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Preface

This book presents an account of theories of flow in porous media which
have proved tractable to analysis and computation. In particular, the the-
ories of Darcy, Brinkman, and Forchheimer are presented and analysed
in detail. In addition, we study the theory of voids in an elastic material
due to J. Nunziato and S. Cowin. The range of validity of each theory is
outlined and the mathematical properties are considered. The questions of
structural stability, where the stability of the model itself is under consid-
eration, and spatial stability are investigated. We believe this is the first
such account of these topics in book form. Throughout, we include several
new results not published elsewhere.

Temporal stability studies of a variety of problems are included, indicat-
ing practical applications of each. Both linear instability analysis and global
nonlinear stability thresholds are presented where possible. The mundane,
important problem of stability of flow in a situation where a porous medium
adjoins a clear fluid is also investigated in some detail. In particular, the
chapter dealing with this problem contains some new material only pub-
lished here. Since stability properties inevitably end up requiring to solve
a multi-parameter eigenvalue problem by computational means, a separate
chapter is devoted to this topic. Contemporary methods for solving such
eigenvalue problems are presented in some detail.

Nonlinear acceleration waves in classes of porous media are also stud-
ied. The connection with this and sound propagation in porous media is
analysed. The nonlinear wave analysis is performed for a class of simplified
mixture-like theories and for the Nunziato-Cowin theory of elastic materials
with voids.
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1
Introduction

1.1 Porous media

1.1.1 Applications, examples

Porous media is a subject well known to everyone. Such materials occur
everywhere and influence all of our lives. There are numerous types of
porous media and almost limitless applications of and uses for porous
media. The theory of porous media is driven by the need to understand
the nature of the many such materials available and to be able to use them
in an optimum way.

A key terminology in the theory of porous media is the concept of poros-
ity. The porosity is the ratio of the void fraction in the porous material
to the total volume occupied by the porous medium. The void fraction is
usually composed of air or some other liquid and since both liquids may be
described as fluids we define the porosity at position x and time t, φ(x, t)
by

φ =
fluid volume

total volume of porous medium
. (1.1)

Clearly, 0 ≤ φ ≤ 1. However, in mundane situations φ may be as small as
0.02 in coal or concrete, see e.g. (Nield and Bejan, 2006), whereas φ is close
to 1 in some animal coverings such as fur or feathers, (Du et al., 2007), or
in man-made high porosity metallic foams, (Zhao et al., 2004).

We include photographs of some well known porous materials. Figure 1.1
shows animal fur which is a good example of a porous medium with high
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2 1. Introduction

Figure 1.1. Animal fur is a good example of a high porosity material, as seen in
this kitten

porosity, i.e. close to 1. Figure 1.2 displays a highly grained piece of wood
(elm) and this shows that a porous medium may be highly anisotropic.
Figure 1.3 shows lava from Mount Etna in Sicily, while figure 1.4 dis-
lays sandstone which is another type of porous rock, but one with a very
different structure from lava.

In addition to these we can cite other examples of porous media, such as
biological tissues, e.g. bone, skin; building materials such as sand, cement,
plasterboard, brick; man-made high porosity metallic foams such as those
based on copper oxide or aluminium, and other materials in everyday use
such as ceramics. The types of porous materials we can think of is virtually
limitless.

Applications of porous media in real life are likewise very many. We
could list a great many, but simply quote some to give an idea of the
vastness of porous media theory. Use of copper based foams and other
porous materials in heat transfer devices such as heat pipes used to trans-
fer heat from such as computer chips is a field influencing everyone, see
e.g. (Amili and Yortsos, 2004), (Calmidi and Mahajan, 2000), (Doering
and Constantin, 1998), (Nield and Bejan, 2006), (Nield and Kuznetsov,
2001), (Pestov, 1998), (Salas and Waas, 2007), (Vadasz et al., 2005a),
(Zhao et al., 2004), also in combustion heat transfer devices where the
porous medium is employed with a liquid fuel in a porous combustion
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Figure 1.2. Wood is a very good example of a porous medium which exhibits a
strong anisotropy. The grain effect is clearly visible here. This is a material which
is approximately transversely isotropic

heater, see (Jugjai and Phothiya, 2007). The use of acoustic techniques in
non-destructive testing of materials such as foams or ceramics is highly effi-
cient since the specimen may be examined intact, see e.g. (Ayrault et al.,
1999), (Diebold, 2005), (Johnson et al., 1994), (Ouellette, 2004), (Raiser
et al., 1994), (Saggio-Woyansky et al., 1992). Another interesting use of
acoustic microscopy is to ultra sound testing in medical applications, see
e.g. (Ouellette, 2004). Yet a further use of acoustic waves is in the drying
of foodstuffs, such as apples, see (Simal et al., 1998).

The applications in geophysical situations are also numerous. For exam-
ple, salt movement underground which may have a direct effect on water
supplies is studied by e.g. (Bear and Gilman, 1995), (Gilman and Bear,
1996), (Wooding et al., 1997a; Wooding et al., 1997b). Contaminant trans-
port and underground water flow is of relevance to us all, see e.g. (Boano
et al., 2007), (Das et al., 2002), (Das and Lewis, 2007), (Discacciati et al.,
2002), (El-Habel et al., 2002), (Ewing et al., 1994), (Ewing and Weekes,
1998), (Miglio et al., 2003), (Riviere, 2005). Global warming is very topi-
cal and porous media are involved there in connection with topics such as
ice melting, or carbon dioxide storage, see e.g. (Bogorodskii and Nagurnyi,
2000), (Carr, 2003a; Carr, 2003b), (Ennis-King et al., 2005), (Xu et al.,
2006; Xu et al., 2007). Sand boils, earthquakes, and landslides also have
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Figure 1.3. Lava from Mount Etna, Sicily. Photograph taken at Capomulini, June
2007

a major effect on human life, see e.g. (Kolymbas, 1998), (Rajapakse and
Senjuntichai, 1995), (Wang et al., 1991).

Sound propagation in buildings, building materials, or porous gels is of
immediate environmental concern, see e.g. (Brusov et al., 2003), (Buishvili
et al., 2002), (Ciarletta and Straughan, 2006), (Garai and Pompoli, 2005),
(Jordan, 2005a; Jordan, 2006), (Meyer, 2006), (Mouraille et al., 2006),
(Moussatov et al., 2001), (Singer et al., 1984), (Wilson, 1997). Noise reduc-
tion is also important in exhaust systems such as those of cars, or motor
bikes, and metallic foams are employed here, see e.g. (Maysenhölder et al.,
2004), who test silencers made from aluminium foam and compare the
results with a mineral wool fibre - absorber. Another interesting use of
sound waves is to the detection of mines nearly submerged in the seabed,
(Feuillade, 2007).

Many foodstuffs are porous materials. Modern technology is involved in
such as microwave heating, (Dincov et al., 2004), or drying of foods or
other natural materials, see e.g. (Gigler et al., 2000a; Gigler et al., 2000b),
(Mitra et al., 1995), (Sanjuán et al., 1999), (Vedavarz et al., 1992), (Zorrilla
and Rubiolo, 2005a; Zorrilla and Rubiolo, 2005b). There are many other
diverse application areas of porous materials, such as heat retention in
birds or animals, (Du et al., 2007), bone modelling, (Eringen, 2004b), or
the manufacture of composite materials, increasingly in use in aircraft or
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Figure 1.4. Sandstone. Note the much smoother texture of this compared to the
lava. Photograph taken at Rickaby House, Low Pittington, August 2007

motor car production, see e.g. (Blest et al., 1999). A novel use of a theory for
a porous material is by (Tadj et al., 2007) who model a crop in a greenhouse
as a porous medium when assessing whether heating pipes should be placed
above the crop, at mid-crop height, or at ground level.

We have mentioned some of the many important areas of application of
porous materials. A theoretical understanding of such materials via mathe-
matical models is clearly desirable. In this book we present some relatively
simple mathematical models to describe porous media behaviour. We also
present analyses of these models since mathematical and numerical analy-
ses of them coupled with experimental observations will allow us to assess
how useful a theory is.

We do not attempt to describe the specialist and highly important area
of plasticity in porous materials, see e.g. (Borja, 2004), and the references
therein. Also, we do not deal with the exciting but specialist areas of honey-
comb and auxetic materials. Information on honeycomb materials may be
found at e.g. (Scarpa and Tomlinson, 2000), (Schwingshackl et al., 2006),
(Jung, 2008), (Vasilevich and Alexandrovich, 2008), while information on
auxetic materials in general is contained on the excellent website of Pro-
fessor R.S. Lakes, (Lakes, 2008), where many pertinent references may be
found.
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1.1.2 Notation, definitions

Standard indicial notation is used throughout this book together with the
Einstein summation convention for repeated indices. Standard vector or
tensor notation is also employed where appropriate. For example, we write

ux ≡ ∂u

∂x
≡ u,x ui,t ≡

∂ui

∂t
ui,i ≡

∂ui

∂xi
≡

3∑

i=1

∂ui

∂xi

ujui,j ≡ uj
∂ui

∂xj
≡

3∑

j=1

uj
∂ui

∂xj
, i = 1, 2 or 3.

In the case where a repeated index sums over a range different from 1 to 3
this will be pointed out in the text. Note that

ujui,j ≡ (u · ∇)u and ui,i ≡ div u.

As indicated above, a subscript t denotes partial differentiation with respect
to time. When a superposed dot is used it means the material derivative,
i.e.

u̇i ≡
∂ui

∂t
+ uj

∂ui

∂xj
,

where ui in the equation above is the velocity field. (A special definition
of a material derivative following a constituent particle is introduced in
sections 1.9.1 and 1.9.2. The rest of the book employs the standard material
derivative.)

The letter Ω will denote a fixed, bounded region of 3-space with bound-
ary, Γ, sufficiently smooth to allow applications of the divergence theorem.
When we are dealing with convection problems we handle motion in a plane
layer, say {(x, y) ∈ R

2}×{z ∈ (0, d)}. In this case, we usually refer to func-
tions that have an (x, y) behaviour which is repetitive in the (x, y) direction,
such as regular hexagons. The periodic cell defined by such a shape and its
Cartesian product with (0, d) will be denoted by V. The boundary of the
period cell V will be denoted by ∂V.

The symbols ‖ ·‖ and (·, ·) will denote, respectively, the L2 norm on Ω or
V , and the inner product on L2(Ω) or L2(V ), where the context will define
whether Ω or V is to be used, e.g.,

∫

V

f2dV = ‖f‖2 and (f, g) =
∫

V

fg dV,

with equivalent definitions for Ω. We sometimes have recourse to use the
norm on Lp(Ω), 1 < p < ∞, and then we write

‖f‖p =
(∫

Ω

|f |pdx

)1/p

.

We introduce the ideas of stability and instability in the context of the
porous medium equation, see section 1.2.1, (which would be defined with
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suitable boundary conditions):

∂u

∂t
− ΔΦ(u) = 0, (1.2)

where Φ is a known nonlinear function, where x ∈ Ω ⊂ R
3, and where

Δ = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 is the Laplace operator.
We introduce notation in the context of a steady solution to (1.2), namely

a solution ū satisfying

ΔΦ(ū) = 0. (1.3)

(We could equally deal with the stability of a time-dependent solution, but
many of the problems encountered here are for stationary solutions and at
this juncture it is as well to keep the ideas as simple as possible.) Let w be
a perturbation to (1.3), i.e. put u = ū + w(x, t). Then, it is seen from (1.2)
and (1.3) that w satisfies the system

∂w

∂t
−
{
Δ
[
Φ(ū + w)

]
− Δ
[
Φ(ū)

]}
= 0. (1.4)

To discuss linearized instability we linearize (1.4) which means we keep
only the terms which are linear in w. From a Taylor series expansion of Φ
we have

Φ(ū + w) = Φ(ū) + wΦ′(ū) + O(w2). (1.5)

Then, using (1.3), (1.5) in (1.4) we derive the linearized equation satisfied
by w, namely

∂w

∂t
− Δ
[
wΦ′(ū)

]
= 0. (1.6)

Since (1.6) is a linear equation we may introduce an exponential time
dependence in w so that w = eσts(x). Then (1.6) yields

σs − Δ
[
sΦ′(ū)

]
= 0. (1.7)

We say that the steady solution ū to (1.3) is linearly unstable if

Re(σ) > 0,

where Re(σ) denotes the real part of σ. Equation (1.7) (together with
appropriate boundary conditions) is an eigenvalue problem for σ. For many
of the problems discussed in this book the eigenvalues may be ordered so
that

Re(σ1) > Re(σ2) > . . .

For linear instability we then need only ensure Re(σ1) > 0.
Let w0(x) = w(x, 0) be the initial data function associated to the solution

w of equation (1.4). The steady solution ū to (1.3) is nonlinearly stable if
and only if for each ε > 0 there is a δ = δ(ε) such that

‖w0‖ < δ ⇒ ‖w(t)‖ < ε (1.8)
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and there exists γ with 0 < γ ≤ ∞ such that

‖w0‖ < γ ⇒ lim
t→∞

‖w(t)‖ = 0. (1.9)

If γ = ∞, we say the solution is unconditionally nonlinearly stable (or
simply refer to it as being asymptotically stable), otherwise for γ < ∞ the
solution is conditionally (nonlinearly) stable. For nonlinear stability prob-
lems it is an important goal to derive parameter regions for unconditional
nonlinear stability, or at least conditional stability with a finite initial data
threshold (i.e. finite, non-vanishing, radius of attraction). It is important
to realise that the linearization as in (1.6) and (1.7) can only yield linear
instability. It tells us nothing whatsoever about stability. There are many
equations for which nonlinear solutions will become unstable well before
the linear instability analysis predicts this, cf. (Lu and Shao, 2003). Also,
when an analysis is performed with γ < ∞ in (1.9) this yields conditional
nonlinear stability, i.e. nonlinear stability for only a restricted class of initial
data.

We have only defined stability with respect to the L2(Ω) norm in (1.8)
and (1.9). However, sometimes it is convenient to use an analogous defini-
tion with respect to some other norm or positive-definite solution measure.
It will be clear in the text when this is the case. When we refer to con-
tinuous dependence on the initial data we mean a phenomenon like (1.8).
Thus, a solution w to equation (1.4) depends continuously on the initial
data if a chain of inequalities like (1.8) holds.

Throughout the book we make frequent use of inequalities. In particular,
we often use the Cauchy-Schwarz inequality for two functions f and g, i.e.

∫

Ω

fg dx ≤
(∫

Ω

f2dx

)1/2(∫

Ω

g2dx

)1/2

, (1.10)

or what is the same in L2 norm and inner product notation,

(f, g) ≤ ‖f‖ ‖g‖. (1.11)

The arithmetic-geometric mean inequality (with a constant weight α > 0)
is, for a, b ∈ R,

ab ≤ 1
2α

a2 +
α

2
b2, (1.12)

and this is easily seen to hold since
(

a√
α
−
√

αb

)2

≥ 0.

Another inequality we frequently have recourse to is Young’s inequality,
which for a, b ∈ R we may write as

ab ≤ |a|p
p

+
|b|q
q

,
1
p

+
1
q

= 1, p, q ≥ 1. (1.13)
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1.1.3 Overview

The layout of the book is now briefly described. In sections 1.2 – 1.5 we
discuss the classical models of Darcy, Forchheimer and Brinkman, on which
a major part of this book is based. Sections 1.6 and 1.7 discuss how effects
like temperature and a salt field are incorporated into porous media, and
the relevant boundary conditions to be used. In section 1.8 we refer to
another theoretical description of porous media where the motion of the
elastic matrix is considered by including a void distribution in the theory of
nonlinear elasticity. Finally, the introduction concludes by examining two
theories for a mixture of an elastic solid with one or more fluids.

Chapter 2 is, we believe, new in book form. This investigates the impor-
tant problem of whether the porous model itself is stable. This concept
of stability, known as structural stability, is very important. Several new
results are included here. Chapter 3 is another chapter we have never seen
before in book form. This considers the aspect of spatial decay of a solu-
tion in porous media. Again, several results not published elsewhere are
included here.

Chapters 4 and 5 consider a variety of stability problems in porous
media flow. There is very little overlap with the material of my earlier
book (Straughan, 2004a) or the book by (Nield and Bejan, 2006). Chapter
4 concentrates on thermal convection problems in porous media, whereas
chapter 5 reviews recent work by a variety of writers.

Chapter 6 considers another relatively new topic, that of stability of
several flows in a fluid which overlies a saturated porous medium. The sec-
tions where the fluid overlies a transition layer composed of a Forchheimer
porous material, or a Brinkman-Forchheimer porous material, which in turn
overlies a Darcy porous medium, are new. The last section of this chapter
studies wave motion when the wave is incident from a fluid but is reflected
/ refracted by a saturated porous medium below. This leads naturally into
the next two chapters, chapters 7 and 8 where nonlinear wave motion is
considered in a porous body.

Chapter 7 investigates nonlinear waves propagating in a nonlinear elastic
body which has a distribution of voids throughout. Temperature effects
and temperature waves are also considered in detail. Chapter 8 studies
what are known as equivalent fluid theories where a compressible fluid
saturates a porous medium, but the solid matrix is regarded as fixed. Again,
consideration is also given to temperature wave propagation.

The monograph is completed with chapter 9 which deals with three meth-
ods for the numerical solution of differential equation eigenvalue problems.
The techniques discussed are the compound matrix method, the Cheby-
shev tau method, and a Legendre - Galerkin technique. While the first two
are discussed in my book (Straughan, 2004a), the third is not. The third
technique has some useful advantages which are outlined here. However,
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the examples given for the other two methods are different from those
in (Straughan, 2004a).

We briefly touch on the important topic of stability of flow in unsat-
urated porous media in section 5.7. This is a relatively new topic which
is increasingly occupying attention. Another area which is highly topical,
is stability of flow of a viscoelastic fluid in a porous medium, and this is
considered in section 5.2. In fact, even the development of an appropriate
theory to model flow of a viscoelastic fluid in a porous medium is non-
trivial, as may be witnessed from the papers, for example, of (Lopez de
Haro et al., 1996) and (Wei and Muraleetharan, 2007). Nevertheless, due
to problems involving flow of oils in soils / rocks, this is an important area.

1.2 The Darcy model

The celebrated Darcy equation is believed to originate from work of (Darcy,
1856), and this equation is discussed in detail in (Nield and Bejan, 2006),
section 1.4. Darcy’s law basically states that the flow rate of a fluid in a
porous material is proportional to the pressure gradient. In current termi-
nology, if the flow is in the x−direction and the speed in that direction is
u then this may be represented as

μu = −k
dp

dx
, (1.14)

where μ, k are viscosity and permeability with p being the pressure of the
fluid in the porous medium. Despite its apparent simplicity, equation (1.14)
has been very successful in providing a theoretical description of flow in
porous media.

Equation (1.14) is generalized to three spatial dimensions and we allow
for external forces (such as gravity). Thus, if we denote the velocity field in
the porous medium by v, where v = (u, v, w), and denote the body force
by f , we have a three-dimensional version of equation (1.14) which takes
form

0 = − ∂p

∂xi
− μ

k
vi + ρfi, (1.15)

where ρ is the density of the fluid, cf. (Joseph, 1976a). Equation (1.15)
describes flow of a fluid in a saturated porous medium, provided the flow
rate is sufficiently low. Throughout this book we make extensive use of
equation (1.15), often coupled to other equations, for the temperature, or
salt concentration, for example.

If the fluid in the porous medium is incompressible then we must couple
equation (1.15) with the incompressibility condition

∂vi

∂xi
= 0. (1.16)
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Derivations of Darcy’s law based on various assumptions may be found
in many places in the literature, cf. (Nield and Bejan, 2006), section 1.4.
Very interesting accounts based on homogenization and on asymptotic
expansions are provided by (Firdaouss et al., 1997) and by (Giorgi, 1997),
respectively, see also (Whitaker, 1986). In this book we are concerned with
uses of Darcy’s law and related models. The history of porous media model
development may be found in (de Boer, 1999).

1.2.1 The Porous Medium Equation

There is an equation which frequently appears in the mathematical anal-
ysis literature known as the porous medium equation, cf. (Alikakos and
Rostamian, 1981), (Aronson and Peletier, 1981), (Di Benedetto, 1983),
(Aronson and Caffarelli, 1983), (Flavin and Rionero, 1995). If the fluid
is compressible, i.e. equation (1.16) does not hold, then the density instead
satisfies the equation

∂ρ

∂t
+

∂

∂xi
(ρvi) = 0. (1.17)

If we couple this equation to equation (1.15) with fi = 0, then since p is a
function of ρ,

vi = −k

μ

∂p

∂xi
. (1.18)

Substitute in equation (1.17) for vi and we obtain the equation

∂ρ

∂t
− k

μ

∂

∂xi

(
ρ

∂p

∂xi

)
= 0

or
∂ρ

∂t
− k

μ

∂

∂xi

(
ρp′(ρ)

∂ρ

∂xi

)
= 0 .

Let Φ(ρ) be a potential (integral) for the function (kρp′/μ)(∂ρ/∂xi), i.e.

∂Φ
∂xi

= Φ′(ρ)
∂ρ

∂xi
=

kρp′(ρ)
μ

∂ρ

∂xi
,

and then the last equation may be rewritten as

∂ρ

∂t
− ΔΦ(ρ) = 0. (1.19)

Equation (1.19) is that equation often referred to as the porous medium
equation.

Some of the very interesting early articles on the porous medium equa-
tion are those of (Alikakos and Rostamian, 1981), (Aronson and Peletier,
1981), (Di Benedetto, 1983), (Aronson and Caffarelli, 1983), and a recent
very interesting article dealing with a novel application of the porous
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medium equation to image contour enhancement in image processing is
by (Barenblatt and Vazquez, 2004). Further interesting pointwise stabil-
ity results and finite time blow-up results for a solution to equations like
(1.19) may be found in (Flavin and Rionero, 1998; Flavin and Rionero,
2003), (Flavin, 2006), for various choices of nonlinear function Φ. The
work of (Rionero and Torcicollo, 2000) studies continuous dependence in a
weighted L2 norm for a similar problem and (Rionero, 2001) contains some
interesting asymptotic results.

1.3 The Forchheimer model

If the flow rate exceeds a certain value then it is believed that the linear
relationship of (1.14) or (1.15) will be inadequate to describe the velocity
field accurately. (Forchheimer, 1901) (see also (Dupuit, 1863)) proposed
modifying the linear velocity / pressure gradient law and replacing it with
a nonlinear one. According to (Firdaouss et al., 1997), (Forchheimer, 1901)
proposes replacing the left hand side of equation (1.14) by one of three
formulae,

α = au + bu2, α = mun, α = au + bu2 + cu3,

where α denotes the left hand side of equation (1.14). In this book we pay
particular attention to the first of these. The generalization of equation
(1.15) which is consistent with this results in the Forchheimer model

0 = − ∂p

∂xi
− μ

k
vi − b|v|vi + ρfi. (1.20)

For incompressible flow we couple this with equation (1.16).
Rigorous justifications of equation (1.20) and generalizations may be

found in the papers of (Whitaker, 1996), (Firdaouss et al., 1997), (Giorgi,
1997), (Bennethum and Giorgi, 1997).

1.4 The Brinkman model

If the porosity, φ, of the porous medium is close to 1, i.e. the solid skeleton
occupies little of the total volume, or if the porous medium is adjacent to
a solid wall, then there is a belief that neither of the models of sections
1.2 nor 1.3 will prove sufficient. Indeed, when φ ≈ 1, one might expect the
higher derivatives of the Laplacian in the Navier-Stokes equations to play
a role. In fact, there is evidence that equation (1.15) should be replaced by
the following

0 = − ∂p

∂xi
− μ

k
vi + λΔvi + ρfi. (1.21)
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Equation (1.21) is usually associated with (Brinkman, 1947) and this equa-
tion is discussed in some detail by (Nield and Bejan, 2006), section 1.5.3.
The coefficient λ is usually referred to as an equivalent viscosity.

Throughout this book we make an investigation into properties of the
solution to the Darcy model, (1.15) together with (1.16), the Forchheimer
model, (1.20) together with (1.16), or the Brinkman model, (1.21) together
with (1.16).

1.5 Anisotropic Darcy model

The models discussed in sections 1.2, 1.3, 1.4 are frequently very useful
when dealing with the flow in a porous medium when the situation is
isotropic, i.e. the response is the same in all directions. However, many
porous media exhibit strongly anisotropic characteristics. For example,
wood behaves very differently along the grain to the way it does across the
grain. Rock strata is another example of highly anisotropic porous media.
When one is interested in modelling flow in anisotropic porous media, then
we should modify each of the models in sections 1.2, 1.3, 1.4, accordingly.

In this section we indicate how we may modify the model in section 1.2.
Anisotropic modifications for the other models follow in a similar manner.

Typically the permeability, i.e. the ease with which the fluid flows, will
vary if the solid fraction of the porous medium displays a strong anisotropy.
To account for this we replace the permeability k in (1.15) by a tensor Kij .
Thus, we may replace equation (1.15) by

Kij
∂p

∂xj
= −μvi + ρKijfj . (1.22)

If we introduce a generalized inverse tensor to Kij , say Mij , then we may
recast equation (1.22) in a form not dissimilar to (1.15). To do this we
suppose

MK = cI, i.e. M = cK−1,

for c > 0 a constant, and then equation (1.22) is equivalent to

0 = −μ

c
Mijvj −

∂p

∂xi
+ ρfi. (1.23)

Equation (1.23) is to be coupled with equation (1.16). The precise form for
K depends on what the structure is of the underlying solid matrix in the
porous medium.

As a specific example we consider the case where the permeability in the
vertical direction is different from that in the horizontal directions. Then,
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for k = k3, k, k3 > 0,

K =

⎛

⎝
k 0 0
0 k 0
0 0 k3

⎞

⎠

If we select c = k3, we need

M =

⎛

⎝
k3/k 0 0

0 k3/k 0
0 0 1

⎞

⎠

A porous convection problem with such a permeability is analysed by (Carr
and de Putter, 2003). A further example of application to thermal convec-
tion in a porous medium with transversely isotropic permeability at an
angle oblique to the vertical is given in (Straughan and Walker, 1996a), see
also (Straughan, 2004a), p. 338, and sections 4.1.3 and 4.2.6 of this book.
The permeability for this situation is not simply a diagonal matrix and this
severely complicates the analysis and numerical calculations.

1.6 Equations for other fields

1.6.1 Temperature

It is typical in flow through a porous medium that we may also wish to
determine the temperature at a point, or the concentration of a chemical,
say salt. A convenient derivation of the equation for these fields is given
by (Joseph, 1976a). We follow his derivation.

In a given (small) volume, Ω̃, containing the point x, we denote the solid
(porous matrix) part by s while f denotes the fluid. The individual fluid
and solid volumes within Ω̃ are denoted by Ωf and Ωs, respectively. The
“small” volume is such that a typical length scale is sufficiently larger than
the pore scale of the porous material, but the same length scale is much
smaller than the overall flow domain. ((Nield and Bejan, 2006), pp. 2,3,
refer to such a volume as a representative elementary volume.) The thermal
diffusivities are κs, κf , the densities are ρ0α, α = s or f , cs is the specific
heat of the solid, and cpf denotes the specific heat at constant pressure of
the fluid. Then, let vi be the average velocity of the fluid at point x (the
seepage velocity) which appears in (1.15) (vi is the average of the real fluid
velocity over the whole of Ω̃). Let also Vi, defined by vi = φVi, be the pore
average velocity (i.e. the fluid velocity averaged over Ωf ). For the separate
solid and fluid components we have for the temperature field, T,

(ρ0c)s
∂T

∂t
= κsΔT, (1.24)

(ρ0cp)f

(
∂T

∂t
+ Vi

∂T

∂xi

)
= κfΔT. (1.25)
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We add (1 − φ)(1.24) and φ(1.25) to see that
[
φ(ρ0cp)f + (ρ0c)s(1 − φ)

]∂T

∂t

+ (ρ0cp)fφVi
∂T

∂xi
=
[
κs(1 − φ) + κfφ

]
ΔT.

(1.26)

Denote by M = (ρ0cp)f/(ρ0c)m where (ρ0c)m = φ(ρ0cp)f + (ρ0c)s(1 − φ),
and by κ = km/(ρ0cp)f , where km = κs(1−φ)+κfφ. Then, equation (1.26)
may be rewritten

1
M

∂T

∂t
+ vi

∂T

∂xi
= κΔT. (1.27)

Equation (1.27) is the equation we employ to govern the temperature field
in a porous medium. If we couple it with equations (1.15), (1.16), then we
must specify how temperature enters equation (1.15). This is usually done
via some equation of state for ρ(T ), cf. section 4.1.

1.6.2 Salt field

If we have a fluid with a salt dissolved in it in a porous medium we may
use a similar procedure to derive an equation for the salt concentration,
C. Suppose the salt is not absorbed by the solid matrix. Then, in the fluid
part, the salt concentration, C, satisfies the differential equation

∂C

∂t
+ Vi

∂C

∂xi
= kcΔC. (1.28)

Since Vi = vi/φ, the equation governing C is

φ
∂C

∂t
+ vi

∂C

∂xi
= φkcΔC. (1.29)

If we were to non-dimensionalize with time, T = d2/Mκ, velocity, U = κ/d,
d being a length scale, then one may show the appropriate non-dimensional
form of (1.29) is

Mφ
∂C

∂t
+ vi

∂C

∂xi
=

1
Le

ΔC. (1.30)

Here, Le = φkc/κ is a Lewis number.
We see that some care must be exercised to derive the correct coefficients

in a non-dimensional form of the equations governing non-isothermal flow
of a salt laden fluid in a porous medium.

1.7 Boundary conditions

For the Darcy model of section 1.2 or the Forchheimer model of section
1.3 we do not have derivatives present in the vi term. Thus, we need to
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prescribe the normal component of vi on the boundary, Γ, of a volume Ω,
i.e. we prescribe vini, ni being the unit outward normal to Γ. However,
when dealing with the Brinkman model of section 1.4 the presence of the
Δvi term means we need to prescribe vi on the whole of Γ (assuming we are
dealing with no-slip boundary conditions; slip boundary conditions could
also be handled, cf. (Webber, 2007; Webber, 2006)). If the porous medium
borders a fluid then the correct form of boundary condition is a contentious
matter. This topic is treated in detail in chapter 6.

For the temperature field, T, we may prescribe T on Γ if the temperature
is measurable there. If, on the other hand, we can measure the heat flux on
the boundary Γ, then since the heat flux q is usually given by qi = −κT,i,
κ > 0, we can prescribe qini on Γ. In other words, we may prescribe ∂T/∂n
on Γ. Perhaps a combination boundary condition may also be appropriate,
i.e. one of form

∂T

∂n
+ γT = a,

where a is a prescribed function. If radiation heating is the dominant effect,
e.g. a surface directly in sunlight, then γ is likely to be small. If, however,
there is little radiant heating, it may be more appropriate to assign T on Γ.
The combination boundary condition is between both extremes and may
hold for several real problems. Surface radiation may have a significant
effect on thermal convection and stability, see e.g. (Jaballah et al., 2007).

For a salt field, if there is zero flux of the salt out of the boundary, we
may assume ∂C/∂n = 0 there. However, there are some instances where it
is possible to control the concentration field on Γ, cf. (Krishnamurti, 1997)
and in this instance we would have a boundary condition of form

C = CG, x ∈ Γ,

where CG is a known function.

1.8 Elastic materials with voids

1.8.1 Nunziato-Cowin theory

Another class of theories which may be thought of as describing certain
properties of porous media were derived by (Nunziato and Cowin, 1979).
The key idea is to suppose there is an elastic body which has a distribution
of voids throughout. The voids are gaps full of air, water, or some other
fluid. This theory provides equations for the displacement of the elastic
matrix of the porous medium and the void fraction occupied by the fluid.
This is thus very different from the equations considered thus far in the
introduction where we are interested in determining the velocity field for
the fluid in the porous medium. Nevertheless, we believe the voids theory
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has a large potential, especially in wave propagation problems. We do not
describe explicitly a voids theory at this point, although the equations are
derived in sections 7.2.2 and 7.2.3 of chapter 7, where they are analysed in
connection with acceleration wave propagation.

The theory of an elastic body containing voids essentially generalizes
the classical theory of nonlinear elasticity by adding a function ν(X, t) to
describe the void fraction within the body. Here X denotes a point in the
reference configuration of the body. Thus, in addition to the momentum
equation for the motion xi = xi(X, t) as time evolves, one needs to prescribe
an evolution equation for the void fraction ν. For a non-isothermal situation
one also needs an energy balance law which effectively serves to determine
the temperature field T (X, t). The original theory is due to (Nunziato and
Cowin, 1979) and the temperature field development was largely due to D.
Iesan, see details in chapter 1 of (Iesan, 2004). This theory has much in
common with the continuum theory for granular materials, cf. (Massoudi,
2005; Massoudi, 2006a; Massoudi, 2006b).

In this book we also consider temperature field development in a voids
theory firstly by adding the time derivative of temperature as a consti-
tutive variable, cf. (Ciarletta and Straughan, 2007b) and section 7.3 of
this book. We then add temperature effects via the (Green and Naghdi,
1991) thermal displacement variable α(X, t) =

∫ t

0
T (X, s)ds. This theory is

due to (De Cicco and Diaco, 2002) and acceleration waves are considered
by (Ciarletta et al., 2007), see also section 7.4 of this book. We also include
the temperature field via a (Green and Naghdi, 1991; Green and Naghdi,
1992) type III theory development in section 7.5. We have not seen this
development before.

1.8.2 Microstretch theory

(Eringen, 1990; Eringen, 2004b) develops a voids theory which has a richer
structure than the (Nunziato and Cowin, 1979) model. This is achieved by
incorporating an equation for the spin at each point of the body. Again, this
theory is likely to have rich application in wave propagation problems. We
describe this theory in connection with nonlinear wave motion in section
7.6.

In addition to the fields ν, xi, T, the (Eringen, 1990; Eringen, 2004b)
microstretch theory adds a variable φi which is a microrotation vector.
(Iesan and Scalia, 2006) study nonlinear singular surfaces in this theory,
although we also address some new questions regarding singular surfaces
in section 7.6 of this book.

A detailed account of many properties of elastic bodies containing voids
may also be found in the book by (Iesan, 2004), chapters 1 to 3.
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1.9 Mixture theories

The theories of sections 1.2 – 1.5 account for the velocity field and pres-
sure of the fluid in a saturated porous material. They do not allow one
to account for dynamic modelling of the deformation of the solid porous
matrix. The theory of voids mentioned in section 1.8 allows us to calculate
the dynamic behaviour of the elastic matrix and of the void fraction (fluid
fraction). However, it does not allow us to specify the constitutive proper-
ties of the fluid filling the voids, nor does it allow us to calculate the fluid
velocity field. In order to have a complete theory in which we may determine
both the dynamic behaviour of the elastic matrix and of the fluid filling the
matrix we need a more complete (and inevitably more complicated) theory.
One such avenue open to us is to employ a continuum mixture theory of
an elastic solid and an appropriate fluid, for example, a Newtonian fluid.
By assuming each point of the body is simultaneously occupied by a fluid
and a solid, one can produce a suitable continuum theory. The literature
is full of such theories, which one may refer to as poroelasticity, and we
do not attempt to review them all. The origins of the theory of poroelas-
ticity are normally attributed to Terzaghi in 1923 and the classical linear
equations are usually associated with Biot in 1941 (see e.g. (Lewis and
Schrefler, 1998) or (Senjuntichai and Rajapakse, 1995)). Several mixture
theory approaches, particularly those useful for numerical and engineering
applications are discussed at length in the book of (Lewis and Schrefler,
1998), and in the articles of (Biot, 1956a; Biot, 1956b), (Hassanizadeh and
Gray, 1990; Hassanizadeh and Gray, 1993), (de Boer et al., 1993), (Jiang
and Rajapakse, 1994), (Zhou et al., 1998), (dell’Isola and Hutter, 1998;
dell’Isola and Hutter, 1999), (Albers, 2003), (Albers and Wilmansky, 2005),
(Weinstein and Bennethum, 2006), where many other relevant references
are quoted.

Of the many available mixture theories which lead to a theoretical
description of the behaviour of a porous medium, we choose to give a
brief exposition of two. One is that developed by (Eringen, 1994; Eringen,
2004a). This leads to a concise nonlinear theory. The other is due to (Bowen,
1982). The latter is chosen because it allows for a variable porosity treat-
ment through an internal variable approach. In fact, both theories are used
in this book. Eringen’s theory is employed in section 8.1.2 to derive the
Jordan - Darcy equations which allow for a description of acoustic waves in
a porous medium. The theory of Bowen is used in section 6.8 to study the
effect of variable porosity on the transmission and reflection of an acoustic
wave at the sea bed.

1.9.1 Eringen’s theory

We do describe a theory of mixtures derived by (Eringen, 1994; Eringen,
2004a). To do this we need some general notation appropriate to the con-
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tinuum theory of mixtures. (Eringen, 1994) develops his theory for a three
component mixture of a fluid, a gas, and an elastic solid. These constituents
are denoted respectively by f, g, s. We suppose that each constituent occu-
pies a continuous body in three - dimensions. Each body is assigned to a
fixed reference configuration. The motion of each point in the constituent
body satisfies a mapping

xα
i = xα

i (Xα
A, t), α = f, g, s,

where XA and xi refer to the positions in a reference configuration and
a current configuration, respectively. At the point xα

i at time t, each con-
stituent is present. The velocity and acceleration of each constituent are
represented by

vα
i =′xα

i =
∂xα

i

∂t

∣∣∣
Xα

A

, aα
i =′′xα

i =
∂2xα

i

∂t2

∣∣∣
Xα

A

.

A material derivative of a function ψ(xα
i , t) may be defined following the

motion of the αth constituent, by

′ψα =
∂ψ

∂t

∣∣∣
Xα

A

=
∂ψ

∂t
(xα

i , t) + ′xα
j

∂ψ

∂xα
j

(xα
i , t) .

In what follows the ′ or ′′ notion refers to the first or second material
derivative following the motion of a particular constituent. Each constituent
has a mass density ρα (α = f, g, s) and then the mixture density, ρ(xi, t),
and mixture velocity, vi(xj , t), are given by

ρ(xi, t) = ρf + ρg + ρs,

vi(xj , t) = ẋi =
1
ρ
(ρfvf

i + ρgvg
i + ρsvs

i ) .

A superposed dot denotes the material time derivative, i.e.

ψ̇ =
∂ψ

∂t
(xj , t) + vi

∂ψ

∂xi
(xj , t) .

The gradient of deformation of Xα
A may be defined for each constituent as

Fα
iA =

∂xα
i

∂Xα
A

, α = f, g, s.

Eringen’s theory is based on the equations of conservation of mass for
each constituent, i.e.

∂ρf

∂t
+

∂

∂xi
(ρfvf

i ) = 0, (1.31)

∂ρg

∂t
+

∂

∂xi
(ρgvg

i ) = 0, (1.32)

∂ρs

∂t
+

∂

∂xi
(ρsvs

i ) = 0, (1.33)
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although equation (1.33) may be written in the perhaps more convenient
form

ρs|det(F s
iA)| = ρs

0 , (1.34)

where ρs
0 denotes the solid density in the reference configuration. (In fact,

equations (1.31) and (1.32) may also be written in a form similar to (1.34).
However, the fluid components frequently are best solved from equations
(1.31) and (1.32).)

The balance of momentum equations have form

ρf ′′xf
i =

∂tfij
∂xj

+ ρfbf
i − pf

i , (1.35)

ρg ′′xg
i =

∂tgij
∂xj

+ ρgbg
i − pg

i , (1.36)

ρs ′′xs
i =

∂tsij
∂xj

+ ρsbs
i − ps

i , (1.37)

where tfij , t
g
ij , t

s
ij are the stress tensors, bf

i , bg
i , b

s
i are the body force terms,

and pf
i , pg

i , p
s
i are the momentum supplies (the interaction forces). In addi-

tion there are balance of moment of momentum equations, (Eringen, 1994),
equation (2.16). (We do not specifically use these here.)

(Eringen, 1994; Eringen, 2004a) writes separate energy balance laws for
each constituent. However, since he subsequently assumes a common tem-
perature, θ, for each constituent, it is sufficient to work with a single energy
balance law, and this is

ρε̇ − ∂qi

∂xi
−
∑

α

(tαijv
α
i,j + pα

i vα
i ) − ρh = 0, (1.38)

where the
∑

α is over α = f, g and s, and where ε is the internal energy, qi

is the heat flux vector, and h is the external supply of energy.
Eringen’s theory is developed in terms of a Helmholtz free energy func-

tion ψ = ε − ηθ, η being the entropy. The constitutive theory of (Eringen,
1994) is such that

ψ, η, qi, t
α
ij ,m

α
ij , p

α
i , α = f, g, s,

depend on the independent variables

θ, ρg, ρf , F s
iA, θ̇, θ,i, d

f
ij , w

f
ij , v

f
i , vg

i , vs
i , (1.39)

where tαij and mα
ij now denote the symmetric and skew-symmetric parts

of the stress tensors, α = f, g, s, and df
ij , w

f
ij are the symmetric and skew-

symmetric parts of the fluid velocity gradient vf
i,j , i.e. df

ij = (vf
i,j + vf

j,i)/2,

wf
ij = (vf

i,j − vf
j,i)/2. This constitutive theory is thus appropriate for a

mixture of a viscous fluid, an inviscid fluid (gas), and an elastic solid.
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By employing a suitable entropy inequality, (Eringen, 1994; Eringen,
2004a) reduces his constitutive theory. He splits the independent variables
into the first four in the list (1.39), with the remainder representing a
dissipative part. In fact, he shows that

ψ = ψ(θ, ρg, ρf , CKL), (1.40)

where

CKL =
∂xi

∂Xs
K

∂xi

∂Xs
L

,

and introduces a dissipation function Φ with

Φ = Φ(I1, . . . , I
a
5 , θ̇; θ, ρg, ρf , CKL), a = f, g,

where I1, . . . , I
a
5 are the following invariants

I1 = (df
ii)

2, I2 = df
ijd

f
ji, I3 = θ,iθ,i/θ2 ,

Iff
4 = (vf

i − vs
i )(v

f
i − vs

i ), Ifg
4 = Igf

4 = (vf
i − vs

i )(v
g
i − vs

i ),
Igg
4 = (vg

i − vs
i )(v

g
i − vs

i ),

If
5 = (vf

i − vs
i )θ,i/θ, Ig

5 = (vg
i − vs

i )θ,i/θ .

The governing equations are then (1.31) – (1.33), (1.35) – (1.37) and
(1.38), with the constitutive equations derived by Eringen having form

η = −∂ψ

∂θ
− 1

ρ

∂Φ
∂θ̇

,

qi =
2
θ

∂Φ
∂I3

θ,i +
∂Φ

∂If
5

(vf
i − vs

i ) +
∂Φ
∂Ig

5

(vg
i − vs

i ),

tgij = −δijπ
g, πg = ρρg ∂ψ

∂ρg
,

tfij =
(
−πf + 2

∂Φ
∂I1

df
kk

)
δij + 4

∂Φ
∂I2

df
ij , πf = ρρf ∂ψ

∂ρf
,

tsij = ρ
( ∂ψ

∂CAB
+

∂ψ

∂CBA

) ∂xi

∂Xs
A

∂xj

∂Xs
B

,

pf
i =

1
θ

∂Φ

∂If
5

θ,i + 2
∂Φ

∂Iff
4

(vf
i − vs

i ) + 2
∂Φ

∂Ifg
4

(vg
i − vs

i )

pg
i =

1
θ

∂Φ
∂Ig

5

θ,i + 2
∂Φ

∂Igg
4

(vg
i − vs

i ) + 2
∂Φ

∂Igf
4

(vf
i − vs

i )

ps
i = −pf

i − pg
i .

(1.41)

Once the functions ψ and Φ are prescribed, we then have a consistent theory
which can, in principle, be solved. I am unaware of any specific problems
which have been solved using the fully nonlinear theory, equations (1.31) –
(1.33), (1.35) – (1.37), (1.38), and (1.41), but this would be a very useful
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avenue to pursue, especially if a good choice of ψ and Φ were made, based
on sound physical principles.

To make progress, (Eringen, 1994) considers a theory in which ψ is
quadratic in appropriate variables, and then develops a linearized set of
governing equations for the mixture.

We record the linearized equations for an isothermal, isotropic mix-
ture, linearized about reference densities ρf

0 , ρg
0, ρ

s
0. In these equations uα

i

α = f, g, s, denote the displacements from a point xα
i . The three sets of

equations become

ρg
0ü

g
i = − σggug

j,ji − σgfuf
j,ji − σgus

j,ji

− ξgg(u̇g
i − u̇s

i ) − ξgf (u̇f
i − u̇s

i ) + ρg
0b

g
i ,

ρf
0 üf

i = − σfgug
j,ji − σffuf

j,ji − σfus
j,ji − ξgf (u̇g

i − u̇s
i )

− ξff (u̇f
i − u̇s

i ) + (λv + μv)u̇f
j,ji + μvu̇f

i,jj + ρf
0bf

i ,

ρs
0ü

s
i = − σgug

j,ji − σfuf
j,ji + (λ + μ)us

j,ji + μus
i,jj

+ (ξgf + ξgg)(u̇g
i − u̇s

i ) + (ξgf + ξff )(u̇f
i − u̇s

i ) + ρs
0b

s
i ,

where the coefficients are constants satisfying inequalities given
by (Eringen, 1994). The linear equations governing the behaviour of a
fluid and a solid, or a gas and a solid, are also given by (Eringen, 1994),
and these are easily deduced from the above system of equations. Various
decay and related properties of solutions to these equations are studied
by (Quintanilla, 2002d; Quintanilla, 2002a; Quintanilla, 2002c; Quintanilla,
2003; Quintanilla, 2004) and by (Gales, 2003).

(Eringen, 1994) also considers the passage from his theory to classical
diffusion theories. From the equations for pf

i and the fluid momentum equa-
tion (1.35) he shows that if one neglects the inertia coefficient in (1.35),
then one deduces

vf
i − vs

i =
1
3

(
−∂πf

∂xi
+ ρfbf

i − γθ,i

)
. (1.42)

If the elastic part of the mixture (the solid matrix) is fixed and the
temperature is constant, then (1.42) reduces to

vf
i = −1

3
∂πf

∂xi
− ρf

3
bf
i . (1.43)

Equation (1.43) is just Darcy’s law, which has then been deduced
by (Eringen, 1994) from his mixture theory.

1.9.2 Bowen’s theory

An interesting development of mixture theory to porous media is due
to (Bowen, 1982). He is interested in a mixture in which the constituents
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are not necessarily miscible and he employs what is effectively an internal
variable theory to achieve this.

The governing equations of (Bowen, 1982) are (1.31) – (1.33), (1.35) –
(1.37), and (1.38), (although his notation is different). However, his theory
is different from that of (Eringen, 1994), one of the reasons being that he
essentially develops a variable porosity mixture theory by employing an
internal variable theory. While (Bowen, 1982) considers a mixture com-
posed of a solid plus N − 1 fluids, we restrict attention to an elastic solid,
constituent denoted by s, with two fluids denoted by sub or superscripts 2
and 3.

Let ρ̄s, ρ̄2, ρ̄3 denote the actual densities of the solid and fluid constituents
before mixing. The volume fractions φs, φ2, φ3 are introduced as

φs =
ρs

ρ̄s
, φ2 =

ρ2

ρ̄2
, φ3 =

ρ3

ρ̄3
. (1.44)

Due to volume additivity,

φs + φ2 + φ3 = 1. (1.45)

(Bowen, 1982) argues that by including dependence on φs, φ2, φ3 in the
constitutive theory one may account for a difference between mixture vol-
umes and constituent volumes. Thus, by incorporating φα, α = s, 2, 3, into
the constitutive theory he argues that the volume fractions will have an
affect on the mixture response.

(Bowen, 1982) introduces another class of free energies by the definitions

Ψα = ραψα , α = s, 2, 3.

His constitutive theory involves supposing Ψα, η, depend on the indepen-
dent variables

θ, Cs
AB , ρα, φα, α = 2, 3,

while the interaction forces pα
i , the heat flux, and the stress tensors depend

on the variables

L ≡ θ, θ,A, Cs
AB , Cs

AB,K , ρα, φα, ρα
,A, φα,A, vα

i ,

where α = 2, 3, and L stands for the list of independent variables.
Since φα are also included as independent variables, these quantities

require a further set of equations for their determination. Due to equation
(1.45) one only needs two equations. (Bowen, 1982) supposes φ2, φ3 satisfy
rate-like equations of form

′φ2 = ω2(L), ′φ3 = ω3(L), (1.46)

where ω2, ω3 are functional forms which would need to be given to make
the theory determinate. Equations (1.46) are typical of those which govern
internal variables in continuum mechanics. Hence, the notion that Bowen’s
theory is an internal variable one.
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Making use of thermodynamic arguments, (Bowen, 1982) reduces his
constitutive equations. He defines the free energy function ΨI as

ΨI = Ψs + Ψ2 + Ψ3.

In addition to equations (1.31) – (1.33), and equations (1.46), (Bowen,
1982) shows the momentum balance equations reduce to

ρ2
′′x2

i = −ρ2μ
2
,i − σ2φ

2
,i +

∂Ψ2

∂θ
θ,i + f2

i + ρ2b2
i , (1.47)

ρ3
′′x3

i = −ρ3μ
3
,i − σ3φ

3
,i +

∂Ψ3

∂θ
θ,i + f3

i + ρ3b3
i , (1.48)

and

ρs
′′xs

i = −ρ2
′′x2

i − ρ3
′′x3

i + T I
ji,j + ρbi . (1.49)

Here T I
ji is defined by

T I
ji = ΨIδij + 2F s

iA

∂ΨI

∂Cs
AB

F s
Bj − ρ2 ∂Ψ2

∂ρ2
δij − ρ3 ∂Ψ3

∂ρ3
δij ,

and fα
i is the interaction force pα

i with added contributions involving the
derivatives of the functions Ψα, specifically

fα
i =pα

i − μαρα
,i +

∂Ψα

∂ρ2
ρ2

,i +
∂Ψα

∂ρ3
ρ3

,i

+ (F−1
iA )T ∂Ψα

∂Cs
AB

Cs
AB,K + σαφα

,i +
∂Ψα

∂φ2
φ2

,i +
∂Ψα

∂φ3
φ3

,i .

The functions μα and σσ are given by

μα =
∂ΨI

∂ρα
, σα = −∂ΨI

∂φα
.

In addition, (Bowen, 1982) writes his energy equation in terms of Ψα, the
heat flux, the functions fα

i , and the functions ω2, ω3, so that

θ

{
ρη̇ − ∂

∂xi

[ 3∑

a=1

∂Ψa

∂θ
(′xa

i − ẋi)
]}

= − ∂mi

∂xi
+ σ2ω2 + σ3ω3

+ ρr − v2
i f2

i − v3
i f3

i , (1.50)

where

η = −1
ρ

∣∣det
[
(F s

iA)−1
]∣∣ ∂W

∂θ
,

with

W = |det(F s
iA)|ΨI ,

and

mi =
3∑

a=1

[
qa
i + ρaεa(′xa

i − ẋi) − Ψa(′xa
i − ẋi) + θ

∂Ψa

∂θ
(′xa

i − ẋi)
]
.
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Thus, once the functions Ψs,Ψ2,Ψ3 are prescribed, together with the
functional forms for ω2, ω3, one may fully determine the nonlinear governing
partial differential equations, given the interaction forces and heat flux. The
fully nonlinear system of equations is then comprised of equations (1.31) –
(1.33), (1.46) – (1.49), and (1.50). This is a very interesting mixture theory.
I am unaware of any solutions or analysis of the fully nonlinear equations.
(Bowen, 1982) further reduces his theory by assuming linear dependence in
the dissipation terms and by assuming the body has a centre of symmetry.
He then derives equations when the solid remains fixed and indicates how
other porous media models may be derived from his equations. In addition
he then develops from the complete theory a set of equations for linear
poroelasticity and applies these to wave propagation problems. Further use
of the (Bowen, 1982) theory to wave reflection-refraction at the sea bed is
described in section 6.8 of this book.

While the majority of the work in this book centres on the more tractable
theories of porous media outlined in sections 1.2 – 1.8 we do employ the
Eringen mixture theory and that of Bowen in sections 8.1.2 and 6.8. These
sections investigate acoustic waves in a porous medium and at the sea bed,
respectively. Future work involving such theories as those of sections 1.9.1,
1.9.2, will undoubtedly prove rewarding, especially if solutions to problems
can be found employing the fully nonlinear equations.



2
Structural Stability

2.1 Structural stability, Darcy model

Structural stability is the study of stability of the model itself. The clas-
sical definition of stability involves continuous dependence of the solution
on changes in the initial data, cf. section 1.1.2. However, it is increasingly
being realised that continuous dependence on changes in the coefficients,
in the model, in boundary data, or even in the partial differential equa-
tions themselves, is very important. This aspect of continuous dependence,
or stability, is what we refer to as structural stability. (Hirsch and Smale,
1974) were prominent in introducing the ideas of structural stability. In
chapter 16 of their book (Hirsch and Smale, 1974) ask, . . . “What effect
does changing the differential equation itself have on the solution? . . . This
is the problem of structural stability.” The book of (Hirsch and Smale, 1974)
gives an authoritative account of structural stability in an ordinary differ-
ential equation context. Structural stability is also emphasized in the books
by (Bellomo and Preziosi, 1995), (Doering and Gibbon, 1995), (Drazin and
Reid, 1981), and (Flavin and Rionero, 1995), although the topic of porous
media is not specifically addressed in the context of structural stability in
these works. In this chapter we focus on examples of structural stability in
the context of the equations of porous media. It is extremely important,
because if a small change in the equations, or a coefficient in an equation,
causes a major change in the solution it may well say something about how
accurate the model is as a vehicle to describe flow in porous media.

B. Straughan, Stability and Wave Motion in Porous Media,
DOI: 10.1007/978-0-387-76543-3 2, c© Springer Science+Business Media, LLC 2008
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Early articles dealing with structural stability questions in porous flows
are those of (Ames and Payne, 1994), (Franchi and Straughan, 1993a;
Franchi and Straughan, 1996), and (Payne and Straughan, 1996) investi-
gates in some detail the continuous dependence of the solution on changes
in the initial-time geometry. We do not describe the work of (Payne and
Straughan, 1999a), but this paper establishes continuous dependence on
the coefficients of Forchheimer and of Brinkman, and also investigates how
the solution to the Brinkman equations converges to that of the Darcy
equations as the Brinkman coefficient tends to zero. We focus on examples
which illustrate various different effects, and the sections on continuous
dependence on the Dufour, Krishnamurti, and Vadasz coefficients are new.

We commence with a result of (Payne and Straughan, 1998b) which
establishes continuous dependence on the cooling coefficient for Newton’s
law of cooling in a Darcy porous material. (Franchi and Straughan, 1996)
proved a similar result for a Brinkman porous material, but their method
is inadequate to deal with the less dissipative Darcy system. (Payne and
Straughan, 1998b) were able to prove a priori continuous dependence in
three space dimensional problems without having to restrict the size of the
time interval or the size of the initial data. In contrast, when one consid-
ers the Navier-Stokes equations, such a restriction is evidently necessary,
(Ames and Payne, 1997)

We do not consider in this chapter structural stability questions for the
porous medium equation model based on a distribution of voids in an elastic
body, see section 7.2. However, this topic is investigated in (Chirita et al.,
2006). (Chirita and Ciarletta, 2008) develop the structural stability analysis
further by including temperature effects in the model.

A class of nonlinear models which possess properties not dissimilar to
those of the model in section 2.1.1 are those studied by (Payne and
Straughan, 1999c). These writers investigated continuous dependence on
the spatial geometry for a Stokes’ flow system when the nonlinearity in
the temperature equation was regarded as important. This class of Stokes’
flow is called a nonlinear Stokes’ problem by (Duka et al., 2007). The
paper by (Duka et al., 2007) derives interesting bounds for a solution to a
nonlinear Stokes’ system for thermal convection in a horizontal annulus.

2.1.1 Newton’s law of cooling

The Darcy equations for non-isothermal flow in a porous medium are as in
chapter 1, sections 1.2, 1.6.1, namely,

vi = − ∂p

∂xi
+ giT, (2.1)

∂vi

∂xi
= 0, (2.2)
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∂T

∂t
+ vi

∂T

∂xi
= ΔT, (2.3)

where vi, T, p and gi are the velocity, temperature, pressure and the gravity
vector. The density ρ in equation (1.15) has been assumed linear in T with
the body force fi = gi, the constant part of the body force being absorbed in
the pressure term. In this section equations (2.1) – (2.3) hold on a bounded
spatial domain Ω with boundary Γ, for positive time. On the boundary Γ
we suppose vi and T satisfy the conditions

vini = 0, and
∂T

∂n
= −κ

(
T − Ta(x, t)

)
, (2.4)

where κ(> 0) is the cooling coefficient, Ta(x, t) is the temperature outside
of the porous body at the boundary, ni is the outward unit normal to Γ,
and ∂/∂n denotes the outward normal derivative. The initial condition is

T (x, t) = T0(x), (2.5)

for T0 given.
To investigate continuous dependence on κ we let (vi, T, p) be a solution

to (2.1) – (2.5) with a cooling coefficient κ2, and we let (ui, S, q) be another
soultion to (2.1) – (2.5) for the same Ta and initial data, but for a different
cooling coefficient κ1. We wish to derive an a priori estimate for a measure
of T − S and vi − ui in terms of the difference κ2 − κ1. To this end let
wi, θ, π and κ be the difference variables

wi = vi − ui, θ = T − S, π = p − q, κ = κ2 − κ1, (2.6)

and then from (2.1) – (2.5) we see that (wi, θ, π) satisfies the partial
differential equations

wi = − ∂π

∂xi
+ giθ, (2.7)

∂wi

∂xi
= 0, (2.8)

∂θ

∂t
+ ui

∂θ

∂xi
+ wi

∂T

∂xi
= Δθ. (2.9)

The boundary and initial conditions are

niwi = 0,
∂θ

∂n
= −κ1θ − κ(T − Ta), on Γ × [0, T ], (2.10)

θ(x, 0) = 0, x ∈ Ω, (2.11)

where T < ∞ is an arbitrary (but preassigned) time.
We assume, without loss of generality, that

|g| ≤ 1. (2.12)
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To establish continuous dependence we multiply (2.7) by wi and integrate
over Ω, and using the Cauchy - Schwarz inequality, one finds

‖w‖2 = gi(θ, wi) ≤ ‖θ‖‖w‖,
and so

‖w‖ ≤ ‖θ‖. (2.13)

Next, multiply (2.9) by θ and integrate over Ω to derive

1
2

d

dt
‖θ‖2 =

∫

Ω

wiTθ,idx−‖∇θ‖2 −κ1

∮

Γ

θ2dA−κ

∮

Γ

θ(T −Ta)dA. (2.14)

Next, employ the arithmetic-geometric mean inequality to see that

− κ

∮

Γ

θ(T1 − Ta)dA ≤ κ

2α

∮

Γ

θ2dA +
κα

2

∮

Γ

(T1 − Ta)2dA, (2.15)

for α > 0 arbitrary. We select α = κ/2κ1, and then use (2.15) in (2.14). In
this manner we derive

1
2

d

dt
‖θ‖2 ≤

∫

Ω

wiTθ,idx − ‖∇θ‖2 +
κ2

4κ1

∮

Γ

(T − Ta)2dA. (2.16)

2.1.2 A priori bound for T

To proceed we require an a priori bound for |T |. We establish such a bound
for a function T satisfying (2.2) and (2.3), following (Payne and Straughan,
1998b). We simply use T, vi and κ, rather than T, vi and κ2. Multiply (2.3)
by T p−1 for p > 1 (we assume the temperature is scaled to be non-negative).
Thus,

d

dt

∫

Ω

T pdx = −p(p − 1)
∫

Ω

T p−2|∇T |2dx − κp

∮

Γ

T p−1(T − Ta)dA.

With the aid of Young’s inequality we have

κpT p−1Ta ≤ κpT p + κT p
a

(p − 1
p

)p−1

.

Employing this in the previous inequality allows us to show that

d

dt

∫

Ω

T pdx ≤ −p(p − 1)
∫

Ω

T p−2|∇T |2dx + κ
(p − 1

p

)p−1
∮

Γ

T p
a dA.

This inequality is integrated after discarding the first term on the right, to
deduce
[∫

Ω

T pdx

]1/p

≤
[∫

Ω

T p
0 dx + κ

(p − 1
p

)p−1
∫ t

0

ds

∮

Γ

T p
a dA

]1/p

. (2.17)

Now, let p → ∞ in (2.17) to see that

sup
Ω

|T | ≤ Tm, (2.18)
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where the constant Tm is given by

Tm = max
{

sup
Ω

|T0| , sup
Γ×[0,T ]

|Ta|
}

.

Equipped with the estimate (2.18) for T (maximum principle), we bound
the first term on the right of (2.16),

∫

Ω

wiTθ,idx ≤Tm‖w‖ ‖∇θ‖,

≤Tm‖θ‖ ‖∇θ‖,
where (2.13) has been used, and then after further use of the arithmetic-
geometric mean inequality,

∫

Ω

wiTθ,idx ≤ T 2
m

4
‖θ‖2 + ‖∇θ‖2. (2.19)

Upon utilizing (2.19) in (2.16) we find

d

dt
‖θ‖2 ≤ T 2

m

2
‖θ‖2 + Aκ2, (2.20)

where the function A is defined by

A(t) =
1

2κ1

∮

Γ

(Tm − Ta)2dA.

In deriving (2.20), bound (2.18) has been extended to the boundary by
continuity. Inequality (2.20) may be integrated by an integrating factor
method to see that

‖θ(t)‖2 ≤ R(t)κ2, (2.21)

where R is defined as

R(t) =
∫ t

0

A(s) exp
[1
2
T 2

m(t − s)
]
ds.

The bound (2.21) is our continuous dependence estimate for θ. Now, from
(2.13) we also find

‖w(t)‖2 ≤ R(t)κ2, (2.22)

which establishes continuous dependence of vi on the cooling coefficient.
Continuous dependence on the cooling coefficient κ is established, since
R(t) is a priori because it only depends on data and the geometry of Ω.

2.2 Structural stability, Forchheimer model

In this section we describe work of (Franchi and Straughan, 2003) who
consider the isothermal Forchheimer equations with quadratic and cubic
terms, namely
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∂ui

∂t
= −aui − b|u|ui − c|u|2ui − p,i,

∂ui

∂xi
= 0, (2.23)

where ui is the average fluid velocity in the porous medium, a is the Darcy
coefficient (viscosity divided by permeability), b and c are the Forchheimer
coefficients, and p is the pressure.

2.2.1 Continuous dependence on b

We commence with a study of continuous dependence on the coefficient b.
Therefore let ui and vi solve the following boundary initial value problems
for different Forchheimer coefficients b1 and b2, but for the same second
Forchheimer coefficient c,

∂ui

∂t
= −aui − b1|u|ui − c|u|2ui − p,i,

∂ui

∂xi
= 0, in Ω × {t > 0},

niui = 0, on Γ × {t > 0},
ui(x, 0) = fi(x), x ∈ Ω,

(2.24)

∂vi

∂t
= −avi − b2|v|vi − c|v|2vi − q,i,

∂vi

∂xi
= 0, in Ω × {t > 0},

nivi = 0, on Γ × {t > 0},
vi(x, 0) = fi(x), x ∈ Ω.

(2.25)

In these problems Ω is a bounded domain in R
3 with boundary Γ, ni is the

unit outward normal to Γ, and fi is the given initial data.
The difference variables wi, π, b are defined by

wi = ui − vi, π = p − q, b = b1 − b2. (2.26)

By subtraction we see that wi satisfies the boundary initial value problem

∂wi

∂t
= −awi −

(
b1|u|ui − b2|v|vi

)
− c
(
|u|2ui − |v|2vi

)
− π,i,

∂wi

∂xi
= 0, in Ω × {t > 0},

niwi = 0, on Γ × {t > 0},
wi(x, 0) = 0, x ∈ Ω.

(2.27)

The first step involves rearranging the b1 and b2 terms as

b1|u|ui − b2|v|vi =
b

2
(|u|ui + |v|vi) + b̃(|u|ui − |v|vi), (2.28)

where b̃ = (b1 + b2)/2, and observing (Payne and Straughan, 1999a) show
that

(|u|ui − |v|vi)wi =
1
2
(|u| + |v|)wiwi +

1
2
(|u| − |v|)2(|u| + |v|). (2.29)
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Next, multiply (2.27)1 by wi and integrate over Ω, to find with the aid of
(2.28) and (2.29),

d

dt

1
2
‖w‖2 = − a‖w‖2 − b

2

∫

Ω

(|u|uiwi + |v|viwi)dx

− b̃

2

∫

Ω

(|u| + |v|)wiwidx

− b̃

2

∫

Ω

(|u| − |v|)2(|u| + |v|)dx

− c

∫

Ω

(|u|2ui − |v|2vi)widx. (2.30)

(Franchi and Straughan, 2003) show that

(|u|2ui−|v|2vi)wi =
1
2
|u|2(ui − vi + vi)wi −

1
2
|v|2viwi

+
1
2
|u|2uiwi +

1
2
|v|2wi(ui − vi − ui)

=
1
2
(|u|2 + |v|2)wiwi +

1
2
(ui + vi)wi(|u|2 − |v|2)

=
1
2
(|u|2 + |v|2)wiwi +

1
2
(|u|2 − |v|2)2. (2.31)

This expression is employed in (2.30) to obtain

d

dt

1
2
‖w‖2 ≤− a‖w‖2 − b

2

∫

Ω

(|u|uiwi + |v|viwi)dx

− b̃

2

∫

Ω

(|u| + |v|)wiwidx − c

2

∫

Ω

(|u|2 + |v|2)wiwidx. (2.32)

We suppose c > 0. The case where c = 0 is covered in (Franchi and
Straughan, 2003). We use the Cauchy-Schwarz and arithmetic-geometric
mean inequalities to see that

− b

2

∣∣∣∣
∫

Ω

(|u|uiwi + |v|viwi)
∣∣∣∣dx ≤ b2

8c

∫

Ω

(uiui + vivi)dx

+
c

2

∫

Ω

(|u|2 + |v|2)wiwidx.

(2.33)

Now use this inequality in (2.32) and discard the b̃ term to derive

d

dt

1
2
‖w‖2 ≤ −a‖w‖2 +

b2

8c

∫

Ω

(uiui + vivi)dx. (2.34)

From equations (2.24) and (2.25) one shows

‖u‖2 ≤ ‖f‖2 exp(−2at) and ‖v‖2 ≤ ‖f‖2 exp(−2at). (2.35)
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These bounds are now used in (2.34) to arrive at

d

dt

1
2
‖w‖2 + a‖w‖2 ≤ b2

4c
exp(−2at)‖f‖2.

With the aid of an integrating factor and integration one sees that

‖w(t)‖2 ≤ b2 ‖f‖2

2c
t exp(−2at). (2.36)

Inequality (2.36) establishes continuous dependence on b when c > 0.

2.2.2 Continuous dependence on c

In this subsection we establish continuous dependence on the coefficient c.
Let now (ui, p) and (vi, q) solve the boundary initial value problems (2.24)
and (2.25) for the same b but with c1 and c2 different.

Define in this case

wi = ui − vi, π = p − q, c = c1 − c2.

Then (wi, π) satisfies the boundary initial value problem

∂wi

∂t
= −awi − b(|u|ui − |v|vi) − c1|u|2ui + c2|v|2vi − π,i,

∂wi

∂xi
= 0, in Ω × {t > 0},

niwi = 0, on Γ × {t > 0},
wi(x, 0) = 0, x ∈ Ω.

(2.37)

(Franchi and Straughan, 2003) use the rearrangement

c1|u|2ui − c2|v|2vi =
c

2
(|u|2ui + |v|2vi) + c̃(|u|2ui − |v|2vi), (2.38)

where c̃ = (c1 + c2)/2.
Now multiply (2.37)1 by wi and integrate over Ω. We employ the

rearrangements (2.29), (2.38) and (2.31) and then show

1
2

d

dt
‖w‖2 = −a‖w‖2 − b

2

∫

Ω

(|u| + |v|)wiwidx

− b

2

∫

Ω

(|u| − |v|)2(|u| + |v|)dx − c

2

∫

Ω

(|u|2uiwi + |v|2viwi)dx

− c̃

2

∫

Ω

(|u|2 + |v|2)wiwidx − c̃

2

∫

Ω

(|u|2 − |v|2)2dx.
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The two b terms and the c̃ term involving (|u|2 − |v|2)2 are discarded to
derive

1
2

d

dt
‖w‖2 + a‖w‖2 ≤− c

2

∫

Ω

(|u|2uiwi + |v|2viwi)dx

− c̃

2

∫

Ω

(|u|2 + |v|2)wiwidx.

(2.39)

Next, the Cauchy-Schwarz and arithmetic-geometric mean inequalities are
employed to see that

c

2

∫

Ω

(|u|2uiwi + |v|2viwi)dx ≤ c2

8c̃

∫

Ω

(|u|4 + |v|4)dx

+
c̃

2

∫

Ω

(|u|2 + |v|2)wiwidx.

(2.40)

Upon use of (2.40) in (2.39) we see after integration,

‖w‖2 + 2a

∫ t

0

‖w‖2ds ≤ c2

4c̃

∫ t

0

∫

Ω

(|u|4 + |v|4)dx ds. (2.41)

The right hand side of (2.41) is estimated by multiplying (2.24) by ui,
(2.25) by vi, and integrating over Ω × (0, t) to show that

∫ t

0

∫

Ω

(|u|4 + |v|4)dx ds ≤
(

c1 + c2

2c1c2

)
‖f‖2.

Upon using this inequality in (2.41) one finds

‖w‖2 + 2a

∫ t

0

‖w‖2ds ≤ ‖f‖2

4c1c2
c2. (2.42)

Inequality (2.42) establishes continuous dependence on c. A further bound
for wi may be obtained from (2.42) with the use of an integrating factor,
this is

∫ t

0

‖w‖2ds ≤ ‖f‖2

8ac1c2
(1 − e−2at) c2.

2.2.3 Energy bounds

Interesting upper and lower bounds for ‖u‖ are obtained by (Franchi and
Straughan, 2003) who follow the method of (Payne and Straughan, 1999a).
To derive these estimates we suppose ui is a solution to (2.24) with b1

replaced by b, so ui satisfies the boundary initial value problem

∂ui

∂t
= −aui − b|u|ui − c|u|2ui − π,i,

∂ui

∂xi
= 0, in Ω × {t > 0},

niui = 0, on Γ × {t > 0},
ui(x, 0) = f(x), x ∈ Ω.

(2.43)
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Multiply (2.43) by ui and integrate over Ω to find

1
2

d

dt
‖u‖2 = −a‖u‖2 − b

∫

Ω

|u|3dx − c

∫

Ω

|u|4dx. (2.44)

We first derive a lower bound for ‖u‖, and set Φ(t) = ‖u(t)‖2. From (2.44)

dΦ
dt

= −2a‖u‖2 − 2b

∫

Ω

|u|3dx − 2c

∫

Ω

|u|4dx. (2.45)

Define the function χ by

χ(t) = −2a‖u‖2 − 4
3
b

∫

Ω

|u|3dx − c

∫

Ω

|u|4dx, (2.46)

and observe that χ ≤ 0. From (2.46) and (2.45) dΦ/dt ≤ χ, and then

Φ
dχ

dt
= 4‖u‖2(ui,t, ui,t) ≥

(dΦ
dt

)2

≥
(
−dΦ

dt

)(
−χ
)
. (2.47)

Hence, (dχ/dt)/χ ≤ (dΦ/dt)/Φ, which after integration and rearrangement
yields

− χ(t) ≤ Φ(t)
{−χ(0)}
‖f‖2

. (2.48)

We may now show 2χ ≤ dΦ/dt ≤ χ, and so with the aid of (2.48) we
deduce

1
2

dΦ
dt

≥ χ(t) ≥ Φ(t)
χ(0)
‖f‖2

.

After integration we obtain

‖u(t)‖2 ≥ ‖f‖2 exp
[
−2{−χ(0)}t

‖f‖2

]
. (2.49)

From inequality (2.49) one sees that ui cannot vanish identically in a finite
time.

We may use the Cauchy-Schwarz inequality to show

−
∫

Ω

|u|4dx ≤ −‖u‖4

m
,

where m = m(Ω) is the measure of Ω. If this inequality is utilized in (2.45)
one may show

d

dt
‖u‖2 + 2a‖u‖2 +

2c

m
‖u‖4 ≤ 0.

Now since ui cannot vanish in a finite time we divide by ‖u‖4 and solve
the resulting inequality for ‖u‖−2. This leads to the upper bound

‖u(t)‖2 ≤ ‖f‖2

e2at + c‖f‖2(e2at − 1)/am
. (2.50)
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If we combine (2.50) and (2.49) we find the estimates for ‖u(t)‖,
‖f‖2

exp
[(

4a + 8b
∫
Ω
|f |3dx/3‖f‖2 + 2c

∫
Ω
|f |4dx/‖f‖2

)
t

]

≤ ‖u(t)‖2

≤ ‖f‖2

e2at + c‖f‖2(e2at − 1)/am
. (2.51)

2.2.4 Brinkman-Forchheimer model

(Celebi et al., 2006) study structural stability for a version of the Brinkman-
Forchheimer equations, namely, they study the boundary - initial value
problem,

∂ui

∂t
= γΔui − aui − b|u|αui − π,i,

∂ui

∂xi
= 0, in Ω × {t > 0},

ui = 0, on Γ × {t > 0},
ui(x, 0) = f(x), x ∈ Ω,

(2.52)

where γ is a Brinkman coefficient and α ∈ [1, 2] is a constant.
(Celebi et al., 2006) establish existence and uniqueness of a solution

to (2.52), and show that there is a constant D, depending on f and the
coefficients in (2.52), such that

sup
0≤t≤T

‖∇u(t)‖ ≤ D,

∫ T

0

∥∥∥
∂u
∂t

(t)
∥∥∥

2

dt ≤ D,

for any T > 0. They also show that the solution ui depends continuously
on the Forchheimer coefficient b, and on the Brinkman coefficient γ. This
is an interesting paper and the proofs employ the Sobolev inequality in a
non-trivial manner.

2.3 Forchheimer model, non-zero boundary
conditions

(Payne et al., 1999) studied continuous dependence on changes in the vis-
cosity for a Forchheimer and a Brinkman model. The motivation of (Payne
et al., 1999) was to analyse mathematically a model for the process of
salinization, whereby salts are transported upwards in soils in dry regions.
A model for this was developed by (Gilman and Bear, 1996) and this model
has a strong viscosity - concentration dependence. The work of (Gilman and
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Bear, 1996) involves a nonlinear set of equations, and similar models are
studied in (Wooding et al., 1997a; Wooding et al., 1997b) and in (van Duijn
et al., 2002). (Payne et al., 1999) analyses the manner in which the velocity
and concentration depend on changes in the viscosity. The reason for the
need to study continuous dependence on the viscosity is that (Gilman and
Bear, 1996) point out that the viscosity dependence on concentration is 1.5
to 3 times greater than that of pure water. By comparison the variation in
density is only of order 0.15 to 0.30 times greater. Certainly such a strong
variation indicates that convective motion of salt in a porous medium ought
to take into account viscosity dependence on salt concentration.

The model based on Darcy’s law studied by (Payne et al., 1999) is now
presented. If we let ui, c and p denote the fields of velocity, concentra-
tion and pressure, the Forchheimer equations for flow in a porous medium
studied by (Payne et al., 1999) are

bui|u| + (1 + γ1c)ui = −p,i + gic,

∂ui

∂xi
= 0,

∂c

∂t
+ ui

∂c

∂xi
= Δc,

(2.53)

where γ1 and b are positive constants, gi(x) is a gravity field which we
again assume satisfies

|g| ≤ 1. (2.54)

Equations (2.53) hold on the region Ω× (0, T ) for Ω a bounded domain in
R

3 and for some time T , 0 < T < ∞. The viscosity variation is represented
by the term 1+γ1c, i.e. we allow a linear variation in c so that the viscosity μ
has form μ = μ1(1+γ1c). The gic term represents a linear variation in c for
the density, i.e. a Boussinesq like approximation. Since c is a concentration
it is reasonable to assume that it is non-negative, although if we knew
a priori that ui is bounded then c ≥ 0 would follow from the maximum
principle.

On the boundary Γ (of Ω) the conditions imposed are

uini = f(x, t), c = h(x, t), x ∈ Γ, (2.55)

for known functions f and h. The initial condition is that concentration is
prescribed at t = 0, i.e.

c(x, 0) = c0(x), x ∈ Ω, (2.56)

c0 given.
We note in passing that existence and uniqueness questions of solutions

to systems like that studied here may be answered by the methods of (Ly
and Titi, 1999) or those of (Rodrigues, 1986; Rodrigues, 1992).

The work of (Payne et al., 1999) relies on establishing an upper bound
for c. We now give very brief details of how this is achieved.
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2.3.1 A maximum principle for c

To derive a maximum principle for c (Payne et al., 1999) use the method
of (Payne and Straughan, 1998a).

They introduce a function H by

ΔH(x, t) = 0 in Ω × (0, T ),

H(x, t) = h2p−1(x, t) on Γ × (0, T ).

The analysis commences with the identity
∫ t

0

ds

∫

Ω

(H − c2p−1)
{
c,t + uic,i − Δc

}
dx = 0.

An integration by parts and rearrangement leads to
∫

Ω

c2pdx +
2(2p − 1)

p

∫ t

0

ds

∫

Ω

cp
,ic

p
,idx =

∫

Ω

c2p
0 dx

+ 2p(H, c) − 2p(H0, c0) − 2p

∫ t

0

ds

∫

Ω

H,sc dx

+ 2p

∫ t

0

ds

∫

Ω

Huic,idx + 2p

∫ t

0

ds

∮

Γ

∂H

∂n
hdA

−
∫ t

0

ds

∮

Γ

fc2pdA. (2.57)

The remainder of the proof of the maximum principle for c is from this
point very technical. The purpose of this section is to describe continuous
dependence on γ1 and so we refer to (Payne et al., 1999) or (Payne and
Straughan, 1998a) for full details. After many steps the proof arrives at an
inequality of form

‖c‖2p ≤
[
‖c0‖2p

2p +
( 5∑

i=1

ri

)
h2p

m

]1/2p

, (2.58)

where ‖ · ‖2p is the norm on L2p(Ω), ri involve h or c0, and hm =
maxΓ×[0,T ] |h|. Taking the limit 2p → ∞ leads to the a priori bound

sup
Ω×[0,T ]

|c| ≤ max
{
|c0|m , sup

[0,T ]

hm

}
= cm (2.59)

where |c0|m = maxΩ |c0|, and cm is defined as indicated.

2.3.2 Continuous dependence on the viscosity

To investigate continuous dependence on the viscosity coefficient γ1 in
(2.53) suppose (ui, c1, p) and (vi, c2, q) are solutions to (2.53) – (2.56) for
the same data functions f, h and c0, but for different viscosity coefficients,
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γ1 and γ2, respectively. The difference solution (wi, φ, π) is introduced as

wi = ui − vi, φ = c1 − c2, π = p − q, γ = γ1 − γ2. (2.60)

By calculation (wi, φ, π) is seen to satisfy the boundary-initial value
problem

b[ui|u| − vi|v|] + wi + γc1ui + γ2φui + γ2c2wi = −π,i + giφ,

wi,i = 0,

φ,t + wic1,i + viφ,i = Δφ,

(2.61)

in Ω × (0, T ), with the boundary and initial conditions

wi = φ = 0 on Γ, φ(x, 0) = 0, x ∈ Ω. (2.62)

It is convenient to also rearrange (2.61)1 in the form

b[ui|u| − vi|v|] + wi + γ1c1wi + γc1vi + γ2φvi = −π,i + giφ. (2.63)

The proof starts by multiplying (2.61)1 by wi and integrating to find

b

∫

Ω

(ui|u| − vi|v|)widx +
∫

Ω

(1 + γ2c2)wiwidx

= gi(φ,wi) − γ

∫

Ω

c1uiwidx − γ2

∫

Ω

φuiwidx. (2.64)

The right hand side is estimated using the maximum principle and Hölder’s
inequality. Identity (2.29) is used on the first term on the left and we drop
a term to derive

b

2

∫

Ω

(|u| + |v|)wiwidx +
∫

Ω

(1 + γ2c2)wiwidx

≤‖φ‖ ‖w‖ + γcm‖u‖ ‖w‖ + γ2

(∫

Ω

|u|wiwidx

)1/2(∫

Ω

|u|φ2dx

)1/2

≤ 1
2α

‖φ‖2 +
(α

2
+

β

2

)
‖w‖2 +

γ2c2
m

2β
‖u‖2

+ b

∫

Ω

|u|wiwidx +
γ2
2

4b

(∫

Ω

|u|3dx

)1/3(∫

Ω

|φ|3dx

)2/3

, (2.65)

where α, β > 0 are constants to be chosen. We next use the Sobolev
inequality

∫

Ω

φ4dx ≤ k2
(∫

Ω

φ2dx
)1/2(∫

Ω

|∇φ|2dx
)3/2

,
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for k > 0 constant, together with the Cauchy-Schwarz inequality in (2.65)
to obtain

b

2

∫

Ω

(|u| + |v|)wiwidx +
∫

Ω

(1 + γ2c2)wiwidx

≤ 1
2α

‖φ‖2 +
1
2
(α + β)‖w‖2 + γ2 c2

m

2β
‖u‖2

+ b

∫

Ω

|u|wiwidx +
γ2
2k2/3

4b
‖u‖3‖φ‖ ‖∇φ‖. (2.66)

An analogous procedure starting from (2.64) leads to

b

2

∫

Ω

(|u| + |v|)wiwidx +
∫

Ω

(1 + γ1c1)wiwidx

≤ 1
2α

‖φ‖2 +
1
2
(α + β)‖w‖2 + γ2 c2

m

2β
‖v‖2

+ b

∫

Ω

|v|wiwidx +
γ2
2k2/3

4b
‖v‖3‖φ‖ ‖∇φ‖. (2.67)

Upon addition of (2.66) and (2.67) we see that
∫

Ω

(2+γ1c1 + γ2c2)wiwidx ≤ 1
α
‖φ‖2 + (α + β)‖w‖2

+ γ2 c2
m

2β
(‖u‖2 + ‖v‖2) +

γ2
2k2/3

4b
(‖u‖3 + ‖v‖3)‖φ‖ ‖∇φ‖. (2.68)

A further use of the arithmetic-geometric mean inequality shows that, for
a constant ε > 0 to be chosen

[
2 − (α + β)

]
‖w‖2 ≤

[
1
α

+
γ2
2k2/3

64b2ε
(‖u‖3 + ‖v‖3)2

]
‖φ‖2

+ γ2 c2
m

2β
(‖u‖2 + ‖v‖2) + ε‖∇φ‖2. (2.69)

Directly from (2.53) we may deduce for a constant d involving data

‖u‖2 ≤ 4‖c1‖2 + d, ‖u‖3 ≤ 1
b1/3

(4‖c1‖2 + d)1/3,

‖v‖2 ≤ 4‖c2‖2 + d, ‖v‖3 ≤ 1
b1/3

(4‖c2‖2 + d)1/3.

(2.70)

Employing (2.70) in (2.69) yields for computable constants β1, . . . , β3,
dependent only on data, choosing α = β = 1/2, an inequality of form

‖w‖2 ≤ β1‖φ‖2 + β2 + β3‖∇φ‖2. (2.71)

To estimate the ‖φ‖ and ‖∇φ‖ terms we multiply (2.61)3 by φ and
integrate to find

1
2
‖φ‖2 +

∫ t

0

‖∇φ‖2ds =
∫ t

0

ds

∫

Ω

wic1φ,idx.
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Bounding c1 and using the Cauchy-Schwarz inequality yields

‖φ‖2 +
∫ t

0

‖∇φ‖2ds ≤ c2
m

∫ t

0

‖w‖2ds. (2.72)

Use of (2.72) in (2.71) shows that after integration
∫ t

0

‖w‖2ds ≤ k1

∫ t

0

(t − s)‖w‖2ds + k2(t)γ2, (2.73)

where k1, k2 depend only on data. From this inequality we may establish
the estimates
∫ t

0

(t − s)‖w‖2ds ≤ k3(t)γ2, and
∫ t

0

‖w‖2ds ≤ k4γ
2, (2.74)

for k3 and k4 computable data bounds. These are continuous dependence
estimates for wi. An analogous estimate for φ follows from (2.72), of the
form

‖φ(t)‖2 +
∫ t

0

‖∇φ‖2ds ≤ k4c
2
mγ2. (2.75)

The inequalities (2.74) and (2.75) demonstrate continuous dependence
on the viscosity coefficient γ1. They are truly a priori since the coefficients
of γ2 depend only on boundary and initial data, and on the geometry of Ω.

2.4 Brinkman model, non-zero boundary
conditions

In this section we review work of (Payne et al., 1999) which establishes
continuous dependence on the viscosity coefficient γ1 for the following
Brinkman system,

− Δui + (1 + γ1c)ui = −p,i + gic,

∂ui

∂xi
= 0,

∂c

∂t
+ ui

∂c

∂xi
= Δc,

(2.76)

on Ω × (0, T ). The boundary and initial conditions in this case are

ui = fi(x, t), c = h(x, t), x ∈ Γ × {t > 0}, (2.77)

c(x, 0) = c0(x), x ∈ Ω. (2.78)
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(Payne et al., 1999) first compare the solution ui to (2.76) with a solution
ai which solves the Stokes’ flow problem in Ω, namely

Δai = ρ,i,
∂ai

∂xi
= 0 in Ω,

ai = fi on Γ
(2.79)

where ρ is a pressure term. For a data term d0 they go via ai to show that

‖u‖2 ≤ 5‖c‖2 + d0. (2.80)

Continuous dependence on γ1 proceeds via letting (ui, c1, p) and (vi, c2, q)
solve (2.76) – (2.78) for the same data functions fi, h and c0, but for dif-
ferent viscosity coefficients γ1 and γ2, respectively. The difference variables
(wi, φ, π) and γ are defined as in equations (2.60). The boundary-initial
value problem is

− Δwi + (1 + γ2c2)wi + γc1ui + γ2φui = −π,i + giφ,

∂wi

∂xi
= 0,

∂φ

∂t
+ wi

∂c1

∂xi
+ vi

∂φ

∂xi
= Δφ,

wi = φ = 0 on Γ, φ(x, 0) = 0, x ∈ Ω.

(2.81)

By using inequality estimates (Payne et al., 1999) show that one may
compute data constants α1 and α2 such that

‖w(t)‖2 + ‖∇w(t)‖2 ≤ α1γ
2, ‖φ‖2 ≤ α2γ

2. (2.82)

Inequalities (2.82) are a priori bounds which demonstrate continuous
dependence of the solution on the viscosity coefficient γ1. Note that the
stronger dissipation in the Brinkman model allows continuous dependence
to be proven in the ‖w‖ and ‖∇w‖ measures.

Further novel structural stability results for the Brinkman equations may
be found in (Lin and Payne, 2007a; Lin and Payne, 2007b). Also, interest-
ing structural stability results for the Brinkman-Forchheimer equations are
established by (Celebi et al., 2006).

2.5 Convergence, non-zero boundary conditions

(Payne et al., 1999) also consider the question of convergence of the solution
to an equivalent Darcy system to (2.53) to the case where γ1 = 0. That
is, (Payne et al., 1999) also consider the viscosity variation in (2.53), but
they neglect the b (Forchheimer) term. Their goal is to investigate the
behaviour as γ1 → 0. To state this result let (ui, c1, p) satisfy the following
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boundary-initial value problem, where γ1 has been replaced by γ,

(1 + γc1)ui = −p,i + gic1,
∂ui

∂xi
= 0,

∂c1

∂t
+ ui

∂c1

∂xi
= Δc1,

(2.83)

in Ω × (0, T ), with

uini = f, c1 = h on Γ × (0, T ),
c1(x, 0) = c0(x), x ∈ Ω,

(2.84)

i.e. the equivalent Darcy system to (2.53). We let (vi, c2, q) satisfy the
analogous Darcy system when γ = 0, i.e.

vi = −q,i + gic2,
∂vi

∂xi
= 0,

∂c2

∂t
+ vi

∂c2

∂xi
= Δc2,

(2.85)

in Ω × (0, T ), with

vini = f, c2 = h on Γ × (0, T ),
c2(x, 0) = c0(x), x ∈ Ω.

(2.86)

By defining wi = ui − vi (Payne et al., 1999) show that
∫ t

0

‖w‖2ds ≤ α3γ
2, (2.87)

for a data term α3.
Inequality (2.87) demonstrates convergence of ui to vi as γ → 0 in the

measure indicated. (Payne et al., 1999) also obtain convergence of wi in
L2(Ω) norm and convergence of φ = c1 − c2 in L2(Ω) and H1(Ω) norms.

2.6 Continuous dependence, Vadasz coefficient

(Vadasz, 1995; Vadasz, 1996; Vadasz, 1997; Vadasz, 1998a; Vadasz, 1998b)
has made an extensive investigation of convection in a porous medium
when the layer of saturated porous medium is rotating about a fixed axis.
(Vadasz, 1998a) is a very interesting contribution. In this paper he employs
linear instability and weakly nonlinear analysis to investigate the instability
mechanisms governing convection in a rotating porous layer. Of particular
interest is the fact that he discovers that if the inertia term is left in the
momentum equation, then convection may commence by oscillatory con-
vection. This is a striking result which implies that the inertia term plays
a predominant role in determining the character of convection. In view of
this we now examine how the solution to the equations for convection in
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a saturated porous material depends on the coefficient of the inertia term.
The coefficient of the inertia term is denoted by 1/V a, where V a is the
Vadasz number. The usual Darcy law is recovered by letting V a → ∞.

If we let ui, T and p be the velocity, temperature and pressure, then the
equations for non-isothermal flow in a saturated porous medium, taking
inertia into account may be taken to be, cf. (Vadasz, 1998a), (Straughan,
2001b),

1
V a

∂ui

∂t
= − ∂p

∂xi
− ui + giT, (2.88)

∂ui

∂xi
= 0, (2.89)

∂T

∂t
+ ui

∂T

∂xi
= ΔT. (2.90)

These equations hold on Ω × (0, T ), Ω ⊂ R
3 bounded, and gi, |g| ≤ 1, is

the gravity vector. The boundary conditions we consider are

uini = 0 and T = h(x, t), (2.91)

where n is the unit outward normal to Γ, the boundary of Ω. The initial
conditions are that

ui(x, 0) = u0
i (x), T (x, 0) = T0(x). (2.92)

It is convenient to employ α = 1/V a in (2.88), so this equation is
rewritten as

α
∂ui

∂t
= −p,i − ui + giT. (2.93)

In this section we study the continuous dependence of the solution on the
coefficient α. To achieve this we need a maximum principle for T .

2.6.1 A maximum principle for T

A weak maximum principle for T is established by (Payne et al., 2001)
(see also (Temam, 1988)) and we outline their proof. For a test function φ
which vanishes on Γ, T satisfies the equation

∫

Ω

(T,tφ − uiTφ,i + T,iφ,i)dx = 0. (2.94)

Note that equation (2.94) may be obtained from (2.90) by multiplying that
equation by φ and integrating over Ω. Define the number Tm by

Tm = max
{

sup
Ω

|T0|, sup
Ω×[0,T ]

|h|
}

. (2.95)

The function φ is chosen as

φ = [T − Tm]+ = sup(T − Tm, 0).
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Since φ,i = T,i when T > Tm, φ,i = 0 for T ≤ Tm, (2.94) reduces to, after
integration

1
2

∫ t

0

ds

∫

Ω

|[T − Tm]+|2,sdx +
∫ t

0

ds

∫

Ω

|∇[T − Tm]+|2dx = 0.

(Note that
∫
Ω

uiTφ,idx = 0.) From the last inequality we deduce that
[T − Tm]+ = 0, or T ≤ Tm.

Next, select φ = [−T −Tm]+ in (2.94). A similar calculation to the above
shows T ≥ −Tm. Thus,

|T | ≤ Tm, (x, t) ∈ Ω × [0, T ]. (2.96)

2.6.2 Continuous dependence on α.

Let (ui, T, p) be a solution to (2.89) – (2.93) with coefficient α1 and let
(vi, S, q) be a solution to (2.89) – (2.93) for the same boundary and initial
functions h, u0

i , T0 in (2.91), (2.92), but for a different Vadasz coefficient
α2. Define the difference variables wi, θ and π, and the difference of the
Vadasz coefficients α by

wi = ui − vi, θ = T − S, π = p − q, α = α1 − α2. (2.97)

From equations (2.89) – (2.93) we find (wi, θ, π) satisfy the boundary-
initial value problem

α1
∂wi

∂t
+ α

∂vi

∂t
= − ∂π

∂xi
+ giθ − wi,

∂wi

∂xi
= 0,

∂θ

∂t
+ wi

∂T

∂xi
+ vi

∂θ

∂xi
= Δθ,

(2.98)

these equations holding on Ω × (0, T ), with

wini = 0, θ = 0, on Γ × [0, T ], (2.99)

wi(x, 0) = 0, θ(x, 0) = 0, x ∈ Ω. (2.100)

The analysis begins by multiplying (2.98)1 by wi and integrating over Ω
to find, with the aid of (2.98)2 and (2.99),

‖w‖2 +
α1

2
d

dt
‖w‖2 =(wi, giθ) − α(vi,t, wi),

≤ 1
2ζ

‖w‖2 +
ζ

2
‖θ‖2 +

α2

2β
(vi,t, vi,t) +

β

2
‖w‖2, (2.101)

where the arithmetic-geometric mean inequality has been employed and
β, ζ > 0 are to be chosen. Next, multiply (2.98)3 by θ and integrate over Ω
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to obtain with the aid of (2.98)2 and (2.99),

d

dt

1
2
‖θ‖2 =(wiT, θ,i) − ‖∇θ‖2,

≤Tm‖w‖ ‖∇θ‖ − ‖∇θ‖2,

≤T 2
m

4
‖w‖2, (2.102)

where T has been bounded using (2.96), and the Cauchy-Schwarz and
arithmetic-geometric mean inequalities have been employed. Integrate
(2.102) over (0, t) and use (2.100) to find

‖θ(t)‖2 ≤ T 2
m

2

∫ t

0

‖w‖2ds. (2.103)

We next integrate (2.101) over (0, t) and pick β/2 + 1/2ζ = 1, e.g. β =
ζ = 1. This yields

α1‖w‖2 ≤
∫ t

0

‖θ‖2ds + α2

∫ t

0

‖vi,s‖2ds. (2.104)

To bound the first term on the right we integrate (2.103) to obtain
∫ t

0

‖θ‖2ds ≤ T 2
mT
2

∫ t

0

‖w‖2ds.

Thus, from (2.104) we may derive,

α1‖w(t)‖2 ≤ T 2
mT
2

∫ t

0

‖w‖2ds + α2

∫ t

0

‖vi,s‖2ds. (2.105)

To estimate the vi,t term we multiply the equivalent vi equation from
(2.93) by vi,t and integrate over Ω then (0, t) to find

α2‖vi,t‖2 +
1
2

d

dt
‖v‖2 = (giS, vi,t),

α2

∫ t

0

‖vi,s‖2ds +
1
2
‖v‖2

≤ 1
2
‖v0‖2 +

α2

2

∫ t

0

‖vi,s‖2ds +
1

2α2

∫ t

0

‖S‖2ds, (2.106)

where the arithmetic-geometric mean inequality has been employed. From
(2.106) we see that

α2

∫ t

0

‖vi,s‖2ds ≤ ‖v0‖2 +
1
α2

∫ t

0

‖S‖2ds ≤ ‖v0‖2 +
T 2

mmt

α2
, (2.107)

where (2.96) has been used.
Now, employ (2.107) in (2.105) and we may show that

‖w‖2 − T 2
mT
2α1

∫ t

0

‖w‖2ds ≤ α2

[
v0

2

α2
+

T 2
mmT
α2

2

]
.
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This inequality is integrated by an integrating factor method and we derive
∫ t

0

‖w‖2ds ≤ Kα2, (2.108)

where

K =
2α1‖v0‖2

α2T 2
mT +

2α1m

α2
2

.

Inequality (2.108) establishes continuous dependence on α in the measure∫ t

0
‖w‖2ds. We may determine continuous dependence estimates in the

measures ‖θ(t)‖2 and ‖w(t)‖2 from (2.103) and (2.105) and (2.107) and
these are

‖θ(t)‖2 ≤ KT 2
m

2
α2, (2.109)

‖w(t)‖2 ≤ K2α
2, (2.110)

where

K2 =
KT 2

mT
2α1

+
‖v0‖2

α1α2
+

mT 2
mT

α1α2
2

.

2.7 Continuous dependence, Krishnamurti
coefficient

A very interesting model to describe a situation of penetrative convection in
a viscous fluid was developed by (Krishnamurti, 1997). She also produced
an experiment which captured the phenomenon and motivated her model.
Linear instability and nonlinear energy stability bounds for a solution to the
Krishnamurti model were derived by (Straughan, 2002b). The theoretical
model of (Krishnamurti, 1997) relies on a pH indicator called thymol blue
being dissolved in water. This gives rise to a double diffusive model with
an equation for the temperature of the fluid coupled to an equation for
the concentration of thymol blue. The penetrative effect is provided by the
heat source depending on the thymol blue concentration. In this section
we consider continuous dependence for a Krishnamurti model in a Darcy
porous medium. Linear instability and nonlinear energy stability analyses
for this model are given by (Hill, 2005a). In his work (Hill, 2005a) also
develops stability analyses for a Brinkman theory, a theory where the heat
source is nonlinear, and for a theory in which the density in the buoyancy
force depends on temperature and concentration.
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The partial differential equations governing the Krishnamurti model in
a Darcy porous medium are

vi = −p,i + giT,

∂vi

∂xi
= 0,

∂T

∂t
+ vi

∂T

∂xi
= ΔT + αC,

∂C

∂t
+ vi

∂C

∂xi
= ΔC.

(2.111)

In these equations vi, p, T, C are the velocity, pressure, temperature and
concentration, gi is the gravity vector (|g| ≤ 1), and the Krishnamurti effect
is introduced via the αC term in (2.111)3. The Krishnamurti term arises
because (Krishnamurti, 1997) takes the heat supply to depend (linearly)
on concentration and this gives rise to equations (2.111)3. We here assume
(2.111) hold on Ω × (0, T ) with the boundary conditions

vini = 0, T = h(x, t), C = r(x, t), on Γ × (0, T ]. (2.112)

The initial conditions are

T (x, 0) = T0(x), C(x, 0) = C0(x). (2.113)

The goal of this section is to show that the solution (vi, p, T, C) depends
continuously on changes in the Krishnamurti coefficient α. It is important
in analysing a model to know that the addition of a term like the αC
Krishnamurti term still retains the well posedness of the original system.

To establish continuous dependence we find it necessary to have an a
priori bound for the temperature T . We may invoke the analysis of section
2.6 to see that C is bounded by its initial and boundary values, precisely,

|C| ≤ Cm = max
{

sup
Ω

|C0|, sup
Ω×[0,T ]

|r|
}

.

The presence of the αC term in (2.111) prevents us from immediately
deducing a maximum principle for T .

2.7.1 An a priori bound for T

We introduce the function H which solves

ΔH = 0 in Ω,

H = h2p−1 on Γ,
(2.114)

where H = H(x, t) since h = h(x, t), and p is an integer.
Because of equation (2.111)3 we may write

∫ t

0

ds

∫

Ω

(T 2p−1 − H)(T,t + viT,i − ΔT − αC)dx = 0. (2.115)
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After several integrations by parts we deduce from (2.115)
∫

Ω

T 2pdx +
2(2p − 1)

p

∫ t

0

ds

∫

Ω

T p
,iT

p
,idx =

∫

Ω

T 2p
0 dx + 2p(H,T )

− 2p(H0, T0) − 2p

∫ t

0

(H,s, T )ds + 2p

∫ t

0

ds

∫

Ω

HviT,idx

+ 2p

∫ t

0

ds

∫

Γ

∂H

∂n
hdA − α

∫ t

0

(H,C)ds

+ α

∫ t

0

ds

∫

Ω

T 2p−1Cdx. (2.116)

The second - sixth terms on the right of (2.116) are handled as in (Payne
and Straughan, 1998a) and the new terms are the seventh and eighth. The
arithmetic-geometric mean inequality is used to see that

− α

∫ t

0

(H,C)ds ≤ α

2

∫ t

0

‖H‖2ds +
mC2

mT
2

α, (2.117)

where m is the measure of Ω. To handle the last term in (2.116) we employ
Young’s inequality as follows,

∫ t

0

ds

∫

Ω

T 2p−1Cdx ≤
(

2p − 1
p

)∫ t

0

ds

∫

Ω

T 2pdx

+
1
2p

∫ t

0

ds

∫

Ω

C2pdx. (2.118)

From the maximum principle, (Protter and Weinberger, 1967), we know
H ≤ h2p−1

m , hm = maxΓ |h|, and then since from (2.111)1 we find ‖v‖ ≤
‖T‖, we use (2.117) and (2.118) and follow the analysis of (Payne and
Straughan, 1998a) to derive
∫

Ω

T 2pdx ≤
∫

Ω

T 2p
0 dx + 2p(‖H‖ ‖T‖ + ‖H0‖ ‖T0‖)

+ 2p

√∫ t

0

‖H,s‖2ds

∫ t

0

‖T‖2ds

+ 2ph2p−1
m

√∫ t

0

‖∇T‖2ds

∫ t

0

‖T‖2ds

+ 2p

√∫ t

0

ds

∫

Γ

h2dA

∫ t

0

ds

∫

Γ

(∂H

∂n

)2

dA

+
α

2

∫ t

0

‖H‖2ds +
mC2

mT
2

α + α
(2p − 1

p

)∫ t

0

ds

∫

Ω

T 2pdx

+
mC2p

m T
2p

α. (2.119)
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The next step is to bound the ‖T‖ and ‖∇T‖ terms and their integrals.
To this end we introduce the function G which satisfies

ΔG = 0 in Ω, G = h(x, t) on Γ. (2.120)

Now form the combination

∫ t

0

ds

∫

Ω

(T − G)(T,t + viT,i − ΔT − αC)dx = 0.

After integrations by parts we may derive from this

1
2
‖T‖2 +

∫ t

0

‖∇T‖2ds =
1
2
‖T0‖2 +

∫ t

0

ds

∫

Ω

T,iG,idx

+ (G,T ) − (G0, T0) −
∫ t

0

ds

∫

Ω

TG,sdx

+
∫ t

0

ds

∫

Ω

GviT,idx + α

∫ t

0

ds

∫

Ω

CTdx

− α

∫ t

0

ds

∫

Ω

CGdx.

We modify the argument of (Payne and Straughan, 1998a), p. 328, to find

∫ t

0

ds

∫

Ω

GviT,idx ≤Gm

∫ t

0

ds

∫

Ω

|v| |∇T | dx

≤h2
m

2

∫ t

0

‖T‖2ds +
1
2

∫ t

0

‖∇T‖2ds.

Thus, use of this and the arithmetic-geometric mean inequality in the above
allows us to deduce

1
4
‖T‖2 +

1
2

∫ t

0

‖∇T‖2ds ≤ ‖T0‖2 +
∫ t

0

ds

∫

Γ

h
∂G

∂n
dA

+ ‖G‖2 +
1
2
‖G0‖2 +

1
2

∫ t

0

‖G,s‖2ds +
α

2

∫ t

0

‖G‖2ds

+ αTmC2
m +
(

1
2

+
α

2
+

h2
m

4

)∫ t

0

‖T‖2ds. (2.121)

(Payne and Straughan, 1998a) show how to use a Rellich identity to
bound the G terms in (2.121). The new term here is the α

∫ t

0
‖G‖2ds/2

one but this also responds to the (Payne and Straughan, 1998a) treat-
ment. We define the data term D1(t), for computable constants h1, . . . , h6
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dependent only on data, by

1
4
D1(t) =h1

∫

Γ

h2dA + h2

∫

Γ

|∇sh|2dA

+ h3

√∫ t

0

ds

∫

Γ

h2dA

∫ t

0

dη

∫

Γ

|∇sh|2dA

+ h4

∫ t

0

ds

∫

Γ

h2
,sdA + h5

∫ t

0

ds

∫

Γ

h2dA

+ h6

∫ t

0

dη

∫

Ω

|∇sh,η|2dA,

where ∇s is the tangential derivative on Γ. We may show D1/4 is a data
bound for all five terms on the right of (2.121) which involve G.

Thus, put a = 2 + 2α + h2
m, then (2.121) leads to

1
4
‖T‖2 +

1
2

∫ t

0

‖∇T‖2ds ≤ ‖T0‖2 +
1
4
D1 + αT C2

mm +
a

4

∫ t

0

‖T‖2ds.

This inequality may be integrated to find

‖T (t)‖2 ≤ D2(t) + a

∫ t

0

‖T‖2ds, (2.122)

where

D2(t) = 4D1 + 4‖T0‖2 + 4mαT C2
m.

