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Preface

In the analysis and synthesis of contemporary systems, engineers and scientists are
frequently confronted with increasingly complex models that may simultaneously
include components whose states evolve along continuous time (continuous dynam-
ics) and discrete instants (discrete dynamics); components whose descriptions may
exhibit hysteresis nonlinearities, time lags or transportation delays, lumped param-
eters, spatially distributed parameters, uncertainties in the parameters, and the like;
and components that cannot be described by the usual classical equations (ordinary
differential equations, difference equations, functional differential equations, partial
differential equations, and Volterra integrodifferential equations), as in the case of
discrete-event systems, logic commands, Petri nets, and the like. The qualitative anal-
ysis of systems of this type may require results for finite-dimensional systems as well
as infinite-dimensional systems; continuous-time systems as well as discrete-time sys-
tems; continuous continuous-time systems as well as discontinuous continuous-time
systems (DDS); and hybrid systems involving a mixture of continuous and discrete
dynamics.

Presently, there are no books on stability theory that are suitable to serve as a single
source for the analysis of system models of the type described above. Most existing
engineering texts on stability theory address finite-dimensional systems described by
ordinary differential equations, and discrete-time systems are frequently treated as
analogous afterthoughts, or are relegated to books on sampled-data control systems.
On the other hand, books on the stability theory of infinite-dimensional dynamical
systems usually focus on specific classes of systems (determined, e.g., by functional
differential equations, partial differential equations, and so forth). Finally, the liter-
ature on the stability theory of discontinuous dynamical systems (DDS) is presently
scattered throughout journals and conference proceedings. Consequently, to become
reasonably proficient in the stability analysis of contemporary dynamical systems of
the type described above may require considerable investment of time. The present
book aims to fill this void. To accomplish this, the book addresses four general ar-
eas: the representation and modeling of a variety of dynamical systems of the type
described above; the presentation of the Lyapunov and Lagrange stability theory for
dynamical systems defined on general metric spaces; the specialization of this sta-
bility theory to finite-dimensional dynamical systems; and the specialization of this
stability theory to infinite-dimensional dynamical systems. Throughout the book, the
applicability of the developed theory is demonstrated by means of numerous specific
examples and applications to important classes of systems.

X1



Xii Preface

We first develop the Lyapunov and Lagrange stability results for general dynam-
ical systems defined on metric spaces. Next, we present corresponding results for
finite-dimensional dynamical systems and infinite-dimensional dynamical systems.
Our presentation is very efficient, because in many cases the stability and bound-
edness results of finite-dimensional and infinite-dimensional dynamical systems are
direct consequences of the corresponding stability and boundedness results of general
dynamical systems defined on metric spaces.

In developing the subject at hand, we first present stability and boundedness re-
sults that are simultaneously applicable to discontinuous dynamical systems as well
as continuous dynamical systems. (We refer to these in the following simply as
“DDS results.”) Because every discrete-time dynamical system can be associated
with a DDS with identical stability and boundedness properties, the DDS results are
also applicable to discrete-time dynamical systems. Accordingly, the DDS results
constitute a unifying Lyapunov and Lagrange stability theory for continuous dynami-
cal systems, discrete-time dynamical systems, and discontinuous dynamical systems.
We further show that when the hypotheses of the classical Lyapunov stability and
Lagrange stability results are satisfied, then the hypotheses of the corresponding DDS
stability and boundedness results are also satisfied. This approach enables us to estab-
lish the classical Lyapunov and Lagrange stability results for continuous dynamical
systems and discrete-time dynamical systems in an efficient manner. This also shows
that the DDS results are, in general, less conservative than the corresponding classi-
cal Lyapunov and Lagrange stability results for continuous dynamical systems and
discrete-time dynamical systems.

The book is suitable for a formal graduate course in stability theory of dynamical
systems or for self-study by researchers and practitioners with an interest in systems
theory in the following areas: all engineering disciplines, computer science, physics,
chemistry, life sciences, and economics. It is assumed that the reader of this book has
some background in linear algebra, analysis, and ordinary differential equations.

The authors are indebted to Tom Grasso, Birkhéduser’s Computational Sciences
and Engineering Editor, for the consideration, support, and professionalism that he
rendered during the preparation and production of this book. The authors would also
like to thank their families for their understanding during the writing of this book.

Summer 2007 Anthony N. Michel
Ling Hou
Derong Liu



Chapter 1

Introduction

In this book we present important results from the Lyapunov and Lagrange stability
theory of dynamical systems. Our approach is sufficiently general to be applicable to
finite- as well as infinite-dimensional dynamical systems whose motions may evolve
along a continuum (continuous-time dynamical systems), discrete-time (discrete-time
dynamical systems), and in some cases, a mixture of these (hybrid dynamical sys-
tems). In the case of continuous-time dynamical systems, we consider motions that
are continuous with respect to time (continuous dynamical systems) and motions that
allow discontinuities in time (discontinuous dynamical systems). The behavior of the
dynamical systems that we consider may be described by various types of (differen-
tial) equations encountered in the physical sciences and the engineering disciplines,
or they may defy descriptions by equations of this type. In the present chapter, we
summarize the aims and scope of this book.

1.1 Dynamical Systems

A dynamical system is a four-tuple {T', X, A, S} where T denotes time set, X is the
state-space (a metric space with metric d), A is the set of initial states, and S denotes a
Sfamily of motions. When T =R* = [0, c0), we speak of a continuous-time dynamical
system; and when T =N={0,1,2,3,...}, we speak of a discrete-time dynamical
system. For any motion x(-, xo,t9) € S, we have z(to, zo,t0) = 29 € A C X and
x(t, xo,to) € X forallt € [to,t1)NT, t1 > to, where t; may be finite or infinite. The
set of motions S is obtained by varying (g, z¢) over (T' x A). A dynamical system is
said to be autonomous, ifevery (-, xo, to) € Sisdefinedon T'N[ty, co) andif for each
x(+,xo,to) € S and foreach 7 such that to +7 € T, there exists a motion x(-, o, to +
7) € Ssuchthat z(t+7, g, to+7) = x(t, 2o, to) for all t and 7 satisfying t +7 € T.

A set M C A is said to be invariant with respect to the set of motions S if
xg € M implies that x(t,xg,t0) € M for all ¢ > tg, for all ¢y € T, and for

1



2 Chapter 1. Introduction

all z(-,zo,t0) € S. Apoint p € X is called an equilibrium for the dynamical
system {T, X, A, S} if the singleton {p} is an invariant set with respect to the mo-
tions S. The term stability (more specifically, Lyapunov stability) usually refers
to the qualitative behavior of motions relative to an invariant set (resp., an equilib-
rium) whereas the term boundedness (more specifically, Lagrange stability) refers to
the (global) boundedness properties of the motions of a dynamical system. Of the
many different types of Lyapunov stability that have been considered in the litera-
ture, perhaps the most important ones include stability, uniform stability, asymptotic
stability, uniform asymptotic stability, exponential stability, asymptotic stability in
the large, uniform asymptotic stability in the large, exponential stability in the large,
instability, and complete instability. The most important Lagrange stability types
include boundedness, uniform boundedness, and uniform ultimate boundedness of
motions.

Classification of dynamical systems

When the state-space X is a finite-dimensional normed linear space, we speak of
finite-dimensional dynamical systems, and otherwise, of infinite-dimensional dynam-
ical systems. Also, when all motions of a continuous-time dynamical system are
continuous with respect to time ¢, we speak of a continuous dynamical system and
when one or more of the motions are not continuous with respect to ¢, we speak of a
discontinuous dynamical system (DDS).

Continuous-time finite-dimensional dynamical systems may be determined, for
example, by the solutions of ordinary differential equations and ordinary differential
inequalities. These arise in a multitude of areas in science and engineering, including
mechanics, circuit theory, power and energy systems, chemical processes, feedback
control systems, certain classes of artificial neural networks, socioeconomic systems,
and so forth. Discrete-time finite-dimensional dynamical systems may be determined,
for example, by the solutions of ordinary difference equations and inequalities. These
arise primarily in cases when digital computers or specialized digital hardware are
an integral part of the system or when the system model is defined only at discrete
points in time. Examples include digital control systems, digital filters, digital signal
processing, digital integrated circuits, certain classes of artificial neural networks,
and the like. In the case of both continuous-time and discrete-time finite-dimensional
dynamical systems one frequently speaks of lumped parameter systems.

Infinite-dimensional dynamical systems, frequently viewed as distributed para-
meter systems, may be determined, for example, by the solutions of differential-
difference equations (delay differential equations), functional differential equations
(retarded and neutral types), Volterra integrodifferential equations, various classes of
partial differential equations, and others. Also, continuous and discrete-time au-
tonomous finite-dimensional and infinite-dimensional dynamical systems may be
generated by linear and nonlinear semigroups. Infinite-dimensional dynamical sys-
tems are capable of incorporating effects that cannot be captured in finite-dimensional
dynamical systems, including time lags and transportation delays, hysteresis effects,
spatial distributions of system parameters, and so forth. Some specific examples



Section 1.1 Dynamical Systems 3

of such systems include control systems with time delays, artificial neural network
models endowed with time delays, multicore nuclear reactor models (represented
by a class of Volterra integrodifferential equations), systems represented by the heat
equation, systems represented by the wave equation, and many others.

There are many classes of dynamical systems whose motions cannot be determined
by classical equations or inequalities of the type enumerated above. One of the most
important of these is discrete-event systems. Examples of such systems include load
balancing in manufacturing systems and in computer networks.

Discontinuous dynamical systems, both finite-dimensional and infinite-dimen-
sional, arise in the modeling process of a variety of systems, including hybrid dynam-
ical systems, discrete-event systems, switched systems, intelligent control systems,
systems subjected to impulsive effects, and the like. In Figure 1.1.1, we depict in
block diagram form a configuration that is applicable to many classes of such sys-
tems. There is a block that contains continuous-time dynamics, a block that contains
phenomena which evolve at discrete points in time (discrete-time dynamics) or at
discrete events, and a block that contains interface elements for the above two sys-
tem components. The block that contains the continuous-time dynamics is usually
characterized by one of the types of equations enumerated above and the block on the
rightin Figure 1.1.1 is usually characterized by difference equations, or it may involve
other types of discrete characterizations, such as Petri nets, logic commands, various
types of discrete-event systems, and the like. The block labeled Interface Elements
may vary from the very simple to the very complicated. At the simplest level, this
block may involve samplers and sample and hold elements. The sampling process
may involve only one uniform rate, or it may be nonuniform (variable rate sampling),
or there may be several different (uniform or nonuniform) sampling rates occurring
simultaneously (multirate sampling). Perhaps the simplest specific example of the
above class of systems is digital control systems where the continuous-time dynam-
ics are described by ordinary differential equations, the discrete-time dynamics are
characterized by ordinary difference equations, and the interface elements consist of
sampling elements and sampling and hold elements.

Discrete-time dynamics
or

X(© w(T) Discrete-event dynamics
Continuous-time Interface or
. Logic dynamics
dynamics v(t) elements u(ty) £ Oi,

Figure 1.1.1: A discontinuous dynamical system configuration.



4 Chapter 1. Introduction

1.2 A Brief Perspective on the Development of
Stability Theory

In his famous doctoral dissertation, Aleksandr Mikhailovich Lyapunov [45] devel-
oped the stability theory of dynamical systems determined by nonlinear time-varying
ordinary differential equations. In doing so, he formulated his concepts of stability
and instability and he developed two general methods for the stability analysis of
an equilibrium: Lyapunov’s Direct Method, also called The Second Method of Lya-
punov, and The Indirect Method of Lyapunov, also called The First Method. The
former involves the existence of scalar-valued auxiliary functions of the state space
(called Lyapunov functions) to ascertain the stability properties of an equilibrium,
whereas the latter seeks to deduce the stability properties of an equilibrium of a sys-
tem described by a nonlinear differential equation from the stability properties of its
linearization. In the process of discovering The First Method, Lyapunov established
some important stability results for linear systems (involving the Lyapunov Matrix
Equation). These results are equivalent to the independently discovered results by
Routh (five years earlier) and Hurwitz (three years later).

Lyapunov did not use the concept of uniformity in his definitions of stability
and asymptotic stability. Because his asymptotic stability theorem yields actually
more than he was aware of (namely, uniform asymptotic stability) he was unable to
establish necessary conditions (called Converse Theorems in the literature) for the
Second Method. Once the issue of uniformity was settled by Malkin [46], progress
on establishing Converse Theorems was made rapidly (Massera [47], [48]).

In the proofs of the various Converse Theorems, the Lyapunov functions are con-
structed in terms of the system solutions, and as such, these results can in general
not be used to generate Lyapunov functions; they are, however, indispensable in es-
tablishing all kinds of general results. Thus, the principal disadvantage of the Direct
Method is that there are no general rules for determining Lyapunov functions. In an
attempt to overcome these difficulties, results which now comprise the comparison
theory were discovered. In this approach, the stability properties of a given (com-
plicated) system under study are deduced from the properties of a corresponding
(simpler) system, called the comparison system. The system under study is related
to the comparison system by means of a stability preserving mapping, which may
be viewed as a generalization of the concept of the Lyapunov function. Some of the
earliest comparison results are due to Miiller [60] and Kamke [33], followed by the
subsequent work reported in Wazewski [73], Matrosov [49], Bellman [8], Bailey [4],
Lakshmikantham and Leela [37], Michel and Miller [53], Siljak [66], Grujic ef al.
[18], and others. In Michel et al. [57], a comparison theory for general dynamical
systems is developed, using stability preserving mappings.

Of major importance in the further development of the Direct Method were results
for autonomous dynamical systems determined by ordinary differential equations, due
to Barbashin and Krasovskii [6] and LaSalle [38], [39], comprising the Invariance
Theory. Among other issues, these results provide an effective means of estimating the
domain of attraction of an asymptotically stable equilibrium, and more importantly,
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in the case of asymptotic stability, they require that the time derivative of a Lyapunov
function along the motions of the system only be negative semidefinite, rather than
negative definite.

One of the first important applications of the Direct Method was in the stability
analysis of a class of nonlinear feedback control systems (regulator systems consisting
of alinear part (described by linear, time-invariant ordinary differential equations) and
anonlinearity that is required to satisfy certain sector conditions). The formulation of
this important class of systems constitutes the so called absolute stability problem. 1t
was first posed and solved by Luré and Postnikov [44] who used a Lyapunov function
consisting of a quadratic term in the states plus an integral term involving the system
nonlinearity. An entirely different approach to the problem of absolute stability was
developed by Popov [64]. His results are in terms of the frequency response of the
linear part of the system and the sector conditions of the nonlinearity. Subsequently,
Yacubovich [74] and Kalman [32] established a connection between the Luré type
of results and the Popov type of results. A fairly complete account of the results
concerning absolute stability is provided in the books by Aizerman and Gantmacher
[1], Lefschetz [42], and Narendra and Taylor [61].

As mentioned earlier, there are many areas of applications of the Lyapunov stability
theory, and to touch upon even a small fraction of these would be futile. However,
we would like to point to a few of them, including applications to large-scale systems
(see, e.g., Matrosov [49], Bailey [4], Michel and Miller [53], Siljak [66], and Grujic
etal. [18]), robustness issues in stabilization of control systems (see, e.g., Zames [79],
Michel and Wang [56], Wang and Michel [70], [71], Wang et al. [72], and Ye et al.
[77]), adaptive control (see, e.g., loannou and Sun [31] and Astrém and Wittenmark
[3]), power systems (see, e.g., Pai [62]), and artificial neural networks (see, e.g.,
Michel and Liu [52]).

The results discussed thus far, pertaining to continuous finite-dimensional dynam-
ical systems, are presented in numerous texts and monographs, including Hahn [20],
LaSalle and Lefschetz [41], Krasovskii [35], Yoshizawa [78], Hale [23], Vidyasagar
[68], Miller and Michel [59], and Khalil [34].

Lyapunov’s stability theory for continuous finite-dimensional dynamical systems
has been extended and generalized in every which way. Thus, the theory described
above has been fully developed for discrete-time finite-dimensional dynamical sys-
tems determined by ordinary difference equations as well (see, e.g., LaSalle [40],
Franklin and Powell [15], and Antsaklis and Michel [2]). The stability of infinite-
dimensional dynamical systems determined by differential-difference equations are
addressed, for example, in Bellman and Cooke [9], Halanay [22], and Hahn [21];
for functional differential equations they are treated, for example, in Krasovskii [35],
Yoshizawa [78], and Hale [24]; for Volterra integrodifferential equations they are
developed, for example, in Barbu and Grossman [7], Miller [58], Walter [69], Hale
[25], and Lakshmikantham and Leela [37]; and for partial differential equations they
are considered, for example, in Friedman [16], Hérmander [27], [28], and Garabedian
[17]. In amore general approach, the stability analysis of infinite-dimensional dynam-
ical systems is accomplished in the context of analyzing systems determined by differ-
ential equations and inclusions on Banach space (e.g., Krein [36], Lakshmikantham
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and Leela [37], and Daleckii and Krein [13]); linear and nonlinear semigroups (e.g.,
Hille and Phillips [26], Pazy [63], Crandall [11], and Crandall and Liggett [12]);
and general dynamical systems (e.g., Hahn [21], Sell [65], Zubov [80], and Michel
et al. [57]).

Much of the stability analysis of discontinuous dynamical systems has thus far been
concerned with finite-dimensional dynamical systems (e.g., Ye et al. [75], Branicky
[10], Michel [50], Michel and Hu [51], Liberzon and Morse [43], DeCarlo et al.
[14], and Haddad et al. [19]). The stability analysis of infinite-dimensional DDS de-
termined by functional differential equations, semigroups, and differential equations
defined on Banach spaces is addressed in Sun ef al. [67], Michel and Sun [54], and
Michel et al. [55] and the stability analysis of general DDS defined on metric space is
treated in Ye et al. [75], Michel [50], and Michel and Hu [51]. Some of the applica-
tions of these results include the stability analysis of systems with impulsive effects
(see, e.g., Bainov and Simeonov [5], and Ye et al. [76]), digital control systems (see,
e.g., Hou et al. [30]), pulse-width-modulated feedback control systems (see, e.g., Hou
and Michel [29]), switched systems (see, e.g., DeCarlo et al. [14] and Ye et al. [75]),
and digital control systems with delays (see, e.g., Sun et al. [67]).

1.3 Scope and Contents of the Book

Contemporary models of dynamical systems encountered by engineers and scien-
tists may vary from being very simple to being very complicated. The motions
(resp., states) of such systems may evolve along continuous time, discrete time, or
a mixture, where parts of the motion evolve along continuous time and other parts
evolve along discrete time. In the case when the states evolve along continuous
time, the motions may be continuous at all points in time, or they may be discon-
tinuous with respect to time. The behavior of some systems may adequately be
captured by “lumped parameter” models, which means that such systems may be
described by finite-dimensional dynamical systems determined by ordinary differen-
tial or difference equations. On the other hand, when systems exhibit, for example,
hysteresis effects, or the effects of transportation delays or time lags, or the effects
of spatially distributed parameters, then a finite-dimensional system description will
no longer be adequate. In such cases, the behavior of the motions is captured by
infinite-dimensional dynamical systems determined by the types of classical equa-
tions enumerated earlier. We need to hasten to add, however, that there are system
descriptions for which the various classes of the classical equations enumerated ear-
lier are inappropriate (e.g., discrete-event systems, systems characterized by Petri
nets, and so forth). It is clear that a successful qualitative analysis of such sys-
tems may frequently require results for finite-dimensional systems as well as for
infinite-dimensional systems; for continuous-time systems as well as for discrete-time
systems; for continuous dynamical systems as well as for discontinuous dynamical
systems; and for (hybrid) systems involving a mixture of both continuous-time and
discrete-time system components. In the case when a system is not described by one
of the traditional equations or inequalities, the qualitative analysis might have to take
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place, for example, in the setting of an abstract metric space, rather than a vector
space.

Presently, there are no books on stability theory that are suitable to serve as a single
source for the analysis of some of the system models enumerated above. Most of the
engineering texts on stability theory are concerned with finite-dimensional continuous
dynamical systems described by ordinary differential equations. The stability theory
of finite-dimensional discrete-time dynamical systems described by difference equa-
tions is frequently addressed only briefly in books on sampled-data control systems, or
as analogous afterthoughts in stability books dealing primarily with systems described
by ordinary differential equations. As we have seen earlier, texts and monographs on
the stability theory of infinite-dimensional dynamical systems usually focus on spe-
cific classes of systems (determined, e.g., by functional differential equations, partial
differential equations, etc.). Finally, as noted previously, the literature concerning
the stability of discontinuous dynamical systems is scattered throughout journal pub-
lications and conference proceedings. As a consequence, to become proficient in the
stability analysis of contemporary dynamical systems of the type described above
may require considerable investment of time. Therefore, there seems to be need for
a book on stability theory that addresses continuous-time as well as discrete-time
systems; continuous as well as discontinuous systems; finite-dimensional as well as
infinite-dimensional systems; and systems involving descriptions by classical equa-
tions and inequalities as well as systems that cannot be described by such equations
and inequalities. We aim to fill this void in the present book.

Finally, in addition to the objectives and goals stated above, we believe that the
present book will serve as a guide to enable the reader to pursue study of further topics
in greater depth, as needed.

Chapter Contents
The remainder of this book is organized in eight chapters.

In Chapter 2 we introduce the concept of a dynamical system defined on a metric
space (more formally than was done earlier), we give a classification of dynamical
systems, and we present several important specific classes of finite- and infinite-
dimensional dynamical systems determined by the various classical differential equa-
tions encountered in science and engineering. In a subsequent chapter (Chapter 5),
we also present examples of dynamical systems that cannot be described by such
equations.

The classes of dynamical systems that we consider include continuous-time and
discrete-time finite-dimensional dynamical systems determined by ordinary differ-
ential equations and inequalities and ordinary difference equations and inequalities,
respectively, and by infinite-dimensional dynamical systems described by differential-
difference equations, functional differential equations, Volterra integrodifferential
equations, certain classes of partial differential equations, and more generally, differ-
ential equations and inclusions defined on Banach spaces, and by linear and nonlinear
semigroups. For the cases of continuous-time systems, in addition to continuous sys-
tems, we consider discontinuous dynamical systems as well.
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In addition to the above, we also introduce the notion of a composite dynamical
system, consisting of a mixture of different equations (defined for the same time set
T). Also, in a subsequent chapter (Chapter 8) we consider a specific class of hybrid
dynamical systems consisting of a mixture of equations defined on different time sets.

In Chapter 3 we establish the Principal Lyapunov Stability and Boundedness Re-
sults, including Converse Theorems, for dynamical systems defined on metric spaces.
By considering the most general setting first (dynamical systems defined on metric
spaces), we are able to utilize some of the results of the present chapter in establish-
ing in an efficient manner corresponding results presented in subsequent chapters for
important classes of finite- and infinite-dimensional dynamical systems.

We first introduce the notions of an invariant set (resp., equilibrium) with respect to
the motions of a dynamical system and we give the definitions of the various concepts
of Lyapunov and Lagrange stability (including stability, uniform stability, local and
global asymptotic stability, local and global uniform asymptotic stability, local and
global exponential stability, instability, complete instability, uniform boundedness,
and uniform ultimate boundedness).

Next, we establish the Principal Lyapunov and Lagrange Stability Results (suf-
ficient conditions for the above stability, instability, and boundedness concepts) for
discontinuous dynamical systems, continuous dynamical systems, and discrete-time
dynamical systems, respectively. Because continuous dynamical systems constitute
special cases of DDS, the stability, instability, and boundedness results for DDS are
applicable to continuous dynamical systems as well. To prove the various Principal
Lyapunov and Lagrange stability results for continuous dynamical systems, we show
that when the hypotheses of any one of these results are satisfied, then the hypotheses
of the corresponding DDS results are also satisfied; that is, the classical Lyapunov
and Lagrange stability results for continuous dynamical systems reduce to the cor-
responding Lyapunov and Lagrange stability results that we established for DDS.
This shows that the DDS results are more general than the corresponding classical
Lyapunov and Lagrange stability results for continuous dynamical systems. Indeed,
a specific example is presented of a continuous dynamical system with an equilibrium
that can be shown to be uniformly asymptotically stable, using the uniform asymp-
totic stability result for DDS, and we prove that for the same example, there does not
exist a Lyapunov function that satisfies the classical Lyapunov theorem for uniform
asymptotic stability for continuous dynamical systems.

Next, we show that for every discrete-time dynamical system there exists an asso-
ciated DDS with identical Lyapunov and Lagrange stability properties. Making use of
such associated DDS, we prove, similarly as in the case of continuous dynamical sys-
tems, that the Lyapunov and Lagrange stability results for DDS are more general than
the corresponding results for the classical Lyapunov and Lagrange stability results for
discrete-time dynamical systems. We give an example of a discrete-time dynamical
system with an equilibrium that can be shown to be uniformly asymptotically stable,
by applying the uniform asymptotic stability result for DDS to the associated DDS,
and we prove that for the same original discrete-time dynamical system there does
not exist a Lyapunov function that satisfies the classical uniform asymptotic stability
theorem for discrete-time dynamical systems.
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In addition to proving that the classical Lyapunov and Lagrange stability results
for continuous dynamical systems and discrete-time dynamical systems reduce to
the corresponding DDS results, our approach described above establishes also a uni-
fying theory for DDS, continuous dynamical systems, and discrete-time dynamical
systems.

Next, under some additional mild conditions, we establish Converse Theorems
(necessary conditions) for the above results for DDS, continuous dynamical systems,
and discrete-time dynamical systems.

Finally, in an appendix section we present a comparison result involving maximal
and minimal solutions of ordinary differential equations, which is required in some
of the proofs of this chapter.

In Chapter 4 we present important specialized Lyapunov and Lagrange stability
results for dynamical systems defined on metric spaces. We first show that under some
reasonable assumptions, in the case of autonomous dynamical systems, stability and
asymptotic stability of an invariant set imply uniform stability and uniform asymp-
totic stability of an invariant set, respectively. Furthermore, we establish necessary
and sufficient conditions for stability and asymptotic stability of an invariant set for
autonomous dynamical systems. Next, for continuous and discrete-time autonomous
dynamical systems, we present generalizations of LaSalle-type theorems that com-
prise the invariance theory for dynamical systems defined by semigroups in metric
spaces. Also, for both continuous and discrete-time dynamical systems we present
several results that make up a comparison theory for various Lyapunov and Lagrange
stability types. In these results we deduce the qualitative properties of a complex dy-
namical system (the object of inquiry) from corresponding qualitative properties of a
simpler and well-understood dynamical system (the comparison system). Finally, we
present Lyapunov-like results that ensure the uniqueness of motions for continuous
and discrete-time dynamical systems defined on metric spaces.

In Chapter 5 we apply the results of Chapters 3 and 4 in the stability analysis of
an important class of discrete-event systems with applications to a computer load-
balancing problem and a manufacturing system.

In the preceding three chapters, we concern ourselves with the qualitative anal-
ysis of dynamical systems defined on metric spaces. In the next three chapters we
address the Lyapunov and Lagrange stability of continuous-time and discrete-time
finite-dimensional dynamical systems determined by ordinary differential equations
and difference equations, respectively. For the case of continuous-time dynamical
systems we consider continuous dynamical systems and discontinuous dynamical
systems. In these three chapters our focus is on the qualitative analysis of equilibria
(rather than general invariant sets). Throughout the next three chapters, we include
numerous specific examples to demonstrate the applicability of the various results
that are presented.

In Chapter 6 we first present some preliminary material that is required through-
out the next three chapters, including material on ordinary differential equations and
ordinary difference equations; definition of the time-derivative of Lyapunov func-
tions evaluated along the solutions of ordinary differential equations; evaluation of
the first forward difference of Lyapunov functions along the solutions of difference
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equations; characterizations of Lyapunov functions, including quadratic forms; and
a motivation and geometric interpretation for Lyapunov stability results for two-
dimensional systems. Next, we present the Principal Lyapunov and Lagrange Stabil-
ity Results (sufficient conditions) for continuous dynamical systems determined by
ordinary differential equations; for discrete-time dynamical systems determined by
difference equations; and for DDS determined by ordinary differential equations. In
most cases, the proofs of these results are direct consequences of corresponding results
that were presented in Chapter 3. Finally, we present converse theorems (necessary
conditions) for the above Lyapunov and Lagrange stability results. In an appendix
section we give some results concerning the continuous dependence of solutions of
ordinary differential equations with respect to initial conditions.

In Chapter 7 we continue our study of finite-dimensional dynamical systems with
the presentation of some important specialized results for continuous and discrete-
time systems. We first show that if for dynamical systems determined by autonomous
and periodic ordinary differential equations, the equilibrium xz. = 0 is stable or
asymptotically stable, then the equilibrium z. = 0 is uniformly stable or uniformly
asymptotically stable, respectively. Also, for such kind of dynamical systems, we
present converse theorems for asymptotically stable systems. Next, for continuous
and discrete-time dynamical systems determined by autonomous ordinary differen-
tial equations and ordinary difference equations, we establish LaSalle-type stability
results that comprise the invariance theory for such systems. These results are direct
consequences of corresponding results that were established in Chapter 3 for au-
tonomous dynamical systems defined on metric spaces. For autonomous dynamical
systems determined by ordinary differential equations, we next present two meth-
ods of determining estimates for the domain of attraction of an asymptotically stable
equilibrium (including Zubov’s Theorem). Next, we present the main Lyapunov
stability and boundedness results for dynamical systems determined by linear homo-
geneous systems of ordinary differential equations (and difference equations), linear
autonomous homogeneous ordinary differential equations (and difference equations),
and linear periodic ordinary differential equations. Some of these results require ex-
plicit knowledge of state transition matrices whereas other results involve Lyapunov
matrix equations. This is followed by a detailed study of the stability properties of
the equilibrium z. = 0 of dynamical systems determined by linear, second-order
autonomous homogeneous systems of ordinary differential equations. Next, we in-
vestigate the qualitative properties of perturbed linear systems. In doing so, we
develop Lyapunov’s First Method (also called Lyapunov’s Indirect Method) for con-
tinuous and discrete-time dynamical systems, and we study the existence of stable
and unstable manifolds and the stability of periodic motions in continuous linear
perturbed systems. Finally, similarly as in Chapter 4, we establish Lyapunov and
Lagrange stability results for continuous and discrete-time dynamical systems that
comprise a comparison theory for finite-dimensional dynamical systems.

In Chapter 8 we apply the results presented in Chapters 6 and 7 in the analysis
of several important classes of continuous, discontinuous, and discrete-time finite-
dimensional dynamical systems. We first address the absolute stability problem of
nonlinear regulator systems, by presenting Luré’s result for direct control systems
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and Popov’s result for indirect control systems. Next, we establish global and local
Lyapunov stability results for Hopfield neural networks. This is followed by an
investigation of an important class of hybrid systems, digital control systems. We
consider system models with quantizers and without quantizers. Next, we present
stability results for an important class of pulse-width-modulated (PWM) feedback
control systems. Finally, we study the stability properties of systems with saturation
nonlinearities with applications to digital filters.

In Chapter 9 we address the Lyapunov and Lagrange stability of infinite-dimen-
sional dynamical systems determined by differential equations defined on Banach
spaces and semigroups. As in Chapters 6 through 8, we focus on the qualitative prop-
erties of equilibria and we consider continuous as well as discontinuous dynamical
systems. Throughout this chapter, we present several specific examples to demon-
strate the applicability of the presented results. These include systems determined
by functional differential equations, Volterra integrodifferential equations, and par-
tial differential equations. In addition, we apply the results of this chapter in the
analysis of two important classes of infinite-dimensional dynamical systems: a point
kinetics model of a multicore nuclear reactor (described by Volterra integrodifferen-
tial equations) and Cohen—Grossberg neural networks with time delays (described
by differential-difference equations). As in Chapters 6 and 7, several of the results
presented in this chapter are direct consequences of the results given in Chapters 3
and 4 for dynamical systems defined on metric spaces.

We first present the Principal Lyapunov and Lagrange Stability Results (suffi-
cient conditions) for dynamical systems determined by general differential equations
defined on Banach spaces. Most of these results are direct consequences of the cor-
responding results established in Chapter 3 for dynamical systems defined on metric
spaces. We also present converse theorems (necessary conditions) for several of the
above results. Most of these are also direct consequences of corresponding results
given in Chapter 3 for dynamical systems defined on metric spaces. Next, we present
LaSalle-type stability results that comprise the invariance theory for autonomous
differential equations defined on Banach spaces. Essentially, these results are also
direct consequences of corresponding results that are established in Chapter 4 for
dynamical systems defined on metric spaces. This is followed by the presentation
of several Lyapunov and Lagrange stability results that comprise a comparison the-
ory for general differential equations defined on Banach spaces. Next, we present
stability results for composite dynamical systems defined on Banach spaces that are
described by a mixture of different types of differential equations. As mentioned
earlier, we apply some of the results enumerated above in the analysis of a point ki-
netics model of a multicore nuclear reactor (described by Volterra integrodifferential
equations). For the special case of functional differential equations, it is possible to
improve on the Lyapunov stability results for general differential equations defined
on Banach spaces by taking into account some of the specific properties of functional
differential equations. We present improved Lyapunov stability results for dynami-
cal systems determined by retarded functional differential equations. Some of these
results include Razumikhin-type theorems. As pointed out earlier, we apply these re-
sults in the qualitative analysis of a class of artificial neural networks with time delays
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(described by differential-difference equations). Next, we establish Lyapunov and
Lagrange stability results for discontinuous dynamical systems defined on Banach
and Hilbert spaces. We consider DDS determined by differential equations defined
on Banach spaces, and by DDS determined by linear and nonlinear semigroups.
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Chapter 2

Dynamical Systems

Our main objective in the present chapter is to define a dynamical system and to
present several important classes of dynamical systems. The chapter is organized
into twelve parts.

In the first section we establish some of the notation that we require in this chap-
ter, as well as in the subsequent chapters. Next, in the second section we present
precise definitions for dynamical system and related concepts. We introduce finite-
dimensional dynamical systems determined by ordinary differential equations in the
third section, by differential inequalities in the fourth section, and by ordinary differ-
ence equations and inequalities in the fifth section. In the sixth section, we address
infinite-dimensional dynamical systems determined by differential equations and in-
clusions defined on Banach spaces and in the seventh and eighth sections we consider
special cases of infinite-dimensional dynamical systems determined by functional
differential equations and Volterra integrodifferential equations, respectively. In the
ninth section we discuss dynamical systems determined by semigroups defined on
Banach and Hilbert spaces and in the tenth section we treat dynamical systems de-
termined by specific classes of partial differential equations. Finally, we address
composite dynamical systems in the eleventh section and discontinuous dynamical
systems in the twelfth section.

The specific classes of dynamical systems that we consider in this chapter are very
important. However, there are of course many more important classes of dynamical
systems, not even alluded to in the present chapter. We address one such class of
systems in Chapter 5, determined by discrete-event systems.

Much of the material presented in Sections 2.3-2.10 constitutes background ma-
terial and concerns the well posedness (existence, uniqueness, continuation, and con-
tinuity with respect to initial conditions of solutions) of a great variety of equations
(resp., systems). Even if practical, it still would distract from our objectives on hand
if we were to present proofs for these results. Instead, we give detailed references
where to find such proofs, and in some cases, we give hints (in the problem section)

17
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on how to prove some of these results. The above is in contrast with our presentations
in the remainder of this book where we prove all results (except some, concerning
additional background material).

2.1 Notation

LetY, Z be arbitrary sets. ThenY UZ, Y NZ,Y — Z,and Y x Z denote the union,
intersection, difference, and Cartesian product of Y and Z, respectively. If Y is a
subset of Z, we write Y C Z and if x is an element of Y, we write z € Y. We denote
amapping f of Y into Z by f: Y — Z and we denote the set of all mappings from
Y into Z by {Y — Z}. Let () denote the empty set.

Let R denote the set of real numbers, let Rt = [0, 00), let N denote the set of
nonnegative integers (i.e., N = {0,1,2,...}), and let C denote the set of complex
numbers. Let J C R denote an interval (i.e., J = [a, b), (a,b], [a, b], or (a,b),b > a,
with J = (—00,00) = R allowed). If Y3, ..., Y, are n arbitrary sets, their Cartesian
product is denoted by Y7 X --- X Y,,, and if in particular Y = Y; = --- =Y, we
write Y.

Let R™ denote real n-space. If z € R, 27 = (21, ...,,) denotes the transpose
of x. Also, if z,y € R™, then = < y signifies x; < y;,x < y signifies z; < y;, and
x > 0 signifies z; > 0 forall ¢ = 1,...,n. Welet | - | denote the Euclidean norm;

. , 1/2

thatis, for z = (z1,...,z,)7 € R",|z| = (aT2)V/2 = (21, 22) "
Let A = [a;;]nxn denote a real n x n matrix (i.e., A € R"*") and let AT denote
the transpose of A. The matrix norm | - |, induced by the Euclidean vector norm

(defined on R™), is defined by
Al = inf {& € R": alz| > |Az|,z € R"} = [Ap (AT 4)]"/?

where A\j7 (AT A) denotes the largest eigenvalue of AT A (recall that the eigenvalues
of symmetric matrices are real). In the interests of clarity, we also use the notation || - ||
to distinguish the norm of a matrix (e.g., || A||) from the norm of a vector (e.g., |z]).

We let L,[G,U],1 < p < oo, denote the usual Lebesgue space of all Lebesgue
measurable functions with domain G and range U. The norm in L, [G, U] is usually
denoted || - ||, or || - ||z, if more explicit notation is required.

We let (X, d) be a metric space, where X denotes the underlying set and d denotes
the metric. When the choice of the particular metric used is clear from context, we
speak of a metric space X, rather than (X, d).

If Y and Z are metric spaces and if f: Y — Z, and if f is continuous, we write
f € C[Y, Z]; that is, C[Y, Z] denotes the set of all continuous mappings from ¥ to
Z. We denote the inverse of a mapping f, if it exists, by f~1.

A function ¢ € C[[0, r1], RT] (resp., v» € C[R*,R*]) is said to belong to class
K (i.e., v € K)if(0) = 0 and if ¢ is strictly increasing on [0, 71] (resp., on RT). If
: RT — R, if ¢ € K, and if lim, o, 1 (r) = oo, then 1 is said to belong to class
Koo (ie., ¥ € Koo).
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For a function f: R — R, we denote the upper right-hand, upper left-hand, lower
right-hand, and lower left-hand Dini derivatives by DT f, D~ f, D, f, and D_f,
respectively. When we have a fixed Dini derivative of f in mind, we simply write
D f, in place of the preceding notation.

2.2 Dynamical Systems

In characterizing the notion of dynamical system, we require the concepts of motion
and family of motions.

Definition 2.2.1 Let (X, d) be a metric space, let A C X, and let ' C R. For
any fixed a € A, to € T, a mapping p(-,a,t9): Ty, — X is called a motion if
p(to,a,to) = a where T, 4, = [to,t1) N'T, t1 > to, and 1 is finite or infinite. m]

Definition 2.2.2 A subset S of the set
U {Taﬂfo - X}

(a,tp)€eAXT
is called a family of motions if for every p(-, a,tg) € S, we have p(to,a,ty) = a. O
Definition 2.2.3 The four-tuple {7, X, A, S} is called a dynamical system. O

In Definitions 2.2.1 and 2.2.2 we find it useful to think of X as state space, T as
time set, ty as initial time, a as the initial condition of the motion p(-, a, to), and A as
the set of initial conditions. Note that in our definition of motion, we allow in general
more than one motion to initiate from a given pair of initial data, (a,ty).

When in Definition 2.2.3, T = J C R* (with J = R™ allowed), we speak of a
continuous-time dynamical system and when T' = J NN (with J "N = N allowed)
we speak of a discrete-time dynamical system. Also, when in Definition 2.2.3, X is a
finite-dimensional vector space, we speak of a finite-dimensional dynamical system,
and otherwise, of an infinite-dimensional dynamical system. Furthermore, if in a
continuous-time dynamical system all motions (i.e., all elements of S) are continuous
with respect to time ¢, we speak of a continuous dynamical system. If at least one
motion of a continuous-time dynamical system is not continuous with respect to ¢,
we speak of a discontinuous dynamical system.

When in Definition 2.2.3, T', X, and A are known from context, we frequently

speak of a dynamical system S, or even of a system S, rather than a dynamical system
{T, X, A,S}.

Definition 2.2.4 A dynamical system {7, X1, A1, 51} is called a dynamical subsys-
tem, or simply, a subsystem of a dynamical system {7, X, A, S}if X; C X, A; C A,
and S; C S. |

Definition 2.2.5 Amotion p = p(-, a,to) in a dynamical system {7, X, A, S} is said
to be bounded if there exist an xo € X and a 8> 0 such that d(p(¢, a, tg), 2¢) < 5 for
allt €T, ,,. 0
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Definition 2.2.6 A motion p* = p*(-, a,ty) defined on [ty,c) N T is called a con-
tinuation of another motion p = p(-,a,tq) defined on [to,b) N T if p = p* on
[to,b) NT,c > b,and [b,c) N T # (. We say that p is noncontinuable if no continu-
ation of p exists. Also, p = p(-, a, to) is said to be continuable forward for all time if
there exists a continuation p* = p*(-, a, t) of p that is defined on [tg, c0) N'T’, where
it is assumed that for any a > 0, [a, 00) N T" # . |

In the remainder of this chapter, we present several important classes of dynamical
systems. Most of this material serves as required background for the remainder of
this book.

2.3 Ordinary Differential Equations

In this section we summarize some essential facts from the qualitative theory of
ordinary differential equations that we require as background material and we show
that the solutions of differential equations determine continuous, finite-dimensional
dynamical systems.

A. Initial value problems

Let D C R™""! be a domain (an open connected set), let z = (z1,...,z,)" denote
elements of R™, and let elements of D be denoted by (¢, ). When z is a vector-valued
function of ¢, let

. dz dzy dx, T_ . . \T
Z‘—dt—<dt,, dt) —<x17~-',xn) .

For a given function f;: D — R, i = 1,...,n,let f = (f1,..., fn)T. Consider
systems of first-order ordinary differential equations given by

;= filt,x1,. .. 2y), i=1,...,n. (E;)
Equation (F;) can be written more compactly as

i= f(t, ). (E)

A solution of (F) is an n vector-valued differentiable function ¢ defined on a real
interval J = (a,b) (we express this by f € C'[J,R"]) such that (¢, o(t)) € D for
all ¢ € J and such that

p(t) = f(t »(1))
for all t € J. We also allow the cases when J = [a,b),J = (a,b], or J = [a,b].
When J = [a,b], then ¢(a) is interpreted as the right-side derivative and ¢(b) is
interpreted as the left-side derivative.

For (tg,z¢) € D, the initial value problem associated with (E) is given by

z = f(t,x), z(to) = xo. (Ig)
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An n vector-valued function ¢ is a solution of (Ig) if ¢ is a solution of () which
is defined on [to, b) and if ©(tg) = 2. To denote the dependence of the solutions of
(Ig) on the initial data (¢, xo), we frequently write (¢, to, zo). However, when the
initial data are clear from context, we often write ©(t) in place of (¢, to, zo).

When f € C[D,R"], ¢ is a solution of (I) if and only if ¢ satisfies the integral

equation
t

o(t) =z0+ [ f(s,¢(s))ds (E)

to

fort € [tg,b). In (E), we have used the notation

/fsw ds—{/flsw /fnsso }

B. Existence, uniqueness, and continuation of solutions

The following examples demonstrate that we need to impose restrictions on the right-
hand side of (£) to ensure the existence, uniqueness, and continuation of solutions
of the initial value problem (/g).

Example 2.3.1 For the scalar initial value problem
= g(x), xz(0) =0 (2.3.1)
where x € R and
() = 1, =0
9= o, 40
there is no differentiable function ¢ that satisfies (2.3.1). Therefore, this initial value
problem has no solution (in the sense defined above). O

Example 2.3.2 The initial value problem
i =23, x(tg) =0

where = € R, has at least two solutions given by

o= [20-w)]"

and () = 0 for ¢ > to. a
Example 2.3.3 The scalar initial value problem
i = ax, x(to) = g

where = € R, has a unique solution given by p(t) = e®(!=%0)x(ty) for t > to. O
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The following result, called the Peano—Cauchy Existence Theorem, provides a set
of sufficient conditions for the existence of solutions of the initial value problem (/).

Theorem 2.3.1 Let f € C[D,R"]. Then for any (to,z9) € D, the initial value
problem (/) has a solution defined on [tg, to + ¢) for some ¢ > 0. a

The nextresult provides a set of sufficient conditions for the uniqueness of solutions
of the initial value problem (/g).

Theorem 2.3.2 Let f € C[D,R"]. Assume that for every compact set K C D, f
satisfies the Lipschitz condition

|f(t, ) — f(t,y)| < Li|z -y (2.32)

for all (t,z), (t,y) € K where L is a constant depending only on K. Then (Ig)
has at most one solution on any interval [to, to + ¢),c > 0. o

In the problem section we provide details for the proofs of Theorems 2.3.1 and
2.3.2. Alternatively, the reader may wish to refer, for example, to Miller and Michel
[37] for proofs of these results.

Next, let ¢ be a solution of (F) on an interval J. By a continuation or extension of
(p We mean an extension g of ( to a larger interval Jy in such a way that the extension
solves (E) on Jy. Then ¢ is said to be continued or extended to the larger interval
Jo. When no such continuation is possible, then ¢ is said to be noncontinuable.

Example 2.3.4 The differential equation
T=2x

has a solution ¢(t) = 1/(1 — t) defined on J = (—1, 1). This solution is continuable
to the left to —oo and is not continuable to the right. O

Example 2.3.5 The differential equation
i=az'/3 (2.3.3)
where z €RR, has a solution ¢)(¢) = 0 on J = (—00, 0). This solution is continuable to
the right in more than one way. For example, both 11 (t) = 0 and 12 (t) = (2t/3)3/?
are solutions of (2.3.3) for ¢t > 0. O
Before stating the next result, we require the following concept.
Definition 2.3.1 A solution ¢ of (E) defined on the interval (a,b) is said to be

bounded if there exists a 5 > 0 such that |p(t)| < S for all ¢ € (a,b), where 8 may
depend on ¢. O
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In the next result we provide a set of sufficient conditions for the continuability of
solutions of (F).

Theorem 2.3.3 Let f € C[J x R™,R"| where J = (a, b) is a finite or an infinite
interval. Assume that every solution of (£) is bounded. Then every solution of (E)
can be continued to the entire interval J = (a, b). a

In the problem section we give details for the proof of the above result. Alterna-
tively, the reader may want to refer, for example, to Miller and Michel [37] for the
proof of this result.

In Chapter 6 we establish sufficient conditions that ensure the boundedness of the
solutions of (E), using the Lyapunov stability theory (refer to Example 6.2.9).

C. Dynamical systems determined by ordinary differential
equations

On R™ we define the metric d, using the Euclidean norm | - |, by

1/2

n

d(z,y) = |z —y| = lZ(wi — i)’

i=1

for all z,y € R™. Let A C R™ be an open set, let J C R be a finite or an infinite
open interval, and let D = J x A. Assume that for (F) and (Ig) f € C[D,R"]. In
view of Theorem 2.3.1, (Ig) has at least one solution on [tg, tg + ¢) for some ¢ > 0.
Let Sy, 4, denote the set of all the solutions of (/g) and let Sg = U(1),40)eDSt0,20-
Then S constitutes the set of all the solutions of (F) that are defined on any half
closed (resp., half open) interval [a, b) C J.

LetT = Jand A C X = R". Then {T, X, A, Sg} is a dynamical system in the
sense of Definition 2.2.3. When D = J x A is understood from context, we refer to
this dynamical system simply as Sg and we call Sg the dynamical system determined
by (E).

We note in particular if D = R x R” and if for (E), f € C[D,R"], and if
every motion in Sg is bounded, then in view of Theorem 2.3.3, every motion of Sg
is continuable forward for all time (see Definition 2.2.6).

We conclude this subsection with the following important example.

Example 2.3.6 Let A € C[R*, R™"*"] and consider the linear homogeneous ordi-

nary differential equation
= A(t)z. (LH)

The existence and uniqueness of solutions of the initial value problems determined
by (L H) are ensured by Theorems 2.3.1 and 2.3.2. In Chapter 6 (see Example 6.2.9)
we show that all the motions of the dynamical systems Sy, iy determined by (LH) are
continuable forward for all time (resp., all the solutions of (L H) can be continued
to 00). O
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D. Two specific examples

In the following we consider two important special cases which we revisit several
times.

Example 2.3.7 Conservative dynamical systems, encountered in classical mechanics,
contain no energy-dissipating elements and are characterized by means of the Hamil-
tonian function H(p,q), where ¢* = (qi,...,q,) denotes n generalized position
coordinates and p* = (p1,...,p,) denotes n generalized momentum coordinates.
We assume that H (p, q) is of the form

H(p,q) =T(g,4) + W(q) (2.3.4)

where T' denotes the kinetic energy, W denotes the potential energy of the system,
and ¢ = dgq/dt. These energy terms are determined from the path-independent line
integrals

q q.n
T0.) = [ pla&d= [ > pila.s (23.5)
0 0 =1
q - q "
W(q) = / Fn)"dn = / > fi(n)dn, (23.6)
0 0 =1
where f;, i =1,...,n, denote generalized potential forces.

Necessary and sufficient conditions for the path independence of the integral (2.3.5)
are given by

Opi

04,

N _Opj, -
(¢.9) = 3.J (,9), hj=1,...,n. (2.3.7)
qi
A similar statement can be made for (2.3.6).
Conservative dynamical systems are now given by the system of 2n differential
equations

. 0H .
Qi:a (pvq)7 Zzla"'an
Pi
oOH (2.3.8)
i = —=— (0, q), 1=1,...,n.
P 94 (p,9)

If we compute the derivative of H (p, ) with respect to time ¢, evaluated along the
solutions of (2.3.8) (given by ¢;(t), p;(t),i = 1,...,n), we obtain

dH " OH . " OH .
E(p(t), q(t)) ; aTJZ-(p’ Qpi + ; T%(p’ q)d;

~0H  \OH " OH OH
_ ; ap, P95, 0+ ; g, P05, 0

0.
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Thus, in a conservative dynamical system (2.3.8), the Hamiltonian (i.e., the total
energy in the system) is constant along the solutions of (2.3.8).

Along with initial data ¢; (o), pi(to),i= 1, ..., n, the equations (2.3.8) determine
an initial value problem. If the right-hand side of (2.3.8) is Lipschitz continuous,
then according to Theorems 2.3.1 and 2.3.2, this initial value problem has unique
solutions for all initial data that can be continued forward for all time. The set of
the solutions of (2.3.8) generated by varying the initial data (o, ¢(to), p(to)) over
R x R2" determines a dynamical system in the sense of Definition 2.2.3. a

Example 2.3.8 (Lagrange’s Equation) If the preceding dynamical system is mod-
ified to contain elements that dissipate energy, such as viscous friction elements in
mechanical systems and resistors in electric circuits, we employ Lagrange’s equation
in describing such systems. For a system of n degrees of freedom, this equation is
given by

d (0L oL oD
— | ==(q.9) )| = =—(q,q) + 1) = F; p=1,... 2.3.

where ¢"=(q1, . . ., g,) denotes the generalized position vector. The function L(q, §)
is called the Lagrangian and is defined as

L(q,q) = T(q,4) — W(q);

that is, it is the difference between the kinetic energy 7' (see (2.3.5)) and the potential
energy W (see (2.3.6)).
The function D(q) denotes Rayleigh’s dissipation function which is assumed to be

of the form

D(q) = % Z Z Bijdid;

i=1 j=1

where QQ = [3;;] is a symmetric, positive semidefinite matrix. The dissipation func-
tion D represents one-half the rate at which energy is dissipated as heat (produced by
friction in mechanical systems and resistance in electric circuits).

Theterm F;,i = 1,...,n,in(2.3.9) denotes applied force and includes all external
forces associated with the ith coordinate. The force F; is defined to be positive when
it acts to increase the value of ;.

System (2.3.9) consists of n second-order ordinary differential equations that can
be changed into a system of 2n first-order ordinary differential equations by letting
1 = q1,%2 = 1,---,T2n—1 = Qn,T2n = (n. This system of equations, along
with given initial data x;(¢o), ¢ = 1, ..., 2n, constitutes an initial value problem. If
the functions L and D are sufficiently smooth, as in the preceding example, then for
every set of initial data, the initial value problem has unique solutions that can be
continued forward for all time. Furthermore, similarly as in the preceding example,
this initial value problem determines a dynamical system. O
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2.4 Ordinary Differential Inequalities

Let J C R be a finite or an infinite interval and let D denote a fixed Dini derivative.
(E.g., if ¢ € C[J,R"], then Dy denotes one of the four different Dini derivatives
DV, Dyp, D™, D_¢p.) Letg € C[Jx (RT)" R"] where g(¢,0) >0forall t€ J.
We consider differential inequalities given by

Dz < g(t, ). (ET)

We say that ¢ € C|[[to, t1), (R*)"] is a solution of (EI) if (D) (t) < g(t, ¢(t)) for
all t € [to,t1) C J. Associated with (E]) we consider the initial value problem

Dz < g(t, ), x(to) = zo (Ier)

where t € J and 2o € R” U {0} and where R = (0,00). ¢ € C|[to, t1), (RT)"]
is said to be a solution of (Igy) if ¢ is a solution of (ET) and if ¢(ty) = x¢ (recall
that RT = [0, 00)).

For xo € R”, the existence of solutions of (/) follows from the existence of the
initial value problem

z=g(t, x), z(to) = o

where t, € J and zo € R’'. Note that when 2 = 0, then ¢(t) = 0 is a solution of

(UED)-
LetT = J, A =R} U{0} C X = (R")", and let X be equipped with the
Euclidean metric. Let Sy, 5, denote the set of all solutions of (), and let

Ser = Utg,a0)€Tx ASto,a0-

Then Sg; is the set of all the solutions of (£7) with their initial values belonging to
A. Ttnow follows that {T', X, A, Sg;} is a dynamical system. We refer to this system
simply as system Sg;. We have occasion to use this system in subsequent chapters
as a comparison system.

2.5 Difference Equations and Inequalities

The present section consists of two parts.

A. Difference equations
We now consider systems of first-order difference equations of the form
z(k+1) = f(k z(k)) (D)

where k € N, z(k) € R”,and f: N x R” — R™.
Associated with (D) we have the initial value problem

w(k+1) = f(k,z(k)),  x(ko) = xo (Ip)
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where kg € N, zp € R”, and k € Ny, = [ko,00) N N. We say that an n vector-

valued function ¢ defined on Ny, is a solution of (Ip) if p(k + 1) = f(k, ¢(k)) and
(ko) = o for all k € Ny,. Any solution of (p) is also said to be a solution of (D).

Because f in (D) is a function, there are no difficulties that need to be addressed
concerning the existence, uniqueness, and continuation of solutions of (/p). Indeed,
these issues follow readily from induction and the fact that the solutions of (Ip) are
defined on Ny, .

Let (-, ko, xo): Nk, — R™ denote the unique solution of (I p) for z(ko) = ¢ and
let Sp = Ug,z0)enxrn 19(+, ko, 2o) }. Then Sp is the set of all possible solutions
of (D) defined on Ny, for all kg € N.

LetT = Nand X = A = R" and let X be equipped with the Euclidean metric.
Then {T, X, A, Sp} is a discrete-time, finite-dimensional dynamical system (see
Definition 2.2.3). Moreover, every motion of this dynamical system, which for short
we denote by Sp, is continuable forward for all time.

Example 2.5.1 Important examples of dynamical systems determined by difference
equations include second-order sections of digital filters in direct form, depicted in
the block diagram of Figure 2.5.1.

r(k) ~ Overflow | X,(k+1) [ Unit | X2(0) [ Unit x1 (k)

nonlinearity delay delay

Figure 2.5.1: Digital filter in direct form.

In such filters, the type of overflow nonlinearity that is used depends on the type
of arithmetic used. Frequently used overflow nonlinearities include the saturation
function defined by

1, 0>1
sat(f) = ¢ 0, -1<0<1 (2.5.1)
1, 9 < —1.

Letting  denote the external input to the filter, the equations that describe the filter
are now given by

{ 21(k + 1) = 2a(k)

xo(k + 1) = satlaxy (k) + bxa(k) + r(k))]. (2.5.2)

With r(k) given for k € N, (2.5.2) possesses a unique solution ¢(k, ko, zo)
for every set of initial data (ko,zo) € N x R" that exists for all k& > kg, where
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zo = [1(ko),z2(ko)]T. The set of all solutions of (2.5.2) generated by varying
(ko, xo) over N x R™, determines a dynamical system. O

B. Difference inequalities

We conclude the present section with a brief discussion of systems of difference
inequalities given by

z(k+1) < g(k, z(k)) (DI)
where k€N and g: N x (RT)" — (RT)" with g(k,0) > 0 for all k¥ € N. A function
¢: N, — (RT)™ is a solution of (DI) if

o(k+1) < g(k, (k)

for all k € N, . In this case ¢ (ko) is an initial value. For any initial value zo € (R™)™,
solutions of (D) exist. For example, the solution of the initial value problem

w(k+1) =gk, x(k)), (ko) = o

is such a solution of (D) (refer to Part A above).

Let T = N, A = X = (R")" and let Sp; denote the set of all solutions of
(DI) defined on Ny, for any kg € N. Then {T, X, A, Sp;} is a finite-dimensional,
discrete-time dynamical system. We have occasion to make use of this system as a
comparison system in subsequent chapters.

2.6 Differential Equations and Inclusions Defined on
Banach Spaces

The present section consists of two parts.

A. Differential equations defined on Banach spaces

In order to put the presentations of the subsequent sections of this chapter into a clearer
context, we briefly consider differential equations in Banach spaces. A general form
of a system of first-order differential equations in a Banach space X is given by

&(t) = F(t,x(t)) (GE)

where F': RT x C' — X, C' C X. Associated with (GE) we have the initial value
problem given by
#(t) = F(t,z(t),  x(to) = o (Ier)

where tg € RT, ¢ > tg > 0, and zg € C C X. Under appropriate assumptions,
which ensure the existence of solutions of (GE), the initial value problem (I )
determines a continuous-time, infinite-dimensional dynamical system, denoted by
SaE, which consists of all the solutions (¢, to, 2o) of (Igg) with x(to, zo,to) = xo
forallty € RT and zy € C.
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For the conditions of existence, uniqueness, and continuation of solutions of the
initial value problem (I ), the reader may want to refer, for example, to Lakshmikan-
tham and Leela [26] and Lasota and Yorke [27]. For example, if F' is continuously
differentiable, or at least locally Lipschitz continuous, then the theory of existence,
uniqueness, and continuation of solutions of (I g) is essentially the same as for the
finite-dimensional case we addressed in Section 2.3 when discussing ordinary differ-
ential equations (see, e.g., Dieudonné [11, Chapter 10, Section 4]). This is further
demonstrated in Sections 2.7 and 2.8, where we concern ourselves with special classes
of dynamical systems defined on Banach spaces, described by functional differential
equations and Volterra integrodifferential equations, respectively. In general, how-
ever, issues concerning the well posedness of initial value problems (Isg) can be
quite complicated. For example, as shown in Godunov [15], if F' in (GFE) is only
continuous, then (I r) may not have a solution. Throughout this book, we assume
that (/g ) and the associated dynamical systems are well posed.

Important classes of infinite-dimensional continuous-time dynamical systems are
determined by partial differential equations. Such systems are addressed in Sec-
tion 2.10. In the analysis of initial and boundary value problems determined by
partial differential equations, semigroups play an important role. Semigroups, which
are important in their own right in determining a great variety of dynamical systems,
are treated in Section 2.9. We show how such systems may frequently be viewed as
special cases of (GE) and (Igg).

B. Differential inclusions defined on Banach spaces

In many applications (e.g., in certain classes of partial differential equations), the
function F in (GE) may be discontinuous or even multivalued. This generality
gives rise to differential inclusions in Banach spaces. One such form of systems of
differential inclusions is briefly discussed in the following.

Let €2 be an open subset of a Banach space X, let 2% denote the set of all subsets
of X, let () be the empty set, and let F': RT x Q — 2% — () be a set-valued mapping.
We consider systems of differential inclusions given by ([1], [34])

i(t) € F(t,z) (GI)

where t € RY, x € Q, and 4(t) = dx(t)/dt. Associated with (GI), we have the
initial value problem

z(t) € F(t,x), x(to) = o (Iar)
where to € Rt and zy € Q.

A differentiable function ¢ defined on an interval [tg, ¢1) (¢, may be infinite) is said
to be a solution of (Iqy) if ¢(to) = o and if $(t) € F(t, o(t)) for all t € [to,t1).
We call any solution of (Iy) a solution of (GI).

Now let

Sar = {¢(-,to,z0): @(-, to, o) is a solution of (Igs) defined on
[to,t1),t1 > to,t0 € R+,l‘0 S Q}
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Then Sy is a dynamical system that we call the dynamical system determined by
(GI).
In the following, we consider some specific cases.

Example 2.6.1 Let Q be an open subset of R™ and let f™, fM € C[RT x Q,R"]
where f™(t,z) < fM(t, ) for all (t,z) € R x Q where inequality of vectors is
to be interpreted componentwise. Now consider systems of differential inequalities
given by

frta) <a < Mt ) (IE)

where & = dx/dt.
A function ¢ € C*[[to, t1), ], where ¢ty € RT and where ¢; may be finite or
infinite, is said to be a solution of (I E) if for all ¢ € [tg, t1),

Frte(t) < @(t) < fY(t (1)

We refer to the set of all the solutions of (I E), denoted by S;g, as the dynamical
system determined by (I F).

The existence of the solutions of (I E) is guaranteed by the existence of the solutions
of systems of ordinary differential equations. Thus, for any f € C[Q x Rt R"]
satisfying

frt o) < ftw) < fU(t ) (1E)
forall (t,x) € RT x (, any solution of the equation
&= [f(t ) (E)

must also be a solution of (I E).
It is clear that S7g is a specific example of a dynamical system determined by
differential inclusions. ]

Example 2.6.2 Consider systems described by the set of equations
&= Az + Bu (2.6.1a)
where z € R",u € R™, A € R"*" B € R"*"™ & = dx/dt, and

u(t) = [g(Fa(t —7)), ., gm(cDa(t —7))]" (2.6.1b)

where 7 > 0, C' = [c1,...,¢n) € R™*™ and g; € C[R,R], i = 1,...,n, satisfy
the sector conditions
5;0% < gi(o)o < Ajo? (2.6.1¢)

where A; > 6; >0,i=1,...,m.

System (2.6.1) defines a feedback control system consisting of a linear plant
and nonlinear controllers that take transportation delays into account. The sector
conditions (2.6.1c) allow for deterministic uncertainties associated with the control
actuators.

We refer to the set of all the solutions of system (2.6.1a)—(2.6.1c), denoted by
S(2.6.1)» as the dynamical system determined by (2.6.1). It is clear that S(36.1) is a
specific example of a dynamical system determined by differential inclusions. O
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We conclude by noting that the system (2.6.1a)—(2.6.1c¢) is a differential-difference
equation. Such equations are special cases of functional differential equations, which
we address next.

2.7 Functional Differential Equations
Let C,. denote the set C'[[—r, 0], R"] with norm defined by
el = max {|e(t)|: —r <t <0}. (2.7.1)

For a given function z(-) defined on [—7, ¢), ¢ > 0, let x; be the function determined
by z¢(s) = x(t+s) for—r < s < 0andt € [0, ¢). A retarded functional differential
equation with delay r is defined as

#(t) = F(t, ) ()

where F':  — R”™ and Q is an open set in R x C,.. A differentiable function
pE C’[[to —rto+ c),R”] , ¢ > 0, is a solution of equation (F') if (¢, p;) € ) for
t € [to,to 4+ ¢) and p = F(t,p;) for ¢ € [to,to + c).

At first glance it may appear that the functional differential equation (F') is not
a special case of the general differential equation (GFE) defined on a Banach space
X (refer to Subsection 2.6A), because for the former, the range of the function F' is
in R™ (and not in C,.), and for the latter, the range of the function F'is in C C X.
However, it turns out that the functional differential equation (F') can be transformed
into an equivalent equation which is a special case of (GFE). To see this, we note that

Te(s) =a(t+s), —r<s<0

1
lim = - —r<s<
Jim, h[x(t+h+s) r(t+s)), —r<s<0

= Jim, %[mh(s) — 4(s))

2 ﬁxt(s).

Defining F; by
Ft(t7xt)(8) = F(t + S>xt+s)7 —r<s< O,

it follows that the functional differential equation (/") can equivalently be expressed
by the equation

d xp = Fy(t,2y) (F)

T dt

which is a special case of equation (G E) because the range of F; is in C,.

Ty
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Example 2.7.1 Linear retarded functional differential equations have the form
i = L(x) (LF)
where L is a linear operator defined on C,. given by the Riemann-Stieltjes integral
0
Lo) = [ B 272)
-r

where B(s) = [b;;(s)] is an n x n matrix whose entries are functions of bounded
variation on [—r, 0] (see, e.g., Yoshizawa [47]).
A special case of (LF) are linear differential-difference equations given by

&(t) = A1z(t) + Brz(t — ) (2.7.3)
where A; and B; are constant matrices (see, e.g., Bellman and Cooke [4]). O

Example 2.7.2 As a special case of the above example, we consider the scalar
equation

0
() = / 2(t + 8)dn(s) 2.7.4)

-7

where 7 is a function of bounded variation on [—r, 0] and the integral in (2.7.4) denotes
a Riemann-Stieltjes integral. Defining L: C,. — R by

0
L) = / o (s)di(s),

we can rewrite (2.7.4) as

If in particular, we consider the scalar differential-difference equation
&(t) = ax(t) + bx(t —r), (2.7.5)

where a, b are real constants and ¢ € [0, ¢), and if we let

0, §=-—r
n(s) =14 b, -r<s<0
a+b, s=r

then we obtain in the present case
0
L) = [ eln(s) = ap(0) + bo(-n). 0

-

We now associate with (F') the initial value problem

[L’(t) = F(tvxt)v Ty = w (IF)



Section 2.7 Functional Differential Equations 33

where (tg,1) € @ C R x C,.. Afunction p € C[[to — r,to + ¢),R"],c > 0,is a
solution of (Ir) if pis asolution of (F) andif p;, = ¥ (i.e., pt,(s) = p(to+s) = ¥(s)
for —r < s < 0).

If in (F') the function I is continuous, then p € C[[to —r,to+c), R”} ,c>0,1is
a solution of (I) if and only if

mw:wa—mmt to—r<t<tp
p(t) = $(0) + / Fls,p)ds,  t>to.

to

(2.7.6)

Alternatively, if we define an operator 7" on the function space C' [[to —r,to+c), R”] by
(T)(t) = ¥(t — to), to—r<t<to

(T)(t) = ¢(0 / F(x,ps)d t >ty 277

then p is a solution of (I) if and only if p is a fixed point of the operator 7', that is,
if and only if Tp = p. Note that when p satisfies (2.7.6), then the continuity of p
implies the differentiability of p on [tg, ¢).

Similarly as in the case of ordinary differential equations (see Theorem 2.3.1), the
following result provides a set of sufficient conditions for the existence of solutions
of the initial value problem (/).

Theorem 2.7.1 Let {2 be an open setin R x C,. and let F' € C[2, R™]. Then for any
(to, ) € Q, (Ir) has a solution defined on [ty — r,tg + ¢) for some ¢ > 0. O

In the problem section we provide details for the proof of Theorem 2.7.1.

Similarly as in the case of ordinary differential equations (see Theorem 2.3.2), the
next result provides a set of sufficient conditions for the uniqueness of solutions of
the initial value problem (Ir).

Theorem 2.7.2 Let (2 be an open set in R x C,. and assume that on every compact
set K C €, F satisfies the Lipschitz condition

|F(t.2) = F(ty)| < Lo =yl (2.7.8)
for all (¢,z), (t,y) € K, where L is a constant that depends only on K, | - | is a
norm on R™, and || - || is the norm defined on C,. in (2.7.1). Then (Ir) has at most
one solution on the interval [tg — r,to + ¢) for any ¢ > 0. O

In the problem section we provide details for the proof of Theorem 2.7.2. Also, in
Chapter 4, we prove a more general uniqueness result, applicable to differential equa-
tions defined on Banach spaces, in the context of the Lyapunov theory. Theorem 2.7.2
is a special case of that result (refer to Example 4.4.1).

Now letp € C [[to —rb), R”] be a solution of (F') where b > to. We say that pg
is a continuation of p if there exists a by > b such that py € C’[[to —r,bo), R”} isa
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solution of (F') with the property that po(¢) = p(t) for t € [to — r, b). A solution p of
(F) is said to be noncontinuable if no such continuation exists.

Before giving a continuation result for (F'), we recall that a mapping F': X7 — Xo,
where X; and X, are metric spaces, is said to be completely continuous if F' is
continuous and if the closure of F(B) = {F(z): * € B} is compact for every
bounded closed set B C X;.

Theorem 2.7.3 Let Q) = [tg — r,a) X C, where a > tq is finite or infinite. Assume
that F': 2 — R™ is completely continuous and that every solution of (F') is bounded.
Then every solution of (F) can be extended to the entire interval [ty — 7, a). O0

In the problem section we provide details for the proof of Theorem 2.7.3. In
Chapter 3 we present results that ensure the boundedness of the solutions of (F),
using Lyapunov stability theory.

Now let A C C). be an open set, let J C R be a finite or an infinite interval, and let
1 = J x A. Assume that F' € C[2, R"]. Then (Ir) has at least one solution defined
on [ty — 7, to + ¢) (see Theorem 2.7.1). Let Sy, 4 denote the set of all the solutions
of (Ir) and let Sp = Uy, )0 Sto,v- Then S is the set of the solutions of () that
are defined on any half closed (resp., half open) interval [a,b) C J.

Next, let I' = J and let A C X = (. with the metric determined by the norm
Il - || givenin (2.7.1). Then {T, X, A, Sr} is a dynamical system in the sense of Def-
inition 2.2.3. When 7', X, and A are known from context, we refer to this dynamical
system simply as Sr and we speak of the dynamical system determined by (F).

Finally, we note that if in particular 2 = R™ x C,. and F': 2 — R™ is completely
continuous and if every motion of Sp is bounded, then in view of Theorem 2.7.3,
every motion of Sy is continuable forward for all time.

When F' in equation (F') is a function of ¢, z, and &, (rather than ¢ and x),
then the resulting equation is called a neutral functional differential equation. As
in the case of retarded functional differential equations, such equations determine
dynamical systems. We do not pursue systems of this type in this book.

2.8 Volterra Integrodifferential Equations

Volterra integrodifferential equations may be viewed as retarded functional differen-
tial equations with infinite delay; that is,

#(t) = F(t, 1) (V)

where the interval [—r, 0] is replaced by the interval (—oo,0]. This necessitates
the use of a fading memory space X which consists of all measurable functions
¢: (—00,0] — R™ with the property that ¢ is continuous on —h < ¢t < 0 and that
for every ¢ € X, the function || - || defined by

—h
ol =su {lo(0): ~h<t<o}+ [ plolelee @81

—00
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is finite, where p: (—oo, —h) — R s a positive, continuously differentiable function
such that p(¢t) > 0 on (—oo, —h). It can easily be verified that this function is a
norm on X.

More generally other choices of norms for X include

—h 1/q
ol = sup {|p(t)]: —h <t <0} + [/ P(ﬂ@(t)lth] (282)

— 00

where g € [1,00). If in particular ¢ = 2 and h = 0, then the norm (2.8.2) is induced
by the inner product

0

lell* = {2, @) = (#(0), ¥(0)) +/ p(t)(p(t), ¢(t))dt. (2.8.3)

—0o0

It can readily be shown that when X is equipped with (2.8.2), then (X, || - ||) is a
Banach space and when X is equipped with the inner product (2.8.3), then (X, (-, -})
is a Hilbert space.

Associated with (V) is the initial value problem

a(t) = Ftz),  w =1 (Iv)

where (tg, 1) € RT x X. A function ¢ € C[(—o0,to + ¢),R"], ¢ > 0, is a solution
of (Iy) if ¢ is a solution of (V) (i.e., p(t) = F(t, ) for t € [tg,to + ¢)), and if
Y, = ¥ (e, i, (s) = @(to + s) = Y(s) for —oo < s < 0).

We do not present results here concerning the existence, uniqueness, and con-
tinuation of solutions of (Iy/). Instead, we refer the reader to Hale [20] for such
results.

LetT =Rt and A C X, let Sy, 4 denote the set of all the solutions of (Iy/) and
let Sy = U(sy,4)Sto,4- Then Sy denotes the set of all the solutions of (V') that are
defined on any interval [a,b) C RT and {7, X, A, Sy } is a dynamical system. When
the context is clear, we simply speak of the dynamical system Sy, .

An important class of Volterra integrodifferential equations are linear Volterra
integrodifferential equations of the form

@(t) = Az (0 / K(s)z4(s (LV)

which can equivalently be expressed as
t
+ / K(s—t)x(s)ds (2.8.4)
—0o0

fort > 0, where A € R"*"™ and K = [k”] is a matrix-valued function with elements
k‘ij S Ll[(—O0,0),R], 1<4,5 <n.
Now let

X, = {¢: (—00,0] = R" and ¢: (—o0,0) — R™ belong to L, [(—oc0,0), R"] }
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and let X, be equipped with a norm given by

0 1/p
1ol = [(0)] + [ / w(twdt] 28.5)

where p € [1,00), and let
={y e X,: e Ly[(=00,0),R"] and

W(t) = ¥(0) +/O P(s)ds for allt > 0}.

Associated with (LV) we have the initial value problem

(t A:ct / K .Tt t Z 0 (ILV)

x(t) = ¥(t) t<0

where ¢ € Y.
In Barbu and Grossman [3], the following result is established for (I1y).

Theorem 2.8.1 Forany v € Y),, theinitial value problem (/1) has a unique solution
x(t, ) that is defined on (—o00, 00). O

For any tg € R, let y(¢,4,t9) = x(t — to, ) where x(t,v) denotes the unique
solution of (/7). Let

Spv = {y=y(t,¥,t0): to ER,p €Y, },

letT =R,andlet A =Y, C X, = X. Then {7, X, A, Sy } is adynamical system,
which for short, we simply refer to as dynamical system Sy, or as the dynamical
system determined by (LV').

In the following example we consider a simple model of the dynamics of a multi-
core nuclear reactor. We revisit this model in Chapter 9.

Example 2.8.1 [31] (Point kinetics model of a multicore nuclear reactor) We con-
sider the point kinetics model of a multicore nuclear reactor with [ cores described
by the equations

Nipi(t) = [pi(t) — & — Bi]pi(t) + pa(t) + Zﬁkzcm

+ ZEJZ JO/PzO) / hjl(t — s)pj(s)ds (286)

j=1
éki(t):)\ki[pi( )—C]“'<t)], i:17...,l, ](,‘217...,6
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where p;: R — Rand c;: R — Rrepresent the power in the ¢th core and the concen-
tration of the kth precursor in the ith core, respectively. The constants A;, €5, Bki, €,
Pjo, and \; are all positive and

6
Bi= Bri-
k=1

The functions h;; € Li(R™,R). They determine the coupling between cores due
to neutron migration from the jth to the ith core. The function p; represents the
reactivity of the ith core which we assume to have the form

pi(t) = / w;(t — s)pi(s)ds (2.8.7)

— 00

where w; € L1[R*,R]. The functions p;(t) and cy;(t) are assumed to be known,
bounded, continuous functions defined on —oco < ¢ < 0.

In the present context, a physically realistic assumption is that cy;(t)e* ¢ — 0 as
t — —oo. Under this assumption, we can solve for cy; in terms of p; to obtain

t
cki(t) = / )\kie_)‘k"’(t_s)pi(s)ds. (2.8.8)

— 00

Using (2.8.7) and (2.8.8) to eliminate p; and c; from (2.8.6), we obtain [ Volterra
integrodifferential equations for p;(t), i = 1,...,l. To express these equations in a
more compact form, we let

6
Fi(t)=A7" {wi(t) + ) Bridnie MW 4 b |
k=1
Ki=A;'[es + Bi],
ni(t) = A7 wi(t), and
.. — Ciiliohyi(t)

Y APy
With p;(t) defined on —oo < t < 0o, we have

t

pi(t) = —K;pi(t) + /_ F;(t — s)pi(s)ds + pi(¢) / ni(t — s)pi(s)ds

l t
+ Z / Gi;(t — s)p;(s)ds, i=1,...,1
j=Lij 7 =

for ¢ > 0 and p;(t) = ¢;(t) defined on —oco < ¢t < 0 where ¢; € Z;, the fading
memory space of all absolutely continuous functions ; defined on (—oo, 0] such that

0
112 = 1s(0) 2 + / s (5) [2ebi%ds < oo,
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where L; > 0 is a constant. We address the choice of L; in Chapter 9, when studying
the stability properties of (2.8.6). The set of all solutions of system (2.8.6), generated
by varying ¢; over Z;, i = 1,...,[, determines a dynamical system. O

2.9 Semigroups

We now address linear and nonlinear semigroups that generate large classes of dy-
namical systems. Before addressing the subject on hand we need to introduce some
additional notation.

A. Notation

Let X and Z denote Banach spaces and let || - || denote norms on such spaces. Also,
Hilbert spaces are denoted X, Z, or H with inner product (-, -). In this case, the norm
of 2 € H is given by ||z|| = (z,2)/2.

Let A be a linear operator defined on a domain D(A) C X with range in Z. We
call A closed if its graph, Gr(A) = {(z,Az) € X x Z: x € D(A)} is a closed
subset of X x Z and we call A bounded if it maps bounded sets in X into bounded
sets in Z, or equivalently, if it is continuous.

Subsequently, I: X — X denotes the identity transformation. Given a closed
linear operator A: D(A) — X, D(A) C X, we define the resolvent set of A, p(A),
as the set of all points A in the complex plane such that the linear transformation
(A — M) has a bounded inverse, (A — A\I)~!: X — X. The complement of p(A),
denoted o (A), is called the spectral set or the spectrum of A.

Finally, given a bounded linear operator A: D(A) — Z, D(A) C X, its norm is
defined by

IA]l = sup {|| Az]|: [l = 1}.

B. Cy-semigroups

Consider a process whose evolution in time can be described by a linear differential
equation
z(t) = Ax(t), x(0) =9 € D(A) (Ip)

fort € RT. Here A: D(A) — X is assumed to be a linear operator with domain
D(A) dense in X. Moreover, A is always assumed to be closed or else to have an
extension A that is closed. By a strong solution x(t) of (I;,) we mean a function
x: RT — D(A) such that 4(t) exists and is continuous on R™ — X and such that
(Ip) is true. The abstract initial value problem (I) is said to be well posed if for
each xy € D(A), there is one and only one strong solution x(¢, ) of (1) defined
on0 < t < oo and if in addition x(¢, x¢) depends continuously on (t, zo) in the sense
that given any N > 0 there is an M > 0 such that ||z (¢, zg)|| < M when0 <t < N
and ||zg]] < N.
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If (I1) is well posed, then there is an operator T' defined by T'(t)zo = (¢, x0)
which is (for each fixed t) a bounded linear mapping from D(A) to X. We call
T(t)xg = x(t,x0), t > 0, a trajectory of (I) for xg. Because T'(t) is bounded,
it has a continuous extension from D(A) to the larger domain X. The trajectories
x(t,xg) = T(t)xo for xg € X but xy ¢ D(A) are called generalized solutions of
(I). The resulting family of operators {T'(¢): t € R} is called a Cy-semigroup or
a linear semigroup.

Independent of the above discussion, we now define Cy-semigroup.

Definition 2.9.1 [21], [23],[39] A one-parameter family of bounded linear operators
T(t): X — X,t € R, is said to be a Cy-semigroup, or a linear semigroup, if
(1) T(0) = I (I is the identity operator on X);
(i) T(t+s) =T(t)T(s) forany t,s € RT; and
(i) limy o+ T(t)x = x forallx € X. O

Evidently, every Cy-semigroup is generated by some abstract differential equation
of the form (I,).

Definition 2.9.2 Given any Cy-semigroup T'(t), its infinitesimal generator is the
operator defined by

Az = lim LB
t—0+t t
where D(A) consists of all z € X for which this limit exists. ad

Theorem 2.9.1 [39] For a Cy-semigroup T'(t), there exist an w > 0 and an M > 1
such that
T < Me*t. O

The next result provides necessary and sufficient conditions for a given linear
operator A to be the infinitesimal generator of some Cjy-semigroup.

Theorem 2.9.2 [21], [39] (Hille-Yoshida—Phillips Theorem) A linear operator A is
the infinitesimal generator of a Cp-semigroup 7'(t) satisfying || T'(¢)|| < Me*?, if and
only if

(i) Aisclosed and D(A) is dense in X;

(ii) the resolvent set p(A) of A contains (w, c0); and

—-n M
n =1,2,..., where I denotes the identity operator on X . a

A Cy-semigroup of contractions is a Cy-semigroup T'(¢) satisfying | T(¢)|| < 1
(i.e.,inTheorem 2.9.1, M = 1 and w = 0). Such semigroups are of particular interest
in Hilbert spaces.
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Definition 2.9.3 A linear operator A: D(A) — H, D(A) C H, on a Hilbert space
H is said to be dissipative if Re(Ax, ) < 0 forall z € D(A). O

For Cy-semigroups of contractions we have the following result.

Theorem 2.9.3 If A is the infinitesimal generator of a Cy-semigroup of contractions
on a Hilbert space H, then A is dissipative and the range of (A — AI) is all of H for
any A > 0. Conversely, if A is dissipative and if the range of (A — AI) is H for at
least one constant A\g > 0, then A is closed and A is the infinitesimal generator of a
Cp-semigroup of contractions. |

The above result is useful in the study of parabolic partial differential equations
(Section 2.10).

