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Preface

Tauberian operators were introduced to investigate a problem in summability
theory from an abstract point of view. Since that introduction, they have made a
deep impact on the isomorphic theory of Banach spaces. In fact, these operators
have been useful in several contexts of Banach space theory that have no apparent
or obvious connections. For instance, they appear in the famous factorization of
Davis, Figiel, Johnson and Pe�lczyński [49] (henceforth the DFJP factorization),
in the study of exact sequences of Banach spaces [174], in the solution of certain
summability problems of tauberian type [63,115], in the problem of the equivalence
between the Krein-Milman property and the Radon-Nikodým property [151], in
certain sequels of James’ characterization of reflexive Banach spaces [135], in the
construction of hereditarily indecomposable Banach spaces [13], in the extension
of the principle of local reflexivity to operators [27], in the study of certain Calkin
algebras associated with the weakly compact operators [16], etc. Since the results
concerning tauberian operators appear scattered throughout the literature, in this
book we give a unified presentation of their properties and their main applications
in functional analysis. We also describe some questions about tauberian operators
that remain open.

This book has six chapters and an appendix. In Chapter 1 we show how the
concept of tauberian operator was introduced in the study of a classical problem
in summability theory–the characterization of conservative matrices that sum no
bounded divergent sequences–by means of functional analysis techniques. One of
those solutions is due to Crawford [45], who considered the second conjugate of the
operator associated with one of those matrices. Crawford’s solution led Kalton and
Wilansky to introduce tauberian operators in [115] as those operators T : X −→ Y
acting between Banach spaces for which T ∗∗(X∗∗\X) ⊂ Y ∗∗\Y , where T ∗∗ denotes
the second conjugate of T .

Chapter 2 displays the basic structural properties of the class of tauberian
operators; in particular, the links between tauberian operators, weakly compact
operators and reflexivity. We present some basic examples and describe the most
important characterizations of tauberian operators: the sequential characteriza-
tion of Kalton and Wilansky [115], the geometrical characterizations obtained by
Neidinger and Rosenthal [135], the characterization in terms of reflexivity of the



viii Preface

kernel of the compact perturbations given in [92], the algebraic characterization
obtained in [92], and some characterizations in terms of the action of tauberian
operators upon basic sequences proved by Holub [103].

We begin Chapter 3 by introducing the cotauberian operators as those op-
erators T such that T ∗ is tauberian. Next we give the main properties of these
operators. Several results show that cotauberian operators form the right class to
be taken as the dual class of the tauberian operators. However, this relationship of
duality is not perfect: we give an example, obtained in [8], of a tauberian operator
T such that T ∗ is not cotauberian. We also include a perturbative characterization
and an algebraic characterization for the cotauberian operators similar to those
obtained for the tauberian operators in the previous chapter.

We describe an improved version of the DFJP factorization, obtained in [68],
which allows us to show plenty of examples of tauberian and cotauberian operators:
every operator T : X −→ Y can be factorized as T = jUk, with j tauberian, k
cotauberian and U a bijective isomorphism. Moreover, this version behaves well
under duality.

The DFJP factorization has received a lot of attention. In particular, several
variations of it have been introduced. We describe an isometric variation and a
conditional variation. The first one was introduced by Lima, Nygaard and Oja [119]
to study the approximation property of Banach spaces, and the second one was
introduced by Argyros and Felouzis [13] to construct examples of hereditarily
indecomposable Banach spaces. Moreover, following Beauzamy’s exposition [21],
we show that the intermediate space in the DFJP factorization can be identified
with a real interpolation space for certain values of the interpolation parameters.

We treat other situations in which tauberian operators appear. For example,
following [32, 35], we show that the natural embedding of certain Orlicz function
spaces LΦ(μ) into L1(μ) is a tauberian operator if and only if for every Banach
space X the natural embedding of the space of vector-valued functions LΦ(μ, X)
into L1(μ, X) is a tauberian operator.

The aforementioned characterizations show that the tauberian and the co-
tauberian operators are closely linked to the operator ideal of the weakly compact
operators. Following [89,90,92], we consider four other operator ideals that admit
sequential characterizations. We show that each one has two classes of associated
operators similar to the tauberian and the cotauberian operators. The first of these
classes is defined in terms of sequences and the second one is defined by duality.
We show that both classes admit a perturbative characterization and an algebraic
characterization.

Chapter 4 is devoted to the study of tauberian operators T : L1(μ) −→ Y ,
where μ is a finite measure and Y is a Banach space [75]. The characterizations
of relatively weakly compact subsets of L1(μ) are applied to obtain some useful
characterizations of these tauberian operators and show that their properties are
better than those of the general tauberian operators. For example, the set of
tauberian operators from L1(μ) into Y is open in the set of all operators, and one
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of these operators T is tauberian if and only if so is its second conjugate.

In Chapter 5 we describe the main applications of tauberian operators in
Banach space theory. Following Schachermayer in [151] and the exposition in [67],
we show that, for a Banach space X for which there exists a tauberian operator
T : X ×X −→ X , the Radon-Nikodým property and the Krein-Milman property
are equivalent. We also show that tauberian operators preserve some isomorphic
properties: following Neidinger’s thesis [133], we show that, given a tauberian
operator T : X −→ Y and a bounded subset C of X , some isomorphic properties
of the set T (C) are inherited by C and some isomorphic properties of the space
Y are inherited by X .

Using the version of the DFJP factorization presented in Chapter 3, we show
that some operator ideals A possess the factorization property: each operator in A
factors through a Banach space whose identity belongs to A. Here we include some
results of Heinrich [100] and some extensions of these results obtained in [68]. We
also show that these factorization results can be extended in two directions: one
of them by showing that we can obtain a uniform factorization of this kind for the
operators of a compact set of operators [73], and the other one (see [71, 72]) by
showing that the definition of some operator ideals can be extended to holomorphic
mappings f : X −→ Y acting between Banach spaces X and Y , and that in some
cases these maps can be written as f = T ◦ g or f = g ◦ T , where g is another
holomorphic mapping and T is an operator that belongs to the same operator
ideal as f .

We also give some applications of the isometric variation of the DFJP fac-
torization to study the approximation property of Banach spaces, due to Lima,
Nygaard and Oja [119], and following Astala and Tylli [16], we characterize the
weakly compact approximation property of Banach spaces in terms of the weak
Calkin algebra.

In Chapter 6 we consider some classes of operators that have a similar behav-
ior to that of tauberian operators. Some of these classes were named semigroups
in [89,90,92], following Lebow and Schechter [118] who did it for the semi-Fredholm
operators. Finally, the notion of an operator semigroup was axiomatized in [1] as
a counterpart to Pietsch’s concept of an operator ideal [139].

Every operator idealA has two semigroupsA+ andA− associated in a similar
way as the weakly compact operators have the tauberian and the cotauberian
operators. We summarize the main properties of these two operator semigroups
and show other general constructions that provide semigroups.

We describe a strongly tauberian operator and its dual class, introduced by
Rosenthal [147]. Moreover, we show how tauberian operators have been useful in
distinguishing between the different concepts of local representability of operators
that have appeared in the literature.

We study in some detail the ultrapower-stable operator semigroups. For that
purpose, we consider two different types of finite representability for operators: lo-
cal representability and local supportability. As an application, we investigate the
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class of supertauberian operators, which is the largest ultrapower-stable semigroup
contained in the class of tauberian operators, and their dual class: the cosuper-
tauberian operators.

Each chapter ends with a section of Notes and Remarks where we include
some comments, complementary results and bibliographical references.

This book is addressed to graduate students and researchers interested in
functional analysis and operator theory. The prerequisites for reading this book are
a basic knowledge of functional analysis, including the consequences of the Hahn-
Banach theorem and the open mapping theorem. Familiarity with the rudiments
of Fredholm theory for operators and some parts of Banach space theory, like
criteria for the existence of basic subsequences from a given sequence, Rosenthal’s
�1-theorem, ultraproducts and the principle of local reflexivity would be helpful.
For the convenience of the reader, a brief exposition of these prerequisites has been
included in Appendix A.

Our intention has been to present a self-contained exposition of the funda-
mental results of the subject. When describing the applications, sometimes we give
a reference instead of a complete proof.

Many people gave us information or advice during the preparation of the
manuscript. Thanks are due in particular to Teresa Álvarez, Joe Diestel, Hans
Jarchow, Antonio Martinón, Olav Nygaard, Eve Oja, Javier Pello, Antonia Salas
and Hans-Olav Tylli for their useful comments. Thanks should also go to our
colleagues of the Mathematics Department of the Universidad de Cantabria and of
the Universidad de Oviedo for a friendly working environment. Financial support
from the Spanish government institution for the promotion of research (Grants
MTM2005-03831 and MTM2007-67994) is duly acknowledged.

Manuel González and Antonio Mart́ınez-Abejón
Santander and Oviedo, April 2009



Notation

Henceforth, capital letters X , Y and Z denote Banach spaces. Most of the time
we work with real scalars but, in a few places, we need complex scalars. Moreover,
BX and SX are the closed unit ball and the unit sphere of X , X∗ is the first dual
of X , X∗∗ the second dual (or bidual), and X∗(n) the n-th dual.

Given a Banach space X , its elements will be denoted by small letters x, y,
z; the elements of its dual X∗ by x∗, y∗, and the elements of X∗∗ by x∗∗, y∗∗,
etc. Given x ∈ X and x∗ ∈ X∗, 〈x∗, x〉 denotes the value attained by x∗ at x. We
denote by JX : X −→ X∗∗ the canonical embedding of X into X∗∗. In most cases
we identify X with JX(X).

The symbol w will stand for the weak topology σ(X, X∗) on X . Thus, in X∗

w is σ(X∗, X∗∗) and w∗ is σ(X∗, X) when this notation is sufficiently clear. For
instance, if we say that x∗∗ is a w∗-cluster point of a subset A of X , w∗ stands for
the topology σ(X∗∗, X∗) of X∗∗.

The norm closure of a subset A of X is denoted by A; its closure with respect
to w is represented by A

σ(X,X∗)
or A

w
; the annihilator of A in X∗ is

A⊥ := {x∗ ∈ X∗ : 〈x∗, x〉 = 0, ∀x ∈ A}.

Analogously, given a subset B of X∗, its closure with respect to the weak∗ topology
of X∗ is denoted by B

σ(X∗,X)
or B

w∗
. Moreover, B⊥ denotes the annihilator

{x ∈ X : 〈x∗, x〉 = 0, ∀x∗ ∈ B}.
The subspaces of a Banach space X that we consider are not necessarily

closed; given a nonempty subset A of X , span{A} represents the subspace gener-
ated by A and span{A} is the norm-closure of span{A}.

Given a pair of Banach spaces X and Y , L(X, Y ) denotes the set of all
bounded linear maps –henceforth operators– acting between X and Y .

An isomorphism is an injective operator T ∈ L(X, Y ) with closed range (not
necessarily bijective). Note that for every isomorphism T : X −→ Y , there exists
a constant d > 0 such that d−1 ≤ ‖T (x)‖ ≤ d for all x ∈ SX . So we shall say that
T is a d-injection, or a metric injection if d = 1.

We will say that we identify two Banach spaces X and Y when there is
a bijective isomorphism A : X −→ Y . Similarly, we will say that we identify two
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operators S ∈ L(Y, Z) and T ∈ L(V, X) when there are two bijective isomorphisms
A : Y −→ V and B : X −→ Z so that S = BTA.

The null operator and the identity on X are denoted by 0X and IX . Given
T ∈ L(X, Y ), its kernel and range are N(T ) and R(T ), its co-kernel is Y/R(T ),
its conjugate operator is T ∗ : Y ∗ −→ X∗, its second conjugate is T ∗∗ and T ∗(n)

represents the n-th conjugate operator of T .
The class of all operators is denoted by L. Given a class of operators A, its

component of operators acting between X and Y is

A(X, Y ) := A∩ L(X, Y ).

In the case X = Y we usually write A(X) instead of A(X, X).
Given a closed subspace E of a Banach space X , JE : E −→ X denotes the

natural embedding of E into X , and QE : X −→ X/E represents the quotient
operator; we recall that QE

∗ maps (X/E)∗ onto E⊥ isometrically; moreover, since
N(JE

∗) = E⊥, the operator JE
∗ induces an isometry from X∗/E⊥ onto E∗ that

maps x∗ + E⊥ to x∗ ◦ JE ; thus, we identify (X/E)∗ with E⊥, X∗/E⊥ with E∗,
(X/E)∗∗ with X∗∗/E⊥⊥ and E∗∗ with E⊥⊥.

Given a set I of indices, �p(I) denotes the Banach space of all families of
real numbers (xi)i∈I endowed with the norm ‖(xi)i∈I‖p :=

(∑
i∈I |xi|p

)1/p if
1 ≤ p < ∞, and ‖(xi)i∈I‖∞ := supi∈I |xi|. Given a family of Banach spaces
{Xi : i ∈ I}, we denote by �p(I, X) the Banach space of all families (xi)i∈I with
xi ∈ Xi endowed with the norm ‖(xi)i∈I‖p := ‖(‖xi‖)i∈I‖p. However, in the case
I = N and Xi = X for all i, we just write �p(X), and given a couple X1 and X2

of Banach spaces, �p({1, 2}, Xi) is denoted by X1 ⊕p X2.



Chapter 1

The origins of tauberian
operators

In 1976, Kalton and Wilansky [115] coined the term tauberian to designate those
bounded operators T : X −→ Y acting between Banach spaces that satisfy

(1.1) T ∗∗(X∗∗ \X) ⊂ Y ∗∗ \ Y .

In this chapter we intend to answer the two following questions:

Question 1. Why are they called tauberian?

Question 2. When and why did those operators first appear?

1.1 Tauberian conditions in summability theory

In order to answer Question 1, we need to go back in time to 1897, when Tauber
proved that if

(1.2) lim
x→1−

∞∑
n=0

anxn = λ

and

(1.3) lim
n

an/n = 0,

then

(1.4)
∞∑

n=0

an = λ.



2 Chapter 1. The origins of tauberian operators

This is a conditioned converse of Abel’s theorem which states that (1.2) is a
consequence of (1.4) without the mediation of any hypothesis such as (1.3). Since
then, it has been customary to classify certain types of theorems into abelian (or
direct) or tauberian according to the following abstract and rather vague scheme:
consider a category A and let p1 and p2 denote a pair of properties. Suppose that
the following statement holds:

(1.5) let f be a fixed morphism in the category A; if x verifies p1, then f(x)
verifies p2.

Let us also assume that its converse fails but it becomes true when an additional
condition (t), like (1.3) in Tauber’s theorem, is satisfied. In that case, condition
(t) is a tauberian condition, the statement

(1.6) if the condition (t) holds and f(x) verifies p2, then x verifies p1;

is a tauberian theorem, and statement (1.5) is an abelian theorem. Indeed, Hardy
[97] described the above classification with the following words:

“A tauberian theorem may be defined as the corrected form of the false
converse of an abelian theorem. An abelian theorem asserts that, if a
sequence or function behaves regularly, then some average of it behaves
regularly.”

It is not simple at all to provide a more precise definition of a tauberian
theorem in regard to the variety of fields where tauberian theorems occur: [37],
[55], [167], [168], and so on.

Let us now fix an operator T : X −→ Y (henceforth, when we say operator
we mean bounded linear operator) and consider the following statement:

(1.7) (xn) contains a weakly convergent subsequence if (Txn) is convergent and
the tauberian condition of boundedness of (xn) holds.

The main result in [115] establishes that statement (1.1) is satisfied by T if and
only if (1.7) is so. The formal similitude between statements (1.6) and (1.7) demon-
strate the tauberian character of those operators satisfying (1.1), which answers
Question 1.

1.2 Tauberian matrices

With regard to Question 2, we shall see that the concept of tauberian operator
deepens its roots in summability theory, a branch of mathematics whose orig-
inal purpose was assigning limits to sequences that are not convergent in the
usual sense. One of the typical techniques in summability theory is the matrix
method: consider an infinite matrix A = (aij)∞i=1

∞
j=1. A sequence of complex

numbers x = (xi)i is said to be A-summable (or A-limitable) if the sequence
Ax := (

∑∞
j=1 aijxj)i is well defined and convergent. In that case, limi Ax is de-

noted limA xi and assigned to the sequence x. Thus, denoting by c the set of
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all convergent sequences of real numbers, answers to the following questions are
required:

– What is the set ωA formed by all the sequences x for which Ax exists?

– What is the set cA formed by all the A-summable sequences?

– Does cA contain c?

– If c ⊂ cA, does A preserve limits?

Remark 1.2.1. When c ⊂ cA, matrix A is called conservative. Moreover, if limi xi =
limA xi for all (xi) ∈ c, then A is called regular.

A genuine example of the interest in regular matrices that sum bounded
divergent sequences is provided by Féjer’s theorem, which uses the Cesàro matrix
to recover any function f ∈ Lp(0, 2π) from its Fourier series.

Intensive research on matrix methods was only possible after the discovery
in 1911 of the classical Toeplitz-Silverman conditions which assert that a matrix
A = (aij)∞i=1

∞
j=1 is conservative if and only if

(i) ‖A‖ := supi

∑
j |aij | <∞;

(ii) there exists s := limi si, where si :=
∑

j aij;

(iii) there exists aj := limi aij for each j.

Indeed, the Toeplitz-Silverman conditions allow us to identify every con-
servative matrix A with an operator SA : c −→ c and also with an operator
TA : �∞ −→ �∞, both of them defined by the expression Ax when x belongs
respectively to the domains c or �∞, so ‖SA‖ = ‖TA‖ = ‖A‖.

Searching for criteria to decide whether or not a conservative matrix sums a
bounded divergent sequence became an engaging activity during the 1950s: [125],
[161], [171], [172], etc. The next decade brought new characterizations with an
undoubtedly algebraic character. Thus, Copping [44] obtained the following result:
(1.8) Let A be a conservative matrix such that TA is injective. Then A sums no

bounded divergent sequence if and only if there is a conservative matrix B
which is a left inverse of A.

In 1964, Wilansky [168] improved Copping’s result by replacing the injectivity
of TA with the weaker condition of injectivity of SA. For the same matrices that
same year, Berg [28] obtained the following characterization:
(1.9) Let A be a conservative matrix such that SA is injective. Then A sums no

bounded divergent sequence if and only if A is not a left-topological divisor
of zero, that is, there exists ε > 0 such that for every norm one element
x ∈ c, ‖Ax‖ ≥ ε.

Obviously, if SA is injective, then A is a left-topological divisor of zero if
and only if the range of SA is not closed. A definitive improvement dropped the
hypothesis of injectivity of SA in (1.9):
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(1.10) A conservative matrix A sums no bounded divergent sequence if and only
if the operator SA : c −→ c has closed range and finite-dimensional null-
space.

Wilansky called tauberian the conservative matrices that sum no bounded diver-
gent sequence [170].

Statement (1.10) was obtained with different proofs by Crawford in 1966 [45],
Whitley in 1967 [166], and Garling and Wilansky in 1972 [63]. Each of the above
mentioned papers meant a new stage in the increasing presence of functional anal-
ysis in summability theory, which paved the way for the first appearance of taube-
rian operators. Crawford’s main contribution to the attainment of (1.10) is the
introduction of duality techniques by means of the following result:

(1.11) Given a conservative matrix A, we have TA
−1(c) ⊂ c if and only if

S∗∗A
−1(c) ⊂ c.

Note that, in general, the operators TA and S∗∗A are not equal. Indeed, TA is
represented by the matrix A, but since the canonical embedding of c into its
bidual space, �∞, maps every sequence (xi) to (limi xi, x1, x2, . . .), the operator
S∗∗A is represented by the matrix

P =

⎛⎜⎜⎝
s a1 a2 . . .
s1 − s a11 − a1 a12 − a2 . . .
s2 − s a21 − a1 a22 − a2 . . .
. . . . . . . . . . . .

⎞⎟⎟⎠ .

Crawford overcomes that difficulty by substitution of c for an isomorphic space,
c0, and taking advantage of the fact that for every operator L : c0 −→ c0, both L
and L∗∗ are representable by the same matrix. Thus, he considers the surjective
isomorphism U : c0 −→ c that maps e1 to the constant sequence (1, 1, . . .) and
ei to ei−1 for i > 1, and takes the operator R := U−1SAU which is matrix
representable by P . Next, by means of classical techniques of matrix summability,
Crawford obtains the following result:

(1.12) TA
−1(c) ⊂ c if and only if (R∗∗)−1(c0) ⊂ c0;

and since R is an isomorphism, statement (1.12) yields (1.11).

1.3 Tauberian operators

Garling and Wilansky’s innovation with respect to Crawford’s proof is that they
study a general operator T : X −→ Y satisfying T ∗∗−1(Y ) ⊂ X prior to consider-
ation of the particular case X = Y = c. Thus they deduce the following results:
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(1.13) Let X and Y be a pair of Banach spaces, and T : X −→ Y an operator.
Consider the conditions

(i) T ∗∗−1(Y ) ⊂ X,

(ii) N(T ∗∗) ⊂ X,

(iii) N(T ) is reflexive.

Then (i)⇒(ii)⇒(iii) and neither implication can be reversed.

(1.14) Moreover, for T with closed range the three conditions are equivalent.

Garling and Wilansky obtained (1.10) with the following argument: if A is
a conservative matrix that sums no bounded divergent sequence, then Crawford’s
result (1.11) yields S∗∗A

−1(c) ⊂ c, and by condition (i) in (1.13) it follows that
N(S∗∗A ) is reflexive, and therefore finite-dimensional because c contains no infinite-
dimensional reflexive subspace. They offer no new proof of the fact that R(SA) is
closed. Conversely, if R(SA) is closed and N(SA) is finite-dimensional, then N(SA)
is trivially reflexive, so (1.14) shows that S∗∗A

−1(c) ⊂ c, hence (1.11) yields A sums
no bounded divergent sequence.

As far as we know, Crawford’s statement (1.11) contains the first applica-
tion of tauberian operators, but condition (i) in (1.13) is the first appearance of
tauberian operators with the same level of generality given in (1.1). Garling and
Wilansky stimulated interest in tauberian operators posing the following ques-
tions:

Question 1.3.1. For which pairs of non-reflexive Banach spaces X and Y can the
assumption “closed range” be dropped in (1.14)?

Question 1.3.2. For which non-reflexive Banach spaces X and Y does condition
(i) in (1.13) imply R(T ) closed?

Sufficient and necessary conditions for the equivalence between the three
clauses of (1.13) were found by Kalton and Wilansky in [115], published in 1976.
Their paper, which only uses functional analysis and Banach space theory, popu-
larized the term tauberian for the operators defined in (1.1).

Full answers to Questions 1.3.1 and 1.3.2 are still unknown. However, the
following sufficient condition was shown in [115]:
(1.15) If X contains no reflexive infinite-dimensional subspace and T : X −→ Y

is tauberian, then T is upper semi-Fredholm.

Let us recall that an operator T : X −→ Y is said to be upper semi-Fredholm
if it has closed range and finite dimensional kernel.

The reader will realize that (1.15), combined with Crawford’s result (1.11),
yields an immediate proof of (1.10). This observation was made by Wilansky
in [170, Section 17.6]. But the most important fact concerning [115] is that it led
to further research focused on tauberian operators. In fact, Kalton and Wilansky
suggested that Statement 1.15 could be extended to more Banach spaces X other
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than those with no reflexive infinite-dimensional subspaces. In particular, as c0 is
isomorphic to a Banach space of continuous functions, they posed the following
question:

Question 1.3.3. Given a pair of spaces of continuous functions, C(K) and C(L),
is a tauberian map T : C(K) −→ C(L) an isomorphism in some sense?

Kalton and Wilansky also asked in [115] about duality of tauberian operators:

Question 1.3.4. When is it true that an operator T : X −→ Y is tauberian if and
only if T ∗∗ is so?

Question 1.3.4 was suggested by the fact that its answer is positive when T
has a closed range.

Besides, an operator T : X −→ Y is tauberian if and only if the operator
T co : X∗∗/X −→ Y ∗∗/Y , given by T co(x∗∗ + X) := T ∗∗(x∗∗) + Y , is injective. So
Kalton and Wilansky asked:

Question 1.3.5. Given an operator T ∈ L(X, Y ), when is T co an isomorphism?

Answers to these questions and subsequent results have been collected and
organized in the chapters indicated in the next section.

1.4 Notes and Remarks

As we have already said, the first work entirely devoted to tauberian operators
is [115], which came to light in 1976 from the hands of Kalton and Wilansky.
But there are two other papers concerning tauberian operators, [49] and [174],
published respectively in 1974 and in 1976. The authors of [115] and [174], prior to
submission, were acquainted with the contents of the three mentioned papers, but
a closer look at them reveals that actually [49], [115] and [174] are mathematically
independent and pursue different ends. Thus, in [174], Yang extends the theory
of Fredholm operators to the case of tauberian operators with closed range. His
results lead to a presentation of reflexivity in Banach spaces from a homological
point of view. In [49], Davis, Figiel, Johnson and Pe�lczyński obtain their famous
factorization for weakly compact operators, which is the main source of examples of
tauberian operators. It shall be the subject of further study in Chapter 3. Finally,
as has been thoroughly explained in Chapter 1, paper [115] can be regarded as the
continuation of the work of Garling and Wilansky [63] published in 1972, putting
an endpoint to a longstanding problem in summability theory: the characterization
of tauberian matrices. These arguments have led us to consider [63] and [115] as
the seminal papers in the study of tauberian operators. Let us notice that the
role played by tauberian operators in the solution of the aforementioned problem
of tauberian matrices has been recognized by some summability theorists [116, p.
262].

Since this book is not primarily concerned with summability theory, the
reader interested in that subject should consult [37], [116] or [170]. The first two
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references are very exhaustive monographs, while the third one is concise but
contains most of the material about summability dealt with in Chapter 1, including
the results in Crawford’s Ph.D. thesis. The historical exposition about tauberian
operators described in this chapter has been borrowed from [86].

Proofs for statements (1.13) and (1.15), as well as sufficient and necessary
conditions for the equivalence between the statements (1.13), can be found in
Chapter 2.

Question 1.3.3 was partially solved by Lotz, Peck and Porta [124], who proved
that a compact space K is scattered if and only if every injective tauberian operator
from C(K) into a Banach space Y is an isomorphism.

Regarding Question 1.3.4, it is immediate, after Proposition 2.1.3, that T is
tauberian provided that T ∗∗ is so as well. However, we shall see in Chapter 3 that
the converse fails.

A partial answer to Question 1.3.1 is given in Proposition 2.1.12, which states
that if X is a weakly sequentially complete Banach space, then every operator
T : X −→ Y with property (N) is tauberian. Moreover, if X is contained in a
space L-embedded in its bidual, then T co is an isomorphism. This fact, proved by
Bermúdez and Kalton [29] and included in Chapter 6, means a partial answer to
Question 1.3.5.

The operators T for which T co is an isomorphism have been studied by
Yang [175] and by Rosenthal, who called them strongly tauberian [147]. The most
important structural properties and applications of strongly tauberian operators
are dealt with in Chapter 6.



Chapter 2

Tauberian operators.
Basic properties

This chapter is devoted to the general properties and characterizations of tauberian
operators, with special emphasis on their relationship to reflexivity.

Tauberian operators and their most elementary properties are formally in-
troduced in Section 2.1. One of them is the following: an operator T ∈ L(X, Y ) is
tauberian if and only if T (BX) is closed and N(T ∗∗) = N(T ), which implies that
N(T ) is reflexive.

Section 2.2 exhibits the main characterizations of tauberian operators which
will be used throughout this book, sometimes without explicit mention. In partic-
ular, it contains Kalton and Wilansky sequential characterizations for tauberian
operators (Theorem 2.2.4) and for operators T with N(T ∗∗) = N(T ) (Theorem
2.2.2), which are derived from the Eberlein-Smulian theorem. A sequel is given in
Theorem 2.2.7, which proves that an operator T ∈ L(X, Y ) is tauberian if and
only if, for every compact operator K ∈ L(X, Y ), the kernel N(T +K) is reflexive.

Section 2.3 pays particular attention to the research of Neidinger and Rosen-
thal on the action of tauberian operators over closed convex sets, which has a
significant impact on the study of the Radon-Nikodým and the Krein-Milman
properties, as we shall see in Chapter 5. Its main result states that T ∈ L(X, Y )
is a tauberian operator if and only if T (BE) is closed for every closed subspace E
of X . This characterization is a consequence of a fundamental theorem of James,
which asserts that a Banach space X is reflexive if and only if every functional
x∗ ∈ X∗ attains its norm on BX .

Finally, Section 2.4 describes some results, due to Holub, on the action of
tauberian operators over shrinking basic sequences and boundedly complete ba-
sic sequences. Note that the closed linear span of a basic sequence is a reflexive
subspace if and only if that sequence is both shrinking and boundedly complete.
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2.1 Basic facts about tauberian operators

Let us start by recalling the definition of a tauberian operator formally introduced
by Kalton and Wilansky in [115].

Definition 2.1.1. An operator T ∈ L(X, Y ) is said to be tauberian whenever
T ∗∗−1(Y ) ⊂ X .

The notion of weakly compact operator is inseparable from that of tauberian
operator. As working definition, we adopt the following:

Definition 2.1.2. An operator T ∈ L(X, Y ) is said to be weakly compact whenever
T ∗∗(X∗∗) ⊂ Y .

The action of a tauberian operator in its domain is, to some degree, opposite
to the action of a weakly compact operator. Indeed, let us agree to call non-trivial
any element x ∈ X∗∗ \ X . Thus, an operator T is tauberian if no non-trivial
element is mapped by T ∗∗ to a trivial element, while T is weakly compact if T ∗∗

maps each non-trivial element to a trivial one.
Henceforth, the class of all tauberian operators and that of all weakly compact

operators will be respectively denoted by T and W . According to our notation,
their respective components of operators acting between the spaces X and Y will
be represented by T (X, Y ) and W(X, Y ).

The most basic properties regarding the interaction between the classes T
and W are included in the following result. Its proof is straightforward.

Proposition 2.1.3. Let T and S be a pair of operators in L(X, Y ), and U an
operator in L(Y, Z). Then the following statements hold:

(i) if both T and U are tauberian, then UT is tauberian;

(ii) if UT is tauberian, then T is tauberian;

(iii) T is tauberian and weakly compact if and only if X is reflexive;

(iv) if T is tauberian and S is weakly compact, then T + S is tauberian.

Note that, unlike W , the class T is far from being an operator ideal. In par-
ticular, for each Banach space X , the identity operator IX : X −→ X is tauberian,
while the null operator 0X : X −→ X is weakly compact.

Proposition 2.1.4. Let Z be a closed subspace of X. Then the following statements
hold:

(i) the natural embedding JZ : Z −→ X is tauberian;

(ii) the quotient operator QZ : X −→ X/Z is tauberian if and only if Z is reflex-
ive.

Proof. (i) Since Z⊥⊥ ∩ X = Z and Z⊥⊥ is identified with Z∗∗, the proof of the
statement is easy.
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(ii) It is enough to observe that (QZ)∗∗ can be identified with the quotient
operator QZ⊥⊥ , and that Z is reflexive if and only if Z = Z⊥⊥. �

Every operator T ∈ L(X, Y ) can be factorized as

(2.1) T = T̃ ◦QN(T )

where T̃ : X/N(T ) −→ Y is given by T̃ (x + N(T )) := Tx for every x ∈ X . That
yields the following commutative diagram:

X Y

X/N(T )
�
�

QN(T )

�
T

�
�
�
�
�
��

T̃

Theorem 2.1.5. For every T ∈ L(X, Y ), the following statements hold:

(i) the operator T is tauberian if and only if T̃ is tauberian and N(T ) is reflexive;

(ii) assume that R(T ) is closed; then T is tauberian if and only if N(T ) is re-
flexive.

Proof. (i) Let us assume that T is tauberian. Thus, as T = T̃ ◦ QN(T ), Propo-
sition 2.1.3 shows that QN(T ) is tauberian, hence N(T ) is reflexive by Proposi-
tion 2.1.4. In order to prove that T̃ is tauberian, note that N(T ) = N(T )⊥⊥, so
we identify (X/N(T ))∗∗ with X∗∗/N(T ), and consequently, (T̃ )∗∗ can be regarded
as a map between X∗∗/N(T ) and Y ∗∗. Thus, given x∗∗+ N(T ) ∈ X∗∗/N(T ) such
that (T̃ )∗∗(x∗∗+N(T )) = T ∗∗x∗∗ ∈ Y , we have x∗∗ ∈ X , so x∗∗+N(T ) ∈ X/N(T ),
concluding that T̃ is tauberian.

For the converse, if T̃ is tauberian and N(T ) is reflexive, then QN(T ) is
tauberian by Proposition 2.1.4, and by Proposition 2.1.3 we see that T = T̃ ◦QN(T )

is tauberian.
(ii) The ‘only if’ implication is a consequence of (i). For the ‘if’ part, since

R(T ) is closed, T factorizes as

X Y

X/N(T ) R(T )

�
T

�
�

QN(T )

�

T̂

�

�

JR(T )

where T̂ maps every x + N(T ) to Tx. Note that T̂ is tauberian because it is
a surjective isomorphism. Moreover, since R(T ) is closed and N(T ) is reflexive,
Proposition 2.1.4 yields that JR(T ) and QN(T ) are both tauberian. Therefore,
T = JR(T ) ◦ T̂ ◦QN(T ) is tauberian. �
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The argument of the following lemma will be applied on many occasions.

Lemma 2.1.6. For every T ∈ L(X, Y ) and every bounded subset A of X, we have:

(i) T ∗∗(A
w∗

) = T (A)
w∗

;

(ii) if A is convex, then T ∗∗(A
w∗

) ∩ Y = T (A).

In particular, T ∗∗(BX∗∗) = T (BX)
w∗

and T ∗∗(BX∗∗) ∩ Y = T (BX).

Proof. (i) Since T ∗∗ is weak∗ continuous and A
w∗

is weak∗ compact, we have

T ∗∗(A
w∗

) = T (A)
w∗

.

(ii) The weak closure of T (A) equals T (A)
w∗ ∩ Y , so statement (i) yields

T (A)
w

= T ∗∗(A
w∗

) ∩ Y , and since the weak closure of any convex set equals its
norm closure, we get T (A) = T ∗∗(A

w∗
) ∩ Y .

The remaining results are a consequence of Goldstine’s theorem, which states
that BX∗∗ = BX

w∗
. �

The following characterizations are fundamental in the study of tauberian
operators.

Theorem 2.1.7. For every operator T ∈ L(X, Y ), the following statements are
equivalent:

(a) T is tauberian;

(b) N(T ∗∗) = N(T ) and T (BX) is closed;

(c) N(T ∗∗) = N(T ) and T (BX) is contained in R(T ).

Proof. (a)⇒(b) The equality N(T ∗∗) = N(T ) is immediate. In order to prove that
T (BX) is closed, take y ∈ T (BX). By Lemma 2.1.6, there exists x∗∗ ∈ BX∗∗ so
that y = T ∗∗x∗∗. But T is tauberian, so x∗∗ ∈ BX , hence y ∈ T (BX).

(b)⇒(c) Trivial.
(c)⇒(a) Let x∗∗ be a norm-one element in X∗∗ such that y := T ∗∗x∗∗ ∈ Y .

By Lemma 2.1.6, y ∈ T (BX), and by hypothesis, T (BX) is contained in R(T ),
so y = Tz for some z ∈ X . Thus x∗∗ − z ∈ N(T ∗∗), and as N(T ∗∗) = N(T ) by
assumption, it follows that x∗∗ ∈ X , which proves that T is tauberian. �

It is convenient to name those operators T for which N(T ) equals N(T ∗∗).
We adopt the following notation introduced by Kalton and Wilansky in [115].

Definition 2.1.8. An operator T ∈ L(X, Y ) is said to have property (N) whenever
N(T ∗∗) = N(T ).

Proposition 2.1.9. An operator T ∈ L(X, Y ) has property (N) if and only if N(T )

is reflexive and R(T ∗)
w∗

= R(T ∗).
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Proof. For every operator T , N(T )⊥ = R(T ∗)
w∗

(see Theorem 4.14 in [148]).
Moreover, N(T ) is reflexive if and only if N(T ) equals N(T )⊥⊥. Thus the result
is a consequence of:

N(T ) ⊂ N(T )⊥⊥ =
(
R(T ∗)

w∗)⊥ ⊂ R(T ∗)
⊥

= N(T ∗∗). �

Theorem 2.1.7 and Proposition 2.1.9 show that the following implications
hold for every operator T :

‘ T tauberian ⇒ T has property (N)’
‘ T has property (N) ⇒ N(T ) is reflexive’.

Theorem 2.1.5 and the examples below show that the converse implications are
valid when T has closed range, but fail in general.
Example 2.1.10. Let C ∈ L(c0, c0) be the Cesàro operator, defined by

C(xn)n :=

(
1
n

n∑
k=1

xk

)
n

.

The operator C has property (N) but is not tauberian.

Proof. Indeed, C∗∗ is injective and C∗∗((1,−1, 1,−1, . . .)) ∈ c0. �
Example 2.1.11. The operator T : c0 −→ �2 defined by T (xn) := (xn/n) has
property (N) but it is not tauberian. Moreover, T is weakly compact.

Proof. In fact, T is weakly compact because �2 is reflexive. Moreover, since c0

is not reflexive, T cannot be tauberian. However, T ∗∗ maps every (xn) ∈ �∞ to
(xn/n). So T ∗∗ is injective, which implies that T has property (N). �

The context of Example 2.1.11 describes very well the opposite character of
tauberian operators and weakly compact operators. Indeed, L(c0, �2) =W(c0, �2)
and T (c0, �2) = ∅. Therefore, having property (N) is much weaker than being
tauberian. However, every operator T : X −→ Y with property (N) is tauberian
if X is weakly sequentially complete.

Proposition 2.1.12. Let X be a weakly sequentially complete Banach space, and let
T : X −→ Y be an operator. If T has property (N), then T is tauberian.

Proof. According to Theorem 2.1.7, we only need to prove that the identity N(T )=
N(T ∗∗) implies that T (BX) is norm closed. To do so, take an element y∈T (BX)
and choose a sequence (xn) in BX so that T (xn) −→

n
y. By Rosenthal’s �1-theorem

(Theorem A.3.10), (xn) contains a weakly Cauchy subsequence or a subsequence
(un) equivalent to the unit vector basis of �1.

In the latter case there would exist u∗∗ ∈ {u2n − u2n+1}
w∗ \X , and therefore

T ∗∗(u∗∗) = 0, in contradiction with N(T ∗∗) = N(T ). Hence, the only possibility
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is that (xn) contains a weakly Cauchy subsequence (vn). But X is sequentially
weakly complete, so there exists z ∈ BX such that vn

w−→
n

z. Thus, we have a
convex block sequence (zn) of (vn) such that zn −→n z. But ‖zn‖ ≤ 1 for all n, so
y = T (z) ∈ T (BX). �

The following examples show that property (N) is stronger than having re-
flexive kernel.
Example 2.1.13. The operator T ∈ L(c0, c0) that maps every element (xn)n to
(xn − xn+1)n has reflexive kernel but fails property (N). Moreover, T (Bc0) is not
closed.

Proof. Indeed, T is injective, but N(T ∗∗) is the space of all constant sequences, so
T fails property (N). In order to show that T (Bc0) �⊂ R(T ), let us take (zi) ∈ c0 so
that |∑n

i=1 zi| ≤ 1/2 for all n and
∑∞

i=1 zi does not converge. Thus (zi) /∈ R(T ).
In fact,

R(T ) = {(yi) ∈ c0 :
∑∞

i=1 yi converges} .
Moreover, given (yi) ∈ R(T ),

T−1
(
(yi)

)
=
(∑∞

j=1 yj ,
∑∞

j=2 yj,
∑∞

j=3 yj, . . .
)

.

For every n ∈ N, let Pn : c0 −→ c0 be the projection with R(Pn) = span{ei}ni=1

and N(Pn) = span{ei}∞i=n+1, where {ei}∞i=1 is the unit vector basis of c0. Thus
Pn

(
(zi)

)
∈ T (Bc0) for all n, so (zi) ∈ T (Bc0). �

The following example exhibits an operator T : X −→ Y which has reflexive
kernel but is not tauberian, despite T (BX) being closed.

Example 2.1.14. The operator T ∈ L(�1, �2), defined by T (xn) := (xn), maps B�1

onto a closed set and has reflexive kernel, but fails property (N).

Proof. Let L : �2 −→ c0 be the operator given by L(xn) := (xn). Thus T is the
conjugate of L, so T (B�1) is weak∗ compact, hence norm closed.

Clearly T is injective, so N(T ) is trivially reflexive. However, R(T ∗) is a
separable subspace of �∞, hence N(T ∗∗) �= {0}. �

The following example shows that, given an operator T : X −→ Y , the con-

ditions T (BX) closed and R(T ∗) = R(T ∗)
w∗

are not enough to assure that T is
tauberian.
Example 2.1.15. The null operator 0�1 : �1 −→ �1 maps B�1 onto a closed set and

satisfies the identity R(0�1
∗) = R(0�1

∗)
w∗

, but its kernel is not reflexive, so 0�1 is
not tauberian.

By virtue of Theorem 2.1.5, the first examples of non-trivial tauberian op-
erators are the operators with closed range and finite dimensional kernel, usu-
ally called upper semi-Fredholm operators (see Section A.1). Tauberian operators
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with closed range were studied by Yang [174], who called them generalized semi-
Fredholm transformations.

Since the class T contains Φ+, the following question arises naturally and
establishes a general pattern followed by many researchers:

Question 2.1.16. Which properties of the operators in Φ+ can be transferred to
the operators in T , and vice versa?

For instance, all the statements in Proposition 2.1.3 are valid if the words
‘tauberian’ and ‘weakly compact’ are respectively replaced by ‘upper semi-Fred-
holm’ and ‘compact’.

Of course, there are reasonable properties which cannot be transferred from
Φ+ to T . The topological structure of T offers an example in that direction. In
fact, it is well known that the components of the class Φ+ are always open. That
assertion follows from the fact that if T ∈ Φ+(X, Y ), then X can be decomposed as
X = N(T )⊕X1 where T |X1

is an isomorphism; thus, denoting β := inf{‖Tx‖ : x ∈
SX1}, given any operator S ∈ L(X, Y ) such that ‖T − S‖ < β, it follows that
N(S) ⊂ N(T ) and that S|X1

is an isomorphism, so S ∈ Φ+. Nevertheless, the
following example shows that the components of T are not always open.

Example 2.1.17. Given a non-reflexive space X , the operator T : �2(X) −→ �2(X)
defined by

T
(
(xn)

)
:= (xn/n), (xn) ∈ �2(X)

is tauberian and belongs to the topological boundary of T
(
�2(X)

)
.

Proof. We can identify the bidual of �2(X) with �2(X∗∗) and T ∗∗ maps every (x∗∗n )
to (x∗∗n /n). So it is clear that T is tauberian.

In order to prove that T belongs to the boundary of T
(
�2(X)

)
, it is enough to

realize that for every positive integer k, the operator Tk : �2(X) −→ �2(X) defined
by

Tk(xn) :=
(
x1,

x2

2
, . . . ,

xk

k
, 0, 0, . . . . . .

)
satisfies ‖T − Tk‖ = 1/(k + 1) and it is not tauberian because its kernel is not
reflexive. �

Nevertheless, Example 2.1.17 can still be used to trace an analogy between
Φ+ and T . Indeed, the set of all upper semi-Fredholm operators acting between
X and Y with complemented range in Y equals the set

Kl(X, Y ) := {T ∈ L(X, Y ) : IX − LT ∈ K for some L ∈ L(Y, X)}

where K denotes the class of all compact operators (see [160, IV.13 Problems]).
Note that the inclusion of Kl(X, Y ) in Φ+(X, Y ) is strict in general because every
Banach space non-isomorphic to a Hilbert space contains non-complemented closed
subspaces.
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Analogously, but for different reasons, the set

Wl(X, Y ) := {T ∈ L(X, Y ) : IX − LT ∈ W for some L ∈ L(Y, X)}

is strictly contained in T (X, Y ).

Proof. By Proposition 2.1.3, IX − LT ∈ W implies LT tauberian, hence T is
tauberian, which proves Wl ⊂ T .

Conversely, Wl(X, Y ) is open. Indeed, given T ∈ Wl(X, Y ), if we take an
operator A ∈ L(Y, X) so that IX − AT = K ∈ W , then for every S ∈ L(X, Y )
with ‖S‖ < ‖A‖−1, we find that IX + AS is invertible, hence

A ◦ (T + S) = IX + AS −K ∈ Wl,

which immediately yields T + S ∈ Wl; hence Wl(X, Y ) is open for all Banach
spaces X and Y .

Thus Wl �⊃ T because T (X, Y ) is not open in general as Example 2.1.17
shows. �

Let us close this section with an example of a tauberian operator which is
far from being upper semi-Fredholm, and yet its domain is not reflexive.
Example 2.1.18. Let J be the James space, which is formed by all null sequences
(xn) of real numbers for which the expression

‖(xn)‖J := sup
{ k−1∑

i=1

|xni+1 − xni |2 + |xnk
|2 : k ∈ N, {n1 < . . . < nk} ⊂ N

}1/2

is finite. Then the natural inclusion operator ι : J −→ c0 is tauberian.

Proof. In fact, the bidual of J [122, 1.d.2] admits the representation

J∗∗ = J ⊕ span{(1, 1, 1, . . .)}.

Since ι∗∗
(
(1, 1, 1, . . .)

)
= (1, 1, 1, . . .) ∈ �∞ \ c0, it follows that ι is tauberian. �

We point out that J does not contain any closed subspace isomorphic to c0.
Therefore, a restriction ι|E is upper semi-Fredholm if and only if E is a finite-
dimensional subspace of J .

A Banach space X for which dim X∗∗/X < ∞ is said to be quasi-reflexive.
The main feature of J is that it is isomorphic to its bidual, yet dim J∗∗/J = 1.

2.2 Main characterizations of tauberian operators

The main result of this section is Kalton and Wilansky’s sequential characteri-
zations given in Theorems 2.2.2 and 2.2.4. Their proofs are strongly based upon
the Eberlein-Smulian theorem. With regard to its importance, and for the sake of
further purposes, we state it here following the version of [51, page 41].
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Theorem 2.2.1 (Eberlein-Smulian theorem). Given a bounded subset B of a given
Banach space, the following statements are equivalent:

(a) B
w

is not weakly compact;

(b) there is a basic sequence (xn) in B with no weakly convergent subsequence;

(c) B
w

is not weakly sequentially compact.

The following result is fundamental in this chapter.

Theorem 2.2.2. For each operator T ∈ L(X, Y ) the following statements are equiv-
alent:

(a) T has property (N);

(b) if (xn) is a bounded sequence in X and (Txn) is weakly null, then (xn)
contains a weakly convergent subsequence;

(c) if (xn) is a bounded sequence in X and (Txn) is null, then (xn) contains a
weakly convergent subsequence.

Proof. (a)⇒(b) Let (xn) be a bounded sequence contained in X such that (Txn)
is weakly null, and consider the set A := {xn : n ∈ N}. Thus

T (A)
w∗

= {Txn : n ∈ N} ∪ {0} ⊂ Y.

Therefore, if x∗∗ ∈ A
w∗ \ A, then x∗∗ ∈ N(T ∗∗) = N(T ). Since A is bounded

and A
w∗

= A
w ⊂ X , we conclude that A is relatively weakly compact, and by

Theorem 2.2.1, A contains a weakly convergent sequence.

(b)⇒(c) Trivial.

(c)⇒(a) Let x∗∗ ∈ N(T ∗∗) such that ‖x∗∗‖ ≤ 1. For every weak∗ neighbor-
hood V of x∗∗ in X∗∗, we choose a convex weak∗ neighborhood U of x∗∗ so that
U

w∗⊂ V . Thus x∗∗ ∈ U ∩BX
w∗

, so Lemma 2.1.6 yields

0 ∈ T (U ∩BX)
w∗∩ Y = T (U ∩BX).

Hence, we can take a sequence (xn) in U ∩ BX so that Txn −→n 0. In accordance
with condition (c), the sequence (xn) contains a subsequence (xni) which is weakly

convergent to some x ∈ V ∩ N(T ), so V ∩ N(T ) �= ∅. Therefore, x∗∗ ∈ N(T )
w∗

.
However, statement (c) and the Eberlein-Smulian theorem imply that N(T ) is

reflexive, so N(T )
w∗

equals N(T ), which leads to x∗∗ ∈ N(T ), hence N(T ∗∗) =
N(T ). �

The following result will be useful to derive some consequences regarding the
existence of an injective tauberian operator between two Banach spaces.
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Corollary 2.2.3. For an operator T ∈ L(X, Y ) the following statements are equiv-
alent:

(a) N(T ∗∗) = {0};
(b) if (xn) is a bounded sequence in X and (Txn) is weakly null, then (xn) is

weakly null.

Now we give the sequential characterization of tauberian operators.

Theorem 2.2.4. Let T ∈ L(X, Y ) be an operator. The following statements are
equivalent:

(a) T is tauberian;

(b) if (xn) is a bounded sequence in X such that (Txn) is weakly convergent, then
(xn) contains a weakly convergent subsequence;

(c) if (xn) is a bounded sequence in X such that (Txn) is convergent, then (xn)
contains a weakly convergent subsequence.

Proof. (a)⇒(b) Let (xn) be a bounded sequence in X such that (Txn) is weakly
convergent to y ∈ T (BX). By Theorem 2.1.7, we have y ∈ R(T ). Let x ∈ X such
that y = Tx. Thus T (xn− x) w−→

n
0, and since T has property (N), Theorem 2.2.2

yields the existence of a weakly convergent subsequence of (xn).
(b)⇒(c) Trivial.
(c)⇒(a) Theorem 2.2.2 shows that T has property (N). So, by Theorem 2.1.7,

we only need to show that T (BX) is contained in R(T ). For that purpose, let
y ∈ T (BX) and take a sequence (xn) in BX so that Txn −→n y. By hypothesis, (xn)
contains a subsequence (xkn ) which converges weakly to some x ∈ BX . Therefore,
y = Tx. �

An immediate consequence is the following characterization of tauberian op-
erators in terms of their action on bounded sets.

Corollary 2.2.5. Let T ∈ L(X, Y ) be an operator. The following statements are
equivalent:

(a) T is tauberian;

(b) for every bounded subset C of X such that T (C) is relatively weakly compact,
C is relatively weakly compact;

(c) for every bounded subset C of X such that T (C) is relatively compact, C is
relatively weakly compact.

Proof. It is sufficient to observe that statements (b) and (c) are respectively equiv-
alent to statements (b) and (c) of Theorem 2.2.4. Indeed, the first equivalence is
a direct consequence of the aforementioned Eberlein-Smulian theorem. For the
second equivalence, observe that a subset of a Banach space is relatively compact
if and only if it is sequentially compact. �
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An application of the Eberlein-Smulian theorem allows us to strengthen The-
orem 2.2.4. We recall that a sequence (xn) in a Banach space is said to be semi-
normalized if there is a constant C > 0 for which C−1 ≤ ‖xn‖ ≤ C for all n.

Corollary 2.2.6. Given an operator T ∈ L(X, Y ), the following statements are
equivalent:

(a) T is tauberian;

(b) if (xn) is a semi-normalized basic sequence in X such that (Txn) is weakly
convergent, then (xn) is weakly null;

(c) if (xn) is a semi-normalized basic sequence in X such that (Txn) is conver-
gent, then (xn) is weakly null.

Proof. (a)⇒(b) Let us assume that T is tauberian, and let (xn) be a semi-normal-
ized basic sequence such that (Txn) is weakly convergent. Then, by Theorem 2.2.4,
every subsequence (xni) of (xn) contains a weakly convergent subsequence which
must be weakly null since (xni) is basic. Therefore, (xn) is weakly null.

(b)⇒(c) Trivial.
(c)⇒(a) Let us assume that (c) holds, and consider any bounded sequence

(xn) in X so that (Txn) is convergent. If (xn) has no weakly convergent sub-
sequence, then by the Eberlein-Smulian theorem (xn) has a basic subsequence
without weakly convergent subsequences, which contradicts (c). Hence (xn) con-
tains a weakly convergent subsequence and, by Theorem 2.2.4, T is tauberian. �

A classical theorem, included in Section A.1 as Theorem A.1.9, establishes
that an operator T : X −→ Y is upper semi-Fredholm if and only if for every
compact operator K : X −→ Y the kernel N(T + K) is finite-dimensional. Corol-
lary 2.2.6 yields an analogous characterization for tauberian operators.

Theorem 2.2.7. An operator T ∈ L(X, Y ) is tauberian if and only if for each
compact operator K ∈ L(X, Y ) the kernel N(T + K) is reflexive.

Proof. Let us assume that T is tauberian. Then, given any compact operator
K : X −→ Y , the operator T + K is tauberian by Proposition 2.1.3. Hence, the
kernel N(T + K) is reflexive.

For the converse, let us assume that T is not tauberian. Then, by Corol-
lary 2.2.6, there is a normalized basic sequence (xn) in X with no weakly con-
vergent subsequence such that (Txn) converges to some element y ∈ Y . Thus
the sequence (gn) of coefficient functionals associated with (xn) is bounded, and
consequently, every gn admits a Hahn-Banach extension fn ∈ X∗ so that (fn)
is bounded. Since Txn − y −→

n
0, passing to a subsequence if necessary, we can

assume that ‖Txn − y‖ · ‖fn‖ ≤ 2−n for each n. Therefore, the formula

Kx :=
∞∑

i=1

〈fi, x〉(y − Txi)
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defines a compact operator K ∈ L(X, Y ).
Clearly (T + K)xi = y for every i. Thus N(T + K) contains the closed

subspace generated by the sequence (xi − x1)∞i=2 which is not reflexive, hence
N(T + K) is not reflexive. �

At this point, it should be clear that there is a deep connection between
tauberian operators and reflexivity. Perhaps Theorem 2.2.7 is the clearest expo-
sition of that fact because it characterizes tauberian operators in terms of its
restrictions to non-reflexive closed subspaces. The reader should compare Theo-
rem 2.2.7 with Theorem 2.1.7 and Proposition 2.1.9, which characterize tauberian
operators T : X −→ Y in terms of the reflexivity of N(T ) and some additional
conditions such as the closedness of T (BX).

We also remark that all the information provided by Theorem 2.2.4 and
Proposition 2.1.3 is now easily obtained from Theorem 2.2.7.

Corollary 2.2.8. A Banach space X has no reflexive infinite-dimensional subspaces
if and only if Φ+(X, Y ) = T (X, Y ) for every Y .

Proof. Assume that every reflexive subspace of X is finite-dimensional. Then, by
Theorems A.1.9 and 2.2.7, every operator T ∈ T (X, Y ) is upper semi-Fredholm.

Conversely, if X contains a reflexive infinite-dimensional subspace R, then
the quotient operator QR : X −→ X/R is tauberian (Proposition 2.1.4) but it is
not upper semi-Fredholm. �

Corollary 2.2.8 offers a partial answer to Question 1.3.2.
Another consequence of Theorem 2.2.7 is the following result of algebraic

character:

Proposition 2.2.9. Given an operator T ∈ L(X, Y ), the following statements are
equivalent:

(a) T is tauberian;

(b) every operator S ∈ L(W, X) is weakly compact whenever TS is weakly com-
pact;

(c) any closed subspace E ⊂ X is reflexive whenever the restriction T |E is weakly
compact.

Proof. (a)⇒(b) Let S : W −→ X be an operator such that TS is weakly compact.
Thus, for each bounded sequence (wn) in W , (TSwn) has a weakly convergent
subsequence. But T is tauberian, so Theorem 2.2.4 shows that (Swn) must contain
a weakly convergent subsequence. Therefore, S is weakly compact.

(b)⇒(c) Let E ⊂ X be a closed subspace and let JE : E −→ X be the natural
embedding of E into X . If T ◦ JE is weakly compact, then JE is weakly compact
by hypothesis (b), so E must be reflexive by Proposition 2.1.3.

(c)⇒(a) Let us assume that T is not tauberian. Then Theorem 2.2.7 provides
us with a compact operator K ∈ L(X, Y ) so that N(T +K) is not reflexive. Thus,
the fact that T |N(T+K) is compact leads to the negation of (c). �
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2.3 Preservation of the closedness of closed convex sets

The main result of this section is Theorem 2.3.4, which was obtained by Neidinger
and Rosenthal [135]. It shows that an operator T is tauberian if and only if T (C)
is closed for each closed convex bounded set C. Its proof is a consequence and a
generalization of the following fundamental theorem obtained by James in [104]
and [105].

Theorem 2.3.1 (James’ theorem). A weakly closed subset C of a Banach space X
is weakly compact if and only if each continuous linear functional on X attains a
maximum on C.

In particular, X is reflexive if and only if every continuous linear functional
on X attains its maximum on BX .

Note that the next result is only valid when X is not reflexive. When X is
reflexive, statements (a) and (c) are trivially true, but statement (b) may fail.

Proposition 2.3.2. Let X be a non-reflexive Banach space and let T ∈ L(X, Y ) be
an operator. The following statements are equivalent:

(a) T is tauberian;

(b) R(T ) is infinite-dimensional and T (BE) ⊂ T (E) for every closed subspace E
of X;

(c) N(T ) is reflexive and T (BE) ⊂ T (E) for every closed subspace E of X.

Proof. (a)⇒(b) In fact, R(T ) is infinite dimensional. If this were not the case,
since N(T ) is reflexive, X would be reflexive. The inclusion of T (BE) in R(T ) is
a consequence of Theorem 2.1.7.

(b)⇒(c) Assume that N(T ) is not reflexive and R(T ) is infinite dimensional.
Then we can construct a closed subspace E of X with T (BE) �⊂ T (E) as fol-
lows: consider the quotient operator Q : X −→ X/N(T ). Since X/N(T ) is infinite-
dimensional, we can take a normalized sequence (xn)∞n=0 in X so that (Qxn)∞n=0

is basic. Let (zn)∞n=1 be a normalized basic sequence in N(T ) with no weakly
convergent subsequence. Thus, the sequence (en)∞n=1 defined by

en := zn +
1
n

xn + x0, for n = 1, 2, 3, . . .

is bounded and has no weakly convergent subsequence, so it contains a basic
subsequence (eni) by the Eberlein-Smulian theorem.

Let E = span{xni}∞i=1. Since

Teni =
1
ni

Txni + Tx0 −−−−→i
Tx0
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and ‖en‖ ≤ 3 for all n, Tx0 ∈ 3 · T (BE). But Tx0 /∈ T (E); otherwise, if Tx0 = Te
for some e =

∑∞
i=1 cieni ∈ E, we would have x0 − e ∈ N(T ) = N(Q), so

0 = Q(x0 − e) = Qx0 −
∞∑

i=1

ci

(
1
ni

Qxni + Qx0

)

=

(
1−

∞∑
i=1

ci

)
Qx0 −

∞∑
i=1

ci

ni
Qxni ,

and since (Qxni) is basic, we would get 1 =
∑∞

i=1 ci and ci = 0 for all i, a
contradiction.

(c)⇒(a) Let us assume that N(T ) is reflexive but T is not tauberian. As in
the proof of (b)⇒(c), we will find a closed subspace E of X so that T (BE) �⊂ T (E).
If T (BX) �⊂ T (X), then the choice for E is X . In the case when T (BX) ⊂ T (X),
Theorem 2.1.7 gives N(T ∗∗) �= N(T ). Thus, Theorem 2.2.2 yields a normal-
ized sequence (xn)∞n=0 in X with no weakly convergent subsequence such that
Txn −→n 0. Moreover, the reflexivity of N(T ) and Theorem 2.1.5 imply that the
quotient operator Q : X −→ X/N(T ) is tauberian. Thus, as (xn + x0)∞n=1 has no
weakly convergent subsequence, neither has (Qxn + Qx0)∞n=1 by virtue of Theo-
rem 2.2.4. So, passing to a subsequence of (xn) if necessary, the three sequences
(Qxn)∞n=0, (xn + x0)∞n=1 and (Qxn + Qx0)∞n=1 can be assumed to be basic. Let
E = span{xn + x0}∞n=1. Note that T (xn + x0) −→

n
Tx0, so Tx0 ∈ 2 · T (BE). Let

us prove that Tx0 /∈ T (E).
Indeed, if there exists e =

∑∞
n=1 cn(xn − x0) such that Tx0 = Te, then

x0 − e ∈ N(T ) = N(Q), which yields

0 = Q(x0 − e) =

(
1 +

∞∑
n=1

cn

)
Qx0 −

∞∑
n=1

cnQxn,

so, since (Qxn)∞n=0 is basic, we obtain the contradictory identities 0 = 1+
∑∞

n=1 cn

and cn = 0 for all n. Thus Tx0 /∈ T (E). �
Given a Banach space X , the Bishop-Phelps theorem [30] establishes that

the set
FX := {f ∈ X∗ : 〈f, x〉 = ‖f‖ for some x ∈ BX}

is dense in X∗. Moreover, by James’ theorem, the space X is reflexive if and only
if X∗ = FX [105].

Despite Bishop-Phelps’ result, we will see that given a non-reflexive Banach
space X , every non-zero functional f ∈ X∗ admits a restriction f |Y which does
not attain its norm on BY . The subspace Y may be chosen with dim(X/Y ) = 1.
Its proof is based upon the aforementioned James’ theorem.

Proposition 2.3.3. Let X be a non-reflexive Banach space, and let f ∈ SX∗ . Then
for every λ ∈ (0, 1) there exists a subspace Y of X with co-dimension one such
that ‖f |Y ‖ = λ and f |Y does not attain its norm on BY .
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Proof. Let W := {x ∈ BX : 〈f, x〉 = λ}. Since 0 < λ < 1, we get W �= ∅. So
picking x0 ∈ W , we have W = (x0 + N(f)) ∩ BX , so there exists δ > 0 so that
x0 + δBN(f) ⊂ W . Therefore, W is not relatively weakly compact because N(f)
is not reflexive. In virtue of Theorem 2.3.1, there exists g ∈ X∗ which does not
attain its supremum on W ; that is, the

A := {〈g, w〉 : w ∈ W}

does not have a maximum. Without loss of generality, we can assume that sup A =
λ. Let h := f−g. Note that h �= 0 because f is constant on W . Hence, the subspace
Y := N(h) has co-dimension 1. Take x∗∗ ∈ W

w∗
so that 〈x∗∗, g〉 = λ. Thus, as

‖x∗∗‖ ≤ 1 and 〈x∗∗, h〉 = 0, we get x∗∗ ∈ Y
w∗

and therefore

‖f |Y ‖ ≥ 〈x∗∗, h〉 = λ.

Now, let us assume that there exists y ∈ BY such that 〈f, y〉 = λ. Then y ∈ W
and 〈g, y〉 = λ, which means that g attains its supremum on W , in contradiction
to the choice of g. We conclude that ‖f |Y ‖ = λ and f |Y does not attain its norm
on BY . �

The following theorem can be regarded as an extension of Proposition 2.3.3
to the general setting of operators.

Theorem 2.3.4. Let X be a non-reflexive Banach space and let T ∈ L(X, Y ) be a
non-zero operator. Then the following statements are equivalent:

(a) T is tauberian;

(b) for all weakly closed bounded subsets C of X, T (C) is weakly closed;

(c) for all closed bounded convex subsets C of X, T (C) is closed;

(d) for all closed subspaces E of X, T (BE) is closed.

Proof. (a)⇒(b) Let C be a weakly closed bounded subset of X , and y ∈ T (C)
w

.

By Lemma 2.1.6, T ∗∗(C
w∗

) = T (C)
w∗

. Thus we can take x∗∗ ∈ C
w∗

so that
T ∗∗x∗∗ = y. But T is tauberian, so

x∗∗ ∈ X ∩ C
w∗

= C
w

= C

hence y ∈ T (C).

(b)⇒(c) It is sufficient to bear in mind the fact that any convex closed subset
is weakly closed.

(c)⇒(d) Trivial.

(d)⇒(a) In order to show that T is tauberian, by Proposition 2.3.2 we only
need to prove that N(T ) is reflexive.
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Let us assume N(T ) is not reflexive. The proof will be done as soon as we
find a closed subspace E of X such that T (BE) is not closed. Let x0 ∈ X such
that ‖Tx0‖ = 1 and define

Z := span{x0} ⊕N(T ).

Let J : span{Tx0} −→ R be the isometry defined by J(Tx0) = 1, and consider
the functional f := J ◦T ∈ Z∗. Since Z is not reflexive, Proposition 2.3.3 provides
a closed subspace E of Z such that f |E does not attain its norm. But

{〈f, e〉 : e ∈ BE} = {〈J, T e〉 : e ∈ BE}

and as J is an isometry, we see that T (BE) is not closed, in contradiction with
hypothesis (d). �

The reader should compare statements (d) in Theorem 2.3.4 and (b) in The-
orem 2.1.7.

The following definition was introduced by Lotz and Porta in [124].

Definition 2.3.5. An operator T ∈ L(X, Y ) is said to be a semi-embedding if it is
injective and T (BX) is closed.

It is not difficult to find semi-embeddings that are not tauberian. Actually,
for every T ∈ L(X, Y ) with dense range, T ∗ is a semi-embedding. However, it
follows from Theorem 2.3.4 that an injective operator is tauberian if and only if
it is a semi-embedding hereditarily.

It is also worth comparing Theorem 2.3.4 with the following characteriza-
tions of the isomorphisms and the upper semi-Fredholm operators in terms of
preservation of closedness of some sets.

Proposition 2.3.6. Let T ∈ L(X, Y ) be a non-zero operator.

(i) T is an isomorphism if and only if for all closed subsets C of X, T (C) is
closed;

(ii) T is upper semi-Fredholm if and only if for all bounded closed subsets C of
X, T (C) is closed.

Proof. (i) The ‘only if’ direction is trivial. For the ‘if’ part, notice that R(T ) is
closed by hypothesis. Moreover, if T were not injective, taking a non-null element
z ∈ N(T ) and x ∈ X \N(T ), we would see that

T ({tz + (arctan t)x : t ∈ R})

is not closed.
(ii) For the ‘only if’ part, consider the factorization T = T̃ ◦QN(T ) given in

formula (2.1), and denote Q := QN(T ). Let C be a bounded closed subset of X .
By virtue of (i), it is sufficient to prove that Q(C) is closed in order to conclude
that T (C) is closed.
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Let (xn) be a sequence in C such that Qxn −→n Qx. We shall prove that
Qx ∈ Q(C). Since (xn) is bounded, there exists a bounded sequence (zn) in N(T )
such that xn − x + zn −→n 0. But N(T ) is finite-dimensional, so (zn) contains
a convergent subsequence (zni), and since C is closed, xni −→i v ∈ C. Hence
Qx = Qv ∈ Q(C).

For the ‘if’ part, let us assume that T is not upper semi-Fredholm. Take
x ∈ X such that Tx �= 0, and let (xn) be a bounded sequence in X without
convergent subsequences such that (Txn) converges to some z with

z ∈ {0} ∪
(
R(T ) \R(T )

)
.

Thus
A := {xn + n−1x : n ∈ N}

is closed, but z ∈ T (A) \ T (A). �

2.4 Action of tauberian operators on basic sequences

A classical result asserts that a basic sequence (xn) of a Banach space X spans
a reflexive subspace if and only if (xn) is both shrinking and boundedly com-
plete [122]. A delicate improvement, due to Zippin [177], states that a Banach
space with a basis is reflexive if all its bases are shrinking or all its bases are
boundedly complete.

In this section, we characterize the tauberian operators and the operators
with property (N) in terms of their action on boundedly complete basic sequences
and shrinking basic sequences.

We notice that most of the results in the previous sections are of a subsequen-
tial nature in the sense that, if there is a sequence satisfying a certain property
P , then those results assert that it contains a subsequence that possesses a cer-
tain property Q. However, the results presented in this section do not. Roughly
speaking, they are of the following type: if a sequence satisfies a certain property
P , then the same sequence satisfies a certain property Q.

For the definitions of basis, basic sequence, boundedly complete basic se-
quence and shrinking basic sequence we refer to Section A.3.

Recall that a sequence (yn) is said to be a block basis of a basis (xn) if there
exists an increasing sequence (ni) in N and a sequence (αn) of scalars such that
yj :=

∑nj+1
i=nj+1 αixi and yj �= 0 for all j. Note that if both (xn) and (yn) are

semi-normalized, then (αn) is bounded.

Obviously, a shrinking basis (xn) is weakly null. The following lemma is
standard, but its proof is included for the sake of completeness.

Lemma 2.4.1. A semi-normalized basic sequence (xn) is shrinking if and only if
all its semi-normalized block basic sequences are weakly null.
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Proof. Let (xn) be a semi-normalized basic sequence and write Xn :=span{xi}∞i=n

for every n ∈ N.
Let us assume that (xn) is shrinking, and consider a semi-normalized block

basic sequence (bn) of (xn), with

bj =
nj+1∑

i=nj+1

αixi for every j ∈ N.

Thus, as ‖f |Xn
‖ −→

n
0, for each f ∈ X∗

1 ,

‖〈f, bj〉‖ ≤ ‖f |Xnj+1
‖ · ‖bj‖ −−−−→j

0

hence (bj) is weakly null.
For the converse, let us assume that (xn) is not shrinking. Then there is

f ∈ X∗
1 such that s := lim supn ‖f |Xn

‖ > 0. Thus, for every positive integer j, we
inductively obtain blocks

bj :=
nj+1∑

i=nj+1

βixi

with nj−1 < nj , so that (bj) is semi-normalized and 〈f, bj〉 −→j s. �

Taking into account that a basic sequence in a Banach space spans a reflexive
subspace if and only if it is shrinking and boundedly complete (Proposition A.3.16),
it is easy to prove after Theorem 2.2.7 that an operator T : X −→ Y is tauberian
if and only if every semi-normalized basic sequence (xn) of X is both shrinking
and boundedly complete whenever

∑∞
n=1 ‖Txn‖ is convergent.

Actually, Proposition 2.4.5 reveals that, in order to prove that T is tauberian,
it is sufficient to check that (xn) is boundedly complete. If we only have the fact
that (xn) is shrinking, then T has just property (N), as the following proposition
shows.

Proposition 2.4.2. Given T ∈ L(X, Y ), the following statements are equivalent:

(a) T has property (N);

(b) if (xn) is a semi-normalized basic sequence in X and
∑∞

n=1 ‖Txn‖ < ∞,
then (xn) is shrinking.

Proof. (a)⇒(b) Let (xn) be a semi-normalized basic sequence in X such that∑∞
n=1 ‖Txn‖ <∞. In order to prove that (xn) is shrinking, by Lemma 2.4.1, it is

sufficient to check that any semi-normalized block basic sequence of (xn) is weakly
null. In order to do so, let

bi =
ni+1∑

n=ni+1

αnxn for all i ∈ N
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be a semi-normalized block basic sequence of (xn). Note that, since (xn) and (bi)
are semi-normalized, (αn) must be bounded. Therefore, for every i,

‖Tbi‖ ≤
ni+1∑

n=ni+1

|αn| · ‖Txn‖

≤ sup
n
|αn| ·

ni+1∑
n=ni+1

‖Txn‖ −−−−→i
0,

and since T has property (N), Theorem 2.2.2 yields that (bi) is weakly null.
(b)⇒(a) Let us assume that T fails property (N). Then Theorem 2.2.2 pro-

vides us with a bounded sequence (xn) with no weakly convergent subsequence
such that Txn −→n 0. Thus, by Theorem 2.2.1, (xn) contains a basic subsequence
(xni) so that

∑∞
i=1 ‖Txni‖ < ∞. Since (xni) is not weakly null, (xni) is not

shrinking, so (b) fails. �
The following result weakens the hypothesis on the sequence (Txn) in state-

ment (b) of Proposition 2.4.2.