Inequality (2.122) may be integrated to obtain the following three bounds,

‖T (t)‖2 ≤ D2 + a

∫ t

0

ea(t−s)D2(s)ds = D3(t),
∫ t

0

‖T‖2ds ≤
∫ t

0

ea(t−s)D2(s)ds = D4(t),
∫ t

0

‖∇T‖2ds ≤ 1
2
D2 +

a

2
D4 = D5(t).

We now return to (2.119). (Payne and Straughan, 1998a) show there are
constants ψ1, c1 > 0 such that

‖H‖2 ≤ ψ1

∫

Γ

h4p−2dA,

‖H,t‖2 ≤ ψ1

∫

Γ

|(h2p−1),t|2dA,

∫

Γ

(
∂H

∂n

)2

dA ≤ c1

∫

Γ

|∇sh
2p−1|2dA.
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Using these inequalities and the bounds for ‖T‖ and ‖∇T‖ in (2.119) we
may derive

∫

Ω

T 2pdx ≤
∫

Ω

T 2p
0 dx + 2p

(
D

1/2
3 max + ‖T0‖

)
ψ

1/2
1

√∫

Γ

h4p−2dA

+ 2pD
1/2
4

√∫ t

0

ψ1dη

∫

Γ

h2
,ηh4p−4dA

+ 2ph2p−1
m

√∫ t

0

D3(s)ds

∫ t

0

D5(s)ds

+ 2pc
1/2
1

√∫ t

0

ds

∫

Γ

h2dA

∫ t

0

dη

∫

Γ

|∇sh2p−1|2dA

+ mαT
(C2p

m

2p
+

C2
m

2

)
+

α

2
ψ1

∫ t

0

ds

∫

Γ

h4p−2dA

+ α

(
2p − 1

p

)∫ t

0

ds

∫

Ω

T 2pdx. (2.123)

The first seven terms on the right of (2.123) are data and we denote these
by F (h). With Q =

∫ t

0
ds
∫
Ω

T 2pdx, (2.123) is

Q′ − μQ ≤ F,

where μ = α(2p − 1)/p. This inequality integrates to yield
∫

Ω

T 2pdx ≤ μ

∫ t

0

F (s)eμ(t−s)ds + F.

We raise both sides of this inequality to the power 1/2p to see that
(∫

Ω

T 2pdx

)1/2p

≤
[
F + μ

∫ t

0

F (s)eμ(t−s)ds

]1/2p

. (2.124)

Let p → ∞ and since the right hand side of (2.124) is composed of
∫
Ω

T 2p
0 dx,

h2p
m , C2p

m raised to the power 1/2p we arrive at

sup
Ω×[0,T ]

|T | ≤ max
{
|T0|m , sup

[0,T ]

hm, Cm

}
= TB . (2.125)

This is the a priori bound we sought to achieve.

2.7.2 Continuous dependence

We now let (ui, T, C1, p) be a solution to (2.111) – (2.113) for Krishnamurti
coefficient α1 and we let (vi, S, C2, q) be another solution for a different
Krishnamurti coefficient α2, but for the same data functions h, r, T0 and
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C0. Thus (ui, T, C1, p) and (vi, S, C2, q) satisfy the boundary-initial value
problems,

ui = −p,i + giT,

ui,i = 0,

T,t + uiT,i = ΔT + α1C1,

C1,t + uiC1,i = ΔC1,

(2.126)

in Ω × (0, T ),

uini = 0, T = h, C1 = r on Γ × (0, T ], (2.127)

T (x, 0) = T0(x), C1(x, 0) = C0(x), (2.128)

and

vi = −q,i + giS,

vi,i = 0,

S,t + viS,i = ΔS + α2C2,

C2,t + viC2,i = ΔC2,

(2.129)

in Ω × (0, T ),

vini = 0, S = h, C2 = r on Γ × (0, T ], (2.130)

S(x, 0) = S0(x), C2(x, 0) = C0(x). (2.131)

The difference variables wi, θ, φ, π and α are defined by

wi = ui − vi, θ = T − S, φ = C1 − C2, π = p − q, α = α1 − α2. (2.132)

By direct calculation we see that (wi, θ, φ, π) satisfies the boundary-initial
value problem

wi = −π,i + giθ,

wi,i = 0,

θ,t + wiT,i + viθ,i = Δθ + α1φ + αC2,

φ,t + wiC1,i + viφ,i = Δφ,

(2.133)

in Ω × (0, T ),

wini = 0, θ = 0, φ = 0, on Γ × (0, T ], (2.134)

θ(x, 0) = 0, φ(x, 0) = 0. (2.135)

First, observe that multiplying (2.133)1 by wi, integrating over Ω and
using the Cauchy-Schwarz inequality we find

‖w‖ ≤ ‖θ‖. (2.136)
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By multiplying (2.133)3 by θ and integrating over Ω,

d

dt
‖θ‖2 = 2

∫

Ω

wiTθ,idx − 2‖∇θ‖2 + 2α(C2, θ) + 2α1(φ, θ).

Now use the bound for T and the arithmetic-geometric mean inequality to
find

d

dt
‖θ‖2 ≤ a‖θ‖2 + α1‖φ‖2 + kα2, (2.137)

where we have set

a =
T 2

B

2
+ 1 + α1, k = mC2

m.

Next, multiply (2.133)4 by φ and integrate over Ω to find

d

dt
‖φ‖2 =2

∫

Ω

wiC1φ,idx − 2‖∇φ‖2,

≤C2
m

2
‖w‖2,

≤C2
m

2
‖θ‖2, (2.138)

where (2.136) has also been employed.
We put β = a + C2

m/2 and add (2.137) and (2.138) to deduce

d

dt
(‖θ‖2 + ‖φ‖2) ≤ β(‖θ‖2 + ‖φ‖2) + kα2.

This inequality is integrated to arrive at

‖θ(t)‖2 + ‖φ(t)‖2 ≤ ζ(t)α2, (2.139)

where ζ(t) = keβt/β.
Inequality (2.139) is an a priori bound and establishes continuous

dependence on the Krishnamurti coefficient α for equations (2.111).

2.8 Continuous dependence, Dufour coefficient

This section is devoted to studying the influence the Dufour effect has
on double diffusive convective motion in a porous medium of Brinkman
type. We focus on the Brinkman equations rather than the Darcy equa-
tions. As pointed out in chapter 1, the Brinkman equations of flow in
porous media (Brinkman, 1947) have been the subject of intense recent
attention. Among recent papers dealing with Brinkman models we cite
(Franchi and Straughan, 1996), (Givler and Altobelli, 1994), (Guo and
Kaloni, 1995c; Guo and Kaloni, 1995a), (Kladias and Prasad, 1991),
(Kwok and Chen, 1987), (Lombardo and Mulone, 2002a; Lombardo and
Mulone, 2002b; Lombardo and Mulone, 2003), (Nield and Bejan, 2006),
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(Qin and Chadam, 1996), (Qin et al., 1995), (Qin and Kaloni, 1992; Qin and
Kaloni, 1994), (Payne and Song, 1997; Payne and Song, 2000), (Payne and
Straughan, 1996; Payne and Straughan, 1999a), and the references therein.
Double diffusive convective motion is the phenomenon involving the dif-
fusion and convection of two independent fields, such as temperature and
a salt field. In section 2.7 we analysed another double diffusive problem.
Stability analyses of double diffusive phenomena, in a variety of practi-
cal contexts, have occupied much recent attention, cf. (Avramenko and
Kuznetsov, 2004), (Bardan et al., 2000; Bardan et al., 2001), (Bardan and
Mojtabi, 1998), (Bresch and Sy, 2003), (Budu, 2002), (Carr, 2003a; Carr,
2003b), (Chang, 2004), (Charrier-Mojtabi et al., 1998), (Clark et al., 2002),
(Guo and Kaloni, 1995c; Guo and Kaloni, 1995a; Guo and Kaloni, 1995b),
(Guo et al., 1994), (Hill, 2005a; Hill, 2003; Hill, 2004b; Hill, 2004a; Hill,
2004c; Hill, 2005b), (Hurle and Jakeman, 1971), (Karimi-Fard et al., 1999),
(Knutti and Stocker, 2000), (Lombardo and Mulone, 2002b), (Lombardo
et al., 2001), (Malashetty et al., 2006), (Song, 2002), (Stocker, 2001),
(Stocker and Schmittner, 1997), (Straughan and Tracey, 1999) and (Ybarra
and Velarde, 1979). (Straughan, 2004a), chapter 14 discusses double diffu-
sive and even multi-diffusive convection in detail in a variety of contexts.
Further practical studies of double diffusive convection to energy conversion
and management via a solar pond occupy the papers by (Rothmeyer, 1980),
(Tabor, 1980), and (Zangrando, 1991), the one by Rothmeyer investigat-
ing in particular the Soret effect, which is in some sense the mathematical
adjoint to the Dufour effect.

To describe the Dufour effect, the equations for convective - diffusive
motion in an incompresssible fluid in a Brinkman porous medium may be
written as, employing a Boussinesq approximation in the body force term
in the momentum equation,

vi − λΔvi = −p,i + giT + hiC, vi,i = 0,

T,t + viT,i = −Ji,i ,

C,t + viC,i = −Ki,i ,

(2.140)

where vi, T, C and p represent velocity, temperature, salt concentration
and pressure fields, respectively, gi and hi are the gravity vector terms
arising in the density equation of state, and J and K are fluxes of heat and
solute, respectively. In equations (2.140) λ is the Brinkman coefficient. The
Brinkman equations are discussed at length in (Nield and Bejan, 2006) and
in chapter 1, section 1.4 of this book. We observe that in (2.140)1 the T,C
terms arise from the body force in a Boussinesq approximation. The vi term
is essentially an interaction force between the fluid and porous matrix. The
λΔvi term is an effective viscosity contribution and is believed appropriate
when the porosity is not too small. In the Brinkman equations the nonlinear
convective terms of Navier-Stokes theory are omitted as is the acceleration,
∂vi/∂t, term; this is consistent with flow through a porous matrix where
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the convection and acceleration terms are likely to be negligible. (Hurle
and Jakeman, 1971) argue that the general forms for the fluxes J and K
should be

Ji = −κT,i−ρTC
( ∂μ

∂C

)
D′C,i , Ki = −ρD

[
ST C(1−C)T,i +C,i

]
, (2.141)

where κ,D,D′, ST , ρ and μ are, respectively, thermal conductivity, diffu-
sion constant, Dufour coefficient, Soret coefficient, density and chemical
potential of the solute. Continuous dependence of the solution on the
Soret coefficient is treated in (Straughan and Hutter, 1999). In this sec-
tion we set the Soret coefficient ST = 0 and concentrate on a Dufour
effect. As a first step we treat a linear Dufour effect. This means we
treat the ρTCD′(∂μ/∂C) term in (2.141) as constant. This is in keeping
with the approach of (Ybarra and Velarde, 1979). From a mathematical
viewpoint we may then, without loss of generality, reduce system (2.140),
incorporating the reduced version of (2.141), to the form

vi − λΔvi = −p,i + giT + hiC, vi,i = 0,

T,t + viT,i = ΔT + γΔC ,

C,t + viC,i = ΔC ,

(2.142)

where γ > 0 is a constant and γΔC represents the Dufour effect. We now
develop a priori bounds to enable us to establish continuous dependence of
the solution on changes in the Dufour coefficient (constant) γ.

2.8.1 Continuous dependence on γ.

The continuous dependence result we now establish is truly a priori in
that the coefficients appearing in the stability estimate are dependent only
on initial and boundary data, and on the geometry of the domain. The
proof given here is not identical to that of (Straughan and Hutter, 1999).
However, it can be adapted very quickly since the Soret system studied
in (Straughan and Hutter, 1999) is obtained by exchanging T and C in
(2.142). On the boundary Γ we consider the given data

vi = 0, T = h, C = g, x ∈ Γ, (2.143)

for prescribed functions h and g. Note that since we are dealing with the
Brinkman equations all components of the velocity are prescribed on Γ.
The initial data are

T (x, 0) = T0(x), C(x, 0) = C0(x), x ∈ Ω. (2.144)

To study continuous dependence on γ we let (ui, T, C1, p) and (vi, S, C2, q)
be solutions to (2.142) – (2.144) for the same boundary and initial data,
but for different Dufour coefficients γ1 and γ2. Thus, let (ui, T, C1, p) and
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(vi, S, C2, q) solve the boundary-initial value problems

ui − λΔui = −p,i + giT + hiC1,

ui,i = 0,

T,t + uiT,i = ΔT + γ1ΔC1,

C1,t + uiC1,i = ΔC1,

(2.145)

in Ω × (0, T ),

ui = 0, T = h, C1 = g, on Γ × (0, T ), (2.146)

T (x, 0) = T0(x), C1(x, 0) = C0(x), x ∈ Ω, (2.147)

and

vi − λΔvi = −q,i + giS + hiC2,

vi,i = 0,

S,t + viS,i = ΔS + γ2ΔC2,

C2,t + viC2,i = ΔC2,

(2.148)

in Ω × (0, T ),

vi = 0, S = h, C2 = g, on Γ × (0, T ), (2.149)

S(x, 0) = T0(x), C2(x, 0) = C0(x), x ∈ Ω. (2.150)

Define the difference solution (wi, θ, φ, π) and the gamma-difference, γ,
by

wi = ui − vi, θ = T − S, φ = C1 − C2, π = p − q, γ = γ1 − γ2.

The solution (wi, θ, φ, π) satisfies the partial differential equations

wi − λΔwi = −π,i + giθ + hiφ, wi,i = 0,

θ,t + wiT,i + viθ,i = Δθ + γΔC1 + γ2Δφ ,

φ,t + viφ,i + wiC1,i = Δφ,

(2.151)

in Ω × (0, T ), together with the boundary and initial conditions,

wi = 0, θ = 0, φ = 0, on Γ × (0, T ), (2.152)

θ(x, 0) = 0, φ(x, 0) = 0. (2.153)

Our analysis commences by multiplying (2.151)1 by wi and integrating
over Ω to derive

‖w‖2 + λ‖∇w‖2 = gi(θ, wi) + hi(φ,wi). (2.154)

Again we suppose, |g| ≤ 1, |h| ≤ 1.
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Multiply (2.151)3 by θ and integrate over Ω. Multiply (2.151)4 by φ and
likewise integrate over Ω. In this way one derives

d

dt

1
2
‖θ‖2 = −(wiT,i, θ) − ‖∇θ‖2 − γ(∇C1,∇θ) − γ2(∇θ,∇φ), (2.155)

and

d

dt

1
2
‖φ‖2 = −(wiC1,i, φ) − ‖∇φ‖2. (2.156)

We form the combination (2.155)+Γ(2.156) for a constant Γ(> 0) to be
chosen. In this way we obtain

d

dt

1
2
(
Γ‖φ‖2+‖θ‖2

)
= −Γ(wiC1,i, φ) − (wiT,i, θ) − Γ‖∇φ‖2

− γ2(∇θ,∇φ) − ‖∇θ‖2 − γ(∇C1,∇θ). (2.157)

The first two terms on the right of this expression are cubic. We wish to
make a positive - definite form from the next three. So, the idea now is to
require Γ so large that

Γ‖∇φ‖2 + γ2(∇θ,∇φ) + ‖∇θ‖2 ≥ ξ1‖∇φ‖2 + ξ2‖∇θ‖2 ,

for positive numbers ξ1, ξ2. For example by using the arithmetic-geometric
mean inequality on the γ2 term we may deduce

Γ‖∇φ‖2 + γ2(∇θ,∇φ) + ‖∇θ‖2 ≥
(
Γ − γ2

2α

)
‖∇φ‖2 +

(
1 − αγ2

2

)
‖∇θ‖2 ,

for α > 0 at our disposal. Let us now choose α = 1/γ2 and then select
Γ = γ2

2 . Thus, the inequality above becomes

Γ‖∇φ‖2 + γ2(∇θ,∇φ) + ‖∇θ‖2 ≥ γ2
2

2
‖∇φ‖2 +

1
2
‖∇θ‖2. (2.158)

Now use the arithmetic-geometric mean inequality on the last term of
(2.157). We balance the ‖∇θ‖2 term which arises with a piece of the same
term from (2.158). Thus, (2.157) together with (2.158) allows us to derive

d

dt

1
2
(
Γ‖φ‖2+‖θ‖2

)
≤ −Γ(wiC1,i, φ) − (wiT,i, θ) −

γ2
2

2
‖∇φ‖2

− 1
4
‖∇θ‖2 + γ2‖∇C1‖2. (2.159)

Since we have extra dissipation provided by the Brinkman term (as opposed
to the Darcy term of section 2.7) we can bound the cubic terms in (2.159)
in a different manner. We begin with the following Sobolev inequality

‖w‖4 ≤ c1‖∇w‖, (2.160)

where ‖ · ‖4 is the norm on L4(Ω) and c1 = c1(Ω). We also utilise the
Poincaré inequality λ1‖w‖2 ≤ ‖∇w‖2. Next, use the Cauchy - Schwarz,
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Sobolev and Poincaré inequalities together with the arithmetic-geometric
mean inequality to find

|(wiC1,i, φ)| ≤ ‖∇C1‖ ‖w‖4 ‖φ‖4

≤ c2
1 ‖∇C1‖ ‖∇w‖ ‖∇φ‖

≤ c4
1

2
‖∇C1‖2 ‖∇w‖2 +

1
2
‖∇φ‖2. (2.161)

A similar procedure leads to

|(wiT,i, θ)| ≤ c4
1‖∇T‖2 ‖∇w‖2 +

1
4
‖∇θ‖2. (2.162)

Now, combine (2.161) and (2.162) in inequality (2.159) to arrive at

d

dt

1
2
(
γ2
2‖φ‖2 + ‖θ‖2

)
≤c4

1γ
2
2

2
‖∇C1‖2 ‖∇w‖2

+ c4
1‖∇T‖2 ‖∇w‖2 + γ2‖∇C1‖2. (2.163)

We need to estimate ‖∇w‖2 and then from (2.154) we may find

‖w‖2 + λ‖∇w‖2 =(giθ, wi) + (hiφ,wi)
≤‖θ‖‖w‖ + ‖φ‖‖w‖

and then we use Poincaré’s inequality on a part of ‖∇w‖2 to find

‖w‖2 + λ
√

λ1‖w‖‖∇w‖ ≤ ‖θ‖‖w‖ + ‖φ‖‖w‖.
From this inequality we derive the estimate

‖w‖ + λ
√

λ1‖∇w‖ ≤ ‖θ‖ + ‖φ‖. (2.164)

What we require in (2.159) is an upper bound for ‖∇w‖2 and we may
derive this from (2.164), since this inequality shows

‖∇w‖ ≤ ‖θ‖ + ‖φ‖
λ
√

λ1

,

and squaring

‖∇w‖2 ≤ (‖θ‖ + ‖φ‖)2
λ2λ1

≤ 2
λ2λ1

(‖θ‖2 + ‖φ‖2) . (2.165)

Thus, we employ estimate (2.165) in inequality (2.163) to find

d

dt

1
2

(
γ2
2‖φ‖2 + ‖θ‖2

)
≤ c4

1

λ2λ1

(
γ2
2 ‖∇C1‖2 + 2‖∇T‖2

)
(‖θ‖2 + ‖φ‖2)

+ γ2‖∇C1‖2. (2.166)

We now need a priori bounds for ‖∇C1‖ and ‖∇T‖. To this end we follow
analogous steps to section 2.7 and we introduce the harmonic function, H,
which adopts the same boundary values as C1. Thus, define

ΔH = 0, in Ω × (0, T ), H(x, t) = g(x, t), on Γ × (0, T ). (2.167)
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Form the identity
∫ t

0

∫

Ω

(C1 − H)(C1,t + uiC1,i − ΔC1)dx dη = 0. (2.168)

Next perform several integrations in (2.168) and use the boundary values
and properties of H to see that

1
2
‖C1(t)‖2 − 1

2
‖C0‖2 − (H,C1) + (H0, C0) +

∫ t

0

∫

Ω

H,ηC1dx dη

−
∫ t

0

∫

Ω

HuiC1,idx dη +
∫ t

0

‖∇C1‖2dη −
∫ t

0

∮

Γ

g
∂H

∂n
dAdη = 0. (2.169)

The point of introducing such an H is that we cannot work directly with
T or C1 to form energy-like estimates since they have non-zero boundary
values. Instead we work with identities for T−H or C1−H, functions which
are zero on Γ. We may derive a priori bounds for H in a straightforward
manner. To handle the cubic term in (2.169) we let gm be the maximum
value of g on Γ× [0, T ) (gmis taken positive) and then since H is harmonic
we know by the maximum principle that H ≤ gm. Upon employing the
Cauchy-Schwarz and arithmetic-geometric mean inequalities we derive

∫ t

0

∫

Ω

HuiC1,idx dη ≤gm

√∫ t

0

‖u‖2dη

√∫ t

0

‖∇C1‖2dη

≤1
2

∫ t

0

‖∇C1‖2dη +
1
2
g2

m

∫ t

0

‖u‖2dη, (2.170)

where the coefficient of
∫ t

0
‖∇C1‖2dη has been deliberately chosen less

than 1 so we may dominate it by the equivalent term in (2.169).
From equation (2.145)1 we may show that

‖u‖2 + λ‖∇u‖2 = gi(T, ui) + hi(C1, ui).

We use this equation to derive a bound for
∫ t

0
‖u‖2dη to employ in (2.170).

We now use the Cauchy - Schwarz inequality and Poincaré’s inequality to
derive

‖u‖2 + λ‖∇u‖2 ≤ ‖T‖‖u‖ + ‖C1‖‖u‖,
then

‖u‖2 + λλ1‖u‖2 ≤ ‖T‖‖u‖ + ‖C1‖‖u‖.
Thus,

‖u‖ ≤ ‖T‖ + ‖C1‖
(1 + λλ1)

,

from whence,

‖u‖2 ≤ 2(‖T‖2 + ‖C1‖2)
(1 + λλ1)

. (2.171)
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Therefore, from (2.170),
∫ t

0

∫

Ω

HuiC1,idx dη ≤1
2

∫ t

0

‖∇C1‖2dη

+ g2
m

(∫ t

0

‖T‖2dη +
∫ t

0

‖C1‖2dη

)
. (2.172)

By using the arithmetic-geometric mean inequality we may now show that

(H,C1) ≤ ‖H‖2 +
1
4
‖C1‖2, −(H0, C0) ≤

1
2
‖H0‖2 +

1
2
‖C0‖2, (2.173)

and
∫ t

0

∫

Ω

H,ηC1 dx dη ≤ 1
2a

∫ t

0

∫

Ω

H2
,ηdx dη +

a

2

∫ t

0

∫

Ω

C2
1dx dη, (2.174)

for a > 0 to be selected.
We now use the Poincaré inequality on the C2

1 term on the right, but
since C1 = g on Γ the Poincaré inequality now takes form

λ1

∫

Ω

C2
1dx ≤

∫

Ω

|∇C1|2dx + kP

∫

Γ

g2dA,

where λ1 and kP are positive constants depending on Ω. We integrate this
inequality over (0, t) to find
∫ t

0

ds

∫

Ω

C2
1dx ≤ 1

λ1

∫ t

0

ds

∫

Ω

|∇C1|2dx +
kP

λ1

∫ t

0

ds

∫

Γ

g2dA. (2.175)

Now use estimate (2.175) on the right of (2.174) to find
∫ t

0

∫

Ω

H,ηC1 dx dη ≤ 1
2a

∫ t

0

∫

Ω

H2
,η dx dη +

a

2λ1

∫ t

0

ds

∫

Ω

|∇C1|2dx

+
akP

2λ1

∫ t

0

ds

∫

Γ

g2dA.

We choose a/2λ1 = 1/4, i.e. a = λ1/2, to balance the
∫ t

0
ds
∫
Ω
|∇C1|2dx

piece with an equivalent piece of the analogous term in (2.169). Thus, the
necessary inequality is

∫ t

0

∫

Ω

H,ηC1 dx dη ≤ 1
λ1

∫ t

0

∫

Ω

H2
,η dx dη +

1
4

∫ t

0

ds

∫

Ω

|∇C1|2dx

+
kP

4

∫ t

0

ds

∫

Γ

g2dA. (2.176)

By use of the Cauchy-Schwarz inequality one finds

∫ t

0

∫

Γ

g
∂H

∂n
dAdη ≤

√∫ t

0

∫

Γ

g2dAdη

√∫ t

0

∫

Γ

(∂H

∂n

)2

dAdη . (2.177)
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We next employ (2.173), (2.176) and (2.177) together with (2.170) in
equation (2.169) to arrive at

1
4
‖C1(t)‖2+

1
4

∫ t

0

‖∇C1‖2dη ≤ ‖C0‖2 +
kP

4

∫ t

0

ds

∫

Γ

g2dA + ‖H‖2

+
1
2
‖H0‖2 +

1
2

∫ t

0

‖H,η‖2dη

+

√∫ t

0

∫

Γ

g2dAdη

√∫ t

0

∫

Γ

(∂H

∂n

)2

dAdη

+ g2
m

∫ t

0

‖T‖2dη + g2
m

∫ t

0

‖C1‖2dη. (2.178)

The next stage involves use of a Rellich identity, cf. (Payne and Weinberger,
1958), to estimate the H terms on the right of (2.178). Details appropriate
to the function H are similar to those in (Franchi and Straughan, 1994),
p. 449. We now give details.

Recall how the function H is defined in (2.167). Thus we may write

0 =
∫

Ω

xiH,iΔHdx

=
∫

Ω

(xiH,iH,j),jdx −
∫

Ω

xi
,jH,iH,jdx −

∫

Ω

xiH,ijH,jdx

=
∫

Γ

xiH,injH,jdA −
∫

Ω

δi
jH,iH,jdx −

∫

Ω

xi

2
(H,jH,j),idx

=
∫

Γ

xiH,i
∂H

∂n
dA −

∫

Ω

H,iH,idx

− 1
2

∫

Ω

(xiH,jH,j),idx +
1
2

∫

Ω

xi
,iH,jH,jdx

=
∫

Γ

xiH,i
∂H

∂n
dA − 1

2

∫

Γ

xiniH,jH,jdA

−
∫

Ω

H,iH,idx +
3
2

∫

Ω

H,iH,idx,

where several integrations by parts and use of the divergence theorem have
been performed. Thus, we see that

1
2
‖∇H‖2 =

1
2

∫

Γ

xiniH,jH,jdA −
∫

Γ

xiH,i
∂H

∂n
dA. (2.179)

On Γ we write ∇H as a normal and tangential part, thus

H,i =
∂H

∂n
ni + ∇sH si,

where ∇sH si is the tangential derivative, si∇sH = xi
;αaαβH;β where aαβ

is the first fundamental form on Γ and ;α denotes surface differentiation.
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From this decomposition it follows that H,jH,j = (∂H/∂n)2 + |∇sH|2.
Hence, we write the right hand side (RHS) of (2.179) as

RHS =
1
2

∫

Γ

xini

(∂H

∂n

)2

dA +
1
2

∫

Γ

xini|∇sH|2dA

−
∫

Γ

xini

(∂H

∂n

)2

dA −
∫

Γ

xis
i∇sH

∂H

∂n
dA

= − 1
2

∫

Γ

xini

(∂H

∂n

)2

dA− 1
2

∫

Γ

xini|∇sH|2dA−
∫

Γ

xis
i∇sH

∂H

∂n
dA

So (2.179) becomes

1
2
‖∇H‖2 +

1
2

∫

Γ

xini

(∂H

∂n

)2

dA =
1
2

∫

Γ

xini|∇sH|2dA

−
∫

Γ

xisi
∂H

∂n
∇sH dA. (2.180)

We suppose now Ω is star shaped and put m1 = minΓ xini > 0. Thus,
from (2.180) we may determine positive constants c1 and c2 depending on
Γ such that

‖∇H‖2 + c1

∫

Γ

(∂H

∂n

)2

dA ≤c2

∫

Γ

|∇sH|2dA

=c2

∫

Γ

|∇sg|2dA. (2.181)

The Poincaré inequality for H has form, since H = 0 on Γ,

λ1‖H‖2 ≤ ‖∇H‖2 + kP

∫

Γ

H2dA,

where kP = kP (Ω) > 0 and so

‖H‖2 ≤ c2

λ1

∫

Γ

|∇sg|2dA +
kP

λ1

∫

Γ

g2dA. (2.182)

Furthermore, ΔH,t = 0 in Ω × [0, T ], with H,t = g,t on Γ. We may apply
the above analysis to φ = H,t to derive an inequality analogous to (2.181)
and from this we find

‖∇H,t‖2 ≤ c2

∫

Γ

|∇sg,t|2dA. (2.183)

Thus, inequalities (2.180) – (2.183) allow us to obtain estimates for the
H terms on the right of (2.178). Clearly, we may determine constants cα
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dependent on Γ such that

‖H‖2 +
1
2
‖H0‖2 ≤ 3

2
c3

∫

Γ

g2dA +
3
2

c4

∫

Γ

|∇sg|2dA, (2.184)
∫ t

0

‖H,η‖2dη ≤ c5

∫ t

0

∫

Γ

g2
,τdAdτ + c6

∫ t

0

∫

Γ

|∇sg,τ |2dAdτ, (2.185)
∫ t

0

∫

Γ

(∂H

∂n

)2

dAdη ≤ c2

∫ t

0

∫

Γ

|∇sg|2dAdη. (2.186)

If we now denote by D1 a data term of form

D1(t) = 4‖T0‖2 + k1

∫

Γ

g2dA + k2

∫

Γ

|∇sg|2dA + k3

∫ t

0

∫

Γ

g2
,τdAdτ

+ k4

∫ t

0

∫

Γ

|∇sg,τ |2dAdτ + k5

√∫ t

0

∫

Γ

g2dAdη

√∫ t

0

∫

Γ

|∇sg|2dAdη ,

where kα may be computed from (2.184) – (2.186), then from (2.178) we
may arrive at the inequality

‖C1(t)‖2 +
∫ t

0

‖∇C1‖2dη ≤ D1(t) + 4g2
m

∫ t

0

(‖T‖2 + ‖C1‖2)dη. (2.187)

We must now carry out a similar procedure for bounding ‖T‖ and ‖∇T‖
and so we introduce the harmonic function G which assumes the same
boundary values as T, i.e. define G to solve

ΔG = 0, in Ω × (0, T ), G(x, t) = h(x, t), on Γ × (0, T ). (2.188)

Since T satisfies (2.145) we may construct the identity
∫ t

0

∫

Ω

(T − G)(T,t + uiT,i − ΔT − γ1ΔC1)dx dη = 0. (2.189)

We now carry out several integrations in (2.189) to arrive at

1
2
‖T (t)‖2 − 1

2
‖T0‖2 − (G,T ) + (G0, T0) +

∫ t

0

(G,η, T )dη

−
∫ t

0

∫

Ω

GuiT,idx dη +
∫ t

0

‖∇T‖2dη + γ1

∫ t

0

(∇C1,∇T )dη

−
∫ t

0

∫

Γ

h
∂G

∂n
dAdη − γ1

∫ t

0

∫

Γ

g
∂G

∂n
dAdη = 0.

(2.190)

Let hm denote the maximum value of h on Γ. Then following the
procedure leading to (2.170) we estimate the cubic term in (2.190).
The arithmetic-geometric mean inequality is used on the γ1 term and
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these procedures furnish the bound

∫ t

0

∫

Ω

GuiT,idx dη−γ1

∫ t

0

(∇C1,∇T )dη ≤ h2
m

∫ t

0

‖u‖2dη

+
1
2

∫ t

0

‖∇T‖2dη + γ2
1

∫ t

0

‖∇C1‖2dη

≤ 2h2
m

(1 + λλ1)

(∫ t

0

‖T‖2dη +
∫ t

0

‖C1‖2dη

)

+
1
2

∫ t

0

‖∇T‖2dη + γ2
1

∫ t

0

‖∇C1‖2dη, (2.191)

where in the last step (2.171) has been employed.
We estimate the G,η term as

∫ t

0

(G,η, T )dη ≤ 1
2a

∫ t

0

‖G,η‖2dη +
a

2

∫ t

0

‖T‖2dη

≤ 1
2a

∫ t

0

‖G,η‖2dη +
a

2λ1

∫ t

0

‖∇T‖2dη

+
akP

2λ1

∫ t

0

dη

∫

Γ

h2dA

where we have also used the Poincaré inequality for T . Now pick a/2λ1 =
1/4, and then

∫ t

0

(G,η, T )dη ≤ 1
λ1

∫ t

0

‖G,η‖2dη +
1
4

∫ t

0

‖∇T‖2dη

+
kP

4

∫ t

0

dη

∫

Γ

h2dA. (2.192)

Upon employing (2.191) and (2.192) in (2.190) we may further use the
arithmetic-geometric mean inequality to obtain

1
4
‖T (t)‖2+

1
4

∫ t

0

‖∇T‖2dη ≤ ‖T0‖2 +
1
2
‖G0‖2 + ‖G‖2 +

1
λ1

∫ t

0

‖G,η‖2dη

+
∫ t

0

∫

Γ

h
∂G

∂n
dAdη + γ1

∫ t

0

∫

Γ

g
∂G

∂n
dAdη + γ2

1

∫ t

0

‖∇C1‖2dη

+ 2g2
m

∫ t

0

‖C1‖2dη + 2g2
m

∫ t

0

‖T‖2dη. (2.193)
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Next use the Cauchy-Schwarz inequality on the boundary terms,
∫ t

0

∫

Γ

h
∂G

∂n
dAdη+γ1

∫ t

0

∫

Γ

g
∂G

∂n
dAdη

≤

√∫ t

0

∫

Γ

h2dAdη

√∫ t

0

∫

Γ

(∂G

∂n

)2

dAdη

+ γ1

√∫ t

0

∫

Γ

g2dAdη

√∫ t

0

∫

Γ

(∂G

∂n

)2

dAdη (2.194)

By using a Rellich identity argument one may show that analogous
inequalities to (2.184) – (2.186) hold for G. We then define the data term
D2 for computable constants �1, . . . , �5 as

D2(t) =4‖T0‖2 + �1

∫

Γ

h2dA + �2

∫

Γ

|∇sh|2dA

+ �3

∫ t

0

∫

Γ

h2
,τdAdτ + �4

∫ t

0

∫

Γ

|∇sh,τ |2dAdτ

+ �5

√∫ t

0

∫

Γ

h2dAdη

√∫ t

0

∫

Γ

|∇sh|2dAdη

+ �5γ1

√∫ t

0

∫

Γ

g2dAdη

√∫ t

0

∫

Γ

|∇sh|2dAdη. (2.195)

Upon using (2.194) and (2.195) in (2.193) one may produce the inequality

‖T (t)‖2+
∫ t

0

‖∇T‖2dη ≤ D2(t) + 8g2
m

∫ t

0

‖C1‖2dη

+ 8g2
m

∫ t

0

‖T‖2dη + 4γ2
1

∫ t

0

‖∇C1‖2dη. (2.196)

We now let α be a constant such that α > 4γ2
1 and then form α(2.187)+

(2.196). In this manner we obtain the bound

α‖C1(t)‖2 + (α − 4γ2
1)
∫ t

0

‖∇C1‖2dη + ‖T (t)‖2 +
∫ t

0

‖∇T‖2dη

≤ αD1 + D2 +
[
4αg2

m + 8h2
m

] ∫ t

0

‖C1‖2dη

+ (4αg2
m + 8h2

m)
∫ t

0

‖T‖2dη. (2.197)

Define now K1 = 4αg2
m + 8h2

m, D(t) = αD1 + D2, and K = K1 if α > 1 or
K = K1/α if α < 1. Then from (2.197) one may discard the ‖∇C1‖2 and
‖∇T‖2 terms to derive

α‖C1(t)‖2 + ‖T (t)‖2 ≤ D + K

[
α

∫ t

0

‖C1‖2dη +
∫ t

0

‖T‖2dη

]
.
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Thus upon integration we see that

α

∫ t

0

‖C1‖2dη +
∫ t

0

‖T‖2dη ≤ P (t), (2.198)

where P is the data term

P (t) =
∫ t

0

eK(t−s)D(s)ds. (2.199)

We still need a priori estimates for
∫ t

0
‖∇T‖2dη and

∫ t

0
‖∇C1‖2dη and these

follow by using (2.198) in (2.197) to find
∫ t

0

‖∇T‖2dη ≤ P2(t),
∫ t

0

‖∇C1‖2dη ≤ P1(t), (2.200)

where P1 and P2 are data terms given by

P1(t) =
1

(α − 4γ2
1)
[
D(t) + KP (t)

]
, P2(t) = D(t) + KP (t).

We are now in a position to complete the continuous dependence estimate
on γ. An integration of (2.166) yields

γ2
2‖φ(t)‖2 + ‖θ(t)‖2 ≤ 2c4

1

λ2λ1

∫ t

0

[
γ2
2‖∇C1‖2 + 2‖∇T‖2

]
(‖φ‖2 + ‖θ‖2)dη

+ γ2

∫ t

0

‖∇C1‖2dη,

≤ 2K1c
4
1

λ2λ1

∫ t

0

[
γ2
2‖∇C1‖2 + 2‖∇T‖2

]
(γ2

2‖φ‖2 + ‖θ‖2)dη

+ γ2P1(t), (2.201)

where K2 = max {1, γ−2
2 }. Now define f(t) = 2K2c

4
1[γ

2
2‖∇C1‖2 +

2‖∇T‖2]/λ2λ1. Then an application of Gronwall’s inequality to (2.201)
furnishes the estimate

γ2
2‖φ(t)‖2 + ‖θ(t)‖2 ≤ γ2P1(t) + γ2

∫ t

0

P1(s)f(s)
[
exp
∫ t

s

f(u)du

]
ds,

≤ γ2P1(t) + γ2

[
exp
∫ t

0

f(s)ds

]
P̄1(t)

∫ t

0

f(s)ds, (2.202)

where P̄1(t) = maxs∈[0,t] P1(s). Thanks to (2.200) we have
∫ t

0
f(s)ds ≤

P3(t), where the data term P3 is given by P3(t) = 2K2c
4
1

[
γ2
2P2(t) +

2P1(t)
]
/λ2λ1. Therefore, from inequality (2.202) we may deduce

γ2
2‖φ(t)‖2 + ‖θ(t)‖2 ≤ R(t)γ2, (2.203)

where R(t) is the data term given by R(t) = P1(t)+ P̄1(t)P3(t) exp
[
P3(t)

]
.

Inequality (2.203) demonstrates continuous dependence on the Dufour
coefficient γ, for the salt concentration C and temperature T .
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We may also derive a continuous dependence inequality for the velocity u
by employing (2.154) in combination with (2.203). From (2.154) one easily
derives the estimates

‖w‖ ≤ ‖θ‖ + ‖φ‖
(1 + λλ1)

, and ‖∇w‖ ≤ 1
λ
√

λ1

(‖θ‖ + ‖φ‖).

These inequalities together with (2.203) yield

‖w(t)‖2 ≤ 2K2R(t)
(1 + λλ1)2

γ2, and ‖∇w(t)‖2 ≤ 2K2

λ2λ1
R(t) γ2.

(2.204)

Inequalities (2.204) establish continuous dependence on the Dufour
coefficient γ in the L2 and H1 measures of w as indicated.

Very interesting a priori bounds and continuous dependence on the Soret
coefficient for the system of equations (2.140) are established by (Lin and
Payne, 2007a). These writers study equations (2.140) with zero flux bound-
ary conditions. The methods they use are very interesting and of necessity
different from those described in this section.

2.9 Initial - final value problems

Recently a new class of problem has been shown to be relevant to many
applied mathematical situations. This is where the data are not given at
time t = 0, but instead are prescribed as a linear combination at times
t = 0 and t = T. We shall refer to such situations as initial - final value
problems. Specific applications of these ideas are in (Payne and Schae-
fer, 2002), (Payne et al., 2004), (Ames et al., 2004a; Ames et al., 2004b),
(Quintanilla and Straughan, 2005b; Quintanilla and Straughan, 2005a) and
the references therein. This class of problem was originally introduced in
order to stabilize solutions to the improperly posed problem when the data
is given at t = T and one wishes to compute the solution backward in
time, see (Ames et al., 1998), (Ames and Payne, 1999) and the references
therein. (Ames et al., 2004a) study an initial - final value problem for the
first order abstract equation ut + Au = f. (Ames et al., 2004b) investigate
an initial - final value problem for the diffusion equation with the spatial
domain being an infinite cylinder. (Payne and Schaefer, 2002) study an
initial - final value problem for the second order in time abstract equation
utt + Au = F. They also investigate a similar initial - final value prob-
lem for the equation utt + aut + Au = 0, for a > 0 a constant. (Payne
et al., 2004) study an initial - final value problem for some fluid mechanics
problems, especially in connection with Stokes flow. Further analyses of ini-
tial - final value problems are by (Quintanilla and Straughan, 2005b) who
investigate thermoelasticity according to the new developments of (Green
and Naghdi, 1991; Green and Naghdi, 1992; Green and Naghdi, 1993).
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Further analysis of these theories may be found in (Quintanilla and Racke,
2003), (Quintanilla and Straughan, 2000; Quintanilla and Straughan, 2002;
Quintanilla and Straughan, 2004), (Zhang and Zuazua, 2003), (Puri and
Jordan, 2004). Another article dealing with initial - final value problems
is that of (Quintanilla and Straughan, 2005a) who concentrate on dipo-
lar fluids, see also (Bleustein and Green, 1967), (Green and Naghdi, 1968;
Green and Naghdi, 1970), (Green et al., 1965), (Green and Rivlin, 1967),
(Akyildiz and Bellout, 2004), (Jordan and Puri, 1999; Jordan and Puri,
2002), (Puri and Jordan, 1999b; Puri and Jordan, 1999a), on the (Green
and Naghdi, 1996) extended theory of viscous fluids, and on the Brinkman-
Forchheimer model of flow in porous media. The last topic is of interest in
this book.

The article of (Quintanilla and Straughan, 2005a) analyses the
Brinkman-Forchheimer equations, as used by (Qin and Kaloni, 1998),
namely

Aui,t = − p,i − ui + λΔui − β|u|ui,

ui,i =0.
(2.205)

In these equations ui, p represent the velocity and pressure, and A, λ, β are
positive constants.

We take equations (2.205) to be defined on a bounded domain Ω ⊂ R
3

on the time interval (0, T ) for some T < ∞, with the boundary conditions
being

ui = 0 on Γ. (2.206)

The study of (Quintanilla and Straughan, 2005a) uses the initial - final
condition

ui(T ) + αui(0) = fi, (2.207)

where α is a constant, and fi(x) is a prescribed function. (The standard
initial boundary value problem for (2.205) would replace (2.207) by ui(0) =
fi. The standard final boundary value problem for (2.205) would employ
ui(T ) = fi instead of (2.207).) Here, the objective is to obtain a bound on
ui in terms of fi and α, employing the relation (2.207).

(Quintanilla and Straughan, 2005a) note that for the final value problem
for (2.205), (2.206), i.e. with α = 0, a global solution does not exist. By
transforming t → T − t one may show (cf. for example, the arguments
in (Straughan, 1998))

‖u(t)‖ ≥ ‖u(0)‖
e−γt − k2‖u(0)‖(1 − e−γt)/2γ

. (2.208)

In this inequality γ = (λλ1 +1)/A, k2 = 2β/Am1/2, with λ1 being the first
eigenvalue in the membrane problem for Ω and where m is the volume of Ω.
The right hand side of (2.208) blows-up at time T = [A/(λλ1 +1)] log {1+
[(λλ1 + 1)m1/2/β‖u(0)‖]}, and so ui cannot exist classically beyond this
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time. (Quintanilla and Straughan, 2005a) then argue that care must be
taken with the initial - final value problem defined by (2.205) – (2.207).

(Quintanilla and Straughan, 2005a) derive a bound for ui by commenc-
ing with multiplication of (2.205) by ui and integration over Ω using the
boundary conditions to find

d

dt

A

2
‖u‖2 = −‖u‖2 − λ‖∇u‖2 − β

∫

Ω

|u|3dx. (2.209)

We employ the Poincaré inequality −‖∇u‖2 ≤ −λ1‖u‖2 and the Cauchy-
Schwarz inequality to find −

∫
Ω
|u|3dx ≤ −‖u‖3/2/m1/2. Then from (2.209)

with Φ(t) = ‖u(t)‖2 one may show

dΦ
dt

≤ −c1Φ − c2Φ3/2, (2.210)

where the constants c1 and c2 are given by

c1 =
2(1 + λλ1)

A
, c2 =

2β

Am1/2
.

Inequality (2.210) is integrated to obtain

‖u(t)‖ ≤ ‖u(0)‖e−c1t/2

1 + c2‖u(0)‖(1 − e−γt)/c1
, (2.211)

for t in the interval 0 ≤ t ≤ T.
This is a bound for ui(t) in terms of ui(0). However, ui(0) is unknown. We

need to remove ‖u(0)‖ in (2.211) and convert it to an estimate involving
fi and α. The key is also to retain the c2 term since this contains the
Forchheimer effect (the β term). It is necessary to bound ‖u(0)‖ from both
above and below.

(Quintanilla and Straughan, 2005a) show that one may demonstrate

‖u(0)‖ ≥ ‖f‖√
2(α2 + e−c1T )

, (2.212)

and provided |α| > e−c1T/2,

‖u(0)‖ ≤ 1
(|α| − e−c1T/2)

‖f‖. (2.213)

The lower and upper bounds (2.212) and (2.213) used in (2.211) lead to
the estimate

‖u(t)‖ ≤ e−c1t/2 ‖f‖
(|α| − e−c1T/2)

[
1 +

c2(1 − e−c1t/2)‖f‖
c1

√
2(α2 + e−c1T )

]−1

, (2.214)

provided |α| > e−c1T/2, for t in the interval 0 ≤ t ≤ T.
(Quintanilla and Straughan, 2005a) observe that while the bound in

(2.214) is not optimal, the system of equations (2.205) is nonlinear, and so
an optimal bound would be hard to achieve. If instead one were to consider
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the equivalent problem for the Brinkman equations, i.e. take β = 0 in
(2.205), we may derive an optimal estimate. We do not include details
since they follow very closely the arguments of (Payne et al., 2004) for the
Stokes equations. The difference is the addition of the −ui term in (2.205).
The Lagrange identity and non-uniqueness proofs of (Payne et al., 2004)
apply here, mutatis mutandis.

2.10 The interface problem

In this section we study the problem where a viscous fluid adjoins a porous
medium saturated with the same fluid. In thermal convection this was
addressed in the fundamental papers by (Nield, 1977) and by (Chen and
Chen, 1988). One of the fundamental problems in modelling flow of a fluid
over a porous medium is that the conditions at the interface between the
fluid and the porous medium are a contentious matter, see e.g. (Beavers
and Joseph, 1967), (Caviglia et al., 1992b),(Ciesjko and Kubik, 1999),
(Jäger and Mikelic, 1998), (Jäger et al., 1999), (Jones, 1973), (McKay,
2001), (Murdoch and Soliman, 1999), (Nield and Bejan, 2006), pp. 17 – 19,
(Ochoa-Tapia and Whitaker, 1995a; Ochoa-Tapia and Whitaker, 1995b;
Ochoa-Tapia and Whitaker, 1997), (Saffman, 1971), (Taylor, 1971). Very
good agreement with experiment is often achieved by employing the exper-
imentally suggested condition proposed by (Beavers and Joseph, 1967), or
its generalization by (Jones, 1973). (Straughan, 2001c; Straughan, 2002a),
(Carr, 2004) and (Carr and Straughan, 2003) have investigated various
aspects and generalisations of the Nield and Chen-Chen problems. They
find that the Beavers-Joseph and Jones boundary conditions give good
results over a wide range of parameters. The Beavers-Joseph condition has
been successful in the slow flow of a fluid past a porous sphere (Qin and
Kaloni, 1993). If one is employing a method based on linearized instability
and so is using Stokes’ flow, use of a Beavers-Joseph or a Jones condition is
probably justified. Numerical schemes are developed for the coupled fluid
flow and porous flow problems by (Discacciati et al., 2002), by (Miglio et al.,
2003), by (Hoppe et al., 2007), and by (Mu and Xu, 2007). Several com-
putational simulations are reported in these papers. Another interesting
numerical contribution to porous/fluid flow is by (Das et al., 2002). This
paper presents a finite volume method in three-dimensions. The porous
part of the domain is allowed to be anisotropic. It is shown that flow circu-
lation may occur inside the porous medium and the direction of flow may
reverse at the interface between the porous medium and fluid. (Layton
et al., 2003) prove existence for weak solutions to the problem of Darcy
porous media flow coupled to the Stokes equations in a fluid with the
Beavers - Joseph interface boundary condition. They also analyse in detail
a finite element scheme which formulates the coupled problem as uncoupled
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steps in the porous and fluid regions thereby allowing a user to employ some
of the many existing numerical codes for the separate flow regions. (Das
and Lewis, 2007) is another recent very interesting contribution. These
writers are interested in the three-dimensional flow pattern and how het-
erogeneities in the porous medium will affect this. To achieve their aim
they interestingly employ two porous layers with different permeabilities.

The purpose of this section is to review work of (Payne and Straughan,
1998a) which studies the manner in which a solution to flow in a fluid which
borders a porous medium depends on a coefficient in the Jones boundary
conditions. We adopt the notation of (Payne and Straughan, 1998a) and
thus, let an appropriate part of the plane z = x3 = 0 denote the boundary
between a porous medium occupying a bounded region Ω2 in R

3, and a
linear viscous fluid occupying a bounded region Ω1 in R

3. The porous region
is in z ≥ 0 while the fluid domain is in z < 0, although both Ω1 and Ω2

are bounded. The interface between Ω1 and Ω2 is denoted by L while the
remaining parts of the boundaries of Ω1 and Ω2 are denoted, respectively,
by Γ1 and Γ2. In Ω1 the fluid velocity is slow such that the governing
equations may be taken to be those of Stokes flow. The question of Navier-
Stokes flow is addressed in (Payne and Straughan, 1998a). In the porous
region Ω2 the flow is assumed to satisfy the Darcy (1856) equations.

Let (ui, T, p) denote the velocity, temperature and pressure in Ω1 while
(um

i , Tm, pm) denotes the velocity, temperature and pressure in Ω2. The
Stokes flow equations which hold in the fluid region are

∂ui

∂t
= − ∂p

∂xi
+ μΔui + giT,

∂ui

∂xi
= 0 ,

∂T

∂t
+ ui

∂T

∂xi
= κΔT,

(2.215)

in Ω1× (0, T ), where μ is the dynamic viscosity, κ is the thermal diffusivity
and gi is the gravity vector which is scaled such that |g| ≤ 1.

The relevant Darcy equations which hold in the porous region are,

μ

k
um

i = −∂pm

∂xi
+ giT

m,
∂um

i

∂xi
= 0 ,

∂Tm

∂t
+ um

i

∂Tm

∂xi
= κmΔTm,

(2.216)

in Ω2 × (0, T ). The constant k is the permeability and κm is the thermal
diffusivity of the porous medium.

The functions ui, T and Tm satisfy the initial data

ui(x, 0) = fi(x), T (x, 0) = T0(x), x ∈ Ω1,

Tm(x, 0) = Tm
0 (x), x ∈ Ω2.

(2.217)
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On the outer boundary Γ1 ∪ Γ2 we consider

ui = 0, T = TU (x, t), on Γ1 × (0, T ),
um

i ni = 0, Tm = TL(x, t), on Γ2 × (0, T ),
(2.218)

for prescribed functions TU and TL, with ni being the unit outward normal.
The conditions on the interface L chosen by (Payne and Straughan, 1998a)
are

u3 = um
3 , T = Tm, κT,3 = κmTm

,3 ,

pm = p − 2μu3,3, uβ,3 + u3,β =
α1√

k
uβ .

(2.219)

The coefficient α1 is determined by experiment for a given fluid and a given
porous solid. These boundary conditions are discussed at length in (Nield
and Bejan, 2006), see also chapter 6. The condition uβ,3 +u3,β = uβα1/

√
k

essentially derives from the work of (Jones, 1973). The motivation for
this arose from (Beavers and Joseph, 1967) who argued on the basis of
experimental results that

uβ,3 =
α1√

k
(uβ − um

β ), on L (2.220)

and (Jones, 1973) generalised this to include the shear stress at the
interface, i.e.

uβ,3 + u3,β =
α1√

k
(uβ − um

β ). (2.221)

(Nield and Bejan, 2006) write that (Saffman, 1971) argues that the
last term may essentially be dropped in equation (2.220). This is the
justification for (2.219)5.

The object of this section is to describe an a priori estimate showing how
(ui, T ) and (um

i , Tm) depend continuously on the interface coefficient α1.
To do this, let (ui, p, T ) and (um

i , pm, Tm) satisfy (2.215) – (2.219) and let
(vi, q, S) and (vm

i , qm, Sm) solve the same boundary initial value problem
with identical data functions fi, T0, T

m
0 , TU and TL, but with the Jones

coefficient α1 replaced by a different value α2. The difference variables
(wi, π, θ) and σ are defined by

wi = ui − vi, π = p − q, θ = T − S, σ = α1 − α2. (2.222)

By direct calculation one finds that (wi, π, θ) satisfy the partial differential
equations

∂wi

∂t
= − ∂π

∂xi
+ μΔwi + giθ,

∂wi

∂xi
= 0 ,

∂θ

∂t
+ ui

∂θ

∂xi
+ wi

∂S

∂xi
= κΔθ,

(2.223)
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in Ω1 × (0, T ),

μ

k
wm

i = −∂πm

∂xi
+ giθ

m,

∂wm
i

∂xi
= 0 ,

∂θm

∂t
+ um

i

∂θm

∂xi
+ wm

i

∂Sm

∂xi
= κmΔθm,

(2.224)

in Ω2 × (0, T ).
The initial conditions become

wi(x, 0) = 0, θ(x, 0) = 0, x ∈ Ω1, θm(x, 0) = 0, x ∈ Ω2. (2.225)

On the outer boundary the relevant conditions become

wi = 0, θ = 0, on Γ1 × (0, T ),
wm

i ni = 0, θm = 0, on Γ2 × (0, T ).
(2.226)

The interface boundary conditions may be written

w3 = wm
3 , θ = θm, κθ,3 = κmθm

,3 ,

πm = π − 2μw3,3, wβ,3 + w3,β =
α1√

k
wβ +

σ√
k

vβ ,
(2.227)

these holding on L × (0, T ).
(Payne and Straughan, 1998a) establish the following theorem which

demonstrates continuous dependence of a solution on the interface
coefficient α1.

Theorem 2.10.1 Suppose ∂T/∂n ∈ L1(Γ1 × (0, T )) and ∂Tm/∂n ∈
L1(Γ2 × (0, T )). Then there exist constants γ(< 2μ/k), B,C and Â,
determined in (Payne and Straughan, 1998a) such that

∫

Ω1

wiwi dx+B

∫ t

0

∫

Ω1

wiwi dx dη + γ

∫

Ω2

wm
i wm

i dx

≤CeBt

α1α2

(∫

Ω1

fifi dx + ÂtT 2
m

)
σ2. (2.228)

Furthermore, there is a constant M, depending on t, such that
∫

Ω1

θ2dx +
∫

Ω2

(
θm
)2

dx ≤ M

α1α2
σ2. (2.229)

The proof of this theorem is technical, care must be taken with the
interface terms, and we refer to (Payne and Straughan, 1998a) for full
details. Nevertheless we note that the proof is interesting and is based on
a combination function Φ(t) of the form

Φ(t) =
∫

Ω1

wiwidx + γ

∫ t

0

∫

Ω2

wm
i wm

i dx dη .
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2.11 Lower bounds on the blow-up time

(Payne and Schaefer, 2006; Payne and Schaefer, 2007) and (Payne and
Song, 2007a) produce a clever argument to show that one can derive lower
bounds for the blow-up time for a nonlinear differential equation and for
the Navier-Stokes equations with nonlinear forcing terms. Prior to this
work there had been many analyses of blow-up which had derived upper
bounds on the blow-up time. However, the work of (Payne and Schaefer,
2006; Payne and Schaefer, 2007) and (Payne and Song, 2007a) is novel in
that it produces a lower bound for the blow-up time. (Suzuki, 2006) shows
how to derive a universal bound, independent of the initial data, which is
useful in calculating the initial blow-up rate of a solution, whereas (Hirota
and Ozawa, 2006) consider numerical techniques for estimating the blow-
up time and the rate of solution increase. (Kirane et al., 2005) investigate
critical exponents of Fujita type when fractional derivatives are present.
(Fila and Winkler, 2008) demonstrate a solution which blows up in a finite
time at a point with the solution remaining bounded elsewhere. Other
interesting blow-up results and analysis showing prevention of blow-up are
due to (Bhandar et al., 2004), (Boutat et al., 2004), (Tersenov, 2004).

We now consider an analogue of the (Payne and Song, 2007a) problem
but for a Brinkman porous medium. The equations for the Brinkman prob-
lem with a non-zero inertia and nonlinear forces depending on temperature
are, cf. equations (2.76)

α
∂ui

∂t
= −ui + λΔui −

∂p

∂xi
+ hi(T ),

∂ui

∂xi
= 0,

∂T

∂t
+ ui

∂T

∂xi
= ΔT + f(T ).

(2.230)

In these equations ui, T, p are velocity, temperature and pressure, α, λ are
the inertia and Brinkman coefficients and hi(T ) and f(T ) are nonlinear
functions of temperature. Equations (2.230) are defined on a bounded
spatial region Ω over a time interval (0, T ). The boundary conditions
considered are

ui = 0, T = 0 on Γ × (0, T ), (2.231)

while the initial conditions are

ui(x, 0) = u0
i (x), T (x, 0) = T0(x) ≥ 0. (2.232)

We here only consider the Brinkman model, but one could consider a Darcy
model. Also, we only consider Dirichlet conditions on the boundary whereas
one could alternatively employ Neumann boundary conditions following
(Payne and Schaefer, 2006), (Payne and Song, 2007a). We also note that
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we could employ T = constant in (2.231) although care would then need
to be taken with the function f .

Since both equation (2.230)1 and equation (2.230)3 are forced by non-
linear functions of temperature, one may ask if blow-up occurs, will this
be in the first instance via the velocity or the temperature field? We follow
(Payne and Song, 2007a) to show this must be via the temperature.

Let t1 be the blow-up time of the temperature T and t2 be the blow-up
time of the velocity ui. We wish to show that t1 < t2. Suppose, therefore,
this is false so that t2 < t1. Then, for t < t2, we multiply equation (2.230)1
by ui and integrate over Ω to find after integrations by parts and use of
the boundary conditions and (2.230)2,

d

dt

α

2
‖u‖2 = −‖u‖2 − λ‖∇u‖2 +

∫

Ω

hiuidx.

We employ the Poincaré inequality λ1‖u‖2 ≤ ‖∇u‖2 and the arithmetic-
geometric mean inequality for γ > 0 to now see that

d

dt

α

2
‖u‖2 ≤ −

(
1 + λλ1 −

γ

2

)
‖u‖2 +

‖h‖2

2γ
. (2.233)

Pick γ = (1 + λλ1) and then from (2.233) one sees that

d

dt
‖u‖2 ≤ −γ

α
‖u‖2 +

‖h‖2

γα
. (2.234)

Since t < t2 < t1, hi(T ) is bounded and so ‖h‖2 ≤ M2, for some constant
M . Employ this bound in (2.234), and integrate with an integrating factor
to obtain

‖u(t)‖2 ≤ ‖u0‖2 exp
[
−
(1 + λλ1

α

)
t

]

+
M2

(1 + λλ1)2

{
1 − exp

[
−
(1 + λλ1

α

)
t

]}
,

(2.235)

where t ≤ t2. Now let t → t2. By assumption ‖u(t)‖2 blows up at t = t2,
but inequality (2.235) contradicts this. Thus, t1 ≤ t2, and so t1 is a lower
bound for the blow-up time.

The conditions we now impose on the nonlinear function f(T ) are the
same as those of (Payne and Schaefer, 2007), namely

f(0) = 0, f(s) > 0, for s > 0, (2.236)
∫ ∞

T

ds

f(s)
is bounded for T > 0, (2.237)
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and there are constants n > 2 and β > 0 such that

f(T )
(∫ ∞

T

ds

f(s)

)n+1

→ ∞ as T → 0+, (2.238)

f ′(T )
∫ ∞

T

ds

f(s)
≤ n + 1 − β. (2.239)

As (Payne and Schaefer, 2007) remark, from the work of (Ball, 1977)
and (Kielhöfer, 1975), when the solution does cease to exist globally then
the behaviour is that of blow-up.

To now derive a lower bound for the blow-up time t1 we follow (Payne and
Schaefer, 2007), (Payne and Song, 2007a). Put R =

∫∞
T

ds/f(s), v = 1/R,
and define the function φ(t) by

φ(t) =
∫

Ω

vndx.

By differentiation

dφ

dt
=n

∫

Ω

vn−1vtdx

=n

∫

Ω

vn+1

f(T )
Tt dx

=n

∫

Ω

vn+1

f(T )
[
ΔT − uiT,i + f(T )

]
dx. (2.240)

Using the chain rule one shows
∫

Ω

vn+1 uiT,i

f(T )
dx =

1
n

∫

Ω

(vn),iuidx

=
1
n

[∫

Ω

(vnui),idx −
∫

Ω

vnui,idx

]
= 0 .

Thus, equation (2.240) reduces to

dφ

dt
= n

∫

Ω

vn+1

f(T )
[
ΔT + f(T )

]
dx. (2.241)

From this point, the estimate for t1 effectively follows from the arguments of
(Payne and Schaefer, 2007). Integrate the first term on the right of (2.241)
by parts to find

n

∫

Ω

vn+1ΔT

f(T )
dx = −n

∫

Ω

(vn+1

f

)

,i
T,idx + n

∫

Γ

vn+1

f(T )
∂T

∂ν
dS, (2.242)

where ∂/∂ν denotes the unit outward normal derivative. Thanks to con-
dition (2.238) the last term in (2.242) is zero. The first term in (2.242) is
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expanded and then (2.239) is employed to find

n

∫

Ω

vn+1ΔT

f(T )
dx = n

∫

Ω

vn+1f ′(T )
f2

T,iT,idx

− n(n + 1)
∫

Ω

T,i

f2
vn+2T,idx,

≤ n

∫

Ω

vn+2

f2
T,iT,i[n + 1 − β]dx − n(n + 1)

∫

Ω

vn+2

f2
T,iT,idx

= −βn

∫

Ω

vn+2

f2
T,iT,idx . (2.243)

Inequality (2.243) is now employed in equation (2.241) to find

dφ

dt
≤ −βn

∫

Ω

vn+2

f2
T,iT,idx + n

∫

Ω

vn+1dx.

Noting that v(n/2+1)T,i/f = 2(vn/2),i/n this inequality is rearranged as

dφ

dt
≤ −4β

n

∫

Ω

(vn/2),i(vn/2),idx + n

∫

Ω

vn+1dx. (2.244)

If m denotes the measure of Ω then from Hölder’s inequality and the
Cauchy-Schwarz inequality one sees

∫

Ω

vn+1dx ≤m(n−2)/3n

(∫

Ω

v3n/2dx

)2(n+1)/3n

≤m(n−2)/3n

(∫

Ω

v2ndx

∫

Ω

vndx

)(n+1)/3n

. (2.245)

We next use the Sobolev inequality

∫

Ω

ψ4dx ≤ C

(∫

Ω

ψ2dx

)1/2(∫

Ω

ψ,iψ,idx

)3/2

,

where a value for C is calculated in (Payne, 1964), taking ψ = vn/2 to find

∫

Ω

v2ndx ≤ C

(∫

Ω

vndx

)1/2[∫

Ω

(vn/2),i(vn/2),idx

]3/2

.

This estimate is now used in (2.245) to obtain

∫

Ω

vn+1dx ≤ m(n−2)/3nC(n+1)/3n

(
α1

∫

Ω

|∇vn/2|2dx

)(n+1)/2n

×
(

1
α1

∫

Ω

vndx

)(n+1)/2n

,

(2.246)
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where the constant α1 > 0 has been added to allow removal of the |∇vn/2|2
term. Next, employ Young’s inequality

XY ≤ Xp

p
+

Y s

s
,

1
p

+
1
s

= 1,

with X = α1

∫
Ω
|∇vn/2|2dx, Y =

∫
Ω

vndx/α1 , p = 2n/(n + 1) > 1, and
s = 2n/(n − 1) . Then, from (2.246) we derive
∫

Ω

vn+1dx ≤m(n−2)/3nC(n+1)/3n
(n + 1

2n

)
α

2n/(n+1)
1

∫

Ω

|∇vn/2|2dx

+ m(n−2)/3nC(n+1)/3n
(n − 1

2n

) 1

α
2n/(n−1)
1

×
(∫

Ω

vndx

)(n+1)/(n−1)

. (2.247)

Inequality (2.247) is next employed in inequality (2.244) to find

dφ

dt
≤
[
nm(n−2)/3nC(n+1)/3n

(n + 1
2n

)
α

2n/(n+1)
1 − 4β

n

] ∫

Ω

|∇vn/2|2dx

+ nm(n−2)/3nC(n+1)/3n
(n − 1

2n

) 1

α
2n/(n−1)
1

φ(n+1)/(n−1) . (2.248)

The constant α1 is now selected to make the first term on the right of
(2.248) zero. Thus, for K computable, from (2.248) we derive

dφ

dt
≤ Kφ(n+1)/(n−1) .

This inequality is integrated to obtain
1

[φ(0)]2/(n−1)
− 1

[φ(t)]2/(n−1)
≤ 2Kt

(n − 1)
. (2.249)

When t → t1 (the blow-up time), then (2.249) yields the lower bound t̂ for
t1, where

t1 ≥ t̂ =
(n − 1

2K

) 1
[φ(0)]2/(n−1)

=
(n − 1

2K

)(∫

Ω

[∫ ∞

T0(x)

ds

f(s)

]−n

dx

)−2/(n−1)

. (2.250)

The above derivation simply adapts the clever analyses of (Payne and
Schaefer, 2007) and (Payne and Song, 2007a) to a Brinkman model.

A lower bound with a more direct derivation may be found by adapting
the method of (Payne, 1975), pp. 49, 50. To do this we work with equa-
tion (2.230)3. The assumption on the nonlinearity is now inequality (8.31)
of (Payne, 1975), namely

∫

Ω

T 2p−1f(T )dx ≤
∫

Ω

|T |2p+γ , (2.251)
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where γ is a positive constant, and (2.251) holds for any positive integer p.
Introduce the function

Φp(t) =
∫

Ω

T 2pdx.

Then,

dΦp

dt
=2p

∫

Ω

T 2p−1 ∂T

∂t
dx

=2p

∫

Ω

T 2p−1ΔT dx + 2p

∫

Ω

T 2p−1f(T )dx

−
∫

Ω

T 2p−1ui
∂T

∂xi
dx. (2.252)

Integrating by parts and using the boundary conditions,
∫

Ω

T 2p−1ui
∂T

∂xi
dx =

1
2p

∫

Ω

ui
∂

∂xi
T 2p dx

=
1
2p

∫

Γ

uiniT
2p dS − 1

2p

∫

Ω

ui,iT
2p dx

= 0. (2.253)

Further integration by parts and use of the boundary conditions yield

2p

∫

Ω

T 2p−1ΔT dx =2p

∫

Γ

T 2p−1 ∂T

∂n
dS − 2p(2p − 1)

∫

Ω

T 2p−2T,iT,idx

= − 2p(2p − 1)
∫

Ω

T 2p−2T,iT,idx . (2.254)

Now, use (2.253), (2.254) and inequality (2.251) in equation (2.252) to see
that

dΦp

dt
≤− 2(2p − 1)

p

∫

Ω

T p
,iT

p
,i dx + 2p

∫

Ω

|T |2p+γ dx

≤ 2p

∫

Ω

T 2p+γdx . (2.255)

Next, put

T∗(t) = sup
x∈Ω

|T (x, t)| .

Then from (2.255) we may derive

dΦp

dt
≤ 2pT γ

∗ Φp .

An integration of this inequality yields

Φp(t) ≤ Φp(0) exp
[
2p

∫ t

0

T γ
∗ (s)ds

]
.
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Raise both sides of this inequality to the power 1/2p and then let p → ∞.
In this manner we obtain

T∗(t) ≤ T∗(0) exp
[∫ t

0

T γ
∗ (s)ds

]
. (2.256)

Since t1 is the blow-up time for T we must have T∗(t) → ∞ as t → t1,
and assuming T is sufficiently regular,

∫ t1

0

T γ
∗ (s)ds = ∞. (2.257)

The next step is to raise both sides of inequality (2.256) to the power γ
and then, provided t ≤ t1, this inequality yields

T γ
∗ (t) exp

[
−γ

∫ t

0

T γ
∗ (s)ds

]
≤ T γ

∗ (0).

A further integration of this inequality over 0, t < t1, leads to

1 − exp
[
−γ

∫ t

0

T γ
∗ (s)ds

]
≤ γtT γ

∗ (0).

Let now t → t1 and employ condition (2.257). In this way we find
1

γT γ
∗ (0)

≤ t1 . (2.258)

Inequality (2.258) represents an alternative lower bound for the blow-up
time t1 to the estimate (2.250).

The above proof is a straightforward adaptation of the demonstration
of (Payne, 1975), pp. 49, 50.

2.12 Uniqueness in compressible porous flows

So far in this book we have concentrated on fluid flow in a porous medium
where the fluid may be treated as incompressible. However, sound propa-
gation through a porous medium is one important example of a situation
where flow of a compressible gas in a porous material is necessary. We study
in detail wave motion of a compressible fluid in a porous medium in chapter
8 with related material given in chapter 7. Therefore, in this chapter we
commence a study of the well posedness of a theory for compressible flow
in a porous medium by establishing a uniqueness theorem. Since the wave
motion in chapter 8 is typically for sound waves propagating in an infi-
nite medium we here establish a uniqueness theorem for flow in an infinite
spatial region. To establish our theorem we appeal to a beautiful result of
Dario Graffi, (Graffi, 1960) although Graffi’s paper is conveniently found
in the selected works, (Graffi, 1999), pages 273 – 280.

The model for compressible flow in a porous material is taken from
(De Ville, 1996). It consists of the equations for flow of a barotropic per-
fect fluid, cf. (Fabrizio, 1994), to which have been added a Darcy term and
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a Forchheimer term to represent the interaction with the porous matrix.
This model is one of equivalent fluid type, and these are discussed in greater
detail in section 8.1. The equations we employ are those of (De Ville, 1996),
equations (4) and (5), although we assume the fluid is polytropic so that the
pressure - density relation is of form p = aργ , where p and ρ are pressure
and density, a is a positive constant, and γ is a constant with 1 < γ < 2.
With vi being the fluid velocity, k, λ, b1 positive constants the model of
(De Ville, 1996) may be written

∂ρ

∂t
+ vi

∂ρ

∂xi
+ ρ

∂vi

∂xi
= 0,

∂vi

∂t
+ vj

∂vi

∂xj
+ b1vvi +

k

ρ
vi = −aγ

λ
ργ−2ρ,i ,

(2.259)

where we adopt the (Graffi, 1960; Graffi, 1999) notation v = |v|.
(Graffi, 1960; Graffi, 1999) establishes uniqueness for (2.259) when

b1 = 0, k = 0. The extension to include these terms is non-trivial and
given below. Nevertheless, we extend the (Graffi, 1999) method and employ
his notation. Henceforth, we employ the notation (Graffi, 1999) to denote
paper 22 of the selected works, pages 273 – 280.

Equations (2.259) are defined on a space - time domain. The time domain
is (0, T ) and the spatial domain D is either R

3 or the exterior of a bounded
domain σ0 in R

3. In either case D is an unbounded domain. We impose the
same hypotheses as (Graffi, 1999), and in particular his hypotheses (a) –
(g). However, we have already mentioned hypothesis (b) which states that
the pressure is polytropic and we have no need for hypothesis (c) which
concerns the body force, since one may regard equation (2.259)2 as defining
a particular form for the body force. The remaining hypotheses (a) and (d)
– (g) are stated below.

(a) In the domain D × (0, T ) the velocity v and density ρ are uniformly
bounded together with their first derivatives in space and time.

(d) If D has an interior boundary ∂σ0, then on ∂σ0 we assign v ·n, n being
the unit outward normal to ∂σ0, and where the fluid enters so that
v · n < 0 we assign ρ and v.

(e) The values of ρ(x, 0) and vi(x, 0) are assigned.

(f) The density ρ is positive and |∇ρ|/ρ is bounded in D × (0, T ).

(g) Let R denote the distance from the origin in D, then ρ ≥ c/Rβ , where
c is a positive constant and β ≥ 0 is a constant.

Let us observe that the last relation is physically necessary. It allows the
density to vanish as R → ∞ although not in an arbitrary way. In fact, it
is condition (g) which makes the extension of the (Graffi, 1999) result to
system (2.259) non-trivial. One now has to also handle the terms b1vvi and
kvi/ρ.
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Figure 2.1. Geometry for uniqueness proof

We now denote by S the intersection of the ball of radius R with D. The
geometrical configuration is shown in figure 2.1.

The outer boundary of S, i.e. the spherical surface of radius R, is denoted
by σ.

To study uniqueness we follow (Graffi, 1999) and let ρ, vi and ρ+ρ1, vi+v1
i

be two solutions to equations (2.259) which both satisfy hypotheses (a) and
(d) – (g). By subtraction we find ρ1 and v1

i satisfy the equations

∂ρ1

∂t
+

∂

∂xi

[
(ρ + ρ1)(vi + v1

i ) − ρvi

]
= 0,

∂v1
i

∂t
+ v1

j

∂(vi + v1
i )

∂xj
+ vj

∂v1
i

∂xj

= −b

{
(ρ + ρ1)γ−2 ∂

∂xi
(ρ + ρ1) − ργ−2 ∂ρ

∂xi

}

− k

{(vi + v1
i

ρ + ρ1

)
− vi

ρ

}

− b1

{
(v + v1)(vi + v1

i ) − vvi

}
,

(2.260)
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where we have put b = aγ/λ. The proof of (Graffi, 1999) is very clever and
balances the v1 · ∇ρ1 term which arises from (2.260)1 with an equivalent
term from (2.260)2. This necessitates the use of a weighted L2 energy for
ρ1, weighted by both ργ−3 and (ρ + ρ1)γ−3.

We begin by multiplying (2.260)2 by v1
i and find

1
2

∂

∂t
v2
1 = − v1

i v1
j (vi + v1

i ),j − v1
i vjv

1
i,j

− bv1
i

{
(ρ + ρ1)γ−2(ρ + ρ1),i − ργ−2ρ,i

}

− kv1
i

{(vi + v1
i

ρ + ρ1

)
− vi

ρ

}

− b1v
1
i

{
(v + v1)(vi + v1

i ) − vvi

}
.

(2.261)

Employ the rearrangement (5) of (Graffi, 1999),

(ρ + ρ1)γ−2(ρ + ρ1),i − ργ−2ρ,i

=
1
2
{
(ρ + ρ1)γ−2 − ργ−2

}{
(ρ + ρ1),i + ρ,i

}

+
1
2
ργ−2ρ1,i + (ρ + ρ1)γ−2ρ1,i .

(2.262)

The first term on the right of (2.262) is handled by firstly noting that from
hypothesis (f) there is a positive constant n such that

|(ρ + ρ1),i| ≤ n(ρ + ρ1), |ρ,i| ≤ nρ,

then
∣∣{(ρ + ρ1)γ−2 − ργ−2

}{
(ρ + ρ1),i + ρ,i

}∣∣

≤ n(ρ + ρ1 + ρ)|(ρ + ρ1)γ−2 − ργ−2|
= n|(ρ + ρ1)γ−1 − ργ−1 + ρ(ρ + ρ1)γ−2 − (ρ + ρ1)ργ−2| . (2.263)

To bound the terms on the right of (2.263) one uses the intermediate value
theorem, and for 0 < θ < 1, and 0 < θ′ < 1, one finds

|(ρ + ρ1)γ−1 − ργ−1| ≤ |(γ − 1)(ρ + θρ1)γ−2ρ1|, (2.264)

and

|ρ(ρ + ρ1)γ−2 − (ρ + ρ1)ργ−2| = ρ(ρ + ρ1)
∣∣∣∣

1
(ρ + ρ1)3−γ

− 1
ρ3−γ

∣∣∣∣

= ρ(ρ + ρ1)
∣∣∣∣
(ρ + ρ1)3−γ − ρ3−γ

(ρ + ρ1)3−γρ3−γ

∣∣∣∣

=
∣∣∣∣
(3 − γ)(ρ + θ′ρ1)2−γρ1

(ρ + ρ1)2−γρ2−γ

∣∣∣∣ . (2.265)
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Combining (2.264) and (2.265) in (2.263) one then obtains

∣∣{(ρ + ρ1)γ−2 − ργ−2
}{

(ρ + ρ1),i + ρ,i

}∣∣

≤ n

∣∣∣∣(γ − 1)(ρ + θρ1)γ−2 +
(3 − γ)(ρ + θ′ρ1)2−γ

(ρ + ρ1)2−γρ2−γ

∣∣∣∣ |ρ1| .
(2.266)

If ρ1 is positive then the greater value of the right of (2.266) is achieved
with θ = 0, θ′ = 1 (since γ − 2 < 0) whereas if ρ1 is negative we select
θ = 1, θ′ = 0, which in turn yield,

∣∣{(ρ + ρ1)γ−2 − ργ−2
}{

(ρ + ρ1),i + ρ,i

}∣∣ ≤ 2nργ−2|ρ1|,∣∣{(ρ + ρ1)γ−2 − ργ−2
}{

(ρ + ρ1),i + ρ,i

}∣∣ ≤ 2n(ρ + ρ1)γ−2|ρ1|.

These results together in (2.266) lead to

∣∣{(ρ + ρ1)γ−2 − ργ−2
}{

(ρ + ρ1),i + ρ,i

}∣∣

≤ 2n
{
(ρ + ρ1)γ−2 + ργ−2

}
|ρ1|.

(2.267)

We now see that from (2.267)

∣∣∣∣−
b

2
v1

i

{
(ρ + ρ1)γ−2(ρ + ρ1),i − ργ−2ρ,i

}∣∣∣∣

≤ bn
{
(ρ + ρ1)γ−2 + ργ−2

}
|ρ1v1|

≤ bn

2
{
(ρ + ρ1)2γ−4ρ2

1 + ρ2γ−4ρ2
1 + 2v2

1

}
, (2.268)

where in the last line the arithmetic-geometric mean inequality has been
employed. Thus, from (2.268), (2.262) and (2.261) we obtain

1
2

∂

∂t
v2
1 ≤− v1

i v1
j (vi + v1

i ),j − v1
i vjv

1
i,j

+
bn

2
{
(ρ + ρ1)2γ−4ρ2

1 + ρ2γ−4ρ2
1 + 2v2

1

}

− b

2
v1

i

{
ργ−2ρ1,i + (ρ + ρ1)γ−2ρ1,i

}

− kv1
i

{(vi + v1
i

ρ + ρ1

)
− vi

ρ

}

− b1v
1
i

{
(v + v1)(vi + v1

i ) − vvi

}
.

(2.269)

The first two terms on the right of (2.269) are written as

− v1
i v1

j (vi + v1
i ),j −

1
2

∂

∂xj
(vjv

2
1) +

1
2
vj,jv

2
1 . (2.270)
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The final term of (2.269) is handled with the identity, (Payne and
Straughan, 1999a),

[
(v + v1)(vi + v1

i )−vvi

]
v1

i =
1
2
(v + v1 + v)v2

1

+
1
2
(|v + v1| − |v|)2(v + v1 + v) . (2.271)

Thus, recalling hypothesis (a) the gradients of v and v + v1 are bounded
in (2.270) and then from employment of (2.271) and (2.270) in inequality
(2.269) we deduce that, after integration over S,

d

dt

1
2

∫

S

v2
1dx ≤ 3

2
N1

∫

S

v2
1dx − 1

2

∫

S

∂

∂xj
(vjv

2
1)dx

+
bn

2

∫

S

[
(ρ + ρ1)2γ−4ρ2

1 + ρ2γ−4ρ2
1 + 2v2

1

]
dx

− b

2

∫

S

v1
i

[
ργ−2ρ1,i + (ρ + ρ1)γ−2ρ1,i

]
dx

− k

∫

S

v1
i

[(vi + v1
i

ρ + ρ1

)
− vi

ρ

]
dx ,

(2.272)

where N1 is a bound for |∇v| and |∇(v + v1)| and we have discarded the
last term of (2.269) thanks to (2.271). (In studying continuous dependence
one may desire to retain the right hand side of (2.271) and then use the
effect of v1 in L3, cf. section 4.6.2.)

To handle the last term in (2.272) we note

− k

∫

S

v1
i

[(vi + v1
i

ρ + ρ1

)
− vi

ρ

]
dx

= −k

∫

S

v2
1

(ρ + ρ1)
dx + k

∫

S

ρ1viv
1
i

ρ(ρ + ρ1)
dx .

(2.273)

The arithmetic-geometric mean inequality is used on the last term in the
form

k

∫

S

ρ1viv
1
i

ρ(ρ + ρ1)
dx ≤ k

∫

S

v2
1

(ρ + ρ1)
dx +

k

4

∫

S

v2ρ2
1

ρ2(ρ + ρ1)
dx .
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This inequality is inserted in (2.273) and the result employed in (2.272) to
find

d

dt

1
2

∫

S

v2
1dx ≤ 3

2
N1

∫

S

v2
1dx − 1

2

∫

σ∪∂σ0

niv
2
1vidS

+
bn

2

∫

S

[
(ρ + ρ1)2γ−4ρ2

1 + ρ2γ−4ρ2
1 + 2v2

1

]
dx

− b

2

∫

S

v1
i

[
ργ−2ρ1,i + (ρ + ρ1)γ−2ρ1,i

]
dx

+
k

4

∫

S

v2ρ2
1

ρ2(ρ + ρ1)
dx .

(2.274)

To continue we note that from (2.259)2,

kvi = −ρvi,t − ρvjvi,j − b1ρvvi − bργ−1ρ,i .

Thus, recollecting hypotheses (a) and (f) we see there are constants n1, n2

such that

v ≤ n1ρ + n2ρ
γ .

Thus, there are further constants m1,m2,m3, �1, �2 and �3 such that

v2 ≤ m1ρ
2 + m2ρ

γ+1 + m3ρ
2γ ,

and
kv2

4ρ2(ρ + ρ1)
≤ �1 + �2ρ

γ−1 + �3ρ
2γ−2

(ρ + ρ1)
. (2.275)

To incorporate the (Graffi, 1999) weights ργ−3, (ρ + ρ1)γ−3 we write

�1
ρ + ρ1

= (ρ + ρ1)γ−3 · �1(ρ + ρ1)2−γ . (2.276)

Then we use Young’s inequality for arbitrary α > 0,

�3ρ
2γ−2

ρ + ρ1
≤ �3

[
(αρ2γ−2)p

p
+

[
α−1(ρ + ρ1)−1

]q

q

]

p−1 + q−1 = 1. Pick q = 3 − γ > 1, then p = (3 − γ)/(2 − γ) > 1. Thus,

�3ρ
2γ−2

ρ + ρ1
≤ �3

(3 − γ)α(3−γ)
(ρ + ρ1)γ−3

+
�3(2 − γ)α(3−γ)/(2−γ)

(3 − γ)
ργ(3−γ)/(2−γ) · ργ−3 .

(2.277)

A similar calculation utilizing Young’s inequality shows

�2ρ
γ−1

ρ + ρ1
≤ �2

(3 − γ)β(3−γ)
(ρ + ρ1)γ−3

+
�2(2 − γ)β(3−γ)/(2−γ)

(3 − γ)
ρ(3−γ)/(2−γ) · ργ−3 .

(2.278)



2.12. Uniqueness in compressible porous flows 89

Thus, (2.275) – (2.278) in inequality (2.274) give

d

dt

1
2

∫

S

v2
1dx ≤ 3

2
N1

∫

S

v2
1dx − 1

2

∫

σ∪∂σ0

niv
2
1vidS

+
bn

2

∫

S

[
(ρ + ρ1)2γ−4ρ2

1 + ρ2γ−4ρ2
1 + 2v2

1

]
dx

− b

2

∫

S

v1
i

[
ργ−2ρ1,i + (ρ + ρ1)γ−2ρ1,i

]
dx

+
∫

S

(ρ + ρ1)γ−3

[
�1(ρ + ρ1)2−γ

+
�2

(3 − γ)β3−γ
+

�3
(3 − γ)α3−γ

]
ρ2
1dx

∫

S

ργ−3 (2 − γ)
(3 − γ)

[
�2β

(3−γ)/(2−γ)ρ(3−γ)/(2−γ)

+ �3α
(3−γ)/(2−γ)ργ(3−γ)/(2−γ)

]
ρ2
1dx .

(2.279)

The next step is to multiply equation (2.260)1 by ργ−3ρ1 and then by
(ρ + ρ1)γ−3ρ1 and integrate over S. This part of the calculation follows
that of (Graffi, 1999).

Upon multiplying (2.260)1 by ργ−3ρ1 one may show that

1
2

∂

∂t
(ργ−3ρ2

1) = ργ−2ρ1,iv
1
i

− ∂

∂xi

[
ργ−2ρ1v

1
i +

1
2
ργ−3ρ2

1(vi + v1
i )
]

+
ρ2
1

2
∂

∂t
ργ−3 +

[
(ργ−2),i − ργ−3ρ,i

]
ρ1v

1
i

− 1
2
ργ−3ρ2

1(vi + v1
i ),i +

1
2
(ργ−3),i(vi + v1

i )ρ2
1.

(2.280)

For the fourth term on the right,
∣∣[(ργ−2),i − ργ−3ρ,i

]
ρ1v

1
i

∣∣ = |(3 − γ)ργ−3ρ,iviρ1|
≤ n(3 − γ)ργ−2|ρ1v1|

≤ n

2
(3 − γ)

[
ρ2γ−4ρ2

1 + v2
1

]
, (2.281)

where hypothesis (f) has been employed. Further, using hypotheses (a) and
(f), we have for constants q1, q2,

∣∣− 1
2
ργ−3ρ2

1(vi + v1
i ),i

∣∣ ≤ q1ρ
γ−3ρ2

1, (2.282)

∣∣1
2
(ργ−3),i(vi + v1

i )ρ2
1

∣∣ ≤ q2ρ
γ−3ρ2

1. (2.283)
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The third term on the right of (2.280) is handled by noting

ρ2
1

2
∂

∂t
ργ−3 ≤ (3 − γ)

2
ρ2
1

∣∣∣∣
ρt

ρ

∣∣∣∣ρ
γ−3 .

Then, from (2.259)1,

ρt

ρ
= −vi

ρ
ρ,i − vi,i .

Using hypotheses (a) and (f),
∣∣∣∣
ρt

ρ

∣∣∣∣ ≤ q3,

for a constant q3. Then, for a further constant q4 > 0,

ρ2
1

2
∂

∂t
ργ−3 ≤ q4ρ

γ−3ρ2
1. (2.284)

Thus, combining (2.281) – (2.284) in equation (2.280) we find

1
2

∂

∂t
(ργ−3ρ2

1) = ργ−2ρ1,iv
1
i

− ∂

∂xi

[
ργ−2ρ1v

1
i +

1
2
ργ−3ρ2

1(vi + v1
i )
]

+ m2ρ
2γ−4ρ2

1 + m3v
2
1 + m4ρ

γ−3ρ2
1 .

(2.285)

Similarly, we multiply equation (2.260)1 by (ρ + ρ1)γ−3ρ1 and obtain

1
2

∂

∂t

[
(ρ + ρ1)γ−3ρ2

1

]
= −ρ2

1

2
∂

∂t
(ρ + ρ1)γ−3

+ (ρ + ρ1)γ−3ρ1

[
ρvi − (ρ + ρ1)(vi + v1

i )
]
,i

.

The last term of this expression may be rewritten

(ρ + ρ1)γ−3ρ1

{
−
[
(ρ + ρ1)v1

i

]
,i
− (ρ1vi),i

}

= −
[
(ρ + ρ1)γ−2ρ1v

1
i

]
,i

+ (ρ + ρ1)γ−2v1
i ρ1,i

− (ρ + ρ1)γ−3ρ2
1vi,i − (ρ + ρ1)γ−3 vi

2
(ρ2

1),i

= − ∂

∂xi

[
(ρ + ρ1)γ−2ρ1v

1
i +

1
2
(ρ + ρ1)γ−3viρ

2
1

]

− 1
2
(ρ + ρ1)γ−3vi,iρ

2
1

+
(γ − 3)

2
vi

(ρ + ρ1),i

(ρ + ρ1)
(ρ + ρ1)γ−3ρ2

1 + (ρ + ρ1)γ−2v1
i ρ1,i .
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Hence, we find

1
2

∂

∂t

[
(ρ + ρ1)γ−3ρ2

1

]
= −ρ2

1

2
∂

∂t
(ρ + ρ1)γ−3

− ∂

∂xi

[
(ρ + ρ1)γ−2ρ1v

1
i +

1
2
(ρ + ρ1)γ−3viρ

2
1

]

− 1
2
(ρ + ρ1)γ−3vi,iρ

2
1

+
(γ − 3)

2
vi

(ρ + ρ1),i

(ρ + ρ1)
(ρ + ρ1)γ−3ρ2

1 + (ρ + ρ1)γ−2v1
i ρ1,i .

(2.286)

From equation (2.259)1

(ρ + ρ1)t

(ρ + ρ1)
= − (vi + v1

i )
(ρ + ρ1)

(ρ + ρ1),i − (vi + v1
i ),i

and hence recollecting hypotheses (a) and (f) we find from (2.286) that
there is a constant m5 such that

1
2

∂

∂t

[
(ρ + ρ1)γ−3ρ2

1

]
≤ m5(ρ + ρ1)γ−3ρ2

1

− ∂

∂xi

[
(ρ + ρ1)γ−2ρ1v

1
i +

1
2
(ρ + ρ1)γ−3viρ

2
1

]

+ (ρ + ρ1)γ−2v1
i ρ1,i .

(2.287)

Upon adding (2.285) and (2.287) and integrating over S we may derive,

1
2

d

dt

∫

S

{[
ργ−3 + (ρ + ρ1)γ−3

]
ρ2
1

}
dx ≤

∫

S

[
ργ−2 + (ρ + ρ1)γ−2

]
v1

i ρ1,idx

−
∫

σ∪∂σ0

ni

[{
ργ−2 + (ρ + ρ1)γ−2

}
ρ1v

1
i

+
1
2
ργ−3ρ2

1(vi + v1
i ) +

1
2
(ρ + ρ1)γ−3viρ

2
1

]
dS

+ m2

∫

S

ρ2γ−4ρ2
1dx + m3

∫

S

v2
1dx

+
∫

S

[
m4ρ

γ−3 + m5(ρ + ρ1)γ−3
]
ρ2
1dx. (2.288)
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The idea is now to add (2.279) and (2.288) together in such a way that
the terms involving v1

i ρ1,i add to zero. So, we add (2.279)+(b/2)(2.288) to
derive

d

dt

[
1
2

∫

S

v2
1dx +

b

4

∫

S

ργ−3ρ2
1dx +

b

4

∫

S

(ρ + ρ1)γ−3ρ2
1dx

]

≤
∫

σ

1
2
[
ρ2γ−4 + (ρ + ρ1)2γ−4

]
ρ2
1dS +

1
2

∫

σ

(1 + n1)v2
1dS

+
∫

σ

n1

2
[
ργ−3 + (ρ + ρ1)γ−3

]
ρ2
1dS

+
∫

S

ρ2
1ρ

γ−3[m4 + r1ρ
γ−1 + r2ρ

(3−γ)/(2−γ) + r3ρ
γ(3−γ)/(2−γ)]dx

+
∫

S

ρ2
1(ρ + ρ1)γ−3

[
r4 +

bn

2
(ρ + ρ1)γ−1

]
dx

+ r4

∫

S

v2
1dx , (2.289)

where

r1 = m2 +
bn

2
, r2 =

(2 − γ

3 − γ

)
�2β

(3−γ)/(2−γ),

r3 =
(2 − γ

3 − γ

)
�3α

(3−γ)/(2−γ),

r4 = m5 +
�2

(3 − γ)β3−γ
+

�3
(3 − γ)α3−γ

, r5 = m3 +
3N1

2
+ bn .

Now invoke hypothesis (a), let n1 be a bound for ρ, ρ + ρ1, and integrate
(2.289) twice over the time interval (0, h) to see that

∫ h

0

dt

∫

S

[1
2
v2
1 +

b

4
ργ−3ρ2

1 +
b

4
(ρ + ρ1)γ−3ρ2

1

]
dx

≤
∫ h

0

dt

∫

σ

h(nγ−1
1 + n1)

[
ργ−3 + (ρ + ρ1)γ−3

]
ρ2
1dS

+
∫ h

0

dt

∫

σ

h
(1 + n1)

2
v2
1dS +

∫ h

0

dt

∫

S

hk1

[
ργ−3 + (ρ + ρ1)γ−3

]
ρ2
1dx

+ r4h

∫ h

0

dt

∫

S

v2
1dx , (2.290)
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for a constant k1 independent of h. Let nγ−1
1 + n1, (1 + n1)/2 be denoted

by constants r5, r6. Then we rewrite (2.290) as
∫ h

0

dt

∫

S

v2
1(1 − 2r4h)dx +

∫ h

0

dt

∫

S

ρ2
1ρ

γ−3
( b

2
− 2k1h

)
dx

+
∫ h

0

dt

∫

S

ρ2
1(ρ + ρ1)γ−3

( b

2
− 2k1h

)
dx

≤ 2r6h

∫ h

0

dt

∫

σ

v2
1dS + 2r5h

∫ h

0

dt

∫

σ

ργ−3ρ2
1dS

+ 2r5h

∫ h

0

dt

∫

σ

(ρ + ρ1)γ−3ρ2
1dS . (2.291)

Now suppose h is such that

1 − 2r4h ≥ 1
2

,
b

2
− 2k1h ≥ b

4
,

then define the Graffi function G(R) by

G(R) =
∫ h

0

dt

∫

S

(
v2
1 +

b

2
[
ργ−3 + (ρ + ρ1)γ−3

]
ρ2
1

)
dx . (2.292)

Then from (2.291) we see that for a constant A = max{8r6h, 8r5h/b},
G(R) ≤ AG′(R).

This inequality integrates to see that for R ≥ R0 > 0,

G(R) ≥ G(R0) exp
(

R − R0

A

)
. (2.293)

Now, |ρ1| = |ρ + ρ1 − ρ| ≤ |ρ + ρ1| + |ρ| and so by hypothesis (a), |ρ1| and
v1 are bounded then G(R) has maximum growth in R like Rβ(3−γ)+3 using
also hypothesis (g). Thus,

lim
R→0

G(R)
Rβ(3−γ)+3+ε

= 0.

This contradicts (2.293) and so v1
i ≡ 0, ρ1 ≡ 0 on S × (0, h). Since the

bounds in hypotheses (a), (d)-(g) are independent of h we may reapply the
argument on (h, 2h) etc., to conclude uniqueness on S × (0, T ).



3
Spatial Decay

3.1 Spatial decay for the Darcy equations

A special class of stability problems are those which investigate how the
solution to a problem decays in space given data on certain boundaries.
Within porous media such studies are relatively recent. In studies of fluid
mechanics such spatial decay estimates have a longer history. For exam-
ple, for the steady Navier-Stokes equations estimates have been provided
by (Horgan, 1978), (Horgan and Wheeler, 1978), (Ames and Payne, 1989).
Estimates for the time dependent diffusion equation are given by (Horgan
et al., 1984), (Lin and Payne, 1994), (Payne and Philippin, 1995), for such
diffusion equations backward in time by (Lin and Payne, 1993), (Franchi
and Straughan, 1994), and for the Stokes equations by (Ames et al., 1993),
(Chirita et al., 2001), (Chirita and Ciarletta, 2003), (Song, 2003). Other
areas of recent interest for spatial decay estimates in Continuum Mechan-
ics are in swelling porous elastic soils, (Bofill and Quintanilla, 2003), in
anisotropic elasticity, (Chirita and Ciarletta, 2006), the dual-phase-lag heat
equation, (Horgan and Quintanilla, 2005), in generalized heat transmis-
sion, (Lin and Payne, 2004), (Payne and Song, 2004a; Payne and Song,
2004b), and in Maxwell’s equations associated with electromagnetism of
continuous media, see (Fabrizio and Morro, 2003), pp. 366 – 373. The spa-
tial decay estimates of interest in this book are of the type derived in
porous media by (Payne and Song, 1997) for the equations of Darcy and
Brinkman type, by (Qin and Kaloni, 1998) for the Brinkman-Forchheimer
model, by (Payne and Song, 2002) for the Forchheimer equations, and then

B. Straughan, Stability and Wave Motion in Porous Media,
DOI: 10.1007/978-0-387-76543-3 3, c© Springer Science+Business Media, LLC 2008
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by (Payne and Song, 2000), (Song, 2002) for double diffusive convection in
a porous medium incorporating the Soret effect. The work we describe in
the first four sections of this chapter is all new, although we employ meth-
ods similar to those of (Payne and Song, 1997; Payne and Song, 2002). We
also describe the interesting spatial decay estimate derived by (Ames et al.,
2001) for the situation where a porous medium is in contact with a clear
fluid.

There are estimates of spatial decay type for other theories of porous
media. For example, (Iesan and Quintanilla, 1995) derive bounds for a
porous type theory where the material is an elastic body which contains
voids.

3.1.1 Nonlinear temperature dependent density.

We now study the following system of Darcy equations for non-isothermal
flow in a saturated porous medium, cf. chapter 1, sections 1.2, 1.6.1,

ui = −p,i + giT + ĝiT
2,

ui,i = 0,

T,t + uiT,i = ΔT,

(3.1)

where we have taken the density in equation (1.15) to be quadratic in T .
Here ui, p, T are velocity, pressure, and temperature, and gi, ĝi are gravity
vectors which we assume (without loss of generality) satisfy the constraint

|g|, |ĝ| ≤ 1.

We have taken the thermal diffusivity to be equal to 1 without any loss for
the analysis contained herein.

Let D be a domain in R
2 and then we consider the semi-infinite cylinder

R ⊂ R
3 which is formed by the domain D running from z = 0 to z = ∞.

The domain D × {z} we denote by Dz and Rz is the domain D × (z,∞),
as shown in figure 3.1
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Figure 3.1. Spatial cylinder domain
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We denote the boundary of R by ∂R. Observe that ∂R is composed of
D(z = 0) together with the curved boundary of the cylinder which we
denote by ∂Rc, and the limit boundary of D as z → ∞.

Equations (3.1) are defined on R×{t > 0}, with the following conditions,

T (x1, x2, x3, 0) = 0 in R,

uαnα = 0 on ∂D × {z > 0} × {t ≥ 0},
T (x1, x2, x3, t) = 0 on ∂D × {z > 0} × {t ≥ 0},
u3(x1, x2, 0, t) = f(x1, x2, t), in D̄ × {t > 0},
T (x1, x2, 0, t) = h(x1, x2, t), in D̄ × {t > 0}.

(3.2)

In addition, the following decay-like bounds are imposed on the solution,

ui, T, T,i = o(1), p = O(1) as z(= x3) → ∞, ∀x1, x2, t. (3.3)

(Payne and Song, 1997) derive spatial decay estimates for a solution to
(3.1) in R together with conditions (3.2), (3.3), when ĝi = 0. We here allow
ĝi = 0 and our presentation is different from that of (Payne and Song,
1997).

Next, note that for different cross section z−places, z1 and z2 we show,
as in (Payne and Song, 1997),

∫

Dz2

u3dA =
∫

Dz1

u3dA −
∫ z2

z1

dz

∫

Dz

u3,3dA

but since ui,i = 0, with repeated Greek indices denoting summation over 1
and 2, u3,3 = −uα,α, whence

∫

Dz2

u3dA =
∫

Dz1

u3dA +
∫ z2

z1

dz

∫

Dz

uα,αdA

=
∫

Dz1

u3dA +
∫ z2

z1

dz

∫

∂Dz

uαnαd�

by the divergence theorem, where d� denotes integration around ∂Dz. But,
since uαnα = 0 on ∂Dz the second term on the right vanishes. Thus, for
arbitrary 0 < z1 ≤ z2 < ∞,

∫

Dz1

u3dA =
∫

Dz2

u3dA. (3.4)

If we apply (3.4) to z = 0 and z → ∞, then
∫

D0

f dA =
∫

D0

u3dA = lim
z→∞

∫

Dz

u3dA.

Upon use of the asymptotic condition u3 = o(1) as z → ∞ we find
∫

D

f dA = 0 ∀t ≥ 0. (3.5)
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Note that we write D ≡ D0 and R ≡ R0. Condition (3.5) means that there
is zero net flow through the cross section D, i.e. for z = 0. (Payne and
Song, 2002) show how to deal with the situation in which non-zero net flow
is allowed and we briefly mention this in section 3.3.

3.1.2 An appropriate “energy” function.

The idea is to derive an estimate for a positive-definite energy function
E(z, t). This function has form

E(z, t) = k

∫ t

0

∫

Rz

T,iT,idx ds +
∫ t

0

∫

Rz

uiuidx ds, (3.6)

where k(> 0) is a constant to be selected to our advantage. The estimate
follows by estimating each of the integrals in (3.6) in turn.

We begin with
∫ t

0

∫
Rz

T,iT,idx ds. We integrate by parts and use the
divergence theorem to see that
∫ t

0

∫

Rz

T,iT,idx ds =
∫ t

0

∫

Rz

∂

∂xi
(TT,i)dx ds −

∫ t

0

∫

Rz

TΔT dx ds

=
∫ t

0

ds

∫ ∞

z

dξ

∫

Dξ

(TT,i),idA −
∫ t

0

∫

Rz

TΔT dx ds

=
∫ t

0

lim
z→∞

∫

Dz

TT,3dAds −
∫ t

0

∫

Dz

TT,3dAds

+
∫ t

0

ds

∫ ∞

z

dξ

∫

∂Dξ

TT,αnα d� −
∫ t

0

∫

Rz

TΔT dx ds.

The first and third terms on the right are zero since T, T,3 = o(1) as z → ∞,
and T = 0 on ∂Dz. Thus,

∫ t

0

∫

Rz

T,iT,idx ds = −
∫ t

0

∫

Dz

TT,3dAds −
∫ t

0

∫

Rz

TΔTdx ds

and we now substitute from the differential equation (3.1)3 for ΔT to find
∫ t

0

∫

Rz

T,iT,idx ds = −
∫ t

0

∫

Dz

TT,3dAds

−
∫ t

0

∫

Rz

T (T,s + uiT,i)dx ds

(3.7)

By integration,

−
∫ t

0

ds

∫

Rz

TT,sdx = − 1
2

∫ t

0

ds
∂

∂s

∫

Rz

T 2dx

= − 1
2

∫

Rz

T 2(x, t)dx (3.8)



3.1. Spatial decay for the Darcy equations 99

since T (x, 0) = 0. Further,

−
∫ t

0

ds

∫

Rz

TuiT,idx = − 1
2

∫ t

0

ds

∫

Rz

(uiT
2),idx

= − 1
2

∫ t

0

ds lim
z→∞

∫

Dz

u3T
2dA+

1
2

∫ t

0

ds

∫

Dz

u3T
2dA

− 1
2

∫ t

0

ds

∫

∂Rc

uαnαT 2d� dz.

The first and third terms on the right vanish due to the asymptotic
conditions as z → ∞ and the boundary conditions and so,

−
∫ t

0

ds

∫

Rz

TuiT,idx =
1
2

∫ t

0

ds

∫

Dz

u3T
2dA. (3.9)

Use of (3.9) in (3.7) yields
∫ t

0

ds

∫

Rz

T,iT,idx = −
∫ t

0

ds

∫

Dz

TT,3dA − 1
2

∫

Rz

T 2(t)dx

+
1
2

∫ t

0

ds

∫

Dz

u3T
2dA.

The term in T 2(t) is now discarded to derive
∫ t

0

ds

∫

Rz

T,iT,idx ≤ −
∫ t

0

ds

∫

Dz

TT,3dA +
1
2

∫ t

0

ds

∫

Dz

u3T
2dA. (3.10)

The next step is to appeal to the maximum principle for T . The maximum
principle for differential equations is discussed in detail in (Protter and
Weinberger, 1967). For Darcy and Brinkman equations of porous media
the maximum principle is proved in e.g. (Payne and Straughan, 1998a)
or (Payne et al., 2001). Further details may be found in chapter 2 where
the maximum principle is discussed in connection with structural stability.
Because of the boundary conditions, we may assert that

T (x, t) ≤ TM ≡ sup
D×[0,t]

h(xα, t), (3.11)

where xα denotes x1, x2 and TM is the maximum value of the function T.
Use of this in (3.10) together with the Cauchy-Schwarz inequality yields

∫ t

0

ds

∫

Rz

T,iT,idx ≤
√∫ t

0

∫

Dz

T 2dAds

∫ t

0

∫

Dz

T 2
,3dAds

+
TM

2

√∫ t

0

∫

Dz

u2
3dAds

∫ t

0

∫

Dz

T 2dAds. (3.12)
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We now employ Poincaré’s inequality in the form

λ1

∫

Dz

T 2dA ≤
∫

Dz

T,αT,αdA (3.13)

to see that

∫ t

0

ds

∫

Rz

T,iT,idx ≤ 1√
λ1

√∫ t

0

ds

∫

Dz

T,αT,αdA

∫ t

0

ds

∫

Dz

T 2
,3dA

+
TM

2
√

λ1

√∫ t

0

ds

∫

Dz

u2
3dA

∫ t

0

ds

∫

Dz

T,αT,αdA

≤β2

∫ t

0

ds

∫

Dz

T,iT,idA

+ α2

∫ t

0

ds

∫

Dz

uiuidA, (3.14)

where

β2 =
1√
λ1

+
TMμ

4
√

λ1

and α2 =
TMμ

4
√

λ1

,

and where μ(> 0) is a constant at our disposal.
We next turn to estimate

∫ t

0
ds
∫

Rz
uiuidx. Using the differential equation

(3.1)1,

∫ t

0

ds

∫

Rz

uiuidx =
∫ t

0

ds

∫

Rz

ui(−p,i + giT + ĝiT
2)dx

≤
( 1

2ε3
+

TM

2ε4

)∫ t

0

ds

∫

Rz

uiuidx

+
( ε3

2λ1
+

ε4TM

2λ1

)∫ t

0

ds

∫

Rz

T,iT,idx

−
∫ t

0

ds

∫

Rz

uip,idx. (3.15)

In deriving this inequality we have employed the maximum principle (3.11),
the arithmetic - geometric mean inequality, and Poincaré’s inequality
(3.13).
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To handle the pressure term we follow the argument in (Payne and Song,
2002).