For linear semigroups with generator A one can deduce many important qualitative
properties by determining the spectrum of A. Some of these are summarized in the
following results (refer to Slemrod [42]).

Theorem 2.9.4 Given any two real numbers « and 3 with o < 3 there exists a Cy-
semigroup 7'(¢) on a Hilbert space H such that ReA < « for all A € o(A) and in
addition ||T(¢)|| = € for all t > 0. i

The next result applies to the following class of semigroups.

Definition 2.9.4 A Cy-semigroup T'(¢) is called differentiable for t > r if for each
x € X, T(t)z is continuously differentiable on r < ¢t < oco. O

For example, a system of linear time-invariant functional differential equations
with delay [—r,0] (as discussed in the last subsection of this section) determines
a semigroup that is differentiable for ¢ > r. Also, systems of parabolic partial
differential equations (as discussed in the next section) normally generate semigroups
that are differentiable for ¢ > 0. In the finite-dimensional case (when X = R"), for
linear semigroups the generator A must be an n X n matrix whose spectrum is the set
of eigenvalues {\} of A. Such semigroups are differentiable as well for ¢ > 0.

Following Slemrod [42] we have the following result.

Theorem 2.9.5 If T'(t) is a Cp-semigroup that is differentiable for ¢ > r, if A is its
generator, and if ReA < —qq forall A € o(A), then given any positive a < «, there
is a constant K («) > 0 such that ||7(¢)|| < K(a)e * forall t > r. O

We conclude by defining the dynamical system determined by a Cy-semigroup
T(t) as

SCO = {p :p('7$0,t0): p(t,l‘,to) é T(t - to)l’, tO S R+7t Z tva € X}

We consider some specific examples of dynamical systems determined by Cj-
semigroups in the last subsection of this section.
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C. Nonlinear semigroups

A nonlinear semigroup is a generalization of the notion of Cy-semigroup. In arriving
at this generalization, the linear initial value problem (/) is replaced by the nonlinear
initial value problem

@(t) = A(z(t),  x(0) = xo (In)

where A: D(A) — X is a nonlinear mapping. As mentioned already in Section 2.6
(in connection with initial value problem (/g)) if A is continuously differentiable
(or at least locally Lipschitz continuous), then the theory of existence, uniqueness,
and continuation of solutions of (/) is the same as in the finite-dimensional case
(see Dieudonné [11, Chapter 10, Section 4]). If A is only continuous, then (/) needs
not to have any solution at all (see Dieudonné [11, p. 287, Problem 5]). In general,
one wishes to have a theory that includes nonlinear partial differential equations.
This mandates that A be allowed to be only defined on a dense set D(A) and to be
discontinuous. For such functions A, the accretive property (defined later) generalizes
the Lipschitz property.

Definition 2.9.5 [5], [8], [9], [15], [25], [27] Assume that C is a subset of a Banach
space X. A family of one-parameter (nonlinear) operators 7'(t): C — C,t € RTis
said to be a nonlinear semigroup defined on C' if

(1) T(0)x =z forx € C,
() T(t+s)z=T(t)T(s)zx fort,s € RT, z € C; and
(iii) T(t)z is continuous in (t,z) on RT x C. ]

A nonlinear semigroup 7'(¢) is called a quasi-contractive semigroup if there is a
number w € R such that

|T(t)z = T()y|| < e [lz -y (2.9.1)

for all t € Rt and for all z,y € C. If in (2.9.1) w < 0, then T'(¢) is called a
contraction semigroup. Note that C = X is allowed as a special case.

The mapping A in (Iy) is sometimes multivalued (i.e., a relation) and in general
must be extended to be multivalued if it is to generate a quasi-contractive semigroup.
Thus, we assume that A(z), x € X, is a subset of X and we identify A with its graph,

Gr(A) ={(z,y):x € Xandy € A(z)} C X x Y.

In this case the domain of A, written as D(A), is the set of all z € X for which
A(z) # 0, the range of A is the set

Ra(A) = U{A(z): z € D(A)},
and the inverse of A at any point y is defined as the set

AN y)={zeX:yec A(x)}.
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Let X be a real or complex scalar. Then AA is defined by
(A)(@) = {My: y € Ax)}
and A + B is defined by
(A+ B)(z) = A(z) + B(z) = {y+ 2: y € A(z),z € B(z)}.

Definition 2.9.6 A multivalued operator A is said to generate a nonlinear semigroup
T(t) on C if

T(t)z = lim (1 - ZA) )

n—00

forallz € C.
The infinitesimal generator A of a nonlinear semigroup 7T'(t) is defined by

T _
As(z) = lilrn+ w,
t—0

x € D(Ay)

for all z such that this limit exists. The operator A and the infinitesimal generator A
are generally different operators. O

Definition 2.9.7 A multivalued operator A on X is said to be w-accretive if
(@1 = Ayr) = (z2 — Aya)|| = (1 — Aw)||w1 — 2| (29.2)
forall A > 0 and for all z; € D(A) and y; € A(x;),i=1,2. a
If, in particular, X is a Hilbert space, then (2.9.2) reduces to

<(wx1 —y1) — (wxg —y2),x1 — a:2> > 0. (2.9.3)

The above property for the nonlinear case is analogous to (A — w/) being dissipative
in the linear symmetric case.

Theorem 2.9.6 Assume that A is w-accretive and that for each A € (0, \g),

Ra(I —\A) D C = D(A)

where D(A) denotes the closure of D(A) and Ag > 01is a constant. Then A generates
a quasi-contractive semigroup 7'(¢) on C' with

|T(t)x = T(t)y| < ez -yl
forallt € RT and forall z,y € C. a

In general, the trajectories 7'(¢)x determined by the semigroup in Theorem 2.9.6
are generalized solutions of (/) that need not be differentiable. Indeed, an example
is discussed in Crandall and Liggett [9, Section 4], where w = 0, D(A) = X, A
generates a quasi-contraction 7'(t) but the infinitesimal generator A¢ has an empty
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domain. This means that not even one trajectory 7'(¢)x is differentiable at even one
time ¢. If the graph of A is closed, then A is always an extension of the infinitesimal
generator A;. So whenever z(t) = T'(t)x has a derivative, then %(¢) must be in
A(z(t)).

The situation is more reasonable in the setting of a Hilbert space H. If A is w-
accretive and closed (i.e., its graph is a closed subset of H x H), then for any z € D(A)
the set A(z) is closed and convex. Thus, there is an element A°(z) € A(x) such that
AY(z) is the element of A(x) closest to the origin. Given a trajectory z(t) = T'(t)x,
the right derivative

Dtz(t) = lim ot +h) —2(t)
h—0+ h
must exist at all points ¢ € R™ and be continuous except possibly at a countably
infinite set of points. The derivative 2 (¢) exists and is equal to DT z(¢) at all points
where DT z(t) is continuous. Furthermore,

Dt a(t) = A%(x(t))

for all ¢ > 0. These results can be generalized to any space X that is uniformly
convex. (Refer to Dunford and Schwarz [12, p. 74], for the definition of a uniformly
convex space. In particular, any L,, space, 1 < p < oo, is a uniformly convex space.)

Definition 2.9.8 A trajectory x(t) = T'(t)xg is called a strong solution of (Iy) if
x(t) is absolutely continuous on any bounded subset of R (so that 2(¢) exists almost
everywhere) if z(t) € D(A) and if &:(t) € A(z(t)) almost everywhere on RT. O

We also have

Definition 2.9.9 The initial value problem (/) is called well posed on C' if there is
a semigroup 7'(t) such that for any xg € D(A), T'(t)xo is a strong solution of (Iy),
and if D(A) = C. |

We summarize the above discussion in the following theorem.

Theorem 2.9.7 If X is a Hilbert space or a uniformly convex Banach space and if
A is w-accretive and closed, then the initial value problem (/) is well posed on
C = D(A) and i(t) = A%(x(t)) almost everywhere on RT. a

We conclude by defining the dynamical system determined by a nonlinear semi-
group T(t) as

Sy = {p=p(,,t0): plt, 2, t0) = T(t —to)z,tg € RT,t > tg,x € C}.

We consider in the next subsection several specific examples of semigroups.

D. Examples of semigroups

We now consider several classes of important semigroups that arise in applications
and we provide some related background material which we find useful in subsequent
chapters.
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Example 2.9.1 (Ordinary differential equations) Consider initial value problems de-
scribed by a system of autonomous first-order ordinary differential equations given by

t=g(x),  x(0) =m0 (2.9.4)
where g: R” — R™ and where it is assumed that g satisfies the Lipschitz condition

l9(x) — g(y)| < LIz —y| (2.9.5)

for all z,y € R". In this case g is w-accretive with w = L and (2.9.5) implies that
g is continuous on R™. This continuity implies that the graph of g is closed. By
Theorem 2.9.7 there exist a semigroup 7'(t) and a subset D C R™ such that D is
dense in R™ and for any = € D, any solution x(t) = T'(t)x¢ of (2.9.4) is absolutely
continuous on any finite interval in R*. In the present case D = R™ and T'(¢) is a
quasi-contractive semigroup with

[T (t)x — T(t)y| < "z -yl (2.9.6)

forall z,9y € R®and t € RT.
Now assume that in (2.9.4) g(z) = Az where A € R™*"; that is,

T = Ax, z(0) = zo. (2.9.7)

In the present case (2.9.7) determines a differentiable Cj-semigroup with generator
A. The spectrum of A, o(A), coincides with the set of all eigenvalues of A, {\}.
Now according to Theorem 2.9.5, if ReA < —aq for all A € o(A), where ag > 0 is
a constant, then given any positive & < ay, there is a constant K () > 0 such that

IT®)] < K(a)e ",  teR*. (29.8)
O

Example 2.9.2 (Functional differential equations) Consider initial value problems
described by a system of autonomous first-order functional differential equations

{ #(t) = F(zy), t>0

2(t) = ¥(8), L <t<0 (2.9.9)

where F': C. — R". (For the notation used in this example, refer to Section 2.7.)
Assume that F' satisfies the Lipschitz condition

|F(&) — F(n)| < K[I€ = 1| (2.9.10)

for all ¢£,n € (.. Under these conditions, the initial value problem (2.9.9) has a
unique solution for every initial condition v, denoted by p(t, ) which is defined for
all t € RT (refer to Section 2.7). In this case T'(t)1) = p;(-, 1), or equivalently,
(T(t)Y)(s) = p(t + s,9) defines a quasi-contractive semigroup on C,. Define
A: D(A) — C, by

Ap =1+, DA ={ypeCr:ycCrand(0) = F(¢)}. (2.9.11)



Section 2.9 Semigroups 45

Then D(A) is dense in C,., A is the generator and also the infinitesimal generator of
T(t), and T'(t) is differentiable for ¢ > r.
Ifin (2.9.9) F' = L is the linear mapping from C). to R™ defined in (2.7.2), we have

@ = L(x) (2.9.12)

where 0
L(yp) = /_ | [dB(s)]¢(s). (2.9.13)

In this case the semigroup 7'(¢) is a Cy-semigroup. The spectrum of its generator
consists of all solutions of the equation

0
det ( / eMB(s) — )\I> =0. (2.9.14)

—-Tr

If all solutions of (2.9.14) satisfy the relation ReA < —~q for some v5 > 0, then
given any positive v < o, there is a constant () > 0 such that

IT®)] < K(v)e™,  teRt (2.9.15)
(refer to Theorem 2.9.5). O

Example 2.9.3 (Volterra integrodifferential equations) We discuss the class of
Volterra integrodifferential equations given in Section 2.8,

i(t) = Ax(t) +/_ K(s —t)z(s)ds, t=20 (2.9.16)
)= (),

(
x(t —00<t<0
where A ¢ R"*"and K € L [(—oo7 0), R"X”] ; thatis, K is an n X n matrix-valued
function whose entries k;; € Ly [(—oo, 0), R}. Let X,,1 < p < oo, be defined as in
Section 2.8. Then

X, ~ Ly[(—00,0),R"] x R" (2.9.17)

where =~ denotes an isomorphic relation. To see this, note that for any ¢ € X,
@] (=00,0) € Lp[(—00,0),R"], ©(0) € R™. Conversely, forany 1) € L,[(—o0,0),R"]
and Z € R™, there is a unique ¢ € X, such that ¢[(_ 0) = ¥, and ©(0) = Z. In
this case, if we denote ¢ = (Z, 1)), the norm defined by (2.8.5) can now be written as

0

1/p
IIwIIII(Z,¢)IllZ+[/ w(s)pds} . l<p<oo.  (918)

—0o0

We now define an operator A by

AZ, ) = (AZ + /_ Ooo K(s)w(s)ds,¢) (2.9.19)
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on the domain

t

D(A) = {(Z,4): ¥ € L,[(—00,0),R"] and ¢)(t) = Z+/ P(s)dsforallt < 0}.
0

~ (2.9.20)

Then A is an infinitesimal generator of a Cy-semigroup 7'(t) on X,. Furthermore,

when (Z,1) € D(A), the equation
(x(t), 2:) = T(t)(Z, ) (2.9.21)

determines a function z(¢) which is the unique solution of (2.9.16) (refer to Barbu
and Grossman [3]). _
If ReA > 0, then A € o(A) if and only if

0
det (A + / e K (s)ds — /\I> = 0. (2.9.22)
On the other hand, if ReA < 0, then A is always in a(g). O

There are many other important classes of semigroups, including those that are
determined by partial differential equations. We address some of these in the next
section.

2.10 Partial Differential Equations

In our discussion of partial differential equations we require additional nomenclature.

A. Notation
T

A vector index or exponent is a vector o' = (a,...,a,) whose components are
. . _ n n
nonnegative integers, || = 7| a;, and for any z € R",

o a g e
Y = (21, 22,..., &) =2t - 2O,

Let Dy, = i(9/0xy,) fork = 1,...,n, wherei = (—1)"/? andlet D = (D, Dy, ...,
D,,) so that
D* = D ... pon., (2.10.1)

In the sequel we let 2 be a domain in R™ (i.e., {2 is a connected set) with boundary
09 and closure 2. We assume that 92 is of class C* for suitable k& > 1. By this we
mean that for each x € 0f), there is a ball B with center at = such that 9Q2 N B can
be represented in the form

Ty = <p(171,-~-,$i—1,fi+1;~--,In)

for some ¢,7 = 1,...,n, with ¢ continuously differentiable up to order k. This
smoothness is easily seen to be true for the type of regions that normally occur in
applications.
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Also, let C'[Q2, C] denote the set of all complex-valued functions defined on
whose derivatives up to order [ are continuous. For u € C" [2,C], 1 € N, we define
the norm

1/2
lull: = / S| . (2.10.2)
2al<i
Let N
C'Q,C] = {u € C'[,C]: |ull; < oo}
and let

CHQ,C] = {u € C'[Q,C]: u =0 in a neighborhood of H}.

We define H'[(2, C] and H}|[S2, C] to be the completions in the norm ||- ||; of the spaces
C'[©2,C] and CL[Q, C], respectively. In a similar manner, we can define the spaces
H'[Q,R] and HL[Q,R]. The spaces defined above are sometimes called Sobolev
spaces. Their construction builds “zero boundary conditions” into, for example,
HYO,R).

Finally, we define C*°[Q,C] = NienC![Q2, C] and we say that u € C>[(, C]
if D“u can be extended to be a continuous function on € for any o € N". We
define C*°[Q2,R] and C*°[Q, R] in a similar manner. Occasionally, we say that u
is a real-valued smooth function on §2 (on Q) if u € C*®[Q, R] (if u € C*®[Q, R]).
Complex-valued smooth functions on €2 (on ) are defined similarly.

B. Linear equations with constant coefficients

Given r X r complex constant square matrices A, a € N”, let

A(D)= Y A.D%

loe|]<m
and consider the initial value problem
ou
E(t’x) = A(D)u(tv‘T)v u(O,x) = ¢($) (IP)

where t € RT, z € R™, ¢ € Lo[R"™, C] are given, and u: Rt x R"” — C" is to be
determined.
Proceeding intuitively for the moment, we apply Lo-Fourier transforms to (Ip) to

obtain dii(t. )
31; = A(w)u(t,w), 1(0,w) = ¥(w)

where A(w) = 3_, <, Aew® for all w € R™. In order to have a solution such that
u(t, z) and (Ou/0t)(t, x) are in Lo over 2 € R™, it is necessary that A(w)u(¢,w) be

in Ly over w € R™. This places some restrictions on A(w). For the proof of the next
result, refer to Krein [23, p. 163].
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Theorem 2.10.1 The mapping T'(¢)1) = u(t,-) defined by the solutions u(¢, x) of
(Ip) determines a Cp-semigroup on X = L[R™, C] if and only if there exists a
nonsingular matrix S(w) and a constant K > 0 such that for allw € R™, the following
conditions are satisfied.

() |S(w)| < K and |S(w)7!| < K.
(i) S(w)A(w)S(w)~* = [C;j(w)] is upper triangular.
(iii) ReCy(w) < -+ < ReCy; (w) < K.
(iv) |Ci(w)| < K(14 |ReCy(w)|) fork =4+ 1,...,7. a

Parabolic equations (i.e., equations for which A(D) is strongly elliptic, defined
later) satisfy these conditions whereas hyperbolic equations do not. We demonstrate
this in the next examples.

Example 2.10.1 Consider a special case of (Ip) withr = 1, m = n = 2, given by

ot o2 " ayr  “or oy T (2.10.3)

u(0,x) = ¥(x).
_ T 2
For w = (w1, ws)* € R* we have
Aw) = —w% — w% + dawy + tbwa + ¢ = C11(w).

Clearly, ReA(w) = —w? — w3 + ¢ < cfor all w € R2. Therefore, all the hypotheses
of Theorem 2.10.1 are satisfied and thus, (2.10.3) determines a Cj-semigroup on
X = Ly[R%,C]. O

Example 2.10.2 Consider the initial value problem determined by the wave equation

Pu_ o
o2 Ox? (2.10.4)
u(0,x) = ¥(x).
The above equation can equivalently be expressed by
Our .. Ou_Ou
o at a2

with u1 = u and uy = Ou/0t. Equation (2.10.4) is a specific case of (Ip) with
r=2m=2n=1,and

0 1
A =] 2a gl
The eigenvalues of A(w) are given by C;;(w) = iw and Caz(w) = —iw. In order

that the hypotheses of Theorem 2.10.1 be satisfied, there must exist an S(w) such that
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S(w)A(w)S(w)~t = C(w) where C(w) is upper triangular with diagonal elements
Cll(w) and 022 (UJ) Then

Awse) = s [ 2],

- ) n]
S =000 |

r2(w) y2(w)

A straightforward calculation yields

S(w)! = { 1 (w) y1(w) ]

iwxl(w) C’lg(w)xl(w) - iwyl(w)

and

_ 1 Cr2(w)r1(w) —iwyr (W)  —y1(w)
Sw) = [Cra(w)r1(w)? — 2iwzy (W)y1(w)] [ —iwz (W) r1(w) } '

Because ReC'1 (w) = 0, condition (iv) in Theorem 2.10.1 implies that |C12(w)| < K
and condition (i) of this theorem implies that all elements of S(w) and S(w)~! are
bounded by K. Thus,

|Cra(w)71(w) — iwyr (w)| < K

and
|w||Cr2(w)m1 (w) — 2wy ()| < K

can be combined to yield
W]/ K < [Cra(w)z1(w) —iwyr ()] + [iwy: (w)]
< K + |iwyy (w)]
< 2K + |Clg(w)x1(w)|.

Using |C12(w)| < K and |z1(w)| < K for all w € R, we obtain
lw|/K < 2K + K?

for all w € R. But this is impossible. Thus, no matrix S(w) as asserted above exists.
Therefore, the solutions of (2.10.4) do not generate a Cy-semigroup. O

C. Linear parabolic equations with smooth coefficients

In the following 2 C R™ is assumed to be a bounded domain with smooth boundary
0f). We consider the differential operator of order 2m given by

Alt,z,D)= > aa(t,z)D" (2.10.5)

|a|<2m
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where v € N, D is defined in (2.10.1) and the coefficients a4(t, ) are complex-
valued functions defined on [0, Tp) x 2 where Tj > 0 is allowed to be infinite. The
principal part of A(t,x, D) is the operator given by

Atz D)= > an(t,z)D" (2.10.6)

|| =2m
and A(t,z, D) is said to be strongly elliptic if there exists a constant ¢ > 0 such that
ReA'(t,x,&) > cl¢*™

forallt € [0,7p), x € 2, and £ € R™.
In the following, we consider linear, parabolic partial differential equations with
initial conditions and boundary conditions given by

g—?(tw) + A(t,x, D)u(t,z) = f(t,x) on (0,Tp) x
Du(t,z) =0, o] <m on (0,Ty) x 09 (Ipp)
u(0, ) = uo(x) onQ

where f and wug are complex-valued functions defined on (0,7p) x € and €,
respectively.

Using the theory of Sobolev spaces, generalized functions (distributions), and dif-
ferentiation in the distribution sense, the following result concerning the well posed-
ness of (Ipp) (involving generalized solutions for (I pp)) has been established (see,
e.g., Pazy [39] and Friedman [14]).

Theorem 2.10.2 For (Ipp), assume the following.
(1) A(t,z, D) is strongly elliptic.
(ii) f,aq € C*°[[0,Tp] x Q,C] for all |a| < 2m.

(i) uo € C*°[Q2,C).
(iv) limg_ 90 D%ug(x) = 0 for all |a| < m.

Then there exists a unique solution v € C*[[0, Ty] x €, C]. o

If the operator A(t, z, D) and the functions f and ug are real-valued, then Theo-
rem 2.10.2 is still true with the solution u of (I pp) being real-valued.

Now let T = [0, Tp] and X = A = C*°[(2, C] and let Sy, ,, denote the set of the
(unique) solutions of (Ipp), where in (Ipp), u(0,2) = ug(x) on 2 is replaced by
u(to,x) = ug(x) on  with ¢y € [0,Tp). Let Spp = U(to,uo)e[O,To)xASto,uU' Then
{T, X, A, Spp} is a dynamical system. When 7', X, and A are known from context,
we refer to this system simply as dynamical system Spp.

Because A(t, z, D) is in general time-varying, (I pp) will in general not generate a
semigroup. However, in the special case when A(¢, x, D) = A(x, D), the following
result has been established (refer, e.g., to Pazy [39]).
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Theorem 2.10.3 In (Ipp), let

A(z, D)= > an(z)D"

lal<2m

be strongly elliptic on §2 and let Au 2 A(z, D)u be defined on
D(A) = H*™[Q,C] N H"[Q,C].
Then A is the infinitesimal generator of a Cp-semigroup on Ls[Q, C]. a

We conclude by pointing out that dynamical systems (as well as nonlinear semi-
groups) are determined by nonlinear partial differential equations as well. We do not
pursue this topic in this book.

2.11 Composite Dynamical Systems

Problems that arise in science and technology are frequently described by a mixture
of equations. For example, in control theory, feedback systems usually consist of an
interconnection of several blocks, such as the plant, the sensors, the actuators, and
the controller. Depending on the application, these components are characterized
by different types of equations. For example, in the case of distributed parameter
systems, the plant may be described by a partial differential equation, a functional
differential equation, or by a Volterra integrodifferential equation, and the remaining
blocks may be characterized by ordinary differential equations or ordinary differ-
ence equations. In particular, the description of digital controllers involves ordinary
difference equations.

The above is an example of a large class of composite systems. Depending on the
context, such systems are also referred to in the literature as interconnected systems
and decentralized systems (e.g., [31]). When the motions of some of the system
components evolve along different notions of time (continuous time R and discrete
time N) such systems are usually referred to as hybrid systems (e.g., [45], [46]).

In the present section, we confine our attention to interconnected (resp., composite)
dynamical systems whose motion components all evolve along the same notion of
time. In the next section, where we address discontinuous dynamical systems, and
specific examples of hybrid dynamical systems, we relax this requirement. A metric
space (X, d) is said to be nontrivial if X is neither empty nor a singleton, it is said
to be decomposable if there are nontrivial metric spaces (X1, d;) and (X2, d3) such
that X = X; x Xo, and it is said to be undecomposable if it is not decomposable.

Now let (X, d), (X;,d;), ¢ = 1,...,l, be metric spaces. We assume that X =
X1 X -+ x X and that there are constants ¢; > 0 and ¢y > 0 such that

l
Cld .’E y Z xwyz < ng(LE y)
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forallz,y € X, where x = [z1,...,2)",y = [y1,...,y]T, x; € X;,and y; € X;,
1t = 1,...,1. We can define the metric d on X in a variety of ways, including, for

example,
l

d(x,y) =Y di(wi, yi).

i=1

Definition 2.11.1 [34] A dynamical system {T', X, A, S} is called a composite dy-
namical system if the metric space (X, d) can be decomposed as X = X7 x -+ x X,

[ > 2, where X7,...,X; are nontrivial and undecomposable metric spaces with
metrics dy, ..., d;, respectively, and if there exist two metric spaces X; and X,
1,7 =1,...,1, 1 # j, that are not isometric. O

The following example may be viewed as a distributed control (in contrast to a
boundary control) of a plant that is governed by the heat equation and a controller that
is governed by a system of first-order ordinary differential equations. The variables
for the controller and the plant are represented by z1 = 21(t) and zo = 2z3(t, ),
respectively.

Example 2.11.1 [31], [40] We consider the composite system described by the
equations

2(t) = Az (t) + [ f(2)2a(t, 2)da, t e RY
%(t,x) = alz(t,z) + g(z)ct 2 (t), (t,z) ERT x Q 2.11.1)
ZQ(t,fL') =0 (t7$) e R+ x BQ

where 21 € R™ 20 € R, A € R™*™ ¢ € R™, fand g € Ly[Q,R], a > 0, Q is
a bounded domain in R™ with a smooth boundary 02, and A denotes the Laplacian
(e, A = Y0  0?/0x?). The system of equations (2.11.1) may be viewed as a

differential equation in the Banach space X 2 R™ x Hy[Q, R] where Hp[2, R] is
the completion of Cy[©2, R] with respect to the Ly-norm and Hy[2, R] C Ly[Q, R]
(refer to Section 2.10). For every initial condition zg = [219, 220] € R™ x Hy[{, R],
there exists a unique solution z(t, zg) which depends continuously on zy. For a proof
of the well posedness of system (2.11.1), refer to [31].

The set of all solutions of (2.11.1) clearly determines a composite dynamical
system. O

2.12 Discontinuous Dynamical Systems

All of the various types of dynamical systems that we have considered thus far include
either discrete-time dynamical systems or continuous continuous-time dynamical sys-
tems (which we simply call continuous dynamical systems). In the present section
we address discontinuous dynamical systems (continuous-time dynamical systems
with motions that need not be continuous), which we abbreviate as DDS. Although
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the classes of DDS which we consider are very general, we have to put some restric-
tions on the types of discontinuities that we allow. To motivate the discussion of this
section and to fix some of the ideas involved, we first consider an important specific
example.

Discrete-time dynamics

or
- - x(t) w(Ty) Discrete-event dynamics
Continuous-time Interface or
dynamics elements Logic commands
v(t) u(ty) or

Figure 2.12.1: DDS configuration.

In Figure 2.12.1 we depict in block diagram form a configuration that is applicable
to many classes of DDS, including hybrid systems and switched systems. There is
a block that contains continuous-time dynamics, a block that contains phenomena
which evolve at discrete points in time (discrete-time dynamics) or at discrete events,
and a block that contains interface elements for the above system components. The
block that contains the continuous-time dynamics is usually characterized by one
or several types of the equations or inequalities defined on R* enumerated in the
previous sections (Sections 2.3, 2.4, and 2.6-2.10) whereas the block on the right in
Figure 2.12.1 is usually characterized by difference equations or difference inequal-
ities of the type addressed in Section 2.5 or it may contain other types of discrete
characterizations involving, for example, Petri nets, logic commands, various types
of discrete-event systems, and the like. The block labeled Interface Elements may
vary from the very simple to the very complicated. At the simplest level, this block
involves samplers and sample and hold elements. The sampling process may involve
only one uniform rate, or it may be nonuniform (variable rate sampling), or there may
be several different (uniform or nonuniform) sampling rates occurring simultaneously
(multirate sampling).

Example 2.12.1 [29], [46] Perhaps the simplest specific example of the above class
of systems are sampled-data control systems described by the equations

#(t) = Apz(t) + Bro(t), T <1< Tt
Z((Z)ki) . C)‘ku(ﬂc) + Dyw(7k), et (2.12.1)
w(mk) = (T 1),

where k € N,t € Rt z(t) € R", u(rx) € R™, {71} denotes sampling instants,
Ay, By, Ck, Dy, are real matrices of appropriate dlmensmns, v(-) and w(-) are inter-
face variables, and z(77) = limgy_, o+ z(7 — 6).
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Now define Z(t) = x(t),t > 79 andu( ) =v(t) =u(m), e <t < Tpy1,k €N,
Then Z(t) = x(¢t~) att = 7, and U(¢t~) = u(7y) at t = 7541 forall k € N. Let
y(t)T = [#(t)T,u(t)T). Letting

_ |4 B I 0

where I denotes the n x n identity matrix, the system (2.12.1) can be described by
the discontinuous ordinary differential equation

{ §(t) = Fry(t), e St < Thyt 0122

y(t)ZHky(t_), t = Tit1, k e N.

Next, for k € N, let yx (¢, yx, 7k ), t > Tk, denote the unique solution of the initial

value problem
y(t) = Fry(t),
Y

() = 1 (2.12.3)

Then clearly, for every yg € R™™™, the unique solution of the DDS (2.12.2) is
given by
y(tyy()vTO) = yk(t7yk’77-k’)7 T St < Tk+1, k e N.

Thus, the solutions of (2.12.2) are made up of an infinite sequence of solution seg-
ments determined by the solutions of (2.12.3), £ € N, and these solutions may be
discontinuous at the points of discontinuity given by {7 },k = 1,2,... . Finally, it
is clear that the solutions of (2.12.2) determine a DDS. O

In Chapter 3 we develop a stability theory for general DDS, {R ™, X, A, S}, defined
on metric spaces, and in subsequent chapters, we specialize this theory for specific
classes of finite-dimensional and infinite-dimensional dynamical systems determined
by various equations and semigroups of the type described in the present chapter. In
order to establish meaningful and reasonable results, it is necessary to impose some
restrictions on the discontinuities of the motions p € S, which of course should
conform to assumptions that one needs to make in the modeling process of the DDS.
Unless explicitly stated otherwise, we assume throughout this book that for a given
discontinuous motion p € S, the set of discontinuities is unbounded and discrete and
is of the form

Ey, = {Tf,T;,...ZT{)<T§< }

In the above expression, Fq,, signifies the fact that in general, different motions may
possess different sets of times at which discontinuities may occur. Because in most
cases, the particular set Fq, in question is clear from context, we usually suppress
the p-notation and simply write

E1:{T1,TQ,...ZT1<T2<"'}.

In the remainder of this section we consider several important specific classes of DDS.
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A. Ordinary differential equations

The sampled-data control system (2.12.1) which equivalently is represented by the
discontinuous differential equation (2.12.2) is a special case of discontinuous ordinary
differential equations of the form
z(t) = fr(t,x(t)), T <1< Tkt1,
()= fu(t.2(),  m<t<mn (se)
x(t) = gr(z(t7)), t="Tkpt1, kEN

where foreach k € N, f, € C[RT x R",R"], gy: R" — R™, and z(77) is given in
Example 2.12.1.
Associated with (SE), we consider the family of initial value problems given by

{ i(t) = fu(t, x(t)) (SEy)
(E(’Tk) = Tk,

k € N. We assume that for (13,, z), (S E},) possesses a unique solution %) (¢, 2, 1)
which exists for all ¢ € [, 00) (refer to Section 2.3 for conditions that ensure this).
Then for every (tg, xg) € RT x R" 5 = 79, (SF) has a unique solution z (¢, zq, to)
that exists for all ¢ € [tg, 00). This solution is made up of a sequence of continuous
solution segments a;(k)(t, X, Tk), defined over the intervals [y, T1) With initial
conditions (7, zy), k € N, where 341 = 2(7k11) = gr(z(7,,)),k € N and the
initial conditions (19 = to, zo) are given. At the points {7411}, k € N, the solutions
of (SE) have possible jumps (determined by g (-)).

The set of all the solutions of (SE), Ssg, determines a DDS, {R*, X, A, Ssg},
where X = A = R".

B. Functional differential equations ([43])

For the notation that we use in the present subsection, the reader should refer to
Section 2.7.

We first consider a family of initial value problems described by continuous re-
tarded functional differential equations (RFDEs) of the form

Tr, = Pk

{ l‘(t) :Fk(tvxt)7 (SFk)

k € N. Foreach k € N we assume that F), € C[R* x C,., R"] and that (SF},) is well
posed so that for every (7, px) € RT x C,., (SF) possesses a unique continuous
solution x(F)(t, ¢y, 1) that exists for all ¢ € [}, 00). (For conditions that ensure
this, refer to Section 2.7.)

We now consider discontinuous RFDEs of the form

{ x(t):Fk(tvxt)v Tk §t<’7—k+1

F
Ty, = G (ka_H), keN (SF)
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where for each £ € N, F}, is assumed to possess the identical properties given in
(SFy) and Gy: C, — C,.. Thus, at t = 71, the mapping G (-) assigns to every
state mT{H(xTEH(H) = 2(7,; +0), —r < 6 < 0) unambiguously a state =,
(x7k+1 (9) = I(Tk-i-l + 0)’ —r<6< O)

Under the above assumptions for (SF') and (SF}), it is now clear that for every
(to, o) € RT x C,., tg = 79, (SF) has a unique solution (¢, g, tg) that exists for all
t € [to, 00). This solution is made up of a sequence of continuous solution segments
z®) (t, ok, Tx) defined over the intervals |1y, 7x+1),k € N, with initial conditions
(Tky 0k ), where @, = 2, k = 1,2,... and where (79 = t¢, o) are given. At the
points {7511}, k € N, the solutions of (SF') have possible jumps (determined by
Gr ().

It is clear that (S F’) determines an infinite-dimensional DDS, {T, X, A, S}, where
T =R", X = A = C,, the metric on X is determined by the norm || - || defined
on C, (i.e., d(p,n) =| ¢ —n || for all p,n € C,), and S denotes the set of all the
solutions of (S F) corresponding to all possible initial conditions (¢g, o) € Rt x C..
In the interests of brevity, we refer to this DDS as “system (SF)” or as “(SF)”.

C. Differential equations in Banach spaces ([32])

We first consider a family of initial value Cauchy problems in Banach space X of

the form
z(t) = Fi(t, z(t)), t 2> T,
{ 840 =Filtat (560
(1) = xg
for k € N. For each k € N, we assume that F},: R* x X — X and that & = dx/dt.
We assume that for every (3, x;) € RT x X, (SG}) possesses a unique solution
x®)(t, 21, 7;) that exists for all t € [r3,,00). We express this by saying that (SG},)
is well posed.
We now consider discontinuous initial value problems in Banach space X given by
{ x(t) :Fk(t’x(t))L T << Thy1 (SG)
2(Try1) = gr(@(7,,1))s keN

where for each & € N, F}; is assumed to possess the identical properties given in
(SG}) and where g, : X — X. Under these assumptions, it is clear that for every
(to,z0) € RT x X, to = 79, (SG) has a unique solution z(¢, zo,to) that exists
for all ¢ € [tp,00). This solution is made up of a sequence of solution segments
¥ (t, x1,,73,), defined over the intervals [Tk, Tk+1), k € N, with initial conditions

(g, xx ), where x = x(7%), k = 1,2,..., and where (79 = to,x¢) are given. At
the points {7541}, k € N, the solutions of (SG) have possible jumps (determined
by gx(")).

Consistent with the characterization of a discontinuous dynamical system given in
Section 2.2, it is clear from the above that system (SG) determines a DDS, {7, X
A, S}, where T = RT, A = X, the metric on X is determined by the norm || - ||
definedon X (i.e.,d(x,y) =|| z—y || forallz,y € X), and S denotes the set of all the
solutions of (SG) corresponding to all possible initial conditions (tg, zg) € RT x X.
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In the interests of brevity, we refer to this DDS simply as “system (SG)”, or simply
as “(SG)”.

D. Semigroups ([33])

We require a given collection of linear or nonlinear semigroups 7 = {T;(t)} defined
on a Banach space X, or on a set C' C X, respectively; and a given collection
of linear and continuous operators H = {H,;}(H;: X — X), or of nonlinear and
continuous operators (H;: C — C); and a given discrete and unbounded set E =
{to = 70, 7T1,72,...:Tg < 71 < T2+-+} C RT. The number of elements in 7 and
‘H may be finite or infinite.

We now consider dynamical systems whose motions y(-, yo, to) with initial time
to = 70 € R and initial state y(to) = yo € X (resp., yo € C C X) are given by

{ y(t, yo, to) = Ti(t — 1) (y(7k))s T <t < Thyt,
y(t) = Hi(y(t7)), t="7p1, keN,

We define the DDS determined by semigroups as

(SH)

S = {y = y('7xat0): y(tax>t0) = Tk(t - Tk)(y(Tk:))u Tk S t < Tk41,
y(t) = Hy(y(t™)), t =7ks1, kEN, tog =1 € R,
y(r0) =z € X, resp., v € C C X}. (2.12.4)

Note that every motion y(-, z, to) is unique, with y (o, =, tg) = x, exists for all t > tg,
and is continuous with respect to ¢ on [tg,00) — {71, 72,...}, and that at t = 7,
k=1,2,...,y(-,x,to) may be discontinuous. We call the set £y = {1y, 72,...}
the set of discontinuities for the motion y(-, z, to).

When in (2.12.4), T consists of Cp-semigroups, we speak of a DDS determined by
linear semigroups and we denote this system by Sp¢,. Similarly, when in (2.12.4),
T consists of nonlinear semigroups, we speak of a DDS determined by nonlinear
semigroups and we denote this system by Spx. When the types of the elements in
T are not specified, we simply speak of a DDS determined by semigroups and we
denote this system, as in (2.12.4), by S.

Finally, if in the case of Spc,, the elements in H are linear, we use in (SH) the
notation T (¢ — 74)(y(7x)) = Tk (t — 7i)y(7k) and Hy(y(t™)) = Hry(t™).

Next, a few observations may be in order:

(a) For different initial conditions (z, ¢y ), resulting in different motions y(-, z, to),
we allow the set of discontinuities £y = {71, 72, ... }, the set of semigroups {7} } C
7, and the set of functions {H} C H to differ, and accordingly, the notation
EPY = [Pt ot 3 {TE"} and {H} ™} might be more appropriate. How-
ever, because in all cases, all meaning is clear from context, we do not use such
superscripts.

(b) Spc, and Spy are very general classes of DDS and include large classes of
finite-dimensional dynamical systems determined by ordinary differential equations
and inequalities and large classes of infinite-dimensional dynamical systems deter-
mined by differential-difference equations, functional differential equations, Volterra



58 Chapter 2. Dynamical Systems

integrodifferential equations, certain classes of partial differential equations, and the
like.

(c) The dynamical system models Spc, and Sp are very flexible and include as
special cases, many of the DDS considered in the literature (e.g., [2], [10], [28], [29],
[30], [46]), as well as general autonomous continuous dynamical systems: (i) If
Ti(t) = T'(¢) for all k£ (T has only one element) and if H, = I for all k, where
I denotes the identity transformation, then Spc¢, reduces to an autonomous, linear,
continuous dynamical system and Spy reduces to an autonomous, nonlinear, con-
tinuous dynamical system. (ii) In the case of dynamical systems subjected to impulse
effects (see, e.g., [2]), one would choose T (t) = T'(¢) for all k whereas the impulse
effects are captured by an infinite family of functions H = { Hy}. (iii) In the case of
switched systems, frequently only a finite number of systems that are being switched
are required and so in this case one would choose a finite family of semigroups,
T = {T;(t)} (see, e.g., [10], [46]); and so forth. (iv) Perhaps it needs pointing out
that even though systems Spy and Spc, are determined by families of semigroups
(and nonlinearities), by themselves they are not semigroups, inasmuch as in general,
they are time-varying and do not satisfy the hypotheses (i)—(iii) in Definitions 2.9.1
and 2.9.5.

We conclude with a specific example involving partial differential equations.

Example 2.12.2 [33] (DDS determined by the heat equation) We let 2 C R™ be a
bounded domain with smooth boundary 92 and we let A = 3" | 9% /9x7 denote the
Laplacian. Also, we let X = H?[Q,R] N H} [, R] where H} [, R] and H?[), R]
are Sobolev spaces (refer to Section 2.10). For any ¢ € X, we define the H'-norm by

o |2 = /Q (17 ol + lol?)de 2.12.5)

where ol = (0¢/0x1,...,00/0x,).
We now consider DDS determined by the equations

%:akAu, (t,(E)G [Tk,Tk+1) x Q
A
u(t, ) = gr(u(t™,-) = err1(), t=Trs1
u(to, ) = po(x), z e
u(t,xz) =0, (t,x) € [tg,00) x O, k€N

(2.12.6)

where g € X, ar > 0, k € N, are constants, {g } is a given family of mappings
with g, € O[X,X],k‘ € N,and F = {to =T0,T1y----Tp < T1 < Tg < } is
a given unbounded and discrete set. We assume that g, (0) = 0 and there exists a
constant d;, > 0 such that

I 95 (0) [l < di || @ g (2.12.7)

forallp € X,k € N.
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Associated with (2.12.6) we have a family of initial and boundary value problems
determined by

ou

— = arpAu, (t,x) € [1g,00) X Q

oL 2.12.8
u(Tg, ) = pr(z), zeN (2.12.8)
u(t,xz) =0, (t,x) € [1g,00) x O,

k € N. It has been shown (e.g., [39]) that for each (73, ¢x) € RT x X, the initial and
boundary value problem (2.12.8) has a unique solution ug, = ug (¢, z),t > 14, € €,
such that uy(t,-) € X for each fixed ¢ > 75 and ug(t,-) € X is a continuously
differentiable function from |74, 00) to X with respect to the H'-norm given in
(2.12.5).

It now follows that for every o € X, (2.12.6) possesses a unique solution w(t, -)
that exists for all ¢ > 79 > 0, given by

ug(t,-), <t<
ult, ) = k(t) A T The1 (2.12.9)
gk(uk(t 7)) = (pk+1(')7 t= Tk+1, keN

with u(tg, ) = ¢o(x). Notice that u(t, -) is continuous with respect to ¢ on the set
[to,00) — {71, 72,... },and thatatt = 73,k = 1,2,..., u(t, -) may be discontinuous
(depending on the properties of gi(+)).

For each k € N, (2.12.8) can be cast as an initial value problem in the space X
with respect to the H!-norm, letting uy(, ) = Uy(t),

{ U(t) = AUx(t),  t>k

(2.12.10)
Ue(mi) = € X

where Ay = ak2?=1 0?/0z% and Uk (t, @1 ), t > Tk, denotes the solution of (2.12.10)
with U (7x, v ) = k. It has been shown (see, e.g., [39]) that (2.12.10) determines a
Cy-semigroup Ty (t—7%) : X — X, where forany ¢, € X, Ui (¢, ox) = T(t—7%) k-

Letting uy(t,-) = Ti(t — 7%)ur(x) in (2.12.9), system (2.12.6) can now be
characterized as

{ u(t,~) :Tk(t—?)uk(ﬂc,-), T §t<’7'k+1 2.12.11)
u(t,~):gk(uk(t ,~)), t = Tk+1, k € N.

Finally, it is clear that (2.12.6) (resp., (2.12.11)) determines a DDS which is a special
case of the DDS (S H). O

2.13 Notes and References

Depending on the applications, different variants of dynamical systems have been
employed (e.g., Hahn [18], Willems [44], and Zubov [48]). Our concept of dynamical
system (Definition 2.2.3) was first used in [35], [36] and extensively further refined
in [34] in the study of the role of stability-preserving mappings in stability analysis
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of dynamical systems. In the special case when X is a normed linear space and
each motion p(t, a, ty) is assumed to be continuous with respect to a, t, and ¢, the
definition of a dynamical system given in Definition 2.2.3 reduces to the definition
of a dynamical system used in Hahn [18, pp. 166-167] (called a family of motions in
[18]). When the motions satisfy additional requirements that we do not enumerate,
Definition 2.2.3 reduces to the definition of a dynamical system, defined on metric
space, used by Zubov [48, p. 199] (called a general system in [48]). The notion of a
dynamical system employed in [44] is defined on normed linear space and involves
variations to Definition 2.2.3 which we do not specify here.

In the problem section we provide hints on how to prove the results given in
Section 2.3. For the complete proofs of these results (except Theorem 2.3.3) and for
additional material on ordinary differential equations, refer to Miller and Michel [37].
Our treatment of the continuation of solutions (Theorem 2.3.3) is not conventional,
but very efficient, inasmuch as it involves Lyapunov results developed in subsequent
chapters.

Ordinary differential inequalities (and ordinary difference inequalities) play an
important role in the qualitative analysis of dynamical systems (see, e.g., [26]) and
are employed throughout this book.

Good sources on ordinary difference equations, with applications to control sys-
tems and signal processing include Franklin and Powell [13] and Oppenheim and
Schafer [38], respectively.

For the complete proofs of Theorems 2.7.1-2.7.3, and additional material on func-
tional differential equations, refer to Hale [19]. Hale is perhaps the first to treat
Volterra integrodifferential equations as functional differential equations with infinite
delay [20]. For a proof of Theorem 2.8.1, refer to Barbu and Grossman [3].

For the proofs of Theorems 2.9.1-2.9.4 and for additional material concerning C,-
semigroups, refer to Hille and Phillips [21], Krein [23] (Chapter 1), and Pazy [39].
For the proof of Theorem 2.9.5, refer to Slemrod [42]. For the proofs of Theorems
2.9.6 and 2.9.7 and for additional material concerning nonlinear semigroups and
differential inclusions defined on Banach spaces, refer to Crandall [8], Crandall and
Liggett [9], Brezis [5], Kurtz [25], Godunov [15], Lasota and Yorke [27], and Aubin
and Cellina [1]. Our presentation in Section 2.9 on semigroups and differential
inclusions defined on Banach spaces (see also Section 2.6) is in the spirit of the
presentation given in Michel and Miller [31] (Chapter 5), and Michel et al. [34].

For the proofs of Theorems 2.10.1-2.10.3, and additional material concerning
partial differential equations, refer to Krein [23], Friedman [14], and Pazy [39]. Ad-
ditional sources on partial differential equations include Hérmander [22] and Krylov
[24]. Our presentation on partial differential equations in Section 2.10 is in the spirit
of Michel and Miller [31, Chapter 5] and Michel et al. [34, Chapter 2].

Our presentation on composite dynamical systems in Section 2.11 is primarily
based on material from Michel and Miller [31], Michel et al. [34, Chapter 6], and
Rasmussen and Michel [40], and Section 2.12 on discontinuous dynamical systems re-
lies primarily on material from Michel [29], Michel and Hu [30], Michel and Sun [32],
Michel et al. [33], Sun et al. [43], and Ye et al. [46]. Finally, for a general formulation
of a hybrid dynamical system defined on a metric space (involving a notion of



Section 2.14 Problems 61

generalized time), refer to Ye et al. [45] with subsequent developments given in
Ye et al. [46], Sun et al. [43], Michel et al. [33], Michel and Sun [32], Michel and
Hu [30], and Michel [29].

2.14 Problems

Problem 2.14.1 Consider a class of scalar nth-order ordinary differential equations
given by

y(n) = g(t7 yv e 7y(n71)) (Eﬂ)
where t € J C R, J is a finite or an infinite interval, y € R, § = y») = dy/dt, ...,
y(™) = d"y/dt",and g € C[J x R™, R]. Initial value problems associated with (E,,)
are given by

™) = g(t, 5.y
{ Yy gt y,...,y ) (Is.)

y(to) = vo, Hto) =41, -, y" V(o) = yn 1
where ty € J and yo,y1,.-.,Yn—1 € R.
Show that (E,,) determines a dynamical system (in the sense of Definition 2.2.3)
that we denote by Sg, .
Hint: Show that (&,,) (and (I, )) can equivalently be represented by a system of
n first-order ordinary differential equations. O

Problem 2.14.2 Consider a class of nth-order ordinary scalar difference equations
given by

where k € N, 2 [n,00) N, n € N,y: N — R, and g: N,, x R* — R. Associated
with (D,,), consider initial value problems given by

{ y(k) = g(k,y(k = 1),...,y(k —n))

y(0) = yo, y)=y1,...,y(n—1) =yp_1 (Ip,)

where yo, Y1,---,Yn_1 € R.

Show that (D,,) determines a dynamical system (in the sense of Definition 2.2.3)
which we denote by Sp,,.

Hint: Show that (D,,) (and (Ip,,)) can equivalently be represented by a system of
n first-order ordinary difference equations. O

Problem 2.14.3 Let D denote a fixed Dini derivative and let g € C[J x (R*)", R"]
where g(t,0) > 0 for all ¢ € J. Consider differential inequalities given by

Dz > g(t, x) (2.14.1)

and define a solution of (2.14.1) as a function ¢ € C[[to,t1), (RT)"] that satisfies
(Do) (t) > g(t,(t)) forall ¢ € [tg,t1) C J. Associated with (2.14.1), we consider
initial value problems given by

Dz > ¢(t, z), x(to) = xo (2.14.2)
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where t € J and zg € (0, 00)"U{0}. We say thatp€ C[[to, 1), (RT)"] is a solution
of (2.14.2) if () = 0.
Show that (2.14.1) determines a dynamical system that we denote by S 14.1). O

Problem 2.14.4 Consider ordinary difference inequalities given by
x(k+1) > g(k,z(k)) (2.14.3)

where k € Nand g: Nx (RT)™ — (R™)™ with g(k,0) > Oforall k € N. A function
¢: N, — (RT)™ is a solution of (2.14.3) if

o(k+1) > gk, p(k))

for all & € Ny, . In this case (ko) is an initial value.
Show that (2.14.3) determines a dynamical system that we denote by S(2.14.3). O

Problem 2.14.5 (a) In Figure 2.14.1, M; and M> denote point masses, K1, Ko, K
denote spring constants, and x1, x> denote displacements of the masses M7 and Mo,
respectively. Use the Hamiltonian formulation of dynamical systems described in
Example 2.3.7 to derive a system of first-order ordinary differential equations that
characterize this system. Verify your answer by using Newton’s second law of motion
to derive the same system of equations. By specifying x1 (o), Z1(t0), 2(to), and
#2(to), the above yields an initial value problem.

(b) Show that the above mechanical system determines a dynamical system in the
sense of Definition 2.2.3. m|

K, K K,

4/\AAN\/ M, M, WVW

7

Figure 2.14.1: Example of a conservative dynamical system.

Problem 2.14.6 (a) In Figure 2.14.2, K, K, K, M;, and M, are the same as in
Figure 2.14.1 and B;, B2, and B denote viscous damping coefficients. Use the
Lagrange formulation of dynamical systems described in Example 2.3.8 to derive two
second-order ordinary differential equations that characterize this system. Transform
these equations into a system of first-order ordinary differential equations. Verify
your answer by using Newton’s second law of motion to derive the same system
of equations. By specifying x1 (o), Z1(t0), z2(to), and d2(to), the above yields an
initial value problem.

(b) Show that the above mechanical system determines a dynamical system in the
sense of Definition 2.2.3. o
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i = i
M, M %
WY 7
K /
' : 7/

B, B,

Figure 2.14.2: Example of a mechanical system with energy dissipation.

Problem 2.14.7 The following result, called the Ascoli-Arzela Lemma, is required
in the proof of Problem 2.14.8 given below.

Let D be a closed and bounded subset of R™ and let {f,,} be a sequence of
functions in C[D,R"]. If {f,.} is equicontinuous and uniformly bounded on D,
then there is a subsequence { f,,1} and a function f € C[D,R"] such that {f,,.x}
converges to f uniformly on D. Recall that { f,,,} is equicontinuous on D if for every
e > (0 there is a & > 0 (independent of z, y, and m) such that

|fm () — fm(y)| < e whenever |z —y| <d

forall z,y € D and for all m. Recall also that { f,,, } is uniformly bounded if there is
a constant M > 0 such that | f,,, (z)| < M for all z € D and for all m.

Hint: To prove the Ascoli-Arzela Lemma, let {r;},k € N, be a dense subset
of D. Determine a subsequence { fx,, } and a function f defined on {rj} such that
fem(rx) — f(rk) as m — oo for all k& € N. Next, prove that the subsequence
{fmm} converges to {f} on {ry},k € N, uniformly as m — oo. Conclude, by
extending the domain of f from {r} to D.

For a complete statement of the proof outlined above, refer to Miller and
Michel [37]. O

Problem 2.14.8 Prove Theorem 2.3.1.

Hint: First, show that for every ¢ > 0 there exists a piecewise linear function
@e: J — R™ such that @, (tg) = o, (to, zo) € D, and |p(t) — f(t, ¢ (t))| < € for
all t € [to,to + ¢| (where ¢, is defined) for some ¢ > 0 and (¢, ¢.(¢)) € D for all
t € [to, to + ] (e is called an e-approximate solution of (IEg).)

Next, let ¢, be an e-approximate solution of (/) with €, = 1/m. Show that
the sequence {®,, } is uniformly bounded and equicontinuous.

Finally, apply the Ascoli-Arzela Lemma to show that there is a subsequence { ¢y, }
of {¢m} given above and a ¢ € C|[to, to + c], R"] such that {1} converges to ¢
uniformly on [tg, tg + ¢], and such that ¢ satisfies

o(t)=x0+ [ f(s,9(s))ds

to

fort € [to,to + ¢|. Therefore, ¢ is a solution of (/).



64 Chapter 2. Dynamical Systems

For a complete statement of the proof outlined above, refer to Miller and
Michel [37]. O

Problem 2.14.9 The following result, called the Gronwall Inequality is required in
the proof of Problem 2.14.10 given below.
Letr, k € Cla,b],RT] and let § > 0 such that

t

r(t) <é —|—/ k(s)r(s)ds, a<t<hb. (2.14.4)

Then .
r(t) < dexp {/ k(s)ds] , a<t<hbh. (2.14.5)

Hint: For § > 0, integrate both sides of

k(s)r(s) 3
5T Ry~ )

from a to t. Use inequality (2.14.4) to conclude the result when § # 0. When § = 0,
consider a positive sequence {d,} such that §,, — 0 as n — oo and apply it to
(2.14.5).

For a complete statement of the proof outlined above, refer to Miller and
Michel [37]. a

Problem 2.14.10 Prove Theorem 2.3.2
Hint: Apply the Gronwall inequality given above in Problem 2.14.9.
For a complete statement of the proof, refer to Miller and Michel [37]. O

Problem 2.14.11 The following result is required in the proof of Problem 2.14.12
given below.

Let D C R x R™ be a domain. Let f € C[D,R"] with f bounded on D and let
¢ be a solution of (E) on the interval (a, b). Show that

(a) The two limits lim; .+ ¢(t) = ¢(a™) and lim; ;- ¢(t) = ¢(b™) exist.

(b) If (a,p(a™)) € D(resp., (b, p(b™)) € D), then the solution ¢ can be continued
to the left past the point ¢ = a (resp., to the right past the point ¢t = b).

(A complete statement of the proof of the above result can be found in Miller and
Michel [37].) O

Problem 2.14.12 Prove Theorem 2.3.3.
Hint: Use the result given in Problem 2.14.11. O

Problem 2.14.13 Prove Theorem 2.7.1.

Hint: To prove this result, use Schauder’s Fixed Point Theorem: A continuous
mapping of a compact convex set in a Banach space X into itself has at least one
fixed point. Let T be the operator defined by (2.7.7). Find a compact convex set
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X C C[[to — r,to + c],R"] for some ¢ > 0 such that T(X) C X. Now apply
Schauder’s Fixed Point Theorem. A possible choice of X is given by

X = {z € C[[-r+to, to+c,R"]: @y =, || 2~ ||< d forall t € [tg,to+c]},

where 0 < ¢ < d/M, d > 0 sufficiently small, with M > |f(¢, )| for all (¢,¢) ina
fixed neighborhood of (g, %) in 2.
For the complete proof of Theorem 2.7.1 outlined above, refer to Hale [19]. O

Problem 2.14.14 Prove Theorem 2.7.2.
Hint: Let 2(t) and y(t) be two solutions of (Ir). Then

t
x(t)—y(t) :/ [f(saxs)_f(says)] dS, t > to, Tty = Yto =0.
to
Using the above, show that there exists a ¢g > 0 such that z(t) = y(t) for all
t € [to — 7, to + co]. To complete the proof, repeat the above for successive intervals
of length cg.
For the complete proof of Theorem 2.7.2 outlined above, refer to Hale [19]. O

Problem 2.14.15 The following result is required in the proof of Problem 2.14.16
given below.

Let 2 be an open set in R x C. and let ': 0 — R"™ be completely continuous.
Assume that p € C[[to — r,b),R"] is a noncontinuable solution of (F)). Show that
for any bounded closed set U in R x C,., U C , there exists a tyy € (to, b) such that
(t,p:) ¢ U forevery t € [ty,b].

Hint: The case b = oo is clear. Suppose that b is finite. The case » = 0 reduces to
an ordinary differential equation. So assume that > 0. Now prove the assertion by
contradiction, assuming that b < co and r > 0. O

Problem 2.14.16 Prove Theorem 2.7.3.
Hint: Apply the result given in Problem 2.14.15. For the complete proof, refer to
Hale [19]. |

Problem 2.14.17 Prove Theorem 2.8.1.
Hint: Using the theory of Cy-semigroups, refer to Example 2.9.3 for a choice of
the infinitesimal generator for the Cy-semigroup (refer to [3]). O

Problem 2.14.18 Consider the initial value problem

&= A(t)x
{ z(to) = 7o (LH)

where A € C[RT, R"*"].

(a) Show that the set of solutions obtained for (LH) by varying (to,xo) over
(R*,R™) determines a dynamical system in the sense of Definition 2.2.3.

(b) Show that in general, (L H) does not determine a Cy-semigroup.

(c) Show that when A(t) = A, (LH) determines a Cp-semigroup. |
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Problem 2.14.19 Prove the assertion made in Example 2.9.1 that the initial value
problem (2.9.4) determines a quasi-contractive semigroup. O

Problem 2.14.20 Consider the initial value problem for the heat equation

0 ,
au =a’Au,z € R", teRT
ot

u(0,x) = p(x), zeR"

(2.14.6)

where a > 0, A = Y7 | §%/027, and ¢ € C[R™, R] is bounded.

(a) Verify that the unique solutions of (2.14.6) are given by Poisson’s formula,

1 2 2
wlt,z) = o—lo—yl?/(4a20) o a0
(t, ) avaD)" / e(y)dy
(b) Show that the operators T'(t),t € R, determined by u(t,-) = T'(t)yp, deter-
mine a Cy-semigroup. ]

Problem 2.14.21 Consider the initial value problem for the one-dimensional wave
equation

Pu 0% .
= o Tl tek (2.147)
u(0.2) = p(a), 5 (0.2) = (@), weR

where ¢ > 0, ¢ € C?[R,R], and ¢ € C*[R,R].
(a) Verify that the unique solution of (2.14.7) is given by d’Alembert’s formula

| —

x+ct
u(t.o) = 5 lole —ct) +pla ] + 5o [ wln

c —ct

(b) Let v = 0. For ¢ € C?[R,R], define the operators T'(t), t € RT, by
T(t)p = u(t,-). Show that T'(t),t € RT, do not satisfy the semigroup property
(specifically, they do not satisfy the property T'(t)T'(s) = T'(t + s),t,s € RT).

(c) Now let u(t, ¢, tg) denote the solutions of

Pu ,0%

22 TR, t >t

ot? Ox? ou (2.14.8)
u(to, x) = p(x), a(to,x) =0, reR

where g € RT and ¢ € C?[R,R]. Show that for all ¢ € C?[R,R], the resulting
solutions u(t, ¢, to) form a dynamical system in the sense of Definition 2.2.3 with
T = R*, X = A = C?R, R] where we assume that X is equipped with some norm

(e.g || ¢ [|[= maxser [¢(x)]). o
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Problem 2.14.22 We now consider a specific class of multirate digital feedback con-
trol systems. The plant is described by

CI?(t) = A.%‘(t) + Blulc(t) + BQUQC(t)

o01= ] = o 2

where € R", Aec R"*"™ By € R"*™ By € R"*"2 D; € R™*" D, € R™M2%",
u1e € R™ uy. € R™2, and

{ ure(t) = uy (k), KTy <t < (k+1)T, FEN. 51410

’U,Qc(t) = ’LLQ(QIC), 2T, <t < Q(k + l)Tb, keN.

In (2.14.10), T, > 0 is the basic sampling period whereas u; (k) and ug(2k) are
specified by output feedback equations of the form

ul(k: + 1) = F1U1<k‘) + K1 (k‘Tb)
= Flul(k) + KlDlx(kaL keN (2.14.11)
U2(2(k + 1)) = F2u2(2k) + K2y2(2k'Tb)
= F2u2(2k) + KQDQ.Z‘(Z]{JT;)), keN

where K1, Ko, I, and F5 are matrices of appropriate dimensions. The system inputs
u1.(t) and ug.(t) are realized by multirate zero-order hold elements.

Similarly as in Example 2.12.1, show that the above hybrid system can equiva-
lently be represented by a system of discontinuous ordinary differential equations that
generate a discontinuous dynamical system. O
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Chapter 3

Fundamental Theory: The
Principal Stability and
Boundedness Results on
Metric Spaces

In this chapter we present the Principal Lyapunov and Lagrange Stability Results,
including Converse Theorems for continuous dynamical systems, discrete-time dy-
namical systems, and discontinuous dynamical systems (DDS) defined on metric
spaces. The results of this chapter constitute the fundamental theory for the entire
book because most of the general results that we develop in the subsequent chap-
ters concerning finite-dimensional systems (described on finite-dimensional linear
spaces) and infinite-dimensional systems (defined on Banach and Hilbert spaces) can
be deduced as consequences of the results of the present chapter. Most of the spe-
cific applications to the fundamental theory that we consider therefore are deferred
to the later chapters where we address finite-dimensional and infinite-dimensional
systems. However, after addressing in the next chapter additional (more specialized)
stability and boundedness results for dynamical systems defined on metric spaces,
we present applications to the results of this chapter in Chapter 5 in the analysis of
a class of discrete-event systems (with applications to a manufacturing system and
a computer load-balancing problem) that determine dynamical systems defined on
metric spaces.

The conventional approach in proving the various Principal Lyapunov and La-
grange Stability Results for continuous, discrete-time, and discontinuous dynamical
systems is to show that when a dynamical system satisfies a certain set of hypotheses,
then the system possesses a certain type of stability or boundedness property. For the
reasons discussed below we do not pursue this approach (however, we ask the reader
to do so in the exercise section).

71
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In establishing the results presented in this chapter, we first prove the Principal
Lyapunov and Lagrange Stability Results for discontinuous dynamical systems, using
basic principles and definitions. Next, to establish the Principal Lyapunov and La-
grange Stability Results for continuous dynamical systems, we show that whenever
the hypotheses of a given stability or boundedness result for continuous dynamical
systems are satisfied, then the hypotheses of the corresponding stability or bound-
edness result for DDS are also satisfied (using the fact that continuous dynamical
systems may be viewed as special cases of DDS). This shows that the classical Lya-
punov and Lagrange Stability Results for continuous dynamical systems reduce to the
corresponding results for DDS (i.e., the classical Principal Lyapunov and Lagrange
Stability Results for continuous dynamical systems are more conservative than the
corresponding Lyapunov and Lagrange Stability Results for DDS). Indeed, we present
a result for a continuous dynamical system whose equilibrium can be shown to be
uniformly asymptotically stable, using the uniform asymptotic stability theorem for
DDS, and we show that for the same example, no Lyapunov function exists that sat-
isfies the classical uniform asymptotic stability theorem for continuous dynamical
systems.

Next, we show that for every discrete-time dynamical system there exists an asso-
ciated DDS with identical stability and boundedness properties. Making use of such
associated DDSs, we show that when the hypotheses of a given classical Lyapunov
or Lagrange stability result for discrete-time dynamical systems are satisfied, then
the hypotheses of the corresponding Lyapunov and Lagrange stability result for DDS
are satisfied. This shows that the classical Lyapunov and Lagrange stability results
for discrete-time dynamical systems reduce to the corresponding results for DDS
(i.e., the classical Principal Lyapunov and Lagrange stability results for discrete-time
dynamical systems are more conservative than the corresponding Lyapunov and La-
grange stability results for DDS). We present a specific example of a discrete-time
dynamical system whose equilibrium can be shown to be uniformly asymptotically
stable using the uniform asymptotic stability theorem for DDS, and we show that for
the same example, no Lyapunov function exists that satisfies the classical Lyapunov
theorem for uniform asymptotic stability for discrete-time dynamical systems.

In addition to giving us a great deal of insight, the approach that we employ
in proving the various stability and boundedness results culminates in a unifying
qualitative theory for the analysis of continuous, discrete-time, and discontinuous
dynamical systems. Furthermore, our approach in proving the results presented herein
is more efficient than the conventional approach alluded to earlier.

This chapter is organized into eight sections. In the first section we address
the qualitative characterization of invariant sets of dynamical systems. In the next
three sections we present and prove the principal Lyapunov stability results and the
Lagrange stability results (boundedness of motions) for discontinuous dynamical sys-
tems, continuous dynamical systems, and discrete-time dynamical systems, respec-
tively. This is followed by three sections where we address converse theorems for
DDS, continuous dynamical systems, and discrete-time dynamical systems. Finally,
in Section 3.8 we present some required background material concerning ordinary
differential equations.
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Before proceeding with our subject on hand, we would like to remind the reader that
our definition of dynamical system (Definition 2.2.3) does in general not require that
time be reversible in the motions (in contrast to many dynamical systems determined,
e.g., by various types of differential equations), nor are the motions required to be
unique with respect to initial conditions. For such general systems, when required,
we make an assumption that is akin to the semigroup property, but is more general,
which essentially requires that for a dynamical system S, any partial motion is also
a motion of S, and any composition of two motions is also a motion of S (refer to
Assumption 3.5.1). Of course when in a dynamical system the semigroup property
holds, then Assumption 3.5.1 is automatically implied.

3.1 Some Qualitative Characterizations of Dynamical
Systems

Most, but not all the qualitative aspects of dynamical systems that we address concern
qualitative characterizations of invariant sets. In the present section, we first introduce
the notion of an invariant set of a dynamical system. Next, we present various concepts
of stability of invariant sets, instability of sets, and boundedness of motions.

A. Invariant sets

In the following, we utilize the notation introduced in Chapter 2.

Definition 3.1.1 Let {7, X, A, S} be a dynamical system. A set M C A is said to
be invariant with respect to S, or for short, (S, M) is invariant, if a € M implies
that p(¢,a,tg) € M forallt € T, 4, all to € T, and all p(-, a,tp) € S. O

Recall that Ty, 4, = [to,t1)NT, t1 > to, which means that in the above definition,
evolution in time is forward.

In a broader context, the evolution in time is allowed to be forward as well as
backward. In such cases, a distinction is made between positive invariant set (forward
in time) and negative invariant set (backward in time) (see, e.g., [11]).

We note that the union of invariant sets is also an invariant set.

Example 3.1.1 (Conservative dynamical systems) Recall the Hamiltonian system
given in Example 2.3.7, described by the equations

oOH
ql:aip?(paq)a i:17"'7na

H
b= =5 g i=l.n

(3.1.1)

The solutions of (3.1.1) determine a continuous dynamical system with 7" = R and
X = A =R?", Forany ¢ € R such that the set

M, ={(p,q)" €R*": H(p,q) = c}
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is nonempty, M, is an invariant set. This follows, because

dH
—(p(t),q(t)) =0
S TOR0)
for all solutions (p(t), ¢(¢))T of (3.1.1), as shown in Example 2.3.7. 0

Example 3.1.2 (Heat equation) Let Q C R™ be a domain with smooth boundary
0N and consider the initial value and boundary value problem given by the equations
(see also Chapter 2)

@:aQAm z €N, t>t
ot 3.1.2
ult, ) = p(a),  weQ 612
u(t,x) =0, x €, t>t

where tg > 0,a > 0, A = Y"1 0%/027, and ¢ € C[Q, R] with lim,_,s0 p(z) = 0.
LetT =RT,
X=A4={peC[LR]: wli%lg@(x) =0}

and let X and A be equipped with the norm
lell = max e (z)].

It has been shown that for every ¢ € A, (3.1.2) possesses a unique solution u(t, x)
that exists for all ¢ > ¢q. It follows that {T", X, A, 5(3,12)} is a dynamical system
where the set of motions is determined by the solutions of (3.1.2).

Let M C A = X denote the set given by

M ={peC’[QRINX: Ap(z) =0 forall z € Q}.

Then M is invariant with respect to S5 1 2). Indeed, forany ¢ € M, u(t, z) = ¢(x)
is a solution of (3.1.2). By the uniqueness of each solution, it follows that M is
invariant with respect to S(3.1.2)- O

The most important special case of invariant sets is an equilibrium.

Definition 3.1.2 We call ¢y € A an equilibrium (or an equilibrium point) of a dy-
namical system {T, X, A, S} if the set {x¢} C A is invariant with respect to .S (i.e.,
(S,{xo}) is invariant). O

In the following, we enumerate several specific examples of equilibria.

Example 3.1.3 (Ordinary differential equations) Let f € C[RT x Q,R"] where
Q C R" is a domain, assume that . € (2 satisfies f(¢,z.) = 0 for all t € RT, and
that the system of first-order ordinary differential equations

i = f(t,z) (E)

has a unique solution for the initial condition z:(to) = x.. As pointed out in Chapter 2,
this is true if, for example, f satisfies a Lipschitz condition. Then z. is an equilibrium
of the dynamical system Sg determined by the solutions of (E). In this case we also
say that . is an equilibrium of (F). a
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Example 3.1.4 (Ordinary difference equations) Let f: N x R™ — R™ and assume
that there exists an x, € R" such that f(k,x.) = . for all k& € N. Then z. is an
equilibrium of the dynamical system Sp determined by the solutions of the system
of ordinary difference equations given by

z(k+1) = f(k,z(k)), (D)
k e N. O

Example 3.1.5 (Heat equation) In Example 3.1.2, each ¢ € M is an equilibrium of
(3.1.2). a

Example 3.1.6 (Ordinary differential equations in a Banach space) Let X be a
Banach space, let C C X, and let F': RT x C — X. Assume that F'(t,z,) = 0 for
all t € R* and that

z(t) = F(t,z(t)), x(ty) = e (3.1.3)

has a unique solution for any tg € R*. Then . is an equilibrium of the dynamical
system determined by the solutions of

x(t) = F(t,x(t)). (3.1.4)
In this case we also say that . is an equilibrium of (3.1.4). O

Example 3.1.7 (Semigroups) Let T(t), t € R, be a linear or nonlinear semigroup
(see Chapter 2) defined on a subset C' of a Banach space X. If there exists an z, € C
such that T'(t)z, = z. for all t € R, then . is an equilibrium of the dynamical
system determined by the semigroup T(t). In this case we also say that z. is an
equilibrium of the semigroup T(t). a

We conclude this subsection by introducing several additional concepts that we
require.

Definition 3.1.3 A dynamical system {7, X, A, S} is said to satisfy the uniqueness
property if for any (a,ty) € A x T there exists a unique noncontinuable mo-
tion p(-,a,tg) € S (refer to Definition 2.2.6 for the definition of noncontinuable
motion). O

When a dynamical system is determined by equations of the type considered in
Chapter 2, the uniqueness property of a dynamical system is equivalent to the unique-
ness of solutions of initial value problems determined by such equations.

Definition 3.1.4 For each motion p(-, a, tp) € S in a dynamical system {7, X, A, S},
the set

C(p) = {z € X: 2 =p(t,a,ty) forsome ¢t >ty and t € T'}

is called a trajectory. O
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In the literature where evolution in time is allowed to be forward and backward, a
distinction is made between positive semitrajectory (forward in time) and a negative
semitrajectory (backward in time) (refer, e.g., to [11]).

Definition 3.1.5 A motion p(-, a, tp) € S in a dynamical system {T', X, A, S} is said
to be periodic if there exists a constant w > 0 such thatt + w € T foreacht € T,
and such that p(t + w, a, tg) = p(t, a,to) forallt € T, t > tg, and t € T. We call w
a period of the periodic motion p(-, a, tp). O

If a dynamical system .S satisfies the uniqueness property, then clearly any trajec-
tory of a motion in S is an invariant set. In particular, the trajectory of a periodic
motion, which is usually a closed curve in a metric space X, is an invariant set.
Furthermore, the union of a family of trajectories is an invariant set of .S.

B. Qualitative characterizations: Stability and boundedness

Let {T, X, A, S} be a dynamical system and assume that M C A is an invariant set
of S, or for short, that (S, M) is invariant. In the definitions that follow, the phrase

“(S, M) is said to be ...” is understood to mean “the set M that is invariant with
respect to system S is said to be . .. 7. Thus, in Definition 3.1.6 given below, “(S, M)
is said to be stable . ..” should be read as “the set M that is invariant with respect to

system S is said to be stable . ..”.
Let (X, d) be a metric space. We recall that the distance between a point a € X
and a set M C X is defined as
M) = inf .
d(a, M) inf d(a, x)

Finally, the reader should make reference to Definition 2.2.1 for the meaning of the
set Tt 4,-

Definition 3.1.6 (S, M) is said to be stable if for every ¢ > 0 and every ty € T,
there exists a § = (e, tp) > 0 such that d(p(t, a,to), M) < e forall t € T, ,, and
for all p(-, a,ty) € S, whenever d(a, M) < 4. (S, M) is said to be uniformly stable
if it is stable and if in the above, § is independent of ¢y (i.e., 6 = 4(¢)). a

In the following definitions, we address asymptotic properties of invariant sets
with respect to dynamical systems. Throughout this book, whenever we deal with
asymptotic properties, we assume that for any (a,t9) € A x T, Ty 4, = [to,00) N T
and that T N [a, 00) # 0 for any o > 0.

Definition 3.1.7 (S, M) is attractive if there exists an 7 = n(ty) > 0 such that
lim; o d(p(t, a,to), M) = 0 for all p(-, a,tg) € S whenever d(a, M) < 7. O

We call the set of all @ € A such that lim; . d(p(t, a,t0), M) = 0 for all
p(-,a,tg) € S the domain of attraction of (S, M) at time tg.

Definition 3.1.8 (S, M) is asymprotically stable if it is stable and attractive. a
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Definition 3.1.9 (S, M) is uniformly asymptotically stable if
(i) itis uniformly stable; and

(ii) for every € > 0 and every to € T, there exist a § > 0, independent of ¢, and
g,and a7 = 7(¢) > 0, independent of t, such that d(p(t, a,ty), M) < ¢ for
allt € T, 4+, and for all p(-, a,ty) € S whenever d(a, M) < 4. a

When condition (ii) in the above definition is satisfied, we say that (S, M) is
uniformly attractive.

Definition 3.1.10 (S, M) is exponentially stable if there exists an o > 0, and for
every € > 0 and every ty € T, there exists a § = §(¢) > 0 such that

d(p(t, a,t), M) < ge~(tt0)
forall t € T, 4, and for all p(-,a,t) € S whenever d(a, M) < 0. -

Note that the exponential stability of (S, M) implies the uniform asymptotic sta-
bility of (S, M).

Definition 3.1.11 (S, M) is unstable if it is not stable. O

The preceding definitions concern local characterizations. In the remaining defi-
nitions we address global characterizations.

Definition 3.1.12 A motion p(-, a,tg) € S is bounded if there exists a 3 > 0 such
that d(p(t, a,to),a) < Bforallt € T, ,,. ]

Definition 3.1.13 A dynamical system .S is uniformly bounded if for every o > 0
and for every tg € T there exists a 3 = 5(a) > 0 (independent of ¢y) such that if
d(a,z¢) < a, then for p(-, a,t9) € S, d(p(t,a,to), xo) < fforallt € T, 4, where
x is a fixed point in X. O

Definition 3.1.14 A uniformly bounded dynamical system .S is uniformly ultimately
bounded if there exists a B > 0 and if corresponding to any o > 0 and ¢y € T,
there exists a 7 = 7(a) > 0 (independent of () such that for all p(-,a,ty) € S,
d(p(t,a,to),x0) < Bforallt € Ty 4,+, whenever d(a, zo) < o, where zg is a fixed
point in X. O

In the above two definitions, the constants 5 and B may in general depend on
the choice of o € X. However, the definitions themselves are independent of the
choice of xy. More generally, we may replace o € X in these definitions by any
fixed bounded set in X.

Definition 3.1.15 (S, M) is asymprotically stable in the large if
(i) it is stable; and
(ii) forevery p(-,a,tp) € S and for all (tg,a) € T x A,

tlim d(p(t,a,to), M) =0. m]
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When Definition 3.1.15 is satisfied, the domain of attraction of (.5, M) is the entire
set A.
Definition 3.1.16 (S, M) is uniformly asymptotically stable in the large if
(i) it is uniformly stable;
(i1) S is uniformly bounded; and

(iii) for every a > 0, for every ¢ > 0, and for every ¢y, € T, there exists a
7 = 7(e,a) > 0 (independent of ¢g), such that if d(a, M) < «, then for all
p(-,a,t0) € S, d(p(t,a,to), M) <eforallt € T i4r. O

When condition (iii) in the above definition is satisfied, we say that (.S, M) is
globally uniformly attractive.

Definition 3.1.17 (S, M) is exponentially stable in the large if there exist an & > 0,
a7y > 0, and for every 5 > 0, there exists a k() > 0 such that

d(p(t, a,to), M) < k(B)[d(a, M)] e~ 710)
for all p(-,a,ty) € S and for all t € Ty, ;, whenever d(a, M) < 3. m]

The preceding notions of stability, instability, asymptotic stability, and exponential
stability are referred to in the literature as stability concepts in the sense of Lyapunov
whereas the preceding concepts involving the boundedness of motions of dynamical
systems, are referred to in the literature as Lagrange stability.

We now consider a few specific examples.

Example 3.1.8 (Linear ordinary differential equations with constant coefficients)
For the system of linear ordinary differential equations

i — Au, (3.1.5)

where z € R"™ and A € R"*", the point . = 0 is an equilibrium. For the initial
conditions x(tp) = g, the solution of (3.1.5) is given by

@(tv Zo, to) = eA(titO)'rO

where

At _ j
et =1+ E j—!A
=1

(see, e.g., [1]). Letting P € R™*™ denote a nonsingular matrix, we obtain

eAt — P*le(PApil)tP'
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If we choose P so that PAP~! is in Jordan canonical form, we can see readily that
the following statements are true (see, e.g., [1]).

(a) The equilibrium x, = 0 of (3.1.5) is stable if and only if all eigenvalues of
A have nonpositive real parts, and every eigenvalue with zero real part has an
associated Jordan block of order one.

(b) When z. = 0 of (3.1.5) is stable, it is also uniformly stable.

(c) Whenz, = 0is stable, the dynamical system determined by (3.1.5) is uniformly
bounded.

(d) The equilibrium z. = 0 of (3.1.5) is aftractive if and only if all eigenvalues of
A have negative real parts.

(e) When x. = 0 of (3.1.5) is attractive, it is also uniformly attractive.

() The equilibrium z. = 0 of (3.1.5) is uniformly asymptotically stable, in fact,
uniformly asymptotically stable in the large if and only if all eigenvalues of
A have negative real parts. In this case, the dynamical system determined by
(3.1.5) is uniformly ultimately bounded.

(g) The equilibrium z. = 0 of (3.1.5) is exponentially stable, in fact, exponentially
stable in the large if and only if all eigenvalues of A have negative real parts.

(h) When the conditions given in (a) are not satisfied, the equilibrium z. = 0 of
(3.1.5) is unstable. O

Example 3.1.9 (Linear ordinary difference equations with constant coefficients)
For the system of linear ordinary difference equations

z(k+1) = Ax(k), (3.1.6)

where k € N, z(k) € R” and A € R"*", the point z, = 0 is an equilibrium. For
the initial conditions z (ko) = x, the solutions of (3.1.6) are given by

o(k, o, ko) = AFFo) g,

Similarly as in Example 3.1.8, we can transform the system (3.1.6) so that the matrix
A is in Jordan canonical form to come to the following conclusions (see, e.g., [1]).

(a) The equilibrium ., = 0 of (3.1.6) is stable, in fact uniformly stable, if and
only if all eigenvalues of A have magnitude less than or equal to one and every
eigenvalue of A with magnitude equal to one has an associated Jordan block of
order one. Inthis case, the dynamical system determined by (3.1.6) is uniformly
bounded.

(b) The equilibrium x, = 0 of (3.1.6) is uniformly asymptotically stable in the
large (in fact, exponentially stable in the large) if and only if all eigenvalues of
A have magnitude less than one. In this case, the dynamical system determined
by (3.1.6) is uniformly ultimately bounded.

(c) When the conditions of (a) are not satisfied, the equilibrium x. = 0 of (3.1.6)
is unstable. O
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Example 3.1.10 (Heat equation) Consider the initial-value problem given by

0
a—?:aQAu, TR t>t>0
u(to, ) = (), r e R"

(3.1.7)

where a > 0, ¢t € RT, A = Y7  §%/027, and ¢ € C[R™, R] is bounded. Let
T = Rt and let X = A be the set of real-valued and bounded functions defined on
R™ with norm given by

|l = max {|¢(z)|: © € R"}.

We let S(3.1.7) denote the dynamical system determined by (3.1.7). For any constant
¢, @e(x) = ¢ (x € R™) is an equilibrium for S(s 1 7).

For any initial condition ¢, the solution of the heat equation (3.1.7) is given by
Poisson’s formula (see Chapter 2)

1

ulbeto) = et T

From this it is easily verified that

—|z—y|?/[4a®(t—
/ e~ lr=vl? /e (t=t0)] () iy

for any ¢ € X and for all ¢t > ty. Therefore, ¢, = c is uniformly stable. However,
the equilibrium . = ¢ is not attractive, because for ¢ = c+ ¢, u(t, p,t9) = c+¢
for any ¢ € R. Therefore, the equilibrium ¢, = c is not asymptotically stable and
not uniformly asymptotically stable.

