2 − q3) + k′(x2 − q3)3. (2.35d)

The zero dynamics of system (2.35a)-(2.35d) can be written as

q̇3 =
1
m
p3,

ṗ3 = −k q3 − k′q33 ,

since they are not asymptotically stable (they are those of an undamped
Duffing oscillator), the approach of [6] cannot succeed in obtaining decou-
pling with asymptotic stability. However, it is clear that the distribution P ∗

has zero dimension for system (2.35a)-(2.35d), hence the system (which is
controllable in the first approximation) can be stabilized asymptotically by
means of a static state-feedback which preserves decoupling. As a matter of
fact, any feedback control law described by equations of the form

v1 = −ε11x1 − ε12ẋ1 + w1, ε11 > 0, ε12 > 0,
v2 = α(x2, ẋ2, q3, p3) + w2,

which asymptotically stabilizes the first approximation of subsystem (2.35b)
-(2.35d), succeeds in obtaining a closed-loop system which is decoupled (the
input wi does not affect the output yj , i 6= j) and asymptotically stable in
the first approximation. In particular, α(x2, ẋ2, q3, p3) can be chosen as a
static state-feedback assigning the eigenvalues of the linear approximation
of subsystem (2.35b)-(2.35d). This has been done in the case of m = 1,
k = 20, k′ = 20, assigning the eigenvalues in {−5, −10, −15, −20}, whereas,
to stabilise subsystem (2.35a), ε11 = 25 and ε12 = 10 have been taken. The
results of a significant simulation of the behavior of the overall control system
are reported in Figure 2.6.1. Starting from initial conditions equal to zero for
all the state variables, two piece-wise constant input functions w1(·) and w2(·)
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Fig. 2.3. Simulation results for the noninteracting control system obtained in Ex-
ample 2.6.1: time behavior of the two outputs y1 and y2 (left) and of the non-
actuated configuration variable q3 (right).

have been applied, one at each of the two decoupled channels: w1(t) different
¿from zero for t ∈ [0, 4] and w2(t) different from zero for t ∈ [8, 12]. In the
left plot one can see that each output yi is not affected by the values of the
input function wj , j 6= i, whereas in the right plot it is possible to appreciate
the time behavior of the position of the non-actuated mass. ut

The second example illustrates the results in Section 2.4: it consists of an
unstable system, for which decoupling and simple stability are jointly achiev-
able, if the use of dynamic state-feedback control is allowed.

Example 2.6.2. Consider the system represented in Figure 2.6.2, which is
composed of four heavy dimensionless carts, denoted by C1, C2, C3 and
C4, which are subject to the gravitational field, of magnitude g, and are
constrained to move along specified curves lying on a vertical plane. The
four carts, C1 and C2 having mass m, C3 and C4 having mass M , interact
between them through mechanical couplings involving other massless objects,
as described in the following. Any kind of friction is neglected in the proposed
model of the system.

On the vertical plane an inertial reference frame xOy is defined, whose y axis
is parallel to the gravity acceleration vector and has opposite direction.

The two carts C3 and C4 are constrained to slide along two curves, Γa and
Γb, each of them parameterized through its curvilinear abscissa s ∈ [−2, 2]:
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Fig. 2.4. The mechanical system considered in Example 2.6.2.

Γa :



xa(s) =

s

2

√
1 − s2

4
+ arcsin

(s
2

)
,

ya(s) = −1 +
s2

4
,

Γb :



xb(s) = −s

2

√
1 − s2

4
− arcsin

(s
2

)
,

yb(s) = 1 − s2

4
.

The cart C3 slides along Γa, hence its position at time t is given by(
xa(sa(t)), ya(sa(t))

)
and sa(t) can be taken as its configuration coor-

dinate; similarly, the position of the cart C4, which slides along Γb, is
(xb(sb(t)), yb(sb(t))) and sb(t) can be taken as its configuration coordinate.

The two carts C1 and C2 slide along the x axis, so that their configuration
coordinates can be simply taken as x1 and x2. Carts C1 and C2 are subject
to two external forces having direction parallel to the x axis and intensity u1

and u2, respectively (the only control inputs). Two linear, elastic, massless
springs, having length L0 > 2, when undeformed, and elastic constant k,
connect the cart C4 with the carts C1 and C2; as shown in Figure 2.6.2, such
springs lie on the same curves along which C1, C2 and C4 are constrained to
slide.
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A massless cylinder, denoted with B in Figure 2.6.2, whose axis belongs to
the plane xOy, is free to rotate about a hinge, whose axis is perpendicular to
the plane xOy, placed on a massless cart, which is constrained to slide along
Γa; the dimensions of B, of the hinge and of the cart are all negligible, so
that those three objects can be considered as a single point, whose position is
(xa(sα(t)), ya(sα(t))), with sα(t) being the value of the curvilinear abscissa
of such a point on Γa. A linear, elastic, massless spring, having length equal
to zero, when undeformed, and elastic constant h, connects C3 with the cart
on which B is hinged; such a spring is also constrained to lie on Γa. A further
mechanical coupling is established between C1 andC2 and the cart supporting
B, by means of three massless rigid bars, also lying on the plane xOy, which
are hinged at one extremity with the hinge P . Two of the bars, having length
L >

√
1 + (L0 − 2 + π/2)2, are hinged at the other extremity, one at each of

the carts C1 and C2. The third bar, whose length is not relevant, provided that
it is greater than the maximum distance between the hinge P and the origin
O, is constrained by means of two prismatic one degree of freedom couplings,
the first with the cylinder B, and the other with a second dimensionless and
massless cylinder, denoted by A. The axis A also belongs to the plane xOy,
and, by means of a dimensionless hinge placed at O, it is assured that the
central point of A coincides with the origin O.

The described interaction between the carts C1 and C2, the cylinders A and
B, and the three bars hinged at P , guarantees that the curvilinear abscissa
sα(t) of B along Γa, is a function of the position coordinates x1(t) and x2(t)
of C1 and C2. The function sα = sα(x1, x2) is defined implicitly by means of
the equation F (x1, x2, sα) = 0, where

F (x1, x2, sα) := xa(sα)

√
L2 −

(
x1 − x2

2

)2

+ ya(sα)
x1 + x2

2
,

in the domain of interest: x1 > π/2, x2 < −π/2, x1 − x2 < 2L,−2 < sα < 2.

The system is in equilibrium if x1 = xe, x2 = −xe, sa = sb = 0, where
xe := L0 − 2 + π/2. Therefore a suitable vector of configuration coordinates
is q = [x1−xe x2 +xe sa sb]T ; in the following the motion of the system
around the origin q = 0 is considered.

The kinetic and potential energies of the system can be written as follows:

T (q̇) =
1
2

(
m

(
q̇21 + q̇22

)
+M

(
q̇23 + q̇24

))
, (2.36)

V (q) = M g (ya(q3) + yb(q4)) +
1
2

(
k(q1 + q4)2 + k(q2 + q4)2 + h (q3 − sα(q1 + xe, q2 − xe))

2
)
. (2.37)

Using (2.36) and (2.37) and the discussion in [11, Chapter 12], it follows that

H0(q, p) = T
([
p1/m p2/m p3/M p4/M

]T
)

+ V (q),
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in which p = [m q̇1 m q̇2 M q̇3 M q̇4]T . As a result, the state space equa-
tions describing the system can be obtained as in Section 2.2:

q̈1 =
1
m

(f2(q) + u1), (2.38a)

q̈2 =
1
m

(f4(q) + u2), (2.38b)

q̇3 =
1
M
p3, (2.38c)

q̇4 =
1
M
p4, (2.38d)

ṗ3 = h (sα(q1 + xe, q2 − xe) − q3) − M g

2
q3, (2.38e)

ṗ4 = −k (q1 + q2 + 2 q4) +
M g

2
q4, (2.38f)

where f2(·) and f4(·) are suitable functions of q; the natural outputs are

y1 = q1,

y2 = q2.

After a first state-feedback of the form

u1 = −f2(q) +mv1,

u2 = −f4(q) +mv2,
(2.39)

if ξ1 and ξ2 are given by (2.7), the system (2.38a)–(2.38f), (2.39) can be
written in the form (2.23), with z = [q3 q4 p3 p4]T . It is easy to see that
assumption (a) holds. In order to study the stability properties, in the first
approximation, of the zero dynamics, the matrix F has to be considered:

F =




0 0 1/M 0
0 0 0 1/M

−h− gM/2 0 0 0
0 −2 k + gM/2 0 0


 .

If k <
gM

4
, the matrix F has a real eigenvalue λ with positive real part,

hence stability of the closed-loop system cannot be achieved by any static
state-feedback control law which guarantees decoupling. Since the eigenvalues

of F are {λ, −λ,  ω, − ω}, with λ =
1√
2

√
g − 4 k

M
and ω =

1√
2

√
g +

2 h
M

,

and  being the imaginary unit, it makes sense to check for the existence
of a dynamic state-feedback control law guaranteeing decoupling and simple
stability. The closed-loop system (2.38a)–(2.38f), (2.39) can be put in the
form (2.25a)–(2.25d) by means of a coordinates transformation
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z̃ = T z, (2.40)

where the matrix T is such that

F̃ = T F T−1 =



Λ1

0 0
0 0

0 0
0 0

−λ 0
0 λ


 ,

with σ(Λ1) = {− ω,  ω}. After such a transformation it turns out that
equation (2.25d) is given by:

żb = k1 q1 + k2 q2 + λ zb, k1, k2 ∈ IR, (2.41)

hence ψ(ξ1, ξ2) = 0 and hypotheses (i), (ii) and (iii) are satisfied. In order to
check that (iv) also holds, it is sufficient to notice that, by letting ξ1 = ξ2 = 0,
the zero dynamics of the system are given by two decoupled subsystems, the
first describing the dynamics of the cart C3 and the second the ones of C4. As
for cart C3, when ξ1 = ξ2 = 0, its motion is described by equations (2.38c)
and (2.38e) with sα(xe, −xe) = 0:

q̇3 = p3/M,

ṗ3 = − (h+M g/2) q3,

¿from which it is evident that such a subsystem is simply stable. As for cart
C4, its constrained dynamics

q̇4 = p4/M,

ṗ4 = (−2 k +M g/2) q4,

are clearly split by the coordinates transformation (2.40) into the unstable
part, given by (2.41) with q1 = q2 = 0 and an analogous equation relative
to an asymptotically stable subsystem. It follows that hypothesis (iv) is sat-
isfied, with the components of zg being q3, p3 and the state variable of the
asymptotically stable subsystem just mentioned.

Therefore, simple stability and input-output decoupling can be obtained
jointly for this system, if a suitable dynamic state-feedback is used. ut

2.7 Conclusions

In this chapter the problem of input-output decoupling with stability has been
tackled for a class of nonlinear Hamiltonian systems, by means of (possibly)
dynamic state-feedback control laws. Using well known results from nonlin-
ear geometric control, it has been possible to enlarge the class of systems
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proposed in [6], for which the problem of decoupling with simple stability
is solvable by means of static state-feedback. A wider class of systems has
been determined for which the problem is solvable if dynamic state-feedback
is allowed. Mathematical and physical examples have been presented and
discussed.

The P⊥, P ∗ and ∆mix dynamics of Hamiltonian systems have been stud-
ied, since they characterize the key properties of the system with respect to
the problem of decoupling with stability. In particular, it has been shown
that these dynamics need not be Hamiltonian for general Hamiltonian sys-
tems, whereas, for simple and linear Hamiltonian systems, the P⊥ and P ∗

dynamics, which are the only ones of interest, are Hamiltonian.

Further work will be devoted to the subject, to enlarge further the class of
systems for which the problem of decoupling with stability is solvable and to
complete the study of the P⊥, P ∗ and ∆mix dynamics of nonlinear simple
Hamiltonian systems.
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Université Catholique de Louvain
Bâtiment Euler, 4-6, avenue G.Lemaitre
1348 Louvain la Neuve, Belgium
Fax : +32 10472380
bastin@auto.ucl.ac.be

3.1 Introduction

This paper devoted to mass balance systems is written in a tutorial spirit.
The aim is to give a self content presentation of the modelling of engineering
systems that are governed by a law of mass conservation and to briefly discuss
a fundamental feedback control problem regarding these systems.

Modelling issues are first addressed in Sections 2 to 11. The general state-
space model of mass balance systems is presented. The equations of the model
are shown to satisfy physical constraints of positivity and mass conservation.
These conditions have strong structural implications that lead to particu-
lar Hamiltonian and Compartmental representations. The modelling of mass
balance systems is illustrated with two simple industrial examples : a bio-
chemical process and a grinding process. Some open loop stability properties
are briefly presented and illustrated with these examples.

The control issue is then addressed in Sections 12 to 14. In general, mass
balance systems have multiple equilibria, one of them being the operating
point of interest which is locally asymptotically stable. However if big enough
disturbances occur, the process may be lead by accident to a behaviour which
may be undesirable or even catastrophic. The control challenge is then to
design a feedback controller which is able to prevent the process from such
undesirable behaviours. Two solutions of this problem are briefly described
namely (i) robust output feedback control of minimum phase mass balance
systems and (ii) robust state feedback stabilisation of the total mass.
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3.2 Mass balance systems

In mass balance systems, each state variable xi (i = 1, . . . , n) represents an
amount of some material (or some matter) inside the system, while each state
equation describes a balance of flows as illustrated in Fig. 3.1 :

ẋi = ri − qi + pi (3.1)

where pi represents the inflow rate, qi the outflow rate and ri an internal
transformation rate. The flows pi, qi and ri can be function of the state vari-
ables x1, . . . xn and possibly of control inputs u1, . . . , um. The state space
model which is the natural behavioural representation of the system is there-
fore written in vector form :

ẋ = r(x, u) − q(x, u) + p(x, u) (3.2)

As a matter of illustration, some concrete examples of the phenomena that
can be represented by the (p, q, r) flow rates in engineering applications are
given in Table 1.

Transformations
Physical : grinding, evaporation, condensation
Chemical : reaction, catalysis, inhibition
Biological : infection, predation, parasitism

Outflows
Withdrawals, extraction
Excretion, decanting, adsorption
Emigration, mortality

Inflows
Supply of raw material
Feeding of nutrients
Birth, immigration

etc...etc...

Table 1.

In this paper, we shall assume that the functions p(x, u), q(x, u), r(x, u) are
differentiable with respect to their arguments. The physical meaning of the
model (3.2) implies that these functions must satisfy two kinds of conditions
: positivity conditions and mass conservation conditions which are explicited
hereafter.
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Fig. 3.1. Balance of flows

3.3 Positivity

Since there cannot be negative masses, the model (3.2) makes sense only if
the state variables xi(t) remain non-negative for all t :

xi(t) ∈ R+

where R+ denotes the set of real non-negative numbers. It follows that :

xi = 0 =⇒ ẋi ≥ 0 (3.3)

whatever the values of xj ∈ R+, j 6= i and uk. This requirement is satisfied
if the functions p(x, u), q(x, u), r(x, u) have the following properties :

1. The inflow and outflow functions are defined to be non-negative :

p(x, u)
q(x, u)

}
: Rn

+ ×Rm → Rn
+

2. There cannot be an outflow if there is no material inside the system :

xi = 0 =⇒ qi(x, u) = 0 (3.4)

3. The transformation rate ri(x, u) : Rn
+ × Rm → R may be positive or

negative but it must be defined to be positive when xi is zero :

xi = 0 =⇒ ri(x, u) ≥ 0 (3.5)

3.4 Conservation of mass

Provided the quantities xi are expressed in appropriate normalized units, the
total mass contained in the system may be expressed as1 :
1 To simplify the notations, it will be assumed throughout the paper that the

summation
P

i is taken over all possible values of i (here i = 1, . . . , n) and
P

i6=j

over all possible values of i except j.
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M =
∑

i

xi

When the system is closed (neither inflows nor outflows), the dynamics of M
are written :

Ṁ =
∑

i

ri(x, u)

It is obvious that the total mass inside a closed system must be conserved
(Ṁ = 0), which implies that the transformation functions ri(x, u) satisfy the
condition :∑

i

ri(x, u) = 0 (3.6)

The positivity conditions (3.4)- (3.5) and the mass conservation condition
(3.6) have strong structural implications that are now presented.

3.5 Hamiltonian representation

A necessary consequence of the mass conservation condition (3.6) is that
n(n − 1) functions rij(x, u) (i = 1, . . . , n ; j = 1, . . . , n ; i 6= j) may be
selected such that :

ri(x, u) =
∑
j 6=i

rji(x, u) −
∑
j 6=i

rij(x, u) (3.7)

(note the indices !). Indeed, the summation over i of the right hand sides of
(3.7) equals zero. It follows that any mass balance system (3.2) can be written
under the form of a so-called port-controlled Hamiltonian representation (see
[8], [9]) :

ẋ = [F (x, u) −D(x, u)]
(
∂M

∂x

)T

+ p(x, u) (3.8)

where the storage function is the total mass M(x) =
∑

i xi. The matrix
F (x, u) is skew-symmetric :

F (x, u) = −FT (x, u)

with off-diagonal entries fij(x, u) = rji(x, u) − rij(x, u). The matrix D(x, u)
represents the natural damping or dissipation provided by the outflows. It is
diagonal and positive :

D(x, u) = diag (qi(x, u)) ≥ 0

The last term p(x, u) in (3.8) obviously represents a supply of mass to the
system from the outside.
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3.6 Compartmental representation

There is obviously an infinity of ways of defining the rij functions in (3.7).
We may assume that they are selected to be non-negative :

rij(x, u) : Rn
+ ×Rm → R+

and differentiable since ri(x, u) is required to be differentiable.

Then condition (3.5) implies that :

xi = 0 ⇒ rij(x, u) = 0 (3.9)

Now, it is a well known fact (see e.g. [3], page 67) that if rij(x, u) is differen-
tiable and if condition (3.9) holds, then rij(x, u) may be written as :

rij = xir̄ij(x, u)

for some appropriate function r̄ij(x, u) which is defined on Rn
+ × Rm, non-

negative and at least continuous. Obviously, the same is true for qi(x, u) due
to condition (3.4) :

qi(x, u) = xiq̄i(x, u)

The functions r̄ij and q̄i are called fractional rates. It follows that any mass
balance system (3.2) can be written under the following alternative represen-
tation :

ẋ = G(x, u)x + p(x, u) (3.10)

where G(x, u) is a so-called compartmental matrix with the following proper-
ties :

1. G(x, u) is a Metzler matrix with non-negative off-diagonal entries :

gij(x, u) = r̄ji(x, u) ≥ 0 i 6= j

(note the inversion of indices !)

2. The diagonal entries of G(x, u) are non-positive :

gii(x, u) = −q̄i(x, u) −
∑
j 6=i

r̄ij(x, u) ≤ 0

3. The matrix G(x, u) is diagonally dominant :

|gii(x, u)| ≥
∑
j 6=i

gji(x, u)
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The term compartmental is motivated by the fact that a mass balance sys-
tem may be represented by a network of conceptual reservoirs called com-
partments. Each quantity (state variable) xi is supposed to be contained in
a compartment which is represented by a box in the network (see Fig. 3.2).
The internal transformation rates are represented by directed arcs : there is
an arc from compartment i to compartment j when there is a non-zero entry
gji = r̄ij in the compartmental matrix G. These arcs are labeled with the
fractional rates r̄ij . Additional arcs, labeled respectively with fractional out-
flow rates q̄i and inflow rates pi are used to represent inflows and outflows.
Concrete examples of compartmental networks will be given in Fig.3.4 and
Fig.3.6.

p

q

r

r

i

ji

j

ij

ix xj

Fig. 3.2. Network of compartments

A compartment is said to be outflow connected if there is a path from that
compartment to a compartment from which there is an outflow arc. The
system is said to be fully outflow connected if all compartments are outflow
connected. As stated in the following property, the non singularity of a com-
partmental matrix can be checked directly on the network.

Property 1. For a given value of (x, u) ∈ Rn
+ × Rm, the compartmental

matrix G(x, u) of a mass balance system (3.10) is non singular if and only if
the system is fully outflow connected.

A proof of this property can be found e.g. in [3].

3.7 Special case : inflow controlled systems

From now on, we will focus on the special case of inflow-controlled systems
where the inflow rates pi(x, u) do not depend on the state x and are linear
with respect to the control inputs uk :

pi(x, u) =
∑

k

bikuk bik ≥ 0 uk ≥ 0
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while the transformation rates ri(x, u) and the outflow rates qi(x, u) are in-
dependent of u. The model (3.2) is thus written as :

ẋ = r(x) − q(x) +Bu (3.11)

with B the n×m matrix with entries bik.

The Hamiltonian representation specializes as :

ẋ = [F (x) −D(x)]
(
∂M

∂x

)T

+Bu (3.12)

and the compartmental representation as :

ẋ = G(x)x +Bu (3.13)

with appropriate definitions of the matrices F (x), D(x) and G(x).

Two practical examples of single-input inflow-controlled systems are given
hereafter.

3.8 Example 1 : a biochemical process

A continuous stirred tank reactor is represented in Fig.3.3. The following
biochemical reactions take place in the reactor :

A −→
X

B

B −→
X

X

where X represents a microbial population and A,B organic matters. The
first reaction represents the hydrolysis of species A into species B, catalysed
by cellular enzymes. The second reaction represents the growth of microor-
ganisms on substrate B. It is obviously an auto-catalytic reaction. Assuming
mass action kinetics, the dynamics of the reactor may be described by the
model :

ẋ1 = +k1x1x2 − dx1

ẋ2 = −k1x1x2 + k2x1x3 − dx2

ẋ3 = −k2x1x3 − dx3 + du

with the following notations and definitions :

x1 = concentration of species X in the reactor
x2 = concentration of species B in the reactor
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inflow

outflow

Fig. 3.3. Stirred tank reactor

x3 = concentration of species A in the reactor
d = dilution rate
u = concentration of species A in the influent
k1, k2 = rate constants.

This could be for instance the model of a biological depollution process where
du is the pollutant inflow while d(x2 +x3) is the residual pollution outflow. It
is readily seen to be a special case of the general mass-balance model (3.11)
with the following definitions :

r(x) =


 +k1x1x2

−k1x1x2 + k2x1x3

−k2x1x3


 q(x) =


dx1

dx2

dx3


 Bu =


 0

0
du




The Hamiltonian representation is :

F (x) =


 0 k1x1x2 0

−k1x1x2 0 k2x1x3

0 −k2x1x3 0


 D(x) =


 dx1 0 0

dx2 0
0 0 dx3




The compartmental matrix is :

G(x) =


−d k1x1 0

0 −d− k1x1 k2x1

0 0 −d− k2x1




The compartmental network of the biochemical process is shown in Fig.3.4
where it can be seen that the system is fully outflow connected.

3.9 Example 2 : a grinding process

An industrial grinding circuit, as represented in Fig.3.5 is made up of the
interconnection of a mill and a separator. The mill is fed with raw material.
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du

x x x
k

d

2 x1
23 1

k1 x1

dd

Fig. 3.4. Compartmental network of the biochemical process model

After grinding, the material is introduced in a separator where it is separated
in two classes : fine particles which are given off and oversize particles which
are recycled to the mill. A simple dynamical model has been proposed for
this system in [5]:

ẋ1 = −γ1x1 + (1 − α)φ(x3)
ẋ2 = −γ2x2 + αφ(x3)
ẋ3 = γ2x2 − φ(x3) + u

φ(x3) = k1x3e
−k2x3

with the following notations and definitions :

x1 = hold-up of fine particles in the separator
x2 = hold-up of oversize particles in the separator
x3 = hold-up of material in the mill
u = inflow rate
γ1x1 = outflow rate of fine particles
γ2x2 = flowrate of recycled particles
φ(x3) = outflowrate from the mill = grinding function
α = separation constant (0 < α < 1)
γ1, γ2, k1, k2 = characteristic positive constant parameters

This model is readily seen to be a special case of the general mass-balance
model (3.11) with the following definitions :

r(x) =


 (1 − α)φ(x3)

−γ2x2 + αφ(x3)
γ2x2 − φ(x3)


 q(x) =


−γ1x1

0
0


 Bu =


 0

0
u




The Hamiltonian representation is :

F (x) =


 0 0 (1 − α)φ(x3)

0 0 −γ2x2 + αφ(x3)
−(1 − α)φ(x3) γ2x2 − αφ(x3) 0
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x2x1

u φ
x

2

3(x  )

γ x2

γ1x1

3

mill
separator

Fig. 3.5. Grinding circuit

D(x) =


γ1x1 0 0

0 0 0
0 0 0




The compartmental matrix is :

G(x) =


−γ1 0 (1 − α)k1e

−k2x3

0 −γ2 αk1e
−k2x3

0 +γ2 −k1e
−k2x3




The compartmental network of the grinding process is shown in Fig.3.6 where
it can be seen that the system is fully outflow connected.

e- k2x3αk1

e- k2x3

u

x

x x

γ

γ

2

3

1k(1 α)-

1

1

2

Fig. 3.6. Compartmental network of the grinding process model
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3.10 Bounded input - bounded state

Obviously, the state x of a mass-balance system is bounded if and only if the
total mass M(x) =

∑
i xi is itself bounded. The dynamics of the total mass

is written as :

Ṁ = −
∑

i

qi(x) +
∑
i,k

bikuk (3.14)

From this expression, a natural condition for state boundedness is clearly that
the total outflow

∑
i qi(x) should exceed the total inflow

∑
i,k bikuk when the

total mass M(x) is big enough (in order to make the right hand side of (3.14)
negative). This intuitive condition is made technically precise as follows.

Property 2. Assume that :

(A1)the input u(t) is bounded :

0 ≤ uk(t) ≤ umax
k ∀t ∀k = 1, . . . ,m

(A2)There exists a constant M0 such that∑
i

qi(x) ≥
∑
i,k

biku
max
k

when M(x) ≥M0

Then, the state of the system (3.11) is bounded and the simplex

∆ = {x ∈ Rn
+ : M(x) ≤M0}

is invariant.

The system is BIBS if condition (A2) holds for any umax, for example if each
qi(x) → ∞ as xi → ∞.

As a matter of illustration, it is readily checked that the biochemical process
of Example 1 is BIBS. Indeed in this example we have∑

i

qi(x) = d
∑

i

xi = dM(x)

and therefore M0 = umax

d

In contrast, the grinding process of Example 2 is not BIBS. Even worse, the
state variable x3 may be unbounded for any value of umax > 0 as we shall
see in Section 12. This means that the process is globally unstable for any
bounded input.
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3.11 Systems without inflows

Consider the case of systems without inflows (u = 0) which are written in
compartmental form

ẋ = G(x)x (3.15)

Obviously, the origin x = 0 is an equilibrium of the system.

Property 3. If the compartmental matrix G(x) is full rank for all x ∈ Rn
+

(equivalently if the system is fully outflow connected), then the origin x = 0
is a globally asymptotically stable (GAS) equilibrium of the unforced system
ẋ = G(x)x in the non negative orthant, with the total mass M(x) =

∑
i xi

as Lyapunov function.

Indeed, for such systems, the total mass can only decrease along the system
trajectories since there are outflows but no inflows :

Ṁ = −
∑

i

qi(x)

Property 3 says that the total mass M(x) and the state x will decrease until
the system is empty if there are no inflows and the compartmental matrix is
nonsingular for all x. A proof of this property and other related results can
be found in [2].

3.12 A fundamental control problem

Obviously, the normal productive mode of operation of inflow-controlled mass
balance systems is to have non zero inflows of raw material : u(t) > 0. Let us
consider the case of constant inputs denoted ū :

ẋ = r(x) − q(x) +Bū (3.16)

An equilibrium of this system is a state vector x̄ which satisfies the equilib-
rium equation :

r(x̄) − q(x̄) +Bū = 0

In general, mass balance systems (3.16) have multiple equilibria. One of these
equilibria is the operating point of interest. It is generally locally asymptot-
ically stable. This means that an open loop operation may be acceptable in
practice. But if big enough disturbances occur, it may arise that the system
is driven too far from the operating point towards a region of the state space
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which is outside of its basin of attraction. From time to time, the process
may therefore be lead by accident to a behaviour which may be undesirable
or even catastrophic. We illustrate the point with our two examples.

Example 1 : The biochemical process

For a constant inflow rate ū > d
k1

, the biochemical process has three equilibria
(see Fig.3.7). Two of these equilibria (E1, E2) are solutions of the following
equations :

x̄2 =
d

k1
x̄1 + x̄3 = ū− d

k1
x̄3(d+ k2x̄1) = dū

The third equilibrium (E3) is

x̄1 = 0 x̄2 = 0 x̄3 = ū

u

d
k1

u

d
k1

u

x1

3x

E3

E2

E1

Fig. 3.7. Equilibria of the biochemical process

We know that the system is BIBS : the total mass M(x) and hence all the
trajectories are bounded. By computing the Jacobian matrix, it can be easily
checked that E1 and E3 are asymptotically stable while E2 is unstable.

E1 is the normal operating point corresponding to a high conversion of sub-
strate x3 into product x1. It is stable and the process can be normally oper-
ated at this point. But there is another stable equilibrium E3 called “wash-out
steady state” which is highly undesirable because it corresponds to a com-
plete loss of productivity : x̄1 = 0. The pollutant just goes through the tank
without any degradation.

The problem is that an intermittent disturbance (like for instance a pulse
of toxic matter) may irreversibly drive the process to this wash-out steady-
state, making the process totally unproductive.
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Example 2 : The grinding process

The equilibria of the grinding process (x̄1, x̄2, x̄3) are parametrized by a con-
stant input flowrate ū as follows :

x̄1 =
γ1

ū
x̄2 =

αū

γ2(1 − α)
φ(x̄3) =

ū

(1 − α)

In view of the shape of φ(x3) as illustrated in Fig.3.8, there are two distinct
equilibria if :

ū < (1 − α)φmax

The equilibrium E1 on the left of the maximum is stable and the other

x3)(φ

φmax

α1-
u

E2E1

x3

Fig. 3.8. Equilibria of the grinding process

one E2 is unstable. Furthermore, for any value of ū, the trajectories become
unstable as soon as the state enters the set D defined by :

D




(1 − α)φ(x3) < γ1x1 < ū
αφ(x3) < γ2x2

∂φ/∂x3 < 0

Indeed, it can be shown that this set D is positively invariant and if x(0) ∈ D
then x1 → 0 x2 → 0 x3 → ∞. In some sense, the system is Bounded Input
- Unbounded State (BIUS). This means that there can be an irreversible
accumulation of material in the mill with a decrease of the production to
zero. In the industrial jargon, this is called mill plugging. In practice, the
state may be lead to the set D by intermittent disturbances like variations
of hardness of the raw material.

In both examples we thus have a stable open loop operating point with a
potential process destabilisation which can take two forms :

• drift of the state x towards another (unproductive) equilibrium
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• unbounded increase of the total mass M(x)

The control challenge is then to design a feedback controller which
is able to prevent the process from such undesirable behaviours.

Ideally a good control law should meet the following specifications :

S1. The feedback control action is positive and bounded;

S2. The closed loop system has a single equilibrium in the positive orthant
which is globally asymptotically stable;

S3. The single closed-loop equilibrium may be assigned by an appropriate set
point.

Moreover, it could be desirable that the feedback stabilisation be robust
against modelling uncertainties regarding r(x) which is the most uncertain
term of the model in many applications.

This is indeed a vast problem which is far to be completely explored. Here-
after, we limit ourselves to the presentation of two very limited solutions of
this problem namely (i) the output feedback control of a class of single input
mass balance systems that are BIBS, relative degree one and minimum phase;
(ii) the state feedback stabilisation of the total mass in BIUS systems.

3.13 Robust output feedback control of BIBS minimum
phase systems

We consider single-input BIBS mass-balance systems of the form :

ẋi = ri(x) − aixi i = 1, . . . , n− 1
ẋn = rn(x) − anxn + u

with ai > 0 ∀i. With the notations :

ξ = (x1, . . . , xn−1)T y = xn

and appropriate definitions of ϕ and ψ, this system is rewritten as :

ξ̇ = ϕ(ξ, y) (3.17)
ẏ = −ψ(ξ, y) − any + u (3.18)

The goal is to regulate the measured output y at a given set point y∗ > 0 by
output feedback.
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In order to achieve this objective, the following dynamic controller is proposed
in [6] :

u = σ(y) + µ(y)λ(θ) (3.19)
θ̇ = ki(y∗ − y) + λ(θ) − θ (3.20)

with the following definitions :

σ(y) = sat
[0, σm]

[k0 + kp(y∗ − y)] σm = k0 + kpy
∗

µ(y) = sat
[0, 1]

[
1 + kp

k0
(y∗ − y)

]

λ(θ) = sat
[0, θm]

[θ]

In this control law :

• the function σ(y) is a proportional action, with offset k0, saturated between
0 and σm;

• the function λ(θ) is an integral action saturated between 0 and θm; the
computation of the integral θ is provided with an anti-windup term (λ(θ)−
θ) which limits the excursions of θ outside the interval [0, θm].

The stabilisation properties of this control law will be analysed under the
following assumptions :

A1.The function ψ(ξ, y) is non negative :

ψ(ξ, y) ≥ 0 ∀(ξ, y) ∈ Rn
+

A2.The zero dynamics ξ̇ = ϕ(ξ, y∗) have a single equilibrium ξ̄ ∈ Rn−1
+ which

is GAS in the non negative orthant with a Lyapunov function denoted
W (ξ).

Assumption A1 expresses that species xn can only be consumed inside the
system but not produced. Assumption A2 is a global minimum phase condi-
tion. We have the following property.

Property 4 Under Assumptions A1-A2, the closed loop system (3.17)-(3.18)-
(3.19)-(3.20) has the following properties :

1. The control input is positive and bounded :

0 ≤ u(t) ≤ σm + θm ∀t
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2. There exist k0 > 0, kp > 0, ki > 0 and θm > 0 such that the closed loop
system has a single equilibrium (ξ̄, y∗, θ̄ = ψ(ξ̄, y∗) + dy∗) which is GAS
in the non negative orthant with Lyapunov function

V (ξ, y, θ) = W (ξ) +
1
2
(y − y∗)2 +

1
ki

∫ θ

θ̄

(λ(τ) − θ̄)dτ

The proof of this result can be found in [6]. (See also [7] for related results).
It is worth noting that the control law (3.19)-(3.20) is independent of r(x).
This means that the stabilisability is robust against modelling uncertainties
regarding r(x) provided the conditions of positivity and mass conservation
are preserved. Some qualitative knowledge of r(x) may nevertheless be useful
for the tuning of the design parameters k0, kp, ki.

3.14 Robust state feedback stabilisation of the total
mass

We now consider single-input mass balance systems of the form :

ẋi = ri(x) − qi(x) + biu i = 1, . . . , n (3.21)

with bi ≥ 0 ∀i,∑i bi > 0

This system may be globally unstable (bounded input/unbounded state). The
symptom of this instability is an unbounded accumulation of mass inside the
system like for instance in the case of the grinding process of Example 2.

One way of approaching the problem is to consider that the control objective
is to globally stabilise the total mass M(x) at a given set point M∗ > 0 in
order to prevent the unbounded mass accumulation.

In order to achieve this control objective, the following positive control law
is proposed in [1] :

u(x) = max(0, ũ(x)) (3.22)

ũ(x) =

(∑
i

bi

)−1 [∑
i

qi(x) + λ(M∗ −M(x))

]
(3.23)

where λ > 0 is an arbitrary design parameter. The stabilising properties of
this control law are as follows.

Property 5 If the system (3.21) is fully outflow connected, then the closed
loop system (3.21)-(3.22)-(3.23) has the following properties for any initial
condition x(0) ∈ Rn

+ :
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1. the set Ω = {x ∈ Rn
+ : M(x) = M∗} is positively invariant

2. the state x(t) is bounded for all t ≥ 0 and limt→∞M(x) = M∗.

The proof of this property can be found in [1]. It is worth noting that the con-
trol law (3.22)-(3.23) is independent from the internal transformation term
r(x). This means that the feedback stabilisation is robust against a full mod-
elling uncertainty regarding r(x) provided it satisfies the conditions of posi-
tivity and mass conservativity.

3.15 Concluding remarks

In this paper we have focused our attention on inflow controlled systems. But
there are many engineering applications where outflow controlled systems
or systems controlled by the internal transformation rates (like distillation
columns for instance, see [11]) are relevant as well.

We have presented two very specific solutions for single input mass balance
systems. But it is obvious that the fundamental control problem we have
formulated is far from being solved and deserves deeper investigations. In
particular a special interest should be devoted to control design methodolo-
gies which explicitely account for the structural specificities (Hamiltonian
and Compartmental) of mass balance systems and rely on the construction
of physically based Lyapunov functions.
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Appendix : stability conditions

In this appendix some interesting stability results for mass balance systems
with constant inputs are collected. These results can be useful for Lyapunov
control design or for the stability analysis of zero-dynamics.
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Compartmental Jacobian matrix

We consider the general case of inflow controlled mass balance systems with
constant inflows :

ẋ = r(x) − q(x) + p(ū)

The Jacobian matrix of the system is defined as :

J(x) =
∂

∂x
[r(x) − q(x)]

When this matrix has a compartmental structure, we have the following sta-
bility result.

Property A1

a)If J(x) is a compartmental matrix ∀ x ∈ Rn
+, then all bounded orbits tend

to an equilibrium in Rn
+.

b)If there is a bounded closed convex set D ⊆ Rn
+ which is positively invariant

and if J(x) is a non singular compartmental matrix ∀x ∈ D, then there is
a unique equilibrium x̄ ∈ D which is GAS in D with Lyapunov function
V (x) =

∑
i |ri(x) − qi(x) + pi(ū)|.

A proof of part a) can be found in [3] Appendix 4 while part b) is a concise
reformulation of a theorem by Rosenbrock [10].

The assumption that J(x) is compartmental ∀x ∈ Rn
+ is fairly restrictive. For

instance, this assumption is not satisfied neither for the grinding process nor
for the biochemical processes that we have used as examples in this paper. A
simple sufficient condition to have J(x) compartmental for all x is as follows.

Property A2 The Jacobian matrix J(x) = ∂
∂x [r(x)−q(x)] is compartmental

∀x ∈ Rn
+ if the functions r(x) and q(x) satisfy the following monotonicity

conditions :

1)
∂qi
∂xi

≥ 0
∂qi
∂xk

= 0 k 6= i

2)
∂rij
∂xi

≥ 0
∂rij
∂xj

≤ 0
∂rij
∂xk

= 0 k 6= i 6= j

In the next two sections, we describe two examples of systems that have a
single GAS equilibrium in the nonnegative orthant although their Jacobian
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matrix is not compartmental.

The Gouz’s condition

We consider a class of mass-balance systems of the form :

ẋi =
∑
j 6=i

[rji(xj) − rij(xi)] − dxi + ūi (3.24)

where d is a positive constant, the outflow rates qi(xi) = dxi depend linearly
on xi only and the transformation rates rij(xi) depend on xi only.

For example this can be the model of a stirred tank chemical reactor with
monomolecular reactions as explained in [4] (see also [11]).

The set Ω = {x ∈ Rn
+ : M(x) = d−1

∑
i ūi} is bounded, convex, compact

and invariant. By the Brouwer fixed point theorem, it contains at least an
equilibrium point x̄ = (x̄1, x̄2, . . . , x̄n) which satisfies the set of algebraic
equations : ∑

j 6=i

[rji(x̄j) − rij(x̄i)] − dx̄i + ūi = 0

The following property then gives a condition for this equilibrium to be unique
and GAS in the non negative orthant.

Property A3 If (rij(xi)− rij(x̄i))(xi − x̄i) ≥ ∀xi ≥ 0, then the equilibrium
(x̄1, . . . , x̄n) of the system (3.24) is GAS in the non negative orthant with
Lyapunov function.

V (x) =
∑

i

|xi − x̄i|

The proof of this property is given in [4]. The interesting feature is that
the rate functions rij(xi) can be non-monotonic (which makes the Jacobian
matrix non-compartmental) in contrast with the assumptions of Property A2.

Conservative Lotka-Volterra systems

We consider now a class of Lotka-Volterra ecologies of the form :

ẋi = xi


∑

j 6=i

aijxj − ai0


+ ūi i = 1, . . . , n (3.25)

with ai0 > 0 the natural mortality rates;
aij = −aij ∀i 6= j the predation coefficients (i.e. A = [aij ] is skew symmet-
ric);
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ūi ≥ 0 the feeding rate of species xi with
∑

i ūi > 0.

This is a mass balance system with a bilinear Hamiltonian representation :

F (x) = [aijxixj ] D(x) = (diag ai0xi)

Assume that the system has an equilibrium in the positive orthant int{Rn
+}

i.e. there is a strictly positive solution (x̄1, x̄2, . . . , x̄n) to the set of algebraic
equations :

ai0 =
∑
j 6=i

aij x̄j +
ūi

x̄i
i = 1, . . . , n

Assume that this equilibrium (x̄1, x̄2, . . . , x̄n) is the only trajectory in the
set :

D = {x ∈ int{Rn
+} : ūi(xi − x̄i) = 0∀i}

Then we have the following stability property.

Property A4 The equilibrium (x̄1, x̄2, . . . , x̄n) of the Lotka-Volterra system
(3.25) is unique and GAS in the positive orthant with Lyapunov function

V (x) =
∑

i

(xi − x̄ilnxi)

The proof is established, as usual, by using the time derivative of V :

V̇ (x) = −
∑

i

[
ūix̄i

xi

(
1 − xi

x̄i

)2
]

and the La Salle’s invariance principle.
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Summary.

We consider differential equations ẋ = f(x, λ) where the parameter
λ = εt moves slowly through a bifurcation point of f . Such a dynamic
bifurcation is often accompanied by a potentially dangerous jump tran-
sition. We construct smooth scalar feedback controls which avoid these
jumps. For transcritical and pitchfork bifurcations, a small constant addi-
tive control is usually sufficient. For Hopf bifurcations, we have to construct
a more elaborate control creating a suitable bifurcation with double zero
eigenvalue.

4.1 Introduction

Consider the nonlinear control system

dx

dt
= f(x, u, λ), (4.1)

with state x ∈ R
n and control u ∈ R

k , which depends on some parameter
λ ∈ R

p . Assume that the uncontrolled system

dx

dt
= f(x, 0, λ) ≡ f0(x, λ) (4.2)

changes its qualitative behavior when λ passes λ0, i.e., λ = λ0 is a bifurcation
point for (4.2). We are interested in bifurcations involving an exchange of
stabilities between a family x?(λ) of “nominal” equilibria of (4.2) and another
family of attractors. These attractors are either other equilibria or periodic
orbits (Poincaré–Andronov–Hopf bifurcation).

The motivation to study control systems whose state is close to a bifurca-
tion point comes from the well-known fact that the performance of a control
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system can be improved if it is maintained to operate at high loading levels,
that is, near a stability boundary (see for example [1, 35]).

The existence of a bifurcation in the uncontrolled system (4.2) raises the
following questions:

1. How does this bifurcation influence the controllability of (4.1)?

2. How can we control an exchange of stabilities?

The first problem has been investigated by the means of control sets, see
e.g. [14] for one-dimensional systems, [13] for Hopf bifurcations and [19] for
a Takens–Bogdanov singularity (i.e., when a Hopf and a saddle–node bifur-
cation curve intersect).

The second question is related to the problem of controlling the direction
of the bifurcation. In order to avoid escaping trajectories, one usually tries
to render the bifurcation supercritical, that is, a stable equilibrium or limit
cycle should exist for λ > λ0, which attracts the orbits departing from the
nominal equilibrium x?(λ). To do this, one has to find a control stabilizing
the critical steady state of (4.2) for λ = λ0. This problem has been solved by
using a smooth state feedback, see [4, 3, 2] for the continuous-time case and
[25] for the discrete-time case.

In what follows, we are concerned with the problem of dynamic exchange
of stabilities. In contrast to static bifurcation theory, the theory of dynamic
bifurcations considers a process in which the parameter λ depends on time,
where one usually assumes that this dependence is slow [6]. Such a situation
occurs for instance if the device modelled by the equation is ageing, so that
its characteristics are slowly modified.

Instead of (4.2), we thus consider an uncontrolled system of the form

dx

dt
= f0(x, εt), 0 < ε � 1. (4.3)

Basically, an exchange of stability in the static system (4.2) may result in
two types of behaviour for (4.3): immediate exchange or delayed exchange.
In the first case, the solution of (4.3) tracks the stable branch emerging from
the bifurcation point immediately after the bifurcation [22, 23, 27, 7]. In the
second case, the solution tracks the unstable branch for some time before
jumping on the stable equilibrium (see [32, 28, 29, 5, 6, 20] for the Hopf
bifurcation and [18, 15, 10, 11, 26] for pitchfork and transcritical bifurcations).
Since a jump of a state variable may have catastrophic consequences for the
device, our goal is to construct a control ensuring an immediate exchange of
stabilities. Note that this feature may be used to detect the bifurcation point.
We restrict our analysis to affine scalar feedback controls of the form

dx

dt
= f0(x, εt) + b u(x, εt), (4.4)
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where b is a fixed vector in Rn , and u is a scalar function.

This paper is organized as follows. In Section 4.2, we present a few elements
of the theory of dynamic bifurcations, and show how the center manifold
theorem can be used to reduce the dimension of the system. In Section 4.3,
we consider one-dimensional cases such as the transcritical and pitchfork
bifurcation, which are relatively easy to control. Section 4.4 is devoted to
two-dimensional bifurcations. We first discuss the Hopf bifurcation, which
displays a delay which is more robust than for one-dimensional bifurcations.
To suppress this delay, we have to shift the eigenvalues’ imaginary parts in
order to produce a double zero eigenvalue, for which we present a result on
immediate exchange of stability.

Acknowledgment: NB was supported by the Nonlinear Control Network of
the European Community, Grant ERB FMRXCT–970137.

4.2 Dynamic bifurcations

Consider a one-parameter family of dynamical systems

dx

dt
= f(x, λ), x ∈ R

n , λ ∈ R. (4.5)

In the theory of dynamic bifurcations, one is concerned with the slowly time-
dependent system

dx

dt
= f(x, εt), 0 < ε � 1, (4.6)

that one wants to study on the time scale ε−1. It is convenient to introduce
the slow time τ = εt, in order to transform (4.6) into the singularly perturbed
system

ε
dx

dτ
= f(x, τ). (4.7)

The basic idea is to use information on the bifurcation diagram of (4.5) in
order to analyse solutions of (4.7).

Assume first that for λ ∈ [a, b], (4.5) admits a family of asymptotically stable
equilibria x?(λ). That is, we require that f(x?(λ), λ) = 0 and that all eigen-
values of the Jacobian matrix A(λ) = ∂xf(x?(λ), λ) have real parts smaller
than some K < 0, uniformly for λ ∈ [a, b]. It is known [31, 16, 34, 8] that all
solutions of (4.7) starting at τ = a in a sufficiently small neighbourhood of
x?(a) will reach an O(ε)–neighbourhood of x?(τ) after a slow time of order
ε|ln ε| and remain there until τ = b. Thus, a sufficiently slow drift of the
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parameter λ will cause the system to track the nominal equilibrium x?(λ) as
closely as desired.

A new situation arises when x?(λ) undergoes a bifurcation. Assume that at
λ = 0, the Jacobian matrix A(0) has m eigenvalues with zero real parts and
n − m eigenvalues with negative real parts. We can introduce coordinates
(y, z) ∈ R

n−m × R
m such that (4.6) can be written in the form

dy/dt = A−y + g−(y, z, τ)
dz/dt = A0z + g0(y, z, τ)
dτ/dt = ε

dε/dt = 0,

(4.8)

where all eigenvalues of A− have negative real parts, and all eigenvalues of
A0 have zero real parts. The functions g− and g0 vanish at τ = 0 together
with their derivatives with respect to y and z. Thus, at the bifurcation point
z can be considered as a slow variable as well as τ . By the center manifold
theorem [12] there exists a locally invariant manifold y = h(z, τ, ε), on which
the dynamics is governed by the m-dimensional equation

ε
dz

dτ
= A0z + g0(h(z, τ, ε), z, τ). (4.9)

Moreover, trajectories starting close to this manifold are locally attracted by
it with an exponential rate (see Lemma 1, p. 20 in [12]).

This observation allows us to restrict the analysis of (4.7) near the bifurcation
point to the analysis of the lower-dimensional equation (4.9). Note, however,
that we have to pay attention to the following points:

1. If we add a control to (4.7), we will modify the shape of the center
manifold.

2. The center manifold is not analytic in general.

To simplify the discussion, we will only consider the low-dimensional systems
on the center manifold. The above remarks imply that some additional ver-
ifications are necessary before conclusions about the reduced equations can
be carried over to the general ones.

4.3 One-dimensional center manifold

We consider the scalar equation

ε
dx

dτ
= f0(x, τ) + u(x, τ), x ∈ R. (4.10)
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4.3.1 Transcritical bifurcation

Assume that the uncontrolled vector field f0(x, τ) has two families of equilib-
ria x = ϕ1(τ) and x = ϕ2(τ) intersecting at τ = 0. The family ϕ1(τ) is stable
for τ < 0, while the family ϕ2(τ) is stable for τ > 0. This kind of bifurcation
is referred to as transcritical bifurcation. We introduce the so-called singular
stable solution

ϕ(τ) =
{

ϕ1(τ) if τ < 0,
ϕ2(τ) if τ > 0.

(4.11)

Our goal is to find a control u such that the solution of (4.10) starting at
τ0 < 0 in the basin of attraction of ϕ1(τ) always stays in a small neighbor-
hood of the singular stable solution ϕ(τ) for τ > τ0. It turns out that the
dynamics depends essentially on the values of ϕ′

1(0) and ϕ′
2(0). We discuss

three representative cases.

Example 4.3.1 (Immediate exchange of stability).

Assume that the uncontrolled system has the form

ε
dx

dτ
= (x + τ)(τ − x). (4.12)

Then we have ϕ1(τ) = −τ , ϕ2(τ) = τ and ϕ(τ) = |τ |. It is shown in [22] that
the solutions starting above ϕ2(τ0) at τ0 < 0 will track the singular stable
solution ϕ(τ), so that no control is necessary. More precisely, it follows from
[7] that (4.12) admits a particular solution x(τ) satisfying

|x(τ) − ϕ(τ)| 6
{

Mε|τ |−1 if ε1/2 6 |τ | 6 T ,
Mε1/2 if |τ | 6 ε1/2,

(4.13)

for some positive M and T , which attracts nearby solutions exponentially
fast (Fig. 4.1a). Moreover this exchange of stability is robust in the following
sense: it is shown in [11] that there exists a constant c > 0 such that solutions
still track the stable equilibrium curve if we add a constant term u0 > −cε to
(4.12) (Fig. 4.1b). The same is true for more general bifurcations, for which
ϕ′

1(0) < 0 and ϕ′
1(0) < ϕ′

2(0).

Example 4.3.2 (Delayed exchange of stability).

The uncontrolled system

ε
dx

dτ
= x(τ − x) (4.14)

has the equilibria ϕ1(τ) = 0 and ϕ2(τ) = τ . This happens to be an explicitly
solvable Bernoulli equation. The important fact is that the solution starting
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at τ0 < 0 at some x0 > 0 remains close to the origin for τ0 < τ < −τ0 as
ε → 0, and jumps to the branch ϕ2(τ) near τ = −τ0 (Fig. 4.1c).

Is is relatively easy to find a control which guarantees that the solution re-
mains close to ϕ(τ). This is due to the fact that the vector field −x2 is a
codimension two singularity with unfolding

dx

dt
= x(λ − x) + µ. (4.15)

If µ is a positive constant, this equation has two families of equilibria which
do not intersect. The family located in the half plane x > 0 is asymptotically
stable and lies at a distance of order µ1/2 from x = ϕ(τ). This implies that
the solution of the initial value problem

ε
dx

dτ
= x(τ − x) + u0, x(τ0) > τ0, τ0 < 0, u0 > 0 (4.16)

stays near ϕ(τ) provided ε is sufficiently small (Fig. 4.1d). More precisely,
there exists a continuous function δ(ε) with limε→0 δ(ε) = 0 such that the
solution will track the upper equilibrium if u0 > δ(ε). Thus, the smaller the
drift velocity ε, the weaker the control has to be. It is known [15] that δ(ε)
goes to zero faster than any power law.

Example 4.3.3 (Diverging solutions).

For the equation

ε
dx

dτ
= (x − 2τ)(τ − x), (4.17)

we have ϕ1(τ) = τ and ϕ2(τ) = 2τ . Solutions of this equation diverge for
some τ 6 0 (Fig. 4.1e). This can be avoided by adding a control

ε
dx

dτ
= (x − 2τ)(τ − x) + u0, (4.18)

which splits the equilibrium branches if u0 > 0 (Fig. 4.1f). In this case,
we must have u0 > δ(ε) = ε. Note that if u0 = ε, the change of variables
y = x − τ transforms (4.18) into (4.14). The same qualitative features hold
if ϕ′

2(0) > ϕ′
1(0) > 0.

4.3.2 Pitchfork bifurcation

Similar results hold for the pitchfork bifurcation. Assume that the uncon-
trolled vector field f0(x, τ) has a family of equilibria x = ϕ0(τ) which is
stable for τ < 0 and unstable for τ > 0. For positive τ , there exist two
additional stable equilibria ϕ±(τ) = ±c

√
τ + O(τ).
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Fig. 4.1. Exchange of stability for dynamic transcritical bifurcations. Light curves
represent solutions of the time-dependent equation, heavy curves represent stable
(full) and unstable (broken) equilibria of the static system. (a) Solutions of (4.12)
track the singular stable solution ϕ = |τ |. (b) This behaviour subsists if we add a
negative constant to (4.12), provided ε is large enough. If ε is too small, the solution
slips through the gap. (c) The solution of (4.14) with initial condition x0 > 0 at
τ0 < 0 exhibits a jump at τ = −τ0. (d) This jump is suppressed if we add a small
positive control. (e) The uncontrolled system (4.17) has diverging solutions. (f) A
sufficiently large additive control suppresses this divergence.

Example 4.3.4 (Immediate exchange of stability).

Assume that the uncontrolled system has the form

ε
dx

dτ
= (x − τ)(τ − x2). (4.19)

It is shown in [23] that the solutions will track the lower branch ϕ−(τ) after
the bifurcation (Fig. 4.2a). More precisely, let

ϕ(τ) =
{

ϕ0(τ) if τ < 0,
ϕ−(τ) if τ > 0.

(4.20)

In [7] we obtained the existence of an attracting particular solution x(τ)
satisfying

|x(τ) − ϕ(τ)| 6




Mε|τ |−1 if −T 6 τ 6 − ε1/2,
Mε1/2 if −ε1/2 6 τ 6 ε,
Mτ1/2 if ε 6 τ 6 ε1/2,
Mε|τ |−3/2 if ε1/2 6 τ 6 T ,

(4.21)
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for some positive M and T .

One may wish to make the solution track the upper equilibrium ϕ+(τ) after
the bifurcation. This can be achieved by adding a constant control of the
form

ε
dx

dτ
= (x − τ)(τ − x2) + u0, (4.22)

with u0 > δ(ε) = ε (Fig. 4.2b).

a b c
x x x

� �

�

Fig. 4.2. Exchange of stability for pitchfork bifurcations. (a) Solutions of (4.19)
track the lower stable equilibrium. (b) A sufficiently large positive control makes
the system follow the upper equilibrium. (c) The same occurs for system (4.23).

Example 4.3.5 (Delayed exchange of stability).

The uncontrolled system

ε
dx

dτ
= τx − x3 (4.23)

displays a bifurcation delay similar to Example 4.3.2. One can provoke an
immediate exchange of stability by adding a constant control u0; there exists a
function δ(ε) such that solutions track the upper equilibrium τ1/2 if u0 > δ(ε)
(Fig. 4.2c) and the lower equilibrium −τ1/2 if u0 < −δ(ε). The function δ(ε)
goes to zero faster than any power law [15].

4.3.3 Bifurcations with identically zero equilibrium

One can encounter systems of the form (4.10) for which f(0, τ) = 0 for all τ .
This happens, for instance, when f is symmetric under the transformation
x → −x. In such a case, we can write the uncontrolled system in the form

ε
dx

dτ
= a(τ)x + g(x, τ), (4.24)
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where |g(x, τ)| 6 Mx2 for |x| 6 d. Assume that we start in the basin of
attraction of the origin at a time τ0 at which a(τ0) < 0. Then one can show
[7, 26] that

x(τ) = O(ε) for τ0 + O(ε|ln ε|) 6 τ 6 Π(τ0) + O(ε|ln ε|), (4.25)

where Π(τ0) > τ0 is the first time such that∫ Π(τ0)

τ0

a(τ) dτ = 0. (4.26)

If, for instance, a(τ) is negative for τ < 0 and positive for τ > 0, the delay
time Π(τ0) is obtained by making equal the areas delimited by the τ -axis,
the curve a(τ) and the times τ0, 0 and Π(τ0), see Fig. 4.3a.

The delay can be suppressed by adding a constant control as in Examples
4.3.2 and 4.3.5. If, however, one does not wish to destroy the equilibrium
x = 0, it is possible to influence the delay by a linear control u(x) = cx. The
behaviour will strongly depend on the initial condition.

Example 4.3.6 (Pitchfork bifurcation).

Consider again the equation of Example 4.3.5, but with a linear control

ε
dx

dτ
= τx − x3 + cx. (4.27)

If we start at some distance of x = 0 at τ0 < 0, the bifurcation is translated
to the time −c, while the delay time is given by Π(τ0) = −2c− τ0. The effect
of the control is thus twice as large as expected from the static theory.

Example 4.3.7 (Relaxation oscillations).

If f0(x, τ) depends periodically on time, the system may exhibit relaxation
oscillations, which are periodic solutions with alternating slow and fast mo-
tions [24]. This happens for instance for the equation

ε
dx

dτ
= (A + sin τ)x − x3, (4.28)

if 0 < A < 1. The oscillations may be suppressed by adding a linear control
u(x) = −Ax, although from the static theory one would expect that a control
u(x) = −(A + 1)x were necessary.

4.4 Two-dimensional center manifold

We consider now the two-dimensional version of (4.4). By an appropriate
choice of variables, it can be written as
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Fig. 4.3. Determination of the bifurcation delay time. (a) In the case of the one-
dimensional equation (4.24), the delay is simply obtained by making two areas the
same. (b) In the case of a Hopf bifurcation, there is a maximal delay τ+ given by
the largest real time which can be connected to the negative real axis by a path
with constant Re Ψ . This path must have certain properties described in [30], in
particular the equation should be analytic in the shaded region.

ε
dx

dτ
= f1(x, y, τ)

ε
dy

dτ
= f2(x, y, τ) + u(x, y, τ).

(4.29)

4.4.1 Hopf bifurcation

We assume that the static uncontrolled system

dx

dt
= f1(x, y, λ)

dy

dt
= f2(x, y, λ)

(4.30)

admits a family of equilibria such that the eigenvalues of the linearization are
of the form a(λ)± i ω(λ), with a(0) = 0, a′(0) > 0 and ω(0) 6= 0. It is known
that the system can in general be controlled by a smooth feedback in such a
way that the bifurcation is supercritical, that is, a stable periodic orbit exists
for positive λ [4].

When λ = εt is made slowly time-dependent and the right-hand side of (4.30)
is analytic, the bifurcation is delayed, as has been proved by Neishtadt [28, 29]
(Fig. 4.5a). Unlike in the case of pitchfork bifurcations, this delay also exists
when the equilibrium depends on λ, and is stable with respect to analytic
deterministic perturbations.

Example 4.4.1 (Hopf bifurcation).

Consider the system
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ε
dx

dτ
= τ(x − τ) + ω0y − [

(x − τ)2 + y2
]
(x − τ)

ε
dy

dτ
= −ω0(x − τ) + τy − [

(x − τ)2 + y2
]
y,

(4.31)

which admits the family of equilibria (τ, 0). The linearization around them
has eigenvalues τ ± i ω0. The complex variable ζ = x − τ + i y satisfies the
equation

ε
dζ

dτ
= (τ − iω0)ζ − |ζ|2ζ − ε. (4.32)

The delay phenomenon can be understood by considering the linearization
of (4.32), which admits the solution

ζ(τ) = e[Ψ(τ)−Ψ(τ0)]/ε ζ(τ0) −
∫ τ

τ0

e[Ψ(τ)−Ψ(s)]/ε ds,

Ψ(τ) =
∫ τ

0

(s − i ω0) ds =
1
2
τ2 − iω0τ.

(4.33)

The first term is small for τ0 < τ < −τ0, as in the case of the pitchfork
bifurcation. A crucial role is played by the second term, which is due to the
τ -dependence of the equilibria. It can be evaluated using a deformation of the
integration path into the complex plane. The function Ψ(τ) can be extended
to complex τ and we have

Re Ψ(τ) =
1
2
[
(Re τ)2 − (Im τ − ω0)2 + ω2

0

]
. (4.34)

The level lines of this function are hyperbolas centered at τ = i ω0. The
integral in (4.33) is small if we manage to connect τ0 and τ by a path on
which Re Ψ(s) > Re Ψ(τ), i.e., if we never go uphill in the landscape of
Re Ψ(s). This is possible if

τ 6 τ̂ = min
{−τ0, ω0

}
. (4.35)

The existence of the maximal delay τ = ω0 is a nonperturbative effect, en-
tirely determined by the linearization around the equilibria.

The computation of the delay in the general case is discussed in [30]. It is
given by the formula

τ̂ = min
{
Π(τ0), τ+

}
, (4.36)

where Π(τ0) is defined by (4.26), and the maximal delay τ+ can be determined
by the level lines of ReΨ(τ) (Fig. 4.3b).

This shows in particular that the delay is robust, and the jump transition
occurring at the delay time τ̂ cannot be avoided by adding a small constant
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control, as in the case of the pitchfork bifurcation. We may, of course, use a
linear control which shifts the real part of the eigenvalues of the linearization,
in order to increase the delay as in Section 4.3.3. This, however, will only
postpone the problem to some later time, if the real part of the linearization
is monotonically increasing.

Here we propose a different strategy to avoid a jump. We would like to provoke
an immediate exchange of stability in order to detect the bifurcation point
before it is too late. Expression (4.36) for the delay time shows that this
can only be done by decreasing the buffer time, which might be achieved by
shifting the imaginary part of the eigenvalues. This will create a bifurcation
with double zero eigenvalue, which we study below.

4.4.2 Double zero eigenvalue

We start by analysing the autonomous control system

dz

dt
= f(z, λ) + b u(z, λ), z ∈ R

2 , (4.37)

where f(z, λ) admits an equilibrium branch z?(λ) such that the linearization
∂zf(z?(λ), λ) has eigenvalues a(λ) ± i ω(λ), with a(0) = 0, a′(0) > 0 and
ω(0) = 1 (this value of ω(0) may be achieved by a rescaling of time). Let
F (z, λ) = f(z, λ) + b u(z, λ). The scalar feedback u(z, λ) is determined by
two requirements:

1. The matrix ∂zF (0, 0) should have a double zero eigenvalue.

2. In analogy with works on stabilization of bifurcations [4], the origin
should be a stable equilibrium of (4.37) when λ = 0.

After a suitable affine transformation, we can write (4.37) as

dx

dt
= a(λ)x + ω(λ)y + g1(x, y, λ)

dy

dt
= −ω(λ)x + a(λ)y + g2(x, y, λ) + ũ(x, y, λ),

(4.38)

where g1 and g2 are of order x2 + y2. We have used the fact that the linear
part is rotation invariant, so that we may take b =

(
0
1

)
.

For λ = 0, we propose the control

ũ(x, y, 0) = x + v1x
2 + v2xy + v3y

2 + v4x
3, (4.39)

where the coefficients v1, . . . , v4 have yet to be determined. The system (4.38)
takes the form
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dx

dt
= y + c1x

2 + c2xy + c3y
2 + c4x

3 + · · ·
dy

dt
= (d1 + v1)x2 + (d2 + v2)xy + (d3 + v3)y2 + (d4 + v4)x3 + · · · ,

(4.40)

where ci and di are the Taylor coefficients of g1 and g2 at the origin, respec-
tively. A normal form of (4.40) is

dx

dt
= y

dy

dt
= γx2 + δxy + αx2y + βx3 + O(‖z‖4),

(4.41)

where the coefficients α, β, γ and δ are algebraic functions of ci, di and vi.
This system has already been studied by Takens [33, 17]. If γ 6= 0 or δ 6= 0,
the origin is an unstable Bogdanov–Takens singularity. We thus require that
γ = δ = 0 (which amounts to imposing that v1 = −d1, v2 = −d2 − 2c1). For
the origin to be stable, we require moreover that α, β < 0, which imposes
some inequalities on v3 and v4 (in fact, this requires that c1(d3 + v3)+ c4 < 0
and 2c2

1 +d4 + v4 < 0, these conditions can be satisfied if c1 6= 0 or if c4 < 0).

For general values of λ, we choose a control of the form

ũ(x, y, λ) = (1 + Cλ)ũ(x, y, 0). (4.42)

After inserting this into (4.38), carrying out a linear transformation and
computing the normal form, we get the system

dx

dt
= y

dy

dt
= µ(λ)x + 2a(λ)y + γ(λ)x2 + δ(λ)xy − x2y − x3 + O(‖z‖4),

(4.43)

where γ(0) = δ(0) = 0, and

µ(λ) = [C − ω′(0)]λ + O(λ2) (4.44)

can be influenced by the choice of C. This equation happens to be a
codimension-four unfolding of the singular vector field (y,−x2y − x3) which
has been studied in detail, see [21, 36] and references therein. The bifurcation
diagram in the section γ = δ = 0 has already been studied in [33], it is shown
in Fig. 4.4.

We now consider the time–dependent version of (4.37),

ε
dz

dτ
= f(z, τ) + b u(z, τ). (4.45)

It can be shown that similar transformations as above yield the equation
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Fig. 4.4. Schematic bifurcation diagram of equation (4.43) in the plane γ = δ = 0.
The transition A-B is the original Hopf bifurcation. By moving the eigenvalues’
imaginary parts to 0, we change the function µ(λ) in such a way that µ(0) = 0.
This produces new bifurcation lines. The transition A-F is a supercritical saddle-
node bifurcation, the transition C-B a subcritical one. D-C is a subcritical Hopf
bifurcation, D-E a homoclinic bifurcation and E-F a saddle-node bifurcation of
periodic orbits.

ε
dx

dτ
= y

ε
dy

dτ
= µ(τ)x + 2a(τ)y + γ(τ)x2 + δ(τ)xy − x2y − x3

+ O(‖z‖4) + εR(x, y, τ, ε),

(4.46)

where R(0, 0, τ, 0) is directly related to the drift d
dτ z?(τ) of the nominal equi-

librium.

The dynamics of (4.46) depends essentially on the path (a(τ), µ(τ)) through
the bifurcation diagram of Fig. 4.4, the effect of γ(τ) and δ(τ) is small in a
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neighbourhood of the bifurcation point. Various typical solutions are shown
in Fig. 4.5. If we go from region A to region B, the Hopf bifurcation induces
the usual delayed appearance of oscillations (Fig. 4.5a). If we go into region
C, the delay is suppressed, but we still have oscillations (Fig. 4.5b,c). If,
however, dµ/da(0) is large enough to reach one of the regions D, E or F,
there is an immediate exchange of stabilities with a stable focus (Fig. 4.5d).

a bx x

�

c dx x

5

Fig. 4.5. Solutions x(τ ) of equation (4.46) in the case γ = δ ≡ 0, R ≡ 1, a(τ ) = 2τ
and different functions µ(τ ). (a) µ(τ ) = −0.2: We traverse the bifurcation diagram
of Fig. 4.4 from region A to region B. The system undergoes a Hopf bifurcation,
which results in the delayed appearance of large amplitude oscillations. (b) µ(τ ) =
0: The delay is suppressed, but we still have oscillations. (c) µ(τ ) = a(τ ): We
cross the bifurcation diagram from region A to region C. The trajectory starts by
following the unstable focus, before being attracted by the limit cycle. (d) µ(τ ) =
2.5a(τ ): Theorem 4.4.1 applies, there is immediate exchange of stabilities between
the nominal equilibrium and a stable focus.

In [9] we prove the following result on exchange of stabilities:

Theorem 4.4.1. Assume that µ′(0) > 0. There exist positive constants d, T ,
M , κ and a neighbourhood M of the origin in R2 with the following property.
For every τ0 ∈ [−T, 0), there is a constant c1 > 0 such that for sufficiently
small ε, any solution of (4.46) with initial condition (x, y)(τ0) ∈ M satisfies
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|x(τ)| 6M
ε

|τ | , |y(τ)| 6M
ε

|τ |1/2
, τ1(ε) 6 τ 6 −

( ε

d

)2/3

, (4.47)

|x(τ)| 6Mε1/3, |y(τ)| 6Mε2/3, −
(ε

d

)2/3

6 τ 6
( ε

d

)2/3

, (4.48)

where τ1(ε) = τ0 + c1ε|ln ε|. If, moreover, the relations

µ′(0) > 2a′(0), R(0, 0, 0, 0) 6= 0 (4.49)

hold, then for (ε/d)2/3 6 τ 6 T we have

|x(τ) − x+(τ)| 6M
[ ε

τ
+

ε1/2

τ1/4
e−κτ2/ε

]
,

|y(τ)| 6M
[ ε

τ1/2
+ ε1/2τ1/4 e−κτ2/ε

]
,

(4.50)

where

x+(τ) =
{√

µ + O(τ), if R(0, 0, 0, 0) > 0,
−√

µ + O(τ), if R(0, 0, 0, 0) < 0
(4.51)

are equilibria of (4.43), i.e., the right-hand side of (4.43) vanishes when
x = x+ and y = 0.

In [9] we also prove that similar properties hold in the n-dimensional case.
The control that we have constructed is robust in the following sense. If the
coefficients in the feedback (4.39) are not perfectly adjusted, the functions
µ(τ), γ(τ) and δ(τ) will not vanish exactly at the same time. This means that
the bifurcation diagram of Fig. 4.4 will be traversed on a line which misses
the origin. Depending on whether the path passes above or below the origin,
solutions will either track a stable branch emerging from a pitchfork bifur-
cation, or start oscillating, but with a relatively small amplitude. This can
be considered as an almost immediate transfer of stability from the nominal
equilibrium to the limit cycle.
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Summary.

We present here some simple and tractable extensions of the classi-
cal absolute stability Popov criterion to multivariable systems with time-
varying memoryless nonlinearities subject to sector conditions. The re-
sults apply to rational systems and delay systems. The proposed sufficient
conditions are expressed in the frequency domain, a form well-suited for
robustness issues, and lead to simple graphical interpretations for scalar
systems. Apart from the usual conditions, the results assume basically a
generalized sector condition on the derivative of the nonlinearities with
respect to time. Results for local and global stability are given. For ra-
tional transfers, the frequency domain conditions are equivalent to some
easy-to-check Linear Matrix Inequalities; this leads, for delay systems, to
a tractable method of numerical resolution by approximation.

5.1 Introduction

We consider in this paper multivariable nonlinear control systems given by
one of the following differential and functional differential equations

ẋ = Ax+Bu, u = −ψ(t, y), y = Cx (5.1)

ẋ =
L∑
l=0

Alx(t− hl) +Bu, u = −ψ(t, y) y =
L∑
l=0

Clx(t − hl) (5.2)

where n, p ∈ N \ {0}, L ∈ N, x ∈ R
n , y ∈ R

p , A,Al ∈ R
n×n , B ∈ R

n×p ,
C,Cl ∈ R

p×n , 0 ≤ h0 < · · · < hL = h. One denotes by H the matrix transfer
function corresponding to the system under study, namely
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H(s) = C(sI −A)−1B , (5.3)

H(s) = (
L∑
l=0

Cle
−hls)(sI −

L∑
l=0

Ale
−hls)−1B . (5.4)

y

H(s)

−ψ(t, .)

Fig. 5.1. The systems under study

One supposes throughout that the chosen representations are minimal [14].
Let the nonlinearity ψ : R+ ×R

p → R
p be time-dependent, decentralized [15]

(that is: ∀i ∈ {1, . . . , p}, ψi(t, y) = ψi(t, yi)), and let it fulfill the following
sector condition

∀(t, y) ∈ R
+ × R

p , ψ(t, y)T (ψ(t, y) −Ky) ≤ 0 (5.5)

for a certain diagonal matrix K = diag{Ki} ≥ 0. Our goal is to find suffi-
cient conditions for absolute stability (resp. for absolute stability with finite
domain [15]), that is conditions under which the uniform global (resp. local)
asymptotic stability of the null equilibrium of equations (5.1) and (5.2) is
guaranteed, for any nonlinearity ψ fulfilling (5.5).

As is well known, asymptotic stability of all the linear time-invariant systems
obtained when choosing

ψ(t, y) = diag{ki}y, 0 ≤ ki ≤ Ki

is not even sufficient to deduce the stability of the stationnary systems ful-
filling (5.5), see counterexamples with rational systems in [23] or [2, p. 86-
88]. Circle criterion [8] furnishes sufficient conditions of absolute stability
expressed in the frequency domain, namely
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I +KH(s) is Strictly Positive Real (SPR) . (5.6)

Popov criterion [24], [25, 18] for delay systems, constitutes a refinement of
the latter, valid only for stationnary nonlinearities fulfilling (5.5). Instead of
assumption (5.6), it supposes that there exists a diagonal matrix η such that

I + (I + ηs)KH(s) is SPR . (5.7)

Concerning absolute stability of systems with time-varying nonlinearities, one
may consult [19] for a review of the period 1968-1977, surveying an important
number of contributions, especially from Eastern Europe. Pyatnitskii has
shown [26] that, at least for rational systems, this property is equivalent to the
asymptotic stability of all the time-varying linear systems of the considered
class, that is for the maps

ψ(t, y) = diag{ki(t)}y, 0 ≤ ki(t) ≤ Ki .

This characterization gives rise to a class of sufficient conditions for absolute
stability of rational systems, (see e.g. [20], and also [16, 3] for some frequential
conditions without restrictions on the rate of variation of the nonlinearity),
but such an approach seems to have remained unexploited for delay systems.

On the other hand, it is possible to obtain absolute stability for smaller
classes of time-varying nonlinearities, by making restrictions on ∂ψ

∂t , an a pri-
ori knowledge which may be available, according to the system under study.
This is for instance the case when one checks the stability of limit cycles, as
some estimates on the periodic orbit may be available. An example of appli-
cation of such results comes from the control of chaos [9]: in order to stabilize
an unstable periodic orbit of a strange attractor, Pyragas [27, 28] proposed
to use a feedback control built on the difference between the actual value
and the delayed value of the output, with delay equal to the period of the
cycle. The analysis of the corresponding closed loop system requires stability
results for nonstationnary nonlinear delay systems.