−
∫ t

0

ds

∫

Rz

uip,idx = −
∫ t

0

ds

∫

Rz

(uip),idx

= −
∫ t

0

ds

∫ ∞

z

dξ

∫

Dξ

(uip),idA

=
∫ t

0

ds

∫

Dz

pu3dA, (3.16)

since the D term vanishes as z → ∞ as does the term on ∂D vanish. Next,
introduce the function ωα which solves

ωα,α = u3 in Dξ

ωα = 0 on ∂Dξ.
(3.17)

Then,

−
∫ t

0

ds

∫

Rz

uip,idx =
∫ t

0

ds

∫

Dz

pu3dA

=
∫ t

0

ds

∫

Dz

pωα,αdA

=
∫ t

0

ds

∫

Dz

(pωα),αdA −
∫ t

0

ds

∫

Dz

p,αωαdA

=
∫ t

0

ds

∫

∂Dz

pωαnαdA −
∫ t

0

ds

∫

Dz

p,αωαdA,

where we have integrated by parts and used the divergence theorem. Since
ωα = 0 on ∂Dz, we see that

−
∫ t

0

ds

∫

Rz

uip,idx = −
∫ t

0

ds

∫

Dz

p,αωαdA

= −
∫ t

0

ds

∫

Dz

ωα(−uα + gαT + ĝαT 2)dA

substituting for p,α from the differential equation. We now use the
maximum principle and the Cauchy-Schwarz inequality to find

−
∫ t

0

ds

∫

Rz

uip,idx ≤
∫ t

0

ds

∫

Dz

uαωαdA

+ (1 + TM )

√∫ t

0

ds

∫

Dz

ωαωαdA

∫ t

0

ds

∫

Dz

T 2dA .

(3.18)

The next step is to employ Poincaré’s inequality on the ωαωα term to find
∫

Dz

ωαωαdA ≤ 1
λ1

∫

Dz

ωα,βωα,βdA.
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After this we employ the Babuska - Aziz inequality, which holds for func-
tions ωα which solve a boundary value problem like (3.17) (this inequality
is discussed in (Horgan and Payne, 1983) where they also show how to
estimate the constant C)

∫

Dz

ωα,βωα,βdA ≤ C

∫

Dz

(ωα,α)2dA. (3.19)

Noting that ωα,α = u3 in Dz, we use the last two inequalities in (3.18) to
see that

−
∫ t

0

ds

∫

Rz

uip,idx ≤
∫ t

0

ds

∫

Dz

uαωαdA

+ (1 + TM )
√

C

λ1

√∫ t

0

ds

∫

Dz

u2
3dA

∫ t

0

ds

∫

Dz

T 2dA .

(3.20)

Next, employ the Cauchy-Schwarz inequality and then a similar proce-
dure to that above involving Poincaré’s inequality and the Babuska-Aziz
inequality to show that

∫ t

0

ds

∫

Dz

uαωαdA ≤
√∫ t

0

ds

∫

Dz

uαuαdA

∫ t

0

ds

∫

Dz

ωαωαdA

≤
√

C

λ1

√∫ t

0

ds

∫

Dz

uαuαdA

∫ t

0

ds

∫

Dz

u2
3dA

≤
√

C

λ1

∫ t

0

ds

∫

Dz

uiuidA. (3.21)

Furthermore, using the Cauchy-Schwarz, Poincaré and arithmetic-
geometric mean inequalities we may show, for ζ > 0 a constant to be
selected,

√∫ t

0

ds

∫

Dz

u2
3dA

∫ t

0

ds

∫

Dz

T 2dA

≤ 1√
λ1

√∫ t

0

ds

∫

Dz

u2
3dA

∫ t

0

ds

∫

Dz

T,αT,αdA

≤ 1
2ζ

√
λ1

∫ t

0

ds

∫

Dz

uiuidA +
ζ

2
√

λ1

∫ t

0

ds

∫

Dz

T,iT,idA. (3.22)

We employ (3.22) and (3.21) in (3.20) to arrive at

−
∫ t

0

ds

∫

Rz

uip,idx ≤
(√ C

λ1
+

√
C

2ζλ1

)∫ t

0

ds

∫

Dz

uiuidA

+
ζ
√

C

2λ1

∫ t

0

ds

∫

Dz

T,iT,idA. (3.23)
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Now use (3.23) in (3.15) to find
∫ t

0

ds

∫

Rz

uiuidx ≤α1

∫ t

0

ds

∫

Dz

uiuidA + β1

∫ t

0

ds

∫

Dz

T,iT,idA

+ γ1

∫ t

0

ds

∫

Rz

uiuidx + γ2

∫ t

0

ds

∫

Rz

T,iT,idx

(3.24)

where the constants α1, β1, γ1 and γ2 are given by

α1 =
√

C

λ1
+

√
C

2ζλ1
, β1 =

ζ
√

C

2λ1
,

γ1 =
1

2ε3
+

TM

2ε4
, γ2 =

ε3
2λ1

+
ε4TM

2λ1
.

Inequalities (3.14) and (3.24) are our fundamental inequalities to allow
us to estimate E(z, t). With E(z, t) defined as in (3.6) we find using (3.14),
(3.24),

E(z, t) =k

∫ t

0

ds

∫

Rz

T,iT,idx +
∫ t

0

ds

∫

Rz

uiuidx

≤(kα2 + α1)
∫ t

0

ds

∫

Dz

uiuidA + (kβ2 + β1)
∫ t

0

ds

∫

Dz

T,iT,idA

+ γ1

∫ t

0

ds

∫

Rz

uiuidx + γ2

∫ t

0

ds

∫

Rz

T,iT,idx. (3.25)

To remove the Rz terms from the right we must now select k − γ2 > 0 and
1 − γ1 > 0. To ensure this we pick ε3, ε4 such that

1 − 1
2ε3

− TM

2ε4
> 0

and then choose k so large that

k − ε3
2λ1

− ε4TM

2λ1
> 0 .

For example, we may select ε3 = 2, ε4 = 2TM and then k > 1/λ1 +T 2
M/λ1.

The choice k = 2/λ1 + 2T 2
M/λ1 leads to

E(z, t) ≤ 2(kα2 + α1)
∫ t

0

ds

∫

Dz

uiuidA + 2(kβ2 + β1)
∫ t

0

ds

∫

Dz

T,iT,idA.

Let

δ = max
{2kβ2 + 2β1

k
, 2kα2 + 2α1

}

and then we derive

E(z, t) ≤ δ

(
k

∫ t

0

ds

∫

Dz

T,iT,idA +
∫ t

0

ds

∫

Dz

uiuidA

)
. (3.26)
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Since

E = k

∫ t

0

ds

∫ ∞

z

dξ

∫

Dξ

T,iT,idA +
∫ t

0

ds

∫ ∞

z

dξ

∫

Dξ

uiuidA

we see that
∂E

∂z
= −
[
k

∫ t

0

ds

∫

Dz

T,iT,idA +
∫ t

0

ds

∫

Dz

uiuidA

]
.

Thus, inequality (3.26) is

E ≤ −δ
∂E

∂z
. (3.27)

This inequality is now integrated to find

E(z, t) ≤ E(0, t)e−z/δ . (3.28)

Inequality (3.28) is a decay bound for E(z, t) in terms of E(0, t). However,
E(0, t) is not in terms of the data f and h, and so we now turn to estimate
E(0, t) in terms of data.

3.1.3 A data bound for E(0, t).

We derive a bound for E(0, t) in a similar manner to that prescribed
by (Payne and Song, 1997).

Let now S(x, t) be defined by

S(x, t) = h(x1, x2, t)e−σz (3.29)

where σ > 0 is a constant to be chosen. Then, recalling the form of E,
we put z = 0 and estimate the two relevant terms,

∫ t

0
ds
∫

R
T,iT,idx and∫ t

0
ds
∫

R
uiuidx.

∫ t

0

ds

∫

R

T,iT,idx =
∫ t

0

ds

∫

R

∂

∂xi
(TT,i)dx −

∫ t

0

ds

∫

R

TΔTdx

=
∫ t

0

ds lim
z→∞

∫

Dz

TT,3dA −
∫ t

0

ds

∫

D0

TT,3dA

+
∫ t

0

ds

∫ ∞

0

dz

∫

∂Dz

TT,αnαd� −
∫ t

0

ds

∫

R

TΔTdx,

where we have integrated by parts and employed the divergence theorem.
Due to the boundary conditions the first and thrid terms vanish and since
S ≡ T on D0(= D) one finds

∫ t

0

ds

∫

R

T,iT,idx = −
∫ t

0

ds

∫

D

ST,3dA −
∫ t

0

ds

∫

R

TΔTdx. (3.30)

Furthermore, by differentiation and use of the divergence theorem,
∫ t

0

ds

∫

R

(ST,i),idx =
∫ t

0

ds

∫

R

S,iT,idx +
∫ t

0

ds

∫

R

SΔTdx
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and

∫ t

0

ds

∫

R

(ST,i),idx =
∫ t

0

ds

∫ ∞

0

dz

∫

∂Dz

ST,αnαd�

+
∫ t

0

ds lim
z→∞

∫

Dz

ST,3dA −
∫ t

0

ds

∫

D0

ST,3dA.

The first two terms on the right vanish because of the boundary conditions,
and then we combine these two identities to deduce

−
∫ t

0

ds

∫

D

ST,3dA =
∫ t

0

ds

∫

R

S,iT,idx +
∫ t

0

ds

∫

R

SΔTdx. (3.31)

Use of (3.31) in (3.30) leads to

∫ t

0

ds

∫

R

T,iT,idx =
∫ t

0

ds

∫

R

S,iT,idx +
∫ t

0

ds

∫

R

(S − T )ΔTdx

=
∫ t

0

ds

∫

R

S,iT,idx

+
∫ t

0

ds

∫

R

(S − T )(T,s + uiT,i)dx (3.32)

where in the last line the differential equation has been used to substitute
for ΔT.

The last term in (3.32) has four components which we expand as

∫ t

0

ds

∫

R

STsdx −
∫ t

0

ds

∫

R

TTsdx

+
∫ t

0

ds

∫

R

SuiT,idx −
∫ t

0

ds

∫

R

uiTT,idx.

We now rearrange each of these terms.

∫ t

0

ds

∫

R

STsdx =
∫ t

0

ds
∂

∂s

∫

R

STdx −
∫ t

0

ds

∫

R

T
∂S

∂s
dx

=
∫

R

S(t)T (t)dx −
∫ t

0

dη

∫

R

TSηdx ,

where we note the term in S(0)T (0) is zero. Also,

−
∫ t

0

ds

∫

R

TTsdx = −1
2

∫ t

0

∂

∂s

∫

R

T 2dx = −1
2

∫

R

T 2(t)dx,
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since T (0) = 0.
∫ t

0

ds

∫

R

SuiT,idx =
∫ t

0

ds

∫

R

∂

∂xi
(SuiT )dx −

∫ t

0

ds

∫

R

uiTS,idx

=
∫ t

0

lim
z→∞

∫

Dz

Su3TdAds −
∫ t

0

ds

∫

D0

u3STdA

+
∫ t

0

ds

∫ ∞

0

dz

∫

∂Dz

nαuαSTd� −
∫ t

0

ds

∫

R

uiTS,idx.

Since T = 0 on ∂Dz, using the asymptotic behaviour of S, T, u3, and noting
that on D0(= D), u3 = f, T = S = h, this expression reduces to

∫ t

0

ds

∫

R

SuiT,idx = −
∫ t

0

ds

∫

D

fh2dA −
∫ t

0

ds

∫

R

uiTS,idx.

The remaining term of the four in question is handled as follows,

−
∫ t

0

ds

∫

R

uiTT,idx = − 1
2

∫ t

0

ds

∫

R

(uiT
2),idx

= − 1
2

∫ t

0

ds lim
z→∞

∫

Dz

u3T
2dA +

1
2

∫ t

0

ds

∫

D0

u3T
2dA

− 1
2

∫ t

0

ds

∫ ∞

0

dz

∫

∂Dz

uαnαT 2d�

=
1
2

∫ t

0

ds

∫

D

fh2dA,

since u3 = f and T = h on D0.
Using the above rearrangements (3.32) becomes
∫ t

0

ds

∫

R

T,iT,idx =
∫ t

0

ds

∫

R

S,iT,idx −
∫ t

0

dη

∫

R

TSηdx

+
∫

R

S(t)T (t)dx − 1
2

∫

R

T 2(t)dx

− 1
2

∫ t

0

ds

∫

D

fh2dA −
∫ t

0

ds

∫

R

uiTS,idx. (3.33)

We discard the T 2(t) term. Also, the maximum principle is invoked on the
term in S(t)T (t) to see that

∫

R

S(t)T (t)dx ≤ sup
D×[0,t]

h(xα, t)
∫ ∞

0

dz e−σz

∫

D

h(xα, t)dA

=Φ(t) (3.34)

where the data term Φ(t) is defined by (3.34).
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Hence, from (3.33) we obtain
∫ t

0

ds

∫

R

T,iT,idx ≤Φ(t) − 1
2

∫ t

0

ds

∫

D

fh2dA

+
∫ t

0

ds

∫

R

S,iT,idx −
∫ t

0

dη

∫

R

TSηdx (3.35)

−
∫ t

0

ds

∫

R

uiS,iTdx. (3.36)

The arithmetic-geometric mean inequality is now used on the last three
terms on the right to find for positive constants α1, α2, α3, to be selected
∫ t

0

ds

∫

R

S,iT,idx ≤ 1
2α1

∫ t

0

ds

∫

R

S,iS,idx +
α1

2

∫ t

0

ds

∫

R

T,iT,idx

and

−
∫ t

0

dη

∫

R

TSηdx ≤ 1
2α2

∫ t

0

dη

∫

R

S2
ηdx +

α2

2

∫ t

0

ds

∫

R

T 2dx

≤ 1
2α2

∫ t

0

dη

∫

R

S2
ηdx +

α2

2λ1

∫ t

0

ds

∫

R

T,iT,idx,

where Poincaré’s inequality has also been used. With the aid of the
maximum principle,

−
∫ t

0

ds

∫

R

uiS,iTdx ≤TM

∫ t

0

ds

∫

R

|uiS,i|dx

≤ T 2
M

2α3

∫ t

0

ds

∫

R

S,iS,idx +
α3

2

∫ t

0

ds

∫

R

uiuidx.

The above three inequalities are now used in (3.36) to arrive at
∫ t

0

ds

∫

R

T,iT,idx ≤Φ(t) − 1
2

∫ t

0

ds

∫

D

fh2dA

+
( T 2

M

2α3
+

1
2α1

)∫ t

0

ds

∫

R

S,iS,idx

+
1

2α2

∫ t

0

dη

∫

R

S2
ηdx

+
1
2
(α1 + α2/λ1)

∫ t

0

ds

∫

R

T,iT,idx

+
1
2
α3

∫ t

0

ds

∫

R

uiuidx. (3.37)

We now derive a bound for the ui term. To this end use the differential
equation to find

∫ t

0

ds

∫

R

uiuidx =
∫ t

0

ds

∫

R

ui(−p,i + giT + ĝiT
2)dx. (3.38)
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The pressure term is handled as follows,

−
∫ t

0

ds

∫

R

uip,idx = −
∫ t

0

ds

∫ ∞

0

dz

∫

Dz

∂

∂xi
(uip)dA

=
∫ t

0

∫

D0

u3p dAdη,

since the other terms which arise after use of the divergence theorem vanish.
The function φi of (Payne and Song, 1997) is now introduced as a function
satisfying

φi,i = 0 in R × {t > 0}
φini = uini on ∂R × {t > 0}.

(3.39)

In fact, they select

φ3(x, t) = f(x1, x2, t)e−σz. (3.40)

Observe that φ3 = f = u3 on D.
Then,

∫ t

0

ds

∫

D0

u3p dA =
∫ t

0

ds

∫

D0

φ3p dA.

But,
∫ t

0

ds

∫

R

(pφi),idx = −
∫ t

0

ds

∫

D0

φ3p dA

since the other boundary terms vanish after use of the divergence theorem.
Then, because φi,i = 0,

∫ t

0

ds

∫

D0

u3p dA = −
∫ t

0

ds

∫

R

p,iφidx

=
∫ t

0

ds

∫

R

φi(ui − giT − ĝiT
2)dx

where in the last line the differential equation has been employed. Putting
this into (3.38),

∫ t

0

ds

∫

R

uiuidx =
∫ t

0

ds

∫

R

uigiTdx +
∫ t

0

ds

∫

R

uiĝiT
2dx

+
∫ t

0

ds

∫

R

φiuidx −
∫ t

0

ds

∫

R

giφiTdx

−
∫ t

0

ds

∫

R

ĝiφiT
2dx. (3.41)

We next use the arithmetic-geometric mean inequality on all five terms
on the right of (3.41) and bound one of the T ’s in the T 2 term by the
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maximum principle. Poincaré’s inequality is also employed on the resulting
T 2 terms, so we derive from (3.41)
∫ t

0

ds

∫

R

uiuidx ≤1
2

( 1
β1

+
1
β2

+
1
β3

)∫ t

0

ds

∫

R

uiuidx

+
1

2λ1

(
β1 + β2T

2
M +

1
β4

+
T 2

M

β5

)∫ t

0

ds

∫

R

T,iT,idx

+
1
2
(β3 + β4 + β5)

∫ t

0

ds

∫

R

φiφidx, (3.42)

where βi > 0 are constants. In fact, we now pick β1 = β2 = β3 = 3. Then
from (3.42) we find

∫ t

0

ds

∫

R

uiuidx ≤ 1
λ1

(
3 + 3T 2

M +
1
β4

+
T 2

M

β5

)∫ t

0

ds

∫

R

T,iT,idx

+ (3 + β4 + β5)
∫ t

0

ds

∫

R

φiφidx. (3.43)

We now return to inequality (3.37) and use (3.43) to bound the ui term.
This leads to
∫ t

0

ds

∫

R

T,iT,idx ≤ Φ(t) − 1
2

∫ t

0

ds

∫

D

fh2dA

+
1
2
(α−1

1 + T 2
Mα−1

3 )
∫ t

0

ds

∫

R

S,iS,idx

+
1

2α2

∫ t

0

dη

∫

R

S2
ηdx

+
1
2

{
α1 + α2 +

α3

λ1

[
3 + 3T 2

M +
1
β4

+
T 2

M

β5

]}∫ t

0

ds

∫

R

T,iT,idx

+
1
2
α3(3 + β4 + β5)

∫ t

0

ds

∫

R

φiφidx.

Pick now β4 = β5 = 1, then α1 = 1/3, α2 = λ1/3, α3 = λ1/12. The above
inequality may now be reduced to

1
2

∫ t

0

ds

∫

R

T,iT,idx ≤Φ(t) − 1
2

∫ t

0

ds

∫

D

fh2dA

+
(3

2
+

6T 2
M

λ1

)∫ t

0

ds

∫

R

S,iS,idx

+
3

2λ1

∫ t

0

dη

∫

R

S2
ηdx

+
5λ1

24

∫ t

0

ds

∫

R

φiφidx. (3.44)
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Inequality (3.44) is effectively a bound for
∫ t

0
ds
∫

R
T,iT,idx, but it remains

to show the φi term can be bounded by data. Since φ3 = f(xα, t)e−σz,
φi,i = 0 yields

φα,α = σfe−σz. (3.45)

Then,
∫ t

0

ds

∫

R

φiφidx =
∫ t

0

ds

∫ ∞

0

dz

∫

Dz

φαφαdA

+
∫ t

0

ds

∫

R

f2e−2σzdx.

The first term on the right is bounded using the Poincaré and Babuska-Aziz
inequalities as follows,

∫ t

0

ds

∫ ∞

0

dz

∫

Dz

φαφαdA ≤ 1
λ1

∫ t

0

ds

∫ ∞

0

dz

∫

Dz

φα,βφα,βdA

≤ C

λ1

∫ t

0

ds

∫ ∞

0

dz

∫

Dz

φ2
α,αdA

≤Cσ2

λ1

∫ t

0

ds

∫

R

f2e−2σzdx.

This then leads to the data bound
∫ t

0

ds

∫

R

φiφidx ≤
(
1 +

Cσ2

λ1

)∫ t

0

ds

∫

R

f2e−2σzdx. (3.46)

Insertion of this into (3.44), together with the definition of S gives us the
data bound
∫ t

0

ds

∫

R

T,iT,idx ≤ 2Φ(t) −
∫ t

0

ds

∫

D

fh2dA

+
∫ t

0

dη

∫

R

{[
3 +

12T 2
M

λ1

]
(σ2h2 + h,αh,α) +

3
λ1

h2
η

}
e−2σzdx

+
5λ1

12

(
1 +

Cσ2

λ1

)∫ t

0

ds

∫

R

e−2σzf2dx

≡ Ψ(t), (3.47)

where Ψ(t) is defined as indicated. We then find a ui bound using (3.47)
in (3.43),
∫ t

0

ds

∫

R

uiuidx ≤ 4
λ1

(1 + T 2
M )Ψ(t) + 5

(
1 +

Cσ2

λ1

)∫ t

0

ds

∫

R

e−2σzf2dx

≡ χ(t), (3.48)

with χ(t) being defined in (3.48).
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Thus,

E(0, t) ≤ kΨ(t) + χ(t) = data.

Our a priori spatial decay estimate now follows with the aid of (3.28) and
is

E(z, t) ≤
[
kΨ(t) + χ(t)

]
e−z/δ. (3.49)

A spatial decay bound for equations (3.1) when the permeability is
anisotropic is established by (Song, 2006), while (Payne and Song, 2007b)
produce spatial decay results for a doubly diffusive convection Darcy
system.

3.2 Spatial decay for the Brinkman equations

We now study the following system of Brinkman equations for non-
isothermal flow in a saturated porous medium, cf. (3.1),

− λΔui + ui = −p,i + giT + ĝiT
2,

ui,i = 0,

T,t + uiT,i = ΔT.

(3.50)

Here ui, p, T are velocity, pressure, and temperature, and gi, ĝi are grav-
ity vectors which we again assume (without loss of generality) satisfy the
constraint

|g|, |ĝ| ≤ 1.

We have taken the thermal diffusivity to be equal to 1 without any loss for
the analysis contained herein, and λ > 0 is the Brinkman coefficient.

R and D are again as in 3.1.1, so let D be a domain in R
2 and then we

consider the semi-infinite cylinder R ⊂ R
3 which is formed by the domain

D running from z = 0 to z = ∞. The domain D × {z} we denote by Dz

and Rz is the domain D × (z,∞).
The boundary of R is ∂R. Again, ∂R is composed of D(z = 0) together

with the curved boundary of the cylinder which we denote by ∂Rc, and the
limit boundary of D as z → ∞.

Equations (3.50) are defined on R × {t > 0}, with the following
conditions,

T (x1, x2, x3, 0) = 0 in R,

ui = 0 on ∂D × {z > 0} × {t ≥ 0},
T (x1, x2, x3, t) = 0 on ∂D × {z > 0} × {t ≥ 0},
ui(x1, x2, 0, t) = fi(x1, x2, t), in D̄ × {t > 0},
T (x1, x2, 0, t) = h(x1, x2, t), in D̄ × {t > 0}.

(3.51)
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In addition, the following decay-like bounds are imposed on the solution,

ui, T = o(1), p, ui,j , T,i = O(1/z) as z(= x3) → ∞, ∀x1, x2, t. (3.52)

(Payne and Song, 1997) derive spatial decay estimates for a solution to
(3.50) in R together with conditions (3.51), (3.52), when ĝi = 0. We here
allow ĝi = 0. Our presentation is different from that of (Payne and Song,
1997), although we are following their analysis.

The argument given leading to (3.4) is valid here and so if f3 has a zero
integral over D we see that

∫

Dz

u3dA =
∫

D

f3dA = 0, ∀z ≥ 0, ∀t > 0.

Due to the presence of the Δui term in equations (3.50) the argument
in section 3.1 is not sufficient. Instead, for the Brinkman system, (Payne
and Song, 1997) show that one must introduce an energy function which
integrates a further time in z, not just over Rz. This leads to a second
order differential inequality rather than a first order one. To see this, we
commence with estimates for the functionals

∫ t

0
ds
∫

Rz
(ξ − z)T,iT,idx and

∫ t

0
ds
∫

Rz
(ξ − z)ui,jui,jdx. Note that
∫ t

0

ds

∫

Rz

(ξ − z)f dx ≡
∫ t

0

ds

∫ ∞

z

dξ

∫ ∞

ξ

dμ

∫

Dμ

f dA

where dx ≡ dAdξ = dx1dx2dξ.

3.2.1 An estimate for gradT .

We begin with an estimate for
∫ t

0

∫
Rz

(ξ − z)T,iT,idx ds.
First, by integration by parts
∫ t

0

ds

∫

Rz

(ξ − z)T,iT,idx =
∫ t

0

ds

∫ ∞

z

dξ

∫

Dξ

[(ξ − z)T,iT ],idA

−
∫ t

0

ds

∫

Rz

T [(ξ − z)T,i],idx.

The first term on the right is zero as is seen by using the divergence theorem
and the boundary conditions. Carrying out the differentiation on the second
term we then find
∫ t

0

ds

∫

Rz

(ξ − z)T,iT,idx = −
∫ t

0

ds

∫

Rz

TT,3dx −
∫ t

0

ds

∫

Rz

(ξ − z)TΔT dx

= −
∫ t

0

ds

∫

Rz

TT,3dx

−
∫ t

0

ds

∫

Rz

(ξ − z)T (T,s + uiT,i)dx (3.53)
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where the differential equation (3.50)3 has been used to substitute for ΔT.
The last term in (3.53) may be rearranged as

−1
2

∫ t

0

ds

∫

Rz

(ξ − z)
∂T 2

∂s
dx − 1

2

∫ t

0

ds

∫

Rz

(ξ − z)(uiT
2),idx

= − 1
2

∫

Rz

(ξ − z)T 2(t)dx +
1
2

∫ t

0

ds

∫

Rz

u3T
2(ξ − z),ξdx

where we have used the divergence theorem, the boundary conditions, and
integration by parts. The above expression is employed in (3.53) to find
∫ t

0

ds

∫

Rz

(ξ − z)T,iT,idx = −
∫ t

0

ds

∫

Rz

TT,3dx − 1
2

∫

Rz

(ξ − z)T 2(t)dx

+
1
2

∫ t

0

ds

∫

Rz

u3T
2dx. (3.54)

The arithmetic-geometric mean and Poincaré inequalities are now used on
the first term on the right to derive, for arbitrary γ1 > 0,

−
∫ t

0

ds

∫

Rz

TT,3dx ≤1
2
γ1

∫ t

0

ds

∫

Rz

T 2dx +
1

2γ1

∫ t

0

ds

∫

Rz

T 2
,3dx

≤ γ1

2λ1

∫ t

0

ds

∫

Rz

T,αT,αdx

+
1

2γ1

∫ t

0

ds

∫

Rz

T 2
,3dx. (3.55)

To bound the last term in (3.54) we use the maximum principle, followed
by the arithmetic-geometric mean inequality and then Poincaré’s inequality
to obtain, for arbitrary γ2 > 0,

1
2

∫ t

0

ds

∫

Rz

u3T
2dx ≤TM

2

(
1

2γ2

∫ t

0

ds

∫

Rz

u2
3dx +

1
2
γ2

∫ t

0

ds

∫

Rz

T 2dx

)

≤TM

4γ2

∫ t

0

ds

∫

Rz

u2
3dx

+
γ2TM

4λ1

∫ t

0

ds

∫

Rz

T,αT,αdx. (3.56)

Next, the second term on the right of (3.54) is non-positive and discarded.
Then, with the aid of (3.55) and (3.56) we find from (3.54),
∫ t

0

ds

∫

Rz

(ξ − z)T,iT,idx ≤TM

4γ2

∫ t

0

ds

∫

Rz

u2
3dx +

1
2γ1

∫ t

0

ds

∫

Rz

T 2
,3dx

+
( γ1

2λ1
+

γ2TM

4λ1

)∫ t

0

ds

∫

Rz

T,αT,αdx. (3.57)
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3.2.2 An estimate for gradu.

We now integrate by parts, use the divergence theorem and the boundary
conditions, and then the differential equation to see that

∫ t

0

ds

∫

Rz

(ξ − z)ui,jui,jdx =
∫ t

0

ds

∫

Rz

[(ξ − z)ui,jui],jdx

−
∫ t

0

ds

∫

Rz

ui[(ξ − z)ui,j ],jdx

= −
∫ t

0

ds

∫

Rz

uiui,3dx −
∫ t

0

ds

∫

Rz

(ξ − z)uiΔuidx

= −
∫ t

0

ds

∫

Rz

uiui,3dx

−
∫ t

0

ds

∫

Rz

(ξ − z)
ui

λ

[
ui + p,i − giT − ĝiT

2
]
dx. (3.58)

The arithmetic-geometric mean inequality is used on the uiui,3 term
and then Poincaré’s inequality is used on the resulting uiui term. The
arithmetic-geometric mean inequality is used on the uiT term, and again
on the uiT

2 term after use of the maximum principle. For positive constants
γ0, γ3 and μ1 we then deduce from (3.58)

∫ t

0

ds

∫

Rz

(ξ − z)ui,jui,jdx ≤ 1
2
γ3

∫ t

0

ds

∫

Rz

ui,3ui,3dx

+
1

2γ3λ1

∫ t

0

ds

∫

Rz

ui,αui,αdx

+
(

γ0

2λ
+

T 2
Mμ1

2λ
− 1

λ

)∫ t

0

ds

∫

Rz

(ξ − z)uiuidx

+
1

2λλ1

( 1
γ0

+
1
μ1

)∫ t

0

ds

∫

Rz

(ξ − z)T,αT,αdx

− 1
λ

∫ t

0

ds

∫

Rz

(ξ − z)uip,idx. (3.59)

The difficult term to bound in (3.59) is the pressure term. This is handled
by (Payne and Song, 1997) by introducing the function ωα which solves

ωα,α = u3 in Dξ,

ωα = 0 on ∂Dξ.
(3.60)

A series of integrations by parts, use of the divergence theorem and bound-
ary conditions, employment of (3.60) and then use of the differential
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equation (3.50)1, leads to

− 1
λ

∫ t

0

ds

∫

Rz

(ξ − z)uip,idx = − 1
λ

∫ t

0

ds

∫

Rz

[(ξ − z)uip],idx

+
1
λ

∫ t

0

ds

∫

Rz

(ξ − z),ξu3pdx

=
1
λ

∫ t

0

ds

∫

Rz

u3pdx

=
1
λ

∫ t

0

ds

∫

Rz

ωα,αp dx

=
1
λ

∫ t

0

ds

∫

Rz

(ωαp),αdx − 1
λ

∫ t

0

ds

∫

Rz

ωαp,αdx

= − 1
λ

∫ t

0

ds

∫

Rz

ωα

[
gαT + ĝαT 2 − uα + λΔuα

]
dx. (3.61)

The last term, in Δuα integrates by parts to find

−
∫ t

0

ds

∫

Rz

ωαΔuαdx = −
∫ t

0

ds

∫

Rz

(ωαuα,i),idx +
∫ t

0

ds

∫

Rz

ωα,iuα,idx

=
∫ t

0

ds

∫

Dz

ωαuα,3dA

+
∫ t

0

ds

∫

Rz

ωα,iuα,idx. (3.62)

Thus, use of (3.62) in (3.61) shows

− 1
λ

∫ t

0

ds

∫

Rz

(ξ − z)uip,idx = − 1
λ

∫ t

0

ds

∫

Rz

ωαTgαdx

− 1
λ

∫ t

0

ds

∫

Rz

ωαĝαT 2dx +
1
λ

∫ t

0

ds

∫

Rz

uαωαdx

+
∫ t

0

ds

∫

Dz

ωαuα,3dA

+
∫ t

0

ds

∫

Rz

ωα,iuα,idx. (3.63)

The maximum principle is used on the T 2 term and then the arithmetic-
geometric mean inequality is employed on each term on the right of (3.63).
Poincaré’s inequality is used on the resulting terms in ωαωα and T,αT,α

integrated over Rz. In this manner we derive for arbitrary positive constants
γ4 − γ8,
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− 1
λ

∫ t

0

ds

∫

Rz

(ξ − z)uip,idx

≤
[ 1
2λλ1

(1 + TM )γ8 + γ7 +
1
2
γ5

] ∫ t

0

ds

∫

Rz

ωα,βωα,βdx

+
1
2
γ6

∫ t

0

ds

∫

Rz

ωα,3ωα,3dx +
1
2
γ4

∫ t

0

ds

∫

Dz

ωαωαdA

+
1

2λγ7

∫ t

0

ds

∫

Rz

uαuαdx +
1

2γ5

∫ t

0

ds

∫

Rz

uα,βuα,βdx

+
1

2γ6

∫ t

0

ds

∫

Rz

uα,3uα,3dx +
2
γ4

∫ t

0

ds

∫

Dz

uα,3uα,3dA

+
(1 + TM

2γ8λλ1

)∫ t

0

ds

∫

Rz

T,αT,αdx. (3.64)

We now need a series of inequalities derived from the Babuska-Aziz and
Poincaré inequalities,

∫ t

0

ds

∫

Rz

ωα,βωα,βdx ≤C

∫ t

0

ds

∫

Rz

(ωα,α)2dx

=C

∫ t

0

ds

∫

Rz

u2
3dx

≤ C

λ1

∫ t

0

ds

∫

Rz

u3,αu3,αdx, (3.65)

∫ t

0

ds

∫

Rz

ωα,3ωα,3dx ≤ 1
λ1

∫ t

0

ds

∫

Rz

ωα,3βωα,3βdx

≤ C

λ1

∫ t

0

ds

∫

Rz

(ωα,α3)2dx

=
C

λ1

∫ t

0

ds

∫

Rz

u2
3,3dx, (3.66)

∫ t

0

ds

∫

Dz

ωαωαdA ≤ 1
λ1

∫ t

0

ds

∫

Dz

ωα,βωα,βdA

≤ C

λ1

∫ t

0

ds

∫

Dz

(ωα,α)2dA

=
C

λ1

∫ t

0

ds

∫

Dz

u2
3dA

≤ C

λ2
1

∫ t

0

ds

∫

Dz

u3,αu3,αdA. (3.67)



3.2. Spatial decay for the Brinkman equations 117

Upon use of (3.65) – (3.67) in (3.64) we derive

− 1
λ

∫ t

0

ds

∫

Rz

(ξ − z)uip,idx

≤ C

λ1

[ 1
2λλ1

(1 + TM )γ8 + γ7 +
1
2
γ5

] ∫ t

0

ds

∫

Rz

u3,αu3,αdx

+
Cγ6

2λ1

∫ t

0

ds

∫

Rz

u2
3,3dx +

( 2
γ4

+
Cγ2

4

4λ2
1

)∫ t

0

ds

∫

Dz

u3,αu3,αdA

+
1

2λγ7

∫ t

0

ds

∫

Rz

uαuαdx +
1

2γ5

∫ t

0

ds

∫

Rz

uα,βuα,βdx

+
1

2γ6

∫ t

0

ds

∫

Rz

uα,3uα,3dx +
2
γ4

∫ t

0

ds

∫

Dz

uα,3uα,3dA

+
(1 + TM

2γ8λλ1

)∫ t

0

ds

∫

Rz

T,αT,αdx. (3.68)

Finally use of (3.68) in (3.59) leads to the estimate for ui,jui,j ,

∫ t

0

ds

∫

Rz

(ξ − z)ui,jui,jdx

≤1
2
γ3

∫ t

0

ds

∫

Rz

ui,3ui,3dx +
1

2γ3λ1

∫ t

0

ds

∫

Rz

ui,αui,αdx

+
( γ0

2λ
+

T 2
Mμ1

2λ
− 1

λ

)∫ t

0

ds

∫

Rz

(ξ − z)uiuidx

+
C

λ1

[ 1
2λλ1

(1 + TM )γ8 + γ7 +
1
2
γ5

] ∫ t

0

ds

∫

Rz

u3,αu3,αdx

+
Cγ6

2λ1

∫ t

0

ds

∫

Rz

u2
3,3dx +

( 2
γ4

+
Cγ2

4

4λ2
1

)∫ t

0

ds

∫

Dz

u3,αu3,αdA

+
1

2λγ7

∫ t

0

ds

∫

Rz

uαuαdx +
1

2γ5

∫ t

0

ds

∫

Rz

uα,βuα,βdx

+
1

2γ6

∫ t

0

ds

∫

Rz

uα,3uα,3dx +
2
γ4

∫ t

0

ds

∫

Dz

uα,3uα,3dA

+
1

2λλ1

( 1
γ0

+
1
μ1

)∫ t

0

ds

∫

Rz

(ξ − z)T,αT,αdx

+
(1 + TM

2γ8λλ1

)∫ t

0

ds

∫

Rz

T,αT,αdx. (3.69)

The idea is now to combine (3.57) and (3.69) opportunely. To this end, for
constants k1 and k2 at our disposal, form k1(3.57) added to (3.69) and then



118 3. Spatial Decay

add k2

∫ t

0
ds
∫

Rz
(ξ − z)uiuidx to the result. This leads to the inequality

[
k1−

1
2λλ1

( 1
γ0

+
1
μ1

)]∫ t

0

ds

∫

Rz

(ξ − z)T,iT,idx

+
∫ t

0

ds

∫

Rz

(ξ − z)ui,jui,jdx

+
[
k2 −

γ0

2λ
− T 2

Mμ1

2λ
+

1
λ

] ∫ t

0

ds

∫

Rz

(ξ − z)uiuidx

≤ k1

2γ1

∫ t

0

ds

∫

Rz

T 2
,3dx+

[
k1

2λ1

(
γ1+

γ2TM

2

)
+

1 + TM

2γ8λλ1

] ∫ t

0

ds

∫

Rz

T,αT,αdx

+
k1TM

4γ2

∫ t

0

ds

∫

Rz

u2
3dx +

1
2
γ3

∫ t

0

ds

∫

Rz

ui,3ui,3dx

+
1

2γ3λ1

∫ t

0

ds

∫

Rz

ui,αui,αdx

+
C

λ1

[ 1
2λλ1

(1 + TM )γ8 + γ7 +
1
2
γ5

] ∫ t

0

ds

∫

Rz

u3,αu3,αdx

+
Cγ6

2λ1

∫ t

0

ds

∫

Rz

u2
3,3dx +

1
2λγ7

∫ t

0

ds

∫

Rz

uαuαdx

+
1

2γ5

∫ t

0

ds

∫

Rz

uα,βuα,βdx +
1

2γ6

∫ t

0

ds

∫

Rz

uα,3uα,3dx

+
( 2

γ4
+

Cγ2
4

4λ2
1

)∫ t

0

ds

∫

Dz

u3,αu3,αdA

+
2
γ4

∫ t

0

ds

∫

Dz

uα,3uα,3dA. (3.70)

We pick

k1 >
1

2λλ1

( 1
γ0

+
1
μ1

)
and k2 >

γ0

2λ
+

μ1T
2
M

2λ
− 1

λ
.

For example, pick

1
γ0

+
1
μ1

= 2λλ1, k1 = 2

and pick k2 such that

k2 −
γ0

2λ
− μ1T

2
M

2λ
+

1
λ
≡ K > 0.
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Then, if we define a positive-definite function E(z, t) by

E(z, t) =
∫ t

0

ds

∫

Rz

(ξ − z)T,iT,idx +
∫ t

0

ds

∫

Rz

(ξ − z)ui,jui,jdx

+ K

∫ t

0

ds

∫

Rz

(ξ − z)uiuidx. (3.71)

From (3.70) we may then determine constants Γ1 − Γ4 such that

E(z, t) ≤Γ1

∫ t

0

ds

∫

Rz

uiuidx + Γ2

∫ t

0

ds

∫

Rz

T,iT,idx

+ Γ3

∫ t

0

ds

∫

Rz

ui,jui,jdx + Γ4

∫ t

0

ds

∫

Dz

ui,jui,jdA. (3.72)

Observe now that
∂E

∂z
= Ez = −

∫ t

0

ds

∫

Rz

T,iT,idx −
∫ t

0

ds

∫

Rz

ui,jui,jdx

− K

∫ t

0

ds

∫

Rz

uiuidx,

(3.73)

∂2E

∂z2
= Ezz =

∫ t

0

ds

∫

Dz

T,iT,idA +
∫ t

0

ds

∫

Dz

ui,jui,jdA

+ K

∫ t

0

ds

∫

Dz

uiuidA.

(3.74)

Then, from (3.72) we derive

E(z, t) ≤ −ΓEz + Γ4Ezz, (3.75)

where

Γ = max{Γ2,Γ3,Γ1/K}.
Inequality (3.75) may be integrated as in (Payne and Song, 1997) who note
that the inequality may be rewritten

Ezz − m1Ez − m2E ≥ 0, (3.76)

with m1 = Γ/Γ4, m2 = Γ−1
4 . They then set

a =
1
2
m1 +

1
2

√
m2

1 + 4m2, b = −1
2
m1 +

1
2

√
m2

1 + 4m2,

and (3.76) is

Ezz − (a − b)Ez − abE ≥ 0. (3.77)

This inequality may be factorized as
( ∂

∂z
− a
)(∂E

∂z
+ bE

)
≥ 0 or

( ∂

∂z
+ b
)(∂E

∂z
− aE

)
≥ 0.

(3.78)
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(Payne and Song, 1997) show that (3.78) integrates to derive either

E(z, t) ≤ E(0, t)e−bz, (3.79)

or

− Ez(z, t) + aE(z, t) ≤
[
−Ez(0, t) + aE(0, t)

]
e−bz. (3.80)

Neither (3.79) nor (3.80) is a decay bound in terms of data, since E(0, t) and
−Ez(0, t) are not directly functions of fi and h. It remains to bound these
functions in terms of the data fi and h. This may be done as in (Payne and
Song, 1997), with the details not dissimilar to those of section 3.1.3. We
do not include details here since this would be long and the technicalities
would obscure the content. The key thing in this section is to show how
the Brinkman equations lead to a second order differential inequality for a
suitable function E and how this may be bounded above by a decreasing
exponential function of z.

3.3 Spatial decay for the Forchheimer equations

In this section we study the following system of Forchheimer equations for
non-isothermal flow in a saturated porous medium, cf. chapter 1,

b|u|ui + c|u|2ui + ui = −p,i + giT,

ui,i = 0,

T,t + uiT,i = ΔT.

(3.81)

Again ui, p, T are velocity, pressure, and temperature, and gi is a gravity
vector which we assume (without loss of generality) satisfies the constraint

|g| ≤ 1.

The thermal diffusivity is chosen to be equal to 1 without any loss for the
analysis contained herein. The coefficients b > 0 and c > 0 are Forchheimer
coefficients and |u| =

√
uiui.

The domains D,R,Dz, Rz, and ∂R and ∂Rc are as in sections 3.1 and
3.2.

Equations (3.81) are defined on R × {t > 0}, with the following
conditions,

T (x1, x2, x3, 0) = 0 in R,

uαnα = 0 on ∂D × {z > 0} × {t ≥ 0},
T (x1, x2, x3, t) = 0 on ∂D × {z > 0} × {t ≥ 0},
u3(x1, x2, 0, t) = f(x1, x2, t), in D̄ × {t > 0},
T (x1, x2, 0, t) = h(x1, x2, t), in D̄ × {t > 0}.

(3.82)
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In addition, the following decay-like bounds are imposed on the solution,

ui, T = O(1), u3, T,i, p = o(1/z) as z(= x3) → ∞, ∀x1, x2, t. (3.83)

The first analysis of spatial decay for a Forchheimer system is due to
(Payne and Song, 2002) and they study (3.81) – (3.83) but with c = 0. The
analysis contained herein is a natural extension of their work.

The nonlinear b, c terms in (3.81)1 necessitate that we do not work imme-
diately with a space time integral. Thus, we commence by taking the inner
product of (3.81)1 with ui and integrate over Rz,

b

∫

Rz

|u|3dx + c

∫

Rz

|u|4dx +
∫

Rz

uiuidx

=
∫

Rz

giTuidx −
∫

Rz

uip,idx.

(3.84)

Again, the pressure term is the tricky one. To handle this, we proceed as
follows,

−
∫

Rz

uip,idx = −
∫

Rz

(uip),idx

= −
∮

∂Rz

uinip dS

=
∫

Dz

u3p dA (3.85)

where the divergence theorem and boundary conditions have been
employed. The function ωα of (3.60) is now utilized.

∫

Dz

u3pdA =
∫

Dz

ωα,αp dA

=
∫

Dz

(ωαp),α dA −
∫

Dz

ωαp,α dA

= −
∫

Dz

ωαp,α dA

=
∫

Dz

ωα[b|u|uα + c|u|2uα + uα − gαT ]dA (3.86)

where we have integrated by parts, used the divergence theorem, boundary
conditions, and the differential equation.

Since D is a two-dimensional domain the Sobolev inequality holds for ωα

in the form
∫

Dz

(ωαωα)2dA ≤ Λ2

∫

Dz

ωαωαdA

∫

Dz

ωα,βωα,βdA, (3.87)
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where Λ2 > 0 is a constant. Also, with the aid of the Babuska-Aziz and
Poincaré inequalities we know that

∫

Dz

ωα,βωα,βdA ≤ C

∫

Dz

ω2
α,αdA = C

∫

Dz

u2
3dA, (3.88)

and
∫

Dz

ωαωαdA ≤ 1
λ1

∫

Dz

ωα,βωα,βdA ≤ C

λ1

∫

Dz

u2
3dA. (3.89)

These inequalities are needed to estimate the right hand side of (3.86).
The first three terms on the right of (3.86) are manipulated using

Hölder’s inequality, the Cauchy-Schwarz inequality, and inequalities (3.87)
– (3.89), as now shown.
∫

Dz

ωα|u|uαdA ≤
(∫

Dz

(ωαωα)3/2dA

)1/3(∫

Dz

|u|3dA

)2/3

≤
(∫

Dz

(ωαωα)2dA

∫

Dz

ωαωαdA

)1/6(∫

Dz

|u|3dA

)2/3

≤
(

Λ2C2

λ1

[∫

Dz

u2
3dA
]2)1/6(

C

λ1

∫

Dz

u2
3dA

)1/6(∫

Dz

|u|3dA

)2/3

=
Λ1/3C1/2

λ
1/3
1

(∫

Dz

u2
3dA

)1/2(∫

Dz

|u|3dA

)2/3

≤Λ1/3C1/2

λ
1/3
1

[(∫

Dz

dA
)1/3(∫

Dz

|u3|3dA
)2/3
]1/2(∫

Dz

|u|3dA

)2/3

≤k1

∫

Dz

|u|3dA, (3.90)

where m = m(D) is the measure of D and

k1 =
m1/6Λ1/3C1/2

λ
1/3
1

.

The second term on the right of (3.86) is bounded by,

∫

Dz

ωα|u|2uαdA ≤
(∫

Dz

(ωαωα)2dA

)1/4(∫

Dz

|u|4dA

)3/4

≤Λ1/2C1/2

λ
1/4
1

(∫

Dz

u2
3dA

)1/2(∫

Dz

|u|4dA

)3/4

≤Λ1/2C1/2m1/4

λ
1/4
1

(∫

Dz

u4
3dA

)1/4(∫

Dz

|u|4dA

)3/4

≤k2

∫

Dz

|u|4dA, (3.91)
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where the constant k2 has the form

k2 =
m1/4Λ1/2C1/2

λ
1/4
1

.

Also, the third term on the right of (3.86) is estimated via
∫

Dz

ωαuαdA ≤
√∫

Dz

uαuαdA

∫

Dz

ωαωαdA

≤
√

C

λ1

√∫

Dz

uαuαdA

∫

Dz

u2
3dA

≤
√

C

λ1

∫

Dz

uiuidA. (3.92)

The final term in (3.86) is manipulated with the arithmetic-geometric mean
inequality for a constant β > 0 to be chosen, and then with the Poincaré
and Babuska-Aziz inequalities,

−
∫

Dz

ωαgαTdA ≤ 1
2β

∫

Dz

T 2dA +
β

2

∫

Dz

ωαωαdA

≤ 1
2β

∫

Dz

T 2dA +
βC

2λ1

∫

Dz

u2
3dA . (3.93)

We may now employ (3.90) – (3.93) in (3.86) to arrive at
∫

Dz

u3p dA ≤ 1
2β

∫

Dz

T 2dA +
βC

2λ1

∫

Dz

u2
3dA

+
√

C

λ1

∫

Dz

uiuidA + k2c

∫

Dz

|u|4dA

+ k1b

∫

Dz

|u|3dA.

(3.94)

The next step is to use (3.94) together with (3.85) in equation (3.84).
We also use the arithmetic-geometric mean inequality on the first term on
the right of (3.84) for γ > 0 a constant to be selected. In this way we may
obtain

b

∫

Rz

|u|3dx + c

∫

Rz

|u|4dx +
∫

Rz

uiuidx ≤ γ

2

∫

Rz

uiuidx

+
1
2γ

∫

Rz

T 2dx +
1
2β

∫

Dz

T 2dA +
βC

2λ1

∫

Dz

u2
3dA

+
√

C

λ1

∫

Dz

uiuidA + k2c

∫

Dz

|u|4dA

+ k1b

∫

Dz

|u|3dA.

(3.95)
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Next, select γ = 1. We treat the T 2 term over Dz by integration, the
Cauchy-Schwarz and Poincaré inequalities,

∫

Dz

T 2dA = −
∫

Rz

(T 2),ξdx

= − 2
∫ ∞

z

dξ

∫

Dξ

TT,3dA

≤ 2

√∫

Rz

T 2dx

∫

Rz

T 2
,3dx

≤ 2√
λ1

∫

Rz

T,iT,idx. (3.96)

The T 2 term over Rz in (3.95) is also treated by the Poincaré inequality
and then from (3.95) we may obtain

b

∫

Rz

|u|3dx + c

∫

Rz

|u|4dx +
1
2

∫

Rz

uiuidx

≤
(

1
2λ1

+
1

β
√

λ1

)∫

Rz

T,iT,idx

+
(

βC

2λ1
+
√

C

λ1

)∫

Dz

uiuidA

+ k1b

∫

Dz

|u|3dA + k2c

∫

Dz

|u|4dA.

(3.97)

Inequality (3.97) is now integrated over (0, t) to yield an estimate for a
functional of ui

b

∫ t

0

ds

∫

Rz

|u|3dx + c

∫ t

0

ds

∫

Rz

|u|4dx +
1
2

∫ t

0

ds

∫

Rz

uiuidx

≤
(

1
2λ1

+
1

β
√

λ1

)∫ t

0

ds

∫

Rz

T,iT,idx

+
(

βC

2λ1
+
√

C

λ1

)∫ t

0

ds

∫

Dz

uiuidA

+ k1b

∫ t

0

ds

∫

Dz

|u|3dA + k2c

∫ t

0

ds

∫

Dz

|u|4dA.

(3.98)
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3.3.1 An estimate for gradT

We begin with the same T function as in section 3.2. Using integration by
parts,

∫ t

0

ds

∫

Rz

(ξ − z)T,iT,idx =
∫ t

0

ds

∫

Rz

[
(ξ − z)T,iT

]
,i
dx

−
∫ t

0

ds

∫

Rz

T
[
(ξ − z)T,i

]
,i
dx.

The first term on the right is zero as may be seen by employing the diver-
gence theorem and boundary conditions. The differentiation is performed
on the second term and then the resulting expression involving ΔT is
transformed by using the differential equation (3.81)3, to find

∫ t

0

ds

∫

Rz

(ξ − z)T,iT,idx = −
∫ t

0

ds

∫

Rz

TT,3dx

− 1
2

∫ t

0

ds
∂

∂s

∫

Rz

(ξ − z)T 2dx

− 1
2

∫ t

0

ds

∫

Rz

(ξ − z)(uiT
2),idx.

We perform the differentiation on the second term on the right, then inte-
grate by parts and use the divergence theorem on the last term to deduce
that

∫ t

0

ds

∫

Rz

(ξ − z)T,iT,idx = −
∫ t

0

ds

∫

Rz

TT,3dx

− 1
2

∫

Rz

(ξ − z)T 2(t)dx

+
1
2

∫ t

0

ds

∫

Rz

u3T
2dx. (3.99)

Since the second term on the right of (3.99) is non-positive we discard this.
The Cauchy-Schwarz, arithmetic-geometric mean and Poincaré inequalities
together with the maximum principle are then used on the remaining two
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terms on the right of (3.99) to find

∫ t

0

ds

∫

Rz

(ξ − z)T,iT,idx ≤
√∫ t

0

ds

∫

Rz

T 2dx

√∫ t

0

ds

∫

Rz

T 2
,3dx

+
TM

2

√∫ t

0

ds

∫

Rz

u2
3dx

√∫ t

0

ds

∫

Rz

T 2dx

≤ 1√
λ1

∫ t

0

ds

∫

Rz

T,iT,idx

+
TM

2μ

∫ t

0

ds

∫

Rz

u2
3dx

+
TMμ

2λ1

∫ t

0

ds

∫

Rz

T,iT,idx, (3.100)

where μ > 0 is a constant at our disposal. Thus, we obtain our required
estimate for gradT , namely

∫ t

0

ds

∫

Rz

(ξ − z)T,iT,idx ≤
(

1√
λ1

+
TMμ

2λ1

)∫ t

0

ds

∫

Rz

T,iT,idx

+
TM

2μ

∫ t

0

ds

∫

Rz

uiuidx. (3.101)

We now form the combination (3.101)+Γ(3.98) to arrive at
∫ t

0

ds

∫

Rz

(ξ − z)T,iT,idx +
1
2
Γ
∫ t

0

ds

∫

Rz

uiuidx + bΓ
∫ t

0

ds

∫

Rz

|u|3dx

+ cΓ
∫ t

0

ds

∫

Rz

|u|4dx

≤
(

1√
λ1

+
TMμ

2λ1
+

Γ
2λ1

+
Γ

β
√

λ1

)∫ t

0

ds

∫

Rz

T,iT,idx

+
TM

2μ

∫ t

0

ds

∫

Rz

uiuidx

+ Γ
(

βC

2λ1
+
√

C

λ1

)∫ t

0

ds

∫

Dz

uiuidA

+ Γk1b

∫ t

0

ds

∫

Dz

|u|3dA

+ Γk2c

∫ t

0

ds

∫

Dz

|u|4dA. (3.102)

To remove the uiui term integrated over Rz from the right hand side of
(3.102) we now select Γ > TM/μ, e.g. pick Γ = 2TM/μ. Then, we may
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arrive at
∫ t

0

ds

∫

Rz

(ξ − z)T,iT,idx + α1

∫ t

0

ds

∫

Rz

uiuidx + α2

∫ t

0

ds

∫

Rz

|u|3dx

+ α3

∫ t

0

ds

∫

Rz

|u|4dx ≤ a1

∫ t

0

ds

∫

Rz

T,iT,idx

+ a2

∫ t

0

ds

∫

Dz

uiuidA + a3

∫ t

0

ds

∫

Dz

|u|3dA

+ a4

∫ t

0

ds

∫

Dz

|u|4dA. (3.103)

Now define the function E(z, t) by

E(z, t) =
∫ t

0

ds

∫

Rz

(ξ − z)T,iT,idx + α1

∫ t

0

ds

∫

Rz

uiuidx

+ α2

∫ t

0

ds

∫

Rz

|u|3dx + α3

∫ t

0

ds

∫

Rz

|u|4dx. (3.104)

Note that

∂E

∂z
= Ez = −

∫ t

0

ds

∫

Rz

T,iT,idx − α1

∫ t

0

ds

∫

Dz

uiuidA

− α2

∫ t

0

ds

∫

Dz

|u|3dA − α3

∫ t

0

ds

∫

Dz

|u|4dA.

Let now ζ be the number

ζ = max
{

1,
a2

a1α1
,

a3

a1α2
,

a4

a1α3

}
. (3.105)

Then, from (3.103) we may derive the inequality

E ≤ −a1ζEz . (3.106)

This inequality is integrated to see that

E(z, t) ≤ E(0, t)e−z/a1ζ . (3.107)

As it stands, (3.107) is not an a priori estimate because E(0, t) is not
given directly in terms of the data functions f and h.

3.3.2 An estimate for E(0, t)

In order to find a data bound for E(0, t) we put k1 = λ
−1/2
1 + TMμ/2λ1,

k2 = TM/2μ and note (3.101) becomes
∫ t

0

ds

∫

Rz

(ξ − z)T,iT,idx ≤ k1

∫ t

0

ds

∫

Rz

T,iT,idx + k2

∫ t

0

ds

∫

Rz

uiuidx.
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Upon using this with z = 0 in the definition for E, (3.104), we find

E(0, t) ≤k1

∫ t

0

ds

∫

R

T,iT,idx + (α1 + k2)
∫ t

0

ds

∫

R

uiuidx

+ α2

∫ t

0

ds

∫

R

|u|3dx + α3

∫ t

0

ds

∫

R

|u|4dx. (3.108)

Define now S as in (Payne and Song, 2002), namely S solves

∂S

∂t
= ΔS in R × {t > 0}, (3.109)

where S satisfies the same boundary and initial conditions as T. From the
triangle inequality

(∫ t

0

ds

∫

R

T,iT,idx

)1/2

≤
(∫ t

0

ds

∫

R

(T − S),i(T − S),idx

)1/2

+
(∫ t

0

ds

∫

R

S,iS,idx

)1/2

and squaring this we may deduce

∫ t

0

ds

∫

R

T,iT,idx ≤2
[∫ t

0

ds

∫

R

(T − S),i(T − S),idx

+
∫ t

0

ds

∫

R

S,iS,idx

]
. (3.110)

Next, integrating by parts and using the equations S,t = ΔS, ΔT = uiT,i +
T,t, recalling T = S on the boundary and initially, we may show

∫ t

0

ds

∫

R

(T − S),i(T − S),idx =
∫ t

0

ds

∫

R

[
(T − S),i(T − S)

]
,i
dx

−
∫ t

0

ds

∫

R

(T − S)Δ(T − S)dx

= −
∫ t

0

ds

∫

R

(T − S)(T − S),tdx

−
∫ t

0

ds

∫

R

(T − S)uiT,idx

= − 1
2

∫

R

(T − S)2dx
∣∣∣
time t

+
∫ t

0

ds

∫

R

(T − S),iuiTdx.
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Drop the first term on the right and split the second into two terms to see
that

∫ t

0

ds

∫

R

(T − S),i(T − S),idx ≤ 1
2

∫ t

0

ds

∫

R

(uiT
2),idx −

∫ t

0

ds

∫

R

S,iuiTdx

≤− 1
2

∫ t

0

ds

∫

D

uiniT
2dA

+ TM

√∫ t

0

ds

∫

R

S,iS,idx

∫ t

0

ds

∫

R

uiuidx

≤− 1
2

∫ t

0

ds

∫

D

h2fdA +
T 2

M

2ε

∫ t

0

ds

∫

R

S,iS,idx

+
ε

2

∫ t

0

ds

∫

R

uiuidx, (3.111)

where ε > 0 is to be chosen. (Lin and Payne, 1994) analyse the spatial decay
problem for S in a semi-infinite cylinder in detail. They obtain true spatial
decay estimates for a functional of form

∫ t

0
ds
∫

Rz
S,iS,idx+

∫ t

0
ds
∫

Rz
S2dx.

In particular, they show how to bound the S,iS,i piece in (3.111) in terms
of data, namely in terms of integrals over D of h2, (∂h/∂t)2 and |gradsh|2,
where gradsh denotes the tangential gradient of h. Thus, we employ (3.111)
in (3.110) and let Q1 be the data bound

(
2 +

T 2
M

ε

)∫ t

0

ds

∫

R

S,iS,idx −
∫ t

0

ds

∫

D

h2f dA ≤ Q1. (3.112)

In this manner we find

∫ t

0

ds

∫

R

T,iT,idx ≤ Q1 + ε

∫ t

0

ds

∫

R

uiuidx. (3.113)

3.3.3 An estimate for uiui

We multiply the differential equation (3.81)1 by ui and integrate over R×
(0, t) to obtain

∫ t

0

ds

∫

R

uiuidx+b

∫ t

0

ds

∫

R

|u|3dx + c

∫ t

0

ds

∫

R

|u|4dx =

= −
∫ t

0

ds

∫

R

p,iuidx +
∫ t

0

ds

∫

R

giuiTdx. (3.114)
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We now utilize the function φi defined in (3.39) in order to manipulate the
pressure term,

−
∫ t

0

ds

∫

R

p,iuidx = −
∫ t

0

ds

∫ ∞

0

dz

∫

Dz

∂

∂xi
(pui)dA

=
∫ t

0

ds

∫

D

puinidA

=
∫ t

0

ds

∫

D

pφinidA

= −
∫ t

0

ds

∫

R

p,iφidx

=
∫ t

0

ds

∫

R

φi(−giT + ui + b|u|ui + c|u|2ui)dx. (3.115)

Upon use of (3.115) in (3.114) we find
∫ t

0

ds

∫

R

uiuidx + b

∫ t

0

ds

∫

R

|u|3dx + c

∫ t

0

ds

∫

R

|u|4dx

=
∫ t

0

ds

∫

R

Tgi(ui − φi)dx +
∫ t

0

ds

∫

R

φiuidx

+ b

∫ t

0

ds

∫

R

φi|u|uidx + c

∫ t

0

ds

∫

R

φi|u|2uidx.

We next use the arithmetic-geometric mean inequality on the terms on the
right to derive
∫ t

0

ds

∫

R

uiuidx + b

∫ t

0

ds

∫

R

|u|3dx + c

∫ t

0

ds

∫

R

|u|4dx

≤
(

1
2δ1

+
1

2δ2

)∫ t

0

ds

∫

R

T 2dx +
δ1

2

∫ t

0

ds

∫

R

uiuidx

+
(

δ2

2
+

b

2δ3

)∫ t

0

ds

∫

R

φiφidx +
(

bδ3

2
+

δ4c

2

)∫ t

0

ds

∫

R

|u|4dx

+
c

2δ4

∫ t

0

ds

∫

R

|u|2|φ|2dx

≤
(

1
2δ1

+
1

2δ2

)∫ t

0

ds

∫

R

T 2dx +
δ1

2

∫ t

0

ds

∫

R

uiuidx

+
(

δ2

2
+

b

2δ3

)∫ t

0

ds

∫

R

φiφidx

+
(

bδ3

2
+

cδ4

2
+

cδ5

4δ4

)∫ t

0

ds

∫

R

|u|4dx

+
c

4δ4δ5

∫ t

0

ds

∫

R

|φ|4dx, (3.116)
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where δ1, . . . , δ5 > 0 are at our disposal. Select now, for example, δ1 = 1,
δ2 = 1, δ3 = c/3b, δ4 = 1/3, and δ5 = 2/9. Then, bounding the T 2 term in
(3.116) using Poincaré’s inequality we derive from (3.116)
∫ t

0

ds

∫

R

uiuidx+b

∫ t

0

ds

∫

R

|u|3dx + c

∫ t

0

ds

∫

R

|u|4dx

≤ 1
λ1

∫ t

0

ds

∫

R

T,iT,idx +
(

1
2

+
3b2

2c

)∫ t

0

ds

∫

R

φiφidx

+
27c

8

∫ t

0

ds

∫

R

|φ|4dx. (3.117)

3.3.4 Bounding φi

The next step is to bound the φi contributions in terms of data. The func-
tion φi is chosen as just before (3.45) so that φ3 = f(x1, x2, t)e−σz and
then φ1, φ2 may be chosen to vanish on ∂D and satisfy (3.45) namely

φα,α = σφ3. (3.118)

To bound the |φ|4 term note
∫ t

0

ds

∫

R

|φ|4dx =
∫ t

0

ds

∫

R

(φ2
3 + φαφα)2dx

≤2
∫ t

0

ds

∫

R

φ4
3dx + 2

∫ t

0

ds

∫

R

(φαφα)2dx,

≤2
∫ t

0

ds

∫

R

φ4
3dx

+ 2Λ2

∫ t

0

ds

∫ ∞

0

dz
(∫

Dz

φαφαdA

∫

Dz

φα,βφα,βdA
)

,

where the Sobolev inequality (3.87) has been employed. The Poincaré
inequality is employed on

∫
Dz

φαφαdA and then the Babuska-Aziz
inequality is utilized to obtain
∫ t

0

ds

∫

R

|φ|4dx ≤ 2
∫ t

0

ds

∫

R

φ4
3dx+

2Λ2C2

λ1

∫ t

0

ds

∫ ∞

0

dz

[∫

Dz

(φα,α)2dx

]2
.

Recalling the definition of φ3 and (3.118) we find
∫ t

0

ds

∫

R

|φ|4dx ≤ 1
2σ

∫ t

0

ds

∫

D

f4dA +
σΛ2C2

2λ1

∫ t

0

ds
[∫

D

f2dA
]2

=Q̂2 (data), (3.119)

where Q̂2 is the indicated data term. Similarly, one shows
∫ t

0

ds

∫

R

φiφidx ≤
(

1
2σ

+
Cσ

2λ1

)∫ t

0

ds

∫

D

f2dA ≡ Q̂3 (data). (3.120)
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Upon employment of (3.119) and (3.120) in (3.117) we derive

1
2

∫ t

0

ds

∫

R

uiuidx+b

∫ t

0

ds

∫

R

|u|3dx +
c

2

∫ t

0

ds

∫

R

|u|4dx

≤ 1
λ1

∫ t

0

ds

∫

R

T,iT,idx + Q2 + Q3, (3.121)

where Q2 = 27cQ̂2/8 and Q3 = Q̂3(1 + 3b2/c)/2.
If we now utilize (3.121) in (3.113) and pick ε = λ1/2 we may obtain

∫ t

0

ds

∫

R

T,iT,idx ≤ 2Q1 + λ1(Q2 + Q3). (3.122)

This inequality is now used in (3.121) to find
∫ t

0

ds

∫

R

uiuidx+b

∫ t

0

ds

∫

R

|u|3dx + c

∫ t

0

ds

∫

R

|u|4dx

≤ 4Q1

λ1
+ 3(Q2 + Q3). (3.123)

Finally, we may use (3.122) and (3.123) in inequality (3.108) to find a
data bound for E(0, t),

E(0, t) ≤k1

[
2Q1 + λ1(Q2 + Q3)

]
+ A
[4Q1

λ1
+ 3(Q2 + Q3)

]

=Q4 (data). (3.124)

The required spatial decay estimate follows by utilizing (3.124) in
inequality (3.107),

E(z, t) ≤ Q4e
−z/a1ζ . (3.125)

3.4 Spatial decay for a Krishnamurti model

(Krishnamurti, 1997) produced a very interesting model for studying pen-
etrative convection in a fluid. A complete linear instability and nonlinear
energy stability analysis for her model was provided by (Straughan, 2002b).
Her model relies on a pH indicator called thymol blue being dissolved in
water and as such is a double diffusive model with an equation for the
temperature of the fluid coupled to an equation for the concentration of
thymol blue. The penetrative effect is provided by the heat source depend-
ing on the thymol blue concentration. In this section we consider spatial
decay for a Krishnamurti model in a Darcy porous medium. Stability and
instability studies for this model are given by (Hill, 2005a), who also con-
siders a Brinkman theory, a theory where the heat source is nonlinear, and
when the density in the buoyancy force depends on temperature and con-
centration, see also (Hill, 2003; Hill, 2004b; Hill, 2004a; Hill, 2004c; Hill,
2005b).
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The model we consider is a direct adaption of the (Krishnamurti, 1997)
one in which the buoyancy force term depends only on temperature in
a linear manner, and the heat soure depends linearly on thymol blue
concentration. Thus, the equations are

ui = −p,i + giT,

ui,i = 0,

T,t + uiT,i = ΔT + γC,

C,t + uiC,i = ΔC,

(3.126)

where the notation is as in section 3.1, C represents a concentration, and
γ > 0 is a constant.

(Payne and Song, 2002) develop spatial decay estimates for a double
diffusive model in either a Darcy or Brinkman porous material. They allow
for a Soret effect, thus, have a linear term in ΔT added to the right hand
side of (3.126)4, although they do not have the γC term in (3.126)3. They
also have a g1

i C term in (3.126)1. In fact, (Payne and Song, 2002) study
their double diffusive model in the steady case in which C,t = 0, T,t = 0.
The time dependent analogue is considered for a two-dimensional spatial
domain by (Song, 2002). We here also develop spatial decay estimates for
(3.126) in the steady case. Thus, we study the system

ui = −p,i + giT,

ui,i = 0,

uiT,i = ΔT + γC,

uiC,i = ΔC.

(3.127)

The spatial domains R,D,Rz,Dz are as in section 3.1. On the boundary
we assume

uini = 0, T = 0, C = 0 on ∂D, (3.128)

with flow conditions at z = 0,

u3 = F1, T = F2, C = F3 on D0, i.e. z = 0. (3.129)

The asymptotic conditions at infinity are as in (Payne and Song, 2002)

ui, p, T, C,∇T,∇C → 0 uniformly in (x1, x2) as x3 = z → ∞. (3.130)

Since ui,i = 0 we also require (cf. the argument leading to (3.5)),
∫

D0

u3dA =
∫

D0

F1dA = 0. (3.131)

Our goal is to establish an exponential decay estimate in z for a function
of form

E = K1

∫

Rz

T,iT,idx + K2

∫

Rz

C,iC,idx +
∫

Rz

uiuidx,

for K1,K2 suitable constants.
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3.4.1 Estimates for T,iT,i and C,iC,i

We observe that we have a maximum principle for C but not for T. To
bound C we integrate by parts to find

∫

Rz

C,iC,idx =
∫

Rz

(C,iC),idx −
∫

Rz

CΔCdx

= −
∫

Dz

CC,3dA −
∫

Rz

1
2
(uiC

2),idx

= −
∫

Dz

CC,3dA +
1
2

∫

Dz

u3C
2dA, (3.132)

where we use the divergence theorem and (3.127)4. From the maximum
principle C ≤ CM = max F3 in D. Hence, using the maximum princi-
ple, the Cauchy-Schwarz inequality, and the arithmetic-geometric mean
inequality in (3.132) we may derive

∫

Rz

C,iC,idx ≤ 1√
λ1

(∫

Dz

C,αC,αdA

)1/2(∫

Dz

C2
,3dA

)1/2

+
CM

2
√

λ1

(∫

Dz

u2
3dA

)1/2(∫

Dz

C,αC,αdA

)1/2

≤ 1√
λ1

(
1 +

a2CM

4

)∫

Dz

C,iC,idA

+
CM

4a2

√
λ1

∫

Dz

u2
3dA, (3.133)

where a2 > 0 is a constant at our disposal and λ1 is the constant in
Poincaré’s inequality for D.

To bound T,iT,i we commence in similar fashion. Thus, we obtain

∫

Rz

T,iT,idx =
∫

Rz

(T,iT ),idx −
∫

Rz

TΔTdx

= −
∫

Dz

TT,3dA −
∫

Rz

T (uiT,i − γC)dx

= −
∫

Dz

TT,3dA +
1
2

∫

Dz

u3T
2dA + γ

∫

Rz

TCdx. (3.134)

Now,

∫

Rz

TCdx =
∫ ∞

z

dξ

∫

Dξ

TC dA.
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From the Cauchy-Schwarz and Poincaré inequalities we have

∫

Dξ

TC dA ≤
√∫

Dξ

T 2dA

√∫

Dξ

C2dA

≤ 1
λ1

√∫

Dξ

T,αT,αdA

√∫

Dξ

C,αC,αdA

≤ 1
2λ1a

∫

Dξ

T,αT,αdA +
a

2λ1

∫

Dξ

C,αC,αdA,

for a > 0 to be selected. This inequality may be integrated to see that

∫

Rz

TC dx ≤ 1
2λ1a

∫

Rz

T,αT,αdx +
a

2λ1

∫

Rz

C,αC,αdx,

≤ 1
2λ1a

∫

Rz

T,iT,idx +
a

2λ1

∫

Rz

C,iC,idx. (3.135)

Next,

−
∫

Dz

TT,3dA ≤ 1√
λ1

√∫

Dz

T,αT,αdA

√∫

Dz

T 2
,3dA

≤ 1√
λ1

∫

Dz

T,iT,idA. (3.136)

In addition, we use the Cauchy-Schwarz inequality followed by the Sobolev
inequality (3.87) to find

1
2

∫

Dz

u3T
2dA ≤ 1

2

√∫

Dz

u2
3dA

√∫

Dz

T 4dA

≤Λ
2

(∫

Dz

u2
3dA

)1/2(∫

Dz

T 2dA

∫

Dz

T,αT,αdA

)1/2

≤Λ
2

(∫

Dz

u2
3dA

)1/2 ∫

Dz

T,αT,αdA

≤ Λ
2λ1

[
a2

∫

Dz

u2
3dA +

1
a2

(∫

Dz

T,αT,αdA
)2
]

, (3.137)

where a2 > 0 is a constant at our disposal.



136 3. Spatial Decay

Estimates (3.135), (3.136) and (3.137) together in (3.134) lead to the
bound

∫

Rz

T,iT,idx ≤ 1√
λ1

∫

Dz

T,iT,idA +
γ

2λ1a

∫

Rz

T,iT,idx

+
γa

2λ1

∫

Rz

C,iC,idx +
Λa2

2λ1

∫

Dz

u2
3dA

+
Λ

2λ1a2

(∫

Dz

T,αT,αdA

)2

. (3.138)

We now form the combination (3.138)+ξ(3.133) for ξ > 0 a constant to
be selected. In fact, we choose a = γ/λ1 and ξ = 1/2 + γ2/2λ2

1 and then
derive the inequality

∫

Rz

T,iT,idx+
∫

Rz

C,iC,idx ≤ 2√
λ1

∫

Dz

T,iT,idA

+
(
1 +

γ2

λ2
1

) 1√
λ1

(
1 +

a2CM

4

)∫

Dz

C,iC,idA

+
[
Λa2

λ1
+
(
1 +

γ2

λ2
1

) CM

4a2

√
λ1

] ∫

Dz

u2
3dA

+
Λ

λ1a2

(∫

Dz

T,αT,αdA

)2

. (3.139)

3.4.2 An estimate for the uiui term

We must now derive an estimate for the term
∫

Rz
uiuidx. From the

differential equation (3.127)1 we find
∫

Rz

uiuidx =
∫

Rz

ui(−p,i + giT )dx. (3.140)

For the pressure term we proceed via the introduction of the function ωα

of (3.17). In this way we see that

−
∫

Rz

uip,idx =
∫

Dz

u3p dA

=
∫

Dz

ωα,αp dA

= −
∫

Dz

ωαp,αdA

=
∫

Dz

ωα(uα − gαT )dA
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where α = 1, 2 and (3.127)1 have been employed. The Cauchy-Schwarz,
Poincaré and Babuska-Aziz inequalities are now used to see that

−
∫

Rz

uip,idx ≤
√

C

λ1

√∫

Dz

u2
3dA

∫

Dz

uαuαdA

+
√

C

λ1

√∫

Dz

u2
3dA

∫

Dz

T,αT,αdA. (3.141)

Hence, utilizing (3.141) in (3.140) with further use of the arithmetic-
geometric mean and Poincaré inequalities we may show that for a3, a4 > 0
to be chosen,

∫

Rz

uiuidx ≤a3

2

∫

Rz

uiuidx +
1

2a3λ1

∫

Rz

T,iT,idx

+
√

C
( 1√

λ1

+
1

2λ1a4

)∫

Dz

uiuidA

+
a4

√
C

2λ1

∫

Dz

T,iT,idA. (3.142)

We now choose a3 = 1, a2 = 4, a4 = 2, and add λ1(3.142) to (3.139) to
derive

1
2

∫

Rz

uiuidx +
1
2

∫

Rz

T,iT,idx +
∫

Rz

C,iC,idx

≤
( 2√

λ1

+
√

C
)∫

Dz

T,iT,idA

+
1√
λ1

(
1 +

γ2

λ2
1

)
(1 + CM )

∫

Dz

C,iC,idA

+
[
5
√

C

4
+

4Λ
λ1

+
CM

16
√

λ1

(
1 +

γ2

λ2
1

)]∫

Dz

uiuidA

+
Λ

4λ1

(∫

Dz

T,iT,idA

)2

. (3.143)

Next, define the constants A and B by

A = max
{

4√
λ1

+2
√

C,
(1 + CM )√

λ1

(
1+

γ2

λ2
1

)
,
5
√

C

2
+

8Λ
λ1

+
CM

8
√

λ1

(
1+

γ2

λ2
1

)}
,

B = Λ/λ1, and define the function H(z) by

H(z) =
1
2

∫

Rz

uiuidx +
1
2

∫

Rz

T,iT,idx +
∫

Rz

C,iC,idx.

From inequality (3.143) we may now show that H satisfies the inequality

H(z) ≤ −AH ′(z) + B
[
−H ′(z)

]2
, (3.144)

where H ′ = dH/dz.
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3.4.3 Integration of the H inequality

The inequality (3.144) is integrated by (Horgan and Payne, 1992), p. 656.
For completeness we sketch the steps.

Complete the square in (3.144) to find
(
−H ′ +

A

2B

)2

≥ H

B
+

A2

4B2
,

from which one finds

−dH

dz
≥ 1√

B
(
√

H + d2 − d),

where d = A/2
√

B. Separating variables leads to

−
∫ H(z)

H(0)

ds

(
√

s + d2 − d)
≥ z√

B
,

which integrates to yield

2
{[

H(0) + d2
]1/2 −

[
H(z) + d2

]1/2
}

+ 2d log
[√

H(0) + d2 − d√
H(z) + d2 − d

]
≥ z√

B
.

Now drop the term −2
[
H(z) + d2

]1/2 and rearrange to find

log
[√

H(0) + d2 − d√
H(z) + d2 − d

]
≥
(

z

2d
√

B
−
√

H(0) + d2

d

)
.

After taking the exponential one obtains

H(z) ≤ H(0) exp
(√

H(0) + d2

d

)
e−z/2d

√
B . (3.145)

While this is an exponential spatial decay estimate the term H(0) is not
in terms of the data F1, F2 and F3. It remains to find a suitable bound for
H(0).

3.4.4 A bound for H(0)

This subsection follows the analogous analysis of (Payne and Song, 2002).
Let S be a solution of the problem

ΔS = 0 in R

S = C on ∂R.
(3.146)

Then by using the triangle inequality and squaring,
∫

R

C,iC,idx ≤ 2
∫

R

(C − S),i(C − S),idx + 2
∫

R

S,iS,idx. (3.147)
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Now, recall C satisfies the equation ΔC = uiC,i and C = F3 at z = 0, so
by integrating by parts and use of the divergence theorem we find

∫

R

(C − S),i(C − S),idx = −
∫

R

(C − S)ΔCdx (3.148)

= −
∫

R

(C − S)uiC,idx (3.149)

= −1
2

∫

R

(uiC
2),idx +

∫

R

uiC,iSdx (3.150)

=
1
2

∫

D0

u3F
2
3 dA −

∫

R

uiS,iCdx +
∮

∂R

uiniCS dS (3.151)

= −1
2

∫

D0

u3F
2
3 dA −

∫

R

uiS,iCdx (3.152)

≤ −1
2

∫

D0

F1F
2
3 dA + CM

√∫

R

uiuidx

∫

R

S,iS,idx , (3.153)

where CM = maxD̄ F3. Upon using (3.153) in (3.147) and using the
arithmetic-geometric mean inequality for α1 > 0 to be selected we may
show that

∫

R

C,iC,idx ≤(2 + α1C
2
M )
∫

R

S,iS,idx +
1
α1

∫

R

uiuidx

−
∫

D0

F1F
2
3 dA. (3.154)

To bound the S,iS,i term we recollect S satisfies (3.146) and then
∫

R

S,iS,idx =
∫

R

(S,iS),idx −
∫

R

SΔSdx

= −
∫

D0

F3S,3dA (3.155)

because S = C = F3 on D0. Furthermore,

0 =
∫

R

S,3ΔSdx

=
1
2

∫

R

(S2
,3),3dx +

∫

R

(S,3S,α),αdx − 1
2

∫

R

∂

∂z
(S,αS,α)dx

= − 1
2

∫

D0

S2
,3dA +

1
2

∫

D0

S,αS,αdA

and so we see that
∫

D0

S2
,3dA =

∫

D0

S,αS,αdA =
∫

D0

F3,αF3,αdA. (3.156)
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Now, combining (3.155) with (3.156) together with the Cauchy-Schwarz
inequality we derive

∫

R

S,iS,idx ≤
√∫

D0

F 2
3 dA

∫

D0

S2
,3dA

=

√∫

D0

F 2
3 dA

∫

D0

F3,αF3,αdA . (3.157)

Upon employing (3.157) in (3.154) we arrive at
∫

R

C,iC,idx ≤ L1 +
1
α1

∫

R

uiuidx, (3.158)

where L1 is the data term

L1 = −
∫

D0

F1F
2
3 dA + (2 + α1C

2
M )

√∫

D0

F 2
3 dA

∫

D0

F3,αF3,αdA .

Since there is no maximum principle for T we now introduce the function
S which solves

ΔS = uiS,i in R

S = T on ∂R.
(3.159)

Again from the triangle inequality
∫

R

T,iT,idx ≤ 2
∫

R

(T − S),i(T − S),idx + 2
∫

R

S,iS,idx. (3.160)

The second term is
∫

R

(T − S),i(T − S),idx = −
∫

R

(T − S)Δ(T − S)dx

=γ

∫

R

(T − S)Cdx

≤ γ

2aλ1

∫

R

(T − S),i(T − S),idx +
γa

2λ1

∫

R

C,iC,idx (3.161)

where we now select a = γ/λ1. We next use (3.161) in (3.160) to find
∫

R

T,iT,idx ≤ 2γ2

λ2
1

∫

R

C,iC,idx + 2
∫

R

S,iS,idx. (3.162)

Note now that S satisfies the same equation as C and if we replace F3 by
F2 it satisfies the same boundary conditions. Thus, S will satisfy a bound
like (3.158). In fact, if we define the data term L2 by

L2 = −
∫

D0

F1F
2
2 dA + (2 + α1S2

M )

√∫

D0

F 2
2 dA

∫

D0

F2,αF2,αdA
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where SM = maxD̄ F2 then S satisfies the following estimate,
∫

R

S,iS,idx ≤ L2 +
1
α1

∫

R

uiuidx. (3.163)

Next, (3.158) and (3.163) are used in (3.162) to determine the following
bound for a functional of T,

∫

R

T,iT,idx ≤ L3 +
2
α1

(
1 +

γ2

λ2
1

)∫

R

uiuidx, (3.164)

where L3 = 2γ2L1/λ2
1 + 2L2.

3.4.5 Bound for uiui at z = 0

From the differential equation for ui we show
∫

R

uiuidx =
∫

R

ui(−p,i + giT )dx. (3.165)

Now, introduce the function φi defined in (3.39), where φ3 = F1(xα)e−σz

and φα,α = −φ3,3. Then,

−
∫

R

p,iuidx =
∫

D0

u3p dA

= −
∫

R

p,iφidx

=
∫

R

φi(ui − giT )dx.

This expression is used in (3.165) and then we use the arithmetic-geometric
mean inequality to find

∫

R

uiuidx =
∫

R

uigiTdx −
∫

R

giφiTdx +
∫

R

φiuidx

≤1
2

∫

R

uiuidx + 2
∫

R

T 2dx +
5
4

∫

R

φiφidx.

Rearranging and using Poincaré’s inequality one finds

1
2

∫

R

uiuidx ≤ 2
λ1

∫

R

T,iT,idx +
5
4

∫

R

φiφidx. (3.166)

The φiφi integral is bounded as in (3.46) to obtain
∫

R

φiφidx ≤ Ĉ

∫

D

F 2
1 dA (3.167)

where

Ĉ =
1
2σ

+
Cσ

2λ1
.
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Thus, from (3.166)
∫

R

uiuidx ≤ 4
λ1

∫

R

T,iT,idx + L4, (3.168)

where L4 is the data term

L4 =
5Ĉ

2

∫

D

F 2
1 dA.

The next step is to employ (3.164) in inequality (3.168) to derive, with the
data term L5 = 8L3/λ1 + 2L4, after selecting α1 = 16(1 + γ2/λ2

1)/λ1,
∫

R

uiuidx ≤ L5. (3.169)

The data bound (3.169) leads in turn to bounds for T,iT,i and C,iC,i from
(3.164) and (3.158), namely

∫

R

T,iT,idx ≤ L3 +
λ1L5

8
, (3.170)

∫

R

C,iC,idx ≤ L1 +
λ1

16
L5

(1 + γ2/λ2
1)

. (3.171)

Hence, since

H(0) =
1
2

∫

R

uiuidx +
1
2

∫

R

T,iT,idx +
∫

R

C,iC,idx,

we find the following bound for H(0) in terms of the data functions F1, F2

and F3,

H(0) ≤ L1 +
L3

2
+ L5

[
1
2

+
λ1

16

(2 + γ2/λ2
1

1 + γ2/λ2
1

)]
. (3.172)

This is a data bound for H(0) and so inequality (3.145) represents a true
spatial decay estimate.

3.5 Spatial decay for a fluid-porous model

In the last section of chapter 3 we describe work of (Ames et al., 2001).
These writers tackled a very interesting but highly technical problem. They
studied spatial decay in a semi-infinite cylinder which is partly composed
of a saturated porous medium and partly filled with a viscous fluid. This
is thus an extension of the work in sections 3.1 – 3.4 where the semi-
infinite cylinder was always filled with a saturated porous material. One
of the difficulties facing (Ames et al., 2001) is the boundary conditions
on the interface between the porous medium and the fluid. The boundary
conditions for this situation have been discussed already in section 2.10 in
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connection with a structural stability question and they are analysed in
depth in chapter 6 in a variety of situations.

(Ames et al., 2001) consider a semi-infinite cylinder Ω which is divided
in two parts. The configuration is as shown in figure 3.2

The axis of the cylinder Ω is in the x3 = z direction and the fluid
occupies the region Ω1 which has x2 > 0, whereas the porous medium is in
the domain Ω2 which has x2 < 0. The interface between the two media is
at x2 = 0 and is denoted by L. The cross sections in Ω1 and Ω2 are denoted
by D1 and D2, respectively, and Ω1 and Ω2 have lateral boundaries Γ1 and
Γ2.

The equations which (Ames et al., 2001) employ are Stokes’ equa-
tions in the fluid, with the acceleration term omitted and a Boussinesq
approximation for the density. Thus, in Ω1 × {t > 0} they have

μΔui −
∂p

∂xi
+ giT = 0,

∂ui

∂xi
= 0,

∂T

∂t
+ ui

∂T

∂xi
= κΔT,

(3.173)

where ui, p, T, μ, κ and gi represent velocity, pressure, temperature,
dynamic viscosity, thermal diffusivity and the gravity vector, respectively.
In the porous domain Ω2 × {t > 0} the equations are governed by Darcy’s
law and are

μ

k
vi = − ∂π

∂xi
+ giθ,

∂vi

∂xi
= 0,

∂θ

∂t
+ vi

∂θ

∂xi
= κmΔθ.

(3.174)
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Here vi, π, θ, k and κm are the velocity, pressure, temperature, permeability
and thermal diffusivity, respectively.

The initial conditions are that
ui = 0, T = 0 in Ω1 for t = 0,

θ = 0 in Ω2 for t = 0.
(3.175)

The boundary conditions on the lateral and end walls are for Ω1,

ui = 0, T = 0 on Γ1 × {t > 0},
u3 = f, T = h on D1 × {x3 = 0} × {t > 0},

(3.176)

while for Ω2,

vini = 0, θ = 0 on Γ2 × {t > 0},
v3 = fm, θ = hm on D2 × {x3 = 0} × {t > 0}.

(3.177)

The asymptotic boundary conditions are

|u|, |v|, |T |, |θ| = O(1), |u3|, |v3|, |∇u|, |∇T |, |p|, |π| = o(1/z), (3.178)

uniformly in x1, x2 and t, as z → ∞. The boundary conditions on the
interface L are taken to be

u2 = v2, T = θ, κ
∂T

∂x2
= κm

∂θ

∂x2
,

π = p − 2μ
∂u2

∂x2
,

∂uγ

∂x2
+

∂u2

∂xγ
=

α√
k

uγ , γ = 1, 3.

(3.179)

Thus, the velocity, temperature and heat flux are continuous across L as
is the normal pressure. The last boundary condition represents a (Jones,
1973) contribution to the (Beavers and Joseph, 1967) boundary condition
but with the porous velocity neglected as discussed by (Nield and Bejan,
2006) and used by (Payne and Straughan, 1998a). (For further analysis of
the interface conditions see chapter 6.)

(Ames et al., 2001) let Ω1(z) and Ω2(z) denote the domains

Ω1(z) = Ω1 ∩ {x3 > z}, Ω2(z) = Ω2 ∩ {x3 > z}.
Their work establishes an exponential spatial decay bound for a function
of form

E(z, t) =A

∫ t

0

ds

∫

Ω1(z)

(ξ − z)(ui,j + uj,i)ui,jdx

+ B

∫ t

0

ds

∫

Ω2(z)

(ξ − z)vividx

+ C

∫ t

0

ds

∫

Ω1(z)

(ξ − z)T,iT,idx

+ D

∫ t

0

ds

∫

Ω2(z)

(ξ − z)θ,iθ,idx.
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We do not describe the proof because it is technical and lengthy. However,
we note that they require a zero net flow into the pipe via the condition

∫

D1

f dA +
∫

D2

fmdA = 0.

Their proof hinges on establishing a second order differential inequality for
E of form

∂2E

∂z2
− k1

∂E

∂z
− k2E ≥ 0,

where k1, k2 > 0 are constants.



4
Convection in Porous Media

To commence this chapter we investigate the stability of convective flow in a
layer of saturated porous material which is subject to a vertical temperature
gradient. The appropriate equations are now presented according to the
theories of Darcy, Forchheimer, Darcy with anisotropic permeability, and
Brinkman.

While my previous book, (Straughan, 2004a), concentrates on energy
stability applications in fluid mechanics, there are inevitably, some investi-
gations there of convection flows in porous media. The object of this book
is not to cover the same material, apart from the basic analysis which for
reasons of clarity is contained in sections 4.1 and 4.2. However, the rest of
this chapter concentrates on novel flow situations in porous media, many
very recent, and some given here for the first time. Some of this work deals
with nonlinear stability by means of the energy method, but not exclusively
so.

We concentrate entirely on stability of flow in porous media. It is worth
pointing out, however, that several of the stability ideas discussed here
have already found useful application in other areas and will continue to
do so. For example, we mention the important mathematical biology / med-
ical area, cf. (Avramenko and Kuznetsov, 2004), (Ghorai and Hill, 2005),
(Mulone et al., 2007), (Pieters, 2004), chapter 5, (Quinlan and Straughan,
2005), (Rappoldt et al., 2003), (Rionero, 2006b; Rionero, 2006a), (van Duijn
et al., 2001), when interfaces are involved, (Jovanovic and Vulkov, 2005),
and the important area of control theory, cf. (Alvarez-Ramirez et al., 2001),
(Khadra et al., 2005), (Ruszkowski et al., 2005), (Ydstie, 2002).

B. Straughan, Stability and Wave Motion in Porous Media,
DOI: 10.1007/978-0-387-76543-3 4, c© Springer Science+Business Media, LLC 2008
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4.1 Equations for thermal convection in a porous
medium

4.1.1 The Darcy equations

The derivation of the Darcy equations for thermal convection is discussed
in chapter 1, sections 1.2 and 1.6.1. We here simply present the relevant
system of equations.

The complete system of equations for thermal convection in a porous
medium according to Darcy’s law may be taken to be

0 = −p,i −
μ

k
vi − kigρ(T )

vi,i = 0
T,t + viT,i = κΔT.

(4.1)

In equations (4.1), vi, T and p are the variables to be solved for, i.e. the
velocity, temperature and pressure. The quantities μ, k, g and κ are con-
stants and represent viscosity, permeability, gravity and thermal diffusivity,
respectively. The vector k = (0, 0, 1) and ρ(T ) is the density - temperature
relationship. In this section we assume a linear one, namely,

ρ = ρ0(1 − α[T − T0]), (4.2)

where ρ0 is the density at temperature T = T0 and α is the coefficient of
thermal expansion. We can always redefine the pressure p by putting

p̃ = p + ρ0g[1 + αT0]z, (4.3)

and then (4.1) may be rewritten as

0 = −p̃,i −
μ

k
vi + kigρ0αT. (4.4)

It is worth observing that we have replaced the body force term ρfi in
equation (1.15) by the appropriate representation for thermal convection,
namely −kigρ(T ), in equation (4.1).

4.1.2 The Forchheimer equations

As stated in chapter 1, section 1.3, when the flow rate is large the Forch-
heimer equations may be more appropriate than the Darcy ones, and for
the problem of thermal convection in a saturated porous material these are
usually taken to be

0 = −p,i −
μ

k
vi − b|v|vi − kigρ(T )

vi,i = 0
T,t + viT,i = κΔT.

(4.5)
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The Forchheimer equations are believed more appropriate when the veloc-
ity is not small, the idea being that the pressure gradient is no longer
proportional to the velocity itself.

4.1.3 The Darcy equations with anisotropic permeability

For many practical situations the permeability k is not isotropic. (Just
imagine rock strata. Many times this has a preferred direction and so
anisotropic permeability is a realistic thing to consider.) When the per-
meability is not isotropic we can generalise the Darcy equations in a
straightforward manner. This then yields a system of equations with rich
mathematical properties which is very amenable to linear and energy stabil-
ity techniques but which also applies to many real life mechanisms. For an
anisotropic permeability k in (4.1)1 is no longer the same in all directions.
We must replace k by a tensor and so we generalise the velocity equation
(4.1)1 to have form, cf. section 1.5,

μvi = −Kijp,j − Kijkjgρ(T ),

where Kij is the permeability tensor. We shall require Kij to be invertible
so that the inverse tensor Mij satisfies MijKjk = Cδik where C is an
appropriate constant. Then the system of equations for convective motion
in an anisotropic porous medium of Darcy type is given by

μ

C
Mijvj = −p,i − kigρ(T )

vi,i = 0
T,t + viT,i = κΔT.

(4.6)

We concentrate on the case of a transversely isotropic material where the
axis of isotropy is at an angle β to the horizontal. This model was first
studied by (Tyvand and Storesletten, 1991), who also adopt the linear
density - temperature relationship (4.2). The permeability tensor K∗ is
selected as in (Tyvand and Storesletten, 1991), namely,

K∗ = K‖i′i′ + K⊥(j′j′ + k′k′) (4.7)

where K‖ and K⊥ are the longitudinal and transverse components of per-
meability. The plane of the porous layer is that for which k is orthogonal to
the layer and i is aligned with the projection of i′ on the (x, y) plane. The
angle β is the angle between the vectors i and i′. The inverse permeability
tensor M satisfies

M.K∗ = K⊥I, (4.8)

I being the identity. Then, see (Tyvand and Storesletten, 1991)

M =ξi′i′ + j′j′ + k′k′

=M11ii + M13(ik + ki) + M33kk + jj (4.9)
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where

M11 =ξcos2β + sin2β, M13 = (ξ − 1)cos βsin β,

M33 =cos2β + ξsin2β,
(4.10)

with ξ = K⊥/K‖ being the anisotropy parameter.
We here adopt the equation of state (4.2) and employ a modified pressure

p̃ as in (4.3) (although we discard the tilde). Then, equations (4.6) may be
written as

p,i = − μ

K⊥
Mijvj + kigρ0αT,

vi,i = 0,

T,t + viT,i = κΔT,

(4.11)

where Mij is the symmetric tensor with components as given by (4.9).
There are situations in which one also needs the thermal diffusivity to

be anisotropic. We do not study this explicitly, but we draw attention to
work of (Storesletten, 1993) where this effect is investigated at length.

4.1.4 The Brinkman equations

As is pointed out in chapter 1, section 1.4, it is often argued that (4.1) are
insufficient to describe porous flow situations near a solid wall, or when the
porosity is close to one. For such a scenario we may replace (4.1) by the
Brinkman equations (4.12)

0 = −p,i −
μ

k
vi + λΔvi − kigρ(T )

vi,i = 0
T,t + viT,i = κΔT.

(4.12)

Again, we at first focus on the density relation (4.2). Frequently the argu-
ment is advanced that the Brinkman equations, due to the inclusion of the
viscosity term λ, may be more relevant for flows involving a solid boundary,
cf. e.g. (Nield and Bejan, 2006).

4.2 Stability of thermal convection

In this section we investigate the so called Bénard problem in a porous
medium. This is the problem where a layer of porous material is saturated
with fluid and the bottom of the layer is hotter than the top. If the tem-
perature difference is large enough a cellular fluid motion ensues and this
is known as Bénard convection. In fact, we deal with each of the porous
systems introduced in section 4.1, namely the equations of Darcy, Forch-
heimer, the equations for Darcy convection with anisotropic permeability,



4.2. Stability of thermal convection 151

and those of Brinkman. We shall show that one can establish optimal sta-
bility results. Namely, that the linear instability and nonlinear stability
Rayleigh numbers are the same, i.e. R2

L ≡ R2
E . By linearising the per-

turbation equations for a stability problem we derive a theory which can
give information on when a flow becomes unstable. This critical Rayleigh
number we call R2

L. However, this gives no information on what the full non-
linear system dictates for stability. If we can obtain useful estimates from
the nonlinear theory these will give a true vision on the global nonlinear
stability picture. We stress this aspect throughout this chapter.

The physical picture is one of a saturated porous medium of infinite
extent in the x and y directions bounded by the planes z = 0 and z = d(> 0)
with gravity, g, in the negative z−direction. The upper boundary is held at
fixed temperature T = TU while the lower is held at constant temperature
T = TL, with TL > TU . The problem is to determine under what conditions
heating from below will lead to convective (cellular) fluid motion in the
porous medium. We begin with the equations of Darcy.

4.2.1 The Bénard problem for the Darcy equations

We commence with the steady solution to equations (4.1) when the density
is given by the relation (4.2), namely ρ(T ) = ρ0(1−α[T −T0]). The steady
solution with zero velocity in accordance with a conduction only state is

v̄i = 0, T̄ = −βz + TL, (4.13)

with the steady pressure p̄ determined from the differential equation
dp̄/dz = gρ0(1 − α[T̄ (z) − T0]). This represents the situation where no
convective motion is occurring and the temperature gradient is constant
throughout the layer.

The nonlinear perturbation equations which arise from (4.1) using (4.13)
as steady solution, with vi = v̄i + ui, T = T̄ + θ, p = p̄ + π, are

0 = −π,i −
μ

k
ui + gρ0αkiθ,

ui,i = 0,

θ,t + uiθ,i = βw + κΔθ,

where w = u3. It is convenient to non-dimensionalize these equations with
the scalings t = t∗T , ui = u∗

i U, xi = x∗
i d, θ = T θ∗, T = d2/κ, P = μUd/k,

U = κ/d, T  = dU
√

μβ/κgρ0αk, and the Rayleigh number R2 defined by

R2 =
d2gρ0αkβ

μκ
. (4.14)

Next, the stars are omitted and the non-dimensional (fully nonlinear)
perturbation equations for the thermal convection problem arising from
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Darcy’s equations are

0 = −π,i − ui + Rkiθ,

ui,i = 0,

θ,t + uiθ,i = Rw + Δθ.

(4.15)

The boundary conditions are that

θ = w = 0, z = 0, 1, (4.16)

with (ui, θ, π) satisfying a plane tiling periodicity in the x, y directions.
Since Darcy’s law only contains ui in the momentum equation (4.15)1
we only prescribe the normal component of velocity on the boundary.
In addition, we assume that u, θ, p have an (x, y)-dependence consistent
with one that has a repetitive shape that tiles the plane, such as two-
dimensional rolls or hexagons. The hexagon solution was originally given
by (Christopherson, 1940) namely,

u(x, y) = cos
1
2
a(
√

3 x + y) + cos
1
2
a(
√

3 x − y) + cos ay . (4.17)

In particular, the (x, y)-dependence is consistent with a wavenumber, a, for
which with

Δ∗ =
∂2

∂x2
+

∂2

∂y2
,

u satisfies the relation

Δ∗u = −a2u.

Whatever shape the cell has in the (x, y)-plane, its Cartesian product with
(0, 1) is the period cell V. (In this book we do not discuss the problem of
which cell shape is actually taken up when convection commences in the
fluid. This requires an analysis of the possible patterns which may occur in
the nonlinear theory once convective motion ensues. We refer the reader to
the concise mathematical analysis of (Mielke, 1997) for a very clear account
of this.)

Throughout this chapter ‖·‖ and (·, ·) denote the norm and inner product
on the Hilbert space L2(V ).

4.2.2 Linear instability

To determine linear instability from (4.15) we drop the uiθ,i term and write
ui = ui(x)eσt, θ = θ(x)eσt, π = π(x)eσt, to find

0 = −π,i − ui + Rkiθ,

ui,i = 0,

σθ = Rw + Δθ.

(4.18)
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Equations (4.18) together with the boundary conditions (4.16) define an
eigenvalue problem for σ. In general σ = σr + iσi, σr, σi ∈ R. If σi = 0 =⇒
σr < 0 it is said that the principle of Exchange of Stabilities holds. When
σi ≡ 0 then σ ∈ R and so exchange of stabilities holds automatically.

We now show σ ∈ R (for each σi in the spectrum). To do this let V be
the period cell for the solution (ui, θ, π) and then multiply (4.18)1 by the
complex conjugate of ui, u∗

i , and integrate over V. The result is, after using
the boundary conditions

‖u‖2 = R(θ, w∗) (4.19)

where w∗ = u∗
3. Now multiply (4.18)3 by the complex conjugate of θ, θ∗,

and integrate over V. One may now show that

σ‖θ‖2 = R(w, θ∗) − ‖∇θ‖2. (4.20)

In (4.19) and (4.20) it is understood that ui, θ are complex and so ‖ · ‖ is
to be interpreted accordingly, e.g.

‖θ‖2 =
∫

V

θθ∗dx.

Next, add (4.19) to (4.20) to find

σ‖θ‖2 = R
[
(θ, w∗) + (w, θ∗)

]
− ‖u‖2 − ‖∇θ‖2.

Since σ = σr + iσi then the imaginary part of this equation shows that

σi‖θ‖2 = 0.

Thus, σi = 0 and σ ∈ R. Exchange of stabilities holds and it is sufficient
to take σ = 0 in (4.18) to have the equations which govern the boundary
for linearised instability, i.e.

0 = −π,i − ui + Rkiθ,

ui,i = 0,

0 = Rw + Δθ.

(4.21)

Let us denote the lowest eigenvalue for (4.21) together with the associated
boundary conditions by RL. It must be emphasized that the linear theory
only yields a boundary for instability, i.e. whenever R > RL the solution to
(4.18) has σ = σr > 0, thus it grows in time and is unstable. In particular,
the linearized equations do not yield any information on nonlinear stability.
It is, in general, possible for the solution to the full nonlinear equations
(4.15) to become unstable at a value of R lower than RL, and in this case
subcritical instabilities occur. Details of the calculation of RL are given
later in section 4.2.4.
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4.2.3 Nonlinear stability

To investigate nonlinear energy stability we multiply (4.15)1 by ui, (4.15)3
by θ and integrate each over V. This yields the following two equations

0 = R(θ, w) − ‖u‖2, (4.22)
d

dt

1
2
‖θ‖2 = R(w, θ) − ‖∇θ‖2. (4.23)

We employ Joseph’s coupling parameter method (Joseph, 1965; Joseph,
1966). Hence multiply one of (4.22) or (4.23) by a positive parameter, add
the equations and then select this parameter optimally. For example, add
λ times (4.23) to (4.22). The result is

dE

dt
= RI − D (4.24)

where now

E(t) =
λ

2
‖θ(t)‖2, (4.25)

I(t) = (1 + λ) (w, θ), (4.26)

D(t) = ‖u‖2 + λ‖∇θ‖2. (4.27)

The idea is now to optimize an inequality involving the right hand side
of (4.24). Hence, define RE by

1
RE

= max
H

I

D
(4.28)

where now H is such that ui ∈ L2(V ), θ ∈ H1(V ), and w = 0, θ = 0, on
z = 0, 1. In this way we find from (4.24)

dE

dt
=RD

I

D
− D

≤RD
(
max

H

I

D

)
− D = −D

(
RE − R

RE

)
. (4.29)

Since D ≥ λπ2‖θ‖2 + ‖u‖2 by using the Poincaré inequality, we see that
D ≥ 2π2E. Thus our nonlinear stability criterion is now

R < RE (4.30)

for then ω = 2π2(RE − R)/RE > 0 and (4.29) leads to

dE

dt
≤ −ωE. (4.31)

Then by integration and rearranging

E(t) ≤ exp(−ωt)E(0). (4.32)

Thus, (4.28), (4.30) yield unconditional nonlinear stabilty in the porous
Bénard problem when the equations for the porous medium are those of
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Darcy. By unconditional stability we mean for all initial perturbations,
and so for all E(0). This is sometimes called global stability. Of course,
for the Darcy problem, all (4.32) shows is that ‖θ(t)‖ decays exponentially.
However, from (4.22) we may use the arithmetic-geometric mean inequality
to deduce

‖u‖2 = R(θ, w) ≤ R2

2
‖θ‖2 +

1
2
‖w‖2 ≤ R2

2
‖θ‖2 +

1
2
‖u‖2,

and this leads to

‖u‖2 ≤ R2‖θ‖2.