Next, let M C X be the set of all constant functions. Then (S(3.1.7), M ) is
uniformly asymptotically stable in the large. To show this, note that for any p € X,
limy o0 u(t, @, t0) = u(x) exists and satisfies Aw = 0; that is, @ is a harmonic
function. Furthermore, % is bounded because ¢ is bounded, by (3.1.8). By Liouville’s
Theorem, any bounded harmonic function on R™ must be constant. Therefore, u € M.
Hence, conditions (ii) and (iii) of Definition 3.1.16 are satisfied. The uniform stability
of (S(3.1.7y, M) follows from the uniform stability of (S(3.1.7), {c}) for each c € R.
Therefore, (S(3.1.7), M) is uniformly asymptotically stable in the large.

Finally, inequality (3.1.8) implies that S is uniformly bounded. However, S(3.1.7)
is not uniformly ultimately bounded. O

Example 3.1.11 Consider the scalar differential-difference equation
z(t) = z(t — 1), t>t) > 1. (3.1.9)
Let T = [1,00) and let X = A = C[[-1,0], R], with the norm given by

lell = max {|(t)]: —1<t<0}.
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Associated with (3.1.9) we have the initial-value problem

{ i(t) = x(t —1), t>tg

3.1.10
o(t) = p(t —to),  telto— Lt (3.1.10)

which has a unique solution z(t, ¢, to) for each ty € T and each p € X = A.

Let S(3.1.10) be the dynamical system determined by (3.1.10). Then . = 0 is an
equilibrium of S(3.1.1¢). In the following, we show that . = 0 is unstable.

For ¢(t) = €, t € [-1,0], we have that

N N
t— i)
w(t,¢,1)=e+z( j,j) ., N<t<(N+1), (3.1.11)
=1
N =0,1,2,... . It follows from (3.1.11) that
z(N,p,1) >e(l+ N —1) = Ne.

Therefore, for arbitrarily small € > 0, when N > 1/e, we have (N, p,1) > 1 for
o(t) =€, t € [-1,0]. Hence, ¢, = 0 is unstable. O

Before proceeding any further, it should be pointed out that the notions of stability
(Definition 3.1.6) and attractivity (Definition 3.1.7) are independent concepts. This
is demonstrated by considering the specific example

= 23 (z2 — 11) + 73

(@ +a3)[1+ (o +23)°] 3.112)
dy— 22(z9 — 211) .

(@F +23)[1 + (aF +23)?]

The origin z. = 0 € R? is an equilibrium of (3.1.12). Itis shown in [2, pp. 191-194],
that the equilibrium z. = 0 is attractive and unstable.

In Definition 3.1.11, we defined instability of a set M that is invariant with respect
to a dynamical system S. It turns out that we require a more general concept, namely,
instability of any set M C A with respect to a dynamical system S.

Definition 3.1.18 Let {7', X, A, S} be a dynamical system and let A/ C A. The set
M 1is unstable with respect to S if for every 0 >0, there exists ap(-, a, to) € S with tg
independent of ¢, and a t; € T, 4, such that d(a, M) < 0 and d(p(t1, a,to), M) > €q
for some ¢¢ > 0 which is independent of the . a

Note that when (.S, M) is invariant, then Definitions 3.1.11 and 3.1.18 coincide.
A severe case of instability is the concept of complete instability. To introduce this
concept, we require the following property of a set M.

Definition 3.1.19 Let {7, X, A, S} be a dynamical system and let M C A. The set
M is said to be proper with respect to S if for every § > 0, there exists ap(+, a, tg) € S
with Tp, 4, # 0 and 0 < d(a, M) < 0. O
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Definition 3.1.20 Let {7, X, A, S} be a dynamical system and let M C A. The set

M is said to be completely unstable with respect to S if for every subsystem Sof S
such that M is proper with respect to S, M is unstable with respect to .S. O

We conclude the present section with an example.

Example 3.1.12 Consider the scalar differential inequality with initial conditions
given by
(t) > t t>t
{ y(t) = ey(t), > to, G.L13)

y(to) = Yo, to € RT, yo e RT.

LetT =R, X = A=RT and let S(3.1.13) denote the set of all solutions of (3.1.13).
Then {T, X, A, S(3.1.13) } is a dynamical system.

We show that if ¢ > 0, the set M = {0} is completely unstable with respect to
S(3.1.13)-

First we note that (3.1.13) implies that y(¢) > yoe¢(*"*). For any subsystem
Sc S(3.1.13) such that the set {0} is proper with respect to S, we can prove that {0} is
unstable with respect to S. To see this, let £ = 1. Because {0} is proper with respect
to S, then for any § > 0 there exists a y(-, Yo, to) € S such that 0 < yo < min{1,45}
and such that y(t, yo, o) > yoe*~t). Lett; > to + (1/c)In(1/yo) > to. Then
y(t1,to, yo) > yoe?™ ) > 1 = ¢y. By Definition 3.1.18, {0} is unstable with
respect to S.

It now follows from Definition 3.1.20 that {0} is completely unstable with respect
to0 S(3.1.13)- u

3.2 The Principal Lyapunov and Lagrange Stability
Results for Discontinuous Dynamical Systems

Before proceeding with our task on hand, we recall from the preceding chapter that
we assume throughout, that for every motion p € S in a DDS, {R™, X, A, S}, the
set of times at which discontinuities may occur is unbounded and discrete and is of
the form

E,={m 7, . <<}

In the above expression, ), signifies the fact that, in general, different motions may
possess different sets of times at which discontinuities may occur. Because in most
cases, the particular set I, in question is clear from context, we usually suppress the
p-notation and simply write

E={n,m,....11 <72 <--}

A. Local stability results

In the results that follow, we require the notion of a neighborhood of a set.
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Definition 3.2.1 U is called a neighborhood of a set M if U contains an open neigh-
borhood of M, the closure of M. m|

Theorem 3.2.1 Let {R*, X, A, S} be a dynamical system and let M C A be closed.
Assume that there exist a function V: X x Rt — R™ and two functions @1, 2 € K
defined on R such that

pr(d(z, M)) < V(z,t) < p2(d(z, M)) (3.2.D

forall z € X and t € R*. (We recall that functions of class K are defined earlier in
Section 2.1.)

Assume that for any motion p(-, a, tg) € S, V(p(t,a,tg),t) is continuous every-
where on R} = {t € R*: ¢ > 7y} except on an unbounded and discrete subset
E={m,7,...: 11 <7p <---}of R} . Also, assume that there exists a neighbor-
hood U of M such that for all @ € U and for all p(-,a,7) € S, V(p(7n, a,70), Tn)
is nonincreasing forn € N = {0, 1,2, ... }. Furthermore, assume that there exists a
function f € C[R™,R™], independent of p € S, such that f(0) = 0 and such that

V(p(t’ a, 7—0)7 t) < f(v(p(Tna a, 7—0)7 Tn)) (3.22)

forallt € (15, Tnt1), n € N.
Then, (S, M) is invariant and uniformly stable.

Proof . We first prove that (S, M) is invariant. If a € M, then V (p(79, a,70),70)=0
because d(a, M) = 0 and V(p(70,a,70),70) = V(a,70) < ¢2(d(a, M)) = 0.
Therefore, we know that V (p(7,,,a,70),7,) = 0 forall n € N because V (p(7y,
a, 7o), Tn) is nonincreasing. Furthermore V (p(t, a, 70),t) = O forall t € (7, T11),
n € N, because V (p(t, a,79),t) < f(V(p(Tn,a,70), 7)) = 0. It is then implied that
p(t,a,79) € M forall t > 7. Therefore (S, M) is invariant by definition.

Because f is continuous and f(0) = 0, then for any € > 0 there exists a 6 =
0(e) > 0 such that f(r) < ¢1(e) as long as 0 < r < §. We can assume that
0 < ¢1(g). Thus for any motion p(-,a,79) € S, as long as the initial condition
d(a, M) < @5 *(5) is satisfied, then

V(p(77laa77-0)a7-n) < V(p(TO,Cl,TO),TO) < QDQ(d(a’? M)) <0< ‘/71(5)
forn =1,2,.... Furthermore, for any ¢ € (7, T,+1) We can conclude that
Vi(p(t,a,10),t) < f(V(p(Ta,a,70), ) < p1(€).

Thus, we have shown that V' (p(t, a,70),t) < ¢1(e) is true for all t € R} . In view
of (3.2.1), we have

d(p(t,a,70), M) < o1 (V(p(t,a,70),1)) < 1 (1(e) =e.

Therefore, by definition, (S, M) is uniformly stable. O
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Theorem 3.2.2 If in addition to the assumptions given in Theorem 3.2.1 there exists
a function @3 € K defined on RT such that for all a € U, for all p(-,a, 79) € S, and
foralln € N,

DV(p(Tna a, T0)7 Tn) S _303(d(p(7—n5 a, TO)a M)) (323)

where

1

Tn+1 — Tn

1>

DV (p(7n; a,10), Tn) [V(p(TnJrlv a,70), Tnt+1) — V(p(Tn, a, o), Tn)]

(3.2.4)
then (S, M) is uniformly asymptotically stable.

Proof . For any a € U and for any p(-, a,79) € S, letting z, = V(p(7n, @, 70), Tn)»
n € N, we obtain from the assumptions of the theorem that

Zn+1 — Zn S *(Tn—l-l - Tn)(¢3 o 902_1)(’2”)

for all n € N. If we denote ¢ = @3 0 5 ! then ¢ € K and the above inequality
becomes
Zn+1 — Zn S *(Tn+1 - 7'71,)90(Zn)-

Inasmuch as {z, } is nonincreasing and ¢ € K, it follows that
Zhi1 — 2k < —@(2k) (T — ) < —0(2n) (Tha1 — 7o)
for all £ < n. We thus obtain that
Znt1 — 20 < —(Tnt1 — 70)@(2n),
which in turn yields

20 — Zn+l1 < 20

o(zn) < (3.2.5)

Tadl —T0  Tntl —T0
foralln € N.
Now consider a fixed § > 0. For any given ¢ > 0, we can choose a v > 0 such

that
max {7 (22) ) ot (s (o (22) )} <= 20

because ¢1, g2, € K and f(0) = 0. For any a € A with d(a, M) < ¢ and any
70 € RT, we are now able to show that d(p(t,a, 79), M) < & whenever t > 1o + 7.
This is because for any ¢ > 79 + ~, t must belong to some interval [7,,, 7,,41) for
some n € N, thatis, ¢t € [7,,, T41). Therefore we know that 7,11 — 79 > 7. It
follows from (3.2.5) that

2 _ Viam) _ e:9)
v vy .

)
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which implies that

V(p(Tn,a,70), ) = 20 < @7 (“”f)) , (32.7)
" V(p(t,a,m),t) < f (w‘l (wf))) (3.2.8)

ift € (Tn, Tnt1)- In the case when t = 7,,, it follows from (3.2.7) that
d(p(Tn7 a, 7—0)) M) < 301_1 (V(p(Tna a, TO)a Tn)) <e¢g,

noticing that (3.2.6) holds. In the case when ¢ € (7,,, T,,+1), We can conclude from
(3.2.8) that
d(p(t,a,m0), M) < o7 " (V(p(t,a,79),t)) < e.

This proves that (S, M) is uniformly asymptotically stable. O
Theorem 3.2.3 Let {R", X, A, S} be adynamical system and let M/ C A be closed.

Assume that there exist a function V: X x Rt — R and four positive constants
¢, Ca, 3, and b such that

crld(x, M))° < V(x,t) < cold(z, M)]P (3.2.9)

forallz € X andt € RT.

Assume that there exists a neighborhood U of M such that for all @ € U and
for all p(-,a,70) € S, V(p(t,a,7),t) is continuous everywhere on R except
on an unbounded and discrete subset £ = {71, 7,...: 71 < 7 < ---} of Rjo.
Furthermore, assume that there exists a function f € C[R*,R*] such that

V(p(t,a,70),t) < f(V(p(Tn: a,70),7n)) (3.2.10)
for t € (7, Tn+1), n € N, and that for some positive constant ¢, f satisfies
fr)=o(r?) as r—0* (3.2.11)
(i.e., lim,_ g+ f(r)/r? = 0). Assume that for all n € N,
DV (p(ty, a,m0), ) < —cs[d(p(Tn, a,70), M)]" (3.2.12)

foralla € U and all p(-,a,79) € S, where DV (p(7,,,a, 7o), T) is given in (3.2.4).
Then (S, M) is exponentially stable.

Proof . It follows from Theorem 3.2.1 that under the present hypotheses, M is an
invariant set of S. Forany a € U and p(-,a,79) € S, let z, = V(p(Tn,a,70), Tn),
n € N, and z(t) = V(p(t,a,79),t). We obtain from (3.2.9) and (3.2.12) that

Zn+1 — 2n < _cjz
n

Tn+1 — Tn C2
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which yields
Zn+1 § []- - n(Tn—i-l - Tn)]zna

where n = c3/co. If 1 — (741 — T) < 0 is true for some n, then z;, = 0 and

z(t) < f(zx) = 0forallt € (7, 7k+1) and all k > n. Thus, d(p(t,a,79), M) =0

forallt > 7,,41. In the following we assume that 1 — (7,41 —7,,) > Oforalln > 0.
Because e > 1 — nr, it follows that

g1 < e T 5

Hence,
Zny1 < e—fl(‘rn+1—7'o)Z0

is true for all n > 0. It now follows from (3.2.9) that

1/b 1/b
d(p(T'ru a, TO)a M) S <Z0> ei(n/b) (TTL_TO) S (62> d(a7 M)ei(n/b) (Tn_TO)-

C1 &1
(3.2.13)
In the last step, we have made use of the fact that

20 = V(p(10,0a,70),70) < CQ[d(a,M)]b.

Inasmuch as f(r) = o(r?) as r — 07, it is easily seen that f(r)/r? € C[RT,
R*]. Let

)‘d(a,M) — sup f(r) .
re(0, ea(d(a,M))r] T4

Then f(r) < Ag(a,nryr? forall 7 € [0, ca(d(a, M))®]. It follows from (3.2.10) that
forall t € (7, Tnt1), it is true that

2(t) < f(zn)
< Nd(a,M) %0

< /\d(a,]W)e_nq(Tn_TO)Zg

_ t— —nq(t—T q
_)\d(avM)enq( n)gnalt=o) 4

< /\d(a’M)eqe—nq(t—To)Zg_

The last inequality follows because t — 7, < 7,41 — T, < 1/n. Thus,

2 1/b " ech 1/b ~
d(p(t,a, ), M) < <(t)> < {/\d(“)} [d(a, M)]%e=M/0) (¢ — 7).

C1 C1
(3.2.14)
For any € > 0 there exists a § > 0 such that

e > min { <02) 1/bd(a, M), {M)E%g] 1/b[d(a, M)}q}

C1 C1
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for any a € U whenever d(a, M) < 0. Letting

o = min hm
b’ b |’

we have, in view of (3.2.13 ) and (3.2.14), that
d(p(t, a,79), M) < ee” (770

for all p(-,a,7) € S and t € R}, whenever d(a, M) < 4. Therefore (S, M) is
exponentially stable. This concludes the proof of the theorem. a

B. Global stability and boundedness results

Next, we address global results.

Theorem 3.2.4 Let {R™, X, A, S} be a dynamical system, let M C A, and assume
that M is bounded. Assume that there exist a function V: X x RT — R* and
two strictly increasing functions 1, s € C[RT,RT] with lim, o i(r) = oo,
i =1, 2, such that

p1(d(z, M)) < V(z,t) < po(d(z, M)) (3.2.15)

forall z € X and for all ¢ € R* whenever d(x, M) > Q, where Q is a positive
constant.
Assume that for every p(-, a, 70) € S, V(p(t, a, 70), t) is continuous everywhere on

Rjﬂ except on an unbounded and discrete subset E = {71, 72,...: 71 <71 < -+ }
of R}, . Also, assume that for all p(-,a,79) € S,
V(p(Tn+17 a, 7_0)7 Tn+1) é V(p(Tnv a, 7—0)) Tn) (3216)

for all 7,, whenever d(p(7,,,a, ), M) > Q.
Furthermore, assume that there exists a function f € C[R*, R"], independent of
p(-,a,tg) € S, such that for all n € N and all p(+, a,t9) € S

Vp(t,a,10),t) < f(V(p(Tn,a,70),Tn)) (3.2.17)

forall t € (7, Tny1) whenever d(p(¢,a, 70), M) > Q.
Furthermore, assume that there exists a constant I' > 0 such that

d(p(Tn+17 a, TO)7 M) S r

whenever d(p(7,, a,19), M) < Qforall p(-,a, 1) € S.
Then, S is uniformly bounded.

Proof . Forany a > 0,79 € RT, a € A such that d(a, M) < o, and p(-, a,79) € S,
let z,, = V(p(Tn,a,70),Tn) and let z(t) = V(p(t, a,79),t). If d(a, M) > Q, it
follows from (3.2.15) and (3.2.16) that

901(d(p(7'n»a77'0),M)) S Zn S 20 S (,02(&).
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Thus d(p(7n, a,70), M) < (p7 " 0 @2)(a) for as long as d(p(x, a, 79), M) > €, for
all k < n.

If d(p(1p, a, 70), M) starts at a value less than 2 or if it reaches a value less than
2 for some ng (i.e., if d(p(7n,, a, 70), M) < Q), then d(p(Thg+1,a,70), M) < T, by
assumption. We can now replace « in the foregoing argument by I" and obtain that
d(p(Tn,a,10), M) < (7" 0 o) (T) for as long as d(p(7x, a, 70), M) < Q, for all k
such that ng < k < n.

By induction, we conclude that

d(p(7n, a,70), M) < B1() = max {T, (97" 0 92)(T), (7" 0 @2)(a)}

forall n € N.

Because f € C[RT, R, thereexistsa 83 = (2(«) suchthat f(r) < (32 whenever
r € [0, p2(81(x))]. For any ¢ € (7, Tn+1), we have that z(t) < f(z,) < fa.

If we let

B(er) = max {B1 (), o1 ' (B2(e)) }, (3.2.18)

then it is easily seen that d(p(t,a, ), M) < (B(a) forall t € Rf and a € A
whenever d(a, M) < «. Because M is bounded, S is uniformly bounded. The proof
is completed. O

Theorem 3.2.5 If in addition to the assumptions in Theorem 3.2.4 there exists a
function 3 € K defined on RT such that for all p(-, a,79) € S

Dv(p(Tﬂa a, T0)7 TH) S 7903(d(p(7na a, TO)’ M)) (3219)

for all 7, whenever d(p(7,,a,70), M) > €, where DV in (3.2.19) is defined in
(3.2.4).
Then S is uniformly ultimately bounded.

Proof. Let B = (), where 3(+) is givenin (3.2.18). We show that corresponding to
any @ > Oand 79 € R™, thereexistsa7 = 7(«) > 0 such thatd(p(t,a, ), M) < B
forall ¢t > 79 + 7 and p(-, a, 79) € S whenever d(a, M) < .

If d(p(7x, a,70), M) > Q for all k& < n, we obtain, using the same argument as
that for (3.2.5), that

oa(d(p(rsa, o), M)) < 0P < 0 _e2(0)
Tn+1 — 70 Tn+1 — 70 Tn+1 — 70

(3.2.20)

Let 7 = @a(a)/p3(Q). For any t > 79 + 7, there exists an n € N such that
t € [Tn,Tn+1). Thus 7,41 — 79 > 7. There must exist a kg < n such that
d(p(Try, a,70), M) < . Otherwise, in view of (3.2.19), d(p(7y,a,70), M) <
03 (p2()/T) < 031 (03(2)) = Q. We have arrived at a contradiction. There-
fore, d(p(Ti,,a,70), M) < § for some kg < n. By the same argument as that in
the proof of Theorem 3.2.4, we know that d(p(t,a, ), M) < B. Hence, we have
shown that .S is uniformly ultimately bounded. a
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Theorem 3.2.6 Let {R™, X, A, S} be a dynamical system. Let M C A be bounded
and closed. Assume that there exist a function V: X x Rt — R and two functions
©1, P2 € Koo such that

w1(d(z, M) < V(z,t) < @a(d(z, M)) (3.2.21)

forallz € X andt € R™.

Assume that for any p(-, a,79) € S, V(p(t, a, 70), t) is continuous everywhere on
R} except on an unbounded and discrete subset E={7y,7,...: 71 < 7o < ---} of
R} . Furthermore, assume that there exists a function f € C[R*,R™] with f(0) =0
such that for any p(-,a,79) € S,

V(p(t, a, 7—0)7 t) < f(V(P(Tm a, TO)7 Tn)) (3.2.22)

fort € (1, Tns1), n € N.
Assume that there exists a function p3 € K defined on R™ such that for any
p('>a77—0) S S?

DV(p(Tn, a, 7—0)7 Tn) < 7@3((1(})(7}“ a, 7—0)’ M)) (3223)

n € N, where DV in (3.2.23) is defined in (3.2.4).
Then, (S, M) is uniformly asymptotically stable in the large. (Recall that functions
of class K, are defined in Section 2.1.)

Proof . Tt follows from Theorem 3.2.1 that under the present hypotheses, M is an
invariant set of S and (S, M) is uniformly stable. We need to show that conditions
(ii) and (iii) in Definition 3.1.16 are also satisfied.

Consider arbitrary « > 0, & > 0, 79 € R, and a € A such that d(a, M) < «.
Letting z,, = V(p(7n,a,70), ) and z(t) = V(p(t, a,1),t), we obtain from the
assumptions of the theorem that {z,} is nonincreasing and that

z(t) < max {902(01), ,_E[B?ff(a)] f(r)}

whenever d(a, M) < a. Thus S is uniformly bounded.

Letp = w300, L Using the same argument as that in the proof of Theorem 3.2.2,
we obtain that

olzn) < 20 — Zn < 20 )
Tn+1 — 70 Tn+1 — 70

Let v1 = m(e,a) = p2(a)/p(p1(e)) > 0 and choose a § > 0 such that
max,cjo,5) f(r) < @i(e). Let v2 = @a(a)/@(d) and v = max{y,72}. For
any a € A with d(a, M) < « and any 79 € R, we are now able to show that
d(p(t,a,m0), M) < & whenever t > 7o + ~y. The above statement is true because for
any t > 79 + -, t must belong to some interval [7,,, 7,41) for some n € N; that is,
t € [Tn, Tn+1)- Therefore we know that 7,41 — 79 > 7y and that

o(z) < 2 M’
5

v
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which implies that
Vlrmamhm) =2 < o7 (242) < nin fi1(2).0).

We thus have d(p(my,,a,7), M) < e and V(p(t,a,79),t) < f(zn) < ¢1(e) for
all t € (7, Tnt1), and hence, d(p(t,a,79), M) < €. This proves that (S, M) is
uniformly asymptotically stable in the large. o

Theorem 3.2.7 Let {RT, X, A, S} be a dynamical system. Let M C A be bounded
and closed. Assume that there exist a function V': X x RT — R* and four positive
constants ¢y, ¢g, c3, and b such that

cild(x, M))® < V(z,t) < eold(z, M)]P (3.2.24)

forallz € X andt € RT.

Assume that for every p(+,a,79) € S, V(p(t,a,79),t) is continuous everywhere
on R} except on an unbounded subset £ = {71, 70,...: 71 < 7p < ---} of RF.
Furthermore, assume that there exists a function f € C[R™, R™] with f(0) = 0 such
that

V(p(t,a,m),t) < f(V(p(Tn,a:70),Tn)) (3.2.25)
for ¢t € (15, Tn+1), n € N, and such that for some positive constant ¢, f satisfies
f(r)=o0(r?) asr—o0t, (3.2.26)
Assume that
DV (p(Tn, a,70), ) < —c3[d(p(Tn, a, 10), M) (3.2.27)
for all p(-,a,79) € S and all a € A where DV in (3.2.27) is defined in (3.2.4).
Then (S, M) is exponentially stable in the large.

Proof . 1Tt follows from Theorem 3.2.1 that under the present hypotheses, M is an
invariant set of S.

For any 8 > 0 and any a such that d(a, M) < 3, using the same argument as that
in the proof of Theorem 3.2.3, we obtain that

1/b q-1/b
t Natar€d
d(p(tvayTO),M) S <Z( )> S |:d(’1\/[)ec2:| [d(a’ Z\[)]qefnq(tf-ro)/b
C1 c1

forall t € Rjﬂ, where 1) = c3/c2 and \j(q,nr) is chosen such that f(r) < Aga,ar)7r?
forall 7 € [0, co(d(a, M))®]. Let

()
A= Ag,
v =min{l, ¢},
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k(B) = max { (62)1/bﬁ1—w ()‘equ) 1/bﬁq—v} )
C1 ’ C1

A(p(t, 70, M) < () [d(a, M)re -

for all p(-,a,79) € S and t € R} . Therefore (S, M) is exponentially stable in the
large. This concludes the proof of the theorem. o

and

Then

Remark 3.2.1 The hypotheses of Theorem 3.2.1 can be relaxed by requiring only
that V(p(7;,, a, 70), 7;,) is nonincreasing for n € N and that

V(p(t,a,70),t) < f(V(p(7y, a.70), 7))

forall t € (7),,7,,1), n € N, where E' = {7{,75,...,} is a strictly increasing
unbounded subsequence of the set E = {7y, 72,...}. In the same spirit, we can
replace in Theorem 3.2.2 inequality (3.2.3) by

DV(p(Trl” a, 7—0)7 T;L) < @3(d<p(7_;m a, 7—0)7 M))

for all n € N, where DV (p(7},,a,7), ;) is defined as in (3.2.4) and 7,, € E’.
Furthermore, the hypotheses in Theorems 3.2.3-3.2.7 can be altered in a similar
manner. These assertions follow easily from the proofs of Theorems 3.2.1-3.2.7. O

C. Instability results

Thus far, we have concerned ourselves with stability and boundedness results. We
now address instability.

Theorem 3.2.8 Let {R™, X, A, S} be adynamical system andlet M C Abeaclosed
set. Assume that there exist a function V: X x R™ — R and a 79 € R™ that satisfy
the following conditions.

(i) There exists a function ¢ € K defined on RT such that
V(a,t) < p(d(w, M)) (32.28)

forallz € X andt € RT.

(ii) Inevery neighborhood of M there is a point x such that V (z, 79) > 0 and there
exists a motion p(-,x,79) € S.

(iii) Forany a € A such that V' (a,79) > 0 and any p(-, a,79) € S, V(p(t, a, ), 1)
is continuous everywhere on ]R;; except on an unbounded and discrete subset

E={r,ro,...i11 <72 <---}of Rjo. Assume that there exists a function
1y € K defined on R such that

Dv(p(T7L7 a, TO): T?L) > 1/’(|V(P(7'm a, TO), Tn)|) (3.2.29)

for all n € N, where DV (p(,, @, 7o), 7o) is given in (3.2.4).
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Then M is unstable with respect to S.

Proof . By assumption, for every § > 0 there exists an a € A such that d(a, M) <
and V'(a,79) > 0. Let z, = V(p(7n,a,70), 7). Then zg = V(a,79) > 0. From
assumption (iii) it follows that {z,,} is increasing and

Zn 2 Zp—1 + (Tn — Tn—1)¥(2n—1)
> 20 + (T, — 70)¥(20)
> (Tn — 10)¥(V(a, 70)).

Hence, as 7, goes to 0o, d(p(7, a, 1), M) > ¢~ (V (p(Tn,a, 7o), 7)) can become
arbitrarily large. Therefore, (S, M) is unstable. a

Theorem 3.2.9 In addition to the assumptions given in Theorem 3.2.8, assume that
V(x,70) > 0 forall z ¢ M. Then M is completely unstable with respect to S.

Proof . Because V(a, 7o) is positive for every a ¢ M and every 7 € R, the
argument in the proof of Theorem 3.2.8 applies for all a ¢ M; that is, along every
motion p(+, a,79) € S, d(p(7n,a,0), M) tends to co as n goes to co. We conclude
that (S, M) is completely unstable. O

We conclude the present section with an important observation.

Remark 3.2.2 It is emphasized that because continuous dynamical systems consti-
tute special cases of DDS, all the results of the present section are applicable to
continuous dynamical systems as well. m|

3.3 The Principal Lyapunov and Lagrange Stability
Results for Continuous Dynamical Systems

In the present section we establish the Principal Lyapunov Stability and Boundedness
Results for continuous dynamical systems. We show that these results are a direct
consequence of the results of the preceding section (i.e., we show that when the
hypotheses of the results of the present section for continuous dynamical systems are
satisfied, then the hypotheses of the corresponding results of the preceding section for
DDS are also satisfied). In this way, we establish a unifying link between the stability
results of DDS and continuous dynamical systems. More important, we show that the
results of the present section, which constitute the Principal Lyapunov and Lagrange
Stability Results for continuous dynamical systems, are in general more conservative
than the corresponding results for DDS. We include in this section a specific example
that reinforces these assertions.

A. Local stability results

‘We first consider local results.
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Theorem 3.3.1 Let {R™, X, A, S} be a continuous dynamical system and let M C A
be closed. Assume that there exist a function V: X x RT — R™ and two functions
1, 2 € K defined on RT such that

p1(d(z, M)) <V (z,t) < po(d(z, M)) 3.3.1)

forallz € X and ¢t € RT. Assume that there exists a neighborhood U of M such
that for all @ € U and for all p(-,a,79) € S, V(p(t,a,79),t) is continuous and
nonincreasing for all ¢ € Rjo. Then (S, M) is invariant and uniformly stable.

Proof . Forany p(-,a,79) € S,let E = {1,72,...: 71 < T2 < ---} be an arbitrary
unbounded subset of Rf . Let f € C[RT,R*] be the identity function; that is,

fr) = r.
By assumption, for any a € U and p(-,a, 1) € S, V(p(t,a, 1), t) is continuous
on R and V (p(7y,a, 7o), 7) is nonincreasing for n € N. Furthermore,

V(p(ta a, TO)? t) < V(p(Tna a, 7-0)’ Tn) = f(V(p(Tna a, 7'0)7 Tn))

forallt € (1, Tnt1),n € N. Hence, all the hypotheses of Theorem 3.2.1 are satisfied
and thus, (S, M) is invariant and uniformly stable. o

Theorem 3.3.2 If in addition to the assumptions given in Theorem 3.3.1 there exists
a function 3 € K defined on R™ such that for all @ € U and for all p(-, a,7) € S
the upper right-hand Dini derivative D™V (p(t, a, 7o), t) satisfies

D+V(p(t, a, 7o), t) < _903(d(p(t7 a, TO)7 M)) (3.3.2)
forallt € Rj_‘o, then (S, M) is uniformly asymptotically stable.

Proof. Forany a € U and any p(-,a,7) € S, choose E = {s1, 55, ... } recursively
in the following manner. For n € N, let sg = 79 and s, 41 = S, + min{1, a,, },
where

V(p(sn,a,70),8,) forallt € (s,, s, + T)};

DN =

o, = sup {T: V(p(t,a,70),t) >

thatis, V(p(t,a, 7)) > V(p(sn,a,70))/2 forall t € (s,, Spt1)-

If E is unbounded then simply let 7, = s, n € N. The set E = {71, 72,...}is
clearly unbounded and discrete. It follows from the assumptions of the theorem and
from the choice of 7, that we have for any ¢t € (7,,, Tp+1),

d(p(t,a,m), M) = (3" o V) (plt a,70), 1)
> (5" 0 2 V) (s, 70),72)
> (2" 0 51 ) @lp(ra, 0 0), M)
Now refer to the Appendix, Section 3.8. Letting

g(t, V(p(t, a, 7-0)’ t)) = —(pg(d(p(t, a, TO)7 M)), to="Tn,To= V(p(Tna a, 7'0)7 Tn)a
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the (maximal) solution of (/g) is given by

o3t (Tns1) = V(p(T, 0, 70), ) — / " oa(dpt, a, ), M))dr.

n

It now follows from the Comparison Theorem (Theorem 3.8.1) that

V(p(Tn+17 a, 7—0)’ Tn-‘rl) - V(p(Tnv a, 7—0)7 Tn)

Tn+1
<- / s(d(p(t, a, 7o), M))dt

n

Tn41 B 1
<= [ (paowr’ o o) (ol a,m), M)

1

= — (ras1 = 7a) (3.0 03" © 301 ) (A(p(as 0. 70), M)).

It follows readily from the above inequality that for all n € N

1
DV (p(ra,a,70),7) < — (w3 065" 0 501 ) (A(p(Ta, a,70), M), (33.3)

where DV is defined in (3.2.4).

Next, we consider the case when F is bounded; thatis, sup{s,: n € N} = L < occ.
Because s,, is strictly increasing, it must be true that L = lim,,_. o, s,,. Therefore
there exists an ng € N such that s,, € (L — 1, L) for all n > ng. Furthermore, it
follows from the continuity of V' (p(¢, a, 70), t) that

1

V(p(sn+1a a, 7—0)7 Sn+1) - §V<p(sn7 a, TO)) Sn)v

which yields V(p(L, a, 1), L) = limp,—,00 V(p(Sn,a, 7o), $n) = 0. Let 7, = sp, if
n < ng, and 7, = Sp, + (n — ng) if n > ng. The set E = {7y, 7a,... } is clearly
unbounded and discrete. Similarly as shown above, (3.3.3) holds for any n < ng.
For all n > ng, we have

V(p(Tna a, T0)7 Tn) S V(p(L7 a, TO)? L) =0.
Therefore (3.3.3) is also satisfied. When n = ng, we have 7,41 = 7, +1 > L,

V(p(Tng+1:4,70), Tng+1) < V(p(L,a,0),L) = 0, and

DV(p(Tnov a, 7—0)7 Tno) = 7V(p(7_no ) @, 7_0)3 Tno) < *801(d(p(7—n0, a, 7—0)7 M))
3.34)
If we let (o3 defined on RT be given by

Falr) = min {ip1(1), (3.0 93" 0 301) (1)},

then @3 € K. In view of (3.3.3) and (3.3.4), we have shown that

DV(p(Tn, a, 7’0), Tn) < _SZS(d(p(Tn’ a, 7—0)7 M))

foralln € N.
Combining with Theorem 3.3.1, we have shown that the hypotheses of Theo-
rem 3.2.2 are satisfied. Therefore (S, M) is uniformly asymptotically stable. a
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Theorem 3.3.3 Let {R™, X, A, S} be a continuous dynamical system and let M C A
be closed. Assume that there exist a function V': X x RT — R™ and four positive
constants ¢y, ¢g, c3, and b such that

cild(z, M))P < V(x,t) < eold(z, M))° (3.3.5)

forallz € X andt € R™.

Assume that there exists a neighborhood U of M such that for all « € U and
for all p(-,a,79) € S, V(p(t,a,7o),t) is continuous and the upper right-hand Dini
derivative DTV (p(t,a, 7o), t) satisfies

D+V(p(t7 a, TO)) t) S —C3 [d(p(tv a, To), M)]b (336)

forall t € R .
Then (S, M) is exponentially stable.

Proof . Let ¢3 = min{cy, c1c3/(2¢2)} and let 1, @2, 3, and @3 € K defined on
R* be given by i (r) = cpr®, k = 1,2,3, and @3(r) = c3r’. Let f € C[RT,RT]
be the identity function. It follows from the proof of Theorem 3.3.2 that (3.2.9),
(3.2.10), and (3.2.12), are all satisfied. In addition, (3.2.11) is clearly satisfied with
any g € (0,1). Therefore, the hypotheses of Theorem 3.2.3 are satisfied and thus,
(S, M) is exponentially stable. O

B. Global stability and boundedness results

Next, we address global results.

Theorem 3.3.4 Let {R™, X, A, S} be a continuous dynamical system. Let M C A
be bounded. Assume that there exist a function V: X x RT™ — R and two strictly
increasing functions 1, s € C[RT, RT] with lim, o, p;(r) = 0o, i = 1,2, such
that
‘pl(d(x7M)) < V(xat) < (PZ(d(va)) (3-3~7)

forall z € X and t € R whenever d(x, M) > €, where € is a positive constant.

Also, assume that V' (p(t, a, 79), t) is continuous and nonincreasing for all t € R
and p(-, a, 70) € S whenever d(p(t,a,70), M) > Q.

Then S is uniformly bounded.

Proof. LetQ = Q+1. Foranya € Aand p(-,a,7) € S, choose E = {r1,72,...}
recursively in the following manner. Forn € Nlet 7,11 = 7, + min{1, a,, }, where

sup {7: d(p(t,a,70), M) > Q forallt € (1,7, +7)},
A if d(p(7n,a,710), M) > Q;
— ) sup{7:d(p(t,a,m0), M) < Q+2 for allt € (7,7 +7)},
it d(p(mn,a, 1), M) < Q.

(677

We first show that E is unbounded. Suppose thatsup,,cn{7»} = L < co. Because
{7y } is strictly increasing, it must be true that L = lim,,_,, 7,. Therefore there exists
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anng € N such that ai;, < 1 forall n > ng. It follows from the definition of o, and
the continuity of V' (p(t, a, 7o), t) that if d(p(7,, a,79), M) <  then

d(p(Tas1,a,70), M) = d(p(Ty + o, a,70), M) = Q+2> Q
and if d(p(7n, a, 79), M) > € then
A(p(Tns1,a,70), M) = d(p(Ts, + n, a,70), M) = Q < Q.

Therefore, lim,,_, o p(Tn, a, 7o) does not exist. On the other hand, p(t, a, 79) is con-
tinuous and thus, lim,, _, o, p(7y,, a, 7o) must exist. This is a contradiction. Therefore
E is unbounded. Clearly F is also discrete.

For any n € N, if d(p(7y,a,70), M) > €, it follows from the choice of 7,,;
that d(p(t,a,70), M) > Q for all ¢ € (7,,, Ty1]. Thus, by the assumption that
V(p(t,a,70),t) is nonincreasing whenever d(p(t, a, 79), M) > 2, we have

V(p(Tn+17 a, TO)7 Tn+1> S V(p(TTH a, TO); Tn)

and
V(p(t7 a, 7—0)7 t) S V(p(T’rH a, 7—0)7 Tn)

for all t € (1, Tn+1) Whenever d(p(7,,, a,70), M) > Q. Thus (3.2.16) and (3.2.17)
are satisfied with f € C[R*, R™] being the identity function.

If d(p(7y, a,70), M) < Q, then d(p(t,a,m0), M) < Q+2 2 T is true for all
t € (T, Tnt1) by the choice of 7,4 1.

Hence, all the hypotheses of Theorem 3.2.4 are satisfied and thus, S is uniformly
bounded. O

Theorem 3.3.5 If in addition to the assumptions given in Theorem 3.3.4 there exists
afunction ¢3 € K defined on R™ such that for all p(-, a, 79) € S the upper right-hand
Dini derivative D1V (p(t, a, 1), t) satisfies

D+V(p(tv a, 7_0)’ t) S _QDS(d(p(t» a, 7—0)’ M)) (338)

for all t € R} whenever d(p(t,a, ), M) > Q, then S is uniformly ultimately
bounded.

Proof . LetQ =Q+1. Foranya € Aand p(-,a,79) € S, choose E = {71,72,...}
recursively in the following manner. Forn € Nlet 73,11 = 7, + min{1, a,, }, where

sup {T: d(p(t,a,70), M) > Q and
V(p(t,a,T()),t) > %V(p(TnaavT())an) ~
forall t € (7,7 +7)}, if d(p(70, a,70), M) > O
sup {TZ d(p(t7aa7—0)7M) <Q+2 forallt € (Tn77—2+ T)}7
if d(p(Tn, a, 7—0)7 M) <AL

1>

We need to show that E is unbounded. Suppose that sup,, {7} = L < oo.
Because 7, is strictly increasing, it must be true that I, = lim,, _,, 7,. Therefore there
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existsanng € Nsuchthat o, < 1foralln > ng. Itfollows from the choice of o, and
the continuity of p(¢, a, 79) and V' (p(t, a, 79), t) that if d(p(7y,, a, 79), M) < £ then

d(p(Tns1,a,70), M) = d(p(Tn + o, a,70), M) = Q42 > Q,

and if d(p(7n, a, 79), M) > € then cither

d(p(Tn—‘rhaaTO)aM) = d(p(Tn + anyavTO)aM) =Q< Qa

or
1
V(p(TTL-i-lv a, 7'0), T’VL-’rl) = iv(p(Tna a, 7-0)7 7-'n)~

Therefore, either lim,, oo p(7p, @, 7) or lim, . V(p(7n,a, 70), 7) does not
exist. On the other hand, both p(t¢,a,79) and V(p(t,a, 7o), t) are continuous and
their limit as {7, } approaches L must exist. This is a contradiction. Therefore E is
unbounded. Clearly E is also discrete. B

For any n € N, if d(p(7p,a,70), M) > £, it follows from the choice of 7,1
that d(p(t,a, 1), M) > Q and V(p(t,a,7),t) > 0.5V (p(Tm,a,70), ) for all
t € (Tn, Tnt+1)- In view of (3.3.7) we have that

A(p(t,a,7), M) = (63" 0 V) (p(t, 0, 70), 1)
> (w;l ° %V) (p(Tn; @, 70), 7))
> (3" 0 51 ) (@p(r, 0 ), M)

for all t € (7, 7Tnt+1]- As in the proof of Theorem 3.3.2, it follows from the
Comparison Theorem (see Theorem 3.8.1 in the Appendix of this chapter) and
(3.3.8) that

V(p(Tn+1, a, TO)a Tn-‘rl) - V(p(Tnv a, 7—0)’ Tn)

<- /Tn+1 @3(d(p(tv G,To), M))dt

n

Tn+1 o 1
< —/ (@30902105901)(d(p(7—n7a77—0)7M))dt
1

= — (rusr =) (#2005 0 501 ) (dlp(ra @, 70), M)).

n

Let ¢3 2 30 Py Lo %gpl. It follows readily from the above inequality that for
allneN
DV(p(Tn7 a, TO)? Tn) S _(;53(d(p(7-na a, 7-0)7 M))

whenever d(p(7n, a, 70), M) > Q. Combining with Theorem 3.3.4, we have shown
that the hypotheses of Theorem 3.2.5 are satisfied. Therefore S is uniformly ultimately
bounded. o
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Theorem 3.3.6 Let {R™*, X, A, S} be a continuous dynamical system. Let M C A
be bounded and closed. Assume that there exist a function V: X x Rt — R* and
two functions @1, 2 € Ko such that

p1(d(z, M)) <V (z,t) < po(d(z, M)) (3.3.9)

forallz € X andt € RT.

Assume thatforall p(-,a, 79) € Sandt € R}, V(p(t, a, 0),t) is continuous. Fur-
thermore, assume that there exists a function @3 € K defined on RT such that for all
ac€ Aandall p(-,a, ) € S, the upper right-hand Dini derivative D™V (p(t,a, 7o), t)
satisfies

D+V(p(t7 a, TO)7 t) < _SDB(d(p(t? a, 7—0)’ M)) (3.3.10)
forallt € Rf .
Then (S, M) is uniformly asymptotically stable in the large.

Proof. Foranya € Aandp(-,a,7) € S,choose E = {7, 72,...: 71 <Tp < -}
in the same manner as in the proof of Theorem 3.3.2. Let f € C[R™,R*] be the
identity function; that is, f(r) = r.

It follows from (3.3.10) and the Comparison Theorem (Theorem 3.8.1 in the Ap-
pendix of this chapter) that

t
V(p(t7a77—0>7t) - V(p(T7laa7T0)7Tn) S 7/ ()03(d(p(57aa7—0)7M))d5 S 07
and thus,

V(p(t, CLT()),t) < V(p(Tn, avTO)ﬂ—n) = f(V(p(Tm a7TO)7Tn))

forall t € (7, Tnt1), n € N.
Similarly as in the proof of Theorem 3.3.2, we can show that

Dv(p(Tna a, T())7 Tn) S _65(d(p(7-n7 a, 7—0)7 M))v

foralln € N, where 3 € K is given by &3(r) = min{ip1(r), (w3095 0 5p1)(r)}.
Hence, we have shown that the hypotheses of Theorem 3.2.6 are satisfied. There-
fore (S, M) is uniformly asymptotically stable in the large. ]

Theorem 3.3.7 Let {R™, X, A, S} be a continuous dynamical system and let M C A
be closed and bounded. Assume that there exist a function V: X x Rt — R* and
four positive constants ¢y, o, c3, and b such that

crld(z, M) < V(x,t) < cold(z, M) (3.3.11)

forallz € X andt € RT.
Assume that for all p(-,a,79) € S and t € Rf, V(p(t,a,79),t) is continuous.
Furthermore, assume that foralla € A and forall p(-, a, 7o) € S, the upperright-hand

Dini derivative D1V (p(t, a, 1), t) satisfies
DYV (p(t,a,m0),t) < —es[d(p(t, a,70), M)]® (3.3.12)

forallt € Rf .
Then (S, M) is exponentially stable in the large.
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Proof . Let ¢35 = min{cy, c1e3/(2¢2)} and let o1, @a, 3, and @3 € K defined on
R* be given by o1, (r) = cr’, k = 1,2, 3, and $3(r) = c3r. Let f € C[RT, RT]
be the identity function. It follows from the proof of Theorem 3.3.3 that (3.2.24),
(3.2.25), and (3.2.27) are all satisfied. In addition, (3.2.26) is clearly satisfied for any
q € (0,1). Therefore, the hypotheses of Theorem 3.2.7 are satisfied and thus, (.S, M)
is exponentially stable in the large. O

C. Instability results
Next, we consider instability results of a set M with respect to S.

Theorem 3.3.8 (Lyapunov’s First Instability Theorem) Let {R*, X, A, S} be a
dynamical system and let M/ C A be closed, where A is assumed to be a neighborhood
of M. Assume that every motion p(-, a, ) € S is a continuous function of ¢ on Rjo
and assume that there exist a function V: X x RT — R and a ty € R™ that satisfy
the following conditions.

(i) There exists a function ¢ € K defined on RT such that

V(z,t) < o(d(x, M)) (3.3.13)

forallz € X andt € RT.

(ii) In every neighborhood of M, there is a point x such that V' (z,ty) > 0 and
there exists a motion p(-, z, 79) € S.

(iii) There exists a function 1) € K defined on R such that

DYV (p(t,a,to),t) > ¥ (|V(p(t,a,to),t)]) (3.3.14)

for all p(-,a,tg) € Sandforallt € R"(’J, where DT denotes the upper right-
hand Dini derivative with respect to .
Then M is unstable with respect to .S.

Proof . Note that assumptions (i) and (ii) are identical to those of Theorem 3.2.8. We
now show that assumption (iii) reduces to assumption (iii) of Theorem 3.2.8.

For any a € A and p(-,a,ty) € S, choose arbitrarily an unbounded and discrete
subset £ = {t1,ta,...: 11 <t2 < ~~~}0f]R?;.

It follows from assumption (iii) that V' (p(t, a,to),t) is nondecreasing. There-
fore for any a € A such that V(a,to) > 0 and any p(-,a,tp) € S, we have
V(p(t,a,tg),t) > 0 forall t > ty. By the Comparison Theorem (Theorem 3.8.1 in
the Appendix) we obtain

V(p(t’fb"t‘l? a’a to)) tn—f—l) - V(p(tnv av tO)a tn)

> / BVl a,to), D))t

n

trnt1
2/‘ DV (Pt a. to), 1)) dt
t

= (tn+1 — )V (V(p(tn, a,to), tn)).
Hence, inequality (3.2.29) is satisfied.
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Therefore, all the hypotheses of Theorem 3.2.8 are satisfied and thus, M is unstable
with respect to S. m]

Theorem 3.3.9 In addition to the assumptions given in Theorem 3.3.8, assume that
V(x,tg) > Oforall z ¢ M. Then M is completely unstable with respect to S.

Proof . Note that combining with Theorem 3.3.8, the present assumptions reduce to
those of Theorem 3.2.9. Therefore we conclude that M is completely unstable with
respect to S. a

In our next result we require the following notion.

Definition 3.3.1 Let {T', X, A, S} be a dynamical system and let Y C X. We
denote by S|y the family of motions of S restricted to Y. Thus, p(-,a, ) € S|y
with domain Ta,m if and only if a € ANY and there exists a p(-,a,79) € S such
that p(¢, a, 70) = p(t, a, 70) whenever p(t, a, 79) € Y, and fam is the subset of T}, -,
which consists of all ¢ such that p(t, a, 79) € Y. We call S|y the restriction of system
SonY. a

Theorem 3.3.10 (Lyapunov’s Second Instability Theorem) Let {RT, X A, S} be a
dynamical system and let M C Abe closed, where A is assumed to be a neighborhood
of M. Assume that every motion p(-,a, 7o) € S is a continuous function of £ on R} ,
and that there exist a 79 € T and a function V € C[M, X (79,0),R], where
M, = {z € X:d(z,M) < €}, e > 0, such that the following conditions are

satisfied.
(i) V is bounded on M, X [r9, >0).

(ii) Forall p(-,a,79) € S|y, and t € R}

T0?
DV (p(t,a,1),t) > AV (p(t,a,1),t) (3.3.15)
where A > 0 is a constant and D denotes a fixed Dini derivative with respect
to ¢.

(iii) In every neighborhood of M, there exists an 2 such that V(z,t;) > 0 for a
fixed tl > T0-

Then M is unstable with respect to .S.

Proof . By contradiction. If M is invariant and stable with respect to .S, then for the
e>0andt; € RT, there exists a § = §(g,t1) > 0 such that d(p(t,a,t1), M) < e
for all p(-,a,t1) € S and for all t € R:“l whenever d(a, M) < §. Because A is a
neighborhood of M, there exists by condition (iii) an z; € {a € A: d(a, M) < 4}
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such that V' (z1,t1) > 0. Lety(t) = V(p(t, z1,t1),t). Then y(t1) = V(x1,%1) > 0.
By condition (ii),
Dy(t) > My(t) fort > t;.
Let z(t) = y(t)e~**. Then
Dz(t) = e M Dy(t) — Ay(t)e ™ > 0.

Therefore, z(t) is nondecreasing. For any ¢ > t; we have z(t) > z(t1) and thus,
y(t) > y(t1)eMt=1), Because y(t1) > 0, we have lim; ., o, y(t) = co. This
contradicts condition (i) and completes the proof. a

D. An example

The scalar differential equation

In2 ift € [to + 2k, 10 +2k+ 1
Z':{ (H )‘T? 1 €[0+ 70+ + )7 (3316)

—(1H4)(E, ift € [t()+2k+17t()+2(k+1)),

where k € N,z € R, and ty € R™, determines a dynamical system {R*, X A, S}
with X = A = R and with p(-,a,ty) € S determined by the solutions of (3.3.16)
(obtained by integrating (3.3.16)),

2 en2)(t=to=2k), ift € [ty + 2k, to + 2k + 1],
p(tato) = ¢ %q C(Ind)(t—to—2k—1) -
STe . ift € [to+2k+1, to+2(k+1)],
(3.3.17)

for each pair (a,tg) € R x RT and for all K € N and ¢ > to. The plot of a typical
motion for this system is given in Figure 3.3.1. Note that for every (a,ty) € R x RT,
there exists a unique p(-, a, ty) € S that is defined and continuous for t > tq and that
M = {0} is invariant with respect to S.

2.5
2
1.5
1
0.5

0 1 1
0 2 4 6 8 10

Figure 3.3.1: Plot of the motion, p(¢,1,0) € S.

The block diagram of system (3.3.16) is depicted in Figure 3.3.2. This system can
be viewed as a switched system with switching occurring every unit of time since
initial time %g.
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x(ty)
[ o |
In2 O
- 7<H n o
| =X [ ]
Inverting e C - Integrator
Amplifier Switch

Figure 3.3.2: Block diagram for system (3.3.16).

In the following we show that

(a) there exists a function V: R x RT — RT that satisfies Theorem 3.2.2 and
therefore, (S, {0}) is uniformly asymptotically stable; and

(b) there does not exist a Lyapunov function V': R x RT — R that satisfies the
hypotheses of Theorem 3.3.2 and therefore, Theorem 3.3.2 cannot be used to
prove that (.5, {0}) is uniformly asymptotically stable.

Proof. (a) Let V: R — RT be chosen as V(z) = |z| for all z € R. For any
p(-,a,tg), choose the set E = {t1,to,...: t, =to+2k,k=1,2,...}.By(3.3.17),
V(p(tk,a,to)) = |a/2¥|,and V (p(t, a,to)) < 2V (p(tk,a,to)) forall t € [ty, tyi1],
k € N. Therefore all hypotheses of Theorem 3.2.2 are satisfied and hence, (S, {0})
is uniformly asymptotically stable.

(b) For purposes of contradiction, assume that there exist a Lyapunov function
V:R x RT — R* and two functions ¢1, p2 € K defined on R™ such that

o1(|z]) < V(x,t) < po(lz]) (3.3.18)

forall (z,t) € R x R, and there exists a neighborhood U of 0 such thatforalla € U
and for all p(-,a,to) € S, V(p(t,a,to),t) is nonincreasing for all t > to, t € RT.
Without loss of generality, we assume that 1 € U.

By (3.3.17), p(to + 1, a, to) = 2a for any (a,ty) € R x RT. In particular, for any
n € N, because
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and because V (p(¢, a, to), t) is nonincreasing for all p(-, a, o) € S, we have that

() 2 Vo(a 1)) - Vi)

1
(along the motion p(~7 o0 1) );

(g ?) 2 V(5 i 2)) = V()

1
(along the motion p<~, oD 2) );

V(%,n— 1) > V<p(n, l,n— 1),71) =V(1,n)

2
1
(along the motion p(~, PYie 1))
Therefore,
1
V(z—n, 1) > V(1,n).
On the other hand,

@1(2%) < V(in 1) < @2(2%) and  ¢1(1) <V(1,n) < pa(1).

Thus,
1
2 (27> > 1(1)
is true for all n € N, which implies that

. 1
¢2(0) = lim wz(;n) > ¢1(1) > 0.
However, by the assumption 2 € /C, we know that ¢2(0) = 0. We have arrived at a
contradiction. Therefore, there does not exist a Lyapunov function that satisfies the
hypotheses of the classical Lyapunov Theorem for uniform asymptotic stability for
continuous dynamical systems, Theorem 3.3.2. O

3.4 The Principal Lyapunov and Lagrange Stability
Results for Discrete-Time Dynamical Systems

In this section we present the Principal Lyapunov Stability and Boundedness Results
for discrete-time dynamical systems. As in the case of continuous dynamical systems,
we show that these results are a direct consequence of the corresponding stability and
boundedness results for DDS given in Section 3.2. To accomplish this, we first
embed the class of discrete-time systems considered herein into a class of DDS with
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equivalent stability properties. Using this class of DDS, we then show that when the
hypotheses of the stability and boundedness results for the discrete-time systems are
satisfied, then the hypotheses of the corresponding DDS results given in Section 3.2
are also satisfied. This shows that the results of the present section, which constitute
the Principal Lyapunov and Lagrange Stability Results for discrete-time dynamical
systems, are in general more conservative than the corresponding results for DDS. We
include in this section a specific example that reinforces this assertion. Furthermore,
by establishing a link between the stability and boundedness results for DDS and for
discrete-time dynamical systems, we have completed a unifying stability theory for
continuous dynamical systems, discrete-time dynamical systems, and discontinuous
dynamical systems.

Every discrete-time dynamical system, {N, X, A, S}, can be associated with a
DDS, {R*, X, A, 5}, where

S = {ﬁ(t,a,To =ng): p(t,a,70) = p(n,a,ng) fort € [n,n+ 1),
n > ng,n,ng € N}.

For such associated systems, the following result follows directly from definitions.

Lemma 3.4.1 The discrete-time dynamical system, {N, X, A, S}, and the associated
DDS, {R", X, A, S}, have identical stability properties. O

A. Local stability results

We first present local results.

Theorem 3.4.1 Let {N, X, A S} be a discrete-time dynamical system and let M C A
be closed. Assume that there exist a function V': X x N — R¥ and two functions
1, 2 € K defined on RT such that

p1(d(z, M)) < V(z,n) < pa(d(z, M)) (3.4.1)

forall z € X and n € N. Assume that there exists a neighborhood U of M such that
for all @ € U and for all p(-,a,ng) € S, V(p(n,a,ng),n) is nonincreasing for all
n € Ny, (i.e., n > ng, n,ng € N). Then (S, M) is invariant and uniformly stable.

Proof . First, let {RT, X, A, S} be the associated DDS and let V: X x Rt — R

be defined as V (z,t) = V(x,n) forallz € X and t € [n,n+ 1),n € N. It follows
directly from (3.4.1) that

p1(d(x, M)) < V(z,t) < pa(d(z, M))

forallz € X andt € RT.
For any a € U and p(-,a,ng) € S, the associated motion p(¢, a, 7o = ng) is con-
tinuous everywhere on Rju exceptpossiblyon £ = {11 = no+1,72 =ng+ 2,... }.
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E is clearly unbounded and discrete. Let f € C[RT, R™] be the identity function. It
follows from the assumptions that V' (p(7,,, a, ng), 7, ) is nonincreasing and

V(ﬁ(t, a77—0)7t) = V(ﬁ(Tnﬂ a77—0)7n) = f(v(ﬁ(Tm a7T0)7n))7
forallt € (7, Tnt1), n € N.

Hence the associated DDS, {R", X, A, §}, and the set M satisfy the hypotheses
of Theorem 3.2.1 and thus, (S, M) is invariant and uniformly stable. a

Theorem 3.4.2 If in addition to the assumptions given in Theorem 3.4.1 there exists
a function ¢3 € K defined on R™ such that for all @ € U and for all p(-,a,ng) € S

Vip(n+1,a,n0),n+ 1) — V(p(n,a,no),n) < —ps(d(p(n,a,ng), M)) (3.4.2)
for all n € N,,, then (S, M) is uniformly asymptotically stable.

Proof. Let {R*, X, A, S} be the associated DDS and let V: X x Rt — R* be
defined as V (z,t) = V(z,n) forallz € X and ¢ € [n,n +1),n € N.

For any a € U and p(-,a,n9) € S, the associated motion p(¢,a, 70 = ny)
is continuous everywhere on ]Rio except possibly on E = {11 = ng + 1,72 =
no + 2,...}. E is clearly unbounded and discrete. Noting that 7, = ng + n and
Tn+1 — Tn = 1, along the motion p(t, a, ng) we have that

D‘A}(ﬁ(TTHQanO)?Tn)
1 ~ ~
= (Vw1 0,m0), 7i1) — V(s a,m0), 7))
Tn+1 — Tn
=V(p(no+n+1,a,n9),n0 +n+1) — V(p(no + n,a,ng),no + n)

< _<p3(d(17(7—n7 a, Tlo), M))
foralln € N.
In view of the proof of Theorem 3.4.1, we have shown that the associated DDS,

{R*, X, A, S }, and the set M satisfy the hypotheses of Theorem 3.2.2. Therefore
(S, M) is uniformly asymprotically stable. O

Theorem 3.4.3 Let {N, X, A S} be a discrete-time dynamical system and let M C A
be closed. Assume that there exist a function V: X x N — R™ and four positive
constants c1, ¢g, c3, and b such that

crld(z, M) < V(z,n) < cold(z, M) (3.4.3)

forallz € X andn € N.
Assume that there exists a neighborhood U of M such that for all a € U, for all
p(-,a,ng) € S and forall n € N,,,

V(p(n+1,a,n0),n+1) = V(p(n,a,ng),n) < —c3[d(p(n,a,ng), M)]’. (3.4.4)

Then (S, M) is exponentially stable.
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Proof . Letyy, 2, p3 € Kdefinedon RT be givenby oy, (r) = cpr?, k = 1,2,3. Let
f € C[RT,RT] be the identity function. It follows from the proof of Theorem 3.4.2
that (3.2.9), (3.2.10), and (3.2.12) are all satisfied. In addition, (3.2.11) is clearly
satisfied with ¢ € (0,1). Therefore, the associated DDS, {R™, X, A, S}, and the
set M satisfy the hypotheses of Theorem 3.2.3 and thus, (S, M) is exponentially
stable. m]

B. Global stability and boundedness results
Next, we address global results.

Theorem 3.4.4 Let {N, X, A, S} be a dynamical system and let M C A be bounded.
Assume that there exist a function V: X x N — R™ and two strictly increasing
functions 1, pe € C[RT, RT] with lim,_« ¢;(r) = 00, ¢ = 1,2, such that

p1(d(z, M)) <V (z,n) < po(d(z, M)) (3.4.5)

forall z € X and n € N whenever d(x, M) > Q, where (2 is a positive constant.
Also, assume that V' (p(n, a, ng), n) is nonincreasing for all p(-, a, ng) € S and for

all n € N,,, whenever d(p(n,a,ng), M) > €. Assume that there exists a constant

I' > 0 such that d(p(n + 1,a,ng), M) < T whenever d(p(n, a,ng), M) < .
Then S is uniformly bounded.

Proof. First, let {R*, X, A, S} be the associated DDS and let V: X x RT — R
be defined as V(z,t) = V(z,n) forall z € X and ¢ € [n,n + 1),n € N. It follows
directly from (3.4.5) that

p1(d(x, M)) < V(1) < pa(d(z, M))

forallz € X and t € RT whenever d(z, M) > Q.

For any a € A and p(-,a,ng) € S, the associated motion p(t,a,79 = no)
is continuous everywhere on Rjo except possibly on E = {1, = ng + 1,5 =
no+ 2,...}. Eisclearly unbounded and discrete. Let f € C[R™, R™] be the identity
function. It follows from the assumptions that V (5(7,,, a, no), 7,) is nonincreasing
whenever d(p(7,,a, 1), M) > 2 and

V(B(t,a,70),t) = V(B(Tn, a,70),n) = F(V (P70, @, 70), 1)),
fort € (Tn, Tne1), n € N, whenever d(p(t, a, 1), M) > Q.
It is easily seen that d(p(7+1, a, 7o), M) < T whenever d(p(7y, a, 70), M) < Q.
Hence the associated DDS, {R™, X, A, S}, and the set M satisfy the hypotheses
of Theorem 3.2.4 and thus, .S is uniformly bounded. O

Theorem 3.4.5 If in addition to the assumptions given in Theorem 3.4.4 there exists
a function ¢3 € K defined on R such that for all p(-,a,ng) € S

V(p(n+1,a,n0),n+1) = V(p(n,a,ng),n) < —ps(d(p(n,a,ng), M)) (3.4.6)

for all n € N,,, whenever d(p(n,a,ng), M) > €, then S is uniformly ultimately
bounded.
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Proof. Let {RT, X A §} be the associated DDS and let V: X x Rt — R* be
defined as V (z,t) = V(z,n) forallz € X and ¢ € [n,n +1),n € N.

For any a € A and p(-,a,n9) € S, the associated motion p(t,a, 70 = no)
is continuous everywhere on Rio except possibly on E = {11 = ng + 1,72 =
no + 2,...}. E is clearly unbounded and discrete. Noting that 7, = ng + n and
Tn+1 — Tn = 1, along the motion p(t, a, ng) we have that

DV(ﬁ(Tn,a,ng),’rn)
1 = ~
= (V@1 0m0), 701) = V3, 0, 70), 7))
Tn+1 — Tn
=V(p(no+n+1,a,n9),n0 + n+ 1) — V(p(no + n,a,ng),no + n)

< _<p3(d(ﬁ(7—’m a, ’RQ), M))

for all n € N whenever d(p(7,,, a,ng), M) > Q.

In view 0£ the proof of Theorem 3.4.4, we have shown that the associated DDS,
{R*, X, A, S}, and the set M satisfy the hypotheses of Theorem 3.2.5. Therefore S
is uniformly ultimately bounded. O

Theorem 3.4.6 Let {N, X, A, S} be a dynamical system and let M C A be closed
and bounded. Assume that there exist a function V: X x N — R* and two functions
©1, P2 € Koo such that

p1(d(z, M)) < V(z,n) < pa(d(z, M)) (3.4.7)

forallz € X andn € N.
Assume that there exists a function ¢3 € K defined on R™ such that forall a € A
and for all p(-, a,ng) € S,

Vip(n+1,a,n0),n+ 1) — V(p(n,a,ng),n) < —p3(d(p(n,a,ng), M)) (3.4.8)

for all n € Ny,,.
Then (S, M) is uniformly asymptotically stable in the large.

Proof. Let {R*, X, A, S} be the associated DDS and let V: X x Rt — RT be
defined as V (,t) = V(z,n) forallz € X and ¢ € [n,n+1),n € N.

For any a € A and p(-,a,ng) € S, the associated motion p(¢t,a, 79 = ng)
is continuous everywhere on Rjo except possibly on E = {13 = ng + 1,2 =
no + 2,...}. E is clearly unbounded and discrete. Let f € C[R*,R"] be the
identity function; that is, f(r) = r. Similarly as in the proof of Theorem 3.4.5, we
can show that the associated motions and the function V satisfy (3.2.21)—(3.2.23).

Thus, we have shown that the associated DDS {R*, X, A, S } and the set M satisfy
the hypotheses of Theorem 3.2.6. Therefore (.S, M) is uniformly asymptotically stable
in the large. O
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Theorem 3.4.7 Let {N, X, A, S} be a dynamical system and let M C A be closed
and bounded. Assume that there exist a function V: X x N — R and four positive
constants ¢y, ¢g, c3, and b such that

cild(z, M) < V(z,n) < eold(x, M) (3.4.9)

forallx € X andn € N.
Assume that for all @ € A and for all p(-, a, ng) € S,

V(p(n + ]-7 a, ’I’L()), n+ 1) - V(p(n7 a, nO)v TL) < —C3 [d(p(n7 a, n0)7 M)]b (3410)

for all n € Ny,,.
Then (S, M) is exponentially stable in the large.

Proof. The proof proceeds similarly as that in the local exponential stability case.
See the proof of Theorem 3.4.3. a

C. Instability results

We now address instability results of a set M with respect to S.

Theorem 3.4.8 (Lyapunov’s First Instability Theorem) Let {N, X, A, S} be a dy-
namical system and let M C A be closed, where A is assumed to be a neighborhood
of M. Assume that there exist a function V': X x N — R and a ky € N that satisfy
the following conditions.

(i) There exists a function ¢ € K defined on R such that
V(z, k) < ¢(d(z, M))

forall (z,k) € X x N.
(ii) There exists a function ¢ € K defined on R such that

V(p(k +1,q, kO)) k+ 1) - V(p(k7 a, kO)a k) > @(‘V(p(kv a, k0)7 k)|)

for all p(-,a, ko) € S and all k € Ny,.
(iii) In every neighborhood of M there is a point z such that V' (z, ky) > 0 and
there exists a motion p(-, z, ko) € S.

Then M is unstable with respect to S.

Proof . Let {R* X, A, §} be the associated DDS and let V: X x Rt — R be
defined as V (z,t) = V(z,n) forallz € X and ¢ € [n,n +1),n € N.

For any a € A and p(-,a,ng) € S, the associated motion p(t, a, 7o = ng) is con-
tinuous everywhere on R except possibly on £ = {1y = ng+1,7 = no+2,... }.

E is clearly unbounded and discrete. Along the motion p(-, a, ng) we have

Dv(ﬁcﬂu a, nO)an) - V(p(Tn+17a7n())7Tn+1) - V(p(Tnvavn())7Tn)'
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It is easily seen that the associated DDS, {R™, X, A, S }, and the set M satisfy the
hypotheses of Theorem 3.2.8 and thus, M is unstable with respect to S. a

Theorem 3.4.9 In addition to the assumptions given in Theorem 3.4.8, assume that
V(x, ko) > Oforall x ¢ M. Then M is completely unstable with respect to S.

Proof. Note that by combining with Theorem 3.4.8, the present assumptions reduce
to those of Theorem 3.2.9. Therefore, we conclude that M is completely unstable
with respect to S. ]

Theorem 3.4.10 (Lyapunov’s Second Instability Theorem) Let {N, X, A S} be a
dynamical system and let M C A be closed, where A is assumed to be a neighborhood
of M. Assume that for any (a, ko) € A X N and every p(-, a, ko) € S, there exist a
ko € N and a function V': M, x N, — R, where M, = {z € X: d(z, M) < e},
€ > 0, such that the following conditions are satisfied.

(1) V is bounded on M, x Ny,.

(ii) Forall p(-,a,ko) € S|pm. and k € Ny,
V(p(k + 17 a, k0)7 k+ 1) 2 )‘V(p(k7 a, kO)a k)

where A > 1 is a constant.
(iii) In every neighborhood of M, there exists an = such that V' (z, k1) > 0 and
there exists a motion p(-, z, k1) € S for a fixed k1 > ko.

Then M is unstable with respect to S.

Proof . By contradiction. If M is invariant and stable with respect to .S, then for any
e>0and k; € RT, there exists a d = §(g, k1) > 0 such that d(p(k,a, k1), M) < e
for all p(-,a,k1) € S and k € Nj, whenever d(a, M) < . Because A is a
neighborhood of M, it follows from condition (iii) that there exists an 1 € {a €
A: d(a, M) < ¢} such that V(z1, k1) > 0. By condition (ii),

Vip(k+1,a,k1),k+1) > AV (p(k,a, k1), k)

AV

AFFL=ROV (p(ky, a, k), ey

\%

for all k& > k;. Because V(p(k1,a,k1),k1) = V(x1,k1) > 0and A > 1, we
have limy—, 400 V(p(k + 1,a,k1),k + 1) = oo. This contradicts condition (i) and
completes the proof. O

D. An example

The scalar difference equation

2x(n) if n=ng+ 2k,

z(n+1) = { z(n)/4 if n=mng+2k+1, (3.4.11)
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with z(ng) = a, k € N, where a € R and ny € N, determines a dynamical system
{N, X, A, S} with X = A = R and with p(-, a, ng) € S determined by the solutions
of (3.4.11),

° if n=ng + 2k,
p(n,a,ne) =4 2, (3.4.12)
F if n=mng + 2k' =+ 1,

n € N, for each pair (a, kyp) € R x N and for all n > kq. The plot of a typical motion
for this system is given in Figure 3.4.1. Note that for each (a,n¢) € R x N, there
exists a unique p(-,a,ny) € S that is defined for n > ng. Clearly, M = {0} is an
invariant set with respect to .S.

2.5/
ol
15/
il
0.5/
0 T i T e T o 0
o 2 4 6 8 10

Time (n)

Figure 3.4.1: Plot of the motion p(n,1,1) € S

We show in the following that

(a) for the associated DDS {R™, X, A, §} there exists a function V: R x N — R+
that satisfies Theorem 3.2.2 and therefore, (S, {0}) is uniformly asymptotically
stable; and

(b) for the discrete-time dynamical system {N, X, A, S}, there does not exist a
function V: R x N — R™ that satisfies the hypotheses of Theorem 3.4.2 and
therefore, Theorem 3.4.2 cannot be used to prove that (.S, {0}) is uniformly
asymptotically stable.

Proof. (a) Let V: R — R be given by V(z) = |a| for all z € R. For any
p(,a,ng) € S, the associated motion is given by

2 if t € [no + 2k, no + 2k + 1),
ﬁ(taavno): 2a .

k € N. Choose E = {71, 72,...} with 7, = ng + k, and F’ = {7, 7},...} with
7, = ng + 2k (refer to Remark 3.2.1), k€ N. By (3.4.12), V(p(T,’C, a,70)) = |a/2k],
and V (p(t, a, tg)) < 2‘7(7’(7'1/@7@’ 70)) forall t € [r7,7;,,), k € N. Therefore all
the conditions of Theorem 3.2.2 (and Remark 3.2.1) are satisfied and hence, (5, {0})
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is uniformly asymptotically stable. By Lemma 3.4.1 it now follows that (S, {0}) is
uniformly asymptotically stable.

(b) For purposes of contradiction, assume that there exist a Lyapunov function
V:R x N — R* and two functions ¢1, ¢ € K defined on R™ such that

pr(lz]) < V(z,n) < @a(lz)) (3.4.13)

forall (z,n) € R x N, and there exists a neighborhood U of 0 such that for all a € U
and for all p(+, a,ng) € S, V(p(n,a,ng), n) is nonincreasing for all n > ng, n € N.
Without loss of generality, we assume that 1 € U.

By (3.4.12), p(ng + 1, a, ng) = 2a for any (a,ng) € R x N. In particular, for any
n € N, because

(2 1 1)— 1 (3 1 2)— 1 ( 1 1)—1
p 72n, _271/71) p ,271‘717 _2n727"'7pn,27n -

and because V (p(n, a,ng),n) is nonincreasing for all p(-, a, ng) € S, we have that

()2 Voo 1)) = (52)

. 1
(along the motion p<~, 2—”, 1) );

V(gerd) 2V (o3 5002)9) =V (529)

3
(along the motion p( St 2)

V(%,n— 1) > V(p(n,%,n— 1),n) =V (1,n)

1
(along the motion p(-, Ptk 1) ).

Therefore,

V(;n, ) >V (1,n).

On the other hand,

<p1(2in) < V(%ﬂ 1) < @2(2%) and  o1(1) < V(1,n) < a(1).
Thus,
@2(2%) > ¢1(1)

is true for all n € N, which implies that

n—oo

1
v2(0) = lim @2(2n> > p1(1) > 0.
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However, by the assumption 2 € /C, we know that p2(0) = 0. We have arrived at a
contradiction. Therefore, there does not exist a Lyapunov function that satisfies the
hypotheses of the classical Lyapunov Theorem for uniform asymptotic stability for
discrete-time dynamical systems, Theorem 3.4.2. O

3.5 Converse Theorems for Discontinuous Dynamical
Systems

The results of the previous three sections constitute sufficient conditions for various
types of stability, instability, and boundedness for discontinuous dynamical systems,
continuous dynamical systems, and discrete-time dynamical systems, respectively.
It turns out that under some additional mild assumptions, these results constitute
necessary conditions as well. Such results are referred to as converse theorems in the
literature. The proofs of these results do not provide us with the means of constructing
Lyapunov functions V' (p(-, a, 7p), -) in a systematic manner in applications. Never-
theless, converse theorems occupy an important place in the general development
of the qualitative theory of dynamical systems. We address only converse theorems
concerning local results.

A. Local results

In our first result, we require the following hypothesis.

Assumption 3.5.1 Let {R*, X, A, S} be a DDS and assume that
(i) forany p(-,a,ty) € S, there exists ap(-,a1,t1) € S witha; = p(t1,a,tp) and
t1 > to such that p(-, a1, t1) = p(-, a, o) for all £ > ¢;; and

(ii) for any two motions p;(-,a;,t;) € S, i = 1,2, ty > t1, if ag = p1(te, a1,1t1),

then there exists a p(-,a1,t1) € S such that p(¢,a1,t1) = p1(¢,a1,t) for

te [tl,tg) and ﬁ(t,al,tl) = pg(t7a27t2) fort > to. O

In part (i) of Assumption 3.5.1, p(+, a1, t1) may be viewed as a partial motion of

the motion p(+, a, tp), and in part (ii), p(-, a, 1) may be viewed as a composition of
p1(-,a1,t1) and po(-, ag, t2). With this convention, Assumption 3.5.1 states that

(a) any partial motion is a motion in S; and
(b) any composition of two motions is a motion in S.

We require the above assumption in all converse theorems for dynamical systems
defined on metric spaces. The reason for this is that in Definitions 2.2.1 and 2.2.2,
the motions are defined for initial conditions and forward in time, and in general,
time is not required to be reversible. (This is in contrast to many dynamical systems
determined, e.g., by various types of differential equations, addressed in subsequent
chapters.) We note, however, that when in a dynamical system the semigroup property
holds, then Assumption 3.5.1 is automatically implied.
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Theorem 3.5.1 Let {R*, X, A, S} be a DDS and let M C A be a closed invariant
set, where A is assumed to be a neighborhood of M. Suppose that S satisfies As-
sumption 3.5.1 and that (S, M) is uniformly stable. Then there exist neighborhoods
A; and X of M such that A; C X; C A and amapping V: X; x RT — R™ that
satisfies the following conditions.

(i) There exist ¥1, 19 € K such that

forall (z,t) € X; x RT.
(ii) Forevery p(-,a,79) € Switha € Ay, V(p(t,a,10),t) is nonincreasing for all
teRE.

Proof . If (S, M) is uniformly stable, then in view of Lemma 3.10.3 (refer to Section
3.10, Problem 3.10.15), there exists a function ¢ € K defined on [0, ho] for some
hg > 0 such that

d(p(t,a,70), M) < p(d(a, M)) (3.52)

for all p(-,a,79) € S, forall t € R and for all 7y € Rt whenever d(a, M) < hy.
Alisaneighborhood of M, therefore it follows that X1 = {z € A: d(x, M) < ho}
is also a neighborhood of M. We now define V: X; x RT™ — R™ by
V(x,t) = sup {d(p(t',x,t), M): p(-,x,t) € S, t' € RS }.
Then for all z € X, t € R*, we have that
V(z,t) = d(p(t, z,t), M) = d(x, M)

and in view of (3.5.2) we have that V' (z,t) < @(d(z, M)). Therefore, V satisfies
condition (i) of this theorem.

Next, let Ay = {(l e Xq: d(CL7M) < QO_l(ho)} if (p(ho) > hgand A1 = X,
otherwise. We now prove that for any po(-,a, ) € S with a € X;, we have that
v(t) = V(po(t, a,70),t) is nonincreasing for all t € R, .

Letty,ts € R;FO and t; < to. Leta; = pO(ti; a,TQ),i =1, 2. Then,

v(t;) = sup {d(p(t', a;, t;), M): p(-,a:,t;) € S,t' € R}, i=1,2.

To prove that v(t2) < v(t1), it suffices to show that for every pa(-, ag, t2) € S and for
everyt’ € R}, thereexistsapy (-, a1,t1) € Ssuchthat po(t', az, t2) = p1(t', a1, t1).
By (i) in Assumption 3.5.1 there exists a po(-, a1,t1) € S such that

Po(t,a1,t1) = po(t,a,to)

for all ¢ € R . By (ii) in Assumption 3.5.1, for po(-, a1, 1) and pa(-, az, t2), where
as = po(ta,a,to) = po(te,ar,tr), there exists a p1 (-, a1, t1) € S such that

pa(t',az,ta)=p1(t',a1,t1)

because t’ € Rj;. Therefore, v(t2) < v(ty).
This concludes the proof of the theorem. O
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In the proofs of the remaining results of the present section, we require the fol-
lowing additional assumption.

Assumption 3.5.2 Let {R*, X, A, S} be a DDS. We assume that every motion
p(-,a, ) € S is continuous everywhere on Rio, except possibly on an unbounded
and discrete set E = {7y,72,...: 71 < To < ---} (recall that in general E de-

pends on p(-,a,7y) € S), and that I 2 infreqi2,...y,pes{hse1 — 7} > 0, and that

A
Lg = supke{172,m}7pes{7'k+1 — T} < o0. O

In the proof of the converse theorem for uniform asymptotic stability, we require
a preliminary result.

Definition 3.5.1 A continuous function o: [s1,00) — R™ is said to belong to class
L if o is strictly decreasing on [s1, 00) and if lim_,o. 0(s) = 0 where s; € RT. O

Lemma 3.5.1 Let 3 € £ be defined on RT. Then there exists a function o € K
defined on R™ such that for any discrete subset {79, 71, ...} C RT satisfying
inf{7p41 —7e: k=1,2,...} > 0,itis true that Y ;- a(B(r; — 79)) < 0.

Proof. We define n € C[(0, 00), (0, 00)] as

[ B/, t€(0,1),
n(t) = { B(8), te[l,00).

Clearly, n(t) is strictly decreasing for all ¢ >0, lim; ¢+ (t) =00, and n(t) > 5(t)
for all t > 0. Furthermore, 7 is invertible, and ! € C[(0, 00), (0, 00)] is strictly
decreasing, and = 1(3(7)) > n~(n(r)) = 7 for all T > 0.

We now define «(0) = 0 and

at) = e 0 t>0.

Then o € K, and

a(B(r)) = e BO) < e,

If we denote ,,, = inf{7; 11 —7;: j =1,2...}, weknow that 7; — 79 > (j — 1)l
Hence it is true that

Za(ﬁ(Tj — 1)) < Ze‘“f‘m) <14+ Ze—(a‘—l)lm
; =

=0 j=1

1

- lm,

1—e

|
—_

+ < +o00.

This completes the proof. |

We are now in a position to prove the following result.



Section 3.5 Converse Theorems for Discontinuous Dynamical Systems 115

Theorem 3.5.2 Let {R*, X, A, S} be a DDS and let M C A be a closed invariant
set, where A is assumed to be a neighborhood of M. Assume that S satisfies As-
sumptions 3.5.1 and 3.5.2, and furthermore, assume that for every (a, 79) € A X R,
there exists a unique motion p(-, a, 79) € S. Let (S, M) be uniformly asymptotically
stable. Then there exist neighborhoods A, X7 of M suchthat A; C X; C A,anda
mapping V: X; x RT — R that satisfies the following conditions.

(i) There exist functions 11, 1s € K (defined on R™) such that
1(d(x, M) < V(x,t) < o(d(x, M)) (3.5.3)

forall (z,t) € X; x RT;
(i) There exists a function ¢»3 € K, defined on R, such thatforall p(-, a, 79) € S,

we have
DV (p(1x, a,70), 1) < —3(d(p(7k, a,70), M)) (3.5.4)

where a € A1, k € N and where DV is defined in (3.2.4).
(iii) There exists a function f € C[R™,R*] such that f(0) = 0 and such that

V(p(t,CL’T()),t) S f(V(p(TkaavTO)7Tk)) (355)
for every p(-,a,79) € Sand all t € (7x,7x41), a € Ay and 79 € RT.
Proof . Inasmuch as (S, M) is uniformly asymptotically stable, we know by The-

orem 3.5.1 that there exist some neighborhoods A1 and X 1 of M such that A1
X, C A anda mapping V: X, x Rt — RT that satisfies the following conditions.