The idea of restricting the variation of ψ has been applied in some papers,
see e.g. [21, 32, 33], the second one in the context of delay systems. Criteria
have been proposed in the context of rational systems by Rekasius et al. [30]
and Hul’chuk et al. [13], and Bertoni et al. [4] proposed a slightly weaker
result. In these papers, the restriction on the derivative of the nonlinearity
wrt time takes the form of a generalized sector condition (see formula (5.11)
below), and the generalization of Popov criterion is made by addition in (5.7)
of some terms related to this sector.

In the present paper, we propose some simple and tractable absolute stability
criteria, valid for systems with time-varying nonlinearities whose variation
wrt time is constrained in the same manner than in [30, 13]. The presentation
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is unified for both rational and delay systems, of the type (5.1) and (5.2)
respectively. More precisely, our main contribution is the following

• We provide for rational systems (5.1) the criterion given in [30, 13], under
a form suitable for local stability results too. It is expressed as a Linear
Matrix Inequality (LMI), a standard class of problems for which sound
numerical methods have been developed [7].

• We extend the frequency domain criteria given in [30, 13, 5] to delay sys-
tems (5.2). We also show that for rational systems, the assumed frequency
condition is equivalent to a LMI condition, slightly weaker than the previ-
ous one. This furnishes a tractable method of numerical resolution for the
delay system (5.2), by rational approximation of the transfer (5.4).

Secondarily,

• The graphical criterion for scalar systems given in [4] is extended, and we
provide a new one, which is weaker but situated in the Popov plane.

The results provided permit to link circle and Popov criteria when no varia-
tion wrt time of ψ is permitted, the nonlinearity is time-invariant, and Popov
criterion applies; when any variation is permitted, circle criterion applies.
The results herein fulfill the gap: they give sufficient conditions of stability
adapted to the magnitude of ∂ψ∂t .

The paper is organized as follows. The LMI criterion for rational systems is
stated in Section 5.2. The frequency domain criterion, valid for delay systems
as well, is stated in Section 5.3, together with its LMI expression for rational
systems. The weaker frequency domain criterion, which may be interpreted
in the Popov plane, is stated in Section 5.4. All three criteria contain Popov
and circle criteria as subcases. Then, some extensions and remarks are given
in Section 5.5. The study of the absolute stability of a third order rational
system is provided as an illustration in Section 5.6 (an illustrative example
for delay systems may be found in [6]). Extended sketch of the proofs is
presented in Section 5.7.

We do not consider here problems of existence and uniqueness of the solutions,
as these questions have been extensively studied. Hence, in all the sequel, we
only assume that there exists global solutions of (5.1) (resp. (5.2)), that is,
by definition: for all φ ∈ R

n (resp. for all φ ∈ C([−h, 0];Rn)), there exists
a continuous function x defined on [0,+∞) (resp. on [−h,+∞)), absolutely
continuous [31] on [0,+∞), such that x(0) = φ (resp. x|[−h,0] = φ) and (5.1)
(resp. (5.2)) is fulfilled almost everywhere on [0,+∞). The stability results
given below concern the asymptotic behavior of these global solutions.

Notations. In all the paper, ‖.‖ denotes the euclidian norm or the associated
matrix norm, the asterisk ∗ denotes complex conjugation, Ir stands for the
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r × r identity matrix (simply I when no misunderstanding is possible) . For
z ∈ R , one denotes by sgnz the sign of z ( sgn0 = −1 or +1 indifferently),
and

|z|+ def= sup{z, 0}, |z|− def= sup{−z, 0} .
At last, by convention, one extends the action of any map acting on scalar or
scalar-valued functions to an operator acting on matrices or matrix-valued
functions, obtained by componentwise application of the map. As an exemple,
for any diagonal matrix η, one has

|η|± = sup{±η, 0} = diag{sup{±ηi, 0}} = diag{|ηi|±} .

5.2 A LMI criterion for rational systems

Theorem 5.2.1. [5] Assume that there exists a convex open neighborhood
O of 0 in R

p for which the following assumptions hold.

(H0) The function ψ is measurable and, for any y ∈ O, t 7→ ψ(t, y) is lo-
cally Lipschitz (and hence t-a.e. differentiable), with a Lipschitz constant
locally integrable wrt y ∈ O.

(H1) The nonlinearity ψ is decentralized and there exists a diagonal matrix
K ≥ 0 such that

∀(t, y) ∈ R
+ ×O, ψ(t, y)T (ψ(t, y) −Ky) ≤ 0 . (5.8)

Assume that there exists diagonal matrices Dj = diag{Dj,i}, j ∈ {1, 2, 3},
such that the following LMI is feasible

P > 0, η def= diag{ηi} ≥ 0, R def= RP +
(

2CT ηD1KC CTKD2η
ηD2KC 2ηD3K

)
< 0

(5.9)

RP
def=

(
ATP + PA −PB + CTK +ATCTKη

−BTP +KC + ηKCA −2I − ηKCB −BTCTKη

)
(5.10)

and such that the following Hypothesis is fulfilled (with the same η and Dj)

(H2) There exists γ : R+ → R with lim
z→0

γ(z) = 0 such that for almost any

t ∈ R
+ , ∀y ∈ O, ∀i ∈ {1, . . . , p},

ηi

(∫ yi

0

∂ψi
∂t

(t, z) dz −D1,iy
2
i −D2,iyiψi(t, yi) −D3,iψi(t, yi)2

)
(5.11)
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≤ ‖y‖2 γ(‖y‖) .
Then, the origin of system (5.1) is uniformly locally asymptotically stable.
Moreover, if γ ≡ 0 and O = R

p , then the origin of system (5.1) is uniformly
globally asymptotically stable.

Circle criterion is found as a particular case of Theorem 5.2.1 for η = 0, and
Popov criterion when ∂ψ

∂t = 0, taking Dj = 0 (in both cases, via Kalman-
Yakubovich-Popov Lemma [17]).

Multiplication by ηi in (5.11) indicates that this constraint is inactive when
ηi = 0. An important case where (5.11) is fulfilled is the case where there
exists a measurable map ∆ with diagonal matrix values, such that

for almost any t ∈ R
+ , ∀y ∈ O (5.12)

yT η

(
∂ψ

∂t
(t, y) −∆(t)y

)
≤ ‖y‖2 γ(‖y‖)

and the matrices Dj are then given by

D1 =
1
2
sup ess
t≥0

{∆(t)}, D2 = D3 = 0 .

Matrix D1 as given by the previous formula is nonnegative, otherwise sector
condition (H1) would be violated. Condition (5.12) is a “local” sector con-
dition (fulfilled e.g. if ∂2ψi

∂yi∂t
(t, 0) exists a.e. and is equal to ∆i(t)), “global”

when γ ≡ 0 and O = R
p .

5.3 A frequency domain criterion and its graphical
interpretation

Solvability of (5.9), (5.10) is clearly a consequence of the solvability of the
LMI

P > 0, η = diag{ηi} ≥ 0, RP +
(

2CT η|D1|+KC CTKD2η
ηD2KC 2ηD3K

)
< 0

(5.13)

as η,K ≥ 0. The previous LMI may indeed be equivalently transformed into
a frequency condition, and this is the contents of the following Theorem.
Kalman-Yakubovich-Popov (KYP) Lemma (as stated e.g. in [17, Theorems
1.10.1 and 1.11.1]) is used as a central argument in the demonstration. An
important feature of Theorem 5.3.1 lies in the fact that this result is true for
delay systems too.
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Theorem 5.3.1. Assume that there exists a convex open neighborhood O of
0 in R

p for which Hypotheses (H0), (H1) hold, together with

(H3) There exists α > 0 such that the poles of the transfer H have real part
smaller than −α.

Assume that there exists diagonal matrices η ≥ 0 and Dj, j ∈ {1, 2, 3}, such
that the transfer function matrix

I − ηD3K + (I + η(sI +D2))KH(s) −H∗(s)η|D1|+KH(s) (5.14)

is SPR and such that Hypothesis (H2) holds (with the same η and Dj). Then,

• In the case of the rational system (5.1), the hypotheses of Theorem 5.2.1
are fulfilled, and hence its conclusions hold.

• In the case of the delay system (5.2), the origin is uniformly locally asymp-
totically stable. Moreover, if γ ≡ 0 and O = R

p , then the origin of sys-
tem (5.2) is uniformly globally asymptotically stable.

The global stability result for rational systems expressed in Theorem 5.3.1
is the same than in [30, 13]. It is slightly weaker than Theorem 5.2.1: the
results are indeed equivalent when D1 ≥ 0.

For a scalar system, p = 1, and condition (5.14) is equivalent to

∃η ≥ 0, ∀ω ∈ R,
1
K

+ ReH(jω) − η

(
D3 −D2 ReH(jω)

+ ω ImH(jω) + |D1|+|H(jω)|2
)

≥ 0 . (5.15)

The graphical interpretation generalizes the interpretation given in [4]:

If, apart from the regularity, sector and stability conditions (H0),
(H1), (H2), (H3), there exists a line of slope 1/η ∈ R

+ ∪ {+∞}
passing through the point (− 1

K , 0) and lying to the left of the locus
(ReH(jω), D3−D2 ReH(jω)+ω ImH(jω)+|D1|+|H(jω)|2) without
intersecting it, then the uniform local stability property holds. If γ ≡ 0
and O = R

p , then the uniform global stability property holds.

One may effectively check the applicability of Theorem 5.3.1 for rational sys-
tems, as this relies to solve LMI (5.10), (5.13). So, in order to apply the result
to delay systems, it suffices to approximate the actual transfer by rational
transfers, using e.g. techniques developed in [22, 12]. A proper statement of
the transfer approximation property is provided in [6].
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5.4 A weaker frequency domain criterion and its
interpretation in Popov plane

An interesting problem is, given K, to determinate the largest incertitude on
∂ψ
∂t under which absolute stability may be proved. In this case, the graph-
ical criterion deduced from Theorem 5.3.1 can hardly be used, as the or-
dinate changes with the Dj . To overcome this drawback, condition (5.14)
should rather be seen as a geometrical condition in the 3-dimensional space
(ReH(jω), ImH(jω), ω ImH(jω)) obtained as the product of Nyquist and
Popov planes, a condition not easy to interpret. We present in the sequel a
weaker but simpler condition, located in the Popov plane. As usual, H∞-norm

of the transfer function H is denoted by ‖H‖∞ def= sup{‖H(s)‖ : Re s > 0}
(when H is stable and proper, this is equal to sup{‖H(jω)‖ : ω ∈ R}).

Theorem 5.4.1. Assume that there exists a convex open neighborhood O of
0 in R

p for which Hypotheses (H0), (H1), (H3) hold. Assume that there exists
diagonal matrices η ≥ 0 and Dj, j ∈ {1, 2, 3}, such that the transfer function
matrix

I − ηKD3 + (I + η(sI +D2))KH(s) − η|D1|+K‖H‖2
∞ is SPR (5.16)

and such that Hypothesis (H2) holds. Then, the conclusions of Theorem 5.3.1
hold.

The proof is straightforward, and left to the reader. One shows as in Sec-
tion 5.3, that condition (5.16) is equivalent to the feasibility of the LMI

P > 0, η ≥ 0, RP +
(

0 CTKD2η
ηD2KC 2η(D3 + |D1|+‖H‖2∞)K

)
< 0 (5.17)

for the rational system (5.1).

As an example let us examine the case of a scalar system fulfilling (5.12), the
general case (5.11) is similar. Formula (5.16) is equivalent to

∃η ≥ 0, ∀ω ∈ R,
1
K

+ ReH(jω)

− η

(
ω ImH(jω) +

1
2
sup ess
t≥0

{∆(t)} ‖H‖2
∞

)
≥ 0 (5.18)

and this has a clear interpretation

If, apart from the regularity, sector and stability conditions (H0),
(H1), (H2), (H3), a line of slope 1/η ∈ R

+ ∪ {+∞} passing through
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the point (− 1
K , 0) lies above the Popov locus and may be translated

vertically towards the locus by a distance

1
2
sup ess
t≥0

{∆(t)} ‖H‖2
∞

without intersecting it, then the uniform local stability property holds.
If γ ≡ 0 and O = R

p , then the uniform global stability property holds.

This is illustrated in Figure 5.2: in the Popov diagram, (5.18) holds if

sup ess
t≥0

∆(t) <
2d

‖H‖2∞
.

In the configuration shown in Figure 5.2, the quantity d involved is indeed

P

− 1
K ReH(jω)

ω ImH(jω)
d

Fig. 5.2. Graphical stability criterion in the Popov plane

the least z > 0 such that the point (−1/K,−z) belongs to the convex hull of
the Popov locus P, see [6].

5.5 Extensions and remarks

When Hypothesis (H2) is fulfilled with a diagonal matrix η which is not
nonnegative, one may consider instead of ψ(t, y) the new input

ψ̂(t, y) def= sgn η ψ(t, y) +
1
2
(I − sgn η)Ky

and apply all the previous results to the transformed system [29]. Direct
computations show that this amounts to apply the criteria stated above to
the system obtained when replacing
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η η̂
def= |η| .

A Â
def= A−B I− sgn η

2 KC

Al Âl
def= Al −B I− sgn η

2 KCl

B by B̂
def= B sgn η

D1 D̂1
def= sgn η D1 − I− sgn η

2 K(D2 +KD3)

D2 D̂2
def= D2 + (I − sgn η)KD3

D3 D̂3
def= sgn η D3 .

To verify this [6], check that

Ax−Bψ(t, y) = Âx− B̂ψ̂(t, y)

(resp.
L∑
l=0

Alx(t− hl) −Bψ(t, y) =
L∑
l=0

Âlx(t − hl) − B̂ψ̂(t, y) )

when y = Cx (resp. y =
∑L

l=0 Clx(t− hl)), and that the following identities
are valid

ψ(t, y)T (ψ(t, y) −Ky) = ψ̂(t, y)T (ψ̂(t, y) −Ky)

ηi
∂ψi
∂t

(t, y) = |ηi|∂ψ̂i
∂t

(t, y)

ηi(D1,iy
2
i +D2,iyiψi(t, yi) +D3,iψi(t, yi)2)

= |ηi|(D̂1,iy
2
i + D̂2,iyiψ̂i(t, yi) + D̂3,iψ̂i(t, yi)2) .

An interesting feature is the possibility to express frequency condition (5.14)
in terms of the data rather than the hatted quantities [6], under the form

I − ηKD3 + (I + η(sI +D2))KH(s)

−H∗(s) sup
{
ηD1;

|η| − η

2
K(D2 +KD3)

}
KH(s) is SPR .

Remark 5.5.1. • The hypotheses of the criteria do not imply continuity wrt y
neither of ψ (except in 0), nor of ∂ψ∂t . • When using Hypothesis (H2), one may
wish to consider matrices Dj, j ∈ {1, 2, 3} fulfilling (5.11) only on [t0,+∞)
for a certain t0 > 0, or even “at infinity”, that is taking t0 → +∞. Due to
the strict inequalities involved, this is licit, provided, for the local stability
results, that the flow is continuous in the neighborhood of 0.
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5.6 Computation of stability margin for a 3rd order
rational system

We present here an example for rational systems. Let us consider the system
...
y +6ÿ + 11ẏ + 6y = −ψ(t, y) (5.19)

which may be realized as in (5.1) with

A
def=


 0 1 0

0 0 1
−6 −11 −6


 , B

def=


0

0
1


 , C

def=
(
1 0 0

)
.

One supposes that ψ fulfills Hypotheses (H0), (H1). Application of circle
criterion provides stability if (see Figure 5.3)

K <
1

0.03578
' 27.95 .

On the other hand, Popov criterion guarantees stability if ψ(t, y) = ψ(y)

−0.03578

-0.05 0.00 0.05 0.10 0.15 0.20 0.25

0.05

0.00

-0.05

-0.10

-0.15

ω = ∞

ω ImH(jω)

ReH(jω)
ω = 0

− 1
K

= −0.03
−0.01667

d

Fig. 5.3. Popov locus of system (5.19)
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and

K < 60 ' 1
0.01667

.

In the remaining of the section, one studies the stability of (5.19) for time-
varying nonlinearities with sector

K = 1/0.0300 ' 33.33 ∈ [27.95, 60] .

In view of the previously exposed results, one is looking for bounds on ∆(t)
ensuring stability. All computations to be presented have been achieved using
the Scilab package LMITOOL1.

Using Theorems 5.2.1 or 5.3.1 and proceeding by dichotomy, one may solve
the LMI (5.9), (5.10) if

sup ess
t≥0

∆(t) ≤ δ1,2
def= 35.66 .

The graphical interpretation of the criterion may be seen in Figure 5.4.

Now, one computes a bound using Theorem 5.4.1. First, one evaluates either
graphically (see Figure 5.3), or using a solver of algebraic equations, the
quantity d. One gets

d ' 0.03325 .

One then computes ‖H‖∞, and obtains

‖H‖∞ ' 0.1667 .

The bound is now given by

sup ess
t≥0

∆(t) ≤ δ3
def=

2d
‖H‖2∞

' 2.394 .

This may be computed independently by use of the LMI (5.10), (5.17).

One verifies that the ordering

δ1,2 > δ3

is consistent with the increasing conservativeness of the criteria.

Let us give a sample of the results that may be obtained. Let O be a convex
open neighborhood of 0 in R , such that
1 Scilab is a free software developed by INRIA, which is distributed with all its

source code. For the distribution and details, see Scilab’s homepage on the web
at the address http://www-rocq.inria.fr/scilab/
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-0.025

ReH(jω)

0.15

0.10

0.05

0.00

0.000
-0.15

-0.050 0.025

-0.10

-0.05

δ = 30

ω ImH(jω) + δ
2 |H(jω)|2 δ = 40

δ = δ1,2 = 35.66

slope:
1
ηopt

' 2.795

−1/K

Fig. 5.4. Graphical interpretation of Theorem 5.3.1 for system (5.19)

• There exists L ∈ L1
loc(O) such that, for all t, t′ ∈ R

+ , for all y ∈ O,
|ψ(t, y) − ψ(t′, y)| ≤ L(y)|t− t′| (condition (H0)).

• For all t ∈ R
+ , for all y ∈ O \ {0}, 0 ≤ ψ(t, y)

y
≤ 1

0.03
, and ψ(t, 0) ≡ 0

(condition (H1)).

Assume that there exists global solutions of system (5.19). The origin of
system (5.19) is uniformly locally stable if

lim sup
y→0

1
y

∂ψ

∂t
(t, y) ≤ δ1,2 t− a.e.

for example if ∂2ψ
∂y∂t (t, 0) exists t-a.e. and verifies

∂2ψ

∂y∂t
(t, 0) ≤ δ1,2 t− a.e.

The origin of system (5.19) is uniformly globally stable if O = R and

∀y ∈ R \ {0} 1
y

∂ψ

∂t
(t, y) ≤ δ1,2 t− a.e.
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5.7 Extended sketch of the proofs

We give in the sequel extended sketch of the proofs of the local stability
results. The global stability results are proved along the same lines.

Proof of Theorem 5.2.1

Denote K = diag{Ki}, and consider the candidate Lyapunov function

V (t, x) def= xTPx+ 2
p∑
i=1

ηiKi

∫ (Cx)i

0

ψi(t, z) dz . (5.20)

Using (H1) and denoting abusively V̇ = d
dt [V (t, x(t))], one deduces that, as

long as y(t) ∈ O,

V̇ ≤
(

x
ψ(t, y)

)T
RP

(
x

ψ(t, y)

)
+ 2

p∑
i=1

ηiKi

∫ yi(t)

0

∂ψi
∂t

(t, z) dz t-a.e.,

where RP is defined by (5.10). When proving Popov criterion, only the
quadratic term is present in the derivative of V , and application of Kalman-
Yakubovich-Popov (KYP) Lemma then leads to (5.7).

Using now Hypothesis (H2) shows that, as long as y(t) ∈ O,

V̇ ≤
(

x
ψ(t, y)

)T
R

(
x

ψ(t, y)

)
+ o(‖y‖2) t-a.e.,

where R is defined in (5.9). On the other hand, for any (t, x) ∈ R
+ × R

n ,

xTPx ≤ V (t, x) ≤ xT (P + CTKηKC)x . (5.21)

One then deduces that there exists ε > 0 such that,

V̇ + εV ≤ 0

as long as Cx(t) ∈ O. The hypotheses imply that t 7→ V (t, x(t)) is absolutely
continuous, because ∀t, t′ ∈ R

+ s.t. y(t), y(t′) ∈ O, ∀i ∈ {1, . . . , p},∣∣∣∣∣
∫ yi(t)

0

ψi(t, z) dz −
∫ yi(t

′)

0

ψi(t′, z) dz

∣∣∣∣∣ ≤ |t− t′|
∫ yi(t)

0

λi(z) dz

+Kimax{|yi(t)|, |yi(t′)|} |yi(t) − yi(t′)|
where λi is the Lispchitz constant of ψ, defined by Hypothesis (H1). This
implies

V (t, x(t)) eεt − V (0, x(0)) =
∫ t

0

(V̇ + εV ) eετ dτ ≤ 0,

as long as Cx(t) ∈ O. The hypotheses on the set O, together with (5.21),
permit to conclude that system (5.1) is uniformly locally exponentially stable.
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Proof of Theorem 5.3.1 for rational systems

The principle of the proof consists in showing that (5.14) is realized for a
certain η ≥ 0 iff LMI (5.10), (5.13) is feasible.

Application of KYP Lemma (see [17, Theorems 1.10.1 and 1.11.1]) to this
LMI shows that its solvability is equivalent to frequency domain condi-
tion (5.14). It hence suffices to show the applicability of KYP Lemma to
the present situation. This is done in the sequel.

The pair {A,B} is controllable, due to the minimality of the representation
(A,B,C). Let us now check the observability of the pair {KC + ηKCA +
ηD2KC,A}. It is obvious that the map

η 7→ det




KC + ηKCA+ ηD2KC
(KC + ηKCA+ ηD2KC)A

. . .
(KC + ηKCA+ ηD2KC)An−1




defined for diagonal matrices η, is indeed a polynomial function of the diag-
onal elements of η. This polynomial is not zero, as it is worth

det




KC
KCA
. . .

KCAn−1




when η = 0, a quantity which is nonzero due to observability of the pair
{C,A} and invertibility of K. One deduces that the preceding map takes on
nonzero values on any neighborhood of the set of the nonnegative diagonal
matrices: it then suffices to take an η close enough to the one verifying (5.14)
to conclude in favour of the asymptotic stability.

Proof of Theorem 5.3.1 for delay systems

The proof of Theorem 5.3.1 is inspired from [25, 11], with adequate improve-
ments. A complete version may be found in [6]. The principle is the following.
Define ψT , xT , yT as follows

ψT (t) = ψ(t, y(t)) if 0 ≤ t ≤ T, ψT (t) = 0 if − h ≤ t < 0 or t > T

ẋT =
L∑
l=0

AlxT (t− hl) −BψT , yT =
L∑
l=0

ClxT (t− hl), xT |[−h,0] = 0 .

By linearity, we have
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ẋ− ẋT =
L∑
l=0

Al(x(t− hl) − xT (t− hl)) for t ∈ [0, T ]

(x − xT )|[−h,0] = φ

¿From Hypothesis (H3), one deduces that there exists c1 > 0, α′ ∈ (0, α),
independent of φ and T , such that

∀t ∈ [−h, T ], ‖x(t) − xT (t)‖ ≤ c1e
−α′t‖φ‖C([−h,0]) (5.22a)

∀t ≥ T, ‖xT (t)‖ ≤ c1e
−α′(t−T )‖xT (T + ·)‖C([−h,0]) (5.22b)

∀t ∈ [0, T ], ‖y(t)‖ ≤ c1e
−α′t‖φ‖C([−h,0]) + ‖yT (t)‖ . (5.22c)

As in the proof of Theorem 5.2.1, the map T 7→ ∫ yi(T )

0 ψi(T, z) dz is absolutely
continuous, whence the identity∫ yi(T )

0

ψi(T, z) dz

=
∫ T

0

d

dt

[∫ yi(t)

0

ψi(t, z) dz

]
dt+

∫ yi(0)

0

ψi(0, z) dz

=
∫ T

0

(
ẏi(t)ψT,i(t) +

∫ yi(t)

0

∂ψi
∂t

(t, z) dz

)
dt+

∫ yi(0)

0

ψi(0, z) dz .

Let ρy > 0 be such that the open ball of Rp centered in 0 and of radius ρy is
included in O. ¿From the inequality∫ T

0

(Kiyi(t) − ψi(t, yi(t)))ψi(t, yi(t)) dt+ ηiKi

∫ yi(T )

0

ψi(T, z) dz ≥ 0

valid for any T > 0, any i ∈ {1, . . . , p}, as soon as

∀t ∈ [0, T ], ‖y(t)‖ < ρy (5.23)

and from estimates (5.22a) to (5.22c), one deduces by summation on the
index i, that∫ +∞

0

(
ψTT (t)(KyT (t) − ψT (t)) + ψTT (t)ηKẏT (t)

+ yTT (t)η|D1|+KyT (t) + ψTT (t)ηK(D2yT (t) +D3ψT (t))
)
dt

≥ c2

(
‖φ‖C([−h,0])

(
‖φ‖C([−h,0]) + sup

t∈[0,T ]

‖yT (t)‖
)

+ sup
t∈[0,T ]

γ(‖y(t)‖)
∫ T

0

‖yT (t)‖2

)
.



5.7 Extended sketch of the proofs 111

In the previous indefinite integral, the terms with ψT (t) vanishe on [T,+∞),
and one has bounded D1 by |D1|+. Performing the Fourier transform of
the left hand side of the previous inequality, using (H2) and the identity
ỹT (ω) = −H(jω)ψ̃T (ω) linking Fourier transforms, gets ∃ε > 0 such that

ε

‖H‖2∞

∫ +∞

0

‖yT (t)‖2 dt ≤ ε

∫ +∞

0

‖ψT (t)‖2 dt

≤ c2

(
‖φ‖C([−h,0])

(
‖φ‖C([−h,0]) + sup

t∈[0,T ]

‖yT (t)‖
)

+ sup
t∈[0,T ]

γ(‖y(t)‖)
∫ T

0

‖yT (t)‖2

)

as long as (5.23) holds. Suppose additionally that

∀t ∈ [0, T ], c2γ(‖y(t)‖) ≤ ε

2‖H‖2∞
. (5.24)

Then

∫ T

0

‖yT (t)‖2 dt,

∫ T

0

‖ẏT (t)‖2 dt

≤ c3‖φ‖C([−h,0])

(
‖φ‖C([−h,0]) + sup

t∈[0,T ]

‖yT (t)‖
)
. (5.25)

The estimate on yT in (5.25) is obtained directly, and the estimate on ẏT is
then deduced, with the help of sector estimate (5.8) and the fact that H is
strictly proper. One infers, using Cauchy-Schwarz inequality and yT (0) = 0,
that (5.23), (5.24) imply, for any t ∈ [0, T ]:

‖yT (t)‖2 ≤ c3‖φ‖C([−h,0])

(
‖φ‖C([−h,0]) + sup

t∈[0,T ]

‖yT (t)‖
)
.

Solving the polynomial inequality leads to

T fulfills (5.23), (5.24) ⇒ sup
t∈[0,T ]

‖yT (t)‖, sup
t∈[0,T ]

‖y(t)‖ ≤ c4‖φ‖C([−h,0]) .

Now, let ρx > 0 be such that (recall that γ(z) → 0 when z → 0)

ρx ≤ ρy
2c4

and ∀z ∈ R
+ , z ≤ c4 ρx ⇒ c2γ(z) ≤ ε

4‖H‖2∞
.

For φ ∈ C([−h, 0];Rn) with ‖φ‖C([−h,0]) < ρx, the previous computations
show that, as long as (5.23), (5.24) are verified, one has
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sup
t∈[0,T ]

‖y(t)‖ ≤ c4‖φ‖C([−h,0]) ≤ c4 ρx

so

c2 sup
t∈[0,T ]

γ(‖y(t)‖) ≤ ε

4‖H‖2∞
<

ε

2‖H‖2∞

and

sup
t∈[0,T ]

‖y(t)‖ ≤ c4 ρx ≤ ρy
2
< ρy .

Hence, (5.23), (5.24) are verified for any T > 0, so

‖φ‖C([−h,0]) < ρx ⇒ ∀T ≥ 0 sup
t∈[0,T ]

‖yT (t)‖ ≤ c4ρx .

This in turn implies by (5.25), that, for any T > 0,∫ T

0

‖yT (t)‖2 dt,

∫ T

0

‖ẏT (t)‖2 dt ≤ c5‖φ‖2
C([−h,0]) .

From (5.22c), one deduces that similar inequalities hold for y and ẏ. One
concludes that y(t) → 0 when t → +∞, which expresses the uniform local
asymptotic stability of the origin.
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Summary.

Linear systems with controllable (A, B) and bounded control range
have a unique control set. This control set is bounded if and only if A
is hyperbolic. Then uniqueness also remains valid under small nonlinear
perturbations. Examples show that for nonhyperbolic A small nonlinear
perturbations may lead to infinitely many (invariant) control sets.

6.1 Introduction

In this paper, we study the control sets for small nonlinear perturbations of
linear control processes. More precisely we consider the maximal subsets of
the state space Rd where complete controllability of the following perturba-
tion of a linear control process (with restricted controls) holds

ẋ(t) = Ax(t) + Bu(t) + εF
(
u(t), x(t), ε

)
, u(t) ∈ U, (6.1)

where U is a compact and convex subset of Rm with nonvoid interior, and A
and B are constant matrices of respective dimensions d × d and m × d. We
assume that the pair (A, B) is controllable, i.e., rank

[
B, AB, . . . , Ad−1B

]
=

d, and that F is a C1-function. We also assume that

‖D1F‖ ≤ M1 and ‖D2F‖ ≤ M2 uniformly. (6.2)

Throughout we assume that for all x0 ∈ Rd and all controls u there exists a
unique solution ϕ(t, x0, u), t ∈ R, of (6.1) with initial value ϕ(0, x0, u) = x0.
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The term u(t) may be interpreted as a control function or as a time varying
perturbation acting on the system. Control sets are of interest, in particular,
since they contain all limit sets of the trajectories as time tends to infinity.
Furthermore, they are related to the support of invariant measures for asso-
ciated stochastic systems, compare [4]. This paper is focused on control sets
with nonempty interior, as it is known that control sets which do not enjoy
this property may have a very complicated structure (see e.g. [3] for exam-
ples). It is known, that the unperturbed equation (with ε = 0) has a unique
control set (with nonempty interior), if the pair (A, B) is controllable and
0 ∈ intU . As shown by simple examples (see Section 2, below), the number
of the control sets of (6.1) may vary dramatically when ε changes from zero
to non zero values.

The main aim of this paper is to give conditions ensuring the existence of
exactly one control set with nonvoid interior when ε is small enough. It will
turn out that hyperbolicity of the matrix A is the crucial assumption.

As an application, we consider the following control process:

ẋ(t) = Ax(t) + Bu(t) + G
(
u(t), x(t)

)
, u(t) ∈ U, (6.3)

where U is compact and convex in Rm and G : Rm × Rd → Rd is C1, and
we prove that if there exist M1 > 0 and M2 > 0 (depending only on A and
B) such that, for any G which satisfies ‖D1G‖ ≤ M1 and ‖D2G‖ ≤ M2

uniformly, (6.3) admits exactly one control set with nonvoid interior. Further
applications will be shown in a forthcoming paper.

In Section 2, we recall the definition of control sets and give conditions which
imply that in the interior of a control set there exists a periodic trajectory
corresponding to a continuous control. Then we give a number of examples
which show that (6.1) may admit multiple control sets for any ε > 0, while
it has a unique control set for ε = 0. In Section 3 we discuss properties of
the unique control set for the linear system. In particular, we give conditions
ensuring its boundedness. In Section 4, the nonlinear problem is discussed.

Notation. We denote by CT (Rd), T > 0, the space of continuous T -
periodic functions y : R → Rd endowed with the sup-norm ‖y‖0 :=
max {|y(t)| , t ∈ [0, T ]}. Similarly, C1

T (Rd) is the space of T -periodic con-
tinuously differentiable functions y : R → Rd endowed with the norm
‖y‖1 := max {‖y‖0 , ‖ẏ‖0}.

6.2 Problem formulation and examples

In this section, we give some definitions and prove preliminary results on
control sets. Then some examples and counterexamples are discussed.
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Consider the system

ẋ(t) = f(x(t), u(t)), u(t) ∈ U, (6.4)

where U ⊂ Rm is bounded and f is C1. We assume that unique solutions
ϕ(t, x0, u), t ∈ R, exist for all x0 ∈ Rd and all measurable control functions
u. A useful notion that we use in the sequel is local accessibility, i.e. the
system (6.4) is locally accessible if, for all T > 0 and x

int {ϕ(t, x, u), T ≥ t > 0 and u : R → U, piecewise continuous} 6= ∅.

In the sequel, we show that for ε > 0 small enough one always has the
local accessibility of (6.1) (see Remark 6.4.1). We start with the following
definition.

Definition 6.2.1. A subset D of Rd with nonvoid interior is a control set
of (6.4) if for all x ∈ D one has

D ⊂ cl
{

ϕ(t, x, u), t > 0 and u : R → U, piecewise continuous
}
,

and D is a maximal subset of Rd with this property.

This definition does not change if piecewise continuous controls are replaced
by locally integrable ones (cp. [3], Section 3.2). If local accessibility is as-
sumed, exact controllability in the interior of control sets holds. Thus for all
x, y ∈ intD there are T > 0 and a piecewise continuous control u such that
ϕ(T, x, u) = y. However, in the next section we will need this property for
a continuous control function. We can guarantee this under a controllability
condition for the linearized system.

Proposition 6.2.1. Let D be a control for (6.4) set with nonvoid interior,
and assume that local accessibility holds in D. Suppose that there is a point
x0 ∈ intD, for which there are a constant control u0 ∈ intU and a time
T0 > 0 such that the linearized control system

ẏ = D1f(ϕ(t, x0, u0), u0)y + D2f(ϕ(t, x0, u0), u0)u(t), u(t) ∈ Rm,

is controllable on every interval [0, T ], T0 ≥ T > 0.

Then there are T1 > 0 and a continuous control function u1 ∈ U such that
(ϕ(·, x0, u1), u1) is T 1-periodic.

Proof. As in [7], Section 3.7, Th. 7, the map
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α : L∞([0, T ],Rm) → Rd, u 7→ ϕ(T, x0, u)

is continuously differentiable. By the controllability assumption, it follows
that the restriction

α : {u ∈ C([0, T ],Rm), u(0) = u(T ) = u0} → Rd, u 7→ ϕ(T, x0, u),

has a surjective derivative at u(t) ≡ u0 ∈ intU (this can be derived from [7]
sec. 2.8, Th. 1). Hence, by the Surjective Mapping Theorem (see e.g. [5]), the
set

Q :=
{

y ∈ Rd,
there is a continuous control u ∈ U with
u(0) = u(T ) = u0 and y = ϕ(T, x0, u)

}

has nonvoid interior. Without loss of generality, we may assume that T > 0
is small enough such that Q ⊂ intD.

Pick y ∈ intQ. By the local accessibility assumption, controllability in the
interior of D holds. Hence one finds a (piecewise constant) control v and S > 0
with ϕ(S, y, v) = x0. Since the final value problem depends continuously on
the right hand side, one also finds a continuous control w ∈ U with w(0) =
w(S) = u0 and z ∈ intQ with ϕ(S, z, w) = x0. By the definition of Q there
is a continuous control u ∈ U with u(0) = u(T ) = u0 and ϕ(T, x0, u) = z.

Concatenation of v and w and periodic continuation yields a continuous (T +
S)-periodic control u1 with ϕ(T + S, x0, u1) = x0. With T1 := T + S, the
corresponding trajectory is T1-periodic .

We note the following consequence for a control system of the form (6.1).

Proposition 6.2.2. Consider the control system (6.1), assume that (A, B) is
controllable and that U is bounded. Then there exists a constant c∗ depending
only on A, B, M1, M2 (an explicit expression for c∗ will be given in Remark
6.4.1) such that for all ε ∈ (0, c∗], and every control set D with nonvoid
interior the following holds. For every x0 ∈ intD there are T > 0 and a
continuous control function u0 ∈ U such that (ϕ(·, x0, u0), u0) is T -periodic.

Proof. The controllability assumption together with the boundedness of the
derivative of F implies that there exists a constant c∗ > 0 depending only
on A, B, M1 and M2 such that, for ε ∈ (0, c∗], and u0 ∈ intU the linearized
system is controllable on arbitrarily short time intervals. Hence the assertion
follows from the preceding proposition.

Next we turn to a number of examples which illustrate the behavior of control
sets for ε = 0 and ε > 0. They show that the unique control set of the
unperturbed system may split into different control sets for positive ε.
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Example 6.2.1. Let

F (x, ε) =




1 − cos(επx)
ε

for x ∈ [−2/ε, 2/ε] and ε 6= 0,

0 otherwise ,

and consider the scalar control process ẋ(t) = u(t) + εF (x(t), ε) with u(t) ∈
[−1, 1]. The linear system ẋ(t) = u is obviously controllable and, while for
ε = 0 the only control set is R, for ε > 0 there are 3 control sets, namely two
unbounded intervals and one bounded interval.

In Example 6.2.1, F depends explicitly on ε. The next example shows that
things may go wrong even for ε-independent F ’s.

Example 6.2.2. For n ∈ N ∪ {0}, let

Fn(x) =


 n − n cos

(
π(x − 2n)

2n−1

)
for x ∈ [2n, 2n+1],

0 otherwise,

and

F (x) =
∞∑

n=1

Fn(x).

Consider the scalar control process ẋ(t) = u(t)+εF
(
x(t)

)
with u(t) ∈ [−1, 1].

Then, for ε = 0 the only control set is R; whereas, for ε > 0 there are infinitely
many control sets with nonempty interior.

In both Examples 6.2.1 and 6.2.2, the matrix A is singular. Below, we exhibit
an example with nonsingular A, where multiple birth of control sets does
arise. To do that, we have to increase the dimension by one.

Example 6.2.3. Consider the control process (6.1) with

A =
(

0 1
−1 0

)
, B =

(
1 0
0 1

)
,

where U is the closure of the unit ball in R2 with center at (0, 0), and

F (x) = ρ
(√

x2 + y2
)

(x, y) , with ρ(r) =
∞∑

n=1

Fn(r),

where Fn is defined as in Example 6.2.2. With this choice of A, B, F and U , for
ε = 0 there exists only one control set, and, although (A, B) is controllable
and A is nonsingular, for ε > 0 the control process (6.1) admits infinitely
many control sets with nonempty interior.
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Remark 6.2.1. Example 5.5 in [1] shows that for ε → 0+ the number of
control sets near an equilibrium of the system may tend to infinity.

Remark 6.2.2. The countably many control sets occurring for positive ε in
Example 6.2.2 are in fact invariant, i.e. they satisfy

D = cl
{

ϕ(t, x, u) : t > 0, u : R → Upiecewise continuous
}

.

Hence this system has countably many different generic limit behaviours, see
[2], [3] for precise statements.

For the analysis of associated stochastic systems the invariant control sets
are in 1-1 correspondence to the invariant measures (see [4] and [2]). Thus
Example 6.2.2 gives a ‘bifurcation’ result for the associated stochastic sys-
tems.

6.3 Periodic solutions of linear systems and control sets

In this section we focus on the linear control process (with restricted controls)
in Rd:{

ẋ(t) = Ax(t) + Bu(t),
u ∈ U ,

(6.5)

where A : Rd → Rd and B : Rm → Rd are (constant) linear operators,

U = {u : R → U is continuous } ,

and U is a compact convex subset of Rm. We will prove some results on the
boundedness and uniqueness of control sets of (6.5). For related topics on
linear control processes with restricted controls see e.g. [6], Sec. 5.3, or [7],
Sec. 3.6. The results that will be presented go beyond their intrinsic interest
as the underlying idea is at the root of the corresponding proofs for nonlinear
perturbations provided in the next section.

Let us consider the periodic solutions of the following linear differential equa-
tion in Rd

ẋ = Ax + y, (6.6)

where A is a hyperbolic matrix and y is a given periodic function. In partic-
ular, we will prove that there exists K > 0 such that, if y is T -periodic, then,
for every T > 0 given, the T -periodic solution x of (6.6) (which is unique by
the hyperbolicity of A) is bounded by a constant depending on A and ‖y‖0.
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Theorem 6.3.1. Let A be hyperbolic (i.e. such that σ(A) ∩ iR = ∅). Then
there exists K > 0, depending only on A, such that for any T > 0 and
y ∈ CT (Rd), the T -periodic solution x of (6.6) satisfies ‖x‖1 < K ‖y‖0.

The proof of this theorem relies on several lemmas discussing the behavior
with respect to Jordan blocks.

Lemma 6.3.1. Let a 6= 0 and consider the scalar differential equation

ẋ = ax + y. (6.7)

Then for every T > 0 and y ∈ CT (R), there exists K > 0 such that, if x is
the unique T -periodic solution of (6.7), then ‖x‖1 < K ‖y‖0 .

Proof. Assume first a < 0. The unique T -periodic solution of (6.7) is given
by

x(t) =
eta

1 − eTa

∫ T

0

e(T−s)ay(s) ds +
∫ t

0

e(t−s)ay(s) ds,

hence

|x(t)| ≤ −2
a
‖y‖0 .

¿From (6.7) we find |ẋ(t)| ≤ |a| ‖x‖0 + ‖y‖0 ≤ 2 ‖y‖0. And finally

‖x‖1 ≤ (2 − 2/a) ‖y‖0 .

Assume now a > 0 and consider the equation

ẋ = −ax − ỹ, ỹ(t) := −y(−t).

Any T -periodic solution of this last equation is a time reversed T -periodic
solution of (6.7). Hence the assertion follows from the first part of the proof.

Lemma 6.3.2. Assume that A = diag{α1, . . . , αd} with αi ∈ R \ {0}. Then
for every T > 0 and y ∈ CT (Rd), there exists K > 0 such that, if x is the
unique T -periodic solution of (6.6), then ‖x‖1 < K ‖y‖0.

Proof. Let y(t) =
(
y1(t), . . . , yd(t)

)
, equation (6.6) splits in the following

system of d uncoupled linear differential equations


ẋ1 = α1x1 + y1,
...

ẋd = αdxd + yd.

The assertion follows applying Lemma 6.3.1 to each one of the equations
above.
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Lemma 6.3.3. Assume that the square d × d matrix A has the following
form:

A =




α 1 0 · · · 0

0 α 1
...

...
. . . . . . 0

0 · · · 0 α 1
0 . . . . . . 0 α




,

with α 6= 0. Then for every T > 0 and y ∈ CT (Rd), there exists K > 0 such
that, if x is the unique T -periodic solution of (6.6), then ‖x‖1 < K ‖y‖0.

Proof. With y(t) =
(
y1(t), . . . , yd(t)

)
, the d-th component of equation (6.6)

takes the form

ẋd(t) = αxd(t) + yd(t).

Hence by Lemma 6.3.1 we get that there exists Kd > 0 such that

‖xd‖1 ≤ Kd ‖yd‖0 ≤ Kd ‖y‖0 .

The (d − 1)-st component of (6.6) has the form

ẋd−1(t) = αxd−1(t) + xd(t) + yd−1(t).

Applying Lemma 6.3.1 again we get the existence of Kd−1 > 0 such that

‖xd−1‖1 ≤ Kd−1 ‖xd + yd−1‖0 ≤ (1 + Kd)Kd−1 ‖y‖0 .

Analogously we can then estimate ‖xd−2‖1 and so on. Hence, in a finite
number of steps, we get an estimate for every component of x.

Lemma 6.3.4. Let a 6= 0 and

A =
(

a b
−b a

)
.

Then for every T > 0 and y ∈ CT (R2), there exists K > 0 such that, if x is
the unique T -periodic solution of (6.6), then ‖x‖1 < K ‖y‖0.

Proof. Consider the complex-valued differential equation

ż = (a + ib)z + η, (6.8)

with η(t) = y1(t) + iy2(t). Clearly it is enough to show that there exists a
positive number K such that for any T -periodic y1 and y2 the T -periodic
solution z of (6.8) satisfies
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|z| ≤ K sup
t∈[0,T ]

|η(t)| .

Assume first a < 0. As in the case of equation (6.7), the unique T -periodic
solution of (6.8) is given by:

z(t) =
et(a+ib)

1 − eT (a+ib)

∫ T

0

e(T−s)(a+ib)η(s) ds +
∫ t

0

e(t−s)(a+ib)η(s) ds,

Analogously to the proof of Lemma 6.3.1 and taking into account that∣∣et(a+ib)
∣∣ = eta we get

|z| ≤ 2 |a|−1 sup
t∈[0,T ]

|η(t)| .

In the case when a > 0, the proof is performed, analogously to Lemma 6.3.1,
by time reversal.

Lemma 6.3.5. For a 6= 0 define

A =
(

a b
−b a

)
, I =

(
1 0
0 1

)
,

and let A be the (2d × 2d)-matrix given by

A =



A I

A . . .
. . . I

A


 .

Then for every T > 0 and y ∈ CT (R2d), there exists K > 0 such that, if x is
the unique T -periodic solution of (6.6), then ‖x‖1 < K ‖y‖0.

Proof. Let y(t) =
(
y1(t), . . . , y2d(t)

)
. Equation (6.6) splits into the following

system of 2-dimensional differential equations


ξ̇1 = Aξ1 + ξ2 + η1,

ξ̇2 = Aξ2 + ξ3 + η2,
...

ξ̇d = Aξd + ηd,

where, for j = 1, . . . , d, we put ηj = (y2j−1, y2j) and ξj = (x2j−1, x2j).

Applying Lemma 6.3.4 to the d-th equation of the system above, we get the
existence of a positive constant Kd such that ‖ξd‖1 < Kd ‖ηd‖0. Following
the same argument of the proof of Lemma 6.3.3, we get an estimate of any
component of x.
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Proof (Proof of Theorem 6.3.1). Up to a coordinate change we can assume
that the matrix A is in real Jordan canonical form. Hence, equation (6.6)
splits up into independent linear subsystems of the forms considered in Lem-
mas 6.3.2 – 6.3.5.

Theorem 6.3.1 enables us to prove some facts about the control sets of (6.5).
Defining UT = U ∩ CT (Rm), we have that

intUT = {u ∈ UT : u(t) ∈ intU for all t ∈ R}.

We will need the following consequence of Proposition 6.2.2. Observe that
local accessibility holds for (6.5) by the controllability assumption.

Lemma 6.3.6. Let D be a control set of (6.5) with non empty interior and
let p belong to intD. Then there exists u0 ∈ intUT such that ẋ(t) = Ax(t) +
Bu0(t) has a periodic orbit whose image contains p.

The remaining part of this section will be devoted to proving, as applications
of Theorem 6.3.1, some facts about the boundedness of control sets with non
empty interiors (Theorems 6.3.2 and 6.3.3, below), and a uniqueness result for
such control sets (Theorem 6.3.4, below). These results are to be compared
with those contained in [3], Chapter 3, where a uniqueness result for the
control sets of a linear systems is proved assuming that U contains the origin
in its interior.

Notice that in our theorems below, we always assume the hyperbolicity of the
matrix A. This assumption cannot be dropped since we are considering sets
U which do not necessarily contain the origin. In fact, for such U ’s we do not
necessarily have the existence of control sets. The following simple example
from [3] illustrates this fact:

Example 6.3.1. Consider the scalar control process

ẋ(t) = u(t), u(t) ∈ U ⊂ R.

If U ⊂ (0,∞) then there are no control sets at all. If U = {0} then every
point is a control set.

Theorem 6.3.2. Let A be hyperbolic. Then the control sets of (6.5) which
have non empty interior are bounded.

Proof. Assume by contradiction that it exists an unbounded control set with
non empty interior. Then by Lemma 6.3.6, there exists an unbounded se-
quence of periodic solutions of (6.5). This contradicts Theorem 6.3.1 since
supu∈U ‖u‖0 ≤ max{|v| : v ∈ U} is finite.
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We will also need the following

Lemma 6.3.7. Assume that the pair (A, B) is controllable. Given T > 0
and ū ∈ intUT , every T -periodic solution of

ẋ(t) = Ax(t) + Bū(t), (6.9)

is contained in the interior of a control set of (6.5).

Proof. Denote by ϕ(·, u, p) the solution of the Cauchy problem{
ẋ(t) = Ax(t) + Bu(t),
x(0) = p,

and let p0 be the starting point of a T -periodic solution of (6.9). Denote by
ET the space of continuous functions v such that v(0) = v(T ) = 0, and take

V = {v ∈ ET : ū(t) + v(t) ∈ int(U)} .

Obviously V is an open subset of the Banach space ET . Define Θ : V → Rm

as

Θ(v) = ϕ(T, ū + v, p0) = eTAp0 +
∫ T

0

e(T−s)AB (ū(s) + v(s)) ds.

Notice that Θ(0) = p0. For any ω ∈ ET , we have

Θ′(0)ω =
∫ T

0

e(T−s)ABω(s) ds.

The controllability assumption implies that Θ′(0) is surjective. The Surjective
Mapping Theorem (see e.g. [5]) implies that there exists a neighborhood V0

of p0 which is made up of images of Θ. In particular, p0 can be driven to any
point of V0.

Applying the same argument to the time reversed control process, we have
that there exists a neighborhood V1 of p0, any point of which can be driven
to p0. Hence V0 ∩ V1 is contained in control set.

Take now any point q ∈ ϕ([0, T ], ū, p0) and let t0 ∈ [0, T ] be such that
q = ϕ(t0, ū, p0). By the continuity of ϕ(t0, ū, ·) there exists a neighborhood
W of q such that

ϕ(t0, ū, ·)−1(W ) ⊂ V0 ∩ V1.

Analogously, by the continuity of the time reversed system, shrinking W if
necessary, we can assume that

ϕ(t0, ū, W ) ⊂ V0 ∩ V1.

Hence, any point of W can be driven to any other point of W . That is W is
contained in a control set. The assertion now follows from the compactness
of ϕ([0, T ], ū, p0).
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This lemma can be used to prove two remarkable facts:

Theorem 6.3.3. Assume the pair (A, B) is controllable and that U is convex
with 0 ∈ int(U). Then the control sets of (6.5) which have nonempty interior
are bounded if and only if A is hyperbolic.

Proof. We already know that, if A is hyperbolic, the control sets with
nonempty interior are bounded.

Let A be non hyperbolic. If detA = 0 then kerA 6= {0}. Any point of kerA
is a periodic solution of (6.5), which, by Lemma 6.3.7 is contained in the
interior of a control set.

If detA 6= 0 there exists a pair of conjugate imaginary eigenvalues, say ±iβ,
β 6= 0. By the Jordan real canonical form of the matrix A, there exists a
2-dimensional subspace V of Rm such that

A|V =
(

0 β
−β 0

)
.

Hence each point of V is the starting point of a periodic solution of ẋ = Ax
(that is of equation (6.5) with control function u(t) ≡ 0) and period 2π/β.
Thus, by Lemma 6.3.7 each point of V is contained in the interior of a control
set.

Theorem 6.3.4. Assume that the pair (A, B) is controllable, A is hyper-
bolic and U is convex. Then there exists a unique control set with non empty
interior of (6.5).

Proof. Let T > 0 and ū ∈ intUT . The hyperbolicity of A guarantees the
existence of a T -periodic solution of ẋ(t) = Ax(t) + Bū(t), whose image is,
by Lemma 6.3.7, contained in the interior of a control set. This proves the
existence part of the assertion.

Let us now prove the uniqueness. Assume by contradiction that there exist
two control sets D0 and D1 with nonempty interior. By Lemma 6.3.6 we
know that there exist periodic continuous controls u0 and u1 (say T0- and
T1-periodic, respectively) which take values in the interior of U and such that
the Ti-periodic solution of

ẋ(t) = Ax(t) + Bui(t),

is contained in Di, i = 0, 1. Define

uλ(t) = λu1

(
T1

λT1 + (1 − λ)T0
t

)
+ (1 − λ)u0

(
T0

λT1 + (1 − λ)T0
t

)
.
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Since U is convex by assumption, one has uλ ∈ intUTλ
, with Tλ = λT1 +(1−

λ)T0. The equation

ẋ(t) = Ax(t) + Buλ(t),

has a unique Tλ-periodic solution xλ(·) whose image is contained in the in-
terior of a control set by Lemma 6.3.7. We want to show that these images
constitute a continuum joining D0 and D1. This will yield the desired con-
tradiction.

Consider the time transformed system

ξ̇(τ) = Tλ (Aξ(τ) + Buλ(τ Tλ)) ,

and observe that x̂(λ, τ) = xλ(Tλτ) gives its unique 1-periodic solution. Since
the map (λ, τ) 7→ x̂(λ, τ) is continuous, the set x̂([0, 1] × [0, 1]) is connected
and coincides with the set of images of the maps xλ(·), for λ ∈ [0, 1].

6.4 Nonlinear perturbations

This section is devoted to studying the control process (6.1). The main re-
sult is Theorem 6.4.1 which states that, under reasonable assumptions, the
uniqueness of control sets with nonvoid interior for (6.1) holds. As we men-
tioned the argument of the proof is inspired by that of Theorem 6.3.4 above,
although the technical details are more subtle.

Consider the following nonlinear perturbation of a linear hyperbolic control
system.

ξ̇(t) = Aξ(t) + Bu(t) + εF (u(t), ξ(t), ε), (6.10a)
u(t) ∈ U. (6.10b)

Throughout this section F will be assumed C1 with ‖D1F (v, p, ε)‖ ≤ M1 and
‖D2F (v, p, ε)‖ ≤ M2 uniformly. Furthermore, let KA denote the constant
given by Theorem 6.3.1.

Lemma 6.4.1. Let F and A be as above. Take ε ∈ [−ε0, ε0] with

ε0 = min
{

1 ,
1

2KAM2

}
.

Then for every T > 0, the differential equation (6.10a) has a unique T -
periodic solution, ξ(·, u, ε), for u ∈ UT , and the map UT×[−ε0, ε0] → C1

T (Rm)
given by (u, ε) 7→ x(·, u, ε) is continuous.
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Furthermore, assuming in addition that U contains the origin of Rm in its
interior, one has

sup
t∈[0,T ]

|x(t, u, ε)| ≤ 2cUKA

(
‖B‖ + M1

)
, cU := max{|v| : v ∈ U},

(6.11)

for every u ∈ UT and ε ∈ [−ε0, ε0].

Proof. Rewrite the equation (6.10a) in the form:

Lx − Āx − B̄u − εF̄ (u, x, ε) = 0 (6.12)

where we put

L : C1
T (Rd) → CT (Rd) with (Lx)(t) = ẋ(t),

Ā : C1
T (Rd) → CT (Rd) with (Āx)(t) = Ax(t),

B̄ : CT (Rm) → CT (Rd) with (B̄u)(t) = Bu(t),
F̄ : UT × C1

T (Rd) × R → CT (Rd) with F̄ (u, x, ε)(t) = F (u(t), x(t), ε).

From Theorem 6.3.1 follows that there exists KA > 0 (independent of T > 0)
such that if

(
L − Ā

)
x = y then ‖x‖1 ≤ KA ‖y‖0. In other words∥∥∥(

L − Ā
)−1

∥∥∥ ≤ KA.

Let Φ : UT × C1
T (Rd) × R → C1

T (Rd), be given by

Φ(u, x, ε) = − (
L − Ā

)−1 (
B̄u + εF̄ (u, x, ε)

)
.

Then equation (6.12) is equivalent to

Φ(u, x, ε) = x. (6.13)

Let us show that for |ε| < (2KAM2)−1, equation (6.13) admits exactly one
solution for every u ∈ UT . In fact, for ε = 0 this follows from the hyperbolicity
of A, and for |ε| < (2KAM2)−1 we have

‖Φ(u, x1, ε) − Φ(u, x2, ε)‖1 ≤ |ε|
∥∥∥(

L − Ā
)−1

∥∥∥ ∥∥F̄ (u, x1, ε) − F̄ (u, x2, ε)
∥∥

0

≤ |ε|KAM2 ‖x1 − x2‖1 ≤ 1
2
‖x1 − x2‖1 .

Hence, for |ε| < (2KAM2)−1 and every u ∈ UT , Φ(u, ·, ε) is a contraction.
Then, the Banach Contraction Theorem yields the existence of a unique fixed
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point which we denote by x(·, u, ε). Furthermore, for fixed T > 0, x(·, u, ε)
depends continuously on (u, ε) ∈ UT × [−ε0, ε0] (see e.g. [8], Proposition 1.2).

To prove the last assertion, notice that for a fixed point x of Φ(u, ·, ε) one has

‖x‖1 = ‖Φ(u, x, ε) − Φ(0, 0, ε)‖1

≤ ‖Φ(u, x, ε) − Φ(u, 0, ε)‖1 + ‖Φ(u, 0, ε) − Φ(0, 0, ε)‖1

≤ 1
2
‖x‖1 +

∥∥(L − Ā)−1
∥∥(

cU ‖B‖ + ε
∥∥F̄ (u, 0, ε)− F̄ (0, 0, ε)

∥∥
0

)
≤ 1

2
‖x‖1 + cUKA

( ‖B‖ + M1

)
.

which implies the inequality (6.11).

This lemma, combined with Proposition 6.2.2, yields a bound on the control
sets with nonvoid interior.

Corollary 6.4.1. Let A, B and F be as in Lemma 6.4.1, and assume that
U contains the origin of Rm in its interior and take

ε0 = min
{
1 ,

1
2KAM2

, c∗
}

,

c∗ as in Proposition 6.2.2. Then every control set with nonvoid interior of
(6.1) is contained in the closed 2cUKA

( ‖B‖+M1

)
-ball of Rd centered at the

origin.

Proof. Assume that there exist a point p, laying outside the 2cUKA

( ‖B‖ +
M1

)
-ball centered at the origin, but belonging to the interior of a control set.

Then, by Proposition 6.2.2, there exists a periodic solution of (6.10a) whose
image contains p. This contradicts the inequality (6.11).

The assertion follows since the local accessibility ensures that, for a control
set D with nonvoid interior, one has D ⊂ cl intD.

In what follows we denote by ϕε(·, u, ξ) the solution of the Cauchy problem{
ẋ(t) = Ax(t) + Bu(t) + εF

(
u(t), x(t), ε

)
,

x(0) = ξ,
(6.14)

where u ∈ UT , ξ ∈ Rd, and ε ∈ R are given.

We want to prove that, reducing ε0 if necessary, given T > 0 the image of
the periodic solution given by the lemma above is contained in the interior
of a control set, provided that the pair (A, B) is controllable.

Let E be the Banach subspace of C(R,Rm) given by
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E =
{
v ∈ C(R,Rm) : supp(v) ⊂ [0, 1]

}
.

Let ū with ū(t) ∈ intU for all t ∈ R be given. Define the open subset Vū of
E as follows:

Vū =
{
v ∈ E : ū(t) + v(t) ∈ intU, for all t ∈ R

}
.

Given ε ∈ R and p0 ∈ Rd define the map Θε,p0 : Vū → Rd by

Θε,p0(v) = ϕε(1, ū + v, p0).

Let p1 = Θε,p0 (0), we want to show that, under suitable assumptions on A, B
and F , for ε small enough, there exists a neighborhood of p1 which consists
of images of Θε,p0 .

Lemma 6.4.2. Assume that the pair (A, B) is controllable and that F is C1

with ‖D1F‖ ≤ M1 and ‖D2F‖ ≤ M2 uniformly. Then there exists ε0 > 0
such that for |ε| ≤ ε0, p0 ∈ Rd, ū ∈ intU , there exists a neighborhood V of 0
in E, such that Θε,p0(0) = ϕε(1, ū, p0) lies in the interior of Θε,p0 (V ).

Furthermore, one can actually choose ε0 of the form

ε0 = min

{
1 ,

e−2‖A‖rA,B

M1 + M2

( ‖B‖ + M1

)
eM2

}
, (6.15)

where rA,B > 0 depends only on A and B.

Proof. By the Surjective Mapping Theorem, it is enough to prove that there
exists ε0 > 0, independent of ū such that Θ′

ε,p0
(0) is surjective for all |ε| < ε0,

and p0.

For ε = 0 one can write explicitly

Θ′
0,p0

(0)ω =
∫ 1

0

e(1−s)ABω(s) ds

Note that Θ′
0,p0

(0) : E → Rd does depend neither on ū nor on p0, and, by the
controllability assumption on (A, B), it is surjective. Let us put Θ′

0,p0
(0) = Λ.

Since the surjective linear maps form an open subset of the space L
(E ,Rd

)
,

we have that there exists rA,B > 0 such that any H ∈ L
(E ,Rd

)
, which

satisfies ‖H − Λ‖ ≤ rA,B, is surjective.

Let us consider now ε > 0. Observe that Θ′
ε,p0

(0) = D2ϕε(1, ū, p0). For ω ∈ E
we put

α(t) = D2ϕε(t, ū, p0)ω,

β(t) = D2ϕ0(t, ū, p0)ω.
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We get

α(t) =
∫ t

0

[
Aα(s) + Bω(s) + εD1F

(
ū(s), ϕε(s, ū, p0), ε

)
ω(s)

+ εD2F
(
ū(s), ϕε(s, ū, p0), ε

)
α(s)

]
ds,

(6.16)

and analogously

β(t) =
∫ t

0

[
Aβ(s) + Bω(s)

]
ds. (6.17)

Hence,

|α(t)| ≤ ‖ω‖ (‖B‖ + εM1) +
∫ t

0

(εM2 + ‖A‖) |α(s)| ds

where M1 and M2 are upper bounds for ‖D1F‖ and ‖D1F‖ respectively. By
the Gronwall inequality, we get the following estimate for |α|

|α(t)| ≤ ‖ω‖ (‖B‖ + εM1) et(‖A‖+εM2). (6.18)

Moreover, using (6.16) and (6.17),

|α(t) − β(t)| ≤ ε

(
M1 ‖ω‖ +

∫ 1

0

M2 |α(s)| ds

)

+
∫ t

0

‖A‖ |α(s) − β(s)| ds.

(6.19)

Plugging (6.18) into (6.19), and assuming ε ≤ 1, we get

|α(t) − β(t)| ≤ ε ‖ω‖
(
M1 + M2(‖B‖ + εM1)e‖A‖+εM2

)
+

∫ t

0

‖A‖ |α(s) − β(s)| ds

≤ εD ‖ω‖ +
∫ t

0

‖A‖ |α(s) − β(s)| ds,

(6.20)

where we have put

D = e‖A‖
(
M1 + M2

( ‖B‖ + M1

)
eM2

)
.

Note that the estimate (6.20) is independent of ū and p0. Applying the Gron-
wall inequality to (6.20),

sup
t∈[0,1]

|α(t) − β(t)| ≤ εD ‖ω‖ e‖A‖.
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In other words, recalling the definitions of α and β, for

ε ≤ min

{
1 ,

e−2‖A‖rA,B

M1 + M2

( ‖B‖ + M1

)
eM2

}
,

we have∥∥Θ′
ε,p0

(0) − Θ′
0,p0

(0)
∥∥ =

∥∥Θ′
ε,p0

(0) − Λ
∥∥ ≤ rA,B,

independently of ū and p0, which yields the surjectivity of Θ′
ε,p0

(0) for each
ū.

Remark 6.4.1. Lemma 6.4.2 says that, if ε is small enough, then, given ū ∈
intU , it is possible to reach any point in a suitably small neighborhood of
ϕε(1, ū, p0) by varying the control function in a neighborhood of ū.

With only minor changes in the proof one can show that the set which can be
reached in a given time τ ∈ (0, 1] from any given point p0 has nonempty in-
terior. This property, often called strong accessibility, obviously implies local
accessibility. Hence one can actually choose the constant c∗ which appears in
Proposition 6.2.2 equal to ε0 in (6.15).

We need to extend the result of Lemma 6.4.2 to the case of a time T > 1.

For any v ∈ E , we put ṽ(t) = v(t − T + 1) and define

ΨT,ε,p0(v) = ϕε(T, ṽ + ū, p0) = Θε,ϕε(T−1,ū,p0)(v).

Thus we immediately get

Corollary 6.4.2. Assume that the pair (A, B) is controllable and that F
is C1 with ‖D1F‖ ≤ M1 and ‖D2F‖ ≤ M2 uniformly. Then, there exists
ε0 > 0 such that for |ε| ≤ ε0, p0 ∈ Rd, ū ∈ U and T > 1 given, there exists
a neighborhood V of 0 in E, such that ϕε(T, ū, p0) ∈ intΨT,ε,p0(V ).

Furthermore, one can actually choose ε0 of the form (6.15).

Proof. It follows from Lemma 6.4.2 applied to the function ˜̄u : t 7→ ū(t−T +1)
and to the point Θε,ϕε(T−1,ū,p0)(p0).

This corollary allows us to prove for (6.1) a result which is analogous to
Lemma 6.3.7. From now on we will assume that

ε0 = min

{
1 ,

e−2‖A‖rA,B

M1 + M2

( ‖B‖ + M1

)
eM2

,
1

2KAM2

}
(6.21)
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Lemma 6.4.3. Let U have non empty interior. Assume that A is hyperbolic,
that the pair (A, B) is controllable and that F is C1 with ‖D1F‖ and ‖D2F‖
bounded. Then if |ε| ≤ ε0, given T > 0 and ū ∈ intUT , (6.10a) has a unique
T -periodic solution. Furthermore this solution is contained in the interior of
a control set of (6.1).

Proof. Observe that, given T > 0, a T -periodic function is also nT -periodic,
n ∈ N. Hence, without loss of generality, we can assume T > 1.

Lemma 6.4.1 yields the existence of a unique T -periodic solution of (6.10a)
for |ε| ≤ ε0 and ū ∈ intUT .

Fix ū ∈ intUT , let p0 be the starting point of the unique periodic T -periodic
solution of (6.10a). From Corollary 6.4.2 it follows that there exists a neigh-
borhood V of p0 in Rd such that for any q ∈ V there exists w ∈ intUT such
that q = ϕε(T, w, p0).

Considering the time reversed system and reducing V , if necessary, we can
assume that within this set any point can be driven into any other point.
Hence V is contained in the interior of a control set. To prove that the whole

ϕε([0, T ], ū, p0) is contained in the interior of a control set, we proceed as in
the last part of the proof of Lemma 6.3.7.

A noteworthy consequence of Lemma 6.4.3 combined with Proposition 6.2.2
is the following.

Remark 6.4.2. Assume, in addition to the hypotheses of Lemma 6.4.3, that
U contains 0 in its interior and that F (0, 0, ε) ≡ 0 for any |ε| ≤ ε0. Then the
origin of Rd is contained in the interior of a control set. In fact, the origin
can be regarded as a 1-periodic solution of (6.10a).

We are now in a position to prove the main result of this section.

Theorem 6.4.1. Let U be convex with non empty interior. Assume that
(A, B) in (6.1) is controllable and A is hyperbolic. Let F be C1 with ‖D1F‖
and ‖D2F‖ bounded. Then the control process (6.1) admits exactly one control
set D with nonvoid interior if |ε| ≤ ε0, ε0 as in (6.21).

Furthermore,

1. for |ε| ≤ ε0 the control set D is contained in the 2cUKA

( ‖B‖+ M1

)
-ball

of Rd centered at the origin,

2. if F (0, 0, ε) ≡ 0 for any |ε| ≤ ε0, then the origin is contained in the
interior of D.
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Proof. Let T > 1 and ū ∈ intUT . Lemma 6.4.1 guarantees the existence of a
T -periodic solution of (6.10a), whose image is, by Corollary 6.4.2, contained
in the interior of a control set. This proves the existence of at least one control
set.

Let us prove the uniqueness assertion. Assume by contradiction that for some
ε ∈ [−ε0, ε0] there exist two different control sets, say D0 and D1. Then,
by Proposition 6.2.2, there exists ui ∈ intUTi , i ∈ {0, 1}, such that the
corresponding Ti-periodic trajectory of (6.10a) is contained in the interior of
Di. As in the proof of Lemma 6.4.3 we can always assume that Ti > 1 for
i ∈ {0, 1}.
As in the proof of Theorem 6.3.4, put Tλ = λT1 + (1 − λ)T0 and define

uλ(t) = λu1

(
T1t

Tλ

)
+ (1 − λ)u0

(
T0t

Tλ

)
.

Since U is assumed convex, uλ ∈ intUTλ
. By the choice of ε0, the equation

ẋ(t) = Ax(t) + Buλ(t) + εF (uλ(t), x(t), ε),

admits a unique Tλ-periodic solution whose image is contained in the interior
of a control set. By the argument used in the proof of Theorem 6.3.4 we get
the existence of a continuum which joins D0 and D1 and whose points are all
contained in the interior of a control set. This yields the desired contradiction.

The last two assertions follow from Corollary 6.4.1 and Remark 6.4.2.

Theorem 6.4.1 has the following remarkable consequence.

Corollary 6.4.3. Assume (A, B) controllable. Let G : Rm × Rd → Rd be
a C1 function such that ‖D1G(v, p)‖ ≤ M1 and ‖D2G(v, p)‖ ≤ M2, for
any (v, p) ∈ Rm × Rd. If the bounds M1 and M2 for the partial deriva-
tives are small enough, then the control process (6.3) admits a unique control
set D with nonempty interior. Moreover D turns out to be bounded, and, if
G(0, 0) = 0, then D contains the origin of Rm in its interior.

Proof. If M1 and M2 are small enough then ε0 = 1 in formula (6.21). Hence
the assertion follows directly from Theorem 6.4.1.

Acknowledgement:

This paper has been written when the second author was visiting Univer-
sität Augsburg as a NCN fellow in the TMR program. M. Spadini wishes to
thank the Nonlinear Control Network and the personnel of the ‘Institut für
Mathematik’ for their helpful assistance.



References 135

References

1. F. Colonius and W. Kliemann, Limit behavior and genericity for nonlinear con-
trol systems, J. Diff. Equations 109 (1994), pp. 8-41.

2. F. Colonius and W. Kliemann, Continuous, smooth, and control techniques for
stochastic dynamics, in Stochastic Dynamics H. Crauel and M. Gundlach eds.,
Springer-Verlag, 1999.

3. F. Colonius and W. Kliemann, The Dynamics of Control, Birkhäuser 1999, to
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Summary.

This paper presents briefly a method to design explicit control Lya-
punov functions for control systems that satisfy the so-called “Jurdjevic-
Quinn conditions”, i.e. posses an “energy-like” function that is naturally
non-increasing for the un-forced system. The results with proof will appear
in a future paper. The present note rather focuses on the method, and on
its application to the model of a mechanical system, the translational os-
cillator with rotation actuator (TORA) (also known as RTAC).

7.1 Introduction

For differentiable dynamical systems (without control), a Lyapunov function
is a convenient tool to analyze the asymptotic stability of an equilibrium. See
[12] for instance. It is of course not the only one, and its main drawback is
that there is no systematic way to find a Lyapunov function in general, even
though converse Lyapunov theorems (see [12, 15]) tell us that existence of a
Lyapunov function is equivalent to asymptotic stability.

For control systems and the stabilization problem, Lyapunov functions have
also been used extensively. For linear systems, that have the nice prop-
erty that Lyapunov functions may always be taken quadratic, optimizing
a quadratic criteria or assigning a quadratic Lyapunov function are more or
less synonymous (see for instance [4]). For nonlinear systems, the so-called
“Lyapunov design” (see [2, 6]) consists in designing a Lyapunov function to-
gether with a control that makes it decrease, i.e. that assigns this function
to be a Lyapunov function for the closed-loop system. Artstein’s theorem [1]
makes this method theoretically consistent by characterizing the functions
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that may be assigned to be Lyapunov functions via a suitable continuous
feedback control. Let us recall it briefly : consider a control system

ẋ = f0(x) +
m∑

k=1

ukfk(x) (7.1)

with state x ∈ IRn and control (u1, . . . , um) = u ∈ IRm, the fk’s being
smooth vector fields in IRn.

Theorem 1 (Artstein’s theorem) A differentiable function V that is pos-
itive definite (zero at the origin, positive elsewhere) and infinite at infinity
can be assigned to be a Lyapunov function for the closed-loop system via a
continuous feedback in (7.1) if and only if

1. it is a control Lyapunov function (CLF) :

∀x ∈ IRn\{0},
Lf1V (x) = 0

...
LfmV (x) = 0


 =⇒ Lf0V (x) < 0 , (7.2)

2. it satisfies the so called small control property (SCP) : for any ε > 0,
there exists a δ > 0 such that, for x ∈ IRn,

x 6= 0
‖x‖ < δ

}
∃u

{ ‖u‖ < ε
Lf0+

Pm
k=1 ukfk

V (x) < 0 .
(7.3)

This is only an existence result, but Sontag gave in [20] an explicit formula
that gives a systematic way to obtain a stabilizing control corresponding to
a given CLF. On practical examples, there are of course many other possi-
bilities.

Other methods than building a control Lyapunov function exist to design
stabilizing control laws. However, it is well know (see for instance [18, 19, 6])
that a control Lyapunov function, when available, is a very convenient tool
to analyze stability, and its robustness to perturbations, or even to modify
the design to enhance robustness or performances. For these reasons, it is
interesting to obtain control Lyapunov functions for systems that may be
stabilized by other methods. This is the topic of the present paper, at least
for the situation where stabilization has been obtained using the “Jurdjevic-
Quinn” method, also called “damping control”.

Let us call (7.2)-(7.3) Artstein’s equation, and draw a parallel with optimal
control and Hamilton-Jacobi-Bellman’s equation . Optimal control (for in-
stance minimum time) is a quantitative problem, whose solution is unique,
and often very difficult to describe. Asymptotic stabilization, a qualitative
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problem, whose solution is highly non-unique, the requirement being some-
how weaker. Artstein’s equations play, for stabilization, the role of Hamilton-
Jacobi-Bellman’s equation for optimal control : the dynamic programming
principle asserts that a solution to the HJB’s equation yields (at least when
it is differentiable !) the optimal synthesis, and in the same way, Artstein’s
theorem allows one to derive a stabilizing control law from a solution to
Artstein’s equations, with some universal formulas available. However it is
known that the solutions to HJB’s equation are in general non-smooth, and
the analysis of this equation has given rise to a lot of mathematical develop-
ments to handle this problem. Artstein’s equations are much less constrained,
and for this reason, they have smooth solutions, far from being unique : for
instance one may freely change V outside the origin and the points where its
derivative along the control vector fields is zero, at least if the changes are not
big enough (in C1 topology) for the derivative of the deformed function along
the control vector fields to vanish. We do not give a bibliography on HJB’s
equation and dynamic programming, but the reader may find in [11, 9, 18, 19]
some investigations on the link between optimality, control Lyapunov func-
tions and robustness. We shall not elaborate more along these line, but we
do think that Artstein’s equations deserve a deeper analysis. This paper is a
contribution to this analysis in a particular case.

