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ten permission of the publisher (Birkhäuser Boston, c/o Springer Science+Business Media LLC, 233
Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or
scholarly analysis. Use in connection with any form of information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now known or hereafter de-
veloped is forbidden.
The use in this publication of trade names, trademarks, service marks and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

9 8 7 6 5 4 3 2 1

www.birkhauser.com (Lap/MP)



To our families



Contents

Preface xi

1 Introduction 1
1.1 Dynamical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 A Brief Perspective on the Development of Stability Theory . . . . 4
1.3 Scope and Contents of the Book . . . . . . . . . . . . . . . . . . . 6
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Dynamical Systems 17
2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Dynamical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Ordinary Differential Equations . . . . . . . . . . . . . . . . . . . 20
2.4 Ordinary Differential Inequalities . . . . . . . . . . . . . . . . . . . 26
2.5 Difference Equations and Inequalities . . . . . . . . . . . . . . . . 26
2.6 Differential Equations and Inclusions Defined on Banach Spaces . . 28
2.7 Functional Differential Equations . . . . . . . . . . . . . . . . . . . 31
2.8 Volterra Integrodifferential Equations . . . . . . . . . . . . . . . . 34
2.9 Semigroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.10 Partial Differential Equations . . . . . . . . . . . . . . . . . . . . . 46
2.11 Composite Dynamical Systems . . . . . . . . . . . . . . . . . . . . 51
2.12 Discontinuous Dynamical Systems . . . . . . . . . . . . . . . . . . 52
2.13 Notes and References . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.14 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3 Fundamental Theory: The Principal Stability and Boundedness
Results on Metric Spaces 71
3.1 Some Qualitative Characterizations of Dynamical Systems . . . . . 73
3.2 The Principal Lyapunov and Lagrange Stability Results for

Discontinuous Dynamical Systems . . . . . . . . . . . . . . . . . . 82

vii



viii Contents

3.3 The Principal Lyapunov and Lagrange Stability Results for
Continuous Dynamical Systems . . . . . . . . . . . . . . . . . . . 92

3.4 The Principal Lyapunov and Lagrange Stability Results for
Discrete-Time Dynamical Systems . . . . . . . . . . . . . . . . . . 103

3.5 Converse Theorems for Discontinuous Dynamical Systems . . . . . 112
3.6 Converse Theorems for Continuous Dynamical Systems . . . . . . 125
3.7 Converse Theorems for Discrete-Time Dynamical Systems . . . . . 133
3.8 Appendix: Some Background Material on Differential Equations . . 137
3.9 Notes and References . . . . . . . . . . . . . . . . . . . . . . . . . 141
3.10 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

4 Fundamental Theory: Specialized Stability and Boundedness
Results on Metric Spaces 149
4.1 Autonomous Dynamical Systems . . . . . . . . . . . . . . . . . . . 149
4.2 Invariance Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
4.3 Comparison Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 158
4.4 Uniqueness of Motions . . . . . . . . . . . . . . . . . . . . . . . . 165
4.5 Notes and References . . . . . . . . . . . . . . . . . . . . . . . . . 167
4.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

5 Applications to a Class of Discrete-Event Systems 173
5.1 A Class of Discrete-Event Systems . . . . . . . . . . . . . . . . . . 173
5.2 Stability Analysis of Discrete-Event Systems . . . . . . . . . . . . 175
5.3 Analysis of a Manufacturing System . . . . . . . . . . . . . . . . . 176
5.4 Load Balancing in a Computer Network . . . . . . . . . . . . . . . 179
5.5 Notes and References . . . . . . . . . . . . . . . . . . . . . . . . . 181
5.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

6 Finite-Dimensional Dynamical Systems 185
6.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
6.2 The Principal Stability and Boundedness Results for Ordinary

Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . 199
6.3 The Principal Stability and Boundedness Results for Ordinary

Difference Equations . . . . . . . . . . . . . . . . . . . . . . . . . 211
6.4 The Principal Stability and Boundedness Results for Discontinuous

Dynamical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 219
6.5 Converse Theorems for Ordinary Differential Equations . . . . . . . 232
6.6 Converse Theorems for Ordinary Difference Equations . . . . . . . 241



Contents ix

6.7 Converse Theorems for Finite-Dimensional DDS . . . . . . . . . . 243
6.8 Appendix: Some Background Material on Differential Equations . . 245
6.9 Notes and References . . . . . . . . . . . . . . . . . . . . . . . . . 249
6.10 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

7 Finite-Dimensional Dynamical Systems: Specialized Results 255
7.1 Autonomous and Periodic Systems . . . . . . . . . . . . . . . . . . 256
7.2 Invariance Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
7.3 Domain of Attraction . . . . . . . . . . . . . . . . . . . . . . . . . 263
7.4 Linear Continuous-Time Systems . . . . . . . . . . . . . . . . . . 266
7.5 Linear Discrete-Time Systems . . . . . . . . . . . . . . . . . . . . 285
7.6 Perturbed Linear Systems . . . . . . . . . . . . . . . . . . . . . . . 295
7.7 Comparison Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 316
7.8 Appendix: Background Material on Differential Equations and

Difference Equations . . . . . . . . . . . . . . . . . . . . . . . . . 320
7.9 Notes and References . . . . . . . . . . . . . . . . . . . . . . . . . 328
7.10 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

8 Applications to Finite-Dimensional Dynamical Systems 337
8.1 Absolute Stability of Regulator Systems . . . . . . . . . . . . . . . 338
8.2 Hopfield Neural Networks . . . . . . . . . . . . . . . . . . . . . . 344
8.3 Digital Control Systems . . . . . . . . . . . . . . . . . . . . . . . . 353
8.4 Pulse-Width-Modulated Feedback Control Systems . . . . . . . . . 364
8.5 Digital Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
8.6 Notes and References . . . . . . . . . . . . . . . . . . . . . . . . . 387
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389

9 Infinite-Dimensional Dynamical Systems 395
9.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396
9.2 The Principal Lyapunov Stability and Boundedness Results for

Differential Equations in Banach Spaces . . . . . . . . . . . . . . . 398
9.3 Converse Theorems for Differential Equations in Banach Spaces . . 408
9.4 Invariance Theory for Differential Equations in Banach Spaces . . . 409
9.5 Comparison Theory for Differential Equations in Banach Spaces . . 413
9.6 Composite Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 415
9.7 Analysis of a Point Kinetics Model of a Multicore Nuclear Reactor . 420
9.8 Results for Retarded Functional Differential Equations . . . . . . . 423
9.9 Applications to a Class of Artificial Neural Networks with Time

Delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438



x Contents

9.10 Discontinuous Dynamical Systems Determined by Differential
Equations in Banach Spaces . . . . . . . . . . . . . . . . . . . . . 449

9.11 Discontinuous Dynamical Systems Determined by Semigroups . . . 463
9.12 Notes and References . . . . . . . . . . . . . . . . . . . . . . . . . 479
9.13 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486

Index 489



Preface

In the analysis and synthesis of contemporary systems, engineers and scientists are
frequently confronted with increasingly complex models that may simultaneously
include components whose states evolve along continuous time (continuous dynam-
ics) and discrete instants (discrete dynamics); components whose descriptions may
exhibit hysteresis nonlinearities, time lags or transportation delays, lumped param-
eters, spatially distributed parameters, uncertainties in the parameters, and the like;
and components that cannot be described by the usual classical equations (ordinary
differential equations, difference equations, functional differential equations, partial
differential equations, and Volterra integrodifferential equations), as in the case of
discrete-event systems, logic commands, Petri nets, and the like. The qualitative anal-
ysis of systems of this type may require results for finite-dimensional systems as well
as infinite-dimensional systems; continuous-time systems as well as discrete-time sys-
tems; continuous continuous-time systems as well as discontinuous continuous-time
systems (DDS); and hybrid systems involving a mixture of continuous and discrete
dynamics.

Presently, there are no books on stability theory that are suitable to serve as a single
source for the analysis of system models of the type described above. Most existing
engineering texts on stability theory address finite-dimensional systems described by
ordinary differential equations, and discrete-time systems are frequently treated as
analogous afterthoughts, or are relegated to books on sampled-data control systems.
On the other hand, books on the stability theory of infinite-dimensional dynamical
systems usually focus on specific classes of systems (determined, e.g., by functional
differential equations, partial differential equations, and so forth). Finally, the liter-
ature on the stability theory of discontinuous dynamical systems (DDS) is presently
scattered throughout journals and conference proceedings. Consequently, to become
reasonably proficient in the stability analysis of contemporary dynamical systems of
the type described above may require considerable investment of time. The present
book aims to fill this void. To accomplish this, the book addresses four general ar-
eas: the representation and modeling of a variety of dynamical systems of the type
described above; the presentation of the Lyapunov and Lagrange stability theory for
dynamical systems defined on general metric spaces; the specialization of this sta-
bility theory to finite-dimensional dynamical systems; and the specialization of this
stability theory to infinite-dimensional dynamical systems. Throughout the book, the
applicability of the developed theory is demonstrated by means of numerous specific
examples and applications to important classes of systems.

xi



xii Preface

We first develop the Lyapunov and Lagrange stability results for general dynam-
ical systems defined on metric spaces. Next, we present corresponding results for
finite-dimensional dynamical systems and infinite-dimensional dynamical systems.
Our presentation is very efficient, because in many cases the stability and bound-
edness results of finite-dimensional and infinite-dimensional dynamical systems are
direct consequences of the corresponding stability and boundedness results of general
dynamical systems defined on metric spaces.

In developing the subject at hand, we first present stability and boundedness re-
sults that are simultaneously applicable to discontinuous dynamical systems as well
as continuous dynamical systems. (We refer to these in the following simply as
“DDS results.”) Because every discrete-time dynamical system can be associated
with a DDS with identical stability and boundedness properties, the DDS results are
also applicable to discrete-time dynamical systems. Accordingly, the DDS results
constitute a unifying Lyapunov and Lagrange stability theory for continuous dynami-
cal systems, discrete-time dynamical systems, and discontinuous dynamical systems.
We further show that when the hypotheses of the classical Lyapunov stability and
Lagrange stability results are satisfied, then the hypotheses of the corresponding DDS
stability and boundedness results are also satisfied. This approach enables us to estab-
lish the classical Lyapunov and Lagrange stability results for continuous dynamical
systems and discrete-time dynamical systems in an efficient manner. This also shows
that the DDS results are, in general, less conservative than the corresponding classi-
cal Lyapunov and Lagrange stability results for continuous dynamical systems and
discrete-time dynamical systems.

The book is suitable for a formal graduate course in stability theory of dynamical
systems or for self-study by researchers and practitioners with an interest in systems
theory in the following areas: all engineering disciplines, computer science, physics,
chemistry, life sciences, and economics. It is assumed that the reader of this book has
some background in linear algebra, analysis, and ordinary differential equations.

The authors are indebted to Tom Grasso, Birkhäuser’s Computational Sciences
and Engineering Editor, for the consideration, support, and professionalism that he
rendered during the preparation and production of this book. The authors would also
like to thank their families for their understanding during the writing of this book.

Summer 2007 Anthony N. Michel
Ling Hou

Derong Liu



Chapter 1

Introduction

In this book we present important results from the Lyapunov and Lagrange stability
theory of dynamical systems. Our approach is sufficiently general to be applicable to
finite- as well as infinite-dimensional dynamical systems whose motions may evolve
along a continuum (continuous-time dynamical systems), discrete-time (discrete-time
dynamical systems), and in some cases, a mixture of these (hybrid dynamical sys-
tems). In the case of continuous-time dynamical systems, we consider motions that
are continuous with respect to time (continuous dynamical systems) and motions that
allow discontinuities in time (discontinuous dynamical systems). The behavior of the
dynamical systems that we consider may be described by various types of (differen-
tial) equations encountered in the physical sciences and the engineering disciplines,
or they may defy descriptions by equations of this type. In the present chapter, we
summarize the aims and scope of this book.

1.1 Dynamical Systems

A dynamical system is a four-tuple {T, X, A, S} where T denotes time set, X is the
state-space (a metric space with metric d), A is the set of initial states, and S denotes a
family of motions. When T =R

+ = [0,∞), we speak of a continuous-time dynamical
system; and when T = N = {0, 1, 2, 3, . . . }, we speak of a discrete-time dynamical
system. For any motion x(·, x0, t0) ∈ S, we have x(t0, x0, t0) = x0 ∈ A ⊂ X and
x(t, x0, t0) ∈ X for all t ∈ [t0, t1)∩T, t1 > t0, where t1 may be finite or infinite. The
set of motions S is obtained by varying (t0, x0) over (T ×A). A dynamical system is
said to be autonomous, if everyx(·, x0, t0) ∈ S is defined on T∩[t0,∞) and if for each
x(·, x0, t0) ∈ S and for each τ such that t0+τ ∈ T , there exists a motion x(·, x0, t0+
τ) ∈ S such that x(t+τ, x0, t0+τ) = x(t, x0, t0) for all t and τ satisfying t+τ ∈ T .

A set M ⊂ A is said to be invariant with respect to the set of motions S if
x0 ∈ M implies that x(t, x0, t0) ∈ M for all t ≥ t0, for all t0 ∈ T , and for

1



2 Chapter 1. Introduction

all x(·, x0, t0) ∈ S. A point p ∈ X is called an equilibrium for the dynamical
system {T, X, A, S} if the singleton {p} is an invariant set with respect to the mo-
tions S. The term stability (more specifically, Lyapunov stability) usually refers
to the qualitative behavior of motions relative to an invariant set (resp., an equilib-
rium) whereas the term boundedness (more specifically, Lagrange stability) refers to
the (global) boundedness properties of the motions of a dynamical system. Of the
many different types of Lyapunov stability that have been considered in the litera-
ture, perhaps the most important ones include stability, uniform stability, asymptotic
stability, uniform asymptotic stability, exponential stability, asymptotic stability in
the large, uniform asymptotic stability in the large, exponential stability in the large,
instability, and complete instability. The most important Lagrange stability types
include boundedness, uniform boundedness, and uniform ultimate boundedness of
motions.

Classification of dynamical systems
When the state-space X is a finite-dimensional normed linear space, we speak of
finite-dimensional dynamical systems, and otherwise, of infinite-dimensional dynam-
ical systems. Also, when all motions of a continuous-time dynamical system are
continuous with respect to time t, we speak of a continuous dynamical system and
when one or more of the motions are not continuous with respect to t, we speak of a
discontinuous dynamical system (DDS).

Continuous-time finite-dimensional dynamical systems may be determined, for
example, by the solutions of ordinary differential equations and ordinary differential
inequalities. These arise in a multitude of areas in science and engineering, including
mechanics, circuit theory, power and energy systems, chemical processes, feedback
control systems, certain classes of artificial neural networks, socioeconomic systems,
and so forth. Discrete-time finite-dimensional dynamical systems may be determined,
for example, by the solutions of ordinary difference equations and inequalities. These
arise primarily in cases when digital computers or specialized digital hardware are
an integral part of the system or when the system model is defined only at discrete
points in time. Examples include digital control systems, digital filters, digital signal
processing, digital integrated circuits, certain classes of artificial neural networks,
and the like. In the case of both continuous-time and discrete-time finite-dimensional
dynamical systems one frequently speaks of lumped parameter systems.

Infinite-dimensional dynamical systems, frequently viewed as distributed para-
meter systems, may be determined, for example, by the solutions of differential-
difference equations (delay differential equations), functional differential equations
(retarded and neutral types), Volterra integrodifferential equations, various classes of
partial differential equations, and others. Also, continuous and discrete-time au-
tonomous finite-dimensional and infinite-dimensional dynamical systems may be
generated by linear and nonlinear semigroups. Infinite-dimensional dynamical sys-
tems are capable of incorporating effects that cannot be captured in finite-dimensional
dynamical systems, including time lags and transportation delays, hysteresis effects,
spatial distributions of system parameters, and so forth. Some specific examples



Section 1.1 Dynamical Systems 3

of such systems include control systems with time delays, artificial neural network
models endowed with time delays, multicore nuclear reactor models (represented
by a class of Volterra integrodifferential equations), systems represented by the heat
equation, systems represented by the wave equation, and many others.

There are many classes of dynamical systems whose motions cannot be determined
by classical equations or inequalities of the type enumerated above. One of the most
important of these is discrete-event systems. Examples of such systems include load
balancing in manufacturing systems and in computer networks.

Discontinuous dynamical systems, both finite-dimensional and infinite-dimen-
sional, arise in the modeling process of a variety of systems, including hybrid dynam-
ical systems, discrete-event systems, switched systems, intelligent control systems,
systems subjected to impulsive effects, and the like. In Figure 1.1.1, we depict in
block diagram form a configuration that is applicable to many classes of such sys-
tems. There is a block that contains continuous-time dynamics, a block that contains
phenomena which evolve at discrete points in time (discrete-time dynamics) or at
discrete events, and a block that contains interface elements for the above two sys-
tem components. The block that contains the continuous-time dynamics is usually
characterized by one of the types of equations enumerated above and the block on the
right in Figure 1.1.1 is usually characterized by difference equations, or it may involve
other types of discrete characterizations, such as Petri nets, logic commands, various
types of discrete-event systems, and the like. The block labeled Interface Elements
may vary from the very simple to the very complicated. At the simplest level, this
block may involve samplers and sample and hold elements. The sampling process
may involve only one uniform rate, or it may be nonuniform (variable rate sampling),
or there may be several different (uniform or nonuniform) sampling rates occurring
simultaneously (multirate sampling). Perhaps the simplest specific example of the
above class of systems is digital control systems where the continuous-time dynam-
ics are described by ordinary differential equations, the discrete-time dynamics are
characterized by ordinary difference equations, and the interface elements consist of
sampling elements and sampling and hold elements.

Continuous-time

dynamics

Interface

elements

Discrete-event dynamics

Discrete-time dynamics
or

or
Logic dynamics

or

. .
 .

v(t)

x(t) w(    )τk

u(    )τ k

Figure 1.1.1: A discontinuous dynamical system configuration.



4 Chapter 1. Introduction

1.2 A Brief Perspective on the Development of
Stability Theory

In his famous doctoral dissertation, Aleksandr Mikhailovich Lyapunov [45] devel-
oped the stability theory of dynamical systems determined by nonlinear time-varying
ordinary differential equations. In doing so, he formulated his concepts of stability
and instability and he developed two general methods for the stability analysis of
an equilibrium: Lyapunov’s Direct Method, also called The Second Method of Lya-
punov, and The Indirect Method of Lyapunov, also called The First Method. The
former involves the existence of scalar-valued auxiliary functions of the state space
(called Lyapunov functions) to ascertain the stability properties of an equilibrium,
whereas the latter seeks to deduce the stability properties of an equilibrium of a sys-
tem described by a nonlinear differential equation from the stability properties of its
linearization. In the process of discovering The First Method, Lyapunov established
some important stability results for linear systems (involving the Lyapunov Matrix
Equation). These results are equivalent to the independently discovered results by
Routh (five years earlier) and Hurwitz (three years later).

Lyapunov did not use the concept of uniformity in his definitions of stability
and asymptotic stability. Because his asymptotic stability theorem yields actually
more than he was aware of (namely, uniform asymptotic stability) he was unable to
establish necessary conditions (called Converse Theorems in the literature) for the
Second Method. Once the issue of uniformity was settled by Malkin [46], progress
on establishing Converse Theorems was made rapidly (Massera [47], [48]).

In the proofs of the various Converse Theorems, the Lyapunov functions are con-
structed in terms of the system solutions, and as such, these results can in general
not be used to generate Lyapunov functions; they are, however, indispensable in es-
tablishing all kinds of general results. Thus, the principal disadvantage of the Direct
Method is that there are no general rules for determining Lyapunov functions. In an
attempt to overcome these difficulties, results which now comprise the comparison
theory were discovered. In this approach, the stability properties of a given (com-
plicated) system under study are deduced from the properties of a corresponding
(simpler) system, called the comparison system. The system under study is related
to the comparison system by means of a stability preserving mapping, which may
be viewed as a generalization of the concept of the Lyapunov function. Some of the
earliest comparison results are due to Müller [60] and Kamke [33], followed by the
subsequent work reported in Wazewski [73], Matrosov [49], Bellman [8], Bailey [4],
Lakshmikantham and Leela [37], Michel and Miller [53], Siljak [66], Grujic et al.
[18], and others. In Michel et al. [57], a comparison theory for general dynamical
systems is developed, using stability preserving mappings.

Of major importance in the further development of the Direct Method were results
for autonomous dynamical systems determined by ordinary differential equations, due
to Barbashin and Krasovskii [6] and LaSalle [38], [39], comprising the Invariance
Theory. Among other issues, these results provide an effective means of estimating the
domain of attraction of an asymptotically stable equilibrium, and more importantly,
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in the case of asymptotic stability, they require that the time derivative of a Lyapunov
function along the motions of the system only be negative semidefinite, rather than
negative definite.

One of the first important applications of the Direct Method was in the stability
analysis of a class of nonlinear feedback control systems (regulator systems consisting
of a linear part (described by linear, time-invariant ordinary differential equations) and
a nonlinearity that is required to satisfy certain sector conditions). The formulation of
this important class of systems constitutes the so called absolute stability problem. It
was first posed and solved by Luré and Postnikov [44] who used a Lyapunov function
consisting of a quadratic term in the states plus an integral term involving the system
nonlinearity. An entirely different approach to the problem of absolute stability was
developed by Popov [64]. His results are in terms of the frequency response of the
linear part of the system and the sector conditions of the nonlinearity. Subsequently,
Yacubovich [74] and Kalman [32] established a connection between the Luré type
of results and the Popov type of results. A fairly complete account of the results
concerning absolute stability is provided in the books by Aizerman and Gantmacher
[1], Lefschetz [42], and Narendra and Taylor [61].

As mentioned earlier, there are many areas of applications of the Lyapunov stability
theory, and to touch upon even a small fraction of these would be futile. However,
we would like to point to a few of them, including applications to large-scale systems
(see, e.g., Matrosov [49], Bailey [4], Michel and Miller [53], Siljak [66], and Grujic
et al. [18]), robustness issues in stabilization of control systems (see, e.g., Zames [79],
Michel and Wang [56], Wang and Michel [70], [71], Wang et al. [72], and Ye et al.
[77]), adaptive control (see, e.g., Ioannou and Sun [31] and Åström and Wittenmark
[3]), power systems (see, e.g., Pai [62]), and artificial neural networks (see, e.g.,
Michel and Liu [52]).

The results discussed thus far, pertaining to continuous finite-dimensional dynam-
ical systems, are presented in numerous texts and monographs, including Hahn [20],
LaSalle and Lefschetz [41], Krasovskii [35], Yoshizawa [78], Hale [23], Vidyasagar
[68], Miller and Michel [59], and Khalil [34].

Lyapunov’s stability theory for continuous finite-dimensional dynamical systems
has been extended and generalized in every which way. Thus, the theory described
above has been fully developed for discrete-time finite-dimensional dynamical sys-
tems determined by ordinary difference equations as well (see, e.g., LaSalle [40],
Franklin and Powell [15], and Antsaklis and Michel [2]). The stability of infinite-
dimensional dynamical systems determined by differential-difference equations are
addressed, for example, in Bellman and Cooke [9], Halanay [22], and Hahn [21];
for functional differential equations they are treated, for example, in Krasovskii [35],
Yoshizawa [78], and Hale [24]; for Volterra integrodifferential equations they are
developed, for example, in Barbu and Grossman [7], Miller [58], Walter [69], Hale
[25], and Lakshmikantham and Leela [37]; and for partial differential equations they
are considered, for example, in Friedman [16], Hörmander [27], [28], and Garabedian
[17]. In a more general approach, the stability analysis of infinite-dimensional dynam-
ical systems is accomplished in the context of analyzing systems determined by differ-
ential equations and inclusions on Banach space (e.g., Krein [36], Lakshmikantham



6 Chapter 1. Introduction

and Leela [37], and Daleckii and Krein [13]); linear and nonlinear semigroups (e.g.,
Hille and Phillips [26], Pazy [63], Crandall [11], and Crandall and Liggett [12]);
and general dynamical systems (e.g., Hahn [21], Sell [65], Zubov [80], and Michel
et al. [57]).

Much of the stability analysis of discontinuous dynamical systems has thus far been
concerned with finite-dimensional dynamical systems (e.g., Ye et al. [75], Branicky
[10], Michel [50], Michel and Hu [51], Liberzon and Morse [43], DeCarlo et al.
[14], and Haddad et al. [19]). The stability analysis of infinite-dimensional DDS de-
termined by functional differential equations, semigroups, and differential equations
defined on Banach spaces is addressed in Sun et al. [67], Michel and Sun [54], and
Michel et al. [55] and the stability analysis of general DDS defined on metric space is
treated in Ye et al. [75], Michel [50], and Michel and Hu [51]. Some of the applica-
tions of these results include the stability analysis of systems with impulsive effects
(see, e.g., Bainov and Simeonov [5], and Ye et al. [76]), digital control systems (see,
e.g., Hou et al. [30]), pulse-width-modulated feedback control systems (see, e.g., Hou
and Michel [29]), switched systems (see, e.g., DeCarlo et al. [14] and Ye et al. [75]),
and digital control systems with delays (see, e.g., Sun et al. [67]).

1.3 Scope and Contents of the Book

Contemporary models of dynamical systems encountered by engineers and scien-
tists may vary from being very simple to being very complicated. The motions
(resp., states) of such systems may evolve along continuous time, discrete time, or
a mixture, where parts of the motion evolve along continuous time and other parts
evolve along discrete time. In the case when the states evolve along continuous
time, the motions may be continuous at all points in time, or they may be discon-
tinuous with respect to time. The behavior of some systems may adequately be
captured by “lumped parameter” models, which means that such systems may be
described by finite-dimensional dynamical systems determined by ordinary differen-
tial or difference equations. On the other hand, when systems exhibit, for example,
hysteresis effects, or the effects of transportation delays or time lags, or the effects
of spatially distributed parameters, then a finite-dimensional system description will
no longer be adequate. In such cases, the behavior of the motions is captured by
infinite-dimensional dynamical systems determined by the types of classical equa-
tions enumerated earlier. We need to hasten to add, however, that there are system
descriptions for which the various classes of the classical equations enumerated ear-
lier are inappropriate (e.g., discrete-event systems, systems characterized by Petri
nets, and so forth). It is clear that a successful qualitative analysis of such sys-
tems may frequently require results for finite-dimensional systems as well as for
infinite-dimensional systems; for continuous-time systems as well as for discrete-time
systems; for continuous dynamical systems as well as for discontinuous dynamical
systems; and for (hybrid) systems involving a mixture of both continuous-time and
discrete-time system components. In the case when a system is not described by one
of the traditional equations or inequalities, the qualitative analysis might have to take
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place, for example, in the setting of an abstract metric space, rather than a vector
space.

Presently, there are no books on stability theory that are suitable to serve as a single
source for the analysis of some of the system models enumerated above. Most of the
engineering texts on stability theory are concerned with finite-dimensional continuous
dynamical systems described by ordinary differential equations. The stability theory
of finite-dimensional discrete-time dynamical systems described by difference equa-
tions is frequently addressed only briefly in books on sampled-data control systems, or
as analogous afterthoughts in stability books dealing primarily with systems described
by ordinary differential equations. As we have seen earlier, texts and monographs on
the stability theory of infinite-dimensional dynamical systems usually focus on spe-
cific classes of systems (determined, e.g., by functional differential equations, partial
differential equations, etc.). Finally, as noted previously, the literature concerning
the stability of discontinuous dynamical systems is scattered throughout journal pub-
lications and conference proceedings. As a consequence, to become proficient in the
stability analysis of contemporary dynamical systems of the type described above
may require considerable investment of time. Therefore, there seems to be need for
a book on stability theory that addresses continuous-time as well as discrete-time
systems; continuous as well as discontinuous systems; finite-dimensional as well as
infinite-dimensional systems; and systems involving descriptions by classical equa-
tions and inequalities as well as systems that cannot be described by such equations
and inequalities. We aim to fill this void in the present book.

Finally, in addition to the objectives and goals stated above, we believe that the
present book will serve as a guide to enable the reader to pursue study of further topics
in greater depth, as needed.

Chapter Contents
The remainder of this book is organized in eight chapters.

In Chapter 2 we introduce the concept of a dynamical system defined on a metric
space (more formally than was done earlier), we give a classification of dynamical
systems, and we present several important specific classes of finite- and infinite-
dimensional dynamical systems determined by the various classical differential equa-
tions encountered in science and engineering. In a subsequent chapter (Chapter 5),
we also present examples of dynamical systems that cannot be described by such
equations.

The classes of dynamical systems that we consider include continuous-time and
discrete-time finite-dimensional dynamical systems determined by ordinary differ-
ential equations and inequalities and ordinary difference equations and inequalities,
respectively, and by infinite-dimensional dynamical systems described by differential-
difference equations, functional differential equations, Volterra integrodifferential
equations, certain classes of partial differential equations, and more generally, differ-
ential equations and inclusions defined on Banach spaces, and by linear and nonlinear
semigroups. For the cases of continuous-time systems, in addition to continuous sys-
tems, we consider discontinuous dynamical systems as well.
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In addition to the above, we also introduce the notion of a composite dynamical
system, consisting of a mixture of different equations (defined for the same time set
T ). Also, in a subsequent chapter (Chapter 8) we consider a specific class of hybrid
dynamical systems consisting of a mixture of equations defined on different time sets.

In Chapter 3 we establish the Principal Lyapunov Stability and Boundedness Re-
sults, including Converse Theorems, for dynamical systems defined on metric spaces.
By considering the most general setting first (dynamical systems defined on metric
spaces), we are able to utilize some of the results of the present chapter in establish-
ing in an efficient manner corresponding results presented in subsequent chapters for
important classes of finite- and infinite-dimensional dynamical systems.

We first introduce the notions of an invariant set (resp., equilibrium) with respect to
the motions of a dynamical system and we give the definitions of the various concepts
of Lyapunov and Lagrange stability (including stability, uniform stability, local and
global asymptotic stability, local and global uniform asymptotic stability, local and
global exponential stability, instability, complete instability, uniform boundedness,
and uniform ultimate boundedness).

Next, we establish the Principal Lyapunov and Lagrange Stability Results (suf-
ficient conditions for the above stability, instability, and boundedness concepts) for
discontinuous dynamical systems, continuous dynamical systems, and discrete-time
dynamical systems, respectively. Because continuous dynamical systems constitute
special cases of DDS, the stability, instability, and boundedness results for DDS are
applicable to continuous dynamical systems as well. To prove the various Principal
Lyapunov and Lagrange stability results for continuous dynamical systems, we show
that when the hypotheses of any one of these results are satisfied, then the hypotheses
of the corresponding DDS results are also satisfied; that is, the classical Lyapunov
and Lagrange stability results for continuous dynamical systems reduce to the cor-
responding Lyapunov and Lagrange stability results that we established for DDS.
This shows that the DDS results are more general than the corresponding classical
Lyapunov and Lagrange stability results for continuous dynamical systems. Indeed,
a specific example is presented of a continuous dynamical system with an equilibrium
that can be shown to be uniformly asymptotically stable, using the uniform asymp-
totic stability result for DDS, and we prove that for the same example, there does not
exist a Lyapunov function that satisfies the classical Lyapunov theorem for uniform
asymptotic stability for continuous dynamical systems.

Next, we show that for every discrete-time dynamical system there exists an asso-
ciated DDS with identical Lyapunov and Lagrange stability properties. Making use of
such associated DDS, we prove, similarly as in the case of continuous dynamical sys-
tems, that the Lyapunov and Lagrange stability results for DDS are more general than
the corresponding results for the classical Lyapunov and Lagrange stability results for
discrete-time dynamical systems. We give an example of a discrete-time dynamical
system with an equilibrium that can be shown to be uniformly asymptotically stable,
by applying the uniform asymptotic stability result for DDS to the associated DDS,
and we prove that for the same original discrete-time dynamical system there does
not exist a Lyapunov function that satisfies the classical uniform asymptotic stability
theorem for discrete-time dynamical systems.



Section 1.3 Scope and Contents of the Book 9

In addition to proving that the classical Lyapunov and Lagrange stability results
for continuous dynamical systems and discrete-time dynamical systems reduce to
the corresponding DDS results, our approach described above establishes also a uni-
fying theory for DDS, continuous dynamical systems, and discrete-time dynamical
systems.

Next, under some additional mild conditions, we establish Converse Theorems
(necessary conditions) for the above results for DDS, continuous dynamical systems,
and discrete-time dynamical systems.

Finally, in an appendix section we present a comparison result involving maximal
and minimal solutions of ordinary differential equations, which is required in some
of the proofs of this chapter.

In Chapter 4 we present important specialized Lyapunov and Lagrange stability
results for dynamical systems defined on metric spaces. We first show that under some
reasonable assumptions, in the case of autonomous dynamical systems, stability and
asymptotic stability of an invariant set imply uniform stability and uniform asymp-
totic stability of an invariant set, respectively. Furthermore, we establish necessary
and sufficient conditions for stability and asymptotic stability of an invariant set for
autonomous dynamical systems. Next, for continuous and discrete-time autonomous
dynamical systems, we present generalizations of LaSalle-type theorems that com-
prise the invariance theory for dynamical systems defined by semigroups in metric
spaces. Also, for both continuous and discrete-time dynamical systems we present
several results that make up a comparison theory for various Lyapunov and Lagrange
stability types. In these results we deduce the qualitative properties of a complex dy-
namical system (the object of inquiry) from corresponding qualitative properties of a
simpler and well-understood dynamical system (the comparison system). Finally, we
present Lyapunov-like results that ensure the uniqueness of motions for continuous
and discrete-time dynamical systems defined on metric spaces.

In Chapter 5 we apply the results of Chapters 3 and 4 in the stability analysis of
an important class of discrete-event systems with applications to a computer load-
balancing problem and a manufacturing system.

In the preceding three chapters, we concern ourselves with the qualitative anal-
ysis of dynamical systems defined on metric spaces. In the next three chapters we
address the Lyapunov and Lagrange stability of continuous-time and discrete-time
finite-dimensional dynamical systems determined by ordinary differential equations
and difference equations, respectively. For the case of continuous-time dynamical
systems we consider continuous dynamical systems and discontinuous dynamical
systems. In these three chapters our focus is on the qualitative analysis of equilibria
(rather than general invariant sets). Throughout the next three chapters, we include
numerous specific examples to demonstrate the applicability of the various results
that are presented.

In Chapter 6 we first present some preliminary material that is required through-
out the next three chapters, including material on ordinary differential equations and
ordinary difference equations; definition of the time-derivative of Lyapunov func-
tions evaluated along the solutions of ordinary differential equations; evaluation of
the first forward difference of Lyapunov functions along the solutions of difference
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equations; characterizations of Lyapunov functions, including quadratic forms; and
a motivation and geometric interpretation for Lyapunov stability results for two-
dimensional systems. Next, we present the Principal Lyapunov and Lagrange Stabil-
ity Results (sufficient conditions) for continuous dynamical systems determined by
ordinary differential equations; for discrete-time dynamical systems determined by
difference equations; and for DDS determined by ordinary differential equations. In
most cases, the proofs of these results are direct consequences of corresponding results
that were presented in Chapter 3. Finally, we present converse theorems (necessary
conditions) for the above Lyapunov and Lagrange stability results. In an appendix
section we give some results concerning the continuous dependence of solutions of
ordinary differential equations with respect to initial conditions.

In Chapter 7 we continue our study of finite-dimensional dynamical systems with
the presentation of some important specialized results for continuous and discrete-
time systems. We first show that if for dynamical systems determined by autonomous
and periodic ordinary differential equations, the equilibrium xe = 0 is stable or
asymptotically stable, then the equilibrium xe = 0 is uniformly stable or uniformly
asymptotically stable, respectively. Also, for such kind of dynamical systems, we
present converse theorems for asymptotically stable systems. Next, for continuous
and discrete-time dynamical systems determined by autonomous ordinary differen-
tial equations and ordinary difference equations, we establish LaSalle-type stability
results that comprise the invariance theory for such systems. These results are direct
consequences of corresponding results that were established in Chapter 3 for au-
tonomous dynamical systems defined on metric spaces. For autonomous dynamical
systems determined by ordinary differential equations, we next present two meth-
ods of determining estimates for the domain of attraction of an asymptotically stable
equilibrium (including Zubov’s Theorem). Next, we present the main Lyapunov
stability and boundedness results for dynamical systems determined by linear homo-
geneous systems of ordinary differential equations (and difference equations), linear
autonomous homogeneous ordinary differential equations (and difference equations),
and linear periodic ordinary differential equations. Some of these results require ex-
plicit knowledge of state transition matrices whereas other results involve Lyapunov
matrix equations. This is followed by a detailed study of the stability properties of
the equilibrium xe = 0 of dynamical systems determined by linear, second-order
autonomous homogeneous systems of ordinary differential equations. Next, we in-
vestigate the qualitative properties of perturbed linear systems. In doing so, we
develop Lyapunov’s First Method (also called Lyapunov’s Indirect Method) for con-
tinuous and discrete-time dynamical systems, and we study the existence of stable
and unstable manifolds and the stability of periodic motions in continuous linear
perturbed systems. Finally, similarly as in Chapter 4, we establish Lyapunov and
Lagrange stability results for continuous and discrete-time dynamical systems that
comprise a comparison theory for finite-dimensional dynamical systems.

In Chapter 8 we apply the results presented in Chapters 6 and 7 in the analysis
of several important classes of continuous, discontinuous, and discrete-time finite-
dimensional dynamical systems. We first address the absolute stability problem of
nonlinear regulator systems, by presenting Luré’s result for direct control systems
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and Popov’s result for indirect control systems. Next, we establish global and local
Lyapunov stability results for Hopfield neural networks. This is followed by an
investigation of an important class of hybrid systems, digital control systems. We
consider system models with quantizers and without quantizers. Next, we present
stability results for an important class of pulse-width-modulated (PWM) feedback
control systems. Finally, we study the stability properties of systems with saturation
nonlinearities with applications to digital filters.

In Chapter 9 we address the Lyapunov and Lagrange stability of infinite-dimen-
sional dynamical systems determined by differential equations defined on Banach
spaces and semigroups. As in Chapters 6 through 8, we focus on the qualitative prop-
erties of equilibria and we consider continuous as well as discontinuous dynamical
systems. Throughout this chapter, we present several specific examples to demon-
strate the applicability of the presented results. These include systems determined
by functional differential equations, Volterra integrodifferential equations, and par-
tial differential equations. In addition, we apply the results of this chapter in the
analysis of two important classes of infinite-dimensional dynamical systems: a point
kinetics model of a multicore nuclear reactor (described by Volterra integrodifferen-
tial equations) and Cohen–Grossberg neural networks with time delays (described
by differential-difference equations). As in Chapters 6 and 7, several of the results
presented in this chapter are direct consequences of the results given in Chapters 3
and 4 for dynamical systems defined on metric spaces.

We first present the Principal Lyapunov and Lagrange Stability Results (suffi-
cient conditions) for dynamical systems determined by general differential equations
defined on Banach spaces. Most of these results are direct consequences of the cor-
responding results established in Chapter 3 for dynamical systems defined on metric
spaces. We also present converse theorems (necessary conditions) for several of the
above results. Most of these are also direct consequences of corresponding results
given in Chapter 3 for dynamical systems defined on metric spaces. Next, we present
LaSalle-type stability results that comprise the invariance theory for autonomous
differential equations defined on Banach spaces. Essentially, these results are also
direct consequences of corresponding results that are established in Chapter 4 for
dynamical systems defined on metric spaces. This is followed by the presentation
of several Lyapunov and Lagrange stability results that comprise a comparison the-
ory for general differential equations defined on Banach spaces. Next, we present
stability results for composite dynamical systems defined on Banach spaces that are
described by a mixture of different types of differential equations. As mentioned
earlier, we apply some of the results enumerated above in the analysis of a point ki-
netics model of a multicore nuclear reactor (described by Volterra integrodifferential
equations). For the special case of functional differential equations, it is possible to
improve on the Lyapunov stability results for general differential equations defined
on Banach spaces by taking into account some of the specific properties of functional
differential equations. We present improved Lyapunov stability results for dynami-
cal systems determined by retarded functional differential equations. Some of these
results include Razumikhin-type theorems. As pointed out earlier, we apply these re-
sults in the qualitative analysis of a class of artificial neural networks with time delays
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(described by differential-difference equations). Next, we establish Lyapunov and
Lagrange stability results for discontinuous dynamical systems defined on Banach
and Hilbert spaces. We consider DDS determined by differential equations defined
on Banach spaces, and by DDS determined by linear and nonlinear semigroups.
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1907. (Translation of a paper published in Comm. Soc. Math., Kharkow, 1892,
reprinted in Ann. Math. Studies, vol. 17, Princeton, NJ: Princeton, 1949. The
French version was translated into English by A. T. Fuller, and was published
in the International Journal of Control, vol. 55, pp. 531–773, 1992.)

[46] I. G. Malkin, “On the question of reversibility of Lyapunov’s theorem on auto-
matic stability,” Prikl. Mat. i Mehk., vol.18, pp. 129–138, 1954 (in Russian).

[47] J. L. Massera, “On Liapunoff’s conditions of stability,” Ann. Mat., vol. 50, pp.
705–721, 1949.

[48] J. L. Massera, “Contributions to stability theory,” Ann. Mat., vol. 64, pp. 182–
206, 1956.

[49] V. M. Matrosov, “The method of Lyapunov-vector functions in feedback sys-
tems,” Automat. Remote Control, vol. 33, pp. 1458–1469, 1972.

[50] A. N. Michel, “Recent trends in the stability analysis of hybrid dynamical sys-
tems,” IEEE Trans. Circ. and Syst.–I: Fund. Theor. Appl., vol. 46, pp. 120–134,
1999.

[51] A. N. Michel and B. Hu, “Towards a stability theory of general hybrid dynamical
systems,” Automatica, vol. 35, pp. 371–384, 1999.



Bibliography 15

[52] A. N. Michel and D. Liu, Qualitative Analysis and Synthesis of Recurrent Neural
Networks, New York: Marcel Dekker, 2002.

[53] A. N. Michel and R. K. Miller, Qualitative Analysis of Large Scale Dynamical
Systems, New York: Academic Press, 1977.

[54] A. N. Michel andY. Sun, “Stability of discontinuous Cauchy problems in Banach
space,” Nonlinear Anal., vol. 65, pp. 1805–1832, 2006.

[55] A. N. Michel, Y. Sun, and A. P. Molchanov, “Stability analysis of discontinuous
dynamical systems determined by semigroups,” IEEE Trans. Autom. Control,
vol. 50, pp. 1277–1290, 2005.

[56] A. N. Michel and K. Wang, “Robust stability: perturbed systems with perturbed
equilibria,” Syst. and Control Lett., vol. 21, pp.155–162, 1993.

[57] A. N. Michel, K. Wang, and B. Hu, Qualitative Theory of Dynamical Systems:
The Role of Stability Preserving Mappings, 2nd Edition, New York: Marcel
Dekker, 2001.

[58] R. K. Miller, Nonlinear Volterra Integral Equations, Menlo Park, CA: W. A.
Benjamin, 1971.

[59] R. K. Miller and A. N. Michel, Ordinary Differential Equations, New York:
Academic Press, 1982.
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Chapter 2

Dynamical Systems

Our main objective in the present chapter is to define a dynamical system and to
present several important classes of dynamical systems. The chapter is organized
into twelve parts.

In the first section we establish some of the notation that we require in this chap-
ter, as well as in the subsequent chapters. Next, in the second section we present
precise definitions for dynamical system and related concepts. We introduce finite-
dimensional dynamical systems determined by ordinary differential equations in the
third section, by differential inequalities in the fourth section, and by ordinary differ-
ence equations and inequalities in the fifth section. In the sixth section, we address
infinite-dimensional dynamical systems determined by differential equations and in-
clusions defined on Banach spaces and in the seventh and eighth sections we consider
special cases of infinite-dimensional dynamical systems determined by functional
differential equations and Volterra integrodifferential equations, respectively. In the
ninth section we discuss dynamical systems determined by semigroups defined on
Banach and Hilbert spaces and in the tenth section we treat dynamical systems de-
termined by specific classes of partial differential equations. Finally, we address
composite dynamical systems in the eleventh section and discontinuous dynamical
systems in the twelfth section.

The specific classes of dynamical systems that we consider in this chapter are very
important. However, there are of course many more important classes of dynamical
systems, not even alluded to in the present chapter. We address one such class of
systems in Chapter 5, determined by discrete-event systems.

Much of the material presented in Sections 2.3–2.10 constitutes background ma-
terial and concerns the well posedness (existence, uniqueness, continuation, and con-
tinuity with respect to initial conditions of solutions) of a great variety of equations
(resp., systems). Even if practical, it still would distract from our objectives on hand
if we were to present proofs for these results. Instead, we give detailed references
where to find such proofs, and in some cases, we give hints (in the problem section)

17



18 Chapter 2. Dynamical Systems

on how to prove some of these results. The above is in contrast with our presentations
in the remainder of this book where we prove all results (except some, concerning
additional background material).

2.1 Notation

Let Y, Z be arbitrary sets. Then Y ∪ Z, Y ∩ Z, Y − Z, and Y × Z denote the union,
intersection, difference, and Cartesian product of Y and Z, respectively. If Y is a
subset of Z, we write Y ⊂ Z and if x is an element of Y , we write x ∈ Y . We denote
a mapping f of Y into Z by f : Y → Z and we denote the set of all mappings from
Y into Z by {Y → Z}. Let ∅ denote the empty set.

Let R denote the set of real numbers, let R
+ = [0,∞), let N denote the set of

nonnegative integers (i.e., N = {0, 1, 2, . . . }), and let C denote the set of complex
numbers. Let J ⊂ R denote an interval (i.e., J = [a, b), (a, b], [a, b], or (a, b), b > a,
with J = (−∞,∞) = R allowed). If Y1, . . . , Yn are n arbitrary sets, their Cartesian
product is denoted by Y1 × · · · × Yn, and if in particular Y = Y1 = · · · = Yn we
write Y n.

Let R
n denote real n-space. If x ∈ R

n, xT = (x1, . . . , xn) denotes the transpose
of x. Also, if x, y ∈ R

n, then x ≤ y signifies xi ≤ yi, x < y signifies xi < yi, and
x > 0 signifies xi > 0 for all i = 1, . . . , n. We let | · | denote the Euclidean norm;

that is, for x = (x1, . . . , xn)T ∈ R
n, |x| = (xT x)1/2 =

(∑n
i=1 x2

i

)1/2
.

Let A = [aij ]n×n denote a real n × n matrix (i.e., A ∈ R
n×n) and let AT denote

the transpose of A. The matrix norm | · |, induced by the Euclidean vector norm
(defined on R

n), is defined by

|A| = inf
{
α ∈ R

+ : α|x| ≥ |Ax|, x ∈ R
n
}

=
[
λM (AT A)

]1/2

where λM (AT A) denotes the largest eigenvalue of AT A (recall that the eigenvalues
of symmetric matrices are real). In the interests of clarity, we also use the notation ‖·‖
to distinguish the norm of a matrix (e.g., ‖A‖) from the norm of a vector (e.g., |x|).

We let Lp[G, U ], 1 ≤ p ≤ ∞, denote the usual Lebesgue space of all Lebesgue
measurable functions with domain G and range U . The norm in Lp[G, U ] is usually
denoted ‖ · ‖p, or ‖ · ‖Lp if more explicit notation is required.

We let (X, d) be a metric space, where X denotes the underlying set and d denotes
the metric. When the choice of the particular metric used is clear from context, we
speak of a metric space X , rather than (X, d).

If Y and Z are metric spaces and if f : Y → Z, and if f is continuous, we write
f ∈ C[Y, Z]; that is, C[Y, Z] denotes the set of all continuous mappings from Y to
Z. We denote the inverse of a mapping f , if it exists, by f−1.

A function ψ ∈ C[[0, r1], R+] (resp., ψ ∈ C[R+, R+]) is said to belong to class
K (i.e., ψ ∈ K) if ψ(0) = 0 and if ψ is strictly increasing on [0, r1] (resp., on R

+). If
ψ : R

+ → R
+, if ψ ∈ K, and if limr→∞ ψ(r) = ∞, then ψ is said to belong to class

K∞ (i.e., ψ ∈ K∞).
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For a function f : R → R, we denote the upper right-hand, upper left-hand, lower
right-hand, and lower left-hand Dini derivatives by D+f, D−f, D+f , and D−f ,
respectively. When we have a fixed Dini derivative of f in mind, we simply write
Df , in place of the preceding notation.

2.2 Dynamical Systems

In characterizing the notion of dynamical system, we require the concepts of motion
and family of motions.

Definition 2.2.1 Let (X, d) be a metric space, let A ⊂ X , and let T ⊂ R. For
any fixed a ∈ A, t0 ∈ T , a mapping p(·, a, t0) : Ta,t0 → X is called a motion if
p(t0, a, t0) = a where Ta,t0 = [t0, t1) ∩ T , t1 > t0, and t1 is finite or infinite. �

Definition 2.2.2 A subset S of the set⋃
(a,t0)∈A×T

{Ta,t0 → X}

is called a family of motions if for every p(·, a, t0) ∈ S, we have p(t0, a, t0) = a. �

Definition 2.2.3 The four-tuple {T, X, A, S} is called a dynamical system. �

In Definitions 2.2.1 and 2.2.2 we find it useful to think of X as state space, T as
time set, t0 as initial time, a as the initial condition of the motion p(·, a, t0), and A as
the set of initial conditions. Note that in our definition of motion, we allow in general
more than one motion to initiate from a given pair of initial data, (a, t0).

When in Definition 2.2.3, T = J ⊂ R
+ (with J = R

+ allowed), we speak of a
continuous-time dynamical system and when T = J ∩ N (with J ∩ N = N allowed)
we speak of a discrete-time dynamical system. Also, when in Definition 2.2.3, X is a
finite-dimensional vector space, we speak of a finite-dimensional dynamical system,
and otherwise, of an infinite-dimensional dynamical system. Furthermore, if in a
continuous-time dynamical system all motions (i.e., all elements of S) are continuous
with respect to time t, we speak of a continuous dynamical system. If at least one
motion of a continuous-time dynamical system is not continuous with respect to t,
we speak of a discontinuous dynamical system.

When in Definition 2.2.3, T,X , and A are known from context, we frequently
speak of a dynamical system S, or even of a system S, rather than a dynamical system
{T, X, A, S}.

Definition 2.2.4 A dynamical system {T,X1, A1, S1} is called a dynamical subsys-
tem, or simply, a subsystem of a dynamical system {T, X, A, S} if X1 ⊂ X, A1 ⊂ A,
and S1 ⊂ S. �

Definition 2.2.5 A motion p = p(·, a, t0) in a dynamical system {T, X, A, S} is said
to be bounded if there exist an x0 ∈X and a β>0 such that d(p(t, a, t0), x0)<β for
all t ∈ Ta,t0 . �
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Definition 2.2.6 A motion p∗ = p∗(·, a, t0) defined on [t0, c) ∩ T is called a con-
tinuation of another motion p = p(·, a, t0) defined on [t0, b) ∩ T if p = p∗ on
[t0, b) ∩ T, c > b, and [b, c) ∩ T �= ∅. We say that p is noncontinuable if no continu-
ation of p exists. Also, p = p(·, a, t0) is said to be continuable forward for all time if
there exists a continuation p∗ = p∗(·, a, t0) of p that is defined on [t0,∞)∩T , where
it is assumed that for any α > 0, [α,∞) ∩ T �= ∅. �

In the remainder of this chapter, we present several important classes of dynamical
systems. Most of this material serves as required background for the remainder of
this book.

2.3 Ordinary Differential Equations

In this section we summarize some essential facts from the qualitative theory of
ordinary differential equations that we require as background material and we show
that the solutions of differential equations determine continuous, finite-dimensional
dynamical systems.

A. Initial value problems

Let D ⊂ R
n+1 be a domain (an open connected set), let x = (x1, . . . , xn)T denote

elements of R
n, and let elements of D be denoted by (t, x). When x is a vector-valued

function of t, let

ẋ =
dx

dt
=
(

dx1

dt
, . . . ,

dxn

dt

)T

= (ẋ1, . . . , ẋn)T .

For a given function fi : D → R, i = 1, . . . , n, let f = (f1, . . . , fn)T . Consider
systems of first-order ordinary differential equations given by

ẋi = fi(t, x1, . . . , xn), i = 1, . . . , n. (Ei)

Equation (Ei) can be written more compactly as

ẋ = f(t, x). (E)

A solution of (E) is an n vector-valued differentiable function ϕ defined on a real
interval J = (a, b) (we express this by f ∈ C1[J, Rn]) such that (t, ϕ(t)) ∈ D for
all t ∈ J and such that

ϕ̇(t) = f(t, ϕ(t))

for all t ∈ J . We also allow the cases when J = [a, b), J = (a, b], or J = [a, b].
When J = [a, b], then ϕ̇(a) is interpreted as the right-side derivative and ϕ̇(b) is
interpreted as the left-side derivative.

For (t0, x0) ∈ D, the initial value problem associated with (E) is given by

ẋ = f(t, x), x(t0) = x0. (IE)
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An n vector-valued function ϕ is a solution of (IE) if ϕ is a solution of (E) which
is defined on [t0, b) and if ϕ(t0) = x0. To denote the dependence of the solutions of
(IE) on the initial data (t0, x0), we frequently write ϕ(t, t0, x0). However, when the
initial data are clear from context, we often write ϕ(t) in place of ϕ(t, t0, x0).

When f ∈ C[D, Rn], ϕ is a solution of (IE) if and only if ϕ satisfies the integral
equation

ϕ(t) = x0 +
∫ t

t0

f(s, ϕ(s))ds (Ẽ)

for t ∈ [t0, b). In (Ẽ), we have used the notation∫ t

t0

f(s, ϕ(s))ds =
[∫ t

t0

f1(s, ϕ(s))ds, . . . ,

∫ t

t0

fn(s, ϕ(s))ds

]T

.

B. Existence, uniqueness, and continuation of solutions

The following examples demonstrate that we need to impose restrictions on the right-
hand side of (E) to ensure the existence, uniqueness, and continuation of solutions
of the initial value problem (IE).

Example 2.3.1 For the scalar initial value problem

ẋ = g(x), x(0) = 0 (2.3.1)

where x ∈ R and

g(x) =
{

1, x = 0
0, x �= 0

there is no differentiable function ϕ that satisfies (2.3.1). Therefore, this initial value
problem has no solution (in the sense defined above). �

Example 2.3.2 The initial value problem

ẋ = x1/3, x(t0) = 0

where x ∈ R, has at least two solutions given by

ϕ1(t) =
[
2
3
(t − t0)

]3/2

and ϕ2(t) = 0 for t ≥ t0. �

Example 2.3.3 The scalar initial value problem

ẋ = ax, x(t0) = x0

where x ∈ R, has a unique solution given by ϕ(t) = ea(t−t0)x(t0) for t ≥ t0. �
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The following result, called the Peano–Cauchy Existence Theorem, provides a set
of sufficient conditions for the existence of solutions of the initial value problem (IE).

Theorem 2.3.1 Let f ∈ C[D, Rn]. Then for any (t0, x0) ∈ D, the initial value
problem (IE) has a solution defined on [t0, t0 + c) for some c > 0. �

The next result provides a set of sufficient conditions for the uniqueness of solutions
of the initial value problem (IE).

Theorem 2.3.2 Let f ∈ C[D, Rn]. Assume that for every compact set K ⊂ D, f
satisfies the Lipschitz condition∣∣f(t, x) − f(t, y)

∣∣ ≤ LK |x − y| (2.3.2)

for all (t, x), (t, y) ∈ K where LK is a constant depending only on K. Then (IE)
has at most one solution on any interval [t0, t0 + c), c > 0. �

In the problem section we provide details for the proofs of Theorems 2.3.1 and
2.3.2. Alternatively, the reader may wish to refer, for example, to Miller and Michel
[37] for proofs of these results.

Next, let ϕ be a solution of (E) on an interval J . By a continuation or extension of
ϕ we mean an extension ϕ0 of ϕ to a larger interval J0 in such a way that the extension
solves (E) on J0. Then ϕ is said to be continued or extended to the larger interval
J0. When no such continuation is possible, then ϕ is said to be noncontinuable.

Example 2.3.4 The differential equation

ẋ = x2

has a solution ϕ(t) = 1/(1 − t) defined on J = (−1, 1). This solution is continuable
to the left to −∞ and is not continuable to the right. �

Example 2.3.5 The differential equation

ẋ = x1/3 (2.3.3)

where x∈R, has a solution ψ(t)≡ 0 on J =(−∞, 0). This solution is continuable to
the right in more than one way. For example, both ψ1(t) ≡ 0 and ψ2(t) = (2t/3)3/2

are solutions of (2.3.3) for t ≥ 0. �

Before stating the next result, we require the following concept.

Definition 2.3.1 A solution ϕ of (E) defined on the interval (a, b) is said to be
bounded if there exists a β > 0 such that |ϕ(t)| < β for all t ∈ (a, b), where β may
depend on ϕ. �
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In the next result we provide a set of sufficient conditions for the continuability of
solutions of (E).

Theorem 2.3.3 Let f ∈ C[J × R
n, Rn] where J = (a, b) is a finite or an infinite

interval. Assume that every solution of (E) is bounded. Then every solution of (E)
can be continued to the entire interval J = (a, b). �

In the problem section we give details for the proof of the above result. Alterna-
tively, the reader may want to refer, for example, to Miller and Michel [37] for the
proof of this result.

In Chapter 6 we establish sufficient conditions that ensure the boundedness of the
solutions of (E), using the Lyapunov stability theory (refer to Example 6.2.9).

C. Dynamical systems determined by ordinary differential
equations

On R
n we define the metric d, using the Euclidean norm | · |, by

d(x, y) = |x − y| =

[
n∑

i=1

(xi − yi)2
]1/2

for all x, y ∈ R
n. Let A ⊂ R

n be an open set, let J ⊂ R be a finite or an infinite
open interval, and let D = J × A. Assume that for (E) and (IE) f ∈ C[D, Rn]. In
view of Theorem 2.3.1, (IE) has at least one solution on [t0, t0 + c) for some c > 0.
Let St0,x0 denote the set of all the solutions of (IE) and let SE = ∪(t0,x0)∈DSt0,x0 .
Then SE constitutes the set of all the solutions of (E) that are defined on any half
closed (resp., half open) interval [a, b) ⊂ J .

Let T = J and A ⊂ X = R
n. Then {T, X, A, SE} is a dynamical system in the

sense of Definition 2.2.3. When D = J × A is understood from context, we refer to
this dynamical system simply as SE and we call SE the dynamical system determined
by (E).

We note in particular if D = R
+ × R

n and if for (E), f ∈ C[D, Rn], and if
every motion in SE is bounded, then in view of Theorem 2.3.3, every motion of SE

is continuable forward for all time (see Definition 2.2.6).
We conclude this subsection with the following important example.

Example 2.3.6 Let A ∈ C[R+, Rn×n] and consider the linear homogeneous ordi-
nary differential equation

ẋ = A(t)x. (LH)

The existence and uniqueness of solutions of the initial value problems determined
by (LH) are ensured by Theorems 2.3.1 and 2.3.2. In Chapter 6 (see Example 6.2.9)
we show that all the motions of the dynamical systems SLH determined by (LH) are
continuable forward for all time (resp., all the solutions of (LH) can be continued
to ∞). �
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D. Two specific examples

In the following we consider two important special cases which we revisit several
times.

Example 2.3.7 Conservative dynamical systems, encountered in classical mechanics,
contain no energy-dissipating elements and are characterized by means of the Hamil-
tonian function H(p, q), where qT = (q1, . . . , qn) denotes n generalized position
coordinates and pT = (p1, . . . , pn) denotes n generalized momentum coordinates.
We assume that H(p, q) is of the form

H(p, q) = T (q, q̇) + W (q) (2.3.4)

where T denotes the kinetic energy, W denotes the potential energy of the system,
and q̇ = dq/dt. These energy terms are determined from the path-independent line
integrals

T (q, q̇) =
∫ q̇

0
p(q, ξ)T dξ =

∫ q̇

0

n∑
i=1

pi(q, ξ)dξi (2.3.5)

W (q) =
∫ q

0
f(η)T dη =

∫ q

0

n∑
i=1

fi(η)dηi (2.3.6)

where fi, i = 1, . . . , n, denote generalized potential forces.
Necessary and sufficient conditions for the path independence of the integral (2.3.5)

are given by
∂pi

∂q̇j
(q, q̇) =

∂pj

∂q̇i
(q, q̇), i, j = 1, . . . , n. (2.3.7)

A similar statement can be made for (2.3.6).
Conservative dynamical systems are now given by the system of 2n differential

equations 
q̇i =

∂H

∂pi
(p, q), i = 1, . . . , n

ṗi = −∂H

∂qi
(p, q), i = 1, . . . , n.

(2.3.8)

If we compute the derivative of H(p, q) with respect to time t, evaluated along the
solutions of (2.3.8) (given by qi(t), pi(t), i = 1, . . . , n), we obtain

dH

dt
(p(t), q(t)) =

n∑
i=1

∂H

∂pi
(p, q)ṗi +

n∑
i=1

∂H

∂qi
(p, q)q̇i

= −
n∑

i=1

∂H

∂pi
(p, q)

∂H

∂qi
(p, q) +

n∑
i=1

∂H

∂qi
(p, q)

∂H

∂pi
(p, q)

≡ 0.
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Thus, in a conservative dynamical system (2.3.8), the Hamiltonian (i.e., the total
energy in the system) is constant along the solutions of (2.3.8).

Along with initial data qi(t0), pi(t0), i= 1, . . . , n, the equations (2.3.8) determine
an initial value problem. If the right-hand side of (2.3.8) is Lipschitz continuous,
then according to Theorems 2.3.1 and 2.3.2, this initial value problem has unique
solutions for all initial data that can be continued forward for all time. The set of
the solutions of (2.3.8) generated by varying the initial data (t0, q(t0), p(t0)) over
R × R

2n determines a dynamical system in the sense of Definition 2.2.3. �

Example 2.3.8 (Lagrange’s Equation) If the preceding dynamical system is mod-
ified to contain elements that dissipate energy, such as viscous friction elements in
mechanical systems and resistors in electric circuits, we employ Lagrange’s equation
in describing such systems. For a system of n degrees of freedom, this equation is
given by

d

dt

(
∂L

∂q̇i
(q, q̇)

)
− ∂L

∂qi
(q, q̇) +

∂D

∂q̇i
(q̇) = Fi, i = 1, . . . , n (2.3.9)

where qT=(q1, . . . , qn) denotes the generalized position vector. The function L(q, q̇)
is called the Lagrangian and is defined as

L(q, q̇) = T (q, q̇) − W (q);

that is, it is the difference between the kinetic energy T (see (2.3.5)) and the potential
energy W (see (2.3.6)).

The function D(q̇) denotes Rayleigh’s dissipation function which is assumed to be
of the form

D(q̇) =
1
2

n∑
i=1

n∑
j=1

βij q̇iq̇j

where Q = [βij ] is a symmetric, positive semidefinite matrix. The dissipation func-
tion D represents one-half the rate at which energy is dissipated as heat (produced by
friction in mechanical systems and resistance in electric circuits).

The term Fi, i = 1, . . . , n, in (2.3.9) denotes applied force and includes all external
forces associated with the ith coordinate. The force Fi is defined to be positive when
it acts to increase the value of qi.

System (2.3.9) consists of n second-order ordinary differential equations that can
be changed into a system of 2n first-order ordinary differential equations by letting
x1 = q1, x2 = q̇1, . . . , x2n−1 = qn, x2n = q̇n. This system of equations, along
with given initial data xi(t0), i = 1, . . . , 2n, constitutes an initial value problem. If
the functions L and D are sufficiently smooth, as in the preceding example, then for
every set of initial data, the initial value problem has unique solutions that can be
continued forward for all time. Furthermore, similarly as in the preceding example,
this initial value problem determines a dynamical system. �
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2.4 Ordinary Differential Inequalities

Let J ⊂ R be a finite or an infinite interval and let D denote a fixed Dini derivative.
(E.g., if ϕ ∈ C[J, Rn], then Dϕ denotes one of the four different Dini derivatives
D+ϕ, D+ϕ, D−ϕ, D−ϕ.) Let g ∈ C[J× (R+)n, Rn] where g(t, 0)≥0 for all t∈ J .
We consider differential inequalities given by

Dx ≤ g(t, x). (EI)

We say that ϕ ∈ C
[
[t0, t1), (R+)n

]
is a solution of (EI) if (Dϕ)(t) ≤ g(t, ϕ(t)) for

all t ∈ [t0, t1) ⊂ J . Associated with (EI) we consider the initial value problem

Dx ≤ g(t, x), x(t0) = x0 (IEI)

where t0 ∈ J and x0 ∈ R
n
+ ∪ {0} and where R+ = (0,∞). ϕ ∈ C

[
[t0, t1), (R+)n

]
is said to be a solution of (IEI ) if ϕ is a solution of (EI) and if ϕ(t0) = x0 (recall
that R

+ = [0,∞)).
For x0 ∈ R

n
+, the existence of solutions of (IEI ) follows from the existence of the

initial value problem
ẋ = g(t, x), x(t0) = x0

where t0 ∈ J and x0 ∈ R
n
+. Note that when x0 = 0, then ϕ(t) ≡ 0 is a solution of

(IEI ).
Let T = J , A = R

n
+ ∪ {0} ⊂ X = (R+)n, and let X be equipped with the

Euclidean metric. Let St0,x0 denote the set of all solutions of (IEI ), and let

SEI = ∪(t0,x0)∈J×ASt0,x0 .

Then SEI is the set of all the solutions of (EI) with their initial values belonging to
A. It now follows that {T, X, A, SEI} is a dynamical system. We refer to this system
simply as system SEI . We have occasion to use this system in subsequent chapters
as a comparison system.

2.5 Difference Equations and Inequalities

The present section consists of two parts.

A. Difference equations

We now consider systems of first-order difference equations of the form

x(k + 1) = f(k, x(k)) (D)

where k ∈ N, x(k) ∈ R
n, and f : N × R

n → R
n.

Associated with (D) we have the initial value problem

x(k + 1) = f(k, x(k)), x(k0) = x0 (ID)



Section 2.5 Difference Equations and Inequalities 27

where k0 ∈ N, x0 ∈ R
n, and k ∈ Nk0

�
= [k0,∞) ∩ N. We say that an n vector-

valued function ϕ defined on Nk0 is a solution of (ID) if ϕ(k + 1) = f(k, ϕ(k)) and
ϕ(k0) = x0 for all k ∈ Nk0 . Any solution of (ID) is also said to be a solution of (D).

Because f in (D) is a function, there are no difficulties that need to be addressed
concerning the existence, uniqueness, and continuation of solutions of (ID). Indeed,
these issues follow readily from induction and the fact that the solutions of (ID) are
defined on Nk0 .

Let ϕ(·, k0, x0) : Nk0 → R
n denote the unique solution of (ID) for x(k0)= x0 and

let SD = ∪(k0,x0)∈N×Rn{ϕ(·, k0, x0)}. Then SD is the set of all possible solutions
of (D) defined on Nk0 for all k0 ∈ N.

Let T = N and X = A = R
n and let X be equipped with the Euclidean metric.

Then {T, X, A, SD} is a discrete-time, finite-dimensional dynamical system (see
Definition 2.2.3). Moreover, every motion of this dynamical system, which for short
we denote by SD, is continuable forward for all time.

Example 2.5.1 Important examples of dynamical systems determined by difference
equations include second-order sections of digital filters in direct form, depicted in
the block diagram of Figure 2.5.1.

Unit r(k) Overflow x  (k+1) x  (k) Unit 22

b

a

nonlinearity delay delay
x  (k)1

Figure 2.5.1: Digital filter in direct form.

In such filters, the type of overflow nonlinearity that is used depends on the type
of arithmetic used. Frequently used overflow nonlinearities include the saturation
function defined by

sat(θ) =


1, θ ≥ 1
θ, −1 < θ < 1
−1, θ ≤ −1.

(2.5.1)

Letting r denote the external input to the filter, the equations that describe the filter
are now given by {

x1(k + 1) = x2(k)
x2(k + 1) = sat[ax1(k) + bx2(k) + r(k)].

(2.5.2)

With r(k) given for k ∈ N, (2.5.2) possesses a unique solution ϕ(k, k0, x0)
for every set of initial data (k0, x0) ∈ N × R

n that exists for all k ≥ k0, where
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x0 = [x1(k0), x2(k0)]T . The set of all solutions of (2.5.2) generated by varying
(k0, x0) over N × R

n, determines a dynamical system. �

B. Difference inequalities
We conclude the present section with a brief discussion of systems of difference
inequalities given by

x(k + 1) ≤ g(k, x(k)) (DI)

where k∈N and g : N × (R+)n → (R+)n with g(k, 0) ≥ 0 for all k ∈ N. A function
ϕ : Nk0 → (R+)n is a solution of (DI) if

ϕ(k + 1) ≤ g(k, ϕ(k))

for all k∈Nk0 . In this case ϕ(k0) is an initial value. For any initial value x0 ∈(R+)n,
solutions of (DI) exist. For example, the solution of the initial value problem

x(k + 1) = g(k, x(k)), x(k0) = x0

is such a solution of (DI) (refer to Part A above).
Let T = N, A = X = (R+)n and let SDI denote the set of all solutions of

(DI) defined on Nk0 for any k0 ∈ N. Then {T, X, A, SDI} is a finite-dimensional,
discrete-time dynamical system. We have occasion to make use of this system as a
comparison system in subsequent chapters.

2.6 Differential Equations and Inclusions Defined on
Banach Spaces

The present section consists of two parts.

A. Differential equations defined on Banach spaces

In order to put the presentations of the subsequent sections of this chapter into a clearer
context, we briefly consider differential equations in Banach spaces. A general form
of a system of first-order differential equations in a Banach space X is given by

ẋ(t) = F (t, x(t)) (GE)

where F : R
+ × C → X, C ⊂ X . Associated with (GE) we have the initial value

problem given by
ẋ(t) = F (t, x(t)), x(t0) = x0 (IGE)

where t0 ∈ R
+, t ≥ t0 ≥ 0, and x0 ∈ C ⊂ X . Under appropriate assumptions,

which ensure the existence of solutions of (GE), the initial value problem (IGE)
determines a continuous-time, infinite-dimensional dynamical system, denoted by
SGE , which consists of all the solutions x(t, t0, x0) of (IGE) with x(t0, x0, t0) = x0
for all t0 ∈ R

+ and x0 ∈ C.
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For the conditions of existence, uniqueness, and continuation of solutions of the
initial value problem (IGE), the reader may want to refer, for example, to Lakshmikan-
tham and Leela [26] and Lasota and Yorke [27]. For example, if F is continuously
differentiable, or at least locally Lipschitz continuous, then the theory of existence,
uniqueness, and continuation of solutions of (IGE) is essentially the same as for the
finite-dimensional case we addressed in Section 2.3 when discussing ordinary differ-
ential equations (see, e.g., Dieudonné [11, Chapter 10, Section 4]). This is further
demonstrated in Sections 2.7 and 2.8, where we concern ourselves with special classes
of dynamical systems defined on Banach spaces, described by functional differential
equations and Volterra integrodifferential equations, respectively. In general, how-
ever, issues concerning the well posedness of initial value problems (IGE) can be
quite complicated. For example, as shown in Godunov [15], if F in (GE) is only
continuous, then (IGE) may not have a solution. Throughout this book, we assume
that (IGE) and the associated dynamical systems are well posed.

Important classes of infinite-dimensional continuous-time dynamical systems are
determined by partial differential equations. Such systems are addressed in Sec-
tion 2.10. In the analysis of initial and boundary value problems determined by
partial differential equations, semigroups play an important role. Semigroups, which
are important in their own right in determining a great variety of dynamical systems,
are treated in Section 2.9. We show how such systems may frequently be viewed as
special cases of (GE) and (IGE).

B. Differential inclusions defined on Banach spaces

In many applications (e.g., in certain classes of partial differential equations), the
function F in (GE) may be discontinuous or even multivalued. This generality
gives rise to differential inclusions in Banach spaces. One such form of systems of
differential inclusions is briefly discussed in the following.

Let Ω be an open subset of a Banach space X , let 2X denote the set of all subsets
of X , let ∅ be the empty set, and let F : R

+ × Ω → 2X − ∅ be a set-valued mapping.
We consider systems of differential inclusions given by ([1], [34])

ẋ(t) ∈ F (t, x) (GI)

where t ∈ R
+, x ∈ Ω, and ẋ(t) = dx(t)/dt. Associated with (GI), we have the

initial value problem
ẋ(t) ∈ F (t, x), x(t0) = x0 (IGI)

where t0 ∈ R
+ and x0 ∈ Ω.

Adifferentiable function ϕ defined on an interval [t0, t1) (t1 may be infinite) is said
to be a solution of (IGI ) if ϕ(t0) = x0 and if ϕ̇(t) ∈ F (t, ϕ(t)) for all t ∈ [t0, t1).
We call any solution of (IGI ) a solution of (GI).

Now let

SGI =
{
ϕ(·, t0, x0) : ϕ(·, t0, x0) is a solution of (IGI) defined on

[t0, t1), t1 > t0, t0 ∈ R
+, x0 ∈ Ω

}
.
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Then SGI is a dynamical system that we call the dynamical system determined by
(GI).

In the following, we consider some specific cases.

Example 2.6.1 Let Ω be an open subset of R
n and let fm, fM ∈ C[R+ × Ω, Rn]

where fm(t, x) ≤ fM (t, x) for all (t, x) ∈ R
+ × Ω where inequality of vectors is

to be interpreted componentwise. Now consider systems of differential inequalities
given by

fm(t, x) ≤ ẋ ≤ fM (t, x) (IE)

where ẋ = dx/dt.
A function ϕ ∈ C1

[
[t0, t1), Ω

]
, where t0 ∈ R

+ and where t1 may be finite or
infinite, is said to be a solution of (IE) if for all t ∈ [t0, t1),

fm(t, ϕ(t)) ≤ ϕ̇(t) ≤ fM (t, ϕ(t)).

We refer to the set of all the solutions of (IE), denoted by SIE , as the dynamical
system determined by (IE).

The existence of the solutions of (IE) is guaranteed by the existence of the solutions
of systems of ordinary differential equations. Thus, for any f ∈ C[Ω × R

+, Rn]
satisfying

fm(t, x) ≤ f(t, x) ≤ fM (t, x) (IE)

for all (t, x) ∈ R
+ × Ω, any solution of the equation

ẋ = f(t, x) (E)

must also be a solution of (IE).
It is clear that SIE is a specific example of a dynamical system determined by

differential inclusions. �

Example 2.6.2 Consider systems described by the set of equations

ẋ = Ax + Bu (2.6.1a)

where x ∈ R
n, u ∈ R

m, A ∈ R
n×n, B ∈ R

n×m, ẋ = dx/dt, and

u(t) =
[
g1(cT

1 x(t − τ)), . . . , gm(cT
mx(t − τ))

]T (2.6.1b)

where τ > 0, C = [c1, . . . , cm] ∈ R
m×m, and gi ∈ C[R, R], i = 1, . . . , n, satisfy

the sector conditions
δiσ

2 ≤ gi(σ)σ ≤ ∆iσ
2 (2.6.1c)

where ∆i ≥ δi ≥ 0, i = 1, . . . , m.
System (2.6.1) defines a feedback control system consisting of a linear plant

and nonlinear controllers that take transportation delays into account. The sector
conditions (2.6.1c) allow for deterministic uncertainties associated with the control
actuators.

We refer to the set of all the solutions of system (2.6.1a)–(2.6.1c), denoted by
S(2.6.1), as the dynamical system determined by (2.6.1). It is clear that S(2.6.1) is a
specific example of a dynamical system determined by differential inclusions. �
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We conclude by noting that the system (2.6.1a)–(2.6.1c) is a differential-difference
equation. Such equations are special cases of functional differential equations, which
we address next.

2.7 Functional Differential Equations

Let Cr denote the set C
[
[−r, 0], Rn

]
with norm defined by

‖ϕ‖ = max
{
|ϕ(t)| : − r ≤ t ≤ 0

}
. (2.7.1)

For a given function x(·) defined on [−r, c), c > 0, let xt be the function determined
by xt(s) = x(t+ s) for −r ≤ s ≤ 0 and t ∈ [0, c). A retarded functional differential
equation with delay r is defined as

ẋ(t) = F (t, xt) (F )

where F : Ω → R
n and Ω is an open set in R × Cr. A differentiable function

p ∈ C
[
[t0 − r, t0 + c), Rn

]
, c > 0, is a solution of equation (F ) if (t, pt) ∈ Ω for

t ∈ [t0, t0 + c) and ṗ = F (t, pt) for t ∈ [t0, t0 + c).
At first glance it may appear that the functional differential equation (F ) is not

a special case of the general differential equation (GE) defined on a Banach space
X (refer to Subsection 2.6A), because for the former, the range of the function F is
in R

n (and not in Cr), and for the latter, the range of the function F is in C ⊂ X .
However, it turns out that the functional differential equation (F ) can be transformed
into an equivalent equation which is a special case of (GE). To see this, we note that

ẋt(s) = ẋ(t + s), −r ≤ s ≤ 0

= lim
h→0+

1
h

[x(t + h + s) − x(t + s)], −r ≤ s ≤ 0

= lim
h→0+

1
h

[xt+h(s) − xt(s)]

�
=

d

dt
xt(s).

Defining Ft by

Ft(t, xt)(s) = F (t + s, xt+s), −r ≤ s ≤ 0,

it follows that the functional differential equation (F ) can equivalently be expressed
by the equation

ẋt =
d

dt
xt = Ft(t, xt) (F̃ )

which is a special case of equation (GE) because the range of Ft is in Cr.
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Example 2.7.1 Linear retarded functional differential equations have the form

ẋ = L(xt) (LF )

where L is a linear operator defined on Cr given by the Riemann–Stieltjes integral

L(ϕ) =
∫ 0

−r

[
dB(s)

]
ϕ(s) (2.7.2)

where B(s) = [bij(s)] is an n × n matrix whose entries are functions of bounded
variation on [−r, 0] (see, e.g., Yoshizawa [47]).

A special case of (LF ) are linear differential-difference equations given by

ẋ(t) = A1x(t) + B1x(t − r) (2.7.3)

where A1 and B1 are constant matrices (see, e.g., Bellman and Cooke [4]). �

Example 2.7.2 As a special case of the above example, we consider the scalar
equation

ẋ(t) =
∫ 0

−r

x(t + s)dη(s) (2.7.4)

where η is a function of bounded variation on [−r, 0] and the integral in (2.7.4) denotes
a Riemann–Stieltjes integral. Defining L : Cr → R by

L(ϕ) =
∫ 0

−r

ϕ(s)dη(s),

we can rewrite (2.7.4) as
ẋ(t) = L(xt).

If in particular, we consider the scalar differential-difference equation

ẋ(t) = ax(t) + bx(t − r), (2.7.5)

where a, b are real constants and t ∈ [0, c), and if we let

η(s) =


0, s = −r
b, −r < s < 0
a + b, s = r

then we obtain in the present case

L(ϕ) =
∫ 0

−r

ϕ(s)dη(s) = aϕ(0) + bϕ(−r). �

We now associate with (F ) the initial value problem

ẋ(t) = F (t, xt), xt0 = ψ (IF )
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where (t0, ψ) ∈ Ω ⊂ R × Cr. A function p ∈ C
[
[t0 − r, t0 + c), Rn

]
, c > 0, is a

solution of (IF ) if p is a solution of (F ) and if pt0 = ψ (i.e., pt0(s) = p(t0+s) = ψ(s)
for −r ≤ s < 0).

If in (F ) the function F is continuous, then p ∈ C
[
[t0 − r, t0 + c), Rn

]
, c > 0, is

a solution of (IF ) if and only if
p(t) = ψ(t − t0), t0 − r ≤ t ≤ t0

p(t) = ψ(0) +
∫ t

t0

F (s, ps)ds, t > t0.
(2.7.6)

Alternatively, if we define an operatorT on the function spaceC
[
[t0−r, t0+c), Rn

]
by

(T )(t) = ψ(t − t0), t0 − r ≤ t ≤ t0

(T )(t) = ψ(0) +
∫ t

t0

F (x, ps)ds, t > t0
(2.7.7)

then p is a solution of (IF ) if and only if p is a fixed point of the operator T , that is,
if and only if Tp = p. Note that when p satisfies (2.7.6), then the continuity of p
implies the differentiability of p on [t0, c).

Similarly as in the case of ordinary differential equations (see Theorem 2.3.1), the
following result provides a set of sufficient conditions for the existence of solutions
of the initial value problem (IF ).

Theorem 2.7.1 Let Ω be an open set in R × Cr and let F ∈ C[Ω, Rn]. Then for any
(t0, ψ) ∈ Ω, (IF ) has a solution defined on [t0 − r, t0 + c) for some c > 0. �

In the problem section we provide details for the proof of Theorem 2.7.1.
Similarly as in the case of ordinary differential equations (see Theorem 2.3.2), the

next result provides a set of sufficient conditions for the uniqueness of solutions of
the initial value problem (IF ).

Theorem 2.7.2 Let Ω be an open set in R × Cr and assume that on every compact
set K ⊂ Ω, F satisfies the Lipschitz condition∣∣F (t, x) − F (t, y)

∣∣ ≤ LK‖x − y‖ (2.7.8)

for all (t, x), (t, y) ∈ K, where LK is a constant that depends only on K, | · | is a
norm on R

n, and ‖ · ‖ is the norm defined on Cr in (2.7.1). Then (IF ) has at most
one solution on the interval [t0 − r, t0 + c) for any c > 0. �

In the problem section we provide details for the proof of Theorem 2.7.2. Also, in
Chapter 4, we prove a more general uniqueness result, applicable to differential equa-
tions defined on Banach spaces, in the context of the Lyapunov theory. Theorem 2.7.2
is a special case of that result (refer to Example 4.4.1).

Now let p ∈ C
[
[t0 − r, b), Rn

]
be a solution of (F ) where b > t0. We say that p0

is a continuation of p if there exists a b0 > b such that p0 ∈ C
[
[t0 − r, b0), Rn

]
is a
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solution of (F ) with the property that p0(t) = p(t) for t ∈ [t0 − r, b). A solution p of
(F ) is said to be noncontinuable if no such continuation exists.

Before giving a continuation result for (F ), we recall that a mapping F :X1 →X2,
where X1 and X2 are metric spaces, is said to be completely continuous if F is
continuous and if the closure of F (B) = {F (x) : x ∈ B} is compact for every
bounded closed set B ⊂ X1.

Theorem 2.7.3 Let Ω = [t0 − r, a) × Cr where a > t0 is finite or infinite. Assume
that F : Ω → R

n is completely continuous and that every solution of (F ) is bounded.
Then every solution of (F ) can be extended to the entire interval [t0 − r, a). �

In the problem section we provide details for the proof of Theorem 2.7.3. In
Chapter 3 we present results that ensure the boundedness of the solutions of (F ),
using Lyapunov stability theory.

Now let A ⊂ Cr be an open set, let J ⊂ R be a finite or an infinite interval, and let
Ω = J × A. Assume that F ∈ C[Ω, Rn]. Then (IF ) has at least one solution defined
on [t0 − r, t0 + c) (see Theorem 2.7.1). Let St0,ψ denote the set of all the solutions
of (IF ) and let SF = ∪(t0,ψ)∈ΩSt0,ψ . Then SF is the set of the solutions of (F ) that
are defined on any half closed (resp., half open) interval [a, b) ⊂ J .

Next, let T = J and let A ⊂ X = Cr with the metric determined by the norm
‖ · ‖ given in (2.7.1). Then {T, X, A, SF } is a dynamical system in the sense of Def-
inition 2.2.3. When T,X , and A are known from context, we refer to this dynamical
system simply as SF and we speak of the dynamical system determined by (F ).

Finally, we note that if in particular Ω = R
+ × Cr and F : Ω → R

n is completely
continuous and if every motion of SF is bounded, then in view of Theorem 2.7.3,
every motion of SF is continuable forward for all time.

When F in equation (F ) is a function of t, xt, and ẋt (rather than t and xt),
then the resulting equation is called a neutral functional differential equation. As
in the case of retarded functional differential equations, such equations determine
dynamical systems. We do not pursue systems of this type in this book.

2.8 Volterra Integrodifferential Equations

Volterra integrodifferential equations may be viewed as retarded functional differen-
tial equations with infinite delay; that is,

ẋ(t) = F (t, xt) (V )

where the interval [−r, 0] is replaced by the interval (−∞, 0]. This necessitates
the use of a fading memory space X which consists of all measurable functions
ϕ : (−∞, 0] → R

n with the property that ϕ is continuous on −h ≤ t ≤ 0 and that
for every ϕ ∈ X , the function ‖ · ‖ defined by

‖ϕ‖ = sup
{
|ϕ(t)| : − h ≤ t ≤ 0

}
+
∫ −h

−∞
p(t)|ϕ(t)|dt (2.8.1)
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is finite, where p : (−∞,−h) → R is a positive, continuously differentiable function
such that ṗ(t) ≥ 0 on (−∞,−h). It can easily be verified that this function is a
norm on X .

More generally other choices of norms for X include

‖ϕ‖ = sup
{
|ϕ(t)| : − h ≤ t ≤ 0

}
+
[ ∫ −h

−∞
p(t)|ϕ(t)|qdt

]1/q

(2.8.2)

where q ∈ [1,∞). If in particular q = 2 and h = 0, then the norm (2.8.2) is induced
by the inner product

‖ϕ‖2 = 〈ϕ, ϕ〉 = 〈ϕ(0), ϕ(0)〉 +
∫ 0

−∞
p(t)〈ϕ(t), ϕ(t)〉dt. (2.8.3)

It can readily be shown that when X is equipped with (2.8.2), then (X, ‖ · ‖) is a
Banach space and when X is equipped with the inner product (2.8.3), then (X, 〈·, ·〉)
is a Hilbert space.

Associated with (V ) is the initial value problem

ẋ(t) = F (t, xt), xt0 = ψ (IV )

where (t0, ψ) ∈ R
+ × X . A function ϕ ∈ C[(−∞, t0 + c), Rn], c > 0, is a solution

of (IV ) if ϕ is a solution of (V ) (i.e., ϕ̇(t) = F (t, ϕt) for t ∈ [t0, t0 + c)), and if
ϕt0 = ψ (i.e., ϕt0(s) = ϕ(t0 + s) = ψ(s) for −∞ < s ≤ 0).

We do not present results here concerning the existence, uniqueness, and con-
tinuation of solutions of (IV ). Instead, we refer the reader to Hale [20] for such
results.

Let T = R
+ and A ⊂ X , let St0,ψ denote the set of all the solutions of (IV ) and

let SV = ∪(t0,ψ)St0,ψ . Then SV denotes the set of all the solutions of (V ) that are
defined on any interval [a, b) ⊂ R

+ and {T, X, A, SV } is a dynamical system. When
the context is clear, we simply speak of the dynamical system SV .

An important class of Volterra integrodifferential equations are linear Volterra
integrodifferential equations of the form

ẋ(t) = Axt(0) +
∫ 0

−∞
K(s)xt(s)ds (LV )

which can equivalently be expressed as

ẋ(t) = Ax(t) +
∫ t

−∞
K(s − t)x(s)ds (2.8.4)

for t ≥ 0, where A ∈ R
n×n and K = [kij ] is a matrix-valued function with elements

kij ∈ L1[(−∞, 0), R], 1 ≤ i, j ≤ n.
Now let

Xp =
{
ψ : (−∞, 0] → R

n and ψ : (−∞, 0) → R
n belong to Lp

[
(−∞, 0), Rn

]}



36 Chapter 2. Dynamical Systems

and let Xp be equipped with a norm given by

‖ψ‖ = |ψ(0)| +
[∫ 0

−∞
|ψ(t)|pdt

]1/p

(2.8.5)

where p ∈ [1,∞), and let

Yp =
{
ψ ∈ Xp : ψ̇ ∈ Lp

[
(−∞, 0), Rn

]
and

ψ(t) = ψ(0) +
∫ t

0
ψ̇(s)ds for all t ≥ 0

}
.

Associated with (LV ) we have the initial value problem ẋ(t) = Axt(0) +
∫ 0

−∞
K(s)xt(s)ds, t ≥ 0

x(t) = ψ(t), t ≤ 0
(ILV )

where ψ ∈ Yp.
In Barbu and Grossman [3], the following result is established for (ILV ).

Theorem 2.8.1 For any ψ ∈ Yp, the initial value problem (ILV ) has a unique solution
x(t, ψ) that is defined on (−∞,∞). �

For any t0 ∈ R, let y(t, ψ, t0) = x(t − t0, ψ) where x(t, ψ) denotes the unique
solution of (ILV ). Let

SLV =
{
y = y(t, ψ, t0) : t0 ∈ R, ψ ∈ Yp

}
,

let T = R, and let A = Yp ⊂ Xp = X . Then {T, X, A, SLV } is a dynamical system,
which for short, we simply refer to as dynamical system SLV , or as the dynamical
system determined by (LV ).

In the following example we consider a simple model of the dynamics of a multi-
core nuclear reactor. We revisit this model in Chapter 9.

Example 2.8.1 [31] (Point kinetics model of a multicore nuclear reactor) We con-
sider the point kinetics model of a multicore nuclear reactor with l cores described
by the equations

Λiṗi(t) =
[
ρi(t) − εi − βi

]
pi(t) + ρi(t) +

6∑
k=1

βkicki(t)

+
l∑

j=1

εji(Pj0/Pi0)
∫ t

−∞
hji(t − s)pj(s)ds

ċki(t) = λki[pi(t) − cki(t)], i = 1, . . . , l, k = 1, . . . , 6

(2.8.6)
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where pi : R → R and cki : R → R represent the power in the ith core and the concen-
tration of the kth precursor in the ith core, respectively. The constants Λi, εi, βki, εji,
Pi0, and λki are all positive and

βi =
6∑

k=1

βki.

The functions hji ∈ L1(R+, R). They determine the coupling between cores due
to neutron migration from the jth to the ith core. The function ρi represents the
reactivity of the ith core which we assume to have the form

ρi(t) =
∫ t

−∞
wi(t − s)pi(s)ds (2.8.7)

where wi ∈ L1[R+, R]. The functions pi(t) and cki(t) are assumed to be known,
bounded, continuous functions defined on −∞ < t < 0.

In the present context, a physically realistic assumption is that cki(t)eλkit → 0 as
t → −∞. Under this assumption, we can solve for cki in terms of pi to obtain

cki(t) =
∫ t

−∞
λkie

−λki(t−s)pi(s)ds. (2.8.8)

Using (2.8.7) and (2.8.8) to eliminate ρi and cki from (2.8.6), we obtain l Volterra
integrodifferential equations for pi(t), i = 1, . . . , l. To express these equations in a
more compact form, we let

Fi(t) = Λ−1
i

[
wi(t) +

6∑
k=1

βkiλkie
−λkit + εiihii

]
,

Ki = Λ−1
i [εi + βi],

ni(t) = Λ−1
i wi(t), and

Gij =
εijPj0hji(t)

ΛiPi0
.

With pi(t) defined on −∞ < t < ∞, we have

ṗi(t) = −Kipi(t) +
∫ t

−∞
Fi(t − s)pi(s)ds + pi(t)

∫ t

−∞
ni(t − s)pi(s)ds

+
l∑

j=1,i �=j

∫ t

−∞
Gij(t − s)pj(s)ds, i = 1, . . . , l

for t ≥ 0 and pi(t) = ϕi(t) defined on −∞ < t ≤ 0 where ϕi ∈ Zi, the fading
memory space of all absolutely continuous functions ψi defined on (−∞, 0] such that

‖ψi‖2 = |ψi(0)|2 +
∫ 0

−∞
|ψi(s)|2eLisds < ∞,



38 Chapter 2. Dynamical Systems

where Li > 0 is a constant. We address the choice of Li in Chapter 9, when studying
the stability properties of (2.8.6). The set of all solutions of system (2.8.6), generated
by varying ϕi over Zi, i = 1, . . . , l, determines a dynamical system. �

2.9 Semigroups

We now address linear and nonlinear semigroups that generate large classes of dy-
namical systems. Before addressing the subject on hand we need to introduce some
additional notation.

A. Notation

Let X and Z denote Banach spaces and let ‖ · ‖ denote norms on such spaces. Also,
Hilbert spaces are denoted X, Z, or H with inner product 〈·, ·〉. In this case, the norm
of x ∈ H is given by ‖x‖ = 〈x, x〉1/2.

Let A be a linear operator defined on a domain D(A) ⊂ X with range in Z. We
call A closed if its graph, Gr(A) = {(x, Ax) ∈ X × Z : x ∈ D(A)} is a closed
subset of X × Z and we call A bounded if it maps bounded sets in X into bounded
sets in Z, or equivalently, if it is continuous.

Subsequently, I : X → X denotes the identity transformation. Given a closed
linear operator A : D(A) → X, D(A) ⊂ X , we define the resolvent set of A, ρ(A),
as the set of all points λ in the complex plane such that the linear transformation
(A − λI) has a bounded inverse, (A − λI)−1 : X → X . The complement of ρ(A),
denoted σ(A), is called the spectral set or the spectrum of A.

Finally, given a bounded linear operator A : D(A) → Z, D(A) ⊂ X , its norm is
defined by

‖A‖ = sup
{
‖Ax‖ : ‖x‖ = 1

}
.

B. C0-semigroups

Consider a process whose evolution in time can be described by a linear differential
equation

ẋ(t) = Ax(t), x(0) = x0 ∈ D(A) (IL)

for t ∈ R
+. Here A : D(A) → X is assumed to be a linear operator with domain

D(A) dense in X . Moreover, A is always assumed to be closed or else to have an
extension A that is closed. By a strong solution x(t) of (IL) we mean a function
x : R

+ → D(A) such that ẋ(t) exists and is continuous on R
+ → X and such that

(IL) is true. The abstract initial value problem (IL) is said to be well posed if for
each x0 ∈ D(A), there is one and only one strong solution x(t, x0) of (IL) defined
on 0 ≤ t < ∞ and if in addition x(t, x0) depends continuously on (t, x0) in the sense
that given any N > 0 there is an M > 0 such that ‖x(t, x0)‖ ≤ M when 0 ≤ t ≤ N
and ‖x0‖ ≤ N .
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If (IL) is well posed, then there is an operator T defined by T (t)x0 = x(t, x0)
which is (for each fixed t) a bounded linear mapping from D(A) to X . We call
T (t)x0 = x(t, x0), t ≥ 0, a trajectory of (IL) for x0. Because T (t) is bounded,
it has a continuous extension from D(A) to the larger domain X . The trajectories
x(t, x0) = T (t)x0 for x0 ∈ X but x0 /∈ D(A) are called generalized solutions of
(IL). The resulting family of operators {T (t) : t ∈ R

+} is called a C0-semigroup or
a linear semigroup.

Independent of the above discussion, we now define C0-semigroup.

Definition 2.9.1 [21], [23], [39] Aone-parameter family of bounded linear operators
T (t) : X → X, t ∈ R

+, is said to be a C0-semigroup, or a linear semigroup, if

(i) T (0) = I (I is the identity operator on X);

(ii) T (t + s) = T (t)T (s) for any t, s ∈ R
+; and

(iii) limt→0+ T (t)x = x for all x ∈ X . �

Evidently, every C0-semigroup is generated by some abstract differential equation
of the form (IL).

Definition 2.9.2 Given any C0-semigroup T (t), its infinitesimal generator is the
operator defined by

Ax = lim
t→0+

T (t)x − x

t

where D(A) consists of all x ∈ X for which this limit exists. �

Theorem 2.9.1 [39] For a C0-semigroup T (t), there exist an ω ≥ 0 and an M ≥ 1
such that

‖T (t)‖ ≤ Meωt. �

The next result provides necessary and sufficient conditions for a given linear
operator A to be the infinitesimal generator of some C0-semigroup.

Theorem 2.9.2 [21], [39] (Hille–Yoshida–Phillips Theorem) A linear operator A is
the infinitesimal generator of a C0-semigroup T (t) satisfying ‖T (t)‖ ≤ Meωt, if and
only if

(i) A is closed and D(A) is dense in X;

(ii) the resolvent set ρ(A) of A contains (ω, ∞); and

∥∥(A − λI)−n
∥∥ ≤ M

(λ − ω)n
for all λ > ω,

n = 1, 2, . . . , where I denotes the identity operator on X . �

A C0-semigroup of contractions is a C0-semigroup T (t) satisfying ‖T (t)‖ ≤ 1
(i.e., in Theorem 2.9.1, M = 1 and ω = 0). Such semigroups are of particular interest
in Hilbert spaces.
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Definition 2.9.3 A linear operator A : D(A) → H , D(A) ⊂ H , on a Hilbert space
H is said to be dissipative if Re〈Ax, x〉 ≤ 0 for all x ∈ D(A). �

For C0-semigroups of contractions we have the following result.

Theorem 2.9.3 If A is the infinitesimal generator of a C0-semigroup of contractions
on a Hilbert space H , then A is dissipative and the range of (A − λI) is all of H for
any λ > 0. Conversely, if A is dissipative and if the range of (A − λI) is H for at
least one constant λ0 > 0, then A is closed and A is the infinitesimal generator of a
C0-semigroup of contractions. �

The above result is useful in the study of parabolic partial differential equations
(Section 2.10).

For linear semigroups with generator A one can deduce many important qualitative
properties by determining the spectrum of A. Some of these are summarized in the
following results (refer to Slemrod [42]).

Theorem 2.9.4 Given any two real numbers α and β with α < β there exists a C0-
semigroup T (t) on a Hilbert space H such that Reλ ≤ α for all λ ∈ σ(A) and in
addition ‖T (t)‖ = eβt for all t ≥ 0. �

The next result applies to the following class of semigroups.

Definition 2.9.4 A C0-semigroup T (t) is called differentiable for t > r if for each
x ∈ X , T (t)x is continuously differentiable on r < t < ∞. �

For example, a system of linear time-invariant functional differential equations
with delay [−r, 0] (as discussed in the last subsection of this section) determines
a semigroup that is differentiable for t > r. Also, systems of parabolic partial
differential equations (as discussed in the next section) normally generate semigroups
that are differentiable for t > 0. In the finite-dimensional case (when X = R

n), for
linear semigroups the generator A must be an n×n matrix whose spectrum is the set
of eigenvalues {λ} of A. Such semigroups are differentiable as well for t > 0.

Following Slemrod [42] we have the following result.

Theorem 2.9.5 If T (t) is a C0-semigroup that is differentiable for t > r, if A is its
generator, and if Reλ ≤ −α0 for all λ ∈ σ(A), then given any positive α < α0, there
is a constant K(α) > 0 such that ‖T (t)‖ ≤ K(α)e−αt for all t > r. �

We conclude by defining the dynamical system determined by a C0-semigroup
T (t) as

SC0 =
{
p = p(·, x0, t0) : p(t, x, t0)

�
= T (t − t0)x, t0 ∈ R

+, t ≥ t0, x ∈ X
}
.

We consider some specific examples of dynamical systems determined by C0-
semigroups in the last subsection of this section.
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C. Nonlinear semigroups

A nonlinear semigroup is a generalization of the notion of C0-semigroup. In arriving
at this generalization, the linear initial value problem (IL) is replaced by the nonlinear
initial value problem

ẋ(t) = A(x(t)), x(0) = x0 (IN )

where A : D(A) → X is a nonlinear mapping. As mentioned already in Section 2.6
(in connection with initial value problem (IGE)) if A is continuously differentiable
(or at least locally Lipschitz continuous), then the theory of existence, uniqueness,
and continuation of solutions of (IN ) is the same as in the finite-dimensional case
(see Dieudonné [11, Chapter 10, Section 4]). If A is only continuous, then (IN ) needs
not to have any solution at all (see Dieudonné [11, p. 287, Problem 5]). In general,
one wishes to have a theory that includes nonlinear partial differential equations.
This mandates that A be allowed to be only defined on a dense set D(A) and to be
discontinuous. For such functions A, the accretive property (defined later) generalizes
the Lipschitz property.

Definition 2.9.5 [5], [8], [9], [15], [25], [27] Assume that C is a subset of a Banach
space X . A family of one-parameter (nonlinear) operators T (t) : C → C, t ∈ R

+, is
said to be a nonlinear semigroup defined on C if

(i) T (0)x = x for x ∈ C;

(ii) T (t + s)x = T (t)T (s)x for t, s ∈ R
+, x ∈ C; and

(iii) T (t)x is continuous in (t, x) on R
+ × C. �

A nonlinear semigroup T (t) is called a quasi-contractive semigroup if there is a
number w ∈ R such that ∥∥T (t)x − T (t)y

∥∥ ≤ ewt‖x − y‖ (2.9.1)

for all t ∈ R
+ and for all x, y ∈ C. If in (2.9.1) w ≤ 0, then T (t) is called a

contraction semigroup. Note that C = X is allowed as a special case.

The mapping A in (IN ) is sometimes multivalued (i.e., a relation) and in general
must be extended to be multivalued if it is to generate a quasi-contractive semigroup.
Thus, we assume that A(x), x∈X, is a subset of X and we identify A with its graph,

Gr(A) =
{
(x, y) : x ∈ X and y ∈ A(x)

}
⊂ X × Y.

In this case the domain of A, written as D(A), is the set of all x ∈ X for which
A(x) �= ∅, the range of A is the set

Ra(A) = ∪
{
A(x) : x ∈ D(A)

}
,

and the inverse of A at any point y is defined as the set

A−1(y) =
{
x ∈ X : y ∈ A(x)

}
.
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Let λ be a real or complex scalar. Then λA is defined by

(λA)(x) =
{
λy : y ∈ A(x)

}
and A + B is defined by

(A + B)(x) = A(x) + B(x) =
{
y + z : y ∈ A(x), z ∈ B(x)

}
.

Definition 2.9.6 A multivalued operator A is said to generate a nonlinear semigroup
T (t) on C if

T (t)x = lim
n→∞

(
I − t

n
A

)−n

(x)

for all x ∈ C.
The infinitesimal generator As of a nonlinear semigroup T (t) is defined by

As(x) = lim
t→0+

T (t)x − x

t
, x ∈ D(As)

for all x such that this limit exists. The operator A and the infinitesimal generator As

are generally different operators. �

Definition 2.9.7 A multivalued operator A on X is said to be w-accretive if∥∥(x1 − λy1) − (x2 − λy2)
∥∥ ≥ (1 − λw)‖x1 − x2‖ (2.9.2)

for all λ ≥ 0 and for all xi ∈ D(A) and yi ∈ A(xi), i = 1, 2. �

If, in particular, X is a Hilbert space, then (2.9.2) reduces to〈
(wx1 − y1) − (wx2 − y2), x1 − x2

〉
≥ 0. (2.9.3)

The above property for the nonlinear case is analogous to (A−wI) being dissipative
in the linear symmetric case.

Theorem 2.9.6 Assume that A is w-accretive and that for each λ ∈ (0, λ0),

Ra(I − λA) ⊃ C = D(A)

where D(A) denotes the closure of D(A) and λ0 > 0 is a constant. Then A generates
a quasi-contractive semigroup T (t) on C with∥∥T (t)x − T (t)y

∥∥ ≤ ewt‖x − y‖

for all t ∈ R
+ and for all x, y ∈ C. �

In general, the trajectories T (t)x determined by the semigroup in Theorem 2.9.6
are generalized solutions of (IN ) that need not be differentiable. Indeed, an example
is discussed in Crandall and Liggett [9, Section 4], where w = 0, D(A) = X , A
generates a quasi-contraction T (t) but the infinitesimal generator As has an empty
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domain. This means that not even one trajectory T (t)x is differentiable at even one
time t. If the graph of A is closed, then A is always an extension of the infinitesimal
generator As. So whenever x(t) = T (t)x has a derivative, then ẋ(t) must be in
A(x(t)).

The situation is more reasonable in the setting of a Hilbert space H . If A is w-
accretive and closed (i.e., its graph is a closed subset of H×H), then for any x∈D(A)
the set A(x) is closed and convex. Thus, there is an element A0(x)∈A(x) such that
A0(x) is the element of A(x) closest to the origin. Given a trajectory x(t) = T (t)x,
the right derivative

D+x(t) = lim
h→0+

x(t + h) − x(t)
h

must exist at all points t ∈ R
+ and be continuous except possibly at a countably

infinite set of points. The derivative ẋ(t) exists and is equal to D+x(t) at all points
where D+x(t) is continuous. Furthermore,

D+x(t) = A0(x(t))

for all t ≥ 0. These results can be generalized to any space X that is uniformly
convex. (Refer to Dunford and Schwarz [12, p. 74], for the definition of a uniformly
convex space. In particular, any Lp space, 1 < p < ∞, is a uniformly convex space.)

Definition 2.9.8 A trajectory x(t) = T (t)x0 is called a strong solution of (IN ) if
x(t) is absolutely continuous on any bounded subset of R

+ (so that ẋ(t) exists almost
everywhere) if x(t) ∈ D(A) and if ẋ(t) ∈ A(x(t)) almost everywhere on R

+. �

We also have

Definition 2.9.9 The initial value problem (IN ) is called well posed on C if there is
a semigroup T (t) such that for any x0 ∈ D(A), T (t)x0 is a strong solution of (IN ),
and if D(A) = C. �

We summarize the above discussion in the following theorem.

Theorem 2.9.7 If X is a Hilbert space or a uniformly convex Banach space and if
A is w-accretive and closed, then the initial value problem (IN ) is well posed on
C = D(A) and ẋ(t) = A0(x(t)) almost everywhere on R

+. �

We conclude by defining the dynamical system determined by a nonlinear semi-
group T (t) as

SN =
{
p = p(·, x, t0) : p(t, x, t0)

�
= T (t − t0)x, t0 ∈ R

+, t ≥ t0, x ∈ C
}
.

We consider in the next subsection several specific examples of semigroups.

D. Examples of semigroups

We now consider several classes of important semigroups that arise in applications
and we provide some related background material which we find useful in subsequent
chapters.
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Example 2.9.1 (Ordinary differential equations) Consider initial value problems de-
scribed by a system of autonomous first-order ordinary differential equations given by

ẋ = g(x), x(0) = x0 (2.9.4)

where g : R
n → R

n and where it is assumed that g satisfies the Lipschitz condition∣∣g(x) − g(y)
∣∣ ≤ L|x − y| (2.9.5)

for all x, y ∈ R
n. In this case g is w-accretive with w = L and (2.9.5) implies that

g is continuous on R
n. This continuity implies that the graph of g is closed. By

Theorem 2.9.7 there exist a semigroup T (t) and a subset D ⊂ R
n such that D is

dense in R
n and for any x0 ∈ D, any solution x(t) = T (t)x0 of (2.9.4) is absolutely

continuous on any finite interval in R
+. In the present case D = R

n and T (t) is a
quasi-contractive semigroup with∣∣T (t)x − T (t)y

∣∣ ≤ eLt|x − y| (2.9.6)

for all x, y ∈ R
n and t ∈ R

+.
Now assume that in (2.9.4) g(x) = Ax where A ∈ R

n×n; that is,

ẋ = Ax, x(0) = x0. (2.9.7)

In the present case (2.9.7) determines a differentiable C0-semigroup with generator
A. The spectrum of A, σ(A), coincides with the set of all eigenvalues of A, {λ}.
Now according to Theorem 2.9.5, if Reλ ≤ −α0 for all λ ∈ σ(A), where α0 > 0 is
a constant, then given any positive α < α0, there is a constant K(α) > 0 such that∥∥T (t)

∥∥ ≤ K(α)e−αt, t ∈ R
+. (2.9.8)

�

Example 2.9.2 (Functional differential equations) Consider initial value problems
described by a system of autonomous first-order functional differential equations{

ẋ(t) = F (xt), t > 0
x(t) = ψ(t), −r ≤ t ≤ 0

(2.9.9)

where F : Cr → R
n. (For the notation used in this example, refer to Section 2.7.)

Assume that F satisfies the Lipschitz condition∣∣F (ξ) − F (η)
∣∣ ≤ K‖ξ − η‖ (2.9.10)

for all ξ, η ∈ Cr. Under these conditions, the initial value problem (2.9.9) has a
unique solution for every initial condition ψ, denoted by p(t, ψ) which is defined for
all t ∈ R

+ (refer to Section 2.7). In this case T (t)ψ = pt(·, ψ), or equivalently,
(T (t)ψ)(s) = p(t + s, ψ) defines a quasi-contractive semigroup on Cr. Define
A : D(A) → Cr by

Aψ = ψ̇, D(A) =
{
ψ ∈ Cr : ψ̇ ∈ Cr and ψ̇(0) = F (ψ)

}
. (2.9.11)
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Then D(A) is dense in Cr, A is the generator and also the infinitesimal generator of
T (t), and T (t) is differentiable for t > r.

If in (2.9.9) F = L is the linear mapping from Cr to R
n defined in (2.7.2), we have

ẋ = L(xt) (2.9.12)

where

L(ϕ) =
∫ 0

−r

[
dB(s)

]
ϕ(s). (2.9.13)

In this case the semigroup T (t) is a C0-semigroup. The spectrum of its generator
consists of all solutions of the equation

det
(∫ 0

−r

eλsB(s) − λI

)
= 0. (2.9.14)

If all solutions of (2.9.14) satisfy the relation Reλ ≤ −γ0 for some γ0 > 0, then
given any positive γ < γ0, there is a constant K(γ) > 0 such that∥∥T (t)

∥∥ ≤ K(γ)e−γt, t ∈ R
+ (2.9.15)

(refer to Theorem 2.9.5). �

Example 2.9.3 (Volterra integrodifferential equations) We discuss the class of
Volterra integrodifferential equations given in Section 2.8, ẋ(t) = Ax(t) +

∫ t

−∞
K(s − t)x(s)ds, t ≥ 0

x(t) = ϕ(t), −∞ < t ≤ 0
(2.9.16)

where A ∈ R
n×n and K ∈ L1

[
(−∞, 0), Rn×n

]
; that is, K is an n×n matrix-valued

function whose entries kij ∈ L1
[
(−∞, 0), R

]
. Let Xp, 1 ≤ p < ∞, be defined as in

Section 2.8. Then
Xp � Lp

[
(−∞, 0), Rn

]
× R

n (2.9.17)

where � denotes an isomorphic relation. To see this, note that for any ϕ ∈ Xp,
ϕ|(−∞,0) ∈Lp[(−∞, 0), Rn], ϕ(0) ∈ R

n. Conversely, for any ψ ∈ Lp[(−∞, 0), Rn]
and Z ∈ R

n, there is a unique ϕ ∈ Xp such that ϕ|(−∞,0) = ψ, and ϕ(0) = Z. In
this case, if we denote ϕ = (Z, ψ), the norm defined by (2.8.5) can now be written as

‖ϕ‖ = ‖(Z, ψ)‖ = |Z| +
[∫ 0

−∞
|ψ(s)|pds

]1/p

, 1 ≤ p < ∞. (2.9.18)

We now define an operator Ã by

Ã(Z, ψ) =
(

AZ +
∫ 0

−∞
K(s)ψ(s)ds, ψ̇

)
(2.9.19)
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on the domain

D(Ã) =
{
(Z, ψ) : ψ̇ ∈ Lp

[
(−∞, 0), Rn

]
and ψ(t) = Z+

∫ t

0
ψ̇(s)ds for all t ≤ 0

}
.

(2.9.20)
Then Ã is an infinitesimal generator of a C0-semigroup T (t) on Xp. Furthermore,
when (Z, ψ) ∈ D(Ã), the equation(

x(t), xt

)
= T (t)(Z, ψ) (2.9.21)

determines a function x(t) which is the unique solution of (2.9.16) (refer to Barbu
and Grossman [3]).

If Reλ > 0, then λ ∈ σ(Ã) if and only if

det
(

A +
∫ 0

−∞
eλsK(s)ds − λI

)
= 0. (2.9.22)

On the other hand, if Reλ ≤ 0, then λ is always in σ(Ã). �

There are many other important classes of semigroups, including those that are
determined by partial differential equations. We address some of these in the next
section.

2.10 Partial Differential Equations

In our discussion of partial differential equations we require additional nomenclature.

A. Notation

A vector index or exponent is a vector αT = (α1, . . . , αn) whose components are
nonnegative integers, |α| =

∑n
j=1 αj , and for any x ∈ R

n,

xα = (x1, x2, . . . , xn)α = xα1
1 · · ·xαn

n .

Let Dk = i(∂/∂xk) for k = 1, . . . , n, where i = (−1)1/2 and let D = (D1, D2, . . . ,
Dn) so that

Dα = Dα1
1 · · ·Dαn

n . (2.10.1)

In the sequel we let Ω be a domain in R
n (i.e., Ω is a connected set) with boundary

∂Ω and closure Ω. We assume that ∂Ω is of class Ck for suitable k ≥ 1. By this we
mean that for each x ∈ ∂Ω, there is a ball B with center at x such that ∂Ω ∩ B can
be represented in the form

xi = ϕ(x1, . . . , xi−1, xi+1, . . . , xn)

for some i, i = 1, . . . , n, with ϕ continuously differentiable up to order k. This
smoothness is easily seen to be true for the type of regions that normally occur in
applications.
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Also, let Cl[Ω, C] denote the set of all complex-valued functions defined on Ω
whose derivatives up to order l are continuous. For u ∈ Cl[Ω, C], l ∈ N, we define
the norm

‖u‖l =

∫
Ω

∑
|α|≤l

|Dαu|2
1/2

. (2.10.2)

Let
C̃l[Ω, C] =

{
u ∈ Cl[Ω, C] : ‖u‖l < ∞

}
and let

Cl
0[Ω, C] =

{
u ∈ Cl[Ω, C] : u = 0 in a neighborhood of ∂Ω

}
.

We define H l[Ω, C] and H l
0[Ω, C] to be the completions in the norm ‖·‖l of the spaces

C̃l[Ω, C] and Cl
0[Ω, C], respectively. In a similar manner, we can define the spaces

H l[Ω, R] and H l
0[Ω, R]. The spaces defined above are sometimes called Sobolev

spaces. Their construction builds “zero boundary conditions” into, for example,
H l

0[Ω, R].
Finally, we define C∞[Ω, C] = ∩l∈NCl[Ω, C] and we say that u ∈ C∞[Ω, C]

if Dαu can be extended to be a continuous function on Ω for any α ∈ N
n. We

define C∞[Ω, R] and C∞[Ω, R] in a similar manner. Occasionally, we say that u
is a real-valued smooth function on Ω (on Ω) if u ∈ C∞[Ω, R] (if u ∈ C∞[Ω, R]).
Complex-valued smooth functions on Ω (on Ω) are defined similarly.

B. Linear equations with constant coefficients

Given r × r complex constant square matrices Aα, α ∈ N
n, let

A(D) =
∑

|α|≤m

AαDα,

and consider the initial value problem

∂u

∂t
(t, x) = A(D)u(t, x), u(0, x) = ψ(x) (IP )

where t ∈ R
+, x ∈ R

n, ψ ∈ L2[Rn, C] are given, and u : R
+ × R

n → C
r is to be

determined.
Proceeding intuitively for the moment, we apply L2-Fourier transforms to (IP ) to

obtain
∂ũ(t, ω)

∂t
= A(ω)ũ(t, ω), ũ(0, ω) = ψ̃(ω)

where A(ω) =
∑

|α|≤m Aαωα for all ω ∈ R
n. In order to have a solution such that

u(t, x) and (∂u/∂t)(t, x) are in L2 over x ∈ R
n, it is necessary that A(ω)ũ(t, ω) be

in L2 over ω ∈ R
n. This places some restrictions on A(ω). For the proof of the next

result, refer to Krein [23, p. 163].
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Theorem 2.10.1 The mapping T (t)ψ = u(t, ·) defined by the solutions u(t, x) of
(IP ) determines a C0-semigroup on X = L2[Rn, C] if and only if there exists a
nonsingular matrix S(ω) and a constant K > 0 such that for all ω ∈ R

n, the following
conditions are satisfied.

(i) |S(ω)| ≤ K and |S(ω)−1| ≤ K.

(ii) S(ω)A(ω)S(ω)−1 = [Cij(ω)] is upper triangular.

(iii) ReCrr(ω) ≤ · · · ≤ ReC11(ω) ≤ K.

(iv) |Cik(ω)| ≤ K(1 + |ReCii(ω)|) for k = i + 1, . . . , r. �

Parabolic equations (i.e., equations for which A(D) is strongly elliptic, defined
later) satisfy these conditions whereas hyperbolic equations do not. We demonstrate
this in the next examples.

Example 2.10.1 Consider a special case of (IP ) with r = 1, m = n = 2, given by
∂u

∂t
=

∂2u

∂x2 +
∂2u

∂y2 + a
∂u

∂x
+ b

∂u

∂y
+ cu

u(0, x) = ψ(x).
(2.10.3)

For ω = (ω1, ω2)T ∈ R
2 we have

A(ω) = −ω2
1 − ω2

2 + iaω1 + ibω2 + c = C11(ω).

Clearly, ReA(ω) = −ω2
1 − ω2

2 + c ≤ c for all ω ∈ R
2. Therefore, all the hypotheses

of Theorem 2.10.1 are satisfied and thus, (2.10.3) determines a C0-semigroup on
X = L2[R2, C]. �

Example 2.10.2 Consider the initial value problem determined by the wave equation
∂2u

∂t2
=

∂2u

∂x2

u(0, x) = ψ(x).
(2.10.4)

The above equation can equivalently be expressed by

∂u1

∂t
= u2,

∂u2

∂t
=

∂2u1

∂x2

with u1 = u and u2 = ∂u/∂t. Equation (2.10.4) is a specific case of (IP ) with
r = 2, m = 2, n = 1, and

A(ω) =
[

0 1
−ω2 0

]
.

The eigenvalues of A(ω) are given by C11(ω) = iω and C22(ω) = −iω. In order
that the hypotheses of Theorem 2.10.1 be satisfied, there must exist an S(ω) such that
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S(ω)A(ω)S(ω)−1 = C(ω) where C(ω) is upper triangular with diagonal elements
C11(ω) and C22(ω). Then

A(ω)S(ω)−1 = S(ω)−1
[
iω C12(ω)
0 −iω

]
.

Let

S(ω)−1 =
[
x1(ω) y1(ω)
x2(ω) y2(ω)

]
.

A straightforward calculation yields

S(ω)−1 =
[

x1(ω) y1(ω)
iωx1(ω) C12(ω)x1(ω) − iωy1(ω)

]
and

S(ω) =
1

[C12(ω)x1(ω)2 − 2iωx1(ω)y1(ω)]

[
C12(ω)x1(ω) − iωy1(ω) −y1(ω)

−iωx1(ω) x1(ω)

]
.

Because ReC11(ω) = 0, condition (iv) in Theorem 2.10.1 implies that |C12(ω)| ≤ K
and condition (i) of this theorem implies that all elements of S(ω) and S(ω)−1 are
bounded by K. Thus,

|C12(ω)x1(ω) − iωy1(ω)| ≤ K

and
|ω||C12(ω)x1(ω) − 2iωy1(ω)|−1 ≤ K

can be combined to yield

|ω|/K ≤ |C12(ω)x1(ω) − iωy1(ω)| + |iωy1(ω)|
≤ K + |iωy1(ω)|
≤ 2K + |C12(ω)x1(ω)|.

Using |C12(ω)| ≤ K and |x1(ω)| ≤ K for all ω ∈ R, we obtain

|ω|/K ≤ 2K + K2

for all ω ∈ R. But this is impossible. Thus, no matrix S(ω) as asserted above exists.
Therefore, the solutions of (2.10.4) do not generate a C0-semigroup. �

C. Linear parabolic equations with smooth coefficients

In the following Ω ⊂ R
n is assumed to be a bounded domain with smooth boundary

∂Ω. We consider the differential operator of order 2m given by

A(t, x, D) =
∑

|α|≤2m

aα(t, x)Dα (2.10.5)
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where α ∈ N
n, Dα is defined in (2.10.1) and the coefficients aα(t, x) are complex-

valued functions defined on [0, T0) × Ω where T0 > 0 is allowed to be infinite. The
principal part of A(t, x, D) is the operator given by

A′(t, x, D) =
∑

|α|=2m

aα(t, x)Dα (2.10.6)

and A(t, x, D) is said to be strongly elliptic if there exists a constant c > 0 such that

ReA′(t, x, ξ) ≥ c|ξ|2m

for all t ∈ [0, T0), x ∈ Ω, and ξ ∈ R
n.

In the following, we consider linear, parabolic partial differential equations with
initial conditions and boundary conditions given by

∂u

∂t
(t, x) + A(t, x, D)u(t, x) = f(t, x) on (0, T0) × Ω

Dαu(t, x) = 0, |α| < m on (0, T0) × ∂Ω
u(0, x) = u0(x) on Ω

(IPP )

where f and u0 are complex-valued functions defined on (0, T0) × Ω and Ω,
respectively.

Using the theory of Sobolev spaces, generalized functions (distributions), and dif-
ferentiation in the distribution sense, the following result concerning the well posed-
ness of (IPP ) (involving generalized solutions for (IPP )) has been established (see,
e.g., Pazy [39] and Friedman [14]).

Theorem 2.10.2 For (IPP ), assume the following.

(i) A(t, x, D) is strongly elliptic.

(ii) f, aα ∈ C∞[[0, T0] × Ω, C
]

for all |α| ≤ 2m.

(iii) u0 ∈ C∞[Ω, C].
(iv) limx→∂Ω Dαu0(x) = 0 for all |α| < m.

Then there exists a unique solution u ∈ C∞[[0, T0] × Ω, C
]
. �

If the operator A(t, x, D) and the functions f and u0 are real-valued, then Theo-
rem 2.10.2 is still true with the solution u of (IPP ) being real-valued.

Now let T = [0, T0] and X = A = C∞[Ω, C] and let St0,u0 denote the set of the
(unique) solutions of (IPP ), where in (IPP ), u(0, x) = u0(x) on Ω is replaced by
u(t0, x) = u0(x) on Ω with t0 ∈ [0, T0). Let SPP = ∪(t0,u0)∈[0,T0)×ASt0,u0 . Then
{T, X, A, SPP } is a dynamical system. When T,X , and A are known from context,
we refer to this system simply as dynamical system SPP .

Because A(t, x, D) is in general time-varying, (IPP ) will in general not generate a
semigroup. However, in the special case when A(t, x, D) ≡ A(x, D), the following
result has been established (refer, e.g., to Pazy [39]).



Section 2.11 Composite Dynamical Systems 51

Theorem 2.10.3 In (IPP ), let

A(x, D) =
∑

|α|≤2m

aα(x)Dα

be strongly elliptic on Ω and let Au
�
= A(x, D)u be defined on

D(A) = H2m[Ω, C] ∩ Hm
0 [Ω, C].

Then A is the infinitesimal generator of a C0-semigroup on L2[Ω, C]. �

We conclude by pointing out that dynamical systems (as well as nonlinear semi-
groups) are determined by nonlinear partial differential equations as well. We do not
pursue this topic in this book.

2.11 Composite Dynamical Systems

Problems that arise in science and technology are frequently described by a mixture
of equations. For example, in control theory, feedback systems usually consist of an
interconnection of several blocks, such as the plant, the sensors, the actuators, and
the controller. Depending on the application, these components are characterized
by different types of equations. For example, in the case of distributed parameter
systems, the plant may be described by a partial differential equation, a functional
differential equation, or by a Volterra integrodifferential equation, and the remaining
blocks may be characterized by ordinary differential equations or ordinary differ-
ence equations. In particular, the description of digital controllers involves ordinary
difference equations.

The above is an example of a large class of composite systems. Depending on the
context, such systems are also referred to in the literature as interconnected systems
and decentralized systems (e.g., [31]). When the motions of some of the system
components evolve along different notions of time (continuous time R

+ and discrete
time N) such systems are usually referred to as hybrid systems (e.g., [45], [46]).

In the present section, we confine our attention to interconnected (resp., composite)
dynamical systems whose motion components all evolve along the same notion of
time. In the next section, where we address discontinuous dynamical systems, and
specific examples of hybrid dynamical systems, we relax this requirement. A metric
space (X, d) is said to be nontrivial if X is neither empty nor a singleton, it is said
to be decomposable if there are nontrivial metric spaces (X1, d1) and (X2, d2) such
that X = X1 × X2, and it is said to be undecomposable if it is not decomposable.

Now let (X, d), (Xi, di), i = 1, . . . , l, be metric spaces. We assume that X =
X1 × · · · × Xl and that there are constants c1 > 0 and c2 > 0 such that

c1d(x, y) ≤
l∑

i=1

di(xi, yi) ≤ c2d(x, y)
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for all x, y ∈ X , where x = [x1, . . . , xl]T , y = [y1, . . . , yl]T , xi ∈ Xi, and yi ∈ Xi,
i = 1, . . . , l. We can define the metric d on X in a variety of ways, including, for
example,

d(x, y) =
l∑

i=1

di(xi, yi).

Definition 2.11.1 [34] A dynamical system {T, X, A, S} is called a composite dy-
namical system if the metric space (X, d) can be decomposed as X = X1 ×· · ·×Xl,
l ≥ 2, where X1, . . . , Xl are nontrivial and undecomposable metric spaces with
metrics d1, . . . , dl, respectively, and if there exist two metric spaces Xi and Xj ,
i, j = 1, . . . , l, i �= j, that are not isometric. �

The following example may be viewed as a distributed control (in contrast to a
boundary control) of a plant that is governed by the heat equation and a controller that
is governed by a system of first-order ordinary differential equations. The variables
for the controller and the plant are represented by z1 = z1(t) and z2 = z2(t, x),
respectively.

Example 2.11.1 [31], [40] We consider the composite system described by the
equations

ż1(t) = Az1(t) +
∫
Ω f(x)z2(t, x)dx, t ∈ R

+

∂z2

∂t
(t, x) = α∆z2(t, x) + g(x)cT z1(t), (t, x) ∈ R

+ × Ω

z2(t, x) = 0 (t, x) ∈ R
+ × ∂Ω

(2.11.1)

where z1 ∈ R
m, z2 ∈ R, A ∈ R

m×m, c ∈ R
m, f and g ∈ L2[Ω, R], α > 0, Ω is

a bounded domain in R
n with a smooth boundary ∂Ω, and ∆ denotes the Laplacian

(i.e., ∆ =
∑n

i=1 ∂2/∂x2
i ). The system of equations (2.11.1) may be viewed as a

differential equation in the Banach space X
�
= R

m × H0[Ω, R] where H0[Ω, R] is
the completion of C0[Ω, R] with respect to the L2-norm and H0[Ω, R] ⊂ L2[Ω, R]
(refer to Section 2.10). For every initial condition z0 = [z10, z20] ∈ R

m ×H0[Ω, R],
there exists a unique solution z(t, z0) which depends continuously on z0. For a proof
of the well posedness of system (2.11.1), refer to [31].

The set of all solutions of (2.11.1) clearly determines a composite dynamical
system. �

2.12 Discontinuous Dynamical Systems

All of the various types of dynamical systems that we have considered thus far include
either discrete-time dynamical systems or continuous continuous-time dynamical sys-
tems (which we simply call continuous dynamical systems). In the present section
we address discontinuous dynamical systems (continuous-time dynamical systems
with motions that need not be continuous), which we abbreviate as DDS. Although
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the classes of DDS which we consider are very general, we have to put some restric-
tions on the types of discontinuities that we allow. To motivate the discussion of this
section and to fix some of the ideas involved, we first consider an important specific
example.

Discrete-time dynamics

x(t)
Interface
elements

or
Discrete-event dynamics

or
Logic commands

or. . .

v(t) u(    )

w(    )

τk

Continuous-time
dynamics

τk

Figure 2.12.1: DDS configuration.

In Figure 2.12.1 we depict in block diagram form a configuration that is applicable
to many classes of DDS, including hybrid systems and switched systems. There is
a block that contains continuous-time dynamics, a block that contains phenomena
which evolve at discrete points in time (discrete-time dynamics) or at discrete events,
and a block that contains interface elements for the above system components. The
block that contains the continuous-time dynamics is usually characterized by one
or several types of the equations or inequalities defined on R

+ enumerated in the
previous sections (Sections 2.3, 2.4, and 2.6–2.10) whereas the block on the right in
Figure 2.12.1 is usually characterized by difference equations or difference inequal-
ities of the type addressed in Section 2.5 or it may contain other types of discrete
characterizations involving, for example, Petri nets, logic commands, various types
of discrete-event systems, and the like. The block labeled Interface Elements may
vary from the very simple to the very complicated. At the simplest level, this block
involves samplers and sample and hold elements. The sampling process may involve
only one uniform rate, or it may be nonuniform (variable rate sampling), or there may
be several different (uniform or nonuniform) sampling rates occurring simultaneously
(multirate sampling).

Example 2.12.1 [29], [46] Perhaps the simplest specific example of the above class
of systems are sampled-data control systems described by the equations

ẋ(t) = Akx(t) + Bkv(t), τk ≤ t < τk+1

u(τk+1) = Cku(τk) + Dkw(τk),
v(t) = u(τk), τk ≤ t < τk+1

w(τk) = x(τ−
k+1),

(2.12.1)

where k ∈ N, t ∈ R
+, x(t) ∈ R

n, u(τk) ∈ R
m, {τk} denotes sampling instants,

Ak, Bk, Ck, Dk are real matrices of appropriate dimensions, v(·) and w(·) are inter-
face variables, and x(τ−) = limθ→0+ x(τ − θ).
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Now define x̃(t) = x(t), t ≥ τ0 and ũ(t) = v(t) = u(τk), τk ≤ t < τk+1, k ∈ N.
Then x̃(t) = x(t−) at t = τk and ũ(t−) = u(τk) at t = τk+1 for all k ∈ N. Let
y(t)T = [x̃(t)T , ũ(t)T ]. Letting

Fk =
[
Ak Bk

0 0

]
, Hk =

[
I 0

Dk Ck

]
where I denotes the n × n identity matrix, the system (2.12.1) can be described by
the discontinuous ordinary differential equation{

ẏ(t) = Fky(t), τk ≤ t < τk+1

y(t) = Hky(t−), t = τk+1, k ∈ N.
(2.12.2)

Next, for k ∈ N, let yk(t, yk, τk), t ≥ τk, denote the unique solution of the initial
value problem {

ẏ(t) = Fky(t),
y(τk) = yk.

(2.12.3)

Then clearly, for every y0 ∈ R
n+m, the unique solution of the DDS (2.12.2) is

given by
y(t, y0, τ0) = yk(t, yk, τk), τk ≤ t < τk+1, k ∈ N.

Thus, the solutions of (2.12.2) are made up of an infinite sequence of solution seg-
ments determined by the solutions of (2.12.3), k ∈ N, and these solutions may be
discontinuous at the points of discontinuity given by {τk}, k = 1, 2, . . . . Finally, it
is clear that the solutions of (2.12.2) determine a DDS. �

In Chapter 3 we develop a stability theory for general DDS, {R
+, X, A, S}, defined

on metric spaces, and in subsequent chapters, we specialize this theory for specific
classes of finite-dimensional and infinite-dimensional dynamical systems determined
by various equations and semigroups of the type described in the present chapter. In
order to establish meaningful and reasonable results, it is necessary to impose some
restrictions on the discontinuities of the motions p ∈ S, which of course should
conform to assumptions that one needs to make in the modeling process of the DDS.
Unless explicitly stated otherwise, we assume throughout this book that for a given
discontinuous motion p ∈ S, the set of discontinuities is unbounded and discrete and
is of the form

E1p =
{
τp
1 , τp

2 , . . . : τp
1 < τp

2 < · · ·
}
.

In the above expression, E1p signifies the fact that in general, different motions may
possess different sets of times at which discontinuities may occur. Because in most
cases, the particular set E1p in question is clear from context, we usually suppress
the p-notation and simply write

E1 =
{
τ1, τ2, . . . : τ1 < τ2 < · · ·

}
.

In the remainder of this section we consider several important specific classes of DDS.
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A. Ordinary differential equations

The sampled-data control system (2.12.1) which equivalently is represented by the
discontinuous differential equation (2.12.2) is a special case of discontinuous ordinary
differential equations of the form{

ẋ(t) = fk(t, x(t)), τk ≤ t < τk+1,

x(t) = gk(x(t−)), t = τk+1, k ∈ N
(SE)

where for each k ∈ N, fk ∈ C[R+ × R
n, Rn], gk : R

n → R
n, and x(τ−) is given in

Example 2.12.1.
Associated with (SE), we consider the family of initial value problems given by{

ẋ(t) = fk(t, x(t))
x(τk) = xk,

(SEk)

k∈N. We assume that for (τk, xk), (SEk) possesses a unique solution x(k)(t, xk, τk)
which exists for all t ∈ [τk,∞) (refer to Section 2.3 for conditions that ensure this).
Then for every (t0, x0) ∈ R

+ × R
n, t0 = τ0, (SE) has a unique solution x(t, x0, t0)

that exists for all t ∈ [t0,∞). This solution is made up of a sequence of continuous
solution segments x(k)(t, xk, τk), defined over the intervals [τk, τk+1) with initial
conditions (τk, xk), k ∈ N, where xk+1 = x(τk+1) = gk(x(τ−

k+1)), k ∈ N and the
initial conditions (τ0 = t0, x0) are given. At the points {τk+1}, k ∈ N, the solutions
of (SE) have possible jumps (determined by gk(·)).

The set of all the solutions of (SE), SSE , determines a DDS, {R
+, X, A, SSE},

where X = A = R
n.

B. Functional differential equations ([43])

For the notation that we use in the present subsection, the reader should refer to
Section 2.7.

We first consider a family of initial value problems described by continuous re-
tarded functional differential equations (RFDEs) of the form{

ẋ(t) = Fk(t, xt),
xτk

= ϕk,
(SFk)

k ∈ N. For each k ∈ N we assume that Fk ∈ C[R+ ×Cr, R
n] and that (SFk) is well

posed so that for every (τk, ϕk) ∈ R
+ × Cr, (SFk) possesses a unique continuous

solution x(k)(t, ϕk, τk) that exists for all t ∈ [τk,∞). (For conditions that ensure
this, refer to Section 2.7.)

We now consider discontinuous RFDEs of the form{
ẋ(t) = Fk(t, xt), τk ≤ t < τk+1

xτk+1 = Gk

(
xτ−

k+1

)
, k ∈ N

(SF )
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where for each k ∈ N, Fk is assumed to possess the identical properties given in
(SFk) and Gk : Cr → Cr. Thus, at t = τk+1, the mapping Gk(·) assigns to every
state xτ−

k+1
(xτ−

k+1
(θ) = x(τ−

k+1 + θ), −r ≤ θ ≤ 0) unambiguously a state xτk+1

(xτk+1(θ) = x(τk+1 + θ),−r ≤ θ ≤ 0).
Under the above assumptions for (SF ) and (SFk), it is now clear that for every

(t0, ϕ0) ∈ R
+×Cr, t0 = τ0, (SF ) has a unique solution x(t, ϕ0, t0) that exists for all

t ∈ [t0,∞). This solution is made up of a sequence of continuous solution segments
x(k)(t, ϕk, τk) defined over the intervals [τk, τk+1), k ∈ N, with initial conditions
(τk, ϕk), where ϕk = xτk

, k = 1, 2, . . . and where (τ0 = t0, ϕ0) are given. At the
points {τk+1}, k ∈ N, the solutions of (SF ) have possible jumps (determined by
Gk(·)).

It is clear that (SF ) determines an infinite-dimensional DDS, {T, X, A, S}, where
T = R

+, X = A = Cr, the metric on X is determined by the norm ‖ · ‖ defined
on Cr (i.e., d(ϕ, η) =‖ ϕ − η ‖ for all ϕ, η ∈ Cr), and S denotes the set of all the
solutions of (SF ) corresponding to all possible initial conditions (t0, ϕ0) ∈ R

+×Cr.
In the interests of brevity, we refer to this DDS as “system (SF )” or as “(SF )”.

C. Differential equations in Banach spaces ([32])

We first consider a family of initial value Cauchy problems in Banach space X of
the form {

ẋ(t) = Fk(t, x(t)), t ≥ τk,

x(τk) = xk
(SGk)

for k ∈ N. For each k ∈ N, we assume that Fk : R
+ × X → X and that ẋ = dx/dt.

We assume that for every (τk, xk) ∈ R
+ × X , (SGk) possesses a unique solution

x(k)(t, xk, τk) that exists for all t ∈ [τk,∞). We express this by saying that (SGk)
is well posed.

We now consider discontinuous initial value problems in Banach space X given by{
ẋ(t) = Fk(t, x(t)), τk ≤ t < τk+1

x(τk+1) = gk(x(τ−
k+1)), k ∈ N

(SG)

where for each k ∈ N, Fk is assumed to possess the identical properties given in
(SGk) and where gk : X → X . Under these assumptions, it is clear that for every
(t0, x0) ∈ R

+ × X, t0 = τ0, (SG) has a unique solution x(t, x0, t0) that exists
for all t ∈ [t0,∞). This solution is made up of a sequence of solution segments
x(k)(t, xk, τk), defined over the intervals [τk, τk+1), k ∈ N, with initial conditions
(τk, xk), where xk = x(τk), k = 1, 2, . . . , and where (τ0 = t0, x0) are given. At
the points {τk+1}, k ∈ N, the solutions of (SG) have possible jumps (determined
by gk(·)).

Consistent with the characterization of a discontinuous dynamical system given in
Section 2.2, it is clear from the above that system (SG) determines a DDS, {T,X,
A, S}, where T = R

+, A = X , the metric on X is determined by the norm ‖ · ‖
defined on X (i.e., d(x, y) =‖ x−y ‖ for all x, y ∈ X), and S denotes the set of all the
solutions of (SG) corresponding to all possible initial conditions (t0, x0) ∈ R

+ ×X .
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In the interests of brevity, we refer to this DDS simply as “system (SG)”, or simply
as “(SG)”.

D. Semigroups ([33])

We require a given collection of linear or nonlinear semigroups T = {Ti(t)} defined
on a Banach space X , or on a set C ⊂ X , respectively; and a given collection
of linear and continuous operators H = {Hj}(Hj : X → X), or of nonlinear and
continuous operators (Hj : C → C); and a given discrete and unbounded set E =
{t0 = τ0, τ1, τ2, . . . : τ0 < τ1 < τ2 · · · } ⊂ R

+. The number of elements in T and
H may be finite or infinite.

We now consider dynamical systems whose motions y(·, y0, t0) with initial time
t0 = τ0 ∈ R

+ and initial state y(t0) = y0 ∈ X (resp., y0 ∈ C ⊂ X) are given by{
y(t, y0, t0) = Tk(t − τk)(y(τk)), τk ≤ t < τk+1,

y(t) = Hk(y(t−)), t = τk+1, k ∈ N.
(SH)

We define the DDS determined by semigroups as

S =
{
y = y(·, x, t0) : y(t, x, t0) = Tk(t − τk)(y(τk)), τk ≤ t < τk+1,

y(t) = Hk(y(t−)), t = τk+1, k ∈ N, t0 = τ0 ∈ R
+,

y(τ0) = x ∈ X, resp., x ∈ C ⊂ X
}
. (2.12.4)

Note that every motion y(·, x, t0) is unique, with y(t0, x, t0) = x, exists for all t≥ t0,
and is continuous with respect to t on [t0,∞) − {τ1, τ2, . . . }, and that at t = τk,
k = 1, 2, . . . , y(·, x, t0) may be discontinuous. We call the set E1 = {τ1, τ2, . . . }
the set of discontinuities for the motion y(·, x, t0).

When in (2.12.4), T consists of C0-semigroups, we speak of a DDS determined by
linear semigroups and we denote this system by SDC0 . Similarly, when in (2.12.4),
T consists of nonlinear semigroups, we speak of a DDS determined by nonlinear
semigroups and we denote this system by SDN . When the types of the elements in
T are not specified, we simply speak of a DDS determined by semigroups and we
denote this system, as in (2.12.4), by S.

Finally, if in the case of SDC0 , the elements in H are linear, we use in (SH) the
notation Tk(t − τk)(y(τk)) = Tk(t − τk)y(τk) and Hk(y(t−)) = Hky(t−).

Next, a few observations may be in order:
(a) For different initial conditions (x, t0), resulting in different motions y(·, x, t0),

we allow the set of discontinuities E1 = {τ1, τ2, . . . }, the set of semigroups {Tk} ⊂
T , and the set of functions {Hk} ⊂ H to differ, and accordingly, the notation
Ex,t0

1 = {τx,t0
1 , τx,t0

2 , . . . }, {T x,t0
k } and {Hx,t0

k } might be more appropriate. How-
ever, because in all cases, all meaning is clear from context, we do not use such
superscripts.

(b) SDC0 and SDN are very general classes of DDS and include large classes of
finite-dimensional dynamical systems determined by ordinary differential equations
and inequalities and large classes of infinite-dimensional dynamical systems deter-
mined by differential-difference equations, functional differential equations, Volterra
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integrodifferential equations, certain classes of partial differential equations, and the
like.

(c) The dynamical system models SDC0 and SDN are very flexible and include as
special cases, many of the DDS considered in the literature (e.g., [2], [10], [28], [29],
[30], [46]), as well as general autonomous continuous dynamical systems: (i) If
Tk(t) = T (t) for all k (T has only one element) and if Hk = I for all k, where
I denotes the identity transformation, then SDC0 reduces to an autonomous, linear,
continuous dynamical system and SDN reduces to an autonomous, nonlinear, con-
tinuous dynamical system. (ii) In the case of dynamical systems subjected to impulse
effects (see, e.g., [2]), one would choose Tk(t) = T (t) for all k whereas the impulse
effects are captured by an infinite family of functions H = {Hk}. (iii) In the case of
switched systems, frequently only a finite number of systems that are being switched
are required and so in this case one would choose a finite family of semigroups,
T = {Ti(t)} (see, e.g., [10], [46]); and so forth. (iv) Perhaps it needs pointing out
that even though systems SDN and SDC0 are determined by families of semigroups
(and nonlinearities), by themselves they are not semigroups, inasmuch as in general,
they are time-varying and do not satisfy the hypotheses (i)–(iii) in Definitions 2.9.1
and 2.9.5.

We conclude with a specific example involving partial differential equations.

Example 2.12.2 [33] (DDS determined by the heat equation) We let Ω ⊂ R
n be a

bounded domain with smooth boundary ∂Ω and we let ∆ =
∑n

i=1 ∂2/∂x2
i denote the

Laplacian. Also, we let X = H2[Ω, R] ∩ H1
0 [Ω, R] where H1

0 [Ω, R] and H2[Ω, R]
are Sobolev spaces (refer to Section 2.10). For any ϕ ∈ X , we define the H1-norm by

‖ ϕ ‖2
H1=

∫
Ω
(| � ϕ|2 + |ϕ|2)dx (2.12.5)

where �ϕT = (∂ϕ/∂x1, . . . , ∂ϕ/∂xn).
We now consider DDS determined by the equations

∂u

∂t
= ak∆u, (t, x) ∈ [τk, τk+1) × Ω

u(t, ·) = gk(u(t−, ·)) �
= ϕk+1(·), t = τk+1

u(t0, x) = ϕ0(x), x ∈ Ω
u(t, x) = 0, (t, x) ∈ [t0,∞) × ∂Ω, k ∈ N

(2.12.6)

where ϕ0 ∈ X, ak > 0, k ∈ N, are constants, {gk} is a given family of mappings
with gk ∈ C[X, X], k ∈ N, and E = {t0 = τ0, τ1, . . . : τ0 < τ1 < τ2 < · · · } is
a given unbounded and discrete set. We assume that gk(0) = 0 and there exists a
constant dk > 0 such that

‖ gk(ϕ) ‖H1≤ dk ‖ ϕ ‖H1 (2.12.7)

for all ϕ ∈ X, k ∈ N.
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Associated with (2.12.6) we have a family of initial and boundary value problems
determined by

∂u

∂t
= ak∆u, (t, x) ∈ [τk,∞) × Ω

u(τk, x) = ϕk(x), x ∈ Ω
u(t, x) = 0, (t, x) ∈ [τk,∞) × ∂Ω,

(2.12.8)

k ∈ N. It has been shown (e.g., [39]) that for each (τk, ϕk) ∈ R
+ ×X , the initial and

boundary value problem (2.12.8) has a unique solution uk = uk(t, x), t ≥ τk, x ∈ Ω,
such that uk(t, ·) ∈ X for each fixed t ≥ τk and uk(t, ·) ∈ X is a continuously
differentiable function from [τk,∞) to X with respect to the H1-norm given in
(2.12.5).

It now follows that for every ϕ0 ∈ X , (2.12.6) possesses a unique solution u(t, ·)
that exists for all t ≥ τ0 ≥ 0, given by

u(t, ·) =

{
uk(t, ·), τk ≤ t < τk+1

gk(uk(t−, ·)) �
= ϕk+1(·), t = τk+1, k ∈ N

(2.12.9)

with u(t0, x) = ϕ0(x). Notice that u(t, ·) is continuous with respect to t on the set
[t0,∞)−{τ1, τ2, . . . }, and that at t = τk, k = 1, 2, . . . , u(t, ·) may be discontinuous
(depending on the properties of gk(·)).

For each k ∈ N, (2.12.8) can be cast as an initial value problem in the space X
with respect to the H1-norm, letting uk(t, ·) = Uk(t),{

U̇k(t) = AkUk(t), t ≥ τk

Uk(τk) = ϕk ∈ X
(2.12.10)

where Ak = ak

∑n
i=1 ∂2/∂x2

i and Uk(t, ϕk), t≥ τk, denotes the solution of (2.12.10)
with U(τk, ϕk)=ϕk. It has been shown (see, e.g., [39]) that (2.12.10) determines a
C0-semigroup Tk(t−τk) : X → X, where for any ϕk ∈ X, Uk(t, ϕk) = T (t−τk)ϕk.

Letting uk(t, ·) = Tk(t − τk)uk(τk) in (2.12.9), system (2.12.6) can now be
characterized as{

u(t, ·) = Tk(t − τk)uk(τk, ·), τ ≤ t < τk+1

u(t, ·) = gk(uk(t−, ·)), t = τk+1, k ∈ N.
(2.12.11)

Finally, it is clear that (2.12.6) (resp., (2.12.11)) determines a DDS which is a special
case of the DDS (SH). �

2.13 Notes and References

Depending on the applications, different variants of dynamical systems have been
employed (e.g., Hahn [18], Willems [44], and Zubov [48]). Our concept of dynamical
system (Definition 2.2.3) was first used in [35], [36] and extensively further refined
in [34] in the study of the role of stability-preserving mappings in stability analysis
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of dynamical systems. In the special case when X is a normed linear space and
each motion p(t, a, t0) is assumed to be continuous with respect to a, t, and t0, the
definition of a dynamical system given in Definition 2.2.3 reduces to the definition
of a dynamical system used in Hahn [18, pp. 166–167] (called a family of motions in
[18]). When the motions satisfy additional requirements that we do not enumerate,
Definition 2.2.3 reduces to the definition of a dynamical system, defined on metric
space, used by Zubov [48, p. 199] (called a general system in [48]). The notion of a
dynamical system employed in [44] is defined on normed linear space and involves
variations to Definition 2.2.3 which we do not specify here.

In the problem section we provide hints on how to prove the results given in
Section 2.3. For the complete proofs of these results (except Theorem 2.3.3) and for
additional material on ordinary differential equations, refer to Miller and Michel [37].
Our treatment of the continuation of solutions (Theorem 2.3.3) is not conventional,
but very efficient, inasmuch as it involves Lyapunov results developed in subsequent
chapters.

Ordinary differential inequalities (and ordinary difference inequalities) play an
important role in the qualitative analysis of dynamical systems (see, e.g., [26]) and
are employed throughout this book.

Good sources on ordinary difference equations, with applications to control sys-
tems and signal processing include Franklin and Powell [13] and Oppenheim and
Schafer [38], respectively.