Proposition 2.4.3. Let T ∈ L(X, Y ) be an operator satisfying property (N) and let
(xn) be a semi-normalized basic sequence in X. If (Txn) is a shrinking seminor-
malized basic sequence, then (xn) is shrinking.

Proof. Let us assume that (xn) is not shrinking, but (Txn) is basic and shrinking.
Then, by Lemma 2.4.1, there is a semi-normalized block basic sequence (bn) of (xn)
which has no weakly null subsequence. As (Tbn) is a block basic sequence of (Txn),
it follows that (Tbn) is weakly null. But T has property (N) so, by Theorem 2.2.2,
(bn) has a weakly null subsequence, and thus we obtain a contradiction. �

Note that Proposition 2.4.3, unlike Proposition 2.4.2, does not characterize
property (N). Indeed, the null operator on a non-reflexive Banach space X satisfies
the thesis of Proposition 2.4.3 but fails property (N).

A basic sequence without weakly convergent subsequences contains a sub-
sequence (zn) whose difference sequence (zn − zn+1) is also basic. This fact is a
direct consequence of the following lemma, which will enable us to state Propo-
sition 2.4.5 concerning tauberian operators and boundedly complete bases, in a
similar spirit to that of Proposition 2.4.2.

Lemma 2.4.4. Let (xn) be a semi-normalized basis of X for which there exists
f ∈ X∗ so that 〈f, xn〉 = 1 for all n. Then (xn − xn+1)∞n=1 is basic.

Proof. For each n ∈ N, we denote yn := xn − xn+1 and Yn := span{yi}ni=1. Since
(yn) is linearly independent, given any pair of positive integers m and n with
m ≤ n, the projections Qn

m : Yn −→ Yn given by

Qn
m

(
n∑

i=1

αiyi

)
:=

m∑
i=1

αiyi
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are well defined. We only need to see that supm,n ‖Qn
m‖ < ∞ to prove that (yn)

is basic. In order to do so, let K be the basis constant of (xn), and let (fi) be its
sequence of coefficient functionals. For every j ∈ N, we define

gj :=
j∑

i=1

fi,

so (gn) is a sequence of coefficient functionals for (yn). Fix a pair of positive
numbers m and n with m ≤ n, and let Pm : X −→ X be the projection

Pm

( ∞∑
i=1

βixi

)
:=

m∑
i=1

βixi.

Thus
∑m

i=1 fi = f ◦ Pm, hence

‖gm‖ ≤ ‖f ◦ Pm‖ ≤ ‖f‖ ·K.

Therefore, since Qn
m(x) = Pm(x) − 〈gm, x〉xm+1 for all x ∈ Yn, it follows that

‖Qn
m‖ ≤ K + ‖xm+1‖ · ‖f‖ ·K,

and since (xn) is semi-normalized, we get supm,n ‖Qn
m‖ <∞. �

The equivalence between statements (a) and (b) in the following proposition
can be easily derived from Theorem 2.2.7, but the implication (c)⇒(a) is not so
simple.

Proposition 2.4.5. Given T ∈ L(X, Y ), the following statements are equivalent:

(a) T is tauberian;

(b) if (xn) is a semi-normalized basic sequence in X and
∑∞

n=1 ‖Txn‖ < ∞,
then (xn) is boundedly complete and shrinking;

(c) if (xn) is a semi-normalized basic sequence in X and
∑∞

n=1 ‖Txn‖ < ∞,
then (xn) is boundedly complete.

Proof. (a)⇒(b) Let (xn) be a semi-normalized basic sequence in X and suppose
that

∑∞
n=1 ‖Txn‖ < ∞. Let us denote Z := span{xn}∞n=1 and let (fn) ⊂ Z∗ be

the sequence of coefficient functionals associated to (xn). Since

Tz =
∞∑

n=1

〈fn, z〉 · Txn for all z ∈ Z,

the restriction T |Z is compact. Thus, by Proposition 2.2.9, Z is reflexive, and
consequently, (xn) is shrinking and boundedly complete [122, 1.b.5].

(b)⇒(c) Trivial.
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(c)⇒(a) Let us assume that (c) holds but T is not tauberian. Then, by
Theorem 2.2.4, there exist y ∈ Y and a bounded sequence (xn) with no weakly
convergent subsequence such that Txn −→n y. Choose a functional f ∈ X∗ so that
λ := lim supn〈f, xn〉 > 0, and select a subsequence (xni) of (xn) so that

0 < αi := 〈f, xni〉 −−−−→i
λ.

Thus, by Theorem 2.2.1, (α−1
i xni) contains a basic subsequence (zn) with no

weakly convergent subsequence. Note that Tzn −→n λ−1y, so we can pick a sub-
sequence (zni) in (zn) so that ‖Tzni − Tzni+1‖ ≤ 1/i2. Lemma 2.4.4 yields that
(ui) := (zni−zni+1) is a basic sequence. But

∑∞
i=1 ‖Tui‖ <∞, so (ui) is boundedly

complete by hypothesis (c). However, the sequence (
∑j

i=1 ui)j equals (zn1 −znj )j ,
a bounded non-convergent sequence. So we get a contradiction. �

The following characterization for reflexive spaces is well known. We prove
it as an application of the main results of this section.

Corollary 2.4.6. Let X be a Banach space satisfying at least one of the following
conditions:

(i) every semi-normalized basic sequence in X is shrinking;

(ii) every semi-normalized basic sequence in X is boundedly complete.

Then X is reflexive.

Proof. Suppose that X is not reflexive.
The null operator 0X : X −→ X fails property (N), and by Proposition 2.4.2,

X must contain a semi-normalized basic sequence which is not shrinking; hence
(i) fails.

Similarly, 0X is not tauberian. So Proposition 2.4.5 supplies a semi-normal-
ized non-boundedly complete basic sequence in X ; hence (ii) fails. �

The next result parallels Proposition 2.4.3.

Proposition 2.4.7. Let T ∈ L(X, Y ) be a tauberian operator and (xn) a basic
sequence in X. If (Txn) is basic and boundedly complete, then (xn) is boundedly
complete.

Proof. Let us assume that (Txn) is basic and boundedly complete. Take a sequence
of scalars (αn) so that supn ‖

∑n
i=1 αixi‖ <∞. Thus

sup
n

∥∥∥∥∥
n∑

i=1

αiTxi

∥∥∥∥∥ ≤ ‖T ‖ sup
n

∥∥∥∥∥
n∑

i=1

αixi

∥∥∥∥∥ <∞.

Hence, since (Txn) is boundedly complete,
∑∞

i=1 αiTxi is convergent. Now, since
T is tauberian, by Theorem 2.2.4 there is x ∈ X and an increasing sequence (nj)
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of positive integers such that
nj+1∑
i=1

αixi
w−−−−→
j

x.

Therefore, x belongs to span{xn}∞n=1 and, since (xn) is basic, x =
∑∞

i=1 αixi,
which shows that (xn) is boundedly complete. �
Remark 2.4.8. Proposition 2.4.7 does not characterize tauberian operators. Indeed,
if X is a non-reflexive Banach space, then the null operator 0X is not tauberian,
but satisfies the thesis of Proposition 2.4.7.

The following example of Holub [103] will allow us to give further remarks
on the scope of Proposition 2.4.7.
Example 2.4.9. There exist a Banach space X with a semi-normalized basis (xn)
and a non-tauberian operator T : X −→ �2 with property (N) such that (Txn) is
the unit vector basis of �2.

Proof. For every n ∈ N and every sequence (xi) ∈ c0, we denote by (x̂i) any
decreasing rearrangement of (|xi|), and we consider the semi-norm

‖(xi)‖n :=
x̂1 + x̂2 + · · ·+ x̂n

1 + 1
2 + · · ·+ 1

n

.

Let X1 be the largest linear subspace of c0 normed by the expression

‖(xi)‖L := sup
n∈N

‖(xi)‖n, (xi) ∈ c0

and let X be the subspace formed by all the elements (xi) of X1 for which
‖(xi)‖n −→n 0.

In addition, let X0 be the subspace of c0 formed by all the elements (yi) for
which

‖(yi)‖T :=
∞∑

i=1

ŷi

i
<∞.

It turns out that the spaces X , X0 and X1, endowed with their respective
norms, are Banach spaces, and that the unit vector basis of c0, denoted by (en),
is a basis of X . Moreover, Abel’s identity

n∑
k=1

uk(vk − vk−1) =
n∑

k=1

(uk − uk+1)vk

is valid for all pairs of finite sequences (uk)n+1
k=1 and (vk)n

k=0 of real numbers with
v0 = un+1 = 0 and leads to the inequality

(2.2)
∞∑

i=1

xiyi ≤ ‖(xi)‖L · ‖(yi)‖T for all (xi) ∈ X1 and all (yi) ∈ X0
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which yields the duality relationships X∗ = X0 and X∗
0 = X1.

From inequality (2.2) we derive that, given (xi) ∈ X1, we have

∞∑
i=1

x2
i ≤ ‖(xi)‖L · ‖(xi)‖T ≤ ‖(xi)‖2L · ‖(1/i)‖T =

π2

6
· ‖(xi)‖2L.

Hence the natural inclusion S : X1 −→ �2 is a bounded operator with norm
less than or equal to π2/6.

Let us see that the operator T := S|X satisfies our requirements.
Indeed, since X∗∗ = X1, standard arguments show that T ∗∗ = S. Since S

is injective, T has property (N). But T cannot be tauberian because X is non-
reflexive. �

For additional information on the construction of the spaces X , X0 and X1,
refer to the section of Notes and Remarks.
Remark 2.4.10. Example 2.4.9 shows that in Proposition 2.4.7 we cannot replace
the assumption T tauberian by T having property (N).

Indeed, since T has property (N), Proposition 2.4.3 shows that (xn) is shrink-
ing. However, (xn) may not be boundedly complete because in that case X would
be reflexive, and therefore T would be tauberian.

2.5 Notes and Remarks

Obviously, the intersection of Chapter 1 with Chapter 2 are the seminal papers of
Garling and Wilansky [63] and Kalton and Wilansky [115].

Section 2.1 combines several papers. Theorems 2.1.5 and 2.1.7 and Proposi-
tion 2.1.9 include most of the results of general character about tauberian opera-
tors in [63]. Moreover, Theorem 2.1.7 and Proposition 2.1.9 contain the necessary
and sufficient conditions given in [115] under which the three clauses of (1.13) are
equivalent.

Tacon was the first to discover that the class T is not open [157]. Exam-
ple 2.1.17 has been taken from [67], and the class Wl has been studied by Yang
and the authors in [175] and [2]. A quantitative approach to some classes of oper-
ators related with T was done by Astala and Tylli, and it can be found in [16].

Proposition 2.1.3 collects results from several papers; so it is almost impos-
sible to quote them accurately. They have been arranged together in order to
show that T is an operator semigroup in the sense of [1]. This concept of operator
semigroup will be discussed in depth in Chapter 6.

Section 2.2 owes much to the Eberlein–Smulian characterization of reflexivity,
whose original proof was published in [57] and [154]. Theorem 2.2.1 follows Pe�l-
czyński’s version of the Eberlein-Smulian theorem, which can be found in [51]
and [53].
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The proofs of Theorems 2.2.2 and 2.2.4 and Corollary 2.2.5 follow closely the
arguments given in [115], but the proof of Theorem 2.2.2 has been simplified.

The argument of Corollary 2.2.8, applied to the particular case when X = c0,
is exactly the same as that used by Garling and Wilansky in [63] in order to obtain
their proof of (1.10). Corollary 2.2.8 was first proved by Kalton and Wilansky [115],
but the proof displayed here was obtained in [92] as a neat sequel of Theorem 2.2.7.
This theorem, as well as Proposition 2.2.9, have been borrowed from [92].

In several papers, Cross investigated the concept of tauberian operators for
unbounded operators [46, 47] and for linear relations between normed spaces. For
an exposition of these results, we refer to the monograph [48]. Bonet and Ramanu-
jan [36] investigated this concept for operators between Fréchet spaces.

Section 2.3 is devoted to the Neidinger and Rosenthal works [134], [133]
and [135], but our presentation differs at several points. Indeed, Neidinger and
Rosenthal give, in [135, Theorem 2.3], a theorem with six statements and, by
means of James’ theorem [105], prove that they are equivalent. Instead, we have
put in Proposition 2.3.2 the statements whose proof do not require James’ theorem
The other statements remain together in Theorem 2.3.4. Notice that the proof of
implication (c)⇒(a) in Proposition 2.3.2 simplifies the original proof [135, (5)⇒(1)
in Theorem 2.3] by means of a suitable use of the semigroup properties of tauberian
operators.

Neidinger and Rosenthal prove that, given any non-reflexive Banach space
X , for every f ∈ SX∗ and every λ ∈ (0, 1], there exists a subspace Y of X of
co-dimension 1 such that f |Y does not attain its norm on BY . In 2.3.3, we only
include their proof for the case λ ∈ (0, 1). The proof of Proposition 2.3.6 appears
partially in [169] and [135].

Section 2.4 is devoted to the action of tauberian operators on basic sequences.
Schauder bases and basic sequences are a fundamental topic treated by many texts
on Banach space theory ( [24], [51], [122], [152], etc.). From our point of view, a very
suggestive presentation of that subject is given in [4] because that book clearly
exhibits the links between the Eberlein-Smulian theorem and the possibility of
extraction of basic subsequences from a given sequence (see Proposition A.3.7 and
Theorem A.3.8).

Propositions 2.4.2, 2.4.3, 2.4.5 and 2.4.7 are due to Holub [103], although
their proofs have been slightly modified. A proof for Lemma 2.4.4 and for its con-
verse appears in [152, Theorem 9.2, II]. The proof given here follows an argument
in [146]. The original proof of Corollary 2.4.6 appears in [152, Theorem 3 and
Corollary 1].

A semi-normalized basic sequence (xn) in a Banach space X is said to be a
P ∗-sequence by Singer [153] [152, Proposition 3], or a wide-(s) by Rosenthal [147],
if there exists f ∈ X∗ such that 〈f, xn〉 = 1 for all n.

The following result is due to H. Rosenthal [147].

Proposition 2.5.1. An operator T ∈ L(X, Y ) is not tauberian if and only if there
is a P ∗-sequence (xn) in X such that (Txn) is convergent.
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The original proof of Proposition 2.5.1 follows from the celebrated Rosen-
thal’s �1 and c0 theorems published respectively in [145] and [146]. A less sophisti-
cated proof can be directly obtained from the definition of P ∗-sequence and from
Corollary 2.2.6.

Example 2.4.9 was given by Holub in [103], but his description is too brief.
The space X0 can be isometrically identified with the Lorentz sequence space
d
(
(1/n)n, 1

)
, and X1 with d

(
(1/n)n, 1

)∗. We refer to [122, Section 4.e] and [62] for
details. Observe that although Garling [62] focuses on reflexive symmetric Banach
spaces of sequences, the steps of their construction are valid for the spaces X , X0

and X1 of Example 2.4.9.



Chapter 3

Duality and examples of
tauberian operators

The cotauberian operators are the operators T such that T ∗ is tauberian. As could
be expected from this definition, many results satisfied by cotauberian operators
are dual versions of those satisfied by tauberian operators. However, this relation-
ship of duality is not perfect: there are tauberian operators T such that T ∗ is not
cotauberian.

Of course, it is desirable to have at hand characterizations of cotauberian
operators which do not depend on duality. One such characterization is exhibited
in Theorem 3.1.20: an operator T is cotauberian if and only if Y/R(T + K) is
reflexive for every compact operator K. Note that this result and Theorem 2.2.7
show that cotauberian operators are the right choice to be taken as the dual class
of tauberian operators.

The DFJP factorization, obtained by Davis, Figiel, Johnson and Pe�lczyński
in [49], establishes that every operator T admits a factorization T = jA, where j is
an injective tauberian operator. In the second section we present a refined version
of the DFJP factorization. This version allows us to show that the operator A
is cotauberian and behaves well under duality. The DFJP factorization has been
extensively applied in Banach space theory and it is the main source of examples
of tauberian and cotauberian operators.

The third section presents some variations on the DFJP factorization that
have appeared in print, most of them having in mind concrete applications of the
factorization. We also describe the relationship between the intermediate space in
the DFJP factorization and the intermediate space in the real method of interpo-
lation for Banach spaces.

In the fourth section we describe some examples of tauberian operators that
are obtained as natural inclusions between some Banach spaces of vector-valued
integrable functions. For example, if LΦ(X) denotes the Orlicz space of X-valued
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functions associated with a Young function Φ, we show that the natural inclusion
of LΦ(X) into L1(X) is tauberian when the Orlicz space of scalar-valued functions
LΦ is reflexive.

Tauberian and cotauberian operators are closely connected to the operator
ideal of weakly compact operators. In the fifth section we consider four other
operator ideals which admit a characterization in terms of sequences and, for each
one of them, we introduce two classes of operators that are similar to the tauberian
and cotauberian operators respectively. We wish to point out that all the classes
we introduce here admit a perturbative characterization and, for this reason, share
many of the properties of tauberian operators.

3.1 Cotauberian operators

We showed in Chapter 2 that there are many formal similarities between the
properties satisfied by upper semi-Fredholm operators and tauberian operators.
These similarities suggest that we introduce the cotauberian operators as follows:

Definition 3.1.1. An operator T ∈ L(X, Y ) is said to be cotauberian when T ∗ is
tauberian.

Because of its definition, it is natural to denote by T d the class of all cotaube-
rian operators. Thus T d(X, Y ) denotes the cotauberian operators acting between
the spaces X and Y .
Remark 3.1.2. Since the conjugate operator T ∗ : Y ∗ −→ X∗ is weak∗-continuous
and BY ∗ is a weak∗-compact set, T ∗(BY ∗) is always closed. Therefore, by Theo-
rem 2.1.7, an operator T is cotauberian if and only if N(T ∗∗∗) = N(T ∗); i.e., if
and only if T ∗ has property (N).
Remark 3.1.3. In general, the set T d(X, Y ) is not open in L(X, Y ).

Indeed, if T and Tk are the operators considered in Example 2.1.17, we can
show in a similar way that T ∗ is tauberian and the operators T ∗k are not tauberian.
Thus T is cotauberian, the operators Tk are not cotauberian and (Tk) converges
to T .

Some basic properties of the class T d of cotauberian operators are included in
the following result. Their proof can be derived from the corresponding properties
of the operators in T .

Proposition 3.1.4. Let T and S be operators in L(X, Y ) and U in L(Y, Z). Then
the following statements hold:

(i) if both T and U are cotauberian, then UT is cotauberian;

(ii) if UT is cotauberian, then U is cotauberian;

(iii) T is cotauberian and weakly compact if and only if Y is reflexive;

(iv) if T is cotauberian and S is weakly compact, then T + S is cotauberian.
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The cotauberian operators with closed range can be characterized in terms
of their cokernel.

Proposition 3.1.5. Let T ∈ L(X, Y ) be an operator with closed range. Then T is
cotauberian if and only if Y/R(T ) is reflexive.

Proof. Since T has closed range if and only if T ∗ also does, the result can be
proved as a direct application of the characterization of tauberian operators with
closed range given in Theorem 2.1.5. �

Corollary 3.1.6. Let T ∈ L(X, Y ) be an operator with closed range. Then T is
tauberian if and only if T ∗∗ is tauberian.

Proof. Observe that R(T ) is closed if and only if R(T ∗∗) is closed. Moreover, in
this case we can identify isometrically

N(T ∗∗) ≡ N(T )⊥⊥ ≡ N(T )∗∗.

So the result follows from Proposition 3.1.5 and the fact that a Banach space E
is reflexive if and only if E∗∗ is too. �

The residuum operator

Given a Banach space X , we denote by Xco the quotient space X∗∗/X and
QX : X∗∗ −→ Xco is the quotient map.

The following concept will be very useful.

Definition 3.1.7. Given an operator T ∈ L(X, Y ), the map T co : Xco −→ Y co

defined by
T co(z + X) := T ∗∗(z) + Y, z + X ∈ Xco

is called the residuum operator of T .

Note that the operator T co is determined by the equality T coQX = QY T ∗∗.

The following two results are an immediate consequence of the definition of
residuum operator.

Proposition 3.1.8. For an operator T ∈ L(X, Y ), the following results hold.

(i) T co ∈ L(Xco, Y co) and ‖T co‖ ≤ ‖T ‖;
(ii) T is weakly compact if and only if T co = 0;

(iii) T is tauberian if and only if T co is injective.

Proposition 3.1.9. The map T ∈ L(X, Y ) −→ T co ∈ L(Xco, Y co) is linear, and
given S ∈ L(Y, Z) and T ∈ L(X, Y ), (ST )co = ScoT co.

Let us describe the behavior of the operation (·)co under duality.
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Proposition 3.1.10. We can identify (X∗)co and (Xco)∗. More precisely,

QX∗ ◦QX
∗ : (Xco)∗ −→ (X∗)co

is a bijective isomorphism.

Proof. Note that QX
∗ : (Xco)∗ −→ X∗∗∗ is a linear isometry that maps (Xco)∗

onto the subspace X⊥ of X∗∗∗. Since we have the topological decomposition

X∗∗∗ = X∗ ⊕X⊥,

the operator QX∗ : X∗∗∗ −→ (X∗)co defines an isomorphism from X⊥ onto (X∗)co;
hence QX∗ ◦QX

∗ is a bijective isomorphism. �
Let us write UX := QX∗ ◦QX

∗.

Proposition 3.1.11. For an operator T ∈ L(X, Y ), we can identify the operators
(T co)∗ and (T ∗)co. More precisely,

(T ∗)co = UX (T co)∗ U−1
Y .

Proof. We have to prove that the diagram

(Y co)∗ (Xco)∗

(Y ∗)co (X∗)co

�

(T co)∗

�

UY
�

UX

�

(T ∗)co

is commutative. Indeed, from the fundamental equality T coQX = QY T ∗∗, we get

(T ∗)coUY = (T ∗)coQY ∗QY
∗

= QX∗T
∗∗∗QY

∗

= QX∗
(
QY T ∗∗

)∗
= QX∗

(
T coQX

)∗
= QX∗QX

∗(T co)∗ = UX(T co)∗,

and the equality is proved. �
Let us see a direct consequence of this result.

Corollary 3.1.12. For an operator T ∈ L(X, Y ), the following assertions are equiv-
alent:

(a) T is cotauberian;

(b) T co has dense range;

(c) R(T ∗∗) + Y is dense in Y ∗∗.
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Proof. It is enough to observe that T co has dense range if and only if (T co)∗ is
injective. �

The following technical result will allow us to study the behavior of the
operation (·)co under passing subspaces or quotients.

Proposition 3.1.13. Let Z be a closed subspace of a Banach space X. Then we can
identify Zco with a closed subspace of Xco and (X/Z)co with a quotient of Xco;
more precisely, Jco

Z : Zco −→ Xco is an isomorphism (into) and Qco
Z : Xco −→ Zco

is surjective.

Proof. Since Q∗∗Z is surjective, so is Qco
Z . Moreover, by Lemma A.5.1, for every

z∗∗ ∈ Z⊥⊥,

(3.1) dist(z∗∗, Z) ≤ 2 dist(z∗∗, X);

hence Jco
Z : Zco −→ Xco is bounded below. �

Corollary 3.1.14. Let Z be a closed subspace of a Banach space X. Then Z⊥⊥+X
is a closed subspace of X∗∗.

Proof. Note that R(Jco
Z ) = (Z⊥⊥ + X)/X is closed in Xco by Proposition 3.1.13;

hence Z⊥⊥ + X is closed in X∗∗. �
It follows from Proposition 3.1.13 that the diagram below is commutative

and all its rows and columns are exact sequences; i.e. each arrow is an operator
and the kernel of an arrow coincides with the range of the previous arrow. This
diagram encodes a description of the spaces Zco, Xco and (X/Z)co.

(3.2)

{0} {0} {0}

{0} Z X X/Z {0}

{0} Z∗∗ X∗∗ (X/Z)∗∗ {0}

{0} Zco Xco (X/Z)co {0}

{0} {0} {0}

� �
�

�

�

�

JZ

�

QZ

�

�

�

�

�

�

J∗∗Z

�

Q∗∗Z
�

�

�

�

�

�

Jco
Z

�

Qco
Z

�

�

�

Proposition 3.1.15. Let T ∈ L(X, Y ) be an operator with closed range. Then T co

has also closed range.

Proof. Since R(T ) is closed, R(T ∗∗) = R(T )⊥⊥; hence

R(T co) =
R(T ∗∗) + Y

Y
=

R(T )⊥⊥ + Y

Y

is closed, by Corollary 3.1.14. �
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As a consequence, we can obtain an improvement of Corollary 3.1.6.

Corollary 3.1.16. Let T ∈ L(X, Y ) be a tauberian operator such that T co has closed
range. Then T ∗∗ is tauberian and (T ∗∗)co has closed range.

Proof. It is enough to observe that, by Proposition 3.1.11, we can identify (T ∗∗)co

and (T co)∗∗. �

A counterexample

Since T can be identified with a restriction of T ∗∗, it is clear that T ∗∗ tauberian
implies T tauberian; equivalently, T ∗ cotauberian implies T tauberian. Next we are
going to show that the converse implications fail in general. The counterexample
will be obtained using the following idea:

We have seen that T is tauberian if and only if T co is injective, and T ∗

is cotauberian if and only if (T co)∗ has dense range. Therefore, in order to find
a tauberian operator T such that T ∗ is not cotauberian, it is enough to find
an injective operator S such that R(S∗) is not dense, for which there exists an
operator T such that T co = S.

The following construction of a Banach space J(Xn) with J(Xn)co ≡ �1 is
a special case of a general construction of Bellenot inspired by the definition of
James’ quasi-reflexive space J .

Let (ek)∞k=1 be the unit vector basis of �1 and let Xn denote the subspace of
�1 generated by {e1, . . . , en}. We denote by ‖ · ‖1 the norm in �1.

For a sequence (xn) with xn ∈ Xn for each n, we define

‖(xn)‖J := sup
{ k−1∑

i=1

‖xni+1 − xni‖21 + ‖xnk
‖21 : k ≥ 2, n1 < · · · < nk

}1/2

,

and we consider the space

J(Xn) := {(xn) : xn ∈ Xn, ‖xn‖1−→n 0, ‖(xn)‖J <∞}.

Theorem 3.1.17. The following results hold:

(i) (J(Xn), ‖ · ‖J) is a Banach space;

(ii) J(Xn)∗∗ = {(xn) : xn ∈ Xn, ‖(xn)‖J <∞};
(iii) J(Xn)co is linearly isometric to �1.

Proof. (i) The proof is similar to that of the corresponding result for James’
space J . See, for example, [4, Section 3.4].

(ii) It follows from the fact that {Xn : n ∈ N} is a shrinking Schauder
decomposition of the space J(Xn). Indeed, for each k ∈ N, we consider the map

Pk : J(Xn) −→ J(Xn)
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defined by
Pk

(
(xn)

)
:= (x1, . . . , xk, 0, 0, . . .); (xn) ∈ J(Xn).

Pk is clearly a norm-one projection onto a finite dimensional subspace and, for
every (xn) ∈ J(Xn),

lim
k→∞

Pk

(
(xn)

)
= (xn).

To show that {Xn : n ∈ N} is a shrinking Schauder decomposition of J(Xn)
we have to prove that for each f ∈ J(Xn)∗,

(3.3) lim
k→∞

∥∥f |N(Pk)

∥∥ = 0.

Suppose that there exists f ∈ J(Xn)∗ failing (3.3). Then we could select
integers m1 < n1 < m2 < n2 < · · · and a bounded sequence of vectors (vi) in
J(Xn) with vi = (xin)∞n=1, so that xin �= 0 if and only if mi ≤ n ≤ ni and
〈f, vi〉 > 1 for each i ∈ N. Thus the series

∑∞
k=1 vk/k converges in J(Xn) and〈

f,
∞∑

k=1

vk

k

〉
=∞,

contradicting f ∈ J(Xn)∗.
Equation (3.3) implies that limk P ∗k (f) = f for each f ∈ J(Xn)∗. Now, if

α ∈ J(Xn)∗∗, then P ∗∗k (α) ∈ J(Xn) and

lim
k→∞

〈
P ∗∗k (α), f

〉
= 〈α, f〉 for each f ∈ J(Xn)∗.

Since (P ∗∗k (α)) is a bounded sequence in J(Xn), it is clear that we can identify
α with a sequence (xn), with xn ∈ Xn for each n and ‖(xn)‖J <∞.

Conversely, if xn ∈ Xn for each n and ‖(xn)‖J <∞, then the sequence(
(x1, . . . , xk, 0, 0, . . .)

)∞
k=1

is bounded in J(Xn) and weak∗-convergent to some α ∈ J(Xn)∗∗.
(iii) Let (xn) ∈ J(Xn)∗∗. Since ‖(xn)‖J <∞, the sequence (xn) is convergent

in �1. We consider the operator Q defined by

Q : (xn) ∈ J(Xn)∗∗ −→ lim
n→∞xn ∈ �1.

Clearly, ‖Q‖ ≤ 1. Moreover, if we denote by Qn the natural projection from �1

onto Xn, then (Qn(x)) ∈ J(Xn)∗∗ for every x ∈ �1, and Q(Qn(x)) = x. Therefore,
Q is a surjective operator and its kernel coincides with J(Xn); hence Q induces
an isometry from J(Xn)co onto �1. �
Theorem 3.1.18. There exists an operator T ∈ L

(
J(Xn)

)
such that T is tauberian

and cotauberian, but T ∗ is not cotauberian (equivalently, T ∗∗ is not tauberian) and
T ∗∗ is not cotauberian.
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Proof. Let S : �1 −→ �1 be the operator defined by S(an) := (an/n). Since S is
compact, the range of S∗ is a separable subspace of �∞; thus R(S∗) is not dense,
hence S∗∗ is not injective. Similarly, R(S∗∗) is not dense.

We consider the operator T : J(Xn) −→ J(Xn) defined by

T
(
(xn)

)
:= (Sxn) for every (xn) ∈ J(Xn).

Clearly T ∈ L
(
J(Xn)

)
and the operator T co can be identified with S. Thus T

is tauberian and cotauberian, T ∗ is not cotauberian (hence T ∗∗ is not tauberian)
and T ∗∗ is not cotauberian. �

The following lemma will be the key to proving the perturbative characteri-
zation of cotauberian operators.

Lemma 3.1.19. Let (gn) be a bounded sequence in a dual space Y ∗. Suppose that
infn ‖gn‖ > 0 and that 0 is a weak∗-cluster point of {gn : n ∈ N}. Then (gn) has
a subsequence (gnk

) for which there exists a bounded sequence (yk) in Y so that
〈gni , yj〉 = δij for all i, j ∈ N.

Proof. Observe that 0 is a weak∗-cluster point of {gn/‖gn‖ : n ∈ N} too. So it is
enough to prove the case in which the sequence (gn) is normalized.

We shall find a basic subsequence (gnk
) of (gn) such that, denoting

F := span{gnk
: k ∈ N}

and considering the operator U : Y −→ F ∗ defined by

〈U(y), g〉 := 〈g, y〉 for every y ∈ Y, g ∈ F

the set U(BY ) contains the open unit ball of the closed subspace of F ∗ generated
by the sequence of coefficient functionals corresponding to the basis (gnk

) of F .
Thus there exists a bounded sequence (yi) in Y so that (Uyi) is that sequence of
coefficient functionals. In particular, 〈gni , yj〉 = δij for all i, j ∈ N.

Let (εn) be a sequence in the open unit interval (0, 1) such that
∑∞

n=1 εn <∞
and

∏∞
n=1(1 − εn)−1 < ∞. We claim that we can select a subsequence (gnk

) of
(gn) and an increasing sequence C1 ⊂ C2 ⊂ · · · of finite subsets of the unit sphere
of Y so that, denoting Fk := span{gn1 , . . . , gnk

} for each k ∈ N, the following
conditions are satisfied:

(a) For each α in F ∗k with ‖α‖ = 1, there exists y ∈ Ck such that

|〈g, y〉 − 〈α, g〉| ≤ (εk/3)‖g‖ for all g ∈ Fk.

(b) |〈gnk+1 , y〉| < εk/3; for all y ∈ Ck.
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Indeed, take gn1 = g1 and assume that, for some k ≥ 1, Ci−1 and gni have
been chosen for i ≤ k.

Since Fk is finite dimensional, there is a natural isometry between F ∗k and
Y/(Fk)⊥, which is given by

〈y + (Fk)⊥, α〉 := 〈α, y〉 for every α ∈ Fk and y ∈ Y .

Moreover, the unit sphere of F ∗k is compact. So we can find a finite subset Ck in
SY satisfying (a). Now, since 0 is a weak∗-cluster point of {gn : n ∈ N}, we can
choose nk+1 > nk so that (b) is satisfied.

Let us show that (gnk
) is a basic sequence. Given g ∈ Fk with ‖g‖ = 1 and

a scalar number λ, we take α ∈ Y ∗∗ such that ‖α‖ = ‖α|Fk
‖ = 1 and 〈α, g〉 = 1.

Condition (a) provides a vector y ∈ Ck such that |〈g, y〉| > 1− εk/3; thus

‖g + λgnk+1‖ ≥ |〈g, y〉| − |λ〈gnk+1 , y〉| > 1− εk/3− |λ|εk/3;

hence ‖g + λgnk+1‖ > 1− εk if |λ| ≤ 2. Moreover, ‖g + λgnk+1‖ > 1 if |λ| > 2.
From these inequalities, it follows that for every sequence (ak) of scalars we

have ∥∥∥ k∑
i=1

aigni

∥∥∥ ≤ (1− εk)−1
∥∥∥ k+1∑

i=1

aigni

∥∥∥
and a repeated application of this inequality gives, for each k < l in N,∥∥∥ k∑

i=1

aigni

∥∥∥ ≤ ∞∏
n=k

(1− εn)−1
∥∥∥ l∑

i=1

aigni

∥∥∥;

this implies that (gnk
) is a basic sequence (see Proposition A.3.6).

Note that, denoting by Pk the projection from F := span{gni : i ∈ N} onto
Fk := span{gn1 , . . . , gnk

}, we have ‖Pk‖ ≤
∏∞

n=k(1− εn)−1; hence limk ‖Pk‖ = 1.

We denote by (αi) the sequence of coefficient functionals corresponding to
the basis (gni) of F . Note that (αi) is a bounded sequence in F ∗. Moreover, we
consider the operator U : Y −→ F ∗ defined by

〈U(y), g〉 := 〈g, y〉 for every y ∈ Y and g ∈ F .

Observe that, for every g ∈ Fk,

〈U(y), g〉 =
〈 k∑

i=1

〈αi, g〉gni , y
〉

=
〈 k∑

i=1

〈gni , y〉αi, g
〉
.

Therefore, 〈U(y), g〉 =
∑∞

i=1〈gni , y〉〈αi, g〉 for every y ∈ Y and g ∈ F . Moreover,
if y ∈ Ck for some k ∈ N, then

∞∑
i=k+1

|〈gni , y〉| <
∞∑

i=k+1

εi/3 <∞;
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hence
∑∞

i=1〈gni , y〉αi converges in span{αi : i ∈ N}.
By a standard approximation result (see [148, 4.13 Theorem]), in order to

show that U(BY ) contains the open unit ball of the closed subspace of F ∗ generated
by (αi), it is enough to show that for each α in the unit sphere of span{αj : j ∈ N}
and every ε′ > 0 there exists y in the unit sphere of Y such that ‖Uy − α‖ < 3ε′.

Let α ∈ span{αj : j ∈ N} with ‖α‖ = 1 and let 0 < ε′ < 1. We choose m so
that α ∈ span{α1, . . . , αm},

∑∞
i=m εi < ε′ and ‖Pn‖ < 1 + ε′ for each n ≥ m.

We write ‖γ‖0 := ‖γ|Fm‖ for γ ∈ Y ∗∗. It follows that

‖α‖0 ≤ ‖α‖ ≤ ‖Pm‖‖α‖0 ≤ 2‖α‖0.

Let us take β := (‖α‖0)−1α. By condition (a) we can choose y ∈ Cm in such
a way that ∥∥∥ m∑

i=1

〈gni , y〉αi − β
∥∥∥

0
≤ εm/3;

hence ‖∑m
i=1〈gni , y〉αi − β‖ ≤ 2εm/3 ≤ 2ε′/3.

We also have ‖αi‖ ≤ ‖Pi−Pi−1‖ ≤ 4 for i > m. Therefore, by condition (b),∥∥∥ ∞∑
i=m+1

〈gni , y〉αi

∥∥∥ < 4
∞∑

i=m

εi/3 < 4ε′/3.

Thus ‖Uy − β‖ < 2ε′. Since

1 = ‖α‖ ≤ ‖Pm‖ · ‖α‖0 ≤ (1 + ε′)‖α‖0,

we have ‖β − α‖ = ‖α‖−1
0 − 1 ≤ 1 + ε′ − 1 = ε′; hence ‖Uy − α‖ < 3ε′. �

The cotauberian operators have been defined in terms of the conjugate op-
erator. The following result is a perturbative characterization of the cotauberian
operators in whose statement conjugate operators do not appear. This fact and
the corresponding perturbative characterizations of the semi-Fredhom operators
suggest that Definition 3.1.1 is the right choice for cotauberian operators.

Theorem 3.1.20. An operator T ∈ L(X, Y ) is cotauberian if and only if the cokernel
Y/R(T + K) is reflexive for every compact operator K ∈ K(X, Y ).

Proof. The direct implication is easy: if T is cotauberian and K is compact, then
T ∗ is tauberian and K∗ is compact. By Proposition 2.1.3, (T + K)∗ = T ∗ + K∗ is
tauberian; hence N(T ∗ + K∗) is reflexive, and therefore, so is Y/R(T + K).

For the converse implication, suppose that T is not cotauberian; hence T ∗ is
not tauberian. By Remark 3.1.2, T ∗ fails property (N). So, by Theorem 2.2.2, there
exists a bounded sequence (gn) in Y ∗ containing no weakly convergent subsequence
such that (T ∗gn) converges in norm to 0. Observe that if g is a weak∗-cluster point
of {gn : n ∈ N}, then T ∗(g) = 0; thus we can assume that 0 is a weak∗-cluster
point of {gn : n ∈ N}.
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By Lemma 3.1.19, passing to a subsequence if necessary, we can assume that
there exists a bounded sequence (yn) in Y so that 〈gi, yj〉 = δij for each i, j ∈ N,
and ‖yn‖ · ‖T ∗gn‖ < 2−n for every n.

Now the expression

K(x) := −
∞∑

n=1

〈gn, Tx〉yn for all x ∈ X,

defines a compact operator K ∈ K(X, Y ). Moreover,

(T + K)∗(gk) = T ∗gk −
∞∑

n=1

〈gk, yn〉T ∗gn = 0.

Since the kernel N((T +K)∗) contains the sequence (gn), it is non-reflexive; hence
the cokernel Y/R(T + K), which is isomorphic to the predual of N((T + K)∗), is
not reflexive. �
Corollary 3.1.21. A Banach space Y has no infinite dimensional reflexive quotients
if and only if T d(X, Y ) = Φ−(X, Y ) for every space X.

Proof. The direct implication is a consequence of the perturbative characteriza-
tions of T d (Theorem 3.1.20) and Φ− (Theorem A.1.9).

For the converse, suppose that N is a closed subspace of Y such that Y/N is
infinite dimensional and reflexive. Then the embedding JN : N −→ Y is cotaube-
rian (Proposition 3.1.5), but it is not a lower semi-Fredholm operator. �

Next we give a result which is a dual version of Proposition 2.2.9. It provides
additional characterizations of the operators T ∈ T d for which T ∗ does not appear
in the statement.

Proposition 3.1.22. For an operator T ∈ L(X, Y ), the following statements are
equivalent:

(a) T is cotauberian;

(b) every operator S ∈ L(Y, W ) is weakly compact whenever ST is weakly com-
pact;

(c) any quotient Y/F of Y is reflexive whenever QF T is weakly compact.

Proof. (a) ⇒ (b) Suppose that T ∈ T d(X, Y ), S ∈ L(Y, W ) and ST is weakly
compact. Then T ∗S∗ is weakly compact and T ∗ ∈ T . By Proposition 2.2.9, S∗ is
weakly compact; hence S is weakly compact.

(b) ⇒ (c) Note that a quotient Y/F is reflexive if and only if the quotient
map QF is weakly compact.

(c) ⇒ (a) Suppose that T is not cotauberian. By Theorem 3.1.20, we can
find a compact operator K ∈ L(X, Y ) so that the quotient Y/R(T + K) is not
reflexive.
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Let us write F := R(T + K). Then QF T = −QF K is weakly compact, but
Y/F is not reflexive. �

3.2 The DFJP factorization of operators

The DFJP factorization, obtained by Davis, Figiel, Johnson and Pe�lczyński in [49],
is an important tool in Banach space theory and it is also the main source of non-
trivial examples of tauberian operators. Next we give the statement of the original
result:

Theorem 3.2.1 (DFJP factorization). For every operator T ∈ L(X, Y ) there exist
a Banach space F and operators A ∈ L(X, F ) and j ∈ L(F, Y ) such that j is
tauberian and T = jA.

For the proof of Theorem 3.2.1, we refer to [49, Lemma 1, Corollary 1],
or [52, Lemma 7.4.8].

In this section we are going to prove the following result, obtained in [68],
which gives a refined version of the DFJP factorization and is essentially equivalent
to it (see Remark 3.2.5), but also uncovers a richer structure and behaves well
under duality, as we shall see later in this section.

Theorem 3.2.2. For every operator T ∈ L(X, Y ) there exist Banach spaces E
and F , and operators k ∈ L(X, E), U ∈ L(E, F ) and j ∈ L(F, Y ) such that k
is cotauberian and has dense range, j is tauberian and injective, U is a bijective
isomorphism, and T = jUk.

X Y

E F

�

T

�

k

�

U

�

j

Proof. In order to construct the spaces E and F , we consider two sequences (pn
T )

and (qn
T ) of norms in X and Y respectively, which are equivalent to the original

ones:
pn

T (x) := 2n‖Tx‖+ 2−n‖x‖; x ∈ X,

and
qn
T (y) := inf

{
s > 0 : y ∈ s

(
2nT (BX) + 2−nBY

)}
; y ∈ Y.

Clearly 2−n‖x‖ ≤ pn
T (x) ≤ (2n‖T ‖+ 1)‖x‖, for each x ∈ X . Moreover, it is

not difficult to check that (2n‖T ‖+ 1)−1‖y‖ ≤ qn
T (y) ≤ 2n‖y‖, for each y ∈ Y .
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We denote by Xn the space X endowed with the norm pn
T (·), and by Yn the

space Y endowed with the norm qn
T (·). Clearly,

�2(Xn) :=
{

(xn) ⊂ X : ‖(xn)‖ =
( ∞∑

n=1

pn
T (xn)2

)1/2

<∞
}

is a Banach space, and we can define �2(Yn) in a similar way.

The spaces E and F and the operators j, U and k will be obtained in several
steps:

Step 1: For every element (xn) ∈ �2(Xn), the series
∑∞

k=1 Txk is absolutely con-
vergent in Y .

Indeed, it follows from the definition of the norm in �2(Xn) that

‖Txk‖ ≤ 2−k‖(xn)‖ for every k ∈ N.

As a consequence,

NT :=
{

(xn) ∈ �2(Xn) :
∞∑

k=1

Txk = 0
}

is a closed subspace of �2(Xn).

Step 2: We define the space E as the quotient space �2(Xn)/NT and the operator
k : X −→ E by

k(x) := (x, 0, 0, 0, . . .) + NT for every x ∈ X.

Obviously, k ∈ L(X, E). Moreover, in Step 7 we will show that k∗ is injective;
hence k has dense range.

Step 3: We define the space F as the diagonal subspace

{(yn) ∈ �2(Yn) : yn = y1 for all n}

of �2(Yn) and the operator j : F −→ Y by

j(y, y, y, . . .) := y for every (y, y, y, . . .) ∈ F.

Obviously, j ∈ L(F, Y ) and it is injective.
The most technical part of the proof is contained in the next step.

Step 4: The map U : E −→ F defined by

U((xn) + NT ) :=
( ∞∑

k=1

Txk,

∞∑
k=1

Txk,

∞∑
k=1

Txk, . . .
)

; (xn) ∈ �2(Xn)
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is an isomorphism from E onto F .
First we show that U is well-defined. Given (xn) ∈ �2(Xn), for every m ∈ N

we write

cm :=
∥∥∥2−m

m∑
k=1

xk

∥∥∥ and dm :=
∥∥∥2m

∞∑
k=m+1

Txk

∥∥∥.
Writing cm = ‖

∑m−1
k=0 2−k2−(m−k)xm−k‖, we get( ∞∑

n=1

c2
n

)1/2

≤
∞∑

k=0

2−k
( ∞∑

n=1

‖2−nxn‖2
)1/2

≤ 2‖(xn)‖.

Similarly, writing dm = ‖∑∞
k=1 2−k2m+kTxm+k‖, we get( ∞∑

n=1

d2
n

)1/2

≤
∞∑

k=1

2−k
( ∞∑

n=1

‖2nTxn‖2
)1/2

≤ ‖(xn)‖.

Now observe that
∑m

k=1 xk ∈ 2mcmBX ; hence
∑m

k=1 Txk ∈ 2mcmT (BX),
and similarly,

∑∞
k=m+1 Txk ∈ 2−mdmBY . Then

qm
T

( ∞∑
n=1

Txn

)
≤ max{cm, dm} for every m;

hence ( ∞∑
n=1

qm
T

( ∞∑
n=1

Txn

)2)1/2

≤ 2‖(xn)‖,

and we conclude that U ∈ L(E, F ) with ‖U‖ ≤ 2.
Clearly U is injective. So it remains to show that U is surjective.
Given (y, y, y, . . .) ∈ F , for each ε > 0 we have

y ∈ (1 + ε)qn
T (y)

(
2nT (BX) + 2−nBY

)
.

Thus y = Tun + vn with ‖un‖ ≤ 2n(1 + ε)qn
T (y) and ‖vn‖ ≤ 2−n(1 + ε)qn

T (y).
Since qn

T (y)−→
n

0, the sequence (Tun) converges to y. We take x1 := u1 and
xn := un − un−1 for n > 1. Obviously the series

∑∞
n=1 Txn converges to y.

Note that 2−n‖xn‖ ≤ 2(1 + ε)qn
T (y) and, for n > 1,

2n‖Txn‖ ≤ 2n‖vn−1 − vn‖ ≤ 3(1 + ε)qn
T (y).

Therefore, ( ∞∑
n=1

pn
T (xn)2

)1/2

≤ 4(1 + ε)
( ∞∑

n=1

qn
T (y)2

)1/2

;

hence (xn) ∈ �2(Xn) and U
(
(xn) + NT

)
= (y, y, y, . . .). Thus U is a bijective

isomorphism.
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Step 5: The operator j is tauberian and T = jUk.
The equality T = jUk is obvious. In order to show that j is tauberian,

note that �2(Yn)∗∗ can be identified with �2(Y ∗∗n ), F ∗∗ can be identified with the
diagonal subspace {(ωn) ∈ �2(Y ∗∗n ) : ωn = ω1 for all n} of �2(Y ∗∗n ) and

j∗∗(ω, ω, ω, . . .) = ω for all (ω, ω, ω, . . .) ∈ F ∗∗.

So it is clear that j satisfies the definition of tauberian operator.
It remains to be shown that k is cotauberian. In order to do so we need a

description of the dual spaces of Xn and Yn.
We consider the sequences (pn

T∗) and (qn
T∗) of norms in Y ∗ and X∗ associated

to T ∗ ∈ L(Y ∗, X∗):

pn
T∗(g) := 2n‖T ∗g‖+ 2−n‖g‖; g ∈ Y ∗,

and
qn
T∗(f) := inf

{
s > 0 : f ∈ s

(
2nT ∗(BY ∗) + 2−nBX∗

)}
; f ∈ X∗.

Step 6: We have X∗
n ≡ (X∗, qn

T∗(·)) and Y ∗n ≡ (Y ∗, pn
T∗(·)) (isometrically).

Indeed, we denote by Z the product space X × Y , endowed with the norm
‖(x, y)‖ := ‖x‖+‖y‖. We also consider the auxiliary operator S ∈ L(X, Z) defined
by Sx := (2−nx, 2nTx). Note that the conjugate operator S∗ ∈ L(Z∗, X∗) is given
by S∗(f, g) = 2−nf + 2nT ∗g.

Observe that the unit ball of Xn is S−1(BZ); hence, the unit ball of X∗
n is

{f ∈ X∗ : ∀x ∈ S−1(BZ), |〈f, x〉| ≤ 1} = S∗(BZ∗)

= 2nT ∗(BY ∗) + 2−nBX∗ ,

which is the unit ball of (X∗, qn
T∗(·)); hence X∗

n ≡ (X∗, qn
T∗(·)).

The other identification can be proved in a similar manner.

Step 7: The operator k is cotauberian.
Note that we can identify E∗ with {(fn) ∈ �2(X∗

n) : fn = f1 for all n}, the
diagonal subspace of �2(X∗

n), and the operator k∗ is given by

k∗(f, f, f, . . .) := f ; (f, f, f, . . .) ∈ X∗.

Indeed, since E = �2(Xn)/NT , its dual space E∗ can be identified with the anni-
hilator N⊥

T in �2(X∗
n), and it is easy to check that this annihilator coincides with

the diagonal subspace of �2(X∗
n).

Note that we have showed that the operator k∗ has the same form as j. Thus
the same argument that proved that j is tauberian shows that k∗ is tauberian;
hence k is cotauberian. �

Next we show that, from Theorem 3.2.2 and the basic properties of tauberian
and cotauberian operators, we can derive an easy proof of the main result in [49].
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Corollary 3.2.3. An operator T ∈ L(X, Y ) is weakly compact if and only if it
factorizes through a reflexive Banach space.

Proof. Suppose that T is weakly compact (T ∈ W). Let T = jUk be the de-
composition in Theorem 3.2.2. Since j is tauberian, k is cotauberian and U is an
isomorphism, the following implications hold:

jUk ∈ W ⇒ Uk ∈ W ⇒ U ∈ W ⇒ E and F reflexive.

The converse implication is trivial. �
Definition 3.2.4. The factorization T = jUk given in Theorem 3.2.2 is called the
tauberian decomposition of T .

Remark 3.2.5. Let T = jUk be the tauberian decomposition of T . Then A = Uk
and j give the DFJP factorization of T in Theorem 3.2.1.
Remark 3.2.6. Some versions of the DFJP construction start with an absolutely
convex bounded subset K of a Banach space Y and, denoting by qn(·) the caliber
of the set 2nK + 2−nBY ,

qn(y) := inf{t > 0: y ∈ t(2nK + 2−nBY )},

which is an equivalent norm on Y , and letting Yn := (Y, qn(·)), they introduce a
Banach space FK as the diagonal subspace of �2(Yn); i.e.,

FK :=
{
y ∈ Y :

∞∑
n=1

qn(y)2 <∞
}
.

The expression ‖y‖K := (
∑∞

n=1 qn(y)2)1/2 defines a norm on FK for which
it is a Banach space, and arguments similar to those given for j in the proof
of Theorem 3.2.2 show that the natural inclusion of FK into Y is a tauberian
operator.

This construction can be obtained as a particular case of Theorem 3.2.1.
Indeed, taking a dense subset {yi : i ∈ I} of K, the expression

T (ai)i∈I :=
∑
i∈I

aiyi

defines an operator T : �1(I) −→ Y such that T (B�1(I)) = K, and the space FK

and the tauberian inclusion of FK into Y coincide with the intermediate space
and the tauberian factor in the DFJP factorization of T .

In the case in which Y is a dual space and K is a weak∗-closed subset, the
space FK is also a dual space. This fact was proved in [136].
Remark 3.2.7. The tauberian decomposition of operators provides us with plenty
of non-trivial examples of tauberian and cotauberian operators. Note that j (or
k) has closed range if and only if T has too.
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It is remarkable that the tauberian decomposition behaves well under duality,
as we can see in the following result.

Theorem 3.2.8. Let T = jUk be the tauberian decomposition of T . Then

(i) T ∗ = k∗U∗j∗ is equivalent to the tauberian decomposition of T ∗.

(ii) T co = jcoU cokco is equivalent to the tauberian decomposition of T co.

Proof. (i) We saw in the proof of Theorem 3.2.2 (Step 7) that k∗ can be identified
with the operator j in the tauberian decomposition of T ∗. The arguments for the
other two identifications are similar.

(ii) Note that we can identify �2(Xn)∗∗/�2(Xn) with �2(X∗∗
n /Xn). Indeed,

the map

(αn) + �2(Xn) ∈ �2(Xn)∗∗/�2(Xn) −→ (αn + Xn) ∈ �2(X∗∗
n /Xn)

is a bijective isometry. Moreover, if F is the diagonal subspace of �2(Yn), then
F ∗∗ can be identified with F⊥⊥, which is the diagonal subspace of �2(Y ∗∗n ), and
similarly, F ∗∗/F can be identified with the diagonal subspace of �2(X∗∗

n /Xn).
These and other similar arguments provide the identification of jcoU cokco

with the tauberian decomposition of T co. �

Theorem 3.2.8 will be applied in Chapter 5 to find factorizations for operators
in some operator ideals. Here we give some other consequences.

Corollary 3.2.9. Let T = jUk denote the tauberian decomposition of T and let
n ∈ N.

(i) The successive conjugates operators j∗(2n) and k∗(2n−1) are tauberian.

(ii) The successive conjugates operators j∗(2n−1) and k∗(2n) are cotauberian.

Proof. It is a direct consequence of Theorem 3.2.8. �

Next we shall see that, in most cases, the intermediate space in the DFJP
factorization contains copies of �2. We will need the following auxiliary result.

Lemma 3.2.10. Let (Xk) be a sequence of Banach spaces, let M be an infinite
dimensional subspace of �2(Xk), and for each n ∈ N, let Pn : �2(Xk) −→ �2(Xk)
be the projection defined by Pn(xi) := (x1, . . . , xn, 0, 0, . . .).

Suppose that for each n ∈ N and each ε > 0, there exists x ∈M with ‖x‖ = 1
and ‖Pnx‖ < ε. Then M contains a subspace isomorphic to �2.

Proof. It is a sliding hump argument. Note that, for every x ∈ �2(Xk), the sequence
(Pnx) converges to x.

First we choose x1 ∈ M with ‖x1‖ = 1, and select n1 ∈ N such that
‖Pn1x1‖ > 1 − 2−2. Then we choose x2 ∈ M with ‖x2‖ = 1 and ‖Pn1x2‖ < 2−2,
and select n2 ∈ N such that ‖Pn2x2‖ > 1− 2−4.
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Continuing the process, we obtain a normalized sequence (xk) in M and a
strictly increasing sequence (nk) in N so that, for all k ∈ N and all i < k,

‖Pnk
xk‖ > 1− 2−2k and ‖Pnixk‖ < 2−2k.

It is easy to show that (xk) generates a subspace isomorphic to �2 in M . �

Theorem 3.2.11. Let j : F −→ Y be the tauberian factor in the tauberian decom-
position of T ∈ L(X, Y ), and let M be a non-zero subspace of F . If the restriction
j|M is not an isomorphism, then M contains a subspace isomorphic to �2.

Proof. In the construction of the decomposition we saw that F is a subspace of
�2(Yn), with Yn = (Y, qn

T (·)). We are going to obtain the result as an application
of Lemma 3.2.10. In order to do that, let n ∈ N and ε > 0.

Since j|M is not an isomorphism, there exists y ∈M such that ‖y‖ = 1 and
‖j(y)‖ ≤ ε/2n.

We saw that qk
T (y) ≤ 2k‖j(y)‖ for each y ∈ F and k ∈ N. Hence,

‖Pny‖2 =
n∑

k=1

qk
T (y)2 ≤

n∑
k=1

ε2/22(n−k) < ε2.

Thus Lemma 3.2.10 implies that M contains a subspace isomorphic to �2. �

Let us see a consequence of this theorem. Recall that a Banach space X is
said to be hereditarily �2 if every infinite dimensional closed subspace of X contains
a subspace isomorphic to �2.

Corollary 3.2.12. For every compact operator T : X −→ Y , the intermediate space
F in the tauberian decomposition of T is hereditarily �2.

Proof. If T is compact, then the tauberian factor j : F −→ Y in the tauberian
decomposition of T is also compact (see Proposition 5.3.3); hence, it is enough to
apply Theorem 3.2.11. �

3.3 Variations of the DFJP factorization

In Section 3.2 we have described a refinement of the celebrated DFJP factoriza-
tion. Several other variations of this factorization have been studied. The general
structure is similar: every operator is factorized through an intermediate Banach
space, and the second factor is a tauberian operator. However, they have been con-
structed for specific purposes, like getting a Banach lattice or a Banach algebra as
intermediate space, satisfying certain conditions, and so forth. In this section we
give a brief description of some of these variations. Later, in Chapter 5, we will
show some applications.
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An isometric variation of the DFJP factorization

Lima, Nygaard and Oja [119] introduced an isometric variation of the DFJP fac-
torization and applied it to obtain some characterizations of the approximation
property of Banach spaces.

In order to describe this construction, let a > 1 and let K be a closed
absolutely convex subset of the unit ball BY of a Banach space Y . For each n ∈ N,
let ‖ · ‖n denote the gauge of the set

Bn := an/2K + a−n/2BY .

Then ‖ · ‖n is a norm on Y equivalent to the original one. We define

‖y‖K :=

( ∞∑
n=1

‖y‖2n

)1/2

.

We write FK := {y ∈ Y : ‖y‖K < ∞}, JK : FK −→ Y the natural embed-
ding, and CK := {y ∈ Y : ‖y‖K ≤ 1}, the unit ball of FK .
Remark 3.3.1. Given T ∈ L(X, Y ), if we take a = 4 and K = T (BX) in the
previous construction, JK and FK are the tauberian operator and the intermediate
space in the DFJP factorization of T .

To introduce the isometric bent, we consider a function f : (1,∞) −→ R

defined as follows:

f(a) :=

( ∞∑
n=1

an

(an + 1)2

)1/2

.

Remark 3.3.2. It is easy to see that there exists ã > 1 such that f(ã) = 1. A good
estimate of this ã is e4/9. For this ã, one has K ⊂ CK ⊂ BY .

The proof of the following result is not difficult.

Lemma 3.3.3. Let K be a closed absolutely convex subset of the unit ball of a
Banach space Y and let a > 1. Then, with the notation we have just introduced in
the previous comments, the following results hold:

(i) FK is a Banach space;

(ii) K ⊂ f(a)CK .

Now, given a non-zero operator T ∈ L(X, Y ), we take K = ‖T ‖−1T (BX)
and, for a > 1, construct the corresponding space FK .

It is not difficult to see that AK(x) := Tx defines an operator AK : X −→ FK .
Let us see some properties of the factorization obtained with this scheme.

Theorem 3.3.4. Let T ∈ L(X, Y ) and let K = ‖T ‖−1T (BX). Then JK is a taube-
rian injective operator and T = JKAK .

If, additionally, f(a) = 1, then ‖T ‖ = ‖AK‖ and ‖JK‖ = 1.

Proof. The first part is similar to the proof of the result for the DFJP factorization.
The isometric part of the proof is not difficult. �
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Connections with real interpolation methods

In [123, Theorem 2.g.11], the factorization of weakly compact operators through
reflexive spaces (Corollary 3.2.3) is obtained as an application of one of the versions
of the real interpolation method for Banach spaces. Moreover, in Beauzamy’s
exposition [21], we can see that there is a similarity between the construction of the
intermediate spaces in the DFJP factorization and in the tauberian decomposition,
and the construction of intermediate spaces in the real interpolation method. Here
we describe these connections.

First we recall the definitions of the intermediate spaces in two of the discrete
versions of the real interpolation method.

Let A0 and A1 be two Banach spaces (endowed with the norms ‖ · ‖0 and
‖ · ‖1) which are subspaces of a certain vector space, so that the sum

A0 + A1 := {x0 + x1 : x0 ∈ A0, x1 ∈ A1}

is well-defined.
To follow this description, it could be useful to have a concrete case in mind:

the spaces A0 = L1(0,∞) and A1 = L∞(0,∞) of scalar measurable functions on
(0,∞).

It is not difficult to show that A0 + A1, endowed with the norm

‖x‖S := inf{‖x0‖0 + ‖x1‖1 : x0 ∈ A0, x1 ∈ A1, x = x0 + x1},

and A0 ∩A1, endowed with the norm

‖x‖I := max{‖x‖0, ‖x‖1},

are Banach spaces.
Now, following [21, Section 1.4], we consider three fixed real numbers p, ξ0

and ξ1 satisfying 1 ≤ p <∞, ξ0 < 0 and ξ1 > 0, and we define the space

Sα(p; ξ0, ξ1) :=
{

x ∈ A0 + A1 : ∃(xn)n∈Z ⊂ A0 ∩A1 satisfying∑
n∈Z

eξ0np‖xn‖p0 <∞,
∑
n∈Z

eξ1np‖xn‖p1 <∞ and x =
∑
n∈Z

xn

}
,

and the norm

‖x‖α := inf max
{∑

n∈Z

eξ0np‖xn‖p0,
∑
n∈Z

eξ1np‖xn‖p1
}1/p

,

where the infimum is taken over all the sequences (xn)n∈Z ⊂ A0 ∩ A1 for which
x =

∑
n∈Z

xn.

Proposition 3.3.5. The space Sα(p; ξ0, ξ1), endowed with the norm ‖ · ‖α, is a
Banach space.
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Proof. It is rather technical. We refer to [21, Section 1.4] for details. �

Definition 3.3.6. The space Sα(p; ξ0, ξ1) is the real interpolation space between A0

and A1, with parameters p, ξ0 and ξ1.

Remark 3.3.7. The space Sα(p; ξ0, ξ1) is one of the discrete versions of the real
interpolation spaces between A0 and A1. There are other equivalent definitions of
this interpolation space in terms of spaces of vector-valued measurable functions,
instead of spaces of sequences. See [21, Chapter 1].

Next we describe another discrete version, which was introduced by Beauza-
my, inspired by the DFJP factorization.

Let j0 : A0 −→ A0 + A1 and j1 : A1 −→ A0 + A1 be the natural inclusions.
We write

B0 := j0(BA0) and B1 := j1(BA1).

Moreover, for every n ∈ Z, we consider the subsets

Un := e−ξ0nB0 + e−ξ1nB1

of A0 + A1, and denote by qn(·) their calibers:

qn(x) := inf{t > 0: x ∈ tUn}.

We define the space

Sγ(p; ξ0, ξ1) :=
{
x ∈ A0 + A1 :

∑
n∈Z

qn(x)p <∞
}
,

endowed with the norm ‖x‖γ :=
(∑

n∈Z
qn(x)p

)1/p.

Proposition 3.3.8. The spaces Sα(p; ξ0, ξ1) and Sγ(p; ξ0, ξ1) coincide algebraically
and the norms ‖ · ‖α and ‖ · ‖γ are equivalent.

For the proof we refer to [21, Section 1.4].

In the special case in which A0 is continuously embedded in A1; i.e., A0 ⊂ A1

and there exists C > 0 such that ‖x‖1 ≤ C‖x‖0 for every x ∈ A0, we have an
equivalent expression for the norm of Sα(p; ξ0, ξ1).

Proposition 3.3.9. Suppose that A0 is continuously embedded in A1. Then the

expression ‖z‖γ+ :=
(∑

n≥0 qn(z)p
)1/p

defines a norm on Sγ(p; ξ0, ξ1) which is
equivalent to ‖ · ‖γ.

For the proof we refer to [21, Section 1.5].

Now we have the tools we need to show that we can identify the intermediate
space F of the tauberian decomposition of an operator T : X −→ Y with a real
interpolation space Sγ(p; ξ0, ξ1) for special values of the parameters.
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First, observe that it is not difficult to show that T and the associated in-
jective operator T̃ : X/N(T ) −→ Y produce the same intermediate space F in the
tauberian decomposition. So we can assume that the operator T is injective.

Now we can consider the space X as a subspace of Y , which is continuously
embedded through the operator T . So we identify each x ∈ X with Tx ∈ Y .

We take A0 := T (X), with the norm ‖Tx‖0 = ‖x‖, and A1 := Y , with its
original norm.

We select as parameters the values p = 2, ξ0 = − log 2 and ξ1 = log 2.
Therefore,

Un = e−ξ0nB0 + e−ξ1nB1 = 2nT (BX) + 2−nBY .

Now, comparing this with the construction in the proof of Theorem 3.2.2, it is
clear that the map

V (y, y, y, . . .) := y

defines an isomorphism from F onto Sγ(2;− log 2, log 2).

A conditional variation of the DFJP factorization

In the DFJP factorization, the intermediate space is constructed as the diagonal
subspace of a space �2(Yn). We can loosely say that the norms of the spaces Yn

are averaged by means of an �2-sum. Since the unit vector basis of �2 is an uncon-
ditional basis, the intermediate space inherits some unconditional character. For
example, in most cases the intermediate space in the factorization contains sub-
spaces isomorphic to �2, as can be seen in Theorem 3.2.11. This is not convenient
if our aim is to obtain a hereditarily indecomposable Banach space (see Definition
3.3.16), because these spaces do not contain unconditional basic sequences. We
refer to the paper of Gowers and Maurey [95], in which the first Banach space of
this kind is constructed, for additional information.

Argyros and Felouzis showed in [13] that certain operators factor through
an hereditarily indecomposable Banach space. The factorization they construct is
inspired in the DFJP factorization, but they have to take the intermediate space
as a diagonal subspace of a conditional sum of Banach spaces, in order to avoid
the appearance of unconditional basic sequences. Let us describe this construction,
that can be considered as a generalization of the DFJP factorization.

Let (Xn) be a sequence of Banach spaces, let ‖ · ‖n denote the respective
norms, and let

∏∞
n=1 Xn denote their cartesian product.

For x = (xn) ∈ ∏∞n=1 Xn, the support supp(x) is the set of all n ∈ N such
that xn �= 0. We denote

( ∞∏
n=1

Xn

)
00

:=
{

x ∈
∞∏

n=1

Xn : supp(x) is finite
}
.
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We also denote by Pn :
∏∞

n=1 Xn −→
∏∞

n=1 Xn the projection defined by

Pn

(
(xi)

)
:= (x1, . . . , xn, 0, 0, . . .) for every (xi) ∈

∞∏
i=1

Xi.

Given a finite subset A ⊂ N and x = (xn) ∈ ∏∞n=1 Xn, we denote by PA(x)
the element in

∏∞
n=1 Xn obtained from x by replacing xn by 0 for n /∈ A. In this

way we obtain a projection

PA :
∞∏

n=1

Xn −→
∞∏

n=1

Xn.

Given a pair A, B of finite subsets of N, we write A < B if max A < min B.
A sequence (xn) of non-zero vectors in (

∏∞
n=1 Xn)00 is said to be a block sequence

if supp(xn) < supp(xn+1) for each n ∈ N.

Definition 3.3.10. Let ((Xn, ‖ · ‖n)) be a sequence of Banach spaces. A Banach
space (Z, ‖ · ‖) is said to be a d-product of the sequence (Xn) if it satisfies the
following conditions:

(i) (
∏∞

n=1 Xn)00 ⊂ Z ⊂∏∞n=1 Xn (algebraically);

(ii) (
∏∞

n=1 Xn)00 is dense in Z;

(iii) the natural map from Xn into Z is an isometry, for each n ∈ N;

(iv) the projection Pn is bounded on Z for each n ∈ N, and z = limn→∞ Pnz for
each z ∈ Z.

Remark 3.3.11. The conditions of the previous definition imply that (Xn) is a
Schauder decomposition of Z. Note that, by the uniform boundedness principle,
supn ‖Pn‖ <∞.

We refer to [122, Section 1.9] for additional information on Schauder decom-
positions of Banach spaces.

Definition 3.3.12. Let Z be a d-product of a sequence (Xn) of Banach spaces, as
in Definition 3.3.10.

(i) The d-product Z is boundedly complete if given x ∈
∏∞

n=1 Xn,

sup
n∈N

‖Pn(x)‖ <∞ implies x ∈ Z;

(ii) the d-product Z is shrinking if α = limn→∞ P ∗nα, for every α ∈ Z∗;

(iii) the d-product Z is bimonotone if ‖PA‖ = 1 for every finite interval A of
integers.

The proof of the following proposition is similar to that of the corresponding
result for Banach spaces with a Schauder basis (see [122, Section 1.b]).
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Proposition 3.3.13. Let Z be a shrinking d-product of a sequence (Xn) of Banach
spaces. Then the following assertions hold:

(i) Z∗ is a d-product of the spaces (X∗
n), embedded through the natural maps;

(ii) we can identify Z∗∗ with the space of all sequences (x∗∗n ) satisfying x∗∗n ∈ X∗∗
n

for all n ∈ N and supn∈N ‖x∗∗1 + · · ·+ x∗∗n ‖ <∞.

We are interested in a special kind of d-product.

Definition 3.3.14. Let (‖·‖n) be a sequence of equivalent norms on a Banach space
X and let Z be a d-product of the sequence

(
(X, ‖ · ‖n)

)
. The diagonal space ΔZ

of Z is defined by

ΔZ := {(xi) ∈ Z : xn = x1 for all n},

and J : ΔZ −→ X1 := (X, ‖ · ‖1) is the map defined by

J
(
(x, x, x, . . .)

)
:= x for each (x, x, x, . . .) ∈ ΔZ.

Let us see that the diagonal space in Definition 3.3.14 has similar properties
to that of the intermediate space in the DFJP factorization.

Proposition 3.3.15. Let (‖ · ‖n) be a sequence of equivalent norms on a Banach
space X and let Z be a boundedly complete and shrinking d-product of the sequence(
(X, ‖ · ‖n)

)
. Then J : ΔZ −→ X is an injective tauberian operator.

Proof. Clearly J is injective. Moreover,

‖J(x, x, x, . . .)‖ = ‖P1(x, x, x, . . .)‖ ≤ ‖P1‖ · ‖(x, x, x, . . .)‖;

hence J is a bounded operator.
Let α ∈ (ΔZ)∗∗. Since α can be attained as the weak∗-limit of a net in ΔZ

and Z is a shrinking d-product, by Proposition 3.3.13 there exists x∗∗ ∈ X∗∗ so
that

α = (x∗∗, x∗∗, x∗∗, x∗∗, . . .).

Suppose that J∗∗α ∈ X . Then x∗∗ = x ∈ X and

sup
n∈N

‖Pn(x, x, x, . . .)‖ = sup
n∈N

‖P ∗∗n α‖ <∞.

Since Z is boundedly complete, we have α = (x, x, x, . . .) ∈ Z; hence α ∈ ΔZ.
Therefore J is tauberian. �

Definition 3.3.16. A Banach space X is hereditarily indecomposable (H.I., for
short) if no subspace of X can be decomposed as the topological direct sum of two
infinite dimensional closed subspaces.
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Remark 3.3.17. It follows from Gowers’ dichotomy [94] that an infinite dimen-
sional Banach space contains an infinite dimensional H.I. closed subspace or an
unconditional basic sequence.