This paper is organized as follows. In section 7.2, we present the type of
systems we are interested in, and review very briefly the popular method to
stabilize them (without obtaining a CLF). The method is outlined in section
7.3 and gives some general results. We then apply, in section 7.4 the method
to a mechanical system used as a benchmark in [19], see also [3]. Note that
this model does not satisfy the assumptions theoretically needed in section
7.3, but the method still yields a global CLF.

7.2 Jurdjevic-Quinn systems

It was noticed in [13], that a first integral for the drift vector field, plus
some controllability conditions allow one to derive smooth asymptotically
stabilizing control laws. This method has been generalized in [10, 2, 17] for
instance. This is now popular, under the name “Jurdjevic-Quinn method” or
“damping control”.

Let us be more specific. Consider the affine control system (7.1). The following
conditions are a bit more restrictive than these in [17], more general that
these in other papers, but the idea is basically the same. To state them, let
us define, for a positive and radially unbounded function V0, the set WL(V0) :

WL(V0) =
{

x ∈ IRn, Lf0V0(x) = Ladi
f0

(fk)V0(x) = 0
k = 1 . . .m; i = 1 . . . L

}
(7.4)
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Assumption A ((weak) Jurdjevic-Quinn conditions)

1. The vector field f0 has only one equilibrium :

f0(x) = 0 ⇐⇒ x = 0 . (7.5)

2. A function V0 : IRn → IR is known and has the following three properties :

a) it is positive definite and radially unbounded,

b) it satisfies :

∀x ∈ IRn, Lf0V0(x) ≤ 0 , (7.6)

c) there is an integer L such that

WL(V0) = {0} . (7.7)

Proposition 1 Under assumption A, the smooth control law uk = −LfkV0

asymptotically stabilizes the origin for system (7.1).

This proposition is also correct replacing assumption A by the following one,
that obviously implies A, and corresponds to the most common situation :

Assumption A′ Same as assumption A, but instead of (7.6), V0 is assumed
to be a first integral of the vector field f0 :

∀x ∈ IRn, Lf0V0(x) = 0 . (7.8)

Let us make our discussion in the simpler case of assumption A′. The proof
is based on the fact that that these uk yield a non-positive V̇0 :

V̇0 ≤ −
m∑

k=1

(Lfk
V0)

2
.

This is enough to prove asymptotic stability through LaSalle’s invariance
principle (see [16, 12]). However, under assumption A′, V̇0 is zero exactly
at the points where all the functions LfkV0 vanish, and no control can do
better at these points because u has no effect on V̇0. This V0 is therefore not
a CLF for system (7.1) : in Artstein’s equation (7.2), the strict inequality
is replaced by an equality. Although this “weak” Lyapunov function is as
good as a “strict” one for the purpose of proving asymptotic stability, the
fact that V0 is not strictly decreasing along the solutions, does not give a
“margin” that can be exploited for robustness analysis or enhancement.
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7.3 Reshaping Lyapunov functions

Let us present a way to construct a CLF using the known function V0 de-
scribed above.

7.3.1 The idea

It is tempting to consider V̇0 as “almost” a CLF, and to design a “deforma-
tion” Vλ, with λ a real parameter, such that
- for all λ, Vλ is positive definite and radially unbounded,
- for λ = 0, Vλ is the above V0, and
- for positive value of λ, Vλ is a CLF, i.e. instead of = 0, one gets the strict
inequation (7.2), ideally more and more negative as λ grows.

This idea was already presented in [7]. Let us sum up the obtained results,
announced in [7] in a more restrictive form, and presented into details in the
forthcoming [8].

The type of deformation considered is the very natural

Vλ = V0 ◦ φG
λ , (7.9)

where G is a complete vector field, and φG
λ stands for the flow at time λ of

G, i.e. :

∂

∂λ
(φG

λ (x)) = G(φG
λ (x)) , φG

0 (x) = x . (7.10)

Since φG
λ is a diffeomorphism for all λ, Vλ is positive definite and radially

unbounded for all λ. Also, the condition G(0) = 0 is sufficient to ensure
Vλ(0) = 0.

Of course, Vλ being a CLF for λ > 0 requires further conditions on G. The
least is to require that Lf0Vλ(x) be a decreasing function of λ, for small
values of λ and at points where LfkV0(x) = 0. It turns out that the following
formula holds, for all x under assumption A′, and at points x where Lf0V0

vanishes under assumption A :

d

dλ

∣∣∣∣
λ=0

(
Lf0V

G
λ

)
(x) = Lf0LGV0(x) (7.11)

(this is established from standard differential calculus). With in mind the
concern of finding explicit formulae, using the flow of a vector field is not the
best choice. In the (usual) case where φG

λ cannot be explicitly computed, we
may use instead

Wλ = V0 ◦ (Id + λG) , (7.12)
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or any Wλ that approaches Vλ up to order 1 at λ = 0 (in (7.12), this is
obtained by using the first order approximation of the flow). Note that (7.9)
is an intrinsic definition of Vλ whereas the above (7.12) is coordinate depen-
dent : for instance, in coordinates where G would be a “constant” vector field
(impossible near an equilibrium !), the formula (7.12) would be equivalent to
(7.12).

7.3.2 The results

The following results can be found in [7] in the particular case when Lf0V0

is zero (assumption A′). They will appear, with proofs, in a future paper [8].
For the definitions of homogeneity and dilations, and related properties, see
for instance [14]. We do not insist here on this property.

Theorem 2 Suppose that the control affine system (7.1) satisfies the as-
sumption A and furthermore, that the vector fields f0, . . . , fm are homoge-
neous with respect to a certain dilation, f0 having a degree strictly larger than
the others, and that the function V0 is also homogeneous with respect to the
same dilation. If G is a homogeneous vector field of degree 0 which satisfies,
for all x in IRn\{0},

Lf0V0(x) = 0
Lf1V0(x) = 0

...
LfmV0(x) = 0




=⇒ Lf0LGV0(x) < 0 (7.13)

Then there exists a positive real number λ0 such that for all λ that satisfies
0 < λ < λ0, Vλ and Wλ are homogeneous CLFs of the same degree as V0,
satisfying the small control property. This would also be true for any formula
for Wλ instead of (7.12), provided that the derivative with respect to λ at
λ = 0 is the same, and Wλ is homogeneous.

This result is completed by the following, that gives a “universal” formula
for a vector field G, homogeneous of degree 0, that satisfies condition (7.13).

Theorem 3 Suppose that the control affine system (7.1) satisfies the as-
sumption A and that the vector fields f0, . . . , fm and the function V0 satisfy
the homogeneity assumptions of theorem 2. Define the vector field G by :

G =
L−1∑
i=0

m∑
k=1

λi,kadi
f0

fk (7.14)

with λi,k (i = 0, . . . , L − 1; k = 1, . . . , m) some functions defined by
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λi,k =
L−1∑
j=i

(−1)j−i+1
L

ad
(2j−i+1)
f0

(fk)
V0

(2V0)αj,k

αj,k = (2j+1)c0+2ck+d
2 .

(7.15)

This vector field G is homogeneous of degree zero and satisfies the conditions
of theorem 2.

7.3.3 Some remarks on using this method to obtain CLFs

To sum up, the proposed method for designing a strict Lyapunov function
consists in :
- finding a vector field G that satisfies the condition (7.13),
- computing Vλ according to (7.9) or Wλ according to the explicit formula
(7.12), or another one that gives the same ∂Wλ/∂λ at λ = 0.
This yields a function that, if the homogeneity assumptions are satisfied, is
guaranteed to be a (global) control Lyapunov function for λ positive and
small enough.

On the choice of G : Theorem 3 gives a “universal” formula to obtain
a good G, but there are many other choices, and it is important to have
some choice (see next remarks). It is usually a good idea, following (7.14), to
write G as a linear combination of the vector fields Lj

f0
fk, and to write the

(linear differential) relations on the coefficients implied by (7.13). A thorough
discussion will appear in [8]. This is illustrated on an example in section 7.4.

How large can λ be ? The theorems only say that Vλ or Wλ will be a CLF
for small enough positive values of λ. It is of course important that λ can can
be “reasonably large”, since if it is not the case, V̇λ or Ẇλ will he negative but
very small at the points where the control has no effect on them. One needs
to compute on each example to see how big λ can be chosen, and how good
a Lyapunov function one obtains, but that usually depends on the choice of
G (hence it is important to have some choice) and even on the formula one
chooses for Ẇλ.

If the homogeneity conditions are not met, this method still yields
some positive definite functions Vλ or Wλ. The theorems however do not
apply, and on some examples, these functions may fail to be CLFs (problems
around the origin, and at infinity), or fail to satisfy the small control property
(automatically satisfied in the homogeneous case). However, the experience
shows that they often work as CLFs although the theorems do not apply.
Again, having some choice on G is crucial here. The following example is an
illustration.
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7.4 Example: The TORA system

Using our ideas to find some control Lyapunov function for this system was
suggested by Rodolphe Sepulchre, from Université de Liège.

Let us consider the mechanical system called TORA (Translational Oscillator
with Rotating Actuator) in [19] and RTAC (Rotational/Translational proof-
mass Actuator) in [3]. It consists of a platform connected to a fixed frame
of reference by a linear spring. The platform can oscillate without friction
in the horizontal plane. On the platform, an eccentric rotating mass is actu-
ated by a DC motor. The control of this rotating motion is used to dampen
the translational oscillations of the platform. A precise description is given
in [5]. After normalization (the time is also normalized), the dimensionless
variables (x1, x2, x3, x4) may be used, where x1 and x2 are proportional to
the translational displacement (from the equilibrium position) and the veloc-
ity of the platform, x3 and x4 are the angle (from a direction perpendicular
to the spring) and the angular velocity of the eccentric mass. The following
equations are obtained, where ε is a parameter, depending on the mass of
the cart, the mass, length and inertia of the eccentric mass, and the stiffness
of the string. A typical value for ε is 0.1. Note that the picture below is in a
horizontal plane, so that gravity is ignored.

ẋ1 = x2

ẋ2 =
−x1 + εx4

2 sin x3

1 − ε2 cos2 x3
+

−ε cosx3

1 − ε2 cos2 x3
u

ẋ3 = x4

ẋ4 =
ε cosx3(x1 − εx4

2 sin x3) + u

1 − ε2 cos2 x3
x

m

u

x3

In [19], this system is extensively used as an illustrative example, and the
papers in [3] also propose various control methods. The following is an illus-
tration of our methods on this example to derive a (global) CLF. We do not
propose new or “better” control laws.

Note that the coordinates of the center of mass are (x1 + ε sinx3,−ε cosx3).
It is natural to use also the variables z1 and z2, that are the horizontal
component of the position and velocity of the center of mass :

z1 = x1 + ε sinx3 , z2 = x2 + εx4 cosx3 .

As noticed in [19] or some articles in [3], setting z3 = x3 and z4 = x4, the state
equations take the following simpler form in the coordinates (z1, z2, z3, z4) :



7.4 Example: The TORA system 145

ż1 = z2

ż2 = −z1 + ε sin z3

ż3 = z4

ż4 =
1

1 − ε2 cos2 z3
[ε cos z3(z1 − ε(1 + z4

2) sin z3) + u] .

(7.16)

It is also convenient in some occurrences to keep x1 :

ẋ1 = z2 − εz4 cos z3

ż2 = −x1

ż3 = z4

ż4 =
1

1 − ε2 cos2 z3
[ε cos z3(x1 − εz4

2 sin z3) + u]

(7.17)

The potential energy of the spring is (in dimensionless units) 1
2x 2

1 and the
kinetic energy is 1

2z 2
2 + 1

2z 2
4 (1 + µ sin2 z3) with µ some coefficient. The total

is naturally constant along the solutions for u = 0. However, it is not proper
(infinite at infinity), and it may be zero for any value of z3. It is therefore
reasonable to “strengthen” it by adding a term that is proper with respect to
z3, like z 2

3 . In fact, following [19], we modify the energy and use the following
definite positive and radially unbounded function V0 :

V0(z) =
1
2
x 2

1 +
1
2
z2

2 +
k1

2
z3

2 +
1
2
z4

2 (7.18)

=
1
2

(z1 − ε sin z3)
2 +

1
2
z 2
2 +

k1

2
z3

2 +
1
2
z4

2 (7.19)

with k1 some positive constant. Using the following preliminary feedback

u = −ε cos z3(x1 − εz4
2 sin z3)

+(1 − ε2 cos2 z3)(εx1 cos z3 − k1z3 + v) ,
(7.20)

we obtain a control system

ẋ = f0(x) + v f1(x)

where f0 and f1 are, in the coordinates (x1, z2, z3, z4),

f0 =




z2 − εz4 cos z3

−x1

z4

εx1 cos z3 − k1z3


 f1 =




0
0
0
1


 (7.21)

A simple computation yields to the following equations :

Lf0V0(z) = 0
Lf1V0(z) = z4

Lf0Lf1V0(z) = ε cos z3(z1 − ε sin z3) − k1z3

L2
f0

Lf1V0(z) = εz2 cos z3 + z4(−εz1 sin z3 − ε2 cos 2z3 − k1)
L3

f0
Lf1V0(z) = ε cos z3(−z1 + ε sin z3) + z4h(z1, z2, z3, z4)

(7.22)



146 7. Lyapunov functions for “Jurdjevic-Quinn” systems

Hence this system satisfies the Jurdjevic-Quinn conditions (assumption A,
and even A′). Precisely, (7.22) implies that W3(V0) = {0}.
In [19] the authors are able to design a continuous feedback law which makes
the origin of the system asymptotically stable by applying some “damping
control” (see Proposition 1 above), and them modifying these control laws
to get more robustness, but asymptotic stability is obtained via a weak Lya-
punov function. Unfortunately this system does not meet the homogeneous
assumptions of our theorems. Yet in this particular case we will apply suc-
cessfully our method to obtain a control Lyapunov function.

The first step consists in finding vector field G that meets the condition (7.13).
Let us illustrate the second remark in section 7.3.3, and try to find “all” the
good G’s instead of using formula (7.14)-(7.15). It is not difficult to see that
the second and first component of G in the coordinates (z1, z2, z3, z4) should
vanish when cos z3 vanishes, so let us take G of the form :

G =




ε cos z3g1

ε cos z3g2

g3

g4


 = ε cos z3

(
g1

∂

∂z1
+ g2

∂

∂z2

)
+ g3

∂

∂z3
+ g4

∂

∂z4

with g1, g2, g3, and g4 some functions. We have

[f0, G] =




ε cos z3 (f0g1 − g2) − εz4 sin z3 g1

ε cos z3 (f0g2 + g1 − g3) − εz4 sin z3 g2

f0g3 − g4

f0g4 − ε cos z3g1 +
(
k1 + εz1 sin z3 + ε2 cos(2z3)

)
g3




and hence, since Lf0LGV0 = L[f0,G]V0,

Lf0LGV0 = (z1 − ε sin z3) (ε cos z3 (f0g1 − g2) − εz4 sin z3 g1)
+ z2 (ε cos z3 (f0g2 + g1 − g3) − εz4 sin z3 g2)
+ (k1z3 − ε cos z3(z1 − ε sin z3)) (f0g3 − g4)
+ z4 ( · · · · · · )

Finally, we have the following equality at points where z4 = 0 :

Lf0LGV0 = − ε cos z3 (x1 α + z2 β ) − (k1z3 − εx1 cos z3) γ (7.23)

with α, β and γ defined by

g2 − Lf0g1 = α (7.24)
g3 − Lf0g2 − g1 = β (7.25)

g4 − Lf0g3 = γ . (7.26)

Since Lf0V0 is identically zero and Lf1V0 is equal to z4, equation (7.13)
requires that Lf0LGV0 be negative when z4 = 0 and z 6= 0. All the solutions
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may be constructed in the following way : first find functions α, β and γ such
that, for z4 = 0, ε cos z3 (x1 α + z2 β ) + (k1z3 − εx1 cos z3) γ is positive,
and then, solve (7.24)-(7.26) for the functions gi (in fact, g1 may be chosen
arbitrary and defines g2, g3, g4).

It is convenient to try to have g2 = 0. This is possible if

g1 = ε cos z3 ρ(z2)
α = ε cos z3 ρ′(z2)x1 + εz4 ρ(z2) sin z3

where ρ is a function of z2 such that

z2 6= 0 ⇒ z2 ρ(z2) > 0 (7.27)

(we might take ρ(z2) = z2 here, but it will be necessary to have ρ growing
slower). Then, one may chose

β = ε cos z3 ρ(z2) ,
γ = k1z3 − εx1 cos z3 ,

(7.28)

to make (7.23) negative when z4 = 0. This yields, from (7.24)-(7.26),

g2 = 0 , g3 = 2ε cos z3 ρ(z2)
g4 = −εx1 (1 + 2ρ′(z2)) cos z3 + k1z3 − 2εz4 ρ(z2) sin z3

(7.29)

and hence the vector field G from formula (7.4). ¿From now on, it is sim-
pler to express the computations in the coordinates (x1, z2, z3, z4). In these
coordinates, G reads :

G(x1, z2, z3, z4) =




−ε2ρ(z2) cos2 z3

0
2ερ(z2) cos z3

−εx1 (1 + 2ρ′(z2)) cos z3 + k1z3 − 2εz4 ρ(z2) sin z3




and we have, from (7.18) and (7.12),

Wλ =
1
2

(
x1 − λε2ρ(z2) cos2z3

)2

+
1
2

z2
2 +

k1

2

(
z3 + 2λερ(z2) cosz3

)2

+
1
2

(
(1 − 2λερ(z2) sin z3)z4 − λεx1(1 + 2ρ′(z2)) cos z3 + λk1 z3

)2

Recall that Lf1Wλ is simply ∂Wλ/∂z4. Hence

Lf1Wλ = (1 − 2λερ(z2) sin z3)2 ξ4 , (7.30)

with ξ4 = z4 + λ
k1z3 − εx1(1 + 2ρ′(z2)) cos z3

1 − 2λερ(z2) sin z3
. (7.31)
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This vanishes either when ξ4 = 0 or when 1 − 2λερ(z2) sin z3 = 0. It will be
necessary to take ρ(z2) bounded and λ such that 2λερ(z2) < 1. Provided this
is satisfied, a careful computation yields :

Ẇλ = −λ

[
k1 z3 − ε cos z3

(
x1 − λ(k1 +

ε2

2
cos2z3)ρ(z2)

)]2

−λ ε2 cos2z3 ρ′(z2)
[
x1 − λ

ε2

2
cos2z3ρ(z2)

]2
(7.32)

−λ ε2 cos2z3 ρ(z2)

[
z2 − λ2ρ(z2)

(
ε4

4
(1 + ρ′(z2)) cos4 z3 + k1ε

2 cos2 z3 + k2
1

)]

+ ξ4

[
λR(λ, ε, x1, z2, z3, z4) + k1z3 − εx1 cos z3

(1 − 2λερ(z2) sin z3)2

1 − ε2 cos2 z3

(
ε cos z3(x1 − εz4

2 sin z3) + u

)]

where R is some function, whose expression is somewhat lengthy but can be
easily handled with a computer algebra system.

The three first terms depend only on x1, z2, z3, and they are a negative def-
inite function of these three variables provided ρ′(z2) is everywhere positive,
bounded as well as ρ, say for instance |ρ| < 1 and 0 < |ρ′| < 1, and λ is such
that

λ2

(
ε4

2
+ k1ε

2 + k 2
1

)
< 1 . (7.33)

Note that the requirements on ρ are met for instance with ρ(z2) = 2
π Arctanz2,

and that, k1 = 1 and ε = 0.1, λ only has to be taken slightly less than 1.

If that is satisfied, then clearly Wλ is a control Lyapunov function, and it
satisfies the small control property since equation (7.32) allows one to derive
very explicitly a continuous stabilizing control by making the last term non-
positive, and negative when ξ4 6= 0.

7.5 Conclusion

Section 7.3 gives a method to construct some functions from a known “energy-
like” function (or “weak” Lyapunov function). We proved (Theorems 2 and 3)
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that these are control Lyapunov functions under some homogeneity assump-
tions. However, even for non homogeneous systems, this method can often
be used, as illustrated here on the TORA system, to obtain global CLFs. We
therefore have good hope that this gives in general a powerful guide to find
CLFs from energy-like functions in conservative systems.

In fact the methodology should be refined to be proved to work in more
general situations.
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Summary.

This chapter presents a bifurcation analysis of a power converter ad-
dressed in power electronics literature as power factor precompensator
(PFP) for which a feedback linearization scheme is considered. This anal-
ysis clarifies qualitatively the different behaviours that appear when the
desired output voltage is swept form a permissible low value to a very big
value that violates an equilibrium existence condition. This condition ap-
pears whenever the parasitic resistive effects in the circuit are considered.
The analysis is performed using first harmonic balance which gives a close
approximation to the qualitative behavior of this kind of circuits and in
most of the cases it predicts and characterizes periodical behaviors.

8.1 Introduction

Control systems community is becoming aware of the complexity and richness
of behavior that nonlinear systems can show ([1], [2], [3], [4], [5], [11], [12],
[14]). These behaviors include the oscillations, which are out of the scope of
the linear systems realm. Traditionally control engineers have been concerned
about the local performance around the operating point where the system can
be approximated by a linear model. However, the presence of nonlinearities
should not be neglected in order to account for global phenomena as limit
cycles or even chaos.
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Nonlinear systems show two main differences in their behavior with respect
to the one of linear systems: (1) they can have multiple equilibria; and (2)
they can have limit sets more complex than the limit points, that is, limit
cycles and chaotic attractors ([13], [15]). These attractors are organized in
attraction basins, giving rise to landscapes far more complex than the ones
of the linear systems, that are generically reduced to a single equilibrium
point. To study these problems the tools supplied by the qualitative theory
of nonlinear dynamical systems, and mainly bifurcation theory, could be used
([9], [10]). Bifurcation theory is concerned with the qualitative changes in the
state space configuration as a result of the birth or of the disappearance of
limit sets, and their corresponding basins.

In this paper a class of switched power converters commonly addressed as
power factor precompensators is studied. The controller is taken from [7]
when an adaptive scheme is adopted. The complexity of this system suggests
to simplify it in order to perform the stability analysis. In this paper we
consider only the non-adaptive case. Apart from this, the controller takes the
same expression of [7].

We will be dealing with a forced system where the frequency of the driving
variable is much larger than the one of the output variable. To overcome this
difficulty a dynamical, first-harmonic balance is performed. The idea of the
method, which is proposed in [8], is to substitute each state variable by a
truncated Fourier series:

xi(t) ≈ ai0(t) + ai1(t) sin ωt + ai2(t) cos ωt

where ω is the oscillation frequency of the variables (to be determined in
some cases) and the behavior of ai0(t), ai1(t) and ai2(t) is much slower than
ωt, that is, ȧi0(t), ȧi1(t), ȧi2(t) << ω. With this substitution the equations
of the system are re-written and harmonics higher than one are neglected.
The validity of the approximation depends on the low-pass filter character-
istics of the system, which attenuates high frequency components. The great
advantage of the method is that, even if it is approximate it easily yields con-
clusions which can serve as a guide to perform simulations or a more rigorous
study. Moreover,, the method is not only local, as happens with linearization,
but it catches some global behavior characteristics.

Studying the equilibrium points of the approximate model, a prediction for
the limit cycle of the original system is obtained. Furthermore, some in-
teresting conclusions can be drawn for an ideal controller with a feedback
linearization philosophy, which show the complexity of the resultant system.

The rest of the paper is organized as follows. In Sect. 8.2 the problem formula-
tion is stated. In Sect. 8.3 the dynamical first harmonic balance is performed
while in Sect. 8.4 the results of the approximated model are presented. The
paper closes with some conclusions.
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8.2 Problem formulation

Consider the full bridge boost type power factor precompesator whose dia-
gram is given in Fig. 8.1. The model describing the average behavior of this
system is given by

Lẋ1 = −ux2 − rx1 + vi (8.1)

Cẋ2 = ux1 − 1
R

x2 (8.2)

where vi = E sin ωt is the voltage of the AC-line source, x1 is the input
inductor current which is desired to be in phase with vi, x2 is the output
capacitor voltage to be maintained, in average, in a desired, constant value
Vd, R is the output resistance, r is a resistance that concentrates the parasitic
effects and u ∈ [−1, 1] is the control signal which represents the duty ratio of
a PWM scheme.

x 1
v i

δ

C
+

- -

+
R

L r

x 2

δ δ

δ

Fig. 8.1. Full bridge PFP boost circuit

The control objectives in this kind of circuits are

• to guarantee that x1 is in phase with vi in order to ensure a power factor
close unity.

• to drive the bias component of the output voltage x2 towards a constant
desired level Vd.

It is well known that the system thus described turns out to be of nonmini-
mum phase when the capacitor voltage, the variable of interest, is considered
as the output [7]. For this reason efforts are directed to control the inductor
current in order to indirectly regulate the output voltage. Hence, by defining
a tracking problem on the signal x1 towards a sinusoidal signal reference x∗

1

with a constant amplitude Id and in phase with the input voltage vi, the
twofold problem described above can be accomplished, where the value of
Id, yet to be determined, is such that the bias component of x2 reaches the
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desired constant reference Vd. Furthermore, as pointed out in [7], Vd > E,
that is the circuit can only provide voltages bigger than the amplitude of the
sinusoidal source.

We remark that our goal is not to propose a new controller but to study
the behavior of the system in closed loop with a given controller. We have
taken one of the control schemes reported in [7] which is referred as feedback
linearizing controller and is described by the following expression

u = sat(uc) (8.3)

uc =
1
x2

[vi − rx1 − Lẋ∗
1 + R1(x1 − x∗

1)] (8.4)

where uc is the non-saturated output of the controller, u is the actual input
to the system saturated by means of the function sat(.) and x∗

1 represents the
desired evolution for x1. This signal must be computed as a function of the
desired output voltage Vd and can be obtained by the following expression
[7]

x∗
1 = Id sin ωt (8.5)

where Id comes from the solution of the following second order equation

Id(E − rId) =
2V 2

d

R
(8.6)

which has the following two solutions

I+
d =

E +
√

E2 − 8V 2
d r

R

2r

I−d =
E −

√
E2 − 8V 2

d r

R

2r
(8.7)

At this point we should make the following two assumptions

• The output capacitor voltage x2 is accurately described by its bias com-
ponent.

• The inductor current x1 is accurately described by its first harmonic com-
ponent.

This assumptions are very close to the circuit response in practice. And be-
sides, they allow us to propose a harmonic balance approximation to study
the behavior of the system.

In [7] the following proposition has been established which give a necessary
and sufficient condition for the solvability of the problem. The condition
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gives an upper bound on the amplification gain of the PFP, which becomes
arbitrarily large for small parasitic resistance r, but may become restrictive in
the case of large r. Notice that this condition actually guarantees the solution
of equation (8.6).

Proposition 8.2.1. Consider the system (8.1), (8.2). A necessary and suf-
ficient condition for the existence of a steady state regime, with the averaged
values of x2 and x1 reaching Vd and Idsinωt, respectively, is that the ampli-
fication gain satisfies the upper bound

Vd < E

√
R

8r
(8.8)

The motivation for the present study is, on the one hand, to understand the
meaning of the two solutions that appear for Id in Eq. (8.6) provided that
(8.8) is fulfilled. And, on the other hand, we would like to study, qualitatively,
the changes in the system behavior when Vd varies.

8.3 Dynamical harmonic balance

Direct substitution of (8.3–8.4) into (8.1–8.2) yields the closed-loop system

Lẋ1 = −x2sat
(

1
x2

[vi − rx1 − Lẋ∗
1 + R1(x1 − x∗

1)]
)
− (8.9)

rx1 + vi (8.10)

Cẋ2 = x1sat
(

1
x2

[vi − rx1 − Lẋ∗
1 + R1(x1 − x∗

1)]
)
− (8.11)

rx1 + vi − 1
R

x2 (8.12)

From the previous section, the reference signal x∗
1 and its time derivative used

in these expressions are computed as

x∗
1 = Id sin ωt

ẋ∗
1 = Idω cosωt

where Id will be defined below.

In order to perform a dynamical, first-harmonic balance the state variables
x1 and x2 are expressed as

x1(t) = a10(t) + a11(t) sin ωt + a12(t) cosωt (8.13)
x2(t) = a20(t) (8.14)
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where a10, a11, a12 and a20 are assumed to vary much slower than ωt, that is
ȧ10, ȧ11, ȧ12, ˙a20 << ω. Harmonics with order higher than one of x1 and all
the harmonics of x2 have been neglected. The reason is that the dynamics of
x2 are slow compared against ωt (neglecting the ripple) while x1 behaves as
a modulated sinusoidal with frequency ω. Notice also that the frequency of
the first harmonic of x1 is assumed to be the same of vi.

In [7] the following expression for Id has been used, which allows an easier
analysis and implementation of the controller without neglecting the parasitic
resistance r.

Id =
2V 2

d

R(E − ra11)
In practice, a11 is obtained approximately by means of a rectifier and a filter.
Nevertheless, in this paper it is assumed that this harmonic can be exactly
obtained and the results will be given for this ideal case.

Due to the fact that a10 vanishes quickly and that a11, a12 and a20 vary
slowly, it can be assumed that uc(t) is approximately equal to a sinusoidal
signal

uc(t) ≈ 1
a20

[(
E − ra11 + R1a11 − 2V 2

d

R(E − ra11)

)
sin ωt+(

(R1 − r)a12 − 2LV 2
d ω

R(E − ra11)

)
cosωt

]
(8.15)

Therefore, uc(t) is approximately a sinusoidal signal whose amplitude Uc is

Uc =
1

a20

√
(E − ra11 + R1a11 − Id)

2 + ((R1 − r)a12 − LωId)
2

Now, the saturated control signal u(t) can be approximated by means of the
describing function γ of uc(t)

u(t) = γ(Uc)uc(t) (8.16)

with

γ(Uc) =

{
1 if Uc ∈ [−1, 1]
2
π

(
1

Uc

√
1 − 1/U2

c + arcsin(1/Uc)
)

otherwise

Now, we are ready to perform the harmonic balance. Substituting Eqs. (8.13)
(8.14), (8.15) and (8.16) in Eq. (8.1) yields

L( ˙a10 + ȧ11 sin ωt + a11ω cosωt + ȧ12 cosωt − a12ω sin ωt) =
(a10 + a11 sin ωt + a12 cosωt)[r(γ − 1)) − γR1] −
γL

2V 2
d

R(E − ra11)
ω cosωt + γR1

2V 2
d

R(E − ra11)
sinωt +

E sin ωt(1 − γ) (8.17)
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Equating bias, sine and cosine coefficients, the following equations are ob-
tained

Lȧ10 = −γR1a10 − (1 − γ)ra10 (8.18)

Lȧ11 = La12ω − γR1a11 − (1 − γ)ra11 + γR1
2V 2

d

R(E − ra11)
+

E(1 − γ) (8.19)

Lȧ12 = −La11ω − γR1a12 − (1 − γ)ra12 + γ
2LV 2

d

R(E − ra11)
ω (8.20)

With respect to Eq. (8.2), substituting Eqs. (8.13) (8.14), (8.16) and (8.15)
in Eq. (8.2) we get

Cȧ20 =
γ

a20

[(
E − ra11 + R1a11 − 2V 2

d R1

R(E − ra11)

)
sinωt+(

R1a12 − 2LV 2
d

R(E − ra11)

)
cosωt

]
(a10 + a11 sin ωt + a12 cosωt) −

1
R

a20

Ignoring harmonics of order higher than one and equating bias, sine and
cosine coefficients we obtain

Cȧ20 =
γa12

2a20

(
R1a12 − 2LV 2

d ω

R(E − ra11)

)
− a20

R
+

γa11

2a20

(
E − ra11 + R1a11 − 2V 2

d R1

R(E − ra11)

)
(8.21)

0 =
γa10

a20

(
R1a12 − 2LV 2

d ω

R(E − ra11)

)
(8.22)

0 =
γa10

a20

(
E − ra11 + R1a11 − 2V 2

d R1

R(E − ra11)

)
(8.23)

Equations (8.22) and (8.23) are not differential due to the fact that the first
harmonic terms of x2 have not been considered. These equation are fulfilled
when a10 = 0 which is achieved quickly by assumption. Equation (8.18)
corroborates this assumption.

Therefore, the behavior of a10, a11, a12 and a20 is approximated by the dy-
namical system (8.18–8.21). It can be seen that the original, 2-dimensional,
non-autonomous model can be approximated by a 4-dimensional, autonomous
model out of which some qualitative conclusions can be drawn. In fact, the
equilibrium points of system (8.18–8.21) will represent limit cycles of system
(8.1–8.2).
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8.4 Analysis of the approximated model

The behavior of the system can be studied for different values of Vd. In [7],
the impossibility of achieving an output voltage greater than the bound given
in (8.8) is presented. Furthermore, there are two solutions of Eq. (8.6) when
Vd fulfills this bound. Now, we are ready to clarify these facts.

In order to obtain the equilibria of the system (8.18–8.21) the time derivatives
should be equated to zero. In this way, an algebraic system of four equation
with four unknowns is obtained

0 = −γR1a10 − (1 − γ)ra10 (8.24)

0 = La12ω − γR1a11 − (1 − γ)ra11 + γR1
2V 2

d

R(E − ra11)
+

E(1 − γ) (8.25)

0 = −La11ω − γR1a12 − (1 − γ)ra12 + γωL
2V 2

d

R(E − ra11)
(8.26)

0 =
γa12

2a20

(
R1a12 − ωL

2V 2
d

R(E − ra11)

)
− a20

R
+

γa11

2a20

(
E − ra11 + R1a11 − R1

2V 2
d

R(E − ra11)

)
(8.27)

Non-saturated case. In order to clarify the analysis, the case when u is not
saturated is considered first (γ = 1). In this case, Eqs. (8.24–8.27) give

0 = −R1a10 (8.28)
0 = La12ω − R1a11 − R1Id (8.29)
0 = −La11ω − R1a12 + ωLId (8.30)

0 =
a12

2a20
(R1a12 − ωLId) − a20

R
+

a11

2a20
(E − ra11 + R1a11 − R1Id) (8.31)

Equation (8.28) gives a10 = 0, while Eqs. (8.29) and (8.30) yields

0 = a12 (8.32)
0 = −a11RE + a2

11Rr + 2V 2
d (8.33)

Comparing (8.33) and (8.6) it can be stated that, in the equilibrium a11 = Id.
When condition (8.8) is fulfilled Id has two solutions as was pointed out
before, and then a11 has two solutions as well. For both values, Eq. (8.31)
yields a20 = ±Vd. In summary, there are four candidate equilibrium points
in the state space (a10, a11, a12, a20)
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E1 = (0, I+
d , 0, Vd)

E2 = (0, I−d , 0, Vd)
E3 = (0, I+

d , 0,−Vd)
E4 = (0, I−d , 0,−Vd)

It can be verified that, for these four points, Uc < 1 and therefore, these
points will also be equilibria of the system (8.18–8.21).

We remark that the equilibria E3 and E4 are not physically meaningful be-
cause the PFP circuit studied here is designed in order to provide a positive
output voltage, and moreover, a positive voltage strictly bigger than the
amplitude of the sinusoidal source, i.e., 0 < E < a20. Thus, in the sequel,
equilibria E3 and E4 are not considered.

To study the local stability of the equilibria E1 and E2 the eigenvalues of
the Jacobian J matrix of system (8.18–8.21) are computed. For example,
using the parameters of Tab. (8.1) with Vd equal to 210Volts. I+

d = 72.07 and

Parameter Value
r 2.2
E 115

√
2

ω 2π60
R 300
L 10 × 10−3

C 2200 × 10−6

R1 10

Table 8.1. Parameter values

I−d = 1.85. The eigenvalues of the Jacobian matrix for each equilibrium are:

Equilibrium Eigenvalues Stability
E1 −1000 −3.03 −1137.98 38005.83 Unstable
E2 −1000 −3.03 −987.14± 371.89j Stable

where evidently E2 is the unique stable equilibrium point. Besides, since the
Jacobian for E1 has one eigenvalue with positive real part, this equilibrium
is a saddle point. It can be verified that E1 and E2 have the same stability
for other values of Vd. As Vd increases I−d approaches I+

d so E1 approaches
E2. For Vd = V max

d both equilibria coalesce. For Vd > V max
d the equilibria

disappear. This is indeed the case of the well-known saddle-node bifurcation
whose bifurcation diagram is sketched in Fig 8.2.

In the real model (8.1–8.2) the equilibria correspond to limit cycles and this
bifurcation will be a saddle-node bifurcation of periodic orbits. This bifur-
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Fig. 8.2. Bifurcation diagram of the saddle-node bifurcation

cation happens when a stable limit cycle coalesces with an unstable limit
cycle. As described in Fig. 8.3, before the bifurcation (portrait a) there exits
a stable limit cycle, surrounded by an unstable one. The bifurcation is pro-
duced when the stable limit cycle grows and/or the unstable one decreases
(portrait b) until both coalesce (portrait c) and disappear (portrait d); then
the system becomes unstable. The transition between the portraits a, b, c
and d is associated to the variation of the bifurcation parameter Vd.

a) b) c) d)

Fig. 8.3. Description of the saddle-node bifurcation of periodic orbits in four phase
portraits.

Saturated case. When the control signal saturates the expressions are much
more involved. Nevertheless, the bifurcation diagram can still be obtained
by means of numerical continuation algorithms, like the program auto [6]
which has been used here. The resultant diagrams are shown in Fig. 8.4. It
can be seen that the lower part of Fig. 8.4a is equal to the one of Fig. 8.2 and,
therefore, the saddle-node bifurcation of limit cycles holds. However, the dia-
gram presents a new fold in the upper part which means that for some values
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Fig. 8.4. Bifurcation diagram obtained with a continuation program. The x axis
represents Vd while the y axis represents: a) a11 b) a12 c) a20

of Vd there will exist three equilibria of the approximated system. Further-
more, for higher values of Vd a Hopf bifurcation occurs and the equilibrium
becomes again stable. Nevertheless, this equilibrium is not desired since a12

does not reach zero, nor a20 goes to Vd. The resultant behaviour will be even
more complicated, most of all in the original model where each equilibrium
represents a limit cycle.

The main conclusion of this diagram is that, in spite of the fact that the equi-
librium (or limit cycle for the original model) corresponding to I−d is the only
stable one, the system is locally but not globally stable. The desired output
voltage Vd should not be larger than V max

d otherwise the system becomes un-
stable. Moreover, is not recommended to chose the reference voltage Vd close
to V max

d , since there is a big risk for the trajectories to leave the attractive
region with a small disturbance due to the fact that the other equilibrium
point (the one corresponding to I+

d ) is near the desired one. The last is put
in evidence in the simulations presented below.
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In Figs. 8.5 and 8.6 two simulations of the original system (8.1–8.2) are
presented. In both simulations the parameters take values from Tab. 8.1 for
which V max

d = 671.5Volts and we have set Vd = 650Volts. The only difference
between both simulations is in the initial conditions. It can be seen that the
behaviour of the system in Fig. 8.5 is satisfactory (x2 tends towards the
desired equilibrium and x1 has the same phase as vi) while in Fig. 8.6 is
not. This reinforces the fact that the desired equilibrium is locally but not
globally stable.
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Fig. 8.5. Simulation of the approximate model: a) Evolution of x2 and b) Evolution
of x1 and vi/4 in the last part of the simulation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

300

Time

x2

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

−80

−60

−40

−20

0

20

40

60

80

Time

a b

Fig. 8.6. Simulation of the approximate model: a) Evolution of x2 and b) Evolution
of x1 and vi/2 in the last part of the simulation.
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8.5 Conclusions

The ideal behaviour of a power factor precompensator with a feedback lin-
earizing controller proposed in [7] has been studied. The adopted assumptions
are:

• The inductor current x1 can be approximated by a first order harmonic
expansion with the same frequency as the input voltage.

• The dynamics of the output voltage x2 are much slower than the dynamics
of x1.

• The bias component or zero-order harmonic coefficient of x1 vanishes
quickly.

• The first-order harmonic coefficient of x1 which is in phase with the input
voltage is measurable.

The first three assumptions are close to the real situation in practice. Besides,
the saturation of the controller has been taken into account.

The analysis has been performed by means of a dynamical first-order har-
monic balance which allows us to convert the problem of studying the limit
cycles of the original system to the analysis of the equilibria of a new system.
The results of the harmonic balance predict, first of all, a saddle-node bifur-
cation of periodic orbits when the desired output voltage grows. The validity
of this prediction has been verified by means of simulations. The analysis also
detects a branch of limit cycles for the new model which is a reflection of a
complex behavior of the original system when the desired output voltage is
very high. This phenomenon is out of the scope of this paper.

The main advantage of the chosen analysis method is that, in spite of its
approximate nature, it easily yields good conclusions that have been verified
by simulations. In this way, a global perspective of the qualitative behaviour
modes of the system has been reached. This perspective allows a better under-
standing of the control problems of the power factor precompensator found
in practice.
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Summary.

In this paper we discuss recent results on stabilization by means of dis-
continuous feedback using a sampled closed loop system. Special emphasis
is put on requirements on the sampling rate needed in order to achieve
stability of the sampled closed loop system. In particular we focus on the
cases where stabilization is possible using a fixed positive sampling rate,
i.e. where the intersampling times do not tend to zero. A complete char-
acterization of these cases is given for systems with certain homogenity
properties.

9.1 Introduction

The problem of static state feedback stabilization of control systems is one
of the classical problems in mathematical control theory. Whereas for linear
control systems a well known result states that if a system is asymptotically
controllable then it also asymptotically stabilizable by a continuous static
state feedback (in fact, even by a linear one), this property fails to hold for
nonlinear systems. The well known work of Brockett [2] makes this statement
mathematically precise, and the recent survey [24] gives a good introduction
into the geometrical obstructions to continuous feedback stabilization.

Thus, looking for stabilizing static state feedback laws for many nonlinear
systems it is inevitable to consider also discontinuous feedback laws. This,
however, causes a number of problems both in the theoretical analysis (due
to the possible lack of uniqueness of trajectories) as well as in the practi-
cal implementation. A reasonable solution concept for systems controlled by
discontinuous feedbacks is the idea of sampling: For a given sequence of in-
creasing times (the “sampling times”) one evaluates the feedback law at each
of these sampling times and uses the resulting control value as a (constant)
control up to the next sampling time. Continuing iteratively, it is not difficult
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to see that the usual assumptions on the right hand side of the control sys-
tem indeed guarantee existence and uniqueness for this sampled trajectory.
A slightly more specific concept is the notion of discrete feedback introduced
in [7]: Here also sampled trajectories are considered, but instead of using ar-
bitrary sequences of sampling times, here the intersampling times are fixed
in advance, possibly depending on the state. Thus the resulting closed loop
system is essentially equivalent to a discrete time system.

The concept of sampling is known for quite a while and also used in the con-
text of stabilization, see e.g. [11, 12, 22], but only recently it was observed
that for general nonlinear systems asymptotic stabilizability by sampled feed-
back laws is equivalent to asymptotic controllability [4]. However, one has to
be careful in the definition of the behaviour of sampled systems: Although
it is immediate that for each sequence of sampling times we obtain a unique
trajectory, the asymptotic behaviour of this trajectory may strongly depend
on the choice of the sampling rate (i.e. the maximal time allowed between
two discrete sampling times) The general equivalence result mentioned above,
for instance, is only true if we consider sampling rates tending to 0. Thus, it
may be interpreted either as a practical stability result for fixed positive sam-
pling rate, or as “real” stability for all possible limit trajectories for vanishing
sampling rates. These, however, will in general not be unique.

In the present paper, we discuss recent results on sampled and discrete sta-
bility where special emphasis is put on requirements on the sampling rate
needed in order to achieve stability of the sampled closed loop system. In
particular we formulate the stability properties under consideration always
as stability with positive sampling rate, thus describing the system behaviour
of individual sampled trajectories rather than limits of trajectories with van-
ishing sampling rates. Using this approach we attempt to give a suitable
mathematical description for implementations of sampled feedback e.g. using
some digital controller, in which arbitrary small sampling rates in general will
not be realizable. In fact, the investigation of the effect of different sampling
rates is interesting not only for discontinuous feedback laws, since in practice
also continuous laws are often implemented in a sampled way using digital
controllers, and hence essentially the same problems occur.

For general nonlinear systems, a complete characterization of stabilizability
with positive sampling rate has not yet been developed. Such a character-
ization is, however, possible for nonlinear systems with certain homogenity
properties, and will be presented and illustrated in this paper.

For simplicity, here we will only deal with global or semi-global phenomena,
however, the concepts can be transferred also to the case where stabilizability
is only possible from a proper subset of the state space. Concerning the proofs
of the results to be presented, instead of giving all the technical details (for
which we will refer to the appropriate literature) we restrict ourselves to the
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main arguments hoping that this allows the reader to get some insight into
the problems without being bothered by too much technicalities.

9.2 Setup and definitions

We consider nonlinear control systems of the form

ẋ(t) = f(x(t), u(t)) (9.1)

where u(·) ∈ U := {u : R → U , measurable and locally essentially bounded},
U ⊆ Rm , 0 ∈ U , f : Rd × U → Rd , f(0, 0) = 0 and f is supposed to be
continuous in both variables and Lipschitz in x for each u ∈ U .

For all t ≥ 0 for which the (unique) open loop trajectory of (9.1) exists for
some initial x0 ∈ Rd , some control function u(·) ∈ U , and initial time t0 = 0
we denote it by x(t, x0, u(·)).
In order to characterize asymptotic behaviour at the origin, recall that a
function α : [0,∞) → [0,∞) is called of class K, if it satisfies α(0) = 0 and is
continuous and strictly increasing (and class K∞ if it is unbounded), and a
continuous function β : [0,∞)2 → [0,∞) is called of class KL, if it is of class
K in the first argument and decreasing to zero in the second variable.

Using this definition we are now able to characterize asymptotic controllabil-
ity.

Definition 9.2.1. System (9.1) is called asymptotically controllable (to the
origin) if there exists a class KL function β such that for each x0 ∈ Rd there
exists ux0(·) ∈ U with

‖x(t, x0, ux0(·))‖ ≤ β(‖x0‖, t) for all t ≥ 0,

and it is called asymptotically controllable with finite controls if it is asymp-
totically controllable and there exists an open set N 3 0 and a constant C > 0
such that for all x0 ∈ N the control ux0(·) from above can be chosen with
‖ux0(·)‖∞ < C.

Note that sometimes the definition of asymptotic controllability already in-
cludes finite controls, e.g. in [4, 24]. Here we do not necessarily demand this
technical property, since for certain results we can do without it.

An important tool in the stability analysis is the control Lyapunov function
as given by the following definition.

Definition 9.2.2. A continuous function V : Rd → [0,∞) is called a control
Lyapunov function, if it is positive definite (i.e. V (0) = 0 iff V = 0), proper
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(i.e. V (x) → ∞ as ‖x‖ → ∞), and there exists a continuous and positive
definite function W : Rd → [0,∞) such that for each bounded subset G ⊂ Rd

there exists a compact subset UG ⊂ U with

min
v∈cof(x,UG)

DV (x; v) ≤ −W (x) for all x ∈ G.

Here DV (x; v) denotes the lower directional derivative

DV (x; v) := lim inf
t↘0,v′→v

1
t

(V (x + tv′) − V (x)) ,

f(x, UG) := {f(x, u) |u ∈ UG}, and cof(x, UG) denotes the convex hull of
f(x, UG).

It is a well known result in control theory that system (9.1) admits a control
Lyapunov functions if and only if it is asymptotically controllable with finite
controls.

Finally, we introduce the concepts of sampled and discrete feedback control.

Definition 9.2.3. (i) A sampled feedback law is is a (possibly discontinu-
ous) map F : Rd → U with supx∈K ‖F (x)‖ < ∞ for all compact K ⊂ R

d

which is applied the following way:
An infinite sequence π = (ti)i∈N0 of times satisfying

0 = t0 < t1 < t2 < . . . and ti → ∞ as i → ∞

is called a sampling schedule. The values

ti, ∆ti := ti+1 − ti, and d(π) := sup
i∈N0

∆ti

are called the sampling times, intersampling times, and sampling rate, respec-
tively. For any sampling schedule π the corresponding sampled or π-trajectory
xπ(t, x0, F ) with initial value x0 ∈ R

d at initial time t0 = 0 is defined induc-
tively by

xπ(t, x0, F ) = x(t − ti, xi, F (xi)), for all t ∈ [ti, ti+1], i ∈ N0

where xi = xπ(ti, x0, F ) and x(t, xi, F (xi)) denotes the (open loop) trajectory
of (9.1) with constant control value F (xi) and initial value xi.

(ii) A discrete feedback law is a sampled feedback law together with a (possibly
state dependent) time step h(x) > 0, x ∈ Rd with infx∈K h(x) > 0 for each
compact set K 63 0, which for each initial value x0 ∈ Rd is applied using
sampling schedules π satisfying ∆ti = h(xi). We denote the corresponding
trajectories by xh(ti, x0, F ).
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Observe that uniqueness of the π-trajectories for sampled and discrete feed-
backs (on their maximal intervals of existence) follows immediately from the
definition also for discontinuous feedback maps F .

The sampling schedules specified in the definition of the discrete feedback
are uniquely determined by the initial value. The name “discrete feed-
back” origins from the fact that the resulting sampled closed loop sys-
tem is in one-to-one correspondence to the discrete time system given by
xi+1 = x(h(xi), xi, F (xi)). The discrete feedback concept is particularly use-
ful when numerical methods involving discretization of trajectories are used
for feedback design, since in this situation the time step h can correspond to
some numerical discretization parameter, cp. [7].

9.3 Stability concepts for sampled systems

In this section we introduce and discuss appropriate (asymptotic) stability
concepts for nonlinear control systems with sampled and discrete feedback. In
contrast to the classical case, here we have an additional parameter, namely
the sampling rate, which we take into account in our definition.

Definition 9.3.1. We call the sampled closed loop system from Definition
9.2.3(i)
(i) semi-globally practically stable with positive sampling rate, if there exists
a class KL function β such that for each open set B ⊂ Rn and each compact
set K ⊂ Rn satisfying 0 ∈ B ⊂ K there exists ∆t > 0 such that

xπ(t, x0, F ) 6∈ B ⇒ ‖xπ(t, x0, F )‖ ≤ β(‖x0‖, t)
for all t ≥ 0, all x0 ∈ K and all π with d(π) ≤ ∆t,
(ii) semi-globally stable with positive sampling rate, if (i) holds and the
sampling rate ∆t > 0 can be chosen independently of B,
(iii) globally practically stable with positive sampling rate if (i) holds and
the sampling rate ∆t > 0 can be chosen independently of K,
(iv) globally stable with positive sampling rate if (i) holds and the sampling
rate ∆t > 0 can be chosen independently of K and B.

We call the stability in (i)–(iv) exponential if the function β satisfies

β(‖x0‖, t) ≤ Ce−σt‖x0‖
for constants C, σ > 0 which may depend on K, and uniformly exponential
if C, σ > 0 can be chosen independently of K.

Note that each of the concepts (ii)–(iv) implies (i) which is exactly the s-
stability property as defined in [4], cf. also [24, Sections 3.1 and 5.1]. In partic-
ular, any of these concepts implies global stability for the (possibly nonunique)
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limiting trajectories as h → 0. The difference “only” lies in the performance
with positive sampling rate. From the applications point of view, however,
this is an important issue, since e.g. for an implementation of a feedback us-
ing some digital controller arbitrary small sampling rates in general will not
be realizable. Furthermore if the sampling rate tends to zero the resulting
stability may be sensitive to measurement errors, if the feedback is based on
a non-smooth control Lyapunov function, see [17, 24]. In contrast to this it is
quite straightforward to see that for a fixed sampling rate the stability is in
fact robust to small errors in the state measurement (small, of course, relative
to the norm of the current state of the system) if there exists a corresponding
Lipschitz continuous control Lyapunov function, cf. [24, Theorem E].

Analogously, we define the corresponding concepts for systems controlled by
discrete feedback.

Definition 9.3.2. We call the discrete feedback controlled system from Def-
inition 9.2.3(ii)
(i) semi-globally practically stable with positive sampling rate, if there exists
a class KL function β such that

‖xh(t, x0, F )‖ ≤ β(‖x0‖, t)

for all x0 ∈ Rd ,
(ii) semi-globally stable with positive sampling rate, if (i) holds and the time
step h satisfies infx∈K h(x) > 0 for all compact sets K ⊂ Rd ,
(iii) globally practically stable with positive sampling rate if (i) holds and
the time step h satisfies infx 6∈B h(x) > 0 for all open sets B ⊂ Rd with 0 ∈ B,
(iv) globally stable with positive sampling rate if (i) holds and the time step
h satisfies infx∈Rd h(x) > 0.

Again, we call the stability in (i)–(iv) exponential if β satisfies

β(‖x0‖, t) ≤ Ce−σt‖x0‖

for constants C, σ > 0 which may depend on K, and uniformly exponential
if C, σ > 0 can be chosen independently of K.

In fact, it is not difficult to see that the following implications hold.

Proposition 9.3.1. Each of the sampled stability concepts from Definition
9.3.1(i)–(iv) implies the corresponding discrete stability concept from Defini-
tion 9.3.2(i)–(iv).

Proof. We show the implication Definition 9.3.1(i) ⇒ Definition 9.3.2(i), the
other implications follow similarly.
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Assume Definition 9.3.1(i) holds for some class KL function β. Consider a
sequence of compact sets (Ki)i∈N with Ki ⊂ Ki+1 and

⋃
i∈NKi = Rd , and

a sequence of open sets (Bi)i∈N with Bi+1 ⊂ Bi and
⋂

i∈NBi = {0}, such
that B1 ⊂ K1. For each pair Ki and Bi, i ∈ N denote by τi > 0 the value
∆t from the assumption. Now for each point x ∈ Rd we pick the minimal
index i(x) ∈ N such that x ∈ Ki(x) \ Bi(x) and define the time step h via
h(x) := τi(x).

Then from the construction of h and the assumption it follows that

‖xh(t, x0, F )‖ ≤ β(‖x0‖, 0) for all t ≥ 0. (9.2)

Furthermore we can conclude that for each i ∈ N there exists times ti > 0
and Ti > 0 with

xh(t, x0, F ) ∈ Bi+1 for all x0 ∈ Bi, t ≥ ti

and

xh(t, x0, F ) ∈ Ki−1 for all x0 ∈ Ki, t ≥ Ti.

Using the assumption and these two properties by induction it follows that
there exist times si > 0 such that

xh(t, x0, F ) ∈ Bi for all x0 ∈ Ki \ Ki−1, t ≥ si.

which, together with (9.2) implies the existence of the desired class KL func-
tion (which, however, in general will not coincide with the original β.)

It is an open question whether the converse implications also hold. The only
exception is the case of semi-global practical stability where the following
(much stronger) theorem holds, whose main statement goes back to [4].

Theorem 9.3.1. Consider the system (9.1). Then the following properties
are equivalent
(i) The system is asymptotically controllable with finite controls
(ii) There exists a feedback F such that the sampled closed loop system is
semi-globally practically stable with positive sampling rate
(iii) There esists a feedback F and a time step h such that the discrete feed-
back controlled system system is semi-globally practically stable with positive
sampling rate

Sketch of Proof. “(ii) ⇒ (iii)” follows from Proposition 9.3.1, “(iii) ⇒ (i)” is
immediately clear.

We sketch the basic idea of the proof of “(i) ⇒ (ii)”, for a detailled proof
see [4]. From [23] asymptotic controllability with finite controls implies the
existence of a continuous control Lyapunov function V0.
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For a positive parameter β > 0 we consider the approximation of V0 by the
(quadratic) inf-convolution

Vβ(x) = inf
y∈Rd

{
V0(y) +

‖x − y‖2

2β2

}

For each x ∈ R
d we denote by yβ(x) a point realizing the minimum on the

right hand side of this definition, and define

ζβ(x) :=
x − yβ(x)

2β2
.

Then a straightforward but technical calculation shows that with F defined
by

〈ζβ(x), f(x, F (x))〉 = inf
u∈UG

〈ζβ(x), f(x, u)〉

we obtain

Vβ(x(τ, x0, F (x0)) − Vβ(x) ≤ −τW (x0) + ωβ(x0)τ + C(x0)
τ2

β2
(9.3)

where ωβ(x0) → 0 as β → 0, ωβ depends on β and on the modulus of conti-
nuity of V in x0, and C(x0) > 0 is a suitable constant essentially depending
on |f(x0, F (x0))| (in fact, behind this estimate lies the theory of proximal
sub- and supergradients, see e.g. [3] for an exposition).

By a compactness argument now on each ring

R = {x ∈ R
d | 0 < α1 ≤ ‖x‖ ≤ α2}

we can formulate inequality (9.3) uniformly for x0 ∈ R, which for β > 0 and
τ > 0 sufficiently small implies that on R the function Vβ is a control Lya-
punov function which decreases along x(t, x0, F (x0)) for t ∈ [0, τ ]. Choosing
a growing family of rings Ri ⊂ Ri+1 covering Rd \ {0} and carefully (and
rather technically) “gluing” the feedback together on ∂Ri finally yields the
assertion.

This result in fact states that a stabilizing sampled feedback can always be
found under the assumption of asymptotic controllabilty, provided we allow
vanishing sampling rates. The question we want to address in the remaining
sections is whether one can give conditions under which (sampled or discrete)
stability with some fixed positive sampling rate can be achieved. Looking at
the Proof of Theorem 9.3.1, one sees that the regularity of V plays a crucial
role in estimate (9.3) (via the function ω) and hence in the choice of the
time step τ . Thus one might conjecture that certain regularity properties
of the corresponding control Lyapunov function could serve as a sufficient
condition. However, the example discussed in the next section shows that
even the existence of a C∞ control Lapunov function does not necessarily
help.
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9.4 A counterexample to stabilizability with positive
sampling rate

In this section we briefly discuss an example where stability by discrete or
sampled feedback with positive sampling rate is not possible. Consider the
system

ṙ = r(θ − u)2 − r2

θ̇ = 1

written in polar coordinates r ∈ [0,∞), θ ∈ [0, 2π), with U = R.

Obviously the (classical) feedback F (r, θ) = θ stabilizes this system.

However, considering the ball B1 := {(θ, r) | θ ∈ [0, 2π), r ∈ [0, 1)} and fixing
some arbitrary h > 0 it is easily seen that any trajectory with initial value
(θ0, r0) ∈ B1 which stays in B1 for t ∈ [0, h] satisfies

‖r(t, r0, u)‖ ≥ C1r0 for all u ∈ U, t ∈ [0, h] (9.4)

for suitable some C1 > 0. Moreover, there exist constants u0 > 0 and C2 > 0
such that

‖r(t, r0, u)‖ ≤ C2r0 for all |u| < u0, t ∈ [0, h] (9.5)

and

‖r(t, r0, u)‖ ≥ r0 + tC1r0 for all |u| ≥ u0, t ∈ [0, h]. (9.6)

Thus for each u ∈ U with |u| < u0 from (9.4) and (9.5) we can conclude

r(h, (r0, θ0), u) − r0 ≥
∫ h

0

(θ0 + τ − u)2C1r0 − C2
2r2

0dτ

=
(

(θ0 − u)2h + (θ0 − u)h2 +
h3

3

)
C1r0 − hC2

2r2
0

≥ h3

12
C1r0 − hC2

2r2
0

for all trajectories with r(t, (r0, θ0), u) ∈ B1 for all t ∈ [0, h] where for the last
inequality we used that the minimum in u ∈ U is attained for u = h/2 + θ0.

From this estimate and inequality (9.6) we can finally conclude that any
sampled closed loop trajectory with intersampling times ∆ti ≥ h with
(θ0, r0) ∈ Bε(0) := {(θ, r) | θ ∈ [0, 2π), r ∈ [0, ε)} leaves Bε(0) in finite time
for each ε < min{1, C1h

2/(12C2
2 )}, and consequently neither sampled nor

discrete stability with positive sampling rate are possible.

We finally note that the function V (r, θ) = r2 is a C∞ control Lyapunov func-
tion for this system, and that the vector field is C∞, hence these regularity
properties do not imply stabilizability with positive sampling rate.
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9.5 Homogeneous systems

In this section we summarize results from [10] which show that for homoge-
neous systems the stabilizability properties with positive sampling rate can
be fully determined just by looking at the degree of the system. Stabilization
of fig4-sch systems has already been investigated by a number of authors, see
e.g. [14, 15, 16, 19, 20, 21, 25].

Let us start by defining what we mean by a “homogeneous system”. Here
we slightly relax the Lipschitz condition on the vector field f and do only
assume Lipschitz continuity in x ∈ Rd \ {0}.

Definition 9.5.1. We call system (9.1) homogeneous if there exist

ri > 0, i = 1, . . . , d, sj > 0, j = 1, . . . , m

and τ ∈ (−mini ri,∞) such that

f(Λαx, ∆αu) = ατΛαf(x, u) for all u ∈ U, α ≥ 0 (9.7)

and {∆αu |u ∈ U} ⊂ U for all α > 0.

For compact U ⊂ Rm we call system (9.1) homogeneous-in-the-state if there
exist ri > 0, i = 1, . . . , d and τ ∈ (−mini ri,∞) such that

f(Λαx, u) = ατΛαf(x, u) for all u ∈ U, α ≥ 0 (9.8)

Here

Λα =




αr1 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0
0 . . . 0 αrd


 and ∆α =




αs1 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0
0 . . . 0 αsm




are called dilation matrices. With k = mini ri we denote the minimal power
(of the state dilation) and the value τ ∈ (−k,∞) is called the degree of the
system.

The core idea for the construction the stabilizing feedback here lies in finding
a homogeneous control Lyapunov function in order to apply the construction
of the proof of Theorem 9.3.1. This will first be accomplished for systems
homogeneous-in-the-state with a very simple structure, using similar ideas as
utilized for semilinear systems in [7, 8, 9]. Assume

f(αx, u) = αf(x, u) for all α > 0, u ∈ U (9.9)

In the notation of Definition 9.5.1 this system is homogeneous-in-the-state
with degree τ = 0 with respect to the so-called standard dilation Λα = α I.
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We assume furthermore that U ⊂ Rm is compact. Defining the exponential
growth rates

λt(x0, u(·)) :=
1
t

ln
‖x(t, x0, u(·))‖

‖x0‖
for each x0 6= 0 and each u(·) ∈ U it is easily seen from the homogenity
property that the system is asymptotically controllable if and only if there
exist T, σ > 0 such that for each x0 6= 0 there exists ux0(·) ∈ U with

λt(x0, ux0(·)) ≤ −σ < 0 (9.10)

for all x0 6= 0 and all all t ≥ T , cp. [10, Propositions 3.2 and 3.3]. (The idea
of considering exponential growth rates is strongly connected with — and in
fact inspired by — the spectral theory developed in [5, 6].)

Another easy consequence of this homogenity property is the fact that the
projection

s(t, s0, u(·)) :=
x(t, x0, u(·))

‖x(t, x0, u(·))‖ , s0 =
x0

‖x0‖
of (9.9) onto the unit sphere Sd−1 is well defined. A simple application of the
chain rule shows that s is the solution of

ṡ(t) = fS(s(t), u(t)), fS(s, u) = f(s, u) − 〈s, f(s, u)〉s
and that for s0 = x0/‖x0‖ the exponential growth rate λt satisfies

λt(x0, u(·)) = λt(s0, u(·)) =
1
t

∫ t

0

q(s(τ, s0, u(·)), u(τ))dτ

with q(s, u) = 〈s, f(s, u)〉. Thus defining the discounted integral

Jδ(s0, u(·)) :=
∫ ∞

0

e−δτq(s(τ, s0, u(·)), u(τ))dτ

and the corresponding optimal value function

vδ(s0) := inf
u(·)∈U

Jδ(s0, u(·))

from (9.10) and [9, Lemma 3.5(ii)] we obtain that if system (9.9) is asymp-
totically controllable then for each ρ ∈ (0, σ) there exists δρ > 0 such that
for all δ ∈ (0, δρ] and all s0 ∈ Sn−1 the inequality

δvδ(s0) < −ρ

holds. Note that vδ is Hölder continuous and bounded for each δ > 0,
cp. e.g. [1]. We now fix some ρ ∈ (0, σ) and some δ ∈ (0, δρ] and define
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V0(x) := e2vδ(x/‖x‖)‖x‖2.

Using Bellman’s Optimality Principle a straightforward (but tedious) com-
putation shows that the function V0 is a control Lyapunov function which is
homogeneous with degree τ = 1 with respect to the standard dilation and
satisfies

min
v∈cof(x,U)

DV0(x; v) ≤ −2ρV0(x),

cp. [10, Lemma 4.1].

Now we use this function as the starting point in the proof of Theorem 9.3.1,
and proceed analogously (for details see [10, Proposition 4.2]). Note that
Vβ inherits the homogenity properties of V0, thus F can be chosen to be
constant on rays of the form αx, α > 0, x ∈ R

d . Now we chose a ring R
containing Sd−1 and consider inequality (9.3) (with W (x) = 2ρV0(x)). Again
by a compactness argument, from this inequality we obtain

Vβ(x(τ, x0, F (x0)) − Vβ(x0) ≤ −τρV0(x0)

for some β > 0 and some τ0 > 0 sufficiently small, all τ ∈ [0, τ0] and all
x0 ∈ Sd−1. Then homogenity immediately implies this inequality for all x0 ∈
Rd and hence the resulting feedback law globally stabilizes system (9.9) with
positive sampling rate, in fact even uniformly exponentially.

This result can be carried over to the general homogeneous systems from
Definition 9.5.1, leading to the following theorem. Here the function N(x) is
given by

N(x) :=

(
d∑

i=1

x
p
ri

i

) 1
p

with p = 2
∏d

i=1 ri.

Theorem 9.5.1. Consider a homogeneous system according to Definition
9.5.1 with dilation matrices Λα and ∆α, minimal power k > 0, and degree
τ ∈ (−k,∞), and assume asymptotic controllability.

Then there exists a feedback law F : Rd → U satisfying F (x) ∈ ∆N(x)U0 for
some compact U0 ⊂ U and F (Λαx) = ∆αF (x) for all x ∈ Rd and all α ≥ 0
such that the corresponding sampled closed loop system is either
(i) semi-globally stable (if τ > 0), or
(ii) globally uniformly exponentially stable (if τ = 0), or
(iii) globally practically exponentially stable (if τ < 0)
with fixed sampling rate.

The analogous result holds for systems homogeneous-in-the-state; here F sat-
isfies F (x) ∈ U and F (Λαx) = F (x) for all x ∈ Rd and all α ≥ 0.
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Sketch of Proof. (See [10, Theorem 2.6 and 4.3] for a detailled proof.)
First observe that the function N satisfies N(Λαx) = αN(x). Hence if for
a homogeneous system we replace f by f(x, ∆N(x)u) we obtain a system
homogeneous-in-the-state. A straightforward application of the homogenity
yields that this system is asymptotically controllable with control values in
some compact set U0 ⊂ U if and only if the original homogeneous system
is asymptotically controllable, see [10, Proposition 6.1]; conversely if F sta-
bilizes the system homogeneous-in-the-state then ∆N(x)F (x) stabilizes the
original homogeneous system. Hence it suffices to show the theorem for sys-
tems homogeneous-in-the-state.

To this end consider the manifold N−1(1) := {x ∈ Rd |N(x) = 1}. Ob-
viously the function S(x) = x/‖x‖ gives a diffeomorphism from N−1(1)
to Sd−1. Thus the function Ψ(x) = N(x)kS(P (x)) with P (x) = Λ−1

N(x)x

is a continuous cordinate transformation with continuous inverse (both are
also differentiable except possibly at the origin), and replacing f(x, u) by
DΨ(Ψ−1(x))f(Ψ−1(x), u) we obtain a system which is homogeneous in the
state with respect to the standard dilation and with degree γ = τ/k. Replac-
ing further f(x, u) by f(x, u)‖x‖−γ — i.e. applying a time transformation
— we end up with a system of type (9.9) for which the stabilizing feed-
back based on the control Lyapunov function Vβ has been constructed above.
Re-translating this to the general system we first have to remove the time
transformation which essentially depends on the sign of degree of the system.
This affects the sampling rates and thus leads to the three different cases
(i), (ii) and (iii). Since the space transformation does not affect the stability
properties of the sampled closed loop system we obtain the assertion.

Note that the numerical methods from [7] are easily transferred to the ho-
mogeneous case, thus they give a possibility to compute stabilizing discrete
feedbacks numerically. See the next section for examples.

Observe that the stabilizing homogeneous feedback corresponds to a ho-
mogeneous control Lyapunov function obtained by applying the coordinate
transformation Ψ−1 to Vβ . This may be used to transfer these results to
local results for systems approximated by homogeneous systems, similar to
[13, 16, 18].

Furthermore, note that even if a homogeneous system admits a stabilizing
continuous static state feedback law, a stabilizing continuous and homoge-
neous static state feedback for does not exist in general, cp. [21]. One way
to overcome the non-homogenity is by using dynamic feedbacks, see [14], the
above theorem in fact shows that discontinuous feedbacks provide another
way.

If we assume Lipschitz continuity of the homogeneous system in the orogin
we immediately obtain τ ≥ 0, and thus at least semi-global stabilizability. If
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we assume global Lipschitz continuity (i.e. the existence of a global Lipschitz
constant) this implies τ = 0 and thus even global stabilizability.

9.6 Examples

Let us now illustrate our results by two examples. The first example, given
by the vector field

f(x, u) =
(

x1 + u
3x2 + x1u

2

)
(9.11)

for x = (x1, x2)T ∈ R2 , u ∈ U = R, is taken from [21] where it has been shown
that a stabilizing continuous and homogeneous feedback law cannot exist for
this system. The vector field f is homogeneous with Λα = diag(α, α3) and
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Fig. 9.1. Trajectories for stabilized system (9.11)

∆α = α. Thus we obtain N(x) = (x6
1 +x2

2)1/6. For system (9.11) a stabilizing
discrete feedback has been computed numerically using the techniques from
[7] extended to the general homogeneous case. Analyzing the switching curves
of the numerical feedback in this case it was easy to derive the feedback

F (x) =
{

N(x), x1 ≤ −x3
2

−N(x), x1 > −x3
2
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stabilizing the sampled system for all sufficiently small sampling rates. Figure
9.1 shows the corresponding (numerically simulated) sampled trajectories
for some initial values, here the intersampling times have been chosen as
∆ti = 0.01 for all i ∈ N0 .

The second example is the nonholonomic integrator given by Brockett [2]
as an example for a system being asymptotically null controllable but not
stabilizable by a continuous feedback law. In suitable coordinates (cf. [24],
where also the physical meaning is discussed) it is given by the vector field

f(x, u) =


 u1

u2

x1u2


 (9.12)

for x = (x1, x2, x3)T ∈ R3 , u = (u1, u2)T ∈ U = R2 . For this f we obtain
homogenity with Λα = diag(α, α, α2) and ∆α = diag(α, α), hence N(x) =
(x4

1+x4
2+x2

3)
1/4. Again a stabilizing discrete feedback law has been computed

numerically.

Also in this example it should be possible to derive an explicit formula from
the numerical results. This is, however, considerably more complicated, since
a number of switching surfaces have to be identified. Hence we directly used
the numerically computed feedback for the simulation shown in the Figures
9.2–9.4 in different projections; the time step is h ≡ 0.01, the controlvalues
were chosen as U0 = {−1, 1}.
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Fig. 9.2. Trajectories for stabilized system (9.12), projected to the (x1, x2) plane
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Fig. 9.3. Trajectories for stabilized system (9.12), projected to the (x1, x3) plane
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Fig. 9.4. Trajectories for stabilized system (9.12), projected to the (x2, x3) plane

Summary:

In this paper we discussed the stabilization of systems with sampled and
discrete feedback. Whereas this is always possible provided the system un-
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der consideration is asymptotically controllable, in general it can only be
achieved by using vanishing intersampling times close to the origin, or far
away from it. This fact is illustrated by an example. For general vector fields
conditions ensuring sampled or discrete stabilizability with positive sampling
rate are still unknown. For homogeneous systems, however, this property can
be completely characterized by the degree of homogenity of the system. Two
examples of stabilized homogeneous systems illustrate this fact.
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Summary.

In this paper we study the tracking problem for the class of nonholo-
nomic systems in chained-form. In particular, with the first and the last
state component of the chained-form as measurable output signals, we
suggest a solution for the tracking problem using output feedback by com-
bining a time-varying state feedback controller with an observer for the
chained-form system. For the stability analysis of the “certainty equiva-
lence type” of controller we use a cascaded systems approach. The resulting
closed loop system is globally K-exponentially stable.

10.1 Introduction

In recent years a lot of interest has been devoted to (mainly) stabilization and
tracking of nonholonomic dynamic systems, see e. g. [1, 6, 8, 15, 17]. One of
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the reasons for the attention is the lack of a continuous static state feedback
control since Brockett’s necessary condition for smooth stabilization is not
met, see [3]. The proposed solutions to this problem follow mainly two routes,
namely discontinuous and/or time-varying control. For a good overview, see
the survey paper [12] and the references therein.

It is well known that the kinematic model of several nonholonomic systems
can be transformed into a chained-form system. The global tracking problem
for chained-form systems has recently been addressed in [4, 6, 7, 8, 17, 20].
In this paper we consider the tracking problem for chained form systems by
means of output feedback, where we consider as output the first and last state
component of the chained-form. To our knowledge, this problem has only
been addressed in [9] where a backstepping approach is used. Our results are
based on the construction of a linear time varying state feedback controller
in combination with an observer. However, the stability analysis and design
are based on results for (time-varying) cascaded systems [18]. In the design
we divide the chained-form into a cascade of two sub-systems which we can
stabilize independently of each other, and furthermore a similar partition into
cascaded systems can be done for the controller-observer combination, where
the same stability results apply. Regarding the latter part, similar ideas were
recently presented for the combination of high-gain controllers and high-gain
observer for a class of triangular nonlinear systems [2], see also [13].

The organization of the paper is as follows. Section 10.2 contains some defini-
tions, preliminary results and the problem formulation. Section 10.3 addresses
the tracking problem based on time-varying state feedback and in section 10.4
we design an exponentially convergent observer for the chained-form system.
In section 10.5 we combine the control law from section 10.3 with the observer
from section 10.4 in a “certainty equivalence” sense. This yields a globally
K-exponentially stable closed loop system under the condition of persistently
exciting reference trajectories. Finally, section 10.6 concludes the paper.

10.2 Preliminaries and problem formulation

In this section we introduce the definitions and theorems used in the remain-
der of this paper and formulate the problem under consideration. We start
with some basic stability concepts in 10.2.1, present a result for cascaded
systems in 10.2.2 and recall some basic results from linear systems theory in
10.2.3. We conclude this section with the problem formulation in 10.2.4.