For the complete proofs of Theorems 2.7.1–2.7.3, and additional material on func-
tional differential equations, refer to Hale [19]. Hale is perhaps the first to treat
Volterra integrodifferential equations as functional differential equations with infinite
delay [20]. For a proof of Theorem 2.8.1, refer to Barbu and Grossman [3].

For the proofs of Theorems 2.9.1–2.9.4 and for additional material concerning Co-
semigroups, refer to Hille and Phillips [21], Krein [23] (Chapter 1), and Pazy [39].
For the proof of Theorem 2.9.5, refer to Slemrod [42]. For the proofs of Theorems
2.9.6 and 2.9.7 and for additional material concerning nonlinear semigroups and
differential inclusions defined on Banach spaces, refer to Crandall [8], Crandall and
Liggett [9], Brezis [5], Kurtz [25], Godunov [15], Lasota and Yorke [27], and Aubin
and Cellina [1]. Our presentation in Section 2.9 on semigroups and differential
inclusions defined on Banach spaces (see also Section 2.6) is in the spirit of the
presentation given in Michel and Miller [31] (Chapter 5), and Michel et al. [34].

For the proofs of Theorems 2.10.1–2.10.3, and additional material concerning
partial differential equations, refer to Krein [23], Friedman [14], and Pazy [39]. Ad-
ditional sources on partial differential equations include Hörmander [22] and Krylov
[24]. Our presentation on partial differential equations in Section 2.10 is in the spirit
of Michel and Miller [31, Chapter 5] and Michel et al. [34, Chapter 2].

Our presentation on composite dynamical systems in Section 2.11 is primarily
based on material from Michel and Miller [31], Michel et al. [34, Chapter 6], and
Rasmussen and Michel [40], and Section 2.12 on discontinuous dynamical systems re-
lies primarily on material from Michel [29], Michel and Hu [30], Michel and Sun [32],
Michel et al. [33], Sun et al. [43], and Ye et al. [46]. Finally, for a general formulation
of a hybrid dynamical system defined on a metric space (involving a notion of
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generalized time), refer to Ye et al. [45] with subsequent developments given in
Ye et al. [46], Sun et al. [43], Michel et al. [33], Michel and Sun [32], Michel and
Hu [30], and Michel [29].

2.14 Problems

Problem 2.14.1 Consider a class of scalar nth-order ordinary differential equations
given by

y(n) = g(t, ẏ, . . . , y(n−1)) (En)

where t ∈ J ⊂ R, J is a finite or an infinite interval, y ∈ R, ẏ = y(1) = dy/dt, . . . ,
y(n) = dny/dtn, and g ∈ C[J ×R

n, R]. Initial value problems associated with (En)
are given by {

y(n) = g(t, ẏ, . . . , y(n−1))
y(t0) = y0, ẏ(t0) = y1, . . . , y(n−1)(t0) = yn−1

(IEn)

where t0 ∈ J and y0, y1, . . . , yn−1 ∈ R.
Show that (En) determines a dynamical system (in the sense of Definition 2.2.3)

that we denote by SEn
.

Hint: Show that (En) (and (IEn
)) can equivalently be represented by a system of

n first-order ordinary differential equations. �

Problem 2.14.2 Consider a class of nth-order ordinary scalar difference equations
given by

y(k) = g(k, y(k − 1), . . . , y(k − n)) (Dn)

where k ∈ Nn
�
= [n, ∞) ∩ N, n ∈ N, y : N → R, and g : Nn × R

n → R. Associated
with (Dn), consider initial value problems given by{

y(k) = g(k, y(k − 1), . . . , y(k − n))
y(0) = y0, y(1) = y1, . . . , y(n − 1) = yn−1

(IDn
)

where y0, y1, . . . , yn−1 ∈ R.
Show that (Dn) determines a dynamical system (in the sense of Definition 2.2.3)

which we denote by SDN
.

Hint: Show that (Dn) (and (IDn
)) can equivalently be represented by a system of

n first-order ordinary difference equations. �

Problem 2.14.3 Let D denote a fixed Dini derivative and let g ∈ C[J × (R+)n, Rn]
where g(t, 0) ≥ 0 for all t ∈ J . Consider differential inequalities given by

Dx ≥ g(t, x) (2.14.1)

and define a solution of (2.14.1) as a function ϕ ∈ C
[
[t0, t1), (R+)n

]
that satisfies

(Dϕ)(t) ≥ g(t, ϕ(t)) for all t ∈ [t0, t1) ⊂ J . Associated with (2.14.1), we consider
initial value problems given by

Dx ≥ g(t, x), x(t0) = x0 (2.14.2)
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where t0 ∈J and x0 ∈(0,∞)n∪{0}. We say that ϕ∈ C
[
[t0, t1), (R+)n

]
is a solution

of (2.14.2) if ϕ(t0) = x0.
Show that (2.14.1) determines a dynamical system that we denote by S(2.14.1). �

Problem 2.14.4 Consider ordinary difference inequalities given by

x(k + 1) ≥ g(k, x(k)) (2.14.3)

where k ∈ N and g : N×(R+)n → (R+)n with g(k, 0) ≥ 0 for all k ∈ N. A function
ϕ : Nk0 → (R+)n is a solution of (2.14.3) if

ϕ(k + 1) ≥ g(k, ϕ(k))

for all k ∈ Nk0 . In this case ϕ(k0) is an initial value.
Show that (2.14.3) determines a dynamical system that we denote by S(2.14.3). �

Problem 2.14.5 (a) In Figure 2.14.1, M1 and M2 denote point masses, K1, K2, K
denote spring constants, and x1, x2 denote displacements of the masses M1 and M2,
respectively. Use the Hamiltonian formulation of dynamical systems described in
Example 2.3.7 to derive a system of first-order ordinary differential equations that
characterize this system. Verify your answer by using Newton’s second law of motion
to derive the same system of equations. By specifying x1(t0), ẋ1(t0), x2(t0), and
ẋ2(t0), the above yields an initial value problem.

(b) Show that the above mechanical system determines a dynamical system in the
sense of Definition 2.2.3. �

K K K

M M
1

1

2

2

Figure 2.14.1: Example of a conservative dynamical system.

Problem 2.14.6 (a) In Figure 2.14.2, K1, K2, K, M1, and M2 are the same as in
Figure 2.14.1 and B1, B2, and B denote viscous damping coefficients. Use the
Lagrange formulation of dynamical systems described in Example 2.3.8 to derive two
second-order ordinary differential equations that characterize this system. Transform
these equations into a system of first-order ordinary differential equations. Verify
your answer by using Newton’s second law of motion to derive the same system
of equations. By specifying x1(t0), ẋ1(t0), x2(t0), and ẋ2(t0), the above yields an
initial value problem.

(b) Show that the above mechanical system determines a dynamical system in the
sense of Definition 2.2.3. �
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Figure 2.14.2: Example of a mechanical system with energy dissipation.

Problem 2.14.7 The following result, called the Ascoli–Arzela Lemma, is required
in the proof of Problem 2.14.8 given below.

Let D be a closed and bounded subset of R
n and let {fm} be a sequence of

functions in C[D, Rn]. If {fm} is equicontinuous and uniformly bounded on D,
then there is a subsequence {fmk} and a function f ∈ C[D, Rn] such that {fmk}
converges to f uniformly on D. Recall that {fm} is equicontinuous on D if for every
ε > 0 there is a δ > 0 (independent of x, y, and m) such that

|fm(x) − fm(y)| < ε whenever |x − y| < δ

for all x, y ∈ D and for all m. Recall also that {fm} is uniformly bounded if there is
a constant M > 0 such that |fm(x)| ≤ M for all x ∈ D and for all m.

Hint: To prove the Ascoli–Arzela Lemma, let {rk}, k ∈ N, be a dense subset
of D. Determine a subsequence {fkm} and a function f defined on {rk} such that
fkm(rk) → f(rk) as m → ∞ for all k ∈ N. Next, prove that the subsequence
{fmm} converges to {f} on {rk}, k ∈ N, uniformly as m → ∞. Conclude, by
extending the domain of f from {rk} to D.

For a complete statement of the proof outlined above, refer to Miller and
Michel [37]. �

Problem 2.14.8 Prove Theorem 2.3.1.
Hint: First, show that for every ε > 0 there exists a piecewise linear function

ϕε : J → R
n such that ϕε(t0) = x0, (t0, x0) ∈ D, and |ϕ̇ε(t) − f(t, ϕε(t))| < ε for

all t ∈ [t0, t0 + c] (where ϕ̇ε is defined) for some c > 0 and (t, ϕε(t)) ∈ D for all
t ∈ [t0, t0 + c]. (ϕε is called an ε-approximate solution of (IE).)

Next, let ϕm be an ε-approximate solution of (IE) with εm = 1/m. Show that
the sequence {ϕm} is uniformly bounded and equicontinuous.

Finally, apply theAscoli–Arzela Lemma to show that there is a subsequence{ϕmk}
of {ϕm} given above and a ϕ ∈ C

[
[t0, t0 + c], Rn

]
such that {ϕmk} converges to ϕ

uniformly on [t0, t0 + c], and such that ϕ satisfies

ϕ(t) = x0 +
∫ t

t0

f(s, ϕ(s))ds

for t ∈ [t0, t0 + c]. Therefore, ϕ is a solution of (IE).
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For a complete statement of the proof outlined above, refer to Miller and
Michel [37]. �

Problem 2.14.9 The following result, called the Gronwall Inequality is required in
the proof of Problem 2.14.10 given below.

Let r, k ∈ C
[
[a, b], R+

]
and let δ ≥ 0 such that

r(t) ≤ δ +
∫ t

a

k(s)r(s)ds, a ≤ t ≤ b. (2.14.4)

Then

r(t) ≤ δ exp
[∫ t

a

k(s)ds

]
, a ≤ t ≤ b. (2.14.5)

Hint: For δ > 0, integrate both sides of

k(s)r(s)
δ +

∫ s

a
k(η)r(η)dη

≤ k(s)

from a to t. Use inequality (2.14.4) to conclude the result when δ �= 0. When δ = 0,
consider a positive sequence {δn} such that δn → 0 as n → ∞ and apply it to
(2.14.5).

For a complete statement of the proof outlined above, refer to Miller and
Michel [37]. �

Problem 2.14.10 Prove Theorem 2.3.2
Hint: Apply the Gronwall inequality given above in Problem 2.14.9.
For a complete statement of the proof, refer to Miller and Michel [37]. �

Problem 2.14.11 The following result is required in the proof of Problem 2.14.12
given below.

Let D ⊂ R × R
n be a domain. Let f ∈ C[D, Rn] with f bounded on D and let

ϕ be a solution of (E) on the interval (a, b). Show that

(a) The two limits limt→a+ ϕ(t) = ϕ(a+) and limt→b− ϕ(t) = ϕ(b−) exist.

(b) If (a, ϕ(a+)) ∈ D (resp., (b, ϕ(b−)) ∈ D), then the solution ϕ can be continued
to the left past the point t = a (resp., to the right past the point t = b).

(A complete statement of the proof of the above result can be found in Miller and
Michel [37].) �

Problem 2.14.12 Prove Theorem 2.3.3.
Hint: Use the result given in Problem 2.14.11. �

Problem 2.14.13 Prove Theorem 2.7.1.
Hint: To prove this result, use Schauder’s Fixed Point Theorem: A continuous

mapping of a compact convex set in a Banach space X into itself has at least one
fixed point. Let T be the operator defined by (2.7.7). Find a compact convex set



Section 2.14 Problems 65

X ⊂ C
[
[t0 − r, t0 + c], Rn

]
for some c > 0 such that T (X) ⊂ X . Now apply

Schauder’s Fixed Point Theorem. A possible choice of X is given by

X =
{
x ∈ C

[
[−r+t0, t0+c], Rn

]
: xt0 = ψ, ‖ xt−ψ ‖≤ d for all t ∈ [t0, t0+c]

}
,

where 0 < c ≤ d/M, d > 0 sufficiently small, with M ≥ |f(t, ϕ)| for all (t, ϕ) in a
fixed neighborhood of (t0, ψ) in Ω.

For the complete proof of Theorem 2.7.1 outlined above, refer to Hale [19]. �

Problem 2.14.14 Prove Theorem 2.7.2.
Hint: Let x(t) and y(t) be two solutions of (IF ). Then

x(t) − y(t) =
∫ t

t0

[f(s, xs) − f(s, ys)] ds, t ≥ t0, xt0 − yt0 = 0.

Using the above, show that there exists a c0 > 0 such that x(t) = y(t) for all
t ∈ [t0 − r, t0 + c0]. To complete the proof, repeat the above for successive intervals
of length c0.

For the complete proof of Theorem 2.7.2 outlined above, refer to Hale [19]. �

Problem 2.14.15 The following result is required in the proof of Problem 2.14.16
given below.

Let Ω be an open set in R × Cr and let F : Ω → R
n be completely continuous.

Assume that p ∈ C
[
[t0 − r, b), Rn

]
is a noncontinuable solution of (F ). Show that

for any bounded closed set U in R × Cr, U ⊂ Ω, there exists a tU ∈ (t0, b) such that
(t, pt) /∈ U for every t ∈ [tU , b].

Hint: The case b = ∞ is clear. Suppose that b is finite. The case r = 0 reduces to
an ordinary differential equation. So assume that r > 0. Now prove the assertion by
contradiction, assuming that b < ∞ and r > 0. �

Problem 2.14.16 Prove Theorem 2.7.3.
Hint: Apply the result given in Problem 2.14.15. For the complete proof, refer to

Hale [19]. �

Problem 2.14.17 Prove Theorem 2.8.1.
Hint: Using the theory of C0-semigroups, refer to Example 2.9.3 for a choice of

the infinitesimal generator for the C0-semigroup (refer to [3]). �

Problem 2.14.18 Consider the initial value problem{
ẋ = A(t)x
x(t0) = x0

(LH)

where A ∈ C[R+, Rn×n].
(a) Show that the set of solutions obtained for (LH) by varying (t0, x0) over

(R+, Rn) determines a dynamical system in the sense of Definition 2.2.3.
(b) Show that in general, (LH) does not determine a C0-semigroup.
(c) Show that when A(t) ≡ A, (LH) determines a C0-semigroup. �
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Problem 2.14.19 Prove the assertion made in Example 2.9.1 that the initial value
problem (2.9.4) determines a quasi-contractive semigroup. �

Problem 2.14.20 Consider the initial value problem for the heat equation
∂u

∂t
= a2∆u, x ∈ R

n, t ∈ R
+

u(0, x) = ϕ(x), x ∈ R
n

(2.14.6)

where a > 0, ∆ =
∑n

i=1 ∂2/∂x2
i , and ϕ ∈ C[Rn, R] is bounded.

(a) Verify that the unique solutions of (2.14.6) are given by Poisson’s formula,

u(t, x) =
1

(2a
√

πt)n

∫
Rn

e−|x−y|2/(4a2t)ϕ(y)dy.

(b) Show that the operators T (t), t ∈ R
+, determined by u(t, ·) = T (t)ϕ, deter-

mine a C0-semigroup. �

Problem 2.14.21 Consider the initial value problem for the one-dimensional wave
equation

∂2u

∂t2
= c2 ∂2u

∂x2 , x ∈ R, t ∈ R
+

u(0, x) = ϕ(x),
∂u

∂t
(0, x) = ψ(x), x ∈ R

(2.14.7)

where c > 0, ϕ ∈ C2[R, R], and ψ ∈ C1[R, R].

(a) Verify that the unique solution of (2.14.7) is given by d’Alembert’s formula

u(t, x) =
1
2
[
ϕ(x − ct) + ϕ(x + ct)

]
+

1
2c

∫ x+ct

x−ct

ψ(η)dη.

(b) Let ψ ≡ 0. For ϕ ∈ C2[R, R], define the operators T (t), t ∈ R
+, by

T (t)ϕ = u(t, ·). Show that T (t), t ∈ R
+, do not satisfy the semigroup property

(specifically, they do not satisfy the property T (t)T (s) = T (t + s), t, s ∈ R
+).

(c) Now let u(t, ϕ, t0) denote the solutions of
∂2u

∂t2
= c2 ∂2u

∂x2 , x ∈ R, t ≥ t0

u(t0, x) = ϕ(x),
∂u

∂t
(t0, x) = 0, x ∈ R

(2.14.8)

where t0 ∈ R
+ and ϕ ∈ C2[R, R]. Show that for all ϕ ∈ C2[R, R], the resulting

solutions u(t, ϕ, t0) form a dynamical system in the sense of Definition 2.2.3 with
T = R

+, X = A = C2[R, R] where we assume that X is equipped with some norm
(e.g., ‖ ϕ ‖= maxx∈R |ϕ(x)|). �
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Problem 2.14.22 We now consider a specific class of multirate digital feedback con-
trol systems. The plant is described by

ẋ(t) = Ax(t) + B1u1c(t) + B2u2c(t)

y(t) =
[
y1(t)
y2(t)

]
=
[
D1x(t)
D2x(t)

]
(2.14.9)

where x∈R
n, A∈ R

n×n, B1 ∈ R
n×n1 , B2 ∈ R

n×n2 , D1 ∈ R
m1×n, D2 ∈ R

m2×n,
u1c ∈ R

n1 , u2c ∈ R
n2 , and{

u1c(t) = u1(k), kTb ≤ t < (k + 1)Tb, k ∈ N,
u2c(t) = u2(2k), 2kTb ≤ t < 2(k + 1)Tb, k ∈ N.

(2.14.10)

In (2.14.10), Tb > 0 is the basic sampling period whereas u1(k) and u2(2k) are
specified by output feedback equations of the form

u1(k + 1) = F1u1(k) + K1y1(kTb)
= F1u1(k) + K1D1x(kTb), k ∈ N (2.14.11)

u2(2(k + 1)) = F2u2(2k) + K2y2(2kTb)
= F2u2(2k) + K2D2x(2kTb), k ∈ N

where K1, K2, F1, and F2 are matrices of appropriate dimensions. The system inputs
u1c(t) and u2c(t) are realized by multirate zero-order hold elements.

Similarly as in Example 2.12.1, show that the above hybrid system can equiva-
lently be represented by a system of discontinuous ordinary differential equations that
generate a discontinuous dynamical system. �
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Chapter 3

Fundamental Theory: The
Principal Stability and
Boundedness Results on
Metric Spaces

In this chapter we present the Principal Lyapunov and Lagrange Stability Results,
including Converse Theorems for continuous dynamical systems, discrete-time dy-
namical systems, and discontinuous dynamical systems (DDS) defined on metric
spaces. The results of this chapter constitute the fundamental theory for the entire
book because most of the general results that we develop in the subsequent chap-
ters concerning finite-dimensional systems (described on finite-dimensional linear
spaces) and infinite-dimensional systems (defined on Banach and Hilbert spaces) can
be deduced as consequences of the results of the present chapter. Most of the spe-
cific applications to the fundamental theory that we consider therefore are deferred
to the later chapters where we address finite-dimensional and infinite-dimensional
systems. However, after addressing in the next chapter additional (more specialized)
stability and boundedness results for dynamical systems defined on metric spaces,
we present applications to the results of this chapter in Chapter 5 in the analysis of
a class of discrete-event systems (with applications to a manufacturing system and
a computer load-balancing problem) that determine dynamical systems defined on
metric spaces.

The conventional approach in proving the various Principal Lyapunov and La-
grange Stability Results for continuous, discrete-time, and discontinuous dynamical
systems is to show that when a dynamical system satisfies a certain set of hypotheses,
then the system possesses a certain type of stability or boundedness property. For the
reasons discussed below we do not pursue this approach (however, we ask the reader
to do so in the exercise section).

71
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In establishing the results presented in this chapter, we first prove the Principal
Lyapunov and Lagrange Stability Results for discontinuous dynamical systems, using
basic principles and definitions. Next, to establish the Principal Lyapunov and La-
grange Stability Results for continuous dynamical systems, we show that whenever
the hypotheses of a given stability or boundedness result for continuous dynamical
systems are satisfied, then the hypotheses of the corresponding stability or bound-
edness result for DDS are also satisfied (using the fact that continuous dynamical
systems may be viewed as special cases of DDS). This shows that the classical Lya-
punov and Lagrange Stability Results for continuous dynamical systems reduce to the
corresponding results for DDS (i.e., the classical Principal Lyapunov and Lagrange
Stability Results for continuous dynamical systems are more conservative than the
corresponding Lyapunov and Lagrange Stability Results for DDS). Indeed, we present
a result for a continuous dynamical system whose equilibrium can be shown to be
uniformly asymptotically stable, using the uniform asymptotic stability theorem for
DDS, and we show that for the same example, no Lyapunov function exists that sat-
isfies the classical uniform asymptotic stability theorem for continuous dynamical
systems.

Next, we show that for every discrete-time dynamical system there exists an asso-
ciated DDS with identical stability and boundedness properties. Making use of such
associated DDSs, we show that when the hypotheses of a given classical Lyapunov
or Lagrange stability result for discrete-time dynamical systems are satisfied, then
the hypotheses of the corresponding Lyapunov and Lagrange stability result for DDS
are satisfied. This shows that the classical Lyapunov and Lagrange stability results
for discrete-time dynamical systems reduce to the corresponding results for DDS
(i.e., the classical Principal Lyapunov and Lagrange stability results for discrete-time
dynamical systems are more conservative than the corresponding Lyapunov and La-
grange stability results for DDS). We present a specific example of a discrete-time
dynamical system whose equilibrium can be shown to be uniformly asymptotically
stable using the uniform asymptotic stability theorem for DDS, and we show that for
the same example, no Lyapunov function exists that satisfies the classical Lyapunov
theorem for uniform asymptotic stability for discrete-time dynamical systems.

In addition to giving us a great deal of insight, the approach that we employ
in proving the various stability and boundedness results culminates in a unifying
qualitative theory for the analysis of continuous, discrete-time, and discontinuous
dynamical systems. Furthermore, our approach in proving the results presented herein
is more efficient than the conventional approach alluded to earlier.

This chapter is organized into eight sections. In the first section we address
the qualitative characterization of invariant sets of dynamical systems. In the next
three sections we present and prove the principal Lyapunov stability results and the
Lagrange stability results (boundedness of motions) for discontinuous dynamical sys-
tems, continuous dynamical systems, and discrete-time dynamical systems, respec-
tively. This is followed by three sections where we address converse theorems for
DDS, continuous dynamical systems, and discrete-time dynamical systems. Finally,
in Section 3.8 we present some required background material concerning ordinary
differential equations.
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Before proceeding with our subject on hand, we would like to remind the reader that
our definition of dynamical system (Definition 2.2.3) does in general not require that
time be reversible in the motions (in contrast to many dynamical systems determined,
e.g., by various types of differential equations), nor are the motions required to be
unique with respect to initial conditions. For such general systems, when required,
we make an assumption that is akin to the semigroup property, but is more general,
which essentially requires that for a dynamical system S, any partial motion is also
a motion of S, and any composition of two motions is also a motion of S (refer to
Assumption 3.5.1). Of course when in a dynamical system the semigroup property
holds, then Assumption 3.5.1 is automatically implied.

3.1 Some Qualitative Characterizations of Dynamical
Systems

Most, but not all the qualitative aspects of dynamical systems that we address concern
qualitative characterizations of invariant sets. In the present section, we first introduce
the notion of an invariant set of a dynamical system. Next, we present various concepts
of stability of invariant sets, instability of sets, and boundedness of motions.

A. Invariant sets

In the following, we utilize the notation introduced in Chapter 2.

Definition 3.1.1 Let {T, X, A, S} be a dynamical system. A set M ⊂ A is said to
be invariant with respect to S, or for short, (S, M) is invariant, if a ∈ M implies
that p(t, a, t0) ∈ M for all t ∈ Ta,t0 , all t0 ∈ T , and all p(·, a, t0) ∈ S. �

Recall that Ta,t0 = [t0, t1)∩T , t1 > t0, which means that in the above definition,
evolution in time is forward.

In a broader context, the evolution in time is allowed to be forward as well as
backward. In such cases, a distinction is made between positive invariant set (forward
in time) and negative invariant set (backward in time) (see, e.g., [11]).

We note that the union of invariant sets is also an invariant set.

Example 3.1.1 (Conservative dynamical systems) Recall the Hamiltonian system
given in Example 2.3.7, described by the equations

q̇i =
∂H

∂pi
(p, q), i = 1, . . . , n,

ṗi = −∂H

∂qi
(p, q), i = 1, . . . , n.

(3.1.1)

The solutions of (3.1.1) determine a continuous dynamical system with T = R and
X = A = R

2n. For any c ∈ R such that the set

Mc =
{
(p, q)T ∈ R

2n : H(p, q) = c
}
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is nonempty, Mc is an invariant set. This follows, because

dH

dt
(p(t), q(t)) ≡ 0

for all solutions (p(t), q(t))T of (3.1.1), as shown in Example 2.3.7. �

Example 3.1.2 (Heat equation) Let Ω ⊂ R
n be a domain with smooth boundary

∂Ω and consider the initial value and boundary value problem given by the equations
(see also Chapter 2)

∂u

∂t
= a2∆u, x ∈ Ω, t ≥ t0

u(t0, x) = ϕ(x), x ∈ Ω
u(t, x) = 0, x ∈ ∂Ω, t > t0

(3.1.2)

where t0 ≥ 0, a > 0, ∆ =
∑n

i=1∂
2/∂x2

i , and ϕ ∈ C[Ω, R] with limx→∂Ω ϕ(x) = 0.
Let T = R

+,
X = A =

{
ϕ ∈ C[Ω, R] : lim

x→∂Ω
ϕ(x) = 0

}
and let X and A be equipped with the norm

‖ϕ‖ = max
x∈Ω

|ϕ(x)|.

It has been shown that for every ϕ ∈ A, (3.1.2) possesses a unique solution u(t, x)
that exists for all t ≥ t0. It follows that {T, X, A, S(3.1.2)} is a dynamical system
where the set of motions is determined by the solutions of (3.1.2).

Let M ⊂ A = X denote the set given by

M =
{
ϕ ∈ C2[Ω, R] ∩ X : ∆ϕ(x) = 0 for all x ∈ Ω

}
.

Then M is invariant with respect to S(3.1.2). Indeed, for any ϕ ∈ M , u(t, x) ≡ ϕ(x)
is a solution of (3.1.2). By the uniqueness of each solution, it follows that M is
invariant with respect to S(3.1.2). �

The most important special case of invariant sets is an equilibrium.

Definition 3.1.2 We call x0 ∈ A an equilibrium (or an equilibrium point) of a dy-
namical system {T, X, A, S} if the set {x0} ⊂ A is invariant with respect to S (i.e.,
(S, {x0}) is invariant). �

In the following, we enumerate several specific examples of equilibria.

Example 3.1.3 (Ordinary differential equations) Let f ∈ C[R+ × Ω, Rn] where
Ω ⊂ R

n is a domain, assume that xe ∈ Ω satisfies f(t, xe) = 0 for all t ∈ R
+, and

that the system of first-order ordinary differential equations

ẋ = f(t, x) (E)

has a unique solution for the initial condition x(t0) = xe. As pointed out in Chapter 2,
this is true if, for example, f satisfies a Lipschitz condition. Then xe is an equilibrium
of the dynamical system SE determined by the solutions of (E). In this case we also
say that xe is an equilibrium of (E). �
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Example 3.1.4 (Ordinary difference equations) Let f : N × R
n → R

n and assume
that there exists an xe ∈ R

n such that f(k, xe) = xe for all k ∈ N. Then xe is an
equilibrium of the dynamical system SD determined by the solutions of the system
of ordinary difference equations given by

x(k + 1) = f(k, x(k)), (D)

k ∈ N. �

Example 3.1.5 (Heat equation) In Example 3.1.2, each ϕ ∈ M is an equilibrium of
(3.1.2). �

Example 3.1.6 (Ordinary differential equations in a Banach space) Let X be a
Banach space, let C ⊂ X , and let F : R

+ × C → X . Assume that F (t, xe) = 0 for
all t ∈ R

+ and that
ẋ(t) = F (t, x(t)), x(t0) = xe (3.1.3)

has a unique solution for any t0 ∈ R
+. Then xe is an equilibrium of the dynamical

system determined by the solutions of

ẋ(t) = F (t, x(t)). (3.1.4)

In this case we also say that xe is an equilibrium of (3.1.4). �

Example 3.1.7 (Semigroups) Let T (t), t ∈ R
+, be a linear or nonlinear semigroup

(see Chapter 2) defined on a subset C of a Banach space X . If there exists an xe ∈ C
such that T (t)xe = xe for all t ∈ R

+, then xe is an equilibrium of the dynamical
system determined by the semigroup T (t). In this case we also say that xe is an
equilibrium of the semigroup T (t). �

We conclude this subsection by introducing several additional concepts that we
require.

Definition 3.1.3 A dynamical system {T, X, A, S} is said to satisfy the uniqueness
property if for any (a, t0) ∈ A × T there exists a unique noncontinuable mo-
tion p(·, a, t0) ∈ S (refer to Definition 2.2.6 for the definition of noncontinuable
motion). �

When a dynamical system is determined by equations of the type considered in
Chapter 2, the uniqueness property of a dynamical system is equivalent to the unique-
ness of solutions of initial value problems determined by such equations.

Definition 3.1.4 For each motion p(·, a, t0)∈S in a dynamical system {T, X, A, S},
the set

C(p) =
{
x ∈ X : x = p(t, a, t0) for some t ≥ t0 and t ∈ T

}
is called a trajectory. �
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In the literature where evolution in time is allowed to be forward and backward, a
distinction is made between positive semitrajectory (forward in time) and a negative
semitrajectory (backward in time) (refer, e.g., to [11]).

Definition 3.1.5 A motion p(·, a, t0) ∈ S in a dynamical system {T, X, A, S} is said
to be periodic if there exists a constant ω > 0 such that t + ω ∈ T for each t ∈ T ,
and such that p(t + ω, a, t0) = p(t, a, t0) for all t ∈ T , t ≥ t0, and t ∈ T . We call ω
a period of the periodic motion p(·, a, t0). �

If a dynamical system S satisfies the uniqueness property, then clearly any trajec-
tory of a motion in S is an invariant set. In particular, the trajectory of a periodic
motion, which is usually a closed curve in a metric space X , is an invariant set.
Furthermore, the union of a family of trajectories is an invariant set of S.

B. Qualitative characterizations: Stability and boundedness

Let {T, X, A, S} be a dynamical system and assume that M ⊂ A is an invariant set
of S, or for short, that (S, M) is invariant. In the definitions that follow, the phrase
“(S, M) is said to be . . . ” is understood to mean “the set M that is invariant with
respect to system S is said to be . . . ”. Thus, in Definition 3.1.6 given below, “(S, M)
is said to be stable . . . ” should be read as “the set M that is invariant with respect to
system S is said to be stable . . . ”.

Let (X, d) be a metric space. We recall that the distance between a point a ∈ X
and a set M ⊂ X is defined as

d(a, M) = inf
x∈M

d(a, x).

Finally, the reader should make reference to Definition 2.2.1 for the meaning of the
set Ta,t0 .

Definition 3.1.6 (S, M) is said to be stable if for every ε > 0 and every t0 ∈ T ,
there exists a δ = δ(ε, t0) > 0 such that d(p(t, a, t0), M) < ε for all t ∈ Ta,t0 and
for all p(·, a, t0) ∈ S, whenever d(a, M) < δ. (S, M) is said to be uniformly stable
if it is stable and if in the above, δ is independent of t0 (i.e., δ = δ(ε)). �

In the following definitions, we address asymptotic properties of invariant sets
with respect to dynamical systems. Throughout this book, whenever we deal with
asymptotic properties, we assume that for any (a, t0) ∈ A × T , Ta,t0 = [t0,∞) ∩ T
and that T ∩ [α,∞) �= ∅ for any α > 0.

Definition 3.1.7 (S, M) is attractive if there exists an η = η(t0) > 0 such that
limt→∞ d(p(t, a, t0), M) = 0 for all p(·, a, t0) ∈ S whenever d(a, M) < η. �

We call the set of all a ∈ A such that limt→∞ d(p(t, a, t0), M) = 0 for all
p(·, a, t0) ∈ S the domain of attraction of (S, M) at time t0.

Definition 3.1.8 (S, M) is asymptotically stable if it is stable and attractive. �
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Definition 3.1.9 (S, M) is uniformly asymptotically stable if

(i) it is uniformly stable; and
(ii) for every ε > 0 and every t0 ∈ T , there exist a δ > 0, independent of t0 and

ε, and a τ = τ(ε) > 0, independent of t0, such that d(p(t, a, t0), M) < ε for
all t ∈ Ta,t0+τ and for all p(·, a, t0) ∈ S whenever d(a, M) < δ. �

When condition (ii) in the above definition is satisfied, we say that (S, M) is
uniformly attractive.

Definition 3.1.10 (S, M) is exponentially stable if there exists an α > 0, and for
every ε > 0 and every t0 ∈ T , there exists a δ = δ(ε) > 0 such that

d(p(t, a, t0), M) < εe−α(t−t0)

for all t ∈ Ta,t0 and for all p(·, a, t0) ∈ S whenever d(a, M) < δ. �

Note that the exponential stability of (S, M) implies the uniform asymptotic sta-
bility of (S, M).

Definition 3.1.11 (S, M) is unstable if it is not stable. �

The preceding definitions concern local characterizations. In the remaining defi-
nitions we address global characterizations.

Definition 3.1.12 A motion p(·, a, t0) ∈ S is bounded if there exists a β > 0 such
that d(p(t, a, t0), a) < β for all t ∈ Ta,t0 . �

Definition 3.1.13 A dynamical system S is uniformly bounded if for every α > 0
and for every t0 ∈ T there exists a β = β(α) > 0 (independent of t0) such that if
d(a, x0) < α, then for p(·, a, t0) ∈ S, d(p(t, a, t0), x0) < β for all t ∈ Ta,t0 , where
x0 is a fixed point in X . �

Definition 3.1.14 A uniformly bounded dynamical system S is uniformly ultimately
bounded if there exists a B > 0 and if corresponding to any α > 0 and t0 ∈ T ,
there exists a τ = τ(α) > 0 (independent of t0) such that for all p(·, a, t0) ∈ S,
d(p(t, a, t0), x0) < B for all t ∈ Ta,t0+τ whenever d(a, x0) < α, where x0 is a fixed
point in X . �

In the above two definitions, the constants β and B may in general depend on
the choice of x0 ∈ X . However, the definitions themselves are independent of the
choice of x0. More generally, we may replace x0 ∈ X in these definitions by any
fixed bounded set in X .

Definition 3.1.15 (S, M) is asymptotically stable in the large if

(i) it is stable; and
(ii) for every p(·, a, t0) ∈ S and for all (t0, a) ∈ T × A,

lim
t→∞ d(p(t, a, t0), M) = 0. �
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When Definition 3.1.15 is satisfied, the domain of attraction of (S, M) is the entire
set A.

Definition 3.1.16 (S, M) is uniformly asymptotically stable in the large if

(i) it is uniformly stable;

(ii) S is uniformly bounded; and

(iii) for every α > 0, for every ε > 0, and for every t0 ∈ T , there exists a
τ = τ(ε, α) > 0 (independent of t0), such that if d(a, M) < α, then for all
p(·, a, t0) ∈ S, d(p(t, a, t0), M) < ε for all t ∈ Ta,t0+τ . �

When condition (iii) in the above definition is satisfied, we say that (S, M) is
globally uniformly attractive.

Definition 3.1.17 (S, M) is exponentially stable in the large if there exist an α > 0,
a γ > 0, and for every β > 0, there exists a k(β) > 0 such that

d(p(t, a, t0), M) ≤ k(β)[d(a, M)]γe−α(t−t0)

for all p(·, a, t0) ∈ S and for all t ∈ Ta,t0 whenever d(a, M) < β. �

The preceding notions of stability, instability, asymptotic stability, and exponential
stability are referred to in the literature as stability concepts in the sense of Lyapunov
whereas the preceding concepts involving the boundedness of motions of dynamical
systems, are referred to in the literature as Lagrange stability.

We now consider a few specific examples.

Example 3.1.8 (Linear ordinary differential equations with constant coefficients)
For the system of linear ordinary differential equations

ẋ = Ax, (3.1.5)

where x ∈ R
n and A ∈ R

n×n, the point xe = 0 is an equilibrium. For the initial
conditions x(t0) = x0, the solution of (3.1.5) is given by

ϕ(t, x0, t0) = eA(t−t0)x0

where

eAt = I +
∞∑

j=1

tj

j!
Aj

(see, e.g., [1]). Letting P ∈ R
n×n denote a nonsingular matrix, we obtain

eAt = P−1e(PAP −1)tP.
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If we choose P so that PAP−1 is in Jordan canonical form, we can see readily that
the following statements are true (see, e.g., [1]).

(a) The equilibrium xe = 0 of (3.1.5) is stable if and only if all eigenvalues of
A have nonpositive real parts, and every eigenvalue with zero real part has an
associated Jordan block of order one.

(b) When xe = 0 of (3.1.5) is stable, it is also uniformly stable.

(c) When xe = 0 is stable, the dynamical system determined by (3.1.5) is uniformly
bounded.

(d) The equilibrium xe = 0 of (3.1.5) is attractive if and only if all eigenvalues of
A have negative real parts.

(e) When xe = 0 of (3.1.5) is attractive, it is also uniformly attractive.

(f) The equilibrium xe = 0 of (3.1.5) is uniformly asymptotically stable, in fact,
uniformly asymptotically stable in the large if and only if all eigenvalues of
A have negative real parts. In this case, the dynamical system determined by
(3.1.5) is uniformly ultimately bounded.

(g) The equilibrium xe = 0 of (3.1.5) is exponentially stable, in fact, exponentially
stable in the large if and only if all eigenvalues of A have negative real parts.

(h) When the conditions given in (a) are not satisfied, the equilibrium xe = 0 of
(3.1.5) is unstable. �

Example 3.1.9 (Linear ordinary difference equations with constant coefficients)
For the system of linear ordinary difference equations

x(k + 1) = Ax(k), (3.1.6)

where k ∈ N, x(k) ∈ R
n and A ∈ R

n×n, the point xe = 0 is an equilibrium. For
the initial conditions x(k0) = x0, the solutions of (3.1.6) are given by

ϕ(k, x0, k0) = A(k−k0)x0.

Similarly as in Example 3.1.8, we can transform the system (3.1.6) so that the matrix
A is in Jordan canonical form to come to the following conclusions (see, e.g., [1]).

(a) The equilibrium xe = 0 of (3.1.6) is stable, in fact uniformly stable, if and
only if all eigenvalues of A have magnitude less than or equal to one and every
eigenvalue of A with magnitude equal to one has an associated Jordan block of
order one. In this case, the dynamical system determined by (3.1.6) is uniformly
bounded.

(b) The equilibrium xe = 0 of (3.1.6) is uniformly asymptotically stable in the
large (in fact, exponentially stable in the large) if and only if all eigenvalues of
A have magnitude less than one. In this case, the dynamical system determined
by (3.1.6) is uniformly ultimately bounded.

(c) When the conditions of (a) are not satisfied, the equilibrium xe = 0 of (3.1.6)
is unstable. �
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Example 3.1.10 (Heat equation) Consider the initial-value problem given by
∂u

∂t
= a2∆u, x ∈ R

n, t ≥ t0 ≥ 0

u(t0, x) = ϕ(x), x ∈ R
n

(3.1.7)

where a > 0, t ∈ R
+, ∆ =

∑n
i=1 ∂2/∂x2

i , and ϕ ∈ C[Rn, R] is bounded. Let
T = R

+ and let X = A be the set of real-valued and bounded functions defined on
R

n with norm given by

‖ϕ‖ = max
{
|ϕ(x)| : x ∈ R

n
}
.

We let S(3.1.7) denote the dynamical system determined by (3.1.7). For any constant
c, ϕe(x) = c (x ∈ R

n) is an equilibrium for S(3.1.7).
For any initial condition ϕ, the solution of the heat equation (3.1.7) is given by

Poisson’s formula (see Chapter 2)

u(t, ϕ, t0) =
1[

2a
√

π(t − t0)
]n ∫

Rn

e−|x−y|2/[4a2(t−t0)]ϕ(y)dy.

From this it is easily verified that

‖u(t, ϕ, t0) − c‖ ≤ ‖ϕ − c‖ (3.1.8)

for any ϕ ∈ X and for all t ≥ t0. Therefore, ϕe ≡ c is uniformly stable. However,
the equilibrium ϕe ≡ c is not attractive, because for ϕ ≡ c + ε, u(t, ϕ, t0) = c + ε
for any ε ∈ R. Therefore, the equilibrium ϕe ≡ c is not asymptotically stable and
not uniformly asymptotically stable.

Next, let M ⊂ X be the set of all constant functions. Then (S(3.1.7), M) is
uniformly asymptotically stable in the large. To show this, note that for any ϕ∈X ,
limt→∞ u(t, ϕ, t0) = ũ(x) exists and satisfies ∆ũ ≡ 0; that is, ũ is a harmonic
function. Furthermore, ũ is bounded because ϕ is bounded, by (3.1.8). By Liouville’s
Theorem, any bounded harmonic function on R

n must be constant. Therefore, ũ∈M.
Hence, conditions (ii) and (iii) of Definition 3.1.16 are satisfied. The uniform stability
of (S(3.1.7), M) follows from the uniform stability of (S(3.1.7), {c}) for each c ∈ R.
Therefore, (S(3.1.7), M) is uniformly asymptotically stable in the large.

Finally, inequality (3.1.8) implies that S is uniformly bounded. However, S(3.1.7)
is not uniformly ultimately bounded. �

Example 3.1.11 Consider the scalar differential-difference equation

ẋ(t) = x(t − 1), t ≥ t0 ≥ 1. (3.1.9)

Let T = [1,∞) and let X = A = C
[
[−1, 0], R

]
, with the norm given by

‖ϕ‖ = max
{
|ϕ(t)| : − 1 ≤ t ≤ 0

}
.
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Associated with (3.1.9) we have the initial-value problem{
ẋ(t) = x(t − 1), t ≥ t0
x(t) = ϕ(t − t0), t ∈ [t0 − 1, t0]

(3.1.10)

which has a unique solution x(t, ϕ, t0) for each t0 ∈ T and each ϕ ∈ X = A.
Let S(3.1.10) be the dynamical system determined by (3.1.10). Then ϕe = 0 is an

equilibrium of S(3.1.10). In the following, we show that ϕe = 0 is unstable.
For ϕ(t) ≡ ε, t ∈ [−1, 0], we have that

x(t, ϕ, 1) = ε +
N∑

j=1

(t − j)j

j!
, N ≤ t ≤ (N + 1), (3.1.11)

N = 0, 1, 2, . . . . It follows from (3.1.11) that

x(N,ϕ, 1) ≥ ε(1 + N − 1) = Nε.

Therefore, for arbitrarily small ε > 0, when N ≥ 1/ε, we have x(N,ϕ, 1) ≥ 1 for
ϕ(t) ≡ ε, t ∈ [−1, 0]. Hence, ϕe = 0 is unstable. �

Before proceeding any further, it should be pointed out that the notions of stability
(Definition 3.1.6) and attractivity (Definition 3.1.7) are independent concepts. This
is demonstrated by considering the specific example

ẋ1 =
x2

1(x2 − x1) + x5
2

(x2
1 + x2

2)[1 + (x2
1 + x2

2)2]
,

ẋ2 =
x2

2(x2 − 2x1)
(x2

1 + x2
2)[1 + (x2

1 + x2
2)2]

.

(3.1.12)

The origin xe = 0 ∈ R
2 is an equilibrium of (3.1.12). It is shown in [2, pp. 191–194],

that the equilibrium xe = 0 is attractive and unstable.
In Definition 3.1.11, we defined instability of a set M that is invariant with respect

to a dynamical system S. It turns out that we require a more general concept, namely,
instability of any set M ⊂ A with respect to a dynamical system S.

Definition 3.1.18 Let {T, X, A, S} be a dynamical system and let M ⊂ A. The set
M is unstable with respect to S if for every δ>0, there exists a p(·, a, t0)∈ S with t0
independent of δ, and a t1 ∈Ta,t0 such that d(a, M)< δ and d(p(t1, a, t0), M) ≥ ε0
for some ε0 > 0 which is independent of the δ. �

Note that when (S, M) is invariant, then Definitions 3.1.11 and 3.1.18 coincide.
A severe case of instability is the concept of complete instability. To introduce this

concept, we require the following property of a set M.

Definition 3.1.19 Let {T, X, A, S} be a dynamical system and let M ⊂ A. The set
M is said to be proper with respect to S if for every δ> 0, there exists a p(·, a, t0)∈ S
with Ta,t0 �= ∅ and 0 < d(a, M) < δ. �
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Definition 3.1.20 Let {T, X, A, S} be a dynamical system and let M ⊂ A. The set
M is said to be completely unstable with respect to S if for every subsystem S̃ of S
such that M is proper with respect to S̃, M is unstable with respect to S̃. �

We conclude the present section with an example.

Example 3.1.12 Consider the scalar differential inequality with initial conditions
given by {

ẏ(t) ≥ cy(t), t ≥ t0,

y(t0) = y0, t0 ∈ R
+, y0 ∈ R

+.
(3.1.13)

Let T = R, X = A = R
+ and let S(3.1.13) denote the set of all solutions of (3.1.13).

Then {T, X, A, S(3.1.13)} is a dynamical system.
We show that if c > 0, the set M = {0} is completely unstable with respect to

S(3.1.13).

First we note that (3.1.13) implies that y(t) ≥ y0e
c(t−t0). For any subsystem

S̃ ⊂ S(3.1.13) such that the set {0} is proper with respect to S̃, we can prove that {0} is

unstable with respect to S̃. To see this, let ε0 = 1. Because {0} is proper with respect
to S̃, then for any δ > 0 there exists a y(·, y0, t0) ∈ S̃ such that 0 < y0 < min{1, δ}
and such that y(t, y0, t0) ≥ y0e

c(t−t0). Let t1 ≥ t0 + (1/c)ln(1/y0) > t0. Then
y(t1, t0, y0) ≥ y0e

c(t1−t0) ≥ 1 = c0. By Definition 3.1.18, {0} is unstable with
respect to S̃.

It now follows from Definition 3.1.20 that {0} is completely unstable with respect
to S(3.1.13). �

3.2 The Principal Lyapunov and Lagrange Stability
Results for Discontinuous Dynamical Systems

Before proceeding with our task on hand, we recall from the preceding chapter that
we assume throughout, that for every motion p ∈ S in a DDS, {R

+, X, A, S}, the
set of times at which discontinuities may occur is unbounded and discrete and is of
the form

Ep = {τp
1 , τp

2 , . . . : τp
1 < τp

2 < · · · }.
In the above expression, Ep signifies the fact that, in general, different motions may
possess different sets of times at which discontinuities may occur. Because in most
cases, the particular set Ep in question is clear from context, we usually suppress the
p-notation and simply write

E = {τ1, τ2, . . . : τ1 < τ2 < · · · }.

A. Local stability results

In the results that follow, we require the notion of a neighborhood of a set.
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Definition 3.2.1 U is called a neighborhood of a set M if U contains an open neigh-
borhood of M , the closure of M . �

Theorem 3.2.1 Let {R
+, X, A, S} be a dynamical system and let M ⊂ A be closed.

Assume that there exist a function V : X ×R
+ → R

+ and two functions ϕ1, ϕ2 ∈ K
defined on R

+ such that

ϕ1(d(x, M)) ≤ V (x, t) ≤ ϕ2(d(x, M)) (3.2.1)

for all x ∈ X and t ∈ R
+. (We recall that functions of class K are defined earlier in

Section 2.1.)
Assume that for any motion p(·, a, t0) ∈ S, V (p(t, a, t0), t) is continuous every-

where on R
+
τ0

= {t ∈ R
+ : t ≥ τ0} except on an unbounded and discrete subset

E = {τ1, τ2, . . . : τ1 < τ2 < · · · } of R
+
τ0

. Also, assume that there exists a neighbor-
hood U of M such that for all a ∈ U and for all p(·, a, τ0) ∈ S, V (p(τn, a, τ0), τn)
is nonincreasing for n ∈ N = {0, 1, 2, . . . }. Furthermore, assume that there exists a
function f ∈ C[R+, R+], independent of p ∈ S, such that f(0) = 0 and such that

V (p(t, a, τ0), t) ≤ f(V (p(τn, a, τ0), τn)) (3.2.2)

for all t ∈ (τn, τn+1), n ∈ N.
Then, (S, M) is invariant and uniformly stable.

Proof . We first prove that (S, M) is invariant. If a∈M , then V (p(τ0, a, τ0), τ0)= 0
because d(a, M) = 0 and V (p(τ0, a, τ0), τ0) = V (a, τ0) ≤ ϕ2(d(a, M)) = 0.
Therefore, we know that V (p(τn, a, τ0), τn) = 0 for all n ∈ N because V (p(τn,
a, τ0), τn) is nonincreasing. Furthermore V (p(t, a, τ0), t) = 0 for all t ∈ (τn, τn+1),
n ∈ N, because V (p(t, a, τ0), t) ≤f(V (p(τn, a, τ0), τn))= 0. It is then implied that
p(t, a, τ0)∈ M for all t ≥ τ0. Therefore (S, M) is invariant by definition.

Because f is continuous and f(0) = 0, then for any ε > 0 there exists a δ =
δ(ε) > 0 such that f(r) < ϕ1(ε) as long as 0 ≤ r < δ. We can assume that
δ < ϕ1(ε). Thus for any motion p(·, a, τ0) ∈ S, as long as the initial condition
d(a, M) < ϕ−1

2 (δ) is satisfied, then

V (p(τn, a, τ0), τn) ≤ V (p(τ0, a, τ0), τ0) ≤ ϕ2(d(a, M)) < δ < ϕ1(ε)

for n = 1, 2, . . . . Furthermore, for any t ∈ (τn, τn+1) we can conclude that

V (p(t, a, τ0), t) ≤ f(V (p(τn, a, τ0), τn)) < ϕ1(ε).

Thus, we have shown that V (p(t, a, τ0), t) < ϕ1(ε) is true for all t ∈ R
+
τ0

. In view
of (3.2.1), we have

d(p(t, a, τ0), M) ≤ ϕ−1
1 (V (p(t, a, τ0), t)) < ϕ−1

1 (ϕ1(ε)) = ε.

Therefore, by definition, (S, M) is uniformly stable. �
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Theorem 3.2.2 If in addition to the assumptions given in Theorem 3.2.1 there exists
a function ϕ3 ∈ K defined on R

+ such that for all a ∈ U , for all p(·, a, τ0) ∈ S, and
for all n ∈ N,

DV (p(τn, a, τ0), τn) ≤ −ϕ3(d(p(τn, a, τ0), M)) (3.2.3)

where

DV (p(τn, a, τ0), τn)
�
=

1
τn+1 − τn

[
V (p(τn+1, a, τ0), τn+1) − V (p(τn, a, τ0), τn)

]
(3.2.4)

then (S, M) is uniformly asymptotically stable.

Proof . For any a ∈ U and for any p(·, a, τ0) ∈ S, letting zn = V (p(τn, a, τ0), τn),
n ∈ N, we obtain from the assumptions of the theorem that

zn+1 − zn ≤ −(τn+1 − τn)
(
ϕ3 ◦ ϕ−1

2

)
(zn)

for all n ∈ N. If we denote ϕ = ϕ3 ◦ ϕ−1
2 , then ϕ ∈ K and the above inequality

becomes
zn+1 − zn ≤ −(τn+1 − τn)ϕ(zn).

Inasmuch as {zn} is nonincreasing and ϕ ∈ K, it follows that

zk+1 − zk ≤ −ϕ(zk)(τk+1 − τk) ≤ −ϕ(zn)(τk+1 − τk)

for all k ≤ n. We thus obtain that

zn+1 − z0 ≤ −(τn+1 − τ0)ϕ(zn),

which in turn yields

ϕ(zn) ≤ z0 − zn+1

τn+1 − τ0
≤ z0

τn+1 − τ0
, (3.2.5)

for all n ∈ N.
Now consider a fixed δ > 0. For any given ε > 0, we can choose a γ > 0 such

that

max
{

ϕ−1
1

(
ϕ−1

(ϕ2(δ)
γ

))
, ϕ−1

1

(
f
(
ϕ−1

(ϕ2(δ)
γ

)))}
< ε (3.2.6)

because ϕ1, ϕ2, ϕ ∈ K and f(0) = 0. For any a ∈ A with d(a, M) < δ and any
τ0 ∈ R

+, we are now able to show that d(p(t, a, τ0), M) < ε whenever t ≥ τ0 + γ.
This is because for any t ≥ τ0 + γ, t must belong to some interval [τn, τn+1) for
some n ∈ N, that is, t ∈ [τn, τn+1). Therefore we know that τn+1 − τ0 > γ. It
follows from (3.2.5) that

ϕ(zn) ≤ z0

γ
=

V (a, τ0)
γ

≤ ϕ2(δ)
γ

,



Section 3.2 Stability Results for Discontinuous Dynamical Systems 85

which implies that

V (p(τn, a, τ0), τn) = zn ≤ ϕ−1
(

ϕ2(δ)
γ

)
, (3.2.7)

and

V (p(t, a, τ0), t) ≤ f

(
ϕ−1

(
ϕ2(δ)

γ

))
(3.2.8)

if t ∈ (τn, τn+1). In the case when t = τn, it follows from (3.2.7) that

d(p(τn, a, τ0), M) < ϕ−1
1 (V (p(τn, a, τ0), τn)) < ε,

noticing that (3.2.6) holds. In the case when t ∈ (τn, τn+1), we can conclude from
(3.2.8) that

d(p(t, a, τ0), M) < ϕ−1
1 (V (p(t, a, τ0), t)) < ε.

This proves that (S, M) is uniformly asymptotically stable. �

Theorem 3.2.3 Let {R
+, X, A, S} be a dynamical system and let M ⊂ A be closed.

Assume that there exist a function V : X × R
+ → R

+ and four positive constants
c1, c2, c3, and b such that

c1[d(x, M)]b ≤ V (x, t) ≤ c2[d(x, M)]b (3.2.9)

for all x ∈ X and t ∈ R
+.

Assume that there exists a neighborhood U of M such that for all a ∈ U and
for all p(·, a, τ0) ∈ S, V (p(t, a, τ0), t) is continuous everywhere on R

+
τ0

except
on an unbounded and discrete subset E = {τ1, τ2, . . . : τ1 < τ2 < · · · } of R

+
τ0

.
Furthermore, assume that there exists a function f ∈ C[R+, R+] such that

V (p(t, a, τ0), t) ≤ f(V (p(τn, a, τ0), τn)) (3.2.10)

for t ∈ (τn, τn+1), n ∈ N, and that for some positive constant q, f satisfies

f(r) = O(rq) as r → 0+ (3.2.11)

(i.e., limr→0+ f(r)/rq = 0). Assume that for all n ∈ N,

DV (p(τn, a, τ0), τn) ≤ −c3[d(p(τn, a, τ0), M)]b (3.2.12)

for all a ∈ U and all p(·, a, τ0) ∈ S, where DV (p(τn, a, τ0), τn) is given in (3.2.4).
Then (S, M) is exponentially stable.

Proof . It follows from Theorem 3.2.1 that under the present hypotheses, M is an
invariant set of S. For any a ∈ U and p(·, a, τ0) ∈ S, let zn = V (p(τn, a, τ0), τn),
n ∈ N, and z(t) = V (p(t, a, τ0), t). We obtain from (3.2.9) and (3.2.12) that

zn+1 − zn

τn+1 − τn
≤ −c3

c2
zn,
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which yields
zn+1 ≤ [1 − η(τn+1 − τn)]zn,

where η = c3/c2. If 1 − η(τn+1 − τn) ≤ 0 is true for some n, then zk = 0 and
z(t) ≤ f(zk) = 0 for all t ∈ (τk, τk+1) and all k > n. Thus, d(p(t, a, τ0), M) = 0
for all t > τn+1. In the following we assume that 1−η(τn+1 −τn) > 0 for all n ≥ 0.

Because e−ηr ≥ 1 − ηr, it follows that

zn+1 ≤ e−η(τn+1−τn)zn.

Hence,
zn+1 ≤ e−η(τn+1−τ0)z0

is true for all n ≥ 0. It now follows from (3.2.9) that

d(p(τn, a, τ0), M) ≤
(

z0

c1

)1/b

e−(η/b)(τn−τ0) ≤
(

c2

c1

)1/b

d(a, M)e−(η/b)(τn−τ0).

(3.2.13)
In the last step, we have made use of the fact that

z0 = V (p(τ0, a, τ0), τ0) ≤ c2[d(a, M)]b.

Inasmuch as f(r) = O(rq) as r → 0+, it is easily seen that f(r)/rq ∈ C[R+,
R

+]. Let

λd(a,M) = sup
r∈(0, c2(d(a,M))b]

f(r)
rq

.

Then f(r) ≤ λd(a,M)r
q for all r ∈ [0, c2(d(a, M))b]. It follows from (3.2.10) that

for all t ∈ (τn, τn+1), it is true that

z(t) ≤ f(zn)
≤ λd(a,M)z

q
n

≤ λd(a,M)e
−ηq(τn−τ0)zq

0

= λd(a,M)e
ηq(t−τn)e−ηq(t−τ0)zq

0

≤ λd(a,M)e
qe−ηq(t−τ0)zq

0 .

The last inequality follows because t − τn ≤ τn+1 − τn ≤ 1/η. Thus,

d(p(t, a, τ0), M) ≤
(

z(t)
c1

)1/b

≤
[
λd(a,M)e

qcq
2

c1

]1/b

[d(a, M)]qe−(ηq/b)(t − τ0).

(3.2.14)
For any ε > 0 there exists a δ > 0 such that

ε ≥ min

{(
c2

c1

)1/b

d(a, M),
[
λd(a,M)e

qcq
2

c1

]1/b

[d(a, M)]q
}
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for any a ∈ U whenever d(a, M) < δ. Letting

α = min
{

η

b
,

ηq

b

}
,

we have, in view of (3.2.13 ) and (3.2.14), that

d(p(t, a, τ0), M) ≤ εe−α(t−τ0)

for all p(·, a, τ0) ∈ S and t ∈ R
+
τ0

, whenever d(a, M) < δ. Therefore (S, M) is
exponentially stable. This concludes the proof of the theorem. �

B. Global stability and boundedness results

Next, we address global results.

Theorem 3.2.4 Let {R
+, X, A, S} be a dynamical system, let M ⊂ A, and assume

that M is bounded. Assume that there exist a function V : X × R
+ → R

+ and
two strictly increasing functions ϕ1, ϕ2 ∈ C[R+, R+] with limr→∞ ϕi(r) = ∞,
i = 1, 2, such that

ϕ1(d(x, M)) ≤ V (x, t) ≤ ϕ2(d(x, M)) (3.2.15)

for all x ∈ X and for all t ∈ R
+ whenever d(x, M) ≥ Ω, where Ω is a positive

constant.
Assume that for every p(·, a, τ0)∈S, V(p(t, a, τ0), t) is continuous everywhere on

R
+
τ0

except on an unbounded and discrete subset E = {τ1, τ2, . . . : τ1 < τ2 < · · · }
of R

+
τ0

. Also, assume that for all p(·, a, τ0) ∈ S,

V (p(τn+1, a, τ0), τn+1) ≤ V (p(τn, a, τ0), τn) (3.2.16)

for all τn whenever d(p(τn, a, τ0), M) ≥ Ω.
Furthermore, assume that there exists a function f ∈ C[R+, R+], independent of

p(·, a, t0) ∈ S, such that for all n ∈ N and all p(·, a, t0) ∈ S

V (p(t, a, τ0), t) ≤ f(V (p(τn, a, τ0), τn)) (3.2.17)

for all t ∈ (τn, τn+1) whenever d(p(t, a, τ0), M) ≥ Ω.
Furthermore, assume that there exists a constant Γ > 0 such that

d(p(τn+1, a, τ0), M) ≤ Γ

whenever d(p(τn, a, τ0), M) ≤ Ω for all p(·, a, τ0) ∈ S.
Then, S is uniformly bounded.

Proof . For any α > 0, τ0 ∈ R
+, a ∈ A such that d(a, M) < α, and p(·, a, τ0) ∈ S,

let zn = V (p(τn, a, τ0), τn) and let z(t) = V (p(t, a, τ0), t). If d(a, M) ≥ Ω, it
follows from (3.2.15) and (3.2.16) that

ϕ1(d(p(τn, a, τ0), M)) ≤ zn ≤ z0 ≤ ϕ2(α).
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Thus d(p(τn, a, τ0), M) ≤ (ϕ−1
1 ◦ ϕ2)(α) for as long as d(p(τk, a, τ0), M) ≥ Ω, for

all k < n.
If d(p(τn, a, τ0), M) starts at a value less than Ω or if it reaches a value less than

Ω for some n0 (i.e., if d(p(τn0 , a, τ0), M) ≤ Ω), then d(p(τn0+1, a, τ0), M) ≤ Γ, by
assumption. We can now replace α in the foregoing argument by Γ and obtain that
d(p(τn, a, τ0), M) ≤ (ϕ−1

1 ◦ ϕ2)(Γ) for as long as d(p(τk, a, τ0), M) ≤ Ω, for all k
such that n0 < k < n.

By induction, we conclude that

d(p(τn, a, τ0), M) ≤ β1(α)
�
= max

{
Γ, (ϕ−1

1 ◦ ϕ2)(Γ), (ϕ−1
1 ◦ ϕ2)(α)

}
for all n ∈ N.

Because f ∈ C[R+, R+], there exists a β2 = β2(α) such that f(r) ≤ β2 whenever
r ∈ [0, ϕ2(β1(α))]. For any t ∈ (τn, τn+1), we have that z(t) ≤ f(zn) ≤ β2.

If we let
β(α) = max

{
β1(α), ϕ−1

1 (β2(α))
}
, (3.2.18)

then it is easily seen that d(p(t, a, τ0), M) ≤ β(α) for all t ∈ R
+
τ0

and a ∈ A
whenever d(a, M) < α. Because M is bounded, S is uniformly bounded. The proof
is completed. �

Theorem 3.2.5 If in addition to the assumptions in Theorem 3.2.4 there exists a
function ϕ3 ∈ K defined on R

+ such that for all p(·, a, τ0) ∈ S

DV (p(τn, a, τ0), τn) ≤ −ϕ3(d(p(τn, a, τ0), M)) (3.2.19)

for all τn whenever d(p(τn, a, τ0), M) ≥ Ω, where DV in (3.2.19) is defined in
(3.2.4).

Then S is uniformly ultimately bounded.

Proof . LetB = β(Ω), whereβ(·) is given in (3.2.18). We show that corresponding to
any α > 0 and τ0 ∈ R

+, there exists a τ = τ(α) > 0 such that d(p(t, a, τ0), M) ≤ B
for all t > τ0 + τ and p(·, a, τ0) ∈ S whenever d(a, M) < α.

If d(p(τk, a, τ0), M) ≥ Ω for all k < n, we obtain, using the same argument as
that for (3.2.5), that

ϕ3(d(p(τn, a, τ0), M)) ≤ z0 − zn

τn+1 − τ0
≤ z0

τn+1 − τ0
≤ ϕ2(α)

τn+1 − τ0
. (3.2.20)

Let τ = ϕ2(α)/ϕ3(Ω). For any t > τ0 + τ , there exists an n ∈ N such that
t ∈ [τn, τn+1). Thus τn+1 − τ0 > τ . There must exist a k0 ≤ n such that
d(p(τk0 , a, τ0), M) < Ω. Otherwise, in view of (3.2.19), d(p(τn, a, τ0), M) <
ϕ−1

3 (ϕ2(α)/τ) < ϕ−1
3 (ϕ3(Ω)) = Ω. We have arrived at a contradiction. There-

fore, d(p(τk0 , a, τ0), M) < Ω for some k0 ≤ n. By the same argument as that in
the proof of Theorem 3.2.4, we know that d(p(t, a, τ0), M) ≤ B. Hence, we have
shown that S is uniformly ultimately bounded. �
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Theorem 3.2.6 Let {R
+, X, A, S} be a dynamical system. Let M ⊂ A be bounded

and closed. Assume that there exist a function V : X ×R
+ → R

+ and two functions
ϕ1, ϕ2 ∈ K∞ such that

ϕ1(d(x, M)) ≤ V (x, t) ≤ ϕ2(d(x, M)) (3.2.21)

for all x ∈ X and t ∈ R
+.

Assume that for any p(·, a, τ0) ∈ S, V (p(t, a, τ0), t) is continuous everywhere on
R

+
τ0

except on an unbounded and discrete subset E ={τ1, τ2, . . . : τ1 < τ2 < · · · } of
R

+
τ0

. Furthermore, assume that there exists a function f ∈ C[R+, R+] with f(0) = 0
such that for any p(·, a, τ0) ∈ S,

V (p(t, a, τ0), t) ≤ f(V (p(τn, a, τ0), τn)) (3.2.22)

for t ∈ (τn, τn+1), n ∈ N.
Assume that there exists a function ϕ3 ∈ K defined on R

+ such that for any
p(·, a, τ0) ∈ S,

DV (p(τn, a, τ0), τn) ≤ −ϕ3(d(p(τn, a, τ0), M)) (3.2.23)

n ∈ N, where DV in (3.2.23) is defined in (3.2.4).
Then, (S, M) is uniformly asymptotically stable in the large. (Recall that functions

of class K∞ are defined in Section 2.1.)

Proof . It follows from Theorem 3.2.1 that under the present hypotheses, M is an
invariant set of S and (S, M) is uniformly stable. We need to show that conditions
(ii) and (iii) in Definition 3.1.16 are also satisfied.

Consider arbitrary α > 0, ε > 0, τ0 ∈ R
+, and a ∈ A such that d(a, M) < α.

Letting zn = V (p(τn, a, τ0), τn) and z(t) = V (p(t, a, τ0), t), we obtain from the
assumptions of the theorem that {zn} is nonincreasing and that

z(t) ≤ max
{
ϕ2(α), max

r∈[0,ϕ2(α)]
f(r)

}
whenever d(a, M) < α. Thus S is uniformly bounded.

Let ϕ = ϕ3 ◦ϕ−1
2 . Using the same argument as that in the proof of Theorem 3.2.2,

we obtain that
ϕ(zn) ≤ z0 − zn

τn+1 − τ0
≤ z0

τn+1 − τ0
.

Let γ1 = γ1(ε, α) = ϕ2(α)/ϕ(ϕ1(ε)) > 0 and choose a δ > 0 such that
maxr∈[0,δ] f(r) < ϕ1(ε). Let γ2 = ϕ2(α)/ϕ(δ) and γ = max{γ1, γ2}. For
any a ∈ A with d(a, M) < α and any τ0 ∈ R

+, we are now able to show that
d(p(t, a, τ0), M) < ε whenever t ≥ τ0 + γ. The above statement is true because for
any t ≥ τ0 + γ, t must belong to some interval [τn, τn+1) for some n ∈ N; that is,
t ∈ [τn, τn+1). Therefore we know that τn+1 − τ0 > γ and that

ϕ(zn) ≤ z0

γ
<

ϕ2(α)
γ

,
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which implies that

V (p(τn, a, τ0), τn) = zn < ϕ−1
(

ϕ2(α)
γ

)
≤ min

{
ϕ1(ε), δ

}
.

We thus have d(p(τn, a, τ0), M) < ε and V (p(t, a, τ0), t) ≤ f(zn) ≤ ϕ1(ε) for
all t ∈ (τn, τn+1), and hence, d(p(t, a, τ0), M) < ε. This proves that (S, M) is
uniformly asymptotically stable in the large. �

Theorem 3.2.7 Let {R
+, X, A, S} be a dynamical system. Let M ⊂ A be bounded

and closed. Assume that there exist a function V : X × R
+ → R

+ and four positive
constants c1, c2, c3, and b such that

c1[d(x, M)]b ≤ V (x, t) ≤ c2[d(x, M)]b (3.2.24)

for all x ∈ X and t ∈ R
+.

Assume that for every p(·, a, τ0) ∈ S, V (p(t, a, τ0), t) is continuous everywhere
on R

+
τ0

except on an unbounded subset E = {τ1, τ2, . . . : τ1 < τ2 < · · · } of R
+
τ0

.
Furthermore, assume that there exists a function f ∈ C[R+, R+] with f(0) = 0 such
that

V (p(t, a, τ0), t) ≤ f(V (p(τn, a, τ0), τn)) (3.2.25)

for t ∈ (τn, τn+1), n ∈ N, and such that for some positive constant q, f satisfies

f(r) = O(rq) as r → 0+. (3.2.26)

Assume that
DV (p(τn, a, τ0), τn) ≤ −c3[d(p(τn, a, τ0), M)]b (3.2.27)

for all p(·, a, τ0) ∈ S and all a ∈ A where DV in (3.2.27) is defined in (3.2.4).
Then (S, M) is exponentially stable in the large.

Proof . It follows from Theorem 3.2.1 that under the present hypotheses, M is an
invariant set of S.

For any β > 0 and any a such that d(a, M) < β, using the same argument as that
in the proof of Theorem 3.2.3, we obtain that

d(p(t, a, τ0), M) ≤
(

z(t)
c1

)1/b

≤
[
λd(a,M)e

qcq
2

c1

]1/b

[d(a, M)]qe−ηq(t−τ0)/b

for all t ∈ R
+
τ0

, where η = c3/c2 and λd(a,M) is chosen such that f(r) ≤ λd(a,M)r
q

for all r ∈ [0, c2(d(a, M))b]. Let

µ = min
{η

b
,

ηq

b

}
,

λ = λβ ,

γ = min{1, q},
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and

k(β) = max

{(
c2

c1

)1/b

β1−γ ,

(
λeqcq

2

c1

)1/b

βq−γ

}
.

Then
d(p(t, a, τ0), M) ≤ k(β)[d(a, M)]γe−µ(t−τ0)

for all p(·, a, τ0) ∈ S and t ∈ R
+
τ0

. Therefore (S, M) is exponentially stable in the
large. This concludes the proof of the theorem. �

Remark 3.2.1 The hypotheses of Theorem 3.2.1 can be relaxed by requiring only
that V (p(τ ′

n, a, τ0), τ ′
n) is nonincreasing for n ∈ N and that

V (p(t, a, τ0), t) ≤ f(V (p(τ ′
n, a, τ0), τ ′

n))

for all t ∈ (τ ′
n, τ ′

n+1), n ∈ N, where E′ = {τ ′
1, τ

′
2, . . . , } is a strictly increasing

unbounded subsequence of the set E = {τ1, τ2, . . . }. In the same spirit, we can
replace in Theorem 3.2.2 inequality (3.2.3) by

DV (p(τ ′
n, a, τ0), τ ′

n) ≤ ϕ3(d(p(τ ′
n, a, τ0), M))

for all n ∈ N, where DV (p(τ ′
n, a, τ0), τ ′

n) is defined as in (3.2.4) and τ ′
n ∈ E′.

Furthermore, the hypotheses in Theorems 3.2.3–3.2.7 can be altered in a similar
manner. These assertions follow easily from the proofs of Theorems 3.2.1–3.2.7. �

C. Instability results

Thus far, we have concerned ourselves with stability and boundedness results. We
now address instability.

Theorem 3.2.8 Let {R
+, X, A, S} be a dynamical system and let M ⊂ A be a closed

set. Assume that there exist a function V : X × R
+ → R and a τ0 ∈ R

+ that satisfy
the following conditions.

(i) There exists a function ϕ ∈ K defined on R
+ such that

V (x, t) ≤ ϕ(d(x, M)) (3.2.28)

for all x ∈ X and t ∈ R
+.

(ii) In every neighborhood of M there is a point x such that V (x, τ0) > 0 and there
exists a motion p(·, x, τ0) ∈ S.

(iii) For any a ∈ A such that V (a, τ0) > 0 and any p(·, a, τ0) ∈ S, V (p(t, a, τ0), t)
is continuous everywhere on R

+
τ0

except on an unbounded and discrete subset
E = {τ1, τ2, . . . : τ1 < τ2 < · · · } of R

+
τ0

. Assume that there exists a function
ψ ∈ K defined on R

+ such that

DV (p(τn, a, τ0), τn) ≥ ψ
(
|V (p(τn, a, τ0), τn)|

)
(3.2.29)

for all n ∈ N, where DV (p(τn, a, τ0), τn) is given in (3.2.4).
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Then M is unstable with respect to S.

Proof . By assumption, for every δ > 0 there exists an a ∈ A such that d(a, M) < δ
and V (a, τ0) > 0. Let zn = V (p(τn, a, τ0), τn). Then z0 = V (a, τ0) > 0. From
assumption (iii) it follows that {zn} is increasing and

zn ≥ zn−1 + (τn − τn−1)ψ(zn−1)
≥ z0 + (τn − τ0)ψ(z0)
> (τn − τ0)ψ(V (a, τ0)).

Hence, as τn goes to ∞, d(p(τn, a, τ0), M) ≥ ϕ−1(V (p(τn, a, τ0), τn)) can become
arbitrarily large. Therefore, (S, M) is unstable. �

Theorem 3.2.9 In addition to the assumptions given in Theorem 3.2.8, assume that
V (x, τ0) > 0 for all x �∈ M . Then M is completely unstable with respect to S.

Proof . Because V (a, τ0) is positive for every a /∈ M and every τ0 ∈ R
+, the

argument in the proof of Theorem 3.2.8 applies for all a /∈ M ; that is, along every
motion p(·, a, τ0) ∈ S, d(p(τn, a, τ0), M) tends to ∞ as n goes to ∞. We conclude
that (S, M) is completely unstable. �

We conclude the present section with an important observation.

Remark 3.2.2 It is emphasized that because continuous dynamical systems consti-
tute special cases of DDS, all the results of the present section are applicable to
continuous dynamical systems as well. �

3.3 The Principal Lyapunov and Lagrange Stability
Results for Continuous Dynamical Systems

In the present section we establish the Principal Lyapunov Stability and Boundedness
Results for continuous dynamical systems. We show that these results are a direct
consequence of the results of the preceding section (i.e., we show that when the
hypotheses of the results of the present section for continuous dynamical systems are
satisfied, then the hypotheses of the corresponding results of the preceding section for
DDS are also satisfied). In this way, we establish a unifying link between the stability
results of DDS and continuous dynamical systems. More important, we show that the
results of the present section, which constitute the Principal Lyapunov and Lagrange
Stability Results for continuous dynamical systems, are in general more conservative
than the corresponding results for DDS. We include in this section a specific example
that reinforces these assertions.

A. Local stability results

We first consider local results.
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Theorem 3.3.1 Let {R
+, X, A, S} be a continuous dynamical system and let M ⊂A

be closed. Assume that there exist a function V : X × R
+ → R

+ and two functions
ϕ1, ϕ2 ∈ K defined on R

+ such that

ϕ1(d(x, M)) ≤ V (x, t) ≤ ϕ2(d(x, M)) (3.3.1)

for all x ∈ X and t ∈ R
+. Assume that there exists a neighborhood U of M such

that for all a ∈ U and for all p(·, a, τ0) ∈ S, V (p(t, a, τ0), t) is continuous and
nonincreasing for all t ∈ R

+
τ0

. Then (S, M) is invariant and uniformly stable.

Proof . For any p(·, a, τ0) ∈ S, let E = {τ1, τ2, . . . : τ1 < τ2 < · · · } be an arbitrary
unbounded subset of R

+
τ0

. Let f ∈ C[R+, R+] be the identity function; that is,
f(r) = r.

By assumption, for any a ∈ U and p(·, a, τ0) ∈ S, V (p(t, a, τ0), t) is continuous
on R

+
τ0

and V (p(τn, a, τ0), τn) is nonincreasing for n ∈ N. Furthermore,

V (p(t, a, τ0), t) ≤ V (p(τn, a, τ0), τn) = f(V (p(τn, a, τ0), τn))

for all t ∈ (τn, τn+1), n ∈ N. Hence, all the hypotheses of Theorem 3.2.1 are satisfied
and thus, (S, M) is invariant and uniformly stable. �

Theorem 3.3.2 If in addition to the assumptions given in Theorem 3.3.1 there exists
a function ϕ3 ∈ K defined on R

+ such that for all a ∈ U and for all p(·, a, τ0) ∈ S
the upper right-hand Dini derivative D+V (p(t, a, τ0), t) satisfies

D+V (p(t, a, τ0), t) ≤ −ϕ3(d(p(t, a, τ0), M)) (3.3.2)

for all t ∈ R
+
τ0

, then (S, M) is uniformly asymptotically stable.

Proof . For any a ∈ U and any p(·, a, τ0) ∈ S, choose Ẽ = {s1, s2, . . . } recursively
in the following manner. For n ∈ N, let s0 = τ0 and sn+1 = sn + min{1, αn},
where

αn = sup
{

τ : V (p(t, a, τ0), t) ≥ 1
2
V (p(sn, a, τ0), sn) for all t ∈ (sn, sn + τ)

}
;

that is, V (p(t, a, τ0)) ≥ V (p(sn, a, τ0))/2 for all t ∈ (sn, sn+1).
If Ẽ is unbounded then simply let τn = sn, n ∈ N. The set E = {τ1, τ2, . . . } is

clearly unbounded and discrete. It follows from the assumptions of the theorem and
from the choice of τn that we have for any t ∈ (τn, τn+1),

d(p(t, a, τ0), M) ≥
(
ϕ−1

2 ◦ V
)
(p(t, a, τ0), t)

≥
(
ϕ−1

2 ◦ 1
2
V
)
(p(τn, a, τ0), τn)

≥
(
ϕ−1

2 ◦ 1
2
ϕ1

)
(d(p(τn, a, τ0), M)).

Now refer to the Appendix, Section 3.8. Letting

g(t, V (p(t, a, τ0), t)) =−ϕ3(d(p(t, a, τ0), M)), t0 = τn, x0 = V (p(τn, a, τ0), τn),



94 Chapter 3. Principal Stability and Boundedness Results on Metric Spaces

the (maximal) solution of (IE) is given by

ϕM (τn+1) = V (p(τn, a, τ0), τn) −
∫ τn+1

τn

ϕ3(d(p(t, a, τ0), M))dt.

It now follows from the Comparison Theorem (Theorem 3.8.1) that

V (p(τn+1, a, τ0), τn+1) − V (p(τn, a, τ0), τn)

≤ −
∫ τn+1

τn

ϕ3(d(p(t, a, τ0), M))dt

≤ −
∫ τn+1

τn

(
ϕ3 ◦ ϕ−1

2 ◦ 1
2
ϕ1

)
(d(p(τn, a, τ0), M))dt

= − (τn+1 − τn)
(
ϕ3 ◦ ϕ−1

2 ◦ 1
2
ϕ1

)
(d(p(τn, a, τ0), M)).

It follows readily from the above inequality that for all n ∈ N

DV (p(τn, a, τ0), τn) ≤ −
(
ϕ3 ◦ ϕ−1

2 ◦ 1
2
ϕ1

)
(d(p(τn, a, τ0), M)), (3.3.3)

where DV is defined in (3.2.4).
Next, we consider the case when Ẽ is bounded; that is, sup{sn : n ∈ N} = L < ∞.

Because sn is strictly increasing, it must be true that L = limn→∞ sn. Therefore
there exists an n0 ∈ N such that sn ∈ (L − 1, L) for all n ≥ n0. Furthermore, it
follows from the continuity of V (p(t, a, τ0), t) that

V (p(sn+1, a, τ0), sn+1) =
1
2
V (p(sn, a, τ0), sn),

which yields V (p(L, a, τ0), L) = limn→∞ V (p(sn, a, τ0), sn) = 0. Let τn = sn, if
n ≤ n0, and τn = sn0 + (n − n0) if n > n0. The set E = {τ1, τ2, . . . } is clearly
unbounded and discrete. Similarly as shown above, (3.3.3) holds for any n < n0.
For all n > n0, we have

V (p(τn, a, τ0), τn) ≤ V (p(L, a, τ0), L) = 0.

Therefore (3.3.3) is also satisfied. When n = n0, we have τn0+1 = τn0 + 1 > L,
V (p(τn0+1, a, τ0), τn0+1) ≤ V (p(L, a, τ0), L) = 0, and

DV (p(τn0 , a, τ0), τn0) = −V (p(τn0 , a, τ0), τn0) ≤ −ϕ1(d(p(τn0 , a, τ0), M)).
(3.3.4)

If we let ϕ̃3 defined on R
+ be given by

ϕ̃3(r) = min
{
ϕ1(r),

(
ϕ3 ◦ ϕ−1

2 ◦ 1
2
ϕ1
)
(r)
}
,

then ϕ̃3 ∈ K. In view of (3.3.3) and (3.3.4), we have shown that

DV (p(τn, a, τ0), τn) ≤ −ϕ̃3(d(p(τn, a, τ0), M))

for all n ∈ N.
Combining with Theorem 3.3.1, we have shown that the hypotheses of Theo-

rem 3.2.2 are satisfied. Therefore (S, M) is uniformly asymptotically stable. �
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Theorem 3.3.3 Let {R
+, X, A, S} be a continuous dynamical system and let M ⊂A

be closed. Assume that there exist a function V : X × R
+ → R

+ and four positive
constants c1, c2, c3, and b such that

c1[d(x, M)]b ≤ V (x, t) ≤ c2[d(x, M)]b (3.3.5)

for all x ∈ X and t ∈ R
+.

Assume that there exists a neighborhood U of M such that for all a ∈ U and
for all p(·, a, τ0) ∈ S, V (p(t, a, τ0), t) is continuous and the upper right-hand Dini
derivative D+V (p(t, a, τ0), t) satisfies

D+V (p(t, a, τ0), t) ≤ −c3[d(p(t, a, τ0), M)]b (3.3.6)

for all t ∈ R
+
τ0

.
Then (S, M) is exponentially stable.

Proof . Let c̃3 = min{c1, c1c3/(2c2)} and let ϕ1, ϕ2, ϕ3, and ϕ̃3 ∈ K defined on
R

+ be given by ϕk(r) = ckrb, k = 1, 2, 3, and ϕ̃3(r) = c̃3r
b. Let f ∈ C[R+, R+]

be the identity function. It follows from the proof of Theorem 3.3.2 that (3.2.9),
(3.2.10), and (3.2.12), are all satisfied. In addition, (3.2.11) is clearly satisfied with
any q ∈ (0, 1). Therefore, the hypotheses of Theorem 3.2.3 are satisfied and thus,
(S, M) is exponentially stable. �

B. Global stability and boundedness results

Next, we address global results.

Theorem 3.3.4 Let {R
+, X, A, S} be a continuous dynamical system. Let M ⊂ A

be bounded. Assume that there exist a function V : X × R
+ → R

+ and two strictly
increasing functions ϕ1, ϕ2 ∈ C[R+, R+] with limr→∞ ϕi(r) = ∞, i = 1, 2, such
that

ϕ1(d(x, M)) ≤ V (x, t) ≤ ϕ2(d(x, M)) (3.3.7)

for all x ∈ X and t ∈ R
+ whenever d(x, M) ≥ Ω, where Ω is a positive constant.

Also, assume that V (p(t, a, τ0), t) is continuous and nonincreasing for all t ∈ R
+

and p(·, a, τ0) ∈ S whenever d(p(t, a, τ0), M) ≥ Ω.
Then S is uniformly bounded.

Proof . Let Ω̃ = Ω+1. For any a ∈ A and p(·, a, τ0) ∈ S, choose E = {τ1, τ2, . . . }
recursively in the following manner. For n ∈ N let τn+1 = τn + min{1, αn}, where

αn
∆=


sup

{
τ : d(p(t, a, τ0), M) > Ω for all t ∈ (τn, τn + τ)

}
,

if d(p(τn, a, τ0), M) ≥ Ω̃;
sup

{
τ : d(p(t, a, τ0), M) < Ω + 2 for all t ∈ (τn, τn + τ)

}
,

if d(p(τn, a, τ0), M) < Ω̃.

We first show that E is unbounded. Suppose that supn∈N{τn} = L < ∞. Because
{τn} is strictly increasing, it must be true that L = limn→∞ τn. Therefore there exists
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an n0 ∈ N such that αn < 1 for all n ≥ n0. It follows from the definition of αn and
the continuity of V (p(t, a, τ0), t) that if d(p(τn, a, τ0), M) < Ω̃ then

d(p(τn+1, a, τ0), M) = d(p(τn + αn, a, τ0), M) = Ω + 2 > Ω̃

and if d(p(τn, a, τ0), M) ≥ Ω̃ then

d(p(τn+1, a, τ0), M) = d(p(τn + αn, a, τ0), M) = Ω < Ω̃.

Therefore, limn→∞ p(τn, a, τ0) does not exist. On the other hand, p(t, a, τ0) is con-
tinuous and thus, limn→∞ p(τn, a, τ0) must exist. This is a contradiction. Therefore
E is unbounded. Clearly E is also discrete.

For any n ∈ N, if d(p(τn, a, τ0), M) ≥ Ω̃, it follows from the choice of τn+1
that d(p(t, a, τ0), M) ≥ Ω for all t ∈ (τn, τn+1]. Thus, by the assumption that
V (p(t, a, τ0), t) is nonincreasing whenever d(p(t, a, τ0), M) ≥ Ω, we have

V (p(τn+1, a, τ0), τn+1) ≤ V (p(τn, a, τ0), τn)

and
V (p(t, a, τ0), t) ≤ V (p(τn, a, τ0), τn)

for all t ∈ (τn, τn+1) whenever d(p(τn, a, τ0), M) ≥ Ω̃. Thus (3.2.16) and (3.2.17)
are satisfied with f ∈C[R+, R+] being the identity function.

If d(p(τn, a, τ0), M) < Ω̃, then d(p(t, a, τ0), M) ≤ Ω + 2 ∆= Γ is true for all
t ∈ (τn, τn+1) by the choice of τn+1.

Hence, all the hypotheses of Theorem 3.2.4 are satisfied and thus, S is uniformly
bounded. �

Theorem 3.3.5 If in addition to the assumptions given in Theorem 3.3.4 there exists
a function ϕ3 ∈ K defined on R

+ such that for all p(·, a, τ0) ∈ S the upper right-hand
Dini derivative D+V (p(t, a, τ0), t) satisfies

D+V (p(t, a, τ0), t) ≤ −ϕ3(d(p(t, a, τ0), M)) (3.3.8)

for all t ∈ R
+
τ0

whenever d(p(t, a, τ0), M) > Ω, then S is uniformly ultimately
bounded.

Proof . Let Ω̃ = Ω+1. For any a ∈ A and p(·, a, τ0) ∈ S, choose E = {τ1, τ2, . . . }
recursively in the following manner. For n ∈ N let τn+1 = τn + min{1, αn}, where

αn
∆=


sup

{
τ : d(p(t, a, τ0), M) > Ω and

V (p(t, a, τ0), t) ≥ 1
2V (p(τn, a, τ0), τn)

for all t ∈ (τn, τn + τ)
}
, if d(p(τn, a, τ0), M) ≥ Ω̃;

sup
{
τ : d(p(t, a, τ0), M) < Ω + 2 for all t ∈ (τn, τn + τ)

}
,

if d(p(τn, a, τ0), M) < Ω̃.

We need to show that E is unbounded. Suppose that supn∈N{τn} = L < ∞.
Because τn is strictly increasing, it must be true that L = limn→∞ τn. Therefore there
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exists an n0 ∈ N such that αn < 1 for all n ≥ n0. It follows from the choice of αn and
the continuity of p(t, a, τ0) and V (p(t, a, τ0), t) that if d(p(τn, a, τ0), M) < Ω̃ then

d(p(τn+1, a, τ0), M) = d(p(τn + αn, a, τ0), M) = Ω + 2 > Ω̃,

and if d(p(τn, a, τ0), M) ≥ Ω̃ then either

d(p(τn+1, a, τ0), M) = d(p(τn + αn, a, τ0), M) = Ω < Ω̃,

or

V (p(τn+1, a, τ0), τn+1) =
1
2
V (p(τn, a, τ0), τn).

Therefore, either limn→∞ p(τn, a, τ0) or limn→∞ V (p(τn, a, τ0), τn) does not
exist. On the other hand, both p(t, a, τ0) and V (p(t, a, τ0), t) are continuous and
their limit as {τn} approaches L must exist. This is a contradiction. Therefore E is
unbounded. Clearly E is also discrete.

For any n ∈ N, if d(p(τn, a, τ0), M) ≥ Ω̃, it follows from the choice of τn+1
that d(p(t, a, τ0), M) ≥ Ω and V (p(t, a, τ0), t) ≥ 0.5V (p(τn, a, τ0), τn) for all
t ∈ (τn, τn+1]. In view of (3.3.7) we have that

d(p(t, a, τ0), M) ≥
(
ϕ−1

2 ◦ V
)
(p(t, a, τ0), t)

≥
(
ϕ−1

2 ◦ 1
2
V
)
(p(τn, a, τ0), τn)

≥
(
ϕ−1

2 ◦ 1
2
ϕ1

)
(d(p(τn, a, τ0), M))

for all t ∈ (τn, τn+1]. As in the proof of Theorem 3.3.2, it follows from the
Comparison Theorem (see Theorem 3.8.1 in the Appendix of this chapter) and
(3.3.8) that

V (p(τn+1, a, τ0), τn+1) − V (p(τn, a, τ0), τn)

≤ −
∫ τn+1

τn

ϕ3(d(p(t, a, τ0), M))dt

≤ −
∫ τn+1

τn

(
ϕ3 ◦ ϕ−1

2 ◦ 1
2
ϕ1

)
(d(p(τn, a, τ0), M))dt

= − (τn+1 − τn)
(
ϕ3 ◦ ϕ−1

2 ◦ 1
2
ϕ1

)
(d(p(τn, a, τ0), M)).

Let ϕ̃3
∆= ϕ3 ◦ ϕ−1

2 ◦ 1
2ϕ1. It follows readily from the above inequality that for

all n ∈ N

DV (p(τn, a, τ0), τn) ≤ −ϕ̃3(d(p(τn, a, τ0), M))

whenever d(p(τn, a, τ0), M) ≥ Ω̃. Combining with Theorem 3.3.4, we have shown
that the hypotheses of Theorem 3.2.5 are satisfied. Therefore S is uniformly ultimately
bounded. �
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Theorem 3.3.6 Let {R
+, X, A, S} be a continuous dynamical system. Let M ⊂ A

be bounded and closed. Assume that there exist a function V : X × R
+ → R

+ and
two functions ϕ1, ϕ2 ∈ K∞ such that

ϕ1(d(x, M)) ≤ V (x, t) ≤ ϕ2(d(x, M)) (3.3.9)

for all x ∈ X and t ∈ R
+.

Assume that for all p(·, a, τ0) ∈ S and t ∈ R
+
τ0

, V (p(t, a, τ0), t) is continuous. Fur-
thermore, assume that there exists a function ϕ3 ∈ K defined on R

+ such that for all
a∈A and all p(·, a, τ0) ∈ S, the upper right-hand Dini derivative D+V (p(t, a, τ0), t)
satisfies

D+V (p(t, a, τ0), t) ≤ −ϕ3(d(p(t, a, τ0), M)) (3.3.10)

for all t ∈ R
+
τ0

.
Then (S, M) is uniformly asymptotically stable in the large.

Proof . For any a ∈ A and p(·, a, τ0) ∈ S, choose E = {τ1, τ2, . . . : τ1 < τ2 < · · · }
in the same manner as in the proof of Theorem 3.3.2. Let f ∈ C[R+, R+] be the
identity function; that is, f(r) = r.

It follows from (3.3.10) and the Comparison Theorem (Theorem 3.8.1 in the Ap-
pendix of this chapter) that

V (p(t, a, τ0), t) − V (p(τn, a, τ0), τn) ≤ −
∫ t

τn

ϕ3(d(p(s, a, τ0), M))ds ≤ 0,

and thus,

V (p(t, a, τ0), t) ≤ V (p(τn, a, τ0), τn) = f(V (p(τn, a, τ0), τn))

for all t ∈ (τn, τn+1), n ∈ N.
Similarly as in the proof of Theorem 3.3.2, we can show that

DV (p(τn, a, τ0), τn) ≤ −ϕ̃3(d(p(τn, a, τ0), M)),

for all n ∈ N, where ϕ̃3 ∈ K is given by ϕ̃3(r) = min{ϕ1(r),
(
ϕ3 ◦ϕ−1

2 ◦ 1
2ϕ1

)
(r)}.

Hence, we have shown that the hypotheses of Theorem 3.2.6 are satisfied. There-
fore (S, M) is uniformly asymptotically stable in the large. �

Theorem 3.3.7 Let {R
+, X, A, S} be a continuous dynamical system and let M ⊂A

be closed and bounded. Assume that there exist a function V : X × R
+ → R

+ and
four positive constants c1, c2, c3, and b such that

c1[d(x, M)]b ≤ V (x, t) ≤ c2[d(x, M)]b (3.3.11)

for all x ∈ X and t ∈ R
+.

Assume that for all p(·, a, τ0) ∈ S and t ∈ R
+
τ0

, V (p(t, a, τ0), t) is continuous.
Furthermore, assume that for all a ∈ A and for all p(·, a, τ0) ∈ S, the upper right-hand
Dini derivative D+V (p(t, a, τ0), t) satisfies

D+V (p(t, a, τ0), t) ≤ −c3[d(p(t, a, τ0), M)]b (3.3.12)

for all t ∈ R
+
τ0

.
Then (S, M) is exponentially stable in the large.
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Proof . Let c̃3 = min{c1, c1c3/(2c2)} and let ϕ1, ϕ2, ϕ3, and ϕ̃3 ∈ K defined on
R

+ be given by ϕk(r) = ckrb, k = 1, 2, 3, and ϕ̃3(r) = c̃3r
b. Let f ∈ C[R+, R+]

be the identity function. It follows from the proof of Theorem 3.3.3 that (3.2.24),
(3.2.25), and (3.2.27) are all satisfied. In addition, (3.2.26) is clearly satisfied for any
q ∈ (0, 1). Therefore, the hypotheses of Theorem 3.2.7 are satisfied and thus, (S, M)
is exponentially stable in the large. �

C. Instability results

Next, we consider instability results of a set M with respect to S.

Theorem 3.3.8 (Lyapunov’s First Instability Theorem) Let {R
+, X, A, S} be a

dynamical system and let M ⊂ A be closed, where A is assumed to be a neighborhood
of M . Assume that every motion p(·, a, τ0) ∈ S is a continuous function of t on R

+
τ0

and assume that there exist a function V : X × R
+ → R and a t0 ∈ R

+ that satisfy
the following conditions.

(i) There exists a function ϕ ∈ K defined on R
+ such that

V (x, t) ≤ ϕ(d(x, M)) (3.3.13)

for all x ∈ X and t ∈ R
+.

(ii) In every neighborhood of M , there is a point x such that V (x, t0) > 0 and
there exists a motion p(·, x, τ0) ∈ S.

(iii) There exists a function ψ ∈ K defined on R
+ such that

D+V (p(t, a, t0), t) ≥ ψ
(
|V (p(t, a, t0), t)|

)
(3.3.14)

for all p(·, a, t0) ∈ S and for all t ∈ R
+
t0 , where D+ denotes the upper right-

hand Dini derivative with respect to t.
Then M is unstable with respect to S.

Proof . Note that assumptions (i) and (ii) are identical to those of Theorem 3.2.8. We
now show that assumption (iii) reduces to assumption (iii) of Theorem 3.2.8.

For any a ∈ A and p(·, a, t0) ∈ S, choose arbitrarily an unbounded and discrete
subset E = {t1, t2, . . . : t1 < t2 < · · · } of R

+
t0 .

It follows from assumption (iii) that V (p(t, a, t0), t) is nondecreasing. There-
fore for any a ∈ A such that V (a, t0) > 0 and any p(·, a, t0) ∈ S, we have
V (p(t, a, t0), t) > 0 for all t > t0. By the Comparison Theorem (Theorem 3.8.1 in
the Appendix) we obtain

V (p(tn+1, a, t0), tn+1) − V (p(tn, a, t0), tn)

≥
∫ tn+1

tn

ψ(|V (p(t, a, t0), t)|)dt

≥
∫ tn+1

tn

ψ(|V (p(tn, a, t0), tn)|)dt

= (tn+1 − tn)ψ(V (p(tn, a, t0), tn)).

Hence, inequality (3.2.29) is satisfied.
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Therefore, all the hypotheses of Theorem 3.2.8 are satisfied and thus, M is unstable
with respect to S. �

Theorem 3.3.9 In addition to the assumptions given in Theorem 3.3.8, assume that
V (x, t0) > 0 for all x �∈ M . Then M is completely unstable with respect to S.

Proof . Note that combining with Theorem 3.3.8, the present assumptions reduce to
those of Theorem 3.2.9. Therefore we conclude that M is completely unstable with
respect to S. �

In our next result we require the following notion.

Definition 3.3.1 Let {T, X, A, S} be a dynamical system and let Y ⊂ X . We
denote by S|Y the family of motions of S restricted to Y . Thus, p̃(·, a, τ0) ∈ S|Y
with domain T̃a,τ0 if and only if a ∈ A ∩ Y and there exists a p(·, a, τ0) ∈ S such
that p(t, a, τ0) = p̃(t, a, τ0) whenever p(t, a, τ0) ∈ Y , and T̃a,τ0 is the subset of Ta,τ0

which consists of all t such that p(t, a, τ0) ∈ Y . We call S|Y the restriction of system
S on Y . �

Theorem 3.3.10 (Lyapunov’s Second Instability Theorem) Let {R
+, X, A, S} be a

dynamical system and let M ⊂ A be closed, where A is assumed to be a neighborhood
of M . Assume that every motion p(·, a, τ0) ∈ S is a continuous function of t on R

+
τ0

,
and that there exist a τ0 ∈ T and a function V ∈ C[Mε × (τ0,∞), R], where
Mε = {x ∈ X : d(x, M) < ε}, ε > 0, such that the following conditions are
satisfied.

(i) V is bounded on Mε × [τ0,∞).

(ii) For all p(·, a, τ0) ∈ S|Mε and t ∈ R
+
τ0

,

DV (p(t, a, τ0), t) ≥ λV (p(t, a, τ0), t) (3.3.15)

where λ > 0 is a constant and D denotes a fixed Dini derivative with respect
to t.

(iii) In every neighborhood of M , there exists an x such that V (x, t1) > 0 for a
fixed t1 ≥ τ0.

Then M is unstable with respect to S.

Proof . By contradiction. If M is invariant and stable with respect to S, then for the
ε > 0 and t1 ∈ R

+, there exists a δ = δ(ε, t1) > 0 such that d(p(t, a, t1), M) < ε
for all p(·, a, t1) ∈ S and for all t ∈ R

+
t1 whenever d(a, M) < δ. Because A is a

neighborhood of M , there exists by condition (iii) an x1 ∈ {a ∈ A : d(a, M) < δ}
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such that V (x1, t1) > 0. Let y(t) = V (p(t, x1, t1), t). Then y(t1) = V (x1, t1) > 0.
By condition (ii),

Dy(t) ≥ λy(t) for t ≥ t1.

Let z(t) = y(t)e−λt. Then

Dz(t) = e−λtDy(t) − λy(t)e−λt ≥ 0.

Therefore, z(t) is nondecreasing. For any t ≥ t1 we have z(t) ≥ z(t1) and thus,
y(t) ≥ y(t1)eλ(t−t1). Because y(t1) > 0, we have limt→+∞ y(t) = ∞. This
contradicts condition (i) and completes the proof. �

D. An example

The scalar differential equation

ẋ =
{

(ln 2)x, if t ∈ [t0 + 2k, t0 + 2k + 1),
−(ln 4)x, if t ∈ [t0 + 2k + 1, t0 + 2(k + 1)),

(3.3.16)

where k ∈ N, x ∈ R, and t0 ∈ R
+, determines a dynamical system {R

+, X, A, S}
with X = A = R and with p(·, a, t0) ∈ S determined by the solutions of (3.3.16)
(obtained by integrating (3.3.16)),

p(t, a, t0) =


a

2k
e(ln 2)(t−t0−2k), if t ∈ [t0 + 2k, t0 + 2k + 1],

a

2k−1 e−(ln 4)(t−t0−2k−1), if t ∈ [t0+2k+1, t0+2(k+1)],

(3.3.17)
for each pair (a, t0) ∈ R × R

+ and for all k ∈ N and t ≥ t0. The plot of a typical
motion for this system is given in Figure 3.3.1. Note that for every (a, t0) ∈ R×R

+,
there exists a unique p(·, a, t0) ∈ S that is defined and continuous for t ≥ t0 and that
M = {0} is invariant with respect to S.

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

Figure 3.3.1: Plot of the motion, p(t, 1, 0) ∈ S.

The block diagram of system (3.3.16) is depicted in Figure 3.3.2. This system can
be viewed as a switched system with switching occurring every unit of time since
initial time t0.
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x(t  )

x(t)
ln2

ln4
Inverting

Integrator

0

.

−x(t)

Amplifier Switch

x(t)

Figure 3.3.2: Block diagram for system (3.3.16).

In the following we show that

(a) there exists a function V : R × R
+ → R

+ that satisfies Theorem 3.2.2 and
therefore, (S, {0}) is uniformly asymptotically stable; and

(b) there does not exist a Lyapunov function V : R × R
+ → R

+ that satisfies the
hypotheses of Theorem 3.3.2 and therefore, Theorem 3.3.2 cannot be used to
prove that (S, {0}) is uniformly asymptotically stable.

Proof . (a) Let V : R → R
+ be chosen as V (x) = |x| for all x ∈ R. For any

p(·, a, t0), choose the set E = {t1, t2, . . . : tk = t0 +2k, k = 1, 2, . . . }. By (3.3.17),
V (p(tk, a, t0)) = |a/2k|, and V (p(t, a, t0)) ≤ 2V (p(tk, a, t0)) for all t ∈ [tk, tk+1],
k ∈ N. Therefore all hypotheses of Theorem 3.2.2 are satisfied and hence, (S, {0})
is uniformly asymptotically stable.

(b) For purposes of contradiction, assume that there exist a Lyapunov function
V : R × R

+ → R
+ and two functions ϕ1, ϕ2 ∈ K defined on R

+ such that

ϕ1(|x|) ≤ V (x, t) ≤ ϕ2(|x|) (3.3.18)

for all (x, t) ∈ R×R
+, and there exists a neighborhood U of 0 such that for all a ∈ U

and for all p(·, a, t0) ∈ S, V (p(t, a, t0), t) is nonincreasing for all t ≥ t0, t ∈ R
+.

Without loss of generality, we assume that 1 ∈ U .
By (3.3.17), p(t0 + 1, a, t0) = 2a for any (a, t0) ∈ R × R

+. In particular, for any
n ∈ N, because

p
(
2,

1
2n

, 1
)

=
1

2n−1 ,

p
(
3,

1
2n−1 , 2

)
=

1
2n−2 ,

...

p
(
n,

1
2
, n − 1

)
= 1,
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and because V (p(t, a, t0), t) is nonincreasing for all p(·, a, t0) ∈ S, we have that

V
( 1

2n
, 1
)

≥ V
(
p
(
2,

1
2n

, 1
)
, 2
)

= V
( 1

2n−1 , 2
)

(along the motion p
(
·, 1

2n
, 1
)
);

V
( 1

2n−1 , 2
)

≥ V
(
p
(
3,

1
2n−1 , 2

)
, 3
)

= V
( 1

2n−2 , 3
)

(along the motion p
(
·, 1

2n−1 , 2
)
);

...

V
(1

2
, n − 1

)
≥ V

(
p
(
n,

1
2
, n − 1

)
, n
)

= V (1, n)

(along the motion p
(
·, 1

2
, n − 1

)
).

Therefore,

V
( 1

2n
, 1
)

≥ V (1, n).

On the other hand,

ϕ1

( 1
2n

)
≤ V

( 1
2n

, 1
)

≤ ϕ2

( 1
2n

)
and ϕ1(1) ≤ V (1, n) ≤ ϕ2(1).

Thus,

ϕ2

( 1
2n

)
≥ ϕ1(1)

is true for all n ∈ N, which implies that

ϕ2(0) = lim
n→∞ ϕ2

( 1
2n

)
≥ ϕ1(1) > 0.

However, by the assumption ϕ2 ∈ K, we know that ϕ2(0) = 0. We have arrived at a
contradiction. Therefore, there does not exist a Lyapunov function that satisfies the
hypotheses of the classical Lyapunov Theorem for uniform asymptotic stability for
continuous dynamical systems, Theorem 3.3.2. �

3.4 The Principal Lyapunov and Lagrange Stability
Results for Discrete-Time Dynamical Systems

In this section we present the Principal Lyapunov Stability and Boundedness Results
for discrete-time dynamical systems. As in the case of continuous dynamical systems,
we show that these results are a direct consequence of the corresponding stability and
boundedness results for DDS given in Section 3.2. To accomplish this, we first
embed the class of discrete-time systems considered herein into a class of DDS with
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equivalent stability properties. Using this class of DDS, we then show that when the
hypotheses of the stability and boundedness results for the discrete-time systems are
satisfied, then the hypotheses of the corresponding DDS results given in Section 3.2
are also satisfied. This shows that the results of the present section, which constitute
the Principal Lyapunov and Lagrange Stability Results for discrete-time dynamical
systems, are in general more conservative than the corresponding results for DDS. We
include in this section a specific example that reinforces this assertion. Furthermore,
by establishing a link between the stability and boundedness results for DDS and for
discrete-time dynamical systems, we have completed a unifying stability theory for
continuous dynamical systems, discrete-time dynamical systems, and discontinuous
dynamical systems.

Every discrete-time dynamical system, {N, X, A, S}, can be associated with a
DDS, {R

+, X, A, S̃}, where

S̃ =
{
p̃(t, a, τ0 = n0) : p̃(t, a, τ0) = p(n, a, n0) for t ∈ [n, n + 1),

n ≥ n0, n, n0 ∈ N
}
.

For such associated systems, the following result follows directly from definitions.

Lemma 3.4.1 The discrete-time dynamical system, {N, X, A, S}, and the associated
DDS, {R

+, X, A, S̃}, have identical stability properties. �

A. Local stability results

We first present local results.

Theorem 3.4.1 Let {N,X, A,S} be a discrete-time dynamical system and let M ⊂A
be closed. Assume that there exist a function V : X × N → R

+ and two functions
ϕ1, ϕ2 ∈ K defined on R

+ such that

ϕ1(d(x, M)) ≤ V (x, n) ≤ ϕ2(d(x, M)) (3.4.1)

for all x ∈ X and n ∈ N. Assume that there exists a neighborhood U of M such that
for all a ∈ U and for all p(·, a, n0) ∈ S, V (p(n, a, n0), n) is nonincreasing for all
n ∈ Nn0 (i.e., n ≥ n0, n, n0 ∈ N). Then (S, M) is invariant and uniformly stable.

Proof . First, let {R
+, X, A, S̃} be the associated DDS and let Ṽ : X × R

+ → R
+

be defined as Ṽ (x, t) = V (x, n) for all x ∈ X and t ∈ [n, n + 1), n ∈ N. It follows
directly from (3.4.1) that

ϕ1(d(x, M)) ≤ Ṽ (x, t) ≤ ϕ2(d(x, M))

for all x ∈ X and t ∈ R
+.

For any a ∈ U and p(·, a, n0) ∈ S, the associated motion p̃(t, a, τ0 = n0) is con-
tinuous everywhere on R

+
τ0

except possibly on E = {τ1 = n0+1, τ2 = n0+ 2, . . . }.
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E is clearly unbounded and discrete. Let f ∈ C[R+, R+] be the identity function. It
follows from the assumptions that Ṽ (p̃(τn, a, n0), τn) is nonincreasing and

Ṽ (p̃(t, a, τ0), t) = Ṽ (p̃(τn, a, τ0), n) = f(Ṽ (p̃(τn, a, τ0), n)),

for all t ∈ (τn, τn+1), n ∈ N.
Hence the associated DDS, {R

+, X, A, S̃}, and the set M satisfy the hypotheses
of Theorem 3.2.1 and thus, (S, M) is invariant and uniformly stable. �

Theorem 3.4.2 If in addition to the assumptions given in Theorem 3.4.1 there exists
a function ϕ3 ∈ K defined on R

+ such that for all a ∈ U and for all p(·, a, n0) ∈ S

V (p(n + 1, a, n0), n + 1) − V (p(n, a, n0), n) ≤ −ϕ3(d(p(n, a, n0), M)) (3.4.2)

for all n ∈ Nn0 , then (S, M) is uniformly asymptotically stable.

Proof . Let {R
+, X, A, S̃} be the associated DDS and let Ṽ : X × R

+ → R
+ be

defined as Ṽ (x, t) = V (x, n) for all x ∈ X and t ∈ [n, n + 1), n ∈ N.
For any a ∈ U and p(·, a, n0) ∈ S, the associated motion p̃(t, a, τ0 = n0)

is continuous everywhere on R
+
τ0

except possibly on E = {τ1 = n0 + 1, τ2 =
n0 + 2, . . . }. E is clearly unbounded and discrete. Noting that τn = n0 + n and
τn+1 − τn = 1, along the motion p̃(t, a, n0) we have that

DṼ (p̃(τn, a, n0), τn)

=
1

τn+1 − τn

(
Ṽ (p̃(τn+1, a, n0), τn+1) − Ṽ (p̃(τn, a, n0), τn)

)
= V (p(n0 + n + 1, a, n0), n0 + n + 1) − V (p(n0 + n, a, n0), n0 + n)
≤ −ϕ3(d(p̃(τn, a, n0), M))

for all n ∈ N.
In view of the proof of Theorem 3.4.1, we have shown that the associated DDS,

{R
+, X, A, S̃}, and the set M satisfy the hypotheses of Theorem 3.2.2. Therefore

(S, M) is uniformly asymptotically stable. �

Theorem 3.4.3 Let {N,X, A,S} be a discrete-time dynamical system and let M ⊂A
be closed. Assume that there exist a function V : X × N → R

+ and four positive
constants c1, c2, c3, and b such that

c1[d(x, M)]b ≤ V (x, n) ≤ c2[d(x, M)]b (3.4.3)

for all x ∈ X and n ∈ N.
Assume that there exists a neighborhood U of M such that for all a ∈ U , for all

p(·, a, n0) ∈ S and for all n ∈ Nn0 ,

V (p(n + 1, a, n0), n + 1) − V (p(n, a, n0), n) ≤ −c3[d(p(n, a, n0), M)]b. (3.4.4)

Then (S, M) is exponentially stable.
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Proof . Let ϕ1, ϕ2, ϕ3 ∈ K defined on R
+ be given by ϕk(r) = ckrb, k = 1, 2, 3. Let

f ∈ C[R+, R+] be the identity function. It follows from the proof of Theorem 3.4.2
that (3.2.9), (3.2.10), and (3.2.12) are all satisfied. In addition, (3.2.11) is clearly
satisfied with q ∈ (0, 1). Therefore, the associated DDS, {R

+, X, A, S̃}, and the
set M satisfy the hypotheses of Theorem 3.2.3 and thus, (S, M) is exponentially
stable. �

B. Global stability and boundedness results

Next, we address global results.

Theorem 3.4.4 Let {N, X, A, S} be a dynamical system and let M ⊂A be bounded.
Assume that there exist a function V : X × N → R

+ and two strictly increasing
functions ϕ1, ϕ2 ∈ C[R+, R+] with limr→∞ ϕi(r) = ∞, i = 1, 2, such that

ϕ1(d(x, M)) ≤ V (x, n) ≤ ϕ2(d(x, M)) (3.4.5)

for all x ∈ X and n ∈ N whenever d(x, M) ≥ Ω, where Ω is a positive constant.
Also, assume that V (p(n, a, n0), n) is nonincreasing for all p(·, a, n0) ∈ S and for

all n ∈ Nn0 whenever d(p(n, a, n0), M) ≥ Ω. Assume that there exists a constant
Γ > 0 such that d(p(n + 1, a, n0), M) ≤ Γ whenever d(p(n, a, n0), M) ≤ Ω.

Then S is uniformly bounded.

Proof . First, let {R
+, X, A, S̃} be the associated DDS and let Ṽ : X × R

+ → R
+

be defined as Ṽ (x, t) = V (x, n) for all x ∈ X and t ∈ [n, n + 1), n ∈ N. It follows
directly from (3.4.5) that

ϕ1(d(x, M)) ≤ Ṽ (x, t) ≤ ϕ2(d(x, M))

for all x ∈ X and t ∈ R
+ whenever d(x, M) ≥ Ω.

For any a ∈ A and p(·, a, n0) ∈ S, the associated motion p̃(t, a, τ0 = n0)
is continuous everywhere on R

+
τ0

except possibly on E = {τ1 = n0 + 1, τ2 =
n0+ 2, . . . }. E is clearly unbounded and discrete. Let f ∈ C[R+, R+] be the identity
function. It follows from the assumptions that Ṽ (p̃(τn, a, n0), τn) is nonincreasing
whenever d(p̃(τn, a, τ0), M) ≥ Ω and

Ṽ (p̃(t, a, τ0), t) = Ṽ (p̃(τn, a, τ0), n) = f(Ṽ (p̃(τn, a, τ0), n)),

for t ∈ (τn, τn+1), n ∈ N, whenever d(p̃(t, a, τ0), M) ≥ Ω.
It is easily seen that d(p̃(τn+1, a, τ0), M) ≤ Γ whenever d(p̃(τn, a, τ0), M) ≤ Ω.
Hence the associated DDS, {R

+, X, A, S̃}, and the set M satisfy the hypotheses
of Theorem 3.2.4 and thus, S is uniformly bounded. �

Theorem 3.4.5 If in addition to the assumptions given in Theorem 3.4.4 there exists
a function ϕ3 ∈ K defined on R

+ such that for all p(·, a, n0) ∈ S

V (p(n + 1, a, n0), n + 1) − V (p(n, a, n0), n) ≤ −ϕ3(d(p(n, a, n0), M)) (3.4.6)

for all n ∈ Nn0 whenever d(p(n, a, n0), M) ≥ Ω, then S is uniformly ultimately
bounded.
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Proof . Let {R
+, X, A, S̃} be the associated DDS and let Ṽ : X × R

+ → R
+ be

defined as Ṽ (x, t) = V (x, n) for all x ∈ X and t ∈ [n, n + 1), n ∈ N.
For any a ∈ A and p(·, a, n0) ∈ S, the associated motion p̃(t, a, τ0 = n0)

is continuous everywhere on R
+
τ0

except possibly on E = {τ1 = n0 + 1, τ2 =
n0 + 2, . . . }. E is clearly unbounded and discrete. Noting that τn = n0 + n and
τn+1 − τn = 1, along the motion p̃(t, a, n0) we have that

DṼ (p̃(τn, a, n0), τn)

=
1

τn+1 − τn

(
Ṽ (p̃(τn+1, a, n0), τn+1) − Ṽ (p̃(τn, a, n0), τn)

)
= V (p(n0 + n + 1, a, n0), n0 + n + 1) − V (p(n0 + n, a, n0), n0 + n)
≤ −ϕ3(d(p̃(τn, a, n0), M))

for all n ∈ N whenever d(p̃(τn, a, n0), M) ≥ Ω.
In view of the proof of Theorem 3.4.4, we have shown that the associated DDS,

{R
+, X, A, S̃}, and the set M satisfy the hypotheses of Theorem 3.2.5. Therefore S

is uniformly ultimately bounded. �

Theorem 3.4.6 Let {N, X, A, S} be a dynamical system and let M ⊂ A be closed
and bounded. Assume that there exist a function V : X ×N → R

+ and two functions
ϕ1, ϕ2 ∈ K∞ such that

ϕ1(d(x, M)) ≤ V (x, n) ≤ ϕ2(d(x, M)) (3.4.7)

for all x ∈ X and n ∈ N.
Assume that there exists a function ϕ3 ∈ K defined on R

+ such that for all a ∈ A
and for all p(·, a, n0) ∈ S,

V (p(n + 1, a, n0), n + 1) − V (p(n, a, n0), n) ≤ −ϕ3(d(p(n, a, n0), M)) (3.4.8)

for all n ∈ Nn0 .
Then (S, M) is uniformly asymptotically stable in the large.

Proof . Let {R
+, X, A, S̃} be the associated DDS and let Ṽ : X × R

+ → R
+ be

defined as Ṽ (x, t) = V (x, n) for all x ∈ X and t ∈ [n, n + 1), n ∈ N.
For any a ∈ A and p(·, a, n0) ∈ S, the associated motion p̃(t, a, τ0 = n0)

is continuous everywhere on R
+
τ0

except possibly on E = {τ1 = n0 + 1, τ2 =
n0 + 2, . . . }. E is clearly unbounded and discrete. Let f ∈ C[R+, R+] be the
identity function; that is, f(r) = r. Similarly as in the proof of Theorem 3.4.5, we
can show that the associated motions and the function Ṽ satisfy (3.2.21)–(3.2.23).

Thus, we have shown that the associated DDS {R
+, X, A, S̃} and the set M satisfy

the hypotheses of Theorem 3.2.6. Therefore (S, M) is uniformly asymptotically stable
in the large. �
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Theorem 3.4.7 Let {N, X, A, S} be a dynamical system and let M ⊂ A be closed
and bounded. Assume that there exist a function V : X × N → R

+ and four positive
constants c1, c2, c3, and b such that

c1[d(x, M)]b ≤ V (x, n) ≤ c2[d(x, M)]b (3.4.9)

for all x ∈ X and n ∈ N.
Assume that for all a ∈ A and for all p(·, a, n0) ∈ S,

V (p(n + 1, a, n0), n + 1) − V (p(n, a, n0), n) ≤ −c3[d(p(n, a, n0), M)]b (3.4.10)

for all n ∈ Nn0 .
Then (S, M) is exponentially stable in the large.

Proof . The proof proceeds similarly as that in the local exponential stability case.
See the proof of Theorem 3.4.3. �

C. Instability results

We now address instability results of a set M with respect to S.

Theorem 3.4.8 (Lyapunov’s First Instability Theorem) Let {N, X, A, S} be a dy-
namical system and let M ⊂ A be closed, where A is assumed to be a neighborhood
of M . Assume that there exist a function V : X × N → R and a k0 ∈ N that satisfy
the following conditions.

(i) There exists a function ψ ∈ K defined on R
+ such that

V (x, k) ≤ ψ(d(x, M))

for all (x, k) ∈ X × N.

(ii) There exists a function ϕ ∈ K defined on R
+ such that

V (p(k + 1, a, k0), k + 1) − V (p(k, a, k0), k) ≥ ϕ
(
|V (p(k, a, k0), k)|

)
for all p(·, a, k0) ∈ S and all k ∈ Nk0 .

(iii) In every neighborhood of M there is a point x such that V (x, k0) > 0 and
there exists a motion p(·, x, k0) ∈ S.

Then M is unstable with respect to S.

Proof . Let {R
+, X, A, S̃} be the associated DDS and let Ṽ : X × R

+ → R be
defined as Ṽ (x, t) = V (x, n) for all x ∈ X and t ∈ [n, n + 1), n ∈ N.

For any a ∈ A and p(·, a, n0) ∈ S, the associated motion p̃(t, a, τ0 = n0) is con-
tinuous everywhere on R

+
τ0

except possibly on E = {τ1 = n0+1, τ2 = n0+ 2, . . . }.
E is clearly unbounded and discrete. Along the motion p̃(·, a, n0) we have

DṼ (p̃(τn, a, n0), τn) = V (p(τn+1, a, n0), τn+1) − V (p(τn, a, n0), τn).
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It is easily seen that the associated DDS, {R
+, X, A, S̃}, and the set M satisfy the

hypotheses of Theorem 3.2.8 and thus, M is unstable with respect to S. �

Theorem 3.4.9 In addition to the assumptions given in Theorem 3.4.8, assume that
V (x, k0) > 0 for all x �∈ M . Then M is completely unstable with respect to S.

Proof . Note that by combining with Theorem 3.4.8, the present assumptions reduce
to those of Theorem 3.2.9. Therefore, we conclude that M is completely unstable
with respect to S. �

Theorem 3.4.10 (Lyapunov’s Second Instability Theorem) Let {N, X, A, S} be a
dynamical system and let M ⊂ A be closed, where A is assumed to be a neighborhood
of M . Assume that for any (a, k0) ∈ A × N and every p(·, a, k0) ∈ S, there exist a
k0 ∈ N and a function V : Mε × Nk0 → R, where Mε = {x ∈ X : d(x, M) < ε},
ε > 0, such that the following conditions are satisfied.

(i) V is bounded on Mε × Nk0 .

(ii) For all p(·, a, k0) ∈ S|Mε
and k ∈ Nk0 ,

V (p(k + 1, a, k0), k + 1) ≥ λV (p(k, a, k0), k)

where λ > 1 is a constant.

(iii) In every neighborhood of M , there exists an x such that V (x, k1) > 0 and
there exists a motion p(·, x, k1) ∈ S for a fixed k1 ≥ k0.

Then M is unstable with respect to S.

Proof . By contradiction. If M is invariant and stable with respect to S, then for any
ε > 0 and k1 ∈ R

+, there exists a δ = δ(ε, k1) > 0 such that d(p(k, a, k1), M) < ε
for all p(·, a, k1) ∈ S and k ∈ Nk1 whenever d(a, M) < δ. Because A is a
neighborhood of M , it follows from condition (iii) that there exists an x1 ∈ {a ∈
A : d(a, M) < δ} such that V (x1, k1) > 0. By condition (ii),

V (p(k + 1, a, k1), k + 1) ≥ λV (p(k, a, k1), k)
≥ . . .

≥ λ(k+1−k1)V (p(k1, a, k1), k1)

for all k ≥ k1. Because V (p(k1, a, k1), k1) = V (x1, k1) > 0 and λ > 1, we
have limk→+∞ V (p(k + 1, a, k1), k + 1) = ∞. This contradicts condition (i) and
completes the proof. �

D. An example

The scalar difference equation

x(n + 1) =
{

2x(n) if n = n0 + 2k,
x(n)/4 if n = n0 + 2k + 1,

(3.4.11)
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with x(n0) = a, k ∈ N, where a ∈ R and n0 ∈ N, determines a dynamical system
{N, X, A, S} with X = A = R and with p(·, a, n0) ∈ S determined by the solutions
of (3.4.11),

p(n, a, n0) =


a

2k
if n = n0 + 2k,

a

2k−1 if n = n0 + 2k + 1,
(3.4.12)

n ∈ N, for each pair (a, k0) ∈ R×N and for all n ≥ k0. The plot of a typical motion
for this system is given in Figure 3.4.1. Note that for each (a, n0) ∈ R × N, there
exists a unique p(·, a, n0) ∈ S that is defined for n ≥ n0. Clearly, M = {0} is an
invariant set with respect to S.

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

Time (n)

Figure 3.4.1: Plot of the motion p(n, 1, 1) ∈ S

We show in the following that

(a) for the associated DDS {R
+, X, A, S̃} there exists a function Ṽ : R×N → R

+

that satisfies Theorem 3.2.2 and therefore, (S, {0}) is uniformly asymptotically
stable; and

(b) for the discrete-time dynamical system {N, X, A, S}, there does not exist a
function V : R × N → R

+ that satisfies the hypotheses of Theorem 3.4.2 and
therefore, Theorem 3.4.2 cannot be used to prove that (S, {0}) is uniformly
asymptotically stable.

Proof . (a) Let Ṽ : R → R
+ be given by Ṽ (x) = |x| for all x ∈ R. For any

p(·, a, n0) ∈ S, the associated motion is given by

p̃(t, a, n0) =


a

2k
if t ∈ [n0 + 2k, n0 + 2k + 1),

a

2k−1 if t ∈ [n0 + 2k + 1, n0 + 2(k + 1)),

k ∈ N. Choose E = {τ1, τ2, . . . } with τk = n0 + k, and E′ = {τ ′
1, τ

′
2, . . . } with

τ ′
k = n0 +2k (refer to Remark 3.2.1), k∈N. By (3.4.12), Ṽ (p(τ ′

k, a, τ0)) = |a/2k|,
and Ṽ (p(t, a, t0)) ≤ 2Ṽ (p(τ ′

k, a, τ0)) for all t ∈ [τ ′
k, τ ′

k+1), k ∈ N. Therefore all

the conditions of Theorem 3.2.2 (and Remark 3.2.1) are satisfied and hence, (S̃, {0})
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is uniformly asymptotically stable. By Lemma 3.4.1 it now follows that (S, {0}) is
uniformly asymptotically stable.

(b) For purposes of contradiction, assume that there exist a Lyapunov function
V : R × N → R

+ and two functions ϕ1, ϕ2 ∈ K defined on R
+ such that

ϕ1(|x|) ≤ V (x, n) ≤ ϕ2(|x|) (3.4.13)

for all (x, n) ∈ R×N, and there exists a neighborhood U of 0 such that for all a ∈ U
and for all p(·, a, n0) ∈ S, V (p(n, a, n0), n) is nonincreasing for all n ≥ n0, n ∈ N.
Without loss of generality, we assume that 1 ∈ U .

By (3.4.12), p(n0 +1, a, n0) = 2a for any (a, n0) ∈ R × N. In particular, for any
n ∈ N, because

p
(
2,

1
2n

, 1
)

=
1

2n−1 , p
(
3,

1
2n−1 , 2

)
=

1
2n−2 , . . . , p

(
n,

1
2
, n − 1

)
= 1,

and because V (p(n, a, n0), n) is nonincreasing for all p(·, a, n0) ∈ S, we have that

V
( 1

2n
, 1
)

≥ V
(
p
(
2,

1
2n

, 1
)
, 2
)

= V
( 1

2n−1 , 2
)

(along the motion p
(
·, 1

2n
, 1
)
);

V
( 1

2n−1 , 2
)

≥ V
(
p
(
3,

1
2n−1 , 2

)
, 3
)

= V
( 1

2n−2 , 3
)

(along the motion p
(
·, 1

2n−1 , 2
)
);

...

V
(1

2
, n − 1

)
≥ V

(
p
(
n,

1
2
, n − 1

)
, n
)

= V (1, n)

(along the motion p
(
·, 1

2
, n − 1

)
).

Therefore,

V
( 1

2n
, 1
)

≥ V (1, n) .

On the other hand,

ϕ1

( 1
2n

)
≤ V

( 1
2n

, 1
)

≤ ϕ2

( 1
2n

)
and ϕ1(1) ≤ V (1, n) ≤ ϕ2(1).

Thus,

ϕ2

( 1
2n

)
≥ ϕ1(1)

is true for all n ∈ N, which implies that

ϕ2(0) = lim
n→∞ ϕ2

( 1
2n

)
≥ ϕ1(1) > 0.
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However, by the assumption ϕ2 ∈ K, we know that ϕ2(0) = 0. We have arrived at a
contradiction. Therefore, there does not exist a Lyapunov function that satisfies the
hypotheses of the classical Lyapunov Theorem for uniform asymptotic stability for
discrete-time dynamical systems, Theorem 3.4.2. �

3.5 Converse Theorems for Discontinuous Dynamical
Systems

The results of the previous three sections constitute sufficient conditions for various
types of stability, instability, and boundedness for discontinuous dynamical systems,
continuous dynamical systems, and discrete-time dynamical systems, respectively.
It turns out that under some additional mild assumptions, these results constitute
necessary conditions as well. Such results are referred to as converse theorems in the
literature. The proofs of these results do not provide us with the means of constructing
Lyapunov functions V (p(·, a, τ0), ·) in a systematic manner in applications. Never-
theless, converse theorems occupy an important place in the general development
of the qualitative theory of dynamical systems. We address only converse theorems
concerning local results.

A. Local results

In our first result, we require the following hypothesis.

Assumption 3.5.1 Let {R
+, X, A, S} be a DDS and assume that

(i) for any p(·, a, t0) ∈ S, there exists a p̃(·, a1, t1) ∈ S with a1 = p(t1, a, t0) and
t1 > t0 such that p̃(·, a1, t1) = p(·, a, t0) for all t ≥ t1; and

(ii) for any two motions pi(·, ai, ti) ∈ S, i = 1, 2, t2 > t1, if a2 = p1(t2, a1, t1),
then there exists a p̂(·, a1, t1) ∈ S such that p̂(t, a1, t1) = p1(t, a1, t0) for
t ∈ [t1, t2) and p̂(t, a1, t1) = p2(t, a2, t2) for t ≥ t2. �

In part (i) of Assumption 3.5.1, p̃(·, a1, t1) may be viewed as a partial motion of
the motion p(·, a, t0), and in part (ii), p̂(·, a, t1) may be viewed as a composition of
p1(·, a1, t1) and p2(·, a2, t2). With this convention, Assumption 3.5.1 states that

(a) any partial motion is a motion in S; and

(b) any composition of two motions is a motion in S.

We require the above assumption in all converse theorems for dynamical systems
defined on metric spaces. The reason for this is that in Definitions 2.2.1 and 2.2.2,
the motions are defined for initial conditions and forward in time, and in general,
time is not required to be reversible. (This is in contrast to many dynamical systems
determined, e.g., by various types of differential equations, addressed in subsequent
chapters.) We note, however, that when in a dynamical system the semigroup property
holds, then Assumption 3.5.1 is automatically implied.
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Theorem 3.5.1 Let {R
+, X, A, S} be a DDS and let M ⊂ A be a closed invariant

set, where A is assumed to be a neighborhood of M . Suppose that S satisfies As-
sumption 3.5.1 and that (S, M) is uniformly stable. Then there exist neighborhoods
A1 and X1 of M such that A1 ⊂ X1 ⊂ A and a mapping V : X1 × R

+ → R
+ that

satisfies the following conditions.
(i) There exist ψ1, ψ2 ∈ K such that

ψ1(d(x, M)) ≤ V (x, t) ≤ ψ2(d(x, M)) (3.5.1)

for all (x, t) ∈ X1 × R
+.

(ii) For every p(·, a, τ0) ∈ S with a ∈ A1, V (p(t, a, τ0), t) is nonincreasing for all
t ∈ R

+
τ0

.

Proof . If (S, M) is uniformly stable, then in view of Lemma 3.10.3 (refer to Section
3.10, Problem 3.10.15), there exists a function ϕ ∈ K defined on [0, h0] for some
h0 > 0 such that

d(p(t, a, τ0), M) ≤ ϕ(d(a, M)) (3.5.2)

for all p(·, a, τ0) ∈ S, for all t ∈ R
+
τ0

and for all τ0 ∈ R
+ whenever d(a, M) < h0.

A is a neighborhood of M , therefore it follows that X1 = {x ∈ A : d(x, M) < h0}
is also a neighborhood of M . We now define V : X1 × R

+ → R
+ by

V (x, t) = sup
{
d(p(t′, x, t), M) : p(·, x, t) ∈ S, t′ ∈ R

+
t

}
.

Then for all x ∈ X, t ∈ R
+, we have that

V (x, t) ≥ d(p(t, x, t), M) = d(x, M)

and in view of (3.5.2) we have that V (x, t) ≤ ϕ(d(x, M)). Therefore, V satisfies
condition (i) of this theorem.

Next, let A1 = {a ∈ X1 : d(a, M) < ϕ−1(h0)} if ϕ(h0) > h0 and A1 = X1
otherwise. We now prove that for any p0(·, a, τ0) ∈ S with a ∈ X1, we have that
v(t) = V (p0(t, a, τ0), t) is nonincreasing for all t ∈ R

+
τ0

.
Let t1, t2 ∈ R

+
τ0

and t1 < t2. Let ai = p0(ti, a, τ0), i = 1, 2. Then,

v(ti) = sup
{
d(p(t′, ai, ti), M) : p(·, ai, ti) ∈ S, t′ ∈ R

+
ti

}
, i = 1, 2.

To prove that v(t2) ≤ v(t1), it suffices to show that for every p2(·, a2, t2) ∈ S and for
every t′ ∈ R

+
t2 , there exists a p1(·, a1, t1) ∈ S such that p2(t′, a2, t2) = p1(t′, a1, t1).

By (i) in Assumption 3.5.1 there exists a p̃0(·, a1, t1) ∈ S such that

p̃0(t, a1, t1) = p0(t, a, t0)

for all t ∈ R
+
t1 . By (ii) in Assumption 3.5.1, for p̃0(·, a1, t1) and p2(·, a2, t2), where

a2 = p0(t2, a, t0) = p̃0(t2, a1, t1), there exists a p1(·, a1, t1) ∈ S such that

p2(t′, a2, t2)= p1(t′, a1, t1)

because t′ ∈ R
+
t2 . Therefore, v(t2) ≤ v(t1).

This concludes the proof of the theorem. �
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In the proofs of the remaining results of the present section, we require the fol-
lowing additional assumption.

Assumption 3.5.2 Let {R
+, X, A, S} be a DDS. We assume that every motion

p(·, a, τ0) ∈ S is continuous everywhere on R
+
τ0

, except possibly on an unbounded
and discrete set E = {τ1, τ2, . . . : τ1 < τ2 < · · · } (recall that in general E de-

pends on p(·, a, τ0) ∈ S), and that lE
�
= infk∈{1,2,... },p∈S{τk+1 − τk} > 0, and that

LE
�
= supk∈{1,2,... },p∈S{τk+1 − τk} < ∞. �

In the proof of the converse theorem for uniform asymptotic stability, we require
a preliminary result.

Definition 3.5.1 A continuous function σ : [s1,∞) → R
+ is said to belong to class

L if σ is strictly decreasing on [s1,∞) and if lims→∞ σ(s) = 0 where s1 ∈ R
+. �

Lemma 3.5.1 Let β ∈ L be defined on R
+. Then there exists a function α ∈ K

defined on R
+ such that for any discrete subset {τ0, τ1, . . . } ⊂ R

+ satisfying
inf{τk+1 − τk : k = 1, 2, . . . } > 0, it is true that

∑∞
i=0 α(β(τi − τ0)) < ∞.

Proof . We define η ∈ C[(0,∞), (0,∞)] as

η(t) =
{

β(t)/t, t ∈ (0, 1),
β(t), t ∈ [1,∞).

Clearly, η(t) is strictly decreasing for all t>0, limt→0+η(t) =+∞, and η(t)≥β(t)
for all t > 0. Furthermore, η is invertible, and η−1 ∈ C[(0,∞), (0,∞)] is strictly
decreasing, and η−1(β(τ)) ≥ η−1(η(τ)) = τ for all τ > 0.

We now define α(0) = 0 and

α(t) = e−η−1(t), t > 0.

Then α ∈ K, and

α(β(τ)) = e−η−1(β(τ)) ≤ e−τ .

If we denote lm = inf{τj+1 − τj : j = 1, 2 . . . }, we know that τj − τ0 ≥ (j − 1)lm.
Hence it is true that

∞∑
j=0

α(β(τj − τ0)) ≤
∞∑

j=0

e−(τj−τ0) ≤ 1 +
∞∑

j=1

e−(j−1)lm

= 1 +
1

1 − e−lm
< +∞.

This completes the proof. �

We are now in a position to prove the following result.
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Theorem 3.5.2 Let {R
+, X, A, S} be a DDS and let M ⊂ A be a closed invariant

set, where A is assumed to be a neighborhood of M . Assume that S satisfies As-
sumptions 3.5.1 and 3.5.2, and furthermore, assume that for every (a, τ0) ∈ A×R

+,
there exists a unique motion p(·, a, τ0) ∈ S. Let (S, M) be uniformly asymptotically
stable. Then there exist neighborhoods A1, X1 of M such that A1 ⊂ X1 ⊂ A, and a
mapping V : X1 × R

+ → R
+ that satisfies the following conditions.

(i) There exist functions ψ1, ψ2 ∈ K (defined on R
+) such that

ψ1(d(x, M)) ≤ V (x, t) ≤ ψ2(d(x, M)) (3.5.3)

for all (x, t) ∈ X1 × R
+;

(ii) There exists a function ψ3 ∈ K, defined on R
+, such that for all p(·, a, τ0) ∈ S,

we have
DV (p(τk, a, τ0), τk) ≤ −ψ3(d(p(τk, a, τ0), M)) (3.5.4)

where a ∈ A1, k ∈ N and where DV is defined in (3.2.4).
(iii) There exists a function f ∈ C[R+, R+] such that f(0) = 0 and such that

V (p(t, a, τ0), t) ≤ f(V (p(τk, a, τ0), τk)) (3.5.5)

for every p(·, a, τ0) ∈ S and all t ∈ (τk, τk+1), a ∈ A1 and τ0 ∈ R
+.

Proof . Inasmuch as (S, M) is uniformly asymptotically stable, we know by The-
orem 3.5.1 that there exist some neighborhoods Ã1 and X̃1 of M such that Ã1 ⊂
X̃1 ⊂ A, and a mapping Ṽ : X̃1 × R

+ → R
+ that satisfies the following conditions.

(a) There exist two functions ϕ̃1, ϕ̃2 ∈ K such that

ϕ̃1(d(x, M)) ≤ Ṽ (x, t) ≤ ϕ̃2(d(x, M))

for all (x, t) ∈ X̃1 × R
+.

(b) For every p(·, a, τ0) ∈ S with a ∈ Ã1, Ṽ (p(t, a, τ0), t) is nonincreasing for all
t ≥ τ0.

From (a) and (b) above, we conclude that for any t ∈ [τk, τk+1), it is true that

ϕ̃1(d(p(t, a, τ0), M)) ≤ Ṽ (p(t, a, τ0), t) ≤ Ṽ (p(τk, a, τ0), τk)
≤ ϕ̃2(d(p(τk, a, τ0), M))

which implies that

d(p(t, a, τ0), M) ≤
(
ϕ̃−1

1 ◦ ϕ̃2
)
(d(p(τk, a, τ0), M)) (3.5.6)

for all t ∈ [τk, τk+1) and k ∈ N.
By Lemma 3.10.5 (see Problem 3.10.17 in Section 3.10), there exist a function

ϕ ∈ K defined on [0, h0] for some h0 > 0, and a function σ ∈ L, defined on R
+,

such that for all t ≥ τ0

d(p(t, a, τ0), M) < ϕ(d(a, M))σ(t − τ0) (3.5.7)
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for all p(·, a, τ0) ∈ S whenever d(a, M) < h0. Let X1 = {x ∈ Ã1 : d(x, M) < h0}
and A1 = {a ∈ X1 : d(a, M) < ϕ−1(h0)} if ϕ−1(h0) ≤ h0 and A1 = X1 other-
wise.

We now define the Lyapunov function V (x, τ0) for (x, τ0) ∈ X1 × R
+. Because

for any (x, τ0) ∈ X1 ×R
+, there exists a unique motion p(·, x, τ0) that is continuous

everywhere on R
+
τ0

except on E = {τ1, τ2 . . . : τ1 < τ2 < · · · }, we define

V (x, τ0) =
∞∑

j=0

u
(
d(p(τj , x, τ0), M)

)
(3.5.8)

where u ∈ K, defined on R
+, is specified later in such a manner that the above

summation converges. Obviously,

V (x, τ0) ≥ u
(
d(p(τ0, x, τ0), M)

)
= u

(
d(x, M)

)
.

Hence, if we define ψ1 = u, then V (x, τ0) ≥ ψ1(d(x, M)) for all (x, τ0) ∈ X1×R
+.

Consider p(·, x, τ0) ∈ S and the corresponding set E = {τ1, τ2, . . . }. If we denote
x̃ = p(τk, a, τ0), and τ̃0 = τk for some k ≥ 1, we know there exists a unique motion
p̃(·, x̃, τ̃0) ∈ S that is continuous everywhere on t ≥ τ̃0 except on {τ̃1, τ̃2, . . . }. By
the definition of V given in (3.5.8), we know that

V (x̃, τ̃0) =
∞∑

j=0

u
(
d(p̃(τ̃j , x̃, τ̃0), M)

)
.

By the uniqueness property and Assumption 3.5.1(i), we know that τ̃j = τk+j , and

p̃(τ̃j , x̃, τ̃0) = p(τk+j , p(τk, a, τ0), τk) = p(τk+j , a, τ0).

Therefore, it is clear that

V (p(τk, a, τ0), τk) =
∞∑

j=k

u
(
d(p(τj , a, τ0), M)

)
. (3.5.9)

Similarly, for any t ∈ (τk, τk+1), k ∈ N, V (p(t, a, τ0), t) is defined as

V (p(t, a, τ0), t) = u
(
d(p(t, a, τ0), M)

)
+

∞∑
j=k+1

u
(
d(p(τj , a, τ0), M)

)
. (3.5.10)

It follows that

DV (p(τk, a, τ0), τk)

=
1

τk+1 − τk

[
V (p(τk+1, a, τ0), τk+1) − V (p(τk, a, τ0), τk)

]
=

1
τk+1 − τk

[ ∞∑
j=k+1

u
(
d(p(τj , a, τ0), M)

)
−

∞∑
j=k

u
(
d(p(τj , a, τ0), M)

)]
= − 1

τk+1 − τk
u
(
d(p(τk, a, τ0), M)

)
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for k ∈ N. Because τk+1 − τk ≤ LE by Assumption 3.5.2, it follows that

DV (p(τk, a, τ0), τk) ≤ −u
(
d(p(τk, a, τ0), M)

)
/LE = −ψ3(d(p(τk, a, τ0), M))

where we have defined ψ3 = u/LE .
We now show how to choose u ∈ K so that the infinite summation in (3.5.8)

converges. It follows from (3.5.7) that for any (x, τ0) ∈ X1 × R
+, we have

u
(
d(p(t, x, τ0), M)

)
< u

(
ϕ(d(x, M)

)
σ(t − τ0))

≤
[
u
(
ϕ(d(x, M))σ(0)

)]1/2[
u
(
ϕ(h0)σ(t − τ0)

)]1/2
.

(3.5.11)

Let β(τ) = ϕ(h0)σ(τ). Then β ∈ L. Hence, by Lemma 3.5.1, there exists a
function α ∈ K defined on R

+ such that
∑∞

i=0 α
(
β(τi − τ0)

)
< ∞. If we define

u(r) = [α(r)]2, then it follows that[
u
(
ϕ(h0)σ(t − τ0)

)]1/2 = α
(
ϕ(h0)σ(t − τ0)

)
= α

(
β(t − τ0)

)
. (3.5.12)

Hence, we conclude from (3.5.8)–(3.5.10) that

V (x, τ0) =
∞∑

j=0

u
(
d(p(τj , x, τ0), M)

)
<

∞∑
j=0

[
u
(
ϕ(d(x, M))σ(0)

)]1/2[
u
(
ϕ(h0)σ(τj − τ0)

)]1/2

=
[
u
(
ϕ(d(x, M))σ(0)

)]1/2
∞∑

j=0

α
(
β(τj − τ0)

)
<
[
u
(
ϕ(d(x, M))σ(0)

)]1/2[1 + 1/(1 − e−lE )
]
,

where lE is the lower bound given in Assumption 3.5.2. If we define ψ2 ∈ K by

ψ2(r) = [u(ϕ(σ(0)r))]1/2[1 + 1/(1 − e−lE )],

then it follows that V (x, τ0) ≤ ψ2(d(x, M)). Thus we have proved conditions (i)
and (ii) of the theorem.

To prove condition (iii) of the theorem, let t ∈ (τk, τk+1). We have already
shown that

V (p(t, a, τ0), t) ≤ ψ2(d(p(t, a, τ0), M)).

Furthermore, because a ∈ A1 ⊂ Ã1, (3.5.6) is satisfied. Hence, we know that

V (p(t, a, τ0), t) ≤
(
ψ2 ◦ ϕ̃−1

1 ◦ ϕ̃2

)
(d(p(τk, a, τ0), M)). (3.5.13)

On the other hand, we have also shown that

V (p(τk, a, τ0), τk) ≥ ψ1(d(p(τk, a, τ0), M)),



118 Chapter 3. Principal Stability and Boundedness Results on Metric Spaces

which implies that(
ψ−1

1 ◦ V
)
(p(τk, a, τ0), τk) ≥ d(p(τk, a, τ0), M). (3.5.14)

Combining (3.5.13) and (3.5.14), we obtain that

V (p(t, a, τ0), t) ≤
(
ψ2 ◦ ϕ̃−1

1 ◦ ϕ̃2 ◦ ψ−1
1

)
(V (p(τk, a, τ0), τk))

for all t ∈ (τk, τk+1), k ∈ N, and all (a, τ0) ∈ A1×R
+. If we define f ∈ C[R+, R+]

as f = ψ2 ◦ ϕ̃−1
1 ◦ ϕ̃2 ◦ ψ−1

1 , then f(0) = 0 and

V (p(t, a, τ0), t) ≤ f(V (p(τk, a, τ0), τk)).

This concludes the proof of the theorem. �

The hypotheses in the next result are not exactly symmetric with the corresponding
hypotheses given in Theorem 3.2.3. Nevertheless, they do provide a set of necessary
conditions for exponential stability.

Theorem 3.5.3 Let {R
+, X, A, S} be a DDS and let M ⊂ A be a closed invariant set,

where A is a neighborhood of M . Suppose that system S satisfies Assumptions 3.5.1
and 3.5.2 and that for every (a, τ0) ∈ A×R

+, there exists a unique motionp(·, a, τ0) ∈
S. Let (S, M) be exponentially stable. Then there exist neighborhoods A1 and X1
of M such that A1 ⊂ X1 ⊂ A, and a mapping V : X1 × R

+ → R
+ that satisfies the

following conditions.

(i) There exist functions ψ1, ψ2 ∈ K, defined on R
+, such that

ψ1(d(x, M)) ≤ V (x, t) ≤ ψ2(d(x, M)) (3.5.15)

for all (x, t) ∈ X1 × R
+.

(ii) There exists a constant c > 0 such that for every p(·, a, τ0) ∈ S,

DV (p(τk, a, τ0), τk) ≤ −cV (p(τk, a, τ0), τk) (3.5.16)

for k ∈ N, where a ∈ A1 and where DV is defined in (3.2.4).

(iii) There exists a function f ∈ C[R+, R+] with f(0) = 0 and

f(r) = O(rq) as r → 0+ (3.5.17)

for some constant q > 0 such that

V (p(t, a, τ0), t) ≤ f(V (p(τk, a, τ0), τk)) (3.5.18)

for every p(·, a, τ0) ∈ S, t ∈ (τk, τk+1), k ∈ N, a ∈ A1, and τ0 ∈ R
+.
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Proof . By Lemma 3.10.6 (see Problem 3.10.18, Section 3.10), there exist a function
ϕ ∈ K defined on [0, h0] for some h0 > 0, and an α > 0 such that for all t ∈ R

+
τ0

d(p(t, a, τ0), M) ≤ ϕ(d(a, M))e−α(t−τ0) (3.5.19)

for all p(·, a, τ0) ∈ S whenever d(a, M) < h0. Let X1 = {x ∈ A : d(x, M) < h0}
and A1 = {a ∈ X1 : d(a, M) < ϕ−1(h0)} if ϕ−1(h0) ≤h0 and A1 = X1 otherwise.

For (x, τ0) ∈ X1 × R
+, there exists a unique motion p(·, x, τ0) ∈ S. We define

V (x, τ0) = sup
t′≥τ0

{
d(p(t′, x, τ0), M)eα(t′−τ0)

}
. (3.5.20)

Now for (a, τ0) ∈ A1 × R
+ and p(t, a, τ0), t ∈ R

+
τ0

, it must be true by Assumption
3.5.1 that the unique motion p(t′, p(t, a, τ0), t) = p(t′, a, τ0) for all t′ ∈ R

+
t . Thus,

V (p(t, a, τ0), t) = sup
t′≥t

{
d(p(t′, p(t, a, τ0), t), M)eα(t′−t)}

= sup
t′≥t

{
d(p(t′, a, τ0), M)eα(t′−t)}. (3.5.21)

For k ∈ N, we have

V (p(τk+1, a, τ0), τk+1) = sup
t′≥τk+1

{
d(p(t′, a, τ0), M)eα(t′−τk)e−α(τk+1−τk)}

≤ sup
t′≥τk+1

{
d(p(t′, a, τ0), M)eα(t′−τk)}e−αlE

≤ sup
t′≥τk

{
d(p(t′, a, τ0), M)eα(t′−τk)}e−αlE

= e−αlE V (p(τk, a, τ0), τk),

where lE is the lower limit given in Assumption 3.5.2. Letting c = (1− e−αlE )/LE ,
where LE is the upper limit given in Assumption 3.5.2, we obtain

DV (p(τk, a, τ0), τk) =
1

τk+1 − τk

[
V (p(τk+1, a, τ0), τk+1) − V (p(τk, a, τ0), τk)

]
≤ − 1

LE

(
1 − e−αLE

)
V (p(τk, a, τ0), τk)

= − cV (p(τk, a, τ0), τk).