Hence, (4.30) leads also to exponential decay of ‖u(t)‖.

4.2.4 Variational solution to (4.28)

The nonlinear stability threshold is now given by the variational problem
(4.28). The approach with nonlinear energy stability calculations is to find
a variational problem like (4.28), determine the Euler-Lagrange equations
and maximize in the coupling parameter λ to obtain the best value of RE .
The maximum problem (4.28) is

1
RE

= max
H

(1 + λ)(θ, w)
‖u‖2 + λ‖∇θ‖2

. (4.33)

It is convenient (but not necessary) to rescale θ by putting θ̂ =
√

λ θ. Then,
since we are seeking the maximum over a linear space H we find that (4.33)
is equivalent to

1
RE

= max
H

f(λ) (θ, w)
‖u‖2 + ‖∇θ‖2

where f(λ) = (1 + λ)/
√

λ. Hence, the Euler-Lagrange equations arising
from (4.28) are determined from

REδI − δD = 0

where now (we incorporate the constraint ui,i = 0 in I)

δI =
d

dε
f (θ + εη, w + εh3)

∣∣∣
ε=0

− 2
d

dε
(π, ui,i + εhi,i)

∣∣∣
ε=0

=f(λ)(w, η) + f(λ)(h3, θ) + 2(π,i, hi)

and

δD =
d

dε

(
‖u + εh‖2 + ‖∇(θ + εη)‖2

)∣∣∣
ε=0

=2
[
(ui, hi) − (Δθ, η)

]
.
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Thus, the Euler-Lagrange equations which arise from (4.28) are

0 = −π,i − ui +
1
2
REfθki,

ui,i = 0,

0 =
1
2
fREw + Δθ.

(4.34)

One now uses the parameteric differentiation method to show λ = 1 is
the optimal value, i.e. that value which maximises RE . The details are now
given.

Let R1
E , u1

i , θ
1, π1 denote the solution to the eigenvalue problem arising

from (4.34) with λ = λ1 > 0, and let R2
E , u2

i , θ
2, π2 denote the analogous

solution when λ has another value, λ = λ2 > 0, say. Multiply (4.34)1
holding for λ = λ1 by u2

i and integrate over V to obtain using the boundary
conditions and (4.34)2,

1
2
R1

E(f1θ1, w2) − (u1
i , u

2
i ) = 0, (4.35)

where f1 = f(λ1). Likewise, multiply (4.34)1 holding for λ = λ2 by u1
i and

integrate over V to obtain
1
2
R2

E(f2θ2, w1) − (u2
i , u

1
i ) = 0. (4.36)

Now multiply (4.34)3 holding for λ = λ1 by θ2, and holding for λ = λ2 by
θ1, to obtain after integration by parts and use of the boundary conditions

1
2
R1

E(f1w1, θ2) − (∇θ1,∇θ2) = 0, (4.37)

1
2
R2

E(f2w2, θ1) − (∇θ2,∇θ1) = 0. (4.38)

Form the combination (4.36) + (4.38) − (4.35) − (4.37) to find

R2
E(f2w2, θ1) + R2

E(f2θ2, w1) − R1
E(f1θ1, w2) − R1

E(f1w1, θ2) = 0.

Now add in the (zero-total) contributions as follows

R2
E([f2 − f1]w2, θ1) + (R2

E − R1
E)(f1θ1, w2)

+ R2
E([f2 − f1]w1, θ2) + (R2

E − R1
E)(f1w1, θ2) = 0.

Divide by λ2 − λ1 = 0 and take the limit λ2 → λ1 to derive (with
R1

E , f1, w1, θ1 replaced by RE , f, w and θ),

RE

(∂f

∂λ
w, θ
)

+
∂RE

∂λ
(fw, θ) = 0. (4.39)

To make use of this result we take u2
i ≡ u1

i in (4.35) and θ2 ≡ θ1 in (4.37)
to see, once the outcomes are added together,

RE(fw, θ) = ‖u‖2 + ‖∇θ‖2. (4.40)



4.2. Stability of thermal convection 157

Next, substitute for (fw, θ) in (4.39) to find

R2
E

(∂f

∂λ
w, θ
)

+
∂RE

∂λ
(‖u‖2 + ‖∇θ‖2) = 0. (4.41)

At the optimal value of RE (i.e. largest as a function of λ) ∂RE/∂λ = 0
and then from (4.41) we see that this equation is satisfied if ∂f/∂λ = 0.
This then yields λ = 1 as the best value.

With λ = 1 equations (4.34) become

0 = −π,i − ui + REθki,

ui,i = 0,

0 = REw + Δθ.

(4.42)

These are the same as the linear instability equations (4.21). Thus, we have
the optimal result that RL = RE . This means that the linear instability
critical Rayleigh number is the same as the nonlinear stability Rayleigh
number. This result holds for all initial data. The basic solution (4.13) is
unstable for R > RL and globally stable for R < RE . Thus, since RE = RL

this is thus an optimal result. It is to be stressed that this is for the Darcy
equations of porous convection.

We now calculate the critical Rayleigh number RL = RE arising from
(4.42), or equivalently from (4.21). To do this we first remove the pressure
by taking curlcurl of (4.42)1. This gives

0 = Δui + RE(kjθ,ij − kiΔθ), (4.43)

since ui,i = 0. Now, pick i = 3 in this equation. Thus, we instead of (4.42)
find a coupled system in w and θ of form

0 = Δw − REΔ∗θ,

0 = REw + Δθ,
(4.44)

where Δ∗ = ∂2/∂x2 + ∂2/∂y2, and w = θ = 0 at z = 0, 1. Since RE = RL

we omit the E and simply solve (4.44) for R. We seek a solution of form
w = W (z)f(x, y), θ = Θ(z)f(x, y) where f(x, y) is a planform which tiles
the plane. Typically f is the hexagonal solution given by (4.17). So,

Δ∗f = −a2f, (4.45)

where a is the horizontal wavenumber.
Let D = d/dz then from (4.44) we eliminate θ to find

Δ2w = −R2Δ∗w.

Thus,

(D2 − a2)2W = R2a2W. (4.46)
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Since w = θ = 0 on z = 0, 1, we may show from (4.46) that D(2n)W = 0 on
z = 0, 1. Hence, in (4.46) we may select W = sin nπz. Thus (4.46) leads to

(n2π2 + a2)2

a2
= R2.

We want the smallest value of R2 as a function of n and so take n = 1.
Then we must minimise R2(a2) in a2, i.e. minimise R2 = (π2 + a2)2/a2.
This leads to a2

c = π2, where c denotes the critical value. Then, R2
c = 4π2.

Thus,

R2
E = R2

L = 4π2.

For a Rayleigh number Ra less than 4π2 we cannot have any instability,
i.e. all perturbations decay rapidly to zero. This is a nonlinear result which
holds for all initial data. On the other hand if the Rayleigh number Ra
is greater than 4π2 instability occurs and cellular convective motion is
witnessed.

4.2.5 The Bénard problem for the Forchheimer equations

Suppose now that the porous medium is governed by the Forchheimer
equations (4.5). We assume the porous material fills the three-dimensional
region {(x, y) ∈ R

2} × {z ∈ (0, d)} as in section 4.2.1. The boundary con-
ditions are the same, the steady state solution is (4.13), and the same
non-dimensionalisation leading to (4.15) is employed except we addition-
ally need to account for the Forchheimer term in (4.5)1, b|v|vi. Thus, the
new non-dimensional variable F = kbκ/μd arises. Instead of the dimen-
sionless perturbation equations (4.15), when we employ the Forchheimer
equations (4.5) we arrive at the dimensionless perturbation equations

0 = −π,i − ui + Rθki − F |u|ui,

ui,i = 0,

θ,t + uiθ,i = Rw + Δθ,

(4.47)

where w = u3. These equations hold on {(x, y) ∈ R
2} × {z ∈ (0, 1)} × {t >

0}. The boundary conditions are again (4.16), i.e.

θ = w = 0, z = 0, 1,

with (ui, θ, π) satisfying a plane tiling periodicity in the (x, y) directions.
To determine the linear instability boundary from (4.5) we now discard

the uiθ,i term and also the Forchheimer term F |u|ui. After writing ui =
ui(x)eσt with a similar representation for θ and π the linearized equations
are derived. These are exactly the same as those of Darcy theory, i.e. (4.18).
Thus, the linear instability boundary is exactly the same as that found by
employing Darcy’s law.

To develop an energy theory from (4.47) we proceed exactly as in the
Darcy case, i.e. equations (4.24) – (4.28), the only difference is that we
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must now include a term of form F < |u|3 > . Thus, with E, I and D
defined by (4.25) – (4.27) we find instead of (4.24) the equation

dE

dt
= RI − D − F < |u|3 > . (4.48)

Next, we discard the non-positive Forchheimer term from the right of (4.48)
and find E satisfies the differential inequality

dE

dt
≤ RI − D.

The development from this point is exactly the same as for the Darcy
equations. Thus, we again find the optimal result that the nonlinear critical
Rayleigh number RaE = R2

E is the same as the linear critical Rayleigh
number RaL = R2

L and indeed, we have RaE = RaL = 4π2.
Hence, in the current situation the Forchheimer term plays no role in the

instability or stability threshold since the optimum result is achieved which
is the same as that found in the Darcy case. However, the Forchheimer
term does in general make a difference. For example, in sections 2.3 and
2.9, it is shown how the Forchheimer theory leads to sharper estimates than
the Darcy theory for continuous depedence, and in an initial - final value
problem.

4.2.6 The Bénard problem for the Darcy equations with
anisotropic permeability

In this subsection we treat the problem of stability of a layer of saturated
porous medium heated from below when the permeability is anisotropic.
The anisotropy we allow is the one discussed in section 4.1.3 where the
permeability in the direction at an angle of β◦ to the horizontal is different
from that in the orthogonal directions. The relevant equations governing
convection are then (4.6).

Again, the steady solution whose stability is under investigation is

v̄i ≡ 0, T̄ = −βz + TL ,

where the porous medium occupies the infinite plane layer R
2×{z ∈ (0, d)}

with upper and lower boundary conditions as given in (4.16). Let (ui, θ, π)
be perturbations to (v̄i, T̄ , p̄) and then the perturbation equations are

μ

K⊥
Mijuj = −π,i + ρ0gαkiθ, ui,i = 0,

θ,t + uiθ,i = βw + κΔθ.
(4.49)

Equations (4.49) are non-dimensionalized with the scalings x = x∗d,
t = t∗T , T = d2/κ, ui = u∗

i U, U = κ/d, π = π∗P, P = μUd/K⊥,
θ = θ∗T , T  = Ud

√
μβ/κgρ0αK⊥, with the Rayleigh number Ra = R2
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being defined by

R2 =
d2gρ0αK⊥β

μκ
.

The perturbation equations in non-dimensional form are

Mijuj = −π,i + Rkiθ,

ui,i = 0,

θ,t + uiθ,i = Rw + Δθ.

(4.50)

We note that the linearised instability equations become

Mijuj = −π,i + Rkiθ,

ui,i = 0,

σθ = Rw + Δθ,

(4.51)

where ui has been written as ui(x)eσt, with similar forms for θ and π.
To develop a nonlinear energy stability analysis we multiply (4.50)1 by

ui and integrate over a period cell V to obtain
∫

V

Mijujui dV = R(θ, w). (4.52)

Likewise, we multiply (4.50)3 by θ and integrate over V to find

d

dt

1
2
‖θ‖2 = R(θ, w) − ‖∇θ‖2. (4.53)

By adding λ(4.52) to (4.53) we derive an energy equation of form

dE

dt
= RI − D (4.54)

where now

E =
1
2
‖θ‖2, I = (1 + λ)(θ, w),

D = ‖∇θ‖2 + λ

∫

V

Mijuiuj dV.

We now use the form of Mij given by (4.10) to see that

Mijuiuj = v2 + ξ(u cos β + w sinβ)2 + (u sin β − w cos β)2,

where (u, v, w) = u. If 0 < ξ < 1, then we rewrite this as

Mijuiuj =v2 +
[
ξ + (1 − ξ)sin2β

]
u2

+
[
ξ + (1 − ξ)cos2β

]
w2 + 2(ξ − 1)sinβ cosβ uw ,

≥v2 + ξ(u2 + w2),
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and so Mijuiuj is clearly positive definite. If ξ ≥ 1 then we arrive at the
same conclusion from the rearrangement

Mijuiuj =v2 +
[
(ξ − 1)cos2β + 1

]
u2

+
[
(ξ − 1)sin2β + 1

]
w2 + 2(ξ − 1)sinβ cosβ uw .

Thus Mijuiuj ≥ min {1, ξ}uiui. Hence,
∫

V
Mijuiuj dV ≥ k0‖u‖2 where

k0 = min {ξ, 1}, and from Poincaré’s inequality ‖∇θ‖2 ≥ π2‖θ‖2. Thus
I/D is bounded and one can show a maximising solution exists to the
problem

1
RE

= max
H

I

D
(4.55)

where H is the same space of admissible solutions as in the Darcy Bénard
problem. Then from (4.54) we derive

dE

dt
≤ −D

(
RE − R

RE

)
≤ −2π2

(
RE − R

RE

)
E

provided R < RE . From this inequality we find

E(t) ≤ E(0) exp
(
−2π2

RE
(RE − R)t

)

and nonlinear stability follows, for all initial data. It remains to find RE to
solve the nonlinear stability problem. The Euler-Lagrange equations from
(4.55) are (replacing ui by ûi =

√
λui and then dropping the hat),

RE
f

2
θki − Mijuj = π,i, ui,i = 0,

RE
f

2
w + Δθ = 0

(4.56)

where f(λ) = (1 + λ)/
√

λ.
One now uses variation of parameters. Thus, let f/2 = h, and multiply

(4.56)1 evaluated at λ2 by u1
i , (4.56)1 evaluated at λ1 by u2

i , (4.56)3 evalu-
ated at λ2 by θ1, and (4.56)3 evaluated at λ1 by θ2. After integration over
V the results are

R2
Eh2(θ2, w1) −

∫

V

Miju
2
ju

1
i dV = 0, (4.57)

R1
Eh1(θ1, w2) −

∫

V

Miju
1
ju

2
i dV = 0, (4.58)

R2
Eh2(w2, θ1) − (∇θ1,∇θ2) = 0, (4.59)

R1
Eh1(w1, θ2) − (∇θ1,∇θ2) = 0. (4.60)

We now form the combination (4.57) − (4.58) + (4.59) − (4.60) to find

(R2
Eh2 − R1

Eh1)
[
(θ2, w1) + (w2, θ1)

]
= 0.
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Next, recall λ1 = λ2, divide by λ2 − λ1 to obtain
[
R2

E(h2 − h1) + (R2
E − R1

E)h1

λ2 − λ1

] [
(θ2, w1) + (w2, θ1)

]
= 0.

Take the limit λ2 → λ1 to find
[
RE

∂h

∂λ
+ h

∂RE

∂λ

]
(θ, w) = 0. (4.61)

Directly from (4.56) one shows

2REh(θ, w) = ‖∇θ‖2 +
∫

V

Mijuiuj dV. (4.62)

Thus, rearranging between (4.61) and (4.62) we see that
[‖∇θ‖2 +

∫
V

Mijuiuj dV

REf

] [
f

∂RE

∂λ
+ RE

∂f

∂λ

]
= 0

where we note f = 2h. At the maximum value of RE , ∂RE/∂λ = 0, and so
∂f/∂λ = 0 gives the best value of λ. It is easily seen that λ = 1. Hence, for
the maximum value of RE as a function of λ we set λ = 1 in (4.56). Thus
the Euler-Lagrange equations become

REθki − Mijuj = π,i, ui,i = 0,

REw + Δθ = 0.
(4.63)

Observe that equations (4.63) are the same as the linear instability equa-
tions (4.51) if σ = 0. In fact, by multiplying (4.51)1 by u∗

i , (4.51)3 by θ∗

and integrating, thanks to the symmetry of Mij one finds as in the Darcy
case that σ ∈ R. Hence, the equations for linear instability are exactly the
same as those for nonlinear energy stability. Therefore, the linear critical
Rayleigh number RaL is the same as the nonlinear critical Rayleigh number
RaE , even when the permeability is transversely isotropic in the direction
along the angle β◦. Since this is an unconditional nonlinear stability result
this means no subcritical instabilities can arise even in this anisotropic case.

Recall that equations (4.63) hold on R
2 × (0, 1) and are to be solved

subject to the boundary conditions

w = θ = 0, z = 0, 1,

together with periodicity in x, y.
Despite the fact that equations (4.63) appear uncomplicated their solu-

tion is non-trivial. Details may be found in (Tyvand and Storesletten, 1991),
who deal with the linear instability aspect. The details are interesting and
show the inclined transverse isotropy has a pronounced effect.
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4.2.7 The Bénard problem for the Brinkman equations

The equations for thermal convection according to the Brinkman model
are given in (4.12). These are rewritten for clarity

0 = −p,i −
μ

k
vi + λ̃Δvi − kigρ(T ),

vi,i = 0,

T,t + viT,i = κΔT,

(4.64)

where again we assume ρ(T ) = ρ0(1 − α(T − T0)). These equations are
fundamentally different from the three other porous systems we have anal-
ysed in that the order of (4.64) is two higher due to the λ̃Δvi (Brinkman)
term. Thus, in prescribing boundary conditions on the planar boundaries
z = 0, d, we must specify all components of v, not just v3.

For the thermal convection problem in hand (4.64) hold on R
2 × (0, d)×

{t > 0} and the boundary conditions are vi = 0, z = 0, d, T = TU , z = d,
T = TL, z = 0, with TL > TU . The steady solution whose stability we
investigate is

T̄ = −βz + TL, v̄i = 0,

where β = (TL − TU )/d. Letting vi = v̄i + ui, T = T̄ + θ, p = p̄ + π, the
perturbation equations arising from (4.64) are

0 = −π,i −
μ

k
ui + λ̃Δui + kigρ0αθ,

ui,i = 0,

θ,t + uiθ,i = βw + κΔθ.

(4.65)

These equations are non-dimensionalized with the scalings x = x∗d, t =
t∗T , π = π∗P, ui = u∗

i U, P = Udμ/k, T = d2/κ, U = κ/d, λ = λ̃k/d2μ,
and the Rayleigh number Ra = R2 is defined as

Ra =
d2gρ0αkβ

μκ
.

The non-dimensional perturbation equations arising from (4.65) are
(dropping ∗’s)

π,i = −ui + λΔui + Rθki, (4.66)
ui,i = 0, (4.67)
θ,t + uiθ,i = Rw + Δθ, (4.68)

which hold on R
2 × {z ∈ (0, 1)} × {t > 0}. The boundary conditions are

ui = 0, θ = 0, on z = 0, 1,

and ui, θ, π satisfy a plane tiling periodicity.
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Firstly we note that the linearized equations which follow from (4.66) –
(4.68) are after putting ui = ui(x)eσt, with similar forms for θ and π,

π,i = −ui + λΔui + Rθki, (4.69)
ui,i = 0, (4.70)
σθ = Rw + Δθ. (4.71)

One may show σ ∈ R. To do this one multiplies (4.69) by u∗
i , (4.71) by θ∗,

integrates each over a period cell V and adds. Taking the imaginary part
of the result leads to the stated conclusion.

A nonlinear energy analysis may be developed by multiplying (4.66) by
ui and integrating over V to find

0 = −‖u‖2 − λ‖∇u‖2 + R(θ, w). (4.72)

In a similar manner we multiply (4.68) by θ and integrate over V to obtain

d

dt

1
2
‖θ‖2 = R(θ, w) − ‖∇θ‖2. (4.73)

For a positive coupling parameter ξ, form ξ(4.73) + (4.72) to find

dE

dt
= RI − D, (4.74)

where now

E =
1
2
ξ‖θ‖2, I = (1 + ξ)(w, θ),

D = ‖u‖2 + λ‖∇u‖2 + ξ‖∇θ‖2.

One sets
1

RE
= max

H

I

D
(4.75)

where H = {ui, θ ∈ H1(V )|ui,i = 0} and the solutions satisfy a horizontal
plane tiling periodicity. Then from (4.74)

dE

dt
≤ −D

(
1 − R

RE

)
.

If R < RE then put a = (RE −R)/RE(> 0) and note that D ≥ ξπ2‖θ‖2 =
2π2E. Thus, one derives

dE

dt
≤ −2π2aE.

This yields

E(t) ≤ exp(−2π2at)E(0)

from which global nonlinear energy stability follows (i.e. for all initial data).
The only condition imposed is R < RE .
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We next put f(ξ) = (1 + ξ)/2
√

ξ and let
√

ξ θ → θ in (4.75) to scale
out the ξ from the denominator. The Euler-Lagrange equations which then
arise from (4.75) are

REf(ξ)θki − ui + λΔui = π,i, (4.76)
ui,i = 0, (4.77)
REf(ξ)w + Δθ = 0, (4.78)

where in (4.76), π is a Lagrange multiplier.
The steps in the variation of parameters proof of the previous subsections

may be followed to find

R2
Ef2(θ2, w1) − (u2

i , u
1
i ) − λ(∇u2

i ,∇u1
i ) = 0,

R1
Ef1(θ1, w2) − (u1

i , u
2
i ) − λ(∇u1

i ,∇u2
i ) = 0,

R2
Ef2(w2, θ1) − (∇θ1,∇θ2) = 0,

R1
Ef1(w1, θ2) − (∇θ2,∇θ1) = 0,

where now λ is constant and f i denotes f(ξi), i = 1, 2. From the above
equations one arrives at, for ∂RE/∂ξ = 0,

f−1 df

dξ
(‖u‖2 + λ‖∇u‖2 + ‖∇θ‖2) = 0.

Thus, the optimal value of ξ is ξ = 1.
With ξ = 1 equations (4.76) – (4.78) reduce to

REθki − ui + λΔui = π,i,

ui,i = 0,

REw + Δθ = 0.

(4.79)

Notice that (4.79) are the same as (4.69) – (4.71) with σ = 0, which we
adopt since σ ∈ R. Thus we may again conclude that RaL = RaE , i.e. the
linear instability boundary coincides with the nonlinear stability one. Since
this result is unconditional, i.e. it holds for all initial data, this precludes
any subcritical instabilities. Note that this optimal result holds for the
Darcy theory, Forchheimer theory, the transversely isotropic theory covered
earlier, and also for the Brinkman theory.

To find RE(= RL) we set RE = R and take curlcurl (4.79)1 and then
(4.79) reduce to the system

−RΔ∗θ + Δw − λΔ2w = 0,

Rw + Δθ = 0,
(4.80)

with

w = θ = 0 at z = 0, 1. (4.81)
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Two more boundary conditions are needed on w at z = 0, 1 and these
depend on whether the surfaces are fixed or free of tangential stress. If
either one is fixed then numerical solution of (4.80) is recommended.

For purposes of illustration we here consider two stress free surfaces and
then in addition to (4.81) we eliminate θ from (4.80) to derive

(λΔ3 − Δ2)w = R2Δ∗w

and then w = f(x, y) sin nπz leads to

R2 =
λ(n2π2 + a2)3 + (n2π2 + a2)2

a2
.

It is worth observing that as λ → 0 we obtain the equivalent expression for
a Darcy porous material, whereas if we let λ → ∞ we approach that for a
fluid. To minimize R2 in n we take n = 1 and then dR2/da2 = 0 yields the
critical value of a2 as

a2
c =

−(λπ2 + 1) + (λπ2 + 1)
√

1 + 8π2λ/(λπ2 + 1)
4λ

.

When λ → ∞, a2
c → π2/2 as in the fluid case, whereas when λ → 0,

a2
c → π2 which is the Darcy case.
A detailed analysis of the linear instability problem for the Brinkman

model is provided by (Rees, 2002). He presents numerical solutions and
a detailed asymptotic analysis for the Rayleigh number as a function of
the Darcy number (which is a non-dimensional form of the ratio of the
Brinkman coefficient to the fluid viscosity, i.e. the term λ in (4.66)).

4.3 Stability and symmetry

4.3.1 Symmetric operators

In general, the equations governing problems in hydrodynamic stability
(including those in porous media) are typically of the form

Aut = LSu + LAu + N(u), (4.82)

where u is a Hilbert space valued function, ut is its time derivative, A is
a bounded linear operator (typically a matrix with constant entries), L =
LS + LA is an unbounded, sectorial linear operator, and N(u) represents
the nonlinear terms. The operator LS is the symmetric part of L while LA

denotes the anti-symmetric part. Such abstract equations and examples in
fluid dynamics are discussed in e.g. (Doering and Gibbon, 1995), (Flavin
and Rionero, 1995), and (Straughan, 1998; Straughan, 2004a).

The classical theory of linear instability writes

u = eσtφ
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and discards the N(u) term in (4.82). One is then faced with solving the
eigenvalue problem

σAφ = LSφ + LAφ, (4.83)

where σ is the eigenvalue and φ the eigenfunction.
It is important to note that equation (4.82) involves both the skew-

symmetric operator LA and the symmetric operator LS . In general, σ is
complex, and one looks for the eigenvalue with largest real part to become
positive for instability.

A classical nonlinear energy stability analysis, on the other hand, com-
mences by forming the inner product of u with (4.82). If (·, ·) denotes the
inner product on the Hilbert space in question then one finds

d

dt

1
2
(u,Au) = (u,LSu) + (u,N(u)) (4.84)

since (u,LAu) = 0. Nonlinear energy stability follows from (4.84) and it
is very important to note that in this way the nonlinear stability bound-
ary does not involve the skew part of L, LA. Thus, one may expect, in
general, that the linear instability and nonlinear stability boundaries are
very different. Details of how nonlinear stability follows from (4.84) may
be found in section 4.3 of (Straughan, 2004a), or from the paper of (Galdi
and Straughan, 1985).

In fact, the reason why the nonlinear energy stability analyses of section
4.2 give optimal results is due to the fact that the associated operator L is
symmetric.

There are two fundamental problems arising from (4.84) when one is
faced with deriving unconditional nonlinear stability results. These are

(a) the effect of LA on the nonlinear stability boundary;
(b) what does one do when

(
u,N(u)

)
≥ 0?

When the operator L is far from symmetric traditional energy stability
arguments can break down completely, or yield very poor results for certain
classes of problem. For example, in parallel shear flows progress is very diffi-
cult, as explained in chapter 8 of (Straughan, 1998). In this regard though,
an interested reader may wish to consider the recent articles of (Doering
et al., 2000), (Kaiser and Mulone, 2005) and (Kaiser and von Wahl, 2005).
Certain classes of viscoelastic flows prove severely problematic to tackle
via energy methods, as is shown in the interesting paper of (Doering et al.,
2006a).

Due to the failure of the classical energy method to yield sharp, or
at least useful, nonlinear stability thresholds in problems such as shear
flows, much research effort has recently been directed toward this area and
a variety of novel approaches involving clever choices of Lyapunov func-
tional have been suggested, cf. (Kaiser and Mulone, 2005), (Kaiser and
von Wahl, 2005), (Lombardo and Mulone, 2005), (Mulone, 2004), (Nerli
et al., 2007), (Pieters, 2004), (Pieters and van Duijn, 2006), (Rionero, 2004;
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Rionero, 2005; Rionero, 2006c; Rionero, 2006b; Rionero, 2006a), (van Duijn
et al., 2002), and further applications of Mulone’s method may be found in
(Mulone and Straughan, 2006), (Mulone et al., 2007).

We illustrate some of these new techiques now by application to the
problem of double diffusive convection in a porous layer.

4.3.2 Heated and salted below

For this problem we have a layer of porous material saturated with water
which contains salt (NaCl). The layer is heated from below but the salt
gradient is arranged so that the greater salt concentration is toward the
bottom of the layer. In this way there are two competing effects, namely
that of temperature which has a tendency to destabilize and convectively
overturn the fluid whereas the salt gradient opposes this and acts as a sta-
bilizing agent. This competition leads to a non-symmetric operator in the
problem and historically is important in nonlinear energy stability theory
since it was the first where a generalized energy was employed to try and
obtain a sharp nonlinear stability threshold, see (Joseph, 1970).

We commence with a layer of saturated porous material contained
between the planes z = ±d/2, and the equations are those for a Darcy
porous medium coupled with the equations for temperature T and salt con-
centration C, as derived in chapter 1. Thus, with v denoting the velocity
field the equations are

0 = −p,i − ρgki −
μ

K
vi,

vi,i = 0,

1
M

∂T

∂t
+ viT,i = kΔT,

φ
∂C

∂t
+ viC,i = kCΔC,

(4.85)

where the density is linear in T and C, viz.,

ρ = ρ0

(
1 − α[T − T0] + αC [C − C0]

)
,

with ρ0, T0 and C0 being reference values. The constant φ is porosity and
M = (ρ0cp)f/(ρ0c)m, where cp is the specific heat of the fluid at constant
pressure, and

(ρ0c)m = (1 − φ)(ρ0c)s + φ(ρ0cp)f ,

with s and f denoting solid and fluid values, respectively. Let v = (u, v, w)
and then to reflect the fact that the fluid is heated and salted from below
the boundary conditions are

w = 0, T = T0 ±
1
2
(TL −TU ), C = C0 ±

1
2
(CL −CU ), at z = ∓d/2.
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In these equations CL > CU , TL > TU , L denoting the values on the lower
plane z = −d/2 while U denotes the values on the upper plane z = d/2,
with T0 = (TL + TU )/2, C0 = (CL + CU )/2.

One non-dimensionalizes equations (4.85) via the scalings

dx∗ = x, t∗ =
kM

d2
t, v∗ =

d

k
v, ε = φM,

T ∗ =
T − T0

TL − TU
, C∗ =

C − C0

CL − CU
, Le =

k

kC
,

where Le is the Lewis number. The Rayleigh and salt Rayleigh numbers
are introduced as

R =
αg(TL − TU )dK

νk
, C =

αCg(CL − CU )dK

νk
.

One obtains a steady state

v̄ ≡ 0, T̄ = −z, C̄ = −z,

cf. (Mulone and Straughan, 2006). Denoting by ui, θ and γ perturbations
to v̄, T̄ and C̄ one may then show that (u, θ, γ) satisfy the non-dimensional
partial differential equation system

π,i = −ui + (Rθ − LeCγ)ki,

ui,i = 0,

∂θ

∂t
+ uiθ,i = w + Δθ,

εLe
∂γ

∂t
+ Leuiγ,i = w + Δγ,

(4.86)

where the boundary conditions are

w = θ = γ = 0 at z = ±1
2

,

together with the fact that ui, θ, γ satisfy a plane tiling periodicity with
planform Γ. The period cell Γ × (−1/2, 1/2) is denoted by V .

The key thing is to observe that a standard L2 energy stability analysis
multiplies (4.86)1 by ui, (4.86)3 by θ, and (4.86)4 by γ and integrates
each equation over V . However, the point is that the −LeC(γ,w) term
which arises from (4.86)1 effectively cancels out the (w, γ) term arising
from (4.86)4 and the stabilizing effect of the salt field is lost. This has
been a major problem in energy stability theory since it was first raised by
(Joseph, 1970). To my knowledge it still has not been fully resolved in that a
sharp global nonlinear stability threshold has not been achieved (by global
we mean for all initial data, or at least for a class of finite initial data).
Nevertheless, the technique introduced by (Mulone, 2004) was employed
by (Mulone and Straughan, 2006) on the heated - salted below problem to
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achieve a very sharp nonlinear stability threshold, albeit at the expense of
only establishing conditional nonlinear stability (i.e. for a restricted class
of initial data). Since Mulone’s technique is interesting we briefly describe
it here.

4.3.3 Symmetrization

The technique of (Mulone, 2004) is somewhat akin to that used in linear
algebra whereby if an n × n matrix A has n linearly independent eigen-
vectors one chooses these eigenvectors to define the columns of a matrix S
and then S−1AS is a diagonal matrix Λ, see e.g. (Strang, 1988), p. 254.

First, we observe that if in (4.86) we have ε = 1, Le = 1, we may set
ϕ = Rθ−Cγ, and then provided R−C = F 2 > 0, one puts ψ = ϕF−1 and
equations (4.86) may be arranged in the form

π,i = −ui + Fψki,

ui,i = 0,

∂ψ

∂t
+ uiψ,i = Fw + Δψ.

(4.87)

This system is the same as (4.15) in section 4.2.1 and so the linear operator
L is symmetric. Thus, the nonlinear energy stability boundary is equal to
the linear instability one and subcritical instabilities are not possible.

For the more realistic case ε = 1, Le = 1 we may use the method of
Mulone, full details being given in (Mulone and Straughan, 2006).

Mulone’s method involves the following sequence of ideas.
1. One starts with the linearized version of (4.86) and replaces the

Laplacian operator by its principal eigenvalue. Let this matrix be L1, say.
2. Compute the eigenvalues of L1.
3. Introduce a matrix Q of eigenvectors of L1 (or generalized eigenvectors

in the case of a multiple eigenvalue with different geometric and algebraic
multiplicity) and its inverse Q−1. (The matrix Q has as jth column the jth
eigenvector, but if the jth eigenvalue is complex then the jth and (j +1)th
columns are the real and imaginary parts of the jth eigenvector).

4. Introduce a variable Y = Q−1X, where X = (ui, θ, γ).
5. Write the linear system ∂Y/∂t = Q−1L1QY.
6. Transform (4.86) into the equivalent nonlinear system for Yi and define

a “natural” energy functional E1(t) = ‖Y‖2/2.
7. Demonstrate coincidence of the linear instability and nonlinear energy

stability boundaries in the new measure E1.
8. Control the nonlinear terms by an extra functional E2 so that the

Lyapunov functional employed is E(t) = E1 + bE2 for a suitable constant
b > 0.

We do not go into the technical details here since they are quite involved
and depend on the relative values of ε, Le,R, C. Full details are given in
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(Mulone and Straughan, 2006). However, we stress that we have only trans-
formed the original nonlinear system into an equivalent nonlinear one by
employing a technique very similar to to that used to diagonalize a matrix.
In this way one may obtain an optimal Lyapunov functional which yields
coincidence of the linear instability and nonlinear stability boundaries. The
drawback of the method is that in the general case the stability obtained
is only conditional. To the best of my knowledge the question of obtaining
global nonlinear stability bounds is still open.

It is worth pointing out that another way of achieving equality of the
linear instability and nonlinear stability boundaries for many classes of
problem has been developed by (Rionero, 2004; Rionero, 2005; Rionero,
2006c; Rionero, 2006b; Rionero, 2006a). His interesting idea is to introduce
a Lyapunov functional based directly on the eigenvalues of linearized insta-
bility theory. The papers of (Rionero, 2004; Rionero, 2005; Rionero, 2006c;
Rionero, 2006b; Rionero, 2006a) concentrate on systems of two equations
and establish principally conditional stability results. However, I under-
stand from Professor Rionero that he has extended his technique to systems
of three equations, and also to the situation where the coefficients in the
equations may depend on the spatial coordinate x. These extensions will
be particularly useful.

4.3.4 Pointwise constraint

(Pieters, 2004), (Pieters and van Duijn, 2006), and (van Duijn et al., 2002)
have made a very valuable contribution to nonlinear energy stability theory
in porous media. They effectively noted that everyone before them did not
use the momentum equation as a pointwise constraint. In the context of
section 4.3.3, this refers to using (4.86)1 as a constraint. Before these writ-
ers, the standard analysis multiplied equation (4.86)1 by ui and integrated
over V to yield

0 = −‖u‖2 + R(θ, w) − LeC(γ,w). (4.88)

Equation (4.88) is used in the integrated form in an energy stability anal-
ysis. However, (Pieters, 2004), (Pieters and van Duijn, 2006), and (van
Duijn et al., 2002) observe that, in many cases, much sharper results may
be obtained by using energy identities arising from (4.86)3 and (4.86)4,
but keeping (4.86)1 as a pointwise constraint in the energy maximization
problem.

From (4.86)3 and (4.86)4, the θ and γ energy equations become

d

dt

1
2
‖θ‖2 = (w, θ) − ‖∇θ‖2, (4.89)

d

dt

εLe

2
‖γ‖2 = (w, γ) − ‖∇γ‖2. (4.90)
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Upon eliminating π from (4.86)1 one obtains the equation

Δw = RΔ∗θ − LeCΔ∗γ (4.91)

where Δ∗ = ∂2/∂x2 + ∂2/∂y2 is the horizontal Laplacian.
We now define

E =
1
2
‖θ‖2 +

εLe

2
‖γ‖2,

and

I = (w, θ) + (w, γ) and D = ‖∇θ‖2 + ‖∇γ‖2

and then from (4.89) and (4.90) form the energy identity

dE

dt
= I − D.

The classical approach would be to derive the Euler-Lagrange equations
for the maximum

max
I

D
=

1
RE

where RE is the energy stability threshold. This calculation is still
performed, but instead of involving the integrated form of equation
(4.86)1, equation (4.88), one adds (4.91) as a constraint and studies the
maximization problem

1
RE

= max
λ1(w, θ) + λ2(w, γ) +

∫
V

w(Δ� −RθΔ∗� + CLeΔ∗�)dV

λ1‖∇θ‖2 + λ2‖∇γ‖2

where � is a Lagrange multiplier and λ1, λ2 are coupling parameters.
For many problems, solving the Euler-Lagrange equations arising via this
approach proves superior to that involving the integrated form (4.88) and
yields a sharper nonlinear energy stability threshold. We return to this
point later in section 5.4.

4.4 Thermal non-equilibrium

4.4.1 Thermal non-equilibrium model

(Straughan, 2006) shows that the global nonlinear stability threshold for
convection with a thermal non-equilibrium model is exactly the same as
the linear instability boundary. This result is shown to hold for the porous
medium equations of Darcy, Forchheimer, or Brinkman. This optimal result
is important because it shows that linearised instability theory has captured
completely the physics of the onset of convection.

It may be that in some applications of porous media flow the temper-
ature of the fluid may be different from that of the temperature of the
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porous matrix. Such an area may be in drying or freezing of foods and
other mundane materials which frequently need to be processed extremely
quickly, see e.g. (Zorrilla and Rubiolo, 2005a; Zorrilla and Rubiolo, 2005b),
(Martins and Silva, 2004), (Sanjuán et al., 1999), (Gigler et al., 2000b;
Gigler et al., 2000a), or to applications in everyday food technology such
as microwave heating, e.g. (Dincov et al., 2004). Certainly another area
where local thermal non-equilibrium theory is likely to feature strongly is
in rapid heat transfer, from e.g. computer chips via use of porous metal
foams, e.g. (Calmidi and Mahajan, 2000), (Zhao et al., 2004), and their use
in heat pipes, e.g. (Nield and Bejan, 2006), pp. 472 – 474.

(Banu and Rees, 2002) and (Malashetty et al., 2005) have investigated
the linear instability problem for convection in a porous medium when the
temperature of the fluid may differ from that of the solid pores. These
are important papers which utilize the local thermal non-equilibrium the-
ory given by (Nield and Bejan, 2006), pp. 204, 205, and by (Nield and
Kuznetsov, 2001). (Rees et al., 2008) is an important contribution to the
thermal non-equilibrium theory which uses this model to analyse the sit-
uation where a hot fluid is injected into a relatively cold porous medium.
These writers show that for a sufficiently large injection velocity the math-
ematical equations may well become hyperbolic and a thermal shock wave
can form.

(Banu and Rees, 2002) analyses the onset of thermal convection when the
porous medium is modelled using Darcy’s law whereas (Malashetty et al.,
2005) provide a similar analysis utilizing a Brinkman model. (Straughan,
2006) shows that the results of (Banu and Rees, 2002) and those of
(Malashetty et al., 2005) are very strong in the sense that they are optimal
in that the global nonlinear stability boundary one obtains from using local
thermal non-equilibrium theory is exactly the same as the linear instability
ones found by (Banu and Rees, 2002) and by (Malashetty et al., 2005). In
this way the work of (Banu and Rees, 2002) and that of (Malashetty et al.,
2005) is complete in that their results completely capture the physics of
the onset of thermal convection and no subcritical instabilities are possible.
(Straughan, 2006) also demonstrates the equivalence between the nonlinear
stability and linear instability boundaries for local thermal non-equilibrium
convection in a Darcy porous medium when the layer is undergoing a con-
stant angular rotation about an axis in the same direction as gravity. The
paper by (Sheu, 2006) is also an interesting contribution which uses a ther-
mal non-equilibrium model to study chaotic convection, while (Malashetty
et al., 2007) also include the effect of rotation.

We describe the thermal non-equilibrium model analysis. Consider a layer
of porous material saturated with fluid and contained between the planes
z = 0 and z = d. The temperatures of the solid, Ts, and fluid, Tf , are
maintained at constant values TL, TU , on the planes z = 0 and z = d, viz.

Ts = Tf = TL, z = 0; Ts = Tf = TU , z = d. (4.92)
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We suppose TL > TU , because when TU ≥ TL one may demonstrate global
nonlinear stability always holds. The equations for thermal convection in a
porous material allowing for different solid and fluid temperatures are, cf.
(Banu and Rees, 2002), (Malashetty et al., 2005), (Nield and Bejan, 2006),

vi = −K

μ
p,i +

ρfgαK

μ
Tfki − γ1|v|vi + λ̂Δvi, (4.93)

vi,i = 0, (4.94)

ε(ρc)fT f
,t + (ρc)fviT

f
,i = εkfΔTf + h(Ts − Tf ), (4.95)

(1 − ε)(ρc)sT
s
,t = (1 − ε)ksΔTs − h(Ts − Tf ). (4.96)

We suppose these equations hold in the domain R
2 × {z ∈ (0, d)} × {t >

0}, k = (0, 0, 1), and Δ is the three-dimensional Laplacian. The variables
vi, p, Tf and Ts are the velocity, pressure and fluid and solid temperatures,
respectively. The constants K,μ, g, α, γ1, λ̂, ε, ρα, cα, kα (α = f, s), are
permeability, dynamic viscosity, gravity, thermal expansion coefficient, the
Forchheimer coefficient, the Brinkman coefficient, porosity, density, specific
heat, thermal diffusion coefficient (where α = f, s, denotes fluid or solid),
(ρc)α = ραcα, α = f, s, and h is a coefficient representing heat transfer
between the fluid and solid matrix.

The steady solution whose stability is under investigation is

v̄ ≡ 0, T̄f = T̄s = −βz + TL, (4.97)

where

β =
TL − TU

d
(4.98)

is the temperature gradient. The steady pressure p̄(z) is a quadratic
function which may be found from (4.93).

4.4.2 Stability analysis

Our stability analysis begins by introducing perturbations ui, π, θ, φ to
v̄i, p̄, T̄f and T̄s by

vi = ui + v̄i, p = π + p̄, Tf = θ + T̄f , Ts = φ + T̄s. (4.99)

Perturbation equations are derived from (4.93) – (4.96) and are then
non-dimensionalized with velocity, pressure, temperature, time and length
scales

U = εkf/(ρc)fd, P = μdU/K, T  = Ud
√

μβcf/εkfgαK,

T = (ρc)fd2/kf , L = d.

The Rayleigh number Ra is given by

Ra = R2 = d2ρ2
f

√
βcfgαK/εkfμ,
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and non-dimensional Forchheimer and Brinkman coefficients, F, λ, are

F = γ1U, λ = λ̂/d2.

(Banu and Rees, 2002) introduced the following non-dimensional coeffi-
cients, H and γ

H = hd2/εkf γ = εkf/(1 − ε)ks.

The non-dimensional perturbation equations are

ui = −π,i + Rθki − F |u|ui + λΔui, (4.100)
ui,i = 0, (4.101)
θ,t + uiθ,i = Rw + Δθ + H(φ − θ), (4.102)
Aφ,t = Δφ − Hγ(φ − θ), (4.103)

where now these equations hold on R
2 × {z ∈ (0, 1)} × {t > 0}. The

variable w = u3, and A = ρscskf/ksρfcf is a non-dimensional thermal
inertia coefficient.

The boundary conditions are

uini = 0, θ = 0, φ = 0, on z = 0, 1, (4.104)

when λ = 0 (i.e. Darcy or Forchheimer flow), where ni denotes the unit
outward normal, whereas the boundary conditions are

ui = 0, θ = 0, φ = 0, on z = 0, 1, (4.105)

if λ = 0 (i.e. Brinkman flow). In addition ui, π, θ, φ satisfy a plane tiling
periodicity in x, y.

One may deduce the equivalence between the linear instability boundary
and the nonlinear stability one by writing (4.100) – (4.105) as an abstract
system of partial differential equations in a Hilbert space and then verify-
ing that appropriate conditions hold. In other words, show that the linear
operator L of section 4.3.1 is in this case symmetric. One may alternatively
proceed as in (Straughan, 2006) as we do here.

Derive energy identities by multiplying (4.100) by ui, (4.102) by θ, and
(4.103) by φ/γ to obtain after integration by parts and using the fact that
ui is solenoidal,

0 = −‖u‖2 − F‖u‖3
3 − λ‖∇u‖2 + R(θ, w), (4.106)

d

dt

1
2
‖θ‖2 = R(w, θ) − ‖∇θ‖2 − H(θ, θ − φ), (4.107)

d

dt

A

2γ
‖φ‖2 = − 1

γ
‖∇φ‖2 − H(φ, φ − θ). (4.108)
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Define E, I,D by

E(t) =
1
2
‖θ‖2 +

A

2γ
‖φ‖2,

I = 2(θ, w),

D = ‖u‖2 + λ‖∇u‖2 + ‖∇θ‖2 +
1
γ
‖∇φ‖2 + H‖θ − φ‖2.

(4.109)

Adding (4.106) – (4.108) one deduces

dE

dt
= RI − D − F‖u‖3

3 ≤ RI − D = DR
I

D
− D.

From this one may show
dE

dt
≤ −D

(
1 − R

RE

)
, (4.110)

where

R−1
E = max

H

I

D
(4.111)

where H = {(u, θ, φ)
∣∣ui ∈ L2(V ), θ, φ ∈ H1(V ), ui,i = 0, ui, θ, φ, π are

periodic over a plane tiling domain in x and y}. If R < RE then put a =
1 − R/RE > 0. Next, employ Poincaré’s inequality to find D ≥ BE where
B = min{2π2, 2π2A−1}. Thus, from (4.110) we deduce dE/dt ≤ −aBE
from which it follows that E → 0 exponentially in time.

The exponential decay of E guarantees exponential decay of θ and φ (in
L2(V ) norm). To obtain decay of u we note from (4.100) that one may
show

‖u‖2 + F‖u‖3
3 + λ‖∇u‖2 =R(θ, w)

≤R2

2
‖θ‖2 +

1
2
‖w‖2,

and so

‖u‖2 + 2F‖u‖3
3 + 2λ‖∇u‖2 ≤ R2‖θ‖2. (4.112)

Thus, R < RE also guarantees exponential decay of ‖u‖ in Darcy theory,
of ‖u‖3 in the Forchheimer case, and of ‖∇u‖ when the Brinkman model
is employed.

Thus, RE represents a global (i.e. for all initial data) nonlinear sta-
bility threshold. The quantity RE is calculated from the Euler-Lagrange
equations which follow from (4.111), namely

REθki − ui + λΔui = ω,i,

ui,i = 0,

REw + Δθ − Hθ + Hφ = 0,

1
γ

Δφ + Hθ − Hφ = 0,

(4.113)

where ω is a Lagrange multiplier.
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(Banu and Rees, 2002) and (Malashetty et al., 2005) show that the strong
form of the principle of exchange of stabilities holds for the linearised ver-
sion of (4.100) – (4.105), i.e. they show one may take the growth rate
equal to zero. The point now is to note that (4.113) is identically the
same eigenvalue problem as the linearised one from (4.100) – (4.105) with
the growth rate σ (which arises from a time dependence like eσt) equal
to zero. Thus, the linear instability eigenvalues of (Banu and Rees, 2002)
and of (Malashetty et al., 2005), R2

L are exactly the same as the ones for
global nonlinear stability, R2

E . What this means is that if R2 > R2
L there

is instability of solution (4.97); this is true also for the nonlinear equations
due to Sattinger’s instability theory, (Sattinger, 1970) p. 813. If, however,
R2 < R2

E ≡ R2
L there is definitely nonlinear asymptotic stability of solu-

tion (4.97). If R2 = R2
E there is stability since Ė ≤ 0. Since RL ≡ RE this

means no subcritical instabilities can arise. Such a statement implying non-
existence of subcritical instabilities is not true for all convection problems,
cf. (Proctor, 1981).

(Straughan, 2006) further studies the problem of convection for a ther-
mal non-equilibrium porous medium model when the layer is undergoing a
rotation. The Boussinesq approximation in a rotating frame of reference is
addressed by (Ramos and Vargas, 2005).

The theory studied in this section is not the same as that for a bidisperse
porous medium. In that theory two temperatures are involved, but also
two velocities corresponding to the macro-pores and to the remainder of
the structure. Uses of bidispersive porous media in catalytic systems in
chemistry have been known for some time, cf. (Szczygiel, 1999). A suitable
thermomechanical theory is more recent and convection problems for this
class of porous media are studied in detail by (Nield and Kuznetsov, 2006;
Nield and Kuznetsov, 2007; Nield and Kuznetsov, 2008).

4.5 Resonant penetrative convection

4.5.1 Nonlinear density, heat source model

(Straughan, 2004b) developed an interesting convection situation in a
porous medium. He showed that there is a range of parameters in which the
convection may switch from the lower part of the layer to being predomi-
nantly in the upper part of the layer. His work develops linear instability
and nonlinear energy stability thresholds. (Normand and Azouni, 1992)
employed a linear instability analysis to produce an extremely interesting
study in penetrative convection in a fluid layer. Penetrative convection is
described in detail in chapter 17 of (Straughan, 2004a). This phenomenon
refers to the physical situation where one part of a fluid layer has a tendency
to become convectively unstable while the rest of the layer wishes to remain
stable. However, if instability prevails then the convective motion which
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follows may penetrate into the stable layer and induce a secondary motion
there. Penetrative convection in a fluid or porous layer, especially involv-
ing salt, is a topic of much recent activity, cf. (Carr, 2003a; Carr, 2003c;
Carr, 2004; Carr, 2003b), (Carr and de Putter, 2003), (Carr and Straughan,
2003), (Chasnov and Tse, 2001), (Hill, 2005a; Hill, 2003; Hill, 2004b;
Hill, 2004a; Hill, 2004c; Hill, 2005b), (Kato et al., 2003), (Krishnamurti,
1997), (Larson, 2000; Larson, 2001), (Mahidjiba et al., 2003), (Nield
and Bejan, 2006), (Normand and Azouni, 1992), (Payne and Straughan,
1987) (Straughan, 2002b; Straughan, 2004a), (Tse and Chasnov, 1998),
(Vaidya and Wulandana, 2006), and (Zhang and Schubert, 2000; Zhang and
Schubert, 2002). Two mechanisms for producing penetrative convection are
that of a nonlinear density-temperature relationship which accounts for the
maximum density of water, and that involving a heat source or sink. For
penetrative convection modelled by either a nonlinear density, or by a heat
supply term, the growth rates involved in a linear instability analysis have
been found to be real. When both effects are combined, however, (Normand
and Azouni, 1992) demonstrated the striking effect that the growth rate
can be complex. They basically found this by adjusting the heat source -
nonlinear density situation to produce a stable layer of fluid bounded above
and below by potentially unstable layers. Instability could occur in one or
other layer and if the parameters are in a certain range a resonance-like
effect occurs where the convection could essentially oscillate between one
layer and the other. This is a very striking result and shows that if compet-
ing effects are present in a very simple Bénard convection situation then
very complex behaviour may arise. Other resonant and similarly complex
behaviour in different fluid systems has also been observed, cf. (Johnson
and Narayanan, 1996), (Jordan and Puri, 2002), (Chen, 1993), (Naulin
et al., 2005), and (Chen and Chang, 1992).

(Straughan, 2004b) presents a linearised analysis and develops a nonlin-
ear stability analysis for an analogue of the (Normand and Azouni, 1992)
problem, but in a saturated porous medium rather than in a fluid layer.
This problem is briefly described here.

4.5.2 Basic equations

Consider a layer of saturated porous material bounded by the horizontal
planes z = 0 and z = h(> 0), which is assumed infinite in horizontal
extent. The upper boundary z = h is held at the constant temperature
4◦C, which is consistent with the density of water at its maximum, i.e.
T = T ◦

mC = 4◦C. The lower boundary z = 0 is held at a fixed temper-
ature T0 which is either in the range 0 ≤ T0 < 4, or T0 > 4. In either
case the density of water at z = 0 is smaller than that at z = h. The
equation governing the temperature field in the porous medium is the
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standard one, cf. section 1.6.1, although we allow for a heat source or sink
Q, so that

∂T

∂t
+ vi

∂T

∂xi
= κΔT + Q. (4.114)

Here T, vi and κ are temperature, fluid (seepage) velocity, and the effective
thermal diffusivity.

In the steady state the velocity field v̄i ≡ 0. We look for a steady temper-
ature field of form T̄ = T̄ (z), z being x3. The presence of the heat source or
heat sink means T̄ (z) is a quadratic function when Q is constant. The con-
stant Q is chosen such that the temperature field has a maximum greater
than 4◦C in (0, h) if 0 ≤ T0 < 4, and has a minimum less than 4◦C in (0, h)
if T0 > 4. This leads to a situation in which there are effectively three
layers in (0, h), one stable with two potentially unstable. The maximum or
minimum temperature, Tex, in (0, h) is given when dT̄ /dz = 0. One may
then show, cf. (Straughan, 2004b), that this three layer situation depends
on parameters γ and μ given by

γ =
ΔT1

ΔT2
> 0 and μ =

2
γ

[
1 + γ +

√
1 + γ

]
, (4.115)

where

ΔT1 = Tm − T0, ΔT2 = Tex − Tm.

The steady temperature field in (0, h) may then be written as, cf.
(Straughan, 2004b),

T̄ (z) − Tm =
ΔT1

h2(1 − μ)
z2 − μΔT1

h(1 − μ)
z − ΔT1. (4.116)

In addition to the equation for the temperature field we add the Forch-
heimer or Darcy equations together with the incompressibility condition,
i.e. the momentum and continuity equations, viz.

μ̂

K
vi + λ̂|v|vi = −p,i − ρ(T )gki, (4.117)

∂vi

∂xi
= 0. (4.118)

The quantities p, ρ, g are pressure, density, and acceleration due to gravity,
and k = (0, 0, 1). The density is quadratic, so

ρ = ρ0

(
1 − α[T − Tm]2

)
, (4.119)

where α is a suitable expansion coefficient and ρ0 is the density of water at
T = Tm = 4◦C. The nonlinear relation is necessary since we have a porous
layer saturated with water whose temperature is in the 4◦C range, i.e. the
maximum temperature range.

Perturbation variables (ui, θ, π) are introduced via

vi = v̄i + ui, T = T̄ + θ, p = p̄ + π,
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and then perturbation equations are derived. Upon using h as a length
scale, the time, velocity, pressure and temperature scales are chosen as

T = h2/κ, U = κ/h, P = μ̂Uh/K, T  = U
√

μ̂h/κgαKρ0.

The Rayleigh number Ra and its square root R are then defined as

Ra = R2 = (ΔT1)2h
(

gαkρ0

μ̂κ

)
. (4.120)

For a non-dimensional steady temperature field F (z) given by

F (z) = (1 − μ)z2 + μz − 1, (4.121)

the non-dimensional perturbation equations have form

ui + λui|u| = −π,i + 2kiRFθ + kiθ
2,

ui,i = 0,

θ,t + uiθ,i = Δθ − RF ′w.

(4.122)

Here F ′ = dF/dz, λ is a non-dimensional Forchheimer coefficient, w = u3,
and equations (4.122) are defined on the domain R

2 × (0, 1) × {t > 0}.
The associated boundary conditions are

w = 0, θ = 0, z = 0, 1, (4.123)

with ui, θ, π satisfying a plane tiling periodicity in the x, y−plane,

4.5.3 Linear instability analysis

Equations (4.122) are linearized and a time dependence like ui = eσtui(x),
θ = eσtθ(x), π = eσtπ(x), is assumed. Upon removing the pressure
perturbation the linearized instability equations are found in the form

Δw = 2RFΔ∗θ,

σθ = −RF ′w + Δθ,
(4.124)

where Δ∗ = ∂2/∂x2 + ∂2/∂y2 is the horizontal Laplacian.
If we denote the depths of the “fictitious” layers as d1 (lowest) with the

two layers of depth d2 above, one shows that with n = d1/d2,

μ =
2(n + 1)

n
and γ = n(n + 2). (4.125)

One might expect resonant-like behaviour when d1 = d2 and this corre-
sponds to μ = 4. In the porous medium context Ra1 ∝ (ΔT1)2d1 and
Ra2 ∝ (ΔT2)2d2 and these will be equal when d1/d2 = (ΔT2/ΔT1)2, i.e.
when n = 1/γ2. Since γ = n(n + 2) this gives a value of n solving

n5 + 4n4 + 4n3 = 1. (4.126)
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Thus, n ≈ 0.54 for which μ ≈ 5.6. Hence, we might expect complex growth
rates in the region μ ∈ [4, 5.7] and possible oscillatory convection there.
Computations do bear this out.

Upon introducing a plane tiling form f , one puts w = W (z)f(x, y),
θ = Θ(z)f(x, y), and introduces the wavenumber a by Δ∗f = −a2f. The
linear instability equations (4.124) then reduce to

(D2 − a2)W = −2Ra2FΘ,

(D2 − a2)Θ − RF ′W = σΘ,
(4.127)

where D = d/dz, z ∈ (0, 1). The boundary conditions are

W = Θ = 0, z = 0, 1. (4.128)

System (4.127), (4.128) is solved numerically in (Straughan, 2004b).

4.5.4 Nonlinear stability analysis

The goal of (Straughan, 2004b), in addition to finding resonance in the
linearized problem, is to develop an unconditional nonlinear energy stability
theory for system (4.122), (4.123).

Let V be a period cell for a disturbance to (4.122), and let ‖ · ‖ and (·, ·)
be the norm and inner product on L2(V ). Energy identities are derived by
multiplying (4.122)1 by ui and integrating over V , and (4.122)3 by θ and
integrating over V , to find

‖u‖2 + λ‖u‖3
3 = 2R(Fθ,w) + (θ2, w), (4.129)

d

dt

1
2
‖θ‖2 = −R(F ′θ, w) − ‖∇θ‖2, (4.130)

where ‖ · ‖3 is the norm on L3(V ). To control the cubic term on the right
of (4.129) we need an energy functional which contains more than the L2

norm ‖θ‖ and so derive an equation for ‖θ‖3. One shows

d

dt

1
3
‖θ‖3

3 = −R
(
F ′w, θ2 sgn(θ)

)
− 8

9
‖∇|θ|3/2‖2. (4.131)

Define our Lyapunov functional E(t) as

E(t) =
1
2
‖θ‖2 +

b

3
‖θ‖3

3, (4.132)

where b > 0 is a coupling parameter at our disposal.
One may then show, see (Straughan, 2004b), that provided

λ ≥ 81R2F 2
m

64π4
, (4.133)

dE

dt
≤ −D

(
RE − R

RE

)
− ε‖θ‖3

3, (4.134)
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for some small ε. In (4.133) Fm is the maximum value of |F ′(z)| in [0, 1]. For
R < RE one employs Poincaré’s inequality on D to derive the inequality

dE

dt
≤ −cE, (4.135)

from which one obtains exponential decay of E(t) and hence global non-
linear stability. The conditions which must hold are that R < RE and λ
satisfies the restriction (4.133).

Details of the solution of the eigenvalue problem to determine RE

are given in (Straughan, 2004b). In fact, the numerical calculations of
(Straughan, 2004b) fix μ and determine

RaE = maxζ>0 mina2 R2
E(a2; ζ, μ). (4.136)

4.5.5 Behaviour observed

The key finding of (Straughan, 2004b) is that in the neighbourhood of
μ = μc = 5.2311 there is a switch of convection from one arising in the
lower part of the layer for μ < μc to one commencing in the upper part
of the layer for μ > μc. At μc a resonant-like behaviour may occur and
convection may arise in the lower or upper layer. In the neighbourhood of
μc the linear instability Rayleigh number, RaL, against the wave number,
a, curve consists of three branches, two on which σ is real at criticality
while the intermediate branch is complex, as shown in figure 4.1, where
curves 1, 2, 3 are for μ values of 5.1, 5.2311, 5.3, respectively. In curve
1 the minimum is on the right hand branch, in curve 3 it is on the left,
whereas curve 2 represents the critical situation μc = 5.2311 in which the
minimum occurs simultaneously on the right and left branches. Away from
μc the RaL versus a curve behaves not dissimilarly to that of the standard
Bénard problem.

(Straughan, 2004b) reports interesting findings where his linear analysis
differs from that of (Normand and Azouni, 1992) in that unlike (Normand
and Azouni, 1992) he never finds convection commences as oscillatory con-
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Figure 4.1. RaL vs. a. Curve 1, ◦=real, �=complex, μ = 5.1. Curve 2, ×=real,
•=complex, μc=5.2311. Curve 3, �=real, �=complex, μ=5.3
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Figure 4.2. Critical Rayleigh numbers, RaL linear, RaE nonlinear. Unstable above
RaL curve, globally stable below RaE curve

vection even though the RaL versus a curves have a complex branch. The
linear curves near μc are shown in figure 4.1.

The nonlinear energy stability results show that the nonlinear critical
Rayleigh number RaE is very close to the linear instability one RaL for
μ ≤ 4. Figure 4.2 demonstrates the variation for μ larger than this. The
numerical findings, including RaL versus a curves, linear eigenfunctions and
nonlinear energy stability thresholds are discussed in detail in (Straughan,
2004b).

4.6 Throughflow

4.6.1 Penetrative convection with throughflow

(Hill et al., 2007) investigate penetrative convection in a layer of porous
material saturated with water when there is superposed vertical through-
flow of the water. To incorporate penetrative convection they employ
a density quadratic in temperature. A linearised instability analysis is
given and the critical Rayleigh numbers obtained are compared with those
derived by a weighted nonlinear energy stability analysis. The basic class of
problem considered by (Hill et al., 2007), i.e. where there is an underlying
vertical background flow superimposed, is an important one due to appli-
cations in everyday situations. In fluid dynamics an important application
is to cloud physics, as studied by (Krishnamurti, 1975), (Somerville and
Gal-Chen, 1979). Industrial processes employ throughflow in porous media,
as described by e.g. (Nield, 1987a; Nield, 1987b; Nield, 1998), (Nield and
Bejan, 2006). Indeed, (Rosensweig, 1985), p. 289, describes where fluidized
beds may be employed and these are created by throughflow through solid
particles. Throughflow may be important for industrial application in that
it yields a potential method to control the onset and behaviour of con-
vection. In order to control convection we need to be able to accurately
determine the convection threshold from a nonlinear analysis. Since many
practical problems involve more than a Boussinesq approximation in the
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system of equations governing convection, the aim of (Hill et al., 2007) was
to develop a nonlinear energy stability analysis which will yield uncondi-
tional (for all initial data) nonlinear stability bounds which are close to
those of linearised instability and hence will be useful in a practical sit-
uation. These writers focussed attention on a saturated porous medium,
when the density is a nonlinear function of temperature, thereby incorpo-
rating penetrative convection. They constructed a suitable weighted energy
function which allowed derivation of a global stability bound close to that
of the instablity one. However, their analysis hinges on the fact that the
density is a nonlinear function of T of form

ρ(T ) = ρ0

(
1 − α(T − 4)2

)
, (4.137)

where T is the temperature and α is the coefficient of thermal expansion.
Since a constant vertical throughflow is imposed, a steady state solution

for the velocity is v̄ = (0, 0, Tf ), where Tf is constant. This leads to the
steady state temperature field of form

T̄ (z) = ξ(ecz − 1)

where ξ = TU/(ecd−1) and c = Tf/κ. It is important to note that the steady
temperature field is not linear in z as in the classical Bénard problem.
This is entirely due to the throughflow, and is present even if the density
is linear in T. This aspect of the problem leads to non-symmetry, and
a straightforward energy analysis is only partly successful in yielding a
nonlinear stability boundary, cf. (Qiao and Kaloni, 1998).

The non-dimensional perturbation equations of (Hill et al., 2007) are

ui = −π,i + biθ
2 − 2biRM(z)θ,

ui,i = 0,

θ,t + uiθ,i + RF (z)w + Qθ,z = Δθ,

(4.138)

where M(z) = 4/TU − (eQz − 1)/(eQ − 1) and F (z) = QeQz/(eQ − 1). If
one simply multiplies (4.138)3 by θ and integrates over the period cell V
then the term Q(θ,z, θ) disappears and an important stabilizing effect of
throughflow is lost. Hence, (Hill et al., 2007) must of necessity employ a
weighted functional

∫
V

μ(z)θ2dV. Their choice is dictated by the fact that
they must also remove the biθ

2 term which enters the analysis through
equation (4.138)1. However, their global analysis only works when the biθ

2

term is present and so works only for the nonlinear density (4.137).

4.6.2 Forchheimer model with throughflow

In this section we present an entirely different method of analysis to that
of (Hill et al., 2007) whereby one may derive a global nonlinear stability
result when (4.137) is replaced by a linear relationship in T . The linear
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relationship will feature in many practical situations and so our analysis is
important.

Hence, we replace (4.137) by the equation

ρ(T ) = ρ0

(
1 − α(T − T0)

)
, (4.139)

where α is the coefficient of thermal expansion in the fluid. If we absorb the
constant terms on the right of (4.139) in the pressure, then the equations
governing convection in a porous medium may be written

μ

K
vi + λF |v|vi = −p,i + kigρ0αT,

vi,i = 0,

T,t + εvjT,j = κΔT,

(4.140)

where μ,K, λF , g and κ are, respectively, dynamic viscosity, permeability,
Forchheimer coefficient, gravity, and thermal diffusivity. Furthermore, ε =
ρfcf

p/φρmcm
p , with f denoting fluid, m denoting average over the porous

medium, and φ is the porosity. These equations hold in the layer {x, y} ∈
R

2, z ∈ (0, d), for t > 0.
The temperature field satisfies the boundary conditions

T = TL, z = 0, T = TU , z = d, (4.141)

TL, TU constants with TL > TU . We assume there is a basic flow W in
the vertical direction (W may be positive or negative) and then the steady
velocity field is v = (0, 0,W ). Equation (4.140)3 then yields that T (z) is a
solution to

εWT ′ = κT ′′.

Using the boundary conditions one finds the basic temperature field

T (z) = TL exp
(εWz

κ

)
− [TU − TL exp(εWd/κ)]

[exp(εWd/κ) − 1]

[
1 − exp

(εWz

κ

)]
.

The quantity which arises in the perturbation equations is T ′(z) and it is
convenient to introduce Q and S as

±Q =
ε|W |

κ
, S = Qd,

where S is dimensionless. Then, T ′(z) may be written

T ′(z) =
∓Qd

[exp(±Qd) − 1]

(
TL − TU

d

)
exp(±Qz).

We introduce perturbation velocity and temperature fields to (vi, T ) by
(wi, θ), so that ui = vi +wi is the total velocity field in the perturbed state.
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Then, we non-dimensionalize with the scalings

λ =
λF KU

μ
, Ω =

εUd

κ
, T  =

U

κ

√
εdμ(TL − TU )

gρ0α
,

T =
d2

κ
, θ = T θ̂, wi = Uŵi, t = t̂T , x = x̂d,

where U is a fixed scaling for the velocity field. (We select U different from
W since we wish to examine the effect of W → 0.) The Rayleigh number
Ra = R2 is introduced as

R =
K

κ

√
εd(TL − TU )gρ0α

μ
,

and the function F defined by

F (z;S) = ± S

(e±S − 1)
exp(±Sz).

In terms of these variables the non-dimensional equations for (wi, θ) are
found to be (where we omit the ∧’s and π is the non-dimensional pressure
perturbation),

wi + λ(|u|ui − |v|vi) = −π,i + Rkiθ,

wi,i = 0,

θ,t + Ωwiθ,i = ±FRw ∓ Sθ,z + Δθ.

(4.142)

4.6.3 Global nonlinear stability analysis

Our goal is to derive a global nonlinear energy stability analysis from which
we may determine a nonlinear critical Rayleigh number which we may then
compare to the analogous linear instability critical Rayleigh number. To
this end we introduce firstly a weighted energy functional

F(t) =
1
2

∫

V

ξ(z)θ2dV,

where ξ(z) is a positive linear function of z (although other ξ may be
considered) and V is a period cell for the perturbation. By direct calculation
we find using (4.142)3 and (4.142)2,

dF
dt

=
Ω
2

∫

V

ξ′wθ2dV ± R

∫

V

FξwθdV

± S

2

∫

V

ξ′θ2dV −
∫

V

ξ|∇θ|2dV.

(4.143)

In order to control the cubic terms which arise we also introduce another
functional

G(t) =
1
3

∫

V

|θ|3dV,
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cf. (Payne and Straughan, 2000b). Using (4.142)3 and Poincaré’s inequality
one may establish that

dG
dt

≤ ±R

∫

V

Fwθ2dV − 8λ1

9
‖θ‖3

3, (4.144)

where λ1 = π2 is the constant in Poincaré’s inequality for V .
By multiplying the momentum perturbation equation (4.142)1 by wi and

integrating over V we see that

0 = −‖w‖2 − λ

∫

V

(|u|ui − |v|vi)widV + R(θ, w), (4.145)

where (·, ·) is the inner product on L2(V ). Next, use the fact that

(|u|ui − |v|vi)wi =
1
2
(|u| + |v|)wiwi +

1
2
(|u| − |v|)2(|u| + |v|), (4.146)

(Payne and Straughan, 1999a), and from the triangle inequality note that

|w| = |u − v| ≤ |u| + |v|. (4.147)

Thus, using (4.146) and (4.147) we deduce

1
2

∫

V

|w|3dV ≤1
2

∫

V

(|u| + |v|)wiwidV

≤
∫

V

(|u|ui − |v|vi)widV. (4.148)

Upon employing (4.148) in (4.145) we see that

0 ≤ −‖w‖2 − λ

2
‖w‖3

3 + R(θ, w). (4.149)

To develop a global nonlinear energy stability analysis now let ζ, a > 0 be
coupling parameters and form (4.149)+ζ(4.143)+a(4.144). Thus, we find

d

dt

(
aG + ζF

)
≤R(θ, w) ± Rζ

∫

V

FξwθdV ± Sζ

2

∫

V

ξ′θ2dV − ‖w‖2

− ζ

∫

V

ξ|∇θ|2dV +
ζΩ
2

∫

V

ξ′wθ2dV ± aR

∫

V

Fwθ2dV

− 8aλ1

9
‖θ‖3

3 −
λ

2
‖w‖3

3. (4.150)

From this point we restrict attention to the upper signs in (4.142), which
corresponds to a vertical flow from bottom to top of the layer. We select
ξ = ξ1 − ξ2z, ξ1 > ξ2 > 0 (constants). We stress, however, that progress is
possible with flow in the downward direction (lower signs in (4.142)) and
with other choices of ξ(z), not linear in z.
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Then, from inequality (4.150) one may find that

d

dt

(
aG + ζF

)
≤R(θ, w) + Rζ

∫

V

FξwθdV − Sζ

2
ξ2‖θ‖2 − ‖w‖2

− ζ

∫

V

ξ|∇θ|2dV − ζΩξ2

2

∫

V

wθ2dV + aR

∫

V

F |w| |θ|2dV

− 8aλ1

9
‖θ‖3

3 −
λ

2
‖w‖3

3. (4.151)

For α, β positive constants we use Young’s inequality as follows

−ζΩξ2

2

∫

V

wθ2dV ≤ ζΩξ2α

3

∫

V

|w|3dV +
ζΩξ2

6α2

∫

V

|θ|3dV,

aR

∫

V

F |w| |θ|2dV ≤ aRFmβ3

3

∫

V

|w|3dV +
2aRFm

3β

∫

V

|θ|3dV,

where

Fm = max
{z∈[0,1]}

|F (z)| .

These two inequalities are employed in (4.151) and we find

d

dt

(
aG + ζF

)
≤R(θ, w) + Rζ

∫

V

FξwθdV − Sζ

2
ξ2‖θ‖2 − ‖w‖2

− ζ

∫

V

ξ|∇θ|2dV +
(

ζΩξ2α

2
+

aβ2FmR

3
− λ

2

)
‖w‖3

3

+
(

ζΩξ2

6α2
+

2aRFm

3β
− 8aπ2

9

)
‖θ‖3

3 . (4.152)

To handle the cubic terms in (4.152) we put a = a′ +kε for some ε > 0 and
require that

8a′π2

9
− 2a′RFm

3β
− ζΩξ2

6α2
= 0. (4.153)

We then minimize

ζΩξ2α

3
+

a′β2FmR

3
. (4.154)

Solve (4.153) for a′ and then utilize this in (4.154) so we now minimize

M =
ζΩξ2α

3
+

FmRζΩξ2β
3

2α2(8π2β − 6RFm)

as a function of α to obtain

M =
31/3ζΩξ2(FmR)1/3β

2(8π2β − 6RFm)
.
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This is minimized in β and we obtain

β =
9RFm

8π2
, α =

9RFm

8π2
, a′ =

4ζΩξ2π
2

9R2F 2
m

.

In this manner from (4.152) we obtain

d

dt

(
aG + ζF

)
≤R(θ, w) + Rζ

∫

V

FξwθdV − Sζ

2
ξ2‖θ‖2 − ‖w‖2

− ζ

∫

V

ξ|∇θ|2dV − 8π2kε

9
‖θ‖3

3 − b̂‖w‖3
3, (4.155)

where

b̂ =
λ

2
− 9ζΩξ2RFm

16π2
− 243R3F 3

mε

512π6
.

We now require λ to be such that

λ >
9ζΩξ2RFm

8π2
. (4.156)

By selecting ε arbitrarily small we can ensure b̂ ≥ 0. Thus, (4.155) reduces
to

d

dt

(
aG + ζF

)
≤R(θ, w) + Rζ

∫

V

FξwθdV − Sζ

2
ξ2‖θ‖2 − ‖w‖2

− ζ

∫

V

ξ|∇θ|2dV − ε‖θ‖3
3 − b̂‖w‖3

3, (4.157)

with

G =
1
3

∫

V

|θ|3dV, F =
1
2

∫

V

(ξ1 − ξ2z)θ2dV.

It is necessary to retain the term in ε in order to ensure exponential decay
of the function E = aG + ζF .

To proceed from (4.157) we define I and D by

I =
∫

V

θw(1 + ζFξ)dV, D =
Sζξ2

2
‖θ‖2 + ζ

∫

V

ξ|∇θ|2dV + ‖w‖2.

Then define RE by

RE = max
H

I

D
, (4.158)

where H is the space of admissible solutions to the problem. From (4.157)
we then derive

dE

dt
≤RI − D − ε‖θ‖3

3

≤− D

(
RE − R

RE

)
− ε‖θ‖3

3 . (4.159)
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If R < RE it is then easy to show from (4.159) that E(t) decays exponen-
tially and global nonlinear stability is established. Thus, the conditions for
global stability are restriction (4.156) and R < RE .

The Euler-Lagrange equations which arise from (4.158) are

RE

(
1 + ζFξ

2

)
θki − wi = ω,i , wi,i = 0,

RE

(
1 + ζFξ

2

)
w − Sζξ2

2
θ − ζξ2θ,z + ζξΔθ = 0,

(4.160)

where ω is a Lagrange multiplier. The stability threshold obtained by solv-
ing these equations is to be compared with the linear instability one found
by solving the corresponding equations for linearized instability theory. For
a growth rate like eσt these are

π,i = RLkiθ − wi −
λS

Ω
(wi + δi3w3),

wi,i = 0,

σθ = FRLw − Sθ,z + Δθ.

(4.161)

Both systems of equations, (4.160) and (4.161) must be solved numerically.
We do not do this here. However, we instead observe that if we take ζ = 1,
ξ1 = 1, and 0 < ξ2 = S << 1 (i.e. for S small) then equations (4.160)
become

RE

[
1 + (1 − Sz)F (z)

2

]
θki − wi = ω,i , wi,i = 0,

RE

[
1 + (1 − Sz)F (z)

2

]
w − S2

2
θ − Sθ,z + (1 − Sz)Δθ = 0.

(4.162)

For small S,

F (z) ∼ 1 − S

2

(
1 − 2z

)
+

S2

2

(
z2 − z − 1

3

)
+ O(S3),

and we observe that as S → 0, the nonlinear energy equations (4.162)
become the same as the linear instability equations (4.161). Thus, in this
limit the linear instability and nonlinear energy stability thresholds are the
same and subcritical instabilities will not occur. For S small, therefore, we
expect the linear instability and global nonlinear stability boundaries to be
very close when (4.160) and (4.161) are solved numerically.

There are many other interesting effects we could cite, some clearly con-
nected with throughflow. For example, (Qiao and Kaloni, 1998) study the
combined effect of throughflow and an inclined temperature gradient on
convection in a porous medium. Convection with an inclined tempera-
ture gradient has been studied extensively by (Nield, 1991a; Nield, 1994),
(Nield et al., 1993) and by (Manole et al., 1994). The variation of gravity
coupled with other effects is analysed by (Alex et al., 2001), (Kaloni and
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Qiao, 2001), (Saravanan and Kandaswamy, 2003). Time-periodic effects are
important and the influence of a horizontally periodic temperature gradi-
ent on convection in a porous medium is studied by (Capone and Rionero,
2000), while (Malashetty and Swamy, 2007a) investigate stability of a rotat-
ing porous layer with time periodic temperature modulation. (Bhadauria,
2007) investigates the effect of temperature modulation via a linearized
instabiity analysis, employing a Brinkman - Forchheimer model. The effect
of confinement on penetrative convection in an anisotropic porous medium
is investigated by (Mahidjiba et al., 2003) and (Malashetty and Swamy,
2007b) analyse the effect of rotation and anisotropy on the onset of convec-
tion. Convection in a porous medium in a layer which is itself inclined is
analysed by (Rees and Bassom, 2000) and incorporating anisotropic effects
by (Rees and Postelnicu, 2001). Convection in an open topped enclosure
occupied by a porous medium is analysed by (Holzbecher, 2004).



5
Stability of Other Porous Flows

5.1 Convection and flow with micro effects

5.1.1 Biological processes

An increasingly important topic is that of biological processes in porous
media. (Khaled and Vafai, 2003) in their review mention many applications
of porous media studies in biological situations, including mass diffusion in
tissues and in the brain, blood flow, heat transfer, the modelling of stroke
imaging, and other issues. (Wood and Ford, 2007) in their editorial to a
special issue of the journal Advances in Water Resources draw particular
attention to the many ways in which biological processes are interacting
with porous media. Among the many topics discussed in the journal issue
referred to above we observe that (Wood et al., 2007) develop and anal-
yse a model where biological interactions occur at the interface between
the fluid and solid components of a porous medium. (Sun and Wheeler,
2007) develop model equations which describe the transport of viruses in
porous media. They are particularly interested in developing a discontin-
uous Galerkin finite element method for solution of their equations. (Ford
and Harvey, 2007) consider the issue of chemotactic movement of a biolog-
ical species in a porous medium. They specifically discuss bacteria which
may swim, such as E. coli. Obviously motion of bio-organisms in porous
media does have to be such that the pore size is suitable for the organisms
to be able to move. If the porous medium model is appropriately chosen,
given the size of the swimming micro-organisms, then bio-convection could
be another area for study, cf. (Avramenko and Kuznetsov, 2004). In the

B. Straughan, Stability and Wave Motion in Porous Media,
DOI: 10.1007/978-0-387-76543-3 5, c© Springer Science+Business Media, LLC 2008
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next section we consider a specific case of cell movement which occurs in a
porous environment.

5.1.2 Glia aggregation in the brain

The brain may be thought of as a spongy porous medium. Cell movement in
the brain is known to occur and may even be connected with Alzheimer’s
disease via the formation of senile plaques. One of the cell types that is
key to the pathology is microglia (Potter, 1992). In response to β−amyloid
there is a localized concentration of microglia (Itagaki et al., 1989) and
an inflammatory response, which involves the local activation of microglia
and the release of neurotoxins and factors that chemotactically attract
more microglia from peripheral sites to the amyloid lesions (Rogers et al.,
2002). In an attempt to model the chemotactic response of microglial cells,
(Luca et al., 2003) have developed a model for the density of microglia in a
brain. This model also involves concentrations of probable attractants, such
as IL-1β, and of a possible repellent, TNF-α, in order to predict amyloid
plaque density and size. This is thus a specific model of chemotaxis in a
porous medium, the phenomenon mentioned in section 5.1.1. In fact, both
chemoattraction and chemorepulsion are involved.

The work of (Luca et al., 2003) presents the chemoattraction -
chemorepulsion model

∂m

∂t
=

∂

∂xi

(
μ

∂m

∂xi

)
− ∂

∂xi

(
χ1m

∂φ

∂xi

)
+

∂

∂xi

(
χ2m

∂ψ

∂xi

)

∂φ

∂t
=

∂

∂xi

(
D1

∂φ

∂xi

)
+ a1m − b1φ

∂ψ

∂t
=

∂

∂xi

(
D2

∂ψ

∂xi

)
+ a2m − b2ψ.

(5.1)

In these equations m,φ, ψ represent, respectively, the cell density of
microglia, the concentration of attractant (interleukin - 1, IL-1β),
and concentration of repellent (tumour necrosis factor - α, TNF-
α). (Luca et al., 2003) concentrate on the case where the functions
μ, χ1, χ2,D1,D2, a1, a2, b1, b2 are constant.

It is important to note that even though χ1 and χ2 are constant the
chemoattraction and chemorepulsion terms are still nonlinear and, hence,
equation (5.1)1 is a nonlinear partial differential equation. (Luca et al.,
2003) developed a linear instability analysis and also investigated numeri-
cally simulated solutions. (Quinlan and Straughan, 2005) developed a fully
nonlinear stability analysis. This leads to a nonlinear threshold below which
aggregation (and, therefore, senile plaque formation) cannot occur.

Equations (5.1) are defined on a bounded domain Ω ⊂ R
2 (or R

3) and
the boundary of Ω is denoted by Γ. (Luca et al., 2003) non-dimensionalize
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equations (5.1) to the form

∂m

∂t
= Δm − A1∇ · (m∇φ) + A2∇ · (m∇ψ)

ε1
∂φ

∂t
= Δφ + a2(m − φ)

ε2
∂ψ

∂t
= Δψ + m − ψ,

(5.2)

where the constants A1, A2, ε1, ε2 and a2 are given by

A1 =
χ1a1m̄

μb1
, A2 =

χ2a2m̄

μb2
, ε1 =

μ

D1
, ε2 =

μ

D2
, a =

L2

L1
.

Here m̄ is the scale for the microglia density, and L1, L2 are length scales
for attractant and repellent, respectively. The quantity m̄ is, in fact, the
constant density of microglia in the steady state before any aggregation
may occur.

The boundary conditions which hold are zero flux through Γ, so for
interleukin-1β and tumour necrosis factor-α one has

∇φ · n =
∂φ

∂n
= 0, ∇ψ · n =

∂ψ

∂n
= 0, on Γ, (5.3)

where n is the unit outward normal to Γ. The condition of conservation of
microglia, namely equation (5.2)1 used on the boundary Γ yields,

∂m

∂n
− A1m

∂φ

∂n
+ A2m

∂ψ

∂n
= 0 on Γ

and so because of (5.3) one derives the boundary condition for m, namely

∂m

∂n
= 0 on Γ. (5.4)

The non-dimensional constant steady state from which aggregation will
ensue is

m̄ = 1, φ̄ = 1, ψ̄ = 1. (5.5)

(Quinlan and Straughan, 2005) derive the fully nonlinear perturbation
equations from (5.2) by putting m = m + m̄, φ = φ + φ̄, ψ = ψ + ψ̄. The
perturbation quantity m has zero mean as a function of time. The nonlinear
perturbation equations are then

∂m

∂t
= Δm − A1Δφ + A2Δψ − A1∇ · (m∇φ) + A2∇ · (m∇ψ)

ε1
∂φ

∂t
= Δφ + a2(m − φ)

ε2
∂ψ

∂t
= Δψ + m − ψ.

(5.6)

The functions m,φ, ψ must satisfy the boundary conditions (5.3) and (5.4),
and the boundary-initial value problem for equations (5.6) is completed by
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the addition of the initial data

m(x, 0) = m0(x), φ(x, 0) = φ0(x), ψ(x, 0) = ψ0(x). (5.7)

(Quinlan and Straughan, 2005) develop a fully nonlinear stability anal-
ysis which yields a meaningful threshold guaranteeing aggregation of
microglia will not occur. In order to derive their goal they employ the
solution measure

E(t) =
1
2
‖m‖2 +

λε1
2

‖∇φ‖2 +
λ2ε2

2
‖∇ψ‖2, (5.8)

where λ and λ2 are positive constants which have to be selected optimally.
The work of (Luca et al., 2003) presents a very interesting model for

microglia aggregation. As yet I am not aware of any model which incorpo-
rates the deformation or motion of brain tissue. Whether this is important
remains to be seen.

The deformation of a porous matrix may well be important in several
porous media problems, such as drying during cheese production. (Simal
et al., 2001) analyse an interesting model for the water and salt diffusion
during drying of a cheese. To the best of my knowledge the effect of matrix
deformation due to drying of the porous cheese structure has not yet been
examined. Nevertheless, the work of (Simal et al., 2001) is a very interesting
piece of mathematical and computational analysis for a highly mundane
problem.

5.1.3 Micropolar thermal convection

The problem of flow in a saturated porous material when there are particles
embedded in the fluid is one demanding increasing attention. Such problems
are studied, mainly in connection with thermal convection by (Sharma and
Gupta, 1995), (Sharma and Kumar, 1997), (Sharma and Kumar, 1998),
(El-Hakiem, 1999), (Siddheshwar and Sri Krishna, 2003), (Sunil et al., 2004;
Sunil et al., 2005a; Sunil et al., 2005b; Sunil et al., 2005c; Sunil et al.,
2006; Sunil et al., 2008). Clearly, the model has to be chosen carefully
because the motion of the fluid and particles will depend on the relative
size of the particles to the pores. However, with increasing use of nanofluids
where certain fluids have copper oxide particles in suspension and greatly
increased heat transfer properties, and their potential use in, for example,
high porosity metal foams, cf. (Zhao et al., 2004), the area certainly merits
attention. If a high porosity model such as a Brinkman one is chosen and
the particle size is relatively small then the model should be plausible.
(Hoffmann et al., 2007) is a very interesting article which examines in
detail the boundary conditions which should be imposed on the particle
spin in a micropolar fluid theory.
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(Siddheshwar and Sri Krishna, 2003) study thermal convection in a
micropolar fluid saturating a porous medium which is modelled via a Darcy
- Brinkman theory. We briefly review their work.

(Siddheshwar and Sri Krishna, 2003) employ a linear temperature rela-
tion of form ρ = ρ0[1 − α(T − T0)] and a Boussinesq approximation and
their equations modelling thermal convection of a micropolar fluid in a
saturated porous medium may be written

ρ0

Φ
vi,t +

ρ0

Φ2
vjvi,j = − p,i + ρ0αgTki −

(
ζ + μ

K

)
vi

+
(

2ζ

Φ
+ μ′
)

Δvi +
ζ

Φ
εijkωk,j ,

vi,i =0,

ρ0Iωi,t +
ρ0I

Φ
vjωi,j =(λ′ + η′)ωj,ji + η′Δωi + ζ(εijkvk,j − 2ωi),

MT,t + viT,i =
β

ρ0CvΦ
εijkωk,jT,i + χΔT.

(5.9)

In these equations vi, p, ωi and T are the velocity, pressure (modified by
the constants in the density law), the particle spin, and the temperature
field. The other coefficients are constants and are Φ porosity, μ viscosity of
the fluid, μ′ effective viscosity of the porous medium, ζ is a coupling term,
η′ bulk viscosity coefficient, λ′ shear spin viscosity coefficient, β micropo-
lar heat conduction coefficient, Cv specific heat at constant volume, K is
permeability, and the coefficients M and χ are the heat capacity ratio and
effective thermal diffusivity given by

M =
(1 − Φ)(ρCp)s + Φ(ρCp)f

(ρCp)f
, χ =

(1 − Φ)χs + Φχf

(ρCp)f
,

where Cp is the specific heat at constant pressure and subscript s and f
refer to solid and fluid, respectively.

The steady state whose stability is investigated is one for which v and
ω are zero while T is linear in z.

Perturbations to vi, ωi, T and p are introduced and the non-dimensional
equations for the perturbations ui, νi, θ and π are derived by (Siddheshwar
and Sri Krishna, 2003) as

λ

Pr
ui,t +

1
Pr

ujui,j = − π,i − Daui − Rmθki

+ (N1 + N ′
1)Δui + N1εijkνk,j ,

ui,i =0,

λN2

Pr
νi,t +

N2

Pr
ujνi,j =N4νj,ji + N3Δνi + N1εijkνk,j − 2N1νi,

θ,t + uiθ,i = − ui + N5εijkνk,j + Δθ,

(5.10)
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where the non-dimensional coefficients (constants) are given by
(Siddheshwar and Sri Krishna, 2003).

(Siddheshwar and Sri Krishna, 2003) linearized (5.10) and developed a
detailed linear instability theory. Many results are given in their paper,
and a detailed comparison with the results of an equivalent Newtonian
fluid theory is presented. The analysis is necessarily much different from
that for a Newtonian fluid since, for example, oscillatory convection may
occur in a micropolar fluid, cf. (Payne and Straughan, 1989). In addition,
(Siddheshwar and Sri Krishna, 2003) develop a weakly nonlinear analysis.
They reduce system (5.10) to a system of three equations in the stream
function ψ, and the terms ν2 and θ. They then write

⎛

⎝
ψ
ν2

θ

⎞

⎠ =

⎛

⎝
A(t) sin παx
B(t) sin παx
C(t) sin παx

⎞

⎠ sin πz +

⎛

⎝
0
0

D(t)

⎞

⎠ sin 2πz

and derive a system of nonlinear ordinary differential equations for
the amplitudes A(t), B(t), C(t) and D(t). This Lorentz system is solved
numerically and many results are presented and discussed in detail by
(Siddheshwar and Sri Krishna, 2003).

Magnetic and rotation effects are incorporated in the analyses of (Sunil
et al., 2005c; Sunil et al., 2006) and (Sunil and Mahajan, 2008). (Silva,
2006) establishes some interesting convergence results in a Leray problem
for a micropolar fluid.

5.2 Porous flows with viscoelastic effects

5.2.1 Viscoelastic porous convection

Flow of a viscoelastic fluid in a porous material is an area with a multitude
of applications. Obtaining oil from rocks or soil below the Earth’s surface is
one area which affects nearly everyone. To model flow of a viscoelastic fluid
in a porous medium is a highly non-trivial task. For example, (Lopez de
Haro et al., 1996) describes an averaging procedure where they take a
Maxwell viscoelastic fluid in a medium with pores. In the linear case they
show the velocity field satisfies an equation of form

tm
∂2vi

∂t2
+

∂vi

∂t
= − ∂P

∂xi
+ ηΔvi,

for a suitable pressure term. The viscoelastic effect is clearly evident
through the tm term. In fact, structural stability questions for this model
are addressed in (Payne and Straughan, 1999b).

Since averaging procedures tend to lead to complicated models the
applied literature has employed more ad hoc models. (Kim et al., 2003)
studies thermal convection in a porous layer saturated with viscoelastic
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fluid. The layer is contained between the planes z = 0 and z = d with the
lower boundary hotter than the upper, i.e. the standard Bénard problem,
but for a viscoelastic fluid in a porous layer. They use a Darcy law but
one which is modified to include delay effects. Their momentum equation
employs a Boussinesq approximation in the buoyancy term and is

μ

K

(
ε

∂

∂t
+ 1
)

vi =
(

λ
∂

∂t
+ 1
)(

−p,i + ρ0αgTki

)
(5.11)

where ρ0, α, g are constants, being density, thermal expansion coefficient,
and gravity. The constants μ and K are viscosity and permeability and ε, λ
are positive constants which represent the viscoelastic effect. The model is
completed by adding the continuity and energy balance equations as

vi,i = 0,

T,t + viT,i = κΔT.
(5.12)

The steady state is one which has vi ≡ 0 and T linear in z. (Kim et al.,
2003) develop linear instability and weakly nonlinear analyses. In terms
of a Darcy number, Da, and Rayleigh number, Ra, the non-dimensional
linearised perturbation equations are

1
Da

(
ε

∂

∂t
+ 1
)

Δw = Ra

(
λ

∂

∂t
+ 1
)

Δ∗θ,

θ,t = w + Δθ,

(5.13)

where w = u3 is the perturbation to the third component of velocity, θ is
the temperature perturbation, and Δ∗ = ∂2/∂x2 + ∂2/∂y2. The boundary
conditions are

w = θ = 0 at z = 0, 1

with the solution satisfying a plane tiling periodicity in the (x, y) plane.
Upon utilizing a time dependence like eσt in (5.13) the problem can be
reduced to solving the eigenvalue problem

(εσ + 1)(D2 − a2)(D2 − a2 − σ)θ = a2Ra(λσ + 1)θ, (5.14)

where a is a wave number and D = d/dz. Of course, σ occurs nonlinearly
in (5.14) and the solution to the eigenvalue problem is correspondingly
more difficult than in the porous case with a Newtonian fluid. (Kim et al.,
2003) find that unlike the Newtonian case, overstability is possible in the
viscoelastic porous convection scenario. For fixed λ, the viscoelastic effect is
shown to be destabilizing. In addition to presenting a linearised instability
analysis, (Kim et al., 2003) also delivers a weakly nonlinear theory for
bifurcation of time independent and periodic solutions.

Further analysis of oscillatory convection in a porous layer saturated with
a viscoelastic fluid is due to (Yoon et al., 2004).

Another analysis of convection of a viscoelastic fluid in a porous medium
is due to (Rudraiah et al., 1989). These writers employed equations similar
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to (5.11) and (5.12), but they allowed for an acceleration term on the right
of (5.11). They gave specific expressions for the relaxation and retardation
times in (5.11) and also encountered oscillatory convection.

5.2.2 Second grade fluids

(Jordan and Puri, 2003) study the problem of a porous material occupying
the half space y > 0, the porous medium being filled with a viscoelastic
fluid of second grade type. The whole domain is fixed and at time t = 0+

the plane y = 0 is subject to a constant speed U0 = 0 in the x-direction.
They seek a solution for the velocity field of form v = (u(y, t), 0, 0). The
model employed by (Jordan and Puri, 2003) effectively adds a Darcy term
to the right hand side of the momentum equation, so the velocity field
satisfies the system

ρv̇i = −p,i + Ŝji,j −
μφ

K
vi,

vi,i = 0,
(5.15)

where Ŝji is the extra stress for a fluid of second grade. In fact, Ŝji is given
by the equation

Ŝ = μA1 + α1A2 + α2A2
1, (5.16)

where

A1
ij = vi,j + vj,i, A2

ij = Ȧ1
ij + A1

ikvk,j + vk,iA
1
kj , (5.17)

with a superposed dot denoting the material time derivative.
Upon selecting a solution of form v = (u(y, t), 0, 0) (Jordan and Puri,

2003) show that (5.15), (5.16) yield the boundary initial value problem

ρut − uyy − �2uyyt + β2u = 0,

u(0, t) = H(t), u(∞, t) = 0, t > 0,

u(y, 0) = 0, y > 0,

(5.18)

where H(t) is the Heaviside function. System (5.18) is non-dimensionalized
in such a way that �2, β2 depend on the coefficients U0, μ, α1, φ and K.

(Jordan and Puri, 2003) solve (5.18) by a Laplace transform method.
They interpret their results by employing asymptotic analysis and numeri-
cal calculations. (Akyildiz, 2007) develops a Laguerre - Galerkin numerical
method for a Stokes’ problem like that mentioned above, for a Newtonian
fluid in a non-Darcy porous material.

(Puri and Jordan, 2006) develop an interesting analysis for a model for
flow of a dipolar fluid in a porous medium. Their model is one which
employs a modification of the dipolar fluid to incorporate a Darcy law
term to account for the porous material.
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(Hayat et al., 2005), (Hayat and Khan, 2005) study flow of a second
grade fluid past a porous plate.

5.2.3 Generalized second grade fluids

A generalization of the constitutive equation for a second grade fluid as
employed in section 5.2.2 is believed capable of modelling flow in a situation
involving a coal - water slurry, see e.g. (Massoudi et al., 2008). Clearly a
slurry involving coal and water or coal and oil is some kind of porous or
granular material.

The equations of an incompressible second grade fluid given by (Massoudi
et al., 2008) are those for balances of mass, momentum, and energy, and
are

vi,i = 0,

ρ
(∂vi

∂t
+ vj

∂vi

∂xj

)
=

∂Tji

∂xj
+ ρbi,

ρ
(∂ε

∂t
+ vi

∂ε

∂xi

)
= TijLij −

∂qi

∂xi
+ ρr.

Here ρ, vi, Tji, bi, ε, qi and r are the density, velocity, stress tensor, body
force, internal energy, heat flux vector, and heat supply for the fluid
(slurry), and Lij = vi,j . (Massoudi et al., 2008) point out that the constitu-
tive equations for the stress tensor for a generalized second grade fluid were
given by (Man and Sun, 1987) and by (Man, 1992) and are a generalization
of equation (5.16), being

T = −pI + μΠm/2A1 + α1A2 + α2A2
1, (5.19)

or

T = −pI + μΠm/2(A1 + α1A2 + α2A2
1), (5.20)

where A1 and A2 are given by equations (5.17) and

Π =
1
2

trA2
1.

The coefficient μ is the dynamic viscosity, α1, α2 are normal stress coeffi-
cients, and m is a constant which may be positive or negative. With m < 0
the (slurry) fluid is said to be shear - thinning whereas if m > 0 it is shear
- thickening.

(Massoudi et al., 2008) consider a non-isothermal theory and find numeri-
cal solutions for flow between two vertical plates at different temperatures.
Stability and nonexistence results for the generalized second grade fluid
model with the constitutive equations (5.19) or (5.20) are given by (Franchi
and Straughan, 1993b) and further details of these and related results are
given in the book by (Straughan, 1998), chapter 4.
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5.3 Storage of gases

5.3.1 Carbon dioxide storage

An extremely interesting physical problem which could have important
consequences for every one of us is studied by (Ennis-King et al., 2005)
and by (Xu et al., 2006). Both sets of writers develop the same model and
their analyses are very similar.

The problem of concern to both sets of writers involves how to dis-
pose of carbon dioxide. Due to worldwide concern over global warming and
how to reduce emissions of greenhouse gases into the Earth’s atmosphere,
engineers are contemplating the storage of carbon dioxide in naturally
occurring underground geological locations. Such locations may be where
coal is very difficult to mine, where oil or gas reservoirs have been partly
or fully exhausted by current recovery techniques, or deep underground
brine aquifiers. Carbon dioxide in a supercritical state (where the pres-
sure and temperature are above the critical point values of p = 73.82 bar,
T = 31.04◦C) could be injected deep underground into the chosen geologi-
cal sites. However, there is concern over whether CO2 stored in this way will
seep out and eventually leak back into the atmosphere. The CO2 could sim-
ply leak sideways under the bedrock, or since CO2 reduces the fluid density
(as opposed to many other gases which increase it) the decrease in density
could lead to convective mixing in the porous layer well beneath the Earth’s
surface. A strong mixing could actually lead to enhanced containment as
pointed out by (Ennis-King et al., 2005).

In order to study the convective motion of CO2 in a porous medium
(Ennis-King et al., 2005) and (Xu et al., 2006) employ a Darcy porous
medium model which allows for variable permeability of the porous matrix.
In the system of (Xu et al., 2006) the carbon dioxide is supposed stored
in a infinitely wide porous layer of depth H, with z measured downward,
the layer being {(x, y) ∈ R

2} × {z ∈ (0,H)}. Gravity acts downward and
the fluid density, ρ, is assumed linear in C, the concentration of dissolved
CO2, viz. ρ = ρ0(1+βC), ρ0, β, constants. The partial differential equations
describing the motion of fluid in the porous layer then consist of momentum
and continuity equations coupled with a transport equation for C, namely,

μK−1
ij vj = −p,i + ρ0βkiC, vi,i = 0,

φ
∂C

∂t
+ viC,i = φDΔC,

(5.21)

where vi is the fluid (seepage) velocity, φ is porosity, p is the pressure taking
into account the constant terms in the density, ki is the vector (0, 0, 1)
remembering z is measured downward, and D is a diffusion coefficient.

The boundary conditions adopted are zero flux at the lower boundary
z = H, i.e. ∂C/∂z = 0, and C =constant, at the upper one z = 0. Since
the CO2 can move, the basic state whose stability is under investigation is
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time dependent. While the basic velocity vi = 0, the basic concentration of
CO2 is assumed to be a function of z and t, and so satisfies the system

∂C

∂t
=

∂2C

∂z2
, (5.22)

C(0, t) = 1,
∂C

∂z
(1, t) = 0, t ≥ 0, (5.23)

C(z, 0) = 1, z ≥ 0. (5.24)

In (5.22), (5.23) and (5.24), C has been non-dimensionalized and (5.24)
represents the initial conditions C must satisfy.

The solution to (5.22) – (5.24) is given by (Xu et al., 2006) and by
(Ennis-King et al., 2005) as

C(z, t) = 1 − 4
π

∞∑

n=1

1
(2n − 1)

exp
{
−
(
n − 1

2

)2

π2t

}
sin
(
n − 1

2

)
πz.

(5.25)

Both sets of writers (Ennis-King et al., 2005) and (Xu et al., 2006) per-
form both a linearised instability analysis and a global nonlinear energy
stability analysis of the perturbations to (5.21) employing the base solu-
tion (5.25). If ui, π, φ denote non-dimensional perturbations to vi, p and C
then the linearised perturbation equations of (Xu et al., 2006) are

ui = −π,i + kiRaφ, ui,i = 0,

φ,t + wC,z = γΔ∗φ + φ,zz,
(5.26)

where w = u3 and γ represents a variation between horizontal and vertical
permeability. The boundary conditions are

φ = 0, z = 0, φ,z = 0, z = 1; w = 0, z = 0, 1. (5.27)

Due to the time-dependence of C the system (5.26), (5.27), is solved by
writing

φ(z, t) =
N∑

k=1

ak(t) sin
(
k − 1

2

)
πz,

w(z, t) =
N∑

k=1

bk(t) sin kπz,

(5.28)

and a system of ODEs is derived for the time-dependent coefficients ak, bk.
This system is solved numerically by a Runge-Kutta scheme. In (Xu et al.,
2006) they find an instability time t for each Rayleigh number and wave
number such that the normalized time average

Φ(t) =
( ∫ 1

0
φ2(z, t)dz

∫ 1

0
φ2(z, 0)dz

)1/2
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has zero derivative at t̂, i.e. dΦ/dt = 0 there. The critical time, tc, for
the onset of instability is then defined by minimizing the set of {t̂} over
the wave numbers. This yields a critical time and wavenumber for a given
Rayleigh number.

The global analysis commences with the nonlinear form of (5.26) and
employs the functional

E(t) =
λ

2

∫

V

φ2dV, (5.29)

where λ > 0 is a coupling parameter to be selected judiciously and V is
a period cell for the perturbation. By calculating a differential equation
from dE/dt and requiring dE/dt ≤ 0, ∀t ≥ 0, a critical Rayleigh number
is found, Rac(t), which depends on time t. The Euler-Lagrange equations
which arise are solved numerically by a Galerkin method, minimizing over
the wave numbers and maximizing over λ. Since Rac(t) depends on time
(Xu et al., 2006) argue that for a given time one determines a critical
Rayleigh number. This in turn defines a critical time for the global nonlinear
stability analysis.

(Ennis-King et al., 2005) develop a very similar analysis and also look
at the case of a semi-infinite domain, z → ∞. Both sets of writers present
extensive results incorporating anisotropic permeability and compare the
linear instability thresholds with the global stability ones. Unlike many
convection problems in porous media where the basic state is time -
independent, the linear - nonlinear boundaries display a wide variation.