10.2.1 Stability

To start with, we recall some basic concepts (see e. g. [11, 23]).
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Definition 10.2.1. A continuous function α : [0, a) → [0,∞) is said to
belong to class K if it is strictly increasing and α(0) = 0.

Definition 10.2.2. A continuous function β : [0, a)×[0,∞) → [0,∞) is said
to belong to class KL if, for each fixed s, the mapping β(r, s) belongs to class
K with respect to r and, for each fixed r, the mapping β(r, s) is decreasing
with respect to s and β(r, s) → 0 as s → ∞.

Consider the system

ẋ = f(t, x), f(t, 0) = 0 ∀t ≥ 0 (10.1)

with x ∈ IRn and f(t, x) piecewise continuous in t and locally Lipschitz in x.

Definition 10.2.3. The system (10.1) is uniformly stable if for each ε > 0
there is δ = δ(ε) > 0, independent of t0, such that

‖x(t0)‖ < δ ⇒ ‖x(t)‖ < ε, ∀t ≥ t0 ≥ 0.

Definition 10.2.4. The system (10.1) is globally uniformly asymptotically
stable
(GUAS) if it is uniformly stable and globally attractive, that is, there exists
a class KL function β(·, ·) such that for every initial state x(t0):

‖x(t)‖ ≤ β(‖x(t0)‖, t − t0), ∀t ≥ t0 ≥ 0

Definition 10.2.5. The system (10.1) is globally exponentially stable (GES)
if there exist k > 0 and γ > 0 such that for any initial state

‖x(t)‖ ≤ ‖x(t0)‖k exp[−γ(t − t0)].

A slightly weaker notion of exponential stability is the following (cf. [21])

Definition 10.2.6. We call the system (10.1) globally K-exponentially sta-
ble if there exist γ > 0 and a class K function κ(·) such that

‖x(t)‖ ≤ κ(‖x(t0)‖) exp[−γ(t − t0)] (10.2)

Definition 10.2.7. We call the (locally integrable) vector-valued function

w(t) = [w1(t), . . . , wn(t)]T

persistently exciting if there exist δ, ε1, ε2 > 0 such that for all t > 0:

ε1I ≤
∫ t+δ

t

w(τ)w(τ)T dτ ≤ ε2I



186 10. Linear controllers for tracking chained-form systems

10.2.2 Cascaded systems

Consider the system{
ż1 = f1(t, z1) + g(t, z1, z2)z2

ż2 = f2(t, z2)
(10.3)

where z1 ∈ IRn, z2 ∈ IRm, f1(t, z1) is continuously differentiable in (t, z1) and
f2(t, z2), g(t, z1, z2) are continuous in their arguments, and locally Lipschitz
in z2 and (z1, z2) respectively.

We can view the system (10.3) as the system

Σ1 : ż1 = f1(t, z1)

that is perturbed by the state of the system

Σ2 : ż2 = f2(t, z2).

When Σ2 is asymptotically stable, we have that z2 tends to zero, which means
that the z1 dynamics in (10.3) asymptotically reduces to Σ1. Therefore, we
can hope that asymptotic stability of both Σ1 and Σ2 implies asymptotic
stability of (10.3).

Unfortunately, this is not true in general. However, from the proof presented
in [18] it can be concluded that:

Theorem 10.2.1 (based on [18]). The cascaded system (10.3) is GUAS
if the following three assumptions hold:

• assumption on Σ1: the system ż1 = f1(t, z1) is GUAS and there exists a
continuously differentiable function V (t, z1) : IR+ × IRn → IR that satisfies

W (z1) ≤ V (t, z1), (10.4)
∂V

∂t
+

∂V

∂z1
· f1(t, z1) ≤ 0, ∀‖z1‖ ≥ η, (10.5)∥∥∥∥ ∂V

∂z1

∥∥∥∥ ‖z1‖ ≤ cV (t, z1), ∀‖z1‖ ≥ η, (10.6)

where W (z1) is a positive definite proper function and c > 0 and η > 0 are
constants,

• assumption on the interconnection: the function g(t, z1, z2) satisfies for all
t ≥ t0:

‖g(t, z1, z2)‖ ≤ θ1(‖z2‖) + θ2(‖z2‖)‖z1‖,
where θ1, θ2 : IR+ → IR+ are continuous functions,
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• assumption on Σ2: the system ż2 = f2(t, z2) is GUAS and for all t0 ≥ 0:∫ ∞

t0

‖z2(t0, t, z2(t0))‖dt ≤ κ(‖z2(t0)‖),

where the function κ(·) is a class K function,

Remark 10.2.1. Notice that the assumption on Σ1 is slightly weaker than the
one presented in [18]. However, under the assumption mentioned above the
result can still be shown to be true by (almost) exactly copying the proof
presented in [18].

Lemma 10.2.1 (see [17]). If in addition to the assumptions in Theo-
rem 10.2.1 both ż1 = f1(t, z1) and ż2 = f2(t, z2) are globally K-exponentially
stable, then the cascaded system (10.3) is globally K-exponentially stable.

10.2.3 Linear time-varying systems

Consider the linear time-varying system

ẋ(t) = A(t)x(t) + Bu(t)
y(t) = Cx(t) (10.7)

and let Φ(t, t0) denote the state-transition matrix for the system ẋ = A(t)x.
We recall some results from linear control theory (cf. [10, 19]).

Definition 10.2.8. The pair (A(t), B) is uniformly controllable if there exist
δ, ε1, ε2 > 0 such that for all t > 0:

ε1I ≤
∫ t+δ

t

Φ(t, τ)BBT ΦT (t, τ)dτ ≤ ε2I

Definition 10.2.9. The pair (A(t), C) is uniformly observable if there exist
δ, ε1, ε2 > 0 such that for all t > 0:

ε1I ≤
∫ t

t−δ

ΦT (τ, t − δ)CT CΦ(τ, t − δ)dτ ≤ ε2I

From linear systems theory several methods are available to exponentially
stabilize the linear time-varying system (10.7) via state or output feedback,
in case the pairs (A(t), B) and (A(t), C) are uniformly controllable and ob-
servable respectively (cf. [19]):
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Theorem 10.2.2. Suppose that the system (10.7) is uniformly controllable
and define for α > 0

Wα(t, t + δ) =
∫ t+δ

t

2e4α(t−τ)Φ(t, τ)BBT ΦT (t, τ)dτ (10.8)

Then given any constant α the state feedback u(t) = Kα(t)x(t) where

Kα(t) = −BT W−1
α (t, t + δ) (10.9)

is such that the resulting closed-loop state equation is uniformly exponentially
stable with rate α.

Theorem 10.2.3. Suppose that the system (10.7) is uniformly controllable
and uniformly observable and define for α > 0

Mα(t − δ, t) =
∫ t

t−δ

2e4α(τ−t)ΦT (τ, t − δ)CT CΦ(τ, t − δ)dτ

Then given α > 0, for any η > 0 the linear dynamic output feedback

u(t) = Kα+η(t)x̂(t)
˙̂x(t) = A(t)x̂(t) + Bu(t) + Hα+η(t)[y(t) − ŷ(t)], x̂(t0) = x̂0

ŷ(t) = Cx̂(t)

with feedback and observer gains

Kα+η(t) = −BT W−1
α+η(t, t + δ)

Hα+η(t) =
[
ΦT (t − δ, t)Mα+η(t − δ, t)Φ(t − δ, t)

]−1
CT (10.10)

is such that the closed-loop state equation is uniformly exponentially stable
with rate α.

10.2.4 Problem formulation

The class of chained-form nonholonomic systems we study in this paper is
given by the following equations

ẋ1 = u1

ẋ2 = u2

ẋ3 = x2u1 (10.11)
...

ẋn = xn−1u1
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where x = (x1, . . . , xn) is the state, u1 and u2 are control inputs.

Consider the problem of tracking a reference trajectory (xr, ur) generated by
the chained-form system:

ẋ1,r = u1,r

ẋ2,r = u2,r

ẋ3,r = x2,ru1,r (10.12)
...

ẋn,r = xn−1,ru1,r

where we assume u1,r(t) to u2,r(t) be continuous functions of time. This ref-
erence trajectory can be generated by any of the motion planning techniques
available from the literature.

When we define the tracking error xe = x − xr we obtain as tracking error
dynamics

ẋ1,e = u1 − u1,r = u1 − u1,r

ẋ2,e = u2 − u2,r = u2 − u2,r

ẋ3,e = x2u1 − x2,ru1,r = x2,eu1,r + x2(u1 − u1,r)
...

...
ẋn,e = xn−1u1 − xn−1,ru1,r = xn−1,eu1,r + xn−1(u1 − u1,r)

(10.13)

The state feedback tracking control problem then can be formulated as

Problem 10.2.1 (State feedback tracking control problem). Find ap-
propriate state feedback laws u1 and u2 of the form

u1 = u1(t, x, xr , ur) and u2 = u2(t, x, xr , ur) (10.14)

such that the closed-loop trajectories of (10.13,10.14) are globally uniformly
asymtotically stable.

Consider the system (10.11) with output

y =
[

x1

xn

]
(10.15)

then it is easy to show (see e. g. [1]) that the system (10.11) with output
(10.15) is locally observable at any x ∈ IRn. Clearly, this is the minimal
number of state components we need to know for solving the output-feedbacl
tracking problem.

Now we can formulate the output feedback tracking problem as
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Problem 10.2.2 (Output feedback tracking control problem). Find
appropriate control laws u1 and u2 of the form

u1 = u1(t, x̂, y, xr, ur) and u2 = u2(t, x̂, y, xr, ur) (10.16)

where x̂ is generated from an observer

˙̂x = f(t, x̂, y, xr, ur) (10.17)

such that the closed-loop trajectories of (10.13,10.16,10.17) are globally uni-
formly asymptotically stable.

10.3 The state feedback problem

The approach we use to solve our problem is based on the recently developed
studies on cascaded systems [5, 14, 16, 18, 22], and that of Theorem 10.2.1
in particular, since it deals with time-varying systems.

We search for a subsystem which, with a stabilizing control law, can be writ-
ten in the form ż2 = f2(t, z2) that is asymptotically stable. In the remaining
dynamics we can then replace the appearance of z2 by 0, leading to the sys-
tem ż1 = f1(t, z1). If this system is asymptotically stable we might be able
to conclude asymptotic stability of the overall system using Theorem 10.2.1.

Consider the tracking error dynamics (10.13). We can stabilize the x1,e dy-
namics by using the linear controller

u1 = u1,r − c1x1,e (10.18)

which yields GES for x1,e, provided c1 > 0.

If we now set x1,e equal to 0 in (10.13) we obtain

ẋ2,e = u2 − u2,r

ẋ3,e = x2,eu1,r (10.19)
...

ẋn,e = xn−1,eu1,r

where we used (10.18).

Notice that the system (10.19) is a linear time-varying system:
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ẋ2,e

ẋ3,e

ẋ4,e

...
ẋn,e




=




0 . . . . . . . . . 0

u1,r(t)
. . .

...

0 u1,r(t)
. . .

...
...

. . . . . . . . .
...

0 . . . 0 u1,r(t) 0




︸ ︷︷ ︸
A(t)




x2,e

x3,e

x4,e

...
xn,e




+




1

0

0
...
0




︸ ︷︷ ︸
B

(u2 − u2,r)

(10.20)

that can be made exponentially stable by means of the controller u(t) =
K(t)x(t) provided the system (10.20) is uniformly controllable (cf. Theo-
rem 10.2.2).

This observation leads to the following

Proposition 10.3.1. Assume that the reference trajectory (xr , ur) satisfying
(10.12) to be tracked by our chained form system is given. Define

wr(t, t0) =




1∫ t

t0

u1,r(τ)dτ(∫ t

t0

u1,r(τ)dτ

)2

...(∫ t

t0

u1,r(τ)dτ

)n−2




=




1

x1,r(t) − x1,r(t0)

(x1,r(t) − x1,r(t0))2

...

(x1,r(t) − x1,r(t0))n−2




and assume that there exist δ, ε1, ε2 > 0 such that for all t > 0:

ε1I ≤
∫ t+δ

t

wr(t, τ)wr(t, τ)T dτ ≤ ε2I. (10.21)

Consider the system (10.13) in closed-loop with the linear controller

u1 = u1,r − c1x1,e

u2 = u2,r + K(t)




x2,e

...
xn,e


 (10.22)

where c1 > 0 and K(t) is given by

K(t) = −[1 0 0 . . . 0]

[∫ t+δ

t

2e4α(t−τ)wr(t, τ)wr(t, τ)T dτ

]−1

(10.23)

with α > 0. If x2,r(t), . . . , xn−1,r(t) are bounded then the closed-loop system
(10.13,10.22) is globally K-exponentially stable.
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Proof. We can see the closed-loop system (10.13,10.22) as a system of the
form (10.3) where

z1 = [x2,e, . . . , xn,e]T (10.24)
z2 = x1,e (10.25)

f1(t, z1) = (A(t) − BK(t))z1 (10.26)
f2(t, z2) = −c1z2 (10.27)

g(t, z1, z2) = −c1[0, x2, x3, . . . , xn−1]T (10.28)

with

A(t) =




0 . . . . . . . . . 0

u1,r(t)
. . .

...

0
. . . . . .

...
...

. . .
. . .

. . .
...

0 . . . 0 u1,r(t) 0




B =




1

0
...
...
0




To be able to apply Theorem 10.2.1 we need to verify the three assumptions:

• assumption on Σ1: Due to the assumption (10.21) on u1,r(t) we have that
the system (10.20) is uniformly controllable (cf. Remark 10.3.2). Therefore,
from Theorem 10.2.2 we know that ż1 = f1(t, z1) is GES and therefore
GUAS. From converse Lyapunov theory (see e. g. [11]) the existence of a
suitable V is guaranteed.

• assumption on connecting term: Since x2,r, . . . , xn−1,r are bounded, we
have

‖g(t, z1, z2)‖ ≤ c1


‖




0
x2,r

...
xn−1,r


 ‖ + ‖




0
x2,e

...
xn−1,e


 ‖


 (10.29)

≤ c1M + c1‖x‖ (10.30)

• assumption on Σ2: Follows from GES of ẋ2 = −c1x2.

Therefore, we can conclude GUAS from Theorem 10.2.1. Since both Σ1 and
Σ2 are GES, Lemma 10.2.1 gives the desired result.

Remark 10.3.1. Notice that since

u1(t) = u1,r(t) − c1x1,e(t0) exp(−c1(t − t0))

the condition (10.21) on u1,r(t) is satisfied if and only if a similar condition
on u1(t) is satisfied (i.e. in which the r is omitted).
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Therefore, we can also see the closed-loop system (10.13,10.22) as a system
of the form (10.3) where

z1 = [x2,e, . . . , xn,e]T (10.31)
z2 = x1,e (10.32)

f1(t, z1) = (A(t) − BK(t))z1 (10.33)
f2(t, z2) = −c1z2 (10.34)

g(t, z1, z2) = −c1[0, x2,r, x3,r, . . . , xn−1,r]T (10.35)

with

A(t) =




0 . . . . . . . . . 0

u1(t)
. . .

...

0
. . . . . .

...
...

. . . . . . . . .
...

0 . . . 0 u1(t) 0




B =




1

0
...
...
0




Notice that we redefined A(t) and that correspondingly the connecting term
g(t, z1, z2) changed. When we modify our controller accordingly, i.e. redefine
K(t) in (10.22) as

K(t) = −[1 0 0 . . . 0]

[∫ t+δ

t

2e4α(t−τ)w(t, τ)w(t, τ)T dτ

]−1

(10.36)

with α > 0, where

w(t, t0) =




1∫ t

t0

u1(τ)dτ(∫ t

t0

u1(τ)dτ

)2

...(∫ t

t0

u1(τ)dτ

)n−2




=




1

x1(t) − x1(t0)

(x1(t) − x1(t0))2

...

(x1(t) − x1(t0))n−2




we can copy the proof.

Moreover, since the connecting term g(t, z1, z2) now can be bounded by a con-
stant, we can claim not only global K-exponential stability, but even GES.
However, the disadvantage of (10.36) in comparison to (10.23) is that it de-
pends on the state and therefore can not be determined a priori for a known
reference trajectory in contrast to (10.23).
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Remark 10.3.2. Notice that in general it is not easy to compute Φ(t, t0).
However, for the system (10.20) this turns out not to be too difficult, due to
the nice and simple structure of the matrix A(t). We find:

Φ(t, t0) =




f0(t, t0) 0 . . . 0

f1(t, t0) f0(t, t0)
. . .

...
...

. . . . . . 0
fn−2(t, t0) . . . f1(t, t0) f0(t, t0)




where

fk(t, t0) =
1
k!

[∫ t

t0

u1,r(σ)dσ

]k

=
1
k!

[x1,r(t) − x1,r(t0)]
k

¿From this it is also straightforward to see that uniform controllability of the
system (10.20) can also rephrased as persistency of excitation of the vector


f0(t, t0)
f1(t, t0)

...
fn−2(t, t0)




Remark 10.3.3. Notice that the persistency of excitation condition (10.21)
is obviously met in case lim inft→∞ u1,r(t) = ε > 0, so that the results of
[6, 7, 8, 17] are included in this result.

10.4 An observer

The observability property for chained-form systems was considered in [1],
in which a (local) observer was proposed in case u1(t) = −c1x1(t). In this
section we propose a globally exponentially stable observer for the chained
system under an observability condition which is related to the persistence
of excitation with respect to the first component of the state.

Proposition 10.4.1. Consider the chained-form system (10.11) with output
(10.15). Define

w(t, t0) =




1∫ t

t0

u1(τ)dτ(∫ t

t0

u1(τ)dτ

)2

...(∫ t

t0

u1(τ)dτ

)n−2




=




1

x1(t) − x1(t0)

(x1(t) − x1(t0))2

...

(x1(t) − x1(t0))n−2
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Assume that there exist δ, ε1, ε2 > 0 such that for all t > 0:

ε1I ≤
∫ t+δ

t

w(t, τ)w(t, τ)T dτ ≤ ε2I.

Then the observer


˙̂x2

˙̂x3

˙̂x4

...
˙̂xn




=




0 . . . . . . . . . 0

u1
. . .

...

0 u1
. . .

...
...

. . . . . . . . .
...

0 . . . 0 u1 0







x̂2

x̂3

x̂4

...
x̂n




+




1

0

0
...
0




u2 + H(t)x̃n

where x̃n = xn − x̂n and

H(t) =
[
ΦT (t − δ, t)Mα(t − δ, t)Φ(t − δ, t)

]−1
CT (α > 0)

guarantees that the observation error x̃ = x − x̂ converges to zero exponen-
tially.

Proof. Because of the assumption on u1(t) we have a uniformly observable
linear time-varying system. The result follows readily from standard linear
theory (see e. g. [19]).

10.5 The output feedback problem

In section 3 we derived a state feedback controller for tracking a desired tra-
jectory, whereas in section 4 we derived an observer for a system in chained-
form. We can also combine these two results in a “certainty equivalence”
sense:

Proposition 10.5.1. For the reference trajectory xr, ur) satisfying (10.12)
define

wr(t, t0) =




1∫ t

t0

u1,r(τ)dτ(∫ t

t0

u1,r(τ)dτ

)2

...(∫ t

t0

u1,r(τ)dτ

)n−2




=




1

x1,r(t) − x1,r(t0)

(x1,r(t) − x1,r(t0))2

...

(x1,r(t) − x1,r(t0))n−2
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and assume that there exist δ, ε1, ε2 > 0 such that for all t > 0:

ε1I ≤
∫ t+δ

t

wr(t, τ)wr(t, τ)T dτ ≤ ε2I.

Consider the system (10.13) in closed-loop with the linear controller-observer-
combination

u1 = u1,r − c1x1,e

u2 = u2,r + K(t)




x̂2,e

...
x̂n,e







˙̂x2,e

˙̂x3,e

˙̂x4,e

...
˙̂xn,e




=




0 . . . . . . . . . 0

u1,r
. . .

...

0 u1,r
. . .

...
...

. . . . . . . . .
...

0 . . . 0 u1,r 0







x̂2,e

x̂3,e

x̂4,e

...
x̂n,e




+




1

0

0
...
0




u2 + H(t)x̃n

(10.37)

where x̃n = xn − x̂n, c1 > 0 and K(t) and H(t) are given by

K(t) = −[1 0 0 . . . 0]

[∫ t+δ

t

2e4α(t−τ)wr(t, τ)wr(t, τ)T dτ

]−1

H(t) =
[
2e4α(τ−t)wr(τ, t − δ)wr(τ, t − δ)T dτ Φ(t − δ, t)

]−1

wr(t, t − δ)

with α > 0. If x2,r, . . . , xn−1,r are bounded then the closed-loop system
(10.13,10.37) is globally K-exponentially stable.

Proof. Similar to that of Proposition 10.3.1. Note that due to the assump-
tion on u1,r we have both uniform controllability and uniform controllability.
¿From Theorem 10.2.3 we then know that the system[

ż1

˙̂z1

]
=

[
A(t) −BK(t)

A(t) + H(t)C −BK(t) − H(t)C

] [
z1

ẑ1

]

is globally exponentially stable.

Since we can write the closed-loop system (10.13,10.37) as

[
ż1

˙̂z1

]
=

[
A(t) −BK(t)

A(t) + H(t)C −BK(t) − H(t)C

] [
z1

ẑ1

]
+


 g(t,

[
z1

ẑ1

]
, z2)

0


 z2

ż2 = −c1z2

where
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z1 = [x2,e, . . . , xn,e]T

z2 = x1,e

g(t,
[

z1

ẑ1

]
, z2) = −c1[0, x2, x3, . . . , xn−1]T

The proof can be completed similar to that of Proposition 10.3.1.

10.6 Conclusions

In this paper we considered the tracking problem for nonholonomic systems
in chained-form by means of output feedback. We combined a time-varying
state feedback controller with an observer for the chained-form in a “certainty
equivalence” way. The stability of the closed loop system is shown using
results from time-varying cascaded systems. Under a condition of persistence
of excitation, we have shown globally K-exponential stability of the closed
loop system.
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2. G. Besançon. State-affine systems and observer based control. In Proceedings of
the Fourth IFAC Symposium on Nonlinear Control Systems Design (NOLCOS’98),
volume 2, pages 399–404, Enschede, The Netherlands, July 1998.

3. R.W. Brockett. Asymptotic stability and feedback stabilization. In R.W. Brock-
ett, R.S. Millman, and H.J. Sussmann, editors, Differential Geometric Control The-
ory, pages 181–191. Birkhauser, Boston, MA, 1983.

4. M. Egerstedt, X. Hu, and A. Stotsky. Control of a car-like robot using a virtual
vehicle approach. In Proceedings of the 37th Conference on Decision and Control,
pages 1502–1507, Tampa, Floria, USA, December 1998.

5. M. Jankovic, R. Sepulchre, and P. Kokotovic. Constructive Lyapunov design of
nonlinear cascades. IEEE Transactions on Automatic Control, 41(12):1723–1735,
December 1996.

6. Z.-P. Jiang, E. Lefeber, and H. Nijmeijer. Stabilization and tracking of a nonholo-
nomic mobile robot with saturating actuators. In Proceedings of CONTROLO’98,
3rd Portugese Conference on Automatic Control, volume 2, pages 315–320, Coim-
bra, Portugal, September 1998.



198 References

7. Z.-P. Jiang and H. Nijmeijer. Backstepping-based tracking control of nonholo-
nomic chained systems. In Proceedings of the 4th European Control Conference,
Brussels, Belgium, 1997. Paper 672 (TH-M A2).

8. Z.-P. Jiang and H. Nijmeijer. Tracking control of mobile robots: a case study in
backstepping. Automatica, 33(7):1393–1399, 1997.

9. Z.-P. Jiang and H. Nijmeijer. Observer-controller design for nonholonomic sys-
tems. In H. Nijmeijer and T.I. Fossen, editors, New Trends in Nonlinear Observer
Design, Lecture Notes in Control and Information Sciences. Springer Verlag, Lon-
den, 1999.

10. T. Kailath. Linear Systems. Prentice-Hall, 1980.

11. H.K. Khalil. Nonlinear Systems. Prentice-Hall, Upper Saddle River, NJ USA,
second edition, 1996.

12. I. Kolmanovsky and N.H. McClamroch. Developments in nonholonomic control
problems. IEEE Control Systems Magazine, 16(6):20–36, December 1995.
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Summary.

Systems depending on a small parameter are considered, and the inter-
play between convergence results for trajectories and stability properties
is investigated. Under a continuity assumption for solutions, practical and
exponential stability results are obtained. The presented results are useful
for constructive stabilization of control systems and robustness analysis.

11.1 Introduction

The aim of this chapter is to derive stability results for dynamical systems
based on a trajectory-oriented approach.

Consider a system that depends on a small parameter ε > 0

ẋ = fε(t, x)

and a system

ẋ = g(t, x) ,

with the assumption that trajectories of ẋ = fε(t, x) converge uniformly on
compact time intervals to trajectories of ẋ = g(t, x) as ε ↓ 0. The following
1 This chapter presents research results of the Belgian Programme on Interuniver-

sity Poles of Attraction, initiated by the Belgian State, Prime Minister’s Office
for Science, Technology and Culture. The scientific responsibility rests with its
authors.

2 The first author is supported by BOF grant 011D0696 of the University of Ghent.
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question relates convergence of trajectories with stability properties: if the
origin is an asymptotically stable equilibrium point of ẋ = g(t, x), what does
this imply for ẋ = fε(t, x)? In this chapter, we offer various answers to this
question.

The relevance of this for control theory is twofold. First, it provides a theoret-
ical motivation for the stabilization paradigm where one constructs feedback
laws that depend on a small parameter ε in such a way that trajectories
of the closed-loop system converge uniformly on compact time intervals to
trajectories of an asymptotically stable system as ε ↓ 0; see, for example,
[10, 5, 8]. Second, results obtained in this framework are relevant for a ro-
bustness analysis of control systems with respect to general perturbations
that leave trajectories close to those of the idealized model.

Related stability results may be found, for example, in [12, 1, 4, 10]. The
stability results from these references are obtained within the framework
of Lyapunov theory. The present chapter offers an alternative approach for
stability analysis, which is not Lyapunov-based. We believe that the ideas
presented here may also prove useful in other contexts.

11.2 Preliminaries

The state space for all systems featuring in the present chapter is Rn with
n ∈ N. ‖ · ‖ denotes the Euclidean norm on Rn.

Throughout the chapter we consider the following data: a system that de-
pends on a parameter ε ∈ (0, ε0] (ε0 ∈ (0, ∞))

ẋ = fε(t, x) (11.1)

R × Rn to Rn, and a system

ẋ = g(t, x) . (11.2)

Rn. We make the following hypothesis.

Hypothesis 1 For each ε, the function fε : R × Rn → Rn is continuous
and the system ẋ = fε(t, x) has the uniqueness property of solutions1. The
function g : R × Rn → Rn is continuous and the system ẋ = g(t, x) has the
uniqueness property of solutions.
1 By this we mean the following. For every (t0, x0) ∈ R × Rn, there is a solution

ξ of this ordinary differential equation with ξ(t0) = x0 such that (i) the domain

of ξ is an open interval containing t0, and (ii) for any other solution ξ of this

ordinary differential equation with ξ(t0) = x0, (a) the domain of ξ is contained in

the domain of ξ, and (b) ξ and ξ coincide on the common part of their domains.
We call this solution ξ the trajectory of the system passing through state x0 at
time t0.
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Let φε(t, t0, x0) be the trajectory of ẋ = fε(t, x) passing through state x0 at
time t0 evaluated at time t. The function (t, t0, x0) 7→ φε(t, t0, x0) is called the
flow of this system. For each ε, the domain of φε is open and φε is continuous
on its domain [2]. Similarly, the flow of ẋ = g(t, x) is defined as the function
(t, t0, x0) 7→ ψ(t, t0, x0) with ψ(t, t0, x0) the trajectory of ẋ = g(t, x) passing
through state x0 at time t0 evaluated at time t. The domain of ψ is open and
ψ is continuous on its domain.

Throughout the chapter, we assume that trajectories of (11.1) converge to
trajectories of (11.2) in the following sense.

Hypothesis 2 For every T ∈ (0, ∞) and compact set K ⊂ Rn satisfying
{(t, t0, x0) ∈ R × R × Rn : t ∈ [t0, t0 + T ], x0 ∈ K} ⊂ Domψ, for every
d ∈ (0, ∞), there exists ε∗ ∈ (0, ε0] such that for all t0 ∈ R, for all x0 ∈ K
and for all ε ∈ (0, ε∗){

φε(t, t0, x0) exists
‖φε(t, t0, x0) − ψ(t, t0, x0)‖ < d

∀t ∈ [t0, t0 + T ].

In other words, we require that trajectories of (11.1) converge uniformly on
compact time intervals to trajectories of (11.2) as ε ↓ 0, and furthermore we
assume that this convergence is uniform with respect to t0 and x0 for t0 ∈ R
and x0 belonging to compact sets. [7] or [8]. See these papers. It is important
to notice the following: the assumed convergence is not stated in terms of
vectorfields, but in terms of trajectories; we do not assume that fε converges
pointwise to g as ε ↓ 0. The following two examples illustrate this.

Example 11.2.1 (Fast time-varying systems). Given f : R × Rn → Rn :
(t, x) 7→ f(t, x) and fav : Rn → Rn : x 7→ fav(x) satisfying the following
three conditions: (i) f is continuous, f(t, ·) : Rn → Rn is locally Lipschitz
uniformly with respect to t for t ∈ R, and f(·, x) : R → Rn is bounded
uniformly with respect to x for x in compact subsets of Rn; (ii) fav is locally
Lipschitz; and (iii) for each compact set K ⊂ Rn, for each θ ∈ (0, ∞) and
i ∈ {0} ∪ N

∫ t0+(i+1)θ

t0+iθ

(
f(
s

ε
, x) − fav(x)

)
ds→ 0 (11.3)

as ε ↓ 0 uniformly with respect to t0 and x for t0 ∈ R and x ∈ K. System

ẋ = f(
t

ε
, x) (11.4)

is called a fast time-varying system, and

ẋ = fav(x) (11.5)
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the associated averaged system. These systems satisfy Hypothesis 1 —this is
a standard result within the theory of ordinary differential equations— and
Hypothesis 2 —this may be proven based on the Gronwall Lemma; cf. [9].
Consequently, all results obtained in the general framework of the present
chapter apply in particular to fast time-varying systems (11.4) and their
averaged (11.5).

Example 11.2.2 (Highly oscillatory systems). Given vectorfields Xi : Rn →
Rn : x→ Xi(x) (i ∈ {1, 2, 3}) of class C2. System

ẋ = X1(x) +
1√
ε

cos(
t

ε
)X2(x) +

1√
ε

sin(
t

ε
)X3(x) (11.6)

is called a highly oscillatory system, and

ẋ = X1(x) +
1
2
[X2, X3](x) (11.7)

the associated extended system. These systems satisfy Hypothesis 1 —this
is a standard result within the theory of ordinary differential equations—
and Hypothesis 2 —this may be proven based on partial integration and the
Gronwall Lemma; cf. [9]. Consequently, all results obtained in the general
framework of the present chapter apply in particular to highly oscillatory
systems (11.6) and their extended system (11.7).

11.3 Practical stability

Consider systems ẋ = fε(t, x) and ẋ = g(t, x) introduced above satisfying
Hypotheses 1 and 2. Assume that the origin is a locally uniformly asymp-
totically stable equilibrium point of ẋ = g(t, x). It is well known that this
does not imply that the origin is an asymptotically stable equilibrium point
of ẋ = fε(t, x) for ε sufficiently small. It seems however reasonable to expect
that ẋ = fε(t, x) inherits some weaker notion of stability. In the present sec-
tion we identify such a weaker notion of stability, which we call practical local
uniform asymptotic stability2.

We start with the relevant stability definitions. First we recall the definition
of local uniform asymptotic stability —see, for example, [3]— and then we
introduce the notion of practical local uniform asymptotic stability.
2 On the one hand, this terminology refers to the situation where ẋ = fε(t, x) is

the actual system and ẋ = g(t, x) its studied idealization. In this case, LUAS
for the idealized model implies PLUAS in practice; see Theorem 11.3.1. On the
other hand, this terminology reflects that for many practical purposes, PLUAS
is a satisfactory stability property.
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Definition 11.3.1. Let the origin be an equilibrium point of system ẋ =
g(t, x) introduced above, and assume that Hypothesis 1 is satisfied. This equi-
librium point is called locally uniformly asymptotically stable (LUAS) if the
following two conditions are both satisfied.

1. Uniform stability. For every c2 ∈ (0, ∞), there exists c1 ∈ (0, ∞) such
that for all t0 ∈ R and for all x0 ∈ Rn with ‖x0‖ < c1{

ψ(t, t0, x0) exists ∀t ∈ [t0, ∞),
‖ψ(t, t0, x0)‖ < c2 ∀t ∈ [t0, ∞).

2. Local uniform attractivity. There exists c1 ∈ (0, ∞) such that for all
c2 ∈ (0, ∞), there exists T ∈ (0, ∞) such that for all t0 ∈ R and for all
x0 ∈ Rn with ‖x0‖ < c1{

ψ(t, t0, x0) exists ∀t ∈ [t0, ∞),
‖ψ(t, t0, x0)‖ < c2 ∀t ∈ [t0 + T, ∞).

Definition 11.3.2. Consider the system ẋ = fε(t, x) introduced above, and
assume that Hypothesis 1 is satisfied. We call the origin of this system prac-
tically locally uniformly asymptotically stable (PLUAS) if the following two
conditions are both satisfied.

1. For every c2 ∈ (0, ∞), there exist c1 ∈ (0, ∞) and ε̂ ∈ (0, ε0] such that
for all t0 ∈ R, for all x0 ∈ Rn with ‖x0‖ < c1 and for all ε ∈ (0, ε̂){

φε(t, t0, x0) exists ∀t ∈ [t0, ∞),
‖φε(t, t0, x0)‖ < c2 ∀t ∈ [t0, ∞).

2. There exists c1 ∈ (0, ∞) such that for all c2 ∈ (0, ∞), there exist T ∈
(0, ∞) and ε̂ ∈ (0, ε0] such that for all t0 ∈ R, for all x0 ∈ Rn with
‖x0‖ < c1 and for all ε ∈ (0, ε̂){

φε(t, t0, x0) exists ∀t ∈ [t0, ∞),
‖φε(t, t0, x0)‖ < c2 ∀t ∈ [t0 + T, ∞).

It is instructive to have a closer look at the strong similarities between these
two definitions. The notion of PLUAS may be interpreted as follows. Con-
dition 1 of Definition 11.3.2 defines a practical version of uniform stability.
Condition 2 of Definition 11.3.2 captures a practical notion of local uniform
attractivity: all trajectories starting in some fixed ball end up in an arbitrar-
ily small ball for appropriate – depending on the radius of this small ball
– values of the parameter ε. Notice that the origin is not required to be an
equilibrium point in Definition 11.3.2.

Theorem 11.3.1. Given systems ẋ = fε(t, x) and ẋ = g(t, x) introduced
above satisfying Hypotheses 1 and 2. If the origin is a LUAS equilibrium
point of ẋ = g(t, x), then the origin of ẋ = fε(t, x) is PLUAS.
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Proof of Theorem 11.3.1 First of all, let c ∈ (0, ∞) be the constant c1
featuring in condition 2 of Definition 11.3.1. Then ψ(t, t0, x0) exists for all
t ∈ [t0, ∞), for all t0 ∈ R and for all x0 ∈ Rn with ‖x0‖ < c. We successively
prove that conditions 1 and 2 of Definition 11.3.2 are satisfied.

1. Take an arbitrary c2 ∈ (0, ∞) and let b2 ∈ (0, c2). By the LUAS property
of ψ – in particular, by uniform stability – there exists c1 ∈ (0, ∞), which
we choose to be in (0, c), such that

‖ψ(t, t0, x0)‖ < b2 ∀t ∈ [t0, ∞),
∀t0 ∈ R, ∀x0 ∈ Rn with ‖x0‖ < c1. (11.8)

Let b1 ∈ (0, c1). Since the equilibrium point x = 0 of ψ is locally uni-
formly attractive and {x ∈ Rn : ‖x‖ < c1 < c} is contained in its region
of attraction, there exists T ∈ (0, ∞) such that

‖ψ(t, t0, x0)‖ < b1 ∀t ∈ [t0 + T, ∞),
∀t0 ∈ R, ∀x0 ∈ Rn with ‖x0‖ < c1. (11.9)

(11.9) for ψ with 0 < b1 < c1 < c, 0 < b2 < c2 and T > 0. Let
d = min{c1 − b1, c2 − b2}. Notice that {(t, t0, x0) ∈ R × R × Rn : t ∈
[t0, t0 + T ], ‖x‖ ≤ c1 < c} ⊂ Domψ. Hence, invoking Hypothesis 2 –
with K = {x ∈ Rn : ‖x‖ ≤ c1} – yields the existence of ε̂ ∈ (0, ε0] such
that {

φε(t, t0, x0) exists
‖φε(t, t0, x0) − ψ(t, t0, x0)‖ < d

∀t ∈ [t0, t0 + T ],

∀t0 ∈ R, ∀x0 ∈ Rn with ‖x0‖ ≤ c1, ∀ε ∈ (0, ε̂). (11.10)

Estimates (11.8), (11.9) and (11.10) together yield

φε(t, t0, x0) exists ∀t ∈ [t0, t0 + T ],
‖φε(t, t0, x0)‖ < c2 ∀t ∈ [t0, t0 + T ],
‖φε(t, t0, x0)‖ < c1 for t = t0 + T,

∀t0 ∈ R, ∀x0 ∈ Rn with ‖x0‖ < c1, ∀ε ∈ (0, ε̂). (11.11)

An iterative application of this expression yields{
φε(t, t0, x0) exists
‖φε(t, t0, x0)‖ < c2

∀t ∈ [t0, ∞),

∀t0 ∈ R, ∀x0 ∈ Rn with ‖x0‖ < c1, ∀ε ∈ (0, ε̂), (11.12)

which is the property we had to prove.

2. Let c1 ∈ (0, c). Take an arbitrary c2 ∈ (0, ∞). By practical uniform
stability —condition 1 of Definition 11.3.2— proven above, there exist
c3 ∈ (0, ∞) and ε∗ ∈ (0, ε0] such that
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{
φε(t, t0, x0) exists
‖φε(t, t0, x0)‖ < c2

∀t ∈ [t0, ∞),

∀t0 ∈ R, ∀x0 ∈ Rn with ‖x0‖ < c3, ∀ε ∈ (0, ε∗).(11.13)

Let b3 ∈ (0, c3). Since the equilibrium point x = 0 of ψ is locally uni-
formly attractive and {x ∈ Rn : ‖x‖ < c1 < c} is contained in its region
of attraction, there exists T ∈ (0, ∞) such that

‖ψ(t, t0, x0)‖ < b3 ∀t ∈ [t0 + T, ∞),
∀t0 ∈ R, ∀x0 ∈ Rn with ‖x0‖ < c1. (11.14)

Let d = c3 − b3. Notice that {(t, t0, x0) ∈ R × R × Rn : t ∈ [t0, t0 +
T ], ‖x‖ ≤ c1 < c} ⊂ Domψ. Hence, invoking Hypothesis 2 – with
K = {x ∈ Rn : ‖x‖ ≤ c1} – yields the existence of ε# ∈ (0, ε0] such that{

φε(t, t0, x0) exists
‖φε(t, t0, x0) − ψ(t, t0, x0)‖ < d

∀t ∈ [t0, t0 + T ],

∀t0 ∈ R, ∀x0 ∈ Rn with ‖x0‖ ≤ c1, ∀ε ∈ (0, ε#).(11.15)

Estimates (11.14) and (11.15) yield{
φε(t, t0, x0) exists ∀t ∈ [t0, t0 + T ],
‖φε(t, t0, x0)‖ < c3 for t = t0 + T,

∀t0 ∈ R, ∀x0 ∈ Rn with ‖x0‖ < c1, ∀ε ∈ (0, ε#).(11.16)

This, together with (11.13), leads to{
φε(t, t0, x0) exists ∀t ∈ [t0, ∞),
‖φε(t, t0, x0)‖ < c2 ∀t ∈ [t0 + T, ∞),

∀t0 ∈ R, ∀x0 ∈ Rn with ‖x0‖ < c1, ∀ε ∈ (0, ε̂), (11.17)

where ε̂ = min{ε∗, ε#}. This is the second property we had to prove; and
thus the theorem is proven.

ut

Example 11.3.1 (Fast time-varying systems). Consider again the fast time-
varying system (11.4) and its averaged (11.5) introduced in Example 11.2.1.
An application of Theorem 11.3.1 yields: if the origin is a LUAS equilibrium
point of the averaged, then the origin of the original fast time-varying system
is PLUAS and thus, in particular, trajectories of (11.4) starting in some fixed
ball end up in an arbitrarily small ball provided system (11.4) is “sufficiently
—depending on the considered neighborhoods— fast time-varying”.

Example 11.3.2 (Highly oscillatory systems). Consider again the highly os-
cillatory system (11.6) and its extended system (11.7) introduced in Example
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11.2.2. An application of Theorem 11.3.1 yields: if the origin is a LUAS equi-
librium point of the extended system, then the origin of the original highly
oscillatory system is PLUAS and thus, in particular, trajectories of (11.6)
starting in some fixed ball end up in an arbitrarily small ball provided sys-
tem (11.6) is “sufficiently —depending on the considered neighborhoods—
highly oscillatory”.

11.4 Convergence results on an infinite time scale

Convergence results for trajectories as in Hypothesis 2 may typically be
proven based on the Gronwall Lemma; see Examples 11.2.1 and 11.2.2. This
type of convergence is on a finite time scale; that is, φε(t, t0, x0) converges to
ψ(t, t0, x0) as ε ↓ 0 uniformly with respect to t for t belonging to compact time
intervals. For analysis as well as for control purposes, it may be interesting to
have convergence results on an infinite time scale; that is, results that state
that φε(t, t0, x0) converges to ψ(t, t0, x0) as ε ↓ 0 uniformly with respect to
t for t belonging to infinite time intervals. This type of convergence can not
be concluded from the Gronwall Lemma alone.

In the present section, we give a convenient way to obtain convergence results
on an infinite time scale: as an application of Theorem 11.3.1, we show how
in the presence of an asymptotically stable attractor, convergence results on
a finite time scale as in Hypothesis 2 extend to an infinite time scale.

Theorem 11.4.1. Given systems ẋ = fε(t, x) and ẋ = g(t, x) introduced
above satisfying hypotheses 1 and 2. Consider an initial state x0 and let the
origin be a LUAS equilibrium point of ẋ = g(t, x) with x0 in its region of
attraction; that is, for all c ∈ (0, ∞), there exists T ∈ (0, ∞) such that for
all t0 ∈ R{

ψ(t, t0, x0) exists ∀t ∈ [t0, ∞),
‖ψ(t, t0, x0)‖ < c ∀t ∈ [t0 + T, ∞).

Then, φε(t, t0, x0) converges to ψ(t, t0, x0) as ε ↓ 0 uniformly with respect to
t and t0 for t ∈ [t0, ∞) and t0 ∈ R; that is, for every d′ ∈ (0, ∞), there
exists ε∗ ∈ (0, ε0] such that for all t0 ∈ R and for all ε ∈ (0, ε∗){

φε(t, t0, x0) exists
‖φε(t, t0, x0) − ψ(t, t0, x0)‖ < d′ ∀t ∈ [t0, ∞).

Remark 11.4.1. A closely related result in this context is Theorem 4.2.1
(Eckhaus/Sanchez-Palencia) reported in [11]. The present theorem is a gen-
eralization of that result for the following reasons: (i) Theorem 11.4.1 intro-
duced here extends Theorem 4.2.1 from [11], which is a specific averaging
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result, to the general context of the present chapter. This general context
includes averaging as a special case, but also for example highly oscillatory
systems. (ii) In Theorem 11.4.1 introduced here, the origin is assumed to be
asymptotically stable, whereas Theorem 4.2.1 from [11] assumes exponen-
tial stability. Furthermore, in Theorem 4.2.1 from [11], additional technical
assumptions are made.

Proof of Theorem 11.4.1 Take an arbitrary d′ ∈ (0, ∞). Since the origin is
a LUAS equilibrium point of ẋ = g(t, x), the origin of ẋ = fε(t, x) is PLUAS
by Theorem 11.3.1. Hence, there exist c1 ∈ (0, ∞) and ε̂ ∈ (0, ε0] such that{

φε(t, t0, x0) exists
‖φε(t, t0, x0)‖ < d′/2 ∀t ∈ [t0, ∞),

∀t0 ∈ R, ∀x0 ∈ Rn with ‖x0‖ < c1, ∀ε ∈ (0, ε̂). (11.18)

Notice that c1 ≤ d′/2. Since x0 is in the attraction region of the origin for
ẋ = g(t, x), there exists T ∈ (0, ∞) such that{

ψ(t, t0, x0) exists ∀t ∈ [t0, ∞),
‖ψ(t, t0, x0)‖ < c1/2 ∀t ∈ [t0 + T, ∞),

∀t0 ∈ R. (11.19)

Invoking Hypothesis 2 – with K = {x0} and d = c1/2 – yields the existence
of ε# ∈ (0, ε0] such that{

φε(t, t0, x0) exists
‖φε(t, t0, x0) − ψ(t, t0, x0)‖ < c1/2

∀t ∈ [t0, t0 + T ],

∀t0 ∈ R, ∀ε ∈ (0, ε#). (11.20)

Let ε∗ = min{ε̂, ε#}. We show that the conclusion of the theorem follows
from a suitable application of estimates (11.18), (11.19) and (11.20).

First, estimate (11.20) gives{
φε(t, t0, x0) exists
‖φε(t, t0, x0) − ψ(t, t0, x0)‖ < d′ ∀t ∈ [t0, t0 + T ],

∀t0 ∈ R, ∀ε ∈ (0, ε∗) (11.21)

since c1/2 < c1 ≤ d′/2 < d′ and ε∗ ≤ ε#. Next, applying estimates (11.19)
and (11.20) at time t = t0 + T yields ‖φε(t0 + T, t0, x0)‖ < c1 for all t0 ∈ R
and for all ε ∈ (0, ε∗). This, together with (11.18), yields{

φε(t, t0, x0) exists
‖φε(t, t0, x0)‖ < d′/2 ∀t ∈ [t0 + T, ∞),

∀t0 ∈ R, ∀ε ∈ (0, ε∗), (11.22)
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and thus, by (11.19),{
φε(t, t0, x0) exists
‖φε(t, t0, x0) − ψ(t, t0, x0)‖ < d′/2 + c1/2 < d′ ∀t ∈ [t0 + T, ∞),

∀t0 ∈ R, ∀ε ∈ (0, ε∗). (11.23)

Estimates (11.21) and (11.23) prove the theorem. ut

11.5 Homogeneous systems

Consider again systems ẋ = fε(t, x) and ẋ = g(t, x) introduced above satis-
fying Hypotheses 1 and 2. In Section 11.3 we have seen that, if the origin is
a LUAS equilibrium point of ẋ = g(t, x), it need not be a LUAS equilibrium
point of ẋ = fε(t, x) for ε sufficiently small. Instead we have identified a
weaker stability property for ẋ = fε(t, x): practical stability (PLUAS).

Although in general LUAS for ẋ = g(t, x) does not imply LUAS for ẋ =
fε(t, x) for ε sufficiently small, there may still be particular situations where
this implication holds after all. This is the subject of the present section. In
addition to Hypotheses 1 and 2, we assume that the systems are zero-order
homogeneous, and we prove that in this case, LUAS for ẋ = g(t, x) implies
LUAS for ẋ = fε(t, x) for ε sufficiently small

This interplay between homogeneity, convergence of trajectories, and stability
may further clarify the important role that homogeneity – together with
averaging or the theory of highly oscillatory systems – plays in some recent
stabilization schemes [10, 5].

assumption. First, homogeneity has recently proven to be a fruitful concept
for solving stabilization problems. See for example [6] and [10]. Several classes
of systems discussed in that reference fit into the framework framework of
the present section. The present development may shed some new light on
the results from these references. Second, in the context of homogeneous
approximations, the results from the present section are useful for extensions
to the non-homogeneous case.

For expository reasons, we restrict attention to zero-order homogeneity with
respect to the standard dilation3.

Hypothesis 3 For each ε ∈ (0, ε0], fε(t, λx) = λfε(t, x) for all t ∈ R,
x ∈ Rn and λ ∈ (0, ∞).

Theorem 11.5.1. Given system ẋ = fε(t, x) introduced above satisfying Hy-
potheses 1 and 3. If the origin of ẋ = fε(t, x) is PLUAS, then there exist
3 The case of general dilations is treated in [7].
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ε̂ ∈ (0, ε0], µ ∈ [1, ∞) and ν ∈ (0, ∞) such that for all t0 ∈ R, for all
x0 ∈ Rn and for all ε ∈ (0, ε̂)

‖φε(t, t0, x0)‖ ≤ µe−ν(t−t0)‖x0‖ ∀t ∈ [t0, ∞).

Proof of Theorem 11.5.1 First of all, notice that Hypothesis 3 implies that
Domφε = R × R × Rn for each ε. (The constraint imposed by Hypothesis
3 on the grow rate of fε(t, x) as ‖x‖ → ∞ excludes the possibility of finite
escape times.)

The origin of ẋ = fε(t, x) is assumed to be PLUAS. Hence there exist
c1, c2, c3 ∈ (0, ∞) with c1 < c2 < c3 and there exist T ∈ (0, ∞) and
ε∗ ∈ (0, ε0] such that{‖φε(t, t0, x0)‖ ≤ c3 ∀t ∈ [t0, ∞),

‖φε(t, t0, x0)‖ ≤ c1 ∀t ∈ [t0 + T, ∞),
∀t0 ∈ R, ∀x0 ∈ Rn with ‖x0‖ ≤ c2, ∀ε ∈ (0, ε∗). (11.24)

Notice that we have used ≤ signs in the above formulation. This will be
convenient for the following development. By Hypothesis 3, the flow φε has
the following scaling property:

φε(t, t0, x0) = λφε(t, t0,
1
λ
x0) ∀t ∈ R,

∀t0 ∈ R, ∀x0 ∈ Rn, ∀ε ∈ (0, ε0], ∀λ ∈ (0, ∞). (11.25)

In the remainder of the proof, we consider two cases: x0 = 0 and x0 6= 0.
First x0 = 0. The scaling property (11.25) implies

φε(t, t0, 0) = 0 ∀t ∈ R,
∀t0 ∈ R, ∀ε ∈ (0, ε0]. (11.26)

Next x0 6= 0. The scaling property (11.25) implies

φε(t, t0, x0) =
‖x0‖
c2

φε(t, t0,
c2

‖x0‖x0) ∀t ∈ R,

∀t0 ∈ R, ∀x0 ∈ Rn with x0 6= 0, ∀ε ∈ (0, ε0]. (11.27)

Since ‖ c2
‖x0‖x0‖ = c2, estimate (11.24) applies and yields

{ ‖φε(t, t0, x0)‖ ≤ c3
c2
‖x0‖ ∀t ∈ [t0, ∞),

‖φε(t, t0, x0)‖ ≤ c1
c2
‖x0‖ ∀t ∈ [t0 + T, ∞),

∀t0 ∈ R, ∀x0 ∈ Rn with x0 6= 0, ∀ε ∈ (0, ε∗). (11.28)

In particular this estimate implies that ‖φε(t0 +T, t0, x0)‖ ≤ c1
c2
‖x0‖ < ‖x0‖.

Since φε(t0 + T, t0, x0) 6= 0 by the uniqueness property of trajectories, a
second application of estimate (11.28) then yields
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{ ‖φε(t, t0, x0)‖ ≤ c3
c2

c1
c2
‖x0‖ ∀t ∈ [t0 + T, ∞),

‖φε(t, t0, x0)‖ ≤ ( c1
c2

)2‖x0‖ ∀t ∈ [t0 + 2T, ∞),

∀t0 ∈ R, ∀x0 ∈ Rn with x0 6= 0, ∀ε ∈ (0, ε∗). (11.29)

This process may be repeated, and eventually it leads to

‖φε(t, t0, x0)‖ ≤ c3
c2

(
c1
c2

)i‖x0‖ ∀t ∈ [t0 + iT, ∞), ∀i ∈ {0} ∪ N,

∀t0 ∈ R, ∀x0 ∈ Rn with x0 6= 0, ∀ε ∈ (0, ε∗). (11.30)

Since c1
c2
< 1, this implies

‖φε(t, t0, x0)‖ ≤ c3
c2

(
c1
c2

)
t−t0

T −1‖x0‖ ∀t ∈ [t0, ∞),

∀t0 ∈ R, ∀x0 ∈ Rn with x0 6= 0, ∀ε ∈ (0, ε∗). (11.31)

Since c3
c2

( c1
c2

)
t−t0

T −1 = c3
c1

exp( ln c1/c2
T (t− t0)) with c3

c1
≥ 1 and ln c1/c2

T < 0 the
theorem is proven by estimates (11.26) and (11.31). ut

Corollary 1 Given systems ẋ = fε(t, x) and ẋ = g(t, x) introduced above
satisfying Hypotheses 1, 2 and 3. If the origin is a LUAS equilibrium point
of ẋ = g(t, x), then there exist ε̂ ∈ (0, ε0], µ ∈ [1, ∞) and ν ∈ (0, ∞) such
that for all t0 ∈ R, for all x0 ∈ Rn and for all ε ∈ (0, ε̂)

‖φε(t, t0, x0)‖ ≤ µe−ν(t−t0)‖x0‖ ∀t ∈ [t0, ∞).

In words, this corollary states that, assuming Hypotheses 1, 2 and 3, if the
origin is a LUAS equilibrium point of ẋ = g(t, x), then the origin is a globally
uniformly exponentially stable equilibrium point of ẋ = fε(t, x) for ε suffi-
ciently small; and moreover, the bounds µ and ν for the convergence do not
depend on ε.

Summary:

This chapter has investigated the interplay between convergence results for
trajectories and stability properties.
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Summary.

Exponential stabilization of nonlinear driftless affine control systems
is addressed with the concern of achieving robustness with respect to im-
perfect knowledge of the system’s control vector fields. The present paper
gives an overview of the results developed by the authors in [11], and pro-
vides new results on the robustness with respect to sampling of the control
laws. Control design for a dynamic extension of the original system is also
considered. This study is inspired by [1], where the same robustness issue
was first addressed. It is further motivated by the fact, proven in [7], ac-
cording to which no continuous homogeneous time-periodic state-feedback
can be a robust exponential stabilizer in the sense considered here. Hy-
brid open-loop/feedback controllers, more precisely described as continu-
ous time-periodic feedbacks associated with a specific dynamic extension
of the original system, are considered instead.

12.1 Introduction

We consider an analytic driftless system on Rn

(S0) : ẋ =
m∑

i=1

fi(x)ui , (m < n), (12.1)

locally controllable around the origin, i.e.

Span{f(0) : f ∈ Lie(f1, . . . , fm)} = Rn , (12.2)

and address the problem of constructing explicit feedback laws which (locally)
exponentially stabilize, in some sense specified later, the origin x = 0 of the
controlled system. A further requirement is that these feedbacks should also
be exponential stabilizers for any “perturbed” system in the form
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(Sε) : ẋ =
m∑

i=1

(fi(x) + hi(ε, x))ui , (12.3)

with hi analytic in R×Rn and hi(0, x) = 0, when |ε| is small enough. In other
words, given a nominal control system (S0), we would like to find nominal
feedback controls, derived on the basis of this nominal system, that preserve
the property of exponential stability when they are applied to “neighboring”
systems (Sε).

Explicit homogeneous exponential (time-periodic) stabilizers u(x, t) for sys-
tems (S0) have been derived in various previous studies (see [8, 10], for ex-
ample). However, as demonstrated in [7], none of these controls solves the
robustness problem stated above in the sense that there always exists some
hi(ε, .) for which the origin of the associated controlled system is not sta-
ble when ε 6= 0. This negative result strongly suggests that no continuous
feedback u(x, t), not necessarily homogeneous, can be a robust exponential
stabilizer. However, it does not imply that the problem cannot be handled via
an adequate dynamic extension of the original nominal system. As a matter
of fact, and as explained below, the present study may already be seen as a
step in this direction.

An alternative to continuous state feedback control consists in considering
hybrid open-loop/feedback controls such as open-loop controls which are peri-
odically updated from the measurement x(kT ), k ∈ N, of the state at discrete
time-instants. The idea of using this type of control to achieve asymptotic
stabilization of the origin of the class of nonlinear driftless systems consid-
ered here is not new. This possibility has sometimes been presented as an
extension of solutions obtained when addressing the open-loop steering prob-
lem, i.e. the problem of finding an open-loop control which steers the system
from an initial state to another desired one (see [9, 12], for example). Hybrid
continuous/discrete time exponential stabilizers for chained systems, which
do not specifically rely on open-loop steering control, have also been pro-
posed in [14]. However, [1] is to our knowledge the first study where the
robustness problem stated above has been formulated in a similar fashion
and where it has been shown that this problem can be solved by using a hy-
brid open-loop/feedback control. In fact, although this is not specified in the
abovementioned reference, the proposed control does not “strictly” ensure
asymptotic stability, in the usual sense of Lyapunov, of the origin of the per-
turbed systems (Sε). In order to be more specific about this technical point,
and also clarify the meaning of “periodically updated open-loop control ap-
plied to a time-continuous system ẋ = f(x, u)”, it is useful to introduce the
following extended control system:
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ẋ = f(x, u)

ẏ = (
∑
k∈N

δkT )(x − y−α) 0 < α < T ,
(12.4)

with T denoting the updating time-period of the control part which depends
upon y, δkT the classical Dirac impulse at the time-instant kT , and y−α

the delay operator such that y−α(t) = y(t − α). The extra equation in y
just indicates that y(t) is constant and equal to x(kT ) on the time-interval
[kT, (k + 1)T ). Therefore, any control the expression of which, on the time-
interval [kT, (k + 1)T ), is a function of x(kT ) and t, may just be interpreted
as a feedback control u(y, t) for the corresponding extended system. From
now on, we will adopt this point of view whenever referring to this type of
control. As commonly done elsewhere, we will also say that a feedback control
u(x, y, t) is a (uniform) exponential stabilizer for the extended system (12.4)
if there exist an open set U ∈ Rn ×Rn containing the point (0, 0), a positive
real number γ, and a function β of class K such that:

∀t ≥ t0 ≥ 0 , ∀(x(t0), y(t0)) ∈ U ,

|(x(t), y(t))| ≤ β(|(x(t0), y(t0))|)exp(−γ(t − t0))

with (x(t), y(t)) denoting any solution of the controlled system. In our opin-
ion, the importance of the contribution in [1] comes from that it convincingly
demonstrates the possibility of achieving robust (with respect to unmodeled
dynamics, as defined earlier) exponential stabilization (stability being now
taken in the strict sense of Lyapunov) of an extended control system (S̄0),
defined as the “nominal” system within the set of systems

(S̄ε) :




ẋ =
m∑

i=1

(fi(x) + hi(ε, x))ui

ẏ = (
∑
k∈N

δkT )(x − y−α) 0 < α < T ,

(12.5)

via the use of a continuous time-periodic feedback u(y, t). The exploration
of this possibility has been carried further on in [11], and a large part of
the present paper is devoted to recalling the main results proven in this
reference. These include i) a theorem stating sufficient conditions under which
a continuous time-periodic feedback u(y, t) is a robust stabilizer (Section
12.2), ii) a general control design algorithm which applies to any controllable
analytic (differentiability up to a certain order is in fact sufficient) driftless
control system affine in the control (Section 12.3.1), and iii) a set of simpler
stabilizers for the subclass of nilpotent chained systems, obtained by further
exploiting the internal structure of these systems (Section 12.3.3). We also
complement the aforementioned study with two new results. First, we prove a
robustness result with respect to sampling of the control law (Section 12.3.1).
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Then, we show how to derive new stabilizing control laws for a dynamic
extension of the system (consisting in adding an integrator at each input
level) (Section 12.4).

The following notation is used.

The identity function on Rn is denoted id, |.| is the Euclidean norm, and
the transpose of a row-vector (x1, . . . , xn) is denoted as (x1, . . . , xn)′.

For any vector field X and smooth function f on Rn, Xf denotes the
Lie derivative of f along the vector field X . When f = (f1, . . . , fn)′ is a
smooth map from Rn to itself, Xf denotes the map (Xf1, . . . , Xfn)′.

A square matrix A is called discrete-stable if all its eigenvalues are strictly
inside the complex unit circle.

Given a continuous functions g, defined on some neighborhood of the ori-
gin in Rn, we denote o(g) (resp. O(g)) any function or map such that
|o(g)(x)|
|g(x)| −→ 0 as |x| −→ 0 (resp. such that |O(g)(x)|

|g(x)| ≤ K in some neigh-
borhood of the origin). When g = |.|, we write o(x) (resp. O(x)) instead of
o(g)(x) (resp. O(g)(x)).

12.2 Sufficient conditions for exponential and robust
stabilization

Prior to stating the main result of this section, we review some properties of
Chen-Fliess series that will be used in the sequel. The exposition is based on
[4, 17], and limited here to driftless systems.

A m-valued multi-index I is a vector I = (i1, . . . , ik) with k denoting a
strictly positive integer, and i1, . . . , ik, integers taken in the set {1, . . . , m}.
We denote the length of I as |I|, i.e. I = (i1, . . . , ik) =⇒ |I| = k.

Given piecewise continuous functions u1, . . . , um defined on some time-
interval [0, T ], and a m-valued multi-index I = (i1, . . . , ik), we define∫ t

0

uI =
∫ t

0

∫ tk

0

· · ·
∫ t2

0

uik
(tk)uik−1(tk−1) · · ·ui1(t1) dt1 · · · dtk . (12.6)

Given smooth vector fields f1, . . . , fm on Rn, and a m-valued multi-index I =
(i1, . . . , ik), we define the k-th order differential operator fI : C∞(Rn;R) −→
C∞(Rn;R) by

fI g = fi1fi2 · · · fik
g . (12.7)

The following proposition is a classical result (see e.g. [17] for the proof).



12.2 Sufficient conditions for exponential and robust stabilization 219

Proposition 1 [17] Consider the analytic system (S0) and a compact set
K ⊂ Rn. There exists µ > 0 such that for M, T ≥ 0 verifying

MT ≤ µ , (12.8)

and for any control u = (u1, . . . , um) piecewise continuous on [0, T ] and
verifying

|u(t)| ≤ M , ∀t ∈ [0, T ] , (12.9)

the solution x(.) of (S0), with x0
∆= x(0) ∈ K, satisfies

x(t) = x0 +
∑

I

(fI id)(x0)
∫ t

0

uI , ∀t ∈ [0, T ] . (12.10)

Furthermore, the series in the right-hand side of (12.10) is uniformly abso-
lutely convergent w.r.t. t ∈ [0, T ] and x0 ∈ K.

Note that the sum in the right-hand side of equality (12.10) can be developed
as

∞∑
k=1

m∑
i1,... ,ik=1

(fi1 · · · fik
id)(x0)

∫ t

0

∫ tk

0

· · ·
∫ t2

0

uik
(tk)uik−1(tk−1) · · ·

ui1(t1) dt1 · · · dtk .

Let us also remark that the condition (12.8), which relates the integration
time-interval to the control size, is specific to driftless systems. For a system
which contains a drift term, it is a priori not true that decreasing the size of
the control inputs allows to increase the time-interval on which the expansion
(12.10) is valid. The fact that this property holds for driftless systems can be
viewed as a consequence of time-scaling invariance properties.

Our first result points out sufficient conditions under which exponential sta-
bilization robust to unmodeled dynamics is granted.

Theorem 12.2.1. [11] Consider an analytic locally controllable system (S0),
a neighborhood U of the origin in Rn, and a function u : U × R+ −→
Rm, (x, t) 7−→ u(x, t), periodic of period T w.r.t. t, continuous w.r.t. x and
piecewise continuous1 w.r.t. t. Assume that

1. there exist α, K > 0 such that |u(x, t)| ≤ K|x|α for all (x, t) ∈ U × [0, T ],

2. the solution x(.) of
1 In [11], u is assumed continuous w.r.t. t, but the proof is unchanged if u is only

piecewise continuous.
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ẋ =
m∑

i=1

fi(x)ui(x0, t) , x(0) = x0 ∈ U , (12.11)

satisfies x(T ) = Ax0 + o(x0) with A a discrete-stable matrix,

3. for any multi-index I of length |I| ≤ 1/α (this assumption is only needed
when α < 1),

∫ T

0

uI(x) = O(x) . (12.12)

Then, given a family of perturbed systems (Sε), there exists ε0 > 0 such that
the origin of (S̄ε) controlled by u(y, t) is locally exponentially stable for any
ε ∈ (−ε0, ε0) .

The conditions imposed in the theorem upon the control law can be satisfied
in many ways. For instance, when the system (S0) is known to be differentially
flat [2], adequate control functions can be obtained by considering specifically
tailored flatness-based solutions to the open-loop steering problem, as done
for example in [1] in the case of chained systems. Although the control de-
sign approach and robustness analysis in [1] are very different from the ones
developed in [11], the set of specific conditions derived in this reference im-
ply that the assumptions of Theorem 12.2.1 are verified. This suggests that
these assumptions are not unduly strong and also illustrates the fact that the
domain of application of Theorem 12.2.1 extends to different control design
techniques.

12.3 Control design

This section addresses the problem of constructing explicit controllers that
meet the conditions of Theorem 12.2.1. Such controllers have to be expo-
nential stabilizers for the extended system (S̄0). A general design algorithm
is first proposed. It takes advantage of known techniques based on the use
of oscillatory open-loop controls in order to achieve net motion in any di-
rection of the state space. Unfortunately (and unavoidably), the procedure
also inherits the complexity of the abovementioned techniques, itself directly
related to the process of selecting the “right” frequencies which facilitate
motion monitoring in the state space. Unsurprisingly, the selection of these
frequencies gets all the more involved that controllability of the system relies
on high-order Lie brackets of the control vector fields. The control design can
in fact be carried out from the expression of either the original system (S0) or
any locally controllable homogeneous approximation of (S0). Indeed, working
with an homogeneous approximation preserves the robustness of the feedback
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law provided that an extra condition is satisfied by the control law. This is
stated more precisely further in the paper after recalling basic definitions and
facts about homogeneous systems.

12.3.1 A general algorithm

We present in this section a general algorithm to construct robust and expo-
nential stabilizers for (S0). The algorithm uses previous results by Sussmann
and Liu [16], and Liu [6]. It is also much related to the one developed in
[10] for the construction of continuous time-periodic feedbacks u(x, t) which
exponentially stabilize the origin of a driftless system (S0), but present the
shortcoming of not being endowed with the type of robustness here consid-
ered.

In order to give a complete exposition of the algorithm, it is first useful
to recall some notations from [18]. With the set of control vector fields
{f1, . . . , fm} we associate a set of indeterminates X = {X1, . . . , Xm}. Brack-
ets in L(X), the free Lie algebra in the indeterminates X1, . . . , Xm, will be
denoted with the letter B. To any such bracket, one can associate a length and
a set of indeterminates. For instance, B = [X1, [X2, X1]] has length three, and
his set of indeterminates is {X1, X2, X1} . To each element A in L(X), one
can also associate an element in the control Lie algebra Lie(f) by means of
the evaluation operator Ev. More precisely, Ev(f)(A) is the vector field ob-
tained by plugging in the fj’s for the Xj’s in A. For instance, if B = [X1, X2],
then Ev(f)(B) is the vector field [f1, f2].

Finally, we recall some definitions on subsets of R [16, 6].

Definition 1 Let Ω be a finite subset of R and |Ω| denote the number of
elements of Ω. The set Ω is said to be “Minimally Canceling” (in short, MC)
if and only if :

i)
∑
ω∈Ω

ω = 0

ii)this is the only zero sum with at most |Ω| terms taken in Ω with possible
repetitions:∑

ω∈Ω

λωω = 0

∑
ω∈Ω

|λω| ≤ |Ω|

(λω)ω∈Ω ∈ Z|Ω|




=⇒



(λω)ω∈Ω = (0, . . . , 0)
or (1, . . . , 1)
or (−1, . . . ,−1)

(12.13)

Definition 2 Let (Ωξ)ξ∈E be a finite family of finite subsets Ωξ of R. The
family (Ωξ)ξ∈E is said to be “independent with respect to p” if and only if :
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∑
ξ∈E

∑
ω∈Ωξ

λωω = 0

∑
ξ∈E

∑
ω∈Ωξ

|λω | ≤ p

(λω)ω∈Ωξ,ξ∈E ∈ ZΣ|Ωξ|




=⇒
∑

ω∈Ωξ

λωω = 0 ∀ξ ∈ E (12.14)

Algorithm

Step 1. Determine n vector fields f̃j (j = 1, . . . , n), obtained as Lie brackets
of length `(j) of the control vector fields fi, and such that the matrix

F̃ (x) ∆=
(
f̃1(x), . . . , f̃n(x)

)
(12.15)

is nonsingular at x = 0.

Step 2. Determine a matrix G such that the matrix (In + F̃ (0)G) is discrete-
stable (with In denoting the n-dimensional identity matrix), and define the
linear feedback

a(x) =
1
T

Gx . (12.16)

Step 3. By Step 1, there exists, for each j = 1, . . . , n, a bracket Bj such that
f̃j = Ev(f)(Bj). Partition the set {B1, . . . ,Bn} in homogeneous components
P1, . . . , PK , i.e.

i) all brackets in a homogeneous component Pk have the same length l(k),
and the same set of indeterminates {Xτk

1
, . . . , Xτk

l(k)
}.

ii)given two homogeneous components Pk and Pk′ (with k 6= k′), either l(k) 6=
l(k′), or {Xτk

1
, . . . , Xτk

l(k)
} 6= {Xτk′

1
, . . . , Xτk′

l(k′)
}.

Step 4. The last four steps can be conducted either in the control Lie algebra
(c.l.a.) framework or in the framework of free Lie algebras (f.l.a.)2.
c.l.a.: For every k = 1, . . . , K, find permutations σ1, . . . , σC(k) in S(l(k))
such that the vector fields

[fτk
σ(1)

, [fτk
σ(2)

, [. . . , fτk
σ(l(k))

] . . . ]] (σ ∈ {σ1, . . . , σC(k)})

form a basis of the linear sub-space (over R) of Lie(f) spanned by the vector
fields
2 Respective advantages and drawbacks will be pointed out later.
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[fτk
σ(1)

, [fτk
σ(2)

, [. . . , fτk
σ(l(k))

] . . . ]] (σ ∈ S(l(k))) .

f.l.a.: For every k = 1, . . . , K, find permutations σ1, . . . , σC(k) in S(l(k))
such that the brackets

[Xτk
σ(1)

, [Xτk
σ(2)

, [. . . , Xτk
σ(l(k))

] . . . ]] (σ ∈ {σ1, . . . , σC(k)})

form a basis of the linear sub-space (over R) of L(X) spanned by the brackets

[Xτk
σ(1)

, [Xτk
σ(2)

, [. . . , Xτk
σ(l(k))

] . . . ]] (σ ∈ S(l(k))) .

Step 5.
c.l.a.: For every k ∈ {1, . . . , K} such that l(k) ≥ 2, determine C(k) ∆= C(k)
MC sets Ωk,c = {ωk,c

1 , . . . , ωk,c
l(k)}, with c = 1, . . . , C(k), such that

i) the family of sets (Ωk,c)k=1,... ,K
c=1,... ,C(k) is independent w.r.t. maxk∈{1,... ,K} l(k)

ii) all elements in these sets have a common divisor ω̄ (= 2π/T ), i.e.

ωk,c
i /ω̄ ∈ Z, ∀(k, c, i),

iii) the C(k) elements gk,c (c = 1, . . . , C(k)) of Lie(f) defined by

gk,c =
∑

σ ∈ S(l(k))

[fτk
σ(1)

, [fτk
σ(2)

, [. . . , fτk
σ(l(k))

] . . . ]]

ωk,c
σ(1)(ω

k,c
σ(1) + ωk,c

σ(2)) · · · (ωk,c
σ(1) + . . . + ωk,c

σ(l(k)−1))

are independent (over R).

For every k ∈ {1, . . . , K} such that l(k) = 1, just set ωk,1
1 = 0.

Each family of sets {Ωk,c}c=1,... ,C(k) is used to associate the following sine
and cosine functions with Pk

αk,c

τk
i

(t) =
{

cosωk,c
i t (i = 1)

sinωk,c
i t (i = 2, . . . , l(k)) .

(12.17)

f.l.a.: Same as above, with C(k) ∆= C(k) instead of C(k), each fi replaced by
Xi, and Lie(f) replaced by L(X).

Step 6.
c.l.a.: For each k ∈ {1, . . . , K} and j such that Bj ∈ Pk, determine coeffi-
cients µk,c

j (c = 1, . . . , C(k)) such that
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f̃j =
(−1)l(k)−1

l(k)2l(k)−1

C(k)∑
c=1

µk,c
j gk,c . (12.18)

f.l.a.: Same as above, with f̃j replaced by Bj .

Step 7.
c.l.a. and f.l.a.: For each k ∈ {1, . . . , K}, determine l(k)C(k) state depen-
dent functions vk,c

τk
i

which are O(|x| 1
l(k) ), and such that

l(k)∏
i=1

vk,c

τk
i

(x) =
∑

j:Bj∈Pk

µk,c
j aj(x) (12.19)

(aj is the j-th component of a defined by (12.16)).

The following result concludes the description of the algorithm and points out
the robustness properties associated with the resulting control in connection
with Theorem 12.2.1.

Theorem 12.3.1. Let

ui(x, t) =




K∑
k=1

C(k)∑
c=1

∑
p:τk

p =i

αk,c
τk

p
(t)vk,c

τk
p

(x) if ∃(k, p) : τk
p = i

0 otherwise .

(12.20)

with C(k) equal to C(k) in the c.l.a. case, and to C(k) in the f.l.a. case.
Then,

i) in both cases, u defined by (12.20) belongs to C0(Rn × R+;Rm), is T -
periodic w.r.t. t, and satisfies the three assumptions of Theorem 12.2.1.

ii)in the f.l.a. case, local asymptotic stability of the origin of the perturbed
system (S̄ε) is guaranteed for any ε such that In + F̃ε(0)G is discrete-
stable, where F̃ε denotes the matrix-valued function obtained from (12.15)
by replacing each f̃j = Ev(f)(Bj) by f̃j,ε = Ev(f + h(ε, .))(Bj).

