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PREFACE

This volume contains the invited addresses and contributed

papers presented at a Regional Research Conference sponsored by

the National Science Foundation and the Conference Board of the

Mathematical Sciences and held at Mississippi State University

from August 11 to 15, 1975. The subject of the conference was

the stability of dynamical systems, and Professor J. P. LaSalle

of the Lefschetz Center for Dynamical Systems, Brown University,

was the Principal Lecturer. Professor LaSalle's lecture notes

appear as Volume 25 in the SIAM Regional Conference Series in

Applied Mathematics.

With the exception of Chapter 1 by Artstein, all the chapters

in this volume were presented at the Conference; Artstein's

lectures at the Conference appear as an appendix to LaSalle's

notes. The contribution by Artstein in this volume is research

completed after he returned to the Weizmann Institute, but due

to its relevance to the theme of the Conference, it is included

here for completeness.

The range of topics discussed in this book --control theory,

mathematical economics, nonlinear oscillations, random integral

equations, various stability criteria --attest to the importance

and broad influence that stability theory in general, and

LaSalle's famous invariance principle in particular, have had

on the mathematical sciences.

I wish to especially thank the National Science Foundation

and the Conference Board of the Mathematical Sciences for

funding the Conference. I also wish to thank those who gave

the invited addresses: Z. Artstein, T. A. Burton, A. G. Kartsatos,

and R. Reissig. I am grateful to Paul W. Spikes who helped with
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iv Preface

the local arrangements for the conference, Gail Hudson who did

an excellent job of typing the manuscript, and the staff at

Marcel Dekker for their help in the preparation of this volume.

A very special thanks goes to J. P. LaSalle not only for serving

as Principal Lecturer for the Conference, but also for his many

contributions to mathematics which have so strongly influenced

current research in stabiliby theory and its applications.

John R. Graef
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Part I

INVITED ADDRESSES





Chapter 1

ON THE LIMITING EQUATIONS
AND INVARIANCE OF TIME-DEPENDENT

DIFFERENCE EQUATIONS

ZVI ARTSTEIN

Division of Applied Mathematics
Brown University

Providence, Rhode Island

INTRODUCTION

In the main series of lectures in the conference Professor

LaSalle developed the analogue of Liapunov's theory and the

invariance principle for discrete dynamical systems. He

showed how the many concepts which were extensively discussed

in the context of ordinary differential equations (o.d.e.'s)

can be reinterpreted and used in connection with discrete

systems, see [3] and [4]. Here we shall focus on one concept,

namely the limiting equations. The basic use of the limiting

equations was discussed by LaSalle [3]; here we shall examine

the situation where the limiting equations are not of the same

type as the original equation. This idea was investigated for

o.d.e.'s (see [1] and the references therein.) Mathematically

our chapter will be self-contained, but we shall hardly discuss

Present address: Department of Mathematics, The
Weizmann Institute of Science, Rehovot, Israel.
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4 Artstein

motivation or applications. These can be found in [1,3,4]

and the references contained there.

We develop the theory for difference relations of the form

x(n+l) e T(n,x(n)) where T is a set-valued mapping. This is

a generalization of the linear iterates x(n+l) = g(n,x(n)).

We are interested in the extension not only for the sake of

generalization; we shall show how several types of difference

equations can be reduced to this general form. Moreover, even

if we start with a linear iterate, the limiting equations have

in general the form of a difference relation.

By passing to the general form of a difference relation

the theory becomes embarrassingly simple. The definitions are

straightforward and natural, and the problem of the existence

of the limiting equations (the positive precompactness in [1])

disappears. We shall return to this in our concluding remarks.

NOTATIONS AND TERMINOLOGY

Let X be a finite dimensional euclidean space. (This assumption

is only for simplicity, all the results and proofs will be

valid for a locally compact space if "bounded" is systematically

changed to "precompact".) Let J be the set of all integers.

Let T :J x X+ X be a set-valued mapping, i.e., for each n e J

and x e X a subset T(n,x) (may be empty) of X is given.

A solution of the difference relation

x' a T(n,x) (*)

is a sequence (finite or infinite) {x(n) :M < n < N} which

satisfies x(n+l) a T(n,x(n)) for M < n < N-i. A solution is

maximal if either N = - (respectively, M = - -) or

T(N-l,x(N-1)) is empty (respectively, for no y the relation

x(M+l) a T(M,y) holds). We shall often associate an initial

value x(O) = x0 with (*).

We shall always assume the following.

ASSUMPTION H. The mapping T has a closed graph, i.e.,

for each n e J the set {(x,y) :y e T(n,x)} is closed in

X x X. In particular all the values of T are closed.



Limiting Equations and Invariance

If R(.) is a set-valued mapping we write R (.) for the

set-valued mapping R -(x) _ {z :x e R(z)}. If T is as above,

we shall denote by T the mapping T (n,x) = {z :x e T(n-l,z)}.

Notice that the relation x' c T (n,x) represents a change in

the direction of the time variable.

Let 4 = {4(n)} be a solution of (*). The w-limit set of

4, denoted by o(4), consists of all the vectors z such that

z = lim 4(ki) where ki + -. In particular if 4 is defined

only for a finite number of positive integers then O(4)

is empty.

THE INVARIANCE IN THE AUTONOMOUS CASE

Since we generalize in this note the invariance property from

the autonomous (= time independent) to the nonautonomous case,

we feel an obligation to at least state the former property.

Suppose T is autonomous, that is T(n,x) does not depend on n,

and we write it as T(x). Let 4 be a solution of x' e Tx.

A. If {4(n) :n > 0) is bounded then the w-limit
set 12(4) is invariant, i.e., for each z e s2(4)
the sets T(z) n 12(4) and T- (z) n 12(4) are
not empty.

B. If for every bounded set B in X the set
U{T(x) :x e B} is bounded then 2(4) is
positively invariant, i.e., T(z) n R(4)
is not empty for every z e 12(4). If for
every bounded B the set U(T (x) :x c B) is
bounded then 12(4) is negatively invariant,
i.e., T (z) n 12(4) is not empty for every
Z c 12(4) .

It is not difficult to prove the two statements; they

follow from Assumption H. At any rate, they are particular

cases of their generalizations (Propositions 4 and 5) below.

Notice that the positive (and respectively the negative)

invariance implies that for z e 12(4) the initial value

problem x' c T(x), x(0) = z has a solution defined for all

n > 0 (respectively n < 0).

5



6 Artstein

THE LIMITING EQUATIONS AND INVARIANCE

The following definition, concerning the convergence of the

right hand side of (*), will be the basis for introducing the

limiting equations below.

DEFINITION 1. The set-valued mapping T :J x X - X is

the k-limit of the sequence T(m) of set-valued mappings

T(m) :J x X - X provided y c T(n,x) if and only if (x,y) _

lim (xm,ym), where ym a T(m)(n,xm).

The k in the definition stands for "lower", and the

convergence is motivated by the lower limit of a sequence of

sets (the graphs of T(m) in our case); see Kuratowski

[2; p. 33S].

DEFINITION 2. The translate of T by the integer k is

the mapping Tk defined by Tk(n,x) = T(n+k,x).

Notice that the initial value problem x' e T(n,x),

x(k) = x0 is equivalent, up to a translate n - n+k in the

domain of the solutions, to the initial value problem

x' a Tk(n,x), x(O) = x0.

DEFINITION 3. The relation x' a S(n,x) is an f-limiting

equation of x' a T(n,x) if there is a sequence of integers

ki - - such that S is the f-limit of Tk as i - -.

It is easily seen that S satisfies Assumption H.

Remark. Any sequence k
i
- - determines a limiting

equation, since the f-limit is defined. This is not the

situation in o.d.e.'s (see [1,3] and references therein) or

if we restrict ourselves to linear iterates (as in [4]). In

these cases even the existence of a limiting equation is

sometimes in doubt.

We shall now state and prove the two invariance results

analogous to A and B.

PROPOSITION 4. Let 0 be a bounded solution of

x' a T(n,x). Then for each z c D(m) there is an k-limiting

equation x' a S(n,x) such that the initial value problem

x' e S(n,x), x(O) = z has a solution W defined on the entire

set J and satisfies W(n) a for all n e J.
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Proof. The vector z is a limit of a sequence 0(ki) with

ki -. We now successively define subsequences as follows.

First, ki,0 is given by ki,0 = ki. Suppose kij is given.

For each ki,j consider the block [4(ki,j-j-1), 0(ki'j-j), ...,

0(ki'j+j+l)]. A subsequence of this sequence of (2j+3) -

vectors converges. The indices of this subsequence are denoted

ki,j+l. Let m run over the diagonal sequence km,m. Let S be

the k-limit of Tm. We claim that this S is the desired

limiting equation. Indeed, for n e J, if m is large enough

then m(n) = 4(m+n) is defined and converges, say to p(n),

as m - m. Being the limit of (m+n) as m + - implies that

fi(n) is a member of iZ(4). From the definition of k-limit it

then follows that i is a solution of x' c S(n,x), x(O) = z.

PROPOSITION S. If for every bounded B in X the set

U{T(n,x) :n > n0, x e B} is bounded, then the w-limit set

iz(0) of any solution m is positively invariant in the sense

that for each z E Q(4) there is an k-limiting equation

x' E S(n,x) such that the initial value problem x' E S(n,x),

x(O) = z has a solution * defined for n > 0 and satisfying

ip(n) a I(4) for all n > 0. Similarly, the set R(4) is

negatively invariant if for any bounded B the set

U{T`(n,x) :n > not x c B) is bounded.

The proof is almost the same as in the preceding proposi-

tion. The only change is that in order to establish the

positive invariance, we consider blocks of the form [O(ki

., 0(k. .+j+l)] (and of course [$(k. .-j-1), ..., (k. )3

for the negative invariance). The boundedness of these

blocks, which guarantees the convergence of the subsequences,

is deduced from the boundedness condition in the statement

of the proposition.

Remark. We established the invariance with respect to

k-limiting equations. Obviously, positive or negative

invariance with respect to this class of difference relations

implies the respective invariance with respect to any other

class of relations provided that the graph of any k-limiting
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equation is contained in the graph of an element in the

corresponding class. Sometimes it may be easier to determine

the larger class of equations.

HOW DIFFERENCE RELATIONS ARISE

We have presented the general theory for the difference relation

x' c T(n,x) (*)

In this setting the limiting equations have the same form as

the original equation and its translates. The situation is

different when the original equation has the form of a linear

iterate

x' = g(n,x) (1)

where g is a single-valued map. Equation (1) is of course the

particular case of (*) where T(n,x) = {g(n,x)}. But the

limiting equations of (1) do not in general have the form (1).

Sufficient conditions for the existence of limiting equations

of the form (1) can be found in LaSalle [3].

Another case where difference relations arise is when we

deal with a control system

x' = g(n,x,c) (2)

and the control c takes values in a certain prescribed set

C. The admissible trajectories (namely the solutions) are

identical with the solutions of the difference relation (*) if

we let T(n,x) = {g(n,x,c) :c e C). The limiting equations can

(under quite general conditions) be presented in the form (2).

We shall not pursue this direction here.

We do want to emphasize here that (*) includes difference

equations which are not linear iterates, for example

x' = f(n,x,x') (3)

A solution of (3) is a function such that 4(n+l) _

f(n,q(n),4(n+l)), so here we have to "solve" the equation and

not just iterate the mapping. (Notice that since (3) is a

system, this form includes higher order equations of the form

x(n+l) = f(n,x(n-k),...,x(n),x(n+l).) If we define the mapping

T in (*) by T(n,x) = {y :y = f(n,x,y)} we again obtain a
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difference relation which is identical, (solution-wise) to (3).

The difficulty here is that T is given implicitly. But,

basically, we can regard the limiting equations of the

difference relation obtained as the limiting equations of the

equation (3). It would be better to be able to express these

equations in terms of the function f and not in terms of the

implicitly given mapping T. To get exactly the k-limiting

equations might be too difficult. What can be more easily

done is to obtain a class of equations which contain the

k-limiting equations in the sense described in the previous

remark. We shall not do this here.

Finally we want to point out that we have proved the

invariance with respect to a quite large family of limiting

equations. It is so rich that we do not have the problem of

the existence of a limiting equation. If we want to establish

the invariance with respect to a certain subclass E, it will

be enough to show that for every sequence of integers k.
i
-

a subsequence mi exists such that the k-limiting equation

determined by that subsequence belongs to the subclass E.

This property can be regarded as positive precompactness with

respect to E. The conditions for positive precompactness in

[3] give the result for the equation (1) and the class E of

equations of the same form.

REFERENCES

1. Z. Artstein, Limiting equations and stability of non-
autonomous ordinary differential equations, in The
Stability of Dynamical Systems, (Appendix A), CBMS Regional
Conference Series in Applied Mathematics, Vol. 25, SIAM,
Philadelphia, 1976.

2. K. Kuratowski, Topology I, Academic, New York, 1966.

3. J. P. LaSalle, The Stability of Dynamical Systems, CBMS
Regional Conference Series in Applied Mathematics, Vol. 25,
SIAM, Philadelphia, 1976.

4. J. P. LaSalle, Stability of difference equations; in A
Study in Ordinary Differential Equations, (edited by
J. K. Hale), Studies in Mathematics Series, Mathematical
Association of America, to appear.





Chapter 2

LIAPUNOV FUNCTIONS AND
BOUNDEDNESS OF SOLUTIONS

T. A. BURTON

Department of Mathematics
Southern Illinois University

Carbondale, Illinois

INTRODUCTION

We consider a system of ordinary differential equations

X' = F(t,X) (' = d/dt) (1)

where F :[0,-) x Rn + Rn with F continuous. Assume that there

is a function V :[0,-) x Rn + [0,-) with continuous first partial

derivatives and with V'(t,X) < 0 along solutions of (1).

If V(t,X) - m as JXJ + - uniformly for 0 < t < W, then V

is said to be radially unbounded. In this case, it is well

known that all solutions of (1) are bounded in the future.

However, often V is not radially unbounded and the problem

here is to then see what can be salvaged.

Radial unboundedness is merely a convenience for proving

boundedness results. A considerably more fundamental property

showing boundedness is the angle between the vectors F and

grad V, at least when V is autonomous. In that case,

V1 = grad grad V11FIcos 6, and if there are unbounded

11
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sets satisfying V(x) = constant, along which cos 0 < -c for

some e > 0, no solution can become unbounded along that set.

We generalize this idea and obtain a boundedness result

which we then apply to the problem of Lurie.

The reader is referred to Hahn [7] for a general treatment

of Liapunov's direct method. Complete details of the results in

this chapter will appear elsewhere in [3].

BOUNDEDNESS

It is assumed that there are k disjoint unbounded sets on which

V may be bounded and through which a solution could escape.

Each such set may be distinguished by a "level" surface

V(t,X) = Li, i = 1,...,k. We first augment V by adding a

function p so that V(t,X) + p(X) is radially unbounded. This

is the affect of Definition 1. The function u is not continuous

except on certain open sets and so V + u is not a Liapunov

function. However, one can show that if grad 0 when

grad p is defined, then the solutions of (1) are bounded. That

is the content of Theorem 0. If grad 0 fails, then we ask

essentially that [grad VIIFI not decrease too

rapidly as JXJ increases in certain subsets of those sets in

which V is bounded. That is, we ask that cos 0 not approach

zero too rapidly. This condition is formalized as Definition 2.

Below, R denotes the closure of R and Rc denotes

the complement.

DEFINITION 1. A function V :[0,-) x Rn -> [0,oo) is augmented

by p if there is a function u : Rn -* [0,-) such that V(t,X) + u(X)

is radially unbounded and if the following two conditions hold.

a. There are disjoint open sets R1,...,Rk in Rn

and continuous functions with

Vi : Ri + [0,-). Each Vi has continuous first

partial derivatives in Ri, and

ui(X) if X E Ri for some i

u(X)

0 if X e (URi)c
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b. There are positive constants L1,...,Lk such

that for each i, if 0 < Li < Li, then there

exists D > 0 such that if

X a Ri and V(t,X) < Li, then pi(X) < D (2)

Note that since V(t,X) + p(X) is radially unbounded, for

each L > 0, there exists H > 0 such that

if V(t,X) < L and IXI > H, then X e Ri for some i (3)

The following result is well-known, at least for second

order systems, and has been used in many examples. The present

formulation, however, is both new and useful. Note that part

b of Definition 1 is not required here.

THEOREM 0. Suppose that V is augmented by p according to

Definition 1. If for each X c URi we have grad 0

for all t > 0, then all solutions of (1) are bounded.

The proof will appear in [3].

DEFINITION 2. A function V is an augmented Liapunov

function if V is augmented by p according to Definition 1 and

if for each i and for each L > Li, there exists a positive

constant J and continuous functions g :(0, L - Li] - (0,m) and

h : [J,oo) - [0,W) with

L- L .
1 i [ds/g(s)] < m and I h(s)ds =
0+ J

while pi(X) > J and L > V(t,X) > Li imply

V'(t,X) < -g(V(t,X) - Li)h(ui(X))Igrad

THEOREM 1. Suppose that V is an augmented Liapunov function

according to Definition 2 and that for each i, if pi(X) > J and

V(t,X) = Li, then V'(t,X) < 0. Then all solutions of (1) are

bounded.

The proof will appear in [3].

Since this result is fairly general and, as a consequence,

is quite complicated, we will state and prove a simplified version.
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THEOREM 2. Suppose that the following conditions hold.

I. There exists L > 0 such that 0 < L* < L and
V(t,X) < L* imply IXJ bounded.

II. There exists J > 0 such that V(t,X) = L and
IXI > J imply V'(t,X) < 0.

III. For each c > 0, there exist g :(0,e) -> (0,-)
and h : [J,o) -} [0,-) such that L + e > V(t,X)
> L and IXl > J imply:

i. V'(t,X) < -g(V(t,X) - L)h(IXI)IF(t,X)I, and
er

ii.
1

+[ds/g(s)] < m and
1

h(s)ds = m.
0 J

Then all solutions of (1) are bounded.

Proof. If the theorem is false, then there is an unbounded

solution X(t) on a right maximal interval [t0,T). We can argue

from II and then I that V(t, X(t)) > L. We choose c by setting

V(t0, X(t0)) = L + e and obtain g and h from III.

Either IX(t)I > J on some interval [t1,T) or there are

sequences {tn} and {Tn} with to < Tn < to+1, IX(tn)I = J,

IX(t)I > J on [tn, Tn], and IX(Tn)I W as n m.

In the first case, we separate variables in IIIi and

integrate from t1 to t > t1, to obtain

[V'(s, X(s))/g(V(s, X(s)) - L)]ds
1ttl jt

< h(jx(s)I)Ix(s)Ids
ti

-ft h(IX(s)I)IIX(s)I'Ids
tl

Changing variables on both sides of the inequality yields

f

r(t) IX(t)I

r(tl)[ds/g(s)] < -I I
h(u)dul

IX(t1)1

where r(t) = V(t, X(t)) - L. This yields X(t) bounded. A

similar argument on the intervals [tn, Tn] completes the proof.
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Remark 1. The present author [1, 2] attempted to show

boundedness by requiring that V' have certain strong properties.

It was subsequently shown by Erhart [5; Th. 2.1] that the

property on V' generally implied V radially unbounded. The

example in the next section shows that our conditions hold

without V being radially unbounded.

Remark 2. If F is bounded for X bounded, then results of

LaSalle [8] and Haddock [6] yield interesting additional infor-

mation about solutions. If some component of F is bounded for

X bounded, then the results in [4] yield similar additional

information.

A LURIE PROBLEM

We consider the system

x' = Ax + br(a)

a' = cTx - ro(a)

in which 0 : R -* R, oo(a) > 0 if a ¢ 0, 0 is continuous, A is an

n x n matrix all of whose characteristic roots have negative

real parts, c and b are constant n-vectors. The reader is

referred to Lefschetz [10; pp. 20-21] for a general discussion

of the problem.

One uses

V(x,a) = xTBx + 0(a)

a
where ¢(o) 0(s)ds and B is positive definite and

0

symmetric, obtaining

V' = -xTDx + 0(a)[2bTB + cT]x - ro2(a)

which is negative definite in when D = -(ATB + BA) and

r > (Bb + c/2)TD-1(Bb + c/2) (4)

We note that if $(+") ¢ -, then V is not radially un-

bounded. For brevity, take 0(-) = (--) so that the choice

of L1 = L2 = 4(w) will satisfy (2) and (3) when R1 =

{(x,a) : a > 0}, R2 = {(x,a) :a < 0), pi(x,a) = a, and

u2(x,a) _ -a.
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If (4) holds, then V' negative definite in (x, (a)) implies

that there exists m > 0 with V' < -m(xTx + 02(a)). Now

V(x,(') - gy(m) = xTBx + 0(a) < xTBx < QxTx for some

Q > 0. Also,

10'I = IcTx - r4(o)I < P[xTx + 02(0)]1/2

for some P > 0.

Thus, we pick h(s) = and g the square root function

since we have

V' < -(m/P J)[V(x,o) - (-)]1/21ui'i

Theorem 1 then yields all solutions bounded.

We note that there is also a largely algebraic proof of

this result given by LaSalle [9].
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INTRODUCTION

The main purpose of this paper is to present some modern results

pertaining to the oscillation of solutions of forced and

perturbed nonlinear equations. We are mostly concerned here

with integral criteria guaranteeing oscillation. The interest

of mathematicians in this direction was triggered by the now

classical paper of Atkinson [2] in 1955 concerning the important

case of an Emden-Fowler-like equation of second order.

For two reasons we almost always consider, with few

exceptions, only even order equations. First, we avoid state-

ments concerning n even and n odd separately; and second, those

familiar with the theory will be able to interpret the results

for n odd without any difficulty. Many of the results presented

here were originally formulated for more complicated and/or

functional equations. We gave a simplified version in order

to make the exposition easier. An extensive bibliography on

the subject is also given at the end of the paper. Some

17
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"linear" papers affecting the nonlinear case are included

therein; some others have been excluded and might be found in

the bibliography of Wong's second ordcr survey article [342].

The paper is divided into six sections. The first is devoted

to the preliminaries. In the second we consider the homogeneous

case whose oscillatory behavior definitely affects the

behavior of the forced and the perturbed case. The third and

fourth sections are concerned with the forced and the perturbed

case respectively. In the fifth section some new results are

given, and the last section is devoted to the formulation of

several problems which, according to the opinion of this author,

are still open.

The author wishes to express his thanks to Professor

J. R. Graef of the Mississippi State University for the oppor-

tunity of presenting an invited address, and his, as well as

Professor Spikes', hospitality. The author also wishes to

apologize to those of his colleagues whom he did not mention

either in the text, or in the bibliography, due to his

ignorance concerning their work.

PRELIMINARIES

In what follows we let R R+ = [0,W), R+° = R+ - {0},

R_ = (-c,0], R-° = R - {O}. The letter T will denote a fixed

nonnegative number, and RT = [T,m). Without further mention

all the functions considered will be assumed continuous on

their respective domains. Unless otherwise stated, the letter

n will always denote an even integer > 2. Now consider

the equation

x(n) + H(t,x,x',...,x(n-1)) = 0 (1.1)

with n arbitrary and H : RT x Rn - R. By a solution of (1.1)

we mean any real function x(t) which is n times continuously

differentiable on an interval [tx,-) (tx > T) and satisfies

(1.1) on this interval. The number tx depends on the particular

solution x(t). A function f :[a,-) -' R (a > T) is said to be

oscillatory if it has an unbounded set of zeros on [a,-).

Equation (1.1) is said to be oscillatory if all of its solutions
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are oscillatory. A function f as above is said to be bounded

if there exists a positive constant k such that lf(t)j < k,

t > a. Equation (1.1) is said to be B-oscillatory if all of

its bounded solutions are oscillatory. Only non-eventually

trivial solutions are considered here.

Now we consider the following three types of equations:

x(n) + H(t,x) = 0

x(n) + H(t,x) = Q1(t)

x(n) + H(t,x) = Q2(t,x)

(I)

(II)

(III)

The functions H, Q1, Q2 will occasionally satisfy one of the

following hypotheses:

(H) H : RT x R - R, uH(t,u) > 0 for every u # 0.

(Q1) Q1 : RT - R and there exists a function P : RT - R,

which is n times continuously differentiable on RT

with P(n) = Q1(t), t E RT.

(Q2)
Q2 : RT x R ; R and there exists a continuous

function Q
0
: RT x R+ - R+ such that IQ2(t,u)l <

Q0(t,jul) for every (t,u) a R. x R.

Let us now show that a nonlinear equation of order two may

have oscillatory and nonoscillatory solutions. This behavior

has been exhibited by Moore and Nehari [227]. In fact, it was

shown there that the equation

x" + P(t)g(x) = 0 (1.2)

with p(t) (1/4)t-(m+2), g(u) a
u2m+l, t > 1, m a natural

number, has the following three types of solutions: (i) x(t)

is nonoscillatory and tends to a finite limit as t + m;

(ii) x(t) is nonoscillatory, monotone, and such that the

function x(t) - tl/2, t > 1 is oscillatory; (iii) x(t) is

oscillatory. This example implies immediately that Sturm's

comparison theorem does not hold in its full generality even

for second order equations. It is also proper to note here

that an equation of the form (1.1) might have nonextendable
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solutions for which our definition of oscillation does not

apply. In fact, in the interesting and extensively studied

case (1.2), Burton and Grimmer [33] proved the following:

THEOREM 1.1. (Burton and Grimmer [33]). Consider (1.2)

with p : RT - R, g :R + R and ug(u) > 0 for every u # 0. Let

p(tl) < 0 for some tl > T. Then if anyone of the following

conditions holds, (1.2) has solutions which are not continuable

to +-:

(a) f' [I + G(s)] 1/2ds < +-,
0

(b)
1

[l + G(s)]-1/2ds >
0

uwhere G(u) = fg(v)dv.
0

The sufficiency part of this result has been shown to hold

in the arbitrary nth order case by Mahfoud [218] and for large

classes of functions H as in (1.1). In an unpublished result,

Prof. Burton has shown the necessity part to be also true in

third order equations. In this connection, the reader is also

referred to Kiguradge [161], who, among other results, establishes

conditions under which a certain particular form of (1.2) has

some extendable oscillatory solutions despite the oscillatory

character of p(t). In this same paper, Kiguradge shows the

sufficiency part of the above theorem for a special case again

of (1.2). Nevertheless, under (H), all nonoscillatory solutions

of (I) are extendable to +-, and a reference to the proof of

this fact is Foster's paper [73]. The uniqueness problem will

not concern us here because it hardly ever enters into the

research for oscillation criteria in the present spirit.

THE HOMOGENEOUS CASE

In this section we shall start with the pioneering result of

Atkinson [2] and continue with some of the highlights of

its extensions.
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THEOREM 2.1. (Atkinson [2]). Consider the equation

X"
+

P(t)x2m+1 = 0 (2.1)

where p : RT R+° and m is a positive integer.

the condition

tp(t)dt = +o
1T

Then

(2.2)

is necessary and sufficient for (2.1) to be oscillatory.

Atkinson [2] also gave a result whose conclusion ensures

the nonoscillation of all solutions of (2.1):

THEOREM 2.2. (Atkinson [2]). Let p(t) be positive and

continuously differentiable on RT with p'(t) < 0 there. Let

m be a nonnegative integer. If

f-t2m+lp(t)dt
<

T

then (2.1) has no oscillatory solutions.

The proof of the above theorem is based on the fact that

all solutions of (2.1) have bounded derivatives under these

hypotheses. As far as the author knows, there is no analogue

to this theorem covering the nth order case (cf. Problem I).

The present author [138] gave a result which ensures the

nonoscillation of all bounded solutions of nth order super-

linear equations:

THEOREM 2.3. (Kartsatos [138]). Consider the equation

x(n) + H(t,x,x',...,x(n-1)) = 0 (2.3)

where t c RT, H : RT x Rn -r R, and such that

jH(t,u(t),...,u(n-1)(t))I < H(t;u)lu(t)l

(stn-1H(t;u)dt <

T

for every bounded function u which is defined and n times

continuously differentiable on RT. Here H maps RT into R+ and

depends on u. Then every bounded oscillatory solution of

(2.2) is identically equal to zero for all large t.
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Licko and Svec [203] gave the following result.

THEOREM 2.4. (Licko and Svec [203]). Consider the

equation (I) with H(t,u) = P(t)ua, where p(t) is positive on

RT and a is the quotient of two odd positive integers. Let n

be even and 0 < a < 1. Then the condition

fmta(n p(t)dt = +
T

(2.4)

is necessary and sufficient for the oscillation of Equation (I)

Let n be odd, 0 < a < 1. Then (2.4) is necessary and

sufficient for all solutions of (I) to oscillate or tend mono-

tonically to zero. In the case a > 1 both these conclusions

hold if (2.4) is replaced by

f,tn- lp (t) dt = +
T

(2.5)

The sufficiency part of the above criterion for n even

and a > 1 was actually given for the first time by Kiguradge

[157; Theorem 5] in 1962. The case n even and 0 < a < 1 in

the above theorem extends a result of Belohorec [6] who

considered second order equations. Tn [132], the author

considered equations of the form (2.3) with H jointly homo-

geneous with respect to its last n variables, and established

the following.

THEOREM 2.5. (Kartsatos [132]). Consider the equation

(2.3) and assume that H(t,ul,...,un) = p(t)g(ul,u2,...,un),

where p :RT - RT°, g : Rn - R, ulg(ul,u2,...,un) > 0 for uI # 0

and such that for some positive constant K and for every

(ul,u2,...) un) a Rn and every A > K. g(-u1,-u2,...,-un)

-g(ul,u2,...,un) and g(A, Xu2,...,Xun) = aag(1,u2,...,un),

where a = q/r with q and r odd positive integers. Then, under

anyone of the following conditions, (a) for n even, (2.3) is

oscillatory, (b) for n odd, every solution of (2.3) oscillates

or tends monotonically to zero as t -
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(i) a < 1,
fT'ta(n-1)p(t)dt = -

T

(ii) a = 1, J'T tn-1-ep(t)dt = +m, for some c > 0

(iii) a > 1, +m
T

The case (ii) above extends a linear theorem of Mikusinski

[224]. Mikusinski claims that the conclusion (b) above holds

in the case (ii) without a in the integral condition. This is

false, however, and a counterexample was given by the author

in [134]:

x(n) + p(t)x = 0, t > 1, n = odd, (2.6)

with p(t) a m(m - 1)(m - 2)...(m - (n-2))(n - 1 - m)t-n, where

n - 2 < m < n - 1. A family of solutions of (2.6) is given by

xC(t) = Ctm for every C ¢ 0, while (2.6) satisfies the assump-

tions of Mikusinski's theorem. For an earlier example the

reader is referred to Ananeva and Balaganskii [1].

Equations like the ones considered in the above theorem

with homogeneous g are rather interesting. Their fundamental

properties in the second order case were studied by Bihari in

[18-20]. From the proof of the above theorem, it is easy to

see that almost all the known criteria for oscillation of

equations of the type (I) with H(t,u) p(t)ucc (a as above)

imply corresponding ones for homogeneous functions H provided

that p(t) > 0. With this in mind, it becomes evident that

some of the results of Gustafson [97] are immediate consequences

of the proof of the above theorem. Equations (I) with homo-

geneous-like sublinear H have also been considered by Kiguradge

in [160]. Several extensions of Theorem 2.S were given by

Onose in [238, 239, 243, and 244]. The reader is also referred

to the paper of Staikos and Sficas [291] for further extensions

to functional equations. It should also be mentioned here that

Theorem 2 in Ryder and Wend [258] can also be proved as the

above theorem, and their case is covered by the remarks of

the author on page 602 of [132].
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It is convenient now to state a theorem which was estab-

lished by the author in [140]. This result extends the famous

Sturm's comparison theorem (in a certain direction), and, in

addition to being important in its own right, appears to be a

valuable tool in oscillation arguments. This result was in-

spired by a certain theorem of Atkinson [3] which pertains to

the existence of positive solutions of homogeneous second

order equations.

THEOREM 2.6. (Kartsatos [140]). Consider the two

equations

x(n) + Hi(t,x) = Q1(t), i = 1, 2, (2.7)
i

where each Hi satisfies (H) (with H replaced by Hi) and is

increasing with respect to the second variable. Let Q1 satisfy

(Q1) with P(t) oscillatory and such that lim P(t) = 0. More-
t;1

over, let

HI(t,u) < H2(t,u) if t c RT and u > 0 (2.8)

HI(t,u) > H2(t,u) if t c RT and u < 0 (2.9)

and the equation (2.7)i be oscillatory. Then this is also

the case for the equation (2.7)2.