Also, (3.5.19)–(3.5.21) imply that d(x, M)≤ V (x, τ0) ≤ ϕ(d(x, M)) for all (x, t)∈
X1 × R

+. By (3.5.21), for every t ∈ (τk, τk+1) we have that

V (p(t, a, τ0), t) = sup
t′≥t

{d(p(t′, a, τ0), M)eα(t′−τk)e−α(t−τk)}

≤ sup
t′≥t

{d(p(t′, a, τ0), M)eα(t′−τk)}

≤ sup
t′≥τk

{d(p(t′, a, τ0), M)eα(t′−τk)}

= V (p(τk, a, τ0), τk).

The proof is completed by letting f(r) = r and q = 1/2. �
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We conclude by noting that converse theorems for DDSs for uniform boundedness,
uniform ultimate boundedness, uniform asymptotic stability in the large, exponential
stability in the large, and instability can also be established, using the methodology
employed in the preceding results.

B. Refinements: Continuity of Lyapunov functions

The converse theorems presented in this section involve Lyapunov functions that need
not necessarily be continuous. In the present subsection, we show that under some
additional very mild assumptions, the Lyapunov functions for the converse theorems
are continuous with respect to initial conditions.

In the proof of Theorem 3.5.2, the Lyapunov function V is constructed based on the
unique motion that starts at (x, τ0) ∈ A × R

+. In the following, we show that under
some additional very mild assumptions (Assumption 3.5.3) the function V given in
the converse Theorem 3.5.2 is continuous (i.e., V (x0m, τ0m) approaches V (x0, τ0)
as m → ∞ if x0m → x0 and τ0m → τ0 as m → ∞). We then define continuous
dependence on the initial conditions for motions of DDSs and show that Assumption
3.5.3 is satisfied when the motions are continuous with respect to initial conditions.

Assumption 3.5.3 Let {R
+, X, A, S} be a DDS and let {x0m} ⊂ A, {τ0m} ⊂ R

+,
x0m → x0 ∈ A, and τ0m → τ0 as m → ∞. The motion starting at (x0m, τ0m) is
denoted by pm(t, x0m, τ0m) with the discontinuity set

E(x0m,τ0m) = {τ1m, τ2m, . . . : τ0m < τ1m < τ2m < · · · },

m ∈ N. Assume that

(a) τkm → τk as m → ∞, for all k ∈ N; and

(b) pm(τkm, x0m, τ0m) → xk = p(τk, x0, τ0) as m → ∞ for all k ∈ N. �

We first strengthen Lemma 3.5.1 as follows.

Lemma 3.5.2 Let β ∈ L be defined on R
+. Then there exists a function α ∈ K

defined on R
+ such that for any discrete subset {r0, r1, . . . } ⊂ R

+ satisfying lE =
inf{rn+1 − rn : n = 1, 2, . . . } > 0, it is true that

∞∑
i=0

α(β(ri − r0)) < +∞,

and
∞∑

i=k

α(β(ri − r0)) <
exp (−(k − 1)lE)

1 − exp(−lE)
,

for all k ≥ 1.
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Proof . Let η and α ∈ C[(0,∞), (0,∞)] be the same as in the proof of Lemma 3.5.1.
Then

∞∑
j=k

α(β(τj − τ0)) ≤
∞∑

j=k

exp(−(τj − τ0))

≤
∞∑

j=k

exp(−(j − 1)lE)

=
exp (−(k − 1)lE)

1 − exp(−lE)
,

and ∞∑
j=0

α(β(τj − τ0)) < +∞,

as shown in Lemma 3.5.1. The proof is completed. �

We are now in a position to present our first result.

Theorem 3.5.4 If in addition to the assumptions given in Theorem 3.5.2, the motions
in S also satisfy Assumption 3.5.3, then the Lyapunov function in the Converse
Theorem 3.5.2 is continuous with respect to initial conditions.

Proof . It follows from the proof of Theorem 3.5.2 that there exist a function ϕ ∈ K
defined on [0, h0] for some h0 > 0, and a function σ ∈ L defined on R

+, such that
for all t ≥ τ0

d(p(t, a, τ0), M) < ϕ(d(a, M))σ(t − τ0) (3.5.22)

for all p(·, a, τ0) ∈ S whenever d(a, M) < h0. Let X1 = {x ∈ A : d(x, M) < h0},
and A1 = {a ∈ X1 : d(a, M) < ϕ−1(h0)} if ϕ−1(h0) ≤ h0 and A1 = X1
otherwise.

Let β(τ) = ϕ(h0)σ(τ), α ∈ K be defined on R
+ such that Lemma 3.5.2 is true,

and u(r) = [α(r)]2. For any (x, τ0) ∈ X1 × R
+, the Lyapunov function V (x, τ0) is

defined as

V (x, τ0) =
∞∑

j=0

u
(
d(p(τj , x, τ0), M)

)
. (3.5.23)

It follows from (3.5.22) that for any (x, τ0) ∈ X1 × R
+, we have

u
(
d(p(t, x, τ0), M)

)
< u

(
ϕ(d(x, M)

)
σ(t − τ0))

≤
[
u
(
ϕ(d(x, M))σ(0)

)]1/2[
u
(
ϕ(h0)σ(t − τ0)

)]1/2
.

(3.5.24)

From the choice of u, we have[
u
(
ϕ(h0)σ(t − τ0)

)]1/2 = α
(
ϕ(h0)σ(t − τ0)

)
= α

(
β(t − τ0)

)
. (3.5.25)
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We now show that V is continuous with respect to initial conditions. Suppose
x0m → x0 and τ0m → τ0 as m→∞. We denote pm(τkm, x0m, τ0m) by xkm. Then

V (x0m, τ0m) =
∞∑

i=0

u(d(pm(τim, x0m, τ0m), M))

=
∞∑

i=0

u(d(xim, M)). (3.5.26)

We show that V (x0m, τ0m) approaches V (x0, τ0) =
∑∞

i=0 u(d(xi, M)) as m → ∞.
It follows from (3.5.24), (3.5.25), and Lemma 3.5.2 that

∞∑
i=k

u(d(p(τi, x0, τ0), M)) <

∞∑
i=k

[u(ϕ(d(x0, M))σ(0))]1/2[u(ϕ(h0)σ(τi − τ0))]1/2

≤ [u(ϕ(h0)σ(0))]1/2
∞∑

i=k

α(β(τi − τ0))

< [u(ϕ(h0)σ(0))]1/2 exp(−(k − 1)lE)
1 − exp(−lE)

.

For every ε > 0, in view of the above inequality, there exists an n0 > 0 such that

∞∑
i=n0

u(d(xi, M)) < ε/4 (3.5.27)

for all x0 ∈ A1. Similarly,

∞∑
i=n0

u(d(xim, M)) < ε/4 (3.5.28)

for all x0m ∈ A1.
On the other hand, for every k ≤ n0, there exists a δk > 0 such that

|u(r) − u(d(xk, M))| <
ε

2n0

whenever |r − d(xk, M)| < δk (because u(·) is continuous everywhere on R
+).

Because xkm → xk as m → ∞, there exists for each k ≤ n0 an mk > 0 such that
d(xkm, xk) < δk is true for all m ≥ mk. Now let mε = maxk≤n0{mk}. For every
m > mε we have |d(xk, M) − d(xkm, M)| ≤ d(xk, xkm) < δk and thus∣∣∣∣ n0−1∑

k=0

u(d(xk, M))−
n0−1∑
k=0

u(d(xkm, M))
∣∣∣∣

≤
n0−1∑
k=0

|u(d(xk, M)) − u(d(xkm, M))|

<
ε

2
.
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Therefore we have shown that

|V (x0, τ0) − V (x0m, τ0m)| =

∣∣∣∣∣
∞∑

k=0

u(d(xk, M)) −
∞∑

k=0

u(d(xkm, M))

∣∣∣∣∣
≤
∣∣∣∣∣
n0−1∑
k=0

u(d(xk, M)) −
n0−1∑
k=0

u(d(xkm, M))

∣∣∣∣∣
+

∞∑
k=n0

u(d(xk, M)) +
∞∑

k=n0

u(d(xkm, M))

< ε. (3.5.29)

Therefore, we conclude that V is continuous with respect to initial conditions
(x0, τ0). �

The following concept of continuous dependence on initial conditions for DDS is
motivated by a corresponding term for ordinary differential equations (see, e.g., [11]),
and is used as a sufficient condition for Assumption 3.5.3.

Definition 3.5.2 Suppose {x0m} ⊂ A ⊂ X, {τ0m} ⊂ R
+, x0m → x0 ∈ A and

τ0m → τ0 as m → ∞. Assume that the motions are given by

p(t, x0, τ0) = p(k)(t, xk, τk), t ∈ [τk, τk+1),

and
pm(t, x0m, τ0m) = p(k)

m (t, xkm, τkm), t ∈ [τkm, τ(k+1)m),

k ∈ N, where p(k)(t, xk, τk) and p
(k)
m (t, xkm, τkm) are continuous for all t ∈ R

+ with

p(k)(τk, xk, τk) = p(τk, x0, τ0) = xk

and
p(k)

m (τkm, xkm, τkm) = pm(τkm, x0m, τ0m) = xkm.

The motions in S are said to be continuous with respect to the initial conditions
(x0, τ0) if

(a) τkm → τk as m → ∞, for all k ∈ N; and
(b) for every compact set K ⊂ R

+ and every ε > 0 there exists an L = L(K, ε) >
0 such that for all t ∈ K and k ∈ N such that K ∩ [τk, τk+1) �= ∅,

d(p(k)
m (t, xkm, τkm), p(k)(t, xk, τk)) < ε

whenever m > L. �

An example of the set of continuous functions p(k)(t, xk, τk) is

p(k)(t, xk, τk) =


xk, t < τk,

p(t, x0, τ0), t ∈ [τk, τk+1),
p(τ−

k+1, x0, τ0), t ≥ τk+1.
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Another example of p(k)(t, xk, τk) is given in Example 3.5.1, following the next
result.

Theorem 3.5.5 If in addition to the assumptions given in Theorem 3.5.2, the motions
inS are continuous with respect to initial conditions, then the Lyapunov function given
in (3.5.23) is continuous with respect to initial conditions (x0, τ0).

Proof . We show that under the present hypotheses, Assumption 3.5.3 is satisfied and
hence V is continuous with respect to initial conditions by Theorem 3.5.4.

Suppose x0m → x0 and τ0m → τ0 as m → ∞. Assumption 3.5.3(a) is the same
as Definition 3.5.2(a). We only need to show Assumption 3.5.3(b) is satisfied; that is,
xkm → xk as m → ∞ for all k ∈ N.

For a fixed k > 0, k ∈ N, let K = [τk − lE/2, τk + lE/2]. For every ε > 0 there
exists an L = L(K, ε/2) > 0 such that for all t ∈ K

d(p(k)
m (t, xkm, τkm), p(k)(t, xk, τk)) < ε/2 (3.5.30)

whenever m > L. Because p(k)(t, xk, τk) is continuous on R
+, there exists a δ > 0

such that d(p(k)(t′, xk, τk), p(k)(τk, xk, τk)) < ε/2 whenever |t′ −τk| < δ. Because
τkm → τk as m → ∞, there exists an L1 > 0 such that τkm ∈ K and |τkm −τk| < δ
for all m > L1. Therefore, when m > max{L, L1}, we have by (3.5.30)

d(p(k)
m (τkm, xkm, τkm), p(k)(τkm, xk, τk)) < ε/2,

and by the continuity of p(k)(t, xk, τk)

d(p(k)(τkm, xk, τk), p(k)(τk, xk, τk)) < ε/2.

By the triangle inequality we have

d(p(k)
m (τkm, xkm, τkm), p(k)(τk, xk, τk))

≤ d(p(k)
m (τkm, xkm, τkm), p(k)(τkm, xk, τk))

+ d(p(k)(τkm, xk, τk), p(k)(τk, xk, τk))
< ε.

This shows that xkm = p
(k)
m (τkm, xkm, τkm) → xk as m → ∞. This completes the

proof. �

We conclude the present subsection by considering a specific example to demon-
strate that the assumptions concerning the continuous dependence of the solutions
(motions) on initial data, is a realistic assumption.

Example 3.5.1 Consider systems with impulse effects, which are described by equa-
tions of the form { dx

dt
= f(x, t), t �= tk,

x(tk) = g(x(t−k )),
(3.5.31)
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where x ∈ R
n denotes the state, g ∈ C[Rn, Rn], and f ∈ C[Rn × R

+, Rn]
satisfies a Lipschitz condition with respect to x that guarantees the existence and
uniqueness of solutions of system (3.5.31) for given initial conditions. The set
E = {t1, t2, . . . : t1 < t2 < · · · } ⊂ R

+ denotes the set of times when jumps
occur. Assume that E is fixed in the interest of simplicity.

A function ϕ : [t0,∞) → R
n is said to be a solution of the system with impulse

effects (3.5.31) if (i) ϕ(t) is left continuous on [t0,∞) for some t0 ≥ 0; (ii) ϕ(t)
is differentiable and (dϕ/dt)(t) = f(ϕ(t), t) everywhere on (t0,∞) except on an
unbounded subset E ∩ {t : t > t0}; and (iii) for any t = tk ∈ E ∩ {t : t > t0},

ϕ(t+) = lim
t′→t,t′>t

ϕ(t′) = g(ϕ(t−)).

Suppose τ0 ∈ [tk0 , tk0+1) for some k0 ∈ N. The motion p(t, x0, τ0) is given by

p(t, x0, τ0) =
{

p(d)(t, xk, tk), t ∈ [tk, tk+1), k > k0

g(p(d)(t−k+1, xk, tk)), t = tk+1

and p(t, x0, τ0) = p(d)(t, x0, τ0), t ∈ [τ0, tk0+1), where xk = p(tk, x0, τ0), and
where p(d)(t, xk, tk), t ∈ R

+ is the solution of the following ordinary differential
equation

dx

dt
= f(x, t), x(tk) = xk. (3.5.32)

Suppose x0m → x0 and τ0m → τ0 as m → ∞. Without loss of generality, we
may assume that τ0 < t1 ∈ E. By the assumption that E is fixed it follows that for
sufficiently large m, the discontinuity set is {τkm = tk}, for all k > 0. From the
continuous dependence on initial conditions of ordinary differential equations, we
know that {p(d)(t, x0m, τ0m)} → p(d)(t, x0, τ0) for t in any compact set of R

+ as
m → ∞.

Because g(·) is continuous, we have

x1m = g(p(d)(t−1 , x0m, τ0m)) → x1 = g(p(d)(t−1 , x0, τ0)) as m → ∞.

In turn, we have p(d)(t, x1m, t1) → p(d)(t, x1, t1) for t in any compact set of R
+ as

m → ∞ and thus,

x2m = g(p(d)(t−2 , x1m, t1)) → x2 = g(p(d)(t−2 , x1, t1)) as m → ∞.

By induction, we can show that xkm → xk as m → ∞ for all k > 0. Therefore
we have shown that the motions of (3.5.31) are continuous with respect to initial
conditions. �

3.6 Converse Theorems for Continuous Dynamical
Systems

We address only local converse theorems.
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A. Local results

Our first result, concerning uniform stability, is identical to the converse theorem for
uniform stability for DDS.

Theorem 3.6.1 Let {R
+, X, A, S} be a continuous dynamical system and let M ⊂A

be a closed invariant set, where A is assumed to be a neighborhood of M . Suppose
that S satisfies Assumption 3.5.1. Assume that (S, M) is uniformly stable. Then
there exist neighborhoods A1 and X1 of M such that A1 ⊂ X1 ⊂ A and a mapping
V : X1 × R

+ → R
+ that satisfies the following conditions.

(i) There exist functions ψ1, ψ2 ∈ K such that

ψ1(d(x, M)) ≤ V (x, t) ≤ ψ2(d(x, M))

for all (x, t) ∈ X1 × R
+.

(ii) For every p(·, a, τ0) ∈ S with a ∈ A1, V (p(t, a, τ0), t) is nonincreasing for all
t ∈ R

+
τ0

.

Proof . The proof is identical to the proof of Theorem 3.5.1 and is not repeated
here. �

Before proceeding further, it might be instructive to comment on the hypotheses
of the next two results, the converse theorems for uniform asymptotic stability and
exponential stability. In such results, for the case of continuous dynamical systems
(see, e.g., Hahn [2], Miller and Michel [11], andYoshizawa [14]), it is usually assumed
that the motions are unique forward in time, unique backward in time, and that they
satisfy the semigroup property; that is, for any p(·, a, t0) ∈ S and t0 ≤ t1 ≤ t,
p(t, p(t1, a, t0), t1) = p(t, a, t0). The latter property ensures that Assumption 3.5.1
concerning partial motions is satisfied.

In contrast, as in the case of DDS, we require in the present section in the converse
theorems for uniform asymptotic stability and exponential stability for continuous
dynamical systems the weaker assumptions that the motions of a dynamical system
are unique forward in time and that they satisfy Assumption 3.5.1 concerning partial
motions.

We note in passing that for discrete-time dynamical systems determined by differ-
ence equations, the motions are in general not unique backward in time, unless the
right-hand side of the difference equation is a bijective function which is only rarely
the case.

Examples of dynamical systems whose motions are not unique forward in time,
nor backward in time, and that do not satisfy Assumption 3.5.1 concerning partial
motions include the examples given in Subsections 3.3D and 3.4D. To see this, we
consider in particular the example given in Subsection 3.3D. Examining Figure 3.6.1,
where we depict two solutions with initial conditions (t0 = 0, x(0) = 1) and (t0 = 1,
x(1) = 2), we see that the motions are unique with respect to initial conditions: for
each initial condition there exists one and only one motion that exists for all t ≥ t0.
However, because these motions intersect at different time instants, the motions of
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Figure 3.6.1: Two motions that intersect.

this dynamical system are not unique forward in time, nor are they unique backward
in time.

Moreover, because the composition of some parts of these motions do not result
in a partial motion, Assumption 3.5.1 is also not satisfied in the present example.

In the proof of our next result, we require the following preliminary result.

Lemma 3.6.1 Let β ∈ L be defined on R
+. Then there exists a function α ∈ K

defined on R
+ such that ∫ ∞

0
α(β(τ))dτ ≤ 1.

Proof . We define η ∈ C[(0,∞), (0,∞)] by

η(t) =
{

β(t)/t, t ∈ (0, 1),
β(t), t ∈ [1,∞).

By construction, η(t) is strictly decreasing for all t > 0, limt→0+ η(t) = +∞, and
η(t) ≥ β(t) for all t > 0. Furthermore, η−1 exists and is strictly decreasing, and
η−1(β(t)) ≥ η−1(η(t)) = t for all t > 0.

We now define α(0) = 0 and α(t) = e−η−1(t) for all t > 0. Then α is a class K
function, α(β(t)) = e−η−1(β(t)) ≤ e−t, and∫ ∞

0
α(β(τ))dτ ≤

∫ ∞

0
e−τdτ ≤ 1.

�

Theorem 3.6.2 Let {R
+, X, A, S} be a continuous dynamical system and let M ⊂A

be a closed invariant set, where A is assumed to be a neighborhood of M . Assume
that S satisfies Assumption 3.5.1 and that for every (a, τ0) ∈ A × R

+, there exists
a unique motion p(·, a, τ0) ∈ S that is defined and continuous for all t ∈ R

+
τ0

. Let
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(S, M) be uniformly asymptotically stable. Then there exist neighborhoods A1 and
X1 of M such that A1 ⊂ X1 ⊂ A, and a mapping V : X1 × R

+ → R
+ that satisfies

the following conditions.

(i) There exist two functions ψ1, ψ2 ∈ K such that

ψ1(d(x, M)) ≤ V (x, t) ≤ ψ2(d(x, M))

for all (x, t) ∈ X1 × R
+.

(ii) There exists a function ψ3 ∈ K such that for all p(·, a, τ0) ∈ S and for all
t ∈ [τ0,∞), we have

D+V (p(t, a, τ0), t) ≤ −ψ3(d(p(t, a, τ0), M))

whenever a ∈ A1.

Proof . By Lemma 3.10.5 (see Problem 3.10.17, Section 3.10), there exist a function
ϕ ∈ K defined on [0, h0] for some h0 > 0, and a function σ ∈ L defined on R

+, such
that for all t ≥ τ0

d(p(t, a, τ0), M) < ϕ(d(a, M))σ(t − τ0) (3.6.1)

for all p(·, a, τ0) ∈ S whenever d(a, M) < h0. Let X1 = {x ∈ A : d(x, M) < h0}
and let

A1 =

{ {
a ∈ X1 : d(a, M) < ϕ−1(h0)

}
if ϕ(h0) > h0,

X1 otherwise.

We define

Z(x, t) =
∫ ∞

t

u
(
d(p(τ, x, t), M)

)
dτ (3.6.2)

where u ∈ K is to be determined later and is such that the integral converges for
all (x, t) ∈ X1 × R

+. For p(·, a, τ0) ∈ S, p(τ, p(t, a, τ0), t) = p(τ, a, τ0) because
of Assumption 3.5.1 and the uniqueness of the motion p(·, a, τ0). Therefore, the
integrand in the right-hand side of (3.6.2) is independent of t for x = p(t, a, τ0)
where a ∈ A1. Because u(d(p(τ, a, τ0), M)) is a continuous function of τ , it follows
that Z(p(t, a, τ0), t) is differentiable with respect to t and that

d

dt
Z(p(t, a, τ0), t) = −u

(
d(p(t, x, τ0), M)

)
(3.6.3)

for all (a, τ0) ∈ A1 × R
+ and t ≥ τ0.

To determine how to choose u ∈ K so that the integral in (3.6.2) converges for all
(x, t) ∈ X1 × R

+, we use (3.6.1). For x ∈ X1, t ∈ R
+, and τ ≥ t, we have

d(p(τ, x, t), M) ≤ ϕ(d(x, M))σ(τ − t).

Because ϕ(d(x, M)) ≤ ϕ(h0) for x ∈ X1 and because σ(τ −t) ≤ σ(0), we have that

u
(
ϕ(d(x, M))σ(τ − t)

)
≤
[
u
(
ϕ(d(x, M))σ(0)

)]1/2[
u
(
ϕ(h0)σ(τ − t)

)]1/2
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for x ∈ X1 and τ ≥ t ≥ 0. Therefore,

Z(x, t) ≤
[
u
(
ϕ(d(x, M))σ(0)

)]1/2
∫ ∞

t

[
u
(
ϕ(h0)σ(τ − t)

)]1/2
dτ

=
[
u
(
ϕ(d(x, M))σ(0)

)]1/2
∫ ∞

0

[
u
(
ϕ(h0)σ(τ)

)]1/2
dτ.

In applying Lemma 3.6.1, we choose β(τ) = ϕ(h0)σ(τ) and u(r) =
[
α(r)

]2
. Then

Z(x, t) ≤
[
u
(
ϕ(d(x, M))σ(0)

)]1/2 = α
(
ϕ(d(x, M))σ(0)

)
. (3.6.4)

For (x, t) ∈ X1 × R
+, we now define

W (x, t) = sup
t′≥t

{
d(p(t′, x, t), M)

}
.

Then

d(x, M) = d(p(t, x, t), M) ≤ W (x, t) ≤ ϕ(d(x, M))σ(0). (3.6.5)

Let V (x, t) = Z(x, t) + W (x, t). In the proof of Theorem 3.5.1 we have shown
that W (p(t, a, τ0), t) is nonincreasing for all t ≥ τ0 (i.e., D+W (p(t, a, τ0), t) ≤ 0).
Therefore, (3.6.3) implies that

D+V (p(t, a, τ0), t) ≤ −u
(
d(p(t, a, τ0), M)

)
for all a ∈ A1 and t ≥ τ0; that is, V satisfies condition (ii) of the theorem.

To show that V satisfies condition (i), we note that

d(x, M) ≤ V (x, t) ≤ α
(
ϕ(d(x, M))σ(0)

)
+ ϕ(d(x, M))σ(0).

for all x ∈ X1 and t ∈ R
+, where we have used (3.6.4) and (3.6.5). This concludes

the proof of the theorem. �

The hypotheses in our next result are not precisely symmetric with the correspond-
ing assumptions in Theorem 3.3.3 for exponential stability of (S, M). Nevertheless,
they do constitute necessary conditions for exponential stability of (S, M).

Theorem 3.6.3 Let {R
+, X, A, S} be a continuous dynamical system and let M ⊂A

be a closed invariant set, where A is assumed to be a neighborhood of M . Assume
that S satisfies Assumption 3.5.1, and furthermore, assume that for every (a, τ0) ∈
A × R

+, there exists a unique continuous motion p(·, a, τ0) ∈ S that is defined and
continuous for all t ∈ [τ0,∞). Let (S, M) be exponentially stable. Then there
exist neighborhoods A1 and X1 of M such that A1 ⊂ X1 ⊂ A, and a mapping
V : X1 × R

+ → R
+ that satisfies the following conditions.

(i) There exist two functions ψ1, ψ2 ∈ K such that

ψ1(d(x, M)) ≤ V (x, t) ≤ ψ2(d(x, M))

for all (x, t) ∈ X1 × R
+.



130 Chapter 3. Principal Stability and Boundedness Results on Metric Spaces

(ii) There exists a constant c > 0 such that for every p(·, a, τ0) ∈ S and for all
t ∈ [τ0,∞),

D+V (p(t, a, τ0), t) ≤ −cV (p(t, a, τ0), t)

where a ∈ A1.

Proof . By Lemma 3.10.6 (see Problem 3.10.18, Section 3.10), there exist a function
ϕ ∈ K, defined on [0, h0] for some h0 > 0, and a constant α > 0 such that

d(p(t, a, τ0), M) < ϕ(d(a, M))e−α(t−τ0) (3.6.6)

for all p(·, a, τ0) ∈ S and all t ≥ τ0 whenever d(a, M) < h0.
Let X1 = {x ∈ A : d(x, M) < h0} and let

V (x, t) = sup
t′≥t

{
d(p(t′, x, t), M)eα(t′−t)} (3.6.7)

for all (x, t) ∈ X1 × R
+. Let A1 = {a ∈ X1 : d(a, M) < ϕ−1(h0)} if ϕ(h0) > h0

and A1 = X1 otherwise. Then for a ∈ A1 and τ0 ∈ R
+, we have byAssumption 3.5.1

and the uniqueness of the motions that

V (p(t, a, τ0), t) = sup
t′≥t

{
d(p(t′, p(t, a, τ0), t), M)eα(t′−t)}

= sup
t′≥t

{
d(p(t′, a, τ0), M)eα(t′−t)}.

Therefore, for ∆t > 0, we have

V (p(t + ∆t, a, τ0), t + ∆t) = sup
t′≥t+∆t

{
d(p(t′, p(t, a, τ0), t), M)eα(t′−t−∆t)}

= sup
t′≥t+∆t

{
d(p(t′, a, τ0), M)eα(t′−t)}e−α∆t

≤ V (p(t, a, τ0), t)e−α∆t.

The above inequality yields

D+V (p(t, a, τ0), t) ≤ lim
∆t→0+

V (p(t, a, τ0), t)
e−α∆t − 1

∆t
= −αV (p(t, a, τ0), t).

Finally, (3.6.6) and (3.6.7) imply that

d(x, M) ≤ V (x, t) ≤ ϕ(d(x, M))

for all (x, t) ∈ X1 × R
+. This concludes the proof of the theorem. �

We conclude by noting that converse theorems for continuous dynamical systems
for uniform boundedness, uniform ultimate boundedness, uniform asymptotic stability
in the large, exponential stability in the large, and instability can also be established,
using the methodology employed in the preceding results.

B. Refinements: Continuity of Lyapunov functions

In this subsection, we first define the notion of continuity with respect to initial
conditions for continuous dynamical systems. We then show that the Lyapunov
functions in the converse theorems (Theorems 3.6.2 and 3.6.3) are continuous.
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Definition 3.6.1 Let {R
+, X, A, S} be a dynamical system. Let {am} ⊂ A ⊂ X,

{tm} ⊂ R
+, am → a ∈ A, and tm → t0 as m→∞, let {pm} = {pm(·, am, tm)}

be a sequence of noncontinuable motions defined on intervals Jm = [tm, cm), and let
p = p(·, a, t0) be a noncontinuable motion defined on an interval [t0, c0). We say that
the motion p is continuous with respect to initial conditions if there is a subsequence
{mj} ⊂ {m} such that

(i) limj→∞ inf[0, cmj
− tmj

) ⊃ J0 = [0, c0 − t0); and
(ii) pmj

(t+ tmj
, amj

, tmj
) → p(t+ t0, a, t0) uniformly on compact subsets of J0

as j → ∞.
If in particular, the motion p is unique, then it is required that the entire sequence
{pm(t + tm, am, tm)} tends to p(t + t0, a, t0) uniformly in t on compact subsets
of J0. �

For the motivation of Definition 3.6.1, the reader may want to refer to Theorem
6.8.1 in the appendix section of Chapter 6 (Section 6.8), where conditions for the
continuous dependence of the solutions of ordinary differential equations on initial
conditions and parameters are presented (as required background material).

Theorem 3.6.4 Let {R
+, X, A, S} be a continuous dynamical system and let M ⊂A

be a closed invariant set, where A is assumed to be a neighborhood of M . Assume
that S satisfies Assumption 3.5.1 and the motions in S are continuous with respect
to initial conditions, and furthermore, assume that for every (a, τ0) ∈ A × R

+, there
exists a unique motion p(·, a, τ0) ∈ S that is defined and continuous for all t ∈ R

+
τ0

.
Let (S, M) be uniformly asymptotically stable. Then there exist neighborhoods A1
and X1 of M such that A1 ⊂ X1 ⊂ A, and a function V ∈ C[X1 × R

+, R+] that
satisfies the conditions of Theorem 3.6.2.

Proof . Let V (x, t) = W (x, t) + Z(x, t), where Z(x, t) and W (x, t) are the same
as in the proof of Theorem 3.6.2; that is,

W (x, t) = sup
t′≥t

{
d(p(t′, x, t), M)

}
,

Z(x, t) =
∫ ∞

t

u
(
d(p(τ, x, t), M)

)
dτ,

for all (x, t) ∈ X1 × R
+, where X1 is given in the proof of Theorem 3.6.2. We show

in the following that both W (·, ·) and Z(·, ·) are continuous in (x, t), and hence,
V (x, t) is continuous.

Let ε > 0 be arbitrary. Suppose that {(xm, tm)} ⊂ X1 × R
+, m = 1, 2, . . . , and

(xm, tm) → (x0, t0) as m → ∞. There exists an L1 > 0 such that σ(s) < ε/ϕ(h0)
for all s > L1, where σ(·) ∈ L is given in (3.6.1). Then d(p(τ + t, x, t), M) ≤
ϕ(h0)σ(τ) < ε for all τ > L1. Thus,

|W (xm, tm) − W (x0, t0)|
= sup

τ≥0

{
d(p(τ + tm, xm, tm), M)

}
− sup

τ≥0

{
d(p(τ + t0, x0, t0), M)

}
≤ sup

0≤τ≤L1

{∣∣d(p(τ + tm, xm, tm), M) − d(p(τ + t0, x0, t0), M)
∣∣}+ 2ε.
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Because the motions inS are continuous with respect to initial conditions, p(t, xm, tm)
converges to p(t, x0, t0) uniformly on the compact set [0, L1]; that is, there exists an
m0 ∈ N such that sup0≤τ≤L1

|d(p(τ, xm, tm), M) − d(p(τ, x0, t0), M)| < ε for all
m > m0. The continuity of W (·, ·) now follows immediately.

Similarly, there exists an L2 > 0 such that∫ ∞

t+L2

u(d(p(τ, x, t), M))dτ ≤ α(ϕ(h0)σ(0))
∫ ∞

L2

α(ϕ(h0))σ(τ)dτ < ε,

for all (x, t) ∈ X1 × R
+, where u and α are given in the proof of Theorem 3.6.2.

Hence,

|Z(xm, tm) − Z(x0, t0)|

=
∫ ∞

tm

u(d(p(τ, xm, tm), M))dτ −
∫ ∞

t0

u(d(p(τ, x0, t0), M))dτ

≤
∫ L2

0

∣∣∣u(d(p(τ + tm, xm, tm), M)) − u(d(p(τ + t0, x0, t0), M))
∣∣∣dτ

+
∫ ∞

tm+L2

u(d(p(τ, xm, tm), M))dτ +
∫ ∞

t0+L2

u(d(p(τ, x0, t0), M))dτ

≤
∫ L2

0

∣∣∣u(d(p(τ + tm, xm, tm), M)) − u(d(p(τ + t0, x0, t0), M))
∣∣∣dτ + 2ε.

The term∫ L2

0

∣∣u(d(p(τ + tm, xm, tm), M)) − u(d(p(τ + t0, x0, t0), M))
∣∣dτ

becomes arbitrarily small for sufficiently large m because p(t, xm, tm) converges
to p(t, x0, t0) uniformly on the compact set [0, L2]. Therefore we have shown that
Z(x, t) is continuous in (x, t). �

In our next result, the Lyapunov function is constructed slightly differently from
that in the proof of Theorem 3.6.3 to ensure the continuity of the Lyapunov function.

Theorem 3.6.5 Let {R
+, X, A, S} be a continuous dynamical system and let M ⊂A

be a closed invariant set, where A is assumed to be a neighborhood of M . Assume
that S satisfies Assumption 3.5.1 and the motions in S are continuous with respect
to initial conditions, and furthermore, assume that for every (a, τ0) ∈ A × R

+, there
exists a unique motion p(·, a, τ0) ∈ S that is defined and continuous for all t ∈ R

+
τ0

.
Let (S, M) be exponentially stable. Then there exist neighborhoods A1 and X1 of
M such that A1 ⊂ X1 ⊂ A, and a function V ∈ C[X1 × R

+, R+] that satisfies the
conditions of Theorem 3.6.3.

Proof . By Lemma 3.10.6 (refer to Problem 3.10.18), there exist a function ϕ ∈ K,
defined on [0, h0] for some h0 > 0, and a constant α > 0 such that

d(p(t, a, τ0), M) < ϕ(d(a, M))e−α(t−τ0) (3.6.8)
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for all p(·, a, τ0) ∈ S and all t ≥ τ0 whenever d(a, M) < h0.
Let X1 = {x ∈ A : d(x, M) < h0} and let

V (x, t) = sup
t′≥t

{
d(p(t′, x, t), M)eλα(t′−t)} (3.6.9)

for all (x, t) ∈ X1 × R
+, where 0 < λ < 1 is a constant. Let

A1 =

{
{a ∈ X1 : d(a, M) < ϕ−1(h0)} if ϕ(h0) > h0,

X1 otherwise.

It can be shown in the manner as in the proof of Theorem 3.6.3 that the V function
satisfies the conditions in Theorem 3.6.3 with the constant c = λα.

To establish the continuity of V , we let ε> 0 be arbitrary, {(xm, tm)}⊂X1 ×R
+,

m = 1, 2, . . . , and (xm, tm) → (x0, t0) as m → ∞. It follows from (3.6.8) that

d(p(τ + t, x, t), M)eλατ ≤ ϕ(h0)e−(1−λ)ατ < ε

for all τ > L
�
= ln(ε/ϕ(h0))/[(1 − λ)α]. Thus,

|V (xm, tm) − V (x0, t0)|
= sup

τ≥0

{
d(p(τ + tm, xm, tm), M)eλατ

}
− sup

τ≥0

{
d(p(τ + t0, x0, t0), M)eλατ

}
≤ sup

0≤τ≤L

{∣∣d(p(τ + tm, xm, tm), M) − d(p(τ + t0, x0, t0), M)
∣∣eλατ

}
+ 2ε.

Because the motions inS are continuous with respect to initial conditions, p(t, xm, tm)
converges to p(t, x0, t0) uniformly on the compact set [0, L] as m → ∞; that is, there
exists an m0 ∈ N such that

sup
0≤τ≤L

|d(p(τ + tm, xm, tm), M) − d(p(τ + t0, x0, t0), M)|eλατ < ε

for all m > m0. Therefore V is continuous in X1 × R
+. �

3.7 Converse Theorems for Discrete-Time Dynamical
Systems

In the present section we address local converse theorems for discrete-time systems.
Our first result, concerning uniform stability, is similar to the converse theorems

for uniform stability for DDS and continuous dynamical systems.

Theorem 3.7.1 Let {N,X, A,S} be a discrete-time dynamical system and let M ⊂A
be a closed invariant set, where A is assumed to be a neighborhood of M . Suppose
that S satisfies Assumption 3.5.1 (modified in the obvious way for discrete-time
systems). Let (S, M) be uniformly stable. Then there exist neighborhoods A1 and
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X1 of M such that A1 ⊂ X1 ⊂ A and a mapping V : X1 × N → R
+ that satisfies

the following conditions.

(i) There exist functions ψ1, ψ2 ∈ K such that

ψ1(d(x, M)) ≤ V (x, n) ≤ ψ2(d(x, M)) (3.7.1)

for all (x, n) ∈ X1 × N.

(ii) For every p(·, a, n0) ∈ S with a ∈ A1, V (p(n, a, n0), n) is nonincreasing for
all n ∈ Nn0 (i.e., n ≥ n0, n, n0 ∈ N).

Proof . The proof is similar to the proof of Theorem 3.5.1 and is not repeated
here. �

Theorem 3.7.2 Let {N,X, A,S} be a discrete-time dynamical system and let M ⊂A
be a closed invariant set, where A is assumed to be a neighborhood of M . Assume that
S satisfies Assumption 3.5.1 and that for every (a, n0) ∈ A× N there exists a unique
motion p(·, a, n0) ∈ S that is defined for all n ∈ Nn0 (i.e., n ≥ n0, n, n0 ∈ N). Let
(S, M) be uniformly asymptotically stable. Then there exist neighborhoods A1 and
X1 of M such that A1 ⊂ X1 ⊂ A and a mapping V : X1 × N → R

+ that satisfies
the following conditions.

(i) There exist functions ψ1, ψ2 ∈ K such that

ψ1(d(x, M)) ≤ V (x, n) ≤ ψ2(d(x, M)) (3.7.2)

for all (x, n) ∈ X1 × N.

(ii) There exists a function ψ3 ∈ K such that for all p(·, a, n0) ∈ S and for all
n ∈ Nn0 , we have

DV (p(n, a, n0), n) ≤ −ψ3(d(p(n, a, n0), M)) (3.7.3)

where a ∈ A1, and

DV (p(n, a, n0), n) = V (p(n+1, a, n0), n+1)−V (p(n, a, n0), n). (3.7.4)

Proof . By Lemma 3.10.5 (refer to Problem 3.10.17, Section 3.10), there exist a
function ϕ ∈ K defined on [0, h0] for some h0 > 0, and a function σ ∈ L defined on
R

+, such that for all n ∈ N
+
n0

,

d(p(n, a, n0), M) < ϕ(d(a, M))σ(n − n0) (3.7.5)

for all p(·, a, n0) ∈ S whenever d(a, M) < h0. Let X1 = {x ∈ A : d(x, M) < h0}
and let

A1 =

{
{a ∈ X1 : d(a, M) < ϕ−1(h0)} if ϕ(h0) > h0,

X1 otherwise.
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We define

V (x, n0) =
∞∑

j=n0

u(d(p(j, x, n0), M)) (3.7.6)

where u ∈ K is to be determined later and is such that the summation converges for all
(x, n0) ∈ X1 × N. For p(·, a, n0) ∈ S, p(n, p(n1, a, n0), n1) = p(n, a, n0) because
of Assumption 3.5.1 and the uniqueness of the motion p(·, a, n0). Therefore, the
summation in the right-hand side of (3.7.6) is independent of n0 for x = p(n, a, n0)
where a ∈ A1.

To determine how to choose u ∈ K so that the summation in (3.7.6) converges for
all (x, n0) ∈ X1 × N, we apply Lemma 3.5.1. It follows from (3.7.5) that for any
(x, n0) ∈ X1 × N, we have

u(d(p(n, x, n0), M)) < u(ϕ(d(x, M))σ(n − n0))

≤ [u(ϕ(d(x, M))σ(0))]1/2[u(ϕ(h0)σ(n − n0))]1/2. (3.7.7)

Let β(τ) = ϕ(h0)σ(τ). Then β ∈ L. Hence, by Lemma 3.5.1, there exists a function
α ∈ K defined on R

+ such that
∞∑

i=0

α(β((n0 + i) − n0)) =
∞∑

j=n0

α(β(j − n0)) < ∞.

If we define u(r) = [α(r)]2, then it follows that

[u(ϕ(h0)σ(n − n0))]1/2 = [α(ϕ(h0)σ(n − n0))]1/2 = α(β(n − n0)).

Hence, we conclude that

V (x, n0) =
∞∑

j=n0

u(d(p(j, x, n0), M))

<

∞∑
j=n0

[u(ϕ(d(x, M))σ(0))]1/2[u(ϕ(h0)σ(j − n0))]1/2

= [u(ϕ(d(x, M))σ(0))]1/2
∞∑

j=n0

α(β(j − n0))

< [u(ϕ(d(x, M))σ(0))]1/2[1 + 1/(1 − e−1)].

If we define ψ2 ∈ K by

ψ2(r) = [u(ϕ(r)σ(0))]1/2[1 + 1/(1 − e−1)],

then it follows that d(x, M) ≤ V (x, n0) ≤ ψ2(d(x, M)). Thus we have proved
condition (i) of the theorem.

For any p(·, a, n0) ∈ S and any n > n0, it follows from the uniqueness assump-
tion that

V (p(n, a, n0), n) =
∞∑

j=n

u(d(p(j, p(n, a, n0), n), M)) =
∞∑

j=n

u(d(p(j, x, n0), M)).
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Along each motion p(·, a, n0) ∈ S, we have that

DV (p(n, a, n0), n) =
∞∑

j=n+1

u(d(p(j, a, n0), M)) −
∞∑

j=n

u(d(p(j, a, n0), M))

= − u(d(p(n, x, n0), M))

for all (a, n0) ∈ A1 ×N and n ≥ n0; that is, V satisfies condition (ii) of the theorem.
This concludes the proof of the theorem. �

The hypotheses in our next result are not exactly symmetric with the corresponding
assumptions in Theorem 3.4.3. However, they do provide a set of necessary conditions
for exponential stability of (S, M).

Theorem 3.7.3 Let {N,X, A,S} be a discrete-time dynamical system and let M ⊂A
be a closed invariant set, where A is assumed to be a neighborhood of M . Assume that
S satisfies Assumption 3.5.1 and that for every (a, n0) ∈ A× N there exists a unique
motion p(·, a, n0) ∈ S that is defined for all n ∈ Nn0 . Let (S, M) be exponentially
stable. Then there exist neighborhoods A1 and X1 of M such that A1 ⊂ X1 ⊂ A
and a mapping V : X1 × N → R

+ that satisfies the following conditions.
(i) There exist functions ψ1, ψ2 ∈ K such that

ψ1(d(x, M)) ≤ V (x, n) ≤ ψ2(d(x, M)) (3.7.8)

for all (x, n) ∈ X1 × N.
(ii) There exists a constant c > 0 such that for all p(·, a, n0) ∈ S and for all

n ∈ Nn0 , we have

DV (p(n, a, n0), n) ≤ −cV (p(n, a, n0), n) (3.7.9)

where a ∈ A1, c > 0 is a constant and DV (p(n, a, n0), n) is defined in (3.7.4).

Proof . By Lemma 3.10.6 (refer to Problem 3.10.18, Section 3.10), there exist a
function ϕ ∈ K, defined on [0, h0] for some h0 > 0, and a constant α > 0 such that

d(p(n, a, n0), M) < ϕ(d(a, M))e−α(n−n0) (3.7.10)

for all p(n, a, n0) ∈ S and n ≥ n0 whenever d(a, M) < h0.
Let X1 = {x ∈ A : d(x, M) < h0} and let

V (x, n0) = sup
n′≥n0

{
d(p(n′, x, n0), M)eα(n′−n0)

}
(3.7.11)

for all (x, n0) ∈ X1 × N. Let A1 = {a ∈ X1 : d(a, M) < ϕ−1(h0)} if ϕ(h0) > h0
and A1 = X1 otherwise. Then for a ∈ A1 and n0 ∈ N, we have by Assumption 3.5.1
and the uniqueness of the motions that

V (p(n, a, n0), n) = sup
n′≥n

{
d(p(n′, p(n, a, n0), n), M)eα(n′−n)}

= sup
n′≥n

{
d(p(n′, a, n0), M)eα(n′−n)}.
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Therefore, we have

V (p(n + 1, a, n0), n + 1) = sup
n′≥n+1

{
d(p(n′, a, n0), M)eα(n′−(n+1))}

= sup
n′≥n+1

{
d(p(n′, a, n0), M)eα(n′−n)}e−α

≤ sup
n′≥n

{
d(p(n′, a, n0), M)eα(n′−n)}e−α

= V (p(n, a, n0), n)e−α. (3.7.12)

Equation (3.7.12) yields

DV (p(n, a, n0), n) ≤ −(1 − e−α)V (p(n, a, n0), n).

Finally, (3.7.10) and (3.7.11) imply that

d(x, M) ≤ V (x, n) ≤ ϕ(d(x, M))

for all (x, n) ∈ X1 × N. This concludes the proof of the theorem. �

We conclude by noting that converse theorems for discrete-time dynamical systems
for uniform boundedness, uniform ultimate boundedness, uniform asymptotic stability
in the large, exponential stability in the large, and instability can also be established,
using the methodology employed in the preceding results.

3.8 Appendix: Some Background Material on
Differential Equations

In this section we present a result that is required in the proof of some of the results
of Section 3.3, relating the maximal solution of (IE),

ẋ = g(t, x), x(t0) = x0 (IE)

to the solutions of (EI),
Dx ≤ g(t, x) (EI)

where g ∈ C[R+ × R
l, Rl], D denotes a Dini derivative, and inequality of vectors is

to be interpreted componentwise. In the proof of the main result of this section, we
require several preliminary results that we state and prove first.

Definition 3.8.1 Let Ω be a connected set in R
l. A function g : R

+ ×Ω → R
l is said

to be quasi-monotone nondecreasing if for each component gj of g, j = 1, . . . , l, the
inequality gj(t, y) ≤ gj(t, z) is true whenever y, z ∈ Ω and yi ≤ zi for all i �= j,
i, j = 1, . . . , l and yj = zj . �

We note that when g is a scalar-valued function, it is automatically quasi-monotone
nondecreasing.
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Definition 3.8.2 A solution ϕM of the initial value problem (IE) is called a maximal
solution on [t0, t0 + c) if for any solution ϕ defined on [t0, t0 + c) it is true that
ϕM (t) ≥ ϕ(t) for all t ∈ [t0, t0 + c), where c > 0 and the inequality (for vectors) is
understood to be componentwise. �

A minimal solution of (IE) on some interval is defined similarly. By definition, a
maximal (resp., minimal) solution of (IE), if it exists, must be unique.

Lemma 3.8.1 Let g ∈ C[R+ × Ω, Rl], let v, w ∈ C
[
[t0, t0 + c), Rl

]
, t0 ∈ R

+, and
c > 0, and assume that the following conditions are true.

(i) g is quasi-monotone nondecreasing.

(ii) v(t0) < w(t0).

(iii) D−v(t) ≤ g(t, v(t)) and D−w(t) > g(t, w(t)) for t ∈ (t0, t0 + c), where
D− denotes the lower-left Dini derivative.

Then it is true that

v(t) < w(t) (3.8.1)

for t ∈ [t0, t0 + c).

Proof . Let u(t) = w(t) − v(t). Then condition (ii) reads as u(t0) > 0. Suppose
that the assertion (3.8.1) is not true. Then the set

F =
l⋃

i=1

{
t ∈ [t0, t0 + c) : ui(t) ≤ 0

}
�= ∅.

Let t1 = inf F . Because ui(t0) > 0, 1 ≤ i ≤ l, and u ∈ C
[
[t0, t0 + c), Rl

]
, it is

clear that t1 > t0. The set F is closed, and thus t1 ∈ F . We now show that there
exists a j ∈ {1, 2, . . . , l} such that

uj(t1) = 0. (3.8.2)

If (3.8.2) is not true (i.e., if ui(t1) < 0 for all 1 ≤ i ≤ l), then ui(t) < 0 in a
sufficiently small neighborhood to the left of t1 by the continuity of u. This contradicts
the definition of t1, and therefore (3.8.2) holds. Moreover, t1 = inf F implies that

ui(t1) ≥ 0, i �= j (3.8.3)

and

D−uj(t1) ≤ 0. (3.8.4)

Combining (3.8.4) and condition (iii), we obtain

gj(t1, w(t1)) < gj(t1, v(t1)). (3.8.5)
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On the other hand, (3.8.2), (3.8.3), and the quasi-monotonicity condition imply that

gj(t1, w(t1)) > gj(t1, v(t1))

which contradicts (3.8.5). This concludes the proof. �

The above result makes possible the proof of the next result.

Lemma 3.8.2 Let v, f ∈ C
[
[t0, t0 + c), Rl

]
. If for a fixed Dini derivative D it is

true that Dv(t) ≤ f(t) for t ∈ [t0, t0 + c), c > 0, then

D−v(t) ≤ f(t) (3.8.6)

for t ∈ (t0, t0 + c).

Proof . Because D−v(t) ≤ D−v(t) and D+v(t) ≤ D+v(t), we only need to prove
the lemma for D = D+. Let

u(t) = v(t) −
∫ t

t0

f(s)ds.

Then D+u(t) = D+v(t) − f(t) ≤ 0 for t ∈ [t0, t0 + c). We want to prove that u(t)
is nonincreasing on [t0, t0 + c), which is equivalent to proving that m(t) = −u(−t)
is nonincreasing on (−t0 − c,−t0]. Note that D−m(t) = D+u(−t) ≤ 0. We apply
Lemma 3.8.1 to show that for any t1, t2 ∈ (−t0 − c,−t0], t1 < t2, m(t1) ≥ m(t2).
Let w(t) = m(t1) + ε(t − t1 + ε) for t ∈ [t1,−t0] where ε > 0. Then D−w(t) =
ε > 0, D−m(t) ≤ 0, and m(t1) < w(t1) + ε2. By Lemma 3.8.1, m(t) < w(t) for
all t ∈ [t1,−t0]. In particular, m(t2) < w(t2) = m(t1) + ε(t2 − t1 + ε). Because
ε > 0 is arbitrary, we obtain m(t2) ≤ m(t1) by letting ε → 0.

We have proved that u(t) is nondecreasing on [t0, t0 +c). Therefore, D−u(t) ≤ 0
and D−v(t) = D−u(t) + f(t) ≤ f(t) for t ∈ (t0, t0 + c). �

We require one more preliminary result.

Lemma 3.8.3 Let g ∈ C[R+ × Ω, Rl] and assume that g is quasi-monotone non-
decreasing. Then for each (t0, x0) ∈ R

+ × R
l, there exists a c > 0 such that the

maximal solution of (IE) exists on [t0, t0 + c].

Proof . Let

Da,b = Da,b(t0, x0) =
{
(t, x) ∈ R

+ × Ω: t0 ≤ t ≤ t0 + a, |x − x0| ≤ b
}
.

Inasmuch as g is continuous, we may assume that |g(t, x)| ≤ M for all (t, x) ∈ Da,b.
According to Theorem 2.3.1 and Problem 2.14.8, we may choose c1 = min{a, b/M}
such that (IE) has a solution defined on [t0, t0 + c1].

Now consider the differential equation with the initial condition given by

ẏ = g(t, y) + ε, y(t0) = x0 + ε (3.8.7)
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where 0 ≤ ε < b/2. We note that for

D′
a,(b/2) = D′

a,(b/2)(t0, x0+ε) =
{

(t, y) ∈ R
+× Ω: t0 ≤ t ≤ t0 + a, |x−x0| ≤ b

2

}
we have |g(t, y) + ε| ≤ M + b/2 for all (t, y) ∈ D′

a,(b/2). Therefore, (3.8.7) has a
solution y(t, ε) defined on [t0, t0 + c], where

c = min
{

a,
b/2

M + b/2

}
= min

{
a,

b

2M + b

}
.

For 0 < ε2 < ε1 ≤ ε, Lemma 3.8.1 implies that y(t, 0) < y(t, ε2) < y(t, ε1) for
t ∈ [t0, t0 + c]. Therefore, limε→0+ y(t, ε) = y∗(t) exists and the convergence is
uniform for t ∈ [t0, t0 + c]. Hence y∗(t) is a solution of (IE), because

y∗(t) = lim
ε→0+

y(t, ε)

= lim
ε→0+

(
x0 + ε +

∫ t

t0

(
g(s, y(s, ε)) + ε

)
ds
)

= x0 +
∫ t

t0

g(s, y∗(s))ds.

Because y(t, ε) > y(t, 0) for t ∈ [t0, t0 + c] we obtain y∗(t) ≥ y(t, 0) for t ∈
[t0, t0 + c]. Because y(t, 0) is any solution of (IE) defined on [t0, t0 + c], it follows
that y∗ is a maximal solution of (IE). �

The above result concerns the local existence of a maximal solution for (IE). The
existence of a noncontinuable maximal solution follows by invoking Zorn’s lemma
(see, e.g., [11]).

We now state and prove the main result of this section.

Theorem 3.8.1 (Comparison Theorem) Assume that g ∈ C[R+ × Ω, Rl] is quasi-
monotone nondecreasing. Let x(t) be a solution of (EI) defined on [t0, t0 + c],
c > 0, and let r(t), defined on [t0, t0 + c], be the maximal solution of (IE), where
r(t0) = x(t0) = x0. Then

x(t) ≤ r(t)

for all t ∈ [t0, t0 + c).

Proof . Let

F =
{
t′ ∈ [t0, t0 + c) : x(t) ≤ r(t) for all t ∈ [t0, t′]

}
.

Then t0 ∈ F , because x(t0) = r(t0). It suffices to show that supF = t0 + c. If this
is not true (i.e., if supF = t1 < t0 + c), then r(t1) ≥ x(t1). We consider

ẏ = g(t, y) + ε, y(t1) = r(t1) + ε (3.8.8)
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where ε > 0 is sufficiently small. By the proof of Lemma 3.8.3, there exists a c1 > 0
such that solutions y(t, ε) of (3.8.8) are defined on [t1, t1 + c1], and limε→0+ y(t, ε)
exists as the maximal solution of

ẏ = g(t, y), y(t1) = r(t1)

for t ∈ [t1, t1+c1]. By the uniqueness of the maximal solution, r(t)=limε→0+y(t, ε)
for t ∈ [t1, t1 + c1]. We assume without loss of generality that t1 + c1 < t0 + c (for
otherwise, we choose c1 smaller).

Now D−y(t, ε) = ẏ(t, ε)> g(t, y(t, ε)) together with Lemma 3.8.2 implies that
D−x(t) ≤ g(t, x(t)) for all t ∈ (t1, t1 + c1). In addition, y(t1, ε) = r(t1) + ε >
r(t1) ≥ x(t1). By Lemma 3.8.1, y(t, ε) > x(t) for all t ∈ [t1, t1 + c1). Letting
ε → 0+, we see that r(t) ≥ x(t) for all t ∈ [t1, t1 + c1). Therefore, for any
t′ ∈ (t1, t1 + c1), we have that t′ ∈ F . But this contradicts the fact that t1 = supF .
This concludes the proof of the theorem. �

In the scalar case (l = 1), we can forgo the quasi-monotone condition.

3.9 Notes and References

The material given in Section 3.1 is standard fare in the qualitative analysis of dy-
namical systems (see, e.g., Zubov [15], Hahn [2], and Michel et al. [10]).

The stability and boundedness results for discontinuous dynamical systems pre-
sented in Section 3.2 were first reported in Ye [12] and Ye et al. [13], with subsequent
developments given in Hou [3], Hu [5], Michel [8], and Michel and Hu [9].

The Principal Lyapunov Stability Results given in Sections 3.3 and 3.4 are included
in several texts (see, e.g., Hahn [2], Zubov [15], and Michel et al. [10]). In [2] and
[15], these results are proved using the basic stability and boundedness definitions
and fundamental methods of analysis, whereas in [10], these results are established
by invoking a comparison theory, making use of stability preserving mappings. Our
approach of proving these results by using the stability and boundedness results for
DDS established in Section 3.2 (and thus, establishing a unifying stability theory for
discontinuous, continuous, and discrete-time dynamical systems) is novel and new
(refer to Hou and Michel [4]).

The converse theorems for DDS presented in Section 3.5 were originally estab-
lished in [12] and [13] with subsequent refinements and developments given in Hou
[3], Hu [5], Michel [8], and Michel and Hu [9].

The converse theorems for uniform stability, Theorem 3.6.1 and Theorem 3.7.1,
are in the spirit of results given in Zubov [15]. The converse theorems for uniform
asymptotic stability, Theorem 3.6.2 and Theorem 3.7.2 and their proofs, including
Lemma 3.6.1, are adaptations of material given in Hahn [2] and the converse theorems
for exponential stability, Theorem 3.6.3 and Theorem 3.7.3, are based on a result in
Massera [7].

References for the background material on differential equations given in Section
3.8 include Lakshmikantham and Leela [6], Miller and Michel [11], and Michel
et al. [10].
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3.10 Problems

Problem 3.10.1 Consider the autonomous system of first-order ordinary differential
equations

ẋ = f(x) (3.10.1)

where f ∈ C[Rn, Rn]. Assume that there exists a function V ∈ C1[Rn, R] such that

V̇(3.10.1)(x)
�
= [∇V (x)]T f(x) = 0

for all x ∈ R
n, where ∇V (x) =

[
∂V /∂x1, . . . , ∂V /∂xn

]T
. Let

Bλ = {x ∈ R
n : V (x) = λ} (3.10.2)

Cλ = {x ∈ R
n : V (x) ≤ λ} (3.10.3)

and
Dλ = {x ∈ R

n : V (x) ≥ λ}. (3.10.4)

It should be noted that each of these sets may consist of several disjoint component
sets. Prove that the sets Bλ, Cλ, and Dλ are invariant with respect to (3.10.1). Prove
that each disjoint component set of Bλ, Cλ, and Dλ is invariant with respect to
(3.10.1). �

Problem 3.10.2 Consider the autonomous system of first-order difference equations

x(k + 1) = f(x(k)) (3.10.5)

where k ∈ N = {0, 1, 2, . . . } and f : R
n → R

n. Assume that there exists a function
V : R

n → R such that

DV(3.10.5)(x)
�
= V (f(x)) − V (x) = 0

for all x ∈ R
n. Let Bλ, Cλ, and Dλ be defined by (3.10.2), (3.10.3), and (3.10.4),

respectively. Prove that Bλ, Cλ, and Dλ are invariant with respect to (3.10.5). Prove
that each disjoint component set of Bλ, Cλ, and Dλ is invariant with respect to
(3.10.5). �

Problem 3.10.3 For a dynamical system {R
+, X, A, S} assume that there exists a

function V ∈ C[X, R] such that

D+V(S)(x)
�
= lim

∆t→0+
sup

p(·, x, t0) ∈ S
p(t0, x, t0) = x

1
∆t

{
V (p(t+∆t, x, t0))−V (p(t, x, t0))

}
≤ 0

for all x ∈ X . Let Cλ be defined by (3.10.3). Prove that Cλ is an invariant set with
respect to S. �
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In Sections 3.3 and 3.4 we proved the Principal Lyapunov and Lagrange stability
results for continuous dynamical systems and discrete-time dynamical systems using
in most cases the corresponding results for DDS. In the following, we ask the reader
to prove these results, using definitions of stability and boundedness (as was done in
proving the stability and boundedness results for DDS in Section 3.2).

Problem 3.10.4 Prove Theorems 3.3.1 and 3.4.1 by using the definition of uniform
stability (given in Definition 3.1.6). �

Problem 3.10.5 Prove Theorems 3.3.2 and 3.4.2 by using the definition of uniform
asymptotic stability (given in Definition 3.1.9). �

Problem 3.10.6 Prove Theorems 3.3.3 and 3.4.3 by using the definition of exponen-
tial stability (given in Definition 3.1.10). �

Problem 3.10.7 Prove Theorems 3.3.4 and 3.4.4 by using the definition of uniform
boundedness (given in Definition 3.1.13). �

Problem 3.10.8 Prove Theorems 3.3.5 and 3.4.5 by using the definition of uniform
ultimate boundedness (given in Definition 3.1.14). �

Problem 3.10.9 Prove Theorems 3.3.6 and 3.4.6 by using the definition of uniform
asymptotic stability in the large (given in Definition 3.1.16). �

Problem 3.10.10 Prove Theorems 3.3.7 and 3.4.7 by using the definition of expo-
nential stability in the large (given in Definition 3.1.17). �

Problem 3.10.11 Prove Theorems 3.3.8 and 3.3.10 and Theorems 3.4.8 and 3.4.10
by using the definition of instability (given in Definition 3.1.18). �

Problem 3.10.12 Prove Theorems 3.3.9 and 3.4.9 by using the definition of complete
instability (given in Definition 3.1.20). �

For most of the boundedness and stability concepts that we introduced in Section
3.1 there are equivalent definitions which frequently make the proofs of the stability
and boundedness results easier and more systematic. These definitions involve certain
comparison functions whose properties we ask the reader to explore in the next two
problems.

Problem 3.10.13 Prove the following results.

Lemma 3.10.1 [2] A continuous function σ : [s1,∞) → R
+ is said to belong to

class L if σ is strictly decreasing on [s1,∞) and if lims→∞ σ(s) = 0 where s1 ∈ R
+

(refer to Definition 3.5.1). Show that the functions of class K, class K∞, and class L
possess the following properties.

(i) If ϕ1, ϕ2 ∈ K, then ϕ1 ◦ ϕ2 ∈ K, where (ϕ1 ◦ ϕ2)(r) = ϕ1(ϕ2(r)).
(ii) If ϕ ∈ K and σ ∈ L, then ϕ ◦ σ ∈ L.

(iii) If ϕ ∈ K, then ϕ−1 exists and ϕ−1 ∈ K; also, if ϕ ∈ K∞, then ϕ−1 ∈ K∞.
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(iv) If ϕ ∈ K and if ϕ is defined on [0, k2], then there exist ϕ1, ϕ2 ∈ K, defined on
[0, k], k > 0, such that

ϕ(r1r2) ≤ ϕ1(r1)ϕ2(r2)

for all r1, r2 ∈ [0, k].

Hint: In (iv), choose ϕ1(r) = ϕ2(r) =
√

ϕ(kr). �

Problem 3.10.14 Prove the following results.

Lemma 3.10.2 [2] A real-valued function l = l(r, s) is said to belong to the class
KL if

(i) it is defined for 0 ≤ r ≤ r1 (resp., 0 ≤ r < ∞) and for 0 ≤ s0 ≤ s < ∞; and

(ii) for each fixed s it belongs to class K with respect to r and it is monotone
decreasing to zero as s increases (it need not be strictly monotone decreasing).

Let l ∈ KL. Show that there exist functions ϕ ∈ K and σ ∈ L such that

l(r, s) ≤ ϕ(r)σ(s)

for the following two cases.

(a) l(r, s) is bounded with respect to r (i.e., l(r, s) ≤ l0(s)).
(b) 0 ≤ r < ∞ and l(r, s)/l(r0, s) is monotone decreasing for all r ≥ r0 as s

increases.

Hint: In (a), assume without loss of generality that l0 ∈ L and choose

ϕ(r) =
√

l(r, s0), σ(s) =
√

l0(s).

In (b) we have
l(r, s) < l(r, s0)l0(r0, s)/l(r0, s0). �

In the next four problems we ask the reader to establish several equivalent stability
definitions phrased in terms of comparison functions discussed above.

Problem 3.10.15 Prove the following results.

Lemma 3.10.3 [2] Show that (S, M) is stable if and only if for each t0 ∈ T there
exists a function ϕ ∈ K defined on [0, r0], r0 > 0, such that

d(p(t, a, t0), M) ≤ ϕ(d, (a, M))

for all p(·, a, t0) ∈ S and for all t ∈ Ta,t0 whenever d(a, M) < r0, where ϕ may
depend on t0.

Prove that (S, M) is uniformly stable if and only if in the above, ϕ is independent
of t0. �

Problem 3.10.16 Prove the following results.
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Lemma 3.10.4 [2] Show that (S, M) is attractive if and only if for each t0 ∈ T
there exists an η = η(t0) > 0 such that for each p(·, a, t0) ∈ S, there exists a function
σ ∈ L (where σ may depend on t0 and p(·, a, t0)) such that if d(a, M) < η, then
d(p(t, a, t0), M) < σ(t − t0) for all t ∈ Ta,t0 . (The class of functions L is defined
in Problem 3.10.13.)

Show that (S, M) is uniformly attractive if and only if the above is true for η
independent of t0 and for σ independent of t0 and of p(·, a, t0). �

Problem 3.10.17 Prove the following results.

Lemma 3.10.5 [2] Prove that (S, M) is asymptotically stable if and only if for
each t0 ∈ T there exists a function ϕ ∈ K on [0, r0], r0 > 0, such that for each
p(·, a, t0) ∈ S, there exists a function σ ∈ L such that if d(a, M) < r0, then

d(p(t, a, t0), M) ≤ ϕ(d(a, M))σ(t − t0)

for all t ∈ Ta,t0 .

Prove that (S, M) is uniformly asymptotically stable if and only if the above is
true for ϕ independent of t0 and for σ independent of t0 and of p(·, a, t0).

Prove that (S, M) is uniformly asymptotically stable in the large if and only if the
above is true for ϕ independent of t0 and for σ independent of t0 and of p(·, a, t0),
and furthermore, ϕ ∈ K∞.
Hint: Use the results of Problem 3.10.14 �

Problem 3.10.18 Prove the following results.

Lemma 3.10.6 [2] Show that (S, M) is exponentially stable (resp., exponentially
stable in the large) if and only if (S, M) is uniformly asymptotically stable (resp., uni-
formly asymptotically stable in the large) and in the statement for uniform asymptotic
stability in Problem 3.10.17 σ(s) = e−αs with α > 0. �

In the next six problems we ask the reader to prove several of the stability results
of Sections 3.3 and 3.4 by utilizing the equivalent definitions for stability established
above.

Problem 3.10.19 Prove Theorem 3.3.1 by utilizing the equivalent definition of uni-
form stability given in Problem 3.10.15. �

Problem 3.10.20 Prove Theorem 3.3.2 and Theorem 3.3.6 by utilizing the equivalent
definitions of uniform asymptotic stability and uniform asymptotic stability in the large
given in Problem 3.10.17. �

Problem 3.10.21 Prove Theorem 3.3.3 and Theorem 3.3.7 by utilizing the equivalent
definitions of exponential stability and exponential stability in the large given in
Problem 3.10.18. �

Problem 3.10.22 Prove Theorem 3.4.1 by utilizing the equivalent definition of uni-
form stability given in Problem 3.10.15. �
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Problem 3.10.23 Prove Theorem 3.4.2 and Theorem 3.4.6 by utilizing the equivalent
definitions of uniform asymptotic stability and uniform asymptotic stability in the large
given in Problem 3.10.17. �

Problem 3.10.24 Prove Theorem 3.4.3 and Theorem 3.4.7 by utilizing the equivalent
definitions of exponential stability and exponential stability in the large given in
Problem 3.10.18. �

Problem 3.10.25 Let S be the dynamical system determined by the scalar differential
equation

ẏ = −ψ(y), y ∈ R
+

where ψ ∈ K. Prove that (S, {0}) is uniformly asymptotically stable.
Hint [2]: Let G denote a primitive function of −1/ψ. Then

y(t) = G−1(t − t0 + G(y0))

where G−1 denotes the inverse of G. If the function −1/ψ is integrable near 0, then
there exists a finite number t1 such that y(t) = 0 for all t ≥ t1. If the function −1/ψ
is not integrable near 0, then G−1 ∈ L (see Problem 3.10.13 for the definition of
class L). In a similar manner as in Problem 3.10.13(iv), conclude that for s1 ≥ c1,
s2 ≥ c2 and σ ∈ L, there exist σ1, σ2 ∈ L such that

σ(s1 + s2) ≤ σ1(s1)σ2(s2).

Next, apply the above inequality to G−1 ∈ L with s1 = t − t0 and s2 = G(y0) to
obtain

y(t) ≤ σ1(t − t0)σ2(G(y0)).

This inequality implies the uniform attractivity of (S, {0}) (refer to Definition 3.1.7
and Problem 3.10.16). The uniform stability of (S, {0}) follows from the uniform
stability of (S1, {0}) where S ⊂ S1 and S1 is the dynamical system determined by

ẏ ≤ 0, y ∈ R
+. �

Problem 3.10.26 Prove that if in Problem 3.10.25 ψ ∈ K∞, then (S, {0}) is uni-
formly asymptotically stable in the large. �

Problem 3.10.27 Let y ∈ C
[
[t0,∞), R

]
and assume that y(t0) > 0 and that

Dy(t) ≥ ψ(y(t))

for all t ≥ t0 where D is a fixed Dini derivative and ψ ∈ K is defined on R
+. Show

that limt→∞ y(t) = ∞.
Hint: Apply Theorem 3.8.1 to show that y(t) ≥ r(t) where r(t) is the minimal
solution of

ẏ = ψ(y)

with the initial condition r(t0) = y(t0). Problem 3.10.27 can now be reduced to
proving that limt→∞ r(t) = ∞. �



Bibliography 147

Problem 3.10.28 Let S be the dynamical system determined by the scalar difference
equation

yk+1 ≤ yk − ψ(yk), yk ∈ R
+, ψ ∈ K,

for all k ∈ Ta,k0 . Prove that (S, {0}) is uniformly asymptotically stable.
Hint: (S, {0}) is uniformly stable because every motion of S is a decreasing non-
negative sequence. To show that (S, {0}) is uniformly attractive, first establish that
yk+1 − yk0 ≤ −(k − k0 + 1)ψ(yk) and conclude that

ψ(yk) ≤ yk0 − yk+1

k − k0 + 1
≤ yk0

k − k0 + 1
. (3.10.6)

Choose δ > 0 in such a manner that ψ−1 exists on [0, δ], and for every ε > 0, k0 ∈ N,
choose τ = δ/ψ(ε). Then for k ≥ k0+τ , we have k−k0+1 ≥ τ +1 > τ = δ/ψ(ε).
By (3.10.6), we have that

|yk| = yk = ψ−1
( yk0

k − k0 + 1

)
< ψ−1

( δ

k − k0 + 1

)
< ε

for all k ≥ k0 + τ whenever |yk0 | = yk0 < δ. Therefore, (S, {0}) is uniformly
attractive (see Definition 3.1.9). �

Problem 3.10.29 Prove that if in Problem 3.10.28 ψ ∈ K∞, then (S, {0}) is uni-
formly asymptotically stable in the large. �

Problem 3.10.30 Prove the assertions made in Examples 3.1.8 and 3.1.9. �
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Chapter 4

Fundamental Theory:
Specialized Stability and
Boundedness Results on
Metric Spaces

In this chapter we present a number of important specialized stability and boundedness
results for dynamical systems defined on metric spaces. These include results for
autonomous dynamical systems (in Section 4.1), results that comprise the Invariance
Theory (in Section 4.2), some results that go under the heading of Comparison Theory
(in Section 4.3), and a result that addresses the uniqueness of motions in dynamical
systems (in Section 4.4).

Before proceeding with our subject on hand, we would like to remind the reader
once more that our definition of dynamical system (Definition 2.2.3) does in general
not require that time be reversible in the motions (in contrast to many dynamical
systems determined, e.g., by various types of differential equations), nor are the
motions required to be unique with respect to initial conditions. For such general
systems, when required, we make an assumption that is akin to the semigroup property,
but is more general, which essentially requires that for a dynamical system S, any
partial motion is also a motion of S, and any composition of two motions is also a
motion of S (refer to Assumption 3.5.1). Of course when in a dynamical system the
semigroup property holds, then Assumption 3.5.1 is automatically implied.

4.1 Autonomous Dynamical Systems

In the present section we show that under reasonable assumptions, in the case of
autonomous dynamical systems, the stability and asymptotic stability of an invariant
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set M ⊂ A, with respect to S, imply the uniform stability and uniform asymptotic
stability of (S, M), respectively. We also establish necessary and sufficient condi-
tions for stability and asymptotic stability of (S, M) for autonomous systems in this
section.

Definition 4.1.1 A dynamical system {T, X, A, S} is said to be an autonomous dy-
namical system if

(i) every p(·, a, t0) ∈ S is defined on Ta,t0 = T ∩ [t0,∞); and

(ii) for each p(·, a, t0) ∈ S and for each τ such that t0 + τ ∈ T , there exists a
motion p(·, a, t0 + τ) ∈ S such that p(t + τ, a, t0 + τ) = p(t, a, t0) for all
t ∈ Ta,t0 and all τ satisfying t + τ ∈ T . �

Examples of autonomous dynamical systems include linear and nonlinear semi-
groups. These systems have motions that are unique and continuous with respect to
initial conditions.

In general we do not require that autonomous dynamical systems satisfy the unique-
ness property. For example, autonomous dynamical systems determined by differ-
ential inclusions defined on Banach spaces (refer to Chapter 2) do not satisfy the
uniqueness property.

In the next two results we assume that the motions of the dynamical systems are
continuous with respect to initial conditions in the sense of Definition 3.6.1.

Theorem 4.1.1 Let {R
+, X, A, S} be an autonomous dynamical system that satisfies

Assumption 3.5.1 and for which the motions are continuous with respect to initial
conditions. Let M ⊂ A be a closed and invariant set. If (S, M) is stable, then
(S, M) is uniformly stable.

Proof . Because {R
+, X, A, S} is autonomous, for each p(·, a, t0) ∈ S, there exists

a motion p(·, a, 0) ∈ S such that p(t, a, t0) = p(t − t0, a, 0) for all t ≥ t0.
Because (S, M) is stable, for every ε > 0 there exists a δ = δ(ε, 0) > 0 such

that d(p(t, a, 0), M) < ε for all t ≥ 0 and all p(·, a, 0) ∈ S whenever d(a, M) < δ.
Therefore, d(p(t, a, t0), M) = d(p(t − t0, a, 0), M) < ε for all t ≥ t0. Note that δ
is independent of t0. We have shown that (S, M) is uniformly stable. �

An analogous result and proof of Theorem 4.1.1 for discrete-time dynamical sys-
tems can be established by making obvious modifications.

Theorem 4.1.2 Let {R
+, X, A, S} be an autonomous dynamical system for which

the motions are continuous with respect to initial conditions and that satisfies As-
sumption 3.5.1. Let M ⊂ A be a closed and invariant set and assume that A is
compact. If (S, M) is asymptotically stable, then (S, M) is uniformly asymptotically
stable.

Proof . The uniform stability of (S, M) follows from Theorem 4.1.1. We only
need to show the uniform attractivity of (S, M); that is, we need to show that
there exists a δ > 0, and for every ε > 0 and every t0 ∈ R

+, there exists a
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τ = τ(ε) > 0, independent of t0, such that d(p(t, a, t0), M) < ε for all t ≥ t0 + τ
and for all p(·, a, t0) ∈ S whenever d(a, M) < δ. Because {R

+, X, A, S} is au-
tonomous, for each p(·, a, t0) ∈ S, there exists a motion p(·, a, 0) ∈ S such that
p(t, a, t0) = p(t − t0, a, 0) for all t ≥ t0. Therefore, it is equivalent to show
that there exists a δ > 0, and for every ε > 0, there exists a τ = τ(ε) > 0,
such that d(p(t, a, 0), M) < ε for all t ≥ τ and for all p(·, a, 0) ∈ S whenever
d(a, M) < δ.

Assume that (S, M) is not uniformly attractive. In view of the above statement,
for every δ > 0, there exists an ε > 0, two sequences {am : m ∈ N} ⊂ X
and {tm : m ∈ N} ⊂ R

+ with limm→∞ tm = ∞ such that d(am, M) < δ and
d(p(tm, am, 0), M) > ε for all m ∈ N.

Because A is compact, {am : m ∈ N} has a convergent subsequence. Without
loss of generality, we may assume that am → a∗ ∈ A.

The uniform stability of (S, M) implies that there exists a δ∗ > 0 such that
d(p(t, a, t0), M) < ε/2 whenever d(a, M) < δ∗. The attractivity of (S, M) implies
that there exists a τ > 0 such that d(p(t, a∗, 0), M) < δ∗ for all t ≥ τ . In particular,
d(p(τ, a∗, 0), M) < δ∗. Therefore,

d(p(t, a∗, 0), M) = d(p(t, p(τ, a∗, 0), τ), M) < ε/2

for all t ≥ τ . On the other hand, by continuity with respect to initial conditions,
p(τ, am, 0) → p(τ, a∗, 0). Together with limm→∞ tm = ∞, there exists an m′ such
that tm′ > τ and d(p(τ, am′ , 0), M) < δ∗. Thus,

d(p(tm′ , am′ , 0), M) = d(p(tm′ , p(τ, am′ , 0), τ), M) < ε/2.

We have arrived at a contradiction. Therefore, (S, M) is uniformly asymptotically
stable. �

Similarly as in Theorem 4.1.2, we can also show that when {R
+, X, A, S} is an

autonomous dynamical system with motions that are continuous with respect to initial
conditions and that satisfies Assumption 3.5.1, and if M ⊂ A is invariant and A is
compact, then if (S, M) is asymptotically stable in the large, then (S, M) is uniformly
asymptotically stable in the large. Also, we can establish an analogous result of Theo-
rem 4.1.2 for discrete-time dynamical systems by making appropriate modifications.
In proving converse theorems for the uniform asymptotic stability of invariant sets
M ⊂ A for dynamical systems {T, X, A, S}, we require in Theorem 3.6.2 (T = R

+)
and Theorem 3.7.2 (T = N) that the systems satisfy the uniqueness property of the
motions. In the next two results we remove this restriction for autonomous dynamical
systems. In doing so, we are able to establish necessary and sufficient conditions for
stability and asymptotic stability of invariant sets. In these results, the Lyapunov
functions V are independent of t (i.e., V (x, t) ≡ V (x)).

Theorem 4.1.3 Let {T, X, A, S} be an autonomous dynamical system with T =R
+

or T = N, and let M ⊂ A be a closed invariant set, where A is assumed to be a
neighborhood of M . Assume that S satisfiesAssumption 3.5.1. Then (S, M) is stable
if and only if there exist neighborhoods A1 and X1 of M such that A1 ⊂ X1 ⊂ A
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and a mapping V : X1 → R
+ that satisfies the following conditions.

(i) There exist ψ1, ψ2 ∈ K such that

ψ1(d(x, M)) ≤ V (x) ≤ ψ2(d(x, M))

for all x ∈ X1.

(ii) For every p(·, a, t0) ∈ S with a ∈ A1, V (p(t, a, t0)) is nonincreasing for all
t ∈ T ∩ [t0,∞).

Proof . (Sufficiency) We define SA1 by

SA1 =
{
p(·, a, t0) ∈ S : a ∈ A1, t0 ∈ T

}
. (4.1.1)

Then {T,X,A1, S1} is a dynamical system. It follows from Theorem 3.3.1 (T =R
+)

or Theorem 3.4.1 (T = N) that (SA1 , M) is stable. Because A1 is a neighborhood of
M , it is straightforward to verify that the stability of (SA1 , M) implies the stability
of (S, M).

(Necessity) We apply Theorem 3.5.1 (resp., Theorem 3.6.1). It suffices to show
that in the proof of that theorem, V (x, t) is independent of t when S is an autonomous
system.

Recall that in the proof of Theorem 3.5.1,

V (x, t) = sup
{
d(p(t′, x, t), M) : p(·, x, t) ∈ S, t′ ∈ Tx,t

}
.

We prove that for any t1, t2 ∈ T , V (x, t1) = V (x, t2). Let t2 = t1 + τ . We note that
for either T = R

+ or T = N, t′ ∈ T ∩ [t1,∞) implies that t′ + τ ∈ T ∩ [t2,∞).
For every motion p(·, x, t1) ∈ S, there exists a motion p(·, x, t2) ∈ S such that
p(t′, x, t1) = p(t′ + τ, x, t2) for all t′ ∈ T ∩ [t1,∞). Therefore, by (4.1.1) it
follows that V (x, t1) ≤ V (x, t2). In a similar manner as above, it also follows that
V (x, t2) ≤ V (x, t1). Therefore, we have V (x, t1) = V (x, t2) for any t1, t2 ∈ T ,
which means that V (x, t) is independent of t. �

In the final result of this section, we establish necessary and sufficient conditions
for the asymptotic stability of invariant sets for autonomous dynamical systems.

Theorem 4.1.4 Let {T, X, A, S} be an autonomous dynamical system with T =R
+

or T = N, and let M ⊂ A be a closed invariant set, where A is assumed to be a
neighborhood of M . Assume that S satisfies Assumption 3.5.1 and that all motions
in S are continuous with respect to initial conditions. Then (S, M) is asymptotically
stable if and only if there exist neighborhoods A1 and X1 of M such that A1 ⊂
X1 ⊂ A and a mapping V : X1 → R

+ that satisfies the following conditions.

(i) There exist ψ1, ψ2 ∈ K such that

ψ1(d(x, M)) ≤ V (x) ≤ ψ2(d(x, M))

for all x ∈ X1.
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(ii) For every p(·, a, t0) ∈ S with a ∈ A1, V (p(t, a, t0)) is nonincreasing for all
t ∈ T ∩ [t0,∞) and limt→∞ V (p(t, a, t0)) = 0.

Proof. The necessity and sufficiency of stability follow from Theorem 4.1.3. There-
fore, we only need to address the attractivity of (S, M).

(Sufficiency) We choose η > 0 such that {a ∈ A : d(a, M) < η} ⊂ A1. Then,
whenever d(a, M) < η, we have

lim
t→∞ ψ1(d(p(t, a, t0), M)) ≤ lim

t→∞ V (p(t, a, t0)) = 0

which implies that limt→∞ d(p(t, a, t0), M) = 0. This implies the attractivity
of (S, M).

(Necessity) If (S, M) is attractive, then there exists an η > 0 such that

lim
t→∞ d(p(t, a, t0), M) = 0

for all p(·, a, t0) ∈ S whenever d(a, M) < η. Therefore, for every p(·, a, t0) ∈ S
with a ∈ {x ∈ A : d(a, M) < η}, we have that

lim
t→∞ V (p(t, a, t0)) ≤ lim

t→∞ ψ2(d(p(t, a, t0), M)) = 0. �

4.2 Invariance Theory

In the present section we establish sufficient conditions for the asymptotic stability
of invariant sets for dynamical systems determined by semigroups defined on metric
spaces. These sufficient conditions may be easier to satisfy than the corresponding
results given in Sections 3.3 and 3.4. We first need to generalize the notion of a semi-
group defined on Banach spaces, presented in Chapter 2. In the following definition,
we allow T = R

+, for a continuous semigroup on metric space and T = N, for a
discrete-time semigroup on metric space.

Definition 4.2.1 Let X be a metric space. A family of mappings G(t) : X → X ,
t ∈ T (T = R

+ or T = N), is said to be a semigroup defined on X if

(i) G(0)x = x for all x ∈ X;

(ii) G(t + s)x = G(t)G(s)x for all t, s ∈ T and x ∈ X; and

(iii) G(t)x is continuous in x ∈ X for each t ∈ T . �

When T = R
+ and the metric space is a subset of a Banach space, then the above

definition coincides with Definition 2.9.5.
As was shown in Chapter 2, semigroups determine dynamical systems, in fact

autonomous dynamical systems. We denote a dynamical system determined by a
semigroup (as defined above) by SG.

We require the following concept.
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Definition 4.2.2 Let {T, X, A, S} be a dynamical system where T = R
+ or T = N.

For each motion p(·, a, t0) ∈ S which is defined on T ∩ [t0,∞), the set

ω(p) =
{
x ∈ X : x = lim

n→∞ p(tn, a, t0)

where {tn} ⊂ Ta,t0 is any increasing sequence such that lim
n→∞ tn = ∞

}
is called the ω-limit set of the motion p(·, a, t0). �

It can be shown that

ω(p) =
⋂

t∈T∩[t0,∞)

{p(t′, a, t0) : t′ ∈ T ∩ [t0,∞)} (4.2.1)

where B denotes the closure in X of the set B.
In the subsequent results of the present section, we require the following prelimi-

nary result concerning limit sets.

Lemma 4.2.1 Let {T, X, A, SG} be a dynamical system determined by semigroup
G where T = R

+ or T = N and G is defined on the metric space X = A. For a
motion p(·, a, t0) ∈ SG, assume that the trajectory

γ+(p) =
{
p(t, a, t0) ∈ X : t ∈ T ∩ [t0,∞)

}
⊂ X0

where X0 is a compact subset of X . Then the ω-limit set ω(p) is nonempty, compact,
and invariant with respect to SG. Furthermore, p(t, a, t0) → ω(p) as t → ∞.

Proof . By (4.2.1), ω(p) is closed and ω(p) ⊂ X0. Because any closed subset
of a compact set is compact (see [3]), it follows that ω(p) is compact. Furthermore,
because γ+(p) ⊂ X0 and any compact set is sequentially compact (see [3]), it follows
that ω(p) is nonempty.

For any y ∈ ω(p), there exists by definition an increasing sequence {tn >t0}⊂T
with limn→∞ tn = ∞ and tn ∈ T ∩ [t0,∞) such that limn→∞ p(tn, a, t0) = y. Let
un(t) = p(tn + t, a, t0) for all t ∈ T and a ∈ X . Then un(t) ∈ X0 for all t ∈ T .
The compactness of X0 implies that the sequence of functions {un} is uniformly
bounded on t ∈ T for n ∈ N.

When T = N, there exists for each k ∈ N a subsequence {unj,k
} such that

unj,k
(k) → u(k) as j → ∞. Therefore, for the (diagonalized) subsequence {unj,j

},
we have that unj,j

(k) → u(k) as j → ∞ for all k ∈ N.
For the case T = R

+, we have

un(t) = p(tn + t, a, t0)
= G(tn + t − t0)a

(4.2.2)
= G(t)G(tn − t0)a
= G(t)p(tn, a, t0).
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Because p(tn, a, t0) ∈ X0 and X0 is compact, and because G(t)x is uniformly con-
tinuous for (t, x) ∈ [0, k]×X0, where k ∈ N, it follows that un(t) is equicontinuous
for t ∈ [0, k] (refer to Problem 2.14.7). By the Ascoli–Arzela Lemma, there exists for
each fixed k ∈ N a subsequence {unj,k

} that converges uniformly on [0, k] as j → ∞
(refer to Problem 2.14.7). We have shown that {unj,j } converges to a continuous
function, say u, on R

+.
Summarizing, when T = N, there exists a subsequence {unj } that converges on

T to a function u : T → X , and when T = R
+, there exists a subsequence {unj

}
that converges to u ∈ C[T,X] on T .

Clearly, for each t ∈ T, u(t) ∈ ω(p) because p(tnj
+ t, a, t0) = unj (t) → u(t)

as j → ∞.
Now for each t ∈ T ,

G(t)y = lim
n→∞ G(t)p(tn, a, t0) = lim

n→∞ un(t) = u(t) (4.2.3)

where we have used (4.2.2). This implies that G(t)y = u(t) ∈ ω(p) for all t ∈ T .
Because y ∈ ω(p) was arbitrarily chosen at the outset, we have proved that ω(p) is
invariant with respect to SG.

To complete the proof, we need to show that p(t, a, t0) → ω(p) as t → ∞. If
this is not the case, then there is an ε > 0 and an increasing sequence {tm} with
limm→∞ tm = ∞ such that d(p(tm, a, t0), ω(p)) ≥ ε for all m ∈ N. Because
p(tm, a, t0) ∈ X0 and because X0 is compact, there exists a subsequence {tmj

} such
that limj→∞ tmj

= ∞ and such that {p(tmj
, a, t0)} converges to a point, say y0, in

X0 (see [3]). By definition, y0 ∈ ω(p). On the other hand, d(p(tmj , a, t0), ω(p)) ≥ ε
implies that d(y0, ω(p)) ≥ ε. We have thus arrived at a contradiction. This proves
that p(t, a, t0) → ω(p) as t → ∞. This completes the proof of the theorem. �

For a continuous function V we now define the derivative of V with respect to
SG when T = R

+ and the difference of V with respect to SG when T = N in the
following manner.

Definition 4.2.3 Let G be a continuous or discrete semigroup on a metric space X
and let SG denote the dynamical system determined by G. For each V ∈ C[X1, R],
X1 ⊂ X , we define a function D(G)V : X1 → R in the following manner.

For T = R
+,

D(G)V (x) = lim
t→0+

(1
t

)
[V (G(t)x) − V (x)] (4.2.4)

and for T = N,

D(G)V (x) = V (G(1)x) − V (x). (4.2.5)

�

We also require the next preliminary result.



156 Chapter 4. Specialized Stability and Boundedness Results on Metric Spaces

Lemma 4.2.2 Let G be a semigroup defined on a metric space X and let X1 be a
compact subset of X . Let V ∈ C[X1, R] and assume that D(G)V (x) ≤ 0 for all
x ∈ X1. Then for any p(·, a, t0) ∈ SG such that the trajectory for p(·, a, t0) is a
subset of X1 (i.e., γ+(p) ⊂ X1), the following relation holds.

ω(p) ⊂ Z
∆=
{

x ∈ X1 : D(G)V (x) = 0
}

. (4.2.6)

Proof . We first show that v(t)
�
= V (p(t, a, t0)) is nonincreasing for t ∈ T . This fol-

lows immediately because for T = R
+, we have D+v(t) = D(G)V (p(t, a, t0)) ≤ 0

and because for T = N, we have v(t + 1) − v(t) = D(G)V (p(t, a, t0)) ≤ 0.
Because any continuous function on a compact set is bounded, V is bounded on

X1 and in particular, the nonincreasing function v(t) = V (p(t, a, t0)) is bounded.
This implies that limt→∞ V (p(t, a, t0)) = v0 ∈ R exists.

To prove that for any y ∈ ω(p) it is true that y ∈ Z (i.e., D(G)V (y) = 0), it suffices
to show that V (G(t)y) is independent of t ∈ T . Indeed, there exists an increasing
sequence {tn} ⊂ T ∩ [t0,∞) such that

V (G(t)y) = lim
n→∞ V (G(t)p(tn, a, t0)) = lim

n→∞ V (p(tn + t, a, t0)) = v0.

This completes the proof. �

We are now in a position to state and prove the main invariance results for dy-
namical systems determined by semigroups on metric spaces.

Theorem 4.2.1 Let G be a continuous semigroup (T = R
+) or a discrete semigroup

(T = N) defined on a metric space X , let SG be a dynamical system determined by
G, and let X1 be a compact subset of X . Assume that there exists a V ∈ C[X1, R]
such that D(G)V (x) ≤ 0 for all x ∈ X1 (where D(G)V is defined by (4.2.4) when
T = R

+ and by (4.2.5) when T = N). Then for any p(·, a, t0) ∈ SG such that the
trajectory γ+(p) ⊂ X1, p(t, a, t0) → M as t → ∞, where M is the largest invariant
set in Z with respect to SG and Z is defined in (4.2.6).

Proof . By Lemma 4.2.1, p(t, a, t0) → ω(p) as t → ∞ and ω(p) is invariant with
respect to SG. By Lemma 4.2.2, ω(p) ⊂ Z. Inasmuch as M is the largest invariant
set in Z, we have ω(p) ⊂ M . Therefore, p(t, a, t0) → M as t → ∞. �

Corollary 4.2.1 In addition to the assumptions in Theorem 4.2.1, suppose that the
largest invariant set M ⊂ Z is the minimal set determined by the function V on a
neighborhood X0 of M , where X0 ⊂ X1, and M is given by

M =
{
x ∈ X0 : V (x) ≤ V (y) for all y ∈ X0

}
. (4.2.7)

Then M is asymptotically stable with respect to SG.

Proof . It is clear that V (x) is a constant for all x ∈ M . We denote this constant
by V (M). Now let V1(x) = V (x) − V (M). Then by the assumptions there exist
ψ1, ψ2 ∈ K such that

ψ1(d(x, M)) ≤ V1(x) ≤ ψ2(d(x, M))
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for all x ∈ X0. In fact, we may choose ψ1 and ψ2 as

ψ1(r) = min
{
V1(y) : r ≤ d(y, M), y ∈ X0

}
,

ψ2(r) = max
{
V1(y) : d(y, M) ≤ r

}
,

which are defined on [0, r0], r0 > 0, where we assume that {y : d(y, M) ≤ r0}⊂X0.
It now follows from Theorem 3.3.1 (resp., Theorem 3.4.1) that (SG, M) is uni-

formly stable and from Theorem 4.2.1 that (SG, M) is attractive. Therefore, (SG,M)
is asymptotically stable. �

In the last result of the present section, we require the following concept.

Definition 4.2.4 Ametric space X is said to be locally compact if any bounded closed
subset of X is compact. �

Corollary 4.2.2 Let G be a continuous semigroup (T = R
+) or a discrete semigroup

(T = N) defined on a metric space X , and let SG be the dynamical system determined
by G. Assume that X is locally compact and that there exists a V ∈ C[X, R] that
satisfies the following conditions.

(i) D(G)V (x) ≤ 0 for all x ∈ X , where D(G)V is defined in (4.2.4) when T =R
+

and by (4.2.5) when T = N.

(ii) The largest invariant set M in the set Z = {x ∈ X : D(G)V (x) = 0} is
bounded and is the minimal set in X determined by V ; that is,

M = {x ∈ X : V (x) ≤ V (y) for all y ∈ X}.

(iii) V (x) → ∞ as d(x, M) → ∞.

Then M is uniformly asymptotically stable in the large with respect to SG; that is,
(SG, M) is uniformly asymptotically stable in the large.

Proof . In a similar manner as in the proof of Corollary 4.2.1, for

V1(x) = V (x) − V (M)

there exist ψ1, ψ2 ∈ K∞ such that

ψ1(d(x, M)) ≤ V1(x) ≤ ψ2(d(x, M))

for all x ∈ X , where we need to use hypothesis (iii) to conclude that ψ1, ψ2 ∈ K∞.
By Corollary 4.2.1, (SG, M) is uniformly stable. By Theorem 3.3.4, (SG, M) is

uniformly bounded. We now apply Theorem 4.2.1 to prove that (SG, M) is globally
attractive. For any α > 0, it follows from the uniform boundedness of (SG, M) that
there exists a β = β(α) > 0 such that if d(a, M) ≤ α, then for all p(·, a, t0) ∈ SG,
d(p(t, a, t0), M) ≤ β for all t ∈ T ∩ [t0,∞). Choose X1 = {x ∈ X : d(x, M) ≥ β}
in applying Theorem 4.2.1. It now follows from Theorem 4.2.1 that p(t, a, t0) → M
as t → ∞ whenever d(a, M) < α.

We have proved that (SG, M) is uniformly asymptotically stable in the large. �
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We note that in contrast to the results of Section 3.2, where we require that
along the motions p(·, a, t0) of a dynamical system we have D+V (p(t, a, t0), t) ≤
−ϕ3(d(p(t, a, t0), M), where ϕ3 ∈ K (see Theorem 3.3.2), we can relax the
corresponding condition in the results of the present section by requiring that
D(G)V (x) ≤ 0. The significance of this becomes more apparent in applications
of these results, presented in subsequent chapters. Identical statements can be made
for discrete-time dynamical systems as well.

4.3 Comparison Theory

In this section we present results that make it possible to deduce the qualitative
properties of a dynamical system, the object of inquiry, from the properties of another
dynamical system, the comparison system. This type of analysis is generally referred
to as comparison theory. It is usually used to simplify the analysis of complex systems,
which otherwise might be intractable.

We address both continuous dynamical systems and discrete-time dynamical
systems.

A. Continuous dynamical systems

We begin by considering a system of ordinary differential equations given by

ẋ = g(t, x) (E)

where g ∈ C[R+ × (R+)l, Rl], and an associated system of ordinary differential
inequalities given by

Dx ≤ g(t, x) (EI)

where D denotes a Dini derivative. We assume that g(t, xe) ≡ 0 if xe = 0, so that
xe = 0 is an equilibrium for (E). We first identify under what conditions one can
deduce the qualitative properties of the dynamical system SEI (determined by (EI))
from the qualitative properties of the dynamical system SE (determined by (E)). Next
we use these results in establishing a comparison theory that enables us to deduce the
qualitative properties of an invariant set with respect to a dynamical system S (more
specifically, a dynamical system {R

+, X, A, S}) from the corresponding qualitative
properties of the invariant set {0} ⊂ R

l with respect to the dynamical system SE

determined by the differential equation (E).

Theorem 4.3.1 Assume that g ∈ C[R+ ×(R+)l, Rl] is quasi-monotone nondecreas-
ing and that g(t, 0) = 0 for all t ∈ R

+. Then the following statements are true.

(a) If xe = 0 is an equilibrium of SE , then xe = 0 is also an equilibrium of SEI .

(b) The stability, uniform stability, asymptotic stability, uniform asymptotic stabil-
ity, exponential stability, uniform asymptotic stability in the large, and expo-
nential stability in the large of (SE , {0}) imply the same corresponding types
of stability of (SEI , {0}).
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(c) The uniform boundedness and uniform ultimate boundedness of SE imply the
same corresponding types of boundedness of SEI .

Proof . It follows from Theorem 3.8.1 that for any motion x(·, x0, t0) ∈ SEI , where
(t0, x0) ∈ R

+ × (R+)l we have that

x(t, x0, t0) ≤ r(t, x0, t0) (4.3.1)

for all t ≥ t0, where r(·, x0, t0) denotes the maximal solution of (E) (and therefore,
r(·, x0, t0) ∈ SE), and inequality is to be interpreted componentwise. In addition,
we also have that

x(t, x0, t0) ≥ 0 (4.3.2)

for all t ≥ t0 by the way SEI is defined (i.e., g ∈ C[R+ × (R+)l, Rl]).
All conclusions of the theorem follow now from (4.3.1) and (4.3.2) and from

Definitions 3.1.2, and 3.1.6–3.1.17. �

We now state and prove the main result of this subsection.

Theorem 4.3.2 Let {R
+, X, A, S} be a dynamical system and let M ⊂ A. As-

sume that there exists a function V : X × R
+ → (R+)l that satisfies the following

conditions.

(i) There exists a function g ∈ C[R+ × (R+)l, Rl] that is quasi-monotone nonde-
creasing such that g(t, 0) = 0 for all t ∈ R

+ and such that

D[V (p(t, a, t0), t)] ≤ g(t, V (p(t, a, t0), t))

for all p(·, a, t0) ∈ S and t ∈ R
+
t0 , where D denotes a fixed Dini derivative

with respect to t.
(ii) There exist ψ1, ψ2 ∈ K defined on R

+ such that

ψ1(d(x, M)) ≤ |V (x, t)| ≤ ψ2(d(x, M))

for all (x, t) ∈ X × R
+, where d(·, ·) denotes the metric on X and | · | is the

Euclidean norm on R
l.

If M is closed, the following statements are true.

(a) The invariance of (SE , {0}) implies the invariance of (S, M).
(b) The stability, asymptotic stability, uniform stability, and uniform asymptotic

stability of (SE , {0}) imply the same corresponding types of stability of (S, M).
(c) If in hypothesis (ii), ψ1(r) = arb, a > 0, b > 0, then the exponential stability

of (SE , {0}) implies the exponential stability of (S, M).
(d) If M is bounded and if in hypothesis (ii), ψ1, ψ2 ∈ K∞, then the uniform

asymptotic stability in the large of (SE , {0}) implies the uniform asymptotic
stability in the large of (S, M).

(e) If in (c) and in hypothesis (ii), ψi(r) = air
b, ai > 0, b > 0, i = 1, 2, then the

exponential stability in the large of (SE , {0}) implies the exponential stability
in the large of (S, M).
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If M is bounded, but not necessarily closed, the following statement is true.

(f) If in (ii), ψ1, ψ2 ∈ K∞, then the uniform boundedness and uniform ultimate
boundedness of SE imply the same corresponding types of boundedness of S.

Proof . For any a ∈ A, t0 ∈ R
+, p(·, a, t0) ∈ S, it follows from (i) that

V (p(t, a, t0), t) = p̃(t, V (a, t0), t0)

is a motion in SEI .
(a) It follows from Theorem 4.3.1 that xe = 0 is an equilibrium of SEI . For any

a ∈ M , t0 ∈ R
+, p(·, a, t0) ∈ S, it follows from (ii) that

|V (p(t0, a, t0), t0)| ≤ ψ2(d(a, M)) = 0.

It follows from the invariance of (SEI , {0}) that V (p(t, a, t0), t)= 0 for all t∈ R
+
t0 .

Thus d(p(t, a, t0), M)≤ ψ−1(|V (p(t, a, t0), t)|) = 0 for all t ∈ R+
t0 . Because M is

closed, p(t, a, t0) ∈ M , which implies the invariance of (S, M).
(b) Assume that (SE , {0}) is stable. Then (SEI , {0}) is stable by Theorem 4.3.1.

For every ε > 0 and every t0 ∈ R
+, there exists a δ = δ(ε, t0) > 0 such that

|p̃(t, ã, t0)| < ε for all t ∈ R
+
t0 and for all p̃(·, ã, t0) ∈ SEI , whenever |ã| < δ.

It follows from (ii) that whenever d(a, M) < ψ−1
2 (δ), |V (a, t0)| < δ. Hence,

d(p(t, a, t0), M) ≤ ψ−1
1 (|V (p(t, a, t0), t)|) = ψ−1

1 (|p̃(t, V (a, t0), t0)|) < ψ−1
1 (ε)

for all t ∈ R
+
t0 and for all p(·, a, t0) ∈ S whenever d(a, M) < ψ−1

2 (δ). Therefore,
(S, M) is stable. Similarly, we can show that the asymptotic stability, uniform sta-
bility, and uniform asymptotic stability of (SE , {0}) imply the same corresponding
types of stability of (S, M).

(c) Assume that (SE , {0}) is exponentially stable. Then (SEI , {0}) is exponen-
tially stable by Theorem 4.3.1. There exists α > 0, and for every ε > 0 and every
t0 ∈ R

+, there exists a δ = δ(ε) > 0 such that |p̃(t, ã, t0)| < εe−α(t−t0) for all
t ∈ R

+
t0 and for all p̃(·, ã, t0) ∈ SEI whenever |ã| < δ. It follows from (ii) that

whenever d(a, M) < ψ−1
2 (δ), |V (a, t0)| < δ. Hence,

d(p(t, a, t0), M) ≤ ψ−1
1 (|V (p(t, a, t0), t)|)

= ψ−1
1 (|p̃(t, V (a, t0), t0)|)

< ψ−1
1

(
εe−α(t−t0)

)
= (ε/a)1/be−(α/b)(t−t0)

for all t ∈ R
+
t0 and for all p(·, a, t0) ∈ S whenever d(a, M) < ψ−1

2 (δ). Therefore,
(S, M) is exponentially stable.

(d) We have already shown in part (b) that (S, M) is uniformly stable. Because SE

is uniformly bounded by assumption, SEI is uniformly bounded by Theorem 4.3.1.
Then for every α > 0 and for every t0 ∈ R

+ there exists a β = β(α) > 0 such that
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|p̃(t, ã, t0) − x0| < β for all t ∈ R
+
t0 and p̃(·, ã, t0) ∈ SEI if |ã| < α, where x0 is a

fixed point in (R+)l. Hence, for all t ∈ R
+
t0 and for all p(·, a, t0) ∈ S

d(p(t, a, t0), M) ≤ ψ−1
1 (|V (p(t, a, t0), t)|)

= ψ−1
1 (|p̃(·, V (a, t0), t0)|)

< ψ−1
1 (β + |x0|).

Inasmuch as M is bounded, we conclude that S is uniformly bounded. Lastly, we
show that (S, M) is globally uniformly attractive. Because (SEI , {0}) is uniformly
asymptotically stable in the large by Theorem 4.3.1, for every α > 0, ε > 0, and
for every t0 ∈ R

+, there exists a τ = τ(ε, α) > 0 such that if |ã| < ϕ2(α),
then for all p̃(·, ã, t0) ∈ SEI , |p̃(t, ã, t0)| < ϕ1(ε) for all t ∈ R

+
t0+τ . Hence, it

follows from (ii) that whenever d(a, M) < α, V (a, t) ≤ ϕ2(α) and hence it is true
that |V (p(t, a, t0), t)| = |p̃(t, V (a, t0), t0)| < ϕ1(ε) for all t ∈ R

+
t0+τ . Therefore,

d(p(t, a, t0), M) ≤ ϕ−1
1 (|V (p(t, a, t0), t)|) < ε for all t ∈ R

+
t0+τ . It now follows

that (S, M) is uniformly asymptotically stable in the large.
(e) Under the assumption, (SEI , {0}) is exponentially stable in the large by The-

orem 4.3.1. Then there exist an α > 0, a γ > 0, and for every β > 0, there exists
a k(β) > 0 such that |p̃(t, ã, t0)| < k(β)|ã|γe−α(t−t0) for all p̃(·, ã, t0) ∈ SEI

and t ∈ R
+
t0 whenever |ã| < a2β

b. Hence, it follows from (ii) that whenever
d(a, M) < β, V (a, t) < a2β

b and hence,

|V (p(t, a, t0), t)| = |p̃(t, V (a, t0), t0)| < k(β)|V (a, t0)|γe−α(t−t0).

Then

d(p(t, a, t0), M) ≤
[
|V (p(t, a, t0), t)|/a1

]1/b

<
[
k(β)|V (a, t0)|γe−α(t−t0)

]1/b

< [k(β)aγ
2 ]1/b[d(a, M)]γe−(α/b)(t−t0).

Let k1(β) = [k(β)aγ
2 ]1/b, and α1 = α/b. Then

d(p(t, a, t0), M) < k1(β)[d(a, M)]γe−α1(t−t0)

for all p(·, a, t0) ∈ S and for all t ∈ R
+
t0 whenever d(a, M) < β.

(f) The uniform boundedness of S is shown in (d). Note that in this part of the
proof, M is only required to be bounded. The uniform ultimate boundedness can be
shown similarly. �

For obvious reasons, we call the function V in Theorem 4.3.2 a vector Lyapunov
function.

If in equation (E), g ∈ [R+× R
l, Rl] and if in inequality (EI) we restrict the do-

main of g to R
+ × (R+)l, then the statements of Theorem 4.3.2 are still true. Specif-

ically, if S̃E denotes the dynamical system determined by (E) for g ∈ [R+ × R
l, Rl]
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and if SE denotes the dynamical system determined by (E) with the domain of g

restricted to R
+ × (R+)l, then SE is a subsystem of S̃E . Therefore, if we replace

SE by S̃E in the statements of Theorem 4.3.2, the conclusions of this theorem are
still true.

We conclude the present subsection with a specific example.

Example 4.3.1 We choose in particular

g(t, x) = Bx

where B ∈ R
l×l. Then g is quasi-monotone nondecreasing if and only if all the

off-diagonal elements of B = [bij ] are nonnegative. In view of Theorem 4.3.2 and
the results given in Example 3.1.8, we have the following results:

Let {R
+, X, A, S} be a dynamical system and let M ⊂ A be closed. Assume that

there exists a continuous function V : X × R
+ → (R+)l that satisfies the following

conditions:

(i) For all p(·, a, t0) ∈ S and all t ∈ R
+
t0 ,

DV (p(t, a, t0), t) ≤ BV (p(t, a, t0), t)

where the off-diagonal elements of B ∈ R
l×l are nonnegative and D is a fixed

Dini derivative.

(ii) There exist ψ1, ψ2 ∈ K such that

ψ1(d(x, M)) ≤ |V (x, t)| ≤ ψ2(d(x, M))

for all x ∈ X and t ∈ R
+, where d is the metric defined on X and | · | denotes

the Euclidean norm on R
l.

Then the following statements are true.

(a) If the eigenvalues of B have nonpositive real parts and every eigenvalue of B
with zero real part has an associated Jordan block of order one, then (S, M) is
invariant and uniformly stable;

(b) If all eigenvalues of B have negative real parts, then (S, M) is uniformly
asymptotically stable. In addition, if in hypothesis (ii) above, ψ1, ψ2 ∈ K∞
and M is bounded, then (S, M) is uniformly asymptotically stable in the large.

(c) If in part (b), ψi(r) = air
b, ai > 0, b > 0, i = 1, 2, then (S, M) is exponen-

tially stable in the large.

Finally, recalling that a matrix H ∈ R
l×l is called an M -matrix if all the off-

diagonal elements of H are nonpositive and if all the eigenvalues of H have positive
real parts, we can rephrase condition (b) given above by stating that −B is an M -
matrix, in place of “all eigenvalues of B have negative real parts.” For the properties
of M -matrices, refer, for example, to [4] and to Definition 7.7.1. �



Section 4.3 Comparison Theory 163

B. Discrete-time dynamical systems

Next, we consider a system of difference equations given by

x(k + 1) = h(k, x(k)), (D)

where h : N×(R+)l → R
l, and the associated system of difference inequalities given

by
x(k + 1) ≤ h(k, x(k)), (DI)

where for all k ∈ N, x(k) ∈ (R+)l. We denote the dynamical systems determined
by (D) and (DI) by SD and SDI , respectively.

Definition 4.3.1 A function g : N × Ω → R
l is said to be monotone nondecreasing

if g(k, x) ≤ g(k, y) for all x ≤ y, x, y ∈ Ω and all k ∈ N, where Ω ⊂ R
l is a subset

of R
l and where inequality of vectors is to be interpreted componentwise. �

Lemma 4.3.1 Assume that h : N× (R+)l → R
l is monotone nondecreasing and that

h(k, 0) = 0 for all k ∈ N. Then the following statements are true.
(a) If xe = 0 is an equilibrium of SD, then xe = 0 is also an equilibrium of SDI .
(b) The stability, uniform stability, asymptotic stability, uniform asymptotic stabil-

ity, exponential stability, uniform asymptotic stability in the large, and expo-
nential stability in the large of (SD, {0}) imply the same corresponding types
of stability of (SDI , {0}).

(c) The uniform boundedness and uniform ultimate boundedness of SD imply the
same corresponding types of boundedness of SDI .

Proof . For any motion x(·, x0, n0) ∈ SDI and any motion r(·, x0, n0) ∈ SD, where
(n0, x0) ∈ N × (R+)l we have that

x(n0 + 1, x0, n0) ≤ h(n0, x0)
= r(n0 + 1, x0, n0)

x(n0 + 2, x0, n0) ≤ h(n0 + 1, x(n0 + 1, x0, n0))
≤ h(n0 + 1, r(n0 + 1, x0, n0))
= r(n0 + 2, x0, n0)

...

x(n + 1, x0, n0) ≤ h(n, x(n, x0, n0))
≤ h(n, r(n, x0, n0)) (4.3.3)

= r(n + 1, x0, n0)

for all n ≥ n0, and inequality is to be interpreted componentwise. In addition, we
also have that

x(n, x0, n0) ≥ 0 (4.3.4)

for all n ≥ n0 by the way SDI is defined (i.e., h : N × (R+)l → R
l).

All conclusions of the theorem follow now from (4.3.3) and (4.3.4) and from
Definitions 3.1.2, and 3.1.6–3.1.17. �
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We now present the main result of this subsection.

Theorem 4.3.3 Let {N, X, A, S} be a dynamical system and let M ⊂ A. Assume
that there exists a function V : X×N → (R+)l that satisfies the following conditions.

(i) There exists a function h : N× (R+)l → R
l which is monotone nondecreasing

such that h(k, 0) = 0 for all k ∈ N, and

V (p(k + 1, a, k0), k + 1) ≤ h(k, V (p(k, a, k0), k))

for all p(·, a, k0) ∈ S and k ∈ Nk0 .

(ii) There exist ψ1, ψ2 ∈ K defined on R
+ such that

ψ1(d(x, M)) ≤ |V (x, k)| ≤ ψ2(d(x, M))

for all (x, k) ∈ X × N, where d(·, ·) denotes the metric on X and | · | is the
Euclidean norm on R

l.

If M is closed, then the following statements are true.

(a) The invariance of (SD, {0}) implies the invariance of (S, M).
(b) The stability, asymptotic stability, uniform stability, and uniform asymptotic

stability of (SD, {0}) imply the same corresponding types of stability of (S, M).
(c) If in hypothesis (ii), ψ1(r) = arb, a > 0, b > 0, then the exponential stability

of (SD, {0}) implies the exponential stability of (S, M).
(d) If M is bounded and if in hypothesis (ii), ψ1, ψ2 ∈ K∞, then the uniform

asymptotic stability in the large of (SD, {0}) implies the uniform asymptotic
stability in the large of (S, M).

(e) If in (c), ψi(r) = air
b, ai > 0, b > 0, i = 1, 2, and M is bounded, then the

exponential stability in the large of (SD, {0}) implies the exponential stability
in the large of (S, M).

If M is bounded, but not necessarily closed, the following statement is true.

(f) If in (ii), ψ1, ψ2 ∈ K∞, then the uniform boundedness and uniform ultimate
boundedness of SD imply the same corresponding types of boundedness of S.

Proof . For any a ∈ A, k0 ∈ N, p(·, a, k0) ∈ S, it follows from (i) that

V (p(k, a, k0), k) = p̃(k, V (a, k0), k0)

is a motion in SDI . The rest of the proof is similar to the proof of Theorem 4.3.2 and
is not repeated here. �

If in equation (D), h : N × R
l → R

l, and if in inequality (DI), we restrict the
domain of h to N × (R+)l, then the statements of Theorem 4.3.3 are still true, for the
same reasons as given immediately after Theorem 4.3.2.

We conclude the present subsection with a specific example.
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Example 4.3.2 We choose in particular

h(k, x) = Bx

where B = [bij ] ∈ R
l×l. Then h is monotone nondecreasing if and only if bij ≥ 0 for

all i, j = 1, . . . , l. In view of Theorem 4.3.3 and the results given in Example 3.1.9,
we have the following results.

Let {N, X, A, S} be a dynamical system and let M ⊂ A be closed. Assume that
there exists a continuous function V : X × N → (R+)l that satisfies the following
conditions.

(i) For all p(·, a, k0) ∈ S and all k ∈ Nk0 ,

V (p(k + 1, a, k0), k + 1) ≤ BV (p(k, a, k0), k)

where B = [bij ] ∈ R
l×l with bij ≥ 0 for all i, j = 1, . . . , l.

(ii) There exist ψ1, ψ2 ∈ K defined on R
+ such that

ψ1(d(x, M)) ≤ |V (x, k)| ≤ ψ2(d(x, M))

for all x ∈ X and k ∈ N, where d is the metric defined on X and | · | denotes
the Euclidean norm on R

l.

Then the following statements are true.

(a) If the eigenvalues of B have magnitude less than or equal to one and every
eigenvalue of B with magnitude equal to one has an associated Jordan block
of order one, then (S, M) is invariant and uniformly stable.

(b) If all eigenvalues of B have magnitude less than one, then (S, M) is uniformly
asymptotically stable. In addition, if in hypothesis (ii) above, ψ1, ψ2 ∈ K∞
and M is bounded, then (S, M) is uniformly asymptotically stable in the large.

(c) If in part (b), ψi(r) = air
b, ai > 0, b > 0, i = 1, 2, then (S, M) is exponen-

tially stable in the large. �

4.4 Uniqueness of Motions

In several results that we have encountered thus far and which we will encounter, the
dynamical systems are endowed with the uniqueness of motions property (refer to
Definition 3.1.3). This property is especially prevalent in applications. In the present
section we establish a Lyapunov-type result which ensures that a dynamical system
possesses the uniqueness of motions property.

In the following, we let T = R
+ or T = N.

Theorem 4.4.1 Let {T, X, A, S} be a dynamical system and assume that there exists
a function V : X × X × T → R

+ that satisfies the following conditions.

(i) V (x, y, t) = 0 for all t ∈ T if x = y.
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(ii) V (x, y, t) > 0 for all t ∈ T if x �= y.

(iii) For anypi(·, a, t0) ∈ S, i = 1, 2, V (p1(t, a, t0), p2(t, a, t0), t) is nonincreasing
in t.

Then S satisfies the uniqueness of motions property.

Proof . Let pi(·, a, t0) ∈ S, i = 1, 2, and let q(t) = V (p1(t, a, t0), p2(t, a, t0), t),
for all t ∈ Ta,t0 . Then q(t0) = 0 by (i). By (iii), q(t) is nonincreasing. Therefore
q(t) = 0 for all t ∈ Ta,t0 . Finally, by (ii), p1(t, a, t0) = p2(t, a, t0) for all t ∈ Ta,t0 .
We have proved that S satisfies the uniqueness property. �

We demonstrate the applicability of Theorem 4.4.1 by means of the following
example.

Example 4.4.1 We consider dynamical systems determined by first-order differential
equations in a Banach space X with norm ‖ · ‖, given by

ẋ(t) = F (t, x(t)) (F )

where t ∈ R
+, F : R

+ × C → X , and x(t) ∈ C ⊂ X .
Associated with (F ) is the initial value problem given by

ẋ(t) = F (t, x(t)), x(t0) = x0 (IF )

where t0 ∈ R
+, t ≥ t0, and x0 ∈ C ⊂ X . The following result yields sufficient

conditions for the uniqueness of the solutions of the initial value problem (IF ).

Theorem 4.4.2 For (F ), assume that on every compact set K ⊂ R
+ × C, F (·, ·)

satisfies the Lipschitz condition

‖F (t, x) − F (t, y)‖ ≤ LK‖x − y‖

for all (t, x), (t, y) ∈ K, where LK is a constant that depends only on the choice of
K. Then for every (t0, x0) ∈ R

+ × C, (F ) has at most one solution x(t) defined on
[t0, t0 + c) for some c > 0, that satisfies x(t0) = x0.

Proof . It suffices to show that (F ) has at most one solution on [t0, b] that satisfies
x(t0) = x0 where b is any finite number greater than t0.

Let x(t) and y(t) be two solutions of (F ) that are defined on [t0, b]. By the
continuity of x(t) and y(t), the set

K =
{
(t, ϕ) ∈ [t0, b] × C: ϕ = x(t) or ϕ = y(t) for some t ∈ [t0, b]

}
is compact. Let L = LK be the Lipschitz constant for F (·, ·) corresponding to K, and
let D+ denote the upper-right Dini derivative in t. Choose V (x, y, t) = ‖x−y‖e−Lt,
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t ≥ 0. Then for t ∈ [t0, b],

D+V (x(t), y(t), t)

= lim
h→0+

1
h

[
e−L(t+h)‖x(t + h) − y(t + h)‖ − e−Lt‖x(t) − y(t)‖

]
= lim

h→0+

1
h

[(
e−L(t+h) − e−Lt

)
‖x(t) − y(t)‖

+ e−L(t+h)(‖x(t + h) − y(t + h)‖ − ‖x(t) − y(t)‖
)]

≤ −e−LtL‖x(t) − y(t)‖ + e−LtD+‖x(t) − y(t)‖
≤ −e−LtL‖x(t) − y(t)‖ + e−Lt‖ẋ(t) − ẏ(t)‖
= e−Lt

[
− L‖x(t) − y(t)‖ + ‖F (t, x(t)) − F (t, y(t))‖

]
≤ e−Lt

[
− L‖x(t) − y(t)‖ + L‖x(t) − y(t)‖

]
= 0.

Therefore, condition (iii) of Theorem 4.4.1 is satisfied. Conditions (i) and (ii) of
Theorem 4.4.1 are clearly also satisfied. Therefore, x(t) = y(t) for t ∈ [t0, t0 + c)
for some c > 0. �

4.5 Notes and References

The necessary and sufficient conditions for stability and asymptotic stability for au-
tonomous dynamical systems given in Section 4.1, Theorems 4.1.3 and 4.1.4, are
based on results presented in Zubov [8].

The invariance theory for continuous-time dynamical systems determined by semi-
groups defined on metric spaces, given in Section 4.2, is based on work reported in
Hale [1], and the results for the discrete-time case were first reported in Michel
et al. [5].

The results for the Comparison Theory presented in Section 4.3 are based on
material presented in Lakshmikantham and Leela [2] and Miller and Michel [6] con-
cerning Theorems 4.3.1 and 4.3.2, whereas Lemma 4.3.1 and Theorem 4.3.3 are based
on material presented in Michel et al. [5].

The uniqueness result given in Section 4.4, Theorem 4.4.1, is motivated by ex-
isting results for dynamical systems determined by functional differential equations
(Yoshizawa [7]) and differential equations in Banach space (Lakshmikantham and
Leela [2]).

4.6 Problems

In Sections 3.3 and 3.4 we proved several stability and boundedness results for con-
tinuous dynamical systems and discrete-time dynamical systems making use of corre-
sponding results for DDS. In Problems 3.10.4–3.10.12, we asked the reader to prove
the results of Sections 3.3 and 3.4 by invoking the basic definitions for the various
types of stability and boundedness. In Problems 3.10.19–3.10.24, we asked the reader
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to prove some of the results of Sections 3.3 and 3.4 by using the equivalent definitions
for various stability and boundedness concepts (involving comparison functions), es-
tablished in Problems 3.10.15–3.10.18. In the next four problems we ask the reader
to prove some of the results of Sections 3.3 and 3.4 yet another way: by invoking the
comparison theory established in Section 4.3.

Problem 4.6.1 Prove Theorems 3.3.4 and 3.4.4 by using the comparison theorems,
Theorems 4.3.2(f) and 4.3.3(f), respectively.
Hint: Let l = 1. Let y(t) = V (p(t, a, t0), t) for the case when t ∈ T = R

+

and yk = V (p(k, a, k0), k) when k ∈ T = N. Choose g(t, y) ≡ 0 in applying
Theorem 4.3.2 for the case T = R

+ and h(k, y) ≡ 0 in applying Theorem 4.3.3. �

Problem 4.6.2 Prove Theorems 3.3.6 and 3.4.6 by using the comparison theorems,
Theorem 4.3.2(d) and 4.3.3(d), respectively.
Hint: Let l = 1. For T = R

+, let y(t) = V (p(t, a, t0), t) and from (3.3.9) and
(3.3.10), obtain for all t ∈ Ta,t0

Dy(t) ≤ −ψ(y(t)) (4.6.1)

where ψ = ϕ3 ◦ ϕ−1
2 ∈ K. In applying Theorem 4.3.2, let g(t, y) = −ψ(y). In

Problem 3.10.25 we ask the reader to prove that the equilibrium ye = 0 is a uniformly
asymptotically stable equilibrium of the dynamical system SE = S(4.6.2) determined
by the scalar differential equation

ẏ = −ψ(y), y ∈ R
+ (4.6.2)

where ψ ∈ K.
Next, we note that ψ ∈ K∞ if ϕ2, ϕ3 ∈ K∞. In Problem 3.10.26 we ask the reader

to prove that the equilibrium ye = 0 of (4.6.2) is uniformly asymptotically stable in
the large when ψ ∈ K∞. It now follows from Theorem 4.3.2 that (S, M) is also
uniformly asymptotically stable in the large.

The reader can show that for T = N, the proof follows along similar lines, using
Theorem 4.3.3 and Problems 3.10.28 and 3.10.29. �

Problem 4.6.3 Prove Theorems 3.3.7 and 3.4.7 by using the comparison theorems,
Theorems 4.3.2(e) and 4.3.3(e), respectively.
Hint: In the hint given for Problem 4.6.2 we let ϕi(r) = cir

b, ci > 0, b > 0,
r ≥ 0, i = 1, 2, 3. For T = R

+, we have that ψ(r) = (ϕ3 ◦ ϕ−1
2 )(r) = ar, where

a = c3/c2 > 0. System SE = S(4.6.2) is now determined by

ẏ = −ay, y ∈ R
+,

so that y(t) = y0e
−a(t−t0), t ≥ t0. It is clear that in this case (SE , {0}) is ex-

ponentially stable in the large. It now follows from Theorem 4.3.2 that (S, M) is
exponentially stable in the large.

The reader can show that for T = N, the proof follows along similar lines, using
Theorem 4.3.3. �

Problem 4.6.4 Prove Theorems 3.3.5 and 3.4.5, using the comparison theorems,
Theorem 4.3.2(f) and 4.3.3(f), respectively.
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Hint: For both T = R
+ and T = N, if (S, M) is uniformly asymptotically stable in

the large and if M is bounded, then S is uniformly ultimately bounded. This can be
verified from Definitions 3.1.14 and 3.1.16, replacing x0 ∈ X in Definition 3.1.14
by a bounded set M . �

Problem 4.6.5 Consider the initial and boundary value problem for a parabolic partial
differential equation given by

∂u

∂t
(t, x) =

∂2u

∂x2 (t, x) + F (t, x, u), x ∈ [λ1(t), λ2(t)], t ∈ [a, b]

u(a, x) = g(x), x ∈ [λ1(a), λ2(a)]
u(t, λi(t)) = hi(t), t ∈ [a, b], i = 1, 2,

(4.6.3)

where λ0
1 ≤ λ1(t) ≤ λ2(t) ≤ λ0

2 for all t ∈ [a, b], F ∈ C
[
[a, b] × [λ0

1, λ
0
2] × R, R

]
λ1, λ2, h1, h2 ∈ C

[
[a, b], R

]
, g ∈ C

[
[λ0

1, λ
0
2], R

]
and g(λi(a)) = hi(a), i = 1, 2.

Assume that there exists a constant K > 0 such that

F (t, x, u1) − F (t, x, u2) ≤ K(u1 − u2)

for all u1 > u2 and for all (t, x) ∈ [a, b] × [λ0
1, λ

0
2].

By applying Theorem 4.4.1, show that there exists at most one solution of system
(4.6.3).
Hint: For any v1, v2 ∈ X = C[R, R] choose

V (t, v1, v2) = e−2Kt

∫ λ2(t)

λ1(t)
|v1(x) − v2(x)|2dx.

For any two solutions of (4.6.3), ui = ui(t, x), i = 1, 2, using the fact that

u1(t, λ1(t)) = u2(t, λ2(t))

for all t ∈ [t0, b], show that

D+V (t, u1(t, x), u2(t, x)) ≤ −2e−2Kt

∫ λ2(t)

λ1(t)

[
∂u1

∂x
(t, x) − ∂u2

∂x
(t, x)

]2
dx ≤ 0.

To complete the proof, show that the hypotheses of Theorem 4.4.1 are satisfied. �

Problem 4.6.6 Prove the following results.

Theorem 4.6.1 [5] (Comparison Theorem) Let {T,X1, A1, S1} and {T,X2, A2, S2}
be two dynamical systems and let M1 ⊂ A1 ⊂ X1 and M2 ⊂ A2 ⊂ X2. Assume
there exists a function V : X1 × T → X2 that satisfies the following hypotheses.

(i) V(S1) ⊂ S2, where V(S1) is defined as

V(S1)
�
= {q(·, b, t0) : q(t, b, t0) = V (p(t, a, t0), t), p(·, a, t0) ∈ S1, t ∈ T,

with b = V (a, t0) and Tb,t0 = Ta,t0 , a ∈ A1, t0 ∈ T}.
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(ii) M1 and M2 satisfy the relation

M2 ⊃ {x2 ∈ X2 : x2 = V (x1, t
′) for some x1 ∈ M1 and t′ ∈ T},

and A1 and A2 satisfy the relation

A2 ⊃ {x2 ∈ X2 : x2 = V (x1, t
′) for some x1 ∈ A1 and t′ ∈ T}.

(iii) There exist ψ1, ψ2 ∈ K defined on R
+, such that

ψ1(d1(x, M1)) ≤ d2(V (x, t), M2) ≤ ψ2(d1(x, M1)) (4.6.4)

for all x ∈ X1 and t ∈ T , where d1 and d2 are the metrics on X1 and X2,
respectively.

If M1 is closed, then the following statements are true.

(a) The invariance of (S2, M2) implies the invariance of (S1, M1).
(b) The stability, uniform stability, asymptotic stability, and uniform asymptotic

stability of (S2, M2) imply the stability, uniform stability, asymptotic stability,
and uniform asymptotic stability of (S1, M1), respectively.

(c) If in (4.6.4), ψ1(r) = µrν , µ > 0, ν > 0, then the exponential stability of
(S2, M2) implies the exponential stability of (S1, M1).

(d) If in (4.6.4), ψ1, ψ2 ∈K∞, then the asymptotic stability in the large of (S2, M2)
implies the asymptotic stability in the large of (S1, M1).

If M1 and M2 are bounded, but not necessarily closed, and if in (4.6.4), ψ1, ψ2 ∈K∞,
then the following statement is true.

(e) The uniform boundedness and the uniform ultimate boundedness of S2 imply
the uniform boundedness and the uniform ultimate boundedness of S1, respec-
tively.

If M1 and M2 are bounded and closed, and if in (4.6.4), ψ1, ψ2 ∈ K∞, then the
following statement is true.

(f) The uniform asymptotic stability in the large of (S2, M2) implies the uniform
asymptotic stability in the large of (S1, M1).

(g) If in addition, we have in (4.6.4) that ψi(r) = µir
ν , µi > 0, ν > 0, i = 1, 2,

then the exponential stability in the large of (S2, M2) implies the exponential
stability in the large of (S1, M1).

Hint: In each case, use the definitions of the various stability and boundedness con-
cepts to establish the indicated relationships. (The complete proof of this theorem is
given in [5, Section 3.3]). �

In the next results we employ the continuous-time dynamical system SEI de-
termined by the differential inequality (EI) and discrete-time dynamical system
SDI determined by the difference inequality (DI), as comparison systems (refer
to Subsections 4.3A and 4.3B).
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Problem 4.6.7 Prove the following results.

Proposition 4.6.1 Let {T, X, A, S} be a dynamical system and let M ⊂ A ⊂ X .
Let T = R

+ or N. Assume that there exists a function V : X × T → (R+)l that
satisfies the following conditions.

(i) When T = R
+, there exists a function g ∈ C[R+ × (R+)l, Rl] such that

g(t, 0) = 0 for all t ∈ R
+, and such that

D[V (p(t, a, t0), t)] ≤ g(t, V (p(t, a, t0), t)) (4.6.5)

for all p(·, a, t0) ∈ S, t ∈ Ta,t0 .

When T = N, there exists a function h : N×(R+)l → R
l such that h(k, 0) = 0

for all k ∈ N, and such that

V (p(k + 1, a, k0), k + 1) ≤ h(k, V (p(k, a, k0), k)) (4.6.6)

for all p(·, a, k0) ∈ S, k ∈ Ta,k0 .

(ii) There exist functions ψ1, ψ2 ∈ K defined on R
+ such that when T = R

+,

ψ1(d(x, M)) ≤ |V (x, t)| ≤ ψ2(d(x, M)) (4.6.7)

and when T = N,

ψ1(d(x, M)) ≤ |V (x, k)| ≤ ψ2(d(x, M)) (4.6.8)

for all x ∈ X and t ∈ R
+ (resp., k ∈ N), where d denotes the metric defined

on X and | · | denotes the Euclidean norm on R
l.

If M is closed, then the following statements are true.

(a) The invariance of (SEI , {0}) (resp., (SDI , {0})), implies the invariance of
(S, M).

(b) The stability, uniform stability, asymptotic stability, and uniform asymptotic
stability of (SEI , {0}) (resp., (SDI , {0})), imply the corresponding types of
stability of (S, M), respectively.

(c) If in (4.6.7) (resp., in (4.6.8)), ψ1(r) = µrν , µ > 0, ν > 0, then the exponential
stability of (SEI , {0}) (resp., (SDI , {0})), implies the exponential stability of
(S, M).

(d) If in (4.6.7) (resp., in (4.6.8)), ψ1, ψ2 ∈ K∞, then the asymptotic stability in
the large of (SEI , {0}) (resp., (SDI , {0})), implies the asymptotic stability in
the large of (S, M).

If M is bounded (but not necessarily closed), and if in (4.6.7) (resp., in (4.6.8)),
ψ1, ψ2 ∈ K∞, then the following statement is true.

(e) The uniform boundedness and the uniform ultimate boundedness of SEI (resp.,
SDI ), imply the uniform boundedness and the uniform ultimate boundedness
of S, respectively.
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If M is bounded and closed, and if in (4.6.7) (resp., in (4.6.8)), ψ1, ψ2 ∈ K∞, then
the following statements are true.

(f) The uniform asymptotic stability in the large of (SEI , {0}) (resp., (SDI , {0})),
implies the uniform asymptotic stability in the large of (S, M).

(g) If in addition to the conditions of part (f), we have in (4.6.7) (resp., in (4.6.8)),
that ψi(r) = µir

ν , µi > 0, ν > 0, i = 1, 2, then the exponential stability in
the large of (SEI , {0}) (resp., (SDI , {0})), implies the exponential stability in
the large of (S, M).

Hint: In the notation of Theorem 4.6.1, let X = X1, A = A1, and S = S1. Let
R

l = X2 = A2 and SEI = S2 (resp., SDI = S2). Let M = M1, {0} = M2, and
note that V(S1) ⊂ SEI (resp., V(S1) ⊂ SDI ). All statements of the proposition are
now a direct consequence of Theorem 4.6.1. �

In proving Theorems 4.3.2 and 4.3.3, we invoked the basic stability and bound-
edness definitions introduced in Section 3.1. In the next two problems we ask the
reader to use Proposition 4.6.1 to prove these results.

Problem 4.6.8 Prove Theorem 4.3.2 using Proposition 4.6.1 and Theorem 4.3.1. �

Problem 4.6.9 Prove Theorem 4.3.3 using Proposition 4.6.1 and Lemma 4.3.1. �

Problem 4.6.10 Prove relation (4.2.1). �
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Chapter 5

Applications to a Class of
Discrete-Event Systems

In this chapter we apply the stability theory of dynamical systems defined on metric
spaces in the analysis of an important class of discrete-event systems. We first give
a description of the types of discrete-event systems that we consider and we then
show that these discrete-event systems determine dynamical systems (Section 5.1).
Next, we establish necessary conditions for the uniform stability, uniform asymp-
totic stability, and exponential stability of invariant sets with respect to the class of
discrete-event systems considered herein (Section 5.2). We then apply these results
in the analysis of two specific examples, a manufacturing system (Section 5.3) and a
computer network (Section 5.4).

5.1 A Class of Discrete-Event Systems

Discrete-event systems (DES) are systems whose evolution in time is characterized
by the occurrence of events at possibly irregular time intervals. For example, “log-
ical” DES constitute a class of nonlinear discrete-time systems whose behavior can
generally not be described by conventional nonlinear discrete-time systems defined
on R

n. Examples of logical DES models include the standard automata-theoretic
models (e.g., the Moore and Mealy machines). A large class of the logical DES in
turn, can be represented by Petri Nets.

We consider DES described by

G = (X, E , fe, g, Ev) (5.1.1)

where (X, d) is a metric space which denotes the set of states (the metric d is specified
as needed), E is the set of events,

fe : X → X (5.1.2)

173
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for e ∈ E are operators,
g : X → P (E) − {∅} (5.1.3)

is the enable function and Ev ⊂ EN is the set of valid event trajectories. Presently,
for an arbitrary set Z, ZN denotes the set of all sequences {zk}k∈N, where zk ∈ Z
for k ∈ N and P (Z) denotes the power set of Z. We require that fe(x) be defined
only when e ∈ g(x). The inclusion of P (E) − {∅} in the co-domain of g ensures
that there will always exist some event that can occur. If for some physical system,
it is possible that at some state no events occur, we model this by appending a null
event e0. When this occurs, the state remains the same while time advances. We call
G defined in the above manner, a discrete-event system.

We associate “time” indices with states xk ∈ X and corresponding enabled events
ek ∈ E at time k ∈ N if ek ∈ g(xk). Thus, if at state xk ∈ X , event ek ∈ E occurs at
time k∈ N, then the next state is given by xk+1 =fek

(xk). Any sequence {xk}∈XN

such that for all k, xk+1 = fek
(xk), where ek ∈ g(xk), is a state trajectory. The set

of all event trajectories, Eg ⊂ EN, is composed of sequences {ek} ∈ EN having the
property that there exists a state trajectory {xk} ∈ XN where for all k, ek ∈ g(xk).
Hence, to each event trajectory, which specifies the order of the application of the
operators fe, there corresponds a unique state trajectory (but, in general, not vice
versa). We define the set of valid event trajectories Ev ⊂ Eg ⊂ EN as those event
trajectories that are physically possible in the DES G. We let Ev(x0) ⊂ Ev denote
the set of all event trajectories in Ev that initiate at x0 ∈ X . We also utilize a set
of allowed event trajectories, Ea ⊂ Ev , and correspondingly, Ea(x0). All such
event trajectories must be of infinite length. If one is concerned with the analysis of
systems with finite length trajectories, this can be modeled by a null event as discussed
above.

Next, for fixed k ∈ N, let Ek denote an event sequence of k events that have
occurred (E0 =∅ is the empty sequence). If Ek= e0, e1, . . . , ek−1, let EkE ∈Ev(x0)
denote the concatenation of Ek and E = ekek+1, . . . , i.e.,

EkE = e0, e1, . . . , ek−1, ek, ek+1, . . . .

We let x(x0, Ek, k) denote the state reached at time k from x0 ∈ X by application
of an event sequence Ek such that EkE ∈ Ev(x0). By definition, x(x0, ∅, 0) = x0

for all x0 ∈ X . We call x(x0, Ek, ·) a DES motion. Presently, we assume that for all
x0 ∈ X , if EkE ∈ Ev(x0) and Ek′E′ ∈ Ev(x(x0, Ek, k)), then EkEk′E′ ∈ Ev(x0).
Consequently, for all x0 ∈ X , we have

x(x(x0, Ek, k), Ek′ , k′) = x(x0, EkEk′ , k + k′) for all k, k′ ∈ N.

We now define SG,Ev by

SG,Ev = {p(·, x0, k0) : p(k, x0, k0) = x(x0, Ek−k0 , k − k0), k ≥ k0,

k, k0 ∈ N, x0 ∈ X, Ek−k0E ∈ Ev(x0)}. (5.1.4)

Let T = N and A = X . Then {T, X, A, SG,Ev} is a dynamical system in the
sense of Definition 2.2.3. Indeed, it is an autonomous dynamical system (refer to
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Definition 4.1.1). We call {T, X, A, SG,Ev} the dynamical system determined by
the discrete-event system G. In the interests of brevity, we refer to this henceforth
as a dynamical system {X, SG,Ev

}. We define SG,Ea
⊂ SG,Ev

and {X, SG,Ea
}

similarly. We note that (5.1.4) implies that SG,Ev
satisfies Assumption 3.5.1. In

general, however, SG,Ea does not satisfy Assumption 3.5.1.

5.2 Stability Analysis of Discrete-Event Systems

Because discrete-event systems of the type discussed above determine dynamical
systems, the concepts of invariant sets and various types of stability of invariant sets
arise in a natural manner. When (SG,Ev

, M) is invariant, stable, or asymptotically
stable, we say that M is invariant, stable, or asymptotically stable with respect to Ev ,
respectively. The invariance, stability, or asymptotic stability with respect to Ea are
defined similarly.

Theorem 5.2.1 Let {X, SG,Ev} be a discrete-event system and let M ⊂X be closed.
Then M is invariant and stable with respect to Ev if and only if there exist neighbor-
hoods of M , given by Bi = {x ∈ X : d(x, M) < ri}, i = 1, 2, where 0 < r2 ≤ r1,
and a mapping V : B1 → R

+ that satisfies the following conditions.

(i) There exist ψ1, ψ2 ∈ K such that

ψ1(d(x, M)) ≤ V (x) ≤ ψ2(d(x, M))

for all x ∈ B1.

(ii) V (x(x0, Ek, k)) is a nonincreasing function for k ∈ N for all Ek such that
EkE ∈ Ev(x0) whenever x0 ∈ B2.

Proof . Because SG,Ev is an autonomous system that satisfies Assumption 3.5.1, the
theorem is an immediate consequence of Theorem 4.1.3. The choices of B1 and B2
are given as X1 and A1 in Theorem 4.1.3. �

Theorem 5.2.2 Let {X, SG,Ev} be a discrete-event system and let M ⊂X be closed.
Then M is invariant and asymptotically stable with respect to Ev if and only if there
exist neighborhoods of M given by Bi = {x ∈ M : d(x, M) < ri}, i = 1, 2, where
0 < r2 ≤ r1, and a mapping V : B1 → R

+ that satisfies conditions (i) and (ii) of
Theorem 5.2.1, and furthermore, limk→∞ V (x(x0, Ek, k)) = 0 for all Ek such that
EkE ∈ Ev(x0) whenever x0 ∈ B2.

Proof . The proof of this theorem is a direct consequence of Theorem 4.1.4. �

When considering the stability or asymptotic stability of an invariant set M with
respect to Ea, if we replace Ev by Ea everywhere in the statements of Theorems 5.2.1
and 5.2.2, then the “if” parts (i.e., the sufficient conditions) remain true; however, the
“only if” parts of these results (i.e., the necessary conditions) in general do not hold
because we do not require that SG,Ea

satisfy Assumption 3.5.1.
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5.3 Analysis of a Manufacturing System

In Figure 5.3.1 we depict a manufacturing system that processes batches of N different
types of jobs according to a priority scheme. Presently, we use the term “job” in a very
general sense, and the completion of a job may mean, for example, the processing of
a batch of 10 parts, the processing of a batch of 6.53 tasks, and the like. There are
N producers Pi, i = 1, . . . , N , of different types of jobs. The producers Pi place
batches of their jobs in their respective buffers Bi, i = 1, . . . , N . The buffers Bi have
safe capacity limits bi > 0, i = 1, . . . , N. Let xi, i = 1, . . . , N, denote the number
of jobs in buffer Bi. Let xi for i = N + 1, . . . , 2N denote the number of Pi−N type
jobs in the machine. The machine can safely process less than or equal to M > 0 jobs
of any type at any time. As the machine finishes processing batches of Pi type jobs,
they are placed in their respective output bins (Pi-bins). The producers Pi can only
place batches of jobs in their buffers Bi if xi < bi. Also, there is a priority scheme
whereby batches of Pi type jobs are only allowed to enter the machine when xj = 0
for all j such that j < i ≤ N , that is, only when there are no jobs in any buffers to
the left of buffer Bi.

. . . . . .
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Figure 5.3.1: Manufacturing system.

We now specify the DES model G for the present manufacturing system. To this
end we let X = R

2N and xk ∈ X , where (xk)T = (x1, x2, . . . , x2N )k denotes the
state at time k. Let the set of events E be composed of the events ePi

, i = 1, . . . , N
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(representing producer Pi placing a batch of αPi jobs into buffer Bi), the events eai ,
i = 1, . . . , N (representing a batch of αai

Pi jobs from buffer Bi arriving at the
machine for processing), and the events edi

, i = 1, . . . , N (representing a batch of
αdi

Pi jobs departing from the machine after they are processed and placed into their
respective output bins). When using the term ePi type of event, eai type of event,
or edi type of event, we mean an event ePi , eai , or edi for any αPi , αai , or αdi ,
respectively. It is assumed that all jobs are infinitely divisible, so that, for example,
a batch of 5 1

3 jobs can be placed into buffer Bi, 8.563 of these jobs can be placed
into the machine for processing, then 3.14 of these could be processed. We note,
however, that the results described in the following can be modified to be applicable
for discrete jobs as well. Now let γ ∈ (0, 1] denote a fixed parameter. According
to the restrictions imposed in the preceding discussion, the enable function g and the
event operators fe for e ∈ g(xk), are now defined as follows.

(i) If xi < bi for some i = 1, . . . , N , then ePi ∈ g(xk) and

fePi
(xk)T = (x1, . . . , xi + αPi

, . . . , xN , xN+1, . . . , x2N ),

where αPi
≤ |xi − bi|.

(ii) If
∑2N

j=N+1 xj < M , and for some i = 1, . . . , N , xi > 0, and xl = 0 for all l,
l < i ≤ N , then eai ∈ g(xk) and

feai
(xk)T = (x1, . . . , xi − αai , . . . , xN , xN+1, . . . , xN+i + αai , . . . , x2N ),

where γxi ≤ αai
≤ min

{
xi,
∣∣∑2N

j=N+1 xj − M
∣∣}.

(iii) If xi > 0 for any i, i = 1, . . . , N , then edi
∈ g(xk) and

fedi
(xk)T = (x1, . . . , xN , xN+1, . . . , xN+i − αdi

, . . . , x2N ),

where γxN+i ≤ αdi ≤ xN+i.

In case (i), every time that an event ePi
occurs, some amount of jobs arrives at the

buffers but the producers will never overfill the buffers.
In case (ii), the eai are enabled only when the machine is not too full and the ith

buffer has appropriate priority. The amount of jobs that can arrive at the machine
is limited by the number available in the buffers and by how many the machine can
process at once. We require that γxi ≤ αai so that nonnegligible batches of jobs
arrive when they are allowed.

In case (iii), the constraints on αdi ensure that the number of jobs that can depart
the machine is limited by the number of jobs in the machine and that nonnegligible
amounts of jobs depart from the machine.

We let Ev = Eg; that is, the set of all event trajectories is defined by g and fe for
e ∈ g(xk). The manufacturing system operates in a standard asynchronous fashion.

Now let

M =
{

x ∈ X : xi ≤ bi, i = 1, . . . , N, and
2N∑

j=N+1

xj ≤ M

}
(5.3.1)
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which represents all states for which the manufacturing system is in a safe operating
mode. It is easy to see that M is invariant by letting xk ∈ M and by showing that no
matter which event occurs, it will always be true that the next state xk+1 ∈ M .

In the following, we study the stability properties of the manufacturing system
formulated above. Our results show that under conditions when our manufacturing
system starts in an unsafe mode (too many jobs in a buffer, or in the machine, or in
both), it will eventually return to a safe operating condition.

To simplify our notation, we let (xk)T=(x1, . . . , x2N ), (xk+1)T=(x′
1, . . . , x

′
2N ),

x̃ = (x̃1, . . . , x̃2N )T , and x̃′ = (x̃′
1, . . . , x̃

′
2N )T , suppressing the “k” notation as

indicated. For this manufacturing system example we take

d(x, M) = inf
{ 2N∑

j=1

|xj − x̃j | : x̃ ∈ M

}
. (5.3.2)

Proposition 5.3.1 For the manufacturing system, the closed invariant set M defined
in (5.3.1) is stable with respect to Ev . �

Proof . We choose V (xk) = d(xk, M). We show that the function V (xk) satisfies
hypotheses (i) and (ii) of Theorem 5.2.1 for all xk �∈ M .

Hypothesis (i) follows directly from the choice of V (xk). To verify that V (xk)
satisfies hypothesis (ii) we show that V (xk) ≥ V (xk+1) for all xk �∈ M , no matter
what event e ∈ g(xk) occurs, causing xk+1 = fe(xk), whenever it lies on an event
trajectory in Ev .

(a) For xk �∈ M , if ePi
occurs for some i, i = 1, . . . , N , we need to show that

inf
{ 2N∑

j=1

|xj − x̃j | : x̃ ∈ M

}
≥ inf

{ 2N∑
j=1,j �=i

|xj − x̃′
j |+ |xi +αPi − x̃′

i| : x̃′ ∈ M

}
.