Property ii) above summarizes the main advantage of working in the f.l.a.
framework. In this case, asymptotic stability of the origin of the controlled per-
turbed system is just equivalent to discrete-stability of the matrix In+F̃ε(0)G.
This result is conceptually interesting because it is reminiscent of a well
known robustness result associated with linear systems. On the other hand,
the fact that the number C(k) is usually smaller than C(k) characterizes the
main advantage of the c.l.a. framework over the f.l.a. one in terms of com-
plexity of the control expression (12.20), as measured by the number of terms
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and time-periodic functions involved in this expression. Further explanations
and comments about the algorithm are given in [11].

Now we show that robustness of the hybrid law (12.20) is conserved when
sampling the control function at a large enough frequency.

Proposition 2 Let u be defined by (12.20), and denote uN (with N ∈ N)
the sampled function defined by

∀k ∈ N , ∀n = 0, . . . , N − 1 , ∀t ∈
[
kT + nT

N , kT + (n+1)T
N

)
,

uN(x, t) = u(x, kT + nT/N) .
(12.21)

Then, there exists N0 ∈ N such that, for N ≥ N0, uN is also a robust
exponential stabilizer for (S0).

Proof: The proof consists in showing that uN satisfies the three assumptions
of Theorem 12.2.1. It is clear from (12.21) that Assumption 1 is satisfied for
uN since, from Theorem 12.3.1, u satisfies Assumption 1. Let us now consider
Assumption 2. Using the Chen-Fliess series, the solution x(.) of (12.11) with
uN as control satisfies

x(T ) = x0 +
∑

|I|≤1/α

(fI id)(x0)
∫ T

0

uN,I(x0) + o(x0)

= x0 +
∑

|I|≤1/α

(fI id)(x0)
∫ T

0

uI(x0) + o(x0)

+
∑

|I|≤1/α

(fI id)(x0)

(∫ T

0

uN,I(x0) −
∫ T

0

uI(x0)

)

= Ax0 + o(x0)

+
∑

|I|≤1/α

(fI id)(x0)

(∫ T

0

uN,I(x0) −
∫ T

0

uI(x0)

)
,

(12.22)

where we have used the fact that u and uN satisfy Assumption 1 with the
same value of α, and the fact that u satisfies Assumption 2. Let us now
consider each term∫ T

0

uN,I(x0) −
∫ T

0

uI(x0)

in (12.22). Using (12.20), we can rewrite this term as

∫ T

0

uN,I(x0) −
∫ T

0

uI(x0) =
∑

q

vq
I (x0)

(∫ T

0

αq
N,I −

∫ T

0

αq
I

)
. (12.23)
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This expression reads as follows. Each q denotes a family (q1, . . . , q|I|) with
qi = (ki, ci), and

vq
I (x0) = vq1

i1
(x0) · · · vq|I|

i|I| (x0) ,

∫ T

0

αq
N,I =

∫ T

0

α
q|I|
N,iI

(t|I|)
∫ t|I|

0

. . .

∫ t2

0

αq1
N,i1

(t1)dt1 . . . dt|I| ,

and∫ T

0

αq
I =

∫ T

0

α
q|I|
iI

(t|I|)
∫ t|I|

0

. . .

∫ t2

0

αq1
i1

(t1)dt1 . . . dt|I| .

Specifying further the (finite) set on which the sum in (12.23) is taken is
not important. Note that the integrals in the right-hand side of (12.23) are
iterated integrals of sine or cosine functions, and sampled sine or cosine func-
tions, which are independent of x0. To proceed with the proof, we need the
following lemma.

Lemma 1 Each term

vq
I (x0)

(∫ T

0

αq
N,I −

∫ T

0

αq
I

)
(12.24)

in (12.23), viewed as a function of x0, satisfies one of the following properties

a)it is a o(x0),

b) it is a linear function of x0,

c) it is identically zero for N large enough.

(Proof given farther)

Since each term∫ T

0

αq
N,I −

∫ T

0

αq
I

obviously tends to zero as N tends to infinity, we deduce from Lemma 1,
that the term (12.24) is either a o(x0), or a term AN (I, q)x0 with AN (I, q) a
matrix which tends to zero as N tends to infinity, or zero for N large enough.
Therefore, from (12.22), (12.23), and using the facts that the fi’s are smooth,
and that the number of multi-indices I such that |I| ≤ 1/α is finite, there
exists a matrix B(N) which tends to zero as N tends to infinity, and such
that

x(T ) = Ax0 + B(N)x0 + o(x0) .
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This clearly implies that Assumption 2 is satisfied for N large enough. Finally
the satisfaction Assumption 3 is a direct consequence of (12.23), Lemma 1,
and the fact that u satisfies this assumption. There remains to prove Lemma
1.

Proof of Lemma 1: Assuming that neither a) nor b) hold, we show that
c) must be satisfied. The proof consists in expanding each sampled sine or
cosine function as a Fourier series, in order to evaluate each term∫ T

0

αq
N,I . (12.25)

First, we establish the following

Claim 1 Let {ω1, . . . , ω|I|} denote the set of frequencies associated with the
functions α1, . . . , α|I| in∫ T

0

αq
I .

Then, for each M.C. set Ωk,c, {ω1, . . . , ω|I|} contains at most l(k) elements
which belong to Ωk,c, and does not contain Ωk,c itself.

We prove the claim by contradiction, and first assume that {ω1, . . . , ω|I|}
contains more than l(k) elements of some Ωk,c. Then, in view of Step 7 of
the design algorithm, we deduce that vq

I (x0) = o(x0). This contradicts our
initial assumption according to which Property a) in Lemma 1 is not satisfied.
On the other hand, if the set {ω1, . . . , ω|I|} contains some set Ωk,c then,
either these two sets are equal and, from (12.16) and (12.19), vq

I is a linear
function (in contradiction with the assumption that Property b) of Lemma
1 is not satisfied), or {ω1, . . . , ω|I|} contains Ωk,c plus extra terms, in which
case vq

I (x0) = o(x0) (again in contradiction with our initial assumption).

Having proved Claim 1, we return to the proof of the lemma. In order to
simplify the notation, we assume from now on that T = 2π. For different
values of T , the proof follows by a simple change of time variable. Let αN,i

denote any sampled sine or cosine function. Away from points of discontinuity,

αN,i(t) =
+∞∑

n=−∞
cnejnt , (12.26)

with

cn =
1
2π

∫ 2π

0

αN,i(t)e−jnt dt .

First, consider the case when αi(t) = cosωit. Then, denoting ∆
∆= T/N =

2π/N ,
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cn =
1
2π

N−1∑
k=0

∫ (k+1)∆

k∆

ejωik∆ + e−jωik∆

2
e−jnt dt

= − 1
4jnπ

N−1∑
k=0

(
ejωik∆ + e−jωik∆

) (
e−jn(k+1)∆ − e−jnk∆

)

= − 1
4jnπ

(
e−jn∆ − 1

)N−1∑
k=0

ej(ωi−n)k∆ + e−j(ωi+n)k∆ .

If n − ωi 6∈ NZ, then
N−1∑
k=0

ej(ωi−n)k∆ =
1 − ej(ωi−n)N∆

1 − ej(ωi−n)∆
=

1 − ej(ωi−n)2π

1 − ej(ωi−n)∆
= 0 ,

where the last equality comes from the fact that, from Step 5, ωi ∈ Z. Simi-
larly, if n + ωi 6∈ NZ

N−1∑
k=0

e−j(ωi+n)k∆ = 0 .

Therefore, cn is possibly different from zero only if n = ±ωi(modN), so that
(12.26) may be rewritten as

cosN ωit =
+∞∑

k=−∞
η1

i,kej(ωi+kN)t +
+∞∑

k=−∞
η−1

i,k e−j(ωi+kN)t

=
+∞∑

k=−∞

∑
s∈{−1,1}

ηs
i,kesj(ωi+kN)t ,

(12.27)

where the ηs
i,k are complex coefficients which depend on ωi, N, k, and s. Sim-

ilarly,

sinN ωit =
+∞∑

k=−∞

∑
s∈{−1,1}

ηs
i,kesj(ωi+kN)t , (12.28)

where the ηs
i,k are other complex coefficients. In view of (12.27) and (12.28),

we can rewrite (12.25) as∫ T

0

αq
N,I =

∑
(k1,... ,k|I|)∈Z|I|

JN,I(k1, . . . , k|I|) ,

with

JN,I(k1, . . . , k|I|)
∆=
∫ 2π

0

∑
s|I|∈{−1,1}

η
s|I|
i|I| ,k|I|e

s|I|j(ωi|I|+k|I|N)τ|I|

∫ τ|I|

0

. . .

∫ τ2

0

∑
s1∈{−1,1}

ηs1
i1,k1

es1j(ωi1+k1N)τ1 dτ1 . . . dτ|I| .
(12.29)
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The above expression is to be compared with the following one, derived when
the sine and cosine functions are not sampled:∫ T

0

αq
I =

∫ 2π

0

∑
s|I|∈{−1,1}

η
s|I|
i|I| e

s|I|jωi|I|τ|I|
∫ τ|I|

0

. . .

∫ τ2

0

∑
s1∈{−1,1}

ηs1
i1

es1jωi1τ1 dτ1 . . . dτ|I| ,
(12.30)

with η1
i = η−1

i = 1/2 if αi is a cosine function, and η1
i = −η−1

i = −i/2 if αi is
a sine function. We have proved in [11, Lemma 2] that, when the condition of
Claim1 is satisfied, the integral (12.30) is zero. We claim that each iterated
integral (12.29) is also equal to zero provided that

N >

|I|∑
i=1

|ωi| . (12.31)

This condition is needed in order to ensure the following property:

|I|∑
p=1

λp(ωip + kpN) = 0

λp ∈ {−1, 0, 1}


 =⇒

|I|∑
p=1

λpωip = 0 .

We leave to the reader the task of verifying that this property allows a direct
transposition of the proof given in [11, Lemma 2] for the integral (12.30).
Therefore, both integrals involved in (12.24) are equal to zero when (12.31)
holds, and Property c) of Lemma 1 is verified. Note that imposing

N > max
k

l(k)max
i,k,c

|ωk,c
i |

automatically ensures (12.31) since, from (12.22) and Step 7, |I| ≤ 1/α =
maxk l(k).

12.3.2 Control design from a homogeneous approximation

It is often convenient and simpler to work with approximations of control
systems. For instance, linear approximations are commonly used for feedback
control design when they are controllable (or at least stabilizable). When the
linear approximation of the system, evaluated at the equilibrium which feed-
back control is in charge of stabilizing, is not stabilizable, the extension of
the notion of linear approximation yields to homogeneous controllable ap-
proximations. Using such an approximation is particularly well adapted to
the design of continuous homogeneous feedbacks which render the closed-loop
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system homogeneous of degree zero. The reason is that asymptotic stabiliza-
tion of the origin of the homogeneous approximation automatically ensures
that the origin of the initial control system is also asymptotically (locally)
stabilized by the same feedback control law. It is however important to real-
ize that this property does not necessarily hold when using hybrid controllers
such as those which we are considering here, and it is not difficult to work
out simple examples which illustrate this fact. Nevertheless, it is proved in
[11] that a robust controller for the system (S0) can be derived from the
knowledge of a homogeneous approximation of this system, provided that
some extra condition is satisfied by the control law. This condition will be
stated in a theorem, after recalling a few definitions and properties about
homogeneous systems. A complementary proposition will indicate how the
control design algorithm previously described can be completed in order to
cope with the use of homogeneous approximations.

Given λ > 0 and a weight vector r = (r1, . . . , rn) (ri > 0 ∀i), a dilation δr
λ is

a map from Rn to Rn defined by

δr
λ(z1, . . . , zn) = (λr1z1, . . . , λrnzn) .

A function f ∈ C0(Rn;R) is homogeneous of degree l with respect to the
family of dilations δr

λ (λ > 0), or, more concisely, δr-homogeneous of degree l,
if

∀λ > 0, f(δr
λ(z)) = λlf(z) .

A δr-homogeneous norm can be defined as a positive definite function on Rn,
δr-homogeneous of degree one. Although this is not a “true” norm when the
weight coefficients are not all equal, it still provides a means of “measuring”
the size of the state.
A continuous vector field X on Rn is δr-homogeneous of degree d if, for all
i = 1, . . . , n, the function z 7−→ Xi(z) is δr-homogeneous of degree ri + d.
According to these definitions, homogeneity is coordinate dependent, how-
ever it is possible to define the above concepts in a coordinate independent
framework [5, 13].
Finally, we say that the system

ż =
m∑

i=1

bi(z)ui (12.32)

is a δr-homogeneous approximation of (S0) if:

1. the change of coordinates φ : x 7−→ z transforms (S0) into

ż =
m∑

i=1

(bi(z) + gi(z))ui , (12.33)
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where bi is δr-homogeneous of some degree di < 0, and gi denotes higher-
order terms, i.e. such that gi,j (the j-th component of gi) satisfies

gi,j = o(ρrj+di) , (j = 1, . . . , n) . (12.34)

where ρ is a δr-homogeneous norm;

2. the system (12.32) is controllable.

Hermes [3] and Stefani [15] have shown that any driftless system (S0) sat-
isfying the LARC (Lie Algebra Rank Condition) at the origin (12.2) has a
homogeneous approximation (which is not unique in general).

Theorem 12.3.2. Consider a δr-homogeneous approximation (12.32) of
(S0), with di

∆= deg(bi) (i = 1, . . . , m), and a control function

u ∈ C0(U × [0, T ];Rm)

such that the three assumptions in Theorem 12.2.1 are verified for this approx-
imating system. Assume furthermore that the following assumption, which is
a stronger version of the third assumption in Theorem 12.2.1, is also verified
for the approximating system:

3-bis. for any multi-index I = (i1, . . . , i|I|) of length |I| ≤ 1/α,

∫ T

0

uI(z) =
∑

k:rk≥‖I‖
aI,kzk + o(z) , (12.35)

where ‖I‖ ∆= −
|I|∑

j=1

dij , and the aI,k’s are some scalars.

Then, the three assumptions of Theorem 12.2.1 are verified for the system
(12.33).

When applying the algorithm of Section 12.3.1 to the approximation (12.32),
the control law u given by (12.20) may not satisfy the extra condition 3-bis
of Theorem 12.3.2. However, it is possible to impose extra requirements on
the matrix G defined in Step 2 so as to guarantee the satisfaction of this
condition. For instance, the following result is proved in [11].

Proposition 3 Consider a δr-homogeneous approximation (12.32) of (S0),
with every control vector field of this system being δr-homogeneous of degree
−1. Without loss of generality, we assume that the variables zi are ordered
by increasing weight, i.e.
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r1 ≤ r2 ≤ . . . ≤ rn ,

and decompose z as z = (z1, . . . , zP ), where each zp (1 ≤ p ≤ P ) is the
sub-vector of z whose components have same weight rp (r1 ≤ rp ≤ rn) with

r1 = r1 < r2 < . . . < rP = rn .

Consider the control design algorithm described in Section 12.3.1 and applied
to (12.32). Let b̃j (j ∈ {1, . . . , n}) denote the vector fields defined according
to Step 1 of the algorithm, and

B̃(z) ∆= (b̃1(z), . . . , b̃n(z)) .

Due to the ordering of the variables zi, the matrix B̃(z) is block lower trian-
gular, and block diagonal at z = 0, i.e.

B̃(0) =




B̃11 0 · · · 0

0 B̃22
...

...
...

. . . 0
0 · · · · · · B̃PP


 .

Assume that the control gain matrix G involved in Step 2 of the algorithm is
chosen as follows

G = B̃(0)−1(H − In)

with the matrix H being block upper triangular, i.e.

A =




H11 ? · · · ?

0 H22 . . .
...

...
. . . . . . ?

0 · · · 0 HPP


 ,

and discrete-stable (⇔ Hii is discrete-stable for i ∈ {1, . . . , P}).
Then, the three assumptions of Theorem 12.2.1 are verified for the system
(S0).

12.3.3 Stabilizers for chained systems

In some cases, it is possible to take advantage of specific structural properties
associated with the control system under consideration, in order to derive
robust control laws that are simpler than those obtained by application of
the general algorithm presented in Section 12.3.1. We illustrate this possibility
in the case of the following n-dimensional chained system
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(S0)




ẋ1 = u1

ẋ2 = u2

ẋ3 = u1x2

...
ẋn = u1xn−1 .

(12.36)

The next result points out a set of robust exponential stabilizers for this
system.

Theorem 12.3.3. With the control function u ∈ C0(Rn× [0, T ];R2) defined
by 


u1(x, t) =

1
T

[(g1 − 1)x1 + 2πρq(x) sin(ω̄t)]

u2(x, t) =
1
T

[(g2 − 1)x2

+
∑n

i=3 2i−2(i − 2)!(gi − 1) xi

ρi−2
q (x)

cos((i − 2)ω̄t)] ,

(12.37)

with

T = 2π/ω̄ (ω̄ 6= 0) ,

ρq(x) =
n∑

j=3

αj |xj | 1
q+j−2 , (q ≥ n − 2 , αj > 0) ,

|gi| < 1 , ∀i = 1, . . . , n ,

(12.38)

the three assumptions in Theorem 12.2.1, and the extra assumption in The-
orem 12.3.2, are verified for the system (12.36).

Corollary 1 (of Theorems 12.3.2 and 12.3.3) With the control function
(12.37), the three assumptions in Theorem 12.2.1 are verified for any analytic
driftless system for which the chained system (12.36) is a δr-homogeneous ap-
proximation, with r = (1, q, . . . , q + n − 2) and q ≥ n − 2.

12.4 Control laws for a dynamic extension

In mechanics, systems with non-holonomic constraints (wheeled mobile-
robots, systems with rolling parts,...) give rise to driftless systems like (S0). In
this case, x represents the configuration vector, and the control,u, is a vector
of admissible velocities. In practice, it is however more realistic to consider
torque control inputs rather than velocity control inputs. Since torques are
homogeneous to accelerations, it is then natural to consider the following
system (compare with (S0))
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(D0) :




ẋ =
m∑

i=1

fi(x)ui

u̇ = w ,

where u = (u1, . . . , um), (x, u) is the state vector, and w = (w1, . . . , wm) is
now taken as the control variable. If ū denotes an exponential robust stabilizer
for (S0) (as derived in the previous section for instance), we would like to
deduce an exponential stabilizer w for (D0), which conserves the robustness
properties of ū. More precisely, we look for a feedback w(y, v, t) such that the
origin of the controlled system

(D̄ε) :




ẋ =
m∑

i=1

(fi(x) + hi(ε, x))ui

u̇ = w(y, v, t)
ẏ = (

∑
k∈N δkT )(x − y−α)

v̇ = (
∑

k∈N δkT )(u − v−α) 0 < α < T

is exponentially stable when |ε| is small enough. We say that such a con-
troller is an exponential robust stabilizer for (D0). Let us remark that this is
a somewhat simplified problem since we do not consider perturbations on the
dynamic part. More precisely, having in mind the dynamic equations of me-
chanical systems, it would be justified to complement the perturbed system
(Sε) with an equation such as

u̇ = (Im + g1(ε, x, u))w + g0(ε, x, u) ,

with g1(0, ., .) = g0(0., ., ) ≡ 0, and g0(., 0, 0) ≡ 0 (so that (x, u) = (0, 0) re-
mains an equilibrium point). Beside the possibility that there may not exist
controllers which ensure robustness with respect to such general perturba-
tions, the analysis appears much more difficulty in this case. For this reason,
the present analysis is limited to perturbations on the kinematic part only.
Nonetheless, it is not very difficult to show that the control laws proposed
below are also robust with respect to less general perturbations (such as these
modeled by a function g1 which depends on ε only).

The following proposition provides exponential robust stabilizers for (D0).

Proposition 4 Let ū ∈ C0(U×R+;Rm) denote a function Hlder-continuous
with respect to x, differentiable and periodic of period T with respect to t.
Assume further that ū is an (hybrid) exponential robust stabilizer for (S0).
Denote α the function

t 7−→ α(t) = t − T

2π
sin

2πt

T
. (12.39)

Then,
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1. the function ūc ∈ C0(U × R+;Rm) defined by

ūc(y, t) = α̇(t)ū(y, α(t)) (12.40)

is also an exponential robust stabilizer for (S0), with the function t 7−→
ūc(y(t), t) being continuous along the trajectories of the closed-loop sys-
tem (S̄0),

2. the function w ∈ C0(U × Rm × R+;Rm) defined by

w(y, v, t) =
∂

∂t
ūc(y, t) − v

T
(12.41)

is an exponential robust stabilizer for (D0) .

Proof: First, we show that Property 1 is satisfied. From (12.39), α defines a
time-scaling on R+ which leaves each t = kT invariant (i.e. α(kT ) = kT for
all k ∈ N). One readily verifies that this time-scaling maps the solutions of
(S0) controlled by ū to the solutions of (S0) controlled by ūc, i.e.

ẋ(t) =
m∑

i=1

fi(x(t))ū(x0, t) =⇒ d

dt
x(α(t)) =

m∑
i=1

fi(x(t))α̇(t)ū(x0, α(t))

=
m∑

i=1

fi(x(t))ūc(x0, α(t)) .

Since this time-scaling also “preserves” the solutions of the perturbed systems
(Sε), we conclude that ūc is a robust exponential stabilizer for (S0). Finally,
ūc is continuous along the trajectories of (S̄0) because α̇(kT ) = 0 for all k,
so that

ūc(y(kT ), kT ) = 0 = lim
t→kT

ūc(y(t), t) .

Now we show that Property 2 is verified. We only prove exponential conver-
gence to the origin of the closed-loop systems’ solutions. Existence of these
solutions and uniform stability of the origin can be proved via a simple adap-
tation of the proof of [11, Theorem 1], in the case of driftless systems. Let
(xε, uε, yε, vε)(., t0, x0, u0, y0, v0) denote the solution of the controlled system
(D̄ε) with initial conditions (t0, x0, u0, y0, v0), t0 ∈ [k0T, (k0 + 1)T ), k0 ∈ N.
Then, for any k ∈ N such that k0 < k, and any t ∈ [kT, (k + 1)T ), this
solution satisfies



ẋ =
m∑

i=1

(fi(x) + hi(ε, x))ui(t)

u̇ = w(x(kT ), u(kT ), t)
ẏ = 0 , y(t) = x(kT )
v̇ = 0 , v(t) = u(kT )

(12.42)
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From (12.42) and (12.41),

u(t) = u(kT ) + ūc(x(kT ), t) − ūc(x(kT ), kT )− u(kT )
T

(t − kT ) . (12.43)

Using the fact that ūc(., kT ) ≡ 0 for all k, we deduce that

u((k + 1)T ) = 0 . (12.44)

As a consequence, for t ∈ [kT, (k + 1)T ) and k ≥ k0 + 2, we deduce from
(12.43) and (12.44) that

u(t) = ūc(x(kT ), t) . (12.45)

Thus, for t ≥ (k0 + 2)T , the x component of the solution of (12.42) coin-
cides with the solution of the system (S̄ε) controlled by ūc(y, t). Since, from
Property 1, ūc is an exponential stabilizer for (S̄0), we deduce that |x(t)| con-
verges exponentially to zero. Then, using the fact that ū (and therefore ūc) is
Hlder-continuous w.r.t. x, we deduce from (12.45) that |u(t)| also converges
exponentially to zero.
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Summary.

Passivity–based control (PBC) for regulation of mechanical systems is
a well established tehcnique that yields robust controllers that have a clear
physical interpretation in terms of interconnection of the system with its
environment. In particular, the total energy of the closed–loop is the dif-
ference between the energy of the system and the energy supplied by the
controller. Furthermore, since the Euler–Lagrange (EL) structure is pre-
served in closed–loop, PBC is robustly stable vis á vis unmodeled dissipa-
tive effects and inherits some robust performance measures from its inverse
optimality. Unfortunately, these nice properties are lost when PBC is used
in other applications, for instance, in electrical and electromechanical sys-
tems. Our main objective in this paper is to develop a new PBC theory for
port–controlled Hamiltonian (PCH) systems, which result from the net-
work modeling of energy-conserving lumped-parameter physical systems
with independent storage elements, and strictly contain the class of EL
models. We identify a class of PCH models for which PBC ensures the
Hamiltonian structure is preserved, with storage function the energy bal-
ance. One final advantage of the method is that it is rather systematic and
the controller can be easily derived using symbolic computation.
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13.1 Introduction

The term passivity–based control (PBC) was first introduced in [15] to de-
fine a controller design methodology which achieves stabilization by render-
ing passive a suitably defined map. This idea has been very successful to
control physical systems described by Euler–Lagrange (EL) equations of mo-
tion, which as thoroughly detailed in [16], includes mechanical, electrical and
electromechanical applications. PBC has its roots in the ground–breaking
work of Takegaki and Arimoto [23] on state–feedback regulation of fully ac-
tuated robot manipulators. For such (so–called simple) mechanical systems
the controller design proceeds along two basic stages. First, an energy shaping
stage where we modify the potential energy of the system in such a way that
the new potential energy function has a strict local minimum in the desired
equilibrium.1 Second, a damping injection stage where we now modify the
dissipation function to ensure asymptotic stability.

A central feature of this technique is that the closed–loop dynamics remain
in Lagrangian form. There are three important advantages of requiring the
closed–loop to be an EL system which, to a large extent, explain the practical
success of PBC:

1. The control action has a clear physical interpretation as an interconnec-
tion of the system with the controller. In particular, stabilization can be
understood in terms of energy balance between them. Indeed, we will
show in this paper that the total energy of the closed–loop EL system
is the difference between the energy of the open–loop and the energy
provided to the system from its environment.2

2. Since EL systems are passive with respect to physically meaningful out-
puts, a margin of robustness vis a vis uncertain parameters and unmod-
eled dynamics is ensured. Furthermore, the closed–loop inherits some
robust performance measures from its inverse optimality.

3. For mechanical systems the controller is a simple PD–like law with the
controller parameters playing the role of dampers and springs. This prop-
erty can hardly be overestimated in engineering applications where com-
missioning of the controller for a robust behaviour is an issue of prime
importance.

1 It is clear that, similarly to the choice of a Lyapunov function, no systematic
procedure exists to select the desired potential energy. An important advantage
of the method proposed here is that this step is considerably simplified, and
sometimes even obviated.

2 With an obvious abuse of notation in the sequel we will refer to this function as
“energy–balancing function”.
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PBC has been extended, within the class of simple mechanical systems, to
consider regulation with output feedback [17], [22], underactuation [1] and
the presence of input constraints [9]. PBC ideas were also applied to elec-
trical and electromechanical systems described by EL models, as well as to
solve tracking problems –for a complete set of references see [16]. While in
regulation problems for mechanical systems it suffices to shape the potential
energy, to address the other applications (even in regulation tasks) we had
to modify also the kinetic energy. Unfortunately, this modification could not
be achieved preserving the Lagrangian structure. That is, in these cases, the
closed–loop –although still defining a passive operator– is no longer an EL
system, and the storage function of the passive map does not have the in-
terpretation of total energy. Consequently these designs will not, in general,
enjoy the three nice features mentioned above. As explained in Section 10.3.1
of [16], this situation stems from the fact that, to shape the kinetic energy,
we carry out an inversion of the system along the reference trajectories that
destroys the EL structure.3 Another shortcoming of the EL approach is that
the “desired” storage function for the closed–loop map is defined in terms of
some error quantities whose physical interpretation is far from obvious.

The main contribution of this paper (see also [19]) is the development of a
controller design methodology that extends, to a broader class of systems the
nice features of PBC of simple mechanical systems described above. Towards
this end, we develop a new systematic technique to achieve energy–shaping
and damping injection in PBC for set–point regulation of systems described
by port–controlled Hamiltonian (PCH) models. An important advantage of
the method is that the basic step of PBC of choosing the “desired” storage
function –being now a true energy function– becomes more natural. Actually,
as we will see in the paper, we don’t even need to know it explicitly, but the
method provides the means to verify its existence. We also have that, if the
damping satisfies some structural conditions (or if it is zero), the total energy
is the “energy–balancing function”. Finally, the design is rather systematic
and the controller can be easily derived using symbolic computation.

The remaining of the paper is organized as follows. In Section 2 we briefly
describe the class of PCH models studied in the paper. The main result of our
work, namely a procedure to design a stabilizing PBC for PCH systems which
preserves the Hamiltonian structure, is presented in Section 3. In Sections 4
and 5 we give two alternative interpretations of the stabilization mechanism
of the proposed PBC in terms of: 1) the overall systems energy–balance, and
2) the method of Energy–Casimir functions [10]. For the former we show
that, if the damping satisfies some structural conditions (or if it is zero),
then the storage function assigned to the closed–loop is the “energy balancing
function”. To provide the second interpretation, we follow [14], [22], and view
3 It also imposes a stable invertibility requirement to the system which is obviated

in the approach presented here.
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our controller as a PCH system in a power–preserving interconnection with
the plant. In this way the plant is embedded in a higher dimensional system
for which a series of Casimir functions can be constructed. We wrap up the
paper with some open problems and concluding remarks.

13.2 Port controlled Hamiltonian systems

13.2.1 Systems model

Network modeling of energy-conserving lumped-parameter physical systems
[12] with independent storage elements leads to models of the form –called
port controlled Hamiltonian systems [11], [26]–

Σ :




ẋ = J(x)∂H
∂x (x) + g(x)u

y = gT (x)∂H
∂x (x)

(13.1)

where x ∈ Rn are the energy variables, the smooth function H(x) : Rn → R
represents the total stored energy, which we assume is bounded from below,
and u, y ∈ Rm are the port power variables. (All vectors defined in the
paper are column vectors, even the gradient of a scalar function.) u and y are
conjugated variables, for instance currents and voltages in electrical circuits or
forces and velocities in mechanical systems. The interconnection structure is
captured in the n×n matrix J(x) and the n×m matrix g(x), both depending
smoothly on the state x. Because of the assumption of energy-conservation,
the matrix J(x) is skew-symmetric, that is,

J(x) = −JT (x), ∀ x ∈ Rn (13.2)

The geometric structure of Hamiltonian systems has been thoroughly stud-
ied in the literature, we refer the interested reader to [7], [10]. The matrix
J(x) defines a generalized Poisson bracket on the state manifold (generalized
because it need not satisfy the Jacobi-identity [26]).

Energy-dissipation is included by terminating some of the ports by resistive
elements, see e.g. [26]. Indeed, consider instead of g(x)u in (13.1) a term

[
g(x) gR(x)

] [
u
uR

]
= g(x)u + gR(x)uR

and extend correspondingly y = gT (x)∂H
∂x (x) to

[
y
yR

]
=


 gT (x)∂H

∂x (x)

gT
R(x)∂H

∂x (x)
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Here uR, yR denote the power variables at the ports which are terminated
by (linear) resistive elements

uR = −SyR

for some positive semi–definite symmetric matrix S. Substitution in (13.1)
leads to models of the form

Σ :




ẋ = [J(x) − R(x)]∂H
∂x (x) + g(x)u

y = gT (x)∂H
∂x (x)

where

R(x)
4
= gR(x)SgT

R(x)

which is a non-negative symmetric matrix depending smoothly on x, i.e.

R(x) = RT (x) ≥ 0, ∀ x ∈ Rn (13.3)

The autonomous dynamics (13.2.1) is the addition of a Hamilton vector field
defined with respect to the pseudo–Poisson brackett associated with J(x) and
a gradient vector field defined with respect to the metric associated to R(x).

We want to study also systems where the control acts through the intercon-
nection structure. These are typically systems with switches where the con-
troller commutes between different topologies. Assuming a sufficiently fast
sampling and (for instance) a PWM implementation of the control action we
can approximate the average behaviour of the switched system by a smooth
system, where the control is now the PWM duty ratio. This situation, which
is very common in power electronic devices [16], [4], leads us to consider
systems of the form

ẋ = [J(x, u) − R(x)]
∂H

∂x
(x) + g(x, u) (13.4)

where

J(x, u) = −JT (x, u), ∀ x ∈ Rn, u ∈ Rm

The vector function g(x, u) is introduced to capture two kind of intercon-
nections, the standard g(x)u and “constant source inputs”, where u denotes
the switching of the source input. See, for instance, the model of the Ćuk
converter in [4].

13.2.2 Energy balance and passivity

PCH systems, as EL systems, define passive operators with storage function
the total energy function H(x). This can be easily established evaluating the
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rate of change of the total energy and using (13.1) and (13.2) to obtain, for
the case when R(x) = 0, the power-balance

d

dt
H = uT y (13.5)

with uT y the power externally supplied to the system. For the system with
dissipation (13.2.1) the power-balance (13.5) extends to

d

dt
H = −

[
∂H

∂x
(x)

]T

R(x)
∂H

∂x
(x) + uT y (13.6)

where the first term on the right-hand (which is non-positive by (13.3)) rep-
resents the dissipation due to the resistive (friction) elements in the system.
Integrating (13.6), taking into account (13.3) and the fact that the total en-
ergy is bounded from below, we see that the map Σ : u 7→ y is passive [24].
That is, for all square integrable inputs u(t), and all t ≥ 0, we have the
energy–balance equation∫ t

0

uT (s)y(s)ds︸ ︷︷ ︸
supplied

= H [x(t)] − H [x(0)]︸ ︷︷ ︸
stored

(13.7)

+
∫ t

0

[
∂H

∂x
[x(s)]

]T

R[x(s)]
∂H

∂x
[x(s)]ds︸ ︷︷ ︸

dissipated energy

which expresses the fact that a passive system cannot store more energy than
it is supplied to it from the outside, with the difference being the dissipated
energy.

Notice that for the more general class of systems (13.4), since u is not a port
variable, the passivity property is not established with respect to this signal,
but between suitable elements of ∂H

∂x and g(x, u).

13.2.3 Problem formulation

In the light of the discussion of the introduction we formulate our PBC sta-
bilization objective as follows

• Given the PCH system (13.2.1) (or (13.4)) and a desired equilibrium
x̄ ∈ Rn. Find a control law u (which may be a static or dynamic state–
output feedback) such that the closed–loop is still a PCH system and the
equilibrium is asymptotically stable.
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Keeping up with the spirit of PBC, one of our main concerns in this paper
is to provide an energy–balance interpretation of the stabilization mecha-
nism. Namely, we want to know under which conditions the “energy–balance
function”4

H [x(t)] −
∫ t

0

uT (s)y(s)ds

is a storage function to the closed–loop PCH system. In Section 5 we will
show that this is the right candidate for being a storage function, because it
is the total energy of the system connected to the controller.

13.3 Controller design procedure

In this section we will present a procedure to design a PBC with the aim of
stabilizing a desired equilibrium point x̄ ∈ Rn for the PCH system (13.2.1)
(or (13.4)). We will consider first the case of static feedback, see [19] for
the dynamic feedback case. To avoid cluttering the notation we will make
the control function of the full state but, as will become clear below, all
results apply as well to the partial state–feedback case. See [18], [21] for two
application examples.

13.3.1 Rationale

Motivated by the discussion of the introduction we want to design our stabi-
lizing PBC in such a way that the closed–loop system is also a PCH system
with dissipation. In this paper we will further require that the internal in-
terconnection structure of the open–loop system (i.e. the matrix J(x)) is
also preserved. See, however, point 3 of Subsection 3.3 for the case where we
change also the interconnection structure.

Following the energy–shaping plus damping injection principles of PBC [16],
[24] we will achieve this objective by:

1. Assigning to the closed–loop an energy function Hd(x), which should
have a strict local minimum at the desired equilibrium x̄. (That is, there
exists an open neighbourhood B of x̄ such that Hd(x) > Hd(x̄) for all
x ∈ B.) We will define

Hd(x)
4
= H(x) + Ha(x) (13.8)

4 Notice that this function(al) coincides, up to an additive constant and with
opposite sign, with the third right hand dissipation term of (13.7). In other
words, we want the dissipation function to be non–decreasing.
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where Ha(x), which is a function to be defined, plays the role of energy
function for the controller.

2. Injecting some additional damping such that Ra(x) to get

Rd(x)
4
= R(x) + Ra(x) ≥ 0, ∀ x ∈ Rn (13.9)

That is, we are looking for a static state–feedback control u = β(x) such that
the following identity holds

[J(x, β(x)) − R(x)]
∂H

∂x
(x) + g(x, β(x)) = [J(x, β(x)) − Rd(x)]

∂Hd

∂x
(x)

(13.10)

In this way, the closed–loop dynamics will be a PCH system with dissipation
of the form

ẋ = [J(x, β(x)) − Rd(x)]
∂Hd

∂x
(x) (13.11)

Clearly, along the dynamics (13.11) we will have

d

dt
Hd = −

[
∂Hd

∂x
(x)

]T

Rd(x)
∂Hd

∂x
(x) ≤ 0, ∀x ∈ Rn (13.12)

Hence, if the conditions 1 and 2 above are satisfied, x̄ will be a stable equi-
librium.

13.3.2 Main result

Proposition 13.3.1. Given J(x, u), R(x), H(x), g(x, u) and the desired equi-
librium to be stabilized x̄ ∈ Rn. Assume we can find functions β(x), Ra(x)
such that R(x) + Ra(x) ≥ 0, ∀ x ∈ Rn, and a vector function K(x) satisfy-
ing5

[J(x, β(x)) − (R(x) + Ra(x))]K(x) = Ra(x)
∂H

∂x
(x) + g(x, β(x)) (13.13)

and such that

• (Integrability) K(x) is the gradient of a scalar function. That is,

∂K

∂x
(x) =

[
∂K

∂x
(x)

]T

(13.14)

• (Equilibrium assignment) K(x), at x̄, verifies
5 Compare this equation with (4.49) of [24].
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K(x̄) = −∂H

∂x
(x̄) (13.15)

• (Lyapunov stability) The Jacobian of K(x), at x̄, satisfies the bound

∂K

∂x
(x̄) > −∂2H

∂x2
(x̄) (13.16)

Under these conditions, the closed–loop system u = β(x) will be a PCH system
with dissipation of the form (13.11), where Hd(x) is given by (13.8), and

∂Ha

∂x
(x) = K(x) (13.17)

Furthermore, x̄ will be a (locally) stable equilibrium of the closed–loop. It will
be asymptotically stable if, in addition, the largest invariant set under the
closed–loop dynamics contained in{

x ∈ Rn ∩ B |
[
∂Hd

∂x
(x)

]T

Rd(x)
∂Hd

∂x
(x) = 0

}
(13.18)

equals {x̄}.

Proof
For every given β(x), Ra(x), (and on any contractible neighbourhood of Rn),
the solution of equation (13.13) is a gradient of the form (13.17) if and only if
the integrability condition (13.14) of the proposition is satisfied. Using (13.8)
and (13.9) it is easy to see that, in this case, the closed–loop is a PCH system
of the form (13.11) and total energy (13.8).

We will now prove that, under (13.15), (13.16), the stability of the equilibrium
is ensured. To this end, notice that the equilibrium assignment condition
(13.15) ensures Hd(x) has an extremum at x̄, while the Lyapunov stability
condition (13.16) shows that it is actually an isolated minimum. On the other
hand, from (13.12) we have that, along the trajectories of the closed–loop,
Hd(x(t)) is non–increasing, hence it qualifies as a Lyapunov function, and
we can conclude that x̄ is a stable equilibrium. Asymptotic stability follows
immediately invoking La Salle’s invariance principle [5] and the condition
(13.18).

The corollary below establishes the passivation properties of the PBC derived
above as applied to the PCH system (13.2.1), i.e., when the control action
does not affect the interconnection structure of the system.

Corollary 13.3.1. Consider the PCH system (13.2.1). Let the function β(x)
be defined as in Proposition 3.1 above, and set u = β(x)+v. Then, the closed–
loop system, given as
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ẋ = [J(x) − Rd(x)]
∂Hd

∂x
(x) + g(x)v

defines a passive map v 7→ ya, with storage function Hd(x), and the new
output defined as

ya
4
= y + gT (x)K(x)

with K(x) solution of (13.13).

13.3.3 Discussion

1. Notice that the construction of Proposition 3.1 does not require the
explicit derivation of the Lyapunov (storage) function Hd(x). This can be
obtained, though, as a by–product integrating ∂Ha

∂x (x).

2. The PBC of Proposition 3.1 does not ensure, in general, passivity with
respect to the natural output y, but to a new augmented output ya. It is
clear that, if gT (x)K(x) ≡ 0, we have y as passive output and we recover the
robustness features mentioned in the introduction. This will be, in particular,
the case for (simple) mechanical systems.

3. In Proposition 3.1 we have decided to preserve in closed–loop the
same internal interconnection structure as the open–loop. However, there
are applications, which will be reported elsewhere, where it is interesting to
modify it. That is, we want to obtain in closed–loop a PCH system of the
form

ẋ = [Jd(x, β(x)) − Rd(x)]
∂Hd

∂x
(x)

where Jd(x, β(x))
4
= J(x, β(x))+Ja(x). In this case, the vector function K(x)

should satisfy

[J(x, β(x)) + Ja(x) − R(x) − Ra(x)]K(x)

= −[Ja(x) − Ra(x)]
∂H

∂x
(x) − g(x, β(x))

The proposition applies verbatim to this case. It is possible to show that, with
this additional degree of freedom, we can establish some connections between
our PBC and the controllers obtained, with the technique of controlled La-
grangians, in the interesting paper [2]. See Section 6 for additional remarks
on this point.

4. The choice of “admissible” damping injection matrices Ra(x) is clearly
tied with the span of the input interconnection matrix g(x, u). In general, we
will take Ra(x) ≥ 0. However, in some particular examples, e.g., [18], [21],
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injection of positive damping has proven instrumental to solve some output
feedback problems.

5. If for given β(x), Ra(x) the integrability and equilibrium assignment
conditions are satisfied, but the Hessian ∂K

∂x (x̄) + ∂2H
∂x2 (x̄) is a sign indefinite

matrix, then the equlibrium will be unstable.

13.4 Stabilization via energy–balancing

To gain further insight into the derivations above we view the proposed PBC
from two alternative perspectives. First, in this section, we give an interpre-
tation of its stabilization mechanism in terms of the overall systems energy–
balance. Then, in the next section, we will view the control action as a PCH
system in a power preserving interconnection with the plant and establish
the relationship with the method of Energy–Casimir functions [10].

Throughout these two sections we will restrict ourselves to the case when the
control does not affect the interconnection structure of the system, that is,
we will consider only the PCH system (13.2.1). Also, for the sake of clarity,
we will not add damping to the system. See the point 3 of the discussion of
Subsection 5.1.

We show below that, if the damping satisfies a structural condition (or if it
is zero), then the storage function assigned to the closed–loop (i.e., its total
energy) is the energy balance function. That is,

Hd(x(t)) = H(x(t)) −
∫ t

0

uT (s)y(s)ds + c (13.19)

which is the difference between the total energy of the open–loop and the
energy provided to the system from the controller.

Proposition 13.4.1. Consider the PBC of Proposition 3.1 applied to the
PCH system (13.2.1) without damping injection, i.e., Ra(x) = 0. Assume
the natural damping of the system verifies6

R(x)K(x) = 0 (13.20)

Then, the total energy of the closed–loop Hd(x) satisfies (13.19).

Proof
If Ra(x) = 0 the closed–loop system is given by
6 We will show in Subsection 6.1 that the condition, which essentially means that

the supplied energy is not affected by the dissipation, is satisfied for simple
mechanical systems.
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ẋ = [J(x) − R(x)]
∂Hd

∂x
(x)

where Hd(x) is given by (13.8), with Ha(x) defined as (13.17). Hence, along
the trajectories of the closed–loop, we have

d

dt
Hd = −

[
∂Hd

∂x
(x)

]T

R(x)
∂Hd

∂x
(x)

= −
[
∂H

∂x
(x) +

∂Ha

∂x
(x)

]T

R(x)
[
∂H

∂x
(x) +

∂Ha

∂x
(x)

]

= −
[
∂H

∂x
(x)

]T

R(x)
∂H

∂x
(x)

where we have used (13.20) with (13.17) to get the last identity. Now, re-
placing above the power balance equation for the open–loop system (13.6)
we get

d

dt
Hd =

d

dt
H − uT y

The proof is completed integrating the equation above.

13.5 Casimir functions method

In this section we provide an interpretation of our controller in terms of
Casimir functions, which are first integrals of the system dynamics. Towards
this end, we view our controller as a PCH system in a power–preserving
interconnection with the plant, in this way, the plant is embedded in a higher
dimensional system. To study the stability of the closed–loop we restrict the
behaviour of this augmented system to an invariant subspace defined by a
series of Casimir functions. This approach has been explored in [14] within the
context of Lyapunov function generation for PCH systems with dissipation
and constant forcing inputs. For the case of simple mechanical systems, it is
discussed in [3] for static state feedback control, and in [22] with a dynamic
extension for output feedback damping injection. The latter work provides
a nice power–preserving interpretation, hence a more natural derivation, of
the results in [17], which are presented in an EL framework. As pointed out
in [14] the construction has some close connections with the Energy–Casimir
method of mechanics [10], see also [8], [2].

In all the works cited above the simplest “constant” power–preserving inter-
connection (13.21) –with uC , yC the controllers input and output, respectively–
is considered. As will be shown below to treat the controllers proposed in this
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paper we have to extend this interconnection to include a “state modula-
tion”, albeit retaining the power–preservation feature. To put in perspective
this new class of interconnections and, at the same time, underscore the lim-
itations of the constant one, we explain first the rationale of the Casimir
functions for the constant interconnection case. Throughout the section we
give only a brief, and rather informal, presentation of the material. We refer
the interested reader to the literature cited above for further technical details.

13.5.1 Port–controlled Hamiltonian controllers: constant
interconnection

We consider the system described by (13.2.1) in interconnection with a PCH
controller

ΣC :




ζ̇ = uC ,

yC = ∂HC

∂ζ (ζ)

with state ζ ∈ Rm, input uC , output yC , and HC(ζ) the energy of the
controller –which we assume bounded from below.7 (See point 4 in the dis-
cussion below for an explanation for the choice of this structure of the PCH
controller.)

The interconnection constraints are power–preserving of the form

uC = y

u = −yC (13.21)

The composed system is clearly still Hamiltonian and can be written as

[
ẋ

ζ̇

]
=

[
J(x) − R(x) −g(x)

gT (x) 0

]
 ∂Hd

∂x

∂Hd

∂ζ


 (13.22)

with Hd(x, ζ) the desired energy function (defined in an extended state space
(x, ζ))

Hd(x, ζ)
4
= H(x) + HC(ζ) (13.23)

We can easily see that this energy function is non–increasing, since

d

dt
Hd = −

[
∂H

∂x
(x)

]T

R(x)
∂H

∂x
(x) ≤ 0

7 We have introduced the notation HC here to highlight its interpretation as con-
troller energy. We will see later, that this function play essentially the same role
as Ha in Proposition 3.1.
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Once we have embedded the system in a higher dimensional state the main
idea of the procedure is to study its stability looking at its behaviour in some
invariant subspaces of the extended state space. More specifically, we look for
functions (called Casimir functions) Fi(x, ζ), i = 1, · · · , m, whose derivatives
along the closed–loop dynamics are zero. Without loss of generality8 we will
consider functions of the form

Fi(x, ζi) = ci(x) − ζi, i = 1, · · · , m (13.24)

In this case, a sufficient condition for the Casimirs to exist, that is, to verify

Ḟi(x(t), ζ(t)) = 0, i = 1, · · · , m

is the solvability of the PDEs

[ [
∂C
∂x (x)

]T ... −Im

] [
J(x) − R(x) −g(x)

gT (x) 0

]
= 0 (13.25)

with C(x)
4
= [c1(x), · · · , cm(x)]T . If we can solve these PDEs, then we can

express the behaviour of the “controller state” ζ(t) as functions of the system
state x(t). That is, we can then write

ζ(t) = C(x(t)) + c

with c a vector of constants that can be set to zero. See Fig. 2. Under these
conditions, we can restrict the desired energy function (13.23) to the systems
state space as

Hd(x, C(x)) = H(x) + HC(C(x)) (13.26)

and look for some suitable function HC to assign a strict local minimum to
Hd(x, C(x)) at the desired equilibrium. This is the essence of the controller
design method studied in [3] and [22].

Discussion 1. It is easy to show that for a controller designed with the
procedure above the energy balance equation (13.19) holds. This follows from
the fact that, by construction, HC is the energy supplied by the controller to
the system. Hence,

d

dt
HC =

[
∂HC

∂ζ
(ζ)

]T

ζ̇ = −uT y

which, upon integration and utilization of the Casimir functions, yields
8 This is because g(x) is full rank, hence (13.24)generates (locally) all Casimir

functions.



13.5 Casimir functions method 253

1

x (t)

x (o) x

x

2

ξ

Fig. 13.1. Augmented state space (ζ, x), invariant subspace ζ = C(x) + c, and a
state trajectory t 7→ x(t).

HC(C(x(t))) = −
∫ t

0

u(s)T y(s)ds + c

with c some constant, that again can be set equal to zero.

2. We will now prove that a necessary condition for the existence of
Casimir functions is that the damping satisfies the energy–balancing con-
straint (13.20). Towards this end, we spell out the PDEs (13.25) to get[

∂C

∂x
(x)

]T

[J(x) − R(x)] = gT (x) (13.27)

−
[
∂C

∂x
(x)

]T

g(x) = 0 (13.28)

These equations can be alternatively expressed as

J(x)
∂C

∂x
(x) = −g(x) (13.29)

R(x)
∂C

∂x
(x) = 0 (13.30)

Now, if (13.30) holds then R(x)∂HC(C)
∂x (x) = 0 for any function HC . The

prove of our claim is completed with (13.26). We will elaborate further on
this point on the next subsection.

3. It has been argued in [14] that the class of PCH systems that admit
Casimir functions (as presented above) is quite restrictive. Indeed, replacing
(13.27) in (13.28), and assuming that J(x) − R(x) is invertible, we get

gT (x)[J(x) − R(x)]−1g(x) = 0 (13.31)
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Now, replacing (13.31) in the system dynamics (13.2.1) and rearranging some
terms we have that the output function y must satisfy

gT (x)
∂H

∂x
(x) = gT (x)[J(x) − R(x)]−1ẋ

Consequently, y must be equal to zero when evaluated at an equilibrium.
(Recall that in mechanical systems y are the generalized velocities, which are
indeed zero at an equilibrium.) The linear RLC examples of [14] illustrate that
even in simple linear systems this might not be the case. As is it argued in that
paper the generation of Lyapunov functions with this method is hampered
by the fact that the supplied energy must be bounded (otherwise Hd is not
bounded from below). Hence, we can (roughly speaking) say that the method
applies only to systems that drain a finite amount of energy from the source.
A generalisation of the method –with a more complicated embedding system–
has been proposed in [14] to generate Lyapunov functions when the inputs
are constant.

4. For the PCH controller structure (13.5.1) we have taken the simplest
Hamiltonian dynamics, with a pure integrator. This is done without loss of
generality, since it is clear that our analysis applies as well to the more general
case:

ΣC :




ζ̇ = [JC(ζ) − RC(ζ)]∂HC

∂ζ (ζ) + gC(ζ)uC

yC = gT
C(ζ)∂HC

∂ζ (ζ) + DC(ζ)uC

for any skew–symmetric matrix JC(ζ), any positive-semidefinite matrices
RC(ζ), DC(ζ), and any function gC(ζ). The effect of DC(ζ) is simply to
add damping to the system as can be seen from the closed–loop equations

[
ẋ

ζ̇

]
=

[
J(x) − R(x) − g(x)DC(ζ)gT (x) −g(x)gT

C(ζ)
gC(ζ)gT (x) JC(ζ) − RC(ζ)

] 
 ∂Hd

∂x

∂Hd

∂ζ




As shown in [22], see also [17], damping injection can also be achieved with
a “true” dynamic extension, this case has been studied in [19].

5. It is important to stress that the interconnection point of view exposed in
this subsection yields a clear energy picture, and yields several passivity prop-
erties. For instance, we have closed-loop passivity from u (in fact, an external
signal) to y, as well as closed-loop passivity to other pairs of port-variables
–like additional ports modelling the interaction with the environment.

6. When the PCH system is linear with quadratic Hamiltonian function the
condition (13.31) holds if and only if the systems transfer matrix û(s) 7→ ŷ(s)
has a blocking zero (and hence a transmission zero) at s = 0.9

9 The first author is grateful to A. Astolfi for this interesting remark.
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13.5.2 State–modulated interconnection

In this subsection we will give a Casimir function interpretation to the PBC
of Proposition 3.1 without damping injection and with natural damping sat-
isfying the energy–balancing condition (13.20). The latter is a natural re-
quirement since, as remarked in point 1 of the discussion of Subsection 5.1,
the closed–loop total energy of a PCH system under PCH control is –by
construction– the “energy–balance function”.

Towards this end we keep the same PCH controller (13.5.1), choose its total
energy as

HC(ζ) = −ζ (13.32)

and modify the interconnection structure to include a “state modulation”10

uC = βT (x)y
u = −β(x)yC

with β(x) as defined in Proposition 3.1. See Fig. 13.2.

Environment

β (x)
T

 

(x)

Σ

Σ
y

ucc
c

β

y

u

Fig. 13.2. State–modulated interconnection.

The composed system is clearly still Hamiltonian and can be written as

[
ẋ

ζ̇

]
=

[
J(x) − R(x) −g(x)β(x)
βT (x)gT (x) 0

] 
 ∂Hd

∂x

∂Hd

∂ζ


 (13.33)

10 This yields, of course, the control u = β(x).
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with total energy Hd(x, ζ) defined by (13.23) and (13.32). The proposition be-
low gives necessary and sufficient conditions for the Casimir functions method
to apply.

Proposition 13.5.1. Consider the PCH system (13.2.1) with a state—
feedback control u = β(x). The closed–loop, which can be represented as the
augmented system (13.33), (13.23), (13.32), admits a Casimir function of
the form

F (x, ζ) = −Ha(x) − ζ (13.34)

if and only if

• the integrability condition (13.13), (13.14) with Ra(x) = 0 of Proposition
3.1 holds, that is

[J(x) − R(x)]
∂Ha

∂x
(x) = g(x)β(x) (13.35)

• the damping matrix R(x) verifies the energy–balancing constraint (13.20).

Proof
Differentiating (13.34) along the trajectories of the augmented system (13.33)
and setting it equal to zero we get

[J(x) + R(x)]
∂Ha

∂x
(x) = g(x)β(x)

βT (x)gT (x)
∂Ha

∂x
(x) = 0

Using the skew–symmetry of J(x) and the non–negativity of R(x) it is easy
to show that these two equations are equivalent to

R(x)
∂Ha

∂x
(x) = 0

J(x)
∂Ha

∂x
(x) = g(x)β(x)

which –in view of (13.17)– are precisely the energy–balancing constraint
(13.20) and the integrability condition (13.13), (13.14), respectively.

13.6 Concluding remarks and future research

We have presented in this paper a procedure to design stabilizing controllers
for PCH models which effectively exploits the structural properties of the
system, in particular its passivity. The main features of the proposed scheme
may be summarized as follows:
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1. The Hamiltonian structure is preserved in closed–loop, which allows for
an energy interpretation of the control action.

2. Conditions on the damping are given to ensure that the closed–loop stor-
age function is precisely the “energy–balance function”.

3. Given the clear–cut definition of the interconnection structure and the
damping (captured in the matrices J(x) and R(x), respectively) the in-
corporation of the physical intuition is effectively enhanced. This aspect
is very important, not only for the definition of the “desired dynamics”,
but also for the commissioning of the controller.

4. In many applications there is no need to explicitly derive the Lyapunov
function, only its existence need be ascertained.

5. The procedure is amenable for symbolic calculations.

The results reported here are restricted to the case of stabilization of fixed
points. In some cases it is possible to adapt the procedure to treat the sta-
bilization of periodic orbits, see e.g. [21]. Other applications, for instance
the induction machine where the periodic orbit is not known a priori, have
proved more elusive. Current research is under way to extend our approach
to stabilization of general periodic orbits, and eventually to handle the more
challenging tracking problem.

In all our developments here we have kept invariant the interconnection struc-
ture. However, as pointed out in Subsection 3.3, our procedure allows for the
possibility of modifying it. With this additional degree of freedom we can re-
cover the controller for the inverted pendulum reported in [8]. In particular,
it is possible to show that modifying the kinetic energy of a simple mechani-
cal system without affecting the potential energy nor the damping (as done
in [8]) is tantamount –in our formulation– to selecting the closed–loop inter-
connection matrix as

Jd(q, p) =
[

0 M−1
d (q)M(q)

−M(q)M−1
d (q) Z(q, p)

]

where Md(q), M(q) are the closed–loop and open–loop inertia matrices, re-
spectively, and the elements of Z(q, p) are computed as

Z(q, p)i,j = −pT M−1(q)Md(q)
[
(M−1

d M)· i, (M−1
d M)· j

]
(q)

with (M−1
d M)· i the i–th column of M−1

d M and [·, ·] the standard Lie brack-
ett, see [13]. With this simple structural modification it is possible, for
instance, to stabilize the upward position of the pendulum. The stabiliza-
tion mechanism is not very clear because –to be consistent with Lagrange’s
principle– this results in a closed–loop EL system with sign–indefinite iner-
tia matrix. In any case, this principle seems very promising for systems with
mixed dynamics, (e.g., electromechanical systems), where the interconnection
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between the (electrical and the mechanical) dynamics has to be modified to
be able to “transfer” the action of the control from one subsystem to the
other.
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Summary.

The problems of invariant tracking and invariant stabilization are con-
sidered: Design a state feedback for tracking or stabilization, respectively,
such that the closed-loop dynamics is invariant under the action of a given
group. Errors are then defined as invariants of the group under consid-
eration. The approach is illustrated on two classical examples: the non-
holonomic car and a continuous stirred chemical reactor. In both cases the
differential flatness of the models allows for a systematic design of feedback
laws for invariant tracking. The feedback synthesis is simplified by using
implicit system descriptions.

14.1 Introduction

Symmetries play a major role in physics. Nonetheless, they seem not yet
having attracted the same attention in control theory – as instances of inves-
tigations of the concept see, however, [2, 6, 5].

When designing a feedback control loop for a system possessing a symme-
try group, the following most natural question arises: How could we design
the feedback control loop in such a way that the closed-loop system admits
the same symmetries as the open loop? In other words: How to design an
invariant feedback, i.e. a symmetry preserving one? This question may be
generalized as follows. Given any group G of transformations on a system,
considered as being relevant for some (arbitrary) reason: How to design a
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feedback in such a way that the closed loop is invariant under G, i.e. that G
is a group of symmetries of the closed-loop system?

The formulation of these problems and partial answers are the subject of
the present paper. We consider stabilization and tracking; as for the latter
we concentrate on differentially flat systems [3, 4] which admit a systematic
approach.

As a particularly interesting consequence of the design of invariant feedback
it results that the commonly employed definition of the error as the difference
between the actual value of the controlled variables and their reference (or
setpoint) is probably not the best-suited one for nonlinear systems. While
this somewhat “negative observation” is not surprising in principle, we can
also give a “positive answer” by proposing an alternative definition of the
tracking error: a set of invariants of the group under consideration.

Two classical examples are considered in some detail: the nonholonomic car
and a continuous stirred chemical reactor. In both examples the invariant
tracking is possible by the fact that the system models are differentially flat.
For the nonholonomic car the symmetry group is the group SE(2) of planar
translations and rotations – see [6] and [5], where also the observer design
is considered. The two components of the tracking error are defined as the
projections of the vector from the desired to the actual position of the center
of the rear axle (the flat output) on the tangent and on the normal of the
desired trajectory, respectively – cf. [8]. This allows us to design a time-
varying static state feedback for the stabilization of the trajectory tracking
via quasi-static state feedback design methods [1]. The time scale used for
this is the arc length – cf. [3].

For the chemical reactor with two chemical species the group defined by
the transformation of molar fractions into mass fractions is considered. The
tracking error is defined as the difference between the natural logarithms of
the ratio of the molar fractions and the one of the ratio of the desired molar
fractions.

The paper is structured as follows. In the next section we formulate the prob-
lem of invariant tracking and stabilization, related notions of invariant errors,
and introduce a concept of invariant feedback. In section 3, we consider the
invariant tracking for the nonholonomic car, in section 4 the same problem for
the chemical reactor. We conclude by indicating some of the open questions.

14.2 Invariant tracking and stabilization

Consider a system of the form

ẋ = f(x, u), x ∈M (dimM = n), u ∈ R
m (14.1)
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where u is the input. Let G be a (local) symmetry group of finite order on
M × R

m , which transforms (x, u) into (X,U) according to

X = ϕg(x), U = ψg(x, u), g ∈ G.

For the tracking problem, assume that desired (or reference) trajectories
[0, t∗] 3 t 7→ (xd, ud) ∈M × R

m can be computed; then

ẋd = f(xd, ud)

– this is always the case for differentially flat systems (see below). Collecting
an arbitrary number of successive derivatives in vectors denoted with bars,
like ud = (ud, u̇d, . . . , u

(ρ)
d ), the differential prolongation of ψg is written as

U = ψg(x, u).

Definition 14.2.1. An invariant static state feedback is a mapping defined
by

u = k(x, xd, ud),

such that for all g ∈ G and for arbitrary trajectories [0, t∗] 3 t 7→ (xd, ud) ∈
M × R

m the following commutativity condition holds true:

k(ϕg(x), ϕg(xd), ψg(xd, ud)) = ψg(x, k(x, xd, ud)).

Thus, an invariant feedback commutes with the elements of the group G
whatever reference trajectory is considered.

Choosing a setpoint as the desired trajectory and supposing that the feedback
achieves stabilization of the setpoint we obtain a corresponding definition.

Definition 14.2.2. For a system (14.1), an invariant static state feedback
that is locally (resp. globally) asymptotically stabilizing at (xs, us) ∈M×Rm

is a mapping
u = k(x, xs, us),

such that for all g ∈ G:

k(ϕg(x), ϕg(xs), ψg(xs, us)) = ψ(x, k(x, xs, us))

and such that (x, u) → (xs, us) ∈M×Rm with t→ ∞ locally (resp. globally).

The design of the closed-loop dynamics relying on an error notion, we intro-
duce:

Definition 14.2.3. A local (resp. global) invariant state error with respect
to a point (xs, us) ∈M × R

m is a set of n invariants of G

i(x, xs, us) = (i1(x, xs, us), . . . , in(x, xs, us))

such that (i1, . . . , in) is a local (resp. global) diffeomorphism on M and
i(xs, xs, us) = 0.
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The following problem of invariant stabilization then occurs: Given a system
(14.1) with a group G acting on M×Rm , design an asymptotically stabilizing
feedback law in such a way that the (closed-loop) error dynamics is invariant
under G. If G is a symmetry group of the system, it is also of interest to
define the feedback as an invariant asymptotically stabilizing feedback.

Obviously, with i an invariant state error w.r.t. to (xs, us), the problem of
invariant stabilization at (xs, us) is solved if an asymptotically stable invari-
ant error dynamics d/dt i = e(i), i ∈M is obtained. Suppose the system was
affine in u and m = 1, for the sake of simplicity. Use the error coordinates
i = i1(x, xs, us) with x = τ(i, xs, us) in order to write (14.1) as

d

dt
i =

(
∂τ

∂i

)−1

(i, xs, us)
(
g0(τ(i, xs, us)) + g1(τ(i, xs, us))u

)
.

In a neighborhood of i = 0, let V (i) be a control Lyapunov function. Then
a static feedback can be defined in such a way that the closed loop is locally
asymptotically stable around i = 0; let its vector field be e(i). One has
Lg0V + uLg1V = LeV and the feedback is of the form

u =
LeV (i) − Lg0V (i)

Lg1V (i)
.

Obviously, this is an invariant static state feedback asymptotically stabilizing
the system at (xs, us).

On the academic example

ẋ =
(x− xs)2

xs
+
xs

zs
(z − zs)

ż = (z − zs) + zsu

consider the stabilization at (xs, zs, 0) 6= (0, 0, 0). The system admits the
scaling group defined by X = px, Z = qz as a symmetry group. In particular,
this permits to normalize the representation with p1 = 1/xs and q1 = 1/zs

which yields X1 = x/xs, Z1 = z/zs and

Ẋ1 = (X1 − 1)2 + (Z1 − 1)

Ż1 = (Z1 − 1) + u.

Invariant errors are given by

i1 =
x− xs

xs
and i2 =

z − zs

zs
.

With these coordinates the system reads
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d

dt
i1 = i21 + i2

d

dt
i2 = i2 + u

and an invariant static state feedback asymptotically stabilizing at i = 0 is
readily obtained by feedback linearization:

u = −(k1 + 2i1)(i21 + i2) + k0i1 − i2

with 0 < k0, k1 ∈ R. The invariance of the error dynamics is obvious.

14.2.1 Invariant tracking and differential flatness

If the system (14.1) under consideration is differentially flat, reference tra-
jectories can be calculated as

xd = φx(yd, ẏd, . . . , y
(α)
d )

ud = φu(yd, ẏd, . . . , y
(β)
d )

with [0, t∗] 3 t 7→ yd ∈ R
m arbitrary trajectories of the so-called flat output

y = h(x, u) – see e.g. [3, 4] for a thorough discussion of differential flatness.

This can be directly generalized to implicit systems, as for instance those of
the form

ẋ = f(x, z, u)
0 = g(x, z, u),

where x ∈ Mx ×Mz dimMx = n, dimMz = p, u ∈ R
m , f = (f1, . . . , fn),

and g = (g1, . . . , gp). This system is called differentially flat if there exist m
scalar functions hi defining y = (y1, . . . , ym) – called a flat output – via

yi = hi(x, z, u, ẋ, ż, u̇, . . . , x(α̃), z(β̃), u(γ̃)), i = 1, . . . ,m

such that

x = φx(y, ẏ, . . . , y(α))

z = φz(y, ẏ, . . . , y(β))

u = φu(y, ẏ, . . . , y(γ)).

Thus, trajectories of y can again be freely assigned and the trajectories of all
other variables can be calculated without integration.

For the tracking problem of flat systems we may now define invariant errors
as follows.
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Definition 14.2.4. Consider a differentially flat system with a flat output
y ∈ R

m and a group G acting on R
m with Y = Ψg(y). A local (resp. global)

invariant tracking error is a set of m invariants of G:

I(y, yd) = (I1(y, yd), . . . , Im(y, yd)),

in the sense that

Ij(y, yd) = Ij(Ψg(y), Ψg(yd)), j = 1, . . . ,m,

such that I is a local (resp. global) diffeomorphism on R
m for any reference

trajectory [0, t∗] 3 t 7→ yd(t) ∈ R
m , and such that I(yd, yd) = 0, i.e. this error

is zero if the system evolves on the reference trajectory.

One may now consider the following problem of invariant tracking for flat
systems: Given a differentially flat system with flat output y ∈ R

m and a
group G acting on y ∈ R

m , design a feedback law in such a way that the closed-
loop dynamics is invariant under G. Obviously, this may be achieved with
a feedback law designed by assigning an autonomous system in an invariant
tracking error I as the closed-loop dynamics. Asymptotically stable tracking
is then achieved by choosing this closed-loop dynamics asymptotically stable
at I = 0. Finally, stabilization at a setpoint is achieved by choosing t 7→
ys, with ys ∈ R

m a point corresponding to the setpoint, as the reference
trajectory of the flat output.

14.3 The nonholonomic car

Consider the classical nonholonomic car, rolling without slipping on a hori-
zontal plane, as depicted in Fig. 14.1.

The system is by now well-known to be flat, with the position of the center
of the rear axle H as a flat output. The absolute value v of the velocity
of this point together with the steering angle ϕ can be used as the control
input. Alternatively, one may use the curvature κ of the path C followed by H
instead of ϕ: they are related via κ = tanϕ/l, with l the distance between the
front and the rear axle. The classical explicit model in a Cartesian coordinate
frame fixed in the plane then reads:

ẋ1 = v cos θ
ẋ2 = v sin θ

θ̇ = v
tanϕ
l

.

The coordinate representation of H , which forms a flat output, is H =
(x1, x2).
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x2

θ

ϕC

x1

H

H

v

Fig. 14.1. The car in an inertial Cartesian frame.

To avoid the well-known difficulties at v = 0, it is convenient to use the arc
length sd of the reference curve Cd with [0, L] 3 sd 7→ Hd(sd) ∈ R

2 instead
of the physical time t as the parameter, see e.g. [3]. Denoting differentiation
w.r.t. sd by primes, with

ż =
dz

dt
=

dz

dsd

dsd

dt
= z′ṡd,

the model becomes:

x′1 = u cos θ
x′2 = u sin θ
θ′ = uκ.

with u = v/ṡd as the new control variable1. The time t can be reintroduced
via the parametrization [0, t∗] 3 t 7→ sd(t) ∈ [0, L].

It is obvious that the path followed by the car when a (open-loop) control
[0, L] 3 sd 7→ (v(sd), κ(sd)) ∈ R

2 is applied is the same whatever coordinate
frame is used to represent the model. Analogously, when the same control
is applied starting at two different initial conditions, which are related by
1 Obviously, there is a “time scaling symmetry” defined by the time scaling in-

troduced together with the input transformation from v to u. This interesting
property is not to be confounded with the Euclidian symmetry considered in the
problem of invariant tracking.
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a translation of the starting point and a rotation of the initial orientation,
the corresponding curve followed by H is obtained by applying the same
translation and rotation. This means that the system is invariant under planar
translations and rotations, i.e. under the action of the elements of the group
SE(2) – cf. [6, 5]. (This can be easily verified by calculation.)

It is, therefore, useful to use a coordinate free representation of the model.
For this, denote as H the vector pointing to H , as τ the normalized tangent
of the curve C at H (oriented in the direction of increasing arc length s), and
as ν the normalized normal to C at H (oriented outwards) – cf. Fig. 14.2.
With these vectors the model of the car can be written in an implicit form,

C

H

�

θ̇

ϕ

�

Fig. 14.2. The car with the tangent vector � and the normal vector � at C in H .

which is independent of the choice of the plane-fixed coordinate frame, as:

H ′ = uτ

τ ′ = uκν

ν′ = −uκτ
〈τ ,ν〉 = 0, 〈τ , τ 〉 = 1, 〈ν,ν〉 = 1.

Now, for any reference trajectory [0, L] 3 sd 7→ Hd ∈ R
2 of the flat output

the corresponding curvature can be computed as2: κd = 〈τ ′
d,νd〉.

2 As a consequence of the time scaling symmetry observed above, the equations
of the controls w.r.t. the time t are of the same form, with vd instead of ud and
d/dt instead of d/dsd.
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A first solution to the invariant tracking problem can now be easily obtained
by choosing the error e = H − Hd and by using dynamic state feedback to
assign the error dynamics

e ′′ + k1e
′ + k0e = 0, 0 < k0, k1 ∈ R.

Clearly, this simple solution is independent of the choice of the coordinate
frame used to represent the vectors. The thus-defined feedback is obtained
by solving the error equation for the control inputs. One has

H ′′ = u′τ + u2κν = H ′′
d − k1e

′ − k0e.

Thus, the dynamic feedback law (with the state u) is

u′ = 〈H ′′
d − k1e

′ − k0e, τ 〉
κ = 〈H ′′

d − k1e
′ − k0e,ν〉/u2.

(Notice that u ≈ 1 in the neighborhood of the reference path.)

One might, however, consider two properties of this solution as being inconve-
nient: Firstly, the feedback is a dynamic one, which means that an integration
is required in the controller. Secondly, there are only two design parameters
for the error dynamics, while the original system is of dimension three.

These drawbacks can be avoided by designing a tracking control law with
the techniques of quasi-static state feedback design. In order to obtain an
invariant solution, the coordinates of the tracking error are here defined as
invariants. This is achieved by using a moving frame defined by the reference
curve Cd – see also [8]. For this, define vectors Hd, τ d, and νd on Cd analogous
to H, τ , and ν. The invariant tracking error is now defined as

I = (e‖, e⊥) = (〈e, τ d〉, 〈e,νd〉).

Its components are the projections of e on the tangent and on the normal of
Cd at Hd, respectively.

The feedback law can now be defined using the quasi-static state feedback
design method from [1], as follows. Differentiating I twice w.r.t. sd yields:

e′‖ = u〈τ , τ d〉 + κde⊥ = u cos δ + κde⊥

e′⊥ = u〈τ ,νd〉 − κde‖ = u sin δ − κde‖
e′′‖ = u′ cos δ − u(uκ− κd) sin δ + κ′de⊥ + κde

′
⊥

e′′⊥ = u′ sin δ + u(uκ− κd) cos δ − κ′de‖ − κde
′
‖

where δ is the angle between τ and τ d, whence

−δ′ sin δ = (cos δ)′ = (〈τ , τ d〉)′ = − sin δ(−κd + uκ),
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and −δ′ = −κd + uκ. Introducing

w‖ = e′‖ and w⊥ = e′′⊥
linearizes the error dynamics. This defines the quasi-static state feedback
with

u = (−κde⊥ + e′‖) cos δ

u(uκ− κd) =
(− sin δ cos δ

) [(−e⊥ −e′⊥
e‖ e′‖

)(
κ′d
κd

)
+
(
w′

‖
w⊥

)]
,

where κ may be easily computed by solving the second equation. Exponential
stabilization is then achieved with

w‖ = −λ‖e‖
w⊥ = −λ1

⊥e
′
⊥ − λ0

⊥e⊥,

where 0 < λ‖, λ0
⊥, λ

1
⊥ ∈ R. Obviously, the derivative w′

‖ = −λ‖w‖ required in
the feedback law is easily computed without integration – cf. [1].

Clearly, an invariant tracking error dynamics has been obtained. Both draw-
backs observed on the dynamic solution proposed first have been eliminated:
no integration is required in the feedback and three independent design pa-
rameters are available. However, the calculations are slightly less simple now
and, furthermore, the derivative of the reference curvature κ′d is required with
this solution. It is also interesting to observe that singularities which would
be encountered at θ = 0 or θ = ±π/2 when using the error e (which is not
invariant) and quasi-static state feedback are avoided. Corresponding singu-
larities exist now at δ = ±π/2, which corresponds to large tracking errors:
we have obtained a local solution only. Notice that for large errors there is a
singularity, at u = 0, in the dynamic feedback solution, too.

14.4 A chemical reactor

We consider a continuous stirred chemical reactor with a single liquid phase
where both pression and reaction volume are hold constant. Two species, A
and B, are present in the reactor; they are involved in a reaction of the type
A → B. Both the density and the molar enthalpy are considered as strongly
depending on the temperature and the concentrations.

Energy and molar balances then lead to the following implicit model:

Ṅa = FxF − Lx−Nr(x, T )

Ṅb = F (1 − xF ) − L(1 − x) +Nr(x, T )

Ḣ = FhF − Lh(x, T ) +∆h(x, T ) Nr(x, T ) +Q

Na = Nx, Nb = N(1 − x), V = Nρ(x, T ) = const.