Actually, the assumptions (2.8), (2.9) of this theorem

can be weakened to the following:

Hi (t,u) < H2(t,u) if t c RT and u > 0 (2.10)

H2 (t,u) > H2(t,u) if t e RT and u < 0 (2.11)

where
Hi*

: RT x R+° -} R+° and
H2*

: RT x R_° + R_° and increasing

in u, and such that the equation

x(n) + H1*(t,x) = Q1(t) (2.12)

has no positive solution and the equation

x(n) + H2*(t,x) = Q1(t) (2.13)

has no negative solution. The conclusion of the theorem

remains the same. Of course (2.7)i does not play any role now.
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Having this improvement in mind, one can easily deduce the main

result of Jones (H(t,u) = ji=1 pi(t)ul) in [117] from the main

theorem of Atkinson [2], the main theorem of Macki and Wong

[217] from the oscillation theorem of Pinter [256], and

Theorem 1 of Ryder and Wend [258] from Theorem 2 of Kartsatos

[133] (cf. note added in proof of [133]). Similarly, a host

of other oscillation criteria can now be obtained by this

comparison theorem, but they are too many to enumerate. One of

the first results on the oscillation of (I) with nonhomogeneous

H was given by Kiguradge in [157] and concerns the superlinear

case.

THEOREM 2.7. (Kiguradge [157]). Consider (I) with

H(t,u) = F where F(t,v) is defined on RT x R+ and is non-

negative and increasing in v. Moreover, assume that there

exists a function g : R+° + R+° such that g'(u) > 0, and

F(t,u2) > F(t,c2)g(u) for every u c R+° and every c > 0 with

u > c. Furthermore, suppose that for every c > 0,

Ids < +-,
E T

Then, for n even, (I) is oscillatory, and, for n odd, every

solution of (I) oscillates or tends monotonically to zero as

t + W.
The author showed in [133] that the conclusion of the

above theorem remains valid if H(t,u) = p(t)g(u) with p(t) > 0,

ug(u) > 0 for u ¢ 0, g ' (u) > 0 for J u l > K > 0 and

1"tn-lp(t)dt
= jm[g(s)]-Ids < +W,

T

E

J
[g(s)]-lds < +W

(2.14)

for some e > 0. The assumption on the differentiability of

g(u) was replaced later by a monotonicity assumption and the

use of Riemann-Stieltjes integrals by the author in [136].
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The integral condition on p(t) above is also necessary in the

case of n even, and this was shown by the author in [134], and,

independently, by Onose in [240]. Onose considered also the

case n even, and his result is the following:

THEOREM 2.8. (Onose [240]). Suppose that n is even,

p : RT R+ is bounded, and for the function g : Rn + R we have

u1g(ul,u2,...,un) > 0 for every ul # 0. Then the first of

(2.14) is necessary and sufficient for the equation

x(n) + p(t)g(x,x...... )c
(n-1)) = 0

to oscillate.

Onose used a successive approximation technique by which

he obtained a positive solution to an integral equation

associated with (I), under the assumption that the first integral

in (2.14) converges. This technique is quite old of course,

and an interesting but rather complicated application of it

for nonlinear nth order equations was given by Villari [333].

In [134], the author, inspired by the results of Svec [302,

303], used Schauder's fixed point theorem. In the functional

case, Schauder's fixed point theorem was applied by Staikos

and Sficas [292]. Naturally, mention should be made of the

various asymptotic results that Kiguradge obtained, for example,

in [159, 160]. In this connection, Pui-Kei Wong's papers

[346, 347] are also of importance. In addition to [157],

sublinear analogues of Theorem 2.7 above can be found, for

example, in the paper [181] by Kusano and Onose. Their result

follows however from the corresponding result of Licko and

Svec [203; Theorem 2.6] by use of the comparison result,

Theorem 2.6, above. Three years ago, Staikos and Sficas

[291] established a so-called "fundamental principle". This

principle is the statement, in a compact form, of a method that

had been used previously by many authors. In the case of (I)

with H '_ p(t)g(u) and (1.1), it simply asserts that information

about (I) can be used to obtain information about (1.1) if we

write it as

x(n) + [H(t,x,x...... x(n-1))/g(x)]g(x)
= 0
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provided that x(t) belongs to a certain function class. This

idea has been exploited, for example, by Wong [342], Kartsatos

[132], and Onose [240], and it works mainly with integral

criteria on p(t) which carry over to H/g. We now take a

brief look at the notion of strong continuity. This notion

was introduced by J. S. W. Wong [342] for second order equations

and, independently, by the author [134] for nth order equations.

Although the two concepts are different, they do overlap in

special cases.

We state here the notion introduced by the author in [134]

because it is simpler and we refer the reader to the paper [243]

of Onose, who extended Wong's concept to functions of more

than two variables, and applied it to nth order equations.

Actually, we state here a slightly more general concept than

the one in [134].

DEFINITION. (Kartsatos [134]). Assume that H : RT x Rn - R,

u1H(t,u1,u2,...,un) > 0 for every u1 # 0, H is increasing in

un c R+ and decreasing in un a R_ and the following condition

holds:

Condition S. For every e > 0 and a > c there exists
Ta,c _> T and function [Ta Ew) R+

(P2( ,a,e) :[T,,",,-) - R_) such that H(t,xl,x,0) >

P1(t,a,e)(H(t,x1,z,0) < P2(t,a,e)) for any x =

(x2,x3,...,xn-1) a Rn-2 with lxii < e, i = 2,3,...,n-1,

any xl e R with xl > a-e(x1 < -a+s) and any t > Ta
e

Then H is said to be a strongly continuous function.

The following theorem of the author is a new result and a

better version of a theorem in [134]; it ensures the oscillation

of all the bounded solutions of Equation (1.1).

THEOREM 2.9. (Kartsatos [134]). Let the function H in

(1.1) be strongly continuous and such that

T
tn-1P n-1

1(t,a,e)dt = + and 1T tP2(t,a,E)dt
I

= -
a,e a,e

Then (1.1) is B-oscillatory.
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The proof of this theorem is trivial if one uses the

comparison Theorem 2.6. In fact, let x(t), t > T1 > T, be a

positive solution of (1.1). Then, if x(t) is also bounded, all

of its derivatives are of constant sign (up to the order n),

lim x(I)(t) = 0, j = 1,2,...,n-2, and x(n-1)(t) > 0 for all
t-.

large t. If lim x(t) = L > 0, then taking e > 0 with e < L,
t-

there exists t = T
L,e

> T
1
such that L-e < x(t) < L,

-

jx(j)(t)l < c, j = 1,2,...,n-2 and x(n-1)(t) < 0 for every

t > T. Now from (1.1) we get

x(n)(t) +
[H(t,x(t),...,x(n-l)

(t))/x(t)]x(t) = 0 (2.15)

where [H(t,x(t),...,x(n-l) (t))/x(t)] > (1/L)PI(t,L,e) for all

t > T. The contradiction can be obtained now from Theorem

2.6 and the fact that the equation

x(n) + (l/L)P1(t,L,e)x(t) = 0 (2.16)

for t > t, cannot have bounded positive solutions (c.f.

Kartsatos [133]). A similar proof holds if x(t) is negative

for t > TI.
The reader is referred again to the paper of Onose [243],

where necessary conditions are also obtained for strongly

continuous functions. Obviously, the above definition of

strong continuity, as well as the one given by Onose in [243],

can be applied only in arguments concerning solutions with

bounded derivatives. More general definitions can be given

to guarantee the oscillation of all solutions of (1.1), but,

again the main role would be played by the comparison Theorem

2.6. It might be helpful to know that the monotonicity

assumption of H above with respect to its last variable can be

replaced by a condition like the one imposed on x2,x3,...'xn-1'

With this in mind, the above definition of strong continuity

applies to the function H a p(t)g(u1,u2) ...,un) with p(t) > 0,

x1g(ul,...,un) > 0 for x1 ¢ 0. This is also noted by Onose

in [243] concerning the concept introduced there. Taking this
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remark into consideration, let us assume that H is strongly

continuous according to the above definition, but without any

monotonicity assumption on the last variable. Moreover,

H(t,x1,x,O) is replaced now by H(t,x1,x2,...,xn). Then we

have the following result.

THEOREM 2.10. (Kartsatos [134], Onose [243]). Let H be

strongly continuous from the left (H > P1) or from the right

(H < P2). Then Equation (1.1) has a nonoscillatory solution

if, for some a and c

T -( tn-1P1(t,a,c)dt < -) (T tn-1P2(t,a,e)dt
>

J a,c 1 a,e

respectively.

This is actually a new result, but it can be obtained as

a consequence of a result of the author in [134; Chapter 3];

it was stated under slightly less general hypotheses

(P1 = -P2 bounded in t) by Onose in [243]. The proof is based

on Schauder's fixed point theorem for the operator

(Tf)(t) = K +
(t-s)n-1H(s,f(s),f'(s),...,f(n

(s))ds/(n-1)!
it

(K a nonzero constant) in a suitable Banach space, and

is omitted.

Another aspect of interest is the following: under what

conditions on H does (I) have at least one oscillatory solution?

This question was answered by Jasny [116] and Kurzweil [175]

in the case n = 2. The reader is also referred to the papers

of Heidel and Hinton [105], and Heidel and Kiguradge [106]

for further second order considerations. The case n odd has

been covered by the following result of Heidel.

THEOREM 2.11. (Heidel [103]). In the equation (I) assume

that n > 3 is odd and that H(t,u) p(t)uY, where p : RT + R+,

Y > 1 is the quotient of two odd positive integers, and

fWsn-2+Yp(s)ds = +m
T
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Then (I) has at least one oscillatory solution which is not

identically equal to zero on any infinite ray of [T,-).

Concluding this section, we should mention that Lyapunov

functions were introduced in oscillation theory by Yoshizawa in

[348, 349]. Yoshizawa considered second order equations, and

it would be very interesting to see some developments in the

nth order case. Howard and Hayden [113] abstracting a criterion

of Howard [110] of 1962, established several results for

equations with values in a certain Banach operator space.

Domslak [64, 661 considered differential equations in Hilbert

spaces and finite dimensional systems. Such systems were also

considered by the author [134] and Olekhnik [237]. Finally,

Nehari [234] studied a quasi-linear system and established an

interesting oscillation property.

THE EQUATION (II)

The first result that ensured the oscillation of all solutions

of a forced nonlinear equation (II) is contained in [136] and

a simpler case than the one considered there could be stated

as follows:

THEOREM 3.1. (Kartsatos [136]). Consider the equation

(II) with H(t,u) a p(t)g(u) and Q1 satisfying (Q1), where

p : RT + R+o, g :R -* R, g increasing, ug(u) > 0 for u # 0 and

such that (2.14) is satisfied. Then if the function

P(t)(P(n)(t) = Q1(t)) is oscillatory and such that lim P(t) = 0,

(II) is oscillatory.

A corresponding result also holds for bounded solutions

if all bounded solutions of (I) are assumed to be oscillatory.

In 1972, the author answered a problem given by Wong in [342].

This problem concerns the oscillation of forced equations

with periodic forcing term. A simpler version of it is

the following:

THEOREM 3.2. (Kartsatos [138]). Let H be as in Theorem

3.1 without the integral conditions on g. Moreover, let Q1

satisfy (Q1) with P(t) periodic and oscillatory on RT. Then

(II) is oscillatory if (I) is oscillatory.
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Actually, a weaker result was proved in [138]. In the

theorem above we took into consideration the comparison

Theorem 2.6. Simultaneously, a paper of Teufel [319] appeared

ensuring the oscillation of all solutions of (II) with n = 2

for certain forcing terms whose class also contains the

periodic functions. We shall give a simplified version of

Theorem 2 in [319].

THEOREM 3.3. (Teufel [319]). Let n = 2 in (II) and

assume that H(t,u) a p(t)g(u) with p : RT R+°, g :R - R is

increasing, and ug(u) > 0 for u ¢ 0. Moreover, let there

exist two positive constants 6, A and a sequence of intervals

of the form [a + mb, a + mb + 3A], m = 1,2,..., on which the

function Q1 : RT - R satisfies Q1(t) < -d, and a sequence of

intervals [c + md, c + and + 3k], m = 1,2,..., on which

Q1(t) > 6. Then the conditions

frr

Tp(t)dt = +c and IJ QI(s)dsl = o
t

JTp(s)ds
T

are sufficient for (II) to be oscillatory.

As Teufel notes in [319], Duffing's equation satisfies

the above hypotheses.

Theorems 3.1 and 3.2 were extended by True [325; Chapter 3]

to functional differential equations. Similar considerations

can be found in the papers of True [326], Kusano and Onose [183]

and Onose [247].

At the annual AMS meeting in 1973 (San Francisco),

Professor Grimmer announced several results that can be obtained

by looking at things in a quite different manner. These

results concern homogeneous equations and are contained in

[95]. They have been based on the fact that "a nonoscillatory

solution of (I) satisfies a first order integral inequality

while its (n-1)st derivative satisfies a first order differential

inequality. By applying the comparison principle, results are

obtained by analyzing the two associated first order scalar

differential equations." These basic results of Grimmer were

extended to forced equations by Foster [73, 74]. We are quoting

here some of the results of Foster in [73].
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THEOREM 3.4. (Foster [73]). Let (H) and (Q I) hold with.

H increasing in x, and P taking positive and negative values on

any interval [b,o), b > T. Moreover, assume that for any

a > 0 and v
0

¢ 0 all solutions v(t,a,v0) of the problem

v' = (t-a)n-1H(t,v)/(n-l):, v(a) = v° (3.1)

have finite escape times. Then if lim P(t) = 0, (II) is

oscillatory.
t-*

THEOREM 3.5. (Foster [73]). Assume that the hypotheses of

the above theorem are satisfied (except P(t) - 0 as t + W).

Moreover, assume that there exist two sequences {sm}, {tm}

with sm, tm + m as m + -, and such that P(sm) = M
0

> 0, P(tm) _

-L < 0, and inf P(s) -L°, and sup r(s) = M
°

for every a > 0.
° s>a s>a

Then (II) is oscillatory.

THEOREM 3.6. (Foster [73]). Let the assumptions of

Theorem 3.4 hold but with P(t) eventually of one sign. Then

every solution of (II) either oscillates, or is eventually

bounded between 0 and r(t) and tends to zero as t + -.

These results of Foster, as well as those in [74] which

cover the sublinear cases, are closely related to Theorem 3.1

and other results of the author in [140] (cf. Theorem 3.7

below); this is due to the existence of necessary and sufficient

conditions for the oscillation of sublinear and superlinear

cases when H(t,u) can be separated in the form p(t)g(u). The

examples of Foster in [73, 74] are also covered by a result of

the author in [140], which we now state.

THEOREM 3.7. (Kartsatos [140]). Let (H) and (Q1) be

satisfied with H increasing in u. Then under anyone of the

following conditions (II) is oscillatory.

(i) P(t) is oscillatory and P(t) + 0 as t + .

(ii) there exists P1(t) satisfying (Q1) (with P

replaced by P1) and such that P and P1 are

oscillatory with lim inf P(t) = 0 and
t

lim sup PI(t) = 0.
t +
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This theorem extends to the nth order case Theorem S in

Atkinson's paper [3], which in turn extends results of the

author in [136] and [138]. The criterion (iii) in [3; Theorem

5] also holds in the nth order case; this follows from Theorem

3.3 of the author [140]. The reader should notice that no

explicit integral conditions were assumed on H in Theorem 3.7.

Thus, it provides a very general result in cases of "small"

or "periodic-like" forcing terms. The part of the above

theorem referring to (i) has been extended to functional

equations by Onose [248]. Atkinson's paper [3] contains

several other results that need to be extended to the nth

order case (cf. also Kartsatos [140]).

Now denote by Fk the class of all n times continuously

differentiable functions u(t), t c [T,') such that Iu(t)(

0(tk) as t - -. Then we have the following.

THEOREM 3.8. (Staikos and Sficas [297]). Consider

Equation (1.1) with H :RT x Rn + R. Moreover, assume the

existence of integers k, t, and m such that 0 < m < n-1,

0 < k < k < n-m-1 and

f
tmH(t,u(t),u'(t),...,u(n-1)(t))dt = + (3.2)

T

for every nonoscillatory u c Fk with lim inf (lu(t)l/tt) 0.
t ; W

Then for all Fk - solutions x(t) of (1.1) we have

lim inf lx(t)l/t9 = 0.
t

This theorem implies that for k = 0 all bounded solutions

x(t) of (1.1) are either oscillatory or such that

lim inf Ix(t)l = 0. The case k = 0 and 0 < m < n-2 was con-t.,.
sidered by the author in [136], which in turn extended

Theorem 1 in [129] for second-order equations. For more

consequences of the above theorem and for functional equations,

the reader is referred to the same paper [297].
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A result related to the above theorem is the following

theorem of Graef and Spikes [87], which, besides being

important in itself, implies an interesting corollary. Graef

and Spikes considered functional equations. We take the

"functional" x(g(t)) - x(t).

that

THEOREM 3.9. (Graef and Spikes [87]). Let (1.1) be such

ITH(t,u(t),u'(t),...,u(n-1)(t))dt

= - (-m)

for any u e Cn[T,-) with lim inf u(t) > K (lim sup u(t) < -K).
t -, m t + m

Then every solution of (1.1) oscillates, or satisfies

lim inf jx(t)I < K.
t -'

For K = 0 this theorem answers a recent question raised by

the author in [136]. As we mentioned above, the above theorem

has the following very interesting corollary concerning

forced equations.

THEOREM 3.10. (Graef and Spikes [87]). Assume that

H =
p(t)g(t,u,u',...,u(n-1))

-
q(t,u,u',...,u(n-1)) in (1.1)

and moreover, assume that p : RT - R+0, g, q : RT x Rn - R,
u1g(t,u1,u2,...,un) > 0 for u1 # 0, g is bounded away from zero

if u1 is bounded away from zero, there exists h : RT -F R+ such

that lq(t,ul,...,un)I < h(t) for (t,u1,u2,...,un) c RT x Rn,

J p(t)dt = and lim h(t)/p(t) = 0
T t-.o'

Then every solution x(t) of (1.1) either oscillates, or is

such that lim inf Jx(t)I = 0.
t -+ W

Another corollary in [87] ensures that the conclusion

above holds if lim h(t)/p(t) = 0 is replaced by
t-*m

fTh(t)dt < +
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In the following result, which appears in [149], we

assume that Q1(t) has an oscillating nth antiderivative which

"stays away" from zero.

THEOREM 3.11. (Kartsatos and Manougian [2491). Assume

that (H) is satisfied and there exists a continuous function

P(t) such that P(n)(t) a Ql(t), t e RT and

lim sup P(t) > 0, lim inf P(t) < 0
t -+ 00 t + CO

Moreover, assume that for some k > 0,

ITtn-lIH(t,u(t) + P(t))Idt <
T

for all u : RT - R with Iu(t)I < k, t c RT. Then (II) has at

least one oscillatory solution.

An example of an equation for the above theorem is

the following:

x(4) + [l/(l+t6)]x1/3 = sin t

Here we can take P(t) a sin t. This equation has in fact

infinitely many bounded solutions. This can be shown by use

of Schauder's fixed point theorem in the equation

W(t) = A + J(t-s)3[1/(l+s6)](W(s) + cos s)1/3ds/3:
t

This equation has a solution Wx(t) for any A with 0 < A < 1,

and the function xX(t) = WX(t) + cos t satisfies

lim [xx(t) - cos t] = A, and equation (11). Obviously,
t+m

xz(t), 0 < A < 1, is oscillatory.

The above result can be extended to all solutions of (II)

(cf. remarks following the above theorem in [149]).

Now we are quoting a useful theorem from Graef and

Spikes [87] which improves a result of Kartsatos and Manougian

[149; Theorem 2.1].
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THEOREM 3.12. (Graef and Spikes [87]). Consider

the equation

x(n) +
H(t,x,x...... x(n-1))

= Q1(t) (3.3)

where H : RT x Rn , R, Q1 : RT R and x1H(t,ul,...,un) > 0

for u1 ¢ 0. Moreover, assume for every k > 0 and t > T we have

r

lim sup [

t

1

(t-s)n-IQl(s)ds - ktn-1] > 0 (3.4)
t t

rr

lim inf
[t

J

(t-s)n-1Q1(s)ds + ktn-1] < 0 (3.5)
t + W T

Then (3.3) is oscillatory.

Manougian and the author assumed in [149] that the second

members of (3.4) and (3.5) were +m and -- respectively. It is

important to notice here that no growth condition has been

placed on the function H. Thus, the oscillation in the above

theorem could be created by the forcing term Q1(t). In this

connection, the following theorem was proved in [148].

THEOREM 3.13. (Kartsatos and Manougian [148]). Consider

Equation (II) under hypotheses (H) and (Q1). Moreover, let

ft
lim sup J H(s, A + P(s))ds = +oo, and
t - m T

ft
lim inf H(s, -A + P(s))ds = -00

t i 0 T

for every A > 0. Then (II) is oscillatory.

This theorem was actually shown in the separated case

H(t,u) __ p(t)g(u), but its proof carries over to the present

case without modifications. An interesting corollary to the

above result reads as follows.

COROLLARY 3.14. (Kartsatos and Manougian [148]). Let

H(t,u) __ p(t)u u with p : RT 4 R+ and p a nonnegative integer.

Moreover, let (Ql) be satisfied with P oscillatory,
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f p(t)dt = +°°> and 1,p(t) IP(t) jmdt < +m
T T

for every m = 1,2,...,2i + 1. Then (II) is oscillatory.

An example of Theorem 3.13 is the following equation

x(4) + (1/tS)x = [t6sin t] (4)
(3.6)

Here, T = 1, P(t) = t6 sin t and H(s, +A + P(s))ds =

t
l+) (1/ss) ds - t cos t + sin t + (cos 1 - sin 1). It is well

1

known that the homogeneous equation does not oscillate (cf., for

example, Onose [240]).

THE EQUATION (III)

In this section, several theorems are quoted from the author's

papers [143, 144]. In [143], the author initiated the study

of perturbed equations as far as oscillation is concerned. The

main result in [143] concerns itself with the B-oscillation of

(III) provided that the homogeneous equation (I) is B-oscillatory.

THEOREM 4.1. (Kartsatos [143]). Consider equation (III)

with IQ2(t,u)I < Q(t)Iujr, r > 1, where Q : RT - R+ and such that

f tn-1Q(t)dt < +m
T

Moreover, let (H) be satisfied. Then (III) is B-oscillatory

if (I) is B-oscillatory.

In the following corollary it is shown that Lipschitzian

perturbations imply the "relative" oscillation of pairs of

bounded solutions. This phenomenon should be further researched

because it implies certain asymptotic behavior of one bounded

solution as compared to another bounded, but known, solution.

COROLLARY 4.2. (Kartsatos [143]). Consider Equation (III)

with H(t,u) P(t)u with P(t) positive, continuous, and let

Bp = (x c R; jxj < p}. Let Q(t,u) be continuous and such that
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IQ(t,ul) - Q(t,u2)1 < Q0(t,p)1u1 - u21 for every ul, U
2

c Bp.

Here Q
0

: RT x (R+ - {0)) -F R+ is continuous and such that

'TT tn-1Qo(t,pt < +
J

Then the difference o(t) = x(t) - y(t) oscillates, where x(t),

y(t) are any two bounded solutions of (III).

The proof follows immediately from the above theorem

because the function o(t) satisfies the equation

A"(t) + P(t)o(t) = Q(t,x(t)) - Q(t,y(t)).

The following result provides a comparison of the non-

oscillatory solutions of (III) to those of the equation

u(n) = Qo(t,u), where Qo is as in (Q2).

THEOREM 4.3. (Kartsatos [143]). Assume that H is as in

(H) and (Q2) is satisfied with Qo(t,u) increasing in u and

such that uQ0(t,u) > 0 for all (t,u) E RT x R. Let x(t) be a

positive solution of (III). Then there exists a constant

M > 0 and a point f > T such that x(t) < y(t) for t > t, where

y(t) is any solution of v(n) = Qo(t,v) such that v(t) > M and

V(i)(-f) = 0, i = 1,2,...,n-1.

We shall indicate below how the above theorem can be used

to formulate criteria for oscillation of perturbed equations.

Before we do this, we state a theorem from [144] which again

ensures the B-oscillation of (III).

THEOREM 4.4. (Kartsatos [144]). Let H satisfy (H) and

be increasing in u. Assume further that for every a > 0 there

exists a function Qa : RT - R+ such that IQ(t,u)I < Qa(t) for

every u c R with Jul < a; here Q : RT x R - R. Finally, let

t [H(t,+k) + Qa(t)]dt = +
JT

for any k > 0 and a > 0. Then if x(t) is a bounded eventually

positive (negative) solution of (III), there exists a sequence

{tn) - such that H(tn,x(tn) < Q(tn,x(tn))(H(tn,x(tn)) >

Q(tn,x(tn))). If, in addition, we assume that
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lim sup {IQ(t,u)/H(t,u)I :Jul < k} = 0t -. .

39

then (III) is B-oscillatory.

Now, for any t > T and any M > 0, let C(t,M)

{u E C[t,oo) :0 < U(t) < y(t,M), t E where y = y(t,M) is

as in Theorem 4.3 but fixed (for each M > 0) and such that

y(t,M) = M. Then we have the following theorem which actually

contains as a special case both Theorems 3 and 4 of the author

in [144]; the proofs there carry over to this case without

modifications.

THEOREM 4.5. (Kartsatos [144]). Let the assumptions of

Theorem 4.3 be satisfied and let h :R - R be increasing and

such that uh(u) > 0 for u # 0. Furthermore, assume that for

each t > T, M > 0, and u c C(t,M), the equation

x(n) + [H(t,u(t)) - Q(t,u(t))]/h(u(t))]h(x) = 0

is oscillatory. Then the first conclusion of Theorem 4.4 holds

for all solutions of (III). If, moreover,

lim[Q(t,u(t))/H(t,u(t))] = 0
t+m

for every t > T, M > 0 and u c C(t, L), then every solution of

(I) is oscillatory.

COROLLARY 4.6. (Kartsatos [144]). Consider the equation

x" + p(t)Ixlasgnx = q(t)IxIOsgnx

where p and q are positive for t > 0, and 0 < a < < 1;

furthermore, suppose that

0 = +ftap(t)dt = +m, fm-[p(t)
-

q(t)(u(t))6-a]dt

o t
and

lim[q(t)(u(t))S-a/p(t)] = 0
t-,.

for every t > 0 and M > 0, where u(t) is any function with
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t
0 < u(t) < [M1 + (1-6)J (t-s)q(s)ds]1/(1-a)

t

for t > t. Then (4.2) is oscillatory.

The last assertion in Theorems 4.4, 4.5, and Corollary 4.6

can be shown independently by use of the comparison Theorem 2.6.

As an example of the above corollary, we can take a = 1/5,

0 = 1/3, p(t) _ (t+l)
1,

q(t) = (t+l)-3. 'hen u(t) < Atl/2

(for some A > 0) and the second of the above integral

conditions becomes

Jmtl/5[(t+l)-1 - A(t+l)-3t1/2]dt = +

which is true for all A > 0 and t > 0.

SOME NEW RESULTS

We consider first a differential equation of the form

x(n) + p(t)x(n-1) + H(t,x) = Q(t) (S.1)

where H satisfies (H), p : RT - R and Q : RT ; R. Moreover by

r(t) we denote a fixed solution of the equation

r(n)(t) +
p(t)r(n-1)(t)

= Q(t) (5.2)

for t > T. Then if we let w(t) a x(t) - r(t), where x(t) is

a solution of (5.1), we obtain

w(n)(t) +
P(t)w(n-1)

+ H(t,w + r(t)) = 0 (5.3)

Now we present a lemma which was given by Onose and the

author in [150] and, for the sake of completeness, we include

a rather simpler proof of it.

LEMMA 5.1. (Kartsatos and Onose [150]). Consider (5.1)

with Q 0. Moreover, let p(t) < m(t) where m : RT + R. satisfies

t rru

lim tJ exp[-Jm(s)ds]du = +m
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for every t > T. Then if x(t) is a nonoscillatory solution

of (5.1), we have x(n-1)(t)x(t) > 0 for all large t.

Proof. Let x(t) be a nonoscillatory solution of (5.1) and

assume that x(t) > 0, t > tl > T. Now let x(n-1)(t ) = 0 foro

some to > t1. Then

x(n)(t0) = -H(t0,x(t O)) < 0 (5.4)

which implies that x(n-1) (t) cannot have another zero after it

vanishes once. Thus, x(n-1)(t) has fixed sign for all large t.

Let x(n-1)(t) < 0 for all large t (say t > t2 > ti). Then if

we put (t) x(n)(t) +
P(t)x(n-1)(t),

t > t2, we get

x(n) (t) +
P(t)x(n-1) (t) _ 0(t) = -H(t,x(t)) < 0, (5.5)

for t > t2. Thus, solving for x(n-1) (t), we find

x(n 1)(t)
= exp[- it p(s)ds][x(n-1)(t2)

2

t

rt ru
+

J

o(u)exp[J p(s)ds]du]
t2 t2

<
x(n-1) t

(t2)exp[-ft p(s)ds]
2

t
< x(n-1)(t2)exp[- m(s)ds] (5.6)

t22

An integration of (5.6) from t2 to t > t2 yields x(n-2)(t) -r -

as t a +W, which implies lim x(t) a contradiction. Thus
t-.w

x(n-1)(t)x(t) > 0 for x(t) eventually positive, and a similar

proof can be given for an eventually negative x(t).

The above lemma has been also shown by Naito [228] by use

of Langenhop's inequality, and part of its proof for n=2 goes
back to Bobisud [23].
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THEOREM 5.2. Let p(t) in (5.1) be nonnegative for t > T

and assume that iim sup r(t) lim inf r(t) = Then (5.1)
t , m t + m

is B-oscillatory.

Proof. Let x(t), t > t1 > T be a bounded positive

solution of (5.1). Then w(t) a x(t) - r(t), t > t1, satisfies

(5.3). Since w(t) + r(t) > 0 for t > t1, it follows from the

proof of Lemma 5.1 that w(n-1)(t) > 0, or w(n-1)(t) < 0 for all

large t. Thus, w(t) is monotonic (and hence of one sign) for

all large t. Consequently, x(t) - r(t) > 0, or x(t) - r(t) < 0

for all large t. This implies lim sup x(t) or lim inf x(t)
t + - t + W

respectively. Since x(t) is bounded, we have the desired

contradiction. A similar proof holds for x(t) eventually

negative.

It is interesting to remark here that no growth condition

was placed on the function H in the above theorem.

THEOREM 5.3. Let p and H be as in Theorem S.2 and Lemma

5.1, and assume that r(t) is oscillatory and satisfies

lim r(t) = 0. Then if (I) is oscillatory (B-oscillatory),
t+W

(5.1) is oscillatory (B-oscillatory).

Proof. Let x(t) be an eventually positive solution of

(5.1). Then as in the proof of Lemma 5.1, w(n-1)(t)w(t) > 0

for all large t, say for t > t1 > T. Let w(t) > 0 for t > t1.

Since n is even, it follows from usual arguments that w1(t) > 0

for (say) t > t2 > t1. Now let c be given with w(t2) > e > 0,

and let jr(t)l < c for t > t2. Thus w(t) + r(t) > w(t) - c > 0

for t > t2. Consequently, from (5.3) we obtain

w(n)(t) + H(t,w(t) - e)

< w(n)(t) + H(t,w(t) + r(t)) < 0 (5.7)

for every t > t2. If we let w(t) - c =_ v(t), t > t2, then it

follows from (5.7) that the inequality
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y(n)(t) + H(t,y(t)) < 0 (5.8)

has a positive solution v(t), t > t2. Now we can use Lemma 2.1

in [140], where it is concluded that (I) must also have a

positive solution on [t2,o). This leads to a contradiction if

we assume that (I) is oscillatory. The same conclusion can be

drawn if we assume that (I) is B-oscillatory by calling our

attention to Corollary 2.1 in [140]. Thus, x(t) < r(t) for

all large t which is a contradiction to the positiveness of

x(t). A similar argument covers the case of an eventually

negative x(t), and this completes the proof.