(5.3.3)
It suffices to show that for all x̃ ∈ M at which the inf is achieved on the left of (5.3.3),
there exists x̃′ ∈ M such that

2N∑
j=1

|xj − x̃j | ≥
2N∑

j=1,j �=i

|xj − x̃′
j | + |xi + αPi − x̃′

i|. (5.3.4)

If we choose x̃′
l = x̃l for all l �= i, then it suffices to show that for all x̃i, 0 ≤ x̃i ≤ bi,

at which the inf on the left side of (5.3.3) is achieved, there exists x̃′
i, 0 ≤ x̃′

i ≤ bi,
such that

|xi − x̃i| ≥ |xi + αPi − x̃′
i| (5.3.5)

where αPi
≤ |xi − bi|. Choosing x̃′

i = xi + αPi , so that 0 ≤ x̃′
i ≤ bi, results in

x̃′ ∈ M , and relation (5.3.5) is satisfied.
(b) For xk �∈ M , if eai occurs for some i, i = 1, . . . , N , then following the above

approach, it suffices to show that for all x̃ ∈ M at which the inf is achieved, there
exists x̃′ ∈ M such that

2N∑
j=1

|xj−x̃j | ≥
2N∑

j=1,j �=i,N+i

|xj−x̃′
j |+|xi−αai−x̃′

i|+|xN+i+αai−x̃′
N+i|. (5.3.6)
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Choose x̃′
l = x̃l for all l �= i, N + i. It suffices to show that for all x̃i and x̃N+i, there

exist x̃′
i, x̃

′
N+i, such that

|xi − x̃i| ≥ |xi − αai − x̃′
i| (5.3.7)

and
|xN+i − x̃N+i| ≥ |xN+i + αai

− x̃′
N+i|. (5.3.8)

For (5.3.7), if xi ≤ bi, then the inf is achieved so that |xi − x̃i| = |xi −αai
− x̃′

i| = 0,
whereas if xi > bi, the inf is achieved at x̃i = bi. Therefore, |xi−bi| ≥ |xi−αai −x̃′

i|,
because either x̃′

i = bi or x̃′
i = xi − αai

. The case for (5.3.8) is similar to case (a)
above.

The proof for when edi
occurs is similar to the case for (5.3.8). �

We note that for the above manufacturing system, the closed set M specified in
(5.3.1) is not asymptotically stable in the large with respect to Ev . (We ask the reader
to prove this assertion in the problem section. Alternatively, the reader may wish to
refer to [13, Proposition 2] for the proof.)

In the following, we identify a hypothesis that ensures asymptotic stability in the
large for the above manufacturing system. To this end, we let Ea ⊂ Ev denote the set
of event trajectories such that each type of event ePi , eai and edi , i = 1, . . . , N , occurs
infinitely often on each event trajectory E ∈ Ea. If we assume for the manufacturing
system that only events which lie on event trajectories in Ea occur, then it is always
the case that eventually each type of event (ePi , eai and edi , i = 1, . . . , N ) will occur.

Proposition 5.3.2 For the manufacturing system, the closed invariant set M given
in (5.3.1) is asymptotically stable in the large with respect to Ea where Ea ⊂ Ev is as
defined above. �

Proof . By Proposition 5.3.1, M is stable with respect to Ea. To establish asymptotic
stability, we show that V (xk) → 0 for all Ek such that EkE ∈ Ea(x0) as k → ∞
for all xk �∈ M .

Because αai ≥ γxi and αdi ≥ γxN+i, where γ ∈ (0, 1], if eai and edi , i =
1, . . . , N , occur infinitely often (as the restrictions on Ea guarantee), xi and xN+i will
converge so that V (xk) → 0 as k → ∞ (of course it could happen that V (xk) = 0
for some finite k). Therefore, if the manufacturing system starts out in an unsafe
operating mode, it will eventually enter a safe operating mode. �

5.4 Load Balancing in a Computer Network

We consider a computer network specified by a digraph (C, A) where C={1, . . ., N}
represents a set of computers labeled by i ∈ C and A ⊂ C × C specifies the set of
connections; that is, if (i, j) ∈ A, then computer i is connected to computer j. We
require that every computer is connected to the network so that if i ∈ C, then there
exists a pair (i, j) ∈ A or a pair (j, i) ∈ A for some j ∈ C. Also, we assume that if
(i, j) ∈ A, then (j, i) ∈ A and furthermore, if (i, j) ∈ A, then i �= j. We assume that
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for each computer there is a buffer that holds tasks (the load), and we assume that
each task (load) can be executed by any of the computers in the network. We let the
load of computer i ∈ C be denoted xi ≥ 0 and we assume that each connection in
the network, (i, j) ∈ A, allows computer i to pass a portion of its load to computer j.
We also assume that in the case of every connection (i, j), computer i is able to sense
the size of the load of computer j, and furthermore, when (i, j) �∈ A, then computer
i cannot pass a load directly to computer j, nor can computer i sense the load of
computer j.

We assume that the initial load distribution in the computer network is uneven and
we wish to establish rules (resp., an algorithm) under which a more even load distri-
bution in the computer network is realized. We assume that no tasks are performed
by any of the computers during the load-balancing process.

In the literature, distinctions are made between continuous loads (also called fluid
loads) and discrete loads. In the former case, it is assumed that the computer load is
infinitely divisible whereas in the case of the latter, a load is a multiple of a uniformly
sized block that is not divisible. In the following, we consider only continuous loads.

We next specify the discrete-event system model G for the computer balancing
problem described above. To this end, we let X = R

N denote the state space, and we
let xk = (x1, . . . , xN )T and xk+1 = (x′

1, . . . , x
′
N )T denote the state at times k and

k +1, respectively. Let eij
αk

denote the event that a load of amount αk is passed from
computer i to computer j at time k. If the state is xk, then for some (i, j) ∈ A, eij

αk

occurs to produce the next state xk+1. Let E = {eij
α : (i, j) ∈ A, α ∈ R+} denote

the infinite set of events. (Note that eij
0 are valid events.) In the following, “an event

of type eij
α ” means the passing of a load of the amount α > 0 from computer i to

computer j.
We now specify the enable function g and the event operator fe for e ∈ g(xk).

We choose the parameter γ ∈ (0, 1/2].
(i) If for any (i, j) ∈ A, xi > xj , then eij

α ∈ g(xk) and fe(xk) = xk+1 where
e = eij

α , x′
i = xi − α, x′

j = xj + α, x′
l = xl for all l �= i, l �= j, and

γ|xi − xj | ≤ α ≤ (1/2)|xi − xj |.
(ii) If for any (i, j) ∈ A, xi = xj , then eij

0 ∈ g(xk) and fe(xk) = xk where
e = eij

0 .

Let Ev = Eg and let Ea ⊂ Ev denote the set of event trajectories such that events of
each type eij

α occur infinitely often on each E ∈ Ea. This assumption ensures that each
pair of connected computers will continually try to balance the load between them.

In order to ensure load balancing, we make use of the set

M =
{
x ∈ X : xi = xj for all (i, j) ∈ A

}
, (5.4.1)

which represents perfect load balancing. It is easy to show that M is invariant by
letting xk ∈ M and then showing that no matter which event occurs, xk+1 ∈ M .

Proposition 5.4.1 For the computer network load-balancing problem, the following
is true.

(a) M is stable with respect to Ev .
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(b) M is not asymptotically stable with respect to Ev .

(c) M is asymptotically stable in the large with respect to Ea ⊂ Ev . �

In proving Proposition 5.4.1, one proceeds similarly as was done in the proof
of Propositions 5.3.1 and 5.3.2 for the manufacturing system. In the proof of
Proposition 5.4.1, we find it convenient to choose as the distance function

d(x, M) = inf
{

max{|x1 − x̃1|, . . . , |xN − x̃N |} : x̃ ∈ M
}

where x = (x1, . . . , xN )T and x̃ = (x̃1, . . . , x̃N )T , and as the Lyapunov function

V (x) = d(x, M),

and applying the results of Section 5.2. We leave the details of these proofs as an
exercise for the reader.

5.5 Notes and References

The applications to discrete-event systems presented in this chapter are based on [8],
[9], and [13]. For additional background material on discrete-event systems, refer,
for example, to [1], [3], and [15].

The manufacturing system considered in Section 5.3 is a generalization of systems
used in the study of a simple “mutual exclusion problem” in the computer science
literature (see, e.g., [7] and [10]) and is similar to several applications addressed in
the DES literature (e.g., [6] and [15]).

The results of Section 5.3 have been extended in [11] and [12] to be applicable to
“discrete” jobs.

Usage of the set Ea in Proposition 5.3.2 imposes what is called in the computer
science literature a “fairness constraint” (see, e.g., [5]). One can guarantee that this
constraint is met using a mechanism for sequencing access to the machine. Such
fairness constraints have also been used in the study of temporal logic (e.g., [3] and
[7]) and the mutual exclusion problem in the computer science literature (e.g., [14]).

The load-balancing problem presented in Section 5.4 was motivated by a similar
problem studied in [1]. Various other forms of this problem have also been addressed
in the DES literature (e.g., [2]) and in the computer science literature (e.g., [1], [2],
and [4]), and in the numerous references cited in these sources.

5.6 Problems

Problem 5.6.1 For the manufacturing system discussed in Section 5.3, let M denote
the closed invariant set defined in (5.3.1). Prove that M is not asymptotically stable
in the large with respect to Ev , where Ev is the same as in Proposition 5.3.1.

Hint: Let xi > bi for all i = 1, . . . , N , where the bi are as defined in (5.3.1). Choose
xN+i > 0 for some i so that edi

occurs, to process Pi type jobs and to put them into the
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Pi-bin. For each successive time αdi = γxN+i, it can happen that E = ediediedi · · ·
(a constant string) and E ∈ Ev . This shows that M is not asymptotically stable in the
large with respect to Ev . �

Problem 5.6.2 The matrix equations that describe the dynamical behavior of a Petri
net P are given by

Mk+1 = Mk + AT uk (5.6.1)

where k ∈ N, Mk ∈ N
m, A is an n×m matrix of integers (the incidence matrix), and

uk ∈ {0, 1}n denotes a firing vector (refer, e.g., to [8], [9], and [10] for background
material on Petri nets). A Petri net P is said to be uniformly bounded (resp., uniformly
ultimately bounded) if the motions of the dynamical system determined by (5.6.1) are
uniformly bounded (resp., uniformly ultimately bounded). Prove that the following
statements are true.

(a) A Petri net P is uniformly bounded if there exists an m-vector ϕ > 0 such that
Aϕ ≤ 0 (inequality of vectors is understood to be componentwise).

(b) A Petri net P is uniformly ultimately bounded if there exist an m-vector ϕ > 0
and an n-vector b > 0 such that Aϕ ≤ −b.

Hint: Apply Theorems 3.4.4 and 3.4.5 with the choice of M = {0} and V (x) = xT ϕ
for x = (n1, . . . , nm) ∈ N

m. �

Problem 5.6.3 Prove Proposition 5.4.1, using the hints given in Section 5.4. �
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Chapter 6

Finite-Dimensional
Dynamical Systems

In the present chapter we apply the results of Chapter 3 (for the stability of invari-
ant sets and the boundedness of motions of general dynamical systems defined on
metric spaces) in the analysis of continuous finite-dimensional dynamical systems
determined by differential equations (E), discrete-time finite-dimensional dynamical
systems determined by difference equations (D), and finite-dimensional discontin-
uous dynamical systems. When considering various stability types, our focus is on
invariant sets that are equilibria.

This chapter consists of eight parts. In the first section we introduce some im-
portant preliminary results which we require throughout the chapter. In the second,
third, and fourth sections we present the principal Lyapunov stability and bound-
edness results for continuous dynamical systems, discrete-time dynamical systems,
and discontinuous dynamical systems, respectively. Throughout these sections we
consider specific examples to demonstrate applications of the various results. In the
fifth, sixth, and seventh sections we establish converse theorems for the results of
the second, third, and fourth sections, respectively. In the eighth section we provide
some background material concerning the continuous dependence of the solutions of
ordinary differential equations on initial conditions.

The results of the present chapter are general and fundamental in nature. In the next
chapter, where we continue the qualitative analysis of finite-dimensional dynamical
systems, we concentrate on important specialized results.

6.1 Preliminaries

In this section we present preliminary material which we require throughout this
chapter. The present section is organized into seven parts. In the first three subsec-
tions we recall facts concerning finite-dimensional dynamical systems determined
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by ordinary differential equations, ordinary difference equations, and discontinuous
dynamical systems, respectively. In the fourth subsection we rephrase the various
definitions of stability and boundedness given in Chapter 3 for dynamical systems de-
fined on metric spaces, for the case of finite-dimensional dynamical systems (defined
on R

n). In the fifth subsection we introduce several characterizations of Lyapunov
functions and in the sixth subsection we discuss an important special class of Lya-
punov functions, quadratic forms. In the final subsection we present some geometric
interpretations and motivation for Lyapunov stability results (for two-dimensional
autonomous systems).

Before proceeding, a comment concerning the notation that we employ in the
remainder of this book to designate Lyapunov functions is in order. When address-
ing general dynamical systems, {T, X, A, S}, defined on metric spaces, we used
uppercase letters in Chapters 3 and 4 to denote such functions (V -functions). In
keeping with the notation most frequently used in texts on specific classes of finite-
dimensional and infinite-dimensional dynamical systems, we use lowercase letters to
denote Lyapunov functions when dealing with such systems.

A. Dynamical systems determined by ordinary differential
equations

We consider systems of first-order ordinary differential equations of the form

ẋ = f(t, x) (E)

where t ∈ R
+, x ∈ Ω ⊂ R

n, ẋ = dx/dt, and f : R
+ × Ω → R

n. We assume
that Ω is an open connected set and that 0 ∈ Ω. We always assume that for each
(t0, x0) ∈ R

+ × Ω, (E) possesses at least one solution (refer to Theorem 2.3.1),
we sometimes require that these solutions be unique (refer to Theorem 2.3.2) and
we usually (but not always) require that the solutions, denoted by ϕ(t, t0, x0), exist
for all t ∈ [t0,∞). Recall that ϕ(t0, t0, x0) = x0. Under the assumption that
f ∈ C[R+ × Ω, Rn], the solutions ϕ(t, t0, x0) of (E) are continuous with respect to
initial conditions (t0, x0) (refer to the appendix section, Section 6.8). Recall that (E)
determines a dynamical system {T, X, A, SE} where T = R

+, X = R
n, A ⊂ X ,

and SE denotes the set of motions determined by (E). We usually denote this system
simply by SE (refer to Subsection 2.3C).

In the present chapter we study primarily the stability properties of invariant sets
M ⊂ R

n for the special case when M = {xe} ⊂ R
n, and the boundedness of SE .

Recall that in this case we say that xe is an equilibrium (resp., equilibrium point)
of (E).

In Example 3.1.3 we noted that if f(t, xe) = 0 for all t ∈ R
+, then {xe} = M

is an invariant set with respect to SE (i.e., (SE , M) is invariant). Furthermore, it is
easily shown that when (E) possesses a unique solution for every (t0, x0) ∈ R

+ ×Ω,
then (SE , {xe}) is invariant if and only if f(t, xe) = 0 for all t ∈ R

+.
To simplify our language throughout this chapter, we say that “xe is an equilibrium

of (E)”, rather than “the set {xe} is invariant with respect to SE” (or, “(SE , {xe})
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is invariant”); “the equilibrium xe of (E) is asymptotically stable”, rather than “the
invariant set {xe} of (E) is asymptotically stable” (or, “(SE , {xe}) is asymptotically
stable”); and so forth.

Without loss of generality, we may assume that a given equilibrium xe of (E) is
located at the origin (i.e., xe = 0). To see this, suppose that xe �= 0 is an equilibrium
of (E). Let y = x − xe and f̄(t, y) = f(t, y + xe). Then (E) can be written as

ẏ = f̄(t, y),

with f̄(t, 0) = 0 for all t ∈ R
+.

As in Chapter 3, we employ Lyapunov functions v ∈ C[B(r) × R
+, R] where

B(r) ⊂ Ω, B(r) = {x ∈ R
n : |x| < r} with r > 0. For such functions, we

define the upper-right derivative of v with respect to t along the solutions of (E)
(ϕ(·, t, x)) by

v′
(E)(x, t) = lim

∆t→0+
sup

ϕ(t,t,x)=x

1
∆t

[
v(ϕ(t + ∆t, t, x), t + ∆t) − v(x, t)

]
(6.1.1)

which is defined on B(r) × R
+. When for each (t0, x0) ∈ R

+ × B(r), (E) has a
unique solution, (6.1.1) reduces to

v′
(E)(x, t) = lim

∆t→0+

1
∆t

[
v(ϕ(t + ∆t, t, x), t + ∆t) − v(x, t)

]
. (6.1.2)

If in addition, v satisfies a local Lipschitz condition in x, that is, for each T > 0 there
exists a constant L > 0 such that

|v(x, t) − v(y, t)| ≤ L|x − y|

for all x, y ∈ B(r) and all t ∈ [0, T ], then (6.1.2) can equivalently be expressed as

v′
(E)(x, t) = lim

∆t→0+

1
∆t

[
v(x + (∆t)f(t, x), t + ∆t) − v(x, t)

]
. (6.1.3)

(We ask the reader to verify (6.1.3).) Finally, if in addition to the above assumptions,
we have v ∈ C1[B(r) × R

+, R], then (6.1.3) assumes the equivalent form

v′
(E)(x, t) =

n∑
i=1

∂v

∂xi
(x, t)fi(t, x) +

∂v

∂t
(x, t) (6.1.4)

where f(t, x) = [f1(t, x), . . . , fn(t, x)]T is given in (E).

B. Dynamical systems determined by ordinary difference
equations

We now consider systems of first-order ordinary difference equations of the form

x(k + 1) = f(k, x(k)) (D)
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where k ∈ N, x(k) ∈ Ω ⊂ R
n, and f : N × Ω → Ω. We assume that Ω is an

open connected set and that 0 ∈ Ω. For each (k0, x0) ∈ N × Ω there exists a
unique solution ϕ(k, k0, x0) with ϕ(k0, k0, x0) = x(k0) = x0. We recall that (D)
determines a dynamical system {T, X, A, SD} where T = N, X = R

n, A ⊂ X , and
SD denotes the set of motions determined by (D). We usually denote this system
simply by SD (refer to Section 2.5).

As in the case of dynamical systems determined by (E), we concentrate primarily
in studying the qualitative properties of an equilibrium xe of D (i.e., in studying the
stability properties of an invariant set M = {xe}). It is easily shown that a point
xe ∈ Ω is an equilibrium of (D) if and only if

xe = f(k, xe)

for all k ∈ N. As in the case of ordinary differential equations, we may assume
without loss of generality that the equilibrium xe of (D) is located at the origin
(xe = 0).

Finally, we let ϕ(k, k0, x0) denote any solution of (D) with initial conditions
ϕ(k0, k0, x0) = x(k0) = x0. For a function v ∈ C[Ω × N, R], we define the first
forward difference of v with respect to k along the solutions of (D) by

∆(D)v(x, k) = v(ϕ(k + 1, k, x), k + 1) − v(ϕ(k, k, x), k)
= v(f(k, x), k + 1) − v(x, k). (6.1.5)

C. Discontinuous dynamical systems (DDS)

In the present chapter we address finite-dimensional discontinuous dynamical systems
(finite-dimensional DDS), {T, X, A, S}, where T = R

+, Rn = X ⊃ A, and the
motions of S are determined by the solutions ϕ(·, t0, x0) of discontinuous ordinary
differential equations of the type specified later. As in Chapter 3 we assume that the
set of times at which discontinuities may occur is unbounded and discrete and is of
the form

Eϕ = {τϕ
1 , τϕ

2 , . . . : τϕ
1 < τϕ

2 < · · · }.
In the above expression, Eϕ signifies that in general, different motions may possess
different sets of times at which discontinuities may occur. Usually, the particular set
Eϕ in question is clear from context and accordingly, we suppress the ϕ-notation and
simply write

E = {τ1, τ2, . . . : τ1 < τ2 < · · · }.
We find it sometimes useful to express the motions (solutions) of finite-dimensional
DDS by

ϕ(t, t0, x0) = x(k)(t, τk, xk), τk ≤ t < τk+1, k ∈ N,

where t0 = τ0 and x0 are given initial conditions. Throughout, we assume that S
contains the trivial solution ϕ(t, t0, 0) = 0 for all t ≥ t0 so that (S, {0}) is invariant;
that is, xe = 0 is an equilibrium for the finite-dimensional DDS.
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The most general specific class of finite-dimensional DDS that we consider is
generated by differential equations of the form (refer to Subsection 2.12A).{

ẋ(t) = fk(t, x(t)), τk ≤ t < τk+1

x(t) = gk(x(t−)), t = τk+1, k ∈ N,
(SE)

where for each k ∈ N, fk ∈ C[R+ × R
n, Rn], gk : R

n → R
n, and x(t−) =

limt′→t,t′<t x(t′) denotes the left limit of x(t′) at t′ = t.
As in Subsection 2.12A, associated with (SE), we consider the family of initial

value problems given by {
ẋ(t) = fk(t, x(t))
x(τk) = xk,

(SEk)

k∈N. We assume that for (τk, xk), (SEk) possesses a unique solution x(k)(t, τk, xk)
that exists for all t ∈ [τk,∞) (refer to Section 2.3 for conditions that ensure this).
Then for every (t0, x0) ∈ R

+ × R
n, t0 = τ0, (SE) has a unique solution ϕ(t, t0, x0)

that exists for all t ∈ [t0,∞). This solution is made up of a sequence of continuous
solution segments x(k)(t, τk, xk) defined over the intervals [τk, τk+1), k ∈ N, with
initial conditions (τk, xk), where xk = x(τk) = gk−1(x(τ−

k )), k = 1, 2, . . . , and the
initial conditions (τ0 = t0, x0) are given. At the points {τk+1}, k ∈ N, the solutions
of (SE) may have possible jumps, or the four derivatives D+ϕ, D+ϕ, D−ϕ, and
D−ϕ may not be equal, or ϕ may be continuous.

We assume that for each k ∈ N, fk(t, 0) = 0 for all t ≥ τk. Then xe = 0 will be
an equilibrium for (SEk) and (SE).

D. Qualitative characterizations: Stability and boundedness
At this point it might be instructive to rephrase the various stability and bounded-
ness concepts given in Definitions 3.1.6–3.1.20 for the case of finite-dimensional
dynamical systems. We consider here only systems determined by ordinary differ-
ential equations. The various stability and boundedness definitions for discrete-time
systems determined by difference equations involve obvious modifications.

Let X = R
n, M = {0}, T = R

+, and d(x, y) = |x − y| for all x, y ∈ R
n

where | · | denotes any one of the equivalent norms on R
n. Also, note that for any

x ∈ R
n, d(x, 0) = |x|. From Definitions 3.1.6–3.1.20 we now have the following

characterizations of the equilibrium xe = 0 of (E) and the solutions of (E).

Definition 6.1.1 (a) The equilibrium xe = 0 of (E) is stable if for every ε > 0 and
any t0 ∈ R

+ there exists a δ(ε, t0) > 0 such that for all solutions of (E),

|ϕ(t, t0, x0)| < ε for all t ≥ t0 (6.1.6)

whenever

|x0| < δ(ε, t0). (6.1.7)
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If in (6.1.7) δ(ε, t0) is independent of t0 (i.e., δ(ε, t0) = δ(ε)), then the equilibrium
xe = 0 of (E) is said to be uniformly stable. (Note that in this definition the solutions
ϕ(t, t0, x0) exist over [t0, t1) where t1 may be finite or infinite.)

(b) The equilibrium xe = 0 of (E) is asymptotically stable if

(1) it is stable; and
(2) for every t0 ≥ 0 there exists an η(t0)> 0 such that limt→∞ ϕ(t, t0, x0)=0

for all solutions of (E) whenever |x| < η(t0).
When (2) is true, we say that the equilibrium xe = 0 of (E) is attractive. Also,

the set of all x0 ∈ R
n such that ϕ(t, t0, x0) → 0 as t → 0 for some t0 ≥ 0 is called

the domain of attraction of the equilibrium xe = 0 of (E) (at t0).

(c) The equilibrium xe = 0 of (E) is uniformly asymptotically stable if
(1) it is uniformly stable; and
(2) for every ε> 0 and every t0 ∈R

+, there exist a δ0 > 0, independent of t0
and ε, and a T (ε)> 0, independent of t0, such that for all solutions of (E)

|ϕ(t, t0, x0)| < ε for all t ≥ t0 + T (ε)

whenever |x0| < δ0.

When (2) is true, we say that the equilibrium xe = 0 of (E) is uniformly attractive.
Note that condition (2) is often paraphrased by saying that there exists a δ0 > 0
such that

lim
t→∞ ϕ(t + t0, t0, x0) = 0

uniformly in (t0, x0) for t0 ≥ 0 and for |x0| ≤ δ0.

(d) The equilibrium xe = 0 of (E) is exponentially stable if there exists an α > 0
and for every ε > 0 and every t0 ≥ 0, there exists a δ(ε) > 0 such that for all
solutions of (E)

|ϕ(t, t0, x0)| ≤ εe−α(t−t0) for all t ≥ t0

wherever |x0| < δ(ε).
As in Chapter 3, we note that the exponential stability of the equilibrium xe = 0

of (E) implies its uniform asymptotic stability.

(e) A solution ϕ(t, t0, x0) of (E) is bounded if there exists a β > 0 such that
|ϕ(t, t0, x0)| < β for all t ≥ t0, where β may depend on each solution. System (E)
is said to possess Lagrange stability if for each t0 ≥ 0 and x0 ∈ R

n, the solution
ϕ(t, t0, x0) is bounded.

(f) The solutions of (E) are uniformly bounded if for any α > 0 and every t0 ∈ R
+,

there exists a β = β(α) > 0 (independent of t0) such that if |x0| < α, then
|ϕ(t, t0, x0)| < β for all t ≥ t0. (To arrive at this definition, we choose in Defi-
nition 3.1.13, without loss of generality, that x0 = 0.)

(g) The solutions of (E) are uniformly ultimately bounded (with bound B) if there
exists a B > 0 and if corresponding to any α > 0 and for every t0 ∈ R

+, there exists



Section 6.1 Preliminaries 191

a T =T (α) > 0 (independent of t0) such that |x0|< α implies that |ϕ(t, t0, x0)| <B
for all t ≥ t0 + T (α).

(h) The equilibrium xe = 0 of (E) is asymptotically stable in the large if it is
stable and if every solution of (E) tends to zero as t → ∞. In this case, the domain
of attraction of the equilibrium xe = 0 of (E) is all of R

n and xe = 0 is the only
equilibrium of (E).

(i) The equilibrium xe =0 of (E) is uniformly asymptotically stable in the large if

(1) it is uniformly stable;

(2) the solutions of (E) are uniformly bounded; and

(3) for any α > 0, any ε > 0 and every t0 ∈ R
+, there exists a T (ε, α) > 0,

independent of t0, such that if |x0| < α, then for all solutions of (E), we
have |ϕ(t, t0, x0)| < ε for all t ≥ t0 + T (ε, α).

When (3) is true, we say that the equilibrium xe = 0 of (E) is globally uniformly
attractive (resp., uniformly attractive in the large).

(j) The equilibrium xe = 0 of (E) is exponentially stable in the large if there exist
an α > 0 and a γ > 0, and for any β > 0, there exists a k(β) > 0 such that for all
solutions of (E),

|ϕ(t, t0, x0)| ≤ k(β)|x0|γe−α(t−t0) for all t ≥ t0

whenever |x0| < β.

(k) The equilibrium xe = 0 of (E) is unstable if it is not stable. In this case, there
exist a t0 ≥ 0 and a sequence x0m → 0 of initial points and a sequence {tm ≥ 0}
such that |ϕ(t0 + tm, t0, x0m)| ≥ ε for all m. �

E. Some characterizations of Lyapunov functions

We now address several important properties that Lyapunov functions may possess.
We first consider the case w : B(r) → R (resp., w : Ω → R) where B(r) ⊂ Ω ⊂ R

n,
B(r) = {x ∈ R

n : |x| < r} for some r > 0, Ω is an open connected set, and
0 ∈ Ω.

Definition 6.1.2 A function w ∈ C[B(r), R] (resp., w ∈ C[Ω, R]) is said to be
positive definite if

(i) w(0) = 0; and

(ii) w(x) > 0 for all x �= 0. �

Definition 6.1.3 A function w ∈ C[B(r), R] (resp., w ∈ C[Ω, R]) is said to be
negative definite if −w is positive definite. �

Definition 6.1.4 A function w ∈ C[Rn, R] is said to be radially unbounded if

(i) w(0) = 0;
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(ii) w(x) > 0 for all x ∈ (Rn − {0}); and

(iii) w(x) → ∞ as |x| → ∞. �

Definition 6.1.5 A function w ∈ C[B(r), R] (resp., w ∈ C[Ω, R]) is said to be
indefinite if

(i) w(0) = 0; and

(ii) in every neighborhood of the origin x = 0, w assumes negative and positive
values. �

Definition 6.1.6 A function w ∈ C[B(r), R] (resp., w ∈ C[Ω, R]) is said to be
positive semidefinite if

(i) w(0) = 0; and

(ii) w(x) ≥ 0 for all x ∈ B(r) (resp., x ∈ Ω). �

Definition 6.1.7 A function w ∈ C[B(r), R] (resp., w ∈ C[Ω, R]) is said to be
negative semidefinite if −w is positive semidefinite. �

Next, we consider the case v ∈ C[B(r) × R
+, R] (resp., v ∈ C[Ω × R

+, R]).

Definition 6.1.8 A function v ∈ C[B(r)× R
+, R] (resp., v ∈ C[Ω× R

+, R]) is said
to be positive definite if there exists a positive definite function w ∈ C[B(r), R]
(resp., w ∈ C[Ω, R]) such that

(i) v(0, t) = 0 for all t ≥ 0; and

(ii) v(x, t) ≥ w(x) for all t ≥ 0 and all x ∈ B(r) (resp., x ∈ Ω). �

Definition 6.1.9 A function v ∈ C[B(r)× R
+, R] (resp., v ∈ C[Ω× R

+, R]) is said
to be negative definite if −v is positive definite. �

Definition 6.1.10 A function v ∈ C[Rn × R
+, R] is said to be radially unbounded

if there exists a radially unbounded function w ∈ C[Rn, R] such that

(i) v(0, t) = 0 for all t ≥ 0; and

(ii) v(x, t) ≥ w(x) for all t ≥ 0 and all x ∈ R
n. �

Definition 6.1.11 A function v ∈ C[B(r)×R
+, R] (resp., v ∈ C[Ω×R

+, R]) is said
to be decrescent if there exists a positive definite function w ∈ C[B(r), R] (resp.,
w ∈ C[Ω, R]) such that

|v(x, t)| ≤ w(x)

for all (x, t) ∈ B(r) × R
+ (resp., (x, t) ∈ Ω × R

+). �

Definition 6.1.12 A function v ∈ C[B(r) × R
+, R] (resp., v ∈ C[Ω × R

+, R]) is
said to be positive semidefinite if

(i) v(0, t) = 0 for all t ∈ R
+; and

(ii) v(x, t) ≥ 0 for all t ∈ R
+ and all x ∈ B(r) (resp., x ∈ Ω). �



Section 6.1 Preliminaries 193

Definition 6.1.13 A function v ∈ C[B(r) × R
+, R] (resp., v ∈ C[Ω × R

+, R]) is
said to be negative semidefinite if −v is positive semidefinite. �

Some of the preceding characterizations of v-functions (and w-functions) can
be rephrased in equivalent and very useful ways. In doing so, we use comparison
functions of class K and class K∞.

Theorem 6.1.1 A function v ∈ C[B(r) × R
+, R] (resp., v ∈ C[Ω × R

+, R]) is
positive definite if and only if

(i) v(0, t) = 0 for all t ∈ R
+; and

(ii) there exists a function ψ ∈ K defined on [0, r] (resp., on R
+) such that

v(x, t) ≥ ψ(|x|)

for all t ∈ R
+ and all x ∈ B(r) (resp., x ∈ Ω).

Proof . If v(x, t) is positive definite, then there exists a positive definite function
w(x) such that v(x, t) ≥ w(x) for t ∈ R

+ and |x| ≤ r. Define

ψ0(s) = inf{w(x) : s ≤ |x| ≤ r}

for 0 < s ≤ r. Clearly ψ0 is a positive and nondecreasing function such that
ψ0(|x|) ≤ w(x) on 0 < |x| ≤ r. Because ψ0 is continuous, it is Riemann integrable.
Define the function ψ by ψ(0) = 0 and

ψ(u) = u−1
∫ u

0
(s/r)ψ0(s)ds, 0 < u ≤ r.

Clearly 0 < ψ(u) ≤ ψ0(u) ≤ w(x) ≤ v(x, t) if t ≥ 0 and |x| = u. Moreover, ψ is
continuous and increasing (i.e., ψ ∈ K, by construction).

Conversely, assume that (i) and (ii) are true and define w(x) = ψ(|x|). It now
follows readily from Definition 6.1.8 that v(x, t) is positive definite. �

Theorem 6.1.2 A function v ∈ C[Rn × R
+, R] is radially unbounded if and only if

(i) v(0, t) = 0 for all t ∈ R
+; and

(ii) there exists a function ψ ∈ K∞ such that

v(x, t) ≥ ψ(|x|)

for all (x, t) ∈ R
n × R

+. �

We ask the reader to prove Theorem 6.1.2 in the problem section.

Theorem 6.1.3 A function v ∈ C[B(r) × R
+, R] (resp., v ∈ C[Ω × R

+, R]) is
decrescent if and only if there exists a function ψ ∈ K defined on [0, r] (resp., on R

+)
such that

|v(x, t)| ≤ ψ(|x|)
for all (x, t) ∈ B(r) × R

+ (resp., (x, t) ∈ Ω × R
+). �
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We ask the reader to prove Theorem 6.1.3 in the problem section.
Note that when w∈C[B(r), R] (resp., w∈C[Ω, R]) is positive or negative definite,

then it is also decrescent for in this case we can always find ψ1, ψ2 ∈K such that

ψ1(|x|) ≤ |w(x)| ≤ ψ2(|x|)

for all x ∈ B(r) for some r > 0. On the other hand, when v ∈ C[B(r) × R
+, R]

(resp., v ∈ C[Ω×R
+, R]), care must be taken in establishing whether v is decrescent.

For the case of discrete-time dynamical systems determined by difference
equations (D), we employ functions v ∈C[B(r) × N, R] (resp., v ∈ C[Ω × N, R]).
We define such functions as being positive definite, negative definite, positive semidef-
inite, negative semidefinite, decrescent, and radially unbounded by modifying Defi-
nitions 6.1.2–6.1.13 (and Theorems 6.1.1–6.1.3) in an obvious way.

Example 6.1.1 (a) For v ∈ C[R2 ×R
+, R] given by v(x, t) = (1+cos2 t)x2

1 +2x2
2,

we have
ψ1(|x|) �

= xT x ≤ V (x, t) ≤ 2xT x
�
= ψ2(|x|)

for all x ∈ R
2 and t ∈ R

+, where ψ1, ψ2 ∈ K∞. Therefore, v is positive definite,
decrescent, and radially unbounded.

(b) For v ∈ C[R2 × R
+, R] given by v(x, t) = (x2

1 + x2
2) cos2 t, we have

0 ≤ v(x, t) ≤ xT x
�
= ψ(|x|)

for all x ∈ R
2 and t ∈ R

+, where ψ ∈ K. Thus, v is positive semidefinite and
decrescent.

(c) For v ∈ C[R2 × R
+, R] given by v(x, t) = (1 + t)(x2

1 + x2
2), we have

ψ(|x|) �
= xT x ≤ v(x, t)

for all x ∈ R
2 and t ∈ R

+, where ψ ∈ K∞. Thus, v is positive definite and radially
unbounded. It is not decrescent.

(d) For v ∈ C[R2 × R
+, R] given by v(x, t) = x2

1/(1 + t) + x2
2, we have

v(x, t) ≤ xT x
�
= ψ(|x|)

for all x ∈ R
2 and t ∈ R

+, where ψ ∈ K∞. Hence, v is decrescent and positive
semidefinite. It is not positive definite.

(e) The function v ∈ C[R2 × R
+, R] given by v(x, t) = (x2 − x1)2(1 + t) is

positive semidefinite. It is not positive definite nor decrescent. �

F. Quadratic forms

We now consider an important class of Lyapunov functions, quadratic forms, given by

v(x) = xT Bx =
n∑

i,k=1

bikxixk (6.1.8)
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where x ∈ R
n and B = [bij ] ∈ R

n×n is assumed to be symmetric (i.e., B = BT ).
Recall that in this case B is diagonalizable and all of its eigenvalues are real. For
a proof of the next results, the reader should consult any text on linear algebra and
matrices (e.g., Michel and Herget [16]).

Theorem 6.1.4 Let v be the quadratic form defined in (6.1.8). Then

(i) v is positive definite (and radially unbounded) if and only if all principal minors
of B are positive, that is, if and only if

det


b11 · · · b1k

· ·
· ·
· ·

bk1 · · · bkk

 > 0, k = 1, . . . , n.

These inequalities are called the Sylvester inequalities.

(ii) v is negative definite if and only if

(−1)k det


b11 · · · b1k

· ·
· ·
· ·

bk1 · · · bkk

 > 0, k = 1, . . . , n.

(iii) v is definite (i.e., either positive definite or negative definite) if and only if all
eigenvalues are nonzero and have the same sign.

(iv) v is semidefinite (i.e., either positive semidefinite or negative semidefinite) if
and only if the nonzero eigenvalues of B have the same sign.

(v) If λ1, . . . , λn denote all the eigenvalues of B (not necessarily distinct), if λm =
min1≤i≤n λi, if λM = max1≤i≤n λi, and if | · | denotes the Euclidean norm
(|x| = (xT x)1/2), then

λm|x|2 ≤ v(x) ≤ λM |x|2 for all x ∈ R
n.

(vi) v is indefinite if and only if B possesses both positive and negative
eigenvalues. �

The purpose of the next example is to point out some of the geometric properties
of quadratic forms.

Example 6.1.2 Let B be a real symmetric 2 × 2 matrix and let

v(x) = xT Bx.
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Figure 6.1.1: Cup-shaped surface of (6.1.9).
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Assume that both eigenvalues of B are positive so that v is positive definite and
radially unbounded. In R

3, let us now consider the surface determined by

z = v(x) = xT Bx. (6.1.9)

Equation (6.1.9) describes a cup-shaped surface as depicted in Figure 6.1.1. Note that
corresponding to every point on this cup-shaped surface there exists one and only one
point in the x1– x2 plane. Note also that the loci defined by

Ci = {x ∈ R
2 : v(x) = ci ≥ 0} (ci = constant)

determine closed curves in the x1– x2 plane as shown in Figure 6.1.2. We call these
curves level curves. Note that C0 = {0} corresponds to the case when z = c0 = 0.
Note also that this function v can be used to cover the entire R

2 plane with closed
curves by selecting for z all values in R

+.
In the case when v(x) = xT Bx is a positive definite quadratic form with x ∈ R

n,
the preceding comments are still true; however, in this case, the closed curves Ci
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must be replaced by closed hypersurfaces in R
n and a simple geometric visualization

as in Figures 6.1.1 and 6.1.2 is no longer possible. �

G. Lyapunov stability results: Geometric interpretation

Before stating and proving the principal Lyapunov stability and boundedness results,
it might be instructive to give a geometric interpretation of some of these results. To
this end, we consider systems of equations{

ẋ1 = f1(x1, x2)
ẋ2 = f2(x1, x2)

(6.1.10)

where x = (x1, x2)T ∈ R
2 and fi : R

2 → R, i = 1, 2. We assume that f1 and f2
are such that for every (t0, x0), t0 ≥ 0, (6.1.10) has a unique solution ϕ(t, t0, x0)
with ϕ(t0, t0, x0) = x0. We also assume that xe = (x1, x2)T = (0, 0)T is the only
equilibrium in B(h) for some h > 0.

Now let v be a positive definite function, and to simplify our discussion, as-
sume that v is continuously differentiable with nonvanishing gradient �v(x)T =
((∂v/∂x1)(x1, x2), (∂v/∂x2)(x1, x2)) on 0 < |x| ≤ h. It can be shown that simi-
larly as in the case of quadric forms, the equation

v(x) = c (c ≥ 0)

defines for sufficiently small constants c > 0 a family of closed curves Ci which
cover the neighborhood B(h) as shown in Figure 6.1.3. Note that the origin x = 0
is located in the interior of each such curve and in fact C0 = {0}.
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Figure 6.1.3: Family of closed curves Ci.

Next, suppose that all the trajectories of (6.1.10) originating from points on the
circular disk |x| ≤ r1 < h cross the curves v(x) = c from the exterior towards the
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interior as we proceed along these trajectories in the direction of increasing values
of t. Then we can conclude that these trajectories approach the origin as t increases;
that is, the equilibrium xe = 0 is in this case asymptotically stable.

Now in terms of the given v-function, we have the following geometric interpre-
tation: for a given solution ϕ(t, t0, x0) to cross the curve v(x) = r, r = v(x0), the
angle between the outward normal vector ∇v(x0) and the derivative of ϕ(t, t0, x0)
at t = t0 must be greater than π/2; that is,

v′
(6.1.10)(x0) = ∇v(x0)T f(x0) < 0

where f(x0) = (f1(x0), f2(x0))T . For this to happen at all points, we must have
that v′

(6.1.10)(x) < 0 for 0 < |x| ≤ r1.
The same result can be arrived at using an analytic point of view: the function

V (t)
�
= v(ϕ(t, t0, x0))

will decrease monotonically as t increases. But this will imply that the derivative
v′(ϕ(t, t0, x0)) along the solution ϕ(t, t0, x0) of (6.1.10) must be negative definite
in B(r) for r > 0 sufficiently small.

Next, assume that (6.1.10) has only one equilibrium (located at the origin xe = 0)
and that v is positive definite and radially unbounded. It can be shown that similarly
as in the case of quadratic forms, the equation v(x) = c, c ∈ R

+, can in this case be
used to cover all of R

2 by closed curves of the type depicted in Figure 6.1.3. Now if
for arbitrary initial data (t0, x0), the corresponding solution of (6.1.10), ϕ(t, t0, x0),
behaves as discussed above, then it follows that the time derivative of v along this
solution, v′(ϕ(t, t0, x0)), will be negative definite in R

2.
The preceding discussion was given for arbitrary solutions of (6.1.10). Accord-

ingly, we can make the following conjectures.

1. If there exists a positive definite function v such that v′
(6.1.10) is negative definite,

then the equilibrium xe = 0 of (6.1.10) is asymptotically stable.
2. If there exists a positive definite and radially unbounded function v such that

v′
(6.1.10) is negative definite for all x ∈ R

2, then the equilibrium xe = 0 of (6.1.10)
is asymptotically stable in the large.

Continuing the preceding discussion by making reference to Figure 6.1.4, let us
assume that we can find for (6.1.10) a continuously differentiable function v : R2 →R

that is indefinite and which has the properties discussed in the following. Because v
is indefinite, there exist in every neighborhood of the origin points for which v > 0,
v < 0, and v(0) = 0. Confining our attention to B(k) where k > 0 is sufficiently
small, we let D = {x ∈ B(k) : v(x) < 0}, which may consist of several subdomains.
The boundary of D, ∂D, consists of points in ∂B(k) and points determined by
v(x) = 0. Let H denote a subdomain of D having the property that 0 ∈ ∂H .
Assume that in the interior of H, v is bounded. Suppose that v′

(6.1.10)(x) is negative
definite in D and that ϕ(t, t0, x0) is a solution of (6.1.10) that originates somewhere
on the boundary of H (x0 ∈ ∂H) with v(x0) = 0. Then this solution will penetrate
the boundary of H at points where v = 0 as t increases and it can never again reach a
point where v = 0. In fact, as t increases, this solution will penetrate the set of points
determined by |x| = k (because by assumption, v′

(6.1.10) < 0 along this trajectory
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Figure 6.1.4: Domains D and H .

and v < 0 in H). But this shows that the equilibrium xe = 0 of (6.1.10) is unstable.
Accordingly, we can make the following conjecture.

3. Let a function v : R
2 → R be given that is continuously differentiable and

which has the following properties.

(i) There exist points x arbitrarily close to the origin such that v(x) < 0; they
form the domain D that is bounded by the set of points determined by v = 0
and the circle |x| = k. D may consist of several subdomains. Let H denote a
subdomain of D having the property that 0 ∈ ∂H .

(ii) In the interior of H, v is bounded.
(iii) In the interior of D, v′

(6.1.10)is negative.

Then the equilibrium xe = 0 of (6.1.10) is unstable.
In the present chapter, we state and prove results that include the foregoing con-

jectures as special cases.

6.2 The Principal Stability and Boundedness Results
for Ordinary Differential Equations

In the present section we address stability and boundedness properties of contin-
uous finite-dimensional dynamical systems determined by ordinary differential
equations (E).

A. Stability

In our first two results we concern ourselves with the stability and uniform stability
of the equilibrium xe = 0 of (E).

Theorem 6.2.1 Assume that for some r > 0 and B(r) ⊂ Ω, there exists a positive
definite function v ∈ C[B(r)× R

+, R] such that v′
(E) is negative semidefinite. Then

the following statements are true.

a) The equilibrium xe = 0 of (E) is stable.
b) If in addition, v is decrescent, then xe = 0 of (E) is uniformly stable.
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Proof . (a) According to Definition 6.1.1(a), we fix ε > 0 and t0 ≥ 0 and we seek a
δ > 0 such that ∣∣ϕ(t, t0, x0)

∣∣ < ε for all t ≥ t0

whenever |x0| < δ. Without loss of generality, we can assume that ε < r. Because
v(x, t) is positive definite, then by Theorem 6.1.1 there is a function ψ ∈ K such that
v(x, t)≥ ψ(|x|) for all 0 ≤ |x| < r, t ≥ 0. Pick δ > 0 so small that v(x0, t0) < ψ(ε)
if |x0| ≤ δ. Because v′

(E)(x, t) ≤ 0, then v(ϕ(t, t0, x0), t) is monotone nonincreasing
and v(ϕ(t, t0, x0), t) < ψ(ε) for all t ≥ t0. Thus, |ϕ(t, t0, x0)| cannot reach the value
ε, because this would imply that v(ϕ(t, t0, x0), t) ≥ ψ(|ϕ(t, t0, x0)|) = ψ(ε).

(b) Because v(x, t) is positive definite and decrescent, it follows from Theo-
rems 6.1.1 and 6.1.3 that there exist two functions ψ1, ψ2 ∈ K such that

ψ1(|x|) ≤ v(x, t) ≤ ψ2(|x|)

for all (x, t) ∈ B(r) × R
+.

Let ϕ(t, t0, x0) be a solution of (E) with initial condition ϕ(t0) = x0. Then
we have

D+v
(
ϕ(t, t0, x0), t

)
≤ v′

(E)

(
ϕ(t, t0, x0), t

)
for all (t0, x0) ∈ R

+ × B(r) and all t ∈ R
+
t0 such that ϕ(t, t0, x0) ∈ B(r), where

D+ denotes the upper-right Dini derivative with respect to t. Inasmuch as v′
(E)

is negative semidefinite, we conclude that v(ϕ(t, t0, x0), t) is nonincreasing for all
t ∈ R

+
t0 . Statement (b) follows now directly from Theorem 3.3.1. �

Example 6.2.1 (Simple pendulum) Consider the simple pendulum described by the
equations {

ẋ1 = x2

ẋ2 = −k sin x1
(6.2.1)

where k > 0 is a constant. System (6.2.1) clearly has an equilibrium xe = 0 . The
total energy for (6.2.1) is the sum of the kinetic energy and potential energy, given by

v(x) =
1
2
x2

2 + k

∫ x1

0
sin ηdη =

1
2
x2

2 + k(1 − cos x1).

This function is continuously differentiable, v(0) = 0, and v is positive definite in
Ω = {(x1, x2)T ∈ R

2 : |x1| < c < 2π}. Also, v is decrescent, because it does not
depend on t.

Along the solutions of (6.2.1) we have

v′
(6.2.1)(x) = (k sin x1)ẋ1 + x2ẋ2 = (k sin x1)x2 + x2(−k sin x1) = 0.

In accordance with Theorem 6.2.1(b), the equilibrium xe = 0 of (6.2.1) is uniformly
stable.

Note that because v′
(6.2.1)(x) = 0, the total energy for system (6.2.1) is constant

for a given set of initial conditions for all t ≥ 0. �
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The major shortcoming of the results that comprise the Principal Lyapunov Sta-
bility Results (called the Direct Method of Lyapunov) is that there are no specific
rules which tell us how to choose a v-function in a particular problem. The preceding
example suggests that a good choice for a v-function is the total energy of a sys-
tem. Another widely used class of v-functions consists of quadratic forms (refer to
Subsection 6.1F).

Example 6.2.2 Consider the second-order system

ẍ + ẋ + e−tx = 0. (6.2.2)

Letting x = x1, ẋ = x2, we can express (6.2.2) equivalently by{
ẋ1 = x2

ẋ2 = −x2 − e−tx1.
(6.2.3)

This system has an equilibrium at the origin xe = (x1, x2)T = (0, 0)T = 0. Let us
choose the positive definite function

v(x1, x2) = x2
1 + x2

2.

Along the solutions of (6.2.3), we have

v′
(6.2.3)(x1, x2, t) = 2x1x2(1 − e−t) − 2x2

2.

The above choice of v-function does not satisfy the hypotheses of Theorem 6.2.1.
Thus, we can reach no conclusion. Therefore, let us choose another v-function,

v(x1, x2, t) = x2
1 + etx2

2.

In this case we obtain
v′
(6.2.3)(x1, x2, t) = −etx2

2.

This v-function is positive definite and v′
(6.2.3) is negative semidefinite. Therefore,

Theorem 6.2.1(a) is applicable and we can conclude that the equilibrium xe = 0 is
stable. However, because v is not decrescent, Theorem 6.2.1(b) is not applicable and
we cannot conclude from this choice of v-function that the equilibrium xe = 0 is
uniformly stable. �

Example 6.2.3 (Hamiltonian system) Consider the conservative dynamical system
with n degrees of freedom, which we discussed in Chapter 2 (Example 2.3.7) and
which is given by 

q̇i =
∂H

∂pi
(p, q), i = 1, . . . , n

ṗi = −∂H

∂qi
(p, q), i = 1, . . . , n

(6.2.4)
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where qT = (q1, . . . , qn) denotes the generalized position vector, pT = (p1, . . . , pn)
the generalized momentum vector, H(p, q) = T (p)+W (q) the Hamiltonian, T (p) the
kinetic energy, and W (q) the potential energy. The positions of the equilibrium points
of (6.2.4) correspond to the points in R

2n where the partial derivatives of H vanish.
In the following, we assume that (pT , qT ) = (0T , 0T ) is an isolated equilibrium of
(6.2.4), and without loss of generality we also assume that H(0, 0)= 0. Furthermore,
we assume that H is smooth and that T (p) and W (q) are of the form

T (p) = T2(p) + T3(p) + · · ·

and
W (q) = Wk(q) + Wk+1(q) + · · · , k ≥ 2.

Here Tj(p) denotes the terms in p of order j and Wj(q) denotes the terms in q of order
j. The kinetic energy T (p) is always assumed to be positive definite with respect
to p. If the potential energy has an isolated minimum at q = 0, then W is positive
definite with respect to q. We choose as a v-function

v(p, q) = H(p, q) = T (p) + W (q)

which is positive definite. Inasmuch as

v′
(6.2.4)(p, q) =

dH

dt
(p, q) = 0,

Theorem 6.2.1(a) is applicable and we conclude that the equilibrium at the origin is
stable. Because v is independent of t, it is also decrescent, and so Theorem 6.2.1(b)
is also applicable. Therefore, the equilibrium at the origin is also uniformly sta-
ble. Note that Example 6.2.1 (the simple pendulum) is a special case of the present
example. �

B. Asymptotic stability

In the next two results we address the asymptotic stability of the equilibrium xe = 0
of (E).

Theorem 6.2.2 For (E) we assume that there exists a positive definite and decres-
cent function v ∈ C[B(r) × R

+, R] such that v′
(E) is negative definite. Then the

equilibrium xe = 0 of (E) is uniformly asymptotically stable.

Proof . Because v′
(E) is negative definite, there exists a function ψ3 ∈ K such that

v′
(E)(x, t) ≤ −ψ3(|x|)

for all (x, t) ∈ B(r) × R
+.

Let ϕ(t, t0, x0) be a solution of (E) with initial condition ϕ(t0) = x0. Then
we have

D+v
(
ϕ(t, t0, x0), t

)
≤ v′

(E)

(
ϕ(t, t0, x0), t

)
≤ −ψ3

(
|ϕ(t, t0, x0)|

)
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for all (x0, t0) ∈ B(r) × R
+ and all t ∈ R

+
t0 such that ϕ(t, t0, x0) ∈ B(r), where

D+ denotes the upper-right Dini derivative with respect to t. The rest of the proof
follows directly from Theorem 3.3.2. �

Theorem 6.2.3 With Ω = R
n, assume that there exists a positive definite, decrescent,

and radially unbounded function v ∈ C[Rn×R
+, R] such that v′

(E) is negative definite
(on R

n × R
+) (i.e., there exist ψ1, ψ2 ∈ K∞ and ψ3 ∈ K such that

ψ1(|x|) ≤ v(x, t) ≤ ψ2(|x|)

and
v′
(E)(x, t) ≤ −ψ3(|x|)

for all (x, t) ∈ R
n × R

+). Then the equilibrium xe = 0 of (E) is uniformly asymp-
totically stable in the large.

Proof . This result is a direct consequence of Theorem 3.3.6. �

Example 6.2.4 Consider the system{
ẋ1 = (x1 − c2x2)(x2

1 + x2
2 − 1)

ẋ2 = (c1x1 + x2)(x2
1 + x2

2 − 1)
(6.2.5)

which has an equilibrium at the origin xe = (x1, x2)T = (0, 0)T = 0. We choose as
a v-function

v(x) = c1x
2
1 + c2x

2
2

and obtain
v′
(6.2.5)(x) = 2(c1x

2
1 + c2x

2
2)(x

2
1 + x2

2 − 1).

If c1 > 0 and c2 > 0, then v is positive definite and radially unbounded and v′
(6.2.5) is

negative definite in the domain x2
1 + x2

2 < 1. Therefore, Theorem 6.2.2 is applicable
and we conclude that the equilibrium xe = 0 is uniformly asymptotically stable.
On the other hand, Theorem 6.2.3 is not applicable and we cannot conclude that the
equilibrium xe = 0 is uniformly asymptotically stable in the large. �

Example 6.2.5 Consider the system{
ẋ1 = x2 + cx1(x2

1 + x2
2)

ẋ2 = −x1 + cx2(x2
1 + x2

2)
(6.2.6)

where c is a real constant. For this system, xe = 0 is the only equilibrium. We choose
as a v-function

v(x) = x2
1 + x2

2

and we obtain
v′
(6.2.6)(x) = 2c(x2

1 + x2
2)

2.

If c = 0, Theorem 6.2.1(b) is applicable and we conclude that the equilibrium xe = 0
of (6.2.6) is uniformly stable. If c < 0, then Theorem 6.2.3 is applicable and we
conclude that the equilibrium xe = 0 of (6.2.6) is uniformly asymptotically stable in
the large. �
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C. Exponential stability

In the next two results we address the exponential stability of the equilibrium xe = 0
of (E).

Theorem 6.2.4 Assume that there exist a function v ∈ C[B(r) × R
+, R] and four

positive constants c1, c2, c3, and b such that

c1|x|b ≤ v(x, t) ≤ c2|x|b

and
v′
(E)(x, t) ≤ −c3|x|b

for all (x, t) ∈ B(r) × R
+. Then the equilibrium xe = 0 of (E) is exponentially

stable.

Proof . This result is a direct consequence of Theorem 3.3.3. �

Theorem 6.2.5 With Ω = R
n, assume that there exist a function v ∈C[Rn ×R

+, R]
and four positive constants c1, c2, c3, and b such that

c1|x|b ≤ v(x, t) ≤ c2|x|b

and
v′
(E)(x, t) ≤ −c3|x|b

for all (x, t) ∈ R
n × R

+. Then the equilibrium xe = 0 of (E) is exponentially stable
in the large.

Proof . This result is a direct consequence of Theorem 3.3.7. �

Example 6.2.6 Consider the system{
ẋ1 = −a(t)x1 − bx2

ẋ2 = bx1 − c(t)x2
(6.2.7)

where b is a real constant and a and c are real and continuous functions defined for
t ≥ 0 satisfying a(t) ≥ δ > 0 and c(t) ≥ δ > 0 for all t ≥ 0. We assume that xe = 0
is the only equilibrium for (6.2.7).

Choosing

v(x) =
1
2
(x2

1 + x2
2),

we obtain
v′
(6.2.7)(x, t) = −a(t)x2

1 − c(t)x2
1 ≤ −δ(x2

1 + x2
2)

for all t ≥ 0, x ∈ R
2. All the hypotheses of Theorem 6.2.5 are satisfied and we

conclude that the equilibrium xe = 0 of (6.2.7) is exponentially stable in the large. �
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Example 6.2.7 Consider the system{
ẋ1 = x2 − x1(x2

1 + x2
2)

ẋ2 = −x1 − x2(x2
1 + x2

2).
(6.2.8)

Clearly, xe = 0 is an equilibrium for (6.2.8). Now choose

v(x) = x2
1 + x2

2

which is positive definite, radially unbounded, and decrescent. Along the solutions
of (6.2.8), we have

v′
(6.2.8)(x) = −2(x2

1 + x2
2)

2

which is negative definite on R
2. By Theorem 6.2.3, the equilibrium xe = 0 of (6.2.8)

is uniformly asymptotically stable in the large. However, the hypotheses of Theorem
6.2.5 are not satisfied and we cannot conclude that the equilibrium xe = 0 of (6.2.8)
is exponentially stable in the large. In fact, in Problem 6.10.10 we ask the reader to
show that this equilibrium is not exponentially stable. �

D. Boundedness of solutions

In the next two results we concern ourselves with the uniform boundedness and the
uniform ultimate boundedness of the solutions of (E).

Theorem 6.2.6 With Ω = R
n, assume that there exists a function v ∈C[Rn×R

+, R]
that satisfies the following conditions.

(i) There exist two functions ψ1, ψ2 ∈ C[R+, R+] that are strictly increasing with
limr→∞ ψi(r) = ∞, i = 1, 2, and a constant M > 0, such that

ψ1(|x|) ≤ v(x, t) ≤ ψ2(|x|)

for all |x| ≥ M and t ∈ R
+.

(ii) For all |x| ≥ M and t ∈ R
+,

v′
(E)(x, t) ≤ 0.

Then the solutions of (E) are uniformly bounded.

Proof . This result is a direct consequence of Theorem 3.3.4. �

Theorem 6.2.7 In addition to all hypotheses of Theorem 6.2.6, assume that there
exists a function ψ3 ∈ K such that

v′
(E)(x, t) ≤ −ψ3(|x|)

for all |x| ≥ M and t ∈ R
+. Then the solutions of (E) are uniformly ultimately

bounded.
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Proof . This result is a direct consequence of Theorem 3.3.5. �

Example 6.2.8 Consider the system{
ẋ = −x − y

ẏ = −y − f(y) + x
(6.2.9)

where f(y) = y(y2−6). System (6.2.9) has equilibrium points located at x = y = 0,
x = −y = 2, and x = −y = −2.

Choosing for a v-function

v(x, y) =
1
2
(x2 + y2)

we obtain

v′
(6.2.9)(x, y) = −x2 − y2(y2 − 5) ≤ −x2 −

(
y2 − 5

2

)2

+
25
4

.

The v-function is positive definite and radially unbounded and v′
(6.2.9) is negative for

all (x, y) such that x2 + y2 > R2, where, for example, R = 10 is acceptable. All
the hypotheses of Theorem 6.2.6 are satisfied and we conclude that the solutions of
(6.2.9) are uniformly bounded. Furthermore, all the hypotheses of Theorem 6.2.7 are
satisfied and we conclude that the solutions of (6.2.9) are in fact uniformly ultimately
bounded. �

Returning now to Theorem 2.3.3, we recall the following result concerning the
continuation of solutions of (E). Let f ∈ C[J × R

n, Rn] where J = (a, b) is a
finite or infinite interval. Assume that every solution of (E) is bounded. Then every
solution of (E) can be continued to the entire interval J .

The above result is in a certain sense wanting, because it assumes that all the
solutions of (E) are bounded. In the next example, we provide reasonable conditions
under which this assumption is satisfied.

Example 6.2.9 With Ω = R
n, assume for (E) that f ∈ C[R+ × R

n, Rn] and that
|f(t, x)| ≤ λ(t)ψ(|x|) for all t ∈ R

+ and all |x| ≥ M > 0, where λ ∈ C[R+, R+]
has the property that

∫∞
0 λ(t)dt < ∞ and ψ ∈ [[M, ∞), (0,∞)] has the property

that
∫∞

M
(1/ψ(r)) dr = ∞. Then SE , the set of all the solutions of (E), is uniformly

bounded. To prove this, we choose the v-function

v(x, t) = −
∫ t

0
λ(s)ds +

∫ |x|

M

du

ψ(u)

and we apply Theorem 6.2.6. Condition (i) of the theorem is clearly satisfied. To
show that condition (ii) is also satisfied, we note that

v′
(E)(x, t) ≤ −λ(t) +

1
ψ(|x|) · |x| |f(t, x)|

|x| ≤ 0

for all t ∈ R
+ and |x| ≥ M . �
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For the case when
∫∞
0 λ(t)dt = ∞ along with Example 6.2.9, we have the fol-

lowing result.

Corollary 6.2.1 With Ω = R
n, assume for (E) that f ∈ C[R+ × R

n, Rn] and that
|f(t, x)| ≤ λ(t)ψ(|x|) for all t ∈ R

+ and all |x| ≥ M , where λ ∈ C[R+, R+],
ψ ∈ C[[M, ∞), (0,∞)], and

∫∞
M

(1/ψ(r))dr = ∞. Then every solution of (E) is
continuable forward for all time.

Proof . It has been shown in Example 6.2.9 that the solutions of (E) are bounded
when

∫∞
0 λ(t)dt < ∞. Therefore, it follows from Theorem 2.3.3 that every solution

is continuable forward for all time. In the following we assume that
∫∞
0 λ(t)dt = ∞.

We first show that for any T > 0, every solution ϕ(·, t0, x0) of (E) is bounded
on (t0, T ). For otherwise there exist a T > 0 and a solution ϕ(t, t0, x0) which is
unbounded on (t0, T ). Let αT =

∫ T

0 λ(s)ds. Because
∫∞

M
(1/ψ(r))dr = ∞, there

exist b > a > M such that
∫ b

a
(1/ψ(r))dr > 2αT . Furthermore, there must exist t1

and t2, t0 ≤ t1 ≤ t2 ≤T , such that |ϕ(t1)| = a, |ϕ(t2)| = b, and |x(t)| ≥ M for all
t ∈ [t1, t2].

Let

v(ϕ(t), t) = −
∫ t

0
λ(s)ds +

∫ |ϕ(t)|

M

du

ψ(u)
, t ∈ [t1, t2].

Then similarly as done in Example 6.2.9 we can show that v′
(E)(ϕ(t), t) ≤ 0 for all

t ∈ [t1, t2]. Hence, v(ϕ(t2), t2) ≤ v(ϕ(t1), t1).
On the other hand,

v(ϕ(t2), t2) = −
∫ t2

0
λ(s)ds +

∫ |ϕ(t2)|

M

du

ψ(u)

= −
∫ t1

0
λ(s)ds −

∫ t2

t1

λ(s)ds +
∫ |ϕ(t1)|

M

du

ψ(u)
+
∫ |ϕ(t2)|

|ϕ(t1)|

du

ψ(u)

> −αT + 2αT + v(ϕ(t1), t1)
= αT + v(ϕ(t1), t1).

We have arrived at a contradiction. Therefore, for any T > 0, every solution
ϕ(·, t0, x0) of (E) is bounded on (t0, T ). It now follows from Theorem 2.3.3 that ev-
ery solution is continuable to T . Because T is arbitrary, every solution is continuable
forward for all time. �

Corollary 6.2.1 is readily applied to linear homogeneous systems

ẋ = A(t)x (LH)

where A ∈ C[R+, Rn×n]. In the present case we have |f(t, x)| = |A(t)x| ≤
λ(t)ψ(|x|) where λ(t) = ‖A(t)‖ and ψ(|x|) = |x|. It is readily verified that all
the conditions of Corollary 6.2.1 are satisfied. Therefore, every solution of (LH) is
continuable forward for all time.
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E. Instability

We now present three instability results for (E).

Theorem 6.2.8 (Lyapunov’s First Instability Theorem) The equilibrium xe = 0 of
(E) is unstable if there exist a t0 ∈R

+ and a decrescent function v∈C[B(r)×R
+, R]

for some r > 0 such that v′
(E) is positive definite (negative definite) and if in every

neighborhood of the origin there are points x such that v(x, t0) > 0 (v(x, t0) < 0).
Furthermore, if v is positive definite (negative definite), then the equilibrium xe = 0
of (E) is completely unstable (refer to Definition 3.1.20).

Proof . This result is a direct consequence of Theorems 3.3.8 and 3.3.9. �

Example 6.2.10 If in Example 6.2.5, we have c > 0, then v(x) = x2
1 + x2

2 and
v′
(6.2.6)(x) = 2c(x2

1+x2
2)

2. We can conclude from Theorem 6.2.8 that the equilibrium
xe = 0 of (6.2.6) is unstable, in fact, completely unstable. �

Example 6.2.11 We now consider{
ẋ1 = c1x1 + x1x2

ẋ2 = −c2x2 + x2
1

(6.2.10)

where c1 > 0 and c2 > 0 are constants. We choose as a v-function

v(x) = x2
1 − x2

2

to obtain
v′
(6.2.10)(x) = 2(c1x

2
1 + c2x

2
2).

Because v is indefinite and v′
(6.2.10) is positive definite, Theorem 6.2.8 applies and

we conclude that the equilibrium xe = 0 of (6.2.10) is unstable. �

Example 6.2.12 (Hamiltonian system) We now return to the conservative system
considered in Example 6.2.3. In the present case we assume that W (0) = 0 is
an isolated maximum. This is ensured by assuming that Wk is a negative definite
homogeneous polynomial of degree k, where k is an even integer. Now recall that we
assumed in Example 6.2.3 that T2 is positive definite. We now choose as a v-function

v(p, q) = pT q =
n∑

i=1

piqi.

Along the solutions of (6.2.4) we now have

v′
(6.2.4)(p, q) =

n∑
i=1

pi
∂T2

∂pi
+

n∑
i=1

pi
∂T3

∂pi
+ · · · −

n∑
i=1

qi
∂Wk

∂qi
−

n∑
i=1

qi
∂Wk+1

∂qi
− · · ·

= 2T2(p) + 3T3(p) + · · · − kWk(q) − (k + 1)Wk+1(q) − · · · .

In a sufficiently small neighborhood of the origin, the sign of v′
(6.2.4) is determined

by the sign of the term 2T2(p) − kWk(q), and thus, v′
(6.2.4) is positive definite.

Because v is indefinite, Theorem 6.2.8 applies. We conclude that the equilibrium
(pT , qT ) = (0T , 0T ) = 0 is unstable. �
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Theorem 6.2.9 (Lyapunov’s Second Instability Theorem) Assume that for system
(E) there exists a bounded function v ∈ C[B(ε) × [t0,∞), R] where ε > 0 and
B(ε) ⊂ Ω, having the following properties.

(i) For all (x, t) ∈ B(ε) × [t0,∞),

v′
(E)(x, t) ≥ λv(x, t)

where λ > 0 is a constant.
(ii) In every neighborhood of the origin, there exists an x such that v(x, t1) > 0

for a fixed t1 ≥ t0.
Then the equilibrium xe = 0 of (E) is unstable.

Proof . This result is a direct consequence of Theorem 3.3.10. �

Example 6.2.13 Consider the system{
ẋ1 = x1 + x2 + x1x

4
2

ẋ2 = x1 + x2 − x2
1x2.

(6.2.11)

This system clearly has an equilibrium at the origin. We choose the v-function
v(x) = 1

2 (x2
1 − x2

2) and compute

v′
(6.2.11)(x) = 2v(x) + x2

1x
4
2 + x2

1x
2
2 ≥ 2v(x).

All the hypotheses of Theorem 6.2.9 are satisfied. Therefore, the equilibrium xe = 0
of (6.2.11) is unstable. �

Theorem 6.2.10 (Chetaev’s Instability Theorem) Assume that for system (E) there
exist a function v ∈ C[B(r) × R

+, R] for some r > 0, where B(r) ⊂ Ω, a t0 ∈ R
+,

and an h > 0, h < r, such that the following conditions are satisfied.

(i) There exists a component D of the set {(x, t)∈B(r)×R
+: v(x, t)<0, |x|< h}

such that for every neighborhood of the origin there exists an x in this neigh-
borhood such that (x, t0) ∈ D.

(ii) v is bounded from below on D.
(iii) v′

(E)(x, t) ≤ −ψ(|v(x, t)|) for all (x, t) ∈ D, where ψ ∈ K.

Then the equilibrium xe = 0 of (E) is unstable.

Proof . Let M > 0 be a number such that −M ≤ v(x, t) on D. Given any r1 > 0
choose (x0, t0) ∈ B(r1) × R

+ ∩ D. Then the solution ϕ0(t, t0, x0) must leave
B(h) in finite time. Indeed, |ϕ0(t)| must become equal to h in finite time. To
see this, assume the contrary. Let v(t) = v(ϕ0(t), t). Because v(t0) < 0 and
v′
(E)(x, t) ≤ −ψ(|v(x, t)|), we have v(t) ≤ v(t0) < 0 for all t ≥ 0. Thus

v(t) ≤ v(t0) −
∫ t

t0

ψ(|v(t0)|)ds → −∞

as t → ∞. This contradicts the bound v(t) ≥ −M . Hence there is a t∗ > t0 such
that (ϕ0(t∗), t∗) ∈ ∂D. But v(t∗) < 0, so the only part of ∂D that (ϕ0(t∗), t∗) can
penetrate is that part where |ϕ0(t)| = h. Because this can happen for arbitrarily small
|x0|, the instability of xe = 0 is proved. �
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For the case of autonomous systems,

ẋ = f(x) (A)

where x ∈ Ω, f ∈ C[Ω, Rn], Ω is an open connected subset of R
n that contains the

origin and f(0) = 0, we have the following simpler version of Theorem 6.2.10.

Corollary 6.2.2 Assume that for system (A) there exists a function v ∈ C[B(r), R],
r > 0, B(r) ⊂ Ω, that satisfies the following conditions.

(i) The open set {x ∈ B(h) : v(x) < 0} for some h > 0, h < r, contains a
component D for which 0 ∈ ∂D.

(ii) v′
(A)(x) < 0 for all x ∈ D, x �= 0.

Then the equilibrium xe = 0 of (A) is unstable. �

Example 6.2.14 Consider the system{
ẋ1 = x1 + x2

ẋ2 = x1 − x2 + x1x2
(6.2.12)

which clearly has an equilibrium at the origin xe = 0 . Choose

v(x) = −x1x2

to obtain
v′
(6.2.12)(x) = −x2

1 − x2
2 − x2

1x2.

Let
D = {x ∈ R

2 : x1 > 0, x2 > 0 and x2
1 + x2

2 < 1}.

Then for all x ∈ D, v(x) < 0, and v′
(6.2.12)(x) < 2v(x). All the hypotheses

of Theorem 6.2.10 (and Corollary 6.2.2) are satisfied. Therefore, the equilibrium
xe = 0 of (6.2.12) is unstable. �

Example 6.2.15 Once more, we return to the conservative system considered in
Examples 6.2.3 and 6.2.12. To complete the stability analysis of this system, we
assume that W (0) = 0 is not a local minimum of the potential energy. Then there are
points q arbitrarily close to the origin such that W (q) < 0. Because H(0, q) = W (q),
there are points (pT , qT )T arbitrarily close to the origin where H(p, q) < 0 for all
p sufficiently near the origin. Therefore, there are points (pT , qT )T arbitrarily close
to the origin such that pT q > 0 and −H(p, q) > 0, simultaneously. Let U be some
neighborhood of the origin and let

U1 =
{
(pT , qT )T ∈ U : pT q > 0 and − H(p, q) > 0

}
.

Now choose
v(p, q) = H(p, q)pT q.
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Using the fact that (dH/dt)[p(t), q(t)] = 0 along the solutions of (6.2.4) (refer to
Example 6.2.3), we obtain

v′
(6.2.4)(p, q) = −H(p, q)[−2T2(p) − 3T3(p) − · · · + kWk(q) + · · · ]. (6.2.13)

Now choose U = B(r) with r > 0 sufficiently small so that T (p) > 0 within
U − {0}. Because in U1, H(p, q) = T (p) + W (q) < 0 and T (p) > 0, it
must be true that W (q) < 0 within U1. Therefore, for U sufficiently small, the
term in brackets in (6.2.13) is negative within U1 and v′

(6.2.4) is negative within
U1. The origin is a boundary point of U1, thus there exists a component D of U1
such that the origin is on the boundary of D. Because any component of U1 is a
component of the set {(pT , qT )T ∈ U : v(p, q) < 0}, because v′

(6.2.4) is negative
on D, and because v is bounded on any compact set containing D, it follows from
Theorem 6.2.10 (or Corollary 6.2.2) that the equilibrium (pT , qT )T = 0 of system
(6.2.4) is unstable. �

We conclude this section by observing that frequently the results of the present
section yield more than just stability (resp., instability and boundedness) information.
For example, suppose that for system (A) there exist a continuously differentiable
function v : R

n → R and three positive constants c1, c2, c3 such that

c1|x|2 ≤ v(x) ≤ c2|x|2, v′
(A)(x) ≤ −c3|x|2 (6.2.14)

for all x ∈ R
n. Then in accordance with Theorem 6.2.5, the equilibrium xe = 0 of

system (A) is exponentially stable in the large. However, we know more: evaluating
(6.2.14) along the solution ϕ(t, t0, x0) we obtain{

c1|ϕ(t, t0, x0)|2 ≤ v(ϕ(t, t0, x0)) ≤ c2|ϕ(t, t0, x0)|2

v′
(A)(ϕ(t, t0, x0)) ≤ −c3|ϕ(t, t0, x0)|2

(6.2.15)

for all t ≥ t0, x0 ∈ R
n. It is now an easy matter to obtain from (6.2.15) the very

useful estimate

|ϕ(t, t0, x0)| ≤
√

c2/c1 |x0|e−[c3/(2c2)](t−t0)

for all t ≥ t0 and x0 ∈ R
n.

We present applications of the results of this section to specific important classes
of dynamical systems determined by ordinary differential equations in Chapter 8.

6.3 The Principal Stability and Boundedness Results
for Ordinary Difference Equations

In the present section we address stability and boundedness properties of discrete-
time finite-dimensional dynamical systems determined by ordinary difference
equations (D). As indicated in Subsection 6.1B, we assume without loss of generality
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that xe = 0 is an equilibrium of (D). Also, ∆(D)v(x, k) denotes the first forward
difference of v(x, k) along the solutions of (D) (refer to (6.1.5)).

A. Local stability results

In our first result we concern ourselves with the stability, uniform stability, uniform
asymptotic stability, and exponential stability of the equilibrium xe = 0 of (D).

Theorem 6.3.1 In the following, assume that v ∈ C[Ω × N, R] and that v is positive
definite.

(a) If ∆(D)v is negative semidefinite, then the equilibrium xe = 0 of (D) is stable.
(b) If v is decrescent and ∆(D)v is negative semidefinite, then the equilibrium

xe = 0 of (D) is uniformly stable.
(c) If v is decrescent and ∆(D)v is negative definite, then the equilibrium xe = 0

of (D) is uniformly asymptotically stable.
(d) If there exist four positive constants c1, c2, c3, and b such that

c1|x|b ≤ v(x, k) ≤ c2|x|b

and
∆(D)v(x, k) ≤ −c3|x|b

for all (x, k) ∈ Ω × N, then the equilibrium xe = 0 of (D) is exponentially
stable.

Proof . The proof of statement (a) follows along similar lines as the proof of state-
ment (a) of Theorem 6.2.1.

Statements (b), (c), and (d) are direct consequences of Theorems 3.4.1, 3.4.2, and
3.4.3, respectively. �

Example 6.3.1 Consider the linear system{
x1(k + 1) = x1(k) + 0.5x2(k)
x2(k + 1) = 0.5x2(k).

(6.3.1)

The origin xe = 0 is clearly an equilibrium of (6.3.1). Choose the v-function

v(x) = |x1 + x2| + |x2|.

Along the solutions of (6.3.1) we have

∆(6.3.1)v(x(k)) = |x1(k + 1) + x2(k + 1)| + |x2(k + 1)|
− |x1(k) + x2(k)| − |x2(k)|

= |x1(k) + 0.5x2(k) + 0.5x2(k)| + 0.5|x2(k)|
− |x1(k) + x2(k)| − |x2(k)|

= − 0.5|x2(k)|,

which is negative semidefinite. The function v is positive definite and decrescent.
All conditions of Theorem 6.3.1(b) are satisfied. Therefore, the equilibrium xe = 0
of (6.3.1) is uniformly stable. �
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Example 6.3.2 Consider the linear system given by

x(k + 1) =
(

1 − 1
2k+1

)
x(k). (6.3.2)

The equilibrium xe = 0 of (6.3.2) is uniformly stable. This can be shown by choosing
v(x) = |x|. Then it is clear that ∆(6.3.2)v is negative semidefinite. Therefore the
trivial solution is uniformly stable. Furthermore, every motion tends to 0 as k → ∞
(i.e., the trivial solution is attractive). Thus the trivial solution is asymptotically
stable.

On the other hand the equilibrium xe =0 of (6.3.2) is not uniformly asymptotically
stable. For any δ > 0 and any τ ∈N, there exists a k0 ∈ N such that x(k0+τ) > 0.5δ,
when x(k0) = 0.8δ. Condition (2) of Definition 6.1.1(c) is not satisfied. This is the
result of the fact that the motions decrease very slowly as k → ∞.

Exponential stability implies uniform asymptotic stability; thus the equilibrium
xe = 0 of (6.3.2) cannot be exponentially stable, either. �

Example 6.3.3 Consider the nonlinear autonomous system given by

x(k + 1) = x(k) − x(k)3 = x(k)
(
1 − x(k)2

)
. (6.3.3)

This system clearly has an equilibrium xe = 0 . Let the v-function be given by

v(x) = |x|.

Along the solutions of (6.3.3) we have

∆(6.3.3)v(x(k)) = |x(k + 1)| − |x(k)| = −|x(k)|3.

All the conditions of Theorem 6.3.1(c) are satisfied. Therefore, the equilibrium xe = 0
of (6.3.3) is uniformly asymptotically stable.

For the v-function chosen above, there do not exist positive constants c1, c2, c3, and
b that satisfy the conditions of Theorem 6.3.1(d). As a matter of fact, because of the
slow decreasing rate of |x(k)|, the equilibrium xe = 0 of (6.3.3) is not exponentially
stable. This can be shown by contradiction. Suppose that there exist an α > 0 and a
δ > 0 (let ε in Definition 6.1.1(d) be 1) such that

|x(k)| < e−α(k−k0) (6.3.4)

for all k ∈ N whenever |x(0)| < δ. Let m be sufficiently large such that

1 − e−2mα ≥ e−α/2.

Let x(0) = e−mα. We then have 1 − x(0)2 ≥ e−α/2. Because x(k) is positive and
{x(k)} is decreasing, it is true that 1 − x(k)2 ≥ e−α/2 for all k ∈ N. Thus,

x(k + 1) = x(k)(1 − x(k)2) ≥ x(k)e−α/2,
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which in turn yields

x(k) ≥ x(0)e−kα/2 = e−(m+k/2)α

for all k ∈ N. Let k = 4m. Then

x(4m) ≥ e−3mα.

On the other hand, it follows from (6.3.4) that

x(4m) < e−4mα,

which is a contradiction. Therefore, the equilibrium xe = 0 of (6.3.3) is not expo-
nentially stable. �

Example 6.3.4 Consider the system{
x1(k + 1) = x1(k)2 + x2(k)2

x2(k + 1) = x1(k)x2(k).
(6.3.5)

The origin xe = 0 is clearly an equilibrium of (6.3.5). Choose the v-function

v(x) = |x1| + |x2| = |x|1.

Along the solutions of (6.3.5) we have

∆(6.3.5)v(x(k)) = x1(k)2 + x2(k)2 + |x1(k)x2(k)| − |x1(k)| − |x2(k)|
≤ x1(k)2 + 2|x1(k)| |x2(k)| + x2(k)2 − |x1(k)| − |x2(k)|
= (|x1(k)| + |x2(k)|)2 − (|x1(k)| + |x2(k)|)
= |x(k)|21 − |x(k)|1
= (|x(k)|1 − 1)|x(k)|1.

For any |x|1 < c < 1, we have ∆(6.3.5)v(x(k)) ≤ (c−1)|x(k)|1. In accordance with
Theorem 6.3.1(d), the equilibrium xe = 0 of system (6.3.5) is exponentially stable.
The domain of attraction of the equilibrium xe = 0 is given by{

x ∈ R
2 : |x|1 = |x1| + |x2| < c, 0 < c < 1

}
. �

B. Global stability results

In our second result we concern ourselves with the global uniform asymptotic stability
and the global exponential stability of the equilibrium xe = 0 of (D).

Theorem 6.3.2 (a) With Ω = R
n, assume that there exists a positive definite, decres-

cent, and radially unbounded function v ∈ C[Rn ×N, R] such that ∆(D)v is negative
definite; that is, there exist ψ1, ψ2 ∈ K∞ and ψ3 ∈ K, such that

ψ1(|x|) ≤ v(x, k) ≤ ψ2(|x|) (6.3.6)
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and

∆(D)v(x, k) ≤ −ψ3(|x|) (6.3.7)

for all (x, k) ∈ R
n × N. Then the equilibrium xe = 0 of (D) is uniformly asymptot-

ically stable in the large.
(b) In part (a), assume that inequalities (6.3.6) and (6.3.7) are of the form

c1|x|b ≤ v(x, k) ≤ c2|x|b

and

∆(D)v(x, k) ≤ −c3|x|b

for all (x, k) ∈ R
n × N, where c1, c2, c3, and b are positive constants. Then the

equilibrium xe = 0 of (D) is exponentially stable in the large.

Proof . (a) This result is a direct consequence of Theorem 3.4.6.
(b) This result is a direct consequence of Theorem 3.4.7. �

Example 6.3.5 Consider the system{
x1(k + 1) = x1(k) − cx1(k)sat

(
x1(k)2 + x2(k)2

)
x2(k + 1) = x2(k) − cx2(k)sat

(
x1(k)2 + x2(k)2

) (6.3.8)

where sat(·) is the saturation function given by

sat(r) =


1, r > 1
r, −1 ≤ r ≤ 1

−1, r < −1.
(6.3.9)

The origin xe = 0 is clearly an equilibrium of (6.3.8). Choose the v-function as

v(x) = x2
1 + x2

2.

Along the solutions of (6.3.8) we have

∆(6.3.8)v(x(k)) = x1(k + 1)2 + x2(k + 1)2 − x1(k)2 − x2(k)2

=
(
x1(k)2 + x2(k)2

)(
1 − c sat

(
x1(k)2 + x2(k)2

))2
− x1(k)2− x2(k)2

= −c
(
x1(k)2 + x2(k)2

)
sat
(
x1(k)2 + x2(k)2

)
×
(
2 − c sat

(
x2

1(k) + x2(k)2
))

.

If 0 < c < 2, Theorem 6.3.2 applies and we conclude that the equilibrium xe = 0
of (6.3.8) is uniformly asymptotically stable in the large. Similarly as was done in
Example 6.3.3, we can show that xe = 0 is not exponentially stable in the large. �
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Example 6.3.6 Consider the system{
x1(k + 1) = 0.5x2(k) + cx1(k)sat

(
x1(k)2 + x2(k)2

)
x2(k + 1) = −0.5x1(k) + cx2(k)sat

(
x1(k)2 + x2(k)2

) (6.3.10)

where sat(·) is given by (6.3.9). The origin xe = 0 is clearly an equilibrium of
(6.3.10). Choose the v-function as

v(x) = x2
1 + x2

2.

Along the solutions of (6.3.10) we have

∆(6.3.10)v(x(k)) = x1(k + 1)2 + x2(k + 1)2 − x1(k)2 − x2(k)2

= −
(
x1(k)2 + x2(k)2

)(
0.75 − c2[sat

(
x1(k)2 + x2(k)2

)]2)
.

If c <
√

0.75, Theorem 6.3.2(a) applies and we conclude that the equilibrium xe = 0
of (6.3.10) is uniformly asymptotically stable in the large. In fact, Theorem 6.3.2(b)
also applies. Hence, the equilibrium xe = 0 is also exponentially stable in the
large. �

Example 6.3.7 Consider the linear time-varying system given by
x1(k + 1) =

1
(k + 2)

x1(k) − 2
(k + 2)

x2(k)

x2(k + 1) =
2

(k + 2)
x1(k) +

1
(k + 2)

x2(k)
(6.3.11)

where k ≥ 1. This system clearly has an equilibrium at the origin xe =(x1, x2)T= 0.
We choose as a v-function

v(x1, x2) = x2
1 + x2

2.

Along the solutions of (6.3.11) we have

∆(6.3.11)v(x1(k), x2(k)) =
5

(k + 2)2
(x1(k)2 + x2(k)2) − (x1(k)2 + x2(k)2)

=
(

5
(k + 2)2

− 1
)

(x1(k)2 + x2(k)2)

≤ − 4
9
(
x1(k)2 + x2(k)2

)
, (x1, x2)T ∈ R

2.

All the conditions of Theorem 6.3.2(b) are satisfied. Accordingly, the equilibrium
xe = 0 of system (6.3.11) is exponentially stable in the large. �

In the next result we address the uniform boundedness and the uniform ultimate
boundedness of solutions of (D).
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Theorem 6.3.3 With Ω = R
n, assume that there exists a function v ∈ C[Rn ×N, R]

that satisfies the following conditions.

(i) There exist two functions ψ1, ψ2 ∈ C[R+, R+] that are strictly increasing with
limr→∞ ψi(r) = ∞, i = 1, 2, and a constant M > 0, such that

ψ1(|x|) ≤ v(x, k) ≤ ψ2(|x|)

for all |x| ≥ M and k ∈ N.

(ii) For all |x| ≥ M and k ∈ N,

∆(D)v(x, k) ≤ 0.

Then the solutions of (D) are uniformly bounded.

If in addition to (i) and (ii), there exists a function ψ3 ∈ K∞ such that

∆(D)v(x, k) ≤ −ψ3(|x|)

for all |x| ≥ M and k ∈ N, then the solutions of (D) are uniformly ultimately
bounded.

Proof . This theorem is a direct consequence of Theorems 3.4.4 and 3.4.5. �

Example 6.3.8 Consider the system{
x1(k + 1) = ax1(k) + f(x2(k)) + 0.5M

x2(k + 1) = ax2(k) + g(x1(k)) + 0.5M
(6.3.12)

where |a| < 1, |f(η)| ≤ c|η| and |g(η)| ≤ c|η| for all η ∈ R, and M ∈ R
+.

Choose
v(x) = |x1| + |x2| = |x|1.

Along the solutions of (6.3.12) we have for all (x1, x2) ∈ R
2,

∆(6.3.12)v(x(k)) =
∣∣∣ax1(k) + f(x2(k)) +

1
2
M
∣∣∣

+
∣∣∣ax2(k) + g(x1(k)) +

1
2
M
∣∣∣− |x1(k)| − |x2(k)|

≤ |a| |x1(k)| + c|x2(k)| + |a| |x2(k)| + c|x1(k)| + M

− |x1(k)| − |x2(k)|
= (|a| + c − 1)|x1(k)| + (|a| + c − 1)|x2(k)| + M

= (|a| + c − 1)|x(k)|1 + M.

Assume that a and c are such that |a| + c − 1 < 0. Then ∆(6.3.12)v(x(k)) < 0 for all
|x|1 > M/(1 − |a| − c). All conditions of Theorem 6.3.3 are satisfied. Therefore,
the solutions of (6.3.12) are uniformly bounded. �
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C. Instability results

In the next results we concern ourselves with the instability of the equilibrium xe = 0
of (D).

Theorem 6.3.4 (Lyapunov’s First Instability Theorem) The equilibrium xe = 0 of
(D) is unstable if there exist a k0 ∈ N and a decrescent function v ∈ C[B(r)×N, R]
where r > 0, B(r) ⊂ Ω, such that ∆(D)v is positive definite (negative definite)
and if in every neighborhood of the origin there are points x such that v(x, k0) > 0
(v(x, k0) < 0). If in addition to the above assumptions, v is positive definite (neg-
ative definite), then the equilibrium xe = 0 of (D) is completely unstable (refer to
Definition 3.1.20).

Proof . By definition, the function v is decrescent implies there exists a function
ψ ∈ K defined on [0, r] such that∣∣v(x, k)

∣∣ ≤ ψ(|x|)
for all (x, k) ∈ B(r) × N.

Under the assumptions of the present theorem, v (or −v) satisfies the hypotheses
of Theorem 3.4.8 for instability and the hypotheses of Theorem 3.4.9 for complete
instability. The proof is completed. �

Theorem 6.3.5 (Lyapunov’s Second Instability Theorem) Assume that for system
(D) there exists a bounded function v∈C[B(r)×[k0,∞), R], where r>0, B(r)⊂Ω,
and k0 ∈ N, such that the following conditions are satisfied.

(i) For all (x, k) ∈ B(r) × [k0,∞),

∆(D)v(x, k) ≥ λv(x, k),

where λ > 0 is a constant.
(ii) In every neighborhood of the origin, there exists an x such that v(x, k1) > 0

for a fixed k1 ≥ k0, k1 ∈ N.

Then the equilibrium xe = 0 of (D) is unstable.

Proof . This result is a direct consequence of Theorem 3.4.10. �

Example 6.3.9 Consider the system{
x1(k + 1) = a2|x1(k)| + x2(k)f(x2(k))
x2(k + 1) = a2|x2(k)| + x1(k)g(x1(k))

(6.3.13)

where a2 > 1, f ∈ C[R, R], g ∈ C[R, R], and ηf(η) ≥ 0 and ηg(η) ≥ 0 for all
η ∈ R. The origin (x1, x2)T = (0, 0)T = 0 is clearly an equilibrium of (6.3.13).

We choose as a v-function

v(x) = |x1| + |x2| = |x|1.
Along the solutions of (6.3.13) we have for all x ∈ R

2,

∆(6.3.13)v(x(k)) =
∣∣a2|x1(k)| + x2(k)f(x2(k))

∣∣+ ∣∣a2|x2(k)| + x1(k)g(x1(k))
∣∣

− |x1(k)| − |x2(k)|
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≥ a2|x1(k)| + a2|x2(k)| − |x1(k)| − |x2(k)|
= a2|x(k)|1 − |x(k)|1
= (a2 − 1)|x(k)|1.

Because by assumption a2 > 1, ∆(6.3.13)v is positive definite. All the hypotheses of
Theorem 6.3.4 are satisfied and we conclude that the equilibrium xe = 0 of (6.3.13)
is unstable, in fact, completely unstable. �

Example 6.3.10 Consider the system{
x1(k + 1) = a2|x1(k)| + x2(k)f(x2(k))
x2(k + 1) = a2x2(k)

(6.3.14)

where a2 > 1, f ∈ C[R, R], and ηf(η) ≥ 0 for all η ∈ R. Choose as a v-function

v(x1, x2) = |x1| − |x2|.

Along the solutions of (6.3.14) we have

∆(6.3.14)v(x1, x2) = |a2|x1(k)| + x2(k)f(x2(k))| − |a2x2(k)| − |x1(k)| + |x2(k)|
≥ a2|x1(k)| − a2|x2(k)| − |x1(k)| + |x2(k)|
= (a2 − 1)|x1(k)| − (a2 − 1)|x2(k)|
= (a2 − 1)(|x1(k)| − |x2(k)|)
= λv(x1, x2)

where λ = a2 − 1 > 0 because a2 > 1. In every neighborhood of the origin there
are points x̄ in R

2 such that v(x̄) > 0. Thus, all the hypotheses of Theorem 6.3.5 are
satisfied. Therefore, the equilibrium xe = 0 of (6.3.14) is unstable. �

We present applications to important specific classes of finite-dimensional dynam-
ical systems determined by ordinary difference equations in Chapter 8.

6.4 The Principal Stability and Boundedness Results
for Discontinuous Dynamical Systems

In this section we fist present local stability results, global stability and boundedness
results, and instability results for finite-dimensional DDS (refer to Subsection 6.1C).
We address applications of these results in the last subsection of this section and
further, in Chapter 8. As noted in Subsection 6.1C, we assume that for the dynamical
systems in question, the origin xe = 0 ∈ R

n is an equilibrium.

A. Local stability results

We first address local results.
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Theorem 6.4.1 Let {R
+, Rn, A, S} be a finite-dimensional discontinuous dynamical

system (for short, a finite-dimensional DDS S) and assume that xe = 0 is an equi-
librium. Assume that there exist a function v : R

n × R
+ → R

+ and two functions
ψ1, ψ2 ∈ K defined on R

+ such that

ψ1(|x|) ≤ v(x, t) ≤ ψ2(|x|) (6.4.1)

for all x ∈ R
n and t ∈ R

+.
Assume that for any ϕ(·, t0, x0) ∈ S (t0 = τ0), v(ϕ(t, t0, x0), t) is continuous

everywhere on R
+
t0 = {t ∈ R

+ : t ≥ t0} except on an unbounded subset E =
{τ1, τ2, . . . : τ1 < τ2 < · · · } of R

+
t0 . Also assume that there exists a neighborhood U

of the origin xe = 0 such that for all x0 ∈ U and ϕ(·, t0, x0) ∈ S, v(ϕ(τk, t0, x0), τk)
is nonincreasing for k ∈ N. Furthermore, assume that there exists a function f ∈
C[R+, R+], independent of ϕ ∈ S, such that f(0) = 0 and such that

v(ϕ(t, t0, x0), t) ≤ f(v(ϕ(τk, t0, x0), τk)) (6.4.2)

for all t ∈ (τk, τk+1), k ∈ N.
Then the equilibrium xe = 0 of the DDS S is uniformly stable.

Proof . This result is a direct consequence of Theorem 3.2.1. �

Theorem 6.4.2 If in addition to the assumptions given in Theorem 6.4.1, there exists
a function ψ3 ∈ K defined on R

+ such that for all x0 ∈ U , ϕ(·, t0, x0) ∈ S, and
k ∈ N,

Dv(ϕ(τk, t0, x0), τk) ≤ −ψ3(|ϕ(τk, t0, x0)|) (6.4.3)

where

Dv(ϕ(τk, t0, x0), τk)
�
=

1
τk+1−τk

[
v(ϕ(τk+1, t0, x0), τk+1)−v(ϕ(τk, t0, x0), τk)

]
,

(6.4.4)
then the equilibrium xe = 0 of the DDS S is uniformly asymptotically stable.

Proof . This result is a direct consequence of Theorem 3.2.2. �

Theorem 6.4.3 Let {R
+, Rn, A, S} be a finite-dimensional DDS and assume that

xe = 0 is an equilibrium. Assume that there exist a function v : R
n × R

+ → R
+ and

four positive constants c1, c2, c3, and b such that

c1|x|b ≤ v(x, t) ≤ c2|x|b (6.4.5)

for all x ∈ R
n and t ∈ R

+.
Assume that there exists a neighborhood U of the origin xe = 0 such that for all

x0 ∈ U and ϕ(·, t0, x0) ∈ S (t0 = τ0), v(ϕ(t, t0, x0), t) is continuous everywhere
on R

+
t0 except on an unbounded subset E = {τ1, τ2, . . . : τ1 < τ2 < · · · } of R

+
t0 . Fur-

thermore, assume that there exists a function f ∈ C[R+, R+] such that f(0) = 0 and

v(ϕ(t, t0, x0), t) ≤ f(v(ϕ(τk, t0, x0), τk)) (6.4.6)
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for all t ∈ (τk, τk+1), k ∈ N, and that for some positive constant q, f satisfies

f(r) = O(rq) as r → 0+ (6.4.7)

(i.e., limr→0+ (f(r)/rq) = 0). Assume that for all k ∈ N,

Dv(ϕ(τk, t0, x0), τk) ≤ −c3
∣∣ϕ(τk, t0, x0)

∣∣b (6.4.8)

for all x0 ∈ U and ϕ(·, t0, x0) ∈ S, where Dv is given in (6.4.4).
Then the equilibrium xe = 0 of the DDS S is exponentially stable.

Proof . This result is a direct consequence of Theorem 3.2.3. �

B. Global stability and boundedness results

Next, we address global results.

Theorem 6.4.4 Let {R
+, Rn, A, S} be a finite-dimensional DDS and assume that

xe = 0 is an equilibrium. Assume that there exist a function v : R
n × R

+ → R
+

and two strictly increasing functions ψ1, ψ2 ∈ C[R+, R+] with limr→∞ ψi(r) = ∞,
i = 1, 2, such that

ψ1(|x|) ≤ v(x, t) ≤ ψ2(|x|) (6.4.9)

for all x ∈ R
n and t ∈ R

+ whenever |x| ≥ Ω, where Ω is a positive constant.
Assume that for every ϕ(·, t0, x0) ∈ S (t0 = τ0), v(ϕ(t, t0, x0), t) is continuous

everywhere on R
+
t0 except on an unbounded subset E ={τ1, τ2, . . . : τ1 <τ2 < · · · }

of R
+
t0 . Also, assume that

v(ϕ(τk+1, t0, x0), τk+1) ≤ v(ϕ(τk, t0, x0), τk) (6.4.10)

for all τk whenever |ϕ(τk, t0, x0)| ≥ Ω.
Furthermore, assume that there exists a function f ∈ C[R+, R+], independent of

ϕ ∈ S, such that for all k ∈ N and ϕ ∈ S,

v(ϕ(t, t0, x0), t) ≤ f(v(ϕ(τk, t0, x0), τk)) (6.4.11)

for all t ∈ (τk, τk+1) whenever |ϕ(t, t0, x0)| ≥ Ω.
Assume that there exists a constant Γ > 0 such that |ϕ(τk+1, t0, x0)| ≤ Γ when-

ever |ϕ(τk, t0, x0)| ≤ Ω for all ϕ ∈ S.
Then S is uniformly bounded.

Proof . This result is a direct consequence of Theorem 3.2.4. �

Theorem 6.4.5 If in addition to the assumptions in Theorem 6.4.4 there exists a
function ψ3 ∈ K defined on R

+ such that for all ϕ ∈ S

Dv(ϕ(τk, t0, x0), τk) ≤ −ψ3(|ϕ(τk, t0, x0)|) (6.4.12)

for all τk whenever |ϕ(τk, t0, x0)| ≥ Ω, where Dv in (6.4.12) is defined in (6.4.4),
then S is uniformly ultimately bounded.
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Proof . This result is a direct consequence of Theorem 3.2.5. �

Theorem 6.4.6 Let {R
+, Rn, A, S} be a finite-dimensional DDS and assume that

xe = 0 is an equilibrium. Assume that there exist a function v : R
n × R

+ → R
+ and

functions ψ1, ψ2 ∈ K∞ defined on R
+ such that

ψ1(|x|) ≤ v(x, t) ≤ ψ2(|x|) (6.4.13)

for all x ∈ R
n and t ∈ R

+.
Assume that for any ϕ(·, t0, x0)∈S (t0 = τ0), v(ϕ(t, t0, x0), t) is continuous ev-

erywhere on R
+
t0 except on an unbounded subset E ={τ1, τ2, . . . : τ1 <τ2 < · · · } of

R
+
t0 . Furthermore, assume that there exists a function f ∈ C[R+, R+] with f(0) = 0

such that for any ϕ ∈ S,

v(ϕ(t, t0, x0), t) ≤ f(v(ϕ(τk, t0, x0), τk)) (6.4.14)

for all t ∈ (τk, τk+1), k ∈ N.
Assume that there exists a function ψ3 ∈K defined on R

+ such that for any ϕ ∈ S,

Dv(ϕ(τk, t0, x0), τk) ≤ −ψ3(|ϕ(τk, t0, x0)|), (6.4.15)

k ∈ N, where Dv in (6.4.15) is defined in (6.4.4).
Then the equilibrium xe = 0 of the DDS S is uniformly asymptotically stable in

the large.

Proof . This result is a direct consequence of Theorem 3.2.6. �

Theorem 6.4.7 Let {R
+, Rn, A, S} be a finite-dimensional DDS and assume that

xe = 0 is an equilibrium. Assume that there exist a function v : R
n × R

+ → R
+ and

four positive constants c1, c2, c3, and b such that

c1|x|b ≤ v(x, t) ≤ c2|x|b (6.4.16)

for all x ∈ R
n and t ∈ R

+.
Assume that for every ϕ(·, t0, x0) ∈ S (t0 = τ0), v(ϕ(t, t0, x0), t) is continuous

everywhere on R
+
t0 except on an unbounded subset E ={τ1, τ2, . . . : τ1 <τ2 < · · · }

of R
+
t0 . Furthermore, assume that there exists a function f ∈C[R+, R+] with f(0)=0

such that
v(ϕ(t, t0, x0), t) ≤ f(v(ϕ(τk, t0, x0), τk)) (6.4.17)

for all t ∈ (τk, τk+1), k ∈ N, and such that for some positive constant q, f satisfies

f(r) = O(rq) as r → 0+. (6.4.18)

Assume that for all k ∈ N

Dv(ϕ(τk, t0, x0), τk) ≤ −c3
∣∣ϕ(τk, t0, x0)

∣∣b (6.4.19)

for all x0 ∈ A and ϕ ∈ S, where Dv in (6.4.19) is defined in (6.4.4).
Then the equilibrium xe = 0 of the DDS S is exponentially stable in the large.
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Proof . This result is a direct consequence of Theorem 3.2.7. �

C. Instability results

Next, we address instability results.

Theorem 6.4.8 Let {R
+, Rn, A, S} be a finite-dimensional DDS and assume that

xe = 0 is an equilibrium. Assume that there exist a function v : R
n × R

+ → R
+ and

a t0 = τ0 ∈ R
+ that satisfy the following conditions.

(i) There exists a function ψ2 ∈ K defined on R
+ such that

v(x, t) ≤ ψ2(|x|) (6.4.20)

for all x ∈ R
n and t ∈ R

+.

(ii) In every neighborhood of xe = 0 there are points x such that v(x, t0) > 0.

(iii) For any x0 ∈ A such that v(x0, t0) > 0 and any ϕ(·, t0, x0) ∈ S (t0 = τ0),
v(ϕ(t, t0, x0), t) is continuous everywhere on R

+
t0 except on an unbounded

subset E = {τ1, τ2, . . . : τ1 < τ2 < · · · } of R
+
t0 . Assume that there exists a

function ψ ∈ K defined on R
+ such that

Dv(ϕ(τk, t0, x0), τk) ≥ ψ
(
|v(ϕ(τk, t0, x0), τk)|

)
, (6.4.21)

k ∈ N, where Dv is defined in (6.4.4).

Then the equilibrium xe = 0 of the DDS S is unstable.

Proof . This result is a direct consequence of Theorem 3.2.8. �

Theorem 6.4.9 If in addition to the assumptions given in Theorem 6.4.8, v(x, t0)>0
for all x �= 0, then xe = 0 of the DDS S is completely unstable.

Proof . This result is a direct consequence of Theorem 3.2.9. �

D. Examples

We now consider several specific examples to demonstrate the applicability of the
results of the present section. In all cases, we assume that the sets of discontinuities,
{τ1, τ2, . . . : τ1 < τ2 < · · · }, are unbounded.

Example 6.4.1 We consider dynamical systems determined by equations of the form{
ẋ(t) = Ax(t), τk ≤ t < τk+1

x(t) = Bx(t−), t = τk+1, k ∈ N
(6.4.22)

where x(t) ∈ R
n for all t ∈ R

+, A, B ∈ R
n×n, and x(t−) = limt′→t,t′<t x(t′)

denotes the left limit of x(t′) at t′ = t. We assume that for (6.4.22) the following
conditions hold.
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(i) supk∈N{τk+1 − τk} ≤ λ < ∞ where λ > 0 is a constant.

(ii) ‖B‖e‖A‖λ ≤ α < 1, where α > 0 is constant and ‖ · ‖ denotes the matrix
norm induced by the vector norm | · |.

We choose v(x) = |x|. Then clearly (6.4.13) (resp., (6.4.16)) is satisfied. Along

the solutions ϕ(t, t0, x0)
�
= x(t) of (6.4.22) we have, for all k ∈ N,

Dv(x(τk)) =

∣∣x(τk+1)
∣∣− ∣∣x(τk)

∣∣
τk+1 − τk

≤
∥∥BeA(τk+1−τk)

∥∥ ∣∣x(τk)
∣∣− ∣∣x(τk)

∣∣
τk+1 − τk

≤
(∥∥B∥∥e‖A‖λ − 1

)∣∣x(τk)
∣∣

τk+1 − τk

≤ α − 1
λ

∣∣x(τk)
∣∣.

Therefore, inequality (6.4.15) (resp., (6.4.19)) is satisfied. Also,

v(x(t)) ≤ f(v(x(τk)))

is true for all t ∈ (τk, τk+1), k ∈ N, where f(r) = e‖A‖λr, and (6.4.14) (resp.,
(6.4.17)) is satisfied. Also, f(r) = O(rq) as r → 0+ for 0 < q < 1. It follows from
Theorem 6.4.6 (resp., Theorem 6.4.7) that the equilibrium xe = 0 of (6.4.22) is uni-
formly asymptotically stable in the large, in fact, exponentially stable in the large. �

We emphasize that in the above example, the matrix A may be unstable. In the
case when A has eigenvalues in the right half of the complex plane, the function
v(x(t)) may increase over the intervals (τk, τk+1), k ∈ N. However, the jumps of
v(x(t)) = |x(t)| at τk+1, k ∈ N, offset these increases, with the consequence that
v(x(τk+1)), and hence the norms of the solutions of (6.4.22) tend to zero as t → ∞.

Example 6.4.2 We consider dynamical systems determined by equations of the form{
ẋ(t) = Ax(t), τk ≤ t < τk+1

x(t) = Bx(t−) + u(t), t = τk+1, k ∈ N
(6.4.23)

where x(t) ∈ R
n for all t ∈ R

+, u(t) ∈ R
n, and |u(t)| < K for t = τk+1, k ∈ N,

where K > 0 is a constant, and A, B ∈ R
n×n. We assume that for (6.4.23) the

following conditions hold.

(i) supk∈N{τk+1 − τk} ≤ λ < ∞ where λ > 0 is a constant.

(ii) ‖B‖e‖A‖λ ≤ α < 1, where α > 0 is a constant.



Section 6.4 Principal Results for Discontinuous Dynamical Systems 225

We choose v(x) = |x|. Along the solutions ϕ(t, t0, x0)
�
= x(t) of (6.4.23) we have

Dv(x(τk)) =

∣∣x(τk+1)
∣∣− ∣∣x(τk)

∣∣
τk+1 − τk

≤
∥∥BeA(τk+1−τk)

∥∥ ∣∣x(τk)
∣∣− ∣∣x(τk)

∣∣+ ∣∣u(τk+1)
∣∣

τk+1 − τk

≤
(∥∥B∥∥e‖A‖λ − 1

)∣∣x(τn)
∣∣+ ∣∣u(τk+1)

∣∣
τk+1 − τk

≤
(α − 1)

∣∣x(τk)
∣∣+ K

λ
.

In the last step we require that |x(τk)| > Ω = K/(1−α). Therefore Dv(x(τk)) is
negative when |x(τk)| > Ω and condition (6.4.12) in Theorem 6.4.5 is satisfied. Also,
v(x(t)) ≤ f(v(x(τk))) is true for all t ∈ (τk, τk+1), k ∈ N, where f(r) = e‖A‖λr,
and relation (6.4.11) is satisfied. Finally, it is easily verified that when |x(τk)| ≤ Ω,
|x(τk+1)| ≤ K + αK. All conditions of Theorems 6.4.4 and 6.4.5 are satisfied.
Therefore, the solutions of system (6.4.23) are uniformly bounded, in fact, uniformly
ultimately bounded. �

The results given in Examples 6.4.1 and 6.4.2 can be improved by making use of
the matrix measure, µ(A), of a real matrix A ∈ R

n×n, defined by

µ(A) = lim
ε→0+

∣∣I + εA
∣∣− 1

ε
, (6.4.24)

where I ∈ R
n×n denotes the identity matrix. For x ∈ R

n and

|x|p =
( n∑

i=1

|xi|p
)1/p

, 1 ≤ p < ∞

and
|x|∞ = max

1≤j≤n
{|xj |},

the matrix measure of A = [aij ] is given, for p = 1, 2,∞, by

µ1(A) = max
1≤j≤n

{
ajj +

∑
i �=j

|aij |
}

, (6.4.25)

µ2(A) =
1
2
λM

(
AT + A

)
,

where λM (AT + A) denotes the largest eigenvalue of A + AT , and

µ∞(A) = max
1≤i≤n

{
aii +

∑
i �=j

|aij |
}

. (6.4.26)
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Of particular interest to us is the relation∣∣eAtx
∣∣ ≤ eµ(A)t

∣∣x∣∣, t ≥ 0. (6.4.27)

A moment’s reflection makes it now clear that the results of Examples 6.4.1 and
6.4.2 can be improved substantially by replacing condition (ii) in these examples by
the condition

(ii′) ‖B‖eµ(A)λ ≤ α < 1. (6.4.28)

Example 6.4.3 For system (6.4.22) assume that the following conditions hold.

(i) supk∈N{τk+1 − τk} ≤ λ < ∞, where λ > 0 is a constant; and

(ii) B is nonsingular and ‖B−1‖e‖A‖λ ≤ β < 1, where β > 0 is a constant.

We now apply Theorem 6.4.9 to show that under the above assumptions, the
equilibrium xe = 0 of (6.4.22) is unstable, in fact, completely unstable.

Choose v(x) = |x|. Along any solution ϕ(t, t0, x0)
�
= x(t) of system (6.4.22)

we have

Dv(x(τk)) =

∣∣x(τk+1)
∣∣− ∣∣x(τk)

∣∣
τk+1 − τk

=

∣∣BeA(τk+1−τk)x(τk)
∣∣− ∣∣x(τk)

∣∣
τk+1 − τk

≥
(∥∥e−A(τk+1−τk)B−1

∥∥)−1 ∣∣x(τk)
∣∣− ∣∣x(τk)

∣∣
τk+1 − τk

≥
(
‖B−1‖e‖A‖(τk+1−τk)

)−1 − 1
τk+1 − τk

∣∣x(τk)
∣∣

≥ β−1 − 1
λ

∣∣x(τk)
∣∣.

Therefore, (6.4.21) is satisfied. In fact, all the hypotheses of Theorems 6.4.8 and
6.4.9 are satisfied. Therefore, the equilibrium xe = 0 of system (6.4.22) is unstable,
in fact, completely unstable. �

Example 6.4.4 We consider dynamical systems determined by equations of the form{
ẋ(t) = f(x(t)), τk ≤ t < τk+1

x(t) = g(x(t−)), t = τk+1, k ∈ N
(6.4.29)

and associated with (6.4.29), the initial value problems given by{
ẋ(t) = f(x(t)),
x(τk) = xk,

(6.4.30)

k ∈ N. We assume that f : R
n → R

n, f(0) = 0, g : R
n → R

n, g(0) = 0, and that
|g(η)| ≤ γ|η| for all η ∈ R

n for some constant γ > 0. We assume that for every
(τk, xk) ∈ R

+ × R
n, (6.4.30) possesses a unique solution x(k)(t, τk, xk) that exists
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for all t ≥ τk. Then (6.4.29) possesses for every (t0, x0)
�
= (τ0, x0) ∈ R

+ × R
n a

unique solution ϕ(t, t0, x0) that exists for all t ≥ t0, where

ϕ(t, t0, x0) = x(k)(t, τk, xk), τk ≤ t < τk+1, k ∈ N. (6.4.31)

In particular, (6.4.30) possesses the trivial solution x(k)(t, τk, 0) = 0 for all t ≥ τk,
k ∈ N, (6.4.29) possesses the trivial solution ϕ(t, t0, 0) = 0, t ≥ t0 = τ0 ≥ 0, and
(6.4.30) and (6.4.29) have an equilibrium at the origin xe = 0 .

We now assume that for every initial value problem (6.4.30) there exist a function
v ∈ C1[Rn, R+] and four positive constants c1, c2, c3, and b > 0 such that{

c1|x|2 ≤ v(x) ≤ c2|x|2
v′
(6.4.30)(x) ≤ −c3|x|2. (6.4.32)

Letting c = −c3/c2, we have

v′
(6.4.30)(x) ≤ cv(x) (6.4.33)

which yields for (6.4.30) the estimate

v(x(k)(t, τk, xk)) ≤ ec(t−τk)v(xk), t ≥ τk, k ∈ N. (6.4.34)

For (6.4.29) we choose the v-function

v(ϕ(t, t0, x0)) = v(x(k)(t, τk, xk)), τk ≤ t < τk+1, k ∈ N. (6.4.35)

Then for (6.4.29) we still have

c1|x|2 ≤ v(x) ≤ c2|x|2 (6.4.36)

for all x ∈ R
n. Thus, (6.4.13) in Theorem 6.4.6 and (6.4.16) in Theorem 6.4.7 are

satisfied with ψi(s) = cis
2, i = 1, 2, and s ≥ 0.

Next, using (6.4.34) and (6.4.35), we have for the DDS given in (6.4.29) that

v(x(k)(t, τk, xk)) ≤ ec(t−τk)v(xk), τk ≤ t < τk+1, k ∈ N. (6.4.37)

At t = τk+1 we have in view of (6.4.29) and (6.4.32) that

v(x(k+1)(τk+1, τk+1, xk+1)) = v(xk+1)

≤ c2
∣∣xk+1

∣∣2
= c2

∣∣x(k+1)(τk+1, τk+1, xk+1)
∣∣2

≤ c2γ
2
∣∣x(k)(τ−

k+1, τk, xk)
∣∣2

≤ (c2/c1)γ2v(x(k)(τ−
k+1, τk, xk)). (6.4.38)

Letting δk = τk+1 − τk, k ∈ N, and using (6.4.37) and (6.4.38), we have that

v(xk+1) ≤ (c2/c1)γ2e−(c3/c2)δkv(x(k)(τk, τk, xk))

= (c2/c1)γ2e−(c3/c2)δkv(xk), k ∈ N. (6.4.39)
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If we require that
(c2/c1)γ2e−(c3/c2)δk ≤ 1 (6.4.40)

then v(xk) is nonincreasing with increasing k, and if

(c2/c1)γ2e−(c3/c2)δk ≤ αk < 1 (6.4.41)

then v(xk) is strictly decreasing with k.
Next, from (6.4.39) and the definition of Dv, we have

Dv(ϕ(τk, t0, x0)) ≤ αk − 1
τk+1 − τk

c1
∣∣ϕ(τk, t0, x0)

∣∣2, k ∈ N.

We assume that infk∈N [(1 − αk)/(τk+1 − τk)] c1 = c3 > 0. Then (6.4.15) in
Theorem 6.4.6 and (6.4.19) in Theorem 6.4.7 are satisfied with ψ3(s) = c3|s|2,
s ≥ 0.

Next, assume that infk∈N(c3/c2)δk = β > 0. Then in view of (6.4.37) we
have that

v(ϕ(t, t0, x0)) ≤ e−βv(xk) = f(v(xk)), τk ≤ t < τk+1, k ∈ N,

where f(s) = e−βs, s ≥ 0. Thus, (6.4.17) in Theorem 6.4.7 holds. Furthermore,
it is clear that f(s) = O(sq) as s → 0+ for any q ∈ (0, 1). Therefore, condition
(6.4.18) of Theorem 6.4.7 holds as well.

All the conditions of Theorems 6.4.1, 6.4.6, and 6.4.7 are satisfied and we have
the following result.

Proposition 6.4.1 Let c1, c2, c3, γ, and δk be the parameters for system (6.4.29), as
defined above.

(a) If for all k ∈ N, (c2/c1)γ2e−(c3/c2)δk ≤ 1, then the equilibrium xe = 0 of
system (6.4.29) is uniformly stable.

(b) If for all k ∈ N, (c2/c1)γ2e−(c3/c2)δk ≤ α < 1 (α > 0), then the equilibrium
xe = 0 of system (6.4.29) is uniformly asymptotically stable in the large and
exponentially stable in the large. �

Example 6.4.5 We now consider a class of DDS determined by equations of the form{
ẋ(t) = fk(t, x(t)), τk ≤ t < τk+1

x(t) = gk(x(t−)), t = τk+1, k ∈ N
(6.4.42)

and the associated family of initial value problems given by{
ẋ(t) = fk(t, x(t))
x(τk) = xk,

(6.4.43)

k ∈ N, where x(t) ∈ R
n, fk ∈ C[R+ × R

n, Rn], fk(t, 0) = 0 for all t ≥ 0,
gk : R

n → R
n, and g(0) = 0. We assume that there exists a constant γk > 0 such

that |gk(η)| ≤ γk|η| for all η ∈ R
n.
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We assume that for every (τk, xk) ∈ R
+ × R

n there exists a unique solution
x(k)(t, τk, xk) for (6.4.43) that exists for all t ≥ τk. We note that for (6.4.43) we
have x(k)(t, τk, 0) = 0 for all t ≥ τk and that xe = 0 is an equilibrium.

As a consequence of the above assumptions, we have that (6.4.42) possesses for
every (t0, x0) a unique solution

ϕ(t, t0, x0) = x(k)(t, τk, xk), τk ≤ t < τk+1, k ∈ N,

with t0 = τ0 and that xe = 0 is an equilibrium for (6.4.42).
Consistent with the above assumptions, we also assume that fk in (6.4.43) satisfies

the Lipschitz condition ∣∣fk(t, x) − fk(t, y)
∣∣ ≤ Kk

∣∣x − y
∣∣ (6.4.44)

for all x, y ∈ R
n and t ∈ [τk, τk+1], k ∈ N, where Kk > 0 is a constant.

From (6.4.43) we have∣∣x(k)(t, τk, xk) − y(k)(t, τk, yk)
∣∣

=
∣∣∣xk − yk +

∫ t

τk

(
fk(η, x(k)(η, τk, xk)) − fk(η, y(k)(η, τk, yk))

)
dη
∣∣∣.

Choosing yk = 0 and recalling that fk(t, 0) = 0, t ≥ τk, we have in view of (6.4.44)
that ∣∣x(k)(t, τk, xk)

∣∣ ≤ ∣∣xk

∣∣+ ∫ t

τk

Kk

∣∣x(k)(η, τk, xk)
∣∣dη (6.4.45)

for all t ∈ [τk, τk+1) and k ∈ N. Applying the Gronwall inequality (see Problem
2.14.9) to (6.4.45), we obtain the estimate∣∣x(k)(t, τk, xk)

∣∣ ≤ ∣∣xk

∣∣eKk(t−τk), τk ≤ t < τk+1 (6.4.46)

for all xk ∈ R
n and k ∈ N.

In what follows, we further assume that supk∈N Kk
�
= K < ∞, and letting

λk = τk+1 − τk, that supk∈N λk
�
= Λ < ∞, and that supk∈N γk

�
= Γ < ∞.

Proposition 6.4.2 Let Kk, γk, λk, K, Γ, and Λ be the parameters for system (6.4.42),
as defined above.

(a) If for every k ∈ N, γkeKkλk ≤ 1, then the equilibrium xe = 0 of system
(6.4.42) is uniformly stable.

(b) If for every k ∈ N, γkeKkλk ≤ α < 1, where α > 0 is a constant, then the
equilibrium xe = 0 of system (6.4.42) is uniformly asymptotically stable in the
large and exponentially stable in the large.

Proof . We choose the Lyapunov function v(x) = |x|, x ∈ R
n. When evaluated

along the solutions of (6.4.42) we have

v
(
ϕ(t, t0, x0)

) �
= v
(
x(k)(t, t0, x0)

)
=
∣∣x(k)(t, τk, xk)

∣∣, τk ≤ t < τk+1, k ∈ N.
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Clearly,
ψ1(|x|) ≤ v(x) ≤ ψ2(|x|) (6.4.47)

for all x ∈ R
n, where ψ1(s) = ψ2(s) = s ≥ 0 and ψ1, ψ2 ∈ K∞. Along the

solutions of (6.4.42) we have, in view of (6.4.46),∣∣x(k)(t, τk, xk)
∣∣ ≤ eKk(t−τk)

∣∣xk

∣∣ = eKk(t−τk)
∣∣x(k)(τk, τk, xk)

∣∣, (6.4.48)

for all t ∈ [τk, τk+1). At t = τk+1 we have∣∣x(k+1)(τk+1, τk+1, xk+1)
∣∣ = ∣∣g(x(k)(τ−

k+1, τk, xk))
∣∣ ≤ γk

∣∣x(k)(τ−
k+1, τk, xk)

∣∣.
(6.4.49)

Combining (6.4.48) and (6.4.49), we have∣∣x(k+1)(τk+1, τk+1, xk+1)
∣∣ ≤ γkeKkλk

∣∣x(k)(τk, τk, xk)
∣∣ (6.4.50)

and because by assumption, γkeKkλk ≤ 1, we have that

v
(
x(k+1)(τk+1, τk+1, xk+1)

)
=
∣∣x(k+1)(τk+1, τk+1, xk+1)

∣∣
≤
∣∣x(k)(τk, τk, xk)

∣∣ = v
(
x(k)(τk, τk, xk)

)
.

The above relation holds for all k ∈ N; thus it follows that v
(
ϕ(τk, t0, x0)

)
, k ∈ N,

is nonincreasing.
Next, from (6.4.48) we have, recalling that supk∈N Kk = K and supk∈N λk =

Λ, that

v
(
x(k)(t, τk, xk)

)
=
∣∣x(k)(t, τk, xk)

∣∣
≤ eKΛ

∣∣x(k)(τk, τk, xk)
∣∣

�
= f

(
v
(
x(k)(τk, τk, xk)

))
, (6.4.51)

t ∈ [τk, τk+1), k ∈ N, where f(s) = eKΛs. Therefore, all the hypotheses of Theo-
rem 6.4.1 are satisfied and we conclude that the equilibrium xe = 0 of system (6.4.42)
is uniformly stable.

If in (6.4.50) we assume that γkeKkλk ≤ α < 1, α > 0, we have that

v
(
x(k+1)(τk+1, τk+1, xk+1)

)
< αv

(
x(k)(τk, τk, xk)

)
and [

v
(
x(k+1)(τk+1, τk+1, xk+1)

)
− v
(
x(k)(τk, τk, xk)

)]/
(τk+1 − τk)

≤
[
(α − 1)/Λ

]
v
(
x(k)(τk, τk, xk)

)
= −ψ3

(
|x(k)(τk, τk, xk)|

)
= −ψ3

(
|ϕ(τk, t0, x0)|

)
(6.4.52)
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for all x0 ∈ R
n, k ∈ N. In (6.4.52) we have ψ3(s) = [(1 − α)/Λ]s, s ≥ 0 (i.e.,

ψ3 ∈ K∞). Therefore, all the hypotheses of Theorem 6.4.2 are satisfied and we
conclude that the equilibrium xe = 0 of system (6.4.42) is uniformly asymptotically
stable.

Because (6.4.47) holds for all x ∈ R
n and because actually ψ1, ψ2 ∈ K∞ and

because (6.4.52) is true for all ϕ(τk, t0, x0) ∈ R
n, it follows from Theorem 6.4.6 that

the equilibrium xe = 0 of system (6.4.42) is uniformly asymptotically stable in the
large.

From (6.4.47) it is clear that in relation (6.4.16) of Theorem 6.4.7 we have that
c1 = c2 = b = 1 and from (6.4.52) it is clear that in relation (6.4.19) in Theorem 6.4.7,
c3 = (1 − α)/Λ. We have already shown that relation (6.4.17) of Theorem 6.4.7
is true, and clearly, for f(s) = eKΛs, we have that f(s) = O(sq) as s → 0+ for
any q ∈ (0, 1). Therefore, all the hypotheses of Theorem 6.4.7 are satisfied and we
conclude that the equilibrium xe = 0 of system (6.4.42) is exponentially stable in the
large. �

Example 6.4.6 We now consider the DDS determined by equations of the form{
ẋ(t) = Akx(t), τk ≤ t < τk+1

x(t) = Bkx(t−), t = τk+1, k ∈ N
(6.4.53)

and the associated family of initial value problems given by{
ẋ(t) = Akx(t),
x(τk) = xk,

(6.4.54)

k ∈ N, where t ∈ R
+, x(t) ∈ R

n, and Ak, Bk ∈ R
n×n. We denote the solutions of

(6.4.54) by x(k)(t, τk, xk), t ≥ τk, k ∈ N, and the solutions of (6.4.53) by

ϕ(t, t0, x0) = x(k)(t, τk, xk), τk ≤ t < τk+1,

k ∈ N, where τ0 = t0. Note that xe = 0 is an equilibrium for (6.4.53) and (6.4.54).
If all the eigenvalues λ of Ak satisfy the relation Reλ ≤ −α0, then for any positive

αk < α0, there is a constant Mk(αk) > 0 such that the solutions of (6.4.54) satisfy
the estimate ∣∣x(k)(t, τk, xk)

∣∣ ≤ Mk(αk)e−αk(t−τk)
∣∣xk

∣∣ (6.4.55)

for all t ≥ τk ≥ 0 and xk ∈ R
n (refer to Theorem 2.9.5). When the aforementioned

assumption is not true, then the solutions of (6.4.54) still allow the estimate∣∣x(k)(t, τk, xk)
∣∣ ≤ e‖Ak‖(t−τk)

∣∣xk

∣∣ (6.4.56)

for all t ≥ τk ≥ 0 and xk ∈ R
n. Thus, in either case we have∣∣x(k)(t, τk, xk)

∣∣ ≤ Qkewk(t−τk)
∣∣xk

∣∣ (6.4.57)

for all t ≥ τk and xk ∈ R
n, where Qk = 1 and wk = ‖Ak‖ when (6.4.56) applies

and Qk = Mk(αk) and wk = −αk, αk > 0, when (6.4.55) applies.
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We assume that supk∈N Mk(αk) = M < ∞ and supk∈N λk = Λ < ∞.

Proposition 6.4.3 Let wk, Mk(αk), Qk, λk, Λ, and M be the parameters for system
(6.4.53), as defined above.

(a) If for all k ∈ N, ‖Bk‖Qkewkλk ≤ 1, then the equilibrium xe = 0 of system
(6.4.53) is uniformly stable.

(b) If for all k ∈ N, ‖Bk‖Qkewkλk ≤ α < 1, where α > 0 is a constant, then the
equilibrium xe = 0 of system (6.4.53) is uniformly asymptotically stable in the
large and exponentially stable in the large. �

The proof of Proposition 6.4.3 is similar to the proof of Proposition 6.4.2 and is
left as an exercise for the reader.

6.5 Converse Theorems for Ordinary Differential
Equations

In the present section we establish sample converse results for the principal Lya-
punov stability and boundedness results for ordinary differential equations presented
in Section 6.2. We recall the system of ordinary differential equations given by

ẋ = f(t, x) (E)

where t ∈ R
+, x ∈ Ω, 0 ∈ Ω, Ω is an open connected subset of R

n, and where it is
now assumed that f ∈ C[R+ × Ω, Rn]. In the appendix section (Section 6.8) it is
shown that the continuity of f(t, x) ensures the continuity of the solutions ϕ(t, t0, x0)
of (E) with respect to the initial conditions (t0, x0). We assume that xe = 0 is an
equilibrium for (E).

A. Local results

In our first result we address uniform stability.

Theorem 6.5.1 Assume that the equilibrium xe = 0 for (E) is uniformly stable.

(a) Then there exist functions ψ1, ψ2 ∈ K and a function v : B(r) × R
+ → R

+

for some r > 0, where B(r) ⊂ Ω, such that

ψ1(|x|) ≤ v(x, t) ≤ ψ2(|x|)

for all (x, t) ∈ B(r) × R
+, and v′

(E) is nonpositive.

(b) If f is Lipschitz continuous, then there exists a positive definite and decrescent
function v ∈ C[B(r) × R

+, R] for some r > 0, where B(r) ⊂ Ω, such that
v′
(E) is negative semidefinite.
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Proof . (a) This result is a direct consequence of Theorem 3.6.1.
(b) Let r0 > 0 such that B(r0) ⊂ Ω. Because xe = 0 is uniformly stable, there

exists a δ(ε) > 0 for any 0 < ε ≤ r0 such that |x(t, t0, x0)| < ε for all t ≥ t0
whenever |x0| < δ. Let δ(0) = 0. Without loss of generality, we may assume that
δ ∈ K and δ(ε) < ε for all ε ≤ r0.

Let r1 < r0 and r
�
= δ(δ(r1)). Define the Lyapunov function v(x, t) as

v(x, t) = min
{
|x(τ, t, x)| : τ ∈ [t∗, t]

}
for all (x, t) ∈ B(r) × R

+, where t∗ ∈ [0, t] is the smallest value to the left of t that
x(τ, t, x) can be continued to such that |x(τ, t, x)| < r0 for all τ ∈ (t∗, t].

Fix (x0, t0)∈B(r)×R
+. If |x(t∗0, t0, x0)|< r0, then t∗0 = 0 and |x(τ, t0, x0)|<r0

for all τ ∈ [0, t0]. By the continuity of solutions with respect to initial conditions, there
exists a neighborhood U of (x0, t0) such that for all (x, t) in this neighborhood, t∗ = 0.
If |x(t∗0, t0, x0)|= r0, let t̂0 < t0 be the value of t for which |x(t, t0, x0)|= r1 for the
first time to the left of t0. Because r < δ(r1) < r1, there exists a neighborhood U of
(x0, t0) such that all the solutions of (E) starting within this neighborhood stay within
the (r1 − δ(r1))-neighborhood of x(t̂0, t0, x0). Therefore, they are all continuable to
t̂0. Furthermore, if (x1, t1) ∈ U , then |x(t̂0, t1, x1)| > δ(r1). By the choice of δ(r1),
it must be true that |x(τ, t1, x1)| ≥ δ(δ(r1)) = r for all τ < t̂0. On the other hand
|x(t1, t1, x1)| = |x1| < r. Hence, v(x, t) takes place at some τ such that t̂0 ≤ τ ≤ t
for all (x, t) ∈ U .

Because (x0, t0) ∈ B(r), x(t, t0, x0) is continuable to the right. Without loss of
generality, we assume that x(t, t0, x0) can be continued to [t0, t0 + c], c > 0 and
U ⊂ {x : |x − x0| < ε} × [t∗0, t0 + c] for some ε > 0. By the Lipschitz continuity
of f , there exist an L > 0 such that |f(t, x) − f(t, y)| ≤ L|x − y| for (x, t), (y, t) ∈
B(r1) × [0, t0 + c] and a K = max{|f(t, x)| : (t, x) ∈ [0, t0 + c] × B(r0)]. For any
(x, t), (y, t) ∈ U , subtract the integral equations satisfied by x(s, t, x) and x(s, t, y)
and estimate as follows,

|x(s, t, x) − x(s, t, y)| ≤ |x − y| +
∣∣∣ ∫ s

t

f(τ, x(τ, t, x))dτ −
∫ s

t

f(τ, x(τ, t, y)dτ
∣∣∣

≤ |x − y| + L

∫ s

t

∣∣x(τ, t, x) − x(τ, t, y)
∣∣dτ

for all s ≥ t for which the solutions exist. Apply the Gronwall inequality to obtain
|x(s, t, x) − x(s, t, y)| < eL|t−s||x − y|.

For any (x, t), (y, t)∈U , suppose v(x, t)= |x(tx, t, x)| and v(y, t)= |x(ty, t, y)|.
Then

v(x, t) − v(y, t) ≤ |x(ty, t, x)| − |x(ty, t, y)| ≤ eL(t0+c)|x − y|,

and

v(x, t) − v(y, t) ≥ |x(tx, t, x)| − |x(tx, t, y)| ≥ −eL(t0+c)|x − y|.

Thus, we have
|v(x, t) − v(y, t)| ≤ eL(t0+c)|x − y|. (6.5.1)
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We now are ready to establish the continuity of v(x, t). Let (x1, t1) ∈ U be
arbitrarily close to (x0, t0). We have

|v(x0, t0) − v(x1, t1)| ≤ |v(x0, t0) − v(x(t1, t0, x0), t1)|
+ |v(x(t1, t0, x0), t1) − v(x0, t1)|
+ |v(x0, t1) − v(x1, t1)|. (6.5.2)

It follows from
|x(t1, t0, x0) − x0| ≤ K|t1 − t0|

that when |t1−t0| is sufficiently small, we have x(t1, t0, x0) ∈ U . Hence, the second
and third terms in (6.5.2) are small in view of (6.5.1). To obtain an estimate for the
first term, we first let t0 > t1 and set v(x0, t0) = |x(tx0 , t0, x0)|. If tx0 ≤ t1 then it
is true that

v(x0, t0) = min
{
|x(τ, t0, x0)| : τ ≤ t0

}
= min

{
|x(τ, t0, x0)| : τ ≤ t1

}
= v(x(t1, t0, x0), t1).

If tx0 is between t1 and t0, we have that

|x(tx0 , t0, x0)| = v(x0, t0) ≤ v(x(t1, t0, x0), t1) ≤ |x(t1, t0, x0)|.

Thus,

|v(x0, t0) − v(x(t1, t0, x0), t1)| ≤ |x(tx0 , t0, x0) − x(t1, t0, x0)| ≤ K|t1 − t0|.
(6.5.3)

When t0 < t1, it can be shown similarly as above that (6.5.3) holds. Thus, we have
shown that v(x, t) is continuous.

Clearly, δ(|x|) ≤ v(x, t) ≤ |x| and v′
(E) is negative semidefinite due to the fact

that v(x(t, t0, x0), t) is nonincreasing.
The proof is completed. �

In the next result we address the uniform asymptotic stability of the equilibrium
xe = 0 for (E).

Theorem 6.5.2 Assume that for every initial condition resulting in a solution of
(E), the solution is unique. Assume that the equilibrium xe = 0 is uniformly
asymptotically stable. Then there exists a positive definite and decrescent function
v ∈ C[B(r) × R

+, R] for some r > 0, where B(r) ⊂ Ω, such that v′
(E) is negative

definite.

Proof . This result is a consequence of Theorem 3.6.4 and the continuity of the solu-
tions of (E) with respect to initial conditions. �
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The next result, which addresses the exponential stability of the equilibrium xe =0
for (E), is not symmetric to the exponential stability theorem given in Theorem 6.2.4.
Nevertheless, this result does provide a set of necessary conditions for exponential
stability.

Theorem 6.5.3 Assume that for every initial condition resulting in a solution of (E),
the solution is unique. Assume that the equilibrium xe = 0 is exponentially stable.
Then there exists a positive definite and decrescent function v ∈ C[B(r) × R

+, R]
for some r > 0, where B(r) ⊂ Ω, such that v′

(E)(x, t) ≤ −cv(x, t) for all (x, t) ∈
B(r) × R

+, where c > 0 is a constant.

Proof . This result is a consequence of Theorem 3.6.5 and the continuity of the solu-
tions of (E) with respect to initial conditions. �

We emphasize that converse theorems for ordinary differential equations for uni-
form boundedness, uniform ultimate boundedness, uniform asymptotic stability in the
large, exponential stability in the large, and instability can also be established.

B. Some refinements

By imposing appropriate restrictions on the function f in (E), it is possible to re-
fine the converse theorems. For example, when f(t, x) ≡ f(x) then it turns out
(similarly as in the case of Theorems 4.1.3 and 4.1.4) that the Lyapunov func-
tions for the preceding results are time invariant (i.e., v(x, t) ≡ v(x)). (We ad-
dress this in Chapter 7.) Similarly, for the case of periodic systems (where in (E),
f(t, x) = f(t + T, x) for all t ∈ R, x ∈ R

n for some T > 0), the Lyapunov func-
tions in the preceding converse theorems are also periodic with the same period T
(i.e., v(x, t) = v(x, t + T ) for the same T > 0, x ∈ R

n). (We address this also in
Chapter 7.)

In the present subsection we first identify conditions on f in (E) that yield contin-
uously differentiable v-functions in the converse theorems. We present only a sample
result. In the proof of this result we require the following two preliminary results.
(In these results, we use the notation fx(t, x) = (∂f/∂x)(t, x).)

Lemma 6.5.1 Let f, ∂f/∂xi ∈ C[R+×B(r), Rn], i = 1, . . . , n. Then there exists a
function ψ ∈ C1[R+, R+] such that ψ(0) = 0, dψ(t)/dt > 0, and such that s = ψ(t)
transforms the equation

dx

dt
= f(t, x) (E)

into
dx

ds
= f∗(s, x) (E∗)

where |∇f∗(s, x)| ≤ 1 for all (s, x) ∈ R
+ × B(r) with

∇f∗(s, x)
�
=
[
∂f∗

∂x1
(s, x), . . . ,

∂f∗

∂xn
(s, x)

]
.
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Moreover, if v(x, s) is a C1-smooth function such that v′
(E∗)(x, s) is negative definite,

then for ṽ(x, t) = v(x, ψ(t)), ṽ′
(E)(x, t) is negative definite.

Proof . Pick a positive and continuous function F such that |(∂f/∂x)(t, x)| ≤ F (t)
for all (t, x) ∈ R

+ × B(r). We can assume that F (t) ≥ 1 for all t ≥ 0. Define

ψ(t) =
∫ t

0
F (v)dv

and define Ψ as the inverse function Ψ = ψ−1. Define s = ψ(t) so that (E) becomes
(E∗) with

f∗(s, x) =
f
(
Ψ(s), x

)
F
(
Ψ(s)

) .

Clearly, for all (t, x) ∈ R
+ × B(r) we have∣∣∣∣∂f∗

∂x
(s, x)

∣∣∣∣ = ∣∣∣∣∂f

∂x
(Ψ(s), x)

∣∣∣∣/F (Ψ(s)) ≤ F (Ψ(s))
F (Ψ(s))

= 1.

If v(x, s) has a negative definite derivative with respect to system (E∗), then define
ṽ(x, t) = v(x, ψ(t)). There is a function ψ1 ∈ K such that v′

(E∗)(x, t) ≤ −ψ1(|x|).
Thus

ṽ′
(E)(x, t) = vs(x, ψ(t))ψ̇(t) + ∇v(x, ψ(t))f(t, x)

= vs(x, ψ(t))F (t) + ∇v(x, ψ(t))
f(t, x)
F (t)

F (t)

= F (t)v′
(E∗)(x, ψ(t))

≤ v′
(E∗)(x, ψ(t))

≤ −ψ1(|x|).

Thus ṽ′
(E)(t, x) is also negative definite. �

Lemma 6.5.2 Let g(t) be a positive, continuous function defined for all t ≥ 0 and
satisfying g(t) → 0 as t → ∞. Let h(t) be a positive, continuous, monotone
nondecreasing function defined for all t ≥ 0. Then there exists a function G(u)
defined for u ≥ 0, positive for u > 0, continuous, increasing, having an increasing,
continuous derivative Ġ, and such that G(0) = Ġ(0) = 0, and such that for any a > 0
and any continuous function g∗(t) which satisfies 0 < g∗(t) ≤ ag(t) the integrals∫ ∞

0
G(g∗(t))ds and

∫ ∞

0
Ġ(g∗(t))h(t)dt (6.5.4)

converge uniformly in g∗.

Proof . We first construct a function u(t) defined for t > 0 that is continuous and
decreasing and satisfies u(t) → 0 as t → ∞, and u(t) → ∞ as t → 0+ such that for
any a > 0 there exists a T (a) with the property that if t ≥ T (a) then ag(t) ≤ u(t).
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Pick a sequence {tm} such that t1 ≥ 1, tm+1 ≥ tm + 1, and such that if t ≥ tm
then g(t) ≤ (m+1)−2. Define u(tm) = m−1, u(t) linear between the tms and such
that u(t) = (t1/t)p on 0 < t < t1, where p is chosen so large that u̇(t−1 ) < u̇(t+1 ).
For tm ≤ t ≤ tm+1 we have

ag(t) ≤ a(m + 1)−2 and u(t) ≥ (m + 1)−1

so that
ag(t) ≤ u(t)a(m + 1)−1 ≤ u(t)

as soon as m is larger than [a], the integer part of a. Thus we can take T (a) = [a].
Define F (u) to be the inverse function of u(t) and define

G(u) =
∫ u

0

e−F (s)

h(F (s))
ds. (6.5.5)

Because F is continuous and h is positive, the integrand in (6.5.5) is continuous on
0 < u < ∞ and F (u) → ∞ as u → 0+. Hence the integral exists and defines a
function G ∈ C1[R+, R+].

Fix a > 0 and choose a continuous function g∗ such that 0 < g∗(t) < ag(t). For
t ≥ T (a) we have 0 < g∗(t) ≤ u(t) or F (g∗(u)) ≥ t. Thus

Ġ(g∗)) =
e−F (g∗(t))

h(F (g∗(t)))
≤ e−t

h(t)
, t ≥ T (a).

Hence the uniform convergence of the second integral in (6.5.4) is clear.
The tail of the first integral in (6.5.4) can be estimated by∫ ∞

T (a)

(∫ u(t)

0

e−F (s)

h(0)
ds

)
dt.

Because u(t) is piecewise C1 on 0 < t < ∞, we can change variables from u to s in
the inner integral to compute∫ ∞

T (a)

(∫ s

∞

u̇(s)e−s

h(s)
ds

)
dt ≤

∫ ∞

T (a)

(∫ t

∞

u̇(s)e−s

h(0)
ds

)
dt

≤ h(0)−1
∫ ∞

T (a)

(∫ ∞

t

e−sds

)
dt

< ∞

because 0 > u̇(t) > −1. Hence the uniform convergence of the first integral in
(6.5.4) is also clear. �

In our next result we make use of the fact that if f is continuously differentiable,
then it is Lipschitz continuous and if |∂f/∂x| ≤ L for some L > 0, then L is a
Lipschitz constant for f .
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Theorem 6.5.4 Assume that f, ∂f/∂xi ∈ C[R+ × B(r), Rn], i = 1, . . . , n for
some r > 0. Assume that xe = 0 is an equilibrium of (E) which is uniformly
asymptotically stable. Then there exists a function v ∈ C1[B(r1) × R

+, R+] for
some r1 > 0 such that v is positive definite and decrescent and such that v′

(E) is
negative definite.

Proof . By Lemma 6.5.1 we can assume without loss of generality that |∂f/∂x| ≤ 1
on R

+ ×B(r). For all x0, y0 ∈ B(r), t0 ≥ 0, subtract the integral equations satisfied
by ϕ(t, t0, x0) and ϕ(t, t0, y0) and estimate as follows,∣∣ϕ(t, t0, x0) − ϕ(t, t0, y0)

∣∣ ≤ ∣∣x0 − y0
∣∣

+
∫ t

t0

∣∣f(s, ϕ(t, t0, x0)) − f(s, ϕ(t, t0, y0))
∣∣ds

≤
∣∣x0 − y0

∣∣+ ∫ t

t0

L
∣∣ϕ(t, t0, x0) − ϕ(t, t0, y0)

∣∣ds

for all t ≥ t0 for which the solutions exist. Apply the Gronwall inequality to obtain∣∣ϕ(t, t0, x0) − ϕ(t, t0, y0)
∣∣ ≤ ∣∣x0 − y0

∣∣et−t0 .

Define h(t) = et.
Pick r1 such that 0 < r1 ≤ r and such that if (t0, x0) ∈ R

+ × B(r1), then
ϕ(t, t0, x0) ∈ B(r) for all t ≥ t0 and such that

lim
t→∞ ϕ(t + t0, t0, x0) = 0

uniformly for (t0, x0) ∈ R
+ × B(r1). This is possible because xe = 0 is uniformly

asymptotically stable. Let g(s) be a positive continuous function such that g(s) → 0
as s → ∞, and such that |ϕ(s + t, t, x)|2 ≤ g(s) on s ≥ 0, t ≥ 0, x ∈ B(r1).

Let G be the function given by Lemma 6.5.2 and define

v(x, t) =
∫ ∞

0
G
(
|ϕ(s + t, t, x)|2

)
ds.

Clearly v is defined on B(r1) × R
+. The integral converges uniformly in (x, t) ∈

B(r1) × R
+, therefore v is also continuous. If D = ∂/∂x1, Dϕ(s + t, t, x) must

satisfy the linear equation

dy

ds
= fx

(
s, ϕ(s + t, t, x)

)
y; y(t) = (1, 0, . . . , 0)T

(refer to Miller and Michel [19, p. 69, Theorem 2.7.1]). Thus |Dϕ(s+ t, t, x)| ≤ kes

for some constant k ≥ 1. Thus

∂v

∂x1
(x, t) =

∫ ∞

0
Ġ
(
|ϕ(s + t, t, x)|2

)(
2ϕ(s + t, t, x)

∂ϕ

∂x1
(s + t, t, x)

)
ds
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exists and is continuous and∣∣∣∣ ∂v

∂x1
(x, t)

∣∣∣∣ ≤ ∫ ∞

0
Ġ(g(s))k1e

sds < ∞

for some constant k1 > 0. A similar argument can be used on the other partial
derivatives. Hence v ∈ C1[B(r1) × R

+, R+].
Because vx exists and is bounded by some number B whereas v(0, t) is zero, then

clearly
0 ≤ v(x, t) = v(x, t) − v(0, t) ≤ B|x|.

Thus, v is decrescent. To see that v is positive definite, first find M1 > 0 such that
|f(t, x)| ≤ M1|x| for all (t, x) ∈ R

+ × B(r1). For M = M1r1 we have

∣∣ϕ(t + s, t, x) − x
∣∣ ≤ ∫ t+s

t

∣∣f(u, ϕ(u, t, x))
∣∣du ≤ Ms.

Thus, for 0 ≤ s ≤ |x|/(2M) we have |ϕ(t + s, t, x)| ≥ |x|/2 and

v(x, t) ≥
∫ |x|/(2M)

0
G
(
|ϕ(t + s, t, x)|2

)
ds ≥

(
|x|/(2M)

)
G(|x|2/4).

This proves that v is positive definite.
To compute v′

(E) we replace x by a solution ϕ(t, t0, x0). Because by uniqueness
ϕ(t + s, t, ϕ(t, t0, x0)) = ϕ(t + s, t0, x0), then

v(ϕ(t, t0, x0), t) =
∫ ∞

0
G
(
|ϕ(t + s, t0, x0)|2

)
ds =

∫ ∞

t

G
(
|ϕ(s, t0, x0)|2

)
ds,

and
v′
(E)(ϕ(t, t0, x0), t) = −G

(
|ϕ(t, t0, x0)|2

)
.

Thus, v′
(E)(x0, t0) = −G(|x0|2). �

Next, as we noted earlier in Subsection 6.5A, the converse theorem for exponential
stability presented in Theorem 6.5.3 is not symmetric to the exponential stability
theorem given in Theorem 6.2.4. However, by imposing additional restrictions, we
are able to establish a converse result for exponential stability that is nearly symmetric
to the stability result given in Theorem 6.2.4, as demonstrated in the last result of this
subsection.

Theorem 6.5.5 Assume that for the system

ẋ = f(t, x) (E)

f ∈ C[R+ ×Ω, Rn], where Ω is a neighborhood of the origin in R
n, and assume that

f satisfies the Lipschitz condition∣∣f(t, x) − f(t, y)
∣∣ ≤ L

∣∣x − y
∣∣
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for all x, y ∈ B(r), r > 0, B(r) ⊂ Ω, and for all t ∈ R
+. Assume that the

equilibrium xe = 0 of (E) is exponentially stable in the sense that

|ϕ(t, t0, x0)| ≤ B|x0|e−α(t−t0) (6.5.6)

for all t ≥ t0, whenever |x0| < r, where B and α are positive constants. Then there
exist a function v ∈ C[B(r) × R

+, R], and three positive constants c1, c2, and c3
such that

c1|x|2 ≤ v(x,t) ≤ c2|x|2

v′
(E)(x, t) ≤ −c3|x|2.