Definition 3.3.18. A d-product space Z is block-H.I. if every closed subspace of Z
generated by a block sequence is a H.I. space.

The following result is the key to obtain factorizations of operators through
H.I. spaces. The proof is not difficult. However, finding d-products which are block-
H.I. is rather tricky. See [13, Section 7].

Proposition 3.3.19. Let (‖ · ‖n) be a sequence of equivalent norms on a Banach
space X and let Z be a d-product of the sequence

(
(X, ‖ · ‖n)

)
. If Z is block-H.I.

and the operator J : ΔZ −→ X1 is strictly singular, then ΔZ is a H.I. space.

For the proof, we refer to [13, Proposition 2.1].

The following result is an application of Proposition 3.3.19. We should com-
pare it with Corollary 3.2.12.

Theorem 3.3.20. Every compact operator T : X −→ Y can be factorized through a
H.I. Banach space.

For the proof, we refer to [13, Theorem 8.5].

Remark 3.3.21. Theorem 3.3.20 is also true for any strictly singular operator
T : �p −→ �q with q <∞ and for the natural inclusion i : L∞(0, 1) −→ L1(0, 1).

We refer to [13] for the details.

3.4 Inclusions of vector-valued function spaces

Here we show that some natural inclusions between Banach spaces of vector-valued
measurable functions are tauberian operators. In order to introduce these spaces,
we need some notation.

Let φ : [0,∞]→ [0,∞] be a non-decreasing, left-continuous, non-zero function
satisfying φ(0) = 0.

The left-inverse ψ of φ is given by ψ(0) := 0 and

ψ(v) := sup{u : φ(u) < v}, for v > 0.

From φ and ψ we obtain the Young function Φ: [0,∞] → [0,∞] and its
conjugate function Ψ, as follows:

Φ(u) :=
∫ u

0

φ(t) dt and Ψ(u) :=
∫ u

0

ψ(t) dt.

Definition 3.4.1. We say that a Young function Φ: [0,∞] → [0,∞] satisfies the
Δ2-condition if it is finite on [0,∞) and there exist K > 0 and t0 ≥ 0 so that
Φ(2t) ≤ KΦ(t), for t ≥ t0.
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Let (Ω, Σ, μ) be a finite measure space with no atoms, let Φ be a Young
function and let X be a Banach space. For every Bochner measurable function
f : Ω→ X we write

MΦ(f) :=
∫

Ω

Φ(‖f(t)‖) dμ(t).

The Orlicz space LΦ(X) associated with Φ is defined as the space of all
Bochner measurable functions f : Ω→ X such that MΦ(kf) <∞ for some k > 0.

In the case when X is the scalar field K, we write LΦ instead of LΦ(K).

The space LΦ(X) coincides with the set of all Bochner measurable functions
f : Ω→ X such that

‖f‖Φ := sup
{∫

Ω

‖f(t)‖h(t) dμ(t) : h ∈ LΦ, MΦ(h) ≤ 1
}

<∞.

Moreover, (LΦ(X), ‖ · ‖Φ) is a Banach space contained in L1(X) and the natural
embedding JΦ of LΦ(X) into L1(X) is a continuous operator.

Proposition 3.4.2. Let Φ be a Young function such that Φ and its conjugate sat-
isfy the Δ2 condition. Then the embedding JΦ : LΦ(X) −→ L1(X) is a tauberian
operator.

Proof. Let (fn) be a bounded sequence in LΦ(X) which is weakly convergent to
some f in L1(X).

From the fact that Φ and its conjugate satisfy the Δ2 condition, it follows
that we can identify L1(X)∗ with a dense subspace of LΦ(X)∗. Now, since (fn) is
bounded in LΦ(X), from

lim
n→∞〈fn, g〉 = 〈f, g〉

for each g ∈ L1(X)∗, it follows that the same is true for each g ∈ LΦ(X)∗. Thus
(fn) is weakly convergent to f in LΦ(X) and by Theorem 2.2.4 we conclude that
JΦ is tauberian. �

Remark 3.4.3. Under the hypothesis of Proposition 3.4.2, we can identify LΦ(X)∗∗

with LΦ(X∗∗) and LΦ(X)co with LΦ(Xco). Thus we can give an alternative proof
by showing that Jco

Φ can be identified with the natural inclusion of LΦ(Xco) into
L1(Xco).

It is not difficult to derive a slight extension of Proposition 3.4.2.

Corollary 3.4.4. Let Φ1 and Φ2 be Young functions such that both of them and
their respective conjugates satisfy the Δ2 condition. Suppose that the associated
Orlicz spaces satisfy LΦ1(X) ⊂ LΦ2(X). Then the natural embedding

J1,2 : LΦ1(X) −→ LΦ2(X)

is a tauberian operator.
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Proof. Since we can write JΦ1 = JΦ2J1,2 and JΦ1 is tauberian, it follows from
Proposition 2.1.3 that J1,2 is tauberian. �

The following result is a good complement to Proposition 3.4.2.

Proposition 3.4.5. Given a Young function Φ, the following conditions are equiv-
alent:

(a) The embedding operator JΦ : LΦ −→ L1 is tauberian.

(b) For each Banach space X, the embedding operator JΦ : LΦ(X) −→ L1(X) is
tauberian.

Since the proof is rather technical, we omit it and refer the interested reader
to [35, Theorem 3.1].

3.5 Tauberian-like classes of operators defined in terms
of sequences

Inspired by semi-Fredholm operators and by tauberian and cotauberian operators,
several classes of operators defined in terms of sequences have been studied (see
[34], [79], [89], [90], [92], [102] and [126]). In this study, four operator ideals have
been considered, and for each one of them, two classes have been introduced:
one corresponds to tauberian operators and the other to cotauberian operators.
The properties of the corresponding classes are similar to those of T and T d. In
particular, they admit a perturbative characterization. This is important because
it allows us to find relations of inclusion between some of these classes. We refer to
Section A.2 for the fundamentals of the theory of operator ideals. Here we describe
the main properties of these classes. Later, in Chapter 6, we will see that they are
operator semigroups associated with some operator ideals. Thus we will introduce
here a notation consistent with that in Chapter 6.

First we give the definitions of some well-known classes of operators. Recall
that a series

∑∞
n=1 xn in a Banach space X is called weakly unconditionally Cauchy

if
∑∞

n=1 |〈f, xn〉| <∞ for every f ∈ X∗.

Definition 3.5.1. Let T ∈ L(X, Y ).

(i) We say that T is weakly precompact, or Rosenthal, and we write T ∈ R, if
(Txn) has a weakly Cauchy subsequence for every bounded sequence (xn)
in X .

(ii) We say that T is completely continuous, and we write T ∈ C, if (Txn) is
convergent for every weakly Cauchy sequence (xn) in X .

(iii) We say that T is weakly completely continuous, and we write T ∈ WC, if
(Txn) is weakly convergent for every weakly Cauchy sequence (xn) in X .
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(iv) We say that T is unconditionally convergent, and we write T ∈ U , if the series∑∞
n=1 Txn is unconditionally convergent for every weakly unconditionally

Cauchy series
∑∞

n=1 xn in X .

Remark 3.5.2. It is well-known that the classes R, C, WC and U are operator
ideals.
Remark 3.5.3. It is not difficult to show that T ∈ L(X, Y ) is completely continuous
if and only if it takes weakly convergent sequences into convergent sequences. So
this action over sequences does not produce a new operator ideal.

Two of the operator ideals in Definition 3.5.1 admit a characterization in
terms of restrictions.

Proposition 3.5.4. For every operator T ∈ L(X, Y ), the following statements hold:

(i) T ∈ R if and only if there is no subspace M of X isomorphic to �1 so that
the restriction T |M is an isomorphism;

(ii) T ∈ U if and only if there is no subspace M of X isomorphic to c0 so that
the restriction T |M is an isomorphism.

Proof. (i) Suppose that T ∈ R. Since the unit vector basis of �1 has no weakly
Cauchy subsequences, if a subspace M of X is isomorphic to �1, then T |M cannot
be an isomorphism.

Conversely, suppose that T /∈ R. Then we can find a bounded sequence (xn)
in X such that (Txn) has no weakly Cauchy subsequences. By Rosenthal’s �1-
theorem (Theorem A.3.10), passing to a subsequence, we can assume that both
(xn) and (Txn) are equivalent to the unit vector basis of �1. Then

M := span{xn : n ∈ N}

is isomorphic to �1 and T |M is an isomorphism.
(ii) Suppose that T ∈ U . Let (en) denote the unit vector basis of c0. Since∑∞

n=1 en is a weakly unconditionally Cauchy series which is not unconditionally
converging, if a subspace M of X is isomorphic to c0, then T |M cannot be an
isomorphism.

Conversely, suppose that T /∈ U . Then we can find a weakly unconditionally
Cauchy series

∑∞
n=1 xn in X such that

∑∞
n=1 Txn is not unconditionally converg-

ing.
By reordering the sequence (xn), we can assume that the series

∑∞
n=1 Txn

is not convergent. Then we can take 1 ≤ k1 ≤ m1 < k2 ≤ m2 < · · · in N so that
the vectors

yn := xkn + xkn+1 + · · ·+ xmn (n ∈ N)

satisfy infn∈N ‖Tyn‖ > 0.
Observe that

∑∞
n=1 yn and

∑∞
n=1 Tyn are weakly unconditionally Cauchy

series. By the Bessaga-Pe�lczyński selection principle (Proposition A.3.7), passing
to a subsequence, we can assume that both (yn) and (Tyn) are basic sequences.
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Therefore, by Proposition A.3.12, both sequences are equivalent to the unit vector
basis of c0. Then

M := span{yn : n ∈ N}
is isomorphic to c0 and T |M is an isomorphism. �

Recall that for every operator ideal A, the expression

Ad := {T ∈ L : T ∗ ∈ A}

defines the dual operator ideal Ad of A and

Sp(A) = {X : IX ∈ A}

is the associated space ideal. See Section A.2.
Remark 3.5.5. The space ideals Sp(W), Sp(R), Sp(C), Sp(WC) and Sp(U) are the
reflexive spaces, the spaces containing no copies of �1, the spaces with the Schur
property, the weakly sequentially complete spaces and the spaces containing no
copies of c0, respectively. Moreover,

Sp(Ad) = {X : X∗ ∈ Sp(A)}.

First we introduce the classes which are similar to tauberian operators (and
to upper semi-Fredholm operators). The definition in each case is a property which
is the opposite of the definition of the corresponding operator ideal.

Definition 3.5.6. Let T ∈ L(X, Y ).

(i) We write T ∈ R+ if a sequence (xn) in X has a weakly Cauchy subsequence,
whenever (xn) is bounded and (Txn) is weakly Cauchy in Y .

(ii) We write T ∈ C+ if a sequence (xn) in X is convergent, whenever (xn) is
weakly Cauchy and (Txn) is convergent in Y .

(iii) We write T ∈ WC+ if a sequence (xn) in X is weakly convergent, whenever
(xn) is weakly Cauchy and (Txn) is weakly convergent in Y .

(iv) We write T ∈ U+ if a series
∑∞

n=1 xn in X is unconditionally convergent,
whenever

∑∞
n=1 xn is weakly unconditionally Cauchy and

∑∞
n=1 Txn uncon-

ditionally convergent in Y .

Next we introduce, using duality, the classes which are similar to cotauberian
operators and lower semi-Fredholm operators.

Definition 3.5.7. Let A be one of the operator ideals R, C, WC or U and let
T ∈ L(X, Y ). We write T ∈ Ad− whenever the conjugate T ∗ ∈ A+.

Remark 3.5.8. In Definition 3.5.7, for A equal to R, C,WC or U , we have denoted
the dual class of A+ by Ad−. We have done that to be consistent with Definition
6.1.7, where we introduce the operator semigroups associated with an operator
ideal A.
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Remark 3.5.9. According to Schauder’s theorem and Gantmacher’s theorem (see
[4, A.4 and G.5]), the operator ideals K and W are self-dual, i.e., Kd = K and
Wd =W .

Recall that an operator T ∈ L(X, Y ) is upper semi-Fredholm if and only
if a sequence (xn) in X is convergent, whenever (xn) is bounded and (Txn) is
convergent in Y (Proposition A.1.4).

The scheme of Definitions 3.5.6 and 3.5.7 applied to the operator ideal K
gives as K+ and K− the upper semi-Fredholm Φ+ and the lower semi-Fredholm
operators Φ− respectively.

Similarly, the scheme of Definitions 3.5.6 and 3.5.7 applied toW gives asW+

and W− the tauberian and the cotauberian operators respectively.

The following two results describe some basic properties of the classes A+

and Ad−. Their proofs are left to the interested reader. In the first one we describe
the behavior of A+ and Ad− under products.

Proposition 3.5.10. Let A be one of the operator ideals R, C, WC or U , and let
S ∈ L(Y, Z) and T ∈ L(X, Y ).

(i) S, T ∈ A+ ⇒ ST ∈ A+.

(ii) ST ∈ A+ ⇒ T ∈ A+.

(iii) S, T ∈ Ad− ⇒ ST ∈ Ad−.

(iv) ST ∈ Ad− ⇒ S ∈ Ad−.

The second one shows some properties of A+ and Ad− that are stable under
perturbation.

Proposition 3.5.11. Let A be one of the operator ideals R, C, WC or U , and let
T, K ∈ L(X, Y ).

(i) T ∈ A+ ⇒ N(T ) ∈ Sp(A).

(ii) T ∈ A+, K ∈ A ⇒ T + K ∈ A+.

(iii) T ∈ Ad− ⇒ Y/R(T ) ∈ Sp(Ad).

(iv) T ∈ Ad−, K ∈ Ad ⇒ T + K ∈ Ad−.

The operators in A+ and Ad− with closed range admit a very simple char-
acterization. Compare with part (ii) in Theorem 2.1.5 and Proposition 3.1.5.

Proposition 3.5.12. Let A be one of the operator ideals R, C, WC or U , and let
T ∈ L(X, Y ) be an operator with closed range. Then

(i) T ∈ A+ if and only if N(T ) ∈ Sp(A).

(ii) T ∈ Ad− if and only if Y/R(T ) ∈ Sp(Ad).
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Proof. (i) To prove the non-trivial implication, suppose that R(T ) is closed and
N(T ) ∈ Sp(A).

Case A = R: Suppose that T /∈ R+. So we can take a bounded sequence with
no weakly Cauchy subsequences (xn) in X such that (Txn) is weakly Cauchy. By
Rosenthal’s �1-theorem, passing to a subsequence if necessary, we can assume that
(xn) is equivalent to the unit vector basis of �1.

Note that (Tx2n − Tx2n−1) is weakly null. Since the norm-closure and the
weak-closure coincide for convex sets, we can take a sequence (yn) formed by
successive convex combinations of (x2n − x2n−1) such that T (yn) converges in
norm to 0, and yet (yn) is equivalent to the unit vector basis of �1.

Since R(T ) is closed, there exists C > 0 such that

‖Tx‖ ≥ C dist
(
x, N(T )

)
,

for every x ∈ X . Hence
lim

n→∞dist
(
yn, N(T )

)
= 0.

It follows from this fact that N(T ) contains a sequence equivalent to the unit
vector basis of �1. Thus we obtain a contradiction.

Case A = C: Suppose that (xn) is a weakly Cauchy sequence in X such that
(Txn) is convergent. Since R(T ) is closed, (Txn) converges to Tx for some x ∈ X .
As in the previous case, from (Txn − Tx) converging in norm to 0, we get

lim
n→∞dist(xn − x, N(T )) = 0.

Therefore we can choose a bounded sequence (yn) in N(T ) which satisfies

lim
n→∞ ‖yn − xn − x‖ = 0.

Now, since weakly Cauchy sequences in N(T ) are convergent, we conclude
that (xn) is convergent in X ; hence T ∈ C+.

Case A = WC: Suppose that (xn) is a weakly Cauchy sequence in X such that
(Txn) is weakly convergent. Since R(T ) is closed, (Txn) is weakly convergent to
Tx for some x ∈ X .

Now, a similar argument to that in the case A = C allows us to conclude that
T ∈ WC+.

Case A = U : Suppose that T /∈ U+. Therefore there exists a weakly uncon-
ditionally Cauchy series

∑∞
n=1 xn which is not unconditionally converging, but∑∞

n=1 Txn is unconditionally converging.
After reordering, we can suppose that

∑∞
n=1 xn is not convergent. Now we

can take 1 ≤ k1 ≤ m1 < k2 ≤ m2 < · · · in N, so that the vectors

yn := xkn + xkn+1 + · · ·+ xmn (n ∈ N)
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satisfy infn∈N ‖yn‖ > 0.
Note that

∑∞
n=1 yn is weakly unconditionally Cauchy and

∑∞
n=1 Tyn is un-

conditionally converging. By the Bessaga-Pe�lczyński selection principle (Proposi-
tion A.3.7), (yn) has a basic subsequence (xn) which, by Proposition A.3.12, is
equivalent to the unit vector basis of c0.

Since (Tyn) is norm convergent to 0 and R(T ) is closed, dist(yn, N(T ))→ 0.
Thus we conclude that N(T ) contains a sequence equivalent to the unit vector
basis of c0, which gives a contradiction.

(ii) It follows from (i) and the fact that the dual space of Y/R(T ) can be
identified with N(T ∗). �

Remark 3.5.13. Let A be one of the operator ideals R, C, WC or U and let
T ∈ L(X, Y ). In all cases,

T ∈ A+ �⇒ T ∗ ∈ Ad−.

Therefore T ∗∗ ∈ A+ implies T ∈ A+, but the converse implication fails.
This is similar to the relation between the tauberian operators T and the

cotauberian operators T d. In the case of T and T d, the counterexample is non-
trivial (see Theorem 3.1.18) because a Banach space X is reflexive if and only if
so is X∗∗. However, in the cases we are considering now, it is much easier to show
a counterexample.

Indeed, it is well-known that for each of the mentioned operator ideals A,
there exists a Banach space X with a subspace E such that E ∈ Sp(A), but
E∗∗ /∈ Sp(A). So, by Proposition 3.5.12, the quotient map QE : X −→ X/E
satisfies QE ∈ A+ and Q∗∗E /∈ A+.

Let us show that all the classes A+ and Ad− admit a perturbative charac-
terization.

Theorem 3.5.14. Let A be one of the operator ideals R, C, WC or U , and let
T ∈ L(X, Y ). Then

(i) T ∈ A+ if and only if N(T + K) ∈ Sp(A) for every compact operator K ∈
K(X, Y ).

(ii) T ∈ Ad− if and only if Y/R(T + K) ∈ Sp(Ad) for every compact operator
K ∈ K(X, Y ).

Proof. Since the compact operators K are contained in A and Ad for all the
operator ideals A we are considering, the direct implications are a consequence of
Proposition 3.5.11.

In order to prove the converse implications in (i), suppose that T /∈ A+. For
each A, we will show the existence of bounded sequences (xn) in X and (fn) in
X∗ such that

1. 〈fi, xj〉 = δij , for all i, j ∈ N,
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2. span{xn : n ∈ N} /∈ Sp(A),

3. (Txn) converges to some y ∈ Y ,

4.
∑∞

n=1 ‖fn‖ ‖Txn − y‖ <∞.

Then, the expression

K(x) := −
∞∑

n=1

〈fn, x〉(Txn − y); x ∈ X

defines an operator K ∈ K(X, Y ) such that (T + K)xn = y for all n. Since
N(T + K) contains a 1-codimensional closed subspace of span{xn : n ∈ N}, we
conclude N(T + K) /∈ Sp(A).

Case A = R: Since T /∈ R+, there is a bounded sequence (zn) in X having no
weakly Cauchy subsequence and such that (Tzn) is weakly Cauchy. By Rosenthal’s
�1-theorem, we can assume that (zn) is equivalent to the unit vector basis of �1.

Now, taking yn := z2n − z2n−1, the sequence (yn) is equivalent to the unit
vector basis of �1 and (Tyn) is weakly null. Since the norm-closure and the weak-
closure coincide for convex sets, we can take a sequence (xn) formed by successive
convex combinations of (yn) such that T (xn) converges in norm to 0, and yet (xn)
is equivalent to the unit vector basis of �1. Clearly the sequence (fn) exists, and
(xn) and (fn) satisfy 1, 2 and 3. And, passing to subsequence if necessary, (xn)
and (fn) satisfy 4 too.

Case A = C: Since T /∈ C+, there exists a weakly Cauchy sequence (zn) in X
having no convergent subsequence and such that (Tzn) is convergent to some y ∈
Y . By the Kadec-Pe�lczyński criterion (Theorem A.3.8), passing to a subsequence,
we can assume that (zn) is a basic sequence. Clearly, we can finish the argument
as in the case A = R.

Case A = WC: Since T /∈ WC+, there exists a weakly Cauchy sequence (yn)
in X having no weakly convergent subsequence, and such that (Tyn) is weakly
convergent to some y ∈ Y . As in the case A = R, we can take a sequence (xn)
formed by convex combinations of (yn) such that T (xn) converges in norm to y,
and (xn) is a basic sequence having no weakly convergent subsequences. So the
proof can be finished in a similar way.

Case A = U : Since T /∈ U+, proceeding as in the proof of case A = U in Proposi-
tion 3.5.12, we can get a sequence (yn) in X equivalent to the unit vector basis of
c0 such that

∑∞
n=1 Tyn is unconditionally converging. So the proof can be finished

as in the case A = R.

In order to prove the converse implications in (ii), suppose that T /∈ Ad−;
hence T ∗ /∈ A+(Y ∗, X∗). Proceeding as in the proof of the converse of (i), we
obtain bounded sequences (gn) in Y ∗ and (Gn) in Y ∗∗ satisfying conditions 1, 2,
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3 and 4. In particular, (T ∗gn) converges to some g ∈ Y ∗ and

∞∑
n=1

‖Gn‖ ‖T ∗gn − g‖ <∞.

The key point here is that an application of Lemma 3.1.19 allows us to take
Gn = yn ∈ Y , for every n ∈ N. Therefore,

K(x) := −
∞∑

n=1

〈T ∗gn − g, x〉yn; x ∈ X

defines an operator K ∈ K(X, Y ) such that (T ∗ + K∗)gn = g for all n.
Thus N(T ∗ + K∗) /∈ Sp(A); hence Y/R(T + K) /∈ Sp(Ad). �

From perturbative characterizations, like those in Theorem 3.5.14, we can
derive characterizations of classes of Banach spaces similar to those characterized
in Corollaries 2.2.8 and 3.1.21.

Proposition 3.5.15. Let A and B be two of the operator ideals K, W, R, C, WC
or U and let X be a Banach space.

(i) A+(X, Z) ⊂ B+(X, Z) for every Banach space Z if and only if the closed
subspaces of X in Sp(A) belong to Sp(B);

(ii) Ad−(Z, X) ⊂ Bd−(Z, X) for every Banach space Z if and only if the quotients
of X in Sp(Ad) belong to Sp(Bd).

Proof. (i) The direct implications are immediate consequences of the correspond-
ing results in Theorem 3.5.14.

For the converse implications, suppose that M is a closed subspace of X which
belongs to Sp(A) but not to Sp(B). Then, the quotient map QM : X −→ X/M
belongs to A+ but not to B+.

(ii) The direct implications are also immediate consequences of the corre-
sponding results in Theorem 3.5.14.

For the converse implications, suppose that N is a closed subspace of X
such that X/N belongs to Sp(A) but not to Sp(B). Then, the embedding map
JN : N −→ X belongs to Ad− but not to Bd−. �

Next, we show how to apply Theorem 3.5.14 and the corresponding results
for K andW to characterize the classes of operators considered in Definition 3.5.6,
Definition 3.5.7 and Remark 3.5.9.

Proposition 3.5.16. Let A be one of the operator ideals K, W, R, C, WC or U ,
and T ∈ L(X, Y ). Then

(i) T ∈ A+ if and only if for every Banach space Z and every A ∈ L(Z, X),
TA ∈ A implies A ∈ A.
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(ii) T ∈ Ad− if and only if for every Banach space Z and every B ∈ L(Y, Z),
BT ∈ Ad implies B ∈ Ad.

Proof. (i) The direct implication follows immediately from the sequential charac-
terizations of A and A+.

For the converse, suppose that T /∈ A+. By Theorem 3.5.14, there is a com-
pact operator K ∈ L(X, Y ) such that N(T + K) /∈ Sp(A).

Let us denote by A the inclusion of N(T + K) into X . Since TA is compact,
TA ∈ A; however, A /∈ A.

The proof of (ii) can be obtained from (i) by using a duality argument. �

3.6 Notes and Remarks

The cotauberian operators were introduced by Tacon [157] as those operators
T ∈ L(X, Y ) such that R(T ∗∗) + Y is dense in Y ∗∗. He also proved that T is
cotauberian if and only if T ∗ is tauberian.

Yang [174] investigated cotauberian operators with closed range in his at-
tempt to develop a generalized Fredholm theory in which the weakly compact
operators play the role of the compact operators in the classical Fredholm theory.
He also studied the class of operators with closed range which are tauberian and
cotauberian, referring to them as the weakly Fredholm operators.

Diagram 3.2 was considered by Yang in [173]. He proves by diagram chasing
that all its rows and columns are exact. As a consequence, he derives that reflex-
ivity is a three-space property for Banach spaces: If M is a closed subspace of X
and both M and X/M are reflexive, then so is X .

Diagram chasing is also the main technique applied in [174] to studying the
aforementioned weakly Fredholm operators.

The example showing that T tauberian does not imply T ∗ cotauberian (The-
orem 3.1.18) was obtained in [8]. It gives a negative answer to Question 1.3.4 using
a construction of Bellenot in [25]).

The perturbative characterization for cotauberian operators was obtained
in [92]. Lemma 3.1.19, which is the key to proving that characterization, can
be found without proof in [109, Remark III.1]. The proof we present here is an
adaptation of the techniques used in [109].

Given Banach spaces X and Y , the map

T ∈ L(X, Y ) −→ T co ∈ L(Xco, Y co)

can be seen as a representation of the quotient L(X, Y )/W(X, Y ). The properties
of this map are studied in [93].

In most cases, this map is not surjective. For example, in the case in which
X = Y is c0, C[0, 1], �1, L1(0, 1) or �∞, its range does not contain non-zero
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inessential operators [93, Theorem 2.2]. Moreover, there exists a Banach space E
with Eco ≡ �2 such that

{T co : T ∈ L(E)}
coincides with the regular operators in L(�2) [93, Theorem 2.6]. Thus it is a proper
dense subalgebra of L(E).

Aliprantis and Burkinshaw [5] obtained some results dealing with factoriza-
tion of positive weakly compact operators through reflexive Banach lattices, and
asked whether or not every positive weakly compact operator between Banach lat-
tices factors through a reflexive Banach lattice. In [159], Talagrand gave a negative
answer by exhibiting a positive weakly compact operator between Banach lattices
that does not factor through any reflexive Banach lattice.

Answering a question raised in [61], Blanco, Kaijser and Ransford proved
in [31] that every weakly compact homomorphism between Banach algebras fac-
tors through a reflexive Banach algebra, with Banach algebra homomorphisms as
factors. We refer to [43] for a variant of this result.

In order to prove the factorization result for homomorphisms, the authors
of [31] develop a variant of the DFJP factorization which is better suited to dealing
with Banach algebras. Essentially, it is a version of the real interpolation method in
which they use a Banach space E with a normalized 1-unconditional basis (ei)i∈Z

and some algebra weights with respect to (ei)i∈Z, which are maps ρ : Z −→ R+

which allow them to define a kind of continuous convolution product on E.

The intermediate space in the DFJP factorization of T ∈ L(X, Y ) is obtained
as the diagonal subspace of the space �2(Yn), where each Yn is the space Y endowed
with an equivalent norm. In this construction we can replace �2(Yn) by �p(Yn), with
1 < p <∞, and most of the properties of the factorization are preserved. We refer
to Neidinger’s thesis [133] for details.

In [7], a version of the DFJP factorization for an unbounded linear operator
was introduced. It was applied to studying the relation between certain classes of
unbounded operators.

The examples of tauberian operators among the natural inclusions of Orlicz
spaces of vector-valued measurable functions are taken from [32] and [35].

The class of operators R+ was introduced by Martin and Swart in [126].
Moreover, this class was studied by Bombal and Hernando ( [34] and [102]), in
terms of the set B1(X) of elements of X∗∗ which are weak∗-limits of weakly Cauchy
sequence in X . In the case in which the space X is separable, they proved that an
operator T ∈ L(X, Y ) belongs to R+ if and only if N(T ∗∗) ⊂ B1(X); and this is
equivalent to (T ∗∗)−1B1(Y ) ⊂ B1(X). In the general case, they obtained similar
results using other subsets of X∗∗ and Y ∗∗.

The concept of operator in R+ has been extended to the case of unbounded
operators and, more generally, to the case of linear relations between normed linear
spaces in [9].
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A systematic study of the classes A+ and Ad−, with A one of the operator
ideals K, W , R, C, WC or U , was made in [89], [90], [92] and [79]. Most of our
results in Section 3.5 are taken from these papers.

In the case of the classes A+, the results in Proposition 3.5.11 can be in-
terpreted as lifting results for certain classes of sequences. We refer to [91] for
details.

Comparing this chapter with the previous one, it is evident that tauberian
operators have received greater attention than cotauberian operators. This is clear
in terms of the variety of techniques used in the study and in the number of
concrete examples that have been analyzed. Thus there is an unexplored field of
study in the development of a theory of cotauberian operators parallel to that of
tauberian operators.



Chapter 4

Tauberian operators on spaces
of integrable functions

The set T (L1(m), Y ) of tauberian operators from L1(m), where (Ω, Σ, m) is a σ-
finite measure space, deserves attention for two reasons. First, because the prop-
erties of T (L1(m), Y ) are similar to those of Φ+(L1(m), Y ); and second, because
L1(m) supports many tauberian operators which are not upper semi-Fredholm
when m is not purely atomic measure.

Since the theory of tauberian operators is essentially isomorphic in character,
we shall only consider the case in which L1(m) is infinite dimensional.

Note that L1(m) is isomorphic to L1(ν) for some finite measure ν. Indeed,
let {Ωn}∞n=1 ⊂ Σ be a countable partition of Ω with 0 < m(Ωn) < ∞ for every
n ∈ N. Then

g :=
∞∑

n=1

2−nm(Ωn)−1χΩn

defines a strictly positive, measurable function g : Ω −→ R such that
∫
Ω

g dμ = 1.
Thus, we define the measure ν by dν = g dm, and the map f �→ f/g defines

an isometry from L1(m) onto L1(ν).

It is well-known that L1(ν) is isomorphic to one of the following spaces:

(i) �1, if ν is a purely atomic measure; or

(ii) L1(μ), where the σ-algebra associated to μ has no atoms.

In case (ii), if L1(ν) is separable, then it is isomorphic to L1[0, 1]. In the
general case, it is isomorphic to an uncountable �1-sum of copies of L1[0, 1] . For
further details on this matter, we refer to [117].

Case (i) is very simple: after Corollary 2.2.8, every tauberian operator on �1

is upper semi-Fredholm because every reflexive subspace of �1 is finite dimensional.
Consequently, only case (ii) will be considered.
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In this chapter, (Ω, Σ, μ) will be a finite measure space with no atoms. The
following properties of L1(μ) will be used repeatedly:

(i) the relatively weakly compact subsets of L1(μ) coincide with the equi-integr-
able subsets (Proposition 4.1.1);

(ii) the subsequence splitting property (Corollary A.6.12); i.e., every bounded se-
quence in L1(μ) has a subsequence which can be decomposed as the sum of
a weakly convergent sequence and a disjointly supported sequence.

Another important tool will be Rosenthal’s �1-theorem (Theorem A.3.10).
This result is, in some sense, more general than the subsequence splitting property
and it will be the key in Section 4.3 to identify the weakly precompact operators
from L1(μ) to Y with the perturbation class of T (L1(μ), Y ).

Ultraproducts of Banach spaces are essential in order to study the tauberian
operators on L1(μ). Moreover, a representation of the ultrapowers on L1(μ) allows
us to obtain a proof of the aforementioned property (ii). This proof can be found
in Section A.6.

4.1 Tauberian operators on L1(μ) spaces

In this section, we assume that (Ω, Σ, μ) is a finite measure space and that Σ
contains no atoms. We will describe the basic properties of the operators in
T (L1(μ), Y ). In particular, we will give characterizations of these operators in
terms of their action on disjointly supported sequences.

First we give some auxiliary results.

Proposition 4.1.1. [4, Theorem 5.2.9] A subset F of L1(μ) is relatively weakly
compact if and only if for every ε > 0 there exists δ > 0 so that

μ(A) < δ ⇒
∫

A

|f | dμ < ε, for every f ∈ F ;

i.e., if and only if F is equi-integrable.

Proposition 4.1.2. An operator T : L1(μ) −→ Y is tauberian if and only if T has
property (N).

Proof. Since weakly Cauchy sequences in L1(μ) are weakly convergent [24, Propo-
sition VI.2.6], the result is a direct consequence of Proposition 2.1.12. �

A sequence (fn) in L1(μ) is disjointly supported if fm · fm = 0 for m �= n.
The following theorem is the main result of this section.

Theorem 4.1.3. For an operator T ∈ L(L1(μ), Y ), the following statements are
equivalent:

(a) T is tauberian;
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(b) for every normalized, disjointly supported sequence (fn) contained in L1(μ),

lim inf
n
‖Tfn‖ > 0;

(c) there exists a number r > 0 such that for every normalized disjointly sup-
ported sequence (fn) in L1(μ),

lim inf
n
‖Tfn‖ > r.

Proof. (a)⇒(b) Let (fn) be a normalized disjointly supported sequence in L1(μ)
and assume that ‖T (fn)‖ −→

n
0. Since (fn) is equivalent to the unit vector basis

of �1, there exists an element z∗∗ ∈ {fn}∞n=1

w∗ \ L1(μ).
Note that T ∗∗(z∗∗) = 0, which proves that N(T ) �= N(T ∗∗); hence T is not

tauberian.
(b)⇒(c) Let us suppose that (c) fails. Clearly, we can assume that ‖T ‖ = 1.
For each k ∈ N there exists a normalized disjointly supported sequence (fk

n)n

in L1(μ) such that ‖T (fk
n)‖ < 1/k for all n. We will find a disjointly supported

sequence (fn) satisfying 1/2 ≤ ‖fn‖ ≤ 1 and ‖T (fn)‖ ≤ 2/n for all n. In order to
do that, we recursively select a sequence in (fn

kn
) as follows:

First, we take f1
k1

:= f1
1 . Since

∫
supp f2

k
|f1

1 | dμ −→
k

0, we can select k2 ∈ N so
that ∫

supp f2
k2

|f1
1 | dμ < 1/22.

Let us assume that we have chosen functions f1
k1

, . . . , fn
kn

satisfying∫
supp fm

km

|f l
kl
| dμ <

1
22m

for 1 ≤ l < m ≤ n.

Thus, since

lim
k

∫
supp fn+1

k

|f l
kl
| dμ = 0 for all l ∈ {1, . . . , n},

we can select kn+1 so that
∫
supp fn+1

kn+1
|f l

kl
| dμ < 1/22(n+1) for 1 ≤ l ≤ n.

This procedure yields a normalized sequence (gn) := (fn
kn

) in L1(μ) such that
‖T (gn)‖ < 1/n and ∫

supp gk

|gn| dμ < 1/22k for k > n.

Now, we define

An := supp gn \
∞⋃

k=n+1

supp gk,



76 Chapter 4. Tauberian operators on spaces of integrable functions

and fn := gn · χAn . Clearly (fn) is disjointly supported. Moreover,

1 ≥ ‖fn‖ ≥ 1−
∞∑

k=n+1

∫
supp gk

|gn| dμ ≥ 1−
∞∑

k=n+1

2−2k ≥ 1/2,

and

‖T (fn)‖ ≤ ‖T (gn)‖+ ‖T ‖
∞∑

k=n+1

∫
supp gk

|gn| dμ ≤ 1
n

+ 2−n ≤ 2/n.

Hence (b) fails.
(c)⇒(a) Let us assume that T is not tauberian. Thus, by Proposition 4.1.2, T

fails property (N); hence, by Theorem 2.2.2, there exists a sequence (hn) in the unit
ball of L1(μ) with no weakly convergent subsequence, such that limn T (hn) = 0.

By the subsequence splitting property (Corollary A.6.12), there is a subse-
quence (gn) of (hn) and a pair of sequences (un) and (vn) in L1(μ) such that
(vn) is weakly convergent to some function v, (un) is disjointly supported and
gn = un + vn.

Note that lim infn ‖un‖ > 0, hence (un) is equivalent to the unit vector basis
of �1. Since w-limn vn = v, there exists a sequence of non-negative real numbers
(αn) and an increasing sequence (kn) in N such that

∑kn+1
i=kn+1 αi = 1 and

zn :=
kn+1∑

i=kn+1

αivi −−−−→n
v (in norm).

In addition, we consider the corresponding convex block subsequences

xn :=
kn+1∑

i=kn+1

αigi and yn :=
kn+1∑

i=kn+1

αiui

that satisfy xn = zn + yn for all n.
Since the sequence (yn) is disjointly supported and lim infn ‖yn‖ > 0, it is

equivalent to the unit vector basis of �1. Moreover, both sequences(
T (x2n − x2n−1)

)
and

(
T (z2n − z2n−1)

)
converge to 0; hence T (y2n − y2n−1) −→

n
0. We define

fn :=
y2n − y2n−1

‖y2n − y2n−1‖
.

The sequence (fn) is normalized, disjointly supported and satisfies T (fn) −→
n

0.
Hence (c) fails, as we had sought to prove. �
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Theorem 4.1.3 allows us to show some remarkable similarities between the
tauberian operators and the upper semi-Fredholm operators on L1(μ) that do not
hold in the general case. For instance, it is well known that Φ+(X, Y ) is always
open, but T (X, Y ) fails to be open in some cases (Example 2.1.17). Let us show
that it is open when X = L1(μ).

Corollary 4.1.4. For every operator T : L1(μ) −→ Y , let βT be defined by

βT := inf{lim inf
n
‖T (fn)‖ : (fn) ⊂ L1(μ) normalized and disjointly supported}.

Then the following statements hold:

(i) T is tauberian if and only if βT > 0;

(ii) if T is tauberian and S : L1(μ) −→ Y satisfies ‖T − S‖ < βT , then S is
tauberian.

Therefore, T (L1(μ), Y ) is open in L(L1(μ), Y ).

Proof. (i) It is a straightforward consequence of Theorem 4.1.3 (c).

(ii) Let S : L1(μ) −→ Y be an operator such that ‖T − S‖ = α < βT .
Then, for every normalized disjointly supported sequence (fn) in L1(μ), we have
lim infn ‖S(fn)‖ ≥ βT − α > 0, which implies that S is tauberian, according to
Theorem 4.1.3.

From statement (ii), it trivially follows that T (L1(μ), Y ) is open. �

Remark 4.1.5. The space L1(μ) contains many infinite dimensional reflexive sub-
spaces. Indeed, for every p ∈ (1, 2], L1[0, 1] contains an isomorphic copy of Lp[0, 1]
(see [41] or [123, Corollary 2.f.5]). Moreover, every reflexive subspace of L1[0, 1] is
isomorphic to a subspace of Lp[0, 1] for some p ∈ (1, 2] [144].

Given a reflexive subspace R of L1(μ), it follows from Theorem 2.1.5 that
the quotient map QR : L1(μ) −→ L1(μ)/R is a tauberian operator. Let us see that
the constant βQR is easily computable.

Proposition 4.1.6. For every reflexive subspace R of L1(μ), βQR = 1.

Proof. Take 0 < ε < 1 and let (fn) be a normalized disjointly supported sequence
in L1(μ). Since R is reflexive, the set 3BR is equi-integrable. Thus there exists
δ > 0 such that

∫
A
|g| dμ < ε for all g ∈ 3BR and all measurable subsets A with

μ(A) < δ.
We select n0 ∈ N such that μ(supp fn) < δ for all n ≥ n0. Then for every

g ∈ 3BR,

‖fn − g‖ ≥
∫

supp fn

|fn| dμ −
∫

supp fn

|g| dμ ≥ 1− ε

for n ≥ n0. Now, since ‖Q(fn)‖ = inf{‖fn − g‖ : g ∈ 3BR} ≤ 1, it follows that
limn ‖Q(fn)‖ = 1, hence βQ = 1. �
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Given a measurable subset C ⊂ Ω with μ(C) > 0, we denote by L1(C) the
subspace of L1(μ) consisting of all functions f with support contained in C:

L1(C) := {f ∈ L1(μ) : f = f · χC}.

Corollary 4.1.7. For every tauberian operator T : L1(μ) −→ Y and every mea-
surable set A ⊂ Ω with μ(A) > 0 there exists a measurable subset C ⊂ A with
μ(C) > 0 such that the restriction T |L1(C) is an isomorphism.

Proof. Suppose that the result fails. Then we can find a sequence (Cn) of disjoint
measurable subsets of A with μ(Cn) > 0 such that none of the restrictions T |L1(Cn)

is an isomorphism. Thus for every n there exists fn ∈ L1(Cn) with ‖fn‖ = 1 and
‖T (fn)‖ < 1/n, in contradiction with Theorem 4.1.3. �

Sometimes the following version of Theorem 4.1.3 is more convenient:

Proposition 4.1.8. For every operator T : L1(μ) −→ Y , the following statements
are equivalent:

(a) T is tauberian;

(b) for every normalized sequence (fn) in L1(μ) such that limn μ(supp fn) = 0,
we have lim infn ‖T (fn)‖ > 0;

(c) there exists a real number r > 0 such that for every f ∈ L1(μ) with ‖f‖ = 1
and μ(supp f) < r, we have ‖T (f)‖ > r.

Proof. (a)⇒(b) Suppose that (b) fails. Then there exists a normalized sequence
(fn) in L1(μ) such that limn μ(supp fn) = 0 and limn ‖T (fn)‖ > 0. Note that
the sequence (fn) has no equi-integrable subsequences; hence it has no weakly
convergent subsequences. Thus, by Theorem 2.2.4, T is not tauberian.

(b)⇒(c) Suppose that (c) fails. Then we can select a normalized sequence
(fn) so that μ(supp fn) < 1/n and ‖T (fn)‖ < 1/n; hence (b) fails.

(c)⇒(a) Let us assume T is not tauberian. Then, by Theorem 4.1.3, there
exists a normalized disjointly supported sequence (fn) so that limn ‖T (fn)‖ = 0.
Since limn μ(supp fn) = 0, (c) fails. �

Observe that, since μ has no atoms, for every finite sequence (εi)n
i=1 of pos-

itive numbers with
∑n

i=1 εi = 1 there exists a partition {Ωi}ni=1 of Ω into mea-
surable sets such that μ(Ωi) = εi for all i. Moreover, it is clear that L1(μ) is
isomorphic to L1(Ωi) for some i ∈ {1, . . . , n}.
Corollary 4.1.9. For every operator T ∈ T (L1(μ), Y ), there exists a finite partition
{Ω1, . . . , Ωn} of Ω into measurable subsets such that each restriction T |L1(Ωi) is
an isomorphism.

Proof. Let r > 0 be the number provided by statement (c) in Proposition 4.1.8.
Thus it is enough to consider any finite partition of Ω into measurable sets of
measure smaller than r. �
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Corollary 4.1.10. The class T (L1(μ), Y ) is non-empty if and only if Y contains a
subspace isomorphic to L1(μ). In particular, if M is a reflexive subspace of L1(μ),
then L1(μ)/M contains a subspace isomorphic to L1(μ).

Given n ∈ N ∪ {0} and k ∈ {1, . . . , 2n}, let χn
k denote the characteristic

function of the interval In
k , where associated to the interval

In
k :=

{
[(k − 1)/2n , k/2n) if 1 ≤ k ≤ 2n − 1,
[(2n − 1)/2n , 1] if k = 2n.

The n-th Rademacher function on the interval [0, 1] is defined as

rn :=
2n∑

k=1

(−1)k−1χn
k .

By the classical Khintchine inequalities [24, Proposition VI.1.1], the sequence
(rn) generates a subspace isomorphic to �2 in L1[0, 1]. This fact allows us to illus-
trate Corollary 4.1.9 with the following example:

Example 4.1.11. Let R be the closed subspace of L1[0, 1] generated by the sequence
of Rademacher functions

(
rn(t)

)∞
n=2

and let QR : L1[0, 1] −→ L1[0, 1]/R be the
quotient operator.

The operator QR is tauberian. Let us see that the restrictions Q|L1[0 , 1/2] and
Q|L1[1/2 , 1] are isometries.

Indeed, let f ∈ L1[0 , 1/2] and g =
∑∞

i=2 airi ∈ R. Then

‖f − g‖1 =
∫ 1/2

0

|f − g|+
∫ 1

1/2

|g| ≥
∫ 1/2

0

|f | −
∫ 1/2

0

|g|+
∫ 1

1/2

|g|.

Since ri(t) = ri(t + 1/2) for all t ∈ [0, 1/2], we have
∫ 1/2

0
|g| −

∫ 1

1/2
|g| = 0; hence

‖f − g‖ ≥
∫ 1/2

0 |f | = ‖f‖. Therefore,

‖f‖ ≥ ‖Q(f)‖ = inf
g∈R
‖f − g‖ ≥ ‖f‖,

and we conclude that Q|L1[0 , 1/2] is an isometry.

The case of Q|L1[1/2 , 1] is similar.

4.2 Ultrapowers of tauberian operators on L1(μ) spaces

Tauberian operators on L1(μ) can be described in terms of ultrapowers. Further
information on ultrapowers of Banach spaces, measures and L1(μ) spaces can be
found in Section A.6.



80 Chapter 4. Tauberian operators on spaces of integrable functions

In this section, I is an infinite set and U is a countably incomplete ultrafilter
on I. So there exists a partition {In}∞n=1 of I disjoint with U.

Among other results, we can see in Section A.6 that the space of integrable
functions with respect to the measure μU embeds isometrically into the ultrapower
space L1(μ)U via a linear isometry

JμU
: L1(μU) −→ L1(μ)U.

Moreover, the subspace JμU

(
L1(μU)

)
is complemented in L1(μ)U. The correspond-

ing projection PμU
yields a decomposition

L1(μ)U = JμU

(
L1(μU)

)
⊕1 N(PμU

) (Theorem A.6.5).

The elements of the summands JμU

(
L1(μU)

)
and N(PμU

) can be character-
ized as follows: let f ∈ L1(μ)U.

(i) f belongs to JμU

(
L1(μU)

)
if and only if f admits a relatively weakly compact

representative (Theorem A.6.6);

(ii) f belongs to N(PμU
) if and only if f has a representative (fi)i∈I such that

the family
(
μ(supp fi)

)
i∈I

is null following U (Theorem A.6.7).

The following result characterizes the tauberian operators on L1(μ) in terms
of the actions of their ultrapowers on the component JμU

(
L1(μ)

)
.

Proposition 4.2.1. Let U be an ultrafilter on I. An operator T : L1(μ) −→ Y is
tauberian if and only if N(TU) ⊂ JμU

(
L1(μU)

)
.

Proof. Suppose T is not tauberian. By Theorem 4.1.3, there exists a normalized
disjointly supported sequence (fn) in L1(μ) such that T (fn) −→

n
0.

Let {In}∞n=1 be a partition of I disjoint with U and define gi := fn for every
i ∈ In and every n ∈ N. Thus 0 �= [gi] ∈ N(TU) and, since limn μ(supp fn) = 0, we
also have limU μ(supp gi) = 0. Therefore, by Theorem A.6.7, [gi] ∈ N(PμU

); hence
N(TU) is not contained in L1(μU).

Conversely, assume that there exists an element [fi] ∈ N(TU) \JμU

(
L1(μU)

)
.

By Theorems A.6.5, A.6.6 and A.6.7, [fi] admits a decomposition [fi] = [gi] + [hi]
where [gi] ∈ JμU

(
L1(μU)

)
and the set {gi : i ∈ I} is relatively weakly compact,

[hi] ∈ N(PμU
) \ {0} and limU μ(supp hi) = 0.

Let us denote Ai := supp hi. Then we have

lim
U

∫
Ai

|gi| dμ = 0 and lim
U

∫
Ai

|hi| dμ = ‖[hi]‖ > 0.

Let ε be a real number satisfying 0 < ε < ‖[hi]‖. Since

lim
U

∫
Ai

|fi| dμ ≥ lim
U

∫
Ai

|hi| dμ− lim
U

∫
Ai

|gi| dμ > ε,
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for every n ∈ N, there exists Jn ∈ U such that∫
Ai

|fi| dμ > ε and μ(Ai) < 1/n for all i ∈ Jn.

Moreover, since [fi] ∈ N(TU), we have

Kn := {i ∈ I : ‖T (fi)‖ < 1/n} ∈ U for all n ∈ N.

For each n, we select an index jn ∈ Jn ∩Kn. Then,∫
Ajn

|fjn | dμ > ε, ‖T (fjn)‖ < 1/n and μ(Ajn ) < 1/n.

Therefore the sequence (fjn ) is not equi-integrable. So it contains a subsequence
(gn) with no weakly convergent subsequence. Obviously, limn ‖T (gn)‖ = 0 and
this shows that T is not tauberian. �

The following result characterizes the tauberian operators on L1(μ) in terms
of the action of their ultrapowers on N(PμU

).

Proposition 4.2.2. Given an ultrafilter U on I and an operator T : L1(μ) −→ Y ,
the following statements are equivalent:

(a) T is tauberian;

(b) TU|N(PμU
) is an isomorphism;

(c) TU|N(PμU
) is injective.

Proof. (a)⇒(b) Assume that TU|N(PμU
) is not an isomorphism. Then, for ev-

ery positive integer n, there is a norm-one element [fn
i ] ∈ N(PμU

) such that
‖TU([fn

i ])‖ < 1/2n. By Theorem A.6.7, we may consider that limU μ(supp fn
i ) = 0

for all n. Therefore, for each n, there is in ∈ I such that ‖T (fn
in

)‖ < 1/n and
μ(supp fn

in
) < 1/n. Hence, according to Theorem 4.1.3, the operator T cannot be

tauberian.

(b)⇒(c) Trivial.

(c)⇒(a) Assume that T is not tauberian. Then there is a normalized disjointly
supported sequence (fn) in L1(μ) such that limn ‖T (fn)‖ = 0.

Let {In}∞n=1 be a countable partition of I disjoint with U. Following a stan-
dard ultraproduct procedure, for every n ∈ N and every i ∈ In, we take gi := fn.
It follows that limU μ(supp gi) = 0 and limU ‖T (gi)‖ = 0. So [gi] is a norm-one
element of N(PμU

) ∩N(TU); hence TU|N(PμU
) is not injective. �
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4.3 The perturbation class of T (L1(μ), Y )

Given a pair of Banach spaces X and Y satisfying T (X, Y ) �= ∅, the perturbation
class of T (X, Y ) is defined as the set

P
(
T (X, Y )

)
:= {S ∈ L(X, Y ) : ∀T ∈ T (X, Y ), T + S ∈ T (X, Y )}.

We observe that there is no explicit description of the set P
(
T (X, Y )

)
for X

and Y arbitrary Banach spaces. However, the main result of this section will show
that, in the case X = L1(μ), it coincides with the weakly precompact operators
R(L1(μ), Y ) (see Definition 3.5.1).

Definition 4.3.1. A Banach space X is said to be primary if for every decomposition
of X as a direct sum of two closed subspaces, at least one of them is isomorphic
to X .

The proof of the main result of this section involves the subsequence splitting
property, Rosenthal’s �1-theorem and the primariness of L1(μ). The latter result
is due to Enflo and Starbird [60, Corollary 5.4].

Lemma 4.3.2. If T : X −→ Y is a tauberian operator and (xn) ⊂ X is a sequence
equivalent to the unit vector basis of �1, then there exists n0 ∈ N such that the
restriction of T to span{xn : n ≥ n0} is an isomorphism.

Proof. Let us denote L := span{xn : n ∈ N}. For every m ∈ N, let Pm : L −→ L
be the operator that maps

∑∞
n=1 λnxn to

∑m
n=1 λnxn.

Since L is isomorphic to �1 and every reflexive subspace of �1 is finite-
dimensional, Corollary 2.2.8 implies that the restriction T |L is an upper semi-
Fredholm operator; that is, it has closed range and finite-dimensional kernel.

Observe that there exists m0 ∈ N such that

N(T |L) ∩ span{xn}∞n=m0+1 = {0}.

Indeed, it is enough to take a basis {yi}ki=1 of N(T |L) and pick m0 so that the set
{Pm0(yi) : i = 1, . . . , k} is linearly independent.

Clearly the restriction of T to span{xn}∞n=m0+1 is injective; hence it is an
isomorphism. �

The following lemma mixes the principle of small perturbations for basic
sequences and the fact that the closed subspace spanned by a disjointly supported
sequence in L1(μ) is complemented.

Lemma 4.3.3. Let (fn) and (hn) be a pair of sequences in L1(μ). Suppose that (hn)
is disjointly supported, infn∈N ‖hn‖ > 0 and

∑∞
n=1 ‖fn−hn‖ < 1. Then the closed

subspace spanned by (fn) is complemented in L1(μ).
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Proof. Let us take H := span{hn}∞n=1 and F := span{fn}∞n=1. For every n ∈ N,
we define gn ∈ L∞(μ) by

gn(t) :=
{

hn(t)/|hn(t)| if hn(t) �= 0,
0 if hn(t) = 0.

The sequence (hn) is disjointly supported, the operator P : L1(μ) −→ L1(μ),
defined by

P (f) :=
∞∑

n=1

‖hn‖−1
( ∫

Ω

f · gn dμ
)
hn,

is a norm-one projection and R(P ) is the closed subspace spanned by (hn). Let us
write yn := hn − fn.

Since
∑∞

n=1 ‖yn‖ < 1, the expression K(f) :=
∑∞

n=1

( ∫
Ω

f · gn dμ
)
yn defines

an operator K : L1(μ) −→ L1(μ) such that ‖K‖ < 1 and k(hn) = hn − fn for
every n ∈ N.

Now, if I denotes the identity operator on L1(μ), I −K is an automorphism
that maps H onto F . Hence F is also complemented in L1(μ). �

The following result is a well-known consequence of the subsequence splitting
property.

Proposition 4.3.4. Every non-reflexive subspace of L1(μ) contains a subspace iso-
morphic to �1 and complemented in L1(μ).

Proof. Let M be a non-reflexive closed subspace of L1(μ). We can select a bounded
sequence (gn) in M having no weakly convergent subsequence. By the subsequence
splitting property of L1(μ), passing to a subsequence if necessary, we can assume
that gn = un+vn, where (un) is disjointly supported and (vn) is weakly convergent.

Observe that (v2n − v2n−1) is weakly convergent to 0. So there exists a
sequence of successive convex blocks of (v2n − v2n−1) which converges in norm
to 0. Therefore, arguing as in the proof of (c)⇒(a) in Theorem 4.1.3, we can
obtain from (un) a disjointly supported sequence (hn) with infn ‖hn‖ > 0 and
limn dist(hn, M) = 0. Therefore, the result follows from Lemma 4.3.3. �

Let us show that the perturbation class of T (L1(μ), Y ) coincides with the
weakly precompact operators. Observe that, for the set P

(
T (L1(μ), Y )

)
to be

well-defined, we have to assume that Y contains a subspace isomorphic to L1(μ)
(see Corollary 4.1.10).

Theorem 4.3.5. Let K ∈ L(L1(μ), Y ) and suppose that T (L1(μ), Y ) �= ∅. Then K
is weakly precompact if and only if for every T ∈ T (L1(μ), Y ), the operator T +K
is tauberian.

Proof. For the direct implication, we suppose that T : L1(μ) −→ Y is a tauberian
operator and T + K is not tauberian.

By Theorem 4.1.3, there exists a normalized disjointly supported sequence
(fn) in L1(μ) for which limn ‖(T +K)(fn)‖ = 0. Since (fn) is equivalent to the unit
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vector basis of �1, by Lemma 4.3.2 we can take n0 ∈ N such that (T (fn))∞n=n0
is

also equivalent to the unit vector basis of �1. In particular, (T (fn)) has no weakly
Cauchy subsequences. Therefore (K(fn)) has no weakly Cauchy subsequences and
we conclude that K is non-weakly precompact.

For the converse, we assume that K is not weakly precompact and we then
will find a tauberian operator T ∈ L(L1(μ), Y ) such that T + K is not tauberian.

By Rosenthal’s �1-theorem, there exists a subspace H of L1(μ) isomorphic
to �1 such that the restriction K|H is an isomorphism. By Proposition 4.3.4, we
can assume that H is a complemented subspace of L1(μ).

Let M be a closed subspace of L1(μ) such that L1(μ) = H ⊕M . Note that
M is isomorphic to L1(μ), because L1(μ) is primary.

Since T (L1(μ), Y ) is non-empty, by Corollary 4.1.10, Y contains a subspace
L isomorphic to L1(μ). One of the following cases then occurs:

(1) K(H) + L is closed and K(H) ∩ L is finite-dimensional,

(2) K(H) ∩ L is infinite-dimensional,

(3) K(H) + L is non-closed and K(H) ∩ L is finite-dimensional.

(1) Passing to a finite co-dimensional subspace of L if necessary, we may
assume that K(H) ∩ L = {0}. Let U : M −→ L be a surjective isomorphism.
Thus, the operator

T : L1(μ) = H ⊕M −→ K(H)⊕ L ⊂ Y

given by T (x, y) := −K(x) + U(y) is also an isomorphism. In particular, T is
tauberian. Moreover, N(T + K) is not reflexive because it contains the subspace
H , which is isomorphic to �1. Therefore, T + K cannot be tauberian.

(2) Since K(H) is isomorphic to �1, K(H) ∩ L contains a subspace N1 iso-
morphic to �1. By Proposition 4.3.4, N1 contains a subspace N2 isomorphic to
�1 and complemented in L. Since L1(μ) is primary, the complement of N2 in L
is isomorphic to L1(μ). So, replacing L by this complement and H by a smaller
complemented subspace, we can assume that the sum K(H) + L is direct and
closed; hence we are in the conditions of case (1).

(3) In this case we are going to find a compact operator K1 : L1(μ) −→ Y
such that (K +K1)(H)∩L is infinite-dimensional. Note that (K +K1)|H is upper
semi-Fredholm. So, passing to a finite codimensional subspace, we can assume
that (K + K1)|H is an isomorphism. Therefore, the argument of case (2) provides
a tauberian operator T : L1(μ) −→ Y such that T + K + K1 is not tauberian;
hence T + K is not tauberian.

As in case (1), we can assume that K(H) ∩ L = {0}. From the fact that
K(H) + L is not closed, it follows that there exists a normalized sequence (yn)
in K(H) such that dist(yn, L) < 2−n. Note that (yn) cannot have convergent
subsequences, because if y were the limit of such a subsequence, we would have
‖y‖ = 1 and y ∈ K(H) ∩ L, which is not possible.
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Since weakly Cauchy sequences in �1 are convergent and K(H) is isomorphic
to �1, by Rosenthal’s �1-theorem we can assume that (yn) is equivalent to the unit
vector basis of �1.

Let (hn) be a sequence in H such that K(hn) = yn for every n ∈ N. Since
(hn) is equivalent to the unit vector basis of �1, we can select a bounded sequence
(h∗n) in L1(μ)∗ such that 〈h∗i , hj〉 = δij .

Now we select a sequence (zn) in L such that ‖yn − zn‖ < 2−n for every
n ∈ N. Clearly, the expression

K1(f) =
∞∑

i=1

〈h∗i , f〉(zi − yi)

defines a compact operator such that (K + K1)(hn) = zn for every n ∈ N. Hence
(K + K1)(H) ∩ L is infinite-dimensional and the proof is complete. �
Remark 4.3.6. There are pairs of Banach spaces X and Y for which T (X, Y ) is
non-empty and the set R(X, Y ) of weakly precompact operators is not contained
in P (T (X, Y )).

Indeed, let J denote the James quasi-reflexive sequence space. Thus the nat-
ural inclusion I : J −→ c0 is both tauberian (Example 2.1.18) and weakly precom-
pact. However, the null operator from J into c0 is not tauberian.

Let us give some additional characterizations for the perturbation class of
T (L1(μ), Y ):

Proposition 4.3.7. For an operator T : L1(μ) −→ Y , the following statements are
equivalent:

(a) T is weakly precompact;

(b) for every Banach space Z and every operator A ∈ L(Z, L1(μ)) for which TA
is tauberian, A is weakly compact;

(c) if H is a subspace of L1(μ) such that T |H is an isomorphism, then H is
reflexive.

Proof. (a)⇒(b) Let us assume that T is weakly precompact, A ∈ L(Z, L1(μ)) and
TA is tauberian. Since T is weakly precompact, so is TA. Moreover, by Corollary
2.2.8 every tauberian operator on �1 is upper semi-Fredholm. Thus, Z cannot con-
tain any subspace isomorphic to �1 and, by Rosenthal’s �1-theorem, every bounded
sequence in Z must have a weakly Cauchy subsequence. But L1(μ) is sequentially
weakly complete, so A is weakly compact.

(b)⇒(c) Suppose T |H is an isomorphism. Then (b) implies that the embed-
ding J : H −→ L1(μ) is weakly compact and hence H is reflexive.

(c)⇒(a) If T is not weakly precompact, by Rosenthal’s �1-theorem there
exists a sequence (fn) in L1(μ) equivalent to the unit vector basis of �1 such that
the restriction of T to the closed linear span of (fn) is an isomorphism. �
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On the operators in T (L1(μ))

We have mentioned before that for some Banach spaces Y there exist operators in
T (L1(μ), Y ) that are not upper semi-Fredholm. However, this is not clear in the
case Y = L1(μ). Here we include some comments to emphasize the relevance of
the following open problem:

Problem 1. Let T : L1(μ) −→ L1(μ) be a tauberian operator. Is T upper semi-
Fredholm?

We observe that both sets Φ+(L1(μ)) and T (L1(μ)) are open in L(L1(μ)).
Moreover, they have the same perturbation class:

P
(
Φ+(L1(μ))

)
= P

(
T (L1(μ))

)
= R(L1(μ)).

The result for T
(
L1(μ)

)
is a consequence of Theorem 4.3.5, and the result

for Φ+

(
L1(μ)

)
is due to V. D. Milman (see [163]).

Note that upper semi-Fredholm operators have closed range. Therefore, we
can consider a weaker problem:

Problem 2. Let T : L1(μ) −→ L1(μ) be a tauberian operator with closed range.
Is T upper semi-Fredholm?

Clearly, the last problem is equivalent to the following one:

Problem 2′. Let R be an infinite dimensional reflexive subspace of L1(μ). Is the
quotient L1(μ)/R isomorphic to a subspace of L1(μ)?
Remark 4.3.8. Observe that an infinite dimensional reflexive subspace R of L1(μ)
is never complemented. What is more, the quotient L1(μ)/R is not a L1-space [120,
Proposition 5.2]. However, L1(μ)/R satisfies Grothendieck’s theorem; i.e., it is a
G.T. space (see [141, Chapter 6]).

Positive answers to Problem 2′ would be interesting because they provide
new examples of G.T. spaces among the closed subspaces of L1(μ).

Let us now show that Problem 2′ has a negative answer for some reflexive
subspaces of L1(μ).

Example 4.3.9. [141, Remark on page 117] There exists a subspace F of L1[0, 1]
isomorphic to �2 such that the quotient L1[0, 1]/F is not isomorphic to a subspace
of L1[0, 1].

In order to construct F , we consider a Kašin orthogonal decomposition

L2[0, 1] = E1 ⊕ E2 ⊕ E3

where each E1, E2 and E3 are infinite dimensional closed subspaces such that the
L2-norm and the L1-norm are equivalent on

E1 ⊕ E2, E2 ⊕ E3 and E3 ⊕ E1.
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We refer to [141, Theorem 8.22] for the existence of this decomposition. We take
as F the image of E3 under the natural injection of L2[0, 1] into L1[0, 1].

Then the quotient L1[0, 1]/F fails the Gordon-Lewis property (see [141, Defi-
nition 8.13]), which is a property satisfied by the subspaces of L1[0, 1] (see [141, Re-
mark in page 107]).

In relation to Problems 2 and 2′, we do not know the answer to the following
even weaker problem:

Problem 3. Let R0 be the closed subspace of L1[0, 1] generated by the Rademacher
functions. Is the quotient L1[0, 1]/R0 isomorphic to a subspace of L1[0, 1]?

In [164], Weis claims that the answer to Problem 1 is positive in some special
cases, although the paper does not include a proof of the claim. In order to de-
scribe this positive result, we need to introduce some concepts and notation. For
simplicity, let us consider the space L1[0, 1].

It was proved in [113] that for every operator T : L1[0, 1] −→ L1[0, 1] there
are measures μt; t ∈ [0, 1], with t→ μt weak∗-measurable, such that

Tf(t) =
∫ 1

0

f(s) dμt(s) for almost every t ∈ [0, 1].

Now we consider the canonical decompositions of each measure μt

μt = μat
t + μc

t = μat
t + μac

t + μsc
t ,

where μat
t and μc

t are the atomic part and the continuous part of the measure μt,
and μc

t = μac
t + μsc

t is the decomposition of μc
t in absolutely continuous part plus

singular part with respect to the Lebesgue measure on [0, 1].

Clearly the decomposition of the measures μt induces a decomposition of the
operator T = T at + T ac + T sc.

We observe that T at corresponds to a countable sum of Riesz isomorphisms;
i.e., we can write

T atf(t) =
∞∑

n=1

an(t)f
(
σn(t)

)
while T ac is a representable operator (Definition 5.3.15). We refer to [164] for
details.

Proposition 4.3.10. [164, 6.4 Remark] Let T : L1[0, 1] −→ L1[0, 1] be an operator
with T sc = 0. Then T is tauberian if and only if it is upper semi-Fredholm.

We observe that the hypothesis T sc = 0 is very strong. Proposition 4.3.10 is
far from a positive answer to Problem 1.
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4.4 Biconjugates of tauberian operators on L1(μ)

One remarkable difference between tauberian and upper semi-Fredholm operators
is that if T is upper semi-Fredholm, then so is T ∗∗, while there are tauberian op-
erators whose biconjugates are not tauberian, as was observed in Theorem 3.1.18.
However, the main result of this section establishes that, when T is a tauberian
operator on L1(μ), then so is T ∗∗.

First, we give a technical lemma.

Lemma 4.4.1. Let T : X −→ Y be an operator, z∗∗ ∈ int BX∗∗, y ∈ Y and ε > 0.
Suppose that ‖T ∗∗(z∗∗) − y‖ < ε and denote L := {x ∈ BX : ‖T (x) − y‖ < ε}.
Then z∗∗ ∈ L

σ(X∗∗,X∗)
.

Proof. First observe that the set L cannot be empty. Otherwise we would have
ε ≤ ‖T (x) − y‖ for all x ∈ BX , and by the Hahn-Banach theorem, there would
exists y∗ ∈ SY ∗ so that

(4.1) ε ≤ 〈y∗, T (x)− y〉 for all x ∈ BX .

Since T ∗∗(z∗∗)− y ∈ T (BX)− y
σ(X∗∗,X∗)

, formula (4.1) would lead to

ε ≤ 〈T ∗∗(z∗∗)− y, y∗〉 ≤ ‖T ∗∗(z∗∗)− y‖

which contradicts the hypotheses of the statement.

Let us assume that z∗∗ /∈ L
σ(X∗∗,X∗)

. By the Hahn-Banach theorem, there
exists x∗ ∈ SX∗ and a real number a such that

−1 ≤ sup
x∈L
〈x∗, x〉 ≤ a < b := 〈z∗∗, x∗〉 < 1.

Thus, W :={x ∈ int BX : 2−1(a+b) < 〈x∗, x〉} is non-empty and z∗∗∈W
σ(X∗∗,X∗)

.
Hence

(4.2) T ∗∗(z∗∗)− y ∈ T (W )− y
σ(Y ∗∗,Y ∗)

.

Moreover, W ∩L = ∅, which implies that ε ≤ ‖T (w)− y‖ for all w ∈ W . Thus, by
the Hahn-Banach theorem and (4.2), there is y∗ ∈ SY ∗ such that

ε ≤ inf
w∈W
〈y∗, T (w)− y〉 ≤ 〈y∗, T ∗∗(z∗∗)− y〉,

and subsequently, ε ≤ ‖T ∗∗(z∗∗)− y‖, a contradiction. �

We saw in Section 3.1 that an operator T ∈ L(X, Y ) is tauberian if and only
if T co is injective. In the case X = L1(μ), it is possible to say more, as can be seen
in the following result.
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Theorem 4.4.2. For an operator T ∈ L(L1(μ), Y ), the following statements are
equivalent:

(a) T is tauberian;

(b) T co is an isomorphism;

(c) T ∗∗ is tauberian.

Proof. (a)⇒(b) Assume that T is tauberian but T co is not an isomorphism. Then,
by Proposition 4.1.8, there exists a real number r > 0 such that

(4.3) lim inf
n
‖T (fn)‖ > r

for all normalized sequences (fn) for which μ(supp fn) −→
n

0.
Let us fix a real number 6/7 < ε < 1. The assumption that T co is not

an isomorphism gives an element x∗∗ ∈ L1(μ)∗∗ such that ε < ‖x∗∗ + L1(μ)‖,
‖x∗∗‖ < 1 and ‖T co(x∗∗+L1(μ))‖ < r/4. Take y ∈ Y so that ‖T ∗∗(x∗∗)+y‖ < r/4
and consider the set

A := {x ∈ BL1(μ) : ‖T (x)− y‖ < r/4}.

By Lemma 4.4.1, x∗∗ is a w∗-cluster point of A, where w∗ stands for the
weak∗ topology of L1(μ)∗∗. Thus, by Proposition A.5.3, the set A contains an
ε-triangular sequence (gn) (see Definition 6.2.12).

By the subsequence splitting property, there exists a subsequence (xn) of
(gn), a weakly convergent sequence (wn) and a disjointly supported sequence (vn)
such that xn = wn + vn.

Since the subsequence (xn) is also ε-triangular, there exists a sequence (fn)
in BL1(μ)∗ satisfying

〈fi, xj〉 > ε if 1 ≤ i ≤ j,

〈fi, xj〉 = 0 if 1 ≤ j < i.

Let (kn) and (αn) be an increasing sequence of positive integers and a sequence
of non-negative real numbers with

∑kn+1
i=kn+1 αi = 1 for all n so that the sequence

w′n :=
∑kn+1

i=kn+1 αiwn is norm convergent. Consider also the induced block se-
quences

x′n :=
kn+1∑

i=kn+1

αixn and v′n :=
kn+1∑

i=kn+1

αivn,

and note that x′n = w′n + v′n for all n.
Let n0 ∈ N such that ‖w′n − w′m‖ < ε/8 and ‖T (w′n − w′m)‖ < r/4 for all

m, n ≥ n0. Given the subsequence (hn) := (fkn+1), we have 〈hi, x
′
j〉 ≥ ε for i ≤ j

and 〈hi, xj〉 = 0 for j < i, hence ‖x′n − x′m‖ > ε when m �= n. Thus, on the one
hand, we obtain

(4.4) ‖v′2n+1 − v′2n‖ ≥ ‖x′2n+1 − x′2n‖ − ‖w′2n+1 − w′2n‖ > (7/8)ε for all n ≥ n0.
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On the other hand, ‖T (gn) + y‖ < r/4 implies ‖T (x2n+1 − x2n)‖ < r/2. So, for
n ≥ n0, we have

‖T (v′2n+1 − v′2n)‖ ≤ ‖T (x′2n+1 − x′2n)‖+ ‖T (w′2n+1 − w′2n)‖ ≤ (3/4)r.