Actually, as in Theorem 3.7, we could have assumed instead

of lim r(t) = 0, the existence of another function rl(t) such
t+W

that r1(t) is also oscillatory, rI(n)(t) + p(t)r1(n-1)(t) =

Q(t), r,r1 bounded, lira sup rl (t) = 0, and lim inf r(t) = 0.
t + W t + m

The above theorem improves Theorems 1 and 2 of Naito's

paper [228], and it also includes the linear case. It should

be remarked now that if we multiply (5.1) by s(t) = exp[X(t)],

where a(t) is any antiderivative of p(t), we obtain

[s(t)x(n-1)], + H1(t,x) = Q3(t) (5.9)

where H1(t,u) s s(t)H(t,u) and Q3(t) s(t)Q(t). In this case,

if we let r(t) satisfy

[s(t)r(n-1)(t)]'
= Q3(t) (5.10)

we obtain, instead of (5.3),

[s(t)w(n-1)]' + H1(t,w + r(t)) = 0 (5.11)

Let us now give an easy but important lemma concerning

the monotonicity of nonoscillatory solutions of (5.11).

LEMMA 5.4. Consider (5.11), where r(t) satisfies (5.10)

and is bounded, and w(t) = x(t) - r(t) corresponds to a positive

(negative) solution x(t) of (5.9) with H(t,x) satisfying (H).

Moreover, let
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f Is (u) 1 1du = -

Then w(n-1)(t)w(t) > 0 for all large t.
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Proof. Let w(t) + r(t) > 0, t > t1 > T. Then since

[s(t)w(n-1)(t)]' < 0, t > tl, s(t)w(n-1) (t) is strictly

decreasing. Let t2 > t1 be such that s(t)w(n-1)(t) < 0 for

t > t2. Then

s(t)w(n-2) (t) <
s(t2)w(n-2)(t2)

= µ < 0 (5.12)

for every t > t2. Dividing by s(t) and integrating we get

lim w(n-2) (t) This implies that lim w(t) = which
t-,-

contradicts the fact that w(t) + r(t) > 0 and r(t) is bounded.

Consequently, w(n-1)(t) > 0 for all large t, and similar

considerations cover the case of a negative x(t). This

completes the proof.

Now it is easy to state criteria for the oscillation of

(5.11) by taking into consideration the above lemma. We omit

the corresponding statements which resemble those of the

above theorems.

The reader is also referred to the paper of Sficas [269]

for some developments concerning functional equations.

Let us now make some remarks about the case

x(n) + p(t)x(n-2) + H(t,x) = Q(t) (5.12)

Let x(t) be a solution of (5.12) and w(t) x(t) - r(t),

where r(t) is a solution of r(n) + p(t)r(n-2) = Q(t). Then

w(t) satisfies

w(n) + p(t)w(n-2) +
H(t,w + r(t)) = 0 (5.13)

Now we can state the following lemma concerning the sign

of w(n-2)(t) in (5.13).



Recent Results on Oscillation

LEMMA S.S. In (5.13) assume that H : RT x R - R,

p : RT - R_, and Q : RT -} R with uH(t,u) < 0 for every (t,u) F-

R
T

x (R - {O}). If w(t) + r(t) > 0 (w(t) + r(t) < 0) for
t > t1 > T, then w(n-2)(t) is of fixed sign on the interval

[tl,-). If, moreover,

I tp(t)dt > --
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(5.14)

then w(n-2) (t) > 0 (w
(n-2)

(t) < 0) eventually.

Proof. Let w(t) + r(t) > 0 for t > t1 > T. Moreover,

assume that y(t) a w(n-2)(t) takes positive and negative values

for all large t. Then y(t) satisfies the equation

y" + p(t)y + q(t) = 0
where q(t) a H(t,w(t) + r(t)) < 0, t > t1. Consequently, in

each interval of positiveness of y(t), we have y"(t) > 0. This

implies that y(t) is convex whenever it is positive, and this

contradicts the fact that it is oscillatory. Thus, y(t) is of

fixed sign for all large t. The rest of the proof follows

exactly as in Theorem 3.12 of Liossatos [205] and we omit it.

The dissertation of Liossatos [205] is devoted to the

equation (5.12) with Q(t) 0, and concerns itself with the

extension of the main results of Heidel's paper [101] to the

general nth order case.

We note now that the integral condition on p(t) in the

above lemma can be replaced by the condition p(r) > -2/t2,

t > T, (cf. Liossatos [205; Theorem 3.1.3]).

In the following theorem conditions are given for the B-

oscillation of equation (5.12).

THEOREM 5.6. Let p, H, and Q be as in Lemma 5.5, and let

p(t) satisfy (5.14). Moreover, let r1(t) and r2(t) be

oscillatory with ri(n) + p(t)ri(n 2)
= Q(t), i = 1,2,

lim inf r1(t) = 0, lim sup r1(t) lim inf r2(t) and
t -F m t+ m t o0

lim sup r2(t) = 0. Then (5.12) is B-oscillatory.
t +
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Proof. Let x(t) be a bounded nonoscillatory solution of

(5.12) and assume that x(t) > 0 for t > tl > T. Let w(t)

x(t) - rl(t). Then w(t) satisfies (5.12) (with r replaced

by r1) for every t > t1. Since w(t) + rl(t) > 0, it follows

from Lemma 5.5 that w(n-2)(t) > 0 for every t > t2 for some

t2 > t1. Then w(t) is either positive or negative for all

large t. This implies x(t) > rl(t) or x(t) < r1(t) for all

large t, which both yield a contradiction. We omit the

argument for a negative x(t).

The following theorem improves a result of Liossatos

[205; Theorem 3.1.4].

THEOREM 5.7. Let p, H, and Q be as in Lemma 5.5, let p(t)

satisfy (5.14), H be decreasing in u, and

f
tn-1H(t,+k)dt = +co

T
(5.15)

for every k > 0. Then if r(t) is oscillatory and lim r(t) = 0,
t}co

every nonoscillatory solution x(t) of (5.12) satisfies

lim jx(t)l = 0 or
t+-

Proof. Let x(t) be a solution of (5.12) with x(t) > 0 for

t > tl > T. Let w(t) = x(t) - r(t). Since w(t) + r(t) > 0,

it follows from Lemma 5.5 that w(n-2)(t) > 0 for every t > t2

for some t2 > t1. Thus w(t) is either positive or negative

and monotonic for all large t. Let w(t) > 0 for all t > t3 > t2

Then if w(t) is unbounded, it satisfies lim w(t) which
t;W

implies lim x(t) If w(t) is bounded, then, since n is
tim

even, w1(t) < 0 for t > t3. Actually, we have (-1)jw(j)(t) > 0

for j = 1,2,...,n. This follows because no two consecutive

derivatives of w(t) can eventually be of the same sign due to

the boundedness of w(t). Now let lim w(t) = A > 0. Then,
t+-

given a with 0 < c < A/2 there exists t4 > t3 such that
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w(t) > A - e and r(t) > -c for all t > t4. Thus, w(t) + r(t)

A - 2c > 0 for all t > t4. Now consider the function

tn-lx(n-1)(t) By differentiation of this function and then

integration from t4 to t >rt4 we obtain

tn-1w(n-1)(t)
- (n-1)Jt sn-2w(n-1)(s)ds

t4

> t4n-lw(n-1)(t
t

4)

ft

sn-1H(s,A-2c)ds

4

which implies, because of the negativeness of w(n-1)(t) and

the integral condition on H,

rt n-2 (n-1)
lim s w (s)ds =
t+o, t 4

(5.16)

Now the proof follows as in Theorem 1 of [133] to obtain

lim w(t) a contradiction to the boundedness of w(t).
t+.

Consequently, A = 0, in which case lim x(t) - r(t) = 0 =
t+-

lim x(t). It remains to consider w(t) < 0 for all large t, but
t-..
this is not allowed due to the oscillation of r(t). The

analogous proof for x(t) eventually negative is omitted.

Liossatos assumed in [205] that H(t,u) = q(t)g(u), with

q(t) < 0, ug(u) > 0 for u ¢ 0, Q(t) - 0, and

1-t2q(t)dt = -
T

(5.17)

instead of (5.15). We should note here that if H is separated

as above, then g(u) does not have to be increasing for all u,

as it would follow from the assumption on H of the above theorem

It is now obvious that if we want to apply the methods

exhibited above we must have qualitative information about

the solutions of (5.2) and (5.3) which is a serious problem in

itself. If we try functions r(t) with r(n)(t) = Q(t), then

the equations (5.3) and (5.13) must be replaced by



48 Kartsatos

w(n) + P(t)[w +
r(t)](n-1) + H(t,w + r(t)) = 0 (5.18)

w(n) + P(t)[w + r(t)] (n-2) + H(t,w + r(t)) = 0 (5.19)

for which there is nothing known (cf. Problems IV and V below).

OPEN PROBLEMS

PROBLEM I. Extend Atkinson's Theorem 2.2 to nth order

equations.

PROBLEM II. Extend and improve (by considering linear,

superlinear, and sublinear cases) Teufel's Theorem 3.3 to nth

order equations.

PROBLEM III. Extend Heidel's Theorem 2.11 to even

order equations.

PROBLEM IV. Study the oscillation of (5.1) using (5.18)

where w = x - r, r(n) = Q.

PROBLEM V. Study the oscillation of (5.12) using (5.19)

where w = x - r, r(n) = Q.

PROBLEM VI. Provide conditions for the oscillation of

(5.12) in case n even, p(t) < 0, and uH(t,u) < 0 for u ¢ 0.

(None known).

PROBLEM VII. Study the behavior of (5.12) where p and H

are not necessarily as above.

PROBLEM VIII. Extend Corollary 4.2 to equations with

nonlinear homogeneous parts.

PROBLEM IX. Establish conditions under which (III) is

oscillatory without necessarily requiring

lim[Q(t,u(t))/H(t,u(t))] = 0
t-).W

as in Theorem 4.5.

PROBLEM X. Same as above but for bounded solutions with-

out necessarily assuming that
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lim su [Q(t,u)/H(t,u)] = 0
t- I u <k

as in Theorem 4.4.

PROBLEM XI. Extend the comparison Theorem 2.6 in any

possible direction.
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PROBLEM XII. Study nth order forced "dynamical systems"

generalizing results of Graef [80] and Burton, Townsend [37].

PROBLEM XIII. Prove or disprove: (II) is oscillatory if

H(t,u) a p(t)g(u), p : RT - R, g'(u) > 0, ug(u) > 0 for u = 0,

and, for every e > 0,

1Ttn lp(t)dt = +°°, JETS < +W, (_EgTT < +00

provided that Q1 satisfies (Q1) with P(t) - 0 and oscillatory.

(cf. Legatos and Kartsatos [200], Bobisud [22], Travis [323],

Coles [55], Onose [246]). Consider also the general problem

for the two other cases as in Problem II, as well as the case

Q1 = 0.

PROBLEM XIV. Develop oscillation criteria in the spirit

of Howard [112] for the equation (II). (Howard's results are

rather difficult to apply, but very interesting and need some

"smoothing". His methods go back to 1962 [110] (cf. also [111].

It seems that Condition 3 in Theorem 1 there is impossible)).

PROBLEM XV. Obtain a classification of solutions of (II)

as in Ladas, Lakshmikantham, and Papadakis [196], by use of

w = x - P with P(n) = Q1 (cf. also Bogar [28], Staikos and

Sficas [296], Liu [207]).

PROBLEM XVI. Find upper and lower bounds for the non-

oscillatory solutions of (II) with uH(t,u) > 0. These bounds

define classes of functions by which we can provide integral

criteria for oscillation as in Theorem 4.5.
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INTRODUCTION

Let us consider the vector differential equation of Lidnard

type

x" + Cx' + grad G(x) = e(t), x e Rn (1)

where G e C2(Rn, R) with the Hessian matrix H(x) = (hrs(x)),

e e C°(R, Rn), e(t+2ir) = e(t), and C = C* is a constant

real matrix. Let us look for conditions which ensure the

existence of one and only one 27r-periodic solution. Especially

we are interested in the construction of this solution by-means

of Picard's iteration.

There are some recent papers which are devoted to the forced

vibration problem of the conservative system (1) corresponding

to the special case C = 0 (see [l],[3),[5] - [8]). The most

general condition was developed by A. C. Lazer [5]. Let the

constant real matrices P = P* and Q = Q* be such that

Q < H(x) < P for all x c Rn (2)
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(where Q < P means that x*(P - Q)x > 0 for all x c Rn ) and let

mr2 < :r(Q) < ar(P) < (mr+l)2, 1 < r < n (3)

(where m1,...,mn are non-negative integers). Assuming (2) and

(3) Lazer [5] proved the uniqueness of the periodic solution

whereas S. Ahmad [1] completed this result by solving the

existence problem.

J. Mawhin [11] showed that the periodic solution can be

constructed via successive approximations provided that the

conditions (2), (3) are specialized as

m2I < qI < H(x) < pI < (m+l) 2 I for all x e Rn (4)

(m a non-negative integer). The basic idea of Mawhin's proof

is to generalize the periodic boundary value problem as an

operator problem in a suitable Hilbert space. The linear

differential operator of this problem is studied with the aid

of spectral theory of self-adjoint unbounded operators. This

procedure is no longer applicable when equation (1) contains a

damping term (C # 0). But in the present paper we show that it

can be replaced by a simpler argument based on Green functions

which is, however, more efficient.

Let us start from a linear higher order differential

operator with periodic boundary conditions in order to derive a

corresponding mapping theorem in a Hilbert function space. This

theorem will be applied to the equation (1) in case

n = 1. As a complement of this study, we point out some further

results concerning the periodic solutions of the generalized

Lidnard equation which contains an arbitrary nonlinear damping

term and a less restrictive restoring term. Finally, we apply

the results of case n = 1 in order to construct the 2r-periodic

solution of the vector equation (1). This is possible when

Lazer's condition is somewhat modified:

1. Assume that the symmetric matrices C, Q and P can
be diagonalized by means of the same orthogonal

transformation y = Tx(T* = T-1).

2. Replace condition (2) written in a symmetric form

-(P-Q)/2 < N - H(x) < (P-Q)/2 where N - (P+Q)/2 (5)
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by a similar estimate which is, however, independent
upon (5), see [9]:

(N - H(x))2 < (P-Q)2/4 (6)

3. Admit a weaker version of the eigenvalue condition
(3) and replace it (for some r) by

ar(Q) < ar(P) < 0

Remark. Introducing y = Tx we obtain

y" + (TCT*)yt + grad yG(T*y) = T(x" + Cx' + grad XG(x))

since

grad yG(T*y) = T grad xG(x)

Moreover, we have

2

aG(T*yT axaax G(x)
T*

r s

Consequently, the estimates (5) or (6) are invariant with

respect to an orthogonal transformation.

A LINEAR PERIODIC BOUNDARY VALUE PROBLEM

(7)

Let us consider a linear differential operator with real constant

coefficients which is defined on class Ck:

Lx a x(k) + a1x(k-1) + ... + akx, k > 2 (8)

The equation Lx e(t) c Co[0,2rr] possesses exactly one solution

satisfying the periodic boundary conditions

x(j) (0) = x(j) (2rr), 0 < j < k-1 (9)

provided that p(im) 0 for all integers m where p(a) the

characteristic polynomial. This solution can be represented

by means of a Green function:

0

2rr
x(t) =

f o
A similar representation is valid for the derivatives up to

order k-1; the kernel is the corresponding derivative of the Green

function which is continuous if the order doesn't exceed k-2, and

which is piecewise continuous if the order is equal k-i:
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Y(k-1)(0+)-Y(k-1)(2n-)
= 1

Now the boundary value problem will be generalized as

follows. Let H be the complex Hilbert space L2[0,2ir] supplied

with the inner product

2n
<x,y> = (27r) 1 J x(t)y(t)dt

0

Let the subspace D C H consist of all x c H possessing Lebesgue

derivatives in H up to order k and satisfying the boundary con-

ditions (9). Define the linear mapping

L:D+H, x-> Lx
L is an injection since Lx = 0 implies x(t) = 0 for all

t c [0,2ir] by virtue of the assumption p(im) 0 if m an

integer. Let us show that L is a surjection, L(D) = H, and that

the inverse mapping L-1
is compact.

Define the linear mappings

2rj : H - H, y -. J0 xY(J) (t-s)y(s)ds, 0 < j < k-l

which are bounded,

I(rjy)(t)I < ajll)II, aj = 2,rr11Y(j)II, t c [0,21T] (10)

If y c C°[0,27] then rjy c C1 (0 < j < k-I) and

t

rjylo = f (rj+1y)(s)ds, rjylo" = 0 (0 < j < k-2)
o -

t
rk-lyl0 = f0((idH-alrk-l-...-akr0)y)(s)ds, rk-lyl0 = 0

Since C° dense in H, by virtue of (10) the equations (11) are

also valid for an arbitrary y c H. Consequently we have

x = ry c D (where the denotation r = ro is used)

xW = rjy (absolutely continuous, 1 < j < k-1)

x(k) _ (idH - a1rk-1 - ... - akro)y (derivative in

Lebesgue's sense)



Periodically Perturbed Systems 77

Hence
L(ry) = y for all y c H, Lt = idH

r(Lx) = x for all x e D, FL = idD

r =
L-1 (bounded linear operator on H)

To see that the inverse operator
L-1 is compact, let {yn}

be a bounded sequence in H, IIyn1I < R for all n. Let

{xn} be its image, i.e. xn = ryn. Then, according to (10), the

xn c D are equibounded and equicontinuous,

Ixn(t)I < po R for all n e N, for all t e [0,2,r]

Ixn(t)-xn(s)I < pl RIt-sI for all n and for all

(t,s) e [0,27T]2

There must be a uniformly convergent subsequence the limit of

which is continuous and therefore an element of H. That is,

r = L-1 maps each bounded subset of H into a compact subset.

In order to calculate IIL-111 let us consider an eigen-

value A and a corresponding normed eigenfunction 4(t):

L _ = a0

Since A 0, 0 e D and 0 = XL1, or (AL - idD)4 = 0. This is

a homogeneous linear differential equation (in the classical

sense) having only non-trivial solutions of the type exp(i m t),

m an integer, when the periodic boundary conditions are

prescribed. So, without loss of generality

=eimt _ = 1
m m p im

Since the Hilbert space H is separable, and since the family

(Om)m e 2
is a complete orthonormal system each y e H can be

represented as the sum of its Fourier series

y bmom

Consequently,

l lL-y = bmL- mm Ambmm
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IA-PI = ix pI < IIL-111 < suplamI for all p e N
meN

and

Reissig

IIL lII = sup IXml (12)
meN

Consider, for example,

Lx = x" + cx' + vx (13)

where c is an arbitrary real value, (i) m2 < v < (m+l) 2 for a

non-negative integer m, or (ii) v < 0. Then

Iapl =
((p2-v)2+c2p2)-1/2

and

IIL-'II < a =

max ((v-m2 1,((m+1)2-v) 1), in case (i)

(14)

1v1-1, in case (ii)

(norm of the operator when c = 0).

THE SCALAR LIENARD EQUATION

In order to solve the periodic boundary value problem of the

scalar equation

x" + cx' + g(x) = e(t) e(t+2n) e Co (15)

under the condition (i) m2 < q < g'(x) < p < (m+l)2, or,

(ii) q < g'(x) < p < 0, we consider the generalized problem

Lx - Bx = y e H (real Hilbert space L2[0,21rl) (16)

where x e D, Lx is given by (13), and

Bx = vx - g(x)

is a bounded nonlinear operator from H into H. This is due to

the fact that the nonlinear restoring term g is continuous and

linearly bounded: Ivx - g(x)I < Ig(0)I + Blxl for x e R where

0 = max (Iq-vl,lp-vl). Moreover, the nonlinear operator B is

globally Lipschitzian:

IIBx1 - Bx211 < Sllxl - x211 (17)
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The solutions of equation (16) are the fixed points of

the mapping

H + H, x - L- 1Bx + L- 1y

which is a contraction provided that IIL-1BII < 1. This is

ensured when aB < 1, and it can be realized by a suitable

choice of v (see [11]): (i) m2+p < 2v < (m+l)2+q, or,

(ii) 2v < q. Then there is exactly one fixed point

x* = L-1Bx* + L-1y e D which can be obtained by means of Picard's

iteration. If {xn}n
e

N is a sequence of successive

approximations then

lx*(t)-xn+l(t)I < Po6llx* - xnll

(18)
Ix*'(t)-x'n+l(t)I < PlBllx* - Xnll

This means that the approximations xn(t) and their first

derivatives converge uniformly on [0,2n] in the usual sense.

Replacing y e H by a continuous 27r-periodic forcing term

e(t), we obtain the classical periodic solution of the initial

equation (15).

J. Mawhin has mentioned that equation (16) has still a

solution when the nonlinearity g fulfils a weaker condition:

g(X) a CO(R), q < &L X1 < p (IxI > X) (19)

where the bounds q and p are like before.

Defining

sz(Xs&n lxl <X
g(x) = g*(x) + P(X), g*(x) _ (20)

g(x), IXI > X

we can estimate

IvX - g(X)I < IvX - g*(x)I + lp(x)I

< sIXI + P

(with the same values v and a as before). Therefore, the

operator equation (16) written in the form

x = L-1Bx + L-ly (21)
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can be considered again. But this time we will apply Schauder's

fixed point theorem with respect to a closed ball BR c H of

sufficiently large radius R. For this reason we must show that

the nonlinear operator B is still continuous; then, by virtue

of the compactness of L the composition L 1B is completely

continuous on the ball
R'

Assume that there is an element h e H and a sequence {xn}

in H for which

limllh - xn11 = 0, HIBh - Bxn112 > n > 0 (22)
n+

Let E = [0,2n] and M be a measurable subset of E; let, for

abbreviation, (Bh)(t) = k(t), (Bxn) (t) = yn(t). Then we have

Ik(t)-Yn(t)I < 8Ih(t)-xn(t)I + 26Ih(t)I + 2P a.e.

and

1 (k(t) - yn(t)) 2dt < I for all n if IMI <

M
(23')

due to the absolute continuity of the Lebesgue integral. From

(22) it follows that lim xn(t) = h(t) a.e. and, by continuity
n+W

of g(x), lim yn(t) = k(t) a.e. According to Egorov's theorem
n+m

the subset M can be chosen in such a way that lim[yn(t)-k(t)] = 0
n+

uniformly on E- M. Hence,

lim f (yn(t)-k(t))2dt = 0 (23")

E-M

The results (23') and (23") are in contradiction to the second

part of (22). Thus the operator B is continuous.

Choosing

R > aBR + alIYII

we find that the image of BR under the completely

continuous mapping

x - L-1Bx + L-1y
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is within BR. According to Schauder's theorem there is at

least one solution of (21) with jlxjj < R.

THE GENERALIZED LIENARD EQUATION

The generalized Li6nard equation

x" + f(x)x' + g(x) = e(t) = e(t+21r) (24)

where f(x), g(x), and e(t) are continuous functions has been

studied extensively in some recent papers (see, for instance,

[4],[10],[12],[13]). Admitting a forcing term with vanishing

mean value, i.e.

2n
Jf e(t)dt = 0,

0

Lazer [4] and Mawhin [10] considered the case when the

restoring term is sublinear:

0 < ELLXI 0 (X < IxI + m)
x (25)

The damping coefficient f(x) was assumed to be an arbitrary

constant or an arbitrary function, respectively.

By means of the Leray-Schauder topological degree the

following extension of these results can be proved ([12],[13]).

There is at least one 2a-periodic solution of equation (24) when

2n
A. xg(x) _< 0 (lxi > X), j0 e(t)dt = 0, or

27r
B. 0 < q < LLxI < p < 1 X), f

o
= 0 in case

q = 0.- 0

Let us outline the proof in case B which is more important

than case A. Consider a more general differential equation

x" + px = p{e(t) + px - g(x) - (F(x))') , 0 < U < 1 (26)

where the bound p is assumed to be positive and where

0

x
F(x) =

1

f(s)ds. Using the Green function y(t) of example

(13) (where c = 0, v = p, m - 0) we can represent the 2w-periodic
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solutions of (26) as the continuous solutions of an integral

equation of Hammerstein type:

x(t) = pT x(t)

2 7r

= p10 y(t-s){e(s) + px(s) - g(x(s))}ds (27)

r0 2n

- p Y'(t-s)F(x(s))ds

The operator T is considered as a mapping of a suitable

Banach space

X = {x(t) E C°(R,R) : x(t+27r) = x(t), lixiI = maxjx(t)I}
t

into itself. This mapping is bounded as well as completely

continuous on each bounded subset of X. A fixed point under T

corresponds to a 27r-periodic solution of the original

equation (24).

If there is a bounded open subset c C X with the property

(idX - pT)x # 0 for all x c DO (0 < p < 1)

the Leray - Schauder degree of the mapping idX - pT with

respect to A and to the zero vector is defined : d[idX-PT,c,0].

Applying the homotopy theorem according to which this mapping

degree is independent of p we obtain that d[idX - T, 0, 0] _

d[idX, 0, 0]. Taking account of the fact that d[idx, 0, 0] = 1

if and only if 0 c S2, and that d[idx - T, n, 0] # 0 implies

there exists x c S2 such that (idX - T)x = 0, we can solve the

problem of periodic solutions, for instance, by constructing a

ball BR C X with a sufficiently large radius B such that

(idx - pT)x ¢ 0 for all x e aBR. This could be done by means

of the proof that all 2,r- periodic solutions of equation (26)

admit an a priori bound which is the same for all parameter

values p e [0,1].

Note that a restriction to p t [0,1) is possible since

in the case (idx - T)x = 0 for an x c aBR no further argumenta-

tion is needed.

The boundedness results from two simple lemmas concerning

the oscillatory behavior of the solutions of (26) (see [13]).
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The proofs of these lemmas include, as an essential part, some

estimates of the L2-norms of x and of x' (or of expressions

composed of x and of x') corresponding to certain subintervals

[a,b].

LEMMA 1. Let x(t), a < t < b (b-a < 2n), be a solution of

(26), let x(t) > 0 (< 0) for all t c [a,b]. Moreover, let

(i) x(a) = x(b) = 0, jx'(a)-x'(b)I < n' or (ii) x(a) = x(b)

with Ix(a)I < n, x1(a) = x'(b). Then there is an estimate

jx(t)l < L0(n, n') for all t e [a,b] (28)

where the bound L
0

is independent of u and where n = 0 in case

(i), n' = 0 in case (ii).

LEMMA 2. Let x(t), a < t < b (b-a < n), be a solution of

(26), and let x(a) = x(b) = 0. Then

jx(t)l < Ko, Ix'(t)l < K1 for all t e [a,b] (29)

where the bounds are system constants, independent of u.

Consider, on the basis of these statements, a 2n-periodic

solution x(t) of equation (26) (fixed point under VT),

0 < P < 1.
Assume that this solution is non-oscillatory: x(t) # 0

for all t c R. Integrating differential equation (26) from

0 to 2n and taking account of the periodicity we find that

0

2n 2n
j [g(x(t)) - e(t)]dt = 0(1 - u) pJ x(t)dt + p

0

Consequently, Ix(t)I > X for all t e R is excluded: q = 0,

/2Tr
J

0

e(t)dt = 0, (1 - u)plxl + pg(x)sgn x > 0 (jxj > X); q > 0,

(1 - p)plxI + u[g(x)sgn x - hell] > 0 (jxi > X > q-lIhell)

Thus, 1x(r)1 < X for some r e [O,2if]; applying Lemma 1 where

a = i, b = it + 27; n = X, n' = 0 (case (ii)) we obtain a

uniform bound for the considered type of periodic solutions.

Now assume that the periodic solution x(t) is oscillatory

and that there is an interval [a,b], n < b-a < 2n where x(a) _

x(b) = 0, but x(t) # 0 on (a,b). If b - a = 2n, Lemma 1 yields

that jx(t)l < L0(0,0) for all t. If b - a < 2n, Lemma 2 is
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applied to the intervals [b-2n,a], [b,a+2n]; so Ix(t)I < KO and

Ix'(t)I < K1. After that, Lemma 1 is applied to the interval

[a,b]; so jx(t)l < L0(O,n') with n' = 2K1.

rinally, assume that the periodic solution x(t) is

oscillatory and that x(t) 0 on (a,b), x(a)=x(b)=0 implies b-a

< n. Let x(TO) = 0 and T1 = sup{t : To < t < To + n, x(t) = 0},

T2 = inf{t :To + n < t < To + 2n, x(t) = 0}; then X(T1) = x(T2)

= 0. Applying Lemma 2 to the intervals [TO,T11, [T1,T2] and

ET 2,TO+2n] (in case T1 < T2) or to the intervals [TO,TO+n] and

[TO+1r,TO+27] (in case T1 = T2) we obtain that Ix(t)I < KO for

all t.

Note. The generalized Lidnard equation (24) admits a 2n-

periodic solution, too, when q < Z < p < 1 (pq < 0), and

(r e R :g(x)sgn x < -1lelI if 1XI = r} is an unbounded set.

THE VECTOR LIENARD EQUATION

According to our initial remarks (see the Introduction) we con-

sider equation (1) under the following simplified conditions:

C = diag(c1,...,cn), (N - H(x))2 < (P - Q)2/4, N = (P + Q)/2,

P = diag(P1,...,Pn), Q = diag(g1,...,gn) and (i) mr2 < qr

Pr < (mr+1)2, mr non-negative integer, or, (ii) qr < Pr < 0.

Introducing the matrices M = diag(yl,...,Mn) where (i) 'r
mr2

or (ii) yr < 0, and M' = diag(y1',...,Mn') where (i) Mr'

(mr+l)2 or (ii) yr' = 0, we can assume, without loss of

generality, that pr = Mr' - E(Mr1-11r)/2, qr = Mr + e(Mr'-Mr)/2

(0 < e < 1, a sufficiently small). Then N = diag(v1,...,vn),

V
r

= (Mr'+Mr)/2 and

(N - H(x)) 2 < (1 - E)2 (M' - M) 2/4 (30)

Hence IIN - H(x)II = sup{II(N - H(x))eII :e c Rn, IIelI = 1}
I-C

IIM' - MII. An immediate consequence of this estimate is<

the linear boundedness of the vector field Nx - grad G(x):

IINx - grad G(x)II < k1IIxII + kO (31)

In order to generalize the periodic boundary value problem

of the vector differential equation (1) in a similar way to the
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above, we make use of the previous results concerning the

operator L = Lr of equation (13) where c = Cr and v = yr namely

that there is a bounded inverse, and

IILr 11I ar = u ,2u (32)
r r

Consider the (real) Hilbert space H of all x(t) = col(xl(t),

.... xn(t)) with xr(t) e H (1 < r < n); let us introduce the

inner product

n 2<X<x,y>H =Iar r)yr>Hr l

Moreover, consider the subspace D which consists of all x e H

the components of which belong to D = D(L). Define on D,

Lx = col(L1xl,...,Lnxn) (33)

The operator L maps D onto H, and it has a bounded inverse,

L-ly = col(L1-1y1,...,Lnlyn). Taking account of (31) we define

a nonlinear operator on H by

Bx = Nx - grad G(x)

= col(vlxl(t)-Gx (x(t)),...,vnxn(t)-Gxn Wt))) (34)

(a.e.)

At each point x e H it has a Gateaux derivative B'(x) which is

a linear operator on H, defined by

(B' (x)u) (t) _ (N - H(x))u(t) n

= col (vrur(t) - E hrs(x(t))u(t)) (a.e.)
s=1

where u e H arbitrary, H(x) = (hrs(x)). Note that L-1B has

the Gateaux derivative L-1B'(x). Furthermore, note that the

mean value theorem (see [141) can be applied in order to derive

the estimate

IIL-1Bu - L-1BvII <
IIL-1B'(x)II

Ilu - VII (35)

(x e H on the segment of extremities u, v).