Proof . Let the function v(x, t) be given by

v(x0, t0) =
∫ t0+T

t0

|ϕ(t, t0, x0)|2dt, (6.5.7)

for all (x0, t0) ∈ B(r) × R
+, where T = ln(B

√
2/α) is a constant.

First we need to obtain a lower bound for |ϕ(t, t0, x0)|. To this end, we let
y(s) = x(−s), s ∈ (−∞,−t0]. Then

ẏ(s) = ẋ(−s) = −f(s, y(s)),

and for an arbitrary t ≥ t0,

y(s) = y(−t) +
∫ s

−t

−f(τ, y(τ))dτ

for all s∈ [−t, −t0]. From the Lipschitz condition it is easily obtained that |f(t, x)|=
|f(t, x) − f(t, 0)| ≤ L|x|. Thus,

|y(s)| ≤ |y(−t)| +
∫ s

−t

L|y(τ)|dτ.

By the Gronwall inequality, we have

|y(s)| ≤ |y(−t)|eL(s+t).

In particular, at s = −t0, we have

|x(t0)| = |y(−t0)| ≤ |x(t)|eL(t−t0),

which in turn yields |x(t)| ≥ |x(t0)|e−L(t−t0) for all t ≥ t0.
We now have the following estimates for the v-function,

v(x0, t0) ≤
∫ t0+T

t0

|x0|2B2e−2α(t−t0)dt = |x0|2B2
∫ T

0
e−2αtdt = c2|x0|2,
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and

v(x0, t0) ≥
∫ t0+T

t0

|x0|2e−2L(t−t0)dt = |x0|2
∫ T

0
e−2Ltdt = c1|x0|2.

Along the solution ϕ(t, t0, x0) of (E), we have

v′
(E)(ϕ(t, t0, x0), t) = −|ϕ(t, t0, x0)|2 + |ϕ(t + T, t0, x0)|2

+
∫ t+T

t

d

dt
|ϕ(τ, t, ϕ(t, t0, x0))|2dt.

Because

ϕ(τ, t + ∆t, ϕ(t + ∆t, t0, x0)) = ϕ(τ, t0, x0) = ϕ(τ, t, ϕ(t, t0, x0)),

the last term in the above equation is zero. Additionally, it follows from (6.5.6) that

|ϕ(t + T, t0, x0)| = |ϕ(t + T, t, ϕ(t, t0, x0))| ≤ B|ϕ(t, t0, x0)|.

Hence,

v′
(E)(ϕ(t, t0, x0), t) ≤ −|ϕ(t, t0, x0)|2 + Be−2Tα|ϕ(t + T, t0, x0)|2

= −1
2
|ϕ(t, t0, x0)|2.

This completes the proof of the theorem. �

6.6 Converse Theorems for Ordinary Difference
Equations

In the present section we establish sample converse results for the principal
Lyapunov stability and boundedness results for ordinary difference equations pre-
sented in Section 6.3. We recall the system of ordinary difference equations given by

x(k + 1) = f(k, x(k)) (D)

where k ∈ N, x(k) ∈ Ω ⊂ R
n, and f : N × Ω → Ω. We assume that Ω is an open

connected set and that 0 ∈ Ω. We assume that xe = 0 is an equilibrium for (D).
In our first result we address uniform stability.

Theorem 6.6.1 Assume that the equilibrium xe = 0 for (D) is uniformly stable.
Then there exists a function v : B(r) × N → R

+ for some r > 0, B(r) ⊂ Ω, which
satisfies the following conditions.

(i) There exist functions ψ1, ψ2 ∈ K such that

ψ1(|x|) ≤ v(x, k) ≤ ψ2(|x|)

for all (x, k) ∈ B(r) × N.
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(ii) ∆(D)v(x, k) ≤ 0 for all (x, k) ∈ B(r) × N.

Proof . This result is a direct consequence of Theorem 3.7.1. �

In the next result we address the uniform asymptotic stability of the equilibrium
xe = 0 for (D). We recall that the motions determined by (D) are unique.

Theorem 6.6.2 Assume that the equilibrium xe = 0 of (D) is uniformly asymptot-
ically stable. Then there exists a function v : B(r) × N → R

+ for some r > 0,
B(r) ⊂ Ω, that satisfies the following conditions.

(i) There exist functions ψ1, ψ2 ∈ K such that

ψ1(|x|) ≤ v(x, k) ≤ ψ2(|x|)

for all (x, k) ∈ B(r) × N.

(ii) There exists a function ψ3 ∈ K such that

∆(D)v(x, k) ≤ −ψ3(|x|)

for all (x, k) ∈ B(r) × N.

Proof . This result is a direct consequence of Theorem 3.7.2. �

The next result, which address the exponential stability of the equilibrium xe = 0
for (E), is not symmetric to the exponential stability theorem given in Theorem
6.3.1(d). Nevertheless, this result does provide a set of necessary conditions for
exponential stability.

Theorem 6.6.3 Assume that the equilibrium xe = 0 of (D) is exponentially stable.
Then there exists a function v : B(r) × N → R

+ for some r > 0, B(r) ⊂ Ω, that
satisfies the following conditions.

(i) There exist functions ψ1, ψ2 ∈ K such that

ψ1(|x|) ≤ v(x, k) ≤ ψ2(|x|)

for all (x, k) ∈ B(r) × N.

(ii) There exists a positive constant c such that

∆(D)v(x, k) ≤ −cv(x, k)

for all (x, k) ∈ B(r) × N.

Proof . This result is a direct consequence of Theorem 3.7.3. �

We emphasize that converse theorems for ordinary difference equations can also be
established for uniform boundedness, uniform ultimate boundedness, uniform asymp-
totic stability in the large, exponential stability in the large, and instability.
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6.7 Converse Theorems for Finite-Dimensional DDS

In this section we present sample converse theorems for the stability and boundedness
results of Section 6.4 for finite-dimensional discontinuous dynamical systems. In the
first subsection we present results involving Lyapunov functions that in general need
not be continuous. In the second subsection we show that under reasonable additional
assumptions, the Lyapunov functions for the converse theorems are continuous.

A. Local results

We first address the uniform stability of the equilibrium xe = 0 for finite-
dimensional DDS.

Theorem 6.7.1 Let {R
+, Rn, A, S} be a finite-dimensional discontinuous dynamical

system (for short, a finite-dimensional DDS S) for which Assumption 3.5.1 holds.
Assume that the equilibrium xe = 0 is uniformly stable. Then there exists a function
v : B(r) × R

+ → R
+, B(r) ⊂ Ω, for some r > 0, that satisfies the following

conditions.

(i) There exist two functions ψ1, ψ2 ∈ K such that

ψ1(|x|) ≤ v(x, t) ≤ ψ2(|x|)

for all (x, t) ∈ B(r) × R
+.

(ii) For every ϕ(·, t0, x0) ∈ S with x0 ∈ B(r), v(ϕ(t, t0, x0), t) is nonincreasing
for all t ≥ t0.

Proof . This result is a direct consequence of Theorem 3.5.1. �

In the next result we address the uniform asymptotic stability of the equilibrium
xe = 0 of finite-dimensional DDS.

Theorem 6.7.2 Let {R
+, Rn, A, S} be a finite-dimensional DDS for whichAssump-

tions 3.5.1 and 3.5.2 hold. Assume that for every (t0, x0) ∈ R
+ × A there exists a

unique ϕ(·, t0, x0) ∈ S. Assume that the equilibrium xe = 0 is uniformly asymptoti-
cally stable. Then there exists a function v : B(r)×R

+ → R
+, B(r) ⊂ Ω, for some

r > 0, that satisfies the following conditions.

(i) There exist two functions ψ1, ψ2 ∈ K such that

ψ1(|x|) ≤ v(x, t) ≤ ψ2(|x|)

for all (x, t) ∈ B(r) × R
+.

(ii) There exists a function ψ3 ∈ K such that for all ϕ(·, t0, x0) ∈ S (t0 = τ0), we
have

Dv(ϕ(τk, t0, x0), τk) ≤ −ψ3(|ϕ(τk, t0, x0)|),

k ∈ N, where x0 ∈ B(r) and Dv is defined in (6.4.4).
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(iii) There exists a function f ∈ C[R+, R+] such that f(0) = 0 and such that

v(ϕ(t, t0, x0), t) ≤ f(v(ϕ(τk, t0, x0), τk))

for every ϕ(·, t0, x0) ∈ S, t ∈ [τk, τk+1), k ∈ N with x0 ∈ B(r) and t0 ∈ R
+.

Proof . This result is a direct consequence of Theorem 3.5.2. �

Next, we consider the exponential stability of the equilibrium xe = 0 of the finite-
dimensional DDS.

Theorem 6.7.3 Let {R
+, Rn, A, S} be a finite-dimensional DDS for whichAssump-

tions 3.5.1 and 3.5.2 hold. Assume that for every (t0, x0) ∈ R
+ × A there exists a

unique ϕ(·, t0, x0) ∈ S. Assume that the equilibrium xe = 0 for system S is expo-
nentially stable. Then there exists a function v : B(r) × R

+ → R
+, B(r) ⊂ Ω, for

some r > 0, that satisfies the following conditions.
(i) There exist two functions ψ1, ψ2 ∈ K such that

ψ1(|x|) ≤ v(x, t) ≤ ψ2(|x|)

for all (x, t) ∈ B(r) × R
+.

(ii) There exists a constant c > 0 such that for all ϕ(·, t0, x0) ∈ S (t0 = τ0),

Dv(ϕ(τk, t0, x0), τk) ≤ −cv(ϕ(τk, t0, x0), τk),

for all k ∈ N, t0 ∈ R
+, x0 ∈ B(r), and Dv is defined in (6.4.4).

(iii) There exists a function f ∈ C[R+, R+] with f(0) = 0 and

f(r) = O(rq) as r → 0+

for some constant q > 0 such that

v(ϕ(t, t0, x0), t) ≤ f(v(ϕ(τk, t0, x0), τk))

for every ϕ(·, t0, x0) ∈ S, t ∈ [τk, τk+1), k ∈ N with x0 ∈ B(r) and t0 ∈ R
+.

Proof . This result is a direct consequence of Theorem 3.5.3. �

We emphasize that converse theorems for finite-dimensional DDS for uniform
boundedness, uniform ultimate boundedness, uniform asymptotic stability in the
large, exponential stability in the large, and instability can also be established.

B. Some refinements

The converse theorems presented in the preceding subsection involve Lyapunov func-
tions that need not necessarily be continuous. In the present subsection, we show that
under some additional mild assumptions, the Lyapunov functions for converse theo-
rems are continuous.

The following concept of continuous dependence of solution on initial conditions
for finite-dimensional DDS is used as a sufficient condition for the continuity of the
Lyapunov functions.
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Definition 6.7.1 Suppose {x0m} ⊂ A ⊂ R
n, {τ0m} ⊂ R

+, and x0m → x0 ∈ A
and τ0m → τ0 as m → ∞. Assume that the motions of the dynamical system
{R

+, Rn, A, S} are given by

p(t, τ0, x0) = p(k)(t, τk, xk), t ∈ [τk, τk+1),

and
pm(t, τ0m, x0m) = p(k)

m (t, τkm, xkm), t ∈ [τkm, τ(k+1)m),

k∈N, where p(k)(t, τk, xk) and p
(k)
m (t, τkm, xkm) are continuous for all t∈R

+ with
p(k)(τk, τk, xk)=p(τk, τ0, x0) = xk and p

(k)
m (τkm, τkm, xkm)=pm(τkm, τ0m, τ0m)

= xkm.
The motions in S are said to be continuous with respect to initial conditions if

(1) τkm → τk as m → ∞, for all k ∈ N; and
(2) for every compact set K ⊂R

+ and every ε>0 there exists an L=L(K, ε)>0
such that for all t ∈ K and k ∈ N such that K ∩ [τk, τk+1) �= ∅,∣∣p(k)

m (t, τkm, xkm) − p(k)(t, τk, xk)
∣∣ < ε

whenever m > L. �

Theorem 6.7.4 If in addition to the assumptions given in Theorem 6.7.2, the motions
in S are continuous with respect to initial conditions (in the sense of Definition 6.7.1),
then there exists a continuous Lyapunov function that satisfies the conditions of
Theorem 6.7.2.

Proof . The proof of this result is a direct consequence of Theorem 3.5.5. �

Converse theorems for DDS with continuous Lyapunov functions for other Lya-
punov stability and boundedness types, which are in the spirit of Theorem 6.7.4, can
also be established.

6.8 Appendix: Some Background Material on
Differential Equations

In this section we present results concerning the continuity of solutions with respect
to initial conditions for ordinary differential equations. We require these results in
establishing the continuity of v-functions in the converse theorems for continuous
finite-dimensional dynamical systems and finite-dimensional DDS.

We consider systems of differential equations given by

ẋ = f(t, x) (E)

where (t, x) ∈ D, D is a domain in the (t, x)-space (t ∈ R
+, x ∈ R

n), and f ∈
C[D, Rn]. Associated with (E) we have the initial value problem

ẋ = f(t, x), x(τ) = ξ, (IE)
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which can equivalently be expressed as

x(t) = ξ +
∫ t

τ

f(s, x(s))ds, (I)

with noncontinuable solution ϕ(t) defined on interval J .
In our subsequent discussion we require “perturbed systems” characterized by a

sequence of initial value problems

x(t) = ξm +
∫ t

τ

fm(s, x(s))ds, (Im)

with noncontinuable solutions ϕm(t) defined on intervals Jm. We assume that
fm ∈ C[D, Rn], that ξm → ξ as m → ∞ and that fm → f uniformly on compact
subsets of D.

In the proof of the main result of the present section, we require the following
preliminary result.

Lemma 6.8.1 Let D be bounded. Suppose a solution ϕ of (I) exists on an interval
J = [τ, b), or on [τ, b], or on the “degenerate interval” [τ, τ ], and suppose that (t, ϕ(t))
does not approach ∂D as t → b−; that is,

dist((t, ϕ(t)), ∂D)
�
= inf

{
|t − s| + |ϕ(t) − x| : (s, x) /∈ D

}
≥ η > 0 (6.8.1)

for all t ∈ J . Suppose that {bm} ⊂ J is a sequence that tends to b and the solutions
ϕm(t) of (Im) are defined on [τ, bm] ⊂ J and satisfy

Φm = sup
{
|ϕm(t) − ϕ(t)| : τ ≤ t ≤ bm

}
→ 0

as m → ∞. Then there is a number b′ > b, where b′ depends only on η (in (6.8.1))
and there is a subsequence {ϕmj } such that ϕmj

and ϕ are defined on [τ, b′] and
ϕmj

→ ϕ as j → ∞ uniformly on [τ, b′].

Proof . Define G = {(t, ϕ(t)) : t ∈ J}, the graph of ϕ over J . By hypothesis, the
distance from G to ∂D is at least η = 3A > 0. Define

D(b) =
{
(t, x) ∈ D : dist((t, x), G) ≤ b

}
.

Then D(2A) is a compact subset of D and f is bounded there, say |f(t, x)| ≤ M
(M > 1) on D(2A). Because fm → f uniformly on D(2A), it may be assumed (by
increasing the size of M ) that |fm(t, x)| ≤ M on D(2A) for all m ≥ 1. Choose m0
such that for m ≥ m0, Φm < A. This means that (t, ϕm(t)) ∈ D(A) for all m ≥ m0
and t ∈ [τ, bm]. Choose m1 ≥ m0 so that if m ≥ m1, then b − bm < A/(4M).
Define b′ = b + A/(4M).

Fix m ≥ m1. Because (t, ϕm(t)) ∈ D(A) on [τ, bm], then |ϕ̇m(t)| ≤ M on
[τ, bm] and until such time as (t, ϕm(t)) leaves D(2A). Hence

|ϕm(t) − ϕm(bm)| ≤ M |t − bm| ≤ MA/(2M) = A/2
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for as long as both (t, ϕm(t)) ∈ D(2A) and |t − bm| ≤ A/(2M). Thus (t, ϕm(t)) ∈
D(2A) on τ ≤ t ≤ bm + A/(2M). Moreover, bm + A/(2M) > b′ when m is large.

Thus, it has been shown that {ϕm : m ≥ m1} is a uniformly bounded family of
functions and each is Lipschitz continuous with Lipschitz constant M on [τ, b′]. By
Ascoli’s Lemma (see Problem 2.14.7), a subsequence {ϕmj } will converge uniformly
to a limit ϕ. The arguments used at the end of the proof of Theorem 2.3.1 (refer to
the hint in Problem 2.14.8) show that

lim
j→∞

∫ t

τ

f(s, ϕmj
(s))ds =

∫ t

τ

f(s, ϕ(s))ds.

Thus, the limit of

φmj (t) = ξmj +
∫ t

τ

f(s, ϕmj (s))ds +
∫ t

τ

[
fmj (s, ϕmj (s)) − f(s, ϕmj (s))

]
ds

as j → ∞, is

ϕ(t) = ξ +
∫ t

τ

f(s, ϕ(s))ds.

�

We are now in a position to prove the following result.

Theorem 6.8.1 Let f, fm ∈ C[D, Rn], let ξm → ξ, and let fm → f uniformly on
compact subsets of D. If {ϕm} is a sequence of noncontinuable solutions of (Im)
defined on intervals Jm, then there is a subsequence {mj} and a noncontinuable
solution ϕ of (I) defined on an interval J0 containing τ such that

(i) limj→∞ inf Jmj ⊃ J0; and

(ii) ϕmj
→ ϕ uniformly on compact subsets of J0 as j → ∞.

If in addition, the solution of (I) is unique, then the entire sequence {ϕm} tends
to ϕ uniformly for t on compact subsets of J0.

Proof . With J = [τ, τ ] (a single point) and bm = τ for all m ≥ 1 apply Lemma
6.8.1. (If D is not bounded, use a subdomain.) Thus, there is a subsequence of {ϕm}
that converges uniformly to a limit function ϕ on some interval [τ, b′], b′ > τ . Let
B1 be the supremum of these numbers b′. If B1 = +∞, choose b1 to be any fixed
b′. If B1 < ∞, let b1 be a number b1 ≥ τ such that B1 − b′ < 1. Let {ϕ1m} be a
subsequence of {ϕm} that converges uniformly on [τ, b1].

Suppose for induction that we are given {ϕkm}, bk, Bk > bk with ϕkm → ϕ
uniformly on [τ, bk] as m → ∞. Define Bk+1 as the supremum of all numbers
b′ > bk such that a subsequence of {ϕkm} will converge uniformly on [τ, b′]. Clearly
bk < Bk+1 ≤ Bk. If Bk+1 = +∞, pick bk+1 > bk + 1 and if Bk+1 < ∞, pick
bk+1 so that bk < bk+1 < Bk+1 and bk+1 > Bk+1 − 1/(k + 1). Let {ϕk+1,m} be
a subsequence of {ϕkm} that converges uniformly on [τ, bk+1] to a limit ϕ. Clearly,
by possibly deleting finitely many terms of the new subsequence, we can assume
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without loss of generality that |ϕk+1,m(t) − ϕ(t)| < 1/(k + 1) for t ∈ [τ, bk+1] and
m ≥ k + 1.

Because {bk} is monotonically increasing, it has a limit b ≤ +∞. Define J0 =
[τ, b). The diagonal sequence {ϕmm} will eventually become a subsequence of each
sequence {ϕkm}. Hence ϕmm → ϕ as m → ∞ with convergence uniform on
compact subsets of J0. By the argument used at the end of the proof of Lemma 6.8.1,
the limit ϕ must be a solution of (IE).

If b = ∞, then ϕ is clearly noncontinuable. If b < ∞, then this means that Bk

tends to b from above. If ϕ could be continued to the right past b (i.e., if (t, ϕ(t))
stays in a compact subset of D as t → b−), then by Lemma 6.8.1 there would be a
number b′ > b, a continuation of ϕ, and a subsequence of {ϕmm} that would converge
uniformly on [τ, b′] to ϕ. Because b′ > b and Bk → b+, then for sufficiently large k
(i.e., when b′ > Bk), this would contradict the definition of Bk. Hence, ϕ must be
noncontinuable. A similar argument works for t < τ , therefore parts (i) and (ii) are
proved.

Now assume that the solution of (IE) is unique. If the entire sequence {ϕm} does
not converge to ϕ uniformly on compact subsets of J0, then there is a compact set
K ⊂ J0, an ε > 0, a sequence {tk} ⊂ K, and a subsequence {ϕmk} such that

|ϕmk(tk) − ϕ(tk)| ≥ ε. (6.8.2)

By the part of the present theorem that has already been proved, there is a subsequence,
we still call it {ϕmk} in order to avoid a proliferation of subscripts, that converges
uniformly on compact subsets of an interval J ′ to a solution ψ of (IE). By uniqueness
J ′ = J0 and ψ = ϕ. Thus ϕmk → ϕ as k → ∞ uniformly on K ⊂ J0 which
contradicts (6.8.2). �

Using Theorem 6.8.1, we now can prove the following result.

Corollary 6.8.1 Consider the system

ẋ = f(t, x) (E)

where t ∈ R
+, x ∈ Ω, Ω is an open connected subset of R

n, and f ∈ C[R+ ×Ω, Rn].
Assume that for each (t0, x0) ∈ R

+×Ω, there exists a unique noncontinuable solution
ϕ(t, t0, x0) with initial condition ϕ(t0) = x0. Then ϕ is continuous for (t, t0, x0) ∈ S
where

S
�
=
{
(t, t0, x0) ∈ R

+ × R
+ × Ω: α(t0, x0) < t < β(t0, x0)

}
,

where ϕ(·, t0, x0) is defined on (α, β), α = α(t0, x0) is upper semicontinuous in
(t0, x0) ∈ R

+ ×Ω and β = β(t0, x0) is lower semicontinuous in (t0, x0) ∈ R
+ ×Ω.

Proof . Define ψ(t, t0, x0) = ϕ(t + t0, t0, x0) so that ψ solves

ẏ = f(t + t0, y), y(0) = x0.
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Let (t1m, t0m, x0m) be a sequence in S that tends to a limit (t1, t0, x0) ∈ S. By
Theorem 6.8.1 it follows that

ψ(t, t0m, x0m) → ψ(t, t0, x0) as m → ∞

uniformly for t in compact subsets of α(t0, x0) − t0 < t < β(t0, x0) − t0 and in
particular uniformly in m for t = t1. Therefore, we see that∣∣ϕ(t1m, t0m, x0m) − ϕ(t1, t0, x0)

∣∣ ≤ ∣∣ϕ(t1m, t0m, x0m) − ϕ(t1m, t0, x0)
∣∣

+
∣∣ϕ(t1m, t0, x0) − ϕ(t1, t0, x0)

∣∣→ 0 as m → ∞.

This proves that ϕ is continuous on S.
To prove the remainder of the conclusions, we note that by Theorem 6.8.1(i), if

Jm is the interval (α(t0m, x0m), β(t0m, x0m)), then

lim
m→∞ inf Jm ⊃ J0.

The remaining assertions follow immediately. �

6.9 Notes and References

The various concepts of stability of an equilibrium for systems determined by ordinary
differential equations, without reference to uniformity, were originally formulated by
A. M. Lyapunov in 1892 [12]. The distinction between stability and uniform stability
(resp., asymptotic stability and uniform asymptotic stability) was introduced in the
process of establishing converse theorems (e.g., Malkin [13] and Massera [14]).

There are many interesting and excellent texts and monographs dealing with the
stability theory of dynamical systems determined by ordinary differential equations
(e.g., Hahn [4], Hale [5], Krasovskii [8], Lakshmikantham and Leela [9], Yoshizawa
[22], and Zubov [23]). Excellent references that emphasize engineering applications
include Khalil [7] and Vidyasagar [20]. Our presentation in Sections 6.2 and 6.5
concerning the stability of an equilibrium and the boundedness of solutions was
greatly influenced by the presentations in Hahn [4], Miller and Michel [19], and
Michel et al. [18]. For more complete treatments of converse theorems for ordinary
differential equations, refer to Hahn [4, Chapter 6] and Yoshizawa [22, Chapter 5].

Our treatment in Sections 6.3 and 6.6 of the stability of an equilibrium and the
boundedness of solutions of discrete-time dynamical systems determined by ordinary
difference equations is more complete than what is usually found in texts. We note
here that in the converse theorems presented in Section 6.6 we do not have any
restrictions on the function f in (D), whereas the results in the literature usually
require f to be continuous (see, e.g., [6]), globally Lipschitz continuous (see, e.g., [1]
and [10]), or bijective (see, e.g., [3]). A good source on the stability of discrete-time
systems determined by difference equations is the monograph by LaSalle [11]. Refer
also to Antsaklis and Michel [2] and Michel et al. [18].



250 Chapter 6. Finite-Dimensional Dynamical Systems

The material given in Sections 6.4 and 6.7 is perhaps the first systematic presen-
tation of the stability and boundedness results of finite-dimensional discontinuous
dynamical systems in book form. The first results of the type presented in Sections
6.4 and 6.7 were first addressed in Ye et al. [21]. For subsequent results on this
subject, refer to Michel [15], Michel and Hu [17], and Michel et al. [18].

The results presented in Section 6.8 concerning the continuity of solutions of
ordinary differential equations with respect to initial conditions are based on similar
results given in Miller and Michel [19]. For additional results concerning this topic,
refer to [19].

6.10 Problems

Problem 6.10.1 Show that if the equilibrium xe = 0 of (E) satisfies (6.1.6) for a
single initial time t0 ≥ 0 when (6.1.7) is true, then it also satisfies this condition at
every other initial time t′0 > t0. �

Problem 6.10.2 Prove that if f(t, xe) = 0 for all t ∈ R
+, then xe is an equilibrium

for (E).
Prove that if (E) possesses a unique solution for every (t0, x0) ∈ R

+ × Ω, where
Ω is an open connected set and 0 ∈ Ω, then xe = 0 is an equilibrium for (E) if and
only if f(t, 0) = 0 for all t ∈ R

+. �

Problem 6.10.3 Prove relation (6.1.3). Prove relation (6.1.4). �

Problem 6.10.4 Prove that xe ∈ Ω is an equilibrium of (D) if and only if for all
k ∈ N, xe = f(k, xe).

Similarly as in the case of ordinary differential equations, prove that if (D) has an
equilibrium at xe, we may assume without loss of generality that the equilibrium is
at the origin. �

Problem 6.10.5 Prove Theorem 6.1.2. �

Problem 6.10.6 Prove Theorem 6.1.3. �

Problem 6.10.7 Determine all the equilibrium points of the following differential
equations (or systems of differential equations).

(a) ẏ = sin y.

(b) ẏ = y2(y2 − 3y + 2).
(c) ẍ + (x2 − 1)ẋ + x = 0.

(d)

{
ẋ1 = x2 + x1x2
ẋ2 = −x1 + 2x2.

(e) ẍ + ẋ + sin x = 0.

(f) ẍ + ẋ + x(x2 − 4) = 0.

(g) ẋ = a(1 + t2)−1x, a > 0 is a constant or a < 0 is a constant. �
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Problem 6.10.8 Determine the stability properties of the systems given in Problem
6.10.7. �

Problem 6.10.9 Consider the scalar equation

ẋ = −x2n+1 (6.10.1)

where k ∈ N. Prove that for arbitrary n, the equilibrium xe = 0 of (6.10.1) is
uniformly asymptotically stable in the large. Prove that when n = 0, the equilibrium
xe = 0 is exponentially stable in the large. Prove that when n ≥ 1, the equilibrium
xe = 0 of system (6.10.1) is not exponentially stable. �

Problem 6.10.10 Consider the system{
ẋ1 = x2 − x1(x2

1 + x2
2)

ẋ2 = −x1 − x2(x2
1 + x2

2).
(6.10.2)

Prove that the equilibrium xe = 0 of (6.10.2) is not exponentially stable. �

Problem 6.10.11 Let f ∈ C1[R+ × R
n, Rn] with f(t, 0) = 0 for all t ≥ 0, and

assume that the eigenvalues λi(t, x), i = 1, . . . , n, of the symmetric matrix

J(t, x) =
1
2
[fx(t, x) + fx(t, x)T ]

satisfy λi(t, x) ≤ −c, i = 1, . . . , n for all (t, x) ∈ R
+ × R

n.

(i) If c = 0, show that the trivial solution of (E) is stable and that the solutions of
(E) are uniformly bounded.

(ii) If c > 0, show that the equilibrium xe = 0 of (E) is exponentially stable in the
large. �

Problem 6.10.12 Investigate the boundedness, uniform boundedness, and uniform
ultimate boundedness of the solutions for each of the following systems.

(a) ẍ + ẋ + x(x2 − 4) = 0.

(b) ẍ + ẋ + x3 = sin t.

(c)

{
ẋ1 = x2 + (x1x2)/(1 + x2

1 + x2
2)

ẋ2
2 = −2x1 + 2x2 + arctanx1.

(d)


ẋ1 = x3

2 + x1(x2
3 + 1)

ẋ2 = −x3
1 + x2(x2

3 + 2)
ẋ3 = −(x3)2/3.

�

Problem 6.10.13 Analyze the stability of the equilibrium (x, ẋ) = 0 of the system

x(n) + g(x) = 0

where n > 2 is odd and xg(x) > 0 when x �= 0. �



252 Chapter 6. Finite-Dimensional Dynamical Systems

Hint: For n = 2m + 1, use the Lyapunov function

v =
m∑

k=1

(−1)kxkx2m+2−k + (−1)m+1x2
m+1/2.

Problem 6.10.14 Prove Corollary 6.2.2

Problem 6.10.15 Determine all the equilibrium points of the following discrete-time
systems given by

(a)

{
x1(k + 1) = x2(k) + |x1(k)|
x2(k + 1) = −x1(k) + |x2(k)|.

(b)

{
x1(k + 1) = x1(k)x2(k) − 1
x2(k + 1) = 2x1(k)x2(k) + 1.

(c)

{
x1(k + 1) = sat(x1(k) + 2x2(k))
x2(k + 1) = sat(−x1(k) + 2x2(k)).

�

Problem 6.10.16 Consider the system given by
x1(k + 1) =

ax2(k)
1 + x1(k)2

x2(k + 1) =
bx1(k)

1 + x2(k)2
,

where a and b are constants with a2 < 1 and b2 < 1. Show that the equilibrium
xe = (x1, x2)T = 0 is uniformly asymptotically stable. �

Problem 6.10.17 Prove that the equilibrium xe = 0 of (6.3.8) is not exponentially
stable. �

Problem 6.10.18 Analyze the stability of the equilibrium xe = 0 of the system

x(k + 1) =
[

cos θ sin θ
− sin θ cos θ

]
x(k)

where θ is fixed. �

Problem 6.10.19 Investigate the boundedness, uniform boundedness, and uniform
ultimate boundedness of the solutions for the following system{

x1(k + 1) = −0.5x1(k) + 0.5x2(k) + cos(kω0)
x2(k + 1) = −0.5x1(k) − 0.5x2(k) + sin(kω0),

where ω0 is fixed. �

Problem 6.10.20 Prove Proposition 6.4.3. �



Bibliography 253

Problem 6.10.21 Consider the discontinuous dynamical system given by{
ẋ(t) = Ak(t)x(t), τk ≤ t < τk+1

x(t) = Bk(t−)x(t−), t = τk+1
(6.10.3)

where t ∈ R
+, x(t) ∈ R

n, Ak ∈ C[R+, Rn×m], and Bk ∈ C[R+, Rn×n]. Assume
that ‖Ak(t)‖ ≤ Mk for all t ≥ 0, where Mk > 0 is a constant, k ∈ N, and
‖Bk(t)‖ < Lk for all t ≥ 0, where Lk > 0 is a constant.

Prove that xe = 0 is an equilibrium of (6.10.3). Establish conditions for the
uniform stability, uniform asymptotic stability in the large, and exponential stability
in the large of the equilibrium xe = 0 of (6.10.3). �

Problem 6.10.22 Without making reference to the results given in Chapter 3, prove
Theorems 6.2.1–6.2.10 by invoking fundamental concepts. �

Problem 6.10.23 Without making reference to the results given in Chapter 3, prove
Theorems 6.3.1–6.3.5 by invoking fundamental concepts. �
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[3] S. P. Gordon, “On converse to the stability theorems for difference equations,”
SIAM J. Control Optim., vol. 10, pp. 76–81, 1972.

[4] W. Hahn, Stability of Motion, Berlin: Springer-Verlag, 1967.

[5] J. K. Hale, Ordinary Differential Equations, New York: Wiley-Interscience,
1969.

[6] Z. P. Jiang and Y. Wang, “A converse Lyapunov theorem for discrete-time sys-
tems with disturbances,” Syst. Control Lett., vol. 45, pp. 49–58, 2002.

[7] H. K. Khalil, Nonlinear Systems, New York: Macmillan, 1992.

[8] N. N. Krasovskii, Stability of Motion, Stanford, CA: Stanford University Press,
1963.

[9] V. Lakshmikantham and S. Leela, Differential and Integral Inequalities, vol. I
and II, New York: Academic Press, 1969.

[10] V. Lakshmikantham and D. Trigiante, Theory of Difference Equations: Numer-
ical Methods and Applications, New York: Marcel Dekker, 1988.

[11] J. P. LaSalle, The Stability and Control of Discrete Processes, New York:
Springer-Verlag, 1986.

[12] A. M. Liapounoff, “Problème générale de la stabilité de mouvement,” Annales
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Chapter 7

Finite-Dimensional Dynamical
Systems: Specialized Results

In Chapter 6 we presented the principal stability and boundedness results for con-
tinuous, discrete-time, and discontinuous finite-dimensional dynamical systems,
including converse theorems. In the present chapter we continue our study of finite-
dimensional dynamical systems with the presentation of some important specialized
results for continuous and discrete-time dynamical systems. This chapter consists of
eight sections.

In the first section we present some general stability results concerning autonomous
and periodic systems for continuous systems and in the second section we present
some of the results from the invariance theory for differential equations and difference
equations. In the third section we consider some results that make it possible to esti-
mate the domain of attraction of an asymptotically stable equilibrium for systems de-
scribed by differential equations. In the fourth and fifth sections we concern ourselves
with the stability of systems described by linear homogeneous differential equations
and difference equations, respectively. Some of these results require knowledge of
state transition matrices, whereas other results involve Lyapunov matrix equations.
Also, in the fourth section we present stability results for linear periodic systems and
we study in detail second-order systems described by differential equations. In the
sixth section we investigate various aspects of the qualitative properties of perturbed
linear systems, including Lyapunov’s First Method (also called Lyapunov’s Indirect
Method) for continuous and discrete-time systems; existence of stable and unstable
manifolds in continuous linear perturbed systems; and stability properties of periodic
solutions in continuous perturbed linear systems. In the seventh section we present
stability results for the comparison theory for continuous and discrete-time finite-
dimensional systems. Finally, in the eighth section, we provide some background
material on differential and difference equations.

255
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7.1 Autonomous and Periodic Systems

In the present section we first show that in the case of autonomous systems,

ẋ = f(x) (A)

and in the case of periodic systems (with period T > 0),

ẋ = f(t, x), f(t, x) = f(t + T, x) (P )

the stability of the equilibrium xe = 0 is equivalent to the uniform stability, and the
asymptotic stability of the equilibrium xe = 0 is equivalent to the uniform asymptotic
stability. In (A), we assume that f ∈ C[Ω, Rn] where Ω ⊂ R

n is an open connected
set, and we assume that 0 ∈ Ω and f(0) = 0. In (P ), Ω is defined as above and we
assume that f(t, 0) = 0 for all t ≥ 0 and that f ∈ C[R+ × Ω, Rn].

Because an autonomous system may be viewed as a periodic system with arbitrary
period, it suffices to prove our first two results for the case of periodic systems.

Theorem 7.1.1 Assume that for every initial condition resulting in a solution of (P )
(or of (A)), the solution is unique. If the equilibrium xe = 0 of (P ) (or of (A)) is
stable, then it is uniformly stable.

Proof . Denote the solutions of (P ) by ϕ(t, t0, ξ0) with ϕ(t0, t0, ξ0) = ξ0. For
purposes of contradiction, assume that the equilibrium xe = 0 of (P ) is not uniformly
stable. Then there is an ε > 0 and sequences {t0m} with t0m ≥ 0, {ξm}, and {tm}
such that ξm → 0, tm ≥ t0m, and |ϕ(tm, t0m, ξm)| ≥ ε. Let t0m = kmT +
τm, where km is a nonnegative integer and 0 ≤ τm < T , and define t∗m = tm −
kmT ≥ τm. Then by the uniqueness of solutions and periodicity of (P ), we have
ϕ(t + kmT, t0m, ξm)≡ ϕ(t, τm, ξm) because both of these solve (P ) and satisfy the
initial condition x(τm) = ξm. Thus,

|ϕ(t∗m, τm, ξm)| ≥ ε. (7.1.1)

We claim that the sequence t∗m → ∞. For if it did not, then by going to a convergent
subsequence and relabeling, we could assume that τm → τ∗ and t∗m → t∗. Then
by continuity with respect to initial conditions, ϕ(t∗m, τm, ξm) → ϕ(t∗, τ∗, 0) = 0.
This contradicts (7.1.1).

Because xe = 0 is stable by assumption, then at t0 = T there is a δ > 0 such that
if |ξ| < δ then |ϕ(t, T, ξ)| < ε for t ≥ T . Because ξm → 0, then by continuity with
respect to initial conditions, |ϕ(T, τm, ξm)| < δ for all m ≥ m(δ). But then by the
choice of δ and by (7.1.1), we have

ε > |ϕ(t∗m, T, ϕ(T, τm, ξm))| = |ϕ(t∗m, τm, ξm)| ≥ ε.

This contradiction completes the proof. �

Theorem 7.1.2 If the equilibrium xe = 0 of (P ) (or of (A)) is asymptotically stable,
then it is uniformly asymptotically stable.
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Proof . The uniform stability is already proved in Theorem 7.1.1. We only need to
prove uniform attractivity. Fix ε > 0. By hypothesis, there is an η(T ) > 0 and
a t(ε, T ) > 0 such that if |ξ| ≤ η(T ), then |ϕ(t, T, ξ)| < ε for all t ≥ T +
t(ε, T ). Uniform stability and attractivity imply t(ε, T ) is independent of |ξ| ≤ η. By
continuity with respect to initial conditions, there is a δ′ > 0 such that |ϕ(T, τ, ξ)| <
η(T ) if |ξ| < δ′ and 0 ≤ τ ≤ T . So |ϕ(t + T, τ, ξ)| < ε if |ξ| < δ′, 0 ≤ τ ≤ T ,
and t ≥ t(ε, T ). Thus for 0 ≤ τ ≤ T , |ξ| < δ′, and t ≥ (T − τ) + t(ε, T ), we have
|ϕ(t + τ, τ, ξ)| < ε. Put δ(ε) = δ′ and t(ε) = t(ε, T ) + T . If kT ≤ τ < (k + 1)T ,
then ϕ(t, τ, ξ) = ϕ(t − kT, τ − kT, ξ). Thus, if |ξ| < δ(ε) and t ≥ τ + t(ε), then
t − kT ≥ τ − kT + t(ε) and |ϕ(t, τ, ξ)| = |ϕ(t − kT, τ − kT, ξ)| < ε. �

Next we address sample converse theorems for systems (A) and (P ).

Theorem 7.1.3 Assume that for every initial condition resulting in a solution of (A),
the solution is unique. Assume that the equilibrium xe = 0 of (A) is asymptotically
stable. Then there exists a positive definite function v ∈ C[B(r), R] for some r > 0
where B(r) ⊂ Ω such that v′

(A) is negative definite.

Proof . It follows from Theorem 7.1.2 that the asymptotic stability of the equilibrium
xe = 0 implies that it is also uniformly asymptotically stable. Furthermore, by
Lemma 3.10.5 (refer to Problem 3.10.17), there exist a function ψ ∈ K, defined on
[0, r] for some r > 0, and a function σ ∈ L, defined on R

+, such that∣∣ϕ(t, t0, x0)
∣∣ < ψ(|x0|)σ(t − t0) (7.1.2)

for all ϕ(·, t0, x0) and all t ≥ t0 whenever |x0| < r.
Let

Z(x, t) =
∫ ∞

t

u
(
|ϕ(τ, t, x)|

)
dτ, (7.1.3)

where u(s)=α(s)2 and α(·) is chosen by applying Lemma 3.6.1 to β(τ)=ψ(r)σ(τ)
so that

∫∞
0 α(β(τ))dτ ≤ 1. Therefore,

Z(x, t) ≤ [u(ψ(|x|))]1/2
∫ ∞

t

[u(ψ(r)σ(τ − t))]1/2dτ ≤
[
u(ψ(|x|))

]1/2
, (7.1.4)

which implies that the integral in (7.1.3) converges uniformly with respect to |x|. By
Corollary 6.8.1, Z(x, t) is continuous with respect to x. Furthermore, because the
system is assumed to be autonomous, it is easily seen that Z(x, t) is independent of t.
We let the v-function be v(x) = Z(x, t). Then v(x) ∈ C[B(r), R] is positive definite.
Inequality (7.1.4) shows that v(x) is decrescent. Also, v′

(A) is clearly negative definite.
The proof is completed. �

Theorem 7.1.4 Assume that for every initial condition resulting in a solution of (P ),
the solution is unique and that the equilibrium xe = 0 of (P ) is asymptotically stable.
Then there exists a positive definite and decrescent function v ∈ C[B(r) × R

+, R]
for some r > 0, where B(r) ⊂ Ω, which is periodic in t with period T (i.e., v(x, t) =
v(x, t+T ) for all (x, t), (x, t+T ) ∈ B(r)×R

+) such that v′
(P ) is negative definite.
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Proof . The proof proceeds similarly as in the proof of Theorem 7.1.3. Let the
v-function be v(x, t) = Z(x, t) which is given by (7.1.3). It can readily be verified
that v(x, t + T ) = v(x, t) for all (x, t), (x, t + T ) ∈ B(r) × R

+. It has been proved
that v(x, t) is decrescent and v′

(A) is negative definite. We only need to show that v
is positive definite.

Lety(t) = |ϕ(t, t0, x0)|. Then limt→∞ y(t) = 0becausexe = 0 is asymptotically
stable. Because

xT ẋ = xT f(t, x),

we have the following estimate for |ẏ(t)|,

|ẏ(t)| ≤
∣∣f(t, ϕ(t, t0, x0))

∣∣.
By the assumption that f is continuous and f(t, x) = f(t + T, x) for all x ∈ Ω and
t ∈ R

+, there exists a K > 0 such that
∣∣f(t, x)

∣∣ < K for all (t, x) ∈ R
+ × B(r).

To obtain an estimate for v(x, t) from below, we first assume that y(t) is monotone
decreasing. By change of variables, we have

v(x, t) =
∫ 0

|x0|
u(y)

(
dy

dt

)−1

dy ≥ 1
K

∫ |x0|

0
u(y)dy,

from which we conclude that v is positive definite. If y(t) is increasing in certain
intervals aj < t < bj , j = 1, 2, . . . , we omit them and restrict the integration to the
remaining t-axis. Then the above estimate is still valid.

The proof is completed. �

Results for autonomous and periodic discrete-time dynamical systems described
by ordinary difference equations that are in the spirit of Theorems 7.1.1 to 7.1.4 can
also be established. Also, converse theorems of the type given in Theorems 7.1.3 and
7.1.4 for other types of stability and boundedness can be established as well.

7.2 Invariance Theory

In this section we first present some of the results that comprise the invariance the-
ory for continuous dynamical systems described by autonomous ordinary differential
equations (Subsection A). Next, we present some of the results that make up the
invariance theory for discrete-time dynamical systems described by autonomous or-
dinary difference equations (Subsection B). At the end of this section we consider a
couple of examples to demonstrate the applicability of these results.

A. Continuous-time systems

We consider again autonomous systems given by

ẋ = f(x) (A)

where f ∈ C[Ω, Rn], Ω ⊂ R
n is an open connected set, 0 ∈ Ω, and f(0) = 0.
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In the results that follow, we relax some of the conditions required in the stability
and boundedness results given in Chapter 6 that broaden the applicability of the Direct
Method of Lyapunov (the Second Method of Lyapunov) appreciably.

Theorem 7.2.1 Assume that there exists a function v∈C[Ω, R] such that v′
(A)(x)≤0

for all x ∈ Ω and such that for some constant c ∈ R, the set Hc is a closed and bounded
component of the set {x ∈ Ω: v(x) ≤ c}. Let M be the largest invariant set in the set

Z =
{
x ∈ Ω: v′

(A)(x) = 0
}

with respect to (A). Then every solution ϕ(t) of (A) with ϕ(t0) ∈ Hc approaches
the set M as t → ∞.

Proof . The proof of this result is a direct consequence of Theorem 4.2.1 for the
case T = R

+. �

Theorem 7.2.2 With Ω = R
n, assume that there exists a function v ∈ C[Rn, R]

such that v′
(A)(x) ≤ 0 for all x ∈ R

n. Let M be the largest invariant set with respect
to (A) in the set

Z =
{
x ∈ Ω: v′

(A)(x) = 0
}
.

Then every bounded solution ϕ(t) of (A) approaches the set M as t → ∞.

Proof . The proof of this theorem is a direct consequence of Theorem 4.2.1 for the
case T = R

+, where for every bounded solution ϕ(t) of (A) we choose X1 as a
compact set that contains the trajectory of ϕ. �

Corollary 7.2.1 With Ω = R
n, assume that there exists a positive definite and ra-

dially unbounded function v ∈ C[Rn, R] such that v′
(A)(x) ≤ 0 for all x ∈ R

n.
Suppose that the origin xe = 0 of R

n is the only invariant subset of the set

Z =
{
x ∈ Ω: v′

(A)(x) = 0
}
.

Then the equilibrium xe = 0 of (A) is uniformly asymptotically stable in the large.

Proof . The proof of this result is an immediate consequence of Theorems 7.2.2,
6.2.1(b), and 6.2.6. �

Note that in the above result for the uniform asymptotic stability in the large of
the equilibrium xe = 0 of (A) we require only that v′

(A) be negative semidefinite
whereas in the corresponding results given in Chapter 6, we require that v′

(A) be
negative definite.

B. Discrete-time systems

Next, we consider dynamical systems that are determined by systems of autonomous
ordinary difference equations of the form

x(k + 1) = f(x(k)) (DA)

where k ∈ N, x(k) ∈ Ω, f : Ω → Ω, and Ω is an open connected subset of R
n that

contains the origin x = 0.
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Theorem 7.2.3 Assume for (DA) that there exists a function v ∈ C[Ω, R] such that
v(f(x)) ≤ v(x) for all x ∈ Ω. Assume that the set Sc = {x ∈ Ω: v(x) ≤ c}, for
some c ∈ R, is bounded. Let M be the largest invariant set with respect to (DA)
contained in the set

Z =
{
x ∈ Ω: v(f(x)) = v(x)

}
.

Then every solution ϕ(k) of (DA) with ϕ(k0) ∈ Sc approaches the set M as k → ∞.

Proof . The proof of this result is a direct consequence of Theorem 4.2.1 for the
case T = N. �

Theorem 7.2.4 With Ω = R
n, assume that there exists a radially unbounded function

v ∈ C[Rn, R] such that v(f(x)) ≤ v(x) for all x ∈ R
n. Let M be the largest invariant

set with respect to (DA) in the set

Z =
{
x ∈ Ω: v(f(x)) = v(x)

}
.

Then every bounded solution ϕ(k) of (DA) approaches the set M as k → ∞.

Proof . The proof of this theorem is a direct consequence of Theorem 4.2.1 for the
case T = N. �

Corollary 7.2.2 With Ω = R
n, assume that there exists a positive definite and ra-

dially unbounded function v ∈ C[Rn, R] such that v(f(x)) ≤ v(x) for all x ∈ R
n.

Suppose that the origin xe = 0 of R
n is the only invariant subset of the set

Z =
{
x ∈ Ω: v(f(x)) = v(x)

}
.

Then the equilibrium xe = 0 of (DA) is uniformly asymptotically stable in the large.

Proof . The proof of this result is an immediate consequence of Theorems 7.2.3,
6.3.1(b), and 6.3.3. �

C. Examples

To demonstrate the applicability of the above results, we now consider two specific
examples.

Example 7.2.1 (Lienard equation) Consider systems described by the equation

ẍ + f(x)ẋ + g(x) = 0 (7.2.1)

where f ∈ C1[R, R+], g ∈ C1[R, R], g(x) = 0 if and only if x = 0, xg(x) > 0 for
x ∈ R − {0}, and lim|x|→∞

∫ x

0 g(s)ds = ∞. Equation (7.2.1), called the Lienard
equation, has been used in the modeling of a variety of physical systems.

Letting x1 = x and x2 = ẋ, we obtain from (7.2.1) the equivalent system{
ẋ1 = x2
ẋ2 = −f(x1)x2 − g(x1).

(7.2.2)
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The origin (x1, x2)T = (0, 0)T ∈ R
2 is clearly an equilibrium for (7.2.2). We show

that this equilibrium is uniformly asymptotically stable in the large.
We choose as a v-function,

v(x1, x2) =
1
2
x2

2 +
∫ x1

0
g(s)ds (7.2.3)

which is positive definite and radially unbounded. Along the solutions of (7.2.2)
we have

v′
(7.2.2)(x1, x2) = −x2

2f(x1) ≤ 0

for all (x1, x2)T ∈ R
2.

In the notation of Corollary 7.2.1, the set

Z =
{
(x1, x2)T ∈ R

2 : v′
(7.2.2)(x1, x2) = 0

}
(7.2.4)

is the x1-axis. Let M be the largest invariant set in Z. At any point (x1, 0)T ∈ M
with x1 �= 0, equation (7.2.2) implies that ẋ2 = −g(x1) �= 0. Therefore, the solution
emanating from (x1, 0)T must leave the x1-axis. This means that (x1, 0) /∈ M if
x1 �= 0. However, the origin (0, 0)T is clearly in M . Hence, M = {(0, 0)T }.

It follows from Corollary 7.2.1 that the origin in R
2, which is an equilibrium for

system (7.2.2), is uniformly asymptotically stable in the large. �

Example 7.2.2 Let us consider the Lienard equation (7.2.2) given in Example 7.2.1.
We assume again that f ∈ C1[R, R+], g ∈ C1[R, R], g(x) = 0 if and only if x = 0,
and xg(x) > 0 for x ∈ R−{0}. We also assume that lim|x1|→∞ |

∫ x1

0 f(s)ds| = ∞.
This is the case if, for example, f(s) = k > 0 for all s ∈ R. However, we no longer
assume that lim|x1|→∞

∫ x1

0 g(s)ds = ∞.
We choose again the v-function

v(x1, x2) =
1
2
x2

2 +
∫ x1

0
g(s)ds,

resulting again in
v′
(7.2.2)(x1, x2) = −x2

2f(x1) ≤ 0

for all (x1, x2)T ∈ R
2.

As before, v is positive definite. However, it is not necessarily radially unbounded
and therefore, we cannot apply Corollary 7.2.1 to conclude that the equilibrium
(x1, x2)T = (0, 0)T of system (7.2.2) is asymptotically stable in the large.

Because v(x1, x2) is positive definite and because v′
(7.2.2) is negative semidefinite,

we can conclude that the equilibrium (x1, x2)T = (0, 0)T of system (7.2.2) is stable.
We use Theorem 7.2.2 to prove that the equilibrium (x1, x2)T = (0, 0)T is globally
attractive, and therefore, that the equilibrium (x1, x2)T = (0, 0)T of system (7.2.2)
is asymptotically stable in the large.

From Example 7.2.1 we know that M = {0} is the largest invariant set in Z given
in (7.2.4). To apply Theorem 7.2.2, what remains to be shown is that all the solutions
ϕ(t) of system (7.2.2) are bounded.
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To this end, let l and a be arbitrary given positive numbers and consider the region
U defined by the inequalities

v(x) < l and
(

x2 +
∫ x1

0
f(s)ds

)2

< a2. (7.2.5)

For each pair of numbers (l, a), U is a bounded region as shown, for example, in
Figure 7.2.1.

x  +     f(s)ds = −a

x1

2

2x  +     f(s)ds = a 

0

x
v(x) = l

1

x2

v(x) = l 0

x 1

Figure 7.2.1: Region U determined by (7.2.5).

Now let xT
0 = (x10, x20) = (x1(0), x2(0)) be any point in R

2. If we choose (l, a)
properly, x0 will be in the interior of U . Now let ϕ(t, x0) be a solution of (7.2.2)
such that ϕ(0, x0) = x0. We show that ϕ(t, x0) cannot leave the bounded region U .
This in turn shows that all solutions of (7.2.2) are bounded, inasmuch as ϕ(t, x0) was
chosen arbitrarily.

In order to leave U , the solution ϕ(t, x0) must either cross the locus of points
determined by v(x) = l or one of the loci determined by x2 +

∫ x1

0 f(s)ds = ±a.
Here we choose, without loss of generality, a > 0 so large that the part of the curve
determined by x2 +

∫ x1

0 f(s)ds = a that is also the boundary of U corresponds to
x1 > 0 and the part of the curve determined by x2 +

∫ x1

0 f(s)ds = −a corresponds
to x1 < 0. Now because v′

(7.2.2)(ϕ(t, x0)) ≤ 0, the solution ϕ(t, x0) cannot cross the
curve determined by v(x) = l. To show that it does not cross either of the curves
determined by x2 +

∫ x1

0 f(s)ds = ±a, we consider the function

w(t) =
[
ϕ2(t, x0) +

∫ ϕ1(t,x0)

0
f(s)ds

]2
, (7.2.6)

where ϕ(t, x0)T = [ϕ1(t, x0), ϕ2(t, x0)]. Then

w′(t) = −2
[
ϕ2(t, x0) +

∫ ϕ1(t,x0)

0
f(s)ds

]
g(ϕ1(t, x0)). (7.2.7)
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Now suppose that ϕ(t, x0) reaches that part of the boundary of U determined by
the equation x2 +

∫ x1

0 f(s)ds = a, x1 > 0. Then along this part of the boundary
w′(t) = −2ag(ϕ(t, x0)) < 0 because x1 > 0 and a > 0. Therefore, the solution
ϕ(t, x0) cannot cross outside of the set U through that part of the boundary determined
by x2 +

∫ x1

0 f(s)ds = a. We apply the same argument to the part of the boundary
determined by x2 +

∫ x1

0 f(s)ds = −a.
Therefore, every solution of (7.2.2) is bounded and we can apply Theorem 7.2.2

to conclude that the equilibrium (x1, x2)T = (0, 0)T is globally attractive. �

We apply some of the results of this section in Chapter 8 in the qualitative analysis
of a large class of artificial neural networks.

7.3 Domain of Attraction

Many practical systems possess more than one equilibrium point. In such cases, the
concept of asymptotic stability in the large is no longer applicable and one is usually
interested in knowing the extent of the domain of attraction of an asymptotically
stable equilibrium. In the present section, we briefly address the problem of obtaining
estimates of the domain of attraction of the equilibrium xe = 0 of the autonomous
system

ẋ = f(x) (A)

where f ∈ C[Ω, Rn], Ω ⊂ R
n is an open connected set, 0 ∈ Ω, and f(0) = 0.

We assume that there exists a positive definite and time-independent function
v ∈ C[Ω, R+] such that v′

(A) is negative definite on some subset Ω1 ⊂ Ω, 0 ∈ Ω1.
Let Dc = {x ∈ Ω: v(x) ≤ c} for c > 0. If Dc ⊂ Ω1, then Dc is contained in the
domain of attraction of the equilibrium xe = 0 of (A). In fact, Dc is an invariant
set for system (A): any trajectory of a solution of (A) starting within Dc will remain
in Dc. As such it will remain in Ω1 where v′

(A) is negative definite. Therefore, it
follows from the proof of Theorem 6.2.2 that all trajectories for (A) that start in Dc

will approach the equilibrium xe = 0. If cM denotes the largest number for which
the above discussion is true, then DcM

is the best estimate of the domain of attraction
of xe = 0 for (A), using the particular v-function employed. Another choice of
Lyapunov function will generally result in a different estimate for the domain of
attraction.

Example 7.3.1 Consider the system{
ẋ1 = −x1 + x1

(
x2

1 + x2
2
)

ẋ2 = −x2 + x2
(
x2

1 + x2
2
)
.

(7.3.1)

This system clearly has an equilibrium at the origin xe = (x1, x2)T = (0, 0)T .
We choose the function

v(x1, x2) =
1
2
(
x2

1 + x2
2
)

(7.3.2)
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and we compute

v′
(7.3.1)(x1, x2) = −

(
x2

1 + x2
2
)

+
(
x2

1 + x2
2
)2

. (7.3.3)

The function v is positive definite and radially unbounded whereas v′
(7.3.1) is negative

definite on the set {x ∈ R
2 : (x2

1 + x2
2) < 2c}, c < 1/2; that is, on the set

Dc =
{
x ∈ R

2 : v(x) < c
}
, c <

1
2
. (7.3.4)

We conclude that the equilibrium xe = 0 of (7.3.1) is asymptotically stable and that
the set {x ∈ R

2 : (x2
1 + x2

2) < 1} is contained in the domain of attraction of xe = 0.
Indeed, it is not hard to show that this set is the entire domain of attraction of the
equilibrium xe = 0. �

The procedure described above for determining estimates for the domain of at-
traction of an asymptotically stable equilibrium xe = 0 applies, without substantial
changes, to autonomous discrete-time systems described by difference equations

x(k + 1) = f(x(k)) (DA)

where f : Ω → Ω, Ω ⊂ R
n is an open connected set, and 0 ∈ Ω. We omit the details

in the interests of brevity.
There are results that determine the domain of attraction of an asymptotically stable

equilibrium xe = 0 of (A) precisely. In the following, we let G ⊂ Ω and we assume
that G is a simply connected domain containing a neighborhood of the origin.

Theorem 7.3.1 [21] (Zubov) Suppose there exist two functions v ∈ C1[G, R] and
h ∈ C[Rn, R] satisfying the following hypotheses.

(i) v is positive definite in G and satisfies on G the inequality 0 < v(x) < 1 when
x �= 0. For any b ∈ (0, 1), the set {x ∈ G : v(x) ≤ b} is bounded.

(ii) h(0) = 0, and h(x) > 0 for x �= 0.
(iii) For x ∈ G, we have

v′
(A)(x) = −h(x)

[
1 − v(x)

][
1 + |f(x)|2

]1/2
. (7.3.5)

(iv) As x ∈ G approaches a point on the boundary of G, or in case of an unbounded
region G, as |x| → ∞, lim v(x) = 1.

Then G is exactly the domain of attraction of the equilibrium xe = 0.

Proof . Under the given hypotheses, it follows from Theorem 6.2.2 that xe = 0 is
uniformly asymptotically stable. Note also that if we introduce the change of variables

ds =
[
1 + |f(ϕ(t))|2

]1/2
dt,

then (7.3.5) reduces to
dv

ds
= −h(x)

[
1 − v(x)

]
,
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but the stability properties of (A) remain unchanged. Let V (s) = v(ϕ(s)) for a given
function ϕ(s) such that ϕ(0) = x0. Then

d

ds
log
[
1 − V (s)

]
= h(ϕ(s)),

or

1 − V (s) =
[
1 − V (0)

]
exp
(∫ s

0
h(ϕ(u))du

)
. (7.3.6)

Let x0 ∈ G and assume that x0 is not in the domain of attraction of the trivial
solution. Then h(ϕ(s)) ≥ δ > 0 for some fixed δ and for all s ≥ 0. Hence, in (7.3.6)
as s → ∞ the term on the left is at most one, whereas the term on the right tends to
infinity, which is impossible. Thus, x0 is in the domain of attraction of xe = 0.

Suppose x1 is in the domain of attraction but x1 /∈ G. Then ϕ(s, x1) → 0 as
s → ∞, so there must exist s1 and s2 such that ϕ(s1, x1) ∈ ∂G and ϕ(s2, x1) ∈ G.
Let x0 = ϕ(s2, x1) in (7.3.6). Take the limit in (7.3.6) as s → s+

1 . We see that

lim
s→s+

1

[
1 − V (s)

]
= 1 − 1 = 0,

and the limit on the right-hand side is

[
1 − v(x0)

]
exp
(∫ s1

s2

h(ϕ(s, x1))ds

)
> 0.

This is impossible. Hence x1 must be in G. �

An immediate result of Theorem 7.3.1 is the following result.

Corollary 7.3.1 Assume that there exists a function h that satisfies the hypotheses
of Theorem 7.3.1 and assume that there exists a continuously differentiable, positive
definite function v : G → R that satisfies the inequality 0 ≤ v(x) ≤ 1 for all x ∈ G
as well as the differential equation

∇v(x)T f(x) = −h(x)
[
[1 − v(x)

][
1 + |f(x)|2

]1/2
. (7.3.7)

Then the boundary of the domain of attraction is defined by the equation

v(x) = 1. (7.3.8)

If the domain of attraction G is all of R
n, then the equilibrium xe = 0 of (A) is

asymptotically stable in the large. In this case, we have

v(x) → 1 as |x| → ∞. (7.3.9)

�
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In the foregoing results, we can work with different v functions. For example, if
we let

w(x) = − log
[
1 − v(x)

]
,

then (7.3.5) assumes the form

w′
(A)(x) = −h(x)

[
1 + |f(x)|2

]1/2

and condition (7.3.8) defining the boundary becomes w(x) → ∞.
Note that in Theorem 7.3.1, the function h(x) is arbitrary. In specific applications

it is chosen in a fashion that makes the solution of the partial differential equation
(7.3.7) easy.

Example 7.3.2 Consider the system
ẋ1 = 2x1

1 − x2
1 + x2

2

(x1 + 1)2 + x2
2

+ x1x2
�
= f1(x1, x2)

ẋ2 =
1 − x2

1 + x2
2

2
− 4x2

1x2

(x1 + 1)2 + x2
2

�
= f2(x1, x2).

(7.3.10)

This system has an equilibrium at x1 = 1, x2 = 0. The partial differential equation
(7.3.7) assumes the form

∂v

∂x1
(x1, x2)f1(x1, x2)+

∂v

∂x2
(x1, x2)f2(x1, x2)=−2

(x1 − 1)2+x2
2

(x1 + 1)2+x2
2

[
1−v(x1, x2)

]
where

h(x1, x2) = 2
(x1 − 1)2 + x2

2

(x1 + 1)2 + x2
2

[
1 + f1(x1, x2)2 + f2(x1, x2)2

]−(1/2)
.

It is readily verified that a solution of the above partial differential equation is

v(x1, x2) =
(x1 − 1)2 + x2

2

(x1 + 1)2 + x2
2
.

Because v(x1, x2) = 1 if and only if x1 = 0, the domain of attraction is the set
{(x1, x2) : 0 < x1 < ∞,−∞ < x2 < ∞}. �

7.4 Linear Continuous-Time Systems

In this section we study the stability properties of the equilibrium of linear homoge-
neous systems

ẋ = A(t)x, t ≥ t0, t0 ≥ 0 (LH)

and linear autonomous homogeneous systems

ẋ = Ax, t ≥ 0. (L)
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In (LH), t ∈ R
+, x ∈ R

n, and A ∈ C[R+, Rn×n]. In (L), t ∈ R
+, x ∈ R

n, and
A ∈ R

n×n. Recall that xe = 0 is always an equilibrium of (L) and (LH) and that
xe = 0 is the only equilibrium of (LH) if A(t) is nonsingular for t ≥ 0. Recall also
that the solution of (LH) for x(t0) = x0 is of the form

ϕ(t, t0, x0) = Φ(t, t0)x0, t ≥ t0

where Φ denotes the state transition matrix of A(t). Recall further that the solution
of (L) for x(t0) = x0 is given by

ϕ(t, t0, x0) = Φ(t, t0)x0

= Φ(t − t0, 0)x0

�
= Φ(t − t0)x0

= eA(t−t0)x0

where in the preceding equation, a slight abuse in notation has been used.
For some of the properties of the transition matrixΦ(t, t0) that are used in the proofs

of the result that follow, the reader should refer to the appendix (Subsection 7.8A).

A. Linear homogeneous systems

In the next four results, we explore some of the basic qualitative properties of (LH).

Theorem 7.4.1 The equilibrium xe = 0 of (LH) is stable if and only if the solutions
of (LH) are bounded, or equivalently, if and only if

sup
t≥t0

∥∥Φ(t, t0)
∥∥ �

= c(t0) < ∞

where ‖Φ(t, t0)‖ denotes the matrix norm induced by the vector norm used on R
n

and c(t0) denotes a constant that may depend on the choice of t0.

Proof . Assume that the equilibrium xe = 0 of (LH) is stable. Then for any t0 ≥ 0
and for ε = 1 there is a δ = δ(1, t0) > 0 such that |ϕ(t, t0, x0)| < 1 for all t ≥ t0
and all x0 with |x0| ≤ δ. In this case

|ϕ(t, t0, x0)| = |Φ(t, t0)x0| =
∣∣∣∣Φ(t, t0)(x0δ)

|x0|

∣∣∣∣ ( |x0|
δ

)
<

|x0|
δ

for all x0 �= 0 and all t ≥ t0. In the above inequality we have used the fact that∣∣∣∣ϕ(t, t0,
x0δ

|x0|

)∣∣∣∣ = ∣∣∣∣Φ(t, t0)(x0δ)
|x0|

∣∣∣∣ < 1.

Using the definition of matrix norm it follows that∥∥Φ(t, t0)
∥∥ ≤ δ−1, t ≥ t0.
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We have proved that if the equilibrium xe = 0 of system (LH) is stable, then the
solutions of (LH) are bounded.

Conversely, suppose that all solutions ϕ(t, t0, x0) = Φ(t, t0)x0 are bounded. Let
{e1, . . . , en} denote the natural basis for n-space and let |ϕ(t, t0, ej)| < βj for all
t ≥ t0, j = 1, . . . , n. Then for any vector x0 =

∑n
j=1 αjej we have that

|ϕ(t, t0, x0)| =
∣∣∣∣ n∑

j=1

αjϕ(t, t0, ej)
∣∣∣∣

≤
n∑

j=1

|αj |βj

≤
(

max
1≤j≤n

βj

) n∑
j=1

|αj |

≤ K|x0|

for some constant K > 0 and for t ≥ t0. For given ε > 0, we choose δ = ε/K.
Thus, if |x0| < δ, then |ϕ(t, t0, x0)| < K|x0| < ε for all t ≥ t0. We have proved
that if the solutions of (LH) are bounded, then the equilibrium xe = 0 of (LH) is
stable. �

Theorem 7.4.2 The equilibrium xe = 0 of (LH) is uniformly stable if and only if

sup
t0≥0

c(t0)
�
= sup

t0≥0

(
sup
t≥t0

∥∥Φ(t, t0)
∥∥) �

= c0 < ∞.

The proof of the above result is similar to the proof of Theorem 7.4.1 and is left
as an exercise.

Example 7.4.1 Consider the system[
ẋ1
ẋ2

]
=
[
e−2t

(
e−t − e−2t

)
0 e−t

] [
x1
x2

]
(7.4.1)

where x(0) = x0. We transform (7.4.1) using the relation x = Py, where

P =
[
1 1
0 1

]
, P−1 =

[
1 −1
0 1

]
to obtain the equivalent system[

ẏ1
ẏ2

]
=
[
e−2t 0

0 e−t

] [
y1
y2

]
(7.4.2)

with y(0) = y0 = P−1x0. System (7.4.2) has the solution ψ(t, 0, y0) = Ψ(t, 0)y0,
where

Ψ(t, 0) =

[
e(1/2)(1−e−2t) 0

0 e(1−e−t)

]
.
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The solution of (7.4.1) is obtained as ϕ(t, 0, x0) = PΨ(t, 0)P−1x0. From this we
obtain for t0 �= 0, ϕ(t, t0, x0) = Φ(t, t0)x0, where

Φ(t, t0) =

[
e(1/2)(e−2t0−e−2t) e(e−t0−e−t) − e(1/2)(e−2t0−e−2t)

0 e(e−t0−e−t)

]
.

Letting t → ∞, we obtain

lim
t→∞ Φ(t, t0) =

[
e(1/2)e−2t0

ee−t0 − e(1/2)e−2t0

0 ee−t0

]
. (7.4.3)

We conclude that
lim

t0→∞ lim
t→∞ ‖Φ(t, t0)‖ < ∞,

and therefore that
sup
t0≥0

(
sup
t≥t0

‖Φ(t, t0)‖
)

< ∞

because

‖Φ(t, t0)‖ =
∥∥[φij(t, t0)]

∥∥ ≤

√√√√ 2∑
i,j=1

|φij(t, t0)|2 ≤
2∑

i,j=1

|φij(t, t0)|.

Therefore, the equilibrium xe = 0 of system (7.4.1) is stable by Theorem 7.4.1 and
uniformly stable by Theorem 7.4.2. �

Theorem 7.4.3 The following statements are equivalent.
(i) The equilibrium xe = 0 of (LH) is asymptotically stable.

(ii) The equilibrium xe = 0 of (LH) is asymptotically stable in the large.
(iii) limt→∞ ‖Φ(t, t0)‖ = 0.

Proof . Assume that statement (i) is true. Then there is an η(t0) > 0 such that when
|x0| ≤ η(t0), then ϕ(t, t0, x0) → 0 as t → ∞. But then we have for any x0 �= 0 that

ϕ(t, t0, x0) = ϕ

(
t, t0,

η(t0)x0

|x0|

)(
|x0|
η(t0)

)
→ 0

as t → ∞. It follows that statement (ii) is true.
Next, assume that statement (ii) is true. Fix t0 ≥ 0. For any ε > 0 there must exist

a T (ε)>0 such that for all t ≥ t0 + T (ε) we have that |ϕ(t, t0, x0)|= |Φ(t, t0)x0|<ε.
To see this, let {e1, . . . , en} be the natural basis for R

n. Thus, for some fixed con-
stant K > 0, if x0 = (α1, . . . , αn)T and if |x0| ≤ 1, then x0 =

∑n
j=1 αjej and∑n

j=1 |αj | ≤ K. For each j there is a Tj(ε) such that |Φ(t, t0)ej | < ε/K for all
t ≥ t0 + Tj(ε). Define T (ε) = max{Tj(ε) : j = 1, . . . , n}. For |x0| ≤ 1 and
t ≥ t0 + T (ε), we have that

∣∣Φ(t, t0)x0
∣∣ = ∣∣∣∣ n∑

j=1

αjΦ(t, t0)ej

∣∣∣∣ ≤ n∑
j=1

|αj |
( ε

K

)
≤ ε.
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By the definition of matrix norm, this means that ‖Φ(t, t0)‖ ≤ ε for all t ≥ t0 +T (ε).
Therefore, statement (iii) is true.

Finally, assume that statement (iii) is true. Then ‖Φ(t, t0)‖ is bounded in t for all
t≥ t0. By Theorem 7.4.1, the equilibrium xe =0 is stable. To prove asymptotic sta-
bility, fix t0 ≥0 and ε>0. If |x0|<η(t0)=1, then |ϕ(t, t0, x0)|≤‖Φ(t, t0)‖|x0|→ 0
as t → ∞. Therefore, statement (i) is true. This completes the proof. �

Example 7.4.2 The equilibrium xe = 0 of system (7.4.1) given in Example 7.4.1 is
stable but not asymptotically stable because limt→∞ ‖Φ(t, t0)‖ �= 0. �

Example 7.4.3 The solution of the system

ẋ = −e2tx, x(t0) = x0 (7.4.4)

is ϕ(t, t0, x0) = Φ(t, t0)x0, where

Φ(t, t0) = e(1/2)(e2t0−e2t).

Because limt→∞ Φ(t, t0) = 0, it follows that the equilibrium xe = 0 of system
(7.4.4) is asymptotically stable in the large. �

Theorem 7.4.4 The equilibrium xe = 0 of system (LH) is uniformly asymptotically
stable if and only if it is exponentially stable.

Proof . The exponential stability of the equilibrium xe = 0 implies the uniform
asymptotic stability of the equilibrium xe = 0 of system (E) in general, and hence,
for system (LH) in particular.

Conversely, assume that the equilibrium xe = 0 of system (LH) is uniformly
asymptotically stable. Then there are a δ > 0 and a T > 0 such that if |x0| ≤ δ, then∣∣Φ(t + t0 + T, t0)x0

∣∣ ≤ (δ/2) for all t, t0 ≥ 0. This implies that∥∥Φ(t + t0 + T, t0)
∥∥ ≤ 1

2
if t, t0 ≥ 0. (7.4.5)

From Theorem 7.8.6(iii) (Subsection 7.8A) we have that Φ(t, τ) = Φ(t, σ)Φ(σ, τ)
for any t, σ, and τ . Therefore,∥∥Φ(t + t0 + 2T, t0)

∥∥ =
∥∥Φ(t + t0 + 2T, t + t0 + T )Φ(t + t0 + T, t0)

∥∥ ≤ 1
4
,

in view of (7.4.5). By induction, we obtain for t, t0 ≥ 0 that∥∥Φ(t + t0 + nT, t0)
∥∥ ≤ 2−n. (7.4.6)

Now let α = (ln 2)/T . Then (7.4.6) implies that for 0 ≤ t < T we have that∣∣ϕ(t + t0 + nT, t0, x0)
∣∣ ≤ 2|x0|2−(n+1)

= 2|x0|e−α(n+1)T

≤ 2|x0|e−α(t+nT ),

which proves the result. �



Section 7.4 Linear Continuous-Time Systems 271

Example 7.4.4 For system (7.4.4) given in Example 7.4.3 we have∣∣ϕ(t, t0, x0)
∣∣ = ∣∣∣x0e

(1/2)e2t0
e−(1/2)e2t

∣∣∣ ≤ |x0|e(1/2)e2t0
e−t, t ≥ t0 ≥ 0,

because e2t > 2t. Therefore, the equilibrium xe = 0 of system (7.4.4) is uniformly
asymptotically stable in the large, and exponentially stable in the large. �

Even though the preceding results require knowledge of the state transition matrix
Φ(t, t0) of (LH), they are quite useful in the qualitative analysis of linear systems.

B. Linear autonomous homogeneous systems

Revisiting Example 3.1.8, we now address the stability properties of system (L),

ẋ = Ax, t ≥ 0. (L)

To this end we transform matrix A into the Jordan canonical form, J = P−1AP ,
using the transformation x = Py to obtain from (L) the equivalent system

ẏ = P−1APy = Jy. (7.4.7)

It is easily verified (the reader is asked to do this in the exercise section) that the
equilibrium xe = 0 of (L) is stable (resp., asymptotically stable or unstable) if and
only if ye = 0 of system (7.4.7) is stable (resp., asymptotically stable or unstable).
In view of this, we can assume without loss of generality that the matrix A in (L) is
in Jordan canonical form given by

A = diag
[
J0, J1, . . . , Js

]
where

J0 = diag
[
λ1, . . . , λk

]
and Ji = λk+iIi + Ni

for the Jordan blocks J1, . . . , Js, where Ii denotes the ni ×ni identity matrix and Ni

denotes the ni × ni nilpotent matrix given by

Ni =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

. . .
...

0 0 0
. . . 1

0 0 0 · · · 0

 ,

and λj , j = 1, . . . n, denote the eigenvalues of A. We have

eAt =


eJ0t 0

eJ1t

. . .
0 eJst


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where
eJ0t = diag

[
eλ1t, . . . , eλkt

]
(7.4.8)

and

eJit = eλk+it


1 t t2/2 · · · tni−1/(ni − 1)!
0 1 t . . . tni−2/(ni − 2)!
...

...
...

...
...

0 0 0 · · · 1

 (7.4.9)

for i = 1, . . . , s.
Now suppose that Reλi ≤ β for all i = 1, . . . , k. Then it is clear that

lim
t→∞

‖eJ0t‖
eβt

< ∞

where ‖eJ0t‖ is the matrix norm induced by one of the equivalent vector norms
defined on R

n. We write this as ‖eJ0t‖ = O(eβt). Similarly, if β = Reλk+i, then
for any ε > 0 we have that ‖eJit‖ = O(tni−1eβt) = O(e(β+ε)t).

From the foregoing it is now clear that ‖eAt‖ ≤ K for some K > 0 if and only
if all eigenvalues of A have nonpositive real parts, and the eigenvalues with zero
real part occur in the Jordan form only in J0 and not in any of the Jordan blocks Ji,
1 ≤ i ≤ s. Hence, by Theorems 7.4.1 and 7.4.2, the equilibrium xe = 0 of (L) is
under these conditions stable, in fact uniformly stable.

Now suppose that all eigenvalues of A have negative real parts. From the preceding
discussion it is clear that there is a constant K > 0 and an α > 0 such that ‖eAt‖ ≤
Ke−αt, and therefore, |ϕ(t, t0, x0)| ≤ Ke−α(t−t0)|x0| for all t ≥ t0 ≥ 0 and for all
x0 ∈ R

n. It follows that the equilibrium xe = 0 is uniformly asymptotically stable
in the large, in fact exponentially stable in the large. Conversely, assume that there is
an eigenvalue λi with nonnegative real part. Then either one term in (7.4.8) does not
tend to zero, or else a term in (7.4.9) is unbounded as t → ∞. In either case, eAtx(0)
will not tend to zero when the initial condition x(0) = x0 is properly chosen. Hence,
the equilibrium xe = 0 of (L) cannot be asymptotically stable (and hence, it cannot
be exponentially stable).

Summarizing the above, we have proved the following result.

Theorem 7.4.5 The equilibrium xe = 0 of (L) is stable, in fact, uniformly stable,
if and only if all eigenvalues of A have nonpositive real parts, and every eigenvalue
with zero real part has an associated Jordan block of order one. The equilibrium
xe = 0 of (L) is uniformly asymptotically stable in the large, in fact, exponentially
stable in the large, if and only if all eigenvalues of A have negative real parts. �

A consequence of the above result is the following result.

Theorem 7.4.6 The equilibrium xe = 0 of (L) is unstable if and only if at least
one of the eigenvalues of A has either positive real part or has zero real part that is
associated with a Jordan block of order greater than one. �
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Before proceeding any further, it may be appropriate to take note of certain con-
ventions concerning matrices that are used in the literature. Some of these are not
consistent with the terminology used in Theorem 7.4.5. Thus, a real n × n matrix A
is called stable or a Hurwitz matrix if all its eigenvalues have negative real parts. If
at least one of the eigenvalues has a positive real part, then A is called unstable. A
matrix A, which is neither stable nor unstable, is called critical, and the eigenvalues
with zero real parts are called critical eigenvalues.

We conclude the present subsection with some examples.

Example 7.4.5 Consider system (L) with

A =
[

0 1
−1 0

]
.

The eigenvalues of A are λ1, λ2 = ±i (i =
√

−1). According to Theorem 7.4.5, the
equilibrium xe = 0 of this system is stable. This can also be verified by computing
the solutions of this system for the given set of initial data x(0) = (x1(0), x2(0))T ,{

ϕ1(t, 0, x0) = x1(0)cos t + x2(0)sin t

ϕ2(t, 0, x0) = −x1(0)sin t + x2(0)cos t,

t ≥ 0, and then applying Definition 6.1.1(a). �

Example 7.4.6 Consider system (L) with

A =
[

2.8 9.6
9.6 −2.8

]
.

The eigenvalues of A are λ1, λ2 = ±10. According to Theorem 7.4.6, the equilibrium
xe = 0 of this system is unstable. �

Example 7.4.7 Consider system (L) with

A =
[
0 1
0 0

]
.

The eigenvalues of A are λ1 = 0 and λ2 = 0. According to Theorem 7.4.6, the
equilibrium xe = 0 of this system is unstable. This can also be verified by computing
the solutions of this system for the given set of initial data x(0) = (x1(0), x2(0))T ,{

ϕ1(t, 0, x0) = x1(0) + x2(0)t,
ϕ2(t, 0, x0) = x2(0),

t ≥ 0, and then applying Definition 6.1.1(k). �

Example 7.4.8 Consider system (L) with

A =
[

−1 0
−1 −2

]
.

The eigenvalues of A are λ1, λ2 = −1,−2. According to Theorem 7.4.5, the equi-
librium xe = 0 of this system is exponentially stable. �
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C. The Lyapunov matrix equation

The stability results that we established thus far in this section require explicit knowl-
edge of the solutions of (L) and (LH). In the present subsection we develop stability
criteria for system (L) with arbitrary matrix A. To accomplish this, we employ the
Lyapunov stability results established in Chapter 6. We recall that these involve the
existence of Lyapunov functions.

Lyapunov functions v for a system are sometimes viewed as “generalized distance
functions” of the state x from the equilibrium xe (xe = 0) and the stability properties
are then deduced directly from the properties of v and its time derivative v′, along
the solutions of the system on hand.

A logical choice of Lyapunov function for system (L) is v(x) = xT x = |x|2
which represents the square of the Euclidean distance of the state from the equilibrium
xe = 0. The stability properties of this equilibrium are then determined by examining
the properties of v′

(L)(x), the time derivative of v(x) along the solutions of (L),

ẋ = Ax. (L)

This derivative can be determined without explicitly solving for the solutions of
system (L) as

v′
(L)(x) = ẋT x + xT ẋ

= (Ax)T x + xT (Ax)

= xT (AT + A)x.

If the matrix A is such that v′
(L)(x) is negative for all x �= 0, then it is reasonable to

expect that the distance of the state of (L) from the equilibrium xe = 0 will decrease
with increasing time, and that the state will therefore tend to the equilibrium of (L)
with increasing time.

The above discussion is consistent with our earlier discussion of Subsection 6.1G.
It turns out that the Lyapunov function used above is not sufficiently flexible. In the
following we employ as a “generalized distance function” the quadratic form

v(x) = xT Px, P = PT (7.4.10)

where P ∈ R
n×n. (Refer to Subsection 6.1F for a discussion of quadratic forms.)

The derivative of v(x) along the solutions of (L) is determined as

v′
(L)(x) = ẋT Px + xT Pẋ

= xT AT Px + xT PAx

= xT (AT P + PA)x;

that is,
v′
(L)(x) = xT Cx, (7.4.11)

where
C = AT P + PA. (7.4.12)
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Note that C is real and CT = C. The system of equations given in (7.4.12) is called
the Lyapunov Matrix Equation.

Before proceeding further, we recall that because P is real and symmetric, all of
its eigenvalues are real. Also, we recall that P is said to be positive definite (resp.,
positive semidefinite) if all its eigenvalues are positive (resp., nonnegative) and is
called indefinite if P has eigenvalues of opposite sign. The notions of negative
definite and negative semidefinite for matrix P are defined similarly (refer, e.g., to
Michel and Herget [14]). Thus (see Subsection 6.1F), the function v(x) given in
(7.4.10) is positive definite, positive semidefinite, and so forth, if the matrix P has
the corresponding definiteness properties. Finally, we recall from Subsection 6.1F
that instead of solving for the eigenvalues of a real symmetric matrix to determine
its definiteness properties, there are more efficient and direct methods to accomplish
this (refer to Theorem 6.1.4).

In view of the above discussion, the results below now follow readily by invoking
the Lyapunov results established in Section 6.2.

Proposition 7.4.1 (a) The equilibrium xe = 0 of (L) is uniformly stable if there
exists a real, symmetric, and positive definite n × n matrix P such that the matrix C
given in (7.4.12) is negative semidefinite.

(b) The equilibrium xe = 0 of (L) is exponentially stable in the large if there exists
a real, symmetric, and positive definite n × n matrix P such that the matrix C given
in (7.4.12) is negative definite.

(c) The equilibrium xe = 0 of (L) is unstable if there exists a real, symmetric
n × n matrix P that is either negative definite or indefinite such that the matrix C
given in (7.4.12) is negative definite. �

We leave the proofs of the above results as an exercise to the reader.

Example 7.4.9 For the system given in Example 7.4.5 we choose P = I , and we
compute

C = AT P + PA = AT + A = 0.

According to Proposition 7.4.1(a), the equilibrium xe = 0 of this system is stable (as
expected in Example 7.4.5). �

Example 7.4.10 For the system given in Example 7.4.8 we choose

P =
[
1 0
0 0.5

]
and we compute the matrix

C = AT P + PA =
[

−2 −0.5
−0.5 −2

]
.

According to Proposition 7.4.1(b), the equilibrium xe = 0 of this system is exponen-
tially stable in the large (as expected in Example 7.4.8). �
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Example 7.4.11 For the system given in Example 7.4.7 we choose

P =
[

−0.28 −0.96
−0.96 0.28

]
and we compute

C = AT P + PA =
[
−20 0
0 −20

]
.

The eigenvalues of P are ±1. According to Proposition 7.4.1(c), the equilibrium
xe = 0 of this system is unstable (as expected from Example 7.4.7). �

In applying the results given in Proposition 7.4.1, we start by guessing a matrix P
that has certain desired properties. Next, we solve the Lyapunov matrix equation
for C, using (7.4.12). If C possesses certain desired properties (it is negative definite),
we draw appropriate conclusions, using Proposition 7.4.1; if this is not possible
(i.e., Proposition 7.4.1 does not apply), we need to choose another matrix P . This
points to the principal shortcomings of Lyapunov’s Direct Method, when applied to
general systems. However, in the case of the special case of linear system (L), it is
possible to construct Lyapunov functions of the form v(x) = xT Px in a systematic
manner. In the process of doing so, one first chooses the matrix C in (7.4.12),
having desired properties, and then one solves (7.4.12) for P . Conclusions are then
drawn by applying the appropriate results given in Proposition 7.4.1. In applying
this construction procedure, we need to know the conditions under which (7.4.12)
possesses a unique solution P for a given C. We address this topic next.

Once more, we consider the quadratic form

v(x) = xT Px, P = PT (7.4.13)

and the time derivative of v along the solutions of (L), given by

v′
(L)(x) = xT Cx, C = CT (7.4.14)

where
C = AT P + PA, (7.4.15)

where all symbols are defined as before. Our objective is to determine the as yet
unknown matrix P in such a way that v′

(L) becomes a preassigned negative definite
quadratic form, that is, in such a way that C is a preassigned negative definite matrix.

We first note that (7.4.15) constitutes a system of n(n + 1)/2 linear equations,
because P is symmetric. We need to determine under what conditions we can solve
for the n(n + 1)/2 elements, pik, given the matrices A and C. To make things
tractable, we choose a similarity transformation Q such that

QAQ−1 = A, (7.4.16)

or equivalently,
A = Q−1AQ, (7.4.17)
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where A is similar to A and Q is a real n × n nonsingular matrix. From (7.4.17) and
(7.4.15) we obtain

(A)T (Q−1)T PQ−1 + (Q−1)T PQ−1A = (Q−1)T CQ−1 (7.4.18)

or
(A)T P + P A = C (7.4.19)

where
P = (Q−1)T PQ−1, C = (Q−1)T CQ−1. (7.4.20)

In (7.4.19) and (7.4.20), P and C are subjected to a congruence transformation and
P and C have the same definiteness properties as P and C, respectively. Because
every real n × n matrix can be triangularized, we can choose Q in such a manner
that A = [aij ] is triangular; that is, aij = 0 for i > j. Note that in this case the
eigenvalues of A, λ1, . . . , λn, appear in the main diagonal of A. To simplify our
subsequent notation, we rewrite (7.4.19), (7.4.20) in the form of (7.4.15) by dropping
the bars, that is,

AT P + PA = C, C = CT (7.4.21)

and we assume without loss of generality that A = [aij ] has been triangularized;
that is, aij = 0 for i > j. Because the eigenvalues λ1, . . . , λn appear in the diagonal
of A, we can rewrite (7.4.21) as

2λ1p11 = c11

a12p11 + (λ1 + λ2)p12 = c12 (7.4.22)

...

.

Note that λ1 may be a complex number, in which case c11 will also be complex.
Because this system of equations is triangular, and because its determinant is equal to

2nλ1 · · ·λn

∏
i<j

(λi + λj), (7.4.23)

the matrix P can be determined uniquely if and only this determinant is not zero.
This is true when all eigenvalues of A are nonzero and no two of them are such that
λi + λj = 0. This condition is not affected by a similarity transformation and is
therefore also valid for the original system of equations (7.4.15).

We summarize the above discussion as follows.

Lemma 7.4.1 Let A ∈ R
n×n and let λ1, . . . , λn denote the (not necessarily distinct)

eigenvalues of A. Then (7.4.21) has a unique solution for P corresponding to each
C ∈ R

n×n if and only if

λi �= 0 for all i = 1, . . . , n and λi+λj �= 0 for all i, j = 1, . . . , n. (7.4.24)

�
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In order to construct v(x), we must still check the definiteness of P . This can
be done in a purely algebraic way; however, it is much easier to invoke the stability
results of the present section and argue as follows.

(a) If all the eigenvalues λi of A have negative real parts, then the equilibrium
xe = 0 of (L) is exponentially stable in the large and if C in (7.4.15) is negative
definite, then P must be positive definite. To prove this, we note that if P is not
positive definite, then for δ > 0 and sufficiently small, (P − δI) has at least one
negative eigenvalue and the function v(x) = xT (P − δI)x has a negative definite
derivative; that is,

v′
(L)(x) = xT [C − δ(A + AT )]x < 0

for all x �= 0. By Theorem 6.2.8 (resp., Proposition 7.4.1(c)), the equilibrium xe = 0
of (L) is unstable. We have arrived at a contradiction. Therefore, P must be positive
definite.

(b) If A has eigenvalues with positive real parts and no eigenvalues with zero real
parts we can use a similarity transformation x = Qy in such a way that Q−1AQ is a
block diagonal matrix of the form diag[A1, A2], where all the eigenvalues of A1 have
positive real parts and all eigenvalues of A2 have negative real parts. (If A does not
have any eigenvalues with negative real parts, then we take A = A1). By the result
established in (a), noting that all eigenvalues of −A1 have negative real parts, given
any negative definite matrices C1 and C2, there exist positive definite matrices P1
and P2 such that

(−AT
1 )P1 + P1(−A1) = C1, AT

2 P2 + P2A2 = C2.

Then w(y) = yT Py, with P = diag[−P1, P2] is a Lyapunov function for the system
ẏ = Q−1AQy (and hence, for the system ẋ = Ax) that satisfies the hypotheses of
Theorem 6.2.8 (resp., Proposition 7.4.1(c)). Therefore, the equilibrium xe = 0 of
system (L) is unstable. If A does not have any eigenvalues with negative real parts,
then the equilibrium xe = 0 of (L) is completely unstable.

In the above proof, we did not invoke Lemma 7.4.1. We note, however, that if
additionally, (7.4.24) is true, then we can construct the Lyapunov function for (L) in
a systematic manner.

Summarizing the above discussion, we now can state the main result of this sub-
section.

Theorem 7.4.7 Assume that the matrix A (for system (L)) has no eigenvalues with
real part equal to zero. If all the eigenvalues of A have negative real parts, or if at
least one of the eigenvalues of A has a positive real part, then there exists a quadratic
Lyapunov function

v(x) = xT Px, P = PT

whose derivative along the solutions of (L) is definite (i.e., either negative definite or
positive definite). �

This result shows that when A is a stable matrix (i.e., all the eigenvalues of A
have negative real parts), then for system (L), the conditions of Theorem 6.2.3 are
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also necessary conditions for asymptotic stability. Moreover, in the case when the
matrix A has at least one eigenvalue with positive real part and no eigenvalues on the
imaginary axis, then the conditions of Theorem 6.2.8 are also necessary conditions
for instability.

Example 7.4.12 We consider the system (L) with

A =
[

0 1
−1 0

]
.

The eigenvalues of A are λ1, λ2 = ±i (i =
√

−1) and therefore, condition (7.4.24)
is violated. According to Lemma 7.4.1, the Lyapunov matrix equation

AT P + PA = C

does not possess a unique solution for a given C. We demonstrate this for two specific
cases:

(i) If C = 0, we obtain[
0 −1
1 0

][
p11 p12
p12 p22

]
+
[
p11 p12
p12 p22

][
0 1

−1 0

]
=
[

−2p12 p11 − p22
p11 − p22 2p12

]
=
[
0 0
0 0

]
,

or p12 = 0 and p11 = p22. Therefore, for any c ∈ R, the matrix P = cI is a solution
of the Lyapunov matrix equation. Thus, for C = 0, the Lyapunov matrix equation
has in this case denumerably many solutions.

(ii) If C = −2I , we have[
−2p12 p11 − p22

p11 − p22 2p12

]
=
[
−2 0
0 −2

]
,

or p11 = p22 and p12 = 1 and p12 = −1, which is impossible. Therefore, for
C = −2I , the Lyapunov matrix equation has in this example no solution at all. �

We conclude the present section with a result which shows that when all the
eigenvalues of matrix A for system (L) have negative real parts, then the matrix P in
(7.4.15) can be computed explicitly.

Theorem 7.4.8 If all the eigenvalues of a real n × n matrix A have negative real
parts, then for each matrix C ∈ R

n×n, the unique solution of (7.4.15) is given by

P =
∫ ∞

0
eAT s(−C)eAsds. (7.4.25)

Proof . If all eigenvalues of A have negative real parts, then (7.4.24) is satisfied and
therefore (7.4.15) has a unique solution for every C ∈ R

n×n. To verify that (7.4.25)
is indeed this solution, we first note that the right-hand side of (7.4.25) is well defined,
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because all eigenvalues of A have negative real parts. Substituting the right-hand side
of (7.4.25) for P into (7.4.15), we obtain

AT P + PA =
∫ ∞

0
AT eAT t(−C)eAtdt +

∫ ∞

0
eAT t(−C)eAtAdt

=
∫ ∞

0

d

dt

(
eAT t(−C)eAt

)
dt

= eAT t(−C)eAt
∣∣∣∞
0

= C,

which proves the theorem. �

D. Periodic systems

We now briefly consider linear periodic systems given by

ẋ = A(t)x (LP )

where A ∈ C[R, Rn×n] and A(t) = A(t + T ) for all t ∈ R, where T > 0 denotes
the period for (LP ). Making reference to the appendix section (Subsection 7.8B),
we recall that if Φ(t, t0) is the state transition matrix for (LP ), then there exists a
constant matrix R ∈ R

n×n and a nonsingular n × n matrix Ψ(t, t0) such that

Φ(t, t0) = Ψ(t, t0)eR(t−t0), (7.4.26)

where
Ψ(t, t0) = Ψ(t + T, t0)

for all t ∈ R. In Section 7.8 it is shown that the change of variables given by

x = Ψ(t, t0)y

transforms system (LP ) into the system

ẏ = Ry, (7.4.27)

whereR is given in (7.4.26). Moreover, becauseΨ(t, t0)−1 exists over t0 ≤ t ≤ t+T ,
the equilibrium xe = 0 is uniformly stable (resp., uniformly asymptotically stable) if
and only if ye = 0 is also uniformly stable (resp., uniformly asymptotically stable).
Applying Theorem 7.4.5 to system (7.4.27), we obtain the following results.

Theorem 7.4.9 The equilibrium xe = 0 of (LP ) is uniformly stable if and only if
all eigenvalues of the matrix R (given in (7.4.26)) have nonpositive real parts, and
every eigenvalue with a zero real part has an associated Jordan block of order one.
The equilibrium xe = 0 of (LP ) is uniformly asymptotically stable in the large if and
only if all the eigenvalues of R have negative real parts. �
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E. Second-order systems

At this point it might be appropriate to investigate the qualitative behavior of the
solutions of second-order linear autonomous homogeneous systems in the vicinity of
the equilibrium xe = 0. In the process of doing this, we establish a classification of
equilibrium points for second-order systems. Knowledge of the qualitative behavior
of the solutions of second-order linear systems frequently provides motivation and
guidelines for the study of higher-dimensional and more complex systems.

We consider systems given by{
ẋ1 = a11x1 + a12x2
ẋ2 = a21x1 + a22x2

(7.4.28)

that can be expressed by
ẋ = Ax, (7.4.29)

where

A =
[
a11 a12
a21 a22

]
. (7.4.30)

When det A �= 0, system (7.4.28) has only one equilibrium point, xe = 0. We classify
this equilibrium point (resp., system (7.4.28)) according to the following properties
of the eigenvalues λ1, λ2 of A.

(a) If λ1, λ2 are real and negative, then xe = 0 is called a stable node.

(b) If λ1, λ2 are real and positive, then xe = 0 is called an unstable node.

(c) If λ1, λ2 are real and if λ1λ2 < 0, then xe = 0 is called a saddle.

(d) If λ1, λ2 are complex conjugates and Reλ1 = Reλ2 < 0, then xe = 0 is called
a stable focus.

(e) If λ1, λ2 are complex conjugates and Reλ1 = Reλ2 > 0, then xe = 0 is called
an unstable focus.

(f) If λ1, λ2 are complex conjugates and Reλ1 = Reλ2 = 0, then xe = 0 is called
a center.

In accordance with the results of the present section, stable nodes and stable foci
are exponentially stable equilibrium points; centers are stable equilibrium points; and
saddles, unstable nodes, and unstable foci are unstable equilibrium points.

To simplify our subsequent discussion, we transform system (7.4.29) into special
forms, depending on the situation on hand. To this end, we let

y = P−1x (7.4.31)

where P ∈ R
2×2 is nonsingular. Under this similarity transformation, (7.4.29)

assumes the form
ẏ = Λy (7.4.32)

where
Λ = P−1AP. (7.4.33)
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Corresponding to an initial condition x(0) = x0 for (7.4.29) we have the initial
condition

y(0) = y0 = P−1x0 (7.4.34)

for system (7.4.32).
In the following, we assume without loss of generality that when λ1, λ2 are real

and not equal, then λ1 > λ2.
We first assume that λ1 and λ2 are real and that A can be diagonalized, so that

Λ =
[
λ1 0
0 λ2

]
, (7.4.35)

where λ1, λ2 are not necessarily distinct. Then (7.4.32) assumes the form{
ẏ1 = λ1y1
ẏ2 = λ2y2.

(7.4.36)

For a given set of initial conditions (y10, y20)T = (y1(0), y2(0))T , the solution of
(7.4.36) is given by {

ϕ1(t, 0, y10)
�
= y1(t) = eλ1ty10

ϕ2(t, 0, y20)
�
= y2(t) = eλ2ty20.

(7.4.37)

Eliminating t, we can express (7.4.37) equivalently as

y2(t) = y20
[
y1(t)/y10

]λ2/λ1
. (7.4.38)
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Figure 7.4.1: Trajectories near a stable node.

Using either (7.4.37) or (7.4.38), we now can sketch families of trajectories in the
y1– y2 plane for a stable node (Figure 7.4.1(a)), for an unstable node (Figure 7.4.2(a)),
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and for a saddle (Figure 7.4.3(a)). Using (7.4.31) and (7.4.37) or (7.4.38), we can
sketch corresponding families of trajectories in the x1– x2 plane. In all figures, the
arrows signify increasing time t. Note that in all cases, the qualitative properties
of the trajectories have been preserved under the similarity transformation (7.4.31)
(refer to Figures 7.4.1(b), 7.4.2(b), and 7.4.3(b)).

x

y1

(a) (b)

y
2

y1

2

x1

y2

Figure 7.4.2: Trajectories near an unstable node.
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Figure 7.4.3: Trajectories near a saddle.

Next, we assume that matrix A has two real repeated eigenvalues, λ1 = λ2 = λ,
and that Λ is in Jordan canonical form,

Λ =
[
λ 1
0 λ

]
.
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In this case (7.4.32) assumes the form{
ẏ1 = λy1 + y2
ẏ2 = λy2.

(7.4.39)

For an initial point, we obtain for (7.4.39) the solution{
ϕ1(t, 0, y10, y20) = y1(t) = eλty10 + teλty20

ϕ2(t, 0, y20) = eλty20.
(7.4.40)

Eliminating the parameter t, we can plot trajectories in the y1– y2 plane (resp., in the
x1– x2 plane) for different sets of initial data near the origin. In Figure 7.4.4, we
depict typical trajectories near a stable node (λ < 0) for repeated eigenvalues.
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Figure 7.4.4: Trajectories near a stable node (repeated eigenvalues).

Next, we consider the case when matrix A has two complex conjugate eigenvalues,

λ1 = δ + iω, λ2 = δ − iω.

In this case there exists a similarity transformation P such that the matrix Λ =
P−1AP assumes the form

Λ =
[

δ ω
−ω δ

]
(7.4.41)

and therefore {
ẏ1 = δy1 + ωy2
ẏ2 = −ωy1 + δy2.

(7.4.42)

The solution for the case δ > 0, for a set of initial data (y10, y20)T , is given by{
ϕ1(t, 0, y10, y20) = y1(t) = eδt(y10cos ωt + y20sin ωt)
ϕ2(t, 0, y10, y20) = y2(t) = eδt(−y10sin ωt + y20cos ωt).

(7.4.43)
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Letting ρ = (y2
10 + y2

20)
1/2, cos α = y10/ρ, and sin α = y20/ρ, we can rewrite

(7.4.43) as {
ϕ1(t, 0, y10, y20) = y1(t) = eδtρ cos(ωt − α)
ϕ2(t, 0, y10, y20) = y2(t) = −eδtρ sin(ωt − α).

(7.4.44)

Letting r and θ denote the polar coordinates, y1 = r cos θ and y2 = r sin θ, we may
rewrite the solution (7.4.44) as

r(t) = ρeδt, θ(t) = −(ωt − α). (7.4.45)

Eliminating the parameter t, we obtain

r = ce−(δ/ω)θ, c = ρe(δ/ω)α. (7.4.46)

In the present case, the origin is an unstable focus. For different initial conditions,
(7.4.45) and (7.4.46) yield a family of trajectories in the form of spirals tending away
from the origin with increasing t, as shown in Figure 7.4.5 (for ω > 0).

y

y

1

2

Figure 7.4.5: Trajectories near an unstable focus.

When δ < 0, we obtain in a similar manner, for different initial conditions near the
origin, a family of trajectories as shown in Figure 7.4.6 (for ω > 0). In the present
case, the origin is a stable focus and the trajectories are in the form of spirals that tend
towards the origin with increasing t.

Finally, if δ = 0, the origin is a center and the preceding expressions ((7.4.45) and
(7.4.46)) yield for different initial conditions near the origin, a family of concentric
circles of radius ρ, as shown in Figure 7.4.7 (for ω > 0).

7.5 Linear Discrete-Time Systems

In the present section we study the stability properties of the equilibrium of linear
homogeneous systems

x(k + 1) = A(k)x(k), k ≥ k0 ≥ 0 (LHD)
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Figure 7.4.6: Trajectories near a stable focus.

2y

y1

Figure 7.4.7: Trajectories near a center.

k, k0 ∈ N, and linear autonomous homogeneous systems

x(k + 1) = Ax(k), k ≥ 0. (LD)

In (LHD), k ∈ N, x ∈ R
n, and A : N → R

n×n. In (LD), k ∈ N, x ∈ R
n, and

A ∈ R
n×n. Recall that xe = 0 is always an equilibrium of (LD) and (LHD) and

that xe = 0 is the only equilibrium of (LHD) if A(k) is nonsingular for k ∈ N. The
solutions of (LHD) are of the form

ϕ(k, k0, x0) = Φ(k, k0)x0, k ≥ k0,

where Φ denotes the state transition matrix of A(k) and ϕ(k0, k0, x0) = x0. Also,
the solutions of (LD) are of the form

ϕ(k, k0, x0) = Φ(k, k0)x0

= Φ(k − k0, 0)x0

�
= Φ(k − k0)x0

where in the preceding equation, a slight abuse in notation has been used.
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For some of the properties of the transition matrix Φ(k, k0) that are required
in the proofs of the results that follow, the reader should refer to the appendix
(Subsection 7.8D).

A. Linear homogeneous systems

In the next four results, we provide some of the basic qualitative properties of (LHD).

Theorem 7.5.1 The equilibrium xe = 0 of (LHD) is stable if and only if the solutions
of (LHD) are bounded, or equivalently, if and only if

sup
k≥k0

∥∥Φ(k, k0)
∥∥ �

= c(k0) < ∞,

where ‖Φ(k, k0)‖ denotes the matrix norm induced by the vector norm used on R
n

and c(k0) denotes a constant that may depend on the choice of k0. �

The proof of the above result is similar to the proof of Theorem 7.4.1 and is left
as an exercise for the reader.

Theorem 7.5.2 The equilibrium xe = 0 of (LHD) is uniformly stable if and only if
the solutions of (LHD) are uniformly bounded, or equivalently, if and only if

sup
k0≥0

c(k0)
�
= sup

k0≥0

(
sup
k≥k0

∥∥Φ(k, k0)
∥∥) �

= c0 < ∞. �

The proof of the above result is similar to the proof of Theorem 7.4.2 and is left
as an exercise.

Theorem 7.5.3 The following statements are equivalent.

(i) The equilibrium xe = 0 of (LHD) is asymptotically stable.

(ii) The equilibrium xe = 0 of (LHD) is asymptotically stable in the large.

(iii) limk→∞ ‖Φ(k, k0)‖ = 0. �

The proof of the above result is similar to the proof of Theorem 7.4.3 and is left
as an exercise.

Theorem 7.5.4 The equilibrium xe = 0 of (LHD) is uniformly asymptotically stable
if and only if it is exponentially stable. �

The proof of the above result is similar to the proof of Theorem 7.4.4 and is left
as an exercise.
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B. Linear autonomous homogeneous systems

Revisiting Example 3.1.9, we now address the stability properties of system (LD),

x(k + 1) = Ax(k), k ≥ 0. (LD)

To this end we transform the matrix A into the Jordan canonical form, J = P−1AP ,
using the transformation x = Py to obtain the equivalent system

y(k + 1) = P−1APy(k) = Jy(k). (7.5.1)

Because the equilibrium xe = 0 of (LD) possesses the same stability properties
as the equilibrium ye = 0 of (7.5.1), we may assume without loss of generality
that the matrix A in (LD) is in Jordan canonical form. We may now use the same
reasoning as was done in Subsection 7.4B (for system (L)), to arrive at the following
result.

Theorem 7.5.5 The equilibrium xe = 0 of system (LD) is stable, in fact, uniformly
stable, if and only if all eigenvalues of A are within or on the unit circle of the complex
plane, and every eigenvalue that is on the unit circle has an associated Jordan block
of order one. The equilibrium xe = 0 of (LD) is uniformly asymptotically stable in
the large, in fact, exponentially stable in the large, if and only if all eigenvalues of A
are within the unit circle of the complex plane. �

The proof of this result proceeds along similar lines as the proof of Theorem 7.4.5
and is left to the reader as an exercise. As a consequence of Theorem 7.5.5, we have
the following result.

Theorem 7.5.6 The equilibrium xe = 0 of (LD) is unstable if and only if at least
one of the eigenvalues of A is outside of the unit circle in the complex plane or at
least one of the eigenvalues of A is on the unit circle in the complex plane and is
associated with a Jordan block of order greater than one. �

The proof of the above result is similar to the proof of Theorem 7.4.6 and is left
as an exercise.

As in the case of linear system (L), it may be appropriate to take note of certain
conventions concerning matrices for system (LD) that are used in the literature. Again,
these are not consistent with the terminology used in the preceding results. Thus, a
real n × n matrix A is called Schur stable or just stable, if all of its eigenvalues are
within the unit circle of the complex plane. If at least one of the eigenvalues of A is
outside the unit circle, then A is called unstable. A matrix A that is neither stable nor
unstable is called critical, and the eigenvalues on the unit circle in the complex plane
are called critical eigenvalues.

Example 7.5.1 For system (LD), we let

A =
[

0 1
−1 0

]
.
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The eigenvalues of A are λ1, λ2 = ±
√

−1. According to Theorem 7.5.5, the equi-
librium xe = 0 of the system is stable, and according to Theorems 7.5.1 and 7.5.2,
the matrix Ak is bounded (resp., uniformly bounded) for all k ≥ 0. �

Example 7.5.2 For system (LD), we let

A =
[

0 −1/2
−1 0

]
.

The eigenvalues of A are λ1, λ2 = ±1/
√

2. According to Theorem 7.5.5, the equilib-
rium xe = 0 of the system is asymptotically stable and according to Theorem 7.5.3,
limk→∞ Ak = 0. �

Example 7.5.3 For system (LD), we let

A =
[

0 −1/2
−3 0

]
.

The eigenvalues of A are λ1, λ2 = ±
√

3/2. According to Theorem 7.5.6, the equi-
librium xe = 0 of system (LD) is unstable, and according to Theorems 7.5.1 and
7.5.2, the matrix Ak is not bounded with increasing k. �

Example 7.5.4 For system (LD), we let

A =
[
1 1
0 1

]
.

The matrix A is a Jordan block of order 2 for the eigenvalue λ = 1. According to
Theorem 7.5.6, the equilibrium xe = 0 of the system is unstable. �

C. The Lyapunov matrix equation

In the present section we employ quadratic forms

v(x) = xT Bx, B = BT (7.5.2)

to establish stability criteria for linear systems

x(k + 1) = Ax(k). (LD)

Evaluating v along the solutions of system (LD), we obtain the first forward difference
of v as

∆LD
v(x(k)) = v(x(k + 1)) − v(x(k))

= x(k + 1)T Bx(k + 1) − x(k)T Bx(k)

= x(k)T AT BAx(k) − x(k)T Bx(k)

= x(k)T (AT BA − B)x(k),



290 Chapter 7. Finite-Dimensional Dynamical Systems: Specialized Results

and therefore
∆LD

v(x) = xT (AT BA − B)x
�
= xT Cx (7.5.3)

where
AT BA − B = C, CT = C. (7.5.4)

Equation (7.5.4) is called the Lyapunov Matrix Equation for system (LD).
Invoking the Lyapunov stability results of Section 6.3, the following results follow

readily.

Proposition 7.5.1 (a) The equilibrium xe = 0 of system (LD) is stable if there exists
a real, symmetric, and positive definite matrix B such that the matrix C given in
(7.5.4) is negative semidefinite.

(b) The equilibrium xe = 0 of system (LD) is asymptotically stable in the large,
in fact, exponentially stable in the large, if there exists a real, symmetric, and positive
definite matrix B such that the matrix C given in (7.5.4) is negative definite.

(c) The equilibrium xe = 0 of system (LD) is unstable if there exists a real,
symmetric matrix B that is either negative definite or indefinite such that the matrix
C given in (7.5.4) is negative definite. �

We leave the proofs of the above results as an exercise for the reader.
In applying Proposition 7.5.1, we start by guessing a matrix B having certain

properties and we then solve for the matrix C in (7.5.4). If C possesses desired
properties, we can apply Proposition 7.5.1 to draw appropriate conclusions; if not,
we need to choose another matrix B. This is not a very satisfactory approach, and in
the following, we derive results that, similarly as in the case of linear continuous-time
systems (L), enable us to construct Lyapunov functions of the form v(x) = xT Bx
in a systematic manner. In this approach we first choose a matrix C in (7.5.4) which
is either negative definite or positive definite, then we solve (7.5.4) for B, and then
we draw appropriate conclusions by invoking existing Lyapunov results (e.g., Propo-
sition 7.5.1). In applying this approach of constructing Lyapunov functions, we need
to know under what conditions equation (7.5.4) possesses a unique solution B for any
definite (i.e., positive definite or negative definite) matrix C. We address this issue
next.

We first show that if all the eigenvalues of A are within the unit circle of the
complex plane (i.e., A is stable), then we can compute B in (7.5.4) explicitly. To see
this, assume that in (7.5.4) C is given and that A is stable. Then

(AT )k+1BAk+1 − (AT )kBAk = (AT )kCAk,

and summing from k = 0 to l yields

AT BA − B + (AT )2BA2 − AT BA + · · · + (AT )l+1BAl+1 − (AT )lBAl

=
l∑

k=0

(AT )kCAk
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or

(AT )l+1BAl+1 − B =
l∑

k=0

(AT )kCAk.

Letting l → ∞, we have

B = −
∞∑

k=0

(AT )kCAk. (7.5.5)

It is easily verified that (7.5.5) is a solution of (7.5.4). Indeed, we have

−AT

[ ∞∑
k=0

(AT )kCAk

]
A +

∞∑
k=0

(AT )kCAk = C

or

−AT CA + C − (AT )2CA2 + AT CA − (AT )3CA3 + (AT )2CA2 − · · · = C.

Furthermore, if C is negative definite, then B is positive definite.
Combining the above discussion with Proposition 7.5.1(b), we have proved the

following result.

Theorem 7.5.7 If there is a positive definite and symmetric matrix B and a negative
definite and symmetric matrix C satisfying the Lyapunov matrix equation (7.5.4),
then the matrix A is stable. Conversely, if A is stable, then given any symmetric
matrix C, equation (7.5.4) has a unique solution B, and if C is negative definite, then
B is positive definite. �

Next, we determine conditions under which the Lyapunov matrix equation (7.5.4)
has a unique solution B = BT ∈ R

n×n for a given matrix C = CT ∈ R
n×n. In

doing so, we consider the more general system of equations

A1XA2 − X = C (7.5.6)

where A1 ∈ R
m×m, A2 ∈ R

n×n, X ∈ R
m×n, and C ∈ R

m×n.

Lemma 7.5.1 Let A1 ∈ R
m×m and A2 ∈ R

n×n. Then equation (7.5.6) has a unique
solution X ∈ R

m×n for a given C ∈ R
m×n if and only if no eigenvalue of A1 is a

reciprocal of an eigenvalue of A2.

Proof . We need to show that the condition on A1 and A2 is equivalent to the condition
that A1XA2 = X implies X = 0. Once we have proved that A1XA2 = X has the
unique solution X = 0, then it can be shown that (7.5.6) has a unique solution for
every C, because (7.5.6) is a linear equation.

Assume first that the condition on A1 and A2 is satisfied. Now A1XA2 = X
implies that Ak−j

1 XAk−j
2 = X and

Aj
1 = Ak

1XAk−j
2 for k ≥ j ≥ 0.
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Now for the polynomial of degree k,

p(λ) =
k∑

j=0

ajλ
j ,

we define the polynomial of degree k,

p∗(λ) =
k∑

j=0

ajλ
k−j = λkp

(
1
λ

)
,

from which it follows that

p(A1)X = Ak
1Xp∗(A2). (7.5.7)

Now let ϕi(λ) be the characteristic polynomial of Ai, i = 1, 2. It follows from the
assumption that ϕ1(λ) and ϕ∗

2(λ) do not have common roots. Thus, ϕ1(λ) and ϕ∗
2(λ)

are relatively prime, which in turn yields that there are polynomials p(λ) and q(λ)
such that

p(λ)ϕ1(λ) + q(λ)ϕ∗
2(λ) = 1.

Now define ϕ(λ) = q(λ)ϕ∗
2(λ) and note that ϕ∗(λ) = q∗(λ)ϕ2(λ). It follows that

ϕ∗(A2) = 0 and ϕ(A1) = I . Replacing p(λ) in (7.5.7) by ϕ(λ), we obtain

X = ϕ(A1)X = Ak
1Xϕ∗(A2) = 0.

From this it follows that A1XA2 = X implies X = 0.
To prove the converse, we assume that λ is an eigenvalue of A1 and λ−1 is an

eigenvalue of A2 (and hence, is also an eigenvalue of AT
2 ). Let A1w = λw and

AT
2 z = λ−1z, 0 �= w ∈ R

n×1, and 0 �= z ∈ R
m×1. Define X = wzT . Then X �= 0

and A1XA2 = X . �

To construct the Lyapunov function v(x), using Lemma 7.5.1, we must still check
the definiteness of B, using the results of the present section (e.g., Proposition 7.5.1).

(a) If all the eigenvalues of A for system (LD) are within the unit circle of the com-
plex plane, then no reciprocal of an eigenvalue of A is an eigenvalue, and Lemma 7.5.1
gives another way of showing that equation (7.5.4) has a unique solution B for every
C if A is stable. If C is negative definite, then B is positive definite. This can be
shown similarly as was done for the corresponding case of linear ordinary differential
equations (Subsection 7.4C).

(b) Suppose that at least one of the eigenvalues of A is outside the unit circle in
the complex plane and that A has no eigenvalues on the unit circle. As in the case of
linear differential equations (L) (Subsection 7.4C), we use a similarity transformation
x = Qy in such a way that Q−1AQ = diag[A1, A2], where all eigenvalues of A1
are outside the unit circle and all eigenvalues of A2 are within the unit circle. We
then proceed identically as in the case of linear differential equations to show that
under the present assumptions there exists for system (LD) a Lyapunov function that
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satisfies the hypotheses of Proposition 7.5.1(c). Therefore, the equilibrium xe = 0 of
system (LD) is unstable. If A does not have any eigenvalues within the unit circle,
then the equilibrium xe = 0 of (L) is completely unstable. In this proof, Lemma 7.5.1
has not been invoked. If additionally, the hypotheses of Lemma 7.5.1 are true (i.e.,
no reciprocal of an eigenvalue of A is an eigenvalue of A), then we can construct the
Lyapunov function for (LD) in a systematic manner.

Summarizing the above discussion, we have arrived at the following result.

Theorem 7.5.8 Assume that the matrix A (for system (LD)) has no eigenvalues on
the unit circle. If all the eigenvalues of A are within the unit circle of the complex
plane, or if at least one eigenvalue is outside the unit circle of the complex plane, then
there exists a Lyapunov function of the form v(x) = xT Bx, B = BT , whose first
forward difference along the solutions of system (LD) is definite (i.e., ∆LD

v(x) is
either negative definite or positive definite). �

Theorem 7.5.8 shows that when all the eigenvalues of A are within the unit circle,
then for system (LD), the conditions of Theorem 6.3.2 are also necessary conditions
for asymptotic stability. Furthermore, when at least one eigenvalue is outside the unit
circle and no eigenvalues are on the unit circle, then the conditions of Theorem 6.3.4
are also necessary conditions for instability.

We conclude the present section by considering several specific examples.

Example 7.5.5 For system (LD), let

A =
[

0 1
−1 0

]
.

Choose B = I , which is positive definite. From (7.5.4) we have

C = AT A − I =
[
0 −1
1 0

] [
0 1

−1 0

]
−
[
1 0
0 1

]
=
[
0 0
0 0

]
.

It follows from Proposition 7.5.1(a) that the equilibrium xe = 0 of (LD) is stable.
This is the same conclusion as the one we arrived at in Example 7.5.1. �

Example 7.5.6 For system (LD), let

A =
[

0 −1/2
−1 0

]
.

We choose

B =
[
8/3 0
0 5/3

]
,

which is positive definite. From (7.5.4) we obtain

C = AT BA − B

=
[

0 −1
−1/2 0

] [
8/3 0
0 5/3

] [
0 −1/2

−1 0

]
−
[
8/3 0
0 5/3

]
=
[
−1 0
0 −1

]
,
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which is negative definite. It follows from Proposition 7.5.1(b) that the equilibrium
xe = 0 of system (LD) is asymptotically stable in the large, in fact, exponentially
stable in the large. This is the same conclusion that was drawn in Example 7.5.2. �

Example 7.5.7 For system (LD), let

A =
[

0 −1/2
−3 0

]
.

We choose

C =
[
−1 0
0 −1

]
which is negative definite. From (7.5.4) we obtain

C = AT BA − B =
[

0 −3
−1/2 0

] [
b11 b12
b12 b22

] [
0 −1/2

−3 0

]
−
[
b11 b12
b12 b22

]
or [(

9b22 − b11
)

b12/2
b12/2

(
b11/4 − b22

)] =
[
−1 0
0 −1

]
,

which yields

B =
[
−8 0
0 −1

]
,

which is also negative definite. It follows from Proposition 7.5.1(c) that the equi-
librium xe = 0 of this system is unstable. This conclusion is consistent with the
conclusion made in Example 7.5.3. �

Example 7.5.8 For system (LD), let

A =
[
1/3 1
0 3

]
.

The eigenvalues of A are λ1 = 1/3 and λ2 = 3. According to Lemma 7.5.1, for a
given matrix C = CT , equation (7.5.4) does not have a unique solution, because in
this case λ1 = 1/λ2. For purposes of illustration, we choose C = −I . Then

−I = AT BA − B =
[
1/3 0
1 3

] [
b11 b12
b12 b22

] [
1/3 1
0 3

]
−
[
b11 b12
b12 b22

]
or [

−8/9 b11/3
b11/3

(
b11 + 6b12 + 8b22

)] =
[
−1 0
0 −1

]
,

which shows that for C = −I , equation (7.5.4) does not have any solution for B
at all. �
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7.6 Perturbed Linear Systems

Perturbed linear systems come about because of uncertainties incurred during the
modeling process; because of errors made in measurements; because of errors in-
troduced when linearizing nonlinear systems; and the like. A natural question of
fundamental importance is to identify conditions under which linear systems and
their perturbations have similar qualitative properties. We answer this question in
pieces, by addressing different aspects of system behavior.

We first determine conditions under which the stability properties of the equilib-
rium xe = 0 of a nonlinear system can be deduced from the stability properties of
the equilibrium w = 0 of its linearization, for noncritical cases. This is known as
Lyapunov’s First Method or Lyapunov’s Indirect Method. Next, for noncritical cases,
we determine the qualitative properties of the solutions of perturbed linear systems by
proving the existence of stable and unstable manifolds near the equilibrium xe = 0
of such systems. Finally, by introducing the notion of orbital stability, we study the
stability and instability properties of periodic solutions of perturbed linear periodic
systems.

A. Preliminaries

The present subsection consists of several parts.

Some Notation

We recall that for a function g : R
l → R

k, the notation g(x) = O(|x|β) as |x| → α
means that

lim
|x|→α

sup
|g(x)|
|x|β < ∞,

β ≥ 0, with the interesting cases including α = 0 and α = ∞. Above, |·| denotes any
one of the equivalent norms on R

l. Also, when g : R × R
l → R

k, g(t, x) = O(|x|β)
as |x| → α uniformly for t in an interval I means that

lim
|x|→α

sup

(
sup
t∈I

|g(t, x)|
|x|β

)
< ∞.

We also recall that g(x) = O(|x|β) as |x| → α means that

lim
|x|→α

|g(x)|
|x|β = 0

and g(t, x) = O(|x|β) as |x| → α uniformly for t in an interval is defined in the
obvious way.

The Implicit Function Theorem

In Subsection 7.6D we make use of the Implicit Function Theorem which we present
next, without proof. To this end, we consider a system of functions

gi(x, y) = gi(x1, . . . , xn, y1, . . . , yr), i = 1, . . . , r.
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We assume that these functions have continuous first derivatives in an open set con-
taining a point (x0, y0). We define the Jacobian matrix of g(·) = (g1(·), . . . , gr(·))
with respect to (y1, . . . , yr) by

gy(·) =
∂g

∂y
(·) =


∂g1/∂y1 · · · ∂g1/∂yr

∂g2/∂y1 · · · ∂g2/∂yr

...
. . .

...
∂gr/∂y1 · · · ∂gr/∂yr

 .

The determinant of this matrix is called the Jacobian ofg(·)with respect to (y1, . . . , yr)
and is denoted

J = det(∂g/∂y).

Theorem 7.6.1 (Implicit Function Theorem) Let g1(·), . . . , gr(·) have continuous
first derivatives in a neighborhood of a point (x0, y0). Assume that gi(x0, y0) = 0, i =
1, . . . , r and that J �= 0 at (x0, y0). Then there is a δ-neighborhood U of x0 and a γ-
neighborhood S of y0 such that for any x ∈ U there is a unique solution y of gi(x, y) =
0, i = 1, . . . , r in S. The vector-valued function y(x) = (y1(x), . . . , yr(x))T defined
in this way has continuous first derivatives. If the functions gi(·), i = 1, . . . , r, have
a continuous kth derivative, or if they are analytic, then so are the functions yi(·),
i = 1, . . . , r. �

Hypersurfaces

We characterize stable and unstable manifolds by means of hypersurfaces in R
n.

Definition 7.6.1 A local hypersurface S of dimension k + 1 located along a curve
v(t) is determined as follows. There is a neighborhood V of the origin x = 0 in R

n

and there are (n − k) functions Hi ∈ C1[R × V, R] such that

S =
{
(t, x) : t ∈ R, x − v(t) ∈ V and Hi(t, x + v(t)) = 0, i = k + 1, . . . , n

}
.

(7.6.1)
Here Hi(t, v(t)) = 0, i = k + 1, . . . , n, for all t ∈ R. Moreover, if ∇ denotes the
gradient with respect to x, then for each t ∈ R, {∇Hi(t, v(t)) : i = k + 1, . . . , n} is
a set of (n − k) linearly independent vectors. A tangent hypersurface to S at a point
(t, x) is determined by {y ∈ R

n : 〈y, ∇Hi(t, v(t))〉 = 0, i = k + 1, . . . , n}. We say
that S is Cm-smooth if v ∈ Cm[R, Rn] and Hi ∈ Cm[R × V, R] and we say that S
is analytic if v and Hi are holomorphic in t and (t, x), respectively. �

In the present section, v(t) is usually a constant (usually, v(t) ≡ 0) or it is a periodic
function. Moreover, there is typically a constant n × n matrix Q, a neighborhood U
of the origin in the ŷ = (y1, . . . , yk)T -space, and a function G ∈ C1[R × U, Rn−k]
such that G(t, 0) ≡ 0 and such that

S =
{
(t, x) : y = Q(x − v) ∈ U and (yk+1, . . . , yn)T = G(t, y1, . . . , yk)

}
.

(7.6.2)
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The functions Hi(t, x) can be determined immediately from G(t, y) and Q.

Positively and Negatively Invariant Sets

In Subsection 7.6D where we study the qualitative properties of the solutions of
perturbed linear equations using stable and unstable manifolds, we need to allow the
solutions of the equations to evolve forward and backward in time. As a consequence
of this, as pointed out in Subsection 3.1A, we require not only positively invariant
sets but negatively invariant sets as well. Thus, a set M ⊂ R

n is positively invariant
with respect to (E) if for every solution ϕ(·, t0, x0) of (E), x0 ∈ M implies that
ϕ(t, t0, x0) ∈ M for all t ≥ t0 and negatively invariant with respect to (E) if for
every solution ϕ(·, t0, x0) of (E), x0 ∈ M implies that ϕ(t, t0, x0) ∈ M for all
t ≤ t0.

B. Stability of an equilibrium (continuous-time systems)

To fix some of the ideas involved, we consider systems of equations

ẋ = g(t, x) (G)

where g ∈ C1[R+ × Ω, Rn] and Ω is an open connected set. Let ϕ denote a given
solution of (G) that is defined for all t ≥ t0 ≥ 0. We can linearize (G) about ϕ in the
following manner. Define y = x − ϕ(t) so that

ẏ = g(t, x) − g(t, ϕ(t))
= g(t, y + ϕ(t)) − g(t, ϕ(t))

=
∂g

∂x
(t, ϕ(t))y + G(t, y)

where

G(t, y)
�
= [g(t, y + ϕ(t)) − g(t, ϕ(t))] − ∂g

∂x
(t, ϕ(t))y

which is O(|y|) as |y| → 0, uniformly in t on compact subsets of [t0,∞).
Of special interest is the case when g(t, x) ≡ g(x) and ϕ(t) = x0 is a constant

(i.e., an equilibrium point). Under these conditions, we have

ẏ = Ay + G(y)

where A = (∂g/∂x)(x0).
Also, of special interest is the case in which g(t, x) is T periodic in t (or is inde-

pendent of t) and ϕ(t) is T periodic. We consider this case in Subsection E.
We now consider systems of equations given by

ẋ = Ax + F (t, x) (PE)

where F ∈ C[R+ × B(r), Rn], B(r) ⊂ Ω ⊂ R
n for some r > 0, where Ω is a

connected set containing the origin x = 0 and A ∈ R
n×n. We call Ax the linear part

of the right-hand side of (PE) and F (t, x) represents the remaining terms of order
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higher than one in the various components of x. System (PE) constitutes a perturbed
linear system corresponding to the unperturbed linear system

ẇ = Aw. (L)

Theorem 7.6.2 Let A ∈ R
n×n be stable, let F ∈ C[R+×B(r), Rn], and assume that

F (t, x) = O(|x|) as |x| → 0, (7.6.3)

uniformly in t ∈ R
+. Then the equilibrium xe = 0 of (PE) is uniformly asymptoti-

cally stable, in fact, exponentially stable.

Proof . Because (L) is an autonomous linear system, Theorem 7.4.7 applies. In view
of that theorem, there exists a symmetric, real, positive definite n × n matrix P such
that AT P +PA = −C, where C is positive definite. Consider the Lyapunov function
v(x) = xT Px. The derivative of v with respect to t along the solutions of (PE) is
given by

v′
(PE)(t, x) = −xT Cx + 2xT PF (t, x). (7.6.4)

Now pick γ > 0 such that xT Cx ≥ 3γ|x|2 for all x ∈ R
n. By (7.6.3) there is a δ

with 0 < δ < r such that if |x| ≤ δ, then |PF (t, x)| ≤ γ|x| for all (t, x) ∈R
+×B(δ).

For all (t, x) ∈ R
+ × B(δ) we obtain, in view of (7.6.4), the estimate

v′
(PE)(t, x) ≤ −3γ|x|2 + 2γ|x|2 = −γ|x|2.

It follows that v′
(PE)(t, x) is negative definite in a neighborhood of the origin. By

Theorem 6.2.2 the trivial solution of (PE) is uniformly asymptotically stable and by
Theorem 6.2.4, it is exponentially stable, because c1|x|2 ≤ v(x) ≤ c2|x|2 for some
c2 > c1 > 0 and for all x ∈ R

n. �

Example 7.6.1 We consider the Lienard Equation

ẍ + f(x)ẋ + x = 0 (7.6.5)

where f ∈ C[R, R]. Assume that f(0) > 0. We can rewrite (7.6.5) (letting x = x1
and ẋ = x2) as {

ẋ1 = x2
ẋ2 = −x1 − f(0)x2 +

(
f(0) − f(x1)

)
x2

(7.6.6)

and we can apply Theorem 7.6.2 with xT = (x1, x2),

A =
[

0 1
−1 −f(0)

]
and F (t, x) =

[
0(

f(0) − f(x1)
)
x2

]
.

Because A is a stable matrix and F (t, x) satisfies (7.6.3), we conclude that the equi-
librium xe = 0 of (7.6.5) is uniformly asymptotically stable. �
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We emphasize that the results one obtains by applying Theorem 7.6.2 are local,
and no information concerning the extent of the uniform asymptotic stability of the
equilibrium xe = 0 (domain of attraction) is provided.

Theorem 7.6.3 Assume that A ∈ R
n×n has at least one eigenvalue with positive

real part and no eigenvalues with real part equal to zero. If F ∈ C[R+ × B(r), Rn]
and if F satisfies (7.6.3), then the equilibrium xe = 0 of (PE) is unstable.

Proof . We use Theorem 7.4.7 to choose a real, symmetric n × n matrix P such that
AT P + PA = −C is negative definite. The matrix P is not positive definite or

even positive semidefinite. Hence, the function v(x)
�
= xT Px is negative at points

arbitrarily close to the origin. Evaluating the derivative of v with respect to t along
the solutions of (PE), we obtain

v′
(PE)(t, x) = −xT Cx + 2xT PF (t, x).

Pick γ > 0 such that xT Cx ≥ 3γ|x|2 for all x ∈ R
n. In view of (7.6.3) we can pick

δ such that 0 < δ < r and |PF (t, x)| ≤ γ|x| for all (t, x) ∈ R
+ × B(δ). Thus, for

all (t, x) ∈ R
+ × B(δ), we obtain

v′
(PE)(t, x) ≤ −3γ|x|2 + 2γ|x|2 = −γ|x|2,

so that v′
(PE)(t, x) is negative definite. By Theorem 6.2.8 the trivial solution of (PE)

is unstable. �

Example 7.6.2 Consider the simple pendulum described by the equation

ẍ + a sin x = 0 (7.6.7)

where a > 0 is a constant. Note that (xe, ẋe)T = (π, 0)T is an equilibrium for
(7.6.7). Let y = x − xe. Then

ÿ + a sin(y + π) = ÿ − ay + a(sin(y + π) + y) = 0.

This equation can be put into the form of (PE) with

A =
[

0 1
a 0

]
and F (t, x) =

[
0

a(sin(y + π) + y)

]
.

The eigenvalues of A are λ1, λ2 = ±
√

a and F satisfies condition (7.6.3). Thus,
Theorem 7.6.3 is applicable and we can conclude that the equilibrium (xe, ẋe) =
(π, 0) is unstable. �

Next, we consider periodic systems given by

ẋ = P (t)x + F (t, x) (7.6.8)

where P ∈ C[R, Rn×n] is periodic with period T > 0 and where F has the properties
enumerated in Theorem 7.6.2. As in the case of system (PE), system (7.6.8) may
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arise in the process of linearizing equations of the form (E) or they may arise in the
process of modeling a physical system. Thus, system (7.6.8) constitutes a perturbed
linear periodic system corresponding to the unperturbed linear periodic system

ẇ = P (t)w. (LP )

Corollary 7.6.1 Let P (t) be defined as above and let F satisfy the hypotheses of
Theorem 7.6.2.

(i) If all the characteristic exponents of the linear system (LP ) have negative real
parts, then the equilibrium xe = 0 of system (7.6.8) is uniformly asymptotically
stable.

(ii) If at least one characteristic exponent of (LP ) has positive real part and no
characteristic exponent has zero real part, then the equilibrium xe = 0 of
system (7.6.8) is unstable.

Proof . By Theorem 7.8.8 (in the appendix section, Section 7.8), the fundamental
matrix Φ for (LP ) satisfying Φ(0) = I has the form Φ(t) = U(t)eRt, where U(t)
is a continuous, periodic, and nonsingular matrix. Now define x = U(t)y, where x
solves (7.6.8), so that

U̇(t)y + U(t)ẏ = P (t)U(t)y + F (t, U(t)y),

and U̇ = PU − UR. Thus y solves the equation

ẏ = Ry + U−1(t)F (t, U(t)y),

and U−1(t)F (t, U(t)y) satisfies (7.6.3). Now apply Theorem 7.6.2 or 7.6.3 to
determine the stability of the equilibrium ye = 0. Because U(t) and U−1(t) are
both bounded on R, the trivial solution ye = 0 and xe = 0 have the same stability
properties. �

It is clear from the preceding results that the stability properties of the trivial
solution of many nonlinear systems can be deduced from their linearizations. As
mentioned earlier, these results comprise what is called Lyapunov’s First Method or
Lyapunov’s Indirect Method for systems described by ordinary differential equations.

C. Stability of an equilibrium (discrete-time systems)

We now establish conditions under which the stability properties of the equilibrium
xe = 0 of the perturbed linear system

x(k + 1) = Ax(k) + F (k, x(k)) (7.6.9)

can be deduced from the stability properties of the equilibrium we = 0 of the linear
system

w(k + 1) = Aw(k) (7.6.10)

under the assumption that F (k, x) = O(|x|) as |x| → 0, uniformly in k ∈ N1 ⊂ N.
In (7.6.9), A ∈ R

n×n and F ∈ C[N × Ω, Ω] where Ω ⊂ R
n is a connected set

containing the origin x = 0.
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Theorem 7.6.4 Assume that F ∈ C[N × Ω, Ω] where Ω ⊂ R
n is an open connected

set containing the origin xe = 0 and assume that F (k, x) = O(|x|) as |x| → 0,
uniformly in k ∈ N1 where N1 is a subset of N.

(i) If A is Schur stable (i.e., all eigenvalues of A are within the unit circle of the
complex plane), then the equilibrium xe = 0 of system (7.6.9) is uniformly
asymptotically stable (in fact, exponentially stable).

(ii) If at least one eigenvalue of A is outside the unit circle of the complex plane
and if A has no eigenvalues on the unit circle in the complex plane, then the
equilibrium xe = 0 of system (7.6.9) is unstable. �

The proofs of the results inTheorem 7.6.4 are similar to the proofs ofTheorems 7.6.2
and 7.6.3 and are left as an exercise to the reader.

Example 7.6.3 Consider the system{
x1(k + 1) = −0.5x2(k) + x1(k)2 + x2(k)2

x2(k + 1) = −x1(k) + x1(k)2 + x2(k)2.
(7.6.11)

System (7.6.11) has an equilibrium at the origin, xe = (x1, x2)T = (0, 0)T . Using
the notation of (7.6.9) we have

A =
[

0 −1/2
−1 0

]
and F (k, x) ≡ F (x) =

[
x2

1 + x2
2

x2
1 + x2

2

]
.

The eigenvalues of A are λ1, λ2 = ±
√

1/2. Also, it is clear that F (x) = O(|x|)
as |x| → 0. All the hypotheses of Theorem 7.6.4(i) are satisfied. Therefore, the
equilibrium xe = 0 of system (7.6.11) is asymptotically stable. �

Example 7.6.4 Consider the system{
x1(k + 1) = −0.5x2(k) + x1(k)3 + x2(k)2

x2(k + 1) = −3x1(k) + x1(k)4 − x2(k)5.
(7.6.12)

Using the notation of (7.6.9), we have

A =
[

0 −1/2
−3 0

]
and F (k, x) ≡ F (x) =

[
x3

1 + x2
2

x4
1 − x5

2

]
.

The eigenvalues of A are λ1, λ2 = ±
√

3/2. Also, it is clear that F (x) = O(|x|)
as |x| → 0. All the hypotheses of Theorem 7.6.4(ii) are satisfied. Therefore, the
equilibrium xe = 0 of system (7.6.12) is unstable. �

D. Stable and unstable manifolds

In the present subsection we consider systems described by equations of the form

ẋ = Ax + F (t, x) (PE)
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under the assumption that the matrix A does not have any critical eigenvalues. We
wish to study in some detail the properties of the solutions of (PE) in a neighborhood
of the origin xe = 0. To accomplish this, we establish the existence of stable and
unstable manifolds (defined shortly). In doing so, we need to strengthen hypothesis
(7.6.3) by making the following assumption.

Assumption 7.6.1 Let F ∈ C[R × Ω, Rn] where Ω ⊂ R
n is an open connected set

containing the origin xe = 0. Assume that F (t, 0) = 0 for all t ∈ R and that for any
ε > 0 there is a δ > 0 such that B(δ) ⊂ Ω and such that if (t, x), (t, y) ∈ R × B(δ),
then |F (t, x) − F (t, y)| ≤ ε|x − y|. �

Assumption 7.6.1 is satisfied if, e.g., F (t, x) is periodic in t, or if it is independent
of t (i.e., F (t, x) ≡ F (x)), or if F ∈ C1[R × Ω, Rn] and both F (t, 0) = 0 and
Fx(t, 0) = 0 for all t ∈ R.

x

x1

2
S* U*

Figure 7.6.1: Stable and unstable manifolds for a linear system.

Before proceeding further, it may be useful to first present some motivation and in-
sight for the principal results of the present subsection. To this end, we make reference
to the trajectory portraits of the two-dimensional systems considered in Subsection
7.4E. We single out noncritical cases, and we are specifically interested in Figure 7.4.3
which depicts the qualitative behavior of the trajectories in the vicinity of a saddle.
Making reference to Figure 7.6.1, we see that there is a one-dimensional linear sub-
space S∗ such that the solutions starting in S∗ tend to the origin as t → ∞. This
set is called a stable manifold. There is also a linear subspace U∗, called an unstable
manifold, consisting of those trajectories that tend to the origin as t → −∞. If time
is reversed, then S∗ and U∗ change roles. In the principal results of this subsection
we prove that if the linear system is perturbed by terms that satisfy Assumption 7.6.1,
then the resulting trajectory portrait for the perturbed linear system (PE) remains es-
sentially unchanged, as shown in Figure 7.6.2. In this case, the stable manifold S and
the unstable manifold U may become slightly distorted, but their essential qualitative
properties persist.
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x

x1

2

U
S

Figure 7.6.2: Stable and unstable manifolds for a perturbed linear system.

Our analysis is local, valid in a small neighborhood of the origin of R
n. For n-

dimensional systems (PE), we allow k eigenvalues of matrix A with negative real
parts and (n − k) eigenvalues with positive real parts. We allow k = 0 or k = n as
special cases and we allow F to depend on time t. In the (t, x)-space, we show that
there is a (k+1)-dimensional stable manifold and an (n−k+1)-dimensional unstable
manifold in a sufficiently small neighborhood of the line determined by (t, 0), t ∈ R.

Theorem 7.6.5 For system (PE), let F ∈ C1[R × Ω, Rn] and satisfy Assump-
tion 7.6.1 and assume that A ∈ R

n×n has k eigenvalues with negative real parts and
(n− k) eigenvalues with positive real parts. Then there exists a (k +1)-dimensional
local hypersurface S (refer to Definition 7.6.1), located at the origin, called the stable
manifold of (PE), such that S is positively invariant with respect to (PE), and for
any solution ϕ of (PE) and any τ such that (τ, ϕ(τ)) ∈ S, we have ϕ(t) → 0 as
t → ∞. Moreover, there is a δ > 0 such that if (τ, ϕ(τ)) ∈ R × B(δ) for some
solution ϕ of (PE) but (τ, ϕ(τ)) �∈ S, then ϕ(t) must leave the ball B(δ) at some
finite time t1 > τ .

If F ∈ Cl[R × Ω, Rn] for l = 1, 2, 3, . . . or l = ∞, or if F is holomorphic in
(t, x), then S has the same degree of smoothness as F . Moreover, S is tangent at the
origin to the stable manifold S∗ for the linear system (L).

Proof . Choose a linear transformation x = Qy such that (PE) becomes

ẏ = By + g(t, y), (PE′)

where B = Q−1AQ = diag[B1, B2] and g(t, y) = Q−1F (t, Qy). The matrix Q can
be chosen so that B1 is a k × k stable matrix and −B2 is an (n − k) × (n − k) stable
matrix. Clearly g will satisfy Assumption 7.6.1. Moreover, if we define

U1(t) =
[
eB1t 0
0 0

]
, U2(t) =

[
0 0
0 eB2t

]
,
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then eBt = U1(t) + U2(t) and for some positive constants K and σ we have

|U1(t)| ≤ Ke−2σt, t ≥ 0, and |U2(t)| ≤ Keσt, t ≤ 0.

Let ϕ be a bounded solution of (PE′) with ϕ(τ) = ξ. Then by the variation of
constants formula (see (7.8.10)), we have

ϕ(t) = eB(t−τ)ξ +
∫ t

τ

eB(t−s)g(s, ϕ(s))ds

= U1(t − τ)ξ +
∫ t

τ

U1(t − s)g(s, ϕ(s))ds + U2(t − τ)ξ

+
∫ ∞

τ

U2(t − s)g(s, ϕ(s))ds −
∫ ∞

t

U2(t − s)g(s, ϕ(s))ds.

Because U2(t − s) = U2(t)U2(−s), the bounded solution ϕ of (PE′) must satisfy

ϕ(t) = U1(t − τ)ξ +
∫ t

τ

U1(t − s)g(s, ϕ(s))ds −
∫ ∞

t

U2(t − s)g(s, ϕ(s))ds

+ U2(t)
(

U2(−τ)ξ +
∫ ∞

τ

U2(−s)g(s, ϕ(s))ds

)
. (7.6.13)

Conversely, any solution ϕ of (7.6.13) that is bounded and continuous on [τ, ∞) must
solve (PE′).

In order to satisfy (7.6.13) it is sufficient to find bounded and continuous solutions
of the integral equation

ψ(t, τ, ξ) = U1(t − τ)ξ +
∫ t

τ

U1(t − s)g(s, ψ(s, τ, ξ))ds

−
∫ ∞

t

U2(t − s)g(s, ψ(s, τ, ξ))ds (7.6.14)

that also satisfy the condition

U2(−τ)ξ +
∫ ∞

τ

U2(−s)g(s, ψ(s, τ, ξ))ds = 0. (7.6.15)

Successive approximation is used (refer, e.g., to Theorem 7.8.10) to solve (7.6.14)
starting with ψ0(t, τ, ξ) ≡ 0. Choose ε > 0 such that 4εK < σ, pick δ = δ(ε) using
Assumption 7.6.1, and choose ξ with |ξ| < δ/(2K). Define

‖ψ‖ �
= sup

{
|ψ(t)| : t ≥ τ

}
.

If ‖ψj‖ ≤ δ, then ψj+1 must satisfy∣∣ψj+1(t, τ, ξ)
∣∣ ≤ K|ξ| +

∫ t

τ

Ke−σ(t−s)ε‖ψj‖ds +
∫ ∞

t

Keσ(t−s)ε‖ψj‖ds

≤ 1
2
δ + (2εK/σ)‖ψj‖

≤ δ.
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Because ψ0 ≡ 0, then the ψj are well defined and satisfy ‖ψj‖ ≤ δ for all j. Thus

∣∣ψj+1(t, τ, ξ) − ψj(t, τ, ξ)
∣∣ ≤∫ t

τ

Ke−σ(t−s)ε
∥∥ψj − ψj−1

∥∥ds

+
∫ ∞

t

Keσ(t−s)ε
∥∥ψj − ψj−1

∥∥ds

≤ (2εK/σ)
∥∥ψj − ψj−1

∥∥
≤ 1

2

∥∥ψj − ψj−1
∥∥.

By induction, we have ‖ψk+l+1 − ψk+l‖ ≤ 2−l‖ψk+1 − ψk‖ and∥∥ψk+j − ψk

∥∥ ≤
∥∥ψk+j − ψk+j−1

∥∥+ · · · +
∥∥ψk+1 − ψk

∥∥
≤
(
2−j+1 + · · · + 2−1 + 1

) ∥∥ψk+1 − ψk

∥∥
≤ 2
∥∥ψk+1 − ψk

∥∥
≤ 2−k+1

∥∥ψ1
∥∥.

From this estimate, it follows that {ψj} is a Cauchy sequence uniformly in (t, τ, ξ)
over τ ∈ R, t ∈ [τ, ∞), and ξ ∈ B(δ/(2K)). Thus ψj(t, τ, ξ) tends to a limit
ψ(t, τ, ξ) uniformly on (t, τ, ξ) on compact subsets of (τ, ξ) ∈ R × B(δ/(2K)),
t ∈ [τ, ∞). The limit function ψ must be continuous in (t, τ, ξ) and it must satisfy
‖ψ‖ ≤ δ.

The limit function ψ must satisfy (7.6.14). This is argued as follows. Note first that∣∣∣∣∫ ∞

t

U2(t − s)g(s, ψ(s, τ, ξ))ds −
∫ ∞

t

U2(t − s)g(s, ψj(s, τ, ξ))ds

∣∣∣∣
≤
∫ ∞

t

Keσ(t−s)ε
∣∣ψ(s, τ, ξ) − ψj(s, τ, ξ)

∣∣ds → 0, j → ∞.

A similar procedure applies to the other integral term in (7.6.14). Thus we can take
the limit as j → ∞ in the equation

ψj+1(t, τ, ξ) = U1(t − τ)ξ +
∫ t

τ

U1(t − s)g(s, ψj(s, τξ))ds

−
∫ ∞

t

U2(t − s)g(s, ψj(s, τ, ξ))ds

to obtain (7.6.14). Note that the solution of (7.6.14) is unique for given τ and ξ

inasmuch as a second solution ψ̃ would have to satisfy ‖ψ − ψ̃‖ ≤ 0.5‖ψ − ψ̃‖.
The stable manifold S is the set of all points (τ, ξ) such that equation (7.6.15) is

true. It will be clear that S is a local hypersurface of dimension (k+1). If ξ = 0, then
by uniqueness ψ(t, τ, 0) ≡ 0 for t ≥ τ and so g(t, ψ(t, τ, 0)) ≡ 0. Hence, (τ, 0) ∈ S
for all τ ∈ R. To see that S is positively invariant, let (τ, ξ) ∈ S. Then ψ(t, τ, ξ) will
solve (7.6.13), and hence it will solve (PE′). For any τ1 > τ let ξ1 = ψ(τ1, τ, ξ)
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and define ϕ(t, τ1, ξ1)
�
= ψ(t, τ, ξ). Then ϕ(t, τ1, ξ1) solves (PE′) and hence it also

solves (7.6.13) with (τ, ξ) replaced by (τ1, ξ1). Hence∣∣∣∣U2(t)
(

U2(−τ1)ξ1 +
∫ ∞

τ1

U2(−s)g(s, ϕ(s, τ1, ξ1))ds

)∣∣∣∣
=
∣∣∣∣ϕ(t, τ1, ξ1) − U1(t − τ1)ξ1 −

∫ t

τ1

U1(t − s)g(s, ϕ(s, τ1, ξ1))ds

+
∫ ∞

t

U2(t − s)g(s, ϕ(s, τ1, ξ1))ds

∣∣∣∣
≤ δ + Ke−σ(t−τ1)|ξ1| +

∫ t

τ1

Ke−σ(t−s)εδds +
∫ ∞

t

Keσ(t−s)εδds

≤ δ + δ + (2Kεδ/σ)
≤ 3δ

< ∞. (7.6.16)

Because U2(t) = diag[0, eB2t] and −B2 is a stable matrix, this is only possible when
(τ1, ξ1) ∈ S. Hence S is positively invariant.