The recent comments by (Nield, 2007) and the reply by (Xu et al., 2007)
are interesting and are worth taking into account. (Nield, 2007) argues
that one ought not to work with a Rayleigh number based on horizontal or
vertical permeability separately, but one should instead define a Rayleigh
number based on a permeability which is a combination of both the hor-
izontal and vertical permeabilities. (Xu et al., 2007) respond by arguing
that since they are dealing with a time dependent base flow one has to
be careful if one tries to present an analogy with a problem involving
slowly changing boundary conditions. They present numerical computa-
tions varying both the horizontal and vertical permeabilities to observe the
dependence of the critical time on the variation of these permeabilities. On
this basis they deduce that the critical time is more sensitive to changes in
the vertical permeability, although they also suggest that the idea of using
a combined permeability as suggested by (Nield, 2007) does deserve further
investigation.

5.3.2 Hydrogen storage

Another area of gas storage which involves porous media is that of hydrogen
retainment. The need to store hydrogen efficiently is important since it is
believed it may become a suitable replacement for fossil fuels such as coal
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or oil, cf. (Armandi et al., 2007). In fact, (Armandi et al., 2007) is an
interesting article which reports experiments involving storing hydrogen in
various kinds of porous carbons. It is clear from the results of (Armandi
et al., 2007) that the microstructure of the porous carbon material is very
important. The surface area at the microscopic level would appear to be
important in the ability of the material to store hydrogen. As far as I am
aware, the problem of developing and studying a mathematical model for
hydrogen storage as described by (Armandi et al., 2007) is open. This could
be an interesting future area.

5.4 Energy growth

5.4.1 Soil salinization

The topic of salinization in soil is addressed from various angles by (Bear
and Gilman, 1995), (Gilman and Bear, 1996), (Wooding et al., 1997a;
Wooding et al., 1997b), and (van Duijn et al., 2002). In fact, these writers
each develop a theory to describe the important process of soil salinization.
Salinization is caused by the evaporation of moisture through the surface of
the soil. In dry regions of the Earth, where the rainfall is small and the water
table lies relatively close to the surface, the mean flow of water through the
unsaturated soil is in the upward direction. Often, groundwater is saline
and upward flow of this saline solution results in salts being transported to
the soil surface. Evaporation of water from the soil layer leaves increased
density of salts in the soil with the result that their concentration near the
surface increases. Salinization can lead to the formation of salt lakes and
so the subject is of much interest in geotechnical engineering.

In regions with little rainfall groundwater typically evaporates through
the soil surface due to the ambient hot temperature conditions and the
presence of a shallow water table may lead to salts accumulating near
the soil surface because of effective upward movement. In fact, this phe-
nomenon should really be modelled using a theory of unsaturated porous
media. The work of (Gilman and Bear, 1996) models the unsaturated region
as a porous layer with a uniform liquid distribution and this essentially
transforms the problem to one for a saturated porous medium, although
the permeability, diffusivity and dispersivity must be chosen appropriately.
These writers note that the subject of convection in unsaturated porous
media is a largely untouched area which is increasingly occupying attention.
Their model employs a concentration dependent viscosity because the vis-
cosity dependence on concentration is typically 1.5 to 3 times greater than
that of pure water, and they argue, therefore, that one should not neglect
this effect. As (Gilman and Bear, 1996) observe the density variation is
much smaller, of order 15 to 30%, and so a constant density model may be
acceptable apart from where the density occurs in the buoyancy term.
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The salinization model of (Gilman and Bear, 1996) employs the non-
dimensional equations

(1 + γω)vi = − p,i − Raωki,

vi,i =0,

∂ω

∂t
+

∂

∂xi
(viω) = − ∂Ji

∂xi
,

(5.30)

where vi, p and ω are velocity, pressure and salt concentration, respectively,
k = (0, 0, 1), (x, y) ∈ R

2, and z ∈ (0, 1). The Rayleigh number is Ra and
Ji is the salt flux vector chosen as

Ji = −Dijω,j . (5.31)

The diffusion tensor, Dij , in (5.31) is a function of the velocity and is

Dij = (1 + αT |v|)δij + (αL − αT )
vivj

|v| , (5.32)

where |v| =
√

vivi and αL, αT are longitudinal and transverse dispersivities.
The form of (5.32) accounts for the fact that the dry conditions induce
transport of saline solution upward via an anisotropic velocity dependence.
The basic momentum equation (5.30)1 is Darcy’s law but the viscosity is a
linear function of ω with coefficient γ.

(Gilman and Bear, 1996) have their layer with z = 0 as the boundary
of the water table below the salinization layer and such that z = 1 is the
surface of the soil. Their boundary conditions involve the Peclet number,
Pe, which is a measure of the evaporation rate at the surface, and they
involve the salt concentration at saturation, ω∗. The boundary conditions
are:
on the water table/active convection layer boundary, z = 0,

p = 0, ω = ω0; (5.33)

on the ground surface, z = 1,

v3 = Pe, (5.34)

and

either Peω + J3 = 0, if ω ≤ ω∗; or ω = ω∗ . (5.35)

In the latter case Peω + J3 ≥ 0. The boundary conditions (5.33) imply
that at the water table the salt concentration is constant along with the
pressure. Boundary conditions (5.34) and (5.35) account for that fact that
a priori we can have at the ground surface either zero flux, or the salt
concentration at saturation which may result in salt precipitation there.

(Gilman and Bear, 1996) investigate instability and possible convec-
tive motion in the porous layer, by determining a steady solution of form
ṽ = (0, 0, P e), ω = ω̃(z). They find that the form of ω̃(z) depends on
which boundary condition is in force in (5.35). If we define ω0 to be the
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concentration at the lower surface of the layer, z = 0, and define Pe∗ as
the quantity Pe∗ = log (ω∗/ω0), with Pe′ given by Pe′ = Pe/(1 + αLPe),
then ω̃(z) will have form

ω̃(z) = ω0 ePe′z, for Pe′ < Pe∗;

ω̃(z) = ω∗ ePe′(z−1), for Pe′ ≥ Pe∗.
(5.36)

(Gilman and Bear, 1996) introduce a perturbation ui, ω, π to the steady
solution ṽi, ω̃, p̃. Their linearized equations for ui, ω, π are

(1 + γω̃)ui = −π,i − (Ra + γPe)kiω,

ui,i = 0,

∂ω

∂t
= (1 + αT Pe)Δω + (αL − αT )Pe

∂2ω

∂z2
− Pe

∂ω

∂z

+ αT ω̃′ ∂u3

∂z
− (ω̃′ − αLω̃′′)u3.

(5.37)

They introduce a modified Rayleigh number Ra′ by Ra′ = Ra + γPe, and
a function F (z) by F (z) = [1/Pe′(1 + γω̃)] dω̃/dz. The function ui is then
eliminated from (5.37) to derive a coupled system of partial differential
equations for π and ω. These are

Δπ − γPe′F (z)
∂π

∂z
= Ra′

(
γPe′F (z)ω − ∂ω

∂z

)
,

∂ω

∂t
= Δω + αLPe

∂2ω

∂z2
− Pe

∂ω

∂z

+ Pe′(1 − αLPe′)F (z)
(∂π

∂z
+ Ra′ω

)
.

(5.38)

Since (5.38) are linear they seek a normal mode solution of form π(x, t) =
P (z) eσt f(x, y), ω(x, t) = Ω(z) eσt f(x, y), where σ is the growth rate and
f is a plane tiling planform. Thus, the instability analysis of (Gilman and
Bear, 1996) utilizes the eigenvalue equations

(D2 − γPe′FD − k2)P = Ra′(γPe′F − D)Ω,
[
(1 + αLPe)D2 − PeD − k2

]
Ω

+ Pe′(1 − αLPe′)F (DP + Ra′Ω) = σΩ,

(5.39)

where D = d/dz and k is a wavenumber. Note that P and Ω represent
perturbations of pressure and salt concentration, respectively. Equations
(5.39) are defined on (0, 1) and the boundary conditions for small Peclet
numbers or that of a transient state before the onset of salt precipitation,
are

P = 0, Ω = 0 at z = 0,

DP + Ra′Ω = 0, DΩ − Pe′Ω = 0 at z = 1.
(5.40)

(Gilman and Bear, 1996) solve (5.39), (5.40) numerically by setting σ = 0
and solving for k2 as a function of Pe′, Ra′. They use a finite difference
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scheme and need necessarily to transform the exponential dependence out
of the problem by using the variable ζ = exp{Pe′(z − 1)}, to remove large
coefficients of Ra′ and Pe′ in the boundary conditions, otherwise numerical
convergence problems are encountered. An alternative numerical scheme to
solve (5.39), (5.40) very efficiently and directly with σ ∈ C, is presented by
(Payne and Straughan, 2000a).

5.4.2 Other salinization theories

(Wooding et al., 1997a) develop an analysis of salinization based on a Darcy
- law model but one where their flow rate ui is not solenoidal. If their layer
is in the (x, y) plane then their non-dimensional equations may be written

ui,i + γφS,t = 0,

− p,i − kiS = M−1ui,

S,t +
1

φ(1 + γS)
uiS,i =

1
Rs

(DijS,j),i

(5.41)

where S and p are the salinity and pressure, respectively. The quantity φ
is porosity and γ and M are positive constants. The vector k = (0, 0, 1),
Dij is a diffusivity tensor, and Rs is a salt Rayleigh number.

(van Duijn et al., 2002), (Pieters et al., 2004) and (Pieters and van Duijn,
2006) study in depth a model appropriate to salinization. They work on
the spatial domain {(x, y) ∈ R

2}×{z > 0}, with z pointing downward, i.e.
the half - space below the plane z = 0 which is the ground surface, and
so gravity acts downward. In terms of a fluid velocity vi, pressure p, and
density ρ, their equations are

vi,i = 0,

p,i − kiρg +
μ

K
vi = 0,

φρ,t + viρ,i = DΔρ

(5.42)

where k = (0, 0, 1) (recalling z is measured downward), μ,K, φ and D are
viscosity, permeability, porosity, and a diffusion coefficient. The boundary
conditions of (van Duijn et al., 2002) are

vi = −Eki, ρ = ρm at z = 0 (5.43)

where E is the evaporation rate at the surface and ρm is the maximum
density at the outflow boundary. They also employ the initial condition

ρ(x, 0) = ρr (5.44)

where ρr is the fluid density in the “ambient” state.
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The above system is non-dimensionalized and written in terms of a
Rayleigh number, Ra, as

Ui,i = 0,

P,i − kiS + Ui = 0,

S,t + RaUiS,i = ΔS,

(5.45)

where S is the non-dimensional density (salinity). These equations hold in
{(x, y) ∈ R

2}×{z > 0}×{t > 0} with the boundary and initial conditions
being

Ui = − 1
Ra

ki, S = 1, when z = 0,

S(x, 0) = 0.
(5.46)

The boundary velocity −Ra−1ki is denoted by U0
i , i.e. U0

i = −Ra−1ki.
The basic solution studied by (van Duijn et al., 2002), (Pieters et al.,

2004) and (Pieters and van Duijn, 2006) is one where the base velocity is
the uniform throughflow Ui = U0

i . The basic salinity field, S(z, t), must
then be determined as a solution to the problem

∂S

∂t
=

∂2S

∂z2
+

∂S

∂z
, (z, t) ∈ R

+ × R
+,

S = 1, z = 0, t > 0,

S = 0, z > 0, t = 0.

(5.47)

The solution to (5.47) is

S0(z, t) =
1
2
e−z erfc

(
z − t

2
√

t

)
+

1
2

erfc
(

z + t

2
√

t

)
. (5.48)

However, (van Duijn et al., 2002), (Pieters et al., 2004) and (Pieters and
van Duijn, 2006), also investigate the situation when S0 is replaced by its
asymptotic solution as t → ∞, namely,

S0(z) = e−z. (5.49)

(van Duijn et al., 2002) introduce perturbations s, ui, π to S0,U0, P0 and
these satisfy the equations

ui,i = 0,

π,i − kis + ui = 0,

s,t + Rauis,i = Δs + s,z − Raw
∂S0

∂z
.

(5.50)

The boundary conditions are that ui, π, s vanish as z → ∞ and

s = ui = 0, z = 0. (5.51)

(Pieters et al., 2004) mainly investigates the linearised system arising
from (5.50), (5.51). Thus, they remove π, u1 and u2 and with w = u3 they
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analyse in depth the system

s,t = Δs + s,z − Raw
∂S0

∂z
Δw = Δ∗s,

(5.52)

where Δ∗ is the horizontal Laplacian. In fact, by writing s and w in normal
mode form

s = s(z, t)emx+ny, w = w(z, t)emx+ny,

they use a Green’s function, a contraction mapping argument, and the
Banach fixed point theorem to deduce existence, regularity and uniqueness
for a solution to (5.52). In fact, for any T > 0, they show the normal mode
solution to (5.52) exists, is unique, and (s, w) ∈ C∞(R+ × (0, T ]).

A careful weakly nonlinear analysis and bifurcation study of the
salinization system (5.50) is given by (Pieters and Schuttelaars, 2007).

5.4.3 Time growth of parallel flows

Before progressing directly to the analysis of (van Duijn et al., 2002) it is a
good juncture to digress briefly and report on some recent findings where
the kinetic energy for a certain class of fluid flows can have relatively very
large transient growth, even though the flow is eventually stable according
to linear theory.

As pointed out in section 4.3.1, and in (Straughan, 1998), the equations
governing hydrodynamic stability are typically of the form

Aut = LSu + LAu + N(u),

with the notation described there. In general, genuinely unconditional
nonlinear energy stability results are few for problems where the nonlin-
earities are not simply the convective ones, or where the linear operator
L = LS + LA is far from being symmetric. In fact, for parallel shear flows
the situation is very open. While we introduce this as a prelude to the work
of (van Duijn et al., 2002), the work we describe for parallel flows has much
bearing on the material discussed in sections 5.8.1 and 6.7, where parallel
flow is studied in a porous medium context.

Consider a viscous incompressible fluid contained in the infinite three
- dimensional spatial layer I = {(x, z) ∈ R2} × {y ∈ (−1, 1)}. One of
the areas of hydrodynamic stability where the nonlinear theory of energy
stability has been least successful is in the study of parallel flows in the
domain I, e.g. in the study of the stability of flows with a base solution like
v = (U(y), 0, 0). Typical of such flows are Couette flow where U(y) = y
and Poiseuille flow for which U(y) = 1 − y2. Couette flow is that which
arises when the top plate y = 1 is sheared at a constant velocity relative
to the bottom one, whereas Poiseuille flow is achieved by application of a
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constant pressure gradient in the x−direction, keeping the planes y = ±1
fixed.

The theory of the above flows is governed by the Navier - Stokes equations
for the velocity and pressure fields, vi, p. These partial differential equations
are, in a suitably non-dimensionalised form,

∂vi

∂t
+ Re vj

∂vi

∂xj
= − ∂p

∂xi
+ Δvi,

∂vi

∂xi
= 0, (5.53)

where Re(= V L̂/ν) is the Reynolds number. (The quantities V, L̂ and ν
are a typical velocity, depth of the layer before non-dimensionalisation, and
the kinematic viscosity of the fluid.) To study the stability of Couette or
Poiseuille flow one may set U = (U(y), 0, 0) and then derive equations
for the perturbation velocity and pressure fields (ui, π) defined by vi =
Ui + ui, p = p̄ + π, where p̄ is the pressure corresponding to the base
velocity Ui. The perturbation velocity and pressure ui and π then satisfy
the partial differential equations

∂ui

∂t
+Re

(
U

∂ui

∂x
+δi1U

′v
)
+Reuj

∂ui

∂xj
= − ∂π

∂xi
+Δui,

∂ui

∂xi
= 0, (5.54)

where U ′ = dU/dy and where u = (u, v, w).
The classical theory of linear instability for the system of partial

differential equations (5.54) writes the functions ui and π in the form

ui = ui(y)ei(ax+bz−act), π = π(y)ei(ax+bz−act),

and discards the quadratic term Reuj∂ui/∂xj . In this manner one derives
from (5.54) the system of ordinary differential equations

(ReU − c)iau + ReU ′v = −iaπ +
(
D2 − [a2 + b2]

)
u,

(ReU − c)iav = −Dπ +
(
D2 − [a2 + b2]

)
v,

(ReU − c)iaw = −ibπ +
(
D2 − [a2 + b2]

)
w,

iau + Dv + ibw = 0,

(5.55)

where D = d/dy and u(y) = (u(y), v(y), w(y)). The traditional approach
at this point has been to invoke Squire’s theorem, arguing that the trans-
formations Re → R̃e ã/a, c → c̃ ã/a, ã =

√
a2 + b2, reduce (5.55) to a

two-dimensional form

(ReU − c)iau + ReU ′v = −iaπ + (D2 − a2)u,

(ReU − c)iav = −Dπ + (D2 − a2)v,

iau + Dv = 0.

(5.56)

The no-slip boundary condition at the plates is interpreted mathematically
by requiring u = v = 0 for y = ±1. Next introduce a stream function
ψ by u = ∂ψ/∂y , v = −∂ψ/∂x, and then introduce the function φ(y)
by ψ = φ(y) eia(x−ct). In this manner, one deduces from (5.56) that the
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linear instability problem reduces to studying the fourth order ordinary
differential equation for φ(y),

(D2−a2)2φ = iaRe(U − c)(D2−a2)φ− iaReU ′′φ, y ∈ (−1, 1). (5.57)

This is the celebrated Orr-Sommerfeld equation. The boundary conditions
become

φ = Dφ = 0, y = ±1. (5.58)

Equation (5.57) subject to the boundary conditions (5.58) constitutes an
eigenvalue problem for the growth rate c = cr + ici. If ci > 0 the flow is
linearly unstable. The solution to (5.57), (5.58) for the spectrum {c(k)} is a
hard numerical problem, see e.g. the exposition in (Dongarra et al., 1996).

After many years of studying instability via (5.57) a different philosophy
was advocated in the early 90’s. (Butler and Farrell, 1992), (Gustavsson,
1991), and (Reddy and Henningson, 1993) have given convincing arguments
to assert that the transient onset of instability is not governed solely by
the leading eigenvalue of system (5.57), (5.58). In other words, the stability
of flows such as Couette and Poiseuille are not completely controlled by
the dominant eigenfunction φ(1) for which c(1) has largest imaginary part.
Indeed, they argue that one ought to consider the full three-dimensional
linear system (5.55).

It is instructive to rederive the three-dimensional system in the manner
of (Butler and Farrell, 1992). Written out in full, the linear equations which
arise from (5.54) are

∂u

∂t
+ Re

(
U

∂u

∂x
+ U ′v

)
= −∂π

∂x
+ Δu,

∂v

∂t
+ ReU

∂v

∂x
= −∂π

∂y
+ Δv,

∂w

∂t
+ ReU

∂w

∂x
= −∂π

∂z
+ Δw,

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0.

(5.59)

(Butler and Farrell, 1992) argue that it is sufficient to consider the compo-
nent of velocity normal to the plane of the flow, i.e. v, and the component
of vorticity in the normal (y) direction. The normal component of vorticity
is ω2 = (curlu)2 which may be written as ω, and then

ω =
∂u

∂z
− ∂w

∂x
. (5.60)

Equipped with a knowledge of v and ω one may then calculate the variables
u,w and π. The physical reason for v and ω being the main variables to
influence the instability process is that a streamwise vortex is seen to be
influential in experiments. From a mathematical viewpoint, v and ω arise
naturally in the kinetic energy.
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(Butler and Farrell, 1992) employ a different non-dimensionalisation
which writes (5.59)1−3 as

∂ui

∂t
+ U

∂ui

∂x
+ U ′vδ1i = − ∂π

∂xi
+

1
Re

Δui. (5.61)

The evolution equation for ω is found directly from (5.61) by differentiating
the equation for u with respect to z and subtracting from this the x deriva-
tive of the equation for w. A single equation for v is obtained from (5.61)
by taking curlcurl of that equation and retaining the second component of
the result. In this manner we derive the following equations for v and ω
derived and used by (Butler and Farrell, 1992),

∂ω

∂t
+ U

∂ω

∂x
− 1

Re
Δω = −U ′ ∂v

∂z
,

∂

∂t
Δv + U

∂

∂x
Δv − U ′′ ∂v

∂x
− 1

Re
Δ2v = 0.

(5.62)

The boundary conditions for v and ω are that

v =
∂v

∂y
= ω = 0, at y = ±1.

(Butler and Farrell, 1992) write v and ω in the form v =
v(y) ei(ax+bz)+σt, ω = ω(y) ei(ax+bz)+σt, and this in (5.62) leads to the
following system of ordinary differential equations for v and ω,

(D2 − k2)2v − iaReU(D2 − k2)v + iaReU ′′v = Reσ(D2 − k2)v,

(D2 − k2)ω − iaReUω − ibReU ′v = Reσω,
(5.63)

where k2 = a2+b2. System (5.63) is to be solved on the interval y ∈ (−1, 1)
subject to the boundary conditions

v = Dv = 0, ω = 0, y = ±1. (5.64)

We shall refer to (5.63), (5.64) as the Butler-Farrell eigenvalue problem.
The eigenvalues are σ(i) with eigenfunctions {v(i), ω(i)}.

To understand the relevance of the Butler - Farrell eigenvalue problem we
return to a discussion of stability of Couette and Poiseuille flows. For Cou-
ette flow the linearised theory of instability based on the Orr-Sommerfeld
equation predicts the flow is always stable, i.e. ci < 0 for all eigenvalues.
For Poiseuille flow linear theory based on the Orr-Sommerfeld equation
yields instability for Re > 5772.22, see e.g. (Orszag, 1971). The critical
wavenumber for instability is ac = 1.02056, (Orszag, 1971). When one bases
a nonlinear energy stability theory on the kinetic energy then unconditional
(i.e. for all initial data) nonlinear stability is found for Couette flow when
RE < 20.7, whereas nonlinear stability follows for Poiseuille flow when
RE < 49.6, cf. (Joseph, 1976b). Experimental work, on the other hand, has
visualised instabilities for Reynolds numbers of the order of 1000. Thus,
the linear instability theory is of little use in predicting accurately the
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onset of instability since the values of Re = ∞ and Re = 5772.22 are too
large. Energy stability theory, on the other hand, is far too conservative in
the stability boundary it yields. This is a case where the nonlinear energy
method has not to date proved too useful.

To explain why instability in Couette or Poiseuille flow is seen in
practice at much lower Reynolds numbers than those predicted by clas-
sical linear instability theory, investigations by (Mack, 1976), (Gustavsson,
1981; Gustavsson, 1986), (Gustavsson and Hultgren, 1980), and (Shanthini,
1989), studied the spectrum of the Orr-Sommerfeld operator to see if reso-
nances between eigenvalues could be responsible. A resonance occurs where
an eigenvalue is exactly repeated. In that case one of the eigenfunctions of
the repeated eigenvalue contains a linear t growth term. (The situation is
analogous to the well known case of a second order ordinary differential
equation with constant coefficients. When there are repeated roots of the
auxilliary equation one of the eigenfunctions grows linearly in t.) This could
conceivably lead to strong transient algebraic growth of the perturbation
at short times which is eventually damped out exponentially according to
linear theory. While several resonances were found in numerical studies, no
substantial growth would appear to have been predicted: the comments of
(Butler and Farrell, 1992), p. 1645, on this matter are very pertinent. (A
resonance in the numerical sense was interpreted as two eigenvalues being
a pre-requested distance apart in the complex plane.) The idea that reso-
nances could be responsible for transient solution growth means that it is
not sufficient to investigate only the eigenvalue (and eigenfunction) of the
Orr-Sommerfeld problem which has greatest imaginary part. This has lead
to the development of numerical methods which can accurately yield all
the eigenvalues and eigenfunctions of (5.57) and (5.58), or at least we find
sufficient eigenvalues at the “top end” of the spectrum. By the “top end”
of the spectrum we mean those eigenvalues which have largest imaginary
parts. We typically calculate all eigenvalues for which ci > −1.

In figures 5.1 and 5.2 below we show the top end of the spectrum for
(5.57) and (5.58), in the case of Poiseuille flow with Re = 5772.22, a =
1.02056 (figure 5.1), and for Couette flow with Re = 900, a = 1.2 (figure
5.2). The even eigenfunctions satisfy φ(y) = φ(−y) whereas the odd ones
are such that φ(−y) = −φ(y).

The eigenvalues in figure 5.1 extend downward with cr → 2/3 and form
a countably infinite set. Those in figure 5.2 do likewise with cr = 0. The
eigenvalues in figures 5.1 and 5.2 are calculated using the technique advo-
cated by (Dongarra et al., 1996), see chapter 9. It is important to note that,
in both the Couette and Poiseuille flow eigenvalue problems, the eigenval-
ues and eigenfunctions near the branch of the “Y-shape” are difficult to
calculate numerically. This is because the eigenfunctions of nearby eigen-
values are close to being linearly dependent. (Farrell, 1988b) has shown
that for Poiseuille flow the skew-symmetric eigenfunctions corresponding
to those eigenvalues nearest the branch of the “Y” contribute most to the
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Figure 5.1. Poiseuille flow spectrum, U = 1 − y2, Re = 5772.22, a = 1.02056. ◦=
even eigenmodes, ×= odd modes
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Figure 5.2. The leading eigenvalues in the spectrum for Couette flow, U = y, with
Re = 900, a = 1.2

growth in time of the kinetic energy, and this is thus further evidence for
needing an accurate eigenvalue solver yielding many eigenvalues.

The need to calculate many eigenvalues and eigenfunctions accurately
is now very necessary, as the work of (Butler and Farrell, 1992), (Reddy
and Henningson, 1993), (Schmid and Henningson, 1994), and (Hooper and
Grimshaw, 1996) shows. We concentrate on a description of the work of
(Butler and Farrell, 1992) who demonstrate that the kinetic energy can
have very large growth in a relatively short time, even for flows which
are well below the threshold for instability according to linear theory. The
variational method employed by (Butler and Farrell, 1992) is based on
earlier work of (Farrell, 1988b; Farrell, 1988a; Farrell, 1989) on growth in
various two-dimensional geophysical fluid flows.

(Butler and Farrell, 1992) consider the kinetic energy of a perturbation
to Couette or Poiseuille flow, i.e. they study the function

E(t) =
1

2V

∫ 1

−1

∫ A

0

∫ B

0

(u2 + v2 + w2) dz dx dy, (5.65)

where A and B are the x and z wavelengths and V is the volume of the
energy cell. Due to the fact that the system is linearised they can work with
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v and ω as v(x, y, z, t) = v̂(y, t) ei(ax+bz), ω(x, y, z, t) = ω̂(y, t) ei(ax+bz),
where v̂, ω̂ can be complex, although only the real parts are used. (Butler
and Farrell, 1992) show that the kinetic energy (5.65) may be written in
terms of v and ω as

E(t) =
1
8

∫ 1

−1

[
v̂∗v̂ +

1
k2

(∂v̂∗

∂y

∂v̂

∂y
+ ω̂∗ω̂

)]
dy, (5.66)

where a ∗ denotes complex conjugate and k2 = a2 + b2. To compute
numerical calculations (Butler and Farrell, 1992) discretize v and ω by
writing

v =
2N∑

j=1

γj

[
ṽj exp (σjt)

]
exp
[
i(ax + bz)

]
,

ω =
2N∑

j=1

γj

[
ω̃j exp (σjt)

]
exp
[
i(ax + bz)

]
,

(5.67)

where γj is the spectral projection on the jth mode of the Butler - Farrell
eigenvalue problem (5.63), (5.64). The technique of (Butler and Farrell,
1992) to find the eigenfunction and eigenvalue of the jth mode is to dis-
cretize using finite differences and then employ the QR algorithm on the
generalised matrix eigenvalue problem. The techniques of (Reddy and Hen-
ningson, 1993) and (Hooper and Grimshaw, 1996) also find energy growth
although the numerical method underpinning the work of (Reddy and
Henningson, 1993) is a Chebyshev collocation one, whereas (Hooper and
Grimshaw, 1996) employ a Chebyshev tau technique. Hence, (Butler and
Farrell, 1992) adopt the notation v ≡ Vmjγje

i(ax+bz), ω ≡ Ωmjγje
i(ax+bz),

where Vmj = ṽmje
σjt, Ωmj = ω̃mje

σjt, with m denoting a value between
1 and N and referring to the finite difference point ym+1 = mΔy in the
interval y ∈ (−1, 1). This allows (Butler and Farrell, 1992) to approximate
the energy (5.66) by a finite dimensional form

E(t) =
Δy

8

[
γ∗

pV ∗
mpVmjγj +

1
k2

{
γ∗

p

∂V ∗
mp

∂y

∂Vmj

∂y
γj +γ∗

pΩ∗
mpΩmjγj

}]
, (5.68)

where summation over the various subscripts is understood. The form of
E(t) is conveniently rewritten, (Butler and Farrell, 1992), as

E(t) = γ∗
j Eji(t)γi. (5.69)

The form for the Hermitian matrix Eji may be found from (5.68) and the
time dependence of Eij has been explicitly pointed out.

The idea of (Butler and Farrell, 1992) is to fix the wavenumbers a and b,
fix the Reynolds number Re, and then find the linear perturbation which
maximises E(t) at time t subject to the constraint that the initial energy
has the numerical value of 1. This yields a maximisation problem for the
function F given by F = γ∗

j Eji(t)γi +λ
(
γ∗

j Eji(0)γi−1
)
, for some Lagrange
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multiplier λ. The solution to this maximisation problem is found from the
Euler - Lagrange equations

Eij(t)γj + λEij(0)γj = 0. (5.70)

The eigenvalues λ represent the ratio E(t)/E(0) for an eigenvector γi. (The
technical details of a practical way to do this calculation using the Cheby-
shev tau method are given in the very readable account of (Hooper and
Grimshaw, 1996).) The calculation of λ involves finding Eij(t) and this
in turn involves calculation of the eigenvalues and eigenfunctions of the
Butler - Farrell eigenvalue problem. (Butler and Farrell, 1992) have com-
pleted extensive calculations of (5.70) and have computed the growth rate
for many situations in Couette flow, in Poiseuille flow, and even in Blasius
flow.

For Couette flow, (Butler and Farrell, 1992) find with Re = 1000 that
the global optimal for time τ = 117 units is achieved with a = 0.035 and
b = 1.60. This yields an energy ratio of E(τ)/E(0) = 1185. This is cer-
tainly an impressive growth of the kinetic energy. Since only linear theory
is considered, the linear energy eventually decays, as shown schematically
in figure 5.3.

We stress that (Butler and Farrell, 1992) show that a two-dimensional
perturbation yields an energy growth of O(13) and thus the perturba-
tion causing largest energy disturbance is truly three-dimensional. Similar
results pertaining to energy growth are found by (Reddy and Henning-
son, 1993), (Hooper and Grimshaw, 1996), for Couette and Poiseuille
flow, and by (Schmid and Henningson, 1994) for the problem of Poiseuille
flow in a circular pipe. Other related recent interesting results for shear
flows and channel flows are discussed in (Blyth et al., 2006), (Blyth and
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Figure 5.3. Schematic of the energy growth for Couette or Poiseuille flow
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Pozrikidis, 2004a; Blyth and Pozrikidis, 2004b), (Crisciani, 2004), (Hifdi
et al., 2004a; Hifdi et al., 2004b), (Yecko, 2004), (Luo and Pozrikidis, 2006),
and in (Malik and Hooper, 2007), while (Kim and Choi, 2006) determine a
critical time at which a fastest growing instability occurs for a spin down to
rest hydrodynamic stability problem. (Potherat, 2007) and (Li et al., 2007)
are interesting recent studies of shear flows involving a magnetic field and
an electric field, respectively.

For the problem of Poiseuille flow, (Butler and Farrell, 1992) obtain
similar behaviour to that of figure 5.3 for growth of the kinetic energy. For
Re = 5000, a value which is stable according to classical linear instability
theory, they determine optimal energy growth at time τ = 379 units. The
respective wavenumbers are a = 0 and b = 2.044. The energy ratio is
E(τ)/E(0) = 4897.

The work of (Butler and Farrell, 1992), (Reddy and Henningson, 1993)
and (Schmid and Henningson, 1994) shows that when the effects of non-
linearity are fully understood and added to this it could well describe
quantitatively the formation of patches of turbulent fluid flow. In the con-
text of fully nonlinear flow, (Butler and Farrell, 1994) have analysed the
nonlinear development of two-dimensional perturbations which employ the
optimal configuration of the linear problem, namely that which gains most
energy. To do this they employ a vorticity - streamfunction numerical sim-
ulation using a Fourier spectral discretization in x with finite differences in
y. These results are very interesting and display finite amplitude solutions
which persist for a long time.

5.4.4 Stability analysis for salinization

(van Duijn et al., 2002) is an important paper in nonlinear energy stability
theory. These writers find linear instability bounds for the linearised system
arising from (5.50), (5.51) using the asymptotic base solution S0(z) given
by (5.49). However, they also derive nonlinear energy stability thresholds
for the full system (5.50), (5.51) when S0 is given by (5.48), treating t as a
parameter, and they compare the boundaries so found to those of the lin-
ear results. While these results are very revealing in themselves, they also
treat (5.50)2 as a constraint in the energy theory. This is a beautiful idea
and leads to much improved nonlinear energy stability thresholds as com-
pared with the traditional approach where the integrated form of (5.50)2
is employed, cf. section 4.3.4.

The analysis of (van Duijn et al., 2002) is based on an L2 norm of s.
Decay of ‖s‖ also leads to decay of ‖u‖ through (5.50)2. Thus, (van Duijn
et al., 2002) work with the equation, arising from (5.52)

d

dt

1
2
‖s‖2 = −‖∇s‖2 − Ra(S0

,zs, w), (5.71)
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where (·, ·) is the inner product on L2(V ), V being the period cell for
(ui, s, π), and ‖ · ‖ is the associated norm.

If one defines RE by

R−1
E = sup

H

−(S0
,zs, w)

‖∇s‖2
, (5.72)

then, since S0 is a decaying exponential, RE exists and one sees from (5.71)
that

d

dt

1
2
‖s‖2 ≤ −‖∇s‖2

(
1 − Ra

RE

)
. (5.73)

Thus, if Ra ≤ RE then d‖s‖2/dt < 0 and there is stability (in a sense). A
key finding of (van Duijn et al., 2002) is that the space H one selects is
vital to the analysis. If one simply multiplies (5.50)2 by ui and integrates
over V then one finds

‖u‖2 − (s, w) = 0. (5.74)

However, if one eliminates π from (5.50), then one finds

Δw − Δ∗s = 0, (5.75)

as a pointwise constraint. (van Duijn et al., 2002) analyse in depth the
maximum problem (5.72) with H being in turn the spaces

H1 = {(s,u)|x, y periodic with respect to V,

s = u = 0 at z = 0,∞, ui,i = 0,

and ‖u‖2 − (s, w) = 0}
and

H2 = {(s, w)|x, y periodic with respect to V,

s = w = 0 at z = 0,∞,

and Δw − Δ∗s = 0 in V } .

The Euler-Lagrange equations for the maximum problem (5.72) using both
H1 and H2 are solved numerically by (van Duijn et al., 2002). With S0 =
e−z they find the space H2 leads to much improved stability thresholds.
Actual values may be found in (van Duijn et al., 2002) but a schematic of
the situation is contained in figure 5.4.

Employing t as a parameter, (van Duijn et al., 2002) also solve the max-
imum problem (5.72) numerically with S0(z, t) given by (5.48). This too is
very revealing. They find the critical Rayleigh number threshold decreases
as t increases in a manner indicated in figure 5.5 . Actual numerical values
may be found in (van Duijn et al., 2002).

The paper of (van Duijn et al., 2002) also presents computations of a
two-dimensional solution when Ra > RL, the linear instability threshold,
and they find growing salt finger-like shapes. They also compute a kinetic
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Figure 5.4. Schematic of Rayleigh number against wavenumber. Curve 1 is linear
result, curve 2 is energy result with space H2, curve 3 with H1, S0 = e−z
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Figure 5.5. Schematic of Rayleigh number against wavenumber. Energy curves
using (5.48), t1 < t2 < t3 < . . . < t∞

energy, E = ‖u‖2/2, numerically and investigate how E(t) behaves in time
for Ra fixed.

5.4.5 Transient growth in salinization

(Pieters and van Duijn, 2006) represents and extension of the work of (van
Duijn et al., 2002). However, it is an important one in that, to the best of
my knowledge, it is the first study of the transient growth of solutions in
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porous media even though the Rayleigh number is such that there is linear
stability. Thus, this is in a sense, the first study in a porous medium of
time growing solutions in some sense akin to those in parallel flows found
by (Butler and Farrell, 1992), cf. section 5.4.3. In addition, (Pieters and van
Duijn, 2006) also present a neat transformation to symmetrize the system
and obtain an optimal nonlinear stability result. This amounts to working
with a weighted energy, and is of much interest in its own right.

(Pieters and van Duijn, 2006) concentrates on the base function S0 = e−z

and studies in detail the linearised problem one derives from (5.50), (5.51),
i.e. (5.52). They introduce normal modes in (5.52) and thus study the
spectrum of the linear operator associated to the system

s,t = D2s + Ds − a2s + Rae−zB(s), z > 0, t > 0,

B−1(w) ≡ −a−2D2w + w = s, z > 0, t > 0,

w(0, t) = s(0, t) = 0, t > 0,

s(z, 0) = f(z), z > 0.

(5.76)

They introduce the variable u(z, t) = ez/2s(z, t) and show that the linear
operator associated to the right hand side of (5.76) becomes a symmetric
operator on L2(R+) when (u,w) are employed instead of (s, w). In this man-
ner, they are able to study the spectrum in detail and derive its properties
in terms of the wavenumber a.

A very interesting part of the analysis of (Pieters and van Duijn, 2006)
is where they study the behaviour of the energy E(t) = ‖s(t)‖2 when the
Rayleigh number is above the energy threshold RE but below the linear
threshold RL, i.e. RE < Ra < RL. In this case there is linear stability,
but (Pieters and van Duijn, 2006) are able to demonstrate that E(t) may
initially grow, and they obtain bounds for this growth. They show that
transient growth may be eliminated by working with the weighted energy

Ew =
∫

R+
eαzs2(z, t)dz

for f in a suitable weighted L2 space.
Much of the material of section 5.4 is lucidly covered in detail in chapter

3 of (Pieters, 2004). Another interesting geophysical problem which could
have important consequences for CO2 absorption is solute transport in a
peat layer. A non-isothermal Darcy porous medium model for convection
as a transport mechanism in peat moss layers is developed in detail in
chapter 5 of (Pieters, 2004), see also (Rappoldt et al., 2003). This is another
problem where the basic “ground state” solution involves a temperature
field which depends on both the vertical spatial coordinate, z, and the
time, t, and again the analysis is very interesting and carefully carried
out. When vibrations are involved there is clearly time dependence to be
included and the article by (Govender, 2006b) addresses such a problem
for a porous layer in a cylinder.
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5.5 Turbulent convection

5.5.1 Turbulence in porous media

Turbulent motion of a fluid in a porous medium may well become a very
important topic, especially due to use of heat pipes to transfer heat away
from very hot components in e.g. computers. (A silicon chip does not work
above a certain temperature and a well used computer needs heat rapidly
transferred from vital components.) There are many types of heat pipe,
some using a copper tube with a copper wick (porous medium) inside. Also,
high porosity metal foams, cf. (Zhao et al., 2004) may be potentially used
in heat transfer devices. When heat is transferred the resulting motion may
well be turbulent and with high temperature gradients is, in fact, turbu-
lent convection in a porous medium. Thus, in this section we describe very
interesting work of (Doering and Constantin, 1998) which derives rigorous
bounds for the Nusselt number in turbulent porous convection. (Doering
and Constantin, 1998) write that they use Darcy’s law and are not actually
considering a fully turbulent regime which might need some kind of Forch-
heimer equation. They write that what they mean by turbulent convection
is the absence of spatial and temporal coherence in the solutions. However,
the mathematics of (Doering and Constantin, 1998) is quite beautiful and
may well be utilized in other more exotic theories than that of Darcy.

While (Doering and Constantin, 1998) also consider inertia in Darcy’s
law, we restrict attention to the case of zero inertia. They consider a porous
medium occupying the infinite layer in the non-dimensional region {(x, y) ∈
R

2} × {z ∈ (0, 1)}. They restrict attention to periodic solutions with non-
dimensional x and y periods, Λx, Λy, respectively, although they do mention
that other horizontal boundary conditions may be employed. Thus, their
period cell is the box V = (0,Λx) × (0,Λy) × (0, 1). We shall adopt their
notation and when we write

∫
F dx dy dz it is understood that this means

integration over V .
The non-dimensional equations considered by (Doering and Constantin,

1998) are

T,t + uiT,i = ΔT,

ui + p,i = RaTki, ui,i = 0,
(5.77)

where T, ui, p are temperature, velocity and pressure, k = (0, 0, 1) and
Ra is the Rayleigh number Ra = gα(TL − TU )Kd/νκ. Here d is the
dimensional depth of the layer, g, α, ν,K, κ have their usual meaning and
TL and TU are the temperatures on the lower and upper planes before
non-dimensionalization, with TL > TU . The non-dimensional boundary
conditions may be written

T = 1, w = 0, z = 0; T = 0, w = 0, z = 1;
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where w = u3. To complete the boundary-initial value problem one needs
the initial condition

T (x, 0) = T0(x),

where T0 is a prescribed function. Since we know T0 then p0 may be found
from Δp = RaT,z and then u0

i follows from (5.77).
(Doering and Constantin, 1998) observe that the heat flux J is given by

Ji = uiT − T,i .

In turbulent convection a particular average of this is the Nusselt number
and this in some sense characterises the problem. (Doering and Constantin,
1998) define their Nusselt number, Nu, by an average of J3 so that

Nu = sup
T0

lim sup
t→∞

1
t

∫ t

0

ds
1

ΛxΛy

∫
dx dy dz

(
wT − ∂T

∂z

)
, (5.78)

where T0 denotes the initial value for T (x, 0). It is shown in (Doering and
Constantin, 1998) that Nu may be expressed in terms of T as

Nu = sup
T0

lim sup
t→∞

1
t

∫ t

0

ds
1

ΛxΛy

∫
dx dy dz |∇T |2 . (5.79)

In section 4.2.1 we have seen that for Ra ≤ R2
c = 4π2 the conduction

solution prevails and then Nu = 1. However, for Ra > R2
c thermal con-

vection will commence. Experimentally it is found that this occurs first as
stationary convection rolls and as Ra is increased these rolls are replaced
by oscillatory solutions and eventually (possibly) by chaotically turbulent
states. It is to the latter that the analysis of (Doering and Constantin,
1998) is primarily addressed.

5.5.2 The background method

(Doering and Constantin, 1998) base their analysis on a “background”
method. The idea is to introduce a field τ(x) which satisfies the boundary
conditions for T , i.e. τ = 0 when z = 1, τ = 1 when z = 0, and τ satisfies
the equations

Uiτ,i = 0,

Ui + P,i = Ra τki, Ui,i = 0.
(5.80)

Here Ui and P are suitable “velocity and pressure” fields with U3 = 0
at z = 0, 1. The key is to pick Ui, τ in a clever way. Next, (Doering and
Constantin, 1998) decompose the actual temperature, velocity and pressure
fields T, ui and p into the background fields plus a fluctuation part. They
set

T = τ + θ, ui = Ui + vi, p = P + q, (5.81)
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where θ, vi and q are the fluctuations. In addition to periodicity the
fluctuations satisfy the boundary conditions

θ = 0, v3 = 0 at z = 0, 1. (5.82)

Upon using the differential equations (5.77) one finds the equations satisfied
by the fluctuations,

θ,t + viθ,i + Uiθ,i + viτ,i = Δθ + Δτ,

vi + q,i = Raθki, vi,i = 0.
(5.83)

The analysis of (Doering and Constantin, 1998) begins with (5.83)1 to
derive

d

dt

1
2

∫
θ2dx dy dz = −

∫
(τ,iθ,i + |∇θ|2 + θviτ,i)dx dy dz. (5.84)

Also, they note that since T = τ + θ,

−
∫

τ,iθ,i dx dy dz =
1
2

∫
(|∇θ|2 + |∇τ |2 − |∇T |2)dx dy dz. (5.85)

Upon adding these equations one may derive

d

dt

1
2

∫
θ2dx dy dz +

∫
|∇T |2 dx dy dz =

∫
|∇τ |2dx dy dz −

∫
(|∇θ|2 + 2θviτ,i)dx dy dz.

(5.86)

Their next step is to define the quadratic function

H(λ)
τ {θ} ≡ 1

ΛxΛy

∫
(λ|∇θ|2 + θviτ,i)dx dy dz (5.87)

for λ > 0. They then divide (5.86) by ΛxΛy, average over time and take
the supremum over T0 to see, using the definition for Nu, (5.79), that

Nu =
1

ΛxΛy

∫
|∇τ |2dx dy dz

+ sup
T0

lim sup
t→∞

1
t

∫ t

0

[
−2H(1/2)

τ

{
θ(·, s)

}]
ds.

(5.88)

Now they argue that one selects the function τ such that H
(1/2)
τ ≥ 0 and

hence one can bound Nu by

Nu ≤ 1
ΛxΛy

∫
|∇τ |2dx dy dz = 1 +

1
ΛxΛy

∫
|∇τ + k|2dx dy dz .

The idea is to minimize over the τ functions to obtain

Nu ≤ inf
τ

{
1

ΛxΛy

∫
|∇τ |2dx dy dz

∣∣∣

H(1/2)
τ ≥ 0, τ(z = 0) = 1, τ(z = 1) = 0

}
.

(5.89)
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They then note that this calculation is made more tractable by choosing
τ = τ(z), Ui = 0. The bound in inequality (5.89) may then be replaced by

Nu − 1 ≤ inf
τ

{∫ 1

0

|τ ′(z) + 1|2dz
∣∣∣H(1/2)

τ ≥ 0, τ(0) = 1, τ(1) = 0
}

.

The real goal of (Doering and Constantin, 1998) is to improve on this
bound and in this regard they refer to work of (Nicodemus et al., 1997a;
Nicodemus et al., 1997b) (see also (Nicodemus et al., 1998; Nicodemus et al.,
1999)) and so introduce a parameter c > 1 and generalize the argument
leading to (5.86). They form (5.84)×c + 2×(5.85) to see that

d

dt

c

2

∫
θ2dx dy dz +

∫
|∇T |2 dx dy dz =

∫
|∇τ |2dx dy dz

−
∫ [

(c − 2)τ,iθ,i + (c − 1)|∇θ|2 + cθviτ,i

]
dx dy dz.

(5.90)

This expression is averaged and one shows

Nu =
1

ΛxΛy

∫
|∇τ |2dx dy dz

+ sup
T0

lim sup
t→∞

1
t

∫ t

0

(
− 1

ΛxΛy∫ [
(c − 1)|∇θ|2 + cθviτ,i − (c − 2)θ Δτ

]
dx dy dz

)
ds.

(5.91)

The minimum is taken over θ and vi of the second term on the right in
(5.91) and after some detailed calculations involving the Euler-Lagrange
equations for this term, (Doering and Constantin, 1998) show that this
procedure leads to the bound

Nu − 1 ≤ inf
a∈(0,1)

inf
τ

{
1

4a(1 − a)

∫ 1

0

[
τ ′(z) + 1

]2
dz
∣∣∣

H(a)
τ ≥ 0, τ(0) = 1, τ(1) = 0

} (5.92)

where a, 0 < a < 1, is related to c by a = (c − 1)/c.
The next stage of (Doering and Constantin, 1998) is to actually select

functions τ(z) to turn (5.92) into a useful bound on the Nusselt number.

5.5.3 Selecting τ .

(Doering and Constantin, 1998) consider the class of functions

τδ(z) =

⎧
⎪⎨

⎪⎩

1 − z/2δ, 0 ≤ z ≤ δ,

1/2, δ ≤ z ≤ 1 − δ,

(1 − z)/2δ, 1 − δ ≤ z ≤ 1,
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arguing that the gradients will be strongest in the boundary layers. They
then perform a bounding analysis and Ra is restricted by their choice of τ

since they need H
(a)
τ ≥ 0. After some calculations they show that

Nu ≤ 1 +
1

4a(1 − a)

∫ 1

0

[
τ ′
δ(z) + 1

]2
dz

=
Ra

128a2(1 − a)
− (1 − 2a)2

4a(1 − a)
,

where Ra ≥ 32a. The Ra term is minimized and this leads to the asymptotic
estimate

Nu ≤ 27
512

Ra

(
1 + O

( 1
Ra

))
, Ra → ∞.

In section 7 of (Doering and Constantin, 1998) they modify the variational
problem and find an alternative way to bound Nu. This analysis is involved
but particularly appealing, involving a reduced class of constraints. We do
not go into details, but in terms of the elliptic integrals

K(m) =
∫ 1

0

dt

[(1 − t2)(1 − mt2)]1/2
, E(m) =

∫ 1

0

(
1 − mt2

1 − t2

)1/2

dt

they define the variables η(m) = 8K(m)[K(m) − E(m)], σ(m) =
2mK(m)3/[K(m) − E(m)], and then obtain the following rigorous bound
on the Nusselt number,

Nu ≤ 1 +
4η(m)[αη(m) + Ra − 4aσ(m)]

3Ra2(1 − a)
. (5.93)

By optimizing over a they produce the asymptotic bound

Nu ≤ 9
256

Ra

(
1 + O

( 1
Ra

))
, Ra → ∞. (5.94)

The paper of (Doering and Constantin, 1998) evaluates (5.93) numer-
ically and graphs of several bounding curves are presented there. In
particular, they relate their bounds to available experimental results and
the agreement is very good indeed.

The paper of (Otero et al., 2004) contains extensive computations for the
turbulence problem of (Doering and Constantin, 1998). In addition, they
extend the variational upper bound on the heat transport. The (Nu,Ra)
bound of (Doering and Constantin, 1998) is better in the range Ra less
than approximately 2000, whereas the bound of (Otero et al., 2004) is an
improvement on the bound of (Doering and Constantin, 1998) for Ra above
this value.

The effects of rotation are incorporated into an analysis which has some
resemblance to that of (Doering and Constantin, 1998) by (Wei, 2004).
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This writer derives the bound

Nu ≤ Ra

16
√

Ta + 1
,

where Ta is a Taylor number (measuring the rotation of the layer).
An interesting article which deals with the way thermal convection

switches from an ordered state to one which may be turbulent, and involves
non - Darcy effects is that of (Vadasz et al., 2005b). These writers study
the bifurcation problem and obtain very interesting results.

Another related analysis of bounding heat transport may be found in
the work of (Doering et al., 2006b). These writers tackle the problem of
convection when the Prandtl number is infinite. This is a very interesting
paper which employs a logarithmic background temperature profile in the
analysis. In fact, the τ function has linear in z dependence in the boundary
layers close to 0 and 1, but behaves like log[z/(1 − z)] in the remainder of
the layer. Bounds on the energy dissipation are derived by (Doering and
Foias, 2002).

5.6 Multiphase flow

5.6.1 Water-steam motion

In this section we consider the motion of a liquid water - steam mixture in
a porous medium. Such a problem has many applications to e.g. heat pipes,
and in geothermal systems, cf. (Pestov, 1998), (Amili and Yortsos, 2004)
and the references therein. In fact, (Pestov, 1998) starts by considering
geysers in California, Italy, and New Zealand, and explains that really such
underground situations should be modelled by a two layer system where
liquid or steam may be above or below a porous layer containing both
phases coexisting. We revisit the two layer problem specifically in a heat
pipe context in section 6.6 when the model of (Amili and Yortsos, 2004) is
reviewed.

In fact, (Pestov, 1998) studies a model for water/steam motion in porous
media and shows that a two layer situation may develop naturally. Her
model is very interesting mathematically because it reduces to a parabolic
equation for the pressure disturbance and a forced hyperbolic equation for
the relative permeability disturbance.

The equations governing coexistent vapour and liquid in a porous
medium are complicated. (Amili and Yortsos, 2004) write the mass and
energy balances, together with Darcy law momentum balances as

∂

∂t
(φρvsv + φρ�s�) + (vv

i ρv + v�
iρ

�),i = 0,

∂

∂t

{
φ(ρvhvsv + ρ�h�s�) + (1 − φ)ρrhr

}
+ (ρ�v

�
ih� + ρvvv

i hv),i = keΔT,



228 5. Stability of Other Porous Flows

vv
i = −kkrv

μv
(p,i − ρvgki),

v�
i = −kkr�

μ�
(p,i − ρ�gki),

where v and � (sub or superscript) denote vapour and liquid phases, φ
is porosity, vi velocity, p pressure, g gravity, k = (0, 0, 1), ρ density, k
permeability, μ viscosity, kr are the relative permeabilities, and s are the
saturations (i.e. the volume fractions of the pore volume occupied by a par-
ticular phase). (Pestov, 1998) assumes capillary pressure is unimportant,
conduction is negligible, vapour enthalpy and latent heat variations may
be neglected and the liquid phase density is constant. She presents non-
dimensional forms of the continuity and energy equations as (she also gives
another form of the energy equation)

∂

∂t
(m̃ϕsv + s�) + (Jv

i + J�
i ),i = 0,

σδ̃ε

φ
ϕε−1p̄

∂p̂

∂t
− �̂
(∂s�

∂t
+ J�

i,i

)
= 0

(5.95)

where s are the saturations, p̂ is the pressure, ϕ = p̄p̂+1, p̄ being a pressure
jump, Ji are fluxes and the other terms are constants defined in (Pestov,
1998). The fluxes are defined via Darcy’s law as

Jv
i = −krvϕ

μQ̃

(
γp̂,i − m̃ϕki

)
, J�

i = − kr�

m̃Q̃

(
γp̂,i − ki

)
, (5.96)

where krv, kr� are relative permeabilities. Her equations hold in the non-
dimensional layer z ∈ (0, 1), (x, y) ∈ R

2, with t > 0. Boundary conditions
are assumed at the top and bottom of the layer. (Pestov, 1998) writes
kr� = ψ(s�), krv = 1−ψ(s�) for a function ψ and then reduces her equations
to a system in two unknowns, the saturation pressure p and relative perme-
ability kr�. She writes these as a steady solution, p0, k0

r�, and a perturbation
of form

p = p0(z) + p′(x, t), kr� = k0
r�(z) + k′(x, t) = ψ(s0

� + s′).

The perturbations p′, k′, s′ are assumed small. Deriving equations for p′, k′

she finds

(1 − m̃ϕ0)
∂s′

∂t
+ c�

(
1 +

cv

c�
ϕ0
) ∂k′

∂z
=

p̄

p̄�sμQ̃
Φv +

p̄

p̄�sm̃Q̃
Φ� , (5.97)

∂s′

∂t
+ c�

∂k′

∂z
=

p̄

p̄�sm̃Q̃
Φ� , (5.98)
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where

Φv =
∂

∂z

[
k0

rvϕ0
(∂p′

∂z
+

1
ϕ0

dϕ0

dz
p′ − 2m̃p̄�sp

′
)]

+ k0
rvϕ0Δp′ − p̄�sμQ̃

[
m̃s0

v + ν(ϕ0)ε−1
]∂p′

∂t
,

Φ� =
∂

∂z

(
k0

r�

∂p′

∂z

)
+ k0

r�Δp′ + p̄�sm̃Q̃ν(ϕ0)ε−1 ∂p′

∂t
.

She argues that m̃ and cv/c� are much smaller than 1 and (5.97) may,
therefore, by replaced by

∂s′

∂t
+ c�

∂k′

∂z
=

p̄

p̄�sμQ̃
Φv +

p̄

p̄�sm̃Q̃
Φ� . (5.99)

Hence, in this linear approximation, the system (5.98), (5.99) decouples
into the equation Φv = 0, which is a parabolic equation for p, and equation
(5.98) which becomes a forced hyperbolic equation for k′. The equation
Φv = 0 is

k1ζ
ε ∂p′

∂t
− ζ2Δp′ − ∂

∂ζ

(
ζ2 ∂p′

∂ζ

)
= 0 (5.100)

for a suitable constant k1 and a rescaled z−variable, ζ. (Pestov, 1998)
presents boundary conditions for (5.100). She solves this equation by writ-
ing p′ = e−λtf(x, y)P (ζ), for fxx + fyy = −a2f, and then P satisfies a
Sturm-Liouville problem. (Pestov, 1998) solves this Sturm-Liouville prob-
lem in two cases. Firstly for a = 0, infinite horizontal wavelength, whence
she can write the solution in terms of Bessel functions. Secondly for a = 0.
This requires a detailed asymptotic analysis and is presented in (Pestov,
1998). Once the pressure perturbation is known she returns to equation
(5.98) and writes it in the form

∂k′

∂t
+ C

∂k′

∂ζ
= k2

∂p′

∂t
+ k3

∂p′

∂ζ
, (5.101)

where C, k2, k3 are known. She solves equation (5.101) analytically (in terms
of the pressure function) by integrating along the characteristics ζ = Ct+r.
Numerical results are presented in some detail and the saturation distance
is calculated. The work of (Pestov, 1998) is a beautiful analysis which
shows how a two layer situation may evolve from a vapour-liquid coexistent
layer in a porous medium. Mathematically, the analysis is really interesting.
However, she also relates this carefully to multi-layer structures observed
in geothermal reservoirs.

The influence of the choice of the Reynolds tensor on the derivation of
multiphasic incompressible fluid models is analysed carefully by (Bresch
et al., 2007).
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5.6.2 Foodstuffs, emulsions

There are many applications of multiphase flows in porous media. We
briefly mention some others in addition to those of section 5.6.1. (Zorrilla
and Rubiolo, 2005a) develop a model for immersion chilling and freezing of
foods. This model involves deriving global equations for continuity, linear
momentum, angular momentum, and energy, and continuity and energy
equations for each of the components involved in the freezing process of
the food product. These involve the solid food component, water and solute
(both in liquid phase), and ice. This is a complicated model and numerical
methods and solutions are reported. Further numerical solutions are given
by (Zorrilla and Rubiolo, 2005b).

(Dincov et al., 2004) considers a mathematical model for microwave heat-
ing of food. They present the relevant form of Maxwell’s equations which
govern the microwaves in the heating process. Relevant energy equations
are presented for a phase consisting of a solid and a liquid and for a gas
phase. They interestingly incorporate momentum transfer in the food by
employing a form of Darcy’s law for the liquid and one for the gas. The
model is again non-trivial and numerical solutions are presented from use
of a finite volume method.

(Nakanishi and Tanaka, 2007) describe some very interesting methods
for producing oxides. These are so called sol-gel processes. The changing
of the porous structure due to phase changes is clearly important in the
process. I am unaware of any mathematical model for this process, but it
is an area where such mathematical analysis may well help.

Transport of micro-emulsions in porous media is important in many mun-
dane areas. (Cortis and Ghezzehei, 2007) describe a model for emulsion
transport in a porous medium. Their model consists of an equation for the
colloid concentration in the bulk, c(x, t), and a coupled equation for the
colloid concentration, s, which is adsorbed or given up at a solid surface.
The equations of (Cortis and Ghezzehei, 2007) are

∂c

∂t
+

ρb

θ

∂s

∂t
+ v
[
λc +

∂c

∂x
− α

∂2c

∂x2

]
= 0,

∂s

∂t
=

θ

ρb
kf c − krs.

Here θ is the porosity, v is the pore velocity, and the coefficients λ, α, ρb, kf

and kr are given by (Cortis and Ghezzehei, 2007). A solution method is
considered by (Cortis and Ghezzehei, 2007) and an example involving a
sand and a man-made emulsion is presented.
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5.7 Unsaturated porous medium

5.7.1 Model equations

Flows in unsaturated porous materials are harder to study than those in
saturated materials and consequently the literature is less. However, there
are some models for flow in unsaturated porous media, and due to many
applications this will undoubtedly be an area of much future research.

(Kapoor, 1996) used a conservation law model and developed a linearized
instability analysis for flow in an unsaturated porous material. We here
concentrate on reviewing work of (van Duijn et al., 2004) who investi-
gate stability in a linearized setting, but by Lyapunov function, or energy
stability, methods. Other pertinent references may be found in these papers.

The spatial domain of (van Duijn et al., 2004) is a domain in R
3 where

Ω = Ω⊥×(0,H) with Ω⊥ being a bounded region in R
2 with smooth bound-

ary ∂Ω⊥. The z−axis is measured downward, in the direction of gravity.
The basic model of (van Duijn et al., 2004) begins with a conservation law
for the volume fraction of water, θ, in the unsaturated porous medium.
They write,

∂θ

∂t
= −Fi,i, (5.102)

where Fi = θvi is the volumetric flux of the fluid (water) and vi is the
velocity of the water. They employ alternative formulations in addition to
θ and so introduce the pressure head Ψ = (pw − pg)/γg, where γ, g, pw and
pg are density of water, gravity, pressure of water, pressure of the gaseous
phase in the unsaturated porous medium. They assume pg is constant. The
function Ψ is assumed a monotonically increasing function of θ. They also
introduce the potential Φ by

Φ =
∫ Ψ

−∞
k dΨ =

∫ θ

0

D dθ

and give constitutive equations for Fi as (they describe these as Darcy’s
law)

Fi = −k(Ψ)∇Ψ+kδi3, Fi = −D∇θ +kδi3, Fi = −∇Φ+kδi3, (5.103)

where k denotes the hydraulic conductivity, and D = k dΨ/dθ.
(van Duijn et al., 2004) non-dimensionalize in terms of a saturation S =

(θ−θr)/(θ0−θr), where θ0 is the value of θ at saturation and θr is the irre-
ducible volumetric water content. Note that S(θr) = 0 ≤ S ≤ S(θ0) = 1. In
terms of a Rayleigh number R = Hk0/D0(θ0−θr), k0 and D0 being the val-
ues of k and D at saturation, they show that (5.102) together with (5.103)
lead to one of the following non-dimensional, equivalent forms of (5.102),

∂S(Ψ)
∂t

= c(Ψ)
∂Ψ
∂t

=
[
k(Ψ)Ψ,i − Rk(Ψ)δi3

]
,i

, (5.104)
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or
∂S

∂t
=
[
D(S)S,i − Rk(S)δi3

]
,i

, (5.105)

or
∂S(Φ)

∂t
=

1
D(Φ)

∂Φ
∂t

=
[
Φ,i − Rk(Φ)δi3

]
,i

. (5.106)

(van Duijn et al., 2004) give functional relationships for k,D,Φ and Ψ
for three classes of soils. These are the Broadbridge and White class, the
Gardner class, and that for a Burgers class of soils. That for a Burgers class
of soils has

k(S) = S2, D(S) = 1, Ψ(S) = 1 − 1
S

, Φ(S) = S. (5.107)

The boundary conditions considered by (van Duijn et al., 2004) are that

∂S

∂ni
= 0 on ∂Ω⊥ × (0, 1), S = ST at z = 0, S = SB at z = 1,

recalling z = 0 is the top of the domain, z = 1 the bottom. They show
that if k(Φ) is a Lipshitz continuous function of Φ then a steady solution
Φ0 = Φ0(z) exists for each value of R > 0. This solution corresponds to
downward flow if ΦT > ΦB and upward flow if ΦT < ΦB .

5.7.2 Stability of flow

To study stability (van Duijn et al., 2004) let φ = φ(x, t) be a perturbation
to Φ0 so that Φ = Φ0(z)+φ. The function φ is zero on the boundaries where
z = 0, 1 and ∂φ/∂ni = 0 on ∂Ω⊥ × (0, 1). (van Duijn et al., 2004) then
linearize (5.106) to obtain the following perturbation equation satisfied by
φ,

S′(Φ0)
∂φ

∂t
= Δφ − R

∂

∂z

[
k′(Φ0)φ

]
. (5.108)

From this they are able to use an energy stability argument to show that

1
2

d

dt
‖φ(t)‖2 ≤ − (1 − λ)

K2
‖φ‖2 ≤ 0,

where ‖ · ‖ is the weighted L2 norm given by

‖φ(t)‖2 =
∫

Ω

S′(Φ0)φ2dV,

K2 is a constant and λ = −R(1 − z)k′(Φ0)/2 < 1. They then show

‖φ(t)‖2 ≤ exp
(
−2(1 − λ)t

K2

)
‖φ(0)‖2, (5.109)

thereby showing that the steady solution Φ0 is linearly exponentially stable.
This is an important result, because it is for the relatively untouched area
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of unsaturated porous flows. (van Duijn et al., 2004) interpret (5.109) in
terms of all three soil classes mentioned earlier.

Another interesting aspect of the work of (van Duijn et al., 2004) is that
by changing norms they are able to investigate classes of solution for which
the “energy” function eventually decays, but may exhibit growth before
eventually decaying. To do this they work with a perturbation saturation
s given by S = S0 + s and derive bounds for ‖s(t)‖2 where ‖ · ‖ is now
the usual norm on L2(Ω). Again, they derive sharp estimates and interpret
them in the light of the specific soil classes. In particular, they note that
for the Burgers class of soils there is no need to linearize. In that case, the
nonlinear perturbation equation for s is

∂s

∂t
= Δs − 2R

∂

∂z
(S0s) − R

∂

∂z
s2 .

When one multiplies this by s and integrates over Ω the term (s, s2
z) = 0

and the linearized decay result they establish in general holds exactly in
the nonlinear case, for a Burgers soil.

(van Duijn et al., 2004) also establish a linear exponential decay result by
means of an energy method for a theory of unsaturated porous media which
incorporates memory effects in time. This theory is due to (Hassanizadeh
and Gray, 1990; Hassanizadeh and Gray, 1993). In terms of the saturation
S this equation is (cf. (5.105))

∂S

∂t
=
[
D(S)S,i

]
,i

+ τ

(
k(S)

∂S,i

∂t

)
+ R

∂

∂z
k(S) = 0.

5.7.3 Transient growth

In the context of Burgers soils (van Duijn et al., 2004) establish a very
interesting result. This concerns the situation where the steady solution is
unconditionally nonlinearly stable and the norms involving φ and s decay
monotonically in time. Instead they work with a perturbation ψ to the
pressure head, so that Ψ = Ψ(z) + ψ(x, t). They derive an exponential
bound for ‖ψ‖, the L2(Ω) norm. However, they derive the equation for ψ
and then write ψ = ψ(z, t) exp[i(mx + ny)] and find ψ(z, t) satisfies an
equation of form

∂ψ

∂t
=

∂2ψ

∂z2
− a2ψ + A1(Ψ0)

∂ψ

∂z
+ A2(Ψ0)ψ ≡ A(Ψ0)ψ, (5.110)

where a is the wavenumber, A1, A2 are functions of R and Ψ0, and the
linear operator A is defined as shown.

(van Duijn et al., 2004) derive an energy balance of form

1
2

d

dt

∫ 1

0

ψ2dz =
∫ 1

0

(
A(Ψ0)ψ(t)

)
ψ(t) dz . (5.111)
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They consider the maximum problem

σmax = sup
ψ(0) =0

∫ 1

0

(
A(Ψ0)ψ(0)

)
ψ(0) dz

∫ 1

0
ψ2(0)dz

.

They study the solution to this maximization problem and then from
(5.111) are able to deduce a region where E(t) = (1/2)

∫ 1

0
ψ2(t)dz initially

grows, even though there is eventual decay. This is thus, another example
of transient growth, not dissimilar to that reported in section 5.4.3.

5.8 Parallel flows

5.8.1 Poiseuille flow

The problem of Poiseuille flow in a porous medium was addressed by (Nield,
2003). He correctly observes that this class of flows is likely to be very
important in high porosity materials. Indeed, in view of this, he advocates
using a Brinkman model to study Poiseuille flow in a porous material.

We re-investigate the (Nield, 2003) problem here. The basic equations
are

ρ
(∂vi

∂t
+ vj

∂vi

∂xj

)
= − ∂p

∂xi
+ μΔvi −

φμ

K
vi,

∂vi

∂xi
= 0 ,

where vi, P are velocity and pressure, ρ is the constant density, μ, φ,K
are dynamic viscosity, porosity and permeability. These equations are non-
dimensionalized with a length scale L, velocity scale V , time scale L/V,
and a Reynolds number R = ρV L/μ. They may then be written

R
(∂vi

∂t
+ vj

∂vi

∂xj

)
= − ∂p

∂xi
+ Δvi − M2vi,

∂vi

∂xi
= 0 , (5.112)

where vi is now a dimensionless velocity and M2 = φL2/K. The porous
medium is saturated with fluid and contained in the infinite layer {(x, y) ∈
R

2} × {z ∈ (−1, 1)}. The no-slip boundary conditions apply so that

vi = 0 at z = ±1, (5.113)

and a constant pressure gradient G = −∂p/∂x > 0 is applied in the
x−direction. This gives rise to the basic solution

v̄ = (U(z), 0, 0) where U =
G

M2

(
1 − cosh Mz

cosh M

)
. (5.114)

When the Darcy term disappears this should reduce to the classical
Poiseuille solution for Navier-Stokes theory, namely U = (1− z2)/2, which
one can recover from (5.114) in the limit M → 0. In fact for small M, U
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has the asymptotic form

U ∼1
2
(1 − z2) + M2

(
− 5

24
+

z2

4
− z4

24

)

+ M4
(
− 29

720
+

z2

48
+

z4

48
− z6

720

)
+ O(M6).

(5.115)

To investigate linearized instability of the basic solution (5.114) we follow
(Nield, 2003) and introduce perturbations ui(x, t), π(x, t) so that vi = v̄i +
ui, p = p̄ + π and then ui, π is found to satisfy

R(ui,t + ujUi,j + Ujui,j) = −π,i + Δui − M2ui,

ui,i = 0.
(5.116)

Again, we follow (Nield, 2003), study the two-dimensional instability prob-
lem and write ui = ui(z) exp [ia(x−ct)], π = π(z) exp [ia(x−ct)]. Equation
(5.116)1 becomes

R[−iacui + δi1U
′w + Uiaui] = −π,i + Δui − M2ui,

and then writing u = (u,w) we find the full system of equations (5.116)
reduces to

[L − iaR(U − c)]u = RU ′w + iaπ,

[L − iaR(U − c)]w = Dπ,

iau + Dw = 0,

(5.117)

where D = d/dz, and the operator L is

L = D2 − a2 − M2. (5.118)

In fact, our equation (5.117)2 differs from equation (17b) of (Nield, 2003)
in that he has D2 − a2 in his equivalent equation rather than L.

One now eliminates u and π from (5.117) to derive the fourth order
equation

(D2−a2)2w−M2(D2−a2)w = iaR(U −c)(D2−a2)w− iaRU ′′w, (5.119)

where z ∈ (−1, 1). This is our Orr-Sommerfeld equation for Poiseuille flow
in a Brinkman porous medium. It differs from the classical Orr-Sommerfeld
equation, cf. (Dongarra et al., 1996), p. 404, or see equation (5.57), only by
the term involving M2. To obtain results on instability of Poiseuille flow in
a porous medium one must solve equation (5.119) numerically subject to
the boundary conditions

w = Dw = 0, z = ±1. (5.120)

The basic flow is given by (5.114), but in the case of small M one can
employ (5.115).

As (Nield, 2003) correctly observes, instability results for Poiseuille flow
in porous media, here given by solving (5.119), (5.120), will undoubtedly
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become important, especially due to the use of high porosity metallic foams
in industrial devices such as heat pipes. Eigenvalue bounds may be obtained
as (Joseph, 1976b), section 44, does for the classical Orr-Sommerfeld equa-
tion. Such bounds are still important, as (Puri, 2005) shows when deriving
estimates for Poiseuille flow of a dipolar fluid.

The area of Poiseuille, or more generally parallel, flows in a porous
medium is an area I believe will become increasingly important in future.
There are many ramifications to arise from variants of such flows in
Navier-Stokes theory, such as involving heating, (Choi et al., 2004),
temperature-dependent viscosity, (Akyildiz and Bellout, 2005), (Massoudi
and Phuoc, 2004), (Vaidya and Wulandana, 2006), (Webber, 2007),
slip boundary conditions, (Webber, 2006; Webber, 2007; Webber, 2008),
(Webber and Straughan, 2006), cylindrical geometry, (Kim et al., 2006),
ramp heating, (Kim et al., 2005), swirl and decelerating flows, (Kim and
Choi, 2004), rotating shear flow, (Yecko, 2004), surfactants, (Blyth et al.,
2006), (Blyth and Pozrikidis, 2004b), two layer flows, (Blyth and Pozrikidis,
2004a), channel entrance flow, (Hifdi et al., 2004a; Hifdi et al., 2004b),
and granular materials (Massoudi and Phuoc, 2007), to mention some. Of
course, given the interest of numerical methods to solve the classical Orr-
Sommerfeld equation it will be interesting to see their application to system
(5.119), (5.120). Many of the accurate schemes are studied in the works of
(Orszag, 1971), (Dongarra et al., 1996), (Straughan and Walker, 1996b),
(Ivansson, 2003), (Theofilis, 2003), (Mehta, 2004), (Theofilis et al., 2004),
(Hirata et al., 2006), (Elbarbary, 2007), and (Valerio et al., 2007), where
many other references may be found, see also chapter 9 of this book.

5.8.2 Flow in a permeable conduit

The problem of Poiseuille flow is an important one in porous media, but
it is also important in underground flow. An aquifer is typically a layer of
water bearing permeable rock, sand or gravel capable of providing signif-
icant amounts of water. An aquitard, on the other hand, is a bed of very
low permeability, possibly a water saturated sediment or rock whose perme-
ability is so low that it cannot transmit any useful amount of water. When
an aquifer occurs naturally in an underground aquitard it may represent a
means of transport for any contaminant present. The process of diffusion
of the contaminant out of the aquifer and into the surrounding aquitard
(or the reverse) is, therefore, important. The conduit(s) of the aquifer may
have the shape of a plane layer, but may also be approximated by a cylinder
with a circular or other shaped cross section. A recent paper of (Harrington
et al., 2007) highlights flow in an underground conduit and explains how
such flow is important in connection with contaminant transport. They
develop a model for flow in a conduit which consists of a cylinder with
cross sectional geometry Ω, the perimeter Γ carrying a solute. The axis of
the cylinder is assumed to be the x−axis. Inside the conduit is a solute of
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concentration Cc(x, t) where the solute is assumed well mixed so that y and
z variations may be ignored. The concentration of solute on the boundary,
Cm(x, y, z, t), arises from contaminant in the matrix outside the conduit.
The y and z dependences are recast into r, θ coordinates, or other coordi-
nates, depending on the shape of Ω. The equations of (Harrington et al.,
2007) are

Rc

Dc

∂Cc

∂t
=

∂2Cc

∂x2
− v

Dc

∂Cc

∂x
− λRc

Dc
Cc +

φmDm

φcDcΩA

∫

Γ

∂Cm

∂n
dS

in the conduit, and

Rm

Dm

∂Cm

∂t
= ΔCm − λRm

Dm
Cm

in the matrix, where Δ is the Laplacian in terms of y, z coordinates. The
conduit is of (semi) infinite length and the initial and boundary conditions
are

Cc(x, 0) = 0, Cm(x, y, z, 0) = 0,
Cc(0, t) = C0, lim

x→∞
Cc(x, t) = 0, lim

r→∞
Cm(x, r, θ, t) = 0,

with

Cm = Cc on Γ.

The coefficients Rc,Dc, λ, φm,Dm, φc, Rm are defined by (Harrington et al.,
2007), ΩA is the area of the domain Ω, and the coefficient v is the flow
speed which is assumed known. (Harrington et al., 2007) show how to solve
the system above when Ω is a circle, an ellipse, and an infinite channel
given by parallel lines y = ±b, z ∈ R. They compare their simulations with
a practical study site in Saskatchewan in Canada. This analysis is very
interesting and investigates in detail the chloride distribution.

It would be an interesting mathematical analysis to study the spatial
behaviour (in x) of a solution to this model for an arbitrary geometry Ω.

Contaminant transport, especially that associated with radioactive
waste, is a very important subject. (Giacobbo and Patelli, 2007) present
an interesting approach to this subject which involves a stochastic model
coupled to a Darcy - Richards formulation for an unsaturated porous
medium.
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Fluid - Porous Interface Problems

6.1 Models for thermal convection

The object of this chapter is to study flow in a fluid which is in contact with
a porous medium. We suppose the fluid also saturates the porous medium.
The topic in question is of immense importance due to many mundane
applications. For example, flow in underground channels or streambeds
where contaminant or solute may be transported in stream water, see
e.g. (Ewing et al., 1994), (El-Habel et al., 2002), (Boano et al., 2007).
Another mundane example concerns production of composite materials
where fibrous layers are infused with resin and the composite is produced
by heat and pressure in an autoclave, see e.g. (Blest et al., 1999). The
increasing use of composite materials in automobile and aeroplane pro-
duction certainly justifies further investigation of flow and convection of a
fluid sandwiched between porous layers. A further example which has con-
sequences for everyone is melt water formation above and below ice sheets
and ice shelves in the Arctic and Antarctic, and the possible increased
melting due to thermal convection, see e.g. (Bogorodskii and Nagurnyi,
2000), (Carr, 2003a; Carr, 2003b). The last topic is discussed further in
section 6.4.

While there are numerous applications for a theory of convection / flow
in a fluid next to a fluid saturated porous material, there are also many
theories to attempt to describe this scenario and this is a very active
area of current research, see e.g. (Chandesris and Jamet, 2006), (Chang,
2004; Chang, 2005; Chang, 2006), (Chang et al., 2006), (Das et al., 2002),
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(Discacciati et al., 2002), (Goharzadeh et al., 2005), (Govender, 2006a),
(Hill and Straughan, 2008), (Hirata et al., 2006), (Hirata et al., 2007),
(Hoppe et al., 2007), (Layton et al., 2003), (Le Bars and Worster, 2006),
(Miglio et al., 2003), (Riviere, 2005), and the references therein. It is not the
goal of this book to review all of the models, nor is it the goal to attempt
to assess which model may be preferable for a particular task. We review
some of the key models and present some new numerical findings for mod-
els which we have found particularly tractable and which may be widely
applicable to engineering type problems. Several new results are presented
throughout this chapter, for example, section 6.2 presents new numerical
results for surface tension driven convection in a fluid overlying a porous
layer, while section 6.3 is new and investigates the convection problem by
modelling the various coefficients which arise as functions of the porosity.

6.1.1 Extended Navier-Stokes model

This is a model which employs the Navier-Stokes equations in the fluid
and adds in a Darcy term to model flow in the porous medium, cf. (Ewing
et al., 1994). These writers observe that one way to couple liquid flow and
such flow in a porous medium is to employ appropriate boundary condi-
tions at the fluid - porous medium interface. However, another approach,
favoured by (Ewing et al., 1994) is to extend the Navier-Stokes equations
and introduce a Darcy term. As (Ewing et al., 1994) write, this approach
has been mainly employed in the area of numerical simulation of convec-
tion/diffusion of alloys involving melting and solidification. (Ewing et al.,
1994) in particular, study the problem of flow over a step where the region
after the step consists of a fluid overlying a porous medium, as shown in
figure 6.1.

−→

−→
−→

−→

−→

Ωf

Ωm

↑

d

↓
↑

dm

↓

inflow
outflow

fluid

porous medium

Figure 6.1. L - shaped flow domain
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(Ewing et al., 1994) treat an incompressible fluid containing a contam-
inant flowing in from the left, passing over a step and then flowing in a
channel where the fluid overlies a porous medium of depth dm, as shown in
figure 6.1. Their model employs the computational domain Ωf ∪ Ωm, the
L-shaped region in figure 6.1 shown in darker outline. Their equations are
the steady, two-dimensional Navier-Stokes equations coupled with a Darcy
term, coupled to equations for contaminant transport, namely,

u
∂u

∂x
+ u

∂u

∂y
= νΔu − 1

ρ

∂p

∂x
− ν

k
u,

u
∂v

∂x
+ v

∂v

∂y
= νΔv − 1

ρ

∂p

∂y
− ν

k
v,

∂u

∂x
+

∂v

∂y
= 0,

∂c

∂t
+ f
(
u

∂c

∂x
+ v

∂c

∂y

)
=

∂

∂xα

(
D(x)

∂c

∂xα

)
,

(6.1)

where α sums from 1 to 2. The spatial domain for equations (6.1) is Ω =
Ωf ∪ Ωm, and the functions k and f are such that

k =

{
∞, x ∈ Ωf ,

kp, x ∈ Ωm,
f =

{
1, x ∈ Ωf ,

φ, x ∈ Ωm,

where kp represents a Darcy flow term and φ is the porosity in the porous
region Ωm. Many numerical solutions of this problem for appropriate
boundary conditions are given by (Ewing et al., 1994), the computations
being performed by a “fictitious regions” method.

6.1.2 Nield (Darcy) model

In this section we examine the problem where a fluid overlies a layer of
porous material saturated by the same fluid. The layer is such that the
temperature of its upper surface is fixed at TU , say, while the temperature
of the lower surface is likewise fixed at a higher temperature TL. If the
temperature gradient is large enough thermal convection will arise. This is
an important problem which has led to much understanding of flow of a
fluid adjacent to a porous medium. Two fundamental papers which have
both had a major impact on many subsequent workers in this area are
those of (Beavers and Joseph, 1967) and (Nield, 1977). That of (Beavers
and Joseph, 1967) presents a boundary condition which is applicable at
the fluid - porous medium boundary. The Beavers - Joseph condition is
analysed in section 2.10 and spatial decay is discussed in section 3.5. We
shall employ the notation of (Straughan, 2001c; Straughan, 2002a), which
is a generalization of that of (Chen and Chen, 1988).

Suppose the fluid occupies the layer z ∈ (0, d) while the porous medium
fills the layer z ∈ (−dm, 0), x and y occupying the whole of R

2. The
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fundamental boundary condition proposed by (Beavers and Joseph, 1967)
in this context is

∂uβ

∂z
=

α√
K

(uβ − uβ
m), β = 1, 2, z = 0. (6.2)

Here uβ are the x and y components of fluid velocity, uβ
m are the equivalent

velocity components in the porous medium, α is a constant depending on
the porous medium, and K is the permeability. This is a boundary condition
which has been employed with a lot of success. (Straughan, 2002a) analyses
the above condition and the (properly invariant) extension due to (Jones,
1973) in some detail. His numerical findings indicate that for a good many
problems little difference is observed whether one uses the Beavers - Joseph
or the Jones condition. This finding is also noted numerically by (McKay
and Straughan, 1993) and by (Chang et al., 2006).

The fundamental model for thermal convection in a fluid overlying a
porous medium was developed by (Nield, 1977). He employs the Beavers -
Joseph boundary condition (6.2). The Nield model is investigated in some
detail by (Chen and Chen, 1988). The work of these writers is also predom-
inant in this field in that they discovered the linear instability curves for
the onset of thermal convection may be bi-modal. This means that they
possess two local minima. Introduce the parameter d̂ by

d̂ =
d

dm
=

depth of fluid layer
depth of porous layer

. (6.3)

(Chen and Chen, 1988) discovered that for a porous medium comprised of
small glass beads, when d̂ ≤ 0.13 the instability is initiated in the porous
medium, whereas for d̂ larger than this the instability will commence in
the fluid. The bi-modal character of the two layer problem has since been
verified by many writers.

With the notation of this section the Nield model employs the Navier-
Stokes equations in Ωf = R

2 × {z ∈ (0, d)} × {t > 0}, and the Darcy
equations for thermal convection in a porous medium Ωm = R

2 × {z ∈
(−dm, 0)} × {t > 0}. Thus, in Ωf

∂ui

∂t
+ uj

∂ui

∂xj
= − 1

ρ0

∂p

∂xi
+ νΔui + ᾱgTki,

∂ui

∂xi
= 0,

∂T

∂t
+ ui

∂T

∂xi
=

kf

(ρ0cp)f
ΔT,

(6.4)
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whereas in Ωm

1
φ

∂um
i

∂t
= − 1

ρ0

∂pm

∂xi
− ν

K
um

i + ᾱgTmki,

∂um
i

∂xi
= 0,

(ρ0cp)∗
∂Tm

∂t
+ (ρ0cp)fum

i

∂Tm

∂xi
= k∗ΔTm.

(6.5)

In these equations ui, p, T, um
i , pm, Tm denote velocity, pressure and tem-

perature in the fluid, and velocity, pressure and temperature in the porous
medium, respectively. The coefficients ρ0, ν, ᾱ, g, kf , cp are density, kine-
matic viscosity, thermal expansion coefficient, gravity, thermal conductivity
and specific heat at constant pressure. Throughout, we employ subscript
or superscript f or m to denote a fluid or porous quantity, φ is the poros-
ity, and a ∗ denotes a weighted porous medium value. For example, if X
denotes k or ρ0cp, then

X∗ = φXf + (1 − φ)Xm. (6.6)

The (Nield, 1977) model has enjoyed huge success, especially in connection
with linearized instability theory, and we return to specific details of such
calculations in section 6.2.

The term φ−1∂um
i /∂t in equation (6.5)1 has mostly been neglected

throughout this book. This is an inertia term (acceleration) which for many
flows in porous media is believed to be negligible. The effect of the inertia
term is explicitly investigated by (Khadrawi and Al-Nimr, 2005).

6.1.3 Forchheimer model

If the flow velocity is not very small then it may be argued that one will
need to modify the Darcy model and replace it with a one of Forchheimer,
Brinkman, or Brinkman-Forchheimer type. (Chen, 1990) does exactly this
in his linearized instability analysis of the equivalent problem of section
6.1.2, although he also allows for a vertical throughflow throughout the
layer. Thus, the (Chen, 1990) model still utilizes equations (6.4), and
equations (6.5)2 and (6.5)3. However, he replaces equation (6.5)1 by the
equation

1
φ

∂um
i

∂t
+

B

K
|um|um

i = − 1
ρ0

∂pm

∂xi
− ν

K
um

i + ᾱgTmki, (6.7)

where B is a Forchheimer coefficient.
Since (Chen, 1990) studies the effect of throughflow on convection his

basic state is one in which u = (0, 0,W ), W constant, and this creates a
steady temperature profile which is not linear in z. The effect of through-
flow is felt in the linearized perturbation equations and, in particular, the
Forchheimer term does not disappear. Additionally, (Chen, 1990) uses a
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Beavers - Joseph boundary condition. However, one has to be careful,
because his boundary conditions also contain the Forchheimer effect. The
paper of (Chen, 1990) contains many numerical results.

6.1.4 Brinkman model

The possibility of considering a Brinkman equation to model the flow in a
porous medium, rather than the Darcy equation (6.5)1 was considered by
(Nield, 1983). He explains that care must be taken with such an approach.
In (Nield, 1991b) he also analyses the limitations which may occur if one
replaces (6.5)1 by a Brinkman-Forchheimer equation. A detailed linear
instability analysis of the thermal convection problem for the two-layer
situation of section 6.1.2 is given by (Hirata et al., 2007). These writers
essentially employ equations (6.4) and (6.5), however, they replace (6.5)1
by a Brinkman equation of form

1
φ

∂um
i

∂t
= − 1

ρ0

∂pm

∂xi
− ν

K
um

i +
μeff

ρ0
Δum

i + ᾱgTmki, (6.8)

in which μeff is an effective viscosity. Because of the presence of the higher
derivative term (μeff/ρ0)Δum

i they are able to dispense with the Beavers-
Joseph boundary condition and instead employ continuity conditions at
the interface. The paper of (Hirata et al., 2007) provides many numerical
calculations.

It is worth pointing out that (Chen and Chen, 1992) performed a numer-
ical simulation of thermal convection in a two layer fluid / porous system
like that of section 6.1.2. They employed equations (6.4) and (6.5), but
replaced (6.5)1 by a Brinkman-Forchheimer equation of form

1
φ

∂um
i

∂t
+

B

K
|um|um

i = − 1
ρ0

∂pm

∂xi
− ν

K
um

i +
ν

φ
Δum

i + ᾱgTmki. (6.9)

Again, the presence of the Δum
i terms allows then to employ continuity

conditions at the porous medium - fluid interface. (Chen and Chen, 1992)
expand the horizontal components of their solution in a Fourier series and
use an implicit finite difference scheme to compute the solution, for the
nonlinear problem. Many numerical results are presented by (Chen and
Chen, 1992) and generally the agreement with the linearized instability
results of (Chen and Chen, 1988) is very good.

6.1.5 Nonlinear equation of state

(Carr and Straughan, 2003) analyse the problem of thermal convection in
a fluid overlying a porous layer. They adopt the model of section 6.1.2
but, they change the linear equation of state adopted there, namely ρ =
ρ0[1− ᾱ(T −T0)] to one appropriate to a layer of water in the temperature
range 0◦C− 14◦C, i.e. where the water exhibits a maximum density effect.
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Their equation of state in both the fluid and porous medium layers has
form

ρ = ρ0

[
1 − ᾱ(T − 4)2

]
. (6.10)

The model of (Carr and Straughan, 2003) is addressed to study convection
where the porous medium represents a thawed layer of ground which over-
lies permafrost, the thawed porous layer being overlain by a layer of water.
This thus models the scenario of patterned ground formation as found near
the edges of shallow alpine lakes, cf. (McKay and Straughan, 1993) and the
references therein.

The equations of (Carr and Straughan, 2003) are essentially (6.4) and
(6.5) but with the quadratic density - temperature relationship (6.10). The
equations of (Carr and Straughan, 2003) are, in the fluid,

∂ui

∂t
+ uj

∂ui

∂xj
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ρ0

∂p

∂xi
+ νΔui − 8ᾱgTki + ᾱgT 2ki,

∂ui

∂xi
= 0,

∂T

∂t
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∂T

∂xi
=

kf

(ρ0cp)f
ΔT,

(6.11)

and in the porous layer

0 = − 1
ρ0

∂pm

∂xi
− ν

K
um

i − 8ᾱgTmki + ᾱgT 2
mki,

∂um
i

∂xi
= 0,

(ρ0cp)∗
∂Tm

∂t
+ (ρ0cp)fum

i

∂Tm

∂xi
= k∗ΔTm.

(6.12)

The seemingly innocuous change from the model (6.4), (6.5) to the model
when (6.11), (6.12) are employed leads to a major difference in instability
results. (Carr and Straughan, 2003) show that the presence of the porous
medium leads to penetrative convection for much lower surface tempera-
tures (at z = d) than that found for penetrative convection in either a
single fluid layer, or a single layer of porous material saturated with water.
Indeed, as the surface temperature at z = d is increased a multi-cellular
structure develops at the onset of convection. The fluid - porous medium
two layer problem leads to a complicated cell structure. For example, with
the lower boundary, z = −dm kept at 0◦C, upper surface (z = d) temper-
atures of 13◦C and 13.2◦C lead to very different cellular structures. The
former has 21 thin cells in the vertical direction in the fluid whereas the lat-
ter has one wider cell within the porous medium with 15 cells of equivalent
width in the fluid. Thus, the bi-modal nature of the (Chen and Chen, 1988)
analysis is still found, but the porous medium influences the penetrative
convection markedly.
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(Carr, 2003a; Carr, 2004) also analyses penetrative convection in a fluid
overlying a porous layer by employing an internal heat source model rather
than a nonlinear equation of state. The model consists of equations (6.4),
(6.5) but the energy equations (6.4)3, (6.5)3 are replaced by

∂T

∂t
+ ui

∂T

∂xi
=

kf

(ρ0cp)f
ΔT + 2Q,

(ρ0cp)∗

(ρ0cp)f

∂Tm

∂t
+ um

i

∂Tm

∂xi
=

k∗

(ρ0cp)f
ΔTm + 2Qm,

where Q,Qm are appropriate heat sources or sinks. This is a very interest-
ing study which can have multiple stably / unstably stratified layers not
dissimilar to those of section 4.5.

6.1.6 Reacting layers

(McKay, 1998) considers the instability problem of section 6.1.2 but he
allows heat generation due to chemical reactions in the fluid or porous
layers. His equations are (6.4) and (6.5) but with heat source terms which
depend on temperature. In fact, he replaces equations (6.4)3 and (6.5)3 by

∂T

∂t
+ ui

∂T

∂xi
=

kf

(ρ0cp)f
ΔT + Q exp

(−E

RT

)
,

(ρ0cp)∗

(ρ0cp)f

∂Tm

∂t
+ um

i

∂Tm

∂xi
=

k∗

(ρ0cp)f
ΔTm + φQ exp

( −E

RTm

)
.

The coefficients E,R are positive constants, E being the activation energy
and R the universal gas constant. (McKay, 1998) relates such porous / fluid
reaction situations to practical problems involving removing heat from a
nuclear reactor by flooding the core with coolant, or removing heat from
radioactive waste products, or delaying the thermal explosion of coal piles
or waste dumps. (McKay, 1998) performs a linearized instability analysis of
his model and employs a Chebyshev collocation technique in the numerical
analysis of the resulting eigenvalue problem.

6.2 Surface tension

6.2.1 Basic solution

As stated in section 6.1.2, the basic model for thermal convection in a two
layer fluid - porous system was given by (Nield, 1977). In fact, (Nield, 1977)
presented an asymptotic solution for small wavenumber for prescribed heat
flux boundary conditions. We here study the (Nield, 1977) model but when
the upper surface is free and surface tension effects are taken into account.
This model was analysed by (Straughan, 2001c).
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The basic equations are (6.4) and (6.5). To make the problem deter-
minate we need boundary conditions. These consist of conditions on the
velocity and temperature on the upper (fluid) surface, together with a suit-
able condition there describing the stress state at that boundary. We also
assume there is no flow through the lower boundary and the temperature
is assigned there. At the fluid - porous medium interface we assume conti-
nuity of normal velocity, continuity of temperature, continuity of heat flux,
the Beavers-Joseph condition (6.2) and continuity of normal stress. These
conditions are those of (Nield, 1977) and of (Chen and Chen, 1988).

We suppose the boundaries z = d, z = −dm are held at fixed constant
temperatures, TU , TL, with TL > TU . The basic steady state solution is
then one for which ui ≡ 0, um

i ≡ 0 and T = T (z), Tm = Tm(z). We find
this as in (Nield, 1977) and (Chen and Chen, 1988), to be

ūi = 0, ūm
i = 0,

T̄ = T0 − (T0 − TU )
z

d
, 0 ≤ z ≤ d,

T̄m = T0 − (TL − T0)
z

dm
, −dm ≤ z ≤ 0.

(6.13)

In these expressions T0 is the temperature at the interface. This is found
as in (Nield, 1977), (Chen and Chen, 1988) by requiring continuity of
temperature and heat flux at the interface,

kf
dT̄

dz
= k∗ dT̄m

dz
at z = 0,

and then

T0 =
k∗dTL + kfdmTU

k∗d + kfdm
.

The steady pressures p̄ and p̄m may be found from (6.4) and (6.5).
At the fluid surface z = d (Straughan, 2001c) adopts a radiation type

boundary condition in the steady state,

δ1
dT̄

dz
+ δ2T̄ = c, at z = d. (6.14)

The coefficients δ1 and δ2 depend on the ambient conditions and in bright
sunshine δ1 will be large because heating is mainly by radiation, but in
cloudy or foggy conditions δ2 is likely to be dominant. The variable c is
known. (Straughan, 2001c) shows that if one writes δ1, δ2 in terms of a
constant L, δ1 = 1/(1 + L), δ2 = L/(1 + L), then (6.13) is consistent with
(6.14) provided TU = [cd(1+L)+T0]/(1+Ld). He then shows that in terms
of a perturbation (ui, θ, π) to the basic solution (ūi, T̄ , p̄) and (um

i , θm, πm)
to (ūm

i , T̄m, p̄m) the boundary condition (6.14) leads to a condition on the
perturbation temperature field at the fluid surface, of form

∂θ

∂z
+ Lθ = 0, on z = d.
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The boundary conditions on the velocity in the steady state are zero
flow at the lower boundary, so that wm = 0 at z = −dm, where wm = um

3 .
At the interface z = 0, u.n is continuous, where n = (0, 0, 1). The surface
tension condition involving ui at z = d is given below.

6.2.2 Perturbation equations

Let now (ui, θ, π), (um
i , θm, πm) be perturbations to the steady solution

(6.13). Hence, we put

ui = ūi + ui, T = T̄ + θ, p = p̄ + π,

um
i = ūm

i + um
i , Tm = T̄m + θm, pm = p̄m + πm,

in equations (6.4), (6.5) and derive linearized equations for ui, θ, π, um
i ,

θm, and πm. (Straughan, 2001c) observes that this procedure is formally
the same as that of (Chen and Chen, 1988). However, (Chen and Chen,
1988) ignore time derivative terms when deriving the boundary conditions
and we argue that a priori one cannot do this. Because, it is known that
surface tension driven convection in a fluid with no porous medium below
may lead to convective motion commencing by oscillatory convection.

One introduces a time dependence of form

ui = ui(x) eσt, θ = θ(x) eσt, π = π(x) eσt,

um
i = um

i (x) eσmt, θm = θm(x) eσmt, πm = πm(x) eσt,

and then the linearized perturbation equations which one obtains from (6.4)
are

ρ0σui = − ∂π

∂xi
+ μΔui + ρ0ᾱgkiθ,

∂ui

∂xi
= 0,

σθ =
(T0 − TU

d

)
w +

kf

(ρ0cp)f
Δθ.

(6.15)

Similarly, from (6.5) one shows that

ρ0

φ
σmum

i = −∂πm

∂xi
− μ

k
um

i + ρ0ᾱgkiθm,

∂um
i

∂xi
= 0,

σmθm =
(TL − T0

dm

) (ρ0cp)f

(ρ0cp)∗
wm +

k∗

(ρ0cp)∗
Δθm .

(6.16)

In the above equations w = u3, wm = um
3 , and μ = νρ0 is the dynamic

viscosity.
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(Straughan, 2001c) employs the non-dimensionalization of (Chen and
Chen, 1988) and so we now put

w = W (z) f(x, y), θ = Θ(z) f(x, y),
wm = Wm(z) f(x, y), θm = Θm(z) f(x, y),

where f is the horizontal planform, such that Δ∗f = −a2f, in the fluid,
Δ∗fm = −a2

mfm in the porous medium, Δ∗ = ∂2/∂x2 + ∂2/∂y2 being the
horizontal Laplacian. From equations (6.15) we show W and Θ satisfy

(D2 − a2)2W − a2RaΘ =
σ

Pr
(D2 − a2)W,

(D2 − a2)Θ − W = σΘ,
(6.17)

where z ∈ (0, 1) and D = d/dz, while a similar reduction from (6.16) leads
to

(D2 − a2
m)Wm + a2

mRamΘm = −σm
δ2

φPrm
(D2 − a2

m)Wm,

(D2 − a2
m)Θm − Wm = σmGmΘm,

(6.18)

where zm ∈ (−1, 0) and D = d/dzm. The Rayleigh number and porous
Rayleigh numbers, Ra and Ram are defined by

Ra =
gᾱρ0(TU − T0)d3(ρ0cp)f

μkf
, Ram = Ra

(δεT )2

d̂4
, (6.19)

Pr, Prm are the Prandtl and porous Prandtl numbers, δ is the Darcy num-
ber, δ =

√
k/dm, and Gm = (ρ0cp)∗/(ρ0cp)f , εT = λf/λm , where the

fluid and porous medium thermal diffusivities are defined in terms of the
thermal conductivities by λf = kf/(ρ0cp)f , λm = k∗/(ρ0cp)∗.

We observe that σ and σm are not independent, in fact

σm =
d̂2

εT
σ. (6.20)

In this non-dimensionalization the Rayleigh numbers Ra and Ram are neg-
ative and equations (6.17), (6.18) combine to yield a 10th order eigenvalue
problem for the eigenvalue σ.

6.2.3 Perturbation boundary conditions

There are two boundary conditions on the bottom of the non-dimensional
porous layer, corresponding to no outflow and fixed temperature, and so

Wm = Θm = 0, z = −1. (6.21)

Zero flow out of the upper surface and implementation of (6.14) lead to

W = 0, DΘ + LΘ = 0, z = 1. (6.22)
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Continuity of normal velocity, temperature, and heat flux at the interface
lead to

W = d̂Wm, d̂Θ = ε2T Θm, DΘ = εT DpΘm, z = 0, (6.23)

where Dp = d/dzm.
(Straughan, 2001c) shows that if the surface tension is a linear function

of temperature, σ = σ0

[
1−γ(T−T0)

]
, σ0, γ constants, then the appropriate

boundary condition in terms of W and θ is

D2W = MaΔ∗θ, on z = 1, (6.24)

where Ma is the Marangoni number defined by

Ma =
γσ0(TU − T0)d

λfμ
. (6.25)

In the two layer porous - fluid problem studied here, Ma < 0.
There are two further conditions to determine on the interface. The first

arises by differentiating the Beavers-Joseph conditions (6.2) with respect
to x and then with respect to y. One may then find, (Straughan, 2001c)

D2W − αd̂

δ
DW +

αd̂3

δ
DpWm = 0. (6.26)

The last boundary condition we need arises from continuity of normal stress
at the interface. Thus, if tim and tif are the stress vectors in the porous and
fluid media, we need

nit
i
m = nit

i
f , on z = 0.

For a Darcy porous medium the stress is effectively a pressure, so nit
i
m =

−πmδi3ni on z = 0, whereas for a Navier-Stokes fluid nit
i
f = −(πfδi3 −

2μdi3)ni , at z = 0. Thus continuity of normal stress yields

πm = π − 2μ
∂w

∂z
, on z = 0, (6.27)

cf. (Nield, 1977), equation (31). (There is confusion in the literature over
this boundary condition. It appears at first sight as though the pressure is
discontinuous. However, we interpret the pressure πm in the porous medium
as a pressure averaged over the whole of a representative volume Ω̃ not just
over the pore part occupied by the fluid, Ωf . The notation of Ω̃ and Ωf is
as in section 1.6.1. With this interpretation equation (6.27) makes sense.)
By differentiation with respect to xα, α = 1, 2 one then shows from this,
(Straughan, 2001c),

d̂4

φPrm
σm DpW

m +
d̂4

δ2
DpW

m

=
1

Pr
σ DW − D3W − 3Δ∗DW, on z = 0.

(6.28)
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An instability analysis for the (Nield, 1977) model taking into account sur-
face tension then reduces to solving the eigenvalue problem comprising of
equations (6.17), (6.18) together with the ten boundary conditions, (6.21),
(6.22), (6.23), (6.24), (6.26) and (6.28).

Further work on the surface tension driven convection problem in the
superposed porous - fluid case may be found in (Shivakumara et al., 2006),
while (Rudraiah et al., 2007) also consider the effect of an electric field on
the onset of surface tension driven convection in a Brinkman porous - fluid
case, see also (Chamkha et al., 2006).

6.2.4 Numerical results

The numerical technique for solving the eigenvalue problem of the last
section is discussed in section 9.2.3. (Straughan, 2001c) presents sev-
eral numerical results. However, in this section we present new numerical
findings not given anywhere else.

In the numerical calculations we fix Pr = 6, Gm = 10, εT = 0.7, φ =
0.3, α = 0.1, δ = 0.002 and L = 10. Figure 6.2 demonstrates how the critical
Rayleigh number varies as the depth ratio d̂ is varied. The Marangoni
number is fixed as Ma = −100. Note that the curve for d̂ = d/dm = 0.06
has the minimum of −Ram on the left hand branch. This indicates that
instability is initiated and dominated by the porous part of the layer. The
−Ram local minimum on the d̂ = 0.06 curve occurs much higher than the
left hand one. The right hand minimum is associated with the fluid part of
the layer. Table 6.1 verifies these findings and the value of −Ram = 21.55 is
clearly much lower than that of −Ram = 95.84. When d̂ = 0.08 the porous
layer still dominates with −Ram = 19.94. The right hand branch has a
value of −Ram = 32.51, much higher than the d̂ = 0.06 curve. However,
the porous layer is still dominant in the convection process. As d̂ increases
from 0.08 to 0.10 the minimum of −Ram switches from the left hand part
of the curve to a value −Ram = 13.95 on the right. This indicates that the
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Figure 6.2. Critical porous Rayleigh number versus wavenumber. Pr = 6,
Gm = 10, εT = 0.7, φ = 0.3, Ma = −100, α = 0.1, δ = 0.002, L = 10, the
depth ratio d̂ = d/dm values are shown on the figure
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Table 6.1. Minimum −Ram values for varying d̂. The absolute minimum −Ram

value for a given d̂ is shown in bold

d̂ am Ram am Ram

0.06 2.2 –21.55 33.4 –95.84
0.08 2.2 –19.94 26.0 –32.51
0.10 2.2 –18.37 21.2 –13.95
0.12 2.2 –16.57 18.0 –6.97

deeper fluid layer is now controlling the physics of the onset of convection.
When d̂ increases to 0.12 this effect is amplified.