Now we replace the differential equation (1) with periodic

boundary conditions by the operator equation

Lx - ix = y (x a B. y e H)
or, equivalently,
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x = L-'Bx + L_ 'y (36)

It can easily be shown that the operator L-1B is a contraction

in H. For this purpose we apply (35) and we derive a global

estimate for L

arILL 1B,(x)w1IH = j1251s(t5(t

< (2n)-11 I n(2)(t)w (t)w (t)dt_if
n

0 r,s=1 rs r s

where, for abbreviation, N-H(x) = (nrs(t)), (N-H(x))2 =

(nr(2)(t)). Taking account of (30) we obtain

n n
nrs)(t)wr(t)ws(t) < q(1-e)2 E (ur'-ur)2wr2(t)

r,s=1 r=1

(1 e)2 n ar-2wr2(t)(a.e.)
r=1

from which we conclude that
IIL-1B'(x)wlli

< (1-c)21IwI1
H H

and IILB'(x)II < 1-c. Hence, Banach's fixed point

theorem is applicable in order to solve equation (36). Again,

the successive approximations and their first derivatives

converge uniformly on [0,2n]. Using a 2n-periodic continuous

function e(t) we obtain the classical periodic solution of

equation (1).
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This chapter is devoted to the n-th order vector

differential equation

L[x(k)] + f(x) = x(n + AIx(n-1) + A2x(n-2) +
...

+ An-k-lx(k+l) + An-kx(k) + f(x) = e(t) (11

where n > 2, 1 < k < n-1, x e Rm (m > 1), f : Rm - Rm continuous,

e : R - Rm continuous and 2n-periodic, Av(0 < v < n-k) a real

constant m x m-matrix, Ao = Im. Note that the characteristic

polynomial belonging to the linear differential operator L is
xmk p(X) where

P(a) = det P(.1), P(A) _ I Av kAn
v

v.k

Let us introduce some abbreviations:

rt
maxle(t)I = E*,

f

e(s)ds = E(t)[2rr-periodic if E(27r) = 0]
0

fi(r) = sup{ If(x)I : Ixl < r)

89
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Ay(r) = inf{<x,f(x)> : jxj = r}
f(x) _ (l+u)f(x)/2 - (1-u)f(-x)/2, 0 < u < 1

4u (r) = sup{lfu(x)I
: lxi < r} < 4(r)

4u(r) = inf{<x,fu(x)> :jxl = r} > 4(r)

The aim of our chapter is to develop conditions which ensure

the existence of at least one 21-periodic solution. In the

special case k = 1 there are some recent results of Sedziwy,

Mawhin and of other authors (see [1-5]) which shall be extended

partially. Applying Brouwer's fixed point theorem on the basis

of boundedness results, Sedziwy stated the following theorem

concerning the oscillatory properties of equation (1).

THEOREM 1. ([4]) Assume that (i) p(a) = 0 implies that

Rea < 0, (ii) An-1 = An*1 > 0, (iii) if(x)I < F*, and (iv')

lim <x,f(x)-q> = W for all q c Rm such that jqj < E*, or
IxI -.M

(iv") lim <x,f(x)> = E(2ir) = 0. Then there exists at least
Ixi-..

one 2ir-periodic solution of (1).

Another result of Sedziwy was derived by means of Borsuk's

theory on odd mappings of finite dimensional spaces.

THEOREM 2. ([5]) Assume that (i) p(a) = 0 implies that

A # ri (r an arbitrary integer), (ii) An-1
= An*1 >

0, (iii)

if(x)I _< eixj for all x e Rm-Bh, (iv) <x,f(x)> > & xllf(x)I,

0 < 6 < 1 for all x E Rm, and (v') inf(lf(x)l :x c Rm-Bh) >

6-1E*, or (v") E(21r) = 0. Then there is at least one periodic

solution provided that e > 0 is small enough.

Using the functional analytic method based on completely

continuous operators in certain Banach spaces Mawhin proved a

rather general result; however, his condition on the nonlinear

restoring term f concerns its components whereas a condition

for the inner product <x,f(x)> seems to be more natural.

THEOREM 3. ([1,2]) Assume that (i) p(a) = 0 implies that

A # ri (r # 0 an arbitrary integer), (ii) lim [lf(x)l/lxl] = 0,

1x1--
(iii) auxufu(x) > 0 if Ix uI > hu (1 < u < m) where au = +1 or
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-1, and (iv) E(2ir) = 0. Then equation (1) admits at least one

periodic solution.

Now let us formulate our statement.

THEOREM 4. The following conditions are sufficient for

the existence of a periodic solution: (i) p(X) = 0 implies that

A # ri (r an arbitrary integer); (ii) An-1 = An*l (in case k = 1);

(iii) E(27r) = 0; there is some domain (x c Rm :H < jxj < 2H, H

large enough) where (iv') 4(r) < Bra (0 < a < 1), p(r) > Kr 2a

(K large enough), or (iv") 4(r) < 1 + cra (0 < a < 1, c small

enough if a = 1) , p,(r) > er2a

COROLLARY. If n is odd and AV = 0 for v odd, AV = Av*

for v even, or, if n a multiple of 4 and A = 0 for v even,
v

AV = Av* for v odd, then r2a can be replaced by ra in the

estimate for ip(r).

The proof of Theorem 4 is based on the Leray-Schauder

fixed point theory and on the fundamental theorem on odd

mappings of Banach spaces. To begin with we choose a sufficiently

small positive number a such that the polynomial pa(A) =

det(akp(A) + aIm) has no zero A = ri (r an integer). This is

possible since p0(A) = Amkp(A) = 0 implies that either A = 0

or p(a) - 0 (which means that A ri), pa(0) = am > 0, and

since the roots of pa(A) are continuously depending upon the

parameter value a. Now we consider the auxiliary equation

L[x(k)] + ax = pe(t) + ax - fp(x), 0 < p < 1 (2)

where fp(x) is defined above. Note that f0(-x) _ -fo(x),

fI(x) = f(x) and that fp(x) satisfies conditions (iv') or (iv").

The periodic solutions of (2) can be represented as

27r

x(t) = 0 [ x(t)] = j0 G(t-s)Ipe(s)+ax(s)-f p(x(s))]ds (3)

where G is the Green's matrix belonging to the linear differential

operator L[x(k)] + ax in connection with periodic boundary

conditions x(v)(2n) = x(v)(0) (0 < v < n-1).

Introducing the Banach space

X = {x(t) c C°(R) : x(t+2a) x(t)), (kxllX = maxlx(t)l
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we can state that the mapping

x -r 0(x), p e [0,1] fixed

is completely continuous on each bounded subset of X. The para-

meter p describes a continuous deformation. If there is a ball

BR = {x e X : Ilxii < R} such that (idx - 0p) x ¢ 0 on aBR for

all p e [0,1] then the Leray-Schauder degree d[idX-0 BR, 0]

is independent of p. It is an odd integer since the mapping

00(x) is odd. Consequently, the equation (idx - Bp) x = 0 has

at least one solution x c BR. In case p = 1 this solution

satisfies equation (1) under periodic boundary conditions. Let

us show that BR for R = 2H (according to conditions (iv') or

(iv")) is such a ball. For this purpose assume that

x(t) = 011 [x(t)], 0 < p < 1; IIxiIX = 2H, minjx(t)i = h

We are looking for an estimate of the derivatives y(v) _

x(k+v), 0 < v < n-l-k. Since

L[y] = pe(t) - fp(x(t))

y(v)(2n) = y(v)(0) (0 < v < n-l-k) (4)

where the "homogeneous" problem Ly = 0 only admits the zero

solution, the derivatives y(\)(t) can be represented in integral

form by means of a Green's matrix which is, at least, piecewise

continuous. As an immediate consequence we can estimate

11y(v)1 X Pk+v[E'* + 4(2H)], 0 < v < n-k-l (5)

In case k > 1 we consider x(k 1). On an arbitrary interval

with extremities t0 and to + 27 we have

Ix(k-1)(t)-x(k-1)(t 0)I < 2,rPk[E* + (2H)]

This estimate is valid, too, for every single component; using

a zero t0 of the component and taking into account the m

components we find that

llx(k-1)IIX
Pk-1[E* + (2H)]

Continuing this procedure, if necessary, we obtain the result

iix(v)ilX < PV [E* + (2H)], 1 < v < k-l (6)
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Integration of the inner product between x(t) and both

(2n
members of equation (2) yields f <x,x(n) + A1x(n-1) + ... +

1O

0

A.
kx(k) - pE'>dt +

Jn<x,f(x)>dt
= JOx<x,fu(x)>dt -

f2n<x',x(n
1) + Alx(n-2) + ... + An kx(k-1)

- pE>dt = 0.
0

Using the fact that in case k = 1

27r /2n
(0 <x',An-lx>dt = (1/2)10 <x,An-lx>'dt = 0

we conclude, with the aid of (5) and (6),

r2n
)I <x,fu(x)>dt < PCE* + 0(2H)]2

0

The constant p only depends on the characteristics of the

differential operator L.

Note. In the special cases described in the Corollary

the estimate (7) can be improved as follows:

f
2-rr

0

<x,fu(x)>dt < 2rtplE*[E* + 0(2H)]

(7)

(8)

Let jx(t1)j = h and lx(t2)1 = 2H where 1tl-t21 < 2n. Then

2H - h < jx(t1)-x(t2)I < 2np1[E* + 4(2H)], h/H > 2 - 4np1[E* +

0(2H)]/2H > 1, i.e. H < h if H > 4np1E*, 4(2H)/2H <
(8wp1)-

which is ensured, under conditions (iv') or (iv"), whenever

H is large enough and (in case a = 1) e > 0 is small enough.

Taking into account the last result and assuming condition

(iv') holds, we derive from (7)
2n

K < (1/2n)
1

2a]dt
0

< 2p{[E* + (2H)]/(2H)a}2/n

< 2P[E*/(2H)a + R]2/n

< 2p(E* + $)2 /7T



94 Reissig

provided that H > 1. This is a contradiction when K is large

enough. Assuming condition (iv") holds, we calculate

c < 2P((E*+l)/(2H)a + e]2/n < 8pc2/if

provided that H < (.!)h//2. This is a contradiction when

e is small enough.

A similar argumentation can be given in the particular

situation of the Corollary.

As a result we state that there is no x(t) = 0
u
[x(t)],

0 < u < 1, with IIxIIX = 2H.
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SEMI-COMPACTNESS IN SEMI-DYNAMICAL SYSTEMS

PREM N. BAJAJ

Department of Mathematics
Wichita State University

Wichita, Kansas

INTRODUCTION

Semi-dynamical systems (s.d.s.) are continuous flows defined

for all future time (non-negative t). Natural examples of

s.d.s.are provided by functional differential equations for

which existence and uniqueness conditions hold. S.d.s.

generalize the theory of Dynamical Systems. Moreover many new

and interesting notions (e.g., start point [2], [3], singular

point [1], [4]) arise in s.d.s.

In this chapter, an attempt is made to weaken the

hypothesis on the phase space. It is the semi-compactness,

rather the local compactness, that counts. After introducing

basic notions, we proceed to examine some properties of limit

sets, prolongations, and their limit sets. In particular, we

prove that in a rim-compact space, the positive limit set and

the positive prolongational limit set are weakly negatively

invariant and do not contain any start points. The goal of

the last section (on stability and asymptotic stability) is

97
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to prove that, in a rim-compact space, if a positively invariant

closed set with compact boundary is a uniform attractor, it is

asymptotically stable.

BASIC NOTIONS

Definitions

A semi-dynamical system (s.d.s.) is a pair (X,n) where X is a

topological space and n is a continuous map from X x R+ into

X satisfying the conditions:

n(x,0) = x, x e X, (identity axiom)

n(n(x,t),s) = 1r(x,t + s) , x e X; t, s c R+ (semi-group
axiom)

(R+ is the set of nonnegative reals with usual topology). For

brevity n(x,t) will be denoted by xt, the set {xt :x c M C X,

t e K C R+} by MK etc.
For any t in R+, the map nt :X - X is defined by 7rt(x) =

xt. The negative funnel, F(x), from x is the set {y e X :yt = x

for some t e R+}. For any t in R+, the function zr-t defined on

X with values in the set of subsets of X is given by n-t(x) =

{y e X : yt - x}. Clearly F(x) = U{n-t(x) :t a R+}. Positive

trajectory, y+(x), and positive invariance are defined as in

dynamical systems, [S], [6]. A negative trajectory, y -(x),

from any point x is a maximal non-empty subset of F(x) such

that for any y,z in y -(x), if t(y) = Inf {s > 0 : ys = x} and

t(z) = Inf {s > 0 :zs = x}, then y e z[0, t(z)] or z e

y[0, t(y)]. In general there will be more than one negative

trajectory from x. A negative trajectory y (x) will be called

a principal negative trajectory if the set {t a R+ :yt = x for

some y in y (x)} is unbounded. A point n e X is said to be

positive critical (or simply critical) if y+(x) = {x}.

A subset K of X is said to be negatively invariant (weakly

negative invariant) if the negative funnel (at least one negative

trajectory) from each point of K lies in K.

For any x in X, let E(x) = It > 0 :yt = x for some y in

X}. The escape time of x is said to be infinite or Sup E(x)

according to whether E(x) is unbounded or bounded. A point
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with zero escape time is said to be a start point. See [2], [3]

for some results on start points.

Notation

Throughout this chapter (X,ir) denotes a semi-dynamical system

where X is taken to be Hausdorff. N(x) denotes the neighborhood

(nbd.) filter [10; p. 78] of x. A net in X will be referred to

as xi where i is in the directed set and xi is its image.

LIMIT SETS, PROLONGATIONS AND PROLONGATIONAL LIMIT SETS

Definition

The positive limit set A(x), positive prolongation D(x), and

positive prolongational limit set J(x) of a point x in X are

defined by-

A(x) = {y e X :there exists a net ti in
R+,

ti
such that xti y}

D(x) _ {y e X : there exists a net xi in X, xi - x, and

a net t i in R+ such that xiti + y}

J(x) = {y e X :there exists a net xi in X, xi + x, and

a net t i in
R+,

ti - - such that xiti + y)

PROPOSITION 1. Let x c X. Then A(x) = r1{Ct(y+(xt)) :

t e R+}.

DEFINITION. A topological space is said to be rim-compact

(or semi-compact) if it has a base of open sets with compact

boundaries ([9; p. 111]).

Rim-compact Hausdorff space is easily seen to be regular.

THEOREM 2. Let X be rim-compact, x c X, and A(x) be non-

empty and compact. Then (a) Ci(xR+) is compact, and (b) A(x)

is connected.

The above theorem, in effect, states that if X is rim-

compact, then the compactness of A(x) implies positive Lagrange

Stability [S].

The following theorem, well-known for Dynamical Systems,

holds for semi-dynamical systems also.
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THEOREM 3. Let x e X. Then D(x) = fl{Ci(VR+) :V is a nbd.
of x}.

THEOREM 4. Let X be rim-compact and x e X. Then both

A(x) and J(x) are weakly negatively invariant and contain no

start points.

Proof. We outline the proof for J(x) only; the proof for

A(x) is similar.

Let y e J(x). Then there exists a net xi in X, xi + x,

and a net ti in
R+,

ti + +-, such that x
i
t
i
+ Y. Let t > 0 be

arbitrary but fixed. We may suppose ti > t for every i. Now

consider the net xi(ti - t) in X. If xi(ti - t) converges to

y, then xi(ti - t)t + yt, moreover xi(ti -t)t = xiti + y, so

that yt = y.

If xi(ti - t) does not converge to y, there exists a nbd.

V of y such that a subnet of xi(ti - t) is in X - V; we may take

V open, with its boundary, Fr(V), compact. For simplicity of

notation, let the subnet be xi(ti - t) itself. Since xiti + y,

there exists an I in the directed set such that x.t. c V when-

ever i > I. Now for each i > I, there exists an si, ti - t <

si < ti, such that x
i
s
i

e Fr(V). By compactness of Fr(V),

xisi has a convergent subnet. Let xisi -. z c Fr(V). Since

0 < ti - si < t, the net ti - si has a convergent subnet; let

ti - si + s, where 0 < s < t. Then xisi(ti - s
i
) = xiti + y

and xisi(ti - s
i
) + is, so that zs = y. But z c Fr(V), y c V

and V is open; therefore s # 0.

In either case y is not a start point. Using the point y

or z above, the existence of negative trajectory from y now

follows from Hausdorff's maximality principle.

The following theorems, interesting in their own right,

will be needed later.

THEOREM 5. Let x e X, A(x) # $, and w e A(x). Then J(x)

C J(w).

Proof. Since w c A(x), there exists a net ti in
R+,

ti +

such that xti + w. Let y e J(x), so that there exists a

net xi in X, xi + x, and a net si in R% si -, - such that

xisi + y. By making adjustments, we have si - ti + +-. Let
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U be an open nbd. of w. Then for some I in the directed set,

xti c U for every i > I.

Let xti c U for an arbitrary but fixed i > I. Since

x.t. - xti whenever x. - x and i is held fixed, we can pick

j = j(i) > i such that xj(i)t. c U. Now the net xj(i)t. con-

verges to w. Moreover xj(i)ti (sj(i) - ti) =
xj(i)sj(i)

+ y

and (sj(i) - ti) + -. Hence y e J(w), and so J(x) C J(w).

THEOREM 6. Let X be rim-compact, x c X, and let J(x) be

non-empty and compact. Then A(x) is non-empty (and compact).

NOTATION. For a subset M of X, let D(M) - U{D(x) :x a M}.

For a closed set M with compact boundary, we have the

following theorems.

THEOREM 7. Let M be a closed subset of X with compact

boundary, and let y c D(x) - M for some x in M. Then y e D(z)

and z e D(x) for some z c Fr(M).

Proof. If x e Fr(M), let z = x. If x e Int(M), there

exists a net xi in Int(M), xi -+ x, and a net t i in R+ such that

xiti i M and xiti + y. For each i there exists an si, 0 < si <

ti such that xisi a Fr(M). By compactness of Fr(M), xisi has a

convergent subnet. With no loss in generality we can let

x
i
s
i

+ z e Fr(M). Clearly y e D(z) and z e D(x).

THEOREM 8. Let M be a closed subset of X with compact

boundary. Then (a) D(M) - fl{CR(UR+) :U is a nbd. of M}, and
(b) D(M) = fl{U :u is a closed, positively invariant nbd. of M}.

In particular, it follows that D(M) is closed.

Proof. To prove (a) let K = n(CR(UR+) :U is a nbd. of M).
For any x e M, D(x) - fl{CR(VR+) :V is a nbd. of M}. Since a
nbd. of M is a nbd. of x, it follows that D(x) C K. As x c M
is arbitrary, D(M) C K.

Next let y D(M). In particular y e D(x) for every

x e Fr(M). Then for each x e Fr(M), there exists a nbd. Ux of

x, a nbd. Vx of y such that Vxfl UXR _ f. Let {Ul,U2,...,Un}

be a finite subcover of the open cover {Ux :x a Fr(M)} of the

compact set Fr(M). Let V = V1fl...f1Vn and W = UIU...UUn.
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Clearly v fl (M U W)R+ _ ¢ and, so, y ¢ CL (M U W)R+. But M U W

is a nbd. of M. Hence y ¢ K etc.

The proof of (b) part is similar.

STABILITY, ATTRACTION AND ASYMPTOTIC STABILITY

DEFINITION. Let M be a closed subset of X with compact

boundary. Then M is said to be stable if given a nbd. U of M,

there exists a nbd. V of M such that VR+ C U.

THEOREM 9. Let M be a closed subset of X with compact

boundary. If M is stable, then D(M) = M. If X is rim-compact,

the converse also holds.

Proof. We outline only the proof of the converse. Let U

be a nbd. of M. We may take U to be open and with a compact

boundary. It is easy to see that for each x e Fr(M), there

exists a nbd. Wx of x such that WXR+ C U. Let {W1,...,Wn} be

a subcover of the open cover {Wx :x c Fr(M)) of Fr(M). Let

V = W1U...UWnUM. Clearly VR C U.

DEFINITION. Let M be a closed subset of X with compact

boundary. The region of attraction, A(M), of M is defined to

be the set {x e X :0 ¢ A(x) C M). M is said to be an attractor

if A(M) is a nbd. of M. If M is an attractor, it is said to be

a uniform attractor if given a compact set K C A(M), and a nbd.

V of M, there exists T > 0 such that x[T, + o] C V for each

x in K. Finally M is said to be asymptotically stable if it is

stable and is an attractor.

THEOREM 10. Let M be a closed subset of X with compact

boundary. Let M be positively invariant. (a) If M is

asymptotically stable, J(A(M)) C M. (b) If X is rim-compact,

and there exists a nbd. U of M such that # J(x) C M for each

x in U, then M is asymptotically stable.

THEOREM 11. Let X be rim-compact, M be a closed subset of

X with compact boundary, and let M be positively invariant. If

M is a uniform attractor, then it is asymptotically stable.
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Proof. We need show that M is stable. Let V be a neighbor-

hood of M. We may take V to be open, Fr(V) to be compact, and

Ct V C A(M).

For the compact set Fr(V), let T > 0 be of the definition

of uniform attraction. For x e Fr(V), let T(x) = Inf {t > 0 :

x[t,-) C V). Since M is a uniform attractor, T(x) is well

defined and T(x) < T. Clearly xT(x) c Fr(V). Moreover,

x[0,T(x)] fl m = 4. (This follows from the observation that M

is positively invariant). Consider F = u{x[O,T(x)] :x e Fr(V)}.

We assert that F is compact. Let xiti, xi e Fr(V), be any net

in F, 0 < ti < T(xi) < T; ti being bounded, has a convergent

subnet. With no loss in generality, we let ti -. t. Similarly,

let T(xi) - T so that

0 < t < T < T (*)

The net xi, being in a compact set Fr(V), has a convergent

subnet. As before, let xi + x c Fr(V). Now x
i
t
i

-. xt. We

have to show that xt e F, i.e., t < T(X). Now xiT(xi) + XT e

Fr(V) (notice that Fr(V) is closed). Therefore T < r(x). Hence,

by (*), 0 < t(. T) < T(x), and so xt a X[O, T(x)] C F. This

proves the compactness of F. Since X is T2, F is closed. Next

F fl M = 0 as F fl x[O,T(x)] _ 0 for each x e Fr(V). Let U =
V - F. Then U is a nbd. of M and UR+ C V. Hence M is stable.

Remarks. The proof is significant for many reasons. We

have avoided the local compactness condition on the space X,

and T(x) is not necessarily continuous, as can easily be seen.

Moreover, the proof is constructive in the sense that not only

stability of M is established, but also the neighborhood U

corresponding to the given neighborhood V is actually found

such that UR+ C V. Moreover, the neighborhood U we found is

the LARGEST such neighborhood.
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Chapter 7

NON-UNIFORM SAMPLING AND N-DIMENSION SAMPLING

Kuang-Ho Chen
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University of New Orleans
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INTRODUCTION

Two sampling theorems concerning n-dimensional uniform sampling

and one-dimensional non-uniform sample are proved. In the

former case, the constructing function is assumed to have the

Fourier transform bandlimited and is uniquely determined.

There is no need to assume the existence of the Fourier trans-

form. The Fourier transform derived exists in the distribution

sense. The latter case verifies the 1959 Balth van der Pol

conjecture for non-uniform sampling, and both imply the one-

dimensional uniform sampling. None of the results here apply

to the stochastic case.

A survey of the early literature on the problem can be

found in Reza [3]. Recently, most work concerns either one-

dimensional sampling or statistics, for example, see Masry [2],

Todd [4], or Bar-David [1].

The next section studies n-dimensional uniform sampling,

and the last section is devoted to non-uniform sampling.
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THE N-DIMENSION UNIFORM SAMPLING THEOREM

A distribution F(x) is said to be bandlimited with a cutoff

angular frequency of w, where w = (w1,...,wn), if F(x) = 0

for lxil > wi, for some i = 1,...,n. This F is called a

w-bandlimited function here for convenience.

THEOREM 1. For a given function f(x) with w-bandlimited

Fourier transform, there exists only one f(x) with the

representation

f(x) = ...
E f(imI/wl, .

=

m =-W
n

m1=

sin wl(xl - nm1/wl)

wl xl - aml wl

, mm/wn)

sin wn(xn -

wn xn - amn wn (1)

Recall, from the well-known Paley-Wiener theorem, that

since the Fourier transform F(y) of f(x) is compactly

supported, its extension in the complex space Cn is an entire

function of finite exponential type. In particular, f(x) is

an analytic function. With this fact, this theorem is proved

as follows.

Proof. In terms of distributions with support contained

in the parallelpipe P(w) _ {y :jyij < wi},

f(z) = (F(y), (1/2w )n e- izy)
(2)

F(y) E C(ml.... ,mn)exp(ni(mlyl/wl+
m = m
n 1

...+mnyn/wn))

C(ml,...,mn) _ (F(y), exp(ni(mlyl/wl+...+mnyn/wn)))/

2nw1...wn

(3)

(4)

Substitution of (4) in (3) yields
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ml mF(y) _ nn f( w,..., wn)/wl...w
mn=- m1=-m 1 n

. [exp(ni(mlyl/wl + . + mnyn/wn))]/wl...wn
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(5)

nml mmn
Then, by (2), we have f(z) _ f(w wmn=- m1=-oo 1 n

(exp(ni(mlyl/wl + ... + mnyn/wn)), exp(-i(zlyl + ... + znyn)))/

2nw1...wn.

The distributions on the right side are just usual integrals

over the region P(w). After integrating, interchange each

index mi with -mi, and then equation (1) is obtained. As for

uniqueness, let two functions have the expression (1) with

same values at (nm1/wl,...,mmn /wn). Set f(x) equal to the

difference between these two functions. Then, (1) implies

that f(x) = 0 for each x in Rn.

Consequently, we have the following commonly used

sampling theorem.

COROLLARY 2. For a time-function f(t) with a bandlimited

frequency function with a cutoff angular frequency of w,

f(t) = E f(w )[sin w(t-nj/w)]/w(t-wj/w) (6)

THE ONE DIMENSION NON-UNIFORM SAMPLING THEOREM

In 1959, Balth van der Pol [5] made the following statement.

Let P(x) be an entire function with simple roots at

{..., al, a2, ...) and f(x) be a bandlimited time function with

a cutoff angular frequency n; then, assuming that f(x) and

p(x) have no common roots,

f(x f(a)
P(X) m P am x_am ' (m integers) (7)
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Employing standard complex variable techniques, the

following non-uniform sampling is proved without assuming f(x)

to be a bandlimited time function. The van der Pol conjecture

then follows as a consequence.

THEOREM 3. Let P(z) and f(z) be two entire functions

with the order of f less than the order of P, or with same

order, but the type of f less that of P. Assume further that

the roots am, (m = 1,2,...) of P(z) are real and simple, and

the complement of the roots of f(z) with respect to {am} is a

non-decreasing sequence in absolute values. Then, f(x)/P(x)

has the representation (7), which is convergent uniformly on

every compact set in the complex plane disjoint from {am}.

Proof. Set q(z) equal to the quotient f(z)/P(z). Then,

q(z) is an analytic function with the only possible

singularities being {am}, which are just simple poles. Denote

by C(rm) the circle with center at the origin and radius rm

such that for each m, C(rm) contains in its interior at most

2m points of {aj}, and no aj is on C(rm). Then, the conditions

imposed on f and P about the order and the type, leads to the

estimate

lim sup
f

lq(z)J Jdzi = M <
m -W C(rm)

Therefore, all conditions for the well-known Cauchy theorem on

partial fraction expansions are satisfied and so, the

assertion is proved.

It is remarkable to notice that P(x) can be arbitrarily

chosen; only the constructed function f(x) shall have the

properties imposed by the theorem. This choice of P(x) is

just an extra-freedom on constructing the function f(x).

Finally, let us derive the usual one-dimensional uniform

sampling theorem (i.e. Corollary 2) from this theorem. Choose

P(x) to be sin(wx) and am = mlT/w. Then, by the trigonometric

identity,
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sin(wx) = sin[w(x - mlr/w) + mn] = sin w(x - m7r/w) cos mir

we have the representation (6) from (7).

COMMENT

Mr. N. A. Gross produced in his master's degree thesis some

results based on the idea presented here. However, his proofs

need stronger conditions and his results are much weaker

than what appears here.
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Chapter 8

COMPLETE STABILITY AND BOUNDEDNESS
OF SOLUTIONS OF A NONLINEAR DIFFERENTIAL EQUATION

OF THE FIFTH ORDER

Ethelbert N. Chukwu

Department of Mathematics
Cleveland State University

Cleveland, Ohio

INTRODUCTION

The differential equation considered here is of the form:

x(5) + fI(x,x(l),x(2),x(3)x(4))x(4)

+ f2(x(2),x(3))x(3) + f3(x(1),x(2)) + f4(x(1))

+ f5(x) = p(t,x,x(1).x(2),x(3).x(4)) (1)

in which fi (i = 1,2,3,4,5) and p are real valued functions

which depend at most on the arguments displayed explicitly.

It will be assumed that f5 (x), f4(y), af3(y,z)/Dy,

af2(z,w)/aw, af2(z,w)/az, fl(x,y,z,w,u) and p(t,x,y,z,w,u) are

continuous for all values of x,y,z,w,u, and t.

The problem of interest here is to investigate conditions

under which equation (1) is completely stable (asymptotically

stable in the large) or has all solutions bounded. For

specialized cases of (1), this problem has received some
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attention in Chukwu [1] and [2]. This chapter extends these

earlier results to equations of the form (1). The stability

study is inspired by similar treatments of third order equations

by Harrow [4] and Tejumola [9], and fourth order equations by

Ezeilo and Tejumola [3], Lalli and Skrapek [5], and Sinha and

Hoft [8]. The boundedness result is motivated by a result of

Ezeilo and Tejumola [3; Theorem 2]. The nonlinearities in (1)

fi (i = 1,2,3,4,5) satisfy generalized Routh-Hurwitz conditions;

the non-Routh-Hurwitz conditions which are imposed are trivial

in the constant coefficient situation. These extra conditions

have analogues in [3-5, 7-9]. The investigations here rest on

a Lyapunov function which is constructed by forming, by a trial

method, linear combinations of line integrals. The complete

stability result follows from a basic theorem of LaSalle [6].

In what follows we shall deal with the equivalent system

x' = y, Y' = z, z' = w, w' = U

u' -f1(x,y,z,w,u)u - f2(z,w)w - f3(y,z)

- f 4(y) - f5(x) + P(t,x,y,z,w,u)

obtained from (1).

NOTATION. In what follows the letters D and Di

represent positive finite constants whose magnitudes depend

only on the constants which appear in the statements of

Theorem 1 and 2 below as well as the functions fi (i = 1,2,3,4,5)

They are independent of any particular solutions chosen.

While the Di retain their identities in each place of occurence

the values of D may vary.

STATEMENTS OF RESULTS

THEOREM 1. Consider (2) with p(t,x,y,z,w,u) s 0 and

suppose that the following conditions hold.

H1. There are positive constants a,b,c,d,e such that

a > 0, ab - c > 0, (ab-c)c - (ad-e)a > 0, e > 0,

and A _ (dc-be)(ab-c) - (ad-e) 2 > 0,
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Al (dc-be)(ab-c)/(ad-e) - (af4(y)-e) > 2be and

A2 a (dc-be)/(ad-e) - y(ad-e)/d(ab-c) - e/a > 0,

where y = f4(y)/y if y / 0 and y = f4(0) if y = 0,

and c is sufficiently small positive constant.

H2. Let f3(y,0) = 0 = f4(0) = f5(0) for all y.

H3. Assume that f1(x,y,z,w,u) > a+2k, for some k > 0,

f2(z,w) > b, f3(y,z)/z > c for z # 0, f4(y)/y > d

for y # 0, and f5(x) < e.
fx

H4. Let f5(x) sgn x > 0 if x # 0, and F5(x) a f5(s)ds

as Ixi -. m. 0

H5. Suppose that f1(x,y,z,w,u) - a < min [e/32a2,

ed/1652, A1(aa c)2/6452], f2(z,w) - b < ead/262,

(f3(y,z)/z - c)2 < min [kA1/16, edA1/6462] if

z # 0, (d - f4(y))2 < cA1/128, and e - fs(x) <

ed(ab-c)/8(ad-e), where 6 = e(ab-c)/(ad-e) + e.

H6. Let zaf2(z,w)/aw > 0, waf2(z,w)/az < E/2,

r0 z

1/z J (af3(y,x)/ay)ds < Al/4a if z # 0, and

f4 (y) - f4(y)/y < eA/d2(ab-c) if y # 0.