14.4 A chemical reactor 271

where F , xF , hF , and V are constant parameters. Here Na and Nb are the
respective molar hold-ups of the species A and B; L is the molar flow leaving
the reactor, F the entering one, xF the molar fraction of A at the inflow,
H = Nh the enthalpy hold-up, h(x, T ) the molar enthalpy of the fluid in
the reactor, hF the one in the feed flow, ∆h(x, T ) the reaction enthalpy, and
r(x, T ) its velocity. The reactor is controlled via the heat exchanged through
a cooling device: Q is the input.

The state dimension of this implicit system (with index 2) is equal to 2,
and (x, T ) can be considered as a state. However, it is convenient to use the
implicit model for the control design by exploiting its flatness – compare with
the gantry crane example in [3].

Indeed, the reactor model is flat, and x can be used as a flat output, as can
be seen by the following reasoning. Denote as xd a desired trajectory of x,
continuously differentiable at least twice. With Na = xN and Ṅ = F − L,
one has

FxF − Lx−Nr(x, T ) = Ṅa = xṄ + ẋN = x(F − L) + ẋN,

thus Nẋ = F (xF −x)−Nr(x, T ). Now, with N = V/ρ(x, T ) it is clear that a
reference trajectory Td of T can be obtained by solving the implicit equation

ẋd = (F/V)ρ(xd, Td)(xF − xd) − r(xd, Td).

The reference of N satisfies Nd = V/ρ(xd, Td), whence Ld = F − Ṅd depends
on xd, ẋd, and ẍd. Therefore, Hd = Ndh(xd, Td) can be expressed in terms of
xd, ẋd, and ẍd, too. Finally, the same holds for the control corresponding to
xd which satisfies

Qd = Ḣd − FhF + Ldh(xd, Td) −∆h(xd, Td) r(xd, Td) =: q(xd, ẋd, ẍd).

The above calculations allow us to define a feedback that locally exponentially
stabilizes the system around the trajectory xd. One has Q = q(x, ẋ, ẍ) and,
thus, with

Q = q(x, ẋ, ẍd − k1(ẋ − ẋd) − k0(x− xd)) (14.2)

it (locally) follows

(ẍ− ẍd) + k1(ẋ− ẋd) + k0(x− xd) = 0

which is exponentially stable if 0 < k0, k1 ∈ R. (Notice that using the fact
that ẋ = (F/V)ρ(x, T )(xF − x) − r(x, T ) the feedback can be realized if x
and T are measured – or observed.)

The above model has been written by using molar quantities. However, an
analogous model can be obtained by using mass quantities. Both are related
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via the ratio µ = Mb/Ma of the molar masses Ma and Mb of the species A
and B. As the model is flat with x as a flat output, it is sufficient to define
how the mass fraction of A, which we denote as w, is related to x; one has:

w =
x

x+ (1 − x)µ
, x =

w

w + (1 − w)µ−1
, with µ−1 =

1
µ
.

Obviously, this defines a one parameter local group of transformations on the
flat output space, which by the definition of x is (0, 1) ⊂ R.

The problem of invariant tracking defined above appears natural here: Define
the stabilizing feedback in such a way that the system behavior does not
depend on whether molar quantities or masses are used. In fact one may
observe that the feedback (14.2) proposed above does not provide a solution.
However, an invariant tracking error can be defined as

I(x, xd) = ln
(

x

1 − x

1 − xd

xd

)
.

The invariance can be easily seen using w/(1−w) = µx/(1−x). This invariant
satisfies I(xd, xd) = 0. The problem of invariant tracking can now be solved
with

Q = q(x, ẋ, γ(x, ẋ, xd, ẋd, ẍd))

where γ is defined by solving the invariant error dynamics

Ï + k1İ + k0I = 0

for ẍ.

14.5 Conclusion

Aiming at invariant closed-loop dynamics both in stabilization and in track-
ing problems may be considered as one way “to put physics into control”.
Therefore, we expect the loops thus-obtained to be “more natural” then those
which do not respect such a property. Several aspects of the examples con-
sidered confirm this interpretation, so the fact that the singularity is easily
avoided in the local quasi-static state feedback design of the car and also that
the physical domain of the flat output is reflected in the invariant tracking
error of the chemical reactor, for instance. These properties ought be further
investigated.

Of course, many other questions remain open. Let us mention just four of
them. Firstly, systematic methods for the determination of symmetry groups
in underdetermined systems, i.e. in controlled ones, should be developed.



References 273

Secondly, when calculating the invariant feedback for the chemical reactor
the formulae are “of the same structure” when using mass quantities and
when using the molar ones. This observation, of striking practical interest,
has to be formalized. Thirdly, given a group acting on the flat output space:
How can we systematically compute an invariant tracking error? Finally,
invariant tracking errors of different order may be obtained, in the sense that
time derivatives of different orders of the reference trajectory are involved in
the definition – compare the quasi-static feedback solution for the car and
the solution for the chemical reactor. What are the consequences of this fact?
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Summary.

Smart structures based on piezoelectricity represent an important new
group of actuators and sensors for active vibration control systems. This
technology allows to construct spatially distributed devices. Since the de-
sign of the spatially distributed sensors and actuators becomes part of
the controller design, special design methods for the controllers are re-
quired. Several well established approaches like PD-, H2- and H∞-design
are adapted to solve this problem. They are based on infinite dimensional
Lagrangian systems in conjunction with collocated actuator and sensor
pairing. Finally, applications to beams and plates demonstrate the power
and effectiveness of the proposed methods.

15.1 Introduction

Piezoelectric devices represent an important new group of actuators and sen-
sors for active vibration control of mechanical systems. Indeed, this technol-
ogy allows to construct spatially distributed devices, [7], [8]. This fact requires
special control techniques to improve the dynamical behavior of this kind of
smart structures, e.g., [1], [6], because one has not only to design the control
law, but in addition the spatial distribution of the sensors and actuators.
Therefore, the design of the controller has to be considered together with the
design of the actuators and sensors.

The second part of this contribution is concerned with a short introduction to
infinite dimensional systems, which can be derived from a Lagrangian func-
tional. Since we restrict ourselves to the time invariant case, there exists a
conservation law, which simply says, that the change of the total energy of
the system with respect to the time equals the flow of power into the system.
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The third part is devoted to the control of Lagrangian systems. Based on the
conservation law, we present a dramatic simplification of design methods,
which are well established in the finite dimensional case, like e.g., the PD-,
H2- and H∞-design. The main point is that one is able to convert the par-
tial differential equations of the Hamilton-Jacobi type into simple algebraic
ones. The collocation of sensors and actuators is the price, which one has to
pay. The fourth part presents some basics of piezoelectricity and mechanical
structures, and the fifth and the sixths part are devoted to the application
of the presented methods to beams and plates.

15.2 Some remarks on Lagrangian systems

Let us consider a mechanical system M, which is a Lagrangian system with
p+1 independent coordinates t, xi, i = 1, . . . , p and q dependent coordinates
uj , j = 1, . . . q. To shorten the notation, we use the symmetric multi-indices
notation with J = (j1, . . . , jk), 0 ≤ ji ≤ p and k = #J to describe the kth

order partial derivatives

fJ = fj1,... ,jk
=

∂k

∂xj1 · · ·∂xjk
f , f0 =

∂

∂t
f

of a smooth function f : Rp+1 → R [5]. The case #J = 0, or the zero order
partial derivative of f , is defined by ∂Jf = f . Let L,

L =
∫
D

l
(
t, x, u(n)

)
ω , ω = dx1 ∧ . . . ∧ dxp (15.1)

denote the Lagrangian of M, where u(n) denotes all possible partial deriva-
tives of the dependent variables uj with respect to the independent variables
t, xi up to order n. Furthermore, we assume that the smooth Lagrangian
density l is well defined on the domain D ⊂ Rp for t ≥ 0. To complete the
problem, we have to add suitable conditions for uj on the boundary ∂D. For
the sake of simplicity, we will specify them in the applications only because
they are not relevant for the rest. But, we assume that no energy transport
across the boundary is possible.

Hamilton’s principles states that the action A,

A =
∫ t2

t1

Ldt

is extremized [11]. The well known solution of this problem is given by the
equations of motion [5]
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φα (l) = 0 , α = 1, . . . , q (15.2)

with the Euler-Lagrange operators

φα =
∑

J

(−1)#J
DJ

∂

∂uα
J

. (15.3)

DJ is a shortcut for

DJ =
d

dxj1
· · · d

dxjk

with J = (j1, . . . , jk) and the total derivative

d
dxi = ∂

∂xi +
∑q

α=1

∑
J uα

J,i
∂

∂uα
J

, i = 1, . . . , p

d
dt = ∂

∂t +
∑q

α=1

∑
J uα

J,0
∂

∂uα
J

(15.4)

with J, i = j1, . . . , jk, i. The sum in (15.3) and (15.4) is over all symmetric
multi-indices J up to order n.

We are interested in Lagrangian systems only, which describe a time invariant
mechanical system M with inputs or generalized external forces f i, i =
1, . . . , m, such that the Lagrangian density l of (15.1) is given by

l
(
t, x, u(n)

)
= l0

(
x, u(n)

)
−

m∑
i=1

li
(
x, u(n)

)
f i (t) . (15.5)

Furthermore, we have

∂

∂t
li = 0 , i = 0, . . . , m ,

and Noether’s theorem [5] implies that there exists a conservation law of the
free system, f i = 0, such that

d
dt

E = 0 , E =
∫
D

eω , e = a − l0 (15.6)

is met for a suitable function a
(
x, u(n)

)
. Since E is time independent, we get

d
dt

E =
∫
D

q∑
α=1

∑
J

uα
J,0

∂

∂uα
J

(
a − l0 +

m∑
i=1

lif i

)
ω

or

d
dt

E =
m∑

i=1

f i d
dt

Li , Li =
∫
D

liω (15.7)
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in addition. Of course, E is nothing else than the sum of kinetic and potential
energy of M. It is worth to mention that in general the derivation of E in
accordance with (15.6) can be a laborious task [5].

Let E be a positive definite function of the state (u, u0) of M. From now on,
we assume that the requirement

d
dt

E ≤ 0

implies the stability of the system M. In contrast to the finite dimensional
case, more investigations are necessary for infinite dimensional systems. But
this hypothesis applies for the presented examples [2].

15.3 Control of Lagrangian systems

Let us consider a mechanical system M with the Lagrangian density l of
(15.5). In contrast to the previous section, we denote the external forces by
ui, which are the control input acting on the structure. We complete the
system by the choice for the output yi,

yi =
∫
D

liω , i = 1, . . . , m (15.8)

to obtain the Lagrangian control system L with collocated input and output.
The special choice (15.8) for the output is called natural output, too [3].
Obviously, (15.7) is given by

d
dt

E =
m∑

i=1

uiẏi ,
d
dt

yi = ẏi , i = 1, . . .m . (15.9)

Under the conditions of section 15.2, one can easily demonstrate some nice
properties of the system L. E.g., the control law (see [3])

ui = −
m∑

j=1

(
Kijy

j + Dij ẏ
j
)

(15.10)

with positive (semi)definite matrices K and D preserves stability, because
(15.9) can be rewritten as

d
dt


E +

1
2

m∑
i,j=1

yiKijy
j


 = −

m∑
i,j=1

ẏiDij ẏ
j .
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Next, let us try to find a solution of L, which minimizes the objective func-
tion1

J2 = sup
T∈[0,∞)

inf
u∈Lm

2 [0,T ]

1
2

∫ T

0

(
‖ẏ‖2 + ‖u‖2

)
dt (15.11)

with euclidean norm ‖ ‖. The Hamilton-Jacobi-Belman inequality of this H2-
problem is given by

inf
u

(
d
dt

V +
1
2

(
‖ẏ‖2 + ‖u‖2

))
≤ 0 . (15.12)

A short calculation shows that the ansatz V = ρE, ρ > 0 leads to the simple
control law

ui = −ρẏi , i = 1, . . . , m

and converts (15.12) to

1 − ρ2

2
‖ẏ‖2 ≤ 0 .

The choice ρ = 1 solves the problem exactly and the objective function J2,

J2 = −
∫ ∞

0

m∑
j=1

ẏjujdt

is equal to the energy dissipated by the controller.

Let us assume that we can split the external forces f i of (15.5) into two parts
such that ui, i = 1, . . . , m acts as the control input and di, i = 1, . . . , m acts
as the disturbance input on the structure. Analogously to (15.9), we rewrite
(15.7) and get

d
dt

E =
m∑

i=1

(
uiẏi + diżi

)
,

d
dt

yi = ẏi ,
d
dt

zi = żi , i = 1, . . . , m .

(15.13)

Now, we consider the H∞-design problem (see [9])

J∞ = sup
T∈[0,∞)

inf
u∈Lm

2 [0,T ]
sup

d∈Lm
2 [0,T ]

1
2

∫ T

0

(
‖ẏ‖2 + ‖u‖2 − γ ‖d‖2

)
dt ,

(15.14)

1 The objective function can be changed by any transform y = Aȳ, u = Bū with
regular matrices A, B and BT A = λI , because (15.9) is preseved by the new
energy Ē = Eλ.
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γ > 0, with the Hamilton-Jacobi-Belman-Isaacs inequality

inf
u

sup
d

(
d
dt

V +
1
2

(
‖ẏ‖2 + ‖u‖2 − γ ‖d‖2

))
≤ 0 . (15.15)

Let us assume that the disturbances di act in the same way on the structure
as the control inputs ui or the relation yi = zi, i = 1, . . . , m is met. Then
the ansatz V = ρE, ρ > 0 leads to the simple equations

ui = −ρẏi , γdi = ρẏi , i = 1, . . . , m

and simplifies (15.15) to

m∑
i=1

1
2

(
1 − ρ2 γ − 1

γ
) ‖ẏ‖2

)
≤ 0 .

Of course, one can reach even equality, iff the relation γ > 1 is met. Again,
the objective function J∞,

J∞ = −
√

γ − 1
γ

∫ ∞

0

m∑
j=1

ẏiujdt

is proportional to the energy dissipated in the controller.

¿From the properties above follows that the Lagrangian control system L
fits also the requirements of the problem of rendering the closed loop input-
output L2-stable [10]. E.g., let us assume that the plant with Lagrangian L,
input u and output ẏ is in the steady state for t = 0. Furthermore, let L be
passive or equivalently let the inequality

∫ T

0

m∑
i=1

ẏiuidt ≥ 0

be met for all T ≥ 0. One can show that any strictly passive controller P
with finite gain renders the closed loop input-output L2-stable with bias [10].
Let uC denote the input and yC the output of the controller, which is in the
equilibrium at t = 0. Strictly passivity means that the inequality

∫ T

0

m∑
i=1

ui
Cyi

Cdt ≥ ε

∫ T

0

‖uC‖2 dt

is met with ε > 0 for all T ≥ 0 and finite gain implies that the inequality

(∫ T

0

‖yC‖2 dt

)1/2

≤ γ

(∫ T

0

‖uC‖2 dt

)1/2

+ b
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Fig. 15.1. Control system

is fulfilled for γ, b > 0. It is worth to mention that strict passivity of linear,
time invariant controllers can easily be checked in the frequency domain [10].

One can combine the controller P with a controller K such that K can be
derived from a potential lK or the relation

ui
K = φi (lK) , i = 1, . . . , q

with φi from (15.3) is met. In this case we must augment the Lagrangian
of L by the additional term −lK only. If lK meets in addition the relation
lK ≥ 0, then stability is preserved. Figure 15.1 summarizes these approaches.
Of course, the PD-law (15.10) is nothing else than a special case of this
approach.

The optimization problems (15.11) and (15.14) offer another interesting ex-
tension. We solve the problems J2 (ε), J∞ (ε), ε ≥ 0,

J2 (ε) = 1
2

∫∞
0

(
ε ‖y‖2 + ‖ẏ‖2 + ‖u‖2

)
dt

J∞ (ε) = 1
2

∫∞
0

(
ε ‖y‖2 + ‖ẏ‖2 + ‖u‖2 − γ ‖d‖2

)
dt

for a linearized finite state approximation La of L. Since the solutions of the
problems J2 (0), J∞ (0) with output feedback are simple D-laws, which are
L2-stable and strictly passive and J2, J∞ depend continuously on ε, we can
expect that these properties are preserved for the solutions of the problems
J2 (ε), J∞ (ε) for ε sufficiently small. Now, the derivation of the optimal con-
trol laws of the linearized and approximated problem with output feedback is
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a straightforward procedure. According to the considerations above, one can
use these control laws in combination with the original plant L, because their
L2-stability and strict passivity guarantee the L2-stability of the closed loop.
Since we derive an output feedback law, we avoid the common problem to
measure the state of the finite state approximation La, which has no physical
meaning in general. It is worth to mention that derivation of the equations
(15.2) (15.1) it is not necessary, because all the presented design methods
uses the Lagrangian (15.1) only.

15.4 The mechanical model

The mechanical structures under investigation are beams and plates. Since a
beam can be regarded as a limit case of a plate, we restrict the considerations
to plates only. Subsequently, we use a 3-dimensional Euclidean space with
orthonormal basis B = {e1, e2, e3}, (ei, ej) = δij and coordinates xi, i =
1, 2, 3 with x =

∑3
i=1 xiei. The independent coordinates are t = x0, xi,

i = 1, 2, 3 and the dependent mechanical coordinates are the displacements
uj , j = 1, 2, 3.

2 b

2 a

2 h

p i e z o l a y e r s

x 2

x 3

x 1

m i d p l a n e

D

Fig. 15.2. Simply supported straight plate

Let u denote the displacement of the midplane and D the surface of the mid-
plane with the corresponding surface element ω = dx1∧dx2 at the equilibrium
position u = u0 = 0 (see figure 15.2). If rotational inertias are neglected, then
the kinetic energy of the plate is given by

Wk =
∫
D

w̃kω , w̃k =
µ

2
(u0, u0) , µ =

∫ h

−h

ρdx3 (15.16)

with the mass density ρ.

The smart plate consists of several piezoelectric layers, which are covered
by metallic electrodes, where a voltage is applied. Inside the piezoelectric
substrate the electrical flux density D fulfills the equation
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3∑
i=1

∂

∂xi
Di = 0 . (15.17)

The quasi-static electrical field density E is connected to the electrical po-
tential P by

Ei = − ∂

∂xi
P , i = 1, 2, 3 . (15.18)

P is constant along the metallic electrodes of the capacitor and the tangential
components of E vanish there.

For the calculation of the potential energy, we use the constitutive equations
of the form

σij =
3∑

k,l=1

cijklε
kl −

∑
k

akijD
k , i, j = 1, 2, 3 (15.19)

and

Ei = −
∑
kl

aiklε
kl +

∑
k

dikDk (15.20)

with the integrability conditions cijkl = cjikl = cijlk = cklij , akij = akji and
dik = dki to describe the relation between stress σ, strain ε and electrical flux
density D in a piezoelectric lamina [4]. The latter conditions allow to derive
the volume energy density wp

wp =
1
2


∑

ijkl

cijklε
klεij − 2

∑
ikl

aiklε
klDi +

∑
ik

dikDiDk


 . (15.21)

By means of Kirchhoff’s assumptions the strains ε11, ε12, ε22 are related to
the strains ε̄11, ε̄12, ε̄22 of the midplane by

ε11 = ε̄11 − x3u3
11 , ε̄11 = u1

1 + 1
2

(
u3

1

)2
ε22 = ε̄22 − x3u3

22 , ε̄22 = u2
2 + 1

2

(
u3

2

)2
ε12 = ε̄12 − x3u3

12 , ε̄12 = 1
2

(
u2

1 + u1
2

)
+ 1

2u3
1u

3
2 ,

(15.22)

(see [11]). Furthermore, a nonlinear formulation in the sense of v. Karman is
used for ε̄11, ε̄12, ε̄22. The solution of the electrical field equations (15.17),
(15.18) for the plate are too expensive. Therefore, some simplifications in
accordance with the Kirchhoff’s assumptions and the special properties of
the considered material are assumed. The strains εij vanish for i = 3 and
Di = 0 holds for i = 1, 2. Now, from (15.17) follows ∂

∂x3 D3 = 0.

The piezoelectric material, which is the basis of the subsequent considera-
tions, allows the simplification
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σ11 =
Y

1 − ν2
ε11 +

Y ν

1 − ν2
ε22 − a311D

3

σ22 =
Y ν

1 − ν2
ε11 +

Y

1 − ν2
ε22 − a322D

3

σ12 =
Y

1 + ν
ε12

(15.23)

of (15.19) as well as the simplification

E3 = −a311ε
11 − a322ε

22 + d33D
3 (15.24)

of (15.20). Here, Y denotes Young’s modulus and ν Poisson’s ratio, respec-
tively. The energy density wp (15.21) for such a material is given by

wp = wa + wm + we

wa = −D3
(
a311ε

11 + a322ε
22
)

wm = 1
2

Y
1−ν2

((
ε11
)2 + 2νε11ε22 +

(
ε22
)2)+ Y

2(1+ν)

(
ε12
)2

we = 1
2d33

(
D3
)2 .

(15.25)

The material parameters Y , ν, a311, a322 and d33 may vary from layer to layer,
however they are assumed to be constant within each layer. For the sake of
simplicity, we assume that the plate is built up symmetrically with respect to
the midplane x3 = 0 and that the different piezoelectric and structural layers
are perfectly bonded to the substrate. Despite this symmetry, we can apply
the voltage Ui symmetric or antisymmetric with respect to the midplane. Let
H denotes the lines corresponding to the heights of a layer couple. If we take
the integral of wp,

w̃p =
∫
H

wpdx3

with wp from (15.25), then we get the area densities

w̃s
a = D3

(
a311ε̄

11 + a322ε̄
22
)
Λs
(
x1, x2

)
(15.26)

in the symmetric and

w̃a
a = D3

(
a311u

3
11 + a322u

3
22

)
Λa
(
x1, x2

)
(15.27)

in the antisymmetric case because of (15.21), (15.22) and (15.23). Hereby,
the functions Λa, Λs depend on the special design of the layers like the
pattern of the metallic surface, etc.. Now, let us consider a plate with 2m
layers, where ma layer couples are supplied antisymmetrically by a voltage
Ua

i , i = 1, . . . , ma and ms layer couples are supplied symmetrically by a
voltage Us

i , i = 1, . . . , ms. Hereafter, the symbol s stands for symmetric and
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a for antisymmetric. According to these considerations, we obtain for w̃p the
expression

w̃p = w̃m + w̃e −
ms∑
i=1

Λs
i

(
x1, x2

) (
a311ε̄

11 + a322ε̄
22
)
fs

i (Us
i )

+
ma∑
i=1

Λa
i (x1, x2)

(
a311u

3
11 + a322u

3
22

)
fa

i (Ua
i ) .

(15.28)

Again, the area densities w̃m, w̃e contain the pure elastic and pure electric
part. The index i refers to the ith layer couple. Furthermore, we assume that
the electrical flux density and the voltage are connected by a linear relation,
which implies

fs
i (Us

i ) = λiU
s
i , fa

i (Ua
i ) = λiU

a
i . (15.29)

The results above indicate that by means of this piezoelectric material only
bending and stretching motion and no shear strain can be actuated. This
restriction can be changed by introducing a skew angle between the principal
axis of the piezoelectric lamina and the reference axis of the laminate.

The sensor is based on the relation (15.24). Since we short-circuit the cor-
responding electrodes of a piezoelectric sensor layer, the relation E3 = 0 is
met. By integration over the effective metallic surface of the electrodes of the
sensor layer, we get the electrical charge Q

Q =
∫
D

(
a311ε

11 + a322ε
22
)
Γ
(
x1, x2

)
ω .

Also here, the function Γ
(
x1, x2

)
depends on the design of the metallic sur-

face. Since the layers of the piezoelectric plate are arranged symmetrically
with respect to the midplane, we have again two possibilities for measuring
the charge. If we take the sum of the charges of the two corresponding layers
of a sensor layer couple j, we get

Qs
j =

∫
D

Γ s
j

(
x1, x2

) (
a311ε̄

11 + a322ε̄
22
)
ω , (15.30)

and we get

Qa
j =

∫
D

Γ a
j

(
x1, x2

) (
a311u

3
11 + a322u

3
22

)
ω , (15.31)

if we take their difference. The index j indicates the jth layer couple in both
cases. The functions Γ a

j and Γ s
j depend on the position

(
x1, x2

)
only. Compar-

ing (15.30), (15.31) with (15.28), we see that collocation of the piezoelectric
actuator with the sensor can be achieved in a straightforward manner.
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15.5 Control of beams

As mentioned above, we consider beams as a limit case of a plate. The inde-
pendent coordinates are t, x1 and the dependent mechanical coordinates are
the displacements u1 and u3. Now, the kinetic energy (15.16) simplifies to

Wk =
∫
D

w̃kdx1 , w̃k =
µ

2
b
((

u1
0

)2
+
(
u3

0

)2)
,

relation (15.28) is given by

w̃p = w̃m + w̃e −
ms∑
i=1

Λs
i

(
x1
)
a311ε̄

11fs
i (Us

i )

+
ma∑
i=1

Λa
i (x1)a311u

3
11f

a
i (Ua

i ) .

(15.32)

and (15.30), (15.31) yield to

Qs
j =

∫
D

Γ s
j

(
x1
)
a311ε̄

11dx1 , Qa
j =

∫
D

Γ a
j

(
x1
)
a311u

3
11dx1 , (15.33)

respectively. Here, D denotes the line of length 2a and b the width of the
beam.

15.5.1 H1-control of cantilever beam

Let us consider the cantilever beam of figure 15.3 of length 2a with a tip force
fd acting on the end x1 = a. The boundary conditions of this problem are

x 1

- x 3

- u 1

 u 3

 f d

Fig. 15.3. Cantilever beam with a vertical tip force

u3 (t,−a) = u3
1 (t,−a) = u3

2 (t, a) = u3
3 (t, a) = 0

u1 (t,−a) = u1
1 (t, a) = 0
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To counteract the influence of the tip force fd, we design a controller following
the H∞-approach of section 15.3. Since the design goal is the stabilization of
the vertical displacement u3 (t, a) of the beam, we take the objective function
(15.14),

J∞ =
1
2

∫ T

0

(∥∥u3
0 (t, a)

∥∥2
+ ‖Ua‖2 − γ

∥∥fd
∥∥2
)

dt ,

where U denotes the voltage of an actuator layer which has to be designed
now. The tip force is taken by the term

fd (t)Ld = fd (t)
∫ a

−a

u3
1dx1 = fd (t)u3 (t, a)

into account. If the actuator is built up by one antisymmetric layer couple
(see (15.29), (15.32)) with the supply voltage U = Ua, we have to enlarge
the Lagrangian by

UaLa = Ua

∫ a

−a

λaa311u
3
11Λ

a
(
x1
)
dx1 .

Following the considerations of section 15.3, we design the actuator such that
the control input Ua acts in the same way as the disturbance input fd. This
implies that the relation

φ3

(
la − ld

)
= 0

with φ3 from (15.2) is met. Now, simple integration by parts

Ld =
∫ a

−a

u3
1dx1 =

∫ a

−a

(a − x)u3
11dx1

shows that the choice

λaa311Λ
a
(
x1
)

= (a − x)

guarantees that the actuator voltage Ua acts as the disturbance fd on the
beam. The collocated sensor follows immediately from (15.33), if one chooses

Γ a
(
x1
)

= λaΛa
(
x1
)

for an antisymmetric sensor couple. Now, the control law

Ua = −
√

γ

γ − 1
d
dt

Qa

solves the H∞-problem. Since d
dtQ

a is nothing else than the current of the
sensor, this law can be implemented in a straightforward manner. It is worth
to mention that spatially distributed actuators and sensors are used to gener-
ate tip forces or to measure displacements of a dicrete point of the structure.
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15.5.2 PD-control of simply supported beam

Here, we consider the straight composite beam of figure 15.4 under the ac-
tion of an arbitrary space-wise distributed lateral loading p (t). The flexural

p ( t )

- x 3

- u 3

u 1

x 1

Fig. 15.4. Simply supported beam with arbitrary vertical loadings

boundary conditions for the simply supported beam read as

u3 (t,−a) = u3 (t, a) = u3
2 (t,−a) = u3

2 (t, a) = 0

and the longitudinal boundary conditions are given by

u1 (t,−a) = u1 (t, a) = 0 .

In order to meet the requirements that the flexural vibrations caused by any
lateral loadings have to be suppressed, we use two antisymmetrically sup-
plied actuator layer couples with the shaping functions Λa

1

(
x1
)

and Λa
2

(
x1
)
,

respectively. These shaping functions are designed in such a way that the
corresponding actuator voltages Ua

1 and Ua
2 act in the same manner on the

structure as a fictitious space-wise constant lateral loading p1 (t) and a space-
wise linear lateral loading p2 (t). This is motivated by the fact that by Ua

1 all
even and by Ua

2 all odd deflection modes can be influenced using a H∞- or
PD-controller. In the Lagrangian the two fictitious loadings p1 (t) and p2 (t)
are taken into account in the form

p1L
p1 = p1

∫ a

−a

u3dx1 and p2L
p2 = p2

∫ a

−a

(
x1 + a

2a

)
u3dx1 .

If the actuator is built up by an antisymmetric layer couple (see (15.29),
(15.32)), we have to enlarge the Lagrangian by

UaLa = Ua

∫ a

−a

λaa311u
3
11Λ

a
(
x1
)
dx1 .

The requirements
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φ3 (la1 − lp1) = 0 and φ3 (la2 − lp2) = 0

lead to the shaping functions

λ1
aa311Λ

a
1

(
x1
)

=

((
x1
)2 − a2

)
2

λ2
aa311Λ

a
2

(
x1
)

=

((
x1
)2 − a2

) (
3a + x1

)
12a

.

The corresponding collocated sensor layer couples follow from (15.33) in the
form Γ a

j

(
x1
)

= λj
aΛa

j

(
x1
)

with the measured charge

Qa
j =

∫ a

−a

Γ a
j

(
x1
)
a311u

3
11dx1

for j = 1, 2. For the simply supported beam and the designed shaping func-
tions the PD-controller (15.10) reads as

[
Ua

1

Ua
2

]
= −K

[
Qa

1

Qa
2

]
− D




d
dt

Qa
1

d
dt

Qa
2




with positive (semi)definite matrices K and D.

15.6 Plates

We consider the straight, composite rectangular plate of figure 15.2. The
geometric dimensions are (2a, 2b, 2h) with h � a, h � b. Furthermore, it
is assumed that the plate is simply supported, which leads to the boundary
conditions

u1 = 0 :
((

x1
)2 − a2

)
= 0,

u2 = 0 :
((

x2
)2 − b2

)
= 0,

u3 = 0 :
((

x1
)2 − a2

)((
x2
)2 − b2

)
= 0

∂
∂u3

11
l = 0 :

((
x1
)2 − a2

)
= 0

∂
∂u3

22
l = 0 :

((
x2
)2 − b2

)
= 0 .




−a ≤ x1 ≤ a
−b ≤ x2 ≤ b

(15.34)

The design goal is to stabilize the vertical displacement u3, which is caused
by a vertical spatially constant time dependent pressure loading p (t). To
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annihilate the effect of the disturbance p at least in the steady state case, the
control input must act precisely in the same way as p on the structure. Here,
p enters the Lagrangian by the expression

pLd = p

∫
D
{

(
x1, x2

)
u3ω

with { = 1. The function {
(
x1, x2

)
allows to consider other spatial distribu-

tions. To clarify the influence of p, we use the integration by part technique
twice and get∫

D
{

(
x1, x2

)
u3ω =

∫
D

(
g1u3

11 + g2u3
22

)
ω

with

g1
11 + g2

22 = {

and g1 = g2 = 0 at ∂D. A short calculation shows that

g1 = υ1ĝ , g2 = υ2ĝ , 2ĝ =
(
x1
)2 − a2 +

(
x2
)2 − b2 , υ1 + υ2 = 1 .

solves the equation above for { = 1. Now, we take one antisymmetric layer
couple and choose the function Λa(x1, x2) such that the relations (see (15.28),
(15.29))

Λa(x1, x2)a311λa = υ1ĝ , Λa(x1, x2)a322λa = υ2ĝ

are met. The collocated sensor follows immediately from (15.31), if one
chooses

Γ a
(
x1, x2

)
= Λa(x1, x2)λa

for an antisymmetric sensor couple. Following the considerations above, any
PD-law

Ua = −KQa − DIa

with K, D > 0 and the current

Ia =
d
dt

Qa

renders the closed loop input-output L2-stable with bias. Furthermore, any
control law of the form

L
{
Ûa
}

= KL{Qa} + R (s)L{Ia}
with a strictly passive transfer function R of finite gain renders the closed
loop input-output L2-stable with bias. Here, L denotes the Laplace transform.
Of course, R (s) has finite gain, iff R (s) is BIBO-stable and R (s) is strictly
passive, iff the inequality

0 < ε = inf
ω

Re (R (jω))

is met.
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15.7 Conclusion

This contribution is concerned with control techniques for mechanical struc-
tures with piezoelectric sensor and actuator layers. This technology allows
to improve the dynamical behavior of mechanical structures significantly, be-
cause spatially distributed sensors and actuators can be constructed. It turns
out that collocated control using a suitable actuator and sensor pairing sim-
plifies the controller design a lot. This method is well established for finite
dimensional systems, but seems to be even more import for infinite dimen-
sional ones. Spatially distributed piezoelectric devices allow to adjust the
actuator such that the influence of the disturbance is totally rejected in the
steady state case. Spatially distributed piezoelectric sensors are needed in
order to measure the corresponding natural output, which is the input of the
control law.

The presented mathematical models of piezoelectric beams and plates take
into account a nonlinear formulation of the strains in the sense of v. Kar-
man, but rely on the laws of linear piezoelasticity. These models belong to
a class of nonlinear, infinite dimensional Lagrangian systems. It turns out
that passivity of the control law guarantees stability of the closed loop, if
the Lagrangian system itself is stable. The presented approach is still limited
to small displacements. Future work is necessary to extend these models for
large displacements. This requires a nonlinear geometric formulation of the
problem and the linear piezoelectric laws must be replaced by nonlinear ones.
The latter point is important also in the case of small displacements, if low
voltage materials are used because of their nonlinear effects due to hysteresis
and polarization.
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10. M. Vidyasagar, Nonlinear System Analysis, Prentice Hall, 1993.

11. F. Ziegler, Mechanics of Solids and Fluids, Springer-Verlag, Wien, 1995.



16. A novel impedance grasping strategy as a
generalized hamiltonian system

Stefano Stramigioli

Faculty of Information Technology and Systems
Department of Electrical Engineering
Systems- and Control Laboratory, P.O. Box 5031
NL-2600 GA Delft, The Netherlands
Tel: +31 (15) 278 5768 Fax. +31 (15) 278 6679
S.Stramigioli@et.tudelft.nl
Url: lcewww.et.tudelft.nl/ stramigi

Summary.

This chapter presents an intrinsically passive control strategy for
robotic grasping tasks. This can be seen as a nontrivial application of
the techniques presented in [14]. It is shown that robot control design syn-
thesized as a spatial interconnection between the robot and the controller
can be easily handled. The idea is based on what is called the Virtual Ob-
ject Concept [13] and can be used both for tips grasp and full grasp. One
of the major advantages of the presented strategy is the passive nature of
the algorithm and the physical intuition it supplies due to the description
of the controller as a spatial interconnection of physical elements.

16.1 Introduction

Most of the grasping strategies known in literature deal with the control of
the tip contact forces [8]. Since grasping is concerned with the interaction of
a robotic hand with the environment, strategies which consider the control
of interaction explicitly seem more appropriate. One of the most problematic
phenomena of some force control strategies is that stability cannot be ensured
if very restrictive features of the object to be grasped are not assumed like
its stiffness and friction. Furthermore, a force control strategy is not suitable
to control the change between no-contact and contact. This is due to the fact
that force control is only meaningful in contact since it is not possible to
apply a force different than zero in free space.

For these reasons, a grasping technique based on more physical reasoning and
passivity seems worth to be pursued. The presented technique is based on a
strategy which shapes the potential energy of the system in order to achieve a



294 16. A novel impedance grasping strategy

desired compliance and injects some damping to ensure asymptotic stability
and a proper behavior. These techniques have been already used in the past
[9, 11], but here a nontrivial geometry plays a role.

Such an impedance strategy does not have the shortcomings of other grasping
techniques: it is strictly passive in steady-state situations for any passive
environment and the supplied energy in moving tasks is directly controllable.

The compliance control of each finger allows for rolling, slipping, and whole-
hand grasping in a natural way.

The analysis will be shown without considering the kinematic structure of
the hand, which would constrain the mobility. These constraints in the kine-
matics are not crucial since the controller intrinsically brings the system to
the minimum potential configuration the structure of the hand allows. Of-
ten, this is not the minimum of the desired energy but the minimum of the
constrained system.

16.2 Background

The notation used in this chapter is the one introduced in [12] and will be
here briefly reviewed.

To a set of rigid bodies moveing with respect to each other is associated a set
of Eucledian spaces Ei of equal dimensions n. An object Bi is a set of points
in the corresponding Eucledian space Ei.
We indicate with the symbol Ψk a right handed cartesian coordinate frame
fixed in space Ek and with ψk : Ek → R

n+1 ; q 7→ (pT 1)T the coordinate
function associated to it which associates to a point q ∈ Ek its homogeneous
coordinates. The relative position of object Bi with respect to Bj , or equiva-
lently of their associated Eucledian spaces is a positive isometry hji : Ei → Ej
which maps points in one space to the corresponding points in the other
space1. Such positive isometries are elements of a set which is indicated with
SEji (n) and is NOT a group unless i = j. In the latter case SEii(n) is in-
dicated with SEi(n) and corresponds to the special Eucledian group of Ei.
Associated to each Lie group SEi(n) there is a Lie algebra sei(n). In [12] it
is shown that there is NOT an intrinsic bijection between the elements of the
Lie groups and algebras of different Eucledian spaces.

The local velocity of Ei with respect to Ej in a certain configuration hji is an
element ḣji belonging to the tangent space Thj

i
SEji (n).

1 In this setting, there are no implicit reference relative positions as it is usually
done defining coordinate systems.
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We can map the tangent velocity ḣji in an intrinsic way either to ti,ji ∈ sei(n)
or to tji ∈ sej(n) using respectively the left intrinsic map

πi
hj

i

: Thj
i
SEji (n) → sei(n); ḣji 7→ ti,ji

or the right intrinsic map

πj
hj

i

: Thj
i
SEji (n) → sej(n); ḣji 7→ tji .

Elements of sei(n) are called twists and represent the generalised relative
velocity between bodies (or associate Eucledian spaces). An element tk,ji ∈
sek(n) represents the twist of Ei with respect to Ej as a geometric entity in
the space Ek. In the case k = j we will write tji . Based on the right intrinsic
map, we can define its adjoint πj ∗

hj
i

: se∗j(n) → T ∗
hj

i

SEji (n) and their inverses

which will be indicated with χhj
i

:=
(
πj
hj

i

)−1

: sej(n) → Thj
i
SEji (n) and

χ∗
hj

i

:=
(
πj
hj

i

)−1

.

Elements of se∗i (n) are called wrenches and represent the geometric general-
isation of a force.

Eventually, the hybrid Adjoint map introduced in [12], maps twists from a
space to another which are in a relative configuration hkl :

tk,ji = Adhk
l
tl,ji .

16.3 Controllable springs

For the control strategy which will be presented, it is necessary to consider
springs with two hinge points for which the minimum potential energy rela-
tive position can be varied. This is analog to a spring the natural length of
which can be varied. Such an action changes the spring-stored energy and
this implies that, in order to properly describe this process in an energeti-
cal consistent way, we need an additional power port through which we can
control this action.

If we consider as a simple example a linear, one-dimensional spring with finite
length xl, and stiffness k, its energy function can be expressed as:

E(x) =
1
2
k(x− xl)2.

The energetic port of the spring is then characterized by the effort-flow pair
(k(x − xl), ẋ). If we consider the possibility of varying the final length xl,
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we need to consider an additional port. The new energy function should be
considered, then, as a function of (x−xl) and not only as a function of x and
the new energetic port, which is used to control the finite length, should be
described by the effort-flow pair (k(xl − x), ẋl); the spring’s state change is
(ẋ − ẋl).

For a geometric spring, as treated in [12], a “finite length” corresponds to
the relative configuration rji ∈ SEji (n) for which the energy function has its
minimum.

If we want to describe a variable spring connecting body Bb ∈ Eb to body Bi ∈
Ei, we consider an additional space Ev(i) which will be called the supporting
space for the variable spring. We then describe an energy function on the
relative position of Ev(i) with respect to Ei, which we indicate as hiv(i) ∈
SEiv(i)(3). From a composition of isometries, we obtain:

hiv(i) = hib o h
b
v(i) (16.1)

We now control the effective minimal potential energy-relative position of b
with respect to i by varying hbv(i). We can then analyse how the state hiv(i) of
the variable spring changes as a function of time. The following result gives
the searched relation.

Theorem 16.3.1 (Variable length spring state). Given a spring con-
necting a body of Ei to a body of Ev(i) and a positive definite energy function
V iv(i)(·) of hiv(i) ∈ SEiv(i)(3) such that hiv(i) = hib o h

b
v(i), the following identity

holds:

tiv(i) = tib +Adhi
b
tbv(i). (16.2)

Proof. The proof can be found in [12].

A representation in coordinates-free bond graphs of such a variable spring is
reported in Fig. 16.1, where tkb and tki represent the hinge points where the
two bodies attached to the spring are connected and tbv(i) is the twist which
is used to change the equilibrium point of the spring. The mapping χhi

v(i)

represents the inverse of the right intrinsic map as presented in Sect. 16.2.

16.4 Physical controller structure

In this section we describe the structure of the proposed controller from
a conceptual point of view. Following the philosophy of Hogan’s Physical
equivalence principle [6], we are going to create a controller which has a
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Fig. 16.1. The coordinates free bond graph of a variable length spatial spring

Fig. 16.2. The intuitive idea of the proposed grasping strategy as the spatial
interconnection of physical elements

directly interpretable physical equivalent system: it is described as a spatial
interconnection of physical elements.

In Fig. 16.2, two fingertips of a robotic hand are represented as ellipsoids.
These two tips are the extremities of robotic chains corresponding to the
fingers of a robotic hand to be controlled. We always talk about a robotic
hand, but the techniques here presented can be equivalently used for the
control of coordinated robots.

The goal of the proposed controller is to create the equivalent effect as the
drawn springs and the mass corresponding to the sphere in Fig. 16.2. This
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sphere is called the virtual object . This means that the controlled system
should dynamically behave as the spatial interconnected system presented in
Fig. 16.2 in which for clarity only part of the robot mechanism is shown.

One of the springs, called the hand configuration spring, is connected at one
side to a V indicating what is known in impedance control [6] as the virtual
position of the hand. The position of the V can be changed by the supervision
system as it will be seen later, and its result is a global motion of the hand.

In Fig. 16.2, only two fingertips are drawn to explain the concepts, but we
can have n fingers. The minimum of the potential energy which is function
of the relative position of these springs is controllable by the supervisory
system using the techniques presented in Sect. 16.3. When the hand is free to
move, the robotic system configuration tends to the configuration of minimum
potential energy of the system allowed by the kinematic constraints.

If it is ensured that each hand motion also implies motion of the virtual
object, we can ensure asymptotically stable behavior by the creation of a
damping force on the virtual object which dissipates free energy2.

In free space, we can therefore control the global position of the hand leaving
the minimum energy-relative positions of the fingers’ springs unchanged and
changing the hand’s virtual position, and we can change the configuration of
the fingers with respect to each other by changing the equilibrium position
of their springs.

In case we are grasping an object, the springs of the fingers will not longer
have the minimum potential energy configuration anymore and their stored
energy can be used to quantify physically a grasp energy representative of
the hardness of the grasp. A maximum grasp energy can then be related to
the material of the object to be grasped.

It is important to realize that the springs we will define in our controller, are
spatial springs [7, 3, 4] and not trivial translational springs. This implies that
we can cleverly choose the center of stiffnesses [7, 3, 4] of the springs in such
a way that we can specify the way the grasp reacts to disturbing external
forces. By means of proper choices, we can easily control rolling contacts
around a desired nominal grasp.

16.4.1 The virtual object dynamics

Within the controller, the dynamics of the virtual object is simulated. As
shown in [12], we can write the equation of the virtual body as follows:
2 Energy as such cannot be dissipated because of the first principle of thermody-

namics. When it is said that energy is dissipated, we actually mean dissipation
of free energy, which can be defined for an isothermal system as the Legendre
transformation of the energy with respect to the entropy [1].
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(
ḣ0
b

ṁb

)
=

(
0 χh0

b
o Adh0

b−Adh0
b
o χ∗

h0
b

mb∧

)(
∂HB

∂h0
b

∂HB

∂mb

)
+
(

0
Ad∗

h0
b

)
w0

tot (16.3)

t0b =
(
0 Adh0

b

)(∂HB

∂h0
b

∂HB

∂mb

)

where b indices the virtual body, w0
tot the total wrench applied to the virtual

body expressed in the inertial space, t0b the twist of the virtual body with
respect to the inertial space, mb the momentum of body b in its own space,
HB(h0

b ,m
b) the total energy of the virtual body and mb∧ represents the

Lie-Poisson bracket.

We can then rewrite the previous equations in a more compact form:

ẋB = JB(xB)
∂HB(xB)
∂xB

+ φB(xB)w0
tot

t0b = φ∗B(xB)
∂HB(xB)
∂xB

(16.4)

where xB := (h0
b ,m

b) and the other assignments should be obvious from
Eq. (16.3).

16.4.2 The springs

We can now consider the equations of the n + 1 springs represented in
Fig. 16.2, where n is the number of fingers of the considered robotics hand
and the (n+ 1)-th spring is the spring connecting the virtual object to the
hand’s virtual position (V in Fig. 16.2). This last spring does not have variable
length and is a function of hv(b)b where v(b) indicates the space corresponding
to the V of Fig. 16.2.

If we index with b the virtual body space and with v(i) the additional sup-
porting space needed to create the variable spring i, the effective twist of the
i−th spring tiv(i) = tib +Adhi

b
tbv(i) (see Sect. 16.3) can be expressed as:

tiv(i) =
(
Id Adhi

b

)( tib
tbv(i)

)
. (16.5)

This implies that the general Hamiltonian equations for the used springs with
variable length are (see [12]):

ḣiv(i) =
(
χhi

v(i)
χhi

v(i)
o Adhi

b

)( tib
tbv(i)

)

(
wib
wbv(i)

)
=

(
χ∗
hi

v(i)

Ad∗
hi

b
o χ∗

hi
v(i)

)
∂V i

v(i)(h
i
v(i))

∂hi
v(i)

(16.6)
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where χhj
i

and χ∗
hj

i

are defined in Sect. 16.2. and the pair (tib, w
i
b) corresponds

to the power port where are attached the bodies connected to the two end
points b and i of the spring, whereas the pair (tbv(i), w

b
v(i)) represents the port

which is used to change the effective minimal potential relative position (see
Fig. 16.1). In the previous equation, wib is the wrench that the body attached
to the extreme b of the elastic element applies to the spring, expressed in the
space Ei of the other body.

It is convenient to express the motion of each of the fingertips and of the
virtual object in a common space. We use for it the inertial space, which is
indexed with 0.

Since it can be seen that

tij = Adhj
k
(tki − tkj )

and Adhi
k

is linear, we obtain the following identities:

tib =
(
Adhi

0
−Adhi

0

)(t0b
t0i

)
⇒
(
w0
b

w0
i

)
=

(
Ad∗

hi
0−Ad∗
hi
0

)
wib (16.7)

where w0
b is the wrench that the virtual object applies to the i−th spring

and w0
i is the wrench that tip i applies to the i−th spring, both expressed in

space 0.

If furthermore we consider hv(b)b the state of the (n+ 1)-th spring, it is then
possible to collect all the springs equations and give a complete expression
which results in:

ẋS = φS(xS)




t0b
t0v(b)
t0tips

tbvar







w0
b

w0
v(b)

w0
tips

wbvar


 = φ∗S(xS)

∂HS(xS)
∂xS

(16.8)

where:

xS = (h1
v(1), . . . , h

n
v(n), h

v(b)
b ), HS(xS) = V

v(b)
b (hv(b)b ) +

n∑
i=1

V iv(i)(h
i
v(i)),

φS =
(
φb φv(b) φtips φvar

)
,

t0v(b) is the twist of the virtual hand position represented by a V in Fig. 16.2
with respect to the inertial frame and



16.4 Physical controller structure 301

t0tips =



t01
...
t0n


 tbvar =



tbv(1)

...
tbv(n)




φb =




χh1
v(1)

o Adh1
0

...
χhn

v(n)
o Adhn

0

χ
h

v(b)
b

o Ad
h

v(b)
0


 φv(b) =




0
...
0

−χ
h

v(b)
b

o Ad
h

v(b)
0




φtips =



−χh1

v(1)
o Adh1

0
. . . 0

...
. . .

...
0 . . . −χhn

v(n)
o Adhn

0

0 . . . 0




φvar =



χh1

v(1)
o Adh1

b
. . . 0

...
. . .

...
0 . . . χhn

v(n)
o Adhn

b

0 . . . 0


 .

In the previous notation, some dependencies have been omitted for the sake
of notational clarity.

16.4.3 Interconnection object-springs

By combining Eq. (16.4) and Eq. (16.8), and realizing that w0
tot = −w0

b we
get:

(
ẋB
ẋS

)
=
(
JB −φBφ∗v
φvφ

∗
B 0

)(∂HC

∂xB
∂HC

∂xS

)
+
(

0 0 0
φtips φv(b) φvar

)t0tips

t0v(b)
tbvar




(16.9)
w0

tips

w0
v(b)

wbvar


 =


0 φ∗tips

0 φ∗v(b)
0 φ∗var


(∂HC

∂xB
∂HC

∂xS

)
.

WhereHC(xB , xS) = HB(xB)+HS(xS). The previous system is a generalized
port-controlled Hamiltonian system and it is therefore lossless. In order to
achieve an asymptotically stable behavior, we must add damping. Consider
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the inputs of Eq. (16.9) equal to zero; then we get a holonomic Hamiltonian
system with six degrees of freedom corresponding to the configuration of the
virtual object in space. This implies that we could find canonical coordinates
with six generalized positions, six generalized dual momenta and the other
coordinates would be Casimir functions for the Hamiltonian system.

16.4.4 Creating damping

We can inject damping in the physical equivalent system presented in
Fig. 16.2: by means of control we can create a viscous friction force applied to
the virtual object. Intuitively, we could think of the virtual object as moving
in a fluid with high viscosity which would extract energy from its motion
irreversibly.

We can add such a viscous effect by considering an antisymmetric two con-
travariant tensor Rt. We can therefore subtract a symmetric, semi-positive
definite tensor RB from the antisymmetric tensor JB of Eq. (16.9). RB has
the following form:

RB =
(
Rh 0
0 Rm

)
(16.10)

where the off-diagonal terms have been chosen equal to zero because not
physically interpretable. The term Rm is the element representing the usual
viscous force since its effect on the virtual object dynamics would be to apply
an additional wrench to it, equal to:

wbd = Rm
∂HC

∂mv
= Rmt

b,0
b (16.11)

and since Rm is positive definite, it represents a dissipative wrench. Imple-
menting such a term, the derivative of the energy of the controller is:

Ḣ = −〈∂HC/∂h
0
b , Rh ∂HC/∂h

0
b〉 − 〈tb,0b , Rm tb,0b 〉 +

〈w0
tips, t

0
tips〉 + 〈w0

v(b), t
0
v(b)〉 + 〈wbvar, tbvar〉 (16.12)

where 〈, 〉 is the natural dual product of a co-vector on a vector. Due to
the positive semidefinite hypothesis of RB, the elements of the first line of
Eq. (16.12) will never increase the energy of the controller and if either t0,bb
or ∂HC/∂h

0
b are different than zero, these elements will decrease the energy

irreversibly if we suppose Rh, Rm to be positive definite.

For practical reasons, we consider only Rm 6= 0 and Rh = 0, as will be seen
in Sect. 16.6.4.
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16.5 The controlled hand

Consider now the robotic hand to be controlled as a fully actuated holonomic
robotic mechanism with configuration manifold Q. In this specific case, we
mean with a fully actuated robotics system a system for which any generalized
force τ ∈ T ∗

qQ can be applied at any configuration q ∈ Q.

The tips Jacobian for this system is a linear, configuration-dependent map-
ping of the following form:

Jtips(q) : TqQ → se0(3) × . . .× se0(3)︸ ︷︷ ︸
n−times

; q̇ 7→ Jtips(q)q̇ (16.13)

which maps a configuration velocity q̇ to the twists of the tips of the hand:

t0tips = Jtips(q)q̇ (16.14)

We can consider a second Jacobian called the ‘interaction Jacobian’. It maps
motions of the robot to motions of the links with which the environment can
interact. In the general case, for whole-hand manipulation, these could be all
the links of the hand. We indicate the interaction Jacobian with JI(q).

For notational convenience, we define φ̂I(q) := J∗
I (q) and φ̂tips := J∗

tips(q),
which are respectively the adjoints of the interaction Jacobian and the tips
Jacobian.

Due to the hypothesis of holonomicity and full actuation of the robotic sys-
tem, we can write its dynamic equation in the following form:

(
q̇
ṗ

)
=
(

0 I
−I 0

)(∂HR(q,p)
∂q

∂HR(q,p)
∂p

)
+
(

0 0
φ̂I(q) I

)(
W
τ

)

(16.15)(
T
q̇

)
=
(

0 φ̂∗I(q)
0 I

)(∂HR(q,p)
∂q

∂HR(q,p)
∂p

)

where HR(q, p) = Ek(q, p) + Ep(q) is the total energy of the robotic hand.

The dual pair (T,W ) corresponds to the power port through which the robot
can exchange energy with the environment. The pair ((q, q̇), (q, τ)) corre-
sponds to the energy port of the actuators. It is a dual pair, but it is con-
figuration dependent and not yet suitable to be interconnected with the con-
troller.

In order to solve the problem and to create the desired interconnection as
shown in Fig. 16.2, we can consider the dual relation of Eq. (16.14), repre-
sented by the adjoint of Jtips(q):
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τ = J∗
tips(q)



−w0

1
...

−w0
n


 = −J∗

tips(q)w
0
tips = −φ̂tips(q)w0

tips (16.16)

where −w0
i is the wrench applied by the finger springs i to tip i, which is

equal and opposite to the wrench w0
i that tip i applies to the spring i once

it is connected to it.

After few calculations, it is possible to get the final equations of the inter-
connected system:

ẋT = (JT (xT ) −RT (xT ))
∂HT (xT )
∂xT

+ φT (xT )


 W
t0v(b)
tbvar





 T
w0
v(b)

wbvar


 = φ∗T (xT )

∂HT (xT )
∂xT

(16.17)

where xT := (q, p, xB, xS), HT (xT ) = HR(q, p) +HC(xB , xS),

JT (xT ) :=




0 I 0 0
−I 0 0 −φ̂tipsφ

∗
tips

0 0 JB −φBφ∗v
0 φtipsφ̂

∗
tips φvφ

∗
B 0


 , RT (xT ) :=




0 0 0 0
0 0 0 0
0 0 RB 0
0 0 0 0


 ,

φT (xT ) :=




0 0 0
φI(q) 0 0

0 0 0
0 φv(b) φvar


 .

In Fig. 16.3 a bond graph representation of the power-continuous interconnec-
tion is shown. In the figure, I.P.C. stands for Intrinsically Passive Controller.

The supervisor can change the virtual position of the hand by supplying a
t0v(b) different than zero and it can change the position of minimal potential
energy of the springs by suppling a tbvar different than zero. At the same time
it can monitor the energy supplied to the controlled robot. When the twists
of the supervisor are zero, only the environment can supply energy to the
controlled system.

The dissipation implemented in the I.P.C. and the friction present in the real
robot ensures an asymptotically stable behavior.

Remark 16.5.1. Note that the designed controller only uses kinematic infor-
mation of the robot to be controlled, namely the Jacobian of Eq. (16.14) which
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Fig. 16.3. The interconnection between the robot and the intrinsically passive
controller.

in Fig. 16.3 has actually been considered as part of the Compensated Robot.
This Jacobian is used as a power-continuous transformation and therefore
kinematic model mismatching will never create instability.

16.6 Implementation of the control scheme

In the previous section, we analyzed the interconnection from a conceptual
point of view. In this section we will choose references and study the control
system from an implementational point of view in order to build a procedure
which can be implemented directly. In order to do so, we need to choose some
references for the various bodies of the system:

• Tips’ frames
With reference to Fig. 16.4, assign to each tip i a Cartesian coordinate

system Ψi, which can be visualized as a frame rigidly connected to the
tip. It is useful to introduce a second coordinate system for the i-th tip
whose origin is called center of stiffness3; this second coordinate system is
indicated with Ψc(i).

3 In a work of [2] this frame is called center of compliance. As shown by Lončarić
[7], the center of stiffness and the center of compliance coincide only in certain
cases.
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Ψ1

Ψc(1)

Ψv(1)
Ψn Ψc(n)

Ψv(n)

Ψb(1)

Ψb(n)Ψb

Ψc(b)

Ψv(b)

Fig. 16.4. The basic frames which are necessary for the describtion of the algorithm

• The Virtual Object frame
With reference to Fig. 16.4, consider the virtual object to be of spheric
shape and uniform density. Consider for it a coordinate frame Ψb. Consider
its inertial properties described in this frame as a massm and inertia tensor
jI, where I indicates an identity matrix. It is useful to introduce a second
coordinate system for the virtual object. This is indicated with Ψc(b).

• The Support Spaces frames
As shown in Sect. 16.3, to describe variable springs, we need supporting
spaces for each spring i which we indicated with v(i). We will have as many
of these spaces as the tips we are considering. For these spaces, we consider
two possible bases, namely those which in Fig. 16.4 are indicated with Ψv(i)
and Ψb(i).

• The Hand Virtual frame
In order to control the interaction between the grasped object and the
environment, an extra space, which we indicated with v(b), is needed. This
space is connected with the V of Fig. 16.2. We choose one coordinate frame
for this space, which we indicate with Ψv(b).

16.6.1 Suitable springs energy functions

We will now give suitable energy functions which can be used to implement
the equations of the 3D springs. These energy functions have been introduced
in the excellent work of [2] and are here reported in a different way and with
many more additional details. As already said, a potential energy function is
a function of the relative position of two bodies. These two bodies are for the
n tips springs the tips i and the corresponding supporting spaces v(i) and
for the hand spring, the body space b and the space v(b).
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Ψi

Ψj

Bi

Bj

Hj
i

Fig. 16.5. Spatial spring between two bodies: the thick lines indicate that the two
frames are rigidly connected to the respective bodies

To express these functions analytically, we have to choose coordinates for the
various spaces. To describe the energies of the fingers springs, we choose for
the tip the coordinates Ψc(i) and for the supporting space v(i) the Carte-
sian coordinates Ψv(i). The relative position h

v(i)
i in these coordinates will

therefore be:

H
v(i)
c(i) := ψc(i) o h

i
v(i) o ψ

−1
v(i)

The energy function we describe is such that it has a minimum in Hv(i)
c(i) = I,

which corresponds to a relative position of Ev(i) and Ei such that the two
frames Ψc(i) and Ψv(i) coincide.

The common origin of these two frames at equilibrium is called the center of
stiffness because we choose the stiffness expressed in this frame as having a
special form.

For generality of exposition, with reference to Fig. 16.5, we index as i and j the
two bodies between which we want to consider a spring, and two coordinates
frames Ψi and Ψj attached respectively to the body i and j such that in a
minimum potential energy corresponding to an equilibrium position we can
conclude that the relative position Hj

i is equal to I. We can then consider a
mapping of the following form as the generalized elastic force:

dV : SE(3) → T ∗SE(3);Hj
i 7→ (Hj

i , F
j
i )

The stiffness is the linearization of the previous map at the identity (Hj
i = I).

In this point, by definition Ψi = Ψj .

A differential of the previous map is a linear map of the following form:

K : se(3) → se∗(3) ; δT̄ 7→ KδT̄ (16.18)
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where K is a matrix that can be represented in the coordinates in which
δT̄ ∈ se(3) is expressed. In our case this is expressed using Ψi = Ψj .

The element δT̄ of Eq. (16.18) is an infinitesimal twist represented in vector
form. To be more specific, consider the representation Hj

i of a relative posi-
tion. At a certain instant, the corresponding numerical representation of the
twist tji will be:

T ji =
[
Ωji v

j
i

0 0

]
= Ḣj

iH
i
j =

[
Ṙji ṗ

j
i

0 0

] [
Rij p

i
j

0 1

]
(16.19)

where Ωji is an antisymmetric matrix. We can associate to Ωji a unique vector
ωji ∈ R

3 such that for all x ∈ R
3 we have Ωji x = ωji ∧ x where ∧ is the usual

vector product of two vectors. In general we indicate such an operation with
the operator tilde so that in the case just explained we would indicate:

Ωji = ω̃ji =


 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


 with ωji =


ω1

ω2

ω3


 . (16.20)

This implies that we can consider a vector representation of the matrix T ji ,
which we indicate with T̄ ji and define as:

T̄ ji =
[
ωji
vji

]
⇔ T ji =

[
ω̃ji v

j
i

0 0

]
.

An analogous expression can be given for wrenches, for which we have:

W̄ j
i =

[
mj
i

f ji

]
⇔W j

i =
[
f̃ ji m

j
i

0 0

]

with mj
i corresponding to the angular torque. The wrench wij ∈ se∗i (n) and

the corresponding numeric form W i
j indicates the wrench that a spring con-

necting body Bi and body Bj applies to body Bi. We can then partition
Eq. (16.18) in order to show the rotational and translational components in
the following way:[

mj
i

f ji

]
=
[
Ko Kc

KT
c Kt

] [
δθji
δpji

]
(16.21)

where we indicate with δT̄ =
[
(δθji )

T (δpji )
T
]T

. The matrix K as defined
here is always symmetric and therefore Ko and Kt, which are respectively
called rotational stiffness and translational stiffness are also symmetric. In
[7] it has been shown that Kc = KT

c corresponds to a maximum decoupling
between rotation and translation. In this case, the point corresponding to the
coinciding origins of the coordinate systems Ψi and Ψj at equilibrium is called
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center of stiffness . In our search for proper energy functions, we consider
a symmetric Kc, which implies that the origin of our reference frames are
implicitly chosen at the center of stiffness at equilibrium. By means of the
matrix identity:

ṽ = Aw̃ + w̃AT ⇔ v = (tr(A)I −AT )w (16.22)

and the hypothesis that Ko, Kt and Kc are all symmetric, we can express
Eq. (16.21) in an equivalent form, namely:

m̃j
i = 2 as(Goδθ̃

j
i ) + 2 as(Gcδp̃

j
i )

f̃ ji = 2 as(Gcδθ̃
j
i ) + 2 as(Gtδp̃

j
i ) (16.23)

where Kx = (tr(Gx)I−Gx) for x = t, o, c and the Gx are called co-stiffnesses.
The operator as() returns the antisymmetric part of the matrix given as an
argument. Since Kx is symmetric, there exist a conformal transformation
corresponding to a rotation of the coordinate system, such that we have:

Kx = RxΓxR
T
x where R−1

x = RTx (16.24)

and Γx is a diagonal matrix of principal stiffnesses in the directions corre-
sponding to the columns of the orthonormal matrixRx which are expressed in
the coordinates Ψi = Ψj at equilibrium. It is easy to see that to any diagonal
matrix Γx, we can associate a unique diagonal matrix Λx for which:

Γx = tr(Λx)I − Λx and Λx =
1
2

tr(Γx)I − Γx. (16.25)

The Λx corresponding to the Γx of Eq. (16.24) are called principal co-
stiffnesses. It is then possible to see that for eachKx, we have a corresponding
Gx, given by:

Gx =
1
2

tr(Kx)I −Kx and Kx = tr(Gx)I −Gx. (16.26)

Remark 16.6.1. It is therefore possible, from a practical point of view, to
choose a center of stiffness and Ko,Kt,Kc by means of choosing principal
directions and corresponding stiffness values. From these Kx we can then
compute the corresponding co-stiffnesses Gx. We should then find an energy
function V parameterized by the Gx such that the linearization of dV around
the origin would result in the relations of Eq. (16.23).

We can decompose the total energy in three energies: translational, rotational
and couple energies:

V (Rji , p
j
i ) = Vt(R

j
i , p

j
i ) + Vo(R

j
i ) + Vc(R

j
i , p

j
i ). (16.27)

For the previous energies, Vt(·) should just depend on Kt and Gt, Vo(·) only
on Ko and Go and Vc(·) only on Kc and Gc.
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Orientational energy. Let us start with the orientational energy. If we
take the differential of the to be chosen rotational energy, we get:

dVo(R
j
i ) = Vo(R

j
i + dRji ) − Vo(R

j
i ). (16.28)

Since we have for any two vectors v, w ∈ R
3 that:

vTw =
1
2

tr(ṽw̃),

because this energy function is only a function of a rotation, we would like
to be able to express this differential as

dVo(R
j
i ) = mT

o δθ
i
j =

1
2

tr(m̃oδ̃θ
i

j) (16.29)

where mo would correspond to the rotational part of the wrench W̄ i
j that

body j would apply to the spring expressed in frame Ψi. Nevertheless, due to
the nodicity of a spring, W̄ i

j = −W̄ i,j
i , and therefore mo is also equal to the

torque that the spring applies to body i expressed in Ψi.

This implies that m̃o can be anything expressed by:

m̃o(R
j
i ) = 2 as(x(Rji ))

where x is any matrix dependent on Rji which should be found. Furthermore,
we want the differential of this torque to be such that in the neighborhood
of the identity it satisfies the chosen local behavior expressed by Eq. (16.23).
This implies that:

m̃o(I + δ̃θ
i

j) = 2 as(Goδ̃θ
i

j).

A straightforward function realizing this latter equation is

m̃o(R
j
i ) = −2 as(GoR

j
i ) (16.30)

where we need a minus sign so that we create not a maximum but a minimum
of the potential energy at the identity. This implies with Eq. (16.29) that:

dVo(R
j
i ) = − tr(as(GoR

j
i )δ̃θ

i

j) = − tr(GoR
j
i δ̃θ

i

j) (16.31)

where the last equality results from the following matrix identity4:

tr(AB) = tr(sy(A) sy(B)) + tr(as(A) as(B)). (16.32)

Eventually, since:

Rji δ̃θ
i

j = dRji = (Rji + dRji ) −Rji

we can infer that a Vo(R
j
i ) satisfying Eq. (16.28) and Eq. (16.31) is:

Vo(R
j
i ) = − tr(GoR

j
i ). (16.33)

4 The operator sy(·) indicates the symmetric part of a matrix and as(·) the anti-
symmetric one.
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Remark 16.6.2. Note that the previous energy function exactly corresponds
to the one presented in [2], but here we deduced it from the local behavior
around the identity which can be specified by a proper choice of Ko. Note
also that the element (k, l) of the matrix Rji can be interpreted as the scalar
product of the k-th axis of Ψj with the l-th axis of Ψi. This means that when
Ψi and Ψj coincide, Rji is the identity which corresponds to collineation of the
coordinates frames. The element (k, l) of Go can therefore be seen as a weight
for the collineation of the axis k of Ψi and the axis l of Ψj . This has been the
starting point for getting this energy function in [5]. With this interpretation,
the necessity of the minus sign of Eq. (16.30) should become clear: the scalar
product of two vectors is maximum when the vectors are colinear; to let it
become a minimum we need to invert its sign.

We have therefore proven the following:

Theorem 16.6.1 (Orientational Elastic Wrenches). A spring with elas-
tic energy that is given by Eq. (16.33) and connecting body i and j would
apply in a relative position (pji , R

j
i ) a wrench W̄ i =

[
mT
o f

T
o

]T to body i and
expressed in frame Ψi such that:

m̃o = −2 as(GoR
j
i ) (16.34)

f̃o = 0 (16.35)

Translational energy. Strangely enough, the translational energy is more
involved than the orientational one. This is due to the fact that it is not
physically meaningful to describe a purely translational anisotropic spring.
This means that either we define a spring which generates a force proportional
to the distance of the origins of Ψi and Ψj using a scalar constant which is
independent from the direction, or any directional dependence also implies
the generation of a torque between the two bodies.

Theorem 16.6.2 (Anisotropic translational springs). Purely transla-
tional anisotropic springs do not exist: either a spring is isotropic5 or it also
generates a torque.

Proof. First consider the following relation between wrenches which is the
consequence of the nodicity of a spring:

wij = −Ad∗
hj

i

wji . (16.36)

where wij is the wrench that a spring connecting body Bi to Bj applies to
body i expressed in Ei. Where the wrench wij ∈ se∗i (n) indicates the wrench
that a spring connecting body Bi and body Bj applies to body Bi.
5 Isotropic comes from the Greek isos (equal) and tropos (rotation) which means

direction independent.
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After the choice of coordinates Ψi and Ψj we can express this latter relation
as:

W̄ i
j = −AdT

Hj
i

W̄ j
i (16.37)

where we have

AdHj
i

=
[
Rji 0
p̃jiR

j
i R

j
i

]
⇒ AdT

Hj
i

=
[
Rij p̃

i
jR

i
j

0 Rij

]
(16.38)

and W̄ j
i = ((mj

i )
T (f ji )

T )T ∈ Re6. In order to obtain a purely translational
force, the following should go:[

0
f ij

]
= −

[
Rij p̃

i
jR

i
j

0 Rij

] [
0
f ji

]

which can be true for any force f ji if and only if:

p̃ij f
i,j
i = 0 ⇔ p̃ijf

i
j = 0 ⇔ pij ∧ f ij = 0 ⇔ ∃k ∈ R ; f ij = k pij

for a scalar k where f i,ji indicates the linear force applied by the spring to
body Bj , but expressed in the frame Psii. The scalar k corresponds to the
constant describing the stiffness of the isotropical translational spring.

Th. 16.6.2 implies that in the formulation of translational energy we should
also consider the relative orientation of i and j so that it is defined correctly
for the general anisotropic case. The usual potential energy we would use
for a translational spring, and that would result in the proper contribution
for Eq. (16.21), would be a quadratic form of the position difference of the
origins of Ψi and Ψj, namely:

Vt(p
j
i ) =

1
2
(pji )

TKt(p
j
i ) (16.39)

where Kt can be interpreted as being described with the coordinates of Ψj
at all times. As it is also shown in [3], the choice of translational potential
energy of Eq. (16.39) creates the problems described above since there is no
dependence from a relative rotation. The problems are due to an asymmetry
in the energy function which describes the stiffness only in reference Ψj . To
solve these difficulties, we can “symmetrize” this energy, as [3], and choose:

Vt(p
j
i , p

i
j) =

1
4
(pji )

TKt(p
j
i ) +

1
4
(pij)

TKt(pij) (16.40)

where the equality of the Kt in the two frames creates the desired symmetry.
Note that at equilibrium, Ψi = Ψj and we have an energy equivalent to
Eq. (16.39). The energy of Eq. (16.40) does depend on the relative orientation
since it is equal to:
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Vt(p
j
i , R

j
i ) =

1
4
(pji )

TKt(p
j
i ) +

1
4
((Rji )

T pji )
TKt(R

j
i )
T pji (16.41)

where the identity pij = −Rijpji can be shown when considering that Hi
j =

(Hj
i )

−1. It can be proven that pTKtp = − tr(p̃Gtp̃) for any p ∈ R
3 and

therefore Eq. (16.41) is equal to:

Vt(p
j
i , R

j
i ) = −1

4
tr(p̃jiGtp̃

j
i ) −

1
4

tr(p̃jiR
j
iGtR

i
j p̃
j
i ) (16.42)

where we used the matrix identity tr(RTAR) = tr(A). The following result
gives an expression for the wrenches generated by an elastic energy with such
an energy function.

Theorem 16.6.3 (Translational Elastic Wrenches). A spring with elas-
tic energy given by Eq. (16.42) and connecting body i and j would apply in a
relative position (pji , R

j
i ) a wrench W̄ i =

[
mT
t f

T
t

]T to body i, and such that
this wrench expressed in frame Ψi is:

m̃t = − as(GtRij p̃
j
i p̃
j
iR

j
i ) (16.43)

f̃t = −Rij as(Gtp̃
j
i )R

j
i − as(GtRij p̃

j
iR

j
i ) (16.44)

Proof. First of all, we should consider that in a certain configuration (pji , R
j
i ),

the differential of the energy function should be such that:

dVt(p
j
i , R

j
i ) = (mi

j)
T δθij + (f ij)

T δpij =
1
2

tr(m̃i
j δ̃θ

i

j) +
1
2

tr(f̃ ij δ̃p
i

j) (16.45)

where δT̄ ij =
[
δθij

T
δpij

T
]T

is an infinitesimal twist of body j with respect
to i and expressed in Ψi. Furthermore, in [12] can be shown that we have
mt := −mi,j

i = mi
j and ft := −f i,ji = f ij . This implies that if we calculate the

differential of the energy function and we shape it to a form like Eq. (16.45),
we immediately obtain mt and ft. We will therefore calculate this differential.
We get:

dVt(p
j
i , R

j
i ) = Vt(p

j
i + dpji , R

j
i + dRji ) − Vt(p

j
i , R

j
i ) (16.46)

where

dHj
i =

[
dRji dp

j
i

0 0

]
= Hj

i δT
i
j =

[
Rji p

j
i

0 1

] [
δ̃θ
i

j δp
i
j

0 0

]
=

[
Rji δ̃θ

i

j R
j
i δp

i
j

0 0

]
.

(16.47)

We can split the energy in the two parts reported in Eq. (16.42) such that:

dVt(p
j
i , R

j
i ) = dV

(1)
t (pji , R

j
i ) + dV

(2)
t (pji , R

j
i ) (16.48)
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where

dV
(1)
t (pji , R

j
i ) = V

(1)
t (pji +Rji δp

i
j , R

j
i +Rji δ̃θ

i

j) − V
(1)
t (pji , R

j
i ) =

− 1
4

tr((pji +Rji δp
i
j )̃ Gt(p

j
i +Rji δp

i
j )̃ ) − 1

4
tr(p̃jiGtp̃

j
i ) =

− 1
4

tr(δ̃p
i

jR
i
jGtR

j
i δ̃p

i

j) −
1
4

tr(p̃jiGtR
j
i δ̃p

i

jR
i
j) −

1
4

tr(Rji δ̃p
i

jR
i
jGtp̃

j
i ).