To see that any solution starting on S tends to the origin as t → ∞, let (τ, ξ) ∈ S
and let ψj be the successive approximation defined above. Then clearly∣∣ψ1(t, τ, ξ)

∣∣ ≤ K|ξ|e−2σ(t−τ) ≤ 2K|ξ|e−σ(t−τ).

If |ψj(t, τ, ξ)| ≤ 2K|ξ|e−σ(t−τ), then

∣∣ψj+1(t, τ, ξ)
∣∣ ≤ K|ξ|e−σ(t−τ) +

∫ t

τ

Ke−2σ(t−s)ε
(
2K|ξ|e−σ(s−τ)

)
ds

+
∫ ∞

t

Keσ(t−s)ε
(
2K|ξ|e−σ(s−τ)

)
ds

≤ K|ξ|e−σ(t−τ)+ 2K|ξ|(εK/σ)e−σ(t−τ)+ 2K|ξ|(εK/2σ)e−σ(t−τ)

≤ 2K|ξ|e−σ(t−τ)

because (4εK/σ) < 1. Hence in the limit as j → ∞ we have

|ψ(t, τ, ξ)| ≤ 2K|ξ|e−σ(t−τ)

for all t ≥ τ and for all ξ ∈ B(δ/(2K)).
Suppose that ϕ(t, τ, ξ) solves (PE′) but (τ, ξ) does not belong to S. If ϕ(t) stays

in the ball B(δ) (i.e., |ϕ(t, τ, ξ)| ≤ δ, for all t ≥ τ ), then (7.6.16) is true. Hence
(τ, ξ) ∈ S, which is a contradiction.

Equation (7.6.15) can be rearranged as

(
ξk+1, . . . , ξn

)T = P

(
−
∫ ∞

t

U(τ − s)g(s, ψ(s, τ, ξ))ds

)
, (7.6.17)
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where P denotes the projection on the last n − k components. Utilizing estimates of
the type used above, we see that the function on the right side of (7.6.17) is Lipschitz
continuous in ξ with Lipschitz constant L ≤ 1. Hence, successive approximations
can be used to solve (7.6.17), say(

ξk+1, . . . , ξn

)T = h(τ, ξ1, . . . , ξk) (7.6.18)

with h continuous. If F is of class C1 in (t, x), then the partial derivatives of
the right-hand side of (7.6.17) with respect to ξ1, . . . , ξn all exist and are zero at
ξ1 = · · · = ξn = 0. The Jacobian with respect to (ξk+1, . . . , ξn) on the left side of
(7.6.17) is one. By the implicit function theorem (see Theorem 7.6.1), the solution
of (7.6.18) is C1 smooth; indeed h is at least as smooth as F is. Inasmuch as

∂h

∂ξj
= 0 for k < j ≤ n at ξ1 = · · · = ξn = 0,

then S is tangent to the hyperplane ξk+1 = · · · = ξn = 0 at ξ = 0; that is, S is
tangent to the stable manifold of the linear system (L) at ξ = 0. �

If in (PE) we reverse time, we obtain the system

ẏ = −Ay − F (−t, y). (7.6.19)

Applying Theorem 7.6.5 to system (7.6.19), we obtain the following result.

Theorem 7.6.6 If the hypotheses of Theorem 7.6.5 are satisfied, then there is an
(n−k +1)-dimensional local hypersurface U based at the origin, called the unstable
manifold of (PE), such that U is negatively invariant with respect to (PE), and for
any solution ϕ of (PE) and any τ ∈ R such that (τ, ϕ(τ)) ∈ U , we have ϕ(t) → 0
as t → −∞. Moreover, there is a δ > 0 such that if (τ, ϕ(τ)) ∈ R × B(δ) but
(τ, ϕ(τ)) �∈ U , then ϕ(t) must leave the ball B(δ) at some finite time t1 < τ .

The surface U has the same degree of smoothness as F and is tangent at the origin
to the unstable manifold U∗ of the linear system (L). �

If F in (PE) is independent of time t, that is, if F (t, x) ≡ F (x), then it is not
necessary to keep track of initial time in Theorems 7.6.5 and 7.6.6. Thus, in this case
one dispenses with time and one defines S and U in the x-space, R

n. This was done
in our discussion concerning Figures 7.6.1 and 7.6.2.

Example 7.6.5 Consider equations of the form{
ẋ1 = ax1 − bx1x2
ẋ2 = cx2 − dx1x2

(7.6.20)

where a, b, c, d > 0 are constants, where x1 ≥ 0 and x2 ≥ 0, and where nonnegative
initial data x1(0) = x10 and x2(0) = x20 must be specified.

Equation (7.6.20), which is an example of a Volterra competition equation, can be
used to describe the growth of two competing species (e.g., of small fish) that prey on
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each other (e.g., the adult members of specie A prey on the young members of specie
B, and vice versa).

System (7.6.20) has two equilibrium points, xe1 = (0, 0) and xe2 = (c/d, a/b).
The eigenvalues of the linear part of system (7.6.20) at the equilibrium xe1 are λ1 = a
and λ2 = c. Both are positive, therefore this equilibrium is completely unstable. The
eigenvalues of the linear part of system (7.6.20) at the equilibrium xe2 are λ1 =√

ac > 0 and λ2 = −
√

ac < 0. The right-hand side of equation (7.6.20) is time-
invariant, so we may ignore time, and the stable manifold S and the unstable manifold
U each have dimension one. These manifolds are tangent at xe2 to the lines

√
acx1 + (bc/d)x2 = 0 and −

√
acx1 + (bc/d)x2 = 0.

If x2 = a/b and 0 < x1 < c/d, then ẋ1 = 0 and ẋ2 > 0; if x2 > a/b and
0 < x1 < c/d, then ẋ1 < 0 and ẋ2 > 0; and if x1(0) = 0, then x1(t) = 0
for all t ≥ 0. Therefore, the set G1 = {(x1, x2) : 0 < x1 < c/d, x2 > a/b} is
positively invariant and all solutions (x1(t), x2(t)) that enter this set must satisfy the
condition that x2(t) → ∞ as t → ∞. In a similar manner we can conclude that the
set G2 = {(x1, x2) : x1 > c/d, 0 < x2 < a/b} is also positively invariant and all
solutions that enter G2 must satisfy the condition that x1(t) → ∞ as t → ∞.

x
x

x

1

e1

e2a/b

c/d

x2

S

S

U

U

Figure 7.6.3: Trajectory portrait for system (7.6.20).

Because the unstable manifold U of the equilibrium xe2 is tangent to the line

√
acx1 + (bc/d)x2 = 0,

then, as shown in Figure 7.6.3, one branch of U enters G1 and one enters G2. The
stable manifold S of xe2 cannot meet either G1 or G2. Hence, the trajectory portrait
for system (7.6.20) is completely determined, as shown in Figure 7.6.3. From this
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portrait we can conclude that for almost all initial conditions one of the competing
species will eventually die out and the second will grow. However, the outcome is
unpredictable in the sense that near the manifold S, a slight change in initial conditions
can radically alter the outcome. �

E. Stability of periodic solutions

We first consider T -periodic systems described by

ẋ = f(t, x) (P )

where f ∈ C1[R × Ω, Rn], Ω ⊂ R
n is a domain and f(t, x) = f(t + T, x) for all

(t, x) ∈ R × Ω. Now let ϕ be a T -periodic solution of (P ) with the property that
ϕ(t) ∈ Ω for all t ∈ R. Defining y = x − ϕ(t), we obtain from (P ) that

ẏ = fx(t, ϕ(t))y + h(t, y) (7.6.21)

where
h(t, y) = f(t, y + ϕ(t)) − f(t, ϕ(t)) − fx(t, ϕ(t))y

satisfies Assumption 7.6.1. Corresponding to the perturbed linear system (7.6.21),
we have the linear system

ẏ = fx(t, ϕ(t))y. (7.6.22)

By the Floquet theory (refer to Subsection 7.8B), there is a periodic nonsingular
matrix V (t) that transforms (7.6.21), using y = V (t)z, into a system of the form

ż = Az +
[
V (t)

]−1(
h(t, V (t)z)

)
.

If A is noncritical, then this system satisfies all the hypotheses of Theorems 7.6.5 and
7.6.6 to yield the following result.

Theorem 7.6.7 Assume that f ∈ C1[R × Ω, Rn] and let ϕ be a periodic solution of
(P ) with period T . Suppose that the linear variational system (7.6.22) for ϕ(t) has k
characteristic exponents with negative real parts and (n−k) characteristic exponents
with positive real parts. Then there exist two hypersurfaces S and U for (P ), each
containing (t, ϕ(t)) for all t ∈ R, where S is positively invariant and U is negatively
invariant with respect to (P ), and where S has dimension (k+1) and U has dimension
(n − k + 1) such that for any solution ψ of (P ) in a δ neighborhood of ϕ and any
τ ∈ R we have

(i) ψ(t) − ϕ(t) → 0 as t → ∞ if (τ, ψ(τ)) ∈ S;
(ii) ψ(t) − ϕ(t) → 0 as t → −∞ if (τ, ψ(τ)) ∈ U ; and

(iii) ψ must leave the δ neighborhood of ϕ in finite time as t increases from τ and
as t decreases from τ if (τ, ψ(τ)) is not in S and not in U .

The sets S and U are the stable and the unstable manifolds associated with ϕ. When
k = n, then S is (n + 1)-dimensional, U consists only of the points (t, ϕ(t)) for
t ∈ R, and ϕ is asymptotically stable. If k < n, then clearly ϕ is unstable. �
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Next, assume that ϕ is a T -periodic solution of an autonomous system described by

ẋ = f(x) (A)

where f ∈ C1[Ω, Rn]. Using the transformation y = x−ϕ(t), we obtain in this case
the variational equation

ẏ = fx(ϕ(t))y + h(t, y) (7.6.23)

where h(t, y)
�
= f(y + ϕ(t)) − f(ϕ(t)) − fx(ϕ(t))y which satisfies Assumption

7.6.1. Corresponding to (7.6.23) we have the linear first approximation given by

ẏ = fx(ϕ(t))y. (7.6.24)

Because ϕ(t) solves (A), ϕ̇(t) is a T -periodic solution of (7.6.24). Therefore equation
(7.6.24) cannot possibly satisfy the hypothesis that no characteristic exponent has zero
real part. Indeed, one Floquet multiplier is one. Thus, the hypotheses of Theorem
7.6.7 can never be satisfied. Even if the remaining (n − 1) characteristic exponents
are all negative, ϕ cannot possibly be asymptotically stable. This can be seen by
noting that for small τ , ϕ(t + τ) is near ϕ(t) at t = 0, but |ϕ(t + τ) − ϕ(t)| does not
tend to zero as t → ∞. However, ϕ will satisfy the following more general notion
of stability.

Definition 7.6.2 A T -periodic solution ϕ of system (A) is called orbitally stable if
there is a δ > 0 such that any solution ψ of (A) with |ψ(τ) − ϕ(τ)| < δ for some τ
tends to the orbit

C(ϕ(τ)) =
{
ϕ(t) : 0 ≤ t ≤ T

}
as t → ∞. If in addition for each such ψ there is a constant α ∈ [0, T ) such that
ψ(t) − ϕ(t + α) → 0 as t → ∞, then ψ is said to have asymptotic phase α. �

We are now in a position to prove the following result.

Theorem 7.6.8 Let ϕ be a periodic solution of (A) with least period T > 0 and let
f ∈ C1[Ω, Rn] where Ω ⊂ R

n is a domain. If the linear system (7.6.24) has (n − 1)
characteristic exponents with negative real parts, then ϕ is orbitally stable and nearby
solutions of (A) possess an asymptotic phase.

Proof . By a change of variables of the form x = Qw + ϕ(0), where Q is assumed
to be nonsingular, so that

ẇ = Q−1f(Qw + ϕ(0)),

Q can be arranged so that w(0)=0 and ẇ(0)=Q−1f(ϕ(0))= (1, 0, . . . , 0)T . Hence,
without loss of generality, we may assume in the original problem (A) that ϕ(0) = 0

and ϕ̇(0) = e1
�
= (1, 0, . . . , 0)T .

Let Φ0 be a real fundamental matrix solution of (7.6.24). There is a real nonsingular
matrix C such that Φ0(t+T ) = Φ0(t)C all t ∈ R (refer to Subsection 7.8B). Because
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ϕ̇(t) is a solution of (7.6.24), one eigenvalue of C is equal to one (refer to (7.8.8)).
By hypothesis, all other eigenvalues of C have magnitude less than one; that is, all
other characteristic exponents of (7.6.24) have negative real parts. Thus, there is a
real n × n matrix R such that

R−1CR =
[
1 0
0 D0

]
,

where D0 is an (n − 1) × (n − 1) matrix and all eigenvalues of D0 have absolute
value less than one.

Now define Φ1(t) = Φ0(t)R so that Φ1 is a fundamental matrix for (7.6.24) and

Φ1(t + T ) = Φ0(t + T )R = Φ0(t)CR = Φ0(t)R(R−1CR) = Φ1(t)
[
1 0
0 D0

]
.

The first column ϕ1(t) of Φ1(t) necessarily must satisfy the relation

ϕ1(t + T ) = ϕ1(t) for all t ∈ R;

that is, it must be T periodic. Because (n − 1) characteristic exponents of (7.6.24)
have negative real parts, there cannot be two linearly independent T periodic solutions
of (7.6.24). Thus, there is a constant k �= 0 such that ϕ1 = kϕ̇. If Φ1(t) is replaced by

Φ(t)
�
= Φ1(t)diag

[
k−1, 1, . . . , 1

]
,

then Φ satisfies the same conditions as Φ1 but now k = 1.
There is a T periodic matrix P (t) and a constant matrix B such that

eTB =
[
1 0
0 D0

]
, Φ(t) = P (t)eBt.

(Both P (t) and B may be complex valued.) The matrix B can be taken in the block
diagonal form

B =
[
0 0
0 B1

]
where eB1T = D0 and B1 is a stable (n − 1) × (n − 1) matrix. Define

U1(t, s) = P (t)
[
1 0
0 0

]
P−1(s)

and

U2(t, s) = P (t)
[
0 0
0 eB1(t−s)

]
P−1(s)

so that
U1(t, s) + U2(t, s) = P (t)eB(t−s)P−1(s) = Φ(t)Φ−1(s).



312 Chapter 7. Finite-Dimensional Dynamical Systems: Specialized Results

Clearly U1 + U2 is real-valued. Because

P (t)
[
1 0
0 0

]
= (ϕ1, 0, . . . , 0),

this matrix is real. Similarly, the first row of[
1 0
0 0

]
P−1(s)

is the first row of Φ−1(s) and the remaining rows are zero. Thus,

U1(t, s) = P (t)
[
1 0
0 0

] [
1 0
0 0

]
P−1(s)

is a real matrix. Hence,

U2(t, s) = Φ(t)Φ−1(s) − U1(t, s)

is also real.
Choose constants K > 1 and σ > 0 such that |U1(t, s)| ≤ K and |U2(t, s)| ≤

Ke−2σ(t−s) for all t ≥ s ≥ 0. As in the proof of Theorem 7.6.5, we utilize an integral
equation. In the present case, it assumes the form

ψ(t) = U2(t, τ)ξ+
∫ t

τ

U2(t, s)h(s, ψ(s))ds−
∫ ∞

t

U1(t, s)h(s, ψ(s))ds, (7.6.25)

where h is the function defined in (7.6.23). This integral equation is again solved
by successive approximations to obtain a unique, continuous solution ψ(t, τ, ξ) for
t ≥ τ, τ ∈ R, and |ξ| ≤ δ and with∣∣ψ(t + τ, τ, ξ)

∣∣ ≤ 2K|ξ|e−σt.

Solutions of (7.6.25) will be solutions of (7.6.23) provided that the condition

U1(t, τ)ξ +
∫ ∞

τ

U1(t, s)h(s, ψ(s, τ, ξ))ds = 0 (7.6.26)

is satisfied. Because

U1(t, s) = P (t)
[
1 0
0 0

]
P−1(s),

one can write equivalently[
1 0
0 0

](
P−1(τ)ξ +

∫ ∞

τ

P−1(s)h(s, ψ(s, τ, ξ))ds

)
= 0.

Because hx and ψξ exist and are continuous with hx(t, 0) = 0, then by the implicit
function theorem (Theorem 7.6.1) one can solve for some ξj in terms of τ and the
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other ξms. Hence, the foregoing equation determines a local hypersurface. For any
τ , let Gτ be the set of all points ξ such that (τ, ξ) is on this hypersurface.

The set of points (τ, ξ) that satisfy (7.6.26) is positively invariant with respect to
(7.6.23). Hence Gτ is mapped to Gτ ′ under the transformation determined by (A)
as t varies from τ to τ ′. As τ varies over 0 ≤ τ ≤ T , the surface G traces out a
neighborhood N of the orbit C(ϕ(0)). Any solution that starts within N will tend
to C(ϕ(0)) as t → ∞. Indeed, for |ϕ̃(τ) − ϕ(τ ′)| sufficiently small, we define
ϕ̃1(t) = ϕ̃(t + τ − τ ′). Then ϕ̃1 solves (A), |ϕ̃1(τ ′) − ϕ(τ ′)| is small, and so, by
continuity with respect to initial conditions, ϕ̃1(t) will remain near ϕ(t) long enough
to intersect Gτ at τ = 0 at some t1. Then as t → ∞,

ϕ̃1(t + t1) − ϕ(t) → 0,

or
ϕ̃(t − τ ′ + τ + t1) − ϕ(t) → 0.

This completes the proof. �

The above result can be extended to obtain stable and unstable manifolds about a
periodic solution, as shown next. The reader may find it helpful to make reference to
Figure 7.6.4.

t

s

u

T

x

1x

2

Figure 7.6.4: Stable and unstable manifolds about a periodic solution.

Theorem 7.6.9 Let f ∈ C1[Ω, Rn] where Ω ⊂ R
n is a domain and let ϕ be a T -

periodic solution of (A). Suppose k characteristic exponents of (7.6.24) have negative
real parts and (n−k−1) characteristic exponents of (7.6.24) have positive real parts.
Then there exist T -periodic C1-smooth manifolds S and U based at ϕ(t) such that
S has dimension (k + 1) and is positively invariant, U has dimension (n − k) and
is negatively invariant, and if ψ is a solution of (A) with ψ(0) sufficiently close to
C(ϕ(0)), then the following statements are true.

(i) ψ(t) tends to C(ϕ(0)) as t → ∞ if (0, ψ(0)) ∈ S.
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x

g(x)

M = 1

Figure 7.6.5: Nonlinear spring–unit mass system (7.6.27).

(ii) ψ(t) tends to C(ϕ(0)) as t → −∞ if (0, ψ(0)) ∈ U .

(iii) ψ(t) must have a neighborhood of C(ϕ(0)) as t increases and as t decreases if
(0, ψ(0)) �∈ S ∪ U.

Proof . The proof of this theorem is very similar to the proof of Theorem 7.6.8. The
matrix R can be chosen so that

R−1CR =

1 0 0
0 D2 0
0 0 D3


where D2 is a k × k matrix with eigenvalues that satisfy |λ| < 1 and D3 is an
(n−k−1)× (n−k−1) matrix whose eigenvalues satisfy |λ| > 1. Define B so that

B =

0 0 0
0 B2 0
0 0 B3

 , eBT = R−1CR.

Define U1 as before and define U2 and U3 using eB2t and eB3t. The rest of the proof
involves similar modifications. �

Except in special cases, such as second-order systems and certain classes of Hamil-
tonian systems, the determination of Floquet multipliers of periodic linear systems
is in general difficult. Nevertheless, results such as Theorems 7.6.8 and 7.6.9 are of
great theoretical importance.

Example 7.6.6 An important class of conservative dynamical systems is described
by equations of the form

ẍ + g(x) = 0 (7.6.27)

where g ∈ C1[R, R] and xg(x) > 0 for all x �= 0. Equation (7.6.27) can be used to
represent, for example, a mechanical system consisting of a unit mass and a nonlinear
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spring, as shown in Figure 7.6.5. Here, x denotes displacement and g(x) denotes the
restoring force due to the spring.

Letting x1 = x and x2 = ẋ, we can express (7.6.27) equivalently as{
ẋ1 = x2
ẋ2 = −g(x1).

(7.6.28)

The total energy for this system is given by

v(x) =
1
2
x2

2 +
∫ x1

0
g(η)dη =

1
2
x2

2 + G(x1) (7.6.29)

where G(x1) =
∫ x1

0
g(η)dη. Note that v is positive definite and

v′
(7.6.28)(x) = 0. (7.6.30)

Therefore, (7.6.28) is a conservative dynamical system and (x1, x2)T = (0, 0)T is a
stable equilibrium. Note that because v′

(7.6.28) = 0, it follows that

1
2
x2

2 + G(x1) = c (7.6.31)

where c is determined by the initial conditions (x10, x20). For different values of c
we obtain different trajectories, as shown in Figure 7.6.6. The exact shapes of these
trajectories depend on the function G. Note, however, that the curves determined
by (7.6.31) will always be symmetric with respect to the x1-axis. Furthermore, if
G(x) → ∞ as |x| → ∞ then the entire x1– x2 plane can be covered by closed
trajectories, each of which is an invariant set with respect to (7.6.28).

x 1

x2

Figure 7.6.6: Trajectory portrait for system (7.6.27).

Now notice that no two periodic solutions of system (7.6.28) will approach each
other or recede from each other. From this we see that the Floquet multipliers of a
given periodic solution ϕ of system (7.6.28) must both be one. �
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7.7 Comparison Theory

In this section we establish stability and boundedness results for ordinary differen-
tial equations (E) and ordinary difference equations (D) using comparison results
developed in Section 4.3.

A. Continuous-time systems

Our object of inquiry is systems described by differential equations

ẋ = f(t, x) (E)

where x ∈ R
n, f ∈ C[R+ × Ω, Rn], Ω ⊂ R

n is an open connected set, 0 ∈ Ω, and
f(t, 0) = 0 for all t ∈ R

+. For (E), we use comparison systems given by

ẏ = g(t, y) (C)

where y ∈ R
l, g ∈ C[R+ × B(r1), Rl] for some r1 > 0, B(r1) ⊂ (R+)l, and

g(t, 0) = 0 for all t ∈ R
+.

For a vector-valued function V : B(r) × R
+ → R

l, where B(r) ⊂ Ω, r > 0, we
use the notation

V (x, t) = [v1(x, t), . . . , vl(x, t)]T

and
V ′

(E)(x, t) = [v′
1(E)(x, t), . . . , v′

l(E)(x, t)]T .

In the results that follow, | · | denotes the Euclidean norm in R
l.

Theorem 7.7.1 Assume that there exists a function V ∈ C[B(r) × R
+, (R+)l],

where B(r) ⊂ Ω ⊂ R
n, r > 0, such that |V (x, t)| is positive definite and decrescent,

and that there exists a function g ∈ C[R+ × B(r1), Rl], where B(r1) ⊂ (R+)l,
r1 > 0, which is quasi-monotone nondecreasing (refer to Definition 3.8.1) and has
the property that g(t, 0) = 0 for all t ∈ R

+, and that

V ′
(E)(x, t) ≤ g(t, V (x, t))

holds componentwise for all (x, t) ∈ B(r) × R
+. Then the following statements are

true.

(a) The stability, asymptotic stability, uniform stability, and uniform asymptotic
stability of the equilibrium ye = 0 of (C) imply the same corresponding types
of stability of the equilibrium xe = 0 of (E).

(b) If in addition to the above assumptions,

|V (x, t)| ≥ a|x|b for (x, t) ∈ B(r) × R
+,

where a > 0 and b > 0 are constants, then the exponential stability of the
equilibrium ye = 0 of (C) implies the exponential stability of the equilibrium
xe = 0 of (E).
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Proof . This theorem is a direct consequence of Theorem 4.3.2(b) and (c). �

Theorem 7.7.2 With Ω = R
n, assume that there exists a vector Lyapunov function

V ∈ C[Rn × R
+, (R+)l] such that |V (x, t)| is positive definite, decrescent, and

radially unbounded, and that there exists a quasi-monotone nondecreasing function
g ∈ C[R+ × (R+)l, Rl] such that g(t, 0) = 0 for all t ∈ R

+ and such that the
inequality

V ′
(E)(x, t) ≤ g(t, V (x, t))

holds componentwise for all (x, t) ∈ R
n ×R

+. Then the uniform asymptotic stability
in the large of the equilibrium ye = 0 of (C) implies the uniform asymptotic stability
in the large of the equilibrium xe = 0 of (E). Also, the uniform boundedness and
the uniform ultimate boundedness of the set of solutions of (C), imply the same
corresponding types of boundedness of the set of solutions of (E).

Proof . The proof is a direct consequence of Theorem 4.3.2(d) and (f). �

In the special case when l = 1, g is a scalar function that automatically satisfies
the quasi-monotone nondecreasing property. Accordingly, Theorems 7.7.1 and 7.7.2
are applicable to any scalar comparison system (with l = 1).

Next, we consider comparison systems given by

ẏ = Py + m(y, t) (LC)

where P = [pij ] ∈ R
l×l and m : B(r1) × R

+ → R
l is assumed to satisfy the

condition

lim
|y|→0

|m(y, t)|
|y| = 0, uniformly for t ∈ R

+.

Applying Lyapunov’s First Method (i.e., Theorem 7.6.2) to (LC), we obtain the fol-
lowing comparison results.

Corollary 7.7.1 Assume that there exists a function V ∈ C[B(r) × R
+, (R+)l],

where B(r) ⊂ Ω ⊂ R
n, r > 0, such that |V (x, t)| is positive definite and decrescent,

and that there exist a real l× l matrix P = [pij ] and a quasi-monotone nondecreasing
function m ∈ C[B(r1) × R

+, Rl], where B(r1) ⊂ (R+)l, r1 > 0, such that the
inequality

V ′
(E)(x, t) ≤ PV (x, t) + m(V (x, t), t) (7.7.1)

holds componentwise for (x, t) ∈ B(r) × R
+, and that

lim
|y|→0

|m(y, t)|
|y| = 0, uniformly for t ∈ R

+

where pij ≥ 0 for 1 ≤ i �= j ≤ l. Then the following statements are true:

(a) If all eigenvalues of P have negative real parts, then the equilibrium xe = 0 of
(E) is uniformly asymptotically stable.



318 Chapter 7. Finite-Dimensional Dynamical Systems: Specialized Results

(b) If in addition to (a), |V (x, t)| ≥ a|x|b for (x, t) ∈ B(r) × R
+, where a > 0

and b > 0 are constants, then the equilibrium xe = 0 of (E) is exponentially
stable.

Proof . The proofs of the above results are a direct consequence of Theorems 7.6.2
and 7.7.1. �

In connection with Corollary 7.7.1, we find the concept of the M -matrix very
useful. Before proceeding any further, it might be useful to recall the definition of
the M -matrix, along with some of the properties of such matrices (see, e.g., [3]).

Definition 7.7.1 A matrix B = [bij ] ∈ R
l×l is called an M -matrix if bij ≤ 0 for all

1 ≤ i �= j ≤ l and the real parts of all eigenvalues of B are positive. �

In the following we enumerate several useful equivalent characterizations of
M -matrices.

(i) B is an M -matrix.

(ii) The principal minors of B are all positive.

(iii) The successive principal minors of B are all positive.

(iv) There is a vector u ∈ (R+)l such that Bu ∈ (R+)l (recall that R+ = (0,∞)).
(v) There is a vector v ∈ (R+)l such that BT v ∈ (R+)l.

(vi) B is nonsingular and all elements of B−1 are nonnegative (in fact, all diagonal
elements of B−1 are positive).

Clearly, the condition in part (a) of Corollary 7.7.1 is equivalent to saying that −P
is an M -matrix, and thus, the equivalent conditions for M -matrix enumerated above,
apply to Corollary 7.7.1(a) as well.

Example 7.7.1 Consider the system

ẋ = B(x, t)x (7.7.2)

where x ∈ R
n, t ∈ R

+, and B(x, t) = [bij(x, t)] ∈ C[B(r) × R
+, Rn×n], where

B(r) ⊂ R
n, r > 0. Assume that

bii(x, t) ≤ aii, i = 1, . . . , n

and
|bij(x, t)| ≤ aij , 1 ≤ i �= j ≤ n,

for all (x, t) ∈ B(r) × R
+. Assume that −A = −[aij ] ∈ R

n×n is an M -matrix.
Clearly, xe = 0 is an equilibrium of (7.7.2).

Choose the vector Lyapunov function V (x) = (|x1|, . . . , |xn|)T where x =
(x1, . . . , xn)T . The upper-right Dini derivative of |xi| with respect to time is given by

D+|xi| =


ẋi if xi > 0
|ẋi| if xi = 0
−ẋi if xi < 0.
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In all three cases (xi > 0, xi < 0, xi = 0) we have along the solutions of (7.7.2),

D+|xi| ≤ bii(x, t)|xi| +
∑
i �=j

|bij(x, t)||xj |

≤ aii|xi| +
∑
i �=j

aij |xj |

=
n∑

j=1

aij |xj |.

We have
V ′

(7.7.2)(x) ≤ AV (x)

for all x ∈ B(r). Because by assumption −A is an M -matrix, it follows that all
eigenvalues of A have negative real parts. Hence, all conditions of Corollary 7.7.1(b)
are satisfied. Therefore, the equilibrium xe = 0 of (7.7.2) is exponentially stable. �

B. Discrete-time systems

The object of inquiry is systems described by difference equations

x(k + 1) = f(k, x(k)) (D)

where k ∈ N, f : N×Ω → Ω, and Ω is an open connected subset of R
n that contains

the origin. We assume that f(k, 0) = 0 for all k ∈ N. For (D) we use comparison
systems given by

y(k + 1) = h(k, y(k)) (DC)

where y ∈ R
l and h : N × Ω1 → (R+)l, where Ω1 is an open neighborhood of the

origin in (R+)l. We assume that h(k, 0) = 0 for all k ∈ N.
Similarly as in the case of continuous-time systems, we employ vector-valued

Lyapunov functions V : Ω × N → (R+)l.

Theorem 7.7.3 Assume that there exists a function V ∈ C[Ω × N, (R+)l] such that
|V (x, k)| is positive definite and decrescent on Ω×N, and that there exists a function
h : N × Ω1 → (R+)l that is monotone nondecreasing (refer to Definition 4.3.1), that

V (f(k, x), k + 1) ≤ h(k, V (x, k))

holds componentwise for all (x, k) ∈ Ω × N, and that V (x, k) ∈ Ω1 for all (x, k) ∈
Ω × N. Then the following statements are true.

(a) The stability, asymptotic stability, uniform stability, and uniform asymptotic
stability of the equilibrium ye = 0 of system (DC) imply the same corre-
sponding types of stability of the equilibrium xe = 0 of system (D).

(b) If in addition to the above assumptions, |V (x, k)| ≥ a|x|b for (x, k) ∈ Ω × N,
where a > 0 and b > 0 are constants, then the exponential stability of the
equilibrium ye = 0 of (DC) implies the exponential stability of the equilibrium
xe = 0 of (D).
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(c) Let Ω = R
n. If |V (x, k)| is radially unbounded and decresent, then the uni-

form asymptotic stability in the large of ye = 0 of (DC) implies the uniform
asymptotic stability in the large of xe = 0 of (D). Furthermore, the uniform
boundedness and the uniform ultimate boundedness of the set of solutions of
(DC) imply the same corresponding types of boundedness of the set of solutions
of (D).

(d) In the case Ω = R
n, if a1|x|b ≤ |V (x, k)| ≤ a2|x|b for all (x, k) ∈ R

n × N,
where a2 > a1 > 0 and b > 0 are constants, then the exponential stability in
the large of the equilibrium ye = 0 of (DC) implies the exponential stability
in the large of the equilibrium xe = 0 of (D). �

The proofs of the above results can be accomplished by following similar steps to
the corresponding proofs for continuous-time systems given in Theorems 7.7.1 and
7.7.2, and are left to the reader as an exercise.

By applying the First Method of Lyapunov (Theorem 7.6.4) to Theorem 7.7.3, we
can readily establish the following results.

Corollary 7.7.2 Assume for (D) that there exists a function V ∈ C[Ω × N, (R+)l]
such that |V (x, k)| is positive definite and decrescent on Ω × N, and that there exist
a real l × l matrix P = [pij ] ∈ (R+)l×l, and a monotone nondecreasing function
m ∈ C[B(r1)×N, (R+)l], where B(r1) ⊂ (R+)l, r1 > 0, such that V (x, k) ∈B(r1)
for all (x, k) ∈ Ω × N and such that the inequality

V (f(k, x), k) ≤ PV (x, k) + m(V (x, k), k) (7.7.3)

holds componentwise for all (x, k) ∈ Ω × N, and that

lim
|y|→0

|m(y, k)|
|y| = 0, uniformly for k ∈ N.

Under the above assumptions, the following statements are true.

(a) If all eigenvalues of P are within the unit circle of the complex plane, then the
equilibrium xe = 0 of (D) is uniformly asymptotically stable.

(b) If in addition to (a), |V (x, k)| ≥ a|x|b for all (x, k) ∈ Ω × N, where a > 0
and b > 0 are constants, then the equilibrium xe = 0 of (D) is exponentially
stable. �

7.8 Appendix: Background Material on Differential
Equations and Difference Equations

In this section we address some background material concerning linear homogeneous
systems of ordinary differential equations and ordinary difference equations, linear
nonhomogeneous systems of ordinary differential equations, and successive approx-
imations of the solutions of ordinary differential equations. Because this material is
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standard fare in ordinary differential equations and linear systems, we do not include
proofs for the presented results. However, we point to sources where these proofs
can be found.

A. Linear homogeneous systems of differential equations

We consider linear homogeneous systems

ẋ = A(t)x (LH)

where t ∈ J = (a, b), x ∈ R
n, and A ∈ C[J, Rn×n] (J = (−∞,∞) is allowed).

We let
Ω =

{
(t, x) : t ∈ J and x ∈ R

n
}

and we recall (see Chapter 2) that for every (t0, x0) ∈ Ω, (LH) possesses a unique

solution ϕ(t, t0, x0)
�
= ϕ(t) that exists over the entire interval J .

Theorem 7.8.1 The set of all solutions of (LH) on the interval J forms an n-
dimensional vector space. �

For a proof of Theorem 7.8.1, refer, for example, to [17, p. 89]. This result enables
us to introduce the concept of fundamental matrix.

Definition 7.8.1 A set of n linearly independent solutions of system (LH) on J ,
{ϕ1, . . . , ϕn} is called a fundamental set of solutions of (LH) and the n × n matrix
Φ = [ϕ1 · · · ϕn] is called a fundamental matrix of (LH). �

Note that there are infinitely many different fundamental matrices for (LH). In
the following result we let X = [xij ] denote an n × n matrix and we let Ẋ = [ẋij ].
If A(t) is the matrix given in (LH), then we call the system of n2 equations,

Ẋ = A(t)X (7.8.1)

a matrix differential equation for (LH).

Theorem 7.8.2 A fundamental matrix Φ of (LH) satisfies the matrix equation (7.8.1)
on the interval J . �

The proof of Theorem 7.8.2 follows trivially from definitions. The next result,
called Abel’s formula, is used in the proofs of several of the subsequent results of this
section.

Theorem 7.8.3 If Φ is a solution of the matrix equation (7.8.1) on an interval J and
if τ is any point of J , then

det Φ(t) = det Φ(τ)exp

[∫ t

τ

trA(s)ds

]
for every t. �
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For a proof of Theorem 7.8.3, refer to [17, pp. 91, 92]. It follows from Theorem
7.8.3, because τ ∈ J is arbitrary, that either det Φ(t) �= 0 for each t ∈ J or that
det Φ(t) = 0 for every t ∈ J .

Theorem 7.8.4 A solution Φ of the matrix equation (7.8.1) is a fundamental matrix
of (LH) if and only if its determinant is nonzero for all t ∈ J. �

For a proof of Theorem 7.8.4, refer to [17, p. 93]. The next result is also required
in the development of some of the subsequent results.

Theorem 7.8.5 If Φ is a fundamental matrix of (LH) and if C is any nonsingular
constant n × n matrix, then ΦC is also a fundamental matrix of (LH). Moreover,
if Ψ is any other fundamental matrix of (LH), then there exists a constant n × n
nonsingular matrix P such that Ψ = ΦP . �

For a proof of Theorem 7.8.5, refer, for example, to [17, pp. 94, 95].
In what follows, we make use of the natural basis for R

n, {e1, . . . , en} where
e1 = (1, 0, . . . , 0)T , e2 = (0, 1, 0, . . . , 0)T , . . . , en = (0, . . . , 0, 1)T .

Definition 7.8.2 A fundamental matrix Φ of (LH) whose columns are determined
by the linearly independent solutions ϕ1, . . . , ϕn with

ϕ1(τ) = e1, . . . , ϕn(τ) = en, τ ∈ J,

is called the state transition matrix Φ for (LH). Equivalently, if Ψ is any fundamental
matrix of (LH), then the matrix Φ determined by

Φ(t, τ)
�
= Ψ(t)Ψ(τ)−1 for all t, τ ∈ J

is said to be the state transition matrix of (LH). �

Note that the state transition matrix of (LH) is uniquely determined by the matrix
A(t) and is independent of the particular choice of the fundamental matrix. For exam-
ple, let Ψ1 and Ψ2 be two different fundamental matrices for (LH). By Theorem 7.8.5,
there exists a constant n × n nonsingular matrix P such that Ψ2 = Ψ1P . By the
definition of the state transition matrix, we have

Φ(t, τ) = Ψ2(t)[Ψ2(τ)]−1 = Ψ1(t)PP−1[Ψ1(τ)]−1 = Ψ1(t)[Ψ1(τ)]−1.

This shows that Φ(t, τ) is independent of the fundamental matrix chosen.
In the next result, we summarize the principal properties of the state transition

matrix for (LH).

Theorem 7.8.6 Let τ ∈ J , let ϕ(τ) = ξ, and let Φ(t, τ) denote the state transition
matrix for (LH) for all t ∈ J . Then

(i) Φ(t, τ) is the unique solution of the matrix equation

∂

∂t
Φ(t, τ)

�
= Φ̇(t, τ) = A(t)Φ(t, τ)

with Φ(τ, τ) = I , the n × n identity matrix;
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(ii) Φ(t, τ) is nonsingular for all t ∈ J ;

(iii) for any t, σ, τ ∈ J , we have Φ(t, τ) = Φ(t, σ)Φ(σ, τ);

(iv) [Φ(t, τ)]−1 �
= Φ−1(t, τ) = Φ(τ, t) for all t, τ ∈ J ; and

(v) the unique solution ϕ(t, τ, ξ) of (LH), with ϕ(τ, τ, ξ) = ξ specified, is given by

ϕ(t, τ, ξ) = Φ(t, τ)ξ for all t ∈ J. (7.8.2)

�

For a proof of Theorem 7.8.6, refer, for example, to [17, pp. 96 and 97].

B. Linear systems with periodic coefficients

In this subsection we consider linear homogeneous systems

ẋ = A(t)x, −∞ < t < ∞, (LP )

where A ∈ C[R, Rn×n] and where

A(t) = A(t + T ) (7.8.3)

for some T > 0. System (LP ) is called a linear periodic system and T is called a
period of A(t).

Theorem 7.8.7 Let B be a nonsingular n × n matrix. Then there exists an n × n
matrix C, called the logarithm of B, such that

eC = B. (7.8.4)

�

For a proof of Theorem 7.8.7, refer to [17, pp. 112 and 113]. The matrix C in the
above result is not unique, because, for example, eC+2πkiI = eCe2πki = eC for all
integers k.

Theorem 7.8.8 Let (7.8.3) be true and let A ∈ C[R, Rn×n]. If Φ(t) is a fundamental
matrix for (LP ), then so is Φ(t + T ), t ∈ R. Moreover, corresponding to every Φ,
there exist a nonsingular matrix P that is also periodic with period T and a constant
matrix R such that

Φ(t) = P (t)etR. (7.8.5)

�

For a proof of Theorem 7.8.8, refer to [17, pp. 113 and 114].
Now let us suppose that Φ(t) is known only over the interval [t0, t0 +T ]. Because

Φ(t + T ) = Φ(t)C, we have by setting t = t0, C = Φ(t0)−1Φ(t0 + T ) and
R is given by T−1logC. P (t) = Φ(t)e−tR is now determined over [t0, t0 + T ].
However, P (t) is periodic over (−∞,∞). Therefore, Φ(t) is given over (−∞,∞)
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by Φ(t) = P (t)etR. In other words, Theorem 7.8.8 allows us to conclude that the
determination of a fundamental matrix Φ for (LP ) over any interval of length T ,
leads at once to the determination of Φ over (−∞,∞).

Next, let Φ1 be any other fundamental matrix for (LP ) with A(t+T ) = A(t). Then
Φ = Φ1S for some constant nonsingular matrix S. Because Φ(t + T ) = Φ(t)eTR,
we have Φ1(t + T )S = Φ1(t)SetR, or

Φ1(t + T ) = Φ1(t)
(
SeTRS−1) = Φ1(t)eT (SRS−1). (7.8.6)

Therefore, every fundamental matrix Φ1 determines a matrix SeTRS−1 which is
similar to the matrix eTR.

Conversely, let S be any constant nonsingular matrix. Then there exists a fun-
damental matrix of (LP ) such that (7.8.6) holds. Thus, although Φ does not deter-
mine R uniquely, the set of all fundamental matrices of (LP ), and hence of A(t),
determines uniquely all quantities associated with eTR that are invariant under a
similarity transformation. Specifically, the set of all fundamental matrices of A(t)
determines a unique set of eigenvalues of the matrix eTR, λ1, . . . , λn, which are
called the Floquet multipliers associated with A(t). None of these vanishes because
Πλi = det eTR �= 0. Also, the eigenvalues of R are called the characteristic expo-
nents.

Next, we let Q be a constant nonsingular matrix such that J = Q−1RQ where J
is the Jordan canonical form of R; that is,

J =


J0 0 · · · 0
0 J1 · · · 0
...

...
. . .

...
0 0 · · · Js

 .

Let Φ1 = ΦQ and P1 = PQ. From Theorem 7.8.8 we have

Φ1(t) = P1(t)etJ and P1(t + T ) = P1(t). (7.8.7)

Let the eigenvalues of R be ρ1, . . . , ρn. Then

etJ =


etJ0 0 · · · 0
0 etJ1 · · · 0
...

...
. . .

...
0 0 · · · etJs


where

etJ0 =


etρ1 0 · · · 0
0 etρ2 · · · 0
...

...
. . .

...
0 0 · · · etρq


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and

etJi =etρq+i


1 t t2/2 · · · tri−1/(ri − 1)!
0 1 t · · · tri−2/(ri − 2)!
0 0 1 · · · tri−3/(ri − 3)!
...

...
...

. . .
...

0 0 0 · · · 1

, i = 1, . . . , s, q +
s∑

i=1

ri =n.

Now λi = eTρi . Thus, even though the ρi are not uniquely determined, their real
parts are. In view of (7.8.7), the columns ϕ1, . . . , ϕn of Φ1 are linearly independent
solutions of (LP ). Let p1, . . . , pn denote the periodic column vectors of P1. Then

ϕ1(t) = etρ1p1(t),

ϕ2(t) = etρ2p2(t),
...

ϕq(t) = etρqpq(t),

ϕq+1(t) = etρq+1pq+1(t),

ϕq+2(t) = etρq+1(tpq+1(t) + pq+2(t)), (7.8.8)

...

ϕq+r1(t) = etρq+1

(
tr1−1

(r1 − 1)!
pq+1(t) + · · · + tpq+r1−1(t) + pq+r1(t)

)
,

...

ϕn−rs+1(t) = etρq+spn−rs+1(t),
...

ϕn(t) = etρq+s

(
trs−1

(rs − 1)!
pn−rs+1(t) + · · · + tpn−1(t) + pn(t)

)
.

From (7.8.8) it is now clear that when Reρi
�
= αi < 0, or equivalently, when |λi| < 1,

then there exists a K > 0 such that

|ϕi(t)| ≤ Keαit → 0 as t → ∞.

In other words, if the eigenvalues ρi, i = 1, . . . , n, of R have negative real parts,
then the norm of any solution of (LP ) tends to zero as t → ∞ at an exponential rate.

From (7.8.5) we have P (t) = Φ(t)e−tR and therefore it is easy to see that AP −
Ṗ = PR. Thus, for the transformation

x = P (t)y (7.8.9)

we compute

ẋ = A(t)x = A(t)P (t)y = Ṗ (t)y + P (t)ẏ =
d

dt
(P (t)y)
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or
ẏ = P−1(t)(A(t)P (t) − Ṗ (t))y = P−1(t)(P (t)R)y = Ry.

This shows that the transformation (7.8.9) reduces the linear, homogeneous, periodic
system (LP ) to

ẏ = Ry,

a linear homogeneous system with constant coefficients.

C. Linear nonhomogeneous systems of differential equations

We consider linear nonhomogeneous systems of differential equations given by

ẋ = A(t)x + g(t) (LN)

where g ∈ C[J, Rn] and all other symbols are as defined in (LH).

Theorem 7.8.9 Let τ ∈ J , let (τ, ξ) ∈ J × R
n, and let Φ(t, τ) denote the state

transition matrix for (LH) for all t ∈ J . Then the unique solution ϕ(t, τ, ξ) of (LN )
satisfying ϕ(τ, τ, ξ) = ξ is given by the variation of constants formula

ϕ(t, τ, ξ) = Φ(t, τ)ξ +
∫ t

τ

Φ(t, η)g(η)dη. (7.8.10)

�

For a proof of Theorem 7.8.9, refer, for example, to [17, p. 99].

D. Linear homogeneous systems of difference equations

We consider systems of linear homogeneous difference equations

x(k + 1) = A(k)x(k), x(k0) = x0, k ≥ k0 ≥ 0 (LHD)

where A : N → R
n×n, x(k) ∈ R

n, and k, k0 ∈ N. We denote the solutions of (LHD)
by ϕ(k, k0, x0) with ϕ(k0, k0, x0) = x0.

For system (LHD), several results that are analogous to corresponding results
given in Subsection 7.8A for system (LH), are still true. Thus, the set of the solutions
of system (LHD) over some subset J of N (say, J = {k0, k0 + 1, . . . , k0 + nJ})
forms an n-dimensional vector space. To prove this, we note that the linear combi-
nation of solutions of system (LHD) is also a solution of system (LHD), and hence,
this set of solutions forms a vector space. The dimension of this vector space is n.
To show this, we choose a set of linearly independent vector x1

0, . . . , x
n
0 in the n-

dimensional x-space and we show that the set of solutions ϕ(k, k0, x
i
0), i = 1, . . . , n,

is linearly independent and spans the set of the solutions of (LHD) over the set J .
If in particular, we choose ϕ(k, k0, e

i), i = 1, . . . , n, where ei, i = 1, . . . , n
denotes the natural basis for R

n, and if we let

Φ(k, k0) = [ϕ(k, k0, e
1), . . . , ϕ(k, k0, e

n)],
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then it is easily verified that the n × n matrix Φ(k, k0) satisfies the matrix equation

Φ(k + 1, k0) = A(k)Φ(k, k0), Φ(k0, k0) = I,

where I denotes the n × n identity matrix. Furthermore,

Φ(k, k0) =
k−1∏
j=k0

A(j)

and

ϕ(k, k0, x0) = Φ(k, k0)x0, k > k0.

Other important properties that carry over from system (LH) include, for example,
the semigroup property,

Φ(k, l) = Φ(k,m)Φ(m, l), k ≥ m ≥ l.

However, whereas in the case of system (LH) it is possible to reverse time, this is
in general not valid for system (LHD). For example, in the case of system (LH),
if ϕ(t) = Φ(t, τ)ϕ(τ), then we can compute ϕ(τ) = Φ−1(t, τ)ϕ(t) = Φ(τ, t)ϕ(t).
For (LHD), this does not apply, unless A−1(k) exists for all k ∈ N.

E. Successive approximations of solutions of initial value problems

We consider initial value problems given by

ẋ = f(t, x), x(τ) = ξ (I)

where f ∈ C[D, Rn], D = J × Ω (where J = (a, b) ⊂ R is an interval and Ω ⊂ R
n

is a domain), τ ∈ J , and x(τ) ∈ Ω. For (I) we define the successive approximations
ϕ0(t) = ξ

ϕj+1 = ξ +
∫ t

τ

f(s, ϕj(s))ds, j = 0, 1, 2, . . .
(7.8.11)

for |t − τ | ≤ c for some c > 0.

Theorem 7.8.10 If f ∈ C[D, Rn], if f is Lipschitz continuous on a compact set
S ⊂ D with Lipschitz constant L, and if S contains a neighborhood of (τ, ξ), then
the successive approximations ϕj , j = 0, 1, 2, . . . given in (7.8.11) exist on |t−τ | ≤ c
for some c > 0, are continuous there, and converge uniformly to the unique solution
ϕ(t, τ, ξ) of (I) as j → ∞. �

For a proof of Theorem 7.8.10, refer, for example, to [17, pp. 56–58].
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7.9 Notes and References

There are many excellent texts on the stability of finite dimensional dynamical systems
determined by ordinary differential equations that treat the topics addressed in this
chapter, including Hahn [5], Hale [6], Krasovskii [8], LaSalle and Lefschetz [12],
Yoshizawa [20], and Zubov [21]. Texts on these topics that emphasize engineering
applications include Khalil [7] and Vidyasagar [19]. Our presentation in this chapter
was greatly influenced by Antsaklis and Michel [1], Hahn [5], Michel et al. [16], and
Miller and Michel [17].

There are fewer sources dealing with the stability analysis of discrete-time systems
described by difference equations. In our presentation in this chapter, we found the
texts by LaSalle [11], Antsaklis and Michel [1], Hahn [5], and Michel et al. [16]
especially useful.

The results in Subsection 7.2A, along with other results that comprise the in-
variance theory for systems described by ordinary differential equations are due to
Barbashin and Krasovskii [2] and LaSalle [10]. Extensions of these results to other
types of dynamical system (e.g., systems described by difference equations, as in
Subsection 7.2B) have been reported, for example, in Michel et al. [16].

The necessary and sufficient conditions for the various Lyapunov stability types
presented in Subsection 7.4C involving the Lyapunov matrix equation were originally
established by Lyapunov [13] for ordinary differential equations. Our presentation in
Subsection 7.5C of the analogous results for systems described by difference equations
are in the spirit of similar results given in LaSalle [11].

The results in Subsections 7.6B and 7.6C comprise the First Method of Lyapunov
(also called the Indirect Method of Lyapunov). For the case of ordinary differential
equations (Subsection 7.6B) these results were originally established by Lyapunov [13].
The results that we present in Subsection 7.6C for systems described by difference
equations are along similar lines as the results given in Antsaklis and Michel [1].

The stability results for autonomous systems (A), periodic systems (P ), linear
homogeneous systems (LH), linear autonomous systems (L), linear periodic sys-
tems (LP ), and linear second-order differential equations with constant coefficients
(Section 7.1, Subsections 7.4A, 7.4B, 7.4D, and 7.4E, resp.) are standard fare in texts
on stability of systems described by ordinary differential equations (e.g., [5]–[8], [12],
[16], [17], [19]–[21]). Sources for the analogous results for linear systems described
by difference equations (LD) and (LHD) (Subsections 7.5A and 7.5B) include, for
example, [1] and [11]. Results to estimate the domain of attraction of an equilibrium
(Subsection 7.3) are also included in most texts on stability theory of differential equa-
tions ([5], [7], [8], [12], [17], [19]–[21]). The results concerning stable and unstable
manifolds and stability properties of periodic solutions in perturbed linear systems
(Subsections 7.6D and 7.6E) are addressed in the usual texts on ordinary differential
equations (e.g., [6], [17]). A good source on the comparison theory for differential
equations (Subsection 7.7A) includes Lakshmikantham [9] and on difference equa-
tions (Subsection 7.7B), Michel et al. [16]. For applications of the comparison theory
to large-scale dynamical systems, refer to Grujic et al. [4], Michel and Miller [15],
and Siljak [18].
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7.10 Problems

Problem 7.10.1 Consider the systems

ẋ = Ax (L)

and
ẏ = P−1APy (7.10.1)

where A, P ∈ R
n×n and where P is assumed to be nonsingular. Show that the

equilibrium xe = 0 of (L) is stable, exponentially stable, unstable, and completely
unstable if and only if the equilibrium ye = 0 of (7.10.1) has the same corresponding
stability properties. �

Problem 7.10.2 There are several variants to the results that make up the Invariance
Theory. Corollary 7.2.1 provides conditions for global asymptotic stability of the
equilibrium xe = 0 of system (A). In the following we ask the reader to prove a local
result for asymptotic stability. �

Corollary 7.10.1 Assume that for system (A) there exists a function v ∈ C[Ω, R]
where Ω ⊂ R

n is an open connected set containing the origin. Assume that v is
positive definite. Assume that v′

(A)(x) ≤ 0 on Ω. Suppose that the origin is the only
invariant subset with respect to (A) of the set Z = {x ∈ Ω: v′

(A)(x) = 0}. Then the
equilibrium xe = 0 of (A) is asymptotically stable. �

Problem 7.10.3 Consider the system{
ẋ1 = x2 − ε(x1 − x3

1/3)
ẋ2 = −x1

(7.10.2)

where ε > 0. This system has an equilibrium at the origin xe = 0 ∈ R
2.

First show that the equilibrium xe = 0 of system (7.10.2) is asymptotically stable,
choosing

v(x1, x2) =
1
2
(x2

1 + x2
2)

and applying Corollary 7.10.1. Next, show that the region {x ∈ R
2 : x2

1 + x2
2 < 3}

is contained in the domain of attraction of the equilibrium xe = 0 of (7.10.2). �

Problem 7.10.4 Consider the linear system

ẋ = Ax (L)

where x ∈ R
n and A ∈ R

n×n. Assume that there exists a positive definite matrix G
such that the matrix

B = AT G + GA

is negative semidefinite. Prove that the equilibrium xe = 0 of (L) is exponentially
stable if and only if
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(a) the pair (B,A) is observable; that is, the n × n2 matrix

[B BA · · · BAn−1]

has full rank; or

(b) the pair (C, A − D) is observable, where C = P1B, D = P2B, P1 ∈ R
n×n

is nonsingular and P2 ∈ R
n×n is any matrix.

Hint: Apply Corollary 7.2.1, letting v(x) = xT Gx. Then v′
(L)(x) = xT Bx.

Show that Z = {x ∈ R
n : xT Bx = 0} = {x ∈ R

n : Bx = 0}, using the fact that B
is negative semidefinite. Next, show that {0} ⊂ R

n is the largest invariant set in Z.
For further details, refer to Miller and Michel [16a]. �

Problem 7.10.5 Consider a mechanical system consisting of n rigid bodies with
masses mi, i = 1, . . . , n, that are interconnected by springs and are subjected to
viscous damping, and are described by the equations{

q̇ = M−1p
ṗ = −Hq + KM−1p

(7.10.3)

where q ∈ R
n denotes the position vector, p ∈ R

n is the momentum vector, M =
diag[m1, . . . , mn], K = KT ∈ R

n×n, and H = HT ∈ R
n×n. We assume that

M and H are positive definite and that K is negative semidefinite. Prove that the
equilibrium (qT , pT ) = (0T , 0T ) of system (7.10.3) is exponentially stable if and
only if (K, M−1H) is observable.

Hint: Apply Problem 7.10.4(b) with

A =
[

0 M−1

−H KM−1

]
, B =

[
0 0
0 M−1KM−1

]
,

and

C = D =
[

0 0
0 KM−1

]
.

For further details, consult Miller and Michel [16a]. �

Problem 7.10.6 In the mechanical system depicted in Figure 7.10.1, xi denotes
displacement for mass mi, i = 1, 2, k1, k2, k denote linear spring constants, and
B1, B2, B denote viscous damping coefficients. We assume that mi > 0, ki > 0,
i = 1, 2, k > 0, B1 ≥ 0, B2 ≥ 0, B ≥ 0, and B1 + B2 + B > 0. This system is
governed by the equations{

m1ẍ1 + k1x1 + k(x1 − x2) + B1ẋ1 + B(ẋ1 − ẋ2) = 0
m2ẍ2 + k2x2 + k(x2 − x1) + B2ẋ2 + B(ẋ2 − ẋ1) = 0.

(7.10.4)

System (7.10.4) is a special case of system (7.10.3) with

D =
[

(−B1 − B) B
B (−B2 − B)

]
, H =

[
(k1 + k) −k

−k (k2 + k)

]
,
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Figure 7.10.1: A mechanical system.

M = diag[m1, m2]. Prove that a necessary and sufficient condition for the exponen-
tial stability of the equilibrium xe = 0 ∈ R

4 of system (7.10.4) is that

| det D| + |B1| + |B2| + |(k1/m1) − (k2/m2)| �= 0.

Hint: Use the result given in Problem 7.10.5, taking into account the following
possibilities:

(i) det D �= 0.

(iia) det D = 0 and B1 = B2 = 0.

(iib) det D = 0 and B1 = B = 0.

(iic) det D = 0 and B2 = B = 0.

For case (i), the pair (D, M−1H) is observable; for case (iia), the pair (D, M−1H)
is observable if and only if (k1/m1) �= (k2/m2); for case (iib), the pair (D, M−1H)
is observable if B1k > 0, which is satisfied by assumption; and for case (iic), the pair
(D, M−1H) is observable if B2k > 0, which is true by assumption.

For further details, refer to Miller and Michel [16a]. �

Problem 7.10.7 Determine the state transition matrix Φ(t, t0) of the system[
ẋ1
ẋ2

]
=
[

−t 0
(2t − t) −2t

] [
x1
x2

]
. (7.10.5)

Use the results of Subsection 7.4A to determine the stability properties of the equi-
librium (x1, x2)T = (0, 0)T of system (7.10.5). �

Problem 7.10.8 Consider the equations

ẋ = (cos t)x (7.10.6)

and
ẋ = (4t sin t − 2t)x. (7.10.7)

Solve equations (7.10.6) and (7.10.7) and determine their stability properties. �

Problem 7.10.9 Prove Proposition 7.4.1. Prove Theorem 7.4.2. �
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Problem 7.10.10 Show that the trivial solution of an nth-order, linear autonomous
differential equation

any(n) + an−1y
(n−1) + · · · + a1y

1 + a0y = 0, an �= 0 (7.10.8)

is stable if and only if all roots of

p(λ) = anλn + · · · + a1λ + a0 (7.10.9)

have nonpositive real parts and all roots with zero real parts are simple roots. (In
(7.10.8), y(n) = d(n)y/dt(n).) �

In the next few results, we use the following notation concerning quadratic forms.
If S = ST ∈ R

n×n and R = RT ∈ R
n×n then we write R > S if xT Rx > xT Sx

for all x ∈ R
n − {0}; R ≥ S if xT Rx ≥ xT Sx for all x ∈ R

n; R > 0 if xT Rx > 0
for all x ∈ R

n − {0}; R ≥ 0 if xT Rx ≥ 0 for all x ∈ R
n; and so forth.

Problem 7.10.11 Let A ∈ C[R+, Rn×n] and x ∈ R
n and consider the system

ẋ = A(t)x. (LH)

Show that the equilibrium xe = 0 of (LH) is uniformly stable if there exists a
Q ∈ C1[R+, Rn×n] such that Q(t) = [Q(t)]T for all t and if there exist constants
c2 ≥ c1 > 0 such that

c1I ≤ Q(t) ≤ c2I, t ∈ R (7.10.10)

and such that
[A(t)]T Q(t) + Q(t)A(t) + Q̇ ≤ 0, t ∈ R (7.10.11)

where I is the n × n identity matrix. �

Problem 7.10.12 Show that the equilibrium xe = 0 of (LH) is exponentially stable
if there exists a Q ∈ C1[R+, Rn×n] such that Q(t) = [Q(t)]T for all t and if there
exist constants c2 ≥ c1 > 0 and c3 > 0 such that (7.10.10) holds and such that

[A(t)]T Q(t) + Q(t)A(t) + Q̇(t) ≤ −c3I, t ∈ R. (7.10.12)

�

Problem 7.10.13 For (LH) let λm(t) and λM (t) denote the smallest and largest
eigenvalues of A(t) + [A(t)]T at t ∈ R, respectively. Let ϕ(t, t0, x0) denote the
unique solution of (LH) for the initial conditions x(t0) = x0 = ϕ(t0, t0, x0).

(a) Show that for any x0 ∈ R
n and any t0 ∈ R, the unique solution of (LH)

satisfies the estimate

|x0|e(1/2)
∫ t

t0
λm(s)ds ≤ |ϕ(t, t0, x0)| ≤ |x0|e(1/2)

∫ t
t0

λM (s)ds
, t ≥ t0.

(7.10.13)
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(b) Use the above result to show that the equilibrium xe = 0 of (LH) is uniformly
stable if there exists a constant c such that∫ t

σ

λM (s)ds ≤ c (7.10.14)

for all t, σ such that t ≥ σ.

(c) Use the result in item (a) to show that the equilibrium xe = 0 of (LH) is
exponentially stable if there exist constants ε > 0, α > 0 such that∫ t

σ

λM (s)ds ≤ −α(t − σ) + ε (7.10.15)

for all t, σ such that t ≥ σ. �

Problem 7.10.14 Show that if the equilibrium xe = 0 of the system

x(k + 1) = eAx(k) (7.10.16)

is asymptotically stable, then the equilibrium xe = 0 of the system

ẋ = Ax (L)

is also asymptotically stable. In systems (7.10.16) and (L), x ∈ R
n, A ∈ R

n×n, and
k ∈ N. �

Problem 7.10.15 Prove Theorem 7.5.1. Prove Theorem 7.5.2. �

Problem 7.10.16 Prove Theorem 7.5.3. Prove Theorem 7.5.4. �

Problem 7.10.17 Prove Theorem 7.5.5. �

Problem 7.10.18 Prove Theorem 7.5.6. �

Problem 7.10.19 Prove Proposition 7.5.1. �

Problem 7.10.20 Prove Theorem 7.6.4. �

Problem 7.10.21 Consider the system

ẋ = f(x) (A)

where f ∈ C1[Ω, Rn] and assume that xe is an equilibrium of (A) (i.e., f(xe) = 0).
Define A ∈ R

n×n by

A =
∂f

∂x
(xe).

Prove the following.

(a) If A is a stable matrix, then the equilibrium xe is exponentially stable.



334 Chapter 7. Finite-Dimensional Dynamical Systems: Specialized Results

(b) If A has an eigenvalue with a positive real part and no eigenvalue with zero
real part, then the equilibrium xe is unstable.

(c) If A is critical, then xe can be either stable or unstable. (Show this by using
specific examples.) �

Problem 7.10.22 Using Problem 7.10.21, analyze the stability properties of each
equilibrium point of the following equations:

(a) ẍ + ε(x2 − 1)ẋ + x = 0, ε �= 0.
(b) ẍ + ẋ sin x = 0.
(c) ẍ + ẋ + x(x2 − 4) = 0.
(d) 3x(3) − 7ẍ + 3ẋ + ex − 1 = 0.
(e) ẍ + cẋ + sin x = x3, c �= 0.
(f) ẍ + 2ẋ + x = x3. �

Problem 7.10.23 Ignoring the time dimension, for each equilibrium point in Prob-
lems 7.10.22(a)–(d), determine the dimensions of the stable manifold and the unstable
manifold. �

Problem 7.10.24 Analyze the stability properties of the trivial solution (origin) of
the following equations

(a)

[
ẋ1
ẋ2

]
=
[

2 1
7 3

] [
x1
x2

]
+
[

(ex1 − 1) sin(x2t)
e−tx1x2

]
.

(b)

[
ẋ1
ẋ2

]
=
[

arctanx1 + x2
sin(x1 − x2)

]
.

(c)

ẋ1
ẋ2
ẋ3

 =

 −3 −1 1
−1 −4 0
1 0 −4

x1
x2
x3

+

 x1x2
x1x3

sin(x1x2x3)

.

(d)


ẋ1 = −a0x2 − a1x3
ẋ2 = b0(ex1 − 1)
ẋ3 = −λx3 + b1(ex1 − 1)

where λ > 0, bi �= 0, and ai/bi > 0, i = 0, 1. �

Problem 7.10.25 In Problem 7.10.24, when possible, determine a set of basis vectors
for the stable manifold for each associated linearized equation. �

Problem 7.10.26 Let F satisfy Assumption 7.6.1, let T = 2π, and consider the
system[

ẋ1
ẋ2

]
=
[

−1 + 3(cos2 t)/2 1 − 3(sin t cos t)/2
−1 − 3(sin t cos t)/2 −1 + 3(sin2 t)/2

] [
x1
x2

]
+ F (t, x1, x2)

= P0(t)x + F (t, x). (7.10.17)
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(a) Show that y(t) = (cos t, − sin t)T et/2 is a solution of

ẏ = P0(t)y. (7.10.18)

(b) Compute the Floquet multipliers of (7.10.18).

(c) Determine the stability properties of the trivial solution of (7.10.17).

(d) Compute the eigenvalues of P0(t). Discuss the possibility of using the eigen-
values of (7.10.18), rather than the Floquet multipliers, to determine the stability
properties of the trivial solution of (7.10.17). �

Problem 7.10.27 The system described by the differential equations{
ẋ1 = x2 + x1(x2

1 + x2
2)

ẋ2 = −x1 + x2(x2
1 + x2

2)
(7.10.19)

has an equilibrium at the origin (x1, x2)T = (0, 0)T . Show that the trivial solution
of the linearization of system (7.10.19) is stable. Prove that the equilibrium xe = 0
of system (7.10.19) is unstable. (This example shows that the assumptions on the
matrix A in Theorems 7.6.2 and 7.6.3 are essential.) �

Problem 7.10.28 Use the results of Section 7.7 (Comparison Theory) to show that
the trivial solution of the system

ẋ1 = −x1 − 2x2
2 + 2kx4

ẋ2 = −x2 + 2x1x2
ẋ3 = −3x3 + x4 + kx1
ẋ4 = −2x4 − x3 − kx2

(7.10.20)

is uniformly asymptotically stable when |k| is small.
Hint: Choose v1(x1, x2) = x2

1 + x2
2 and v2(x3, x4) = x2

3 + x2
4. �

Problem 7.10.29 Prove Theorem 7.7.3. �
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Chapter 8

Applications to
Finite-Dimensional
Dynamical Systems

In the present chapter we apply several of the results developed in Chapters 6 and
7 in the qualitative analysis of several important classes of dynamical systems, in-
cluding specific classes of continuous dynamical systems, discrete-time dynamical
systems, and discontinuous dynamical systems (DDS). The chapter is organized into
five parts. First, we address the stability analysis of nonlinear regulator systems,
using stability results for continuous dynamical systems. Next, we study the stability
properties of two important classes of neural networks, analog Hopfield neural net-
works and synchronous discrete-time Hopfield neural networks, using stability results
for continuous and discrete-time dynamical systems. In the third section we address
the stability analysis of an important class of discontinuous dynamical systems, dig-
ital control systems, using stability results for DDS. In the fourth part we conduct
a stability analysis of an important class of pulse-width-modulated feedback control
systems. Systems of this type are continuous dynamical systems whose motions have
discontinuous derivatives. We demonstrate in this section that the stability results for
DDS are also well suited in the analysis of certain types of continuous dynamical sys-
tems (such as pulse-width-modulated feedback control systems). Finally, in the fifth
section we address the stability analysis of an important class of dynamical systems
with saturation nonlinearities with an application to a class of digital filters, using
stability results for discrete-time dynamical systems.
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8.1 Absolute Stability of Regulator Systems

An important class of systems that arise in control theory is regulator systems de-
scribed by equations of the form

ẋ = Ax + bu
σ = cT x + du
u = −ϕ(σ)

(8.1.1)

where A ∈ R
n×n; b, c, x ∈ R

n; and d, σ, u ∈ R. We assume that ϕ ∈ C[R, R] and
ϕ(0) = 0, and is such that (8.1.1) possesses unique solutions for all t ≥ 0 and for
every x(0) ∈ R

n that depend continuously on x(0).
System (8.1.1) can be represented in block diagram form as shown in Figure 8.1.1.

As can be seen from this figure, system (8.1.1) may be viewed as an interconnection
of a linear component with input u and output σ, and a nonlinear component with
input σ and output ϕ(σ).

Linear component

ϕ(  )

r = 0

d

A

c+
− + +

σ
b

.

T
u x x.

ϕ(σ)

+

+

component
Nonlinear

Figure 8.1.1: Block diagram of system (8.1.1).

In Figure 8.1.1 r denotes “reference input.” Because we are interested in studying
the stability properties of the equilibrium xe = 0 of system (8.1.1), we choose r ≡ 0.

Assuming x(0) = 0 and using the Laplace transform, we can easily obtain the
transfer function of the linear component of system (8.1.1) as

ĝ(s) =
σ̂(s)
û(s)

= cT (sI − A)−1b + d. (8.1.2)

This in turn enables us to represent system (8.1.1) in block diagram form as shown
in Figure 8.1.2.
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r = 0 + u

ϕ(σ)

σ

−
g(s) = c  (sI − A)   b + d^ T

ϕ(  ).

−1

Figure 8.1.2: Block diagram of system (8.1.1).

In addition to the preceding assumptions concerning the nonlinearity ϕ(·), we
assume, for example, that

k1σ
2 ≤ σϕ(σ) ≤ k2σ

2 (8.1.3)

where k1, k2 are real constants. In this case we say that ϕ belongs to the sector
[k1, k2]. Similarly, if we require that k1σ

2 < σϕ(σ) < k2σ
2, we say that ϕ belongs

to the sector (k1, k2). Other sectors, such as (k1, k2] and [k1, k2) are defined similarly.
Also, when σϕ(σ) ≥ 0 for all σ ∈ R, we say that ϕ belongs to the sector [0,∞).

Now let d = 0 and replace ϕ(σ) by kσ, where k1 ≤ k ≤ k2. Then system (8.1.1)
reduces to the linear system

ẋ = (A − kbcT )x. (8.1.4)

In 1949, Aizerman conjectured that if d = 0, if ϕ belongs to the sector [k1, k2],
and if for each k ∈ [k1, k2] the matrix (A − kbcT ) is a Hurwitz matrix, so that
system (8.1.4) is exponentially stable in the large, then the equilibrium xe = 0 of
the nonlinear system (8.1.1) is uniformly asymptotically stable in the large. It turns
out that this conjecture, called Aizerman’s conjecture, is false. Nevertheless, it is still
useful, because it serves as a benchmark in assessing how conservative some of the
subsequent results are in particular applications.

In the present section we address the following problem: find conditions on
A, b, c, d that ensure the equilibrium xe = 0 of system (8.1.1) is uniformly asymp-
totically stable in the large for any nonlinearity ϕ belonging to some specified sector.
A system (8.1.1) satisfying this property is said to be absolutely stable.

In the present section we address the absolute stability problem of regulator systems
using two different methods: Luré’s criterion and the Popov criterion.

A. Luré’s result
In the following result, we assume that d = 0, that A is a Hurwitz matrix, and that ϕ
belongs to the sector [0,∞). We use a Lyapunov function of the form

v(x) = xT Px + β

∫ σ

0
ϕ(ξ)dξ, (8.1.5)

where P = PT ∈ R
n×n is positive definite and β ≥ 0. We require that P is a

solution of the Lyapunov matrix equation

AT P + PA = −C (8.1.6)

where C = CT is a positive definite matrix of our choice.
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Theorem 8.1.1 (Luré) For system (8.1.1) assume that d = 0, that all eigenvalues of
A have negative real parts (i.e., A is Hurwitz), and that there exist positive definite
matrices P and C that satisfy (8.1.6). Also, assume that

βcT b − wT C−1w > 0 (8.1.7)

where

w = Pb − 1
2
βAT c (8.1.8)

and β ≥ 0 is some constant (see (8.1.5)).
Then the equilibrium xe = 0 of system (8.1.1) is asymptotically stable in the large

for any ϕ satisfying σφ(σ) ≥ 0 for all σ ∈ R.

Proof . We choose as a Lyapunov function (8.1.5) which is continuous, positive def-
inite, and radially unbounded (because P is positive definite and because σϕ(σ) ≥ 0
for all σ ∈ R implies that

∫ σ

0 ϕ(s)ds ≥ 0 for all σ ∈ R). Along the solutions of
(8.1.1) we have

v′
(8.1.1)(x) = xT P (Ax − bϕ(σ)) + (xT AT − bT ϕ(σ))Px + βϕ(σ)σ̇

= xT (PA + AT P )x − 2xT Pbϕ(σ) + βϕ(σ)cT (Ax − bϕ(σ))

= −xT Cx − 2xT Pbϕ(σ) + βxT AT cϕ(σ) − β(cT b)ϕ(σ)2

= −xT Cx − 2ϕ(σ)xT w − β(cT b)ϕ(σ)2

= −(x+C−1wϕ(σ))T C(x+C−1wϕ(σ))−(βcT b−wT C−1w)ϕ(σ)2.

Invoking (8.1.7) and the positive definiteness of C, it follows that v′
(8.1.1)(x) is neg-

ative definite for all x ∈ R
n. Indeed, if v′

(8.1.1)(x) = 0, then ϕ(σ) = 0 and

x + C−1wϕ(σ) = x + C−1w · 0 = x = 0.

It now follows from Theorem 6.2.3 that the equilibrium xe = 0 of system (8.1.1) is
asymptotically stable in the large for any ϕ satisfying σϕ(σ) ≥ 0 for all σ ∈ R. �

B. The Popov criterion

System (8.1.1) which we considered in the preceding subsection is referred to in
the literature as a direct control system. We now consider indirect control systems
described by equations of the form

ẋ = Ax − bϕ(σ)
σ = cT x + dξ

ξ̇ = −ϕ(σ)
(8.1.9)

where x, b, c ∈ R
n, σ, ξ, d ∈ R, and A ∈ R

n×n is assumed to be Hurwitz (i.e., all
the eigenvalues of A have negative real parts). We assume that d �= 0, for otherwise,
(8.1.9) reduces to (8.1.1).
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System (8.1.9) can be rewritten as

[
ẋ

ξ̇

]
=
[
A 0
0 0

] [
x
ξ

]
+
[
b
1

]
η,

σ =
[
cT d

] [x
ξ

]
,

η = −ϕ(σ).

(8.1.10)

Equation (8.1.10) is clearly of the same form as equation (8.1.1). However, in the
present case, the matrix of the linear system component is given by

Ã =
[
A 0
0 0

]
and satisfies the assumption that one eigenvalue is equal to zero because all the
eigenvalues of A have negative real parts. We note that Theorem 8.1.1 (for the direct
control problem) is not applicable to the indirect control problem (8.1.9).

In the following, we present the Popov stability criterion for system (8.1.9),
assuming that ϕ belongs to the sector (0, k], so that

0 < σϕ(σ) ≤ kσ2 (8.1.11)

for all σ ∈ R, σ �= 0. In establishing his result, Popov relied heavily on results from
functional analysis. Presently, we make use of the Yacubovich–Kalman Lemma to
establish the absolute stability of system (8.1.9). In this lemma, which we state
next, without proof, we assume that the pair (A, b) is controllable, that is, the matrix
[b Ab · · · An−1b] has full rank.

Lemma 8.1.1 (Yacubovich–Kalman) Assume that A ∈ R
n×n is a Hurwitz matrix

and that b ∈ R
n is such that the pair (A, b) is controllable. Assume that Q = QT is

a positive definite matrix. Let γ ≥ 0 and ε > 0. Then there exists an n × n positive
definite matrix P = PT and a vector q ∈ R

n satisfying the equations

PA + AT P = −qqT − εQ (8.1.12)

and
Pb − w =

√
γq (8.1.13)

if and only if ε is sufficiently small and

γ + 2Re
[
wT (iωI − A)−1b

]
> 0 (8.1.14)

for all ω ∈ R, where i =
√

−1 and I ∈ R
n×n denotes the identity matrix. �

For a proof of the Yacubovich–Kalman Lemma, please refer, for example, to
Lefschetz [40, pp. 114–118].
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We can rewrite system (8.1.9) as
ẋ = Ax + bu

σ = cT x + d
∫

u
u = −ϕ(σ)

(8.1.15)

where
∫

u denotes a primary function of u. Similarly as in system (8.1.1), we may view
(8.1.15) as an interconnection of a linear system component with input u and output σ,
and a nonlinear component (refer to Figures 8.1.1 and 8.1.2). Assuming x(0) = 0 and
making use of the Laplace transform, we obtain in the present case the transfer function

σ̂(s)
û(s)

= ĝ(s) =
d

s
+ cT (sI − A)−1b. (8.1.16)

Theorem 8.1.2 (Popov) For system (8.1.9) assume that d > 0, that A is a Hurwitz
matrix, and that there exists a nonnegative constant δ such that

Re
[
(1 + iωδ)ĝ(iω)

]
+

1
k

> 0 (8.1.17)

for all ω ∈ R, ω �= 0, where i =
√

−1 and ĝ(·) is given in (8.1.16).
Then the equilibrium (x, ξ) = (0, 0) of system (8.1.9) is asymptotically stable in

the large for any ϕ belonging to the sector (0, k].

Proof . In proving this result, we make use of Lemma 8.1.1. Choose α > 0 and
β ≥ 0 such that δ = β(2αd)−1. Also, choose γ = β(cT b + d) + (2αd)/k and
w = αdc + βAT c/2. We must show that γ > 0 and that (8.1.14) is satisfied.

Using (8.1.17) and the identity

s(sI − A)−1 = I + A(sI − A)−1, (8.1.18)

we obtain

0 < Re[(1 + iωδ)ĝ(iω)] + k−1

= k−1 + δd + Re{cT [iω(iωI − A)−1δ + (iωI − A)−1]b}
= k−1 + δd + Re{cT [δI + δA(iωI − A)−1 + (iωI − A)−1]b}
= k−1 + δ(d + cT b) + Re{cT [(δA + I)(iωI − A)−1]b}

for all ω > 0. Let λ = 1/ω. Then

lim
ω→∞Re{cT [(δA + I)(iωI − A)−1]b} = lim

λ→0
Re{cT [(δA + I)(iI − λA)−1]b} = 0.

Therefore there exists an η > 0 such that

η ≤ k−1 + δ(d + cT b) + Re{cT [(δA + I)(iωI − A)−1]b}.

Letting ω → ∞, we have

0 < η ≤ k−1 + δ(d + cT b) = k−1 +
β

2αd(d + cT b)
=

γ

2αd
.

Therefore, γ > 0.
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Next, using the identity (8.1.18) and δ = β/(2αd), a straightforward computation
shows that inequality (8.1.17) implies inequality (8.1.14) with the given choices of γ
and w.

We now invoke Lemma 8.1.1 to choose P, q and ε > 0. Define

v(x, ξ) = xT Px + αd2ξ2 + β

∫ σ

0
ϕ(s)ds

for the given choices of P, α, and β. Along the solutions of (8.1.9) we have

v′
(8.1.9)(x, ξ)

= xT P (Ax − bϕ(σ)) + (xT AT − bT ϕ(σ))Px − 2d2αξϕ(σ) + βϕ(σ)σ̇

= xT (PA + AT P )x − 2xT Pbϕ(σ) − 2αd2ξϕ(σ)

+ βϕ(σ)
[
cT (Ax − bϕ(σ)) − dϕ(σ)

]
= xT (−qqT − εQ)x − 2xT (Pb − w)ϕ(σ) − β(cT b + d)ϕ(σ)2 − 2αdσϕ(σ)

= − εxT Qx − xT qqT x − 2xT √
γqϕ(σ) − γϕ(σ)2 − 2αd

[
σ − ϕ(σ)

k

]
ϕ(σ)

≤ − εxT Qx − xT qqT x − 2xT √
γϕ(σ) − γϕ(σ)2

= − εxT Qx −
[
xT q +

√
γϕ(σ)

]2
≤ 0

where in the preceding computations we have used the relations w = αdc+ 1
2βAT c,

Pb − w =
√

γq, γ = β(cT b + d) + (2αd)/k, and

2αd
[
σ − ϕ(σ)

k

]
ϕ(σ) ≥ 0.

The above inequality is true inasmuch as ϕ belongs to the sector (0, k].
Next, we note that v′

(8.1.9)(x, ξ)=0 implies that x = 0, because Q is positive def-
inite, and that ϕ(σ) = 0. Because ϕ(σ) = 0 if and only if σ = 0 and because
σ = cT x + dξ, where d > 0, it follows that x = 0 and ϕ(σ) = 0 implies that
(x, ξ) = 0. Therefore, v′

(8.1.9)(x, ξ) is negative definite.
Finally, it is clear that v is positive definite and radially unbounded. Therefore,

it follows from Theorem 6.2.3 that the equilibrium (x, ξ) = 0 of system (8.1.9) is
asymptotically stable in the large for any ϕ belonging to the sector (0, k]. �

Theorem 8.1.2 has a very useful geometric interpretation. If we plot in the complex
plane, Re[ĝ(iω)] versus ωIm[ĝ(iω)], with ω as a parameter (such a plot is called a
Popov plot or a modified Nyquist plot), then the condition (8.1.17) requires that there
exists a number δ > 0 such that the Popov plot of ĝ(·) lies to the right of a straight line
with slope 1/δ and passing through the point −1/k + i · 0. In Figure 8.1.3 we depict
a typical situation for which condition (8.1.17) is satisfied, using this interpretation.

Note that it suffices to consider only ω ≥ 0 in generating a Popov plot, because both
Re[ĝ(iω)] and ωIm[ĝ(iω)] are even functions. In Figure 8.1.3, the arrow indicates
the direction of increasing ω.
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−1/k

1/δ

ωω = 0 Reg(i   )

Img(i   )^

^

ωω

Figure 8.1.3: Geometric interpretation of inequality (8.1.17).

We conclude by noting that Popov-type results, such as Theorem 8.1.2, have
also been established for direct control problems (such as system (8.1.1)) and Luré-
type results, such as Theorem 8.1.1, have also been established for indirect control
problems (such as system (8.1.9)). There is a large body of literature concerning
the absolute stability of regulator systems, including, as pointed out in Section 8.6,
several monographs.

8.2 Hopfield Neural Networks

An important class of artificial recurrent neural networks are Hopfield neural networks
described by equations of the form

ẋ = −Bx + TS(x) + I (H)

where x=(x1, . . . , xn)T∈R
n, B =diag[b1, . . . , bn]∈R

n×n with bi >0, 1 ≤ i ≤ n,
T = [Tij ] ∈ R

n×n, S(x) = [s1(x1), . . . , sn(xn)]T : R
n → R

n, si ∈ C1[R, (−1, 1)]
is strictly monotonically increasing with si(0) = 0 and xisi(xi) > 0 for all xi �= 0,
and I = [I1, . . . , In]T , where Ii ∈ C[R+, R]. Such networks, which have been
popularized by Hopfield [20], have been applied in several areas, including image
processing, pattern recognition, and optimization. In the application to associative
memories, the external inputs Ii, i = 1, . . . , n, are frequently constant functions, used
as bias terms. In the present section we assume that the Ii are constant functions.

Hopfield neural networks have been realized in a variety of ways, including by
analog circuits, specialized digital hardware, and simulations on digital computers.
In the case of the latter two, (H) is replaced by difference equations that comprise the
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synchronous discrete-time Hopfield neural network model. In Figure 8.2.1 we depict
symbolically the realization of (H) by an analog circuit, using resistors, capacitors,
operational amplifiers (capable of signal sign inversions, as required), and external
inputs (bias terms). In Figure 8.2.1, dots indicate the presence of connections and
the Tijs denote conductances. It is easily shown that application of Kirchhoff’s
current law to the circuit in Figure 8.2.1 results in the system description (H) where
xi = Ciui, B and T are determined by the resistors Ri and the conductances Tij ,
and the nonlinearities si(xi) are realized by the operational amplifiers.

. . .
inverting
amplifier

Nonlinear

amplifier
Nonlinear

v  = – v

u

1 v  = – v2

T

T

T

T

C R C R

12

1 I

T13

1 2 2

2v2

I

11

22

T23

1

1

21

u

v

v  = – v

3

3 3

1

v1

2

2

Figure 8.2.1: Hopfield neural network circuit.

In Chapter 9, we revisit the qualitative analysis of recurrent neural networks by
establishing global and local stability results for Cohen–Grossberg neural networks
endowed with time delays.

The present section consists of four parts. We first show that under reasonable
assumptions, all states of system (H) eventually approach an equilibrium, using the
Invariance Theory developed in Section 7.2 (Theorem 7.2.2). Next, we establish
sufficient conditions under which an equilibrium of (H) is asymptotically stable,
using the Comparison Theory developed in Section 7.7 (Corollary 7.7.1). In the third
subsection we use the results of Section 7.3 to obtain an estimate for the domain
of attraction of an asymptotically stable equilibrium of (H). In the final subsection
we use the results of Section 6.3 (Theorem 6.3.1(c)) to establish a set of sufficient
conditions for the asymptotic stability of an equilibrium of a class of synchronous
discrete-time Hopfield neural networks.
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A. A global result

In this subsection we present a result that serves as the basis for the application of
Hopfield neural networks in the areas enumerated earlier. We require the following
hypotheses.

(A–1) T is a symmetric matrix. �

(A–2) si ∈ C1[R, (−1, 1)] and
dsi

dη
(η) > 0 for all η ∈ R. �

(A–3) System (H) has a finite number of equilibrium points. �

In [41], sufficient conditions are established which show that hypothesis (A–3) is
satisfied under reasonable assumptions for (H).

Theorem 8.2.1 Assume that hypotheses (A–1), (A–2), and (A–3) are true. Then
for every solution ϕ(t) of (H), there exists an equilibrium xe of (H) such that
limt→∞ ϕ(t) = xe.

Proof . In view of the results given in Chapter 2 (refer to Subsection 2.3B) it is easily
established that for every x(0) ∈ R

n, (H) possesses a unique solution ϕ(t) with
ϕ(0) = x(0), which exists for all t ≥ 0.

To apply Theorem 7.2.2 in the present case, we first need to show that every
solution of (H) is bounded. To this end, let

ci =
n∑

j=1

|Tij | + |Ii|,

i=1, . . . , n. Then in view of (A–2), every solution of (H), ϕ(t)=[ϕ1(t), . . . , ϕn(t)]T,
satisfies the inequalities

ϕ̇i(t) ≤ −biϕi(t) + ci,

i = 1, . . . , n. By the comparison theorem for ordinary differential equations, Theorem
3.8.1 (for the case l = 1), we have that ϕi(t) ≤ yi(t) for all t ≥ 0, where yi(0) =
xi(0) and where yi(t) is a solution of the differential equation

ẏi(t) = −biyi(t) + ci,

i = 1, . . . , n. Solving these equations, we have that

ϕi(t) ≤ ci

bi
−
(ci

bi
− xi(0)

)
e−bit ≤ ci

bi
+
∣∣∣ci

bi
− xi(0)

∣∣∣,
i = 1, . . . , n, for all t ∈ R

+. Therefore, all the solutions of (H) are bounded from
above. In a similar manner, we can show that all the solutions ϕ(t) of (H) are bounded
from below for all t ∈ R

+.
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Next, we choose as a Lyapunov function the “energy function” given by

v(x) = −1
2
S(x)T TS(x) − S(x)T I +

n∑
i=1

bi

∫ si(xi)

0
s−1

i (η)dη.

Then v ∈ C1[Rn, R] and the gradient of v is given by

∇v(x) = ∇xS(x)[−TS(x) − I + Bx]

where

∇xS(x) = diag

[
ds1

dx1
(x1), . . . ,

dsn

dxn
(xn)

]
and hypothesis (A–1) has been used. Then

v′
(H)(x) = −(−Bx + TS(x) + I)T ∇xS(x)(−Bx + TS(x) + I) ≤ 0

for all x ∈ R
n.

The set of all x ∈ R
n such that v′

(H)(x) = 0, given by

Z = {x ∈ R
n : v′

(H)(x) = 0} = {x ∈ R
n : − Bx + TS(x) + I = 0},

is an invariant set of (H) because it is precisely equal to the set of all equilibrium
points of (H). By hypothesis (A–3), Z consists of a finite number of points. All the
hypotheses of Theorem 7.2.2 are now satisfied and we conclude that every solution
ϕ(t) of (H) approaches an equilibrium of (H) as t → ∞. �

B. A local result

In applications (e.g., to associative memories), asymptotically stable equilibria (called
stable memories) are used to store information. It is important in such applications
to establish conditions under which a given equilibrium xe of (H) is asymptotically
stable. We address this issue next.

Using the transformation w = x − xe, system (H) assumes the form

ẇ = −Bw + T S̃(w) (8.2.1)

where S̃(w)=S(w+xe)−S(xe), S̃(0)=0, and we = 0 is an equilibrium of (8.2.1).
We conclude that we may assume without loss of generality that xe = 0 is an equi-
librium of the Hopfield neural network and that the network has the form

ẋ = −Bx + TS(x), (H̃)

or equivalently,

ẋi = −bixi +
n∑

j=1

Tijsj(xj), (H̃i)



348 Chapter 8. Applications to Finite-Dimensional Dynamical Systems

i = 1, . . . , n, where B and T are the same as in (H), S(x) = [s1(x1), . . . , sn(xn)]T

for x = (x1, . . . , xn)T , si ∈ C1[R, (−2, 2)], si is strictly monotonically increasing,
si(0) = 0, and xisi(xi) > 0 for all xi �= 0. In what follows, we make the realistic
assumption that for all i = 1, . . . , n,

0 <
si(xi)

xi
< δi, for 0 < |xi| < εi. (8.2.2)

System (H̃i) (resp., (H̃)) can be rewritten as

ẋ =
{

F (x)x, x �= 0,
0, x = 0 (8.2.3)

where F (x) = [fij(xj)] and
fii(xi) = −bi + Tii

si(xi)
xi

, xi �= 0, i = 1, . . . , n,

fij(xj) = Tij
sj(xj)

xj
, xj �= 0, 1 ≤ i �= j ≤ n.

(8.2.4)

Now let A = [aij ], where{
aii = −bi + Tiiδi, 1 ≤ i ≤ n,

aij = |Tij |δj , 1 ≤ i �= j ≤ n
(8.2.5)

where δi, i = 1, . . . , n, is defined in (8.2.2).

Choosing the vector Lyapunov function V (x) =
[
|x1|, . . . , |xn|

]T
, where x =

(x1, . . . , xn)T , and proceeding identically as in Example 7.7.1, we obtain along the
solutions of (H̃) the vector inequality

V ′
(H̃)

(x) ≤ AV (x) (8.2.6)

for all x ∈ B(ε), where ε = min1≤i≤n{εi} and εi > 0, i = 1, . . . , n, is given in
(8.2.2). Identically as in Example 7.7.1, we now apply Corollary 7.7.1(b) to obtain
the following result.

Proposition 8.2.1 The equilibrium xe = 0 of (H̃) is exponentially stable if −A is
an M -matrix (where A is defined in (8.2.5)). �

Remark 8.2.1 In view of Definition 7.7.1, because the matrix D = −A given in
Proposition 8.2.1 is an M -matrix, the following equivalent statements are true.

(a) The principal minors of −A are all positive.
(b) The successive principal minors of −A are all positive.
(c) There is a vector u ∈(R+)n such that −Au ∈(R+)n (recall that R+ = (0,∞)).
(d) There is a vector v ∈ (R+)n such that −AT v ∈ (R+)n.
(e) −A is nonsingular and all elements of −A−1 are nonnegative (in fact, all

diagonal elements of −A−1 are positive). �
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C. Domain of attraction

In applications (e.g., to associative memories), estimates for the domain of attraction
of an asymptotically stable equilibrium are also of great interest. In the present
subsection we apply the method developed in Section 7.3 to obtain estimates for the
domain of attraction of the equilibrium xe = 0 of system (H̃).

We assume that all the hypotheses of Proposition 8.2.1 are still in place. In par-
ticular, we assume that −A is an M -matrix where A = [aij ] is given in (8.2.5). In
accordance with the property of M -matrices given in Remark 8.2.1(c), there exist
λj > 0, j = 1, . . . , n, such that

n∑
j=1

aij

λj
< 0, i = 1, . . . , n. (8.2.7)

Proposition 8.2.2 Assume that all conditions of Proposition 8.2.1 are true. Let

S =
{

x ∈ R
n : max

1≤i≤n
λi|xi| < min

1≤i≤n
λiεi

}
where λi and εi, i = 1, . . . , n, are defined in (8.2.2) and (8.2.7), respectively. Then
S is a subset of the domain of attraction of the equilibrium xe = 0 of system (H̃).

Proof . We choose as a Lyapunov function for (H̃)

v(x) = max
1≤i≤n

λi|xi|.

Along the solutions of (H̃), we have, in view of (8.2.7),

v′
(H̃)

(x) ≤ max
1≤i≤n

λiD
+|xi|

≤ max
1≤i≤n

{
λiaii|xi| +

∑
i �=j

λiaij |xj |
}

≤ aiiv(x) +
∑
i �=j

λi

λj
aijv(x)

= λi

( n∑
j=1

aij

λj

)
v(x)

≤ 0 (8.2.8)

for all |xi| < εi, i = 1, . . . , n. In the above inequalities we have evaluated the Dini
derivative D+|xi| similarly as was done in Example 7.7.1.

For c = min1≤i≤n λiεi, any x ∈ R
n satisfying v(x) < c must satisfy |xi| < εi

and therefore, (8.2.8) must be satisfied. From the method developed in Section 7.3 it
is now clear that the set

S = {x ∈ R
n : v(x) < c} =

{
x ∈ R

n : max
1≤i≤n

λi|xi| < min
1≤i≤n

λiεi

}
is contained in the domain of attraction of the equilibrium xe = 0 of system (H̃). �
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D. Synchronous discrete-time Hopfield neural networks

In this subsection we establish local stability results for synchronous discrete-time
Hopfield-type neural networks described by scalar-valued equations of the form

ui(k + 1) =
n∑

j=1

Tijvj(uj(k)) + (1 − ∆t · bi)ui(k) + Ii

=
n∑

j=1

Tijvj(uj(k)) − aiui(k) + Ii

vi(ui(k)) = gi(ui(k)),

(Wi)

i = 1, . . . , n, k ∈ N, where ai = 1 − ∆t · bi, ∆t denotes computation step size,
gi ∈ C1[R, R], gi(0) = 0, uigi(ui) > 0 for all ui �= 0,

dgi

dui
(ui) > 0,

and gi(·) satisfies the sector condition

di1 ≤ gi(σ)
σ

≤ di2 (8.2.9)

for all σ ∈ B(ri) − {0} for some ri > 0, i = 1, . . . , n, where di1, di2 > 0,
i = 1, . . . , n, are constants.

Letting u = (u1, . . . , un)T ∈ R
n, v = (v1, . . . , vn)T ∈ R

n, T = [Tij ] ∈ R
n×n,

A = diag[a1, . . . , an], I = (I1, . . . , In)T , and g(·) = [g1(·), . . . , gn(·)]T : R
n → R

n,
system (Wi) assumes the form{

u(k + 1) = Tv(u(k)) + Au(k) + I,

v(u(k)) = g(u(k)),

k ∈ N. Any point ue ∈ R
n that satisfies the condition

ue = Tg(ue) + Aue + I

or
0 = Tg(ue) + Bue + I (8.2.10)

where B = A − I , is an equilibrium for (W ). Letting{
p(k) = u(k) − ue

G(p(k)) = g(u(k)) − g(ue)
(8.2.11)

where ue satisfies (8.2.10) and G(·) = [G1(·), . . . , Gn(·)]T , system (W ) reduces to
the system

p(k + 1) = TG(p(k)) + Ap(k) (W̃ )

which has an equilibrium at pe = 0.
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System (W̃ ) can be rewritten in component form as

pi(k + 1) =
n∑

j=1

TijGj(pj(k)) + aipi(k), (W̃i)

i = 1, . . . , n. From the relationship (8.2.11) it follows that the functions Gi(·) have
the same qualitative properties as the functions gi(·), i = 1, . . . , n. In particular,
Gi(0) = 0 and

ci1 ≤ Gi(σ)
σ

≤ ci2 (8.2.12)

for all σ ∈ B(δi) − {0} for some δi > 0, i = 1, . . . , n, where ci1, ci2 > 0, i =
1, . . . , n, are constants (in general not equal to di1, di2 given in (8.2.9)).

As in [19], [51], and [64], we can view (W̃i) as an interconnection of n subsystems
described by equations of the form

xi(k + 1) = TiiGi(xi(k)) + aixi(k), (Ωi)

i = 1, . . . , n, with the interconnecting structure specified by

hi(x1, . . . , xn)
�
=

n∑
j=1,i �=j

TijGj(xj(k)), (8.2.13)

i = 1, . . . , n. Under this viewpoint, the stability properties of the equilibrium pe = 0
of (W̃ ) are established in terms of the qualitative properties of the subsystems (Ωi),
i = 1, . . . , n, and the constraints imposed on the interconnecting structure of system
(W̃ ).

In the following, we assume that system (W̃ ) satisfies the following hypotheses.

(B–1) For subsystem (Ωi),

0 < σi
�
= (|ai| + |Tii|ci2) < 1

where ci2 is defined in (8.2.12). �

(B–2) Given σi in (B–1), the successive principal minors of the matrix Q = [qij ]
are all positive, where

qij =
{

−(σi − 1), 1 ≤ i = j ≤ n,
−σij , 1 ≤ i �= j ≤ n

where σij = |Tij |cj2 and cj2 is defined in (8.2.12). �

We are now in a position to prove the last result of this section.

Theorem 8.2.2 If Assumptions (B–1) and (B–2) are true, then the equilibrium pe= 0
of system (W̃ ) (resp., (W̃i)) is asymptotically stable.
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Proof . We choose as a Lyapunov function for (W̃ ),

v(p(k)) =
n∑

i=1

λi|pi(k)|,

for some constants λi > 0, i = 1, . . . , n. The first forward difference of v evaluated
along the solutions of (W̃i) is given by

D(W̃i)
v(p(k)) = v(p(k + 1)) − v(p(k))

=
n∑

i=1

[|pi(k + 1)| − |pi(k)|]

=
n∑

i=1

λi

[∣∣∣∣aipi(k) +
n∑

j=1

TijGj(pj(k))
∣∣∣∣− |pi(k)|

]

≤
n∑

i=1

λi

[
|ai| |pi(k)| +

n∑
j=1

|Tij | |Gj(pj(k))| − |pi(k)|
]

≤
n∑

i=1

λi

[
(|ai| − 1)|pi(k)| +

n∑
j=1

|Tij | |Gj(pj(k))|
]

≤
n∑

i=1

λi

[
(|ai| − 1)|pi(k)| +

n∑
j=1

|Tij |cj2|pj(k)|
]

=
n∑

i=1

λi

[
(|ai| − 1) + |Tii|ci2)|pi(k)| +

n∑
j=1,i �=j

|Tij |cj2|pj(k)|
]

=
n∑

i=1

λi(σi − 1)|pi(k)| +
n∑

i=1

λi

n∑
j=1,i �=j

σij |pj(k)|

= −λT Qw

where λ = (λ1, . . . , λn)T and w = (|p1|, . . . , |pn|)T . Because by (B–2), qij ≤ 0
when i �= j, and because the successive principal minors of matrix Q are all positive,
it follows that Q is an M -matrix (refer to Definition 7.7.1(iii)). Moreover, Q−1 exists
and each element of Q−1 is nonnegative (refer to Definition 7.7.1(vi)). Hence, there
exists a vector y = (y1, . . . , yn)T with yi > 0, i = 1, . . . , n, such that

−yT w < 0 where yT = λT Q

and
λ = (Q−1)T y > 0.

We have shown that D(W̃i)
v(p(k)) is negative for all p(k) ∈ B(δ) − {0} where

δ = min1≤i≤n δi with δi defined in (8.2.12). Because v is positive definite, it follows
from Theorem 6.3.1(c) that the equilibrium point pe = 0 of (W̃i) is asymptotically
stable. �
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We conclude by noting that similarly as in Subsection 8.2C, it is possible to de-
termine estimates for the domain of attraction of the equilibrium pe = 0 of (W̃i),
utilizing the method developed in Section 7.3.

8.3 Digital Control Systems

In the present section we apply the stability and boundedness results for DDS to inves-
tigate the qualitative behavior of digital feedback control systems with continuous-
time plants and with digital controllers and interface elements with or without signal
quantization.

A. Introduction and formulation of the problem

Digital feedback control systems, as shown in Figure 8.3.1, are hybrid dynamical
systems that usually consist of an interconnection of a continuous-time plant (which
can be described by a set of ordinary differential equations), a digital controller (which
can be described by a set of ordinary difference equations), and interface elements
(A/D and D/A converters).

Plant 

D/A A/D   Digital 
Controller

O
e(t) y(t)

v(k)p(k)

r(t) ≡ 0+

+

e∼(k)

Figure 8.3.1: Nonlinear digital feedback control system.

The (nonlinear) plant is assumed to be given by equations of the form{
ẋ(t) = f(x(t)) + Fe(t), e(t) ≡ ẽ(k), t ∈ [k, k + 1),
y(t) = Gx(t)

(8.3.1)

k ∈ N, and the digital controller without quantizers is described by equations of
the form {

u(k + 1) = Cu(k) + F̃ v(k),
p(k) = G̃u(k)

(8.3.2)

k ∈ N, where x ∈ R
n; y, v ∈ R

l; u ∈ R
s; e, ẽ, p ∈ R

m; F, G, F̃ , G̃, and C are real
matrices of appropriate dimensions; and f : R

n → R
n is assumed to be continuously

differentiable (i.e., f ∈ C1[Rn, Rn]) with f(0) = 0. The interconnecting elements
that make up the interfaces between the digital controller and the plant are A/D and
D/A converters (with or without quantization). It is usually assumed that the A/D
and D/A converters are synchronized in time. Also, as in Figure 8.3.1, we assume
throughout that the sampling period is fixed at T = 1.
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B. Stability analysis of systems without quantizers

In the present subsection we assume ideal A/D and D/A converters (i.e., there are no
quantizers in the converters) and we assume infinite wordlength digital controllers
(i.e., there is no quantization in the digital controller). Then ẽ(k) = p(k) = G̃u(k),
v(k) = y(k) = Gx(k), and the nonlinear digital feedback control system of Figure
8.3.1 is described by equations of the form{

ẋ(t) = f(x(t)) + Bu(k), t ∈ [k, k + 1)
u(k + 1) = Cu(k) + Dx(k),

(8.3.3)

k ∈N, where B =FG̃ and D = F̃G. We note that because f(0)=0, (xT , uT )T= 0
is an equilibrium of system (8.3.3). We show that the stability (resp., instability)
properties of (8.3.3) can under reasonable conditions be deduced from the associated
linear system given by{

ẋ(t) = Ax(t) + Bu(k), t ∈ [k, k + 1)
u(k + 1) = Cu(k) + Dx(k), (8.3.4)

k ∈ N, where A ∈ R
n×n denotes the Jacobian of f evaluated at x = 0; that is,

A =
[
∂f

∂x
(0)
]

n×n

. (8.3.5)

For the linear digital control system (8.3.4), the following results are well known
(refer, e.g., to [10], [14], [30]).

Lemma 8.3.1 The equilibrium (xT , uT )T = (0T , 0T )T
of the linear digital control

system (8.3.4) is uniformly asymptotically stable in the large if and only if the matrix

H
�
=
[
H1 H2
D C

]
(8.3.6)

is Schur stable, where H1 = eA and H2 =
∫ 1
0 eA(1−τ)dτB.

Lemma 8.3.2 Assume that the matrix H given in (8.3.6) has at least one eigenvalue
outside the unit circle. Then the equilibrium (xT , uT )T = (0T , 0T )T

of the linear
digital control system (8.3.4) is unstable.

We now prove the first stability result for system (8.3.3).

Theorem 8.3.1 The equilibrium (xT, uT )T=(0T, 0T )T
of the nonlinear digital con-

trol system (8.3.3) is uniformly asymptotically stable if the equilibrium (xT , uT )T=
(0T, 0T )T

of the linear digital control system (8.3.4) is uniformly asymptotically
stable, or equivalently, if the matrix H given in (8.3.6) is Schur stable.
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Proof . To show that the trivial solution of system (8.3.3) is uniformly asymptotically
stable, we verify that the conditions of Theorem 6.4.2 are satisfied.

Because f ∈ C1[Rn, Rn] and because f(0) = 0, we can represent f as

f(x) = Ax + g(x), (8.3.7)

where A ∈ R
n×n is given in (8.3.5) and g ∈ C1[Rn, Rn] satisfies the condition

lim
x→0

|g(x)|
|x| = 0. (8.3.8)

The first equation in (8.3.3) now assumes the form

ẋ(t) = Ax(t) + g(x(t)) + Bu(k) (8.3.9)

for t ∈ [k, k + 1). By the continuity of x(t), the solution of equation (8.3.9) is
given by

x(t) = eA(t−k)x(k) +
∫ t

k

eA(t−τ)Bu(k)dτ +
∫ t

k

eA(t−τ)g(x(τ))dτ (8.3.10)

for all t ∈ [k, k + 1]. Specifically, at t = k + 1, we have

x(k + 1) = eAx(k) +
∫ k+1

k

eA(k+1−τ)dτBu(k) +
∫ k+1

k

eA(k+1−τ)g(x(τ))dτ.

(8.3.11)
Combining (8.3.11) and the second equation in (8.3.3), we obtain[

x(k + 1)
u(k + 1)

]
= H

[
x(k)
u(k)

]
+
[
∆(k)

0

]
(8.3.12)

where

∆(k)
�
=
∫ k+1

k

eA(k+1−τ)g(x(τ))dτ. (8.3.13)

By assumption H is Schur stable. Thus there exists a positive definite symmetric
matrix P such that HT PH − P = −I , where I ∈ R

(n+m)×(n+m) denotes the
identity matrix (refer to Theorem 7.5.8). Define a Lyapunov function as

v(w) = wT Pw (8.3.14)

where w ∈ R
n+m. Letting w(t) = (x(t)T , u(k)T )T

when t ∈ [k, k + 1), and

m(k)
�
= (∆(k)T , 0T )T

, equation (8.3.12) can be written more concisely as

w(k + 1) = Hw(k) + m(k). (8.3.15)
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The first forward difference of v evaluated along the solutions of the discrete-time
system (8.3.15) yields

Dv(w(k))
�
= v(w(k + 1)) − v(w(k))

= w(k + 1)T Pw(k + 1) − w(k)T Pw(k)

= [Hw(k) + m(k)]T P [Hw(k) + m(k)] − w(k)T Pw(k)

= w(k)T [HT PH − P ]w(k) + 2m(k)T PHw(k) + m(k)T Pm(k)

= −|w(k)|2 + 2m(k)T PHw(k) + m(k)T Pm(k)

≤ −|w(k)|2 + 2|∆(k)|‖PH‖|w(k)| + |∆(k)|2‖P‖. (8.3.16)

Before proceeding further, we need the following result.

Proposition 8.3.1 For any given µ > 0, there exists a δ = δ(µ) > 0, such that

|∆(k)| ≤
∫ k+1

k

e‖A‖|g(x(τ))|dτ < µ|w(k)| (8.3.17)

whenever |w(k)| < δ, for any k ∈ N.

The proof of this result is presented at the end of this subsection. If we now
choose a µ0 > 0 such that c(µ0) = 1 − 2µ0‖PH‖ − µ2

0‖P‖ > 0, then there exists a
δ(µ0) > 0 such that

Dv(w(k)) < −|w(k)|2 + 2µ0‖PH‖|w(k)|2 + µ2
0‖P‖|w(k)|2

= −c(µ0)|w(k)|2 (8.3.18)

whenever |w(k)| < δ(µ0). It follows from (8.3.14) and (8.3.18) that

λm(P )|w(k + 1)|2 ≤ v(w(k + 1)) < v(w(k)) ≤ λM (P )|w(k)|2 (8.3.19)

where λm(P ) and λM (P ) denote the smallest and largest eigenvalues of P , respec-

tively. Let d
�
=
√

λm(P )/λM (P )δ(µ0). If |w(k0)| < d for some k0, then (8.3.19)
yields |w(k0 +1)| < δ(µ0). Thus, (8.3.18) is applicable for k = k0 +1, which yields
v(w(k0 +2)) < v(w(k0 +1)) < v(w(k0)). Replacing (k +1) in (8.3.19) by (k +2)
yields |w(k0 + 2)| < δ(µ0). By induction, it follows that |w(k)| < δ(µ0) for all
k ≥ k0. Hence, (8.3.18) is satisfied for k ≥ k0 whenever |w(k0)| < d. Therefore,
(6.4.3) of Theorem 6.4.2 is satisfied.

Next, we note that for t ∈ [k, k + 1), it follows from (8.3.10) and (8.3.17) that

|x(t)| ≤ e‖A‖|x(k)| + e‖A‖‖B‖|u(k)| +
∫ k+1

k

e‖A‖ · |g(x(τ))|dτ

≤ e‖A‖√1 + ‖B‖2|w(k)| + µ0|w(k)|

=
(
e‖A‖√1 + ‖B‖2 + µ0

)
|w(k)|. (8.3.20)
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Hence for k ≤ t < k + 1, we obtain that

v(w(t)) ≤ λM (P )
(
|x(t)|2 + |u(k)|2

)
≤ λM (P )

(
e‖A‖√1 + ‖B‖2 + µ0 + 1

)
|w(k)|2

≤ λM (P )
λm(P )

(
e‖A‖√1 + ‖B‖2 + µ0 + 1

)
v(w(k)).

Let c1(µ0) = ((λM (P ))/(λm(P )))
(
e‖A‖√1 + ‖B‖2 + µ0 + 1

)
. Then, (6.4.2) of

Theorem 6.4.1 is satisfied with f(r) = c1(µ0)r. Noting that d is independent of
k0, we conclude from Theorem 6.4.2 that the trivial solution of system (8.3.3) is
uniformly asymptotically stable if H is Schur stable. �

Theorem 8.3.2 Assume that the matrix H given in (8.3.6) has no eigenvalues on the
unit circle and has at least one eigenvalue outside the unit circle in the complex plane.
Then the equilibrium we = (xT , uT )T = (0T , 0T )T

of the nonlinear digital feedback
control system (8.3.3) is unstable.

Proof . The proof is similar to the proof of Theorem 8.3.1. By assumption, there exists
a symmetric matrix P such that HT PH−P = I , where I ∈ R

(n+m)×(n+m) denotes
the identity matrix (refer to Theorem 7.5.8). As before, we consider a Lyapunov
function of the form v(w) = wT Pw. Because in the present case P has at least
one positive eigenvalue, there must exist points in every neighborhood of the origin
where v is positive. Using a similar argument as in the proof of Theorem 8.3.1, we
can show that there exists a d > 0 such that v(w(k + 1)) − v(w(k)) > c|w(k)|2 for
a certain positive constant c whenever |w(k)| < d. Therefore, all the hypotheses of
Theorem 6.4.8 are satisfied. Hence, the equilibrium we = 0 of (8.3.3) is unstable. �

Proof of Proposition 8.3.1. From (8.3.8) it follows that there exists a δ1 > 0 such
that |g(x)| ≤ |x| whenever |x| ≤ δ1. If we let

δ2 =
e−(‖A‖+1)√
1 + ‖B‖2

δ1,

then we can conclude that |x(t)| ≤ δ1 for all t ∈ [k, k + 1], whenever |w(k)| ≤ δ2.
Otherwise, there must exist a t0 ∈ (k, k + 1) such that |x(t0)| = δ1 and |x(t)| ≤ δ1
for all t ∈ [k, t0]. We show that this is impossible. For any t ∈ [k, k+1], we have that

x(t) = x(k) +
∫ t

k

(
Ax(τ) + g(x(τ)) + Bu(k)

)
dτ, (8.3.21)

and therefore, when t ∈ [k, t0], it is true that

|x(t)| ≤
(
|x(k)| + (t − k)‖B‖|u(k)|

)
+
∫ t

k

(
‖A‖|x(τ)| + |g(x(τ))|

)
dτ

≤
√

1 + ‖B‖2|w(k)| +
∫ t

k

(
‖A‖ + 1

)
|x(τ)|dτ (8.3.22)
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where we have used in the last step of (8.3.22) the fact that |g(x(τ))| ≤ |x(τ)|,
because |x(τ)| ≤ δ1 for all τ ∈ [k, t0], by assumption. By the Gronwall inequality
(see, e.g., Problem 2.14.9), relation (8.3.22) implies that

|x(t)| ≤
√

1 + ‖B‖2|w(k)|e(‖A‖+1)(t−k) (8.3.23)

for all t ∈ [k, t0]. Hence,

|x(t0)| ≤
√

1 + ‖B‖2|w(k)|e(‖A‖+1)(t0−k) < δ1 (8.3.24)

because t0 < k +1. Inequality (8.3.24) contradicts the assumption that |x(t0)| = δ1.
We have shown that for any k, |x(t)| ≤ δ1 for all t ∈ [k, k+1] whenever |w(k)| ≤ δ2.

For any given µ > 0, we choose µ1 > 0 such that µ = µ1 ·e(2‖A‖+1)
√

1 + ‖B‖2.
There exists a δ3 > 0 such that |g(x)| < µ1|x|, whenever |x| < δ3. Let

δ
∆= min

{
δ2,

δ3√
1 + ‖B‖2e(‖A‖+1)

}
.

It now follows from (8.3.23) that whenever |w(k)| ≤ δ, then

|x(t)| ≤ δ
√

1 + ‖B‖2e(‖A‖+1) ≤ δ3

for all t ∈ [k, k + 1]. Hence, for ∆(k) given by (8.3.13), we obtain

|∆(k)| ≤
∫ k+1

k

e‖A‖|g(x(τ))|dτ

≤ e‖A‖µ1
√

1 + ‖B‖2|w(k)|e(‖A‖+1)

= µ · |w(k)|

whenever |w(k)| ≤ δ. �

C. Analysis of systems with quantization nonlinearities

In the implementation of digital controllers, quantization is unavoidable. This is due
to the fact that computers store numbers with finite bits. In the present subsection,
we investigate the nonlinear effects caused by quantization.

There are many types of quantization (see, e.g., [13], [55], and [56]). Presently, we
concern ourselves primarily with the most commonly used fixed-point quantization
which can be characterized by the relation

Q(θ) = θ + q(θ) (8.3.25)

where |q(θ)| < ε, for all θ ∈ R and ε depends on the desired precision.
If we add fixed-point quantization to both the sampler (A/D converter) and to the

digital controller of the nonlinear digital feedback control system of Figure 8.3.1,
assuming r ≡ 0, we obtain

v(k) = Q(y(k)) = y(k) + q1(y(k))
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u(k + 1) = Q(Cu(k) + F̃ v(k)) = Cu(k) + F̃Gx(k) + q2(Cu(k) + F̃ v(k))

p(k) = Q(G̃u(k)) = G̃u(k) + q3(G̃u(k)),

k ∈ N, where q1, q2, and q3 should be interpreted as vectors whose components
contain quantization terms. By a slight abuse of notation, we henceforth write q1(k)
in place of q1(y(k)), q2(k) in place of q2(Cu(k) + F̃ v(k)), and so forth. It is easily
verified that there exist positive constants Ji that are independent of ε such that
|qi(k)| ≤ Jiε, i = 1, 2, 3, k ∈ N. (For further details concerning the inclusion of
quantizers into digital controllers, refer to [13], [55], [56], and [69].)

In the presence of the quantizer nonlinearities, we can no longer expect that the
system of Figure 8.3.1 will have a uniformly asymptotically stable equilibrium at the
origin; in fact, there may not even be an equilibrium at the origin. In view of this, we
investigate the (ultimate) boundedness of the solutions of the system of Figure 8.3.1,
including the dependence of the bounds on the quantization size.

In the following, we represent the system of Figure 8.3.1 by the equations{
ẋ(t) = Ax(t) + g(x(t)) + FG̃u(k) + Fq3(k), t ∈ [k, k + 1)
u(k + 1) = Cu(k) + F̃Gx(k) + F̃ q1(k) + q2(k),

(8.3.26)

k ∈ N. Lettingw(t) = (x(k)T , u(k)T )T when t ∈ [k, k+1), we obtain similarly as in
Subsection B, the equivalent representation of (8.3.26), valid at sampling instants, as

w(k + 1) = Hw(k) + m(k) (8.3.27)

where H is defined as in (8.3.6) and where

m(k) =

∫ k+1

k

eA(k+1−τ)g(x(τ))dτ +
∫ 1

0
eAτdτFq3(k)

F̃ q1(k) + q2(k)

 . (8.3.28)

Now assume that H is Schur stable. Then there exists a symmetric positive definite
matrix P such that HT PH −P = −I . As in Subsection B, we choose as a Lyapunov
function v : R

n+m → R
+,

v(w) = wT Pw. (8.3.29)

Lemma 8.3.3 For any d > 0 that satisfies the relation

1 − 2d‖PH‖ − d2‖P‖ > 0, (8.3.30)

there exists a δ = δ(d) > 0 such that the estimate

|m(k)| ≤ d|w(k)| + Jε, k ∈ N (8.3.31)

holds whenever
√

1 + ‖B‖2|w(k)|+
∥∥ ∫ 1

0 eAτdτ
∥∥‖F‖J3ε < δ, where J is a positive

constant independent of ε. (Recall that ε denotes a bound for the quantization size
(see (8.3.25)) and J3 is obtained from the estimate |q3(k)| ≤ J3ε.)
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Proof . The existence of d satisfying (8.3.30) is clear. By a similar argument as in the
proof of Proposition 8.3.1, there exists a δ > 0 such that

∫ k+1
k

e‖A‖|g(x(τ))|dτ <

d|w(k)|, whenever
√

1 + ‖B‖2|w(k)| + ‖
∫ 1
0 eAτdτ‖‖F‖J3ε < δ. Therefore,

|m(k)| ≤
∣∣∣∣∫ k+1

k

eA(k+1−τ)g(x(τ))dτ +
∫ 1

0
eAτdτFq3(k)

∣∣∣∣+ ∣∣∣F̃ q1(k) + q2(k)
∣∣∣

≤ d|w(k)| + e‖A‖‖F‖J3ε + ‖F̃‖J1ε + J2ε

= d|w(k)| + Jε (8.3.32)

where J = e‖A‖‖F‖J3 + ‖F̃‖J1 + J2 whenever√
1 + ‖B‖2|w(k)| +

∥∥∥∥∫ 1

0
eAτdτ

∥∥∥∥ ‖F‖J3ε < δ. �

Now let us consider the Lyapunov function v(w) given in (8.3.14). We compute the
first forward difference of v along the solutions of the discrete-time system (8.3.26)
to obtain

Dv(w(k))
�
= v(w(k + 1)) − v(w(k))

= w(k + 1)T Pw(k + 1) − w(k)T Pw(k)

= [Hw(k) + m(k)]T P [Hw(k) + m(k)] − w(k)T Pw(k)

= w(k)T [HT PH − P ]w(k) + 2m(k)T PHw(k) + m(k)T Pm(k)

= −|w(k)|2 + 2m(k)T PHw(k) + m(k)T Pm(k)

≤ −a1|w(k)|2 + a2|w(k)|ε + a3ε
2, (8.3.33)

where a1 = 1 − 2d‖PH‖ − d2‖P‖, a2 = 2(‖PH‖ + d‖P‖)J , and a3 = J2‖P‖.
Let

R = a2 +

√
a2
2 + 4a1a3

2a1
.

We are now in a position to prove the following result.

Theorem 8.3.3 (i) If the matrix H defined in (8.3.6) is Schur stable, then the solutions
of system (8.3.26) are uniformly bounded, provided that√

1 + ‖B‖2|w(k0)| +
∥∥∥∥∫ 1

0
eAτdτ

∥∥∥∥‖F‖J3ε < δ,

for some δ > 0. (ii) Let L
�
= max

{(
R
√

1 + ‖B‖2 + J3‖F‖
)
e‖A‖+b, λM (P )R

}
,

where b is chosen such that |g(x)| < b|x| for all |x| ≤ Rε. Then for sufficiently large
k, the estimates

|w(k)| ≤ Lε (8.3.34)

and
|x(t)| ≤ ε

(
L
√

1 + ‖B‖2 + J3‖F‖
)
e‖A‖+b1 (8.3.35)

hold, where b1 is such that |g(x)| < b1|x| for all |x| ≤ L.
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Proof . We apply Theorem 6.4.4 in the present proof.
It is readily verified that under the present assumptions Dv(w(k)) is negative

whenever |w(k)| > Rε. Hence, (6.4.10) of Theorem 6.4.4 is satisfied with Ω = Rε.
Furthermore, if |w(k)| > Rε, then v(w(k + 1)) < v(w(k)) and thus |w(k + 1)| ≤
λM (P )Rε ≤ Lε.

If |w(k)| ≤ Rε, then by applying the Gronwall inequality to equation (8.3.26)
when t = k + 1, we obtain that |w(k + 1)| ≤ Lε. Thus, the last hypothesis of
Theorem 6.4.4 is satisfied with Γ = Lε.

Solving the first equation in (8.3.26), we obtain

x(t) = eA(t−k)x(k) +
∫ t

k

eA(t−τ)FG̃u(k)dτ +
∫ t

k

eA(t−τ)g(x(τ))dτ

+
∫ t

k

eA(t−τ)Fq3(k)dτ

for t ∈ (k, k + 1) and therefore, when |w(k)| ≤ Rε it is true that

|x(t)| ≤ e‖A‖|x(k)| + e‖A‖‖B‖|u(k)| +
∫ k+1

k

e‖A‖|g(x(τ))|dτ + e‖A‖J3‖F‖ε

≤ e‖A‖√1 + ‖B‖2|w(k)| + d|w(k)| + e‖A‖J3‖F‖ε.

We have used the fact that
∫ k+1

k
e‖A‖|g(x(τ))|dτ < d|w(k)|, whenever (refer to the

proof of Lemma 8.3.3)√
1 + ‖B‖2|w(k)| +

∥∥∥∥∫ 1

0
eAτdτ

∥∥∥∥ ‖F‖J3ε < δ.

Therefore, (6.4.11) of Theorem 6.4.4 is satisfied with

f(r) =
(
e‖A‖√1 + ‖B‖2 + d

)
r + e‖A‖J3‖F‖ε.

It now follows from Theorem 6.4.4 that the solutions of system (8.3.26) are uni-
formly bounded.

We have also shown above that for sufficiently large k, |w(k)| ≤ Lε holds. Finally,
for t ∈ (k, k + 1), we apply the same argument as in the proof of Theorem 8.3.1 to
obtain the bound (8.3.35) for |x(t)|. This concludes the proof of the theorem. �

In our final result we consider the difference in the response of the nonlinear digital
control system with ideal samplers, given by equation (8.3.3), and the nonlinear digital
control system with quantizers, given by (8.3.26). For our present purposes we rewrite
(8.3.15) as

w̃(k + 1) = Hw̃(k) + m̃(k), (8.3.36)

where w̃(k) = (x̃(k)T , ũ(k)T )T
and

m̃(k) ∆=

∫ k+1

k

eA(k+1−τ)g(x̃(τ))dτ

0

 . (8.3.37)
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Letting z(k) = w(k) − w̃(k), we obtain the relation

z(k + 1) = Hz(k)

+

∫ k+1

k

eA(k+1−τ)
(
g(x(τ)) − g(x̃(τ))

)
dτ +

∫ 1

0
eAτdτFq3(k)

F̃ q1(k) + q2(k)

 .

(8.3.38)

This equation is in the same form as equation (8.3.26), except that in (8.3.38) the
nonlinearity includes the term

∫ k+1
k

eA(k+1−τ)
(
g(x(τ)) − g(x̃(τ))

)
dτ , rather than

the term
∫ k+1

k
eA(k+1−τ)g(x(τ))dτ . Now suppose that g(·) has the property

lim
x→0,x̃→0

|g(x) − g(x̃)|
|x − x̃| = 0, (8.3.39)

which plays a similar role for system (8.3.38) as (8.3.8) does for system (8.3.26).
Using similar arguments as in the proof of Theorem 8.3.3, we obtain the following
result for the boundedness of z(k), k = 0, 1, . . . .

Theorem 8.3.4 Assume that H defined in (8.3.6) is Schur stable and g(·) satisfies
(8.3.39). Then there exist a d > 0, a K > 0, and an ε0 > 0 such that

|z(k)| ≤ Kε when k is sufficiently large (8.3.40)

whenever ε < ε0, |w(k0)| < d, and |w̃(k0)| < d, for some k0, where ε is the
quantization level. �

D. Examples

The purpose of the following specific example is to show that all conditions of
Theorem 8.3.1 can be satisfied.

Example 8.3.1 In system (8.3.3) (resp., (8.3.4)) take

A =
[
−0.6 −1
0.8 0

]
, B =

[
0

0.6

]
, D = [−0.8 − 0.3], C = [−1],

and in (8.3.7), take

g(x) =
[

0.013 sin(x1)
0.008x2 cos(x2)

]
.

Then |g(x)| ≤ α|x| for all x, where α = 0.0083. We also compute that

H =

 0.2962 −0.6562 0.5174
0.5250 0.6899 0.0833

−0.8000 0.3000 −1.0000

 , P =

3.2515 0.6514 1.8906
0.6514 2.4873 −0.0755
1.8906 −0.0755 2.9856

 .
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µ0 is computed to be 0.1225, and µ2
0‖P‖ + 2µ0‖PH‖ = 0.9035 < 1. It follows

from Theorem 8.3.1 that the equilibrium (xT , uT )T = (0T , 0T )T
of this system is

uniformly asymptotically stable; in fact, it is uniformly asymptotically stable in the
large because the conditions of Theorem 8.3.1 are satisfied for all x (i.e., δ(µ0) =
+∞, where δ(µ0) is given in Proposition 8.3.1). �

Example 8.3.2 The present case is an example of the digital control of a nonlinear
plant (whose linearization is a double-integrator) adopted from [13]. The system is
given by [

ẋ1
ẋ2

]
=
[
0 1
0 0

] [
x1
x2

]
+
[

0
x2

1

]
−
[
0
1

]
e, y = x1.

The controller is given by

u(k + 1) =
[
0 1
b a

]
u(k) +

[
1
0

]
v(k), w(k) = [d c]u(k).

We choose a = 0, b = −0.3, c = 4.4, d = −4.0, and T = .25. Also, we assume
fixed-point magnitude truncation quantization with ε = 0.01.

0 10 20 30
−0.2

−0.1

0

0.1

0.2

Time

Figure 8.3.2: Output y(t): dashed line, without quantization; solid line, with quanti-
zation (Example 8.3.2).

In Figure 8.3.2 we depict the output y(t) of the above system with and without
quantization effects. As shown in the figure, the output in the presence of quanti-
zation follows the ideal output (i.e., without quantization). However, as depicted in
Figure 8.3.3, the difference between the ideal output and the output in the presence
of quantization does not diminish as t increases. The difference stays within a certain
bound. �
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0 10 20 30
−0.01

−0.005

0

0.005

0.01

0.015

Time

Figure 8.3.3: The difference between the ideal output and the output in the presence
of quantization (Example 8.3.2).

8.4 Pulse-Width-Modulated Feedback Control
Systems

In the present section we apply the stability and boundedness results for DDS to
establish stability results for pulse-width-modulated (PWM) feedback systems with
type II modulation.

A. Introduction and formulation of the problem

Pulse-width modulation has extensively been used in electronic, electrical, and elec-
tromechanical systems including attitude control systems, adaptive control systems,
signal processing, power control systems, modeling of neuron behavior, and the like.
The classical example of PWM control is the constant temperature oven suggested by
Gouy in 1897 [17] and the most well-known modern application is the attitude control
of satellites and space vehicles (see, e.g., [59]). In the latter it is usually required that
power (i.e., engine thrust) be modulated in an on–off fashion and that the control
computer be time-shared, thus almost always necessitating the use of pulse-width
modulation if anything more than simple relay control is desired. Other applications
where PWM feedback systems are used include the control of large electric furnaces,
the control of electrolytic metal refining plants [18], and radar rendezvous systems
[4]. Another interesting application is in the modeling of how information is trans-
mitted in human beings. Specifically, the cardiac pulsatory system and the nervous
system communication networks (see, e.g., [8], [33], and [46]) are believed to operate
under a combination of pulse duration control and pulse repetition control. Indeed,
such systems include one of the most important specific classes of practical nonlinear
control systems (see, among others, [34], [35], [67], [68], and [70]) using pulse-width
modulation.
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One advantage of PWM control is the simplicity of its realization: the control
variable typically assumes only two or three constant values, say +M, −M , and
0, and hence, the control action is realized through the operation of a switch. In
many cases it provides a finer and more precise response than does simple relay
control. Another reason for their wide applicability is that pulse-width modulators
make it possible to process large signals with high efficiency and low sensitivity to
noise. The advantages of PWM control also include the ability to regulate steady-
state ripple oscillation frequency, the elimination of dead zone, and the possibility for
time sharing of the control computer.

The PWM feedback control system considered is shown in Figure 8.4.1.

PWM Plant +
-
O

r(t) e(t) u(t) y(t)

Figure 8.4.1: PWM feedback system.

We assume that the plant is linear and has a state–space representation of the form{
ẋ = Ax + Bu,
y = Cx

(8.4.1)

where x ∈ R
n, y ∈ R, u ∈ R, and A, B, and C are real matrices of appropriate

dimensions.
The output of the pulse-width modulator is given by

u(t) = m(e(t)) =
{

Mσ(e(kT)), t ∈ [kT, kT + Tk],
0, otherwise

(8.4.2)

where T is the sampling period, k = 0, 1, 2, . . . , M is the amplitude of the pulse, Tk

is the pulse width, and the signum function σ(·) is defined as

σ(r) =


1, r > 0,
0, r = 0,

−1, r < 0.

The sampling period T, the amplitude of the pulse M , and the positive value β
(defined below) are all assumed to be constant.

The pulse-width modulator yields piecewise continuous outputs, as illustrated in
Figure 8.4.2. The amplitude of the pulses is fixed whereas their duration varies,
depending on the error signal e(t) and the type of modulation method being used.
There are two types of pulse-width modulators. In a type II pulse-width modulator
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-M

+M

t

u(t)

T 2T 3T 4T

Figure 8.4.2: Example of the outputs of the pulse-width modulator.

(also called pulse-width modulator with type II modulation or with natural sampling),
the pulse width Tk is the smallest value in [0,T] to satisfy all of the three conditions:

Tk = β|e(kT + Tk)|

|e(kT + Tk)| ≤ T
β

σ(e(kT + Tk)) = σ(e(kT))

and Tk = T if no such Tk exists. Graphically, Tk can be interpreted as the first intersec-
tion of the plot β|e(t)| versus t and the sawtooth signal in each interval [kT, (k + 1)T),
as shown in Figure 8.4.3. If there are no intersections, then Tk = T. In a type I pulse-

0 1 2 3 4 5
0

1

2

3

β|e(t)|
sawtooth signal

Figure 8.4.3: Determining pulse widths using the sawtooth signal.

width modulator (also called pulse-width modulator with type I modulation or with
uniform sampling), the pulse duration Tk is solely determined by the error signal at
the sampling instant kT,

Tk =
{

β|e(kT)|, |e(kT)| ≤ T/β,
T, |e(kT)| > T/β.
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In this section, we investigate PWM feedback systems with type II modulation. We
present sufficient conditions for uniform asymptotic stability in the large of the trivial
solution and necessary and sufficient conditions for uniform ultimate boundedness
of the solutions, respectively, for PWM feedback systems with Hurwitz stable linear
plants. We also incorporate a procedure to compute and optimize the sufficient
conditions for uniform asymptotic stability of the trivial solution presented herein.
We demonstrate the applicability of our results by means of two specific examples.

B. Type II PWM feedback systems with Hurwitz stable plants

In the present subsection, we assume that A in (8.4.1) is Hurwitz stable.

Throughout this section, we let τ0 = 0 and τk+1
�
= kT + Tk, k ∈ N. Combining

(8.4.1) and (8.4.2), the PWM feedback system of Figure 8.4.1 assumes the form (with
r(t) ≡ 0 and e(t) ≡ −y(t))

ẋ(t) =
{

Ax(t) − BMσ(Cx(kT)), t ∈ [kT, τk+1),
Ax(t), t ∈ [τk+1, kT + T). (8.4.3)

Over the time intervals [kT, τk+1] and [τk+1, kT + T], k ∈ N, equation (8.4.3)
can be solved to yield the exact solution

x(t) =

 eA(t−kT)x(kT) −
∫ t

kT
eA(t−τ)dτBMσ(Cx(kT)), t ∈ [kT, τk+1],

eA(t−τk+1)x(τk+1), t ∈ [τk+1, kT + T].
(8.4.4)

We note that the trivial solution xe = 0 is an equilibrium of system (8.4.3).
The first result is concerned with the ultimate boundedness of the solutions of the

PWM feedback system (8.4.3).

Theorem 8.4.1 The solutions of system (8.4.3) are uniformly bounded and uniformly
ultimately bounded for any choice of M and β.

Proof . To show that the solutions of system (8.4.3) are uniformly bounded and
uniformly ultimately bounded, we verify that the hypotheses of Theorems 6.4.4
and 6.4.5 are satisfied, respectively. In doing so, the set E is chosen to be E =
{k0T, k0T + T, . . . }.

We recall that if A is Hurwitz stable, then eAT is Schur stable and there exists a
positive definite matrix Q such that(

eAT)T Q
(
eAT)− Q = −I

where I is the identity matrix of appropriate dimensions. Choose v : R
n → R

+ as

v(x) = xT Qx.

The solutions of system (8.4.3) at t = kT + T are given by

x(kT + T) = eAT(x(kT) + ∆(kT)
)

(8.4.5)
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where

∆(kT)
�
= −

∫ Tk

0
e−AτdτBMσ(Cx(kT))

is bounded, because

|∆(kT)| =
∣∣∣∣ ∫ Tk

0
e−AτdτBM

∣∣∣∣ ≤ TMe‖A‖T‖B‖. (8.4.6)

Along the solutions of system (8.4.3) we have

∆v(x(kT))
�
= v(x(kT + T)) − v(x(kT))

=
(
x(kT)T+ ∆(kT)T

)
(Q − I)

(
x(kT) + ∆(kT)

)
− x(kT)T Qx(kT)

= −|x(kT)|2 + 2∆(kT)T (Q − I)x(kT) + ∆(kT)T (Q − I)∆(kT)

≤ −|x(kT)|2 + 2TMe‖A‖T‖B‖‖Q − I‖|x(kT)|

+
(
TMe‖A‖T‖B‖

)2‖Q − I‖.

It is readily verified that Dv(x(kT)) = ∆v(x(kT))/T < 0 whenever |x(kT)| >

Ω
�
= TMe‖A‖T‖B‖‖Q − I‖(1 +

√
1 + 1/‖Q − I‖).

If |x(kT)| < Ω, we have that∣∣x(kT + T)
∣∣2 ≤ v(x(kT + T))

λm(Q)

≤ v(x(kT)) + ∆v(x(kT))
λm(Q)

≤ 1
λm(Q)

(
‖Q − I‖Ω2 + 2TMe‖A‖T‖B‖‖Q − I‖Ω

+
(
TMe‖A‖T‖B‖

)2‖Q − I‖
)

where λm(·) is the smallest eigenvalue of a matrix.
Next, we obtain an estimate for x(t), t ∈ [kT, kT + T). It follows from (8.4.4)

that
|x(t)| ≤ e‖A‖T|x(kT)| + Te‖A‖T‖B‖M,

and thus

v(x(t)) ≤ λM (Q)|x(t)|2

≤ λM (Q)
(
e‖A‖T|x(kT)| + Te‖A‖T‖B‖M

)2
≤ λM (Q)

(
e‖A‖T

√
v(x(kT))/λm(Q) + Te‖A‖T‖B‖M

)2
where λM (·) is the largest eigenvalue of a matrix.

Therefore, it follows from Theorems 6.4.4 and 6.4.5 that the solutions of system
(8.4.3) are uniformly bounded and uniformly ultimately bounded, respectively. �
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Remark 8.4.1 Note that the above proof does not rely on the modulation type. This
result is also true for PWM feedback systems with type I modulation (see [25]). �

In the above proof, we utilized equation (8.4.5), which describes system (8.4.3) at
discrete instants kT, k = 1, 2, 3, . . . . This representation, however, does not aid the
analysis of the Lyapunov stability properties of system (8.4.3) due to the fact that we
cannot obtain an explicit estimate for ∆(kT) in terms of x(kT). We observe that the
magnitude of ∆(kT) is determined by Tk, which is directly related to x(τk+1) rather
than x(kT), and we easily can obtain an estimate of Tk in terms of x(τk+1). These
observations prompt us to consider system (8.4.3) at τk, k ∈ N.

Noting that σ(Cx(kT)) = σ(Cx(τk+1)), we have at t = τk+1,

x(τk+1) = eATkx(kT) −
∫ Tk

0
eA(Tk−τ)dτBMσ(Cx(τk+1)). (8.4.7)

To simplify equation (8.4.7), we let

x̃(τk+1)
�
= −

∫ Tk

0
eA(Tk−τ)dτBMσ(Cx(τk+1))

= −eATk(I − e−ATk)A−1BMσ(Cx(τk+1))

= −MβeATkW (δk)e−ATkx(τk+1)

where

δk
�
= β

∣∣Cx(τk+1)
∣∣ { = Tk, Tk < T,

≥ T, Tk = T,

and W (·) is defined as

W (δ)
�
=


0, δ = 0,
I − e−Aδ

δ
A−1BCeAδ, 0 < δ < T,

T
δ

W (T), δ ≥ T.

(8.4.8)

Equation (8.4.7) is then reduced to

x(τk+1) = eATkx(kT) − MβeATkW (δk)e−ATkx(τk+1)

= eATk

(
x(kT) − MβW (δk)e−ATkx(τk+1)

)
.

Substituting x(kT) = eA(T−Tk−1)x(τk) for k = 1, 2, . . . , we further can obtain(
I + MβW (δk)

)
e−ATkx(τk+1) = eATe−ATk−1x(τk), k = 1, 2, . . . . (8.4.9)

To simplify the analysis below, let z(τk+1)
�
= e−ATkx(τk+1), k ∈ N and let

z(τ0) = e−ATx(0). At the discrete time instants in the set E = {τ0, τ1, . . . }, system
(8.4.3) is governed by the following equation(

I + MβW (δk)
)
z(τk+1) = eATz(τk), k = 1, 2, . . . . (8.4.10)

Note that the above equation is also true when k = 0.
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We use a quadratic Lyapunov function which is constructed using a positive definite
matrix P such that (

eAT)T P
(
eAT)− P = −

(
eAT)T eAT. (8.4.11)

P is chosen such that P + I = (e−AT)T
P (e−AT).

We now are in a position to prove the following result.

Theorem 8.4.2 The trivial solution xe = 0 of the PWM feedback system (8.4.3) is
uniformly asymptotically stable in the large whenever Mβ satisfies

ΘMβ
�
= inf

δ∈(0,∞)
λm

(
Φ(δ,Mβ)

)
> 0 (8.4.12)

where

Φ(δ,Mβ) = I + MβG1(δ) + M2β2G2(δ),

G1(δ) = W (δ)T (P + I) + (P + I)W (δ),

G2(δ) = W (δ)T (P + I)W (δ),

W (·) is given by (8.4.8), and P is given in (8.4.11).

Proof . Choosing the Lyapunov function v : R
n → R

+, v(z) = zT Pz, we obtain for
the first forward difference of v along the solutions of system (8.4.10), the expression

v(z(τk+1)) − v(z(τk))

= z(τk+1)T Pz(τk+1) − z(τk+1)T
(
I + MβW (δk)

)T (e−AT)
T
Pe−AT

×
(
I + MβW (δk)

)
z(τk+1)

= z(τk+1)T
(
P −

(
I + MβW (δk)

)T (P + I)
(
I + MβW (δk)

))
z(τk+1)

= −z(τk+1)T Φ(δk, Mβ)z(τk+1) (8.4.13)

for all k ∈ N. It follows from (8.4.13) that when Mβ satisfies (8.4.12) , it is true that

Dv(z(τk))
�
=

v(z(τk+1)) − v(z(τk))
τk+1 − τk

≤ −c1v(z(τk+1)). (8.4.14)

where

c1
�
=

ΘMβ

2Tλm(P )
> 0.

Next, we obtain an estimate for x(t) when t ∈ [kT, τk+1). It is easily seen from
the definition of Tk that

Tk ≤ β|e(τk+1)| ≤ β‖C‖|x(τk+1)|.

Because
∥∥eAτ

∥∥≤e‖A‖T for all τ ∈ [0,T], it follows from (8.4.4) that

|x(t)| ≤ e‖A‖T|x(τk+1)| (8.4.15)
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for t ∈ [τk+1, kT + T). When t ∈ [kT, τk+1), we solve the first equation in (8.4.3)
to yield

x(t) = eA(t−τk+1)x(τk+1) −
∫ t−τk+1

0
eA(t−τk+1−τ)dτBMσ(Cx(τk)).

Thus, when t ∈ [kT, τk+1)

|x(t)| ≤ e‖A‖T|x(τk+1)| + Tke‖A‖T‖B‖M ≤ c2e
‖A‖T|x(τk+1)| (8.4.16)

where c2
�
= 1 + Mβ‖C‖‖B‖. In view of (8.4.15), (8.4.16) is true for all t ∈

[kT, kT + T).
We now conclude from Theorem 6.4.1 that xe = 0 is uniformly stable. How-

ever, we cannot apply Theorem 6.4.6 directly to conclude that xe = 0 is uniformly
asymptotically stable in the large because relation (8.4.14) is slightly different from
(6.4.15) in Theorem 6.4.6. Nevertheless, in the following we can prove along similar
lines the global uniform attractivity of the equilibrium xe = 0 and hence the uniform
asymptotic stability in the large of xe = 0.

It follows from (8.4.14) that v(z(τk)) is nonincreasing and that for all k∗ ≤ k,
k∗ > 0,

v(z(τk∗)) − v(z(τk∗−1)) ≤ −c1v(z(τk∗))(τk∗ − τk∗−1)
≤ −c1v(z(τk))(τk∗ − τk∗−1).

The above inequality yields

v(z(τk)) − v(z(τ0)) ≤ −c1v(z(τk))(τk − τ0) = −c1v(z(τk))τk.

Thus it is true for all k > 0 that

v(z(τk)) ≤ v(z(τ0)) − v(z(τk))
c1τk

≤ v(z(0))
c1τk

. (8.4.17)

For any ε > 0 and α > 0, let

Γ =
c2
2λM (P )e2‖A‖Tα2

ε2c1λm(P )
.

For any x(0) such that |x(0)| < α, and for all k ≥ Γ/T, we have τk ≥ Γ and

v(z(τk)) ≤ v(z(0))
c1Γ

<
λM (P )e2‖A‖Tα2

c1Γ
.

Hence,

|x(τk)|2 ≤ e2‖A‖T

λm(P )
v(z(τk)) <

ε2

c2
2e

2‖A‖T .

Now applying the estimates established in (8.4.16), we have for t ∈ [kT, kT+T)
that

|x(t)| ≤ c2e
‖A‖T|x(τk)| < ε.

Therefore, we have shown that the trivial solution of (8.4.3) is uniformly asymp-
totically stable in the large. �
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To obtain the least conservative stability results given by Theorem 8.4.2, we need
to determine the largest upper bound of Mβ such that ΘMβ < 0 is satisfied for all
state representations of (8.4.3). We denote this value by (Mβ)opt. In Remark 8.4.2
given below, we outline a procedure for computing an estimate of the optimal value of
Mβ such that ΘMβ < 0 for a given state representation. We call this (Mβ)∗

opt. The
values of (Mβ)∗

opt for different but equivalent state representations will in general
vary. In Remark 8.4.3 given below, we outline a procedure for determining an estimate
of (Mβ)opt using the different values of (Mβ)∗

opt obtained by employing different

state representations of (8.4.3). We denote the estimate of (Mβ)opt by (Mβ)opt.

Remark 8.4.2 To obtain (Mβ)∗
opt for a given state representation, we proceed as

follows. Denote α
�
= infδ∈[0,T] λm(G1(δ)). Because G1(δ) = G1(T)/δ for δ > T,

it is easily seen that

inf
δ∈[0,∞)

λm(G1(δ)) = α if α ≤ 0,

otherwise
inf

δ∈[0,T]
λm(G1(δ)) = 0.

The matrix G2(δ) is positive semidefinite for all δ. Thus, ΘMβ > 0 whenever
Mβ < −1/α if α < 0. When α ≥ 0, ΘMβ > 0 for any choice of Mβ.

We now assume that α < 0. Let m0 > 0 be such that ΘMβ > 0 is true for all
Mβ < m0 (m0 can be initialized by choosing, for example, −1/α). Notice that
when δ > T, it is true that

Φ(δ,Mβ) = I + MβG1(δ) + M2β2G2(δ)

= I + Mβ
T
δ

G1(T) +
(

Mβ
T
δ

)2

G2(T)

= Φ
(

T, Mβ
T
δ

)
. (8.4.18)

Therefore, if we can show that the matrix Φ(T, Mβ) is positive definite for all Mβ
less than a certain value, say m0 > 0, then in view of (8.4.18) the matrix Φ(δ,Mβ)
is positive definite for all δ > T and all Mβ < m0.

Now let

G̃0(δ) = Φ(δ,m0), G̃1(δ) = G1(δ) + 2m0G2(δ). (8.4.19)

In order that ΘMβ given in (8.4.12) be positive, it is necessary that

Φ(δ,Mβ) = G̃0 + (Mβ − m0)G̃1(δ) + (Mβ − m0)2G2(δ)

be positive definite. For this to be true, we obtain, using the same arguments as above,
that ΘMβ > 0 is true for all Mβ such that

Mβ < m0 + inf
δ∈(0,T]

− λm(G̃0(δ))

λm(G̃1(δ))
. (8.4.20)



Section 8.4 Pulse-Width-Modulated Feedback Control Systems 373

We repeat the above computation, replacing in (8.4.19) m0 by the right-hand side of
(8.4.20) until the increment of m0 is negligible. Set (Mβ)∗

opt equal to the final value
of m0. �

Remark 8.4.3 To determine (Mβ)opt, we compute (Mβ)∗
opt for different state rep-

resentations, Ã = SAS−1, B̃ = SB, C̃ = CS−1, where S is a nonsingular matrix.
In doing so, we choose a set of nonsingular matrices S, say Ω, using a random genera-
tor (e.g., the rand command in MATLAB). An estimate of (Mβ)opt, (Mβ)opt, can be

determined by setting (Mβ)opt = max
S∈Ω

(Mβ)∗
opt. The above procedure is repeated,

increasing the size of Ω, until no further improvements are realized. �

Remark 8.4.4 If M is allowed to assume negative values (corresponding to positive
feedback in Figure 8.4.1), then similarly as above, we can obtain a lower bound for
Mβ given by

Mβ >

{
sup

δ∈(0,T]
− 1

λM (G1(δ))
, if λM (G1(δ)) > 0

−∞, otherwise

where G1(δ) is given in Theorem 8.4.2. �

Before giving two specific examples to demonstrate the applicability of the pre-
ceding results, we point out that results for the boundedness of solutions and the
asymptotic stability of the trivial solution for type II PWM systems with linear plants
that have one pole at the origin have also been established [23].