Then every solution (x(t),y(t),z(t),w(t),u(t)) of (2) satisfies

x2(t) + y2(t) + z2(t) + w2(t) + u2(t) - 0 as t -

The usual Routh Hurwitz restrictions in H1 imply that

a > 0, b > 0, c > 0, d > 0, e > 0, ad-e > 0, dc-be > 0. The

special case f1 = a, f2(z,w)w = g2(w), f3(y,z) = c was

studied in [2], while the case f2(z,w) b, f3(y,z) = g3(z)

was studied in [1]. The conditions H6 are comparable to

analogous criteria in [9; Theorem l(iii)], [3; Theorem l(iii)],

and [8; Theorem 1(ii)].

THEOREM 2. Suppose that in (2), f3(y,0) = f4(0) = 0,

and conditions H1, H3, H5 and H6 hold. Furthermore, assume

that (i) f5(x) sgn x > 0 for IxI > 1, and (ii) the function

p(t,x,y,z,w,u) satisfies

Ip(t,x,y,z,w,u)I < {A+IYI+IZI+Iwi+Iul}V,(t) (3)
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where A is a constant and p(t) > 0 is a continuous function

of t. Then for any finite x0'y0'z0'w0,u0, there exist constants

Ki = Ki(x0,y0,z0,w0,u0) i = 0,1 and a constant X > 0 whose

magnitude is independent of x0'y0'z0'w0'u0 such that any

solution x(t),y(t),z(t),w(t),u(t) of (2) determined by

x(0) = x0, y(0) = y0, z(0) = z0, w(0) = w0, u(0) = u0 (4)

satisfies, for all t > 0,

ty2(t)+z2(t)+w2(t)+u2(t) < K0{l+X-1(t)[l+j
P(s)x(s)ds]}

0

F5(x(t)) = Jx(t)f5(s)ds <
K1{1+X-1(t)[1+jtV(s)X(s)ds])

0 0

t
where X(t) = exp(-aJ ip(s)ds).

0

The following corollary is an immediate consequence of

Theorem 2.

COROLLARY 3. Suppose, in addition to the conditions of

Theorem 2, that F5(x) + +m as jxj - c, and I0 (t)dt < -. Then
0

there exists a constant K2 = K2(x0,y0,z0,w0,u0) such that the

unique solution (x(t),y(t),z(t),w(t),u(t)) of (2) determined

by (4) satisfies jx(t)I < K2, jy(t)l < K2, Iz(t)l < K2,

lw(t)i < K2, and iu(t)i < K2, for all t > 0.

SOME PRELIMINARY LEMMAS

The proof of the results above rest on the following

Lyapunov function

2V = u2 + 2auw + 2d(ab-c)uz/(ad-e) + 26yu

f+ 2 sf2(z,s)ds + Cat-d(ab-c)/(ad-e)]w2
0

+ 2[c+ad(ab-c)/(ad-e)-6]wz + 2a6wy + 2wf4(y)
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+ 2wf5(x) + 2af f3(y,s)ds - (d+a6)z2 + 26byz
0

z

+ 2d(ab-c)
10

sf2(s,0)ds/(ad-e) + 2azf4(y)

f0 Y

- 2ezy + 2azf5(x) + 2d(ab-c) J f4(s)ds/(ad-e)

+ (6c-ea)y2 + 2d(ab-c)yf5(x)/(ad-e) + 26 f5(s)ds
00

where 6 is defined by 6 = e(ab-c)/(ad-e) + c.

The required properties of V will be stated in the next

two lemmas; their proofs will not be given. The full force

of Lemma 4 may not be required. The well-known theorem of

LaSalle [6] which we shall apply, requires that V - - as

x2+y2+z2+w2+u2 m, but there seems to be no direct or simpler

way of showing this other than by the way of Lemma 4.

LEMMA 4. Assume that all the conditions of Theorem 1

hold. Then there are positive constants Di (i = 1,2,3,4,5)

such that for all x,y,z,w, and u,

2V > D1F5(x) + D2y2 +
D3z2 + D4w2 + D5u2

provided that a is sufficiently small.

LEMMA S. Assume that all the conditions of Theorem 1

hold. Then there exist positive constants Di (i = 6,7,8)

such that if (x(t),y(t),z(t),w(t),u(t)) is a solution of (2)

with p(t,x,y,z,w,u) a 0 then

V' < -ku2 -
(D6y2

+ D7z2 + D8w2)

PROOFS OF THE THEOREMS

PROOF OF THEOREM 1. From Lemma 4 and Lemma 5 we have

V(x,y,z,w,u) > 0 for x2+y2+z2+w2+u2 > 0 (5)
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V -t +m as x2+y2+z2+w2+u2 m (6)

and

V' < -D(y2+z2+w2+u2) (7)

where D > 0 is a constant. It follows from the system

x' = Y. Y, = z, z' = w. W, = u (8)

u' -f 1(x,Y,z,w,u)u-f2(z.w)-f3(Y z)-f4(Y)-f5(x)

hypothesis H2 and (7) that the set E of all solutions of (8)

such that V' = 0 consists of just the origin. Thus the largest

invariant set M in E is the origin. It also follows from (7)

that V(x(t),y(t),z(t),w(t),u(t) < V(x(o),y(0),z(o),w(0),u(O))

for all t > 0, so that by (6) all solutions of (8) are bounded

for all t > 0. It is now clear that all the conditions of

Theorem 3 of LaSalle [6] are satisfied. Since M is the origin.

complete stability (asymptotic stability in the large) follows

at once.

PROOF OF THEOREM 2. The proof is analogous to the proof

of Theorem 2 in Chukwu [2].

It is no longer true that the estimate for 2V in Lemma 4

holds valid under the restriction (i) of Theorem 2. However,

it is rather simple to verify that V, at least, satisfies

2V > D1F5(x) + D2y2 + D3z2 + D4w2 + D5u2 - 2D9

for some D9; it follows that

V > D10(y2+z2+w2+u2) + D11F5(x) - D9

for sufficiently small D10. Also, since f5(x) sgn x > 0 for

lxi > 1, and f5(x) continuous, there exists a D12 such that

F5(x) > -D12 for all x. Therefore

V > D10(y2+z2+w2+u2) D13 (9)

where D13 = D11D12 + D9. Now let (x(t),y(t),z(t),w(t),u(t))

be the solution of (2) satisfying the initial conditions (4)
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and set V(t) = V(x(t),y(t),z(t),w(t),u(t)). It follows, just

as in Lemma 5, that

V' < -D(y2+z2+w2)+[a+aw+d(ab-c)z/(ad-e)+dy]P(t,x,y,z,w,u)

so that

V'
<

D14(IYI+lzl+lwl+lul)lp(t,x,Y,z,w.u)I

Thus, by (3) and the obvious inequalities ¶yl < 1+y2

IzI < 1+z2, Jwi < 1+w2, Jul < 1+u2, and (lyl+Izl+Iwl+iul)2

< 4(y2+z2+w2+u2), we have V' < D14[4A+(A+4)(y2+z2+w2+u2)]$(t)

so

V' - D15V(t)p(t) < D16q) (t)

On multiplying both sides by Y X(t) = exp(-D15J o(s)ds) and
0

integrating, we obtain

t

V(t)X(t) < V(0)+D16f (s)X(s)ds
0

for t > 0, and on dividing both sides by X(t) we have

V(t) < X-1(t)[V(0)+D16jt1p(s)X(s)ds]
(10)

0

where V(O) = V(x0,y0,z0,w0,u0). This together with (9)

shows that

t

Y2+z2+w2+u2 < D10-1[X-1(t)(V(0)+D16f (s)X(s)ds}+D13]
0

The other conclusion follows from (10) and the fact that

D11F5(x) < V+D9. The proof is now complete.
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Chapter 9

STABILITY TYPE PROPERTIES FOR SECOND
ORDER NONLINEAR DIFFERENTIAL EQUATIONS
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INTRODUCTION

Stability type properties of second order nonlinear differential

equations of the form

(a(t)x')' + h(t,x,x') + q(t)f(x)g(x') = e(t,x,x') (*)

have been studied by a number of authors. As examples we cite

the recent work of Baker [1], Graef and Spikes [3-5], Grimmer

et. al. [2,6], Hammett [7], Kartsatos [8], Londen [9], and

Wong [10,11]. In this chapter we discuss the boundedness and

convergence to zero of solutions of (*) without making the usual

assumption that the perturbation term e(t,x,x') is small. Other

conditions often required by other authors have also been relaxed.

The first three theorems concern the boundedness of all

solutions and the convergence to zero of the nonoscillatory and

Z-type solutions. Theorems S and 6 give sufficient conditions

for the oscillatory and Z-type solutions to converge to zero,

and are extensions of results of Wong [10,11]. Complete details

of the results in this paper will appear in [4].

119
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STABILITY PROPERTIES

Consider the equation

(a(t)x')' + h(t,x,x') + q(t)f(x)g(x') = e(t,x,x') (1)

where a,q : [to,-) - R, f,g : R - R, and h,e : [to,.) x R2 , R are
continuous, a(t) > 0, q(t) > 0, and g(x') > 0. It will be con-

venient to write equation (1) as the system

(2)

y' = (-a'(t)y-h(t,x,y)-q(t)f(x)g(y)+e(t,x,y))/a(t)

Let q'(t)+ = max {q'(t),0} and q'(t) = max {-q'(t),0} so that

xq'(t) = q'(t)+ - q'(t)_. Define F(x) = (f(s)ds, G(y) _
0

[s/g(s)]ds and assume that there is a continuous function
1

Y

0

r : [to,.) - R such that

Ie(t,x,Y)I < r(t) (3)

and

h(t,x,y)y ? 0 (4)

We will use the same classification of solutions that was

used in [3-S]. That is, a solution x(t) of (1) will be called

nonoscillatory if there exists tl > to such that x(t) 0 0 for

t > t1; the solution will be called oscillatory if for any given

tl > t
0

there exist t2 and t3 satisfying tl < t2 < t3, x(t2) >

0, and x(t3) < 0; and it will be called a Z-type solution if it

has arbitrarily large zeros but is ultimately nonnegative or

nonpositive. The following additional assumptions are needed

in order to show that nonoscillatory solutions of (1) converge

to zero. Assume that:

(i) xf(x) > 0 if x ¢ 0 and f(x) is bounded away from
zero if x is bounded away from zero

(ii) condition (3) holds and r(t)/q(t) + 0 as t
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(iii) if x is bounded, then there exists a continuous
function k and t1 > to such that lh(t,x,y)I <

k(t)g(y) for (t,x,y) in [t1,W) x R2 and k(t)/q(t) -*
0 as t -*m

[1/a(s)]ds =q(s)ds and f'(iv) g(y) > c > 0, f'
to to

LEMMA 1. If (i) - (iv) hold and x(t) is a bounded non-

oscillatory solution of (1), then lim inf Ix(t)I = 0.
t-*m

To see that condition (iii) in Lemma 1 is essential,

observe that both the equations

x" + tx' + x/t = 1/t2 + 2/t3, t > 0

x" + tx' + x[l+(x')2]/t = (t4+2t3+t+1)/t6, t > 0

have the nonoscillatory solution x(t) = (1 + t)/t. In the

first equation we do not have lh(t,x,x')I < k(t)g(x') and in

the second equation we do not have k(t)/q(t) - 0 as t - -.

The proof of Lemma 1 as well as the proofs of the following

three theorems will appear in [4]. We will also make use of

the following notation.

CONDITION W. If x(t) is a nonoscillatory or Z-type solu-

tion of (1), then lim x(t) = 0.
t-*o,

THEOREM 2. Suppose that conditions (3) and (4) hold,

F (x) -* W as x i -*

JW [a'(s)_/a(s)]ds < W and a(t) < al
t
0

1' [q'(s)_/q(s)]ds <
t
0

J [r(s)/q(s)]ds <
to

(5)

(6)

(7)

(8)
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and there is a positive constant N such that

y2/g(y) < N

Graef and Spikes

(9)

Then all solutions of (1) are bounded. If, in addition (i) -

(iv) hold, then Condition W holds.

THEOREM 3. If (3) - (5) and (7) - (8) hold, there is a

positive constant L such that Iyj/g(y) < L, and

al(t) > 0 and a(t) < a1 (10)

then all solutions of (1) are bounded. Under the additional

assumptions (i) - (iv), Condition W holds.

THEOREM 4. Suppose conditions (3) - (7) hold, g(y) > c > 0,

there are positive constants M and k such that

y2/g(y) < MG(y) for jyj > k (11)

and

Jm [r(s)/(q(s))1/2]ds <
to

(12)

Then all solutions of (1) are bounded. Moreover, if (i) - (iv)

hold, then Condition W is satisfied.

Examples showing the relationship between Theorems 1-3

and some recent results of Hammett [7], Grimmer [6] and Londen

[9] can be found in [4].

The next two theorems give sufficient conditions for the

oscillatory and Z-type solutions of (1) to converge to zero.

They are extensions of some results of Wong [10,11]. We shall

assume that

xf (x) > 0 if x 0 (13)

q(t) as t (14)

0 < c < g(y) < C and Ia'(t)l < a2 (15)

H(t) = r(t)/q(t) - 0 as t - (16)

xf(x) > dF(x) (17)
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for some positive constant d, and there is a continuous function

k : [t0,-) -* R such that

lh(t,x,y) I < k(t) and k(t)/q(t) - 0 as t -* - (18)

THEOREM S. Suppose conditions (3) - (7) and (12) - (18)

hold. If

rt

it
0

I(q-'(s))"'Ids = o(ln q(t)), t -*

then every oscillatory or Z-type solution x(t) of (1) satisfies

lim x(t) = 0.
t+00

THEOREM 6. Let conditions (3) - (5), (10), and (12) - (18)

hold. If for every w with 1/2 < w < 1 we have

J [q'(s)_/gw(s)]ds < m
t
0

and

(19)

Jt j(g_w(s))"1jds

= o(ql-w(t)), t (20)
t
0

then every oscillatory or Z-type solution x(t) of (1) satisfies

lim x(t) = 0.
t-*00

We will outline a proof of this theorem. Complete details

of the proofs of both Theorems 5 and 6 will appear in [4].

Let x(t) be an oscillatory or Z-type solution of (1).

First note that conditions (14) and (19) imply that (7) holds

so by Theorem 4 x(t) is bounded, say Ix(t)l < B. With no loss

in generality we may assume that C > dc. Let N = (4C - dc)/2dc

and w = Ndc/(2C + dc); then 1/2 < w < 1. For t > z > t0 define

Vz(x,y,t) = F(x)/a(t) + G(y)/q(t)

t

+ J [h(s,x(s),y(s))y(s)/g(y(s))q(s)a(s)]ds
z

t

- J [e(s,x(s),y(s))y(s)/g(y(s))q(s)a(s)]ds
z



124 Graef and Spikes

It can be shown that Vz(t) approaches a finite limit as t

so there exists z > to such that

Iz[h(s,x(s),y(s))y(s)/g(y(s))q(s)a(s)]ds < Ne(1-w)15w
z

1-Z1e(s,x(s),y(s))y(s)/g(y(s))q(s)a(s)Ids
z

< min{Ne(l-w)/15w, a/8}

and

B[r(t) + k(t)]/q(t)a(t) < Ndce(l-w)/15w

for t > z.

Let T(t) = 1/qw(t) and K(t) = NdcT(t)q(t)Vz(t) + T"(t)x2/2

- T'(t)xy. Then K'(t) < T"'(t)x2/2 + clq'(t)/qb(t) +

c2q'(t)_/qw(t) + Dq'(t)+Vz(t)/qw(t) - Dq'(t)_Vz(t)/qw(t) +

dclq'(t)I[2Ne(1-w)/15]gw(t) + Ndce(l-w)Iq'(t)I/15gw(t). Since

Vz(t) converges, suppose that lim V1(t) = L > 3c/4. Now x(t)
tam

is an oscillatory or Z-type solution so we let {tn} be an

increasing sequence of zeros of y(t) such that to - - as

n + - and 4L/5 < Vz(t) < 6L/5 for t > t1. Hence K'(t)

< IT"1(t)IB2/2 + c1q'(t)/qb(t) + c2q'(t)_/qw(t) + 6DLq'(t)/Sgw(t)

+ 4NdcL(1-w)q'(t)/15gw(t). Integrating from t1 to to we have

K(tn) < (B2/2)r tnIT"'(s)Ids
+ clq1

b
(tn)/(1 - b)

tl

+ c3jtn[q'(s)_/gw(s)]ds +
6DLg1-w(tn)/S(1

- w)
ti

+ 4NdcLg1-w(tn)/1S + c4

Now K(tn) = NdcT(tn)q(tn)Vz(tn) + T"(tn)x2(tn)/2

4NdcLg1-w(tn)/5 + T"(tn)x2(tn)/2, and since b > 1 and

[1 - w(1 + 1/N)]/(1 - w) = 1/3, we have
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r

1 'IT"'(s)Ids + c52NdcLgl-w(tn)/15 _< B2
t

tl

which is impossible in view of (14) and (20). Therefore

lim Vz(t) = L < 3e/4. Hence there exists T1 > z such that
t+
Vz(t) < 7c/8 for t > T1 so

F(x(t))/a(t)

< 7e/8 + ft le(s,x(s),y(s))y(s)/g(y(s))q(s)a(s)Ids

1

< E

for t > T. Since a(t) is bounded from above, we have that

F(x(t)) + 0 as t -F - which implies that x(t) + 0 as t w

completing the proof of the theorem.

By combining various theorems we could obtain results which

would guarantee that all solutions of (1) tend to zero as t

One such example is the following.

THEOREM 7. If conditions (3) - (7), (10) - (20), and (i) -

(iv) hold, then every solution x(t) of (1) satisfies

lim x(t) = 0.
t-.
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CLASSICAL EQUILIBRIUM MODELS

We consider markets in the set of commodities C1,...,Cn,

n > 2. Let pi > 0 be a variable indicating the price of Ci,

i = 1,...,n, and let p = (p1,... ' n) denote the vector of

prevailing prices. Given the prices p, each potential market

buyer of C i is assumed to demand a certain quantity of Ci while

each potential supplier is assumed willing to supply some

quantity of Ci. By simple summation, the total market demand

for Ci at prices p is obtained and, likewise, the total market

supply of Ci at prices p. The former yields the demand function

di(p), and the latter yields the market supply function si(p)

for Ci. We may then define for each i = 1,...,n,

fi(P) a di(p) - si(p)

the market "excess demand function" for C. at the prices p.

The traditional assumption is that if fi(p) > 0 then pi should
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tend to rise over time, while, if fi(p) < 0, then pi should

tend to fall over time [14]. This notion first suggests the

very simple model

dp
= i(P), i = 1,...,n (1)

The price vector $ is then naturally defined to be an

equilibrium if

fi($) = 0, i = 1,...,n (2)

In order to allow for more general rates of adjustment,

the slightly more complicated model

date = H(fi(p)), i = 1,...,n (3)

may be advanced where H is a differentiable function satisfying

H(O) = 0 and H'(0) > 0 [1]. The notion of equilibrium is then

still as indicated by (2). We do not address the issue here,

but the existence of equilibrium for market models such as (1)

(and, thus, (3)) is known under quite general circumstances [2].

STABILITY ANALYSIS OF EQUILIBRIUM

An equilibrium price vector P is said to be stable (locally

asymptotically stable) if, after any "small", one-time

perturbation, the system (1) (or (3)) tends to return to P over

time. If all partials of the excess demand functions fi,

i = 1,...,n, exist, then we may define the n-by-n Jacobian

2f. 1
A =(..i (n) 1 (4)

of the system (1), which we shall call the Jacobian of the

excess demand functions at p. It is then well-known that p is

stable if the real part of each eigenvalue of A is negative [5].

Such a matrix is thus also called stable. Since the Jacobian

of the system (3) is simply H'(0)A and H'(0) > 0, the stability

of g in (3) is equivalent to the stability of P in (1).

For an n-by-n matrix B, we denote the "real part" (or

"Hermitian part") of B by Re(B) = (B+B )/2. The classical
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result of Lyapunov [12] then characterizes the stability of A

(and thus P) in the following way: "A is stable if and only if

there is a positive definite Hermitian matrix G such that

-Re(GA) (5)

is positive definite". The set of all positive definite

Hermitian G for which (5) is positive definite is easily

verified to form a cone, and we shall denote this cone by L(A).

Remark 1. Thus A is stable if and only if L(A) # g.

A condition sufficient, but not necessary, for the stability

of A = (aij) may be deduced from Gersgorin's theorem [15]. If

aii < 0 and DA is diagonally dominant of its columns for some

positive diagonal matrix D, then all Gersgorin column discs for

DAD-1, and thus all eigenvalues of A, lie in the open left half-

plane so that A is stable. Denote by D(A) the set all positive

diagonal matrices D such that aii < 0 and DA is column diagonally

dominant, and then D(A) is also a cone.

Remark 2. If D(A) # 0, then A is stable.

Global asymptotic stability of systems such as (3) is less

well understood and is only known in certain special cases

[2,13]. Most notable among these is the case of "gross

substitutes", that is, when the Jacobian of the excess demand

functions is an M-matrix at all price vectors [3]. In this case

D(A) # 0 for all p and it is reasonable to ask if this condition

is sufficient for global asymptotic stability in other than the

gross substitute case. As of this writing the answer is

not known [13].

THE PROBLEM OF D-STABILITY

The model (3) may be further complicated by supposing, realis-

tically, that the adjustment rates differ from commodity to

commodity within the market (i.e. from i-th market to the j-th

market, i # j, within the large market). This suggests

the model

di
=t = Hi(fi(p)) (6)
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where H. is differentiable and satisfies H.(0) = 0 and Hi'(0)

> 0, i = 1,...,n. The Hi's might be thought of as commodity-

specific adjustment functions. Stability analysis of this

system is complicated by the fact that the adjustment functions

are taken to be unknown [1], other than the above requirements,

and this renders the analysis intrinsically different from that

of (3). The Jacobian of (6) at an equilibrium P is simply DA

where A is the Jacobian of the excess demand functions and D

is the positive diagonal matrix whose i-th diagonal entry is

Hi'(0). For $ to be a stable equilibrium regardless of the

adjustment rates, DA must be stable for all positive diagonal

matrices D. Such a matrix A is called D-stable. No effective

characterization of the D-stable matrices is known despite a

good deal of research [6], and one would he most welcome. How-

ever, because of the main result of [7], it is clear that this

problem is difficult. It is not difficult to demonstrate that

A is D-stable if D(A) 0 and also, more generally, that A is

D-stable if L(A) contains a diagonal matrix; however, neither

of these conditions is necessary. For D(A) to be nonempty,

effective necessary and sufficient conditions are well-known in

terms of the positivity of the leading principal minors of a

matrix derived from A [6]. On the other hand no precise method

of determining when L(A) contains a diagonal matrix seems to be

known, although some sufficient and other necessary conditions

can be formulated [8]. Here there is room for interesting

further research on both a theoretical and a numerical level.

Two economically interesting variations on the D-stability

question should also be mentioned because they too merit

further study. If the adjustment rates comprising D, while

still unknown, are known to fall within certain ranges, then

the class of matrices A, stable under multiplication by only

the allowable D's, would be of interest. Such a matrix A might

be called conditionally D-stable, and, generally speaking, the

greater the knowledge of the adjustment rates, the larger would

be the class of conditionally D-stable A's.

If, further, the adjustment rates were not only known but

were regarded as controllable policy variables, then, if

achievement of stability were the goal, the existence of a
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positive diagonal matrix D such that DA is stable would be at

issue. Such matrices A might be called D-stabilizable, and an

effective characterization for them is also lacking. The

Fisher-Fuller conditions are sufficient (an elegant and simple

proof is given in [4]) but not necessary. The consummate

mathematical question one is led to is to characterize, for a

given matrix A, the set of all positive diagonal matrices D

such that DA is stable. This would, of course, contain the

questions of D-stability, conditional D-stability, and

D-stabilizability.

UNIONS OF TWO MARKETS

We next consider the case of two entirely separate markets,

both in the same set of commodities C1,...,Cn. Then, imagine

the two markets to be instantaneously joined into one (e.g. upon

the removal of a high tariff barrier or after the revolutionary

lowering of a significant transportation cost etc.). The mar-

ket supply and demand functions, and thus the excess demand

function, for C i in the new market will then just be the sum of

those from the two old markets. Because of the linearity of

the derivative, the new Jacobian of the excess demand functions

will be the sum of the two prior Jacobians. If a given price

vector $ is an equilibrium in both of the old markets, then P

will again be an equilibrium in the surviving market. However,

even if 0 is a stable equilibrium in both markets, it is not

necessarily stable in the union since, as can easily be shown

by example, the sum of two stable matrices is not always stable.

In the following we assume the very simplest case: that

our markets obey the model (1) and that P is an equilibrium

price vector common to and stable in each of the original

markets. We denote by A the Jacobian of the excess demand

functions of the first market and by B the Jacobian of the

second. Equivalent to the question of the stability of P in

the union of the two markets, then, is the mathematical

question: "given two stable matrices A and B, when is A+B

stable?" In economic terms, what must the structure of the

two markets have in common for the union to be stable?
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SUFFICIENT CONDITIONS FOR STABILITY OF SUMS

Johnson

It is a straightforward computation to show that

D(A) fl D(B) C D(A+B)

and that
L(A) fl L(B) C L(A+B)

From these observations, two sufficient conditions for the

stability of A+B follow.

THEOREM 1. If A and B are stable matrices and 0

D(A) fl D(B) then A+B is stable.

THEOREM 2. If A and B are stable matrices and 0 #

L(A) fl L(B) then A+B is stable.

Theorem 2 says, for example, that if the two Jacobians

have a common Lyapunov solution, then the common equilibrium

is stable in the union of the two markets. Unfortunately, the

converse of neither theorem is valid as may be shown via 2-by-2

examples. It is still an interesting question to determine for

the stable pair A and B nontrivial necessary and sufficient

conditions which insure that A+B is stable. In the next two

sections we give a characterization for a slight variation

on this problem.

A "LOCAL" LYAPUNOV THEOREM

Lyapunov's theorem may be interpreted as a global result in the

following way. The nonemptiness of L(A) is equivalent to the

existence of a fixed positive definite matrix P such that

-Re(x*PAx) > 0

for all 0 # x c Cn. Thus one P must work for all (nonzero) x.

It turns out that this global condition may be relaxed. Analogous

to the "global" cone L(A), we define the "local" cone

L(A,x) _ {P* = P > 0 : -Re(x*PAx) > 0} (7)

We may then prove a local analog of Lyapunov's theorem (compare

to Remark 1).
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THEOREM 3. The n-by-n matrix A is stable if and only if

L(A,x) 0 for all 0 # x c C.

Proof. This theorem is implied by the observation that

L(A,x) = 0 if and only if Ax = Ax for some A with Re(A) > 0.

First suppose that Ax = Ax and Re(A) > 0. Then, Re(x*PAx) =

Re(x*P(Xx)) = Re(X).(x*Px) > 0, for all positive definite P.

Thus L(A,x) = 0. On the other hand, suppose x c Cn is such

that Ax # Ax for any complex number A. Then it suffices to

note that for x and y (=Ax), which are linearly independent,

a P* = P > 0 may always be constructed so that Re(x*Py) < 0.

To see this, pick S, non-singular, so that

1 xl
0

x2

Sy = and Sx = 0

0

0

where x2 # 0 and Re(xl) < 0. Then S*S a L(A,x), which is,

therefore, nonempty. This completes the proof.

Remark 3. Since L(A) = fl{L(A,x) :0 x e Cn}, it follows

from Remark 1 and Theorem 3 that L(A,x) 0 for all 0 # x e Cn

if and only if L(A) # 0.

THE STABILITY OF A + aB

A rather stronger condition than that the sum be stable may now

be characterized for the pair A,B of stable matrices. The

following two lemmas may be proved in a straightforward manner.

LEMMA 1. For all a > 0, all A e Mn(C), and all x c Cn,

L(aA,x) = L(A,x).

LEMMA 2. For all A,B c Mn(C) and all x e Cn, L(A,x) fl

L(B,x) C L(A+B,x) C L(A,x) U L(B,x).

The principal result is that the analog of Theorem 2 now

becomes a characterization.
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THEOREM 4. Suppose A and B are stable. Then A + aB is

stable for all a > 0 if and only if L(A,x) fl L(B,x) # $ for all

0 #,x c Cn.
Proof. Suppose L(A,x) n L(B,x) 0 for all 0 # x c Cn.

Given a > 0, for any 0 # x c Cn we have, by Lemmas 1 and 2, that

L(A+aB,x) # 0. Thus, by Theorem 1, A + aB is stable.

Conversely, suppose that A + aB is stable for all a > 0,

that 0 # x c Cn is arbitrary and that P e L(A,x) and Q c L(B,x).

Then there is some al > 0 such that P e L(A+aB,x) for 0 < a < al,

and there is some a2 > 0 such that Q c L(A+aB,x) for a > a2.

Now L(A+aB,x) is a continuous, set valued function of a > 0

and is nonempty for all a > 0 because of Theorem 1. Also,

L(A+aB,x) C L(A,x) U L(B,x) for all a > 0, and L(A,x) and

L(B,x) are open sets. If it were true that L(A,x) fl L(B,x) _ 0,

then either (i) L(A+aB,x) C L(A,x) for all a > 0, or, (ii)

L(A+aB,x) C L(B,x) for all a > 0. However, these cases are

both impossible, since L(A,x) fl L(A+aB,x) # 0 for 0 < a < a2

and L(B,x) fl L(A+aB,x) # 0 for a > a2. We conclude that

L(A,x) fl L(B,x) # 0, which completes the proof.

Remark 4. In the context of Theorem 4 it should be noted

that none of the following three similarly attractive statements

about stable A,B is valid, since 2 by 2 counterexamples may be

constructed in each case:

1. A + B is stable if and only if L(A) fl L(B) # 0

2. A + aB is stable for all a > 0 if and only if
L(A) fl L(B) # 0

3. A + B is stable if and only if L(A,x) fl L(B,x) # $

for all 0 # x c Cn.
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INTRODUCTION

In [1] Burton and Grimmer discussed noncontinuation of solutions

of the second order ordinary differential equation

x"(t) + a(t)f(x(t)) = 0 (A)

when a(t) becomes negative at a point and xf(x) > 0 for x ¢ 0,

and gave the following result.

THEOREM A. Suppose a(t1) < 0 for some tI > 0. If either

(i) f' [1 + F(x)]-1/2dx < m, or
0

(ii) f-, [1 + F(x)]-1/2dx > -m, where F(x) = Jxf(s)ds,
0 0

then (A) has solutions which are not continuable to
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They also proved the converse of Theorem A and extended it

later in [2] to the delay differential equation

x"(t) + a(t)f(x(q(t))) = 0 (B)

when a(t) becomes negative at a point, f is nondecreasing, and

xf(x) > 0 for x # 0.
It is unknown whether or not Theorem A is extendable to

Equation (B).

Recently, Burton [3] extended Theorem A to the n-th order

ordinary differential equation

x(n) (t) + a(t)f(x(t)) = 0
where n > 2.

MAIN RESULT

In this chapter we extend Theorem A to the differential equation

x(n)(t) + a(t)f(x(t),x(q(t))) = 0 (1)

where n > 2, a :[0,-) - R, R q :[0,-) -> R, and
f : RxR -o- R.

We assume a(t), q(t), and f(x,y) are continuous, q(t) < t

for all t > 0, and f(x,y) > 0 when x > 0 and y > 0 while
f(x,y) < 0 when x < 0 and y < 0.

Following El'sgol'ts [4] , for any t0 > 0, we let Et =

0

{s : s = q(t) < t0 for t > t0} U {t0}. By a solution of (1) at

t0 is meant a function x :Et U [t0,t1] + R, for some t1 > to,
0

which satisfies (1) for all t e [t0,t1]. Given a continuous

function $ :Et
0

- R and constants cl, ..., cn-1, there exists

a solution x(t) of (1) at t0 with the property that x(t) = 0(t)

for all t e Et and x(1)(t0) = ci for i = It ..., n-l. A
0

solution x(t) of (1) at t0 is said to be continuable if x(t)

exists for all t > t0; otherwise, it is said to be noncontinuable.

r0x r0x
We define F1(x) =

J

f(s,s)ds and Fn+l(x) =
J

Fn(s)ds for

n = 1,2,3,... . It is clear from the definition of Fn(x) that

(-1)nFn-1(x) > 0 for x < 0 and for n = 2,3,... . Let
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Q1 = {(x,y) :x > 0 and y > 0} and Q3 = {(x,y) :x < 0 and y < 0
Define a function f* :Q1 U Q3 -> R such that for x < 0 and y < 0

we have f*(x,y) = f(x,y) and f*(-x,-y) _ -f*(x,y).