(a) There exist two functions @1, o € K such that
F1(d(z, M)) < V(x,t) < Ga(d(x, M))

forall (z,t) € X; x R*.
(b) Forevery p(-,a,79) € Switha € A, XN/(p(t7 a,To), t) is nonincreasing for all
t Z T0-

From (a) and (b) above, we conclude that for any ¢ € [y, T+1), it is true that

o1(d(p(t, a,70), M)) <
<

which implies that
d(p(t,ya,m0), M) < (gEl_l o @2) (d(p(T,a,70), M)) (3.5.6)

forallt € 7, Tk+1) and k € N.

By Lemma 3.10.5 (see Problem 3.10.17 in Section 3.10), there exist a function
¢ € K defined on [0, hg) for some hg > 0, and a function ¢ € L, defined on RT,
such that for all ¢ > 7

d(p(t,a,70), M) < @(d(a, M))o(t — 19) (3.5.7)
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forall p(-, a, 70) € S whenever d(a, M) < hq. Let X; = {z € A;: d(x, M) < ho}
and Ay = {a € X1:d(a, M) < ¢~ Y(ho)} if ¢ (ho) < ho and A; = X other-
wise.

We now define the Lyapunov function V' (z, 1) for (x,79) € X; x RT. Because
forany (x,79) € X1 x RT, there exists a unique motion p(-, x, 7o) that is continuous
everywhere on Rj% excepton B = {7, 75...: 7 <7y < ---}, we define

V(z,m) = u(d(p(Tj,ac,To),M)) (3.5.8)

Jj=0

where u € K, defined on R, is specified later in such a manner that the above
summation converges. Obviously,

V(ZL',T()) 2 u(d(p(m,x,m), M)) = U(d((E,M))

Hence, if we define ¢; = u, then V' (x, 79) > 1 (d(z, M)) forall (z,79) € X1 xR™.

Consider p(-, z, 79) € S and the corresponding set £ = {71, 7o, . .. }. If we denote
T = p(7k, a,70), and Ty = 7 for some k > 1, we know there exists a unique motion
(-, T, 7o) € S that is continuous everywhere on ¢ > 7 except on {71, 72, ... }. By
the definition of V' given in (3.5.8), we know that

V(%v;O) = U(d(ﬁ(ﬂ,%,;o),M))
)

By the uniqueness property and Assumption 3.5.1(i), we know that 7; = 754, and
ﬁ(;]a 55, 7’:0) = p(Tk+j7p(Tk7 a, TO)a Tk) = p(Tk-‘rja a, TO)'

Therefore, it is clear that
o0
V(p(tk,a,70), k) = Z u(d(p(7j,a,79),M)). (3.5.9)
j=k

Similarly, for any t € (73, Tk41), k € N, V(p(t, a,79), ) is defined as

oo

V(p(tvaaTO)’t) :u(d(p(taa,TO)vM)) + Z u(d(p(Tj,avTO)aM))' (3510)
j=k+1

It follows that

DV (p(7k, a, 7o), k)

1
= [V(p(7k+1’a?70)7Tk+1) - V(p(Tk?aa/aTO%Tk)}
Tk+1 — Tk
1 = >
= - s |: Z u(d(p(ija’TO)’M)) _Zu(d(p(ijaaTO)»M))
R S Wit =
1

=———ul(d(p(m,a,m), M
Tk+1 — Tk ((p(k 0) >)
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for k € N. Because 7411 — 7 < Lg by Assumption 3.5.2, it follows that

DV (p(7k,a,70), ) < —u(d(p(7h,a,70), M))/Le = —¢3(d(p(Tk, a,70), M))

where we have defined )3 = u/Lg.
We now show how to choose u € /X so that the infinite summation in (3.5.8)
converges. It follows from (3.5.7) that for any (z,79) € X7 x R, we have

w(d(p(t,z,70), M)) < u(p(d(z, M))o(t —70))

< [u(p(d(x, M))a(0)]"* [u(p(ho)o(t — )] .
(3.5.11)

Let 3(1) = @(ho)o(r). Then 8 € L. Hence, by Lemma 3.5.1, there exists a
function o € K defined on R such that >;° a(B(r; — 7)) < oo. If we define
u(r) = [a(r)]?, then it follows that

[u(go(ho)a(t — 7'0))] 12 _ a(np(ho)a(t — 7'0)) = a(ﬁ(t — Tg)). (3.5.12)
Hence, we conclude from (3.5.8)—(3.5.10) that

V(z,7) = éu(d(p(q—j7x’,ro),M))
< 3 (et M) n(othetry ~o)]
_ [u(da. )0 (0)] "> S a(d(r; - 1))
< [u(p(d(xz, M)) )]1/2E1+1/ o)),

where [ is the lower bound given in Assumption 3.5.2. If we define 1), € K by

V2(r) = [u(p(a (0)r)]2[L+1/(1 —e'¥)],

then it follows that V' (x, 79) < ¢a(d(x, M)). Thus we have proved conditions (i)
and (ii) of the theorem.

To prove condition (iii) of the theorem, let ¢ € (7g,7xr1). We have already
shown that

V(p(ta a, 7_0)7 t) S 1/)2(d(p(t7 a, TO)? M))
Furthermore, because a € A; C El, (3.5.6) is satisfied. Hence, we know that
V(p(t,a, o), t) < (¢2 0@ o @2>(d(p(7'k,a, 70), M)). (3.5.13)
On the other hand, we have also shown that

V(p(tk,a,70), k) = 1(d(p(Tk, a,70), M)),
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which implies that

(w;l o V) (p(Tk, a,70),7k) = d(p(Th, a,70), M). (3.5.14)

Combining (3.5.13) and (3.5.14), we obtain that
V(p(t,a,70),1) < (207" 0 G2 0 67 ) (V(p(rs 0, 70), 7))

forallt € (1, 7k11), k € N,and all (a,79) € Ay x RT. If we define f € C[R*,R™"]
as f = o037 0Py otpy !, then f(0) = 0 and

V(p(t,a,70),t) < f(V(p(7h, @, 70), 7k))-

This concludes the proof of the theorem. O

The hypotheses in the next result are not exactly symmetric with the corresponding
hypotheses given in Theorem 3.2.3. Nevertheless, they do provide a set of necessary
conditions for exponential stability.

Theorem 3.5.3 Let {R™, X, A, S}beaDDSandlet M C Abeaclosedinvariant set,
where A is a neighborhood of M. Suppose that system S satisfies Assumptions 3.5.1
and 3.5.2 and that forevery (a, 79) € AXR™, there exists a unigue motion p(-, a, 79) €
S. Let (S, M) be exponentially stable. Then there exist neighborhoods A; and X
of M such that A; C X; C A, and amapping V: X; x RT™ — R that satisfies the
following conditions.

(i) There exist functions 1,2 € K, defined on R, such that
1(d(x, M) < V(x,t) < o(d(x, M)) (3.5.15)

forall (z,t) € X7 x RT.

(ii) There exists a constant ¢ > 0 such that for every p(-, a,79) € S,
DV (p(1k,a,70), ) < —cV (p(7k, @, T0), k) (3.5.16)

for k € N, where a € A, and where DV is defined in (3.2.4).
(iii) There exists a function f € C[R*,R*] with f(0) = 0 and

f(r)y=o0(r? asr—0" (3.5.17)
for some constant ¢ > 0 such that
V(p(ta aaTO)vt) < f(V(p(Tkv a7T0)7Tk)) (3.5.18)

for every p(-,a,79) € S,t € (Tk, Tk41), kK EN,a € Ay, and 19 € RT.
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Proof. By Lemma 3.10.6 (see Problem 3.10.18, Section 3.10), there exist a function
¢ € K defined on [0, ho] for some hg > 0, and an o > 0 such that for all ¢ € R},

d(p(t,a,m0), M) < @(d(a, M))e~*t=70) (3.5.19)

forall p(-,a,79) € S whenever d(a, M) < hg. Let X1 = {z € A:d(z,M) < ho}
and A; ={a € X1: d(a, M) <@~ t(ho)}if o= (ho) < ho and A; = X; otherwise.
For (z,79) € X1 x R, there exists a unique motion p(-, x, 79) € S. We define

V(x,m0) = sup {d(p(t’,x,To),M)ea(t,_T")}. (3.5.20)

t'>To
Now for (a,79) € Ay x R and p(t,a,79),t € R} , it must be true by Assumption
3.5.1 that the unique motion p(t', p(t, a, 70),t) = p(t', a, 7o) for all ¢’ € R;". Thus,
V(p(ta a, T0)7 t) = sup {d(p(t/7p(t7 a, TO)’ t)? M)ea(tlit) }
>t
= sup {d(p(t’, a, To),M)ea(t,_t)}. (3.5.21)
>t
For k € N, we have
V(p(Tkt1,a,70), Tk41) = sup {d(p(t’, a,7p), M)eo‘(t/_”“)e_o‘(”““_”)}

V2Tt

< sup {d(p(t’,a,70)7M)ea(t’—m)}e_alE
Y 2Th 1

< sup {d<p(t/’a’)T0)7M)6a(t,77-)\3)}67041E
>

= e_alEV(p(TkH a, TO)7 Tk)7

where [ is the lower limit given in Assumption 3.5.2. Lettingc = (1 —e~%2) /L,
where L is the upper limit given in Assumption 3.5.2, we obtain

1

DV(p(TkH a, T0)7 Tk) = m [V(p(Tk+17 a, T0)7 Tk)+1) - V(p(Tka a, T0)7 T}C)]
1 —a
< - L—(l —e LE)V(p(Tk,a,To),Tk)
E

= - CV(p(Tk7 a, TO); Tk)-
Also, (3.5.19)-(3.5.21) imply that d(z, M) < V(x, 1) < ¢(d(z, M)) for all (x,t) €
X; x R*. By (3.5.21), for every t € (i, Ti+1) we have that

V(p(t7 a, TO)? t) = Sup{d(p(tl> a, TO)’ M)ea(t/_Tk)e_a(t_Tk)}
>t
< sup{d(p(t', a, 7o), M)e™ " ")}
>t

< sup {d(p(t', a, 7o), M)e®¥' )}
t' >Ty

= V(p(Tkv a, TO)? Tk)'
The proof is completed by letting f(r) = r and ¢ = 1/2. O
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We conclude by noting that converse theorems for DDSs for uniform boundedness,
uniform ultimate boundedness, uniform asymptotic stability in the large, exponential
stability in the large, and instability can also be established, using the methodology
employed in the preceding results.

B. Refinements: Continuity of Lyapunov functions

The converse theorems presented in this section involve Lyapunov functions that need
not necessarily be continuous. In the present subsection, we show that under some
additional very mild assumptions, the Lyapunov functions for the converse theorems
are continuous with respect to initial conditions.

In the proof of Theorem 3.5.2, the Lyapunov function V' is constructed based on the
unique motion that starts at (x, 79) € A x RT. In the following, we show that under
some additional very mild assumptions (Assumption 3.5.3) the function V' given in
the converse Theorem 3.5.2 is continuous (i.e., V (2om, Tom) approaches V(zq, 1)
as m — oo if zg,, — xg and 19, — 79 as m — oo). We then define continuous
dependence on the initial conditions for motions of DDSs and show that Assumption
3.5.3 is satisfied when the motions are continuous with respect to initial conditions.

Assumption 3.5.3 Let {R™, X, A, S} be a DDS and let {zo,,} C A, {Tom} CR™,
ZTom — o € A, and 7o, — To as m — 0o. The motion starting at (o, Tom) 1S
denoted by p,, (t, Zom, Tom ) With the discontinuity set

E(argm,mm) = {TlmaTva s D Tom < Tim < Tom < v° '}»

m € N. Assume that
(@) Trm — T asm — oo, forall k € N; and

®) P (Tkms Toms Tom) — T = p(Tk, To, To) as m — oo forall k € N. O

We first strengthen Lemma 3.5.1 as follows.

Lemma 3.5.2 Let 3 € £ be defined on R™. Then there exists a function o € K
defined on R such that for any discrete subset {rg,71,...} C R* satisfying Ip =
inf{rp+1 —rn:n=1,2,...} > 0, it is true that

Za(ﬂ(ri — 1)) < 00,

=0

and
exp (—(k — 1)ig)
1~ exp(—lp)

’

Z a(B(ri — o)) <

i=k

forall £ > 1.
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Proof. Letnand a € C[(0, 00), (0, 00)] be the same as in the proof of Lemma 3.5.1.
Then

Za i — T0) <Zexp Tj —1T0))

j=k
< Zexp (j —Dig)
_exp (—(k— 1)lg)
1 —exp(~lg)
and
oo
> a(B(r; — 7)) < +o,
j=0
as shown in Lemma 3.5.1. The proof is completed. O

We are now in a position to present our first result.

Theorem 3.5.4 If in addition to the assumptions given in Theorem 3.5.2, the motions
in S also satisfy Assumption 3.5.3, then the Lyapunov function in the Converse
Theorem 3.5.2 is continuous with respect to initial conditions.

Proof . 1t follows from the proof of Theorem 3.5.2 that there exist a function ¢ €
defined on [0, ko] for some hg > 0, and a function o € £ defined on R, such that
forallt > 79
d(p(t,a,70), M) < p(d(a, M))o(t — o) (3.5.22)
forall p(-,a, ) € S wheneverd(a, M) < hg. Let X1 = {x € A: d(z, M) < hy},
and A; = {a e Xi: d(a, M) < gDil(ho)} if gﬁil(ho) < hg and A = X;
otherwise.
Let 8(1) = ¢(ho)o(T), o € K be defined on R* such that Lemma 3.5.2 is true,
and u(r) = [a(r)]?. For any (x,7y) € X; x R, the Lyapunov function V (z, 7q) is
defined as

o]
V(z,m0) =Y u(dlp(rj,z,70), M)). (3.5.23)
7=0

It follows from (3.5.22) that for any (z,79) € X1 X R, we have
w(d(p(t,z,70), M)) < u(p(d(z, M))o(t —0))

< [u(p(d(x, M))a(0)]""* [u(p(ho)o(t — )] .
(3.5.24)

From the choice of u, we have

[u(@(ho)o(t —10))] V2 _ a(p(ho)o(t — 1)) = a(B(t — 10)). (3.5.25)
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We now show that V' is continuous with respect to initial conditions. Suppose
Zom — Xo and To,, — To as m— 00. We denote pu, (Tim, om s Tom) DY Tkm. Then

V(xOma 7-Om) = Z U(d(pm(sz7 Tom, TOm)a M))
0

2

w(d(Xim, M)). (3.5.26)

o

I
=3

7

We show that V (2o, Tom ) approaches V (zg, 79) = >0 u(d(x;, M)) as m — oc.
It follows from (3.5.24), (3.5.25), and Lemma 3.5.2 that

oo

ZU(d(p(n,xo,To),M)) <. [u(p(d(0, M))o(0))]"2[u(io(ho)o (1 — m0))] /2

< [u(p! )2 Z —70))

eXP(*(k? — Dlg)
< [u(p(ho)o(0))]/2 ng-

For every € > 0, in view of the above inequality, there exists an ny > 0 such that

> u(d(zi, M)) < /4 (3.5.27)
i:no
for all zg € A;. Similarly,
> w(d(@im, M) < /4 (3.5.28)
i:no

for all xg,, € Aj.
On the other hand, for every k < ny, there exists a 5 > 0 such that

€
— d < —
lu(r) — u(d(zy, M))| T
whenever |r — d(zy, M)| < d5 (because u(-) is continuous everywhere on RT).
Because z,,, — xr as m — oo, there exists for each k& < ng an my > 0 such that
(T, k) < Oy is true for all m > my,. Now let m. = maxy<n,{mx}. For every
m > m. we have |d(zy, M) — d(ka, M)| < d(zk, Trm) < % and thus

Tlofl —
E xka E 'Ik‘ma ‘
k=0 k=0

Z Ik, 7u(d(kaaM))|
k=0

<=

2
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Therefore we have shown that

[V (@0, 70) =V (wom, 7om)| = |>_ uld(@e, M) = > u(d(@em, M >)‘
k=0 k=0
k=0 k=0
+ Z u(d(xy, M)) + Z u(d(2gm, M))
k=ng k=ng
ce (3.5.29)

Therefore, we conclude that V' is continuous with respect to initial conditions
(5507 T 0)- O

The following concept of continuous dependence on initial conditions for DDS is
motivated by a corresponding term for ordinary differential equations (see, e.g., [11]),
and is used as a sufficient condition for Assumption 3.5.3.

Definition 3.5.2 Suppose {z¢,,} C A C X, {rom} C RY, 2, — 29 € A and
Tom — To a8 m — 0o. Assume that the motions are given by
p(t, w0, 70) = M (b, wk, i), t € [T, i),
and
Pm (t, Lom 7-Om) = p'Efr]f) (t, Tkm, Tkm)v te [Tkma T(k:-‘,—l)m);

k € N, where p®) (¢, 21, 1) andpgf) (t, Tkm, Tkm ) are continuous for all ¢ € R with

P* 7y ke T) = (Th %0, T0) = i
and
pgr]f) (Tkms Thm Tkm) = Pm (Tkms Tom, Tom) = Thm.-
The motions in S are said to be continuous with respect to the initial conditions
(zo,70) if
(@) Trm — Tk asm — oo, forall k € N; and

(b) forevery compactset K C R* and every € > O there existsan L = L(K,¢) >
0 such that for all ¢t € K and k € N such that K N |1y, 7541) # 0,

AP (8, rms Tiom), P (8, 1, 7)) < €
whenever m > L. a
An example of the set of continuous functions p*) (t, x;,, 73, ) is

Ty t < Tk,
P(k)(t, zk, k) = {4 p(t, w0, 7o), t € [Tk, Tha1),
p(Tk_+17x07T0)7 tZ Thk+1-
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Another example of p(*) (¢, z, 73,) is given in Example 3.5.1, following the next
result.

Theorem 3.5.5 If in addition to the assumptions given in Theorem 3.5.2, the motions
in S are continuous with respect to initial conditions, then the Lyapunov function given
in (3.5.23) is continuous with respect to initial conditions (z, 79).

Proof . We show that under the present hypotheses, Assumption 3.5.3 is satisfied and
hence V is continuous with respect to initial conditions by Theorem 3.5.4.

Suppose xg,, — o and 7, — To as M — oo. Assumption 3.5.3(a) is the same
as Definition 3.5.2(a). We only need to show Assumption 3.5.3(b) is satisfied; that is,
Trm — Tk asm — oo forall k € N.

Forafixedk > 0,k € N,let K = [1, — g /2,7 + lg/2]. For every € > 0 there
existsan L = L(K,&/2) > Osuch that forall t € K

d(pfq’i)(t,ka,mm),p(k) (t, 2k, k) < &/2 (3.5.30)

whenever m > L. Because p¥) (t,xp, Tk ) is continuous on R, there existsa § > 0
such that d(p™® (¢', xy,, 71.), p*) (Tk, 21, T1)) < €/2 whenever |t' — 71| < §. Because
Tkm — Tk as m — 00, there exists an L1 > 0 such that 7x,,, € K and |7, — Tk < 0
for all m > L;. Therefore, when m > max{L, L; }, we have by (3.5.30)

AP® (Tems T Tem )» PX) (Tems T 7)) < €/2,
and by the continuity of p¥) (¢, 2., 1)
d(p™ (Thm, e, 1), DX 70y e Th)) < £/2.
By the triangle inequality we have

AP (Therms Thms Tem ) P (Th, T, k)
< AP (Them s s Them )s P (Them, Thos 7))
+ d(P™ (T w1, ), PP (T, Thy )
< €.

This shows that zj,,, = pgr]f) (Thims Thms Tkm) — Tk as m — oo. This completes the
proof. O

We conclude the present subsection by considering a specific example to demon-
strate that the assumptions concerning the continuous dependence of the solutions
(motions) on initial data, is a realistic assumption.

Example 3.5.1 Consider systems with impulse effects, which are described by equa-

tions of the form
9T b t4t
{ ac o (3.5.31)

z(te) = g(z(ty)),
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where © € R™ denotes the state, g € C[R™,R"], and f € C[R" x Rt R"|
satisfies a Lipschitz condition with respect to x that guarantees the existence and
uniqueness of solutions of system (3.5.31) for given initial conditions. The set
E = {t1,ta,...: t1 < ta < -} C R* denotes the set of times when jumps
occur. Assume that F is fixed in the interest of simplicity.

A function ¢: [tg, 00) — R™ is said to be a solution of the system with impulse
effects (3.5.31) if (i) ¢(t) is left continuous on [tg, 00) for some ¢ty > 0; (i) ¢(t)
is differentiable and (dp/dt)(t) = f(p(t),t) everywhere on (g, 00) except on an
unbounded subset E N {t: t > to}; and (iii) forany ¢t =t € EN{t: t > to},

p(tt) = lim_o(t") = g(e(t7)).

Yttt/ >t
Suppose Ty € [try, tko+1) fOr some kg € N. The motion p(t, zo, 7o) is given by

p(ay(t, or, tr), t € [tr,thr1), k> ko
9@ (tprs Thy tr)), t=tr1

p(t, zo,T0) = {

and p(t, 20, 70) = p(ay(t, 20, 70), t € [T0,tro41), Where zp = p(tp, 20, 70), and
where p(q) (t, Tr, ), t € R is the solution of the following ordinary differential

equation

ot a) =m (3:5.32)

Suppose xg,, — g and 71, — To as m — oo. Without loss of generality, we
may assume that 7o < t; € E. By the assumption that E is fixed it follows that for
sufficiently large m, the discontinuity set is {7gm, = tx}, for all & > 0. From the
continuous dependence on initial conditions of ordinary differential equations, we
know that {p(q)(t, Zom, Tom)} — P(a)(t, T0, 7o) for ¢ in any compact set of RT as
m — OQ.

Because g(+) is continuous, we have

T1m = 9(pay (11 s Toms Tom)) — 1 = g(pa) (1 , o, o)) as m — o0.

In turn, we have pg) (t, T1m, t1) — Py (t, z1,t1) for t in any compact set of R™ as
m — oo and thus,

Tom = 9Py (ty , Tim, t1)) — 22 = g(pay(t5 , 1, t1)) as m — oo.

By induction, we can show that zj,, — xx as m — oo for all & > 0. Therefore
we have shown that the motions of (3.5.31) are continuous with respect to initial
conditions. O

3.6 Converse Theorems for Continuous Dynamical
Systems

We address only local converse theorems.



126 Chapter 3. Principal Stability and Boundedness Results on Metric Spaces

A. Local results

Our first result, concerning uniform stability, is identical to the converse theorem for
uniform stability for DDS.

Theorem 3.6.1 Let {R™", X, A, S} be a continuous dynamical system and let M C A
be a closed invariant set, where A is assumed to be a neighborhood of M. Suppose
that S satisfies Assumption 3.5.1. Assume that (S, M) is uniformly stable. Then
there exist neighborhoods A; and X of M such that A; C X; C A and a mapping
V: X1 x RT — RT that satisfies the following conditions.

(i) There exist functions 1, 15 € K such that
Y1(d(z, M)) < V(x,t) < a(d(z, M))

forall (z,t) € X; x RT.

(ii) Forevery p(-,a,7) € Switha € Ay, V(p(t,a,7p),t) is nonincreasing for all
teR}.

Proof. The proof is identical to the proof of Theorem 3.5.1 and is not repeated
here. O

Before proceeding further, it might be instructive to comment on the hypotheses
of the next two results, the converse theorems for uniform asymptotic stability and
exponential stability. In such results, for the case of continuous dynamical systems
(see, e.g., Hahn [2], Miller and Michel [11], and Yoshizawa [14]), itis usually assumed
that the motions are unique forward in time, unique backward in time, and that they
satisfy the semigroup property; that is, for any p(-,a,tp) € S and tg < t; < t,
p(t,p(t1,a,t0),t1) = p(t,a,ty). The latter property ensures that Assumption 3.5.1
concerning partial motions is satisfied.

In contrast, as in the case of DDS, we require in the present section in the converse
theorems for uniform asymptotic stability and exponential stability for continuous
dynamical systems the weaker assumptions that the motions of a dynamical system
are unique forward in time and that they satisfy Assumption 3.5.1 concerning partial
motions.

We note in passing that for discrete-time dynamical systems determined by differ-
ence equations, the motions are in general not unique backward in time, unless the
right-hand side of the difference equation is a bijective function which is only rarely
the case.

Examples of dynamical systems whose motions are not unique forward in time,
nor backward in time, and that do not satisfy Assumption 3.5.1 concerning partial
motions include the examples given in Subsections 3.3D and 3.4D. To see this, we
consider in particular the example given in Subsection 3.3D. Examining Figure 3.6.1,
where we depict two solutions with initial conditions (¢y = 0, 2(0) = 1) and (to = 1,
x(1) = 2), we see that the motions are unique with respect to initial conditions: for
each initial condition there exists one and only one motion that exists for all ¢ > .
However, because these motions intersect at different time instants, the motions of
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Figure 3.6.1: Two motions that intersect.

this dynamical system are not unique forward in time, nor are they unique backward
in time.

Moreover, because the composition of some parts of these motions do not result
in a partial motion, Assumption 3.5.1 is also not satisfied in the present example.

In the proof of our next result, we require the following preliminary result.

Lemma 3.6.1 Let 3 € L be defined on R™. Then there exists a function o € K
defined on R such that

oo

a(B(r))dr < 1.

0

Proof. We define n € C[(0, c0), (0,00)] by

By construction, 7)(t) is strictly decreasing for all ¢ > 0, lim;_,o+ 1(t) = 400, and
n(t) > B(t) for all t > 0. Furthermore, ! exists and is strictly decreasing, and
n~1(B(t)) > n~t(n(t)) =t forall t > 0.

We now define a(0) = 0 and a(t) = e~ " forall ¢ > 0. Then o is a class K
function, a(B(t)) = e~ B®) < =t and

/OOO a(B(r))dr < /OOO eTdr < 1.

Theorem 3.6.2 Let {R™, X, A, S} be a continuous dynamical system and let M C A
be a closed invariant set, where A is assumed to be a neighborhood of M. Assume
that S satisfies Assumption 3.5.1 and that for every (a, 7o) € A x RT, there exists
a unique motion p(-,a,7g) € S that is defined and continuous for all ¢ € Rjo. Let

O
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(S, M) be uniformly asymptotically stable. Then there exist neighborhoods A; and
X, of M suchthat A; C X; C A, and amapping V: X; x RT — RT that satisfies
the following conditions.

(i) There exist two functions 11,12 € K such that
Y1(d(z, M)) < V(x,t) < Pa(d(z, M))

forall (z,t) € X7 x RT.
(ii) There exists a function 13 € K such that for all p(-,a,79) € S and for all
t € [19,00), we have

D+V(p(tva’7 TO)?t) S _w3(d<p(ta a7TO)’ M))

whenever a € A;.

Proof. By Lemma 3.10.5 (see Problem 3.10.17, Section 3.10), there exist a function
¢ € K defined on [0, ko] for some hg > 0, and a function o € £ defined on R™, such
that for all ¢ > 7

d(p(t, a,70), M) < ¢(d(a, M))o(t — 7o) 3.6.1)
for all p(+, a, ) € S whenever d(a, M) < hg. Let X; = {z € A: d(x, M) < hy}
and let

n {ae Xy:d(a, M) < ¢ (h)} if p(hg) > ho,
' X1 otherwise.
We define -
Z(x,t) :/ u(d(p(r,z,t), M))dr (3.6.2)
t
where v € K is to be determined later and is such that the integral converges for
all (z,t) € X; x RT. For p(-,a,79) € S, p(7,p(t,a,7),t) = p(7,a, ) because
of Assumption 3.5.1 and the uniqueness of the motion p(-,a, 7). Therefore, the
integrand in the right-hand side of (3.6.2) is independent of ¢ for x = p(¢,a, 1)

where a € A;. Because u(d(p(r, a, 70), M)) is a continuous function of 7, it follows
that Z (p(t, a, 1), t) is differentiable with respect to ¢ and that

%Z(p(ua,m),t) = —u(d(p(t,z,10), M)) (3.6.3)

for all (a,79) € Ay x Rt and t > 7.
To determine how to choose u € IC so that the integral in (3.6.2) converges for all
(x,t) € X1 x RT, weuse (3.6.1). Forz € X, ¢ € RT, and 7 > ¢, we have

d(p(T,J?,t), M) < @(d(l" M))O(T - t)'

Because p(d(z, M)) < ¢(hg) forx € X; and because (7 —t) < o(0), we have that

u(p(d(z, M))o(r — 1)) < [u(p(d(z, M)a(0)] " [u(p(ho)o(r — )]
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forx € X7 and 7 > ¢t > 0. Therefore,

260,1) < [u(e(dle, M)o@)] " [ [upthojotr )] ar

t

= fufetate. 4o 0] [ fuptho)otr)]

0
In applying Lemma 3.6.1, we choose 3(7) = ¢(ho)o () and u(r) = [a(r)] ?. Then

Z(x,t) < [u(p(d(z, M) (0))]"? =

For (x,t) € X; x RT, we now define

a(p(d(z, M))o(0)). (3.6.4)

W (z,t) = sup {d(p(t',z,t), M)}.

Then
d(x, M) =d(p(t,z,t), M) < W(z,t) < p(d(xz, M))c(0). (3.6.5)

Let V(z,t) = Z(x,t) + W(z,t). In the proof of Theorem 3.5.1 we have shown
that W (p(t, a, 79), t) is nonincreasing for all ¢t > 7 (i.e., DY W (p(t, a,79),t) < 0).
Therefore, (3.6.3) implies that

DTV (p(t,a,70),t) < —u(d(p(t,a, o), M))

forall a € Ay and ¢ > 7p; that is, V satisfies condition (ii) of the theorem.
To show that V' satisfies condition (i), we note that

d(e, M) < V(2,t) < a(p(d(z, M))o(0)) + o (d(x, M))o(0).

forall x € X; and t € R, where we have used (3.6.4) and (3.6.5). This concludes
the proof of the theorem. O

The hypotheses in our next result are not precisely symmetric with the correspond-
ing assumptions in Theorem 3.3.3 for exponential stability of (S, M ). Nevertheless,
they do constitute necessary conditions for exponential stability of (S, M).

Theorem 3.6.3 Let {R™, X, A, S} be a continuous dynamical system and let M C A
be a closed invariant set, where A is assumed to be a neighborhood of M. Assume
that S satisfies Assumption 3.5.1, and furthermore, assume that for every (a, 1) €
A x R™, there exists a unique continuous motion p(-, a,7) € S that is defined and
continuous for all ¢ € [rg,00). Let (S, M) be exponentially stable. Then there
exist neighborhoods A; and X; of M such that 4, C X; C A, and a mapping
V: X; x RT — R that satisfies the following conditions.

(i) There exist two functions 11,12 € K such that
Y1(d(z, M)) < V(z,t) < ¢o(d(z, M))
forall (z,t) € X; x RT.
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(ii) There exists a constant ¢ > 0 such that for every p(-,a,7) € S and for all
t € [r9,00),
DYV (p(t, a,m),t) < —cV(p(t; a, ), 1)

where a € A;.
Proof. By Lemma 3.10.6 (see Problem 3.10.18, Section 3.10), there exist a function
¢ € K, defined on [0, ko] for some hy > 0, and a constant o > 0 such that
d(p(t,a,0), M) < p(d(a, M))e~>t=70) (3.6.6)
for all p(-,a, ) € S and all t > 79 whenever d(a, M) < hy.
Let X1 = {x € A: d(z, M) < hg} and let

V(z,t) = sup {d(p(t', z,1), M)eo‘(t/_t)} (3.6.7)
>t
forall (z,t) € X; x RT. Let Ay = {a € X1: d(a, M) < p=1(hg)} if ¢(ho) > ho
and A; = X, otherwise. Thenfora € A; and 7y € RT, we have by Assumption 3.5.1
and the uniqueness of the motions that

V(p(t, a,0),t) = sup {d(p(t', p(t, a, 70), 1), M)e(* =)}
t'>t

= sup {d(p(t', a,70), M)e®®' D1
t' >t

Therefore, for At > 0, we have

V(p(t+ AtvavTO)vt—’_At) = Ssup {d(p(tlvp(taavT())7t)vM)ea(t/_t_At)}
t'>t4+At

= sup {d(p(t',a,m), M)e*' D }eodt
>+ AL

< V(p(t, a,To),t)efaAt.
The above inequality yields

efaAt -1

+ .
D V(p(t,a,TQ),t) < All—rf})Jr V(p(t7a77—0)’t) At

Finally, (3.6.6) and (3.6.7) imply that
d(z, M) < V(z,t) < p(d(z, M))

for all (z,t) € X; x RT. This concludes the proof of the theorem. a

= —aV(p(t, a, TO)a t)'

We conclude by noting that converse theorems for continuous dynamical systems
for uniform boundedness, uniform ultimate boundedness, uniform asymptotic stability
in the large, exponential stability in the large, and instability can also be established,
using the methodology employed in the preceding results.

B. Refinements: Continuity of Lyapunov functions

In this subsection, we first define the notion of continuity with respect to initial
conditions for continuous dynamical systems. We then show that the Lyapunov
functions in the converse theorems (Theorems 3.6.2 and 3.6.3) are continuous.
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Definition 3.6.1 Let {R™, X, A, S} be a dynamical system. Let {a,,} C A C X,
{tm} CRY, ay, — a € A, and t,,, — tgas m— oo, let {pm} = {pm (s @m,tm)}
be a sequence of noncontinuable motions defined on intervals J,,, = [t ¢m ), and let
p = p(, a, ty) be a noncontinuable motion defined on an interval [tg, ¢p). We say that
the motion p is continuous with respect to initial conditions if there is a subsequence
{m;} C {m} such that

@) lim]goo inf[07 Cm; — tm].) DJy= [07 Cco — to); and

(1) P, (t+tm,, Gm; s tm,;) — p(t +to, a, to) uniformly on compact subsets of .Jo

as j — o0o.

If in particular, the motion p is unique, then it is required that the entire sequence
{Pm(t + tim,am,tm)} tends to p(t + to, a,to) uniformly in ¢ on compact subsets
of Jy. O

For the motivation of Definition 3.6.1, the reader may want to refer to Theorem
6.8.1 in the appendix section of Chapter 6 (Section 6.8), where conditions for the
continuous dependence of the solutions of ordinary differential equations on initial
conditions and parameters are presented (as required background material).

Theorem 3.6.4 Let {R™, X, A, S} be a continuous dynamical system and let M C A
be a closed invariant set, where A is assumed to be a neighborhood of M. Assume
that S satisfies Assumption 3.5.1 and the motions in S are continuous with respect
to initial conditions, and furthermore, assume that for every (a, 79) € A X R, there
exists a unique motion p(-,a, 7o) € S that is defined and continuous for all t € R .
Let (S, M) be uniformly asymptotically stable. Then there exist neighborhoods A;
and X of M such that A; C X; C A, and a function V' € C[X; x RT,R¥] that
satisfies the conditions of Theorem 3.6.2.

Proof. Let V(z,t) = W(z,t) + Z(x,t), where Z(x,t) and W (z,t) are the same
as in the proof of Theorem 3.6.2; that is,
W (z,t) = sup {d(p(t',z,t), M)},

>t

Z(z,t) = /toou(d(p(T,lL',t),M))dT,

forall (z,t) € X; x RT, where X is given in the proof of Theorem 3.6.2. We show
in the following that both W (-,-) and Z(:,-) are continuous in (x,t), and hence,
V(x,t) is continuous.

Let ¢ > 0 be arbitrary. Suppose that {(z,, )} C X1 x RY,m=1,2,...,and
(T tm) — (20, t0) as m — oo. There exists an Ly > 0 such that o(s) < €/¢(ho)
for all s > Lj, where o(-) € L is given in (3.6.1). Then d(p(7 + t,z,t), M) <
w(ho)o(7) < eforall 7 > Ly. Thus,

|W (&, tm) — W (xo,t0)]

= Slip {d(p(T + tms T, tm)y M)} - Sgp {d(p(T + to, o, tO), M)}
720 720

< sup {|d(p(7'—|—tm,mm,tm),M)—d(p(T+t0,x0,t0),M)|}+25.
0<7<Ly
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Because the motions in S are continuous with respect to initial conditions, p(t, ., , tm,)
converges to p(t, xg, to) uniformly on the compact set [0, L1 ]; that is, there exists an
mo € N such that supg<. <, |d(p(T, T, tn ), M) — d(p(7, z0,t0), M)| < € for all
m > mg. The continuity of W (-, -) now follows immediately.

Similarly, there exists an Lo > 0 such that

oo

/t T u(dp(r, 2, 1), M))dr < alo(ho)o(0)) / a(p(ho))o(r)dr < e,

+L2 Lo

for all (z,t) € X; x R*, where u and « are given in the proof of Theorem 3.6.2.
Hence,

| Z (s tm) — Z(x0,t0)]

- / T A (p(7, 2y ), M) — / " wd(p(r o, to), M))dr

to

m

Lo
</
0
o

Jr/ u(d(p(T,zm,tm),M))dT+/ u(d(p(r, xg, to), M))dr
tm+Lo to+La2

Lo
</
0

The term

U(d(p( + b, 2y ), M)) = u(d(p(r + to, 30, ), M))|dr

w(d(p(T + tims Ty, tm), M) — u(d(p(T + to, 20, to), M))‘dT + 2e.

Lo
/0 [u(d(p(T + tim, T, tm), M) — u(d(p(T + to, z0, to), M))|dT

becomes arbitrarily small for sufficiently large m because p(t, x.,, t,,) converges
to p(t, xg, to) uniformly on the compact set [0, Ly]. Therefore we have shown that
Z(z,t) is continuous in (z,t). O

In our next result, the Lyapunov function is constructed slightly differently from
that in the proof of Theorem 3.6.3 to ensure the continuity of the Lyapunov function.

Theorem 3.6.5 Let {R™*, X, A S} be a continuous dynamical system and let M C A
be a closed invariant set, where A is assumed to be a neighborhood of M. Assume
that S satisfies Assumption 3.5.1 and the motions in .S are continuous with respect
to initial conditions, and furthermore, assume that for every (a, 79) € A x R™, there
exists a unique motion p(-,a,79) € S that is defined and continuous for all t € R .
Let (S, M) be exponentially stable. Then there exist neighborhoods A; and X; of
M such that A; C X; C A, and a function V € C[X; x RT,R™] that satisfies the
conditions of Theorem 3.6.3.

Proof. By Lemma 3.10.6 (refer to Problem 3.10.18), there exist a function ¢ € K,
defined on [0, ko] for some hy > 0, and a constant & > 0 such that

d(p(t,a,m0), M) < @(d(a, M))e~>t=70) (3.6.8)
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for all p(-,a, ) € S and all t > 7y whenever d(a, M) < ho.
Let X1 ={x € A: d(x, M) < hg} and let

V(z,t) = sup {d(p(t', z,1), M)e’\a(t/*t)} (3.6.9)

t'>t
forall (z,t) € X; x RT, where 0 < A < 1is a constant. Let

e { {ae€ Xy:d(a,M) <o~ ho)}  ifo(hg) > ho,

X1 otherwise.

It can be shown in the manner as in the proof of Theorem 3.6.3 that the V' function
satisfies the conditions in Theorem 3.6.3 with the constant ¢ = Ao

To establish the continuity of V, we let ¢ > 0 be arbitrary, {(zy,, t,,)} C X1 xR,
m=1,2,...,and (Tmm, tm) — (20, t0) as m — oo. It follows from (3.6.8) that

d(p(r +t,2,t), M)e ™ < p(hg)e™ TV < ¢
forall 7 > L 2 In(e/¢(ho))/[(1 — X)a]. Thus,

|V(xmatm) - V(antO)‘
= Sup {d(P(T + tms Tm, tﬂL)v M)e)\aT} — sup {d(p(T =+ to, Zo, tO)a M)e/\om'}

>0 >0
< sup {‘d(p(T + tm, Ty tm), M) — d(p(T + to,xo,to),M)‘eMT} + 2¢.
0<7<L

Because the motions in S are continuous with respect to initial conditions, p(t, ., tm, )
converges to p(t, o, to) uniformly on the compact set [0, L] as m — oo; that is, there
exists an mg € N such that

sup |d(p(T + tm, Tm,tm), M) — d(p(T + to,xo,to),Mﬂe)‘o‘T <e
0<r<L

for all m > myg. Therefore V is continuous in X; x R*. O

3.7 Converse Theorems for Discrete-Time Dynamical
Systems

In the present section we address local converse theorems for discrete-time systems.
Our first result, concerning uniform stability, is similar to the converse theorems
for uniform stability for DDS and continuous dynamical systems.

Theorem 3.7.1 Let {N, X, A S} be a discrete-time dynamical system and let M C A
be a closed invariant set, where A is assumed to be a neighborhood of M. Suppose
that S satisfies Assumption 3.5.1 (modified in the obvious way for discrete-time
systems). Let (S, M) be uniformly stable. Then there exist neighborhoods A; and
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X1 of M such that A; C X7 C A and a mapping V: X; x N — R™ that satisfies
the following conditions.

(i) There exist functions 1)1, 15 € K such that

forall (z,n) € X; x N.
(ii) Forevery p(-,a,ng) € S with a € Ay, V(p(n,a,ng),n) is nonincreasing for
alln € N, (i.e., n > ng, n,no € N).

Proof. The proof is similar to the proof of Theorem 3.5.1 and is not repeated
here. m]

Theorem 3.7.2 Let {N, X, A,5} be a discrete-time dynamical system and let M/ C A
be a closed invariant set, where A is assumed to be a neighborhood of M. Assume that
S satisfies Assumption 3.5.1 and that for every (a,ng) € A x N there exists a unique
motion p(-, a,ng) € S that is defined for all n € N,,, (i.e., n > ng,n,ng € N). Let
(S, M) be uniformly asymptotically stable. Then there exist neighborhoods A; and
X of M such that A; C X; C A and a mapping V: X; x N — R™ that satisfies
the following conditions.

(i) There exist functions 1,1 € K such that
Y1(d(z, M)) < V(z,n) < Po(d(z, M)) (3.72)

forall (z,n) € X3 x N.

(ii) There exists a function 3 € X such that for all p(-,a,ng) € S and for all
n € Ny, we have

DV (p(n,a,ng),n) < —s(d(p(n,a,ng), M)) (3.7.3)
where a € Ay, and

DV (p(n,a,ng),n) =V(p(n+1,a,n9),n+1)—V(p(n,a,ng),n). (3.7.4)

Proof. By Lemma 3.10.5 (refer to Problem 3.10.17, Section 3.10), there exist a
function ¢ € K defined on [0, ko] for some hg > 0, and a function o € £ defined on
R*, such that for all n € N+

d(p(nva»n())aM) < (p(d(aaM))O—(n - ’I’L()) (375)

forall p(-,a,ng) € S whenever d(a, M) < hg. Let X1 = {z € A: d(x, M) < ho}
and let

A =

{a € Xy:d(a, M) < o~ (ho)} if p(hg) > ho,
X, otherwise.
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We define

oo
V(z,ng) = Z u(d(p(j,x,ng), M)) (3.7.6)
Jj=no
where u € ICis to be determined later and is such that the summation converges for all
(z,mn0) € Xy x N. Forp(+,a,ng) € S, p(n,p(ni,a,ng),n1) = p(n,a,ny) because
of Assumption 3.5.1 and the uniqueness of the motion p(-,a,ng). Therefore, the
summation in the right-hand side of (3.7.6) is independent of ng for = p(n, a, ng)
where a € A;.
To determine how to choose u € K so that the summation in (3.7.6) converges for
all (x,ng) € X1 x N, we apply Lemma 3.5.1. It follows from (3.7.5) that for any
(x,n0) € X1 X N, we have

u(d(p(n, z,n0), M)) < u(p(d(z, M))o(n —np))
< [u(e(d(x, M))a (0))]*[ule(ho)o(n —no)]'/%. (3.7.7)

Let 8(7) = p(ho)o(7). Then 8 € L. Hence, by Lemma 3.5.1, there exists a function
a € K defined on R* such that

a(B((no +1) —no)) = Y a(B(j —no)) < .
i=0 j=no

If we define u(r) = [a(r)]?, then it follows that

[u(p(ho)o(n —no))]"/? = [a(p(ho)a(n —no))]'/? = a(B(n — ng)).
Hence, we conclude that

oo

V(xa’nO) = Z u(d(p(g,x,no),M))

Jj=no

< > ulp(d(z, M)a ()] *[u(p(ho)o(j —no))]'/?

Jj=no
oo

= [ulp(d(z, M)a ()]'? Y a(B(j —no))

< [ulp(d(z, M))a(0))]2[L+1/(1 — 7).
If we define 5 € IC by
a(r) = [u(p(r)o(O)]2[1+1/(1 - e ™),

(o (r
then it follows that d(z, M) < V(x,ng) < to(d(xz, M)). Thus we have proved
condition (i) of the theorem.
For any p(-,a,ng) € S and any n > ny, it follows from the uniqueness assump-
tion that

Vp(n,a,no),n Zu p(j,p(n, a,ng), Zu p(j,z,m0), M)).
j=n j=n
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Along each motion p(-,a,ng) € S, we have that

DV(p(’I’L, a, nO)) n) = Z U(d(p(j, a, nO)) M)) - Z U(d(p(j, a, Tlo), M))
j=n+1 Jj=n

= —u(d(p(n,z,no), M))

forall (a,np) € A1 x Nand n > ny; thatis, V satisfies condition (ii) of the theorem.
This concludes the proof of the theorem. a

The hypotheses in our next result are not exactly symmetric with the corresponding
assumptions in Theorem 3.4.3. However, they do provide a set of necessary conditions
for exponential stability of (.S, M).

Theorem 3.7.3 Let {N, X, A S} be a discrete-time dynamical system and let M C A
be a closed invariant set, where A is assumed to be a neighborhood of M. Assume that
S satisfies Assumption 3.5.1 and that for every (a, ng) € A x N there exists a unique
motion p(-, a,ng) € S that is defined for all n € N,,,. Let (S, M) be exponentially
stable. Then there exist neighborhoods A; and X7 of M suchthat Ay C X; C A
and a mapping V: X7 x N — R that satisfies the following conditions.

(i) There exist functions 11, 12 € K such that

forall (z,n) € X; x N.
(ii) There exists a constant ¢ > 0 such that for all p(-,a,ng) € S and for all
n € Ny, we have
DV (p(n,a,ng),n) < —cV(p(n,a,ng),n) (3.7.9)
where a € Ay, ¢ > Oisaconstantand DV (p(n, a,ng),n) is defined in (3.7.4).

Proof. By Lemma 3.10.6 (refer to Problem 3.10.18, Section 3.10), there exist a
function ¢ € K, defined on [0, ko] for some gy > 0, and a constant « > 0 such that

d(p(n,a,ng), M) < @(d(a, M))e~ =m0 (3.7.10)

for all p(n,a,ng) € S and n > ng whenever d(a, M) < hyg.
Let X; = {.’E € A: d({E,M) < h()} and let

V(z,ng) = sup {d(p(n,z,no), M)eo‘("lfno)} (3.7.11)
n’>ng
for all (z,n0) € X1 x N. Let Ay = {a € X1: d(a, M) < o~ (hg)} if ¢(ho) > ho
and A; = X otherwise. Then fora € A; and ng € N, we have by Assumption 3.5.1
and the uniqueness of the motions that

V(p(n,a,ng),n) = sup {d(p(n'7p(n’a,n0),n)’M)e(l(n’_n)}
n’'>n

— sup {d(p(n’, a,ng), M)e*" ™1},

n’'>n
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Therefore, we have

V(p(n+1,a,n0),n+1)= sup {d(p(n',a,ng), M)ex™ =1
n’>n+1

= sup {d(p(n',a,ng), M)e*™ ~M}eme
n’>n+1

< sup {d(p(n', a,ng), M)e*" ~M }e~®

n’>n

=V(p(n,a,ng),n)e” . (3.7.12)
Equation (3.7.12) yields
DV (p(n,a,ng),n) < —(1—e~*)V(p(n,a,ng),n).
Finally, (3.7.10) and (3.7.11) imply that
d(x, M) < V(z,n) < p(d(z, M))
for all (z,n) € X7 x N. This concludes the proof of the theorem. a

We conclude by noting that converse theorems for discrete-time dynamical systems
for uniform boundedness, uniform ultimate boundedness, uniform asymptotic stability
in the large, exponential stability in the large, and instability can also be established,
using the methodology employed in the preceding results.

3.8 Appendix: Some Background Material on
Differential Equations

In this section we present a result that is required in the proof of some of the results
of Section 3.3, relating the maximal solution of (/g),

= g(t,x), x(tg) = xo (Ig)

to the solutions of (E'T),
Dz < g(t,z) (ET)

where g € C[RT x R!, R!], D denotes a Dini derivative, and inequality of vectors is
to be interpreted componentwise. In the proof of the main result of this section, we
require several preliminary results that we state and prove first.

Definition 3.8.1 Let Q2 be a connected set in R!. A function g: R x Q — Rl is said
to be quasi-monotone nondecreasing if for each component g; of g, j = 1,...,1, the
inequality g;(t,y) < g;(t,2) is true whenever y,z € Q and y; < z; for all ¢ # j,
z’,j:l,...,landyj:zj. O

We note that when g is a scalar-valued function, it is automatically quasi-monotone
nondecreasing.
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Definition 3.8.2 A solution ¢, of the initial value problem (Ig) is called a maximal
solution on [tg,to + ¢) if for any solution ¢ defined on [to,tg + ¢) it is true that
onm(t) > o(t) forall t € [tg, to + ¢), where ¢ > 0 and the inequality (for vectors) is
understood to be componentwise. O

A minimal solution of (Ig) on some interval is defined similarly. By definition, a
maximal (resp., minimal) solution of (/g), if it exists, must be unique.

Lemma 3.8.1 Let g € C[R* x Q,R], letv,w € C[[to,to + ¢),R'], to € RT, and
¢ > 0, and assume that the following conditions are true.

(i) g is quasi-monotone nondecreasing.

(i) v(to) < w(to).

(i) D_v(t) < g(t,v(t)) and D_w(t) > g(t,w(t)) for t € (to,to + ¢), where
D_ denotes the lower-left Dini derivative.

Then it is true that
v(t) < w(t) (3.8.1)

fort € [to, to + ¢).
Proof . Let u(t) = w(t) — v(t). Then condition (ii) reads as u(to) > 0. Suppose
that the assertion (3.8.1) is not true. Then the set

l
F= U{te [to,to + ¢): ug(t) go};é(i).

Let t; = inf F. Because u;(tg) > 0,1 < i <l,and u € C’[[to,to + c),Rl], it is
clear that ¢; > ty. The set F is closed, and thus ¢t; € F. We now show that there
existsa j € {1,2,...,1} such that

wj(ty) = 0. (3.8.2)
If (3.8.2) is not true (i.e., if u;(t1) < 0 forall 1 < ¢ < ), then w;(t) < Oin a

sufficiently small neighborhood to the left of ¢; by the continuity of u. This contradicts
the definition of ¢, and therefore (3.8.2) holds. Moreover, t; = inf F' implies that

wilty) >0, i#j (3.8.3)

and
D,Uj(tl) < 0. (384)

Combining (3.8.4) and condition (iii), we obtain

g;(t1,w(t1)) < gj(t1,v(t1)). (3.8.5)
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On the other hand, (3.8.2), (3.8.3), and the quasi-monotonicity condition imply that

g (b1, w(t1)) > g;(tr, v(t1))
which contradicts (3.8.5). This concludes the proof. O
The above result makes possible the proof of the next result.

Lemma 3.8.2 Letv, f € C [[to, to + ¢), Rl] If for a fixed Dini derivative D it is
true that Dv(t) < f(t) fort € [to,to + ¢), ¢ > 0, then

D_uv(t) < f(t) (3.8.6)
for ¢ € (to, to + ¢).

Proof . Because D_v(t) < D~v(t) and Dyv(t) < DTw(t), we only need to prove
the lemma for D = D . Let

¢
u(t) =v(t)— [ f(s)ds.
to

Then D u(t) = Dyv(t) — f(t) < 0fort € [tg, to + ¢). We want to prove that u(¢)
is nonincreasing on [tg, to + ¢), which is equivalent to proving that m(t) = —u(—t)
is nonincreasing on (—to — ¢, —to|. Note that D_m(t) = Dt u(—t) < 0. We apply
Lemma 3.8.1 to show that for any ¢, ¢y € (—to — ¢, —tol, t1 < t2, m(t1) > m(t2).
Let w(t) = m(t1) +e(t —t1 +¢) for ¢ € [t1, —to] where € > 0. Then D_w(t) =
e >0, D_m(t) <0,and m(t1) < w(ty) + 2. By Lemma 3.8.1, m(¢) < w(t) for
all ¢ € [t1, —to]. In particular, m(t2) < w(t2) = m(t1) + (t2 — t1 + €). Because
e > 0 is arbitrary, we obtain m(t2) < m(t;) by letting ¢ — 0.

We have proved that () is nondecreasing on [to, to + ¢). Therefore, D_u(t) <0
and D_v(t) = D_u(t) + f(t) < f(t) fort € (to,to + ). O

We require one more preliminary result.

Lemma 3.8.3 Let g € C[RT x Q,R!] and assume that g is quasi-monotone non-
decreasing. Then for each (tg,z9) € Rt x R!, there exists a ¢ > 0 such that the
maximal solution of (I ) exists on [tg, to + c|.

Proof . Let
Da,b = Da,b(toal'()) = {(t,x) c ]R+ x Q: to S t § t() +a, |£E — l'0| S b}

Inasmuch as g is continuous, we may assume that |g(¢, )| < M forall (¢,x) € Dy .
According to Theorem 2.3.1 and Problem 2.14.8, we may choose ¢; = min{a, b/M}
such that (/) has a solution defined on [to, tg + ¢1].

Now consider the differential equation with the initial condition given by

y=g(t,y) +e, y(to) =zo+¢ (3.8.7)
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where 0 < & < b/2. We note that for
D! =D (to,zo+e) =< (t,y) ERT X Q: tg<t<ty+a, |v— \<9
a,(b/2) = Pa,(b/2)\l0, ToTE) = Y tloxtxloTa, [T —To| S 5

we have [g(t,y) +¢| < M + b/2forall (t,y) € D
solution y(t, ) defined on [tg, to + ¢|, where

b/2)" Therefore, (3.8.7) has a

¢ = min ab/72 = min QL
N "M+b/2) "2M+b )

For 0 < g3 < g1 < ¢, Lemma 3.8.1 implies that y(¢,0) < y(¢,e2) < y(t,£1) for
t € [to,to + ¢|. Therefore, lim. o+ y(¢,e) = y*(¢) exists and the convergence is
uniform for ¢ € [to, to + ¢|. Hence y*(¢) is a solution of (I ), because

y*(t) = lim y(t,e)

e—0t

= lim (a:o +e+ /t (9(s,y(s,e)) + 5)ds>

e—0t to

t

= 20 +/ 9(s,y"(s))ds.
to

Because y(t,e) > y(t,0) for t € [to,to + ¢] we obtain y*(¢) > y(¢,0) for ¢t €

[to, to + ¢]. Because y(t,0) is any solution of (Ig) defined on [tg, to + ¢], it follows

that y* is a maximal solution of (Ig). O

The above result concerns the local existence of a maximal solution for (/g). The
existence of a noncontinuable maximal solution follows by invoking Zorn’s lemma
(see, e.g., [11]).

We now state and prove the main result of this section.

Theorem 3.8.1 (Comparison Theorem) Assume that g € C[RT x Q,R!] is quasi-
monotone nondecreasing. Let x(¢) be a solution of (ET) defined on [to,tg + ],
¢ > 0, and let r(¢), defined on [tg, ¢ + ¢|, be the maximal solution of (Ig), where
r(to) = x(to) = xo. Then

z(t) < r(t)

forall t € [to,to + ¢).
Proof . Let
F = {t' € [to,to + ¢): x(t) < r(t) forall ¢ € [to,t']}.

Then ¢y € F, because x(tg) = r(to). It suffices to show that sup F' = to + c. If this
is not true (i.e., if sup F' = t1 < to + ¢), then r(t1) > x(t1). We consider

y=g(ty) +e, y(t1) =r(t1) +¢ (3.8.8)
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where € > 0 is sufficiently small. By the proof of Lemma 3.8.3, there existsac; > 0
such that solutions y(t, €) of (3.8.8) are defined on [t1,t; + ¢1], and lim,_, o+ y(t, &)
exists as the maximal solution of

Y= g(tvy)a y(tl) = r(tl)

fort €[t1,t1+c1]. By the uniqueness of the maximal solution, () =1lim,_, o+ y(¢, €)
fort € [t1,t1 + c1]. We assume without loss of generality that ¢; + ¢; < tg + ¢ (for
otherwise, we choose c¢; smaller).

Now D_y(t,e) = y(t,e) > g(t,y(t, <)) together with Lemma 3.8.2 implies that
D_xz(t) < g(t,z(t)) forall t € (t1,t1 + ¢1). In addition, y(t1,e) = r(t1) + € >
r(t1) > x(t1). By Lemma 3.8.1, y(t,e) > x(¢t) for all t € [t1,t1 + ¢1). Letting
e — 01, we see that r(t) > =x(t) for all t € [t1,t1 + c1). Therefore, for any
t' € (t1,t1 + 1), we have that ¢’ € F. But this contradicts the fact that ¢t; = sup F.
This concludes the proof of the theorem. O

In the scalar case (I = 1), we can forgo the quasi-monotone condition.

3.9 Notes and References

The material given in Section 3.1 is standard fare in the qualitative analysis of dy-
namical systems (see, e.g., Zubov [15], Hahn [2], and Michel et al. [10]).

The stability and boundedness results for discontinuous dynamical systems pre-
sented in Section 3.2 were first reported in Ye [12] and Ye et al. [13], with subsequent
developments given in Hou [3], Hu [5], Michel [8], and Michel and Hu [9].

The Principal Lyapunov Stability Results given in Sections 3.3 and 3.4 are included
in several texts (see, e.g., Hahn [2], Zubov [15], and Michel et al. [10]). In [2] and
[15], these results are proved using the basic stability and boundedness definitions
and fundamental methods of analysis, whereas in [10], these results are established
by invoking a comparison theory, making use of stability preserving mappings. Our
approach of proving these results by using the stability and boundedness results for
DDS established in Section 3.2 (and thus, establishing a unifying stability theory for
discontinuous, continuous, and discrete-time dynamical systems) is novel and new
(refer to Hou and Michel [4]).

The converse theorems for DDS presented in Section 3.5 were originally estab-
lished in [12] and [13] with subsequent refinements and developments given in Hou
[3], Hu [5], Michel [8], and Michel and Hu [9].

The converse theorems for uniform stability, Theorem 3.6.1 and Theorem 3.7.1,
are in the spirit of results given in Zubov [15]. The converse theorems for uniform
asymptotic stability, Theorem 3.6.2 and Theorem 3.7.2 and their proofs, including
Lemma 3.6.1, are adaptations of material given in Hahn [2] and the converse theorems
for exponential stability, Theorem 3.6.3 and Theorem 3.7.3, are based on a result in
Massera [7].

References for the background material on differential equations given in Section
3.8 include Lakshmikantham and Leela [6], Miller and Michel [11], and Michel
et al [10].
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3.10 Problems

Problem 3.10.1 Consider the autonomous system of first-order ordinary differential
equations
z = f(x) (3.10.1)

where f € C[R", R"]. Assume that there exists a function V' € C*[R™, R] such that

' 2

Va0 (2) = [VV(2)]" f(z) =0

forall z € R™, where VV (z) = [0V /0y, .., 5‘V/c'9xn]T. Let

By={zeR": V(z) =} (3.10.2)

Oy = {z €R": V(z) < A} (3.10.3)
and

Dy ={z € R": V(z) > A} (3.10.4)

It should be noted that each of these sets may consist of several disjoint component
sets. Prove that the sets By, C'y, and D) are invariant with respect to (3.10.1). Prove
that each disjoint component set of By, C, and D, is invariant with respect to
(3.10.1). m]

Problem 3.10.2 Consider the autonomous system of first-order difference equations

z(k+1) = f(z(k)) (3.10.5)

where k € N={0,1,2,...} and f: R™ — R™. Assume that there exists a function
V: R™ — R such that

DV(3.10.5) () =V(f(z)) = V(z) =0

for all x € R™. Let By, C), and D, be defined by (3.10.2), (3.10.3), and (3.10.4),
respectively. Prove that B), C, and D, are invariant with respect to (3.10.5). Prove
that each disjoint component set of By, C, and D, is invariant with respect to
(3.10.5). O

Problem 3.10.3 For a dynamical system {R* X, A, S} assume that there exists a
function V' € C[X, R] such that

A — 1
D Vi) () = Tim LS UV (p(t+AL 2, 10) =V (p(t 2, t0)) } < 0

p(to,z,to) =

for all z € X. Let C' be defined by (3.10.3). Prove that C'y is an invariant set with
respect to S. o
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In Sections 3.3 and 3.4 we proved the Principal Lyapunov and Lagrange stability
results for continuous dynamical systems and discrete-time dynamical systems using
in most cases the corresponding results for DDS. In the following, we ask the reader
to prove these results, using definitions of stability and boundedness (as was done in
proving the stability and boundedness results for DDS in Section 3.2).

Problem 3.10.4 Prove Theorems 3.3.1 and 3.4.1 by using the definition of uniform
stability (given in Definition 3.1.6). O

Problem 3.10.5 Prove Theorems 3.3.2 and 3.4.2 by using the definition of uniform
asymptotic stability (given in Definition 3.1.9). O

Problem 3.10.6 Prove Theorems 3.3.3 and 3.4.3 by using the definition of exponen-
tial stability (given in Definition 3.1.10). O

Problem 3.10.7 Prove Theorems 3.3.4 and 3.4.4 by using the definition of uniform
boundedness (given in Definition 3.1.13). O

Problem 3.10.8 Prove Theorems 3.3.5 and 3.4.5 by using the definition of uniform
ultimate boundedness (given in Definition 3.1.14). O

Problem 3.10.9 Prove Theorems 3.3.6 and 3.4.6 by using the definition of uniform
asymptotic stability in the large (given in Definition 3.1.16). O

Problem 3.10.10 Prove Theorems 3.3.7 and 3.4.7 by using the definition of expo-
nential stability in the large (given in Definition 3.1.17). O

Problem 3.10.11 Prove Theorems 3.3.8 and 3.3.10 and Theorems 3.4.8 and 3.4.10
by using the definition of instability (given in Definition 3.1.18). O

Problem 3.10.12 Prove Theorems 3.3.9 and 3.4.9 by using the definition of complete
instability (given in Definition 3.1.20). O

For most of the boundedness and stability concepts that we introduced in Section
3.1 there are equivalent definitions which frequently make the proofs of the stability
and boundedness results easier and more systematic. These definitions involve certain
comparison functions whose properties we ask the reader to explore in the next two
problems.

Problem 3.10.13 Prove the following results.

Lemma 3.10.1 [2] A continuous function o: [s1,00) — R is said to belong to
class L if o is strictly decreasing on [s1, 00) and if lim, ., o(s) = 0 where s; € R
(refer to Definition 3.5.1). Show that the functions of class /C, class K., and class £
possess the following properties.

(1) If p1, 2 € K, then @1 0 g € K, where (1 0 p2)(r) = ¢1(p2(r)).
(ii)) f pe Lando € L, thenpoo € L.
(iii) If p € K, then <p*1 exists and gp’l € K; also, if ¢ € Koo, then o1 € Koo



144 Chapter 3. Principal Stability and Boundedness Results on Metric Spaces

(iv) If ¢ € K and if ¢ is defined on [0, k2], then there exist @1, o € K, defined on
[0, k], & > 0, such that
@(rirz) < p1(r1)p2(rs)

forall r1, 7o € [0, k].

Hint: In (iv), choose p1(r) = @a(r) = \/p(kr). a
Problem 3.10.14 Prove the following results.

Lemma 3.10.2 [2] A real-valued function I = [(r, s) is said to belong to the class
KL if
(i) itis defined for 0 < r < 7 (resp., 0 < r < oo) and for 0 < sp < s < o0; and
(ii) for each fixed s it belongs to class K with respect to r and it is monotone
decreasing to zero as s increases (it need not be strictly monotone decreasing).

Let [ € L. Show that there exist functions ¢ € K and o € L such that

l(r;s) < p(r)o(s)

for the following two cases.
(a) I(r, s) is bounded with respect to 7 (i.e., I(r, s) < lo(s)).

(b) 0 < r < oo and [(r,s)/l(ro, s) is monotone decreasing for all r > rg as s
increases.

Hint: In (a), assume without loss of generality that [y € £ and choose

p(r) = Vi(r,s0),  a(s) = Vlo(s)-

In (b) we have
I(r,s) < 1(r,s0)lo(ro,s)/l(ro, S0)- O

In the next four problems we ask the reader to establish several equivalent stability
definitions phrased in terms of comparison functions discussed above.

Problem 3.10.15 Prove the following results.

Lemma 3.10.3 [2] Show that (S, M) is stable if and only if for each ¢y, € T there
exists a function ¢ € K defined on [0, r¢], o > 0, such that

d(p(ta avt())v M) < @(d’ (a7 M))

for all p(-,a,tg) € S and for all t € T, ;, whenever d(a, M) < 1o, where ¢ may
depend on %.

Prove that (S, M) is uniformly stable if and only if in the above, ¢ is independent
of to. O

Problem 3.10.16 Prove the following results.
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Lemma 3.10.4 [2] Show that (S, M) is attractive if and only if for each ¢y € T'
there exists an ) = 7n(tp) > 0 such that for each p(-, a, ty) € S, there exists a function
o € L (where ¢ may depend on tg and p(-,a,tp)) such that if d(a, M) < 7, then
d(p(t,a,tg), M) < o(t — tg) for all t € Ty 4,. (The class of functions £ is defined
in Problem 3.10.13.)

Show that (S, M) is uniformly attractive if and only if the above is true for 7
independent of ¢, and for ¢ independent of ¢y and of p(-, a, to). O

Problem 3.10.17 Prove the following results.

Lemma 3.10.5 [2] Prove that (S, M) is asymprotically stable if and only if for
each ty € T there exists a function ¢ € K on [0,7¢], 79 > 0, such that for each
p(-,a,to) € S, there exists a function o € £ such that if d(a, M) < ro, then

d(p(t, a,to), M) < p(d(a, M))o(t — to)

forallt € T, .

Prove that (S, M) is uniformly asymptotically stable if and only if the above is
true for ¢ independent of ¢( and for o independent of ¢, and of p(-, a, to).

Prove that (.S, M) is uniformly asymptotically stable in the large if and only if the
above is true for ¢ independent of ¢y and for o independent of ¢ and of p(-, a, to),
and furthermore, ¢ € K.

Hint: Use the results of Problem 3.10.14 ]

Problem 3.10.18 Prove the following results.

Lemma 3.10.6 [2] Show that (S, M) is exponentially stable (resp., exponentially
stable in the large) if and only if (S, M) is uniformly asymptotically stable (resp., uni-
formly asymptotically stable in the large) and in the statement for uniform asymptotic
stability in Problem 3.10.17 o(s) = e~*® with & > 0. O

In the next six problems we ask the reader to prove several of the stability results
of Sections 3.3 and 3.4 by utilizing the equivalent definitions for stability established
above.

Problem 3.10.19 Prove Theorem 3.3.1 by utilizing the equivalent definition of uni-
form stability given in Problem 3.10.15. O

Problem 3.10.20 Prove Theorem 3.3.2 and Theorem 3.3.6 by utilizing the equivalent
definitions of uniform asymptotic stability and uniform asymptotic stability in the large
given in Problem 3.10.17. O

Problem 3.10.21 Prove Theorem 3.3.3 and Theorem 3.3.7 by utilizing the equivalent
definitions of exponential stability and exponential stability in the large given in
Problem 3.10.18. m|

Problem 3.10.22 Prove Theorem 3.4.1 by utilizing the equivalent definition of uni-
form stability given in Problem 3.10.15. O
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Problem 3.10.23 Prove Theorem 3.4.2 and Theorem 3.4.6 by utilizing the equivalent
definitions of uniform asymptotic stability and uniform asymptotic stability in the large
given in Problem 3.10.17. |

Problem 3.10.24 Prove Theorem 3.4.3 and Theorem 3.4.7 by utilizing the equivalent
definitions of exponential stability and exponential stability in the large given in
Problem 3.10.18. m]

Problem 3.10.25 Let .S be the dynamical system determined by the scalar differential
equation
y = —w(ll) ) Yy € RJr

where ¢ € K. Prove that (S, {0}) is uniformly asymptotically stable.
Hint [2]: Let G denote a primitive function of —1/1). Then

y(t) = G~ (t —to + G(yo))

where G~ ! denotes the inverse of G. If the function —1 /1 is integrable near 0, then
there exists a finite number ¢; such that y(¢) = 0 for all ¢ > ¢;. If the function —1/4)
is not integrable near 0, then G—! € L (see Problem 3.10.13 for the definition of
class £). In a similar manner as in Problem 3.10.13(iv), conclude that for s; > ¢4,
S9 > cg and o € L, there exist o1, 05 € L such that

o(s1+ s2) < o1(s1)02(82).

Next, apply the above inequality to G~ € £ with s; = ¢t — tg and so = G(y0) to
obtain
y(t) < o1(t — to)o2(G(yo))-

This inequality implies the uniform attractivity of (.S, {0}) (refer to Definition 3.1.7
and Problem 3.10.16). The uniform stability of (.S, {0}) follows from the uniform
stability of (S1,{0}) where S C S; and S; is the dynamical system determined by

y<0, yeR™ 0

Problem 3.10.26 Prove that if in Problem 3.10.25 ¢ € K., then (S, {0}) is uni-
formly asymptotically stable in the large. O

Problem 3.10.27 Lety € C[[to, 00), R] and assume that y(to) > 0 and that
Dy(t) = (y(t))

for all ¢t > ty where D is a fixed Dini derivative and 1) € K is defined on R™. Show
that lim;_. o y(t) = oo.
Hint: Apply Theorem 3.8.1 to show that y(¢) > r(¢t) where r(t) is the minimal
solution of

v =1(y)
with the initial condition r(tg) = y(¢p). Problem 3.10.27 can now be reduced to
proving that lim; . 7(t) = oco. a
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Problem 3.10.28 Let S be the dynamical system determined by the scalar difference
equation

Y1 < Yk — Y(Yk)s yr € RT, e,

forall k € T, j,. Prove that (S, {0}) is uniformly asymptotically stable.

Hint: (S,{0}) is uniformly stable because every motion of S is a decreasing non-
negative sequence. To show that (S, {0}) is uniformly attractive, first establish that
Yet1 — Yko < —(k — ko + 1) (yx) and conclude that

Yko — Yk+1 Yko
< < . 10.
Ly i ey sy Y| (3-106)

Choose § > 0 in such a manner that 1)~ exists on [0, 6], and forevery ¢ > 0, kg € N,
choose 7 = d/1(g). Thenfork > ko+7,wehave k—ko+1 > 7+1 > 7 = 6/¢(e).
By (3.10.6), we have that

vl = e =07 (=0g) < W(#ﬁl) <e

for all k& > ko + 7 whenever |yi,| = yr, < 0. Therefore, (S,{0}) is uniformly
attractive (see Definition 3.1.9). O

Problem 3.10.29 Prove that if in Problem 3.10.28 ¢ € Ko, then (S, {0}) is uni-

formly asymptotically stable in the large. O
Problem 3.10.30 Prove the assertions made in Examples 3.1.8 and 3.1.9. o
Bibliography

[1] P.J. Antsaklis and A. N. Michel, Linear Systems, Boston: Birkhauser, 2006.

[2] W. Hahn, Stability of Motion, Berlin: Springer-Verlag, 1967.

[3] L. Hou, Qualitative Analysis of Discontinuous Deterministic and Stochastic
Dynamical Systems, Ph.D. Dissertation, University of Notre Dame, Notre Dame,
IN, 2000.

[4] L. Hou and A. N. Michel, “Unifying theory for stability of continuous, discon-
tinuous and discrete-time dynamical systems,” Nonlinear Anal. Hybrid Syst.,
vol. 1, no. 2, pp.154-172, 2007.

[51 B. Hu, Qualitative Analysis of Hybrid Dynamical Systems, Ph.D. Dissertation,
University of Notre Dame, Notre Dame, IN, 1999.

[6] V. Lakshmikantham and S. Leela, Differential and Integral Inequalities, vol. 1
and vol. II, New York: Academic Press, 1969.

[7] J. L. Massera, “Contributions to stability theory,” Ann. Math., vol. 64, pp. 182—
206, 1956.



148 Chapter 3. Principal Stability and Boundedness Results on Metric Spaces

[8] A. N. Michel, “Recent trends in the stability analysis of hybrid dynamical
systems,” IEEE Trans. Circ. Syst. I: Fund. Theor. Appl., vol. 46, pp. 120-134,
1999.

[9] A.N.Michel and B. Hu, “Towards a stability theory of general hybrid dynamical
systems,” Automatica, vol. 35, pp. 371-384, 1999.

[10] A. N. Michel, K. Wang, and B. Hu, Qualitative Theory of Dynamical Systems-
The Role of Stability Preserving Mappings, 2nd Edition, New York: Marcel
Dekker, 2001.

[11] R. K. Miller and A. N. Michel, Ordinary Differential Equations, New York:
Academic Press, 1982.

[12] H. Ye, Stability Analysis of Two Classes of Dynamical Systems: General Hy-
brid Dynamical Systems and Neural Networks with Delays, Ph.D. Dissertation,
University of Notre Dame, Notre Dame, IN, 1996.

[13] H. Ye, A. N. Michel, and L. Hou, “Stability theory for hybrid dynamical sys-
tems,” IEEE Trans. Autom. Control, vol. 43, pp. 461-474, 1998.

[14] T. Yoshizawa, Stability Theory by Lyapunov’s Second Method, Tokyo: Math.
Soc. of Japan, 1966.

[15] V. 1. Zubov, Methods of A. M. Lyapunov and their Applications, Groningen, The
Netherlands: P. Noordhoff, 1964.



Chapter 4

Fundamental Theory:
Specialized Stability and
Boundedness Results on
Metric Spaces

In this chapter we present a number of important specialized stability and boundedness
results for dynamical systems defined on metric spaces. These include results for
autonomous dynamical systems (in Section 4.1), results that comprise the Invariance
Theory (in Section 4.2), some results that go under the heading of Comparison Theory
(in Section 4.3), and a result that addresses the uniqueness of motions in dynamical
systems (in Section 4.4).

Before proceeding with our subject on hand, we would like to remind the reader
once more that our definition of dynamical system (Definition 2.2.3) does in general
not require that time be reversible in the motions (in contrast to many dynamical
systems determined, e.g., by various types of differential equations), nor are the
motions required to be unique with respect to initial conditions. For such general
systems, when required, we make an assumption that is akin to the semigroup property,
but is more general, which essentially requires that for a dynamical system S, any
partial motion is also a motion of .S, and any composition of two motions is also a
motion of S (refer to Assumption 3.5.1). Of course when in a dynamical system the
semigroup property holds, then Assumption 3.5.1 is automatically implied.

4.1 Autonomous Dynamical Systems

In the present section we show that under reasonable assumptions, in the case of
autonomous dynamical systems, the stability and asymptotic stability of an invariant

149
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set M C A, with respect to .S, imply the uniform stability and uniform asymptotic
stability of (S, M), respectively. We also establish necessary and sufficient condi-
tions for stability and asymptotic stability of (S, M) for autonomous systems in this
section.

Definition 4.1.1 A dynamical system {7, X, A, S} is said to be an autonomous dy-
namical system if

(i) every p(-,a,tg) € Sisdefined on T, ;, = T N [to, 00); and

(ii) for each p(-,a,ty) € S and for each 7 such that ty + 7 € T, there exists a
motion p(-,a,ty + 7) € S such that p(t + 7,a,tg + 7) = p(¢,a,ty) for all
t € T, s, and all 7 satisfyingt + 7 € T g

Examples of autonomous dynamical systems include linear and nonlinear semi-
groups. These systems have motions that are unique and continuous with respect to
initial conditions.

In general we do not require that autonomous dynamical systems satisfy the unique-
ness property. For example, autonomous dynamical systems determined by differ-
ential inclusions defined on Banach spaces (refer to Chapter 2) do not satisfy the
uniqueness property.

In the next two results we assume that the motions of the dynamical systems are
continuous with respect to initial conditions in the sense of Definition 3.6.1.

Theorem 4.1.1 Let {R™, X, A, S} be an autonomous dynamical system that satisfies
Assumption 3.5.1 and for which the motions are continuous with respect to initial
conditions. Let M C A be a closed and invariant set. If (S, M) is stable, then
(S, M) is uniformly stable.

Proof . Because {R™, X, A, S} is autonomous, for each p(-,a,ty) € S, there exists
amotion p(-,a,0) € S such that p(¢, a, tg) = p(t — to,a,0) forall t > to.

Because (S, M) is stable, for every € > 0 there exists a § = d(,0) > 0 such
that d(p(¢, a,0), M) < e forall t > 0 and all p(-, a,0) € S whenever d(a, M) < 6.
Therefore, d(p(t,a,to), M) = d(p(t — to,a,0), M) < € for all ¢ > ;. Note that ¢
is independent of to. We have shown that (S, M) is uniformly stable. O

An analogous result and proof of Theorem 4.1.1 for discrete-time dynamical sys-
tems can be established by making obvious modifications.

Theorem 4.1.2 Let {R*, X, A, S} be an autonomous dynamical system for which
the motions are continuous with respect to initial conditions and that satisfies As-
sumption 3.5.1. Let M C A be a closed and invariant set and assume that A is
compact. If (S, M) is asymptotically stable, then (S, M) is uniformly asymptotically
stable.

Proof. The uniform stability of (S, M) follows from Theorem 4.1.1. We only
need to show the uniform attractivity of (S, M); that is, we need to show that
there exists a 6 > 0, and for every ¢ > 0 and every ty € RT, there exists a
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T = 7(¢) > 0, independent of ¢, such that d(p(t, a, o), M) < e forallt > tg + 7
and for all p(-,a,tg) € S whenever d(a, M) < §. Because {RT, X, A, S} is au-
tonomous, for each p(-,a,ty) € S, there exists a motion p(-,a,0) € S such that
p(t,a,to) = p(t — to,a,0) for all ¢ > to. Therefore, it is equivalent to show
that there exists a § > 0, and for every ¢ > 0, there exists a 7 = 7(¢) > 0,
such that d(p(t,a,0),M) < ¢ for all t > 7 and for all p(-,a,0) € S whenever
d(a, M) < 4.

Assume that (.S, M) is not uniformly attractive. In view of the above statement,
for every 0 > 0, there exists an ¢ > 0, two sequences {a,,: m € N} C X
and {t,,: m € N} C R* with lim,,, .o t,, = o0 such that d(a,,, M) < § and
d(p(tm, am,0), M) > ¢ forall m € N.

Because A is compact, {a,,: m € N} has a convergent subsequence. Without
loss of generality, we may assume that a,,, — a* € A.

The uniform stability of (S, M) implies that there exists a 6* > 0 such that
d(p(t,a,to), M) < £/2 whenever d(a, M) < §*. The attractivity of (S, M) implies
that there exists a 7 > 0 such that d(p(¢, a*,0), M) < ¢* for all t > 7. In particular,
d(p(r,a*,0), M) < 6*. Therefore,

d(p(t,a*,0), M) = d(p(t,p(r,a",0),7), M) < &/2

for all £ > 7. On the other hand, by continuity with respect to initial conditions,
(7, am,0) — p(T,a*,0). Together with lim,,, . t,,, = 00, there exists an m’ such
that ¢,,,, > 7 and d(p(7, an,,0), M) < 6*. Thus,

d(p(tm’aam’70)7M) = d(p(tm/7p(77 am/,O),T)7M) < 5/2

We have arrived at a contradiction. Therefore, (S, M) is uniformly asymptotically
stable. O

Similarly as in Theorem 4.1.2, we can also show that when {R*, X A, S} is an
autonomous dynamical system with motions that are continuous with respect to initial
conditions and that satisfies Assumption 3.5.1, and if M C A is invariant and A is
compact, then if (S, M) is asymptotically stable in the large, then (S, M) is uniformly
asymptotically stable in the large. Also, we can establish an analogous result of Theo-
rem 4.1.2 for discrete-time dynamical systems by making appropriate modifications.
In proving converse theorems for the uniform asymptotic stability of invariant sets
M C A fordynamical systems {7, X, A, S}, we require in Theorem 3.6.2 (7' = R™)
and Theorem 3.7.2 (T' = N) that the systems satisfy the uniqueness property of the
motions. In the next two results we remove this restriction for autonomous dynamical
systems. In doing so, we are able to establish necessary and sufficient conditions for
stability and asymptotic stability of invariant sets. In these results, the Lyapunov
functions V' are independent of ¢ (i.e., V (z,t) = V(x)).

Theorem 4.1.3 Let {7, X, A, S} be an autonomous dynamical system with T=R"
or T'=N, and let M C A be a closed invariant set, where A is assumed to be a
neighborhood of M. Assume that S satisfies Assumption 3.5.1. Then (S, M) is stable
if and only if there exist neighborhoods A; and X; of M such that A; C X; C A
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and a mapping V': X7 — R™ that satisfies the following conditions.
(i) There exist ¥1,19 € K such that

Y1(d(z, M)) <V (x) < ho(d(x, M))

forall x € X;.

(ii) For every p(-,a,tp) € S with a € Ay, V(p(t,a,to)) is nonincreasing for all
teln [tOv OO)

Proof . (Sufficiency) We define S4, by
Sa, = {p(a,to) € S:a € Ayt € T}. 4.1.1)

Then {T, X, A1, S; } is adynamical system. It follows from Theorem 3.3.1 (T'=R™)
or Theorem 3.4.1 (T' = N) that (S, , M) is stable. Because A; is a neighborhood of
M, it is straightforward to verify that the stability of (S4,, M) implies the stability
of (S, M).