In figure 6.3 the chosen values are again Pr = 6, Gm = 10, εT =
0.7, φ = 0.3, α = 0.1, δ = 0.002, L = 10. Now, the depth ratio d̂ is fixed
at 0.08. The Marangoni number is now varied from 0 to -400. For val-
ues of Ma = 0,−100,−200, the minimum of −Ram is on the left hand
branch of the curve, as verified by the values in table 6.2. However, as
the surface tension effect is increased and −Ma increases to 300 the mini-
mum of −Ram switches to the right hand branch, with a critical value of
−Ram = 16.82. This shows that the surface tension and fluid layer now
dominate the instability process. When Ma = −400 this effect is increased.
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Figure 6.3. Critical porous Rayleigh number vs. wavenumber. Pr = 6, Gm = 10,
εT = 0.7, φ = 0.3, d̂ = 0.08, α = 0.1, δ = 0.002, L = 10, curves for Marangoni
numbers 0, −100, −200, −300, −400

Table 6.2. Minimum −Ram values for varying Ma. The absolute minimum −Ram

value for a given Marangoni number is shown in bold
Ma am Ram am Ram

0.0 2.2 –19.91 26.2 –28.92
–100 2.2 –19.88 26.4 –25.13
–200 2.2 –19.85 26.8 –21.10
–300 2.2 –19.81 27.2 –16.82
–400 2.2 –19.78 28.0 –12.24
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6.3 Porosity effects

6.3.1 Porosity variation

(Straughan, 2002a) studied the way the solution to the fluid - porous
layer problem governed by equations (6.4), (6.5), varies as one changes the
parameters of the system. In particular, using representative values, the
variation of the Beavers-Joseph parameter α was investigated as were the
variations in δ, εT , Gm and values of the porosity of 0.3 and 0.5 were anal-
ysed. He also studied how the solution changes when the Beavers-Joseph
boundary condition is replaced by the (Jones, 1973) one. The instability
problem is like that of the last section, with the upper surface being fixed
or free, but in the latter case surface tension effects are not present. In this
section we shall analyse the problem studied by (Straughan, 2002a) further
and concentrate on how the solution changes as the porosity, φ, is var-
ied. The procedure is, however, different from that of (Straughan, 2002a).
The point is that we treat δ, εT and Gm as functions of φ. We vary φ and
then δ, εT , Gm likewise vary. The critical Rayleigh number is calculated for
various values of φ.

For clarity, we collect the appropriate equations together now. The
equations governing the instability are (6.17) and (6.18), so that

(D2 − a2)2W − a2RaΘ =
σ

Pr
(D2 − a2)W,

(D2 − a2)Θ − W = σΘ,
(6.29)

(D2 − a2
m)Wm + a2

mRamΘm = −σm
δ2

φPrm
(D2 − a2

m)Wm,

(D2 − a2
m)Θm − Wm = σmGmΘm,

(6.30)

where z ∈ (0, 1) for (6.29) while z ∈ (−1, 0) for (6.30). The boundary
conditions are

Wm = 0, Θm = 0, z = −1, (6.31)

W = 0, Θ = 0, and either DW = 0 or D2W = 0, z = 1, (6.32)

W = d̂Wm, d̂Θ = ε2T Θm, DΘ = εT DpΘm, z = 0, (6.33)

D2W − α
d̂

δ
DW + α

d̂3

δ
DpWm = 0, z = 0, (6.34)

d̂4

φPrm
σmDpWm +

d̂4

δ2
DpWm

=
σ

Pr
DW − D3W − 3Δ∗DW, z = 0. (6.35)

Conditions (6.32) correspond to prescribed temperature on the upper sur-
face which may be fixed or free, but we are not considering the surface
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tension effect. The following relations are also needed,

Ram = Ra
(δεT )2

d̂4
, σm =

d̂2

εT
σ, a = d̂am, P rm = εT Pr . (6.36)

We also need values for εT , Gm, δ and α. In this section we treat εT , Gm

and δ as functions of the porosity φ, a procedure entirely different to that
of (Straughan, 2002a). The Beavers - Joseph parameter α is varied in the
range found by (Beavers and Joseph, 1967), namely α varies from 0.1 to
4. (Straughan, 2002a) concludes that this parameter has a wide variation
and further experiments calculating values for α for different porous media
and saturating fluids are certainly needed. We use the facts that Gm =
(ρ0cp)∗/(ρ0cp)f , εT = λf/λm, λm = k∗/(ρ0cp)∗, and δ =

√
K/dm to write

these as functions of φ. The Gm, εT relations follow from the definition
of the starred quantities as in (6.6). To determine δ we note that (Chen,
1990), equation (8), writes that when the porous medium is composed of
glass spheres the permeability may be expressed as

K =
d2

g

172.8
φ3

(1 − φ)2
, (6.37)

where dg is the diameter of the spheres forming the porous medium. Thus,
we employ a porous layer 3cm thick as in (Chen and Chen, 1988; Chen
and Chen, 1992), (Chen, 1990) and take 3mm diameter spheres, again
consistent with (Chen and Chen, 1988). (Of course, this fixes the porosity
in an experiment, but we here allow it to vary.) This leads to

K = 5.21 × 10−4 φ3

(1 − φ)2
, (6.38)

and to the relation for δ,

δ =
√

K

dm
= 0.76073 × 10−2 φ3/2

(1 − φ)
. (6.39)

Observe that if φ = 0.3, then δ = 0.00178 which is consistent with (Chen
and Chen, 1988), (Chen, 1990), (Straughan, 2001c; Straughan, 2002a).

The εT , Gm equations may be written,

Gm =
(ρ0cp)m

(ρ0cp)f
+
[
1 − (ρ0cp)m

(ρ0cp)f

]
φ , (6.40)

εT =
Gm

km/kf + (1 − km/kf )φ
. (6.41)

In our computations we use values from (Lide, 1991) for ρ0, cp, k appropri-
ate to the working fluid being water with the porous medium composed of
glass beads. Thus, we use

ρf = 0.99970 g cm−3, cf
p = 4.1921 J/g◦K, kf = 0.58 W/m◦K,

ρm = 2.6 g cm−3, cm
p = 1.026 J/g◦K, km = 1.0886 W/m◦K.
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Employing these values we are led to the relations

Gm = 0.6365 − 0.3635φ,

εT =
0.6365 − 0.3635φ

1.8769 + 0.8769φ
.

(6.42)

In the computations we prescribe d̂ and assume Pr = 6 which is a value
appropriate for water. The Prm value then follows from (6.36). Thus, we
vary φ and Gm, εT , δ, Prm change accordingly.

6.3.2 Numerical results

Throughout this section we assume the upper surface, z = d, is fixed. Thus,
we employ the boundary condition DW = 0 there. Figures 6.4 and 6.5 are
computed with Pr = 6, the porosity φ = 0.3, α = 0.1, and equations (6.39)
and (6.42) then yield Gm = 0.52745, εT = 0.246475, δ = 1.78572 × 10−3.
The fluid / porous medium depth ratio d̂ is allowed to vary between d̂ = 0.03
to 0.07. We find a bimodal neutral curve behaviour, as we expect to from the
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Figure 6.4. Critical porous Rayleigh number versus wavenumber. Pr = 6, φ = 0.3,
α = 0.1, Gm = 0.52745, εT = 0.246475, δ = 1.78572 × 10−3. The d̂ values are
shown on the figure
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Figure 6.5. Critical porous Rayleigh number versus wavenumber. Pr = 6, φ = 0.3,
α = 0.1, Gm = 0.52745, εT = 0.246475, δ = 1.78572 × 10−3. (Greater detail, two
of the d̂ curves)
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Table 6.3. Minimum −Ram values for varying d̂. The absolute minimum −Ram

value for a given value of d̂ is shown in bold. The local maximum value of −Ram

is shown in slanted type

d̂ am Ram am Ram am Ram

0.03 2.4 –22.91 27.2 –393.11 84.0 –227.10
0.04 2.2 –20.11 17.4 –175.70 64.8 –77.80
0.05 2.2 –18.22 12.2 –93.95 52.6 –33.47
0.06 2.0 –16.75 9.2 –56.30 44.4 –16.71
0.07 2.0 –15.49 7.2 –36.53 38.4 –9.27

original work of (Chen and Chen, 1988). We see from figure 6.4 and table 6.3
that when d̂ is in the range 0.03−0.05 the minimum value of −Ram occurs
with am = 2.4 or 2.2 and this indicates that convection is initiated in the
porous medium. As d̂ increases to 0.06 and 0.07 the instability mechanism
switches and the absolute minimum of −Ram occurs on the right hand
part of the neutral curve with am = 44.4 and 38.4. This indicates that the
deeper fluid layer is influencing the instability process more and instability
is initiated in the fluid layer. Figure 6.5 shows greater detail for the neutral
curves with d̂ = 0.06 and d̂ = 0.07.

In figure 6.6 and table 6.4 we show the neutral curves as φ is varied
with d̂ fixed. The parameters are Pr = 6, α = 0.1, d̂ = 0.06 and φ takes
values 0.3 to 0.5. The values of δ, Gm and εT are calculated from equations
(6.39) and (6.42). In fact, for φ = 0.3, δ = 1.78572 × 10−3, Gm = 0.52745,
εT = 0.246475, for φ = 0.4, δ = 3.2075×10−3, Gm = 0.4911, εT = 0.220456,
while for φ = 0.5, δ = 5.37917×10−3, Gm = 0.45475, εT = 0.196407. These
values are very different from the values displayed in (Straughan, 2002a)
and give us yet more insight into the instability process. We observe that as
φ increases from 0.3 to 0.4 the instability mechanism switches from being
driven by the fluid when φ = 0.3 to being initiated by the porous medium
when φ = 0.4. When φ = 0.5 the instability is still governed by the porous
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Figure 6.6. Critical porous Rayleigh number versus wavenumber. Pr = 6, α = 0.1,
d̂ = 0.06. Gm, εT , δ calculated from (6.39), (6.42). The φ values are shown on the
figure
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Table 6.4. Minimum −Ram values for varying φ. The absolute minimum −Ram

value for a given value of φ is shown in bold. The local maximum value of −Ram

is shown in slanted type
φ am Ram am Ram am Ram

0.3 2.0 –16.75 9.2 –56.30 44.4 –16.71
0.4 2.2 –16.92 12.0 –79.12 42.8 –38.30
0.5 2.2 –17.64 15.4 –102.39 40.6 –71.89

medium. Increasing φ means greater fluid content in the porous part of
the layer. It is worthwhile to observe that as φ increases the minimum
critical value of −Ram increases from 16.71 to 17.64. Hence, even though
the instability is switching to being dominated by the porous medium as φ
increases the total system is more stable. The presence of a greater volume
of fluid means the instability occurs at greater Rayleigh numbers.

Figure 6.7 shows the neutral curve behaviour for the Beavers-Joseph
parameter, α, varying. The parameters are Pr = 6, φ = 0.3, d̂ = 0.06,
Gm = 0.52745, εT = 0.246475, and δ = 1.78572×10−3. In figure 6.7 we show
neutral curves for α = 0.1 and α = 0.8. We additionally computed these
curves for α = 1.5, 2.2, 2.9 and 3.6. For α ≥ 0.8 the variation in the neutral
curves is little, as may be inferred from table 6.5. For α = 0.1 the instability
is governed by the fluid layer with am = 44.4. For α = 0.8 and greater the
instability is dominated by the porous layer with am = 2.2. Figure 6.7
and table 6.5 indicate that increasing the Beavers-Joseph parameter α has
the effect of making the whole two layer system more stable. However, the
effect is small. It would appear that for this range of parameters, changing
the Beavers-Joseph coefficient has little effect on the instability process.
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Figure 6.7. Critical porous Rayleigh number versus wavenumber. Pr = 6, φ = 0.3,
d̂ = 0.06, Gm = 0.52745, εT = 0.246475, δ = 1.78572 × 10−3. The α values are
shown on the figure
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Table 6.5. Minimum −Ram values for varying α. The absolute minimum −Ram

value for a given value of α is shown in bold. The local maximum value of −Ram

is shown in slanted type
α am Ram am Ram am Ram

0.1 2.0 –16.75 9.2 –56.30 44.4 –16.71
0.8 2.2 –16.85 10.2 –63.70 47.6 –20.57
1.5 2.2 –16.86 10.4 –65.04 48.2 –21.36
2.2 2.2 –16.86 10.6 –65.60 48.4 –21.70
2.9 2.2 –16.86 10.6 –65.91 48.4 –21.89
3.6 2.2 –16.87 10.6 –66.11 48.6 –22.01

6.4 Melting ice, global warming

6.4.1 Three layer model

Melting of sea ice in the Arctic or Antarctic is a topic of concern to every-
one. (Martin and Kauffman, 1974) studied the formation of under ice melt
ponds and their model is based on a convection mechanism. Since thermal
convection can result in enhanced heat transfer and such heat transfer can
in turn result in enhanced melting of the ice shelves, the subject has been
widely studied. Recent analyses are those of (Bogorodskii and Nagurnyi,
2000), (Schmittner et al., 2002), (Carr, 2003a; Carr, 2003b), and many
other references may be found there.

(Bogorodskii and Nagurnyi, 2000) indicate that the ice melts on the
surface due to radiation heating by the Sun, and below the ice shelf. The
siutation is as shown in figure 6.8. Observe that there are meltwater puddles
on the ice surface due to direct melting by the heating caused by the Sun’s
radiation. In addition, it is believed melting also occurs below the ice shelf
which results in a layer of water below and this gives rise to a fluid - porous
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Figure 6.8. Ice shelf melting
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medium - fluid convection “sandwich” as studied theoretically by (Nield,
1983).

(Bogorodskii and Nagurnyi, 2000) note that surface meltwater puddles
absorb short wave radiation much faster than the ice or snow itself. Such
absorption may, therefore, lead to accelerated melting which can cause the
ice shelf to break and form drifting ice.

To model the meltwater / ice / meltwater convection process
(Bogorodskii and Nagurnyi, 2000) treat the ice as a Darcy porous medium.
They assume a symmetric geometry and, therefore, they effectively use the
liquid - porous medium - liquid convection model first developed by (Nield,
1983). This model has a three layer structure composed of a layer of sea
water of depth dm overlying a plane layer of ice of depth 2d, which in
turn overlies another layer of sea water which has depth dm. The ice is
regarded as a porous medium of Darcy type. The geometric configuration
is as shown in figure 6.9.

Due to the symmetry of the problem (Nield, 1983) and (Bogorodskii and
Nagurnyi, 2000) show that it is sufficient to study convection only in the
layer z ∈ (0, d+dm). Explicit time dependence in the equations is neglected
by (Nield, 1983) and by (Bogorodskii and Nagurnyi, 2000) (effectively they
are assuming exchange of stabilities so the growth rates σ, σm are real).
The governing equations are, therefore, in the fluid

uj
∂ui

∂xj
= − 1

ρ0

∂p

∂xi
+ νΔui + ᾱgTki,

∂ui

∂xi
= 0, uj

∂T

∂xj
= κΔT,

(6.43)

z = d + dm

z = d

z = −d

z = −d − dm

z = 0 plane of symmetry

meltwater

meltwater

ice

(Darcy porous medium)

Figure 6.9. Three layer meltwater - ice geometry



260 6. Fluid - Porous Interface Problems

whereas in the ice,

0 = − 1
ρ0

∂pm

∂xi
− ν

K
um

i + ᾱgTmki,

∂um
i

∂xi
= 0, um

j

∂Tm

∂xj
= κmΔTm.

(6.44)

Both (Nield, 1983) and (Bogorodskii and Nagurnyi, 2000) study lin-
ear instability of the steady solution to (6.43), (6.44). This solution has
ui ≡ 0, um

i ≡ 0, with T (z), Tm(z) being linear functions in their respective
layers.

The linearized perturbation equations of (Bogorodskii and Nagurnyi,
2000) are transformed to the layers z ∈ (h, 1) for the fluid, z ∈ (0, h)
for the ice, with 0 < h < 1. Their perturbation equations in terms of the
z−dependent parts W (z),Θ(z),Wm(z),Θm(z) become

D2W − a2RaΘ = 0, DΘ + W = 0,

DWm + a2
mRaΓ1Θm = 0, DΘm + Γ2

2Wm = 0,

where a, am are wavenumbers, Ra is a Rayleigh number, and Γ1,Γ2 are
positive constants. The boundary conditions are

on z = 1, W = W ′′ = 0, Θ′ = 0 (or W ′ = 0 instead of W ′′ = 0),
on z = h, W ′ = 0, W = Wm, KW ′′′ + W ′

m = 0,

Θ = Θm, Γ2Θ′
m = Θ′,

on z = 0, W ′
m = 0, Θ′

m = 0.

The last two boundary conditions arise due to geometrical symmetry of the
three layer problem.

(Bogorodskii and Nagurnyi, 2000) like (Nield, 1983) develop a long wave
asymptotic solution (a → 0) which is possible with heat flux boundary
conditions. Their conclusions are certainly interesting. They study various
parameter ranges and conclude that their model favours melting at the
lower boundary of sea ice. They also show that sea ice melts from the
top, bottom and inside, and importantly the melting is at least twice as
intensive as was predicted before their analysis.

6.4.2 Under ice melt ponds

(Martin and Kauffman, 1974) developed and studied a model for the evo-
lution of the meltwater which occurs under the ice, see figure 6.8. (Carr,
2003a; Carr, 2003b) develops a detailed analysis for a similar model. Her
model concentrates on the layer of meltwater below the ice and she studies
the geometry of figure 6.10.

She studies an idealized situation where the boundary z = 0 is fixed,
although a thin ice layer may form there and so her geometry may be
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z = d

z = 0

T = 0◦C, C = CU

T = −TL, C = CL

ice

meltwater (freshwater)

sea (salt water)

Figure 6.10. Under ice meltwater geometry

realistic. The meltwater is relatively less dense than the sea water since it
is melted from ice. However, the temperature at the lower boundary z = 0 is
negative, −TL, and due to the maximum density characteristic of water the
warmer water at z = d will have a tendency to fall under gravity and create
a convective motion. This is offset by the relatively denser water below.
Thus, there is competition between temperature and salt as to whether
convective motion (and enhanced ice melting?) ensues. The model adopted
by (Carr, 2003a; Carr, 2003b) for the layer z ∈ (0, d) commences with
a density quadratic in temperature T to reflect the maximum density of
water, but linear in salt concentration, C, so

ρ = ρ0

[
1 − α(T − 4)2 + A(C − Ĉ)

]
.

She uses this in the body force in the Navier-Stokes equations (buoyancy
term) and her system of equations is

∂ui

∂t
+ uj

∂ui

∂xj
= − 1

ρ0

∂p

∂xi
+ νΔui + gki

[
α(T 2 − 8T ) − AC

]
,

∂ui

∂xi
= 0,

∂T

∂t
+ ui

∂T

∂xi
= κΔT,

∂C

∂t
+ ui

∂C

∂xi
= κCΔC.

(6.45)

The boundary conditions adopted are as shown in figure 6.10 with CL > CU

and these give rise to the steady state

ūi = 0, T̄ =
TL

d
z − TL , C̄ = CL −

(CL − CU

d

)
z.

(Carr, 2003a; Carr, 2003b) performs a linearized instability analysis and a
global nonlinear stability analysis for this basic solution.
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Her non-dimensionalized perturbation equations are, in terms of the
velocity, temperature, salt and pressure perturbations, ui, θ, s, π,

∂ui

∂t
+ uj

∂ui

∂xj
= − ∂π

∂xi
+ Δui − 2RM(z)θki + Prθ2ki − RCski,

∂ui

∂xi
= 0,

P r
(∂θ

∂t
+ ui

∂θ

∂xi

)
= Δθ − Rw,

Sc
(∂s

∂t
+ ui

∂s

∂xi

)
= Δs + RCw.

In these equations M(z) = (TL + 4)/TL − z, w = u3, P r, Sc are the
Prandtl and Schmidt numbers, and R2, R2

C are the Rayleigh number and
salt Rayleigh number, respectively. (Carr, 2003a; Carr, 2003b) provides
many numerical results for the linear instability boundary and for global
nonlinear energy decay.

The work of (Martin and Kauffman, 1974), (Bogorodskii and Nagurnyi,
2000), (Carr, 2003a; Carr, 2003b) provides a good account of possible mech-
anisms for convection and enhanced melting of ice shelves. Of course, a full
model perhaps combines the (Bogorodskii and Nagurnyi, 2000) and (Carr,
2003a; Carr, 2003b) ones in that one has a three layer system, of convec-
tion in the upper meltlayer, with convection in porous ice, with penetrative
convection in the meltlayer below the ice. The melting effect at the sea ice
- water boundaries may also need to be incorporated.

6.5 Crystal growth

A physical problem which has some resemblance to the 2 layer thermal con-
vection problem of section 6.1.2 is that involving solidification of a binary
solution, although the solidification problem is in some ways much more
complicated. (Lu and Chen, 1997) is a good article which explains several
models appropriate to this problem. As (Lu and Chen, 1997) , (Chung and
Chen, 2000b), (Worster, 1992) point out the problem of directional solidifi-
cation in a binary solution, such as ammonium chloride solution, frequently
leads to convection occurring in the “mushy” layer between the solid and
liquid regions. This convection typically has “chimneys” of fluid moving
in the mushy layer and these can lead to “freckles” forming in the solid.
If the solid is a metal used for example in a gas turbine blade then such
freckles may be weak points which can lead to fatigue and even fracture.
Therefore, an understanding of the convection process during solidification
is very important.

(Lu and Chen, 1997) is a lucid article which reviews the history of many
models developed to describe mushy layers, from involved models using
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mixture theories to less complicated ones. In particular, they investigate
three ramifications of the two layer model of (Worster, 1992). Thus, (Lu and
Chen, 1997) consider a mushy layer which lies above a eutectic solid region
and the mushy layer is below the fluid region. The fluid region is infinite in
vertical extent, the whole system being infinite in the horizontal directions
x and y. The fluid is a binary solution of concentration C∞, temperature
T∞, and a unidirectional solidification is taking place from below. The
mushy layer between the fluid and solid regions is assumed to occupy the
region z ∈ (0, h) with (x, y) ∈ R

2 and this region moves upward with the
interfaces z = 0, h moving with a uniform speed V . In fact, the liquid-mush
interface z = h is allowed to deform but in a linearized instability analysis
one linearizes about z = h, (Worster, 1992).

(Lu and Chen, 1997) transform the equations with respect to the inter-
face speed V . They introduce the solutal and thermal expansion coefficients
β∗ and α∗, a parameter β = β∗ − Γα∗, where Γ is the slope of the liquidus
curve, and the eutectic concentration CE . In this manner the model for
convection in the fluid/mushy layer region consists of the Navier-Stokes
equations in the fluid layer {z ∈ (h,∞)} × R

2 with appropriate porous
media equations in the mushy region {z ∈ (0, h)}×R

2. In the fluid domain
{z ∈ (h,∞)} × R

2, the equations are

1
Pr

(Dui + ujui,j) = Δui + RT θki − RCΦki −
β

β∗ RCp,i ,

∂ui

∂xi
= 0 ,

Dθ + uiθ,i = Δθ,

DΦ + uiΦ,i = εΔΦ.

(6.46)

Here, D = ∂/∂t − ∂/∂z, a derivative introduced by transforming to the
moving domain, Pr, ε are the Prandtl and Lewis numbers, RT and RC are
the Rayleigh and solute Rayleigh numbers, θ = (T − TL(C∞))/(TL(C∞ −
TE) is a dimensionless temperature, and Φ = (C − C∞)/(C∞ − CE) is
the dimensionless concentration. In the mushy layer {z ∈ (0, h)}×R

2 they
adopt Darcy’s law, conservation of thermal energy, and conservation of
solute, together with the fact that the velocity is solenoidal, to have

ui

K(φ)
= Rm(p,i + θki),

∂ui

∂xi
= 0 ,

Dθ + uiθ,i = Δθ −FDφ,

φDΦ + uiΦ,i = −(Φ − C)Dφ,

(6.47)
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where φ,K are the porosity and permeability, Rm is the porous Rayleigh
number, F is a variable connected to latent heat, C = (CS − C∞)/(C∞ −
CE), and ui represents the (averaged) fluid velocity in the layer. The
porosity varies throughout the layer.

Equations (6.46) comprise effectively an eighth order system while (6.47)
are essentially fifth order and so solution of this system requires thirteen
boundary conditions. These are assumed to be, (Lu and Chen, 1997), far
from the interface in the fluid region,

as z → ∞, θ → θ∞, Φ → 0, ui → 0, (6.48)

at the mushy layer - solid interface,

on z = 0, θ = −1, w = 0, (6.49)

w being u3, and at the interface between the mushy layer and the fluid,

on z = h, θ = Φ, niθ,i = niΦ,i, [niu,i] = 0, [θ] = 0,

[niθ,i] = 0, φ = 1, [p] = 0, uαaαβxi
;β = 0,

(6.50)

where [·] denotes the jump in a quantity across z = h, and the velocity
is written ui = unni + uαaαβxi

;β , i.e. resolved into normal and tangential
components at the interface.

As (Lu and Chen, 1997) note, the vanishing of the tangential components
of velocity at the interface (z = h) is used by (Worster, 1992). They also
advocate replacing this by an appropriate version of the Beavers-Joseph
boundary condition, namely

∂uα

∂z

∣∣∣
h+

= α∗

√
H

K(1)
(uα|h+ − uα|h−), α = 1, 2, (6.51)

where α∗ is a Beavers-Joseph number and H is a non-dimensional parame-
ter. (Lu and Chen, 1997) refer to equations (6.46), (6.47) together with the
boundary conditions (6.48) – (6.50) as model 1, and when the condition
uαaαβxi

;β = 0 of (6.50) is replaced by (6.51) they call this model 2. (Lu and
Chen, 1997) also consider a third model in which case the Darcy equation
of (6.47) is replaced by a nonlinear Brinkmam law of form

1
Pr

Dui +
1

φPr
ujui,j = Δui −Hφ

[ ui

K(φ)
+ Rm(p,i + θki)

]
.

This equation requires other boundary conditions adapted from continuity
across the boundaries and this they refer to as model 3.

The steady state of (Lu and Chen, 1997) is found to be one in which

θ̄ = θ∞ + (θi − θ∞) e−(z−h), Φ̄ = θi e−(z−h)/ε,

where θi is the interfacial temperature.
(Lu and Chen, 1997) develop a detailed linear instability analysis of this

solution for all three models. The neutral curves are complicated but a



6.6. Heat pipes 265

bimodal character is still found and convection cells may be in the fluid
and in the mushy region.

(Chung and Chen, 2000b) develop a weakly nonlinear analysis of the
mushy convection problem and (Chung and Chen, 2000a) study the convec-
tion problem when the layer is inclined and rotating. Many other references
to work dealing with convection in a solidification system may be found in
(Worster, 1992), (Lu and Chen, 1997), (Chung and Chen, 2000b), (Chung
and Chen, 2000a). The effects of inertia on instability in an inclined rotat-
ing porous layer which may be perceived as a dendrite or mushy layer are
investigated by (Riahi, 2007), while (Govender, 2006a) studies a similar
problem in a near eutectic approximation with a large Stefan number.

6.6 Heat pipes

In section 5.6 we reviewed work of (Pestov, 1998) where she analysed the
stability of a multiphase layer. In this section we briefly analyse the inter-
esting work of (Amili and Yortsos, 2004) on the stability of a two - layer
porous region pertaining to a heat pipe. There are many types of heat
pipe, some are naturally occurring, some are man made to assist in trans-
ferring heat rapidly away from very hot components in machinery. (Amili
and Yortsos, 2004) analyse the situation where a two phase (vapour-liquid)
region overlies a vapour only region, see figure 6.11.

They treat the two dimensional situation with y vertical, x horizontal,
the vapour in the steady state is at rest in the layer 0 < y < H with
the temperature T a linear function of y, while the temperature in the
steady state in the two phase region is constant, namely the saturation
temperature Tsat. The whole layer depth is yt, gravity acts downward, and
(Amili and Yortsos, 2004) treat the mathematical problem where yt → ∞,

�

�

T = Tsat

y = H

y = 0

T = Tsat

T = TB

yt

two phase

vapour

Figure 6.11. Two phase heat pipe
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(H fixed). These writers derive the steady state solution for which the
temperature, T0, pressure, p0, and saturation, s0, satisfy

dp0

dy
= RaT0, T0 = 1 − y, in 0 < y < 1,

dp0

dy
=

1
λkrv

, T0 = 0, s = s0, 1 < y < ∞,

(6.52)

where krv = 1 − s�, s� being the liquid saturation, λ is a constant, Ra is
the Rayleigh number, and the layer (0,H) has been non-dimensionalized
to (0, 1).

The governing equations presented by (Amili and Yortsos, 2004) are
non-dimensionalized and they present them in the non-dimensional regions
0 < y < 1 (vapour), 1 < y < ∞ (liquid / vapour), treating the whole
region as a porous medium. They derive the following equations in the
vapour {x ∈ R} × {0 < y < 1},

vv
i = −p,i + RaTδi2,

vv
i,i = 0,

β1
∂T

∂t
+ vv

i T,i = ΔT,

(6.53)

whereas for the two-phase region {x ∈ R} × {1 < y < ∞}, they have

β2
∂s

∂t
+ (ρ̄vvv

i + v�
i ),i = 0,

v�
i = −kr�

μ̄v

(
p,i +

Ra2

ρ̄v
δi2

)
,

vv
i = −krvp,i ,

− φ
∂s

∂t
+ vv

i,i = 0.

(6.54)

The coefficients β1 and β2 are given by

β1 =
φρvcpv + (1 − φ)ρrcpr

ρvcpv
, β2 = φ(1 − ρ̄v),

v denoting liquid and r rock, the heat pipe being in a rock porous medium.
The equations in (6.54) correspond to conservation of mass, vapour and
liquid momentum, and conservation of energy. The functions kr�, krv are
relative permeabilities and kr� = s�, krv = 1−s�, while vv

i , v�
i denote vapour

and liquid velocities.
(Amili and Yortsos, 2004) analyse the linearized instability of the base

solution (6.52) and introduce the perturbation quantities θ, π,Σ and Δ such
that

T = T0 + εθ(y)e(ikx+σt), p = p0 + επ(y)e(ikx+σt),

s = s0 + εΣ(y)e(ikx+σt), δ = 1 + εΔe(ikx+σt).
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Here ε is a small parameter, θ, π,Σ are perturbations to the temperature,
pressure and saturation, the x-variation is accounted for by the eikx terms,
and δ is a perturbation to the interface y = 1. Their perturbation equations
are

d2π

dy2
− k2π − Ra

dθ

dy
= 0,

d2θ

dy2
− dπ

dy
− (k2 − Ra + β1σ)θ = 0,

(6.55)

in the vapour region 0 < y < 1, and

d2π

dy2
− k2π +

1
kr�0

(
dp0

dy
+

Ra2

ρ̄v

)
dΣ
dy

− φμ̄v

kr�0
σΣ = 0,

d2π

dy2
− k2π − 1

krv0

dp0

dy

dΣ
dy

+
φ

krv0
σΣ = 0,

(6.56)

in the two phase region 1 < y < ∞.
This appears to be a fourth order system in 0 < y < 1 and a third

order system in 1 < y < ∞. However, due to the fact that the interface
is allowed to deform Δ occurs in the boundary conditions at the interface.
Then, (Amili and Yortsos, 2004) have two boundary conditions at y = 0,
namely θ = 0, πy = 0, two at y = ∞, involving π and Σ, and four at the
(linearized) interface y = 1. They solve equations (6.55) and (6.56) as a
fourth order system in θ, π, θy and πy in (0, 1) and a third order system in
π, πy,Σ in (1,∞) by an orthonormal shooting method.

(Amili and Yortsos, 2004) present many numerical results. The neutral
curves σ vs. k are interesting and show that the basic solution is linearly
stable for k small and also for k larger. However, there is an interme-
diate region, in the wavenumber k, in which instability may arise. This
corresponds to convective motion in the layered system in which heat is
transferred. The work of (Amili and Yortsos, 2004) represents a very useful
contribution to an active area of research with mundane applications.

6.7 Poiseuille flow

6.7.1 Darcy model

Until now we have concentrated on thermal convection problems for a
fluid overlying a porous solid. However, there are many mundane situations
where one is interested in fluid flow over a saturated porous medium in an
isothermal situation. For example, (Allen and Khosravani, 1992), (El-Habel
et al., 2002), (Ewing and Weekes, 1998) study flow in an underground
channel where the fluid also saturates part of the soil. Understanding such
flows is of importance in obtaining drinking water supplies and for avoid-
ing contamination. Such flows are also important in the design of fuel cells
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−→

−→

−→

−→

z = d

z = −dm

z = 0Flow
Newtonian fluid

Darcy porous medium

Figure 6.12. Two layer configuration for Poiseuille flow

(Chen, 2003). An emerging area for such flows is also where the porous
solid below may freeze, (Basu et al., 2007), cf. section 6.5.

(Chang et al., 2006) commenced a study of hydrodynamic instability
problems by considering the Poiseuille flow problem for a Newtonian fluid
overlying a porous medium saturated with the same fluid. The configuration
for this problem is that of a Newtonian fluid occupying the domain R

2×{z ∈
(0, d)} with the saturated porous medium occupying the spatial domain
R

2 × {z ∈ (−dm, 0)}, see figure 6.12. A pressure gradient is applied in the
x− direction which gives rise to a basic solution corresponding to Poiseuille
flow in this scenario. (Chang et al., 2006) studied the linearized instability
of this flow.

The equations governing the flow are the Navier-Stokes equations in the
domain R

2×(0, d)×{t > 0} with the Darcy equations in R
2×(−dm, 0)×{t >

0}. Thus, we have

∂ui

∂t
+ uj

∂ui

∂xj
= −1

ρ

∂p

∂xi
+ νΔui,

∂ui

∂xi
= 0, (6.57)

in R
2 × {z ∈ (0, d)} × {t > 0}, and

1
Φ

∂um
i

∂t
= −1

ρ

∂pm

∂xi
− ν

K
um

i ,
∂um

i

∂xi
= 0, (6.58)

in R
2 × {z ∈ (−dm, 0)} × {t > 0}. Observe that throughout section 6.7

we use Φ to denote the porosity to avoid confusion with φ which is later
introduced in connection with the velocity field ui.

The boundary conditions adopted by (Chang et al., 2006) are no slip at
the fixed upper surface and no flow out of the bottom of the porous layer,
so that

ui = 0, z = d, wm = 0, z = −dm, (6.59)
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together with continuity of normal velocity and pressure at the interface,

w = wm, pm = p, z = 0, (6.60)

and

∂uγ

∂z
=

α√
K

(uγ − um
γ ), γ = 1, 2, z = 0. (6.61)

The condition (6.61) is the Beavers-Joseph condition. The other conditions
correspond to those of section 6.1, except that in section 6.1 we advocate
use of continuity of normal stress instead of continuity of pressure. I believe
continuity of normal stress is the correct condition, recollecting that pm

is a pressure averaged over a representative volume Ω̃ not just over the
(pore) fluid volume Ωf . The notation of Ω̃ and Ωf is as in section 1.6.1.
However, numerical calculations have revealed that the difference observed
in computations between employing continuity of pressure in (6.60) and
continuity of normal stress is very small.

If we let dp/dx be a constant pressure gradient then we obtain a basic
profile for Poiseuille flow in the two - layer system in which the velocity is
not continuous. The steady solution given by (Chang et al., 2006) is

ū(z) =
1
2
A1z

2 + A2z + A3, v̄ = w̄ = 0, 0 ≤ z ≤ d, (6.62)

ūm(z) = −A1K, v̄m = w̄m = 0, −dm ≤ z ≤ 0, (6.63)

where the (constant) coefficients A1, A2, A3 are given by

A1 =
1
μ

dp

dx
,

A2 = αA1

√
K − αA1d

2 + 2α2A1d
√

K

2(αd +
√

K)
,

A3 = −A1d
2
√

K + 2αA1Kd

2(αd +
√

K)
.

6.7.2 Linearized perturbation equations

The linearised non-dimensional perturbation equations given by (Chang
et al., 2006) are

Re
(∂ui

∂t
+ uj

∂ūi

∂xj
+ ūj

∂ui

∂xj

)
= − ∂p

∂xi
+ Δui,

∂ui

∂xi
= 0,

(6.64)
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for (x, y) ∈ R
2, z ∈ (0, 1), t > 0, together with

Rem

Φ
∂um

i

∂tm
= − 1

δ2
um

i − ∂pm

∂xm
i

,

∂um
i

∂xm
i

= 0,

(6.65)

where (xm, ym) ∈ R
2, zm ∈ (−1, 0), t > 0. In these equations Re and Rem

are the Reynolds number and the porous Reynolds number, respectively.
These numbers are linearly related as in equation (2.13) of (Chang et al.,
2006).

The system (6.64), (6.65) is reduced by introducing a normal mode form

ui = ui(z) ei(ax+by−act), p = π(z) ei(ax+by−act),

um
i = um

i (zm) ei(amxm+bmym−amcmtm),

pm = πm(zm) ei(amxm+bmym−amcmtm).

A Squire’s theorem is invoked to remove the dependence in the y−direction
and a two dimensional system is obtained. Then, stream functions and
eigenfunctions ψ,ψm, φ, φm are introduced by

u =
∂ψ

∂z
, w = −∂ψ

∂x
, um =

∂ψm

∂zm
, wm = −∂ψm

∂xm
,

where ψ and ψm may be represented by

ψ = φ(z) eia(x−ct), ψm = φm(zm) eiam(xm−cmtm) .

In this way, equations (6.64), (6.65) are reduced to investigating the
eigenvalue equations

(D2 − a2)2φ = iaRe(U − c)(D2 − a2)φ − iaReU ′′φ, z ∈ (0, 1),
( 1

δ2
− Rem iamcm

Φ

)
(D2

p − a2
m)2φm = 0, zm ∈ (−1, 0),

(6.66)

where D = d/dz, Dp = d/dzm and U(z) is ū(z) rewritten with respect to
a velocity scaling, U(z) being given explicitly by equation (2.8) of (Chang
et al., 2006).

The coefficients a, am and Re,Rem are connected and system (6.66) is
to be solved subject to the boundary conditions,

φ = Dφ = 0, on z = 1, φm = 0, on zm = −1,
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together with the interface conditions (derivable from equations (6.59) –
(6.61))

Reφ = Remφm,

D2φ − αd̂

δ
Dφ +

αd̂2Rem

δRe
Dpφ

m = 0,

(
Rem iamcm

Φ
− 1

δ2

)
Dpφ

m

=
Re

d̂3Rem

[
(D2 − a2)Dφ − iaRe(U − c)Dφ + iaReU ′φ

]
,

on the interface z = zm = 0.
To solve equations (6.66) numerically subject to the above boundary

conditions it is convenient to multiply through by δ2 where δ2 occurs in
the denominator (δ2 is small) and write equation (6.66), as two second
order equations of form

(D2 − a2)φ − ξ = 0,

(D2 − a2)ξ = iaRe(U − c)ξ − iaReU ′′φ.
(6.67)

Equations (6.67) are rewritten in the Chebyshev domain (−1, 1), as are
equations (6.66)2 and they are solved using a D2 Chebyshev tau numerical
method (cf. (Dongarra et al., 1996), see also chapter 9) subject to the above
boundary condtions.

6.7.3 (Chang et al., 2006) results

(Chang et al., 2006) performed a variety of numerical calculations. In
particular, for δ = 10−3,Φ = 0.3, α = 0, 1 they varied d̂ and found an
interesting new effect. For d̂ = 0.11 they found instability governed by the
porous layer whereas when d̂ = 0.12 the fluid layer was dominant. Flow
reversal was evident in the top of the porous layer when d̂ = 0.11 and this
is attributed to shear effects near the interface. However, as d̂ was increased
beyond d̂ = 0.12 a new instability mode was seen. Thus, they found tri-
modal instability. For d̂ = 0.121 the third mode is seen but the fluid mode
still dominates. However, when d̂ = 0.13 the new (fluid) mode dominates.
For d̂ = 0.2, 0.3 the left hand mode disappears and the new mode continues
to dominate the instability. (Chang et al., 2006) interpret the new mode
as a even-shear-mode of the Poiseuille flow, based on the eigenfunction
behaviour. The dominant eigenfunction in the fluid mode case behaves like
an even mode confined to the fluid layer.

(Chang et al., 2006) also investigated the effects of varying the Beavers-
Joseph constant α and the Darcy number δ. The third mode was again
encountered during variation of these parameters.
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6.7.4 Brinkman - Darcy model

To overcome the problem of the discontinuity in the velocity field encoun-
tered in the fluid-Darcy layer study just described, (Hill and Straughan,
2008) argue that there is a transition layer between the fluid and the
Darcy porous medium. In fact, this idea was proposed much earlier by
(Nield, 1983), p. 45. Nield suggests using a Brinkman - type equation in
the boundary layer region between the fluid and the Darcy porous medium.
(Goharzadeh et al., 2005) also advocate this approach and analyse the prob-
lem experimentally. Their findings are very important and they deduce that
the thickness of the transition zone is of the same order as the grain size
of the material forming the porous medium.

(Hill and Straughan, 2008) develop an instability analysis for the
Poiseuille flow problem for a fluid overlying a porous medium, but they
adopt a three layer configuration, as shown in figure 6.13. The Newtonian
fluid saturates the porous layer below.

The equations of (Hill and Straughan, 2008) are (6.57), (6.58) in the
layers contained between z ∈ (0, d) and z ∈ (−dm,−βdm), respectively.
However, for completeness we collect the full set of equations below. In the
layer contained in z ∈ (0, d), we have

∂ui

∂t
+ uj

∂ui

∂xj
= −1

ρ

∂p

∂xi
+ νΔui,

∂ui

∂xi
= 0, (6.68)

in the layer (−βdm, 0) there hold

1
Φb

∂ub
i

∂t
= −1

ρ

∂pb

∂xi
+ νeΔub

i −
ν

K
ub

i ,
∂ub

i

∂xi
= 0, (6.69)

while in the layer (−dm,−βdm)

1
Φ

∂um
i

∂t
= −1

ρ

∂pm

∂xi
− ν

K
um

i ,
∂um

i

∂xi
= 0. (6.70)

In these equations ub
i ,Φb, p

b denote the velocity, porosity and pressure in
the Brinkman layer, while an m denotes the Darcy layer. The coefficient
νe = μe/ρ, where μe is an effective dynamic viscosity, and ν = μ/ρ. The
porosity Φb in the Brinkman layer should drop from 1 in the fluid to Φ in the
Brinkman layer. (Hill and Straughan, 2008) adopt the value Φb = (Φ+1)/2.
We believe the Φ value in the Brinkman layer will not seriously affect the
instability results. If we imagine flow past a rigid porous material like a
breeze block then we should adopt Φb = Φ. There are situations where
one may wish to have Φ vary continuously throughout the transition layer
from the value of 1 in the fluid to Φ in the Darcy layer. Such a situation
may arise in flow over a loose porous material such as sand. However, one
may then have to account for resuspension effects where one has flow of a
superposed fluid over a suspension of solid particles which in turn overlies
a porous medium. We do not examine this situation here. The instability
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Figure 6.13. Three layer configuration for Poiseuille flow

of the resuspension problem when there is no porous layer present below
is considered by (Schaflinger, 1994) and by (Schaflinger et al., 1995), with
other references to this particular problem given there.

We need appropriate boundary and interface conditions. Those chosen
by (Hill and Straughan, 2008) are

ui = 0 on z = d, w ≡ u3 = 0 on z = −dm. (6.71)

On the interface z = 0, they assume continuity of normal and tangential
stress, so that

− p + 2μ
∂w

∂z
= −pb + 2μe

∂wb

∂z
, z = 0,

μ
(∂uζ

∂z
+

∂w

∂xζ

)
= μe

(∂ub
ζ

∂z
+

∂wb

∂xζ

)
, z = 0, ζ = 1, 2.

(6.72)

On the Brinkman-Darcy interface z = −βdm we have what is essentially
the condition for continuity of normal stress

− pm = −pb + 2μe
∂wb

∂z
, z = −βdm, (6.73)

and a (Jones, 1973) condition

∂ub
ζ

∂z
+

∂wb

∂xζ
=

α√
K

(ub
ζ − um

ζ ) , z = −βdm, ζ = 1, 2. (6.74)

One could equally well employ a Beavers-Joseph condition instead of
equation (6.74).

6.7.5 Steady solution

For a given constant pressure gradient dp/dx, the steady solution of
(Hill and Straughan, 2008) is of form u = (ū, 0, 0), ub = (ūb, 0, 0),
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um = (ūm, 0, 0), where

ū(z) =
c1

2
z2 + c2z + c3,

ūb(z) = c4 exp
( fz√

K

)
+ c5 exp

(
− fz√

K

)
− Kc1,

ūm(z) = −Kc1.

In these expressions f =
√

μ/μe, c1 = (1/μ)dp/dx,

c2 = A
{

c1(K − d2

2
)
[
(f + α) exp(

2βfdm√
K

) − (f − α)
]}

,

c3 = −A

2

√
K c1d

[
(f + α) exp(

2βfdm√
K

)(fd + 2
√

K)+(f − α)(fd − 2
√

K)
]
,

c4 = Afc1

√
K(K − d2

2
)(f + α) exp(

2βfdm√
K

) ,

c5 = Afc1

√
K(K − d2

2
)(f − α),

A =
1

(f + α)(f
√

K + d) exp[(2βfdm)/
√

K] + (f
√

K − d)(f − α)
.

It is evident that ui is continuous across the interface z = 0. However, ui

is still discontinuous across the (fictitious) layer z = −βdm. Nevertheless,
the basic flow profiles appear much smoother than those of the fluid/Darcy
problem, as is seen in figure 2 of (Hill and Straughan, 2008). The discon-
tinuity at the interface z = −βdm is of a lower order and has less effect
on the solution than the discontinuity in the fluid/Darcy layer problem.
Nonetheless, the error introduced by the discontinuity at z = −βdm is
investigated in detail by (Hill and Straughan, 2008).

6.7.6 Linearized perturbation equations

(Hill and Straughan, 2008) non-dimensionalize ū, ūb, ūm to have non-
dimensional functions U(z), Ub(z), Um. The linearized perturbation equa-
tions derived by (Hill and Straughan, 2008) are

Re

(
∂ui

∂t
+ U

∂ui

∂x
+ δi3U

′w

)
= − ∂p

∂xi
+ Δui,

∂ui

∂xi
= 0,

in R
2 × (0, 1) × {t > 0},

Reb

Φb

∂ub
i

∂t
= −∂pb

∂xi
+

1
f2

Δub
i −

1
δ2

ub
i ,

∂ub
i

∂xi
= 0,

in R
2 × (−β, 0) × {t > 0},

Rem

Φ
∂um

i

∂t
= −∂pm

∂xi
− 1

δ2
um

i ,
∂um

i

∂xi
= 0,
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in R
2 × (−1,−β) × {t > 0}, where Re,Reb, Rem are Reynolds numbers

appropriate to the fluid, Brinkman and Darcy layers. Normal modes are
used on the above equations and a version of Squire’s theorem is employed
to reduce to a two-dimensional system in the x, z directions. In terms of
streamfunctions ψ,ψb, ψm and their associated eigenfunctions φ, φb, φm the
following equations are derived

(D2 − a2)2φ = Re(U − c)ia(D2 − a2)φ − iaReU ′′φ, 0 < z < 1,
(
1 − iabcbRebδ2

Φb
− δ2

f2
(D2

b − a2
b)
)
(D2

b − a2
b)φ

b = 0, −β < z < 0,

(
1 − iamcmRemδ2

Φ

)
(D2

m − a2
m)φm = 0, −1 < z < −β.

(6.75)

System (6.75) corresponds to an Orr-Sommerfeld system for the fluid-
Brinkman-Darcy problem. This system is 10th order and is solved
numerically by (Hill and Straughan, 2008) by using a Chebyshev tau D2

method, writing (6.75)1 and (6.75)2 as two second order equations. The
boundary conditions employed are deduced from equations (6.71) and are

φ = Dφ = 0 on z = 1, φm = 0 on z = −1.

The interface conditions arise from equations (6.72) – (6.74) and are

Reφ = Reb φb,

ReDφ = d̂RebDbφ
b,

f2(D2 + a2)φ = d̂2 Reb

Re
(D2

b + a2
b)φ

b,

Re
[
−iaRe(U − c)Dφ + (D2 − 3a2)Dφ + U ′iaReφ

]

= Rebd̂3

(
1
f2

(D2
b − 3a2

b) +
iabcbReb

Φb
− 1

δ2

)
φb,

on the interface z = 0, and

Rebφb = Remφm,

(D2
b + a2

b)φ
b =

α

δ
Dbφ

b − αRem

δReb
Dmφm,

Reb

{
iabcbReb

Φb
− 1

δ2
+

1
f2

(D2
b − 3a2

b)
}

Dbφ
b

= Rem

(
iamcmRem

Φ
− 1

δ2

)
Dmφm

on the interface z = −β.
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6.7.7 Numerical results

The numerical findings of (Hill and Straughan, 2008) are interesting. In par-
ticular, they do not observe the third mode which was seen by (Chang et al.,
2006), see section 6.7.3. Values employed by (Hill and Straughan, 2008) are
δ = 5 × 10−3, α = 0.1, β = 0.1, f = 0.8, Φ = 0.3, and these are consistent
with the experimental configuration of (Chen and Chen, 1988) who used
3mm glass beads and a 3cm deep layer. The value of β = 0.1 is consistent
with the findings of (Goharzadeh et al., 2005), i.e. in accordance with a tran-
sition layer of depth of order of the grain size of the material comprising the
porous layer. Unlike (Chang et al., 2006), (Hill and Straughan, 2008) find
the transition layer has a large effect on where the instability switches from
being dominated by the porous layer to being dominated by the fluid layer.
Indeed, (Hill and Straughan, 2008) find the changeover is for d̂ in the range
(0.0319, 0.0328). The neutral curves presented by (Hill and Straughan,
2008) show that the mechanism of instability is also very different from
that of (Chang et al., 2006). When d̂ is changed from 0.031 to 0.0314 there
is an isolated “instability island” which appears to the right of the infinite
neutral curve. As d̂ is increased the “instability island” grows in size and
its minimum decreases below that on the unbounded (porous dominance)
curve. For d̂ = 0.032 the instability is already governed by the fluid layer.
As d̂ is increased further the instability island rejoins the infinite curve but
still remains such that its minimum is an absolute minimum. Eigenfunc-
tion profiles which confirm this are presented in (Hill and Straughan, 2008).
Other parameter variations are studied by (Hill and Straughan, 2008) and,
in particular, they present a variation in the Brinkman/Darcy interface
parameter β. For very small β(< 10−3) the porous mode dominates (with
d̂ = 0.13,Φ = 0.3, δ = 5 × 10−3, α = 0.1, f = 0.8). Thus, the depth of
the transition layer is crucial to the instability analysis. We conclude by
remarking that further experimental results on the Poiseuille flow problem
for fluid flowing over a porous layer would be helpful. In this way we may be
able to determine what is an appropriate depth of the transition layer, this
depth may well depend on the applied pressure gradient, or equivalently,
on the maximum velocity in the fluid layer.

6.7.8 Forchheimer - Darcy model

Another approach to viewing the Poiseuille flow problem for a Newtonian
fluid overlying a Darcy porous medium may again be based on a three layer
configuration with a transition layer, but where the intermediate layer is
now composed of a porous medium governed by the equations for a Forch-
heimer flow. In this section we present such a theory. Thus, the situation is
as in section 6.7.4 but the Brinkman layer there is replaced by one of Forch-
heimer type. Since the Forchheimer law is believed to be more suitable than
the Darcy one when the velocity is high, such a three layer situation may be
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appropriate when we are dealing with an instability problem, i.e. the tran-
sition between the relatively slow flow in the Darcy porous medium to the
potentially unstable flow in the fluid might conceivably be well modelled
by Forchheimer flow in a transition layer.

Thus, we consider Poiseuille flow with a Newtonian fluid occupying the
layer R

2 × {z ∈ (0, d)} while the porous medium occupies the layer R
2 ×

{z ∈ (−dm, 0)}. The porous medium is divided into two types (from a
mathematical point of view), a Darcy layer occupying the region R

2×{z ∈
(−dm,−βdm)} with the domain R

2 ×{z ∈ (−βdm, 0)} containing a porous
medium of Forchheimer type. The geometry is as shown in figure 6.14.

The equations governing the motion of the fluid in the domain R
2 ×

(−dm, d) are the Navier-Stokes equations in {z ∈ (0, d)},
∂ui

∂t
+ uj

∂ui

∂xj
= −1

ρ

∂p

∂xi
+ νΔui,

∂ui

∂xi
= 0, (6.76)

with equations of Forchheimer type in the layer (−βdm, 0), i.e.

1
ΦF

∂uF
i

∂t
+

B

K
|uF |uF

i = −1
ρ

∂pF

∂xi
− ν

K
uF

i ,
∂uF

i

∂xi
= 0, (6.77)

and finally, the Darcy equations occupy the layer z ∈ (−dm,−βdm), i.e.

1
Φ

∂um
i

∂t
= −1

ρ

∂pm

∂xi
− ν

K
um

i ,
∂um

i

∂xi
= 0. (6.78)

The quantities ui, p denote the velocity and pressure, with F and m sub-
scripts or superscripts denoting the analogous quantities in the Forchheimer
and Darcy regions, respectively. The variable K is permeability with Φ
being the porosity. We here assume Φ = ΦF , i.e. we are dealing with such
as flow past a breeze block where the porous body is rigid and the porosity
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Figure 6.14. Three layer configuration for Poiseuille flow with a Forchheimer
transition layer
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jumps from Φ in the porous medium to 1 in the fluid. The variable B is a
Forchheimer coefficient with the dimension of length.

The boundary conditions we adopt are no slip on the (fixed) fluid surface
and no flow out of the bottom of the porous layer, so that

ui = 0 on z = d, w ≡ u3 = 0 on z = −dm. (6.79)

The interface conditions adopted are those which correspond to continuity
of normal velocity over the fluid - Forchheimer interface, z = 0, together
with continuity of normal stress and a Beavers-Joseph condition there.
Hence, on z = 0, we assume

w = wF , p − 2μ
∂w

∂z
= pF ,

∂uζ

∂z
=

α√
K

(uζ − uF
ζ ), ζ = 1, 2.

(6.80)

The parameter α is a Beavers-Joseph parameter. The continuity of normal
stress arises since from equations (6.76) and (6.77) we see the stresses may
be given by

tij = −pδij + μ
( ∂ui

∂xj
+

∂uj

∂xi

)
and tFij = −pF δij .

The normal stress is tijnjni (i.e. the normal component of the stress vector
ti = njtij) and we require continuity of this over the interface z = 0, i.e.

−pδijnjni + μ
( ∂ui

∂xj
+

∂uj

∂xi

)
njni = −pF δijnjni.

Since n = (0, 0, 1), we derive (6.80)2, recalling u3 = w. Next, on the Darcy-
Forchheimer interface, z = −βdm, we assume continuity of the normal
component of velocity and continuity of pressure, so

wm = wF and pm = pF , on z = −βdm. (6.81)

We seek a steady solution of form

ū(z) = (ū(z), 0, 0), z ∈ (0, d);

ūF (z) = (ūF (z), 0, 0), z ∈ (−βdm, 0);
ūm(z) = (ūm(z), 0, 0), z ∈ (−dm,−βdm).

By substituting these expressions into equations (6.76) – (6.78) and using
the boundary conditions (6.79) – (6.81) we find

ūm =
KA

ν
, ūF = − ν

2B
+

√
ν2 + 4ABK

2B
,

ū(z) = −γ1(z2 − d2) + α1(z − d),
(6.82)
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where

A = −1
ρ

∂p

∂x
(constant) > 0, γ1 =

A

2ν
,

α1 = α

[
Ad2

2ν(
√

K + dα)
+

ν

2B(
√

K + dα)
−

√
ν2 + 4ABK

2B(
√

K + dα)

]
.

(For small B,

ūF ≈ AK

ν
− A2B2K2

ν3
.)

One finds the maximum of ū(z) occurs where z = α1ν/A and then denoting
the maximum value of ū(z) by V we find

V = −γ1

(
α2

1ν
2

A2
− d2

)
+ α1

(
α1ν

A
− d

)
.

Non-dimensional forms of ū, ūF and ūm are defined by scaling (0, d) to
(0, 1), i.e. z = z∗d, by scaling (−dm, 0) to (−1, 0) by zm = z∗mdm, and by
setting

U(z∗) =
ū(z∗)

V
, UF =

ūF

V
, Um =

ūm

V
.

The steady state profiles for d̂ = 0.1 are sketched in figure 6.15. To sketch
these curves we rewrite U,UF and Um in terms of the non-dimensional
variables

d̂ =
d

dm
, δ =

√
K

dm
, α, and BN =

AB

ν2
d2

m . (6.83)
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Figure 6.15. Steady solution for Poiseuille flow with a Forchheimer transition
layer, d̂ = 0.1, Um, UF are magnified by a factor of 10
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In this way we need only prescribe d̂, δ, α and BN and then U,UF , Um

follow. This allows us to compare the steady solution profile with the two-
layer one of (Chang et al., 2006), their figure 1, p. 291. The number BN is
a non-dimensional measure of the size of the Forchheimer effect. While we
expect this to be very small we have incorporated its effect. In fact, one
may show

U(z) =
d̂2(1 − z2) − 2α̂1d̂(1 − z)

(d̂ − α̂1)2
, z ∈ (0, 1),

UF =
−B−1

N + B−1
N

√
1 + 4δ2BN

(d̂ − α̂1)2
, z ∈ (−β, 0),

Um =
2δ2

(d̂ − α̂1)2
, z ∈ (−1,−β),

(6.84)

where

α̂1 =
α

2(δ + d̂α)

[
d̂2 +

1
BN

− 1
BN

√
1 + 4BNδ2

]
.

(Note the asymptotic forms, for BN << 1,

α̂1 ≈ α

2(δ + d̂α)
(d̂2 − 2δ2 + 4BNδ2),

UF ≈ 2δ2 − 4BNδ2

(d̂ − α̂1)2
.)

In figure 6.15 we select δ = 10−3, α = 0.1, and d̂ = 0.1 which are values
of (Chang et al., 2006). We take β = 0.1 and sketch the steady solution for
BN = 0.1. (In fact, the variation in the Forchheimer effect is very small for
BN < 0.5.)

To study the instability of the basic solution ū, ūF and ūm we introduce
perturbations ui, u

F
i and um

i by

ui → ūi + ui, uF
i → ūF

i + uF
i , um

i → ūm
i + um

i .

The dimensional linearized perturbation equations then have form

ui,t + ūui,x + wū′δi1 = −1
ρ
π,i + νΔui , (6.85)

1
Φ

uF
i,t +

B

K
(ūF uF

i + δi1ū
F uF ) = −1

ρ
πF

,i − ν

K
uF

i , (6.86)

1
Φ

um
i,t = −1

ρ
πm

,i − ν

K
um

i , (6.87)

where ui, u
F
i , um

i are solenoidal, and where π, πF , πm denote the pressure
perturbations and equations (6.85) – (6.87) hold in the region (x, y) ∈ R

2,
t > 0, with z ∈ (0, d), zm ∈ (−βdm, 0), zm ∈ (−dm,−βdm), respectively.
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These equations are non-dimensionalized with the length, time, velocity
and pressure in the fluid having scalings of L = d, T = d/V, V, P = μV/d
with those in the porous regions being scaled with Lm = dm, Tm =
dm/Vm, Vm = ūm, Pm = μVm/dm, i.e. the same scalings as those of (Chang
et al., 2006). We introduce a fluid Reynolds number, Re, and a porous
Reynolds number, Rem, by

Re =
V d

ν
, Rem =

Vmdm

ν
, (6.88)

and we introduce a non-dimensional Forchheimer number, Bm, and the
Darcy number, δ, by

Bm =
BV

ν
, δ =

√
K

dm
. (6.89)

The non-dimensional form of the linearized perturbation equations (6.85)
– (6.87) may then be shown to be

Re(ui,t + Uui,x + U ′δi1w) = −π,i + Δui, ui,i = 0, (6.90)

in R
2 × {z ∈ (0, 1)} × {t > 0},

Rem

Φ
um

i,t = −πm
,i − 1

δ2
um

i , um
i,i = 0, (6.91)

in R
2 × {zm ∈ (−1,−β)} × {t > 0}, and

Rem

Φ
uF

i,t +
Bm

δ2
UF (uF

i + δi1u
F ) = −πF

,i − 1
δ2

uF
i , uF

i,i = 0, (6.92)

in R
2 × {zm ∈ (−β, 0)} × {t > 0}.

The boundary conditions on z = 1 and on zm = −1 become

ui = 0, z = 1; wm = 0, z = −1. (6.93)

On the Forchheimer-Darcy interface z = −βdm we have

wF = wm and πF = πm. (6.94)

We henceforth assume we are dealing with a two-dimensional perturbation
in the (x, z) plane, i.e. u = (u,w), etc. Then, we may differentiate (6.94)
with respect to x so that

∂πF

∂x
=

∂πm

∂x
on z = −βdm.

Next, use the differential equations to substitute for these derivatives to
see that

1
Φ

uF
,t +

2B

K
ūF uF +

ν

K
uF =

1
Φ

um
,t +

ν

K
um , z = −βdm.
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This boundary condition is now non-dimensionalized and we find the non-
dimensional interface conditions on z = −β are

wF = wm, z = −β,

Rem

Φ
∂uF

∂t
+

1
δ2

(2Bm + 1)uF =
Rem

Φ
∂um

∂t
+

1
δ2

um.
(6.95)

The next step is to derive the three interface conditions on z = 0. Firstly
w = wF there, so in non-dimensional terms

w = wFV, (6.96)

where V is a non-dimensional velocity scaling given by

V =
V m

V
. (6.97)

The Beavers-Joseph condition is

∂uζ

∂z
=

α√
K

(uζ − uF
ζ ), ζ = 1, 2, z = 0,

(this derivation works in three-dimensions and so we leave it as it is).
Differentiate this equation in the x and y directions and use the fact that
uζ,ζ = −∂w/∂z. Then non-dimensionalize to obtain

∂2w

∂z2
=

αd̂

δ

(
∂w

∂z
− d̂V ∂wF

∂z

)
. (6.98)

Note, the interface conditions (6.96) and (6.98) are dimensionless conditions
on z = 0.

We next take the normal stress continuity condition

π − 2μ
∂w

∂z
= πF on z = 0,

and differentiate this with respect to x and y to find

∂πF

∂x
=

∂π

∂x
− 2μ

∂2w

∂x∂z
,

∂πF

∂y
=

∂π

∂y
− 2μ

∂2w

∂y∂z
,

and we then substitute from the dimensional, linearized perturbation equa-
tions for these quantities. The equation which results is then operated on
by ∂/∂xζ , ζ = 1, 2, and the equation uζ,ζ = −∂w/∂z is employed. One may
then show that

1
Φ

wF
,zt +

(
ν

K
+

2B

K
ūF

)
wF

,z = − μ

ρ
w,zzz −

3μ

ρ
w,zαα

+ w,zt + ūw,zx + ū′w,x .

(6.99)

This equation holds on z = 0 and is in dimensional form. The three interface
conditions on z = 0 are (6.96), (6.98) and (6.99).
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We next write the perturbation equations in terms of a single velocity
function. Thus, for a two-dimensional perturbation, equations (6.90) are

Re(ut + Uux + U ′w) = −πx + Δu,

Re(wt + Uwx) = −πz + Δw,

ux + wz = 0.

(6.100)

Due to the last equation we may introduce a stream function ψ(x, z, t) such
that u = ψz, w = −ψx. We then put

ψ = φ(z)eia(x−ct).

Then,

u = Dφ eia(x−ct) and w = −φ iaeia(x−ct).

Then the pressure is eliminated from (6.100) and we find φ satisfies the
equation

(D2 − a2)2φ = Re
{
ia(U − c)(D2 − a2)φ− iaU ′′φ

}
, z ∈ (0, 1). (6.101)

For the Darcy perturbation equations (6.91) we have

Rem

Φ
um

t = −πm
x − 1

δ2
um,

Rem

Φ
wm

t = −πm
z − 1

δ2
wm,

um
x + wm

z = 0.

(6.102)

We again introduce a stream function ψm(xm, zm, tm) such that um =
ψm

z , wm = −ψm
x , with

ψm = φm(zm)eiam(xm−cmtm).

By eliminating πm
xz from (6.102) one then shows φm satisfies the equation

(
1
δ2

− iamcmRem

Φ

)
(D2 − a2

m)φm = 0, zm ∈ (−1,−β). (6.103)

The two - dimensional Forchheimer equations (6.92) yield

Rem

Φ
uF

t +
2BmUF

δ2
uF = −πF

x − 1
δ2

uF ,

Rem

Φ
wF

t +
BmUF

δ2
wF = −πF

z − 1
δ2

wF ,

uF
x + wF

z = 0.

(6.104)

We introduce the stream function ψF such that uF = ψF
z , wF = −ψF

x ,
where

ψF = φF (zm)eiam(xm−cmtm).
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Then, eliminating the pressures in (6.104)1,2 we show φF satisfies the
differential equation

(
BmUF + 1

δ2

)
(D2 − a2

m)φF +
BmUF

δ2
D2φF

− iamcm
Rem

Φ
(D2 − a2

m)φF = 0, zm ∈ (−β, 0).
(6.105)

The system of differential equations to be solved comprises (6.101),
(6.103) and (6.105). Note that this system yields an eighth order eigen-
value problem for the eigenvalue c (or cm). This must be solved subject to
eight boundary conditions. These are found from equations (6.93), (6.95),
(6.96), (6.98) and (6.99). These boundary conditions are written in terms
of φ, φF and φm and non-dimensionalized. We omit details, but one shows
they become,

on z = 1, φ = 0, Dφ = 0, (6.106)
on z = −1, φm = 0, (6.107)

on z = −β,

φF = φm,
(

2Bm + 1
δ2

− iamcmRem

Φ

)
DφF =

(
1
δ2

− iamcmRem

Φ

)
Dφm,

(6.108)

and on z = 0,

a

am
φ = VφF ,

D2φ =
αd̂

δ

(
Dφ − d̂Vam

a
DφF

)
,

−
[
a2

mcm

Φ
+

iam

Remδ2
(1 + 2BmVUF )

]
DφF

=
(

ia

Remd̂3V

)
(D3φ − 3a2Dφ) +

a2(U − c)

d̂2V
Dφ − iaU ′

d̂2V
φ.

(6.109)

Numerical results for system (6.101), (6.103), (6.105) together with the
boundary conditions (6.106) – (6.109) will be presented in future work.

6.7.9 Brinkman - Forchheimer / Darcy model

We have thus far considered two models for flow over a porous medium
incorporating a transition layer. Namely, when the transition layer is of
Brinkman type, or of Forchheimer type. Each model has its own virtue,
the Forchheimer one incorporating the faster flow as the fluid approaches
the pure fluid layer, while the Brinkman one adapts to flow near a wall
or when the porosity is close to one. In this section we again consider
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Figure 6.16. Three layer configuration for Poiseuille flow with a Brinkman -
Forchheimer transition layer

the Poiseuille flow problem in a three layer configuration incorporating a
transition layer, but we now account for both features of the Brinkman and
Forchheimer theories by modelling the transition layer with a Brinkman -
Forchheimer equation, cf. equation (6.9). Thus, the flow geometry is as
shown in figure 6.16.

We observe that the merits, and instances where care should be taken, of
using a Brinkman - Forchheimer theory next to a clean fluid are discussed
in some detail by (Nield, 1991b). However, he does not specifically discuss
Poiseuille flow and does not treat the instability problem.

Thus, in this section we consider Poiseuille flow with a Newtonian fluid
occupying the layer R

2 × {z ∈ (0, d)} while the porous medium occupies
the layer R

2×{z ∈ (−dm, 0)}. The porous medium is now divided into two
types (from a mathematical point of view), a Darcy layer occupying the
region R

2 × {z ∈ (−dm,−βdm)} with the domain R
2 × {z ∈ (−βdm, 0)}

containing a porous medium of Brinkman - Forchheimer type, cf. figure
6.16.

The equations governing the motion of the fluid in the domain R
2 ×

(−dm, d) are the Navier-Stokes equations in {z ∈ (0, d)},

∂ui

∂t
+ uj

∂ui

∂xj
= −1

ρ

∂p

∂xi
+ νΔui,

∂ui

∂xi
= 0, (6.110)

with equations of Brinkman - Forchheimer type in the layer (−βdm, 0), i.e.

1
ΦF

∂uBF
i

∂t
+

B

K
|uBF |uBF

i = −1
ρ

∂pBF

∂xi
− ν

K
uBF

i +
ν

Φ
ΔuBF

i ,

∂uBF
i

∂xi
= 0,

(6.111)
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and finally, the Darcy equations occupy the layer z ∈ (−dm,−βdm), i.e.

1
Φ

∂um
i

∂t
= −1

ρ

∂pm

∂xi
− ν

K
um

i ,
∂um

i

∂xi
= 0. (6.112)

Note that ui, u
BF
i , um

i denote the velocity in the fluid, Brinkman - Forch-
heimer, and Darcy layers, respectively, with p, pBF and pm being similarly
the pressures. We also suppose the porosity is the same in the Darcy
and Brinkman - Forchheimer layers, namely Φ. The number B is again
a Forchheimer coefficient with the dimension of length.

We discuss the steady solution u = (u(z), 0, 0), uBF = (uBF (z), 0, 0),
um = (um, 0, 0), below and its scaled non-dimensional forms U,UBF , Um.
We observe now that one may derive the following non-dimensional
linearized perturbation equations

Re(ui,t + Uui,x + U ′δi1w) = −π,i + Δui, ui,i = 0, (6.113)

in R
2 × {z ∈ (0, 1)} × {t > 0},

Rem

Φ
um

i,t = −πm
,i − 1

δ2
um

i , um
i,i = 0, (6.114)

in R
2 × {zm ∈ (−1,−β)} × {t > 0}, and

Rem

Φ
uBF

i,t +
Bm

δ2
UBF (uBF

i + δi1u
BF ) = −πBF

,i − 1
δ2

uBF
i +

1
Φ

ΔuBF
i ,

uBF
i,i = 0,

(6.115)
in R

2 × {zm ∈ (−β, 0)} × {t > 0}.
We again study instability via a two-dimensional perturbation and intro-

duce stream functions ψ,ψBF , ψm and their associated velocity functions
φ, φBF , φm as in section 6.7.8. In this way one derives the differential
equations for φ, φBF and φm as

(D2 − a2)2φ = Re
{
ia(U − c)(D2 − a2)φ − iaU ′′φ

}
, (6.116)

with z ∈ (0, 1),
(

1
δ2

− iamcmRem

Φ

)
(D2 − a2

m)φm = 0, (6.117)

in the lower layer zm ∈ (−1,−β), and
(

BmUBF + 1
δ2

)
(D2 − a2

m)φBF +
BmUBF

δ2
D2φBF

− iamcm
Rem

Φ
(D2 − a2

m)φBF

+
2Bm

δ2
U ′

BF DφBF − 1
Φ

(D2 − a2
m)2φBF = 0,

(6.118)

where zm is now in the non-dimensional transition layer, namely, zm ∈
(−β, 0).
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Equations (6.116) – (6.118) are the differential equations to be solved.
They represent a tenth order system for the eigenvalue c (or cm) and may be
efficiently solved numerically by the D2 Chebyshev tau method described
in section 9.2.1. However, we must first show how one determines the steady
solution and the boundary and interface conditions.

We assume the upper boundary is fixed. Thus, in dimensional form

ui = 0 on z = d. (6.119)

On the bottom of the porous layer we suppose no flow out, so

u3 = wm = 0 on z = −dm. (6.120)

On the fluid / Brinkman-Forchheimer interface z = 0 we assume ui is
continuous and also the stress vector is continuous there. The stress vector
t is given by

ti = njtij or tBF
i = njt

BF
ij

where tij , t
BF
ij denote the stress tensors. The stress tensors have form

tij = −πδij + μ(ui,j + uj,i),

tBF
ij = −πBF δij +

μ

Φ
(uBF

i,j + uBF
j,i ),

where we recall we are dealing with perturbations to the basic solution
ū, ūBF , ūm. Thus, we require (for a two-dimensional perturbation) the
stress vector components t1 and t3 to be continuous across z = 0. This
leads to the four interface conditions

u = uBF , w = wBF ,

− πBF +
2μ

Φ
∂wBF

∂zm
= −π + 2μ

∂w

∂z
,

μ

Φ

(
∂uBF

∂zm
+

∂wBF

∂xm

)
= μ

(
∂u

∂z
+

∂w

∂x

)
,

(6.121)

on z = 0.
On the Darcy / Brinkman-Forchheimer interface we assume w is contin-

uous, continuity of normal stress (i.e. of the normal stress vector), and the
Beavers-Joseph condition, thus

wm = wBF ,

− πm = −πBF +
2μ

Φ
∂wBF

∂zm
,

∂uBF
ζ

∂zm
=

α√
K

(uBF
ζ − um

ζ ), ζ = 1, 2,

(6.122)

on z = −βdm. (Note we have left the Beavers-Joseph condition in its three-
dimensional form, although one may directly handle the two-dimensional
equivalent.)
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The steady solution to equations (6.110) – (6.112), u = (u(z), 0, 0),
uBF = (uBF (z), 0, 0), um = (um(z), 0, 0), must be found which satisfies
the boundary and interface conditions (6.119), (6.120), (6.121) and (6.122).
One shows that

ūm =
AK

ν
, (6.123)

and using (6.119),

ū(z) =
A

2ν
(d2 − z2) + α1(z − d), z ∈ (0, d), (6.124)

where α1 is to be determined from the interface conditions (6.121) in con-
junction with calculating ūBF . The function ūBF (z) is not constant and
satisfies the nonlinear ordinary differential equation

A − ν

K
ūBF − B

K
(ūBF )2 +

ν

Φ
ūBF

zz = 0, z ∈ (−βdm, 0). (6.125)

The function ūBF (z) must be deterimined numerically, either by solving
the nonlinear ordinary differential equation (6.125), or by multiplying the
equation by ūBF

z and integrating, and then converting the equation to an
implicit integral equation for ūBF . The interface conditions must then be
employed to completely determine ūBF and ū.

The boundary and interface conditions (6.119) – (6.122) may be written
in non-dimensional form as

u = 0, w = 0, z = 1; wm = 0, z = −1;

wm = wBF ,
∂2wBF

∂z2
m

=
α√
K

(∂wBF

∂zm
− ∂wm

∂zm

)
, z = −β;

Rem

Φ
um

t +
1
δ2

um =
Rem

Φ
uBF

t +
2Bm

δ2
UBF uBF

+
1
δ2

uBF − 1
Φ

ΔuBF +
2
Φ

wBF
zx , z = −β;

V w = VmwBF , V u = VmuBF , z = 0;

Vd2

(
Rem

Φ
uBF

t +
2Bm

δ2
UBF uBF +

1
δ2

uBF − 1
Φ

ΔuBF +
2
Φ

wBF
zx

)

= Re(ut + Uux + U ′w) + 2wxz , z = 0;

V d̂

Φ
(uBF

z + wBF
x ) = uz + wx , z = 0.
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The above ten boundary and interface conditions are written in terms of
the velocity functions φ, φBF and φm as (in non-dimensional form),

φ = 0,Dφ = 0, z = 1; φm = 0, zm = −1; (6.126)

φm = φBF ,D2φBF =
α√
K

(DφBF − Dφm), z = −β; (6.127)

− iamcm
Rem

Φ
DφBF − 1

Φ
(D2 − a2

m)DφBF

+
(

2Bm

δ2
UBF +

1
δ2

+
2a2

m

Φ

)
DφBF

= −iamcm
Rem

Φ
Dφm +

1
δ2

Dφm , z = −β; (6.128)

φ =
am

a
VφBF ,Dφ = d̂VDφBF , z = 0; (6.129)

V d̂2

{
− 1

Φ
(D2 − a2

m)DφBF − iamcm
Rem

Φ
DφBF

+
(

2BmUBF

δ2
+

1
δ2

+ 2a2
m

)
DφBF

}

= −
[
Re ia(U − c) + 2a2

]
Dφ − Re iaU ′φ, z = 0; (6.130)

V d̂

Φ
(D2 + a2

m)φBF = (D2 + a2)φ, z = 0. (6.131)

Thus, the eigenvalue problem to be solved consists of equations (6.116) –
(6.118) together with the boundary conditions (6.126) – (6.131). Numerical
results for this system will appear in future work.

6.8 Acoustic waves, ocean bed

(Caviglia et al., 1992a) treat the problem of propagation of a wave in a
region composed of a layer of fluid overlying a layer of porous material.
The application which motivates their work is to understand how a sound
wave travels through the sea and is then relected / transmitted through the
porous sea bed. They model this scenario by assuming the half-space above
z = 0 is filled with an inviscid fluid while the half space below z = 0 is
filled with a saturated porous medium, see figure 6.17. To model the porous
medium they adopt the linearized version of the theory of (Bowen, 1982),
which is a mixture theory which allows for variable porosity as discussed
in chapter 1.

In the following sub-section we describe wave propagation in a porous
medium allowing the solid structure to also move. The material of section
6.8.1 does not use an equivalent fluid type of theory as is used in chapter 8.
Thus, section 6.8.1 is of interest in its own right for sound wave propagation
as considered in chapter 8.
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Figure 6.17. Reflection - refraction at the sea bed

6.8.1 Basic equations

A heuristic approach to seeing the connection between porosity and the
partial densities is now given. Let V be a volume occupied by a mixture of
a fluid and a solid. Suppose the fluid occupies the fraction vf while the solid
occupies vs, with vf + vs = V. Then, if ρ̄f and ρ̄s denote the actual fluid
and solid densities and mf and ms are the respective masses, ρ̄f = mf/vf

and ρ̄s = ms/vs. We define the partial densities ρf and ρs by ρf = mf/V
and ρs = ms/V . Then, ρf and ρs satisfy the volume additivity relation

ρf

ρ̄f
+

ρs

ρ̄s
= 1. (6.132)

The porosity of the porous medium, φ, is defined by

φ =
fluid volume
total volume

=
vf

V

=
ρf

ρ̄f
= 1 − ρs

ρ̄s
. (6.133)

(Caviglia et al., 1992a) consider a mixture of one fluid and one solid in the
(Bowen, 1982) theory and we briefly report their equations and findings.
The governing equations begin with the balance of mass for the fluid and
the solid components,

∂ρf

∂t
+ (ρfvf

i ),i = 0, (6.134)

and

∂ρs

∂t
+ (ρsv

s
i ),i = 0, (6.135)



6.8. Acoustic waves, ocean bed 291

The balances of momentum for the fluid and solid constituents are

∂(ρfvf
i )

∂t
+

∂(ρfvf
i vf

j − T f
ij)

∂xj
= pf

i , (6.136)

and

∂(ρsv
s
i )

∂t
+

∂(ρsv
s
i v

s
j − T s

ij)
∂xj

= ps
i . (6.137)

In these equations vf
i , vs

i are the fluid and solid velocities in the mixture,
T f

ij , T
s
ij are the fluid and solid partial stress tensors and pf

i , ps
i are interaction

forces. The stresses are given by the constitutive equations

T f
ij = −λf

(ρf − ρ0
f )

ρ0
f

δij + Γf (φ − φ0)δij + λsfus
k,kδij , (6.138)

and

T s
ij = λsu

s
k,kδij +μs(us

i,j +us
j,i)+Γs(φ−φ0)δij−λsf

(ρf − ρ0
f )

ρ0
f

δij , (6.139)

where λf ,Γf , λsf , λs, μs,Γs are constants, ρ0
f , ρ0

s are constant equilibrium
values of ρf , ρs, and us

i is the solid displacement.
The constitutive equations for the interaction forces are taken to be

ps
i = ξ(vf

i − vs
i ) = −pf

i , (6.140)

where ξ > 0 is a constant.
We have variables us

i , v
f
i , ρs, ρf and φ and hence need a further equation

to complete the theory. In general we can adopt the equation of (Bowen,
1982) for the porosity φ, of the form

φ̇ = F (φ, ρf , ui,j),

for some constitutive function F . We report the linearized equation adopted
by (Caviglia et al., 1992a), i.e.

∂φ

∂t
= −Λf (φ − φ0) − Γs

Φf
us

i,i +
Γf

Φf

(
ρf − ρ0

f

ρ0
f

)
, (6.141)

where Λf > 0 is constant and Φf is a constant. Thermodynamics requires
that μs > 0 and the matrix A be positive-definite, where

A =

⎛

⎝
λs + 2μs/3 λsf Γs

λsf λf Γf

Γs Γf Φf

⎞

⎠ .

6.8.2 Linear waves in the Bowen theory

(Caviglia et al., 1992a) consider a small amplitude wave moving in the
porous medium and then their equations linearized about the equilibrium
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state ρ0
f = constant, ρ0

s = constant, vf
i ≡ 0, vs

i ≡ 0, are

∂ρf

∂t
+ ρ0

fvf
i,i = 0,

∂ρs

∂t
+ ρ0

sv
s
i,i = 0,

ρ0
f

∂vf
i

∂t
+

λf

ρ0
f

ρ0
f,i − λsfus

j,ji − Γfβ,i + ξ(vf
i − vs

i ) = 0,

ρ0
s

∂vs
i

∂t
− λsu

s
j,ji +

λsf

ρ0
f

ρf,i − μs

[
Δus

i + us
j,ji

]

− Γsβ,i + ξ(vs
i − vf

i ) = 0,

∂β

∂t
+ Λf (β − β0) +

Γs

Φf
us

i,i +
Γf

Φf

ρf − ρ0
f

ρ0
f

= 0.

(6.142)

Solutions are sought of form

ρf − ρ0
f = ρ̂fρ0

f exp
[
i(k · x − ωt)

]
,

ρs − ρ0
s = ρ̂sρ

0
s exp

[
i(k · x − ωt)

]
,

uf
i = ûf

i exp
[
i(k · x − ωt)

]
,

us
i = ûs

i exp
[
i(k · x − ωt)

]
,

β − β0 = β̂ exp
[
i(k · x − ωt)

]
,

(6.143)

where k is a wave number and β̂, ρ̂s, ρ̂f , ûf
i , ûs

i , are the wave amplitudes.
The representation (6.143) is substituted in (6.142) and equations for k

and ω are obtained. (Caviglia et al., 1992a) consider specifically longitudinal
waves which satisfy

k × ûf = 0, k × ûs = 0,

and transverse waves which satisfy

k · ûf = 0, k · ûs = 0.

The transverse wave is found to satisfy the propagation condition

k · k =
ω2

μs

ωρ0
fρ0

s + iξ(ρ0
f + ρ0

s)
ωρ0

f + iξ
.
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For the longitudinal waves (Caviglia et al., 1992a) find the propagation
condition

{
−ω2ρ0

s − iωξ + (k · k)
[
2μs + λs −

Γ2
s

Φf (Λf − iω)
]}

×
{
−ω2ρ0

f − iωξ + (k · k)
[
λf +

Γ2
f

Φf (Λf − iω)
]}

−
{

iωξ + (k · k)
[
λsf +

ΓsΓf

Φf (Λf − iω)
]}

×
{

iωξ + (k · k)
[
λsf − ΓsΓf

Φf (Λf − iω)
]}

= 0 .

(6.144)

This equation is solved for k2. It is worth observing that when the
interaction terms between the fluid and solid are set equal to zero, i.e.
ξ, λsf ,Γf ,Γs = 0, equation (6.144) reduces to

[
ω2ρ0

s − (2μs + λs)k2
][

ω2ρ0
f − λfk2

]
= 0.

This yields the classical relationship between ω2 and k2 for an elastic wave
(first bracket) and a fluid (second bracket) wave.

In fact, (Caviglia et al., 1992a) show that the longitudinal and transverse
waves are the only ones which can occur. They show that there will be two
longitudinal waves, a fast and a slow one, and a transverse wave.

6.8.3 Boundary conditions

To study propagation of an incident wave passing through the fluid and into
the porous medium we need appropriate conditions at the interface. In fact,
by treating the porous medium as a mixture we can derive exact bound-
ary conditions. There is no need to include any experimentally motivated
interface condition like the Beavers-Joseph one (equation (6.2)).

The interface between the fluid and porous medium is the plane z = 0.
(Caviglia et al., 1992a) derive balance laws for the total density ρ = ρf +ρs

and total velocity v given by ρv = ρfvf + ρsvs. The latter involves the
total stress T = Tf +Ts. By applying a pill-box argument to the governing
equations at the interface (Caviglia et al., 1992a) show that

[
ρ(v − V) · n

]
= 0, [T]n − [v]ρ(v − V) · n = 0,

where V is the interface velocity, n is the normal at the interface, and [·]
denotes the jump in a quantity. From these relations, noting V = vs at the
interface they deduce

ρF (vF
i − vs

i )ni = ρf (vf
i − vs

i )ni,

where F denotes the fluid in the region z > 0. From the above relation
they deduce that

vF
i ni = vf

i ni = vs
i ni at z = 0.
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The stress continuity condition at the interface, derived by (Caviglia et al.,
1992a), in the linearized case, is

TF
ji nj = (T f

ji + T s
ji)ni.

6.8.4 Amplitude behaviour

(Caviglia et al., 1992a) consider a wave moving through a perfect fluid in
the domain z > 0. They study wave motion in the (x, z) plane and have
solid and fluid displacements in the region z < 0 of form uf = (uf , 0, wf ),
us = (us, 0, ws) which are written in terms of potentials as

us =
∂φ1

∂x
+

∂φ2

∂x
+

∂ψ

∂z
,

ws =
∂φ1

∂z
+

∂φ2

∂z
− ∂ψ

∂x
,

uf = μ1
∂φ1

∂x
+ μ2

∂φ2

∂x
− a

∂ψ

∂z
,

wf = μ1
∂φ1

∂z
+ μ2

∂φ2

∂z
+ a

∂ψ

∂x
.

The equivalent potential in the region z > 0 is written as φF , and then
φF , the longitudinal potentials φ1, φ2 and the transverse potential ψ are
written in the form

φF =
{
Φi exp(−ikzz) + Φr exp(ikzz)

}
exp
{
i(kxx − ωt)

}
,

φ1 = Φ1 exp(−ik1zz) exp
{
i(kxx − ωt)

}
,

φ2 = Φ2 exp(−ik2zz) exp
{
i(kxx − ωt)

}
,

ψ = Ψ exp(−ik3zz) exp
{
i(kxx − ωt)

}
.

Solutions are found and the interface conditions employed to yield the
appropriate transmitted and reflected wave amplitudes. Graphical output
of the amplitude behaviour for the densities and the porosity are given in
(Caviglia et al., 1992a).

A specific example is considered by (Caviglia et al., 1992a) of a wave
moving through water (z > 0) into a kerosene-sandstone mixture (z < 0).
In the kerosene-sandstone porous material the wave phase velocities are
calculated as

V1 = 2.2023 × 105 cm s−1,

V2 = 0.3256 × 105 cm s−1,

V3 = 1.1393 × 105 cm s−1,

where V3 corresponds to the transverse wave, while V1 and V2 correspond to
the fast and slow longitudinal waves, respectively. Details of the incident,
reflected and transmitted wave amplitudes are given in (Caviglia et al.,
1992a).
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In section 6.8.1 we have considered wave propagation in a saturated
porous medium using a mixture theory which includes porosity as an inter-
nal variable. In a sense, this leads naturally into the next two chapters
where sound wave propagation in other types of porous media is considered
in detail.



7
Elastic Materials with Voids

7.1 Acceleration waves in elastic materials

7.1.1 Bodies and their configurations

We consider a body B deformed from a reference configuration at time
t = 0 to a current configuration at time t.

Points in the reference configuration are labelled by boldface notation X
or indicial notation XA. In the current configuration X → x. The mapping
is thus

x = x(X, t) (7.1)

or

xi = xi(XA, t). (7.2)

The coordinates XA are material (or Lagrangian) coordinates whereas xi

are spatial coordinates (Eulerian coordinates).
In elasticity we need the displacement vector u of a typical particle from

X in the reference configuration to x at time t, so

ui(XA, t) = xi(XA, t) − Xi. (7.3)

The velocity of a particle vi is

vi(XA, t) =
∂xi

∂t

∣∣∣
X constant

.

B. Straughan, Stability and Wave Motion in Porous Media,
DOI: 10.1007/978-0-387-76543-3 7, c© Springer Science+Business Media, LLC 2008
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In fluid mechanics we usually use the inverse of (7.1) to write vi = vi(xj , t)
- this is the spatial description, i.e. that following the particle.

7.1.2 The deformation gradient tensor

The deformation gradient tensor FiA is defined by

FiA =
∂xi

∂XA
.

From (7.3) we find the displacement gradient as

ui,A =
∂ui

∂XA
=

∂xi

∂XA
− δiA = FiA − δiA .

7.1.3 Conservation of mass

The relation

ρ0 = ρdetF

is the conservation of mass in Lagrangian form. (Recall that in Eulerian
form this is

∂ρ

∂t
+ (ρvi),i = 0.)

N.B. If the material is incompressible then ρ = constant so ρ0/ρ = 1.
Therefore, in an incompressible material the deformation must satisfy

detF = 1.

(See (Spencer, 1980), pp. 91–95.)

7.1.4 The equations of nonlinear elasticity

The tensor πiA is called the Piola-Kirchoff stress tensor (useful in elasticity
because it refers back to the reference configuration) and is defined by

πiA =
∂W

∂FiA
,

where W is the (internal) strain energy function.
The equations of nonlinear elastodynamics referred to the body in its

reference configuration have form

ρ0ẍi =
∂πiA

∂XA
+ ρ0fi

or

ρ0
∂2xi

∂t2

∣∣∣
X

=
∂

∂XA

(
∂W

∂xi,A

)
+ ρ0fi,

see (Spencer, 1980), eq. (9.38).
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Now, ui = xi(X, t) − Xi and so ẍi = üi and

∂W

∂xi,A
=

∂W

∂ur,B

∂ur,B

∂xi,A
.

But ur,B = xr,B − δrB so

∂ur,B

∂xi,A
=

∂xr,B

∂xi,A
= δriδBA

whence

∂W

∂xi,A
=

∂W

∂ur,B
δriδAB =

∂W

∂ui,A
.

Thus, the equations of nonlinear elastodynamics may also be written as

ρ0üi =
∂

∂XA

(
∂W

∂ui,A

)
+ ρ0fi. (7.4)

To proceed, we need to know the functional form of W = W (ui,A).
If the deformation is only in one direction, say the x-direction then u =

x − X, where u = u1, and

ε = uX =
∂u

∂X
=

∂x

∂X
− 1

is the one-dimensional strain. The one-dimensional Piola-Kirchoff stress is
π = ∂W/∂uX . In particular, for one-dimensional motions, equations (7.4)
become

ρ0utt =
∂

∂X

(
∂W

∂uX

)
+ ρ0f

or

ρ0utt =
∂

∂X

(
∂W

∂ε

)
+ ρ0f . (7.5)

If W is quadratic in ε, then

W =
α

2
u2

X =
α

2
ε2.

Put f = 0, then equation (7.5) is linear and reduces to

ρ0utt = αuXX .

This is just the usual wave equation. Thus, a quadratic strain energy
function leads to a linear theory of elasticity.

We shall now focus on a general form for W , namely, W = W (ε).
The equations of nonlinear elasticity are derived in many forms in

(Spencer, 1980), (Ogden, 1997), and (Holzapfel, 2000).
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7.1.5 Acceleration waves in one-dimension

The general theory of acceleration waves in nonlinear elastodynamics is cov-
ered in detail in (Chen, 1973). (Truesdell and Toupin, 1960) and (Truesdell
and Noll, 1992) cover many aspects of acceleration waves and singular
surfaces, in general.

Although the ideas of acceleration waves have been under constant devel-
opment for over forty years, they are still being employed with much
effect in the current literature. In fact, the use of acceleration waves and
related analyses have proved extremely useful in recent investigations of
wave motion in various dispersive and random media, in a variety of ther-
modynamic states, see e.g. (Christov and Jordan, 2005), (Christov et al.,
2006; Christov et al., 2007), (Ciarletta and Straughan, 2006), (Eremeyev,
2005), (Fu and Scott, 1988; Fu and Scott, 1991), (Gultop, 2006), (Jordan,
2005a), (Jordan and Christov, 2005), (Jordan and Puri, 2005), (Kameyama
and Sugiyama, 1996), (Ostoja-Starzewski and Trebicki, 1999), (Puri and
Jordan, 2004), (Quintanilla and Straughan, 2004), (Rai, 2003), (Rajagopal
and Truesdell, 1999), (Ruggeri and Sugiyama, 2005), (Su et al., 2005),
(Sugiyama, 1994), (Valenti et al., 2004).

Suppose we have an elastic body occupying R
3 and the equations of

motion are (7.4). Recall that ,A denotes differentiation with respect to XA,
e.g. ui,A = ∂ui/∂XA. An acceleration wave is a surface S across which
ui,tt, ui,tA, ui,AB , ui,ttt, ui,ttA, ui,tAB , ui,ABC suffer at most finite discon-
tinuities, with the functions and first derivatives ui, ui,t, ui,A continuous
everywhere. The body force is at least C1(R3).

To illustrate the basic concepts of acceleration wave analysis, we shall for
now restrict attention to a plane acceleration wave moving in the direction
of the x−axis, with one-dimensional motion.
N.B. Since ui,tt has a finite jump across S we call it an acceleration wave.

For a function h(x, t) we define

h+(x, t) = lim
x→S

h(x, t) from the right,

h−(x, t) = lim
x→S

h(x, t) from the left.

In particular, h+ is the value of h at S approaching from the region which
S is about to enter. The jump of h at S, written as [h], is,

[h] = h− − h+ . (7.6)

We commence with the equations of motion for a one-dimensional
elastodynamic body,

ρ0utt =
∂

∂X

(
∂W

∂ε

)
+ ρ0f. (7.7)
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By the chain rule,

∂

∂X

(
∂W

∂ε

)
=

∂2W

∂ε2
εX =

∂2W

∂ε2
uXX = WεεuXX .

We use this in (7.7) and take the jump of the resulting equation, to find

ρ0[utt] = Wεε [uXX ] (note [ρ0f ] = 0).

Next, employ the kinematic condition of compatibility, sometimes known
as the Hadamard relation,

δ

δt
[f ] =

[∂f

∂t

]
+ V
[ ∂f

∂X

]
(7.8)

where δ/δt denotes the time derivative at the wave. (The Hadamard relation
is discussed in detail in (Chen, 1973), appendix 1, and also in (Truesdell
and Toupin, 1960), section 180.)

Note, since u ∈ C1(R), [ut] = 0, [uX ] = 0, so by using the Hadamard
relation,

0 =
δ

δt
[ut] = [utt] + V [utX ],

and

0 =
δ

δt
[uX ] = [uXt] + V [uXX ].

Thus,

[utt] = −V [utX ] = V 2[uXX ]. (7.9)

From this and the equation of motion we thus find

(ρ0V
2 − Wεε) [uXX ] = 0. (7.10)

For a non-zero amplitude

a(t) = [utt]

we see from (7.9), (7.10), that

V 2 =
Wεε

ρ0
.

Thus, the speed of the wave is

V =
1

√
ρ0

√
∂2W

∂ε2
(u+

X) .

Note that V depends on the value of u+
X before the wave (although u+

X =
u−

X).
To find the equation governing the amplitude a(t) we differentiate (7.7),

ρ0uttt =
∂

∂t
(WεεuXX) + ρ0ft, (7.11)
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or, since

∂

∂t
(WεεuXX) = WεεεuXtuXX + WεεuXXt,

then (7.11) becomes

ρ0uttt = WεεεuXtuXX + WεεuXXt + ρ0ft.

Take the jump of this recalling f ∈ C1 so [ft] = 0,

ρ0[uttt] = Wεεε[uXtuXX ] + Wεε[uXXt]. (7.12)

From the definition of [h] we may prove the relation for the jump of a
product of functions g, h,

[gh] = g+[h] + h+[g] + [g][h]. (7.13)

Also,

δa

δt
= [uttt] + V [uttX ], (7.14)

δ

δt
[utX ] =

δ

δt

(
− a

V

)
= [uttX ] + V [utXX ],

or

− 1
V

δa

δt
+

a

V 2

δV

δt
= [uttX ] + V [utXX ]. (7.15)

Use (7.13), (7.14) in (7.12),

ρ0

(
δa

δt
−V [uttX ]

)
= Wεε[uXXt]

+ Wεεε

(
u+

tX [uXX ] + u+
XX [utX ] + [uXX ][utX ]

)
.

(7.16)

Now substitute from (7.15) for the term −ρ0V [uttX ] on the left of (7.16),
to obtain

2ρ0
δa

δt
− ρ0

V

δV

δt
a+ρ0V

2[utXX ] = Wεε[uXXt]

+ Wεεε

(
u+

tX [uXX ] + u+
XX [utX ] + [uXX ][utX ]

)
.

(7.17)

Observe now that the terms in [utXX ] on the right and left cancel out since
V 2 = Wεε/ρ0.

The next step is to use (7.9), i.e.

[utX ] = −a/V, [uXX ] = a/V 2,

in (7.17), to derive

2ρ0
δa

δt
− ρ0

V

δV

δt
a = Wεεε

(
u+

tX

V 2
a − u+

XX

V
a

)
− Wεεε

V 3
a2
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or,

2ρ0
δa

δt
−
(

ρ0

V

δV

δt
+

u+
tX

V 2
Wεεε −

u+
XX

V
Wεεε

)
a +

Wεεε

V 3
a2 = 0. (7.18)

This is the equation governing the evolutionary behaviour of the amplitude
a(t) - the amplitude equation. It is a Bernoulli equation, which may be
written in the form

δa

δt
+ α(t)a + β(t)a2 = 0.

It may be solved by the substitution γ = 1/a to yield the general solution

a(t) =
a(0)

exp{
∫ t

0
α(s)ds} +

∫ t

0
β(s) exp{

∫ t

s
α(η)dη}ds

. (7.19)

7.1.6 Given strain energy and deformation

To solve (7.18) and gain any useful information we need to know
(a) the form W = W (ε) (constitutive theory)
(b) the deformation x(X) ahead of the wave, or more generally, x(X, t).

We do this in an illustrative case. Suppose

W =
α

2
u2

X +
β

3
u3

X +
γ

4
u4

X ,

for constants α, β, γ. Then,

Wε = αε + βε2 + γε3,

Wεε = α + 2βε + 3γε2,

Wεεε = 2β + 6γε.

Suppose the deformation before the wave passes is

x = λX,

for λ a constant. Then,

ε = uX =
∂x

∂X
− 1 = λ − 1.

Observe that

u+
tX =

∂

∂t
(λ − 1) = 0, and u+

XX =
∂

∂X
(λ − 1) = 0.

Since V 2 = Wεε/ρ0 we find

V 2 =
1
ρ0

{
α + 2β(λ − 1) + 3γ((λ − 1)2

}
. (7.20)

N.B. Equation (7.20) imposes restrictions on α, β, γ, since V 2 > 0, so

α + 2βε + 3γε2 > 0.
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From equation (7.20), V is constant and so

δV

δt
= 0.

Thus, the coefficient of a in (7.18) is zero. Hence, (7.18) reduces to

δa

δt
+

Wεεε

2ρ0V 3
a2 = 0. (7.21)

But,

Wεεε

2ρ0V 3
=

2β + 6γ(λ − 1)

2ρ0{α + 2β(λ − 1) + 3γ(λ − 1)2}3/2ρ
−3/2
0

.

Define this (constant) coefficient to be k, i.e.

k =
{β + 3γ(λ − 1)}√ρ0

{α + 2β(λ − 1) + 3γ(λ − 1)2}3/2
. (7.22)

Thus, equation (7.21) may be rewritten as

δa

δt
+ ka2 = 0.

Therefore, at the wave,
∫ a(t)

a(0)

da

a2
= −k

∫ t

0

ds.

This gives

− 1
a(t)

+
1

a(0)
= −kt

whence,

a(t) =
a(0)

1 + a(0)kt
.

We see that a(t) blows up in a finite time if

a(0)k < 0.

The blow-up time is

T = − 1
a(0)k

.

When the amplitude blows up, a(t) = u−
tt − u+

tt → ∞ and it is believed a
shock wave forms, i.e. ut develops a discontinuity across S.

For blow-up, since the denominator in (7.22) is positive, we need

a(0)
(
β + 3γ(λ − 1)

)
< 0.

Thus,
if a(0) < 0, we need β + 3γ(λ − 1) > 0,
if a(0) > 0, we need β + 3γ(λ − 1) < 0.
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The structure of an acceleration wave as it evolves, and in particular, as
the amplitude blows up, is a difficult numerical problem. It has been the
subject of numerical calculation by (Jordan and Christov, 2005), (Christov
et al., 2006). In general, numerical solution of blow-up in pdes is a subject of
much recent interest, see e.g. (Straughan, 1998), (Ushijima, 2000), (Kirane
et al., 2005), (Hirota and Ozawa, 2006), (Galakov, 2007), and the references
therein.

7.1.7 Acceleration waves in three dimensions

An acceleration wave in an elastic body in three-dimensions is defined as
in section 7.1.5. Namely, ui is C1 everywhere and the second and higher
derivatives of ui are allowed to have finite discontinuities across a surface
S. For simplicity we take the body force fi = 0.

The basic governing equations are then (7.4) with fi = 0, so

ρ0üi =
∂

∂XA

(
∂W

∂ui,A

)

or since W = W (ui,A) we find using the chain rule that

ρ0üi =
∂2W

∂ur,B∂ui,A
ur,BA . (7.23)

We take the jump of equation (7.23) to find

ρ0[üi] =
∂2W

∂ur,B∂ui,A
[ur,BA] . (7.24)

General compatibility relations for a function ψ(X, t) are needed across
S. These are given in detail in (Truesdell and Toupin, 1960) or in (Chen,
1973). We simply quote those we need. If ψ is continuous in R

3 but its
derivative is discontinuous across S then

[ψ,A] = NAB, where B = [NRψ,R]. (7.25)

When ψ ∈ C1(R3) then

[ψ,AB ] = NANBC, where C = [NRNSψ,RS ]. (7.26)

In (7.25) and (7.26), NA refers to the unit normal to S, but referred back
to the reference configuration. Relations (7.25) and (7.26) are derived from
(Chen, 1973), equations (4.13), (4.14). The relation corresponding to the
Hadamard formula (7.8) in three dimensions is, cf. (Chen, 1973) (4.15),

δ

δt
[ψ] = [ψ̇] + UNB (7.27)

where ψ̇ = ∂ψ/∂t|X, UN is the speed at the point on S with unit normal
NA and B is defined in (7.25).
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Since ui ∈ C1(R3) we find using (7.27)

0 =
δ

δt
[u̇i] = [üi] + UN [NAu̇i,A] (7.28)

0 =
δ

δt
[ui,A] = [u̇i,A] + UN [NBui,AB ] . (7.29)

Whence from (7.28) and (7.29) we derive

[üi] = −UN [NAu̇i,A] (7.30)

[NAu̇i,A] = −UN [NANBui,AB ] . (7.31)

Hence, combining (7.30) and (7.31) one finds

[üi] = U2
N [NANBui,AB ] . (7.32)

By repeated use of (7.25) we find

[ur,AB ] =NA[NRur,BR]

=NANB [NRNSur,RS ]

=
NANB

U2
N

[ür] (7.33)

where in the last line we have employed (7.32).
We now define the amplitude of the acceleration wave, ai(t), by

ai(t) = [üi] .

Note that we assume ai does not vary with surface coordinates over the
surface S. Upon employing (7.33) in (7.24) we find

ρ0ai =
∂2W

∂ur,B∂ui,A

NANB

U2
N

ar. (7.34)

Now, define the acoustic tensor Q by

Qir = NANB
∂2W

∂ur,B∂ui,A
. (7.35)

Then, (7.34) may be rewritten as a wavespeed relation as follows

(ρ0U
2
Nδir − Qir)ar = 0. (7.36)

This is an eigenvalue/eigenvector equation. The wavespeeds U2
N are effec-

tively the eigenvalues of Qij and ai are the eigenvectors. In fact, one may
investigate conditions for propagation of a plane wave in three-dimensions
from equation (7.36). It is necessary to investigate the amplitude. For exam-
ple, if we can write ai = ani, where ni is the unit normal to S in the current
configuration then we have a longitudinal wave. One can also consider prop-
agation of transverse waves where ai = asi, si being a tangential vector to
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S. The amplitudes of longitudinal and transverse waves may be calculated
effectively as in section 7.1.5 although the calculation is more involved.

A very useful comparison of the propagation conditions for an accelera-
tion wave in a nonlinear elastic material and for a plane wave in a linearly
elastic body is given by (Ogden, 1997), pp. 473 – 478.

7.2 Acceleration waves, inclusion of voids

7.2.1 Porous media, voids, applications

As discussed in chapter 1 there are many types of porous media, e.g. sand,
stone, high porosity metallic foams, animal fur, to name a few. Additionally,
there are many kinds of theories for describing the evolutionary or static
behaviour of porous media, e.g. using homogenization, mixture theories,
classical theories of Darcy, Forchheimer, Brinkman. In this section we wish
to examine another class of theory which is believed capable of describing
certain motions in porous media. This is the theory of elastic materials
containing voids developed by (Nunziato and Cowin, 1979). This theory
is particularly useful to describe nonlinear wave motion and accounts well
for the elastic behaviour of the matrix, being a generalisation of nonlinear
elasticity theory. Interestingly, while there are many studies involving the
linearised theory of elastic materials with voids, see e.g. (Ciarletta and
Iesan, 1993) or (Iesan, 2004), analysis of the fully nonlinear equations is
only beginning, see e.g. (Iesan, 2005; Iesan, 2006).

The basic idea of including voids in a continuous body is due to
(Goodman and Cowin, 1972), although they developed constitutive the-
ory appropriate to a fluid. This they claim is more appropriate to flow of
a granular medium. Acceleration waves in the Goodman-Cowin theory of
granular media were studied by (Nunziato and Walsh, 1977; Nunziato and
Walsh, 1978). For a reader interested in the theory of voids I would suggest
first reading the article of (Goodman and Cowin, 1972), and then progress-
ing to the theory of elastic materials with voids as given by (Nunziato and
Cowin, 1979). General descriptions of the theory of elastic materials with
voids and various applications are given in the books of (Ciarletta and
Iesan, 1993) and (Iesan, 2004). Continuous dependence on the coupling
coefficients of the voids theory (a structural stability problem) is studied
by (Chirita et al., 2006).