Consider the equation

x(n) (t) + a(t)f*(x(t),x(q(t))) = 0 (2)

It is clear, from the definition of f*, that f* is continuous

in Q1 U Q3, and if x and y have the same sign, then f*(x,y) has

that sign. Also, if x(t) is a solution of (2) such that

x(t)x(q(t)) > 0, then -x(t) is also a solution of (2). Moreover,

x(t) < 0 with x(t)x(q(t)) > 0 is a solution of (2) if and only

if x(t) is a solution of (1).

x x
We define F*1(x) = J f*(s,s)ds and F*n+l(x) = J F*n(s)ds

0 0

for n = 1,2,3,... . Then F* n-1(x) is even when n is even and

odd when n is odd, and hence

(-1)nFn-1(x) _ (-1)nF*n-1(x) = F*n-1(-x) (3)

for all x < 0.

NOTATION. For d > 0, we write

Rd+ =
{ (x,y) :x > y > d},

Rd = {(x,Y) : x < y < -d},

C = {f R x R + R : f is continuous} , and,
for any set T C R x R,
CD(T) = {f c C :f is nonincreasing with respect to y

for every fixed x whenever (x,y) c T}

THEOREM. Suppose a(tl) < 0 for some tl > 0 and there is

d > 0 such that either

(i) J-00 [1
+

Fn-1(x)]-l/ndx < W and f e CD(Rd+), or

(ii) J [1 + (-l)nFn-1(x)]-l/ndx > -- and f e CD(Rd ).

Then (1) has noncontinuable solutions.
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Proof. Suppose f' [1 +
Fn-1(x)]-1/ndx < - and f e

CD(Rd+);

0

then for any given e > 0 there exists x1 > d such that

[1 + Fn-1(x)]
l/ndx < e.

f,xl

Since a(t) is continuous and a(tl) < 0, there exists t2 > tl

and positive constants m and M such that -M < a(t) < -m for all

t e [t1, t2].

Let C1, C2, ..., Cn-1 be positive constants to be determined.

Let x(t) be a solution of (1) such that x(t) = xl on Et

1

and

x(t1) = Ci for i = 1,2,...,n-1. We propose to show that, for

some choice of the Ci's, x(t) does not exist on [t1, t2]. If

x(t) exists on [tl, t2], then it is clear that x(1)(t), i =

0,1,...,n-1, are increasing on [ti, t2]. Since q(t) < t for all

t > 0, then d < x1 < x(q(t)) < x(t) for all t e [t1, t2]. Since

f e CD(Rd+), then f(x(t), x(q(t))) > f(x(t), x(t)) for all

t e [t1, t2] and hence, by (1), we have x(n)(t) > -a(t)f(x(t),x(t))

> mf(x(t),x(t)) for all t e [t1, t2]. Multiply both sides of

this inequality by x1(t) and integrate from tl to t a [tl, t2]

to get

ft
x(n)(s)x'(s)ds > mJt f(x(s),x(s))x'(s)ds

tl tl

= MIX(t)f(s,s)ds
xl

= m[F1(x(t)) - F1(xl)]

An integration by parts on the left-hand side yields

x(n-1)(t)x,(t) - x(n=1)(t1)x,(tl) - ft x(n-1)(s)x,,(s)ds

tl

> mF1(x(t)) - mF(x1)

As x(1)(t1) = Ci and x(1)(t) > 0 for i = 1,...,n-1 and

t e [tl, t2], we obtain
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x(n-1)(t)x'(t) > Cn-1C1 - mF1(x1) + mF1(x(t))

Choose Cn_1 - mF1(xl)/C1 so that x(n-1)(t)x'(t) > mF1(x(t)) for

all t e [tl, t2]. Multiply both sides of this inequality by

x'(t) and proceed as above to get

(t x(n-1)(s)[x'(s)]2ds
> mjt Fl(x(s))x'(s)ds

f ti tl
= m[F2(x(t)) - F2(xl)]

and hence x(n-2)(t)[x'(t)]2
> Cn_2C12 - mF2(xl) + mF2(x)]

Choose Cn-2 = mF2(xl)/Cl2 so that x(n-2)(t)[x'(t)]2 > mF2(x(t))

for all t e [tl, t2]. Continue this process (n-1) times and

:hoose C. = mF_i(xi)/ClR-1, i = 2,...,n-1, to get

x"(t)[x'(t)]n-2 > mFn_2(x(t)) for all t c [tl, t2]. Multiply

both sides by x'(t) and integrate from t1 to t to obtain

[x'(t)]n - C
1

n > nmFn-l(x(t)) - nmFn_1(xl) and hence x1(t) >

[k + mnFn-1(x(t))]1/n, where k =
Cln

- nmFn_l(xl). Choose

Cl > [mn(l + Fn_l(xl))]1/n; then k > mn and hence x'(t) >

kl[1 + Fn-1(x(1))]1/n where kl = (mn)l/n. Thus k1dt _<

[1 + Fn_l(x(t))]-1/ndx(t). Integrate from t1 to t to get

kl(t - tl)
<
x(t)[1

+
Fn-1(s)]-1/nds < c for all t e [t1, t2].

xl

Choose c = k1(t2 - t1); then we obtain t - t1 < t2 - t1 for all

t e [t1, t2]. This is a contradiction. Thus x(t) - before

t reaches t2.

Now, suppose
J

W[1 + (-1)"Fn_1(x)]-1/ndx > and
0

f c CD(Rd ); then, by (3), we obtain J-[1 + F*n_l(x)]-1/ndx <
0

As f* a CD(Rd+), then by the above proof, (2) has a noncontinuable

solution y(t) > 0. Let x(t) = -y(t), then x(t) is a solution of

(1) which is not continuable. The proof is now complete.
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EXAMPLE. The equation

x"(t) + a(t){x3(t) + x(t/2)[1 + x2(t/2)]-1} = 0

where a(t) = -2(4 + (t-2)2][4 + (t-2)2 + 2(t-2)(t-1)3]-1 if

0 < t < 1 and a(t) = -2 if t > 1, has x(t) = (t-1)-1 as a
solution on [0,1).
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Chapter 12

NEGATIVE ESCAPE TIME FOR SEMIDYNAMICAL SYSTEMS

ROGER C. McCANN

Department of Mathematics
Case Western Reserve University

Cleveland, Ohio

The purpose of this chapter is to investigate the concept of

negative escape time for semidynamical systems.

R+ will denote the non-negative reals. A semidynamical

system on a topological space X is a continuous mapping

II :X x R+ - X such that

II(x,O) = x for all x e X

II(II(x,t),s) = II(x,t+s) for all x c X and s,t E R+

If A C X and B C R+, then II(A,B) and F(A,B) will denote the

sets {1I(x,t) :x E A, t e B and {y : II(y,t) E A for some t c B}

respectively. A point x e X is called a start point if

x J II(y,(0,-)) for any y e X.

Let II and p be semidynamical systems on topological spaces

X and Y respectively. II is said to be isomorphic to p in the

sense of Gottschalk and Hedlund (abbreviated as GH-isomorphic)

if there exists a homeomorphism h :X ; Y and a continuous

mapping 0 :X x R+ { R+ such that

143
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(x,0) = 0 for each x c X

R+ y R+ is a homeomorphism for each x c X

h(II(x,t)) = p(h(x),c(x,t)) for each (x,t) e X x R+

Isomorphisms of local dynamical systems have been studied in

depth by T. Ura [6,7]. We will say that II can be embedded

into p if there exists a homeomorphism h of X onto a subset of

Y such that h(II(x,t)) = p(h(x),t) for every (x,t) c X x R+.

Henceforth, II will denote a semidynamical system on a

Hausdorff space X. Intuitively, the negative escape time of

a point x e X should be the minimal time length of all negative

trajectories through x. Negative trajectories are defined and

discussed at length in [1].

Since only an intuitive concept of negative trajectory is

required in this chapter, we omit a precise definition and

refer the interested reader to [1]. In order to make the con-

cept of negative escape time precise, we need to consider the

set M of all negative trajectories through x which originate

at start points, and the set Nx of negative trajectories

through x which do not originate at start points. We first

define a negative escape time with respect to each set. Set

1n(x) = inf It > 0 : II(y,t) = x for some start point y} if

Mx 0 0 and m(x) _ - if Mx = 0. Set n(x) = inf It > 0: there

exist sequences {ti} in R+ and {xi) in X such that ti ; t-,

II(xi,ti) = x, xi a II(xi,R+), and {xi} has no convergent

subsequence) if Nx # 0 and n(x) = - if Nx = 0.

DEFINITION. The negative escape time, N(x), of x e X is

given by N(x) = min {n(x),m(x)}. If M C X, N(M) = inf {N(x) :

x e M}.

It should be noted that the negative escape time of

x e X is with respect to all negative trajectories through x

and not just a particular trajectory through x,

THEOREM 1. Let II be a semidynamical system on a Hausdorff

space X. Then II can be embedded into a semidynamical system

p on a Hausdorff space Y such that N(y) = +m for all y e Y.

Moreover, p is minimal in the sense that if II can also be
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embedded into a semidynamical system p' on a space Y', then

p can be embedded into p'. Also, if h :X - Y is an embedding

of R into p, then h(X) is positively invariant and if y c Y,

then R(y,t) e h(X) for some t c R+.

In the proof of Theorem 1 (see McCann [4]), the space Y

is constructed. Unfortunately, topological properties of X do

not seem to be inherited by Y. In fact, the construction of Y

is so complicated that it is difficult to determine any

topological properties of Y. However, in certain circumstances

it is possible to choose Y as X.

THEOREM 2. If there exists a continuous function f :X +

(0,1] such that f(x) < N(x) for all x e X, then R is GH-

isomorphic to a semidynamical system p on X which has infinite

negative escape time for each x c X.

The condition f(x) < N(x) imposes some type of continuity

property on The following examples show that if R has

start points (Mx # 0) or if X is not locally compact, then

does not possess any "nice" continuity properties. In each

example, n will be the semidynamical system indicated in the

diagram where R(x,t) is the point a distance t from x along

the trajectory through x.

Y

In each example there are sequences {yi}, yi + y, and

{zi}, zi + z, such that lim sup N(yi) < N(y) and lim inf N(zi)
i + m i + -

> N(z). In light of these examples, we will restrict our

attention to the situation that the semidynamical system R has

no start points and the phase space X is locally compact.
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THEOREM 3. Let X be locally compact and H have no start

points. Then the negative escape time, is a lower semi-

continuous function, i.e., lim inf N(y) > N(x) for all x e X.
y + x

Since is a lower semicontinuous function, so is the

function g :X -> R+ defined by g(x) = min {1,N(x)}. Since there

are no start points, N(x) > 0 and, hence, g(x) > 0 for all

x E X. The constant function h(x) = 0 for all x c X is an

upper semicontinuous function such that h(x) < g(x). If X is

locally compact and Lindelof, then, by a well-known result of

Dowker [2], there is a continuous f :X -} R such that 0 = h(x)

< f(x) < g(x) < N(x) for all x c X. Theorem 2 yields

THEOREM 4. Let Ti have no start points and X be locally

compact and Lindelof. Then II is GH-isomorphic to a semi-

dynamical system p on X which has infinite negative escape time

for each x c X.

It is well-known that a dynamical system on a locally

compact space X can be extended to a dynamical system on the

one point compactification X* of X. This is not always

possible for a semidynamical system (see [3; Chapter VI,

Section 3.15]). Let X* = X U{m} be the one point compactification

of the locally compact space X and define f* :X* x R+ X* by

II*(x,t) =
II(x,t) if x E X

THEOREM S. Let X be locally compact and n have no start

points. Then II can be extended to the semidynamical system

II* on X* if and only if N(x) = - for every x e X.

Since a semidynamical system on a manifold has no start

points, [1; Theorem 11.8], the hypotheses of Theorems 3, 4, and

5 are satisfied whenever X is a manifold.
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Chapter 13

ON THE UNIFORM ASYMPTOTIC STABILITY OF THE
LINEAR NONAUTONOMOUS EQUATION A = -P(t)x WITH SYMMETRIC

POSITIVE SEMI-DEFINITE MATRIX P(t)

A. P. MORGAN AND K. S. NARENDRA

Department of Engineering and Applied Science
Yale University

New Haven, Connecticut

INTRODUCTION

The ordinary differential equation k = -P(t)x where P(t) is

symmetric positive semi-definite time-varying matrix arises

often in mathematical control theory. (See, for example,

Narendra and McBride [7; p. 34], Lion [5; p. 1837], and Sondhi

and Mitra [10; p. 5].)

In this chapter we consider the stability properties (in

the sense of Lyapunov) of the equilibrium state x = 0. Since

for V(x) = xTx, V(x) < 0, the origin is uniformly stable.

However (uniform) asymptotic stability does not generally hold

unless P(t) is positive definite. The semi-definite case arises

much more frequently in practice than the definite one, and the

main effort in this paper is directed towards finding conditions

characterizing uniform asymptotic stability in such a case.

*
Present address: Department of Mathematics, University

of Miami, Coral Gables, Florida
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For applications, uniform asymptotic stability is important

because this property is preserved under perturbations (see Hale

[2; Theorems 2.3, 2.4 and 5.2]). On the other hand, this

"structural stability" is not necessarily possessed by (non-

uniform) asymptotically stable systems (see Hale [2; p. 87]).

Note also that since Sc = -P(t)x is linear, all stability

properties are global.

The principal results are stated in Theorem 1 and Lemma 2.

The following Theorem, which is a part of Theorem 1, gives a

simple and complete characterization of uniform asymptotic

stability and is illustrative of the type of result derived

in this chapter.

THEOREM. Suppose P(t) is a symmetric positive semi-definite

matrix of bounded piecewise continuous functions. Then the

equation

z = -P(t)x

is uniformly asymptotically stable if and only if there are

real numbers a > 0 and b such that

ft

IP(s).wlds > a(t - t0) + b
t0

(1)

for all t > t0 > 0 and all fixed unit vectors w.

In the next section we discuss some examples. In the last

section the principal results are stated, and a lemma useful in

showing uniform asymptotic stability for other classes of linear

and nonlinear systems of equations is given. For proofs of the

results presented here, see Morgan and Narendra [6].

PRELIMINARY DISCUSSION

Before stating all our main results, we will discuss some impli-

cations of the theorem above. Our discussion divides naturally

into five parts (a,b,c,d, and e below). First, however, we

state the following.

DEFINITION. The equilibrium state x 5 0 of the uniformly

stable differential equation x = f(x,t) is uniformly
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asymptotically stable (u.a.s.) if for some Cl > 0 and all

e2 > 0 there is a T = T(c1,E2) > 0 such that if x(t) is a

solution and jx(t0)1 < el, then jx(t)I < E2 if t > t0 + T. If

T depends on to, then Sc = f(x,t) is (non-uniformly) asymptotically

stable (a.s.).
(a) If P(t) = P is a constant nxn matrix, then the following

are equivalent. (i) Equation (1) is u.a.s. (ii) Equation (1)

is a.s. (iii) P has rank n.

(b) Let A(t) denote the eigenvalue of minimal length of

P(t). Then u.a.s. holds if there are a > 0 and b such that

ft
t0

for all t > t0. In particular, if P(t) has (maximal) rank n

for all t and X(t) is bounded above zero or periodic, then

Sc = -P(t)x is u.a.s. Thus if P(t) is rank n and periodic, then

u.a.s. holds. However,

It JX(s)Ids > a(t - t0) + b
t0

is not necessary but only sufficient. This will be clear from

the discussion of the Zx2 rank 1 case in part (c) below.

(c) Suppose there is u :[0,-) - R2 such that

P(t) = u(t) u(t)T =
2

luz u2

The eigenvalues of P(t) are then Iu(t)12 = u1(t)2 + u2(t)2 and

0. Now

Sc = -P(t) x

becomes Sc = -<u(t),x> u(t) where <, > denotes the canonical

inner product on R2. Thus the condition

ft

ftJP(s)wjds = I i<u(s),w>jIu(s)Ids > a(t - t0) + b
to jto
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for fixed unit vectors w requires that both I<u(s),w>l and

Iu(s)l "not get too small for too long." Thus, u(s) must change

direction uniformly so that its inner product with any fixed

direction w does not converge too quickly to zero, and u(s) it-

self must not converge too quickly to zero. To further illustrate

this, consider the following explicit examples.

(d) Let el = (1,0) and e2 = (0,1). Define vectors u(t) and

u'(t) to alternate between e1 and e2 according to the follow-

ing formulas.

u(t) =

e1, t e [2n,2n+1)

n = 0,1,2,...

e2, t e [2n+1,2n+2)

e1, t o [0,1) u [2,4) u [5,8) u ...

u'(t) =

e2, t o [1,2) U [4,S) U [8,9) U ...

Now ac = -u(t)u(t)Tx is u.a.s., because for at least half the

time I<u(s),w>Iju(s)I > max {j<el,w>I,I<e2,w>I} > 0. But x =

-u'(t)u'(t)Tx is not u.a.s. because u' spends longer and longer

time in the e1 direction. Solutions with initial conditions

on the y-axis must wait longer and longer before they can go

to zero. It is clear that

ft I<u'(s),e2>Itu'(s)Ids = ft I<u'(s),e2>Idst

to 0

equals zero for longer and longer intervals and can dominate no

linear function with positive slope. However, the above integral

does go to infinity as t - -, and this implies that k _

-u'(t)u'(t)Tx is asymptotically stable.

(e) Consider the following final example. Let u(t) _

(1,t-1/2). Then

1 1 t-1/2
u(t)u(t)T =

1/2 1

t
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and 1<u(s),w>1lu(s)1 _ Iw1 + t-112w211(1

w = (0,1), we require that

+ 1/t)1/21. Thus for

Jt s-1/2(1 + 1/s)1/2ds < 1t 2s 1/gds = 2s1/s,
t

to t0 t0

dominate a linear function. But this is false. It is easy to

confirm that if u(t) = (l,ta) where a < 0, then A = -u(t)u(t)Tx

is not u.a.s. It can be shown that such equations are not

even a.s.

We close this section by noting that the comments made in

(c), (d), and (e) clearly hold for the general nxn case.

PRINCIPAL RESULTS

If P(t) is symmetric positive semi-definite, then there is a

symmetric u(t) such that P(t) = u(t)2 = u(t)u(t)T (see Reed and

Simon [9; p. 196]). We will usually assume P(t) is in this

form. As a special case we consider P(t) = u(t)u(t)T with u(t)

an nxk matrix with k < n. In this case, u(t)u(t)T can have at

most rank k. In general, u(t) is nxn but not necessarily of

full rank. In fact, the rank of u(t)u(t)T may change with t.

We do assume that u(t) is piecewise continuous and uniformly

bounded.

Letting V(x) = x12 + x22 + ... + xn2, we see that V(x) _

-xTP(t)x < 0 for is = -P(t)x. Thus the equation is easily seen

to be uniformly stable. If P(t) is constant or periodic, we

have the well known result of LaSalle (3] by which, if V is not

constant on any solution of Sc = -P(t)x, asymptotic stability

follows. This result breaks down for general non-autonomous

P(t). This can be seen as a result of the lack of an invariance

property for the u-limit set (see LaSalle [4]).

DEFINITION. Let aSr denote a sphere of radius r about 0

and Sr a ball of radius r about 0. Thus aSr = {x a RnIjxj = r}

and Sr = {x c RnIlxi < r}. By a conical neighborhood Cay for

y we mean that a is an open subset of the unit sphere
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as1 C Rn, y/Iy` e a or -y/jyj c a if y # 0, and Cay is defined

to be the union of all lines through 0 in Rn that intersect a.

The width of Ca
Y

is defined to be the diameter of a. For

simplicity, we sometimes omit the a and write Cy instead of Cay

DEFINITION. By f :[0,-) + R1 piecewise continuous, we mean

that there is a decomposition of [0,oo) into half-open intervals,

Co,-) = u [an,an+l) such that the restriction fl(an,an+l) is
n=1

continuous for all n.

The following theorem gives a characterization of uniform

asymptotic stability for k = -P(t)x. The statement of the theorem

is followed by a key lemma and some remarks. Proofs will appear

in Morgan and Narendra [6]. In reading the following material,

the reader may find the case u : [0,W) - R2 an illuminating example.

THEOREM 1. Let u :[0,-) y Rn
k
be a piecewise continuous

and bounded function, where Rnk denotes the space of real nxk

matrices. (We identify Rn1 and Rn.) Then the following

are equivalent.

(i) k = -u(t)u(t)Tx is uniformly asymptotically stable.

(ii) There are real numbers a > 0 and b such that if

y E Rn is a fixed unit vector, then

It

t0

yTu(s)u(s)Tyds > a(t - t0) + b

for all t > to > 0.
(iii) There are real numbers a > 0 and b such that

{J:0ususTds] > a(t - t0) + b

for i = 1,2,...,n where ai denotes the ith eigen-

value of the nxn matrix

I

u(s)u(s)Tds
t0
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(iv) Given y a unit vector in Rn, there is a conical
neighborhood Cy for y and there are real numbers

ay > 0 and by such that

f
Iu(s) I2ds > ay (t - t0) + by

[t0,t]-S2y

for all t > t0 > 0 where Sty = {t c [0,o)Iu(t)1f Cy

¢ 0), and u(t)1 = orthogonal complement of u(t) _

kernel (u(t)T).

Part (iv) is more technical than the others and helps to

bridge the gap between parts (i) and (ii) in the proof. It

says, intuitively, that u(t) is bounded away from each unit

direction for a sufficient part of time over any reasonably

long period of time. However, it is formulated to say that

u(t)1 is bounded away from any unit direction, which is actually

more to the point.

REMARK. We may replace the integral expression in (ii) by

ft

J t0
or by

rt

J t0

Iu(s)u(s)Tylds > a (t - t0) + b

Iu(s)Tylds > a(t - t0) + b

The theorem stated in the first section asserts the

equivalence of parts (i) and (ii) of Theorem 1, except that

only one of the three formulations of part (ii) (see the previous

Remark) is given there. In practice, it would seem that the

equivalence of parts (i) and (ii) would be the most useful

implication of this theorem. We should also note that the

equivalence of part (ii) and the eigenvalue condition, part (iii),

is not hard to show.

REMARK. After the presentation of this chapter, it was

pointed out to the authors that B. D. 0. Anderson (Department of

Electrical Engineering, Univ. of New Castle, Australia), for the

case that P(t) is almost periodic, has established results from

which it follows that (ii) implies (i).
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The following key lemma will be applicable to many cases

besides those discussed in this chapter. To indicate this, we

present some corollaries after the statement of the lemma.

First we need a definition.

DEFINITION. A function 4 :[0,-) - [0,") is said to belong

to class K, Q e K, if it is continuous, strictly increasing,

and 4)(O) = 0.

LEMMA 2. Let f(x,t) : Rn X
[O,_) + Rn be piecewise continuous

with f(0,t) = 0 for all t. Assume:

(i) There is l c K and an e > 0 such that If(x,t) -

f(y,t)I < l(jx - yI) for all x,y,t with Ix - yl < c.

(ii) There are real numbers a > 0 and b and 2 c K
such that

lf(x,s)lds > 02(lxl )Ca(t - t0) + b7
1tt0

for all fixed x e Rn and t > to > 0.

(iii) There is a continuously differentiable function

V : Rn x [0,W) - [0,") and 3 c K such that 4)3(Ixl)

> V(x,t) > 0 if x # 0, V(O,t) = 0, and V(x,t) _< 0

for all t,x where

V(x,t) = ai (x,t) + VV(x,t) f(x,t)

(iv) There is a 04 c K such that -V(x,t) > If(x,t)12

44(1xD for all x c Rn, t c [0,").

(v) The solution x = 0 of the equation is = f(x,t) is
uniformly stable.

Then the solution x = 0 for the equation k = f(xyt) is

uniformly asymptotically stable.

REMARKS. Condition (i) is satisfied if f(x,t) = A(t)x and

IA(t)j < M for some constant M, all t. It is also satisfied if

f is differentiable in x and its derivative with respect to x

is bounded uniformly in t. Intuitively, something like condition

(ii) seems necessary for u.a.s. However, it probably is not

necessary as written. Since Lyapunov function converse theorems

for uniform asymptotic stability exist, condition (iii) is very
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natural. (See Hale [2; Chapter X]). We know, from Krasovskii's

theorem, that if k = A(t)x is u.a.s., then a quadratic Lyapunov

function exists (see Narendra and Taylor [8; p. 62]). In this

case, if IA(t)j is uniformly bounded, it is easy to see that we

can choose 43 to make condition (ii) hold. Thus, for f(x,t)

linear and V quadratic, condition (iv) is necessary for u.a.s.

If there is a 0 e K such that V(x,t) > 4(jxj) for all x and t,

then uniform stability (condition (v)) follows.

DEFINITION. A > B means A - B is positive semi-definite.

COROLLARY 3. If f(x,t) _ -P(t)x, where P(t) is a symmetric

positive definite uniformly bounded matrix, and if there are

real numbers a > 0 and b such that

rt

J t0

for all t > t0 > 0 and all fixed unit vectors w, then Sc =

-P(t)x is u.a.s.

Proof. Applying Lemma 2, conditions (i) and (ii) are

immediate. Letting V(x) = x12, we have V(x,t) = -xTP(t)x < 0

so conditions (iii) and (v) are also easy. Condition (v)

follows because 0 < P(t) < I implies P(t)2 < P(t) for symmetric

P > 0. (We may as well assume P(t) < I.) Thus -V(x,t) _

XTP(t)x > xTP(t)2x = IP(t)xl 2

COROLLARY 4. Suppose A = A(t)x is uniformly stable, A(t)

is uniformly bounded, and there are real numbers a > 0 and b

such that

1t
IA(s)wlds > a(t - t0) + b

t0

for all t > to > 0 and all unit vectors w. Assume there is a
positive definite Q(t) uniformly bounded such that

-(Q(t)A(t) + A(t)TQ(t) + Q(t)) > cA(t)TA(t)

for all t where c is some positive constant. Then x = A(t)x

is u.a.s.

IP(s)wlds < a(t - t0) + b
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Proof. Let V(x,t) = xTQ(t)x. Then the result follows

immediately from Lemma 2.
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SMOOTHING CONTINUOUS
DYNAMICAL SYSTEMS ON MANIFOLDS
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INTRODUCTION

Let M be a C manifold and let 4, :M x R1 , M be a continuous

flow (dynamical system) on M. We consider the question, posed

by Hajek in [6], of the existence of a Cm flow i on M that is

topologically equivalent to m (we say that 4, and are

topologically equivalent if there is a homeomorphism of M that

takes orbits of 4, onto orbits of p, preserving the natural

orientation of the orbits). If there is such a C flow 0

we will say that 0 is smoothable. The purpose of this chapter

is to indicate several recent results on this smoothing problem.

Complete proofs will appear in [14] and [15].

COMPLETELY UNSTABLE FLOWS

It is known that considerable restriction must be placed on

(M,4,) in order to guarantee that 4, is smoothable. For example,

the non-ergodic C1 flows on the 2-dimensional torus described

by Denjoy [5] (also see Hartman [8; Chapter 7]), are known to

be inequivalent to even C2 flows. -In this case the reason is
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the existence of an exotic non-wandering set. Since these

examples can be embedded in flows on any manifold of higher

dimension, some restriction must be placed on the non-wandering

set of .

It is therefore natural to consider first flows in

which f(t) is empty; such a flow is called completely unstable.

Even in this case the dimension of M must be restricted to

guarantee that is smoothable; we have in fact:

THEOREM 1. If M is a C' m-manifold with m < 3 and is

any completely unstable continuous flow on M, then 4 is

smoothable. For each m > 4, there is a completely unstable

continuous flow Qm on Rm that is not smoothable.

The first part of Theorem 1 is proved by reducing the

smoothing problem for (M,O) to the problem of imposing a Ca'-

structure on the orbit space M/0 (here M/ denotes the set of

orbits of with the strongest topology in which the natural

projection n :M - M/$ is continuous). Under the assumptions

of Theorem 1, M/0 is a non-separated (topological) (m-l)-

manifold, i.e., a (not necessarily Hausdorff) space with a

countable basis of open sets each homeomorphic to Rm 1. This

may be seen as follows: if 0 is a completely unstable continuous

flow on an m-manifold M (of arbitrary dimension) then, through

each point of M, there is a local section S of 0 such that

{4(s,t) :S e S, t e RI} is an open subset of M

homeomorphic with S x RI under (the inverse of) the restriction

of (cf. [1; Theorem 2.12]). If m < 3 then we may assume that

S is homeomorphic to Rm I (cf. [6], [17] for m = 2; [4], [16]

for m = 3). The first assertion of Theorem 1 then follows from

the next two theorems and the fact that the CW structure on a

manifold of dimension m < 3 is unique up to diffeomorphism

(Munkres [13]).

THEOREM 2. Let M be a (Hausdorff) topological m-manifold

and let 0: M x RI t M be a completely unstable continuous flow

on M. Then M can be given a C_ structure with respect to which

$ is C if and only if M/¢ can be given the structure of a C'

non-separated (m-l)-manifold.
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THEOREM 3. Any non-separated m-manifold, with m < 3,

admits a C structure.

Note that there is no restriction on dimension in Theorem

2. The definition of C' structure for non-separated manifolds

is just as in the case of Hausdorff manifolds. The dimension

restriction in Theorem 3 is imposed by the proof. It is known

that in each dimension m > 5, there are (Iausdorff) m-manifolds

that do not admit any C_ structure (this follows from results of

Kirby and Sibenman L10]), but the remaining case (m = 4) is

unknown and includes the difficult triangulation-smoothing

problem for (Hausdorff) 4-manifolds.

The existence of non-smoothable completely unstable flows

on Rm (m > 4) follows from the existence of non-Euclidean

factors of Rm (m > 4). The first such example was given by

Bing in [2]. In [3], Chewning uses Bing's example to construct

a non-smoothable flow on R4. Similar examples, which we describe

briefly, exist in all higher dimensions: it is proved in [11]

that, for each m > 4, there is a space Xm that is not locally

Euclidean at any point, but with Xm x R1 = Rm. The flow m

defined on Rm by

0m((x,t),s) = (x,t + s) (x c X
m

; s,t c R1)

is completely unstable, but cannot be equivalent to even a C1

flow. To see this observe that the orbit space Rm/p of a

continuous flow 0 is an invariant of the topological equivalence

class of 0. The orbit space of a completely unstable C1 flow

on Rm is known to be locally (m-l)-Euclidean (Markus [12;

Theorem 3]), while Rm/om = Xm is not.

LOCALLY TRIVIAL, COMPLETELY UNSTABLE FLOWS

We will say that a continuous flow on an m-manifold M is

locally trivial if, through each regular point in M, admits

a local section that is homeomorphic to Rm- The examples of

non-smoothable flows given in the preceding section depend on

the fact that, in higher dimensions, a continuous flow need

not be locally trivial. The next theorem shows that, for
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4-manifolds, this is the only way in which a completely unstable

flow can fail to be smoothable in some Cm structure. In higher

dimensions the situation is more complicated.

THEOREM 4. Let M he a topological 4-manifold and let

be a locally trivial, completely unstable, continuous flow on

M. Then there is a C" structure on M with respect to which

is C

The conclusion does not necessarily imply that ¢ is

smoothable, in the sense defined above, when M has a given C

structure. We could make the stronger assertion if it were

known that a C" structure on a 4-manifold was unique up to

diffeomorphism, but this question is still unresolved.

The analogous result fails for manifolds of dimension

m > 6. We may construct counterexamples using the fact

mentioned above that, for each m > 5, there is a topological

m-manifold Mm that does not admit any C structure. The natural

flow 4m on Mm x R1, defined by 0m(x,s,t) = (x,s + t), is then

locally trivial and completely unstable. But, as Mm x R1/Om
= Mm

Theorem 2 implies that 0m cannot he C in any C structure on

M x R1.
m

The remaining case (m = 5) appears to he very difficult.

SMOOTHING C1 FLOWS

In contrast to the Denjoy examples (which are Cbut inequivalent

to C2 flows) a completely unstable flow is smoothable if and

only if it is equivalent to a C1 flow.

THEOREM 5. Let M be a Cm manifold of arbitrary dimension,

and let 0 be a completely unstable C1 flow on M. Then ¢

is smoothable.