(16.49)

Above we again used the identity (Rp)˜ = Rp̃RT . The first of the previous
three terms is a second-order term one which we can therefore discard. By
applying the identity tr(AB) = tr(BA) we get:

dV
(1)
t (pji , R

j
i ) = −1

2
tr

(
Rij p̃

j
iGtR

j
i − (Rij p̃

j
iGtR

j
i )
T

2
˜δpij

)
=

1
2

tr(− as(Rij p̃
j
iGtR

j
i )δ̃p

i

j) (16.50)

and since

− as(Rij p̃
j
iGtR

j
i ) = −Rij as(p̃jiGt)R

j
i = −Rij as(Gtp̃

j
i )R

j
i

this clearly gives the first term of Eq. (16.44). We can now analyse the dif-
ferential of the second term V

(2)
t (·) of Eq. (16.42). We get:

dV
(2)
t (pji , R

j
i ) = −1

4
tr((pji+R

j
i δp

i
j )̃ (Rji+R

j
i δ̃θ

i

j)Gt(R
i
j−δ̃θ

i

jR
i
j)(p

j
i+R

j
i δp

i
j )̃ )

+
1
4

tr(p̃jiR
j
iGtR

i
j p̃
j
i ). (16.51)

Discarding second-order terms from the previous equation, we obtain:

dV
(2)
t (pji , R

j
i ) =

− 1
4

tr(p̃jiR
j
iGtR

i
jR

j
i δ̃p

i

jR
i
j − p̃jiR

j
iGtδ̃θ

i

jR
i
j p̃
j
i +

p̃jiR
j
i δ̃θ

i

jGtR
i
j p̃
j
i +Rji δ̃p

i

jR
i
jR

j
iGtR

i
j p̃
j
i ) =

− 1
4

tr(Rij p̃
j
iR

j
iGtδ̃p

i

j+δ̃p
i

jGtR
i
j p̃
j
iR

j
i )−

1
4

tr(p̃jiR
j
i (δ̃θ

i

jGt−Gtδ̃θ
i

j)R
i
j p̃
j
i ) =

−1
2

tr

(
Rij p̃

j
iR

j
iGt − (Rij p̃

j
iR

j
iGt)

T

2
δ̃p
i

j

)
−1

4
tr(p̃ji p̃

j
iR

j
i (δ̃θ

i

jGt−Gtδ̃θ
i

j)R
i
j)

(16.52)

and since we have:
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− 1
4

tr(p̃ji p̃
j
iR

j
i (δ̃θ

i

jGt −Gtδ̃θ
i

j)R
i
j) =

− 1
4

tr(p̃ji p̃
j
iR

j
i δ̃θ

i

jGtR
i
j) +

1
4

tr(p̃ji p̃
j
iR

j
iGtδ̃θ

i

jR
i
j) =

− 1
4

tr(GtRij p̃
j
i p̃
j
iR

j
i δ̃θ

i

j) +
1
4

tr(Rij p̃
j
i p̃
j
iR

j
iGtδ̃θ

i

j) =

− 1
2

tr

(
GtR

i
j p̃
j
i p̃
j
iR

j
i −Rij p̃

j
i p̃
j
iR

j
iGt

2
δ̃θ
i

j

)
=

− 1
2

tr(as(GtRij p̃
j
i p̃
j
iR

j
i )δ̃θ

i

j) (16.53)

we finally obtain:

dV
(2)
t (pji , R

j
i ) =

1
2

tr(− as(Rij p̃
j
iR

j
iGt)δ̃p

i

j) +
1
2

tr(− as(GtRij p̃
j
i p̃
j
iR

j
i )δ̃θ

i

j))

(16.54)

and considering that

− as(Rij p̃
j
iR

j
iGt) = − as(GtRij p̃

j
iR

j
i )

this gives the other terms of Eq. (16.43) and Eq. (16.44).

Clearly, the wrench which the spring applies to the body j is opposite to
the one applied to i. Observe also that around the identity the computed
elastic wrench gives the desired behavior specified by Kt and expressed in
Eq. (16.23).

Coupling energy. From Eq. (16.23), the coupling energy should be such
that the corresponding torque and force linearization at the identity should
satisfy:

mc(0 +Rji δp
i
j, I + Iδ̃θ

i

j) = −2 as(Gcδ̃θ
i

j) (16.55)

fc(0 +Rji δp
i
j, I + Iδ̃θ

i

j) = −2 as(Gcδ̃p
i

j). (16.56)

It is possible to see that a simple energy function satisfying the previous
relations at the identity and reported in [2] is

Vt(p
j
i , R

j
i ) = tr(GcRij p̃

j
i ). (16.57)

It is then possible to give the following result:

Theorem 16.6.4 (Coupling Elastic Wrenches). A spring with elastic
energy given by Eq. (16.57) and connecting body i and j would apply in a
relative position (pji , R

j
i ) a wrench W̄ i =

[
mT
c f

T
c

]T to body i and expressed
in frame Ψi such that:
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m̃c = −2 as(Gcp̃
j
iR

j
i ) (16.58)

f̃c = −2 as(GcR
j
i ) (16.59)

Proof. Reasoned along the same line as for the translational energy we get:

dVc(p
j
i , R

j
i ) = Vc(p

j
i + dpji , R

j
i + dRji ) − Vc(p

j
i , R

j
i ) =

tr(Gc(Rij − δ̃θ
i

jR
i
j)(p

j
i +Rji δp

i
j)˜) − tr(GcRij p̃

i
j) =

= tr(GcRijR
j
i δ̃p

i

jR
i
j −Gcδ̃θ

i

jR
i
j p̃
j
i ) =

tr(RijGcδ̃p
i

j) − tr(Rij p̃
j
iGcδ̃θ

i

j) =
1
2

tr(2 as(RijGc)δ̃p
i

j) +
1
2

tr(−2 as(Rij p̃
j
iGc)δ̃θ

i

j) (16.60)

which after applying some properties of the antisymmetric part of the product
of two matrices gives the result to be proven.

16.6.2 Storing positions

The position of each of the frames Ψx in Fig. 16.4 can be associated to the
necessary changes of coordinates and relative positions from Ψx to a fixed
frame Ψ0 that is attached to the inertial space. We indicate such a matrix
with Hx. More precisely we have that:

Hi := H0
i = Ψ0 o h

0
i o Ψ

−1
i

Hc(i) := HiH
i
c(i)

Hb := H0
b = Ψ0 o h

0
b o Ψ

−1
b

Hc(b) := HbH
b
c(b)

Hv(i) := H0
v(i) = Ψ0 o h

0
v(i) o Ψ

−1
v(i)

Hb(i) := Hv(i)H
v(i)
b(i)

Hv(b) := H0
v(b) = Ψ0 o h

0
v(b) o Ψ

−1
v(b)

where Hi
c(i), H

b
c(b), H

v(i)
b(i) are fixed changes of coordinates within the same

space.

It is then easy to calculate the matrices which are needed in order to compute
the elastic wrenches, namely:

H
v(i)
c(i) = (Hv(i))−1Hc(i) and Hv(b)

c(b) = (Hv(b))−1Hc(b). (16.61)

The direct kinematics of the robotic hand should then be available as a map
of the following form:
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L(q) : Q → SE(3) × . . .× SE(3)︸ ︷︷ ︸
n times

; q 7→ (H1(q), . . . , Hn(q)) (16.62)

and the body position Hb is a state of the controller. The coordinates changes
represented by Hi

c(i), H
b
c(b), H

v(i)
b(i) are fixed, known, and chosen at the begin-

ning, as will be shown later.

16.6.3 The wrenches of the system

If we use the proposed energy functions and we want to create an elastic
force between two bodies i and j by means of control, we should proceed as
follows.

Algorithm 1 (Calculation of elastic wrenches) 1. Choose a relative po-
sition rji of minimal potential energy.

2. In this relative position, choose a common point which will be the center
of stiffness.

3. Choose two coordinate systems Ψi and Ψj for i and j respectively, which
have their origin in the center of stiffness and coincide at the equilibrium
relative position rji .

4. Choose the desired Kt, Ko, Kc which are expressed at equilibrium in the
frames Ψi = Ψj.

5. Calculate the corresponding Gt, Go, Gc with Eq. (16.26).

6. With Hj
i , the total wrench generated by the spring on body i and expressed

in Ψi is the sum of the wrenches of the orientational, translational and
coupling energies W̄ i =

[
(mi)T (f i)T

]T with:

m̃i = −2 as(GoR
j
i ) − as(GtRij p̃

j
i p̃
j
iR

j
i ) − 2 as(Gcp̃

j
iR

j
i ) (16.63)

f̃ i = −Rij as(Gtp̃
j
i )R

j
i − as(GtRij p̃

j
iR

j
i ) − 2 as(GcR

j
i ) (16.64)

7. The wrench W̄ j that the spring applies to body j will be W̄ j = −AdT
Hi

j
W̄ i,

which implies that:

mj = −Rjimi − p̃jiR
j
i f
i (16.65)

f j = −Rjif i (16.66)

If we apply Algorithm 1 to the pair of bodies (i, v(i)) for the springs connect-
ing the tips to the virtual body, and to the pair (b, v(b)) for the hand spring,
we can compute the elastic wrenches in the system. If we choose the Ψc(i) as
coordinates for the finger tips, Ψv(i) as coordinates for the supporting bodies
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v(i), Ψc(b) for the virtual body and Ψv(b) for the hand virtual position, we
have as representative matrices Hv(i)

c(i) for the tips springs and H
v(b)
c(b) for the

hand.

We can then choose the desired stiffnesses for each of these springs, which we
indicate as6:

K(i) =

[
K

(i)
o K

(i)
c

K
(i)
c K

(i)
t

]
i = 1 . . . n and Kb =

[
Kb
o K

b
c

Kb
c K

b
t

]
. (16.67)

With Algorithm 1 we can calculate therefore for each H
v(i)
c(i) and H

v(b)
c(b) the

elastic wrenches applied to the tips W̄ c(i), the elastic wrenches applied to
the supporting spaces W̄ v(i) and the direct elastic wrenches applied to the
virtual body W̄ c(b).

Wrenches on the tips and control torques. Once we obtain the wrenches
W̄ c(i) for each time step, we can directly calculate the torques we have to
apply to the robot in order to get the same effect that these virtual springs
would have.

Use a numerical representation of the Jacobian of Eq. (16.14) where the twists
t0i are expressed in a common fixed frame Ψ0, and indicate it with J̄tips(q).

Since the wrenches W̄ c(i) of each fingertip are expressed in the frame Ψc(i),
we need to transform them first to the fixed space in the frame Ψ0 using:

W̄ 0,c(i) = AdT
H

c(i)
0
W̄ c(i) (16.68)

the torques to set to the actuators will therefore be:

τ = J̄Ttips(q)



AdT

H
c(1)
0

. . . 0
...

. . .
...

0 . . . AdT
H

c(n)
0





W̄ c(1)

...
W̄ c(n)


 . (16.69)

Elastic wrench on the virtual object. The total elastic wrench applied
to the virtual object is the sum of all the wrenches generated by the springs
attached to it.

We considered each tip spring energy as a function of the relative position
of each tip i and the supporting space v(i). As shown in Eq. (16.6), this
formulation is actually used to describe a spring which connects each tip to
the virtual object. When we look at the dual equation of Eq. (16.5), we see
that the wrench applied to the body and the wrench applied to the supporting
6 Note that at the center of stiffness, the coupling stiffness matrices K

(i)
c and Kb

c

are symmetric.
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space v(i) are the same. This can be thought of intuitively by considering
the space v(i) rigidly connected to b at a certain instant. We therefore only
need to express these wrenches in the right coordinates. If we express all the
wrenches in the coordinate Ψb, we get:

W̄ b
elastic =

n∑
i=1

AdT
H

v(i)
b

W̄ v(i) +AdT
H

c(b)
b

W̄ c(b) (16.70)

where W̄ v(i) and W̄ c(b) are calculated using Algorithm 1.

16.6.4 Simulation of the virtual object dynamics

So far we have completely analyzed how to calculate the torques to supply
to the robot as a function of the positions of the finger tips and of Hb. The
matrix Hb is a time-varying matrix describing the dynamic evolution of the
virtual object which is the dynamic extension of the controller.

We have chosen the virtual object with a very simple inertial structure on
purpose and its dynamics can be easily simulated in real time within the
controller. Considering Eq. (16.3) and the coordinates systems used, we can
give a coordinate expression for the virtual object dynamics.

Assuming the virtual body in a gravitational-less environment, it does not
have potential energy and its Hamiltonian is:

HB(Hb, P
b) =

1
2
(P b)T

[ 1
j I3 0
0 1

mI3

]
(P b) m, j ∈ R. (16.71)

The map h0
b of Eq. (16.3) is represented by the matrix H0

b = Hb. and there-
fore, the first Hamiltonian equation is:

Ḣb = HbT
b,0
b with T̄ b,0b =

∂HB

∂P b
=
[ 1
j I3 0
0 1

mI3

]
(P b) (16.72)

and the second equation is:

Ṗ b = P b ∧ T̄ b,0b + W̄ b
tot (16.73)

where W̄ b
tot is the total wrench applied to the body and (P b∧) corresponds

to the Lie-Poisson bracket and can be represented as a 6 × 6 matrix of the
following form:

(P b∧) :=
(
P̃ bω P̃

b
v

P̃ bv 0

)

where P b =
(
PTω PTv

)T and the “tilde” operator is defined in Eq. (16.20).
If we assume the Rh of Sect. 16.4.4 equal to zero, the dissipating wrench is
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Fig. 16.6. The simplified grasping control scheme.

W̄ b
diss = RmT̄

b,0
b and if we use Eq. (16.70), the total wrench applied to the

virtual body is:

W̄ b
tot = W̄ b

elastic + W̄ b
diss (16.74)

With the previous equations it is therefore possible to calculate Ḣb and Ṗ b,
which are the state rates of the controller. The integration of Ḣb should be
done with care since the matrixHb should remain in SE(3) during all steps. In
order to do that, the orthonormal matrix R0

b within H0
b should be normalized

after each step in order to keep it within SO(3). With the integration of Hb,
the position of the body is known at each step and the elastic wrenches can
be calculated again closing the control loop. A simplified representation of
the control scheme is reported in Fig. 16.6
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16.6.5 Varying the length of springs

The variation of the length of a spring, can be easily taken into account by
considering the supervisory control twist tbv(i) reported in Fig. 16.1. If we
indicate the expression of this twist in the base Ψb with T bb(i), we can express
the effective state for the variable springs as:

H
v(i)
c(i) = H

v(i)
b(i)H

b(i)
b Hb

c(i) with H
b(i)
b = e−T

b
b(i) (16.75)

where we choose T
b(i)
b = siTi with Ti a constant twist, and eT ∈ SE(3)

indicates the matrix exponential of the twist T ∈ se(3). The reason of this
choice is explained in Sect. 16.7. The effective state will be therefore changed
either by a change of Hb(i)

b due to a supervisory control or by a change of
Hb
c(i) = (Hb)−1Hc(i) corresponding to a change of the relative position of the

virtual body with respect to the tip i.

It is now possible to explain the sequence of actions that can be used to grasp
an object and to interact with it.

16.7 Grasping strategies

Suppose we have an object to be grasped and we want to plan a tip grasp
configuration. We can describe this grasp configuration by defining the desired
positions of the tips with respect to a “grasp focus” positioned somewhere
between the fingers [10]. If we represent the focus by a frame Hf , the desired
grasp configuration is described by n relative configurations H1

f , . . . , H
n
f .

If we position the virtual body at the focus (Hb = Hf ) and consider it as a
representative position for the whole grasp, to achieve the desired configura-
tion it should be H i

b = Hi
f ∀i.

If the hand would just touch the object to be grasped without exerting any
force, the energy of the controller’s springs should be zero, which implies that
in such a situation Hc(i) = Hv(i). By compositions we would therefore have:

Hi
c(i)H

v(i)
b(i)H

b(i)
b = Hi

b = Hi
f ⇒ H

v(i)
b(i) = H

c(i)
i Hi

fH
b
b(i) (16.76)

The transformation H i
c(i) is chosen and expresses the position of the center

of stiffness [2] for the tip i. We can then choose Hb
b(i) in such a way that

the translational part of Hi
b(i) is zero so that the origins of Ψi and of Ψb(i)

coincide for the nominal grasp configuration. The rotational part of Hi
b(i)

can be chosen when we consider that we control the hand configuration by
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actually choosing a twist T̄i ∈ se(3) such that Hb(i)
b (si) = esiT̄i and such that

for si = 1, Hb(i)
b would satisfy Eq. (16.76). We have therefore:

Hi
b(i) =

[
Rib(i) 0

0 1

]
= Hi

fe
−siT̄i . (16.77)

Which can be solved for T̄i once si = 1 and Rib(i) has been chosen. The choice
of Rib(i) is important because it expresses the way in which the hand is opened
and closed by respectively increasing or decreasing the scalars si.

It we then set Hv(i)
b(i) := H

c(i)
i Hi

fe
−T̄i , we control the position of the extreme

of each tip spring connected on the side of the virtual body by changing si,
and get:

H
v(i)
b (si) = H

v(i)
b(i) e

siT̄i .

In order to perform a tip grasp, we have to proceed as follows:

Algorithm 2 (Tip grasping algorithm) 1. Choose the location of the
center of stiffness for the object by choosing Hc(b)

b .

2. Choose a Hv(b) far from the object to be grasped and in the neighborhood
of the hand.

3. For each i, choose Hv(i)
b (si) with si sufficiently larger than 1 (Opening

Hand).

4. Move the virtual position of the object, Hv(b), along a proper trajectory
to HfH

b
c(b) = Hf (H

c(b)
b )−1.

5. Decrease the si to a proper value smaller than 1 which represents a suf-
ficiently high grasping internal energy (Closing Hand).

6. Change Hv(b) to move the object and do what is needed.

Proper choices of the center of stiffness for each tip would then specify how
the robot reacts to small unexpected motions of the object due to external
forces. In this way, it would also be possible to handle rolling contacts by
exploiting the contact friction, but this requires further research.

The presented control system can not only be used to implement tips grasps
but in the same way as for tips grasp, it is possible to open the hand and
move the virtual position Hv(b) over an object to be grasped rather than at its
center. At the same time we can close the hand by decreasing the si and the
result is that the hand folds around the object to be grasped implementing
a full grasp.
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16.8 Conclusions

In this chapter, an intrinsically passive algorithm for controlling multi-limbed
robotic systems based on physical concepts has been presented. A major ad-
vantage is the ensured stability in any interactive situation for any environ-
ment. This because Liapunov stability is ensured choosing as Liapunov func-
tion the equivalent energy of the robot-controller coupled system and their
power-continuous interconnection. This equivalent energy is composed of the
potential energy of the controller springs, the kinetic energy of the robot and
of the virtual object. The general Hamiltonian structure of the controller
has been shown as the spatial interconnection of generalised Hamiltonian
systems.
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Summary.

We present two versions of the maximum principle for nonsmooth hy-
brid optimal control problems, the first one of which requires differentia-
bility along the reference trajectory and yields an adjoint equation of the
usual kind, while the second one only requires approximability to first or-
der by Lipschitz maps, and yields an adjoint differential inclusion involving
a generalized gradient of the approximating Hamiltonian.

17.1 Introduction

In this paper we present a version of the maximum principle for nonsmooth
hybrid optimal control problems, under weak regularity conditions. The class
of hybrid problems to be considered is defined in §17.2. The maximum prin-
ciple is stated in §17.3 as a general assertion involving terms that are not yet
precisely defined, and without a detailed specification of technical assump-
tions. One version of the principle, where the terms are precisely defined and
the appropriate technical requirements are completely specified, is stated in
§17.4 for problems where all the basic objects—the dynamics, the Lagrangian,
and the cost functions for the switchings and the endpoint constraints—are
differentiable along the reference arc, but a considerable amount of nons-
moothness is allowed away from the reference control. A fairly detailed out-
line of the proof of the result of §17.4 is presented in §17.5. Another version
1 Research supported in part by NSF Grant DMS-9803411 and AFOSR Grant

0923.
2 Most of this work was done in the Netherlands, during a three-month visit at

the University of Groningen, to which the author is immensely grateful for its
generous hospitality and exciting intellectual atmosphere.
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of the hybrid maximum principle, allowing nondifferentiability along the ref-
erence control—and requiring only “first-order approximability by Lipschitz
maps”—is stated without proof in §17.6.

Our results are stronger than the usual versions of the finite-dimensional
maximum principle. For example, even the theorem for classical differentials
applies to situations where the maps are not of class C1, and can fail to
be Lipschitz continuous. The “nonsmooth” result applies to maps that are
neither Lipschitz continuous nor differentiable in the classical sense. This has
been shown for the non-hybrid case in several of our earlier papers on the
maximum principle (cf. Sussmann [5, 6]), and in each case it would be trivial
to construct hybrid examples of a similar nature.

On the other hand, the results presented here are much weaker than what can
actually be proved by our methods. More general versions, involving systems
of differential inclusions, and “flows” that do not arise from vector fields, will
be discussed in subsequent papers.

A simpler version of our results, dealing only with autonomous systems, was
announced—without proof—in the conference paper [7].

17.2 Hybrid optimal control problems

Throughout this paper, the expression “smooth manifold”—or, simply, the
word “manifold”—means “finite-dimensional Hausdorff manifold of class C1

without boundary.” If M is a manifold, and x ∈ M , then TxM , T ∗
xM , TM ,

T ∗M denote, respectively, the tangent and cotangent spaces of M at x, and
the tangent and cotangent bundles of M .

Definition 17.2.1. A finite family of state spaces is a pair (Q,M) such
that

FFSS1. Q is a finite set;

FFSS2. M = {Mq}q∈Q is a family of smooth manifolds, indexed by Q. ♦

If (Q,M) is a finite family of state spaces, then for each pair (q, q′) ∈ Q×Q
we use Mq,q′ to denote the product Mq ×Mq′ × R × R.

Definition 17.2.2. A switching constraint for a finite family of state
spaces (Q,M) is a family S = {Sq,q′}(q,q′)∈Q×Q such that Sq,q′ is a sub-
set of Mq,q′ for every pair (q, q′) ∈ Q ×Q. ♦

The following is the definition of “hybrid control system” that will be adopted
for the purposes of this paper.
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Definition 17.2.3. A hybrid control system is a 6-tuple

Σ = (Q,M,U , f,UUU ,S)

such that

HCS1. (Q,M) is a finite family of state spaces;

HCS2. U = {Uq}q∈Q is a family of sets;

HCS3. f = {fq}q∈Q is a family such that fq is, for each q, a partially defined
map from Mq × Uq × R to TMq, having the property that fq(x, u, t)
belongs to TxMq for every (x, u, t) ∈Mq×Uq×R for which fq(x, u, t)
is defined;

HCS4. UUU = {Uq}q∈Q is a family consisting, for each q, of a set Uq, each of
whose members is a map η : Iη → Uq defined on some subinterval Iη
of R;

HCS5. S = {Sq,q′}(q,q′)∈Q×Q is a switching constraint for (Q,M). ♦

The sets Sq,q′ are the switching sets of Σ, and are allowed to be empty. One
should think of Sq,q′ as the set of all 4-tuples (x, x′, t, t′) such that x ∈ Mq,
x′ ∈ Mq′ , and a switching (or “jump”) from state x ∈ Mq to state x′ ∈ Mq′

is permitted at time t, with a resetting of the clock to time t′. Usually, one
does not want to permit clock resetting, but for mathematical reasons it is
better to allow it in principle, and exclude it, when desired, by just taking
the switching sets Sq,q′ to consist only of points of the form (x, x′, t, t).

The members of Q are called locations. The families M, U , are, respectively,
the family of state spaces and the family of control spaces of Σ. For each q,
the manifold Mq, the set Uq, the map fq, and the set Uq are, respectively, the
state space, the control space, the dynamical law, and the class of admissible
controls at location q. Usually, Q will be the set of states of some finite
automaton.

Definition 17.2.4. A control for a hybrid system Σ as above is a triple
ζ = (q, I, ηηη) such that

• q = (q1, . . . , qν) is a finite sequence of locations;

• I = (I1, . . . , Iν) is a finite sequence of compact intervals;

• ηηη = (η1, . . . , ην) is a finite sequence such that ηj belongs to Uqj and Iηj =
Ij for j = 1, . . . , ν.

If ζ = (q, I, ηηη) is a control, and I = (I1, . . . , Iν) for j = 1, . . . , ν, we use
q(ζ), I(ζ), ηηη(ζ), ν(ζ), to denote, respectively, the finite sequences q, I, ηηη,
and the natural number ν. If Ij = [tj , τj ], we use t(ζ), τττ (ζ) to denote the
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sequences (t1, . . . , tν) and (τ1, . . . , τν), and we let aζ = t1, bζ = τν . Then
aζ , bζ , ν(ζ) − 1, and q(ζ) are, respectively, the initial time, the terminal
time, the number of switchings, and the switching strategy of ζ. ♦

Definition 17.2.5. If Σ = (Q,M,U , f,UUU ,S) is a hybrid system as above,
ζ is a control for Σ, and ν = ν(ζ), then a pretrajectory for ζ is a ν-tuple
ξξξ = (ξ1, . . . , ξν) such that, if

I(ζ) = (I1, . . . , Iν) , Ij = [tj , τj ], q(ζ) = (q1, . . . , qν) , ηηη(ζ) = (η1, . . . , ην) ,

then, for each j ∈ {1, . . . , ν}, ξj is an absolutely continuous map from Ij to
the manifold Mqj , having the property that fqj (ξj(t), ηj(t), t) is defined and
ξ̇j(t) = fqj (ξj(t), ηj(t), t) for almost all t ∈ Ij. ♦

Definition 17.2.6. If Σ is a hybrid system as above, a pretrajectory-
control pair for Σ is a pair (ξξξ, ζ) such that ζ is a control for Σ and ξξξ

is a pretrajectory of Σ for ζ.

We use PTCP (Σ) to denote the set of all pretrajectory-control pairs of the
system Σ. ♦

Definition 17.2.7. An endpoint constraint for a finite family of state
spaces (Q,M) is a family E = {Eq,q′}(q,q′)∈Q×Q of sets such that Eq,q′ is,
for each (q, q′) ∈ Q×Q, a subset of Mq,q′ . ♦

Notice that, mathematically, an endpoint constraint is exactly the same kind
of object as a switching condition. This is why the part of the maximum
principle that has to do with the switchings will have the same form as the
transversality condition.

Definition 17.2.8. Let Σ = (Q,M,U , f,UUU ,S) be a hybrid control system
as in the previous definitions, and let Ξ = (ξξξ, ζ) belong to PTCP (Σ). Let
ν = ν(ζ) , ξξξ = (ξ1, . . . , ξν) , q(ζ) = (q1, . . . , qν) , t(ζ) = (t1, . . . , tν),
τττ (ζ) = (τ1, . . . , τν) , I(ζ) = (I1, . . . , Iν) , S = {Sq,q′}(q,q′)∈Q×Q. Then

• The endpoint condition of ξξξ (or of Ξ) is the 4-tuple

∂ξξξ
def= ∂Ξ

def= (ξν(bζ), ξ1(aζ), bζ , aζ) ∈ Mqν ,q1 . (17.1)

• If 1 ≤ j < ν, the “j-th jump” of ξξξ (or of Ξ) is the 4-tuple

∂jξξξ
def= ∂jΞ

def= (ξj(τj), ξj+1(tj+1), τj , tj+1) ∈ Mqj ,qj+1 . (17.2)

• If E = {Eq,q′}(q,q′)∈Q×Q is an endpoint constraint for (Q,M), we say that
Ξ satisfies the constraint E if ∂Ξ belongs to Eqν ,q1 .
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• We say that ξξξ (or Ξ) satisfies the switching conditions for Σ if ∂jΞ
belongs to Sqj ,qj+1 whenever j ∈ {1, . . . , ν − 1}. ♦

Definition 17.2.9. If Σ = (Q,M,U , f,UUU ,S) is a hybrid system as above,
then

• we say that a pretrajectory ξξξ of Σ is a trajectory of Σ if ξξξ satisfies the
switching conditions for Σ;

• we use TCP (Σ) to denote the set of all trajectory-control pairs of Σ (i.e.,
the set of all Ξ = (ξξξ, ζ) ∈ PTCP (Σ) such that ξξξ is a trajectory of Σ), and
TCP (Σ; E) to denote the set of all Ξ ∈ TCP (Σ) that satisfy the endpoint
constraint E. ♦

Definition 17.2.10. If Σ is a hybrid system as above, then a Lagrangian
for Σ is a family L = {Lq}q∈Q such that

• Lq is, for each q ∈ Q, a partially defined real-valued function on the product
Mq × Uq × R,

• whenever q ∈ Q, η ∈Uq has domain [α, β], and ξ : [α, β] → Mq is an
absolutely continuous solution of ξ̇(t) = fq(ξ(t), η(t), t) a.e., it follows that
the function [α, β] 3 t → L(ξ(t), η(t), t) is defined for almost every t, and
is integrable.

A switching cost function for Σ is a family Φ = {Φq,q′}(q,q′)∈Q×Q such
that each Φq,q′ is an extended real-valued function on Sq,q′ that never takes
the value −∞.

An endpoint cost function for Σ is a family ϕ = {ϕq,q′}(q,q′)∈Q×Q such
that each ϕq,q′ is an extended real-valued function on Mq,q′ that never takes
the value −∞. ♦

If L = {Lq}q∈Q is a Lagrangian for the hybrid control system Σ, then we
can define the corresponding Lagrangian cost functional CL : TCP (Σ) → R,
by letting

CL(ξξξ, ζ) =
ν∑

j=1

∫
Ij

Lqj (ξj(t), ηj(t), t) dt , (17.3)

where ν = ν(ζ), I(ζ) = (I1, . . . , Iν), q(ζ) = (q1, . . . , qν), ηηη(ζ) = (η1, . . . , ην),
and ξξξ = (ξ1, . . . , ξν).

If Φ is a switching cost function for Σ, and ϕ is an endpoint cost function,
then we associate with Φ and ϕ the functional ĈΦ,ϕ : TCP (Σ) → R ∪ {+∞}
that assigns to each Ξ = (ξξξ, ζ) ∈ TCP (Σ) the number
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ĈΦ,ϕ(ξξξ, ζ) = ϕqν ,q1(∂Ξ) +
ν−1∑
j=1

Φqj ,qj+1(∂jΞ) , (17.4)

where ν = ν(ζ), and (q1, . . . , qν) is the switching strategy of ζ.

Definition 17.2.11. A hybrid Bolza cost functional for Σ is an ex-
tended real-valued functional C : TCP (Σ) → R ∪ {+∞} such that C =
CL + ĈΦ,ϕ for some L,Φ, ϕ that are, respectively, a Lagrangian, a switch-
ing cost function, and an endpoint cost function for Σ. ♦

Given a hybrid control system Σ, a Bolza cost functional C for Σ, and an end-
point constraint E , we will consider the optimal control problem P(Σ, C, E),
whose objective is to minimize C(ξξξ, ζ) in the class TCP (Σ; E). We observe
that the endpoint constraint sets Eq,q′ could all be of the special form
E0

q,q′ × {b} × {a}, where a, b are fixed real numbers, independent of q, q′,
and each E0

q,q′ is a subset of Mq ×Mq′ . In that special case, all the members
Ξ = (ξξξ, ζ) of TCP (Σ; E) satisfy aζ = a, bζ = b, so we have a problem with
fixed initial and terminal times. In addition, the switching sets Sq,q′ could
be of the form Sq,q′ = S0

q,q′ × {t̄q,q′} × {t̄q,q′}, where S0
q,q′ ⊆ Mq ×Mq′ and

the t̄q,q′ are fixed real numbers, in which case we would be dealing with a
problem with fixed switching times and no clock resetting.

17.3 The general form of the maximum principle

Let us assume that

A1. Σ = (Q,M,U , f,UUU ,S) is a hybrid control system;

A2. C = CL + ĈΦ,ϕ is a hybrid Bolza cost functional for Σ;

A3. E is an endpoint constraint for (Q,M);

A4. Ξ# (the “reference trajectory-control pair”) belongs to TCP (Σ; E),
and

Ξ# = (ξ#ξ#ξ#, ζ#) , ξ#ξ#ξ# = (ξ#1 , . . . , ξ
#
ν#) ,

ζ# = (q#, I#, ηηη#) , q# = (q#1 , . . . , q
#
ν#) ,

I# = (I#
1 , . . . , I

#
ν#) , ηηη# = (η#

1 , . . . , η
#
ν#) .

The maximum principle gives a necessary condition for Ξ# to be a solution
of P(Σ, C, E). The result only depends on comparing trajectories with the
same switching strategy, and does not require the candidate arc Ξ# to be
a true solution. Moreover, even within the class of arcs corresponding to a
fixed switching strategy, only arcs that are close to Ξ# are compared with
Ξ#. So we introduce the following definition.
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Definition 17.3.1. A local solution of a problem P(Σ, C, E) is a trajectory-
control pair Ξ# = (ξ#ξ#ξ#, ζ#) = (ξ#1 , . . . , ξ

#
ν# , ζ

#) such that there exist neigh-
borhoods N1, . . . ,Nν# of the graphs of ξ#1 , . . . , ξ

#
ν# in Mq1 ×R, . . . ,Mq#

ν
×R

having the property that Ξ# minimizes the cost C(Ξ) in the class of all the
trajectory-control pairs Ξ = (ξξξ, ζ) = (ξ1, . . . , ξν , ζ) ∈ TCP (Σ, E) such that
q(ζ) = q(ζ#) (so that, in particular, ν = ν#) and the graph G(ξj) of ξj is
contained in Nj for j = 1, . . . , ν#. (Here the “graph” of ξj is the set

G(ξj)
def= {(ξj(t), t) : t ∈ Domain(ξj)} , (17.5)

so G(ξj) ⊆Mqj × R.) ♦

We now present the maximum principle for hybrid systems as a true “princi-
ple,” that is, a not very precise mathematical statement that can be rendered
precise in various ways, giving rise to different “versions” of the principle.
Two such versions—both completely precise and rigorous—will be stated in
subsequent sections of the paper.

The maximum principle. Assume that A1-A4 hold, and Ξ# is a local
solution of P(Σ, C, E). Then there exists an adjoint pair (ψψψ, ψ0) along Ξ# that
satisfies the weak Hamiltonian maximization, nontriviality, and transversality
conditions for P(Σ, C, E) along Ξ#. ♦

To turn the above statement into a theorem, we have to specify technical
assumptions on the 12-tuple of data (Q,M,U , f,UUU ,S, L, Φ, ϕ, E , ξ#ξ#ξ#, ζ#), and
assign a precise meaning to the notions of “adjoint pair,” “weak Hamiltonian
maximization,” “nontriviality,” and “transversality.” This will be done in
detail in the following section for problems whose reference vector fields and
Lagrangians are differentiable along the reference trajectory. The changes
needed for the nondifferentiable case will be sketched in §17.6.

17.4 A version involving classical differentials

We now make the maximum principle precise in the setting of maps having
classical differentials.

First, we let

I#
0 = I#

ν# , I#
ν#+1

= I#
1 , q#0 = q#

ν# , q#
ν#+1

= q#1 ,

and write
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I#
j = [t#j , τ

#
j ] for j = 0, 1, . . . , ν# + 1 ,

a# = t#1 ,

b# = τ#
ν# , ,

M#
j = Mq#

j
for j = 0, 1, . . . , ν# + 1 ,

M#
j = Mq#

j ,q#
j+1

for j = 1, . . . , ν# ,

S#
j = Sq#

j ,q#
j+1

for j = 1, . . . , ν# − 1 ,

S#
j = Eq#

ν# ,q#
1

for j = ν# ,

S#
0 = S#

ν# ,

Φ#
j = Φq#

j ,q#
j+1

for j = 1, . . . , ν# − 1 ,

Φ#
j = ϕq#

ν# ,q#
1

for j = ν# .

Next, we drop the superscript # in our discussion (except in the statement
of our hypotheses A5-A15, where the notation of the previous sections will
be maintained), and write ν, Ξ, ξξξ, ξj , I, Ij , ζ, q, qj , ηηη, ηj , tj , τj , a, b, Mj,
Mj , Sj , Φj instead of ν#, Ξ#, ξξξ#, ξ#j , I#, I#

j , ζ#, q#, q#j , ηηη#, η#
j , t#j , τ#

j ,
a#, b#, M#

j , M#
j , S#

j , Φ#
j . Then

Ξ = (ξξξ, ζ) ,
I = (I1, . . . , Iν) ,

ξξξ = (ξ1, . . . , ξν) ,
q = (q1, . . . , qν) ,

ζ = (q, I, ηηη) ,
ηηη = (η1, . . . , ην) .

In order to state the transversality condition, and to define the notion of
adjoint pair, we need a concept of “tangent cone” to a set. There are many
nonequivalent definitions of tangent cone, and we choose for our purposes the
notion of a “Boltyanskii approximating cone”:

Definition 17.4.1. Let S be a subset of a smooth manifold X, and let s̄ ∈ S.
A Boltyanskii approximating cone to S at s̄ is a closed convex cone K
in the tangent space Ts̄X to X at s̄ such that there exist a neighborhood V
of 0 in Ts̄X and a continuous map µ : V ∩ K → X with the property that
µ(V ∩K) ⊆ S, µ(0) = s̄, and µ(v) = s̄ + v + o(‖v‖) as v → 0 via values in
V ∩K. ♦

(The condition “µ(v) = s̄ + v + o(‖v‖) as v → 0” appears to depend, in
principle, on a choice of local coordinates about s̄, but is in fact independent
of that choice.)

We now define the notion of an “adjoint pair” along Ξ, and what it means
for such a pair to be “Hamiltonian-maximizing.” For that purpose, we first
stipulate that

S1. “tangent cone” means “Boltyanskii approximating cone.”
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We then make the following assumptions.

A5. For j ∈ {1, . . . , ν# − 1}, Kj is a tangent cone to the set Sq#
j ,q#

j+1
at

∂jΞ
#.

A6. Ke is a tangent cone to the set Eq#
1 ,q#

ν#
at ∂Ξ#.

(In particular, Kj is a subset of the tangent space T∂jΞMqj ,qj+1 , which is
canonically identified with the product Tξj(τj)Mqj ×Tξj+1(tj+1)Mqj+1 ×R×R.
Similarly, the coneKe is a subset of T∂ΞMqν ,q1 , which is canonically identified
with Tξν(b)Mqν × Tξ1(a)Mq1 × R × R.)

We will also write Kν for Ke and ∂νΞ for ∂Ξ, so Kj is a tangent cone to Sj

at ∂jΞ for j = 1, . . . , ν.

We recall that if V is a finite-dimensional real linear space and S ⊆ V , then
the polar of S is the set

S⊥ = {w ∈ V † : w · v ≤ 1 for all v ∈ S} ,
where V † is the dual of V . If S is a cone (that is, S is nonempty and such
that r · v ∈ S whenever v ∈ S and r ≥ 0), then

S⊥ = {w ∈ V † : w · v ≤ 0 for all v ∈ S} .
It is well known that if S is a cone then S⊥ is a closed convex cone, and S⊥⊥

is the closed convex hull of S (using the standard identification of V †† with
V ), so S⊥⊥ = S if and only if S is closed and convex.

Next, we assume

A7. If j ∈ {1, . . . , ν#} then for almost every time t ∈ I#
j the maps

x→fq#
j

(x, η#
j (t), t) and x→ Lq#

j
(x, η#

j (t), t) are defined on a neigh-

borhood of ξ#j (t) and are differentiable at ξ#j (t).

A8. If j ∈ {1, . . . , ν# − 1}, then Φq#
j ,q#

j+1
is differentiable at ∂jΞ

# along
Sq#

j ,q#
j+1

.

A9. ϕq#
ν# ,q#

1
is differentiable at ∂Ξ# along Eq#

ν# ,q#
1

.

Remark 17.4.1. The precise meaning of “differentiability along a set” in A8
and A9 is as follows: a partially defined function h on a smooth manifold
X is differentiable along S at a point s̄ of a subset S of X if (a) for some
neighborhood V of s̄, the inclusion V ∩ S ⊆ Domain(h) holds, and (b) there
exists a linear functional λ on the tangent space Ts̄X such that

lim
s→s̄,s∈S

h(s) − h(s̄) − λ · (s− s̄)
‖s− s̄‖ = 0 . (17.6)
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Naturally, (17.6) makes sense relative to a choice of local coordinates about
s̄, but it is easy to verify that the validity of (17.6) does not depend on that
choice. The linear functional λ need not be unique but, if K is a tangent cone
to S at s̄ (in the sense of S1), then the restriction of λ to K is unique, since
λ(v) = limε↓0 ε−1(h(µ(εv)) − h(s̄)) whenever v ∈ K, if µ is any map that
satisfies the conditions of Definition 17.4.1. In particular, a condition such
as “θ + ρ∇h(s̄) ∈ K⊥” makes sense intrinsically, if θ is a given covector at
s̄ and ρ is a number. Indeed, it suffices to interpret the condition to mean
“θ + ρλ ∈ K⊥ for any λ such that (17.6) holds.” ♦

For each q ∈ Q, we introduce a partially defined real-valued function Hq on
T ∗Mq × Uq × R × R by letting

Hq(x, p, u, p0, t) = p · fq(x, u, t) − p0Lq(x, u, t) (17.7)

for (x, p, u, p0, t) ∈ T ∗Mq × Uq × R × R such that fq(x, u, t) and Lq(x, u, t)
are defined.

Definition 17.4.2. If S1 and A1-A9 hold, then an adjoint pair along Ξ
is a pair (ψψψ, ψ0) with the property that:

• ψψψ is a ν-tuple (ψ1, . . . , ψν) such that each ψj is a field of covectors along ξj
(that is, ψj is a map from the interval Ij to the cotangent bundle T ∗Mqj ,
with the property that ψj(t) ∈ T ∗

ξj(t)
Mqj for every t ∈ Ij);

• each ψj is absolutely continuous;

• ψ0 ∈ R and ψ0 ≥ 0;

• each ψj satisfies the adjoint equation

ψ̇j(t) = − ∂Hqj

∂x
(ξj(t), ψj(t), ηj(t), ψ0, t) for a.e. t ∈ Ij ; (17.8)

• for each j ∈ {1, . . . , ν − 1}, the switching condition

(−ψj(τj), ψj+1(tj+1), h+
j ,−h−j+1) − ψ0ωj ∈ K⊥

j (17.9)

holds, where ωj = ∇Φqj ,qj+1(∂jΞ), and

h+
j =

{
lims↓0 1

s

∫ τj

τj−sHqj (ξj(t), ψj(t), ηj(t), ψ0, t) dt if the limit exists ,
0 otherwise ,

h−j =

{
lims↓0 1

s

∫ tj+s

tj
Hqj (ξj(t), ψj(t), ηj(t), ψ0, t) dt if the limit exists ,

0 otherwise .
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Definition 17.4.3. If S1 and A1-A9 hold, (ψψψ, ψ0) is an adjoint pair along
Ξ, and j ∈ {1, . . . , ν}, we say that (ψψψ, ψ0) satisfies the weak Hamiltonian
maximization condition on the j-th interval if for every u ∈ Uqj the
inequality

Hqj (ξj(t), ψj(t), u, ψ0, t) ≤ Hqj (ξj(t), ψj(t), ηj(t), ψ0, t) (17.10)

holds for almost all t ∈ Ij. We say that (ψψψ, ψ0) satisfies the strong Hamil-
tonian maximization condition on the j-th interval if the identity

Hqj (ξj(t), ψj(t), ηj(t), ψ0, t)=max{Hqj (ξj(t), ψj(t), u, ψ0, t) : u∈Uqj}
(17.11)

holds for almost all t ∈ Ij. ♦

Notice that the only difference between “weak” and “strong” Hamiltonian
maximization is that weak maximization says that (17.10) holds, for each
u ∈ Uqj , at all points in the complement of a “bad” null set Bj(u) that could
depend on u, whereas strong maximization says that Bj(u) can be chosen
independently of u.

Weak maximization implies strong maximization in several important cases,
such as, for example, (a) when the control sets are separable topological
spaces and the dynamics and Lagrangian are continuous with respect to the
control, and (b) when the dynamics and Lagrangian do not depend explicitly
on time.

Proposition 17.4.1. Let j ∈ {1, . . . , ν}. Assume that either

(1) Uqj is a separable topological space and the maps

Uqj 3 u→ (fqj (ξj(t), u, t), Lqj (ξj(t), u, t)) ∈ TMqj × R

are continuous for almost every t ∈ Ij,

or

(2) there exists a compact subset Xj of the set space Mqj , containing the

set ξj(Ij)
def= {ξj(t) : t ∈ Ij} and such that fqj (x, u, t) and Lqj (x, u, t) are

defined for all (x, u, t) ∈ Xj × Uqj × Ij and do not depend on t.

Then weak Hamiltonian maximization on the j-th interval implies strong
Hamiltonian maximization on the j-th interval.

Proof. If V is a countable dense subset of Uqj , then weak maximization im-
plies that there exists a null subset B of Ij such that (17.10) holds whenever
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t ∈ Ij\B and u ∈ V . If the continuity hypotheses of (1) hold, then (17.10)
holds whenever t ∈ Ij\B, and u ∈ Uqj , so (17.11) holds for all t ∈ Ij\B.

If (2) holds, then for each u ∈ Uqj the map

Xj 3 x→ fqj (x, u, t)
def=Fu(x) ∈ TMqj

is a continuous vector field on Xj , and the scalar function

Xj 3 x→ Lqj (x, u, t)
def=Lu(x) ∈ R

is continuous. Let V F (Xj) denote the space of all continuous vector fields
on Xj , endowed with the topology of uniform convergence. Then V F (Xj) is
metrizable and separable. Clearly, the space C0(Xj ,R) of continuous real-
valued functions on Xj is metric and separable. It follows that the set
W = {(Fu, Lu) : u ∈ Uqj} is a subset of the separable metrizable space
V F (Xj)×C0(Xj ,R). Hence W is a metrizable separable space. So there ex-

ists a countable subset V of Uqj such that the set WV def= {(Fu, Lu) : u ∈ V }
is dense in W . For each u ∈ V , let Bu be a null subset of Ij such that (17.10)
holds for all t ∈ Ij\Bu. Let B = ∪u∈V B

u. Then B is a null set, and (17.10)
holds whenever u ∈ V and t ∈ Ij\B. If u ∈ Uqj is arbitrary, then there exists
a sequence {uk}∞k=1 in Uqj such that Fuk → Fu and Luk → Lu uniformly on
Xj as k → ∞. Then (17.11) holds whenever t ∈ Ij\B. ♦

Definition 17.4.4. If S1 and A1-A9 hold, and (ψψψ, ψ0) is an adjoint pair
along Ξ#, we say that (ψψψ, ψ0) satisfies the transversality condition for E
and ϕ if

(−ψν(b), ψ1(a), h+
ν ,−h−1 ) − ψ0ωe ∈ K⊥

e , (17.12)

where ωe = ∇ϕqν ,q1(∂Ξ), and the numbers h±j are those that were introduced
in Definition 17.4.2. ♦

Definition 17.4.5. If (ψψψ, ψ0) is an adjoint pair along Ξ, we say that (ψψψ, ψ0)
satisfies the nontriviality condition if either ψ0 6= 0 or at least one of the
functions ψj is not identically zero. ♦

We have now completed the list of definitions needed to make the statement
of the maximum principle meaningful, but in order to make the result true
we need additional conditions. In order to state these conditions, we first give
some preliminary definitions. For this purpose, we first define the “augmented
dynamical laws”

f̃q(x, u, t)
def=(fq(x, u, t), Lq(x, u, t)) , (17.13)

so f̃q(x, u, t) ∈ TxMq ×R whenever x ∈Mq, u ∈ Uq, t ∈ R are such that both
fq(x, u, t) and Lq(x, u, t) are defined.
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Definition 17.4.6. We say that Σ is autonomous at location q if the set
of those (x, u) ∈ Mq × Uq for which f̃q(x, u, t) is defined is independent of t
and, for (x, u) in that set, the value of f̃q(x, u, t) is independent of t. ♦

Next, we define various types of “control variations.” In the following dis-
cussion, “d” denotes “restriction.” If U is a set, a, b, c are real numbers such
that a ≤ b ≤ c, and η1 : [a, b] → U , η2 : [b, c] → U are maps, then the
concatenation of η1 and η2 is the map η2 ∗ η1 : [a, c] → U given by

(η2 ∗ η1)(t) =
{
η1(t) if a ≤ t ≤ b ,
η2(t) if b < t ≤ c .

So η2∗η1 is defined only when the domains Iηi of ηi are compact intervals such
that max(Iη1) = min(Iη2). Clearly, concatenation is an associative operation,
in the sense that (η3 ∗ η2) ∗ η1 is defined if and only if η3 ∗ (η2 ∗ η1) is defined,
and in that case (η3 ∗ η2) ∗ η1 = η3 ∗ (η2 ∗ η1).

Definition 17.4.7. Let U be a set, let a, b be real numbers such that a ≤ b,
and let η : [a, b] → U be a map. Then

1. if r ≥ 0, the right r-translation and left r-translation of η by r are
the maps T+

r (η) : [a+ r, b+ r] → U , T−
r (η) : [a− r, b− r] → U , given by

T+
r (η)(t) = η(t− r) for t ∈ [a+ r, b+ r] ,
T−

r (η)(t) = η(t+ r) for t ∈ [a− r, b− r] ;

2. if a ≤ c ≤ b, r ≥ 0, and η′ is a U -valued map whose domain contains the
interval [c, c + r], then the right r-expansion of the map η by η′ at
time c is the map E+

r,c,η′(η) : [a, b+ r] → U given by

E+
r,c,η′(η) = T+

r (ηd[c, b]) ∗ η′d[c, c+ r] ∗ ηd[a, c] ;

if c = b, then we omit the subscript c, so E+
r,η′(η)

def= η′d[b, b+ r] ∗ η ;

3. if a ≤ c ≤ b, r ≥ 0, and η′ is a U -valued map whose domain contains the
interval [c−r, c], then the left r-expansion of the map η by η′ at time
c is the map E−

r,c,η′(η) : [a− r, b] → U given by

E−
r,c,η′(η) = ηd[c, b] ∗ η′d[c− r, c] ∗ T−

r (ηd[a, c]) ;

if c = a, then we omit the subscript c, so E−
r,η′(η)

def= η∗η′d[a−r, a]∗ηd[a, c] ;
3. if a ≤ c1 ≤ c2 ≤ b, then

a. the right shortening of η at [c1, c2] is the map

S+
c1,c2

(η) = ηd[c2, b] ∗ T+
c2−c1

(ηd[a, c1]) ;
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b. the left shortening of η at [c1, c2] is the map

S−
c1,c2

(η) = T−
c2−c1

(ηd[c2, b]) ∗ ηd[a, c1] ;

4. if A is a subset of [a, b], and θ is a U -valued map whose domain contains
A, then the replacement of η by θ on A is the map RA,θ(η) : [a, b] → U
given by

RA,θ(η) =
{
η(t) if t ∈ [a, b]\A ,
θ(t) if t ∈ A .

♦

We let µ(U) denote the set of all U -valued maps defined on compact intervals,
so

µ(U) def=
⋃

−∞<a≤b<∞
U [a,b] , (17.14)

where U [a,b] is the set of all mappings from [a, b] to U . Then the transforma-
tions T+

r , T−
r , RA,θ, S+

c1,c2
, S−

c1,c2
, E+

r,c,η′ , E−
r,c,η′ , E+

r,η′ , E−
r,η′ , are partially

defined maps from µ(U) to µ(U). (For example, RA,θ(η) is defined if and
only if A ⊂ Domain(η) ∩ Domain(θ).) So we can define iterates of these
maps. For example, if A = (A1, . . . , Am) is an m-tuple of subsets of R,
and u = (u1, . . . , um) is an m-tuple of members of U (regarded as constant
U -valued maps) then RA,u is the composite map

RA,u
def=RA1,u1 ◦RA2,u2 ◦ . . . ◦RAm,um . (17.15)

Similarly, Eσ
r,c,θ and Eσ

r,θ are the composite maps

Eσ
r,c,θ

def= Eσ1
r1,c1,θ1

◦ Eσ2
r2,c2,θ2

◦ . . . ◦ Eσm

rm,cm,θm
,

Eσ
r,θ

def= Eσ1
r1,θ1

◦ Eσ2
r2,θ2

◦ . . . ◦ Eσm

rm,θm
,

if r = (r1, . . . , rm) and c = (c1, . . . , cm) are m-tuples of nonnegative real
numbers, θ = (θ1, . . . , θm) is an m-tuple of members of µ(U), and σ =
(σ1, . . . , σm) is a sequence of members of {−,+}.

Definition 17.4.8. We say that Uqj is a fixed-time measurable weak
variational neighborhood of the control ηj if

(FTMVN) For every positive integer m and every m-tuple u = (u1, . . . , um)
of members of Uqj there exists a positive number δ such that,
whenever A = (A1, . . . , Am) is an m-tuple of pairwise disjoint
measurable subsets of Ij for which meas(A1 ∪ . . . ∪ Am) ≤ δ, it
follows that the function RA,u(η) belongs to Uqj . ♦
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Definition 17.4.9. We say that Uqj is a weak variable-time measurable
variational neighborhood of the control ηj if

(WVTMVN) For every positive integer m and every triple (u,v,w) of m-
tuples u = (u1, . . . , um), v = (v1, . . . , vm), w = (w1, . . . , wm)
of members of Uqj there exists a positive number δ with the
property that, if α, β, r1, . . . , rm, s1, . . . , sm are nonnegative real
numbers whose sum does not exceed δ, and A = (A1, . . . , Am)
is an arbitrary m-tuple of pairwise disjoint measurable subsets
of [tj + α, τj − β] such that meas(A1 ∪ . . . ∪ Am) ≤ δ, then the
function

Vr,v,α,s,w,β,A,u(η) def= E−
r,v(E+

s,w(S+
tj ,tj+α(S−

τj−β,τj
(RA,u(η))))) (17.16)

where r = (r1, . . . , rm) and s = (s1, . . . , sm)) belongs to Uqj .♦

Definition 17.4.10. We say that Uqj is a strong variable-time measur-
able variational neighborhood of the control ηj if

(SVTMVN) For every positive integer m and every m-tuple u = (u1, . . . , um)
of members of Uqj there exists a positive number δ with the
property that, if c = (c1, . . . , cm), d = (d1, . . . , dm) are m-
tuples of members of Ij such that tj < c1 < . . . < cm < τj ,
tj < d1 < . . . < dm < τj, and ci 6= dk for all i, k, (σ, σ′) is a
pair of sequences σ = (σ1, . . . , σm), σ′ = (σ′

1, . . . , σ
′
m) of mem-

bers of {−,+}, α, β, r1, . . . , rm, s1, . . . , sm are nonnegative real
numbers such that

α+ β + r1 + · · · + rm + s1 + · · · + sm ≤ δ ,

and A = (A1, . . . , Am) is an arbitrary m-tuple of pairwise dis-
joint measurable subsets of the interval [tj + α, τj − β] satisfying
meas(A1 ∪ . . . ∪Am) ≤ δ, then the function

Wr,d,σ′,s,c,r,σ,A,u(η) def= Eσ′
s,d,η(S

σ
c,r(RA,u(η))) (17.17)

where r = (r1, . . . , rm) and s = (s1, . . . , sm)) belongs to Uqj .♦

Definition 17.4.11. For each of the three types (fixed-time, weak variable-
time, and strong variable-time) of “measurable variational neighborhoods” in-
troduced above, the corresponding notion of an interval variational neigh-
borhood is defined in exactly the same way, except that the sets Ak are re-
quired to be intervals rather than general measurable subsets. ♦
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Thus, we have a total of six different types of “variational neighborhoods” of
a control η.

Remark 17.4.2. Our definitions of the various types of variational neighbor-
hoods say, in all six cases, that Uqj is a “variational neighborhood” of ηj if it
contains all the controls obtained from ηj by making “sufficiently small” vari-
ations in an appropriate class V . Where the six definitions differ is, naturally,
in the choice of V . The fixed-time variational neighborhood corresponds to
choosing V to consist of substitutions of finitely many constant controls for
the control η, without changing the total time interval. Weak variable-time
variational neighborhoods are obtained when, in addition, we allow shorten-
ings at the endpoints and expansions by constant controls at the endpoints.
Finally, strong variable-time variational neighborhoods arise when we allow
shortenings and expansions by constant controls not only at the endpoints but
at all points of Ij .

Those readers who prefer neighborhoods to be derived from a topology can
easily verify that for each of our six definitions of “neighborhood,”
if we define an “open subset” of µ(U) to be a subset which is a
neighborhood of each of its points, then the set of open subsets
constitutes a topology, and the corresponding notion of neighbor-
hood is exactly the one of the original definition. ♦

Definition 17.4.12. If q ∈ Q, J is an interval, η : J →Uq is a function,
and x ∈Mq, we say that (x, t) is a forward regular point for η if

(1) there exists a positive δ̄ such that f̃q(x′, η(s), s) is defined whenever x′

belongs to Mq, dist(x′, x) ≤ δ̄, and t ≤ s ≤ t+δ̄, and depends continuously
on x′ and measurably on s,

and

(2) if ση,q
x,t,δ is the modulus of continuity defined by

ση,q
x,t,δ(s)

def= sup{‖f̃q(x′, η(s), s)−f̃q(x, η(t), t)‖ : x′∈Mq, d(x′, x)≤δ} ,
(17.18)

then the number

ν(δ) def=
1
δ

∫ t+δ

t

ση,q
x,t,δ(s) ds (17.19)

goes to zero as δ ↓ 0. ♦
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Remark 17.4.3. In Definition 17.4.12, “dist” is the distance function corre-
sponding to any Riemannian metric g on a neighborhood of x inMq. It is easy
to see that the forward regularity property does not depend on the choice of
g. ♦

“Backward regularity” is defined in the same way, except that in (1) the
condition “t ≤ s ≤ t + δ̄” is replaced by “t − δ̄ ≤ s ≤ t,” and in (2) the
integral of (17.19) is taken over the interval [t−δ, t] rather than over [t, t+δ].

We are now ready to state our technical conditions. In the statements, we
will use

Ỹj(t)
def=

∂f̃q#
j

∂x
(ξ#j (t), η#

j (t), t) . (17.20)

We recall that the existence of the right-hand side of (17.20) for almost every
t ∈ Ij is guaranteed by A7.

A10. For each j ∈ {1, . . . , ν#} and each u ∈ Uq#
j

1. f̃q#
j

(x, u, t) is defined for all (x, t) belonging to some neighbor-

hood Nj(u) in Mq#
j
× R of the graph G(ξ#j ) (cf. (17.5);

2. for each t ∈ R, the map x→ f̃q#
j

(x, u, t) is continuous on the set
{x : (x, t) ∈ Nj(u)},

3. for each x ∈Mq#
j

, the map t → f̃q#
j

(x, u, t) is Lebesgue measur-
able on the set {t : (x, t) ∈ Nj(u)}.

A11. The maps I#
j 3 t → f̃q#

j
(x, η#

j (t), t) are Lebesgue measurable for

every j ∈ {1, . . . ν#}, x ∈Mq#
j

.

A12. For every j ∈ {1, . . . , ν#}, the map Ỹj is Lebesgue integrable on I#
j .

A13. Φq,q′ and ϕq,q′ are finite-valued and continuous on the sets Sq,q′ ,
Eq,q′ , for all (q, q′) ∈ Q×Q.

A14. The differentiability at the point x = ξ#j (t) of the augmented vector
fields Mq#

j
3 x → f̃q#

j
(x, η#

j (t), t) has the following Carathéodory-

type uniformity: there exist measurable functions kδ
j : I#

j → [0,+∞]
such that

lim
δ↓0

∫
I#

j

kδ
j (t) dt = 0 ,

having the property that, for almost all t ∈ I#
j , the inequality
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∥∥∥f̃q#
j

(x, η#
j (t), t) − f̃q#

j
(ξ#j (t), η#

j (t), t) − Ỹj(t) · (x− ξ#(t))
∥∥∥

≤ kδ
j (t)‖x− ξ#j (t)‖ (17.21)

holds whenever ‖x− ξ#j (t)‖ ≤ δ.

A15. For each j ∈ {1, . . . , ν#}, either

I. one of the following two conditions holds:

I.1. Uq#
j

is a weak variable-time measurable variational neigh-

borhood of η#
j , (ξ#j (t#j ), t#j ) is a backward regular point for

all constant controls and a forward regular point for η#
j , and

(ξ#j (τ#
j ), τ#

j ) is forward regular for all constant controls and
backward regular for η#

j .

I.2. Uq#
j

is a fixed-time measurable variational neighborhood of

η#
j , the switching set S#

j is a subset of the Cartesian product
M#

j ×M#
j+1×{τ#

j }×R, and the switching set S#
j−1 is a subset

of M#
j−1 ×M#

j × R × {t#j }.
or

II. the following two conditions hold:

a. the “constant control augmented vector fields” satisfy inte-
gral bounds

‖f̃q#
j

(x, u, t)‖ ≤ ku,j(t) for all (x, u, t) ∈ Nj(u) , (17.22)

where each ku,j is a nonnegative Lebesgue integrable function
on R,

b. one of conditions I.1, I.2 holds, with “measurable” replaced
by “interval,”

or

III. Σ is autonomous at location q#j , and Uq#
j

is a strong variable-

time interval variational neighborhood of η#
j .

Theorem 17.4.1. If S1 and A5-A15 hold, then the maximum principle is
true. Moreover, the adjoint vector can be chosen in such a way that, in addi-
tion, the Hamiltonian function t → Hq#

j
(ξ#j (t), ψj(t), η

#
j (t), ψ0, t) is almost

everywhere constant on I#
j for every j for which A15.III holds. ♦
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Theorem 17.4.1 is stronger than the classical versions of the maximum prin-
ciple given, e.g., in Pontryagin et al. [3] and Berkovitz [1], because it does not
require the maps to be of class C1, or even Lipschitz continuous, and only
assumes that they are differentiable along the reference trajectory.

17.5 Outline of the proof

For n ∈ N, we use Rn , Rn , Rn×n to denote, respectively, the spaces of n-
dimensional real column vectors, n-dimensional real row vectors, and n × n
real matrices.

For simplicity, we will assume that the state spaces Mq are open subsets of
Euclidean spaces Rnq .

Remark 17.5.1. The proof for the general manifold case is identical, except
that more care has to be exercised to define intrinsically various objects such
as ∂fq

∂x . Alternatively, one could prove the theorem on manifolds by an extra
“hybridization” of our problem, in which each curve ξj is covered by domains
Ωk

j of coordinate patches (Ωk
j , κ

k
j ), and these coordinate patches are treated

as new locations, with state spaces κk
j (Ωk

j ) ⊆ R
dim Mj , while the changes of

coordinates are treated as switchings. ♦

Then the vector fields fq are Rnq -valued maps, and the differentials ∂fq

∂x are
R

nq ×nq -valued. We let nj = nqj , and define

Yj(t) =
∂fqj

∂x
(ξj(t), ηj(t), t) , yj(t) =

∂Lqj

∂x
(ξj(t), ηj(t), t) , (17.23)

so Yj and yj are integrable functions, with values in the spaces Rnj ×nj and
Rnj , respectively.

The proof of Theorem 17.4.1 is carried out by means of “needle variations.”
Our variations will be set-valued maps, because they are constructed by asso-
ciating to each value of the variation parameter “the solution” of a certain ini-
tial value problem with a continuous but non-Lipschitz right-hand side. Since
the solution need not be unique, the object associated to the parameter value
will in fact be a set of curves rather than a single curve. We introduce the
following notation: “F : A −→−→ B” means “F is a set-valued map from A to
B.” If F : A −→−→ B, then the graph of F is the set {(a, b) : a ∈ A, b ∈ F (a)}.
(Often, one defines a set-valued map from A to B to be a subset of A × B.
In that case, the graph of F is just F .)

We first remark that for every j ∈ {1, . . . , ν} there exists an integrable func-
tion k̂j on Ij such that the integral bound
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‖f̃qj (x, ηj(t), t)‖ ≤ k̂j(t) for all (x, t) ∈ Nj (17.24)

holds for some neighborhood Nj of the graph of ξj in Mqj × Ij. (This follows
from A12, A14, the absolute continuity of ξj , and the integrability of the
function t→ Lqj (ξj(t), ηj(t), t).)

We will begin by doing the proof for the case corresponding to Part II of
condition A15, assuming the the “interval” analogue of I.2 holds. We will
then discuss how to modify the proof to take care of the other cases.

So we assume that the integral bounds of A15.II.a hold for all j, so that for
every j and every u ∈ Uqj there exists an integrable function ku,j on R such
that (17.22) holds. We also assume that every Uqj is a fixed-time interval
variational neighborhood of ηj , and that each switching set Sj is contained
in the product Mj ×Mj+1×{τj}×{tj+1}. (As explained before, this includes
in particular the set Sν , which is defined to be Eqν ,q1 . Recall that Mν+1 = M1

and tν+1 = t1.) It follows that Sj = S0
j ×{τj}×{tj+1} for some subset S0

j of
Mj ×Mj+1.

Fix a positive integer m and then choose, for each index j ∈ {1, . . . , ν}, an
m-tuple uj = (u1

j , u
2
j , . . . , u

m
j ) ∈ Um

qj
of control values. Let

Nj(u) = Nj(u1
j) ∩ . . . ∩ Nj(um

j ) .

Then the Scorza-Dragoni theorem together with the integral bounds implies
that for each j there exists a null subset Bj(u) of R such that if (x, t) ∈ Nj(u)
and t /∈ Bj(u) then (x, t) is a forward and backward regular point for ηj and
for each of the constant controls u1

j , . . . , u
m
j .

Pick, for each j, m distinct points s1j , . . . , s
m
j of Ij , not belonging to Bj(u),

and such that s1j < s2j < . . . < sm
j < τj . Fix a small positive real number ε̄.

Let E = ([0, ε̄]m)ν , so E is the set of all ν-tuples εεε = (εεε1, . . . , εεεν) of m-tuples
εεεj = (ε1j , . . . , ε

m
j ) of numbers εk

j such that 0 ≤ εk
j ≤ ε̄ for all j, k. Then for

each εεε ∈ E we can construct the modified control

ζu,s,εεε def= (q, I, ηηηu,s,εεε) ,

having the same switching strategy q and the same sequence I of intervals
as ζ, such that

ηηηu,s,εεε = (ηu,s,εεε
1 , . . . , ηu,s,εεε

ν ) ,

ηu,s,εεε
j (t) =

{
ηj(t) if t ∈ Ij\(∪m

k=1[s
k
j , s

k
j + εk

j ]) ,
uk

j if t ∈ [sk
j , s

k
j + εk

j ] .

Fix small balls D1, . . . , Dm in the tangent spaces Tξ1(t1)M1, . . . , Tξν(tν)Mν ,
centered at 0, and smooth maps ∆j : Dj →Mj such that ∆j(0) = ξj(tj) and
the differential of ∆j at 0 is the identity map of Tξj(tj)Mj.
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Let P = E × D. For each (εεε,v) ∈ P let ξu,s(εεε,v) be the set of all ν-tuples
ξ̃ = (ξ̃1, . . . , ξ̃ν) such that each ξ̃j is an absolutely continuous curve in Mj,
defined on Ij , which is a solution of the initial value problem{

ẋ = fqj (x, η
u,s,εεε
j (t), t) for a.e. t ∈ Ij ,

x(tj) = ∆j(vj) .
(17.25)

Notice that in general ξu,s(εεε,v) will not consist of a single element, because
the right-hand of the differential equation of (17.25) is just continuous with
respect to x, so uniqueness of solutions of (17.25) is not guaranteed. On the
other hand, global existence of solutions on Ij follows— if ε̄ and the balls Dj

are small enough—because (a) the differential equation of (17.25) has local
solutions —thanks to the continuity of the right-hand side with respect to
x, the measurability with respect to t, and the integral bounds (17.22) and
(17.24), and (b) a solution of (17.25), as long as it exists, will stay in any
prespecified neighborhood of the graph of ξj —provided, once again, that ε̄
and the Dj are small enough—due to A12 and A14 (which imply bounds

‖f̃qj(x, ηj(t), t) − f̃qj (ξj(t), ηj(t), t)‖ ≤ κj(t)‖x− ξj(t)‖ ,
with κj integrable, valid whenever ‖x − ξj(t)‖ ≤ δ and δ is small enough),
and Gronwall’s inequality.

We let Vu,s be the set-valued map P 3 (εεε,v) → ξu,s(εεε,v). It then follows by
a standard application of the Ascoli-Arzelà theorem that the graph of Vu,s—
i.e., the set of all pairs ((εεε,v), ξ̃) such that ξ̃ ∈ ξu,s(εεε,v)—is a compact subset
of the product P×C0(I,M), where C0(I,M)def=C0(I1,M1)×. . .×C0(Iν ,Mν).
So Vu,s is an upper semicontinuous set-valued map from P to C0(I,M), with
nonempty compact values.

To the variation Vu,s we associate the set-valued “endpoint-cost map”

ECu,s : P −→−→ M0
1 × . . .×M0

ν × R

given by

ECu,s(εεε,v) =
{(
∂∂∂0ξ̃, CL(ξ̃, ζu,s,εεε)

)
: ξ̃ ∈ ξu,s(εεε,v)

}
, (17.26)

where

∂∂∂0ξ̃
def= (∂0

1 ξ̃, ∂
0
2 ξ̃, . . . , ∂

0
ν−1ξ̃, ∂

0
ν ξ̃) ,

M0
j

def= Mj ×Mj+1 ,

∂0
j ξ̃

def= (ξ̃j(τj), ξ̃j+1(tj)) .

Then ECu,s is an upper semicontinuous set-valued map from P to the product
M0

1 × . . .M0
ν × R, with nonempty compact values.



346 17. A nonsmooth hybrid maximum principle

Moreover, the maps Vu,s and ECu,s are “regular” in the sense of [4], [5], or [6].
(This follows because the vector fields that occur in (17.25) can be regularized,
i.e., approximated by smooth vector fields, for which the corresponding initial
value problems have unique solutions. The variation maps Vu,s

k and endpoint-
cost maps ECu,s

k arising from these regularized vector fields are then single-
valued and continuous, and approximate the set-valued maps Vu,s, ECu,s in
the “graph convergence” sense used in [4] to define regularity.)

The map ECu,s is differentiable at 0, and its differential DECu,s(0) can be
explicitly computed. The result is, of course, a linear map

DECu,s(0) : (Rm )ν×Tξ1(t1)M1×. . .×Tξν(tν)Mν → T∂0
1ΞM0

1×. . .×T∂0
νΞM0

ν×R ,
and is given by the formula

DECu,s(0)(εεε,v) = ((w1, v2), (w2, v3), . . . , (wν , v1), α(εεε,v)) , (17.27)

where

α(εεε,v) =
ν∑

j=1

∫ τj

tj

yj(t) ·DΘj
t,tj

(ξj(tj)) · vj dt

+
ν∑

j=1

m∑
k=1

εk
j

(
λk

j +
∫ τj

sk
j

yj(t) ·DΘj

t,sk
j

(ξj(sk
j )) · w̃k

j dt
)
,

wj = DΘj
τj ,tj

(ξj(tj)) · vj +
m∑

k=1

εk
jDΘ

j

τj ,sk
j

(ξj(sk
j )) · w̃k

j , (17.28)

w̃k
j = fqj (ξj(s

k
j ), uk

j , s
k
j ) − fqj (ξj(s

k
j ), ηj(sk

j ), sk
j ) , (17.29)

λk
j = Lqj (ξj(s

k
j ), uk

j , s
k
j ) − Lqj (ξj(s

k
j ), ηj(sk

j ), sk
j ) , (17.30)

and {Θj
t,s}s,t∈Ij is the family of flow maps corresponding to the reference

vector field (x, t) → fqj (x, ηj(t), t). (Each differential DΘj
t,s(ξj(s)) is then

a linear map from Tξj(s)Mj to Tξj(t)Mj . The flow maps Θj
t,s are of course

set-valued, but our technical hypotheses imply that Θj
t,s is differentiable at

ξj(s) in the ordinary sense.)

Let Ωj(·, ·) denote the fundamental matrix solution of the linear time-varying
differential equation Ẋ = Yj(t) ·X , so Ij × Ij 3 (t, s) → Ωj(t, s) ∈ R

nj ×nj is
a continuous map having the property that

Ωj(t, s) = identityRn
j

+
∫ t

s

Yj(r) ·Ωj(r, s) dr . (17.31)
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Then

α(εεε,v) =
ν∑

j=1

∫ τj

tj

yj(t) ·Ωj(t, tj) · vj dt

+
ν∑

j=1

m∑
k=1

εk
j

(
λk

j +
∫ τj

sk
j

yj(t) ·Ωj(t, sk
j ) · w̃k

j dt
)
,

wj = Ωj(τj , tj) · vj +
m∑

k=1

εk
jΩj(τj , sk

j ) · w̃k
j .

Every pair (ξ̃, ζu,s,εεε), for ξ̃ ∈ ξu,s(εεε,v), is a pretrajectory-control pair of Σ.
Moreover, (ξ̃, ζu,s,εεε) belongs to TCP (Σ; E) if and only if

∂0
j ξ̃ ∈ S0

j for j = 1, . . . , ν . (17.32)

If (17.32) holds, then it is clear that the total cost C(ξ̃, ζu,s,εεε) is equal to the
sum CL(ξ̃, ζu,s,εεε) + c(ξ̃, ζu,s,εεε), where

c(ξ̃, ζu,s,εεε) =
ν∑

j=1

Φ0
j (∂

0
j ξ̃) , (17.33)

and Φ0
j is the function S0

j 3 (x, x′) → Φj(x, x′, τj , tj+1).

The assumption that Ξ is optimal implies that

C(ξ̃, ζu,s,εεε) ≥ C(Ξ) whenever (17.32) holds . (17.34)

Now, fix smooth functions σj : M0
j → R such that σj(∂0

jΞ) = 0 and
σj(x, x′) > 0 whenever (x, x′) 6= ∂0

jΞ. Then let G be the set of all points
((x1, x

′
1), . . . , (xν , x

′
ν), r) of M0

1 × . . . × M0
ν × R having the property that

(xj , x
′
j) ∈ S0

j for j = 1, . . . , ν and

r ≤ C(Ξ) −
ν∑

j=1

Φ0
j(xj , x

′
j) −

ν∑
j=1

σj(xj , x
′
j) .

Then

ECu,s(P) ∩ G = {G∗ } , (17.35)

where

G∗
def= ( ∂0

1Ξ , . . . , ∂
0
νΞ , CL(Ξ) ) . (17.36)

We now determine a Boltyanskii approximating cone K for the set G at G∗.
For this purpose, we first observe that each cone Kj must be equal to the
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product K0
j ×{0}×{0}, where K0

j is a closed convex cone in T∂0
j ΞM0

j which
is a Boltyanskii approximating cone to S0

j at ∂0
jΞ. (Proof: let Vj be a neigh-

borhood of 0 in the tangent space T∂jΞMj , and let αj : Vj ∩Kj → Sj be a
continuous map such that

αj(z) = ∂jΞ + z + o(‖z‖) as z →Kj 0 .