By inequality (4.4), we have

λn := ‖v′2n+1 − v′2n‖−1 ≤ (8/7)ε−1 < 4/3.

Thus, the normalized disjoint sequence (zn) defined by zn :=
(
λn(v′2n+1 − v′2n)

)
satisfies ‖Tzn‖ < r for all n, which contradicts inequality (4.3).

(b)⇒(c) Since, by Proposition 3.1.11, we can identify (T co)∗∗ and (T ∗∗)co, if
T co is an isomorphism, then so is (T co)∗∗. In particular, (T ∗∗)co is injective and
we conclude that T ∗∗ is tauberian.

(c)⇒(a) It is immediate. �
Remark 4.4.3. From Theorem 4.4.2 we can derive an alternative proof of the fact
that T (L1(μ), Y ) is open in L(L1(μ), Y ).

Indeed, it is enough to observe that isomorphisms form an open subset of
L(L1(μ), Y ) and that ‖Sco − T co‖ ≤ ‖S − T ‖.

4.5 Notes and Remarks

Chapter 4 is almost exclusively devoted to results concerning tauberian operators
on L1(μ) spaces obtained in [75] and [78].

Using ultraproduct techniques, Bretagnolle et al. [41] proved that, for every
p ∈ (1, 2], Lp[0, 1] is isomorphic to a closed subspace of L1[0, 1]. Therefore, when μ
is not purely atomic, L1(μ) contains many reflexive subspaces, which implies the
existence of many tauberian operators acting on L1(μ).

The characterization of tauberian operators on L1(μ) in terms of their action
on normalized disjoint sequences (Theorem 4.1.3) and all its sequels in Section 4.1
was obtained in [75].

An operator T : L1(μ) −→ Y is called Enflo if L1(μ) contains a subspace X
isomorphic to L1(μ) so that T |X is an isomorphism [60]. Corollary 4.1.7 means
that a tauberian operator T on L1(μ) may be regarded as a hereditarily Enflo
operator. The problems on the operators in T (L1(μ)) were raised in [77].

Section 4.2 includes the most relevant results regarding the ultrapowers of
tauberian operators on L1(μ) obtained in [78]: the characterizations of tauberian
operators on L1(μ) in terms of the action of their ultrapowers on the compo-
nents JμU

(
L1(μU)

)
and N(PμU

), given in Propositions 4.2.1 and 4.2.2. This paper
includes an alternative proof of Corollary 4.1.4 based on ultrapower techniques.

The main result of Section 4.3 is Theorem 4.3.5. It was obtained in [75]. The
notion of perturbation class was introduced by Lebow and Schechter in [118] in
order to study semi-Fredholm operators.
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Section 4.4 is exclusively devoted to demonstrating that an operator T on
L1(μ) is tauberian if and only if T ∗∗ is so too. This fact is proved in Theorem 4.4.2
as a consequence of the separation Lemma 4.4.1, which has been taken from [147],
although its proof has been rearranged. The proof of Theorem 4.4.2 is basically
the one given in [75].

In Chapter 6 we can find another two proofs of the fact that T ∗∗ is tauberian
whenever T is a tauberian operator on L1(μ). These proofs apply the facts that
tauberian operators on L1(μ) are strongly tauberian (see Section 6.2) and super-
tauberian (see Appendix A.6). Note that if an operator T : X −→ Y is strongly
tauberian or supertauberian, then T ∗∗ is so too.



Chapter 5

Some applications

In the previous chapters we have already described some applications of tauberian
operators. For example, in Section 2.3 we can find some extensions of James’ char-
acterization of reflexive Banach spaces and Section 2.4 shows that some properties
of basic sequences can be characterized in terms of the action of the tauberian op-
erators over them. In this chapter we present some other applications. Several
of them consist of results that have been derived from the existence of a taube-
rian operator acting between two Banach spaces. Some others are constructions
of tauberian operators that are useful in the proof of some results or provide us
with counterexamples.

In the first section we show that the Radon-Nikodým property and the Krein-
Milman property are equivalent for a Banach space X for which there exists an
injective tauberian operator T : X ×X −→ X .

The second section describes some isomorphic properties of Banach spaces or
bounded sets that are preserved by tauberian (or injective tauberian) operators.
These results are then applied in the next section, where we show that some
operator ideals A have the factorization property: every T ∈ A factors through a
Banach space Z ∈ Sp(A) (i.e., IZ ∈ A). In the majority of cases, this is proved by
showing that, for every T ∈ A, the intermediate space in the DFJP factorization
belongs to Sp(A).

In the fourth section we give a uniform factorization result for a compact
subset H of A(X, Y ), where A is a closed, injective and surjective operator ideal.
We show that there are Banach spaces XH and YH , operators jH ∈ A(YH , Y )
and kH ∈ A(X, XH), and a relatively compact subset H0 of A(XH , YH) such that
every T ∈ H may be written as T = jHT0kH , with T0 ∈ H0. Moreover, in the
fifth section we characterize the holomorphic mappings f between Banach spaces
that can be written in the form either f = T ◦ g or f = g ◦ T , where g is another
holomorphic mapping and T is an operator belonging to a closed injective or a
closed surjective operator ideal, respectively.



94 Chapter 5. Some applications

In the last section of this chapter we describe some applications of the DFJP
factorization related to the approximation property of Banach spaces and we show
the relation between the properties of the weak Calkin algebras –associated with
the weakly compact operators– and the weak approximation property.

5.1 Equivalence of the Radon-Nikodým property and

the Krein-Milman property

The Radon-Nikodým property and the Krein-Milman property of Banach spaces
have a close relation because both of them admit geometric characterizations.
Moreover, it is known that the Radon-Nikodým property implies the Krein-Milman
property, but the question whether the converse implication is true or not remains
open, despite the efforts of many mathematicians, including Bourgain, James and
Schachermayer.

In [151], Schachermayer proved that a Banach space X isomorphic to X×X
has the Radon-Nikodým property if and only if it has the Krein-Milman property.
In fact, his proof shows that for the result being true it is enough to assume that
there is an injective tauberian operator from X ×X into X .

In this section, we include an exposition of Schachermayer’s result. The key
for the proof is Theorem 2.3.4: a tauberian operator takes closed bounded convex
sets to closed sets.

Definition 5.1.1. A Banach space X is said to have the Radon-Nikodým property if,
given a finite measure space (Ω, Σ, μ), for every μ-continuous X-valued measure
F : Σ → X with bounded variation, there is an X-valued Bochner integrable
function f : Ω→ X , called the Radon-Nikodým derivative of F , such that

F (A) =
∫

A

f dμ; for all A ∈ Σ.

So, loosely stated, X has the Radon-Nikodým property if and only if the
Radon-Nikodým theorem holds for X-valued measures. In particular, the scalar
field has the Radon-Nikodým property as a consequence of the classical Radon-
Nikodým theorem.

Examples of Banach spaces with the Radon-Nikodým property are reflexive
spaces and separable dual spaces. Moreover, c0 and L1(0, 1) are well-known exam-
ples of spaces failing the Radon-Nikodým property. We refer to [52] for a classical
description of the properties and applications of this class of Banach spaces and
to [54] for a more modern and reader-friendly exposition.

We are going to need several concepts and techniques of a geometric flavor.

Definition 5.1.2. Let C be a convex subset of a vector space X . We say that a
point x ∈ C is an extreme point of C if the set C \ {x} is convex.

We denote by ext(C) the set of extreme points of C.
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In general, ext(C) may be empty. However, the well-known Krein-Milman
theorem guarantees that, if K is a compact convex subset of a locally convex
space, then K coincides with the closed convex hull of ext(K). This result is the
origin of the following concept:

Definition 5.1.3. A Banach space X is said to have the Krein-Milman property if
every closed bounded convex subset of X is the closed convex hull of its extreme
points.

Using the Hahn-Banach and the Bishop-Phelps theorems, we can derive a
useful characterization of this property.

Proposition 5.1.4. A Banach space X has the Krein-Milman property if and only
if for every non-empty closed bounded convex subset C of X, the set ext(C) is
non-empty.

For the proof we refer to [54, Lemma 5.11].

Definition 5.1.5. Let C be a closed bounded convex subset of a Banach space X .
A point x ∈ C is called an exposed point of C if there exists f ∈ X∗ such that
f(x) > f(y) for each y ∈ C \ {x}.

In this case we say that f exposes x.

For α > 0 and f ∈ X∗, we consider the slice S(C, f, α) of C, defined by

S(C, f, α) := {y ∈ C : f(y) > sup
z∈C

f(z)− α}.

A point x ∈ C is called a strongly exposed point of C if there exists f ∈ X∗

that exposes x and has the further property that

lim
α→0+

diam
(
S(C, f, α)

)
= 0,

where diam(A) stands for the diameter of the set A.

Banach spaces with the Radon-Nikodým property admit the following beau-
tiful and highly non-trivial geometric characterization.

Theorem 5.1.6. A Banach space has the Radon-Nikodým property if and only if
every closed bounded convex subset of X is the closed convex hull of its strongly
exposed points.

Since every strongly exposed point of a convex set is an extreme point, the
following result is an immediate consequence of Theorem 5.1.6.

Corollary 5.1.7. If a Banach space X has the Radon-Nikodým property, then it
also has the Krein-Milman property.

Remark 5.1.8. It follows from Theorem 5.1.6 and the definitions given that both
the Radon-Nikodým property and the Krein-Milman property are inherited by
closed subspaces.
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It is not known if the converse implication to that in Corollary 5.1.7 is valid.
Here we will prove it under certain restrictions. The key for the proof is the
following result:

Theorem 5.1.9. A Banach space X has the Radon-Nikodým property if and only
if �2(X) has the Krein-Milman property.

Proof. Suppose that X has the Radon-Nikodým property. Then it is not difficult
to prove that �2(X) has the Radon-Nikodým property; hence it has the Krein-
Milman property.

The proof of the converse implication is rather technical. So we refer to [151,
Proof of Theorem 2.3].

We observe that if X fails the Radon-Nikodým property, then it has a sep-
arable subspace that also fails it [52, Theorem II.3.2]. Therefore, it is enough to
prove the case in which X is separable. �

Let us now show that the Krein-Milman property is preserved by injective
tauberian operators.

Proposition 5.1.10. Let X and Y be Banach spaces for which there is an injective
tauberian operator T : X −→ Y . If Y has the Krein-Milman property, then X also
has this property.

Proof. Suppose that X fails the Krein-Milman property. By Proposition 5.1.4, X
contains a non-empty closed bounded convex subset C for which ext(C) is empty.

Note that T (C) is a non-empty bounded convex subset of Y that has no
extreme points. Moreover, by Theorem 2.3.4, T (C) is closed. Hence, Y fails the
Krein-Milman property by Proposition 5.1.4. �

The following stability result for the existence of tauberian operators is an-
other critical ingredient in the proof of the main result of this section.

Theorem 5.1.11. Let X be a Banach space for which there exists an injective
tauberian operator T : X × X −→ X. Then there exists an injective tauberian
operator S : �2(X) −→ X.

Proof. We can assume that

T (x, y) = U(x) + V (y), (x, y) ∈ X ×X,

with U, V ∈ L(X) and r := max{‖U‖, ‖V ‖} < 1.
Now, for a finitely non-zero sequence x = (x1, . . . , xn, 0, 0, . . .) ∈ �2(X), we

define S(x) recursively by

S(0, . . . , 0, . . .) := 0,

S(x1, . . . , xn, 0, 0, . . .) := T
(
x1, S(x2, . . . , xn, 0, 0, . . .)

)
.
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It is not difficult to check that

S(x1, . . . , xn, 0, 0, . . .) =
n∑

i=1

V i−1Uxi.

Clearly, S is a linear map. Moreover,

‖S(x1, . . . , xn, 0, 0, . . .)‖ ≤
n∑

i=1

ri‖xi‖ ≤
( n∑

i=1

r2i
)1/2( n∑

i=1

‖xi‖2
)1/2

.

Hence S can be extended to a continuous operator S : �2(X) −→ X which, by
continuity, satisfies

S(xi) = T
(
x1, S(xi+1)

)
for every (xi) ∈ �2(X),

where (xi+1) denotes the sequence (x2, x3, . . .).
Since T is injective, the last equality allows us to derive that S is injective.

Indeed,

S(xi) = 0⇒ x1 = 0, S(xi+1) = 0⇒ x2 = 0, S(xi+2) = 0⇒ · · ·

Similarly, the biconjugate operators

T ∗∗ : X∗∗ ×X∗∗ −→ X∗∗ and S∗∗ : �2(X∗∗) −→ X∗∗

satisfy

S∗∗(zi) = T ∗∗
(
z1, S

∗∗(zi+1)
)

for every (zi) ∈ �2(X∗∗) ≡ �2(X)∗∗.

Now, since T is tauberian, given (zi) ∈ �2(X∗∗), we have

S∗∗(zi) ∈ X ⇒ z1 ∈ X, S∗∗(zi+1) ∈ X ⇒ z2 ∈ X, S(zi+2) ∈ X ⇒ · · ·

Hence (zi) ∈ �2(X), and we conclude that S is tauberian. �

Now we can prove the main result of this section.

Theorem 5.1.12. Let X be a Banach space for which there exists an injective
tauberian operator T : X ×X −→ X. Then X has the Radon-Nikodým property if
and only if X has the Krein-Milman property.

Proof. For the non-trivial part, assume that X has the Krein-Milman property. By
Theorem 5.1.11, there is an injective tauberian operator S : �2(X) −→ X . There-
fore, Proposition 5.1.10 implies that �2(X) has the Krein-Milman property; hence
Theorem 5.1.9 allows us to conclude that X has the Radon-Nikodým property. �
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5.2 Preservation of isomorphic properties

The property of X being isomorphic to a subspace of Y is strictly stronger than the
existence of a tauberian (or an injective tauberian) operator T : X −→ Y . However,
as we shall see in this section, in the latter cases some isomorphic properties of
Y are inherited by X . Similarly, given a tauberian operator T : X −→ Y and a
bounded subset A of X , some isomorphic properties of the set T (A) are inherited
by the set A. These are the kind of results we refer to as preservation of isomorphic
properties by tauberian operators.

Properties of spaces preserved by tauberian operators

We begin by describing some isomorphic properties preserved by injective taube-
rian operators.

Theorem 5.2.1. Let X and Y be Banach spaces, and let P be one of the following
properties of Banach spaces:

(i) Krein-Milman property;

(ii) Radon-Nikodým property;

(iii) reflexivity;

(iv) quasi-reflexivity; i.e., dim Y ∗∗/Y <∞;

(v) somewhat reflexivity; i.e., each infinite dimensional subspace contains an in-
finite dimensional reflexive subspace;

(vi) weak sequential completeness;

(vii) containing no copies of �1;

(viii) containing no copies of c0;

(ix) all the weakly sequentially complete subspaces are reflexive;

(x) separability;

(xi) separability of the dual space.

Suppose that there is an injective tauberian operator T : X −→ Y . Then X satisfies
P whenever Y satisfies P.

Proof. (i) It was proved in Proposition 5.1.10.
(ii) The proof is similar to that of Proposition 5.1.10, using the characteri-

zation of the Radon-Nikodým property given in Theorem 5.1.6.
(iii) It is a direct consequence of the definition.
(iv) Since T co : X∗∗ −→ Y ∗∗ is injective, dim X∗∗/X ≤ dim Y ∗∗/Y <∞.
(v) It is a consequence of (iii) and the fact that the restrictions of T are also

tauberian operators.
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(vi) Let (xn) be a weakly Cauchy sequence in X . Since Y is weakly sequen-
tially complete, (Txn) is weakly convergent. Since T is injective and tauberian,
we conclude that (xn) is also weakly convergent.

(vii) Since �1 contains no reflexive infinite dimensional subspaces, the restric-
tion of T to a subspace of X isomorphic to �1 is an isomorphism; hence Y contains
a copy of �1 if X does.

(viii) It is similar to the proof of (vii).

(ix) It is a consequence of (iii) and (vi), arguing as in the proof of (v).

(x) Since T (BX) is separable, we can take a sequence (xn) in BX such that
(Txn) is dense in T (BX).

Let x ∈ BX and select (xnk
) such that (Txnk

) converges to Tx. By Corol-
lary 2.2.3, (xnk

− x) is weakly null. Since the weak closure and the norm closure
coincide for convex sets, we conclude that the set of convex combinations with
rational coefficients of (xn) is dense in BX ; hence X is separable.

(xi) Suppose that Y ∗ is separable. Since N(T ∗∗) = N(T ) = {0}, the range
of T ∗ is dense in X∗; hence X∗ is separable. �

Corollary 5.2.2. Let P be one of the first nine properties in Theorem 5.2.1. Suppose
there exists a tauberian operator T : X −→ Y . Then X satisfies P whenever Y
satisfies P.

Proof. We consider the decomposition T = T̃QN(T ), where T̃ : X/N(T ) −→ Y is
the injective operator associated with T .

Since T̃ is tauberian, Theorem 5.2.1 implies that X/N(T ) satisfies P . So it
is enough to observe that each of the properties we consider in this result is a
three-space property:

M reflexive, X/M satisfies P ⇒ X satisfies P .

We refer to [42] for these implications. �

Remark 5.2.3. The previous corollary fails for the last two properties in Theo-
rem 5.2.1 because the kernel of T or its dual space could be non-separable.

Properties of bounded subsets preserved by tauberian operators

We will show that some isomorphic properties of bounded subsets are preserved
by injective tauberian operators. These results can be seen as “localizations” of
some of the results given in Theorem 5.2.1. Their proofs are similar to those of
the corresponding results for spaces.

Definition 5.2.4. Let A be a bounded closed convex subset of a Banach space X .
We say that A has the Krein-Milman property if for each closed convex subset K
of A, the closed convex hull of ext(K) coincides with K.
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We say that A has the Radon-Nikodým property if for each nonempty closed
convex subset K of A and each ε > 0 there exists x0 ∈ K which is not in the
convex hull of {y ∈ K : ‖x0 − y‖ ≥ ε}.

Note that X has the Krein-Milman property or the Radon-Nikodým property
if and only if BX has the same property.

Theorem 5.2.5. Let X and Y be Banach spaces, let A be a bounded closed convex
subset of X and let P be one of the following properties of bounded sets:

(i) Krein-Milman property;

(ii) Radon-Nikodým property;

(iii) relative weak compactness;

(iv) weak sequential completeness;

(v) containing no sequences equivalent to the unit vector basis of �1;

(vi) containing no sequences equivalent to the unit vector basis of c0;

(vii) separability.

Suppose that there is an injective tauberian operator T : X −→ Y . Then T (A)
satisfies P implies A satisfies P.

For a proof of Theorem 5.2.5, we refer to Neidinger’s thesis [133].

5.3 Operator ideals and factorization

One of the main applications of the DFJP factorization is a proof of the fact that
every weakly compact operator admits a factorization through a reflexive Banach
space. Afterwards, the same technique has been used to prove factorization results
for other classes of operators.

Definition 5.3.1. We say that an operator ideal A has the factorization property
if every operator T ∈ A factors through a Banach space in the space ideal Sp(A)
of A.

Using the properties of tauberian operators, we are going to show that some
operator ideals have the factorization property. In fact, we are going to show that
they satisfy a stronger property related to the DFJP factorization.

We will need the following result relating an operator and its factors in the
tauberian decomposition given in Theorem 3.2.2.

Proposition 5.3.2. Let T ∈ L(X, Y ) and let T = jUk be its tauberian decomposi-
tion. For every n ∈ N, we have

(i) ‖k x‖ ≤ 2n‖Tx‖+ 2−n‖x‖ for every x ∈ X;

(ii) j(BF ) ⊂ 2nT (BX) + 2−nBY .
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Proof. (i) Recall that k acts from X into E = �2(Xn)/NT and we have

k (x) = (0, (n−1). . . , 0, x, 0, 0, . . .) + NT

for every n ∈ N; hence

‖k (x)‖ ≤ ‖(0, (n−1). . . , 0, x, 0, 0, . . .)‖ = pn
T (x) ≤ 2n‖Tx‖+ 2−n‖x‖

for every x ∈ X and every n ∈ N.
(ii) Note that (y, y, y, . . .) ∈ BF implies qn

T (y) < 1 for every n ∈ N; hence
j(BF ) ⊂ 2nT (BX) + 2−nBY for every n ∈ N. �

As a consequence of the previous result, some properties of an operator are
inherited by some of its factors in the tauberian decomposition.

Proposition 5.3.3. Let A be an operator ideal, let T ∈ L(X, Y ) and let T = jUk
be its tauberian decomposition. Then the following assertions hold:

(i) if A is closed injective and T ∈ A, then k ∈ A;

(ii) if A is closed surjective and T ∈ A, then j ∈ A.

Proof. It is a direct consequence of Lemma A.2.6 and Proposition 5.3.2. �
The following concept will be useful in our exposition.

Definition 5.3.4. We say that an operator ideal A has the interpolation property
if for every operator T ∈ A, the identity of the intermediate space in the DFJP
factorization of T belongs to A.

Remark 5.3.5. Clearly, an operator ideal A has the interpolation property if and
only if for every T ∈ A, the intermediate spaces in the tauberian decomposition
of T belong to Sp(A).

Let us see some examples of operator ideals with this property.

Theorem 5.3.6. The following operator ideals have the interpolation property:

(i) F , the operators with finite dimensional range;

(ii) W, the weakly compact operators;

(iii) R, the Rosenthal operators.

Proof. Let T ∈ L(X, Y ) and let T = jUk be its tauberian decomposition.
(i) Observe that k : X −→ E has dense range and j : F −→ Y is injective.

Thus, if R(T ) is finite dimensional, then dim(F ) = dim(R(j)) = dim(R(T )).
(ii) is Corollary 3.2.3.
(iii) Since R is surjective and closed, Proposition 5.3.3 implies j ∈ R; i.e,

there is no subspace M of F isomorphic to �1 such that jJM is an isomorphism.
Moreover, since j is tauberian and injective, by Corollary 2.2.8, the restriction
of j to any subspace isomorphic to �1 is an isomorphism. Hence F contains no
subspace isomorphic to �1; i.e., F ∈ Sp(R). �
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Proposition 5.3.3 can be applied to study products of operator ideals.

Definition 5.3.7. Let A and D be operator ideals. The product of A and D is the
class A ◦ D of all operators T such that T = AD, with A ∈ A and D ∈ D.

It is not difficult to check that the product A ◦ D of two operator ideals A
and D is an operator ideal.

Corollary 5.3.8. Let A and D be closed operator ideals. Suppose that A is surjective
and D is injective. Then

A ◦ D(X, Y ) = A(X, Y ) ∩ D(X, Y ) for all Banach spaces X and Y .

Proof. Suppose that T ∈ A(X, Y ) ∩ D(X, Y ) and let T = jUk be the tauberian
decomposition of T . Applying Proposition 5.3.3, we get j ∈ A and k ∈ D; hence
T ∈ A ◦ D.

The converse implication is trivial. �

Let (Xn) and (Yn) be sequences of Banach spaces. It is not difficult to see
that every operator

T : �2(Xn) −→ �2(Yn)

admits a matrix representation with components Tmn : Xn −→ Ym; m, n ∈ N.
Moreover, if A is an operator ideal and T ∈ A, then Tmn ∈ A for all m, n ∈ N.

Definition 5.3.9. We say that an operator ideal A is �2-stable if an operator
T : �2(Xn) −→ �2(Yn) belongs to A when all its components Tmn belong to A.

Remark 5.3.10. It is easy to show that every �2-stable operator ideal is closed.

The following result provides a sufficient condition for an operator ideal to
have the interpolation property.

Theorem 5.3.11. Let A be an injective, surjective and �2-stable operator ideal.
Then A has the interpolation property.

Proof. Let T ∈ L(X, Y ) and let T = jUk be its tauberian decomposition, where
j : F −→ Y , k : X −→ E, F is the diagonal subspace of �2(Yn) and E =�2(Xn)/NT .

We denote by J : F −→ �2(Yn) and Q : �2(Xn) −→ �2(Xn)/NT the embed-
ding and the quotient map, respectively.

X Y

E F

�2(Xn) �2(Yn)

�

T

�

k

�

U

�

j

�

J

�

Q

�
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Recall that each space Xn is isomorphic to X and each space Yn is isomor-
phic to Y . It is easy to check that the components (JUQ)mn of the matricial
representation of the operator JUQ : �2(Xn) −→ �2(Yn) coincide with T acting
from Xn to Ym. Therefore, the hypothesis implies that JUQ ∈ A. Since A is in-
jective and surjective, U ∈ A; hence E and F belong to Sp(A) because U is an
isomorphism. �

As an application, we give further examples of operator ideals with the in-
terpolation property. First, we define some classes of operators.

Definition 5.3.12. Let T ∈ L(X, Y ).

(i) T is a Banach-Saks operator if every bounded sequence (xn) in X admits a
subsequence (xnk

) such that
(
T (xn1 + · · · + xnk

)/k
)
k∈N

is convergent; i.e.,
(Txnk

) is Cesàro convergent.

(ii) T is a decomposing operator if, for each finite measure space (Ω, Σ, μ) and each
operator S : Y −→ L∞(μ), there exists a μ-measurable function g : Ω −→ X∗

such that (STx)(t) = 〈g(t), x〉 a.e. for every x ∈ X .

We denote by BS and D the classes of Banach-Saks operators and decom-
posing operators, respectively.

Proposition 5.3.13. The following operator ideals are injective, surjective and �2-
stable:

(i) S, the operators with separable range;

(ii) W, the weakly compact operators;

(iii) BS, the Banach-Saks operators;

(iv) D, the decomposing operators.

Therefore, by Theorem 5.3.11, they have the interpolation property.

Proof. (i) Clearly, S is injective and surjective. Moreover, since the �2-sum of
separable spaces is separable, it is also �2-stable.

(ii) It is well-known that W is injective and surjective. Moreover, we can
identify �2(Xn)∗∗ with �2(X∗∗

n ). Therefore, the components of the second conjugate

T ∗∗ : �2(X∗∗
n ) −→ �2(Y ∗∗n )

can be identified with the operators T ∗∗mn.
From this it is clear that T ∈ W if and only if Tmn ∈ W for all m, n ∈ N;

i.e., W is �2-stable.

For the proof of (iii) and (iv), we refer to [100, Theorem 2.3]. �
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The duality properties of the tauberian decomposition allow us to derive new
examples of operator ideals with the interpolation property from given ones with
this property.

Recall that given an operator ideal A, the dual operator is denoted by Ad.
Moreover, it is not difficult to show that the expression

Aco(X, Y ) := {T ∈ L(X, Y ) : T co ∈ A}
defines an operator ideal Aco.

Theorem 5.3.14. Let A be an operator ideal with the interpolation property. Then
both Ad and Aco also have the interpolation property.

Proof. It is a direct consequence of Theorem 3.2.8: if T = jUk is the tauberian
decomposition of T , then T ∗ = k∗U∗j∗ and T co = jcoU cokco are the respective
tauberian decompositions of T ∗ and T co. �

Let us see that the converse of the first implication in Theorem 5.3.14 fails.

Definition 5.3.15. We say that an operator A : L1(μ) −→ X is representable if
there exists a measurable function g : Ω −→ Y so that

A(f) =
∫

Ω

f(t)g(t)dt for every f ∈ L1(μ).

We say that T ∈ L(X, Y ) is a Radon-Nikodým operator if for every finite
measure space (Ω, Σ, μ) and every operator S : L1(μ) −→ X , the operator TS is
representable.

It is proved in [139, 24.2.6] that the classRN of all Radon-Nikodým operators
is an operator ideal.
Remark 5.3.16. The dual operator ideal RN d coincides with D, the decomposing
operators, which has the interpolation property (see Proposition 5.3.13). However,
RN does not have the interpolation property.

Indeed, for some time the question whether the unconditionally converging
operators U and the Radon-Nikodým operators RN have the factorization prop-
erty was open. Observe that RN is properly contained in U (See [139]).

It was proved in [65] that there exists a Banach lattice X2 and a surjective
operator T ∈ RN (X2, c0) such that if T is written as the product of two operators,
then one of them preserves a copy of c0; i.e., it does not belong to U . In particular,
both U and RN fail the factorization property.

5.4 Uniform factorization for compact sets of operators

Here, given a closed injective and surjective operator ideal A and a compact subset
H of A(X, Y ), we will apply a variation of the construction of the tauberian
decomposition of an operator to obtain a uniform factorization for the operators
in H . This is stated with more precision in the following result:
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Theorem 5.4.1. Let X and Y be Banach spaces and let A be a closed, injective
and surjective operator ideal. Then, for every compact subset H of A(X, Y ), there
is a pair of Banach spaces XH and YH , a pair of operators jH ∈ A(YH , Y ) and
kH ∈ A(X, XH), and a compact subset H0 of A(XH , YH) so that every T ∈ H
may be decomposed as

T = jHT0kH with T0 ∈ H0.

In order to prove Theorem 5.4.1, we need some notation and auxiliary results.
We will give the proof later in this section.

Given a bounded subset H of L(X, Y ), for each T ∈ H we denote its taube-
rian decomposition by T = jT UT kT .

X Y

ET FT

�

T

�

kT

�

UT

�

jT

Also, given a subset A of a Banach space, we denote by aco(A) the closed
absolutely convex hull of A.

We are going to make a construction similar to the one we made in Section
3.2. We let

WH := aco
( ⋃

T∈H

T (BX)
)

and WH∗ := aco
( ⋃

T∈H

T ∗(BY ∗)
)
.

The gauge qn(·) of the set 2nWH + 2−nBY is a norm on Y equivalent to the
original one.

We write Yn := (Y, qn(·)) and define

YH := {(yn) ∈ �2(Yn) : yn = y1 for all n},

the diagonal subspace of �2(Yn).
Moreover, we denote by jH : YH −→ Y the operator defined by

jH(y, y, y, . . .) := y for each (y, y, y, . . .) ∈ YH .

Clearly, jH is continuous and injective.
Remark 5.4.2. We can identify YH with a linear subspace of Y , which is not closed
in general. Moreover, since

qn(y) < 2−n for every y ∈WH ,

we can identify WH with a subset of the unit ball of YH .
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Let us show that, with the identification in the previous remark, the norm
of Y and the norm of YH are equivalent on WH .

Lemma 5.4.3. A sequence
(
(yk, yk, yk, . . .)

)
⊂WH is convergent in YH if and only

if (yk) is convergent in Y .

Proof. In order to prove the non-trivial implication, suppose that (yk) converges
to y ∈ Y and let ε > 0.

Note that yk−y ∈ 2WH for every k ∈ N. We select n0 ∈ N such that 2n0ε ≥ 2.
Then yk − y ∈ 2n0ε WH for every k ∈ N; hence

qn(yk − y) < 2n0−nε, for all k, n ∈ N.

We select k0 ∈ N such that yk − y ∈ 2−n0ε BY for k ≥ k0. Then

qn(yk − y) < 2n0−nε for all n ∈ N and all k ≥ k0.

Hence, for k ≥ k0, we have

‖(yk − y, yk − y, yk − y, . . .)‖2 =
n0∑

n=1

qn(yk − y)2 +
∞∑

n=n0+1

qn(yk − y)2

≤ ε2
n0∑

n=1

22(n−n0) + ε2
∞∑

n=n0+1

2n0−n < 4ε2,

and we conclude that
(
(yk, yk, yk, . . .)

)
converges in YH to (y, y, y, . . .). �

Now observe that the gauge q∗n(·) of the set 2nWH∗ +2−nBX∗ is a dual norm
(since this set is weak∗-compact) on X∗, which is equivalent to the original one.
We denote by pn(·) the corresponding predual norm on X .

It is not difficult to check that the norm pn(·) coincides with the gauge of
the following set:

{x ∈ X : |〈f, x〉| ≤ 1, for every f ∈ 2nWH∗ + 2−nBX∗}.

Observe that, letting Xn := (X, pn(·)), we can identify �2(Xn)∗ ≡ �2(X∗
n)

isometrically. Therefore, denoting by MH the diagonal subspace of �2(X∗
n), we can

define
XH := �2(Xn)/(MH)⊥

and consider the operator kH : X −→ XH defined by

kH(x) := (x, 0, 0, 0, . . .) + (MH)⊥ x ∈ X.

Remark 5.4.4. As in the case of the space associated with WH , we can identify

(i) X∗
H ≡MH with a subspace of X∗,

(ii) WH∗ with a subset of the unit ball of X∗
H .
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Moreover, the norms of X∗ and X∗
H are equivalent on WH∗ .

The following result will allow us to show that the operators jH and kH

inherit some properties of the operators in H .

Lemma 5.4.5. Let H be a bounded subset of L(X, Y ) and let jH : YH −→ Y and
kH : X −→ XH be the operators we have defined. Then

jH(BYH ) ⊂ 2nWH + 2−nBY for all n ∈ N,

and
kH(x) ≤ sup

T∈H
2n‖Tx‖+ 2−n‖x‖ for all x ∈ X and n ∈ N.

Proof. It is similar to the proof of Proposition 5.3.2. �
Let us now show that the construction in Lemma 5.4.5 allows us to obtain a

uniform tauberian factorization for bounded subsets of L(X, Y ).

Proposition 5.4.6. Let H be a bounded subset of L(X, Y ). Then there are operators
rT ∈ L(FT , YH) and sT ∈ L(XH , ET ) so that

jT = jHrT and kT = sT kH for every T ∈ H.

X Y

XH YH

ET FT

�

T

�
���

kH

�
���

sT

�
��� jH

�

UT

�
���
rT

Proof. We define the operator rT : FT −→ YH by

rT (y, y, y, . . .) := (y, y, y, . . .).

Clearly, rT ∈ L(FT , YH) and ‖rT ‖ ≤ 1.
We also define the operator sT : XH −→ ET by

sT ((xn) + (MH)⊥) := (xn) + NT .

We refer to Section 3.2 for the definition of NT .
In a similar manner as we did in the construction of the tauberian decompo-

sition, we can show that the conjugate operator of sT has the same form as rT ;
hence sT ∈ L(XH , ET ) and ‖sT ‖ ≤ 1.

Finally, it is immediate to check that jT = jHrT and kT = sT kH for every
T ∈ H . �
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Next, we give a technical result that can be considered as a refinement of
Lemma A.2.6.

Lemma 5.4.7. Let A be a closed operator ideal and let H be a compact subset of
A(X, Y ).

(i) Suppose that A is injective, S ∈ L(X, Z) and for every ε > 0 there exists
δ > 0 such that

‖Sx‖ ≤ δ sup
T∈H
‖Tx‖+ ε‖x‖ for every x ∈ X.

Then S ∈ A.

(ii) Suppose that A is surjective, S ∈ L(Z, Y ) and for every ε > 0 there exists
δ > 0 such that

S(BZ) ⊂ δ aco (∪T∈HT (BX)) + εBY .

Then S ∈ A.

Proof. Let us fix ε > 0. We choose T1, . . . , Tn ∈ H so that for each T ∈ H there
exists i ∈ {1, . . . , n} with ‖T − Ti‖ < ε/δ.

(i) Clearly, for each x0 ∈ BX , there exists i ∈ {1, . . . , n} such that

sup
T∈H
‖Tx0‖ < ‖Tix0‖+ 2ε‖x0‖/δ.

We consider the operator

U : X −→
(
Y× (n)· · · ×Y, ‖ · ‖∞

)
defined by Ux := (T1x, . . . , Tnx). Then, for every x ∈ X ,

δ sup
T∈H
‖Tx‖ < δ‖Ux‖+ 2ε‖x‖;

hence ‖Sx‖ ≤ δ‖Ux‖ + 2ε‖x‖ for every x ∈ X . Since U ∈ A, which is closed and
injective, Lemma A.2.6 allows us to conclude S ∈ A.

(ii) Given T ∈ H , there exists i ∈ {1, . . . , n} such that

T (BX) ⊂ Ti(BX) + (ε/δ)BY .

We consider the operator

V :
(
X× (n)· · · ×X, ‖ · ‖1

)
−→ Y

defined by V (x1, . . . , xn) := T1x1 + · · ·+ Tnxn. Then,

δ ∪T∈H T (BX) ⊂ δV (B
X×(n)··· ×X

) + εBY .

Therefore, S(BZ) ⊂ δV (B
X×(n)···×X

) + 2εBY . Since V ∈ A, which is closed and

surjective, Lemma A.2.6 allows us to conclude S ∈ A. �
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The properties of the previous construction and Lemmas 5.4.7 and 5.4.5 allow
us to derive the following result:

Proposition 5.4.8. Let A be a closed, injective and surjective operator ideal and let
H be a compact subset of A(X, Y ). Then the following assertions hold:

(i) jH ∈ A(YH , Y ) and kH ∈ A(X, XH).

(ii) For every T ∈ H, rT ∈ A(FT , YH) and sT ∈ A(XH , YT ).

Now we have the tools to prove the main result in this section.

Proof of Theorem 5.4.1. Recall thatA is a closed, injective and surjective operator
ideal and H is a compact subset of A(X, Y ).

We consider the spaces XH and YH , and the operators rT ∈ L(FT , YH) and
sT ∈ L(XH , ET ) provided by Proposition 5.4.6. We have

T = jH rT UT sT kH for every T ∈ H .

We define the set H0 as the closure of

{T0 := rT UT sT : T ∈ H} ⊂ L(XH , YH).

Clearly, T = jHT0kH for every T ∈ H . Moreover, by Proposition 5.4.8, the
three factors jH , T0 and kH belong to A. It remains to show that the set H0 is
compact.

Let (Tn) be a sequence in H . We have to show that
(
rTnUTnsTn

)
has a

convergent subsequence.
Since H is compact, we can assume that (Tn) converges to some T ∈ A(X, Y ).

Observe that T (BX) ⊂ WH and T ∗(BY ∗) ⊂ WH∗ . Hence, by Lemma 5.4.3 and
Remark 5.4.4, there exists T0 ∈ L(XH , YH) so that T = jHT0kH .

Now, since
Tn = jHrTnUTnsTnkH for each n ∈ N

the sequence
(
rTnUTnsTnkH

)
converges to T0kH by Lemma 5.4.3 and

(
rTnUTnsTn

)
converges to T0 by Remark 5.4.4. �

5.5 Factorization of holomorphic mappings

Some of the results of factorization for operators in certain operator ideals, given in
Section 5.3, have been extended to the case of homogeneous polynomials, or to the
case of holomorphic maps between Banach spaces, belonging to the corresponding
classes of maps. In this section we describe briefly some of these extensions.

We begin by describing in some detail the results of Ryan for weakly compact
holomorphic mappings, and afterwards we take a more general point of view.
Following [71] and [72], we give a characterization of the holomorphic mappings f
between Banach spaces that can be written in the form either f = T ◦g or f = g◦T ,
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where g is another holomorphic mapping and T is an operator belonging to a closed
injective or a closed surjective operator ideal. When the operator T belongs to an
operator ideal with the factorization property, we derive characterizations in terms
of factorization.

Let us introduce some concepts: given Banach spaces X and Y and an integer
n ∈ N, we say that a mapping P : X −→ Y is a homogeneous polynomial of order
n if there exists a (continuous) n-linear mapping

P̂ : X× (n)· · · ×X −→ Y

such that P (x) = P̂ (x, . . . , x) for every x ∈ X .

We denote by P(nX, Y ) the set of all homogeneous polynomials of order n
from X into Y and we identify the space Y with P(0X, Y ), the constant maps
from X into Y .

Definition 5.5.1. A mapping f : X −→ Y is said to be holomorphic if for each
z ∈ X there are a neighborhood Uz of z and a sequence of polynomials

dnf [z] ∈ P(nX, Y ); n ∈ N ∪ {0},

so that the series ∞∑
n=0

(n!)−1dnf [z](x− z)

converges uniformly to f(x) for x ∈ Uz.
The polynomial dnf [z] is the differential of order n of f at z.

We denote byH(X, Y ) the vector space of holomorphic mappings from X into
Y and by Hb(X, Y ) the subspace of all mappings in H(X, Y ) which are bounded
on bounded sets.

Obviously, P(nX, Y ) ⊂ Hb(X, Y ) for all n ∈ N ∪ {0}.
Definition 5.5.2. We say that a mapping f ∈ H(X, Y ) is weakly compact if each
z ∈ X has a neighborhood Uz such that the set f(Uz) is relatively weakly compact
in Y .

The following result gives an idea of what it means for a holomorphic mapping
to be weakly compact.

Theorem 5.5.3. ( [149, Theorem 3.2]) For a mapping f ∈ H(X, Y ), the following
assertions are equivalent:

(a) f is weakly compact;

(b) f maps some neighborhood of 0 onto a relatively weakly compact subset of Y ;

(c) dnf [z] is a weakly compact polynomial for every n ∈ N and every z ∈ X;
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(d) dnf [0] is a weakly compact polynomial for every n ∈ N.

Let us see that, like the weakly compact operators, the weakly compact
holomorphic mappings can be characterized in terms of factorization through a
reflexive Banach space.

Theorem 5.5.4. [149, Theorem 3.7] For a mapping f ∈ H(X, Y ), the following
assertions are equivalent:

(a) f is weakly compact;

(b) there are a reflexive Banach space E, an operator T ∈ L(E, Y ) and a holo-
morphic mapping g ∈ H(X, E) such that f = T ◦ g.

Proof. The proof of the non-trivial part consists of two steps: first, we show that
there are a Banach space Z, a weakly compact operator S ∈ L(Z, Y ) and a holo-
morphic mapping h ∈ H(X, Z) such that f = S ◦ h. Second, we apply the DFJP
factorization of S.

We refer to [149, Proof of Theorem 3.7] for further details. �
Now we shall show that, for operator ideals satisfying certain conditions, we

can prove results similar to Theorems 5.5.3 and 5.5.4.

The surjective case

It is well-known that surjective operator ideals correspond to certain families of
bounded sets. Let us give a more precise description of this relation.

Let A be a surjective operator ideal. For every Banach space Y we denote
by CA(Y ) the family of bounded subsets of Y , defined by

CA(Y ) := {T (BZ) : Z Banach space, T ∈ A(Z, Y )}.

It is not difficult to see that an operator T ∈ L(X, Y ) belongs to A if and
only if T (BX) belongs to CA(Y ).

The following concept is inspired by the definition of weakly compact holo-
morphic mapping.

Definition 5.5.5. Let A be a closed surjective operator ideal. We say that a holo-
morphic mapping f : X −→ Y belongs to HA(X, Y ) if each z ∈ X admits a
neighborhood Uz such that f(Uz) belongs to CA(Y ).

Let us see that the mappings in HA(X, Y ) have similar properties to those
of the weakly compact holomorphic mappings given in Theorem 5.5.3.

Theorem 5.5.6. Let A be a closed surjective operator ideal. For f ∈ H(X, Y ), the
following assertions are equivalent:

(i) f ∈ HA(X, Y );

(ii) f maps some neighborhood of 0 into a set in CA(Y );
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(iii) dnf [z] ∈ HA for every n ∈ N and every z ∈ X;

(iv) dnf [0] ∈ HA for every n ∈ N.

This result is Proposition 5 in [72]. We refer to this paper for a proof.

As a consequence, we can derive the following factorization result, where
Hb(X, Y ) denotes the set of all maps in H(X, Y ) which are bounded on bounded
sets.

Theorem 5.5.7. Let f ∈ H(X, Y ) and let A be a closed surjective operator ideal.
Then f ∈ HA(X, Y ) if and only if there exist a Banach space Z, an operator
T ∈ A(Z, Y ) and a mapping g ∈ Hb(X, Z) so that f = T ◦ g.

The proof can be obtained as an application of Theorem 5.5.6, in a similar
manner as Theorem 5.5.4 is derived from Theorem 5.5.3. We refer to [72] and [149]
for the details.

As a consequence, we can characterize some classes of holomorphic maps in
terms of factorization.

Corollary 5.5.8. Let f ∈ H(X, Y ) and let A be a closed surjective operator ideal
with the factorization property. Then f ∈ HA(X, Y ) if and only if there exist a
Banach space Z ∈ Sp(A), an operator T ∈ L(Z, Y ) and a mapping g ∈ H(X, Z)
so that f = T ◦ g.

The injective case

The injective operator ideals can be described in terms of locally convex topologies
weaker than the norm topology. Let us give a more precise description of this
relation.

Let A be an injective operator ideal. On every Banach space X we consider
the topology τA generated by the seminorms defined by

pT (x) := ‖Tx‖ x ∈ X,

where Z is a Banach space and T ∈ A(X, Z).
Clearly τA is a locally convex topology on the space X and it was proved

in [107, Section 3] that, for every Banach space Y ,

(5.1) A(X, Y ) = Lc

(
(X, τA), Y

)
,

where Lc

(
(X, τA), Y

)
is the set of all continuous linear maps from the locally

convex space (X, τA) into Y .

Let A be a closed injective operator ideal. Then τA is the finest locally convex
topology on X that agrees with τA on bounded subsets (see [107, Proposition 4.2]).
Therefore, it follows from Formula 5.1 that an operator T ∈ L(X, Y ) belongs to
the operator ideal A if and only if it is τA-continuous on bounded subsets of X .
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Let us see that the topology τA allows us to extend some properties of the
operators in a closed injective operator ideal to holomorphic mappings.

Definition 5.5.9. Let A be a closed injective operator ideal. We say that a holomor-
phic mapping f : X −→ Y belongs to HA(X, Y ) if it is uniformly τA-continuous
on bounded subsets of X .

First we consider the special case of homogeneous polynomials.

Proposition 5.5.10. Let n ∈ N, let P ∈ P(nX, Y ) and let A be a closed injective
operator ideal. Then the following assertions are equivalent:

(a) P is uniformly τA-continuous on bounded subsets of X;

(b) there exist a Banach space Z and an operator T ∈ A(X, Z) so that

‖P (x)‖ ≤ ‖Tx‖n for all x ∈ X;

(c) there exist a Banach space Z, an operator T ∈ A(X, Z) and a polynomial
Q ∈ P(nZ, Y ) so that P = Q ◦ T .

This result is Corollary 5 in [71]. It is derived from the corresponding result
for n-linear continuous maps from X into Y .

Theorem 5.5.11. Let f ∈ H(X, Y ) and let A be a closed injective operator ideal.
Then f ∈ HA if and only if there exist a Banach space Z, an operator T ∈ A(X, Z)
and a mapping g ∈ Hb(Z, Y ) so that f = g ◦ T .

For the proof we refer to [71, Proof of Theorem 8].

As in the injective case, from Theorem 5.5.11 we can derive characterizations
for some classes of holomorphic maps in terms of factorization.

Corollary 5.5.12. Let f ∈ H(X, Y ) and let A be a closed injective operator ideal
with the factorization property. Then f ∈ HA(X, Y ) if and only if there exist a
Banach space Z ∈ Sp(A), an operator T ∈ L(X, Z) and a mapping g ∈ Hb(Z, Y )
so that f = T ◦ g.

5.6 Approximation properties and Calkin algebras

Let us recall that a Banach space X has the approximation property (A.P. for
short) if, for every compact subset K of X and every ε > 0, there exists a finite
rank operator T : X −→ X such that supx∈K ‖Tx− x‖ < ε.

This concept was introduced in connection with the basis problem (whether
every separable Banach space has a Schauder basis). It is easy to see that every
X with a Schauder basis has the A.P. Finally, Enflo [59] gave a negative answer
to the basis problem by constructing a separable Banach space failing the A.P.
However, the A.P. has remained as an inspiring concept in Banach space theory.

Using the isometric variation of the DFJP factorization described in Section
3.3, it is possible to get characterizations of the approximation property.



114 Chapter 5. Some applications

Definition 5.6.1. We say that a closed subspace M of a Banach space X is an ideal
in X if M⊥ is the kernel of a norm-one projection in X∗.

Recall that F(X, Y ) denotes the finite rank operators in L(X, Y ). Here we
denote by KY and WY the families of all absolutely convex subsets of the unit
ball BY which are compact and weakly compact, respectively.

Given K ∈ WY , the space FK and the operator JK : FK −→ Y are the ones
introduced in the isometric variation of the DFJP factorization with f(a) = 1
described in Section 3.3.

We say that a net of operators (Aα) in L(X, Y ) is strongly convergent to
A ∈ L(X, Y ) if the net (Aαx) converges to Ax for every x ∈ X .

Theorem 5.6.2. For a Banach space Y , the following assertions are equivalent:

(a) Y has the A.P.

(b) F(YK , Y ) is an ideal in L(YK , Y ), for every K ∈ WY .

(c) For every K ∈ WY , there is a net (Aα) in F(YK , Y ) with supα ‖Aα‖ ≤ ‖JK‖,
which is strongly convergent to JK .

(d) For every K ∈ KY , there is a net (Aα) in F(YK , Y ) which is norm convergent
to JK .

Proof. See [119, Theorem 1.2]. �
As an application of Theorem 5.6.2, we obtain the following characterizations

of the A.P. for a Banach space or its dual space:

Theorem 5.6.3. For a Banach space Y , the following assertions are equivalent:

(a) Y has the A.P.

(b) F(X, Y ) is an ideal in W(X, Y ), for every Banach space X.

(c) F(X, Y ) is an ideal in W(X, Y ), for every separable reflexive space X.

(d) F(X, Y ) is an ideal in W(X, Y ), for every closed subspace X of c0.

Proof. See [119, Theorem 3.3]. �
Theorem 5.6.4. For a Banach space X, the following assertions are equivalent:

(a) X∗ has the A.P.

(b) F(X, Y ) is an ideal in W(X, Y ) for every Banach space Y .

(c) F(X, Y ) is an ideal in W(X, Y ) for every separable reflexive space Y .

(d) F(X, Y ) is an ideal in W(X, Y ), for every closed subspace Y of c0.

Proof. See [119, Theorem 3.4]. �
Remark 5.6.5. In Theorems 5.6.3 and 5.6.4, we could have added three other
equivalent items, replacing W(X, Y ) by K(X, Y ) in (b), (c) and (d).
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For every Banach space X , the Calkin algebra is defined as the quotient
algebra L(X)/K(X).

The Calkin algebra was introduced in Fredholm theory because an operator
T ∈ L(X) is Fredholm if and only if the class of T in L(X)/K(X) is invertible.

More generally, for each T ∈ L(X, Y ) we can consider the so-called essential
norm of T , defined by

‖T ‖e := dist(T,K(X, Y ));

i.e., ‖T ‖e is the norm of the class of T in L(X, Y )/K(X, Y ).
In [118], Lebow and Schechter studied the semi-Fredholm operators by means

of the essential norm of an operator and a non-compactness measure for bounded
subsets of a Banach space. Its aim was to extend the concepts of operator in Φ+

or Φ− (see Section A.1) to elements of Banach algebras.

Definition 5.6.6. Let C be a bounded subset of a Banach space X . The measure
of non-compactness γ(C) of C is defined by

γ(C) := inf{ε > 0: C ⊂ D + εBX},

where the infimum is taken over all the compact subsets D of X .

Using the quantity γ(·), we can define a measure of non-compactness for
operators.

Definition 5.6.7. For an operator T ∈ L(X, Y ), we define γ(T ) := γ(T (BX)).

Obviously,

T compact ⇐⇒ ‖T ‖e = 0 ⇐⇒ γ(T ) = 0.

Lebow and Schechter proved the following result:

Theorem 5.6.8. For an operator T ∈ L(X, Y ), the following assertions hold:

(i) T ∈ Φ+ if and only if there is a constant C > 0 such that, for each Banach
space Z and each S ∈ L(Z, X), γ(S) ≤ C · γ(TS).

(ii) T ∈ Φ− if and only if there is a constant C > 0 such that, for each Banach
space Z and each S ∈ L(Y, Z), γ(S) ≤ C · γ(ST ).

For the proof we refer to Theorems 3.1, 4.8 and 5.5 in [118].

It is not difficult to see that γ(T ) ≤ ‖T ‖e for each T ∈ L(X, Y ). Lebow and
Schechter raised the question whether γ(·) and ‖·‖e are equivalent on L(X, Y ); i.e.,
whether a constant C > 0 exists such that ‖T ‖e ≤ C · γ(T ) for each T ∈ L(X, Y ).
They were able to give a positive answer when the second space satisfies the
following variant of the A.P.



116 Chapter 5. Some applications

Definition 5.6.9. We say that a Banach space Y has the bounded compact ap-
proximation property (B.C.A.P., for short) if there exists λ ≥ 1 such that for
every compact subset D of X and every ε > 0, there exists a compact operator
K : X −→ X so that

‖K − I‖ ≤ λ and sup
x∈D
‖Kx− x‖ < ε.

Later, Astala and Tylli [15] showed that this condition is also necessary. Let
us state the complete result.

Theorem 5.6.10. A Banach space Y has the B.C.A.P. if and only if there is a
constant C > 0 such that, for every Banach space X, every operator T ∈ L(X, Y )
satisfies ‖T ‖e ≤ C · γ(T ).

Proof. See [118, Theorem 3.6] and [15, Theorem 2.3]. �
Astala and Tylli [16] investigated tauberian operators in terms of the measure

of weak non-compactness of a bounded set, the weak essential norm of an operator
and a concept of weak approximation property of Banach spaces. Next, we describe
their results.

Definition 5.6.11. Let C be a bounded subset of a Banach space X . The measure
of weak non-compactness ω(C) of C is defined by

ω(C) := inf{ε > 0: C ⊂ D + εBX},

where the infimum is taken over all the weakly compact subsets D of X .

Once again, we can define two measures of weak non-compactness for oper-
ators.

Definition 5.6.12. Let T ∈ L(X, Y ). We define the weak essential norm ‖T ‖w of
T as the norm of the class of T in the quotient space L(X, Y )/W(X, Y ).

We also define ω(T ) := ω(T (BX)).

It is easy to show that ω(T ) ≤ ‖T ‖w, for every T ∈ L(X, Y ).

Definition 5.6.13. Let λ ≥ 1. We say that a Banach space Y has the λ-weakly
compact approximation property (λ-W.A.P. for short) if for every weakly compact
subset D ⊂ Y and every ε > 0, there exists an operator K ∈ W(Y ) such that

sup
y∈D
‖y −Ky‖ < ε and ‖I −K‖ ≤ λ.

We say that Y has the W.A.P. if it has the λ-W.A.P. for some λ ≥ 1.

Let us show that the equivalence between ω(·) and ‖ · ‖w in L(X, Y ) charac-
terizes the W.A.P. of the second space.

Theorem 5.6.14. For a Banach space Y , the following assertions hold:
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(i) Suppose that Y has the λ-W.A.P. Then ‖T ‖w ≤ λω(T ) for every Banach
space X and every T ∈ L(X, Y ).

(ii) Suppose that Y fails the λ-W.A.P. for each λ. Then there exist a space X and
a sequence (Tn) of norm-one operators in L(X, Y ) such that ω(Tn) −→

n
0.

Proof. (i) Suppose that Y has the λ-W.A.P. Given T ∈ L(X, Y ) and δ > ω(T ),
select a weakly compact subset D of Y such that T (BX) ⊂ D + δ BY .

By the λ-W.A.P. of Y , there exists an operator K ∈ W(Y ) such that
supy∈D ‖y − Ky‖ < ε and ‖I − K‖ ≤ λ. Now, given x ∈ BX we can choose
z ∈ D such that ‖Tx− z‖ ≤ δ. Hence

‖(T −KT )x‖ ≤ ‖(I −K)(Tx− z)‖+ ‖z −Kz‖ ≤ λδ + ε.

Since KT ∈ W(X, Y ), we conclude ‖T ‖w ≤ λω(T ).
(ii) Suppose that Y fails the λ-W.A.P. for each λ. Then we can find a sequence

(Dn) of weakly compact subsets of Y and a sequence (εn) of positive numbers so
that

K ∈ L(Y ), sup
y∈Dn

‖y −Ky‖ < εn, ‖I −K‖ ≤ n =⇒ K /∈ W .

By the Krein-Smulian theorem [51, page 29], we can assume that each set
Dn is closed and absolutely convex. Thus, the expressions

‖y‖n := inf{t > 0: y ∈ t
(
(εn/n)BY + Dn

)
} (n ∈ N)

define norms on Y for which there are numbers rn > 0 so that
εn

n
‖y‖n ≤ ‖y‖ ≤ rn‖y‖n for each y ∈ Y .

Let us write Yn := (Y, ‖ · ‖n) and let us denote by Un the identity map from
Yn onto Y . We are going to show that

0 < ω(Un) ≤ ‖Un‖w
n

for each n ∈ N.

Indeed, on the one hand, if A ∈ L(Yn, Y ) satisfies ‖Un − A‖ ≤ εn, then
supx∈Dn

‖x−Ax‖ ≤ εn and

‖IY −AU−1
n ‖ ≤ (n/εn)‖Un −A‖ ≤ n;

hence A is not weakly compact. Therefore ‖Un‖w ≥ εn.
On the other hand, since Y is not reflexive, ω(BY ) = 1. Thus,

ω(Un) = ω
(
(εn/n)BY + Dn

)
) = εn/n.

Now, taking X := c0(Yn) and denoting by Pn : X −→ Yn the natural projec-
tions, it is not difficult to see that the operators Tn := ‖Un‖−1

w UnPn satisfy the
required conditions. �
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As we observed earlier on, the first space failing the A.P. was discovered by
Enflo in 1973. This example is highly non-trivial and it is very different from the
classical Banach spaces. Therefore, it is remarkable that there are classical Banach
spaces among the ones failing the W.A.P.

Proposition 5.6.15. Let Y be a Banach space containing a non-convergent weakly
convergent sequence. Suppose that every weakly compact operator T : Y −→ Y is
completely continuous. Then Y fails the W.A.P.

Proof. Let (yn) be a non-convergent weakly convergent sequence in Y . Clearly,
we can assume that (yn) is a weakly null sequence contained in BY and that, for
some constant c > 0, ‖ym − yn‖ > c for m �= n.

Note that D := {yn : n ∈ N}∪{0} is a weakly compact subset in Y and that,
for every weakly compact operator K : Y −→ Y , the sequence (Kyn) converges in
norm to 0. Thus supy∈D ‖y−Ky‖ > c, and we conclude that Y fails the W.A.P. �

Let us recall that a Banach space X is said to have the Dunford-Pettis prop-
erty if W(X, Y ) ⊂ C(X, Y ) for every Banach space Y . Since C[0, 1] and L1(0, 1)
are examples of spaces with the Dunford-Pettis property [4, Theorem 5.4.5] and
contain sequences equivalent to the unit vector basis of �2, the following result is
an immediate consequence of Proposition 5.6.15.

Corollary 5.6.16. The spaces C[0, 1] and L1(0, 1) fail the W.A.P.

Additional examples of Banach spaces with the W.A.P. have been described
in [137] and [150].

5.7 Notes and Remarks

The equivalence of the Radon-Nikodým property and the Krein-Milman property
have been obtained under conditions milder than those considered in Section 5.1,
as we can see in [64]. However, the general problem remains open.

Section 5.2 includes many results from Neidinger’s thesis [133], as well as
results from [134] and [135]. Some related results were proved in [56]. For example,
a Banach space X contains an infinite dimensional reflexive subspace if and only if
there exists a non-trivial injective tauberian operator form X into a Banach space.
See also [12].

In [139] Pietsch studies the factorization of operators belonging to an oper-
ator ideal from an abstract point of view. Given a space ideal A (see Definition
A.2.2), he considers the operator ideal Op(A) formed by those operators which
factorize through a Banach space in A. The operator ideals A with the interpola-
tion property can be obtained in this way. Indeed, they satisfy A = Op(A), where
A is the class of those Banach spaces X for which the identity IX belongs to A.
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Beauzamy [22, 23] proved factorization results for Banach-Saks and other
related classes of operators. The operators which factor through a quasi-reflexive
Banach space were studied in [10].

In [66], the authors introduced a proper subclass of the Radon-Nikodým oper-
ators, the controllable R.N.P. operators, and also the controllable P.C.P. operators.
Both classes form operator ideals with the interpolation property: the intermedi-
ate space of the DFJP factorization of an operator T has the Radon-Nikodým
property, if T is controllable R.N.P, and the point of continuity property, if T is
controllable P.C.P.

The uniform factorization for compact sets of operators given in Theorem
5.4.1 was proved in [73], extending some results of [14] and [96]. In [131] and [132],
some related results were obtained, relying on the isometric variation of the DFJP
factorization.

A Banach space X is said to be Asplund if every separable subspace of X
has separable dual. This is equivalent to X∗ having the Radon-Nikodým prop-
erty [156]. As a consequence, an operator is decomposing if and only if it factor-
izes through an Asplund space. For this reason, the decomposing operators are
called Asplund operators by some authors. In [142], Robertson investigates the
Asplund holomorphic mappings, obtaining for them a characterization in terms of
factorization.

In [33], holomorphic mappings of bounded type admitting a factorization
similar to that in Theorem 5.5.11 are characterized in terms of its derivative.

The quantities γ(·) and w(·) are the Hausdorff measure of non-compactness
and the De Blasi measure of weak non-compactness.

The results we have given in Section 5.6 for upper semi-Fredholm operators
are very different from those given for tauberian operators. For example, the ver-
sion of Theorem 5.6.8 with ω(·) instead of γ(·) are not valid. Indeed, it is enough to
observe that in some cases T (X, Y ) is not open in L(X, Y ). Moreover, the version
of Theorem 5.6.8 fails even for tauberian operators with closed range [16]. These
facts led Astala and Tylli to introduce some classes of operators Tω , Tγ and Tc

that are smaller than T , but have a better behavior.

Definition 5.7.1. Let X and Y be Banach spaces and let T ∈ L(X, Y ).

(a) T ∈ Tω if ω(T (A)) ≥ c · ω(A) for some c > 0 and each bounded set A in X ;

(b) T ∈ Tγ if γ(T (A)) ≥ c · ω(A) for some c > 0 and each bounded set A in X ;

(c) T ∈ Tc if R(T ) is closed and N(T ) is reflexive.

By Corollary 2.2.5, T ∈ L(X, Y ) is tauberian if and only if for each bounded
set A in X ω(T (A)) = 0 implies ω(A) = 0. Moreover, in Chapter 2 we introduced
Wl as the class of all operators which are left-invertible modulo a weakly com-
pact operator. In [162], the asymptotic behavior of ω(T n)1/n for T ∈ L(X) was
analyzed.
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The following result shows that the relations among T ,Wl and the classes in-
troduced in Definition 5.7.1 are not satisfactory. We refer to [16] for the arguments
and examples that prove it.

Proposition 5.7.2. The following inclusions hold and are strict, in general.

Wl ⊂ Tω ⊂ Tγ ⊂ T and Tc ⊂ Tγ .

Moreover, the classes Tc and Tω are not comparable.

In [11], the authors introduced a set-measure of weak non-compactness that
have a better behavior under duality than those considered in [16]. It would be
interesting to investigate the properties of the semigroup that can be defined using
this measure.



Chapter 6

Tauberian-like classes of
operators

This chapter is concerned with some classes of operators that, as tauberian opera-
tors do, preserve isomorphic properties. It is convenient to introduce these classes
axiomatically in order to systematize their study and understand their relation-
ship with operator ideals. This is done in Section 6.1 by introducing the concept
of operator semigroup. We describe some concrete examples and give some general
constructions that provide operator semigroups.

The semigroup ST of strongly tauberian operators is analyzed in Section 6.2.
It is a subclass of T : an operator T is strongly tauberian if T co is an isomorphism.
We show that T ∈ ST implies T ∗∗ ∈ ST and that, when X is a closed subspace of
a Banach space L-embedded in its bidual, an operator T : X −→ Y has property
(N) if and only if T ∈ ST . We also study the dual class ST d of strongly cotauberian
operators.

Sections 6.3 and 6.4 are preliminary steps to the study of the supertauberian
operators and their dual counterpart, the cosupertauberian operators. Section 6.3
is focused on two types of finite representability for operators: local representabil-
ity, introduced by Pietsch in order to study ultrapower-stable operator ideals [140],
and local supportability, aimed at the study of operator semigroups. The latter
notion is a generalization of the finite representability for operators in the sense
of Bellenot, whose original purpose was to investigate some topics related to the
principle of local reflexivity [26]. We show that, given an operator T and an ul-
trafilter U, the operators TU, T ∗∗ and T co are both locally representable in and
locally supportable by T , and (TU)∗ is both locally representable in and locally
supportable by (T ∗)U. As in Section 4.2, all ultrafilters occurring in this chapter
are assumed to be countably incomplete.

Section 6.4 studies ultrapower-stable ideals and semigroups, with a particular
emphasis on those of the form Aup, where A is an ideal or a semigroup and Aup
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is the class of the operators in A whose ultrapowers also belong to A. We provide
sufficient conditions for an ultrapower-stable semigroup to be closed under local
supportability. In combination with the results of Section 6.3, these conditions are
proved to be sufficient to show that T ∗∗ belongs to A whenever so does T . Similar
results are given for ultrapower-stable operator ideals.

Section 6.5 is devoted to the semigroup T up of supertauberian operators.
These operators are characterized in terms of their action on finite ε-triangular
sequences and in terms of the kernels of their ultrapowers. Next, these charac-
terizations lead to a perturbative characterization similar to Theorem 2.2.7: an
operator T is supertauberian if and only if for every compact operator K, the
kernel N(T + K) is super-reflexive. This result yields a pair of sequels. One of
them is that T up coincides with (Wup)+. The other one is a characterization for
the spaces X for which every tauberian operator T : X −→ Y is supertauberian:
each reflexive subspace of X is super-reflexive. This is the case when X is a L1(μ)
space. So we complete the study of the sets T (L1(μ), Y ) begun in Chapter 4.

The class (T up)d of the cosupertauberian operators is introduced in Sec-
tion 6.6 in order to study the duality of the class T up. Most of the results in that
section evidence a beautiful symmetry between the classes T up and (T up)d, even
richer than that between ST and ST d. Moreover, a characterization free of duality
is offered: an operator T : X −→ Y is cosupertauberian if and only if for every
compact operator K : X −→ Y , the cokernel Y/R(T + K) is super-reflexive. As
an application of cosupertauberian operators, we show that the notions of local
representability and local supportability are independent. The arguments rely on
the theory of operator semigroups.

6.1 Operator ideals and semigroups

As has been suggested in Chapter 1, the adjective tauberian can be assigned in a
wide sense to any class of operators that preserves isomorphic properties. Most of
these classes fit into the notion of operator semigroup, whose definition parallels
the notion of operator ideal.

Given a pair of operators S ∈ L(V, W ) and T ∈ L(X, Y ), we denote by S×T
the operator

S × T : V ×X −→W × Y

that maps (v, x) to (Sv, Tx).

Definition 6.1.1. A class S of operators is said to be an operator semigroup (or a
semigroup for short) if it satisfies the following conditions:

(i) every Fredholm operator belongs to S;

(ii) given T ∈ L(V, W ) and U ∈ L(X, Y ), the operator T ×U belongs to S if and
only if both T and U belong to S;
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(iii) given S ∈ L(Y, Z) and T ∈ L(X, Y ), if S and T belong to S, then ST ∈ S.

Remark 6.1.2. Condition (iii) is the reason for the name semigroup. The term
operator semigroup is introduced to emphasize the parallelism with the operator
ideals and to avoid confusion with the use of the term semigroup in other areas of
operator theory.

Note that, for any Banach space X , the identity operator IX belongs to every
operator semigroup, while the null operator 0X belongs to each operator ideal.

We refer to Appendix A.2 for the definitions of operator ideal and space ideal.
Examples 6.1.3. The following classes are operator semigroups:

(i) Φ, Φ+ and Φ−;

(ii) T and T d;

(iii) the classes A+ and Ad− introduced in Definitions 3.5.6 and 3.5.7.

Below, we give plenty of concrete examples and constructions that provide
operator semigroups.

Given a class of operators C, we consider the dual class

Cd := {T ∈ L : T ∗ ∈ C}

and the residuum class
Cco := {T ∈ L : T co ∈ C}.

Proposition 6.1.4. Let S be an operator semigroup. Then both Sd and Sco are
operator semigroups.

Proof. The classes Sd and Sco satisfy the three properties in the definition of
semigroup because:

(i) T ∈ Φ implies that T ∗ and T co belong to Φ,

(ii) we can identify (T × U)∗ with T ∗ × U∗ and (T × U)co with T co × U co,

(iii) (ST )∗ = T ∗S∗ and (ST )co = ScoT co. �
Proposition 6.1.5. Given two operator semigroups S1 and S2, the class S1 ∩ S2

defined by
(S1 ∩ S2)(X, Y ) := S1(X, Y ) ∩ S2(X, Y )

is an operator semigroup.

The proof is an exercise.

One link between space ideals and operator semigroups is given in the fol-
lowing result. The proof is straightforward.

Proposition 6.1.6. Given an operator semigroup S, Sp(S) := {X : 0X ∈ S} is a
space ideal.
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The following procedure to obtain semigroups is relevant because it yields
the classes T and T d from the weakly compact operators.

Definition 6.1.7. Given an operator ideal A, we define two classes of operators A+

and A− as follows:

(i) an operator T ∈ L(X, Y ) belongs to A+ if for every space W and every
operator S ∈ L(W, X), S belongs to A(W, X) if TS ∈ A(W, Y ):

A+ := {T ∈ L : S ∈ L and TS ∈ A ⇒ S ∈ A}.

(ii) an operator T ∈ L(X, Y ) belongs to A− if for every space Z and every
operator S ∈ L(Y, Z), S belongs to A if ST ∈ A:

A− := {T ∈ L : S ∈ L and ST ∈ A ⇒ S ∈ A}.

Proposition 6.1.8. For every operator ideal A, the classes A+ and A− are operator
semigroups.

The proof is a simple exercise.
Remark 6.1.9. Obviously, Propositions 2.2.9 and 3.1.22 show respectively that T
equals W+ and T d equals W−.

Classical theorems in Fredholm theory show that the class Φ+ equals the
semigroup K+ associated with the ideal of compact operators, and Φ− equals K−
(see Section A.1).

Let A be one of the operator ideals R, C, WC and U introduced in Defini-
tion 3.5.1. Then Proposition 3.5.16 says that the classes A+ and Ad−, introduced
in Definitions 3.5.6 and 3.5.7, coincide with the operator semigroups associated
with A and Ad according to Definition 6.1.7.

In order to classify the different types of semigroups, it is necessary to intro-
duce some definitions.

Definition 6.1.10. Let S be an operator semigroup:

(i) S is said to be injective if it contains all upper semi-Fredholm operators,

(ii) S is said to be surjective if it contains all lower semi-Fredholm operators.

Proposition 6.1.11. Let S be an operator semigroup.

(i) if S is injective, then Sd is surjective and Sco is injective;

(ii) if S is surjective, then Sd is injective and Sco is surjective.

Proof. It follows from the classical identities Φ− = (Φ+)d and Φ+ = (Φ−)d. �
Note that Definition A.2.5 can be reformulated by saying that an operator

ideal A is injective if and only if JM ∈ A+ for every closed subspace M of a
Banach space X , and that A is surjective if and only if QN ∈ A− for every closed
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subspace N of a Banach space X . This observation is crucial in the proof of the
following result. Recall that, for every T ∈ L(X, Y ), we denote by T : X −→ R(T )
the operator that maps x ∈ X to Tx.

Proposition 6.1.12. For every operator ideal A, the following statements hold:

(i) A is injective if and only if A+ is injective;

(ii) A is surjective if and only if A− is surjective.

Proof. (i) Suppose that A is injective. Since every T ∈ Φ+ can be decomposed as
T = JR(T )T , with T ∈ Φ(X, R(T )), it follows that T ∈ A+.