This is the analogue of the well known fact that any

maximal C1 structure on a (Hausdorff) differentiable manifold

contains a C structure. Theorem 5 follows from a slight

strengthening of Theorem 2 and the following generalization

of this fact.

THEOREM 6. Let M he a C1 non-separated manifold. Then

any maximal C1 atlas on M contains a C' atlas.
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FLOWS WITH NON-WANDERING POINTS; FLOWS ON 2-MANIFOLDS

We next consider flows (M,(P) with 0(q) nonempty. In this case

the orbit space M/q is almost never a manifold and the technique

of the preceding sections is no longer applicable. However, in

the simple case in which 0(q)) consists entirely of rest points,

we can apply Theorem 1 as follows: let ) denote M - 0(¢) and
ti

let denote the restriction of 0 to ii. By Theorem 1, there is

a Cm flow on that is topologically equivalent to 0. It can

be arranged that the homeomorphism of N) that realizes the

equivalence is the restriction to of a homeomorphism of M

that fixes each point of 0(q). If u :M [0,1] is a C_

function that vanishes exactly on 0(O), and is Cm flat at 0(q)),

then the fector field u
dt

: - A extends to a C' vector

field X :M - TM, whose induced flow is topologically equivalent

to q). We thus have the following extension of Theorem 1.

THEOREM 1'. If M is a C' m-manifold with m < 3 and 0 is

any continuous flow on M such that 0(q) consists entirely of

rest points, then 0 is smoothable.

Beyond this our results on flows with non-wandering points

are restricted to compact 2-manifolds, but in this case are

reasonably complete.

THEOREM 7. Suppose that ¢ is a continuous flow on the

compact orientable 2-manifold M. Assume that q) has at most

finitely many rest points and that any recurrent point of q) is

periodic. Then 0 is smoothable.

The Denjoy examples mentioned above show that the restriction

on recurrent orbits is necessary.

Since there can be no non-periodic recurrence in the plane

we have the following corollary.

COROLLARY. Any continuous flow on R2 with at most finitely

many rest points is smoothable.

The corollary was proved by Kaplan in [9] in the case of

flows with no rest points.

The proof of Theorem 8 depends on a partial classification

of flows with no non-periodic recurrence on 2-manifolds. It

can be shown that, if (M,q)) satisfies the hypothesis of the
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theorem, and denotes the complement in M of the rest points of

4, then can be decomposed into a locally finite collection of

closed, 4-invariant submanifolds, on each of which the restriction

of 0 is of a simple type (roughly, either a flow that admits a

complete cross-section, or a flow that is completely unstable on

the interior of the submanifold). We can construct C' models

of arbitrary flows of these simple types, in the latter case,

using the results in the second section of this Chapter. We

then construct a C' model of by glueing up models

of the submanifolds of the decomposition. The equivalence of

(l,$) with this model induces a C' structure on A with respect

to which itself is C'. Munkres' theorem on the uniqueness of

a differentiable structure on a 2-manifold then implies that

there is a flow i on that is C' with respect to the given

structure on l and is topologically equivalent to 9 is

easily extended to a C flow on M that is topologically

equivalent to 4.
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The intention of the present chapter is to point out that the

invariance principle of J. P. LaSalle [6] which played an

important role in the principal lectures of this conference, is

not only interesting in connection with the theory of dynamical

systems, but is particularly useful in solving practical

problems. Applying the invariance principle we are able to

derive stability criteria which only depend upon the nature of

the considered dynamical system, and which are optimal, in a

certain sense, whereas other procedures lead to stability

conditions which are more or less artificial.

Let us refer to a recent paper of S. Kasprzyk [4] which is

devoted to four nonlinear third order systems, and the purpose

of which is the application of the well-known Hartman-Olech

theorem on global asymptotic stability [3]. This procedure

requires a subtle transformation of the considered differential

system which, of course, influences the stability conditions.

However, such a transformation becomes superfluous and the

167
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stability theorem of Kasprzyk can be improved considerably when

the study of the systems is based on LaSalle's invariance

principle.

Consider the following differential systems where the

coefficients of the linear terms are assumed to be positive

real numbers:

x"' + ax" + bx' + f(x) = 0 (1)

ax" + f(x') + cx = 0 (2)

x"' + f(x") + bx' + cx = 0 (3)

xl' _ -cxl+x2-f(xl), x2' _ -xl+x3, x3' _ -cxl+bf(xl) (4)

Let f(0) = 0; then each system admits the zero solution the

stability properties of which will be examined. In cases (1),

(3), and (4) this problem is solved in [4]; equation (2) is

added for the sake of completeness. Kasprzyk also investigates

the system

x1' = x2-f(xl), x2' _ -xl+x3, x3' = -axl (a > 0) (5)

which is, however, equivalent to a special form of equation

(3). Introducing

x = a-2(x3 - ax2) [x' _ -a-Ix3, x" = x1]

we derive from (5):

x"' + f(x") + x' + ax = 0
Let us mention the generalized Hurwitz conditions of the

systems (1) - (4):

0 < x- If(x) < ab (x ¢ 0) (1')

y-1f(y) > a-ic (y # 0) (2')

z -If(z) > b-Ic (z ¢ 0) (3')

0 < xl- if(xl) < b-ic
(x1

0) (4')

The following theorem is proved by Kasprzyk:

Assume in (1) that f(x) e CI(R), xf(x) > 0 (x ¢ 0),

J'O0Min[f(s),-f(-s)]ds = +W, 0 < f'(0) < ab, and
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If'(x)l < ab for all x e R. Then x(t) E 0 is a globally
asymptotically stable solution of (1).

Assume in (3) that f(z) e CI(R), f'(0) > b-1c but f'(z) >

b-1c for all z ¢ 0; then x(t) 0 is a globally
asymptotically stable solution of (3).

Assume in (4) that c2 > b, f(x1) e C1(R), 0 < f'(0) < b-Ic

but f'(xI) > 0 for all xl 0,
x1_If(x1)

< b-Ic. Then

the trivial solution of (4) is globally asymptotically
stable.

In generalizing this theorem we emphasize the difference

between systems (1), (2) and (3), (4).

THEOREM A. Assume in equations (1) and (2) that f c Co(R),

and that the initial value problem has a uniquely determined

solution which is continuously depending upon the initial values.

Assume in equation (1) that 0 < x- If(x) < ab for all x ¢ 0 but

0 e Ck(x # 0 : x-If(x) < ab). Then x(t) a 0 is a globally

asymptotically stable solution of (1). Assume in equation (2)

that y- If(y) >a- Ic for all y # 0 but 0 e Ct{y ¢ 0 : y-If(y) >
a-1c). Then x(t) 0 is a globally asymptotically stable

solution of (2).

THEOREM B. Assume in systems (3) and (4) that f e C1(R).

Assume in equation (3) that z- If(z) > b- Ic for all z # 0 and

fl(z) > b-1c for all z. Then x(t) 0 is a globally asymptotically

stable solution of (3). Assume in system (4) that 0 < x1-1f(xl)

< b-lc for all x1 ¢ 0 and f'(x1) > 0 for all x1. Then the

trivial solution of (4) is globally asymptotically stable.

These theorems will be proved in the following way. Let

us consider an autonomous differential equation

x' = F(x) Ex a Rn, F(x) a Co(Rn,Rr)] (6)

the solution of which is assumed to be a continuous function of

its initial value x(O) = xo. Let a Liapunov function V(x) e

C1(Rn,R) such that

V(x) > 0, V'(x) = (grad V, F) < 0 for all x e Rn

be given. Assume that all solutions of (6) are bounded for

t > 0; this is ensured when V(x) is radially unbounded;
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V(x) + - as 1xI -

Let E = {x e Rn : V'(x) = 0}, and let M C E be the maximum

invariant subset. Then d(x(t),M) + 0 as t + w where x(t) is an

arbitrary solution of (6). This variant of LaSalle's invariance

principle (see [16]) is an immediate consequence of the fact

that the bounded solution x(t) has a non-empty w-limit set

S2(xo) which is an invariant subset of E, i.e. S2(x0) C M C E.

Let us further assume that F(0) = 0 and that the zero

solution of (6) is weakly stable. This is ensured by virtue

of the principal theorem of Liapunov when V(x) positive

definite. Then we have global asymptotic stability (i.e. weak

stability and global attractiveness of the equilibrium point

x = 0) when M = {0). But this is also true when x(t) + 0 as

t - provided that x(0) a M. Since all w-limit trajectories

are contained in M, the origin is an w-limit point of each

solution; being a stable equilibrium point, it is the only

w-limit point.

PROOF OF THEOREM A

Introducing the variables

x1 = x, x2 = ax' + x", x3 = x'

we transform equation (1) into the system

x1' = x3, x2' = -f(xI) - bx3, x3' = x2 - ax3 (7)

The function

V(x) = (bx1 + x2)2 + (x2 - ax3)2 + bx32 + 2aJx1f(u)du
o

where x = col(xl,x2,x3), is positive definite and radially un-

bounded. Its total derivative, by virtue of system (7), is

V' = -2a-1(abxI-f(x1))f(xl) - 2a-1(f(x1)+ax2-a2x3)2 < 0

Consequently it is a sufficient criterion for weak stability

of the origin as well as for boundedness of all solutions. In

order to apply the invariance principle we investigate those

solutions x(t) for which V'(x(t)) a 0. That means:

abx1(t) __ f(xl(t)), f(x1(t)) - -ax2(t) + a2x3(t)
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The components x2, x3 are solutions of the linear system

x2' = ax2 - (a2+b)x3, x3' = x2 - ax3

from which we derive x
i
" + bxi = 0 (i = 2,3). Therefore,

(8)

xI(t) = -b-lx2(t) + ab-x3(t) = p sin(1 t + ¢), p > 0

In case p > 0 we have f(xl) = abxl for all xl c [-p,+p] which

is in contradiction to the assumption. So, we obtain xl(t) = 0

and, according to (7), x2(t) = x3(t) - 0. The maximum invariant

subset M C E reduces to the origin.

By means of

xl = x' , x2 = ax' + x", x3 = x

equation (2) is transformed into the system

xl' = -ax1 + x2, x2' = -f(x1) - cx3, x3'

The positive semidefinite function

V(x) = (2a2)-1 c(x1 + ax3) 2 +
(2a)-1x22

+ a-1(x1(f(u)
- a-lcu)du

0

has the total derivative, by virtue of (9),

V' = -xI(f(x1) - a-1cxl) < 0

x1

This time Liapunov's principal theorem on stability is not

applicable but it can be replaced by a simple argument. Let

x(O) = x0, V(xo) = Vo; since V(x(t)) is monotone-decreasing,

we can estimate for all t > 0:

jx1(t) + ax3(t)l < (2a2c-1V0)1/2 , 0 as 0

Ix2(t)l < (2aVo) 1/2 . 0 as xo + 0

(9)

The differential equation for the first component xl(t) is con-

sidered as a nonhomogeneous linear one (x2(t) being a bounded

forcing term):

x1(t) = xl(O)e-at + (
t
e-a(t-s)

x2(s)ds
JO

hence
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Ixl(t)I < Ixl(0)J + (2a-1V0)112 + 0 as 1xo1 -> 0

Summarizing, we have boundedness of all solutions and weak

stability of the zero solution.

Finally, let us show that V'(x(t)) a 0 implies that x(t) -- 0

as t -+ -. Obviously, we have

f(x1(t)) ° a 1cx1(t)

Taking account of this equation we obtain linear differential

equations for the considered solutions (belonging to M); the

differential system is equivalent to the third order equation

x"' + ax" + a-1cx' + cx = 0

the characteristic polynomial of which has the roots -a,

(where the abbreviation b = a-1c is used). Thus, x1 =

x' can be represented as

x1(t) = p sin 0) + ge-at, p > 0

from which we conclude that f(xl) = a-1cx1 for all xl e [-p,+p],

and p = 0, by assumption. Then xl(t) = qe- a, x2(t) = 0,

x3(t) _ -qa-le- at (but not necessarily q = 0). Since all

trajectories belonging to M are approaching the origin, it

must be a globally attractive equilibrium point.

Note. Systems (7) and (9) are of Tuzov type. Tuzov [17]

studied autonomous third order systems including one nonlinear

term which depends upon one of the variables, but which does

not occur in the differential equation for this variable. For

a detailed discussion see [15]. Such a system is called of

Pliss type when the nonlinear term is contained in the differential

equation for its argument. Systems (3) and (4) are two examples.

Whereas Aizerman's conjecture is valid for the system of Tuzov

type (apart from one exceptional subcase), the situation con-

cerning the system of Pliss type is much more complicated. In

studying the asymptotic behavior of this system (see [10],[12],

[13],[15]), there are numerous subcases to be distinguished.

Aizerman's conjecture fails in several subcases.
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PROOF OF THEOREM B

Equation (3) is equivalent to the system

x1' = x2 - f(x1), x2' = -bx1 - cx3, x3' = x1 (10)

which is obtained by means of the transformation

x1 = x", x2 = -cx - bx', x3 = x'

Consider the positive definite function V(x),

2V = b(brr-1cx1 - f(x1) + x2)2 + (bxl + cx3)2 +

+ 2cJx1(f'(u) - b- Ic)udu
0

possessing the total derivative, by virtue of (10),

V' = -h(f'(x1) - b-1c)(f(x1) - x2)2 < 0

Boundedness of the solutions and weak stability of the zero

solution is proved as in the previous case:

Ib-lcx1(t)-f(xl(t))+x2(t)I < (2b-1V0)1/2

Ibx1(t)+cx3(t)I < (2Vo)1/2 (t > 0)

x1' = b-Icxl + (b-Icxl-f(xl)+x2), i.e.

Ixl(t)I < Ixl(o)i + c-I(2bV0)1/2 (t > 0)

Let x(t) be a solution satisfying the additional condition

V'(x(t)) = 0 (which means that x(t) a M). (a) Let f'(x1(to))

> b
lc for some to. Then there is an interval i = [to,to+h]

where f(xl(t)) = x2(t) and xl'(t) = x2'(t) a 0. We derive

successively from (10) that for all t e i, x3'(t) = c-1(x2"(t)

+bxl'(t)) = 0, i.e. xl(t) = 0 and x2(t) = 0, x3(t) = 0. By

virtue of uniqueness, the considered solution is the trivial one.

(b) Let f'(x1(t)) = a for all t c R (a = b-1c); from (10) it

follows that xl(t) c C3(R) and xl"' + axl" + bxl' + cx1 = 0,

x1(t) = p sin 41) + qe-at (p > 0). If p > 0 or p = 0,

q ¢ 0 we obtain a contradiction to the assumption: f(x1) =

b-cx1 on the segment of the real axis with extremities -p, +p

or 0, q, respectively. Consequently, xl(t) s 0(x(t) = 0).

Summarizing (a) and (b) we have that M = {0}.
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Note. Global asymptotic stability of the trivial solution

can also be proved under the conditions f(z) c C0(R), b-Ic <

z-If(z) < b-Ic +
c-Ib2

for all z # 0, but 0 c C2.{z ¢ 0:z-If(z)

> b-lc}. A nonlinear function f(z) satisfying the conditions

z If(z) > b Ic (z 0), f'(0) > b-lc + c-1b2

has been constructed by Pliss [11] (see [15]) in such a way that

there are nontrivial periodic solutions. Hence, Aizerman's

conjecture fails in the case of equation (3).

In case of system (4) we consider the positive definite

function V(x),

2V = ((l+b)f(xI) - x2)2 + (x1-x3)
2

+ 2(1+b)Jxif'(u)(cu - bf(u))du
o

yielding the total derivative, by virtue of (4),

V' = -(l+b)f'(xl)(f(xl) + cxl - x2) 2 < 0

V is a sufficient criterion for weak stability of the zero

solution. A further consequence of the monotonous decrease of

V along every solution is the boundedness of the terms

(1+b)f(xl(t))-x2(t), xI(t)-x3(t) for t > 0

If Ix1(t)-x3(t)I < X then sgn xl(t) = sgn x3(t) in case

Ix3(t)I > X, hence

Ix3I' = x3'sgn xI =
-bIx1I(b-lc

-
x1-1f(xl))

< 0

and

Ix3(t)I < Max (Ix3(0)I,X) for t > 0

Now we conclude that the components x1(t), x2(t) are bounded also.

Finally, let us show again that the maximum invariant

subset M C E reduces to the origin. If {x(t) :--<t<+oo} C M

then either (a) f'(x1(t0)) > 0 for some to or (b) f'(x1(t)) = 0.

(a) There is an interval i = [to,to+h] where x1' = -cxl+x2-

-f(xl) = 0 (hence x2' = x1" - 0), x1 = x3 (hence x3' = 0, i.e.

cxI = bf(xl) which means that xl = 0 and x2 = x3 = 0). The
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considered solution is the trivial one. (b) x1(t) E C3(R),

f(xl(t)) a fo (constant) and xl"' + cx1" + xl + cx1 = bfo.

Hence x1(t) = p sin (t + ) + qe-ct + c-Ibfo (p > 0). Consider

the sequence {tk}, tk = kn - 0; xl(tk) - u = c-lbf0, f(xI(tk))

= f
0

= f(u) and cu - bf(u) = 0, i.e. u = 0 (fo = 0). An

immediate consequence is that x1(t) a 0 (since xIf(xI) is

positive definite) and x2(t) = x3(t) a 0.
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A REPRESENTATION FOR INPUT-OUTPUT
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Suppose that S is an interval of numbers containing 0, X is a

linear space, and G is a linear space of functions from S into

X. Suppose that N is a function from S into the class of

pseudonorms on G such that (1) if u is in S and f is in G then

Nu(f) = 0 if and only if f(x) = 0 (the zero of X) for each x

in S which does not exceed u, (2) if [u,v] is a subinterval of

S and f is in G then Nu(f) < Nv(f), and (3) (G,N} is complete.

Suppose that H denotes the class of linear transformations of G,

1 denotes the identity in H, and P is a function from S into

the indempotents of H such that Nv(Puf) = Nu(f) for each sub-

interval [u,v] of S and f in G. We will let A denote the sub-

set of H to which A belongs if and only if (1) [Af](u) = f(u)

for f in G and u in S not exceeding 0, and (2) there is a

nondecreasing function k from S to the numbers such that

vNw(Pv[l-A]f - Pu[1-A]f) < (L)JNx(f)dk(x) (*)

u

for each ( f , g ) in G x G and nondecreasing sequence {u,v,w) in

177
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S. We will define a linear hereditary system to be in a 6-tuple

{S,X,G,N,P,A}, where S,X,G,N, and P are as above and A is in

A, and call A the input-output operator for the system.

Our purpose in this chapter is to obtain a representation

for a linear input-output operator and to develop a stability

result for the system in terms of that representation.

In what follows we will take S = [0,oo), d to be a positive

integer, X to be the space of d-tuples of complex numbers with

the Euclidean inner product <.,.> and norm 1.1 _ <.,.>1/2, G to

be the functions from S into X which have bounded variation

ru
on compact intervals, Nu(f) = jf(0)j + I jdfj for each f in G

0

and u in S,

[Puf](x) f(x), 0 < x < u

if (u) , u < x

for each f in G and u in S, A to be a member of A, and k to be

an increasing function from S to the numbers such that the pair

(A,k) satisfies condition (C). We will obtain a representation

of A on a subspace of G as a 'matrix' using the theory of

reproducing kernels for inner product spaces. Our inner product

space will be those members of G which are Hellinger integrable

[1] with respect to k. Since the definition and properties of

the Hellinger integral are not so widely known, we will summarize

a few facts here.

A member f of G is said to be Hellinger integrable with

respect to k on a subinterval [u,v] of S provided there is a

number b such that

n

E ldf(s ,s )j2/dk(s its ) < b

p=1
-1 p-1 p

for each partition {sp)0 of [u,v]. If each of f and g is

Hellinger integrable on [u,v] then there is a complex number

J with the property that for each positive number c there is

a partition {sP}n of [u,v] such that
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m
IJ - <df(tq-l,tq), dg(tq-1,tq)>/dk(tq-l,tq)I < c

q=1

for each refinement {tq}m of s. We will denote such a number

rv
J by I <df, dg>/dk.

u

For each positive number u let Gu denote the subset of G

to which f belongs if and only if f is Hellinger integrable on

[O,u] with respect to k. Let Qu denote the pseudo-inner

product for defined as follows:

Qu(f,g) = <f(O),g(O)> + (u<df,dg>/dk
0

for each (f,g) in Gu x Gu. We will take 3u = Qu( If

G is the common part of the Gu's then {%,N} is complete.

Let K denote the function from S x S into H defined by

K(u,v)x =

(k(u)-k(O)+l)x, 0 < u < v

I(k(v)-k(0)+1)x, v < u

for each (u,v) in S x S and x in X. K is a reproducing kernel

for in the sense that (1) K[ u]x is in G7 for each

u in S and x in X, and (2) if [u,v] is a subinterval of S,

x is in X, and f is in G, then gv(f,K[ ,u]x) = <f(u),x>.

THEOREM 1. The restriction of A to 'G- is a reversible

function from U. onto G and is continuous with respect to N.

Proof. We have shown [2] that A is a reversible function

from G onto G. Suppose that f is in G and u is a positive

number. If {sp}n is a partition of [O,u] then

n

I I[(1-A)f](sp) [(1-A)f](sp 1)I2/dk(sp-l,sp
=1

E
N22

(Ps(P)[l-A]f - Ps(p-1)[1-A]f)/dk(sp l,sp)
p=1

n
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n rs (p)
p1l[(L)Js(p 1)N(f)dk(x)]2< /dk(sp-l,sp)

< N2(f)dk(O,u)

Therefore 1-A maps G into and so A maps G into G,,. Suppose

that h is in G,,. Then A-lh is in G and [1-A]A-1h = A Ih - h

is in G,,. Therefore A- Ih is in G or A maps G. onto G.
The above inequality shows that

71 u([1-A]f) < Nu(f)dkl/2(O,u)

< 17 u(f)dk1/2(O,u)(l+dk1/2(O,u))

Therefore the restriction of A to G is continuous with respect

to N

The following theorem appears in MacNerney's paper [1]

in a more general setting.

THEOREM 2 . There is a function L from S x S into the

linear transformations of X such that, for each u in S and x

in X, (1) L[ u]x is in G,,, and (2) <[Af](u),x> = Qu(f,L[ ,u]x)

for each f in G,,.
Proof. For each (u,x) in S x X, let L[ ujx be that number

g of G. such that <[Af](u),x> = Qu(f,g) for each f in Qu and

g(v) = g(u) for u < v. If [u,v] is a subinterval of S and

(x,y) is in X X X then <x,L(u,v)y> = Qv(K[ ,u]x,L[ ,v]y) _

<[A(K[ ,ulx)](v),y>. Therefore L is a function from S x S into

the continuous linear transformations of X.

We will assume for the remainder of the chapter that k is

continuous and k(O) = 0. For each positive number b and f in

G such that f(0) = 0, we will denote by Sb(f) and S-b(f) the

members of G defined, respectively, as follows:

[Sbf] _

0 , 0 <u <b

f(k-1(k(u)+b)), b < u

and [S-bf](u) = f(k-I(k(u)+b)). We will say that the hereditary

system with input-output operator A is time invariant provided,
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for each positive number b and f in G such that f(O) = 0,

Af = S_bASbf.

THEOREM 3. If the system is time invariant, then L(v,w) -

L(u,w) = L(k 1(k(v)+b),k-1(k(w)+b)) - L(k
1(k(u)+b),k-1(k(w)+b))

for each positive number b and 0 < u < v < w.

Proof. I f (x,y) is in X X X then <y,L(v,w)x-L(u,w)x> _

<[A(K[ ,v)y-K[ ,u3y)](w),x> _ <[ASb(K[ ,v]y-K[
,u]y)](k-l(k(w)+

b)),x>. If 0 < t < b then 0 = Sb(K[ ,v]y-K[ ,u]y)(t) _

K(t,k-1(k(v)+b))y - K(t,k-1(k(u)+b)y. If b < t then

Sb(K[ ,v]y-K[ ,u]y)(t)

K(k 1(k(t)-b),v)y - K(k-1(k(t)-b),u)y

0, k-1(k(t)-b)<u or t<k-1(k(u)+b)

u<k-1(k(t)-b)<v

= k(t)-b-k(u) , or
k-1(k(u)+b)<t<k-1(k(v)+b)

k(v)-k(u), v<k-1(k(t)-b) or k-1(kw)+b)<t

K(t,k-1(k(v)+b))y - K(t,k
1(k(u)+b))y

Therefore <y,L(v,w)x-L(u,w)x> = <[A(K[ ,k-1(k(v)+b)]y -

K[
,k-1(k(u)+b1y)](k_l(k(w)+b)),x>

_
<y,L(k-1(k(v)+b),k-1(k(w)+

b))x -
L(k-1(k(w)+b),k-l(k(w)+b))x>

The system is said to be BIBO stable provided: if f is in

GW and f(S) is bounded, then [Af](S) is bounded.

THEOREM 4. If I dL[u,IJI < - for each u in S and

r
lhm sup (1/k(h))I d{L[0,I] - L(k-l(h),I]}l < - then the system

0

is BIBO stable.

Proof. Suppose that f is in GW, m is a positive number,

jf(u)j < m for each u in S, and x is in X. If u is in S and

c is a positive number, then there is a positive integer n such

that if {sp} is the partition of [O,u] given by s0 = 0 and

sp = k 1(k(sp_1) + k(u)/n) for p = 1,2,...,n, then 1<[Af](u),x>I

I Q ( f , L[ , u ) x ) l < c + I < f ( 0 ) , L ( s ,u)x> + n
1<df s ,s )

L(spl,u)x -
L(sp-1'u)x>/dk(sp-l,sp)I

= c + 1<f(s0),L(s0,h)x>
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+ ZP=1<f(sp),L(sl,sn-p+l)x - L(s0'sn-p+1)x - L(sl'sn-p)x +

<f(s0),L(sl,u)x - I.(s0,u)x>.(n/k(u))I

< c +
M(1+IdL[O,I]I)Ixl

+ 2mIxI {lim sup (1/k(h)) l d{L[O,I]
0 h-' 0+ 0

- L[k(h),I]}I + c. Therefore I[Af](u)l < m(1+ o IdL[0,I]I +
0

2 lim sup (1/k(h))1 Id{L[0,I] - L[k(h),I]}I), for each u in S,
h - t 0 + 0

and so the system is BIBO stable.

The significance of the result lies in the fact that we can

deduce BIBO stability from a 'row' condition on the matrix L.

In other words, we can achieve BIBO stability by imposing

conditions on the class of functions A(K[ ,u]x) where (u,x) is

in S x X.
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Chapter 17

STABILITY OF PASSIVE AMCD-SPACECRAFT EQUATIONS OF MOTION:
A FUTURE GENERATION SPACECRAFT ATTITUDE CONTROL SYSTEM
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INTRODUCTION

The system under consideration represents a new concept in

attitude control actuators. Basically, it consists of an annular

rim driven by a rim drive motor and supported by magnetic

bearing. Detailed descriptions and advantages are given by

Anderson and Groom [l].

Accurate modeling is extremely difficult to achieve for

flexible dissipative spacecraft structures and various damping

mechanisms that have been used in the spacecraft. The energy

dissipation in either the high speed Annular Momentum Control

Device (AMCD) or the despun main spacecraft structure introduced

through a damping mechanism, is modeled by one ball-in-tube

damper. The AMCD is considered symmetrical and the energy

dissipation must, therefore, be symmetric in the two transverse

axes. Three additional particles, each of whose mass is equal

to the total mass of damping mechanism, are rigidly attached to

183
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the spacecraft in such a way that the combination of damper

and three particles becomes inertially symmetrical about

the spin axis.

Equations of motion of this system are derived here in

rather more general terms, in order to permit easier

visualization of the more general case. A new mathematical

model is introduced and analyzed from the first principles.

Euler's equations for the spacecraft and AMCD rim are written,

where external disturbance torques are included. The torque

on the AMCD rim about the axis of rotation resulting from

magnetic bearing torques are expressed as a function of the

rotation and the axial magnetic bearing constants. The torques

experienced due to three balancing masses and the damper are

also included.

Since the inertial attitude stability of the spin axis

is of interest, the natural choice is the set of attitude

coordinates (e.g., Euler's angles) defining the orientation

of the body frame with respect to the inertial frame. The

equations are transformed into inertial frame which on consider-

able algebraic manipulation gives eight second degree

differential equations with periodic coefficients, coupled

even in the highest order.

A necessary and sufficient condition for the asymptotic

stability of AMCD-spacecraft equation is developed. The

criterion is based on a theorem of LaSalle.

It is only recently that dual-spin stabilization technology

has been developed and used, although it was long ago that

Euler formulated and described the motion of rigid bodies

[3,6]. With the increasing complexities of dual-spin space-

craft, the stability and dynamic behaviors of the system with

the energy dissipation taken into account have recently become

of more concern to system designers. In the last several

years, the concept, analysis, and design of dual-spin bodies

have been developed by outstanding works of many people; see,

for example [1,2,4,5,7,9-11,13-25, and 27].



Stability of Equations of Motion 185

FORMULATION

Let Tb, Ib' wb and Hb be the external torques, the inertia

matrix, the body rates of rotation, and the angular momentum

respectively for an arbitrary rigid body. This body represents

the rotating rim of AMCD. Then the standard Euler's equation

of motion has the following form

Tb = Ibwb + wbHb

Since the magnetic bearings which produce the torques,

Tb, are fixed to the spacecraft, it is required to transform

equation (1) to a second arbitrarily oriented axes system.

The transformation, Eab, is defined by the equation

va + Eabvb

where va and vb are arbitrary vectors and the transformation

is defined by denoting ca = cos a, and sa = sin a, as

ca -sa 0

Eab = sa ca 0

0 0 1

Then the Euler's equation (1) is premultiplied by Eab and

noting that Eab 1 Eab = I (unit matrix), (1) is rewritten as

EabTb = EabIbEab-1Eabwb + EabIbEab 1EabHb

Now define the following:

Ta = EabTb

Ia =
EabIbEab- 1

-1
Wa = EabIbEab (matrix)

Wa = Eabwb (vector)

Differentiating (3) yields

wa = Eabwb + Eabwb

(1)

(2)

(3)

or
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Eabwb = wa - Eabwb

Combining the above equations gives

Ta = Iama + waHa - IaBabEab
-1

wa

Sinha

Assuming AMCD rim symmetry, that is, Ibx = Iby = Ia'

equation (4) can be expanded as

Tax = Iawax + (Iaz-Ia)waywaz + &Iaway

Tay = Iaway + (Ia-Iaz)waxwaz -&Iawax

Taz = Iazwaz

(4)

(S)

(6)

(7)

Equations (5) - (7) can now be modified to separate the effect

of the large AMCD rim spin velocity by introducing the

variable w*az which will represent the angular velocity of the

a-coordinate system about the z-axis, where waz = w*az + a.

Substituting in equations (5) - (7) gives

T + G = I w + (I -I )w w*a + I &wax ax a ax az z ay az az ay

Tay + Gay Iaway + (Ia Iaz)wazwax Iazawax

Taz + Gaz Iazwaz + Iaza

where the additional terms Gax, Gay, Gaz are external distur-

bance torques, added to (5) - (7) due to three balancing

masses and one ball-in-tube damper; these are derived in the

next section.

When the AMCD and spacecraft centers-of-mass are coinci-

dence, a second set of Euler's equations for the spacecraft

similar to (8) - (10) follows:

+ G = I + (I -I )w wT w + I sw
(11)

sx sx sx sz s SY szx sySz

-I )wT + G - I w + (i w* I 8w
(12)

azsy sy s sy s s

Tsz + Gsz = Iszwsz + Isis

sz sx

(13)

The rates w*az and wSZ will be set equal to zero, and the s-

and s-coordinate axes assumed nearly coincident except for
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small transverse relative rotations. This allows a simplifica-

tion in the calculation of the interaction torques by introducing

a transformation matrix from the s-coordinate system to the

a-coordinate system as follows: Eas
= EaiEis = E2(6a)E1(4a)

1 = I(Os)E2 1(6s) = E2(ea)El(0a)

E1(-4s)E2(-es) = E2(ea)E1(4a-6s)E2(-6s) where the subscript i

is introduced to tepresent an inertial reference and the

notation E3(arg.), j = 1 and 2, refers to a transformation from

one coordinate system to another which has been rotated through

an arg about an axis j. The Euler angles chosen to represent

the position of the a- and s-coordinate axes are 4, and 6 with

a 1-2 rotation sequence selected.