C. Examples

To demonstrate the applicability of the results established in Subsection B, and to
illustrate how to compute estimates of upper bounds (Mβ)opt, we consider in the
present subsection two examples. In order to be able to make comparisons with
existing results, we choose one identical example that was considered by Balestrino
et al. [5], and Gelig and Churilov [16]. However, before doing so, we outline in the
following a procedure for computing an estimate for the optimal stability bound for
Mβ, based on Theorem 8.4.2 and Remarks 8.4.2 and 8.4.3.

Stability Bound Procedure: An upper bound of Mβ that satisfies (8.4.12) can be
computed and optimized in the following manner.

(1) Determine P from (eAT)T
PeAT − P = −(eAT)T

eAT.

(2) Choose a precision level δ > 0 and a correspondingly dense partition of [0,T],
say the set {t0 = 0, t1, . . . , tN = T}, where 0 < tj+1 − tj < δ, j =
0, 1, . . . , N − 1.

(3) For each j, j = 0, 1, . . . , N , compute W (tj), G1(tj), and G2(tj).

(4) Initialize m0 by setting m0 = min
0≤j≤N

− 1
λm(G1(tj))

.
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(5) Let (see (8.4.19))

G̃0(tj) = I + m0G1(tj) − m2
0G2(tj), G̃1(tj) = G1(tj) − 2m0G2(tj),

m̃0 = m0. Then let m0 be (see (8.4.20))

m0 = m̃0 + min
0≤j≤N

− λm(G̃0(tj))
λm(G1(tj))

.

(6) Repeat Step (5) until the increment of m0 is negligible, say, m0 − m̃0 < ε,
where ε > 0 is a chosen precision level. Set (Mβ)

∗
opt = m0, where (Mβ)

∗
opt

is an estimate of (Mβ)∗
opt.

(7) Repeat Steps (1)–(6), using finer partitions of the interval [0,T] (i.e, smaller δ),
until there is no further significant improvement for (Mβ)

∗
opt.

(8) Repeat Steps (1)–(7) for different but equivalent matrices Ã, B̃, and C̃. This can
be done, for example, by generating a set Ω of random (nonsingular) matrices,
and for each S ∈ Ω letting Ã = SAS−1, B̃ = SB, and C̃ = CS−1. Determine
an optimal upper bound for Mβ by setting (Mβ)opt = max

S∈Ω
(Mβ)

∗
opt. In

general, the larger the size of Ω, the closer the computed value (Mβ)opt to the
actual upper bound of Mβ.

We are now in a position to consider two examples.

Example 8.4.1 (First-order system) In the present case, the plant is characterized
by a transfer function of the form

G(s) =
c

s + a
, a > 0,

or by the state–space representation (8.4.3) with A = −a, B = 1, C = c. The upper
bound of Mβ that satisfies (8.4.12) is inf

δk∈(0,T]

−G1 −
√

G2
1 − 4G2

2G2
=

1 − e−aT

|c| , if c < 0,

∞, if c ≥ 0.

The bound above is identical to the result reported in [5].
Using a method that employs averaging of the pulse-width modulator output, and

assuming M = 1 and c > 0, the stability condition

1
β

>
2
π

c +
2

π
√

3
acT

is obtained in [16]. For this particular example, the present result is clearly less
conservative than that obtained in [16].

Note that the optimal bound obtained for Mβ above is the exact value, be-
cause in the present case it was not necessary to invoke approximations to apply
Theorem 8.4.2. �
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Example 8.4.2 (Second-order system) In this case the plant is characterized by the
transfer function

G(s) =
K

(s + 1)(s + 2)
.

The state–space representation is given by

A = S

[
−1 0
0 −2

]
S−1, B = S

[
K
K

]
, C = [1 − 1]S−1

where S is a nonsingular matrix. In applying the Stability Bound Procedure we let
δ = 0.001 and ε = 0.0001 (the improvements of the computed results were negligible
for smaller δ and ε), and we generated 200 random matrices S to form the set Ω. In
particular, when

S =
[
−3.1887 4.8612
2.5351 −2.1877

]
the upper and lower bounds for MK are computed to be 6.3004 and -0.9670, respec-
tively; when

S =
[

1.6130 −0.2781
−1.1766 1.7069

]
,

the upper and lower bounds are computed to be 2.8447 and −1.9370, respectively.
It follows from Theorem 8.4.2 that the trivial solution of (8.4.3) is uniformly

asymptotically stable in the large if −1.9370 < MK < 6.3004.
To determine the quality of the estimates of the bounds for MK obtained above,

we note that if MK = −2, then x(t) = (1, 0.5)T is an equilibrium of system (8.4.3)
with Tk = T = 1 for all k. Also, when MK = 6.8, system (8.4.3) has a limit cycle
as shown in Figure 8.4.4. Therefore, the trivial solution of the PWM feedback system

0.04 0.02 0 0.02 0.04
0.04

0.02

0

0.02

0.04

Figure 8.4.4: Alimit cycle of the PWM feedback system when β = 1 and MK = 6.8.

(8.4.3) cannot be uniformly asymptotically stable in the large for the above two cases.
This shows that our result, −1.9370 < MK < 6.3004, obtained by Theorem 8.4.2,
is very close to the actual lower and upper bounds for MK that ensure stability. We
would like to point out that the above result is very close to the result we obtained
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in [25] for a PWM feedback system having the above plant but with type I modulation
(−1.9789 < MK < 6.3278).

Although the stability bounds for PWM feedback systems with type I and type II
modulation are close, the states generally approach the trivial solution faster when
using type II modulation. This can be seen in Figure 8.4.5. �

1 0.5 0 0.5 1
1

0.5

0

0.5

1

type I modulation
type II modulation

Figure 8.4.5: Example solutions of system (8.4.3) with type I and type II modulations
(MK = 6, B = 1), respectively.

8.5 Digital Filters

In the final part of this chapter, we investigate stability properties of discrete-time
systems described by equations of the form

x(k + 1) = sat[Ax(k)], k ∈ N (8.5.1)

where x(k) ∈ Dn = {x ∈ R
n : − 1 ≤ xi ≤ 1}, A ∈ R

n×n,

sat(x) = [sat(x1), sat(x2), . . . , sat(xn)]T ,

and

sat(xi) =


1, xi > 1
xi, −1 ≤ xi ≤ 1
−1, xi < −1

.

We say that system (8.5.1) is stable if xe = 0 is the only equilibrium of system
(8.5.1) and xe = 0 is globally asymptotically stable. Because we have saturation
nonlinearities in (8.5.1), it is clear that for any x(0) �∈ Dn, x(k) ∈ Dn, k ≥ 1, will
always be true. Thus, without loss of generality, we assume that x(0) ∈ Dn.

Equation (8.5.1) describes a class of discrete-time dynamical systems with sym-
metrically saturating states after normalization. Examples of such systems include
control systems having saturation-type nonlinearities on the state (see, e.g., [15], [43],
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and [56]), neural networks defined on hypercubes (see, e.g., [42] and [53]), and digital
filters using saturation overflow arithmetic (see, e.g., [43], [57], and [63]).

System (8.5.1) may be used to represent control systems with saturating states with
no external inputs. In the analysis and design of such systems, the first fundamental
question addresses stability: under what conditions is xe =0 an equilibrium and when
is this equilibrium globally asymptotically stable?

The condition that A is a stable matrix, that is, every eigenvalue λi of A satisfies
|λi| < 1, is not sufficient for system (8.5.1) to be stable. (It is easy to give examples
for which A is a stable matrix, but system (8.5.1) is not stable.)

In many important applications, equation (8.5.1) may be used to represent digital
processing systems, including digital filters and digital control systems (see, e.g., [15],
[43], [56], [57], [63], and [72]) with finite wordlength arithmetic under zero external
inputs. In such systems, saturation arithmetic is used to cope with the overflow. The
absence of limit cycles in such systems is of great interest and can be guaranteed by
the global asymptotic stability of the equilibrium xe = 0 for (8.5.1). The Lyapunov
theory has been found to be an appropriate method for solving such problems (see,
e.g., [43], [57], and [72]).

A. A general result for discrete-time systems with state saturation
nonlinearities

In establishing our results, we make use of Lyapunov functions for the linear systems
corresponding to system (8.5.1), given by

w(k + 1) = Aw(k), k ∈ N (8.5.2)

where A ∈ R
n×n is defined in (8.5.1).

We recall that for a general autonomous system

x(k + 1) = f(x(k)), k ∈ N, (8.5.3)

with x(k) ∈ R
n and f : R

n → R
n, xe is an equilibrium for (8.5.3) if and only if

xe = f(xe).

We assume, without loss of generality that xe =0 (refer to Subsection 6.1B). Recall
also that the equilibrium xe = 0 for system (8.5.3) is globally asymptotically stable,
or asymptotically stable in the large, if there exists a continuous function v : R

n → R

which is positive definite, radially unbounded, and along solutions of (8.5.3) satisfies
the condition that

Dv(8.5.3)(x(k))
�
= v(x(k + 1)) − v(x(k)) = v(f(x(k))) − v(x(k)) (8.5.4)

is negative definite for all x(k) ∈ R
n (refer to Theorem 6.3.2(a)).

In the stability analysis of the equilibrium xe = 0 of system (8.5.1), we find it
useful to employ Lyapunov functions v whose value for a given state vector w �∈ Dn is
greater than the value for the corresponding saturated state vector sat(w). Specifically,
we make the following assumption.
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Assumption 8.5.1 Assume that for system (8.5.2), there exists a continuous function
v : R

n → R with the following properties:

(i) v is positive definite, radially unbounded, and

Dv(8.5.2)(w(k))
�
= v(w(k + 1)) − v(w(k)) = v(Aw(k)) − v(w(k))

is negative definite for all w(k) ∈ R
n (and thus, the eigenvalues of A are within the

unit circle).
(ii) For all w ∈ R

n such that w �∈ Dn, it is true that

v(sat(w)) < v(w) (8.5.5)

where Dn and sat(·) are defined in (8.5.1). �

An example of a function v1 : R
2 → R that satisfies (8.5.5) is given by v1(w) =

d1w
2
1 + d2w

2
2, d1, d2 > 0. On the other hand, the function v2 : R

2 → R given by
v2(w) = w2

1 + (2w1 + w2)2 does not satisfy (8.5.5). To see this, consider the point
w = [−0.99, 1.05]T �∈ D2 and note that v2(sat(w)) = 1.9405 and v2(w) = 1.845.

We are now in a position to prove the following result.

Theorem 8.5.1 If Assumption 8.5.1 holds, then the equilibrium xe = 0 of system
(8.5.1) is globally asymptotically stable.

Proof . Because Assumption 8.5.1 is true, there exists a positive definite and radially
unbounded function v for system (8.5.2) such that (8.5.5) is true, which in turn implies
that v(sat(Aw)) ≤ v(Aw) for all w ∈ R

n. Also, by Assumption 8.5.1, v(Aw(k)) −
v(w(k)) < 0 for all w(k) �= 0. Thus, along the solutions of system (8.5.1), we have

Dv(8.5.1)(x(k)) = v(x(k + 1)) − v(x(k))
= v(sat[Ax(k)]) − v(x(k))
≤ v(Ax(k)) − v(x(k))
< 0

for all x(k) �= 0 and Dv(8.5.1)(x(k)) = 0 if and only if x(k) = 0. Therefore, v(x) is
positive definite and radially unbounded, and Dv(8.5.1)(x) is negative definite for all
x. Hence, in view of Theorem 6.3.2(a), the equilibrium xe = 0 of system (8.5.1) is
globally asymptotically stable. �

Remark 8.5.1 In particular, for fixed p, 1 ≤ p ≤ ∞, let us choose

v(w) = |w|p =
( n∑

i=1

|wi|p
)1/p

for system (8.5.2) and assume that ‖A‖p < 1, where ‖A‖p denotes the matrix norm
induced by the vector norm |w|p. Under these conditions, Assumption 8.5.1 is true.
To see this, note that v is positive definite and radially unbounded, that

v(Aw) = |Aw|p ≤ ‖A‖p|w|p < |w|p = v(w),

and that |sat(w)|p < |w|p, for all w ∈ R
n such that w �∈ Dn.
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Therefore, the equilibrium xe = 0 of system (8.5.1) is globally asymptotically
stable if

‖A‖p < 1 (8.5.6)

for some p, 1 ≤ p ≤ ∞.
In the case of digital filters, the above argument holds for any type of overflow

nonlinearity ϕ : R → [−1, 1]. To see this, let f(w) = [ϕ(w1), . . . , ϕ(wn)]T and note
that in this case |f(w)|p < |w|p for all w ∈ R

n such that w �∈ Dn. �

B. Results involving quadratic Lyapunov functions

In order to generate quadratic form Lyapunov functions that satisfy Assumption 8.5.1
for systems described by equation (8.5.1), we find it convenient to utilize the next
assumption.

Assumption 8.5.2 Let

xs = sat(x) = [sat(x1), . . . , sat(xn)]T

for x ∈ R
n and let H ∈ R

n×n denote a positive definite matrix. Assume that

xT
s Hxs < xT Hx, (8.5.7)

whenever x �∈ Dn, x ∈ R
n. �

An example of a matrix that satisfies Assumption 8.5.2 is any diagonal matrix
with positive diagonal elements. On the other hand, the positive definite matrix H
given by

H =
[

5 2
2 1

]
,

does not satisfy Assumption 8.5.2. (To see this, refer to the example following
Assumption 8.5.1 by noting that v2(x) = xT Hx.)

The next result gives a necessary and sufficient condition for matrices to satisfy
Assumption 8.5.2. This result is very useful in applications.

Lemma 8.5.1 An n×n positive definite matrix H = [hij ] satisfies Assumption 8.5.2
if and only if

hii ≥
n∑

j=1,j �=i

|hij |, i = 1, . . . , n. (8.5.8)

Proof . This lemma is a special case of Lemma 8.5.2 (when L = 1). For the statement
and proof of Lemma 8.5.2, refer to Subsection C of the present section. �

The following result is a direct consequence of Theorem 8.5.1.
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Corollary 8.5.1 The equilibrium xe = 0 of system (8.5.1) is globally asymptotically
stable if there exists a matrix H that satisfies Assumption 8.5.2 such that

Q
�
= H − AT HA

is positive definite.

Proof . By choosing v(x) = xT Hx, the proof follows from Theorem 8.5.1. �

In the next result, Theorem 8.5.2, we show that Corollary 8.5.1 is actually true
when Q is only positive semidefinite, still assuming that A is stable.

Theorem 8.5.2 The equilibrium xe = 0 of system (8.5.1) is globally asymptotically
stable if A is stable and if there exists a matrix H that satisfies Assumption 8.5.2
such that

Q
�
= H − AT HA

is positive semidefinite.

Proof . Let us choose v(x(k)) = xT (k)Hx(k) for the system (8.5.1). The function
v is clearly positive definite and radially unbounded. Also, because

Dv(8.5.1)(x(k)) = v(x(k + 1)) − v(x(k))

= [sat(Ax(k))]T H[sat(Ax(k))] − xT (k)Hx(k)

≤ xT (k)(AT HA − H)x(k),

and because H−AT HA is positive semidefinite, Dv(8.5.1)(x(k)) is negative semidef-
inite for all x(k). Therefore, the equilibrium xe = 0 is stable (refer to Theorem
6.3.1(a)). To show that it is asymptotically stable, we must show that x(k) → 0 as
k → ∞ (refer to Definition 6.1.1(h)).

Let us consider an n consecutive step iteration for system (8.5.1), from n0 ≥ 0 to
n+n0. Without loss of generality, assume that system (8.5.1) saturates at k = l, l ∈
[n0, n + n0). In view of Assumption 8.5.2, it follows that

v(x(l + 1)) = xT (l + 1)Hx(l + 1)

= [sat(Ax(l))]T H[sat(Ax(l))]

< [Ax(l)]T HAx(l)

≤ xT (l)Hx(l)

= v(x(l)).

On the other hand, if no saturation occurs during this period, then, using the fact
that if H −AT HA is positive semidefinite, then H − (AT )nHAn is positive definite
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for any n > 1 when A is stable (see, e.g., [72]), we have

v(x(n + n0)) = xT (n + n0)Hx(n + n0)

= [Anx(n0)]T HAnx(n0)

= xT (n0)(AT )nHAnx(n0)

< xT (n0)Hx(n0)

= v(x(n0)).

Therefore, we can conclude that for the sequence {k : k = 1, 2, . . . }, there always
exists an infinite subsequence {kj : j = 1, 2, . . . }, such that Dv(8.5.1)(x(kj)) is
negative for x(kj) �= 0 and that v(x(k)) ≤ v(x(kj)) for all k ≥ kj . Because v
is a positive definite quadratic form, it follows that v(x(kj)) → 0 as j → ∞, and
therefore v(x(k)) → 0 as k → ∞. This in turn implies that x(k) → 0 as k → ∞.
Thus, the equilibrium xe = 0 of (8.5.1) is globally asymptotically stable. �

C. Stability of digital filters with generalized overflow
nonlinearities

Because no limit cycles can exist in a digital filter if its trivial solution is globally
asymptotically stable, we can use the results of this section to establish the following
results for n-th order digital filters with saturation arithmetic.

Corollary 8.5.2 (i) A digital filter described by (8.5.1) is free of limit cycles if
Assumption 8.5.1 is satisfied. (ii) A digital filter described by (8.5.1) is free of limit
cycles if A is stable and if there exists a matrix H that satisfies Assumption 8.5.2,
such that

Q
�
= H − AT HA

is positive semidefinite. �

We now consider nth-order digital filters described by equations of the form

x(k + 1) = f [Ax(k)], k ∈ N (8.5.9)

where x(k) ∈ R
n, A ∈ R

n×n,

f(x) = [ϕ(x1), ϕ(x2), . . . , ϕ(xn)]T , (8.5.10)

and ϕ : R → [−1, 1] is piecewise continuous. We call system (8.5.9) a fixed-point
digital filter using overflow arithmetic. For such filters, we make the following
assumption.

Assumption 8.5.3 Let f be defined as in (8.5.10). Assume that H ∈ R
n×n is a

positive definite matrix and that

f(x)T Hf(x) < xT Hx, (8.5.11)

for all x ∈ R
n, x �∈ Dn. �
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In what follows, we let the function ϕ in (8.5.10) be defined as (see Figure 8.5.1)

ϕ(xi) =


L, xi > 1,

xi, −1 ≤ xi ≤ 1,

−L, xi < −1,

(8.5.12)

or (see Figure 8.5.2)
L ≤ ϕ(xi) ≤ 1, xi > 1,

ϕ(xi) = xi, −1 ≤ xi ≤ 1,

−1 ≤ ϕ(xi) ≤ −L, xi < −1,

(8.5.13)

where −1 ≤ L ≤ 1. We call the function ϕ defined in (8.5.12) and (8.5.13) a
generalized overflow characteristic. Note that when defined in this way, the func-
tion ϕ includes as special cases the usual types of overflow arithmetic employed
in practice, such as zeroing, two’s complement, triangular, and saturation overflow
characteristics.

ϕ( )

x

1

L

1

x

−1

−L
−1

Figure 8.5.1: The generalized overflow nonlinearity described by (8.5.12).

To establish our next result, Theorem 8.5.3, we require the following preliminary
result, Lemma 8.5.2.

Lemma 8.5.2 [43] Assume that f is defined in (8.5.10) and ϕ is given in (8.5.12) or
in (8.5.13) with −1 < L ≤ 1. An n × n positive definite matrix H = HT = [hij ]
satisfies Assumption 8.5.3 if and only if

(1 + L)hii ≥ 2
n∑

j=1,j �=i

|hij |, i = 1, . . . , n. (8.5.14)
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ϕ( )

x

1

L

1

x

−1

−L
−1

Figure 8.5.2: The generalized overflow nonlinearity described by (8.5.13).

Proof . We first prove this lemma for the overflow arithmetic given in Equation
(8.5.12).

We introduce the following notation. For ϕ defined in (8.5.12), let us denote

f(x) = [ϕ(x1), . . . , ϕ(xn)]T = Ex

where E = diag[e1, e2, . . . , en], ei = 1 if |xi| ≤ 1, and ei = L/|xi| if |xi| > 1.
Then, we have

xT Hx − f(x)T Hf(x) = xT (H − EHE)x.

Sufficiency: Suppose x = [x1, x2, . . . , xn]T , |xk| > 1 and |xi| ≤ 1 for i �= k
(x �∈ Dn). We have −1 < ek < 1 and ei = 1 for i �= k, and therefore,

H − EHE

=



0 · · · 0 h1k(1−ek) 0 · · · 0
... · · ·

...
...

... · · ·
...

0 · · · 0 hk−1,k(1−ek) 0 · · · 0
hk1(1−ek) · · · hk,k−1(1−ek) hkk(1−e2

k) hk,k+1(1−ek) · · · hkn(1−ek)
0 · · · 0 hk+1,k(1−ek) 0 · · · 0
... · · ·

...
...

... · · ·
...

0 · · · 0 hnk(1−ek) 0 · · · 0


and

xT (H − EHE)x = (1 − ek)
(

hkk(1 + ek)x2
k + 2

n∑
i=1,i �=k

hikxixk

)
. (8.5.15)
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Note that in the above equation we have used the fact that hij = hji.
From |xi| ≤ 1 for i �= k, |xk| > 1, ek|xk| = L and L > −1, we have

(1 + L)|xixk| ≤ (1 + L)|xk| < (|xk| + L)|xk| = (1 + ek)x2
k.

Hence, from (8.5.15), we have

xT (H − EHE)x ≥ (1 − ek)
(

hkk(1 + ek)x2
k − 2

n∑
i=1,i �=k

|hikxixk|
)

> (1 − e2
k)x2

k

(
hkk − 2

1 + L

n∑
i=1,i �=k

|hik|
)

≥ 0;

that is, xT Hx > xT EHEx = f(x)T Hf(x).
Denote M = {1, 2, . . . , m} for any m, 0 < m ≤ n, and

N = {ki : 0 < ki ≤ n, ki �= kj , when i �= j, i, j ∈ M}.

Now suppose that x = [x1, x2, . . . , xn]T, |xk| > 1 for k∈N and |xi| ≤ 1 for i �∈ N
(x �∈ Dn). Following the same procedure as above, we have

xT (H − EHE)x =
∑
k∈N

(1 − ek)
(

hkk(1 + ek)x2
k + 2

n∑
i=1,i �∈N

hikxixk

)
+
∑
k∈N

∑
l∈N,l �=k

hklxkxl(1 − ekel)

≥
∑
k∈N

(1 − ek)
(

hkk(1 + ek)x2
k − 2

n∑
i=1,i �∈N

|hikxixk|
)

+
∑
k∈N

∑
l∈N,l �=k

hklxkxl(1 − ekel)

>
∑
k∈N

(1 − e2
k)x2

k

(
hkk − 2

1 + L

n∑
i=1,i �∈N

|hik|
)

+
∑
k∈N

∑
l∈N,l �=k

hklxkxl(1 − ekel)

=
∑
k∈N

(1 − e2
k)x2

k

(
hkk − 2

1 + L

n∑
i=1,i �=k

|hik|
)

+
2

1 + L

∑
k∈N

(1 − e2
k)x2

k

∑
i∈N,i �=k

|hik|

+
∑
k∈N

∑
l∈N,l �=k

hklxkxl(1 − ekel). (8.5.16)
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The first summation of the right-hand side in (8.5.16) is nonnegative, by assump-
tion. Considering the last two terms in (8.5.16), by noting that −1 < ek < 1 and
ek|xk| = L for k ∈ N, and −1 < L ≤ 1, we have

2
1 + L

∑
k∈N

(1 − e2
k)x2

k

∑
i∈N,i �=k

|hik| +
∑
k∈N

∑
l∈N,l �=k

hklxkxl(1 − ekel)

≥
∑
k∈N

∑
l∈N,l �=k

(1 − e2
k)x2

k|hkl| −
∑
k∈N

∑
l∈N,l �=k

|hklxkxl|(1 − ekel)

=
∑
k∈N

∑
l∈N,l �=k

|hklxk|
(
|xk| − ekL − |xl| + ekL

)
=
∑
k∈N

∑
l∈N,l �=k

|hkl|x2
k −

∑
k∈N

∑
l∈N,l �=k

|hklxkxl|

=
∑
k∈N

∑
l∈N,l>k

|hkl|(x2
k + x2

l ) − 2
∑
k∈N

∑
l∈N,l>k

|hklxkxl|

=
∑
k∈N

∑
l∈N,l>k

|hkl|
(
|xk| − |xl|

)2 ≥ 0.

Therefore,
xT Hx − f(x)T Hf(x) = xT (H − EHE)x > 0,

for any x ∈ Rn such that x �∈ Dn.
This proves the sufficiency.

Necessity: It suffices to show that if (8.5.14) does not hold, there always exist some
points x �∈ Dn, such that

xT Hx ≤ f(x)T Hf(x).

Suppose that (8.5.14) does not hold for i = k; that is,

δ
�
= 2

n∑
j=1,j �=k

|hkj | − (1 + L)hkk > 0.

Let us choose |xk| = 1 + ξ, ξ > 0, and xi = −sign(hikxk), i �= k, where

sign(y) =


1, y > 0,
0, y = 0,

−1, y < 0.

Then, x = [x1, . . . , xn]T �∈ Dn and (8.5.15) becomes

xT (H − EHE)x = (1 − ek)
(

hkk(1 + ek)x2
k − 2

n∑
i=1,i �=k

|hikxk|
)

= (1 − ek)|xk|
(

hkkξ + (1 + L)hkk − 2
n∑

i=1,i �=k

|hki|
)

= (1 − ek)|xk|(hkkξ − δ).
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Clearly, when we choose 0 < ξ ≤ δ/hkk, we have

xT Hx − f(x)T Hf(x) = xT (H − EHE)x ≤ 0.

Note here that hkk > 0 because H is positive definite.
This proves the necessity.
For the overflow nonlinearity given in (8.5.13), the proof of sufficiency is similar to

the proof given above. To prove necessity, we note that for a given L, when |xi| > 1,
ϕ(xi) in (8.5.13) may assume any value in the crosshatched regions in 8.5.2 including
±L (which is the case for the arithmetic given by (8.5.12)). �

We note that condition (8.5.14) is usually called a diagonal dominance condition
in the literature [51].

We are now in a position to prove the following result.

Theorem 8.5.3 The nth-order digital filter described by (8.5.9), in which ϕ is given
in (8.5.12) or (8.5.13) with −1 < L ≤ 1, is free of limit cycles, if A is stable and if
there exists a positive definite matrix H that satisfies (8.5.14), such that

Q
�
= H − AT HA

is positive semidefinite.

Proof . We can follow the same procedure as in the proof of Theorem 8.5.2 to prove
that under the present conditions, the equilibrium xe = 0 of system (8.5.9) is glob-
ally asymptotically stable. Thus the digital filter described by (8.5.9) is free of limit
cycles. �

For the two’s complement and triangular overflow characteristics, we have the
following.

Lemma 8.5.3 An n×n positive definite matrix H = [hij ] satisfies Assumption 8.5.3
when f represents the two’s complement or the triangular arithmetic, if and only if
H is a diagonal matrix with positive diagonal elements.

Proof . The proof is similar to the proof of Lemma 8.5.2. �

D. Examples

To demonstrate the applicability of the results in the previous two subsections, we
now consider two specific examples.

Example 8.5.1 For system (8.5.1) with

A =
[

1 2−3

−0.1 0.9

]
, (8.5.17)

we have ‖A‖p > 1, p = 1, 2, or ∞. Therefore, condition (8.5.6) fails as a global
asymptotic stability test for this example, as shown in the following.
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Assumption 8.5.2 is satisfied for this example by choosing

H =
[

1 0.5
0.5 0.8

]
. (8.5.18)

Inasmuch as

Q = H − AT HA =
[

0.092 0.00325
0.00325 0.023875

]
is positive definite, all conditions of Theorem 8.5.2 are satisfied and the equilibrium
xe = 0 of system (8.5.1) with A specified by (8.5.17) is globally asymptotically
stable. �

Example 8.5.2 For system (8.5.1) with A given by

A =


−1 0 0.1 0
0.2 −0.6 0 0.8

−0.1 0.1 0.8 0
0.1 0 0.1 −0.5

 , (8.5.19)

it can easily be verified that ‖A‖p > 1, p = 1, 2, or ∞. Hence, condition (8.5.6) fails
again as a global asymptotic stability test for the present example.

Assumption 8.5.2 is satisfied for this example by choosing

H =


1.4 0 −0.2 0.4
0 1.6 0.2 −0.4

−0.2 0.2 3.4 0.5
0.4 −0.4 0.5 3

 . (8.5.20)

Because

Q = H − AT HA =


0.026 0.161 −0.003 0.077
0.161 1.014 −0.003 0.497

−0.003 −0.003 1.124 0.774
0.077 0.497 0.774 0.906


is positive definite, all conditions of Theorem 8.5.2 are satisfied, and the equilibrium
xe = 0 of system (8.5.1) with such a coefficient matrix is globally asymptotically
stable. �

8.6 Notes and References

For further details concerning Luré-type of results (Theorem 8.1.1), refer to [45].
The Yacubovich–Kalman Lemma (Lemma 8.1.1) was independently established by
Yacubovich [73] and Kalman [32]. The proof of Popov’s criterion (Theorem 8.1.2),
using the Yacubovich–Kalman Lemma, follows along the proof given in Lefschetz
[40]. In the original proof of results of this type, Popov relied on functional analysis
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techniques [62]. In addition to [40], there are several other monographs on the
absolute stability of regulator systems, including Aizerman and Gantmacher [2] and
Narendra and Taylor [60]. Our treatment in Section 8.1 of the absolute stability of
regulator systems is in the spirit of the presentation on this subject given in [52]
and [54].

For background material and further qualitative studies of the class of artificial
neural networks considered in Section 8.2, refer, for example, to [9], [11], [20], [37],
[41], and [47]–[50]. The particular method used in this section was popularized by
Hopfield [20]. The first rigorous proof of Theorem 8.2.1 (in a more general setting)
was given in [11] by Cohen and Grossberg. For further results concerning associate
memories realized by means of feedback artificial neural networks, refer to [47], [49],
and [50]. The idea of viewing neural networks as interconnected systems is motivated
by the viewpoints adopted in [19], [51], and [64]. Our presentation in Section 8.2 is
primarily based on [48], [49], and [50].

The analysis and synthesis of linear digital feedback control systems with one uni-
form sampling rate have been of interest for a long time ([1], [3], [14], [15], [30]) and
in recent works, systems with nonuniform sampling rates have also been addressed
(e.g., [28], and [29]). The implementation of the controllers of such systems by digital
computers, resulting in digital feedback control systems, has brought about several
investigations of the effects of the quantization nonlinearities (e.g., [7], [10], [13],
[21], [26], [27], [55], [56], [65], and [69]). Additionally, analyses of digital control
systems with nonlinear plants have also been conducted (e.g., [6], [21], and [26]).
These works address the particular conditions under which a linearization of the plant
is permissible (i.e., under which conditions the stability properties of the feedback
control systems with nonlinear plants can be deduced from the corresponding feed-
back control systems with the nonlinear plants replaced by their linearization). We
note here that although similar in spirit, the results presented in [26] apply to a sub-
stantially larger class of systems than those considered in [6]. Our presentation in
Section 8.3 follows closely the development given in [21] and [26].

The results of Section 8.4 concerning pulse-width-modulated feedback control
systems are based on [22]. There have only been a few results ([5], [16], [23], [36],
[38]) concerning PWM feedback systems with type II modulation. (The majority
stability results reported in the literature are for PWM feedback systems with type I
modulation, e.g., [5], [25], [58], and [71].) The examples treated in this section are
from [5] and [16]. Our comparisons, using these examples, indicate that the stability
results reported in Section 8.4 are less conservative than the results reported in the
above references. The reason for this appears twofold. First, the results in Section 8.4
are based on the general stability results for DDS which require that the quadratic
Lyapunov functions employed in the analysis decrease along the solutions of the
PWM systems only at instants when the PWM controller is turned off (and satisfy
certain bounds at the remaining times) whereas the results reported in [5] require
that the Lyapunov functions that are utilized (usually quadratic ones) decrease along
the solutions of the PWM system at all times and results in [16] use an averaging
method combined with the Popov criterion or the circle criterion. Additionally, the
stability results for PWM feedback control systems reported in Section 8.4 incorporate
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optimization procedures to decrease conservatism, which is not the case in the stability
results cited above.

For additional references on PWM feedback control systems (not necessarily deal-
ing with stability), the reader may want to consult [4], [12], [17], [18], [31], [33]–[35],
[39], [46], [61], [66]–[68], and [70], [71].

For a discussion of stability results of systems endowed with saturation nonlin-
earities and their applications to digital filters, refer to the monograph [44] and the
references cited therein. The material in Section 8.5 is based on results presented in
[24] and [43].
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[45] A. I. Luré, On Some Nonlinear Problems in the Theory of Automatic Control,
London: H. M. Stationary Office, 1951.



392 Chapter 8. Applications to Finite-Dimensional Dynamical Systems

[46] B. H. C. Matthews, “The nervous system as an electrical instrument,” J. Inst.
Elec. Eng., vol. 95, pp. 397–402, 1948.

[47] A. N. Michel and J. A. Farrell, “Associate memories via artificial neural net-
works,” IEEE Control Sys. Mag., vol. 10, pp. 6–17, 1990.

[48] A. N. Michel, J. A. Farrell, and W. Porod, “Qualitative analysis of neural net-
works,” IEEE Trans. Circ. Syst., vol. 36, pp. 229–243, 1989.

[49] A. N. Michel, J.A. Farrell, and H. F. Sun, “Analysis and synthesis techniques for
Hopfield type synchronous discrete time neural networks with applications to
content addressable memory,” IEEE Trans. Circ. Syst., vol. 37, pp. 1356–1366,
1990.

[50] A. N. Michel and D. Liu, Qualitative Analysis and Synthesis of Recurrent Neural
Networks, New York: Marcel Dekker, 2002.

[51] A. N. Michel and R. K. Miller, Qualitative Analysis of Large Scale Dynamical
Systems, New York: Academic Press, 1977.

[52] A. N. Michel, K. Wang, and B. Hu, Qualitative Theory of Dynamical Systems-
The Role of Stability Preserving Mappings, 2nd Edition, New York: Marcel
Dekker, 2001.

[53] A. N. Michel, J. Si, and G. Yen, “Analysis and synthesis of a class of discrete-
time neural networks described on hypercubes,” IEEE Trans. Neural Netw., vol.
2, pp. 32–46, Jan. 1991.

[54] R. K. Miller and A. N. Michel, Ordinary Differential Equations, New York:
Academic Press, 1982.

[55] R. K. Miller, A. N. Michel, and J. A. Farrell, “Quantizer effects on steady-state
error specifications of digital feedback control systems,” IEEE Trans. Autom.
Control, vol. 34, pp. 651–654, 1989.

[56] R. K. Miller, M. S. Mousa, andA. N. Michel, “Quantization and overflow effects
in digital implementations of linear dynamic controllers,” IEEE Trans. Autom.
Control, vol. 33, pp. 698–704, July 1988.

[57] W. L. Mills, C. T. Mullis, and R. A. Roberts, “Digital filter realizations without
overflow oscillations,” IEEE Trans. Acoust., Speech, Signal Proc., vol. ASSP-
26, pp. 334–338, Aug. 1978.

[58] B. J. Min, C. Slivinsky, and R. G. Hoft, “Absolute stability analysis of PWM
systems,” IEEE Trans. Autom. Control, vol. 22, pp. 447–452, 1977.

[59] G. J. Murphy and S. H. Wu, “A stability criterion for pulse-width-modulated
feedback control systems,” IEEE Trans. Autom. Control, vol. 9, pp. 434–441,
1964.

[60] K. S. Narendra and J. H. Taylor, Frequency Domain Stability for Absolute Sta-
bility, New York: Academic Press, 1973.

[61] E. Polak, “Stability and graphical analysis of first-order pulse-width-modulated
sampled-data regulator systems,” IEEE Trans. Autom. Control, vol. 6, pp. 276–
282, 1961.



Bibliography 393

[62] V. M. Popov, “Absolute stability of nonlinear systems of automatic control,”
Autom. Remote Control, vol. 22, pp. 857–895, 1961.

[63] I. W. Sandberg, “A theorem concerning limit cycles in digital filters,” Proc.
7th Annual Allerton Conference on Circuit and System Theory, University of
Illinois at Urbana-Champaign, Urbana, IL, pp. 63–68, Oct. 1969.

[64] D. D. Siljak, Large-Scale Dynamical Systems: Stability and Structure, New
York: North Holland, 1978.

[65] V. Singh, “Elimination of overflow oscillations in fixed-point state-space digital
filters using saturation arithmetic,” IEEE Trans. Circ. Syst., vol. 37, pp. 814–818,
1990.

[66] H. Sira-Ramirez, “A geometric approach to pulse-width modulated control in
nonlinear dynamical systems,” IEEE Trans. Autom. Control, vol. 34, pp. 184–
187, 1989.

[67] H. Sira-Ramirez and L. S. Orestes, “On the dynamical pulse-width-modulation
control of robotic manipulator systems,” Int. J. Robust Control, vol. 6, pp. 517–
537, 1996.

[68] H. Sira-Ramirez and M. T. Prada-Rizzo, “Nonlinear feedback regulator design
for the Cuk converter,” IEEE Trans. Autom. Control, vol. 37, pp. 1173–1180,
1992.

[69] J. E. Slaughter, “Quantization errors in digital control systems,” IEEE Trans.
Autom. Control, vol. 9, pp. 70–74, 1964.

[70] D. G. Taylor, “Pulse-width modulated control of electromechanical systems,”
IEEE Trans. Autom. Control, vol. 37, pp. 524–528, 1992. p. 70–74, 1964.

[71] S. G. Tsefastas, “Pulse width and pulse frequency modulated control systems,”
in Simulation of Control Systems, I. Troch, Editor, New York: North-Holland,
1978, pp. 41–48.

[72] P. P. Vaidyanathan and V. Liu, “An improved sufficient condition for absence of
limit cycles in digital filters,” IEEE Trans. Circ. Syst., vol. CAS-34, pp. 319–322,
Mar. 1987

[73] V. A. Yacubovich, “Solution of certain matrix inequalities encountered in non-
linear control theory,” Soviet Math. Doklady, vol. 5, pp. 652–666, 1964.



Chapter 9

Infinite-Dimensional
Dynamical Systems

In this chapter we address the Lyapunov stability and the boundedness of motions of
infinite-dimensional dynamical systems determined by differential equations defined
on Banach spaces and semigroups. As in Chapters 6, 7, and 8, we concentrate
on the qualitative properties of equilibria and we consider continuous as well as
discontinuous dynamical systems (DDS).

This chapter consists of eleven parts. In the first section we establish some of the
notation used throughout this chapter. In the second section we present the principal
Lyapunov stability and instability results of an equilibrium for dynamical systems
determined by general differential equations in Banach spaces, as well as results for
the boundedness of motions (Lagrange stability) for such systems. Most of these
results are direct consequences of the corresponding results established in Chapter 3
for dynamical systems defined on metric spaces. We demonstrate the applicability
of these results in the analysis of several specific classes of differential equations de-
fined on different Banach spaces. In the third section we present converse theorems
(necessary conditions) for most of the results (sufficient conditions) established in the
second section. Most of these results are also direct consequences of corresponding
results given in Chapter 3 for dynamical systems defined on metric spaces. In the
fourth section we present the invariance theory for autonomous differential equations
defined on Banach spaces and we apply these results in the analysis of specific classes
of systems. In the fifth section we develop a comparison theory for general differen-
tial equations defined on Banach spaces and we apply these results in a subsequent
section. In the sixth section we present stability results for composite systems de-
fined on Banach spaces described by a mixture of different differential equations and
we apply these results in the analysis of a specific class of systems. In the seventh
section we apply the results developed in the fifth section in the stability analysis of
a point kinetics model of a multicore nuclear reactor (described by Volterra integrod-
ifferential equations). In the eighth section we present general stability, instability,
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and boundedness results for dynamical systems determined by retarded functional
differential equations (RFDEs) (a special important class of differential equations in
Banach spaces). In addition to these general results, we present results concerning
the invariance theory for RFDEs and Razumikhin-type theorems for such systems.
In the ninth section we apply the results of the eighth section in the analysis of a
class of artificial neural networks with time delays. In the tenth section we address
stability and boundedness results for discontinuous dynamical systems determined by
differential equations in Banach spaces. We address local and global stability and in-
stability results of an equilibrium and results for the boundedness of motions, as well
as converse theorems. We apply these results in the analysis of several specific classes
of systems. Finally, in the eleventh section we present stability results for discontinu-
ous dynamical systems determined by linear and nonlinear semigroups and we apply
these results in the analysis of several specific classes of infinite-dimensional DDS.

9.1 Preliminaries

Let X be a Banach space with norm ‖ · ‖, let C be a subset of X , let 0 ∈ C and let
F : R × C → X . Recall from Subsection 2.6A that the equation

ẋ = F (t, x) (GE)

is called a differential equation in Banach space, where ẋ = dx/dt. A function
ϕ : [t0, t0 + c) → C, c > 0, is called a solution of (GE) if ϕ ∈ C [[t0, t0 + c), C], if
ϕ is differentiable with respect to t for t ∈ [t0, t0 + c) and if ϕ satisfies the equation
(dϕ/dt)(t) = F (t, ϕ(t)) for all t ∈ [t0, t0 + c). Associated with (GE) we have the
initial value problem given by

ẋ = F (t, x), x(t0) = x0. (IGE)

Throughout this chapter we assume that for each (t0, x0) ∈ R
+ × C there exists at

least one solution of (IGE), ϕ(t, t0, x0), that satisfies the initial condition x(t0) =
x0 = ϕ(t0, t0, x0). The reader should refer to Subsection 2.6A for a discussion
concerning the existence and uniqueness of solutions of the initial value problem
(IGE).

As discussed throughout Chapter 2, special classes of differential equations on Ba-
nach spaces include ordinary differential equations, functional differential equations,
Volterra integrodifferential equations and partial differential equations. All of these
determine dynamical systems. We denote a dynamical system determined by (GE)
by SGE .

In a similar manner as in the case of finite-dimensional dynamical systems SE

determined by (E) (refer to Chapter 6), we use the phrase “M is an invariant set of
(GE)” in place of the phrase “M is an invariant set with respect to SGE”, the phrase
“the invariant set M of (GE) is stable” in place of “the invariant set M is stable with
respect to SGE”, and similar phrases for all other remaining stability, instability, and
boundedness types that we encounter.
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As in Chapters 6 through 8, we continue to focus on equilibria for (GE); that is,
M = {xe}. We use the phrase “the equilibrium xe of (GE) is stable” in place of “the
invariant set {xe} of (GE) is stable”, “the equilibrium xe of (GE) is asymptotically
stable” in place of “the invariant set {xe} of (GE) is asymptotically stable”, and so
forth.

We recall that in the case of finite-dimensional dynamical systems, all norms
are topologically equivalent and therefore, when addressing convergence properties,
(e.g., the stability of an equilibrium), the particular choice of norm plays no impor-
tant role. This is in general not the case for dynamical systems defined on infinite-
dimensional spaces. Specifically, for dynamical systems determined by (GE), the
various stability and boundedness properties depend on the choice of the norm,
because on infinite-dimensional normed linear spaces, different norms are in gen-
eral not topologically equivalent. Accordingly, it is usually necessary to specify
explicitly which norm is being used in a given result.

Similarly as in the case of finite-dimensional dynamical systems, we may assume
without loss of generality that xe = 0 is an equilibrium for (GE).

As in Chapters 6 and 7, we employ lowercase letters to denote scalar-valued
Lyapunov functions (e.g., v) and uppercase letters to denote vector-valued Lyapunov
functions (e.g., V ). Also, we denote scalar Lyapunov functions that are the compo-
nents of vector Lyapunov functions by lowercase letters (e.g., vi).

We can characterize a scalar Lyapunov function v ∈ C[B(r) × R
+, R] (resp.,

v ∈ C[X × R
+, R]) as being positive definite (negative definite), positive semidef-

inite (negative semidefinite), decrescent, or radially unbounded, by modifying Def-
initions 6.1.8–6.1.13 (resp., Theorems 6.1.1–6.1.3) in an appropriate way, replacing
R

n by X , Ω ⊂ R
n by C ⊂ X , and B(r) ⊂ Ω by B(r) ⊂ C. As in the case of

the various stability and boundedness concepts, the above characterizations are tied
to the choice of the particular Banach space being used. Thus, we may have to use
phrases such as “v is positive definite with respect to the space X”, and similar other
phrases.

Let ϕ(·, t0, x0) denote a solution of (GE). For every function v∈C[B(r)×R
+, R],

where B(r) = {x ∈ X : ‖x‖ < r} with r > 0 and B(r) ⊂ C, we define the upper-
right derivative of v with respect to t along the solutions of (GE) by

v′
(GE)(x, t) = lim

∆t→0+
sup

ϕ(t,t,x)=x

1
∆t

[
v(ϕ(t + ∆t, t, x), t + ∆t) − v(x, t)

]
. (9.1.1)

When (GE) has a unique solution for every x(t0) = x0 = ϕ(t0, t0, x0) with
(t0, x0) ∈ R

+ × B(r), then (9.1.1) reduces to

v′
(GE)(x, t) = lim

∆t→0+

1
∆t

[
v(ϕ(t + ∆t, t, x), t + ∆t) − v(x, t)

]
. (9.1.2)

If in addition to the above assumptions, v satisfies a local Lipschitz condition in x,
that is, if for every T > 0 there exists an L > 0 such that∣∣v(x, t) − v(y, t)

∣∣ ≤ L‖x − y‖ (9.1.3)
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for all x, y ∈ B(r) and for all t ∈ [0, T ], then (9.1.2) can equivalently be expressed as

v′
(GE)(x, t) = lim

∆t→0+

1
∆t

[
v(x + ∆tF (t, x), t + ∆t) − v(x, t)

]
. (9.1.4)

We ask the reader to verify relation (9.1.4) in the problem section.

9.2 The Principal Lyapunov Stability and
Boundedness Results for Differential
Equations in Banach Spaces

In the present section we address stability and boundedness properties of infinite-
dimensional dynamical systems determined by differential equations in Banach spaces
(GE).

A. Local results

We assume that C ⊂ X, xe = 0 ∈ C, xe = 0 is an equilibrium for (GE) and we let
‖ · ‖ denote the norm for the Banach space X .

Theorem 9.2.1 Assume that for system (GE) there exists a positive definite function
v ∈ C[B(r) × R

+, R] such that v′
(GE) is negative semidefinite where B(r) ⊂ C for

some r > 0. Then the following are true.

(a) The equilibrium xe = 0 of (GE) is stable.

(b) If in addition to the above, v is decrescent, then xe = 0 of (GE) is uniformly
stable.

(c) If in (b), v′
(GE) is negative definite, then xe = 0 of (GE) is uniformly asymp-

totically stable.

(d) If in (c), v satisfies
c1‖x‖b ≤ v(x, t) ≤ c2‖x‖b

and
v′
(GE)(x, t) ≤ −c3‖x‖b

for all (x, t) ∈ B(r) × R
+, where c1, c2, c3 and b are positive constants, then

xe = 0 of (GE) is exponentially stable.

Proof . The proof of this theorem follows from the proofs of Theorems 3.3.1–3.3.3
and follows along the lines of the proof of Theorems 6.2.1, 6.2.2, and 6.2.4. We omit
the details in the interest of brevity. �

In order to apply Theorem 9.2.1 (and the other Lyapunov theorems that we con-
sider) in the stability analysis of initial value and boundary value problems determined
by partial differential equations, we need to show that such problems may be viewed
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as systems of differential equations (GE). To fix some of the ideas involved, we
consider in the following an important specific class of initial value and boundary
value problems determined by partial differential equations.

Let Ω be a bounded domain in R
n with smooth boundary ∂Ω (i.e., ∂Ω is of

class C∞ (refer to Section 2.10)), let ∂α
x denote the operator ∂|α|/(∂α1

x1
· · · ∂αn

xn
) for

x = (x1, . . . , xn) and α = (α1, . . . , αn) with |α| = α1 + · · · + αn, and let f denote
a real n vector-valued C∞ function of t, x, u, and ∂α

x u for all α such that |α| ≤ 2m,
where u = (u1, . . . , ul)T : R

+ × Ω → R
l and ∂α

x u = (∂α1
x1

u1 · · · ∂αl
xl

ul)T . We
now consider the class of partial differential equations with initial conditions and
boundary conditions given by

∂u

∂t
(t, x) = f(t, x, u, ∂xu, . . . , ∂α

x u, . . . ), (t, x) ∈ [t0,∞) × Ω

∂α
x u(t, x) = 0, |α| < m, (t, x) ∈ [t0,∞) × ∂Ω

u(t0, x) = u0(x), x ∈ Ω
(9.2.1)

where ∂u/∂t = (∂u1/∂t, . . . , ∂ul/∂t)T
, t0 ∈ R

+, and u0 ∈ C∞[Ω, Rl] satisfies
limx→∂Ω ∂α

x u0(x) = 0 for all |α| < m.
Assume that for every t0 ∈ R

+ and u0 ∈ C∞[Ω, Rl], there exists at least one
solution u ∈ C∞[[t0,∞) × Ω, Rl] that satisfies (9.2.1). Conditions that ensure
this for linear parabolic equations are given in Theorem 2.10.2. For results that
ensure the existence of certain classes of nonlinear parabolic equations, refer to [17]
and [19].

Now let C = C∞[Ω, Rl] ∩ Hm
0 (Ω), let U(t) = u(t, ·) ∈ C∞[Ω, Rl], and define

F : R
+ × C → C by

F (t, U(t))(x) = f(t, x, u, ∂xu, . . . , ∂α
x u, . . . ).

(Refer to Section 2.10 for the definition of Hm
0 (Ω).) We can now rewrite (9.2.1) as

dU

dt
= F (t, U), U(t0) = u0 (9.2.2)

where t ∈ [t0,∞), (t0, u0) ∈ R
+×C and F : R

+×C → C. Then (9.2.2) constitutes
an initial value problem defined on the Banach space X = Hm

0 (Ω) for the differential
equation

dU

dt
= F (t, U) (9.2.3)

which is a special case of the differential equation (GE).
We conclude by noting that there are more general classes of initial value and

boundary value problems than (9.2.1) which can be cast as special cases of (GE).
We now apply Theorem 9.2.1 in the stability analysis of a specific example of

(9.2.1).
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Example 9.2.1 A special case of (9.2.1) is the initial value and boundary value prob-
lem for the fourth-order linear scalar parabolic partial differential equation given by

∂u

∂t
= −∂4u

∂x4 (t, x), (t, x) ∈ R
+ × (0, 1)

u(0, x) = ψ(x), x ∈ (0, 1)

u(t, 0) = u(t, 1) =
∂u

∂x
(t, 0) =

∂u

∂x
(t, 1) = 0, t ∈ R

+.

(9.2.4)

In view of Theorem 2.10.2, for each ψ ∈ X
�
= H4[(0, 1), R] ∩ H2

0 [(0, 1), R] there
exists a unique solution u = u(t, x) of (9.2.4) such that u(t, ·) ∈ X for each fixed
t ∈ R

+, and U , defined by U(t) = u(t, ·), is a continuously differentiable function
from R

+ to X with respect to the H2-norm (refer, e.g., to [33, p. 210]).
In view of our discussion of the class of systems (9.2.1), we may view (9.2.4) as

an initial value problem for a differential equation of the form (GE) in the Banach
space X with the H2-norm. It is easily shown that ϕe ≡ 0 ∈ X is an equilibrium for
(9.2.4).

In applying Theorem 9.2.1, we choose the Lyapunov function

v(ψ) = ‖ψ‖2
H2 =

∫ 1

0

[(
∂2ψ

∂x2

)2

+
(

∂ψ

∂x

)2

+ ψ2
]
dx (9.2.5)

and we denote a solution of (9.2.4) by u(t, x).
Along the solutions of (9.2.4) we have

dv

dt
(u) = 2

∫ 1

0

[(
∂2u

∂x2

)
∂

∂t

(
∂2u

∂x2

)
+
(

∂u

∂x

)
∂

∂t

(
∂u

∂x

)
+ u

∂u

∂t

]
dx

= −2
∫ 1

0

[(
∂2u

∂x2

)
∂6u

∂x6 +
(

∂u

∂x

)
∂5u

∂x5 + u
∂4u

∂x4

]
dx. (9.2.6)

In order to ascertain the definiteness of (dv/dt)(u), we rewrite the three terms in
brackets in (9.2.6). We first consider the second term. Recalling the expression for
integration by parts, ∫ 1

0
pdq = pq

∣∣∣1
0

−
∫ 1

0
qdp

and letting

p =
∂ψ

∂x
,

∂p

∂x
=

∂2ψ

∂x2 , dp =
∂2ψ

∂x2 dx

q =
∂4ψ

∂x4 , dq =
(

∂5ψ

∂x5

)
dx = d

(
∂4ψ

∂x4

)
and applying the initial conditions, we obtain∫ 1

0

(
∂ψ

∂x

)
∂5ψ

∂x5 dx = −
[
−
∫ 1

0

(
∂3ψ

∂x3

)(
∂3ψ

∂x3

)
dx

]
=
∫ 1

0

(
∂3ψ

∂x3

)2

dx.
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In a similar manner, we obtain for the first term in brackets in (9.2.6)∫ 1

0

(
∂2ψ

∂x2

)
∂6ψ

∂x6 dx =
∫ 1

0

(
∂4ψ

∂x4

)2

dx

and for the third term, ∫ 1

0
ψ

∂4ψ

∂x4 dx =
∫ 1

0

(
∂2ψ

∂x2

)2

dx.

Hence, we have

dv

dt
(u) = −2

∫ 1

0

[(
∂4u

∂x4

)2

+
(

∂3u

∂x3

)2

+
(

∂2u

∂x2

)2 ]
= −2

∥∥∥∥∂2u

∂x2

∥∥∥∥2

H2

.

Therefore, along the solutions of (9.2.4) we have

dv

dt
(u) = −2

∥∥∥∥∂2u

∂x2

∥∥∥∥2

H2

≤ 0 (9.2.7)

for all u ∈ X .
It now follows from (9.2.5), (9.2.7) and Theorem 9.2.1 that the equilibrium ϕe = 0

of (9.2.4) is uniformly stable with respect to the H2-norm.
In Section 9.4 (see Example 9.4.2) we show, utilizing a result from the invari-

ance theory for infinite-dimensional systems, that the equilibrium ϕe = 0 of system
(9.2.4) is actually uniformly asymptotically stable in the large with respect to the
H1-norm. �

B. Global results

In the case of global results we let C = X .

Theorem 9.2.2 Assume that there exists a function v ∈ C[X×R
+, R], two functions

ψ1, ψ2 ∈ K∞, and a function ψ3 ∈ K such that

ψ1(‖x‖) ≤ v(x, t) ≤ ψ2(‖x‖)

and
v′
(GE)(x, t) ≤ −ψ3(‖x‖)

for all (x, t) ∈ X ×R
+. Then the equilibrium xe = 0 of (GE) is uniformly asymptot-

ically stable in the large. Furthermore, if there exist four positive constants c1, c2, c3,
and b such that

c1‖x‖b ≤ v(x, t) ≤ c2‖x‖b

and
v′
(GE)(x, t) ≤ −c3‖x‖b

for all (x, t) ∈ X × R
+, then the equilibrium xe = 0 of (GE) is exponentially stable

in the large.



402 Chapter 9. Infinite-Dimensional Dynamical Systems

Proof . The proof of this theorem is a direct consequence of Theorems 3.3.6 and
3.3.7. �

We apply the above results in the analysis of the heat equation.

Example 9.2.2 A class of initial and boundary value problems determined by the
heat equation is given by

∂u

∂t
= a2∆u, (t, x) ∈ R

+ × Ω

u(0, x) = ψ(x), x ∈ Ω
u(t, x) = 0, (t, x) ∈ R

+ × ∂Ω

(9.2.8)

where Ω⊂R
n is a bounded domain with smooth boundary ∂Ω, a2 >0 is a constant,

and ∆=
∑n

i=1 ∂2/∂x2
i denotes the Laplacian. For each ψ∈X=H2[Ω, R] ∩ H1

0 [Ω, R]
there exists a unique solution u = u(t, x) of (9.2.8) such that u(t, ·) ∈ X for each
fixed t ∈ R

+ and U , defined by U(t) = u(t, ·), is a continuously differentiable
function from R

+ to X with respect to the H1-norm (refer, e.g., to [33, p. 210]).
Then (9.2.8) can be written as an abstract Cauchy problem in the space X with
respect to the H1-norm (refer to the discussion of (9.2.2)),

U̇(t) = AU(t), t ≥ 0

with initial condition U(0) = ψ ∈ X , where the operator A is linear and is defined
by A =

∑n
i=1 a2d2/dx2

i .
In Chapter 3 we showed that 0 ∈ X is an equilibrium for (9.2.8). We now show,

using Theorem 9.2.2, that the equilibrium xe = 0 is exponentially stable with respect
to the H1-norm. In doing so, we make use of Gauss’Divergence Theorem [8], which
we recall here in the context of the problem on hand: the volume integral of the
divergence of any continuously differentiable vector Q is equal to the closed surface
integral of the outward normal component of Q; that is,∫

Ω
∇Q(x)dx =

∫
∂Ω

Qn̂dx

where Q = (Q1, . . . , Qn)T , ∇Q = (∂Q1/∂x1, . . . , ∂Qn/∂xn)T and Qn̂ is the
directional derivative of Q in the outward normal direction.

Now let Q = uT ∇u, where u is a solution of (9.2.8). Then for any u(t, ·) ∈
H1

0 [Ω, R] we have∫
Ω

[
(∇u)T ∇u + u∆u

]
dx =

∫
∂Ω

u
∂u

∂x
dx = 0

which implies that ∫
Ω

u∆udx = −
∫

Ω

∣∣∇u
∣∣2dx.

In applying Theorem 9.2.2, we choose as a Lyapunov function

v(ψ) = ‖ψ‖2
H1 =

∫
Ω

(
|∇ψ|2 + |ψ|2

)
dx. (9.2.9)
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Let u(t, x) denote a solution of (9.2.8). Then

dv

dt
(u) =

∫
Ω

∂

∂t

[ n∑
i=1

(
∂u

∂xi

)2
+ u2

]
dx

=
∫

Ω

[ n∑
i=1

2
( ∂u

∂xi

) ∂2u

∂xi∂t
+ 2u

∂u

∂t

]
dx

= −
n∑

i=1

2
∫

Ω

∂2u

∂x2
i

∂u

∂t
dx + 2a2

∫
Ω

u∆udx

= −2a2
∫

Ω
(∆u)2dx − 2a2

∫
Ω

|∇u|2dx

≤ −2a2
∫

Ω
|∇u|2dx.

By Poincaré’s inequality [34], we have that∫
Ω

|u|2dx ≤ γ2
∫

Ω
|∇u|2dx

where γ can be chosen as δ/
√

n and Ω can be put into a cube of length δ. Hence,
we have

dv

dt
(u) ≤ −a2

(∫
Ω

|∇u|2dx +
1
γ2

∫
Ω

|u|2dx

)
≤ −c‖u‖2

H1

where c = a2 min{1, 1/γ2}. Therefore,

v′
(9.2.8)(ψ) ≤ −c‖ψ‖2

H1 (9.2.10)

for all ψ ∈ X .
It now follows from (9.2.9), (9.2.10), and Theorem 9.2.2 that the equilibrium 0 ∈X

of (9.2.8) is exponentially stable in the large with respect to the H1-norm. �

Example 9.2.3 Scalar linear Volterra integrodifferential equations are of the form ẋ(t) = −ax(t) +
∫ t

−∞
k(t − s)x(s)ds, t ≥ 0

x(t) = ϕ(t), t ≤ 0
(9.2.11)

where a > 0 is a constant. As shown in Subsection 2.9D (refer to Example 2.9.3),
such systems may be viewed as retarded functional differential equations, replacing
the delay [−r, 0] by (−∞, 0]. System (9.2.11) can be rewritten as ẋ(t) = −axt(0) +

∫ 0

−∞
k(−s)xt(s)ds, t ≥ 0

x(t) = ϕ(t), t ≤ 0.

(9.2.12)

For (9.2.12) we define the fading memory space X as consisting of all measurable
functions ϕ : (−∞, 0) → R with norm

‖ϕ‖2
m = |ϕ(0)|2 + K

∫ 0

−∞
|ϕ(s)|2eLsds < ∞ (9.2.13)
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with K > 0 to be determined as needed and L > 0 a fixed constant. We assume that
k(·) ∈ X and we define CL = (

∫∞
0 |k(s)|2eLsds)1/2.

If we define F (t, ϕ) ≡ F (ϕ) = −ϕ(0) +
∫ 0

−∞ k(−s)ϕ(s)ds for all ϕ ∈ X , then
(9.2.12) is a special case of the differential equation in Banach space (GE) with the
Banach space as specified above.

To obtain an estimate of solution bounds for (9.2.12) we choose for any ϕ ∈ X ,

v(ϕ) = ‖ϕ‖2
m (9.2.14)

and we let y(t) = v(xt). Along the solutions of (9.2.12) we have

ẏ(t) = (K − 2a)|x(t)|2 + 2CLx(t)z(t) − KL|z(t)|2 (9.2.15)

where z(t) = (
∫ 0

−∞ |xt(s)|2eLsds)1/2. The right side of (9.2.15) is negative definite
if and only if the matrix

P =
[
2a − K −CL

−CL KL

]
(9.2.16)

is positive definite which is the case when (i) 0 ≤ K < 2a, (ii) KL > 0 (which is
always true), and (iii) CL/

√
L ≤ a. Therefore, when CL/

√
L ≤ a, there exists a

K > 0 such that the right-hand side of (9.2.15) is negative definite.
We want to show that there exists an α < 0 such that

ẏ(t) ≤ αy(t). (9.2.17)

Letting

Q =
[
1 0
0 K

]
, (9.2.18)

this is equivalent to finding an α such that P ≥ −αQ. It is easy to see that this is the
case when

α = − λm(P )
max{1, K} < 0 (9.2.19)

where λm(P ) denotes the smallest eigenvalue of P .
We conclude that if CL/

√
L ≤ a and K is chosen appropriately, then there exists

an α < 0 such that ẏ(t) ≤ αy(t). Therefore,

‖xt‖m ≤ e(α/2t)‖x0‖m, α < 0 (9.2.20)

and we conclude that the equilibrium ϕe = 0 of system (9.2.12) is exponentially
stable in the large with respect to the norm ‖ · ‖m. �

Theorem 9.2.3 Assume that there exists a function v ∈ C[X × R
+, R] that satisfies

the following conditions.

(i) There exist two continuous, real-valued and strictly increasing functions ψ1, ψ2
that are defined on R

+ with limr→∞ ψi(r) = +∞, i = 1, 2, and a constant
M > 0 such that

ψ1(‖x‖) ≤ v(x, t) ≤ ψ2(‖x‖)

for all ‖x‖ ≥ M and t ∈ R
+.
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(ii) For all ‖x‖ ≥ M and t ∈ R
+,

v′
(GE)(x, t) ≤ 0.

Then the solutions of (GE) are uniformly bounded.
If in addition to hypotheses (i) and (ii) there exists a function ψ3 ∈ K such that

v′
(GE)(x, t) ≤ −ψ3(‖x‖)

for all ‖x‖ ≥ M and t ∈ R
+, then the solutions of (GE) are uniformly ultimately

bounded.

Proof . The proof of this theorem is a direct consequence of Theorems 3.3.4 and
3.3.5. �

We conclude this subsection with two examples.

Example 9.2.4 We consider the dynamical system determined by (9.2.4) in Exam-
ple 9.2.1. Because the function v defined in (9.2.5) is positive definite, decrescent,
and radially unbounded with respect to the H2-norm, it follows from (9.2.7) and
Theorem 9.2.3 that the solutions of (9.2.4) are uniformly bounded with respect to the
H2-norm. �

Example 9.2.5 We consider the dynamical system determined by (9.2.8) in Exam-
ple 9.2.2. Because the function v defined in (9.2.9) is positive definite, decrescent,
and radially unbounded with respect to the H1-norm, it follows from (9.2.10) and
Theorem 9.2.3 that the solutions of (9.2.8) are uniformly ultimately bounded with
respect to the H1-norm. �

C. Instability

As in Subsection A, we assume in the following that C ⊂ X , xe = 0 ∈ C, xe = 0 is
an equilibrium for (GE) and we let ‖ · ‖ denote the norm for the Banach space X .

Theorem 9.2.4 (Lyapunov’s First Instability Theorem for differential equations in
Banach spaces) The equilibrium xe = 0 of (GE) is unstable if there exist a t0 ∈ R

+

and a decrescent function v ∈ C[B(r)×R
+, R] for some r > 0, B(r) ⊂ C, such that

v′
(GE) is positive definite (negative definite) and if in every neighborhood of the origin

there is a point x such that v(x, t0) > 0 (v(x, t0) < 0). Moreover, if v is positive
definite (negative definite), then the equilibrium xe = 0 is completely unstable.

Proof . The proof of this result is a direct consequence of Theorem 3.3.8. �

We apply the above result in the stability analysis of the backward heat equation.
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Example 9.2.6 Consider the initial and boundary value problem given by
∂u

∂t
= −a2∆u, (t, x) ∈ R

+ × Ω

u(0, x) = ψ(x), x ∈ Ω
u(t, x) = 0, (t, x) ∈ R

+ × ∂Ω

(9.2.21)

where a2 > 0 is a constant, Ω ⊂ R
n is a bounded domain with smooth boundary ∂Ω,

∆ denotes the Laplacian, and ψ ∈ C0[Ω, R]. We may view (9.2.21) as a differential
equation in the Banach space X = H0[Ω, R]. (Refer to Section 2.10 for the definitions
of C0[Ω, R] and H0[Ω, R].) It is easy to show that 0 ∈ X is an equilibrium of (9.2.21).

In applying Theorem 9.2.4 in the stability analysis of (9.2.21), we choose as a
Lyapunov function

v(ϕ) =
∫

Ω
|ϕ(x)|2dx = ‖ϕ‖2

L2
(9.2.22)

for all ϕ ∈ X . This function is clearly positive definite with respect to the L2-norm.
Along the solutions of (9.2.21) we have

v′
(9.2.21)(ϕ) = 2

∫
Ω

ϕ
dϕ

dt
dx = −2

∫
Ω

ϕ(∆ϕ)dx.

By Gauss’ Divergence Theorem and Poincaré’s Inequality (refer to Example 9.2.2)
we have

−2
∫

Ω
ϕ(∆ϕ)dx = 2

∫
Ω

|∇ϕ|2dx ≥ 2
γ2

∫
Ω

|ϕ|2dx =
2
γ2 ‖ϕ‖L2

for all ϕ ∈ X , where γ is a positive constant that depends on Ω (refer to Example
9.2.2). Therefore,

v′
(9.2.21)(ϕ) ≥ 2

γ2 ‖ϕ‖L2 (9.2.23)

which shows that v′
(9.2.21) is positive definite. It now follows from (9.2.22), (9.2.23),

and Theorem 9.2.4 that the equilibrium xe = 0 of (9.2.21) is completely unstable
with respect to the L2-norm. �

Theorem 9.2.5 (Lyapunov’s Second Instability Theorem for differential equations
in Banach spaces) Assume that for system (GE) there exists a bounded function
v ∈ C[B(ε) × [t0,∞), R] where ε > 0 and B(ε) ⊂ C, having the following
properties.

(i) For all (x, t) ∈ B(ε) × [t0,∞),

v′
(GE)(x, t) ≥ λv(x, t)

where λ > 0 is a constant.
(ii) In every neighborhood of xe = 0, there exists an x such that v(x, t1) > 0 for

a fixed t1 ≥ t0.

Then the equilibrium xe = 0 of (GE) is unstable.
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Proof . The proof of this result is a direct consequence of Theorem 3.3.10. �

We demonstrate the applicability of Theorem 9.2.5 in the analysis of a specific
example.

Example 9.2.7 Consider the initial value and boundary value problem given by

∂u1

∂t
= u1 + u2 +

n∑
j=1

aj
∂u1

∂xj
(t, x) ∈ R

+× Ω

∂u2

∂t
= u1 + u2 +

n∑
j=1

bj
∂u2

∂xj
+ ∆u2, (t, x) ∈ R

+× Ω

ui(0, x) = ψi(x), x ∈ Ω, i = 1, 2
ui(t, x) = 0, (t, x) ∈ R

+× ∂Ω, i = 1, 2
(9.2.24)

where Ω ⊂ R
n is a bounded domain with smooth boundary, ∆ =

∑n
j=1 ∂2/∂x2

j

denotes the Laplacian, aj , bj are real constants, j = 1, . . . , n, and ψi ∈ C0[Ω, R],
i = 1, 2. (Refer to Section 2.10 for the definition of C0[Ω, R].)

Equations (9.2.24) may be viewed as differential equations in the Banach space
X = H0[Ω, R]×H0[Ω, R]. It is easily verified that the origin of X is an equilibrium
of (9.2.24).

In the following, we show that the equilibrium 0 ∈ X of system (9.2.24) is unstable
with respect to the L2-norm, using Theorem 9.2.5.

We choose as a Lyapunov function,

v(ϕ) =
∫

Ω

(
|ϕ1|2 − |ϕ2|2

)
dx (9.2.25)

where ϕ = (ϕ1, ϕ2) ∈ X . Along the solutions of (9.2.24) we have

v′
(9.2.24)(ϕ) = 2

∫
Ω

ϕ1

[
ϕ1 + ϕ2 +

n∑
j=1

aj
∂ϕ1

∂xj

]
dx

− 2
∫

Ω
ϕ2

[
ϕ1 + ϕ2 +

n∑
j=1

bj
∂ϕ2

∂xj
+ ∆ϕ2

]
dx

= 2v(ϕ) − 2
∫

Ω
ϕ2(∆ϕ2)dx

where in the last step we have used the fact that

2
∫

Ω
ϕi

∂ϕi

∂xj
dx =

∫
Ω

∂[ϕ2
i ]

∂xj
dx = 0

j = 1, . . . , n, for ϕi ∈ C0[Ω, R], i = 1, 2.
Invoking Gauss’ Divergence Theorem, we have

2v(ϕ) − 2
∫

Ω
ϕ2(∆ϕ2)dx = 2v(ϕ) + 2

∫
Ω

|∇ϕ2|2dx ≥ 2v(ϕ)
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for all ϕ ∈ X . Therefore,
v′
(9.2.24)(ϕ) ≥ 2v(ϕ) (9.2.26)

for all ϕ ∈ X .
Clearly, v(ϕ) is bounded on

B(1) =
{
ϕ = (ϕ1, ϕ2) ∈ X : ‖ϕ‖2 = ‖ϕ1‖2

L2
+ ‖ϕ1‖2

L2
≤ 1
}

and v(ϕ) > 0 if ϕ = (ϕ1, 0) and ‖ϕ1‖L2 �= 0. Therefore, condition (ii) in
Theorem 9.2.5 is satisfied. It follows from (9.2.26) and Theorem 9.2.5 that the
equilibrium ϕe = 0 ∈ X of (9.2.24) is unstable with respect to the L2-norm. �

We now state the last result of the present section.

Theorem 9.2.6 (Chetaev’s Instability Theorem for differential equations in Banach
spaces) Assume that for system (GE) there exist a function v ∈ C[B(r) × R

+, R]
for some r > 0, where B(r) ⊂ C ⊂ X , and a t0 ∈ R

+ such that the following
conditions are satisfied.

(i) There exists a component D of the set {(x, t) ∈ B(r)×R
+ : v(x, t) < 0} such

that for every neighborhood of the origin there exists an x in this neighborhood
such that (x, t0) ∈ D.

(ii) v is bounded from below on D.
(iii) v′

(GE)(x, t) ≤ −ψ(|v(x, t)|) for all (x, t) ∈ D where ψ ∈ K.

Then the equilibrium xe = 0 of (GE) is unstable. �

We ask the reader to prove Theorem 9.2.6.

9.3 Converse Theorems for Differential Equations in
Banach Spaces

In the present section we establish converse results for some of the principal Lyapunov
stability and boundedness results for differential equations in Banach spaces presented
in Section 9.2. We recall the differential equation in Banach space given by

ẋ = F (t, x) (GE)

where F : R × C → X . We assume that xe = 0 is an equilibrium for the dynamical
system determined by (GE) and that the set C contains a neighborhood of the origin
xe = 0. Also, we assume that for every (t0, x0) ∈ R

+ × C, there exists a unique
noncontinuable solution of (GE) with initial condition x(t0) = x0 that depends
continuously on (t0, x0).

We present only local results. Our first result concerns uniform stability.

Theorem 9.3.1 If the equilibrium xe = 0 of (GE) is uniformly stable, then there
exists a positive definite and decrescent function v ∈ C[B(r) × R

+, R+] for some
r > 0, where B(r) ⊂ C, such that v′

(GE) is negative semidefinite.
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Proof . The proof of this result is a direct consequence of Theorem 3.6.1 and follows
along the lines of the proof of Theorem 6.5.1. The continuity of v is a consequence of
the assumed continuity of the solution ϕ(t, t0, x0) of (GE) with respect to the initial
data. �

The next result concerns uniform asymptotic stability.

Theorem 9.3.2 If the equilibrium xe= 0 of (GE) is uniformly asymptotically stable,
then there exists a positive definite and decrescent function v ∈ C[B(r) × R

+, R+]
for some r > 0, where B(r) ⊂ C, such that v′

(GE) is negative definite.

Proof . The proof of this result is a consequence of Theorem 3.6.2, the continuity
of the solutions of (GE) with respect to initial conditions and the continuity results
given in Subsection 3.6B. �

As in the case for finite-dimensional systems (see Theorem 6.5.3), the next result,
which addresses the exponential stability of the equilibrium xe = 0 for (GE), is not
symmetric to the exponential stability result given in Theorem 9.2.1d. Nevertheless,
this result does provide a set of necessary conditions for exponential stability.

Theorem 9.3.3 If the equilibrium xe = 0 of (GE) is exponentially stable, then there
exists a positive definite and decrescent function v ∈ C[B(r) × R

+, R+] for some
r > 0, where B(r) ⊂ C, such that

v′
(GE)(x, t) ≤ −cv(x, t)

for all (x, t) ∈ B(r) × R
+, where c > 0 is a constant.

Proof . The proof of this result is a direct consequence of Theorem 3.6.3 and the
continuity of the solutions of (GE). �

We conclude by noting that converse theorems for system (GE) for uniform bound-
edness, uniform ultimate boundedness, uniform asymptotic stability in the large,
exponential stability in the large, and instability can also be established, using the
methodology employed in the preceding results.

9.4 Invariance Theory for Differential Equations in
Banach Spaces

In the present section we consider infinite-dimensional dynamical systems determined
by a class of autonomous differential equations in Banach space given by

ẋ = F (x) (GA)

where F : C → X , C ⊂ X , and X is a Banach space. We assume that xe = 0 is
an equilibrium for the dynamical system determined by (GA) and that C contains a
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neighborhood of the origin xe = 0. Furthermore, we assume that for each x0 ∈ C,
there exists one and only one solution of (GA) for the initial condition x(0) = x0.
Under these conditions, the solutions of (GA) determine a semigroup and the invari-
ance theory for dynamical systems developed in Section 4.2 is applicable to dynamical
systems determined by (GA). Our aim in the present section is to improve some of
the stability results presented in Section 9.2.

Theorem 9.4.1 Assume that for system (GA) there exists a function v ∈ C[C, R]
such that v′

(GA)(x) ≤ 0 for all x ∈ C. Let M be the largest invariant set with respect
to the dynamical system determined by (GA) in the set

Z =
{
x ∈ C : v′

(GA)(x) = 0
}
. (9.4.1)

Then for every solution ϕ of (GA) such that the closure of the trajectory of ϕ is
compact, ϕ(t) approaches M as t → ∞.

Proof . The proof of this theorem is a direct consequence of Theorem 4.2.1, where
X1 is generated by taking the closure of every solution ϕ of (GA) having the property
that the closure of ϕ is compact. �

We apply the above result in the analysis of a scalar Volterra integrodifferential
equation.

Example 9.4.1 Consider the equation (refer to [9])

ẋ(t) = −
∫ t

−∞
a(t − u)g(x(u))du (9.4.2)

where t ∈ R
+, a ∈ C2[R+, R], a(t) > 0, ȧ(t) < 0, and ä(t) ≥ 0 for all t ∈ R

+, and
limt→∞ t2ȧ(t) = 0 and

∫∞
0 t2ȧ(t)dt < ∞. The fading memory space X for (9.4.2)

is the Banach space consisting of all functions ϕ : (−∞, 0] → R such that

‖ϕ‖2 = |ϕ(0)| +
∫ 0

−∞
k(θ)|ϕ(θ)|dθ

is finite, where k(θ) > 0 for −∞ < θ ≤ 0,
∫ 0

−∞ k(θ)dθ < ∞, and k̇(θ) ≥ 0. Assume

that g(x) has a finite number of zeros and that g ∈ C1[R, R], and that
∫ x

0 g(s)ds → ∞
as |x| → ∞.

In the following, we apply Theorem 9.4.1 to prove that every solution of (9.4.2)
with initial condition ϕ ∈ X satisfying sup−∞<θ≤0 |ϕ(θ)| < ∞ approaches an
equilibrium of (9.4.2).

Choose

v(ϕ) =
∫ ϕ(0)

0
g(s)ds − 1

2

∫ 0

−∞
ȧ(−θ)

(∫ 0

θ

g(ϕ(s))ds

)2

dθ
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for ϕ∈X . The second term in v is defined for all ϕ∈X satisfying sup−∞<θ≤0 |ϕ(θ)|
= L < ∞ because

0 ≤ −1
2

∫ 0

−∞
ȧ(−θ)

(∫ 0

θ

g(ϕ(s))ds

)2

dθ

≤ −
(

sup
−L≤s≤L

|g(s)|
)2 1

2

∫ 0

−∞
ȧ(−θ)θ2dθ

< ∞. (9.4.3)

Therefore v is defined for all ϕ ∈ X satisfying sup−∞<θ≤0 |ϕ(θ)| < ∞.
Suppose that x(t, t0, ϕ0) is a solution of (9.4.2) with the initial condition ϕ0 ∈ X

satisfying sup−∞<θ≤t0 |ϕ0(θ)| < ∞. Then by the continuity of x(t, t0, ϕ0) with
respect to t, sup−∞<θ≤t |x(t, t0, ϕ0)| < ∞ and hence, v(xt) is defined for all t ≥ t0.

Along the solutions of (9.4.2), we have

v′
(9.4.2)(xt) = −1

2

∫ 0

−∞
ä(−θ)

(∫ 0

θ

g(x(t + s))ds

)2

dθ ≤ 0,

which implies that v(xt) is nonincreasing and hence, v(xt) ≤ v(ϕ0) for all t > t0.

By hypothesis,
∫ x(t)
0 g(s)ds → ∞ if |x(t)| → ∞. Therefore there exists an L > 0

such that |x(t)| < L for all −∞ < t < ∞. We now have an estimate for the norm
of xt,

‖xt‖2 = |x(t)| +
∫ 0

−∞
k(θ)|x(t + θ)|dθ ≤ L

(
1 +

∫ 0

−∞
k(θ)dθ

)
,

which implies that the trajectory γ+(x)={xt(t0, ϕ0) : t≥ t0} is a bounded set in X .
Next we show that the closure of the trajectory γ+(x) is compact. Because in

Banach spaces compactness is equivalent to sequential compactness and xt is con-
tinuous with respect to t in X , we only need to show that there is a convergent
subsequence for any sequence {xtk

}k∈N with tk → ∞ monotonically as k → ∞.
For any A > 0, {xtk

} with tk > A is equicontinuous on [−A, 0] and uniformly
bounded on (−∞, 0] (|x(t)| < L was shown earlier). By the Ascoli–Arzela Lemma
(refer to Problem 2.14.7), there exists a subsequence that converges uniformly to a
function ϕA ∈ C[[−A, 0], R]. Choosing A = 1, 2, . . . , there exist subsequences
{tAk} such that {tk} ⊃ {t1k} ⊃ {t2k} ⊃ · · · and the subsequences {xtAk

} con-
verge uniformly to a function ϕA ∈ C[[−A, 0], R] for all A = 1, 2, . . . . Then the
subsequence {xtkk

: k = 1, 2, . . . } converges uniformly on all compact subsets of
(−∞, 0] to a function ϕ ∈ C[(−∞, 0], R]. ϕ is bounded by the same bound L and
thus, ϕ ∈ X . What is left to be shown is that xtkk

→ ϕ as k → ∞ using the norm ‖·‖
in X . Let ε > 0 be arbitrary. There exists an A > 0 such that

∫ −A

−∞ k(θ)dθ < ε/(2L).
We have

‖xtkk
− ϕ‖2 = |xtkk

(0) − ϕ(0)| +
∫ 0

−∞
k(θ)|x(tkk + θ) − ϕ(θ)|dθ

≤ |x(tkk) − ϕ(0)| + ε +
∫ 0

−A

k(θ)|x(tkk + θ) − ϕ(θ)|dθ.
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On the compact set [−A, 0], there exists an m > 0 such that the first and last term in
the above expression are less than ε for all k > m. Hence xtkk

→ ϕ as k → ∞.
Finally, if ψ ∈ Z = {x ∈ X : v′

(9.4.2)(x) = 0}, then

v′
(9.4.2)(ψt) =

∫ 0

−∞
ä(−θ)

(∫ 0

θ

g(ψ(t + s))ds

)2

dθ = 0.

Because ä(t) ≥ 0, it must be true that∫ 0

θ

g(ψ(t + s))ds = 0 for all − ∞ < t < ∞ (9.4.4)

whenever ä(−θ) > 0. From the assumptions that t2ȧ(t) → 0 as t → ∞ and
ä(t) ≥ 0, there must exist a t0 and a δ with t0 > δ > 0 such that ä(s) > 0 for all
s ∈ [t0 − δ, t0 + δ]. In view of (9.4.4), we have∫ −s1

−s2

g(ψ(t + s))ds = 0 for all − ∞ < t < ∞,

for all s1, s2 ∈ [t0 − δ, t0 + δ]. This is true if and only if g(ψ(t)) ≡ 0 for all t. Under
the assumption that g(·) has a finite number of zeros, the set Z is comprised of these
zeros, which are also the equilibria of (9.4.2). It now follows from Theorem 9.4.1
that xt approaches an equilibrium of (9.4.2). �

In our next result we require the following concept.

Definition 9.4.1 Let X and X̃ be two Banach spaces and assume that X ⊂ X̃ . The
embedding X ⊂ X̃ is said to be compact if every closed and bounded subset of X is
compact in X̃ with respect to the norm ‖ · ‖X̃ of X̃ . �

Now let Ω ⊂ R
n be a bounded domain with smooth boundary ∂Ω. One of

Sobolev’s Embedding Theorems (see, e.g., [6] and [33]) ensures that the embedding
Hm[Ω, R] ⊂ H l[Ω, R] is compact and continuous for all m > l. Accordingly, the
embedding Hm

0 [Ω, R] ⊂ H l
0[Ω, R] is also compact and continuous for m > l.

The differential equation (GA) may be defined on different Banach spaces. This
will always be true for the Banach spaces X and X̃ when X ⊂ X̃ . Therefore,
the Sobolev Embedding Theorem cited above suggests the next result, where ‖ · ‖X̃

denotes the norm for X̃ and where we assume that C = X .

Theorem 9.4.2 Assume that for the dynamical system determined by (GA) there
exists a Banach space X̃ ⊃ X such that the embedding X ⊂ X̃ is compact. Assume
that there exists a function v : X → R that is continuous with respect to the norm
‖ · ‖X̃ that satisfies the following conditions.

(i) v′
(GA)(x) ≤ 0 for all x ∈ X .

(ii) v(x) > v(0) = 0 for all x ∈ X − {0}.
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(iii) v(x) → ∞ as ‖x‖X̃ → ∞.
(iv) {0} is the only invariant subset in

Z =
{
x ∈ X : v′

(GA)(x) = 0
}
.

Then the equilibrium xe = 0 of (GA) is uniformly asymptotically stable in the large
in X with respect to the norm ‖ · ‖X̃ .

Proof . The proof of this theorem is a direct consequence of Corollary 4.2.2, where
we let X be equipped with the norm ‖ · ‖X̃ . We note that X is locally compact
with respect to the norm ‖ · ‖X̃ and that in the proof of Corollary 4.2.2, the local
compactness of X is used, rather than the compactness of X . �

Example 9.4.2 We now revisit system (9.2.4) given in Example 9.2.1 where X =
H4[(0, 1), R] ∩ H2

0 [(0, 1), R] with the H2-norm. We choose X̃ = H1
0 [(0, 1), R].

In view of Sobolev’s Embedding Theorem cited above, the embedding X ⊂ X̃ is
compact. In applying Theorem 9.4.2, we choose as a Lyapunov function

v(ψ) = ‖ψ‖2
H1 = ‖ψ‖2

X̃
=
∫ 1

0

[(
∂ψ

∂x

)2

+ ψ2
]
dx.

The function v : X → R is clearly continuous with respect to the norm ‖ · ‖H1 . In a
similar manner as was done in Example 9.2.1, we compute

v′
(9.2.4)(ψ) = −2

∫ 1

0

[(∂3ψ

∂x3

)2
+
(∂2ψ

∂x2

)2
]
dx = −2

∥∥∥∥d2ψ

dx2

∥∥∥∥
H1

≤ 0

for all x ∈ X .
We have v(0) = 0 and v(ψ) > 0 for all ψ ∈ X̃ − {0}, and in particular, for all

ψ ∈ X − {0}. Moreover, v(ψ) → ∞ as ‖ψ‖H1 → ∞ also holds. Finally,

Z =
{
ψ ∈ X : v′

(9.2.4)(ψ) = 0
}

= {0}

because d2ψ/dx2 ≡ 0 and ψ(0) = ψ(1) = 0 imply that ψ ≡ 0 for ψ ∈ C2[(0, 1), R]
and because C2[(0, 1), R] ∩ X is dense in X .

All hypotheses of Theorem 9.4.2 are satisfied and therefore, the equilibrium ϕe =
0 ∈ X of system (9.2.4) is uniformly asymptotically stable in the large with respect
to the H1-norm. �

9.5 Comparison Theory for Differential Equations in
Banach Spaces

In the present section we specialize the results of Section 4.3 to develop a comparison
theory in the stability analysis of infinite-dimensional dynamical systems determined
by differential equations in Banach spaces.
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We consider once more a class of differential equations defined on a Banach space
X of the form

ẋ = F (t, x) (GE)

where F : R
+ × C → X, C ⊂ X . We assume that xe = 0 ∈ C and that xe = 0 is

an equilibrium of (GE),
For the l-dimensional Euclidean vector space, (Rl, | · |), we let in the following

R
l ⊃ BE(r)={x ∈ R

l : |x| < r}, and as usual, we let B(r)={x ∈ X : ‖x‖ < r}.
Also, for a vector-valued function V : B(r) × R

+ → R
l, where B(r) ⊂ C ⊂ X for

some r > 0, we use the notation

V (x, t) = [v1(x, t), . . . , vl(x, t)]T

and
V ′

(GE)(x, t) = [v′
1(GE)(x, t), . . . , v′

l(GE)(x, t)]T .

For system (GE) we employ as a comparison system ordinary differential equa-
tions of the form

ẏ = g(t, y) (C)

where t ∈ R
+, y ∈ R

l, g ∈ C[R+ ×BE(r1), Rl] for some r1 > 0, BE(r1) ⊂ (R+)l,
and g(t, 0) = 0 for all t ∈ R

+. By making use of (C), we first establish local results.

Theorem 9.5.1 Assume that there exists a function V ∈C[B(r)×R
+, (R+)l], where

B(r)⊂C ⊂X for some r>0, such that |V (x, t)| is positive definite and decrescent,
and there exists a quasi-monotone nondecreasing function g∈C[R+× BE(r1), Rl],
where BE(r1)⊂(R+)l for some r1 >0, which satisfies the conditions that g(t, 0)=0
for all t ∈ R

+ and
V ′

(GE)(x, t) ≤ g(t, V (x, t))

for all (x, t) ∈ B(r) × R
+. In the above, inequality is to be interpreted component-

wise. Then the following statements are true.

(a) The stability, asymptotic stability, uniform stability and uniform asymptotic
stability of the equilibrium ye = 0 of (C) implies the same corresponding
types of stability of the equilibrium xe = 0 of (GE).

(b) If in addition to the above assumptions, |V (x, t)| ≥ a|x|b for all (x, t) ∈
B(r) × R

+, where a > 0 and b > 0, then the exponential stability of the
equilibrium ye = 0 of (C) implies the exponential stability of the equilibrium
xe = 0 of (GE).

Proof . The proofs of these results follow directly from Theorem 4.3.2(b) and (c). �

In the next theorem, where we address global results, we assume that C = X .

Theorem 9.5.2 Assume that for (GE) there exists a function V ∈C[X ×R
+, (R+)l]

such that |V (x, t)| is positive definite, decrescent, and radially unbounded, and that
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there exists a quasi-monotone nondecreasing function g ∈ C[R+ × (R+)l, Rl] such
that g(t, 0) = 0 for all t ∈ R

+ and such that the inequality

V ′
(GE)(x, t) ≤ g(t, V (x, t))

holds componentwise for all (x, t) ∈ X × R
+. Then the following statements are

true.

(a) The uniform asymptotic stability in the large of the equilibrium ye = 0 of (C)
implies the uniform asymptotic stability in the large of the equilibrium xe = 0
of (GE).

(b) If in addition to the above assumptions, a1|x|b ≤ |V (x, t)| ≤ a2|x|b for all
(x, t) ∈ X ×R

+, where a2 ≥ a1 > 0 and b > 0, then the exponential stability
in the large of the equilibrium ye = 0 of (C) implies the exponential stability
in the large of the equilibrium xe = 0 of (GE).

(c) The uniform boundedness and uniform ultimate boundedness of the solutions
of (C) imply the same corresponding types of boundedness properties of the
solutions of (GE). �

We leave the proofs of the above results as an exercise.
We note that when l = 1, the quasi-monotonicity condition in Theorems 9.5.1 and

9.5.2 are automatically satisfied because this is always true for scalar-valued functions
(refer to Definition 3.8.1).

In applications, the comparison system given by

ẏ = Py + m(t, y) (9.5.1)

is especially useful, where P = [pij ] ∈ R
l×l satisfies the condition that pij ≥ 0 for

i, j = 1, . . . , l and i �= j, and where m : R
+ × BE(r1) → R

l for some r1 > 0 and
BE(r1) ⊂ (R+)l, is assumed to satisfy the condition

lim
|y|→0

|m(t, y)|
|y| = 0 uniformly for t ∈ R

+.

Applying Lyapunov’s First Method (Theorem 7.6.2), it follows that the equilibrium
ye = 0 of (9.5.1) is uniformly asymptotically stable if −P is an M -matrix (refer to
Definition 7.7.1 for the definition of M -matrix and the discussion following that
definition for several equivalent characterizations of M -matrices).

We conclude by noting that in Section 9.7 we apply some of the results of the
present section in the analysis of the model of a multicore nuclear reactor described
by a class of Volterra integrodifferential equations.

9.6 Composite Systems

In Section 2.11 we introduced composite dynamical systems on metric spaces. We
now address the stability analysis of such systems in the context of composite dyna-
mical systems defined on normed linear spaces.
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We let (X, ‖ · ‖), (Xi, ‖ · ‖i), i = 1, . . . , l, be normed linear spaces; we assume
that X = X1 × · · ·Xl and that there are constants c1 > 0 and c2 > 0 such that

c1‖x‖ ≤
l∑

i=1

‖xi‖i ≤ c2‖x‖

for all x ∈ X , where x = (x1, . . . , xl)T , xi ∈ Xi, i = 1, . . . , l. We can define
the norm ‖ · ‖ on X in a variety of ways, including ‖x‖ =

∑l
i=1 ‖xi‖i. We define

a composite dynamical system, {R
+, X, A, S}, defined on a normed linear space

(X, ‖ · ‖) by modifying Definition 2.11.1 in the obvious way, choosing for metric
spaces (X, d), (Xi, di), i = 1, . . . , l, normed linear spaces (X, ‖ · ‖), (Xi, ‖ · ‖i),
i = 1, . . . , l, respectively.

In our first result, we define for Mi ⊂ Xi,

di(xi, Mi) = inf
x∈Mi

‖xi − x‖i.

Theorem 9.6.1 Let {R
+, X, A, S} be a dynamical system where X =X1 ×· · ·×Xl

and Xi, i = 1, . . . , l, are normed linear spaces with norms ‖ · ‖i, i = 1, . . . , l, re-
spectively. Assume that M = M1 × · · · × Ml is an invariant set (i.e., (S, M) is
invariant), where Mi ⊂ Xi, i = 1, . . . , l, and assume that the following hypotheses
are satisfied.

(i) There exist vi ∈ C[Xi × R
+, R] and ψi1, ψi2 ∈ K, i = 1, . . . , l, such that

ψi1(di(xi, Mi)) ≤ vi(xi, t) ≤ ψi2(di(xi, Mi))

for all xi ∈ Xi and t ∈ R
+.

(ii) Given vi in hypothesis (i), there exist constants aij ∈ R and functions ψi4 ∈ K,
i, j = 1, . . . , l, such that

Dvi(pi(t, a, t0), t) ≤ ψi4(di(pi, Mi))
l∑

j=1

aijψj4(dj(pj , Mj))

for all p(·, a, t0)=[p1(·, a, t0), . . . , pl(·, a, t0)]T=[p1, . . . , pl]T∈S and t ≥ t0,
where D denotes a fixed Dini derivative with respect to t ∈ R

+.

(iii) There exists an l-vector αT = (α1, . . . , αl), αi > 0, i = 1, . . . , l, such that the
test matrix B = [bij ] ∈ R

l×l specified by

bij =
1
2
(
αiaij + αjaji

)
, i, j = 1, . . . , l,

is either negative semidefinite or negative definite.

Then the following statements are true.

(a) If B is negative semidefinite, then (S, M) is uniformly stable.

(b) If B is negative definite, then (S, M) is uniformly asymptotically stable.
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(c) If B is negative semidefinite, if M is bounded, and if ψi1, ψi2 ∈ K∞ for all
i = 1, . . . , l, then S is uniformly bounded.

(d) If in (c), B is negative definite, then S is uniformly ultimately bounded and
furthermore, (S, M) is uniformly asymptotically stable in the large.

(e) If B is negative definite and if there exist positive numbers a1, a2, b, and c
such that

a1r
b ≤ ψi1(r) ≤ ψi2(r) ≤ a2r

b

and
ψ2

i4(r) ≥ crb

for all r ∈ R
+, i = 1, . . . , l, then (S, M) is exponentially stable in the large.

Proof . The proof of this theorem is a consequence of Theorems 3.3.1–3.3.7. We
present here only the proofs of parts (a) and (b). The proofs of the remaining parts
follow along similar lines.

We choose

v(x, t) =
l∑

i=1

αivi(xi, t)

where x = [x1, . . . , xl]T and α = [α1, . . . , αl]T is given in hypothesis (iii). By
hypothesis (i), we have

l∑
i=1

αiψi1(di(xi, Mi)) ≤ v(x, t) ≤
l∑

i=1

αiψi2(di(xi, Mi))

for all x=[x1, . . . , xl]T∈X1× · · · ×Xl = X . Let r=d(x, M) and ri =d(xi, Mi),
1 ≤ i ≤ l. We may assume without loss of generality that r =

∑l
i=1 ri. We have

that
l∑

i=1

αiψi2(ri) ≤
l∑

i=1

αiψi2(r)
�
= ψ2(r).

Also, we let ψ̃1(r) = min1≤i≤l{ψi1(r)} and a = min1≤i≤l{αi}. Then

l∑
i=1

αiψi1(ri) ≥ max
1≤i≤l

{αiψi1(ri)}

≥ max
1≤i≤l

{αiψ̃1(ri)}

≥ a max
1≤i≤l

{ψ̃1(ri)}

= aψ̃1
(

max
1≤i≤l

{ri}
)

≥ aψ̃1(r/l)
�
= ψ1(r).
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Hence,
ψ1(r) ≤ v(x, t) ≤ ψ2(r) (9.6.1)

for all x ∈ X and t ∈ T , where ψ1, ψ2 ∈ K. Let ri = di(pi, Mi), i = 1, . . . , l.
Furthermore, in view of hypothesis (ii),

Dv(p(t, a, t0), t) ≤
l∑

i=1

αi

(
ψi4(ri)

l∑
i=1

aijψj4(rj)

)
= wT Rw

= wT

(
R + RT

2

)
w

= wT Bw

≤ λM (B)|w|2

for all t ≥ t0 and p(·, a, t0) ∈ S, where w = [ψ14(r1), . . . , ψl4(rl)]T , R = [αiaij ] ∈
R

l×l, and λM (B) denotes the largest eigenvalue of B.
Let ψ̃3(r) = min1≤i≤l{ψ2

i4(r)} and d(p, M) = r =
∑l

i=1 ri. Then

|w|2 ≥ max
1≤i≤l

{ψ2
i4(ri)} ≥ max

1≤i≤l
{ψ̃3(ri)} ≥ ψ̃3(r/l)

�
= ψ3(r).

Thus,
Dv(p(t, a, t0), t) ≤ λM (B)ψ3(d(p, M)). (9.6.2)

In view of (9.6.1) and (9.6.2), it follows from Theorem 3.3.1 that (S, M) is uni-
formly stable if B is negative semidefinite and from Theorem 3.3.2 that (S, M) is
uniformly asymptotically stable if B is negative definite. �

Our next result is easier to apply than Theorem 9.6.1; however, because it requires
some restrictions on the hypotheses of that theorem, it is more conservative than
Theorem 9.6.1.

Corollary 9.6.1 Assume that the hypotheses (i) and (ii) of Theorem 9.6.1 are true and
that −A = [−aij ] ∈ R

l×l is an M -matrix where the aij are given in Theorem 9.6.1.
Then the following statements are true.

(a) (S, M) is uniformly asymptotically stable.

(b) If in hypothesis (i) of Theorem 9.6.1, ψi1, ψi2 ∈ K∞, i = 1, . . . , l, and if
M is bounded then S is uniformly bounded, and uniformly ultimately bounded.
Furthermore, under these conditions, (S, M) is uniformly asymptotically stable
in the large.

(c) If in hypotheses (i) and (ii) of Theorem 9.6.1, ψik =aikrbk with aik >0, bk >0
and b1 = b2 = 2b4, i = 1, . . . , l, k = 1, 2, 4, and r ∈ R

+, then (S, M) is
exponentially stable in the large.
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Proof . The proofs of all parts are consequences of Theorem 9.6.1 by invoking the
following property of M -matrices [25]: if D ∈ R

l×l is an M -matrix, then there
exists a matrix Λ = diag[α1, . . . , αl], αi > 0, i = 1, . . . , l, such that the matrix
ΛD + DT Λ is positive definite. Choosing D = −A, we see that hypothesis (iii)
of Theorem 9.6.1 is satisfied by choosing B = [bij ]l×l = (ΛA + AT Λ)/2 (i.e.,
bij = (αiaij + αjaji)/2, 1 ≤ i, j ≤ j), where B is negative definite. �

We now reconsider Example 2.11.1, which may be viewed as a control problem
consisting of an infinite-dimensional plant (the heat equation) and a finite-dimensional
controller (an ordinary differential equation), utilizing distributed control (in contrast
to boundary control). As in Example 2.11.1, the state variables for the controller and
the plant are denoted by z1(t) and z2(t, x), respectively.

Example 9.6.1 [25], [36] We consider the composite system given by
ż1(t) = Az1(t) + b

∫
Ω

f(x)z2(t, x)dx, t ∈ R
+

∂z2

∂t
(t, x) = α∆z2(t, x) + g(x)cT z1(t), (t, x) ∈ R

+ × Ω

z2(t, x) = 0 (t, x) ∈ R
+ × ∂Ω

(9.6.3)

where z1 ∈ R
m, z2 ∈ R, A ∈ R

m×m, b, c ∈ R
m, f and g ∈ L2[Ω, R], α > 0,

Ω is a bounded domain in R
n with smooth boundary ∂Ω, and ∆ =

∑n
i=1 ∂2/∂x2

i

denotes the Laplacian. System (9.6.3) may be viewed as a differential equation in the
product Banach space X = R

m ×H0[Ω, R] where H0[Ω, R] denotes the completion
of C0[Ω, R] with respect to the L2-norm and where H0[Ω, R] ⊂ L2[Ω, R] (refer to
Section 2.10). In [26] it is shown that this initial value and boundary value problem is
well posed: for every initial condition z0 =(z10, z20)T∈R

m × H0[Ω, R] there exists
a unique solution z(t, z0) that depends continuously on z0. It is easily shown that
the set {(z1, z2)T } = {(0, 0)T } ⊂ X is an invariant set for the dynamical system
determined by (9.6.3).

Now assume that all the eigenvalues of A have negative real parts. Then there
exists a positive definite matrix P = PT such that

PA + AT P = C (9.6.4)

where C is negative definite (refer to Section 7.4).
Next, we choose the Lyapunov functions

v1(z1) = zT
1 Pz1 (9.6.5)

and

v2(z2) =
1
2
‖z2‖2

L2
=

1
2

∫
Ω

|z2(x)|2dx (9.6.6)

where P is given in (9.6.4). Then

λm(P )|z1|2 ≤ v1(z1) ≤ λM (P )|z1|2 (9.6.7)
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for all z1 ∈ R
m, where λM (P ) > 0 and λm(P ) > 0 denote the largest and smallest

eigenvalues of P , respectively. In the notation of Theorem 9.6.1, we now have, in
view of (9.6.4)–(9.6.7), that ψ11(r) = λm(P )r2, ψ12(r) = λM (P )r2, and ψ21(r) =
ψ22(r) = r2 for all r ∈ R

+.
Along the solutions of (9.6.3) we now have

v′
1(9.6.3)(z1) = zT

1 Cz1 + 2zT
1 Pb

∫
Ω

f(x)z2(x)dx

≤ −γ|z1|2 + 2|b|‖P‖2‖f‖L2 |z1|‖z2‖L2

where −γ < 0 denotes the largest eigenvalue of C and ‖ ·‖2 denotes the matrix norm
induced by the Euclidean vector norm | · | defined on R

m. Also, along the solutions
of (9.6.3) we have, invoking Gauss’ Divergence Theorem and Poincaré’s Inequality
(refer to Example 9.2.2),

v′
2(9.6.3)(z2) = α

∫
Ω

z2(∆z2)dx +
∫

Ω
z2gcT z1dx

= −α

∫
Ω

|∇z2|2dx + cT z1

∫
Ω

z2gdx

≤ −αΓ‖z2‖2
L2

+ |c|‖g‖L2 |z1|‖z2‖L2 (9.6.8)

for all z=(z1, z2)T∈X , where Γ ≥n2/δ2 and where Ω can be put into a hypercube
of length δ.

It now follows that hypotheses (i) and (ii) of Theorem 9.6.1 are satisfied with

A
�
= [aij ] given by

A =
[

−γ 2|b| ‖P‖2‖f‖L2

|c| ‖g‖L2 −αΓ

]
.

If −A is an M -matrix, then the hypotheses of Corollary 9.6.1 are satisfied as well.
It follows that the equilibrium ze = 0 of system (9.6.3) is exponentially stable in the
large if

γαΓ > 2|b| |c| ‖P‖2‖f‖L2‖g‖L2 . �

9.7 Analysis of a Point Kinetics Model of a Multicore
Nuclear Reactor

We now return to the point kinetics model of a multicore nuclear reactor presented in
Example 2.8.1 described by the Volterra integrodifferential equations [25], [35]

ṗi(t) = − Kipi(t) +
∫ t

−∞
Fi(t − s)pi(s)ds + pi(t)

∫ t

−∞
ni(t − s)pi(s)ds

+
l∑

j=1,i �=j

∫ t

−∞
Gij(t − s)pj(s)ds, i = 1, . . . , l, (9.7.1)
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for t ≥ 0. For the meaning of all the symbols given in (9.7.1), as well as background
material concerning the above model, the reader should refer to Example 2.8.1. As
pointed out in that example, the initial conditions for (9.7.1) given by pi(t) = ϕi(t)
for t ∈ (−∞, 0] where ϕi ∈ Zi, the fading memory space of all absolutely continuous
functions ψi defined on (−∞, 0] such that

‖ψi‖2 = |ψi(0)|2 +
∫ 0

−∞
|ψi(s)|2eLisds < ∞, (9.7.2)

where Li > 0, i = 1, . . . , l, are constants that are specified later. The set of all
solutions of system (9.7.1), generated by varying ϕi over Zi, i = 1, . . . , l, determines
a dynamical system in the Banach space X which is the completion of Z1 × · · · × Zl

with respect to the norm defined by (9.7.2).
For ϕ = [ϕ1, . . . , ϕl]T ∈ X we now choose the vector Lyapunov function

V (ϕ) = [v1(ϕ1), . . . , vl(ϕl)]T ,

where

vi(ϕi) =
(

ϕi(0)2 + Ki

∫ 0

−∞
ϕi(u)2eLiudu

)1/2

.

Now define pit(θ) = pi(t + θ), θ ∈ (−∞, 0]. For pit ∈ Zi, we have along the
solutions of (9.7.1),

v′
i(9.7.1)(pit) =

1
2vi(pit)

{
2pi(t)ṗi(t) + Ki

∫ 0

−∞

( d

du
[pi(t + u)]2

)
eLisdu

}
=

1
2vi(pit)

{
2pit(0)

[
− Kipit(0) +

∫ 0

−∞
Fi(−s)pit(s)ds

+ pit(0)
∫ 0

−∞
ni(−s)pit(s)ds +

l∑
j=1,i �=i

∫ 0

−∞
Gij(−s)pit(s)ds

]

+ Ki

[
[pit(0)]2 − Li

∫ 0

−∞
[pit(s)]2eLisds

]}
.

Now let

bi
�
=
(

Ki

∫ 0

−∞
[pit(s)]2eLisds

)1/2

and assume that Li > 0, i = 1, . . . , l, are such that

ci
�
=
(∫ ∞

0
[Fi(s)]2eLisds

)1/2

< ∞,

di
�
=
(∫ ∞

0
[ni(s)]2eLisds

)1/2

< ∞,
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and

cij
�
=
(∫ ∞

0
[Gij(s)]2eLisds

)1/2

< ∞.

Then

v′
i(9.7.1)(pit) ≤ 1

2vi(pit)

{
− Kipit(0)2 +

2pit(0)cibi√
Ki

+ 2pit(0)2
dibi√
Ki

+ 2pit(0)
l∑

j=1,i �=j

cij
bj√
Kj

+ Kipit(0)2 − Lib
2
i

}

≤ 1
2vi(pit)

{
−Kipit(0)2 +

2ci√
Ki

pit(0)bi − Lib
2
i

+
2di√
Ki

pit(0)2bi

}
+

l∑
j=1,i �=j

cij√
Kj

vj(pjt). (9.7.3)

Now if
Ki

√
Li > ci, (9.7.4)

then the symmetric matrix given by

Di =
[

Ki −ci/
√

Ki

−ci/
√

Ki Li

]
(9.7.5)

is positive definite. Let σi > 0 denote the smallest eigenvalue of Di, i = 1, . . . , l.
Then for any ε > 0 with ε < σi, i = 1, . . . , l, there exists an r = r(ε) > 0 such that
if ‖ψ‖ < r, where ‖ · ‖ denotes the norm defined by (9.7.2), then

2di√
Ki

ψi(0)2bi < ε
(
ψi(0)2 + b2

i

)
where bi is defined as above. From (9.7.3) we now obtain

v′
i(9.7.1)(ψi) ≤ − σi − ε

2vi(ψi)
(
ψi(0)2 + b2

i

)
+

l∑
j=1,i �=j

cij√
Kj

vj(ψj)

=
σi − ε

2
vi(ψi) +

l∑
j=1,i �=j

cij√
Kj

vj(ψj), (9.7.6)

i = 1, . . . , l. Letting

A = [aij ], aii =
σi

2
, and aij =

cij√
Kj

, i �= j, (9.7.7)

for all i, j = 1, . . . , l, we can rewrite (9.7.6) more compactly in matrix form as

V ′
(9.7.1)(ψ) ≤ −(A − εI)V (ψ) (9.7.8)
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for all ‖ψ‖ < r. In (9.7.8), inequality is interpreted componentwise and I denotes
the l × l identity matrix.

Now assume that A in (9.7.8) is an M -matrix. Then there exists an ε > 0,
sufficiently small, so that A− εI is also an M -matrix. It follows from Theorem 9.5.1
(refer also to the discussion concerning equation (9.5.1)) that the exponential stability
of the equilibrium ye = 0 of the comparison system

ẏ = −(A − εI)y (9.7.9)

implies the exponential stability of the equilibrium ψe = 0 of the dynamical system
determined by (9.7.1).

We have proved (using the comparison theory of Section 9.5) that the equilibrium
ψe = 0 of (9.7.1) is exponentially stable if (9.7.4) is true for all i = 1, . . . , l and if the
matrix A given in (9.7.7) is an M -matrix. (Refer to Definition 7.7.1 for the defini-
tion of M -matrix and the discussion following that definition for several equivalent
characterizations of M -matrices.)

9.8 Results for Retarded Functional Differential
Equations

Referring to Section 2.7, we recall dynamical systems determined by retarded func-
tional differential equations given by

ẋ(t) = F (t, xt) (F )

where F ∈C[R+×C, Rn], C is an open connected subset of X=Cr =C[[−r, 0], Rn],
and xt ∈ Cr is determined by xt(s) = x(t + s), s ∈ [−r, 0]. On Cr we define the
norm

‖ϕ‖ = max
−r≤s≤0

{|ϕ(s)|} (9.8.1)

where | · | denotes a norm on R
n. Then (X, ‖ · ‖) is a Banach space.

From Section 2.7 we recall that a function p ∈ C[[t0 − r, r + c), Rn], c > 0, is
a solution of (F ) if (t, xt) ∈ R × C for all t ∈ [t0 − r, r + c) and ṗ = F (t, pt)
for t ∈ [t0, t0 + c). The reader should refer to Section 2.7 for results that ensure the
existence, uniqueness, and continuation of solutions of (F ). We assume that 0 ∈ C
and that F (t, 0) = 0 for all t ∈ R

+, so that ϕe = 0 is an equilibrium for (F ).
We employ functions v ∈ C[C × R

+, R] (resp., v ∈ C[Cr × R
+, R]). Along the

solutions of (F ), the upper-right derivative of v with respect to t is given by

v′
(F )(ϕ, t) = lim

h→0+

1
h

[
v(xt+h(t, ϕ), t + h) − v(ϕ, t)

]
(9.8.2)

where xt+h(t, ϕ) denotes the solution of (F ) through (t, ϕ).
Finally, we let B(h) = {ϕ ∈ Cr : ‖ϕ‖ < h} for some h > 0. Throughout this

section, all results constitute statements relative to the norm ‖ · ‖ given in (9.8.1).
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The stability and boundedness results that we presented in the preceding sections
for differential equations defined on Banach spaces are of course applicable in partic-
ular to dynamical systems determined by retarded functional differential equations.
(Recall from Section 2.7 that system (F ) can be transformed into an equivalent sys-
tem (F̃ ) which is a special case of the general differential equation (GE) defined on
Banach spaces.) However, because a solution of (F ) is a function of t with range in
R

n, it is reasonable to expect that one should be able to improve some of the results
presented thus far for systems determined by (F ). This is indeed the case.

A. Stability and boundedness results

We first present local results.

Theorem 9.8.1 (i) Assume that for every bounded set G in Cr, the range of F on the
set R+×G is bounded in R

n. Assume that there exist a function v ∈ C[B(h)×R
+, R],

with h > 0 and B(h) ⊂ C, and two functions ψ1, ψ2 ∈ K, such that

ψ1(|ϕ(0)|) ≤ v(ϕ, t) ≤ ψ2(‖ϕ‖) (9.8.3)

where | · | denotes a norm on R
n, and

v′
(F )(ϕ, t) ≤ 0 (9.8.4)

for all ϕ∈B(h) and t∈R
+. Then the equilibrium ϕe = 0 of (F ) is uniformly stable.

(ii) If in addition to the above conditions there exists a function ψ3 ∈ K such that

v′
(F )(ϕ, t) ≤ −ψ3(|ϕ(0)|) (9.8.5)

for all ϕ ∈ B(h) and t ∈ R
+, then the equilibrium ϕe = 0 of (F ) is uniformly

asymptotically stable.

Proof . (i) For given ε > 0 and t0 > 0, we can assume without loss of generality
that ε < h, and we choose δ = min{ε, ψ−1

2 ◦ ψ1(ε)}. Then ψ2(δ) ≤ ψ1(ε).
Because (9.8.4) is true by assumption, we know that for ϕ ∈ B(h), v(xt(·, t0, ϕ), t)
is nonincreasing for t ≥ t0, where xt(·, t0, ϕ) denotes a solution of (F ) with initial
condition xt0 = ϕ. Therefore,

ψ1(|xt(0, t0, ϕ)|) ≤ v(xt(·, t0, ϕ), t)
≤ v(xt0(·, t0, ϕ), t0)
= v(ϕ, t0)
≤ ψ2(‖ϕ‖)
< ψ2(δ)
≤ ψ2(ε)

for all t ≥ t0 whenever ϕ ∈ B(δ). Thus, |xt(0, t0, ϕ)| ≤ ε for all t ≥ t0 whenever
ϕ ∈ B(δ). Furthermore, because for all t ≥ t0,

‖xt(·, t0, ϕ)‖ = max
s∈[−r,0]

|xt−s(0, t0, ϕ)|



Section 9.8 Results for Retarded Functional Differential Equations 425

and for t0 > t − s ≥ t0 − r, |xt−s(0, t0, ϕ)| = |ϕ(t − s − t0)| ≤ ‖ϕ‖ < δ ≤ ε
if ϕ ∈ B(δ), then ‖xt(·, t0, ϕ)‖ < ε for all t ≥ t0 whenever ϕ ∈ B(δ). We have
proved that the equilibrium ϕe = 0 is uniformly stable.

(ii) Because the uniform stability of the equilibrium ϕe = 0 of (F ) has been
proved above, we only need to prove the uniform attractivity of ϕe = 0 of (F ).
Specifically, we need to prove that there exists an η > 0 (independent of ε and t0),
and for every ε > 0 and for every t0 ∈ R

+, there exists a T = T (ε) (independent
of t0) such that ‖xt(·, t0, ϕ)‖ < ε for all t ≥ t0 + T whenever ‖ϕ‖ < η. By the
uniform stability of ϕe = 0, there exists an η > 0 such that ‖xt(·, t0, ϕ)‖ < (r/2)
for all t ≥ t0 whenever ϕ ∈ B(η). We now claim that the equilibrium ϕe = 0
is uniformly attractive in B(η). For if this were not true, then there would exist an
ε0 > 0, a t0 ∈ R

+, and a ϕ0 ∈ B(η) such that ‖xtk
(·, t0, ϕ0)‖ ≥ ε0 for a sequence of

tk ≥ t0 with limk→∞ tk = ∞. Now ‖xtk
(·, t0, ϕ0)‖ ≥ ε0 implies that there exists

a sequence sk ∈ [−r, 0] such that |x(tk + sk, t0, ϕ0)| = |xtk
(sk, t0, ϕ0)| ≥ ε0. Let

t′k = tk + sk and assume without loss of generality that t′k+1 ≥ t′k + 1 (if this is not
the case, then choose a subsequence of t′k). By our assumption on F for the bounded
set B(r/2), there exists a constant L such that |ẋ(t, t0, ϕ0)| = |F (t, xt)| ≤ L for all
t ≥ t0, and such that L ≥ 2δ. We now have

|x(t, t0, ϕ0)| ≥ ε0

2
for t ∈

[
t′k − δ

2L
, t′k +

δ

2L

]
.

Therefore, by (9.8.5), we have for t ∈ [t′k − (δ/2L), t′k + (δ/2L)] that

v′
(F )(xt(·, t0, ϕ0), t) ≤ −ψ3(|x(t, t0, ϕ0)|) ≤ −ψ3

(ε0

2

)
and if we let hk = t′k +δ/(2L) and lk = t′k −δ/(2L), then v(xhk

, hk)−v(xlk , lk) ≤
−ψ3(ε0/2)δ/L, k = 1, 2, . . . . Because lk ≥ hk−1, it follows that v(xlk , lk) ≤
v(xhk−1 , hk−1). Thus, v(xhk

, hk) − v(xl1 , l1) ≤ −ψ3(ε0/2)δk/L. For

k >
v(xl1 , l1)L
ψ3(ε0/2)δ

we now have v(xhk
, hk) < 0, which is in contradiction with (9.8.3). We have proved

that the equilibrium ϕe = 0 of (F ) is uniformly asymptotically stable. �

Next, we consider some global results.

Theorem 9.8.2 Assume that C = Cr and that for every bounded set G in Cr, the
range of F on the set R

+ × G is a bounded set in R
n. Assume that there exist a

function v ∈ C[Cr × R
+, R] and two functions ψ1, ψ2 ∈ K∞ such that

ψ1(|ϕ(0)|) ≤ v(ϕ, t) ≤ ψ2(‖ϕ‖) (9.8.6)

and such that
v′
(F )(ϕ, t) ≤ 0 (9.8.7)
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for all ‖ϕ‖ ≥ M for some M > 0 and for all t ∈ R
+. Then SF , the set of all

solutions of (F ), is uniformly bounded.
If in addition to the conditions given above, there exists a function ψ3 ∈ K such

that
v′
(F )(ϕ, t) ≤ −ψ3(|ϕ(0)|) (9.8.8)

for all ‖ϕ‖ ≥ M and all t ∈ R
+, then SF is uniformly ultimately bounded.

Proof . (i) For every α > 0, we choose β = max{(ψ−1
1 ◦ ψ2)(α), α, 2M}. If

ϕ ∈ B(α), then for all t ≥ t0 such that ‖xt(0, t0, ϕ)‖ ≥ M , we have

ψ1(|xt(0, t0, ϕ)|) ≤ v(xt(·, t0, ϕ), t)
≤ v(xt0(·, t0, ϕ), t0)
= v(ϕ, t0)
≤ ψ2(‖ϕ‖)
< ψ2(α)
≤ ψ1(β),

and therefore, |xt(0, t0, ϕ)| < β. It follows that ‖xt(·, t0, ϕ)‖ < β for all t ≥ t0
whenever ϕ ∈ B(α). We have proved that SF is uniformly bounded.

(ii) The proof of uniform ultimate boundedness can be accomplished in a similar
manner as the proof of part (ii) of Theorem 9.8.1 and is left as an exercise. �

Theorem 9.8.3 Assume that C = Cr and that for every bounded set G in Cr, the
range of F on the set R

+ × G is a bounded set in R
n. Assume that there exist a

function v ∈ C[Cr × R
+, R], two functions ψ1, ψ2 ∈ K∞, and a function ψ3 ∈ K

such that
ψ1(|ϕ(0)|) ≤ v(ϕ, t) ≤ ψ2(‖ϕ‖) (9.8.9)

and
v′
(F )(ϕ, t) ≤ −ψ3(|ϕ(0)|) (9.8.10)

for all ϕ ∈ Cr and t ∈ R
+. Then the equilibrium ϕe = 0 of (F ) is uniformly

asymptotically stable in the large.

Proof . It follows from Theorems 9.8.1 and 9.8.2 that the equilibrium ϕe = 0 of
(F ) is uniformly stable and that SF is uniformly bounded. To prove part (iii) of
Definition 3.1.16, we repeat the proof given in part (ii) of Theorem 9.8.1 with η
replaced by α and r/2 replaced by β, where α and β are the constants used above in
the proof of Theorem 9.8.2. We omit the details. �

Before presenting instability results, we consider some specific examples.

Example 9.8.1 Let us consider the retarded functional differential equation

ẋ(t) = Ax(t) + Bx(t − r), r > 0 (9.8.11)
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where x ∈ R
n and A, B ∈ R

n×n. We assume that A is a stable matrix (i.e., all the
eigenvalues of A have negative real parts).

If we let B = 0, then (9.8.11) reduces to the linear ordinary differential equation

ẋ(t) = Ax(t). (9.8.12)

For (9.8.12) we can construct a Lyapunov function

w(x) = xT Px (9.8.13)

where P = PT ∈ R
n×n is a positive definite matrix (i.e., P > 0) such that

w′
(9.8.12)(x) = −xT Cx (9.8.14)

where C = CT ∈ R
n×n is a positive definite matrix (i.e., C > 0). The validity of

(9.8.13) and (9.8.14) follows from the fact that for every positive definite matrix C
there exists a unique positive definite matrix P such that

AT P + PA = −C. (9.8.15)

When B �= 0, we cannot use (9.8.13) as a Lyapunov function for (9.8.11), because this
function would not capture the effects of the delayed term Bx(t− r). To accomplish
this, we append to (9.8.13) a term, resulting in the Lyapunov function

v(ϕ) = ϕT (0)Pϕ(0) +
∫ 0

−r

ϕT (θ)Eϕ(θ)dθ (9.8.16)

where E = ET ∈ R
n×n is a positive definite matrix (i.e., E > 0).

Let δ1 and δ2 denote the smallest and largest eigenvalues of P , respectively, and
let µ1 and µ2 denote the smallest and largest eigenvalues of E, respectively. Then

v(ϕ) ≤ δ2|ϕ(0)|2 +
∫ 0

−r

µ2|ϕ(θ)|2dθ

≤ δ2‖ϕ‖2 + µ2r‖ϕ‖2

= (δ2 + µ2r)‖ϕ‖2.

Also, v(ϕ) ≥ δ1|ϕ(0)|2. Thus, there are constants c2 > c1 > 0 such that

c1|ϕ(0)|2 ≤ v(ϕ) ≤ c2‖ϕ‖2 (9.8.17)

for all ϕ ∈ Cr.
Along the solutions of (9.8.11) we have

v′
(9.8.11)(ϕ) = −ϕT (0)Cϕ(0) + 2ϕT (0)PBϕ(−r)

+ ϕT (0)Eϕ(0) − ϕT (−r)Eϕ(−r)

= −
[
ϕT (0) ϕT (−r)

] [(C − E) −PB
−(PB)T E

] [
ϕ(0)

ϕ(−r)

]
. (9.8.18)
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If the matrix C −E is positive definite (i.e., C −E > 0 or C > E), and if λ1 denotes
the smallest eigenvalue of C − E, then

xT (C − E)x ≥ λ1|x|2 and xT Ex ≥ µ1|x|2 (9.8.19)

for all x ∈ R
n. Then

v′
(9.8.11)(ϕ) ≤ −λ1|ϕ(0)|2 + 2‖PB‖ |ϕ(0)||ϕ(−r)| − µ1|ϕ(−r)|2

= −
[
|ϕ(0)| |ϕ(−r)|

] [ λ1 −‖PB‖
−‖PB‖ µ1

] [
|ϕ(0)|

|ϕ(−r)|

]
. (9.8.20)

Thus, v′
(9.8.11) is negative definite if λ1 > 0 (which is given) and λ1µ1−‖PB‖2 > 0.

In this case we obtain

v′
(9.8.11)(ϕ) ≤ −c3

(
|ϕ(0)|2 + |ϕ(−r)|2

)
≤ −c3|ϕ(0)|2 (9.8.21)

for all ϕ ∈ Cr, where c3 > 0 denotes the smallest eigenvalue of the symmetric matrix
given in (9.8.20).

It now follows from (9.8.17), (9.8.21), and Theorem 9.8.3 that under the above
assumptions, the equilibrium ϕe = 0 of system (9.8.11) is uniformly asymptotically
stable in the large.

We have shown that if the matrix A in (9.8.11) is stable and if the matrix B is
sufficiently small in norm, then the equilibrium ϕe = 0 of system (9.8.11) is uniformly
asymptotically stable in the large for all r > 0. �

Example 9.8.2 We now consider the system described by the scalar equation

ẋ(t) = −a(t)x(t) − b(t)x(t − r) (9.8.22)

where t ∈ R
+, r > 0, a(·) and b(·) are real-valued, bounded, and continuous func-

tions and a(t) > 0 for all t ∈ R
+. We choose as a Lyapunov function

v(ϕ) =
1
2
ϕ(0)2 + µ

∫ 0

−r

ϕ(θ)2dθ (9.8.23)

where µ is a positive constant. Then

c1|ϕ(0)|2 =
1
2
|ϕ(0)|2 ≤ v(ϕ) ≤ 1

2
‖ϕ‖2 + µr‖ϕ‖2 = c2‖ϕ‖2 (9.8.24)

for all ϕ ∈ Cr.
Along the solutions of (9.8.22) we have

v′
(9.8.22)(ϕ) = −

[
ϕ(0) ϕ(−r)

] [a(t) − µ b(t)/2
b(t)/2 µ

] [
ϕ(0)

ϕ(−r)

]
(9.8.25)

for all ϕ ∈ Cr. Now assume that for some δ > 0, (a(t) − µ)µ − b(t)2/4 ≥ δ > 0
for all t ∈ R

+, or equivalently, that

b(t)2 − 4(a(t) − µ)µ ≤ −δ < 0 (9.8.26)
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for all t ∈ R
+. Note that inequality (9.8.26) also implies that a(t) > µ > 0 (and

a(t) ≤ M for some M > 0, by assumption). Therefore, under these assumptions,
the symmetric matrix in (9.8.25) is positive definite. From the characteristic equation

λ2 − a(t)λ + (a(t) − µ)µ − b(t)2/4 = 0,

the smallest eigenvalue of the above-mentioned matrix can be estimated as

λm =
a(t) −

√
a(t)2 −

(
4(a(t) − µ)µ − b(t)2

)
2

≥ a(t) −
√

a(t)2 − δ2

2
≥ δ

4M
.

Therefore,
v′
(9.8.22)(ϕ) ≤ −c3

(
ϕ(0)2 + ϕ(−r)2

)
≤ −c3ϕ(0)2 (9.8.27)

for all ϕ ∈ Cr, where c3 = δ/4M . Inequality (9.8.24) and (9.8.27) along with
Theorem 9.8.3 imply that the equilibrium ϕe = 0 of system (9.8.22) is uniformly
asymptotically stable in the large if there exist µ > 0 and δ > 0 such that inequality
(9.8.26) is satisfied. In particular, these conditions are satisfied for b(t) ≡ b and
a(t) ≡ a if |b| < a. In this case we choose µ = a/2 and δ = a2 − b2. �

Example 9.8.3 In this example we demonstrate the advantage of the stability results
of the present section over those of Section 9.2, when applied to functional differential
equations. To this end, we reconsider system (9.8.22), using the same Lyapunov
function as before, restated here as

v(ϕ) =
1
2
ϕ(0)2 + µ

∫ 0

−r

ϕ(θ)2dθ.

We have in the present case

c1‖ϕ‖2 ≤ v(ϕ) ≤ c2‖ϕ‖2 (9.8.28)

where c1 = min{1/2, µ} and c2 = max{1/2, µ} and where the norm is given by
(9.8.1).

As in Example 9.8.2, we have along the solutions of system (9.8.22) the estimate

v′
(9.8.22)(ϕ) ≤ −c3

(
ϕ(0)2 + ϕ(−r)2

)
for all ϕ ∈ Cr. Therefore, v′

(9.8.22) is negative semidefinite with respect to the norm
‖ · ‖ and we can conclude from Theorem 9.2.1(b) that the equilibrium ϕe = 0 of
system (9.8.22) is uniformly stable. However, because we cannot show in the present
case that v′

(9.8.22) is negative definite with respect to the norm ‖ · ‖, we cannot apply
Theorem 9.2.1(c) (resp., Theorem 9.2.2) to conclude that the equilibrium ϕe = 0 of
system (9.8.22) is uniformly asymptotically stable (in the large). �

B. Instability results

We now present instability results for retarded functional differential equations (F )
which in general will yield less conservative results than the corresponding instability
results given in Subsection 9.2C.
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Theorem 9.8.4 (Lyapunov’s First Instability Theorem for retarded functional differ-
ential equations) Assume that there exist a function v ∈ C[B(h) × R

+, R] for some
h > 0, where B(h) ⊂ C, and a t0 ∈ R

+, such that the following conditions are
satisfied.

(i) There exists a function ψ1 ∈ K defined on [0, h] such that

v(ϕ, t) ≤ ψ1(|ϕ(0)|) (9.8.29)

for all ϕ ∈ B(h) and t ∈ R
+.

(ii) There exists a function ψ2 ∈ K defined on [0, h] such that

v′
(F )(ϕ, t) ≥ ψ2(|ϕ(0)|) (9.8.30)

for all ϕ ∈ B(h) and t ∈ R
+.

(iii) In every neighborhood of the origin ϕe = 0 ∈ Cr, there are points ϕ such that
v(ϕ, t0) > 0.

Then the equilibrium ϕe = 0 of (F ) is unstable.

Proof . For a given ε ∈ (0, h), let {ϕm}m∈N be a sequence with ϕm ∈ B(ε), such
that ‖ϕm‖ → 0 as m → ∞, and v(ϕm, t0) > 0, where we have used condition (iii).
Let xt(·, t0, ϕm) be a solution of (F ) with the initial condition xt0 = ϕm, and let

vm(t)
�
= v(xt(·, t0, ϕm), t). It suffices to prove that for every m ∈ N, xt(·, t0, ϕm)

must reach the boundary of B(ε) in finite time. For otherwise, we would have
‖xt(·, t0, ϕm)‖ < ε for all t ≥ t0, and in particular, that |xt(0, t0, ϕm)| < ε for all
t ≥ t0. It follows from hypothesis (ii) that vm(t) is nondecreasing for t ≥ t0, and
from hypothesis (i) it follows that

ψ1(|xt(0, t0, ϕm)|) ≥ vm(t) ≥ vm(t0) = v(ϕm, t0) > 0

or

|xt(0, t0, ϕm)| ≥ ψ−1
1 (vm(t0))

�
= αm > 0

for all t ≥ t0. Using hypothesis (iii), we now have

ψ1(ε) > ψ1(|xt(0, t0, ϕm)|) ≥ vm(t)

≥ vm(t0) +
∫ t

t0

ψ2(αm)ds

= vm(t0) + ψ2(αm)(t − t0)

for all t ≥ t0. But this is impossible. Therefore, the equilibrium ϕe = 0 of (F ) is
unstable. �

We demonstrate the applicability of Theorem 9.8.4 by means of a specific example.
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Example 9.8.4 We consider the scalar retarded functional differential equation

ẋ(t) = −ax(t) − bx(t − r) (9.8.31)

where t ∈ R
+, r > 0 is a constant, and a, b ∈ R. We choose as a Lyapunov function

v(ϕ) =
1
2
ϕ(0)2 − µ

∫ 0

−r

ϕ(θ)2dθ (9.8.32)

for all ϕ ∈ Cr, where µ > 0 is a constant. Clearly,

v(ϕ) ≤ 1
2
ϕ(0)2 (9.8.33)

for all ϕ ∈ Cr. Along the solutions of (9.8.31) we have

v′
(9.8.31)(ϕ) =

[
ϕ(0) ϕ(−r)

] [−(a + µ) −b/2
−b/2 µ

] [
ϕ(0)

ϕ(−r)

]
≥ λ

(
ϕ(0)2 + ϕ(−r)2

)
≥ λϕ(0)2 (9.8.34)

where λ denotes the smallest eigenvalue of the symmetric matrix given in (9.8.34).
Now λ > 0 if and only if

a + µ < 0 and − 4(a + µ)µ > b2. (9.8.35)

The second inequality in (9.8.35) is equivalent to the inequality

(a + 2µ)2 + (b2 − a2) < 0.

Thus, the conditions in (9.8.35) hold for some µ > 0 if and only if −a > |b|.
Hypothesis (iii) in Theorem 9.8.4 is clearly satisfied for the choice of v(ϕ) given

in (9.8.32). It now follows from (9.8.33), (9.8.34), and Theorem 9.8.4 that the equi-
librium ϕe = 0 of system (9.8.31) is unstable if −a > |b|. �

Before addressing the next instability result, we note that Lyapunov’s Second In-
stability Theorem for functional differential equations is identical in form to The-
orem 9.2.5 (Lyapunov’s Second Instability Theorem for differential equations in
Banach space) and is not restated here.

Theorem 9.8.5 (Chetaev’s Instability Theorem for retarded functional differential
equations) Assume that there exist a function v ∈ C[B(h)× R

+, R] for some h > 0,
where B(h) ⊂ C, a t0 ∈ R

+ and an h0 > 0, such that the following conditions are
satisfied.

(i) There exists a component G of the set

D =
{
(ϕ, t) ∈ B(h) × R

+ : v(ϕ, t) < 0 and ‖ϕ‖ < h0
}

such that in every neighborhood of the origin ϕe = 0 ∈ Cr, there exists a ϕ
with (ϕ, t0) ∈ G.

(ii) v(ϕ, t) ≥ −ψ1(‖ϕ‖) for all (ϕ, t) ∈ G, where ψ1 ∈ K.
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(iii) v′
(F )(ϕ, t) ≤ −ψ2(|ϕ(0)|) for all (ϕ, t) ∈ G, where ψ2 ∈ K.

Then the equilibrium ϕe = 0 of (F ) is unstable.

Proof . Let {ϕm}m∈N be a sequence in Cr such that (ϕm, t0) ∈ D and such that
‖ϕm‖ → 0 as m → ∞. The existence of such a sequence {ϕm} is guaranteed by
hypothesis (i). Let xt(·, t0, ϕm) be a solution of (F ) with initial condition xt0 = ϕm.
It suffices to prove that for every m ∈ N, xt(·, t0, ϕm) must reach the boundary of
B(h0) in finite time. For otherwise, we would have ‖xt(·, t0, ϕm)‖ < h0 for all
t ≥ t0. Hypothesis (iii) implies now that v(xt(·, t0, ϕm), t) is nonincreasing for all
t ≥ t0 and that

v(xt(·, t0, ϕm), t) ≤ v(ϕm, t0) −
∫ t

t0

(
ψ2 ◦ ψ−1

1

)
(h0)ds

= v(ϕm, t0) −
(
ψ2 ◦ ψ−1

1

)
(h0)(t − t0)

where we have assumed without loss of generality that h0 is in the range of ψ1.
(Should this not be the case, then we can always replace h0 by a smaller number.)
Therefore, v(xt(·, t0, ϕm), t) → −∞ as t → ∞. But this contradicts hypothesis (ii)
which implies that v is bounded from below on D. This proves the theorem. �

We apply Theorem 9.8.5 in the stability analysis of a specific example.

Example 9.8.5 We consider a scalar retarded functional differential equation given by

ẋ(t) = −ax(t)3 − bx(t − r)3 (9.8.36)

where t ∈ R
+, r > 0, and a, b ∈ R. We choose as a Lyapunov function

v(ϕ) = −ϕ(0)4

4
+ µ

∫ 0

−r

ϕ(θ)6dθ (9.8.37)

for all ϕ ∈ Cr, where µ > 0 is a constant. Clearly,

v(ϕ) ≥ −‖ϕ‖4

4
(9.8.38)

for all ϕ ∈ Cr. Along the solutions of (9.8.36) we have

v′
(9.8.36)(ϕ) = −

[
ϕ(0)3 ϕ(−r)3

] [−(a + µ) −b/2
−b/2 µ

] [
ϕ(0)3

ϕ(−r)3

]
≤ −λ

(
ϕ(0)6 + ϕ(−r)6

)
≤ −λϕ(0)6 (9.8.39)

for all ϕ ∈ Cr. Now λ > 0 (where λ denotes the smallest eigenvalue of the symmetric
matrix given in (9.8.39) if and only if

a + µ < 0 and − 4(a + µ)µ > b2. (9.8.40)

In an identical manner as in Example 9.8.4, we can show that the conditions in (9.8.40)
are satisfied if and only if −a > |b|.
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For any h0 > 0, let G1 be any component of the set D={ϕ ∈ B(h0) : v(ϕ)< 0}
such that ϕe = 0 ∈ ∂G1, and let G = G1 × R

+. It now follows from Theorem 9.8.5
that the equilibrium ϕe = 0 of system (9.8.36) is unstable if −a > |b|. �

C. Invariance theory

We next address the stability analysis of dynamical systems determined by autonomous
retarded functional differential equations given by

ẋ(t) = F (xt) (FA)

where F ∈ C[C, Rn] and C is an open connected subset of Cr with norm ‖·‖ defined
in (9.8.1). In the present subsection we assume that F is completely continuous; that
is, for any bounded closed set B ⊂ C, the closure of F (B) = {F (x) : x ∈ B} is
compact.

Theorem 9.8.6 Assume that F in (FA) is completely continuous and that there exists
a function v ∈ C[C, R] such that v′

(FA)(ϕ) ≤ 0 for all ϕ ∈ C. Let M be the largest
invariant set with respect to (FA) in the set

Z =
{
ϕ ∈ C : v′

(FA)(ϕ) = 0
}
. (9.8.41)

Then every bounded solution of (FA) approaches M as t → ∞.

Proof . By Theorem 9.4.1 it suffices to prove that for every bounded solution ϕt(·)
of (FA), the closure of the trajectory of {ϕt(·)} is compact in Cr. Given a bounded
solution ϕt(·) of (FA), because F is completely continuous, there exists a constant
L > 0 such that |ϕ̇(t)| ≤ L for all t ∈ R

+, where ϕ(t) = ϕt(0). Therefore, by
using the Ascoli–Arzela lemma (refer to Problem 2.14.7), we can prove that for every
sequence ϕtm(·), tm ∈ R

+, there exists a subsequence ϕtmk
(·) that converges in

Cr. This proves that the closure of the trajectory of {ϕt(·)} is compact in Cr. This
completes the proof of the theorem. �

In the next result we assume that ϕe = 0 is an equilibrium of system (FA).

Theorem 9.8.7 Assume that C = Cr and that F in (FA) is completely continu-
ous. Assume that there exists a function v ∈ C[Cr, R] that satisfies the following
conditions.

(i) v′
(FA)(ϕ) ≤ 0 for all ϕ ∈ Cr.

(ii) There exists a function ψ ∈ K∞ such that

ψ(|ϕ(0)|) ≤ v(ϕ) (9.8.42)

for all ϕ ∈ Cr.
(iii) {0} ⊂ Cr is the only invariant subset in

Z = {ϕ ∈ Cr : v′
(FA)(ϕ) = 0}. (9.8.43)

Then the equilibrium ϕe = 0 of system (FA) is uniformly asymptotically stable
in the large.
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Proof . Let Uη = {ϕ ∈ Cr : v(ϕ) < η}. If ϕ ∈ Uη, because v′
(FA)(ϕ) ≤ 0,

xt(ϕ, t0) ∈ Uη for all t ≥ t0. It follows from (9.8.43) that |xt(ϕ, t0)| ≤ ψ−1
1 (η) for

all t ≥ t0 if ϕ ∈ Uη, which implies that xt(ϕ, t0) is uniformly bounded.
The uniform stability follows from Theorem 9.8.1. In applying Theorem 9.8.1 we

note that if v is independent of t, then the condition v(ϕ) ≤ ψ2(‖ϕ‖) can be deleted
for uniform stability, inasmuch as in this case the continuity of v can be utilized
instead in the proof of Theorem 9.8.1.

It now follows from Theorem 9.8.6 that the equilibrium ϕe = 0 of system (FA)
is uniformly asymptotically stable in the large. �

In Example 9.8.2 we showed that for the system described by

ẋ(t) = −ax(t) − bx(t − r), (9.8.44)

the equilibrium ϕe = 0 is uniformly asymptotically stable in the large if |b| < a and
in Example 9.8.4 we showed that the equilibrium ϕe = 0 of this system is unstable if
−a > |b|. In the next example we address some of the critical cases for this system,
using the results of the present subsection. Specifically, we show that if a = b > 0,
then the equilibrium ϕe = 0 of the above system is uniformly asymptotically stable
in the large and if a = −b > 0, then the solutions ϕ of this system must approach a
constant as t → ∞.

Example 9.8.6 [29] For system (9.8.44) we assume that t∈R
+, r>0, and a, b∈R.

We choose as a Lyapunov function

v(ϕ) =
1
2
ϕ(0)2 +

a

2

∫ 0

−r

ϕ(θ)2dθ. (9.8.45)

For a > 0, we have
v(ϕ) ≥ 1

2
ϕ(0)2 (9.8.46)

and
v′
(9.8.44)(ϕ) = −

[
ϕ(0) ϕ(−r)

] [a b
b a

] [
ϕ(0)

ϕ(−r)

]
. (9.8.47)

The symmetric matrix in (9.8.47) is positive semidefinite if and only if a2 − b2 ≥ 0
and therefore, v′

(9.8.44)(ϕ) ≤ 0 for all ϕ ∈ Cr if and only if |b| ≤ a. In the following
we address the critical case a = |b|. We accomplish this by considering the cases
a = b > 0 and a = −b > 0.

(a) When a = b > 0, then

Z =
{
ϕ ∈ Cr : v′

(9.8.44)(ϕ) = 0
}

=
{
ϕ ∈ Cr : ϕ(0) = −ϕ(−r)

}
.

If M is the largest invariant subset in Z, then xt(·) ∈ M implies that x(t) = −x(t−r),
and therefore, by invoking (9.8.44) it follows that ẋ(t) = 0. Therefore, x(t) = c, a
constant, and in fact c = 0. It follows that M = {0}. All conditions of Theorem 9.8.7



Section 9.8 Results for Retarded Functional Differential Equations 435

are satisfied and we conclude that the equilibrium ϕe = 0 of system (9.8.44) is
uniformly asymptotically stable in the large.

(b) When a = −b > 0, then

Z =
{
ϕ ∈ Cr : v′

(9.8.44)(ϕ) = 0
}

=
{
ϕ ∈ Cr : ϕ(0) = ϕ(−r)

}
.

Similarly as in part (a), we can show that the largest invariant subset in Z is given
by M = {ϕ ∈ Cr : ϕ ≡ k}; that is, ϕ is a constant function. It follows from
Theorem 9.8.2 that the solutions of system (9.8.44) are uniformly bounded. From
the proof of Theorem 9.8.6 it follows that the trajectory of every solution of (9.8.44)
must have a compact closure and from the proof of Lemma 4.2.2, that v(xt) → c,
a constant, as t → ∞. Therefore, the ω-limit set of xt, ω(xt), must be a subset of
the set v−1(c) ∩ M . Now in the case when ϕ is a constant function, we have that
v(ϕ) is a quadratic polynomial in ϕ and v−1(c)∩M consists of at most two constant
functions. Therefore, xt approaches a constant as t → ∞. �

In the next section, we apply Theorem 9.8.7 further in the analysis of a class of
artificial neural networks with time delays.

D. Razumikhin-type theorems

The stability analysis of dynamical systems determined by retarded functional differ-
ential equations (F ) by the results presented thus far is in general more complicated
than the analysis of dynamical systems determined by ordinary differential equations
because the former involve hypotheses in the setting of the space Cr whereas the hy-
potheses of the latter involve assumptions defined on R

n (which is much simpler than
the space Cr). Stability results of the Razumikhin-type circumvent such difficulties
by requiring hypotheses that are defined exclusively on R

n.
In the present subsection we return to dynamical systems determined by retarded

functional differential equations (F ), as described at the beginning of the present
section. In the following results, we let BE(h) = {x ∈ R

n : |x| < h} ⊂ R
n for

some h > 0, and as before B(h) = {ϕ ∈ Cr : ‖ϕ‖ < h} ⊂ C ⊂ Cr.

Theorem 9.8.8 Assume that for every bounded set G in Cr the range of F on the
set R

+ × G is a bounded set in R
n. Assume that for (F ) there exist a function

v ∈ C[BE(h) × [−r, ∞), R] and two functions ψ1, ψ2 ∈ K and a nondecreasing
function ψ3 ∈ C[R+, R+] such that

ψ1(|x|) ≤ v(x, t) ≤ ψ2(|x|) (9.8.48)

and for all t ≥ −r and all ϕ ∈ B(h), and

v′
(F )(ϕ(0), t) ≤ −ψ3(|ϕ(0)|) if v(ϕ(θ), t + θ) ≤ v(ϕ(0), t) for all θ ∈ [−r, 0].

(9.8.49)
Then the following statements are true.

(i) The equilibrium ϕe = 0 of (F ) is uniformly stable.
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(ii) If ψ3 ∈ K and there exists a nondecreasing function f ∈ C[R+, R+] such that
f(s) > s for s ∈ (0, h] such that for all t ≥ −r and all ϕ ∈ B(h),

v′
(F )(ϕ(0), t) ≤ −ψ3(|ϕ(0)|) if v(ϕ(θ), t + θ) ≤ f(v(ϕ(0), t))

for all θ ∈ [−r, 0], (9.8.50)

then the equilibrium ϕe = 0 of (F ) is uniformly asymptotically stable.

Proof . (a) Let
ṽ(ϕ, t)

�
= sup

θ∈[−r,0]
v(ϕ(θ), t + θ)

for all (ϕ, t) ∈ B(h) × R
+.

If ṽ(xt(t0, ϕ0), t) = v(x(t, t0, ϕ0), t), that is,

v(x(t + θ, t0, ϕ0), t + θ) ≤ v(x(t, t0, ϕ0), t) < f(v(x(t, t0, ϕ0), t)),

then ṽ′
(F )(xt(t0, ϕ0), t)≤0 by hypothesis (ii). If ṽ(xt(t0, ϕ0), t)<v(x(t, t0, ϕ0), t),

then for τ > 0 sufficiently small

ṽ(xt+τ (t0, ϕ0), t + τ) = ṽ(xt(t0, ϕ0), t).

Hence ṽ′
(F )(xt(t0, ϕ0), t) = 0. Therefore, ṽ′(xt(t0, ϕ0), t) ≤ 0 under the present

assumptions.
It follows from (9.8.48) that ψ1(|ϕ(0)|) ≤ ṽ(ϕ, t) ≤ ψ2(‖ϕ‖). From Theo-

rem 9.8.1 we conclude that the equilibrium ϕe = 0 of (F ) is uniformly stable.
(b) We first note that from part (a) and by (9.8.48) it follows that for a given ε0 > 0

there exists a δ0 > 0 such that supθ∈[−r,0] |x(t + θ)| < ε0 for all t ≥ t0 − r and
for any solution x(t) of (F ) whenever supθ∈[−r,0] |x(t0 + θ)| < δ0. To prove the
uniform attractivity of the equilibrium ϕe = 0 of (F ) we need to show that for every
η > 0 there exists a T = T (η, δ0) > 0 such that |x(t)| ≤ η for all t ≥ t0 + T
whenever supθ∈[−r,0] |x(t0 + θ)| < δ0.

Without loss of generality, assume that η is sufficiently small so that ψ1(η) <
ψ2(δ0). Then there exists an a > 0 such that f(s)−s > a for all s ∈ [ψ1(η), ψ2(δ0)].
Also, there exists a positive integer N such that ψ1(η) + Na ≥ ψ2(δ0). For every
fixed η > 0 and every fixed solution x(t) of (F ), define

F1 =
{
t ∈ [t0,∞) : v(x(t), t) > ψ1(η) + (N − 1)a

}
.