For the converse, it is enough to observe that JM ∈ Φ+ for every closed
subspace M of a Banach space X .

The proof of statement (ii) is similar: if T ∈ Φ−, then T = T̃QN(T ) with
T̃ ∈ Φ(X/N(T ), Y ). �
Definition 6.1.13. Let S be an operator semigroup.

(i) S is said to be left-stable if ST ∈ S implies T ∈ S;

(ii) S is said to be right-stable if TS ∈ S implies T ∈ S.

Proposition 6.1.14. For every operator ideal A, the semigroup A+ is left-stable
and A− is right-stable.

Proof. In order to prove that A+ is left-stable, let T ∈ L(X, Y ) and S ∈ L(Y, Z)
be a pair of operators such that ST ∈ A+. Let U ∈ L(W, X) be a third operator
such that TU ∈ A. Thus STU ∈ A(W, Z), and by definition of A+, the operator
U belongs to A, which proves that T ∈ A+, and therefore, A+ is left-stable.

A similar argument shows that A− is right-stable. �
Since both operator ideals W and K are injective and surjective, the semi-

groups W+ and K+ are injective and left-stable, while W− and K− are surjective
and right-stable.

Similarly, if A is one of the operator ideals R, C, WC or U , then A+ is
injective and left-stable, while Ad− is surjective and right-stable.
Remark 6.1.15. Studying semigroups that are both injective and right-stable does
not make much sense. Actually, since the only interesting semigroups are those
whose elements preserve some isomorphic property, it is natural to call trivial any
semigroup that contains the null operator 0X for every Banach space X .

It is immediate that if a semigroup S is injective and right-stable, then S is
trivial. Similarly, if S is surjective and left-stable, then S is trivial.

Definition 6.1.16. Let S be an operator semigroup:

(i) S is said to be an upper semigroup if it is injective and left-stable;

(ii) S is said to be a lower semigroup if it is surjective and right-stable.

Just after Proposition 6.1.14, we have given several examples of upper semi-
groups and lower semigroups.
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Proposition 6.1.17. Let S be an operator semigroup.

(i) If S is upper, then Sd is lower and Sco is upper;

(ii) If S is lower, then Sd is upper and Sco is lower.

Proof. (i) We have seen before that Sd and Sco are operator semigroups. Moreover,
Proposition 6.1.11 relates the injectivity or surjectivity of S with those of Sd and
Sco.

Let S ∈ L(X, Y ) and T ∈ L(Y, Z) such that TS ∈ Sd. Then S∗T ∗ ∈ S and
S left-stable implies T ∗ ∈ S, hence T ∈ Sd. We conclude that Sd is right-stable.
Similarly, we can show that Sco is left-stable.

(ii) The proof is similar to that of part (i). �
Let us introduce another procedure for associating semigroups to an operator

ideal.

Definition 6.1.18. Given an operator ideal A, we define two classes of operators
Al and Ar as follows:

(i) an operator T ∈ L(X, Y ) belongs to Al if there exists A ∈ L(Y, X) such that
IX −AT ∈ A;

(ii) an operator T ∈ L(X, Y ) belongs to Ar if there exists B ∈ L(Y, X) such that
IY − TB ∈ A.

In other words, Al is the class of operators that are left-invertible modulo A
and Ar is the class of operators that are right-invertible modulo A.

The main structural properties of those classes of operators invertible modulo
an operator ideal are described in the following results:

Proposition 6.1.19. Given an operator ideal A, the following statements hold:

(i) the class Al is a left-stable operator semigroup contained in A+;

(ii) the class Ar is a right-stable operator semigroup contained in A−.

Proof. We can prove that Al is a left-stable semigroup and Ar is a right-stable
semigroup in a similar way as we did for A+ and A−.

To prove the inclusions, let T ∈ Al(X, Y ) and choose S ∈ L(W, X) such that
TS ∈ A(W, Y ). Since there exists A ∈ L(Y, X) satisfying IX − AT ∈ A, we have
S −ATS ∈ A, hence S ∈ A, which proves that Al ⊂ A+.

The proof of the inclusion Ar ⊂ A− is similar. �
Remark 6.1.20. In general, the operator semigroup Al, unlike A+, is not injective
when so is A: for every closed subspace M of a Banach space X , the operator
JM ∈ A+. However, JM ∈ Kl if and only if M is complemented in X . This is
a consequence of a result of Yood [176] that characterizes the operators in Kl as
those operators in Φ+ with complemented range.

Similarly Ar is not always surjective: Kr consists of all operators in Φ− with
complemented kernel.
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The following example [16] shows that Wl is not injective. In particular, Wl

is a proper subclass of W+. Let us recall that the Hardy space H1(T) can be
identified with the closed subspace of the space of complex-valued functions L1(T)
generated by {eint : n ≥ 0}, where T := {z ∈ C : |z| = 1}.
Example 6.1.21. The embedding operator J : H1(T) −→ L1(T) does not belong to
the semigroup Wl.

Proof. For simplicity, we will prove the result for the embedding of the one-
codimensional closed subspace

H0
1 (T) := {zf(z) : f ∈ H1(T)}.

Suppose that J ∈ Wl and select an operator R : L1(T) −→ H0
1 (T) such that

with RJ = I + V , where I is the identity on H0
1 (T) and V is weakly compact.

Let Ts

(
f(eiθ)

)
:= f(ei(θ+s)) be the translation by s. As J commutes with Ts,

the expression

Q(f) :=
1

2π

∫ 2π

0

TsRT−sf ds for f ∈ L1(T)

defines an operator from L1(T) into H0
1 (T) that satisfies QJ = I + W , where W

is a weakly compact operator given by

W (f) =
1

2π

∫ 2π

0

TsV T−sf ds for f ∈ H0
1 (T).

For each integer n ∈ Z, we set en(z) := zn (z ∈ T). Since Q commutes with
Ts, Q(en) = cnen, where cn = 0 for n ≤ 0 and |cn| ≤ ‖Q‖ otherwise. Consider
the distribution g ∈ D′(T) with Fourier coefficients ĝ(n) = cn. Let us show that
g ∈ L1(T).

Indeed, denoting by Pr the Poisson kernel,

‖g ∗ Pr‖1 = ‖QPr‖1 ≤ ‖Q‖ for all r ∈ (0, 1).

Hence the standard duality argument shows that g is a measure and, since the
negative Fourier coefficients of g are null, g ∈ L1(T) by the F. and M. Riesz
theorem.

Thus, the operator Q : L1(T) −→ H0
1 (T) has the form Q(f) = g ∗ f , with

g ∈ L1(T). Since for every measurable subset E of T and every f ∈ BL1(T),∫
E

|g ∗ f |ds ≤ sup
{∫

F

|g|ds : m(F ) = m(E)
}
,

where m(E) is the measure of E, Q
(
BL1(T)

)
is equi-integrable. Hence Q is a weakly

compact operator and therefore so is I = QJ−W , hence H0
1 (T) is reflexive, which

gives a contradiction. �
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A second example showing that Wl is a proper subclass of W+ is provided
by a construction of Bourgain:

Example 6.1.22. W+(�1) �⊂ Wl(�1).

Proof. Let J : �1 −→ �1 an isomorphism such that R(J) is not complemented in
�1 (see [40]). Then J ∈ K+(�1)\Kl(�1). But weakly convergent sequences in �1 are
norm-convergent, so K(�1) =W(�1). Thus K+(�1) =W+(�1) and Kl(�1) =Wl(�1),
and therefore, J ∈ W+(�1) \Wl(�1). �

Some other properties of the semigroups Kl and Wl used in Example 2.1.17
are valid in general for Al and Ar.

Proposition 6.1.23. Given an operator ideal A and an operator K ∈ A(X, Y ), the
following statements hold:

(i) for every T ∈ Al(X, Y ), T + K belongs to Al(X, Y );

(ii) for every S ∈ Ar(X, Y ), S + K belongs to Ar(X, Y ).

Proof. We only prove part (i) because the proof of (ii) is analogous.
Let A ∈ L(Y, X) such that C := IX − AT ∈ A(X). Thus, as AK ∈ A, we

get IX −A(T + K) = IX −AT −AK ∈ A(X), hence T + K ∈ Al. �

We say that a semigroup S is open when S(X, Y ) is an open subset of L(X, Y )
for every pair of spaces X and Y .

Proposition 6.1.24. For every operator ideal A, the semigroups Al and Ar are
open.

Proof. Let T ∈ Al(X, Y ) and consider an operator A ∈ L(Y, X) so that K :=
AT−IX ∈ A. We claim that for every S ∈ L(X, Y ) with ‖S‖ < ‖A‖−1, T +S ∈ Al.

Indeed, IX + AS is invertible because ‖AS‖ < 1. Thus Proposition 6.1.23
yields A(T + S) = (IX + AS) + K ∈ Al. Since Al is left-stable, we conclude
T + S ∈ Al.

A similar argument shows that Ar is open. �

One important problem in operator theory is the identification of the per-
turbation class of the semi-Fredholm operators. Let us introduce this notion for
operator semigroups.

Definition 6.1.25. Given an operator semigroup S, the perturbation class PS of S
is defined by its components:

PS(X, Y ) := {K ∈ L(X, Y ) : T + K ∈ S(X, Y ) for all T ∈ S(X, Y )},

where X and Y are Banach spaces for which S(X, Y ) is non-empty.

Obviously, PS(X, Y ) is a linear subspace of L(X, Y ).
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Remark 6.1.26. For every semigroup S, the components S(X) are non-empty
because the identity IX belongs to S(X). It is not difficult to show that PS(X)
is a bilateral ideal of L(X) (see [118]).

Definition 6.1.27. An operator K ∈ L(X, Y ) is said to be inessential if IX −AK
is a Fredholm operator for every A ∈ L(Y, X).

We denote by I the class of inessential operators.

Remark 6.1.28. The following two examples prevent us from defining PS(X, Y )
as L(X, Y ) when the component S(X, Y ) is empty:

(i) When it can be defined, PΦ+(X, Y ) is contained in I(X, Y ), the inessential
operators. The same can be said for PΦ−(X, Y ) [118].

(ii) For 1 < p < ∞, p �= 2, both sets Φ+(Lp(0, 1), �p) and Φ−(�p, Lp(0, 1)) are
empty because Lp(0, 1) contains complemented subspaces isomorphic to �2.
However, I(Lp(0, 1), �p) �= L(Lp(0, 1), �p) because Lp(0, 1) contains comple-
mented subspaces isomorphic to �p.

In general, the perturbation classes for A+ or A− are not well-known, even
in the case A = K [70]. However, some of their components are known. For ex-
ample, PW+(L1(μ), Y ) was identified in Theorem 4.3.5 as the weakly precompact
operators from L1(μ) into Y .

Next we will show that the perturbation class for both Al and Ar admit a
good description.

Definition 6.1.29. Given an operator ideal A, its radical Arad is the class of oper-
ators whose components are

Arad(X, Y ) := {K ∈ L(X, Y ) : ∀S ∈ L(Y, X),
∃U ∈ L(X) such that IX − U(IX − SK) ∈ A}.

Remark 6.1.30. Pietsch proved that for every operator ideal A, the class Arad is
a closed operator ideal that contains A [139].
Remark 6.1.31. In Definition 6.1.29, the expression

IX − U(IX − SK) ∈ A

can be replaced by
IX − (IX − SK)U ∈ A.

Proof. In fact, if K ∈ Arad and L1 := IX −U(IX −SK) ∈ A, then IX −U ∈ Arad.
Thus there exists W ∈ L(X) so that IX −WU ∈ A, and

(IX − SK)U = WU(IX − SK)U − L2 = W (IX − L1)U − L2 = IX − L3,

where L2 and L3 belong to A, hence IX − (IX − SK)U ∈ A.
The converse implication admits a similar proof. �
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The semigroups Al and Ar allow us to give a simpler description of the
radical of an operator ideal.

Proposition 6.1.32. Let A be an operator ideal. For every T ∈ L(X, Y ), the fol-
lowing statements are equivalent:

(a) T ∈ Arad(X, Y );

(b) for every S ∈ L(Y, X), IX − ST ∈ Al(X);

(c) for every S ∈ L(Y, X), IY − TS ∈ Al(Y );

(d) for every S ∈ L(Y, X), IX − ST ∈ Ar(X);

(e) for every S ∈ L(Y, X), IY − TS ∈ Ar(Y ).

Proof. (a)⇒(b) Assume T ∈ Arad(X, Y ), take S ∈ L(Y, X) and select U ∈ L(X)
such that K1 := IX − U(IX − ST ) ∈ A. Thus U(IX − ST ) = IX −K1 ∈ Al, and
as Al is left-stable, IX − ST ∈ Al.

(b)⇒(a) If IX − ST ∈ Al for all S ∈ L(Y, X), then any left-inverse modulo
A of IX − ST can be taken as U in Definition 6.1.29.

The proof of (a)⇔(d) is similar, with the help of Remark 6.1.31.
The equivalences (b)⇔(c) and (d)⇔(e) can be proved with the following

argument: if U ∈ L(X) is a left (respectively right) inverse of IX −ST modulo A,
then IY + TUS is a left (respectively right) inverse of IY − TS modulo A. �
Theorem 6.1.33. Let A be an operator ideal, and let S be any of the semigroups Al,
Ar or Al∩Ar. Suppose that S(X, Y ) is non-empty. Then PS(X, Y ) = Arad(X, Y ).

Proof. We only prove the result for S = Al. The other cases are similar.
Let K ∈ Arad(X, Y ) and T ∈ Al(X, Y ). Select A ∈ L(Y, X) so that

D1 := IX −AT ∈ A(X).

For the operator −A ∈ L(Y, X), the definition of Arad gives another operator
U ∈ L(X) such that D2 := IX − U(IX + AK) ∈ A. Since A ⊂ PAl,

UA(T + K) = U(IX −D1 + AK) = IX −D2 − UD1 ∈ Al.

Hence T + K ∈ Al, and Arad(X, Y ) ⊂ PAl(X, Y ) is proved.
For the converse inclusion, we first show that

(6.1) K ∈ PAl(X, Y ) and A ∈ L(Y )⇒ AK ∈ PAl(X, Y ).

Since each A ∈ L(Y ) can be written as the sum of two invertible operators, it
is enough to prove the result for A invertible. In this case, A−1U ∈ Al for every
U ∈ Al(X, Y ). Thus U + AK = A(A−1U + K) ∈ Al and we conclude AK ∈ PAl.

Now, let K ∈ L(X, Y ) such that K /∈ Arad. By Proposition 6.1.32, there
exists A ∈ L(Y, X) such that IX −AK /∈ Al(X).

Let U ∈ Al(X, Y ). Then U(IX −AK) = U − (UA)K /∈ Al(X, Y ). Therefore
(UA)K /∈ PAl, and (6.1) implies K /∈ PAl(X). �
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Remark 6.1.34. Since Φ = Kl ∩ Kr, it is an immediate consequence of Theo-
rem 6.1.33 that the radical Krad coincides with I, the inessential operators. There-
fore, I is an operator ideal.

6.2 Strongly tauberian operators

Rosenthal named strongly tauberian the operators T for which T co is an isomor-
phism. He proved that the class of strongly tauberian operators is open and that
T is strongly tauberian if and only if so is T ∗∗.

In this section, we study the strongly tauberian operators and their dual
counterpart, the strongly cotauberian operators. We show that the corresponding
classes form an upper semigroup and a lower semigroup. Moreover, if T : X −→ Y
has property (N) and X is a closed subspace of a space which is L-embedded in
its bidual, then T is strongly tauberian. Note that L1(μ)-spaces are L-embedded
in their bidual spaces.

In the previous sections, we have identified a Banach space X with its canon-
ical copy JX(X) contained by X∗∗ in order to avoid cumbersome notation. How-
ever, the profusion of bidual, third dual and fourth dual spaces in this section asks
for a more formal notation. Thus, the canonical copy of X in X∗∗ is denoted by
JX(X) throughout this section.

Note that the third dual and the fourth dual of X admit the following de-
compositions:

X∗(3) = JX∗(X∗)⊕ JX(X)⊥,(6.2)

X∗(4) = JX∗∗(X∗∗)⊕ JX∗(X∗)⊥.(6.3)

Moreover, given an operator T : X −→ Y , the decompositions of the third dual
spaces reduce T ∗(3):

(6.4) T ∗(3)
(
JY ∗(Y ∗)

)
⊂ JX∗(X∗) and T ∗(3)

(
JY (Y )⊥

)
⊂ JX(X)⊥

and the decompositions of the fourth dual spaces reduce T ∗(4):

(6.5) T ∗(4)
(
JX∗∗(X∗∗)

)
⊂ JY ∗∗(Y ∗∗) and T ∗(4)

(
JX∗(X∗)⊥

)
⊂ JY ∗(Y ∗)⊥.

Note that the isometry JX
∗∗ : X∗∗ −→ X∗(4) maps X∗∗ onto JX(X)⊥⊥, but

the subspaces JX∗∗(X∗∗) and JX(X)⊥⊥ are placed in different positions in X∗(4).
Indeed,

JX∗∗(X∗∗) ∩ JX(X)⊥⊥ = JX∗∗ ◦ JX(X).

Definition 6.2.1. An operator T : X −→ Y is said to be strongly tauberian if the
operator T co : X∗∗/JX(X) −→ Y ∗∗/JY (Y ) is an isomorphism.

The class of all strongly tauberian operators is denoted by ST .
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Remark 6.2.2. Obviously, if T : X −→ Y is a tauberian operator and X is quasi-
reflexive, then T is strongly tauberian. This is the case of the operator ι : J −→ c0

given in Example 2.1.18.

In the proof of the following theorem we apply the well known fact that an
operator S is an isomorphism if and only if S∗ is surjective, and S is surjective if
and only if S∗ is an isomorphism.

Theorem 6.2.3. For every operator T : X −→ Y , the following statements are
equivalent:

(a) T is strongly tauberian;

(b) T ∗(3)
(
JY (Y )⊥

)
= JX(X)⊥;

(c) T ∗co is surjective;

(d) T ∗(4)|JX∗ (X∗)⊥
is an isomorphism;

(e) T ∗∗ is strongly tauberian.

Proof. (a)⇔(c)⇔(e) It is enough to observe that, by Proposition 3.1.11, we can
identify T ∗co with T co∗ and T ∗∗co with T co∗∗.

(b)⇔(c) It is a consequence of Equations (6.2) and (6.4).

(d)⇔(e) It follows from Equations (6.3) and (6.5). �

Next, we introduce the dual class associated with ST .

Definition 6.2.4. An operator T is said to be strongly cotauberian if T ∗ is strongly
tauberian.

Accordingly, ST d denotes the class of all strongly cotauberian operators.

The next results show that the duality relationship between ST and ST d are
better than that between T and T d.

Proposition 6.2.5. An operator T is strongly tauberian if and only if T ∗ is strongly
cotauberian.

Proof. It is a direct consequence of the equivalence (a)⇔(e) in Theorem 6.2.3. �

We provide a similar result to Theorem 6.2.3 for the class ST d.

Theorem 6.2.6. Given an operator T : X −→ Y , the following statements are
equivalent:

(a) T is strongly cotauberian;

(b) T ∗(3)|JY (Y )⊥ is an isomorphism;

(c) T ∗(4)(JX∗(X∗)⊥) = JY ∗(Y ∗)⊥.

Proof. It is similar to the proof of some of the equivalences in Theorem 6.2.3. �
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The following result reveals that the classes ST and ST d share some regu-
larity properties with Φ+ and Φ−.

Proposition 6.2.7. Both classes ST and ST d are open.

Proof. Observe that the map T ∈ L(X, Y ) −→ T co ∈ L(Xco, Y co) is continu-
ous, because ‖T co‖ ≤ ‖T ‖. Since the isomorphisms and the surjective operators
constitute open sets in L(Xco, Y co), both results are immediate. �

Remark 6.2.8. The classes ST and ST d are strictly contained in T and T d respec-
tively. Indeed, it is enough to take into account that ST and ST d are open classes,
but T and T d are not, as it was shown in Example 2.1.17 and in Remark 3.1.3.

A second proof can be obtained from the the fact that ST and ST d are
stable under biduality, while T and T d are not. Indeed, Theorem 3.1.18 exhibits
a tauberian and cotauberian operator T such that T ∗∗ is neither tauberian nor
cotauberian.

Let us look into the structure of ST and ST d.

Proposition 6.2.9. The class ST is an upper operator semigroup and the class ST d

is a lower operator semigroup.

Proof. We begin with ST .

(i) Let T ∈ Φ+(X, Y ). Then R(T ) is closed and N(T ) is finite dimensional.
Therefore T is tauberian and, by Proposition 3.1.15, R(T co) is closed. Hence T is
strongly tauberian and we have proved that Φ+ is contained in ST .

(ii) Given two operators S ∈ L(V, W ) and T ∈ L(X, Y ), it is not difficult to
see that we can identify (S × T )co with Sco × T co.

Since Sco × T co is an isomorphism if and only if both Sco and T co are iso-
morphisms, S × T ∈ ST if and only if both S and T are in ST .

(iii) Let S ∈ ST (Y, Z) and T ∈ ST (X, Y ). Since (ST )co = ScoT co, we
conclude ST ∈ ST (X, Z).

We have just shown that ST is an injective semigroup. It only remains to
see that it is left-stable.

Let S ∈ L(Y, Z) and T ∈ L(X, Y ) such that ST ∈ ST (X, Z). Since (ST )co

is an isomorphism and (ST )co = ScoT co, T co is an isomorphism, hence T ∈
ST (X, Y ) and the proof for ST is done.

The proof for ST d is similar. �

Remark 6.2.10. Since an operator K is weakly compact if and only if Kco is
null, both semigroups ST and ST d are stable under weakly compact perturba-
tions. However, neither of them admits a perturbative characterization like The-
orems 2.2.7 or 3.1.20. Indeed, every reflexive subspace E of a Banach space X is
the kernel of QE : X −→ X/E, which is strongly tauberian, and every reflexive
quotient X/F is the cokernel of JF : F −→ X , which is strongly cotauberian.
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The following technical result will be applied to obtain a sequential charac-
terization of the operators in ST .

Lemma 6.2.11. Given an operator T : X −→ Y , the following statements are equiv-
alent:

(a) there is a normalized sequence
(
ξ∗∗n + JX(X)

)∞
n=1
⊂ X∗∗/JX(X) such that

‖T co
(
ξ∗∗n + JX(X)

)
‖ −−−−→

n
0;

(b) there is a sequence (x∗∗n )∞n=1 in X∗∗ with ‖x∗∗n ‖ < 3 and dist
(
x∗∗n , JX(X)

)
= 1

for every n such that
‖T ∗∗(x∗∗n )‖ −−−−→

n
0.

Proof. (a)⇒(b) Assume the existence of a normalized sequence
(
ξ∗∗n + JX(X)

)
in

X∗∗/JX(X) for which ‖T co
(
ξ∗∗n +JX(X)

)
‖ −→

n
0. For every positive integer n, pick

w∗∗n ∈ 3
4ξ∗∗n +JX(X) such that ‖w∗∗n ‖ < 1, denote εn := ‖T co(ξ∗∗n +JX(X))‖+ 1/n,

and select un ∈ Y so that ‖T ∗∗(w∗∗n )− un‖ < εn. Let

L := {x ∈ BX : ‖T (x)− un‖ < εn}.

Then, since ‖w∗∗n ‖ < 1, Lemma 4.4.1 shows that w∗∗n ∈ L
σ(X∗∗,X∗)

, hence there
exists vn ∈ BX satisfying ‖T (vn)− un‖ < εn. Thus, defining z∗∗n := w∗∗n − vn, we
get

‖T ∗∗(z∗∗n )‖ ≤ ‖T ∗∗(w∗∗n )− un‖+ ‖T (vn)− un‖ < 2εn −−−−→n
0,

‖z∗∗n ‖ < 2 and dist
(
z∗∗n , JX(X)

)
= 3/4 for every positive integer n. Therefore, the

elements x∗∗n := (4/3)z∗∗n satisfy the statement.

(b)⇒(a) The proof is straightforward. �

James proved that a Banach space is reflexive if and only if it does not have
any ε-triangular sequence (see Appendix A.5 for more information). Tauberian
operators and strongly tauberian operators can be characterized in terms of their
action on ε-triangular sequences.

Definition 6.2.12. Given a real number ε > 0, a sequence (xn) in a Banach space
X is said to be ε-triangular if ‖xn‖ ≤ 1 for all n and there exists a sequence of
norm-one functionals (x∗n) in X∗ such that 〈x∗i , xj〉 > ε for all 1 ≤ i ≤ j and
〈x∗i , xj〉 = 0 for all 1 ≤ j < i.

Note that if (xn) is ε-triangular, then ε ≤ ‖xn‖ ≤ 1 for all n.
In the following result, the hypothesis ‖T ‖ = 1 is introduced in order to deal

with ε-triangular sequences. It is a minor technical restriction since all non-zero
multiples of a strongly tauberian operator are also strongly tauberian.
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Theorem 6.2.13. Given a norm-one operator T : X −→ Y , the following statements
are equivalent:

(a) T is strongly tauberian;

(b) for every 0 < ε < 1 there exists η > 0 such that every ε-triangular sequence
in X contains a subsequence (zn) such that

(
T (zn)

)
is η-triangular;

(c) there exist 0 < ε < 1 and 0 < η < 1 such that every ε-triangular sequence in
X contains a subsequence (zn) such that

(
T (zn)

)
is η-triangular.

Proof. (a)⇒(b) Assume T is strongly tauberian and let 0 < ε < 1. Then there
exists a constant 0 < λ ≤ 1 such that λ ≤

∥∥T co
(
x∗∗ + JX(X)

)∥∥ for all x∗∗ ∈ X∗∗

with ‖x∗∗ + JX(X)‖ = 1.
Let (xn) be an ε-triangular sequence in X . By Proposition A.5.2, there ex-

ists a σ(X∗∗, X∗)-cluster point z∗∗ of (xn) such that dist
(
z∗∗, JX(X)

)
≥ ε/2.

Therefore, ∥∥T co
(
z∗∗ + JX(X)

)∥∥ ≥ λε/2,

and as T ∗∗(z∗∗) is a σ(Y ∗∗, Y ∗)-cluster point of
(
T (xn)

)
, by Proposition A.5.3,

(xn) contains a subsequence (zn) such that
(
T (zn)

)
is η-triangular with η = λε/2.

(b)⇒(c) It is trivial.

(c)⇒(a) Let us assume that T is not strongly tauberian and take any pair
of real numbers 0 < ε < 1 and 0 < η < 1. By hypothesis, there exists x∗∗ ∈ X∗∗

such that ‖x∗∗‖ < 1, dist (x∗∗, X) > ε and dist (T ∗∗(x∗∗), Y ) < η/4. Take y ∈ Y
so that ‖T ∗∗(x∗∗)− y‖ < η/2. Thus, denoting

A := {x ∈ BX : ‖T (x)− y‖ < η/2},

by Lemma 4.4.1, x∗∗ is a σ(X∗∗, X∗)-cluster point of A, and therefore, by Proposi-
tion A.5.3, A has an ε-triangular sequence (xn). Obviously, ‖T (xn)−T (xm)‖ < η
for all n and m, so

(
T (xn)

)
cannot contain any η-triangular subsequence. �

Remark 6.2.14. As a consequence of Corollary 2.2.5 and Proposition A.5.3, a
norm-one operator T ∈ L(X, Y ) is tauberian if and only if for every ε-triangular
sequence (xn) in X , (Txn) contains a λ-triangular subsequence; but if for a fixed
ε a same value of λ works for all ε-triangular sequences (xn), then T is moreover
strongly tauberian, as follows from Theorem 6.2.13.

For the following result, given a Banach space X and a number 1 ≤ p <∞, let
Lp(X) denote the space of Bochner measurable functions f : [0, 1] −→ X endowed
with the norm

‖f‖p :=
(∫ 1

0

‖f(t)‖pdt

)1/p

.

It follows from Proposition 3.4.5 that the natural embedding of Lp(X) into L1(X)
is tauberian. Let us see that it is strongly tauberian only in the trivial cases:
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Proposition 6.2.15. Let X be a Banach space and let 1 < p < ∞. The natural
embedding Jp : Lp(X) −→ L1(X) is strongly tauberian if and only if X is reflexive.

Proof. If X is reflexive, then so is Lp(X) [21]. Therefore, Jp is strongly tauberian.
Suppose that X is not reflexive. Note that Jp is a norm-one operator. Fix

a pair of real numbers ε and η in (0, 1). By Theorem 6.2.13, we will have proved
that Jp is not strongly tauberian as soon as we find an ε-triangular sequence (fi)
in Lp(X) such that

(
Jp(fi)

)
does not contain any η-triangular subsequence. In

order to do that, take a positive integer n so that 2( 1
p−1)n < η and let (xi) be any

ε-triangular sequence in X (see Proposition A.5.3). For every i ∈ N, define the
vector-valued function fi as fi(t) := 2n/pxi if t ∈ [0, 2−n], and fi(t) = 0 otherwise.
Thus (fi) is an ε-triangular sequence in Lp(X), but

(
Jp(fi)

)
does not contain any

η-triangular subsequence because

‖fi‖1 =
1
2n

2n/p < η for all i ∈ N.

So the result is proved. �

Strongly tauberian operators on L-embedded spaces

The following results are aimed at proving that if a Banach space X is L-embedded
in its bidual, an operator T ∈ L(X, Y ) with property (N) is strongly tauberian.

Definition 6.2.16. A Banach space X is said to be L-embedded in its bidual if
X∗∗ = JX(X)⊕1 N for some subspace N of X∗∗.

Lemma 6.2.17. Let X be a space L-embedded in its bidual, and let R be a reflexive
subspace of X. Then X/R is L-embedded in (X/R)∗∗.

Proof. Since R is reflexive, there exists an isometric bijection from (X/R)∗∗ onto
X∗∗/R that maps each F to an element that will be denoted x∗∗F +R. Moreover, if
F ∈ JX/R(X/R), then F = JX/R(x+R) for some x ∈ X , so x∗∗F −JX(x) ∈ JX(R).

By hypothesis, X∗∗ contains a subspace N such that

(6.6) X∗∗ = JX(X)⊕1 N.

Let P : (X/R)∗∗ −→ (X/R)∗∗ be the operator that maps every F to JX/R(xF +R),
where x∗∗F = JX(xF ) + uF is the decomposition of x∗∗F with xF ∈ X and uF ∈ N .
It is immediate that P is a projection, that its range is JX/R(X/R), and that its
kernel is {F : xF ∈ R}. In addition, as a consequence of (6.6),

‖F‖ = inf
r∈R
‖JX(xF ) + uF + JX(r)‖

= inf
r∈R
‖xF + r‖ + inf

r∈R
‖uF + JX(r)‖ = ‖P (F )‖+ ‖F − P (F )‖

which shows that X/R is L-embedded in its bidual. �
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We observe that every closed subspace of a space L-embedded in its bidual is
weakly sequentially complete [98]. Therefore, the following result should be com-
pared with Proposition 2.1.12, where we proved that if T : X −→ Y has property
(N) and X is weakly sequentially complete, then T is tauberian.

Theorem 6.2.18. Let V be a space L-embedded in its bidual and let X be a closed
subspace of V . Then every operator T : X −→ Y with property (N) is strongly
tauberian.

Proof. The result is trivial when X is reflexive. So, without loss of generality,
we assume that X is non-reflexive, T : X −→ Y has property (N) and ‖T ‖ = 1.
Consider the factorization T = T̃ ◦QN(T ) given in Equation (2.1). Since N(T ) is
reflexive, QN(T ) is strongly tauberian and T̃ has property (N). Moreover, V/N(T )
is L-embedded in its bidual by Lemma 6.2.17. Therefore, it is enough to prove the
result when N(T ) = {0}.

Let us suppose that T is injective but not strongly tauberian. The proof will
be finished as soon as we find a pair of sequences (xn) in BX and (x∗n) in int(BX∗)
satisfying the following conditions for each m ∈ N:

‖T (xi)‖ ≤ 1/i for each 1 ≤ i ≤ m,(6.7)
|〈x∗j , xi〉| ≥ 1/16 if 1 ≤ i ≤ j ≤ m.(6.8)

Indeed, given any σ(X∗, X)-cluster point x∗ of (x∗n), condition (6.8) implies that
|〈x∗, xi〉| ≥ 1/16 for all i, so (xn) cannot contain any weakly null subsequence.
However, as T has property (N), condition (6.7) and Theorem 2.2.2 imply that
(xn) must contain a weakly null subsequence, a contradiction.

Let us find recursively the wished sequences (xn) and (x∗n). First, by Lemma
6.2.11, there exists a sequence (x∗∗n ) in X∗∗ such that dist

(
x∗∗n , JX(X)

)
= 1/3,

‖x∗∗n ‖ < 1 and ‖T ∗∗(x∗∗n )‖ < 1/n for all n.
Let us denote by J : X −→ V the operator that embeds X into V , so J ∗∗

embeds X∗∗ into V ∗∗ isometrically and

J ∗∗(X∗∗) = J (X)
σ(V ∗∗,V ∗)

= J (X)⊥⊥ :

In order to avoid confusion, an element x of X will be denoted by J x when
it is regarded as an element of V , and any x∗∗ ∈ X∗∗ will be denoted by J ∗∗(x∗∗)
when it is regarded as an element of V ∗∗.

Our hypothesis implies the existence of a closed subspace N of V ∗∗ such that
V ∗∗ = JV (V )⊕1 N . Therefore, for every x∗∗n , there exist vn ∈ V and v∗∗n in N so
that

J ∗∗(x∗∗n ) = JV (vn) + v∗∗n .

Since dist
(
J ∗∗(x∗∗n ),J (X)

)
= 1/3, Lemma A.5.1 yields dist

(
J ∗∗(x∗∗n ), V

)
≥ 1/6;

but ‖x∗∗n ‖ = ‖vn‖+ ‖v∗∗n ‖ < 1, hence 1/6 ≤ ‖v∗∗n ‖ < 1 and ‖vn‖ < 5/6.
Pick any x1 ∈ BX and choose x∗1 ∈ int BX∗ so that 〈x∗1, x1〉 ≥ 1/8. Observe

that ‖T (x1)‖ ≤ 1.
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Assume that, for n ≥ 2, the finite sequences

(xi)n−1
i=1 ⊂ BX and (x∗i )n−1

i=1 ⊂ int BX∗

satisfying (6.7) and (6.8) for m = n− 1 have been already chosen. In order to find
xn and x∗n, consider the finite dimensional subspaces

F := span{{J (xi)}n−1
i=1 ∪ {vn}} ⊂ V,

G := JV (F )⊕ span{v∗∗n } ⊂ V ∗∗.

Next, choose ψ ∈ F ∗ as follows. In the case when vn ∈ J (X) and 〈x∗n−1, vn〉 ≥ 0,
let ψ := x∗n−1|F , and if 〈x∗n−1, vn〉 < 0, let ψ := −x∗n−1|F ; and in the case when
vn /∈ J (X), ψ is a Hahn-Banach extension of x∗n−1|F∩J (X) such that 〈ψ, vn〉 > 0.
Thus, in all cases ‖ψ‖ < 1 and

0 ≤ r := 〈ψ, vn〉 < 1.

Observe that the extension ϕ ∈ G∗ of ψ, given by 〈ϕ, v∗∗n 〉 := 1/8 satisfies
‖ϕ‖ < 1. Indeed, let

η := max{‖ψ‖, 6/8} < 1.

For every u∗∗ ∈ G, consider the decomposition u∗∗ = JV (u) + μv∗∗n with u ∈ F
and μ ∈ R. Then,

|〈ϕ, u∗∗〉| = |〈ϕ, JV (u) + μv∗∗n 〉| ≤ |〈ψ, u〉|+ 1
8
|μ|

≤ ‖ψ‖‖u‖+
6
8
|μ|‖v∗∗n ‖ ≤ max{‖ψ‖, 6/8} · ‖u∗∗‖ = η‖u∗∗‖,

which proves that ‖ϕ‖ < 1.
Let φ ∈ V ∗(3) be a Hahn-Banach extension of ϕ. By the principle of local

reflexivity, there exists v∗ ∈ V ∗ with ‖v∗‖ < 1 such that

〈u∗∗, v∗〉 = 〈φ, u∗∗〉 for all u∗∗ ∈ G.

Thus, the choice for x∗n is

x∗n := J ∗(v∗) = v∗|X .

Moreover, as ‖x∗∗n ‖ < 1 and ‖T ∗∗(x∗∗n )‖ < 1/n, Lemma 4.4.1 yields an element
xn ∈ BX satisfying

|〈x∗n, xn〉| > |〈x∗∗n , x∗n〉| −
1
16

,

‖T (xn)‖ < 1/n.
(6.9)
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Obviously, our choice of x∗n and xn satisfies condition (6.7) for m = n. In order to
verify condition (6.8),

〈x∗∗n , x∗n〉 = 〈x∗∗n ,J ∗(v∗)〉 = 〈J ∗∗(x∗∗n ), v∗〉
= 〈v∗, vn〉+ 〈v∗∗n , v∗〉 = 〈φ, vn〉+ 〈φ, v∗∗n 〉

= 〈ϕ, vn〉+
1
8

= r +
1
8
≥ 1

8
.

Thus, by (6.9),

|〈x∗n, xn〉| > |〈x∗∗n , x∗n〉| −
1
16
≥ 1

8
− 1

16
≥ 1

16
,

and for 1 ≤ k < n, as xk ∈ F ,

|〈x∗n, xk〉| = |〈ψ, xk〉| = |〈x∗n−1, xk〉|.

So (6.8) is satisfied for m = n by the finite sequences (xi)n
i=1 and (x∗i )n

i=1 and the
proof is complete. �
Corollary 6.2.19. Let μ be a finite measure, R a reflexive subspace of L1(μ) and
Y a Banach space. Then every operator T ∈ L

(
L1(μ)/R, Y

)
with property (N) is

strongly tauberian.

Proof. Since L1(μ) is L-embedded in its bidual, the remark is a consequence of
Theorem 6.2.18 and Lemma 6.2.17. �

We observe that if R is infinite dimensional, then L1(μ)/R is not isomorphic
to a L1-space [121].

A proof of the fact that L1(μ) is an L-summand of L1(μ)∗∗ can be found in
Corollary A.6.11.

6.3 Finite representability of operators

In order to develop the remaining sections of this chapter, we need some notions
of finite representability of operators.

While the notion of finite representability of Banach spaces is well estab-
lished (see Definition A.4.13), there are several non-equivalent definitions for finite
representability of operators. Roughly speaking, all these definitions say that an
operator T is finitely representable in an operator S if they are locally similar.
Here, we only consider two of those definitions, one of them oriented to the study
of operator ideals and the other to operator semigroups: the local representability
(Definition 6.3.1) and the local supportability (Definition 6.3.4).

In this section, for any operator T and any ultrafilter U, we show that the
operators TU, T ∗∗ and T co are locally representable in and locally supportable by
T , and that TU

∗ is locally representable and locally supportable by T ∗U.
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Recall that for every isomorphism T : X −→ Y , there exists a constant d > 0
such that

d−1 ≤ ‖T (x)‖ ≤ d for all x ∈ SX .

In this case, we say that T is a d-injection. Note that T−1 : T (X) −→ X is a
d-injection too.

An isometry (or 1-injection) is also named metric injection. Note that any
ε-isometry is a (1 − ε)−1-injection.

An operator T ∈ L(X, Y ) is said to be a metric surjection if T ∗ is a metric
injection or, equivalently, if T (intBX) = int BY .

The following definition was introduced by Pietsch.

Definition 6.3.1. Let T ∈ L(X, Y ) and S ∈ L(W, Z) be operators and let c > 0 be
a real number.

We say that T is locally c-representable in S if for every ε > 0 and every pair
of operators A0 ∈ L(E, X) and B0 ∈ L(Y, F ), with E and F finite dimensional
spaces, there is a pair of operators A1 ∈ L(E, W ) and B1 ∈ L(Z, F ) satisfying
‖A1‖ · ‖B1‖ ≤ (c + ε)‖A0‖ · ‖B0‖ and B0TA0 = B1SA1.

We say that T is locally representable in S when it is locally c-representable
for some c > 0.

X Y

E F

W Z

�

T
�
��B0

�
��

A0

�
��

A1
�

S

�
��
B1

Let us translate the notion of local representability to the language of ultra-
products.

Proposition 6.3.2. Given a real number c > 0, an operator T ∈ L(X, Y ) is locally
c-representable in S ∈ L(W, Z) if and only if there is an ultrafilter U and operators
A ∈ L(X, WU) and B ∈ L(ZU, Y ∗∗) such that BSUA = JY T and ‖B‖‖A‖ ≤ c.

X Y Y ∗∗

WU ZU

�

T

�
A

� �

JY

�

SU

�

B

Proof. Let us assume that T is locally c-representable in S. Consider the set of
indices I formed by all the triples i ≡ (Ei, Fi, εi) where Ei is a finite dimensional
subspace of X , Fi is a finite co-dimensional subspace of Y , and εi is a real number
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greater than zero. The set I is endowed with the order �, where i � j means that
Ej ⊃ Ei, Fj ⊂ Fi and εj ≤ εi. Let U be an ultrafilter on I containing the �-order
filter.

For every index i, consider the subspace operator Ji : Ei −→ X and the
quotient operator Qi : Y −→ Y/Fi. By hypothesis, there exists a pair of operators
Ai ∈ L(Ei, W ) and Bi ∈ L(Z, Y/Fi) such that BiSAi = QiTJi, ‖Ai‖ ≤ 1 and
‖Bi‖ ≤ c + εi.

For every x ∈ X , let

xi :=
{

Ai(x), if x ∈ Ei,
0, otherwise.

Clearly, the expression A(x) := [xi] defines an operator A ∈ L(X, WU) such that
‖A‖ ≤ 1. Besides, for every family (yi)i∈I ∈ �∞(I, Fi),

yi
σ(Y ∗∗,Y ∗)−−−−→

U
0.

Indeed, let y∗∗ be the σ(Y ∗∗, Y ∗)-limit of (yi)i∈I following U. Given any y∗ ∈ Y ∗,
let F := N(y∗); thus {i ∈ I : yi ∈ F} ∈ U and 〈y∗∗, y∗〉 = 0, hence y∗∗ = 0. There-
fore, the operator Q : (Y/Fi)U −→ Y ∗∗ that maps every [yi + Fi] to σ(Y ∗∗, Y ∗)-
limU yi is well defined and ‖Q‖ = 1. Note that

Q ◦ (Qi)U|Y = JY .

Consider the operator B := Q ◦ (Bi)U ∈ L(ZU, Y ∗∗). Obviously,

‖B‖ ≤ lim
U
‖Bi‖ ≤ c + lim

U
εi = c.

It only remains to prove that BSUA = JY T . Fix x ∈ X and J ∈ U so that x ∈ Ei

for all i ∈ J . Thus,

BiSAi(x) = QiTJi(x) for all i ∈ J

hence

BSUA(x) = Q ◦ (Bi)U ◦ SU ◦A(x) = Q
(
[BiS(xi)]

)
= Q

(
[QiTJi(x)]

)
= Q ◦ (Qi)U

(
[T (x)]

)
= JY T (x).

For the converse, let us assume that there exists a pair of operators A in
L(X, WU) and B in L(ZU, Y ∗∗) so that JY T = BSUA and ‖A‖‖B‖ ≤ c, where
U is an ultrafilter on a certain set I of indices. Let E and F be a pair of finite
dimensional subspaces, A0 ∈ L(E, X) and B0 ∈ L(Y, F ) a pair of operators, and
a real number ε > 0.

Moreover, consider the operators A′ := AA0 and B′ := B∗∗0 B, and choose a
real number 0 < ε′ < 1 small enough so that (1 + ε′)2 < 1 + ε.
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Let N := A′(E) ∩ N(SU) and choose a basis {ek}nk=1 of A′(E) such that
N = span{A′(ek)}nk=l+1 for some 0 ≤ l ≤ n. Fix a representative (wk

i )i∈I of every
ek, and for each i ∈ I, denote Ni := N(S) ∩ span{wk

i }nk=1. As (Ni)U ⊂ N , we
may assume that there are a positive integer l ≤ m ≤ n and a subset J1 ∈ U
such that for every i ∈ J1, Ni is spanned by {wk

i }nk=m+1. For every j ∈ J1,
consider the operator Lj : A′(E) −→W that sends each ek to wk

j , and the operator
Rj : span{Swk

j }mk=1 −→ ZU that sends Swk
j to [Swk

i ]. By Lemma A.4.12 and its
arguments, there is j ∈ J1 such that Lj is a (1 + ε′)-injection and ‖Rj‖ ≤ 1 + ε′.
Moreover, SU|A′(E) = RjSLj. Thus, defining A1 := LjA

′ and B1 := B′Rj , it is
straightforward that B1SA1 = B0TA0. Besides, ‖A1‖ ≤ (1 + ε′)‖A‖ · ‖A0‖ and
‖B1‖ ≤ (1 + ε′)‖B‖ · ‖B0‖. Thus, the inequality ‖B‖‖A‖ ≤ c and the choice of ε′

lead to
‖B1‖‖A1‖ ≤ c(1 + ε)‖B0‖‖A0‖

and the proof is done. �

The following result follows immediately from Proposition 6.3.2.

Corollary 6.3.3. Given an operator T and an ultrafilter U, the ultrapower TU is
locally representable in T .

Next we introduce the second type of finite representability for operators,
oriented to the study of operator semigroups.

Definition 6.3.4. Let T ∈ L(X, Y ) and S ∈ L(W, Z) be operators and let d > 1 be
a real number.

We say that T is locally d-supportable by S if for every ε > 0 and every finite
dimensional subspace E of X there are a (d + ε)-injection U ∈ L(E, W ) and an
operator V ∈ L(T (E), Z) verifying ‖V ‖ ≤ d + ε and ‖(SU − V T )x‖ ≤ ε for all
x ∈ SE . We say that T is locally supportable by S when it is locally d-supportable
for some d > 1.

E T (E) Y

ε

W Z

�

T |E
�

�

U

�

V

� �

JR(T )

�

S
Henceforth, the notation T ≺ls S means that the operator T is locally sup-

portable by S, and T ≺lr S means that T is locally representable in S.

There is a striking difference between the definitions of local supportabil-
ity and local representability: the diagram corresponding to Definition 6.3.4 is
commutative up to ε, while the diagram corresponding to the definition of local
representability is commutative. The reason for this is that if we asked for exact
commutativity in Definition 6.3.4 (ε = 0), then T would be injective whenever so
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was S, reducing the power of this type of operator finite representability: for in-
stance, S∗∗ could not be locally supportable by S in general, failing Theorem 6.3.8,
one of the main results of this section.

Nevertheless, when Definitions 6.3.1 and 6.3.4 are translated to the ultra-
product language (Propositions 6.3.2 and 6.3.5), the relation between both notions
becomes clearer.

Proposition 6.3.5. An operator T ∈ L(X, Y ) is locally d-supportable by S ∈
L(W, Z) if and only if there is an ultrafilter U, a d-injection U ∈ L(X, WU) and
an operator V ∈ L(R(T ), ZU) such that SUU = V T and ‖V ‖ ≤ d.

X R(T ) Y

WU ZU

�

T

�

�

U

�

V

� �

J
R(T )

�

SU

Proof. Assume that T is locally d-supportable by S. Let F be the class of all finite
dimensional subspaces of X and consider the order filter on F , which consists of
all sets

{E ∈ F : E ⊃ F}, F ∈ F .

Let U be an ultrafilter on F containing the order filter and, for each E ∈ F , let
εE := (dim E)−1. By hypothesis, there is a (d + εE)-injection UE ∈ L(E, W ) and
an operator VE ∈ L(T (E), Z) such that ‖VE‖ ≤ d+εE and ‖(SUE−VET )x‖ ≤ εE

for all x ∈ SE .
We define an operator U ∈ L(X, WU) by U(x) = [xE ] where

xE :=
{

UE(x), if x ∈ E,
0, otherwise.

Thus, for every x ∈ SX ,

lim
E→U

(d + εE)−1 ≤ ‖U(x)‖ ≤ lim
E→U

(d + εE),

and as limE→U εE = 0, we obtain that U is a d-injection.
Analogously, for each y ∈ T (X) and every E ∈ F , we define

yE :=
{

VE(x), if y ∈ T (E),
0, otherwise.

Hence, the expression V (y) = [yE ] defines an operator from R(T ) into ZU such
that ‖V ‖ ≤ d. The identity SUU − V T = 0 follows from the fact that

‖(SUU − V T )x‖ ≤ lim
E→U

εE‖x‖ for all x ∈ X .



144 Chapter 6. Tauberian-like classes of operators

For the converse, let us assume that there are an ultrafilter U on a set I, a
d-injection U ∈ L(X, WU) and an operator V ∈ L(R(T ), ZU) satisfying ‖V ‖ ≤ d
and SUU − V T = 0.

Fix a finite dimensional subspace E of X , a real number ε > 0 and a basis
{ej}nj=1 of E such that {ej}nj=m+1 spans N(T |E). For each j ∈ {1, . . . , n}, let
Uej = [xj

i ]i, and for every i, let yj
i := Sxj

i . By Proposition A.4.12, there is J ∈ U
such that, for every i ∈ J , the operators Ui ∈ L(E, X) and Vi ∈ L(T (E), Y ),
defined by Ui(ej) := xj

i for 1 ≤ j ≤ n and Vi(Tej) := yj
i for 1 ≤ j ≤ m,

satisfy that ‖Vi‖ ≤ d + ε and that Ui is a (d + ε)-injection. Moreover, the identity
SUU −V T = 0 and the fact that E is finite dimensional allow us to select i ∈ J so
that ‖(SUi−ViT )x‖ ≤ ε for all x ∈ SE . Thus, T is locally d-supportable by S. �

Proposition 6.3.5 yields the following corollary. Its proof is immediate.

Corollary 6.3.6. Given an operator T and an ultrafilter U, the ultrapower TU is
locally supportable by T .

In order to simplify the proof of Theorem 6.3.8, we isolate the central step
in the following lemma.

Lemma 6.3.7. Let E be an n-dimensional subspace of a dual space X∗, {ei}pi=1

an η-net in SE with 0 < η < 1 and δ > 0 real numbers. If (Lα)α∈A is a net of

operators from E into X∗ such that ‖Lα(ei)‖ ≤ 1 + δ and Lα(ei)
w∗−→
α

ei for all
1 ≤ i ≤ p, then there is β ∈ A such that for every β ≥ α, Lα is a (η + δ)(1− η)−1-
isometry.

Moreover, if V is an absolutely convex w∗-neighborhood of 0 ∈ X∗ and η and
δ are small enough so that

δV +
(

η +
1 + δ

1− η
η

)
BX∗ ⊂ V ,

then Lα(e) ∈ e + V for all e ∈ SE and all α ≥ β.

Proof. Since Lα(ei)
w∗−→
α

ei, we can select β so that, for every α ≥ β and every
1 ≤ i ≤ p, ‖Lβ(ei)‖ ≥ 1−δ and L(ei) ∈ ei +δV . Thus, by virtue of Lemma A.4.10,
Lα is an (η + δ)(1− η)−1-isometry.

Moreover, assume that the inclusion δV + (η + 1+δ
1−η η)BX∗ ⊂ V holds. Thus,

for α ≥ β, given any e ∈ SE and picking an element ej in the given η-net so that
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‖e− ej‖ ≤ η, we get

Lα(e) = Lα(ej) + Lα(e− ej)

∈ ej + δV +
1 + δ

1− η
ηBX∗

⊂ e− e + ej + δV +
1 + δ

1− η
ηBX∗

⊂ e + δV +
(

η +
1 + δ

1− η
η

)
BX∗ ⊂ e + V ,

finishing the proof. �

Next we state the main result in this section. Given an operator T , it will
allow us to prove that T ∗∗ and T co are locally supportable and locally representable
in T .

Theorem 6.3.8. Let T ∈ L(X, Y ) be an operator, E a finite dimensional subspace
of X∗∗ and F a finite dimensional subspace of Y ∗∗ verifying F ∩ T ∗∗(E) = {0}.
Fix a pair of weak∗ neighborhoods U of 0 ∈ X∗∗ and V of 0 ∈ Y ∗∗ and 0 < ε < 1.
Then there exists a pair of ε-isometries U ∈ L(E, X) and V ∈ L(T ∗∗(E) ⊕ F, Y )
verifying the following statements:

(i) U(x) = x for all x ∈ E ∩X;

(ii) V (y) = y for all y ∈ (T ∗∗(E)⊕ F ) ∩ Y ;

(iii) ‖(TU − V T ∗∗)x‖ < ε for all x ∈ SE;

(iv) U(e) ∈ e + U for all e ∈ SE;

(v) V (f) ∈ f + V for all f ∈ ST∗∗(E)⊕F .

Proof. Without loss of generality, we assume that the neighborhoods U and V are
absolutely convex and ‖T ‖ = 1.

Choose real numbers 0 < η < 1 and δ > 0 so that

η + δ

1− η
< ε,

δU +
(

η +
1 + δ

1− η
η

)
BX∗ ⊂ U ,

δV +
(

η +
1 + δ

1− η
η

)
BY ∗ ⊂ V .

Let {x1
i }pi=1 ∪ {x2

i }qi=1 ∪ {x3
i }ti=1 be a basis of E contained in int BE and

satisfying:
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{x1
i }pi=1 is a basis of E ∩X ,

{x1
i }pi=r+1 spans N(T |E∩X),

{x1
i }pi=1 ∪ {x2

i }qi=1 is a basis of (T ∗∗|E)−1Y ,

{x1
i }pi=r+1 ∪ {x2

i }qi=s+1 spans N(T ∗∗|E).

Let us denote yk
i := T ∗∗(xk

i ) for every 1 ≤ k ≤ 3 and every i. Take a basis
{y4

i }ui=1 ∪ {y5
i }vi=1 in int BF such that {y4

i }ui=1 spans F ∩ Y . Let (hi)
q
i=1 be the

coordinate functionals associated with (x2
i )q

i=1 and let ξ := (1 + δ)
∑q

i=1 ‖hi‖.
Take a pair of η-nets (ej)n

j=1 in SE and (fj)m
j=1 in ST∗∗(E)⊕F , and consider

the representations:

ej =
p∑

i=1

λj
1ix

1
i +

q∑
i=1

λj
2ix

2
i +

t∑
i=1

λj
3ix

3
i ,

fj =
r∑

i=1

μj
1iy

1
i +

s∑
i=1

μj
2iy

2
i +

t∑
i=1

μj
3iy

3
i +

u∑
i=1

μj
4iy

4
i +

v∑
i=1

μj
5iy

5
i .

Let the operator

S : �q
∞(X)⊕∞ �t

∞(X)⊕∞ �v
∞(Y ) −→ �n

∞(X)⊕∞ �m
∞(Y )⊕∞ �q

∞(Y )

be given by S = (S1, S2, S3), with

S1

(
(ai)

q
i=1, (bi)t

i=1, (ci)v
i=1

)
=
( q∑

i=1

λj
2iai +

t∑
i=1

λj
3ibi

)n

j=1
∈ �n

∞(X),

S2

(
(ai)

q
i=1, (bi)t

i=1, (ci)v
i=1

)
=
( t∑

i=1

μj
3iTbi +

v∑
i=1

μj
5ici

)m

j=1
∈ �m

∞(Y ),

S3

(
(ai)

q
i=1, (bi)t

i=1, (ci)v
i=1

)
= (ε−1ξ Tai)

q
i=1 ∈ �q

∞(Y ),

where ai ∈ X , bi ∈ X and ci ∈ Y for all i. Consider the element

z =
(( p∑

i=1

λj
1ix

1
i

)n

j=1
,
( r∑

i=1

μj
1iy

1
i +

s∑
i=1

μj
2iy

2
i +

u∑
i=1

μj
4iy

4
i

)m

j=1
, (−ε−1ξy2

i )q
i=1

)
.

Then S
(
(ai)

q
i=1, (bi)t

i=1, (ci)v
i=1

)
+ z equals(( p∑

i=1

λj
1ix

1
i +

q∑
i=1

λj
2iai +

t∑
i=1

λj
3ibi

)n

j=1
,( r∑

i=1

μj
1iy

1
i +

s∑
i=1

μj
2iy

2
i +

t∑
i=1

μj
3iTbi +

u∑
i=1

μj
4iy

4
i +

v∑
i=1

μj
5ici

)m

j=1
,

(
ε−1ξ(T (ai)− y2

i )
)q

i=1

)
.
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Therefore,

S∗∗
(
(x2

i )q
i=1, (x3

i )t
i=1, (y5

i )v
i=1

)
+ z =

(
(ej)n

j=1, (fj)m
j=1, (0)q

i=1

)
is a norm-one element, and Lemma 4.4.1 gives us a net(

(aα
i )q

i=1, (bα
i )t

i=1, (cα
i )v

i=1

)
contained in the unit ball of �q∞(X)⊕∞ �t∞(X)⊕∞ �v∞(Y ) such that(

(aα
i )q

i=1, (bα
i )t

i=1, (cα
i )v

i=1

) w∗−−−−→
α

(
(x2

i )q
i=1, (x3

i )t
i=1, (y5

i )v
i=1

)
and∥∥S((aα

i )q
i=1, (bα

i )t
i=1, (cα

i )v
i=1

)
+ z

∥∥ < 1 + δ for all α.

In particular,

(6.10) ‖Taα
i − y2

i ‖ ≤ εξ−1(1 + δ) for all 1 ≤ i ≤ q.

Now, we define Uα ∈ L(E, X) and Vα ∈ L(T ∗∗(E)⊕ F, Y ) by

Uα(x1
i ) := x1

i for all i ∈ {1, . . . , p};
Uα(x2

i ) := aα
i for all i ∈ {1, . . . , q};

Uα(x3
i ) := bα

i for all i ∈ {1, . . . , t};

Vα(y1
i ) := y1

i for all i ∈ {1, . . . , r};
Vα(y2

i ) := y2
i for all i ∈ {1, . . . , s};

Vα(y3
i ) := T (bα

i ) for all i ∈ {1, . . . , t};
Vα(y4

i ) := y4
i for all i ∈ {1, . . . , u};

Vα(y5
i ) := cα

i for all i ∈ {1, . . . , v};
the ε-isometries U and V we are looking for will be chosen among these opera-
tors Uα and Vα.

Note that for all x ∈ E ∩X , y ∈ (T ∗∗(E) ⊕ F ) ∩ Y and α, Uα(x) = x and
Vα(y) = y. So conditions (i) and (ii) are satisfied by all Uα and Vα.

Besides, for every e ∈ SE ,

(TUα − VαT ∗∗)(e) =
q∑

i=1

〈hi, e〉(T (aα
i )− y2

i ).

Hence, formula (6.10) and the value of ξ yields, for every e ∈ SE ,

‖(TUα − VαT ∗∗)(e)‖ ≤
q∑

i=1

|〈hi, e〉| · ‖Taα
i − y2

i ‖ ≤ ε.

So ‖TUα − VαT ∗∗|E‖ ≤ ε and condition (iii) holds for any Uα and Vα. Moreover,
since

‖Uα(ej)‖ ≤ 1 + δ and Uα(ej) w∗−−−−→
α

ej for all 1 ≤ j ≤ n,

‖Vα(fj)‖ ≤ 1 + δ and Vα(fj) w∗−−−−→
α

fj for all 1 ≤ j ≤ m,
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Lemma 6.3.7 implies the existence of an index β such that both Uβ and Vβ are
(η + δ)(1− η)−1-isometries — hence ε-isometries, by the choice of η and δ — and
also satisfy conditions (iv) and (v). So the proof is complete. �

Let us translate Theorem 6.3.8 to the language of ultraproducts.

Theorem 6.3.9. For every operator T ∈ L(X, Y ), there exist an ultrafilter U,
metric injections U ∈ L(X∗∗, XU) and V ∈ L(Y ∗∗, YU) and metric surjections
P ∈ L(XU, X∗∗) and Q ∈ L(YU, Y ∗∗) so that

(i) TU ◦ U = V ◦ T ∗∗;

(ii) T ∗∗ ◦ P = Q ◦ TU;

(iii) T ∗∗ = Q ◦ TU ◦ U .

Moreover, U(x) = [x] and P ([x]) = x for all x ∈ X and V (y) = [y] and Q([y]) = y
for all y ∈ Y .

Proof. Let J be the set of all tuples j ≡ (Ej , Fj , εj ,Uj,Vj) where Ej and Fj are
finite dimensional subspaces of X∗∗ and Y ∗∗ respectively, εj ∈ (0, 1), Uj is a weak∗

neighborhood of 0 ∈ X∗∗ and Vj is a weak∗ neighborhood of 0 ∈ Y ∗∗. We define
an order � in J by i � j if Ei ⊂ Ej , Fi ⊂ Fj , εi ≥ εj , Ui ⊃ Uj and Vi ⊃ Vj. Let
U be an ultrafilter refining the order filter on J .

For every j ∈ J , Theorem 6.3.8 provides us with a couple of (1+εj)-injections
Uj ∈ L(Ej , X) and Vj ∈ L(T ∗∗(Ej) + Fj , Y ) such that

Uj(e) = e for all e ∈ Ej ∩X,

Vj(f) = f for all f ∈ (T ∗∗(Ej) + Fj) ∩ Y ,

‖(TUj − VjT
∗∗)(e)‖ < ε for all e ∈ SEj ,

Uj(e) ∈ e + Uj for all e ∈ SEj ,

Vj(f) ∈ f + Vj for all f ∈ ST∗∗(Ej)+Fj
.

The operators U , V , P and Q are defined as follows:

U(x∗∗) = [xj ] where xj := Uj(x∗∗) if x∗∗ ∈ Ej , and xj := 0 otherwise,
V (y∗∗) = [yj ] where yj := Vj(y∗∗) if y∗∗ ∈ T ∗∗(Ej) + Fj , and yj := 0 otherwise,
P ([xj ]) = w∗- lim

j→U
xj ∈ X∗∗,

Q([yj ]) = w∗- lim
j→U

yj ∈ Y ∗∗.

Since εi −→
U

0, Lemma A.4.11 shows that both U and V are metric injections.
The fact that P is a metric surjection follows from P (int BXU

) = int BX∗∗ .
The same argument applies for Q.

To prove (i), take x∗∗ ∈ SX∗∗ and δ > 0. Select j0 ∈ J such that εj0 ≤ δ and
x∗∗ ∈ Ej0 . Thus

{j ∈ J : ‖(TUj − VjT
∗∗)(x∗∗)‖ ≤ δ} ⊃ {j ∈ J : j0 � j} ∈ U
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which shows that (TUU − V T ∗∗)x∗∗ = 0.
For statement (ii), take [xj ] ∈ XU. Then

T ∗∗P ([xj ]) = T ∗∗(w∗- lim
j→U

xj) = w∗- lim
j→U

T (xj) = QTU([xj ]).

Part (iii) is achieved by using similar arguments. The equalities U(x) = [x]
and P ([x]) = x for all x ∈ X and V (y) = [y] and P ([y]) = y for all y ∈ Y are
trivial. �

Theorem 6.3.9 and the translations to ultrapower language of the operator
local representability and local supportability given in Propositions 6.3.2 and 6.3.5
immediately yield the following result:

Corollary 6.3.10. For every T ∈ L(X, Y ), T ∗∗ is both locally 1-representable in
and locally 1-supportable by T .

Our next target is to prove that, for every operator T and every ultrafilter
U, TU

∗ is locally representable and locally supportable by T ∗U. First, we give a
preliminary result.

Proposition 6.3.11. For every operator T ∈ L(X, Y ) and every ultrafilter U, the
set B = {h ∈ BYU

∗ : ‖TU
∗(h)‖ ≤ 1} is the weak∗ closure in YU

∗ of

A = {h ∈ BY ∗U
: ‖T ∗U(h)‖ ≤ 1}.

Proof. Let I be the set of indices on which U is taken, and let w∗ denote the
σ(YU

∗, YU) topology of YU
∗.

The inclusion A
w∗⊂ B is immediate. For the converse inclusion, take f /∈ A

w∗

and prove that f /∈ B. By the Hahn-Banach theorem, there is y0 = [yi] ∈ YU and
a pair of real numbers a, b such that 〈h,y0〉 ≤ a < b < 〈f ,y0〉 for all h ∈ A. For
every i ∈ I, let

Vi := {f ∈ BY ∗ : b < 〈f, yi〉}.
Since Y ∗U is weak∗ dense in YU

∗ (see Proposition A.4.23),

{i ∈ I : Vi �= ∅} ∈ U.

Let W := (Vi)U and note that f ∈ W
w∗

and A∩W = ∅. Thus TU
∗(f) ∈ T ∗U(W )

w∗

and ‖T ∗U(w)‖ > 1 for all w ∈ W . Therefore there exist θ > 1 and J ∈ U such
that

(6.11) ‖T ∗(v)‖ ≥ θ for all i ∈ J and all v ∈ Vi.

Otherwise, for every n ∈ N and J ∈ U, we would have

(6.12) Jn := {i ∈ J : there is vi ∈ Vi such that ‖T ∗(vi)‖ < 1 + n−1} ∈ U;
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since U is ℵ0-incomplete, for each n ∈ N we could take subsets Gn ⊂ Jn such that
Gn ∈ U, Gn ⊃ Gn+1 and ∩∞n=1Gn = ∅.

For every i ∈ G1, let ni ∈ N be the unique integer such that i ∈ Gni \Gni+1.
By formula (6.12), there exist vi ∈ Vi such that ‖T ∗(vi)‖ < 1 + n−1

i . So defining
vi := 0 when i ∈ I \G1, we would get

‖T ∗U([vi])‖ = lim
i→U
‖T ∗(vi)‖ ≤ 1;

hence [vi] ∈ A ∩W , in contradiction with A ∩W = ∅. Therefore (6.11) holds.
Next, we choose θ > η > 1. Since each Vi

w∗
is w∗-compact, by formula (6.11)

there exists xi ∈ BX such that 〈T ∗(v), xi〉 > η for all v ∈ Vi. Hence, for x := [xi],

we get 〈T ∗U(w),x〉 ≥ η for all w ∈ W . Moreover TU
∗(f) ∈ TU

∗(W )
w∗

, so

‖TU
∗(f)‖ ≥ 〈TU

∗(f),x〉 ≥ η,

hence f /∈ B. �
The following theorem is another of the central results in this section. In its

proof, an operator L is identified with the adjoint of a certain operator A. That
identification is based upon the fact that, for any Banach space Z, any positive
integer m and any ultrafilter U, the dual of �m

1 (ZU) is isometrically identified with
the space �m∞(ZU

∗).

Theorem 6.3.12. Let T ∈ L(X, Y ), U an ultrafilter on I, F and G a pair of finite
dimensional subspaces of YU

∗ and of XU
∗ such that TU

∗(F ) ∩ G = {0}, and let
H := TU

∗(F ) ⊕ G. Then, given a weak∗ neighborhood U of 0 in YU
∗, a weak∗

neighborhood V of 0 in XU
∗ and ε > 0, there is a pair of (1 + ε)-isometries

U ∈ L(F, Y ∗U) and V ∈ L(H, X∗
U) verifying

(i) ‖(T ∗UU − V TU
∗)f‖ ≤ ε for all f ∈ SF ,

(ii) U(f) ∈ f + U for all f ∈ SF ,

(iii) V (h) ∈ h + V for all h ∈ SH .

Proof. Without loss of generality, we assume that U and V are absolutely convex
and ‖T ‖ = 1. Choose real numbers 0 < η < 1 and δ > 0 small enough so that

η + δ

1− η
< ε,

δU +
(

η +
1 + δ

1− η
η

)
BYU

∗ ⊂ U ,

δV +
(

η +
1 + δ

1− η
η

)
BXU

∗ ⊂ V .

Let {fi}ki=1 be a normalized basis of the kernel N(TU
∗|F ), which is completed

up to a normalized basis {fi}li=1 of F . Take a normalized basis {hi}mi=l+1 of G and
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write hi := TU
∗(fi) for i = k + 1, . . . , l. Select η-nets {ei}ni=1 in SF and {ci}ni=1 in

SH and real numbers λj
i and μj

i so that

ej =
l∑

i=1

λj
i fi and cj =

m∑
i=k+1

μj
ihi for all j.

Consider the operator

L : �l
∞(YU

∗)⊕∞ �m−l
∞ (XU

∗) −→ �n
∞(YU

∗)⊕∞ �n
∞(XU

∗)⊕∞ �k
∞(XU

∗)

that maps each ((vi)l
i=1, (wi)m

i=l+1) to(( l∑
i=1

λj
ivi

)n

j=1
,
( l∑

i=k+1

μj
iTU

∗(vi) +
m∑

i=l+1

μj
iwi

)n

j=1
,
(
kε−1TU

∗(vi)
)k

i=1

)
.

Note that L maps the subspace �l
∞(Y ∗U)⊕∞ �m−l

∞ (X∗
U) into

�n
∞(Y ∗U)⊕∞ �n

∞(X∗
U)⊕∞ �k

∞(X∗
U).

Also note that L can be identified with the adjoint of some operator

A : �n
1 (YU)⊕1 �n

1 (XU)⊕1 �k
1(XU) −→ �l

1(YU)⊕1 �m−l
1 (XU).

Therefore, as∥∥L((fi)l
i=1, (hi)m

i=l+1

)∥∥ =
∥∥((ej)n

j=1, (cj)n
j=1, (0)k

j=1

)∥∥ ≤ 1,

Proposition 6.3.11 gives a net ((fα
i )l

i=1, (hα
i )m

i=l+1)α contained in the unit ball
of �l

∞(Y ∗U) ⊕∞ �m−l
∞ (X∗

U) which is weak∗ convergent to ((fi)l
i=1, (hi)m

i=l+1) and
satisfies ‖L((fα

i )l
i=1, (hα

i )m
i=l+1)α‖ ≤ 1 for all α.

For each α, we define operators Uα ∈ L(F, Y ∗U) and Vα ∈ L(H, X∗
U) by

Uα(fi) := fα
i for all i ∈ {1, . . . , l},

Vα(hi) :=
{

T ∗U(fα
i ), if i ∈ {k + 1, . . . , l},

hα
i , if i ∈ {l + 1, . . . , m}.

We obtain

w∗- lim
α

Uα(ei) = ei and ‖Uα(ei)‖ ≤ 1 for all i ∈ {1, . . . , n},(6.13)

w∗- lim
α

Vα(ci) = ci and ‖Vα(ci)‖ ≤ 1 for all i ∈ {1, . . . , n},(6.14)

‖T ∗U(Uαfi)‖ ≤ k−1ε for all i ∈ {1, . . . , k}.(6.15)

The choice of δ and η, Lemma 6.3.7 and formulas (6.13) and (6.14) allow us to
choose an index β such that Uβ and Vβ are (1+ε)-isometries satisfying statements
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(ii) and (iii). For statement (i), given v =
∑l

i=1 νifi ∈ SF , formula (6.15) and the
fact that {fi}ki=1 is a normalized basis lead to

‖(T ∗UUα − VαTU
∗)(v)‖ =

∥∥ k∑
i=1

νiT
∗
UUα(fi)

∥∥ ≤ k−1ε

k∑
i=1

|νi| ≤ ε,

as we wanted to prove. �
The following theorem is a translation of Theorem 6.3.12 to ultraproduct

language. It allows us to show that, given an operator T and an ultrafilter U, TU
∗

is both locally representable in and locally supportable by T ∗U.