By expanding the matrices in the last equation for the

case when 4)a - 4)s and 6a - 6s are small, the following is

found to hold: Eas : E2(ea-es)E1(4a-4s) - E1(4a-4s)E2(6a-es)

This is true irrespective of the magnitudes of one set of

variables (>a,ea) or (4s,es) and corresponds to a single

rotation of the a-coordinate system about an axis in the x-y

plane of s-coordinate system. This rotation represents the

physical rotation of the plane of the AMCD rim with respect

to the spacecraft.

With the rates waz and wSZ set equal to zero and the s-

and s-coordinate axes nearly coincident except for small

transverse relative rotation, equations (8) - (13) are

rewritten in the form:

Tax + Gax = Ia4a + H
a
6
a

(14)

Tay + Gay = I
a
6
a - Ha4a

Taz + Gdz = Ha

Tsx + Gsx = Isms + Hs6s

Tsy + Gsy = I
s
6
s

- Hs$s

Tsz+Gsz=}is

(16)

(17)

(18)

(19)



188 Sinha

H = I (20)a aza

H =
I s

(21)s si

where G is damper torque vector and torque due to balancing

masses. T is bearing and spin torque vectors.

Equations (14) - (21) represent equations of motion for

AMCD-spacecraft and will be further analyzed. In the next

section, the torques G and T are developed.

TORQUE EQUATION

The torques Gax, Gay, and Gaz due to three balancing masses and

the damper system will now be derived by kinematic principle.

Similarly, the torques Gax, Gsy, and Gsz for the spacecraft

will be introduced omitting the algebra. Then, the bearing

and spin torque vectors T are derived.

By kinematic principle v = r + w x r where denotes

differentiation with respect to body axis. Then, the

acceleration of the mass a is a= v+ w x v= r+ w x r+ 2w x

r + w x (w x r). The inertial force F due to this acceleration

is

F = -ma

_ m(r+wxr+ 2wx r`+wx (wxr)) (22)

The torque is then given by Ub = -F x r; r = To + F. With

the damper

rox
1

= a, r0yl = 0, roz
i

= 0; Px = Py = 0, Pz = P (23)

(the motion of the damper is constrained to vibrate along the

z-axis only) and balancing weights

rox
2

= 0, r0y2 = a, roz
2

= 0; Px = Py = Pz = 0

rox3 = -a, r0y3 = 0, r0Z3 = 0; Px = Py = Pz = 0
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rox
4

= 0, roy4 = -a, roZ4 = 0; PX = Py = PZ = 0

the total torque components become

GbX/m = P[wza - wXP - 2wXP + wy(wxa + wZP)]

- 2a[wX + wywZa]

189

(24)

Gby/m = a[P - w
y
a + wZ(wXa + wZP) -

P(wX2
+
wy2

+ wZ2)]

CPwyP + wX(wXa + wZP) - a(wX2 + wy2 + wZ2)

+ 2wyP] - a[wya - w1wxa] (25)

Gbz/m = -a[wZa - wXP + wy(wXa + wZP)
- 2wXP]

+ 2a[-wZa + wXwya] + a[-wZa - wywXa] (26)

The last term in brackets in each of the equations (24) -

(26) are torques due to balancing masses which have been added

to get the total torque due to both damper and three balancing

masses.

We separate equations (24) - (26) into two terms such

that G = G
0

+ G* where Go are terms due to rigid body which are

directly addable to IX, Iy and IZ respectively, and G* is then

torque due to vibrating system. Then

GbX /m = -2a2[wX + wywZ]
0

2Gby /m = -2a[wy - wZwX]
0
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Gbz /m = -4a2[wz]
0

and

G*bx/m = P[wza - w
x
P - 2wxP + wy(wxa + wzP)] (27)

G*by/m = a[P - P(wx2 + wy2))

P[wyP + 2wyP + wxwzP - a(wy2 + wz2)] (28)

G*bz/m = -a[-w xP + w
y
w
z
P - 2wxP] (29)

Hence, Ga = +EasGb where Eas is as defined in (2), and

the components of torque are

* *
Gax = Gby ca - Gby sa (30)

Gay = Gby ca + Gbx sa (31)

0

G = G
(32)

az bz

We shall now derive bearing torques. The torque on the

AMCD rim about the axis of rotation resulting from magnetic

bearing forces F1, F2, and F3 can be expressed in terms of

axial magnetic bearing gains k4, and k,. The bearing forces

are defined by the equations (see Anderson and Groom [13).

F1 = k*$r&cosa

F2 = -r(k + k,),sin(60° + a) - k¢r&cos(60° + a)

F3 = r(k + k'Osin(60° - a) - a)

The torque is the resultant of the individual torques produced

by the bearing forces:

T = (-F1sin6 + F2sin(60° + 0) - F2sin(60° - 9))r
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Substituting and simplifying we have T = -k - k where

k4 = 1.5 r2k and k' = 1.5 r2k'.

Thus, the net bearing torque is not dependent on the

position of the magnetic bearing segments relative to the rim

(the torque is independent of a) and, therefore, the three

linear bearings may be treated as two rotational bearings.

The bearing torques can now be written as

Tsx = km(ma - s + $s) + k'$(ea - O )

Tsy = k(ea - es) + k;(ea - es) - k 0(4a - 5)

The spin motor torque TSZ can be used to control either space-

craft z-axis attitude or attitude rate, as well as to counter-

act rim drag torque (hypteresis and eddy current losses). In

this derivation, the component of motor torque, which is

greater than the drag torque, is of interest and Tsz - Tc -
Td

where subscripts c and d refer to control and drag. Noting

that

Taz = -Eas Tsz
(33)

and assuming small angular motion for the case where Tc = Td

and G = 0, the equation (33), with Eas = I (unity), becomes

Tax = -Tsx = kq(4)a - s) - k,(4a - s

- k,B(ea - es) (34)

Tay -Tsy = -k,(ea - es) -

kB($a - s)

es)

(35)

Taz = -Tsz = 0 for no friction

STATE EQUATION AND STABILITY CRITERION

(36)

Eliminating torques Tax' Tay' Taz and Tsx, Tsy, Tsz in

equations (14) - (21), and using equations (34) - (36) yields

the following set of AMCD spacecraft equations:
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Ia4a = k0(Oa - 4S) - k0(ma - Os) - Ha0a

ks(A
0 ) + G

(37)
a axs

IaAa = -k(0a - 0S) - k*(Oa - es) - Ha0a

- OS(O+ K ) + G (38)a s0 ay

ISOS = k0(Oa - 0S) + Os) - HSOS

B(O+ k ) + G0
(39)0

s sxa

ISOS = k(Oa - 0S) + k;(Oa - 0S) + HSOS

B(k ) + G (40)a S sy0

H = G = I a (41)a az az

BH = I= G (42)SZS SZ

Equations of motion for dampers are given by

cP + kP - F (43)
az

C, PI
+ k'P' = F' (44)

az

where F
az

is force along z-axis and is obtained from equations

(22) and (23) as

Faz = -m{P - iuya + wzwxa - P(wx2 + Wy2))

and similarly

(45)

F5z' -m'{P' - wy'a' + wz'wx'a' - P'(wx'2 + wy'2)) (46)

where GzX, Gay, and Gaz given by equations (30) - (32). With

the subscript changed, and omitting the algebra, we can write

Gsx = Gbx'*cB - Gby'*s8, GSy = Gby'cB + Gbx'*SO, and G$z =

Gbz'* where Gbx'*, Gby'* and Gbz'* are derived similar to

equations (27) - (29). Equations (37) - (46) are

linearized and are written in the form
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I(t)z(t) + B(t)x(t) + C(t)x(t) = 0 (47)

where the vector x = a, 0a' s, P, P'), and I(t), B(t) and

C(t) are matrices

Ia 0 0 0 a15 0

0 1a 0 0 a25 0

0 0 Is 0 0 a36

0 0 0 Is 0 a46

a51 a52
0 0 m 0

0 0 a63
a64 0 m

where

a15 = a

a36 = a

51 = masa, a25 = a52 = -maca

63 = m'a'ss, a46 = a64 = -m'a'cs

k'
Iazwao

-k- 0 0 0

Iazwao k 0 -k 0 0

B(t) =
-k- 0 k ISZw so 0 0

0 -k- -ISZwso k' 0 0

2awaomca 2awaomsa 0 0 C 0

0 0 2a'wsom'cB 2a'ws om'so 0 c'
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C(t) _

k k,wso -k

k 0

-k 0 m'a'wso2ss

kwBo -k4 kwBo k 0 -m'a'wso2cs

0 0 0 0 k 0

0 0 0 0 0 k'

Case Without Dampers

The system without dampers is obtained by deleting the last

two equations (43) - (44) in the state equations, since they

represent the equations of motions for the dampers. We then

write the equations in the form

where

Sinha

Ii(t) + (BI + B2)x(t) + (CI + C2)x(t) = 0 (48)

B
1

B2 =

k 0 -k-

0 k* 0

-k- 0 k

0 k0 -Iszw$0

0 Iaxwao 0 0

-Iazwao
0 0 0

0 0 0 0

0 0 0 0
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k 0 -k
-k-W Bo

0 k0 k,wB0 -k

-k k k*wBo

k,w B0 -k 0 k0w
Bo k,

and

C2 = vB2 where v = k,wBo/Iazwao

The results with no dampers are summarized into the

following theorem:

THEOREM 1. If I > 0, C1 > 0, B1 - vI > 0, then the

system (48) is asymptotically stable provided

C1 + vBl - (1+A)v21/A > 0

for some A > 0, and
wso

0.

Proof. Consider a Liapunov function

195

V ° xTIx + (1 + A)xT[C1 + vBl - (1+A)v2I/A]x

+ a[(1+A)vx/A + x]TI[(l+A)vx/a + x] (49)

whose time derivative along the trajectories of (48) yields:

-V = 2v(1 + A)xTC1x + 2(1 + A)xT[B1 - vI]x

By assumption, V > 0 and V < 0, which implies that the system

is asymptotically stable by LaSalle's Theorem [12].

Remark 1. If I > 0, B1 + B2 = B > 0, and C1 + C2 = C > 0
then the system (48) is asymptotically stable. The result

follows by choosing v = 0 and Liapunov-function in (49).
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We next derive the necessary condition for the system (47)

to be asymptotically stable. We first state a well-known lemma.

LEMMA 2. Halanay [8]. If the characteristic roots of M in

the equation x = Mx are stable then the equation

MTS + SM = -C (C > 0)

is unique and is given by the formula

S = f_0eMTtCeMtdt
0

Conversely, if C > 0 and S > 0 then M is stable.

THEOREM 3. (Necessary Condition). If (48) is asymptotically

stable then B > 0 and C > 0.

Proof. Consider a function

V = xTSx, S = > 0

such that

Qll 0

V = -xQx; Q =

0
Q22

A simple computation of V gives CTS12 + 512C = Q11,

-512 - S12T + BTS22 + S22B = Q221 Sil - S12B - CTS22 = 0, and

S11 - BTS12T -
S22C = 0. If in -C the real parts of

characteristic roots are positive, then S12 can be uniquely

determined from Lemma 2. Therefore, from the second set of

equations -BTS22 - S22B = -Q22 - S12 - S12T < 0. Therefore,

-B must be stable if S22 > 0.
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Case With Dampers

The passive AMCD-spacecraft equations of motion with one damper

and three symmetrical masses on AMCD and spacecraft are

represented by the state equations (47). To study the stability

properties of the system (47), we represent it in the form

x = M(t)X (50)

0 I

ql PI

1 = -I-1(t)B(t),gl = -I-1(t)c(t)

We rewrite equation (50) as

x = [A + B(t)lx (5I)

such that the matrices A and B(t) satisfy the conditions of

Theorem 5, given subsequently.

The following lemma gives a constant positive definite

matrix S for the system (50). The result for constant matrix

B is given in [26].

LEMMA 4. There exists a constant matrix S satisfying

SB(t) + BT(t)S = 0

if and only if

fT
S = lim

TT_
XT( st)PX(s,t)ds

T- T

exists and is finite, is independent of t, and is nonsingular

for some positive matrix P.

Proof. Let x(t,t0) be the fundamental matrix of B(t)

such that X(t0,t0) = I. If s exists and is constant, then

XT(s,t)sX(s,t) = s and s = `s. If "s exists and is independent

of t, then by pre-multiplying with X(t,t0) and post-multiplying

by X(t,t0), we get
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XT(t,t0)"sX(t,t0) = lim I XT(s,t0)PX(s,t0)ds
Tim 27 JJ T

Sinha

"s is clearly symmetric and non-negative, but it is assumed to

be nonsingular, so it must be positive-definite.

THEOREM S. Suppose that A < 0 and the matrix B(t) satisfies

the conditions of Lemma 4; then the system (51) is stable.

Proof. Consider the V-function V = xTsx whose time

derivative along the trajectories of (51) is V = xT[BTS + sB]x

+ xT[ATs + sA]x = xT[ATs + sA]x < 0. Stability of the system

follows from LaSalle's Theorem.

Discussion. The stability criterion obtained was simulated

with the parameters of a prototype AMCD-spacecraft model under

investigation at Langley Research Center, NASA. The system was

found to be asymptotically stable. The parameters used were

the same as those given by Anderson and Groom [1]: 1a =

680 kg-m2, Iaz = 1360 kg-m, I. = 680 kg-m2, I5Z = 453.3 kg-m2,

m = .15 kg, m' _ .15 kg, a = 0.76 m, a' = 0.76 m, wao = 401.3

rad/sec, wso = 0.1 rad/sec, k = 1.2, k' = 4.1412, c = .16,

c' = .0688, k4 = 1020, k, = 2856.0. Simulation was repeated

with k4 = 1360 and k' = 3808. The results for the case with

no dampers was simulated.

The results presented in this paper are concerned with a

reasonably realistic model of an important type of attitude

control system. They answer key questions concerning the

stability of the system, and provide an analytical basis for

using a computer for further studies.

On the other hand, although we have proved the basic

stability properties of the system, in this paper we have not

considered the next natural problem, that of determining the

extent to which the system performance can be improved as a

result of the presence of the non-linearities. There are

several other important practical problems that are not

considered here such as: (i) the problem of predicting a

control law which will stabilize the system; (ii) other
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design considerations; (iii) the problem of comparing the

performance with alternative systems. Considerable amount of

work is needed before NASA will use AMCD for spacecraft

attitude control system.

ACKNOWLEDGEMENT

Part of this work was done at Langley Research Center. The

author is indebted to W. W. Anderson and his associates of

the Langley Research Center for their many helpful suggestions.

REFERENCES

1. W. W. Anderson and N. J. Groom, The annular momentum
control device and applications, NASA TN D-7866,
March 1975.

2. P. M. Bainum, P. G. Fuechsel, and D. L. Mackinson, On the
motion and stability of a dual-spin satellite with
nutation damping, Applied Physics Laboratory, John Hopkins
Univ., TG-1072, 1969.

3. L. Cesari, Asymptotic Behavior and Stability Problems in
Ordinary Differential Equations, Springer-Verlag, New
York, 1963.

4. B. T. Fang, Energy considerations for attitude stability of
dual-spin spacecraft, J. Spacecraft and Rockets 5 (1968),
1241-1243.

S. T. W. Flatley, Equilibrium states for a class of dual-spin
spacecraft, NASA TR R-362, 1971.

6. H. Goldstein, Classical Mechanics, Addison-Wesley, Reading,
1957.

7. N. J. Groom, Simplified analytical model of an annular
momentum control device two-axis passive control system,
NASA, LWP-1130, September, 1973.

8. A. Halanay, Differential Equations: Stability, Oscillations
Time Lags, Academic Press, New York, 1966.

9. A. J. Iorillo, Nutation damping dynamics of axis-symmetric
rotor stabilized satellites, ASME Winter Meeting, Chicago,
Illinois, 1965.

10. T. P. Kane and P. M. Barba, Effects of energy dissipation
of a spinning satellite, AIAA J. 4 (1966), 1391-1393.

11. Kurzhals, P. R., Spin dynamics of space stations under
transient and steady-state excitations and stabilizing
responses, M. S. Thesis, Virginia Polytechnic Inst.,
Blacksburg, 1962.



200 Sinha

12. J. P. LaSalle, An Invariance Principle in the Theory of
Stability, Division of Appl. Math., Brown University,
TR 66-1, Providence, 1966.

13. P. W. Likins, Effects of energy dissipation on the free
body motions of spacecraft, Jet Propulsion Laboratory
Technical Report No. 32-860, 1966.

14. P. W. Likins, Attitude stability of dual-spin system,
Hughes Aircraft, Space System Division, SSD 63077R, 1966.

15. P. W. Likins, Stability theory and results, presented at
the symposium on Attitude Stabilization and Control of
Dual Spin Spacecraft, El Segundo, California, August 1-2,
1967.

16. P. W. Likins, Attitude stability criteria for dual-spin
spacecraft, J. of Spacecraft and Rockets 4 (1967),
1638-1643.

17. P. W. Likins, Gan Tai Tsing, and D. L. Mingori, Stable
limit cycles due to nonlinear damping in dual-spin
spacecraft, AIAA Paper No. 70-1044, 1970.

18. R. J. McElvain and W. W. Porter, Design consideration for
spin axis control of dual-spin spacecraft, presented at
the Symposium on Attitude Stabilization and Control of
Dual-Spin Spacecraft, El Segundo, California, August 1-2,
1967.

19. L. Meirovitch, Attitude stability of an elastic body of
revolution in space, J. Astronaut Sc. 8 (1961), 110-113.

20. D. L. Mingori, The determination of floquet analysis of
the effects of energy dissipation on the attitude
stability of dual-spin satellites, Proc. Symposium
Attitude Stabilization and Control of Dual-Spin Spacecraft,
Air Force Report No. SMASO-TR-68-191, 1967.

21. D. L. Mingori, Effects of energy dissipation on the
attitude stability of dual-spin satellites, AIAA 71 (1969),
20-27.

22. H. Perkel, Stability, A Three Axis Attitude Control System
Utilizing a Single Reaction Wheel, AIAA Paper No. 66-307,
1966.

23. R. Pringle, Jr., Stability of damped mechanical systems,
AIAA 2 (1965), 363-364.

24. C. S. Rall, Nutational instabilities in dual-spin satellites
resulting from vehicle flexibility, Aerospace Corporation
Report TOP-0158 (3133-01)-O1, 1960.

25. A. K. Sen, Stability of a dual-spin satellite with a
four-mass nutation damper, AIAA Journal 8 (1970), 822-823.

26. A. S. C. Sinha, Global asymptotic stability of certain
nonlinear feedback systems, Proc. IEEE 61 (1973), 1506-1507.

27. W. T. Thompson and G. S. Reiter, Motion of an asymmetric
spinning body with internal dissipation, AIAA Journal
6 (1963), 1429-1430.



Chapter 18

THE IMPLICIT FUNCTION THEOREM
AND A RANDOM INTEGRAL EQUATION

JAMES R. WARD

Department of Mathematics
University of Oklahoma

Norman, Oklahoma

INTRODUCTION

One of the many approaches to random integral and differential

equations is to extend the methods of functional analysis to

random problems ([1,8]). Here we apply one of the most powerful

methods of nonlinear functional analysis to a random Volterra

integral equation of the form

t

x(t;w) = y(t;w) + ( a(t,T;w)g(T,x(T;w))dT (1)
0

The method we speak of is the application of the Hildebrandt-

Graves implicit function theorem (see [2] or [11]) for equations

in a Banach space. We use the implicit function theorem to

obtain existence (for t e R+ = [O,m)) and stability results

for (1). This method has been widely used to study the existence

and qualitative behavior of solutions to deterministic equations;

see, e.g., [3, 9, or 10].

*
Present address: Department of Mathematics, Pan American

University, Edinburg, Texas.
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PRELIMINARIES

Let R denote the set of real numbers, R+ = [0,-), and Rn the

set of n-dimensional real column vectors. For x c Rn we use

Ixl to denote the absolute value of x if n = 1, and to denote

any convenient vector norm if n > 1. If A is any n x n matrix

let JAI = su IAxI, x s Rn.
I xi = 1

We will assume that w c Q is an element in the supporting

set of a complete probability measure space (Q,A,F). For

1 < p < - and n > 1 we use LPn(Q) to denote the space of all

A-measurable Rn-valued functions x(w) defined on Q such that

Ilx(w)Ilp = if
Q

Ix(w)IPdu)1/P <

By L.n(S2) we mean the space of all A-measurable Rn_valued

functions x(w) such that

Ilx(w)ll = p-ess suplx(w)I <

C(R+,Lpn(S2)) will denote the set of all continuous

functions x(t;w) on R+ with values in Lpn(SI). Cb(R+,LPn(S2))

will denote the Banach space of all continuous functions

x(t;w) on R+ into Lpn(R) which are bounded in Lpn(0) with norm

Ilxllb t>olix(t;w)llp

STATEMENT OF RESULTS

(2)

We use the following result which is an extension of the classi-

cal theory of Volterra equations. Let A = ((t,t) ; 0 < T < t

< m},

PROPOSITION 1. Let X be a Banach space with norm II.II,

L(X) the space of bounded linear operators on X with the

uniform operator norm. If y c C(R+,X) and a e C(A,L(X)), with

a(t,t) = 0 if t > t, then there is a unique solution

x c C(R+,X) to the linear equation
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rt
x(t) = y(t) + I a(t,T)x(T)d

Moreover, x(t) is given by

rt
x(t) = y(t) - I r(t,T)y(T)d

0

where r e C(A,L(X)) is the unique continuous solution to the

operator equation

t

r(t,T) = -a(t,-r) + I a(t,u)r(u,T)du
T

203

(3)

(4)

We will omit the proof of Proposition 1, as the method is

essentially the same as that for the classical case of X = R,

see [7], with norms replacing absolute values. The operator

valued function r(t,T) is called the resolvent kernel for

a(t,T) or the kernel reciprocal to r(t,T).

COROLLARY 2. Suppose a = a(t,r;w) c C(A,Mmn(S2)) where

M n(O) is the space of n x n random matrices A(w) all of whose

components are in L.n(9). Then if y(t;w) a C(R+,Lpn(S2)),

1 < p < there exists a unique x(t;w) a C(R+,Lpn(f2)) such that

t

x(t;w) = y(t;w) + f a(t,T;w)x(T;w)dT (5)

0

and

/t
x(t,w) = y(t;w) -

J

r(t,T;w)y(t;w)dr (6)

0

where r(t,T;w) is given by (4).

The proof follows directly from Proposition 1 and the

observation that a(t,T;w) is a bounded linear operator on

Lpn(S2) for each (t,T) a A, and the map (t,T) a(t,T;w) from

A into L(Lpn(S2)) is continuous.

If there is a number c > 0 such that
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t

sup[ Ila(t,t;w)II_dr + supJtjIr(t,T;w)II.dT < C
t>0 o t>0 o

Ward

(7)

then for each y(t;w) e Cb(R+,Lpn(f)) the solution x(t;w) of

equation (5) is in the same space, and the mapping y x is an

invertible bounded linear operator on Cb(R+,Lpn(SI)).

We now consider the nonlinear equation (1). Let

g : R+ x Rn , Rn be continuous on R+ x Rn and continuously

differentiable with respect to x E Rn for all (t,x) a R+ x R.

We write the Jacobian matrix aX g(t,x) = gx'(t,x). Also

assume gx'(t,x) is continuous in x uniformly with respect to

t e R+ for x in compact subsets of Rn, and that g(t,0) = 0.

If g(t,x) satisfies these assumptions then the mappings

G and Gx on Cb(R+,Ln(,)) given by G(u)(t,w) = g(t,u(t,w)) and

Gx(u)(t,w) = gx'(t,u(t;w)) are each continuous mappings on

R x into These facts are used in the proof of

the following theorem which is the main result of this chapter.

THEOREM 3. Let g(t,x) satisfy the above assumptions, and

let a(t,T;w) a C(A,M,,n(f)). Let r0(t,T;w) denote the kernel

reciprocal to a(t,T;w)gx'(t,0). If

sup
t>0 0

+ SUP rI Iro(t,T;w) I C < aot
t>0 o

then there are numbers a > 0 and S > 0 and an (solution)

operator T :S(a) = {y E Cb(R+,Ln(,)) : IIyHIb < a) + S(B)
such that

(8)

(i) T(y) = x solves equation (1) for each y e S(a),
and moreover, there is no other solution in the
ball S(S);

(ii) T is continuously Frech6t differentiable on S(a)
and T'(y)h = z is the solution to the linear equation
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rt

z(t;w) = h(t;w) +
J

a(t,T;w)gx'(T,x(T;w))z(T;w)dT
0

We omit the proof of Theorem 3, which follows the follow-

ing scheme: Define the operator F on C(R+,L.n (Q)) by

t

F(u)(t;w) = u(t;w) - j a(t.T;w)g(T,u(T;w))dt
0

One then shows that F maps Cb(R+,Lmn(D)) into itself and is

continuously Fr6chet differentiable on Cb(R+,LWn(D)), with

F'(u)h, for h e Cb(R+,L_n(D)) given by

rt
F'(u)h(t;w) = h(t;w) -

J

a(t,T;w)gx'(T,u(T;w))h(T;w)dT
0

Then one uses (8) and the remarks following (7) to show that

F'(0) is invertible in L(L.n(D)). One then has (1) F is

continuously Frdchet differentiable, (2) F'(0) is invertible,

and (3) F(0) = 0. These are the hypotheses of the implicit

function theorem (see [2] or [11]); the conclusions of Theorem

3 are the conclusions of the implicit function theorem

interpreted for equation (1).

COROLLARY 4. If the hypotheses of Theorem 3 are satisfied,

then equation (1) is stable in the sense that if c > 0 is given

there is a number 6 > 0 such that if y e Cb(R+,L,, (D)) with

Ilyllb < 6 then there is a solution x c Cb(R+,Lm (S2)) with

Ilxllb < e.

Proof. The operator T is continuously Frechet differentiable

on S(a) and is therefore continuous there; in particular, it

is continuous at the origin.

It would be interesting to see if Theorem 3 can be extended

to the case of y e Cb(R+,Lpn(S2)), 1 < p < -. That such an

extension is not straightforward can perhaps be seen by the

observation that if g : R+ x Rn i Rn and for each t > 0 the
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operator G(t) is given by G(t)u(w) = g(t,u(w)), then G(t) may

map all of L2n(H) into itself, but such an operator can never

be Frechet differentiable at any point of L2n(H) (cf. [93).
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ASYMPTOTIC STABILITY IN THE a-NORM FOR AN
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INTRODUCTION

Let X be a Banach space with norm 1111. Our objective is to

discuss the asymptotic behavior of solutions to the abstract

semi-linear differential equation in X

du(t)/dt = -Au(t) + B(t,u(t)), t > t0 (1)

u(t0) = X E X

where -A is the infintesimal generator of a strongly continuous

holomorphic semigroup of linear operators in X and is a

nonlinear operator defined on the domain of a fractional power

of A to X. The equation (1) has been studied extensively in

this framework and it is known that local solutions exist

under reasonable general continuity assumptions on the non-

linear term B (see [1, 2, and 4]). In our study we shall

assume the existence of a global solution of (1) satisfying an

a priori bound. Roughly speaking, our results say that if the

207
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linearized equation du(t)/dt = -Au(t) is asymptotically stable,

and if the nonlinear perturbation B is sufficiently small, then

the semi-linear equation (1) is asymptotically stable.

We make the following assymptions on A and B:

H1. -A is the infinitesimal generator of a strongly
continuous holomorphic semigroup of linear operators
T(t), t > 0 in X;

H2. there exist constants M > 1 and w < 0 such that

ljT(t)xlj < MewtllxII for t > 0, x c X;

H3. there exists a c (0,1) such that Aa is 1-1 and onto,

so that A-a is bounded and everywhere defined and

D(Aa)
dgf

Xa is a Banach space with norm

Ilxlla = Ilk xll, x c Xa;
H4. B : [t0,°) x Xa ; X.

Under the assumptions above it is advantageous to study

the integrated version of equation (1) given by the singular

nonlinear Volterra integral equation

u(t) = T(t-t0)x + I T(t-s)B(s,u(s))ds, t > t0 (2)
ft
!to

If B(t,u(t)) is Holder continuous in t for t > t0, then u(t) as

given in (2) is continuous for t > to, continuously differentiable

for t > t0, and satisfies (1) (see [3; Theorem 1.27]). In our

treatment we shall suppose that x e D(Aa) and study the

asymptotic properties of the solutions of equation (2) in the

a-norm, that is, in the space Xa.

ASYMPTOTIC BEHAVIOR OF THE SOLUTIONS

THEOREM. Suppose HI - H4 hold, x c D(Aa), and there

exists a continuous function u : [t0,-) , D(Aa) satisfying (2).

Suppose there exists a constant L > 0 and a continuous function

h : [t0-) - [0,oo) such that IIB(t,u(t))II < L(Ilu(t)fla + h(t))

for t > t0. Finally, suppose that L < (-w)1-a/CP(l-a). Then:

(i) if h(t) is bounded on [t0,-), then IJu(t)14a is bounded
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on [t0,.); (ii) if h(t) = 0(eot), where w + (CLr(1-a))1/1-a

<a < 0, then IIu(t)lla = O(eot); (iii) if h(t) = o(1), then

llu(t)11 a = o(1).

Proof. We will use the gamma function formula

fwe-Btt-adt =
F(1-a)Ba-1 for 0 < a < 1, a > 0 (3)

0

(see [6; p. 265]). Let y be a real number such that w +

(CLP(1-a))1/1-a < Y < 0. Define c(y) = CLr(l-a)(y-w)a-1 and

for t > t0 define St = sup{e-Ys1lu(s)IIa : t0 < s < t} and

Ht = sup{e-YSh(s) t0 < s < t}. Let t > t0 and using (3)

we obtain

e-Ytllu(t)I'n < e YtIIA'T(t-t0)xll

+

e-Ytlt
IIAT(t-s)B(s,u(s))lids

t0

<
e-ytrt Cew(t-s)(t-s)-aL(IIu(s)IIa

t0

+ h(s))ds + e
YtMew(t-t0)IIxIIa

t
-(Y-w) (t-s) a -Ys

< CL( e (t-s) a (IIu(s)IIa
11

t0

+ h(s))ds + MiIxlIa

rt - (Y-w) (t-s) a< CLJ e (t-s) (St + Ht)ds
t0

+ M1IxIla

< M{Ixjla + CLF(1-a)(Y-w)a-1(St + Ht)
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Then, for t > to this implies that

St < MIIXIIa + c(Y)(St + Ht)

Since c(y) < 1, (4) implies that for t > t0

St < (1-c(Y))-1(MIIXIta + c(y)H t)

which in turn implies that for t > t0

Webb

(4)

IIu(t) 11 1a < e1t(1-c(Y))-1(MIIXIIa + c(y)H t) (5)

Suppose that h(t) is bounded on [t0,-). Then for t > t0,

eltHt = eltsup{e-Ysh(s) :t0 < s < t} < sup{h(s) : t0 < s < t}

< sup{h(s) :t0 < s < -}. Thus, the right-side of (5) is

bounded for t > t0 and (i) is established. Suppose that

h(t) = 0(eot), where w +
(CLI'(l-a)1/1-a) < o < 0. Choose

y = a and observe that for t > t0, Ht <
sup{e-YSKeas

: t0 < s

< t} = K where K is a constant independent of t. Thus, the

right-side of (5) is 0(eat) and (ii) is established. Finally,

suppose that h(t) = o(1). Then, (5) implies that for t0 < tl

< t, IIu(t)IIa < eTt(1-c(Y)) 1c(Y)sup{e-Ysh(s) : t0 < s < t1}

+ eyy(l-c(Y)) 1c(Y)sup{e-Ysh(s) : tl < s < t) +

eYt(1-c(Y)) 1MII4a < eYt(l-c(Y))-1

MIIXIIa +

*y(t-tl)(1-c(Y)) 1c(Y)sup{h(s) : t0 < s < t +

(1-c(y))-c(y)sup{h(s) : t1 < s < t}. This implies that

Iiu(t)IIa = o(1) and (iii) is established.

In conclusion we remark that our results relate to the

development given in [1] and, in particular, provide a

clarification of Theorem 16.7 of [1].
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