(Necessity) We apply Theorem 3.5.1 (resp., Theorem 3.6.1). It suffices to show
that in the proof of that theorem, V' (x, ) is independent of ¢ when S is an autonomous
system.

Recall that in the proof of Theorem 3.5.1,

V(z,t) =sup {d(p(t',z,t),M): p(-,z,t) € S,t' € Ty}

We prove that for any ¢1,to € T, V(x,t1) = V(x,ta). Letta = t; + 7. We note that
foreither 7 = R* or 7' = N, t' € T'N [t1,00) implies that ' + 7 € T'N [t2, 00).
For every motion p(-,z,¢1) € S, there exists a motion p(-,x,t2) € S such that
p(t',x,t1) = p(t’ + 7,3,t9) for all ¥ € T N [t1,00). Therefore, by (4.1.1) it
follows that V'(x,t1) < V(x,t2). In a similar manner as above, it also follows that
V(z,t2) < V(x,t1). Therefore, we have V(xz,t;) = V(x,t2) for any t1,t2 € T,
which means that V' (x, t) is independent of ¢. m

In the final result of this section, we establish necessary and sufficient conditions
for the asymptotic stability of invariant sets for autonomous dynamical systems.

Theorem 4.1.4 Let {7, X, A, S} be an autonomous dynamical system with T=R™"
orT = N, and let M C A be a closed invariant set, where A is assumed to be a
neighborhood of M. Assume that S satisfies Assumption 3.5.1 and that all motions
in S are continuous with respect to initial conditions. Then (S, M) is asymptotically
stable if and only if there exist neighborhoods A; and X; of M such that A; C
X; C A and amapping V': X7 — R that satisfies the following conditions.

(i) There exist ¥1, 19 € K such that

Y1(d(z, M)) < V(z) < ¢o(d(z, M))

forall z € X;.
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(ii) For every p(-,a,t9) € S with a € A;, V(p(t,a,to)) is nonincreasing for all
t € TN [ty,o0) and lim; o V(p(t, a,to)) = 0.

Proof. The necessity and sufficiency of stability follow from Theorem 4.1.3. There-
fore, we only need to address the attractivity of (S, M).

(Sufficiency) We choose > 0 such that {a € A: d(a, M) < n} C A;. Then,
whenever d(a, M) < 7, we have

thm wl(d(p(taa7t0>’M)) < thm V(p(t,a,to)) =0

which implies that lim;_... d(p(t,a,tg), M) = 0. This implies the attractivity
of (S, M).
(Necessity) If (S, M) is attractive, then there exists an 7 > 0 such that

tlim d(p(t,a,tg), M) =0
for all p(-,a,tp) € S whenever d(a, M) < n. Therefore, for every p(-,a,to) € S
witha € {z € A: d(a, M) < n}, we have that

thm V(p(t,a7t())) < thm w2(d(p(t7aat0)7M)) =0. U

4.2 Invariance Theory

In the present section we establish sufficient conditions for the asymptotic stability
of invariant sets for dynamical systems determined by semigroups defined on metric
spaces. These sufficient conditions may be easier to satisfy than the corresponding
results given in Sections 3.3 and 3.4. We first need to generalize the notion of a semi-
group defined on Banach spaces, presented in Chapter 2. In the following definition,
we allow T' = R, for a continuous semigroup on metric space and T = N, for a
discrete-time semigroup on metric space.

Definition 4.2.1 Let X be a metric space. A family of mappings G(t): X — X,
teT (I'=R" or T = N), is said to be a semigroup defined on X if

(i) G(0)z =z forallz € X;
(il) G(t+ s)x = G(t)G(s)x forallt,s € T and x € X; and
(iii) G(t)x is continuous in z € X foreacht € T. g

When T' = R™ and the metric space is a subset of a Banach space, then the above
definition coincides with Definition 2.9.5.

As was shown in Chapter 2, semigroups determine dynamical systems, in fact
autonomous dynamical systems. We denote a dynamical system determined by a
semigroup (as defined above) by Sg.

We require the following concept.
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Definition 4.2.2 Let {7, X, A, S} be a dynamical system where 7= R+ or 7' = N.
For each motion p(+, a,ty) € S which is defined on T N [tg, 00), the set

w(p) = {x € X:z= lim p(tnyaato)

where {t,,} C Ty, is any increasing sequence such that lim ¢, = oo}

n—oo

is called the w-limit set of the motion p(-, a, to). O

It can be shown that

w(p) = m {p(t',a,to): t' € T N[ty,0)} (4.2.1)

teTN[to,00)

where B denotes the closure in X of the set B.
In the subsequent results of the present section, we require the following prelimi-
nary result concerning limit sets.

Lemma 4.2.1 Let {T, X, A, S} be a dynamical system determined by semigroup
G where T = R* or T' = N and G is defined on the metric space X = A. For a
motion p(-, a,ty) € S¢, assume that the trajectory

vt (p) = {p(t,a,to) € X:t € TN[ty,00)} C Xo

where X is a compact subset of X. Then the w-limit set w(p) is nonempty, compact,
and invariant with respect to S¢. Furthermore, p(t, a,tg) — w(p) as t — oo.

Proof. By (4.2.1), w(p) is closed and w(p) C Xy. Because any closed subset
of a compact set is compact (see [3]), it follows that w(p) is compact. Furthermore,
because y* (p) C X and any compact set is sequentially compact (see [3]), it follows
that w(p) is nonempty.

For any y € w(p), there exists by definition an increasing sequence {t,, >t} CT
with lim,, o t, = 0o and t,, € T'N [tg, 00) such that lim,, o p(t,, a,to) = y. Let
un(t) = p(t, +t,a,tg) forallt € T and a € X. Then u,(t) € X, forallt € T.
The compactness of X implies that the sequence of functions {u,} is uniformly
boundedont € T forn € N.

When T' = N, there exists for each & € N a subsequence {u,,, } such that
U, (k) — u(k) as j — oo. Therefore, for the (diagonalized) subsequence {u, ; },
we have that u,,; (k) — u(k) as j — oo forall k € N.

For the case T = R, we have

un(t) = p(tn +t,a,to)
=G(tp, +t—to)a
=G(t)G(t, —to)a
= G(t)p(tn, a, to).

4.2.2)
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Because p(ty, a,to) € X and Xy is compact, and because G(t)z is uniformly con-
tinuous for (¢, x) € [0, k] x Xy, where k € N, it follows that w,, () is equicontinuous
fort € [0, k] (refer to Problem 2.14.7). By the Ascoli-Arzela Lemma, there exists for
each fixed £ € Nasubsequence {u,,, , } that converges uniformly on [0, k] as j — oo
(refer to Problem 2.14.7). We have shown that {u,; ;} converges to a continuous
function, say u, on R™. '

Summarizing, when T' = N, there exists a subsequence {u,,, } that converges on
T to a function u: T — X, and when T' = R, there exists a subsequence {un, }
that converges tou € C[T, X] on T.

Clearly, for each t € T, u(t) € w(p) because p(t,, + t,a,to) = un, (t) — u(t)
as j — oo.

Now foreacht € T,

G(t)y = lim G(t)p(tn,a,to) = lim uy(t) = u(t) (4.2.3)
where we have used (4.2.2). This implies that G(¢)y = u(t) € w(p) for all t € T.
Because y € w(p) was arbitrarily chosen at the outset, we have proved that w(p) is
invariant with respect to S¢.

To complete the proof, we need to show that p(t, a,tg) — w(p) ast — oo. If
this is not the case, then there is an ¢ > 0 and an increasing sequence {¢,,} with
lim;;, 00 tn = 00 such that d(p(t,, a,to),w(p)) > € for all m € N. Because
P(tm,a,to) € Xo and because X is compact, there exists a subsequence {t,,, } such
that lim; . o t,,, = 00 and such that {p(t,,,, a,to)} converges to a point, say o, in
Xo (see [3]). By definition, 5o € w(p). On the other hand, d(p(t,,, a, to),w(p)) > €
implies that d(yo,w(p)) > €. We have thus arrived at a contradiction. This proves
that p(t, a,tg) — w(p) as t — oco. This completes the proof of the theorem. O

For a continuous function V' we now define the derivative of V with respect to
S when T' = RT and the difference of V with respect to Sg when T' = N in the
following manner.

Definition 4.2.3 Let G be a continuous or discrete semigroup on a metric space X
and let S denote the dynamical system determined by G. For each V' € C[X1,R],
Xy C X, we define a function D(¢)V': X; — R in the following manner.

For T = R,

D)V (z) = E(%) [V(G(t)z) — V()] (4.2.4)

and for T = N,
DieyV(x) = V(G(1)x) — V(x). 4.2.5)
0O

We also require the next preliminary result.
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Lemma 4.2.2 Let G be a semigroup defined on a metric space X and let X; be a
compact subset of X. Let V' € C[X1,R] and assume that D)V (z) < 0 for all
x € Xi. Then for any p(-,a,ty) € S such that the trajectory for p(-, a,tg) is a
subset of X (i.e., v (p) C X1), the following relation holds.

wip) c 24 {x € Xy: Do)V (z) = 0}. (4.2.6)

Proof . We first show that v(t) 2 V(p(t,a,to)) is nonincreasing for ¢ € T'. This fol-
lows immediately because for T' = R*, we have DY v(t) = D)V (p(t,a,t0)) <0
and because for 7' = N, we have v(t + 1) — v(t) = D)V (p(t,a, 1)) < 0.

Because any continuous function on a compact set is bounded, V' is bounded on
X, and in particular, the nonincreasing function v(t) = V(p(t, a,to)) is bounded.
This implies that lim;_., V(p(t, a,t0)) = vo € R exists.

To prove that forany y € w(p)itistruethaty € Z (i.e., D)V (y) = 0), it suffices
to show that V(G(t)y) is independent of ¢ € T'. Indeed, there exists an increasing
sequence {¢,} C T'N [to, c0) such that

V(G(t)y) = lim V(G(t)p(tn,a,to)) = lim V(p(t, +t, a,to)) = vo.
n—oo n—oo
This completes the proof. |

We are now in a position to state and prove the main invariance results for dy-
namical systems determined by semigroups on metric spaces.

Theorem 4.2.1 Let G be a continuous semigroup (7' = R™) or a discrete semigroup
(T = N) defined on a metric space X, let S be a dynamical system determined by
G, and let X; be a compact subset of X. Assume that there exists a V' € C[X1,R]
such that D)V (z) < 0 for all z € X (where D)V is defined by (4.2.4) when
T = R* and by (4.2.5) when T' = N). Then for any p(-, a,ty) € Sg such that the
trajectory v+ (p) C X1, p(t,a,ty) — M ast — oo, where M is the largest invariant
set in Z with respect to S¢ and Z is defined in (4.2.6).

Proof. By Lemma 4.2.1, p(t,a,ty) — w(p) as t — oo and w(p) is invariant with
respect to Si. By Lemma 4.2.2, w(p) C Z. Inasmuch as M is the largest invariant
setin Z, we have w(p) C M. Therefore, p(t,a,ty) — M ast — oo. a

Corollary 4.2.1 In addition to the assumptions in Theorem 4.2.1, suppose that the
largest invariant set M/ C Z is the minimal set determined by the function V' on a
neighborhood X of M, where Xo C X1, and M is given by

M ={z e Xo: V(z) <V(y)forally € Xo}. 4.2.7)
Then M is asymptotically stable with respect to S¢.

Proof . Tt is clear that V' (x) is a constant for all x € M. We denote this constant
by V(M). Now let Vi(z) = V(x) — V(M). Then by the assumptions there exist
1,19 € K such that

Y1 (d(z, M)) < Vi(z) < iha(d(x, M))
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for all z € Xj. In fact, we may choose ¥; and 5 as

Pi(r) = min{Vl(y): r<d(y,M),y € XO},
Po(r) = max {Vi(y): d(y, M) <7},

which are defined on [0, 7], 79 > 0, where we assume that {y: d(y, M) < ro} C Xo.

It now follows from Theorem 3.3.1 (resp., Theorem 3.4.1) that (S¢, M) is uni-
formly stable and from Theorem 4.2.1 that (S¢, M) is attractive. Therefore, (S, M)
is asymptotically stable. m|

In the last result of the present section, we require the following concept.

Definition 4.2.4 A metric space X is said to be locally compact if any bounded closed
subset of X is compact. ]

Corollary 4.2.2 Let G be a continuous semigroup (7" = R™) or a discrete semigroup
(T = N) defined on a metric space X, and let S¢ be the dynamical system determined
by G. Assume that X is locally compact and that there exists a V' € C[X, R] that
satisfies the following conditions.
(i) D)V (x) < 0forallz € X, where D ¢V is defined in (4.2.4) when T =R*
and by (4.2.5) when 7' = N.
(ii) The largest invariant set M in the set Z = {z € X: D)V (z) = 0} is
bounded and is the minimal set in X determined by V; that is,

M={zxeX:V(x)<V(y)forally € X}.

(iii) V(z) — oo as d(x, M) — oo.
Then M is uniformly asymptotically stable in the large with respect to S¢; that is,
(Sa, M) is uniformly asymptotically stable in the large.

Proof . In a similar manner as in the proof of Corollary 4.2.1, for

there exist 11, 92 € Ko such that
Y1 (d(z, M)) < Vi(z) < tho(d(z, M))

for all z € X, where we need to use hypothesis (iii) to conclude that 11, 99 € K.

By Corollary 4.2.1, (S, M) is uniformly stable. By Theorem 3.3.4, (S¢, M) is
uniformly bounded. We now apply Theorem 4.2.1 to prove that (S, M) is globally
attractive. For any « > 0, it follows from the uniform boundedness of (S¢, M) that
there exists a 8 = B(a) > 0 such that if d(a, M) < a, then for all p(-, a, ) € Sg,
d(p(t,a,to), M) < gforallt € T'N[ty,0). Choose X1 = {zx € X: d(x, M) > 5}
in applying Theorem 4.2.1. It now follows from Theorem 4.2.1 that p(t, a, tg) — M
as t — oo whenever d(a, M) < .

We have proved that (S¢, M) is uniformly asymptotically stable in the large. O
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We note that in contrast to the results of Section 3.2, where we require that
along the motions p(-, a, ty) of a dynamical system we have DTV (p(t,a,ty),t) <
—p3(d(p(t,a,to), M), where p3 € K (see Theorem 3.3.2), we can relax the
corresponding condition in the results of the present section by requiring that
D)V (xz) < 0. The significance of this becomes more apparent in applications
of these results, presented in subsequent chapters. Identical statements can be made
for discrete-time dynamical systems as well.

4.3 Comparison Theory

In this section we present results that make it possible to deduce the qualitative
properties of a dynamical system, the object of inquiry, from the properties of another
dynamical system, the comparison system. This type of analysis is generally referred
to as comparison theory. Itis usually used to simplify the analysis of complex systems,
which otherwise might be intractable.

We address both continuous dynamical systems and discrete-time dynamical
systems.

A. Continuous dynamical systems

We begin by considering a system of ordinary differential equations given by
z=g(t,x) (E)

where ¢ € C[RT x (R*)!,R!], and an associated system of ordinary differential
inequalities given by
D < g(t,2) (E)

where D denotes a Dini derivative. We assume that g(¢, z.) = 0 if z, = 0, so that
x. = 01is an equilibrium for (F). We first identify under what conditions one can
deduce the qualitative properties of the dynamical system Sg; (determined by (ET))
from the qualitative properties of the dynamical system Sg (determined by (E)). Next
we use these results in establishing a comparison theory that enables us to deduce the
qualitative properties of an invariant set with respect to a dynamical system S (more
specifically, a dynamical system {R*, X, A, S}) from the corresponding qualitative
properties of the invariant set {0} C R with respect to the dynamical system Sg
determined by the differential equation (E).

Theorem 4.3.1 Assume that g € C[R* x (R*)!, R] is quasi-monotone nondecreas-
ing and that g(¢,0) = 0 for all t € R™. Then the following statements are true.

(a) If z. = 0 is an equilibrium of Sg, then z. = 0 is also an equilibrium of Sg;.
(b) The stability, uniform stability, asymptotic stability, uniform asymptotic stabil-
ity, exponential stability, uniform asymptotic stability in the large, and expo-

nential stability in the large of (Sg, {0}) imply the same corresponding types
of stability of (Sgr, {0}).
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(¢) The uniform boundedness and uniform ultimate boundedness of Sg imply the
same corresponding types of boundedness of Sg;.

Proof . It follows from Theorem 3.8.1 that for any motion x(+, 2o, t9) € Sk, where
(to,r9) € RT x (R*)! we have that

$(t,1’0,t0) < T(t,xo,to) (431)

for all ¢ > to, where r(+, zo, to) denotes the maximal solution of (E) (and therefore,
r(-, o, to) € Sg), and inequality is to be interpreted componentwise. In addition,
we also have that
x(t, xo,t0) >0 4.3.2)
for all t > ¢ by the way Sgy is defined (i.e., g € C[RT x (R*)! RY)).
All conclusions of the theorem follow now from (4.3.1) and (4.3.2) and from
Definitions 3.1.2, and 3.1.6-3.1.17. O

We now state and prove the main result of this subsection.

Theorem 4.3.2 Let {R* X, A, S} be a dynamical system and let M C A. As-
sume that there exists a function V: X x Rt — (R*)! that satisfies the following
conditions.

(i) There exists a function g € C[R* x (RT)!, R!] that is quasi-monotone nonde-
creasing such that g(¢,0) = 0 for all ¢ € R and such that

D[V(p(t a, tO)a t)] <g(t,V(p(t, a, tO)? t))

for all p(-,a,t9) € Sandt € R, where D denotes a fixed Dini derivative
with respect to t.

(ii) There exist 11,19 € K defined on RT such that
P1(d(z, M)) < |V(z,1)] < Pa(d(z, M))

for all (z,t) € X x RT, where d(-,-) denotes the metric on X and | - | is the
Euclidean norm on R’
If M is closed, the following statements are true.

(a) The invariance of (Sg,{0}) implies the invariance of (S, M).

(b) The stability, asymptotic stability, uniform stability, and uniform asymptotic
stability of (S, {0}) imply the same corresponding types of stability of (S, M).

(c) If in hypothesis (ii), 11 (r) = ar®,a > 0,b > 0, then the exponential stability
of (Sg, {0}) implies the exponential stability of (S, M).

(d) If M is bounded and if in hypothesis (ii), 11, %2 € K, then the uniform
asymptotic stability in the large of (Sg,{0}) implies the uniform asymptotic
stability in the large of (S, M).

(e) Ifin (c) and in hypothesis (ii), 1;(r) = a;r%, a; > 0,b > 0,7 = 1,2, then the
exponential stability in the large of (Sg, {0}) implies the exponential stability
in the large of (S, M).
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If M is bounded, but not necessarily closed, the following statement is true.

(®) If in (ii), ¥1, %2 € K, then the uniform boundedness and uniform ultimate
boundedness of Sg imply the same corresponding types of boundedness of S.

Proof. Forany a € A, to € RT, p(-,a,tg) € S, it follows from (i) that
V(p(t, a, tO)a t) = 17(757 V(a7 tO)a tO)

is a motion in Sg;.
(a) It follows from Theorem 4.3.1 that . = 0 is an equilibrium of Sg;. For any
a€ M,tyg € RT,p(-,a,tg) € S, it follows from (ii) that

[V (p(to,a,to), to)| < t2(d(a, M)) = 0.

It follows from the invariance of (Sgy, {0}) that V (p(t, a, to),t)= 0 forall t € R} .
Thus d(p(t, a,to), M) < = (|V(p(t, a,t9),t)|) = 0 forall t € R;.. Because M is
closed, p(t, a,tg) € M , which implies the invariance of (S, M).

(b) Assume that (Sg, {0}) is stable. Then (Sgy, {0}) is stable by Theorem 4.3.1.
For every ¢ > 0 and every to € R™, there exists a § = d(e,t9) > 0 such that
[p(t,a,to)| < e forall t € R} and for all p(-,a,to) € Sgr, whenever [a| < 6.
It follows from (ii) that whenever d(a, M) < 15 '(5), |V(a,to)| < 6. Hence,
d(p(t7 a, tO)a M) < 7/}1_1(|V(p(t7 a, t0)7 t)‘) - 1/11_1(|ﬁ(t, V(a’a to), t0)|) < wl_l(g)
forall t € R/ and for all p(-,a,to) € S whenever d(a, M) < Y5 1 (8). Therefore,
(S, M) is stable. Similarly, we can show that the asymptotic stability, uniform sta-
bility, and uniform asymptotic stability of (Sg, {0}) imply the same corresponding
types of stability of (.S, M).

(c) Assume that (Sg, {0}) is exponentially stable. Then (Sg;, {0}) is exponen-
tially stable by Theorem 4.3.1. There exists a > 0, and for every € > 0 and every
to € RY, there exists a d = §(¢) > 0 such that |p(t, @, t)| < ee~*(*t=%) for all
t € R} and for all p(-,a,to) € Spr whenever [a| < §. It follows from (ii) that
whenever d(a, M) < 15 *(8), |V (a,to)| < 6. Hence,

d(p(ta aatO)v M) < 1/};1(|V(p(t7 aatO)vt)D
= 7/}1_1(|ﬁ(ta V<aat0)vt0)|)

< 7! (Eefa(tfto))
— (€/a)1/be—(a/b)(t—to)

for all ¢ € R} and for all p(-,a,to) € S whenever d(a, M) < Y5 1 (8). Therefore,
(S, M) is exponentially stable.

(d) We have already shown in part (b) that (.S, M) is uniformly stable. Because Sg
is uniformly bounded by assumption, Sg; is uniformly bounded by Theorem 4.3.1.
Then for every « > 0 and for every ¢, € R there exists a 3 = () > 0 such that



Section 4.3 Comparison Theory 161

Ip(t, @, to) — xo| < Bforallt € R} and p(-,a,to) € Sprif [a] < o, where zq is a
fixed point in (R™)". Hence, for all ¢ € R/, and for all p(-, a,to) € S

d(p(t7a7t0)>M) < ¢f1(|V(p(t7a,t0),t)|)
= o1 (1B(, V(a, to), to)|)
<Py (B + o))

Inasmuch as M is bounded, we conclude that S is uniformly bounded. Lastly, we
show that (.S, M) is globally uniformly attractive. Because (Sgy, {0}) is uniformly
asymptotically stable in the large by Theorem 4.3.1, for every o > 0, > 0, and
for every to € R, there exists a 7 = 7(¢,a) > 0 such that if [a| < @2(a),
then for all p(-,a,t0) € Spr, |p(t,a,t0)] < ¢1(e) forall t € Ry, . Hence, it
follows from (ii) that whenever d(a, M) < a, V(a,t) < p2(a) and hence it is true
that |V (p(t, a,to),t)| = [p(t, V(a,to), to)| < ¢1(e) forall t € R} . Therefore,
d(p(t,a,to), M) < o7 ([V(p(t,a,to),t)|) < e forall t € R ... It now follows
that (S, M) is uniformly asymptotically stable in the large.

(e) Under the assumption, (Sgy, {0}) is exponentially stable in the large by The-
orem 4.3.1. Then there exist an « > 0, ay > 0, and for every 3 > 0, there exists
a k(B) > 0 such that |p(t,a,to)| < k(B)[a|"e=*¢=%) for all p(-,a,t9) € Sgr
and t € ]R:g whenever [a| < a2(”. Hence, it follows from (ii) that whenever
d(a, M) < B,V(a,t) < az3® and hence,

|V(p(t7a,t0),t)| = |ﬁ(t= V(a=t0)>t0)| < k(ﬁ)|v(a>t0)|’ye—u(t_t0)'

Then

1/b
d(p(t,a,to), M) < [V (p(t, a.to), t) /e |
< [V (@ t)peee=w] "
< [k(B)ad]V[d(a, M)] e~ (/D) (E=to)
Let k1 (8) = [k(B)a3]'/?, and ay = a/b. Then
d(p(t,a,to), M) < ki1(8) [d(a7 M)]’Yeial(tfto)

for all p(-,a,t) € S and for all t € R, whenever d(a, M) < 3.

(f) The uniform boundedness of S is shown in (d). Note that in this part of the
proof, M is only required to be bounded. The uniform ultimate boundedness can be
shown similarly. o

For obvious reasons, we call the function V' in Theorem 4.3.2 a vector Lyapunov
function.

If in equation (E), g € [RT x R!,R!] and if in inequality (EI) we restrict the do-
main of g to RT x (R*)!, then the statements of Theorem 4.3.2 are still true. Specif-
ically, if Si denotes the dynamical system determined by (E) for g € [RT x R!, R]
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and if Sg denotes the dynamical system determined by (E) with the domain of g
restricted to RT x (R*)l, then Sk is a subsystem of S r. Therefore, if we replace
Sg by S £ in the statements of Theorem 4.3.2, the conclusions of this theorem are
still true.

We conclude the present subsection with a specific example.

Example 4.3.1 We choose in particular
g(t,z) = Bx

where B € RY!, Then g is quasi-monotone nondecreasing if and only if all the
off-diagonal elements of B = [b;;] are nonnegative. In view of Theorem 4.3.2 and
the results given in Example 3.1.8, we have the following results:

Let {R™, X, A, S} be a dynamical system and let M C A be closed. Assume that
there exists a continuous function V: X x Rt — (R*)! that satisfies the following
conditions:

(i) Forall p(-,a,t9) € Sandallt € R,
DV (p(t,a,to),t) < BV(p(t, a,to),t)

where the off-diagonal elements of B € R**! are nonnegative and D is a fixed
Dini derivative.

(ii) There exist 11,12 € K such that
() (d($7 M)) < |V(‘T7t>| < wz(d(ﬂ% M))

forall z € X and t € RT, where d is the metric defined on X and | - | denotes
the Euclidean norm on R,

Then the following statements are true.

(a) If the eigenvalues of B have nonpositive real parts and every eigenvalue of B
with zero real part has an associated Jordan block of order one, then (.S, M) is
invariant and uniformly stable;

(b) If all eigenvalues of B have negative real parts, then (S, M) is uniformly
asymptotically stable. In addition, if in hypothesis (ii) above, ¥1, 12 € K
and M is bounded, then (S, M) is uniformly asymptotically stable in the large.

(c) Ifin part (b), ¥;(r) = a;r®, a; > 0,b > 0,7 = 1,2, then (S, M) is exponen-
tially stable in the large.

Finally, recalling that a matrix H € R’*! is called an M -matrix if all the off-
diagonal elements of H are nonpositive and if all the eigenvalues of H have positive
real parts, we can rephrase condition (b) given above by stating that —B is an M-
matrix, in place of “all eigenvalues of B have negative real parts.” For the properties
of M-matrices, refer, for example, to [4] and to Definition 7.7.1. O
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B. Discrete-time dynamical systems

Next, we consider a system of difference equations given by
w(k+ 1) = h(k, z(k)), (D)

where h: N x (RT)! — R/, and the associated system of difference inequalities given
by

w(k+1) < h(k,z(k)), (DI)
where for all k € N, (k) € (R*)!. We denote the dynamical systems determined
by (D) and (DI) by Sp and Spy, respectively.

Definition 4.3.1 A function g: N x  — R/ is said to be monotone nondecreasing
if g(k,z) < g(k,y) forallz <y, z,y € Qandall k € N, where Q C R! is a subset
of R! and where inequality of vectors is to be interpreted componentwise. o

Lemma 4.3.1 Assume that 4: N x (R*)! — R! is monotone nondecreasing and that
h(k,0) = 0 for all £ € N. Then the following statements are true.
(a) If z. = 0 is an equilibrium of Sp, then x, = 0 is also an equilibrium of Sp;.
(b) The stability, uniform stability, asymptotic stability, uniform asymptotic stabil-
ity, exponential stability, uniform asymptotic stability in the large, and expo-
nential stability in the large of (Sp, {0}) imply the same corresponding types
of stability of (Spr, {0}).
(¢) The uniform boundedness and uniform ultimate boundedness of Sp imply the
same corresponding types of boundedness of Sp;.

Proof . For any motion z(+, g, n¢) € Spr and any motion (-, zg, ng) € Sp, where
(no, o) € N x (R*)! we have that

x(no + 1, 20, n0) < h(ng, zo)

(ng + 1,0, n0)

(no + 1,2(no + 1,29, n0))
(ng + 1,7(ng + 1,20,n0))

(TLO + 2; Zo, TLO)

x(no + 2,0, no)

.
<h
<h
.

z(n+ 1,z0,n0) < h(n,z(n,zo,no))
S h(n,r(n,xo,no)) (433)
r

(n + 17.'1,'0,710)

for all n > ng, and inequality is to be interpreted componentwise. In addition, we
also have that
z(n,zg,n9) >0 (4.3.4)

for all n > ng by the way Sp; is defined (i.e., h: N x (RT)! — R,
All conclusions of the theorem follow now from (4.3.3) and (4.3.4) and from
Definitions 3.1.2, and 3.1.6-3.1.17. O
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We now present the main result of this subsection.

Theorem 4.3.3 Let {N, X, A, S} be a dynamical system and let M C A. Assume
that there exists a function V: X xN — (R*)! that satisfies the following conditions.

(i) There exists a function h: N x (RT)! — R! which is monotone nondecreasing
such that h(k,0) = 0 for all k € N, and

Viplk+1,a,ko), k+1) < h(k,V(p(k,a, ko), k))

forall p(-,a, ko) € S and k € Ng,.
(ii) There exist 11,9 € K defined on R such that

¢1(d($7M)) < |V(.%', k)' < 1/22(d(337M))

for all (z,k) € X x N, where d(-,-) denotes the metric on X and | - | is the
Euclidean norm on R'.

If M is closed, then the following statements are true.

(a) The invariance of (Sp, {0}) implies the invariance of (S, M).

(b) The stability, asymptotic stability, uniform stability, and uniform asymptotic
stability of (Sp, {0}) imply the same corresponding types of stability of (S, M).

(c) If in hypothesis (i), ¥ (r) = ar®, a > 0,b > 0, then the exponential stability
of (Sp, {0}) implies the exponential stability of (S, M).

(d) If M is bounded and if in hypothesis (ii), 11, %2 € K, then the uniform
asymptotic stability in the large of (Sp,{0}) implies the uniform asymptotic
stability in the large of (S, M).

(e) Ifin (c), ¥;(r) = a;r%, a; > 0,b > 0,4 = 1,2, and M is bounded, then the
exponential stability in the large of (Sp, {0}) implies the exponential stability
in the large of (S, M).

If M is bounded, but not necessarily closed, the following statement is true.

(f) If in (ii), ¥1,¥s € Ko, then the uniform boundedness and uniform ultimate
boundedness of Sp imply the same corresponding types of boundedness of S

Proof. Forany a € A, ko € N, p(-,a, ko) € 9, it follows from (i) that
V(p(ka a, k0)7 k) = ﬁ(k7 V(aa kO)a kO)

is a motion in Spy. The rest of the proof is similar to the proof of Theorem 4.3.2 and
is not repeated here. O

If in equation (D), h: N x R! — R/, and if in inequality (DI), we restrict the
domain of A to N x (R*)l, then the statements of Theorem 4.3.3 are still true, for the
same reasons as given immediately after Theorem 4.3.2.

We conclude the present subsection with a specific example.
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Example 4.3.2 We choose in particular
h(k,x) = Bz

where B = [b;;] € R, Then h is monotone nondecreasing if and only if b;; > 0 for
alle,5 =1,...,1. In view of Theorem 4.3.3 and the results given in Example 3.1.9,
we have the following results.

Let {N, X, A, S} be a dynamical system and let M C A be closed. Assume that
there exists a continuous function V: X x N — (R*)! that satisfies the following
conditions.

(i) Forall p(-,a,ko) € S and all k € N,
Vip(k+1,a,ko), k+1) < BV(p(k,a, ko), k)

where B = [b;;] € R™*! with b;; > 0 foralli,j=1,...,1
(ii) There exist ¥, 12 € K defined on R™ such that

forall z € X and k € N, where d is the metric defined on X and | - | denotes
the Euclidean norm on R,

Then the following statements are true.

(a) If the eigenvalues of B have magnitude less than or equal to one and every
eigenvalue of B with magnitude equal to one has an associated Jordan block
of order one, then (S, M) is invariant and uniformly stable.

(b) If all eigenvalues of B have magnitude less than one, then (.S, M) is uniformly
asymptotically stable. In addition, if in hypothesis (ii) above, ¥1, 192 € K
and M is bounded, then (S, M) is uniformly asymptotically stable in the large.

(c) If in part (b), 1;(r) = a;r?, a; > 0,b> 0,7 = 1,2, then (S, M) is exponen-
tially stable in the large. O

4.4 Uniqueness of Motions

In several results that we have encountered thus far and which we will encounter, the
dynamical systems are endowed with the uniqueness of motions property (refer to
Definition 3.1.3). This property is especially prevalent in applications. In the present
section we establish a Lyapunov-type result which ensures that a dynamical system
possesses the uniqueness of motions property.

In the following, we let T'= R or 7' = N.

Theorem 4.4.1 Let {T', X, A, S} be a dynamical system and assume that there exists
afunction V: X x X x T — R™ that satisfies the following conditions.

(1) V(z,y,t) =0forallt € Tifx =y.
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(ii) V(z,y,t) > 0forallt € Tif x # y.
(iii) Foranyp;(-,a,to) € S,i = 1,2,V (p1(t,a,to),p2(t, a,tp),t) isnonincreasing
int.

Then S satisfies the uniqueness of motions property.

Proof. Let p;(-,a,to) € S,i = 1,2, and let ¢(t) = V(p1(t,a,to),p2(t, a,to),t),
for all t € T, ,. Then ¢(typ) = 0 by (i). By (iii), ¢(¢) is nonincreasing. Therefore
q(t) =0forall t € Ty 4. Finally, by (i), p1 (¢, a, to) = pa2(t,a,to) forall t € T, 4.
We have proved that S satisfies the uniqueness property. a

We demonstrate the applicability of Theorem 4.4.1 by means of the following
example.

Example 4.4.1 We consider dynamical systems determined by first-order differential
equations in a Banach space X with norm || - ||, given by

#(t) = F(t,2(t)) (F)

where t € RT, F: RT x C — X, and z(t) € C C X.
Associated with (F') is the initial value problem given by

@(t) = F(t,z(t)), z(to) = zo (Ir)

where tg € R*, t > t9, and 79 € C C X. The following result yields sufficient
conditions for the uniqueness of the solutions of the initial value problem (/).

Theorem 4.4.2 For (F), assume that on every compact set K C R™ x C, F(-,")
satisfies the Lipschitz condition

[F(t,z) = F(t,y)ll < Lrllz -yl

for all (¢, ), (t,y) € K, where L is a constant that depends only on the choice of
K. Then for every (to,z09) € Rt x C, (F) has at most one solution z(t) defined on
[to, to + ¢) for some ¢ > 0, that satisfies () = xo.

Proof . It suffices to show that (F') has at most one solution on [to, b] that satisfies
x(tg) = xo where b is any finite number greater than .

Let (t) and y(¢) be two solutions of (F) that are defined on [tp,b]. By the
continuity of x(t) and y(t), the set

K ={(t,¢) € [to,b] x C: ¢ = z(t) or p = y(t) for some ¢ € [to,b]}

is compact. Let L = L be the Lipschitz constant for F'(-, -) corresponding to K, and

let D denote the upper-right Dini derivative in t. Choose V (z,y,t) = ||z —y|le L,
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t > 0. Then for ¢ € [to, b],
DYV (x(t),y(t),t)

_ o= L pgan _ Lt _
= T [ X a(t + h) — y(t+ )| — e H 2(t) —y(@)]]

T —L(t+h) —Lt
= Tm o[(c =) a(t) — y(@)|

e HE (e 4 h) = y(t 4+ B = a(t) - y(@)l) |
< e ML) =y + D) — u()]
< —e UL (t) — y()|| 4+ e a(t) — ()]
= e M= L|x(t) — y@)|| + || F(t,x(t) — F(t,y(t))] ]
< e—Lt[_ Lilz(t) — y@)|| + Ll|z(t) — y(t)] ]
=0.

Therefore, condition (iii) of Theorem 4.4.1 is satisfied. Conditions (i) and (ii) of
Theorem 4.4.1 are clearly also satisfied. Therefore, z(t) = y(¢) for t € [tg,to + ¢)
for some ¢ > 0. |

4.5 Notes and References

The necessary and sufficient conditions for stability and asymptotic stability for au-
tonomous dynamical systems given in Section 4.1, Theorems 4.1.3 and 4.1.4, are
based on results presented in Zubov [8].

The invariance theory for continuous-time dynamical systems determined by semi-
groups defined on metric spaces, given in Section 4.2, is based on work reported in
Hale [1], and the results for the discrete-time case were first reported in Michel
et al. [5].

The results for the Comparison Theory presented in Section 4.3 are based on
material presented in Lakshmikantham and Leela [2] and Miller and Michel [6] con-
cerning Theorems 4.3.1 and 4.3.2, whereas Lemma 4.3.1 and Theorem 4.3.3 are based
on material presented in Michel et al. [5].

The uniqueness result given in Section 4.4, Theorem 4.4.1, is motivated by ex-
isting results for dynamical systems determined by functional differential equations
(Yoshizawa [7]) and differential equations in Banach space (Lakshmikantham and
Leela [2]).

4.6 Problems

In Sections 3.3 and 3.4 we proved several stability and boundedness results for con-
tinuous dynamical systems and discrete-time dynamical systems making use of corre-
sponding results for DDS. In Problems 3.10.4-3.10.12, we asked the reader to prove
the results of Sections 3.3 and 3.4 by invoking the basic definitions for the various
types of stability and boundedness. In Problems 3.10.19-3.10.24, we asked the reader
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to prove some of the results of Sections 3.3 and 3.4 by using the equivalent definitions
for various stability and boundedness concepts (involving comparison functions), es-
tablished in Problems 3.10.15-3.10.18. In the next four problems we ask the reader
to prove some of the results of Sections 3.3 and 3.4 yet another way: by invoking the
comparison theory established in Section 4.3.

Problem 4.6.1 Prove Theorems 3.3.4 and 3.4.4 by using the comparison theorems,
Theorems 4.3.2(f) and 4.3.3(f), respectively.

Hint: Letl = 1. Let y(t) = V(p(t,a,to),t) for the case when t € T = RT
and y, = V(p(k,a,ko),k) when k € T = N. Choose g(t,y) = 0 in applying
Theorem 4.3.2 for the case T = R and h(k, y) = 0 in applying Theorem 4.3.3. O

Problem 4.6.2 Prove Theorems 3.3.6 and 3.4.6 by using the comparison theorems,
Theorem 4.3.2(d) and 4.3.3(d), respectively.

Hint: Letl = 1. For T = R*, let y(t) = V(p(t,a,to),t) and from (3.3.9) and
(3.3.10), obtain for all ¢ € Ty, 4,

Dy(t) < —(y(t)) (4.6.1)

where 1 = 3 0 p, ! € K. In applying Theorem 4.3.2, let g(t,y) = —(y). In
Problem 3.10.25 we ask the reader to prove that the equilibrium y, = 0 is a uniformly
asymptotically stable equilibrium of the dynamical system Sg = S(4.6.2) determined
by the scalar differential equation

y=—¢(y), yeR" (4.6.2)

where ¢ € K.

Next, we note that 1 € K if 2, 03 € K. In Problem 3.10.26 we ask the reader
to prove that the equilibrium y, = 0 of (4.6.2) is uniformly asymptotically stable in
the large when ¢» € K. It now follows from Theorem 4.3.2 that (S, M) is also
uniformly asymptotically stable in the large.

The reader can show that for 7" = N, the proof follows along similar lines, using
Theorem 4.3.3 and Problems 3.10.28 and 3.10.29. O

Problem 4.6.3 Prove Theorems 3.3.7 and 3.4.7 by using the comparison theorems,
Theorems 4.3.2(e) and 4.3.3(e), respectively.

Hint: In the hint given for Problem 4.6.2 we let p;(r) = ¢;r%, ¢; > 0, b > 0,
r>0,i=1,2,3. For T = R", we have that 1(r) = (3 0 5 )(r) = ar, where
a = c3/co > 0. System Sg = S(4.6.2) is now determined by

y = —ay, ye RJra

so that y(t) = yoe =%) t > t4. It is clear that in this case (Sg,{0}) is ex-
ponentially stable in the large. It now follows from Theorem 4.3.2 that (S, M) is
exponentially stable in the large.

The reader can show that for 7' = N, the proof follows along similar lines, using
Theorem 4.3.3. |

Problem 4.6.4 Prove Theorems 3.3.5 and 3.4.5, using the comparison theorems,
Theorem 4.3.2(f) and 4.3.3(f), respectively.
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Hint: For both T = R* and T' = N, if (S, M) is uniformly asymptotically stable in
the large and if M is bounded, then S is uniformly ultimately bounded. This can be
verified from Definitions 3.1.14 and 3.1.16, replacing xy € X in Definition 3.1.14
by a bounded set M. O

Problem 4.6.5 Consider the initial and boundary value problem for a parabolic partial
differential equation given by

8u(?ﬁ x) = i(t x)+ F(t,z,u), €M), ()], tE]la,b

ot O (4.6.3)
u(a, z) = g(z), z € [Mi(a), Aa(a)] o
u(t, Xi(t)) = hi(t), t€fa,b], i=12,

where XY < i (t) < Ao(t) < M forall ¢ € [a,b], F € C[a,
)\17)\2,h1,h2 € C[[a,b], ], g € C[[)\%)\%,R] and g( ( ))
Assume that there exists a constant & > 0 such that

b] x [A7, A] x R, R]
= hi(a),i=1,2.

F(t,x,u1) — F(t,z,u2) < K(u; — ug)

for all uy; > up and for all (t,z) € [a,b] x [AJ, AJ].

By applying Theorem 4.4.1, show that there exists at most one solution of system
(4.6.3).
Hint: For any v1,v2 € X = C[R,R] choose

A2(t)
V(t,v1,v2) = 6_2Kt/ vy () — vo(2)|?d.
A1(t)

For any two solutions of (4.6.3), u; = u;(t,z), i = 1,2, using the fact that

Ul (t, )\1@)) = U2 (t7 )\2 (t))

for all ¢ € [to, b], show that

A2(t) 3U1 8u2
ox

2
DV (t,ua (1, ), ua(t, 7)) < —26—2“/ 9ur iy =924 )| dw <o,
Al(t) 81'

To complete the proof, show that the hypotheses of Theorem 4.4.1 are satisfied. O

Problem 4.6.6 Prove the following results.

Theorem 4.6.1 [5] (Comparison Theorem) Let {T', X1, A1, S1} and {T, Xo, Aa, So}
be two dynamical systems and let M; C Ay C X; and My C Ay C Xo. Assume
there exists a function V': X; x T' — X that satisfies the following hypotheses.

(i) V(S1) C Sa, where V(S7) is defined as

A
V(Sl) = {q(abv tO): q(taba tO) = V(p(t7a7t0)7t)7p('va7t0) S 517 te T7
with b =V (a,to) and Ty, = T4y, a € A1,t0 € T}
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(i) M, and M satisfy the relation
My D {xs € Xo: w3 = V(21,t') for some x; € My andt’ € T},
and A; and A, satisfy the relation
Ay D {xg € Xo: 13 = V(x1,t') forsome x1 € Ay and t’ € T'}.
(iii) There exist 11, 1» € K defined on R*, such that
Ur(dy(a, My)) < do(V (2, 1), M) < po(da(a, My)) (4.6.4)

forall z € X, and t € T, where d; and dy are the metrics on X; and Xo,
respectively.

If M; is closed, then the following statements are true.

(a) The invariance of (Sg, M3) implies the invariance of (S1, My).

(b) The stability, uniform stability, asymptotic stability, and uniform asymptotic
stability of (Ss, M>) imply the stability, uniform stability, asymptotic stability,
and uniform asymptotic stability of (S1, M), respectively.

(c) If in (4.6.4), ¥1(r) = pr”, u > 0, v > 0, then the exponential stability of
(S2, M) implies the exponential stability of (S1, My).

(d) Ifin (4.6.4), V1,19 € Ko, then the asymptotic stability in the large of (S, M>)
implies the asymptotic stability in the large of (S1, My).

If M, and M> are bounded, but not necessarily closed, and if in (4.6.4), 11, V2 € Koo,
then the following statement is true.

(e) The uniform boundedness and the uniform ultimate boundedness of .Sy imply
the uniform boundedness and the uniform ultimate boundedness of S1, respec-
tively.

If M, and M> are bounded and closed, and if in (4.6.4), ¥1,v%s € K, then the
following statement is true.

(f) The uniform asymptotic stability in the large of (Ss, M) implies the uniform
asymptotic stability in the large of (S1, M7).

(g) If in addition, we have in (4.6.4) that ¢;(r) = u;r”, p; > 0,v > 0,7 = 1,2,
then the exponential stability in the large of (S3, M>) implies the exponential
stability in the large of (S1, My).

Hint: In each case, use the definitions of the various stability and boundedness con-
cepts to establish the indicated relationships. (The complete proof of this theorem is
given in [5, Section 3.3]). O

In the next results we employ the continuous-time dynamical system Sgr de-
termined by the differential inequality (ET) and discrete-time dynamical system
Spr determined by the difference inequality (DI), as comparison systems (refer
to Subsections 4.3A and 4.3B).
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Problem 4.6.7 Prove the following results.

Proposition 4.6.1 Let {7, X, A, S} be a dynamical system and let M C A C X.
Let T = R* or N. Assume that there exists a function V: X x T — (RT)! that
satisfies the following conditions.

(i) When T = RT, there exists a function g € C[R* x (RT)!, R!] such that
g(t,0) =0 forall t € R, and such that

D[V(p(t7 a, tO)a t)] < g(t, V(p(t, a, tO)v t)) (465)

forall p(-,a,tg) € S, t € Ty 4, -

When T = N, there exists a function h: Nx (R*)! — R such that h(k,0) = 0
for all £ € N, and such that

Vp(k+1,a,ko), k+1) < h(k, V(p(k,a, ko), k)) (4.6.6)

forall p(-,a, ko) € S, k € Ty g, -
(ii) There exist functions 91,19 € K defined on RT such that when T’ = RT,

Yi(d(z, M)) < [V(z,t)] < to(d(z, M)) (4.6.7)
and when T = N,

forallz € X and t € RY (resp., k € N), where d denotes the metric defined
on X and | - | denotes the Euclidean norm on R,

If M is closed, then the following statements are true.

(a) The invariance of (Sgs,{0}) (resp., (Spr, {0})), implies the invariance of
(S, M).

(b) The stability, uniform stability, asymptotic stability, and uniform asymptotic
stability of (Sgr, {0}) (resp., (Spr,{0})), imply the corresponding types of
stability of (S, M), respectively.

(c) Ifin (4.6.7) (resp., in (4.6.8)), 11 (1) = ur”, u > 0, v > 0, then the exponential
stability of (Sgr, {0}) (resp., (Spr,{0})), implies the exponential stability of
(S, M).

(d) If in (4.6.7) (resp., in (4.6.8)), Y1, 12 € K, then the asymptotic stability in
the large of (Sgr, {0}) (resp., (Spr, {0})), implies the asymprotic stability in
the large of (S, M).

If M is bounded (but not necessarily closed), and if in (4.6.7) (resp., in (4.6.8)),
1,12 € K, then the following statement is true.

(e) The uniform boundedness and the uniform ultimate boundedness of Sg; (resp.,
Spr), imply the uniform boundedness and the uniform ultimate boundedness
of S, respectively.
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If M is bounded and closed, and if in (4.6.7) (resp., in (4.6.8)), ¥1, Y2 € K, then
the following statements are true.

(f) The uniform asymptotic stability in the large of (Sgr, {0}) (resp., (Spr, {0})),
implies the uniform asymptotic stability in the large of (S, M).

(g) If in addition to the conditions of part (f), we have in (4.6.7) (resp., in (4.6.8)),
that v;(r) = p;r”, u; > 0, v > 0,4 = 1,2, then the exponential stability in
the large of (Sgr, {0}) (resp., (Spr, {0})), implies the exponential stability in
the large of (S, M).

Hint: In the notation of Theorem 4.6.1, let X = X;, A = A;,and S = S;. Let
R! = Xy = Ay and Sgp; = Sy (resp., Spr = Sz). Let M = M, {0} = Ms, and
note that V(S1) C Sgr (resp., V(S1) C Spr). All statements of the proposition are
now a direct consequence of Theorem 4.6.1. O

In proving Theorems 4.3.2 and 4.3.3, we invoked the basic stability and bound-
edness definitions introduced in Section 3.1. In the next two problems we ask the
reader to use Proposition 4.6.1 to prove these results.

Problem 4.6.8 Prove Theorem 4.3.2 using Proposition 4.6.1 and Theorem 4.3.1. O
Problem 4.6.9 Prove Theorem 4.3.3 using Proposition 4.6.1 and Lemma 4.3.1. O
Problem 4.6.10 Prove relation (4.2.1). a
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Chapter 5

Applications to a Class of
Discrete-Event Systems

In this chapter we apply the stability theory of dynamical systems defined on metric
spaces in the analysis of an important class of discrete-event systems. We first give
a description of the types of discrete-event systems that we consider and we then
show that these discrete-event systems determine dynamical systems (Section 5.1).
Next, we establish necessary conditions for the uniform stability, uniform asymp-
totic stability, and exponential stability of invariant sets with respect to the class of
discrete-event systems considered herein (Section 5.2). We then apply these results
in the analysis of two specific examples, a manufacturing system (Section 5.3) and a
computer network (Section 5.4).

5.1 A Class of Discrete-Event Systems

Discrete-event systems (DES) are systems whose evolution in time is characterized
by the occurrence of events at possibly irregular time intervals. For example, “log-
ical” DES constitute a class of nonlinear discrete-time systems whose behavior can
generally not be described by conventional nonlinear discrete-time systems defined
on R™. Examples of logical DES models include the standard automata-theoretic
models (e.g., the Moore and Mealy machines). A large class of the logical DES in
turn, can be represented by Petri Nets.
We consider DES described by

G:(ngafe»gagv) (5.1.1)

where (X, d) is a metric space which denotes the set of states (the metric d is specified
as needed), & is the set of events,

Jer X =X (5.1.2)
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for e € £ are operators,
g: X — P(&)—{0} (5.1.3)

is the enable function and £, C EN is the set of valid event trajectories. Presently,
for an arbitrary set Z, Z" denotes the set of all sequences {2k }ken, Where z;, € Z
for k € N and P(Z) denotes the power set of Z. We require that f.(z) be defined
only when e € g(x). The inclusion of P(£) — {0} in the co-domain of g ensures
that there will always exist some event that can occur. If for some physical system,
it is possible that at some state no events occur, we model this by appending a nul!
event eg. When this occurs, the state remains the same while time advances. We call
G defined in the above manner, a discrete-event system.

We associate “time” indices with states #* € X and corresponding enabled events
e, € £attime k € Nifey, € g(2). Thus, if at state 2 € X, eventey, € € occurs at
time k € N, then the next state is given by 2%+ = f. (z*). Any sequence {z*} € XV
such that for all k, 2+ = f., (2%), where e}, € g(x*), is a state trajectory. The set
of all event trajectories, £9 C EV, is composed of sequences {e} € N having the
property that there exists a state trajectory {2*} € X" where for all k, e, € g(a*).
Hence, to each event trajectory, which specifies the order of the application of the
operators f., there corresponds a unique state trajectory (but, in general, not vice
versa). We define the set of valid event trajectories £, C £9 C EN as those event
trajectories that are physically possible in the DES G. We let £,(2°) C &, denote
the set of all event trajectories in &, that initiate at z° € X. We also utilize a set
of allowed event trajectories, &, C &,, and correspondingly, &,(z"). All such
event trajectories must be of infinite length. If one is concerned with the analysis of
systems with finite length trajectories, this can be modeled by a null event as discussed
above.

Next, for fixed £ € N, let F; denote an event sequence of k£ events that have
occurred (Ey = () is the empty sequence). If Ey= eg, ey, ..., er_1, let ExE €&, (20)
denote the concatenation of Ey, and E = egex41,. .., 1.e.,

ExE =eg,e1,...,€k1,€k, Chily----

We let 2(2°, Ey, k) denote the state reached at time k from 2° € X by application
of an event sequence Ej, such that ExE € &,(x°). By definition, z(z°, 0, 0) = 2°
forall z € X. We call x(2, Ey, ) a DES motion. Presently, we assume that for all
20 € X,if B FE € gv(dio) and Ek/E/ S (C/'U(ZE(ZEO, Ey, k)), then EkEk-/E/ €&, (1‘0)
Consequently, for all 29 € X, we have

z(z(2°, By, k), By, k') = 2(2°, By Ep  k + k') forall k, k' € N.
We now define S¢ ¢, by

Sc.e, = {p(-, 2% ko): p(k,2°, ko) = 2(2°, Ex—ky» k — ko), k > ko,
k ko e N,2® € X, By, E € £,(2°)}. (5.1.4)

LetT = Nand A = X. Then {T, X, A, Sg ¢, } is a dynamical system in the
sense of Definition 2.2.3. Indeed, it is an autonomous dynamical system (refer to
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Definition 4.1.1). We call {T, X, A, Sg.¢,} the dynamical system determined by
the discrete-event system GG. In the interests of brevity, we refer to this henceforth
as a dynamical system {X,Sc ¢, }. We define Sg e, C S, and {X,Sq¢,}
similarly. We note that (5.1.4) implies that Sg ¢, satisfies Assumption 3.5.1. In
general, however, S ¢, does not satisfy Assumption 3.5.1.

5.2 Stability Analysis of Discrete-Event Systems

Because discrete-event systems of the type discussed above determine dynamical
systems, the concepts of invariant sets and various types of stability of invariant sets
arise in a natural manner. When (S ¢, , M) is invariant, stable, or asymptotically
stable, we say that M is invariant, stable, or asymptotically stable with respect to &,,
respectively. The invariance, stability, or asymptotic stability with respect to &, are
defined similarly.

Theorem 5.2.1 Let {X, S¢ ¢, } be a discrete-event system and let M C X be closed.
Then M is invariant and stable with respect to &, if and only if there exist neighbor-
hoods of M, givenby B; = {z € X: d(z, M) <r;},i=1,2, where 0 < ro <1y,
and a mapping V': By — R™ that satisfies the following conditions.

(i) There exist ¥1, 19 € K such that
wl(d($7 M)) < V(l‘) < wz(d(% M))

forall z € B;.

(i) V(z(z°, Ex, k)) is a nonincreasing function for k¥ € N for all Ej, such that
ExE € &,(2") whenever 2° € Bs.

Proof . Because Sg. ¢, is an autonomous system that satisfies Assumption 3.5.1, the
theorem is an immediate consequence of Theorem 4.1.3. The choices of B; and Bs
are given as X; and A; in Theorem 4.1.3. O

Theorem 5.2.2 Let {X, S¢ ¢, } be a discrete-event system and let M C X be closed.
Then M is invariant and asymptotically stable with respect to &, if and only if there
exist neighborhoods of M givenby B; = {x € M: d(z, M) < r;}, i = 1,2, where
0 < r9 < 71, and a mapping V: B; — R™ that satisfies conditions (i) and (ii) of
Theorem 5.2.1, and furthermore, limy,_,», V (z(2°, Ex, k)) = 0 for all Ej, such that
ExE € &,(2") whenever 2° € Bs.

Proof . The proof of this theorem is a direct consequence of Theorem 4.1.4. a

When considering the stability or asymptotic stability of an invariant set M with
respect to &,, if we replace &, by £, everywhere in the statements of Theorems 5.2.1
and 5.2.2, then the “if”” parts (i.e., the sufficient conditions) remain true; however, the
“only if” parts of these results (i.e., the necessary conditions) in general do not hold
because we do not require that Sg ¢, satisfy Assumption 3.5.1.
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5.3 Analysis of a Manufacturing System

InFigure 5.3.1 we depict a manufacturing system that processes batches of IV different
types of jobs according to a priority scheme. Presently, we use the term “job” in a very
general sense, and the completion of a job may mean, for example, the processing of
a batch of 10 parts, the processing of a batch of 6.53 rasks, and the like. There are
N producers P;, 1 = 1,..., N, of different types of jobs. The producers P; place
batches of their jobs in their respective buffers B;,© = 1, ..., N. The buffers B; have
safe capacity limits b; > 0,1 =1,... , N.Letx;,i = 1,..., N, denote the number
of jobs in buffer B;. Let x; fori = N 4+ 1,...,2N denote the number of P;_ v type
jobs in the machine. The machine can safely process less than or equal to M/ > 0 jobs
of any type at any time. As the machine finishes processing batches of P; type jobs,
they are placed in their respective output bins (P;-bins). The producers P; can only
place batches of jobs in their buffers B; if x; < b;. Also, there is a priority scheme
whereby batches of P; type jobs are only allowed to enter the machine when z; = 0
for all j such that j < ¢ < N, that is, only when there are no jobs in any buffers to
the left of buffer B;.

D DT

b, b; by
B ) o o o Bi e o o BN
Machine
— Bin P, - Bin — Bin

Figure 5.3.1: Manufacturing system.

We now specify the DES model G for the present manufacturing system. To this
end we let X = R?V and 2* € X, where (%) = (21, 79, ..., 7an)* denotes the
state at time k. Let the set of events £ be composed of the events ep,, i = 1,..., N
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(representing producer P; placing a batch of a p, jobs into buffer B;), the events e,,,
© = 1,..., N (representing a batch of o, F; jobs from buffer B; arriving at the
machine for processing), and the events eq4,, 7 = 1,..., N (representing a batch of
aq, P; jobs departing from the machine after they are processed and placed into their
respective output bins). When using the term ep, type of event, e,, type of event,
or eq; type of event, we mean an event ep,, e,,, Or eq, for any ap,, ag,, or ag;,
respectively. It is assumed that all jobs are infinitely divisible, so that, for example,
a batch of 5% jobs can be placed into buffer B;, 8.563 of these jobs can be placed
into the machine for processing, then 3.14 of these could be processed. We note,
however, that the results described in the following can be modified to be applicable
for discrete jobs as well. Now let v € (0, 1] denote a fixed parameter. According
to the restrictions imposed in the preceding discussion, the enable function g and the
event operators f, for e € g(z*), are now defined as follows.

() If z; < b; forsome i = 1,..., N, then ep, € g(x*) and

fePi(xk)T: (xla"wxi+aPi7"'7xN7xN+17'~~71.2N)7

where ap, < |x; — b;].
(i) IfZ§ZN+1£L‘j < M, and forsome¢=1,...,N,x; > 0,and z; = 0 for all [,
I <i< N,thene,, €g(x*)and

feai(:vk)T = (T1,. ey Ti — Qayye oo y TNy TNty oo s ENA4i + Qayy oo oy TN )y

2N
Zj:NJrl Tj— M’}
(iii) If z; > O foranyi,i = 1,..., N, then ey, € g(z*) and

where v2; < o, < min {;,

fedz‘ ({Ek)T = (xl,...,waNH,...,xNH —Oédl.,...7[L'2N),

where Y2 vt < o, < TN

In case (i), every time that an event e p, occurs, some amount of jobs arrives at the
buffers but the producers will never overfill the buffers.

In case (ii), the e,, are enabled only when the machine is not too full and the ¢th
buffer has appropriate priority. The amount of jobs that can arrive at the machine
is limited by the number available in the buffers and by how many the machine can
process at once. We require that yx; < «,, so that nonnegligible batches of jobs
arrive when they are allowed.

In case (iii), the constraints on oy, ensure that the number of jobs that can depart
the machine is limited by the number of jobs in the machine and that nonnegligible
amounts of jobs depart from the machine.

We let £, = £Y; that is, the set of all event trajectories is defined by g and f, for
e € g(x*). The manufacturing system operates in a standard asynchronous fashion.

Now let

2N
M:{xeX:xigbi,i:L...,N,and Z a:jSM} (5.3.1)
j=N+1
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which represents all states for which the manufacturing system is in a safe operating
mode. It is easy to see that M is invariant by letting 2* € M and by showing that no
matter which event occurs, it will always be true that the next state zF+l e M.

In the following, we study the stability properties of the manufacturing system
formulated above. Our results show that under conditions when our manufacturing
system starts in an unsafe mode (too many jobs in a buffer, or in the machine, or in
both), it will eventually return to a safe operating condition.

To simplify our notation, we let (z%)1= (21, ..., zan), (z*TH) = (2], ..., 7hy),
T = (Z1,...,2on)T, and 7’ = (F,...,7% )T, suppressing the “k” notation as
indicated. For this manufacturing system example we take

2N
d(x,M):inf{Za:j—Eﬂ:%eM}. (5.3.2)

Jj=1

Proposition 5.3.1 For the manufacturing system, the closed invariant set M defined
in (5.3.1) is stable with respect to &,. O

Proof. We choose V (z*) = d(z*, M). We show that the function V' (z*) satisfies
hypotheses (i) and (ii) of Theorem 5.2.1 for all x* g M.

Hypothesis (i) follows directly from the choice of V (z*). To verify that V(%)
satisfies hypothesis (ii) we show that V' (z*¥) > V (2*+1) for all z*¥ ¢ M, no matter
what event e € g(z*) occurs, causing ¥+ = f.(z*), whenever it lies on an event
trajectory in &,.

(a) For zF ¢ M, if ep, occurs for some 4,7 = 1,..., N, we need to show that
2N 2N
inf{ Z |z, —Z;]: 7 € M} > inf{ Z |zj = Z5| + |zi +ap, — T3] 7' € M}
i=1 =14
(5.3.3)

It suffices to show that for all z € M at which the inf is achieved on the left of (5.3.3),
there exists ' € M such that

2N 2N
Slwp =3l > Y |ry = T+ |+ ap, — T, (5.3.4)
j=1 J=1.#i

If we choose 7} = z; for all [ # 4, then it suffices to show that forall 7;, 0 < z; < b;,
at which the inf on the left side of (5.3.3) is achieved, there exists 7, 0 < Z, < b;,
such that

where ap, < |z; — b;|. Choosing Z;, = x; + ap,, so that 0 < Z; < b;, results in
7' € M, and relation (5.3.5) is satisfied.

(b) For z* ¢ M, if e,, occurs for some i, ¢ = 1, ..., N, then following the above
approach, it suffices to show that for all z € M at which the inf is achieved, there
exists ' € M such that

2N 2N
Solai=zl > > =T i e, T o N it~ Tyl (5.3.6)
j=1 j=1,j#i,N+i
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Choose 7} = ; for all [ # i, N +i. It suffices to show that for all Z; and Z 4, there
exist T}, Ty, ;, such that

lz; — T > |@i — g, — T} (5.3.7)

2 7

and
‘LL'NJ”' — 5N+i‘ > ‘LL'NJ”' + g, — EL‘ilN+z| (5.3.8)

For (5.3.7), if x; < b;, then the inf is achieved so that |x; — T;| = |z; — aq, — 5| = 0,
whereas if x; > b;, the infis achieved at ¥; = b;. Therefore, |z; —b;| > |x; —aq, — 7,
because either , = b; or T, = x; — ay,. The case for (5.3.8) is similar to case (a)
above.

The proof for when ey, occurs is similar to the case for (5.3.8). O

We note that for the above manufacturing system, the closed set M specified in
(5.3.1) is not asymptotically stable in the large with respect to &,. (We ask the reader
to prove this assertion in the problem section. Alternatively, the reader may wish to
refer to [13, Proposition 2] for the proof.)

In the following, we identify a hypothesis that ensures asymptotic stability in the
large for the above manufacturing system. To this end, we let £, C &, denote the set
of event trajectories such thateach type of eventep,, e,, andeg,, 2 = 1,..., N, occurs
infinitely often on each event trajectory E € &,. If we assume for the manufacturing
system that only events which lie on event trajectories in £, occur, then it is always
the case that eventually each type of event (ep,, €4, and eq,, 7 = 1, ..., N) will occur.

Proposition 5.3.2 For the manufacturing system, the closed invariant set M given
in (5.3.1) is asymptotically stable in the large with respect to £, where £, C &, is as
defined above. ]

Proof . By Proposition 5.3.1, M is stable with respect to £,. To establish asymptotic
stability, we show that V' (x*) — 0 for all F) such that ExE € &,(z°) as k — oo
for all 2% & M.

Because oy, > vx; and ag, > Yx N4, Where v € (0,1], if ey, and eq4,,i =
1,..., N, occur infinitely often (as the restrictions on &, guarantee), x; and x n; will
converge so that V(x*) — 0 as k — oo (of course it could happen that V (z*) = 0
for some finite k). Therefore, if the manufacturing system starts out in an unsafe
operating mode, it will eventually enter a safe operating mode. a

5.4 Load Balancing in a Computer Network

We consider a computer network specified by a digraph (C, A) where C={1,..., N}
represents a set of computers labeled by ¢ € C and A C C' x C specifies the set of
connections; that is, if (i,j) € A, then computer 7 is connected to computer j. We
require that every computer is connected to the network so that if ¢ € C, then there
exists a pair (4, 5) € A or a pair (j,i) € A for some j € C. Also, we assume that if
(1,7) € A, then (j,1) € A and furthermore, if (7, j) € A, theni # j. We assume that
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for each computer there is a buffer that holds tasks (the load), and we assume that
each task (load) can be executed by any of the computers in the network. We let the
load of computer ¢ € C' be denoted x; > 0 and we assume that each connection in
the network, (i, ) € A, allows computer ¢ to pass a portion of its load to computer j.
We also assume that in the case of every connection (i, j), computer i is able to sense
the size of the load of computer j, and furthermore, when (7, j) ¢ A, then computer
1 cannot pass a load directly to computer j, nor can computer ¢ sense the load of
computer j.
We assume that the initial load distribution in the computer network is uneven and
we wish to establish rules (resp., an algorithm) under which a more even load distri-
bution in the computer network is realized. We assume that no tasks are performed
by any of the computers during the load-balancing process.
In the literature, distinctions are made between continuous loads (also called fluid
loads) and discrete loads. In the former case, it is assumed that the computer load is
infinitely divisible whereas in the case of the latter, a load is a multiple of a uniformly
sized block that is not divisible. In the following, we consider only continuous loads.
We next specify the discrete-event system model G for the computer balancing
problem described above. To this end, we let X = RY denote the state space, and we
let 2% = (21,...,2n5)T and 2**1 = (2], ..., 2\)T denote the state at times k and
k + 1, respectively. Let efﬂk denote the event that a load of amount «y, is passed from
computer i to computer j at time k. If the state is 2¥, then for some (i, ) € A4, effk
occurs to produce the next state zF1. Let & = {e¥: (i,j) € A, € R} denote
the infinite set of events. (Note that egj are valid events.) In the following, “an event
of type e%J” means the passing of a load of the amount o > 0 from computer i to
computer j.
We now specify the enable function g and the event operator f. for e € g(x*).
We choose the parameter v € (0,1/2].
@) If for any (i,j) € A, x; > xj, then e} € g(z*) and f.(2*) = 2**! where
e = e, al = xi —a, ¥ = xj+a, xp = forall | # 4,1 # j, and
VNwi —x5] < a < (1/2)]x; — ;).

(i) If for any (i,j) € A, x; = z;, then ef € g(z*) and f.(z*) = z* where
e= eéj .

Let&, = &9andlet £, C &, denote the set of event trajectories such that events of
each type ¥ occur infinitely often on each E € &,. This assumption ensures that each
pair of connected computers will continually try to balance the load between them.

In order to ensure load balancing, we make use of the set

M= {ZZTGX: x; = x; for all (4, j) GA}, (54.1)

which represents perfect load balancing. 1t is easy to show that M is invariant by
letting ¥ € M and then showing that no matter which event occurs, z*+1 € M.

Proposition 5.4.1 For the computer network load-balancing problem, the following
is true.

(a) M is stable with respect to &,.
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(b) M is not asymptotically stable with respect to &,.
(¢c) M is asymptotically stable in the large with respectto &, C &,. a

In proving Proposition 5.4.1, one proceeds similarly as was done in the proof
of Propositions 5.3.1 and 5.3.2 for the manufacturing system. In the proof of
Proposition 5.4.1, we find it convenient to choose as the distance function

d(z, M) = inf{ max{|z; — Z1|,..., |y —ZTn|}: T € M}
where x = (z1,...,2zy5)T and T = (Z1,...,7n)7, and as the Lyapunov function
V(z) = d(z, M),

and applying the results of Section 5.2. We leave the details of these proofs as an
exercise for the reader.

5.5 Notes and References

The applications to discrete-event systems presented in this chapter are based on [8],
[9], and [13]. For additional background material on discrete-event systems, refer,
for example, to [1], [3], and [15].

The manufacturing system considered in Section 5.3 is a generalization of systems
used in the study of a simple “mutual exclusion problem” in the computer science
literature (see, e.g., [7] and [10]) and is similar to several applications addressed in
the DES literature (e.g., [6] and [15]).

The results of Section 5.3 have been extended in [11] and [12] to be applicable to
“discrete” jobs.

Usage of the set £, in Proposition 5.3.2 imposes what is called in the computer
science literature a “fairness constraint” (see, e.g., [S]). One can guarantee that this
constraint is met using a mechanism for sequencing access to the machine. Such
fairness constraints have also been used in the study of temporal logic (e.g., [3] and
[7]) and the mutual exclusion problem in the computer science literature (e.g., [14]).

The load-balancing problem presented in Section 5.4 was motivated by a similar
problem studied in [1]. Various other forms of this problem have also been addressed
in the DES literature (e.g., [2]) and in the computer science literature (e.g., [1], [2],
and [4]), and in the numerous references cited in these sources.

5.6 Problems

Problem 5.6.1 For the manufacturing system discussed in Section 5.3, let M denote
the closed invariant set defined in (5.3.1). Prove that M is not asymptotically stable
in the large with respect to &,, where &, is the same as in Proposition 5.3.1.

Hint: Letx; > b; foralli = 1,..., N, where the b; are as defined in (5.3.1). Choose
Tn+i > 0forsome ¢ so that e4, occurs, to process F; type jobs and to put them into the
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P;-bin. For each successive time a4, = YT+, itcanhappenthat £ = eq,eq,€4, - -
(a constant string) and E € &,. This shows that M is not asymptotically stable in the
large with respect to &,,. ]

Problem 5.6.2 The matrix equations that describe the dynamical behavior of a Petri
net P are given by
Myp1 = My + ATy, (5.6.1)

where k € N, M}, € N™, Ais an n X m matrix of integers (the incidence matrix), and
ug, € {0,1}"™ denotes a firing vector (refer, e.g., to [8], [9], and [10] for background
material on Petri nets). A Petrinet P is said to be uniformly bounded (resp., uniformly
ultimately bounded) if the motions of the dynamical system determined by (5.6.1) are
uniformly bounded (resp., uniformly ultimately bounded). Prove that the following
Statements are true.

(a) A Petrinet P is uniformly bounded if there exists an m-vector ¢ > 0 such that
Ay < 0 (inequality of vectors is understood to be componentwise).

(b) A Petrinet P is uniformly ultimately bounded if there exist an m-vector ¢ > 0
and an n-vector b > 0 such that Ap < —b.

Hint: Apply Theorems 3.4.4 and 3.4.5 with the choice of M = {0} and V' (x) = 2T
forx = (ny,...,nm) € N™. a

Problem 5.6.3 Prove Proposition 5.4.1, using the hints given in Section 5.4. O
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Chapter 6

Finite-Dimensional
Dynamical Systems

In the present chapter we apply the results of Chapter 3 (for the stability of invari-
ant sets and the boundedness of motions of general dynamical systems defined on
metric spaces) in the analysis of continuous finite-dimensional dynamical systems
determined by differential equations (F), discrete-time finite-dimensional dynamical
systems determined by difference equations (D), and finite-dimensional discontin-
uous dynamical systems. When considering various stability types, our focus is on
invariant sets that are equilibria.

This chapter consists of eight parts. In the first section we introduce some im-
portant preliminary results which we require throughout the chapter. In the second,
third, and fourth sections we present the principal Lyapunov stability and bound-
edness results for continuous dynamical systems, discrete-time dynamical systems,
and discontinuous dynamical systems, respectively. Throughout these sections we
consider specific examples to demonstrate applications of the various results. In the
fifth, sixth, and seventh sections we establish converse theorems for the results of
the second, third, and fourth sections, respectively. In the eighth section we provide
some background material concerning the continuous dependence of the solutions of
ordinary differential equations on initial conditions.

The results of the present chapter are general and fundamental in nature. In the next
chapter, where we continue the qualitative analysis of finite-dimensional dynamical
systems, we concentrate on important specialized results.

6.1 Preliminaries
In this section we present preliminary material which we require throughout this

chapter. The present section is organized into seven parts. In the first three subsec-
tions we recall facts concerning finite-dimensional dynamical systems determined
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by ordinary differential equations, ordinary difference equations, and discontinuous
dynamical systems, respectively. In the fourth subsection we rephrase the various
definitions of stability and boundedness given in Chapter 3 for dynamical systems de-
fined on metric spaces, for the case of finite-dimensional dynamical systems (defined
on R™). In the fifth subsection we introduce several characterizations of Lyapunov
functions and in the sixth subsection we discuss an important special class of Lya-
punov functions, quadratic forms. In the final subsection we present some geometric
interpretations and motivation for Lyapunov stability results (for two-dimensional
autonomous systems).

Before proceeding, a comment concerning the notation that we employ in the
remainder of this book to designate Lyapunov functions is in order. When address-
ing general dynamical systems, {T, X, A, S}, defined on metric spaces, we used
uppercase letters in Chapters 3 and 4 to denote such functions (V-functions). In
keeping with the notation most frequently used in texts on specific classes of finite-
dimensional and infinite-dimensional dynamical systems, we use lowercase letters to
denote Lyapunov functions when dealing with such systems.

A. Dynamical systems determined by ordinary differential
equations

We consider systems of first-order ordinary differential equations of the form
&= f(t,x) (E)

wheret € RT, 2 € Q C R, & = dz/dt, and f: RT x O — R™. We assume
that ) is an open connected set and that 0 € ). We always assume that for each
(to,xo) € RT x €, (E) possesses at least one solution (refer to Theorem 2.3.1),
we sometimes require that these solutions be unique (refer to Theorem 2.3.2) and
we usually (but not always) require that the solutions, denoted by (¢, to, z¢), exist
for all ¢ € [tp,00). Recall that ¢(tg,t9,29) = 2. Under the assumption that
f € CRT x Q,R™], the solutions (¢, to, ) of (E) are continuous with respect to
initial conditions (%o, o) (refer to the appendix section, Section 6.8). Recall that ()
determines a dynamical system {7, X, A, Sp} where T = R*, X = R", A C X,
and Sk denotes the set of motions determined by (£). We usually denote this system
simply by Sg (refer to Subsection 2.3C).

In the present chapter we study primarily the stability properties of invariant sets
M C R™ for the special case when M = {z.} C R", and the boundedness of Sg.
Recall that in this case we say that z. is an equilibrium (resp., equilibrium point)
of (E).

In Example 3.1.3 we noted that if f(¢,z.) = 0 forall t € R, then {z.} = M
is an invariant set with respect to Sg (i.e., (Sg, M) is invariant). Furthermore, it is
easily shown that when (E) possesses a unique solution for every (tg, ) € RT x €,
then (Sg, {z.}) is invariant if and only if f(¢,z.) = 0 forall t € R.

To simplify our language throughout this chapter, we say that “z. is an equilibrium
of (E)”, rather than “the set {z.} is invariant with respect to Sg” (or, “(Sg, {z.})
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is invariant”); “the equilibrium z. of (E) is asymptotically stable”, rather than “the
invariant set {x. } of (E) is asymptotically stable” (or, “(Sg, {z.}) is asymptotically
stable); and so forth.

Without loss of generality, we may assume that a given equilibrium z. of (E) is
located at the origin (i.e., . = 0). To see this, suppose that z. # 0 is an equilibrium
of (F). Lety = x — x. and f(t,y) = f(t,y + x.). Then (F) can be written as

y= f(t,y),

with f(¢,0) = 0 forall t € R,

As in Chapter 3, we employ Lyapunov functions v € C[B(r) x R™ R] where
B(r) ¢ Q,B(r) = {& € R": |z] < r} with » > 0. For such functions, we
define the upper-right derivative of v with respect to t along the solutions of (E)
(90('7 t, !E)) by

— 1
f )= 1l 3 — t+ At t,x), t + At) — t 6.1.1
Vi (w:t) = lim e [v(p(t + At t,z),t + At) —v(z,t)]  (6.1.1)

which is defined on B(r) x R*. When for each (tg,z9) € RT x B(r), (E) has a
unique solution, (6.1.1) reduces to

1
/
V(g (x,t) = All—{%‘*' ik [ (p(t+ At,t,x),t + At) — v(x, t)] (6.1.2)

If in addition, v satisfies a local Lipschitz condition in z, that is, for each T > 0 there
exists a constant L > 0 such that

|U(1’7t) - U(yvt)| < L|£B - y|

forall z,y € B(r) and all ¢t € [0, T, then (6.1.2) can equivalently be expressed as

1
vy (T, t) = A%_r}ré+ K[ v(z + (AL f(t,2),t + At) — v(z,t)]. (6.1.3)

(We ask the reader to verify (6.1.3).) Finally, if in addition to the above assumptions,
we have v € C1[B(r) x R*,R], then (6.1.3) assumes the equivalent form

V() (2,1) Za x, ) fi(t,x) + (gc t) (6.1.4)
where f(t,2) = [f1(t,x),..., fu(t,2)]" is given in (E).

B. Dynamical systems determined by ordinary difference
equations

We now consider systems of first-order ordinary difference equations of the form

w(k+1) = f(k,2(k)) (D)
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where k € N, z(k) € Q € R™, and f: N x Q — Q. We assume that Q) is an
open connected set and that 0 € . For each (ko,z9) € N x Q there exists a
unique solution ¢(k, ko, xo) with @(ko, ko, o) = x(ko) = xo. We recall that (D)
determines a dynamical system {7, X, A, Sp} where T = N, X = R", A C X, and
Sp denotes the set of motions determined by (D). We usually denote this system
simply by Sp (refer to Section 2.5).

As in the case of dynamical systems determined by (), we concentrate primarily
in studying the qualitative properties of an equilibrium x, of D (i.e., in studying the
stability properties of an invariant set M = {x.}). It is easily shown that a point
Ze € §is an equilibrium of (D) if and only if

Te = f(kaxe)

for all £ € N. As in the case of ordinary differential equations, we may assume
without loss of generality that the equilibrium z. of (D) is located at the origin
(ze = 0).

Finally, we let ¢(k, ko, zo) denote any solution of (D) with initial conditions
(ko, ko, z0) = x(ko) = x¢. For a function v € C[Q? x N, R], we define the first
Sforward difference of v with respect to k along the solutions of (D) by

A(D)’U(I, k) = v(@(k +1, kvx)a k+ 1) - ’U((p(k}, ]C,IE), k)
=o(f(k,x),k+1) —v(x, k). (6.1.5)

C. Discontinuous dynamical systems (DDS)

In the present chapter we address finite-dimensional discontinuous dynamical systems
(finite-dimensional DDS), {T, X, A, S}, where T = RT,R" = X D A, and the
motions of S are determined by the solutions ¢ (-, ¢, z¢) of discontinuous ordinary
differential equations of the type specified later. As in Chapter 3 we assume that the
set of times at which discontinuities may occur is unbounded and discrete and is of
the form

E,={m,75,...:7f <715 <---}.

In the above expression, F, signifies that in general, different motions may possess
different sets of times at which discontinuities may occur. Usually, the particular set
E,, in question is clear from context and accordingly, we suppress the ¢-notation and
simply write

E={r,m,...i11 <72 <--}

We find it sometimes useful to express the motions (solutions) of finite-dimensional
DDS by
@(t»thwo) = x(k) (ta Tkaxk>7 Tk S t < Thk+1, ke N7

where tg = 79 and x are given initial conditions. Throughout, we assume that S
contains the frivial solution ¢(t,ty,0) = 0 for all t > ¢, so that (S, {0}) is invariant;
that is, . = 0 is an equilibrium for the finite-dimensional DDS.
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The most general specific class of finite-dimensional DDS that we consider is

generated by differential equations of the form (refer to Subsection 2.12A).
.’L‘(t) = fk(t,a:(t)), T <t < Tpt1

- (SE)

x(t) = ge(z(t7)), t=Tk41, k€N,

where for each k € N, fi, € C[RT x R",R"], gx: R® — R", and z(t~) =
limys 4 4 <¢ x(t") denotes the left limit of z(¢') at ¢/ = ¢.

As in Subsection 2.12A, associated with (SE), we consider the family of initial
value problems given by

(SEy)

k € N. We assume that for (73, 2 ), (SE}) possesses a unique solution ) (t, Tk, Tk)
that exists for all ¢ € |15, 00) (refer to Section 2.3 for conditions that ensure this).
Then for every (tg, o) € R x R™, ty = 79, (SE) has a unique solution ¢(t, to, zo)
that exists for all ¢ € [tg, 00). This solution is made up of a sequence of continuous
solution segments x(k)(t7 Tk, ) defined over the intervals |7y, 7x+1), k € N, with
initial conditions (7, x), where x;, = 2(7) = gr—1(x(7,, )), k = 1,2,..., and the
initial conditions (79 = t¢, zo) are given. At the points {7x+1}, ¥ € N, the solutions
of (SE) may have possible jumps, or the four derivatives D", Dy, D™ ¢, and
D_¢ may not be equal, or ¢ may be continuous.

We assume that for each k € N, f(¢,0) = 0 for all ¢ > 7. Then z. = 0 will be
an equilibrium for (SE}) and (S E).

D. Qualitative characterizations: Stability and boundedness

At this point it might be instructive to rephrase the various stability and bounded-
ness concepts given in Definitions 3.1.6-3.1.20 for the case of finite-dimensional
dynamical systems. We consider here only systems determined by ordinary differ-
ential equations. The various stability and boundedness definitions for discrete-time
systems determined by difference equations involve obvious modifications.