The potential application area for the theory of elastic materials with
voids is huge. In particular, wave motion in elastic materials with voids has
many applications. (Ciarletta et al., 2007) mention four application areas
of immediate interest. To appreciate the potential uses we briefly describe
these areas. (Ouellette, 2004) is a beautiful and inspiring article which deals
with many applications of acoustic microscopy. We are all aware of optical
microscopy, but the potential uses of acoustic microscopy are enormous.
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(Ouellette, 2004) points out that the presence of voids presents a serious
problem for acoustic microscopy, and a study of wave motion in an elastic
material with voids is likely to be very helpful here. She observes that,
“acoustic microscopy remains a niche technology and is especially sensitive
to variations in the elastic properties of semiconductor materials, such as
air gaps, known as delaminations or voids ...” In particular, (Ouellette,
2004) draws attention to several novel applications of acoustic microscopy
in diagnostic medicine. She notes that one may, “apply a special ultrasound
scanner to deliver pathological assessments of skin tumours or lesions, non-
invasively,” and especially there is, “no need to kill the specimen as is
usually needed in optical microscopy.” (Diebold, 2005) further emphasizes
these and other applications.

Wave motion is important in the production of ceramics, or certainly
in ceramic behaviour. (Saggio-Woyansky et al., 1992) observe that porous
ceramics are either reticulate or foam and are made up of a porous network
which has relatively low mass, low thermal conductivity, and low density,
and (Raiser et al., 1994) report experimental results where microcracking
along grain boundaries in ceramics is caused by compressive waves. Since
reticulate porous ceramics are used for molten metal filters, diesel engine
exhaust filters, as catalyst supports, and industrial hot-gas filters, and both
reticulate and foam porous ceramics are used as light-structure plates, in
gas combustion burners, and in fire - protection and thermal insulation
materials, a study of wave motion in such materials is clearly useful.

A further important application area for elastic materials with voids
is in the production of building materials such as bricks. Modern build-
ings are usually made with lighter, thinner bricks, often with many voids
in the building materials. In seismic areas lighter materials are necessary
and much applied research activity is taking place. However, the use of
lighter materials, especially those with voids is creating an environmental
problem because noise transmission through such objects is considerably
greater. Consequently, there is much applied research ongoing in the area of
acoustic materials with voids, cf.(Garai and Pompoli, 2005), (Maysenhölder
et al., 2004), (Wilson, 1997), and any theoretical model for acoustic wave
propagation in an elastic material with voids which yields useful results is
desirable.

7.2.2 Basic theory of elastic materials with voids

The balance equations for a continuous body containing voids are given by
(Goodman and Cowin, 1972). We use the equations as given by (Nunziato
and Cowin, 1979) since these are appropriate for an elastic body.

The key thing is to assume that there is a distribution of voids throughout
the body B. If γ(X, t) denotes the density of the elastic matrix, then the
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mass density ρ(X, t) of B has form

ρ = νγ (7.37)

where 0 < ν ≤ 1 is a volume distribution function with ν = ν(X, t).
Since the density or void distribution in the reference configuration can be
different we also have

ρ0 = ν0γ0

where ρ0, γ0, ν0 are the equivalent functions to ρ, γ, ν, but in the reference
configuration.

The first balance law is the balance of mass

ρ|detF| = ρ0 .

With πAi being the Piola-Kirchoff stress tensor and FiA = xi,A as before,
the balance of angular momentum states

πFT = FπT .

The balance of linear momentum has form

ρ0ẍi = πAi,A + ρ0fi, (7.38)

fi being an external body force. The balance law for the voids distribution
is

ρ0kν̈ = hA,A + g + ρ0�, (7.39)

where k is an inertia coefficient, hA is a stress vector, g is an intrinsic body
force (giving rise to void creation/extinction inside the body), and � is an
external void body force. Actually, (Nunziato and Cowin, 1979) allow the
inertia coefficient k to depend on X and/or t, but, for simplicity, we follow
(Goodman and Cowin, 1972) and assume it to be constant.

The energy balance in the body may be expressed as

ρ0ε̇ = πAiḞiA + hAν̇,A − gν̇ − qA,A + ρ0r, (7.40)

where ε, qA and r are, respectively, the internal energy function, the heat
flux vector, and the externally supplied heat supply function. To under-
stand equation (7.40) we may integrate it over a fixed body B, integrate
by parts, and use the divergence theorem to see that

d

dt

∫

B

ρ0εdV +
∫

B

(gν̇+hA,Aν̇)dV =
∫

B

πAiḞiAdV −
∮

∂B

qANAdS+
∫

B

ρ0rdV,

where ∂B is the boundary of B. Employing (7.39) with � = 0 we may
rewrite the above as

d

dt

∫

B

(ρ0ε +
ρ0k

2
ν̇2)dV =

∫

B

πAiḞiAdV −
∮

∂B

qANAdS +
∫

B

ρ0rdV.

In this form we recognise the equation as an energy balance equation with
a term added due to the kinetic energy of the voids. In fact, (Iesan, 2004),
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pp. 3–5, shows how one may begin with a conservation of energy law for
an arbitrary sub-body of a continuous medium with voids, and then derive
equations (7.38), (7.39) and (7.40) from the initial energy balance equation.

It is usual in continuum thermodynamics to also introduce an entropy
inequality. We use the Clausius-Duhem inequality

ρ0η̇ ≥ −
(

qA

θ

)

,A

+
ρ0r

θ
, (7.41)

where η is the specific entropy function. Observe that the sign of the first
term on the right of (7.41) is different from that of (Nunziato and Cowin,
1979). (One could use a more sophisticated entropy inequality where qA/θ
is replaced by a general entropy flux k, as in (Goodman and Cowin, 1972),
but the above is sufficient for our purpose.) In chapters 2 - 6 we have
employed T to denote the absolute temperature. However, in the solid
mechanics literature and in the literature involving acceleration waves it is
more usual to employ θ to denote the absolute temperature. This notation
fits in well with employing ε, ψ, η to denote internal energy, Helmholtz free
energy, and entropy. Therefore, in this chapter, chapter 7, and the next,
chapter 8, θ will denote the absolute temperature in a body.

7.2.3 Thermodynamic restrictions

We consider an elastic body containing voids to be one which has as
constitutive variables the set

Σ = {ν0, ν, FiA, θ, θ,A, ν,A} (7.42)

supplemented with ν̇. Thus, the constitutive theory assumes

ε = ε(Σ, ν̇), πAi = πAi(Σ, ν̇), qA = qA(Σ, ν̇),
η = η(Σ, ν̇), hA = hA(Σ, ν̇), g = g(Σ, ν̇).

(7.43)

This is different from (Nunziato and Cowin, 1979) who regard η as the
independent variable rather than θ and they also assume qA = 0.

To proceed we introduce the Helmholtz free energy function ψ in the
manner

ε = ψ + ηθ. (7.44)

Next, (7.40) is employed to remove the terms −qA,A + ρ0r from inequality
(7.41) and then utilize (7.44) to rewrite (7.41) as

− ρ0(ψ̇ + ηθ̇) − qAθ,A

θ
+ πAiḞiA + hAν̇,A − gν̇ ≥ 0. (7.45)
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The chain rule is used together with (7.43) to expand ψ̇ and then (7.45)
may be written as

−
(

ρ0
∂ψ

∂ν
+ g

)
ν̇ − qAθ,A

θ
−
(

ρ0
∂ψ

∂FiA
− πAi

)
ḞiA

−
(

ρ0
∂ψ

∂θ
+ ρ0η

)
θ̇ −
(

ρ0
∂ψ

∂ν,A
− hA

)
ν̇,A

− ρ0
∂ψ

∂θ,A
θ̇,A − ρ0

∂ψ

∂ν̇
ν̈ ≥ 0.

(7.46)

The next step is to observe that ḞiA, θ̇, θ̇,A, ν̇,A and ν̈ appear linearly in
inequality (7.46). We may then follow the procedure of (Coleman and Noll,
1963) and assign an arbitrary value to each of these quantities in turn,
balancing equations (7.38), (7.39) and (7.40) by a suitable choice of the
externally supplied functions fi, � and r. We may in this manner violate
inequality (7.46) unless the coefficients of ḞiA, θ̇, θ̇,A, ν̇,A and ν̈ are each
identically zero. Hence, we deduce that

ψ = ψ(ν̇, θ,A),

hA = ρ0
∂ψ

∂ν,A
⇒ hA = hA(ν̇, θ,A), (7.47)

πAi = ρ0
∂ψ

∂FiA
⇒ πAi = πAi(ν̇, θ,A), (7.48)

η = −∂ψ

∂θ
⇒ η = η(ν̇, θ,A),

and further

ε = ε(ν̇, θ,A).

The residual entropy inequality, left over from (7.46), which must hold for
all motions is

−
(

ρ0
∂ψ

∂ν
+ g

)
ν̇ − qAθ,A

θ
≥ 0.

Thus, to specify a material for an elastic body containing voids we have
to postulate a suitable functional form for ψ = ψ(ν0, ν, FiA, θ, ν,A). Such a
form is usually constructed with the aid of experiments. The functions g
and qA still involve ν̇ and this can lead to behaviour almost viscoelastic-
like, see (Nunziato and Cowin, 1979). Other writers, e.g. (Iesan, 2004),
(Ciarletta and Iesan, 1993), omit ν̇ from the constitutive list at the outset.
In this manner one deduces that g may be given as a derivative of the
Helmholtz free energy, (Iesan, 2004), p. 7, although some of the possibly
desirable features of viscoelasticity are lost. The wavespeeds of acceleration
waves in this case are derived in (Iesan, 2004), (Ciarletta and Iesan, 1993).



312 7. Elastic Materials with Voids

7.2.4 Acceleration waves in the isothermal case

In this section we suppose the temperature θ = constant, then

ψ = ψ(ν0, ν, FiA, ν,A). (7.49)

We wish to consider the propagation of an acceleration wave in an elastic
body with voids and it is sufficient to consider the momentum equations
(7.38) and (7.39) with fi = 0 and � = 0. These equations thus become

ρ0ẍi = πAi,A, (7.50)

ρ0kν̈ = hA,A + g. (7.51)

In the present context we define an acceleration wave to be a singular sur-
face S across which ẍi, ẋi,A, xi,AB , ν̈, ν̇,A, and ν,AB and higher derivatives
suffer a finite discontinuity, but xi, ν ∈ C1(R3×[0, T ]), [0, T ] being the time
interval. Upon expanding πAi,A and hA,A using (7.49) and (7.47), (7.48)
we see that

πAi,A =
∂πAi

∂ν0
ν0,A +

∂πAi

∂ν
ν,A +

∂πAi

∂FrK
xr,KA +

∂πAi

∂ν,K
ν,KA (7.52)

hA,A =
∂hA

∂ν0
ν0,A +

∂hA

∂ν
ν,A +

∂hA

∂FiK
xi,KA +

∂hA

∂ν,K
ν,KA . (7.53)

Then, recalling the definition of an acceleration wave and noting g is con-
tinuous, we use (7.52) and (7.53) in (7.50) and (7.51) and take the jump of
the resulting equations to find

ρ0[ẍi] =
∂πAi

∂FrK
[xr,KA] +

∂πAi

∂ν,K
[ν,KA] , (7.54)

ρ0k[ν̈] =
∂hA

∂FiK
[xi,KA] +

∂hA

∂ν,K
[ν,KA] . (7.55)

We next apply (7.33) of section 7.1.7 to [xr,KA] and [ν,KA] to see that

[xr,KA] =
NKNA

U2
N

[ẍr], [ν,KA] =
NKNA

U2
N

[ν̈].

Upon utilizing the above two expressions in equations (7.54) and (7.55)
and defining the amplitudes ai and b by

ai(t) = [ẍi], b(t) = [ν̈],

we derive

ρ0U
2
Nai = Qirar +

∂πAi

∂ν,K
NKNAb, (7.56)

ρ0kU2
Nb =

∂hA

∂FiK
NKNAai + Qcb, (7.57)
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where Qir is the (elastic) acoustic tensor given by

Qir = NKNA
∂πAi

∂FrK

and Qc is an “acoustic variable” associated with the voids, given by

Qc = NKNA
∂hA

∂ν,K
.

If we recall expressions (7.47) and (7.48) for hA and πAi, then we find

∂πAi

∂ν,K
NKNA = −NKNAρ0

∂2ψ

∂ν,K∂FiA
,

∂hA

∂FiK
NKNA = −NKNAρ0

∂2ψ

∂FiK∂ν,A
.

Since the second derivatives of ψ are continuous the right hand sides of
these expressions are the same and we set each equal to Ji. From equations
(7.56) and (7.57) we then deduce the propagation conditions

(ρ0U
2
Nδij − Qij)aj = Jib, (7.58)

(ρ0kU2
N − Qc)b = Jiai. (7.59)

From this juncture there are various avenues to explore. For example, we
could consider

(a) ai = a(t)ni, a longitudinal wave,
(b) ai = â(t)si, si is a tangential vector to S, a transverse wave,
(c) body has a centre of symmetry, then Ji = 0.

(The concept of a centre of symmetry involves the symmetry group of the
material and whether orthogonal or proper orthogonal transformations are
allowed. This topic is explained in (Spencer, 1980), pp. 106 – 110, (Ogden,
1997), pp. 180 – 183, 209 – 213, and (Truesdell and Noll, 1992), pp. 76 –
81, 149 – 151, although for elastic materials not containing voids.)

For example, in case (a) by taking the inner product of (7.58) with ni

we may deduce the wavespeed equation as

(ρ0U
2
N − Qijninj)(ρ0kU2

N − Qc) − (Jini)2 = 0.

This is a fourth order equation for UN . It shows there are two waves, a fast
wave and a slow wave each of which moves in the positive and negative ni

directions.
For case (c), Ji = 0, and we have two distinct, separate waves.
One may now proceed as in section 7.1.5 to differentiate (7.50), (7.51),

take the jumps of the results and derive an amplitude equation, in the
general 3-D case or in 1-D. The calculation is more involved than in sec-
tion 7.1.5. However, a very interesting case is when the body has a centre
of symmetry for which Ji = 0 and then from (7.58), (7.59) we have two
distinct waves which propagate with speeds V1, V2 in the one-dimensional
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case, where V 2
1 = ρ−1

0 (∂π/∂F ) or V 2
2 = (ρ0k)−1(∂h/∂νX). Such situa-

tions of distinct as opposed to coupled waves are considered in general in
continuum mechanics in (Mariano and Sabatini, 2000). If we consider a
wave moving into an equilibrium region then it depends which wave moves
fastest, the elastic wave with speed V1 or the void wave with speed V2. We
defer consideration of wave amplitude behaviour until the next section. In
that section we consider the added effect of thermodynamics in the wave
propagation problem. Then, we find the waves do not decouple as they do
in the isothermal case studied in the current section.

A very interesting article dealing with the propagation of an acceleration
wave in a porous material like sand which may incorporate plastic-like
behaviour of a granular material is due to (Weingartner et al., 2006). These
writers have the body satisfying the usual momentum equation

ρ
dvi

dt
= fi + Tji,j ,

but the stress is given by a constitutive law of form

dTij

dt
+ Tikωkj − ωikTkj = Lijkh(T)dkh + Nij(T)

√
drsdrs ,

where dij = (vi,j + vj,i)/2, ωij = (vi,j − vj,i)/2. The presence of the
term Nij

√
drsdrs leads to a non-standard analysis for the acceleration wave

speed. In fact, ill-posedness and shear banding may occur.

7.3 Temperature rate effects

7.3.1 Voids and second sound

In this section we consider a theory of voids as developed by (Nunziato
and Cowin, 1979) but we allow for the possibility of propagation of a
temperature wave, by generalizing the voids theory in the thermodynamic
framework of (Green and Laws, 1972). In addition to allowing us to explic-
itly examine the important effects of temperature this allows us to study
the propagation of a temperature wave in a porous material. Tempera-
ture waves, or second sound as this phenomenon is known, is a subject
of much recent activity. There are many theories available to incorpo-
rate second sound and (Jaisaardsuetrong and Straughan, 2007) quote eight
such frameworks which have been proposed and are under intensive inves-
tigation. Among the many theories which allow heat to propagate as a
thermal wave (Jaisaardsuetrong and Straughan, 2007) cite the theories of
(Green and Laws, 1972), the two temperature theory of (Chen and Gurtin,
1968), the thermal gradient history-dependent theory of (Gurtin and Pip-
kin, 1968), the dual phase lag theory of (Tzou, 1995b), the τ theory of
(Cattaneo, 1948), the theory of (Hetnarsky and Ignaczak, 1999), the inter-
nal variable theory used by (Caviglia et al., 1992b), and the more recent
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theory of (Green and Naghdi, 1991) whose thermodynamics employs an
entropy balance equation, rather than an entropy inequality, and a thermal
displacement variable

α(x, t) =
∫ t

t0

θ(x, s)ds. (7.60)

In this section we concentrate on the theory of (Green and Laws, 1972)
where a generalized temperature φ(θ, θ̇), θ being absolute temperature, is
introduced. The (Green and Naghdi, 1991) α−theory is considered in the
context of voids in the next section.

The current literature increasingly recognises the importance thermal
waves have in the theory of porous media. A very clever way to dry a
saturated porous material via second sound is due to (Meyer, 2006) and
(Johnson et al., 1994) show how second sound may be employed to calculate
physical properties of water saturated porous media. Both of these cover
highly important and useful topics. (Kaminski, 1990) reports experimental
results for materials with non-homogeneous inner structures which indicate
relaxation times of order 11 – 54 seconds rather than order picoseconds
as was previously thought. In the field of nanofluids (suspensions) (Vadasz
et al., 2005a) stresses the importance of second sound and there is evidence
that second sound may be a key mechanism for heat transfer in some bio-
logical tissues as the experiments of (Mitra et al., 1995) and the work of
(Vedavarz et al., 1992) indicate. There is also much recent interest in second
sound in liquid helium, HeII, 3He - 4He, filling a porous medium, see e.g.
(Singer et al., 1984), (Buishvili et al., 2002), (Brusov et al., 2003), (Kekutia
and Chkhaidze, 2005), and the references therein. Thus, we believe a theory
of elastic materials with voids coupled to a suitable thermodynamic theory
capable of admitting second sound has a place in modern engineering. One
has to be careful how the theory of voids is married to the thermodynam-
ics, however. The incorporation of time derivatives does present a serious
problem. For example, (Straughan and Franchi, 1984) and (Franchi and
Straughan, 1994) show that thermal convection in a fluid with a Maxwell-
Cattaneo theory can lead to strange results depending on which objective
time derivative one employs. One would also have to be careful using a
time-lag theory as to what derivatives were employed and at which order
the expansion was truncated. Therefore, in this and in the next section
we use, respectively, the thermodynamics of (Green and Laws, 1972) and
(Green and Naghdi, 1991) to develop a thermodynamic theory of elastic
materials with voids. The thermodynamics of Green and his co-workers
were specifically developed to incorporate into other areas of continuum
mechanics and thus we believe these are natural approaches to use.

In this section we develop a thermo-poroacoustic theory which allows
for nonlinear elastic effects and for the presence of voids, by using the
thermodynamics of (Green and Laws, 1972). This thermodynamics utilises
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a generalized temperature φ(θ, θ̇) rather than just the standard absolute
temperature θ.

7.3.2 Thermodynamics and voids

The starting point is to commence with the standard balance equations
for an elastic material containing voids, cf. (Nunziato and Cowin, 1979), or
equations (7.38), (7.39), (7.40), and we follow the approach of (Ciarletta
and Straughan, 2007b),

ρẍi = πAi,A + ρFi, (7.61)
ρkν̈ = hA,A + g + ρ�, (7.62)
ρε̇ = −qA,A + πAiẋi,A + hAν̇,A − gν̇ + ρr. (7.63)

Here XA denote reference coordinates, xi denote spatial coordinates,
a superposed dot denotes material time differentiation and ,A signifies
∂/∂XA. The variable ρ is the reference density, and we use ρ rather than
ρ0 henceforth, for simplicity. Furthermore, ν is the void fraction, ε is the
specific internal energy, k is the inertia coefficient, Fi, � and r are exter-
nally supplied body force, extrinsic equilibrated body force, and externally
supplied heat. The tensor πAi is the stress per unit area of the XA−plane
in the reference configuration acting over corresponding surfaces at time t
(the Piola-Kirchoff stress tensor), qA is the heat flux vector, and hA and g
are a vector and a scalar function arising in the conservation law for void
evolution. (Nunziato and Cowin, 1979) refer to hA as the equilibrated stress
and they call g the intrinsic equilibrated body force.

The thermodynamic development commences with the entropy inequal-
ity of (Green and Laws, 1972), and this is

ρη̇ − ρr

φ
+
(

qA

φ

)

,A

≥ 0. (7.64)

In this inequality η is the specific entropy and φ(> 0) is a generalised
temperature function which reduces to θ in the equilibrium state. Next,
introduce the Helmholtz free energy function ψ by ψ = ε− ηφ and rewrite
inequality (7.64) using the energy equation (7.63) to obtain

− ρψ̇ − ρφ̇η + πAiẋi,A − qAφ,A

φ
− gν̇ + hAν̇,A ≥ 0. (7.65)

Now, we assume that the constitutive functions

ψ, φ, η, πAi, qA, hA, g (7.66)

depend on the variables

xi,A, ν, ν,A, θ, θ̇, θ,A. (7.67)

Note that we do not include ν̇ in the constitutive list and are so effectively
following the voids approach of (Iesan, 2004), (Ciarletta and Iesan, 1993).
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One then expands ψ̇ and φ̇ in (7.65) and argues as in section 7.2.3 to reduce
the constitutive equations. Inequality (7.65) expanded is

ẋi,A

(
πAi − ρ

∂ψ

∂xi,A
− ρη

∂φ

∂xi,A

)
− ν̇
(
ρ

∂ψ

∂ν
+ g + ρη

∂φ

∂ν

)

− θ̇
(
ρ

∂ψ

∂θ
+ ρη

∂φ

∂θ

)
− θ̈
(
ρ

∂ψ

∂θ̇
+ ρη

∂φ

∂θ̇

)

− θ̇,A

(
ρ

∂ψ

∂θ,A
+ ρη

∂φ

∂θ,A
+

qA

φ

∂φ

∂θ̇

)
− ν̇,A

(
ρη

∂φ

∂ν,A
+ ρ

∂ψ

∂ν,A
− hA

)

− qA

φ
xi,AB

∂φ

∂xi,AB
− qA

φ

∂φ

∂ν,J
ν,JA − qA

φ

∂φ

∂θ,J
θ,JA

− qA

φ

(∂φ

∂ν
ν,A +

∂φ

∂θ
θ,A

)
≥ 0. (7.68)

The terms in xi,AB , ν,JA and θ,JA appear linearly and so using the fact
that �, r and Fi may be selected as we like to balance (7.61) – (7.63), we
find

∂φ

∂xi,A
= 0,

∂φ

∂ν,A
= 0,

∂φ

∂θ,A
= 0. (7.69)

Thus

φ = φ(θ, θ̇, ν). (7.70)

It is important to observe that the generalized temperature depends on ν
in addition to θ and θ̇. Hence, the void fraction ν directly influences φ.
Furthermore, the linearity of ẋi,A, ν̇, θ̈, θ̇,A and ν̇,A in (7.68) then allows us
to deduce that

πAi = ρ
∂ψ

∂xi,A
, qA = −ρ

∂ψ

∂θ,A

/
1
φ

∂φ

∂θ̇
,

hA = ρ
∂ψ

∂ν,A
, g = −ρ

(
∂ψ

∂ν
+ η

∂φ

∂ν

)
,

(7.71)

and

η = −∂ψ

∂θ̇

/
∂φ

∂θ̇
. (7.72)

The residual entropy inequality which remains from (7.68) after this
procedure, has form

− θ̇

(
ρ
∂ψ

∂θ
+ ρη

∂φ

∂θ

)
− qA

φ

(
∂φ

∂ν
ν,A +

∂φ

∂θ
θ,A

)
≥ 0. (7.73)

This inequality places a further restriction on all constitutive equations and
motions.
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7.3.3 Void-temperature acceleration waves

To study acceleration wave propagation (Ciarletta and Straughan, 2007b)
let [·] denote the jump of a function across the singular surface S (accelera-
tion wave), as in (7.6). They define an acceleration wave for equations (7.61)
– (7.63) to be a singular surface S across which xi, ν and θ together with
their first derivatives are continuous, but the second and higher derivatives
suffer a finite discontinuity. They denote by ai, B,C the wave amplitudes,
given as

ai = [ẍi], B = [ν̈], C = [θ̈]. (7.74)

(Ciarletta and Straughan, 2007b) let NA be the unit normal vector to S
in the reference configuration and they let UN denote the corresponding
speed of S at point (XA, t) in the reference configuration. They expand
(7.61) – (7.63) with Fi, � and r zero and take the jumps of the equations
to obtain

ρai =
∂πAi

∂FjB

1
U2

N

NANBaj +
1

U2
N

∂πAi

∂ν,B
NANBB

− 1
UN

∂πAi

∂θ̇
NAC +

1
U2

N

NANB
∂πAi

∂θ,B
C,

(7.75)

ρkB =
∂hA

∂FiB

1
U2

N

NANBai +
1

U2
N

∂hA

∂ν,B
NANBB

− 1
UN

∂hA

∂θ̇
NAC +

1
U2

N

NANB
∂hA

∂θ,B
C,

(7.76)

−ρ
∂ε

∂FiA

1
UN

aiNA − ρ
∂ε

∂ν,A

1
UN

NAB + ρ
∂ε

∂θ̇
C − ρ

∂ε

∂θ,A

1
UN

NAC

= − ∂qA

∂FiB

1
U2

N

NANBai −
∂qA

∂ν,B

1
U2

N

NANBB +
∂qA

∂θ̇

1
UN

NAC

− ∂qA

∂θ,B

1
U2

N

NANBC − πAi
1

UN
NAai − hA

1
UN

NAB. (7.77)

(Ciarletta and Straughan, 2007b) observe that one may proceed to calcu-
late wavespeeds and amplitudes in a general setting. However, the analysis
is more transparent, with no major loss of physics, if one assumes the accel-
eration wave is moving into an equilibrium region for which ν+, θ+ and x+

i

are constants. They also suppose the body has a centre of symmetry. For
such a wave moving into an equilibrium region equations (7.75) – (7.77)
simplify to

(Qij − ρU2
Nδij)aj = UNNA

∂πAi

∂θ̇
C, (7.78)

(
ρkU2

N − NANB
∂hA

∂ν,B

)
B = NANB

∂hA

∂θ,B
C, (7.79)
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(
ρ

∂ε

∂θ̇
U2

N+NANB
∂qA

∂θ,B

)
C

= − ∂qA

∂ν,B
NANBB + ρUNNAφ

∂η

∂FiA
ai,

(7.80)

where Qij is the acoustic tensor, cf. (7.35), given by

Qij = NANB
∂πAi

∂FjB
. (7.81)

(Ciarletta and Straughan, 2007b) note that the wavespeed equations
(7.78) – (7.80) are very different to those of (Nunziato and Cowin, 1979),
and they also lead to a different outcome from equations (7.58), (7.59) of
section 7.2.4. In the above theory the elastic wave (associated with ai) and
the voids wave (associated with B) do not decouple as they do in (Nunziato
and Cowin, 1979), or in equations (7.58), (7.59). We believe this is due to
the richness endowed by the (Green and Laws, 1972) thermodynamics.
The key point being that the terms ∂πAi/∂θ̇ and ∂hA/∂θ,B do not vanish.
Equations (7.78) – (7.80) demonstrate that the waves do not decouple, and
thermodynamic effects play an important role.

From equation (7.78) (Ciarletta and Straughan, 2007b) deduce the exis-
tence of the propagation direction for a plane wave. They note that, cf.
(Chen, 1973), equation (4.10), NA = FiA(|∇xs|/|∇XS|)ni where ni is
the equivalent unit normal in the current configuration. They then define
βij = (|∇xs|/|∇XS|) (∂πAi/∂θ̇)FjA and it then follows as in the equiva-
lent analysis for a purely elastodynamic body in (Lindsay and Straughan,
1979) that a plane wave may propagate in a direction n∗ where βijn

∗
j is an

eigenvector of Qij . If we let νi be the unit vector in the direction βijn
∗
j and

set ai = Aνi, one may deduce propagation of a generalized longitudinal
plane wave in the direction n∗ with amplitude in the direction βijn

∗
j .

To find the wavespeeds and number of waves we take the inner product
of (7.78) with the vector νi. The resulting system of equations in A,B,C
then has a non-zero solution provided

(U2
N − U2

M )(U2
N − U2

P )(U2
N − U2

T )

− (U2
N − U2

P )U2
NK1 − (U2

N − U2
M )K2 = 0.

(7.82)

In this equation the coefficients U2
M , U2

P , U2
T ,K1 and K2 are given by

U2
M = NANBνiνj

∂2ψ

∂FiA∂FjB
, (7.83)

U2
P =

NANB

k

∂2ψ

∂ν,Aν,B
, (7.84)

U2
T =

NANB

φθ̇ηθ̇

∂2ψ

∂θ,Aθ,B
, (7.85)
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K1 =
NANKνiνj

φθ̇ηθ̇

∂2ψ

∂θ̇∂FiA

∂2ψ

∂θ̇∂FjK

, (7.86)

K2 =
NANBNRNS

kφθ̇ηθ̇

∂2ψ

∂ν,A∂θ,B

∂2ψ

∂ν,S∂θ,R
, (7.87)

where in deriving (7.82) from (7.78) – (7.80), we have employed equa-
tions (7.71), (7.72). The quantities UM , UP and UT may be interpreted
as follows. Firstly, UM is the wavespeed of an elastic wave in the absence
of other effects, cf. (Chen, 1973). Then, UP is the wavespeed of a wave
associated with the void fraction, cf. (Nunziato and Cowin, 1979), or sec-
tion 7.2.4. Finally, UT is the wavespeed of a thermal wave, cf. (Lindsay
and Straughan, 1979). The quantities K1 and K2 represent cross deriva-
tive effects which in turn depend on the form of functional relationship
for ψ. When K1,K2 are zero then equation (7.82) predicts propagation of
three waves with different speeds UM , UP , UT (together with three waves
moving in the opposite direction). (Ciarletta and Straughan, 2007b) then
argue that when K1 and K2 are not too large one may use a continuity
argument to conclude (7.82) has three distinct real solutions U2

N and three
distinct waves continue to propagate. Physically this appears reasonable.
The wavespeed values found interpreted alongside experimental results may
be useful in suggesting the correct form of functional relationship for ψ to
employ in theoretical modelling of thermo-acoustic wave propagation in
elastic materials with voids.

7.3.4 Amplitude behaviour

Details of the calculation of the evolutionary behaviour of the amplitudes
are not given by (Ciarletta and Straughan, 2007b), only the final results
are presented. Therefore, we now calculate the amplitudes A,B and C
in the one-dimensional case, again when the region ahead of the wave is
in equilibrium and the body has a centre of symmetry. The wavespeed
equation is again (7.82) and in the one-dimensional case we have

U2
M = ψFF , U2

P =
ψνXνX

k
, U2

T =
ψθXθX

φθ̇ηθ̇

,

K1 =
ψ2

θ̇F

φθ̇ηθ̇

, K2 =
ψ2

νXθX

kφθ̇ηθ̇

.

(7.88)

The amplitude equations (7.78) – (7.80) become

(ρV 2 − πF )A = −V πθ̇C,

(ρkV 2 − hνX
)B = hθX

C,

(ρεθ̇V
2 + qθX

)C = −QνX
B + ρV φηF A,

(7.89)
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where V is now the wavespeed. We take Fi, � and r equal to zero in (7.61)
– (7.63) and the one-dimensional forms of these equations are

ρü = πX ,

ρkν̈ = hX + g,

ρε̇ = −qX + πḞ + hν̇X − gν̇,

(7.90)

where π, h, q are the one-dimensional forms of πAi, hA and qA, and F =
∂u/∂X. We differentiate each of these equations in turn, with respect to
t, and then expand each in turn in terms of the constitutive variables.
We then take the jumps of the resulting equations to obtain from each of
equations (7.90)1 to (7.90)3 in turn,

ρ[
...
x] = − 1

V 3
πFF A2 + πF [ḞX ] − πν

V
B − 1

V 3
πνXνX

B2 − 1
V 3

πνXθX
BC

− πθ

V
C +

πθ̇F

V 2
AC + πθ̇[θ̈X ] − πθXνX

V 3
BC − πθXθX

V 3
C2, (7.91)

ρk[
...
ν ] = − 2hFνX

V 3
AC − 2hFθX

V 3
AB +

2hνX θ̇

V 2
BC +

2hθ̇θX

V 2
C2

− gF

V
A − gθ̇

V
C + hνX

[ν̇XX ] + hθX
[θ̇XX ],

(7.92)

ρεFF
A2

V 2
− 2ρ

V
εθ̇F AC + ρεF [F̈ ] + ρενB +

ρ

V 2
ενXνX

B2

+
2ρ

V 2
ενXθX

BC + ρεθC + ρεθ̇θ̇C
2 + ρεθ̇[

...

θ ] +
ρ

V 2
εθXθX

C2

=
2

V 3
qFνX

AB +
2

V 3
qFθX

AC − 2
V 2

qθ̇νX
BC − 2

V 2
qθ̇θX

C2

− qνX
[ν̇XX ] − qθX

[θ̇XX ] + π[F̈ ] +
πF

V 2
A2 − 1

V
πθ̇AC

+
hνX

V 2
B2 +

hθX

V 2
BC − gB.

(7.93)

We now use the following expressions which one may derive with the aid
of the Hadamard relation (7.8),

[
...
x] = 2

δA

δt
+ V 2[ḞX ], [

...
ν ] = 2

δB

δt
+ V 2[ν̇XX ],

[
...

θ ] = 2
δC

δt
+ V 2[θ̇XX ], [ḞX ] = − 1

V 2

δA

δt
− 1

V
[F̈ ],

[θ̈X ] = − 1
V

δC

δt
− V [θ̇XX ].

These relations are used in (7.75) – (7.77) to rewrite these equations as

2ρ
δA

δt
+ (ρV 2 − πF )

(
− 1

V 2

δA

δt
− 1

V
[F̈ ]
)

− πθ̇

(
− 1

V

δC

δt
− V [θ̇XX ]

)
= R1,

(7.94)



322 7. Elastic Materials with Voids

2ρk
δB

δt
+ (ρkV 2 − hνX

)[ν̇XX ] − hθX
[θ̇XX ] = R2, (7.95)

2ρεθ̇

δC

δt
+ (ρεθ̇V

2 + qθX
)[θ̇XX ] + ρφηF [F̈ ] + qνX

[ν̇XX ] = R3, (7.96)

where the terms R1, . . . , R3, are given by,

R1 = − 1
V 3

πFF A2 − πν

V
B − 1

V 3
πνXνX

B2 − 2
V 3

πνXθX
BC

− 1
V

πθC +
1

V 2
πθ̇F AC − 1

V 3
πθXθX

C2,

(7.97)

R2 = − 2
V 3

hFνX
AC − 2

V 3
hFθX

AB +
2

V 2
hνX θ̇BC

+
2

V 2
hθ̇θX

C2 − gF

V
A − gθ̇

V
C,

(7.98)

R3 = − ρ

V 2
εFF A2 +

2ρ

V
εθ̇F AC − ρενB − ρ

V 2
ενXνX

B2

− 2ρ

V 2
ενXθX

BC − ρεθC − ρεθ̇θ̇C
2 − ρ

V 2
εθXθX

C2

+
2

V 3
qFνX

AB +
2

V 3
qFθX

AC − 2
V 2

qθ̇νX
BC − 2

V 2
qθ̇θX

C2

+
πF

V 2
A2 − πθ̇

V
AC +

hνX

V 2
B2 +

hθX

V 2
BC − gB.

(7.99)

After further use of the Hadamard relation (7.8), and use of (7.89) to
eliminate δC/δt from (7.94), we may rewrite (7.94) – (7.96) in the form

2ρ
δA

δt
−
(

ρV 2 − πF

V

)
[F̈ ] + πθ̇V [θ̇XX ] = R1, (7.100)

2ρk
δB

δt
+ (ρkV 2 − hνX

)[ν̇XX ] − hθX
[θ̇XX ] = R2, (7.101)

2ρεθ̇

δC

δt
+ (ρεθ̇V

2 + qθX
)[θ̇XX ] + ρφηF [F̈ ] + qνX

[ν̇XX ] = R3. (7.102)

The object is now to remove the terms involving three derivatives in (7.100)
– (7.102), i.e. the terms involving [F̈ ] = [üX ], [θ̇XX ] and [ν̇XX ]. To do this
we form the sum V ×(7.100)+μ1×(7.101)+μ2×(7.102) and choose μ1, μ2

appropriately. In fact we make the choices

μ2 =
(ρV 2 − πF )

ρφηF
,

μ1 =
1

hθX

{
πθ̇V

2 +
(ρV 2 − πF )

ρφηF
(ρεθ̇V

2 + qθX
)
}

.
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Upon doing this and making use of the wavespeed equation (7.82), we
remove the terms involving the derivatives. We next eliminate A and
B employing relations (7.89)1 and (7.89)2 recalling the coefficients are
constant so that

δA

δt
= − V πθ̇

(ρV 2 − πF )
δC

δt
,

δB

δt
=

hθX

(ρkV 2 − hνX
)

δC

δt
. (7.103)

The result is

− 2ρV 2πθ̇

(ρV 2 − πF )
δC

δt
+

2ρkμ1hθX

(ρkV 2 − hνX
)

δC

δt
+ 2ρεθ̇μ2

δC

δt

= V R1 + μ1R2 + μ2R3.

(7.104)

After some simplification equation (7.104) may be written as

δC

δt

2ρφθ̇ηθ̇

ψF θ̇(V 2 − U2
P )
{
K2 + V 2K1 − (V 2 − U2

P )(V 2 − U2
T )

− (V 2 − U2
M )(V 2 − U2

T ) − (V 2 − U2
M )(V 2 − U2

P )
}

+ α̂C + β̂C2 = 0,

(7.105)

where the coefficients α̂ and β̂ are given by

α̂ =ρψFθ +
ρψFνψνXθX

k(V 2 − U2
P )

+
{

gθ̇

V
(V 2 − U2

M ) − gF ψF θ̇

}{
ηθ̇(V

2 − U2
T )

ηF ψνXθX

+
V 2ψF θ̇

ψνXθX
(V 2 − U2

M )

}

+
ρεθ(V 2 − U2

M )
φηF

+
ρψθ̇νψνXθX

kψθ̇F

(V 2 − U2
M )

(V 2 − U2
P )

, (7.106)
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β̂ =
1

V 3

{
πFF +

πνXνX
h2

θX

ρ2k2(V 2 − U2
P )2

+
2πνXθX

hθX

ρk(V 2 − U2
P )

+
πθ̇F πθ̇V

2

(V 2 − U2
M )

+ πθXθX

}

− 2
V 2hθX

{
πθ̇V

2 +
ρηθ̇

ηF
(V 2 − U2

M )(V 2 − U2
T )
}

×
{

hFνX
πθ̇

ρ(V 2 − U2
M )

+ hθ̇θX
+

hFθX
hθX

πθ̇

ρ2k(V 2 − U2
P )(V 2 − U2

M )
+

hνX θ̇hθX

ρk(V 2 − U2
P )

}

+
(V 2 − U2

M )
φηF

{
εFF π2

θ̇

ρ(V 2 − U2
M )2

+
2εθ̇F πθ̇

(V 2 − U2
M )

+
ενXνX

h2
θX

ρV 2k2(V 2 − U2
P )2

+ ρεθ̇θ̇ +
2ενXθX

hθX

kV 2(V 2 − U2
P )

+
ρεθXθX

V 2
+

2qθ̇θX

V 2

+
2qFνX

hθX
πθ̇

kρ2V 2(V 2 − U2
M )(V 2 − U2

P )
+

2qFθX
πθ̇

ρV 2(V 2 − U2
M )

+
2qθ̇νX

hθX

kρV 2(V 2 − U2
P )

−
πF π2

θ̇

ρ2(V 2 − U2
M )2

−
π2

θ̇

ρ(V 2 − U2
M )

−
hνX

h2
θX

ρ2k2V 2(V 2 − U2
P )2

+
πθ̇h

2
θX

ρ2kV (V 2 − U2
M )(V 2 − U2

P )

}
. (7.107)

Equation (7.105) may be solved as in (7.19), although in this case the
expression for C(t) is simpler because the coefficients are constants. If we
denote the coefficient of δC/δt on the left of (7.105) by K, and define
α = α̂/K, β = β̂/K, then one may show

C(t) =
exp(−αt)C(0)

1 − C(0)(β/α)
[
exp(−αt) − 1

] . (7.108)

Equation (7.108) gives the behaviour of C(t) directly. It is of interest to
note that C(t) may blow up in a finite time if C(0), α, β are such that

1 = C(0)
β

α

[
exp(−αt) − 1

]

has a solution. The blow up time is given by

t = − 1
α

log
[
1 +

α

βC(0)

]
.

The influence of the void evolution function g on the blow up time may
be seen directly from the form for α = α̂/K as derived using (7.105) and
(7.106). The function g plays no role in determining the wavespeeds, but it
has a strong effect on amplitude behaviour via its presence in α in (7.108).
Of course, once C(t) is known, we also know A(t) and B(t) completely from
equations (7.89)1 and (7.89)2.
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7.4 Temperature displacement effects

7.4.1 Voids and thermodynamics

In this section we describe work of (Ciarletta et al., 2007) who employ
the theory of (De Cicco and Diaco, 2002). These writers generalize the
thermodynamic procedure of (Green and Naghdi, 1993) and use a thermal
displacement variable

α =
∫ t

t0

θ(X, s)ds + α0, (7.109)

where X is the spatial coordinate in the reference configuration of the body
with θ being the absolute temperature. A general procedure for deriving
the equations for a continuous body from a single balance of energy equa-
tion is developed by (Green and Naghdi, 1995). These writers derive the
conservation equations for balance of mass, momentum, and entropy. The
work of (De Cicco and Diaco, 2002), like that of (Green and Naghdi, 1993)
starts with an entropy balance equation. (De Cicco and Diaco, 2002) extend
the (Green and Naghdi, 1993) thermoelasticity theory to include voids in
the manner of (Nunziato and Cowin, 1979). The full nonlinear equations
are derived by (De Cicco and Diaco, 2002), although they only utilize a lin-
earized version. We follow (Ciarletta et al., 2007) and rederive the (De Cicco
and Diaco, 2002) theory referring to a reference configuration and employ-
ing a first Piola-Kirchoff stress tensor, as opposed to the symmetric stress
tensor formulation of (De Cicco and Diaco, 2002).

It is worth observing that (Green and Naghdi, 1993) write, ... “This
type of theory, ... thermoelasticity type II, since it involves no dissipa-
tion of energy is perhaps a more natural candidate for its identification
as thermoelasticity than the usual theory.” Moreover, (Green and Naghdi,
1993) observe that, ... “This suggests that a full thermoelasticity theory
- along with the usual mechanical aspects - should more logically include
the present type of heat flow (type II) instead of the heat flow by conduc-
tion (classical theory, type I).” (The words in brackets have been added
for clarity.) We would argue that it is beneficial to develop a fully nonlin-
ear acceleration wave analysis for a Green - Naghdi type II thermoelastic
theory of voids.

7.4.2 De Cicco - Diaco theory

The starting point is to consider the momentum and balance of voids
equations for an elastic material containing voids, see (7.38), (7.39),

ρẍi = πAi,A + ρFi, (7.110)
ρkν̈ = hA,A + g + ρ�. (7.111)
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One needs a balance of energy and from (De Cicco and Diaco, 2002) this
is

ρε̇ = πAiẋi,A + hAν̇,A − gν̇ + ρsθ + (θΦA),A. (7.112)

In these equations XA denote reference coordinates, xi denote spatial coor-
dinates, a superposed dot denotes material time differentiation and ,A

stands for ∂/∂XA. The variables ρ, ν, ε, k, are the reference density, the
void fraction, the specific internal energy, and the inertia coefficient. The
terms Fi, � and s denote externally supplied body force, extrinsic equi-
librated body force, and externally supplied heat. The tensor πAi is the
stress per unit area of the XA−plane in the reference configuration acting
over corresponding surfaces at time t (the Piola-Kirchoff stress tensor), ΦA

is the entropy flux vector, and hA and g are a vector and a scalar function
arising in the conservation law for void evolution. These are referred to
by (Nunziato and Cowin, 1979) as the equilibrated stress and the intrinsic
equilibrated body force, respectively.

The next step is to use the entropy balance equation, see (Green and
Naghdi, 1993), (De Cicco and Diaco, 2002),

ρθη̇ = ρθs + ρθξ + (θΦA),A − ΦAθ,A (7.113)

where ξ is the internal rate of production of entropy per unit mass, and
η, θ are the specific entropy and the absolute temperature. Introduce the
Helmholtz free energy function ψ = ε − ηθ and then equation (7.112) is
rewritten with the aid of (7.113) as

ρψ̇ + ρηθ̇ = πAiẋi,A + hAν̇,A − gν̇ + ΦAθ,A − ρθξ. (7.114)

The constitutive theory of (De Cicco and Diaco, 2002) writes the functions

ψ, η, πAi,ΦA, hA, g, ξ, (7.115)

as depending on

xi,A, ν, ν,A, α̇, α,A. (7.116)

The function ψ̇ is expanded using the chain rule, and rearranging terms,
recollecting α̇ = θ, equation (7.114) may be written as

ẋi,A

(
ρ

∂ψ

∂xi,A
− πAi

)
+ ν̇,A

(
ρ

∂ψ

∂ν,A
− hAi

)
+ α̇,A

(
ρ

∂ψ

∂α,A
− ΦA

)

+ ρα̈
(∂ψ

∂α̇
− η
)

+ ν̇
(
ρ
∂ψ

∂ν
+ g
)

+ ρθξ = 0.

(7.117)

We now use the fact that ẋi,A, ν̇,A, α̇,A, α̈ and ν̇ appear linearly in (7.117)
and so one derives the forms, cf. (De Cicco and Diaco, 2002), equations (19),

πAi = ρ
∂ψ

∂xi,A
, ΦA = ρ

∂ψ

∂α,A
, hA = ρ

∂ψ

∂ν,A
,

g = −ρ
∂ψ

∂ν
, η = −∂ψ

∂θ
= −∂ψ

∂α̇
, ξ = 0.

(7.118)
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7.4.3 Acceleration waves

(Ciarletta et al., 2007) adopt the notation [f ] = f− − f+ and define an
acceleration wave for equations (7.110) – (7.112) to be a singular surface S
across which xi, ν and α together with their first derivatives are continuous,
but the second and higher derivatives suffer a finite discontinuity. The wave
amplitudes ai, B,C are ai = [ẍi], B = [ν̈], C = [α̈]. By expanding equations
(7.110) – (7.112) in terms of the constitutive variables and taking jumps
of the resulting equations one finds, with Fi, � and s zero, and use of the
Hadamard relation (7.27)

ρai =
∂πAi

∂FjB

1
U2

N

NANBaj +
1

U2
N

∂πAi

∂ν,B
NANBB

− 1
UN

∂πAi

∂α̇
NAC +

1
U2

N

NANB
∂πAi

∂α,B
C,

(7.119)

ρkB =
∂hA

∂FiB

1
U2

N

NANBai +
1

U2
N

∂hA

∂ν,B
NANBB

− 1
UN

∂hA

∂α̇
NAC +

1
U2

N

NANB
∂hA

∂α,B
C,

(7.120)

−ρ
∂ε

∂FiA

1
UN

aiNA − ρ
∂ε

∂ν,A

1
UN

NAB + ρ
∂ε

∂α̇
C − ρ

∂ε

∂α,A

1
UN

NAC

=θ
∂ΦA

∂FiB

1
U2

N

NANBai + θ
∂ΦA

∂ν,B

1
U2

N

NANBB − θ
∂ΦA

∂α̇

1
UN

NAC

+ θ
∂ΦA

∂α,B

1
U2

N

NANBC − πAi
1

UN
NAai − hA

1
UN

NAB,

(7.121)

where UN is the corresponding speed of S at point (XA, t) in the reference
configuration.

(Ciarletta et al., 2007) examine the novel effects associated with the
current theory by supposing the acceleration wave is advancing into an
equilibrium region for which ν+, α+ and x+

i are constants, and they suppose
the body has a centre of symmetry.

In this case equations (7.119) – (7.121) become,

(Qij − ρU2
Nδij)aj = UNNA

∂πAi

∂α̇
C, (7.122)

(
ρkU2

N − NANB
∂hA

∂ν,B

)
B = NANB

∂hA

∂α,B
C, (7.123)

(
ρ

∂ε

∂α̇
U2

N−θ NANB
∂ΦA

∂α,B

)
C

= θ
∂ΦA

∂ν,B
NANBB + ρUNNAθ

∂η

∂FiA
ai,

(7.124)
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where Qij is the acoustic tensor defined by

Qij = NANB
∂πAi

∂FjB
. (7.125)

As is found in section 7.3.3 the behaviour of an acceleration wave in the
current theory is different from that of (Nunziato and Cowin, 1979). In
the above theory the elastic wave (associated with ai) and the voids wave
(associated with B) do not decouple as they do in (Nunziato and Cowin,
1979). (Ciarletta et al., 2007) argue that this demonstrates the importance
of the temperature displacement effect, and they believe the coupled theory
(7.122) – (7.124) is to be expected and one should find three interconnected
waves.

(Ciarletta et al., 2007) show that a plane wave may propagate in
the direction n∗

j where βijn
∗
j is an eigenvector of Qij and βij =

(|∇xs|/|∇XS|)(∂πAi/∂α̇)FjA. Then we let νi be the unit vector in the
direction βijn

∗
j and put ai = Aνi.

One now forms the inner product of (7.122) with νi. This procedure
yields a system of equations in A,B and C, and this in turn leads to the
following sixth order equation for the wavespeed UN ,

(U2
N − U2

M )(U2
N − U2

P )(U2
N − U2

T ) (7.126)

+ (U2
N − U2

P )U2
NK1 + (U2

N − U2
M )K2 = 0. (7.127)

In (7.127) the coefficients U2
M , U2

P , U2
T , K1 and K2 are given in terms of

the Helmholtz free energy by

U2
M = NANBνiνj

∂2ψ

∂FiA∂FjB
, (7.128)

U2
P =

NANB

k

∂2ψ

∂ν,Aν,B
, (7.129)

U2
T =

−NANB

ψα̇α̇

∂2ψ

∂α,A∂α,B
, (7.130)

K1 =
NANKνiνj

ψα̇α̇

∂2ψ

∂α̇∂FiA

∂2ψ

∂α̇∂FjK
, (7.131)

K2 =
NANBNRNS

kψα̇α̇

∂2ψ

∂ν,A∂α,B

∂2ψ

∂ν,S∂α,R
. (7.132)

The quantities UM , UP , UT have an analogous interpretation to those of sec-
tion 7.3.3. In fact, UM is the wavespeed of an elastic wave in the absence of
other effects, UP is the wavespeed of a wave connected to the void fraction,
and UT is the wavespeed of a thermal displacement wave. The terms K1

and K2 represent mixed derivative effects arising from the form prescribed
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for ψ. If K1 and K2 are zero then equation (7.127) allows for propaga-
tion of three distinct waves with different speeds UM , UP , UT (together
with three waves moving in the opposite direction). (Ciarletta et al., 2007)
argue that when K1 and K2 are not too large one may use a continuity
argument to conclude that equation (7.127) has three distinct real solu-
tions U2

N and three distinct waves propagate. They believe physically this
is realistic and the values found for U2

N together with experimental results
should suggest precise functional forms for ψ to use in theoretical modelling
of thermo-acoustic wave propagation in elastic materials with voids.

One may follow the procedure of section 7.3.4 to calculate the amplitudes
A,B,C as functions of time.

7.5 Voids and type III thermoelasticity

7.5.1 Thermodynamic theory

As we have seen in section 7.4, (De Cicco and Diaco, 2002) have developed
a theory of thermoelasticity with voids which is a generalization of the dis-
sipationless theory of thermoelasticity of (Green and Naghdi, 1993). The
latter writers refer to this as thermoelasticity of type II, type I being the
classical theory where the equation governing the temperature field is effec-
tively parabolic as opposed to hyperbolic in type II theory. The theory of a
thermoelastic body with voids corresponding to type I thermoelasticity was
developed by D. Iesan, see e.g. (Iesan, 2004). However, (Green and Naghdi,
1992) have developed a further theory of thermoelasticity which employs
the thermal displacement variable α and the thermodynamics of (Green
and Naghdi, 1991; Green and Naghdi, 1995). This theory leads to what is
essentially a second order in time equation for the thermal displacement
field, but differently from the type II theory of (Green and Naghdi, 1993)
the theory of (Green and Naghdi, 1992) does have damping and hence dis-
sipation. (Green and Naghdi, 1991; Green and Naghdi, 1992) refer to this
theory as being of type III.

The goal of this section is to develop a type III theory of thermoelasticity,
but allowing for the accommodation of a distribution of voids throughout
the body. The essential difference between type II and type III thermoe-
lasticity is that the variable α̇,A is added to the constitutive list (7.116),
whereas it is absent in section 7.4. We have not seen the work presented
here elsewhere.

We commence with the balance laws for a thermoelastic body with voids,
equations (7.38), (7.39) and (7.40). With ρ denoting the density in the
reference configuration and referring everything to this configuration, we
have the equation of momentum balance

ρẍi = πAi,A + ρfi. (7.133)
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The equation of voids distribution is

ρkν̈ = hA,A + g + ρ�. (7.134)

The equation of energy balance is

ρε̇ = πAiẋi,A + hAν̇,A − gν̇ + ρsθ − (θpA),A. (7.135)

The notation is as in section 7.4 excepting we let s be the heat supply
and pA = qA/θ is the entropy flux vector. We choose this representation to
keep in line with (Green and Naghdi, 1991; Green and Naghdi, 1992), and
observe that pA = −ΦA where ΦA is the entropy flux vector of (De Cicco
and Diaco, 2002). We follow (Green and Naghdi, 1992) and postulate an
entropy balance equation

ρη̇ = ρs + ρξ − pA,A, (7.136)

where ξ is the internal rate of production of entropy per unit mass. The
variable θ is the absolute temperature and as in equation (7.109), α(X, t)
is the thermal displacement.

We next introduce the Helmholtz free energy function ψ in terms of the
internal energy ε, entropy η and temperature θ, by ψ = ε− ηθ. Then, from
(7.135) and (7.136) it is a straightforward matter to derive the reduced
energy equation, cf. (Green and Naghdi, 1992), equation (2.5),

ρψ̇ + ρηθ̇ = πAiẋi,A + hAν̇,A − gν̇ − ρξθ − θ,ApA. (7.137)

A thermoelastic body of type III which contains a distribution of voids is
defined to be one for which the functions

ψ, η, πAi, pA, hA, g and ξ (7.138)

depend on the independent variables

FiA = xi,A, ν, ν,A, α̇, α,A, α̇,A . (7.139)

We do not consider the inhomogeneous situation which would also require
inclusion of XA in the list (7.139), cf. (Iesan, 2004). Observe that we do
not include ν̇ in the list (7.139). This follows (Iesan, 2004) and allows us
to determine g from ψ.

The procedure now is to expand ψ in terms of the variables in the list
(7.139), and recalling α̇ = θ, we obtain from (7.137),

(ρψFiA
− πAi)ḞiA + ν̇(ρψν + g) + ν̇,A(ρψν,A − hA)

+ α̈(ρψα̇ + ρη) + ρψα̇,A
α̈,A + α̇,A(pA + ρψα,A) + ρξα̇ = 0.

(7.140)

We observe that ḞiA, ν̇,A, α̈, α̈,A, ν̇, appear linearly in (7.140). Thus, we
may deduce that the coefficients of these terms in (7.140) must be zero.
The process is akin to that described in Appendix A of (Green and Naghdi,
1992). Thus, we find that

πAi = ρψFiA
, g = −ρψν , hA = ρψν,A,

η = −ψα̇, ψ = ψ(α̇,A).
(7.141)
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Hence, once we prescribe a functional form for the Helmholtz free energy
function ψ we also know the stress tensor, entropy, and the voids functions
hA and g. What remains from (7.140) is

ρξα̇ + α̇,A(ρψα,A
+ pA) = 0. (7.142)

This leads to further restrictions on constitutive functions. We now also
have that

ψ = ψ(xi,A, ν, ν,A, α̇, α,A),
pA = pA(xi,A, ν, ν,A, α̇, α,A, α̇,A),
ξ = ξ(xi,A, ν, ν,A, α̇, α,A, α̇,A).

(7.143)

7.5.2 Linear theory

One may study acceleration waves in the nonlinear theory of section 7.5.1.
The acceleration waves in this case do not have a separately propagating
temperature wave as is found in section 7.4. The reason is that in some sense
type III thermoelasticity behaves more like type I thermoelasticity. For
acceleration wave motion in thermoelasticity without voids this is explained
in detail by (Quintanilla and Straughan, 2004), and a similar explanation
holds here. Nevertheless, the extra damping present in the current theory
may be useful in practical problems and with this in mind we now develop
the equations for a linear theory.

Let the body have a centre of symmetry although we allow it to be
anisotropic. We denote the displacement in this section as ui, cf. (7.3). We
then write ψ as a quadratic function of the variables in the list (7.143).
Thus,

ρψ =
1
2
aiAjBui,Auj,B − a1

2
θ2 − a2

2
ν2 + AiAθui,A + BiAνui,A

+
RAB

2
ν,Aν,B + SABν,Aα,B +

TAB

2
α,Aα,B ,

(7.144)

where aiAjB , RAB , TAB have the following symmetries,

aiAjB = ajBiA, RAB = RBA, TAB = TBA.

From (7.141) we now see that

πAi = aiAjBuj,B + AiAθ + BiAν, hA = RABν,B + SABα,B ,

ρη = a1θ − AiAui,A , g = a2ν − BiAui,A .
(7.145)

We also write

ρξ = φ1ν + φ2α̇,

pA = −KABν,B − LABα,B − MABα̇,B .

From (7.142) one may use the cyclic thermomechanical process argument
of (Green and Naghdi, 1991), section 9, to infer that LAB ,MAB , RAB are
non-negative tensor forms, φ2 ≤ 0, φ1 = 0, and SAB = KAB , TAB = LAB .
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In this manner, equations (7.133), (7.134) and (7.136) lead to the linear
equations

ρüi = (aiAjBuj,B),A + (AiAθ),A + (BiAν),A,

ρkν̈ = (RABν,B),A + (KABα,B),A + a2ν − BiAui,A , (7.146)
a1α̈ = AiAu̇i,A + φ2α̇ + (KABν,B),A + (TABα,B),A + (MABα̇,B),A .

One may study the boundary - initial value problem for (7.146). For
example, uniqueness and stability are easily investigated either by using an
energy method, or if definiteness of the elastic coefficients aiAjB is not
imposed, by a logarithmic convexity argument. For the latter one will
be better employing a time integrated version of α as done by (Ames
and Straughan, 1992; Ames and Straughan, 1997) and (Quintanilla and
Straughan, 2000), these articles following the introduction of this method
for the (Green and Laws, 1972), (Green, 1972), version of thermoelasticity
in (Straughan, 1974).

One may also study one-dimensional waves as in (Green and Naghdi,
1992) and then (7.146) essentially reduce to

ρutt = auxx + Aθx + Bνx,

ρkνtt = Rνxx + Kαxx + a2ν − Bux,

a1αtt = Autx + φ2αt + Kνxx + Tαxx + Mαtxx.

(7.147)

The damped character of the temperature wave is evident from (7.147) as
is observed in the non voids case by (Green and Naghdi, 1992), page 262.
If the displacement and voids effects are absent from (7.147)3, then we see
that α satisfies the equation

a1
∂2α

∂t2
− M

∂3α

∂t∂x2
= φ2

∂α

∂t
+ T

∂2α

∂x2
.

This equation clearly does not permit the possibility of undamped thermal
waves, unless M = φ2 = 0. The damping evident in equations (7.147) may
be useful for description of some practical situations.

7.6 Acceleration waves, microstretch theory

We now consider sound wave propagation in the microstretch theory of
(Eringen, 1990; Eringen, 2004b). As mentioned in chapter 1 this is a more
general voids theory than that of (Nunziato and Cowin, 1979), studied in
section 7.2. Eringen’s microstretch theory allows the porous particles to
have a spin associated with each point in space. For wave motion such an
effect could be important and we here include such a study from a nonlinear
singular surface viewpoint. A general study of singular surface propagation
in a continuous body formed of a thermo-microstretch material which has
memory is given by (Iesan and Scalia, 2006).
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The theory developed by (Eringen, 1990) includes temperature effects
while (Eringen, 2004b) also includes electromagnetic effects which could
be important in wave motion in ceramics, for example. However, we here
restrict attention to waves in the isothermal theory, ignoring electromag-
netic effects. The basic variables of the theory of (Eringen, 1990; Eringen,
2004b) are the displacement ui, microstretch ϕ, and the microrotation vec-
tor φi. The microstretch theory of (Eringen, 1990; Eringen, 2004b) is based
on balance laws for these quantities. These are balance of momentum,

ρ0üi = πAi,A + ρ0fi (7.148)

and balance of microstretch

ρ0
j0
2

ϕ̈ = mA,A + T + ρ0�, (7.149)

in which we measure quantities in the current configuration but refer back
to the reference configuration. Thus, πAi is a Piola-Kirchoff stress tensor,
fi is a prescribed body force, j0 is the microinertia, mA is a microstretch
couple, � is a prescribed microstretch source term and T (denoted by t− s
in (Eringen, 2004b)) is the microstretch stress. Here , A denotes ∂/∂XA.
Equations (7.148) and (7.149) clearly have the same structure as equations
(7.38) and (7.39) of the voids theory discussed in section 7.2.2. In addition
to equations (7.148) and (7.149), the Eringen theory has a balance of spins
equation of form

ρ0Jφ̈i = mAi,A + εiAjπAj + ρ0�i, (7.150)

where �i is an applied body couple density, mAi is the couple stress tensor,
and we have taken the microinertia tensor Jik = Jδik for simplicity. The
constitutive theory assumes that

πAi,mA, T and mAi (7.151)

are functions of the variables

FiA = ui,A, φi, φi,A, ϕ and ϕ,A. (7.152)

In fact, (Eringen, 2004b) combines ui,A and φi into a single strain measure
eiA = ui,A + εAmiφm.

An acceleration wave for the microstretch theory is defined to be a surface
S such that ui, φi and ϕ are continuous everywhere in R

3 together with
their first derivatives in t and XA. However, the derivatives üi, u̇i,A, ui,AB ,

φ̈i, φ̇i,A, φi,AB , ϕ̈, ϕ̇,A, ϕ,AB , together with their third and higher derivatives
may suffer finite discontinuities across S.

We now set the force terms fi, � and �i = 0 and expand πAi,A,mA,A

and mAi,A in equations (7.148), (7.149) and (7.150) according to the
constitutive theory (7.151), (7.152). We evaluate the result across the
surface S, recollecting ui, φi and ϕ are everywhere C1 to obtain from
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(7.148), (7.150), (7.149),

ρ0[üi] =
∂πAi

∂ejB
[ejB,A] +

∂πAi

∂φr,B
[φr,BA] +

∂πAi

∂ϕ,B
[ϕ,BA] ,

ρ0J [φ̈i] =
∂mAi

∂ejB
[ejB,A] +

∂mAi

∂φr,B
[φr,BA] +

∂mAi

∂ϕ,B
[ϕ,BA] ,

ρ0j0
2

[ϕ̈] =
∂mA

∂ejB
[ejB,A] +

∂mA

∂φr,B
[φr,BA] +

∂mA

∂ϕ,B
[ϕ,BA] ,

(7.153)

where [·] denotes the jump across S.
Equations (7.153) are the general jump equations for an arbitrary body.

However, we believe the results one obtains when the body has a centre of
symmetry are revealing. When the body possesses a centre of symmetry,
the terms ∂πAi/∂ϕ,B , ∂mAi/∂ϕ,B , ∂mA/∂FjB and ∂mA/∂φr,B are zero.
The Clausius-Duhem inequality, cf. (Eringen, 2004b), shows

πAi = ρ0
∂ψ

∂eiA
, mAi = ρ0

∂ψ

∂φi,A
,

mA = ρ0
∂ψ

∂ϕ,A
, T = ρ0

∂ψ

∂ϕ
,

where ψ is the Helmholtz free energy. Thus, for the centro-symmetric case
equations (7.153) reduce to

[üi] =
∂2ψ

∂eiA∂ejB
[uj,AB ] +

∂2ψ

∂eiA∂φj,B
[φj,BA] ,

J [φ̈i] =
∂2ψ

∂φi,A∂ejB
[uj,AB ] +

∂2ψ

∂φi,A∂φj,B
[φj,BA] ,

j0
2

[ϕ̈] =
∂2ψ

∂ϕ,A∂ϕ,B
[ϕ,BA] .

(7.154)

Equation (7.154)3 behaves as does equation (7.59) in the voids theory of
(Nunziato and Cowin, 1979). It decouples from the system and thus rep-
resents a compression or expansion wave associated to the microstretch
distribution throughout the body. However, equations (7.154)1,2 do not
decouple and lead to an elastic wave as equation (7.58). Here, we see the
strong coupling effect of the microrotation.

Define now the wave amplitudes

Ai(t) = [üi], Bi(t) = [φ̈i], C(t) = [ϕ̈].

Then, employing (7.26) and (7.32) equations (7.154) yield the system

(U2
Nδij − Qij)Ai = RijBj ,

(JU2
Nδij − Mij)Bj = RjiAj ,

(7.155)
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where Qij and Mij are acoustic tensors of form

Qij =
∂2ψ

∂eiA∂ejB
NANB , Mij =

∂2ψ

∂φi,A∂φj,B
NANB , (7.156)

and

Rij =
∂2ψ

∂eiA∂φj,R
NANB . (7.157)

In addition, we have
(

j0
2

V 2 − ∂2ψ

∂ϕ,A∂ϕ,B

)
C = 0. (7.158)

For C = 0, equation (7.158) clearly shows a microstretch wave may
propagate with speed

V =

√

2
∂2ψ

∂ϕ,A∂ϕ,B

/
j0 .

System (7.155) is more complicated, but interesting. It immediately
raises the question of what conditions must be imposed on the acoustic
tensors Qij and Mij to ensure an acceleration wave may propagate. Such
questions have been addressed by (Chadwick and Currie, 1974; Chadwick
and Currie, 1975) in classical thermoelasticity, see also (Lindsay and
Straughan, 1979) for the Green-Laws φ(θ, θ̇) theory of thermoelasticity.
However, system (7.155) is a more complicated system than that of clas-
sical thermoelasticity. The microspin of the particles is clearly having an
effect.

If we assume there is a plane wave and A = Aν, B = Bμ, then we
find such a wave may propagate if μ is an eigenvector of RT R and ν is an
eigenvector of RRT . Of course, to have such a wave we would require μ,ν
to be related so that there is only one propagation direction. It is clearly an
interesting question to analyse further the conditions for propagation of an
acceleration wave in the theory of microstretch elasticity of (Eringen, 1990;
Eringen, 2004b), and then calculate the associated amplitude equation(s).



8
Poroacoustic Waves

8.1 Poroacoustic acceleration waves

8.1.1 Equivalent fluid theory

The transmission of acoustic waves is an important problem in the con-
struction industry. There are many applied/engineering research articles
devoted to this problem and theory for a satisfactory explanation of sound
propagation in porous materials is in relative infancy, see e.g. the accounts
in (Ayrault et al., 1999), (Fellah et al., 2003), (Fellah and Depollier, 2000),
(Garai and Pompoli, 2005), (Mouraille et al., 2006), (Moussatov et al.,
2001), (Wilson, 1997). However, since modern building materials are being
designed to be lighter there is a great environmental need to have a con-
sistent theory. One wishes to know what effect different gases will have on
the transmission of sound when entrapped in building materials such as
bricks or plasterboard, and experiments in this line are being conducted,
cf. (Ciarletta and Zampoli, 2006).

(Fellah et al., 2003) write that acoustic wave motion in porous media
may be divided into two cases, that where the elastic matrix of the porous
medium moves, and that where it is rigid. For the former case they refer
to the theory of (Biot, 1956a; Biot, 1956b) which is briefly mentioned in
section 6.8. They write that the latter case is conveniently described by
the equivalent fluid model. To describe their model we note that (Fellah
and Depollier, 2000) write that the frame of the porous solid is assumed
not to deform when an acoustic wave passess through. In this situation
acoustic waves propagate only in the fluid although the density and bulk

B. Straughan, Stability and Wave Motion in Porous Media,
DOI: 10.1007/978-0-387-76543-3 8, c© Springer Science+Business Media, LLC 2008
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modulus change to take account of fluid structure interactions. This is an
inspiring paper and develops the model of the equivalent fluid on the basis
of a momentum equation and a mass conservation equation, which take
form

ρfα(ω)
∂vi

∂t
= −p,i,

β(ω)
Ka

∂p

∂t
= −vi,i . (8.1)

In these equations vi and p are the fluid velocity and acoustic pressure,
ρf and Ka are fluid density and compressibility modulus of the fluid. The
coefficients α and β depend on a frequency ω and are given explicitly in
(Fellah and Depollier, 2000), equations (2) and (3).

Firstly, (Fellah and Depollier, 2000) relate equations (8.1) to viscoelastic
behaviour by modifying these equations to involve fractional derivatives.
Of interest to this book is the work where they consider equations (8.1) in
low and high frequency domains. For the low frequency domain and a wave
in one - dimension they show that β becomes independent of ω and α is
replaced by α0 + α1(∂/∂t)−1 so that (8.1) may be taken as

ρfα0
∂v

∂t
+

ηφ

k0
v = −∂p

∂x
,

γ

Ka

∂p

∂t
= −∂v

∂x
. (8.2)

Here η is dynamic viscosity, φ porosity, γ is the adiabatic constant, and k0

is the static permeability. Equations (8.2) are noticeably very similar to the
equations for a compressible perfect fluid with a Darcy term added. The
Darcy term would be the ηφv/k0 term and this issue is further investigated
in section 8.1.2. From (8.2) (Fellah and Depollier, 2000) show v satisfies a
damped wave equation of form

avtt + dvt − vxx = 0,

for suitable constants a and d. This leads to a sound speed in the porous
medium V = 1/

√
a =
√

Ka/ρfα0γ.
In the high frequency approximation (Fellah and Depollier, 2000) show

that α and β may be replaced by operators of form α∞(δ(t) + k1t
−1/2)∗

where α∞ and k1 are constants, δ is the Dirac delta function, and ∗ is
the time convolution operator. In this case (8.2) are replaced by the linear
equations involving time delay,

ρfα∞
∂v

∂t
+

2ρfα∞
Λ

(
η

πρf

)1/2 ∫ t

−∞

∂v/∂s√
t − s

ds = −∂p

∂x
,

1
Ka

∂p

∂t
+

2(γ − 1)
KaΛ′

(
η

πPrρf

)1/2 ∫ t

−∞

∂p/∂s√
t − s

ds = −∂v

∂x
.

(8.3)

They derive from these equations a time-delay wave equation of form

Avtt + B

∫ t

−∞

vss√
t − s

ds + Cvt − vxx = 0. (8.4)
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The evolution of various sound pulses are computed by (Fellah and
Depollier, 2000) on the basis of equation (8.4).

8.1.2 Jordan - Darcy theory

(Jordan, 2005a; Jordan, 2006) proposes a very interesting nonlinear model
for acoustic wave propagation in a porous medium by adding a Darcy (fric-
tion) term into the equations for a perfect fluid. This is an extension of the
procedure of (Fellah and Depollier, 2000) who also analyse a compressible
fluid model in a rigid porous matrix, as described in section 8.1.1.

In this chapter we take up the Jordan model but describe the analysis of
(Ciarletta and Straughan, 2006) as opposed to that of (Jordan, 2005a) since
their work makes no approximations and treats the full nonlinear system
of equations. (Ciarletta and Straughan, 2006) commence by showing that
the (Jordan, 2005a) model is not ad hoc, but may be derived from the
continuum theory of a mixture of a fluid and an elastic solid. In fact,
they derive equations (2.1) – (2.4) of (Jordan, 2005a) from a continuum
thermodynamic theory for fluid flow in an elastic solid by employing the
mixture theory of (Eringen, 1994), cf. section 1.9.1.

To see this let ρf , ρs be the partial densities of fluid and solid in a mixture
of a fluid and an elastic solid, let vf

i , vs
i be the fluid and solid velocities,

and let πf , tsji be the fluid pressure and solid partial stress tensor. Suppose
the fluid is a gas and the entropy is constant, so we consider isentropic flow
and then the theory of (Eringen, 1994) is based on his equations (2.12)
and (2.15) for conservation of mass and balance of momentum, which we
rewrite as

ρf
,t + (ρfvf

i ),i = 0, (8.5)

ρs
,t + (ρsvs

i ),i = 0, (8.6)

ρf (vf
i,t + vf

kvf
i,k) = −πf

,i −
1
ξ
(vf

i − vs
i ), (8.7)

ρs(vs
i,t + vs

kvs
i,k) = tsji,j +

1
ξ
(vf

i − vs
i ). (8.8)

The fluid pressure πf and solid partial stress tensor tsij are given by Eringen
(1994) equations (3.9), (3.23), and have forms

πf = ρρf ∂ψ

∂ρf
, tskl = ρ

(
∂ψ

∂CKL
+

∂ψ

∂CLK

)
∂xk

∂Xs
K

∂xl

∂Xs
L

,

where ρ = ρs + ρf is the total density, and ψ = ψ(ρf , CKL) is the
Helmholtz free energy. The deformation tensor CKL is defined by CKL =
(∂xi/∂Xs

K)(∂xi/∂Xs
L) . (Ciarletta and Straughan, 2006) argue that if one

maintains the elastic solid of the porous medium fixed then the solid veloc-
ity vs

i ≡ 0, so that equations (8.5) and (8.7) reduce to the model of (Jordan,
2005a). This may be interpreted as a nonlinear equivalent fluid model
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along the lines of section 8.1.1. To interpret Eringen’s model in the light of
(Jordan, 2005a), equation (2.2), we put ξ = K/μχ, where K and χ are the
permeability and porosity of the medium and μ is the dynamic viscosity of
the gas.

The Jordan - Darcy model consists of equtions (8.5) and (8.7) with vs
i ≡

0. For simplicity, let us now set ρf = ρ, πf = p, and vf
i = vi. Then, the

equations for the Jordan-Darcy model of flow of a compressible fluid in a
porous medium are,

ρ,t + (ρvi),i = 0, (8.9)
ρ(vi,t + vjvi,j) = −p,i − kvi, (8.10)

where the pressure p = p(ρ) = (ρ + ρs)ρ∂ψ/∂ρ, ρs constant, and the Darcy
coefficient k = μχ/K.

8.1.3 Acceleration waves

(Jordan, 2005a) performs an acceleration wave analysis although he
neglects terms O(ε2) in equations (8.9) and (8.10), where ε is the Mach
number of the flow. We describe the analysis of (Ciarletta and Straughan,
2006) who perform an acceleration wave study for the full system of equa-
tions (8.9) and (8.10). In this section an acceleration wave is defined for the
system of equations (8.9) and (8.10) to be a singular surface S across which
the velocity vi and the density ρ are continuous in both xi and t, although
their first and higher derivatives in both xi and t, in general, possess finite
discontinuities. For simplicity we follow (Ciarletta and Straughan, 2006)
and restrict attention to a one-dimensional acceleration wave. The analysis
is then easy to follow, although the realistic extension to three dimensions
is considered in section 8.2. By a one dimensional wave we really mean a
plane wave in three dimensions moving along the x−axis where the problem
only depends on functions defined in x and t.

We now work in one space dimension, put v = (u, 0, 0), and consider an
acceleration wave moving along the x−axis. Equations (8.9), (8.10) in 1 –
D are

ρt + ρux + uρx = 0, (8.11)

ρ(ut + uux) = −dp

dρ
ρx − ku. (8.12)

As in section 7.1.5 + denotes the region ahead of S and − denotes the
region behind the wave, the wave moving toward the + direction. The
amplitudes A(t) and B(t) of the acceleration wave are defined as

A(t) = [ux] = u−
x − u+

x , and B(t) = [ρx]. (8.13)

Since S is a singular surface in three-space, orthogonal to the x−axis, we
may refer to u−

x and u+
x as the limits of ux on S from the left and right,

respectively. The amplitudes A and B are functions of t, and no variation
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along the wave surface is considered, in keeping with the general analysis
of (Chen, 1973).

Now, take the jump of equations (8.11), (8.12) recalling ρ and u are
continuous, to find

[ρt] + u[ρx] + ρ[ux] = 0,
[ut] + u[ux] + P [ρx] = 0,

(8.14)

where we have set

P =
1
ρ

dp

dρ
. (8.15)

Next, with the aid of the Hadamard relation (7.8) we deduce that since ρ, u
are continuous

[ρt] = −V [ρx], [ut] = −V [ux], (8.16)

where V is the wavespeed. Upon using (8.16) in (8.14) we may rearrange
the resulting system to arrive at the vector equation

(
ρ u − V

u − V P

)(
[ux]
[ρx]

)
=
(

0
0

)
. (8.17)

We require non-zero amplitudes [ux], [ρx] and so the determinant of the
matrix in equation (8.17) must vanish. This leads to the following equation
for the wavespeeds

(u − V )2 = ρP =
dp

dρ
. (8.18)

From this one sees there are right and left moving waves with speeds

V = u ±√
pρ . (8.19)

Since u, ρ are continuous there is no need to write u+, p+
ρ in (8.19). However,

it is important to realise that the right hand side of (8.19) depends only
on u+ and ρ+ which we assume are known (quantities ahead of the wave)
and so we can determine the wavespeed.

We now focus on the right moving wave so V = u+√
pρ. We may use the

Hadamard relation to calculate analytically the wave amplitudes A and B,
and this we do next. Note that A and B are directly related since via e.g.
(8.17),

ρA = (V − u)B. (8.20)

8.1.4 Amplitude equation derivation

To derive the amplitude equation we differentiate (8.11) and (8.12) in turn
with respect to x and then take the jumps of the resulting equations. In
this way we obtain the equations

[ρtx] + 2[uxρx] + u[ρxx] + ρ[uxx] = 0, (8.21)
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[utx] + [u2
x] + u[uxx] = −Pρ[ρ2

x] − P [ρxx] − k

ρ
[ux] +

k

ρ2
u[ρx]. (8.22)

In this equation it is understood that ρ, u and P (ρ) are evaluated at ρ+, u+.
We next use the product relation (7.13) on the terms [uxρx] in (8.21) and
[u2

x], [ρ2
x] in (8.22) together with (8.20) to derive

δA

δt
− V [uxx] + A2 + u[uxx] +

(
2u+

x +
k

ρ

)
A

+
(

2Pρρ
+
x − ku

ρ2

)
B + P [ρxx] + PρB

2 = 0,

(8.23)

and

−
(

ρ

u − V

)
δA

δt
−
(

ρ

u − V

)
δ

δt

(
u − V

ρ

)
B + (u − V )[ρxx]

+ ρ[uxx] − 2
(

ρ

u − V

)
A2 + 2ρ+

x A + 2u+
x B = 0.

(8.24)

Next, multiply equation (8.24) by −(u−V )/ρ and eliminate B using (8.20)
to see that

δA

δt
− (u − V )2

ρ
[ρxx] − (u − V )[uxx] + 2A2

+
{

2u+
x − 2ρ+

x

(u − V )
ρ

− δ

δt
log
(u − V

ρ

)}
A = 0.

(8.25)

We now add equations (8.23) and (8.25). Observe that the [uxx] terms
cancel out and also the [ρxx] terms vanish because of the wavespeed equa-
tion (8.18). Hence, when we eliminate B from the resulting equation using
(8.20) we obtain a Bernoulli equation in A. The result is

δA

δt
+ bA + aA2 = 0. (8.26)

The coefficients a and b are given explicitly as

a =
1
2

(
3 + ρ

d

dρ
(log P )

)
, (8.27)

b =2u+
x +

k

2ρ

(
1 +

u

u − V

)
+

ρ+
x

ρ
(V − u)

+
ρρ+

x Pρ

V − u
+

1
2

δ

δt
log
(V − u

ρ

)
, (8.28)

= 2u+
x +

k

2ρ

(
1 − u

√
pρ

)
+

ρ+
x
√

pρ

ρ

+
ρρ+

x Pρ√
pρ

+
1
2

δ

δt
log
(√pρ

ρ

)
. (8.29)
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The general solution to equation (8.26) is given in equation (7.19).
To understand exactly the effect of the Darcy term in the Jordan-Darcy

model (Ciarletta and Straughan, 2006) consider the situation where the
medium ahead of the wave is at rest with a constant density, i.e. u+ ≡
0, ρ+ ≡ constant. Observe that this is a solution to equations (8.11) and
(8.12). In this case the right moving wave has speed V =

√
dp/dρ and

(8.26) holds but now a and b are constants with values

a =
3
2

+
ρ

2
d

dρ
(log P ), b =

k

2ρ
. (8.30)

The solution to (8.26) in this case is

A(t) =
A(0)

ebt + A(0)ab−1(ebt − 1)
. (8.31)

(Ciarletta and Straughan, 2006) compare the amplitude given by (8.31)
with the corresponding amplitude in a perfect fluid, i.e. when no porous
medium is present, which is the case when k = 0 and so, therefore, b = 0.
In this case, instead of (8.31) the amplitude solution is

APF (t) =
APF (0)

1 + APF (0)at
. (8.32)

(Ciarletta and Straughan, 2006) show that b > 0 increases the attenuation
of sound. To see this, we note that if A(0) > 0 the wave is expansive and the
amplitude decays in time. However, if A(0) < 0 the wave is compressive.
The amplitude in (8.32) always blows up in a finite time, a phenomenon
associated with shock wave formation, cf. (Fu and Scott, 1991). When the
porous medium is present, the wave amplitude may still blow-up, but the
blow-up is delayed. In fact (Ciarletta and Straughan, 2006) further consider
a polytropic gas so that p = k0ρ

γ , with k0, γ > 0 constants. In this case

a =
γ + 1

2
, b =

χμ

2ρK
. (8.33)

(Ciarletta and Straughan, 2006) note that when APF (0) < 0 the wave
amplitude always blows up in a finite time. However, if A(0) < 0 blow-up
only occurs if

|A(0)| >
b

a
=

μχ

ρ(γ + 1)K
. (8.34)

This clearly demonstrates the attenuation the porous medium creates.
(Ciarletta and Straughan, 2006) take values of χ and K for brick from
(Nield and Bejan, 2006) and values of μ, ρ and γ for air at 15◦C from
(Batchelor, 1967), p.594, and show that for such a brick containing air
the restriction (8.34) shows that the wave amplitude will not blow-up if
|A(0)| < ζ, where ζ takes values in the range 1.90298×107 s−1 to 2.47123×
109 s−1. Thus, we believe (8.34) should be useful when assessing sound
attenuation in a porous medium which contains a gas infused into the pores.



344 8. Poroacoustic Waves

8.2 Temperature effects

8.2.1 Jordan-Darcy temperature model

In this section we consider the Jordan-Darcy model of section 8.1.2, but we
include thermodynamics in order that we may assess directly the effects of
temperature on acoustic wave propagation in porous media. As far as we
are aware, this material is new and does not appear elsewhere.

The equations for a classical perfect fluid are, cf. (Truesdell and Toupin,
1960), the equations of continuity, momentum, and energy, respectively,
namely,

ρt + (ρvi),i = 0, (8.35)
ρ(vi,t + vjvi,j) = −p,i + ρFi, (8.36)
ρε̇ = −p vi,i − qi,i + ρr, (8.37)

where ρ, vi, ε are density, velocity, internal energy, ε = ε(ρ, θ), and ε̇ is the
material derivative with respect to time of ε. The quantities Fi, r, p and qi

are externally supplied body force, externally supplied heat source or sink,
pressure p = p(ρ, θ), and heat flux. The variable θ denotes the absolute
temperature. For a perfect fluid one typically chooses the heat flux to be
zero, so we select qi ≡ 0. We present our derivation from equations (8.35)
– (8.37) but one could equally well begin with the equivalent equations in
(Whitham, 1974), p. 150. For the nonlinear wave analysis to be considered
here we lose no generality by taking Fi = 0 and r = 0. We modify equation
(8.36) by adding a Jordan-Darcy term of form −kvi. Thus our system of
equations to describe flow in a saturated porous medium is

ρt + viρ,i + ρvi,i = 0,

ρ(vi,t + vjvi,j) = −p,i − kvi,

ρε̇ = −p vi,i.

(8.38)

In general ε = ε(ρ, θ). However, there are many classes of fluid for which
one may adopt the simpler relation ε = ε(θ). In this section we calculate
the wavespeeds in the general case ε = ε(ρ, θ), but for the more technical
calculation of the amplitudes we restrict attention to the case ε = ε(θ). We
believe this will make the analysis more transparent, although one could
repeat the amplitude calculation with ε = ε(ρ, θ), mutatis mutandis.

The class of fluids for which ε = ε(θ) is quite large, and we show it holds
for a perfect gas for which p = Rρθ. One may also show the same relation
holds for Hirn’s gas for which

p = Rθ

(
ρ

ρ − δ2

)
− δ1,
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for suitable constants δ1, δ2 > 0, and for a Joule and Thomson gas for which

p = Rρθ − δ1ρ

θ
,

for a suitable constant δ1 > 0. Other equations of state are given by (Otto,
1929). The internal energy ε satisfies the relation ε = ψ +ηθ where ψ is the
Helmholtz free energy function and the entropy η = −∂ψ/∂θ. The pressure
is given by p = ρ2∂ψ/∂ρ. Thus, for a perfect gas,

ψρ =
Rθ

ρ
and so ψ = Rθ log ρ + f(θ)

for some function f . Thus, we see that

ε = f(θ) − θf ′(θ) = ε(θ).

(Actually p = (ρ+ρs)ρ∂ψ/∂ρ here and throughout the rest of this chapter.)
A similar deduction holds for Hirn’s gas, the Joule-Thomson gas, and

many other of the equations of state given by (Otto, 1929). Hence,
consideration of the amplitude equation when ε = ε(θ) is not without
interest.

8.2.2 Wavespeeds

We now consider equations (8.38) with ε = ε(ρ, θ) and study acceleration
wave propagation. For equations (8.38) we define an acceleration wave to be
a singular surface S such that ρ, vi, θ are continuous in the spatial domain
R

3, but ρt, ρ,i, vi,t, vi,j , θt, θ,i, and higher derivatives may suffer a finite
discontinuity.

To determine the wavespeed(s) of an acceleration wave we use (8.38)1 to
rewrite (8.38)3 after expanding ε̇. Thus, we rewrite system (8.38) as

ρt + viρ,i + ρvi,i = 0,

ρ(vi,t + vjvi,j) = −
(
p(ρ, θ)

)
,i
− kvi,

ρεθ(θt + viθ,i) + (p − ρ2ερ)vi,i = 0.

(8.39)

We take the jump of these equations and find

[ρt] + vi[ρ,i] + ρ[vi,i] = 0,
ρ[vi,t] + ρvj [vi,j ] = −pρ[ρ,i] − pθ[θ,i],

ρεθ[θt] + ρviεθ[θ,i] + (p − ρ2ερ)[vi,i] = 0.

(8.40)

Define the amplitudes Ai, B and C to be

Ai = [vi,jnj ], B = [niρ,i], C = [niθ,i] . (8.41)

With the aid of (176.2) and (176.10) of (Truesdell and Toupin, 1960) we
may show that

[vi,j ] = Ainj , [ρ,i] = Bni, [θ,i] = Cni . (8.42)
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We also require the three-dimensional Hadamard relation (7.27) which we
rewrite as

δ

δt
[ψ] = [ψt] + V [niψ,i]. (8.43)

Using these two relations one may show that

[vi,i] = Aini, [ρt] = −V B, [θt] = −V C , (8.44)

and

[vi,t] = −V [njvi,j ] = −V Ai. (8.45)

Upon utilizing equations (8.42), (8.44) and (8.45) in equation (8.40) one
may show that

(vini − V )B + ρniAi = 0,

ρ(vjnj − V )Ai + pρniB + pθniC = 0,

ρεθ(vini − V )C + (p − ρ2ερ)niAi = 0.

(8.46)

From (8.46)2 we see that the acceleration wave must be longitudinal, i.e.
Ai = niA, where A = [ninjvi,j ] so that (8.46) may be reduced to the matrix
form

⎛

⎝
vini − V ρ 0

pρ ρ(vini − V ) pθ

0 p − ρ2ερ ρεθ(vini − V )

⎞

⎠

⎛

⎝
B
A
C

⎞

⎠ =

⎛

⎝
0
0
0

⎞

⎠ . (8.47)

We require non-zero amplitudes, A,B,C, so that the determinant of the
matrix in (8.47) must be zero. This leads to the equation

(vini − V )
{
ρ2εθ(vini − V )2 − ρ2εθpρ − pθ(p − ρ2ερ)

}
= 0. (8.48)

Thus, we can have a wave moving with the fluid with V = vini, or a right
and a left propagating wave with speeds determined by

(vini − V )2 = pρ +
pθ(p − ρ2ερ)

ρ2εθ
. (8.49)

The latter waves are of interest here. We see that (8.49) compared to the
isothermal wavespeed given by (8.18) shows the thermodynamic correc-
tion due to temperature effects. Namely, the term pθ(p − ρ2ερ)/ρ2εθ is the
correction due to temperature effects.

8.2.3 Amplitude equation

In the interests of clarity we now restrict attention to a one-dimensional
acceleration wave moving along the x-axis. One may think of this as
meaning S is a plane parallel to the (y, z) plane propagating in the
x−direction. Thus, we now have v = (u(x, t), 0, 0), ρ(x, t), θ(x, t). We
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also restrict attention to the case where ε = ε(θ). Then, the wavespeed
equation (8.49) reduces to

(V − u)2 = pρ +
ppθ

ρ2εθ
. (8.50)

The wave amplitudes A,B,C are now given by

A(t) = [ux], B(t) = [ρx], C(t) = [θx]. (8.51)

The governing equations (8.39) in the one-dimensional situation become

ρt + uρx + ρux = 0,

ρ(ut + uux) = −
(
p(ρ, θ)

)
x
− ku,

ρεθ(θt + uθx) + pux = 0.

(8.52)

These equations are differentiated with respect to x and expanded using
the chain rule. We then take the jumps of the results to find, with

P =
pρ

ρ
, Q =

pθ

ρ
, (8.53)

[ρtx] + 2[ρxux] + ρ[uxx] + u[ρxx] = 0, (8.54)

[utx] + [u2
x] + u[uxx] + P [ρxx] + Q[θxx] +

k

ρ
[ux]

− ku

ρ2
[ρx] + Pρ[ρ2

x] + Pθ[ρxθx] + Qρ[ρxθx] + Qθ[θ2
x] = 0,

(8.55)

ρεθθ[θtθx] + ρεθθu[θ2
x] + ρεθ[θtx] + ρεθ[uxθx]

+ ρεθu[θxx] + pρ[ρxux] + pθ[θxux] + p[uxx] = 0.
(8.56)

We next use the product formula (7.13) and the relations which follow from
the Hadamard relation (7.8),

[ut] = −V [ux], [uxt] =
δA

δt
− V [uxx],

together with equivalent expressions for ρ and θ, to derive

δB

δt
+ (u − V )[ρxx] + ρ[uxx] + 2(ρ+

x [ux] + u+
x [ρx] + AB) = 0, (8.57)

δA

δt
+ (u − V )[uxx] +

pρ

ρ
[ρxx] +

pθ

ρ
[θxx] +

k

ρ
A

− ku+

ρ2
B + 2u+

x A + A2 + Pρ(2ρ+
x B + B2)

+ (Pθ + Qρ)(ρ+
x C + θ+

x B + C2) + Qθ(2θ+
x C + C2) = 0,

(8.58)
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and

ρεθ
δC

δt
+ ρεθ(u − V )[θxx] + p[uxx]

+ (ρεθθθ
+
t − ρεθθθ

+
x V + 2ρεθθuθ+

x + ρεθu
+
x + pθu

+
x )C

+ (ρεθθ
+
x + pρρ

+
x + pθθ

+
x )A + pρu

+
x B

+ ρεθθ(u − V )C2 + (ρεθ + pθ)AC + pρAB = 0.

(8.59)

The next step is to use the equations which follow from (8.46), namely,

B = − ρ

(u − V )
A, C = − p

ρεθ(u − V )
A, (8.60)

together with the derivative equations

δB

δt
= −
(

ρ

u − V

)
δA

δt
− A

δ

δt

(
ρ

u − V

)
,

ρεθ
δC

δt
= − p

(u − V )
δA

δt
− Aρεθ

δ

δt

(
p

ρεθ(u − V )

)
,

(8.61)

in (8.57) and (8.59) to find

−
(

ρ

u − V

)
δA

δt
− A

δ

δt

(
ρ

u − V

)
+ (u − V )[ρxx] + ρ[uxx]

+ 2(ρ+
x A + u+

x B + AB) = 0,
(8.62)

and

− p

(u − V )
δA

δt
− Aρεθ

δ

δt

(
p

ρεθ(u − V )

)
+ ρεθ(u − V )[θxx]

+ (ρεθθθ
+
t − ρεθθθ

+
x V + 2ρεθθuθ+

x + ρεθu
+
x + pθu

+
x )C

+ (ρεθθ
+
x + pρρ

+
x + pθθ

+
x )A + pρu

+
x B + p[uxx]

+ ρεθθ(u − V )C2 + (ρεθ + pθ)AC + pρAB = 0.

(8.63)

We now wish to remove the second derivative terms [uxx], [ρxx] and
[θxx] from (8.58), (8.62) and (8.63). To do this we form the sum
(8.58)+μ1(8.62)+μ2(8.63), for μ1, μ2 to be chosen. Upon forming this sum
the second derivative terms yield

[uxx](u − V + ρμ1 + μ2p)

+ [ρxx]
(pρ

ρ
+ (u − V )μ1

)
+ [θxx]

(pθ

ρ
+ μ2ρεθ(u − V )

)
.

We select

μ1 = − pρ

ρ(u − V )
, μ2 = − pθ

ρ2εθ(u − V )
,

and this removes the [ρxx], [θxx] terms. However, we easily check that with
this choice of μ1, μ2 the coefficient of [uxx] is zero, thanks to the wavespeed
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equation (8.50). What remains is a sum involving δA/δt, A,B,C and prod-
ucts in A2, B2, C2, AB,AC,AB. The B and C terms are removed using
(8.60) and we are left with a Bernoulli equation for A(t), namely,

δA

δt
+ bA + a2A = 0. (8.64)

The coefficients a and b have forms

a =1 +
pθ

2ρεθ
+

1
2(u − V )2

(
ρpρρ

+
p2

ρ4ε2θ
(2ρpρθ − pθ + ρpθθ) −

p2pθεθθ

ρ3ε3θ

)
,

(8.65)

b =
k

2ρ

(
1 +

u

u − V

)
+

pρ

2ρ(u − V )
δ

δt

(
ρ

u − V

)

+
pθ

2ρ(u − V )
δ

δt

(
p

ρεθ(u − V )

)

+ u+
x

{
1 +

pρ

(u − V )2
+

1
2ρεθ(u − V )2

(
pθpρ +

ppθ

ρ
+

pp2
θ

ρ2εθ

)}

+ ρ+
x

{
− pρρ

(u − V )
− 1

2ρ2εθ(u − V )

(
2ppθ + pθpρ − ppθ

ρ

)}

+
θ+

x

2

{
− 2pρθ

(u − V )
− p2

θ

ρ2εθ(u − V )
+

ppθεθθ(2u − V )
ρ2ε2θ(u − V )2

− 2ppθθ

ρ2εθ(u − V )

}

+
θ+

t ppθεθθ

2ρ2ε2θ(u − V )2
. (8.66)

The solution to equation (8.64) is given in (7.19). If we consider the
wave moving into an equilibrium region for which u+ = 0, ρ+ =constant,
θ+ =constant, then the solution to (8.64) is (8.31). In that case the coeffi-
cient b reduces to b = k/2ρ while the coefficient a still has form (8.65), but
u−V = −V. One should note that a and b reduce to the forms (8.27), (8.28)
when temperature effects are neglected, i.e. the theory does reduce to that
of section 8.1.2. One thing we point out is the attenuating effect the porous
medium has on the acoustic wave propagation. This is evident through
the term involving the Darcy coefficient k in (8.66). Equation (8.66) does
show the extra effect the thermodynamics have, but the effect of the porous
medium is always evident.

8.3 Heat flux delay

8.3.1 Cattaneo poroacoustic theory

We now wish to consider the equations of section 8.2.1, namely equations
(8.38) but with a non-zero heat flux q. The reason for this is that we
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also wish to consider the propagation of temperature waves in addition to
sound waves. As mentioned in section 7.3.1 there has been much recent
interest in temperature wave propagation in porous media. The history
of temperature wave propagation in a perfect fluid is briefly reviewed in
(Lindsay and Straughan, 1978).

In this section we wish to consider temperature wave propagation simul-
taneously with sound wave propagation in a porous medium by adapting
the approach of (Cattaneo, 1948). The (Cattaneo, 1948) approach has been
the subject of many recent investigations and a convenient recent refer-
ence is that of (Jordan, 2005b) who applies the Cattaneo method to traffic
flow, see also (Alvarez-Ramirez et al., 2006). (Jordan, 2007) is an inter-
esting related article. (Su and Dai, 2006) compare the solution to a phase
lagged equation with an oscillating heat source to that of the damped wave
equation with the same source.

We begin with equations (8.38) but keep the heat flux term in, so we
have

ρt + viρ,i + ρvi,i = 0,

ρ(vi,t + vjvi,j) = −p,i − kvi,

ρε̇ = −p vi,i − qi,i,

(8.67)

cf. equation (8.37). The classical theory at this point would have a consti-
tutive equation for qi, and typically this would be one of Fourier law type,
so

qi(x, t) = −κθ,i(x, t). (8.68)

In general, the thermal conductivity κ is a function of temperature, θ.
However, we here assume κ is constant. The logic behind the (Cattaneo,
1948) theory (see (Jordan, 2005b) and also the comments in section 8.3.5) is
that the heat flux is not directly proportional to the temperature gradient
at the same instant of time. Instead, there is a delay in time in this reaction
so that (8.68) is replaced by

qi(x, t + τ) = −κθ,i(x, t), (8.69)

for some small delay time τ > 0. One may expand this relation in a Taylor
series and then

qi(x, t) + τqi,t(x, t) ≈ −κθ,i(x, t). (8.70)

Thus, in this section we generalize this relation to one for a moving body
and assume we have equations (8.67) coupled with the equation

q̇i +
1
τ

qi = −κ

τ
θ,i , (8.71)

where the dot denotes the material derivative and this equation holds at
the time t. This approach is discussed in another fluid dynamical context
by (Straughan and Franchi, 1984).
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The above approach is somewhat ad hoc and so now we present a
justification via a thermodynamic argument.

8.3.2 Thermodynamic justification

To produce a thermodynamic procedure which is consistent with (8.71)
we adopt the techniques of (Caviglia et al., 1992b). Thus, we have the
equations (cf. (8.67)) but we include an externally supplied body force Fi

and an externally supplied heat supply r. Thus,

ρt + viρ,i + ρvi,i = 0,

ρ(vi,t + vjvi,j) = −p,i − kvi + ρFi,

ρε̇ = −p vi,i − qi,i + ρr.

(8.72)

The Clausius-Duhem (entropy) inequality has form

ρη̇ ≥ −
(

qi

θ

)

,i

+
ρr

θ
. (8.73)

If we introduce the Helmholtz free energy ψ via ε = ψ + ηθ then using
(8.72)3 we may rewrite inequality (8.73) as

− ρ(ψ̇ + ηθ̇) − 1
θ
qiθ,i − pvi,i ≥ 0. (8.74)

We introduce an internal variable ξi and then following (Caviglia et al.,
1992b) postulate that ξi satisfies an evolution equation of form

ξ̇i = −mθ,i − nξi. (8.75)

The coefficients m and n are scalars depending on the variables of the
constitutive theory, with n > 0.

The constitutive theory we consider is that

ψ, η, p and qi

depend on the independent variables

ρ, θ, θ,i, ξi. (8.76)

Expanding ψ, inequality (8.74) may be rewritten

− ρψρρ̇ − pvi,i − ρθ̇(ψθ + η) − ρψθ,i
θ̇,i − ρψξi

ξ̇i −
qiθ,i

θ
≥ 0. (8.77)

Then, recalling ρ̇ = −ρvi,i, from equation (8.72)2, the above inequality may
be replaced by

(ρ2ψρ − p)vi,i − ρθ̇(ψθ + η) − ρψθ,i
θ̇,i − ρψξi

ξ̇i −
qiθ,i

θ
≥ 0. (8.78)

We now argue that θ̇,i may be selected independently of the other variables
in (8.78), balancing equation (8.72)3 by a suitable choice of r. Thus, the
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coefficient of θ̇,i must be zero. Likewise, choosing r appropriately, θ̇ may be
selected arbitrarily so that the coefficient of this term must also be zero.
Then, we apply a similar argument to the first term in (8.78) and select
vi,i arbitrarily balancing equation (8.72)2 by our choice of Fi. In this way
one shows that

ψθ,i
= 0, η = −ψθ, and p = ρ2ψρ . (8.79)

The inequality which remains from (8.78) is

− ρψξi
ξ̇i −

qiθ,i

θ
≥ 0. (8.80)

Upon insertion of equation (8.75) in inequality (8.80) one obtains
(

mρψξi
− qi

θ

)
θ,i + nρψξi

ξi ≥ 0. (8.81)

We may now select θ,i arbitrarily balancing (8.72)3 by a suitable choice of
r. However, care must be taken since ξi and θ,i are connected via (8.75).
Nevertheless, vi may be selected arbitrarily balancing (8.72)2 by Fi and so
we may choose ξi as we like. Then, from inequality (8.81) we deduce

qi = mρθψξi
and ψξi

ξi ≥ 0. (8.82)

Now, arguing as in (Caviglia et al., 1992b) we consider a stationary
solution so that in equilibrium

qi = −k1θ,i, ξ̇i = 0, (8.83)

then, in equilibrium, (8.75) yields

ξi = −m

n
θ,i

and thus utilizing (8.83), this suggests we may take

qi =
nk1

m
ξi

and then upon using (8.82)1 we would have

ψξi
=

nk1

ρθm2
ξi .

In the case where n and m do not depend on ξi this relation leads to the
form for ψ,

ψ(ρ, θ, ξi) = ψ̂(θ, ρ) +
nk1

2ρθm2
ξ2, (8.84)
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where ξ2 = ξiξi. Whence, from (8.79) we have, for additionally n and m
independent of ρ and θ,

p = ρ2ψρ = ρ2ψ̂ρ − nk1

2θm2ρ2
ξ2,

η = −ψ̂θ +
nk1

2ρθ2m2
ξ2,

ε = ψ̂ − θψ̂θ +
nk1

ρθm2
ξ2 .

(8.85)

At first sight results (8.84), (8.85) may appear strange, since they suggest
dependence on ξi and, therefore, qi. However, this is in complete agreement
with what is shown by (Coleman et al., 1982) in another context.

8.3.3 Acceleration waves

We have given a thermodynamic justification of a system of equations like
(8.67), (8.71). We now return to study wave motion in this system. One
could deal with the full system developed in section 8.3.2 but we deal with
a simplified model for which ε = ε(θ) and p = p(ρ, θ). This is for clarity,
and we still find acoustic and thermal wave propagation.

Hence, we recollect equations (8.67) and (8.71) at this point in the form

ρt + viρ,i + ρvi,i = 0,

ρ(vi,t + vjvi,j) = −p,i − kvi,

ρεθ θ̇ = −pvi,i − qi,i,

qi + τ q̇i = −κθ,i ,

(8.86)

where we treat τ and κ as constants. We define an acceleration wave for
equations (8.86) to be a singular surface, S, in R

3 such that ρ, vi, θ and
qi are continuous everywhere but ρt, ρ,i, vi,t, vi,j , θt, θ,i, qi,t, qi,j and their
higher derivatives suffer a finite discontinuity across S. The amplitudes
Ai, B,C and Di are defined by

Ai = [vi,jnj ], B = [niρ,i],
C = [niθ,i], Di = [qi,jnj ]

(8.87)

where [·] denotes the jump defined in (7.6).
Taking the jumps in equations (8.86) we find

[ρt] + vi[ρ,i] + ρ[vi,i] = 0,
ρ[vi,t] + ρvj [vi,j ] + pρ[ρ,i] + pθ[θ,i] = 0,
ρεθ[θt] + ρεθvi[θ,i] + p[vi,i] + [qi,i] = 0,

[qi,t] + vj [qi,j ] +
κ

τ
[θ,i] = 0.