Write αj(z) = (α1
j (z), α

2
j(z), α

3
j(z), α

4
j (z)), so α1

j (z) ∈ Mj , α2
j (z) ∈ Mj+1,

α3
j (z) ∈ R, and α4

j (z) ∈ R. Then α3
j(z) ≡ τj and α4

j (z) ≡ tj+1. If we let
z = (z1, z2, z3, z4), we see that α3

j(z) = α3
j (0), while on the other hand

α3
j (z) = α3

j(0) + z3 + o(‖z‖). Therefore α3
j (ρz) = α3

j (0) + ρz3 + o(ρ) as
ρ ↓ 0, and then ρz3 = o(ρ), so z3 = 0. A similar argument proves that
z4 = 0. So Kj = K0

j × {0} × {0}, as stated. Moreover, if we define a map
βj by letting βj(w) = (α1

j (w, 0, 0), α2
j (w, 0, 0)), then β is a continuous map

from a neighborhood of 0 in K0
j to S0

j , and βj(w) = ∂0
jΞ + w + o(‖w‖) as

w →K0
j

0.) We then define K to be the set of all ((z1, z′1), . . . , (zν , z
′
ν), r) such

that (zj , z
′
j) ∈ K0

j for j = 1, . . . , ν, and

r ≤ −
ν∑

j=1

∇Φ0
j(∂

0
jΞ) · (zj , z

′
j) . (17.37)

Then K is a closed convex cone in TG∗(M0
1 × . . .×M0

ν × R), and it is easy
to see that K is a Boltyanskii approximating cone to G at G∗. Moreover, K is
not a linear subspace of TG∗(M0

1 × . . .×M0
ν × R), because (0,−1) ∈ K but

(0, 1) /∈ K.

It then follows from the general separation theorem of [4] that there exists a
nonzero linear functional Ψ on TG∗(M0

1× . . .×M0
ν ×R) which is nonnegative

on K and nonpositive on K̂, where

K̂ def= DECu,s(0)
(
([0,∞ [ m)ν × Tξ1(t1)M1 × . . .× Tξν(tν)Mν

)
. (17.38)

Write

Ψ = (ψ+
1 , ψ

−
2 , ψ

+
2 , ψ

−
3 , . . . , ψ

+
ν , ψ

−
1 ,−ψ0) , (17.39)

where each ψ+
j is a linear functional on Tξj(τj)Mj , each ψ−

j is a linear func-
tional on Tξj(tj)Mj, and ψ0 ∈ R. Since the vector (0,−1) belongs to K, the
fact that Ψ is nonnegative on K implies that ψ0 ≥ 0. Next, fix a j and a
vector v ∈ Tξj(tj)Mj , and let εεε = 0, v = (v1, . . . , vν), where v` = 0 if ` 6= j,
vj = v. With this choice of εεε and v, the vector DECu,s(0)(εεε,v) is equal to
((w1, v2), . . . , (wν , v1), r), where the v` and w` vanish when ` 6= j, vj = v,
wj = Ωj(τj , tj) · v, and r =

∫ τj

tj
yj(t) · Ωj(t, tj) · v dt. The fact that Ψ is

nonpositive on K̂ implies that
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ψ−
j · v + ψ+

j ·Ωj(τj , tj) · v − ψ0

∫ τj

tj

yj(t) ·Ωj(t, tj) · v dt ≤ 0 . (17.40)

Since this is true for all v in the linear space Tξj(tj)Mj, it follows that

ψ−
j + ψ+

j ·Ωj(τj , tj) − ψ0

∫ τj

tj

yj(t) ·Ωj(t, tj) dt = 0 . (17.41)

Let ψj be the unique solution of the adjoint equation (17.8) that satisfies the
terminal condition ψj(τj) = ψ+

j . Then ψ̇j(t) = −ψj(t) ·Yj(t)+ψ0 ·yj(t), from
which it follows that

ψj(t) = ψ+
j ·Ωj(τj , t) − ψ0

∫ τj

t

yj(s) ·Ωj(s, t) ds . (17.42)

(Proof: Ωj(t, s) ·Ωj(s, t) = identity, so

∂Ωj(t, s)
∂s

·Ωj(s, t) +Ωj(t, s) · ∂Ωj(s, t)
∂s

= 0 ,

and then

∂Ωj(t, s)
∂s

·Ωj(s, t) +Ωj(t, s) · Yj(s) ·Ωj(s, t) = 0 ,

so
∂Ωj(t, s)

∂s
= −Ωj(t, s) · Yj(s) .

Using this, if we define ψ∗
j (t) to be the right-hand side of (17.42), we see that

ψ̇∗
j (t) = −ψ∗

j (t) · Yj(t) + ψ0 · yj(t) .

Since ψ∗
j (τj) = ψ+

j = ψj(τj), the conclusion follows.)

The identities (17.41) and (17.42) imply that

ψ−
j = −ψj(tj) . (17.43)

So we have shown that (17.43) holds for all j.

Now fix j, pick a point (z, z′) in K0
j , and define z = ((z1, z′1), . . . , (zν , z

′
ν), r),

where z` = 0 and z′` = 0 if ` 6= j, zj = z, z′j = z′, and r = −∇Φ0
j(∂

0
jΞ)·(z, z′).

Then z clearly belongs to K, so the nonnegativity of Ψ on K implies that
ψ+

j · z + ψ−
j+1 · z′ − ψ0r ≥ 0, that is,

(
(ψj(τj),−ψj+1(tj+1)) + ψ0∇Φ0

j (∂
0
jΞ)

)
· (z, z′) ≥ 0 ,

or, equivalently,
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(
(−ψj(τj), ψj+1(tj+1)) − ψ0∇Φ0

j (∂
0
jΞ)

)
· (z, z′) ≤ 0 .

Since this is true for all (z, z′) ∈ K0
j , and Kj = K0

j ×{0}×{0}, the conclusion
that

(−ψj(τj), ψj+1(tj+1), h+
j ,−h−j+1) − ψ0∇Φj(∂jΞ) ∈ K⊥

j

follows trivially. For j = 1, . . . , ν − 1, this yields the switching conditions,
and for j = ν this is the transversality condition.

Next, let us fix j, and also fix k ∈ {1, . . . ,m}. Choose εεε = (εεε1, . . . , εεεν),
where we let εεε` = 0 if ` 6= j, and εεεj = (ε1j , . . . , ε

m
j ), where εi

j = 0 if
i 6= k, and εk

j = 1. Also, choose v = 0. Then DECu,s(0)(εεε,v) is equal to
((w1, 0), (w2, 0), . . . , (wν , 0), α(εεε, 0)), where

wi = 0 if i 6= j ,

wj = Ωj(τj , sk
j ) · w̃k

j ,

α(εεε, 0) = λk
j +

∫ τj

sk
j

yj(t) ·Ωj(t, sk
j ) · w̃k

j dt .

The nonpositivity of Ψ on K̂ then implies that ψ+
j · wj − ψ0α(εεε, 0) ≤ 0, i.e.,

that

ψ+
j ·Ωj(τj , sk

j ) · w̃k
j − ψ0

∫ τj

sk
j

yj(t) ·Ωj(t, sk
j ) · w̃k

j dt− ψ0λ
k
j ≤ 0 ,

that is

ψj(sk
j ) · w̃k

j − ψ0λ
k
j ≤ 0 . (17.44)

In view of (17.29) and (17.30), this says that

ψj(sk
j ) · fqj (ξj(s

k
j ), uk

j , s
k
j ) − ψ0Lqj (ξj(s

k
j ), uk

j , s
k
j )

≤ ψj(sk
j ) · fqj (ξj(s

k
j ), ηj(sk

j ), sk
j ) ,−ψ0Lqj (ξj(s

k
j ), ηj(sk

j ), sk
j ) ,

i.e., that

Hqj (ξj(s
k
j ), ψj(sk

j ), uk
j , ψ0, s

k
j ) ≤ Hqj (ξj(s

k
j ), ψj(sk

j ), ηj(sk
j ), ψ0, s

k
j ) .

(17.45)

The inequality (17.45) is precisely the Hamiltonian maximization condition,
except that we have only established it for finitely many times and finitely
many control values. The complete Hamiltonian maximization condition then
follows by a standard compactness argument that we omit.

This completes the proof under the special assumptions described earlier in
this section. We now outline how to prove the result in the general case,
still assuming that A15.II.a holds. Assume that, for a particular j, Uqj is a
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weak variable-time interval variational neighborhood of ηj , and the regularity
conditions of A15.I.1 are satisfied. This implies, to begin with, that the limits
that occur in the right-hand sides of the definitions of h±j (cf. Def. 17.4.2)
exist, and are given by

h+
j = Hqj (ξj(τj), ψj(τj), ηj(τj), ψ0, τj) ,

h−j = Hqj (ξj(tj), ψj(tj), ηj(tj), ψ0, tj) .

In this case, we can make some extra variations in addition to those consid-
ered in the previous argument. Specifically, we can do “shortenings” at the
endpoints tj , τj (that is, we can restrict ηj to a subinterval [tj + α, τj − β],
with α ≥ 0 and β ≥ 0. In the definition of the endpoint-cost map given in
(17.26), we substitute ∂j ξ̃ for ∂0

j ξ̃, that is, we add two extra time variables,
corresponding to variations of tj and of τj . Corresponding to these variables,
the functional Ψ will now have two new components ψ̂−

j , ψ̂+
j , and the cone K̂

will have two new coordinates δtj , δτj . The linear part of the effect on ECu,s

of a “shortening at the right endpoint” will involve −βfqj (ξj(τj), ηj(τj), τj)
(variation of ξj(tj)), −β (variation of τj), and −βLqj (ξj(τj), ηj(τj), τj) (vari-
ation of the Lagrangian cost). This will give the inequality

−ψ+
j · fqj (ξj(τj), ηj(τj), τj) − ψ̂+

j + ψ0Lqj (ξj(τj), ηj(τj), τj) ≤ 0 ,

that is,
Hqj (ξj(τj), ψj(τj), ηj(τj), ψ0, τj) ≥ −ψ̂+

j .

On the other hand, the linear part of the effect on ECu,s of an “expansion at
the right endpoint” using the control value u will involve βfqj (ξj(τj), u, τj)
(variation of ξj(tj)), β (variation of τj), and βLqj (ξj(τj), u, τj) (variation of
the Lagrangian cost). This will give the inequality

ψ+
j · fqj (ξj(τj), u, τj) + ψ̂+

j − ψ0Lqj (ξj(τj), u, τj) ≤ 0 ,

that is,
Hqj (ξj(τj), ψj(τj), u, ψ0, τj) ≤ −ψ̂+

j .

Since this happens for all values of u, we can specialize to u = ηj(τj) and
conclude that

ψ̂+
j = −Hqj (ξj(τj), ψj(τj), ηj(τj), ψ0, τj) = −h+

j .

A similar argument yields the identity

ψ̂−
j = Hqj (ξj(tj), ψj(tj), ηj(tj), ψ0, tj) = h−j .

Now, if the same conditions are also satisfied for j + 1, then we use the cone
Kj instead of K0

j . If (z, z′, δτj , δtj+1) belongs to Kj , we will get a member
(z, z′, δτj , δtj+1, r) of K by choosing r = −∇Φj(∂jΞ).(z, z′, δτj , δtj+1). This
will then yield the inequality
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ψ+
j · z + ψ−

j+1 · z′ + ψ̂+
j δτj + ψ̂−

j+1δtj+1 − ψ0r ≥ 0 ,

that is,

0 ≤ ψj(τj) · z − ψj+1(tj+1) · z′ − h+
j δτj + h−j+1δtj+1

+ψ0∇Φj(∂jΞ).(z, z′, δτj , δtj+1)

which implies

(−ψj(τj), ψj+1(tj), h+
j ,−h−j+1) − ψ0∇Φj(∂jΞ) ∈ K⊥

j , (17.46)

as desired.

The intermediate case, when the interval analogue of A15.I.2 holds for j+ 1,
is easily handled, and we omit the argument.

Finally, in the autonomous case we observe, first of all, that the integral
bounds are automatically satisfied. In this case, one can make shortening
and expansion variations at almost all times. Once again, these variations
change the times tj and τj , so Ψ has corresponding components ψ̂−

j , ψ̂+
j . The

identities
−ψ̂+

j = Hqj (ξj(t), ψj(t), ηj(t), ψ0) = ψ̂−
j

(where we have explicitly spelled out the fact that in Hqj there is no direct
dependence on t) now follow for almost all t ∈ Ij . This clearly implies that
the function Ij 3 t → Hqj (ξj(t), ψj(t), ηj(t), ψ0) is a. e. constant. It then
follows, once again, that the limits occurring in the definition of h±j exist,
and in addition

Hqj (ξj(t), ψj(t), ηj(t), ψ0) = h+
j = −h−j

for almost all t. The switching condition (17.46) is now established exactly
as before.

To conclude, we sketch how to remove the assumption on the integral bounds,
if the “measurable” conditions A15.I.1 or A15.I.2 hold for a particular j,
instead of their weaker “interval” counterparts A15.II.1, A15.II.2.

In this case, we replace the vector field system fqj and the corresponding
Lagrangian by a new system f̂qj and a new Lagrangian L̂qj , with a different
control space Ûqj . We take Ûqj to be Uqj × N, so a control value for the new
system is now a pair (u,N) where u ∈ Uqj and N ∈ N. We fix a compact
neighborhood N of the graph of ξj and define, for each u ∈ Uqj , the upper
bound function

θu(t) = sup{‖fqj (x, u, t)‖ + |Lqj (x, u, t)| : x ∈ N (t)} ,
where N (t) = {x : (x, t) ∈ N}. Then θu is measurable and almost everywhere
finite. We then define
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f̂qj (x, (u,N), t) =
{
fqj (x, u, t) if σu(t) ≤ N ,
fqj (x, ηj(t), t) if σu(t) > N ,

L̂qj (x, (u,N), t) =
{
Lqj (x, u, t) if σu(t) ≤ N ,
Lqj (x, ηj(t), t) if σu(t) > N .

It is then easy to see that the integral bounds are automatically satisfied for
the new system. Moreover, the substitution of a constant control (u,N) for
the reference control on a subinterval J of Ij is equivalent to the substitution
of the control value u for ηj(t) for t in the measurable set {s ∈ J : σu(s) ≤ N}.
In view of conditions A15.I or A15.II, this results in an admissible control for
the original system. So the theorem under condition A15.II applies.

17.6 The case of a nondifferentiable reference vector
field and Lagrangian

We now outline—without proof—how to remove the differentiability assump-
tions. For simplicity, we will only consider the removal of the differentiability
requirement on the reference vector field and Lagrangian, even though it is
also possible to weaken the differentiability requirement on the functions Φj .

Instead of A7, A12 and A14, we should now assume

A’. For each j belonging to the index set {1, . . . , ν#} there exist maps
(x, t) → f̂j(x, t) and (x, t) → L̂j(x, t) such that

A’.1 for almost every t ∈ I#
j the maps x → f̂j(x, t) and x → L̂j(x, t) are

Lipschitz with a Lipschitz constant cj(t) such that
∫ τj

tj
cj(t) dt <∞,

A’.2. for every x the maps t→ f̂j(x, t) and t→ L̂j(x, t) are measurable,

A’.3. there exist measurable functions kδ
j : I#

j → [0,+∞] such that

lim
δ↓0

∫
I#

j

kδ
j (t) dt = 0 ,

having the property that, for almost all t ∈ I#
j , the inequality

‖fq#
j
(x, η#

j (t), t) − f̂j(x, t)‖ + |Lq#
j

(x, η#
j (t), t) − L̂j(x, t)|

≤ kδ
j (t)‖x− ξ#j (t)‖ (17.47)

holds whenever ‖x− ξ#j (t)‖ ≤ δ.
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Under these new conditions, all the terms that occur in the statement of
the maximum principle are well defined, except only for the adjoint equation
(17.8). We now reinterpret the adjoint equation to mean

− ψ̇j(t) ∈ ∂xĤj(ξj(t), ψj(t), ψ0, t) for a.e. t ∈ Ij , (17.48)

where ∂xĤj(x, p, p0, t) is the generalized gradient (in the sense of Clarke [2])
of the function x→ Ĥj(x, p, p0, t), where

Ĥj(x, p, p0, t) = p · f̂j(x, t) − p0L̂j(x, t) .

Theorem 17.6.1. If S1, A5-6, A8-11, A13, A15 and A’ hold, and in the
definition of the adjoint equation (17.48) is substituted for (17.8), then the
maximum principle is true. ♦
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Summary.

Concepts of exponential global robust–stability for stochastic systems
are introduced and analyzed in terms of Lyapunov functions. The main
results of the paper are used to derive a Lyapunov like characterization for
the concept of input–to–state–exponential stochastic stability introduced
in earlier works by the first author.

18.1 Introduction

We consider stochastic systems:

dx = f(x, u)dt+ g(x, u)dw, x ∈ Rn, u ∈ I ⊂ R (18.1)

where u denotes the input and w is a Wiener process. Without any loss of
generality we may assume that both u and w are single valued and u takes
values on a compact interval I of the real line. We denote by F (I) the convex
set of all random functions u(t) = u(ω, t), (ω, t) ∈ Ω × R taking values on
I which are measurable in (t, ω) and Ft- adapted. Finally, assume that the
dynamics f, g : Rn+1 → Rn are everywhere continuous, C2((Rn \ {0}) × I)-
without any loss of generality we may assume in the sequel that f and g are
everywhere C2- and satisfy the following properties:

• zero is an equilibrium for (18.1)

f(0, u) = g(0, u) = 0, ∀ u ∈ I ; (18.2a)

• there are constants C1, C2 > 0 such that
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∣∣∣∣∂f∂x (x, u)
∣∣∣∣ +

∣∣∣∣∂g∂x(x, u)
∣∣∣∣ ≤ C1, (18.2b)

∣∣∣∣∂f∂u (x, u)
∣∣∣∣ +

∣∣∣∣ ∂g∂u(x, u)
∣∣∣∣ ≤ C2|x|, ∀ (x, u) ∈ Rn × I. (18.2c)

It turns out by (1.2a,c) and boundedness of I that f and g satisfy the re-
striction on growth:

|f(x, u)| + |g(x, u)| ≤ C3|x|, ∀(x, u) ∈ Rn × I (18.3)

for some C3 > 0. It is known (see for instance [1, 5]) that, if f and g are
locally Lipschitz, the restriction on growth (18.3) guarantees existence and
uniqueness of solutions for (18.1), namely, for every input u ∈ F (I), x0 ∈ Rn

and t0 ∈ R there exists a unique solution X(t, t0, x0, u) of (18.1) starting
from x0 at time t = t0 which is defined for all t and almost all ω ∈ Ω.

Our purpose is to characterize concepts of robust exponential stochastic sta-
bility in terms of Lyapunov functions. Theorem 3.4 is the main result of
the paper and establishes that, under certain hypothesis, exponential stabil-
ity of zero for (18.1) is equivalent to existence of an appropriate Lyapunov
function. This result partially extends the well known converse Lyapunov
theorem of Lin–Sontag–Wang [7] concerning robust asymptotic stability for
deterministic control systems and generalizes the converse stability theorems
for deterministic and stochastic differential equations which establish exis-
tence of quadratic Lyapunov functions under the presence of exponential
stability (see [2, 3]). The proof of our main theorem result is inspired from
the analysis made in [7, 14] and is mainly based on some important technical
results obtained by P. L. Lions in [8].

The results of robust stability enable us to derive a Lyapunov characteriza-
tion of the exponential input–to–state stability (expISS) for stochastic
systems (Proposition 4.1). The notions of exponential ISS we present consti-
tute natural extensions of the well known deterministic ISS introduced by E.
Sontag (see for instance [2, 10, 11]) plus exponential stability, and have been
recently used in [12, 13] to derive sufficient conditions for global feedback
stabilization for stochastic systems.

18.2 Notions of exponential robust stability

Definition 18.2.1. We say that zero is exponentially uniformly glob-
ally asymptotically stable (expUGAS) for (18.1), if there exist constants
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C, ` > 0 and a bounded measurable function θ : Rn × I → R such that for
every x0 ∈ Rn, u ∈ F (I) and almost all ω we have

|X(t, t0, x0, u)| ≤ C|x0| exp
(
−`(t− t0) +

∫ t

t0

θ(X(s, t0, x0, u), u(s))dw(s)
)

(18.4)

∀ t ∈ [t0, T ), T := T (ω) ≤ ∞

It should be noticed that boundedness of θ(·) over Rn × I implies that

Mt,t0 :=
∫ t

t0

θ(X(s, t0, x0, u), u(s))dw(s)

is a C0 martingale with E(Mt,t0 − Ms,t0 |Fs) = E(Mt,s|Fs) = 0 for every
t ≥ s ≥ t0 and E(M2

t,t0) ≤ C(t − t0), ∀ t ≥ t0, u ∈ F (I), where C is a
positive constant being independent of u. Then (18.4) in conjunction with
the supermartingale inequality:

P

(
sup
t≥s

M2
t,t0(t− t0)−2 > ε

)
≤ ε−1E

(
M2

s,t0(s− t0)−2
) ≤ ε−1C(s− t0)−1,

∀ ε > 0, s > t0

implies:

I. “global uniform stability”:

lim
x0→0

P [sup{|X(t, t0, x0, u)|, t ≥ t0, u ∈ F (I)} > ε] = 0,

II. “global uniform attractivity”:

P [X(t, t0, x0, u)| → 0, as t → ∞, uniformly on u ∈ F (I)] = 1

for all x0 ∈ Rn.

The concepts above generalize the notions of stability and attractivity as
given by Khasminskii and Kushner for stochastic differential equations (see
[1, 3, 4, 6]) and both characterize the general concept of uniform global
asymptotic stability (UGAS) for stochastic control systems. In the
present work we limit ourselves to the study of the exponential UGAS, as
well as of the notion of “exponential UGAS in the rth mean”, whose precise
definition is given below.

Definition 18.2.2. We say that zero is exponentially UGAS in the rth
mean (r-expUGAS) for some r > 0, if there exist constants C, ` > 0 such
that for every x0 ∈ Rn and u ∈ F (I) it holds that
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E(|X(t, t0, x0, u)|r) ≤ C|x0|r exp(−`(t− t0)) (18.5)

∀ t ∈ [t0, T ), T = T (ω) ≤ ∞

In addition to hypothesis (18.2) let us further assume that the following hold:

•
∂2f

∂xi∂xj
(x, u),

∂2g

∂xi∂xj
(x, u), 1 ≤ i, j ≤ n are bounded over Rn × I;

(18.6a)

• the noisy term g satisfies the following property (“non–degeneration con-
dition”): for every nonzero x there is a constant kx > 0 and a u0 ∈ I such
that

g(x, u0)gT (x, u0) ≥ kxIn (18.6b)

(T stands for transpose and In is the n-dimensional unit matrix).

The main result of the paper (Theorem 3.4) establishes that under (18.2)
and (18.6) r-expUGAS is equivalent to the existence of a Lyapunov function
V : Rn → R+ which is C∞(Rn \ {0}) ∩ C[r](Rn) ([r] is the integral part of
r) and satisfies the following properties:

I. c1|x|r ≤ V (x) ≤ c2|x|r (18.7a)

II. |DV (x)| ≤ c3|x|r−1 (x 6= 0) (18.7b)

III. Lu
(1.1)V (x) := DV f(x, u) +

1
2

∑
1≤i,j≤n

∂2V

∂xi∂xj
(g(x, u)gT (x, u))i,j

≤ −c4|x|r , ∀ (x, u) ∈ Rn × I (18.7c)

for some positive constants ci(i = 1, 2, 3, 4); (DV denotes the derivative of
V ).

Relationships between the two concepts of exponential robust stability given
above and their characterization in terms of Lyapunov functions are estab-
lished in next section. Among other things we prove that r-expUGAS is
equivalent to expUGAS for r sufficiently small, provided that both (18.2)
and (18.6) are fulfilled (Corollary 3.7). Finally, the results on robust stability
are used in Section 4 to analyze notions of stochastic exponential ISS (see
Definition 2.3 below) in terms of Lyapunov functions for stochastic systems
(18.1) with C2 dynamics under the assumptions:
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f(0, 0) = g(0, 0) = 0 (18.8a)

∣∣∣∣∂f∂x
∣∣∣∣ +

∣∣∣∣∂f∂u
∣∣∣∣ +

∣∣∣∣∂g∂x
∣∣∣∣ +

∣∣∣∣∂g∂u
∣∣∣∣ ≤ C, ∀(x, u) ∈ Rn × I (18.8b)

for any compact subset I ⊂ R and for some constant C > 0, whose choice
depends on I.

Definition 18.2.3. [12, 13]:

• We say that (18.1) satisfies the exponential input–to–state stability
property (expISS), if there exist a positive definite function γ : R+ → R+,
a function θ(·) and positive constants C and ` as in Definition 2.1, in such
a way that (18.4) is satisfied for every random input u being measurable in
(t, ω) and Ft- adapted with

|u(t)| ≤ γ(|X(t, t0, x, u)|), ∀ t ∈ [t0, T ) := T (ω) ≤ ∞ (18.9)

provided that the corresponding solution X(·) of (18.1) exists, thus, is t-
continuous, (t, ω)- measurable and Ft- adapted.

• We say that (18.1) satisfies the exponential ISS in the rth-mean (r-
expISS), if there exist a positive definite function γ : R+ → R+ and positive
constants C and ` such that (18.5) holds for every Ft- adapted input u for
which (18.9) is fulfilled.

18.3 Main results

The following propositions offer some links between expUGAS and r-expUGAS.

Proposition 18.3.1. Consider the system (18.1) and assume that (18.2) are
satisfied. Suppose that zero is expUGAS and let

K := sup
x 6=0,u∈I

|g(x, u)|2
|x|2 (18.10)

whose existence is guaranteed by (18.2b). Then for any

r ∈ (0, 2`K−1) (18.11)

where ` is the constant defined in (18.4), zero is r-expUGAS.

Proof: For simplicity let X(t) := X(t, 0, x, u), x 6= 0. Notice that X(t) 6= 0
for all t almost surely, since zero is an equilibrium. Condition (18.4) implies
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log |X(t)| ≤ log |x| − `t+
∫ t

0

θ(X(s), u(s))dw(s)

hence, for any u ∈ F (I) we get:

Lu
(1.1) log |x| = lim

t→0

E log |X(t)| − log |x|
t

≤ −` (18.12)

Let r and c be a pair of positive constants with

` > c >
rK

2
(18.13)

From (18.10), (18.12) and (18.13) we obtain

1
r|x|r L

u
(1.1)|x|r − c =

xT f(x, u)
|x|2 +

1
2|x|2

n∑
i=1

(g(x, u)gT (x, u))i,i

+
(r

2
− 1

) 1
|x|4

∑
1≤i,j≤n

xixj(g(x, u)gT (x, u))i,j − c

≤ xT f(x, u)
|x|2 +

1
2|x|2

n∑
i=1

(g(x, u)gT (x, u))i,i

− 1
|x|4

∑
1≤i,j≤n

xixj(g(x, u)gT (x, u))i,j

= Lu
(1.1) log |x| ≤ −` (18.14)

It turns out from (18.14) that Lu
(1.1)|x|r ≤ −`|x|r with ` := r(` − c) > 0,

therefore
d

dt
E|X(t)|r ≤ −`E|X(t)|r

which implies r-expUGAS.

We next establish that the existence of a Lyapunov function implies expo-
nential robust stability.

Proposition 18.3.2. Suppose that there exists a C2(Rn \ {0}) function V
satisfying all properties (18.7). Then

(i) Zero is r-expUGAS

(ii) Zero is expUGAS assuming in addition that either

g(x, u)gT (x, u) ≥ 0, ∀ (x, u) ∈ Rn × I (18.15)

or
Kc23
2c21

<
c4
c2

(18.16)

c1, c2, c3, c4 and K being the constants defined in (18.7) and (18.10),
respectively.
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Proof: (i) Let X(t) := X(t, t0, x, u), x 6= 0, u ∈ F (I). From (18.7) we get

d

dt
EV (X(t)) = E(Lu

(1.1)V (X(t))) ≤ −c4E(|X(t)|r) (18.17)

The desired (18.5) is a direct consequence of (18.17) and (18.7a).
(ii) Suppose for example that (18.16) holds. Taking into account (18.7) and
applying Ito’s theorem we estimate:

logV (X(t)) = log V (x) +
∫ t

t0

1
V (X(s))


Lu

(1.1)V (X(s)) − 1
2

∑
1≤i,j≤n

· (g(X(s), u(s))gT (X(s), u(s))
)
i,j

(
∂V

∂xi

∂V

∂xj

1
V

)
(X(s))

}
ds

+Mt,t0 ≤ logV (x0) −
(
c4
c2

− Kc23
2c21

)
(t− t0) +Mt,t0 (18.18a)

where

Mt,t0 :=
∫ t

t0

θ(X(s), u(s))dw(s), θ(x, u) :=
1

V (x)
∇V (x)g(x, u), x 6= 0

(18.18b)

It turns out from (18.2), (18.7) and (18.18) that zero is expUGAS, specifi-
cally, (18.4) holds with ` = c4c

−1
2 − 1

2Kc
2
3c

−2
1 and C = c2c

−1
1 . Likewise, we

establish expUGAS under (18.15).

We illustrate the nature of Proposition 3.2 by the following simple example.

Example 18.3.1. Consider the system

dx = xdt+ 5x(1 − u)dw, u ∈ I := [−1/2, 1/2], x ∈ R

Then it can be easily verified that the function V (x) = |x|r, 0 < r < 1/5
satisfies (2.4a,b,c) thus Proposition 3.2 asserts that zero is r-expUGAS, as
well as expUGAS with respect to the above system.

Conversely, we have:

Theorem 18.3.1. Consider the system (18.1) and assume that (18.2) as
well (18.6) are fulfilled. If zero is r-expUGAS, then there exists a C[r](Rn)∩
C∞(Rn \ {0}) function V which satisfies all properties (18.7).

In order to establish Theorem 3.4 we need the following important technical
result proved by P. L. Lions in [8].
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Lemma 18.3.1. (first statement of [Lemma 2.1,8]): Let ψσ : Rn → R+

be a C∞(Rn) map whose support is the unit disk with
∫

Rn ψ(s)ds = 1 and let

ψσ :=
1
σn
ψ

( ·
σ

)
, σ > 0 (18.19)

Consider a function V ∈ W 1,∞
loc (Rn) and define

Vσ(x) := (V ∗ ψσ)(x) =
∫

Rn

V (x+ σs)ψ(s)ds (18.20)

Then under (18.2)

Iσ(x) := sup
u∈I

∣∣∣Lu
(1.1)(V ∗ ψσ) − (Lu

(1.1)V ) ∗ ψσ

∣∣∣ ∈ L∞
loc(R

n) (18.21)

i.e., for any bounded Q ⊂ Rn there is a constant K > 0 (being independent
of u and ε) such that∣∣∣Lu

(1.1)(V ∗ ψσ) − (Lu
(1.1)V ) ∗ ψσ

∣∣∣ ≤ K, ∀ u ∈ I, x ∈ Q (18.22)

It should be noticed that, in addition to (18.22), [Lemma 2.1,8] establishes
that Iσ(x) → 0 as σ → 0 for almost all x. The proof of Theorem 3.4 needs
however the stronger type of convergence: Iσ(x) → 0 as s → 0 for all x. For
deterministic systems (namely, when the noisy term g(·) identically vanishes)
this is true (see [7, 14]). We next establish, by employing the same analysis
made in [8], that the requirement above occurs for the stochastic case (18.1),
provided that the boundedness condition (18.6a) for the second derivatives
of f and g, as well as the non–degenation condition (18.6b) are fulfilled.

The proof of Theorem 3.4 also requires the following lemma, which is a well
known result in stochastic control theory (see for instance [8]).

Lemma 18.3.2. Let h ∈ C0(Rn) and V ∈ W 1,∞
loc (Rn) and assume that

1
t
(EV (X(t, 0, x, u)) − V (x)) ≤

∫ t

0

Eh(X(s, 0, x, u))ds

for all x ∈ Rn, u ∈ F (I) and t > 0 near zero. Then under (18.2) it holds
that

Lu
(1.1)V ≤ h in D

′
(Rn)

namely, in the sense of distributions.

The proof of the previous lemma follows by repeating the same arguments
used in [8, p.131].
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Proof of Theorem 3.4

We distinguish two cases.

Case I: r = 2

We define

V (x) := sup
u∈F (I)

∫ T

0

E|X(s, 0, x, u)|2ds (18.23)

where T > 0 yet to be specified. We first show that V is Lipschitz; specifically,
there exists a constant K > 0 such that

|V (x) − V (y)| ≤ K(|x| + |y|)(|x− y|), ∀ x, y ∈ Rn (18.24)

Indeed, definition (18.23) of V implies that for any ε > 0 and x ∈ Rn there
corresponds an input u ∈ F (I) with

V (x) ≤ E

∫ T

0

|X(s)|2ds+ ε; −V (y) ≤ −E
∫ T

0

|Y (s)|2ds (18.25)

where for simplicity we denote X(t) :=X(t, 0, x, u) and Y (t) :=X(t, 0, y, u).
By applying Ito’s theorem and Gronwall’s inequality and invoking our hy-
pothesis (1.2a,b) we get

sup
0≤t≤T

E1/2
(|X(t)|2 + |Y (t)|2) ≤ C1(|x| + |y|) (18.26a)

sup
0≤t≤T

E1/2
(|X(t) − Y (t)|2) ≤ C2|x− y| (18.26b)

for some positive constants C1, C2 being independent of x, y and u. By
(18.25) and (18.26) it then follows

V (x) − V (y) ≤
∫ T

0

E
(|X(s)|2 − |Y (s)|2) ds+ ε

≤
∫ T

0

E1/2
(|X(s) − Y (s)|2)E1/2

(|X(s) + Y (s)|2) ds+ ε

≤ K(|x| + |y|)|x− y| + ε, ∀ x, y ∈ Rn, ε > 0

for some K > 0 independent of ε. Likewise, we obtain

V (y) − V (x) ≤ K(|x| + |y|)|x− y| + ε

and this proves (18.24). From (18.24) we get
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|DV (x)| ≤ 2K|x| (18.27)

for almost all x for which the derivative DV of V exists. We next show that
V satisfies:

k1|x|2 ≤ V (x) ≤ k2|x|2, ∀ x ∈ Rn (18.28)

for some k2 ≥ k1 > 0. Indeed, invoking (1.2a,b) and using Ito’s formula and
Gronwall’s inequality we can determine positive constants k2 ≥ k1 > 0 such
that

sup
0≤t≤T

E|X(t, 0, x, u)|2 ≤ k2|x|2 (18.29a)

k1|x|2 ≤ inf
0≤t≤T

E|X(t, 0, x, u)|2 (18.29b)

for all x and u ∈ F (I). The desired (18.28) is consequence of (18.29) and
definition (18.23) of V . We now prove that by appropriate selection of T the
following property holds:

For every random input u ∈ F (I) there is a time t0 > 0 with

1
t
(EV (X(t, 0, x, u)) − V (x)) ≤ − 1

2t

∫ t

0

E|X(s, 0, x, u)|2ds+ t (18.30)

∀ t ∈ (0, t0]

In order to establish (18.30) we again recall our assumptions (1.2a,b,c) which
guarantee the existence of a constant C1 > 0 such that

|f(x, u) − f(y, u)| |x− y| + ∣∣|g(x, u)|2 − |g(y, u)|2∣∣
≤ C1

(|x− y|2 + (|x|2 + |y|2)|u − u|2) (18.31)

for every x, y ∈ Rn, u, u ∈ R. By using Ito’s formula and Gronwall’s inequality
and taking into account (18.26a) and (18.31) it follows that for every compact
region Q ⊂ Rn it holds that

sup
0≤t≤T

∣∣E(|X(t, 0, x, u)|2 − |X(t, 0, y, u)|2)∣∣
≤ sup

0≤t≤T
2E1/2

(|X(t, 0, x, u)|2 + |X(t, 0, y, u)|2)
E1/2

(|X(t, 0, x, u) − |X(t, 0, y, u)|2)
≤ C2(ess sup{|u− u|, t ∈ [0, T ], ω ∈ Ω} + |x− y|),

∀ x, y ∈ Q, u, u ∈ F (I), (18.32)
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for certain C2 > 0. Condition (18.32) enable us, by applying standard parti-
tion of unity arguments, to establish the existence of a family of maps:

Ut : Ω ×Rn ×R+ → R, t > 0

of the form

Ut(x, s) =
∑

pi(x)ui(s), ui ∈ L(I) (18.33a)

∑
pi(x) = 1 (18.33b)

where pi : Rn → R+ are C∞, have compact support, the summation
∑

above is finite and in such a way that

V (x) − t2 <

∫ T

0

E|X(s, 0, x, Ut(x, s))|2ds < V (x) (18.34)

Note that, according to (18.33) and convexivity of F (I), Ut(·) takes values
in I, Ut(x, ·) is of class F (I) and, since the summation in (18.33) is finite,
Ut(·, s) is locally Lipschitz. It turns out that for any vector z ∈ Rn and t > 0
the control

uz
t (s) := Ut(X(s, 0, z), s)

where X(·) is the solution of

dx = f(x, Ut(x, s))ds + g(x, Ut(x, s))dw

X(·)|s=0 = z

is of class F (I). Consider an input u ∈ F (I), denote

X(·) := X(·, 0, x, u), ut := uz
t |z=X(t) (18.35)

define

ut(s) :=
{
ut(s), t < s <∞
u(s), 0 ≤ s ≤ t

(18.36)

and let ût(·) ∈ F (I) with

ût(s) = ut(s− t) for s ≥ t (18.37)

Using (18.34) and taking into account (18.35), (18.36), (18.37) and our hy-
pothesis that (18.5) holds with r = 2 we get
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1
t
(EV (X(t)) − V (x)) ≤ t+

1
t
E

{∫ T

0

E |X(s, 0, z, ut)|2
∣∣
z=X(t)

ds

−
∫ T

0

E|X(s, 0, x, ut)|2ds
}

= t+
1
t

{
E

∫ T

0

E
( |X(s+ t, 0, x, ut)|2

∣∣Ft

)
ds−

∫ T

0

E|X(s, 0, x, ut)|2ds
}

≤ t+
1
t

{∫ T+t

t

E
( |X(s, 0, x, ût)|2

∣∣Ft

)
ds−

∫ T

0

E|X(s, 0, x, ut)|2ds
}

≤ t+
C|x|2
t

∫ T+t

T

exp(−`s)ds− 1
t

∫ t

0

E|X(s)|2ds ≤ t− 1
2t

∫ t

0

E|X(s)|2ds

for t > 0 sufficiently small, provided that T has been selected sufficiently
large in such a way that 2Cexp(−`T ) < 1. This proves (18.30).

The map V as defined by (18.23) is in general nonsmooth. We build a
C∞(Rn \ {0}) function in such a way that all properties (18.7) hold with
r = 2. We proceed among the same lines in [7, 14]. We first need the follow-
ing additional facts that play an important role to the rest procedure.

Fact I: For any open bounded Q ⊂ Rn there is a constant C > 0 such that

D2V ≥ −C in D
′
(Q) (18.38)

(D2V mean the second derivative at V ), provided that (18.6a) is satisfied.

Indeed, a well known result concerning differentiability of solutions for
stochastic systems (see for instance [5]) asserts that under (18.2) and (18.6a)
the processes |X(·)|2 is mean–square–differentiable with respect to initial
state x and further it holds that

E sup
0≤s≤T

|DxX(s, 0, x, u)|2 + E sup
0≤s≤T

|D2
xX(s, 0, x, u)|2 ≤ C(1 + |x|)q,

∀ x ∈ Rn, u ∈ I

for some appropriate constants C and q. Then, if we call

φu(x) :=
∫ T

0

E|X(s, 0, x, u)|2ds

we can easily deduce

sup
u

|D2φu(x)| ≤ C(1 + |x|)q
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for some positive C and q. Let e be a unitary vector in Rn, and let Q be an
open subset of Rn. By making use of the mean valued theorem the previous
inequality yields:

V (x + he) + V (x− he) − 2V (x)
≥ − sup

u
[φu(x+ he) + φu(x− he)] − sup

u
2φu(x)

≥ − sup
u

|φu(x+ he) + φu(x− he) − 2φu(x)| ≥ −Ch2

for some constant C > 0 and for all sufficiently small h > 0. The desired
(18.38) is consequence of the inequality above and the fact:

h−2(V (x+ he) + V (x− he) − 2V (x)) → ∂2V

∂e2
as h→ 0, in D

′
(Rn).

Fact II: Under (18.6a) and the non-degeneration hypothesis (18.6b), the
function V is of class W 2,∞

loc (Rn \ {0}).

Indeed, Lemma 3.6 and (18.30) yield Lu
(1.1)V ≤ − 1

2 |x|2 in D
′
(Rn), thus:

(
Lu

(1.1)V
)
∗ ψσ ≤ −1

2
|x|2 ∗ ψσ (in Rn)

The latter, by virtue of Lemma 3.5, implies that for any open bounded Q ⊂
Rn \ {0} it holds that

Lu
(1.1)Vσ = Lu

(1.1) (V ∗ ψσ) ≤ C +
1
2
|x|2 ∗ ψσ ≤ C, ∀ x ∈ Q

for certain C > C > 0. Then by taking into account (18.6b) and following
the same procedure with this employed in [8, p. 128] it can be established
that for any compact Q ⊂ Rn \ {0} it holds that

D2V ≤ C
′

in D
′
(Q)

for some C
′
> 0, which in conjunction with (18.38) implies

V ∈W 2,∞
loc (Rn \ {0}).

It was pointed out that the second statement of the key Lemma 2.1 in [8] as-
serts that Iσ(x) → 0 as σ → 0 for almost all x, provided that V ∈ W 1,∞

loc (Rn).
Based on Fact II and following exactly the same analysis with this made in
[8, pp. 139–141], the statement above is strengthened as follows:

Fact III: (“Strong” version of second statement of [Lemma 2.1, 8]):
Under the additional hypothesis (2.3a,b), for any compact Q ⊂ Rn \ {0} we
have:
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sup
x∈Q

Iσ(x) → 0 as σ → 0 (18.39)

We are now in a position to establish the existence of a C∞(Rn \ {0}) Lya-
punov function. Consider the family of mappings Vσ(·), σ > 0 as defined by
(18.20). By taking into account (18.24), (18.27) and (18.28) it follows that
each Vσ is C∞(Rn) and for any compact Q ⊂ Rn \ {0} and constant ε > 0
we have

|V (x) − Vσ(x)| ≤ ε (18.40a)

|DV (x) −DVσ(x)| ≤ ε (18.40b)

ε+
1
2
k1|x|2 ≤ Vσ(x) ≤ ε+ 2k2|x|2 (18.40c)

|DVσ(x)| ≤ 2K|x| + ε (18.40d)

for all x ∈ Q and sufficiently small σ, where the constants k1, k2 and K are
defined in (18.28) and (18.27), respectively, thus, they are independent of Q.
Moreover, (18.39) in conjunction with Lemma (3.6) and (18.30) yield

Lu
(1.1)Vσ(x) ≤ −1

2
|x|2 + ε, ∀ x ∈ Q, u ∈ I (18.40e)

for sufficiently small σ. Using (18.40) and repeating the same partition of
unity approach in [7, 14] we can construct a C∞(Rn \ {0})∩C2(Rn) map V
satisfying all desired properties (18.7) with r = 2.

Case II: r 6= 2

The case r 6= 2 is reduced to the previous one, as follows. Consider the map

Θ(x) :=
x

|x|a , x ∈ Rn \ {0}, a :=
2 − r

2
(18.41)

Then, by using Ito’s theorem for the process Y (·) = Θ(X(·)), the original
system (18.1) takes the equivalent form

dy = F (y, u)dt+G(y, u)dw (18.42)

where

F :=





DΘf +

1
2

∑
1≤i,j≤n

∂2Θ

∂xi∂xj
(gg

′
)i,j




∣∣∣∣∣∣
x=Θ−1(y)

, y 6= 0

0, for y = 0
(18.43a)
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G :=
{

(DΘg)|x=Θ−1(y) , y 6= 0
0, for y = 0

(18.43b)

Notice that for all nonzero x we have:

|DΘ(x)| ≤ C1|x|−a,

∣∣∣∣∑ ∂2Θ

∂xi∂xj

∣∣∣∣ ≤ C2|x|−a−1 (18.44)

for some C1, C2 > 0. From (18.2), (18.6), (18.43) and (18.44) we can easily
verify that the dynamics F and G have the same properties (18.2) and (18.6b)
with those imposed for the original system and, since zero is r-expUGAS for
(18.1), it follows from (18.41) that zero is 2-expUGAS for (18.42). For the
case r < 2, however, the second derivatives of G with respect to yi are in
general unbounded closed to the origin; in particular, a constant C > 0 can
be found such that∣∣∣∣∑ ∂2F

∂yi∂yj

∣∣∣∣ +
∣∣∣∣∑ ∂2G

∂yi∂yj

∣∣∣∣ ≤ C|y|−1, ∀ |y| 6= 0, u ∈ I (18.45)

Hence, in order to reduce the analysis the previous case r = 2, we apply
change of time in (18.42) as follows: We first consider a smooth function
q : R+ → R+ which satisfies:

1 > q(s) > 0, ∀ s > 0 (18.46)

and in such a way that q(|y|)F (y, u) and q1/2(|y|)G(y, u) satisfy all properties
(18.2) and (18.6b) and in addition their second derivatives with respect to yi

are bounded over Rn × I. We note that existence of q(·) is guaranteed from
boundedness of the first derivatives of F and G and (18.45). Consider an
initial state y0, time t0 and input u ∈ F (I) and apply in (18.42) the change
of time:

t→ τt := inf{s, βs ≥ t} (18.47a)

βt :=
∫ t

0

1
q(|Y (s, t0, y0, u)|)ds (18.47b)

Notice that τ0 = 0, almost surely and, since zero is the unique equilibrium,
for every y0 6= 0 we have βt <∞, almost surely. Moreover, due to (18.46), it
holds that

τt ≤ t (18.48)

According to well known results (see for instance, Theorems 7.24, 7.26, 7.30
and 7.31 in [9]) the process t → Ỹ (τt, t0, y0ũ), ũ := u(τt), is a weak solution
of the stochastic system
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dỹ = q(|ỹ|)F (ỹ, ũ)dt+ q1/2(|ỹ|)G(ỹ, ũ)dw̃ (18.49)

where w̃ is the Fτt - adapted Wiener process

w̃(t) :=
∫ τt

0

q−1/2(|Y (s, t0, y0, u)|)dw(s),

which in general depends on t0, y0 and u, and further

E|Y (t, t0, y0, u)|2 = E|Ỹ (τt, t0, y0, ũ)|2 (18.50)

Taking into account that zero is 2-expUGAS for (18.42), condition (18.50)
implies that zero is also 2-expUGAS for (18.49) if we replace w̃ by any Ft-
adapted Wiener process w (being independent of t0, y0 and u). This follows
from the fact that the solution Y (t, t0, y0, ũ) of (18.49) with w instead of w̃
is identical in law with the corresponding solution Ỹ (t, t0, y0, ũ) of (18.49).
Moreover, notice that each controller ũ = u(τt) is Fτt- adapted, hence, by
virtue of (18.48), is Ft - adapted. It turns out that each solution Y (·) of

dy = q(|y|)F (y, ũ)dt+ q1/2(|y|)G(y, ũ)dw (18.51)

satisfies
E|Y (t, t0, y0, ũ)|2 ≤ C|y0| exp(−`(t− t0)), ∀t ≥ 0

for some C > 0, for all y0 ∈ Rn and ũ ∈ F (I), and its dynamics satisfy
(18.2) and (18.6). It is therefore possible to apply the same analysis with
this employed for the previous case r = 2 to build a C2(Rn)∩C∞(Rn \ {0})
function V (y) satisfying (18.7) with r = 2. Particularly, we have

Lu
(3.42)V (y) = q(|y|)Lu

(3.33)V (y) ≤ −k|y|2, ∀ y ∈ Rn, u ∈ I

for some k > 0, which by virtue of (18.46) yields

Lu
(3.33)V (y) ≤ −k|y|2, ∀ y ∈ Rn, u ∈ I (18.52)

Let

V̂ (x) := V (Θ(x)) (18.53)

The above V̂ is the desired Lyapunov function for the original system (18.1),
namely, is C [r](Rn)∩C∞(Rn \{0}) and satisfies the desired properties (18.7)
in the original coordinates. The claim is an immediate consequence of prop-
erties of V in the y-coordinates and the definition of Θ(·). For reasons of
completeness we note that, since

Lu
(1.1)V (Θ(x))

∣∣∣
x=Θ−1(y)

= Lu
(3.33)V (y)

we get from (18.52), (18.53) and (18.41):
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Lu
(1.1)V̂ (x) ≤ −k|Θ(x)|2 = −k|x|2−2a = −k|x|r, ∀ x ∈ Rn, u ∈ I

and this proves (18.7c). Similarly, we can easily verify that (2.4a,b) hold as
well.

As a consequence of Propositions 3.1, 3.2 and Theorem 3.4 we obtain:

Corollary 18.3.1. Consider the system (18.1) and assume that (18.2) and
(18.6) are fulfilled. Then, if zero is expUGAS, there exists a Lyapunov func-
tion V ∈ C∞(Rn \ {0}), which satisfies (18.7). It turns out that the following
statements are equivalent, provided that (18.15) holds as well:

(1) The system (18.1) admits a C∞(Rn\{0}) Lyapunov function V satisfying
(18.7);

(2) Zero is expUGAS;

(3) Zero is r-expUGAS for r sufficiently small.

Remark: If we restrict ourselves to stochastic differential equations, namely,
to systems (18.1) where f and g are independent of u, the analysis made in
proof of Theorem 3.4 is extremely simplified (in fact, it constitutes a modi-
fication of the approach employed in Khasminskii [Theorem 7.2 (p. 187), 3])
and the non–degeneration assumption is not required.

18.4 Lyapunov description of expISS

The following proposition is a consequence of Propositions 3.1, 3.2 and the
converse stability theorem of previous section. Its proof is quite analogous to
that given in [10, 11] for the deterministic case.

Proposition 18.4.1. Consider the system (18.1) whose dynamics are C2

and satisfy (18.8).
(i) Suppose that there exists a C2(Rn \{0}) function V satisfying (2.4a,b) as
well as (18.7c) for all |u| ≤ γ(|x|), γ : R+ → R+ being positive definite and
C2(R+) with bounded first derivative γ(1). Then (18.1) satisfies the r-expISS.
Moreover, expISS is fulfilled if in addition we assume that either

g(x, u)gT (x, u) ≥ 0, ∀ |u| ≤ γ(|x|) (18.54)

or

|g(x, u)| ≤ k|u|, ∀ (x, u) ∈ Rn+1 (18.55)

for some k > 0.
(ii) Conversely, existence of a Lyapunov function as above is guaranteed, if,
in addition to (18.8), we assume that
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• for any compact I ⊂ R

∂2f

∂xi∂u
,
∂2g

∂xi∂u
, i = 1, . . . , n are bounded over Rn × I; (18.56)

• for any nonzero x there are constants kx > 0 and u0 ∈ R with

g(x, u0)gT (x, u0) ≥ kxIn (18.57)

• r-expISS holds for some gain function γ : R+ → R+ being positive definite,
C2(R+) and such that

γ(1) and γ(2) are bounded over R+ (18.58)

(iii) The notions of expISS and r-expISS are equivalent for r sufficiently
small, provided that (18.56), (18.57) hold and further

g(x, u)gT (x, u) ≥ 0, ∀(x, u) ∈ Rn ×R

Proof: All statements are direct consequences of the results of the previous
section. We only prove that existence of a C2(Rn \ {0}) function V satisfy-
ing (2.4a,b,c) with |u| ≤ γ(|x|) implies expISS provided that (18.55) holds.
The rest part of proof is left to the reader. First, notice that V satisfies all
properties (18.7) with respect to

dx = f(x, vγ(|x|))dt + g(x, vγ(|x|))dw, v ∈ I := [−1, 1] (18.59)

Moreover, expISS (r-expISS) is fulfilled for (18.1), if and only if zero is ex-
pUGAS (r-expUGAS), respectively, for (18.59). To establish expISS pick a
positive definite C2 function γ∗ < γ (we may select γ∗ = cγ for c > 0 small
enough) in such a way that if we define

K := sup
x 6=0,|v|≤1

∣∣g(x, vγ8(|x|))∣∣
|x|

then (18.16) holds; (because of (18.55) and boundedeness assumption for γ(1)

such selection is feasible). It follows by Proposition 3.2 that zero is expUGAS
for (18.59) with γ = γ∗, or equivalently expISS holds for (18.1) with gain
function γ = γ∗. Likewise, by virtue of Proposition 3.2 we can establish
r-expISS with the same γ. The rest part of proof is also a consequence of
Propositions 3.1, 3.2 and Theorem 3.4. For reasons of completeness we note
that, under the additional assumptions made in statement (ii) for f , g and
γ, the dynamics of the system (18.59) satisfy both (18.2) and (18.6). Details
are left for the reader.

Applications of the stochastic ISS and the relative notion “noisy input - state
stochastic stability” to feedback stabilization problems are found in [4, 12, 13].
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18.5 Remarks for deterministic systems

For deterministic systems the notion of expUGAS is of course equivalent to
r-expUGAS for arbitrary positive r, and the technique employed in proof
of the converse Lyapunov theorem in Section 3 requires only the hypothesis
(18.3). It turns out that for the deterministic case expISS is equivalent to
the existence of a C2(Rn \ {0}) function V satisfying (2.4a,b) and (18.7c) for
|u| ≤ γ(|x|), provided that (18.8) holds. It should be pointed out here that
using a more elegant procedure, specifically, by making appropriate modifi-
cations in proof of the general converse Lyapunov theorem in [10], we can
establish that the converse Lyapunov theorems concerning exponential sta-
bility for deterministic systems are valid under the weaker hypethesis that
the dynamics are localy Lipschitz. The clain follows
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Summary.

This paper presents a robust nonlinear controller design strategy based
on approximate feedback linearization using neural network models. It is
shown how model uncertainty due to model-plant mismatch propagates
through the control loop such that the overall closed-loop uncertainty can
be expressed in terms of the uncertainty in the weights of the neural net-
work model. Further, a polytopic uncertainty description for the closed-
loop is found which enables robust stability analysis to be translated into
a Linear Matrix Inequality (LMI) problem, and thus be tackled with the
use of computationally efficient techniques.

19.1 Introduction

An important research direction in modern control theory points toward find-
ing more reliable solutions to tackle highly nonlinear problems. In this sense,
model-based control has been widely accepted as a powerful tool for control
engineering as proven by the growing number of reported successful industrial
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applications. One of the major aspects in model-based control is therefore
the reliability of the model upon which the controller will be based. Over the
last decade neural network models have become favorite candidates in the
nonlinear systems identification field due to their excellence in representing
multivariable nonlinear mappings, together with their capability of generaliz-
ing from fresh data, as well as their ability to keep learning during operation
[1]. Furthermore, the benefits of using neural network models in nonlinear
control applications have been widely reported in the literature [2, 3, 4, 5].
However, the usefulness of any model-based control approach relies upon the
sufficient stability and modeling errors robustness conditions that can be for-
mally established. In fact, while the primary objective is to guarantee the
stability (and performance) of the resulting closed-loop system, the control
design should also account for the effects of model mismatch in the overall
control scheme. Therefore, a model uncertainty description providing quanti-
tative information about the model mismatch should be obtained. Moreover,
it is crucial to understand how such model uncertainty propagates through
the control design and so an efficient tool to analyze the stability robustness
properties of the resulting closed-loop system should be available as well. In
this paper, these items are addressed in the context of approximate input-
output feedback linearization using a discrete-time neural network model.
Feedback linearization [6, 7] as been recognized as a powerful tool to tackle
nonlinear control problems since it provides, under some mild assumptions,
an exact linearization of the process over the complete operating range. More
formally, for the general case of a square multivariable (p×p) discrete-time
nonlinear system, and assuming without loss of generality unitary relative
degrees for each of the p system outputs, a feedback linearizing control law
can be obtained by solving the following equation in respect to the p system
inputs, uk [8, 9]

E(xk, uk) = CAxk + CBvk (19.1)

where E(xk, uk) represents the non-singular discrete decoupling (p×p) ma-
trix of the system, with rank p around the equilibrium point, xk represents
the system state vector, while vk is the newly created external signal. The
resulting input-output decoupled linear system will then be described by

yk+1 = CAxk + CBvk (19.2)

with A, B and C being proper choices for the linear state-space matrices.
However, finding a solution for uk in (19.1) tend to be a hard numerical
problem. In this paper, a solution is given by means of the approximate
feedback linearization, which basically consists of performing the first-order
Taylor’s expansion of the input-output relation of the system, around a state
trajectory, resulting in an affine in the input decoupling matrix relation [10].
In this case, provided that the inversion of the resulting jacobian matrix
holds, uk in (19.1) can be obtained through the solution of a simple linear
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numerical problem, therefore enabling a straightforward computation of the
feedback linearizing control law.

In this paper, quantitative measures for the model uncertainty description
are obtained by assuming that model mismatch is caused by deviation of
the estimated network parameters from the real ones, i.e., by assuming that
the process is in the model set. Tools for selecting the model structure, and
checking whether the process can be expected to be in the model set, can
be found in [11, 1, 12, 13]. This idea is motivated by the fact that finding
the best parameters for the neural network model (training), is essentially
equivalent to a nonlinear parameter estimation problem. Therefore, since the
training objective is to minimize the sum of squared errors between training
data and neural network model output, a nonlinear least square estimation
of the weights results. In this situation, it can be stated that the real weights
are within an interval from the estimated weights, provided that certain con-
ditions are met [14]. Then, the size of these intervals can be determined
by employing statistical properties of the nonlinear least square estimation.
Throughout this paper expressions will also be derived which express the re-
sulting closed-loop uncertainty in terms of the uncertainty in the weights of
the neural network model. Furthermore, a procedure which transforms the
closed-loop uncertainty description in a form which directly allows for sta-
bility analysis is also presented. Moreover, it is outlined how the uncertain
closed-loop description can be bounded by a polytopic system, which trans-
forms the robust stability analysis problem in that of stability analysis of
polytopic systems. The use of polytopic systems descriptions in robust con-
trol has become more popular over the last years [15, 16, 17]. The main reason
is due to the overall stability problem could be reformulated as a set of Lin-
ear Matrix Inequalities (LMIs) which can be solved by using computationally
efficient algorithms.

The structure of this paper is as follows: in section 19.2.1 the nominal case of
approximate feedback linearization is outlined, while section 19.2.2 describes
how the closed-loop system uncertainty can be expressed in terms of the
model uncertainty by means of the approximate feedback linearization. Then
section 19.2.3 presents the necessary ingredients for robustness analysis of
the resulting closed-loop uncertainty description. Section 19.3 will formalize
the previous developments for the case the system is modeled with a neural
network model. Finally in section 19.4 some conclusions are drawn.

Notation. Vectors are notated by bold lower case letters, whereas scalars are
notated with non-bold lower case letters. Matrices are notated with upper
case letters where W ij indicate the ij-th entry of a matrix W . The meaning
of used subscripts, should be clear from the context.
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19.2 Control setting

Approximate feedback linearization is outlined, based on a general nonlinear
ARX description of the system under consideration. The feedback lineariz-
ing control law is presented in terms of the system description. In addition,
approximate feedback linearization in the presence of model uncertainty is
treated. Moreover, an uncertainty description for the closed-loop system in
terms of the model uncertainty is derived, and a method to analyze the ro-
bustness properties of the closed-loop system is provided. These results are
valid for any kind of nonlinear ARX system description, as no implementation
of the system description is selected yet.

19.2.1 Nominal case

Consider the following square1 input-output system, with p inputs and p
outputs, given by the following state-space representation

yk+1 = f(xk, uk) (19.3)

where

yk+1 = [y1
k+1, . . . , y

p
k+1]

T (19.4)

xk = [y1
k, . . . , y

1
k−n1, . . . , ypk−np, u

p
k−1, . . . , u

1
k−m1, . . . u

p
k−mp]

T (19.5)

uk = [u1
k, . . . u

p
k]
T (19.6)

with ni and mj being the maximum delay of the i-th output and j-th and
input, respectively, present in the regression vector xk. To allow a straightfor-
ward calculation of the approximate feedback linearizing control law, the first
order of the Taylor’s expansion of system (19.3) around the state trajectory
(xk−1, uk−1) is performed, yielding

yk+1 =f(xk−1, uk−1) + F (xk−1, uk−1)∆xk + E(xk−1, uk−1)∆uk
(19.7)

where

f(xk−1, uk−1) =
[
f1(·) · · · fp(·)]T

(xk−1,uk−1)
(19.8)

F (xk−1, uk−1) =
[
∂f1(·)

∂x
· · · ∂fp(·)

∂x

]T
(xk−1,uk−1)

(19.9)

E(xk−1, uk−1) =
[
∂f1(·)

∂u
· · · ∂fp(·)

∂u

]T
(xk−1,uk−1)

(19.10)

1 Throughout this paper, only square systems are considered. However, the results
can be extended to non-square systems, when the number of inputs exceeds the
number of outputs, by replacing the matrix inversion by the left (pseudo) inverse.
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and ∆ = 1 − q−1, with q−1 being the delay operator, thus ∆xk=xk−xk−1.
Then, the approximate feedback linearizing control law can be derived as

∆uk = E(xk−1, uk−1)−1(−f (xk−1, uk−1) − F (xk−1, uk−1)∆xk +
+CAxk + CBvk) (19.11)

where A, B and C are user specified matrices of appropriate dimensions and
vk is the new linear imposed input signal. From expression (19.11) it can
be seen that for a successful application of the approximate feedback lin-
earization, matrix E must be invertible for all admissible pairs (xk−1, uk−1).
However, as shown later in this paper, this is a reasonable assumption if con-
sidering a neural network model. Finally, the application of the feedback law
(19.11) to the system (19.7) results in the following closed-loop system

yk+1 = CAxk + CBvk (19.12)

which can either be represented in the following state space form

xk+1 = Axk + Bvk
yk = Cxk

(19.13)

19.2.2 Uncertain case

In order to obtain an uncertainty description of the closed-loop system, which
later on allows for a straightforward robust stability analysis procedure, a new
notation must be introduced. In view of this, the first part of the right-hand
side of (19.7) is rewritten as

f(xk−1, uk−1) + F (xk−1, uk−1)∆xk = F̃ (xk−1, uk−1)x̃k (19.14)

where the new state vector x̃k is now given by

x̃k=[y1,k, . . . , y1,k−n1−1, . . . , yp,k−np−1, ∆u1,k−1, . . . , ∆up,k−mp]T

(19.15)

Thus, the structure of F̃ (xk−1, uk−1) in (19.14) can be generically determined
by the following procedure. Let Na be a matrix of dimension (a × (a + 1))
having the following structure

Na =




1 −1 0 . . . 0
0 1 −1 0 . . . 0

...
...

0 . . . 1 −1


 (19.16)
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and let s(a,b) be a vector of size (1 × (a+b+1)) defined as

sa,b = [a0 1 b0] (19.17)

where a0 and b0 are zero vectors of dimensions (1×a) and (1×b), respectively.
With these definitions, F̃ (xk−1, uk−1) can be constructed according to

F̃ (xk−1, uk−1) =




s(0,n1+···+np+2p−1)

s(n1+1,n2+···+np+2p−2)

...
s(n1+···+np−1+p−1,np+p)


 +

F (xk−1, uk−1)




Nn1 0 . . . 0
0 Nn2 0 . . . 0

. . .
Nnp 0 . . . 0

0 . . . I


 (19.18)

where I is the (p × p) identity matrix. According to this new formulation,
(19.7) is now given by

yk+1 = F̃ (xk−1, uk−1)x̃k + E∆uk (19.19)

In this case, the application of the following feedback linearizing control law

∆uk = E(xk−1, uk−1)−1(−F̃ (xk−1, uk−1)x̃k + CAx̃k + CBvk) (19.20)

results in the closed-loop system described by

yk+1 = CAx̃k + CBvk (19.21)

which can be either represented in the following state-space form

x̃k+1 = Ax̃k + Bvk
yk = Cx̃k.

(19.22)

For a more transparent notation, the argument (xk−1, uk−1) will be omit-
ted from matrices F̃ and E on further developments. In order to analyze
the influence of model uncertainty on the control strategy, an uncertainty
description for the model will be adopted. It is assumed throughout that the
real system can be described by

yk+1 = (F̃ + δF̃ )x̃k + (E + δE)∆uk (19.23)

where δF̃ and δE are matrices of appropriate dimensions with unknown en-
tries. In sections 19.3.2 and 19.3.3 it is outlined how (19.23) can be obtained
in case the model is implemented with a single-layer feed-forward neural net-
work. Further, a procedure is presented that provides quantitative measures
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for the intervals in which the entries of δF̃ and δE live. In the sequel, it
will become obvious that this knowledge is sufficient for analyzing the overall
closed-loop stability. In fact, the application of the control law (19.20) to the
system (19.23), results in a closed-loop system which is described by

yk+1 = CAx̃k + CBvk + (δF̃ − δE · E−1F̃ + δE · E−1CA)x̃k +
+δE · E−1CBvk (19.24)

Moreover, if C is chosen such that C ·CT = I, the following state-space rep-
resentation can be obtained

x̃k+1 = (A + CT (δF̃ − δE · E−1F̃ + δE · E−1CA))x̃k+
+(B + CT δE · E−1CB)vk

yk = Cx̃k

(19.25)

leading to the following description of the uncertain linear closed-loop system

x̃k+1 = (A + δA)x̃k + (B + δB)vk
yk = Cx̃k

(19.26)

where the uncertainty terms δA and δB are now state dependent matrices,
respectively given by

δA = CT (δF̃ − δE · E−1F̃ + δE · E−1CA)
δB = CT δE · E−1CB

(19.27)

Clearly, the choice for the imposed linear dynamics A, B and C used in
the feedback linearizing control law, will determine the characteristics of the
resulting closed-loop system. While the condition C ·CT = I can always be
satisfied by adopting the appropriate closed-loop canonical form, the choice
for A and B should be guided by the properties of the system under control
in account for the desired performance specifications of the overall control
scheme.

19.2.3 Stability analysis

The analysis concerning model uncertainty which was performed in the previ-
ous section resulted in the uncertain closed-loop description given by (19.26).
Assuming that

[A + δA(·) B + δB(·)] ∈ Co ([A1 B1], [A2 B2], . . . , [AL BL]) (19.28)

where Co stands for convex hull, i.e., for some λ1, λ2, . . . , λL ≥ 0 summing
to one

[A + δA(·) B + δB(·)] =
L∑
i=1

λi[Ai Bi] (19.29)
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Then, if Bi, with i = 1, . . . L, is bounded, for showing closed-loop stability of
the uncertain system it is sufficient to find a matrix P , such that

AT
i PAi − P < 0

P > 0 ∀i = 1, . . . , L. (19.30)

Moreover, expression (19.30) can be rewritten as a linear matrix inequality
(LMI) by using Q−1 = P , resulting

AT
i Q−1Ai − Q−1 < 0

Q−1 > 0 ∀i = 1, . . . , n (19.31)

Then, by post- and pre-multiply (19.31) by Q, with Q = QT , leads to

Q − (AiQ)TQ−1AiQ > 0
Q > 0.

(19.32)

According to the Schur’s complement condition, this set of equations is equiv-
alent to the following LMI[

Q (AiQ)T

AiQ Q

]
> 0 (19.33)

Solving a set of LMIs can be easily made through the use of computationally
efficient algorithms, which turn them into a practical tool for control engi-
neering purposes [17]. Therefore, the key to the solution of the robust stability
analysis problem is to build the necessary LMIs which enclose the closed-loop
uncertainty description given by (19.26) in a polytope. These bounds can be
found by determining the intervals within which the entries of matrices δA
and δB in (19.27) can vary.

19.3 Implementation with a feed-forward neural
network

This section applies the previously presented control strategy for the case sys-
tem (19.3) describes a single-layer feed-forward neural network model. Fur-
ther, a method for obtaining quantitative information concerning the neural
network uncertainty will be outlined, enabling robust stability analysis of the
closed-loop system to be performed. The development will be made according
to the following steps

1. First, the expressions involving the nominal control design, (19.3, 19.7
and 19.11), are derived for the case the system under control is modeled
with a single-layer feed-forward neural network.
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2. Secondly, it is investigated how uncertainty in the neural network model
parameters propagate through the control design. As a result, expres-
sions for δF̃ and δE in (19.23) will be derived in terms of these model
uncertainties. Then, based on (19.27), the uncertainty in the closed-loop
system matrices A and B can be determined.

3. Finally, a polytopic description for the uncertain closed-loop system ma-
trices is built. A procedure that finds the bounds for the entries of these
state dependent uncertain matrices will be outlined.

The accomplishment of the three previous steps will provide the ingredients
for designing a robust neural model-based control.

19.3.1 Nominal case

Assume that the (p× p) square MIMO system (19.3) describes a single layer
feed-forward neural network with tangent hyperbolic activation function. In
matrix notation, such neural network model can be described through the
following notation

yk+1 = W tanh(V xk + Guk + b) + d (19.34)

where yk+1, xk and uk are defined in (19.4), (19.5) and (19.6), respectively.
Let nh be the number of neurons in the hidden layer, let nx be the length
of the vector x, then W ∈ R

p×nh, V ∈ R
nh×nx, G ∈ R

nh×p, b ∈ R
nh×1

and d ∈ R
p×1. The first order of Taylor’s expansion around (xk−1, uk−1)

produces:

yk+1 = F0 + F∆xk + E∆uk (19.35)

where

F0 = W tanh(V xk−1 + Guk−1 + b) + d (19.36)
F = WΓk−1V (19.37)
E = WΓk−1G (19.38)

with

Γk−1 = I − diag[tanh2(V xk−1 + Guk−1 + b)] (19.39)

These expressions form the basis to proceed with the application of the feed-
back linearization procedure described in section (19.2.1).
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19.3.2 Uncertain case

As stated before, the philosophy here considered assumes that model uncer-
tainty is due to the uncertainty on the weights of the neural network model.
This choice is motivated by the observation that, once the structure of the
network (number of neurons, composition of the regression vector) has been
chosen, training the neural network is nothing more than a parameter esti-
mation problem. When the training objective of the network is chosen to be
the minimization of the sum of squared errors between the training data and
the outputs of the neural network, a nonlinear least-square estimation of the
weights of the neural network results. As long as certain conditions are met,
the statistical properties of a least-square estimation provides confidence re-
gions for the estimated parameters [14]. In view of this, it is assumed that
the real system can be described by the following model

yk+1 = Ŵ tanh(V̂ xk + Ĝuk + b̂) + d̂ (19.40)

where, Ŵ =W+δW , V̂ =V+δV , Ĝ=G+δG, b̂=b+δb and d̂=d+δd. Recall that
the uncertainty description of the closed-loop system (19.26) was obtained by
assuming that the uncertainty description (19.23) was available for the open-
loop system. Such a description will now be derived for the system (19.40).
In this way, the first order of Taylor’s expansion around (xk−1, uk−1) results
in

yk+1 = F̂0 + F̂∆xk + Ê∆uk (19.41)

with F̂0, F̂ and Ê, respectively given by

F̂0 = Ŵ tanh(V̂ xk−1 + Ĝuk−1 + b̂) + d̂ (19.42)
F̂ = Ŵ Γ̂k−1V̂ (19.43)
Ê = Ŵ Γ̂k−1Ĝ (19.44)

where

Γ̂k−1 = I − diag[tanh2(V̂ xk−1 + Ĝuk−1 + b̂)] (19.45)

A description is pursued in which the nominal part of (19.41) is described
by (19.35), while the uncertain part is expressed in terms of the uncertainty
weights δW , δV , δG, δb and δd. Such a description can be obtained by
performing the first order of Taylor’s expansion of (19.41) around the nominal
weights of the neural network model, yielding

yk+1 = F0 + (F + δF )∆xk + (E + δE)∆uk (19.46)

where
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δF = δWΓk−1V + WΓk−1δV + WΓ
′
k−1Φ

V
k−1V (19.47)

δE = δWΓk−1G + WΓk−1δG + WΓ
′
k−1Φ

G
k−1G (19.48)

with

Γ
′
k−1 = diag[−2 tanh(V xk−1 + Guk−1 + b)] (19.49)

ΦVk−1 = diag[δV xk−1 + δb] (19.50)

ΦGk−1 = diag[δGuk−1 + δb] (19.51)

and where F0, F and E are defined in (19.36), (19.37) and (19.38), respec-
tively. The final step would be to represent (19.46) in the form (19.23) through
the procedure outlined in section 19.2.2. Then, an uncertainty description for
the linear closed-loop system matrices A and B, defined by δA and δB, can
be obtained through similar expressions as given in (19.27).

19.3.3 Towards uncertainty bounds

The remaining task to complete, in order to have all ingredients for robust-
ness analysis available, is to bound the uncertainty interval of the entries
of matrices A and B, such that a polytopic uncertainty description can be
constructed. Considering the involved expressions, it is not likely that such
bounds can be found analytically without introducing a great deal of conser-
vatism.

Alternatively, a two-step approach can be adopted in which the appropriate
bounds are determined by a combination of analytical and numerical analy-
sis. In the first step an analytical expression for the bounds, δF̃ and δE in
(19.23), at a given operation point (xk, uk), have to be determined. This is
straightforward giving a neural network model. Then, the second step consists
of performing a numerical search over all admissible (xk, uk) in order to find
a maximum for each of these bounds. To ensure that only admissible (xk, uk)
are considered, a reference trajectory vk, as used in the feedback linearizing
control law (19.20), will be designed and used to feedback linearize the model.
As the model output travels along this trajectory, bounds on the uncertainty
entries of matrices A and B can be computed, for each encountered operating
point. Finally, the maximum bound encountered along that trajectory can be
used to construct the polytopic description. Moreover, while this procedure
is being performed, it can be automatically checked whether matrix E, as
defined in (19.10), is invertible over all encountered operating points, a basic
assumption for the success of the proposed control scheme.
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19.4 Concluding remarks

The main contribution of this paper is to provide the necessary ingredients for
a robust nonlinear control design based on approximate feedback lineariza-
tion using neural network models. It was shown that parametric uncertainty
in the weights of the neural network model can be transported through the
proposed control scheme. Moreover, the overall closed-loop uncertainty could
finally be expressed in terms of the uncertainty in the weights of the neural
network. This result enabled to find a polytopic uncertainty description for
the uncertain closed-loop. Based on this polytopic description, robust stabil-
ity of the uncertain closed-loop could be verified by finding a proper Lyapunov
function. Due to the special form of the closed-loop uncertainty description,
finding the Lyapunov function could be translated into an LMI problem, and
thus be tackled with the use of computationally efficient techniques.
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