Theorem 6.3.13. For every operator T ∈ L(X, Y ) and every ultrafilter U there are
an ultrafilter V, metric injections U ∈ L(YU

∗, (Y ∗U)V) and V ∈ L(XU
∗, (X∗

U)V),
and metric surjections P ∈ L((Y ∗U)V, YU

∗) and Q ∈ L((X∗
U)V, XU

∗) verifying

(i) (T ∗U)V ◦ U = V ◦ TU
∗;

(ii) TU
∗ ◦ P = Q ◦ (T ∗U)V;

(iii) TU
∗ = Q ◦ (T ∗U)V ◦ U .

Proof. Let J be the set of all tuples j ≡ (Fj , Ej , εj ,Uj,Vj), where Fj and Ej are
finite dimensional subspaces of YU

∗ and XU
∗, εj ∈ (0, 1), Uj is a weak∗ neighbor-

hood of 0 in YU
∗ and Vj is a weak∗ neighborhood of 0 ∈ XU

∗. We endow J with
the order �, where i � j means Fi ⊂ Fj , Ei ⊂ Ej , εi ≥ εj , Ui ⊃ Uj and Vi ⊃ Vj .
Let V be an ultrafilter on J containing the �-order filter.

For every index j ∈ J , Theorem 6.3.12 gives a pair of (1 + εj)-injections
Uj ∈ L(Fj , Y

∗
U) and Vj ∈ L(TU

∗(Fj) + Ej , X
∗
U) verifying

‖T ∗UUj − VjTU
∗|Fj
‖ ≤ εj ,

Uj(v) ∈ v + Uj for all v ∈ SFj ,
Vj(w) ∈ w + Vj for all w ∈ STU

∗(Fj)+Ej
.

The operators U , V , P and Q are defined as follows:

U(v) := [fj ], where fj := Uj(v) if v ∈ Fj and fj := 0 otherwise,
V (w) := [gj], where gj := Vj(w) if w ∈ TU

∗(Fj) + Ej and gj := 0 otherwise,
P ([vj ]) := w∗- lim

j→V
vj ∈ YU

∗ for all [vj ] ∈ (Y ∗U)V,

Q([wj ]) := w∗- lim
j→V

wj ∈ XU
∗ for all [wj ] ∈ (X∗

U)V.

Since limj→V εj = 0, Lemma A.4.11 yields that U and V are metric injections.
In order to prove that P is a metric surjection, take any v ∈ SYU

∗ . By Propo-
sition 6.3.11, we can choose a family {vj}j∈J in BY ∗U

such that w∗- limj→V vj = v
and limj→V ‖vj‖ = 1; hence, since ‖P‖ ≤ 1, we have P (int B(Y ∗U)V

) = int BYU
∗

hence P is a metric surjection. The same argument applies for Q.
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To prove (i), take v ∈ SYU
∗ and ε > 0. Let j0 ∈ J such that v ∈ Fj0 and

εj0 < ε. Then

{j ∈ J : ‖(T ∗UUj − VjTU
∗)v‖ < ε} ⊃ {j ∈ J : j0 � j} ∈ V,

so ((T ∗U)VU − V TU
∗)v = 0. For statement (ii), take [vj ] ∈ (Y ∗U)V. Then

TU
∗P ([vj ]) = TU

∗(w∗- lim
j→V

vj)

= w∗- lim
j→V

TU
∗(vj) = Q(T ∗U)V([vj ]).

The proof of statement (iii) is similar to that of (i) and (ii). �

The next result is a direct consequence of Theorem 6.3.13 and the character-
izations of local representability and local supportability in terms of ultrapowers
given in Propositions 6.3.2 and 6.3.5.

Corollary 6.3.14. Given an operator T ∈ L(X, Y ) and an ultrafilter U, TU
∗ is

locally 1-representable and locally 1-supportable by T ∗U.

Some of the subsequent results need the fact that, for any Banach space Y
and any ultrafilter U, the space (Y ∗∗)U embeds in (YU)∗∗.

Proposition 6.3.15. Let Y be a Banach space, JY : Y −→ Y ∗∗ the natural em-
bedding and U an ultrafilter on a set I. Then there is an isometric operator
K : (Y ∗∗)U −→ (YU)∗∗ so that JYU

= K ◦ (JY )U.

Proof. Let J : (Y ∗)∗U −→ (Y ∗)U
∗ be the isometry that maps each [y∗∗i ] to the

functional y defined by

(6.16) 〈y, [y∗i ]〉 := lim
U
〈y∗∗i , y∗i 〉 for all [y∗i ] ∈ (Y ∗)U.

Since (Y ∗)U is a local dual of YU (see Example A.4.19), Theorem A.4.20 provides
an isometric extension operator L : (Y ∗)U

∗ −→ (YU)∗∗ so that JYU
(YU) ⊂ R(L).

Let us check that

(6.17) JYU
= L ◦ J ◦ (JY )U.

Indeed, each [yi] ∈ YU is mapped by J ◦ (JY )U to the element y defined as in
(6.16). Moreover, L is an extension operator, so L(y)|(Y ∗)U

= y. Since (Y ∗)U is
σ
(
(YU)∗, YU

)
-dense in (YU)∗, it follows that L(y) = JYU

([yi]). Thus, defining the
isometry K as L ◦ J , identity (6.17) shows that JYU

= K ◦ (JY )U. �

A binary relation in a set A is said to be a preorder if it satisfies both the
reflexive and the transitive properties.

Proposition 6.3.16. Local representability is a preorder.
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Proof. Let T1 ∈ L(X1, Y1), T2 ∈ L(X2, Y2) and T3 ∈ L(X3, Y3) be three operators
such that T1 ≺lr T2 and T2 ≺lr T3, and prove that T1 ≺lr T3.

By Proposition 6.3.2, there exist an ultrafilter U and a pair of operators
A1 ∈ L

(
X1, (X2)U

)
and B1 ∈ L

(
(Y2)U, Y ∗∗1

)
so that

(6.18) JY1 ◦ T1 = B1 ◦ (T2)U ◦A1.

Also, there are an ultrafilter V and a pair of operators A2 ∈ L
(
X2, (X3)V

)
and

B2 ∈ L
(
(Y3)V, Y ∗∗2

)
such that

(6.19) JY2 ◦ T2 = B2 ◦ (T3)V ◦A2.

Let P ∈ L(Y ∗(4)1 , Y ∗∗1 ) be the operator that maps each F to F |Y ∗1 , so

(6.20) B1 = P ◦B∗∗1 ◦ J(Y2)U
.

We consider the isometry K ∈ L
(
(Y ∗∗2 )U, ((Y2)U)∗∗

)
supplied by Proposition

6.3.15, which satisfies J(Y2)U
= K ◦ (JY2)U. Taking ultrapowers following U in

(6.19), we get

K ◦ (JY2)U ◦ (T2)U = K ◦ (B2)U ◦
(
(T3)V)U ◦ (A2)U.

Thus,
J(Y2)U

◦ (T2)U = K ◦ (B2)U ◦
(
(T3)V)U ◦ (A2)U,

and composing with P ◦B∗∗1 on the left and A1 on the right, formula (6.20) yields

B1 ◦ (T2)U ◦A1 = P ◦B∗∗1 ◦K ◦ (B2)U ◦
(
(T3)V)U ◦ (A2)U ◦A1.

Thus, by (6.18),

(6.21) JY1 ◦ T1 = P ◦B∗∗1 ◦K ◦ (B2)U ◦
(
(T3)V)U ◦ (A2)U ◦A1.

Moreover, by the iteration theorem for ultrapowers (see Proposition A.4.7), there
are surjective isometries

U :
(
(X3)V

)
U
−→ (X3)U×V

V : (Y3)U×V −→
(
(Y3)V

)
U

such that
(
(T3)V

)
U

= V ◦ (T3)U×V ◦ U . Therefore, defining

A := U ◦ (A2)U ◦A1,

B := P ◦B∗∗1 ◦K ◦ (B2)U ◦ V,

formula (6.21) yields JY1 ◦T1 = B ◦ (T3)U×V ◦A, which proves that T1 ≺lr T3. �
The analogous result for local supportability is the following one:
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Proposition 6.3.17. Local supportability is a preorder.

Proof. Let T1 ∈ L(X1, Y1), T2 ∈ L(X2, Y2) and T3 ∈ L(X3, Y3) be three operators
such that T1 ≺ls T2 and T2 ≺ls T3, and prove that T1 ≺ls T3. By Proposition
6.3.5, there are ultrafilters U and V, embeddings U1 ∈ L(X1, (X2)U) and U2 ∈
L(X2, (X3)V) and operators V1 ∈ L(R(T1), (Y2)U) and V2 ∈ L(R(T2), (Y3)V) so
that

V1T1 = (T2)U ◦ U1 and V2T2 = (T3)V ◦ U2.

Thus, (V2)UV1T1 = ((T3)V)U ◦ (U2)U ◦U1. Besides, by the theorem of iteration for
ultrapowers, there exists a pair of surjective isometries

A :
(
(X3)V

)
U
−→ (X3)U×V,

B :
(
(Y3)V

)
U
−→ (Y3)U×V

satisfying B ◦
(
(T3)V

)
U

= (T3)U×V ◦A. Thus,

B ◦ (V2)U ◦ V1 ◦ T1 = (T3)U×V ◦A ◦ (U2)U ◦ U1,

and Proposition 6.3.5 proves that T1 ≺ls T3. �

The following lemma will be necessary to show that, for any operator T , the
residuum T co is locally representable in and locally supportable by T . We observe
that the existence of the operator L in the statement is a consequence of the
principle of local reflexivity.

Lemma 6.3.18. Let X be a Banach space, QX : X∗∗ −→ Xco the associated quotient
operator, M a finite dimensional subspace of Xco and 0 < ε < 1. Let Z :=
Q−1

X (M), take any projection Q : Z −→ Z with R(Q) = X and denote its kernel
by G. Then we have:

(i) there exists a finite dimensional subspace F of X such that, for each element
g ∈ (IZ −Q)BZ , there is e ∈ F verifying ‖g − e‖ ≤ 1 + ε;

(ii) let L : F ⊕G −→ X be a (1 + ε)-injection verifying L(x) = x for all x ∈ F ,
and define P := Q + L(IZ − Q). Then P : Z −→ Z is a projection onto X
with ‖P‖ ≤ 3 + 4ε;

(iii) the operator U := QX |N(P ) is an isomorphism onto M such that ‖U‖ = 1,
‖U−1‖ ≤ 1 + ‖P‖ and U−1(g + X) = g − Lg for all g ∈ G.

Proof. (i) Since (IZ − Q)(BZ) is compact, we can choose a finite set {zi}ni=1 in
BZ so that for gi := (IZ −Q)(zi), the family {gi}ni=1 is an ε-net of (IZ −Q)(BZ).
Let xi := Q(zi) for all 1 ≤ i ≤ n and prove that F := span{xi}ni=1 is the wanted
subspace. Indeed, given g ∈ (IZ −Q)BZ , take gi so that ‖g − gi‖ ≤ ε. Thus

‖g + xi‖ ≤ ‖g − gi‖+ ‖gi + xi‖ ≤ ε + ‖zi‖ ≤ ε + 1.
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(ii) It is straightforward that P 2 = P , so P is a projection. To evaluate ‖P‖,
take z ∈ BZ and write g := (IZ − Q)(z). By part (i), there is h ∈ F verifying
‖g − h‖ ≤ 1 + ε. Thus

‖L(g)− h‖ = ‖L(g − h)‖ ≤ ‖L‖‖g − h‖ ≤ (1 + ε)2

and
‖Q(z) + h‖ ≤ ‖Q(z) + g‖+ ‖g − h‖ = ‖z‖+ ‖g − h‖ ≤ 2 + ε.

Therefore,

‖P (z)‖ = ‖Q(z) + L(g)‖
≤ ‖Q(z) + h‖+ ‖L(g)− h‖ ≤ 3 + 4ε.

The identity R(P ) = X follows from the fact that Q is a projection onto X . So
(IZ −Q)(x) = 0 for every x ∈ X , hence P (x) = x.

(iii) For every z ∈ N(P ), we have

‖U(z)‖ = inf
x∈X
‖z + x‖

≥ ‖IZ − P‖−1 inf
x∈X
‖(IZ − P )(z + x)‖ = ‖IZ − P‖−1‖z‖.

Therefore, U is an isomorphism and ‖U−1‖ ≤ 1 + ‖P‖.
Moreover, given z ∈ X⊕G, let z = x+g be its decomposition with x ∈ X and

g ∈ G. It is straightforward that z ∈ N(P ) if and only if x+Lg = 0, that is, if and
only if z = −L(g) + g. Consequently, U(N(P )) = M and U−1(g + X) = g − L(g)
for all g ∈ G. �
Theorem 6.3.19. For every T ∈ L(X, Y ), the residuum operator T co is locally
supportable by T .

Proof. Let M0 be a finite dimensional subspace of Xco and 0 < ε < 1/2. Let
QX : X∗∗ −→ Xco and QY : Y ∗∗ −→ Y co be the respective quotient operators.

Let M1 := T co(M0), Z0 := Q−1
X (M0) and Z1 := Q−1

Y (M1). We choose a
finite dimensional subspace G0 of X∗∗ such that Z0 = X ⊕ G0, and we denote
K0 := ‖QX |−1

G0
‖. We also consider a decomposition T ∗∗(G0) = H1 ⊕ G1, where

H1 ⊂ Y and G1 ∩ Y = 0. Obviously Z1 = Y ⊕G1.
Take the projections Q0 ∈ L(Z0, Z0) and Q1 ∈ L(Z1, Z1) with kernels G0 and

G1 and ranges X and Y . By Lemma 6.3.18 (i), there are a pair of finite dimensional
subspaces F0 ⊂ X and a subset F1 of Y so that, for every z0 ∈ BZ0 and every
z1 ∈ BZ1 , there are e0 ∈ F0 and e1 ∈ F1 verifying ‖(IZ0 − Q0)(z0) − e0‖ ≤ 3/2
and ‖(IZ1 −Q1)(z1)− e1‖ ≤ 3/2.

By Theorem 6.3.8, there is a pair of 3/2-injections L0 : F0 ⊕ G0 −→ X
and L1 : (H1 + F1) ⊕ G1 −→ Y verifying ‖TL0 − L1T

∗∗|F0⊕G0
‖ ≤ εK−1

0 . Lem-
ma 6.3.18 (ii) enables us to say that the operators

P0 := Q0 + L0(IZ0 −Q0) and P1 := Q1 + L1(IZ1 −Q1)
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are projections with norm smaller than or equal to 5 and their respective ranges
are X and Y . Thus, Lemma 6.3.18 (iii) shows that the operators U0 := QX |N(P0)

and U1 := QY |N(P1)
are 6-injections with R(U0) = M0 and R(U1) = M1. Let us

denote by U−1
0 : M0 −→ N(P0) and U−1

1 : M1 −→ N(P1) the respective inverses
of U0 and U1 on their ranges.

It only remains to show that ‖T ∗∗U−1
0 −U−1

1 T co|M0
‖ ≤ ε. In order to do that,

take g ∈ G0. Note that, by Lemma 6.3.18 (iii), T ∗∗U−1
0 (g +X) = T ∗∗(g)−TL0(g)

and U−1
1 T co(g + X) = T ∗∗(g)− L1T

∗∗(g), so

‖(T ∗∗U−1
0 − U−1

1 T co)(g + X)‖ ≤ εK−1
0 ‖g‖ ≤ ε‖g + X‖.

Thus, T co ≺ls T ∗∗. Since T ∗∗ ≺ls T and, by Proposition 6.3.17, ≺ls is a preorder,
we conclude T co ≺ls T . �
Theorem 6.3.20. For each T ∈ L(X, Y ), the residuum operator T co is locally
representable in T .

Proof. Let E and F be a pair of finite dimensional spaces, A ∈ L(E, Xco) and
B ∈ L(Y co, F ) a pair of operators, and 0 < ε < 1.

We write QX ∈ L(X∗∗, Xco) and QY ∈ L(Y ∗∗, Y co) the natural quotient
operators. Let Z := Q−1

X (A(E)), take a projection Q ∈ L(Z, Z) onto X and let
G := N(Q).

By Lemma 6.3.18 (i), there is a finite dimensional subspace F of X such
that for every z ∈ BZ there is e ∈ F so that ‖(IZ − Q)(z) − e‖ ≤ 3/2. By
Theorem 6.3.8 there is a (1 + ε)-injection L ∈ L(F ⊕G, X) verifying L(x) = x for
all x ∈ F . Hence, parts (ii) and (iii) of Lemma 6.3.18 show that P := Q+L(IZ−Q)
is a projection with ‖P‖ ≤ 5, U := QX |N(P ) is a norm-one isomorphism with
range QX(N(P )) = A(E), the norm of the inverse U−1 : A(E) −→ N(P ) satisfies
‖U−1‖ ≤ 6 and U−1(g + X) = g − L(g) for all g ∈ G. Thus, defining operators
A1 := U−1A and B1 := BQY , we get

B1T
∗∗A1 = BQY T ∗∗U−1A = BT coQXU−1A = BT coA.

Moreover, ‖A1‖ · ‖B1‖ ≤ ‖U−1‖ · ‖A‖ · ‖B‖ ≤ 6‖A‖ · ‖B‖. Therefore, T co is locally
6-representable in T ∗∗. Since T ∗∗ ≺lr T and ≺lr is a preorder (Proposition 6.3.16),
we conclude T co ≺lr T . �

6.4 Ultrapower-stable classes of operators

For every class C of operators, we consider the class Cup defined by

Cup := {T ∈ C : for each ultrafilter U, TU ∈ C}.

In this section, we prove that, when C is an operator semigroup, Cup is the largest
ultrapower-stable semigroup contained in C. We also prove an analogous result
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when C is an operator ideal. Next, the notions of local supportability and local
representability will be applied in the study of ultrapower-stable semigroups and
ideals, obtaining results concerning the stability of those classes under duality.

Definition 6.4.1. A class of operators C is said to be ultrapower-stable if Cup = C.
Crucial examples of ultrapower-stable classes of operators are Φ+, Φ− and

K. Let us prove it.

Proposition 6.4.2. The class Φ+ of upper semi-Fredholm operators and the class
Φ− of lower semi-Fredholm operators are ultrapower-stable.

Proof. The fact that both classes Φ+ and Φ− are operator semigroups has already
been noted in Remark 6.1.9. Consider now an ultrafilter U.

Given an operator T ∈ Φ+, by Proposition A.4.22, R(TU) is closed and
N(TU) = N(T )U. Thus, as N(T ) is a finite dimensional subspace, N(T ) = N(T )U.
Therefore, TU belongs to Φ+.

Analogously, given S ∈ Φ−, Proposition A.4.22 gives that R(TU) is closed and
equals R(T )U, so YU/R(TU) = YU/R(T )U. But by Proposition A.4.6, the quotient
YU/R(T )U is isometric to

(
Y/R(T )

)
U

, hence YU/R(TU) is finite dimensional, which
yields that TU ∈ Φ−. �

Proposition 6.4.3. The class K of all compact operators is an ultrapower-stable
operator ideal.

Proof. Let T ∈ L(X, Y ) be a compact operator, U an ultrafilter on I, and prove
that TU is also compact.

Since T (BX) is relatively compact, Propositions A.4.4 and A.4.5 yield that
T (BX) equals T (BX)U. But by Proposition A.4.21, TU(BXU

) equals T (BX)U, so
TU(BXU

) is compact, hence TU is a compact operator. �

Let us state some of the structural properties of the class Sup, where S is a
semigroup.

Proposition 6.4.4. Given an operator semigroup S, its subclass Sup is the largest
ultrapower-stable operator semigroup contained in S.
Proof. Let us first prove that Sup is a semigroup. By definition, Sup contains all
ultrapower-stable subclasses of S. In particular, since Proposition 6.4.2 has shown
that Φ+ and Φ− are ultrapower-stable, the class Φ = Φ+ ∩ Φ− is also ultrapower-
stable, and therefore, Φ ⊂ Sup.

Consider now a pair of operators S ∈ Sup(V, W ) and T ∈ Sup(X, Y ) and an
ultrafilter U. The isometric identifications between (V × X)U and VU × XU and
between (W × Y )U and WU × YU induce a natural identification of the operator
(S × T )U with SU × TU. Thus, since SU × TU ∈ S, it follows that (S × T )U ∈ S as
well. Therefore, S × T ∈ Sup.

Finally, let S ∈ Sup(W, X) and T ∈ Sup(X, Y ). Thus (TS)U = TUSU so
TS ∈ Sup. We have just proved that Sup is an operator semigroup.
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Let us prove now that Sup is ultrapower-stable, that is, prove that for every
T ∈ Sup and every ultrafilter V, TV belongs to Sup. In order to do so, take any
ultrafilter U. The isometric identification of XU×V with (XV)U and of YU×V with
(YV)U given in Proposition A.4.7 induce a natural identification of (TV)U with the
operator TU×V. Thus, since TU×V ∈ S, we get (TV)U ∈ S, such as we wanted. As
a consequence, Sup is the largest ultrapower-stable semigroup contained in S. �

Proposition 6.4.5. Let S be an operator semigroup. Then the following statements
hold:

(i) If S is upper, then Sup is upper too;

(ii) If S is lower, then Sup is lower too.

Proof. (i) If S is an upper semigroup, then Φ+ ⊂ S, and as Φ+ is ultrapower-stable,
it follows from Proposition 6.4.4 that Φ+ ⊂ Sup, hence Sup is injective.

Besides, given a pair of operators S ∈ L(W, X) and T ∈ L(X, Y ) such that
TS ∈ S(W, Y ), we have, for every ultrafilter U,

(TS)U = TUSU ∈ S.

Thus, since S is left-stable, then SU ∈ S, so S ∈ Sup, which proves that Sup is
left-regular, and therefore, Sup is an upper semigroup.

(ii) Let us assume that S is a lower semigroup. Then, with analogous argu-
ments such as those given for part (i), the surjectivity of Sup is derived from the
fact that Φ− is ultrapower-stable, and the right-stability of Sup is a consequence
of the right-stability of S. �

The analogous result to Proposition 6.4.4 for operator ideals is the following
result.

Proposition 6.4.6. Let A be an operator ideal. Then Aup is the largest ultrapower-
stable operator ideal contained in A. Moreover, if A is regular, then so is Aup.

Proof. The fact that Aup is an operator ideal is a direct consequence of the fol-
lowing statements, which hold for any ultrafilter U:

(i) if T is an operator with dim R(T ) < ∞, then R(T ) = R(TU) (see Proposi-
tions A.4.5 and A.4.22);

(ii) for each pair of operators S and T in L(X, Y ) and every pair of real numbers
λ and μ, (λS + μT )U = λSU + μTU;

(iii) for every pair of operators S ∈ L(X, Y ) and T ∈ L(Y, Z), (TS)U = TUSU.

In order to prove that Aup is the largest ultrapower-stable ideal contained in A, it
is enough to apply the same argument given in Proposition 6.4.2 to proving that
Sup is the largest ultrapower-stable semigroup contained in S.
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Next, assume that A is a regular ideal, and prove that Aup is also reg-
ular. Take an operator T ∈ L(X, Y ), fix an ultrafilter U on a set I and as-
sume that JY T ∈ Aup(X, Y ∗∗). By Proposition 6.3.15, there exists an isometry
K : (Y ∗∗)U −→ (YU)∗∗ such that

JYU
◦ TU = K ◦ (JY )U ◦ TU = K ◦ (JY T )U ∈ A.

Since A is regular, TU ∈ A, and therefore, T ∈ Aup, proving that Aup is regular.
�

Remark 6.4.7. Given a closed subspace E of a Banach space X and an ultrafilter
U, it is immediate that (JE)U is identified with J(EU) and (QE)U with Q(EU);
therefore, if A is an injective (respectively surjective) operator ideal, then Aup is
also injective (resp. surjective).

The main regular ultrapower-stable operator ideals occurring along the fol-
lowing sections areK andWup. The ultrapower-stability of K was proved in Propo-
sition 6.4.3. Proposition 6.4.6 shows that Wup is a regular ideal as a consequence
of the regularity of W .

Definition 6.4.8. An operator T : X −→ Y is said to be super weakly compact
whenever T ∈ Wup.

The elements ofWup are also called uniform convexifying operators (see [19]
and [101]). Note that, since K is ultrapower-stable and K ⊂ W , then K ⊂ Wup

because Wup is the largest ultrapower-stable subclass contained in W .

Although the DFJP factorization shows that every weakly compact operator
factorizes through a reflexive space (see Corollary 3.2.3), Beauzamy ( [19] found a
super weakly compact operator that does not factorize through any super-reflexive
space; in other words: Wup does not satisfy the interpolation property.

Let us see some applications of local supportability and local representability
to the study of ultrapower-stable operator semigroups and ideals.

Definition 6.4.9. Given a class of operators A endowed with a preorder �, A is
said to be �-stable if T ∈ A and S � T imply S ∈ A.

Proposition 6.4.10. Let A be an ultrapower-stable, regular ideal. Then A is ≺lr-
stable.

Proof. Let T ∈ L(X, Y ) and S ∈ A(W, Z) be a pair of operators such that T ≺lr S.
Then, by Proposition 6.3.2, there exist an ultrafilter U and a pair of operators A
in L(X, WU) and B in L(ZU, Y ∗∗) such that BSUA = JY T . Since A is ultrapower-
stable, it follows that JY T ∈ A, and as A is regular, T belongs to A. �

The following result shows that the role played by local supportability with
respect to upper ultrapower-stable semigroups is similar to that played by local
representability with respect to regular ultrapower-stable ideals.
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Proposition 6.4.11. Let S be an upper ultrapower-stable operator semigroup. Then
S is ≺ls-stable.

Proof. Assume S ∈ S and T ≺ls S. By Proposition 6.3.5 there are an ultrafilter U,
an isomorphism U and an operator V such that V T = SUU . Since S is ultrapower-
stable, we have SU ∈ S. Moreover, S is injective so U ∈ S, therefore SUU ∈ S.
Left-stability yields T ∈ S, and again, the injectivity of S leads to T ∈ S. �

For lower semigroups, local supportability is also operative. In order to see
this, let us first prove the following result about ultrapower-stability.

Proposition 6.4.12. Given an ultrapower-stable semigroup S, the following state-
ments hold:

(i) if S is lower, then Sd is ultrapower-stable;

(ii) if S is upper, then Sd is ultrapower-stable.

Proof. (i) Take T ∈ Sd, that is, T ∗ ∈ S. Given any ultrafilter U, we have T ∗U ∈ S.
By Theorem 6.3.13, there exist a pair of metric surjections P and Q and an
ultrafilter V such that TU

∗ ◦ P = Q ◦ (T ∗U)V. Since S is ultrapower-stable and
surjective, we have Q ◦ (T ∗U)V ∈ S. But S is also right-stable, so TU

∗ ∈ S and
TU ∈ Sd.

The proof of statement (ii) follows a similar argument to that of (i). �
Thus we get the subsequent result for ultrapower-stable lower semigroups.

Corollary 6.4.13. Let S be a lower ultrapower-stable operator semigroup. Then Sd

is ≺ls-stable.

Proof. It follows from Propositions 6.4.11 and 6.4.12. �
Corollary 6.4.14. Let S be either an upper or a lower ultrapower-stable operator
semigroup and T ∈ S(X, Y ). Then T ∗∗ and T co belong to S.
Proof. Assume S is upper. By Corollary 6.3.10 and Theorem 6.3.20, both operators
T ∗∗ and T co are locally supportable by T , and by Proposition 6.4.11, S is ≺ls-
stable. Thus, if T ∈ S, then T ∗∗ and T co also belong to S.

Assume S is lower. By Theorem 6.3.9, there exist an ultrafilter U and metric
surjections P ∈ L(XU, X∗∗) and Q ∈ L(YU, Y ∗∗) such that T ∗∗ ◦ P = Q ◦ TU.
If T ∈ S, since S is surjective and ultrapower-stable, we get Q ◦ TU ∈ S, and
therefore the right-stability of S yields that T ∗∗ belongs to S.

In order to prove that T co ∈ S, let us denote by QX ∈ L(X∗∗, Xco) and
QY ∈ L(Y ∗∗, Y co) the natural quotient operators. Since QY ◦T ∗∗ = T co ◦QX and
T ∗∗ ∈ S, a similar argument to that of part (i) leads to T co ∈ S. �

There is an analogous result to Corollary 6.4.14 for operator ideals.

Proposition 6.4.15. Let A be an ultrapower-stable operator ideal and T ∈ A. Then
T ∗∗ ∈ A. Moreover, if A is regular, then T co ∈ A.
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Proof. By Theorem 6.3.9, there is an ultrafilter U and a pair of operators Q and U
such that T ∗∗ = QTUU . Thus, the hypothesis of ultrapower-stability of A yields
that T ∗∗ belongs to A.

On the other hand, it has been shown in Theorem 6.3.20 that T co is locally
representable in T , so Proposition 6.4.10 implies T co ∈ A. �

6.5 Supertauberian operators

The subject of this section is the study of the ultrapower-stable semigroup T up,
also known as the class of supertauberian operators. Although the class T up is
smaller than the class ST of strongly tauberian operators, it turns out that, for a
finite measure μ, all tauberian operators on L1(μ) are supertauberian, as will be
proved later.

For technical reasons, the class of supertauberian operators will be intro-
duced via its original definition, given by Tacon, rather than introducing it as the
ultrapower-stable class T up. Note that Tacon’s definition is local and does not
require the use of ultrafilters.

The central result of this section is the perturbative characterization of The-
orem 6.5.16, which says that an operator T is supertauberian if and only if for
every compact operator K, the kernel N(T + K) is super-reflexive.

Let us recall that a Banach space X is super-reflexive if and only if every
Banach space Y finitely representable in X is reflexive (see Appendix A.5). Super-
reflexivity admits characterizations in terms of finite ε-triangular sequences. They
are also used to define the notion of supertauberian operator.

Definition 6.5.1. Given a real number ε > 0, a finite sequence (xk)n
k=1 in a Banach

space X is said to be a finite ε-triangular sequence if ‖xk‖ ≤ 1 for all k, and
there exists a finite sequence of norm-one functionals (x∗k)n

k=1 in X∗ such that
〈x∗i , xj〉 > ε for all 1 ≤ i ≤ j ≤ n and 〈x∗i , xj〉 = 0 for all 1 ≤ j < i ≤ n.

Definition 6.5.2. An operator T ∈ L(X, Y ) is said to be supertauberian if for every
0 < ε < 1, there exists δ > 0 and there exists a positive integer n for which there
is not any finite ε-triangular sequence {xk}nk=1 such that sup1≤k≤n ‖T (xk)‖ < δ.

The following proposition shows that every supertauberian operator is strong-
ly tauberian, and consequently, also tauberian.

Proposition 6.5.3. Every supertauberian operator T ∈ L(X, Y ) is strongly taube-
rian.

Proof. Without loss of generality, we will assume that ‖T ‖ = 1.
Let T ∈ L(X, Y ) be a non-strongly tauberian operator. In order to prove

that T is not supertauberian, fix a pair of real numbers 0 < ε < 1/4 and δ > 0,



6.5. Supertauberian operators 163

and a positive integer n. Let

L := {x ∈ BX : ‖T (x)‖ < δ}.
A := {x∗∗ ∈ int BX∗∗ : ‖T ∗∗(x∗∗)‖ < δ}.

By Lemma 4.4.1, A ⊂ L
w∗

. But T is not strongly tauberian, so, by Lemma 6.2.11,
A has an element x∗∗ with dist (x∗∗n , X) = 1/3. Thus, by Proposition A.5.3, L con-
tains an ε-triangular sequence (xk)∞k=1 satisfying supk∈N

‖T (xk)‖ ≤ δ. Obviously,
{xk}nk=1 is a triangular sequence, so T is not supertauberian. �

The following results are aimed at characterizing the supertauberian opera-
tors in terms of their ultrapowers, and proving that the sum of a supertauberian
operator plus a compact one is supertauberian.

Proposition 6.5.4. Let U be an ultrafilter and T ∈ L(X, Y ) such that N(TU) is
reflexive. Then N(T ∗∗) ⊂ X.

Proof. Let us assume that there exists x∗∗ ∈ N(T ∗∗) with dist (x∗∗, X) > ε > 0
and ‖x∗∗‖ = 1. For every positive integer n, let

An := {x ∈ BX : ‖T (x)‖ < 1/n}.

Then, since T ∗∗(x∗∗) = 0, Lemma 4.4.1 yields that x∗∗ ∈ An
w∗

, hence, by Proposi-
tion A.5.3, An contains an ε-triangular sequence (xn

l )∞l=1. Take a sequence (fn
l )∞l=1

in BX∗ so that 〈fn
p , xn

q 〉 > ε if 1 ≤ p ≤ q and 〈fn
p , xn

q 〉 = 0 if 1 ≤ q < p.
Let {In}∞n=1 be a partition of I disjoint with U, and for every i ∈ I, denote

by ni the only positive integer for which i ∈ Ini . Next, for every l ∈ N, define

zi
l := xni

l and gi
l := fni

l for all i ∈ I

and let zl := [zi
l ]i ∈ BXU

and gl := [gi
l ]i ∈ BXU

∗ . Thus, for every pair of positive
integers p and q,

〈gp, zq〉 = lim
i→U
〈fni

p , xni
q 〉 =

{
≥ ε if p ≤ q,
= 0 if q < p.

That shows that (zl)∞l=1 is an ε/2-triangular sequence. Moreover, given any l ∈ N,
for every i ∈ I, ‖T (zi

l)‖ ≤ 1/ni so

‖TU(zl)‖ = lim
i→U
‖T (zi

l)‖ ≤ lim
i→U

1/ni = 0

hence (zl)∞l=1 is contained in N(TU), which proves, after Proposition A.5.2, that
N(TU) is not reflexive. �

An immediate consequence of the following theorem is that the kernel of each
supertauberian operator is super-reflexive. Obviously, the converse fails.
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Theorem 6.5.5. Given an operator T ∈ L(X, Y ) and an ultrafilter U on a set I,
the following statements are equivalent:

(a) T is supertauberian;

(b) N(TU) is super-reflexive;

(c) N(TU) is reflexive;

(d) there exist a real number 0 < ε < 1, a real number δ > 0 and a positive integer
n for which there does not exist any finite ε-triangular sequence (xk)n

k=1 such
that sup1≤k≤n ‖T (xk)‖ < δ.

Proof. (a)⇒(d) It is immediate.
(d)⇒(b) Let us assume that N(TU) is not super-reflexive and prove that

statement (d) does not hold. Fix any pair of real numbers 0 < ε < 1 and δ > 0,
and any positive integer n. Then, by Proposition A.5.6, N(TU) contains an ε-
triangular sequence {xl}nl=1. Thus, agreeing that span{xl}0l=1 stands for the null
subspace {0}, we have

(6.22) ε < dist (span{xl}k−1
l=1 , conv {xl}nl=k) for all 1 ≤ k ≤ n.

Let us choose a representative (xl
i)i∈I for every xl, so

(6.23) lim
i→U
‖T (xl

i)‖ = 0 for all 1 ≤ l ≤ n.

Formulas (6.22) and (6.23) yield the existence of J ∈ U such that, for every j ∈ J ,

ε < dist (span{xl
j}k−1

l=1 , conv {xl
j}nl=k) for all 1 ≤ k ≤ n.

‖T (xl
j)‖ < δ for all 1 ≤ l ≤ n.

Thus, for every j ∈ J , the finite sequence {xl
j}nl=1 is ε-triangular and satisfies

‖T (xl
j)‖ < δ for all 1 ≤ l ≤ n, which proves that statement (d) does not hold.
(b)⇒(c) It is immediate.
(c)⇒(a) Assume T is not supertauberian. Then there exists a real number

0 < ε < 1 such that for every n ∈ N, there exists an ε-triangular sequence
{xn

k}nk=1 such that ‖T (xn
k )‖ < 1/n for all 1 ≤ k ≤ n. For each of those ε-triangular

sequences, take a system {fn
k }nk=1 in SX∗ so that 〈fn

l , xn
m〉 > ε if 1 ≤ l ≤ m ≤ n,

and 〈fn
l , xn

m〉 = 0 if 1 ≤ m < l ≤ n. Let us define xn
k := 0 ∈ X and fn

k := 0 ∈ X∗

for n < k.
Let {In}∞n=1 be a partition of I disjoint with U, and for every i ∈ I, let ni

denote the only positive integer for which i ∈ Ini . Next, for every l ∈ N and every
i ∈ I, define

zi
l := xni

l ,

gi
l := fni

l ,

zl := [zi
l ],

gl := [gi
l ].



6.5. Supertauberian operators 165

Thus,

〈gl, zm〉 = lim
i→U
〈gi

l , z
i
m〉 = lim

i→U
〈fni

l , xni
m 〉 =

{
≥ ε if 1 ≤ l ≤ m,
= 0 if 1 ≤ m < l,

which shows that {zn}∞n=1 is an ε/2-triangular sequence. Moreover, given any zl,
for every k ∈ N,

{i ∈ I : ‖T (zi
l)‖ < 1/k} ⊃ {i : ni ≥ k} =

∞⋃
l=k

Il ∈ U,

so zn ∈ N(TU). Therefore, N(TU) contains an infinite ε/2-triangular sequence,
which means that N(TU) is not reflexive. �

Statement (d) in Theorem 6.5.5 is apparently stronger than the definition of
supertauberian operator. It will be fundamental in the proof of the perturbative
characterization given in Theorem 6.5.16. Another application of the aforemen-
tioned statement (d) is the following:

Corollary 6.5.6. For every pair of Banach spaces X and Y , the set of all the
supertauberian operators in L(X, Y ) is open.

Proof. Suppose the result is not true. Then there is a supertauberian operator
T ∈ L(X, Y ) and a sequence (Tk)∞k=1 in L(X, Y ) such that, for all k, ‖Tk‖ < 1/k
and T + Tk is not supertauberian. Pick any pair of real numbers 0 < ε < 1, δ > 0,
and any positive integer n. Choose m ∈ N so that 1/m < δ/2. Theorem 6.5.5
implies that there exists a finite ε-triangular sequence (xk)n

k=1 in BX for which
sup1≤k≤n ‖T +Tm(xk)‖ < δ/2. But ‖Tm‖ < 1/m, so ‖T (xk)‖ < δ for all 1 ≤ k ≤ n,
in contradiction with T supertauberian. �

The following result proves that the class of the supertauberian operators
equals the class T up.

Theorem 6.5.7. Given an operator T ∈ L(X, Y ) and any ultrafilter U, the following
statements are equivalent:

(a) T is supertauberian;

(b) TU is supertauberian;

(c) TU is tauberian.

Proof. (a)⇒(b) Suppose T is supertauberian. By Theorem 6.5.5, N(TU×U) is
super-reflexive; equivalently, N

(
(TU)U

)
is super-reflexive because of the theorem

of iteration of ultrapowers. Therefore, TU is supertauberian.
(b)⇒(c) Assume TU is supertauberian. By Theorem 6.5.5, N

(
(TU)U

)
is reflex-

ive, and therefore, by Proposition 6.5.4, N
(
(TU)∗∗

)
is contained in XU. Moreover,

by Proposition A.4.21, TU(BXU
) is closed, and subsequently, by Theorem 2.1.7,

TU is tauberian.
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(c)⇒(a) Assume TU is tauberian. Then N(TU) is reflexive, and by Theorem
6.5.5, it follows that T is supertauberian. �

Corollary 6.5.8. The class of supertauberian operators coincides with the ultrapo-
wer-stable, upper semigroup T up.

Proof. It is an immediate consequence of Theorem 6.5.7 and Proposition 6.4.5
applied to the upper semigroup T of tauberian operators. �

There is a subtle but important difference between Corollary 6.5.8 and Theo-
rem 6.5.5 on the one hand, and Theorem 6.5.7 on the other. Indeed, the statements
of the mentioned theorems are of the form ‘certain property P holds if and only
if a second property Q is valid for some ultrafilter, in which case, Q holds for any
ultrafilter’. However, the statement of Corollary 6.5.8 says that ‘certain property
P holds if and only if a second property Q is valid for all ultrafilters’. The formal
difference between these statements is precisely the reason why we have preferred
to introduce the supertauberian operators as in Definition 6.5.2 rather than via
the class T up.

Corollary 6.5.9. The semigroup T up is stable under local supportability.

Proof. In fact, by Corollary 6.5.8, T up is an upper ultrapower stable semigroup,
and therefore, by Proposition 6.4.11, T up is ≺ls-stable. �

Proposition 6.5.10. An operator T ∈ L(X, Y ) is supertauberian if and only if so
is T ∗∗.

Proof. The fact that T up is an upper semigroup directly yields that if T ∗∗ is
supertauberian, so is T . For the reverse implication, by Corollary 6.5.9, the upper
semigroup T up of supertauberian operators is ≺ls-stable. Thus, given T ∈ T up,
since T ∗∗ ≺ls T , it follows that T ∗∗ belongs to T up. �

Remark 6.5.11. If T ∈ L(X, Y ) is a supertauberian operator and X is non-
reflexive, then there exists an ultrafilter U so that TU is not strictly singular.

In fact, if T is supertauberian, by Proposition 6.5.3, T is strongly tauberian,
that is, T co is an isomorphism. But by Theorem 6.3.19, T co is locally supportable
by T , and consequently, by Proposition 6.3.5, there exist an ultrafilter U, an isomor-
phism U ∈ L(Xco, XU) and an operator V ∈ L(R(T co), YU) so that TUU = V T co.
Since the operators U0 and U1 occurring in the proof of the aforementioned The-
orem 6.3.19 are 6-injections, a closer look at the proof of Proposition 6.3.5 reveals
that the operator V that we are considering here can be assumed to be an iso-
morphism. Thus, there is an infinite-dimensional subspace F of XU isomorphic to
Xco such that TU|F is an isomorphism. Hence, TU is not strictly singular.

Corollary 6.5.12. Let T ∈ L(X, Y ). If R(T ) is closed and N(T ) is super-reflexive,
then T is supertauberian.
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Proof. Assume that R(T ) is closed and N(T ) is super-reflexive, and let U be any
ultrafilter. By Proposition A.4.14, N(T )U is finitely representable in N(T ), so
N(T )U is reflexive. But since R(T ) is closed, by Proposition A.4.22, N(T )U equals
N(TU), so N(TU) is super-reflexive, and then, by Theorem 6.5.5, T is supertaube-
rian. �

Let us prove now that the class T up is stable under super weakly compact
perturbations.

Proposition 6.5.13. If T ∈ L(X, Y ) is supertauberian and K ∈ L(X, Y ) is super
weakly compact, then T +K is supertauberian. In particular, if K is compact, then
T + K is supertauberian.

Proof. Let U be an ultrafilter. Then TU is supertauberian and KU is weakly com-
pact, so (T +K)U = TU +KU is tauberian, and therefore, T +K is supertauberian.

Assume now that K is compact. Then, since the ideal K of compact opera-
tors is ultrapower-stable (Proposition 6.4.3), it follows that KU is compact, and
consequently, is weakly compact, so K is super weakly compact. Therefore, T +K
is supertauberian. �

Every finite ε-triangular sequence (xi)n
i=1 in a Banach space X admits a bi-

orthogonal sequence (hi)n
i=1 in X∗ so that the functionals fi are all norm bounded

above by a constant that only depends on the parameters n and ε. A proof of
that fact is given along the two following lemmas, which may be sketched as
follows. Take (fi)n

i=1 ⊂ BX∗ such that, letting εij := 〈fi, xj〉, then εij > ε if
i ≤ j, and εij = 0 otherwise. Obviously, the matrix (εij)n

i=1
n
j=1 is triangular, and

therefore, can be transformed in a diagonal matrix by the usual procedure which
consists of producing zeros in its last column by adding multiples of its last row
to the other rows. Next, we do the same with the penultimate column, and so
on. That procedure induces the construction of certain linear combinations of the
functionals fi which lead to the wanted biorthogonal functionals gi. Lemma 6.5.14
corresponds to the first step, when zeros in the last column are produced, and
Lemma 6.5.15 is a recursive application of Lemma 6.5.14 in order to produce
zeros in the remaining columns.

Lemma 6.5.14. Let X be a Banach space, a pair of real numbers, 0 < ε < 1
and η ≥ 1, and a positive integer n. Let {xi}ni=1 ⊂ SX , {fi}ni=1 ⊂ ηBX∗ and
write εij := 〈fi, xj〉. If ε < εij ≤ 1 for all 1 ≤ i ≤ j ≤ n and εij = 0 for all
1 ≤ j < i ≤ n, then span{fi}ni=1 contains a subset {gi}ni=1 in η(1 + ε−1)BX∗

satisfying

(i) ‖gi‖ ≤ η(1 + ε−1) for all 1 ≤ i ≤ n,

(ii) 〈gi, xj〉 = εij for all 1 ≤ i ≤ n and all 1 ≤ j ≤ n− 1,

(iii) 〈gi, xn〉 = δin for all 1 ≤ i ≤ n.
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Proof. Consider the functionals

gi := fi −
εin

εnn
fn for all 1 ≤ i ≤ n− 1,

gn :=
1

εnn
fn.

It is immediate that conditions (ii) and (iii) hold. Moreover, for 1 ≤ i ≤ n− 1,

‖gi‖ ≤ ‖fi‖+
1
ε
‖fn‖ ≤ η(1 + ε−1),

and ‖gn‖ ≤ ε−1‖fn‖ ≤ η(1 + ε−1), so condition (i) is satisfied, and the lemma is
proved. �
Lemma 6.5.15. Let X be a Banach space, a pair of real numbers 0 < ε < 1 and
η ≥ 1, and a positive integer n. Let {xi}ni=1 ⊂ SX and {fi}ni=1 ⊂ BX∗ . Let us
write εij := 〈fi, xj〉, and assume that ε < εij ≤ 1 for all 1 ≤ i ≤ j ≤ n and εij = 0
for all 1 ≤ j < i ≤ n. Then there exists a subset {hi}ni=1 ⊂ span{fi}ni=1 such that

‖hi‖ ≤ (1 + ε−1)n for all 1 ≤ i ≤ n,
〈hi, xj〉 = δij for all 1 ≤ i ≤ n and all 1 ≤ j ≤ n.

Proof. The proof consists of n consecutive applications of Lemma 6.5.14.
First, given the family {fi}ni=1 in BX∗ , Lemma 6.5.14 yields a subset {gn

i }ni=1

in (1 + ε−1)BX∗ ∩ span{fi}ni=1 such that, for every 1 ≤ i ≤ n,

〈gn
i , xj〉 = εij for all 1 ≤ j ≤ n− 1,
〈gn

i , xn〉 = δin.

Next, Lemma 6.5.14, applied on the families {xi}n−1
i=1 and {gn

i }n−1
i=1 , supplies a

subset {gn−1
i }n−1

i=1 of (1+ε−1)2BX∗∩span{fi}ni=1 such that, for every 1 ≤ i ≤ n−1,

〈gn−1
i , xj〉 = εij for all 1 ≤ j ≤ n− 2,

〈gn−1
i , xj〉 = δij for all n− 1 ≤ j ≤ n.

Keeping this procedure for n times successively, we obtain the subsets

{gn
i }ni=1, {gn−1

i }n−1
i=1 , . . . , {g1

i }1i=1

of span{fi}ni=1 satisfying for each 1 ≤ k ≤ n and for each 1 ≤ i ≤ k,

‖gk
i ‖ ≤ (1 + ε−1)n−k+1,

〈gk
i , xj〉 = δij for all k ≤ j ≤ n,

〈gk
k , xj〉 = 0 for all 1 ≤ j ≤ k − 1.

Thus, the wanted functionals are hi := gi
i for all 1 ≤ i ≤ n. �
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The following result is the central theorem of this section. Most of the infor-
mation about supertauberian operators can be derived from it.

Theorem 6.5.16. An operator T ∈ L(X, Y ) is supertauberian if and only if for
every compact operator K ∈ L(X, Y ), the kernel N(T + K) is super-reflexive.

Proof. If T is supertauberian and K ∈ L(X, Y ) is compact, then, by Propos-
ition 6.5.13, the operator T +K is supertauberian. Therefore, Theorem 6.5.5 yields
that N(T + K) is super-reflexive.

For the converse implication, let us assume that T is not supertauberian and
find a compact operator K so that N(T + K) is not super-reflexive. In order to
achieve that goal, given a real number 0 < ε < 1, we shall recursively find, for
every n ∈ N, finite sets

(6.24) {xn
i }ni=1 ⊂ SX , {fn

i }ni=1 ⊂ SX∗ , and {hn
i }ni=1 ⊂ X∗

such that, for each p ∈ N, the following conditions are satisfied:

〈hk
i , xl

j〉 = δijδkl for all {k, l} ⊂ {1, . . . , p},
all 1 ≤ i ≤ k and all 1 ≤ j ≤ l,(6.25)

k∑
i=1

‖hk
i ‖‖T (xk

i )‖ < 2−k for all k ∈ {1, . . . , p},(6.26)

〈fk
i , xk

j 〉 > ε for all k ∈ {1, . . . , p} and all 1 ≤ i ≤ j ≤ k,(6.27)

〈fk
i , xk

j 〉 = 0 for all k ∈ {1, . . . , p} and all 1 ≤ j < i ≤ k.(6.28)

First, Theorem 6.5.5 supplies x1
1 ∈ SX and f1

1 ∈ SX∗ such that 〈f1
1 , x1

1〉> ε and
‖T (x1

1)‖ < 2−1ε. Thus, choosing

h1
1 :=

1
〈f1

1 , x1
1〉

f1
1 ,

we get 〈h1
1, x

1
1〉 = 1 and ‖h1

1‖‖T (x1
1)‖ < 2−1, so, the singletons {x1

1}, {f1
1 } and

{h1
1} fulfill conditions (6.25), (6.26), (6.27) and (6.28) for p = 1.

Assume that the families {xp
i }

p
i=1, {fp

i }
p
i=1 and {hp

i }
p
i=1 have been already

obtained for all p ∈ {1, . . . , n− 1}, and let us find the families

{xn
i }ni=1, {fn

i }ni=1 and {hn
i }ni=1.

Let P denote the projection on X whose kernel and range are

N(P ) = span{xk
i : 1 ≤ k ≤ n− 1, 1 ≤ i ≤ k}

R(P ) =
n−1⋂
k=1

k⋂
i=1

N(hk
i ),
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and let
δ :=

1
n2n(1 + ε−1)n‖P‖ .

Since R(P ) is finite co-dimensional in X , by Proposition 6.5.13, T |R(P ) is not
supertauberian. Hence, by Theorem 6.5.5, there exist a pair of subsets {xn

i }ni=1

in SR(P ) and {fn
i }ni=1 in SX∗ satisfying 〈fn

i , xn
j 〉 > ε for all 1 ≤ i ≤ j ≤ n,

〈fn
i , xn

j 〉 = 0 for all 1 ≤ j < i ≤ n, and ‖T (xn
i )‖ ≤ δ for all 1 ≤ i ≤ n. Thus,

conditions (6.27) and (6.28) hold for p = n. Next, by Lemma 6.5.15, we obtain a
system

{gi}ni=1 ⊂ (1 + ε−1)nBX∗

so that 〈gi, x
n
j 〉 = δij for all i and j. Define the functionals hn

i := gi ◦ P for all
1 ≤ i ≤ n. Thus, since {xn

i }ni=1 ⊂ R(P ), then

〈hn
i , xn

j 〉 = 〈gi, x
n
j 〉 = δij for all {i, j} ⊂ {1, . . . , n};

moreover, as every xn
j belongs to ∩n−1

k=1 ∩k
i=1 N(hk

i ), it follows that 〈hk
i , xn

j 〉 = 0 for
all 1 ≤ k ≤ n− 1 and all 1 ≤ i ≤ k; and for k ≤ n− 1, every xk

j belongs to N(P ),
so 〈hn

i , xk
j 〉 = 0. Therefore, condition (6.25) holds for p = n.

In order to check condition (6.26) for p = n, taking into account the upper
bounds for ‖hk

i ‖ and ‖T (xk
i )‖, we get

n∑
i=1

‖hn
i ‖‖T (xn

i )‖ < n(1 + ε−1)n‖P‖δ = 2−n.

Once the families {xn
i }ni=1, {fn

i }ni=1 and {hn
i }ni=1 have been obtained for all n ∈ N,

we define the operator K ∈ L(X, Y ) by

K(x) := −
∞∑

n=1

n∑
i=1

〈hn
i , x〉T (xn

i ).

Note that condition (6.26) yields

‖K‖ ≤
∞∑

n=1

n∑
i=1

‖hn
i ‖‖T (xn

i )‖ ≤
∞∑

n=1

2−n = 1,

hence K is well defined and compact. In order to finish, note that every finite
sequence {xn

i }ni=1 is ε-triangular and is contained in N(T + K). Therefore, by
Proposition A.5.6, N(T + K) is not super-reflexive, concluding the proof. �

Observe that when T is not supertauberian, it is possible to find a compact
operator Q with norm as small as we please so that N(T +Q) is not super-reflexive.
Indeed, in the proof of the above theorem, when T is not supertauberian, given
any q ∈ N, it is sufficient to substitute the compact operator K by

Q(x) := −
∞∑

n=q+1

n∑
i=1

〈hn
i , x〉T (xn

i );
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obviously, Q is compact, ‖Q‖ < 2−q, and N(T + Q) is not super-reflexive.

Theorem 6.5.16 in combination with the analogous perturbative characteri-
zations for the semigroups Φ+ and T , yields important consequences.

Proposition 6.5.17. Given a Banach space X, the following statements hold:

(i) every super-reflexive subspace of X is finite dimensional if and only if, for
each Banach space Y , every supertauberian operator T ∈ L(X, Y ) is upper
semi-Fredholm;

(ii) every reflexive subspace of X is super-reflexive if and only if, for each Banach
space Y , every tauberian operator T ∈ L(X, Y ) is supertauberian.

Proof. (i) Assume all super-reflexive subspaces of X are finite dimensional. Thus,
by Theorem 6.5.16, if T ∈ L(X, Y ) is supertauberian, then N(T + K) is finite di-
mensional for every compact operator K ∈ L(X, Y ). Therefore, by Theorem A.1.9,
T is upper semi-Fredholm.

For the converse, let us assume that X contains an infinite dimensional super-
reflexive subspace R. Then the quotient operator QR ∈ L(X, X/R) is not upper
semi-Fredholm, but by Corollary 6.5.12, is supertauberian.

(ii) The proof is analogous to that of (i), but here, we need to use the pertur-
bative characterizations for supertauberian operators and for tauberian operators
given respectively in Theorem 6.5.16 and in Theorem 2.2.7. �

Situations described in the above theorem are not trivial. For instance, the
original Tsirelson space XT is reflexive but not super-reflexive, and any of its
infinite dimensional closed subspaces or quotients contain an isomorphic copy of
XT. Then, every T ∈ L(XT, Y ) is tauberian, but T is supertauberian if and only
if T is upper semi-Fredholm.

The case when X is a L1(μ) space, considered in the following result, is also
very interesting and completes the study begun in Chapter 4.

Theorem 6.5.18. Let μ be a finite, purely non-atomic measure. Thus, given any
Banach space Y , every tauberian operator T ∈ L

(
L1(μ), Y

)
is supertauberian.

Proof. This is an immediate consequence of Proposition 6.5.17 and of the fact,
proved in Corollary A.6.14, that every reflexive subspace of L1(μ) is super-re-
flexive. �

As a consequence, if T : L1(μ) −→ Y is tauberian, then T ∗(2n) is supertaube-
rian for all n.

Let us offer a further sequel of Theorem 6.5.16 concerning the ideal Wup

introduced in Definition 6.4.8.

Proposition 6.5.19. Given T ∈ L(X, Y ), the following statements are equivalent:

(a) the operator T is supertauberian;
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(b) for every space Z and every A ∈ L(Z, X), if TA is super weakly compact,
then A is super weakly compact;

(c) any subspace E of X is super-reflexive whenever T |E is super weakly compact.

Proof. (a)⇒(b) Assume T is supertauberian and TA is super weakly compact.
Thus, given any ultrafilter U, by definition of Wup, it follows that

(6.29) (TA)U = TUAU ∈ W .

But by Theorem 6.5.7, TU is tauberian, so Proposition 2.2.9 yields that AU is
weakly compact. Hence, A ∈ Wup.

(b)⇒(c) Let E be a closed subspace of X so that T |E is super weakly compact,
and consider the corresponding subspace operator JE ∈ L(E, X). Then, since
T |E = TJE, by hypothesis (b), JE is super weakly compact, that is, given any
ultrafilter U, (JE)U ∈ W . But (JE)U equals the natural embedding JEU

of EU into
XU, so JEU

is weakly compact, and therefore, EU is reflexive, which implies that
E is super-reflexive.

(c)⇒(a) Let us assume T is not supertauberian. Then, by Theorem 6.5.16,
there exists a compact operator K ∈ L(X, Y ) so that N(T − K) is not super-
reflexive. But the idealK is ultrapower-stable (see Proposition 6.4.3) and moreover,
K ⊂ Wup, so K is super weakly compact. Therefore, T |N(T−K) = K|N(T−K) is
super weakly compact, and since N(T −K) is not super-reflexive, statement (c)
does not hold. �

According to the notations concerning semigroups and ideals introduced in
Section 6.1, it follows from Proposition 2.2.9 that T = W+, that Sp(W) is the
space ideal of reflexive spaces, and Sp(Wup) is the space ideal of super-reflexive
spaces. Thus, as the class T up of all supertauberian operators is (W+)up, Propo-
sition 6.5.19 yields immediately the following result:
Remark 6.5.20. The identity (W+)up = (Wup)+ holds.

Moreover, Theorem 6.5.16 can be rephrased as

T ∈ (W+)up(X, Y )⇔ ∀K ∈ K(X, Y ), N(T + K) ∈ Sp(Wup).

Let us show that some of the examples of tauberian operators we have given
before are not supertauberian.

Proposition 6.5.21. The tauberian operator Jp : Lp(X) −→ L1(X) considered in
Proposition 6.2.15 is supertauberian if and only if X is super-reflexive.

Proof. Indeed, if X is super-reflexive, then Lp(X) is also super-reflexive [21].
Therefore, Jp is trivially supertauberian.

For the converse, assume that X is not super-reflexive and apply the same
argument given in Proposition 6.2.15, with the caution of substituting infinite
triangular sequences for finite triangular ones. �
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Proposition 6.5.22. The tauberian operator ι : J −→ c0 given in Example 2.1.18 is
not supertauberian.

Proof. Fix n ∈ N and δ > 0. We only need to find a finite 1-triangular sequence
(xk)n

k=1 in J such that ‖ι(xk)‖ < δ for all k. Without loss of generality, we will
assume that 1/

√
2n < δ.

Put p := n + 1 and, for every k ∈ {1, . . . , n}, let yk be a sequence of real
numbers defined by

yk(i) :=
{ 1√

2n
if i = 1 + k, (p + 1) + k, (2p + 1) + k, . . . , ((n− 1)p + 1) + k,

0 otherwise.

Let xk :=
∑k

j=1 yj . Roughly speaking, every sequence xk consists of a chain of n
plateaux beginning at the position i = 2; each plateau has length equal to k and
height equal to 1/

√
2n, and each pair of consecutive plateaux is separated by a

valley of length p− k. It is easy to check that ‖xk‖J = 1 for all k.
For every 1 ≤ k ≤ n−1, every u ∈ span{xl}kl=1 and every v ∈ conv {xl}nl=k+1,

we have ‖u− v‖J ≥ 1. Indeed, writing y := u− v, since

0 = y(1) = y(p + 1) = y(2p + 1) = . . . = y(np + 1)

1/
√

2n = y(p) = y(2p) = . . . = y(np),

it follows ‖y‖J ≥ 1. We have just proved that (xk)n
k=1 is a finite 1-triangular

sequence in J . Moreover, since ‖ι(xk)‖∞ ≤ 1/
√

2n < δ for all k, it follows that ι
is not supertauberian. �

6.6 Cosupertauberian operators

This section studies the class (T up)d, a subclass of ST d whose elements are named
cosupertauberian operators. The main result about (T up)d asserts that an operator
T ∈ L(X, Y ) is cosupertauberian if and only if for every compact operator from
X into Y , the cokernel Y/R(T + K) is super-reflexive.

It was noted in Chapter 3 that T and T d are not symmetric. However, we
will see throughout this section that the symmetries between T up and (T up)d are
even richer than those between ST and ST d.

Definition 6.6.1. An operator T ∈ L(X, Y ) is said to be cosupertauberian if T ∗ is
supertauberian.

Following the notation used in this book, the class of all cosupertauberian
operators is (T up)d. Thus, from the comments at the end of the preceding section,
we have

(T up)d =
(
(W+)up

)d =
(
(Wup)+

)d
.

The three following results about (T up)d are obtained by duality.
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Proposition 6.6.2. Every cosupertauberian operator is strongly cotauberian.

Proof. Let T ∈ L(X, Y ) be a cosupertauberian operator. Thus, T ∗ is supertaube-
rian, and by Proposition 6.5.3, T ∗ is strongly tauberian. Hence by Proposition
6.2.5, T is strongly cotauberian. �
Proposition 6.6.3. Let T ∈ L(X, Y ). If R(T ) is closed and Y/R(T ) is super-
reflexive, then T is cosupertauberian.

Proof. Assume that R(T ) is closed and Y/R(T ) is super-reflexive. Then R(T ∗) is
closed and N(T ∗) is super-reflexive, so T ∗ is supertauberian by virtue of Corollary
6.5.12. Hence T is cosupertauberian. �
Proposition 6.6.4. For every pair of Banach spaces X and Y , the set of all the
supertauberian operators in L(X, Y ) is open.

Proof. The proof is directly obtained by duality from Corollary 6.5.6. �
Proposition 6.6.5. An operator T ∈ L(X, Y ) is cosupertauberian if and only if so
is T ∗∗.

Proof. The proof is immediate from Proposition 6.5.10. �
A subtle application of duality techniques shows that (T up)d is ultrapower-

stable. The proof is reached as a consequence of the local supportability of TU
∗ by

T ∗U for any operator T and any ultrafilter U.

Theorem 6.6.6. Given an operator T ∈ L(X, Y ) and an ultrafilter U, the following
statements are equivalent:

(a) T is cosupertauberian;

(b) T ∗U is tauberian;

(c) TU
∗ is supertauberian;

(d) TU
∗ is tauberian;

(e) TU is cosupertauberian;

(f) TU is cotauberian.

Proof. (a)⇒(b) By definition, if T is cosupertauberian, then T ∗ is supertauberian.
Thus, by Theorem 6.5.7, T ∗U is tauberian.

(b)⇒(c) Assume T ∗U is tauberian. Then, by Theorem 6.5.7, T ∗U is super-
tauberian. Next, on the one hand, Corollary 6.5.9 yields thatW+

up is stable under
local supportability, and on the other hand, according to Theorem 6.3.12, TU

∗ is
locally supportable by T ∗U, so TU

∗ is supertauberian.
(c)⇒(d) It follows from the inclusion T up ⊂ T .
(d)⇒(a) If TU

∗ is tauberian, then T ∗U = TU
∗|Y ∗U

is also tauberian, hence T ∗

is supertauberian, and therefore, T is cosupertauberian.
The equivalences (d)⇔(f) and (e)⇔(c) are trivial. �
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Therefore, after Theorem 6.6.6, the words cosupertauberian and supercotaube-
rian have equivalent meanings. Equivalently:

(W+
up)d = (W+

d)up.

Theorem 6.6.7. Given an operator T ∈ L(X, Y ) and an ultrafilter U, the following
statements are equivalent:

(a) T is cosupertauberian;

(b) N(TU
∗) is super-reflexive;

(c) N(TU
∗) is reflexive;

(d) N(T ∗U) is reflexive;

(e) N(T ∗U) is super-reflexive.

Proof. (a)⇒(b) If T is cosupertauberian, then so is TU by virtue of Theorem
6.6.6. Thus, by definition, TU

∗ is supertauberian, and by Theorem 6.5.5, N(TU
∗)

is super-reflexive.

(b)⇒(c) Trivial.

(c)⇒(d) The proof follows easily from the fact that N(T ∗U) is a subspace of
the kernel N(TU

∗).

(d)⇒(e) If N(T ∗U) is reflexive, then Theorem 6.5.5 yields that it is also
super-reflexive.

(d)⇒(a) If N(T ∗U) is super-reflexive, then, by Theorem 6.5.5, T ∗ is super-
tauberian; equivalently, T is cosupertauberian. �

We notice that some of the implications in the proof of Theorem 6.6.7, like
(e)⇒(b), can be obtained by means of the following general result: for every op-
erator T and every ultrafilter U, the kernel N(TU

∗) is finitely representable in
N(T ∗U). Indeed, by Theorem 6.3.13, there exist an ultrafilter V and a pair of
metric injections U ∈ L

(
YU
∗, (Y ∗U)V

)
and V ∈ L

(
XU

∗, (X∗
U)V

)
so that

V TU
∗ = (T ∗U)VU.

Therefore, the kernel of TU
∗ is isometrically mapped by U into that of (T ∗U)V,

hence, by means of Proposition A.4.14, N(TU
∗) is finitely representable in N(T ∗U).

Proposition 6.6.8. Let U be an ultrafilter on I. An operator T ∈ L(X, Y ) is cosu-
pertauberian if and only if the identity N(T ∗U) = N(TU

∗) holds.

Proof. In this proof, the σ(YU
∗, YU) topology will be denoted by w∗.

Let us assume that T is cosupertauberian. Then, by Theorem 6.6.7, N(T ∗U)

is a reflexive subspace of N(TU
∗), so N(T ∗U)

w∗
= N(T ∗U). But by Proposition

A.4.23, N(T ∗U) is w∗-dense in N(TU
∗), so the identity N(T ∗U) = N(TU

∗) holds.
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For the converse, assume that N(T ∗U) equals N(TU
∗) and that T is not

cosupertauberian. By Theorem 6.6.7, N(TU
∗) is not reflexive. Therefore, YU/R(TU)

is not reflexive either, and by virtue of Proposition A.5.3, there exist 0 < ε < 1
and a pair of normalized sequences

(yn + R(TU)) ⊂ YU/R(TU),

(fn) ⊂ [YU/R(TU)]∗ = N(TU
∗)

such that

(6.30) 〈fk,ym〉 =
{

> ε, if 1 ≤ k ≤ m,
= 0, if 1 ≤ m < k.

Let yn = [yi
n]i and fn = [f i

n]i for all n ∈ N. Let g be a w∗-cluster point of
{fn : n ∈ N}. Thus g ∈ N(TU

∗), but by hypothesis, N(TU
∗) = N(T ∗U), so there is

a family (gi)i∈I in BY ∗ so that g = [gi].
From (6.30), it follows that

(6.31) 〈g,yn〉 = 0 for all n ∈ N.

Formulas (6.30) and (6.31) allow us to define recursively the following decreasing
set sequence:

A1 := {i ∈ I : 〈gi, y
i
1〉 < ε/2, 〈f i

1, y
i
1〉 > ε} ∈ U,

An := An−1 ∩ {i ∈ I : 〈gi, y
i
n〉 < ε/2, 〈f i

k, yi
n〉 > ε, 1 ≤ k ≤ n} ∈ U.

Since U is ℵ0-incomplete, there exists another decreasing sequence (Cn)∞n=1 ⊂ U
such that ∩∞n=1Cn = ∅ and such that Cn ⊂ An for all n. Let C0 := I, and define

si :=
{

0, if i ∈ C0 \ C1,
yi

k, if i ∈ Ck \ Ck+1 and k ∈ N.

Thus [si] is a norm-one element of YU, and moreover, 〈g, [si]〉 ≥ ε. Indeed, given
k ∈ N, for every positive integer m > k and every i ∈ Cm \Cm+1, we have

〈f i
k, si〉 = 〈f i

k, yi
m〉 > ε,

and since ∪∞m=k(Cm \ Cm+1) ∈ U, it follows that

〈fk, [si]〉 = lim
U
〈f i

k, si〉 ≥ ε for all k ∈ N.

Therefore, since g is a w∗-cluster point of {fn : n ∈ N}, we get

(6.32) 〈g, [si]〉 ≥ ε.

Moreover, for every n ∈ N and every i ∈ Cn \Cn+1, we have

〈gi, si〉 = 〈gi, y
i
n〉 < ε/2;

thus, as ∪∞n=1(Cn \ Cn+1) ∈ U, we obtain 〈g, [si]〉 = limU〈gi, si〉 ≤ ε/2, in contra-
diction with (6.32). �
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The next result shows that Wup = (Wup)d.

Proposition 6.6.9. An operator T is super weakly compact if and only if so is T ∗.

Proof. Let T ∈ L(X, Y ) be a super weakly compact operator. Then, given any
ultrafilter U, TU is weakly compact, and by the Gantmacher theorem, so is TU

∗.
But the class W is an operator ideal, so T ∗U = TU

∗|Y ∗U
is weakly compact, and

by definition, T ∗ is super weakly compact.
Assume now T ∗ is super weakly compact. Then we have just proved that

T ∗∗ ∈ Wup, and since Wup is an operator ideal, we get T = T ∗∗|X ∈ Wup. �

Proposition 6.6.10. If T ∈ L(X, Y ) is cosupertauberian and K ∈ L(X, Y ) is super
weakly compact, then T + K is cosupertauberian. In particular, if K is compact,
then T + K is cosupertauberian.

Proof. It follows directly via duality from Propositions 6.5.13 and 6.6.9. �

The following result about cosupertauberian operators parallels, but it is not
a literal dual translation, of the perturbative characterization for supertauberian
operators given in Theorem 6.5.16.

Theorem 6.6.11. An operator T ∈ L(X, Y ) is cosupertauberian if and only if for
every compact operator K ∈ L(X, Y ), the cokernel Y/R(T + K) is super-reflexive.

Proof. Assume T is cosupertauberian, and let K ∈ L(X, Y ) be a compact oper-
ator. Then by Proposition 6.6.10, T + K is cosupertauberian, hence T ∗ + K∗ is
supertauberian, and the kernel N(T ∗+ K∗), which is isometrically identified with(
Y/R(T + K)

)∗, is super-reflexive. Therefore, Y/R(T + K) is super-reflexive.

For the converse implication, let us assume that T is not cosupertauberian
and find a compact operator K so that Y/R(T + K) is not super-reflexive.

In order to get our target, given a real number 0 < ε < 1, we shall recursively
find finite sets

(6.33) {fn
i }ni=1 ⊂ SY ∗ , {zn

i }ni=1 ⊂ SY , and {yn
i }ni=1 ⊂ Y for all n ∈ N

such that, for each p ∈ N,

〈fk
i , yl

j〉 = δijδkl for all {k, l} ⊂ {1, . . . , p},
all i ∈ {1, . . . , k} and all j ∈ {1, . . . , l},(6.34)

k∑
i=1

‖yk
i ‖‖T ∗(fk

i )‖ < 2−k for all k ∈ {1, . . . , p},(6.35)

〈zk
i , fk

j 〉 > ε for all k ∈ {1, . . . , p} and all 1 ≤ i ≤ j ≤ k,(6.36)

〈zk
i , fk

j 〉 = 0 for all k ∈ {1, . . . , p} and all 1 ≤ j < i ≤ k.(6.37)
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By Theorem 6.5.5 (d), there exist f1
1 ∈ SY ∗ and F 1

1 ∈ SY ∗∗ such that 〈F 1
1 , f1

1 〉 > ε
and ‖T ∗(f1

1 )‖ < 2−1ε. The principle of local reflexivity gives z1
1 ∈ SY satisfying

〈z1
1 − F 1

1 , f1
1 〉 = 0. Thus, taking

y1
1 :=

1
〈z1

1 , f1
1 〉

z1
1 ,

the singletons {f1
1 }, {z1

1} and {y1
1} satisfy the conditions (6.34), (6.35), (6.36) and

(6.37) for p = 1.
Assume the families {fp

i }
p
i=1, {zp

i }
p
i=1 and {yp

i }
p
i=1 have been already chosen

for all p ∈ {1, . . . , n−1}, and find the next families, {fn
i }ni=1, {zn

i }ni=1 and {yn
i }ni=1.