Let X = R", M = {0}, = R", and d(z,y) = |z — y| for all z,y € R"
where | - | denotes any one of the equivalent norms on R™. Also, note that for any
x € R, d(x,0) = |z|. From Definitions 3.1.6-3.1.20 we now have the following
characterizations of the equilibrium . = 0 of (£) and the solutions of (E).

Definition 6.1.1 (a) The equilibrium x, = 0 of (E) is stable if for every ¢ > 0 and
any to € R there exists a d(e, o) > 0 such that for all solutions of (E),

lp(t, to, x0)| < € forall ¢t >ty (6.1.6)

whenever
|{,C()| < 6(€7t0). 6.1.7)
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If in (6.1.7) 6(e, to) is independent of ¢4 (i.e., §(, tg) = 6(¢)), then the equilibrium
x. = 0 of (F) is said to be uniformly stable. (Note that in this definition the solutions
©(t, to, xo) exist over [to, t1) where t; may be finite or infinite.)

(b) The equilibrium x, = 0 of (E) is asymptotically stable if
(1) itis stable; and
(2) forevery to > 0 there exists an 7(tg) > 0 such that lim;_. o (¢, to, z¢) =0
for all solutions of () whenever |x| < 7(to).
When (2) is true, we say that the equilibrium z. = 0 of (F) is attractive. Also,

the set of all g € R™ such that (¢, to, 29) — 0 as ¢t — 0 for some ¢ty > 0 is called
the domain of attraction of the equilibrium x, = 0 of (E) (at ).

(c) The equilibrium z. = 0 of (E) is uniformly asymptotically stable if
(1) it is uniformly stable; and
(2) forevery e> 0 and every to € R, there exist a §y > 0, independent of ¢
and ¢, and a T'() > 0, independent of ¢, such that for all solutions of (E)

lo(t, to, x0)| < € forall ¢t >ty + T(e)

whenever |xo| < dp.

When (2) is true, we say that the equilibrium x. = 0 of () is uniformly attractive.
Note that condition (2) is often paraphrased by saying that there exists a do > 0
such that

tlirgo o(t+to, to,x0) =0

uniformly in (g, zg) for tg > 0 and for |zo| < dp.

(d) The equilibrium x, = 0 of (E) is exponentially stable if there exists an o > 0
and for every ¢ > 0 and every ¢y, > 0, there exists a §(¢) > 0 such that for all
solutions of (F)

lo(t, to, z0)| < e~ =) forall t >t

wherever |zg| < §(¢).
As in Chapter 3, we note that the exponential stability of the equilibrium z. = 0
of (&) implies its uniform asymptotic stability.

(e) A solution @(t,tg, xg) of (E) is bounded if there exists a 3 > 0 such that
|p(t, to, xo)| < B forall t > ty, where 3 may depend on each solution. System (FE)
is said to possess Lagrange stability if for each t; > 0 and xo € R", the solution
©(t, to, zo) is bounded.

(f) The solutions of () are uniformly bounded if for any o > O and every ty € RY,
there exists a § = ((a) > 0 (independent of ¢y) such that if |xg| < «, then
lp(t, to, xo)| < B for all t > to. (To arrive at this definition, we choose in Defi-
nition 3.1.13, without loss of generality, that o = 0.)

(g) The solutions of (F) are uniformly ultimately bounded (with bound B) if there
exists a B > 0 and if corresponding to any « > 0 and for every tq € RT, there exists
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aT=T(a) > 0 (independent of ¢y) such that |zo| < « implies that |¢(¢, to, zo)| <B
forallt > ¢y + T(c).

(h) The equilibrium x. = 0 of (E) is asymptotically stable in the large if it is
stable and if every solution of (F) tends to zero as ¢ — oo. In this case, the domain
of attraction of the equilibrium xz, = 0 of (F) is all of R" and z. = 0 is the only
equilibrium of (F).

(i) The equilibrium x, =0 of (E) is uniformly asymptotically stable in the large if

(1) itis uniformly stable;
(2) the solutions of () are uniformly bounded; and

(3) forany a > 0, any € > 0 and every tg € RT, there exists a T'(e, ) > 0,
independent of t(, such that if |z¢| < «, then for all solutions of (E), we
have |p(t, to, zo)| < e forall t >ty + T'(e, a).
When (3) is true, we say that the equilibrium z. = 0 of (E) is globally uniformly
attractive (resp., uniformly attractive in the large).

(j) The equilibrium z, = 0 of (F) is exponentially stable in the large if there exist
an o > 0 and ay > 0, and for any 3 > 0, there exists a k() > 0 such that for all
solutions of (F),

lo(t, to, 20)| < k(B)|xo|Te™Et0) forall t > t,

whenever |xg| < (.

(k) The equilibrium z. = 0 of (£) is unstable if it is not stable. In this case, there
exist a tp > 0 and a sequence xg,, — 0 of initial points and a sequence {t,, > 0}
such that |©(to + tim, to, Tom)| > € for all m. O

E. Some characterizations of Lyapunov functions

We now address several important properties that Lyapunov functions may possess.
We first consider the case w: B(r) — R (resp., w: Q@ — R) where B(r) C  C R,
B(r) = {& € R": |z| < r} forsome r > 0, £ is an open connected set, and
0eqQ.

Definition 6.1.2 A function w € C[B(r),R] (resp., w € C[,R]) is said to be
positive definite if

(i) w(0) =0; and
(i) w(z) > 0forall x # 0. O

Definition 6.1.3 A function w € C[B(r),R] (resp., w € C[Q,R]) is said to be
negative definite if —w is positive definite. O

Definition 6.1.4 A function w € C[R"™, R] is said to be radially unbounded if
(i) w(0) = 0;
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(i) w(z) > 0 forall z € (R™ — {0}); and
(iii) w(x) — oo as |z| — oo. O

Definition 6.1.5 A function w € C[B(r),R] (resp., w € C[Q,R]) is said to be
indefinite if
(i) w(0) = 0; and
(i1) in every neighborhood of the origin x = 0, w assumes negative and positive
values. =

Definition 6.1.6 A function w € C[B(r),R] (resp., w € C[{,R]) is said to be
positive semidefinite if

(1) w(0) =0; and

(i) w(x) > 0forall z € B(r) (resp., z € ). O

Definition 6.1.7 A function w € C[B(r),R] (resp., w € C[{,R]) is said to be
negative semidefinite if —w is positive semidefinite. O

Next, we consider the case v € C[B(r) x RT,R] (resp., v € C[Q2 x R R)).

Definition 6.1.8 A functionv € C[B(r) x RT,R] (resp., v € C[Q x RT,R]) is said
to be positive definite if there exists a positive definite function w € C[B(r),R]
(resp., w € C[2, R]) such that

(i) v(0,t) = 0forall ¢ > 0; and

(i) v(z,t) > w(zx) forallt > 0and all z € B(r) (resp., € Q). O

Definition 6.1.9 A functionv € C[B(r) x RT,R] (resp., v € C[Q x RT,R]) is said
to be negative definite if —uv is positive definite. O

Definition 6.1.10 A function v € C[R" x R R] is said to be radially unbounded
if there exists a radially unbounded function w € C[R"™, R] such that

(i) v(0,t) = 0forall ¢ > 0; and
(ii) v(x,t) > w(zx) forallt > 0 and all z € R™. a

Definition 6.1.11 A functionv € C[B(r) x RT,R] (resp., v € C[Q x RT, R]) is said
to be decrescent if there exists a positive definite function w € C[B(r), R] (resp.,
w € C[Q,R]) such that

vz, t)] < w(x)

forall (x,t) € B(r) x RY (resp., (z,t) € Q x RT). O

Definition 6.1.12 A function v € C[B(r) x R* R] (resp., v € C[Q x RT,R]) is
said to be positive semidefinite if

(i) v(0,t) =0forallt € R*; and
(i) v(z,t) > 0forallt € R* and all z € B(r) (resp., x € Q). o



Section 6.1 Preliminaries 193

Definition 6.1.13 A function v € C[B(r) x RT,R] (resp., v € C[Q x RT,R]) is
said to be negative semidefinite if —v is positive semidefinite. O

Some of the preceding characterizations of v-functions (and w-functions) can
be rephrased in equivalent and very useful ways. In doing so, we use comparison
functions of class K and class K.

Theorem 6.1.1 A function v € C[B(r) x RT,R] (resp., v € C[Q x R, R]) is
positive definite if and only if

(i) v(0,t) =0forallt € R"; and

(ii) there exists a function 1) € K defined on [0, ] (resp., on R™) such that

v(z,t) = ¢(|z|)
forall t € RT and all z € B(r) (resp., z € ).

Proof . If v(x,t) is positive definite, then there exists a positive definite function
w(x) such that v(z,t) > w(z) fort € RY and |z| < r. Define

dols) = nf{w(a): s < o] < r}

for 0 < s < r. Clearly % is a positive and nondecreasing function such that
Yo(Jz]) < w(z) on 0 < |z| < r. Because 1)y is continuous, it is Riemann integrable.
Define the function ¢ by 1(0) = 0 and

Y(u) = u? /Ou(s/r)wo(s)ds, O<u<r.

Clearly 0 < ¥(u) < ¥o(u) < w(x) < wv(z,t)if t > 0 and |x| = u. Moreover, 9 is
continuous and increasing (i.e., ¥» € K, by construction).

Conversely, assume that (i) and (ii) are true and define w(z) = v¥(|x|). It now
follows readily from Definition 6.1.8 that v(x, t) is positive definite. O

Theorem 6.1.2 A function v € C[R™ x R*,R] is radially unbounded if and only if
(i) v(0,t) = 0forallt € R*; and
(ii) there exists a function ¢ € K, such that

v(x,t) = ¢(|x)
forall (z,t) € R" x R™. 0
We ask the reader to prove Theorem 6.1.2 in the problem section.

Theorem 6.1.3 A function v € C[B(r) x RT,R] (resp., v € C[Q x RT R]) is
decrescent if and only if there exists a function ¢ € K defined on [0, 7] (resp., on R™)
such that

oz, t)] < ¢(|x])
for all (z,t) € B(r) x RT (resp., (z,t) € Q x RT). O
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We ask the reader to prove Theorem 6.1.3 in the problem section.
Note that when w € C[B(r), R] (resp., w € C[§2, R]) is positive or negative definite,
then it is also decrescent for in this case we can always find 11, 12 € C such that

dr([z]) < w(@)| < da(|a])

for all z € B(r) for some > 0. On the other hand, when v € C[B(r) x RT,R]
(resp., v € C[Q x Rt R]), care must be taken in establishing whether v is decrescent.

For the case of discrete-time dynamical systems determined by difference
equations (D), we employ functions v € C[B(r) x N, R] (resp., v € C[Q x N, R]).
We define such functions as being positive definite, negative definite, positive semidef-
inite, negative semidefinite, decrescent, and radially unbounded by modifying Defi-
nitions 6.1.2—6.1.13 (and Theorems 6.1.1-6.1.3) in an obvious way.

Example 6.1.1 (a) Forv € C[R? x Rt R] given by v(x,t) = (1+cos? t)x? + 223,
we have A A

di(l2]) = aTe < V(w,t) < 2072 = o(|2])
for all z € R? and t € RT, where 11,12 € K. Therefore, v is positive definite,

decrescent, and radially unbounded.
(b) For v € C[R? x R* R] given by v(x,t) = (23 + x3) cos® ¢, we have

0 < v(z,t) < 2% 2 ¥(jz))

forall z € R? and t € R*, where ¢» € K. Thus, v is positive semidefinite and
decrescent.
(c) Forv € C[R? x R, R] given by v(z,t) = (1 +t)(z? + x3), we have

¥(jz]) = 2T < v(z,t)

forall z € R? and t € R*, where ¢ € K. Thus, v is positive definite and radially
unbounded. It is not decrescent.
(d) For v € C[R? x R, R] given by v(x,t) = 22/(1 +t) + 23, we have

v(w, 1) < 2T 2 p(|a])

forall z € R? and t € R, where ¢y € K. Hence, v is decrescent and positive
semidefinite. It is not positive definite.

(e) The function v € C[R? x R R] given by v(z,t) = (z2 — x1)%(1 +¢) is
positive semidefinite. It is not positive definite nor decrescent. O

F. Quadratic forms

We now consider an important class of Lyapunov functions, guadratic forms, given by

v(z) =a"Br =) byziy (6.1.8)
i,k=1
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where z € R™ and B = [b;j] € R™ ™ is assumed to be symmetric (i.e., B = BT).
Recall that in this case B is diagonalizable and all of its eigenvalues are real. For
a proof of the next results, the reader should consult any text on linear algebra and
matrices (e.g., Michel and Herget [16]).

Theorem 6.1.4 Let v be the quadratic form defined in (6.1.8). Then

(i) wispositive definite (and radially unbounded) if and only if all principal minors
of B are positive, that is, if and only if

det | - - | >0, k=1,...,n.

These inequalities are called the Sylvester inequalities.

(ii) v is negative definite if and only if

(iii) v is definite (i.e., either positive definite or negative definite) if and only if all
eigenvalues are nonzero and have the same sign.

(iv) v is semidefinite (i.e., either positive semidefinite or negative semidefinite) if
and only if the nonzero eigenvalues of B have the same sign.

(v) If A1, ..., A, denote all the eigenvalues of B (not necessarily distinct), if A,,, =
ming<;<p A, if Ay = maxi<;<, A;, and if | - | denotes the Euclidean norm
(|z| = (zTx)'/?), then

Anlz? < v(z) < Apglz)? forall = € R".

(vi) v is indefinite if and only if B possesses both positive and negative
eigenvalues. a

The purpose of the next example is to point out some of the geometric properties
of quadratic forms.

Example 6.1.2 Let B be a real symmetric 2 x 2 matrix and let

v(z) = 27 Ba.
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X

Figure 6.1.1: Cup-shaped surface of (6.1.9).

G C v(x) = cs )

Co= {x €R*: v(x) = ¢,= 0} C,={x€R%: v(x)=c,}

C,={x€R*:v(x)=c,}

X1

i

Figure 6.1.2: Level curves.

Assume that both eigenvalues of B are positive so that v is positive definite and
radially unbounded. In R3, let us now consider the surface determined by

2z =v(z) = 27 Bz. (6.1.9)

Equation (6.1.9) describes a cup-shaped surface as depicted in Figure 6.1.1. Note that
corresponding to every point on this cup-shaped surface there exists one and only one
point in the x1—z2 plane. Note also that the loci defined by

C; = {z €R*: v(z) =¢; >0} (¢; = constant)

determine closed curves in the x1—x2 plane as shown in Figure 6.1.2. We call these
curves level curves. Note that Cy = {0} corresponds to the case when z = ¢y = 0.
Note also that this function v can be used to cover the entire R? plane with closed
curves by selecting for z all values in R™.

In the case when v(z) = 2T Bz is a positive definite quadratic form with z € R,
the preceding comments are still true; however, in this case, the closed curves C;
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must be replaced by closed hypersurfaces in R™ and a simple geometric visualization
as in Figures 6.1.1 and 6.1.2 is no longer possible. O

G. Lyapunov stability results: Geometric interpretation

Before stating and proving the principal Lyapunov stability and boundedness results,
it might be instructive to give a geometric interpretation of some of these results. To
this end, we consider systems of equations

{ &y = fi(z1,22)

1.1
Ty = fo(x1, 22) (6110

where z = (z1,22)7 € R? and f;: R? — R, i = 1,2. We assume that f; and fo
are such that for every (g, zo), to > 0, (6.1.10) has a unique solution ¢(t, to, o)
with ¢(to,to, o) = zo. We also assume that z, = (z1,72)7 = (0,0)7 is the only
equilibrium in B(h) for some h > 0.

Now let v be a positive definite function, and to simplify our discussion, as-
sume that v is continuously differentiable with nonvanishing gradient yv(x)? =
((Ov/0x1)(x1, 22), (Qv/0x2)(21,22)) on 0 < |z| < h. It can be shown that simi-
larly as in the case of quadric forms, the equation

v(z) =c (c>0)

defines for sufficiently small constants ¢ > 0 a family of closed curves C; which
cover the neighborhood B(h) as shown in Figure 6.1.3. Note that the origin z = 0
is located in the interior of each such curve and in fact Cy = {0}.

X2
(t3» X3)

(o, X,) C,={x €eR2: v(x) =0}

(t1, x1)

(tos Xo)

C,={xeR*:v(x)=c,}
Co={x€R%:v(x) =c,}

- C={x €R?:v(x) =c;)

NG K
\\/ <t <tr<tz< - .-

O=cp<ci<cy<es<- e

Figure 6.1.3: Family of closed curves Cj.

Next, suppose that all the trajectories of (6.1.10) originating from points on the
circular disk |z| < r; < h cross the curves v(x) = ¢ from the exterior towards the
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interior as we proceed along these trajectories in the direction of increasing values
of t. Then we can conclude that these trajectories approach the origin as ¢ increases;
that is, the equilibrium z. = 0 is in this case asymptotically stable.

Now in terms of the given v-function, we have the following geometric interpre-
tation: for a given solution (¢, g, o) to cross the curve v(z) = r, r = v(xp), the
angle between the outward normal vector Vv(x() and the derivative of (¢, to, z¢)
at t = to must be greater than 7 /2; that is,

UE6.1.10) (x0) = Vo(xo)" f(20) <0

where f(x¢) = (f1(x0), f2(20))T. For this to happen at all points, we must have
that v(g ; 19)(2) < 0for 0 < |z] < ry.
The same result can be arrived at using an analytic point of view: the function

V() £ v(e(ts to, 20))

will decrease monotonically as ¢ increases. But this will imply that the derivative
v'(p(t,to, o)) along the solution (¢, tg, xo) of (6.1.10) must be negative definite
in B(r) for r > 0 sufficiently small.

Next, assume that (6.1.10) has only one equilibrium (located at the origin x, = 0)
and that v is positive definite and radially unbounded. It can be shown that similarly
as in the case of quadratic forms, the equation v(x) = ¢, ¢ € RT, can in this case be
used to cover all of R? by closed curves of the type depicted in Figure 6.1.3. Now if
for arbitrary initial data (g, o), the corresponding solution of (6.1.10), ¢ (¢, tg, xo),
behaves as discussed above, then it follows that the time derivative of v along this
solution, v’ (¢ (¢, to, o)), will be negative definite in R,

The preceding discussion was given for arbitrary solutions of (6.1.10). Accord-
ingly, we can make the following conjectures.

1. If there exists a positive definite function v such that vE6_ 1.10) is negative definite,
then the equilibrium x. = 0 of (6.1.10) is asymptotically stable.

2. If there exists a positive definite and radially unbounded function v such that
UE641.1O) is negative definite for all z € R?, then the equilibrium z, = 0 of (6.1.10)
is asymptotically stable in the large.

Continuing the preceding discussion by making reference to Figure 6.1.4, let us
assume that we can find for (6.1.10) a continuously differentiable function v: R? — R
that is indefinite and which has the properties discussed in the following. Because v
is indefinite, there exist in every neighborhood of the origin points for which v > 0,
v < 0, and v(0) = 0. Confining our attention to B(k) where k > 0 is sufficiently
small, welet D = {z € B(k): v(x) < 0}, which may consist of several subdomains.
The boundary of D, 9D, consists of points in 9B(k) and points determined by
v(z) = 0. Let H denote a subdomain of D having the property that 0 € OH.
Assume that in the interior of H, v is bounded. Suppose that UE6.1.10) (z) is negative
definite in D and that ¢(¢, to, o) is a solution of (6.1.10) that originates somewhere
on the boundary of H (z¢ € 0H) with v(zg) = 0. Then this solution will penetrate
the boundary of H at points where v = 0 as ¢ increases and it can never again reach a
point where v = 0. In fact, as ¢ increases, this solution will penetrate the set of points
determined by || = k (because by assumption, UZG.l.lO) < 0 along this trajectory



Section 6.2 Principal Results for Ordinary Differential Equations 199

A

Figure 6.1.4: Domains D and H.

and v < 0in H). But this shows that the equilibrium ., = 0 of (6.1.10) is unstable.
Accordingly, we can make the following conjecture.
3. Let a function v: R?2 — R be given that is continuously differentiable and
which has the following properties.
(i) There exist points z arbitrarily close to the origin such that v(z) < 0; they
form the domain D that is bounded by the set of points determined by v = 0
and the circle || = k. D may consist of several subdomains. Let H denote a
subdomain of D having the property that 0 € 0H.
(i1) In the interior of H, v is bounded.
(iii) In the interior of D, vEG.l.lO)iS negative.
Then the equilibrium z. = 0 of (6.1.10) is unstable.
In the present chapter, we state and prove results that include the foregoing con-
jectures as special cases.

6.2 The Principal Stability and Boundedness Results
for Ordinary Differential Equations

In the present section we address stability and boundedness properties of contin-
uous finite-dimensional dynamical systems determined by ordinary differential
equations (F).

A. Stability

In our first two results we concern ourselves with the stability and uniform stability
of the equilibrium x, = 0 of (F).

Theorem 6.2.1 Assume that for some > 0 and B(r) C €2, there exists a positive
definite function v € C[B(r) x R, R] such that V() is negative semidefinite. Then
the following statements are true.

a) The equilibrium z. = 0 of (F) is stable.
b) If in addition, v is decrescent, then z. = 0 of (F) is uniformly stable.
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Proof . (a) According to Definition 6.1.1(a), we fix € > 0 and ¢y > 0 and we seek a
0 > 0 such that
lo(t, to,z0)| <& forallt >tg

whenever |zg| < 0. Without loss of generality, we can assume that ¢ < r. Because
v(x,t) is positive definite, then by Theorem 6.1.1 there is a function ¢ € /C such that
v(z,t)> (|z|) forall 0 < |x| < r,t > 0. Pickd > 0sosmall that v(xo, to) < 9(¢)
if [zo| < 0. Because vy (2, 1) < 0,thenv(p(t, to, xo), ) is monotone nonincreasing
and v(p(t, to, xo),t) < 1(e)forallt > tg. Thus, |p(t, to, zo)| cannot reach the value
g, because this would imply that v(p(t, to, o), t) > ¥(|o(t, to, xo)|) = ¥(e).

(b) Because v(z,1) is positive definite and decrescent, it follows from Theo-
rems 6.1.1 and 6.1.3 that there exist two functions 11, 12 € K such that

r(lz]) <l t) < olz])

forall (z,t) € B(r) x R*.
Let ¢(t,to,x0) be a solution of (E) with initial condition ¢(tg) = zo. Then
we have

D+1}(§O(t, to, xo)v t) < ’UEE) (Qp(t Lo, .730), t)

for all (to,z9) € RT x B(r) and all t € R\ such that o(t,to, z) € B(r), where
D™ denotes the upper-right Dini derivative with respect to t. Inasmuch as vE B)
is negative semidefinite, we conclude that v(¢(¢, to, o), t) is nonincreasing for all
te R;g. Statement (b) follows now directly from Theorem 3.3.1. O

Example 6.2.1 (Simple pendulum) Consider the simple pendulum described by the
equations
{ = 6.2.1)

ig = —ksin I

where k > 0 is a constant. System (6.2.1) clearly has an equilibrium z, = 0. The
total energy for (6.2.1) is the sum of the kinetic energy and potential energy, given by

1 1 1
v(z) = 59&% + k:/ sinndn = 53:3 + k(1 — coszq).
0
This function is continuously differentiable, v(0) = 0, and v is positive definite in
Q= {(x1,22)T € R?: |21] < ¢ < 27m}. Also, v is decrescent, because it does not
depend on t.
Along the solutions of (6.2.1) we have

026_21)(:5) = (ksinzy)dy + xode = (ksinzy)re + z2(—ksinz,) = 0.

In accordance with Theorem 6.2.1(b), the equilibrium x, = 0 of (6.2.1) is uniformly
stable.

Note that because 026.2.1)(37) = 0, the total energy for system (6.2.1) is constant
for a given set of initial conditions for all ¢ > 0. O
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The major shortcoming of the results that comprise the Principal Lyapunov Sta-
bility Results (called the Direct Method of Lyapunov) is that there are no specific
rules which tell us how to choose a v-function in a particular problem. The preceding
example suggests that a good choice for a v-function is the total energy of a sys-
tem. Another widely used class of v-functions consists of quadratic forms (refer to
Subsection 6.1F).

Example 6.2.2 Consider the second-order system
i+i+efr=0. (6.2.2)

Letting = x1, £ = 2, we can express (6.2.2) equivalently by

j;‘l = X2
{ o . (6.2.3)
Tog = —X9 —€ "I7.

This system has an equilibrium at the origin z, = (z1,22)7 = (0,0)” = 0. Let us
choose the positive definite function

’U(xl,l‘g) = l’% —+ :L’g
Along the solutions of (6.2.3), we have
VU(g.0.3) (1,22, 1) = 20129(1 — ") — 223,

The above choice of v-function does not satisfy the hypotheses of Theorem 6.2.1.
Thus, we can reach no conclusion. Therefore, let us choose another v-function,

v(xy, 20, t) = 27 + el

In this case we obtain
t 2

V(6.2.3)(T1, T2, 1) = —€'x3.
This v-function is positive definite and v£6_2'3) is negative semidefinite. Therefore,
Theorem 6.2.1(a) is applicable and we can conclude that the equilibrium x, = 0 is
stable. However, because v is not decrescent, Theorem 6.2.1(b) is not applicable and
we cannot conclude from this choice of v-function that the equilibrium z. = 0 is
uniformly stable. a

Example 6.2.3 (Hamiltonian system) Consider the conservative dynamical system
with n degrees of freedom, which we discussed in Chapter 2 (Example 2.3.7) and
which is given by

OH
qZ ai(p7q)7 1= 17 ,
%H (6.2.4)
pl__aiqi(paQ)v 7':1a y
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where ¢7 = (q1, . . ., q,) denotes the generalized position vector, p” = (p1,...,pn)
the generalized momentum vector, H (p, ¢) = T'(p)+W (¢) the Hamiltonian, T'(p) the
kinetic energy, and W (¢) the potential energy. The positions of the equilibrium points
of (6.2.4) correspond to the points in R?" where the partial derivatives of H vanish.
In the following, we assume that (p?, ¢7) = (07, 07) is an isolated equilibrium of
(6.2.4), and without loss of generality we also assume that H (0, 0) = 0. Furthermore,
we assume that H is smooth and that T'(p) and W (g) are of the form

T(p) = Ta(p) + T3(p) + -+

and
W(q) = Wi(q) + Wiga(q) +---, k> 2.

Here T (p) denotes the terms in p of order j and W (¢) denotes the terms in ¢ of order
j. The kinetic energy T'(p) is always assumed to be positive definite with respect
to p. If the potential energy has an isolated minimum at ¢ = 0, then W is positive
definite with respect to g. We choose as a v-function

v(p,q) = H(p,q) = T(p) + W(q)

which is positive definite. Inasmuch as

dH
VUg.0.0) (P q) = E(pv q) =0,

Theorem 6.2.1(a) is applicable and we conclude that the equilibrium at the origin is
stable. Because v is independent of ¢, it is also decrescent, and so Theorem 6.2.1(b)
is also applicable. Therefore, the equilibrium at the origin is also uniformly sta-
ble. Note that Example 6.2.1 (the simple pendulum) is a special case of the present
example. O

B. Asymptotic stability

In the next two results we address the asymptotic stability of the equilibrium ., = 0
of (E).

Theorem 6.2.2 For (F) we assume that there exists a positive definite and decres-
cent function v € C[B(r) x R*,R] such that v/ p) is negative definite. Then the
equilibrium z. = 0 of (F) is uniformly asymptotically stable.

Proof. Because ’UE B) is negative definite, there exists a function 3 € IC such that

Vi) (@,t) < =13 (|xl)

forall (z,t) € B(r) x RT.
Let ¢(t,to,x0) be a solution of (E) with initial condition ¢(ty) = zo. Then
we have

D+’U(<p(t,t0,$0),t) < 7JEE‘) (‘p(tvtO’xO)vt) < —1/13(|<P(t7t07x0)|)
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for all (z,t9) € B(r) x R* and all t € Ry such that (¢, t, o) € B(r), where
D7 denotes the upper-right Dini derivative with respect to ¢. The rest of the proof
follows directly from Theorem 3.3.2. o

Theorem 6.2.3 With 2 = R™, assume that there exists a positive definite, decrescent,
and radially unbounded functionv € C[R" xR, R] such that V(5 is negative definite

(onR™ x RT) (i.e., there exist ¥, 12 € Ko and 13 € K such that

Ui(lz]) < v(w,t) < Ya(lz))
and
Wy (1) < s (fa])

for all (z,t) € R™ x RT"). Then the equilibrium z, = 0 of (E) is uniformly asymp-
totically stable in the large.

Proof . This result is a direct consequence of Theorem 3.3.6. O

Example 6.2.4 Consider the system

{ 1 = (1 — ngz)(f% + f% —1) (6.2.5)

iy = (c1wy + @0) (22 + 22 — 1)

which has an equilibrium at the origin z. = (z1,22)7 = (0,0)7 = 0. We choose as
a v-function
v(x) = c12? + coxd
and obtain
Vo5 (@) = 2(c12] + c223) (2] + 25 — 1).

If c; > 0 and cp > 0, then v is positive definite and radially unbounded and 026_2. 5) is
negative definite in the domain x? + 23 < 1. Therefore, Theorem 6.2.2 is applicable
and we conclude that the equilibrium x, = 0 is uniformly asymptotically stable.
On the other hand, Theorem 6.2.3 is not applicable and we cannot conclude that the
equilibrium z. = 0 is uniformly asymptotically stable in the large. a

Example 6.2.5 Consider the system

iy = —x1 + cxo(2? + 23)

where c is areal constant. For this system, . = 0 is the only equilibrium. We choose
as a v-function
v(z) =i + 23
and we obtain
VUip.0.6)(T) = 2c(z + 23)°.
If ¢ = 0, Theorem 6.2.1(b) is applicable and we conclude that the equilibrium z, = 0
of (6.2.6) is uniformly stable. If ¢ < 0, then Theorem 6.2.3 is applicable and we

conclude that the equilibrium x, = 0 of (6.2.6) is uniformly asymptotically stable in
the large. O
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C. Exponential stability

In the next two results we address the exponential stability of the equilibrium x. = 0
of (F).

Theorem 6.2.4 Assume that there exist a function v € C[B(r) x R*,R] and four
positive constants ¢y, cz, 3, and b such that

c1lz|’ < vz, t) < ol

and

Vg (@, 1) < —cslzf’
for all (z,t) € B(r) x RT. Then the equilibrium z. = 0 of (E) is exponentially
stable.

Proof . This result is a direct consequence of Theorem 3.3.3. O

Theorem 6.2.5 With ) = R", assume that there exist a function v € C[R" x R, R]
and four positive constants ¢y, c2, c3, and b such that

arlz” < v(z,t) < colal”
and
gy (@, 1) < —cslal’

forall (z,t) € R™ x RT. Then the equilibrium z, = 0 of (F) is exponentially stable
in the large.

Proof . This result is a direct consequence of Theorem 3.3.7. O

Example 6.2.6 Consider the system

{ i’l = 7a(t)$1 — bl‘g

&g = bxy — c(t)xo 6.27)

where b is a real constant and a and c¢ are real and continuous functions defined for
t > Osatisfying a(t) > d > O0and ¢(t) > 6 > Oforallt > 0. We assume that . = 0
is the only equilibrium for (6.2.7).

Choosing

1
v(@) = 5(a +a3),
we obtain
Vg.am (T,t) = —a(t)z] — c(t)z] < —6(aF + 23)

forall t > 0, z € R2. All the hypotheses of Theorem 6.2.5 are satisfied and we
conclude that the equilibrium z. = 0 of (6.2.7) is exponentially stable in the large. O
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Example 6.2.7 Consider the system

{ i = a9 — 21 (23 + 23)
io = —x1 — z2(2?3 + 23).

(6.2.8)

Clearly, x. = 0 is an equilibrium for (6.2.8). Now choose
v(x) = 22 + 23

which is positive definite, radially unbounded, and decrescent. Along the solutions
of (6.2.8), we have
V(p.0.8)(T) = —2(zf + 23)°

which is negative definite on R?. By Theorem 6.2.3, the equilibrium 2, = 0 of (6.2.8)
is uniformly asymptotically stable in the large. However, the hypotheses of Theorem
6.2.5 are not satisfied and we cannot conclude that the equilibrium z, = 0 of (6.2.8)
is exponentially stable in the large. In fact, in Problem 6.10.10 we ask the reader to
show that this equilibrium is not exponentially stable. O

D. Boundedness of solutions

In the next two results we concern ourselves with the uniform boundedness and the
uniform ultimate boundedness of the solutions of ().

Theorem 6.2.6 With () = R"™, assume that there exists a function v € C[R"x RT, R]
that satisfies the following conditions.

(i) There exist two functions 1,1, € C[R™, R™] that are strictly increasing with
lim, o0 ¥ (r) = 00, 4 = 1,2, and a constant M > 0, such that

Pr(la]) < v(a,t) < o(|al)

forall x| > M and ¢ € RT.
(ii) Forall |z| > M and t € RY,

'UEE) (1’, t) S 0.
Then the solutions of (F) are uniformly bounded.
Proof . This result is a direct consequence of Theorem 3.3.4. O

Theorem 6.2.7 In addition to all hypotheses of Theorem 6.2.6, assume that there
exists a function ¥3 € K such that

V() (1) < —3([2])

for all x| > M and t € R*. Then the solutions of (E) are uniformly ultimately
bounded.
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Proof . This result is a direct consequence of Theorem 3.3.5. O

Example 6.2.8 Consider the system

T=—-x—Yy
6.2.9
{y:—y—f(y)ﬂ ©29

where f(y) = y(y*>—6). System (6.2.9) has equilibrium points located at x = y = 0,
r=-—-y=2andzr = —y = —2.
Choosing for a v-function

o(e,y) = 3 +47)

we obtain

5\? 25
Voo (@,y) = —2° =y (y* —5) < —a? — <92 - 2) T

The v-function is positive definite and radially unbounded and UEG_M) is negative for
all (x,y) such that 22 + y? > R2, where, for example, R = 10 is acceptable. All
the hypotheses of Theorem 6.2.6 are satisfied and we conclude that the solutions of
(6.2.9) are uniformly bounded. Furthermore, all the hypotheses of Theorem 6.2.7 are
satisfied and we conclude that the solutions of (6.2.9) are in fact uniformly ultimately
bounded. a

Returning now to Theorem 2.3.3, we recall the following result concerning the
continuation of solutions of (E). Let f € C[J x R",R"] where J = (a,b) is a
finite or infinite interval. Assume that every solution of (F) is bounded. Then every
solution of (F) can be continued to the entire interval .J.

The above result is in a certain sense wanting, because it assumes that all the
solutions of () are bounded. In the next example, we provide reasonable conditions
under which this assumption is satisfied.

Example 6.2.9 With Q = R", assume for (E) that f € C[R* x R",R"] and that
[£(t, )| < A(t)(|x]) forall t € RT and all [z| > M > 0, where A € C[R*,R"]
has the property that fooo A(t)dt < oo and ¢ € [[M,00),(0,00)] has the property
that [, (1/4(r)) dr = oc. Then Sg, the set of all the solutions of (E), is uniformly
bounded. To prove this, we choose the v-function

v(x,t) = — /Ot A(s)ds + /1: %

and we apply Theorem 6.2.6. Condition (i) of the theorem is clearly satisfied. To
show that condition (ii) is also satisfied, we note that

L el If()
@ =0

forallt € Rt and |z| > M. O

vy (T,t) < —=A(t) + "
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For the case when [ A(t)dt = oo along with Example 6.2.9, we have the fol-
lowing result.

Corollary 6.2.1 With Q = R™, assume for (F) that f € C[R* x R", R"] and that
[f(t,2)] < A#)Y(|x|) for all t € R and all |x| > M, where A € C[RT,RT],
¥ € C[[M,00),(0,00)], and [,; (1/%(r))dr = oco. Then every solution of (E) is
continuable forward for all time.

Proof . It has been shown in Example 6.2.9 that the solutions of (F) are bounded
when [ A(t)dt < co. Therefore, it follows from Theorem 2.3.3 that every solution
is continuable forward for all time. In the following we assume that |; OOO A(t)dt = oo.
We first show that for any 7' > 0, every solution (-, to,xo) of (E) is bounded
on (to,T). For otherwise there exist a 7" > 0 and a solution (¢, tg, o) which is
unbounded on (to,T). Let ar = fOT)\(s)ds. Because [y (1/1(r))dr = oo, there
exist b > a > M such that fab(l/w(r))dr > 2ar. Furthermore, there must exist ¢;
and to, tg < t1 < to <T, such that [p(t1)| = a, |p(t2)| = b, and |z(t)| > M for all
t e [tl, tg].
Let

’ Ol gy,
v(p(t),t) = —/0 A(s)ds + /M 1/)6271)7 t € [t1,ta].

Then similarly as done in Example 6.2.9 we can show that v ;) (¢(t),t) < 0 for all

t e [thtg]. Hence, ’U((p(tg),tg) < U((p(tl)7t1).
On the other hand,

ta le(t2) g,
et = = o+ [ T

t1 to [ (t1)] du [p(t2)] du
—— [ As)ds— | As)d . -
/o (s)ds /t1 (s)ds + /M Y(u) * /w(tl) Y(u)

> —ar + 2ar + v(p(t), t1)
= ar +v(p(t1),t1).

We have arrived at a contradiction. Therefore, for any 7' > 0, every solution
(-, to, zo) of (E) is bounded on (¢y, T"). It now follows from Theorem 2.3.3 that ev-
ery solution is continuable to T'. Because 7' is arbitrary, every solution is continuable
forward for all time. O

Corollary 6.2.1 is readily applied to linear homogeneous systems
T=A(t)x (LH)

where A € C[RT,R"*"]. In the present case we have |f(t,z)] = |A(t)z| <
M) (|z|) where A(t) = ||A(¢)| and 9 (|z|) = |z|. Tt is readily verified that all
the conditions of Corollary 6.2.1 are satisfied. Therefore, every solution of (LH) is
continuable forward for all time.



208 Chapter 6. Finite-Dimensional Dynamical Systems

E. Instability

We now present three instability results for ().

Theorem 6.2.8 (Lyapunov'’s First Instability Theorem) The equilibrium z. = 0 of
(E) is unstable if there existato € R and a decrescent function v € C[B(r) x R*, R]
for some r > 0 such that ’UE E) is positive definite (negative definite) and if in every
neighborhood of the origin there are points x such that v(x,tg) > 0 (v(z,t9) < 0).
Furthermore, if v is positive definite (negative definite), then the equilibrium z, = 0
of (E) is completely unstable (refer to Definition 3.1.20).

Proof . This result is a direct consequence of Theorems 3.3.8 and 3.3.9. o

Example 6.2.10 If in Example 6.2.5, we have ¢ > 0, then v(z) = 2% + 23 and
U(g.0.6) (%) = 2¢(af+23). We can conclude from Theorem 6.2.8 that the equilibrium
ze = 0 of (6.2.6) is unstable, in fact, completely unstable. O

Example 6.2.11 We now consider

(6.2.10)

T1 = C1T1 + T1T2
To = —CoTo + x%

where ¢; > 0 and ¢y > 0 are constants. We choose as a v-function

v(x) = 22 — a3

to obtain

026.2.10) (x) = 2(c1a] + co3).
Because v is indefinite and v ,, ,, is positive definite, Theorem 6.2.8 applies and
we conclude that the equilibrium z. = 0 of (6.2.10) is unstable. O

Example 6.2.12 (Hamiltonian system) We now return to the conservative system
considered in Example 6.2.3. In the present case we assume that W (0) = 0 is
an isolated maximum. This is ensured by assuming that W}, is a negative definite
homogeneous polynomial of degree k, where k is an even integer. Now recall that we
assumed in Example 6.2.3 that 75 is positive definite. We now choose as a v-function

n
v(p,q) =p g =Y pits.
=1

Along the solutions of (6.2.4) we now have

n n

0 0 ~ W~ O
’0(624) (p,q 2;107 L Z T3 Z% k*;% 8:;_1*'“

= 2T (p) + 3T3(p) +o = ka(q) — (k+ D)Wi1(q) —

In a sufficiently small neighborhood of the origin, the sign of ’UEG_Z 1) is determined
by the sign of the term 275(p) — kW (q), and thus, v26_2‘4) is positive definite.
Because v is indefinite, Theorem 6.2.8 applies. We conclude that the equilibrium
(pT,q") = (0T,07) = 0 is unstable. i
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Theorem 6.2.9 (Lyapunov’s Second Instability Theorem) Assume that for system
(E) there exists a bounded function v € C[B(e) X [tg,00),R] where ¢ > 0 and
B(e) C Q, having the following properties.

(i) Forall (z,t) € B(e) X [to,00),
’UEE)(I,t) > v(z,t)

where A > 0 is a constant.
(i) In every neighborhood of the origin, there exists an x such that v(x,¢;) > 0
for a fixed 1 > .

Then the equilibrium z. = 0 of (F) is unstable.
Proof . This result is a direct consequence of Theorem 3.3.10. O

Example 6.2.13 Consider the system

{ .’t1:$1+$2+l’1$% (6211)

To =1 + X9 — l‘%aﬁg.

This system clearly has an equilibrium at the origin. We choose the v-function

v(z) = (2% — 23) and compute

026.2.11)(3”) = 2v(z) + x%@l + x%wg > 2v(x).

All the hypotheses of Theorem 6.2.9 are satisfied. Therefore, the equilibrium x, = 0
of (6.2.11) is unstable. O

Theorem 6.2.10 (Chetaev’s Instability Theorem) Assume that for system (F) there
exist a function v € C[B(r) x Rt R] for some 7 > 0, where B(r) C ,aty € RT,
and an i > 0, h < 7, such that the following conditions are satisfied.

(i) There exists acomponent D of the set {(z,t) € B(r)xR™: v(z,t) <0, |z|< h}
such that for every neighborhood of the origin there exists an « in this neigh-
borhood such that (z,%y) € D.

(i) v is bounded from below on D.
(iii) v(p(@,t) < —(|v(z,t)]) forall (z,t) € D, where ¢ € K.

Then the equilibrium z. = 0 of (F) is unstable.

Proof. Let M > 0 be a number such that —M < wv(x,t) on D. Given any r; > 0
choose (zg,%) € B(r1) x Rt N D. Then the solution ¢q(Z,ty, o) must leave
B(h) in finite time. Indeed, |¢o(t)| must become equal to h in finite time. To
see this, assume the contrary. Let v(t) = v(po(t),t). Because v(tg) < 0 and
Vi) (2, 1) < =¥(|v(z,t)]), we have v(t) < v(to) < O forallt > 0. Thus

u(t) < w(to) — t ¥(lv(to))ds — —oo

as t — oo. This contradicts the bound v(¢) > —M. Hence there is a t* > t; such
that (o (t*),t*) € 9D. But v(t*) < 0, so the only part of 9D that (g (t*),t*) can
penetrate is that part where |¢q(t)| = h. Because this can happen for arbitrarily small
|zol, the instability of . = 0 is proved. a
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For the case of autonomous systems,
&= f(x) (4)

where © € Q, f € C[Q,R"], Q is an open connected subset of R™ that contains the
origin and f(0) = 0, we have the following simpler version of Theorem 6.2.10.

Corollary 6.2.2 Assume that for system (A) there exists a function v € C[B(r), R],
r >0, B(r) C €, that satisfies the following conditions.

(i) The open set {x € B(h): v(xz) < 0} for some h > 0,h < r, contains a
component D for which 0 € 9D.
(i) v()(x) <Oforallz € D,z #0.
Then the equilibrium z, = 0 of (A) is unstable. O

Example 6.2.14 Consider the system

{3'31251014-962 6.2.12)

Ty =1 — XTg + T1T2
which clearly has an equilibrium at the origin ., = 0 . Choose
v(x) = —z129

to obtain
/ _ .2 2 2
U(6.2.12)(5U) = —Tp — T — I T2

Let
D={zeR* 2z, >0, v >0and z] + 23 < 1}.

Then for all z € D, v(z) < 0, and v{g 5,4 () < 2v(x). All the hypotheses
of Theorem 6.2.10 (and Corollary 6.2.2) are satisfied. Therefore, the equilibrium
z. = 0 0of (6.2.12) is unstable. O

Example 6.2.15 Once more, we return to the conservative system considered in
Examples 6.2.3 and 6.2.12. To complete the stability analysis of this system, we
assume that W (0) = 0 is not a local minimum of the potential energy. Then there are
points g arbitrarily close to the origin such that W (q) < 0. Because H (0, ¢) = W(q),
there are points (p?, g7)T arbitrarily close to the origin where H(p,q) < 0 for all
p sufficiently near the origin. Therefore, there are points (p’, ¢*)T arbitrarily close
to the origin such that p”q > 0 and —H (p, q¢) > 0, simultaneously. Let U be some
neighborhood of the origin and let

U ={(p",¢")" €eU:p"q>0and — H(p,q) > 0}.

Now choose
v(p,q) = H(p,q)p" q.
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Using the fact that (dH /dt)[p(t), q(t)] = 0 along the solutions of (6.2.4) (refer to
Example 6.2.3), we obtain

Vg.2.0)(0: @) = —H (p, q)[-2T2(p) = 3T3(p) — -+ + kWi (q) +---].  (6.2.13)

Now choose U = B(r) with r > 0 sufficiently small so that T'(p) > 0 within
U — {0}. Because in Uy, H(p,q) = T(p) + W(qg) < 0 and T(p) > 0, it
must be true that W(q) < 0 within U;. Therefore, for U sufficiently small, the
term in brackets in (6.2.13) is negative within U; and v26'2.4) is negative within
Ui. The origin is a boundary point of U;, thus there exists a component D of U;
such that the origin is on the boundary of D. Because any component of Uj is a
component of the set {(p?,¢7)T € U: v(p,q) < 0}, because V(g 2.4 is Negative
on D, and because v is bounded on any compact set containing D), it follows from
Theorem 6.2.10 (or Corollary 6.2.2) that the equilibrium (p, ¢7)? = 0 of system
(6.2.4) is unstable. O

We conclude this section by observing that frequently the results of the present
section yield more than just stability (resp., instability and boundedness) information.
For example, suppose that for system (A) there exist a continuously differentiable
function v: R™ — R and three positive constants ¢y, ¢z, c3 such that

cilz? < v(z) < eolzf?, vay(x) < —eslzf? (6.2.14)

for all z € R™. Then in accordance with Theorem 6.2.5, the equilibrium z. = 0 of
system (A) is exponentially stable in the large. However, we know more: evaluating
(6.2.14) along the solution ¢(t, tg, o) we obtain

{ crlip(t,to, wo)* < v(e(t, to, o)) < calip(t, to, o) ? (6.2.15)

V() ((ts to, o)) < —eslio(t, o, zo) |

forall t > tg,zg € R™. Itis now an easy matter to obtain from (6.2.15) the very
useful estimate

lo(t, to, z0)| < \/ca/cy |mole s/ (Re2)l(t=to)

forall t > ty and xg € R".
We present applications of the results of this section to specific important classes
of dynamical systems determined by ordinary differential equations in Chapter 8.

6.3 The Principal Stability and Boundedness Results
for Ordinary Difference Equations
In the present section we address stability and boundedness properties of discrete-

time finite-dimensional dynamical systems determined by ordinary difference
equations (D). As indicated in Subsection 6.1B, we assume without loss of generality
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that . = 0 is an equilibrium of (D). Also, A(p)v(z, k) denotes the first forward
difference of v(z, k) along the solutions of (D) (refer to (6.1.5)).

A. Local stability results

In our first result we concern ourselves with the stability, uniform stability, uniform
asymptotic stability, and exponential stability of the equilibrium z. = 0 of (D).

Theorem 6.3.1 In the following, assume that v € C[Q x N, R] and that v is positive
definite.
(a) If A(pyv is negative semidefinite, then the equilibrium z, = 0 of (D) is stable.
(b) If v is decrescent and A( p)v is negative semidefinite, then the equilibrium
xe = 0 of (D) is uniformly stable.
(c) If v is decrescent and A( p)v is negative definite, then the equilibrium z, = 0
of (D) is uniformly asymptotically stable.
(d) If there exist four positive constants ¢, ¢, c3, and b such that

arlz|’ <oz, k) < ezl
and

Apyo(a, k) < —cslzf’
for all (z,k) € Q x N, then the equilibrium =, = 0 of (D) is exponentially
stable.

Proof . The proof of statement (a) follows along similar lines as the proof of state-
ment (a) of Theorem 6.2.1.

Statements (b), (c), and (d) are direct consequences of Theorems 3.4.1, 3.4.2, and
3.4.3, respectively. O

Example 6.3.1 Consider the linear system

{ Jil(k' + 1) = xl(k) + 05$2(k‘)

za(k+1) = 0.522(k). (6.3.1)

The origin z. = 0 is clearly an equilibrium of (6.3.1). Choose the v-function
v(x) = |21 + 22| + |22]-
Along the solutions of (6.3.1) we have
A.sryv(@(k)) = |z1(k + 1) + z2(k + 1) + |z2(k + 1)]
— |1 (k) + 22(K)| — [22(F)]
|21 (k) 4+ 0.522(k) + 0.522(k)| + 0.5]z2 (k)|
— |z (k) + 22(k)| — |22 (F)]
= —0.5[z2(k),

which is negative semidefinite. The function v is positive definite and decrescent.
All conditions of Theorem 6.3.1(b) are satisfied. Therefore, the equilibrium z. = 0
of (6.3.1) is uniformly stable. O



Section 6.3 Principal Results for Ordinary Difference Equations 213

Example 6.3.2 Consider the linear system given by

o(k+1) = (1 - 2kl+1) (k). (6.3.2)

The equilibrium z, = 0 of (6.3.2) is uniformly stable. This can be shown by choosing
v(z) = |z|. Then it is clear that A 39)v is negative semidefinite. Therefore the
trivial solution is uniformly stable. Furthermore, every motion tends to 0 as k — oo
(i.e., the trivial solution is attractive). Thus the trivial solution is asymptotically
stable.

On the other hand the equilibrium x. =0 of (6.3.2) is not uniformly asymptotically
stable. Forany § > 0 and any 7 €N, there exists a kg € Nsuchthatz(ko+7) > 0.59,
when z (ko) = 0.86. Condition (2) of Definition 6.1.1(c) is not satisfied. This is the
result of the fact that the motions decrease very slowly as k — oc.

Exponential stability implies uniform asymptotic stability; thus the equilibrium
z. = 0 of (6.3.2) cannot be exponentially stable, either. O

Example 6.3.3 Consider the nonlinear autonomous system given by
z(k+1) = z(k) — z(k)® = z(k) (1 — 2(k)?). (6.3.3)
This system clearly has an equilibrium z. = 0 . Let the v-function be given by
() = |zl
Along the solutions of (6.3.3) we have

Agaav(z(k) = ek +1)] = |z(k)] = —|z(k)]*.

All the conditions of Theorem 6.3.1(c) are satisfied. Therefore, the equilibrium z, = 0
of (6.3.3) is uniformly asymptotically stable.

For the v-function chosen above, there do not exist positive constants ¢y, ca, c3, and
b that satisfy the conditions of Theorem 6.3.1(d). As a matter of fact, because of the
slow decreasing rate of |z (k)|, the equilibrium =, = 0 of (6.3.3) is not exponentially
stable. This can be shown by contradiction. Suppose that there exist an & > 0 and a
6 > 0 (let € in Definition 6.1.1(d) be 1) such that

|z(k)| < e~ (k—ko) (6.3.4)
for all £ € N whenever |z(0)| < d. Let m be sufficiently large such that

1— 672ma > 6704/2.

Let 2(0) = e~™<. We then have 1 — 2(0)? > e~®/2. Because x(k) is positive and
{x(k)} is decreasing, it is true that 1 — z(k)? > e~*/2 for all k € N. Thus,

2(k+1) = 2(k)(1 - 2(k)?) > a(k)e /2,
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which in turn yields
x(k) > x(O)eikO‘/2 = ¢~ (mtk/2)a
forall £ € N. Let £ = 4m. Then
x(4m) > e73m,
On the other hand, it follows from (6.3.4) that
z(4m) < e=4me,

which is a contradiction. Therefore, the equilibrium z. = 0 of (6.3.3) is not expo-
nentially stable. O

Example 6.3.4 Consider the system

1) = 2 2

z1(k +1) = 21(k)* + z2(k) (6.3.5)
za(k + 1) = 21 (k)22 (k).

The origin z. = 0 is clearly an equilibrium of (6.3.5). Choose the v-function

(@) =[] + |z2| =[]

Along the solutions of (6.3.5) we have

Aasyv((k) = z1(k)? + z2(k)* + a1 (k)z2 (k)] — o1 (k)| = 22(k)]
< @1(k)? + 21 (k)| |z (k)| + 22(k)? — |1 (k)] — |z2 (k)|
= (Jo1 (k)] + |22 (K)])* = (|21 (k)| + w2 (K)])
=le(B)[} — |z (k)]x
= ([z(k)lr = Dlz(k)[y

Forany |z|; < ¢ < 1,wehave A 35v(z(k)) < (¢c—1)[z(k)|:. Inaccordance with
Theorem 6.3.1(d), the equilibrium z. = 0 of system (6.3.5) is exponentially stable.
The domain of attraction of the equilibrium x. = 0 is given by

{z e R?: |z|; = |@1] + |z2| <, 0<c <1} ]

B. Global stability results

In our second result we concern ourselves with the global uniform asymptotic stability
and the global exponential stability of the equilibrium z. = 0 of (D).

Theorem 6.3.2 (a) With {2 = R", assume that there exists a positive definite, decres-
cent, and radially unbounded function v € C[R™ x N, R] such that A pyv is negative
definite; that is, there exist i1, 192 € Ko and ¥3 € K, such that

1(lz]) < o(z, k) < o(|x)) (6.3.6)
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and
Apyv(z, k) < —s(|]) (6.3.7)

for all (x, k) € R™ x N. Then the equilibrium x. = 0 of (D) is uniformly asymptot-
ically stable in the large.
(b) In part (a), assume that inequalities (6.3.6) and (6.3.7) are of the form

erfal” < v, k) < calol?

and
Agpyv(a, k) < —eslef’

for all (z,k) € R™ x N, where ¢1, ¢a, c3, and b are positive constants. Then the
equilibrium z,. = 0 of (D) is exponentially stable in the large.

Proof . (a) This result is a direct consequence of Theorem 3.4.6.
(b) This result is a direct consequence of Theorem 3.4.7. O

Example 6.3.5 Consider the system

{ z1(k + 1) = z1(k) — czy(k)sat(21 (k)? + 22 (k)?) (63.8)
zo(k + 1) = mo(k) — cwo(k)sat(z1 (k)? + z2(k)?) o
where sat(-) is the saturation function given by
1, r>1
sat(r) = T, -1<r<1 (6.3.9)
-1, r < —1.

The origin z. = 0 is clearly an equilibrium of (6.3.8). Choose the v-function as
v(z) = 2% + 23.
Along the solutions of (6.3.8) we have

Agagv(ak)) = i(k +1)% + 2ok +1)* — 21(k)* — z2(k)?
= (21(k)? + 22(k)?) (1 — e sat(zy (k)% + 22(k)?))*
—z1(k ) — xo(k )
= —c(z1(k)? + z2(k)?)sat (21 (k) + 22(k)?)
x (2 = csat(z3 (k) + z2(k)?)).
If 0 < ¢ < 2, Theorem 6.3.2 applies and we conclude that the equilibrium z, = 0

of (6.3.8) is uniformly asymptotically stable in the large. Similarly as was done in
Example 6.3.3, we can show that . = 0 is not exponentially stable in the large. O
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Example 6.3.6 Consider the system

{ 21k + 1) = 0.525(k) + ca1 (K)sat (w1 (k) + z2(k)?) (6.3.10)

zo(k + 1) = —0.5z1 (k) + cxa(k)sat(z1 (k)? + z2(k)?)

where sat(-) is given by (6.3.9). The origin . = 0 is clearly an equilibrium of
(6.3.10). Choose the v-function as

v(z) = 22 + 23.
Along the solutions of (6.3.10) we have
Agaa0yv(@(k)) = z1(k +1)° + 22(k +1)% = 21(k)* — 22(k)°
— —(21(k)® + 22(k)?) (0.75 — ¢ [sat(z1 (k)* + za(k)*)]?).

If ¢ < v/0.75, Theorem 6.3.2(a) applies and we conclude that the equilibrium z, = 0
of (6.3.10) is uniformly asymptotically stable in the large. In fact, Theorem 6.3.2(b)
also applies. Hence, the equilibrium x. = 0 is also exponentially stable in the
large. O

Example 6.3.7 Consider the linear time-varying system given by

1 2
ek +1) = (k—52)$1(k) - (lerg)“(k) 6.3.11)

where k > 1. This system clearly has an equilibrium at the origin z. = (21, 22)T= 0.
We choose as a v-function

v(xy,20) = 22 + 22,

Along the solutions of (6.3.11) we have

Ao o1 (0,3 (8) = gz (o1 (K + a(02) — (a1 (2 + 22K
_ ((kfm - 1) (1K) + 22(k)?)
< — g(scl(k:)2 + :cg(k:)2), (z1,29)" € R2.

All the conditions of Theorem 6.3.2(b) are satisfied. Accordingly, the equilibrium
xe = 0 of system (6.3.11) is exponentially stable in the large. O

In the next result we address the uniform boundedness and the uniform ultimate
boundedness of solutions of (D).
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Theorem 6.3.3 With 2 = R", assume that there exists a function v € C[R™ x N, R]
that satisfies the following conditions.

(i) There exist two functions 1,1y € C[RT, R*] that are strictly increasing with
lim, o (1) = 00, i = 1,2, and a constant M > 0, such that

Y1(lz]) < vz, k) < Po(lz])
forall x| > M and k € N.
(ii) Forall |z| > M and k € N,
A(D)’U($,k‘) <0.

Then the solutions of (D) are uniformly bounded.
If in addition to (i) and (ii), there exists a function 3 € K, such that

Apyv(z, k) < —vs(|z])
for all |z| > M and k € N, then the solutions of (D) are uniformly ultimately

bounded.

Proof . This theorem is a direct consequence of Theorems 3.4.4 and 3.4.5. O

Example 6.3.8 Consider the system

{ 1 (k+1) = azi (k) + f(z2(k)) +0.5M (6.3.12)

2ok + 1) = axo(k) + g(x1(k)) + 0.5M

where |a] < 1, |f(n)| < ¢|n| and |g(n)| < ¢|n| forall n € R, and M € RT.
Choose
v(x) = |za] + [x2| = |2[1.

Along the solutions of (6.3.12) we have for all (21, x2) € R?,

Ao a120(@(k) = oz (K) + Flaa(k) + 3 M|

+ Jaza(k) + gl () + 5 M| — 1 (B)] — [za ()
<la| |z1(k)| + clz2(k)| + |a| |z2 (k)| + clz1 (k)| + M
— lra(B)] ~ 2 ()
= (Jal + ¢~ Dl ()| + (lal + ¢~ Dlea(R)] + M
(la] + ¢ —1D)]z(k)|; + M.

Assume that a and c are such that |a| +c—1 < 0. Then A4 5.12)v(z(k)) < 0 for all
|z|1 > M/(1 — |a|] — ¢). All conditions of Theorem 6.3.3 are satisfied. Therefore,
the solutions of (6.3.12) are uniformly bounded. O
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C. Instability results

In the next results we concern ourselves with the instability of the equilibrium z, = 0
of (D).

Theorem 6.3.4 (Lyapunov'’s First Instability Theorem) The equilibrium z. = 0 of
(D) is unstable if there exist a kg € N and a decrescent function v € C[B(r) x N, R]
where 7 > 0, B(r) C €, such that Apyv is positive definite (negative definite)
and if in every neighborhood of the origin there are points 2 such that v(z, ko) > 0
(v(x, ko) < 0). If in addition to the above assumptions, v is positive definite (neg-
ative definite), then the equilibrium z. = 0 of (D) is completely unstable (refer to
Definition 3.1.20).

Proof. By definition, the function v is decrescent implies there exists a function
¥ € K defined on [0, 7] such that

|v(z, k)| < ¥(|xl)

for all (z,k) € B(r) x N.

Under the assumptions of the present theorem, v (or —v) satisfies the hypotheses
of Theorem 3.4.8 for instability and the hypotheses of Theorem 3.4.9 for complete
instability. The proof is completed. g

Theorem 6.3.5 (Lyapunov’s Second Instability Theorem) Assume that for system
(D) there exists a bounded function v € C[B(r) X [ko, 00), R], where r >0, B(r) C,
and ko € N, such that the following conditions are satisfied.

(i) Forall (x, k) € B(r) x [ko, 00),
A(D)U(LL‘, ]{7) > )\v(:c, k),

where A > 0 is a constant.

(ii) In every neighborhood of the origin, there exists an x such that v(z, k1) > 0
for a fixed k1 > ko, k1 € N.

Then the equilibrium z. = 0 of (D) is unstable.
Proof . This result is a direct consequence of Theorem 3.4.10. O

Example 6.3.9 Consider the system

{ w1(k +1) = a®|z1 (k)] + z2(k) f (22(k))

w2k +1) = a®|za (k)| + z1(k)g(21(k))

where a®> > 1, f € C[R,R], g € C[R,R], and 1f(n) > 0 and ng(n) > 0 for all

n € R. The origin (z1,22)T = (0,0)” = 0 is clearly an equilibrium of (6.3.13).
We choose as a v-function

(6.3.13)

v(@) = [z1] + [z2] = |21
Along the solutions of (6.3.13) we have for all x € R?,
Asazv(x(k)) = [a®|z1 (k)| + @2 (k) f(w2(k)| + |a®|z2 (k)] + 21 (k)g (a1 (k)]
= [z1 (k)| = 22 (k)]
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> a®|ay (k)| + a®|z2 (k)| — |z (k)| — [22(k)]
= a?lz(k)| — |a(k)h
= (a® = D]x(k)1.

Because by assumption a? > 1, A(6.3.13)v is positive definite. All the hypotheses of
Theorem 6.3.4 are satisfied and we conclude that the equilibrium z. = 0 of (6.3.13)
is unstable, in fact, completely unstable. O

Example 6.3.10 Consider the system

{ w1 (k +1) = a®|zy (k)] + z2(k) f (22(k))

zo(k + 1) = a®za(k) (6.3.14)

where a? > 1, f € C[R,R], and nf(n) > 0 for all € R. Choose as a v-function
v(@1, x2) = [31] — [22].
Along the solutions of (6.3.14) we have
Ae.314)0(x1, 22) = |a?[a1 (k)] + 2o (k) f (22(k))] — |a®z2 (k)] — |21 (k)] + |z2(K)|
> a®|1 (k)| — a®|za (k)| — |1 (k)] + |z2(K)|
= (a® = D|z1 (k)| = (a® = 1)|z2(k)]
= (a® = (|1 (k)| — |z2(k)|)

= )\v(:vl, $2)

where A = a? — 1 > 0 because a® > 1. In every neighborhood of the origin there
are points  in R? such that v(Z) > 0. Thus, all the hypotheses of Theorem 6.3.5 are
satisfied. Therefore, the equilibrium x, = 0 of (6.3.14) is unstable. O

We present applications to important specific classes of finite-dimensional dynam-
ical systems determined by ordinary difference equations in Chapter 8.

6.4 The Principal Stability and Boundedness Results
for Discontinuous Dynamical Systems

In this section we fist present local stability results, global stability and boundedness

results, and instability results for finite-dimensional DDS (refer to Subsection 6.1C).

We address applications of these results in the last subsection of this section and

further, in Chapter 8. As noted in Subsection 6.1C, we assume that for the dynamical
systems in question, the origin z. = 0 € R"™ is an equilibrium.

A. Local stability results

We first address local results.
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Theorem 6.4.1 Let{R™ R", A, S} beafinite-dimensional discontinuous dynamical
system (for short, a finite-dimensional DDS S) and assume that z. = 0 is an equi-
librium. Assume that there exist a function v: R” x RT — R* and two functions
1,19 € K defined on R* such that

Ur(lz]) < v(z,t) < ¢Pa(lz)) (6.4.1)

forallz € R"andt € RT.

Assume that for any ¢(-,tg,x0) € S (to = 7o), v(p(t, to, xo),t) is continuous
everywhere on R\ = {t € R": ¢ > o} except on an unbounded subset £ =
{r,72y...:11 <Ta <---}of R;;. Also assume that there exists a neighborhood U
of the origin z, = O such thatforall zy € U and (-, t9, xo) € S, v(©(T%, to, o), Tk)
is nonincreasing for k € N. Furthermore, assume that there exists a function f €
C[RT,R*], independent of ¢ € S, such that f(0) = 0 and such that

v(p(t, to, o), t) < f(v(e(Tk,to, o), Tk)) (6.4.2)

forallt € (1%, Tk+1), k € N.
Then the equilibrium z, = 0 of the DDS S is uniformly stable.

Proof . This result is a direct consequence of Theorem 3.2.1. O

Theorem 6.4.2 If in addition to the assumptions given in Theorem 6.4.1, there exists
a function 13 € K defined on R™ such that for all zg € U, ¢(-,to,z0) € S, and
keN,

Du(p(7i, to, w0), i) < —3(|(Tk, to, o)) (6.4.3)

where

A 1
= [U(w(TkH,to,xo),TkH) —U(@(Tk7to79€0)77k)]7

(6.4.4)
then the equilibrium x, = 0 of the DDS S is uniformly asymptotically stable.

Dv to, _—
(@(Tkv 05 0)7Tk) Thi1—Th

Proof . This result is a direct consequence of Theorem 3.2.2. O

Theorem 6.4.3 Let {R™,R", A, S} be a finite-dimensional DDS and assume that
x. = 01is an equilibrium. Assume that there exist a function v: R” x Rt — R and
four positive constants c1, c2, c3, and b such that

a1lz|’ <o, t) < eola|’ (6.4.5)

forallz € R and t € RY.

Assume that there exists a neighborhood U of the origin . = 0 such that for all
xo € U and ¢(-,t9,x0) € S (to = 70), v(p(t, to, zo),t) is continuous everywhere
on R;g excepton anunbounded subset E = {7y, 72,...: 71 <7 < ---} ofR;g . Fur-
thermore, assume that there exists a function f € C[R™, R*] such that f(0) = 0 and

U(‘ﬂ(tathIO)’t) < f(U(QO(TkrtvaO)er)) (6.4.6)
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forall t € (%, Tk+1), k£ € N, and that for some positive constant ¢, f satisfies
f(ry=o0(r? as r—0" (6.4.7)
(.e., lim, g+ (f(r)/r?) = 0). Assume that for all k € N,

b
Dv(o(Tg, to, o), Tk) < —03|<p(Tk, to, x0)| (6.4.8)

for all zy € U and ¢(+, %9, 29) € S, where Duv is given in (6.4.4).
Then the equilibrium z. = 0 of the DDS S is exponentially stable.

Proof . This result is a direct consequence of Theorem 3.2.3. O

B. Global stability and boundedness results

Next, we address global results.

Theorem 6.4.4 Let {RT,R™, A, S} be a finite-dimensional DDS and assume that
%, = 0 is an equilibrium. Assume that there exist a function v: R" x RT — RT
and two strictly increasing functions 1, 12 € C[R*, R*] with lim,_, o, ;(r) = oo,
i =1, 2, such that

G (le) < vl t) < oz (64.9)

for all x € R™ and t € R whenever |x| > £, where 2 is a positive constant.

Assume that for every (-, tg, xo) € S (to = 70),v(¢(t, to, o), t) is continuous
everywhere on R:; except on an unbounded subset E={7y,72,...: 41 <72 < ---}
of R;" . Also, assume that

v(e(Tr1, to, o), Te+1) < v(@(Tk, to, T0), Th) (6.4.10)

for all 7, whenever |p (7, to, 2o)| > €.
Furthermore, assume that there exists a function f € C[R*, R*], independent of
@ € S, such that forall k € Nand p € 5,

v(p(t, to, x0),t) < fv(p(Tk, to, To), Tk)) (6.4.11)

forall t € (7y, T+1) whenever |@(t, to, zo)| > .

Assume that there exists a constant I" > 0 such that |¢ (7541, to, 20)| < T when-
ever |o(7g, to, xo)| < Qforall p € S.

Then S is uniformly bounded.

Proof . This result is a direct consequence of Theorem 3.2.4. O

Theorem 6.4.5 If in addition to the assumptions in Theorem 6.4.4 there exists a
function 3 € K defined on R such that for all p € S

Dv(p(k, to, o), k) < —13(le(Tk, to, T0)]) (6.4.12)

for all 7, whenever | (7%, to, o)| > 2, where Dv in (6.4.12) is defined in (6.4.4),
then S'is uniformly ultimately bounded.
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Proof . This result is a direct consequence of Theorem 3.2.5. O

Theorem 6.4.6 Let {R™ R"™ A S} be a finite-dimensional DDS and assume that
x. = 0is an equilibrium. Assume that there exist a function v: R x Rt — R and
functions 11, 12 € Ko defined on R such that

1(lz]) <oz, t) < a(lz)) (6.4.13)

forallz € R"and t € RT.

Assume that for any ¢(-, o, zo) €S (to="70), v(e(t, to, o), t) is continuous ev-
erywhere on RZ) except on an unbounded subset E= {7y, 7a,...: 71 <72 < - -+ } of
R;" . Furthermore, assume that there exists a function f € C[R*, R*] with f(0) = 0
such that for any ¢ € S,

U(@(tvt(hxo)vt) < f(U(SO(TkvthxO)»Tk)) (6.4.14)

forall t € (7, Tk41), k € N.
Assume that there exists a function 3 € K defined on R™ such that for any ¢ € S,

Du(p(Tk, to, o), k) < —¥3(|e(Th, to, 0)]), (6.4.15)

k € N, where Dv in (6.4.15) is defined in (6.4.4).
Then the equilibrium z. = 0 of the DDS S is uniformly asymptotically stable in
the large.

Proof . This result is a direct consequence of Theorem 3.2.6. a

Theorem 6.4.7 Let {R™,R", A, S} be a finite-dimensional DDS and assume that
¥, = 01is an equilibrium. Assume that there exist a function v: R” x RT™ — R* and
four positive constants c1, o, c3, and b such that

alz|’ <o, t) < el (6.4.16)

forallz € R" andt € R™.

Assume that for every ¢(-, %0, zo) €5 (to = 7o), v(¢(t,t0, zo), t) is continuous
everywhere on RZ} except on an unbounded subset E={7y,7,...: 1 <Ta< -}
of R . Furthermore, assume that there exists a function f € C[R™, R*] with f(0)=0
such that

v((t, to, 20),t) < f(u(@(T: to, o), 7)) (6.4.17)
forallt € (1%, Tk+1), k € N, and such that for some positive constant g, f satisfies
f(r)=o0(r?) asr—0". (6.4.18)
Assume that for all k € N
Du(p(7k, to, %0), Th) < —3|@ (T, to, o) (6.4.19)

for all zg € A and ¢ € S, where Dv in (6.4.19) is defined in (6.4.4).
Then the equilibrium z. = 0 of the DDS S is exponentially stable in the large.
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Proof . This result is a direct consequence of Theorem 3.2.7. O

C. Instability results
Next, we address instability results.
Theorem 6.4.8 Let {R™,R" A S} be a finite-dimensional DDS and assume that

x. = 0 is an equilibrium. Assume that there exist a function v: R x Rt — R and
atg = 1o € RT that satisfy the following conditions.

(i) There exists a function v € K defined on R such that
v(z,t) < o(|2|) (6.4.20)

forallz € R" and t € RT.
(ii) In every neighborhood of z, = 0 there are points x such that v(x, tg) > 0.
(iii) For any xg € A such that v(xg, %) > 0 and any ¢(-, to,x) € S (to = 70),
v(p(t,to, o), t) is continuous everywhere on R;; except on an unbounded

subset £ = {11,72,...: 71 < Tg < ---}of Rzg. Assume that there exists a
function v € K defined on R such that

Du(p(Ti, to, z0), k) = ¥ (|v(e(Tk, to, 20), 1)) (6.4.21)
k € N, where Dv is defined in (6.4.4).
Then the equilibrium z, = 0 of the DDS S is unstable.

Proof . This result is a direct consequence of Theorem 3.2.8. O

Theorem 6.4.9 If in addition to the assumptions given in Theorem 6.4.8, v(z, tg) > 0
for all z # 0, then z, = 0 of the DDS S is completely unstable.

Proof . This result is a direct consequence of Theorem 3.2.9. a

D. Examples

We now consider several specific examples to demonstrate the applicability of the
results of the present section. In all cases, we assume that the sets of discontinuities,
{m1,72,...: 71 < To < ---}, are unbounded.

Example 6.4.1 We consider dynamical systems determined by equations of the form

{ i’(t):A.’t(t), Tk§t<’7'k+1 (6.4.22)

x(t) = Bx(t™), t="Trs1, €N

where z(t) € R" forall t € RT,A,B € R™™", and x(t~) = limy ¢y <t x(t))
denotes the left limit of z:(¢') at ¢ = t. We assume that for (6.4.22) the following
conditions hold.
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(i) supgpen{Te+1 — 7} < A < oo where A > 0 is a constant.

(i) || Ble!* < o < 1, where a > 0 is constant and || - || denotes the matrix
norm induced by the vector norm | - |.
We choose v(z) = |x|. Then clearly (6.4.13) (resp., (6.4.16)) is satisfied. Along
the solutions (¢, o, zo) 2 x(t) of (6.4.22) we have, for all k € N,

|2(Th41)| = |2 (7))

Tk+1 — Tk
[BeAT2 =] Ja(mi)| — [2(7)
Tk+1 — Tk

([[B[[e" = 1) 2(m)

Tk+1 — Tk

Du(z(my)) =

< h |$ (7k) |
Therefore, inequality (6.4.15) (resp., (6.4.19)) is satisfied. Also,

v(x(t)) < f(o(x(mk)))

is true for all t € (74, 7Thy1),k € N, where f(r) = el4l*r, and (6.4.14) (resp.,
(6.4.17)) is satisfied. Also, f(r) = o(r?) asr — 07 for 0 < g < 1. It follows from
Theorem 6.4.6 (resp., Theorem 6.4.7) that the equilibrium z. = 0 of (6.4.22) is uni-
formly asymptotically stable in the large, in fact, exponentially stable in the large. O

We emphasize that in the above example, the matrix A may be unstable. In the
case when A has eigenvalues in the right half of the complex plane, the function
v(x(t)) may increase over the intervals (7x, 7x+1), k& € N. However, the jumps of
v(z(t)) = |z(t)| at 7p41, k € N, offset these increases, with the consequence that
v(2(Tk+1)), and hence the norms of the solutions of (6.4.22) tend to zero as t — oo.

Example 6.4.2 We consider dynamical systems determined by equations of the form

{ z(t) = Ax(t), T <t < Thpa1 6.4.23)

Ba(t™) +u(t), t=Tpp1, kEN

8
—~
~
~—
Il

where z(t) € R" forall t € RT, u(t) € R™, and |u(t)| < K fort = 7441, k € N,
where K > 0 is a constant, and A, B € R™*™, We assume that for (6.4.23) the
following conditions hold.

D) supgen{me+1 — Tk} < A < oo where A > 0 is a constant.

(i) || Blle!I* < o < 1, where o > 0 is a constant.
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We choose v(z) = |z|. Along the solutions ¢ (¢, to, o) 2 x(t) of (6.4.23) we have
_ 2] - [z(m)]
Du(z(m)) = Po—
[Bet =] |a(mi)| — |a(7i)| + |u(7isn)|
N Th+1 = Tk
(B[ = 1) (ma)| + |u(mis)]
N Th+1 — Tk
< (a — 1)’$(Tk)| +K.
- A

In the last step we require that |z (7, )| > @ = K /(1 — «). Therefore Dv(x (7)) is
negative when |z (73)| > €2 and condition (6.4.12) in Theorem 6.4.5 is satisfied. Also,
v(x(t)) < f(v(x(ry))) is true for all t € (1x, Thy1), k € N, where f(r) = ellAlAp,
and relation (6.4.11) is satisfied. Finally, it is easily verified that when |z(7%)| < 2,
|2(mk+1)] < K + oK. All conditions of Theorems 6.4.4 and 6.4.5 are satisfied.
Therefore, the solutions of system (6.4.23) are uniformly bounded, in fact, uniformly
ultimately bounded. O

The results given in Examples 6.4.1 and 6.4.2 can be improved by making use of
the matrix measure, 11(A), of a real matrix A € R"*", defined by

T+eAl—1
u(A) = lim & (6.4.24)

e—0t S
where I € R"*™ denotes the identity matrix. For x € R" and
n 1/p
o= (Ller) . spex
i=1
and
[2lo0 = max {la;[},

the matrix measure of A = [a,;] is given, for p = 1,2, 0o, by

pi(A) = max {ajj+2|aij|}, (6.4.25)

1<j<n —
i#j

1
p2(A) = 5/\M (AT + A),

where A\ (AT + A) denotes the largest eigenvalue of A + A7, and

fioo(A) = max {a”+Z|aij\}. (6.4.26)

1<i<n —t
i#]
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Of particular interest to us is the relation
etta| < et z|, t > 0. (6.4.27)

A moment’s reflection makes it now clear that the results of Examples 6.4.1 and
6.4.2 can be improved substantially by replacing condition (ii) in these examples by
the condition

(ii') | Ble"M* < a < 1. (6.4.28)

Example 6.4.3 For system (6.4.22) assume that the following conditions hold.
(i) suppen{me+1 — Tk} < A < oo, where A > 0 is a constant; and
(ii) B is nonsingular and || B~ ||el41* < 3 < 1, where 3 > 0 is a constant.

We now apply Theorem 6.4.9 to show that under the above assumptions, the
equilibrium z, = 0 of (6.4.22) is unstable, in fact, completely unstable.

Choose v(x) = |z|. Along any solution ¢(¢, ¢, zo) 2 x(t) of system (6.4.22)
we have

|2 (Trq1)| — |(72)]

DU(x<Tk)) = Tht+1 — Tk
 [BeACiaa(n)| — falry)
o Th+1 = Tk
(||€7A(7'1«+1*TA:)B*1H)_1 |$C(’Tk)’ - |5C(Tk)’
= Th+1 = Tk
Bl Al -0yt _q
L (1B~ ) )
Tk+1 — Tk
—1 71
> ).

A

Therefore, (6.4.21) is satisfied. In fact, all the hypotheses of Theorems 6.4.8 and
6.4.9 are satisfied. Therefore, the equilibrium x, = 0 of system (6.4.22) is unstable,
in fact, completely unstable. O

Example 6.4.4 We consider dynamical systems determined by equations of the form

&(t) = f(x(t)), Th <t < Thpa
6.4.29
{ z(t) = g(z(t7)), t=7Tkt1, kEN ( )
and associated with (6.4.29), the initial value problems given by
o(t) = f(z(t)),
6.4.30
{ LL‘(’Tk) = Tk, ( )

k € N. We assume that f: R” — R", f(0) =0, g: R® — R", g(0) = 0, and that
lg(m)| < ~|n| for all n € R™ for some constant v > 0. We assume that for every
(Tx, z1) € RT x R”, (6.4.30) possesses a unique solution (¥ (t, 7, ;) that exists
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for all ¢ > 7. Then (6.4.29) possesses for every (to, Zo) 2 (T0,70) € RT x R" a
unique solution ¢ (t, to, xo) that exists for all ¢ > ¢y, where

(p(t,to,x()) :1'(k)(t77']€,$k), T <t < Tht1, k € N. (6.4.31)

In particular, (6.4.30) possesses the trivial solution x(k)(t, Tk, 0) = 0 for all t > 7,
k € N, (6.4.29) possesses the trivial solution ¢ (t,t9,0) = 0,t > tg = 79 > 0, and
(6.4.30) and (6.4.29) have an equilibrium at the origin x, = 0 .

We now assume that for every initial value problem (6.4.30) there exist a function
v € CY[R™, R*] and four positive constants c1, ¢z, c3, and b > 0 such that

c1lz)? < v(z) < colz|?
{ vE6.4|.3o>_(w>(<) :CSTLL. (6.4.32)
Letting ¢ = —c3/c2, we have
1}26‘4.30) (z) < cv(x) (6.4.33)
which yields for (6.4.30) the estimate
v(x® (t, 1, 21)) < eEy(xy),  t>7, keN. (6.4.34)

For (6.4.29) we choose the v-function
v(p(t, to, o)) = v(@® (¢, 70, 21)), Te <t <Tpy1, keN (6.4.35)
Then for (6.4.29) we still have
c1lz? < o(z) < eolz)? (6.4.36)

for all x € R™. Thus, (6.4.13) in Theorem 6.4.6 and (6.4.16) in Theorem 6.4.7 are
satisfied with v;(s) = ¢;s%,i = 1,2, and s > 0.
Next, using (6.4.34) and (6.4.35), we have for the DDS given in (6.4.29) that

v(z P (t, 7, 1)) < ey (), T <t < Tpy1, keN (6.4.37)

Att = 741 we have in view of (6.4.29) and (6.4.32) that

kH)(Tkﬂ, Tht1, Thi1)) = V(Thy1)

v(a
2
< ol
2
= 02|$(k+1)(7k+1,7k+17$k+1)|
_ 2
< eo? o™ (7, T )|
< (ea/er)y?o(z® (Thg1> Thy Tk))- (6.4.38)
Letting 0y, = Tx4+1 — Tk, k € N, and using (6.4.37) and (6.4.38), we have that
v(wpg1) < (cafer)y?e /(@ W) (7 7y, )

= (co/c1)y?e(e3/ )0k (), ke N. (6.4.39)
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If we require that
(ca/er)y?e(ea/e2)dn <1 (6.4.40)

then v(xy,) is nonincreasing with increasing k, and if
(cofer)y?e (/e < oy <1 (6.4.41)

then v(xy) is strictly decreasing with k.