Then for every t ∈ F1, it follows that

f(v(x(t), t)) > v(x(t), t) + a

> ψ1(η) + Na

≥ ψ2(δ)
≥ ψ2(|x(t + θ)|)
≥ v(x(t + θ), t + θ).
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It follows from (9.8.50) that

v′
(F )(x(t), t) ≤ −ψ3(|x(t)|) < 0 (9.8.51)

for all t ∈ F1.
We next show that F1 is bounded. Suppose that F1 �= ∅. Let tm = inf{t ∈ F1}.

It must be true that v(x(tm), tm) ≥ ψ1(η) + (N − 1)a. If tm > t0, then (9.8.51)
holds for t = tm, which implies that v(x(tm − ∆t), tm − ∆t) > v(x(tm), tm) for
∆t > 0 sufficiently small. Therefore, tm − ∆t ∈ F1. This contradicts the definition
of tm. Therefore, tm = t0 and furthermore, t0 < t1 ∈ F1 implies that [t0, t1] ⊂ F1.
For any t ∈ F1, we have

|x(t)| ≥
(
ψ−1

2 ◦ v
)
(x(t), t) ≥ ψ−1

2

(
ψ1(η) + (N − 1)a

)
.

Hence, for any t0 < t1 ∈ F1,

v(x(t1), t1) ≤ v(x(t0), t0) −
(
ψ3 ◦ ψ−1

2

)(
ψ1(η) + (N − 1)a

)
(t1 − t0).

From this we conclude that F1 is bounded, for otherwise for sufficiently large t1,
v(x(t1), t1) will become negative, which contradicts the fact that v is positive definite.

For F1 bounded there exists a T1 ≥ t0 such that v(x(t), t) ≤ ψ1(η) + (N − 1)a
for all t ≥ T1.

If N > 1, let

F2 = {t ∈ [T1,∞) : v(x(t), t) > ψ1(η) + (N − 2)a}.

In a similar manner as for F1, we can show that F2 is bounded. Inductively, define F3
if N >2, . . . , FN . Then FN is bounded. Therefore, there exists a TN ≥ · · · ≥T1 ≥ t0
such that ψ1(|x(t)|) ≤ v(x(t), t) ≤ ψ1(η) (i.e., |x(t)| ≤ η for all t ≥ TN ). The
proof is completed. �

We conclude the present section with a specific example that demonstrates the
applicability of Theorem 9.8.8.

Example 9.8.7 We consider the scalar retarded functional differential equation

ẋ(t) = −a(t)x(t) −
n∑

j=1

bj(t)x(t − rj(t)) (9.8.52)

where a, bj , rj , j = 1, . . . , n, are continuous functions on R
+ that satisfy a(t) ≥ δ

for some δ > 0 and
∑n

j=1 |bj(t)| < kδ, 0 < k < 1, and 0 ≤ rj(t) ≤ r, j = 1, . . . , n,
for all t ∈ R

+.
We choose as a Lyapunov function

v(x) =
1
2
x2.
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Along the solutions of (9.8.52) we have

v′
(9.8.52)(x(t)) = −a(t)x(t)2 −

n∑
j=1

bj(t)x(t)x(t − rj(t)).

Assume that x(θ)2 < qx(t)2, t − r ≤ θ ≤ t and choose f(s) = qs, q = 1/k > 1.
Then

v′
(9.8.52)(x(t)) ≤ −a(t)x(t)2 +

n∑
j=1

|bj(t)|qx(t)2 ≤
(

− δ + kδ
)
x(t)2.

Therefore, the equilibrium x(t) ≡ 0 of system (9.8.52) is uniformly asymptotically
stable in the large. �

9.9 Applications to a Class of Artificial Neural
Networks with Time Delays

An important class of artificial recurrent neural networks, Cohen–Grossberg neural
networks, is described by the set of ordinary differential equations,

ẋi(t) = −ai(xi(t))
[
bi(xi(t)) −

n∑
j=1

tijsj(xj(t))
]
, (9.9.1)

i = 1, . . . , n, where xi denotes the state variable associated with the ith neuron, the
function ai(·) represents an amplification function, and bi(·) is an arbitrary function;
however, we require that bi(·) be sufficiently well behaved to keep the solutions of
(9.9.1) bounded. The matrix T = [tij ] ∈ R

n×n represents the neuron interconnec-
tions and the real function si(·) is a sigmoidal nonlinearity (specified later), repre-
senting the ith neuron. Letting xT = (x1, . . . , xn), A(x) = diag[a1(x), . . . , an(x)],
B(x) = [b1(x1), . . . , bn(xn)]T , and S(x) = [s1(x1), . . . , sn(xn)]T , (9.9.1) can be
rewritten as

ẋ(t) = −A(x(t))[B(x(t)) − TS(x(t))]. (9.9.2)

If T = TT , then (9.9.2) constitutes the Cohen–Grossberg neural network model.
Frequently, multiple time delays are incurred in such networks, either intentionally

or unavoidably. Such networks are described by differential-difference equations of
the form

ẋi(t) = −ai(xi(t))
[
bi(xi(t)) −

n∑
j=1

t
(0)
ij sj(xj(t)) −

K∑
k=1

n∑
j=1

t
(k)
ij sj(xj(t − τk))

]
,

(9.9.3)
i = 1, . . . , n, where t

(k)
ij , i, j = 1, . . . , n, denote the interconnections that are associ-

ated with time delay τk, k = 0, 1, . . . , K. We assume without loss of generality that
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0 = τ0 < τ1 < · · · < τK . The symbols xi, ai(·), bi(·), and si(·), are the same as in
(9.9.1). System (9.9.3) can now be expressed as

ẋ(t) = −A(x(t))
[
B(x(t)) − T0S(x(t)) −

K∑
k=1

TkS(x(t − τk))
]

(9.9.4)

where x, A(·), B(·), and S(·) are defined similarly as in (9.9.2) and where Tk makes
up the interconnections associated with delay τk, k = 0, 1, . . . , K, so that T =
T0 + T1 + · · · + TK .

Throughout this section we assume that the Cohen–Grossberg neural networks
without delay, given by (9.9.1), and with delays, given by (9.9.3), satisfy the following
assumptions.

Assumption 9.9.1
(i) The function ai(·) is continuous, positive, and bounded.

(ii) The function bi(·) is continuous.
(iii) T = [tij ] is symmetric; that is, T = TT .
(iv) sj ∈ C1[R, R] is a sigmoidal function; that is, sj(0) = 0,

s′
j(xj)

�
=

dsj

dxj
(xj) > 0,

limxj→∞ sj(xj) = 1, limxj→−∞ sj(xj) = −1, and lim|xj |→∞ s′
j(xj) = 0.

(v) limxi→∞ bi(xi) = ∞ and limxi→−∞ bi(xi) = −∞. �

Lemma 9.9.1 If Assumption 9.9.1 is satisfied, then the solutions of systems (9.9.1)
and (9.9.3) are bounded.

Proof . Because system (9.9.1) may be viewed as a special case of system (9.9.3),
we consider in our proof only system (9.9.3).

We know from Assumption 9.9.1 that the terms sj(xj(t)) and sj(xj(t − τk))
are bounded for all j = 1, . . . , n. Furthermore, because limxi→∞ bi(xi) = ∞ and
limxi→−∞ bi(xi) = −∞, there must exist an M > 0 such that

bi(xi(t)) −
n∑

j=1

t
(0)
ij sj(xj(t)) −

K∑
k=1

n∑
j=1

t
(k)
ij sj(xj(t − τk)) > 0

whenever xi(t) ≥ M and

bi(xi(t)) −
n∑

j=1

t
(0)
ij sj(xj(t)) −

K∑
k=1

n∑
j=1

t
(k)
ij sj(xj(t − τk)) < 0

whenever xi(t) ≤ −M for all i = 1, . . . , n. Because ai(xi(t)) is positive by
Assumption 9.9.1, we can conclude that for any solution x(t) of (9.9.3), ẋi(t) < 0
whenever xi(t) ≥ M and ẋi(t) > 0 whenever xi(t) ≤ −M for all i = 1, . . . , n. We
may assume that for the initial condition xt0 ∈ CτK

, ‖xt0‖ < M. If this is not the
case, we just pick a larger M . Therefore, we can conclude that |xi(t)| < M for all
t ≥ 0 and all i = 1, . . . , n. �
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If every nonequilibrium solution of (9.9.1) (and of (9.9.3)) converges to an equi-
librium, then system (9.9.1) (and system (9.9.3)) is said to be globally stable. In order
to ensure that the Cohen–Grossberg neural networks (9.9.1) and (9.9.3) are globally
stable, we require that the sets of equilibria for these systems are discrete sets. It turns
out that the next assumption ensures this automatically.

Assumption 9.9.2 For any equilibrium xe of system (9.9.2), the matrix J(xe) is
nonsingular, where

J(x) = −T + diag

[
b′
1(x1)

s′
1(x1)

, . . . ,
b′
n(xn)

s′
n(xn)

]
and b′

i(xi) = (dbi/dxi)(xi), i = 1, . . . , n. �

Using Sard’s Theorem [1], it can be shown that for almost all T ∈ R
n×n (except

a set with Lebesgue measure zero), system (9.9.2) satisfies Assumption 9.9.2. Fur-
thermore, by making use of the implicit function theorem (refer to Subsection 7.6A),
it can be shown that the set of all equilibria of system (9.9.2) is a discrete set. Be-
cause the set of equilibria of system (9.9.2), {xe(0)} ⊂ R

n, and the set of vectors
{ϕe(0)} ⊂ R

n, determined by the set of equilibria {ϕk} ⊂ CτK
of system (9.9.4)

are identical, we have the following result.

Lemma 9.9.2 If system (9.9.4) satisfies Assumption 9.9.2, then the set of equilibria
of system (9.9.4) is a discrete set (i.e., with T = T0 +

∑K
k=1 Tk, the set of points xe

such that B(xe) − TS(xe) = 0 is discrete, where T = TT ). Furthermore, system
(9.9.4) satisfiesAssumption 9.9.2 for all T = TT ∈ R

n×n except on a set of Lebesgue
measure zero. �

For a proof of Lemma 9.9.2, the reader should refer to [21].

A. A global result

We are now in a position to prove the following result.

Theorem 9.9.1 [42] Suppose that for system (9.9.3) Assumptions 9.9.1 and 9.9.2
are satisfied and that

K∑
k=1

(
τkβ‖Tk‖

)
< 1 (9.9.5)

where β = maxx∈Rn ‖A(x)S′(x)‖ where S′(x) = diag[s′
1(x1), . . . , s′

n(xn)]. Then
system (9.9.3) is globally stable.

Proof . Because inequality (9.9.5) is satisfied, there must exist a sequence of positive
numbers (α1, . . . , αK), such that

K∑
k=1

αk = 1, τkβ‖Tk‖ < αk for k = 1, . . . , K. (9.9.6)
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To prove the present result, we define for any xt ∈ C[[−τK , 0], Rn] an “energy
functional” E(xt) associated with (9.9.3) by

E(xt)= − ST (xt(0))TS(xt(0)) + 2
n∑

i=1

∫ [xt(0)]i

0
bi(σ)s′

i(σ)dσ

+
K∑

k=1

1
αk

∫ 0

−τk

[S(xt(θ))−S(xt(0))]T TT
k fk(θ)Tk[S(xt(θ))−S(xt(0))]dθ

(9.9.7)

where (α1, . . . , αK) is a sequence of positive numbers such that condition (9.9.6)
is satisfied and fk(θ) ∈ C1[[−τk, 0], Rn], k = 1, . . . , K, is specified later. After
changing integration variables, (9.9.7) can be written as

E(xt) = −ST (x(t))TS(x(t)) + 2
n∑

i=1

∫ xi(t)

0
bi(σ)s′

i(σ)dσ

+
K∑

k=1

1
αk

∫ t

t−τk

[S(x(w))−S(x(t))]TTT
k fk(w − t)Tk[S(x(w))−S(x(t))]dw.

(9.9.8)

The derivative of E(xt) with respect to t along any solution of (9.9.3) is com-
puted as

E′
(9.9.3)(xt)

= −2ST (x(t))TS′(x(t))A(x(t))
[
−B(x(t))+T0S(x(t))+

K∑
k=1

TkS(x(t − τk))
]

+ 2xT(t)B(x(t))S′(x(t))A(x(t))
[
−B(x(t))+T0S(x(t))+

K∑
k=1

TkS(x(t − τk))
]

−
K∑

k=1

1
αk

{
[S(x(t − τk)) − S(x(t))]T TT

k fk(−τk)Tk[S(x(t − τk)) − S(x(t))]

+
∫ t

t−τk

[S(x(w)) − S(x(t))]T TT
k f ′

k(w − t)Tk[S(x(w)) − S(x(t))]dw

+
∫ t

t−τk

[
− B(x(t)) + T0S(x(t)) +

K∑
k=1

TkS(x(t − τk))
]T

× A(x(t))S′(x(t))TT
k fk(w − t)Tk[S(x(w)) − S(x(t))]dw

+
∫ t

t−τk

[S(x(w)) − S(x(t))]T TT
k fk(w − t)TkS′(x(t))A(x(t))

×
[

− B(x(t)) + T0S(x(t)) +
K∑

k=1

TkS(x(t − τk))
]
dw

}
(9.9.9)
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where f ′(θ) = (df/dθ)(θ). If we adopt the notation

H0 = −B(x(t)) + T0S(x(t)) +
K∑

k=1

TkS(x(t − τk)), (9.9.10)

Hk = Tk[S(x(t − τk)) − S(x(t))], k = 1, . . . , K, (9.9.11)

Gk = Tk[S(x(w)) − S(x(t))], k = 1, . . . , K, (9.9.12)

Q = A(x(t))S′(x(t)) = S′(x(t))A(x(t)), (9.9.13)

(9.9.9) can be rewritten as

E′
(9.9.3)(xt)

= −2ST (x(t))TQH0 + 2x(t)T B(x(t))QH0 −
K∑

k=1

1
αk

{
HT

k fk(−τk)Hk

+
∫ t

t−τk

[GT
k f ′

k(w − t)Gk+HT
0 QTT

k fk(w − t)Gk + GT
k fk(w − t)TkQH0]dw

}

= −2HT
0 QH0 + 2

K∑
k=1

HT
k QH0 −

K∑
k=1

1
αk

{
HT

k fk(−τk)Hk

+
∫ t

t−τk

[GT
k f ′

k(w − t)Gk + HT
0 QTT

k fk(w − t)Gk + GT
k fk(w − t)TkQH0]dw

}
(9.9.14)

=
K∑

k=1

[
2HT

k QH0 − 1
αk

{
2HT

0 QH0 + HT
k fk(−τk)Hk

+
∫ t

t−τk

[GT
k f ′

k(w − t)Gk + HT
0 QTT

k fk(w − t)Gk + GT
k fk(w − t)TkQH0]dw

}]

= −
K∑

k=1

∫ 0

−τk

[ηk(xt, θ)]T Mk(xt, θ)ηk(xt, θ)dθ

where [ηk(xt, θ)]T = [HT
0 , HT

k , G̃T
k ]T with H0 and Hk given by (9.9.10) and

(9.9.11),

G̃k = Tk[S(x(t + θ)) − S(x(t))], k = 1, . . . , K, (9.9.15)

Mk(xt, θ) =

 2αkQ/τk −Q/τk QTT
k fk(θ)/αk

−Q/τk fk(−τk)I/(τkαk) 0
fk(θ)TkQ/αk 0 f ′

k(θ)I/αk

 (9.9.16)

and I denotes the n × n identity matrix. To obtain the last expression of (9.9.14), we
changed the integration variables from w to θ.
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We now show that if the hypotheses of Theorem 9.9.1 are satisfied, then Mk(xt, θ)
is positive definite for all θ ∈ [−τk, 0] and all xt that satisfy (9.9.3), for k = 1, . . . , K.
In doing so, we let U = U3U2U1, where

U1 =

 I/
√

αk 0 0
I/(2

√
αk)

√
αkI 0

0 0
√

αkI



U2 =

 I 0 0
0 I 0

−τkfk(θ)Tk/(2αk) 0 I


and

U3 =

 I 0 0
0 I 0
0 fk(θ)TkQU4/α4 I


where

U4 = −1
2

[
fk(−τk)

τk
I − Q

2τk

]−1

.

It is not difficult to verify that M̃k = UMk(xt, θ)UT is a diagonal matrix. In fact

M̃k = diag[Mk,1, Mk,2, Mk,3] (9.9.17)

where

Mk,1 =
2Q

τk
(9.9.18)

Mk,2 =
fk(−τk)

τk
I − Q

2τk
(9.9.19)

and

Mk,3 = f ′
k(θ)I − fk(θ)TkQ

2αk

[(
fk(−τk)

τk
I − Q

2τk

)−1

+ 2τkQ−1
]
QTT

k fk(θ)
2αk

.

(9.9.20)

It follows that Mk(xt, θ) is positive definite if and only if M̃k is positive definite and
if and only if Mk,1, Mk,2, and Mk,3 are all positive definite.

We now show that if the condition τkβ‖Tk‖ < αk is satisfied, where

β = max
x∈R

‖A(x)S′(x)‖ = max
x∈R

‖Q‖

then we can always find a suitable fk(θ) ∈ C1[[−τk, 0], R+] such that Mk,1, Mk,2,
and Mk,3 are positive definite for all xt that satisfy (9.9.3) and for all θ ∈ [−τk, 0].
From this it follows that Mk(xt, θ) is positive definite for all k = 1, . . . , K and
therefore E′

(9.9.3)(xt) ≤ 0 along any solution xt of (9.9.3).
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By the assumption that s′
i(xi) > 0 and ai(xi) > 0 for all xi ∈ R, the matrix Mk,1

is automatically positive definite. The matrix Mk,2 is always positive definite if the
condition

2fk(−τk) − β > 0 (9.9.21)

is satisfied. For Mk,3, it is easily shown that if

f ′
k(θ) >

1
4
fk(θ)2

‖Tk‖2

α2
k

∥∥∥∥∥Q
[(

fk(−τk)
τk

I − Q

2τk

)−1

+ 2τkQ−1

]
Q

∥∥∥∥∥ (9.9.22)

is true, then Mk,3 is also positive definite. Notice that the matrix

D
�
= Q

[(
fk(−τk)

τk
I − Q

2τk

)−1

+ 2τkQ−1

]
Q

is a diagonal matrix; that is, D = diag[d1, . . . , dn]. If we denoteQ = diag[q1, . . . , qn],
then it is easy to show that

di =
4fk(−τk)qiτk

2fk(−τk) − qi
for i = 1, . . . , n.

Because qi < β by the definitions of β and Q, we have, in view of (9.9.21), that

di <
4fk(−τk)βτk

2fk(−τk) − β
.

Therefore, we obtain

‖D‖ ≤ 4fk(−τk)βτk

2fk(−τk) − β

and, furthermore, condition (9.9.22) is satisfied if (9.9.21) is satisfied and

f ′
k(θ) >

1
4
fk(θ)2

‖Tk‖2

α2
k

4fk(−τk)βτk

2fk(−τk) − β
(9.9.23)

is satisfied.
Next, we need to show that there is an fk ∈ C1[[−τk, 0], R] such that conditions

(9.9.21) and (9.9.23) are satisfied. We choose

fk(−τk) =
[
βτ2

k

‖Tk‖2

α2
k

]−1

·
(9.9.24)

Condition (9.9.21) is satisfied by the choice (9.9.24). Furthermore,[
fk(−τk)

‖Tk‖
αk

− αk

βτk‖Tk‖

]2
+1− α2

k

β2τ2
k‖Tk‖2 = 1− α2

k

β2τ2
k‖Tk‖2 < 0 (9.9.25)

is true because βτk‖Tk‖ < αk. It follows from (9.9.25) that

δfk(−τk)τk < 1 (9.9.26)
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where

δ =
‖Tk‖2fk(−τk)βτk

α2
k[2fk(−τk) − β]

. (9.9.27)

Because δfk(−τk)τk < 1, we can always find an l such that 0 < l < 1, and
δfk(−τk)τk < l. Therefore, we always have γ > 0 where γ is given by

γ =
l

δfk(−τk)
− τk. (9.9.28)

We now choose fk(θ) on [−τk, 0] as

fk(θ) =
l

δ(γ − θ)
. (9.9.29)

It is easily verified that this choice is consistent with condition (9.9.24). Clearly,
fk ∈ C1[[−τk, 0], R+] because γ > 0. The derivative of fk(θ) is given by

f ′
k(θ) =

l

δ(γ − θ)2
=

δ

l
fk(θ)2 > δfk(θ)2 (9.9.30)

because l < 1. Combining (9.9.27) and (9.9.30), we can verify that fk(θ) satisfies
condition (9.9.23).

Therefore, we have shown that if βτk‖Tk‖ < αk, then there exists an fk(θ) (given
by (9.9.29), where fk(−τk), δ, and γ are given by (9.9.24), (9.9.27), and (9.9.28),
respectively) such that conditions (9.9.21) and (9.9.23) are satisfied. Thus Mk(xt, θ)
is positive definite for all xt satisfying (9.9.3) and all θ ∈ [−τk, 0] for k = 1, . . . , K.
We have shown that

E′
(9.9.3)(xt) ≤ 0 (9.9.31)

along any solution xt of (9.9.3), where E(xt) is the “energy functional” given by
(9.9.7).

We know from (9.9.14) that if E′
(9.9.3)(xt) = 0, then H0 = 0, Hk = 0, and

G̃k = 0 for k = 1, . . . , K, where H0, Hk, and G̃k are given by (9.9.10), (9.9.11),
and (9.9.15), respectively. For any ϕ ∈ C[[−τk, 0], Rn], we denote Ėϕ = 0 if

−B(ϕ(0)) + T0S(ϕ(0)) +
K∑

k=1

TkS(ϕ(−τk)) = 0 (9.9.32)

Tk[S(ϕ(−τk)) − S(ϕ(0))] = 0, k = 1, . . . , K (9.9.33)

Tk[S(ϕ(−θ)) − S(ϕ(0))] = 0 for all θ ∈ [−τK , 0], k = 1, . . . , K. (9.9.34)

It is obvious that for any solution xt of (9.9.3), E′
(9.9.3)(xt)=0 if and only if Ėxt =0.

Because for any xt satisfying (9.9.3), xt is bounded (Lemma 9.9.1) and because

E′
(9.9.3)(xt) ≤ 0,

it follows from the invariance theory (see Theorem 9.8.6) that the limit set of xt as
t → ∞ is the invariant subset of the set Λ = {ϕ ∈ C[[−τK , 0], Rn] : Ėϕ = 0}.
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Therefore, we have |xt − ϕ| → 0 as t → ∞ for some ϕ ∈ Λ. In particular, we have
xt(0) → ϕ(0) and xt(−τk) → ϕ(−τk) as t → ∞, k = 1, . . . , K. Combining this
with (9.9.32) and (9.9.33), we conclude that

−B(xt(0)) + T0S(xt(0)) +
K∑

k=1

TkS(xt(−τk)) → 0

and
Tk[S(xt(ϕ(−τk))) − S(xt(0))] → 0, k = 1, . . . , K

as t → ∞. It follows that

−B(xt(0)) + TS(xt(0)) → 0,

or
−B(x(t)) + TS(x(t) → 0,

as t approaches ∞. Now because xt is bounded (Lemma 9.9.1), we conclude that
any point in the limit set of x(t) as t → ∞ is an equilibrium of system (9.9.3) (or,
equivalently, an equilibrium of system (9.9.1)). Furthermore, inasmuch as the set
of equilibria of system (9.9.3) is a discrete set (Lemma 9.9.2), it follows that x(t)
approaches some equilibrium of system (9.9.3) as t tends to ∞. �

If τk = 0 for k = 1, . . . , K, then Theorem 9.9.1 reduces to a global stability result
for Cohen–Grossberg neural networks without time delays: if for system (9.9.1)
Assumptions 9.9.1 and 9.9.2 are satisfied, then system (9.9.1) is globally stable.

When the results given above apply, one can partition the state space, using the
domains of attraction of the asymptotically stable equilibria of system (9.9.2) or
(9.9.4). These partitions in turn determine equivalence relations that can be used as
the basis for a variety of applications (e.g., in applications of associative memories
to pattern recognition problems, classification of data, sorting problems, and the
like). Algorithms have been established that provide estimates for the total number
of equilibria and the total number of asymptotically stable equilibria (called stable
memories). Also, algorithms have been developed that make it possible to place
equilibria at desired locations and to minimize the number of undesired asymptotically
stable equilibria (called spurious states). For additional material on these topics, the
reader may wish to consult [24].

B. Local results

Good criteria that ensure the asymptotic stability of an equilibrium of system (9.9.3)
are of great interest. We address this issue in the present subsection. By necessity,
these results are local in nature.

We make use of the “energy functional” given in (9.9.7) which was used in the
proof of Theorem 9.9.1. In the following, we require the following concept.

Definition 9.9.1 Let τ = τK . An element ϕ∈C [[−τ, 0], Rn] = Cτ is called a local
minimum of the “energy functional” defined in (9.9.7) if there exists a δ > 0 such
that for any ϕ̃ ∈ Cτ , E(ϕ) ≤ E(ϕ̃) whenever ‖ϕ − ϕ̃‖ < δ. �
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Before stating and proving our next result, we recall that xe ∈ R
n is an equilibrium

of system (9.9.2) if
B(xe) − TS(xe) = 0.

Consistent with Lemma 9.9.2, ϕxe ∈ Cτ is an equilibrium of system (9.9.4) if
ϕxe(θ) = xe, −τ ≤ θ ≤ 0, and

B(xe) − TS(xe) = 0,

where T = T0 +
∑K

k=1 Tk.

Theorem 9.9.2 Suppose that the conditions of Theorem 9.9.1 are satisfied. If ϕxe
is

an equilibrium of (9.9.4), then the following statements are equivalent.

(a) ϕxe is a stable equilibrium of (9.9.4).

(b) ϕxe
is an asymptotically stable equilibrium of (9.9.4).

(c) ϕxe
is a local minimum of the “energy functional” E given by (9.9.7), where,

as defined above, ϕxe
∈ Cτ such that ϕxe

(θ) = xe, −τ ≤ θ ≤ 0.

(d) J(xe) is positive definite, where J(x) is defined in Assumption 9.9.2.

Proof . (a) =⇒ (b). Because Assumption 9.9.2 is satisfied, the set of equilibria of
system (9.9.4) is a discrete set by Lemma 9.9.2. Therefore, when ε > 0 is sufficiently
small, there is no other equilibrium ϕx′

e
of (9.9.4) such that

x′
e ∈ U(xe, ε)

�
= {x ∈ R

n : |x − xe| < ε}. (9.9.35)

Because ϕxe is a stable equilibrium of (9.9.4), there exists an η > 0 such that for
any ϕ ∈ Cτ satisfying ‖ϕ − ϕxe

‖ < η, ‖xt − ϕxe‖ < ε for all t > 0, where xt is
the solution of (9.9.4) with initial condition ϕ. Thus xt ∈ C[[−τ, 0], U(xe, ε)] for all
t. In view of Theorem 9.9.1 xt will converge to some equilibrium of system (9.9.4).
Because ϕxe

is the only equilibrium of (9.9.4) with xt ∈ C[[−τ, 0], U(xe, ε)], it
follows that xt converges to ϕxe . Thus we have shown that ϕxe is an attractive
equilibrium of system (9.9.4). Therefore the stable equilibrium ϕxe of (9.9.4) is an
asymptotically stable equilibrium of system (9.9.4).

(b) =⇒ (c). Because ϕxe
is an asymptotically stable equilibrium of system (9.9.4),

there exists an η > 0 such that for any ϕ ∈ Cτ satisfying ‖ϕ − ϕxe
‖ < η, xt

converges to ϕxe , where xt is the solution of (9.9.4) with initial condition ϕ. Therefore
E(ϕxe) ≤ E(xt) ≤ E(ϕ) for any ϕ ∈ Cτ satisfying ‖ϕ − ϕxe‖ < η. Therefore,
ϕxe is a local minimum of the energy functional E.

(c) =⇒ (d). Let Ẽ be a function from R
n to R defined by

Ẽ(x)
�
= −S(x)T TS(x) + 2

n∑
i=1

∫ xi

0
bi(σ)s′

i(σ)dσ. (9.9.36)

Comparing E with Ẽ, we note that Ẽ is a function defined on R
n, and E is a functional

defined on Cτ . Because ϕxe is a local minimum of E, xe must be a local minimum
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of Ẽ. Otherwise there would exist a sequence {xn} ⊂ R
n such that xn → xe as

n → ∞ and Ẽ(xn) < Ẽ(xe). Let ϕxn denote the constant function ϕxn ≡ xn in
Cτ . Then |ϕxn

− ϕxe
| → 0 as n → ∞ and

E(ϕxn
) = Ẽ(xn) < Ẽ(xe) = E(ϕxe

).

This contradicts the fact that ϕxe is a local minimum of E. Therefore, xe is a local
minimum of Ẽ. Hence J̃(xe) is positive semidefinite (see [21]), where J̃(x) is the
Hessian matrix of Ẽ given by

J̃(x) =

[
∂2Ẽ

∂xi∂xj

]
. (9.9.37)

It can be shown that
J̃(x) = 2S′(x)J(x)S′(x) (9.9.38)

where
S′(x) = diag[s′

1(x1), . . . , s′
n(xn)] (9.9.39)

and J(x) is given inAssumption 9.9.2. Therefore, J(xe) is also positive semidefinite.
By Assumption 9.9.2, J(xe) is a nonsingular matrix. Thus we have shown that J(xe)
is positive definite.

(d) =⇒ (a). We need to prove that ϕxe
is a stable equilibrium of system (9.9.4);

that is, for any ε > 0, there exists a δ > 0 such that for any ϕ ∈ Cτ , if ‖ϕ−ϕxe‖ < δ,
then ‖xt − ϕxe‖ < ε, where xt is the solution of (9.9.4) with initial condition ϕ.

Because J(xe) is positive definite, then J̃(xe) must also be positive definite where
J̃(x) is the Hessian matrix of Ẽ given by (9.9.38). Furthermore,

∇xẼ(x) = 2[−TS(x) + B(x)]T S′(x)

where S′(x) is given in (9.9.39). Therefore, ∇xẼ(xe) = 0 because ϕxe is an
equilibrium of (9.9.4). It follows (see [21]) that xe is a local minimum of Ẽ; that is,
there exists a δ1 > 0, δ1 < ε, such that whenever 0 < |x−xe| ≤ δ1, Ẽ(xe) < Ẽ(x).
Let r = min{Ẽ(x) : |x − xe| = δ1}. Then it is true that r > Ẽ(xe). Because
E(ϕxe) = Ẽ(xe), it follows that r > E(ϕxe). Note that E is a continuous functional.
Therefore, there exists a δ ∈ (0, δ1) such that whenever ‖ϕ − ϕxe

‖ < δ, where
ϕ ∈ Cτ , we have E(ϕ) < r. Suppose xt is any solution of (9.9.4) with the initial
condition ϕ such that ‖ϕ−ϕxe‖ < δ. We show that ‖xt −ϕxe‖ < δ1 < ε. Otherwise
there would exist a t0 > 0 such that |xt0(0) − xe| = δ1 (i.e., |x(t0) − xe| = δ1). By
the definition of E and Ẽ, we have E(xt0) ≥ Ẽ(x(t0)) ≥ r. Therefore, we obtain
E(xt0) > E(ϕ), which contradicts the fact that E is monotonically decreasing along
any solution of (9.9.4). Thus we have shown that ϕxe

is an asymptotically stable
equilibrium of system (9.9.4). �

We note that statement (d) in Theorem 9.9.2 is independent of the delays τk,
k = 1, . . . , K. Therefore, if system (9.9.4) satisfies Assumptions 9.9.1 and 9.9.2 and
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if the condition
∑K

k=1 τkβ‖Tk‖ < 1 is satisfied, then the locations of the (asymp-
totically) stable equilibria of system (9.9.4) will not depend on the delays τk for
k = 1, . . . , K. This is true if, in particular, τk = 0, k = 1, . . . , K. Therefore, if∑K

k=1 τkβ‖Tk‖ < 1, then systems (9.9.4) and (9.9.2) (obtained by letting τk = 0 for
k = 1, . . . , K in (9.9.4)) will have identical (asymptotically) stable equilibria. We
state this in the form of a corollary.

Corollary 9.9.1 Under the conditions of Theorem 9.9.1, ϕxe
is an asymptotically

stable equilibrium of system (9.9.4) if and only if xe is an asymptotically stable
equilibrium of system (9.9.2). This is true if and only if J(xe) is positive definite,
where J(x) is given in Assumption 9.9.2. �

Corollary 9.9.1 provides an effective criterion for testing the (asymptotic) stabil-
ity of any equilibrium of Cohen–Grossberg neural networks with multiple delays
described by (9.9.4). This criterion constitutes necessary and sufficient conditions,
as long as

K∑
k=1

τkβ‖Tk‖ < 1.

9.10 Discontinuous Dynamical Systems Determined
by Differential Equations in Banach Spaces

In the present section we address infinite-dimensional discontinuous dynamical sys-
tems (infinite-dimensional DDS), {T, X, A, S}, where T = R

+, X is a Banach space
with norm ‖·‖, X ⊃ A, and the motions S are determined by the solutions x(·, t0, x0)
of discontinuous differential equations defined on Banach spaces, specified later. As
in Chapter 3, we assume that the set of times at which discontinuities may occur is
unbounded and discrete and is of the form

Ex = {τx
1 , τx

2 , . . . : τx
1 < τx

2 < · · · }.

The notation Ex signifies that different motions may possess different sets of times
at which discontinuities may occur. Usually, the particular set Ex in question is clear
from context and accordingly, we are able to suppress the x-notation and simply write

E = {τ1, τ2, . . . : τ1 < τ2 < · · · }.

As in Subsection 2.12C, we sometimes find it useful to express the motions (solu-
tions) of infinite-dimensional DDS by

x(t, τ0, x0) = x(k)(t, τk, xk), τk ≤ t < τk+1, (9.10.1)

k ∈ N, where τ0 and x0 are given initial conditions.
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The most general class of infinite-dimensional DDS that we consider in the present
section is generated by differential equations of the form (refer to Subsection 2.12C),{

ẋ = Fk(t, x(t)), τk ≤ t < τk+1

x(τk+1) = gk(x(τ−
k+1)), k ∈ N

(SG)

where for each k ∈ N, Fk : R
+ × X → X, ẋ = dx/dt, gk : X → X , and x(t−) =

limt′→t,t′<t x(t′). As in Subsection 2.12C, associated with (SG), we consider the
family of initial value problems, given by{

ẋ(t) = Fk(t, x(t)), t ≥ τk

x(τk) = xk,
(SGk)

k ∈ N. For each k ∈ N, we assume that for every (τk, xk) ∈ R
+ × X, (SGk)

possesses a unique solution x(k)(t, τk, xk) that exists for all t ∈ [τk,∞). We express
this by saying that (SGk) is well posed.

Under the above assumptions, it is clear that for every (τ0, x0) ∈ R
+ × X , (SG)

has a unique solution x(t, τ0, x0) that exists for all t ∈ [τ0,∞). This solution is
made up of a sequence of solution segments x(k)(t, τk, xk) defined over the intervals
[τk, τk+1), k ∈ N, where xk = x(τk), k = 1, 2, . . . and where (τ0, x0) are given. At
points {τk+1}, k ∈ N, the solutions of (SG) may have discontinuities (determined
by gk(·)).

In addition to the above, we assume that for every k∈N, Fk(t, 0)=0 for all t∈R
+

and gk(0) = 0. This ensures the existence of the zero solution x(k)(t, τk, xk) = 0,
t ≥ τk, with xk = 0, which means that xe = 0 is an equilibrium of (SGk), k ∈ N.
Furthermore, xe = 0 is also an equilibrium for (SG).

A. Local stability results

We first address local results.

Theorem 9.10.1 Assume that there exist a function v : X ×R
+ → R

+ and functions
ψ1, ψ2 ∈ K defined on R

+ such that

ψ1(‖x‖) ≤ v(x, t) ≤ ψ2(‖x‖) (9.10.2)

for all x ∈ X and t ∈ R
+.

(a) Assume that for every solution x(·, τ0, x0) of (SG), v(x(t, τ0, x0), t) is con-
tinuous everywhere on R

+
τ0

= {t ∈ R
+ : t ≥ τ0} except on an unbounded

and discrete subset E = {τ1, τ2, . . . : τ1 < τ2 < · · · } of R
+
τ0

. Also, as-
sume that there exists a neighborhood U ⊂ X of the origin 0 ∈ X such that
v(x(τk, τ0, x0), τk) is nonincreasing for all x0 ∈ U and all k ∈ N, and assume
that there exists a function f ∈ C[R+, R+], independent of x(·, τ0, x0), such
that f(0) = 0 and that

v(x(t, τ0, x0), t) ≤ f(v(x(τk, τ0, x0), τk)), t ∈ (τk, τk+1), (9.10.3)

k ∈ N.

Then the equilibrium xe = 0 of (SG) is uniformly stable.
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(b) If in addition to the above assumptions, there exists a function ψ3 ∈ K defined
on R

+ such that

Dv(x(τk, τ0, x0), τk) ≤ −ψ3(‖x(τk, τ0, x0)‖) (9.10.4)

for all x0 ∈ U , k ∈ N, where

Dv(x(τk, τ0, x0), τk) =
1

τk+1 − τk

[
v(x(τk+1, τ0, x0), τk+1)

− v(x(τk, τ0, x0), τk)
]
, (9.10.5)

then the equilibrium xe = 0 of (SG) is uniformly asymptotically stable.

Proof . Parts (a) and (b) of this theorem are a direct consequence of Theorems 3.2.1
and 3.2.2, respectively. �

Theorem 9.10.2 Assume that there exist a function v : X × R
+ → R

+ and four
positive constants c1, c2, c3, and b such that

c1‖x‖b ≤ v(x, t) ≤ c2‖x‖b (9.10.6)

for all x ∈ X and t ∈ R
+.

Assume that there exists a neighborhood U of the origin xe = 0 such that for all
solutionsx(·, τ0, x0)of (SG) withx0 ∈ U, v(x(t, τ0, x0), t) is continuous everywhere
on R

+
τ0

except on an unbounded and discrete subset E ={τ1, τ2, . . . : τ1 < τ2 < · · · }
of R

+
τ0

. Furthermore, assume that there exists a function f ∈ C[R+, R+], independent
of x(·, τ0, x0), such that f(0) = 0 and that

v(x(t, τ0, x0), t) ≤ f(v(x(τk, τ0, x0), τk)), t ∈ (τk, τk+1), (9.10.7)

for all k ∈ N, and that for some positive q, f(·) satisfies

f(r) = O(rq) as r → 0+ (9.10.8)

(i.e., limr→0+ [f(r)/rq] = 0). Also, assume that for all k ∈ N,

Dv(x(τk, τ0, x0), τk) ≤ −c3‖x(τk, τ0, x0)‖b (9.10.9)

for all solutions x(·, τ0, x0) of (SG) with x0 ∈ U , where Dv is defined in (9.10.5).
Then the equilibrium xe = 0 of (SG) is exponentially stable.

Proof . This result is a direct consequence of Theorem 3.2.3. �

B. Global results

Next, we address global stability and boundedness results.



452 Chapter 9. Infinite-Dimensional Dynamical Systems

Theorem 9.10.3 (a) Assume that in Theorem 9.10.1, ψ1, ψ2 ∈ K∞ and that U = X .
Then the equilibrium xe = 0 of (SG) is uniformly asymptotically stable in the large.

(b) Assume that in Theorem 9.10.2, U = X . Then the equilibrium xe = 0 of (SG)
is exponentially stable in the large.

Proof . Parts (a) and (b) of this theorem are a direct consequence of Theorems 3.2.6
and 3.2.7, respectively. �

Theorem 9.10.4 Assume that there exist a function v : X × R
+ → R

+ and two
strictly increasing functions ψ1, ψ2 ∈C[R+, R+] with limr→∞ ψi(r) = ∞, i=1, 2,
such that

ψ1(‖x‖) ≤ v(x, t) ≤ ψ2(‖x‖) (9.10.10)

for all x ∈ X and all t ∈ R
+ whenever ‖x‖ ≥ Ω, where Ω is a positive constant.

Assume that for all solutions x(·, τ0, x0) of (SG), v(x(t, τ0, x0), t) is continuous
everywhere on R

+
τ0

except on an unbounded subset E ={τ1, τ2, . . . : τ1 < τ2 < · · · }
of R

+
τ0

. Also, assume that for every solution x(·, τ0, x0) of (SG),

v(x(τk+1, τ0, x0), τk+1) ≤ v(x(τk, τ0, x0), τk) (9.10.11)

for all τk, whenever ‖x(τk, τ0, x0)‖ ≥ Ω.
Furthermore, assume that there exists a function f ∈ C[R+, R+], independent of

x(·, τ0, x0), such that for all k ∈ N and all x(·, τ0, x0)

v(x(t, τ0, x0), t) ≤ f(v(x(τk, τ0, x0), τk)), t ∈ (τk, τk+1), (9.10.12)

whenever ‖x(t, τ0, x0)‖ ≥ Ω.
Moreover, assume that there exists a positive constant Γ such that

‖x(τk+1, τ0, x0)‖ ≤ Γ

whenever ‖x(τk, τ0, x0)‖ ≤ Ω for all solutions x(·, τ0, x0) of (SG).
Then the solutions of (SG) are uniformly bounded.

Proof . This result is a direct consequence of Theorem 3.2.4. �

Theorem 9.10.5 If in addition to the assumptions of Theorem 9.10.4 there exists a
function ψ3 ∈ K defined on R

+ such that for all solutions x(·, τ0, x0) of (SG),

Dv(x(τk, τ0, x0), τk) ≤ −ψ3(‖x(τk, τ0, x0)‖) (9.10.13)

for all τk, whenever ‖x(τk, τ0, x0)‖ ≥ Ω, where Dv is defined in (9.10.5), then the
solutions of (SG) are uniformly ultimately bounded.

Proof . This result is a direct consequence of Theorem 3.2.5. �

C. Instability results

Next, we address instability results.
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Theorem 9.10.6 Assume that for (SG) there exist a function v : X × R
+ → R and

a τ0 ∈ R
+ that satisfy the following conditions.

(i) There exists a function ψ2 ∈ K defined on R
+ such that

v(x, t) ≤ ψ2(‖x‖) (9.10.14)

for all x ∈ X and t ∈ R
+.

(ii) In every neighborhood of the origin xe = 0 there is a point x such that
v(x, τ0) > 0.

(iii) For any x0 ∈ X such that v(x0, τ0) > 0 and any solution x(·, τ0, x0) of (SG),
v(x(t, τ0, x0), t) is continuous everywhere on R

+
τ0

except on an unbounded and
discrete subset E = {τ1, τ2, . . . : τ1 < τ2 < · · · } of R

+
τ0

. Assume that there
exists a function ψ1 ∈ K defined on R

+ such that

Dv(x(τk, τ0, x0), τk) ≥ ψ1(|v(x(τk, τ0, x0), τk)|), (9.10.15)

for all k ∈ N, where Dv is defined in (9.10.5).

Then the equilibrium xe = 0 of (SG) is unstable.

Proof . This result is a direct consequence of Theorem 3.2.8. �

Theorem 9.10.7 If in addition to the assumptions in Theorem 9.10.6, v(x, τ0) > 0
for all x �= 0, then the equilibrium xe = 0 of (SG) is completely unstable.

Proof . This result is a direct consequence of Theorem 3.2.9. �

D. Converse theorems

We now establish necessary stability and boundedness results for infinite-dimensional
dynamical systems determined by differential equations in Banach spaces. Recall that
we assume that (SG) possesses unique solutions x(·, τ0, x0) for the initial conditions
(τ0, x0).

Theorem 9.10.8 Assume that the equilibrium xe = 0 of system (SG) is uniformly
stable and that Assumption 3.5.1 holds. Then there exist neighborhoods A1 and X1
of 0 ∈ X such that A1 ⊂ X1 and a mapping v : X1 × R

+ → R
+ that satisfies the

following conditions.

(i) There exist ψ1, ψ2 ∈ K such that

ψ1(‖x‖) ≤ v(x, t) ≤ ψ2(‖x‖)

for all t ∈ R
+ and x ∈ X1.

(ii) For every solution x(·, τ0, x0) of (SG) with x0 ∈ A1, v(x(t, τ0, x0), t) is
nonincreasing for all t ≥ τ0. �
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The proof of Theorem 9.10.8 is identical to the proof of Theorem 9.3.1 for uniform
stability of continuous dynamical systems determined by differential equations in
Banach spaces. In the next result, we address uniform asymptotic stability.

Theorem 9.10.9 Assume that Assumptions 3.5.1 and 3.5.2 hold for system (SG).
If the equilibrium xe = 0 of system (SG) is uniformly asymptotically stable, then
there exist neighborhoods A1 and X1 of 0 ∈ X such that A1 ⊂ X1 and a mapping
v : X1 × R

+ → R
+ that satisfies the following conditions.

(i) There exist ψ1, ψ2 ∈ K such that

ψ1(‖x‖) ≤ v(x, t) ≤ ψ2(‖x‖)

for all t ∈ R
+ and x ∈ X1.

(ii) There exists ψ3 ∈ K such that for all solutions x(·, τ0, x0) we have

Dv(x(τk, τ0, x0), τk) ≤ −ψ3(‖x(τk, τ0, x0)‖)

for all k ∈ N, where x0 ∈ A1, and Dv is defined in (9.10.5).

(iii) There exists a function f ∈ C[R+, R+] such that f(0) = 0 and

v(x(t, τ0, x0), t) ≤ f(v(x(τk, τ0, x0), τk))

for all x(·, τ0, x0), t ∈ (τk, τk+1), k ∈ N, x0 ∈ A1, and τ0 ∈ R
+.

Proof . This result is a direct consequence of Theorem 3.5.2. �

The next result, where we address a converse result for the exponential stability
of the equilibrium xe = 0 of (SG), is not symmetric with the conditions given in
Theorem 9.10.2 for exponential stability. Nevertheless, this result does provide us
with a set of necessary conditions for exponential stability.

Theorem 9.10.10 Assume that Assumptions 3.5.1 and 3.5.2 hold for system (SG).
If the equilibrium xe = 0 of system (SG) is exponentially stable, then there exist
neighborhoods A1 and X1 of 0 ∈ X such that A1 ⊂ X1 and a mapping v : X1 ×
R

+ → R
+ that satisfies the following conditions.

(i) There exist ψ1, ψ2 ∈ K such that

ψ1(‖x‖) ≤ v(x, t) ≤ ψ2(‖x‖)

for all t ∈ R
+ and x ∈ X1.

(ii) There exists a constant c > 0 such that for all solutions x(·, τ0, x0), we have

Dv(x(τk, τ0, x0), τk) ≤ −cv(x(τk, τ0, x0), τk)

for all k ∈ N, where x0 ∈ A1 and Dv is defined in (9.10.5).
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(iii) There exists a function f ∈ C[R+, R+] such that

v(x(t, τ0, x0), t) ≤ f(v(x(τk, τ0, x0), τk))

for all x(·, τ0, x0), t ∈ (τk, τk+1), k ∈ N, x0 ∈ A1, and τ0 ∈ R
+, and such

that for some positive q, f(·) satisfies

f(r) = O(rq) as r → 0+.

Proof . This result is a direct consequence of Theorem 3.5.3. �

There are also converse results for uniform asymptotic stability in the large, expo-
nential stability in the large, instability, and complete instability of the equilibrium
xe = 0 of system (SG), as well as for the uniform boundedness and uniform ultimate
boundedness of solutions of (SG). We do not address these.

The converse theorems presented above involve Lyapunov functions that need not
necessarily be continuous. In the next result, we show that under some additional very
mild assumptions, the Lyapunov functions for the converse theorems are continuous
with respect to initial conditions. (We consider only the case for Theorem 9.10.9.)

Theorem 9.10.11 If in addition to the assumptions given in Theorem 9.10.9, the
motions in S are continuous with respect to initial conditions (in the sense of Def-
inition 3.5.2), then there exists a continuous Lyapunov function that satisfies the
conditions of Theorem 9.10.9.

Proof . The proof of this theorem is a direct consequence of Theorem 3.5.5. �

E. Examples

In the present subsection we apply the results of the preceding subsections in the
analysis of several specific classes of infinite-dimensional discontinuous dynamical
systems described by differential equations in Banach spaces.

Example 9.10.1 (DDS system (SG)) For system (SGk) we assume that Fk satisfies
the Lipschitz condition

‖Fk(t, x) − Fk(t, y)‖ ≤ Kk‖x − y‖ (9.10.16)

for all x, y ∈ X and t ∈ R
+. Recalling our assumption that Fk(t, 0) = 0 for all

t ∈ R
+, and making use of the Gronwall inequality in a similar manner as was done

in Example 6.4.5, we obtain the estimate

‖x(k)(t, τk, xk)‖ ≤ eKk(t−τk)‖xk‖ (9.10.17)

for all t ≥ τk and all xk ∈ X . We assume that

sup
k∈N

Kk = K < ∞. (9.10.18)
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Recall that for system (SG) we assume that for all k ∈ N, gk(0) = 0. In addition,
we assume that

‖gk(x)‖ ≤ γk‖x‖ (9.10.19)

for all x ∈ X , that
sup
k∈N

γk = Γ < ∞, (9.10.20)

and letting τk+1 − τk = λk, that

sup
k∈N

λk = Λ < ∞. (9.10.21)

Proposition 9.10.1 Let Kk, γk, λk, K, Γ, and Λ be the parameters for system (SG)
given in (9.10.16)–(9.10.21).

(a) If for all k ∈ N, γkeKkλk ≤ 1, then the equilibrium xe = 0 of (SG) is uniformly
stable.

(b) If for all k ∈ N, γkeKkλk ≤ α < 1, where α > 0 is a constant, then the
equilibrium xe = 0 of (SG) is uniformly asymptotically stable in the large, in
fact, exponentially stable in the large.

Proof . We choose for system (SG) the Lyapunov function v(x, t) ≡ v(x) = ‖x‖,
x ∈ X , which when evaluated along the solutions of (SG) assumes the form

v(x(t, τ0, x0)) = v(x(k)(t, τk, xk)) = ‖x(k)(t, τk, xk)‖, τk ≤ t < τk+1,
(9.10.22)

k ∈ N, where x(k)(·, τk, xk) denotes the solution segment of the solution x(·, τ0, x0)
of (SG) over the interval [τk, τk+1). Clearly,

ψ1(‖x‖) ≤ v(x) ≤ ψ2(‖x‖) (9.10.23)

for all x ∈ X, where ψ1(s) = ψ2(s) = s ≥ 0; that is, ψ1, ψ2 ∈ K∞.
Along the solutions of (SG) we have, in view of (9.10.17), that

‖x(k)(t, τk, xk)‖ ≤ eKk(t−τk)‖xk‖ = eKk(t−τk)‖x(k)(τk, τk, xk)‖ (9.10.24)

for t ∈ [τk, τk+1). At t = τk+1 we have, in view of (9.10.19), that

‖x(k+1)(τk+1, τk+1, xk+1)‖ = ‖g(x(k)(τ−
k+1, τk, xk))‖ ≤ γk‖x(k)(τ−

k+1, τk, xk)‖.
(9.10.25)

Combining (9.10.24) and (9.10.25), we have

‖x(k+1)(τk+1, τk+1, xk+1)‖ ≤ γkeKkλk‖x(k)(τk, τk, xk)‖, (9.10.26)

and because by assumption γkeKkλk ≤ 1, we have

v(x(k+1)(τk+1, τk+1, xk+1)) = ‖x(k+1)(τk+1, τk+1, xk+1)‖
≤ ‖x(k)(τk, τk, xk)‖
= v(x(k)(τk, τk, xk)). (9.10.27)
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Because (9.10.27) holds for arbitrary k ∈ N, it follows that v(x(τk, τ0, x0)) is
nonincreasing.

Next, from (9.10.24) we have, recalling that supk∈N Kk =K and supk∈N λk =Λ,
that

v(x(k)(t, τk, xk)) = ‖x(k)(t, τk, xk)‖
≤ eKΛv(x(k)(τk, τk, xk))

= f(v(x(k)(τk, τk, xk))), (9.10.28)

t ∈ [τk, τk+1), k ∈ N, where f(s) = eKΛs. Therefore, all conditions of Theorem
9.10.1(a) are satisfied and we conclude that the equilibrium xe = 0 of system (SG)
is uniformly stable.

If in (9.10.26) we assume that γkeKkλk ≤ α < 1, we have

v(x(k+1)(τk+1, τk+1, xk+1)) < αv(x(k)(τk, τk, xk)) (9.10.29)

and [
v(x(k+1)(τk+1, τk+1, xk+1)) − v(x(k)(τk, τk, xk))

]/
(τk+1 − τk)

≤ [(α − 1)/Λ]v(x(k)(τk, τk, xk))
�
= −ψ3(‖x(k)(τk, τk, xk)‖)
= −ψ3(‖x(τk, τ0, x0)‖) (9.10.30)

for all k ∈ N and (τ0, x0) ∈ R
+ × X . In (9.10.30) we have ψ3(s) = [(1 −

α)/Λ]s, s ≥ 0 (i.e., ψ3 ∈ K∞). Therefore, all conditions of Theorem 9.10.1(b)
and Theorem 9.10.3(a) are satisfied and we conclude that the equilibrium xe = 0 of
system (SG) is uniformly asymptotically stable in the large.

Finally, from (9.10.23), it is clear that in relation (9.10.6) in Theorem 9.10.2 we
have c1 = c2 = b = 1 and from (9.10.30), it is clear that in relation (9.10.9) in
Theorem 9.10.2 we have c3 = (1 − α)/Λ. We have already shown that (9.10.7)
of Theorem 9.10.2 is true, and clearly, for f(s) = eKΛs, we have f(s) = O(sq)
as s → 0 for any q ∈ (0, 1). Therefore, all the conditions of Theorems 9.10.2 and
9.10.3(b) are satisfied and we can conclude that the equilibrium xe = 0 of (SG) is
exponentially stable in the large. �

Example 9.10.2 (Time-invariant linear functional differential equations) If we let
X = Cr and Fk(t, x) = Lkxt where Cr, xt, and Lk are defined as in Example 2.7.1,
then (SGk) assumes the form {

ẋ(t) = Lkxt,
xτk

= ϕk,
(9.10.31)

k ∈ N, t ∈ [τk,∞). If in (SG) we let gk(η) = Gkη where Gk : Cr → Cr is a linear
operator, then (SG) assumes the form{

ẋ(t) = Lkxt, τk ≤ t < τk+1
xτk+1 = Gkxτ−

k+1
, k ∈ N. (9.10.32)
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For each k ∈ N, Lk is defined, as in (2.7.2), by

Lk(ϕ) =
∫ 0

−r

[
dBk(s)

]
ϕ(s), (9.10.33)

where B(s) = [bij(s)] is an n × n matrix whose entries are functions of bounded
variation on [−r, 0]. Then Lk is Lipschitz continuous on Cr with Lipschitz constant
Kk less than or equal to the variation of Bk, and as such, condition (9.10.17) still
holds for (9.10.31). As in (2.9.14), the spectrum of Lk consists of all solutions of the
equation

det
(∫ 0

−r

eλksdBk(s) − λkI

)
= 0. (9.10.34)

In accordance with (2.9.15), when all the solutions of (9.10.34) satisfy the relation
Reλk ≤ −α0, then for any positive αk < α0, there is a constant Mk(αk) > 0 such
that the solutions of (9.10.31) allow the estimate

‖x
(k)
t (τk, ϕk)‖ ≤ Mk(αk)e−αk(t−τk)‖ϕk‖ (9.10.35)

for all t ≥ τk ≥ 0 and ϕk ∈ Cr. When the above assumption is not true, then in
accordance with (9.10.17), the solutions of (9.10.31) still allow the estimate

‖x
(k)
t (τk, ϕk)‖ ≤ eKk(t−τk)‖ϕk‖ (9.10.36)

for all t ≥ τk and ϕk ∈ Cr. Thus, in all cases we have

‖x
(k)
t (τk, ϕk)‖ ≤ Qkewk(t−τk)‖ϕk‖ (9.10.37)

for all t ≥ τk ≥ 0 and ϕk ∈ Cr, where Qk = 1 and wk = Kk when (9.10.36) applies
and Qk = Mk(αk) and wk = −αk, αk > 0, when (9.10.35) applies.

Finally, for each k ∈ N, we have

‖Gkη‖ ≤ ‖Gk‖ ‖η‖ (9.10.38)

for all η ∈ Cr, where ‖Gk‖ is the norm of the linear operator Gk induced by the
norm ‖ · ‖ defined on Cr.

In the following, we still assume that (9.10.18) and (9.10.21) hold and we assume
that

sup
k∈N

Mk(αk) = M < ∞. (9.10.39)

Proposition 9.10.2 Let wk, ‖Gk‖,Qk, λk, Λ,M , and K be the parameters for system
(9.10.32) defined above.

(a) If for all k ∈ N, ‖Gk‖Qkewkλk ≤ 1, then the equilibrium xe = 0 of system
(9.10.32) is uniformly stable.

(b) If for all k ∈ N, ‖Gk‖Qkewkλk ≤ α < 1, where α > 0 is a constant, then the
equilibrium xe = 0 of system (9.10.32) is uniformly asymptotically stable in
the large, and in fact, exponentially stable in the large.
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Proof . Choosing v(ϕ, t) ≡ v(ϕ) = ‖ϕ‖, ϕ ∈ Cr, we obtain the relations

v(xt(τ0, x0)) = v(x(k)
t (τk, ϕk)) = ‖x

(k)
t (τk, ϕk)‖, τk ≤ t < τk+1 (9.10.40)

k ∈ N, and
ψ1(‖x‖) ≤ v(x) ≤ ψ2(‖x‖) (9.10.41)

for all x ∈ X , where ψ1(s) = ψ2(s) = s, s ≥ 0; that is, ψ1, ψ2 ∈ K∞.
Along the solutions of (9.10.32) we have, in view of (9.10.37),

‖x
(k)
t (τk, ϕk)‖ ≤ Qkewk(t−τk)‖ϕk‖ = Qkewk(t−τk)‖x(k)

τk
(τk, ϕk)‖ (9.10.42)

for t ∈ [τk, τk+1). At t = τk+1 we have, when (9.10.36) applies

‖x(k)
τk+1

(τk+1, ϕk+1)‖ ≤ ‖Gk‖ ‖x
(k)
τ−

k+1
(τk, ϕk)‖ ≤ ‖Gk‖eKkλk‖ϕk‖ (9.10.43)

and when (9.10.35) applies,

‖x(k+1)
τk+1

(τk+1, ϕk+1)‖ ≤ ‖Gk‖Mk(αk)e−αkλk‖ϕk‖. (9.10.44)

Thus, in either case we have

‖x(k+1)
τk+1

(τk+1, ϕk+1)‖ ≤ ‖Gk‖Qkewkλk‖x(k)
τk

(τk, ϕk)‖. (9.10.45)

When ‖Gk‖Qkewkλk ≤ 1, we obtain

v(x(k+1)
τk+1

(τk+1, ϕk+1)) = ‖x(k+1)
τk+1

(τk+1, ϕk+1)‖
≤ ‖x(k)

τk
(τk, ϕk)‖

= v(x(k)
τk

(τk, ϕk)), k ∈ N. (9.10.46)

Therefore, v(xτk
(τ0, ϕ)), k ∈ N, is nonincreasing.

Next, from (9.10.42), we have

v(x(k)
t (τk, ϕk)) ≤ Qkewk(t−τk)v(x(k)

τk
(τk, ϕk)), (9.10.47)

t ∈ [τk, τk+1), k ∈ N. When (9.10.36) applies, Qk = 1 and wk = Kk and when
(9.10.35) applies, Qk = Mk(αk) and wk = −αk < 0. Recall that supk∈N Kk = K,
supk∈N λk = Λ, and supk∈N Mk(αk) = M . Let P = max{eΛK , M} and choose
f(s) = Ps, s ≥ 0. From (9.10.47) we now obtain

v(x(k)
t (τk, ϕk)) ≤ f(v(x(k)

τk
(τk, ϕk))), (9.10.48)

t ∈ [τk, τk+1).
All conditions of Theorem 9.10.1(a) are satisfied and therefore the equilibrium

xe = 0 of system (9.10.32) is uniformly stable.
When ‖Gk‖Qkewkλk ≤ α < 1, we have

v
(
x(k+1)

τk+1
(τk+1, ϕk+1)

)
< αv

(
x(k)

τk
(τk, ϕk)

)
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and [
v(x(k+1)

τk+1
(τk+1, ϕk+1)) − v(x(k)

τk
(τk, ϕk))

]/
(τk+1 − τk)

≤ [(α − 1)/Λ]v(x(k)
τk

(τk, ϕk))
�
= −ψ3(‖x(k)

τk
(τk, ϕk)‖)

= −ψ3(‖xτk
(τ0, ϕ)‖) (9.10.49)

for all k ∈ N and ϕ ∈ Cr. In (9.10.49), we have ψ3(s) = [(1 − α)/Λ]s; that is,
ψ3 ∈ K∞. Therefore, all conditions of Theorem 9.10.1(b) and Theorem 9.10.3(a) are
satisfied and the equilibrium xe = 0 of system (9.10.32) is uniformly asymptotically
stable in the large.

In the notation of Theorems 9.10.2 and 9.10.3(b), we have c1 = c2 = b = 1 and
c3 = (1 − α)/Λ. Also, f(s) = Ps, so that f(s) = O(sq) as s → 0 where q ∈ (0, 1).
Therefore, all the conditions of Theorems 9.10.2 and 9.10.3(b) are satisfied and we
conclude that the equilibrium xe = 0 of system (9.10.32) is exponentially stable in
the large. �

Example 9.10.3 (Heat equation) We consider a family of initial value and boundary
value problems determined by the heat equation

∂u

∂t
= a2

k∆u, (t, x) ∈ [τk,∞) × Ω

u(τk, x) = ψk(x), x ∈ Ω
u(t, x) = 0, (t, x) ∈ [τk,∞) × ∂Ω,

(9.10.50)

k ∈ N, where Ω ⊂ R
n is a bounded domain with smooth boundary ∂Ω, a2

k > 0
are constants, and ∆ =

∑n
i=1 ∂2/∂x2

i denotes the Laplacian. For a discussion and
stability analysis of system (9.10.50), refer to Example 9.2.2.

Next, we consider a discontinuous dynamical system determined by
∂u

∂t
= a2

k∆u, (t, x) ∈ [τk, τk+1) × Ω

u(τk+1, ·) = gk(u(τ−
k+1, ·))

u(t, x) = 0, (t, x) ∈ R
+ × ∂Ω

(9.10.51)

where all terms are defined similarly as in (9.10.50), gk : X → X,

X = H2[Ω, R] ∩ H1
0 [Ω, R]

with the H1-norm (refer to Example 9.2.2), k ∈ N. We assume that gk(0) = 0 and
that for each k ∈ N, there exists a γk > 0 such that ‖gk(ψ)‖H1 ≤ γk‖ψ‖H1 for all
ψ ∈ X .

If, similarly as in Example 9.2.2, we define U (k)(t) = u(k)(t, ·) (u(k)(t, ψ) denotes
the unique solution of system (9.10.50); see Example 9.2.2), we obtain the estimate

‖U (k)(t)‖H1 ≤ e−ck(t−τk)/2‖U (k)(τk)‖H1 (9.10.52)
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for t ≥ τk, where ck = min{a2
k, a2

k/γ}, where γ can be chosen as δ/
√

n and Ω can
be put into a cube of length δ (refer to Example 9.2.2, in particular, (9.2.10)).

Each solution u(t, x, ψ, τ0) of (9.10.51) is made up of a sequence of solution
segments u(k)(t, x, ψ, τ0), defined on [τk, τk+1) for k ∈ N, that are determined by
(9.10.50) with ϕk = u(τk, ·).

Proposition 9.10.3 For system (9.10.51), let wk = −ck/2 and λk = τk+1 − τk,
k ∈ N. Assume that supk∈N λk = Λ < ∞ and supk∈N wk = w < ∞.

(a) If for all k ∈ N, γkewkλk ≤ 1, then the equilibrium ψe = 0 ∈ X for system
(9.10.51) is uniformly stable (with respect to the H1-norm).

(b) If for all k ∈ N, γkewkλk ≤ α < 1, where α > 0 is a constant, then the
equilibrium ψe = 0 for system (9.10.51) is uniformly asymptotically stable in
the large, in fact, exponentially stable in the large.

Proof . We choose the Lyapunov function v(ψ, t) ≡ v(ψ) = ‖ψ‖H1 , ψ ∈ X , which
when evaluated along the solutions u(t, x, ψ, τ0) of (9.10.51) assumes the form

v(U(t, τ0, ψ)) = v(U (k)(t, τk, ψk)) = ‖U (k)(t, τk, ψk)‖H1 , τk ≤ t < τk+1
(9.10.53)

k ∈ N. Clearly,
ψ1(‖ψ‖H1) ≤ v(ψ) ≤ ψ2(‖ψ‖H1) (9.10.54)

for all ψ ∈ X , where ψ1(s) = ψ2(s) = s, s ≥ 0; that is, ψ1, ψ2 ∈ K∞.
Along the solutions of (9.10.51) we have, in view of (9.10.52), that

‖U (k)(t, τk, ψk)‖H1 ≤ e−ck(t−τk)/2‖ψk‖H1 = e−ck(t−τk)/2‖U (k)(τk, τk, ψk)‖H1

(9.10.55)
for t ∈ [τk, τk+1). At t = τk+1, we have, in view of (9.10.51), that

‖U (k+1)(τk+1, τk+1, ψk+1)‖H1 = ‖g(U (k)(τ−
k+1, τk, ψk))‖H1

≤ γk‖U (k)(τ−
k+1, τk, ψk)‖H1 . (9.10.56)

Combining (9.10.55) and (9.10.56), we have

‖U (k+1)(τk+1, τk+1, ψk+1)‖H1 ≤ γke−ckλk/2‖U (k)(τk, τk, ψk)‖H1 (9.10.57)

where −ck/2 = wk and because by assumption γkewkλk ≤ 1, we have

v(U (k+1)(τk+1, τk+1, ψk+1)) = ‖U (k+1)(τk+1, τk+1, ψk+1)‖H1

≤ ‖U (k)(τk, τk, ψk)‖H1

= v(U (k)(τk, τk, ψk)).

Because this holds for arbitrary k ∈ N, it follows that v(U(τk, τ0, ψ)), k ∈ N, is
nonincreasing.
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Next, from (9.10.55) we have, recalling that supk∈N wk = w < ∞ and

sup
k∈N

λk = Λ < ∞,

that

v(U (k)(t, τk, ψk)) = ‖U (k)(t, τk, ψk)‖H1

≤ ewΛv(U (k)(τk, τk, ψk))
�
= f(v(U (k)(τk, τk, ψk))),

t ∈ [τk, τk+1), k ∈ N, where f(s) = ewΛs. Therefore, all conditions of Theorem
9.10.1(a) are satisfied and we conclude that the equilibrium ψe = 0 ∈ X of system
(9.10.51) is uniformly stable.

If in (9.10.57) we assume that γkewkλk ≤ α < 1, we have

v(U (k+1)(τk+1, τk+1, ψk+1)) < αv(U (k)(τk, τk, ψk))

and [
v(U (k+1)(τk+1, τk+1, ψk+1)) − v(U (k)(τk, τk, ψk))

]/
(τk+1 − τk)

≤ [(α − 1)/Λ]v(U (k)(τk, τk, ψk))
�
= −ψ3(‖U (k)(τk, τk, ψk)‖)
= −ψ3(‖U(τk, τ0, ψ)‖) (9.10.58)

for all k ∈ N and (τ0, ψ) ∈ R
+ × X . In (9.10.58) we have ψ3(s) = [(1 − α)/Λ]s,

s ≥ 0; that is, ψ3 ∈ K∞. Therefore, all conditions of Theorems 9.10.1(b) and
9.10.3(a) are satisfied and the equilibrium ψe = 0 ∈ X of system (9.10.51) is
uniformly asymptotically stable in the large.

In the notation of Theorems 9.10.2 and 9.10.3(b), we have c1 = c2 = b = 1 and
c3 = (1−α)/Λ. We have already shown that f(s) = ewΛs and thus, f(s) = O(sq) as
s → 0 for any q ∈ (0, 1). Therefore, all conditions of Theorems 9.10.2 and 9.10.3(b)
are satisfied and we conclude that the equilibrium ψe = 0 of system (9.10.32) is
exponentially stable in the large. �

Example 9.10.4 (Linear scalar Volterra integrodifferential equation) We consider
a family of scalar linear Volterra integrodifferential equations given by ẋ(t) = −anx(t) +

∫ t

−∞
kn(t − s)x(s)ds, t ≥ τn

x(τn) = ϕn,

(9.10.59)

n ∈ N, which can equivalently be expressed as ẋ(t) = −anxt(0) +
∫ 0

−∞
kn(−s)xt(s)ds, t ≥ τn

x(τn) = ϕn.

(9.10.60)
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In (9.10.60), all terms are defined similarly as in Example 9.2.3. In particular,
the state space is the fading memory space X consisting of all measurable functions
ϕ : (−∞, 0) → R with norm given by

‖ϕ‖2
m = |ϕ(0)|2 + Kn

∫ 0

−∞
|ϕ(s)|2eLsds < ∞, (9.10.61)

where Kn is determined later. Let CL,n =
( ∫∞

0 |kn(s)|2eLsds
)1/2

for some fixed
L > 0. From Example 9.2.3, when CL,n/

√
L ≤ an, with appropriate Kn (0 <

Kn < 2an), we can obtain αn < 0 such that

‖x
(n)
t ‖m ≤ ewn(t−τn)‖x(n)

τn
‖m (9.10.62)

where wn = αn/2, αn = −λm(Pn)/ max{1, Kn}, where

Pn =
[

2an − Kn −CL,n

−CL,n KnL

]
(9.10.63)

is positive definite.
We now consider discontinuous dynamical systems described by ẋ(t) = −anxt(0) +

∫ 0

−∞
kn(−s)xt(s)ds, t ∈ [τn, τn+1)

xτn+1 = Gnx−
τn+1

(9.10.64)

n ∈ N, where the Gn are bounded linear mappings. For (9.10.64), we assume that
infn∈N an = a > 0, and we assume that CL,n/

√
L ≤ an for all n ∈ N. Then we can

find an appropriate K (0 < K < 2a) such that (9.10.62) is true with Kn = K for
any n ∈ N.

Proposition 9.10.4 For system (9.10.64), let wn = αn/2 and λn = τn+1 − τn,
n ∈ N. Assume that supn∈N λn = Λ < ∞ and supn∈N wk = w < ∞.

(a) If for all n ∈ N, ‖Gn‖ewnλn ≤ 1, then the equilibrium 0 ∈ X of system
(9.10.64) is uniformly stable.

(b) If for all n ∈ N, ‖Gn‖ewnλn ≤ δ < 1, where δ > 0 is a constant, then the
equilibrium 0 ∈ X of system (9.10.64) is uniformly asymptotically stable in
the large, and in fact, exponentially stable in the large. �

The proof is similar to the proof of Proposition 9.10.3 and is left as an exercise.

9.11 Discontinuous Dynamical Systems Determined
by Semigroups

In this section we establish stability results for discontinuous dynamical systems
determined by linear semigroups (C0-semigroups) and nonlinear semigroups (refer
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to Section 2.9). In contrast to the preceding stability results for DDS, in the results of
the present section we do not make use of Lyapunov functions, but instead, we bring
to bear results known for linear and nonlinear semigroups.

A. DDS determined by semigroups

In the following, we require a given collection of C0-semigroups T = {Ti(t)}
(each Ti(t) is defined on a Banach space X), a given collection of bounded lin-
ear operators H = {Hj} (Hj : X → X), and a given unbounded and discrete set
E = {τ0, τ1, τ2, . . . : τ0 < τ1 < τ2 < · · · } ⊂ R

+. The number of elements in T
and H may be finite or infinite.

We now consider dynamical systems whose motions y(·, y0, t0) with initial time
t0 = τ0 ∈ R

+ and initial state y(t0) = y0 ∈ X are given by

{
y(t, y0, t0) = Tk(t − τk)y(τk), τk ≤ t < τk+1

y(t) = Hky(t−), t = τk+1, k ∈ N
(9.11.1)

where for each k ∈ N, Tk(t) ∈ T , Hk ∈ H, and τk ∈ E. We define the discontinuous
dynamical system determined by linear semigroups, SDC0 , as

SDC0 =
{
y = y(·, x, t0) : y(t, x, t0) = Tk(t − τk)y(τk), τk ≤ t < τk+1,

y(t) = Hky(t−), t = τk+1, k ∈ N,

t0 = τ0 ∈ R
+, y(τ0) = x ∈ X

}
.

Note that every motion y(·, x, t0) is unique, with y(t0, x, t0) = x, exists for all t≥ t0,
and is continuous with respect to t on [t0,∞) − {τ1, τ2, . . . }, and that at t = τk,

k = 1, 2, . . . , y(·, x, t0) may be discontinuous. We call the set E1
�
= {τ1, τ2, . . . }

the set of discontinuities for the motion y(·, x, t0). Because Hk and Tk(t), t ∈ R
+,

are linear, it follows that in particular y(t, 0, t0) = 0 for all t ≥ t0. We call xe = 0
the equilibrium for the dynamical system SDC0 and y(t, 0, t0) = 0, t ≥ t0, the trivial
motion.

In the following, we require a given collection of nonlinear semigroups T =
{Ti(t)} (each Ti(t) is defined on C ⊂ X), a given collection of bounded continuous
mappings H = {Hj} (Hj : C → C) and a given unbounded and discrete set E =
{t0 = τ0, τ1, τ2, . . . : τ0 < τ1 < τ2 < · · · }. As before, the number of elements in T
and H may be finite or infinite.

We now consider dynamical systems whose motions y(·, y0, t0) with initial time
t = τ0 ∈ R

+ and initial state y(t0) = y0 ∈ C ⊂ X are given by

{
y(t, y0, t0) = Tk(t − τk)(y(τk)), τk ≤ t < τk+1

y(t) = Hk(y(t−)), t = τk+1, k ∈ N
(9.11.2)
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where for each k ∈ N, Tk(t) ∈ T , Hk ∈ H, and τk ∈ E. We define the discontinuous
dynamical system determined by nonlinear semigroups, SDN , similarly, by

SDN =
{
y = y(·, x, t0) : y(t, x, t0) = Tk(t − τk)(y(τk)), τk ≤ t < τk+1,

y(t) = Hk(y(t−)), t = τk+1, k ∈ N,

t0 = τ0 ∈ R
+, y(τ0) = x ∈ C ⊂ X

}
. (9.11.3)

We assume that the origin y = 0 is in the interior of C. Note that every motion
y(·, x, t0) is unique, with y(t0, x, t0) = x, exists for all t ≥ t0, is continuous with
respect to t on [t0,∞)−{τ1, τ2, . . . }, and that at t = τk, k = 1, 2, . . . , y(·, x, t0) may
be discontinuous. Throughout, we assume that Tk(t)(x) = 0 for all t ≥ 0 if x = 0
and that Hk(x) = 0 if x = 0 for all k ∈ N. From this it follows that y(t, x, t0) = 0
for all t ≥ t0 if x = 0 ∈ C. We call xe = 0 an equilibrium and y(t, 0, t0) = 0,
t ≥ t0, a trivial motion for the dynamical system SDN .

Remark 9.11.1 For different initial conditions (x, t0), resulting in different motions
y(·, x, t0), we allow the set of discontinuities E1 = {τ1, τ2, . . . }, the set of semi-
groups {Tk} ⊂ T , and the set of functions {Hk} ⊂ H to differ, and accordingly, the
notation Ex,t0

1 = {τx,t0
1 , τx,t0

2 , . . . }, {T x,t0
k }, and {Hx,t0

k } might be more appropri-
ate. However, because in all cases all meaning is clear from context, we do not use
such superscripts. �

Remark 9.11.2 The DDS models considered herein (SDC0 and SDN ) are very gen-
eral and include large classes of finite-dimensional dynamical systems determined by
ordinary differential equations and by large classes of infinite-dimensional dynam-
ical systems determined by differential-difference equations, functional differential
equations, Volterra integrodifferential equations, certain classes of partial differen-
tial equations, and more generally, differential equations and inclusions defined on
Banach spaces. This generality allows analysis of distributed parameter systems,
systems with delays, systems endowed with hysteresis effects, and the like. �

Remark 9.11.3 The dynamical system models SDC0 and SDN are very flexible, and
include as special cases many of the DDS considered in the literature, as well as
general autonomous continuous dynamical systems: (a) if Tk(t) = T (t) for all k
(T has only one element) and if Hk = I for all k, where I denotes the identity
transformation, then SDC0 reduces to an autonomous, linear, continuous dynamical
system and SDN to an autonomous nonlinear, continuous dynamical system; (b) in the
case of dynamical systems subjected to impulsive effects (considered in the literature
for finite-dimensional systems; see, e.g., [2]), one would choose Tk(t) = T (t) for all k
whereas the impulse effects are captured by an infinite family of functions H = {Hk};
(c) in the case of switched systems, frequently only a finite number of systems that
are being switched are required, and so in this case one would choose a finite family
of semigroups T = {Ti(t)} (see, e.g., [5], [22], [23], and [40]); and so forth. �

Remark 9.11.4 Perhaps it needs pointing out that even though systems SDN and
SDC0 are determined by families of semigroups (and nonlinearities), by themselves
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they are not semigroups, because in general, they are time-varying and do not satisfy
the hypotheses (i)–(iii) given in Definitions 2.9.1 and 2.9.5. However, each individual
semigroup Tk(t), used in describing SDN or SDC0 , does possess the semigroup
properties, albeit, only over a finite interval (τk, τk+1), k ∈ N. �

B. Qualitative characterizations of DDS

Recall that the DDS SDC0 determined by linear semigroups, is defined on a Banach
space X whereas the DDS given by SDN is defined on C ⊂ X . Recall also that
the origin 0 is assumed to be in the interior of C and that ye = 0 is an equilibrium
for both SDC0 and SDN . Because the following definitions pertain to both SDN and
SDC0 , we refer to either of them simply as S.

Definition 9.11.1 The equilibrium ye = 0 of S is stable if for every ε > 0 and
every t0 ≥ 0, there exists a δ = δ(ε, t0) > 0 such that for all y(·, y0, t0) ∈ S,
‖y(t, y0, t0)‖ < ε for all t ≥ t0, whenever ‖y0‖ < δ (and y0 ∈ C). The equilibrium
ye = 0 is uniformly stable if δ is independent of t0; that is, δ = δ(ε). The equilibrium
ye = 0 of S is unstable if it is not stable. �

Definition 9.11.2 The equilibrium ye = 0 of S is attractive if there exists an η =
η(t0) > 0 such that

lim
t→∞ ‖y(t, y0, t0)‖ = 0 (9.11.4)

for all y(·, y, t0) ∈ S whenever ‖y0‖ < η (and y0 ∈ C). �

We call the set of all y0 ∈ C such that (9.11.4) holds the domain of attraction of
ye = 0.

Definition 9.11.3 The equilibrium ye = 0 of S is asymptotically stable if it is stable
and attractive. �

Definition 9.11.4 The equilibrium ye = 0 of S is uniformly attractive if for every
ε > 0 and every t0 ≥ 0, there exist a δ > 0, independent of t0 and ε, and a
µ = µ(ε) > 0, independent of t0, such that ‖y(t, y0, t0)‖ < ε for all t ≥ t0 + µ and
for all y(·, y0, t0) ∈ S, whenever ‖y0‖ < δ (and y0 ∈ C). �

Definition 9.11.5 The equilibrium ye = 0 of S is uniformly asymptotically stable if
it is uniformly stable and uniformly attractive. �

Definition 9.11.6 The equilibrium ye = 0 of S is exponentially stable if there exists
an α > 0, and for every ε > 0 and every t0 ≥ 0, there exists a δ = δ(ε) > 0 such
that ‖y(t, y0, t0)‖ < εe−α(t−t0) for all t ≥ t0 and for all y(·, y0, t0) ∈ S whenever
‖y0‖ < δ (and y0 ∈ C). �

The preceding definitions concern local characterizations of an equilibrium. In
the following, we address global characterizations. In this case we find it convenient
to let C = X .
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Definition 9.11.7 The equilibrium ye = 0 of S is asymptotically stable in the large if

(i) it is stable; and

(ii) for every y(·, y0, t0) ∈ S and for all (t0, y0) ∈ R
+ × X , (9.11.4) holds. �

In this case, the domain of attraction of ye = 0 is all of X .

Definition 9.11.8 The equilibrium ye = 0 of S is uniformly asymptotically stable in
the large if

(i) it is uniformly stable;

(ii) it is uniformly bounded; that is, for any α > 0 and every t0 ∈R
+, there exists a

β=β(α) > 0 (independent of t0) such that if ‖y0‖<α, then ‖y(t, y0, t0)‖<β
for all t ≥ t0 for all y(·, y0, t0) ∈ S; and

(iii) it is uniformly attractive in the large; that is, for every α > 0 and every ε > 0,
and for every t0 ≥ 0, there exists a µ = µ(ε, α) > 0 (independent of t0),
such that if ‖y0‖ < α, then for all y(·, y0, t0) ∈ S, ‖y(t, y0, t0)‖ < ε for all
t ≥ t0 + µ. �

Definition 9.11.9 The equilibrium ye = 0 of S is exponentially stable in the large if
there exist an α > 0 and a γ > 0, and for every β > 0, there exists a k(β) > 0 such
that

‖y(t, y0, t0)‖ ≤ k(β)‖y0‖γe−α(t−t0) (9.11.5)

for all y(·, y0, t0) ∈ S, for all t ≥ t0, whenever ‖y0‖ < β. �

C. The principal stability results for DDS determined by
semigroups

In our first result we establish sufficient conditions for various stability properties for
system SDN . We assume in these results that for each nonlinear semigroup Tk(t)
there exist constants Mk ≥ 1 and ωk ∈ R, k ∈ N, such that

‖Tk(t)(y)‖ ≤ Mkeωkt‖y‖ (9.11.6)

for all y ∈ C, t ≥ 0. We recall from Subsection 2.9C (see (2.9.1)) that in partic-
ular, (9.11.6) is always satisfied for a quasi-contractive semigroup Tk(t) for some
computable parameters (Mk, ωk), Mk ≥ 1 and ωk ∈ R, whereas for a contractive
semigroup Tk(t), inequality (9.11.6) is satisfied with Mk ≥ 1 and ωk ≤ 0.

Also, in our first results we let

λk = τk+1 − τk, k ∈ N (9.11.7)

and we assume that each mapping Hk : C → C satisfies the condition

‖Hk(y)‖ ≤ ck‖y‖ (9.11.8)

for all y ∈ C, k ∈ N, where ck > 0 is a constant.
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We require some additional notation. For any given l0 ∈ N and lk ∈ N
+
l0+1

�
=

{l0 + 1, l0 + 2, . . . }, we let πl0,l0 = 1, and we let πlk,l0 and alk,l0 denote the finite
products{

πlk,l0 =
∏k−1

i=0 (cliMlie
ωli

λli )

alk,l0 = Mlke((ωlk
+|ωlk

|)/2)λlk πlk,l0 , k ∈ N
+
1 = {1, 2, . . . }.

(9.11.9)

Theorem 9.11.1 (a) For system SDN , under the conditions (9.11.6) and (9.11.8),
assume that for any l0 ∈ N there exists a constant ν(l0) > 0 such that

alk,l0 ≤ ν(l0) (9.11.10)

for all k ∈ N, where alk,l0 is defined in (9.11.9). Then the equilibrium ye = 0 of
SDN is stable.

(b) If in part (a), ν(l0) = ν (i.e., ν(l0) in (9.11.10)) can be chosen independent of
l0 ∈ N, then the equilibrium ye = 0 of SDN is uniformly stable.

(c) If in part (a), (9.11.10) is replaced by

lim
k→∞

alk,l0 = 0 (9.11.11)

for all l0 ∈ N, then the equilibrium ye = 0 of SDN is asymptotically stable.

(d) If the conditions of part (b) are satisfied and if in part (c) relation (9.11.11) is
satisfied uniformly with respect to l0 ∈ N (i.e., for every ε > 0 and every l0 ∈ N there
exists a K(ε) ∈ N, independent of l0 ∈ N, such that alk,l0 < ε for all k ≥ K(ε)),
then the equilibrium ye = 0 of SDN is uniformly asymptotically stable.

(e) Assume that in part (a), (9.11.10) is replaced by

alk,l0 < aρlk−l0 , l0 ∈ N, k ∈ N (9.11.12)

where a > 0 and 0 < ρ < 1. Assume also that

λk = τk+1 − τk ≤ θ, k ∈ N (9.11.13)

where θ > 0 is a constant. Then the equilibrium ye = 0 of SDN is exponentially
stable.

(f) If in parts (c), (d), and (e), respectively, conditions (9.11.6) and (9.11.8) hold
for all y ∈ X , then the equilibrium ye = 0 of SDN is asymptotically stable in the
large, uniformly asymptotically stable in the large, and exponentially stable in the
large, respectively.

Proof. (a) For system SDN , with E = {τ0, τ1, τ2, . . . }, we associate each interval
[τk, τk+1) with the index k ∈ N. We find it convenient to employ a relabeling of
indices. To this end, let l0 = [t0] = [τ0], where [x] denotes the integer part of x ∈ R,
and let lk+1 = lk + 1, k ∈ N. Then we can relabel E as {τl0 , τl1 , . . . } and [τk, τk+1)
as [τlk , τlk+1).
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If y(t0) = y(τl0) = y0 and y0 ∈ C, we have

y(t) ≤ Ml0e
ωl0 (t−τl0 )‖y(τl0)‖ ≤ Ml0e

((ωl0+|ωl0 |)/2)λl0 ‖y0‖

for t ∈ [τl0 , τl0+1). Therefore, in view of (9.11.9),

‖y(t)‖ ≤ al0,l0‖y0‖, t ∈ [τl0 , τl0+1) (9.11.14)

is true. It is clear that

‖y(τl0+1)‖ ≤ cl0Ml0e
ωl0λl0 ‖y0‖.

Similarly, for t ∈ [τlk , τlk+1), k ∈ N
+
1 = {1, 2, . . . }, if y(τlk) ∈ C, then

‖y(t)‖ ≤ Mlkeωlk
(t−τlk

)‖y(τlk)‖ ≤ Mlke((ωlk
+|ωlk

|)/2)λlk ‖y(τlk)‖

is true for t ∈ [τlk , τlk+1), and

‖y(τlk+1)‖ ≤ clkMlkeωlk
λlk ‖yk‖.

Therefore, by (9.11.9) and (9.11.14), we have

‖y(t)‖ ≤ alk,l0‖y0‖, t ∈ [τlk , τlk+1), k ∈ N. (9.11.15)

For any ε > 0 and l0 ∈ N, let δ′(ε, l0) = ε/ν(l0). From (9.11.10) and (9.11.15),
it now follows that ‖y(t)‖ < ε, t ∈ [τlk , τlk+1), k ∈ N, whenever ‖y0‖ < δ and
y0 ∈ C. Because l0 = [t0] and because for all l0 ∈ N and all k ∈ N we can equate
δ(ε, t0) = δ′(ε, [t0]), t0 ≥ 0, it follows that the equilibrium ye = 0 of SDN is stable.

(b) In proving part (b), note that δ′(ε, l0) = δ′(ε) = ε/ν can be chosen independent
of l0 ∈ N, and consequently, δ(ε, t0) = δ′(ε, [t0]) = δ′(ε) = δ(ε) can also be chosen
independent of t0 ∈ R

+. Therefore, the equilibrium ye = 0 of SDN is uniformly
stable.

(c) From the assumptions on E = {t0 = τ0, τ1, τ2, . . . } it follows that limk→∞ τk

= ∞. Hence,
∑k−1

i=0 λi = τk − τ0 → ∞ as k → ∞. Because for any t ∈ [τk, τk+1)
we have t = t0 +

∑k−1
i=0 λi + ξk = τk + ξk for some 0 ≤ ξk < τk+1 − τk = λk, then

t → ∞ when k → ∞. Hence, it follows from (9.11.11) and (9.11.15) that (9.11.4)
holds for all y(·, y0, t0) ∈ SDN whenever y0 ∈ C. Therefore, the equilibrium ye = 0
of SDN is attractive and its domain of attraction coincides with the entire set C ⊂ X .
Because (9.11.10) follows from (9.11.11), then, as in part (a), ye = 0 of SDN is
stable. Hence, the equilibrium ye = 0 of SDN is asymptotically stable.

(d) The conditions of part (b) are satisfied, and thus the equilibrium ye = 0 of
system SDN is uniformly stable. Therefore, we only need to prove that ye = 0 is
uniformly attractive.

Choose δ > 0 in such a way that Bδ
�
= {y0 : ‖y0‖ < δ} ⊂ C. Because (9.11.11)

is satisfied uniformly with respect to l0 ∈ N, then for every ε∗ > 0 and every l0 ∈ N

there exists a K∗(ε∗) ∈ N (independent of l0 ∈ N) such that alk,l0 < ε∗ for all
k > K∗(ε∗). Hence, from (9.11.15), we have ‖y(t)‖ ≤ alk,l0‖y0‖ < ε∗δ for all
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t ∈ [τlk , τlk+1) and for all k ≥ K∗(ε∗). Let ε∗ = ε/δ. Then K∗(ε∗) = K∗(ε/δ) =
K(ε) and ‖y(t)‖ < ε for all t ≥ τl0+K(ε). If we let µ(ε) = τl0+K(ε) − τl0 , then
we have that ‖y(t, y0, t0)‖ < ε for all t ≥ t0 + µ and for all y(·, y0, t0) ∈ SDN ,
whenever ‖y0‖ < δ. Hence, the equilibrium ye = 0 of SDN is uniformly attractive
and uniformly asymptotically stable.

(e) To prove part (e), note that as was shown in the proofs of parts (a) and (c), for any
t0 ∈ R

+ and any t ≥ t0, there exist an l0 ∈ N and a k ∈ N such that t ∈ [τlk , τlk+1)
and (9.11.15) holds. Because t−t0 < τlk+1−τl0 =

∑lk
i=l0

λi and in view of (9.11.13),∑lk
i=l0

λi ≤ (lk − l0 +1)θ, and therefore, we have lk − l0 > ((t− t0)/θ)−1. Hence,
in view of (9.11.12), we have ‖y(t)‖ < aρ((t−t0)/θ)−1‖y0‖. For any ε > 0, let
δ = (ερ)/a. Then for any y0 ∈ C with ‖y0‖ < δ, we have ‖y(t)‖ < εe−α(t−t0),
t ≥ t0, where α = (− ln ρ)/θ > 0. Therefore, the equilibrium ye = 0 of SDN is
exponentially stable.

(f) We note that if the estimates (9.11.6) and (9.11.8) hold for all y ∈ X , then
inequality (9.11.15) is valid for all y0 ∈ X .

(i) Repeating the reasoning in the proof of part (c) for any y0 ∈X and any t0 ∈R
+,

we can conclude that in this case (9.11.4) holds for all y(·, y0, t0) ∈ SDN

whenever y0 ∈ X and t0 ∈ R
+. Therefore, the equilibrium ye = 0 of SDN is

asymptotically stable in the large.

(ii) The equilibrium ye = 0 is uniformly stable and (9.11.15) is valid for all y0 ∈ X .
Therefore, whenever ‖y0‖ < δ, then ‖y(t, y0, t0)‖ < ε for all t ≥ t0, where
ε = ε(δ). Therefore, for any α > 0 and every t0 ∈ R

+, there exists a β =
β(α) > 0, independent of t0, such that when ‖y0‖ < δ, then ‖y(t, y0, t0)‖ < β
for all t ≥ t0 and all y(·, y0, t0) ∈ S. Therefore, the system SDN is uniformly
bounded.
Next, similarly as in the proof of part (d), for every α > 0 and for every ε > 0
there exists a K(ε, α) ∈ N (independent of t0 ≥ 0), such that ‖y(t)‖ < ε for
all t ≥ τl0 + K(ε, α). If we let µ(ε, α) = τl0+K(ε,α) − τlo , then we have that
‖y(t, y0, t0)‖ < ε for all t ≥ t0 + µ and for all y(·, y0, t0) ∈ SDN , whenever
‖y0‖ < δ. Hence, the equilibrium ye = 0 of SDN is uniformly asymptotically
stable in the large.

(iii) For every β > 0 and for every ‖y0‖ < β we have similarly as in the proof of
part (e) above that

‖y(t)‖ < (α/ρ)ρ(t−t0)/θ‖y0‖ = (α/ρ)‖y0‖e−α(t−t0)

for all t ≥ t0 ≥ 0, where α = − ln ρ/θ > 0. Let k(β) = α/ρ. It now follows
that the equilibrium ye = 0 of SDN is exponentially stable in the large. This
completes the proof. �

Corollary 9.11.1 (a) For system SDN assume that the following statements are
true.

(i) Condition (9.11.6) holds (with parameters Mk, ωk).

(ii) Condition (9.11.8) holds (with parameter ck).



Section 9.11 Discontinuous Dynamical Systems Determined by Semigroups 471

(iii) For all k ∈ N, λk = τk+1 − τk ≤ θ < ∞.

(iv) For all k ∈ N, Mk ≤ M < ∞ and ωk ≤ ω < ∞ where M ≥ 1 and ω ∈ R are
constants.

(v) For all k ∈ N,
ckMkeωkλk ≤ 1. (9.11.16)

Then the equilibrium ye = 0 of SDN is stable and uniformly stable.
(b) If in part (a), hypothesis (v) is replaced by

ckMkeωkλk ≤ δ < 1 (9.11.17)

for all k ∈ N, where δ > 0, then the equilibrium ye = 0 of SDN is asymptotically
stable, uniformly asymptotically stable, and exponentially stable.

(c) If in part (a) it is assumed that inequalities (9.11.6) and (9.11.8) hold for all
y ∈ X and inequality (9.11.16) is replaced by (9.11.17), then the equilibrium ye = 0
of SDN is asymptotically stable in the large, uniformly asymptotically stable in the
large, and exponentially stable in the large.

Proof . (a) It is easily shown that in part (a) the estimate (9.11.10) is satisfied with
ν(l0) = ν = Me((ω+|ω|)/2)θ, independent of l0 ∈ N. Therefore, the conditions in
parts (a) and (b) of Theorem 9.11.1 are satisfied. This proves part (a) of the corollary.

(b) In view of inequality (9.11.17) the estimate (9.11.12) is true with

a = (M + 1)e((ω+|ω|)/2)θ

and ρ = δ. Therefore the limit relation (9.11.11) is satisfied uniformly with respect
to l0 ∈ N. This proves part (b) of the corollary.

(c) The conclusions of part (c) of this corollary follow directly from part (f) of
Theorem 9.11.1. �

From Theorem 2.9.1, we recall that for any C0-semigroup Tk(t), there will exist
ωk ≥ 0 and µk ≥ 1 such that

‖Tk(t)‖ ≤ µkeωkt, t ≥ 0. (9.11.18)

Furthermore, in accordance with Theorem 2.9.5, if Tk(t) is a C0-semigroup that is
differentiable for t > r, if Ak is its infinitesimal generator, and if Reλk ≤ −αk0 for
all λk ∈ σ(Ak), then given any positive αk < αk0 , there is a constant K(αk) > 0
such that

‖Tk(t)‖ ≤ K(αk)e−αkt, t > r. (9.11.19)

These facts simplify considerably the estimates of the analogous parts of Theorem
9.11.1 and Corollary 9.11.1, valid for C0-semigroups. We state these results in the
following. Their proofs are very similar to the corresponding proofs given in Theorem
9.11.1 and Corollary 9.11.1 and are omitted.

Similarly as in Theorem 9.11.1, we utilize in our next result the relation

‖Tk(t)‖ ≤ Mkeωkt, t ≥ 0 (9.11.20)
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where, depending on the situation on hand, the constants Mk ≥ 1 and ωk ∈ R are
obtained from either (9.11.18) or (9.11.19).

Similarly as in (9.11.9), we define in the case of DDS SDC0 the finite products{
πlk,l0 =

∏k−1
i=0 (‖Hli‖Mlie

ωli
λli )

alk,l0 = Mlke((ωlk
+|ωlk

|)/2)λkπlk,l0 ,
(9.11.21)

k ∈ N
+
1 = {1, 2, . . . }, where ‖Hk‖, k ∈ N, denotes the norm of the bounded linear

operator Hk used in defining the DDS SDC0 in (9.11.1).

Theorem 9.11.2 (a) For system SDC0 assume that (9.11.20) is true and that for any
l0 ∈ N there exists a constant ν(l0) > 0 such that

alk,l0 ≤ ν(l0) (9.11.22)

holds for all k ∈ N, where alk,l0 is defined in (9.11.21). Then the equilibrium ye = 0
of SDC0 is stable.

(b) If in part (a), ν(l0) = ν > 0 can be chosen independent of l0 ∈ N, then the
equilibrium ye = 0 of SDC0 is uniformly stable.

(c) If in part (a), hypothesis (9.11.22) is replaced by

lim
k→∞

alk,l0 = 0 (9.11.23)

for all l0 ∈ N, then the equilibrium ye = 0 of SDC0 is asymptotically stable in the
large.

(d) If the conditions of part (b) are satisfied and in part (c), the limit relation
(9.11.23) is satisfied uniformly with respect to l0 ∈ N, then the equilibrium ye = 0
of SDC0 is uniformly asymptotically stable in the large.

(e) If in part (d) relations (9.11.12) and (9.11.13) hold, then the equilibrium ye = 0
of SDC0 is exponentially stable in the large. �

Corollary 9.11.2 For system SDC0 assume that

(i) For all k ∈ N, λk = τk+1 − τk ≤ θ < ∞.

(ii) For all k ∈ N, Mk ≤ M < ∞ and ωk ≤ ω < ∞ where M ≥ 1 and ω ∈ R are
constants (Mk and ωk are given in (9.11.20)).

(a) Assume that
‖Hk‖Mkeωkλk ≤ 1

for all k ∈ N. Then the equilibrium ye = 0 of SDC0 is stable and uniformly stable.
(b) Assume that

‖Hk‖Mkeωkλk ≤ δ < 1

for all k ∈ N. Then the equilibrium ye = 0 of SDC0 is asymptotically stable,
uniformly asymptotically stable, uniformly asymptotically stable in the large, expo-
nentially stable, and exponentially stable in the large. �
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Remark 9.11.5 Corollaries 9.11.1 and 9.11.2 are more conservative than Theorems
9.11.1 and 9.11.2 because in the case of the latter we put restrictions on partial prod-
ucts (see, e.g., (9.11.10)) whereas in the case of the former, we put corresponding
restrictions on the individual members of the partial products (see, e.g., (9.11.16)).
However, the corollaries are easier to apply than the theorems. �

Remark 9.11.6 In contrast to the stability results for DDS given in the preceding
section, the results of the present section do not require determination of appropriate
Lyapunov functions, which is not necessarily an easy task. Instead, in the application
of Theorems 9.11.1 and 9.11.2 and Corollaries 9.11.1 and 9.11.2, we bring to bear the
qualitative theory of semigroups in determining appropriate estimates of bounds of the
norms of semigroups. It must be pointed out, however, that the determination of such
estimates is not necessarily an easy task either. Moreover, the ambiguity involved in
the search of Lyapunov functions in the application of the results for DDS involving
such functions offers flexibility in efforts of reducing conservatism of results. �

D. Applications

We now apply the results of the present section in the stability analysis of three classes
of discontinuous dynamical systems.

Example 9.11.1 (Autonomous first-order retarded functional differential equations)

(1) Dynamical systems determined by nonlinear semigroups

Consider initial value problems described by a system of autonomous first-order
retarded functional differential equations (with delay r) given by{

ẋ(t) = f(xt), t > 0
x(t) = ϕ(t), −r ≤ t ≤ 0 (9.11.24)

where f : C → R, C ⊂ Cr, Cr = C[[−r, 0], Rn] is a Banach space with norm
defined by

‖ϕ‖ = max
{
|ϕ(t)| : − r ≤ t ≤ 0

}
(9.11.25)

and xt ∈ C is the function determined by xt(s) = x(t + s) for −r ≤ s ≤ 0. We
assume that C is a neighborhood of the origin.

Assume that f satisfies a Lipschitz condition

|f(ξ) − f(η)| ≤ K‖ξ − η‖ (9.11.26)

for all ξ, η ∈ C. Under these conditions, the initial value problem (9.11.24) has a
unique solution for every initial condition ϕ ∈ C, denoted by ψ(t, ϕ) that exists for
all t ∈ R

+ (see Example 2.9.2). In this case, the mapping T (t) : C → C given by
T (t)(ϕ) = ψt(·, ϕ), or equivalently, (T (t)ϕ)(s) = ψ(t + s, ϕ), defines a nonlinear
semigroup on C ⊂ Cr. In fact, T (t) is a quasi-contractive semigroup, and

‖T (t)(ξ) − T (t)(η)‖ ≤ eKt‖ξ − η‖ (9.11.27)

for all t ∈ R
+ and ξ, η ∈ C (see Example 2.9.2).
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If we define A : D(A)→C by Aϕ= ϕ̇, D(A)={ϕ∈C : ϕ̇∈C and ϕ̇(0)= f(ϕ)},
then D(A) is dense in C, A is the generator and also the infinitesimal generator of
T (t), and T (t) is differentiable for t > r (see Example 2.9.2).

(2) Discontinuous dynamical systems determined by nonlinear semigroups

Now consider the system of discontinuous retarded functional differential equa-
tions given by {

ẋ(t) = Fk(xt), τk ≤ t < τk+1
xt = Hk(xt−), t = τk+1, k ∈ N

(9.11.28)

where {Fk} and {Hk} are given collections of mappings Fk: C→R
n and Hk: C→C

and E = {t0 = τ0, τ1, τ2, . . . : τ0 < τ1 < τ2 < · · · } is a given unbounded set. We
assume that for all k ∈ N, Hk ∈ C[C, C], Hk(0) = 0, and

‖Hk(ξ)‖ ≤ Ck‖ξ‖ (9.11.29)

for all ξ ∈ C, where Ck > 0 is a finite constant. Also, we assume that Fk(0) = 0
and that Fk satisfies the Lipschitz condition

|Fk(ξ) − Fk(η)| < Kk‖ξ − η‖ (9.11.30)

for all ξ, η ∈ C.
For every k ∈ N, the initial value problem{

ẋ(t) = Fk(xt), t > τk

xt = ϕ(k), t = τk
(9.11.31)

possesses a unique solution ψ
(k)
t (·, ϕ(k), τk) for every initial condition ϕ(k) ∈ C that

exists for all t ≥ τk with ψ
(k)
τk (·, ϕ(k), τk) = ϕ(k). Therefore, it follows that for

every ϕ(0), (9.11.28) possesses a unique solution that exists for all t ≥ t0 = τ0 ≥ 0,
given by

ψt(·, ϕ(0), τ0) =

{
ψ

(k)
t (·, ϕ(k), τk), τk ≤ t < τk+1

Hk(ψ(k)
t− (·, ϕ(k), τk)) = ϕk+1, t = τk+1, k ∈ N.

(9.11.32)
Note that ϕ(k) = Hk−1(ψ

(k−1)
τ−

k

(·, ϕ(k−1), τk−1)), k = 1, 2, . . . . Also, note that

ψt(·, ϕ(0), t0) is continuous with respect to t on [t0,∞) − {τ1, τ2, . . . } and that at
t = τk, k = 1, 2, . . . , ψt(·, ϕ(0), t0) may be discontinuous. Furthermore, note that
ξ = 0 is an equilibrium of (9.11.28) and that ψt(·, 0, t0) = 0 for all t ≥ t0.

Next, for the initial value problem (9.11.31) we define

ψ
(k)
t (·, ϕ(k), τk) = Tk(t − τk)(ϕ(k)),

Tk(t − τk) : C → C, t ≥ τk. It follows that Tk(s), s ∈ R
+, is a quasi-contractive

semigroup. This allows us to characterize system (9.11.28) as{
y(t, ϕ(0), t0) = Tk(t − τk)ϕ(k)), τk ≤ t < τk+1
yt = Hk(yt−), t = τk+1, k ∈ N.

(9.11.33)
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Finally, it is clear that (9.11.28) (resp., (9.11.33)) determines a discontinuous dynam-
ical system that is a special case of the DDS SDN .

Proposition 9.11.1 (a) For system (9.11.28) (resp., (9.11.33)) assume the following.

(i) For each k ∈ N, the function Fk satisfies the Lipschitz condition (9.11.30) with
Lipschitz constant Kk for all ξ, η ∈ C ⊂ Cr, where C is a neighborhood of
the origin.

(ii) For each k ∈ N, the function Hk satisfies condition (9.11.29) with constant Ck

for all ξ ∈ C.

(iii) For each k∈N, (τk+1−τk)
�
=λk ≤ θ < ∞, Ck ≤ γ < ∞, and Kk ≤ K < ∞.

(iv) For all k ∈ N,
CkeKkλk ≤ 1. (9.11.34)

Then the equilibrium ξ = 0 of system (9.11.28) (resp., (9.11.33)) is uniformly stable.
(b) In part (a) above, replace (iv) by the following hypothesis.

(v) for all k ∈ N,
CkeKkλk ≤ δ < 1. (9.11.35)

Then the equilibrium ξ = 0 of system (9.11.28) (resp., (9.11.33)) is uniformly asymp-
totically stable and exponentially stable.

(c) In part (a) above, replace (iv) by hypothesis (v) and assume that conditions
(9.11.29) and (9.11.30) hold for C = Cr. Then the equilibrium ξ = 0 of system
(9.11.28) (resp., (9.11.33)) is uniformly asymptotically stable in the large and expo-
nentially stable in the large.

Proof . In view of (9.11.27), we have, because Fk(0) = 0,

‖Tk(t)(ξ)‖ ≤ eKkt‖ξ‖ (9.11.36)

for all t ≥ 0, k ∈ N, and ξ ∈ C, resp., ξ ∈ Cr. Setting Mk = 1, ck = Ck, and
ωk = Kk, we can see that all hypotheses of Corollary 9.11.1 are satisfied. This
completes the proof. �

(3) Dynamical systems determined by linear semigroups

Now assume C = Cr. If in (9.11.24), f = L is a linear mapping from Cr to R
n

defined by the Stieltjes integral

L(ϕ) =
∫ 0

−r

[
dB(s)

]
ϕ(s), (9.11.37)

we obtain the initial value problem (see Example 2.9.2){
ẋ(t) = L(xt), t > 0,
x(t) = ϕ(t), −r ≤ t ≤ 0.

(9.11.38)
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In (9.11.37), B(s) = [bij(s)] is an n × n matrix whose entries are assumed to be
functions of bounded variation on [−r, 0]. Then L is Lipschitz continuous on Cr with
Lipschitz constant K less than or equal to the variation of B in (9.11.37). In this case,
the semigroup T (t) is a C0-semigroup. The spectrum of its generator consists of all
solutions of the equation

det
(∫ 0

−r

eλsdB(s) − λI

)
= 0. (9.11.39)

If in particular, all the solutions of (9.11.39) satisfy the relation Reλ < −α0 for some
α0 > 0, then it follows from Theorem 2.9.5 that for any positive α < α0, there is a
constant P (α) > 0 such that

‖T (t)‖ ≤ P (α)e−αt, t ≥ 0. (9.11.40)

When the above assumptions do not hold, then in view of Theorem 2.9.1 we still have
the estimate

‖T (t)‖ ≤ Qeµt, t ≥ 0, (9.11.41)

for some µ ≥ 0 and Q ≥ 1.
Next, let Fk(xt) = Lkxt where Lk : Cr → R

n is defined similarly as in (9.11.37)
by Lk(ϕ) =

∫ 0
−r

[dBk(s)]ϕ(s) and let Hk(xt) = Gkxt where Gk ∈ C[Cr, Cr] is
assumed to be a bounded linear operator. Then system (9.11.28) assumes the form{

ẋ(t) = Lkxt, τk ≤ t < τk+1,
xt = Gkxt− , t = τk+1, k ∈ N.

(9.11.42)

It is clear that (9.11.42) determines a DDS determined by linear semigroups that is a
special case of SDC0 .

In the following, when all the solutions of the characteristic equation

det
(∫ 0

−r

eλksd[Bk(s)] − λkI

)
= 0

satisfy the condition Reλk ≤ −α0k, then given any 0 < αk < α0k, there is a constant
Pk(αk) > 0 such that

‖Tk(t)‖ ≤ Pk(αk)e−αkt, t ≥ 0 (9.11.43)

(see (9.11.40)). Otherwise, we still have the estimate

‖Tk(t)ϕ‖ ≤ Qkeµkt, t ≥ 0 (9.11.44)

for some Qk ≥ 1, µk ≥ 0 (see (9.11.41)).
When (9.11.43) applies, we let in the following

Mk = Pk(αk), −αk = ωk (9.11.45)
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and when (9.11.44) applies, we let

Mk = Qk, µk = ωk. (9.11.46)

Thus, in all cases we have the estimate

‖Tk(t)‖ ≤ Mkeωkt, t ≥ 0. (9.11.47)

Proposition 9.11.2 (a) For system (9.11.42) assume the following.

(i) For each k∈N, (τk+1−τk)
�
= λk ≤θ <∞, Mk ≤ M < ∞, and ωk ≤ ω < ∞.

(ii) For each k ∈ N,
‖Gk‖Mkeωkλk ≤ 1 (9.11.48)

where Mk and ωk are given in (9.11.43)–(9.11.46).

Then the equilibrium ξ = 0 of system (9.11.42) is uniformly stable.
(b) In part (a) above, replace (9.11.48) by

‖Gk‖Mkeωkλk ≤ δ < 1. (9.11.49)

Then the equilibrium ξ = 0 of system (9.11.42) is uniformly asymptotically stable in
the large and exponentially stable in the large.

Proof . The proof follows directly from Corollary 9.11.2. �

Example 9.11.2 (Heat equation)

(1) Dynamical systems determined by the heat equation

We consider initial and boundary value problems described by equations of the
form 

∂u

∂t
= a2∆u, (t, x) ∈ [t0,∞) × Ω

u(t0, x) = ϕ(x), x ∈ Ω
u(t, x) = 0, (t, x) ∈ [t0,∞) × ∂Ω

(9.11.50)

where Ω ⊂ R
n is a bounded domain with smooth boundary ∂Ω, ∆ =

∑n
i=1 ∂2/∂x2

i

denotes the Laplacian and a2 > 0 is a constant.
We assume that in (9.11.50), ϕ ∈ X = H2[Ω, R]∩H1

0 [Ω, R] where H1
0 [Ω, R] and

H2[Ω, R] are Sobolev spaces (refer to Section 2.10). For any ϕ ∈ X , we define the
H1-norm by

‖ϕ‖2
H1 =

∫
Ω
(|∇ϕ|2 + |ϕ|2)dx (9.11.51)

where ∇ϕT = (∂ϕ/∂x1, . . . , ∂ϕ/∂xn).
It has been shown (see, e.g., [33]) that for each ϕ ∈ X there exists a unique

solution u = u(t, x), t ≥ t0, x ∈ Ω for (9.11.50) such that u(t, ·) ∈ X for each
fixed t ≥ t0 and u(t, ·) ∈ X is a continuously differentiable functions from [t0,∞)
to X with respect to the H1-norm (9.11.51). In the present case, (9.11.50) can be
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cast as an initial value problem in the space X with respect to the H1-norm, letting
u(t, ·) = U(t) and assuming, without loss of generality, that t0 = 0,{

U̇(t) = AU(t), t ≥ 0
U(0) = ϕ ∈ X

(9.11.52)

where A is the linear operator determined by A =
∑n

i=1 a2∂2/∂x2
i with U(t, ϕ),

t ≥ 0, denoting the solution of (9.11.52) with U(0, ϕ) = ϕ. Furthermore, it has been
shown (e.g., [33]) that (9.11.52) determines a C0-semigroup T (t) : X → X , where
for any ϕ ∈ X , U(t, ϕ) = T (t)ϕ. Because U(t, 0) = 0, t ≥ 0, then ϕ = 0 ∈ X is
an equilibrium for (9.11.52) (resp., for (9.11.50)). Also (see (9.10.52) or [33]),

‖T (t)‖H1 ≤ e−(c/2)t, t ≥ 0 (9.11.53)

where c = min{a2, a2/γ2}, γ = δ/
√

n and Ω can be put into a cube of length δ.

(2) Discontinuous dynamical systems determined by the heat equation

Now consider the DDS determined by the equations
∂u

∂t
= a2

k∆u, (t, x) ∈ [τk, τk+1) × Ω

u(t, ·) = gk(u(t−, ·)) �
= ϕk+1(·), t = τk+1

u(t0, x) = ϕ0(x), x ∈ Ω
u(t, x) = 0, (t, x) ∈ [t0,∞) × ∂Ω,

(9.11.54)

k ∈ N, where all symbols are defined similarly as in (9.11.50), a2
k > 0, k ∈ N, are

constants, {gk} is a given family of mappings gk ∈ C[X, X], k ∈ N, and

E = {t0 = τ0, τ1, τ2, . . . : τ0 < τ1 < τ2 < · · · }

is a given unbounded set. We assume that gk(0) = 0 and that there exists a constant
dk > 0 such that

‖gk(ϕ)‖H1 ≤ dk‖ϕ‖H1 (9.11.55)

for all ϕ ∈ X , k ∈ N.
Associated with (9.11.54) we have a family of initial and boundary value problems

determined by
∂u

∂t
= a2

k∆u, (t, x) ∈ [τk,∞) × Ω

u(τk, x) = ϕk(x), x ∈ Ω
u(t, x) = 0, (t, x) ∈ [τk,∞) × ∂Ω

(9.11.56)

k ∈ N. Because for every k ∈ N and every (τk, ϕk) ∈ R
+ × X , the initial and

boundary value problem (9.11.56) possesses a unique solution uk(t, ·) that exists for
all t ≥ τk with uk(τk, x) = ϕk(x), it follows that for every ϕ0 ∈ X , (9.11.54)
possesses a unique solution u(t, ·) that exists for all t ≥ τ0 ≥ 0, given by

u(t, ·) =

{
uk(t, ·), τk ≤ t < τk+1

gk(uk(t−, ·)) �
= ϕk+1(·), t = τk+1, k ∈ N

(9.11.57)
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with u(t0, x) = ϕ0(x). Notice that every solution u(t, ·) is continuous with respect to
t on [t0,∞)−{τ1, τ2, . . . }, and that at t = τk, k = 1, 2, . . . , u(t, ·) may be discontin-
uous. Furthermore, ϕe = 0 ∈ X is an equilibrium for (9.11.54) and u(t, ·)|ϕ=0 = 0
for all t ≥ t0 ≥ 0 is a trivial motion.

Next, as in the initial and boundary value problem (9.11.50), we can cast the initial
and boundary value problems (9.11.56) as initial value problems (as in (9.11.52)) that
determine C0-semigroups Tk(t − τk), t ≥ τk, k ∈ N, that admit the estimates

‖Tk(t − τk)‖H1 ≤ e−(ck/2)(t−τk) (9.11.58)

where ck = min{a2
k, a2

k/γ2}. Letting uk(t, ·) = Tk(t − τk)uk(τk, ·) in (9.11.57),
system (9.11.54) can be characterized as{

u(t, ·) = Tk(t − τk)uk(τk, ·), τk ≤ t < τk+1
u(t, ·) = gk(uk(t−, ·)), t = τk+1, k ∈ N.

(9.11.59)

Finally, it is clear that (9.11.54) (resp., (9.11.59)) determines a discontinuous dynam-
ical system that is a special case of the DDS SDN .

Proposition 9.11.3 For system (9.11.54) (resp., (9.11.59)) assume that

λk
�
= τk+1 − τk ≤ θ < ∞, ωk

�
= −ck/2 ≤ ω < ∞,

and dk ≤ d < ∞, k ∈ N.

(a) If for each k ∈ N,
dkeωkλk ≤ 1, (9.11.60)

then the equilibrium ϕe = 0 of system (9.11.54) is uniformly stable with respect
to the H1-norm.

(b) If for all k ∈ N,
dkeωkλk ≤ δ < 1, (9.11.61)

where δ > 0 is a constant, then the equilibrium ϕe = 0 of system (9.11.54)
is uniformly asymptotically stable in the large and exponentially stable in the
large.

Proof . The proof follows directly from Corollary 9.11.1. �

9.12 Notes and References

The proofs of most of the results given in Sections 9.2–9.5, for dynamical systems de-
termined by differential equations defined on Banach spaces, are direct consequences
of corresponding results presented in Chapter 3, for dynamical systems defined on
metric spaces. The results for composite systems presented in Section 9.6, which
constitute generalizations of results established in [36], are motivated by results
given in [29] for composite systems defined on metric spaces. The example given in
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Section 9.6 is similar to an example considered in [36]. A good reference on point
kinetics models of multicore nuclear reactors is [35]. Our presentation of the stability
analysis of such models in Section 9.7 is based on the results established in [25].
Good references on retarded functional differential equations include [10], [15], and
[43]. Razumikhin-type theorems (originally presented in [37] and [38]) are presented
in [10] and [18]. The examples given in Section 9.8 are motivated by similar exam-
ples addressed in [10], [18], and [29]. Our analysis of the Cohen–Grossberg neural
networks with delays in Section 9.9 is based on the results established in [42]. For
additional results on this subject, the reader should consult [24] and [41]. Finally,
Sections 9.10 and 9.11 are based on results established in [27] and [28], respectively.
For related results concerning DDS determined by retarded functional differential
equations, refer to [39]. Throughout this chapter we considered specific examples
of infinite-dimensional dynamical systems determined by a variety of different types
of equations. Material concerning these equations, along with many other specific
classes of infinite-dimensional dynamical systems can be found in many references,
including, for example, [3], [4], [6], [7], [9]–[18], [20], [25], [29], [33], and [43].

9.13 Problems

Problem 9.13.1 Similarly as in the case of finite-dimensional systems, show that if
(GE) has an equilibrium, say xe ∈ X , then we may assume without loss of generality
that xe = 0. �

Problem 9.13.2 Prove relation (9.1.4). �

Problem 9.13.3 Prove Theorem 9.2.6. �

Problem 9.13.4 Prove Theorem 9.5.2. �

Problem 9.13.5 Complete the proof of Theorem 9.6.1. �

Problem 9.13.6 In Theorem 9.6.1 let Mi = {0} ⊂ Xi, i = 1, . . . , l, let M = {0} ⊂
X , and replace hypothesis (i) by the following hypothesis.

(i′) Let L = {1, . . . , l}, L = P ∪ Q, P ∩ Q = ∅, and Q �= ∅.

(a) For i ∈ P , assume there exists vi ∈ C[Xi × R
+, R+] and ψi1, ψi2 ∈ K such

that
ψi1(‖xi‖i) ≤ vi(xi, t) ≤ ψi2(‖xi‖i)

for all xi ∈ Xi and t ∈ R
+.

(b) For i ∈ Q, assume there exist vi ∈ C[Xi × R
+, R] and ψi2 ∈ K such that

vi(0, t) = 0 for all t ∈ R
+ and

ψi2(‖xi‖i) ≤ −vi(xi, t)

for all xi ∈ Xi and t ∈ R
+.
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Assume that hypotheses (ii) and (iii) of Theorem 9.6.1 are true and that the matrix
B is negative definite.

Prove that if the above assumptions are true, then the equilibrium xe = 0 of the
composite system {R

+, X, A, S} is unstable (i.e., (S, {0}) is unstable). If in addition,
Q = L, then the equilibrium xe = 0 is completely unstable. �

Problem 9.13.7 Assume that the hypotheses in Problem 9.13.6 are true and that
−A = [aij ] ∈ R

l×l is an M -matrix, where the aij are given in Theorem 9.6.1 (and
Corollary 9.6.1). Then the equilibrium xe =0 of the composite system {R

+, X, A, S}
is unstable. �

Problem 9.13.8 Now let us reconsider the composite system (9.6.3) given in Exam-
ple 9.6.1, except now assume that the matrix A ∈ R

m×m has at least one eigenvalue
with real part greater than zero and no eigenvalues with zero part. (We allow the possi-
bility that A is completely unstable.) After an appropriate nonsingular transformation
w = Bz, we obtain

BAB−1 =
[

A1 0
0 A2

]
(9.13.1)

where −A1 is a stable k × k matrix and A2 is a stable j × j matrix with k + j = m.
Then system (9.6.3) can be rewritten as

ẇ1 = A1w1 + b1

∫
Ω
f(x)z2(t, x)dx, t ∈ R

+

ẇ2 = A2w2 + b2

∫
Ω
f(x)z2(t, x)dx, t ∈ R

+

dz2

dt
(t, x) = α∆z2(t, x)+ g(x)(cT

1 w1+ cT
2 w2), (t, x) ∈ R

+× Ω

z2(t, x) = 0 (t, x) ∈ R
+× ∂Ω

(9.13.2)
where b1, b2, c1, and c2 are defined in the obvious way as consequences of the transfor-
mation given in (9.13.1) and all other symbols in (9.13.2) are defined in Example 9.6.1.

Because A1 is completely unstable, there exists a matrix P1 = PT
1 > 0 such that

the matrix
(−A1)T P1 + P1(−A1) = Q1

is negative definite, and because A2 is stable, there exists a matrix P2 = PT
2 > 0

such that the matrix
AT

2 P2 + P2A2 = Q2

is negative definite.
Let λM (Q1) and λM (Q2) denote the largest eigenvalues of Q1 and Q2, respec-

tively, and let Γ be as defined in (9.6.8). Let

S =

 λM (Q1) 0 2‖P1‖2|b1| ‖f‖L2

0 λM (Q2) 2‖P2‖2|b2| ‖f‖L2

‖g‖L2 |c1| ‖g‖L2 |c2| −αΓ

 .



482 Chapter 9. Infinite-Dimensional Dynamical Systems

Using the results given in Problems 9.13.6 and 9.13.7, prove that the equilibrium
(wT

1 , wT
2 , z2) = 0 of system (9.13.2) is unstable if the successive principal minors of

the matrix −S are positive.

Problem 9.13.9 Complete the proof of Theorem 9.8.2 for uniform ultimate
boundedness.

Problem 9.13.10 Fill in the details for the proof of Theorem 9.8.3.

Problem 9.13.11 Consider the system

ẋ(t) = Ax(t) + Bx(t − r) (9.13.3)

where A, B ∈ R
n×n. Assume that the matrix W = (A+B)+(A+B)T is negative

definite. Choose as a Lyapunov function v = xT x. Using Theorem 9.8.8, show
that the equilibrium ϕe = 0 ∈ Cτ of system (9.13.3) is uniformly asymptotically
stable if

2q‖B‖ + ‖B + BT ‖ < λ

where q > 1 is a constant and λM (W ) = −λ (λM (W ) denotes the largest eigenvalue
of W ). �

Problem 9.13.12 We recall from Chapter 8 the model for Hopfield neural networks,
given by

ẋ = −Bx + TS(x) + I (H)

where x = (x1, . . . , xn)T ∈ R
n, B = diag[b1, . . . , bn], bi > 0, i = 1, . . . , n, T =

[Tij ] ∈ R
n×n, TT = T , S(x) = [s1(x1), . . . , sn(xn)]T , and I = [I, . . . , In]T ∈ R

n.
The xi, i = 1, . . . , n denotes the state variable associated with the ith neuron, the bi,
i = 1, . . . , n represent self-feedback coefficients, the Tij represent interconnection
weights among the neurons, the Ii, i = 1, . . . , n denote external inputs and bias terms,
and the si(·), i = 1, . . . , n are sigmoidal functions that represent the neurons. In the
present case we have si ∈ C[R, (−1, 1)], si(·) is strictly increasing, xisi(xi) > 0 for
all xi �= 0, and si(0) = 0.

Frequently, time delays are introduced intentionally or unavoidably into the inter-
connection structure of (H), resulting in neural networks described by equations of
the form

ẋ(t) = −Bx(t) + TS(x(t − τ)) + I, (HD)

where τ ≥ 0 denotes a time delay and all other symbols are as defined in (H).

Theorem 9.13.1 For system (HD) assume the following:

(i) T is symmetric.

(ii) For S(x) = [s1(x1), . . . , sn(xn)]T , si ∈ C1[R, (−1, 1)], and (dsi/dxi)(xi)
�
=

s′
i(xi) > 0 for all xi ∈ R, i = 1, . . . , n.
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(iii) τβ‖T‖2 < 1, where ‖ · ‖2 denotes the matrix norm induced by the Euclidean
norm on R

n and β = supx∈Rn ‖S̃(x)‖2 where

S̃(x)
�
= diag[s′

1(x1), . . . , s′
n(xn)].

(iv) System (HD) has a finite number of equilibria.

Prove that for every solution ϕ of (HD), there exists an equilibrium xe such that
limt→∞ ϕ(t) = xe.

Hint: Let y = S(x) and yt = S(xt) ∈ C [[−τ, 0], Rn] and choose as a Lyapunov
function

v(xt) = − yT
t (0)Tyt(0) + 2

n∑
i=1

∫ (yt(0))i

0
bis

−1
i (σ)ds

− 2yT
t (0)I +

∫ 0

−τ

[yt(θ) − yt(0)]T TT f(θ)TT [yt(θ) − yt(0)]dθ

where f ∈ C1 [[−τ, 0], R+] is to be determined in such a manner that v′
(HD)(xt) ≤ 0

along any solution of (HD). Then apply Theorem 9.8.6. �

Problem 9.13.13 Prove Theorem 9.10.8. �

Problem 9.13.14 Prove Proposition 9.10.4. �

Problem 9.13.15 Prove Theorem 9.11.2. �

Problem 9.13.16 Prove Proposition 9.11.3. �

Problem 9.13.17 [32] Consider dynamical systems determined by countably infinite
systems of ordinary differential equations given by

żn = hn(t, x), n = 1, 2, . . . . (9.13.4)

Here x is the infinite-dimensional vector x=(zT
1 , zT

2 , . . . , zT
n , . . . )T∈R

ω, zn ∈R
mn ,

and hn : R
+× R

ω → R
mn . The infinite product R

ω = R
m1 × · · · × R

mn × · · ·
is equipped with the usual product topology, which is equivalent to introducing the
metric

d(x, x̄) =
∞∑

i=1

(
1
2n

)
|zn − z̄n|

(1 + |zn − z̄n|) (9.13.5)

so that R
ω is a metric space (a convex Fréchet space).

A solution of (9.13.4) is a function x : [a, b] → D ⊂ R
ω, b > a ≥ 0 such

that zn ∈ C1 [[a, b], Rmn ] and żn(t) = hn(t, x(t)) for all t ∈ [a, b] and for all
n = 1, 2, 3, . . . .

Frequently we view system (9.13.4) as an interconnected system of the form (see,
e.g., [25])

żn = fn(t, zn) + gn(t, x), n = 1, 2, . . . (Σ)
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where in the notation of (9.13.4), hn(t, x)
�
= fn(t, zn) + gn(t, x). We view (Σ) as

an interconnection of countably infinitely many isolated or free subsystems described
by equations of the form

ẇn = fn(t, wn), (Σn)

n = 1, 2, . . . , where wn ∈ R
mn . The terms gn(t, x), n = 1, 2, . . . comprise the

interconnecting structure of system (Σ).
In the following, we let for some rn > 0,

Dk =
{
x = (zT

1 , zT
2 , . . . )T ∈ R

ω : |zn| ≤ krn, n = 1, 2, . . .
}
, (9.13.6)

k > 0, and we assume that for every initial condition x(t0) = x0 with (t0, x0) ∈
R

+ × D1, system (Σ) has at least one solution that exists over a finite or an infinite
interval. For conditions that ensure this, refer to [32].

The system of equations (Σ) determines a dynamical system {T, X, A, S} where
T = R

+, X = R
ω, A = D1, and S = SΣ, the set of motions determined by the

solutions of (Σ). We note that because R
ω is a product of infinitely many Banach

spaces R
mn , n = 1, 2, . . . , the results for composite systems established in Section

9.6 are not applicable, because these systems are defined on a finite product of Banach
spaces.

In the next result, we say that the trivial solution x ≡ 0 of system (Σ) is uniformly
stable with respect to a set D (resp., (SΣ|D, {0}) is uniformly stable) if for any ε > 0
there is a δ(ε) > 0 such that when c ∈ D and d(c, 0) < δ, then d(x(t, c, t0), 0) < ε
for all t ≥ t0 ≥ 0. The uniform asymptotic stability of the trivial solution x ≡ 0 of
system (Σ) with respect to set D is defined similarly.

Theorem 9.13.2 [32] Assume that for system (Σ), the following hypotheses are
true.

(i) For each isolated subsystem (Σn), n = 1, 2, . . . , there exist a function vn ∈
C1[Bmn

(rn) × R
+, R], where Bmn

(rn) = {zn ∈ R
mn : |zn| < rn} for some

rn > 0, and three functions ψ1n, ψ2n, ψ3n ∈ K, and a constant σn ∈ R,
such that

ψ1n(|zn|) ≤ vn(zn, t) ≤ ψ2n(|zn|)

and
v′

n(Σn)(zn, t) ≤ σnψ3n(zn)

for all |zn| < rn and t ∈ R
+.

(ii) Given ψ3n in hypothesis (i), there are constants anj ∈ R such that

∇vn(zn, t)Tgn(t, (z1, . . . , zN , 0, 0, . . . ))

≤ ψ3n(|zn|)1/2
N∑

j=1

anjψ3j(|zn|)1/2

for all |zn| < rn and all t > 0, and all N = 1, 2, . . . .
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(iii) There exists a sequence of positive numbers {λi}, i = 1, 2, . . . , such that∑∞
n=1 λnψ2n(rn) < ∞ and such that for each N = 1, 2, . . . , the N × N

matrix BN = [bij ] defined by

bij =
{

λi(σi + aii), i = j
(λiaij + λjaji)/2, i �= j

is negative semidefinite.

Prove that (SΣ|D1 , {0}) is invariant and uniformly stable (D1 is defined in (9.13.6)
for k = 1).

Hint: Note that because D1 is compact, then for every function w ∈ C[D1, R]
such that w(x) > 0 for x ∈ D1 − {0}, there must exist ψ1, ψ2 ∈ K such that

ψ2(d(x, 0)) ≥ w(x) ≥ ψ1(d(x, 0))

for all x ∈ D1. Now follow the proof of Theorem 9.6.1. �

Problem 9.13.18 [32] Consider the countably infinite system of scalar differential
equations {

ż1 = −z1
ż2 = −zn + zn−1, n ≥ 2.

(9.13.7)

Prove that the trivial solution xe = 0 of (9.13.7) is stable with respect to Dk for any
k > 0.

Hint: Apply Theorem 9.13.2, choosing rn = r > 0, vn(zn) = z2
n/2, and λn =

1/2n. �

Problem 9.13.19 [32] (Invariance theorem for (Σ)) Assume that the functions fn

and gn in (Σ) are independent of t, n = 1, 2, . . . , and assume that any solution
x(t) ∈ Dk for some k > 1 and all t ≥ t0 whenever x(t0) ∈ D1, where Dk is defined
in (9.13.6). Assume that there exists a function v ∈ C[Dk, R] such that v′

(Σ)(x) ≤ 0
for all x ∈ R

ω. Let M be the largest invariant set with respect to (Σ) in the set
Z = {x ∈ Dk : v′

(Σ)(x) = 0}. Prove that x(t) approaches M as t → ∞ whenever
x(t0) ∈ D1.

Hint: Noting that Dk is compact, apply Theorem 4.2.1. �

Problem 9.13.20 [32] Consider the countably infinite system of scalar differential
equations {

ż1 = −2z1 + z2
żn = zn−1 − 2zn + zn+1, n ≥ 2.

(9.13.8)

Prove that there exists a sequence of positive numbers {rn}, n = 1, 2, . . . such that{
S(9.13.8)|Dk

, {0}
}

is invariant and uniformly asymptotically stable.
Hint: Let rn = 1/2n, choose v(x) =

∑∞
i=1 |zn| for x = (z1, z2, . . . ) ∈ Dk,

and show that v′
(9.13.8)(x) = −|z1| ≤ 0 for all x ∈ Dk. Next, show that the origin

0 ∈ R
ω is the only invariant set in Z = {x ∈ Dk : z1 = 0}, and then, apply the result

given in Problem 9.13.19. �
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32

heat equation, 59, 80
linear parabolic partial differen-

tial equation, 50
linear partial differential equation

with constant coefficients, 47
linear Volterra integrodifferential

equation, 36
ordinary difference equation, 26
ordinary differential equation, 20
ordinary differential equation in

Banach space, 28, 396
ordinary differential inequality, 26,

28
Volterra integrodifferential equa-

tion, 35
well posed, 43

instability,
see unstable

integral equation, 21
interconnected system, 51, 351, 483
interconnecting structure, 351, 484
interface element, 3, 53, 353
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invariance principle,
see invariance theorem, in-
variance theory

invariance theorem, invariance theory,
4, 153, 258, 409, 433, 485

countably infinite system of ordi-
nary differential equations,
485

dynamical system defined on met-
ric space, 9, 153

finite-dimensional dynamical sys-
tem, 10, 258

infinite-dimensional dynamical sys-
tem, 11, 409, 433

semigroup defined on metric space,
9, 153

invariant, invariant set, 1, 8, 73, 83,
93, 104, 159, 162, 175

(IP ), 47
(IPP ), 50
(IV ), 35

Jacobian, 296, 354
Jacobian matrix, 296
Jordan block

order greater than one, 272, 288
order one, 79, 162, 165, 272, 280,

288
Jordan canonical form, 271

kinetic energy, 200

(L), 266, 271, 274, 298
Lagrange stability, 1, 2, 8, 11, 78, 190
Lagrange’s equation, 25
Lagrangian, 25
Laplacian, 52, 58, 402, 477
large-scale system, 5
(LC), 317
(LD), 286, 288, 289
level curve, 196
(LF ), 32
(LH), 23, 65, 207, 266, 321
(LHD), 285, 326
Lienard equation, 298
limit cycle, 375, 377, 381, 386

linear digital control system, 354
linear homogeneous ordinary differ-

ential equation, 23, 207, 266,
267

linear operator
bounded, 38
closed, 38
continuous, 38
dissipative, 40
graph, 38
spectral set, spectrum, 38
strongly elliptic, 50

linear ordinary difference equation with
constant coefficients, 79

linear ordinary differential equation with
constant coefficients, 78, 266,
271

linear parabolic equation with smooth
coefficients, 49

linear partial differential equation with
constant coefficients, 47

linear periodic ordinary differential equa-
tion, 280, 323

linear retarded functional differential
equation, 32, 457

linear sampled-data feedback control
system,
see linear digital control sys-
tem

linear semigroup, 2, 6, 7, 12, 38,
see also C0-semigroup

linear system with state saturation, 377
linearVolterra integrodifferential equa-

tion, 35, 403, 462
linearization, 297
Lipschitz condition, 22, 33, 44, 166,

187, 397, 455
(LN), 326
load balancing of a computer network,

179
locally compact metric space, 157
lower left-hand Dini derivative, 19
lower right-hand Dini derivative, 19
(LP ), 280, 300, 323
Lp[G, U ], 18
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lumped parameter system, 2, 6
Luré’s result, 5, 10, 339, 340, 344
(LV ), 35
Lyapunov function, 4

quadratic, 194, 276, 278
vector, 161

Lyapunov matrix equation, 4, 274, 275,
289, 290

unique solution, 277, 279, 291
Lyapunov stability, 1, 2, 8, 11, 78
Lyapunov stability results, geometric

interpretation, 10, 197
Lyapunov’s first instability theorem

dynamical system defined on met-
ric spaces, 99, 108

ordinary difference equation, 218
ordinary differential equation, 208
ordinary differential equation in

Banach spaces, 405
retarded functional differential equa-

tion, 430
Lyapunov’s First Method,

see the First Method of Lya-
punov

Lyapunov’s Indirect Method,
see the First Method of Lya-
punov

Lyapunov’s second instability theorem
dynamical system defined on met-

ric spaces, 100, 109
ordinary difference equation, 218
ordinary differential equation, 209
ordinary differential equation in

Banach spaces, 406
Lyapunov’s Second Method,

see the Second Method of
Lyapunov

manufacturing system, 3, 9, 176
matrix

critical, 273, 288
Hurwitz, 273, 340
Hurwitz stable, 273, 340
indefinite, 275
logarithm, 323

negative definite, 275
negative semidefinite, 275
positive definite, 275
positive semidefinite, 275
Schur, 288
Schur stable, 288
stable, 273, 278, 288
triangular, 277
triangularized, 277
unstable, 273, 288

matrix differential equation, 321
matrix measure, 225
maximal solution, 138

noncontinuable, 140
metric space, 1, 18
minimal solution, 138
M -matrix, 162, 318, 348
modified Nyquist plot, 343
monotone nondecreasing function, 163
motion, 1, 19

bounded, 19, 77
continuable, 20
continuable forward for all time,

20
continuation, 20
continuity with respect to initial

conditions, 123, 131, 186,
245, 247, 248

noncontinuable, 20
periodic, 76
unique forward in time, 75
uniqueness, 165, 166

multirate digital feedback control sys-
tem, 67

multicore nuclear reactor, 11, 36, 420
multivalued operator, 42

N, 18
natural basis, 322
n degrees of freedom, 25
negative definite function, 191, 192,

194, 195, 397
negative definite matrix, 275
negative invariant set, 73, 297
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negative semidefinite function, 192–
195, 397

negative semidefinite matrix, 275
negative semitrajectory, 76
negatively invariant set,

see negative invariant set
neighborhood of a set, 83
neural network, 11, 337, 344, 438
neutral functional differential equation,

see functional differential equa-
tion of the neutral type

noncontinuable maximal solution, 140
noncontinuable motion, noncontinuable

solution, 20, 34
nonlinear semigroup, 2, 6, 7, 12, 41,

42
contraction, 41
infinitesimal generator, 42
quasi-contractive, 41

nth-order ordinary difference equation,
61

nth-order ordinary differential equa-
tion, 61

null event, 174

O notation, 272, 295
O notation, 295
object of inquiry, 158, 316, 319
observable, 330
(Ωi), 351
one-dimensional wave equation, 66
operator

multivalued, 42
principal part, 50
strongly elliptic, 50
w-accretive, 42

orbital stability,
see orbitally stable

orbitally stable, 310
ordinary difference equation,

see difference equation
ordinary difference inequality,

see difference inequality
ordinary differential equation,

see differential equation

ordinary differential equation in Ba-
nach spaces,
see differential equation in
Banach spaces

ordinary differential inequality,
see differential inequality

output bin, 176

(P ), 256, 309
partial differential equation, 2, 5, 7,

11, 46, 50
hyperbolic equation, 48
initial and boundary value prob-

lem, 74, 399, 402, 406, 477,
478

initial value problem, 47, 50, 59,
80

linear parabolic equation with smooth
coefficients, 49, 399

nonlinear parabolic equation, 399
parabolic equation, 48, 399
parabolic equation with smooth

coefficients, 399
partial motion, 112
(PE), 297, 301
(PE′), 303
Peano–Cauchy existence theorem, 22
pendulum, 200, 299
perfect load balancing, 180
period, 76, 280, 323
periodic differential equation, 10, 256,

280, 323
linear, 280, 323

periodic dynamical system, 76, 256
periodic motion, 76
periodic system, 309
perturbed linear periodic system, 300
perturbed linear system, 10, 298, 300
Petri net, 3, 6, 173, 182
plant, 353, 365
Poincaré’s inequality, 403, 406, 420
point kinetics model of a multicore nu-

clear reactor, 11, 36, 420
Poisson’s formula, 66, 80
Popov criterion, 5, 11, 339, 340, 342
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Popov plot, 343, 344
positive definite function, 191–195, 275,

397
positive definite matrix, 275
positive invariant set, 73, 297
positive semidefinite function, 192, 194,

195, 275, 397
positive semidefinite matrix, 275
positive semitrajectory, 76
positively invariant set,

see positive invariant set
potential energy, 200
principal boundedness results

dynamical system defined on met-
ric spaces, 8, 82, 92, 103

finite-dimensional dynamical sys-
tem, 10, 199, 211, 219

infinite-dimensional dynamical sys-
tem, 11, 398, 404, 424

principal Lagrange stability results,
see principal boundedness re-
sults

principal Lyapunov stability results
dynamical system defined on met-

ric spaces, 8, 82, 92, 103
finite-dimensional dynamical sys-

tem, 10, 199, 211, 219
infinite-dimensional dynamical sys-

tem, 11, 398, 424
producer, 176
proper set (with respect to motions),

81
pulse-width modulation, 364

type I, 366
type II, 366, 367

pulse-width-modulated feedback sys-
tem, 11, 337, 364

with Hurwitz stable plant, 367

quadratic form, 10, 194, 274, 276, 289
quadratic Lyapunov function, 194, 274,

276
quantization level, quantization size,

359, 362
quantization, quantizer, 11, 353, 358

fixed point, 358
quasi-contractive semigroup, 41, 42,

44, 467, 473
quasi-monotone nondecreasing func-

tion, 137, 138

R, 18
R

+, 18
R

n, 18
radially unbounded function, 191–194,

397
Rayleigh’s dissipation function, 25
Razumikhin-type theorem, 11, 435
regulator system, 337, 338
resolvent set, 38
restriction of a dynamical system, 100
retarded functional differential equa-

tion,
see functional differential equa-
tion of the retarded type

saddle, 281, 283
safe operating mode, 178
sampled-data control system, 53
saturation function, 215
saturation nonlinearity, 376, 377
scalar differential-difference equation,

32
Schauder’s fixed point theorem, 64
Schur stable matrix, 288
(SE), 55, 189
second method of Lyapunov, 4, 201
second-order linear system, 281
sector, sector condition, 5, 30, 339,

350
(SEk), 55, 189
semidefinite Lyapunov function, 195
semigroup, 2, 11, 38,

see also C0-semigroup,
see also nonlinear semigroup

contraction, contractive, 467
defined on metric spaces, 153
determined by functional differ-

ential equation, 44
determined by ordinary differen-

tial equation, 44
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determined by Volterra integro-
differential equation, 45

quasi-contractive, 41, 467, 473
set of allowed event trajectories, 174
set of discontinuities, 54, 82, 188, 464
set of events, 173
set of initial conditions, 19
set of initial states, 1
set of states, 173
set of valid event trajectories, 174
set-valued mapping, 29
(SF ), 55
(SFk), 55
(SG), 56, 450
(SGk), 56, 450
(SH), 57
(Σ), 483
(Σn), 484
sigmoidal function, 439, 482
simple pendulum, 200, 299
Sobolev space, 47, 477
Sobolev’s embedding theorem, 412,

413
solution, 20
spatially distributed parameters, 6
spectral set, 38
spectrum of a linear semigroup, 38
stability,

see stable
in the sense of Lyapunov, 2, 78

stability of periodic motions, 10, 309
stable, 2, 8, 76, 144, 189, 190, 466

continuous dynamical systems de-
fined on metric spaces, 93,
150, 151, 158, 159, 170, 171

continuous finite-dimensional dy-
namical systems, 79, 200, 251,
256, 267, 268, 272, 275, 280,
316, 333

continuous infinite-dimensional dy-
namical systems, 398, 414,
416, 424, 435, 447, 484

discontinuous dynamical systems
defined on metric spaces, 83

discontinuous finite-dimensional
dynamical systems, 220

discontinuous infinite-dimensional
dynamical systems, 450, 466,
468, 471, 472

discrete-time dynamical systems
defined on metric spaces, 104,
150, 151, 163, 164, 170, 171

discrete-time finite-dimensional dy-
namical systems, 79, 212, 287,
290, 319

stable focus, 281, 285, 286
stable manifold, 10, 296, 301–303, 309,

313
stable node, 281, 282, 284
state space, 1, 19
state trajectory, 174
state transition matrix, 322
strong solution, 38, 43
strongly elliptic operator, 50
subsystem, 19

free, isolated, 484
successive approximations of solutions,

see differential equation
switched system, 3, 465
Sylvester inequalities, 195
synchronous discrete-time Hopfield neu-

ral network, 337, 350
system, 19
system of differential inclusions, 29
system of first-order ordinary differ-

ence equations, 26
system of first-order ordinary differ-

ential equations, 20
system subjected to impulsive effects,

3, 465
system with saturation nonlinearities,

11, 337, 377

task, 176
time lag, 2, 6
time set, 1, 19
trajectory, 39, 75,

see also negative
semitrajectory,
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see also positive
semitrajectory

transfer function, 338
transportation delay, 2, 6
trivial solution, 188

uniform asymptotic stability,
see asymptotically stable

uniform asymptotic stability in the large,
see asymptotically stable

uniform boundedness,
see uniformly bounded

uniform global asymptotic stability,
see asymptotically stable

uniform stability,
see stable

uniform ultimate boundedness,
see uniformly ultimately bounded

uniformly asymptotically stable,
see asymptotically stable

uniformly asymptotically stable in the
large,
see asymptotically stable

uniformly attractive, 77, 79, 145, 190,
466

in the large, 78, 191, 467
uniformly bounded, 2, 77, 190

continuous dynamical systems de-
fined on metric spaces, 95,
159, 160, 170, 171

continuous finite-dimensional dy-
namical systems, 79, 205, 251,
267, 287, 317

continuous infinite-dimensional dy-
namical systems, 405, 415,
417, 418, 426

discontinuous dynamical systems
defined on metric spaces, 87

discontinuous finite-dimensional
dynamical systems, 221

discontinuous infinite-dimensional
dynamical systems, 452, 467

discrete-time dynamical systems
defined on metric spaces, 106,
163, 164, 170, 171

discrete-time finite-dimensional dy-
namical systems, 79, 217, 287,
320

uniformly bounded sequence of func-
tions, 63

uniformly stable,
see stable

uniformly ultimately bounded, 2, 8,
77, 190

continuous dynamical systems de-
fined on metric spaces, 96,
159, 160, 170, 171

continuous finite-dimensional dy-
namical systems, 79, 205, 317

continuous infinite-dimensional dy-
namical systems, 405, 415,
417, 418, 426

discontinuous dynamical systems
defined on metric spaces, 88

discontinuous finite-dimensional
dynamical systems, 221

discontinuous infinite-dimensional
dynamical systems, 452

discrete-time dynamical systems
defined on metric spaces, 106,
163, 164, 170, 171

discrete-time finite-dimensional dy-
namical systems, 79, 217, 320

uniqueness of motion, 165
uniqueness of solutions

ordinary differential equation, 22
ordinary differential equation in

Banach spaces, 9, 29, 166
retarded functional differential equa-

tion, 33
uniqueness property, 75
unstable, 2, 8, 77, 81, 82, 191, 466

continuous dynamical systems de-
fined on metric spaces, 99,
100

continuous finite-dimensional dy-
namical systems, 79, 199, 208,
209, 272, 275, 279, 299, 300,
334
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continuous infinite-dimensional dy-
namical systems, 405, 406,
408, 430–432

discontinuous dynamical systems
defined on metric spaces, 92

discontinuous finite-dimensional
dynamical systems, 223, 354,
357

discontinuous infinite-dimensional
dynamical systems, 453, 466

discrete-time dynamical systems
defined on metric spaces, 108,
109

discrete-time finite-dimensional dy-
namical systems, 79, 218, 288,
290, 301

unstable focus, 281, 285
unstable manifold, 10, 295, 296, 301–

303, 307–309, 313
unstable node, 281–283
upper left-hand Dini derivative, 19
upper right-hand Dini derivative, 19

(V ), 34
valid event trajectory, 174
variation of constants formula, 326
vector exponent, 46
vector index, 46
vector Lyapunov function, 161, 316,

348, 421
Volterra competition equation, 307
Volterra integrodifferential equation,

2, 5, 7, 11, 34, 403,
410, 462

(W̃ ), 350
w-accretive, 42
wave equation, 48, 66
(Wi), 350
(W̃i), 351
ω-limit set, 154

Yacubovich–Kalman lemma, 5, 341

Zubov’s theorem, 10, 264
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