(8.88)
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From the compatibility relations, (8.42), and the Hadamard relation (7.27)
we have

[vi,j ] = Ainj , [ρ,i] = Bni, [θ,i] = Cni, [qi,i] = Dini,

[vi,i] = Aini, [ρt] = −V B, [vi,t] = −V Ai,
(8.89)

V being the wavespeed of S. Thus, employing (8.89) in (8.88) one may
derive

(vini − V )B + ρAini = 0,

ρ(vjnj − V )Ai + pρniB + pθniC = 0,

ρεθ(vjnj − V )C + pniAi + Dini = 0,

(vjnj − V )Di +
κ

τ
niC = 0.

(8.90)

Equations (8.90)2 and (8.90)4 allow us to deduce that Ai = Ani, Di = Dni

and thus (8.90) reduce to
⎛

⎜⎜⎝

vini − V ρ 0 0
pρ ρ(vini − V ) pθ 0
0 p ρεθ(vini − V ) 1
0 0 κ/τ vini − V

⎞

⎟⎟⎠

⎛

⎜⎜⎝

B
A
C
D

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

0
0
0
0

⎞

⎟⎟⎠ .

We require the amplitudes (B,A,C,D)T = 0 and thus we must have
∣∣∣∣∣∣∣∣

vini − V ρ 0 0
pρ ρ(vini − V ) pθ 0
0 p ρεθ(vini − V ) 1
0 0 κ/τ vini − V

∣∣∣∣∣∣∣∣
= 0 .

Upon expanding the determinant we find that

ρ2εθ(vini − V )4 − (vini − V )2
{κρ

τ
+ ppθ + ρ2εθpρ

}
+

κρpρ

τ
= 0. (8.91)

We now assume the wave is advancing into an equilibrium region so that
ahead of the wave

ρ ≡ constant, vi ≡ 0, θ ≡ constant, qi ≡ 0,

and hence

ρ+ = constant, v+
i = 0, θ+ = constant, q+

i = 0.

In this situation the wavespeed equation (8.91) reduces to

V 4 − V 2
{ κ

τρεθ
+

ppθ

ρ2εθ
+ pρ

}
+

κpρ

τρεθ
= 0 . (8.92)

We wish to interpret equation (8.92) and hence briefly consider the prop-
agation of a temperature wave. For a rigid heat conductor equations (8.86)
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would have ρ ≡ constant, ui ≡ 0, so that

ρεθ[θt] = −[qi,i],

[qi,t] +
κ

τ
[θ,i] = 0.

Then, following the analysis above one finds

− ρεθV C + Dini = 0,

− V Di +
κ

τ
niC = 0.

This leads to a wavespeed equation of form

V 2 =
κ

τρεθ
.

Thus, we define the thermal wavespeed, UT , and the mechanical wavespeed,
UM , as

U2
T =

κ

τρεθ
, U2

M = pρ ,

(see section 8.1.3 for U2
M ) and then equation (8.92) is conveniently rewritten

as

(V 2 − U2
M )(V 2 − U2

T ) − κV 2 = 0, (8.93)

where

κ =
ppθ

ρ2εθ
.

We expect pθ > 0 (cf. e.g. p = Rρθ) and since εθ = −θψθθ we expect εθ > 0
and so κ > 0, cf. the choice ψ = c(θ − θ log θ). In this case equation (8.93)
leads to

(V 2 − U2
M )(V 2 − U2

T ) = |κ|V 2 > 0.

Hence, (8.93) has two solutions V 2
1 , V 2

2 with

0 < V 2
2 < min{U2

M , U2
T } < max{U2

M , U2
T } < V 2

1 .

Thus, the present theory predicts a slow wave with speed V2, and a fast
wave with speed V1, both of which have right and left moving waves (due
to the presence of V 2).

Before moving on to the calculation of the amplitudes, we observe that
(Straughan and Franchi, 1984) suggest replacing equation (8.71) with one
involving another objective derivative for qi, namely

τ

(
qi,t + vjqi,j −

1
2
qk{vi,k − vk,i}

)
= −qi − κθ,i .

One may repeat the above analysis with this replacement and nothing
changes concerning the wavespeed relation.
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8.3.4 Amplitude derivation

We now show how one may calculate the amplitudes A,B,C and D, but
restrict attention to a one-dimensional wave S. In one space dimension
equations (8.86) become (with v = (u, 0, 0),q = (q, 0, 0))

ρt + uρx + ρux = 0,

ut + uux +
pρ

ρ
ρx +

pθ

ρ
θx +

k

ρ
u = 0,

θt + uθx +
p

ρεθ
ux +

qx

ρεθ
= 0,

qt + uqx +
1
τ

q +
κ

τ
θx = 0.

(8.94)

To make the exposition as clear as possible we restrict attention to a wave
moving into an equilibrium region for which u+ = 0, ρ+ ≡ constant, θ+ ≡
constant. The equation for q becomes qt + q/τ = 0 which may be solved to
see that q(t) = e−t/τq(0). In what follows we assume q+ ≡ 0.

To determine the amplitudes we differentiate each of (8.94) with respect
to x and take the jumps, recollecting the conditions ahead of the wave to
find

[ρtx] + 2[ux][ρx] + ρ[uxx] = 0,

[utx] + [ux]2 + Pρ[ρx]2 + (Qρ + Pθ)[θx][ρx] + P [ρxx]

+ Qθ[θx]2 + Q[θxx] +
k

ρ
[ux] = 0,

εθ[ρx][θt] + ρεθθ[θx][θt] + ρεθ[θtx] + ρεθ[ux][θx]
+ pρ[ρx][ux] + pθ[θx][ux] + p[uxx] + [qxx] = 0,

[qtx] + [ux][qx] +
1
τ

[qx] +
κ

τ
[θxx] = 0,

(8.95)

where we have employed the product relation (7.13) and have defined P
and Q by

P =
pρ

ρ
, Q =

pθ

ρ
.

The amplitudes in this section are defined by

B = [ρx], A = [ux], C = [θx], D = [qx]

and then we use relations like

δB

δt
= [ρtx] + V [ρxx]
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obtained from the Hadamard relation (7.8) together with equivalent
expressions involving A,C,D. In this manner one derives from (8.95),

δB

δt
− V [ρxx] + ρ[uxx] + 2AB = 0, (8.96)

δA

δt
− V [uxx] + A2 + PρB

2 + (Qρ + Pθ)BC

+ P [ρxx] + QθC
2 + Q[θxx] +

k

ρ
A = 0, (8.97)

− V εθBC − V ρεθθC
2 + ρεθ

(δC

δt
− V [θxx]

)

+ ρεθAC + pρAB + pθAC + p[uxx] + [qxx] = 0, (8.98)
δD

δt
− V [qxx] + AD +

1
τ

D +
κ

τ
[θxx] = 0. (8.99)

We need to eliminate the second derivative terms like [ρxx] and also elim-
inate three of A,B,C or D. To do this we note that the amplitudes are
related (by taking the jumps of (8.94)) as follows,

A =
V

ρ
B, C =

(
V 2 − pρ

pθ

)
B , D =

κ

τpθV
(V 2 − pρ)B. (8.100)

We form the combination (8.96)+λ1(8.97)+λ2(8.98)+λ3(8.99) and select

λ1 =
V

P
, λ2 =

V 2 − ρP

pP
, λ3 =

V 2 − ρP

V Pp
.

After using the wavespeed equation (8.92) the second derivative terms
disappear and one derives the amplitude equation

δB

δt
+ 2AB +

V

P

[
δA

δt
+ A2 + PρB

2 + (Qρ + Pθ)BC + QθC
2 +

k

ρ
A

]

+
(

V 2 − ρP

pP

){
−V εθBC − ρV εθθC

2 + ρεθ
δC

δt
+ ρεθAC

+ pρAB + pθAC

}

+
(

V 2 − ρP

pPV

){
δD

δt
+ AD +

1
τ

D

}
= 0.

(8.101)



358 8. Poroacoustic Waves

Upon using the relations (8.100) the above equation may be written in the
form

δB

δt

{
1 +

V 2

pρ
+ (V 2 − pρ)2

1
pPpθ

(
ρεθ +

κ

τV 2

)}

+ B
1
P

{
V 2k

ρ2
+

(V 2 − pρ)2κ
pV 2τ2pθ

}

+ B2

{
2V

ρ
+

V 3

ρpρ
+

V Pρ

P

+ (V 2 − pρ)
V

P

( (Qρ + Pθ)
pθ

+
pρ

ρp

)

+ (V 2 − pρ)2
V

Ppθ

(Q

pθ
+

pθ

ρp
+

κ

ρpV 2τ

)

− (V 2 − pρ)3
ρV εθθ

pPp2
θ

}
= 0.

(8.102)

Since the coefficients of the terms δB/δt, B and B2 are constant the solution
to this equation is found exactly as in equation (8.31), and derivations
regarding amplitude blow-up may be made as in that section.

It is interesting to analyse equation (8.102) in the limit κ → 0 and the
isothermal case for which V 2 → pρ. Then equation (8.102) reduces to

δB

δt
+

k

2ρ
B + B2

{
3V

2ρ
+

V

2
(log P )ρ

}
= 0.

This is in complete agremment with equation (8.26) with the coefficients
given by (8.30), since in terms of A = V B/ρ, this becomes

δA

δt
+

k

2ρ
A + A2

{
3
2

+
ρ

2
(log P )ρ

}
= 0.

8.3.5 Dual phase lag theory

There has been much recent interest in developing theories of heat propa-
gation which extend the phase lag heat flux law of (8.69) and, in particular,
which consider extensions of the Taylor series for the heat flux in equation
(8.70). Much of this stems from the work of (Tzou, 1995b; Tzou, 1995a),
and we cite in particular, (Han et al., 2006), (Jou and Criado-Sancho,
1998), (Quintanilla, 2002b), (Quintanilla and Racke, 2006; Quintanilla and
Racke, 2007), (Serdyukov, 2001), (Serdyukov et al., 2003) and the refer-
ences therein. The key would appear to be the assertion that (8.69) be
replaced by an equation of form

qi(x, t + τq) = −κθ,i(x, t + τ), (8.103)

where τq and τ will have (in general) different values. Various trunca-
tions of the Taylor series expansion are considered. For example, (8.103)
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is replaced by

qi(x, t) + τqqi,t(x, t) = −κθ,i(x, t) − κτθ,it(x, t), (8.104)

(Han et al., 2006), (Jou and Criado-Sancho, 1998), (Serdyukov, 2001),
(Serdyukov et al., 2003). While the above representation is attributed to
various writers by the above cited papers we should point out that this
relation is, in fact, effectively given by (Cattaneo, 1948), see also (Fichera,
1992), even if a sign is different. Combined with the energy equation for a
rigid heat conductor,

ρεθθt = −qi,i, (8.105)

equation (8.104) yields (for ρεθ = c, constant)

cθt + cτqθtt = κΔθ + κτΔθt . (8.106)

(Quintanilla, 2002b) and (Serdyukov et al., 2003) consider adding a further
term in the expansion of qi(t + τq) to the left of (8.104) so that

qi(x, t) + τqqi,t(x, t) +
τ2
q

2
qi,tt(x, t) = −κθ,i(x, t) − κτθ,it(x, t). (8.107)

Together with (8.105) this leads to the hyperbolic equation

cτ2
q

2
θttt + cτqθtt + cθt = κΔθ + κτΔθt . (8.108)

A very interesting derivation of equation (8.108) for gas flow through a
package of heat conducting plates is given by (Serdyukov et al., 2003).
These writers use a Cattaneo theory for the plates and a Newton cooling -
like law for the gas, of form

ρc(τθtt + θt) = κΔθ − β1(θ − θg),
ρgcgθ

g
t = β2(θ − θg),

where θ and θg are the temperatures of the plates and gas, respectively.
(Quintanilla and Racke, 2006; Quintanilla and Racke, 2007) consider a

further extension to (8.107) of form

qi(x, t) + τqqi,t(x, t) +
τ2
q

2
qi,tt(x, t)

= −κθ,i(x, t) − κτθ,it(x, t) − κτ2

2
θ,itt(x, t).

(8.109)

Due to the intense interest in these dual phase lag theories we wish to
briefly consider a possible extension involving the model for poroacoustic
wave propagation. In particular, we consider a relation like (8.103) but with
κ dependent on temperature, θ, as it invariably is, so we consider

qi(x, t + τq) = −κ
(
θ(x, t + τ)

)
θ,i(x, t + τ).
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We consider the equivalent of the expansion (8.103) and so write

qi + τq q̇i +
τ2
q

2
q̈i = −

(
κ(θ) + τ θ̇κ′(θ)

)(
θ,i + τ θ̇,i

)
. (8.110)

One could argue to not consider the term τ2θ̇κ′(θ)θ̇,i since it is O(τ2).
However, in a rigid heat conductor theory the inclusion of this term is
necessary if one wishes to derive a Bernoulli equation containing a quadratic
term and thus a theory capable of finite time amplitude blow-up.

Thus, a potential theory might involve equation (8.67) with p = p(ρ, θ),
ε = ε(θ), and equation (8.110). We would, in this case, define an acceleration
wave to be a singular surface, S, across which ρ, vi are continuous, θ, qi

and their first derivatives are continuous, but first derivatives (and higher)
of ρ, vi and second derivatives (and higher) of θ, qi suffer at most finite
discontinuities.

For an acceleration wave in one-dimension we find

(u − V )[ρx] + ρ[ux] = 0,

(u − V )[ux] +
pρ

ρ
[ρx] = 0,

εθ[θ̇x] =
(
−pρ

ρ
+

p

ρ2

)
[ρxux] − pθθ

+
x

ρ
[ux] − [qxx]

ρ
+

qx

ρ2
[ρx] ,

τ2
q

2
[q̈] = −(κ + τ θ̇+κ′)τ [θ̇x] .

(8.111)

We see that equations (8.111)1,2 are disconnected and yield a wavespeeed
on their own. The other two equations then yield a wavespeed for an uncon-
nected wave. Thus, care must be taken when attempting to develop a
Tzou-like theory for poroacoustic - thermal wave propagation.

We have not considered thermodynamics in our model and a more sophis-
ticated approach must due so (cf. the Cattaneo model and the work of
(Morro and Ruggeri, 1988), (Coleman et al., 1982)). A more complete
model may need the dependence on quantities like qi by terms like the
pressure, cf. section 8.3.2.

8.4 Temperature rate effects

8.4.1 Green-Laws theory

In this section we describe work of (Ciarletta and Straughan, 2007a) who
generalize the Jordan-Darcy model of sections 8.1 and 8.2 to include the
possibility of propagation of temperature waves. To do this they employ
the thermodynamics of (Green and Laws, 1972) which uses a generalized
temperature φ(θ, θ̇). As noted in section 7.3.1 the current literature recog-
nizes the role that thermal waves play in wave propagation, particularly in
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porous media. We repeat that (Johnson et al., 1994) employ second sound
to calculate physical properties of porous media, (Meyer, 2006) discusses
how temperature waves may be employed to dry porous media, and thermal
waves may be important in biological tissues, (Mitra et al., 1995).

The basic theory for (Green and Laws, 1972) thermodynamics used to
develop a perfect fluid is given in (Lindsay and Straughan, 1978) and
(Ciarletta and Straughan, 2007a) add a Darcy term into the equations
and study acceleration wave propagation in one space dimension.

With a superposed dot denoting the material time derivative the equa-
tions of mass continuity, conservation of momentum, and conservation
of energy, are presented by (Ciarletta and Straughan, 2007a). These are
continuity of mass

ρ̇ + ρ
∂vi

∂xi
= 0, (8.112)

conservation of momentum,

ρv̇i =
∂tki

∂xk
− kvi, (8.113)

and conservation of energy,

ρε̇ = tkidik − ∂qi

∂xi
, (8.114)

if one chooses zero body force and heat supply function. Standard notation
is employed so ρ, vi, tki, ε, qi, dik and k are density, velocity, stress ten-
sor, internal energy, heat flux, symmetric part of the velocity gradient,
dik = (vi,k +vk,i)/2, and the (constant) Darcy coefficient, respectively. The
constitutive theory of (Ciarletta and Straughan, 2007a) is taken to be the
same as that of (Lindsay and Straughan, 1978). The Helmholtz free energy
is ψ = ε − ηφ, and then ε, ψ, tki, qi and the generalized temperature φ are
functions of the constitutive variables ρ, θ, θ̇, and λ where λ = θ,iθ,i/2. One
may employ the entropy inequality of (Green and Laws, 1972) to derive
the constitutive restrictions presented by (Lindsay and Straughan, 1978),
and these are

φ = φ(θ, θ̇), ψ = ψ(ρ, θ, θ̇, λ), (8.115)

η = −∂ψ

∂θ̇

/
∂φ

∂θ̇
= η(ρ, θ, θ̇, λ), (8.116)

qi = −Kθ,i, (8.117)

K = ρφ
∂ψ

∂λ

/
∂φ

∂θ̇
= K(ρ, θ, θ̇, λ), (8.118)

tik = −pδik − ρ
∂ψ

∂λ
θ,iθ,k, (8.119)

p = ρ2 ∂ψ

∂ρ
= p(ρ, θ, θ̇, λ). (8.120)
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The coefficient K is the thermal diffusivity and p is the pressure.
The residual entropy inequality which remains from the (Green and

Laws, 1972) one is given by (Lindsay and Straughan, 1978) as

−
(

∂ψ

∂θ
+ η

∂φ

∂θ

)
θ̇ + 2K

∂φ

∂θ

λ

φ
≥ 0. (8.121)

Since this must hold for all motions one then finds in equilibrium
(

∂ψ

∂θ
+ η

∂φ

∂θ

)∣∣∣∣
E

= 0,

(
∂η

∂θ̇

∂φ

∂θ̇

)∣∣∣∣
E

−
(

∂η

∂θ̇

)∣∣∣∣
E

≥ 0, K|E ≥ 0, (8.122)

where f |E = f(ρ, θ, θ̇, λ)|E denotes the value of f in thermal equilibrium,
i.e. where θ̇ = λ = 0, and cf. (Green and Laws, 1972), ∂φ/∂θ|E = 1.

Upon employing (8.115) – (8.120), the energy balance law (8.114) may
be written as

Kθ,ii +
∂K

∂ρ
ρ,iθ,i + 2λ

∂K

∂θ
+

∂K

∂θ̇
λ̇ +

∂K

∂λ
λ,iθ,i

− ρ

(
∂ψ

∂θ
+ η

∂φ

∂θ

)
θ̇ − ρφ

∂η

∂ρ
ρ̇ − ρφ

∂η

∂θ
θ̇ − ρφ

∂η

∂θ̇
θ̈

− ρ

(
∂ψ

∂λ
+ φ

∂η

∂λ

)
λ̇ + ρφ

∂

∂θ̇

(
∂ψ

∂λ

/
∂φ

∂θ̇

)
θ,iθ,jdij = 0.

(8.123)

(Ciarletta and Straughan, 2007a) assume ψ and φ are such that ∂η/∂θ̇ > 0,
as suggested by (8.122).

8.4.2 Wavespeeds

(Ciarletta and Straughan, 2007a) developed the wavespeed and amplitude
equations in a one dimensional setting, without presenting details. We now
derive the wavespeeds in three dimensions.

Our basic governing equations are now (8.112), (8.113) and (8.123). For
these equations we define an acceleration wave to be a singular surface S
across which the velocity vi, the density ρ, and the temperature gradient
θ,i are continuous, but their first and higher derivatives, in general, possess
finite discontinuities.

We follow (Ciarletta and Straughan, 2007a) and restrict attention to a
wave moving into a region at rest and at constant temperature, so that
v+

i = 0, ρ+ = constant, θ+ = constant. It is believed no essential loss of
physics occurs via this procedure, unless perhaps, one is analysing curved
waves. However, the aim of this book is to describe the implications for
wave motion in porous media. Unlike (Ciarletta and Straughan, 2007a) we
do, however, develop the wavespeeds from a three-dimensional analysis.

We expand equations (8.112) and (8.113) and take the jumps of these.
We also take the jump of (8.123). Recalling that v+

i = 0 and ρ+ and θ+
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are constant one obtains

[ρt] + ρ[vi,i] = 0, (8.124)

ρ[vi,t] = −∂p

∂ρ
[ρ,i] −

∂p

∂θ̇
[θ,ti] , (8.125)

K[θ,ii] − ρφηρ[ρt] − ρφηθ̇[θtt] = 0. (8.126)

From use of the Hadamard relation (7.27) we know that

[ρt] = −V [niρ,i], [vi,t] = −V [njvi,j ],

[θtt] = −V [niθ,ti] = V 2[ninjθ,ij ],
(8.127)

and by use of the compatibility conditions (176.2), (176.10) of (Truesdell
and Toupin, 1960) we have

[θ,ii] = [ninjθ,ij ]. (8.128)

Define the amplitudes Ai, B and C by

Ai = [njvi,j ], B = [niρ,i], C = [ninjθ,ij ]. (8.129)

Upon utilizing (8.127) and (8.128) in (8.124) – (8.126) one finds

− V B + ρniAi = 0,

− ρV Ai = −pρniB + pθ̇V niC,

KC + ρφηρV B − ρφηθ̇V
2C = 0.

(8.130)

We may always write the vector Ai as a sum of components in the normal
and tangential directions to the wave, say Ai = Ani + A⊥si, si being a
tangential vector. The right hand side of (8.130)2 involves only ni and so
we see that Ai = Ani, where A = [ninjvi,j ]. Thus, (8.130) is a linear system
of equations for A,B and C. Since we require these to be non-zero we find
(8.130) leads to the wavespeed equation

(V 2 − pρ)(ρφηθ̇V
2 − K) + ρφηρpθ̇V

2 = 0. (8.131)

We divide this equation by ρφηθ̇ and define the variables UT , UM and κ by

U2
M = pρ = (ρ2ψρ)ρ , U2

T =
K

ρφηθ̇

=
ψλ

φθ̇ηθ̇

,

κ =
ηρpθ̇

ηθ̇

=
ρ2φθ̇ψ

2
ρθ̇

(φθ̇ψθ̇θ̇ − ψθ̇φθ̇θ̇)
.

(8.132)

Then equation (8.131) may be conveniently written as

(V 2 − U2
M )(V 2 − U2

T ) + κV 2 = 0. (8.133)

The quantities UM and UT are the speeds of a mechanical wave and a
temperature wave, respectively, in the absence of either effect, cf. (Lindsay
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and Straughan, 1978). We might expect κ < 0 and then (8.132) gives rise
to two waves (both left and right moving) with speeds U2

1 , U2
2 , where

U2
2 < min{U2

T , U2
M} < max{U2

T , U2
M} < U2

1 .

8.4.3 Amplitude behaviour

The final amplitude equation is presented in (Ciarletta and Straughan,
2007a). We now briefly derive this, although we restrict attention to a
wave propagating in one-dimension and into an equilibrium region for which
v = (u, 0, 0), u+ = 0, θ+ = constant, and ρ+ = constant.

For this case, the governing equations (8.112), (8.113), (8.123) become

ρt + ρux + uρx = 0, (8.134)

ρ(ut + uux) = −pρρx − pθθx − pθ̇ θ̇x − pλλx

− (ρψλθ2
x)x − ku. (8.135)

Kθxx + Kρρxθx + 2λKθ + Kθ̇λ̇ + Kλλxθx

− ρ(ψθ + ηφθ)θ̇ − ρφηρρ̇ − ρφηθ(θt + uθx)

− ρφηθ̇(θtt + 2uθtx + utθx + uuxθx + u2θxx)

− ρ(ψλ + φηλ)(λt + uλx) + 2ρφ
∂

∂θ̇

(
ψλ

φθ̇

)
uxλ = 0. (8.136)

In terms of the one-dimensional amplitudes A = [ux], B = [ρx] and C =
[θxx] equations (8.134) – (8.136) yield

ρV A − pρB + pθ̇V C = 0,

ρA − V B = 0,

(K − ρφηθ̇V
2)C + ρφηρV B = 0,

(8.137)

and a non-zero solution of this system means we need
∣∣∣∣∣∣

ρV −pρ V pθ̇

ρ −V 0
0 ρφηρV K − ρφV 2ηθ̇

∣∣∣∣∣∣
= 0

which leads to the wavespeed equation (8.133) in the one-dimensional case.
We also observe that (8.137) lead to direct relations between A and B and
A and C as follows

B =
ρ

V
A, C =

ρ

pθ̇

(
pρ

V 2
− 1
)

A. (8.138)

These equations allow us to eliminate B and C and derive one equation
for A. Once we solve for A(t), the functions B(t) and C(t) are also known
from (8.138).

To derive the amplitude equation we differentiate each of (8.134) –
(8.136) in turn with respect to x and take the jump of each equation.
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Using the Hadamard relation and the fact that the region ahead of the
wave is in equilibrium one may derive the following equations. From the
continuity of mass (8.134),

δB

δt
− V [ρxx] + ρ[uxx] + 2AB = 0. (8.139)

From the momentum equation (8.113) there follows,

− V BA + ρ[utx] + ρA2 = −pρ[ρxx] − pρρB
2 + 3pρθ̇V BC − pθC

− pθ̇([θtxx] + 2AC) − pθ̇θ̇V
2C2 − pλC2 − kA − 2ρψλC2,

while the balance of energy equation (8.136) leads to

K[θxxx] + 2KρBC − 2Kθ̇V C2 + φηρV B2 − ρ(φθ̇ηρ + φηρθ̇)V
2BC

+ ρφηρρV B2 − ρφηρ[ρtx] − ρφηρAB + ρφηθV C − ρηθ̇V
2BC

+ ρ(φθ̇ηθ̇ + φηθ̇θ̇)V
3C2 − ρV 2φηθ̇ρBC − ρφηθ̇[θttx]

+ 3ρφηθ̇V AC + ρ(ψλ + φηλ)V C2 = 0.

The next stage involves utilizing (8.138) to eliminate B and C in
favour of A. However, one must also employ the wavespeed equation
(8.133) to remove the higher derivative terms like [uxx], [ρxx] and [θxxx].
To do this we follow a procedure like that of section 8.2.3 where
V (8.58)+μ1(8.62)+μ2(8.63) was formed. We must also use the Hadamard
relation to derive formulae like

[θxtt] = −2V
δC

δt
+ V 2[θxxx].

After some calculation one may arrive at an amplitude equation of form
(8.64) but now the constants a and b are different and given below. In fact,

b =
k

2ρ

{
pρ

V 2
+

2φηθ̇(pρ − V 2)
(K − ρφηθ̇V

2)

}−1

+
(pρ − V 2){V 2ρφηθ + (K − ρφηθ̇V

2)pθ/V 2pθ̇}
2{ρφηθ̇(pρ − V 2) + (K − ρφηθ̇V

2)pρ/V 2}

(8.140)
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and

a =
1

2{ρφηθ̇(pρ − V 2) + (pρ/V 2)(K − ρφηθ̇V
2)}×

{
pθ̇φ

∂

∂ρ

(
ρ2 ∂η

∂ρ

)
+

(K − ρφηθ̇V
2)

V 2

(
2
∂p

∂ρ
+ ρ

∂2p

∂ρ2

)

+
( pρ

V 2
− 1
){(

2 −
3ρpθ̇ρ

pθ̇

)
(K − ρφηθ̇V

2)

+ 2ρ
∂K

∂ρ
+ V 2{2ρφηθ̇ − ρ2ηρ(φθ̇ + 2θ̇φ)}

}

+
( pρ

V 2
− 1
)2( (K − ρφηθ̇V

2)
p2

θ̇

(ρV 2pθ̇θ̇ + ρpλ + 2ρ2ψλ)

+
ρ2V 2

pθ̇

{V 2(φθ̇ηθ̇ + φηθ̇θ̇ − 2Kθ̇) + ψλ + φηλ}
)}

.

(8.141)

Again, the solution for A is found from (8.31).
(Ciarletta and Straughan, 2007a) observe that the amplitude equation

derived above, which has the same form as (8.64), is completely consis-
tent with the isothermal theory of sections 8.1.2 – 8.1.4. For, if we omit θ
and λ from coefficients (8.140) and (8.141) we obtain that V 2 → ∂p/∂ρ,
b → K/2ρ, and a → 3/2 + ρ2(∂/∂ρ)(ρ−1∂p/∂ρ)/2∂p/∂ρ. (Ciarletta and
Straughan, 2007a) also note that the solution to the amplitude equation
of the current section displays the damping effect of the thermodynamic
variables. Because, even when k → 0 and the porous medium disappears,
there is attenuation of the wave amplitude due to what remains in the b
term. Thus, one may then assess the combined effect of the porous medium,
via the k term, and the (Green and Laws, 1972) theory, via the presence of
the new coefficients in a and b. Together with suitable experimental results,
this should lead to useful information concerning the forms for φ(θ, θ̇) and
ψ(ρ, θ, θ̇, λ).

8.5 Temperature displacement effects

8.5.1 Green-Naghdi thermodynamics

In this section we develop another theory for transmission of acoustic waves
in a porous medium, allowing for the propagation of a temperature wave.
To do this we combine the Jordan method of introducing a Darcy term into
a perfect fluid as in section 8.1.2 together with a thermodynamic approach
to presenting a dissipationless fluid via (Green and Naghdi, 1991) thermo-
dynamics. The theory of (Green and Naghdi, 1991) has been applied to
a fluid by (Quintanilla and Straughan, 2008), although these writers did
not consider a porous medium. Another study of acceleration waves in a
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different class of Green and Naghdi fluids is due to (Jordan and Straughan,
2006).

The starting point is to consider the theory of (Quintanilla and
Straughan, 2008). We thus introduce the thermal displacement as in section
7.4.1, so α =

∫ t

t0
θ(X, s)ds is the thermal displacement variable of (Green

and Naghdi, 1991), (Green and Naghdi, 1996), where θ is the absolute tem-
perature. The variable α is defined as a function of X, but in fluid dynamics
it is more natural to use the spatial coordinate x and throughout this sec-
tion we do this. (Green and Naghdi, 1996) do present a fluid theory, but
that of (Quintanilla and Straughan, 2008) is more general and we present
an approach analogous to theirs.

The governing equations are the energy balance law, the entropy balance
equation, the equation of balance of mass, and the momentum equation.
The reduced energy balance equation is

TijLij − piγi − ρ(ψ̇ + ηθ̇) − ρθξ = 0, (8.142)

where Tij , pi, ρ, ψ, η and ξ are, respectively, the stress tensor, entropy flux
vector, density, Helmholtz free energy function, entropy, and the internal
rate of production of entropy, defined in the current configuration. Also,
Lij = ∂vi/∂xj , where vi is the velocity field, γi = (α̇),i, and for later
use we define the symmetric and skew-symmetric parts of Lij as dij =
(Lij + Lji)/2, ωij = (Lij − Lji)/2. The (Green and Naghdi, 1991; Green
and Naghdi, 1996) entropy balance law is

ρη̇ = ρs + ρξ − ∂pi

∂xi
. (8.143)

The function s is the external rate of supply of entropy per unit mass. The
balance of mass equation is

ρ̇ + ρ
∂vi

∂xi
= 0, (8.144)

while that for balance of linear momentum is

ρv̇i =
∂Tji

∂xj
+ ρbi, (8.145)

with bi being an externally supplied body force. In fact, in this section we
modify equation (8.145) since we wish to include a Darcy term to reflect the
fact that the fluid (gas) is moving in a porous medium. Thus, we present
instead of (8.145),

ρv̇i =
∂Tji

∂xj
− kvi, (8.146)

with k being a Darcy coefficient.
The presentation of (Quintanilla and Straughan, 2008) is different from

that of (Green and Naghdi, 1996) who assume ψ, η, Tij , pi and ξ depend on
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the variables ρ, Lij , θ, α,i and γi. However, they also assume pi is linear in
γi, Tij is quadratic in dij , ξ is quadratic in dij and γi, and the Helmholtz
free energy ψ has the form

ψ =
1
2

mδiδi + f(ρ, θ) (8.147)

where δi = α,i and m is a constant. In this manner (Green and Naghdi,
1996) analyse a restricted class of dissipationless flows by assuming the
Reynolds, Peclet and m numbers are suitably large. (Quintanilla and
Straughan, 2008) is more general in that they define a dissipationless fluid
to be one which omits γi = θ,i = (α̇),i as a variable from the constitu-
tive theory. This is a logical way to proceed in the light of the manner in
which (Green and Naghdi, 1993) develop their theory of thermoelasticity
without energy dissipation, cf. the analogous voids theory in section 7.4.
The approach of (Quintanilla and Straughan, 2008) has a richer structure
which allows for a fully nonlinear constitutive theory in which variables like
the entropy flux vector are defined naturally in terms of the Helmholtz free
energy rather than having a preimposed form.

The constitutive theory supposes that

Tij , ψ, η, pi and ξ (8.148)

depend on the independent variables

ρ, Lij , θ, α,i . (8.149)

The velocity gradient satisfies Lij = dij + ωij , and so the energy balance
equation (8.142) is written as

[
Tij + δijρ

2ψρ +
ρ

2
(ψα,i

α,j + ψα,j
α,i)
]
dij + Tijωij

− γi(pi + ρψα,i
) − ρψLij

.

Lij −θ̇ρ(ψθ + η)

− ρθξ +
ρ

2
ωij(ψα,j

α,i − ψα,i
α,j) = 0.

(8.150)

Since Tij is symmetric, Tijωij = 0. Now,
.

Lij and γi = (α̇),i appear linearly
in (8.150) and thus we conclude ∂ψ/∂Lij = 0 and pi = −ρ ∂ψ/∂α,i. This
is very different from (Green and Naghdi, 1996) who assume a form for pi.
In the present case, the form of the entropy flux vector follows once the
Helmholtz free energy function is chosen. Further, θ̇ = α̈ appears linearly
and then it follows from (8.150) that η = −∂ψ/∂θ. Therefore,

pi = − ∂ψ

∂α,i
, η = −∂ψ

∂θ
(8.151)

and the velocity gradient does not appear in ψ so

ψ = ψ(ρ, θ, α,i). (8.152)
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The general form for the function ξ from (8.149) requires that ξ depends on
ρ, θ, α,i, dij , ωij . However, to produce a dissipationless theory which may
be compared to the dissipationless theory of thermoelasticity of (Green
and Naghdi, 1993), we discard the dependence on the velocity gradient
terms (which represent viscous dissipation), and so drop the dij and ωij

dependence to have ξ = ξ(ρ, θ, α,i). Given this form for ξ and relations
(8.151) and (8.152), what remains of equation (8.150) is

[
Tij + δijρ

2ψρ +
ρ

2
(ψα,i

α,j + ψα,j
α,i)
]
dij

− ρθξ +
ρ

2
ωij(ψα,j

α,i − ψα,i
α,j) = 0.

(8.153)

Next ωij and dij appear linearly in (8.153) and this leads to

ψα,i
α,j = ψα,j

α,i , (8.154)

and then

Tij = −pδij −
ρ

2
(ψα,i

α,j + ψα,j
α,i) , (8.155)

where p is a pressure given by p = ρ2∂ψ/∂ρ. Due to the forms in (8.154)
and (8.155), equation (8.153) then implies ξ = 0, a relation which agrees
with what is found by (Green and Naghdi, 1996).

The basic equations of balance of mass, balance of momentum, and bal-
ances of energy and entropy may then be written as (for zero body force
and heat supply),

ρt + ρ,ivi + ρvi,i = 0,

ρ(vi,t + vjvi,j) = −p,i −
1
2
[
ρ(ψα,j

α,i + ψα,i
α,j)
]
,j
− kvi ,

− ρ
{
(ψθ),t + vi(ψθ),i

}
= (ρψα,i

),i .

(8.156)

These are the central equations of this section with which we analyse
nonlinear wave motion.

8.5.2 Acceleration waves

In this section an acceleration wave is a two-dimensional surface S in R
3

such that vi, ρ, α, α̇, and α,i are continuous throughout R
3, but their deriva-

tives v̇i, vi,j , ρ̇, ρ,i, α̈, α̇,i and α,ij , along with higher derivatives, suffer a
finite discontinuity (jump) across S. As usual the jump of a function f is
denoted by [f ] = f− − f+, with f+ or f− referring to the limit of f as the
wave is approached from ahead of the wave, or from behind, respectively.

Equations (8.156) are expanded recalling ψ = ψ(ρ, θ, α,i) and the jumps
are taken across S. Then we obtain from (8.156)1,

[ρt] + vi[ρ,i] + ρ[vi,i] = 0, (8.157)
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from the momentum equation (8.156)2

ρ[vi,t]+ρvj [vi,j ] = −pρ[ρ,i] − pθ[θ,i] − pα,j
[α,ji]

−1
2
[ρ,j ](α,jψα,i

+ α,iψα,j
) − 1

2
ρψα,i

[Δα] − 1
2
ρψα,j

[α,ij ]

−1
2
ρα,j

(
ψα,iρ[ρ,j ] + ψα,iθ[θ,j ] + ψα,iα,k

[α,kj ]
)

−1
2
ρα,i

(
ψα,jρ[ρ,j ] + ψα,jθ[θ,j ] + ψα,jα,k

[α,kj ]
)
,

(8.158)

and from the energy equation (8.156)3,

−ρψθθ[θ̇] − ρψθρ[ρ̇] − ρψθα,i
[

.

(α,i)]

= [ρ,i]ψα,i
+ ρ
(
ψρα,i

[ρ,i] + ψθα,i
[θ,i] + ψα,iα,j

[α,ji]
)
.

(8.159)

It is important to note that since vi is continuous the term [vi] = 0 in the
jump equation arising from (8.156)2, and so the Darcy coefficient effect is
not present in (8.158), and will not feature directly in the wavespeed.

One may study the motion of an acceleration wave advancing into a
region of known properties. However, we restrict attention to the case where
the wave is moving into an equilibrium region for which v+

i ≡ 0, ρ+ ≡
constant, θ+ ≡ constant, and hence α+

,i ≡ 0, and the body possesses a
centre of symmetry.

For a three-dimensional acceleration wave we define the amplitudes Ai,
B and C by

Ai = [vi
,jn

j ], B = [niρ,i], C = [α,ijn
inj ], (8.160)

where ni is the unit normal to S in the + direction. Using the compatibility
relations (176.2) and (176.10) of (Truesdell and Toupin, 1960) one may
write

Ainj = [vi
,j ], Bni = [ρ,i], Cninj = [α,ij ]. (8.161)

Upon using the fact that the body has a centre of symmetry, and the wave
is advancing into an equilibrium region, equations (8.157) – (8.159) reduce
to

− V B + ρAini = 0, (8.162)
− ρV Ai = −pρBni + pθV niC, (8.163)

− ρψθθV
2C + ρψρθV B = ρψα,iα,j

ninjC, (8.164)

where V is the wavespeed of S.
The momentum jump equation (8.163) implies that Ai = niA, where

A = [vj
,in

inj ], and so the wave must be longitudinal. Thus, (8.162) – (8.164)
are a system of equations in A,B,C which may be written as

⎛

⎝
ρ −V 0

ρV −pρ pθV
0 −ψρθV ψθθV

2 + ψα,iα,j
ninj

⎞

⎠

⎛

⎝
A
B
C

⎞

⎠ =

⎛

⎝
0
0
0

⎞

⎠ .
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We require a non-zero solution (A,B,C)T = 0 to this system and so
∣∣∣∣∣∣

ρ −V 0
ρV −pρ pθV
0 −ψρθV ψθθV

2 + ψα,iα,j
ninj

∣∣∣∣∣∣
= 0 .

This leads to the wavespeed equation

(V 2 − U2
M )(V 2 − U2

T ) + κV 2 = 0, (8.165)

where

U2
M = pρ, U2

T = −
ψα,iα,j

ninj

ψθθ
, κ =

pθψρθ

ψθθ
=

ρ2(ψρθ)2

ψθθ
. (8.166)

The quantity UM = √
pρ is the wavespeed of an acoustic wave in the clas-

sical theory, cf. section 8.1.3, and UT is the wavespeeed of a thermal wave
in a (Green and Naghdi, 1991) rigid heat conductor, cf. (Jaisaardsuetrong
and Straughan, 2007).

8.5.3 Wave amplitudes

We now present results for a one-dimensional wave moving along the
x−axis. Hence, let v = (u(x, t), 0, 0) with ρ(x, t), α(x, t). The amplitudes
become

A(t) = [ux] = u−
x − u+

x , B = [ρx], C = [αxx]. (8.167)

We must consider the one-dimensional version of equations (8.156) and
these are

ρt + uρx + ρux = 0, (8.168)

ut + uux = −px

ρ
− ρx

ρ
αxψαx

− (αxψαx
)x − k

u

ρ
, (8.169)

− ρ
{
(ψθ)t + u(ψθ)x

}
= (ρψαx

)x . (8.170)

The idea is to write p = ρ2ψρ and expand these equations recalling
ψ = ψ(ρ, α̇, αx), then differentiate with respect to x and take the jumps of
the results. For example, with P = pρ/ρ, (8.169) is

ut + uux = − Pρx − pθ

ρ
θx − pαx

ρ
αxx − ρx

ρ
αxψαx

− ψαx
αxx

− αx(ψαxρρx + ψαxθθx + ψαxαx
αxx) − k

ρ
u.

One differentiates this equation with respect to x and takes the jump recall-
ing the body has a centre of symmetry and the wave is moving into a region
of equilibrium.

After some calculation, from (8.168) – (8.169) in turn one may show that

[ρtx] + 2[uxρx] + ρ[uxx] = 0, (8.171)
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and

[utx] + [ux]2 = −P [ρxx] − Pρ[ρ2
x] − Pθ[ρxα̇x] − pθ

ρ
[θxx]

− pθρ

ρ
[ρxθx] − pθθ

ρ
[θ2

x] +
pθ

ρ2
[θxρx]

− pαxαx

ρ
[α2

xx] − 2ψαxαx
[α2

xx] − k

ρ
[ux],

(8.172)

while from (8.170) we derive

− ψθθρ[ρxαtt] − ψθθθ[θxαtt] − ψθθ([αttx] + [utαxx] + 2[uxαxt])
− ψθρ([ρtx] + [uxρx]) − ψρθρ[ρxρt] − ψρθθ[θxρt] − ψθαxαx

[αxtαxx]

=
ψαxαx

ρ
[αxxρx] + ψραxαx

[αxρx] + ψθαxαx
[αxxθx]

+ ααxαx
[αxxx] + ψθαxαx

[θxαxx] + ψραxαx
[ρxαxx]. (8.173)

We now use the Hadamard relation (7.8), the product relation (7.13) and
the fact that

B =
ρ

V
A, C =

ρ(pρ − V 2)
pθV 2

A.

After some calculation, one may obtain from (8.171) – (8.173), the
equations

ρ

V

δA

δt
+

2ρ

V
A2 + ρ[uxx] − V [ρxx] = 0, (8.174)

pρ

V 2

δA

δt
− V [uxx] + P [ρxx] − pθV

ρ
[αxxx] = −k

ρ
A

− A2

{
1 +

Pρρ
2

V 2
+

(V 2 − U2
M )

V 2

(
1 +

2ρψρρθ

ψρθ

)

+
(V 2 − U2

M )2

V 4pθψρθ
(ρV 2ψρθθ + ρψραxαx

+ 2ψαxαx
)
}

,

(8.175)

and

2V ψθθ
δC

δt
− ψθρ

δB

δt
− ψθθV

2[αxxx] + ψρθV [ρxx]

− ψαxαx
[αxxx] =

(
2ψθθρV

2 +
1
ρ
ψαxαx

+ 2ψραxαx

)
BC

− (ψθθθV
3 + 3V ψθαxαx

)C2 − 3ψθθV AC + ψρθAB − V ψρρθB
2.

(8.176)

We now wish to remove the terms in [uxx], [ρxx] and [αxxx]. To do this
we form (8.174)+μ1×(8.175)+μ2×(8.176). Upon inspection of the terms
involving [uxx], [ρxx] and [αxxx] we see that the choices

μ1 =
ρ

V
, μ2 =

(V 2 − pρ)
V 2ψρθ
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remove the terms in [uxx] and [ρxx]. However, it then results that the
coefficient of the term in [αxxx] is also zero due to the wavespeed equation
(8.165). After further calculations, eliminating B and C one then arrives
at the amplitude equation

2
(

U2
M

V 2
− (V 2 − U2

M )2

κV 2

)
δA

δt
+

k

ρ
A

+ A2

{
3 +

Pρρ
2

V 2
+ 3(V 2 − U2

M )
( ρψρρθ

V 2ψρθ
− ψθθ

ρ2ψρθ

)

+
3(V 2 − U2

M )2

V 4pθψρθ
(ρV 2ψρθθ + ρψραxαx

+ ψαxαx
− V 2ψθθ)

+
(V 2 − U2

M )3

V 4p2
θψρθ

(V 2ψθθθ + 3ψθαxαx
)
}

= 0.

(8.177)

The solution to this equation is easily written down, cf. (8.31). We see that
as the thermal terms vanish, V 2 → U2

M where U2
M = dp(ρ)/dρ and then

(8.177) reduces to the isothermal amplitude equation of section 8.1.4, as
it should. In particular, we note again the strong damping (attenuation)
effect of the linear term in (8.177). This is entirely due to the Darcy term
involving k and represents the effect the porous medium has on acoustic
wave attenuation, although the influence of the thermal (Green-Naghdi)
terms is also evident from (8.177).

8.6 Magnetic field effects

We briefly investigate the effect a magnetic field may have on a sound
wave propagating through a porous medium. The effects of both electric
and magnetic fields could have an important bearing on sound attenuation.
Certainly ceramics are often piezoelectric materials and we do expect a
study of electromagnetic effects to be worthwhile.

The idea is to generalize the Jordan-Darcy theory of section 8.1.2
and add to this the theory for a nonlinear magnetic fluid, cf. (Roberts,
1981), (Straughan, 1986). The equations under consideration are then the
continuity equation

ρ̇ + ρvi,i = 0, (8.178)

the equation for the mean magnetic field Bi,

Ḃi = vi,jBj − vj,jBi, (8.179)

and the momentum equation with a Darcy term,

ρv̇i = σij,j − kvi. (8.180)
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The constitutive equation for σij is

σij = −(p + HmBm)δij + HiBj (8.181)

where Hi is the magnetizing force and p is the fluid pressure. The functions
Hi and p are given in terms of a Helmholtz free energy function ψ =
ψ(ρ,B), B = |B|, by

p = ρ2 ∂ψ

∂ρ
, Hi = ρ

∂ψ

∂Bi
. (8.182)

An acceleration wave for equations (8.178) – (8.180) is a singular surface
S across which vi,t, vi,j , Bi,t, Bi,j , ρt, ρ,i and their higher derivatives suffer
at most a finite discontinuity, but vi, Bi and ρ are continuous everywhere.
The wave amplitudes are defined by

ai = [Bi,jnj ], b = [ρ,ini], ci = [vi,jnj ].

The analysis of the wavespeeds follows exactly that given by (Straughan,
1986) and the magnetic field does play a key role. One needs to intro-
duce orthogonal surface coordinates uα (α = 1, 2) on S. Then, with
xi

;α = ∂xi/∂uα being the tangential vectors to S one resolves ai, Bi and
ci into components in the direction of the normal to S and its tangential
directions. One writes

ai = anni + aαxi
;α, ci = cnni + cαxi

;α, Bi = B‖n
i + Bα

⊥xi
;α,

where B‖ and Bα
⊥ are the components of Bi in the normal and tangential

directions to S, with an, cn the normal components of ai and ci, aα, cα

the tangential ones. The analysis takes the jumps of (8.178) – (8.180) and
one may show an = 0. The remaining equations are written in terms of
the six variables b, cn, a1, a2, c1 and c2. Details are given in (Straughan,
1986) although he does not have the −kvi term in equation (8.180). The
wavespeed equation is found to be a sixth order equation which factorizes
to yield an Alfven wave with speed

V 2 = B2
‖

1
B

∂ψ

∂B

and a fast and a slow wave with speeds which satisfy the quadratic in V 2,
namely

V 4 − V 2

(
pρ + B

∂ψ

∂B
+ B2

T

{2ρ

B
ψρB +

1
B

ψB + ψBB

})

+
pρB

2
‖

B

(
ψB + B2

T

( 1
B

ψB

)

B

)
−

B2
‖B

2
T

B2
(ρψB)ρ = 0,

where B2
T = B⊥

α Bα
⊥. Conditions necessary for real and positive wavespeeds

are derived by (Straughan, 1986), and the strong effect of the magnetic
field on the wavespeeds is evident. As with the basic theory of section 8.1.2
one has to proceed to the amplitude equation to see the effect of the porous
medium via the k coefficient.



9
Numerical Solution of Eigenvalue
Problems

9.1 The compound matrix method

9.1.1 The shooting method

The purpose of this chapter is to describe three very efficient methods for
solving eigenvalue problems of the type encountered in linear and nonlinear
stability problems associated with porous media. The techniques referred
to are the compound matrix method, the Chebyshev tau technique, and
a Legendre - Galerkin method. The chapter is intended to be a practical
guide as to how to solve relevant eigenvalue problems. Several examples
from porous convection are included. In order to introduce the compound
matrix method we commence by briefly describing a standard shooting
method.

We begin with an investigation of the second order eigenvalue problem,

d2u

dx2
+ λu = 0, 0 < x < 1,

u(0) = u(1) = 0.
(9.1)

It is easy to see that the solution of this problem is given by u = sin nπx,
and the associated eigenvalues are

λn = n2π2, n = 1, 2, . . . . (9.2)

For stability studies it is often only the smallest eigenvalue that is of
interest, i.e., λ1.

B. Straughan, Stability and Wave Motion in Porous Media,
DOI: 10.1007/978-0-387-76543-3 9, c© Springer Science+Business Media, LLC 2008
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To determine λ1 numerically we retain the boundary condition u(0) = 0,
but replace u(1) = 0 by a prescribed condition on u′(0), a convenient
choice being u′(0) = 1, thereby converting the boundary value problem to
an initial value one. Two values of λ1 are selected, say 0 < λ

(1)
1 < λ

(2)
1 , and

then the initial value problem is integrated numerically to find u1(1), u2(1),
where ui denotes the solution corresponding to λ

(i)
1 : (a high order, variable

step Runge-Kutta-Verner technique is often adequate for the numerical
integration, although I frequently use an extrapolation method, see (Stoer
and Bulirsch, 1993), p. 484). The idea is to use u1(1), u2(1) so found to
ensure u(1) is as close to zero as required by some pre-specified degree of
accuracy. An iteration technique is then employed to find a sequence uk(1),
corresponding to λ

(k)
1 , such that

|uk(1)| < ε, k large enough, (9.3)

where ε is a user specified tolerance. I have found the secant method, see
e.g., (Cheney and Kincaid, 1985) p. 97, is a suitable routine for this pur-
pose. Once a uk(1) is determined to satisfy (9.3), λ

(k)
1 is then the required

numerical estimate of the first eigenvalue to (9.1).
For practical purposes it is usually necessary to have some guide as to

what values to select for λ
(1)
1 , λ

(2)
1 . However, in nonlinear energy stability

theory one can usually use linear stability theory as a guide for this. For
linear stability theory it is often possible to use known results from related
problems that can be solved analytically.

9.1.2 A fourth order equation

The eigenvalue problems encountered in porous stability problems are more
complicated than that discussed in section 9.1.1, but the basic numerical
shooting method is the same. To illustrate how the shooting method works
on a system we use the following fourth order eigenvalue problem

d2

dx2

[
(1 − θx)3

d2u

dx2

]
− λ(1 − θx)u = 0, x ∈ (0, 1),

u =
d2u

dx2
= 0, x = 0, 1,

(9.4)

where the constant θ satisfies 0 ≤ θ < 1.
To solve (9.4) for the first (lowest) eigenvalue λ1 does not appear possible

analytically, in general, i.e., for θ = 0. To solve (9.4) by a shooting method
we first write it as a system of four first order differential equations in
the vector u = (u, u′, u′′, u′′′), where u′ = du/dx, u′′ = d2u/dx2, etc. The
boundary conditions at x = 1 on u, u′′ are replaced in turn by u′ = 1, u′′′ =
0, and then u′ = 0, u′′′ = 1, at x = 0. The two initial value problems
thereby obtained are then integrated numerically. Let the solution so found
be written as a linear combination of the two solutions so obtained, say
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u = αv + βw. Then, the correct boundary condition u = u′′ = 0 at x = 1
is imposed, and this requires

det
(

v v′′

w w′′

)
= 0 (9.5)

to hold at x = 1.
While the shooting method is easy to understand and implement, it

suffers from a serious drawback. This is that one has numerically to locate
the zero of a determinant; e.g., in (9.5), one has to locate

v(1)w′′(1) − w(1)v′′(1) = 0. (9.6)

The two quantities v(1)w′′(1) and w(1)v′′(1) must, therefore, be very close
although neither need be close to zero (and generally will not). One is thus
faced with subtracting two nearly identical quantities, and this can lead to
very large round off errors and significant error build up during the solution
of a convection eigenvalue problem. There are many ways to overcome
this: we describe only one. This is the compound matrix technique, which
has distinct advantages for energy eigenvalue problems. Basically the idea
is to remove the troublesome location of the zero of a determinant by
converting to a system of ordinary differential equations in the determinants
themselves.

9.1.3 The compound matrix method

We begin this section with an accurate numerical calculation of eigenvalues
to (9.4). For 0 ≤ θ < 0.9 accurate results are evidently easily found by the
standard shooting method described in section 9.1.1. However, for the case
where θ → 1− for which (9.4) becomes singular, other methods must be
employed. Some useful information may be gleaned in this case with the
compound matrix technique.

To solve (9.4) by the compound matrix method we let U =
(u, u′, u′′, u′′′)T , and then suppose U1 and U2 are solutions to (9.4) with
values at x = 0 of (0, 1, 0, 0)T and (0, 0, 0, 1)T , respectively. A new six
vector

Y = (y1, y2, y3, y4, y5, y6)T

is defined as the 2×2 minors of the 4×2 solution matrix whose first column
is U1 and second U2. So,

y1 = u1u
′
2 − u′

1u2,

y2 = u1u
′′
2 − u′′

1u2,

y3 = u1u
′′′
2 − u′′′

1 u2,

y4 = u′
1u

′′
2 − u′′

1u′
2,

y5 = u′
1u

′′′
2 − u′′′

1 u′
2,

y6 = u′′
1u′′′

2 − u′′′
1 u′′

2 .

(9.7)
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The 2×2 minors are the determinants we refer to at the end of section 9.1.2.
The variable y2 corresponds to the quantity in (9.6). With the compound
matrix method we replace (9.6) by y2(1) = 0 and thus avoid the problem
of round off error due to subtraction.

By direct calculation from (9.4) the initial value problem for the yi is
found to be

y′
1 = y2,

y′
2 = y3 + y4,

y′
3 = y5 + 6

θ

M
y3 − 6

( θ

M

)2

y2,

y′
4 = y5,

y′
5 = y6 + 6

θ

M
y5 − 6

( θ

M

)2

y4 −
λ

M2
y1,

y′
6 = 6

θ

M
y6 −

λ

M2
y2,

(9.8)

where M = 1 − θx. From the initial conditions on U1 and U2 we see that
system (9.8) is to be integrated numerically subject to the initial condition

y5(0) = 1 (9.9)

and the final condition

y2(1) = 0. (9.10)

Again the zero in (9.10) is located to a pre-assigned degree of accuracy.
We have already noted that the compound matrix method is designed

to avoid round off error, and this technique works well if the system of
differential equations is stiff.

In stability problems in porous media one typically encounters an eigen-
value problem in which the system of equations appears as a system of
coupled second order equations. In the light of this and to describe the
compound matrix method further we consider the general linear system

w′′ = α1w
′ + α2w + α3θ

′ + α4θ,

θ′′ = β1w
′ + β2w + β3θ

′ + β4θ,
(9.11)

where a prime denotes differentiation with respect to z, α1, . . . , α4,
β1, . . . , β4, are known coefficients which may depend on z, they may be
complex, and z ∈ (0, 1). One or more of the coefficients contains an
eigenvalue, σ say. The boundary conditions we consider are

w = θ = 0 at z = 0, 1. (9.12)

Other boundary conditions are easily incorporated. System (9.11) is typi-
cal of the eigenvalue problems which occur in porous convection stability
problems.
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We introduce the variables y1, . . . , y6, being the 2×2 minors arising from
w and θ, i.e.

y1 = w1w
′
2 − w2w

′
1, y4 = w′

1θ2 − w′
2θ1,

y2 = w1θ2 − w2θ1, y5 = w′
1θ

′
2 − w′

2θ
′
1,

y3 = w1θ
′
2 − w2θ

′
1, y6 = θ1θ

′
2 − θ2θ

′
1.

(9.13)

The yi variables satisfy the matrix equation

y′ = Ay, (9.14)

where A is the 6 × 6 matrix

A =

⎛

⎜⎜⎜⎜⎜⎜⎝

α1 α4 α3 0 0 0
0 0 1 1 0 0
β1 β4 β3 0 1 0
0 α2 0 α1 1 −α3

−β2 0 α2 β4 α1 + β3 α4

0 −β2 0 −β1 0 β3

⎞

⎟⎟⎟⎟⎟⎟⎠

Due to the conditions on w, θ at z = 0, we take w′
1(0) = 1, θ′2(0) = 1,

and then the eigenvalues σ are found by integrating (9.14) from 0 to 1
employing the initial condition

y5(0) = 1. (9.15)

To satisfy the final conditions w(1) = θ(1) = 0, we must iterate on the
condition on y2,

y2(1) = 0. (9.16)

By having to satisfy condition (9.16) on the single variable y2 we avoid
the problem inherent in the standard shooting method where one has to
subtract nearly equal quantities.

The determination of σi is relatively straightforward. The proce-
dure whereby one calculates the corresponding eigenfunctions (wi, θi)
is described in (Straughan and Walker, 1996b). Rigorous mathematical
results involving the compound matrix method for application to eigen-
value problems, and related results, may be found in the interesting
papers of (Allen and Bridges, 2002), (Brown and Marletta, 2003), (Davies,
1999), (Dorfmann and Haughton, 2006), (Greenberg and Marletta, 2000;
Greenberg and Marletta, 2001; Greenberg and Marletta, 2004), (Ivansson,
2003), (Shubov and Balogh, 2005) and (Theofilis, 2003; Theofilis et al.,
2004).

9.1.4 Penetrative convection in a porous medium

A good problem to use as a test for a numerical method is the one which
arises in the situation of penetrative convection in a porous medium. The
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physics of this problem is presented in sections 17.6 and 19.7 of (Straughan,
2004a). The perturbation equations for linearised instability for penetrative
convection in an isotropic porous medium are

p,i = − ui − 2Rθ(ξ − z)δi3, ui,i = 0,

θ,t = − Rw + Δθ,
(9.17)

for x ∈ R
2 × (0, 1), where p, ui, θ are perturbations of pressure, velocity,

temperature, w = u3, R2 is the Rayleigh number, ξ = 4/Tu, with Tu

being the temperature of the upper surface. We here restrict attention to
prescribed temperature and normal component of velocity so that

w = 0, θ = 0 on z = 0, 1. (9.18)

Upon representing the time dependency by eσt, σ being the growth rate,
and employing normal modes system (9.17), (9.18) reduces to

(D2 − a2)W − 2a2R(ξ − z)Θ = 0,

(D2 − a2)Θ − RW − σΘ = 0,
(9.19)

z ∈ (0, 1), where a is the wavenumber. The boundary conditions are W =
Θ = 0, z = 0, 1.

This is an example of a system where the coefficients are functions of
the spatial variable z. Also, as Tu increases the coefficient involving (ξ− z)
has a strong effect leading to a stiff system and the eigenfunctions vary
strongly.

In general, one must solve (9.17), (9.18) for the eigenvalue σ with R given.
However, one can show exchange of stabilities holds for (9.17), (9.18), and
then to find the instability boundary it is sufficient to take σ = 0 in (9.19).
The compound matrix equations and boundary conditions are then (9.14)
– (9.16) with A here given by

A =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 2Ra2M 0 0 0 0
0 0 1 1 0 0
0 a2 0 0 1 0
0 a2 0 0 1 0

−R 0 a2 a2 0 2a2RM
0 −R 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠

To see this, one sets σ = 0 in (9.19) and solves for the eigenvalue R.
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9.2 The Chebyshev tau method

9.2.1 The D2 Chebyshev tau method

We describe the Chebyshev tau method in the context of system (9.11).
Thus, we define the operators L1 and L2 by

L1(u, v) = u′′ − α2u − α4v − α1u
′ − α3v

′,

L2(u, v) = v′′ − β2u − β4v − β1u
′ − β3v

′.
(9.20)

The Chebyshev tau method is very general, and the coefficients αi, βi may
depend on z and may also be complex. The eigenvalue σ appears in one or
more coefficients. System (9.11) is equivalent to

L1(u, v) = 0, L2(u, v) = 0, (9.21)

on the domain (-1,1) together with the boundary conditions

u = v = 0 at z = ±1. (9.22)

The system (9.11) has been transformed from (0,1) to (-1,1) as this is the
natural domain in which to use Chebyshev polynomials. The above choice
of boundary conditions is not necessary and other boundary conditions may
be handled, cf. (Straughan and Walker, 1996b), and sections 9.2.4, 9.2.5 of
this book.

We now describe the procedure for finding eigenvalues and eigenfunctions
to (9.21), (9.22). It is important to realise that other boundary conditions
may be handled, and, in particular, higher order systems of differential
equations are naturally dealt with by the same technique.

The key idea is to write u, v as a finite series of Chebyshev polynomials

u =
N+2∑

k=0

akTk(z), v =
N+2∑

k=0

bkTk(z). (9.23)

The exact solution to the differential equation is an infinite series, i.e.
let N → ∞ in (9.23). Due to the truncation, to solve (9.21) with the
approximate form (9.23), we solve

L1(u, v) = τ1TN+1 + τ2TN+2, L2(u, v) = τ̂1TN+1 + τ̂2TN+2. (9.24)

In (9.24) the parameters τ1, τ2, τ̂1, τ̂2 are effectively error indicators for the
truncation in (9.23).

To determine the unknown coefficients ai and bi we take the inner
product with Ti of (9.24) in the weighted L2(−1, 1) space with inner
product

(f, g) =
∫ 1

−1

fg√
1 − z2

dz .
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Let us denote the associated norm by ‖ ·‖. The Chebyshev polynomials are
orthogonal in this space, and thus (9.24) leads to the 2(N + 1) equations

(L1(u, v), Ti) = 0 (L2(u, v), Ti) = 0 i = 0, 1, . . . , N. (9.25)

There are four more conditions which arise by taking inner products, and
these are

(L1(u, v), TN+j) = τj‖TN+j‖2, (L2(u, v), TN+j) = τ̂j‖TN+j‖2, j = 1, 2.

These four equations yield the tau coefficients τ1, τ2, τ̂1, τ̂2, which in turn
are measures of the error involved in the truncation (9.23). To derive four
more equations for ai and bi to add to (9.25) we employ the boundary
conditions. The Chebyshev polynomials Tn(z) satisfy Tn(±1) = (±1)n,
and this together with (9.22) and (9.23) yield

N+2∑

n=0

(−1)nan = 0,

N+2∑

n=0

an = 0,

N+2∑

n=0

(−1)nbn = 0,

N+2∑

n=0

bn = 0.

(9.26)

Equations (9.25) and (9.26) yield a system of 2(N + 3) equations for the
2(N + 3) unknowns ai, bi, i = 0, . . . , N + 2. We now suppose αi, βi are
constant. If they are functions of z then they must be expanded in a series
of Chebyshev polynomials, cf. (Orszag, 1971), p. 702. One then uses the
relation 2TmTn = (Tm+n + T|m−n|) to write expressions as a linear combi-
nation of the Ti. For many convection problems the coefficients are linear,
quadratic or third order polynomials and these are easily handled.

To calculate the coefficients in (9.25) we observe that the derivative of
a Chebyshev polynomial is a linear combination of lower order Chebyshev
polynomials and it may be shown that

T ′
n =

{
2n(Tn−1 + . . . + T1), n even,
2n(Tn−1 + . . . + T2) + nT0, n odd.

(9.27)

By recalling (9.20) and using (9.23) and (9.27), equations (9.25) are reduced
to the 2(N + 1) algebraic equations

a
(2)
i − α2ai − α4bi − α1a

(1)
i − α3b

(1)
i = 0, i = 0, . . . , N,

b
(2)
i − β2ai − β4bi − β1a

(1)
i − β3b

(1)
i = 0, i = 0, . . . , N.

(9.28)

The coefficients a
(1)
i and a

(2)
i are given by

a
(1)
i =

2
ci

p=N+2∑

p=i+1
p+i odd

pap, a
(2)
i =

2
ci

p=N+2∑

p=i+2
p+i even

p(p2 − i2)ap. (9.29)
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A similar representation holds for b
(1)
i , b

(2)
i . The coefficients ci have form

c0 = 2, ci = 1, i = 1, 2, . . . . The 2(N + 1) equations (9.28) together with
the four equations (9.26) form a system of simultaneous linear equations
for the 2(N + 3) unknowns (ai, bi). This may be written in matrix form as

Ax = σBx, (9.30)

where x = (a0, . . . , aN+2, b0, . . . , bN+2)T .

The matrices involved in the definition of a
(1)
i and a

(2)
i may alternatively

be derived as follows. We know that

u′ =
N+2∑

s=0

asT
′
s(z)

=
N+2∑

s=0

as

(N+2∑

r=0

DrsTr

)

=
N+2∑

r=0

(N+2∑

s=0

Drsas

)
Tr

and so

a(1)
r =

N+2∑

s=0

Drsas.

In addition,

u′′ =
N+2∑

r=0

(N+2∑

s=0

Drsa
(1)
s

)
Tr.

Therefore,

a(2)
r =

N+2∑

s=0

Drsa
(1)
s

=
N+2∑

s=0

Drs

N+2∑

k=0

Dskak

=
N+2∑

s=0

N+2∑

k=0

DrsDskak .

The differentiation matrix D, and second differentiation matrix D2 thus
arise naturally. These matrices and their coefficients take the form

D0,2j−1 = 2j − 1, j ≥ 1,

Di,i+2j−1 = 2(i + 2j − 1), i ≥ 1, j ≥ 1,

D2
0,2j =

1
2
(2j)3, j ≥ 1,

D2
i,i+2j = (i + 2j)4j(i + j), i ≥ 1, j ≥ 1,

(9.31)
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or in matrix form

D =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 1 0 3 0 5 0 7 0 9 . . .
0 0 4 0 8 0 12 0 16 0 . . .
0 0 0 6 0 10 0 14 0 18 . . .
0 0 0 0 8 0 12 0 16 0 . . .
0 0 0 0 0 10 0 14 0 18 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

⎞

⎟⎟⎟⎟⎟⎟⎠

D2 =

⎛

⎜⎜⎝

0 0 4 0 32 0 108 . . .
0 0 0 24 0 120 0 . . .
0 0 0 0 48 0 192 . . .

. . . . . . . . . . . . . . . . . . . . . . . .

⎞

⎟⎟⎠

Note that in the matrix sense D2 = D·D. The B matrix in (9.30) is singular
due to the way the boundary condition rows are added to A. When it is
possible, it is usually best to remove the singular behaviour since this can
result in the formation of spurious eigenvalues (i.e. numbers which appear
in the eigenvalue list, but which are not eigenvalues).

For the boundary conditions (9.22) we may easily eliminate aN+1, aN+2,
bN+1, bN+2. Suppose N is odd, then

aN+1 = −(a0 +a2 + . . .+aN−1), aN+2 = −(a1 +a3 + . . .+aN ). (9.32)

Similar forms hold for the b’s. This allows us to remove the N +1 and N +2
rows of D2 and eliminate the N + 1, N + 2 columns. This yields (N + 1)×
(N + 1) matrices D2, and the matrix problem resulting from (9.30) does
not suffer from B being singular because of zero boundary condition rows.
Further analyses of singularities due to boundary conditions are contained
in (Bourne, 2003), (Straughan, 2001a), (Straughan and Walker, 1996b).

The equation which results from (9.25) has again form (9.30) but now
A and B are (N + 1) × (N + 1) matrices and x = (a0, . . . , aN , b0, . . . , bN ).
Explicit details of A,B are given for the problem of penetrative convec-
tion in section 9.2.2. The eigenvalues of the generalised eigenvalue problem
(9.30) are found efficiently using the QZ algorithm. This algorithm is avail-
able in many standard libraries, e.g. in the routines F02BJF, F02GJF of
the NAG library. Since u and v have the forms (9.23) the calculation of the
eigenfunctions using the Chebyshev tau method is really efficient. As soon
as we know the coefficients ak and bk, u and v follow immediately from
(9.23).

9.2.2 Penetrative convection

The Chebyshev tau method requires solution of (9.19) with σ = 0,
which is approximated by an equation of form (9.30). Now x =
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(W0, . . . ,WN ,Θ0, . . . ,ΘN ), and the matrices A,B are given by

A =

⎛

⎝
D2 − a2I 0

0 D2 − a2I

⎞

⎠ B =

⎛

⎝
0 2a2(ξI − M)

I 0

⎞

⎠ .

For coding purposes we work with N × N matrices and with i = 1, . . . , N,
and then in the above M is the N ×N matrix arising from the Chebyshev
representation of z, i.e.

Mi,i+1 =
1
2
, i = 1, . . . , N − 1,

M21 = 1; Mi+1,i =
1
2
, i = 2, . . . , N − 1; rest 0.

(9.33)

The matrix equation (9.30) is conveniently solved by the QZ algorithm
of (Moler and Stewart, 1973). This routine yields all eigenvalues and
eigenfunctions with no trouble.

9.2.3 Fluid overlying a porous layer

We further illustrate the Chebyshev tau method by using the convection
problem of section 6.2. For completeness we recollect the perturbation equa-
tions of section 6.2.2 and the boundary conditions of section 6.2.3. The
differential equations are, in z ∈ (0, 1),

(D2 − a2)2W − a2RaΘ =
σ

Pr
(D2 − a2)W, (9.34)

(D2 − a2)Θ − W = σΘ, (9.35)

in zm ∈ (−1, 0),

(D2 − a2
m)Wm + a2

mRamΘm = − σmδ2

φPrm
(D2 − a2

m)Wm, (9.36)

(D2 − a2
m)Θm − Wm = σmGmΘm, (9.37)

and we recall that

σm =
d̂2

εT
σ , Ram = Ra

(δεT )2

d̂4
. (9.38)

The boundary conditions are, on z = −1,

Wm = 0, (9.39)
Θm = 0, (9.40)

on z = 1,

W = 0, (9.41)
DΘ + LΘ = 0, (9.42)

D2W = MaΔ∗θ = −Ma.a2Θ, (9.43)
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at the interface z = 0,

W = d̂Wm, (9.44)

d̂Θ = ε2T Θm, (9.45)
DΘ = εT DpΘm, (9.46)

D2W − αd̂

δ
DW +

αd̂3

δ
DpWm = 0, (9.47)

d̂4

φPrm
σmDpWm +

d̂4

δ2
DpWm =

σ

Pr
DW − D3W − 3Δ∗DW. (9.48)

We first write equation (9.34) as a system of second order equations, and
so write

(D2 − a2)W − A = 0,

(D2 − a2)A − a2RaΘ =
σ

Pr
A.

(9.49)

The idea is to treat W,A,Θ,Wm,Θm as independent variables.
We now transform the intervals (0,1) and (-1,0) to the interval (-1,1) and

ensure that the interface z = 0 is common to both sets of equations when
defined on (-1,1). We here select the variables ẑ = 2z−1 and ẑm = −2zm−1.
This maps the boundary z = 1 to ẑ = 1, zm = −1 to ẑm = 1, and the
interface z = 0 to ẑ = ẑm = −1. Note that

D =
d

dz
= 2

d

dẑ
, D =

d

dzm
= −2

d

dẑm
.

Thus, equations (9.49), (9.35) – (9.37) are transformed to, on (−1, 1),
employing D to denote d/dẑ or d/dẑm, as appropriate,

(4D2 − a2)W − A = 0, (9.50)

(4D2 − a2)A − a2RaΘ =
σ

Pr
A, (9.51)

(4D2 − a2)Θ − W = σΘ, (9.52)

(4D2 − a2
m)Wm + a2

mRamΘm = −σ
d̂2δ2

εT φPrm
(4D2 − a2

m)Wm, (9.53)

(4D2 − a2
m)Θm − Wm = σ

d̂2Gm

εT
Θm. (9.54)

For given values of the parameters we have to solve equations (9.50) –
(9.54) for σ on (−1, 1) subject to boundary conditions (9.39) – (9.48),
which transform to, on ẑm = 1,

Wm = 0, (9.55)
Θm = 0, (9.56)
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on ẑ = 1,

W = 0, (9.57)
2DΘ + LΘ = 0, (9.58)

a2W + A + Ma.a2Θ = 0, (9.59)

and at (what is now the interface) ẑ = ẑm = −1,

W = d̂Wm, (9.60)

d̂Θ = ε2T Θm, (9.61)
DΘ + εT DΘm = 0, (9.62)

A + a2W − 2α̂d̂

δ
DW − 2α̂d̂3

δ
DWm = 0, (9.63)

DA − 2a2DW − d̂4

δ2
DWm =

σ

Pr
DW + σ

d̂6

φPrmεT
DWm. (9.64)

We now write W,A,Θ,Wm,Θm in the form of a series of Chebyshev
polynomials (really an infinite series, but we truncate) so

W =
N+2∑

i=0

WiTi(ẑ), A =
N+2∑

i=0

AiTi(ẑ), Θ =
N+2∑

i=0

ΘiTi(ẑ),

Wm =
N+2∑

i=0

Wm
i Ti(ẑm), Θm =

N+2∑

i=0

Θm
i Ti(ẑm).

The D2 matrices have the form as in section 9.2.1. Let us denote the bound-
ary conditions (9.55) – (9.64) by BC1 to BC10. We must use the relations
Tn(±1) = (±1)n, T ′

n(±1) = (±1)n−1n2, to discretize the boundary condi-
tions (9.55) – (9.64). For example, conditions (9.55), (9.58), (9.62), (9.64)
become

Wm
0 + Wm

1 + . . . + Wm
N+2 = 0,

N+2∑

i=0

(2i2 + L)Θi = 0,

N+2∑

i=0

(−1)i−1i2Θi + εT

N+2∑

i=0

(−1)i−1i2Θm
i = 0,
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and

− 2a2
N+2∑

i=0

(−1)i−1i2Wi +
N+2∑

i=0

(−1)i−1i2Ai

− d̂4

δ2

N+2∑

i=0

(−1)i−1i2Wm
i

=
σ

Pr

N+2∑

i=0

(−1)i−1i2Wi + σ
d̂6

εT φPrm

N+2∑

i=0

(−1)i−1i2Wm
i .

In this way we reduce the eigenvalue problem (9.50) – (9.64) to solving the
matrix equation

Ax = σBx,

where x is the 5(N + 3) vector with components W0, . . . ,WN+2,
A0, . . . , AN+2, Θ0, . . . ,ΘN+2, Wm

0 , . . . ,Wm
N+2, Θm

0 , . . . ,Θm
N+2, and the

matrices A and B are given by

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4D2 − a2I −I 0 0 0
BC3 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0
BC6 0 . . . 0 0 . . . 0 BC6 0 . . . 0

0 4D2 − a2I −a2RaI 0 0
BC5 BC5 BC5 0 . . . 0 0 . . . 0
BC9 BC9 0 . . . 0 BC9 0 . . . 0
−I 0 4D2 − a2I 0 0

0 . . . 0 0 . . . 0 BC4 0 . . . 0 0 . . . 0
0 . . . 0 0 . . . 0 BC7 0 . . . 0 BC7

0 0 0 4D2 − a2
mI a2

mRamI
0 . . . 0 0 . . . 0 0 . . . 0 BC1 0 . . . 0
BC10 BC10 0 . . . 0 BC10 0 . . . 0

0 0 0 −I 4D2 − a2
mI

0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 BC2
0 . . . 0 0 . . . 0 BC8 0 . . . 0 BC8

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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and

B =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0
0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0
0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

0 Pr−1I 0 0 0
0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0
0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

0 0 I 0 0
0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0
0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

0 0 0 − δ2d̂2

εT φPrm
(4D2 − a2

mI) 0
0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0
BC10 0 . . . 0 0 . . . 0 BC10 0 . . . 0

0 0 0 0 (d̂2Gm/εT )I
0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0
0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

In these expressions BC1 – BC10 denote the discrete form of the boundary
conditions.

9.2.4 The D Chebyshev tau method

We illustrate this technique by direct application to the penetrative con-
vection system (9.19). Unlike section 9.2.2 we do not assume σ ∈ R in
(9.19) and solve instead for the eigenvalue σ. The idea is to write (9.19) as
a system of first order equations. Thus, we introduce variables U and V via
DW = U,DΘ = V . Then, we may alternatively write (9.19) in the form

DW − U = 0,

DU − a2W − 2a2R(ξ − z)Θ = 0,
DΘ − V = 0,

DV − a2Θ − RW − σΘ = 0.

(9.65)

The idea is that W,U,Θ and V are regarded as independent variables. The
boundary conditions are (9.18), i.e.

W = 0, Θ = 0, z = 0, 1.

Equations (9.65) and the boundary conditions are rewritten on the
domain z ∈ (−1, 1) and then W,U,Θ, V are written as a series of Cheby-
shev polynomials in the form (9.23). In this manner we find the Chebyshev
tau method requires solution of the matrix equation

Ax = σBx,
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where now x = (W0, . . . ,WN , U0, . . . , UN ,Θ0, . . . ,ΘN , V0, . . . , VN ) and A
and B are given by

A =

⎛

⎜⎜⎝

D −I 0 0
−a2I D −2a2(ξI − M) 0

0 0 D −I
−RI 0 −a2I D

⎞

⎟⎟⎠ B =

⎛

⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 I 0

⎞

⎟⎟⎠

with M being the matrix whose entries are given by (9.33).
Again, we note that we have described how to solve equations (9.19)

directly for σ, assuming R is given. This is different from section 9.2.2
where σ is set equal to 0 and we solve for R. In general, for a porous
medium stability problem we do not know whether σ will be real or not
and we have to solve as above.

For the system above, the boundary conditions are added to the i(N +
1)th rows, i = 1, 2, 3, 4. Thus, we add the conditions W = 0 to the rows
N + 1 and 2(N + 1), and the conditions Θ = 0 to the rows 3(N + 1) and
4(N + 1). The conditions W = 0,Θ = 0 are added by using the relations
(9.26).

The question of removing the boundary condition rows in the D-
Chebyshev tau method is addressed in (Payne and Straughan, 2000a),
(Straughan, 2001a), (Bourne, 2003).

9.2.5 Natural variables

To illustrate this method we again employ the equations for penetra-
tive convection in a porous medium, equations (9.17). So, the linearized
perturbation equations are

π,i = −ui − 2RM(z)θki,

ui,i = 0,

θt = −Rw + Δθ,

(9.66)

(x, y) ∈ R
2, z ∈ (0, 1), t > 0. On the lower boundary z = 0 we assume

θ = w = 0. (9.67)

However, on the upper surface we suppose the temperature satisfies a mixed
boundary condition of the form

∂θ

∂z
+ μθ = 0, z = 1, (9.68)

while we also suppose the pressure is constant there. In this case, the appro-
priate boundary condition is not w = 0. Instead, since the pressure is
constant, the pressure perturbation, π, is zero at z = 1. Because of this
πx = 0, πy = 0 on z = 1, and then from (9.66)1, u = v = 0 on z = 1. Then
equation (9.66)2, namely, ux + vy + wz = 0, implies that wz = 0 on z = 1.
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Thus, the correct boundary conditon is

∂w

∂z
= 0, z = 1. (9.69)

Now, write ui = Ui(z) g(x, y) eσt, where g is a planform such that Δ∗g =
−a2g, a being a wavenumber, with similar representations for θ and π. We
eliminate u and v from (9.66) – (9.69). We must then solve the system of
equations

0 = (D2 − a2)W − 2RMa2Θ,

σΘ = −RW + (D2 − a2)Θ,
(9.70)

subject to the boundary conditions

Θ = W = 0, z = 0,

DW = 0, DΘ + μΘ = 0, z = 1.
(9.71)

(Payne and Straughan, 2000a) suggest a natural way to solve (9.70) and
(9.71) using a D - Chebyshev tau method. Instead of introducing U =
DW,V = DΘ as in section 9.2.4, they advocate using the structure of the
boundary conditions (9.71) to suggest natural variables U, V. So, we select
U = DW, V = DΘ + μΘ. Equivalently to solving (9.70), (9.71), we must
now solve the system

DW − U = 0,

DU − a2W − 2RMa2Θ = 0,
DΘ + μΘ − V = 0,

DV − μV + (μ2 − a2)Θ − RW = σΘ,

(9.72)

together with the easily implementable boundary conditions

Θ = W = 0, z = 0; U = 0, V = 0, z = 1. (9.73)

One may easily employ a Chebyshev polynomial expansion of W,U,Θ, V
and write (9.72) in the approximate form Ax = σBx where A,B are square
matrices. Due to the simple form of boundary conditions, (9.73), one may
remove boundary condition rows and thereby incorporate the boundary
conditions in the matrices A and B. Details of this procedure are given in
(Payne and Straughan, 2000a), pp. 824, 825.

9.3 Legendre-Galerkin method

9.3.1 Fourth order system

We describe the Legendre - Galerkin technique by starting with an
analysis of system (9.11). In this section we suppose the coefficients
α1, . . . , α4, β1, . . . , β4 are constants and the eigenvalue σ appears linearly
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in one or more of these coefficients. The extension of the technique to the
situation in which αi or βi depend on the variable z is discussed in section
9.3.2. To solve equations (9.11) we assume they have been transformed to
the interval (−1, 1) although we still keep the same form for the coefficients.
Thus, our interest is to solve the system

w′′ = α1w
′ + α2w + α3θ

′ + α4θ,

θ′′ = β1w
′ + β2w + β3θ

′ + β4θ,
(9.74)

′ = d/dz, with z ∈ (−1, 1). The boundary conditions are

w = θ = 0 at z = ±1. (9.75)

Before describing the Legendre - Galerkin method we refer to some basic
properties of Legendre polynomials. We denote the Legendre polynomial
of order n by Pn(z). Further details of its properties may be found in the
book by (Sneddon, 1980), chapter 3. The Pn(z) are a system of orthogonal
polynomials which satisfy

Pn(±1) = (±1)n, (9.76)

together with

(2n + 1)Pn = P ′
n+1 − P ′

n−1, (9.77)

and

(Pi, Pj) =
∫ 1

−1

PiPjdz =

{
2/(2i + 1) , i = j

0, i = j,
(9.78)

and

zPn =
(

n + 1
2n + 1

)
Pn+1 +

(
n

2n + 1

)
Pn−1 . (9.79)

Proofs of these relations are given by (Sneddon, 1980), equations (13.5a,b),
(14.6), (15.8) and (14.7), respectively.

The Legendre - Galerkin method we now describe was effectively used
by (Shen, 1994) and a modification by (Kirchner, 2000). The treatment
for finding eigenvalues for porous stability problems and related issues was
given by (Hill and Straughan, 2005; Hill and Straughan, 2006). The key is
to introduce the basis function

φi(z) =
∫ z

−1

Pi(s)ds, i = 1, . . . , p − 1, (9.80)

p ≥ 2. The reason why the method is so attractive is the relation (9.77)
which allows us to also write φi in the form

φi(z) =
1

(2i + 1)
(
Pi+1(z) − Pi−1(z)

)
. (9.81)
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Note that φi(−1) = 0 and φi(1) = 0, relations which are useful for homo-
geneous boundary conditions. Thus, we write w and θ in (9.74) as a series
in the basis φi. So, we write

w =
N∑

k=1

wkφk , θ =
N∑

k=1

θkφk . (9.82)

We next multiply (9.74)1 by φi, (9.74)2 by φi and integrate by parts,
recalling φi(±1) = 0, to find

(w′, φ′
i) + α1(w′, φi) + α2(w, φi) + α3(θ′, φi) + α4(θ, φi) = 0,

(θ′, φ′
i) + β1(w′, φi) + β2(w, φi) + β3(θ′, φi) + β4(θ, φi) = 0.

(9.83)

The brackets (·, ·) in (9.83) denote the inner product on L2(−1, 1),
i.e. (f, g) =

∫ 1

−1
f(s)g(s)ds. It is now necessary to evaluate the terms

−(w′′, φi) = (w′, φ′
i), (w′, φi) and (w, φi). The remaining terms in (9.83)

all fall into these three categories. In this way, we reduce the solution of
(9.74), (9.75) to the solution of a matrix eigenvalue problem.

Firstly,

−(w′′, φi) =(w′, φ′
i)

=
N∑

k=1

wk(φ′
k, φ′

i)

=
N∑

k=1

wk(Pk, Pi)

since from (9.80), φ′
i = Pi. Then, employing (9.78) we obtain

(w′, φ′
i) = wi‖Pi‖2 =

2
(2i + 1)

wi , (9.84)

where ‖Pi‖2 =
∫ 1

−1
P 2

i ds. Thus, use of the φi basis has the desirable prop-
erty that the second derivative operator effectively becomes a diagonal
matrix.
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The next class of term has form

(w′, φi) =
∫ 1

−1

w′φidz

=
N∑

k=1

wk(φ′
k, φi)

=
N∑

k=1

wk(Pk, φi)

=
N∑

k=1

wk

(2i + 1)
(Pk, Pi+1 − Pi−1)

=
wi+1

(2i + 1)
‖Pi+1‖2 − wi−1

(2i + 1)
‖Pi−1‖2

=
2wi+1

(2i + 3)(2i + 5)
− 2wi−1

(2i − 1)(2i + 1)
, (9.85)

where (9.78), (9.80) and (9.81) have been employed. Let us note that (9.85)
contributes to terms either side of the diagonal in a banded structure of
matrix.

Finally we consider terms of the form

(w, φi) =
∫ 1

−1

wφidz

=
N∑

k=1

wk(φk, φi)

=
N∑

k=1

wk

(
Pk+1 − Pk−1

2k + 1
,
Pi+1 − Pi−1

2i + 1

)

=
wi

(2i + 1)2
‖Pi+1‖2 − wi+2

(2i + 1)(2i + 3)
‖Pi+1‖2

+
wi

(2i + 1)2
‖Pi−1‖2 − wi−2

(2i − 1)(2i + 1)
‖Pi−1‖2

= − 2wi+2

(2i + 3)2(2i + 1)
+

4wi

(2i − 1)(2i + 1)(2i + 3)

− 2wi−2

(2i − 1)2(2i + 1)
. (9.86)

By using relations like (9.84), (9.85) and (9.86) in equations (9.83) we
arrive at a matrix eigenvalue problem of form

Ax = σBx (9.87)
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where x = (w1, . . . , wN , θ1, . . . , θN )T . It is important to note that the
matrices A and B are of form

A =
(

A11 A12

A21 A22

)
(9.88)

and

B =
(

B11 B12

B21 B22

)
(9.89)

where each Aij , Bij is an n × n matrix which has the structure

Aij =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 a12 a13 0 . . . 0

a21
. . . . . . . . . . . .

...

a31
. . . . . . . . . . . . 0

0
. . . . . . . . . . . . a(N−2)N

...
. . . . . . . . . . . . a(N−1)N

0 . . . 0 aN(N−2) aN(N−1) aNN

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

i.e. the matrices A and B are block 5-banded. They are thus sparse. This
leads to a major difference with the Chebyshev tau method of section
9.2. For larger matrices A and B we are able to use an iterative solver
like the Arnoldi method which may be found in the ARPACK package,
see (Lehoucq et al., 1998). This leads to a much more efficient solver for
equation (9.87) than the QZ algorithm when many basis functions are
required. The last comment is particularly important when 2 and 3-D eigen-
value problems are considered as is pointed out in section 9.3.3. Details of
the speed up achieved and performance of the Arnoldi algorithm may be
found in (Hill and Straughan, 2005).

9.3.2 Penetrative convection

We further illustrate the Legendre - Galerkin method by application to the
penetrative convection system (9.19), (9.18). We recast this problem in the
interval (−1, 1) and so have to solve

(4D2 − a2)W − a2R
[
2ξ − (z + 1)

]
Θ = 0,

(4D2 − a2)Θ − RW = σΘ,
(9.90)

together with

W = Θ = 0 at z = ±1. (9.91)

With φi defined as in (9.80) we write W,Θ as

W =
N∑

k=1

Wkφk, Θ =
N∑

k=1

Θkφk. (9.92)
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We then multiply each of equations (9.90) by φi and integrate over (−1, 1)
and use the boundary conditions to find

4(W ′, φ′
i) + a2(W,φi) + a2R(2ξ − 1)(Θ, φi) − a2R(zΘ, φi) = 0,

4(Θ′, φ′
i) + a2(Θ, φi) + R(W,φi) = −σ(Θ, φi).

(9.93)

The terms in (9.93) are all of form (9.84), (9.85) or (9.86) apart from the
term −(zΘ, φi). The terms not involving z directly are handled as in section
9.3.1. To handle the z term we use relation (9.79). Thus,

(zΘ, φi) =
N∑

k=1

Θk(zφk, φi)

=
N∑

k=1

Θk

(
z
(Pk+1 − Pk−1)

2k + 1
, φi

)

=
N∑

k=1

Θk

(
1

(2k + 1)

{ (k + 2)
(2k + 3)

Pk+2 +
(k + 1)
(2k + 3)

Pk

}

− 1
(2k + 1)

{ k

(2k − 1)
Pk +

(k − 1)
(2k − 1)

Pk−2

}
, φi

)

=
N∑

k=1

Θk

(
k + 2

(2k + 1)(2k + 3)
Pk+2 −

Pk

(2k + 3)(2k − 1)

− (k − 1)
(2k + 1)(2k − 1)

Pk−2 ,
Pi+1 − Pi−1

(2i + 1)

)

= Θi−1
(i + 1)

(2i − 1)(2i + 1)2
‖Pi+1‖2 − Θi−3

(i − 1)
(2i − 5)(2i − 3)(2i + 1)

‖Pi−1‖2

− Θi+1
1

(2i + 5)(2i + 1)2
‖Pi+1‖2 + Θi−1

1
(2i − 3)(2i + 1)2

‖Pi−1‖2

− Θi+3
(i + 2)

(2i + 7)(2i + 5)(2i + 1)
‖Pi+1‖2 + Θi+1

i

(2i + 3)(2i + 1)2
‖Pi−1‖2

with i taking appropriate values

= Θi−1
2(i + 1)

(2i − 1)(2i + 1)2(2i + 3)
− Θi−3

2(i − 1)
(2i − 5)(2i − 3)(2i − 1)(2i + 1)

− Θi+1
2

(2i + 1)2(2i + 3)(2i + 5)
+ Θi−1

2
(2i − 3)(2i − 1)(2i + 1)2

− Θi+3
2(i + 2)

(2i + 1)(2i + 3)(2i + 5)(2i + 7)

+ Θi+1
2i

(2i + 3)(2i − 1)(2i + 1)2
. (9.94)

In this way, we see that equations (9.93) lead to a matrix eigenvalue problem
of form (9.87) where x = (W1, . . . ,WN ,Θ1, . . . ,ΘN )T and A and B have



9.3. Legendre-Galerkin method 397

a banded structure like (9.88), (9.89), except the (1, 2) block of A is 7
banded. However, the Arnoldi method may again be used to solve the
matrix eigenvalue problem efficiently. Details of the performance of the
Arnoldi method for several examples similar to that of this section are
contained in (Hill and Straughan, 2005).

9.3.3 Extension of the method

The Legendre - Galerkin technique has other desirable features. We may,
for example, deal with other coefficients of z in the equations rather than
just z itself. For a polynomial function, h(z) say, repeated use of relation
(9.79) allows us to incorporate h(z) quickly. For example,

z2Pn =z

([ n + 1
2n + 1

]
Pn+1 +

[ n

2n + 1

]
Pn−1

)

=
( n + 1

2n + 1

)( n + 2
2n + 3

)
Pn+2 +

( n + 1
2n + 1

)( n + 1
2n + 3

)
Pn

+
( n

2n + 1

)( n

2n − 1

)
Pn +

( n

2n + 1

)( n − 1
2n − 1

)
Pn−2

=
(n + 1)(n + 2)

(2n + 1)(2n + 3)
Pn+2 +

(4n3 + 6n2 − 1)
(2n − 1)(2n + 1)(2n + 3)

Pn

+
n(n − 1)

(2n − 1)(2n + 1)
Pn−2 . (9.95)

By using (9.95) we may easily account for a coefficient z2 in the equations.
The effect is to increase the bandwidth of an appropriate block of the A or
B matrices. Further details of incorporating a general function g(z) may
be found in (Hill and Straughan, 2005).

Another very important advantage of the Legendre - Galerkin method is
its efficient applicability to two or three - dimensional eigenvalue problems.
Here, one works with the primitive variables. For example, in the penetra-
tive convection problem one would use u1 = u, u2 = v, u3 = w, θ and π,
and one writes each as an expansion of the tensor product of the φi (π is
expanded in Pi). For example, in 2-D,

u =
N∑

k=1

N∑

j=1

Ukjαkj(x, y)

where

αkj(x, y) = φk(x)φj(y) =
∫ x

−1

Pk(s)ds

∫ y

−1

Pj(r)dr.

Such a procedure leads to a matrix equation of form (9.87) where A,B
have a more complicated (larger) structure. However, they are usually
sparse (block banded) and the Arnoldi technique is an efficient solver for
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the matrix eigenvalue problem. Further details of this procedure are given
by (Hill and Straughan, 2006).

Finally, we briefly remark on the use of other orthogonal polynomials in
a Galerkin - like idea. For example, why do we not consider basis functions
like
∫ z

−1
Tn(s)ds with Tn being a Chebyshev polynomial? Such an idea

would be very appealing due to the fact that

TmTn =
1
2
(Tm+n + T|m−n|) (9.96)

a relation which is very useful when dealing with coefficients which depend
on z. (The other orthogonal polynomials do not satisfy such a simple
relation for their product as (9.96).) However, what makes the Legendre
polynomials work so well in the Galerkin formulation is relation (9.77). For
other orthogonal polynomials, the analogous relations do not appear to be
so useful. For example, for the Chebyshev polynomials we have

2Tn(z) =
T ′

n+1(z)
(n + 1)

− T ′
n−1(z)

(n − 1)
. (9.97)

A proof of this follows by differentiating the relation

(1 − x2)T ′
n = n(Tn−1 − xTn), n ≥ 1,

see (Gardner et al., 1989), p. 165, to find

(1 − x2)T ′′
n − 2xT ′

n = nT ′
n−1 − nTn − nxT ′

n , (9.98)

where we momentarily use x as the independent variable in place of z.
Substitute for (1 − x2)T ′′

n from (A5) of (Gardner et al., 1989), i.e. use

(1 − x2)T ′′
n = xT ′

n − n2Tn,

to obtain from (9.98)

xT ′
n =

nT ′
n−1

(n − 1)
+ nTn. (9.99)

Now, differentiate the recursion relation (A3) of (Gardner et al., 1989) to
find

T ′
n+1 − 2xT ′

n − 2Tn + T ′
n−1 = 0.

Substitute for xT ′
n from (9.99) and we derive (9.97).

The fact that the coefficients of T ′
n+1 and T ′

n−1 are not the same in (9.97)
means application of a Chebyshev - Galerkin technique is not so straight-
forward as the Legendre - Galerkin method outlined here. Nevertheless,
such application is very interesting, and details of such methods may be
found in (Pop, 1997; Pop, 2000), (Pop and Gheorghiu, 1996), (Gheorghiu
and Pop, 1996), and in (Hill, 2005a), chapter 8.
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Index

A priori bound
for temperature, 30, 49

Acceleration waves
acoustic tensor, 306
amplitude equation, 302, 324, 341,

346, 356, 364, 371
Cattaneo model, 353
De Cicco-Diaco theory, 327
elastic materials with voids, 307,

312
Green-Naghdi model, 369
Hadamard relation, 301, 305
Jordan-Darcy theory, 340
microstretch theory, 332
nonlinear elasticity, 300
one-dimensional, 300
poro-magnetic, 373
product relation, 302
recent work, 300
second sound, 314, 318
three-dimensional, 305

Acoustic waves
amplitudes, 294
boundary conditions, 293
Bowen theory, 289, 291
Cattaneo model, 349
dual phase - lag model, 358

equivalent fluid theory, 337
Jordan - Darcy theory, 339
kerosene-sandstone, 294
magnetic effects, 373
ocean bed, 289
temperature displacement effects,

366
temperature effects, 344
temperature rate effects, 360
variable porosity model, 289, 291

Anisotropic permeability
Darcy equations, 149
transversely isotropic, 14
with Darcy’s law, 13

Biological processes
cheese drying, 196
chemoattraction, 194
chemorepulsion, 194
chemotaxis, 193, 194
glia aggregation, 194
interface reactions, 193
swimming bacteria, 193
virus transport, 193

Boundary conditions
Beavers - Joseph condition, 242
Jones condition, 273
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porous - fluid Poiseuille flow, 269
porous media, 15
transition layer, Poiseuille flow, 273

Brinkman equations, 12
Brinkman model

convergence, 43
equations, 150
equations for, 12
non-zero boundary conditions, 42
spatial decay, 111

Carbon dioxide storage, 202
Chebyshev tau method

D method, 389
D2 method, 381
fluid over porous layer, 385
general theory, 381
natural variables, 390
penetrative convection, 384

Compound matrix method
fourth order equation, 377
penetrative convection, 379

Compressible porous flows
Graffi function, 93
models, 82
uniqueness, 83

Continuous dependence
Brinkman-Forchheimer model, 37
definition, 8
Dufour coefficient, 55
Krishnamurti coefficient, 48
on cooling coefficient, 28
on Forchheimer coefficients, 32, 34
on initial data, 8
on interface coefficient, 75
on viscosity, 39
Vadasz coefficient, 44

Coupling parameters
Brinkman problem, 164
throughflow, 187

Crystal growth, 262

Darcy model
anisotropic, 13
Darcy’s law, 10
equations, 10, 148
pointwise constraint, 171
with anisotropic permeability, 149

Deformation gradient tensor, 298

Double diffusive convection
in porous medium, 168

Dual phase lag theory, 358

Eigenvalues
D method, 389
D2 method, 381
Chebyshev tau, 381
compound matrices, 377
fluid/porous, 385
for penetrative convection, 379,

384, 390, 395
fourth order equation, 376
Legendre-Galerkin method, 391
natural variables, 390
numerical solution, 375
second order equation, 375
shooting method, 375

Elastic materials with voids
acceleration waves, 307, 312
De Cicco-Diaco model, 325
microstretch theory, 332
Nunziato - Cowin theory, 16
theory, 308
thermal displacement, 325
thermodynamics, 310, 316
type III thermoelasticity, 329
with temperature waves, 314, 318

Energy growth
Couette flow, 211
parallel flows, 210
Poiseuille flow, 211
salinization, 205

Energy method
anisotropic Darcy equations, 159
for Brinkman equations, 162
for the Darcy equations, 151
for the Forchheimer equations, 158

Exchange of stabilities
Brinkman equations, 164
for the Darcy equations, 153
thermal non-equilibrium theory,

176
Extrapolation technique, 375

Fluid-porous Poiseuille flow
Brinkman - Forchheimer / Darcy

model, 284
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Darcy model, 267
Forchheimer - Darcy model, 276
three layer model, 272, 276, 284
transition layer, 272, 276, 284

Forchheimer equations, 12
Forchheimer model

energy bounds for, 35
equations, 148
forms of, 12
spatial decay, 120
structural stability, 31

Gas storage
carbon dioxide, 202
hydrogen, 204

Glia aggregation
boundary conditions, 195
equations for, 194
stability measure, 196

Global warming
ice shelf melting, 258
under ice melt ponds, 260

Heat pipes
two phase flow, 265

Heated and salted below, 168
Hydrogen storage, 204

Inequalities
arithmetic-geometric mean

inequality, 8
Babuska - Aziz inequality, 102
Cauchy-Schwarz inequality, 8
Horgan-Payne inequality, 137
Sobolev inequality, 79
triangle inequality, 187
Young’s inequality, 8, 188

Instability
abstract equation, 166
anisotropic equations, 160
Brinkman equations, 164
Darcy equations, 152
definition, 7
Forchheimer equations, 159
resonance, 180

Legendre-Galerkin method
2, 3-D problems, 395, 397
fourth order equation, 391

general coefficients, 397
penetrative convection, 395

Maximum principle
for concentration, 39
for temperature, 45

Micropolar effects
boundary conditions, 196
in porous flow, 196

Microstretch theory
acceleration waves, 332
acoustic tensors, 335
basics, 17
equations, 332
propagation conditions, 335

Mixture theories
boundary conditions, 293
Bowen equations in acoustics, 290
Bowen theory, 22
Eringen equations in acoustics, 339
Eringen theory, 18
linear waves, 291
porosity equation, 291

Multiphase flow
contaminant transport, 237
emulsion transport, 230
freezing of food, 230
heat pipe, 227
microwave heating, 230
Pestov model, 227
sol-gel processes, 230
stability analysis, 227
two phase flow, 265

Nonlinear density and heat source,
177

Nonlinear elasticity
acceleration waves, 300
equations, 298
Piola-Kirchoff stress, 298

Nonlinear stability
abstract equation, 167
anisotropic equations, 161
Brinkman equations, 164
Darcy equations, 154
Forchheimer equations, 159
resonance, 181
throughflow, 186
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Orr-Sommerfeld equation
fluid - porous medium, 270
fluid - two layer porous medium,

275
in a fluid, 212
in a porous medium, 235

Parallel flows
asymptotic solution, 235
in a permeable conduit, 236
Poiseuille flow, 210, 234
porous Orr-Sommerfeld equation,

235
Parametric differentiation

Brinkman equations, 165
for anisotropic equations, 161
for Darcy equations, 156

Poiseuille flow
in a fluid, 211
in porous media, 234

Poroacoustic waves
Cattaneo model, 349
dual phase lag, 358
equivalent fluid theory, 337
Green-Laws theory, 360
Green-Naghdi theory, 366
Jordan - Darcy theory, 339
Jordan-Darcy temperature model,

344
magnetic field effect, 373

Porosity, 1
Porous - fluid interface

Brinkman model, 244
Brinkman-Forchheimer model, 244
continuous dependence on interface

coefficient, 75
Forchheimer model, 243
models for, 239
Navier-Stokes, 240
Nield-Darcy model, 241
numerical methods, 72
penetrative convection, 244
porosity variation, 253
reacting layers, 246
references, 72
spatial decay, 142
surface tension, 246
theories, 72, 239
transition layer, 272, 276, 284

Porous materials
animal fur, 2
building materials, 2
composite materials, 4
computer chips, 2
copper foam, 2
exhaust systems, 4
foodstuffs, 4
lava, 2
sandstone, 2
Stokes’ problem, 200
wood, 2

Porous medium equation, 11

Resonance
linear instability, 180
nonlinear stability, 181
penetrative convection, 177

Salinization
energy growth, 205
Gilman-Bear model, 205
other models, 208
stability analysis, 218
transient growth, 220

Salt equation, 15
Spatial decay

Brinkman equations, 111
Darcy equations, 96
energy function, 98
fluid-porous model, 142
Forchheimer equations, 120
gradient of temperature, 112
gradient of velocity, 114
Horgan-Payne inequality, 137
in Continuum mechanics, 95
Krishnamurti model, 132
quadratic density, 96
second order differential inequality,

119
Stability

conditional, 8
definition, 7
global, 186
multiphase flow, 227
nonlinear, 151
of thermal convection, 150
pointwise constraint, 171
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resonance, 177
second grade fluid, 200
thermal non-equilibrium model,

173
unsaturated porous media, 232
with throughflow, 183, 186

Stokes’ flow
in a porous medium, 200
nonlinear Stokes’ flow, 28

Structural stability
blow-up time, 76
Brinkman-Forchheimer equations,

37
convergence, 43
definition, 27
Forchheimer model, 31
initial-final value problems, 69
unbounded domain, 83
uniqueness, 83

Symmetry
abstract equation, 166
far from, 167, 210
symmetrization method, 170

Temperature equation, 14
Thermal convection

above a porous layer, 239
and symmetry, 166
anisotropic permeability, 149, 159
Brinkman equations, 163
crystal growth, 262
Darcy equations, 148
Forchheimer equations, 148, 158
global stability, 186
heated and salted below, 168
melting ice, 258
micro effects, 193
porosity effects, 253
resonance, 177
thermal non-equilibrium model,

173
turbulence, 222
viscoelastic effects, 198
with throughflow, 183

Thermal non-equilibrium
applications, 172
equations, 173

hot fluid injection, 173
stability, 174

Throughflow in porous media
Forchheimer model, 184
global stability, 186
penetrative convection, 183

Transition layer
Brinkman - Forchheimer layer, 284
Brinkman layer, 272
Forchheimer layer, 276
porous - fluid interface, 272, 276,

284
Turbulent convection

τ function, 225
background method, 223
in porous media, 222

Unconditional stability
and lack of symmetry, 210
anisotropic equations, 161
Brinkman equations, 164
Darcy equations, 154
definition, 8
Forchheimer equations, 159
resonance, 181
throughflow, 186

Uniqueness
Graffi method, 83
porous equations, 83
unbounded domain, 83

Unsaturated porous media
model equations, 231
stability, 232
transient growth, 233

Variational problem for RE

anisotropic equations, 161
Brinkman equations, 165
constraint, 172
for Darcy equations, 155
thermal non-equilibrium theory,

176
throughflow, 190

Viscoelastic effects
generalized second grade fluid, 201
second grade fluid, 200
thermal convection, 198
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