Next, from (6.4.39) and the definition of Dv, we have

ap —1 2
Dv(p(Tg, to, o)) < Sk 01|<p(7k,t0,m0)| , keN.
Tk+1 — Tk

We assume that infren [(1 — ax)/(Tk41 — 7)1 = ¢z > 0. Then (6.4.15) in
Theorem 6.4.6 and (6.4.19) in Theorem 6.4.7 are satisfied with ¥3(s) = c3|s|?,
s> 0.

Next, assume that infren(cs/c2)dp = S > 0. Then in view of (6.4.37) we
have that

U(@(f,to,fﬁo)) S €_BU(.I']€) = f(’l}(l'k)), Tk S t < Tk+41, ke N,

where f(s) = e‘ﬁs, s > 0. Thus, (6.4.17) in Theorem 6.4.7 holds. Furthermore,
it is clear that f(s) = o(s?) as s — 0% for any ¢ € (0,1). Therefore, condition
(6.4.18) of Theorem 6.4.7 holds as well.

All the conditions of Theorems 6.4.1, 6.4.6, and 6.4.7 are satisfied and we have
the following result.

Proposition 6.4.1 Let c1, co, c3, 7, and J; be the parameters for system (6.4.29), as
defined above.
(a) If for all k € N, (co/c1)y2e(¢3/¢2)% < 1, then the equilibrium z, = 0 of
system (6.4.29) is uniformly stable.
(b) Ifforall k € N, (cp/cy)y2e(8/¢2)9% < o < 1 (@ > 0), then the equilibrium
e = 0 of system (6.4.29) is uniformly asymptotically stable in the large and
exponentially stable in the large. O

Example 6.4.5 We now consider a class of DDS determined by equations of the form

t(t) = fr(t, x(t <t
(2= Rlad).  nst<nn 642
x(t) = gp(z(t™)), t="Tk41, EEN
and the associated family of initial value problems given by
t(t) = fr(t, x(t
{ 2= futot) 6443
(1) = xg,

k € N, where xz(t) € R", fi, € C[RT x R*,R"], fx(t,0) = 0 forall ¢t > 0,
gr: R™ — R", and ¢g(0) = 0. We assume that there exists a constant y; > 0 such
that |gx(n)| < k|n| for all n € R™.
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We assume that for every (7x,x;) € RT x R™ there exists a unique solution
x®) (t, 1y, 21,) for (6.4.43) that exists for all ¢ > 7. We note that for (6.4.43) we
have z(*) (¢, 73,,0) = 0 for all t > 7, and that z, = 0 is an equilibrium.

As a consequence of the above assumptions, we have that (6.4.42) possesses for
every (to, o) a unique solution

@(t,to,mg):$(k)(t,Tk,Ik), T < €< Teyr, k€N,

with £y = 79 and that . = 0 is an equilibrium for (6.4.42).
Consistent with the above assumptions, we also assume that f, in (6.4.43) satisfies
the Lipschitz condition

| fi(t,2) = fu(t,y)| < Ki|z —y| (6.4.44)

forall z,y € R™ and t € |7y, Tk+1], k¥ € N, where K, > 0 is a constant.
From (6.4.43) we have

|»T(k)(t»Tk,$k) —y (¢, 0, i) |

= ‘xk — Y+ /Tt (fk(nvx(k)(n>7'k7$k)) - fk(777y(k)(77a7kayk)))d77‘-

k

Choosing yi = 0 and recalling that fy(¢,0) = 0, ¢ > 7, we have in view of (6.4.44)
that

|28 (¢, 7, )| < || +/

T

t
K |2® (n, 7, i) |dn (6.4.45)
k

for all t € [1,Tk+1) and k € N. Applying the Gronwall inequality (see Problem
2.14.9) to (6.4.45), we obtain the estimate

|2 ® (¢, 7, ap)| < |oe] B2 E™ <t < g (6.4.46)
for all z;, € R™ and k € N.
In what follows, we further assume that supcy Ky 2K < oo, and letting
Ak = Th41 — Tk, that supgen Ak 2 A < 00, and that sup, ¢y Yk = I' < oo.

Proposition 6.4.2 Let Ky, i, \i, K, I, and A be the parameters for system (6.4.42),
as defined above.

(a) If for every k € N, WkeKk’\k < 1, then the equilibrium ., = 0 of system
(6.4.42) is uniformly stable.

(b) If for every k € N, y,efx* < o < 1, where o > 0 is a constant, then the
equilibrium z. = 0 of system (6.4.42) is uniformly asymptotically stable in the
large and exponentially stable in the large.

Proof . We choose the Lyapunov function v(z) = |z|, x € R". When evaluated
along the solutions of (6.4.42) we have

v(gp(t,to, xo)) = v(m(k) (t,to,xo))
= |x(k)(t,7'k.,xk)|, T <t <Tp+1, keN
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Clearly,
Y1 (|z]) < v(z) < ao|z]) (6.4.47)

for all z € R™, where 11(s) = ¥a(s) = s > 0 and 91,19 € K. Along the
solutions of (6.4.42) we have, in view of (6.4.46),

|, 7, 20)| < FHOT gy | = RO B ()|, (6.4.48)
forall t € [T, Tkt1). Att = 71 we have

|2 (71, T, @) | = 9@ ™ (T e 20)) | < |2 ™ (7 T k) |
(6.4.49)

Combining (6.4.48) and (6.4.49), we have

(k+1)(

|25 (i1, Tt Tha1)| < e 28 (7, 7, )| (6.4.50)

and because by assumption, v,e®*** < 1, we have that

(k+1)(

0 (25 (T, Tor, Teg1)) = |2 % (g1, Tt )|

< 2™ (7, 7, )| = v (@®) (70, iy ).
The above relation holds for all k € N; thus it follows that v(¢(7y, to, z0)), k € N,
is nonincreasing.
Next, from (6.4.48) we have, recalling that sup,cy K = K and suppey A\ =
A, that
U(T/(k)(tﬁk,xk)) = |$(k)(t, T, Tk)|

= eKA’x(k) (Th Th» ) |
2 Fw(a® (rg, 7, 21))), 6.4.51)

t € [Tk, Tkt1), k € N, where f(s) = efs. Therefore, all the hypotheses of Theo-
rem 6.4.1 are satisfied and we conclude that the equilibrium . = 0 of system (6.4.42)
is uniformly stable.
If in (6.4.50) we assume that v,e®** < o < 1, a > 0, we have that
v(x(kﬂ) (Tht1 Tht1, xk+1)) < av (ac(k) (Tke, Tk J;k))

and

[v(x(kJrl)(TkH,Tk+1,a:k+1)) - v(x(k)(rk,rk,xk))}/(m-s-l — Tk)
< [(a = 1)/A]v (=™ (14, 7k, 21,))
= —t3(|2®) (74, i, 1))
= —3(|o(7k, to, o)) (6.4.52)
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for all zp € R™, k € N. In (6.4.52) we have ¥3(s) = [(1 — «)/A]s,s > 0 (i.e.,
13 € Ko). Therefore, all the hypotheses of Theorem 6.4.2 are satisfied and we
conclude that the equilibrium z. = 0 of system (6.4.42) is uniformly asymptotically
stable.

Because (6.4.47) holds for all z € R™ and because actually 1,12 € K, and
because (6.4.52) is true for all (7%, to, x9) € R™, it follows from Theorem 6.4.6 that
the equilibrium x. = 0 of system (6.4.42) is uniformly asymptotically stable in the
large.

From (6.4.47) it is clear that in relation (6.4.16) of Theorem 6.4.7 we have that
c¢1 = co = b = 1andfrom (6.4.52)itis clear thatin relation (6.4.19) in Theorem 6.4.7,
cs = (1 — a)/A. We have already shown that relation (6.4.17) of Theorem 6.4.7
is true, and clearly, for f(s) = eX"s, we have that f(s) = o(s?) as s — 0T for
any ¢q € (0,1). Therefore, all the hypotheses of Theorem 6.4.7 are satisfied and we
conclude that the equilibrium z. = 0 of system (6.4.42) is exponentially stable in the
large. O

Example 6.4.6 We now consider the DDS determined by equations of the form

t(t) = Agx(t <t
&(t) = Awa(t) Tk S ES T (6.4.53)
x(t) = Brx(t™), t="Tpr1, KEN
and the associated family of initial value problems given by
z(t) = Agz(t),
6.4.54
{ :L'(Tk) = Tk, ( )

k € N, where t € R™, z(t) € R", and Ay, B, € R"*™. We denote the solutions of
(6.4.54) by 0 (t, 1, 1), t > 73, k € N, and the solutions of (6.4.53) by

o(t, to, z0) = =™ (t, 7., 7k), Tk ST < Tga1,

k € N, where 7y = ty. Note that z. = 0 is an equilibrium for (6.4.53) and (6.4.54).
If all the eigenvalues A of Ay, satisfy the relation ReA < —a, then for any positive
ay < ap, there is a constant My («) > 0 such that the solutions of (6.4.54) satisfy
the estimate
2™ (t, T, 2x) | < My (ag)e ™) |z | (6.4.55)

forallt > 7 > 0 and x; € R™ (refer to Theorem 2.9.5). When the aforementioned
assumption is not true, then the solutions of (6.4.54) still allow the estimate

|2 (t, 7, 2p,) | < el ARNE=T8) | ] (6.4.56)
forall t > 7, > 0 and x;, € R™. Thus, in either case we have
’{L‘(k) (t,Tk,xk)’ < lewk(t—m)‘xk‘ (6457)

forall t > 71, and x;, € R™, where Qr = 1 and wy, = ||Ax|| when (6.4.56) applies
and Q = My (ay) and wy, = —ag, ax > 0, when (6.4.55) applies.
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We assume that supy,cy My (o) = M < oo and supyey A = A < 00.

Proposition 6.4.3 Let wy, My (o), Qk, Ak, A, and M be the parameters for system
(6.4.53), as defined above.

(a) If for all k € N, || By||Qre®** < 1, then the equilibrium x, = 0 of system
(6.4.53) is uniformly stable.

(b) Ifforall k € N, || Bg||Qre®** < a < 1, where o > 0 is a constant, then the
equilibrium x, = 0 of system (6.4.53) is uniformly asymptotically stable in the
large and exponentially stable in the large. O

The proof of Proposition 6.4.3 is similar to the proof of Proposition 6.4.2 and is
left as an exercise for the reader.

6.5 Converse Theorems for Ordinary Differential
Equations

In the present section we establish sample converse results for the principal Lya-
punov stability and boundedness results for ordinary differential equations presented
in Section 6.2. We recall the system of ordinary differential equations given by

i = f(t,x) (E)

where t € RY, z € 2,0 € Q, Q is an open connected subset of R™, and where it is
now assumed that f € C[RT x Q,R"]. In the appendix section (Section 6.8) it is
shown that the continuity of f (¢, x) ensures the continuity of the solutions ¢ (t, to, xo)
of (E) with respect to the initial conditions (to, ). We assume that . = 0 is an
equilibrium for (E).

A. Local results

In our first result we address uniform stability.

Theorem 6.5.1 Assume that the equilibrium z. = 0 for (E) is uniformly stable.

(a) Then there exist functions 11,%> € K and a function v: B(r) x Rt — RT
for some r > 0, where B(r) C €, such that

Ur(|z]) < v(x,t) < alz])

forall (x,t) € B(r) x R*, and V(5 is nonpositive.

(b) If f is Lipschitz continuous, then there exists a positive definite and decrescent
function v € C[B(r) x RT,R] for some r > 0, where B(r) C €, such that
UE &) is negative semidefinite.
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Proof . (a) This result is a direct consequence of Theorem 3.6.1.

(b) Let ro > 0 such that B(rg) C §2. Because . = 0 is uniformly stable, there
exists a () > 0 for any 0 < e < 7 such that |z(t, t, xo)| < € for all ¢ > ¢
whenever |zg| < J. Let 6(0) = 0. Without loss of generality, we may assume that
0€Kando(e) <eforalle < ry.

Letr; <rpandr 2 3(6(r1)). Define the Lyapunov function v(x, t) as
v(z,t) = min {|z(r,t,2)|: T € [t*, 1]}

forall (z,t) € B(r) x R, where t* € [0, ¢] is the smallest value to the left of ¢ that
x(7,t,x) can be continued to such that | (7,¢,x)| < ro for all 7 € (¢t*,¢].

Fix (zo, to) € B(r) x RT. If |z(t§, to, To)| < ro, thentf = 0 and |z(T, o, x0)| <70
forallT € [0, to]. By the continuity of solutions with respect to initial conditions, there
exists aneighborhood U of (x¢, to) such that for all (z, t) in this neighborhood, t* = 0.
If |z(t5, to, 20)| = 7o, let to < to be the value of ¢ for which |z (¢, o, o )| = 71 for the
first time to the left of ¢. Because r < d(r1) < 71, there exists a neighborhood U of
(x0, to) such that all the solutions of (F) starting within this neighborhood stay within
the (1 — 8(ry))-neighborhood of z(ty, to, xo). Therefore, they are all continuable to
to. Furthermore, if (z1,1) € U, then |z (%o, 1, x1)| > 8(r1). By the choice of 3 (1),
it must be true that |z(7, 1, 21)| > 6(8(r1)) = 7 for all 7 < #o. On the other hand
|z(t1,t1,21)| = |z1| < 7. Hence, v(z, t) takes place at some 7 such that ty < 7 <t
forall (x,t) € U.

Because (xo,t9) € B(r), z(t,to, zo) is continuable to the right. Without loss of
generality, we assume that (%, %o, o) can be continued to [tg,to + ¢|,c > 0 and
U C{z: |z — x| < e} x [t§,to + ¢] for some € > 0. By the Lipschitz continuity
of f, there exist an L > 0 such that | f (¢, z) — f(¢,y)| < L|x — y| for (z,t), (y,t) €
B(r1) x [0,tg+ ¢] and a K = max{|f(t,z)|: (¢t,z) € [0,t0 + ] x B(rg)]. For any
(z,t), (y,t) € U, subtract the integral equations satisfied by z(s,¢,x) and z(s, ¢, y)
and estimate as follows,

|z(s,t,x) — x(s,t,y)| < | —y|+ ‘ /f f(ryz(r, t,x))dr — /t f(ryx(r,t,y)dr

S
<lz—yl+L / la(r,t,2) — (r t, )| dr
t

for all s > ¢ for which the solutions exist. Apply the Gronwall inequality to obtain
|.13(S, L, 33) - .’II(S, L, y)| < €L|t—5| |J) - y|

For any (z,t), (y,t) €U, suppose v(x,t) =|z(tz, ¢, z)| and v(y, t) = |z(ty, £, y)|.
Then

v, t) = v(y, 1) < |o(ty, t,2)] = [a(ty, t,y)| < 0Tz —y),
and
v(z,t) —o(y, t) > |x(te, t,x)| — |z(te, t,y)| > —eP Tz —y).

Thus, we have
w(z,t) = v(y,t)] < etz —y|. (6.5.1)
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We now are ready to establish the continuity of v(z,t). Let (x1,t1) € U be
arbitrarily close to (2, o). We have

[v(zo, to) — v(z1,t1)| < |v(@o, to) — v(x(t1, 0, o), 1)
+ |U(l‘(t1,t0,l‘0),t1) — U(Io,t1)|
+ |’U(Z‘0,t1) — ’U(l‘h t1)|. (6.5.2)

It follows from
|z(t1,t0, 2o) — wo| < Klt1 — tof

that when |1 — to] is sufficiently small, we have x(t1, to, x9) € U. Hence, the second
and third terms in (6.5.2) are small in view of (6.5.1). To obtain an estimate for the
first term, we first let tg > ¢; and set v(xg,t0) = |2(tzy, o, To)|. If t5, < t1 thenit
is true that

v(zo,tog) = min{\x(T, to,xo)|: 7 < to}
= min {|z(7, %o, z0)|: T < t1}
= U(,I(tl,to,,ro),tl).

If ¢,, is between t; and ¢, we have that
|2 (tzy, to, 20)| = v(zo,t0) < v(x(t1,t0, 20),t1) < |x(t1,to, Zo)|-
Thus,

[v(zo,t0) — v(z(t1, to, zo), t1)| < |2(twe, to, To) — x(t1, to, xo)| < Kl|t1 — tol.
(6.5.3)

When ¢y < t1, it can be shown similarly as above that (6.5.3) holds. Thus, we have
shown that v(z, t) is continuous.

Clearly, 6(|z|) < v(x,t) < |2| and v(p, is negative semidefinite due to the fact
that v(z(t, to, o), t) is nonincreasing.

The proof is completed. ]

In the next result we address the uniform asymptotic stability of the equilibrium
x. = 0 for (E).

Theorem 6.5.2 Assume that for every initial condition resulting in a solution of
(E), the solution is unique. Assume that the equilibrium z. = 0 is uniformly
asymptotically stable. Then there exists a positive definite and decrescent function
v € C[B(r) x RT,R] for some r > 0, where B(r) C €, such that ’UEE) is negative
definite.

Proof . This result is a consequence of Theorem 3.6.4 and the continuity of the solu-
tions of (£) with respect to initial conditions. O
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The next result, which addresses the exponential stability of the equilibrium z, =0
for (), is not symmetric to the exponential stability theorem given in Theorem 6.2.4.
Nevertheless, this result does provide a set of necessary conditions for exponential
stability.

Theorem 6.5.3 Assume that for every initial condition resulting in a solution of (E),
the solution is unique. Assume that the equilibrium x. = 0 is exponentially stable.
Then there exists a positive definite and decrescent function v € C[B(r) x R*,R]
for some r > 0, where B(r) C €2, such that v(p, (z,t) < —cv(z, ) for all (z,t) €
B(r) x R, where ¢ > 0 is a constant.

Proof . This result is a consequence of Theorem 3.6.5 and the continuity of the solu-
tions of (£) with respect to initial conditions. O

We emphasize that converse theorems for ordinary differential equations for uni-
form boundedness, uniform ultimate boundedness, uniform asymptotic stability in the
large, exponential stability in the large, and instability can also be established.

B. Some refinements

By imposing appropriate restrictions on the function f in (E), it is possible to re-
fine the converse theorems. For example, when f(¢t,2) = f(z) then it turns out
(similarly as in the case of Theorems 4.1.3 and 4.1.4) that the Lyapunov func-
tions for the preceding results are time invariant (i.e., v(x,t) = v(x)). (We ad-
dress this in Chapter 7.) Similarly, for the case of periodic systems (where in (E),
ft,x) = f(t+ T,x) forallt € R, x € R™ for some T' > 0), the Lyapunov func-
tions in the preceding converse theorems are also periodic with the same period T’
(i.e., v(z,t) = v(z,t + T) for the same T > 0, z € R™). (We address this also in
Chapter 7.)

In the present subsection we first identify conditions on f in (E) that yield contin-
uously differentiable v-functions in the converse theorems. We present only a sample
result. In the proof of this result we require the following two preliminary results.
(In these results, we use the notation f, (¢, z) = (0f/0x)(t,x).)

Lemma 6.5.1 Let f,0f/0x; € C[RT x B(r),R"],i = 1,...,n. Then there exists a
function ) € C*[R™, R*] such that ¢/(0) = 0, d2(t)/dt > 0, and such that s = v (¢)

transforms the equation
dz

into p
X * *
% = f (Sax) (E )
where |V f*(s,z)| < 1forall (s,z) € Rt x B(r) with
of* of*
Vf*(s,x)é 8;(8’%)’“"%(8’%)
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Moreover, if v(z, s) is a C*-smooth function such that V(- (@, 5) is negative definite,
then for v(z, t) = v(z, ¥ (1)), V) (2, 1) is negative definite.

Proof . Pick a positive and continuous function F such that |(9f/0z)(¢t, z)| < F(t)
forall (t,z) € RT x B(r). We can assume that F'(t) > 1 for all ¢ > 0. Define

o(t) = /0 Fv)dv

and define W as the inverse function ¥ = ¢)~1. Define s = v(t) so that (E) becomes
(E*) with

. B f(\Il(s),x)
e )
Clearly, for all (t,z) € RT x B(r) we have
)| = || frene) < T =1

If v(x, s) has a negative definite derivative with respect to system (£*), then define
0(@,t) = v(x,1(t)). There is a function ¢y € K such that v ;. (2,t) < =1 (|z]).
Thus

Uiy (@, t) = vs(x, ()0 (1) + Vo(z, () f(t, 2)

= 0 OV + Vol vi) s P
= F()v(g-) (2, ¥(1))
< V(g (@, (1))
< = (fz)).
Thus v( ;) (¢, z) is also negative definite. O

Lemma 6.5.2 Let ¢(t) be a positive, continuous function defined for all ¢ > 0 and
satisfying g(t) — 0 as ¢ — oo. Let h(t) be a positive, continuous, monotone
nondecreasing function defined for all ¢ > 0. Then there exists a function G(u)
defined for v > 0, positive for u > 0, continuous, increasing, having an increasing,
continuous derivative G, and such that G(0) = G(0) = 0, and such that for any a > 0
and any continuous function ¢g*(¢) which satisfies 0 < g*(t) < ag(t) the integrals

/ G(g*(t))ds and / G(g* (t))h(t)dt (6.5.4)
0 0
converge uniformly in g*.

Proof . We first construct a function w(t) defined for ¢ > 0 that is continuous and
decreasing and satisfies u(t) — 0 ast — oo, and u(t) — oo as t — 0T such that for
any a > 0 there exists a T'(a) with the property that if ¢ > T'(a) then ag(t) < u(t).
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Pick a sequence {t,,} such thatt; > 1, t;,41 > ¢, + 1, and such that if ¢ > ¢,
then g(t) < (m+1)~2. Define u(t,,) = m~*, u(t) linear between the t,,s and such
that u(t) = (t1/t)? on 0 < t < t;, where p is chosen so large that () < u(t]).
Fort,, <t <t,,+1 we have

ag(t) <a(m+1)"% and w(t)> (m+1)"*
so that
ag(t) < u(t)a(m + 1)~ <u(t)

as soon as m is larger than [a], the integer part of a. Thus we can take T'(a) = [al.
Define F'(u) to be the inverse function of «(¢) and define

w efF(s)
G(u):/o h(T(S))ds. (6.5.5)

Because F' is continuous and h is positive, the integrand in (6.5.5) is continuous on
0 < u < ooand F(u) — oo as u — 0F. Hence the integral exists and defines a
function G € C*[RT,RT].

Fix a > 0 and choose a continuous function g* such that 0 < ¢g*(¢) < ag(t). For
t > T(a) we have 0 < ¢g*(t) < u(t) or F(g*(u)) > t. Thus

o—Flg" () ot
WEG ) = R 2T

Hence the uniform convergence of the second integral in (6.5.4) is clear.
The tail of the first integral in (6.5.4) can be estimated by

00 u(t) efF(s)
ds |dt.
/T(a) (~/0 h(O) )

Because u(t) is piecewise C* on 0 < t < 0o, we can change variables from u to s in
the inner integral to compute

o (L7 00) = o, (L o)
< h(0)~! /TZ) (/too e_sds> dt

< 0

G(g")) =

because 0 > u(t) > —1. Hence the uniform convergence of the first integral in
(6.5.4) is also clear. O

In our next result we make use of the fact that if f is continuously differentiable,
then it is Lipschitz continuous and if |0f/0x| < L for some L > 0, then L is a
Lipschitz constant for f.
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Theorem 6.5.4 Assume that f, 8f/dz; € C[RT x B(r),R"],: = 1,...,n for
some r > 0. Assume that . = 0 is an equilibrium of (E) which is uniformly
asymptotically stable. Then there exists a function v € C'[B(ry) x RT,RT] for
some r; > 0 such that v is positive definite and decrescent and such that vE B) is
negative definite.

Proof. By Lemma 6.5.1 we can assume without loss of generality that |0f/0z| < 1
onR* x B(r). Forall zg, yo € B(r),to > 0, subtract the integral equations satisfied
by @(t, to, zo) and ¢(t, to, yo) and estimate as follows,

‘(p(t,to,l‘o) - @(t7t0,y0)| < ‘xO - y0|

+/t |f(37 (p(t,to,l‘o)) - f(S, @(t7t07y0))|d8

t
S |x0 - y0| +\/ L|g0(t,t07l’()) - @(t7t07y0)|d5

to

for all ¢ > t( for which the solutions exist. Apply the Gronwall inequality to obtain

|Qﬁ(t,t0,f£0) - @(ta to, y0)| < |£C0 - yo‘et#@

Define h(t) = e'.
Pick 71 such that 0 < r; < r and such that if (to,2z0) € R* x B(ry), then
©(t,to,x0) € B(r) for all t > ¢y and such that

lim ¢(t 4 to,to,0) = 0
t—o0

uniformly for (¢g, zo) € RT x B(rq). This is possible because . = 0 is uniformly
asymptotically stable. Let g(s) be a positive continuous function such that g(s) — 0
as s — oo, and such that |p(s + t,t,2)[?> < g(s)ons > 0,t > 0,z € B(ry).

Let G be the function given by Lemma 6.5.2 and define

v(z,t) = /000 G(lo(s +t,t,z)*)ds.

Clearly v is defined on B(r;) x R*. The integral converges uniformly in (x,t) €
B(r1) x R, therefore v is also continuous. If D = 9/dz1, Dy(s + t,t,x) must
satisfy the linear equation

dy

s :fz(s,go(s+t,t,x))y; y(t) = (1,0,...,0)T

(refer to Miller and Michel [19, p. 69, Theorem 2.7.1]). Thus |Dp(s+t,t, z)| < ke®
for some constant k¥ > 1. Thus

8’0 e 2 64,0
—_ — 2 —_r
By &) /O Glp(s+1t,t,2)]%) ( pls+tt,2) 5 - <s+t,t,x)) ds
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exists and is continuous and

xt‘ / G ))kie®ds < oo
8I1

for some constant k; > 0. A similar argument can be used on the other partial
derivatives. Hence v € C'[B(r1) x RT,R¥].
Because v, exists and is bounded by some number B whereas v(0, t) is zero, then
clearly
0 <w(z,t) =wv(x,t) —v(0,t) < Blx|.

Thus, v is decrescent. To see that v is positive definite, first find M; > 0 such that
|f(t,z)] < Myl|z| forall (¢,z) € RT X B(ry). For M = Mjr; we have
t+s
lo(t +s5,t,2) — a §/ | f(u, o(u, t,2))|du < Ms.
t

Thus, for 0 < s < |z|/(2M) we have |o(t + s,t,x)| > |x|/2 and

jal/(20)
v(z,t) = /O G(lp(t +s,t,2)*)ds > (||/(2M)) G(|2|?/4).

This proves that v is positive definite.
To compute UE By We replace x by a solution (¢, g, xo). Because by uniqueness

Sp(t =+ 87t7 @(t,to,ﬂ?o)) = @(t + 57t07x0)’ then

oot o, 20), £) = / Gt + 5, to, 20)|?) ds = / G (lp(s, to, o) [2)ds,
0 t
and
(g (@(t, to, 20), 1) = =G (|e(t, to, 20)[?).

Thus, v( (o, to) = —G(|zo]?). O

Next, as we noted earlier in Subsection 6.5A, the converse theorem for exponential
stability presented in Theorem 6.5.3 is not symmetric to the exponential stability
theorem given in Theorem 6.2.4. However, by imposing additional restrictions, we
are able to establish a converse result for exponential stability that is nearly symmetric

to the stability result given in Theorem 6.2.4, as demonstrated in the last result of this
subsection.

Theorem 6.5.5 Assume that for the system
&= f(t,x) (E)

€ C[RT x Q,R"], where  is a neighborhood of the origin in R, and assume that
f satisfies the Lipschitz condition

|f(t,:E) _.f(tvy)| < L|x—y}
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for all z,y € B(r),r > 0, B(r) C Q, and for all t € R™. Assume that the
equilibrium x, = 0 of (E) is exponentially stable in the sense that

lp(t, to, x0)| < Blxg|e™*tt0) (6.5.6)

for all t > t(, whenever |zo| < r, where B and « are positive constants. Then there
exist a function v € C[B(r) x R*,R], and three positive constants ¢y, ¢, and c3
such that

cilz]? < w(a,t) < eolz)?

vy (2,t) < —cslz|?

Proof . Let the function v(z, t) be given by

to+T
v(xo,t0) = / lo(t, o, zo)|*dt, (6.5.7)

to

for all (z9,t9) € B(r) x RT, where T' = In(B+/2/a) is a constant.
First we need to obtain a lower bound for |p(t,to,x0)|. To this end, we let
y(s) = z(—s), s € (—oo, —tg]. Then

and for an arbitrary ¢t > ¢,
y(s) =y(—t) + / —f(r,y(r))dr
—t

forall s € [—t, —to]. From the Lipschitz condition it is easily obtained that | f (¢, z)|=
|f(t,z) — f(t,0)] < L|z|. Thus,

()] < lu(—0)] + / iLly(T)dT.

By the Gronwall inequality, we have
ly(s)] < ly(=t)le"H0.
In particular, at s = —ty, we have
jz(to)| = [y(—to)| < |a(t)]e" "),

which in turn yields |2(t)| > |2z(to)|e~“(*~*) for all t > t,.
We now have the following estimates for the v-function,

to+T T
v(xg,to) < / |zg|2B2e 2t t0) gy — \:vg\zBQ/ e 2ot = colzo)?,
0

to
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and

to+T T
v(xg,to) > / |z |2e~2E (1) gt = \x0\2/ e 2tat = ¢y |zo |
to 0

Along the solution (¢, tg, zo) of (E), we have

/

iy (p(ts to, 20), 1) = —|p(t, to, 20)|* + [(t + T to, 20)[?

t+T d
+/ %|@(T7t,@(t,t0,xo))‘2dt-
t

Because
o(1,t+ At,o(t + At to, m0)) = @(T, 10, 0) = @(7, ¢, ¢(t, Lo, 20)),
the last term in the above equation is zero. Additionally, it follows from (6.5.6) that
lo(t + T, to, z0)| = |e(t + T, t, p(t, to, z0))| < Ble(t, to, zo)l.
Hence,
oy (Pl to,0), 1) < —lip(t, to, o) + BTt + T, to, o)
= 2 lolt.to, 7o)/

This completes the proof of the theorem. |

6.6 Converse Theorems for Ordinary Difference
Equations
In the present section we establish sample converse results for the principal

Lyapunov stability and boundedness results for ordinary difference equations pre-
sented in Section 6.3. We recall the system of ordinary difference equations given by

w(k+1) = f(k,2(k)) (D)

where k € N, z(k) € Q C R", and f: N x Q — Q. We assume that 2 is an open
connected set and that 0 € (). We assume that z, = 0 is an equilibrium for (D).
In our first result we address uniform stability.

Theorem 6.6.1 Assume that the equilibrium 2, = 0 for (D) is uniformly stable.
Then there exists a function v: B(r) x N — R* for some r > 0, B(r) C €2, which
satisfies the following conditions.

(i) There exist functions 1, 12 € K such that

r(lz]) < vl k) < a(|z])
forall (z,k) € B(r) x N.
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(i) Apyv(z, k) < 0forall (z,k) € B(r) x N.
Proof . This result is a direct consequence of Theorem 3.7.1. O

In the next result we address the uniform asymptotic stability of the equilibrium
x. = 0 for (D). We recall that the motions determined by (D) are unique.

Theorem 6.6.2 Assume that the equilibrium . = 0 of (D) is uniformly asymptot-
ically stable. Then there exists a function v: B(r) x N — R™T for some 7 > 0,
B(r) C €, that satisfies the following conditions.

(i) There exist functions 1,12 € K such that

U1(lz)) <ol k) < a(|z])
forall (z,k) € B(r) x N.
(ii) There exists a function 3 € K such that
Apyv(z, k) < —s(lz|)
forall (z,k) € B(r) x N.

Proof . This result is a direct consequence of Theorem 3.7.2. O

The next result, which address the exponential stability of the equilibrium z. = 0
for (E), is not symmetric to the exponential stability theorem given in Theorem
6.3.1(d). Nevertheless, this result does provide a set of necessary conditions for
exponential stability.

Theorem 6.6.3 Assume that the equilibrium z. = 0 of (D) is exponentially stable.
Then there exists a function v: B(r) x N — R™ for some r > 0, B(r) C €, that
satisfies the following conditions.

(i) There exist functions 11,1 € K such that

U1(lz]) <ol k) < a(|z])

forall (z,k) € B(r) x N.
(i1) There exists a positive constant ¢ such that

Apyv(z, k) < —cv(z, k)

forall (z,k) € B(r) x N.

Proof . This result is a direct consequence of Theorem 3.7.3. O

We emphasize that converse theorems for ordinary difference equations can also be
established for uniform boundedness, uniform ultimate boundedness, uniform asymp-
totic stability in the large, exponential stability in the large, and instability.
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6.7 Converse Theorems for Finite-Dimensional DDS

In this section we present sample converse theorems for the stability and boundedness
results of Section 6.4 for finite-dimensional discontinuous dynamical systems. In the
first subsection we present results involving Lyapunov functions that in general need
not be continuous. In the second subsection we show that under reasonable additional
assumptions, the Lyapunov functions for the converse theorems are continuous.

A. Local results

We first address the uniform stability of the equilibrium z. = 0 for finite-
dimensional DDS.

Theorem 6.7.1 Let{R",R", A, S} be afinite-dimensional discontinuous dynamical
system (for short, a finite-dimensional DDS S) for which Assumption 3.5.1 holds.
Assume that the equilibrium x. = 0 is uniformly stable. Then there exists a function
v: B(r) x Rt — R, B(r) C Q, for some r > 0, that satisfies the following
conditions.

(i) There exist two functions 1,1 € K such that

Ur(fa]) < v(w,t) < o(|al)

forall (z,t) € B(r) x RT.
(i) For every ¢(-,to,z0) € S with zg € B(r), v(p(t, to, zo), t) is nonincreasing
forall t > tg.

Proof . This result is a direct consequence of Theorem 3.5.1. a

In the next result we address the uniform asymptotic stability of the equilibrium
. = 0 of finite-dimensional DDS.

Theorem 6.7.2 Let {R*,R", A, S} be a finite-dimensional DDS for which Assump-
tions 3.5.1 and 3.5.2 hold. Assume that for every (g, 79) € RT x A there exists a
unique (-, to, o) € S. Assume that the equilibrium z. = 0 is uniformly asymptoti-
cally stable. Then there exists a function v: B(r) x Rt — RT, B(r) C Q, for some
r > 0, that satisfies the following conditions.

(i) There exist two functions 1,12 € K such that

Ur(lz]) < v(x,t) < alz])

forall (z,t) € B(r) x R*.
(ii) There exists a function 13 € K such that for all ¢(-, tg, xg) € S (to = 70), We
have

Dv(<p(7_ka to, CC()), Tk) < *¢3(|<P(Tk, to, $0)|),
k € N, where zy € B(r) and Dv is defined in (6.4.4).
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(iii) There exists a function f € C[R*,R*] such that f(0) = 0 and such that

’U(SO(L t07 fL'()), t) S f(U(QO(T]ﬁ t07 $0)7 Tk))
forevery (-, tg, o) € S, t € [Tk, Thr1), k € Nwithxg € B(r) andty € RT.
Proof . This result is a direct consequence of Theorem 3.5.2. O

Next, we consider the exponential stability of the equilibrium x. = 0 of the finite-
dimensional DDS.

Theorem 6.7.3 Let {R*,R™, A, S} be a finite-dimensional DDS for which Assump-
tions 3.5.1 and 3.5.2 hold. Assume that for every (to,zg) € RT x A there exists a
unique ¢(-, to,xo) € S. Assume that the equilibrium z, = 0 for system S is expo-
nentially stable. Then there exists a function v: B(r) x R™ — R*, B(r) C £, for
some r > 0, that satisfies the following conditions.

(i) There exist two functions 11, 12 € K such that

Y1(lz]) < v(w,t) < dha(|])
forall (z,t) € B(r) x R*.
(ii) There exists a constant ¢ > 0 such that for all ¢(-, g, xg) € S (to = 70),
DU(@(TIC; to, zo)’ Tk’) < 701}(50(7—/67 to, x0)7 Tk)a
forall k € N, ¢y € RT, 29 € B(r), and Dv is defined in (6.4.4).
(iii) There exists a function f € C[R*,R*| with f(0) = 0 and
f(ry=o0(r? asr—0"

for some constant ¢ > 0 such that

v(p(t, to, 0),t) < f(v(e(Tk,t0,%0), Tk))

forevery (-, tg, o) € S,t € [Tk, Ths1), k € Nwithxg € B(r) andty € RT.
Proof . This result is a direct consequence of Theorem 3.5.3. O

We emphasize that converse theorems for finite-dimensional DDS for uniform
boundedness, uniform ultimate boundedness, uniform asymptotic stability in the
large, exponential stability in the large, and instability can also be established.

B. Some refinements

The converse theorems presented in the preceding subsection involve Lyapunov func-
tions that need not necessarily be continuous. In the present subsection, we show that
under some additional mild assumptions, the Lyapunov functions for converse theo-
rems are continuous.

The following concept of continuous dependence of solution on initial conditions
for finite-dimensional DDS is used as a sufficient condition for the continuity of the
Lyapunov functions.
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Definition 6.7.1 Suppose {zo,,} C A C R, {70,,} C R, and xg,, — 20 € A
and 79, — 7o as m — oo. Assume that the motions of the dynamical system
{R*T,R", A, S} are given by

p(t, 70, 20) = p*) (¢, 7y, 1), t € [Tk, Thy1),
and
pm(t7 Tom xOm) = Pgi)(@ Tkm mkm), te [Tkma T(k+1)m)7

k€N, where p(*) (t, Tk, xx) and pg,]f) (t, Tkm, Tkm ) are continuous for all t € R+ with

P8 (7, T 1) = (70, 70, 20) = g, and P (T Thoms hom) = P (Thoms Toms Tom)
= Tkm-
The motions in S are said to be continuous with respect to initial conditions if
(1) Tgm — T asm — oo, for all £ € N; and
(2) for every compact set K CR™ and every & >0 there exists an L=L(K,e)>0
such that for all t € K and k € N such that K N [, Tk4+1) # 0,

|P5§) (t, Thm Tam) — PP (¢, 7%, l‘k»)| <e

whenever m > L. O

Theorem 6.7.4 If in addition to the assumptions given in Theorem 6.7.2, the motions
in .S are continuous with respect to initial conditions (in the sense of Definition 6.7.1),
then there exists a continuous Lyapunov function that satisfies the conditions of
Theorem 6.7.2.

Proof . The proof of this result is a direct consequence of Theorem 3.5.5. ]

Converse theorems for DDS with continuous Lyapunov functions for other Lya-
punov stability and boundedness types, which are in the spirit of Theorem 6.7.4, can
also be established.

6.8 Appendix: Some Background Material on
Differential Equations

In this section we present results concerning the continuity of solutions with respect

to initial conditions for ordinary differential equations. We require these results in

establishing the continuity of v-functions in the converse theorems for continuous

finite-dimensional dynamical systems and finite-dimensional DDS.
We consider systems of differential equations given by

i = f(t,x) (E)

where (t,z) € D, D is a domain in the (¢,x)-space (t € RT,z € R™), and f €
C[D,R"]. Associated with (E') we have the initial value problem

z = f(t,x), x(1) =€, (Ig)
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which can equivalently be expressed as

ﬂﬂ=§+/f@w@ﬂ& (1)

with noncontinuable solution ¢ () defined on interval J.
In our subsequent discussion we require “perturbed systems” characterized by a
sequence of initial value problems

x@:m+/h@wm@, (In)

with noncontinuable solutions ¢,,(¢) defined on intervals J,,. We assume that
fm € C[D,R"™], that &,, — & as m — oo and that f,,, — f uniformly on compact
subsets of D.

In the proof of the main result of the present section, we require the following
preliminary result.

Lemma 6.8.1 Let D be bounded. Suppose a solution ¢ of (I) exists on an interval
J = [r,b),oron [, b], or on the “degenerate interval” [, 7], and suppose that (¢, p(t))
does not approach 9D as t — b~ ; that is,

dist((¢, »(t)),dD) 2 inf {It = s|+1]p@) —=|: (s,2) ¢ D} >n>0 (6.8.1)

for all t € J. Suppose that {b,,,} C J is a sequence that tends to b and the solutions
©m () of (I),) are defined on [, b,,] C J and satisfy

®,, = sup{|<pm(t) —p@)]:T<t< bm} —0

as m — oo. Then there is a number ¥’ > b, where b’ depends only on 7 (in (6.8.1))
and there is a subsequence {(y,,} such that ¢, and ¢ are defined on [7, '] and
©m, — @ as j — oo uniformly on [r,b'].

Proof . Define G = {(t, ¢(t)): t € J}, the graph of ¢ over J. By hypothesis, the
distance from G to 0D is at least n = 3A > 0. Define

D(b) = {(t,x) € D: dist((t, ), G) < b}.

Then D(2A) is a compact subset of D and f is bounded there, say |f (¢, z)] < M
(M > 1) on D(2A). Because f,, — f uniformly on D(2A), it may be assumed (by
increasing the size of M) that | f,,, (¢, z)| < M on D(2A) for all m > 1. Choose my
such that for m > mg, ®,,, < A. This means that (¢, o, (t)) € D(A) forallm > my
and t € [7,b,,]. Choose my > myg so that if m > mq, then b — b,,, < A/(4M).
Defined’ = b+ A/(4M).

Fix m > my. Because (t, o (t)) € D(A) on [7,by], then ¢, ()] < M on
[T, byn] and until such time as (¢, ¢,,,(t)) leaves D(2A). Hence

|‘Pm(t) - @m(bm” < M|t - bm‘ < MA/(2M) = A/2
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for as long as both (¢, ¢.,(t)) € D(2A) and |t — b,,,| < A/(2M). Thus (¢, o (t)) €
D(2A)onT <t <b, + A/(2M). Moreover, b,, + A/(2M) > I/ when m is large.

Thus, it has been shown that {,,,: m > m;} is a uniformly bounded family of
functions and each is Lipschitz continuous with Lipschitz constant M on [7,']. By
Ascoli’s Lemma (see Problem 2.14.7), a subsequence {¢,,, } will converge uniformly
to a limit ¢. The arguments used at the end of the proof of Theorem 2.3.1 (refer to
the hint in Problem 2.14.8) show that

lim f(s ©m; (s))ds —/ f(s, (s

Jj—o0

Thus, the limit of

%NF%W+/f@%ﬂm%+/Um@%mwfﬂwwﬁmﬁ

=£+/f@w@ﬁk

We are now in a position to prove the following result.

as j — 00, is

Theorem 6.8.1 Let f, f,,, € C[D,R"], let &,, — &, and let f,,, — f uniformly on
compact subsets of D. If {(,,} is a sequence of noncontinuable solutions of (I,,,)
defined on intervals J,,, then there is a subsequence {mj} and a noncontinuable
solution ¢ of (I) defined on an interval J, containing 7 such that

(i) limj o inf Jp,, O Jo; and
(i) ¢m; —  uniformly on compact subsets of Jg as j — oc.

If in addition, the solution of () is unique, then the entire sequence {,, } tends
to ¢ uniformly for £ on compact subsets of Jj.

Proof. With J = [r, 7] (a single point) and b,, = 7 for all m > 1 apply Lemma
6.8.1. (If D is not bounded, use a subdomain.) Thus, there is a subsequence of {©,, }
that converges uniformly to a limit function ¢ on some interval [r,b'], b > 7. Let
B be the supremum of these numbers b’. If B; = 400, choose b; to be any fixed
b'. If By < o0, let by be a number b; > 7 such that By — b’ < 1. Let {¢1,,} be a
subsequence of {¢,, } that converges uniformly on [7, b;].

Suppose for induction that we are given {@gm}, bk, Br > by with g, — @
uniformly on [r,b] as m — oo. Define By as the supremum of all numbers
b’ > by such that a subsequence of { @y, } will converge uniformly on [r, b']. Clearly
b < Bk+1 < Bg. If Bk+1 = +00, ple bk+1 > b + 1 and if Bk+1 < 00, ple
bk+1 so that by, < bk+1 < Bk+1 and bk+1 > Bk+1 — 1/(k + 1). Let {gok+17m} be
a subsequence of {y, } that converges uniformly on [7, by11] to a limit . Clearly,
by possibly deleting finitely many terms of the new subsequence, we can assume
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without loss of generality that [@g1+1,m (t) — ¢(t)] < 1/(k+ 1) fort € [, b1] and
m>k+ 1.

Because {by} is monotonically increasing, it has a limit b < +oc0. Define Jy =
[7,0). The diagonal sequence {@.,, } will eventually become a subsequence of each
sequence {@rm,}. Hence ¢mm — ¢ as m — oo with convergence uniform on
compact subsets of Jy. By the argument used at the end of the proof of Lemma 6.8.1,
the limit ¢ must be a solution of (Ig).

If b = oo, then ¢ is clearly noncontinuable. If b < oo, then this means that By,
tends to b from above. If ¢ could be continued to the right past b (i.e., if (¢, ¢(t))
stays in a compact subset of D as t — b™), then by Lemma 6.8.1 there would be a
number &’ > b, a continuation of ¢, and a subsequence of {,,,, } that would converge
uniformly on [7, '] to . Because b’ > b and By, — b, then for sufficiently large &
(i.e., when b’ > Bjy,), this would contradict the definition of Bj. Hence, ¢ must be
noncontinuable. A similar argument works for ¢ < 7, therefore parts (i) and (ii) are
proved.

Now assume that the solution of (1) is unique. If the entire sequence {¢,, } does
not converge to ¢ uniformly on compact subsets of .Jy, then there is a compact set
K C Jy,ane > 0, asequence {t;} C K, and a subsequence {®,,} such that

|omi(tr) — o(te)| > €. (6.8.2)

By the part of the present theorem that has already been proved, there is a subsequence,
we still call it {,,,% } in order to avoid a proliferation of subscripts, that converges
uniformly on compact subsets of an interval .J’ to a solution 1) of (/). By uniqueness
J' = Jyand ¢ = . Thus @,,x — @ as k — oo uniformly on K C Jy which
contradicts (6.8.2). O

Using Theorem 6.8.1, we now can prove the following result.
Corollary 6.8.1 Consider the system
&= f(t, ) (E)
wheret € RT x € , Qis an open connected subset of R, and f € C[RT x Q, R"].
Assume that for each (to, 7o) € RT X, there exists a unique noncontinuable solution
©(t, to, xo) withinitial condition ¢ (ty) = xo. Then @ is continuous for (¢, tg, zg) € S
where

S é {(t,to,xo) € RJF X R+ x Oz(to,l‘o) <t < 6(t0,$0)},

where ¢(+, tg, xg) is defined on («, 8), & = a(to,xp) is upper semicontinuous in
(to, o) € RT x Qand 3 = B(to, zo) is lower semicontinuous in (tg, zg) € RT x Q.

Proof . Define ¥(t,to, o) = @(t + to, Lo, o) so that ¢ solves

y=rt+toy),  y(0)=xo.
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Let (t1/m, tom, Zom) be a sequence in S that tends to a limit (¢, %9, z9) € S. By
Theorem 6.8.1 it follows that

1/)(757f0m71’0m) - Q/J(t,to,;to) as m — oo

uniformly for ¢ in compact subsets of (g, z9) — tg < t < B(to,x0) — to and in
particular uniformly in m for ¢ = ¢;. Therefore, we see that

|©(t1ms tom, Tom) — (1, to, 20)| < |@(t1ms tom, Tom) — ©(tim, to, Z0)|
+ |g0(t1m,t0,a;0) — ga(tl,to,xo)| — 0 as m — oo.

This proves that ¢ is continuous on S.
To prove the remainder of the conclusions, we note that by Theorem 6.8.1(1), if
Jpm is the interval (a(tom, Zom )s B(tom, Tom)), then

lim inf.J,, D Jy.

m—00

The remaining assertions follow immediately. O

6.9 Notes and References

The various concepts of stability of an equilibrium for systems determined by ordinary
differential equations, without reference to uniformity, were originally formulated by
A. M. Lyapunov in 1892 [12]. The distinction between stability and uniform stability
(resp., asymptotic stability and uniform asymptotic stability) was introduced in the
process of establishing converse theorems (e.g., Malkin [13] and Massera [14]).

There are many interesting and excellent texts and monographs dealing with the
stability theory of dynamical systems determined by ordinary differential equations
(e.g., Hahn [4], Hale [5], Krasovskii [8], Lakshmikantham and Leela [9], Yoshizawa
[22], and Zubov [23]). Excellent references that emphasize engineering applications
include Khalil [7] and Vidyasagar [20]. Our presentation in Sections 6.2 and 6.5
concerning the stability of an equilibrium and the boundedness of solutions was
greatly influenced by the presentations in Hahn [4], Miller and Michel [19], and
Michel et al. [18]. For more complete treatments of converse theorems for ordinary
differential equations, refer to Hahn [4, Chapter 6] and Yoshizawa [22, Chapter 5].

Our treatment in Sections 6.3 and 6.6 of the stability of an equilibrium and the
boundedness of solutions of discrete-time dynamical systems determined by ordinary
difference equations is more complete than what is usually found in texts. We note
here that in the converse theorems presented in Section 6.6 we do not have any
restrictions on the function f in (D), whereas the results in the literature usually
require f to be continuous (see, e.g., [6]), globally Lipschitz continuous (see, e.g., [1]
and [10]), or bijective (see, e.g., [3]). A good source on the stability of discrete-time
systems determined by difference equations is the monograph by LaSalle [11]. Refer
also to Antsaklis and Michel [2] and Michel et al. [18].
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The material given in Sections 6.4 and 6.7 is perhaps the first systematic presen-
tation of the stability and boundedness results of finite-dimensional discontinuous
dynamical systems in book form. The first results of the type presented in Sections
6.4 and 6.7 were first addressed in Ye et al. [21]. For subsequent results on this
subject, refer to Michel [15], Michel and Hu [17], and Michel et al. [18].

The results presented in Section 6.8 concerning the continuity of solutions of
ordinary differential equations with respect to initial conditions are based on similar
results given in Miller and Michel [19]. For additional results concerning this topic,
refer to [19].

6.10 Problems

Problem 6.10.1 Show that if the equilibrium xz. = 0 of (£) satisfies (6.1.6) for a
single initial time ty > 0 when (6.1.7) is true, then it also satisfies this condition at
every other initial time t{ > to. O

Problem 6.10.2 Prove that if f(¢,x.) = 0 for all # € RT, then ., is an equilibrium
for (F).

Prove that if (F) possesses a unique solution for every (tg, zo) € RT x 2, where
) is an open connected set and 0 € €2, then . = 0 is an equilibrium for (£) if and
only if f(¢,0) = 0 forall t € R*. O

Problem 6.10.3 Prove relation (6.1.3). Prove relation (6.1.4). O

Problem 6.10.4 Prove that . € (2 is an equilibrium of (D) if and only if for all
kEeN, z. = f(k,z.).

Similarly as in the case of ordinary differential equations, prove that if (D) has an
equilibrium at z., we may assume without loss of generality that the equilibrium is

at the origin. O
Problem 6.10.5 Prove Theorem 6.1.2. O
Problem 6.10.6 Prove Theorem 6.1.3. O

Problem 6.10.7 Determine all the equilibrium points of the following differential
equations (or systems of differential equations).

(a) y =siny.

b) ¥ =y*(y* — 3y +2).

() &+ (22— 1)+ =0.

T1 =22+ 112

@ { BT

() £+ 2 +sinx = 0.

() &+ +x(x?—4)=0.

(g) ©=a(l+t*)"'z,a > 0isaconstant or a < 0 is a constant. O
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Problem 6.10.8 Determine the stability properties of the systems given in Problem
6.10.7. O

Problem 6.10.9 Consider the scalar equation
& = —g?"t! (6.10.1)

where k£ € N. Prove that for arbitrary n, the equilibrium z. = 0 of (6.10.1) is
uniformly asymptotically stable in the large. Prove that when n = 0, the equilibrium
z. = 0 is exponentially stable in the large. Prove that when n > 1, the equilibrium
e = 0 of system (6.10.1) is not exponentially stable. a

Problem 6.10.10 Consider the system

L 2 2
B =2z — 3 (2] M x2)2 (6.10.2)
&9 = —x1 — wo(x] + 23).

Prove that the equilibrium x. = 0 of (6.10.2) is not exponentially stable. a

Problem 6.10.11 Let f € C'[RT x R™,R"] with f(¢,0) = 0 for all ¢ > 0, and
assume that the eigenvalues \;(¢,x), 7 = 1,...,n, of the symmetric matrix

J(t,l’) = %[fz(tv“c) + fx(ta x)T]

satisfy \;(t,2) < —¢,i=1,...,nforall ({,z) € RT x R",
(i) If ¢ = 0, show that the trivial solution of (F) is stable and that the solutions of
(E) are uniformly bounded.

(i1) If ¢ > 0, show that the equilibrium x. = 0 of (E) is exponentially stable in the
large. O

Problem 6.10.12 Investigate the boundedness, uniform boundedness, and uniform
ultimate boundedness of the solutions for each of the following systems.

(@) &+ +x(z? —4)=0.

(b) &+ 4+ a3 =sint.

© { i1 = w2 + (1122) /(1 + 21 + 23)
x% = —2x1 + 2x9 + arctan x;.
i = a3 + a1 (22 + 1)

(d) ¢ @2 =—2% + z2(z} +2) O
iy = —(w3)*/®.

Problem 6.10.13 Analyze the stability of the equilibrium (z, &) = 0 of the system
2™ 4 g(x) =0

where n > 2 is odd and xg(z) > 0 when x # 0. O
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Hint: For n = 2m + 1, use the Lyapunov function

= Z(_l)kxk@mﬂ—k + ()" 72n+1/2
k=1

Problem 6.10.14 Prove Corollary 6.2.2

Problem 6.10.15 Determine all the equilibrium points of the following discrete-time
systems given by

@ { I A

k+1) = xl(k)+|xz( )l-
(k) =

(
(
®) { wo(k+1
(
(

z1(k+1) = x1(k)x2
= 21 (k)22 (k) +
= sat(z (k )+2x2( ))

—_— — — — ~— —

(C) { X k+].
T

ok +1 sat( ( ) + 2.’132(](5))

Problem 6.10.16 Consider the system given by

azo (k)
B T

b$1(/€)
ok +1) = 1+ xo(k)?’

where a and b are constants with a®> < 1 and b> < 1. Show that the equilibrium
ze = (z1,22)T = 0 is uniformly asymptotically stable. O

Problem 6.10.17 Prove that the equilibrium z. = 0 of (6.3.8) is not exponentially
stable. o

Problem 6.10.18 Analyze the stability of the equilibrium x, = 0 of the system

—sinf cos@

x(k+1)_[cos€ sinﬁ] i

where 0 is fixed. O

Problem 6.10.19 Investigate the boundedness, uniform boundedness, and uniform
ultimate boundedness of the solutions for the following system

{ Il(k} —+ 1) = 705.%1(]6) —+ 051‘2(1€) + COS(ka)
zo(k + 1) = —0.5z1 (k) — 0.522(k) + sin(kwo),

where wy is fixed. ]

Problem 6.10.20 Prove Proposition 6.4.3. O
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Problem 6.10.21 Consider the discontinuous dynamical system given by

{ i(t) = Ap(t)z(t), Tk S < Thi (6.10.3)

x(t) = By(t™)x(t™), t = Tg+1

where t € RT, z(t) € R", Ay € C[RT,R™*™], and By, € C[RT,R™*"]. Assume
that ||Ax(t)]| < My for all t > 0, where M), > 0 is a constant, ¥ € N, and
|Br(t)|| < Ly for all t > 0, where Ly > 0 is a constant.

Prove that x. = 0 is an equilibrium of (6.10.3). Establish conditions for the
uniform stability, uniform asymptotic stability in the large, and exponential stability
in the large of the equilibrium z. = 0 of (6.10.3). O

Problem 6.10.22 Without making reference to the results given in Chapter 3, prove
Theorems 6.2.1-6.2.10 by invoking fundamental concepts. O

Problem 6.10.23 Without making reference to the results given in Chapter 3, prove
Theorems 6.3.1-6.3.5 by invoking fundamental concepts. a
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Chapter 7

Finite-Dimensional Dynamical
Systems: Specialized Results

In Chapter 6 we presented the principal stability and boundedness results for con-
tinuous, discrete-time, and discontinuous finite-dimensional dynamical systems,
including converse theorems. In the present chapter we continue our study of finite-
dimensional dynamical systems with the presentation of some important specialized
results for continuous and discrete-time dynamical systems. This chapter consists of
eight sections.

In the first section we present some general stability results concerning autonomous
and periodic systems for continuous systems and in the second section we present
some of the results from the invariance theory for differential equations and difference
equations. In the third section we consider some results that make it possible to esti-
mate the domain of attraction of an asymptotically stable equilibrium for systems de-
scribed by differential equations. In the fourth and fifth sections we concern ourselves
with the stability of systems described by linear homogeneous differential equations
and difference equations, respectively. Some of these results require knowledge of
state transition matrices, whereas other results involve Lyapunov matrix equations.
Also, in the fourth section we present stability results for linear periodic systems and
we study in detail second-order systems described by differential equations. In the
sixth section we investigate various aspects of the qualitative properties of perturbed
linear systems, including Lyapunov’s First Method (also called Lyapunov’s Indirect
Method) for continuous and discrete-time systems; existence of stable and unstable
manifolds in continuous linear perturbed systems; and stability properties of periodic
solutions in continuous perturbed linear systems. In the seventh section we present
stability results for the comparison theory for continuous and discrete-time finite-
dimensional systems. Finally, in the eighth section, we provide some background
material on differential and difference equations.

255
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7.1 Autonomous and Periodic Systems

In the present section we first show that in the case of autonomous systems,

i = f(x) (A)
and in the case of periodic systems (with period 1" > 0),
&= f(t,z),  [fltx)=[ft+T ) (P)

the stability of the equilibrium z. = 0 is equivalent to the uniform stability, and the
asymptotic stability of the equilibrium x, = 0 is equivalent to the uniform asymptotic
stability. In (A4), we assume that f € C[Q2, R"] where 2 C R™ is an open connected
set, and we assume that 0 € Q and f(0) = 0. In (P),  is defined as above and we
assume that f(¢,0) = 0 for all ¢ > 0 and that f € C[R* x Q,R"].

Because an autonomous system may be viewed as a periodic system with arbitrary
period, it suffices to prove our first two results for the case of periodic systems.

Theorem 7.1.1 Assume that for every initial condition resulting in a solution of (P)
(or of (A)), the solution is unique. If the equilibrium x, = 0 of (P) (or of (A)) is
stable, then it is uniformly stable.

Proof . Denote the solutions of (P) by ¢(t,tg,&0) with ¢(to,to,&) = &. For
purposes of contradiction, assume that the equilibrium ., = 0 of (P) is not uniformly
stable. Then there is an € > 0 and sequences {to,, } with to,, > 0, {&n }, and {¢,, }
such that g'rn - 07 t’rl’b > t0m, and |§0(tmat0m7£7n)‘ > E. Let 7(/'O'm = ka+
Tm., Where k,, is a nonnegative integer and 0 < 7, < T, and define ¢}, = ¢,, —
kI > Tp,. Then by the uniqueness of solutions and periodicity of (P), we have
Ot + kT, tom, Em) = ©(t, Tm, &m) because both of these solve (P) and satisfy the

initial condition z(7,,) = &,. Thus,

lo(try s Tms Em)| > €. (7.1.1)

We claim that the sequence ¢, — oo. Forifitdid not, then by going to a convergent
subsequence and relabeling, we could assume that 7,,, — 7% and ¢, — ¢*. Then
by continuity with respect to initial conditions, ©(t,, T, &m) — @(t*,7%,0) = 0.
This contradicts (7.1.1).

Because x. = 0 is stable by assumption, then at ¢ty = T there is a § > 0 such that
if |£] < 0 then |p(t, T, )| < e fort > T. Because &, — 0, then by continuity with
respect to initial conditions, | (T, Ty, &m)| < d for all m > m(d). But then by the
choice of § and by (7.1.1), we have

€> |90(t:<n7 T, 90(T7 Tm, gm))| = |§0(t:n’ Tms gm)‘ 2> €.
This contradiction completes the proof. O

Theorem 7.1.2 If the equilibrium x, = 0 of (P) (or of (A)) is asymptotically stable,
then it is uniformly asymptotically stable.
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Proof . The uniform stability is already proved in Theorem 7.1.1. We only need to
prove uniform attractivity. Fix ¢ > 0. By hypothesis, there is an n(7") > 0 and
a t(e,T) > 0 such that if |¢| < 7(T), then |p(t,T,&)| < e forall t > T +
t(e,T). Uniform stability and attractivity imply ¢(e, T) is independent of || < 1. By
continuity with respect to initial conditions, there is a ¢’ > 0 such that |p (T, 7, )| <
n(T)if|€] < & and 0 < 7 < T. So |p(t + T,7,€)| < cif |¢| < 8,0 <7 < T,
andt > t(e,T). Thusfor0 < 7 < T, |¢| < ¢, and t > (T — 7) + t(e,T), we have
lp(t +7,7,8)| <e. Putd(e) =08 andt(e) =t(e, T)+T. U kT <7 < (k+1)T,
then p(t,7,&) = p(t — kT, 7 — kT,§). Thus, if || < d(¢) and t > 7 + t(e), then
t—kT >7—kT +t(e) and |@(t, 7,8)| = |p(t — kT, 7 — kT,§)| < €. a

Next we address sample converse theorems for systems (A) and (P).

Theorem 7.1.3 Assume that for every initial condition resulting in a solution of (A),
the solution is unique. Assume that the equilibrium z, = 0 of (A) is asymptotically
stable. Then there exists a positive definite function v € C[B(r), R] for some r > 0
where B(r) C €2 such that UZ 4) 18 negative definite.

Proof . Tt follows from Theorem 7.1.2 that the asymptotic stability of the equilibrium
z. = 0 implies that it is also uniformly asymptotically stable. Furthermore, by
Lemma 3.10.5 (refer to Problem 3.10.17), there exist a function ¢y € K, defined on
[0, 7] for some r > 0, and a function o € L, defined on R™, such that

‘(p(t,to,xo)‘ < ¢(|.’L‘0|)U(t — to) (7.1.2)

for all (-, to, xo) and all t > ¢ty whenever |zq| < r.
Let

Z(w,t) = /toou(go(T,t,x))dT, (7.13)

where u(s) =a(s)? and a(-) is chosen by applying Lemma 3.6.1 to 3(7) =1 (r)o (1)
so that [ a(B(7))dr < 1. Therefore,

1/2

Z(x,t) < [u(@ (|22 /too[U(w(T)a(T—t))]”QdT < u(@()] 7, 714

which implies that the integral in (7.1.3) converges uniformly with respect to |x|. By
Corollary 6.8.1, Z(x,t) is continuous with respect to x. Furthermore, because the
system is assumed to be autonomous, it is easily seen that Z(x, t) is independent of ¢.
We let the v-functionbe v(z) = Z(x,t). Thenv(z) € C[B(r),R]is positive definite.
Inequality (7.1.4) shows thatv(z) is decrescent. Also, vg 4 is clearly negative definite.
The proof is completed. |

Theorem 7.1.4 Assume that for every initial condition resulting in a solution of (P),
the solution is unique and that the equilibrium x, = 0 of (P) is asymptotically stable.
Then there exists a positive definite and decrescent function v € C[B(r) x RT,R]
for some r > 0, where B(r) C 2, which is periodic in ¢ with period T (i.e., v(x,t) =
v(z,t+T)forall (z,t), (z,t+T) € B(r) x R") such that vEP) is negative definite.
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Proof. The proof proceeds similarly as in the proof of Theorem 7.1.3. Let the
v-function be v(z,t) = Z(z,t) which is given by (7.1.3). It can readily be verified
thatv(x,t +T) = v(x,t) forall (x,t), (z,t + T) € B(r) x RT. It has been proved
that v(z, t) is decrescent and v( ,) is negative definite. We only need to show that v
is positive definite.

Lety(t) = |¢(¢, to, zo)|- Thenlim;_. y(t) = Obecause z. = 0isasymptotically
stable. Because

2T = 2T f(t,x),

we have the following estimate for |y(¢)],

By the assumption that f is continuous and f(¢t,z) = f(t + T, ) for all z € Q and
t € RT, there exists a K > 0 such that | f(t,2)| < K forall (t,z) € R* x B(r).
To obtain an estimate for v(z, t) from below, we first assume that y(¢) is monotone
decreasing. By change of variables, we have

a0 = [ ut) (%) avz o [

from which we conclude that v is positive definite. If y(¢) is increasing in certain

intervals a; <t < bj, j = 1,2,..., we omit them and restrict the integration to the
remaining t-axis. Then the above estimate is still valid.
The proof is completed. ]

Results for autonomous and periodic discrete-time dynamical systems described
by ordinary difference equations that are in the spirit of Theorems 7.1.1 to 7.1.4 can
also be established. Also, converse theorems of the type given in Theorems 7.1.3 and
7.1.4 for other types of stability and boundedness can be established as well.

7.2 Invariance Theory

In this section we first present some of the results that comprise the invariance the-
ory for continuous dynamical systems described by autonomous ordinary differential
equations (Subsection A). Next, we present some of the results that make up the
invariance theory for discrete-time dynamical systems described by autonomous or-
dinary difference equations (Subsection B). At the end of this section we consider a
couple of examples to demonstrate the applicability of these results.

A. Continuous-time systems

We consider again autonomous systems given by

&= f(x) (4)
where f € C[Q2,R"], Q C R" is an open connected set, 0 € €, and f(0) = 0.
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In the results that follow, we relax some of the conditions required in the stability
and boundedness results given in Chapter 6 that broaden the applicability of the Direct
Method of Lyapunov (the Second Method of Lyapunov) appreciably.

Theorem 7.2.1 Assume that there exists a function v € C[€2, R] such that v{ 4, (z) <0
forall x € 2 and such that for some constant ¢ € R, the set H.. is a closed and bounded
component of the set {z € Q: v(x) < c¢}. Let M be the largest invariant set in the set

with respect to (A). Then every solution (¢ ) of (A) with ¢(tyg) € H. approaches
the set M as t — oo.

Proof. The proof of this result is a direct consequence of Theorem 4.2.1 for the
case T = R*. O

Theorem 7.2.2 With Q@ = R", assume that there exists a function v € C[R",R]
such that vz A) (x) < 0forall z € R™. Let M be the largest invariant set with respect
to (A) in the set

Then every bounded solution np( ) of (A) approaches the set M ast — oo.

Proof . The proof of this theorem is a direct consequence of Theorem 4.2.1 for the
case T = R, where for every bounded solution ¢(t) of (A) we choose X as a
compact set that contains the trajectory of . a

Corollary 7.2.1 With 2 = R”, assume that there exists a positive definite and ra-
dially unbounded function v € C[R"™,R] such that vé (@) < Oforall z € R
Suppose that the origin ., = 0 of R™ is the only invariant subset of the set

Z={ze: v (@) = =0}.
Then the equilibrium z, = 0 of (A) is uniformly asymptotically stable in the large.

Proof . The proof of this result is an immediate consequence of Theorems 7.2.2,
6.2.1(b), and 6.2.6. a

Note that in the above result for the uniform asymptotic stability in the large of
the equilibrium z. = 0 of (A) we require only that ’UE ) be negative semidefinite
whereas in the corresponding results given in Chapter 6, we require that vE A) be
negative definite.

B. Discrete-time systems

Next, we consider dynamical systems that are determined by systems of autonomous
ordinary difference equations of the form

w(k+1) = f(z(k)) (DA)

where k € N, z(k) € Q, f: Q — €, and  is an open connected subset of R™ that
contains the origin z = 0.
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Theorem 7.2.3 Assume for (D A) that there exists a function v € C[Q2, R] such that
v(f(z)) < wv(x) forall z € Q. Assume that the set S, = {x € Q: v(x) < ¢}, for
some ¢ € R, is bounded. Let M be the largest invariant set with respect to (D A)
contained in the set

Z={zeQ:v(f(z) =v(2)}.
Then every solution ¢(k) of (D A) with (ko) € S, approaches the set M as k — cc.

Proof. The proof of this result is a direct consequence of Theorem 4.2.1 for the
case T'= N. ]

Theorem 7.2.4 With {2 = R", assume that there exists a radially unbounded function
v € C[R",R]suchthatv(f(z)) < v(z)forallz € R™. Let M be the largest invariant
set with respect to (D A) in the set

Z={zeQ:v(f(x)) =v(z)}.
Then every bounded solution ¢(k) of (D A) approaches the set M as k — oc.

Proof. The proof of this theorem is a direct consequence of Theorem 4.2.1 for the
case T'= N. m]

Corollary 7.2.2 With 2 = R”, assume that there exists a positive definite and ra-
dially unbounded function v € C[R™, R] such that v(f(z)) < v(z) for all z € R™.
Suppose that the origin z. = 0 of R™ is the only invariant subset of the set

Z={zeQ:v(f(zx)) =v(z)}.
Then the equilibrium z. = 0 of (D A) is uniformly asymptotically stable in the large.

Proof. The proof of this result is an immediate consequence of Theorems 7.2.3,
6.3.1(b), and 6.3.3. ]

C. Examples

To demonstrate the applicability of the above results, we now consider two specific
examples.

Example 7.2.1 (Lienard equation) Consider systems described by the equation
g+ flx)t+g(xz)=0 (7.2.1)

where f € C1[R,R*], g € C}[R, R],g(z) = 0 if and only if 2 = 0, zg(z) > 0 for
z € R — {0}, and lim |, [ g(s)ds = oco. Equation (7.2.1), called the Lienard
equation, has been used in the modeling of a variety of physical systems.

Letting z; = x and x5 = &, we obtain from (7.2.1) the equivalent system

T1 = Za
{ &g = —f(x1)w2 — g(1). (7.2.2)
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The origin (z1,22)7 = (0,0)” € R? is clearly an equilibrium for (7.2.2). We show
that this equilibrium is uniformly asymptotically stable in the large.
We choose as a v-function,

v(xy,22) = lx% —l—/ g(s)ds (7.2.3)
0

2
which is positive definite and radially unbounded. Along the solutions of (7.2.2)
we have

VUig.0.0) (X1, 22) = =25 f(21) <0

for all (z1,22)7 € R2.
In the notation of Corollary 7.2.1, the set

Z = {(21,22)" € R®: {7 5 9)(w1,22) = 0} (7.2.4)

is the x1-axis. Let M be the largest invariant set in Z. At any point (x1,0)7 € M
with z1 # 0, equation (7.2.2) implies that &5 = —g(x1) # 0. Therefore, the solution
emanating from (x1,0)7 must leave the x;-axis. This means that (z1,0) ¢ M if
x1 # 0. However, the origin (0,0)7 is clearly in M. Hence, M = {(0,0)7}.

It follows from Corollary 7.2.1 that the origin in R?, which is an equilibrium for
system (7.2.2), is uniformly asymptotically stable in the large. O

Example 7.2.2 Let us consider the Lienard equation (7.2.2) given in Example 7.2.1.
We assume again that f € C[R,RT], g € C![R, R], g(z) = 0 if and only if z = 0,
and zg(z) > 0 forz € R—{0}. We also assume that lim ;| .o | [y f(s)ds| = oc.
This is the case if, for example, f(s) = k > 0 for all s € R. However, we no longer
assume that lim, | o [, g(s)ds = co.

We choose again the v-function

1 1
’1)(1'171'2) = —ZL’% +/ g(s)ds7
2 0
resulting again in
U27.2.2)(=’U1,$2) = —22f(21) <0

for all (z1,22)T € R2.

As before, v is positive definite. However, it is not necessarily radially unbounded
and therefore, we cannot apply Corollary 7.2.1 to conclude that the equilibrium
(r1,22)T = (0,0)T of system (7.2.2) is asymptotically stable in the large.

Because v(x1, x2) is positive definite and because vém.z) is negative semidefinite,
we can conclude that the equilibrium (21, z2)” = (0,0)7 of system (7.2.2) is stable.
We use Theorem 7.2.2 to prove that the equilibrium (1, 22)7 = (0,0)7 is globally
attractive, and therefore, that the equilibrium (z1,22)” = (0,0)7 of system (7.2.2)
is asymptotically stable in the large.

From Example 7.2.1 we know that M = {0} is the largest invariant set in Z given
in (7.2.4). To apply Theorem 7.2.2, what remains to be shown is that all the solutions
©(t) of system (7.2.2) are bounded.
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To this end, let [ and a be arbitrary given positive numbers and consider the region
U defined by the inequalities

. 2
v(z) <l and <x2 —|—/ f(s)ds> < a2 (7.2.5)
0

For each pair of numbers (I, a), U is a bounded region as shown, for example, in
Figure 7.2.1.

X2

v(x) =1 Ve X2+f::1f(s)ds =a

\

7 X,

/ \v(x) =1

xz+f0 lf(s)ds =-a

Figure 7.2.1: Region U determined by (7.2.5).

Now let 2" = (210, 720) = (21(0), 22(0)) be any point in R2. If we choose (I, a)
properly, 2o will be in the interior of U. Now let ©(t, zo) be a solution of (7.2.2)
such that (0, xg) = xo. We show that (t, 2:9) cannot leave the bounded region U.
This in turn shows that all solutions of (7.2.2) are bounded, inasmuch as ¢ (t, z¢) was
chosen arbitrarily.

In order to leave U, the solution ¢(¢,xo) must either cross the locus of points
determined by v(x) = [ or one of the loci determined by z + [ f(s)ds = +a.
Here we choose, without loss of generality, a > 0 so large that the part of the curve
determined by 2 + fozl f(s)ds = a that is also the boundary of U corresponds to
21 > 0 and the part of the curve determined by x2 + foﬂh f(s)ds = —a corresponds
tozy < 0. Now because v(; , ) (¢(t, 20)) < 0, the solution ©(t, o) cannot cross the
curve determined by v(z) = I. To show that it does not cross either of the curves
determined by 5 + [ f(s)ds = +a, we consider the function

2

e1(t,0)
w(t) = |:g02(t,$0) —I—/O f(s)ds} , (7.2.6)

where ¢(t, z0)" = [p1(t, o), g2(t, To)]. Then

1 (t,x0)
w'(t) = =2 |:(p2(t,.’150) +/O f(s)ds}g(gpl(t,xo)). (7.2.7)
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Now suppose that ¢(t,z() reaches that part of the boundary of U determined by
the equation x5 + [ f(s)ds = a, x1 > 0. Then along this part of the boundary
w'(t) = —2ag(p(t,zo9)) < 0 because 1 > 0 and a > 0. Therefore, the solution
©(t, z) cannot cross outside of the set U through that part of the boundary determined
by z2 + fowl f(s)ds = a. We apply the same argument to the part of the boundary
determined by x5 + [ f(s)ds = —a.

Therefore, every solution of (7.2.2) is bounded and we can apply Theorem 7.2.2
to conclude that the equilibrium (1, 72)7 = (0,0)7 is globally attractive. ad

We apply some of the results of this section in Chapter 8 in the qualitative analysis
of a large class of artificial neural networks.

7.3 Domain of Attraction

Many practical systems possess more than one equilibrium point. In such cases, the
concept of asymptotic stability in the large is no longer applicable and one is usually
interested in knowing the extent of the domain of attraction of an asymptotically
stable equilibrium. In the present section, we briefly address the problem of obtaining
estimates of the domain of attraction of the equilibrium x, = 0 of the autonomous
system
i = f(z) (4)

where f € C[Q2,R"], 2 C R™ is an open connected set, 0 € €, and f(0) = 0.

We assume that there exists a positive definite and time-independent function
v € C[Q,R"] such that v( 4) is negative definite on some subset 21 C Q2,0 € Q.
Let D, = {x € Q: v(z) < ¢} forc > 0. If D, C Qq, then D, is contained in the
domain of attraction of the equilibrium x. = 0 of (4). In fact, D, is an invariant
set for system (A): any trajectory of a solution of (A) starting within D, will remain
in D,.. As such it will remain in £2; where vE 4y 1s negative definite. Therefore, it
follows from the proof of Theorem 6.2.2 that all trajectories for (A) that start in D,
will approach the equilibrium . = 0. If ¢js denotes the largest number for which
the above discussion is true, then D, , is the best estimate of the domain of attraction
of x. = 0 for (A), using the particular v-function employed. Another choice of
Lyapunov function will generally result in a different estimate for the domain of
attraction.

Example 7.3.1 Consider the system

i = —x1 + 21 (22 + 22
{ ! 1 (a1 + o) (7.3.1)

Ty = —I3 + T2 (x% +x§)

This system clearly has an equilibrium at the origin z. = (21, 72)” = (0,0)7.
We choose the function
1

v(ry,22) = 3 (m% + x%) (7.3.2)
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and we compute

Vg (@1, 02) = — (27 + 23) + (2] + x%)z (7.3.3)

The function v is positive definite and radially unbounded whereas “27.3.1) is negative
definite on the set {z € R?: (2% + 23) < 2c}, ¢ < 1/2; that is, on the set

1
D.={z e R?: v(z) < c}, c< g (7.3.4)
We conclude that the equilibrium x. = 0 of (7.3.1) is asymptotically stable and that
the set {z € R?: (2% + 23) < 1} is contained in the domain of attraction of z, = 0.
Indeed, it is not hard to show that this set is the entire domain of attraction of the
equilibrium z, = 0. O

The procedure described above for determining estimates for the domain of at-
traction of an asymptotically stable equilibrium z. = 0 applies, without substantial
changes, to autonomous discrete-time systems described by difference equations

2k +1) = f(x(k)) (DA)

where f: 2 — ,  C R" is an open connected set, and 0 € (2. We omit the details
in the interests of brevity.

There are results that determine the domain of attraction of an asymptotically stable
equilibrium x, = 0 of (A) precisely. In the following, we let G C 2 and we assume
that G is a simply connected domain containing a neighborhood of the origin.

Theorem 7.3.1 [21] (Zubov) Suppose there exist two functions v € C1[G, R] and
h € C[R™, R] satisfying the following hypotheses.

(i) v is positive definite in G and satisfies on G the inequality 0 < v(z) < 1 when
x # 0. Forany b € (0,1), the set {x € G: v(x) < b} is bounded.
(i) h(0) =0, and h(x) > 0 for z # 0.
(iii) For z € G, we have

vy (@) = —h(@)[1 = v(@)] [1+ ()]

(iv) Asx € G approaches a point on the boundary of G, or in case of an unbounded
region G, as |z| — oo, limv(z) = 1.

12 (1.3.5)

Then G is exactly the domain of attraction of the equilibrium z. = 0.

Proof. Under the given hypotheses, it follows from Theorem 6.2.2 that z. = 0 is
uniformly asymptotically stable. Note also that if we introduce the change of variables

ds = [1+1f((t))]?]

1/2dt,

then (7.3.5) reduces to

dv
== —h(zx) [1 - v(x)],
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but the stability properties of (A) remain unchanged. Let V (s) = v(p(s)) for a given
function ¢(s) such that ¢(0) = xy. Then

d% log[1 = V(s)] = h(g(s)),

or

1 - V(s) = [1 - V(0)]exp ( /0 ) h(gp(u))du) . (7.3.6)

Let xo € GG and assume that xg is not in the domain of attraction of the trivial
solution. Then h(y(s)) > d > 0 for some fixed  and for all s > 0. Hence, in (7.3.6)
as s — oo the term on the left is at most one, whereas the term on the right tends to
infinity, which is impossible. Thus, x is in the domain of attraction of z. = 0.

Suppose x; is in the domain of attraction but ; ¢ G. Then ¢(s,z1) — 0 as
s — 00, so there must exist s; and s, such that ¢(s1,21) € G and ¢(s2,x1) € G.
Let 29 = ¢(s2, 1) in (7.3.6). Take the limit in (7.3.6) as s — sf We see that

lim [1-V(s)]=1-1=0,

S—’ST

and the limit on the right-hand side is

[1—v(zg)]exp (/Sl h((p(s,xl))ds> > 0.
S2
This is impossible. Hence x; must be in G. O
An immediate result of Theorem 7.3.1 is the following result.
Corollary 7.3.1 Assume that there exists a function / that satisfies the hypotheses
of Theorem 7.3.1 and assume that there exists a continuously differentiable, positive

definite function v: G — R that satisfies the inequality 0 < v(z) < 1forallz € G
as well as the differential equation

Vo) f(z) = —h(x)[[1 - v(@)] [1 + | f2)2] 7. (7.3.7)
Then the boundary of the domain of attraction is defined by the equation
v(z) = 1. (7.3.8)

If the domain of attraction G is all of R", then the equilibrium . = 0 of (A) is
asymptotically stable in the large. In this case, we have

v(z) =1 as |z] — oo, (7.3.9)

O
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In the foregoing results, we can work with different v functions. For example, if
we let

w(z) = —log[1 —v(z)],
then (7.3.5) assumes the form

wi (@) = —h(z)[L+ ()]

and condition (7.3.8) defining the boundary becomes w(x) — oo.

Note that in Theorem 7.3.1, the function h(x) is arbitrary. In specific applications
it is chosen in a fashion that makes the solution of the partial differential equation
(7.3.7) easy.