Let P ∈ L(Y, Y ) denote the projection whose kernel and range are

N(P ) = span{yk
i : 1 ≤ k ≤ n− 1, 1 ≤ i ≤ k},

R(P ) =
n−1⋂
k=1

k⋂
i=1

N(fk
i ),

and let

δ :=
1

n2n(1 + ε−1)n‖P‖ .

Since N(P ) is finite dimensional, then IY ∗−P ∗ has finite rank, hence the operator
T ∗ ◦ (IY ∗ − P ∗) is compact. Consequently, as T ∗ is not supertauberian and

T ∗ = T ∗ ◦ P ∗ + T ∗ ◦ (IY ∗ − P ∗),

then T ∗P ∗ cannot be supertauberian because of Proposition 6.5.13. But R(P ∗)
equals N(P )⊥, so T ∗P ∗|N(P )⊥ = T ∗|N(P )⊥ , and therefore, by Theorem 6.5.5,
there exists a pair of subsets {fn

i }ni=1 in SN(P )⊥ and {Fn
i }ni=1 in SY ∗∗ such that

〈Fn
i , fn

j 〉 > ε for all 1 ≤ i ≤ j ≤ n, 〈Fn
i , fn

j 〉 = 0 for all 1 ≤ j < i ≤ n, and
‖T ∗(fn

i )‖ ≤ δ for all 1 ≤ i ≤ n. Making use of the principle of local reflexivity,
we may pick a subset {zn

i }ni=1 in SY so that 〈zn
i , fn

j 〉 > ε if 1 ≤ i ≤ j ≤ n and
〈zn

i , fn
j 〉 = 0 if 1 ≤ j < i ≤ n. Thus, both conditions (6.36) and (6.37) are satisfied

for p = n.
Next, by Lemma 6.5.15, there exists a subset

(6.38) {wi}ni=1 ⊂ (1 + ε−1)nBY

such that 〈fn
i , wj〉 = δij for all i and j. Let yn

i := P (wi) for all 1 ≤ i ≤ n,
and prove that condition (6.34) holds for the chosen yn

i . In fact, if k < n, then
yn

j ∈ R(P ) ⊂ N(fk
i ), so 〈fk

i , yn
j 〉 = 0; and as fn

i ∈ N(P )⊥ and yk
i ∈ N(P ), then

〈fn
i , yk

j 〉 = 0. Finally, as fn
i ∈ N(P )⊥ = R(P ∗), then fn

i = P ∗(fn
i ), so

〈fn
i , yn

j 〉 = 〈fn
i , P (wj)〉 = 〈fn

i , wn
j 〉 = δij ,
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such as we wanted. It only remains to check condition (6.35) for p = n. Indeed,
by formula (6.38), since ‖T ∗(fn

i )‖ ≤ δ and yn
i = P (wn

i ),

n∑
i=1

‖yn
i ‖‖T ∗(fn

i )‖ ≤ n‖P‖(1 + ε−1)nδ = 2−n.

Once the families {fn
i }ni=1, {zn

i }ni=1 and {yn
i }ni=1 have been obtained for all

n ∈ N, we define an operator Q ∈ L(Y ∗, X∗) by

Q(f) := −
∞∑

n=1

n∑
i=1

〈f, yn
i 〉 · T ∗(fn

i ).

Note that condition (6.35) yields

‖Q‖ ≤
∞∑

n=1

n∑
i=1

‖yn
i ‖‖T ∗(fn

i )‖ ≤
∞∑

n=1

2−n = 1,

hence Q is well defined and compact.
Notice that all the finite ε-triangular sequences (fn

i )n
i=1 are contained in

N(T ∗ + Q), so N(T ∗ + Q) is not super-reflexive by virtue of Proposition A.5.6.
But Q is the conjugate operator of K ∈ L(X, Y ), where

K(x) = −
∞∑

n=1

n∑
i=1

〈T ∗(fn
i ), x〉yn

i .

Therefore, as N(T ∗+ K∗) =
(
Y/R(T + K)

)∗, it follows that Y/R(T + K) cannot
be super-reflexive. The proof is done. �

Note that, in the preceding theorem, the operator K can be chosen so that
its norm is arbitrarily small. Indeed, given η > 0, it is enough to substitute the
operator K in the proof of Theorem 6.6.11 for Kη = −

∑∞
n=k

∑n
i=1〈T ∗(fn

i ), · 〉yn
i ,

where k must be chosen sufficiently large so that ‖Kη‖ < η.
Theorem 6.6.11 has important consequences.

Proposition 6.6.12. Given a Banach space Y , the following statements hold:

(i) every super-reflexive quotient of Y is finite dimensional if and only if, for
each Banach space X, every cosupertauberian operator T ∈ L(X, Y ) is lower
semi-Fredholm;

(ii) every reflexive quotient of Y is super-reflexive if and only if, for each Banach
space X, every cotauberian operator T ∈ L(X, Y ) is cosupertauberian.

Proof. (i) Assume all super-reflexive quotients of Y are finite dimensional. Thus,
by Theorem 6.6.11, if T ∈ L(X, Y ) is cosupertauberian, then the cokernel of T +K
is finite dimensional for all compact operators K ∈ L(X, Y ). Therefore, T is lower
semi-Fredholm because of Theorem A.1.9.
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For the converse, assume that Y contains a subspace R so that Y/R is infinite-
dimensional and super-reflexive. Then the embedding JR : R −→ Y is not lower
semi-Fredholm, but by Proposition 6.6.3, it is cosupertauberian.

(ii) The proof is analogous to that of (i), but here we have to apply the
perturbative characterizations for cosupertauberian operators and for cotauberian
operators given respectively in Theorem 6.6.11 and in Theorem 3.1.20. �

As in Proposition 6.5.17, situations described in Proposition 6.6.12 are not
trivial. For instance, given the original Tsirelson space XT and any Banach space
X , every operator T ∈ L(X, XT) is cotauberian, but T is cosupertauberian if and
only if T is lower semi-Fredholm.

Another consequence of Theorem 6.6.11 is the following algebraic character-
ization for cosupertauberian operators.

Proposition 6.6.13. Given T ∈ L(X, Y ), the following statements are equivalent:

(a) the operator T is cosupertauberian;

(b) for every space Z and every A ∈ L(Y, Z), if AT is super weakly compact,
then A is super weakly compact;

(c) a quotient Y/E is super-reflexive whenever QET is super weakly compact.

Proof. (a)⇒(b) Assume T is cosupertauberian and AT is super weakly compact.
Thus, T ∗A∗ is also super weakly compact, and T ∗ is supertauberian, so Proposit-
ion 6.5.19 yields A∗ is super weakly compact and hence so is A.

(b)⇒(c) Let E be a closed subspace of Y so that QET is super weakly
compact. Thus, by hypothesis, the quotient operator QE ∈ L(Y, Y/E) is super
weakly compact. Therefore, given any ultrafilter U, (QE)U is weakly compact and
surjective, so (Y/E)U is reflexive, that is, Y/E is super-reflexive.

(c)⇒(a) Let us assume T is not cosupertauberian. Then, by Theorem 6.6.11,
there exists a compact operator K ∈ L(X, Y ) so that Y/E is not super-reflexive,
where E := R(T −K). Consider the quotient operator QE ∈ L(Y , Y/E). Thus
QET = QEK, and since the class of all compact operators is ultrapower-stable,
then QET is super weakly compact, but Y/E is not super-reflexive. Therefore, (c)
fails. �

Remark 6.6.14. Proposition 6.6.13 yields the identity

(W+
up)d = (Wup)−.

and Theorem 6.6.11 can be expressed as

T ∈ (Wup)−(X, Y )⇔ ∀K ∈ K(X, Y ), Y/R(T + K) ∈ Sp(Wup).

After Proposition 3.1.22, it follows that the class of all cotauberian operators,
(W+)d, equals W−. But by virtue of Theorem 3.1.18, (W−)d is strictly smaller



6.6. Cosupertauberian operators 181

than W+, pointing out clearly that the duality between the classes of tauberian
operators and cotauberian operators is not perfect.

Nevertheless, we have the following pair of results about duality concerning
the class of supertauberian operators and that of cosupertauberian operators.

Proposition 6.6.15. The identity (Wup)− = (W−)up holds.

Proof. On the one hand, Theorem 6.6.6 shows that the class of all cosupertaube-
rian operators coincides with (W−)up. On the other hand, Proposition 6.6.13 yields
that the class of all cosupertauberian operators is (Wup)−. �

Some of the main results of Sections 6.3, 6.5 and this section merge in the
proof of the following proposition.

Proposition 6.6.16. The following identities hold:

(W+)up =
(
(W−)d

)up =
(
(W−)up

)d =
(
(Wup)−

)d
.

Proof. Throughout this proof, we will freely use the identity (W+)up = (Wup)+
(see Remark 6.5.20), the fact that the class of cosupertauberian operators equals
(Wup)− (see Remark 6.6.14), and the identity (Wup)− = (W−)up proved in Propo-
sition 6.6.15.

Let U be any ultrafilter.

In order to prove that (W+)up ⊂
(
(W−)d

)up, take T ∈ (W+)up. By Theo-
rem 6.5.7, TU ∈ (W+)up, and since the class of supertauberian operators is stable
under biduality, then (TU)∗∗ ∈ (W+)up. Thus, (TU)∗∗ ∈ W+, so (TU)∗ ∈ W−.
Hence TU ∈ (W−)d, and therefore, Theorem 6.6.6 yields T ∈

(
(W−)d

)up.

To prove
(
(W−)d

)up ⊂
(
(W−)up

)d, take T ∈
(
(W−)d

)up. By definition,
(TU)∗ ∈ W−, but by Proposition 3.1.22, W− equals T d, so (TU)∗∗ ∈ W+. Thus
TU ∈ W+, and Theorem 6.5.7 yields TU ∈ (W+)up. Then T ∈ (W+)up, and as

(T ∗∗)U ≺ls T ∗∗ ≺ls T,

and (W+)up is stable under local supportability, we get (T ∗∗)U ∈ (W+)up. Thus,
(T ∗∗)U ∈ W+, and by Theorem 6.6.6, (T ∗U)∗ ∈ W+, so T ∗ ∈ (W−)up. Therefore,
T ∈

(
(W−)up

)d.

The inclusion
(
(W−)up

)d ⊂ ((Wup)−
)d is trivial because (W−)up = (Wup)−.

Finally, let us prove that
(
(Wup)−

)d ⊂ (W+)up. Let T ∈
(
(Wup)−

)d. Thus
T ∗ ∈ (Wup)−, and by Remark 6.6.14, T ∗ is cosupertauberian, that is, T ∗∗ is
supertauberian. Then T is also supertauberian, that is, T ∈ (W+)up, and the
proof is done. �
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Local supportability versus local representability

Local supportability and local representability are closely related in situations like
those of Theorem 6.3.9 or Theorem 6.3.13. Nevertheless, both notions are mutually
independent. This is a consequence of an argument that can be outlined as follows:
assume there exist an ≺ls-stable semigroup S and a pair of operators T /∈ S and
S ∈ S such that T ≺lr S. Then T is not locally supportable by S, which proves
that local representability does not imply local supportability. The fact that local
supportability does not imply local representability is proved analogously.

This section provides the corresponding examples of semigroups S and op-
erators T and S that fulfill the arguments given above. In particular, Proposi-
tion 6.6.21 involves the semigroup of cosupertauberian operators.

Let us introduce some notation. The space of all continuous functions on the
unit interval I := [0, 1] will be denoted by C(I), and its dual, the space of all
Radon measures on I, by M. The space of all Lebesgue-integrable functions on
I is isometrically identified with a subspace of M, denoted L1(I). Moreover, let
N be the subspace of M of all singular measures with respect to the Lebesgue
measure on the unit interval. It is a classic result that

M = L1(I)⊕1 N .

Given a function f : I −→ R, and a positive integer 1 ≤ i ≤ 2k, let

mk
i (f) := inf f(Ik

i ),

Mk
i (f) := sup f(Ik

i ),

ρk(f) := max{Mk
i (f)−mk

i (f) : 1 ≤ i ≤ 2k},

where Ik
i is the dyadic interval defined as in Example 4.1.11 and χk

i is its charac-
teristic function.

We consider a system of positive norm-one measures {νk
i }2

k

i=1
∞
k=0 in M such

that every νk
i is concentrated on Ik

i . Let Gk ∈ L(M) be the norm-one projection
defined by

(6.39) Gk(λ) :=
2k∑
i=1

λ(Ik
i )νk

i .

Lemma 6.6.17. Given k ∈ N, f ∈ C(I) and λ ∈M, we have

|〈λ −Gk(λ), f〉| ≤ ‖λ‖ρk(f).

Proof. It is sufficient to show the result for a positive measure λ. We consider the
functions mf and Mf defined on the unit interval by
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mf (t) :=
2k∑
i=1

mk
i (f)χk

i (t),

Mf(t) :=
2k∑
i=1

Mk
i (f)χk

i (t).

Note that
∫ 1

0
mf dλ =

∫ 1

0
mf dGk(λ) and

∫ 1

0
Mf dλ =

∫ 1

0
Mf dGk(λ). More-

over, ∫ 1

0

mf dλ ≤
∫ 1

0

f dλ ≤
∫ 1

0

Mf dλ,

and∫ 1

0

mf dGk(λ) ≤
∫ 1

0

f dGk(λ) ≤
∫ 1

0

Mf dGk(λ),

therefore, we get∣∣∣∣∫ 1

0

f dλ−
∫ 1

0

f dGk(λ)
∣∣∣∣ ≤ ∫ 1

0

(Mf −mf ) dλ ≤
2k∑
i=1

ρk(f)λ(Ik
i ) = ‖λ‖ρk(f). �

Proposition 6.6.18. Let U be an ultrafilter on N and define G ∈ L(M, L1(I)U) by
G(λ) := [Gn(λ)]n (Gn defined as in formula (6.39)). Then the next statements
hold:

(i) limn〈Gn(λ), f〉 = 〈λ, f〉 for all λ ∈ M and all f ∈ C(I);

(ii) limn ‖Gn(λ)‖ = ‖λ‖ for all λ ∈M, so G is a metric injection.

Proof. (i) Let λ ∈ SM and f ∈ C(I). By uniform continuity of f , there is a positive
integer n0 verifying ρn0(f) < ε. So, by Lemma 6.6.17, we have |〈λ−Gn(λ), f〉| < ε
for all n ≥ n0.

(ii) Let λ ∈M and ε > 0. Choose f ∈ BC(I) so that 〈λ, f〉 > ‖λ‖ − 2−1ε. By
statement (i), there is n0 such that |〈Gnλ, f〉| > |〈λ, f〉| − 2−1ε for all n ≥ n0, so

‖λ‖ − ε < |〈Gnλ, f〉| ≤ ‖Gn(λ)‖ ≤ ‖λ‖. �

The following theorem offers an example of operator local representability
concerning the space L1(I).

Theorem 6.6.19. Let T ∈ L
(
Y, C(I)

)
and {νk

i }2
k

i=1
∞
k=0 ⊂ M a system of positive,

norm-one measures such that every νk
i is concentrated in Ik

i . Let Z be the closed
subspace of M generated by {νk

i }2
k

i=1
∞
k=0, consider the metric injection G given in

Proposition 6.6.18, and the metric surjection P ∈ L(Y ∗U, Y ∗) defined by
P ([y∗n]) := w∗- lim

n→U
y∗n,

where w∗ denotes the σ(Y ∗, Y ) topology. Then T ∗ = P ◦ (T ∗|Z)U ◦G. Hence, T ∗

is locally representable in T ∗|Z .
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Proof. Given λ ∈M, Proposition 6.6.18 shows

P ◦ (T ∗|Z)U ◦G(λ) = w∗- lim
n→U

T ∗Gn(λ) = T ∗(λ),

so Proposition 6.3.2 proves that T ∗ is locally representable in T ∗|Z . �

Corollary 6.6.20. For every T ∈ L
(
Y, C(I)

)
, the conjugate T ∗ is locally repre-

sentable in T ∗|L1(I) and in T ∗|N .

Proof. For every dyadic interval Ik
i , we define a measure μk

i by

μk
i (A) := 2kμ(A ∩ Ik

i ) for every borelian set A ⊂ I,

where μ is the Lebesgue measure on I. Let us denote by δk
i the Dirac delta asso-

ciated with the middle point of Ik
i . Let

Z := span{δk
i }2

k

i=1
∞
k=0 ⊂ N

and note that L1(I) = span{μk
i }2

k

i=1
∞
k=0. By Theorem 6.6.19, T ∗ is locally repre-

sentable in T ∗|L1(I) and in T ∗|Z , hence in T ∗|N . �

Proposition 4.2.2 shows that given an operator T : L1(μ) −→ Y , T is taube-
rian if and only if TU|N(PμU

) is an isomorphism. This result contrasts with the
following:

Proposition 6.6.21. There is a non-tauberian operator T ∗ ∈ L(M) such that T ∗|N
is an isomorphism. Hence, local representability does not imply local supportability.

Proof. For every n ∈ N, we denote

Jn := [1/2n, 2/2n],

J+
n := (2/2n+1, 3/2n+1),

J−n := (3/2n+1, 4/2n+1),

and define the functions

fn(t) := sin(2n+1πt)χJn(t) ∈ C(I),
hn(t) := 2n(χJ+

n
− χJ−n )(t) ∈ L1(I).

Note that ‖hn‖1 = 1 and 〈hm, fn〉 = 2π−1δmn.
Since limn〈hn, f〉 = 0 for all f ∈ C(I), given any null sequence α ≡ (αn)n∈N

contained in the interval (0, 1), we can define Pα ∈ L
(
C(I)

)
by

Pα(f) :=
∞∑

n=1

(1−αn)〈hn, f〉fn
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and T := IC(I) − 2π−1Pα, so

T ∗(λ) = λ− 2π−1
∞∑

n=1

(1−αn)〈λ, fn〉hn.

Note that P ∗α(λ) ∈ L1(I) for all λ ∈ M, so the decomposition M = L1(I) ⊕1 N
yields ‖T ∗ν‖ ≥ ‖ν‖ for all ν ∈ N , hence T ∗|N is an isomorphism. However,
T ∗(hn) = αnhn, so limn T ∗(hn) = 0. Moreover, (hn) is a normalized disjoint se-
quence, hence Theorem 4.1.3 yields that T ∗|L1(I) is not tauberian, so T ∗|L1(I)

is not supertauberian either. As (W+)up is an injective semigroup, it follows that
T ∗ /∈ (W+)up. Moreover, asW+

up is an ultrapower-stable upper semigroup, Propo-
sition 6.4.11 shows that T ∗ is not locally supportable by T ∗|N , and by Corollary
6.6.20, we conclude that local representability does not imply local supportabil-
ity. �

Let us prove finally that local supportability does not imply local repre-
sentability.

Proposition 6.6.22. Let Υ ∈ L(�2, �∞) be a metric injection, and let I�2 be the
identity operator on �2. Then I�2 is locally supportable by Υ , but I�2 is not locally
representable in Υ . Hence, local supportability does not imply local representability.

Proof. It is immediate that I�2 is locally supportable by Υ . Let us assume that
I�2 is locally c-representable in Υ . Then, by Proposition 6.3.2, there is a ultrafilter
U and operators A ∈ L(�2, (�2)U), B ∈ L((�∞)U, �2) so that I�2 = BΥUA. Since
(�∞)U is isometric to a space of continuous functions on some compact set [99], it
follows that (�∞)U has the Dunford-Pettis property. But �2 is reflexive so (�∞)U

and �2 are essentially incomparable, and therefore, B is an inessential operator
(see Theorem 1 in [69]). Besides, by Remark 6.1.34, the class I of all inessential
operators is an operator ideal. Therefore, 0 = I�2 −BΥUA is a Fredholm operator,
a contradiction. �

6.7 Notes and Remarks

Operator ideals in Banach space theory were popularized by Pietsch, but the
notion of operator ideal, as well as that of operator semigroup, already occurred in
Fredholm theory. It is important to point out that the notion of operator semigroup
considered in this book (Definition 6.1.1) has nothing to do with the semigroups
in the context of operator theory and differential equations, like in [55].

The paper of Lebow and Schechter [118] is one of the first references in
which the term semigroup is considered in a sense similar to the one given here.
Afterwards, there are more appearances of operator semigroups in the literature,
sometimes implicitly, as in the case of the semigroup RN+ associated with the
ideal RN of the Radon-Nikodym operators considered by Bourgain in [40] (see
Definition 5.3.15).
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The term semigroup reappears in [89] and it is finally axiomatized by Aiena et
al. in [1]. Most of the concepts introduced in Section 6.1 have been taken from [1].

The notion of operator semigroup given in Definition 6.1.1 differs slightly
from the original one given in [1]: in the first case, an operator semigroup is required
to contain all Fredholm operators while in the second one it is enough to contain
the bijective operators. This weakening is rather formal. The only difference is that
the original definition admits the class of all bijective operators as a semigroup,
while Definition 6.1.1 does not. From an algebraic point of view, it would have
been desirable to accept the class of all bijective operators as a semigroup, but
this makes sense only if the class of all null operators were an operator ideal itself.
That would have meant a modification in the original definition of operator ideal
given by Pietsch (see Definition A.2.1). But the theory of operator ideals is well
established. So we have just preferred to keep the original definition of operator
ideal and to change that of operator semigroup.

Semigroups of the form A+ and A− have been studied for some operator
ideals A other than K, W or Wup (see [6], [34], [89], [92], [87], [102] and [126]).

Bourgain proved that the class of all separable L1-spaces with the property
of Radon-Nikodym has no universal element by finding a convolution operator in
RN+ [40].

The semigroup RN+ has been explicitly studied in [88] in order to prove
the existence of L1-spaces with the Radon-Nikodym property containing infinite
dimensional reflexive subspaces. See also [138]. Moreover, the semigroup (RN d)−
was studied in [87] where, among other results, it is proved that RN d− coincides
with (RN+)d and admits a perturbative characterization.

The semigroups Al and Ar were introduced and studied in [2]. That paper
contains a detailed description of the structural properties of Al and Ar, including
their behavior under duality. Actually, that paper follows the pattern laid out by
Yood, who studied the semigroups Kl and Kr [176], and by Yang, who studied the
semigroups Wl and Wr [175].

Given an space ideal A, we can define two classes of operators A-SS and A-SC
that coincide with the strictly singular and the strictly cosingular operators in the
case when A is the ideal of the finite dimensional spaces. When A satisfies certain
incomparability conditions, A-SS or A-SC is an operator ideal. The corresponding
semigroups A-SS+ and A-SC− where studied in [3], where it is shown that they
admit a perturbative characterization.

Example 6.1.21 is due to Astala and Tylli [16]. The notion of perturbation
class of a semigroup is due to Lebow and Schechter [118]. The notion of radical of
an operator ideal was introduced by Pietsch in [139].

The terminology strongly tauberian was introduced by Rosenthal [147], but
these concepts were around before, such as in [115] (see Question 1.3.5) and
in [175]. The semigroup ST ∩ST d also occurs in [93]. However, credit is certainly
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due to Rosenthal for making the first penetrating study of ST in his paper [147],
which is a sequel of his c0-dichotomy theorem [146].

Most of the results in Section 6.2 belong to [147] with the exceptions of Propo-
sition 6.2.9, the results concerning strongly cotauberian operators, Lemma 6.2.17
(borrowed from [98]), Lemma 6.2.11 and Theorem 6.2.18, which were proved for
complex Banach spaces by Bermúdez and Kalton [29].

Theorem 6.2.13 follows closely the original argument used by Rosenthal
in [147], but it is necessary to point out that the definition of ε-triangular se-
quence used in this book and that of Rosenthal given in [147] are non-equivalent,
although, from a technical point of view, both types of ε-triangular sequence are
intended for the same purposes and are handled in a similar way.

As a consequence of Theorem 6.2.18, Bermúdez and Kalton proved that,
given a complex von Neumann algebra X and an operator T ∈ L(X), T ∗ has
non-void point spectrum. Indeed, let S := T ∗. Non-reflexivity of X yields that
Sco has non-void spectrum. Thus, choosing any λ in the boundary of σ(Sco), the
operator λIX∗∗/X−T co is not strongly tauberian, and since the dual space of a von
Neumann algebra is L-embedded in its bidual, the complex version of Theorem
6.2.18 proves that N(λIX∗(3) − S∗∗) �⊂ X∗. Thus, the authors conclude that T ∗

cannot be injective, so T ∗ must have some eigenvalue. As a consequence of this fact,
Kalton and Bermúdez prove that a complex, non-reflexive von Neumann algebra
cannot support any topologically transitive operator because the conjugate of such
an operator does not have any eigenvalue (an operator T ∈ L(X) is said to be
topologically transitive if for every pair of neighborhoods, U and V , there exists
n ∈ N such that T n(U) ∩ V �= ∅).

In general, the operator j of the tauberian decomposition of an operator is
not strongly tauberian. In fact, let T be an operator such that the range of T co is
not closed, and consider the tauberian decomposition T = jUk. By Theorem 3.2.8,
T co = jcoU cokco is equivalent to the tauberian decomposition of T co. Thus, the
range of jco is not closed, hence j cannot be strongly tauberian. Similar arguments
show that the cotauberian factor k is not strongly cotauberian in general.

All the material in Section 6.3, devoted to operator finite representability,
has been borrowed from [129], [130] and [140]. While the notion of finite rep-
resentability is well established, the situation has been very different for their
operators. The first definitions for operator finite representability were given in
1976 and 1977 by Beauzamy ( [19] [20], [24]) in studying the ideal of uniform con-
vexifying operators, which matches with Wup. But his definitions were not very
appropriate for looking into more operator ideals other than Wup. This situation
was ameliorated by Heinrich in 1980 [101], and later by Pietsch in 1999 [140],
whose definition of operator finite representability has been adopted in this book
as Definition 6.3.1. Heinrich finite representability is just a particular case of that
of Pietsch. Indeed, after [100, Theorem 1.2], an operator T is finitely representable
in S when the operators A and B in Proposition 6.3.2 are a metric injection and
a metric surjection respectively. But those were not the only definitions of opera-
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tor finite representability. Beauzamy gave another one in 1982 [24] with the sole
intention of studying the ideal Wup, and Bellenot introduced another one in 1984
looking for certain strengthening of the principle of local reflexivity [26]. These two
last definitions are very different from that given by Heinrich. Quoting Bellenot’s
words in his paper:

“This is a strange definition, but it is what we obtain from Corollary 7,...
The definition above uses the domain as the point of reference where as
Beauzamy [19] uses the range and Heinrich uses both.”

This probably did not contribute much to clarifying what operator finite repre-
sentability should mean. However, the operator semigroup axiomatization illu-
minated the situation. Indeed, rather than looking at technical differences, the
paper [130] classifies all different types of operator finite representability into two
types in accordance with their applications to either operator ideals or operator
semigroups; therefore, all possible connections between these two types are just a
reflection of the interplay between operator ideals and operator semigroups.

Thus, following the schema laid down by Pietsch for operator ideals, the
authors of [130] introduced the notion of local supportability (see Definition 6.3.4)
as a generalization of Bellenot’s finite representability (his definition is just the
particular case in Definition 6.3.4 when U and V are ε-isometries, which makes
the operators U and V in Proposition 6.3.5 to be isometries), which is in turn a
generalization of that of Beauzamy in [24] (indeed, Beauzamy’s definition asks the
additional condition that ‖SU − V T |E‖ = 0). Let us say that all those successive
generalizations are useful. Indeed, given an operator T , in general, T ∗∗ is not f.r.
in T in the sense of Beauzamy in [24], but it is Bellenot f.r. in T ; moreover, T co is
locally supportable by T (see Theorem 6.3.19), but it is not clear if T co is Bellenot
f.r. in T . Analogously, T ∗∗ is Heinrich finitely representable in T , but it is not well
known if T co is Heinrich f.r. or not in T , but it is locally representable in T (see
Theorem 6.3.20). A comparison between all the mentioned types of operator finite
representability can be found in [130], including all the results of Section 6.6 that
prove the independence between local supportability and local representability.

Theorem 6.3.8, which comprises the results about the finite representability
of T ∗∗ in T , and its sequels about the finite representability of T co in T (Theo-
rems 6.3.19 and 6.3.20) are proved in [129]. Restricted versions of Theorem 6.3.8
were obtained by Heinrich [101], Basallote and Dı́az [18], Behrends [27] and Bel-
lenot [26]. It is remarkable that Behrends proof [27, Corollary 5.4] is only achieved
for tauberian operators. Lemma 6.3.18 is based upon a result of Kalton [114].

The proof of Theorem 6.3.12 about the finite representability of TU
∗ in T ∗U

has been taken from [129]. We point out that, with the hypotheses of Theo-
rem 6.3.12, it is possible to obtain the following additional properties:

(iv) U(f) = f for all f ∈ F ∩ Y ∗U,

(v) V (h) = h for all h ∈ H .
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For that purpose, it is sufficient to use [85, Theorem 3.4] instead of Propos-
ition 6.3.11. Heinrich gave an earlier proof of the fact that TU

∗ is locally rep-
resentable in T ∗U, including theses (iv) and (v) [101].

All the results in Section 6.4 about applications of operator finite repre-
sentability belong to [129], [130] and [140]. In particular, it is proved in Cor-
ollary 6.4.14 that if S is an upper (or lower) ultrapower-stable semigroup and
T ∈ S, then T ∗∗ ∈ S. This fact was proved earlier in [80], but only for upper
ultrapower-stable semigroups Z for which an operator T belongs to Z if and only
if N(TU) ∈ Sp(Z) for all ultrafilters U. An earlier antecedent of this kind is due
to Tacon [158], who proved the same result but only for the semigroup of super-
tauberian operators.

The facts that T ∗∗ ≺ls T and TU
∗ ≺ls T ∗U for all operators T and all ultra-

filters U seem to be sufficient to study the duality properties of the semigroups
S and Sd where S is any ultrapower-stable upper semigroup. However, after the
counterexamples given by Basallote and Dı́az in [17, Section 2], there is not much
hope for the existence of an appropriate notion of operator finite representability
for the study of non-dual lower ultrapower-stable semigroups.

Supertauberian operators and cosupertauberian operators were introduced
by Tacon in order to find some classes of tauberian operators with tauberian
biconjugates [157] [158]. His results are given in the language of non-standard
analysis. A treatment of these semigroups in terms of ultrapowers was carried out
in [127] and in [80], where it is proved that, given any operator T and any ultrafilter
U, the kernel of TU

∗ is finitely representable in that of T ∗U. All the results about
supertauberian operators displayed in Section 6.5 have been taken from [74]. The
perturbative characterization for cosupertauberian operators, including its sequels,
given in Theorem 6.6.11, also belong to [74].

The results of Proposition 6.5.21 about the natural inclusions of vector val-
ued spaces Lp(X) into L1(X) have been borrowed from [127]. The analysis of
Proposition 6.5.22 about the inclusion of the James space into c0 appears in [127]
and in [81].

As it was shown in Chapter 3, the tauberian decomposition T = jUk of an
operator T supplies a tauberian operator j and a cotauberian operator k. In gen-
eral, neither is j supertauberian nor is k cosupertauberian. It was proved in [127]
that this is the case for the super-weakly compact operator T0 that does not fac-
torize through any super-reflexive space [19, 20]. The argument is as follows: by
Proposition 5.3.3, the factor j for T0 is super-weakly compact. If j were super-
tauberian, the initial space of j would be super-reflexive, which is not possible.
The argument for the factor k is similar.

In general, given an ultrafilter V, TV = jVUVkV is not the tauberian decom-
position of TV. Indeed, if T has non-closed range, by the properties of tauberian
decompositions given in Theorem 3.2.1 and Proposition A.4.22, jV is not injective.

The semigroups (Uup)+ and (Rup)+ admit a parallel study to that carried out
for the semigroups of supertauberian and cosupertauberian operators throughout
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Sections 6.5 and 6.6. Indeed, it was proved in [81] that given an operator T in
Lc(X, Y ), the following statements are equivalent:

(1) T ∈ (Uup)+ (alt., T ∈ (Rup)+);

(2) given any ultrafilter U, the kernel N(TU) does not contain any copy of c0

(alt., any copy of �1);

(3) given any ultrafilter U, c0 (alt., �1) is not finitely representable in N(TU);

(4) for every compact operator K ∈ L(X, Y ), c0 (alt., �1) is not finitely repre-
sentable in N(T + K).

As a consequence of the perturbative characterization given in statement (4), the
aforementioned paper shows that the identities (Uup)+ = (U+)up and (Rup)+ =
(R+)up hold, which yields that both semigroups are ultrapower-stable and ≺ls-
stable upper semigroups.

The study of the dual semigroups (Uup
+)d and (Rup

+)d also parallels that of
cosupertauberian operators, although it is necessary to bear in mind that although
Wup is a self-dual ideal, Uup and Rup are not. Thus, it is proved in [81] that the
following statements are equivalent for an operator T ∈ L(X, Y ):

(1′) T ∈ (Uup
+)d (alt., T ∈ (Rup

+)d);

(2′) given any ultrafilter U, N(T ∗U) does not contain any copy of c0 (alt., any
copy of �1);

(3′) given any ultrafilter U, c0 (alt., �1) is not finitely representable in N(T ∗U);

(4′) for every compact operator K ∈ L(X, Y ) and for every n ∈ N, the quotient
Y/R(T + K) does not contain uniformly complemented copies of the spaces
�n
1 (alt., of �n∞).

Let E denote one of the ideals U or R. From the perturbative characterization
(4′) and the ≺ls-stability of the semigroups Eup

+ it can be proved that (Eup
+)d =

(Ed)up
−. For more information, consult [1] and [81].



Appendix A

Basic concepts

Here we include some definitions and results that are fundamental and appear
throughout this book.

A.1 Semi-Fredholm operators

Fredholm theory was originated in the study of the existence of solutions for
integral equations from an abstract point of view. It has found applications in
Banach space theory, and some aspects of the study of tauberian operators have
been inspired by this theory.

In this section we include the main definitions and some basic results of
Fredholm theory.

Definition A.1.1. An operator T ∈ L(X, Y ) is said to be compact if it takes
bounded sets to relative compact subsets.

Definition A.1.2. Let T ∈ L(X, Y ).

(i) T is said to be upper semi-Fredholm if its range is closed and its kernel is
finite dimensional.

(ii) T is said to be lower semi-Fredholm if its range is finite codimensional (hence
closed).

(iii) T is said to be semi-Fredholm if it is upper semi-Fredholm or lower semi-
Fredholm.

We denote by Φ+(X, Y ) and Φ−(X, Y ) the subsets of upper and lower semi-
Fredholm operators in L(X, Y ), respectively.

Definition A.1.3. The index of a semi-Fredholm operator T ∈ Φ+(X, Y )∪Φ−(X, Y )
is defined by

ind(T ) := dim N(T )− dim Y/R(T ).
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Note that ind(T ) ∈ Z ∪ {±∞}.
An operator T is said to be a Fredholm operator if ind(T ) ∈ Z. Therefore,

the class Φ of Fredholm operators is given by

Φ(X, Y ) := Φ+(X, Y ) ∩ Φ−(X, Y ).

It is elementary that an operator K : X −→ Y is compact if and only if for
every bounded sequence (xn) in X , (Txn) has a convergent subsequence. Upper
semi-Fredholm operators admit a similar sequential characterization.

Proposition A.1.4. Let T ∈ L(X, Y ). Then T ∈ Φ+ if and only if a bounded
sequence (xn) in X has a convergent subsequence whenever (Txn) is convergent.

Proof. Suppose that T ∈ Φ+. Let (xn) be a bounded sequence in X such that
(Txn) is convergent.

Since N(T ) is finite dimensional, there exists a closed subspace M of X
so that X = N(T ) ⊕ M . Observe that the restriction T |M is an isomorphism.
Therefore, if we write xn = yn + zn with yn ∈ N(T ) and zn ∈ M , then (zn) is
convergent and (yn) has a convergent subsequence. Hence (xn) has a convergent
subsequence.

For the converse, suppose that T /∈ Φ+. In the case when N(T ) is infinite
dimensional, we can find a bounded sequence (xn) in N(T ) without convergent
subsequences and such that (Txn) converges. Otherwise, if N(T ) is finite dimen-
sional, we can find a closed subspace M such that X = N(T )⊕M , the restriction
T |M is injective but it is not an isomorphism. Let us take a normalized sequence
(zn) in M such that limn ‖Tzn‖ = 0. Note that (zn) cannot have convergent
subsequences, because if z were a limit of a subsequence of zn, we would have
z ∈M ∩N(T ) and ‖z‖ = 1, which is not possible. �

Next we describe some algebraic properties and the behavior under duality
of the semi-Fredholm operators.

Proposition A.1.5. Let S ∈ L(Y, Z) and T ∈ L(X, Y ).

(i) if S and T belong to Φ+, then ST ∈ Φ+ and ind(ST ) = ind(S) + ind(T );

(ii) if ST ∈ Φ+, then T ∈ Φ+;

(iii) if S and T belong to Φ−, then ST ∈ Φ− and ind(ST ) = ind(S) + ind(T );

(iv) if ST ∈ Φ−, then S ∈ Φ−;

(v) T is semi-Fredholm if and only if so is T ∗. In this case, ind(T ∗) = −ind(T ).

The classes Φ+ and Φ− are stable under compact perturbations, as follows
from the next result:

Proposition A.1.6. Consider an upper semi-Fredholm operator T and a compact
operator K, both in L(X, Y ). Then T + K is a semi-Fredholm operator and
ind(T + K) = ind(T ).
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Besides, the semi-Fredholm operators are stable under small norm perturba-
tions:

Proposition A.1.7. The set Φ+(X, Y ) ∪ Φ−(X, Y ) of semi-Fredholm operators is
open in L(X, Y ). Moreover, the index is constant on each connected component of
Φ+(X, Y ) ∪ Φ−(X, Y ).

Next we introduce an important subclass of the compact operators.

Definition A.1.8. An operator K : X −→ Y is said to be nuclear if there exist
sequences (fn) in X∗ and (yn) in Y so that

∑∞
n=1 ‖fn‖ · ‖yn‖ <∞ and

K(x) =
∞∑

n=1

〈fn, x〉yn, for every x ∈ X .

Obviously, ‖K‖ ≤∑∞
n=1 ‖fn‖ · ‖yn‖.

Next we will give perturbative characterizations for the classes of semi-
Fredholm operators. These are probably the most useful characterizations of the
semi-Fredholm operators, which in turn inspired the corresponding characteriza-
tions for the tauberian operators and other classes of operators. The case X = Y
was considered in [118]. The proofs in the general case are not very different, but
we include them for the sake of completeness.

Theorem A.1.9. Let T ∈ L(X, Y ).

(i) The operator T is upper semi-Fredholm if and only if N(T + K) is finite
dimensional for each compact operator K ∈ L(X, Y );

(ii) the operator T is lower semi-Fredholm if and only if Y/R(T + K) is finite
dimensional for each compact operator K ∈ L(X, Y ).

Proof. (i) For the direct implication, let us assume that T is upper semi-Fredholm,
and K : X −→ Y is a compact operator. Then X = X1 ⊕X2, where X1 is finite
dimensional, T |X2

is an isomorphism and ‖K|X2
‖ < ‖T ‖. Thus the restriction of

T + K to X2 is an isomorphism, and since X2 is finite co-dimensional in X , it
follows that T + K is upper semi-Fredholm.

For the converse implication, let T be an operator that is not upper semi-
Fredholm, and let us find a compact operator K : X −→ Y so that N(T + K)
is infinite dimensional. The case when N(T ) is infinite dimensional is trivial. If
N(T ) is finite dimensional, then X = N(T )⊕X1, where T |X1

is injective and has
non-closed range. We shall find a normalized sequence (xn) in X1 and a sequence
(x∗n) in X∗ such that 〈x∗i , xj〉 = δij for all i and j, and such that the operator
K : X −→ Y given by

K(x) := −
∞∑

n=1

〈x∗n, x〉T (xn)

is well defined and compact. Therefore, since T (xn) = −K(xn) for all n, N(T +K)
is infinite dimensional.
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The obtention of (xn) and (x∗n) will be done recursively. First, since T (X1)
is non-closed, there exists x1 ∈ SX1 such that ‖T (x1)‖ ≤ 2−1. Take x∗1 ∈ SX∗ so
that 〈x∗1, x1〉 = 1. Let us assume that the elements x1, . . . , xn in X1 and x∗1, . . . , x

∗
n

in X∗ have already been chosen and satisfy

〈x∗i , xj〉 = δij , ‖xi‖ = 1, ‖x∗i ‖ ≤ ‖Pi−1‖,

and ‖T (xi)‖ ≤
1

2i‖Pi−1‖
,

for all i and j, where P0 is the identity operator on X , and for i ≥ 1, Pi : X −→ X
is the projection that maps every x to x−∑i

j=1〈x∗j , x〉xj .
In order to proceed, as R(Pn) is finite co-dimensional, the range of T |R(Pn)

is not closed, so there exists a norm-one element xn+1 ∈ R(Pn) such that

‖T (xn+1)‖ ≤ 2−n−1‖Pn‖−1.

Choose a norm-one functional f ∈ X∗ so that 〈f, xn+1〉 = 1 and let x∗n+1 := f ◦Pn.
Thus, since R(Pn) =

⋂n
i=1 N(x∗i ), we get 〈x∗i , xj〉 = δij for all 1 ≤ i, j ≤ n + 1.

Once the sequences (xn) and (x∗n) have been so chosen, we have

‖K‖ ≤
∞∑

n=1

‖x∗n‖‖T (xn)‖ ≤
∞∑

n=1

2−n = 1.

Thus K is well defined and approximable by the finite rank operators

Kn(x) := −
n∑

i=1

〈x∗i , x〉T (xi).

Hence K is compact.
(ii) For the direct implication, let us assume that T is lower semi-Fredholm

and K : X −→ Y is a compact operator. Then T ∗ is upper semi-Fredholm and
K∗ is compact. By part (i), (T + K)∗ = T ∗ + K∗ is upper semi-Fredholm; hence
T + K is lower semi-Fredholm.

For the converse implication, suppose that T is not lower semi-Fredholm. In
the case when R(T ) is closed we have dim Y/R(T ) = ∞; hence the proof is done
taking K = 0.

Assume the case when R(T ) is not closed. Let (an) be a sequence of real
numbers defined inductively by a1 := 2 and

an+1 := 2

(
1 +

n∑
k=1

ak

)
; n ∈ N.

We will find sequences (yk) in Y and (y∗k) in Y ∗ such that

〈y∗i , yj〉 = δij , ‖yi‖ ≤ ai, ‖y∗i ‖ = 1,

and ‖T ∗(y∗i )‖ ≤ 1
2iai

,
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for each i, j ∈ N. These sequences will be obtained recursively.
Since R(T ) is not closed, neither is R(T ∗). Hence there exists y∗1 ∈ Y ∗ such

that ‖y∗1‖ = 1 and ‖T ∗(y∗1)‖ < 1/4. We can also select y1 ∈ Y with ‖y1‖ < 2 such
that 〈y∗1 , y1〉 = 1.

Suppose that n > 1 and that we have found yk and y∗k for all k < n. Since
the restriction of T ∗ to {y1, . . . , yn−1}⊥ has non-closed range, we can find y∗n ∈ Y ∗

such that

〈y∗n, yk〉 = 0 for k < n, ‖y∗n‖ = 1,

and ‖T ∗(y∗n)‖ ≤ 1
2nan

.

We can also select y ∈ Y with ‖y‖ < 2 such that 〈y∗n, y〉 = 1. Let us define

yn := y −
n−1∑
k=1

〈y∗k, y〉yk.

Then ‖yn‖ ≤ ‖y‖
(

1 +
∑n−1

k=1 ‖yk‖
)
≤ 2

(
1 +

∑n−1
k=1 ak

)
= an, and clearly the

required sequences are obtained in this way.
The remainder of the proof is similar to that of part (i). Since

∞∑
n=1

‖T ∗(y∗n)‖ · ‖yn‖ <∞

the expression

K(x) := −
∞∑

n=1

〈T ∗(y∗n), x〉yn

defines a compact operator K : X −→ Y , whose conjugate operator is given by

K∗(y∗) := −
∞∑

n=1

〈y∗, yn〉T ∗(y∗n).

Now, since T ∗(y∗n) = −K∗(y∗n) for all n, we conclude that N(T ∗ + K∗) is
infinite dimensional; hence its predual space Y/R(T + K) is also infinite dimen-
sional. �

A.2 Operator ideals

The theory of operator ideals began with the fundamental work of Grothendieck
and is now a branch of functional analysis that has produced many results and
problems of its own interest. One of its aims is the classification of Banach spaces
in terms of the properties of the operators that act between them.

Next we define the operator ideals and space ideals.



196 Appendix A. Basic concepts

Definition A.2.1. A class A of operators is said to be an operator ideal if it satisfies
the following conditions:

(i) all finite rank operators belong to A;

(ii) for every pair of Banach spaces X and Y , A(X, Y ) is a linear subspace of
L(X, Y );

(iii) given Banach spaces W , X , Y and Z, if T ∈ L(W, X), S ∈ A(X, Y ) and
R ∈ L(Y, Z), then RST ∈ A(W, Z).

The class L of all operators and the class F of all finite rank operators are
the biggest and the smallest operator ideals.

It is easy to check that, if A is an operator ideal, then

Ad = {T : T ∗ ∈ A}

is also an operator ideal. It is called the dual operator ideal of A.

Definition A.2.2. A class A of Banach spaces is said to be a space ideal if it satisfies
the following conditions:

(i) all finite dimensional spaces belong to A;

(ii) X and Y belong to A if and only if X × Y belongs to A;

(iii) if X belongs to A and Y is isomorphic to X , then Y belongs to A.

The class B of all Banach spaces and the class F of all finite dimensional
Banach spaces are the biggest and the smallest space ideals.

A crucial link between operator ideals and space ideals is given in the follow-
ing result.

Proposition A.2.3. Given an operator ideal A, the class of Banach spaces given by

Sp(A) := {X : IX ∈ A}

is a space ideal.

Let us introduce some relevant classes of operator ideals.

Definition A.2.4. Let A be an operator ideal.

(i) A is said to be closed if A(X, Y ) is closed in L(X, Y ) for each pair of Banach
spaces X , Y ;

(ii) A is said to be regular if given an operator T ∈ L(X, Y ), JY T ∈ A(X, Y ∗∗)
implies T ∈ A.

Let us recall that, given a closed subspace N of a Banach Y , JN denotes the
inclusion operator, and QN denotes the quotient operator.
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Definition A.2.5. Let A be an operator ideal.

(i) A is said to be injective if given Banach spaces X and Z and a closed subspace
Y of Z, for each T ∈ L(X, Y ), JY T ∈ A implies T ∈ A.

(ii) A is said to be surjective if given Banach spaces X and Z and a closed
subspace Y of Z, for each T ∈ L(Z/Y, X), TQY ∈ A implies T ∈ A.

It is well known that injective operator ideals can be characterized in terms
of seminorms and the surjective operator ideals in terms of bounded subsets (see,
for example, [106] and [108]). In the special case in which the operator ideals are
closed, we have the following operative characterizations.

Lemma A.2.6. Let A be a closed operator ideal.

(a) A is injective if and only if for an operator T ∈ L(X, Y ) to belong to A it is
both necessary and sufficient that for every ε > 0 there exist a Banach space
Zε and an operator Sε ∈ A(X, Zε) so that

‖Tx‖ ≤ ‖Sεx‖+ ε‖x‖; for every x ∈ X.

(b) A is surjective if and only if for an operator T ∈ L(X, Y ) to belong to A it is
both necessary and sufficient that for every ε > 0 there exist a Banach space
Zε and an operator Sε ∈ A(Zε, Y ) so that

T (BX) ⊂ Sε(BZε) + εBY .

Proof. For part (a), see [106, Theorem 20.7.3]; and for part (b), see [108, Propo-
sition 2.9]. �

A.3 Bases and basic sequences

Here we recall the notion of Schauder basis of a Banach space and the correspond-
ing notion of basic sequence. Moreover, we will state some basic principles that
guarantee the existence of a basic subsequence for sequences satisfying certain
conditions.

Definition A.3.1. A sequence of elements (xn) in an infinite dimensional Banach
space X is said to be a basis of X if for each x ∈ X there is a unique sequence of
scalars (an) such that x =

∑∞
n=1 anxn.

The unit vector basis (en) is a basis in the spaces c0 and �p for 1 ≤ p <∞.

Suppose that (xn) is a basis of X . Then it follows from the basic principles
of functional analysis that, for each k ∈ N, the expression

〈
x∗k,

∞∑
n=1

anxn

〉
:= ak
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defines an element x∗k ∈ X∗. Moreover

Pk

( ∞∑
n=1

anxn

)
:=

k∑
n=1

anxn

defines a projection Pk : X −→ X such that limk Pk(x) = x for each x ∈ X ; hence,
(Pk) is a bounded sequence of projections.

Definition A.3.2. Let (xn) be a basis of X . Then (x∗n) is called the sequence of
coefficient functionals of the basis (xn).

Moreover, C := supk∈N ‖Pk‖ is called the basis constant of (xn).

Observe that, given a basis (xn) of X , the coefficient functionals (x∗n) are
determined by the equalities 〈x∗i , xj〉 = δij for all positive integers i and j.

Definition A.3.3. A sequence (xn) in a Banach space X is said to be a basic
sequence if it is a basis of the subspace span{xn}.
Remark A.3.4. It is easy to see that if (xn) is a basis in X , then the corresponding
sequence of coefficient functionals (x∗n) is a basic sequence in X∗. Indeed, for every
x∗ ∈ span{x∗n}, x∗ =

∑∞
n=1〈x∗, xn〉x∗n.

Definition A.3.5. Let (xn) be a basic sequence in a Banach space X . A sequence
(yn) is said to be a block basis of (xn) if there exist an increasing sequence (ni) in
N and a sequence (αn) of scalars such that yj :=

∑nj+1
i=nj+1 αixi and yj �= 0 for all

j.

It is easy to check that a block basis of a basic sequence is also a basic
sequence.

The following result allows us to recognize a sequence in a Banach space as
a basic sequence.

Proposition A.3.6. [4, Proposition 1.1.9] A sequence (xn) of nonzero elements of
a Banach space X is basic if and only if there is a positive constant C such that∥∥∥ m∑

k=1

akxk

∥∥∥ ≤ C
∥∥∥ n∑

k=1

akxk

∥∥∥
for any sequence of scalars (ak) and any integers m, n such that m ≤ n.

Using this criterion, it is easy to show that every infinite dimensional Banach
space contains a basic sequence. See [122, Theorem 1.a.5] for a proof.

The following principle is very useful. For a proof we refer to [4, Proposi-
tion 1.5.4].

Proposition A.3.7 (Bessaga-Pe�lczyński selection principle). If (xn) is a weakly null
sequence in a Banach space X such that infn ‖xn‖ > 0, then it contains a basic
subsequence.
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Kadec and Pe�lczyński obtained the following criterion to know when a subset
of a Banach space contains a basic sequence [112]. For a proof we refer to [4,
Theorem 1.5.6].

Theorem A.3.8. Let S be a bounded subset of a Banach space such that 0 /∈ S.
Then the following assertions are equivalent:

(a) S does not contain a basic sequence;

(b) S
w

is weakly compact and does not contain 0.

A direct consequence of the above theorem is that the only weakly convergent
subsequences that a basic sequence may contain must be weakly null.

The notion of equivalent sequences is indispensable in the study of isomorphic
theories like that of tauberian operators.

Definition A.3.9. Two sequences (xn) and (yn) in a Banach space X are said to
be equivalent if there exists a bijective isomorphism T : span{xn} −→ span{yn}
such that Txn = yn for each n.

Note that if the sequences (xn) and (yn) in X are equivalent and one of them
is basic, so is the other one.

The following result allows us to characterize the existence of subspaces iso-
morphic to �1 in a Banach space. It was obtained in [145]. For a proof, we refer
to [4, Theorem 10.2.1].

Theorem A.3.10 (Rosenthal’s �1-theorem). Let (xn) be a bounded sequence in a
Banach space X. Then either

(i) (xn) has a weakly Cauchy subsequence, or

(ii) (xn) has a subsequence which is equivalent to the unit vector basis of �1.

Let us give a characterization for basic sequences equivalent to the unit vector
basis of c0.

Definition A.3.11. A series
∑∞

n=1 xn in a Banach space X is said to be weakly
unconditionally Cauchy if

∑∞
n=1 |f(xn)| <∞, for every f ∈ X∗; equivalently, if

sup
{∥∥∑

i∈A

xi

∥∥ : A ⊂ N finite
}

<∞.

The following result is due to Pe�lczyński.

Proposition A.3.12. [51, Corollary V.7] A basic sequence (xn) in a Banach space
is equivalent to the unit vector basis of c0 if and only if infn∈N ‖xn‖ > 0 and∑∞

n=1 xn is a weakly unconditionally Cauchy series.
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Basic sequences and duality

Some special classes of bases and basic sequences have been useful in the study of
Banach spaces, in particular in the research on reflexive spaces.

Definition A.3.13. Let (xn) be a basic sequence in a Banach space X .

(i) (xn) is said to be boundedly complete if for each sequence of scalars (αj),∑∞
j=1 αjxj is convergent whenever supn ‖

∑n
j=1 αjxj‖ <∞;

(ii) (xn) is said to be shrinking if ‖f |Xn
‖ −→

n
0 for all f ∈ X∗, where Xn :=

span{xi}∞i=n.

Proposition A.3.14. [122, Proposition 1.b.2] A basis (xn) in X is shrinking if and
only if the corresponding sequence of coefficient functionals (x∗n) is a basis of X∗.

Proposition A.3.15. [122, Proposition 1.b.4] A Banach space X with a boundedly
complete basis (xn) is isomorphic to a dual space. In fact, X is isomorphic to the
dual of span{x∗n}.

By combining the two previous propositions we obtain the following charac-
terization of reflexivity in terms of bases:

Proposition A.3.16. [122, Proposition 1.b.5] A Banach space X with a basis (xn)
is reflexive if and only if (xn) is both shrinking and boundedly complete.

Remark A.3.17. It was proved by Zippin [177] that a Banach space X with a basis
is reflexive if every basis in X is shrinking or, alternatively, if every basis in X is
boundedly complete.

Proposition A.3.18. [122, Proposition 1.b.6] Let X be a Banach space such that
X∗ has a basis. Then X has a shrinking basis and therefore X∗ has a boundedly
complete basis.

A.4 Ultraproducts in Banach space theory

The ultraproduct constructions are fundamental in model theory, and have been
applied in functional analysis through the concepts of ultrapower of Banach spaces
and ultrapowers of operators.

In this section, I is an infinite set of indices. We introduce the ultrafilters on
I and define the limit on a topological space following an ultrafilter. This concept
allows us to define the ultrapowers of Banach spaces and operators.

Filters and ultrafilters

A filter on a non-empty set I is a collection F of subsets of I satisfying the following
conditions:

(i) ∅ /∈ F,
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(ii) if A ∈ F and B ∈ F, then A ∩B ∈ F,

(iii) if A ∈ F and A ⊂ B, then B ∈ F.

The elements of I are usually referred to as indices. Typical examples of
filters on I are the following:

(1) the Fréchet filter, which consists of all co-finite subsets of I;

(2) the collection of all subsets of I containing a fixed non-empty subset A of I.

If the set I is endowed with an order �, the collection {Ij : j ∈ I}, where
Ij := {i ∈ I : j � i}, is a filter on I called the �-order filter on I.

An ultrafilter U on I is a maximal filter on I. Equivalently, a filter U on I is
an ultrafilter if it satisfies the following additional condition:

(iv) for each subset A of I, either A ∈ U or I \A ∈ U.

The existence of an ultrafilter enlarging a given filter F on I is ensured by Zorn’s
Lemma.

Any ultrafilter enlarging the Fréchet filter on I is called non-trivial. Any
other ultrafilter U on I is of the form {A ⊂ I : j ∈ I} for some fixed element j.
Such an ultrafilter is called principal or trivial.

A non-trivial ultrafilter U on I is said to be countably incomplete or ℵ0-
incomplete if there exists a countable partition {In}∞n=1 of I such that for every
n ∈ N, In /∈ U.

Consider a topological space X , a filter F on a set I and an element x ∈
X . A family (xi)i∈I ⊂ X is said to be convergent to x following F if for every
neighborhood V of x,

{i ∈ I : xi ∈ V} ∈ F;

that element x is called the limit of (xi) following F, and it is denoted by x =
limF xi, x = limi→F xi, xi −→

F
x, or xi −→

i→F
x.

Note that if I is the set N and F is the Fréchet filter on N, then the convergence
following F is the usual sequence convergence.

Lemma A.4.1. Let X be a compact topological space, and let U be an ultrafilter on
I. Then every family (xi)i∈I in X is convergent following U.

Proof. Assume there is a family (xi)i∈I in X which is not convergent following U.
Then, for every z ∈ X , there exists a neighborhood Vz of z such that Iz := {i ∈ I :
xi ∈ Vz} /∈ U. But X is compact, so there exists a finite collection {zk}nk=1 in X
such that X ⊂ ⋃n

k=1 Vzk
. That yields I =

⋃n
k=1 Izk

∈ U, which is a contradiction
because none of the subsets Izk

belongs to U. �
Let U and V be a pair of ultrafilters on I and J respectively. The product

U×V is an ultrafilter on I × J formed by all subsets K of I × J for which

(A.1)
{
i ∈ I : {j ∈ J : (i, j) ∈ K} ∈ V

}
∈ U.
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Thus, given a topological space X , a family (rij)(i,j)∈I×J ⊂ X is convergent fol-
lowing U×V if for every i ∈ I, there exists limV rij = xi and there exists limU xi,
in which case the following identity holds:

(A.2) lim
U×V

rij = lim
U

lim
V

rij .

Henceforth, all ultrafilters will be non-trivial and countably incomplete.

Set-theoretic ultraproducts

Let U be an ultrafilter on a set I, and consider a collection of non-empty sets
(Ωi)i∈I . Let ≡ be the equivalence relation on

∏
i∈I Ωi defined by (xi)i∈I ≡ (yi)i∈I

if {i : xi = yi} ∈ U.

The set-theoretic ultraproduct of Ωi∈I following U is the set

(Ωi)U :=
∏

i∈I Ωi

≡ .

The element of (Ωi)U whose representative is (xi)i∈I is denoted by (xi)U.
Given a family (Ai)i∈I , where Ai ⊂ Ωi for all i, its set-theoretic ultraproduct
following U is defined as

(Ai)U := {(xi)U : ∃J ∈U such that ∀i∈J, xi∈Ai}.

Notice that (Ai)U equals (Bi)U if and only if there exists J ∈ U such that Ai = Bi

for all i ∈ J . Also notice that if there exists J ∈ U such that Ai = ∅ for all i ∈ J ,
then (Ai)U = ∅.
Proposition A.4.2. Let U be an ultrafilter on a set I, and {Ωi}i∈I a collection of
non-empty sets. For every i ∈ I, let Σi be a set algebra of subsets of Ωi, and
consider the collection

(Σi)U := {(Ai)U : Ai ∈ Σi, i ∈ I}.

Then (Σi)U is a set algebra.

Proof. We only need to prove that, for every pair of elements (Ai)U and (Bi)U of
(Σi)U, the sets (Ai)U ∪ (Bi)U and (Ωi)U \ (Bi)U also belong to (Σi)U.

First, notice that

(A.3) (Ai)U ∪ (Bi)U = (Ai ∪Bi)U ∈ (Σi)U.

Indeed, the inclusion of (Ai)U ∪ (Bi)U in (Ai ∪ Bi)U is trivial. For the reverse
inclusion, let (xi)U ∈ (Ai ∪ Bi)U. Thus there exists J ∈ U such that xi ∈ Ai ∪Bi

for all i ∈ J . Let

J1 := {i ∈ J : xi ∈ Ai},
J2 := {i ∈ J : xi ∈ Bi}.
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Thus J = J1 ∪ J2, so J1 ∈ U or J2 ∈ U. If J1 ∈ U, then (xi)U ∈ (Ai)U, and if
J2 ∈ U, then (xi)U ∈ (Bi)U, which proves (A.3). Analogously, it can be proved
that

(Ωi)U \ (Bi)U = (Ωi \Bi)U ∈ (Σi)U. �
It is remarkable that, given a countable family {(An

i )U}∞n=1 in (Σi)U, the
inclusions (∪∞n=1A

n
i )U ⊂ ∪∞n=1(An

i )U and (∩∞n=1A
n
i )U ⊂ ∩∞n=1(An

i )U are strict in
general, even if each Σi is a σ-algebra.

Let σ(Σ) denote the minimal σ-algebra generated by the set algebra Σ. The
following result is a consequence of the ultraproduct iteration theorem.

Proposition A.4.3. Let U and V be a pair of ultrafilters on I and J respectively,
and for every pair (i, j) ∈ I × J , consider a non-empty set Ωij and an algebra Σij

of subsets of Ωij. Thus the σ-algebra σ
(
(Σij)U×V

)
is isomorphic to σ

((
(Σij)V

)U).
Proof. From the definition of product of ultrafilters given in (A.1), it is immediate
that the map I : (Ωij)U×V −→

(
(ΩV

ij)
)U that sends every (tij)U×V to

(
(tij)V

)U is

well defined and bijective. Thus, every set (Aij)U×V is sent by I onto
(
(Aij)V

)U,
which means that the algebra (Σij)U×V is transformed by I into the algebra(
(Σij)V

)U
. Consequently, every σ-algebra of (Ωij)U×V containing (Σij)U×V is

transformed by I into a σ-algebra of
(
(Ωij)V

)U containing the algebra
(
(Σij)V

)U,

concluding that the map from σ
(
(Σij)U×V

)
onto σ

((
(Σij)V

)U) that sends every
A to I(A) is a σ-algebra isomorphism. �

Ultraproducts of Banach spaces and operators

Here we describe the construction of ultrapowers of Banach spaces and operators
and some of their basic properties. In [99], we can find a more detailed description.

Let U be a countably incomplete ultrafilter on a set I. Given a collection
(Xi)i∈I of Banach spaces, let �∞(I, Xi) be the Banach space that consists of
all bounded families (xi)i∈I , endowed with the supremum norm ‖(xi)i∈I‖∞ :=
supi∈I ‖xi‖. Let NU(Xi) be the closed subspace of all families (xi)i∈I of �∞(I, X)
which converge to 0 following U.

The ultraproduct of (Xi)i∈I following U is defined as the quotient

(Xi)U :=
�∞(I, Xi)
NU(Xi)

.

The element of (Xi)U including the family (xi)i∈I as a representative is de-
noted by [xi]. Thus, [xi] equals [yi] if and only if limU ‖xi − yi‖ = 0, which easily
yields the usual identity to compute the norm of [xi]:∥∥[xi]

∥∥ = lim
U
‖xi‖;
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the convergence of (‖xi‖)i∈I following U is provided by Lemma A.4.1.

Let (Xi)i∈I and (Yi)i∈I be collections of Banach spaces, and, for every i ∈ I,
let Ti : Xi −→ Yi be an operator. Suppose that the collection (Ti)i∈I is bounded;
i.e., that supi∈I ‖Ti‖ <∞.

The ultraproduct of (Ti)i∈I following U is the operator (Ti)U from (Xi)U into
(Yi)U defined by

(Ti)U([xi]) := [Tixi].

When Xi = X for all i, then (X)U is called the ultrapower of X following U,
and it is denoted by XU. Usually, its elements are denoted by bold letters x, y, etc.
Analogously, when all the operators Ti equal an operator T , their ultraproduct
following U is called the ultrapower of T following U and is denoted by TU.

The ultrapower XU contains a canonical copy of X via the isometry from X
into XU that sends every x to the constant class [x].

Given a Banach space X , an ultrafilter U on I and a collection {Ci}i∈I of
non-empty subsets of X , the ultraproduct of {Ci}i∈I following U is defined as the
subset

(Ci)U = {[xi] ∈ XU : xi ∈ Ci}.
Proposition A.4.4. Let C be a subset of a Banach space X, and let U be an ultra-
filter on I. Thus the ultrapower CU is a closed subset of XU, and C = CU ∩X.

Proof. In order to prove that CU is closed, consider any element y in its closure,
and take a sequence (xn) in CU so that ‖xn − y‖ < 1/n for all n. Choose a
representative (xn

i )i∈I of every xn such that each xn
i belongs to C and such that

the set {‖xn
i ‖ : i ∈ I, n ∈ N} is bounded. Let (yi)i∈I be a representative of y.

Next, let {In}∞n=1 be a sequence of subsets of I disjoint with U. For every
positive integer n, let

Jn := (∪∞k=nIk)
⋂
{i ∈ I : ‖xn

i − yi‖ < 1/n} ∈ U,

and for every n ∈ N and every i ∈ Jn \Jn+1, define xi := xn
i , so (xi)i∈I is bounded

and [xi] belongs to CU. Moreover, since

{i ∈ I : ‖xi − yi‖ < 1/n} ⊃ Jn ∈ U for all n ∈ N,

it follows that ‖[xi]− [yi]‖ = 0, hence y = [xi] ∈ CU.
The inclusion C ⊂ CU ∩X is immediate from the fact that CU is closed. For

the reverse inclusion, note that if x ∈ CU ∩X , then there exists a family (ci)i∈I

in C so that [ci] = [x]. Thus ci −→
U

x, hence x ∈ C. �

Ultrafilters are useful in finding compact subsets.

Proposition A.4.5. Let A be a subset of a Banach space X, and let U be an ul-
trafilter on a set I. Then A is relatively compact if and only if AU ⊂ X. As a
consequence, X is finite dimensional if and only if X = XU.
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Proof. Assume A is relatively compact. Then the inclusion AU ⊂ X follows easily
from Lemma A.4.1.

For the reverse implication, let us assume that A is not relatively compact.
Then there are δ > 0 and a countable subset {xn}∞n=1 in A such that ‖xm−xn‖ ≥ δ
for all n and all m �= n. Let {In}∞n=1 be a partition of I disjoint with U, and
for every n and every i ∈ In, define zi := xn. Trivially, [zi] ∈ AU. Moreover,
dist ([zi], X) ≥ δ/2. Indeed, given x ∈ X , either ‖x − xn‖ ≥ δ/2 for all n ∈ N or
there exists m ∈ N such that ‖x−xm‖ < δ/2. In the first case, we get ‖x−zi‖ ≥ δ/2
for all i ∈ I, so ‖x− [zi]‖ ≥ δ/2. In the second case, for every n ∈ N \ {m},

‖x− xn‖ ≥ ‖xm − xn‖ − ‖x− xm‖ ≥ δ − δ/2 = δ/2

hence, for every i ∈ ⋃n
=m In, ‖x− zi‖ ≥ δ/2, and since
⋃

n
=m In ∈ U, it follows
that ‖x− [zi]‖ ≥ δ/2, concluding the proof. �
Proposition A.4.6. Given a Banach space X, a closed subspace E of X and an
ultrafilter U on I, the spaces (X/E)U and XU/EU are canonically isometric via
the operator that maps every [xi + E] to [xi] + EU.

The proof is straightforward.

Proposition A.4.7. Let {Xij}(i,j)∈I×J be a collection of Banach spaces and U and
V be a pair of ultrafilters on I and J respectively. Thus, there exists a canonic iso-
metrical isomorphism U : (Xij)U×V −→

(
(Xij)V

)
U

which maps each [xij ](i,j)∈I×J

to
[
[xij ]j

]
i
.

Proof. It is a direct consequence of formulas (A.1) and (A.2). �
Lemma A.4.8. Let X be a Banach space and take any α-net {xi}i∈I in BX with
0 < α < 1. Thus, for every x ∈ SX , there are a sequence (xin )∞n=1 in the net and
a scalar sequence (λn)∞n=1 such that, for every positive integer n,

(i) 0 ≤ λn ≤ αn−1, and

(ii) ‖x−
∑n

m=1 λmxim‖ < αn.

Proof. The choice of the elements λn and xin is carried out recursively. First, we
take λ1 := 1 and select xi1 so that ‖x−xi1‖ < α. Let us assume that {λ1, . . . , λn−1}
and {xi1 , . . . , xin−1} have been already chosen satisfying conditions (i) and (ii).
Then we take

λn := ‖x− (λ1xi1 + · · ·+ λn−1xin−1)‖ < αn−1.

If λn = 0, this recursive procedure ends by setting λp = 0 for all p ≥ n. If λn �= 0,
we select xin so that ‖λ−1

n (x− λ1xi1 − · · · − λn−1xin−1)− xin‖ < α, so we get

‖x− λ1xi1 − · · · − λn−1xin−1 − λnxin‖ < αλn < αn. �

An important tool in local theory is the following one:
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Definition A.4.9. Given ε > 0, an operator L : X −→ Y is said to be an ε-isometry
if

1− ε ≤ ‖T (x)‖ ≤ 1 + ε for all x ∈ SX .

The difference between the concepts of ε-isometry and d-injection is just
technical.

Lemma A.4.10. Let E be a closed subspace of a Banach space X and {xi}i∈I be an
α-net in SE with 0 < α < 1. Let δ > 0 and L : E −→ X a bounded operator such
that 1− δ ≤ ‖L(xi)‖ ≤ 1+ δ for all i ∈ I. Then L is an (α+ δ)(1−α)−1-isometry.

Proof. Let x ∈ SE . By Lemma A.4.8, there are a scalar sequence (λn)∞n=1 and a se-
quence (xin )∞n=1 in the net {xi}i∈I such that 0 ≤ λn < αn−1 and x =

∑∞
n=1 λnxin .

Thus

(A.4) ‖L(x)‖ ≤
∞∑

n=1

λn‖L(xin)‖ ≤ 1 + δ

1− α
= 1 +

α + δ

1− α
.

In order to bound ‖L(x)‖ from below, choose xj in the net so that ‖x− xj‖ < α.
Thus, by (A.4),

‖L(x)‖ ≥ ‖L(xj)‖ − ‖L‖·‖x− xj‖ ≥ 1− δ − 1 + δ

1− α
α = 1− α + δ

1− α
. �

Most of the applications of ultraproduct techniques are obtained from the
following pair of lemmas. Lemma A.4.11 is a sort of converse of Lemma A.4.12.

Lemma A.4.11. Let U be an ultrafilter on a set I, {εi}i∈I a family of positive real
numbers such that εi −→

U
0, and a family of εi-isometries Ti : Xi −→ Yi. Then

(Ti)U is an isometry from (Xi)U into (Yi)U.

Proof. Let [xi] be a norm-one element in (Xi)U. Given ε > 0, choose ε′ > 0 so
that 1 − ε < (1 − ε′)2 and (1 + ε′)2 < 1 + ε, and select J ∈ U so that εi < ε′ and
1− ε′ < ‖xi‖ < 1 + ε′ for all i ∈ J . Thus,

1− ε < (1 − ε′)2 < ‖Ti(xi)‖ < (1 + ε′)2 < 1 + ε for all i ∈ J

which proves that limU ‖Ti(xi)‖ = 1, that is, TU([xi]) is norm-one. �

Lemma A.4.12. Let ε > 0, m a positive integer, U an ultrafilter on a set I, and
{Ei}i∈I be a collection of Banach spaces with dim Ei = m for all i. Thus, the
following statements hold:

(i) dim (Ei)U = m.

(ii) Let {xk}mk=1 be a normalized basis of (Ei)U with xk = [xk
i ]i for every k. For

each j ∈ I, let Lj : (Ei)U −→ Ej be the operator that maps every xk to xk
j .

Then there exists J ∈ U such that, for all j ∈ J , Lj is an ε-isometry.
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Proof. (i) By Auerbach’s Lemma, there exists a biorthogonal system (ek
i , f l

i )m
k=1

m
l=1

in every product Ei × E∗i with ‖ek
i ‖ = ‖fk

i ‖ = 1 for all i and all k.
For every 1 ≤ k ≤ m, consider the element ek := [ek

i ] and let us prove that
{ek}mk=1 is a basis of (Ei)U.

First, given x ∈ S(Ei)U
, let (xi)i∈I be one of its representatives with ‖xi‖ = 1

for all i. Thus, for every xi there are scalars λk
i such that xi =

∑m
k=1 λk

i ek
i . Note

that |λk
i | ≤ 1. Therefore, there exists λk := limi→U λk

i ∈ R. Thus,

x = [xi] =
[ m∑
k=1

λk
i ek

i

]
=

m∑
k=1

[λk
i ek

i ] =
m∑

k=1

[λkek
i ] =

m∑
k=1

λk[ek
i ] =

m∑
k=1

λkek,

which proves that {ek}mk=1 is a generator system of (Ei)U.
In order to prove that {ek}mk=1 is free, for every 1 ≤ k ≤ m, consider the

functional fk ∈ (Ei)U
∗ that maps each [xi] ∈ (Ei)U to limi→U〈fk

i , xi〉. Clearly,
(ek, fl)m

k=1
m
l=1 is a biorthogonal system of (Ei)U×(Ei)U

∗, which shows that {ek}mk=1

is free, and therefore, a basis of (Ei)U.
(ii) Let ε′ > 0 be small enough so that 2ε′(1 − ε′)−1 < ε, and take an ε′-net

{zk}nk=1 in S(Ei)U
. For each zk there exists a finite sequence of scalars (λk

l )m
l=1 so

that zk =
∑m

l=1 λk
l xl. For every j ∈ I, let us write

zk
j :=

m∑
l=1

λk
l xl

j for all 1 ≤ k ≤ n,

so Lj(zk) = zk
j for all zk. Since

J := {i ∈ I : ∀1 ≤ k ≤ n, 1− ε′ < ‖zk
i ‖ < 1 + ε′} ∈ U,

Lemma A.4.10 yields that, for every j ∈ J , the operator Lj is a 2ε′(1 − ε′)−1-
isometry, hence, is an ε-isometry because of the choice of ε′. �

One of the main notions concerning local theory is the following:

Definition A.4.13. Given a pair of Banach spaces X and Y , X is said to be finitely
representable in Y if for every ε > 0 and every finite dimensional subspace E of
X there is an ε-isometry L : E −→ Y .

Proposition A.4.14. A Banach space Y is finitely representable in X if and only
if there exists an ultrafilter U such that Y is isometrically contained in XU.

Proof. Let Y be finitely representable in X . Let I be the set of all pairs i ≡ (Ei, εi)
where Ei is a finite dimensional subspace of Y and εi is a positive real number.
The set I is endowed with an order relation �, where i � j means that Ei ⊂ Ej

and εj ≤ εi. Let U be an ultrafilter containing the �-order filter.
By hypothesis, for every i ∈ I there is an εi-isometry Li : Ei −→ X . By

Lemma A.4.11, the ultrapower (Li)U is an isometry. Let L : Y −→ (Ei)U be given
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by the expression L(y) = [yi], where yi := y if y ∈ Ei, and yi := 0 otherwise.
Note that, for every y ∈ Y , the set Iy := {i : y ∈ Ei} belongs to U, hence L is an
isometry, and therefore, so is the operator (Li)U ◦ L : Y −→ XU.

For the reverse implication, let us assume that there exists an isometry
L : Y −→ XU for a certain ultrafilter U. Let E be a finite dimensional subspace of
Y , and fix a real number ε > 0. Let {ei}ni=1 be a basis of E, and for each element
ek, let (xk

i )i∈I be a representative of L(ek). For every i ∈ I, consider the finite
dimensional subspace Xi spanned by {xk

i }nk=1 and the operator Li : E −→ Xi de-
fined by Li(ek) := xk

i for all 1 ≤ k ≤ n. Thus (Li)U equals L|E , and therefore, by
Lemma A.4.12, there exists J ∈ U so that for every j ∈ J , Lj is an ε-isometry. �

The principle of local reflexivity establishes that the bidual of a Banach space
X is finitely representable in X with certain additional properties.

Theorem A.4.15 (Principle of local reflexivity). Let X be a Banach space, and let
E and F be a pair of finite dimensional subspaces of X∗∗ and X∗ respectively.
Thus, given ε > 0, there exists an ε-isometry T : E −→ X satisfying the following
conditions:

(i) T (x) = x for all x ∈ E ∩X,

(ii) 〈x∗, T (x∗∗)〉 = 〈x∗∗, x∗〉 for all x∗∗ ∈ E and all x∗ ∈ F .

Its original proof can be found in [120] and [110]. Short proofs can be found
in [50], [128] and [155], but it can be also proved from Theorem 6.3.8 in combination
with an easy argument of approximation.

The principle of local reflexivity admits the following translation into the
ultraproduct language:

Proposition A.4.16. Let X be any Banach space. Then there exist an ℵ0-incomplete
ultrafilter V on certain set I and an isometry L : X∗∗ −→ XV satisfying the
following properties:

(i) L(x) = [x] for all x ∈ X,

(ii) L(X∗∗) is complemented in XV,

(iii) for each x∗∗ ∈ X∗∗ and each representative (yi)i∈I of L(x∗∗), yi
w∗−→
V

x∗∗.

Proof. Let I be the set of all triples i ≡ (Ei,Vi, εi) where Ei is a finite dimensional
subspace of X∗∗, Vi is a weak∗ neighborhood of 0 in X∗∗, and εi is a positive real
number. The set I is endowed with the order �, where i � j means that Ei ⊂ Ej ,
Vi ⊃ Vj and εi > εj.

Let F be the �-order filter on I, and take an ultrafilter V refining F. Note
that V is ℵ0-incomplete. In fact, for every index i, let Fi be the smallest linear
subspace of X∗ such that F⊥i ⊂ Vi. For every n ∈ N, let In be the subset of I
formed by all indices j for which dim Ej ≥ n, dim Fj ≥ n and εj ≤ 1/n, and
let I0 := I. Thus {In}∞n=0 is a decreasing sequence of elements of U such that
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⋂∞
n=0 In = ∅, and therefore, {In+1 \ In}∞n=0 is a countable partition of I such that

In+1 \ In /∈ V for all n ∈ N.
Let us now define the isometry L. For every index i ∈ I, the principle of local

reflexivity provides us with an εi-isometry Li : Ei −→ X so that Li(x∗∗) ∈ x∗∗+Vi

for all x∗∗ ∈ Ei and Li(x) = x for all x ∈ X ∩ Ei. Given x∗∗ ∈ X∗∗ \ {0}, let

xi :=
{

Li(x∗∗) if x∗∗ ∈ Ei

0 if x∗∗ /∈ Ei.

Thus, for every ε > 0,

{i ∈ I : 1− ε ≤ ‖xi‖ · ‖x∗∗‖−1 ≤ 1 + ε} ⊃ {i ∈ I : x∗∗ ∈ Ei, εi ≤ ε} ∈ U,

so ‖L(x∗∗)‖ = limV ‖xi‖ = ‖x∗∗‖, that is, L is an isometry.
Notice that, given any weak∗ neighborhood V of 0, there exists B ∈ V such

that V ⊃ Vi for all i ∈ B, so xi ∈ x∗∗ + V for all i ∈ B, and therefore, xi
w∗−→
V

x∗∗.
Thus, if (yi)i∈I is any representative of L(x∗∗), since limV ‖xi − yi‖ = 0, we get
w∗-limV yi = x∗∗, which proves (iii).

Moreover, given x ∈ X , there exists j ∈ I so that x ∈ Ei for all i � j; hence
x = Li(x) for all i ∈ {i : i � j} ∈ V. Thus L(x) = [x], and (i) is done.

In order to prove (ii), consider the norm-one operator Q : XV −→ X∗∗ given
by Q([zi]) := w∗- limV zi. Since x∗∗ = w∗- limV xi for every x∗∗ ∈ X∗∗, where
[xi] = L(x∗∗), we find that QL is the identity operator on X∗∗, so P := LQ is a
norm-one projection from XV onto L(X∗∗). �
Definition A.4.17. If V and L are respectively an ultrafilter and an isometry as in
the preceding proposition, we will say that V and L are associated with the bidual
of X .

A concept in local theory concerning finite representability is that of local
duality.

Definition A.4.18. Given a Banach space X , a closed subspace Z of X∗ is said to
be a local dual of X if for every pair of finite dimensional subspaces E and F of X∗

and X respectively, and for every ε > 0, there exists an ε-isometry L : E −→ Z
satisfying the following conditions:

(i) L(x∗) = x∗ for all x∗ ∈ E ∩ Z;

(ii) 〈L(x∗)− x∗, x〉 = 0 for all x∗ ∈ E and all x ∈ F .

The classical principle of local reflexivity (Theorem A.4.15) and the principle
of local reflexivity for ultrapowers (see [99]) can be stated in terms of local duality:
Example A.4.19. Let X be a Banach space and let U be an ultrafilter:

(i) the space X is a local dual of X∗;

(ii) the ultrapower (X∗)U is a local dual of XU.
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An extension operator is an operator T ∈ L(Z∗, X∗∗), where Z is a closed
subspace of X∗ and T (z∗)|Z = z∗. Local duality admits the following non-local
characterizations:

Theorem A.4.20. Given a closed subspace Z of the dual of a Banach space X, the
following statements are equivalent:

(a) Z is a local dual of X;

(b) there exist an ultrafilter U on a set I and an isometry T from X∗ into ZU

such that T |Z is the natural embedding of Z into X∗ and QT = IX∗ , where
Q maps each [x∗i ] ∈ ZU to the σ(X∗, X)-limit of (xi)i∈I following U;

(c) there exists an isometric extension operator T ∈ L(Z∗, X∗∗) with X ⊂ R(P )
and Z⊥ = N(P ).

The equivalences (a)⇔(b) and (a)⇔(c) are respectively proved in [84] and
in [83].

Let us see some basic properties of the ultrapowers of an operator. These and
other related results can be found in [76].

Proposition A.4.21. Let T ∈ L(X, Y ) be an operator, and U an ultrafilter. Then,
the following statements hold:

(i) TU(BXU
) is closed and equals T (BX)U;

(ii) N(T )U ⊂ N(TU);

(iii) R(TU) ⊂ R(T )U.

Proof. (i) The equality TU(BXU
) = T (BX)U is straightforward, and in combination

with Proposition A.4.4, we get TU(BXU
) is closed.

The proofs of (ii) and (iii) are immediate. �

Proposition A.4.22. Let T ∈ L(X, Y ) be an operator, and U an ultrafilter on I.
Then, the following statements are equivalent:

(a) T has closed range;

(b) N(T )U = N(TU);

(c) R(T )U = R(TU);

(d) TU has closed range.

Proof. (a)⇒(b) and (c). As T has closed range, there is a constant M > 0 such
that, for each x ∈ X , there exists z ∈ X so that x−z ∈ N(T ) and ‖T (x)‖ ≥M‖z‖.

Let [xi] ∈ N(TU). For every xi there exists a pair of elements zi ∈ X and
ui ∈ N(T ) so that xi = zi + ui and ‖T (xi)‖ ≥ M‖zi‖. Therefore, {zi}i∈I is a
bounded family and ‖zi‖ −→

U
0, so [zi] = 0. Thus, {ui}i∈I is also bounded and

[xi] = [ui] ∈ N(T )U. This and Proposition A.4.21 show that (b) holds.
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Take now [T (xi)] ∈ R(T )U. Since {T (xi)}i∈I is bounded, choosing for every
xi an element zi ∈ X so that xi − zi ∈ N(T ) and ‖T (xi)‖ ≥ M‖zi‖, we find that
{zi}i∈I is bounded and

[T (xi)] = [T (zi)] = TU([zi]) ∈ R(TU).

This last equality combined with Proposition A.4.21 yields R(TU) equals R(T )U,
proving (c).

(b)⇒(a). Suppose R(T ) is not closed. Then, for every n ∈ N, there is xn ∈ SX

such that 0 < ‖T (xn)‖ < 1/n and dist
(
xn, N(T )

)
≥ 1/2. Let {In}∞n=1 be a

partition of I disjoint with U. For every i ∈ I, denote hi := xn if i ∈ In. For each
family (zi) ∈ �∞

(
I, N(T )

)
, we have ‖[hi] − [zi]‖ = limU ‖hi − zi‖ ≥ 1/2, hence

[hi] /∈ N(T )U.
On the other hand, for every n ∈ N,

{i ∈ I : ‖T (hi)‖ < 1/n} ⊃ ∪∞k=nIk ∈ U,

which leads to [hi] ∈ N(TU).
(c)⇒(d). It follows directly from Proposition A.4.4.
(d)⇒(a). If TU has closed range, by the open mapping theorem, there is a > 0

such that

(A.5) TU(aBXU
) ⊃ BR(TU).

In addition, for every y ∈ BR(T ), it is immediate that [y] belongs to R(TU), hence
[y] ∈ R(TU), and therefore

(A.6) Y ∩BR(TU) = BR(T ).

On the other hand, by Propositions A.4.4 and A.4.21,

(A.7) T (BX) = Y ∩ TU(BXU
).

Consecutive applications of (A.6), (A.5) and (A.7) lead to T (aBX) ⊃ BR(T ),

and then Lemma A.4.8 yields R(T ) = R(T ). �
Recall that a closed subspace Z of a dual space X∗ is said to be 1-norming

if, for every x ∈ X , ‖x‖ = supf∈Z〈f, x〉. As a consequence, BZ is σ(X∗, X)-dense
in BX∗ .

Proposition A.4.23. For every operator T ∈ L(X, Y ) and every ultrafilter U, the
kernel N(T ∗U) is a 1-norming subspace of N(TU

∗).

Proof. Taking into account that N(TU
∗) is the dual of YU/R(TU), we only need

to prove that, given y ∈ SYU
with dist

(
y, R(TU)

)
= 1, and given 0 < δ < 1, there

exists a norm-one element g ∈ N(T ∗U) such that

〈g,y〉 ≥ 1− δ.



212 Appendix A. Basic concepts

Let I be the set of indices on which U is taken, and choose a representative (yi)i∈I

of y such that ‖yi‖ = 1 for all i. Since

dist
(
y, nTU(BXU

)
)
≥ 1 for all n ∈ N,

we have, for every positive integer n, that

Jn := {i ∈ I : dist
(
yi, nT (BX)

)
> 1− δ} ∈ U.

Since U is ℵ0-incomplete, there exists a decreasing set sequence (Cn)∞n=1 ⊂ U such
that ∩∞n=1Cn = ∅ and Cn ⊂ Jn for all n. Put C0 := I; for every i ∈ I, let mi be
the only non-negative integer for which i ∈ Cmi \ Cmi+1, and define

Ki := yi + miT (BX);

thus, Ki ∩ (1 − δ)BY = ∅, and therefore, the Hahn-Banach theorem provides a
functional gi ∈ SY ∗ such that

(A.8) inf
y∈Ki

〈gi, y〉 ≥ 1− δ.

Let g := [gi], and prove that g is the wanted element of N(T ∗U). In fact, on the
one hand, formula (A.8) gives 〈g,y〉 ≥ 1− δ.

Yet on the other hand, for each n, each i ∈ Cn and each x ∈ BX ,

|〈gi, T (x)〉| ≤ δ/n;

hence, 〈[gi], [zi]〉 = 0 for all [zi] ∈ TU(BXU
), which means

g := [gi] ∈ R(TU)⊥ ∩ Y ∗U = N(T ∗U),

concluding the proof. �
In particular, for every Banach space Y and every ultrafilter U, Y ∗U is

σ(YU
∗, YU) dense in YU

∗.

A.5 Reflexivity and super-reflexivity

Reflexivity and super-reflexivity are classical subjects in local theory of Banach
spaces. Here we give some of the characterizations for reflexive and super-reflexive
Banach spaces due to James.

Recall that, in Definitions 6.5.1 and 6.2.12, we introduced the ε-triangular
sequences as follows: given a real number ε > 0, a (finite or infinite) sequence (xn)
in a Banach space X is ε-triangular if ‖xn‖ ≤ 1 for all n and there exists a sequence
of norm-one functionals (x∗n) in X∗ such that 〈x∗i , xj〉 > ε for all 1 ≤ i ≤ j and
〈x∗i , xj〉 = 0 for all 1 ≤ j < i.

Note that if a sequence (xn) is ε-triangular, then ε ≤ ‖xn‖ ≤ 1 for all n ∈ N.
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Lemma A.5.1. Let Z be a closed subspace of a Banach space X. For every z∗∗ ∈
Z

σ(X∗∗,X∗)
, we have

dist (z∗∗, X) ≥ 1
2

dist (z∗∗, Z).

Proof. Let δ := dist (z∗∗, Z). If δ = 0, there is nothing to be proved. Thus, assume
that δ > 0, and take x ∈ X .

If dist (x, Z) < δ/2, choose x1 ∈ Z so that ‖x− x1‖ < δ/2. Then,

‖z∗∗ − x‖ = ‖z∗∗ − x1 + x1 − x‖
≥ ‖z∗∗ − x1‖ − ‖x1 − x‖ > δ − δ/2 = δ/2.

(A.9)

And if dist (x, Z) ≥ δ/2, by the Hahn-Banach theorem, there exists x∗ ∈ SX∗

such that x∗ ∈ Z⊥ and 〈x∗, x〉 ≥ δ/2. Thus, as Z
σ(X∗∗,X∗)

= Z⊥⊥, it follows that
〈z∗∗, x∗〉 = 0, so

(A.10) ‖z∗∗ − x‖ ≥ 〈x − z∗∗, x∗〉 = 〈x∗, x〉 ≥ δ/2.

Thus, (A.9) and (A.10) yield dist (z∗∗, X) ≥ δ/2, as we wanted. �

Proposition A.5.2. Let (xn) be an ε-triangular sequence in a Banach space X.
Thus, every σ(X∗∗, X∗)-cluster point x∗∗ of (xn) satisfies dist (x∗∗, X) ≥ ε/2.

Proof. Let Z be the closed span of (xn) in X and consider a sequence of normalized
functionals (x∗n) in X∗ satisfying

〈x∗i , xj〉 > ε if 1 ≤ i ≤ j,(A.11)
〈x∗i , xj〉 = 0 if 1 ≤ j < i.(A.12)

Let x∗∗∗ be a σ(X∗(3), X∗∗)-cluster point of (x∗n). Thus, (A.11) yields 〈x∗∗, x∗i 〉 ≥ ε
for all i, hence 〈x∗∗∗, x∗∗〉 ≥ ε. But (A.12) shows that 〈x∗∗∗, xj〉 = 0 for all j, hence
dist (x∗∗, Z) ≥ ε, and by Lemma A.5.1, dist (x∗∗, X) ≥ ε/2. �

As a consequence of Proposition A.5.2, an ε-triangular sequence in X cannot
contain any weakly convergent subsequence. Therefore, a reflexive space cannot
contain any ε-triangular sequence. The reverse is also true, as the following result
proves:

Proposition A.5.3. Let A be a subset of the unit closed ball of a Banach space X. If
x∗∗ is a σ(X∗∗, X∗)-cluster point of A with dist (x∗∗, X) > ε > 0, then A contains
an ε-triangular sequence.

Proof. The wanted ε-triangular sequence (xn) in A is obtained recursively as
follows. Choose a functional x∗1 ∈ SX∗ so that 〈x∗∗, x∗1〉 > ε and consider the
σ(X∗∗, X∗)-neighborhood of x∗∗ given by

V1 = {y∗∗ ∈ X∗∗ : 〈y∗∗, x∗1〉 > ε}.
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Let A1 := A ∩ V1 and pick x1 ∈ A1. By the Hahn-Banach theorem, there exists a
functional x∗2 ∈ SX∗ such that 〈x∗2, x1〉 = 0 and 〈x∗∗, x∗2〉 > ε.

Given a positive integer p ≥ 2, let us assume that there are two finite se-
quences (x∗n)p

n=1 ⊂ SX∗ and (xn)p−1
n=1 ⊂ (xn) satisfying the conditions

〈x∗i , xj〉 > ε if 1 ≤ i ≤ j ≤ p− 1,(A.13)
〈x∗i , xj〉 = 0 if 1 ≤ j < i ≤ p,(A.14)
〈x∗∗, x∗i 〉 > ε for all 1 ≤ i ≤ p.(A.15)

Condition (A.15) ensures that

Vp = {y∗∗ : 〈y∗∗, x∗i 〉 > ε, i = 1, . . . , p}

is a σ(X∗∗, X∗)-neighborhood of x∗∗. As x∗∗ is a σ(X∗∗, X∗)-cluster point of A,
then

Ap := Vp ∩A �= ∅
so we may pick xp ∈ Ap. Thus, by the Hahn-Banach theorem, there exists a
functional x∗p+1 ∈ SX∗ such that

〈x∗p+1, xj〉 = 0 for all j = 1, . . . , p,

〈x∗∗, x∗p+1〉 > ε.

From (A.13), (A.14), and from the fact that xp ∈ Vp, we get

〈x∗i , xj〉 > ε if 1 ≤ i ≤ j ≤ p,
〈x∗i , xj〉 = 0 if 1 ≤ j < i ≤ p + 1,

and repeating recursively the above argument, we prove that (xn) is an ε-triangular
sequence contained in A. �

Proposition A.5.3 admits the following sequential version:

Proposition A.5.4. Let (zn) be a sequence contained in the unit closed ball of
a Banach space X and let x∗∗ be a σ(X∗∗, X∗)-cluster point of (zn) satisfying
dist (z∗∗, X) > ε > 0. Then (zn) contains an ε-triangular subsequence.

Proof. In the proof of Proposition A.5.3, take A := {zn : n ∈ N} and A1 := A∩V1,
and for p ≥ 2, once the finite subsequence (xn)p−1

n=1 of (zn) and the finite sequence
(x∗n)p

n=1 have been found, (where xn = zkn for 1 ≤ n ≤ p− 1), take

Ap := Vp ∩ {zn : n > kp−1}.

Thus, xp must be chosen as zkp ∈ (zn) for some kp > kp−1, which guarantees that
the sequence (kn) of positive integers is increasing, and therefore (xn) = (zkn) is
an ε-triangular subsequence of (zn). �
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Now, let us summarize some results concerning super-reflexivity.

Definition A.5.5. A Banach space X is said to be super-reflexive if every Banach
space Y finitely representable in X is reflexive.

Super-reflexive Banach spaces can be characterized in terms of finite ε-
triangular sequences.

Proposition A.5.6. Given a Banach space X, the following statements are equiva-
lent:

(a) the space X is not super-reflexive;

(b) for every 0 < ε < 1 and every n ∈ N, there exists a finite ε-triangular
sequence (xk)n

k=1 in X;

(c) there exists 0 < ε < 1 such that for every n ∈ N, there is a finite ε-triangular
sequence (xk)n

k=1 in X.

Proof. (a)⇒(b) Let us assume that X is not super-reflexive and fix a real number
0 < ε < 1 and a positive integer n, and take a second real number 0 < ε < ε′ < 1.
By hypothesis, there exists a non-reflexive Banach space Y finitely representable
in X , and by Proposition A.4.14, there exists an ultrafilter U on a set I and an
isometry L : Y −→ XU, hence XU is not reflexive. Thus, by Proposition A.5.3, XU

contains an ε′-triangular sequence (xk)∞k=1, and subsequently,

(A.16) ε′ < dist
(
span{xl}k−1

l=1 , conv {xl}nl=k

)
for all 1 ≤ k ≤ n,

where we adopt the agreement that span{xl}0l=1 := {0}. Fix a representative
(xk

i )i∈I ⊂ BX for every xk. Thus, since ε < ε′, formula (A.16) and Lemma A.4.12
provide us with an index j ∈ I such that

ε < dist
(
span{xl

j}k−1
l=1 , conv {xl

j}nl=k

)
for all 1 ≤ k ≤ n,

which shows, with the help of the Hahn-Banach theorem, that (xk
j )n

k=1 is a finite
ε-triangular sequence in X .

(b)⇒(c) Trivial.
(c)⇒(a) Let us assume that there exists 0 < ε < 1 such that for every

n ∈ N, there is a finite ε-triangular sequence (xn
l )n

l=1 in X . Let {fn
l }nl=1 be the

corresponding family of normalized functionals in X∗ so that

〈fn
i , xn

j 〉 =
{

> ε if 1 ≤ i ≤ j ≤ n,
= 0 if 1 ≤ j < i ≤ n.

Let U be an ultrafilter on N, and for every positive integer l, consider the element
xl := [xn

l ]n ∈ XU and the functional fl ∈ (XU)∗ that maps every [un] ∈ XU to
limn→U〈fn

l , un〉. Clearly, ‖xl‖ ≤ 1 and ‖fl‖ = 1 for all l. Moreover,

〈fi,xj〉 =
{
≥ ε if 1 ≤ i ≤ j,
= 0 if 1 ≤ j < i.
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Thus, XU contains an ε-triangular sequence, so it is not reflexive. But by Proposi-
tion A.4.14, XU is finitely representable in X , hence X is not super-reflexive. �

A.6 Ultraproducts of L1(μ) spaces

Here we describe the ultrapowers of L1(μ) spaces with the aim of providing proofs
of the following properties that are useful in the study of tauberian operators on
L1(μ) spaces:

(i) L1(μ) is L-embedded in its bidual space,

(ii) L1(μ) has the subsequence splitting property,

(iii) each reflexive subspace of L1(μ) is super-reflexive.

We begin by introducing some concepts and notation in order to show that
the ultraproduct of a family

(
L1(μi)

)
i∈I

can be represented as an L1(μ̂) space for
a certain measure μ̂.

Let U be an ultrafilter on a set I, and let {(Ωi, Σi, μi)}i∈I be a collection
of finite positive measure spaces with no atoms such that supi∈I μi(Ωi) < ∞. Its
ultraproduct following U is a measure space on (Ωi)U, which is defined as follows:

First, consider the set algebra

(Σi)U := {(Ai)U : Ai ∈ Σi},

where (Ai)U stands for the set-theoretic ultraproduct of (Ai)i∈I following U (see
Appendix A.4).

Let σ
(
(Σi)U

)
be the smallest σ-algebra containing the algebra (Σi)U. The

measures μi induce a measure (μi)U on σ
(
(Σi)U

)
which is univocally defined by

its values on (Σi)U, as is proved in the following result:

Theorem A.6.1. Given a collection of finite positive measure spaces {(Ωi,Σi, μi)}i∈I

with no atoms such that supi∈I μi(Ωi) < ∞ and an ultrafilter U on I, let us
consider the set mapping (μi)U : (Σi)U −→ [0,∞) given by

(μi)U

(
(Ai)U

)
:= lim

U
μi(Ai), for all (Ai)U ∈ (Σi)U.

Then (μi)U admits a unique extension to a σ-additive measure on σ
(
(Σi)U

)
.

Proof. It is straightforward that the mapping (μi)U is well defined and finitely
additive on (Σi)U. In order to prove that it is also σ-additive, we consider a count-
able collection of disjoint sets {Ak}∞k=1 ⊂ (Σi)U. Let Ak = (Ak

i )U with Ak
i ∈ Σi

for every i and every k. Thus, for each n ∈ N, we have

n∑
k=1

(μi)U(Ak) ≤
n∑

k=1

(μi)U(Ak) + (μi)U

( ∞⋃
k=n+1

Ak
)

= (μi)U

( ∞⋃
k=1

Ak
)
,
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hence
∑∞

k=1(μi)U(Ak) ≤ (μi)U

(⋃∞
k=1 Ak

)
.

In order to obtain the converse inequality, take ε > 0 and, for every Ak, let
us write

Jk :=
{
i ∈ I : μi(Ak

i ) ≤ (μi)U(Ak) + 2−kε
}
∈ U

and

Bk
i :=

{
Ak

i if i ∈ Jk,
∅ if i /∈ Jk.

Then Ak = (Bk
i )U, and μi(Bk

i ) ≤ (μi)U(Ak) + ε/2k for all k and all i. Thus,

∞⋃
k=1

Ak =
∞⋃

k=1

(Bk
i )U ⊂

( ∞⋃
k=1

Bk
i

)U

,

and therefore,

(μi)U

( ∞⋃
k=1

Ak

)
≤ (μi)U

(( ∞⋃
k=1

Bk
i

)U)

= lim
U

μi

( ∞⋃
k=1

Bk
i

)
≤

∞∑
k=1

(μi)U(Ak) + ε,

which proves that (μi)U(
⋃∞

k=1 Ak) =
∑∞

k=1(μi)U(Ak).
Once the σ-additivity of (μi)U on (Σi)U has been proved, the Caratheodory

extension theorem ensures that actually, the set function (μi)U defined on (Σi)U

can be extended to a unique σ-additive measure on the σ-algebra σ
(
(Σi)U

)
. �

The measure on σ
(
(Σi)U

)
supplied by Theorem A.6.1 is also denoted by

(μi)U, and turns
(
(Ωi)U, (Σi)U, (μi)U

)
into a finite measure space called the ultra-

product of (Ωi, Σi, μi)i∈I following U.

According to the proof of Caratheodory’s theorem, the value of (μi)U on
every A ∈ σ

(
(Σi)U

)
is

(μi)U(A) := inf

{ ∞∑
n=1

(μi)U(Cn) : A ⊂
∞⋃

n=1

Cn, Cn ∈ (Σi)U

}
.

The following result allows us to simplify the computation of (μi)U(A):

Proposition A.6.2. Let (μi)U be the ultraproduct measure of the finite positive
measure spaces (Ωi, Σi, μi)i∈I with no atoms and supi∈I μi(Ωi) <∞. Let U be an
ultrafilter on I. Thus, for every A ∈ σ

(
(Σi)U

)
, the following identities hold:

(i) (μi)U(A) = inf{(μi)U(C) : C ∈ (Σi)U, A ⊂ C};
(ii) (μi)U(A) = sup{(μi)U(C) : C ∈ (Σi)U, A ⊃ C}.
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Proof. Let μ0 := (μi)U.
(i) Let us write

m(A) := inf{μ0(B) : A ⊂ B ∈ (Σi)U}.

The inequality m(A) ≥ μ0(A) is trivial. For the converse inequality, given
any ε > 0 and any countable covering {Bn}∞n=1 of A picked in (Σi)U, we only need
to find a set D ∈ (Σi)U so that

⋃∞
n=1 Bn ⊂ D and μ0(D) ≤ ε +

∑∞
n=1 μ0(Bn).

If the series
∑∞

n=1 μ0(Bn) diverges, then it is enough to choose D := (Ωi)U.
In the case when

∑∞
n=1 μ0(Bn) converges, take a positive integer k so that

∞∑
n=k+1

μ0(Bn) < ε/2.

Thus, if we get C ∈ (Σi)U such that
⋃∞

n=k+1 Bn ⊂ C and μ0(C) ≤ ε, then a
sensible choice for D is

⋃k
n=1 Bn ∪ C.

In order to get C, note that for every Bn there exists a collection (Bi
n)i∈I so

that Bn = (Bi
n)U and

Jn := {i ∈ I : μi(Bi
n) < μ0(Bn) + 2−n−1ε} ∈ U,

so we may assume that Bi
n = ∅ for all n and all i ∈ I \ Jn, and therefore,

(A.17) μi(Bi
n) < μ0(Bn) + 2−n−1ε, for all n and all i.

Thus, the wanted set C is
(⋃∞

n=k+1 Bi
n

)U ∈ (Σi)U because it contains the set⋃∞
n=k+1(Bi

n)U and satisfies

μ0(C) = lim
U

μi

( ∞⋃
n=k+1

Bi
n

)

≤ lim
U

∞∑
n=k+1

μi(Bi
n) ≤ lim

U

∞∑
n=k+1

μ0(Bn) +
∞∑

n=k+1

2−n−1ε < ε.

(ii) We write
s(A) := sup{μ0(B) : A ⊃ B ∈ ΣU},

and prove that s(A) = m(A).
The inequality s(A) ≤ m(A) is trivial. For the converse inequality, let ε > 0

and choose a set B ∈ (Σi)U so that A ⊂ B and μ0(B \A) = μ0(B)−m(A) < ε/2.
Next, by (i), there exists C ∈ (Σi)U so that B \ A ⊂ C and μ0(C) < ε. Thus
B \ C ⊂ A, and since (Σi)U is a set algebra, we get B \ C ∈ (Σi)U. Hence

s(A) ≥ μ0(B \ C) ≥ μ0(B) − μ0(C) ≥ m(A) − μ0(C),

so s(A) ≥ m(A) − ε for all ε > 0, and the inequality s(A) ≥ m(A) follows. Thus,
by part (i), s(A) = μ0(A). �
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If (Ωi, Σi, μi) = (Ω, Σ, μ) for all i ∈ I, then the measure space (ΩU, σ(ΣU), μU)
is called the ultrapower of (Ω, Σ, μ) following U.

The notation (Ω, Σ̃, μ̃) denotes the completion of the measure space (Ω, Σ, μ)
with respect to μ.

Proposition A.6.3. Let {(Ωij , Σij , μij)}(i,j)∈I×J be a double indexed collection of fi-
nite positive purely measure spaces with no atoms such that sup(i,j)∈I×J μij(Ωij) <
∞, and let U and V be a pair of ultrafilters on I and J respectively. Thus the com-
pletions of the measure spaces((

(Ωij)V
)U

, σ
(
σ
(
(Σij)V

)U)
,
(
(μij)V

)
U

)
and (

(Ωij)U×V, σ((Σij)U×V), (μij)U×V

)
are isomorphic.

Proof. Let I : (Ωij)U×V −→
(
(Ωij)V

)U be the bijective mapping that sends every

(tij)U×V to
(
(tij)V

)U.
Let us also denote by I the induced σ-algebra isomorphism from ℘

(
(Ωij)U×V

)
onto ℘

((
(Ωij)V

)U). As it is observed in Proposition A.4.3 (Appendix A.4), the

σ-algebra σ
(
(Σij)U×V

)
is mapped isomorphically by I onto σ

((
(Σij)V

)U). There-
fore,

(A.18) I
(
σ
(
(Σij)U×V

))
⊂ σ

(
σ
(
(Σij)V

)U)
.

We shall prove that the completion S1 := σ̃
(
(Σij)U×V

)
is mapped by I onto

S2 := σ̃
(
σ
(
(Σij)V

)U).
After (A.18), the inclusion I(S1) ⊂ S2 is immediate. To obtain the converse

inclusion, we only have to prove that for every
(
(μij)V

)
U

-null set A, I−1(A) is
contained in a (μij)U×V-null set.

Since Proposition A.6.2 shows that, for every n ∈ N, A is contained in a set
An ∈ σ

(
(Σij)V

)U with
(
(μij)V

)
U

(An) < 1/n, our goal will be achieved as soon as
we prove that for each collection {Ai}i∈I ⊂ σ

(
(Σij)V

)
, I−1((Ai)U) is contained

in a set of ΣU×V of the same measure. Thus, given (Ai)U ∈ σ
(
(Σij)V

)U, consider
a partition {In}∞n=1 of I disjoint with U. For each n ∈ N and each i ∈ In, by
Proposition A.6.2, there is Bi ∈ (Σij)V so that Bi ⊃ Ai and (μij)V(Bi\Ai) < n−1.

Let Bi = (Bij)V, with Bij ∈ Σij . Note that I−1
(
(Ai)U

)
⊂ (Bij)U×V and(

(μij)V

)
U

(
(Ai)U

)
= lim

U
(μij)V(Ai) = lim

U
(μij)V(Bi).

Moreover, by the iteration theorem for products of ultrafilters (see Appendix A.4),

lim
U

(μij)V(Bi) = lim
U

lim
V

μij(Bij) = lim
U×V

μij(Bij).
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Thus (
(μij)V

)
U

(
(Ai)V

)
= (μij)U×V

(
Bij

)U×V
,

as we wanted to prove. �
Let us now move on to the case when {(Ωi, Σi, μi)}i∈I is a set of finite real

measure spaces with no atoms, such that supi∈I |μi|(Ωi) <∞.
Following a standard procedure, we decompose each μi, into its positive part

and its negative part, μi = μ+
i − μ−i . Next we define the measure (μi)U on σ(ΣU)

as
(μi)U = (μ+

i )U − (μ−i )U.

It is immediate that the positive part and the negative part of (μi)U are (μi)+U =
(μ+

i )U and (μi)−U = (μ−i )U.

In order to give the theorems that describe the structural properties of the
ultrapowers of L1(μ), it is necessary to introduce additional notations.

Let U be an ultrafilter on I and (Ω, Σ, μ) a finite positive measure space with
no atoms. Given f = [fi] ∈ L1(μ)U, consider the measures μi on Σ defined by
dμi = fi dμ, and denote by (μi)U the ultrapower measure defined on σ(ΣU) by

μf := (μi)U.

Its value on each A = (Ai)U ∈ ΣU is given by

μf (A) := lim
U

∫
Ai

fi dμ.

Let us also write
f+ := [f+

i ] and f− := [f−i ].

Thus, f = f+ − f− and μf = μf+ − μf− . Consequently, μ+
f = μf+ and μ−f = μf− .

By the theorems of Lebesgue decomposition of measures and Radon-Niko-
dym, there exist unique measures wf and mf , both on σ(ΣU), and a function
gf ∈ L1(μU), so that

mf⊥μU, wf  μU, μf = wf + mf ,

and
wf (A) =

∫
A

gf dμU, A ∈ σ(ΣU).

We also write |f | := f+ + f−. So |μf | = μ|f |, |wf | = w|f | and |mf | = m|f |.

Proposition A.6.4. Let (Ω, Σ, μ) be a finite, positive measure space with no atoms,
and let U be an ultrafilter. Let f ∈ L1(μ)U and A ∈ σ(ΣU). Thus, if μf (C) = 0 for
all subsets C ∈ ΣU of A, then μf (A) = 0.

Its proof is a direct consequence of Proposition A.6.2.
The following three theorems feature the main structural properties of the

ultrapowers of L1(μ):
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Theorem A.6.5. For each positive, finite, measure space (Ω, Σ, μ) with no atoms
and every ultrafilter U, there exist a canonical isometry JμU

: L1(μU) −→ L1(μ)U

and a canonical projection PμU
: L1(μ)U −→ L1(μ)U with R(PμU

) = JμU
(L1(μU)),

such that L1(μ)U = R(PμU
)⊕1 N(PμU

) and ‖PμU
‖ = 1.

Proof. Let I be the set of indices on which U is taken. The canonical isometry
JμU

: L1(μU) −→ L1(μ)U is given as follows. Let H be the subset of all finite sums

H :=

{
n∑

k=1

αkχAk
: n ∈ N, αk ∈ R, Ak ∈ ΣU, Ak ∩Al = ∅ for all k �= l

}
.

By Proposition A.6.2, H is a dense subset of L1(μU).
First, JμU

is defined on the characteristic functions χA, where A = (Ai)U ∈
ΣU, by

JμU
(χA) := [χAi ] ∈ L1(μ)U.

Since ‖χA‖ = μU(A) = limU μ(Ai) = ‖[χAi ]‖, we get ‖JμU
(χA)‖ = ‖χA‖. Thus, as

H is dense in L1(μU), JμU
can be extended to an isometry on the whole L1(μU).

Let us prove now the existence of the projection PμU
. For each f = [fi] ∈

L1(μ)U, let wf and mf be respectively the absolutely continuous part and the
singular part of μf with respect to μU, and let gf ∈ L1(μU) be the Radon-Nikodym
derivative of wf ; that is

wf (A) =
∫

A

gf dμU, for all A ∈ σ(ΣU).

Let D : L1(μ)U −→ L1(μU) be the operator that sends every f to gf . Notice
that for each set A = (Ai)U ∈ ΣU, the associated characteristic function f = χA

is sent by D ◦ JμU
to itself, because D ◦ JμU

(χA) = D([χAi ]) = χ(Ai)U .
Indeed, for every C = (Ci)U ∈ ΣU,

μf (C) = lim
U

∫
Ai∩Ci

dμ = lim
U

μ(Ai ∩ Ci) = μU(A ∩ C) =
∫

C

χA dμU.

Thus, if μU(C) = 0, then μf (C) = 0. Now, by Proposition A.6.4, we conclude
that μf is absolutely continuous with respect to μU. Consequently, μf = wf and
gf = χA. Thus D ◦ JμU

(χA) = χA, and since H is dense in L1(μU), it follows that
D ◦ JμU

is the identity operator on L1(μU). So PμU
:= JμU

◦ D is a projection
whose range is JμU

(L1(μU)). Moreover, since D is norm-one, we get ‖PμU
‖ = 1.

Finally, for every f ∈ L1(μ)U, since wf⊥mf , we have ‖μf‖ = ‖wf‖+ ‖mf‖ or
equivalently, ‖f‖ = ‖PμU

(f)‖ + ‖f − PμU
(f)‖. Thus,

L1(μ)U = JμU

(
L1(μU)

)
⊕1 N(PμU

). �

The following two theorems characterize the elements in the summands of
the decomposition L1(μ)U = JμU

(L1(μU))⊕1 N(PμU
).
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Theorem A.6.6. An element f ∈ L1(μ)U belongs to JμU

(
L1(μU)

)
if and only if

it admits a relatively weakly compact representative. In particular, the canonical
copy of L1(μ) into L1(μ)U is contained in JμU

(
L1(μU)

)
.

Proof. Let f be an element of L1(μ)U with a relatively weakly compact represen-
tative (fi)i∈I , and take ε > 0. Since {fi}i∈I is equi-integrable, there exists δ > 0 so
that

∫
A |fi| dμ < ε for all i ∈ I and all A ∈ Σ with μ(A) < δ. Let C = (Ci)U ∈ ΣU

with μU(C) = 0. Then we have K := {i ∈ I : μ(Ci) < δ} ∈ U; hence∫
Ci

|fi| dμ < ε for all i ∈ K.

Therefore, μ|f |(C) = limU

∫
Ci
|fi| dμ = 0. But Proposition A.6.4 yields μf  μU,

thus mf = 0, hence f ∈ JμU

(
L1(μU)

)
.

For the converse, take f = [fi] ∈ J
(
L1(μU)

)
with ‖fi‖ = 1 for all i, and for

every k ∈ N, write

Ak
i := {t : |fi(t)| > k},

Bk
i := Ω \Ak

i ,

fk
i := fi · χBk

i
,

fk := [fk
i ].

Notice that μ(Ak
i ) ≤ 1/k and that {(Ak

i )U}∞k=1 is a decreasing sequence in ΣU for
all i. So, denoting A :=

⋂∞
k=1(Ak

i )U, we get

μU(A) = lim
k

lim
i→U

μ(Ak
i ) ≤ lim

k

1
k

= 0.

But by hypothesis, μ|f |  μU, so

0 = μ|f |(A) = lim
k

μ|f |
(
(Ak

i )U
)

= lim
k
‖f − fk‖.

Let {In}∞n=1 be a decreasing sequence of elements of U such that
⋂∞

n=1 In = ∅.
Write rk := ‖f − fk‖, take

H1 := {i ∈ I : ‖fi − f1
i ‖ < 2r1} ∈ U,

Hk := Ik ∩Hk−1 ∩ {i ∈ I : ‖fi − fk
i ‖ < 2rk} ∈ U, for k ≥ 2

and let J0 := I \H1, and Jk := Hk \Hk+1 for k ∈ N.
For every i ∈ I, let ni be the unique positive integer for which i ∈ Jni , and

let us prove that [fi] = [fni

i ]. Indeed, given ε > 0, there exists n ∈ N so that
2rk < ε for all k ≥ n. Thus

{i ∈ I : ‖fi − fni

i ‖ < ε} ⊃
∞⋃

k=n

Jk ∈ U,
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hence limU ‖fi − fni

i ‖ = 0; in other words, [fi] = [fni

i ].
Now we claim that {fni

i }i∈I is equi-integrable. Indeed, given ε > 0, choose
n ∈ N so that rk < ε/2 for all k ≥ n. Observe that i belongs either to ∪n−1

k=1Jk or
to Hn. If i ∈ ⋃n−1

k=1 Jk, then |fni

i (x)| < n; hence∫
{|fni

i |>n}
|fni

i | dμ = 0.

If i ∈ Hn, then∫
{|fni

i |>n}
|fni

i | dμ ≤
∫
{|fi|>n}

|fi| dμ = ‖fi − fn
i ‖ < 2rn < ε.

Thus {fni

i }i∈I is equi-integrable; equivalently, it is relatively weakly compact in
L1(μ). �
Theorem A.6.7. Consider the canonical projection PμU

: L1(μ)U −→ L1(μ)U. An
element f ∈ L1(μ)U belongs to N(PμU

) if and only if f admits a representative
(fi)i∈I such that limU μ(supp fi) = 0.

Proof. Let f = [fi] ∈ L1(μ)U and assume that μU((supp fi)U) = 0. Then μf⊥μU,
so wf = 0, and consequently, f ∈ N(PμU

).
For the converse, let f = [fi] ∈ N(PμU

). For every i ∈ I, consider the mea-
surable sets Ai := {|fi| < 1}, Bi := Ω \ Ai, A := (Ai)U and B := (Bi)U, the
functions gi := fi ·χAi and hi := fi ·χBi , and the elements g := [gi] and h := [hi],
so f = g + h.

Since f ∈ N(PμU
), we have μf⊥μU. Moreover, the measures μ|f | and μ|g| are

concentrated in (supp fi)U and in A respectively. Thus μ|g|  μ|f |, hence μ|g|⊥μU,
which shows that g ∈ N(PμU

). Besides, since |gi(x)| < 1 for all x and all i, {gi}i∈I

is relatively weakly compact. So Theorem A.6.6 shows that g ∈ JμU

(
L1(μU)

)
.

Thus g = 0; equivalently, f = h.
Since (supp hi)U ⊂ B, in order to finish the proof we only need to show that

μU(B) = 0. Note that μ|f | is concentrated in a μU-null subset L of B. Moreover, by
the definition of B, for every subset C ∈ ΣU of B\L, we have μU(C) ≤ μ|f |(C) = 0.
Therefore, by Proposition A.6.2, μU(B) = μU(B \ L) = 0. �
Remark A.6.8. Heinrich [99] proved that L1(μ)U is an L1-space. His proof is based
upon the theorem of Nakano and Bohnenblust [117].

An explicit representation of the projection PμU
can be derived from the

following theorem:

Theorem A.6.9. For each f = [fi] ∈ L1(μ)U, we have gf ((ti)U) = limU fi(ti) μU-
a.e.

Proof. In order to prove the statement, it is sufficient to show that

(A.19) μU

({
(ti)U : gf ((ti)U) < lim

U
fi(ti)

})
= 0
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and

(A.20) μU

({
(ti)U : gf ((ti)U) > lim

U
fi(ti)

})
= 0.

In turn, equalities (A.19) and (A.20) are immediate consequences of the inclusions

{gf < c} ⊂ ({fi < c})U μU-a.e.,(A.21)

({fi ≤ c})U ⊂ {gf ≤ c} μU-a.e.(A.22)

for all c ∈ R, which are going to be proved below.
Fix a real number c and, by means of Theorems A.6.5 and A.6.7, consider

the decomposition f = [wi]+[vi], where [wi] ∈ JμU
(gf ), [vi] ∈ N(PμU

), fi = wi +vi

for all i and limU μU(supp vi) = 0.
The last condition implies that

({fi < c})U = ({wi < c})U μU-a.e. and ({fi ≤ c})U = ({wi ≤ c})U μU-a.e.

To obtain the inclusion (A.21), since {gf < c} = ∪∞n=1{gf < c − n−1}, it
is enough to prove that {gf < c − n−1} ⊂ ({wi < c})U μU-a.e. for each n. By
Proposition A.6.4, we only need to show that every B = (Bi)U ∈ ΣU contained in
{gf < c − n−1} \ ({wi < c})U is μU-null. In order to do so, note that on the one
hand,

wf (B) =
∫

B

gf dμU ≤ (c− n−1)μU(B).

On the other hand, since B ⊂ ({wi ≥ c})U, we have

wf (B) = lim
U

∫
Bi

wi dμ ≥ c · μU(B);

hence μU(B) = 0, as we wanted to prove.
The proof of inclusion (A.22) is analogous: it is enough to show that every

B = (Bi)U ∈ ΣU contained in ({wi ≤ c})U \ {gf < c + n−1} is μU-null.
Thus, on the one hand, wf (B) =

∫
B gf ≥ (c+n−1)μU(B). On the other hand,

wf (B) = lim
U

∫
Bi

wi dμ ≤ c · μU(B).

So we get μU(B) = 0, concluding the proof. �
Notice that the expression for gf provided by Theorem A.6.9 works for any

representative of f .

Theorem A.6.10. Let L and V be an isometry and an ultrafilter associated with the
bidual of L1(μ), and let us consider the canonical isometry JμV

and the canonical
projection PμV

. Then

L
(
L1(μ)∗∗

)
= JμV

(
L1(μ)

)
⊕1 N,

where N is a closed subspace of N(PμV
).
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Proof. In order to avoid a cumbersome notation, let us denote P := PμV
and

J := JμV
, and let I be the set of indices corresponding to the ultrafilter V.

Let us define an operator W : L1(μ)V −→ L1(μ) as follows. Take f ∈ L1(μ)V

and, by means of Theorem A.6.6, choose a relatively weakly compact repre-
sentative {fi}i∈I of P (f) ∈ J

(
L1(μV)

)
. Note that for any other representative

{gi}i∈I of P (f), we have w-limV fi = w- limV gi. So the operator W given by
W (f) := w- limV fi is well defined and ‖W‖ = 1.

Let J be the canonical inclusion of L1(μ) in L1(μ)∗∗, and consider the oper-
ator S := JWL. We shall see that S is a norm-one projection with range L1(μ).

L1(μ)∗∗ L1(μ)V L1(μ) L1(μ)∗∗� �

L
��

W
� �

J

Indeed, given f ∈ L1(μ), since L and V are associated with the bidual of
L1(μ), we get L(f) = [f ], and by Theorem A.6.6, it follows that [f ] ∈ J

(
L1(μV)

)
.

Then f = W ([f ]), hence f = S(f).
Thus, R(S) = L1(μ) and S2(x∗∗) = S(x∗∗) for all x∗∗ ∈ L1(μ)∗∗. We have

just proved that S is a projection from L1(μ)∗∗ onto J
(
L1(μ)

)
. Moreover, as W

and L are norm-one operators, we get ‖S‖ = 1.
In order to finish the proof, it is enough to prove that N := L

(
N(S)

)
is

contained in N(P ). To do so, take x∗∗ ∈ N(S) and, according to Theorems A.6.5,
A.6.6 and A.6.7, consider the decomposition

L(x∗∗) = [gi] + [hi],

where {gi}i∈I is relatively weakly compact, limV μ(supp hi) = 0 and

(A.23) ‖x∗∗‖ = lim
V
‖gi + hi‖ = lim

V
‖gi‖+ lim

V
‖hi‖.

Since x∗∗ ∈ N(S), it follows that gi
w−→
V

0. Take any ε > 0 and consider

x∗ ∈ SL1(μ)∗ so that ‖x∗∗‖ − ε ≤ 〈x∗∗, x∗〉. Thus, since gi + hi
w∗−→
V

x∗∗,

‖x∗∗‖ − ε ≤ 〈x∗∗, x∗〉 = lim
V
〈gi + hi, x

∗〉

= lim
V
〈hi, x

∗〉 ≤ lim
V
‖hi‖ ≤ ‖x∗∗‖.

So formula (A.23) gives ‖x∗∗‖ = limV ‖hi‖ and [gi] = 0, which proves that
L(x∗∗) ∈ N(P ). �

The fact that L1(μ) L-embeds in its bidual and the subsequence splitting
property can be easily derived from the previous results.

Corollary A.6.11. The Banach space L1(μ) is L-embedded in its bidual space; that
is, there is a projection S : L1(μ)∗∗ −→ L1(μ)∗∗ such that R(S) = L1(μ) and, for
every x∗∗ ∈ L1(μ)∗∗,

‖x∗∗‖ = ‖S(x∗∗)‖+ ‖x∗∗ − S(x∗∗)‖.
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Proof. It is enough to consider the projection S given in Theorem A.6.10. In
fact, keeping the same notation established in its proof, let us take an element
x∗∗ ∈ L1(μ)∗∗, and consider the corresponding decomposition

L(x∗∗) = [fi] + [hi]

with [fi] ∈ J
(
L1(μV)

)
and [hi] ∈ N(P ). Thus fi

w−→
V

f ∈ L1(μ), where f = S(x∗∗).

Since L and V are associated with the bidual of L1(μ), fi + gi
w∗−→
V

x∗∗. Hence, as
L is an isometry,

‖x∗∗‖ = lim
V
‖fi‖+ lim

V
‖hi‖ ≥ ‖f‖+ ‖x∗∗ − f‖.

Therefore, by the triangular inequality, ‖x∗∗‖ = ‖f‖+ ‖x∗∗− f‖; that is, ‖x∗∗‖ =
‖S(x∗∗)‖+ ‖x∗∗ − S(x∗∗)‖. �

The following result is known as the subsequence splitting property.

Corollary A.6.12. Let (fn) be a bounded sequence in L1(μ), and let x∗∗ be a weak∗-
cluster point of {fn}∞n=1. Then (fn) has a subsequence (fkn) such that

(i) fkn = wn + vn for all n,

(ii) (wn) is weakly convergent,

(iii) (vn) is disjointly supported,

(iv) limn ‖wn‖+ limn ‖vn‖ = limn ‖fkn‖,
(v) limn ‖vn‖ ≥ dist

(
x∗∗, L1(μ)

)
.

Proof. As usual, let w stand for the weak topology σ(L1(μ), L1(μ)∗), and let w∗

stand for σ(L1(μ)∗∗, L1(μ)∗). For every w∗ neighborhood V of x∗∗, let us set

NV := {n ∈ N : xn ∈ V}.

For each pair of w∗-neighborhoods V and W of x∗∗, we have NV∩W ⊂ NV ∩
NW . So the collection of all subsets NV is a filter basis ordered by the set inclusion;
hence it can be extended to an ultrafilter U on N. Note that for that ultrafilter,

fn
w∗−−−−→

n→U
x∗∗.

Next, consider the element [fn] ∈ L1(μ)U. As L1(μ)U = JμU

(
L1(μU)

)
⊕1

N(PμU
), by means of the characterizations given in Theorems A.6.6 and A.6.7, we

may write

(A.24) [fn] = [bn] + [hn]
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where [bn] ∈ JμU

(
L1(μU)

)
, [hn] ∈ N(PμU

), {bn}∞n=1 is relatively weakly compact,
and

(A.25) μ(supp hn) −−−−→
U

0.

Let dn := fn− bn− hn. Then ‖dn‖ −→n 0 and, denoting gn := bn + dn, we get

fn = gn + hn for all n.

Since {bn}∞n=1 is relatively weakly compact, there exists g := w- limU gn. Therefore,

hn
w∗−→
U

x∗∗ − g. Thus, denoting h∗∗ := x∗∗ − g, we get

(A.26) lim
U
‖hn‖ ≥ ‖h∗∗‖ ≥ dist

(
x∗∗, L1(μ)

)
.

Moreover, equality (A.24) yields

(A.27) lim
U
‖fn‖ = lim

U
‖gn‖+ lim

U
‖hn‖.

Let (δn) be a decreasing sequence of positive real numbers so that, if μ(D) <
δn, then

(A.28)
∫

D

|hn| dμ <
1
n

.

Hence, formulas (A.25), (A.27) and (A.28) allow us to get recursively the decreas-
ing subset sequence {Jn}∞n=1 ⊂ U given as follows:

Jn :=
{
k > kn : μ(supp hk) < 2−nδkn ,

‖hk‖ > ‖h∗∗‖ − 1/n,
∣∣‖fk‖ − ‖gk‖ − ‖hk‖

∣∣ < 1/n
}
,

where k1 := 1 and kn+1 := min Jn.
For every n ∈ N, write

Dn :=
∞⋃

i=n

supp hki ,

wn := gkn + hkn · χDn+1 ,

vn := hkn − hkn · χDn+1 .

Since

μ(Dn+1) ≤
∞∑

i=n+1

μ(supp hki) ≤
∞∑

i=n+1

δkn

2i−1
≤ δkn ,

it follows from (A.28) that

(A.29) ‖hkn · χDn+1‖ ≤
1
kn
≤ 1

n
−−−−→

n
0;
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hence {wn}∞n=1 is relatively weakly compact and

fkn = wn + vn for all n ∈ N,(A.30)
vn · vm = 0 μ-a.e. if n �= m,(A.31)
lim
n
‖fkn‖ = lim

n
‖wn‖+ lim

n
‖vn‖.(A.32)

Besides, as a consequence of (A.29),

lim
n
‖vn‖ ≥ lim

n
‖hkn‖ − lim

n
‖hkn · χDkn+1‖

≥ ‖h∗∗‖ ≥ dist
(
x∗∗, L1(μ)

)
.

(A.33)

Thus, after formulas (A.30), (A.31), (A.32) and (A.33), we have a subsequence
(fkn) of (fn), a countable, relatively weakly compact subset {wn}∞n=1 and a dis-
jointly supported sequence (vn) such that limn ‖fkn‖ = limn ‖wn‖ + limn ‖vn‖
and limn ‖vn‖ ≥ dist

(
x∗∗, L1(μ)

)
. Passing to a subsequence if necessary, we may

assume by the Eberlein-Smulian theorem that (wn) is weakly convergent. So state-
ments (i), (ii), (iii), (iv) and (v) hold, and the proof is finished. �
Remark A.6.13. The subsequence splitting property for L1 spaces was originally
obtained by Kadec and Pe�lczyński [111]. Independently, Rosenthal proved this
result, but his proof was never published (see reference [11] in [39]).

We end this section with the following result.

Corollary A.6.14. Every reflexive subspace of L1(μ) is super-reflexive.

Proof. Let U be any ultrafilter on a set I, and consider the natural isometry
F : L1(μU×U) −→ L1

(
(μU)U

)
that maps every χ(Aij)U×U to χ((Aij)U)U . By Propo-

sition A.6.3, the completions of the measure spaces (ΩU×U, σ(ΣU×U), μU×U) and(
(ΩU)U, σ(σ(ΣU)U), (μU)U

)
are isomorphic; hence F is surjective.

Moreover, the operator G from L1(μ)U×U onto
(
L1(μ)U

)
U

that maps every
[fij ] to

[
[fij ]j

]
i

is also a surjective isometry by virtue of Proposition A.4.7.
Let J1 and J2 denote the isometries JμU×U

and J(μU)U
defined as in Theo-

rem A.6.5. Thus we get the next commutative diagram:

L1(μU×U) L1

(
(μU)U

)

L1(μ)U×U

(
L1(μ)U

)
U

� ��

F

�

�

J1

�

�

J2

� ��

G

Let E be a reflexive subspace of L1(μ). By Theorem A.6.6, EU×U is con-
tained in J1

(
L1(μU×U)

)
. Therefore, since J2F = GJ1, it follows that (EU)U ⊂

J2

(
L1

(
(μU)U

))
. Thus, a second application of Theorem A.6.6 proves that EU is

reflexive; hence E is super-reflexive. �
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Remark A.6.15. A proof of Corollary A.6.14 can be derived from some results
in [143], [122] and [58].

Indeed, [143] shows that every closed subspace of L1(μ) either contains a
subspace isomorphic to �1 or it is isomorphic to a closed subspace of Lp(μ) for
some p ∈ (1, 2]. In [122], there is a proof of the uniform convexity of Lp(μ) for
all p ∈ (1,∞). And finally, Enflo demonstrates in [58] that any Banach space is
super-reflexive if and only if it is isomorphic to a uniformly convex Banach space.
Since super-reflexivity is a hereditary property, it is evident that a combination
of the three mentioned results proves that every reflexive subspace of L1(μ) is
super-reflexive.

Obviously, the extent of the three cited results goes far beyond the study
of tauberian operators. Thus, the proof of Corollary A.6.14 via ultraproducts is
sufficient to fulfill the purpose of this book.

Final remarks

All the results in this section are derived from the Lebesgue decomposition theorem
and the Radon-Nikodým theorem. Indeed, all of them are deduced from Theorem
A.6.5, due to Heinrich [99], who applies the Lebesgue decomposition theorem to
prove that

L1(μ)U = JμU
(L1(μU))⊕1 N(PμU

)

and uses the Radon-Nikodým derivative to give a representation of the embedding
JμU

of L1(μU) into L1(μ)U. Next, Theorem A.6.6 provides a characterization for
the elements of JμU

(
L1(μU)

)
and, as a sequel, Theorem A.6.7 does the same for

the elements of N(PμU
).

Theorem A.6.6 was proved by Weis only for ultrafilters on N [165], and was
extended to all ultrafilters in [82]. The proofs of Theorems A.6.6 and A.6.7, as
well as the representation for JμU

given in Theorem A.6.9, have been borrowed
from [82].

It is remarkable that the subsequence splitting property allows us to recover
the theorems of Lebesgue decomposition and Radon-Nikodym.

Indeed, for the sake of simplicity, let us restrict ourselves to the case of the
space M of the Radon measures on [0, 1]. For every λ ∈ C[0, 1]∗, we may take a

sequence (fi) in L1(μ) so that fi
w∗−→
i

λ. By the subsequence splitting property,
there is a subsequence (fik

) such that fik
= gk + hk, where (gk) is a weakly

convergent to a function g ∈ L1(μ), and (hk) is disjointly supported. Let λc be the
measure generated by g, that is, dλc = g dμ. Thus, (hi) converges in the weak∗-
topology to λs := λ−λc, which is singular with respect to μ since (hi) is disjointly
supported. Obviously, λc is absolutely continuous with respect to μ, so λ = λc +λs

is the Lebesgue decomposition of λ, and g is the Radon-Nikodym derivative of the
absolutely continuous part λc.
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Recall that a selective ultrafilter W is an ultrafilter on a countable set N
satisfying that, for every countable partition {In}∞n=1 of N disjoint with W, there
is a countable collection of subsets {An}∞n=1 such that

⋃∞
n=1 An ∈W, card An ≤ 1

and An ⊂ In for all n.
The existence of selective ultrafilters on N is undecidable in the Zermelo-

Fraenkel set theory, but it holds if some additional axiom, like the Continuum
Hypothesis or the Martin axiom, is accepted [38].

When U is a selective ultrafilter, Theorems A.6.6 and A.6.7 admit the follow-
ing variant:

Theorem A.6.16. Given a selective ultrafilter U on a set N , μ a finite measure
with no atoms and f an element of L1(μ)U, the following statements hold:

(i) f ∈ L1(μ)U belongs to JμU

(
L1(μU)

)
if and only if any of its representatives

is weakly convergent following U;

(ii) f ∈ L1(μ)U belongs to N(PμU
) if and only if it admits a disjointly supported

representative.

Although the characterizations given in Theorem A.6.16 are very manage-
able, they fail if U is not selective [82]. In particular, after Theorem A.6.7, it is
straightforward that statement (ii) in Theorem A.6.16 does not make sense if the
set N of indices is uncountable and every element of U is also uncountable.

At this point, it should be noticed that there are some remarkable ultrafilters
that are not selective. For instance, if U and V are a pair of ultrafilters on a
countable set, then U×V is not selective. Besides, if L is an isometry and V is an
ultrafilter on I associated with the bidual of L1(μ), then V is not selective because
none of its elements is countable. Indeed, if V had some countable element, then
cardL1(μ)V = 2ω0 because of the separability of L1(μ), while cardL1(μ)∗∗ = 22ω0 ,
which denies the existence of any isometry from L1(μ)∗∗ into L1(μ)V.
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[19] B. Beauzamy, Opérateurs uniformément convexifiants. Studia Math. 57
(1976), 103–139.

[20] B. Beauzamy, Quelques proprietés des opérateurs uniformément convexifi-
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[23] B. Beauzamy, Propriété de Banach-Saks. Studia Math. 66 (1980), 227–235.

[24] B. Beauzamy, Introduction to Banach spaces and their geometry. North
Holland, Amsterdam, 1982.

[25] S. Bellenot, The J-sum of Banach spaces. J. Funct. Anal. 48 (1982), 95–
106.

[26] S. Bellenot, Local reflexivity of normed subspaces, operators and Fréchet
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[69] M. González, On essentially incomparable Banach spaces. Math. Z. 215
(1994), 621–629.
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[87] M. González, A. Mart́ınez-Abejón, J. Pello, Conjugate operators that pre-
serve the nonconvergence of bounded martingales. J. Funct. Anal. 252
(2007), 566–580.

[88] M. González, A. Mart́ınez-Abejón, J. Pello, L1-spaces with the Radon-
Nikodým property containing reflexive subspaces. Preprint (2009), 1–11.
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norming sets in Banach and Fréchet spaces. Studia Math. 25 (1965), 297–
323. (Russian)

[113] N. Kalton, The endomorphisms of Lp (0 ≤ p < 1). Indiana Univ. Math. J.
27 (1978), 353–381.

[114] N. Kalton, Locally complemented subspaces and Lp–spaces for 0 < p < 1.
Math. Nachr. 115 (1984), 71–97.

[115] N. Kalton, A. Wilansky, Tauberian operators on Banach spaces. Proc.
Amer. Math. Soc. 57 (1976), 251–255.



238 Bibliography

[116] J. Korevaar, Tauberian theory. A century of developments. Springer, Berlin,
2004.

[117] H. E. Lacey, The isometric theory of classical Banach spaces. Springer,
New York-Heildelberg, 1974.

[118] A. Lebow, M. Schechter, Semigroups of operators and measures of noncom-
pactness. J. Funct. Anal. 7 (1971), 1–26.

[119] A. Lima, O. Nygaard, E. Oja, Isometric factorization of weakly compact
operators and the approximation property. Israel J. Math. 119 (2000), 325–
348.

[120] J. Lindenstrauss, H. P. Rosenthal, The Lp spaces. Israel J. Math. 7 (1969),
325–349.

[121] J. Lindenstrauss, L. Tzafriri, Classical Banach spaces. Lecture Notes,
Springer, Berlin, 1973.

[122] J. Lindenstrauss, L. Tzafriri, Classical Banach spaces I. Sequence spaces.
Springer, Berlin, 1977.

[123] J. Lindenstrauss, L. Tzafriri, Classical Banach spaces II. Function spaces.
Springer, Berlin, 1979.

[124] H. P. Lotz, N. T. Peck, H. Porta, Semi-embeddings of Banach spaces. Proc.
Edinburgh Math. Soc. 22 (1979), 233–240.

[125] C. F. Martin, A note on a recent result in summability. Proc. Amer. Math.
Soc. 5 (1954), 863–865.

[126] D. H. Martin, J. Swart, A characterization of semi-Fredholm operators
defined on almost reflexive spaces. Proc. R. Ir. Acad. 86A (1986), 91–93.

[127] A. Mart́ınez-Abejón, Semigrupos de operadores y ultrapotencias. Ph. D.
Thesis, Universidad de Cantabria, Santander, 1994.

[128] A. Mart́ınez-Abejón, An elementary proof of the principle of local reflexiv-
ity. Proc. Amer. Math. Soc. 127 (1999), 1397–1398.

[129] A. Mart́ınez-Abejón, J. Pello, Finite representability of the Yang operator.
Ann. Acad. Sci. Fenn. Math. 28 (2003), 169–180.

[130] A. Mart́ınez-Abejón, J. Pello, Finite representability of operators. J. Math.
Anal. Appl. 278 (2003), 527–541.

[131] K. Mikkor, Uniform factorization for compact subsets of Banach space op-
erators. Dissert. Math. 43, Universitatis Tartuensis, 2006.

[132] K. Mikkor, E. Oja, Uniform factorization for compact sets of weakly com-
pact operators. Studia Math. 174 (2006), 85–97.



Bibliography 239

[133] R. Neidinger, Properties of tauberian operators on Banach spaces. Ph. D.
Thesis, The University of Texas at Austin, Austin TX, 1984.

[134] R. Neidinger, H. P. Rosenthal, Characterizing Tauberian operators by closed
images. Texas functional analysis seminar. Longhorn Notes, Univ. Texas
Press. Austin, Texas (1983), 211–221.

[135] R. Neidinger, H. P. Rosenthal, Norm-attainment of linear functionals on
subspaces and characterizations of tauberian operators. Pacific J. Math.
118 (1985), 215–228.

[136] O. Nygaard, Some dual tauberian embeddings. Acta Comment. Univ.
Tartuensis Math. 5 (2001), 35–41.

[137] E. Odell, H.-O. Tylli, Weakly compact approximation in Banach spaces.
Trans. Amer. Math. Soc. 357 (2005), 1125–1159.

[138] J. Pello, Semigrupos de operadores asociados a la propiedad de Radon-
Nikodým. Ph. D. Thesis, Universidad de Oviedo, 2005.

[139] A. Pietsch, Operator ideals. North Holland, Amsterdam, 1980.

[140] A. Pietsch, What is “local theory of Banach spaces”? Studia Math. 135
(1999), 273–298.

[141] G. Pisier, Factorization of linear operators and geometry of Banach spaces.
C.B.M.S. Reg. Conf. 60; Amer. Math. Soc., Providence, R.I., 1986.

[142] N. Robertson, Asplund operators and holomorphic maps. Manuscripta
Math. 75 (1992), 25–34.

[143] H. Rosenthal, On relatively disjoint families of measures, with some appli-
cations to Banach space theory. Studia Math. 37 (1970), 13–36.

[144] H. Rosenthal, On subspaces of Lp. Ann. Math. 97 (1973), 344–373.

[145] H. Rosenthal, A characterization of Banach spaces containing �1. Proc.
Nat. Acad. Sci. (USA) 71 (1974), 2411–2413.

[146] H. Rosenthal, A characterization of Banach spaces containing c0. J. Amer.
Math. Soc. 7 (1994), 707–748.

[147] H. Rosenthal, On wide-(s) sequences and their applications to certain
classes of operators. Pacific J. Math. 189 (1999), 311–338.

[148] W. Rudin, Functional Analysis. Mc Graw Hill, 2nd edition, Boston, 1991.

[149] R. A. Ryan, Weakly compact holomorphic maps on Banach spaces. Pacific
J. Math. 131 (1988), 179–190.

[150] E. Saksman, H.-O. Tylli, New examples of weakly compact approximation
in Banach spaces. Ann. Acad. Sci. Fennicae Math. 33 (2008), 429–438.



240 Bibliography

[151] W. Schachermayer, For a Banach space isomorphic to its square the Radon-
Nikodým property and the Krein-Milman property are equivalent. Studia
Math. 81 (1985), 329–339.

[152] I. Singer, Basic sequences and reflexivity of Banach spaces. Studia Math.
21 (1961-1962), 351–369.

[153] I. Singer, Bases in Banach spaces II. Springer, New York, 1981.
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