Example 7.3.2 Consider the system

1— 22+ a3

A
T =200 ————5 + 1202 = fi1(z1, 2
1 1(351—1—1)24—1:% 172 = fi(z1,72)
5 5 5 (7.3.10)
) 1 -2+ 25 dzizo A
To = - 3 :f2($1,$2)-
2 (r1 +1)2 423

This system has an equilibrium at x; = 1, zo = 0. The partial differential equation
(7.3.7) assumes the form

Ov v (v1 — 1)%+23
zigz(mlyxz)f1($17$2)4‘zi£;($17$2)f§($1,$2)::“2z;;f;j15§;i£§[1“U($17$2)]

where

(x1—1)* +a3

(1/2)
(r1+1)2 + 22 ’

h(z1,72) =2 [T+ fi(ar, 2)* + fa(z1,22)%]

It is readily verified that a solution of the above partial differential equation is

(21 —1)% + a3

vl m) = Gy

Because v(x1,2z2) = 1 if and only if 1 = 0, the domain of attraction is the set
{(z1,22): 0 < 1 < 00, —00 < T3 < 00O}, O

7.4 Linear Continuous-Time Systems

In this section we study the stability properties of the equilibrium of linear homoge-
neous systems
T = A(t)it, t 2 t(), t() Z 0 (LH)

and linear autonomous homogeneous systems

i = Az, t>0. (L)
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In(LH),t € RT,x € R*,and A € C[RT,R"™"]. In(L),t € RT, z € R", and
A € R™ "™, Recall that z. = 0 is always an equilibrium of (L) and (L H) and that
xe = 0 is the only equilibrium of (LH) if A(t) is nonsingular for ¢ > 0. Recall also
that the solution of (L H) for z(tg) = x¢ is of the form

o(t, to, z0) = ®(t, t0)z0, t >t

where ® denotes the state transition matrix of A(¢). Recall further that the solution
of (L) for z(tg) = xo is given by

(p(tvthxO) =9 ta tO)IO

where in the preceding equation, a slight abuse in notation has been used.
For some of the properties of the transition matrix ®(¢, ¢ ) that are used in the proofs
of the result that follow, the reader should refer to the appendix (Subsection 7.8A).

A. Linear homogeneous systems

In the next four results, we explore some of the basic qualitative properties of (LH).

Theorem 7.4.1 The equilibrium x. = 0 of (L H) is stable if and only if the solutions
of (L H) are bounded, or equivalently, if and only if

sup H<I>(t,t0)H 2 c(ty) < 0o
t>to

where ||®(t, to)|| denotes the matrix norm induced by the vector norm used on R™
and ¢(to) denotes a constant that may depend on the choice of ¢.

Proof . Assume that the equilibrium x. = 0 of (L H) is stable. Then for any ¢y > 0
and fore = 1 thereisa 6 = d(1,tp) > 0 such that |¢(t, 19, zo)| < 1 forall £ > 1
and all zo with || < 0. In this case

@(t,t())(x(]é)‘ <|x0|) _ laol

toto,0)] = (et = |20 (1l [

for all zy # 0 and all £ > #(. In the above inequality we have used the fact that

'@(t,to, 9005)‘ _ ‘¢(t7to)($o5)‘ <1
|0l

|0l
Using the definition of matrix norm it follows that

|@(t to)|| <67, t>to.
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We have proved that if the equilibrium ., = 0 of system (LH) is stable, then the
solutions of (L. H') are bounded.

Conversely, suppose that all solutions (¢, to, o) = ®(t, o)z are bounded. Let
{e1,...,e,} denote the natural basis for n-space and let |¢(¢,to,e;)| < G; for all
t >tg,7 =1,...,n. Then for any vector oy = Z?zl aje; we have that

n
Zaj(p(tat()a e])

j=1

n
<> aylB;
j=1

n
(gjagn ﬁj) > oyl

j=1

|90(t7 th xO)l =

IN

< K|zo

for some constant X > 0 and for ¢ > t. For given £ > 0, we choose § = ¢/K.
Thus, if |zo| < 0, then |¢(¢, to, xo)| < K|zo| < e for all t > ;. We have proved
that if the solutions of (L H) are bounded, then the equilibrium z. = 0 of (LH) is
stable. O

Theorem 7.4.2 The equilibrium z. = 0 of (L H) is uniformly stable if and only if

sup c(to) 2 sup ( sup H‘b(t,to)H) 2 co < 0.
to>0 to>0 N t>tg

The proof of the above result is similar to the proof of Theorem 7.4.1 and is left
as an exercise.

Example 7.4.1 Consider the system

in] o2t (e—t_e—2t) T
[ N e

where 2:(0) = xo. We transform (7.4.1) using the relation x = Py, where

11 1|1 -1
eelil el
to obtain the equivalent system
: —2t
U1 e 0 |y
= 7.4.2
b=l 2L 743

with y(0) = yo = P~ 1xq. System (7.4.2) has the solution (¢, 0,y0) = ¥(t,0)yo,

where
—2t
e(1/2)(1=e7") 0 ]

\Ij(t70) = l O 6(176—1,)
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The solution of (7.4.1) is obtained as ¢ (¢, 0,x¢) = PV (t,0)P~1xy. From this we
obtain for to # 0, ©(t,to, zo) = (¢, to)xo, where

(1/2)(e720—e™)  (e70—e™!) _ o(1/2)(e M0 —e"2)
(I)(t,t()) _ |ji e e

0 ele™0—e™)

Letting t — oo, we obtain

(1/2)e~2t0 e"t0 _ (1/2)e" %0
lim ®(t, 1) = le € < ] (7.4.3)
t—o0 0 e®
We conclude that

lim hm | D (¢, to)|| < oo,

to—oot

and therefore that
sup ( sup H@(t,to)\o < 00

to>0 N t>to

because

2 2
D 163t t0)2 < D it to)].

ij=1 ij=1

1@t to) || = ||l (¢, t0)]|| <

Therefore, the equilibrium z, = 0 of system (7.4.1) is stable by Theorem 7.4.1 and
uniformly stable by Theorem 7.4.2. O

Theorem 7.4.3 The following statements are equivalent.
(i) The equilibrium z. = 0 of (L H) is asymptotically stable.
(ii) The equilibrium z, = 0 of (LH) is asymptotically stable in the large.
(iil) lims— o || P (¢, t0)] = 0.

Proof . Assume that statement (i) is true. Then there is an 7(¢) > 0 such that when
|zo| < n(to), then (¢, to, z9) — 0 ast — oo. But then we have for any zy # 0 that

o(t,t, o) = w(mo, ”(to)x()) ( ol ) 0

|zol n(to)

as t — oo. It follows that statement (ii) is true.

Next, assume that statement (ii) is true. Fix tg > 0. For any € > 0 there must exist
aT(e)>0suchthatforallt >ty + T(e) we have that |o(¢, to, zo)| = |P (¢, to)zo| <e.
To see this, let {eq,...,e,} be the natural basis for R™. Thus, for some fixed con-
stant K > 0, if 29 = (aq,...,a,)7 and if |zo| < 1, then 2y = Z;’L:I aje; and
2?21 laj| < K. For each j there is a Tj(e) such that |®(t,tg)e;| < /K for all
t > to + Tj(e). Define T'(¢) = max{Tj(e): j = 1,...,n}. For |zo| < 1 and
t > to + T'(e), we have that

|®(t, to)zo| = O(t,to)e

<Yl () <
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By the definition of matrix norm, this means that | ® (¢, t)|| < e forallt >tq+T'(¢).
Therefore, statement (iii) is true.

Finally, assume that statement (iii) is true. Then ||®(¢,¢o)|| is bounded in ¢ for all
t>tp. By Theorem 7.4.1, the equilibrium z. =0 is stable. To prove asymptotic sta-
bility, fix to>0and e > 0. If |zo| <n(to) =1, then |@(t, o, zo)| < || P (¢, t0)|||zo| — O
as t — oo. Therefore, statement (i) is true. This completes the proof. a

Example 7.4.2 The equilibrium z. = 0 of system (7.4.1) given in Example 7.4.1 is
stable but not asymptotically stable because lim; . || P (¢, t)]|| # O. a

Example 7.4.3 The solution of the system

i = —e*z, x(tg) = xo (7.4.4)
is @(t,tg, xo) = D(¢,tg)x0, Where

O(t, tg) = /(0=

Because lim;_,o, ®(t,%9) = 0, it follows that the equilibrium z, = 0 of system
(7.4.4) is asymptotically stable in the large. O

Theorem 7.4.4 The equilibrium z, = 0 of system (L H) is uniformly asymptotically
stable if and only if it is exponentially stable.

Proof. The exponential stability of the equilibrium x. = 0 implies the uniform
asymptotic stability of the equilibrium z. = 0 of system (F) in general, and hence,
for system (L H) in particular.

Conversely, assume that the equilibrium x. = 0 of system (LH) is uniformly
asymptotically stable. Then there are a d > 0 and a 7' > 0 such that if |z¢| < J, then
|®(t + to + T, to)wo| < (6/2) forall t, o > 0. This implies that

1
|®(t+to + T, to)|| < 3 if t,to > 0. (7.4.5)
From Theorem 7.8.6(iii) (Subsection 7.8A) we have that ®(¢,7) = ®(t,0)P(0, 7)
for any ¢, o, and 7. Therefore,

1
| @t + to + 2T, to)|| = || ®(t + to + 2T, t + to + T)®(t + to + T, to)|| < T
in view of (7.4.5). By induction, we obtain for ¢, t5 > 0 that
| @(t + to + nT, to)|| < 27" (7.4.6)

Now let &« = (In 2)/T. Then (7.4.6) implies that for 0 < ¢ < T we have that

ot + to + nT, to, z0)| < 2|mp[27"+Y
_ 2|1,0|e—a(n+l)T

< 2|x0|efa(t+nT),

which proves the result. O



Section 7.4 Linear Continuous-Time Systems 271

Example 7.4.4 For system (7.4.4) given in Example 7.4.3 we have
|<p(t,t0,x0)| = '1;06(1/2)32‘0 e—(1/2)e? < |1‘0|6(1/2)62m et t> 10 >0,

because ! > 2t. Therefore, the equilibrium z. = 0 of system (7.4.4) is uniformly
asymptotically stable in the large, and exponentially stable in the large. O

Even though the preceding results require knowledge of the state transition matrix
®(t,tg) of (LH), they are quite useful in the qualitative analysis of linear systems.

B. Linear autonomous homogeneous systems

Revisiting Example 3.1.8, we now address the stability properties of system (L),
T = Az, t>0. (L)

To this end we transform matrix A into the Jordan canonical form, J = P~ 1AP,
using the transformation x = Py to obtain from (L) the equivalent system

=P APy = Jy. (7.4.7)

It is easily verified (the reader is asked to do this in the exercise section) that the
equilibrium x. = 0 of (L) is stable (resp., asymptotically stable or unstable) if and
only if y. = 0 of system (7.4.7) is stable (resp., asymptotically stable or unstable).
In view of this, we can assume without loss of generality that the matrix A in (L) is
in Jordan canonical form given by

A =diag[Jo, J1,...,J;)

where
Jo = diag [)\17 ey /\k] and J; = A\l + N

for the Jordan blocks J1, . . ., Js, where I; denotes the n; X n; identity matrix and NV;
denotes the n; x n; nilpotent matrix given by

o1 o - 0
oo 1 -~ 0
00 0 .1
o0 o0 --- 0

and A, j = 1,...n, denote the eigenvalues of A. We have
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where
eJot = diag [e’\lt, ... ,e’\’“t] (7.4.8)
and
1t t2/2 - i/ (n; —1)!
0 1 ¢t ... t2/(n;—2)
efit =Mt | , _ (7.4.9)
0 0 O 1
fori=1,...,s.

Now suppose that Re\; < G foralli =1,..., k. Then it is clear that

Jot
o el

t—o00 eﬁt

< 0

where |e70t|| is the matrix norm induced by one of the equivalent vector norms
defined on R™. We write this as ||e”0t|| = O(e??). Similarly, if 3 = ReAg;, then
for any £ > 0 we have that ||e’it|| = O(t" ~1eft) = O(elFHo)t),

From the foregoing it is now clear that ||e4*|| < K for some K > 0 if and only
if all eigenvalues of A have nonpositive real parts, and the eigenvalues with zero
real part occur in the Jordan form only in Jy and not in any of the Jordan blocks .J;,
1 < i < s. Hence, by Theorems 7.4.1 and 7.4.2, the equilibrium z. = 0 of (L) is
under these conditions stable, in fact uniformly stable.

Now suppose that all eigenvalues of A have negative real parts. From the preceding
discussion it is clear that there is a constant K > 0 and an o > 0 such that ||e*|| <
Ke~°t, and therefore, | (t, to, z0)| < Ke~*¢=10)|z| for all t > to > 0 and for all
xp € R™. It follows that the equilibrium x. = 0 is uniformly asymptotically stable
in the large, in fact exponentially stable in the large. Conversely, assume that there is
an eigenvalue \; with nonnegative real part. Then either one term in (7.4.8) does not
tend to zero, or else a term in (7.4.9) is unbounded as ¢ — oo. In either case, eAtx(O)
will not tend to zero when the initial condition 2:(0) = x is properly chosen. Hence,
the equilibrium ., = 0 of (L) cannot be asymptotically stable (and hence, it cannot
be exponentially stable).

Summarizing the above, we have proved the following result.

Theorem 7.4.5 The equilibrium x, = 0 of (L) is stable, in fact, uniformly stable,
if and only if all eigenvalues of A have nonpositive real parts, and every eigenvalue
with zero real part has an associated Jordan block of order one. The equilibrium
ze = 0 of (L) is uniformly asymptotically stable in the large, in fact, exponentially
stable in the large, if and only if all eigenvalues of A have negative real parts. O

A consequence of the above result is the following result.
Theorem 7.4.6 The equilibrium z. = 0 of (L) is unstable if and only if at least

one of the eigenvalues of A has either positive real part or has zero real part that is
associated with a Jordan block of order greater than one. O
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Before proceeding any further, it may be appropriate to take note of certain con-
ventions concerning matrices that are used in the literature. Some of these are not
consistent with the terminology used in Theorem 7.4.5. Thus, a real n X n matrix A
is called stable or a Hurwitz matrix if all its eigenvalues have negative real parts. If
at least one of the eigenvalues has a positive real part, then A is called unstable. A
matrix A, which is neither stable nor unstable, is called critical, and the eigenvalues
with zero real parts are called critical eigenvalues.

We conclude the present subsection with some examples.

Example 7.4.5 Consider system (L) with

0 1
A= [1 0} .
The eigenvalues of A are A1, Ao = +i (i = /—1). According to Theorem 7.4.5, the

equilibrium z. = 0 of this system is stable. This can also be verified by computing
the solutions of this system for the given set of initial data 2(0) = (z1(0), z2(0))7,

p1(t,0,20) = x1(0)cost + x2(0)sint
w2(t,0,20) = —x1(0)sint + x2(0)cost,

t > 0, and then applying Definition 6.1.1(a). O
Example 7.4.6 Consider system (L) with

28 9.6
A= { 9.6 —2.8 }

The eigenvalues of A are A1, A2 = £10. According to Theorem 7.4.6, the equilibrium
xe = 0 of this system is unstable. a

Example 7.4.7 Consider system (L) with
0 1
A= {O 0} |
The eigenvalues of A are \; = 0 and A2 = 0. According to Theorem 7.4.6, the

equilibrium z, = 0 of this system is unstable. This can also be verified by computing
the solutions of this system for the given set of initial data 2(0) = (x1(0), z2(0))%,

{ 01(t,0,79) = 21(0) + z2(0)t,
4102(75’073"0) :332(0),

t > 0, and then applying Definition 6.1.1(k). o
Example 7.4.8 Consider system (L) with
-1 0
a=[t )
The eigenvalues of A are A1, Ay = —1, —2. According to Theorem 7.4.5, the equi-
librium . = 0 of this system is exponentially stable. O
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C. The Lyapunov matrix equation

The stability results that we established thus far in this section require explicit knowl-
edge of the solutions of (L) and (L H). In the present subsection we develop stability
criteria for system (L) with arbitrary matrix A. To accomplish this, we employ the
Lyapunov stability results established in Chapter 6. We recall that these involve the
existence of Lyapunov functions.

Lyapunov functions v for a system are sometimes viewed as “generalized distance
functions” of the state = from the equilibrium z, (z. = 0) and the stability properties
are then deduced directly from the properties of v and its time derivative v’, along
the solutions of the system on hand.

A logical choice of Lyapunov function for system (L) is v(x) = 2Tz = |2|?
which represents the square of the Euclidean distance of the state from the equilibrium
z. = 0. The stability properties of this equilibrium are then determined by examining
the properties of vz 1) (%), the time derivative of v(x) along the solutions of (L),

T

& = Ax. (L)

This derivative can be determined without explicitly solving for the solutions of
system (L) as

vy (2) = ile + 27

= (Az)Tx + 2T (Ax)
=a7(AT + A)z.

If the matrix A is such that vy, () is negative for all  # 0, then it is reasonable to
expect that the distance of the state of (L) from the equilibrium z, = 0 will decrease
with increasing time, and that the state will therefore tend to the equilibrium of (L)
with increasing time.

The above discussion is consistent with our earlier discussion of Subsection 6.1G.
It turns out that the Lyapunov function used above is not sufficiently flexible. In the
following we employ as a “generalized distance function” the quadratic form

v(z) =z Pz, p=pT (7.4.10)

where P € R™ ™. (Refer to Subsection 6.1F for a discussion of quadratic forms.)
The derivative of v(z) along the solutions of (L) is determined as

vy (x) = " Px + 2" Pi

=2TATPx + 2T PAx
= 2T(ATP 4+ PA)z;
that is,
’UZL) (z) = 2T Cu, (7.4.11)
where

C=ATP+ PA. (7.4.12)



Section 7.4 Linear Continuous-Time Systems 275

Note that C'is real and CT = C. The system of equations given in (7.4.12) is called
the Lyapunov Matrix Equation.

Before proceeding further, we recall that because P is real and symmetric, all of
its eigenvalues are real. Also, we recall that P is said to be positive definite (resp.,
positive semidefinite) if all its eigenvalues are positive (resp., nonnegative) and is
called indefinite if P has eigenvalues of opposite sign. The notions of negative
definite and negative semidefinite for matrix P are defined similarly (refer, e.g., to
Michel and Herget [14]). Thus (see Subsection 6.1F), the function v(z) given in
(7.4.10) is positive definite, positive semidefinite, and so forth, if the matrix P has
the corresponding definiteness properties. Finally, we recall from Subsection 6.1F
that instead of solving for the eigenvalues of a real symmetric matrix to determine
its definiteness properties, there are more efficient and direct methods to accomplish
this (refer to Theorem 6.1.4).

In view of the above discussion, the results below now follow readily by invoking
the Lyapunov results established in Section 6.2.

Proposition 7.4.1 (a) The equilibrium z, = 0 of (L) is uniformly stable if there
exists a real, symmetric, and positive definite n X n matrix P such that the matrix C
given in (7.4.12) is negative semidefinite.

(b) The equilibrium x, = 0 of (L) is exponentially stable in the large if there exists
a real, symmetric, and positive definite 7 x n matrix P such that the matrix C' given
in (7.4.12) is negative definite.

(c) The equilibrium z. = 0 of (L) is unstable if there exists a real, symmetric
n X n matrix P that is either negative definite or indefinite such that the matrix C
given in (7.4.12) is negative definite. O

We leave the proofs of the above results as an exercise to the reader.

Example 7.4.9 For the system given in Example 7.4.5 we choose P = I, and we
compute
C=A"TP+PA=AT+A=0.

According to Proposition 7.4.1(a), the equilibrium 2, = 0 of this system is stable (as
expected in Example 7.4.5). O

Example 7.4.10 For the system given in Example 7.4.8 we choose

1 0
P= {O 0.5}
and we compute the matrix

C=ATP+PA= { —2 _0'5}

-0.5 =2

According to Proposition 7.4.1(b), the equilibrium x. = 0 of this system is exponen-
tially stable in the large (as expected in Example 7.4.8). O
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Example 7.4.11 For the system given in Example 7.4.7 we choose

~0.28 —0.96
P= { ~0.96  0.28 }

and we compute

-20 0
—_ AT —

C=A P—I—PA—[O 20].
The eigenvalues of P are 1. According to Proposition 7.4.1(c), the equilibrium

xe = 0 of this system is unstable (as expected from Example 7.4.7). a

In applying the results given in Proposition 7.4.1, we start by guessing a matrix P
that has certain desired properties. Next, we solve the Lyapunov matrix equation
for C, using (7.4.12). If C possesses certain desired properties (it is negative definite),
we draw appropriate conclusions, using Proposition 7.4.1; if this is not possible
(i.e., Proposition 7.4.1 does not apply), we need to choose another matrix P. This
points to the principal shortcomings of Lyapunov’s Direct Method, when applied to
general systems. However, in the case of the special case of linear system (L), it is
possible to construct Lyapunov functions of the form v(x) = z7 Px in a systematic
manner. In the process of doing so, one first chooses the matrix C in (7.4.12),
having desired properties, and then one solves (7.4.12) for P. Conclusions are then
drawn by applying the appropriate results given in Proposition 7.4.1. In applying
this construction procedure, we need to know the conditions under which (7.4.12)
possesses a unique solution P for a given C. We address this topic next.

Once more, we consider the quadratic form

v(z) =z Pz, p=pT (7.4.13)
and the time derivative of v along the solutions of (L), given by
UEL)(x) =2TCx, c=c" (7.4.14)

where
C=ATP+ PA, (7.4.15)

where all symbols are defined as before. Our objective is to determine the as yet
unknown matrix P in such a way that vé 1 becomes a preassigned negative definite
quadratic form, that is, in such a way that C' is a preassigned negative definite matrix.

We first note that (7.4.15) constitutes a system of n(n + 1)/2 linear equations,
because P is symmetric. We need to determine under what conditions we can solve
for the n(n + 1)/2 elements, p;x, given the matrices A and C. To make things
tractable, we choose a similarity transformation @) such that

QAQ™ ' =4, (7.4.16)

or equivalently, -
A=Q 1AQ, (7.4.17)
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where A is similar to A and @ is a real n x n nonsingular matrix. From (7.4.17) and
(7.4.15) we obtain

A" HY' PR+ (@ H'PQTTA=(Q T CQ! (7.4.18)
or
(ATP+PA=C (7.4.19)
where
P=@NH'PQ', C=@NHcQ (7.4.20)

In (7.4.19) and (7.4.20), P and C are subjected to a congruence transformation and
P and C have the same definiteness properties as P and C, respectively. Because
every real n X m matrix can be triangularized, we can choose () in such a manner
that A = [@;;] is triangular; that is, @;; = 0 for ¢ > j. Note that in this case the
eigenvalues of A, A, ..., \,, appear in the main diagonal of A. To simplify our
subsequent notation, we rewrite (7.4.19), (7.4.20) in the form of (7.4.15) by dropping
the bars, that is,

ATP+ PA=C, c=c? (7.4.21)
and we assume without loss of generality that A = [a;;] has been triangularized,
thatis, a;; = 0 for ¢ > j. Because the eigenvalues A1, ..., A, appear in the diagonal

of A, we can rewrite (7.4.21) as

2Mp11 =cn
aiop11 + (A1 + A2)p12 = c12 (7.4.22)

Note that A; may be a complex number, in which case c¢;; will also be complex.
Because this system of equations is triangular, and because its determinant is equal to

2" A1+ An [T+ M), (7.4.23)

i<j

the matrix P can be determined uniquely if and only this determinant is not zero.
This is true when all eigenvalues of A are nonzero and no two of them are such that
Ai + A; = 0. This condition is not affected by a similarity transformation and is
therefore also valid for the original system of equations (7.4.15).

We summarize the above discussion as follows.

Lemma 7.4.1 Let A € R"*™and let \q, ..., A, denote the (not necessarily distinct)
eigenvalues of A. Then (7.4.21) has a unique solution for P corresponding to each
C € R™ " if and only if

X #0 foralli=1,....,n and XN+ #0 forall i,j=1,...,n. (7.424)

O
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In order to construct v(x), we must still check the definiteness of P. This can
be done in a purely algebraic way; however, it is much easier to invoke the stability
results of the present section and argue as follows.

(a) If all the eigenvalues \; of A have negative real parts, then the equilibrium
xe = 0 of (L) is exponentially stable in the large and if C in (7.4.15) is negative
definite, then P must be positive definite. To prove this, we note that if P is not
positive definite, then for § > 0 and sufficiently small, (P — §I) has at least one
negative eigenvalue and the function v(x) = 2T (P — 1)z has a negative definite
derivative; that is,

vy () = 2T [C - 5(A+ ATz <0

for all x # 0. By Theorem 6.2.8 (resp., Proposition 7.4.1(c)), the equilibrium z, = 0
of (L) is unstable. We have arrived at a contradiction. Therefore, P must be positive
definite.

(b) If A has eigenvalues with positive real parts and no eigenvalues with zero real
parts we can use a similarity transformation = Qy in such a way that Q' AQ is a
block diagonal matrix of the form diag[A;, As], where all the eigenvalues of A; have
positive real parts and all eigenvalues of A, have negative real parts. (If A does not
have any eigenvalues with negative real parts, then we take A = A;). By the result
established in (a), noting that all eigenvalues of —A; have negative real parts, given
any negative definite matrices C; and Cs, there exist positive definite matrices P;
and P such that

(—AD)PL + Pi(—A) = Oy, AT Py + Py Ay = Cs.

Then w(y) = y* Py, with P = diag[— Py, P,] is a Lyapunov function for the system
¥ = Q1 AQy (and hence, for the system & = Ax) that satisfies the hypotheses of
Theorem 6.2.8 (resp., Proposition 7.4.1(c)). Therefore, the equilibrium =z, = 0 of
system (L) is unstable. If A does not have any eigenvalues with negative real parts,
then the equilibrium x, = 0 of (L) is completely unstable.

In the above proof, we did not invoke Lemma 7.4.1. We note, however, that if
additionally, (7.4.24) is true, then we can construct the Lyapunov function for (L) in
a systematic manner.

Summarizing the above discussion, we now can state the main result of this sub-
section.

Theorem 7.4.7 Assume that the matrix A (for system (L)) has no eigenvalues with
real part equal to zero. If all the eigenvalues of A have negative real parts, or if at
least one of the eigenvalues of A has a positive real part, then there exists a quadratic
Lyapunov function

v(z) =z Pz, pP=pPT

whose derivative along the solutions of (L) is definite (i.e., either negative definite or
positive definite). O

This result shows that when A is a stable matrix (i.e., all the eigenvalues of A
have negative real parts), then for system (L), the conditions of Theorem 6.2.3 are
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also necessary conditions for asymptotic stability. Moreover, in the case when the
matrix A has at least one eigenvalue with positive real part and no eigenvalues on the
imaginary axis, then the conditions of Theorem 6.2.8 are also necessary conditions
for instability.

Example 7.4.12 We consider the system (L) with

A{_?é}.

The eigenvalues of A are Ay, Ao = +i (i = /—1) and therefore, condition (7.4.24)
is violated. According to Lemma 7.4.1, the Lyapunov matrix equation

ATP+PA=C

does not possess a unique solution for a given C'. We demonstrate this for two specific
cases:

(i) If C = 0, we obtain

0 —1{|p11 pr2 4P P2 0 I|_| —2p2 pu—p22|_|0 0

1 0] |p12 p2 pi2 pe2||—1 0] |p11—pa2 2p12 0 0]’
or p12 = 0 and p11 = pos. Therefore, for any ¢ € R, the matrix P = cI is a solution
of the Lyapunov matrix equation. Thus, for C' = 0, the Lyapunov matrix equation

has in this case denumerably many solutions.
(ii) If C = —21, we have

—2p12 pu—pe|_|-2 0
P11 —P22  2p12 0 -2/’
or p11 = p22 and p12 = 1 and p;2 = —1, which is impossible. Therefore, for
C = —21, the Lyapunov matrix equation has in this example no solution at all. O

We conclude the present section with a result which shows that when all the
eigenvalues of matrix A for system (1.) have negative real parts, then the matrix P in
(7.4.15) can be computed explicitly.

Theorem 7.4.8 If all the eigenvalues of a real n x n matrix A have negative real
parts, then for each matrix C' € R™*", the unique solution of (7.4.15) is given by

P:/ AT (0)eAdds, (7.4.25)
0

Proof . 1f all eigenvalues of A have negative real parts, then (7.4.24) is satisfied and
therefore (7.4.15) has a unique solution for every C' € R™*™, To verify that (7.4.25)
is indeed this solution, we first note that the right-hand side of (7.4.25) is well defined,
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because all eigenvalues of A have negative real parts. Substituting the right-hand side
of (7.4.25) for P into (7.4.15), we obtain

ATP 4+ PA = / AT AT (—C)eAtdt + / AT (—C)eA Adt
0

0
_ / h = (e (=0t ) at
0

T o0
— eA t ( —O) eAt
0
= C’
which proves the theorem. O

D. Periodic systems

We now briefly consider linear periodic systems given by
&= A(t)x (LP)

where A € C[R,R"*"] and A(t) = A(t +T) for all t € R, where T' > 0 denotes
the period for (L P). Making reference to the appendix section (Subsection 7.8B),
we recall that if ®(¢, 1) is the state transition matrix for (LP), then there exists a
constant matrix R € R™*"™ and a nonsingular n x n matrix W(t, ¢y) such that

B(t, o) = W(t, tg)elttto), (7.4.26)

where
U(t, tg) = V(t+T,to)

for all t € R. In Section 7.8 it is shown that the change of variables given by
x=U(t,to)y

transforms system (L P) into the system
Uy = Ry, (7.4.27)

where Ris givenin (7.4.26). Moreover, because U (¢, o) ~lexistsoverty < t < t+T,
the equilibrium z, = 0 is uniformly stable (resp., uniformly asymptotically stable) if
and only if y. = 0 is also uniformly stable (resp., uniformly asymptotically stable).
Applying Theorem 7.4.5 to system (7.4.27), we obtain the following results.

Theorem 7.4.9 The equilibrium z. = 0 of (LP) is uniformly stable if and only if
all eigenvalues of the matrix R (given in (7.4.26)) have nonpositive real parts, and
every eigenvalue with a zero real part has an associated Jordan block of order one.
The equilibrium x, = 0 of (L P) is uniformly asymptotically stable in the large if and
only if all the eigenvalues of R have negative real parts. O
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E. Second-order systems

At this point it might be appropriate to investigate the qualitative behavior of the
solutions of second-order linear autonomous homogeneous systems in the vicinity of
the equilibrium z. = 0. In the process of doing this, we establish a classification of
equilibrium points for second-order systems. Knowledge of the qualitative behavior
of the solutions of second-order linear systems frequently provides motivation and
guidelines for the study of higher-dimensional and more complex systems.

We consider systems given by

T1 = a1171 + a122
. 7.4.28
{ T2 = (2171 + A22T2 ( )

that can be expressed by

T = Ax, (7.4.29)
where

A= {a“ “12] . (7.4.30)

a21 Q22

When det A # 0, system (7.4.28) has only one equilibrium point, . = 0. We classify
this equilibrium point (resp., system (7.4.28)) according to the following properties
of the eigenvalues A1, As of A.

(a) If A1, A2 are real and negative, then x, = 0 is called a stable node.

(b) If A1, Ao are real and positive, then z. = 0 is called an unstable node.

(c) If A1, Ao are real and if Ay Ao < 0, then z, = 0 is called a saddle.

(d) If A1, Ao are complex conjugates and ReA; = ReXs < 0, then z, = 0 is called
a stable focus.

(e) If A1, Ao are complex conjugates and ReA; = ReAy > 0, then . = 0 is called
an unstable focus.

(®) If A1, Ao are complex conjugates and ReA; = ReAs = 0, then z, = 0 is called
a center.

In accordance with the results of the present section, stable nodes and stable foci
are exponentially stable equilibrium points; centers are stable equilibrium points; and
saddles, unstable nodes, and unstable foci are unstable equilibrium points.

To simplify our subsequent discussion, we transform system (7.4.29) into special
forms, depending on the situation on hand. To this end, we let

y=Plz (7.4.31)

where P € R?*2 is nonsingular. Under this similarity transformation, (7.4.29)

assumes the form
y=Ay (7.4.32)

where
A=P AP (7.4.33)
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Corresponding to an initial condition z(0) = z( for (7.4.29) we have the initial
condition
y(0) =yo = P (7.4.34)

for system (7.4.32).

In the following, we assume without loss of generality that when A, A9 are real
and not equal, then \; > Ao.

We first assume that Ay and A\ are real and that A can be diagonalized, so that

M0
A= [0 )\J , (7.4.35)
where A1, A2 are not necessarily distinct. Then (7.4.32) assumes the form
¥1 = A\
. 7.4.36
{ Y2 = AaYa- ( )

For a given set of initial conditions (y10,%20)7 = (y1(0),y2(0))%, the solution of
(7.4.36) is given by

A
{ 1(t,0,510) = y1(t) = eM'yno (7.4.37)
A ot 4.
©2(t,0,920) = y2(t) = e**"ya0.
Eliminating ¢, we can express (7.4.37) equivalently as
Az/A
yg(t) = Y20 [yl (t)/ylo] 2/ 1. (7438)

X2

Y,
Y
Y \ ,/’/ X,

A RN

(a) (b)

Figure 7.4.1: Trajectories near a stable node.

Using either (7.4.37) or (7.4.38), we now can sketch families of trajectories in the
y1— Yo plane for a stable node (Figure 7.4.1(a)), for an unstable node (Figure 7.4.2(a)),
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and for a saddle (Figure 7.4.3(a)). Using (7.4.31) and (7.4.37) or (7.4.38), we can
sketch corresponding families of trajectories in the x1—x2 plane. In all figures, the
arrows signify increasing time ¢. Note that in all cases, the qualitative properties
of the trajectories have been preserved under the similarity transformation (7.4.31)
(refer to Figures 7.4.1(b), 7.4.2(b), and 7.4.3(b)).

X2

NZ
2

Y,

/)
Z

(b)

Figure 7.4.2: Trajectories near an unstable node.

X2

(a)

(b)

Figure 7.4.3: Trajectories near a saddle.

Next, we assume that matrix A has two real repeated eigenvalues, \y = Ay = A,

and that A is in Jordan canonical form,

-

Al
0 A
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In this case (7.4.32) assumes the form

U1 = Ay1 + Yo
. 7.4.39
{ Y2 = AYa. ( )
For an initial point, we obtain for (7.4.39) the solution
£,0,910,Y20) = y1(t) = e tet
{ ©1(t,0,y10 yQO)/\t y1(t) = eMy10 +teMya0 (7.4.40)
©2(t,0,y20) = eMya0.

Eliminating the parameter ¢, we can plot trajectories in the y;—y- plane (resp., in the
x1— 22 plane) for different sets of initial data near the origin. In Figure 7.4.4, we
depict typical trajectories near a stable node (A < 0) for repeated eigenvalues.

Y, X2

N \yZ \

N
.
. -
y ) -
1 V-

N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N

Figure 7.4.4: Trajectories near a stable node (repeated eigenvalues).

Next, we consider the case when matrix A has two complex conjugate eigenvalues,
Al =0 + 1w, Ao =0 — w.

In this case there exists a similarity transformation P such that the matrix A =
P~1AP assumes the form

0 w
A= [—w 5} (7.4.41)
and therefore

{ 71 = 0y1 + wys (7.4.42)

Y2 = —wy1 + Y.

The solution for the case § > 0, for a set of initial data (y10, y20)7 , is given by

t,0,910, Y20) = Y1 (t) = e swi + yaosin wt
{901( Y10, Y20) = y1(t) = € (yrocos wt + yaosin wt) (7.4.43)

©2(t,0,510,y20) = Y2(t) = € (—yrosinwt + yapcos wt).
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Letting p = (y%, + ¥3,)"/2, cosa = yi0/p, and sina = ya0/p, We can rewrite
(7.4.43) as

{ @1(t,0,910,y20) = 31 (1) = e pcos(wt — ) (7.4.44)

©02(t, 0,910, y20) = y2(t) = —etpsin(wt — a).

Letting r and 6 denote the polar coordinates, y; = r cos 6 and y» = rsin §, we may
rewrite the solution (7.4.44) as

r(t) = pe’l, 0(t) = —(wt — a). (7.4.45)
Eliminating the parameter ¢, we obtain
r= 067(6/“’)9, c= pe(‘s/“’)a. (7.4.46)

In the present case, the origin is an unstable focus. For different initial conditions,
(7.4.45) and (7.4.46) yield a family of trajectories in the form of spirals tending away
from the origin with increasing ¢, as shown in Figure 7.4.5 (for w > 0).

NZERNE

>

Figure 7.4.5: Trajectories near an unstable focus.

When § < 0, we obtain in a similar manner, for different initial conditions near the
origin, a family of trajectories as shown in Figure 7.4.6 (for w > 0). In the present
case, the origin is a stable focus and the trajectories are in the form of spirals that tend
towards the origin with increasing ¢.

Finally, if § = 0, the origin is a center and the preceding expressions ((7.4.45) and
(7.4.46)) yield for different initial conditions near the origin, a family of concentric
circles of radius p, as shown in Figure 7.4.7 (for w > 0).

7.5 Linear Discrete-Time Systems

In the present section we study the stability properties of the equilibrium of linear
homogeneous systems

e(k+1) = A(K)a(k), k>ko>0 (LHp)



286 Chapter 7.  Finite-Dimensional Dynamical Systems: Specialized Results

Y

\ Y,

Figure 7.4.6: Trajectories near a stable focus.

Y2

Y1

=
S

Sz

Figure 7.4.7: Trajectories near a center.

k, ko € N, and linear autonomous homogeneous systems
x(k+1) = Az(k), k> 0. (Lp)

In (LHp), k € Nz € R",and A: N — R" "™, In (Lp), k € N, x € R", and
A € R™ ", Recall that z. = 0 is always an equilibrium of (Lp) and (LHp) and
that z, = 0 is the only equilibrium of (L Hp) if A(k) is nonsingular for & € N. The
solutions of (LLH p) are of the form

(P(kakOaxO) = q’(k»ko)xm k 2 kO?

where ® denotes the state transition matrix of A(k) and ¢(ko, ko, o) = xo. Also,
the solutions of (L p) are of the form

o(k, ko, o) = ®(k, ko)xo
(I)(k - kOa O)zO

®(k — ko)xo

>

where in the preceding equation, a slight abuse in notation has been used.
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For some of the properties of the transition matrix ®(k, ko) that are required
in the proofs of the results that follow, the reader should refer to the appendix
(Subsection 7.8D).

A. Linear homogeneous systems
In the next four results, we provide some of the basic qualitative properties of (LH p).

Theorem 7.5.1 The equilibrium z. = 0 of (LH p) is stable if and only if the solutions
of (LH p) are bounded, or equivalently, if and only if

sup || @ (k, ko)|| £ c(ko) < oo,
k>ko

where ||®(k, ko)|| denotes the matrix norm induced by the vector norm used on R"™
and c¢(ko) denotes a constant that may depend on the choice of k. a

The proof of the above result is similar to the proof of Theorem 7.4.1 and is left
as an exercise for the reader.

Theorem 7.5.2 The equilibrium z. = 0 of (LHp) is uniformly stable if and only if
the solutions of (L H p) are uniformly bounded, or equivalently, if and only if

sup c(ko) 2 sup ( sup ||<I>(k,k0)||> 2 cp < 00. a
ko >0 ko>0 \ k>ko

The proof of the above result is similar to the proof of Theorem 7.4.2 and is left
as an exercise.
Theorem 7.5.3 The following statements are equivalent.
(i) The equilibrium z. = 0 of (LH p) is asymptotically stable.
(i1) The equilibrium z. = 0 of (L H p) is asymptotically stable in the large.
(i) limg— oo ||®(k, ko)|| = 0. ]

The proof of the above result is similar to the proof of Theorem 7.4.3 and is left
as an exercise.

Theorem 7.5.4 The equilibrium . = 0 of (L Hp) is uniformly asymptotically stable
if and only if it is exponentially stable. O

The proof of the above result is similar to the proof of Theorem 7.4.4 and is left
as an exercise.
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B. Linear autonomous homogeneous systems

Revisiting Example 3.1.9, we now address the stability properties of system (L p),
x(k+1) = Az(k), k> 0. (Lp)

To this end we transform the matrix A into the Jordan canonical form, J = P~1 AP,
using the transformation = Py to obtain the equivalent system

y(k+1) = P APy(k) = Jy(k). (7.5.1)

Because the equilibrium z. = 0 of (Lp) possesses the same stability properties
as the equilibrium y. = 0 of (7.5.1), we may assume without loss of generality
that the matrix A in (Lp) is in Jordan canonical form. We may now use the same
reasoning as was done in Subsection 7.4B (for system (L)), to arrive at the following
result.

Theorem 7.5.5 The equilibrium x, = 0 of system (Lp) is stable, in fact, uniformly
stable, if and only if all eigenvalues of A are within or on the unit circle of the complex
plane, and every eigenvalue that is on the unit circle has an associated Jordan block
of order one. The equilibrium x, = 0 of (Lp) is uniformly asymptotically stable in
the large, in fact, exponentially stable in the large, if and only if all eigenvalues of A
are within the unit circle of the complex plane. O

The proof of this result proceeds along similar lines as the proof of Theorem 7.4.5
and is left to the reader as an exercise. As a consequence of Theorem 7.5.5, we have
the following result.

Theorem 7.5.6 The equilibrium z. = 0 of (Lp) is unstable if and only if at least
one of the eigenvalues of A is outside of the unit circle in the complex plane or at
least one of the eigenvalues of A is on the unit circle in the complex plane and is
associated with a Jordan block of order greater than one. O

The proof of the above result is similar to the proof of Theorem 7.4.6 and is left
as an exercise.

As in the case of linear system (L), it may be appropriate to take note of certain
conventions concerning matrices for system (L p) that are used in the literature. Again,
these are not consistent with the terminology used in the preceding results. Thus, a
real n X n matrix A is called Schur stable or just stable, if all of its eigenvalues are
within the unit circle of the complex plane. If at least one of the eigenvalues of A is
outside the unit circle, then A is called unstable. A matrix A that is neither stable nor
unstable is called critical, and the eigenvalues on the unit circle in the complex plane
are called critical eigenvalues.

Example 7.5.1 For system (Lp), we let
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The eigenvalues of A are A1, Ay = ++/—1. According to Theorem 7.5.5, the equi-
librium 2, = 0 of the system is stable, and according to Theorems 7.5.1 and 7.5.2,
the matrix A* is bounded (resp., uniformly bounded) for all & > 0. O

Example 7.5.2 For system (Lp), we let

A= [—01 _%)/2} '

The eigenvalues of A are A1, Ay = il/\/i According to Theorem 7.5.5, the equilib-
rium z. = 0 of the system is asymptotically stable and according to Theorem 7.5.3,
limg o0 AF = 0. O

Example 7.5.3 For system (Lp), we let

|

The eigenvalues of A are Aj, Ao = £4/3/2. According to Theorem 7.5.6, the equi-
librium z. = 0 of system (Lp) is unstable, and according to Theorems 7.5.1 and
7.5.2, the matrix A¥ is not bounded with increasing k. O

Example 7.5.4 For system (Lp), we let

11
A= [O J |
The matrix A is a Jordan block of order 2 for the eigenvalue A = 1. According to
Theorem 7.5.6, the equilibrium z. = 0 of the system is unstable. O

C. The Lyapunov matrix equation
In the present section we employ quadratic forms
v(z) = 27 Bz, B =BT (7.5.2)
to establish stability criteria for linear systems
x(k+1) = Ax(k). (Lp)

Evaluating v along the solutions of system (L p), we obtain the first forward difference
of v as

Appv(z(k)) = v(z(k +1)) — v(z(k))

=z(k+ 1)"Bx(k +1) — 2(k)" Bx(k)
(k)T AT BAz(k) — (k)T Ba(k)

= z2(k)T(ATBA — B)x(k),

=X
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and therefore
A v(z) = 2T (ATBA - B)z 2 27Cx (7.5.3)

where
ATBA-B=C, CoT=cC. (7.5.4)

Equation (7.5.4) is called the Lyapunov Matrix Equation for system (L p).
Invoking the Lyapunov stability results of Section 6.3, the following results follow
readily.

Proposition 7.5.1 (a) The equilibrium x, = 0 of system (L p) is stable if there exists
a real, symmetric, and positive definite matrix B such that the matrix C' given in
(7.5.4) is negative semidefinite.

(b) The equilibrium z. = 0 of system (Lp) is asymptotically stable in the large,
in fact, exponentially stable in the large, if there exists a real, symmetric, and positive
definite matrix B such that the matrix C' given in (7.5.4) is negative definite.

(c) The equilibrium xz. = 0 of system (Lp) is unstable if there exists a real,
symmetric matrix B that is either negative definite or indefinite such that the matrix
C given in (7.5.4) is negative definite. O

We leave the proofs of the above results as an exercise for the reader.

In applying Proposition 7.5.1, we start by guessing a matrix B having certain
properties and we then solve for the matrix C' in (7.5.4). If C' possesses desired
properties, we can apply Proposition 7.5.1 to draw appropriate conclusions; if not,
we need to choose another matrix B. This is not a very satisfactory approach, and in
the following, we derive results that, similarly as in the case of linear continuous-time
systems (L), enable us to construct Lyapunov functions of the form v(z) = 27 Bx
in a systematic manner. In this approach we first choose a matrix C'in (7.5.4) which
is either negative definite or positive definite, then we solve (7.5.4) for B, and then
we draw appropriate conclusions by invoking existing Lyapunov results (e.g., Propo-
sition 7.5.1). In applying this approach of constructing Lyapunov functions, we need
to know under what conditions equation (7.5.4) possesses a unique solution B for any
definite (i.e., positive definite or negative definite) matrix C. We address this issue
next.

We first show that if all the eigenvalues of A are within the unit circle of the
complex plane (i.e., A is stable), then we can compute B in (7.5.4) explicitly. To see
this, assume that in (7.5.4) C'is given and that A is stable. Then

(AT)k+1BAk+1 _ (AT)kBAk _ (AT)kCAk,
and summing from k£ = 0 to [ yields

ATBA—B+(AT)2BA2 —ATBA 4+ ...+ (AT)ZHBAIH _ (AT)IBAZ

l
= (AT)kc Ak
k=0
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or
l

(AT)Z+1BAZ+1 —B= Z(AT)kCAk

k=0
Letting | — oo, we have
B=-) (AT)kCA*. (7.5.5)
k=0

It is easily verified that (7.5.5) is a solution of (7.5.4). Indeed, we have

—AT [i(AT)’“CA’“} A+ i(AT)’“CA’“ =C
k=0 k=0

or
—ATCA+C — (AT)2CA? + ATCA — (AT)2C A3 + (AT)?CA% — ... =C.

Furthermore, if C' is negative definite, then B is positive definite.
Combining the above discussion with Proposition 7.5.1(b), we have proved the
following result.

Theorem 7.5.7 If there is a positive definite and symmetric matrix B and a negative
definite and symmetric matrix C satisfying the Lyapunov matrix equation (7.5.4),
then the matrix A is stable. Conversely, if A is stable, then given any symmetric
matrix C, equation (7.5.4) has a unique solution B, and if C' is negative definite, then
B is positive definite. a

Next, we determine conditions under which the Lyapunov matrix equation (7.5.4)
has a unique solution B = BT € R™*" for a given matrix C = CT € R"*", In
doing so, we consider the more general system of equations

A XAy - X =C (1.5.6)
where A; € RmX"L’ As € R"X”7X e Rm*n" and C € R™*",

Lemma 7.5.1 Let A; € R"™*™ and Ay € R™*"™. Then equation (7.5.6) has a unique
solution X € R™*™ for a given C' € R™*™ if and only if no eigenvalue of A; is a
reciprocal of an eigenvalue of As.

Proof . We need to show that the condition on A; and A is equivalent to the condition
that A; X A, = X implies X = 0. Once we have proved that A; X A, = X has the
unique solution X = 0, then it can be shown that (7.5.6) has a unique solution for
every C, because (7.5.6) is a linear equation.

Assume first that the condition on A; and Aj is satisfied. Now A1 XA, = X
implies that A¥ 7 X A5~/ = X and

Al = AkXAET for k> j>0.
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Now for the polynomial of degree k,

we define the polynomial of degree k,

k
) 1
A) = A= =\ [ =
) Z a;A A'p <>\) ,
7=0
from which it follows that
p(A)X = AR Xp*(Ay). (7.5.7)

Now let ;(A) be the characteristic polynomial of A;, i = 1,2. It follows from the
assumption that 1 (A) and 3 () do not have common roots. Thus, @1 () and 3 ()
are relatively prime, which in turn yields that there are polynomials p(A) and g(\)

such that
p(N)e1(A) +a(A)p3(A) = 1.

Now define ¢(A) = g(A)p3(\) and note that o*(X) = ¢*(A)p2(A). It follows that
©*(A2) = 0and ¢(A;) = I. Replacing p()) in (7.5.7) by ¢()), we obtain

X =p(A)X = Af X¢*(A;) =

From this it follows that A; X Ay = X implies X = 0.

To prove the converse, we assume that ) is an eigenvalue of A; and A~! is an
eigenvalue of Ay (and hence, is also an eigenvalue of AZ). Let Ajw = A\w and
ATz =2"12,0#w € R"™! and 0 # 2z € R™*!, Define X = wz”. Then X # 0
and A1 XAy = X. O

To construct the Lyapunov function v(z), using Lemma 7.5.1, we must still check
the definiteness of B, using the results of the present section (e.g., Proposition 7.5.1).

(a) If all the eigenvalues of A for system (L p) are within the unit circle of the com-
plex plane, then no reciprocal of an eigenvalue of A is an eigenvalue, and Lemma 7.5.1
gives another way of showing that equation (7.5.4) has a unique solution B for every
C'if A is stable. If C is negative definite, then B is positive definite. This can be
shown similarly as was done for the corresponding case of linear ordinary differential
equations (Subsection 7.4C).

(b) Suppose that at least one of the eigenvalues of A is outside the unit circle in
the complex plane and that A has no eigenvalues on the unit circle. As in the case of
linear differential equations (L) (Subsection 7.4C), we use a similarity transformation
r = Qy in such a way that Q=1 AQ = diag[A;, Az], where all eigenvalues of A;
are outside the unit circle and all eigenvalues of A, are within the unit circle. We
then proceed identically as in the case of linear differential equations to show that
under the present assumptions there exists for system (L p) a Lyapunov function that
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satisfies the hypotheses of Proposition 7.5.1(c). Therefore, the equilibrium x. = 0 of
system (L p) is unstable. If A does not have any eigenvalues within the unit circle,
then the equilibrium x, = 0 of (L) is completely unstable. In this proof, Lemma 7.5.1
has not been invoked. If additionally, the hypotheses of Lemma 7.5.1 are true (i.e.,
no reciprocal of an eigenvalue of A is an eigenvalue of A), then we can construct the
Lyapunov function for (Lp) in a systematic manner.

Summarizing the above discussion, we have arrived at the following result.

Theorem 7.5.8 Assume that the matrix A (for system (L)) has no eigenvalues on
the unit circle. If all the eigenvalues of A are within the unit circle of the complex
plane, or if at least one eigenvalue is outside the unit circle of the complex plane, then
there exists a Lyapunov function of the form v(z) = 27 Bz, B = BT, whose first
forward difference along the solutions of system (Lp) is definite (i.e., Ay, v(x) is
either negative definite or positive definite). o

Theorem 7.5.8 shows that when all the eigenvalues of A are within the unit circle,
then for system (Lp), the conditions of Theorem 6.3.2 are also necessary conditions
for asymptotic stability. Furthermore, when at least one eigenvalue is outside the unit
circle and no eigenvalues are on the unit circle, then the conditions of Theorem 6.3.4
are also necessary conditions for instability.

We conclude the present section by considering several specific examples.

Example 7.5.5 For system (Lp), let

0 1
-]
Choose B = I, which is positive definite. From (7.5.4) we have
4Ty 7|0 =10 1} |1 0] _ (0 O
C_AAI_[101O 0 1| |0 0]
It follows from Proposition 7.5.1(a) that the equilibrium z. = 0 of (Lp) is stable.

This is the same conclusion as the one we arrived at in Example 7.5.1. O

Example 7.5.6 For system (Lp), let
s [0 -1 /2} .

-1 0
We choose /
8/3 0
B= { 0 5/3] ’
which is positive definite. From (7.5.4) we obtain
C=A"BA-B

- [?/2 _01] [863 593} [01 _%)/2} - [8(/)3 5(/)3]

-1 0
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which is negative definite. It follows from Proposition 7.5.1(b) that the equilibrium
xe = 0 of system (Lp) is asymptotically stable in the large, in fact, exponentially
stable in the large. This is the same conclusion that was drawn in Example 7.5.2. O

Example 7.5.7 For system (Lp), let

a= %

We choose
-1 0
o[04
which is negative definite. From (7.5.4) we obtain

C— ATBA_ B — { 0 —3} {bu bm} {0 —1/2} B [bu blﬂ

—1/2 0 blg b22 -3 0 b12 b22
or
[(9?)22 —b1) bi2/2 ] _ {—1 0}
b12/2 (b11/47b22) 0 -1\’
which yields

which is also negative definite. It follows from Proposition 7.5.1(c) that the equi-
librium x, = 0 of this system is unstable. This conclusion is consistent with the
conclusion made in Example 7.5.3. (W

Example 7.5.8 For system (Lp), let

A= .

The eigenvalues of A are \; = 1/3 and A2 = 3. According to Lemma 7.5.1, for a
given matrix C' = cT, equation (7.5.4) does not have a unique solution, because in

this case A\; = 1/)\,. For purposes of illustration, we choose C' = —I. Then
7 _ 7T o _ 1/3 0 b11 b12 1/3 1 - b11 b12
=484 B_{l 3| [biz ba2| | O 3 bia  boo

or

—8/9 b11/3 _[-1 0
bi1/3 (b1 46bia +8b)| |0 —1)’

which shows that for C = —1, equation (7.5.4) does not have any solution for B
at all. O
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7.6 Perturbed Linear Systems

Perturbed linear systems come about because of uncertainties incurred during the
modeling process; because of errors made in measurements; because of errors in-
troduced when linearizing nonlinear systems; and the like. A natural question of
fundamental importance is to identify conditions under which linear systems and
their perturbations have similar qualitative properties. We answer this question in
pieces, by addressing different aspects of system behavior.

We first determine conditions under which the stability properties of the equilib-
rium z. = 0 of a nonlinear system can be deduced from the stability properties of
the equilibrium w = 0 of its linearization, for noncritical cases. This is known as
Lyapunov’s First Method or Lyapunov’s Indirect Method. Next, for noncritical cases,
we determine the qualitative properties of the solutions of perturbed linear systems by
proving the existence of stable and unstable manifolds near the equilibrium z. = 0
of such systems. Finally, by introducing the notion of orbital stability, we study the
stability and instability properties of periodic solutions of perturbed linear periodic
systems.

A. Preliminaries
The present subsection consists of several parts.

Some Notation

We recall that for a function g: R! — RF, the notation g(x) = O(|z|?) as |z| — «
means that

< 00,
B > 0, with the interesting cases including & = 0 and @ = co. Above, | -| denotes any

one of the equivalent norms on R!. Also, when g: R x Rl — R¥, (¢, z) = O(|z|?)
as || — « uniformly for ¢ in an interval 7 means that

t
lim sup(sup 9( ,Bx)|> < 00
jel=a "\ ter |l

We also recall that g(z) = o(|z|?) as |z| — o means that

and g(t,z) = o(|z|?) as |x| — « uniformly for ¢ in an interval is defined in the
obvious way.

The Implicit Function Theorem

In Subsection 7.6D we make use of the Implicit Function Theorem which we present
next, without proof. To this end, we consider a system of functions

gi('ray):gi(xlv"'7$n7y17"'7y7")a 7::17"'7T'
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We assume that these functions have continuous first derivatives in an open set con-
taining a point (zo, yo). We define the Jacobian matrix of g(-) = (¢1(-),- .., 9-(*))
with respect to (y1, . . ., y:) by

9g1/0yr -+ Og1/0yr
() = dg . 0g2/0y1 -+ 0ga/0yy
=gy T : :
9gr/Oy1  --+  Ogr/Oy,
The determinant of this matrix is called the Jacobian of g(-) withrespectto (y1, . . ., yr)
and is denoted
J = det(0g/0dy).
Theorem 7.6.1 (Implicit Function Theorem) Let g1(-),...,g,(-) have continuous

first derivatives in a neighborhood of a point (g, yo). Assume that g;(xo, yo) = 0,7 =
1,...,rand that J # 0 at (o, yo). Then there is a §-neighborhood U of x( and a -
neighborhood S of y such that for any 2z € U there is a unique solution y of g; (z, y) =
0,4 =1,...,rin S. The vector-valued function y(z) = (yi(z), ...,y (x))T defined

in this way has continuous first derivatives. If the functions g;(-),¢ = 1,...,r, have
a continuous kth derivative, or if they are analytic, then so are the functions y;(-),
1=1,...,7 O
Hypersurfaces

We characterize stable and unstable manifolds by means of hypersurfaces in R".

Definition 7.6.1 A local hypersurface S of dimension k + 1 located along a curve
v(t) is determined as follows. There is a neighborhood V' of the origin = 0 in R™
and there are (n — k) functions H; € C*[R x V,R] such that

S={(t,z):teRz—v(t)eVand H;(t,z+v(t))=0,i=k+1,...,n}.

(7.6.1)
Here H;(t,v(t)) = 0,i =k +1,...,n, for all ¢ € R. Moreover, if V denotes the
gradient with respect to x, then for each ¢t € R, {VH;(t,v(t)): i=k+1,...,n}is
a set of (n — k) linearly independent vectors. A rangent hypersurface to S at a point
(t,x) is determined by {y € R": (y, VH;(t,v(t))) =0, i =k +1,...,n}. Wesay
that S is C™-smooth if v € C™[R,R"] and H; € C™[R x V,R] and we say that S
is analytic if v and H; are holomorphic in ¢ and (¢, x), respectively.

In the present section, v(¢) is usually a constant (usually, v(¢) = 0) oritis a periodic
function. Moreover, there is typically a constant n x n matrix @, a neighborhood U
of the origin in the § = (y1, ..., yr)T -space, and a function G € C'[R x U, R"~¥]
such that G(¢,0) = 0 and such that

S = {(t,x): y=Q(x—v)eU and (yry1,...,yn)’ = G(t,yl,...,yk)}.
(7.6.2)
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The functions H;(t, z) can be determined immediately from G(¢,y) and Q.

Positively and Negatively Invariant Sets

In Subsection 7.6D where we study the qualitative properties of the solutions of
perturbed linear equations using stable and unstable manifolds, we need to allow the
solutions of the equations to evolve forward and backward in time. As a consequence
of this, as pointed out in Subsection 3.1A, we require not only positively invariant
sets but negatively invariant sets as well. Thus, a set M C R" is positively invariant
with respect to (F) if for every solution o(-,tg,z¢) of (E), z9 € M implies that
o(t,to,xg) € M for all t > ty and negatively invariant with respect to (E) if for
every solution (-, %o, zg) of (F), xg € M implies that (¢, o, x9) € M for all
t < tp.

B. Stability of an equilibrium (continuous-time systems)
To fix some of the ideas involved, we consider systems of equations
& =g(t ) (@)

where g € C[R* x Q,R"] and 2 is an open connected set. Let ¢ denote a given
solution of (G) that is defined for all ¢ > tg > 0. We can linearize (G) about  in the
following manner. Define y = x — (¢) so that

y—g( z) — g(t, p(t))

=gty + (1)) — g(t, (1))
99
P)

= 991, plt))y + G, y)

\./A

where
Glt,) 2oty + 0(0) ~ ot 0l6))] — 21,00y

which is o(]y|) as |y| — 0, uniformly in ¢ on compact subsets of [t(, 00).
Of special interest is the case when g(t,2) = g(z) and p(t) = ¢ is a constant
(i.e., an equilibrium point). Under these conditions, we have

Y= Ay +G(y)

where A = (9g/0x)(z0).

Also, of special interest is the case in which g(¢, x) is T periodic in ¢ (or is inde-
pendent of ¢) and o(t) is T periodic. We consider this case in Subsection E.

We now consider systems of equations given by

&= Az + F(t,) (PE)

where F' € C[RT x B(r),R"|, B(r) C © C R™ for some > 0, where 2 is a
connected set containing the origin x = 0 and A € R™*"™. We call Az the linear part
of the right-hand side of (PFE) and F(t, ) represents the remaining terms of order
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higher than one in the various components of . System (P E) constitutes a perturbed
linear system corresponding to the unperturbed linear system

W= Aw. (L)
Theorem 7.6.2 Let A € R™*" bestable,let F' € C[R* x B(r), R"], and assume that
F(t,z) =o(Jz|) as|z| — 0, (7.6.3)

uniformly in ¢+ € RT. Then the equilibrium z, = 0 of (PE) is uniformly asymptoti-
cally stable, in fact, exponentially stable.

Proof. Because (L) is an autonomous linear system, Theorem 7.4.7 applies. In view
of that theorem, there exists a symmetric, real, positive definite n X n matrix P such
that AT P4+ PA = —C, where C'is positive definite. Consider the Lyapunov function
v(z) = 2T Pz. The derivative of v with respect to ¢ along the solutions of (PE) is
given by

vipg)(t,r) = —2" Cx + 22" PF(t, x). (7.6.4)

Now pick v > 0 such that 27 Cx > 3+|z|? for all x € R™. By (7.6.3) there is a &
with0 < § < rsuchthatif || < §,then |PF(t,x)| < ~y|z|forall (¢,2) eRT x B(J).
Forall (t,z) € RT x B(d) we obtain, in view of (7.6.4), the estimate

Uipm)(ta) < —3y|z|? 4 2y|z|* = —v|z|*.

It follows that v{ 1, (£, z) is negative definite in a neighborhood of the origin. By
Theorem 6.2.2 the trivial solution of (PE) is uniformly asymptotically stable and by
Theorem 6.2.4, it is exponentially stable, because c;|z|?> < v(z) < ez|z|? for some
co > ¢1 > 0and for all x € R"™. O

Example 7.6.1 We consider the Lienard Equation
i+ flx)t+2=0 (7.6.5)

where f € C[R,R]. Assume that f(0) > 0. We can rewrite (7.6.5) (letting z =
and & = x9) as

.I"l = T2
{ i = —a1 — f(0)z2 + (F(0) — F(a1))2 (7.6.6)

and we can apply Theorem 7.6.2 with 27 = (1, 22),

0
f(0) — f(xl))$2

Because A is a stable matrix and F'(¢, z) satisfies (7.6.3), we conclude that the equi-
librium z. = 0 of (7.6.5) is uniformly asymptotically stable. O

A:[O1 fl(o)} and F(t,2) = |
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We emphasize that the results one obtains by applying Theorem 7.6.2 are local,
and no information concerning the extent of the uniform asymptotic stability of the
equilibrium z, = 0 (domain of attraction) is provided.

Theorem 7.6.3 Assume that A € R™*™ has at least one eigenvalue with positive
real part and no eigenvalues with real part equal to zero. If F' € C[R* x B(r),R"]
and if F satisfies (7.6.3), then the equilibrium x, = 0 of (PFE) is unstable.

Proof. We use Theorem 7.4.7 to choose a real, symmetric n X n matrix P such that
ATP + PA = —C is negative definite. The matrix P is not positive definite or

. . . . A . . .
even positive semidefinite. Hence, the function v(x) = 27 Px is negative at points
arbitrarily close to the origin. Evaluating the derivative of v with respect to ¢ along
the solutions of (PFE), we obtain

Vipp (t2) = —a" Cx + 20" PF(t, x).

Pick v > 0 such that 27 Cz > 3v|z|? for all z € R™. In view of (7.6.3) we can pick
d such that 0 < 6 < r and |PF(t,z)| < «|x| forall (¢,x) € R* x B(d). Thus, for
all (t,z) € RT x B(J), we obtain

Vi) (t o) < =3ylzf® + 29]z* = —af?,

so that v{ p ;y (t, ) is negative definite. By Theorem 6.2.8 the trivial solution of (PE)
is unstable. o

Example 7.6.2 Consider the simple pendulum described by the equation
Z+asinz =0 (7.6.7)

where a > 0 is a constant. Note that (z.,2.)” = (7,0)7 is an equilibrium for
(7.6.7). Lety = v — x.. Then

J+asin(y +7) =4§ —ay + a(sin(y + ) +y) = 0.
This equation can be put into the form of (PE) with

0
a(sin(y + ) +y)

0 1
A:{a 0} and F(t,x) =

The eigenvalues of A are A\;, A\ = ++/a and F satisfies condition (7.6.3). Thus,
Theorem 7.6.3 is applicable and we can conclude that the equilibrium (z., &.) =
(7,0) is unstable. a

Next, we consider periodic systems given by
&= P(t)x+ F(t,x) (7.6.8)

where P € C[R, R™*"]is periodic with period 7' > 0 and where F" has the properties
enumerated in Theorem 7.6.2. As in the case of system (PFE), system (7.6.8) may
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arise in the process of linearizing equations of the form (F) or they may arise in the
process of modeling a physical system. Thus, system (7.6.8) constitutes a perturbed
linear periodic system corresponding to the unperturbed linear periodic system

W = P(t)w. (LP)

Corollary 7.6.1 Let P(¢) be defined as above and let F satisfy the hypotheses of

Theorem 7.6.2.
(i) If all the characteristic exponents of the linear system (L P) have negative real
parts, then the equilibrium z. = 0 of system (7.6.8) is uniformly asymptotically

stable.
(ii) If at least one characteristic exponent of (LP) has positive real part and no
characteristic exponent has zero real part, then the equilibrium z. = 0 of

system (7.6.8) is unstable.

Proof. By Theorem 7.8.8 (in the appendix section, Section 7.8), the fundamental
matrix ® for (LP) satisfying ®(0) = I has the form ®(t) = U(t)e’, where U(t)
is a continuous, periodic, and nonsingular matrix. Now define x = U (t)y, where z
solves (7.6.8), so that

Uty +U(t)g = P(OU()y + F(t,U(t)y),
and U = PU — UR. Thus y solves the equation
g =Ry + U (O)F(tU(t)y),

and U~L(t)F(t,U(t)y) satisfies (7.6.3). Now apply Theorem 7.6.2 or 7.6.3 to
determine the stability of the equilibrium y. = 0. Because U(t) and U~!(t) are
both bounded on R, the trivial solution y. = 0 and . = 0 have the same stability
properties. |

It is clear from the preceding results that the stability properties of the trivial
solution of many nonlinear systems can be deduced from their linearizations. As
mentioned earlier, these results comprise what is called Lyapunov’s First Method or
Lyapunov'’s Indirect Method for systems described by ordinary differential equations.

C. Stability of an equilibrium (discrete-time systems)

We now establish conditions under which the stability properties of the equilibrium
z. = 0 of the perturbed linear system

z(k+1) = Az(k) + F(k, z(k)) (7.6.9)

can be deduced from the stability properties of the equilibrium w, = 0 of the linear
system

w(k+1) = Aw(k) (7.6.10)
under the assumption that F'(k, ) = o(|x|) as |z| — 0, uniformly in &k € N; C N.
In (7.6.9), A € R"*™ and F € C[N x Q,Q] where Q@ C R” is a connected set
containing the origin x = 0.
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Theorem 7.6.4 Assume that F' € C[N x Q, ] where 2 C R™ is an open connected
set containing the origin 2. = 0 and assume that F'(k,z) = o(|z|) as |z| — 0,
uniformly in £ € N; where V; is a subset of N.

(i) If A is Schur stable (i.e., all eigenvalues of A are within the unit circle of the
complex plane), then the equilibrium z. = 0 of system (7.6.9) is uniformly
asymptotically stable (in fact, exponentially stable).

(ii) If at least one eigenvalue of A is outside the unit circle of the complex plane
and if A has no eigenvalues on the unit circle in the complex plane, then the
equilibrium z, = 0 of system (7.6.9) is unstable. O

The proofs of the results in Theorem 7.6.4 are similar to the proofs of Theorems 7.6.2
and 7.6.3 and are left as an exercise to the reader.

Example 7.6.3 Consider the system

xg(k + 1) = —Qj1<k) + $1(/€)2 + mQ(k/,)Q. (7.6.11)

System (7.6.11) has an equilibrium at the origin, z. = (z1,22)7 = (0,0)T. Using
the notation of (7.6.9) we have

A—[ 0 _1/2} and F(k,x)ZF(x)—{

x%—l—x%
—1 0 ’

x% + x%
The eigenvalues of A are A1, \a = £4/1/2. Also, it is clear that F'(z) = o(|z]|)

as |x| — 0. All the hypotheses of Theorem 7.6.4(i) are satisfied. Therefore, the
equilibrium z. = 0 of system (7.6.11) is asymptotically stable. O

Example 7.6.4 Consider the system

wo(k +1) = =321 (k) + x1(k)* — 22(k)°. (7.6.12)

Using the notation of (7.6.9), we have

[ o -1/2 -~ [ a4 a3
A_[S 0 } and F(kz,x)_F(x)—{ﬂv%_%g .

The eigenvalues of A are A1, Ay = £4/3/2. Also, it is clear that F'(z) = o(|z]|)
as |z| — 0. All the hypotheses of Theorem 7.6.4(ii) are satisfied. Therefore, the
equilibrium z, = 0 of system (7.6.12) is unstable. O

D. Stable and unstable manifolds

In the present subsection we consider systems described by equations of the form

&= Ax+ F(t,x) (PE)
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under the assumption that the matrix A does not have any critical eigenvalues. We
wish to study in some detail the properties of the solutions of (P F) in a neighborhood
of the origin . = 0. To accomplish this, we establish the existence of stable and
unstable manifolds (defined shortly). In doing so, we need to strengthen hypothesis
(7.6.3) by making the following assumption.

Assumption 7.6.1 Let F' € C[R x Q,R"] where £2 C R™ is an open connected set
containing the origin z. = 0. Assume that F'(¢,0) = 0 for all ¢ € R and that for any
e > O thereisad > 0 such that B(J) C €2 and such that if (¢, z), (¢,y) € R x B(9),
then |F(t,2) — F(t,y)| < elz — yl. O

Assumption 7.6.1 is satisfied if, e.g., F(t, x) is periodic in ¢, or if it is independent

of t (i.e., F(t,z) = F(z)), orif F € C*[R x Q,R"] and both F(t,0) = 0 and
F,(t,0) =0forallt € R.

N
.
/ o /\

Figure 7.6.1: Stable and unstable manifolds for a linear system.

U*

Before proceeding further, it may be useful to first present some motivation and in-
sight for the principal results of the present subsection. To this end, we make reference
to the trajectory portraits of the two-dimensional systems considered in Subsection
7.4E. We single out noncritical cases, and we are specifically interested in Figure 7.4.3
which depicts the qualitative behavior of the trajectories in the vicinity of a saddle.
Making reference to Figure 7.6.1, we see that there is a one-dimensional linear sub-
space S* such that the solutions starting in S* tend to the origin as ¢ — oo. This
set is called a stable manifold. There is also a linear subspace U™, called an unstable
manifold, consisting of those trajectories that tend to the origin as t — —oo. If time
is reversed, then S* and U™ change roles. In the principal results of this subsection
we prove that if the linear system is perturbed by terms that satisfy Assumption 7.6.1,
then the resulting trajectory portrait for the perturbed linear system (P E) remains es-
sentially unchanged, as shown in Figure 7.6.2. In this case, the stable manifold .S and
the unstable manifold U may become slightly distorted, but their essential qualitative
properties persist.
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S \\i/ ‘
7",
TN

Figure 7.6.2: Stable and unstable manifolds for a perturbed linear system.

Our analysis is local, valid in a small neighborhood of the origin of R™. For n-
dimensional systems (PFE), we allow k eigenvalues of matrix A with negative real
parts and (n — k) eigenvalues with positive real parts. We allow &k = 0 or k = n as
special cases and we allow F' to depend on time ¢. In the (¢, x)-space, we show that
there is a (k+1)-dimensional stable manifold and an (n— k+1)-dimensional unstable
manifold in a sufficiently small neighborhood of the line determined by (¢, 0), t € R.

Theorem 7.6.5 For system (PE), let F € C'[R x ,R"] and satisfy Assump-
tion 7.6.1 and assume that A € R™*™ has k eigenvalues with negative real parts and
(n — k) eigenvalues with positive real parts. Then there exists a (k 4 1)-dimensional
local hypersurface S (refer to Definition 7.6.1), located at the origin, called the stable
manifold of (PFE), such that S is positively invariant with respect to (PE), and for
any solution ¢ of (PE) and any 7 such that (7, (7)) € S, we have ©(t) — 0 as
t — oo. Moreover, there is a ¢ > 0 such that if (7, ¢(7)) € R x B(d) for some
solution ¢ of (PE) but (7, (7)) & S, then ¢(t) must leave the ball B(J) at some
finite time ¢ > 7.

If F € C'R x Q,R"] forl = 1,2,3,... orl = oo, or if F' is holomorphic in
(t,x), then S has the same degree of smoothness as F'. Moreover, S is tangent at the
origin to the stable manifold S* for the linear system (L).

Proof. Choose a linear transformation x = Qy such that (P E) becomes
Y= By+g(t,y), (PE")

where B = Q71 AQ = diag[B, B2] and g(t,y) = Q' F(t, Qy). The matrix @ can
be chosen so that B; is a k x k stable matrix and —Bs is an (n — k) x (n — k) stable
matrix. Clearly g will satisfy Assumption 7.6.1. Moreover, if we define

ne =% o w=[y 8
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then e8! = Uy (t) + Us(t) and for some positive constants K and o we have
|U1(t)] < Ke 2% t>0, and |Us(t)] < Ke, t<0.

Let ¢ be a bounded solution of (PE’) with ¢(7) = £. Then by the variation of
constants formula (see (7.8.10)), we have

t
o(t) = eBEg 4 / eBE=5) g (s, o(s))ds

T

=U(t—1)¢+ / Ui(t — s)g(s,(s))ds + Us(t — 7)€

+f Ut — 5)g(s. p(s))ds — / Ut — 5)g(s. 0(s))ds.

Because Uz (t — s) = Us(t)Uz(—s), the bounded solution ¢ of (PE’) must satisfy

o(t) = Uy (t — 76 + / UL (t — )g(s, o(5))ds — / T Ut — 5)g(s. o(s))ds

+ Us(t) (Ug(—:')f + /TOO Ug(—s)g(s,go(s))ds) . (7.6.13)

Conversely, any solution ¢ of (7.6.13) that is bounded and continuous on |7, c0) must
solve (PE").
In order to satisfy (7.6.13) it is sufficient to find bounded and continuous solutions
of the integral equation
t

Bt ,€) = Us(t — T)E + / UL (t — 8)g(s, (s, 7,€))ds

= [ v gt 005 ) (7.6.14)
t

that also satisfy the condition

Ua(—7)€ + /OO Us(—38)g(s, (s, 7,£))ds = 0. (7.6.15)

Successive approximation is used (refer, e.g., to Theorem 7.8.10) to solve (7.6.14)
starting with (¢, 7, &) = 0. Choose € > 0 such that 4e K < o, pick 6 = d(&) using
Assumption 7.6.1, and choose £ with || < §/(2K). Define

N
[ = sup {[¢(t)]: t > 7}
If ||4;]| < 6, then ;11 must satisfy

t [e'e)
oy (t,7.6)| < Klé| + / Ke o9, | ds + / Keot=9¢||y; |ds
T t

< 50+ (2eK/o) ;|

<.
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Because 1)y = 0, then the 1); are well defined and satisfy ||1;|| < d for all j. Thus

t
|wj+1(t77—7£) - w](t777§)| S/ Ke—g(t_8)8|‘wj - wjfluds

+/t Ke el — ;1 ||ds
2eK/0) s — i
[45 — i1 ]]-

<

—~

<

DN | =

| < 27|k +1 — x| and

lokts = V|l < [[ohes — Yrggmr ||+ + [ps1 — x|
< (27 ) s
< 2||vhrg1 — V||
<274 ].

By induction, we have ||{k41+1 — Vi1

From this estimate, it follows that {1; } is a Cauchy sequence uniformly in (¢, 7, £)
over 7 € R, t € [1,00), and £ € B(6/(2K)). Thus t;(t,7,£) tends to a limit
Y(t,7,€) uniformly on (¢,7,&) on compact subsets of (7,§) € R x B(§/(2K)),
t € [r,00). The limit function ¢ must be continuous in (¢, 7,£) and it must satisfy

lv] <é.

The limit function 1) must satisfy (7.6.14). This is argued as follows. Note first that

/t Us(t — $)g(s, (s, 7, €))ds — / Us(t — $)g(s, vy (s, 7. €))ds
< / T K e (5,7, €) — by (5,7 ) |ds — 0, — .
t

A similar procedure applies to the other integral term in (7.6.14). Thus we can take
the limit as j — oo in the equation

t

Vi () = Us(t— 7)€ + / Us(t — 8)g(s, 5 (5, 7€) )ds

T

_ /too Us(t — 8)g(s, (s, 7,€))ds

to obtain (7.6.14). Note that the solution of (7.6.14) is uni(ye for given TNand £
inasmuch as a second solution ) would have to satisfy ||t — ¢|| < 0.5||¢) — ]|
The stable manifold S is the set of all points (7, &) such that equation (7.6.15) is
true. It will be clear that S'is a local hypersurface of dimension (k+1). If ¢ = 0, then
by uniqueness (¢, 7,0) = 0 for t > 7 and so g(t, ¢ (¢, 7,0)) = 0. Hence, (7,0) € S
forall 7 € R. To see that S is positively invariant, let (7, &) € S. Then ¢ (t, 7, &) will
solve (7.6.13), and hence it will solve (PE’). For any 7 > 7 let &, = ¢(my,7,§)
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and define ©(t, 71,&1) 2 Y(t,7,€). Then (¢, 71,&1) solves (PE’) and hence it also
solves (7.6.13) with (7, £) replaced by (71,&1). Hence

) (Vat-ma + [ Val-shato,o(s,m s )|

T1

t
= ‘@(thlvgl) - Ul(t - Tl)fl - / Ul(t - 8)9(87 QD(Sv 7_1,61))613

+ /tOO Us(t — 8)g(s, p(s,71,81))ds

t o0
<64 Ke ot —|—/ Ke 7(t=9)chds +/ Ke?t=%edds
T1 t

<5+6+ (2Ked/o)
<35
< . (7.6.16)

Because Us(t) = diag[0, eP2!] and — By is a stable matrix, this is only possible when
(11,&1) € S. Hence S is positively invariant.

To see that any solution starting on .S tends to the origin as ¢t — oo, let (7,£) € S
and let v; be the successive approximation defined above. Then clearly

[1(t,7,6)] < K|gle™> ) < 2K[gle 7).

If |1 (¢, 7, €)| < 2K|€|le¢~7), then

t
Y1 (t,7,€)] < K[¢le =) +/ Ke 20(t=s)¢ (2K|g|e—a(s—r)) ds

+/ Keot=5)¢ (2K\§|e‘”(3_7)) ds
t

< Kl¢le 4 2K (€|(eK /o)e T4+ 2K || (e K /20)e 7t
< 2K|§|e—o(t—r)

because (4¢K /o) < 1. Hence in the limit as j — oo we have
(¢, 7,€)| < 2Kgle T

forall ¢t > 7 and for all £ € B(6/(2K)).

Suppose that ¢(t, 7, §) solves (PE’) but (7, §) does not belong to S. If () stays
in the ball B(9) (.e., |o(t,7,&)| < 4, for all t > 7), then (7.6.16) is true. Hence
(1,€) € S, which is a contradiction.

Equation (7.6.15) can be rearranged as

(&ht1s- - ,fn)T =P <—/t U(r — 8)g(s,¥(s, T, f))ds) ) (7.6.17)
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where P denotes the projection on the last n — k components. Utilizing estimates of
the type used above, we see that the function on the right side of (7.6.17) is Lipschitz
continuous in ¢ with Lipschitz constant L < 1. Hence, successive approximations
can be used to solve (7.6.17), say

(Ehttr--6n) T = h(T & &) (7.6.18)

with A continuous. If F is of class C* in (t,), then the partial derivatives of
the right-hand side of (7.6.17) with respect to &1, ...,&, all exist and are zero at
& = --- =&, = 0. The Jacobian with respect to ({41, - - ., &) on the left side of
(7.6.17) is one. By the implicit function theorem (see Theorem 7.6.1), the solution
of (7.6.18) is C'* smooth; indeed h is at least as smooth as F is. Inasmuch as

oh

=0 for k<j<nat§=---=§,=0,

29
then S is tangent to the hyperplane {41 = -+ = &, = 0 at { = 0; thatis, S is
tangent to the stable manifold of the linear system (L) at £ = 0. a

If in (PE) we reverse time, we obtain the system
y=—Ay — F(—t,y). (7.6.19)
Applying Theorem 7.6.5 to system (7.6.19), we obtain the following result.

Theorem 7.6.6 If the hypotheses of Theorem 7.6.5 are satisfied, then there is an
(n— k+ 1)-dimensional local hypersurface U based at the origin, called the unstable
manifold of (PFE), such that U is negatively invariant with respect to (PFE), and for
any solution ¢ of (PE) and any 7 € R such that (7, (7)) € U, we have p(t) — 0
as t — —oo. Moreover, there is a § > 0 such that if (7,¢(7)) € R x B(d) but
(1,0(7)) & U, then o(t) must leave the ball B(J) at some finite time ¢; < 7.

The surface U has the same degree of smoothness as F' and is tangent at the origin
to the unstable manifold U* of the linear system (). O

If F in (PE) is independent of time ¢, that is, if F'(t,2) = F(z), then it is not
necessary to keep track of initial time in Theorems 7.6.5 and 7.6.6. Thus, in this case
one dispenses with time and one defines S and U in the z-space, R™. This was done
in our discussion concerning Figures 7.6.1 and 7.6.2.

Example 7.6.5 Consider equations of the form

(7.6.20)

i’l = ary — bx1x2
5,272 = CI9 — diEl.’EQ

where a, b, ¢, d > 0 are constants, where z; > 0 and x5 > 0, and where nonnegative
initial data z1(0) = 210 and 22(0) = x5 must be specified.

Equation (7.6.20), which is an example of a Volterra competition equation, can be
used to describe the growth of two competing species (e.g., of small fish) that prey on
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each other (e.g., the adult members of specie A prey on the young members of specie
B, and vice versa).

System (7.6.20) has two equilibrium points, .1 = (0,0) and z.o = (¢/d, a/b).
The eigenvalues of the linear part of system (7.6.20) at the equilibrium z.; are A\ = a
and Ao = c. Both are positive, therefore this equilibrium is completely unstable. The
eigenvalues of the linear part of system (7.6.20) at the equilibrium x.o are \; =
Vac > 0 and Ay = —/ac < 0. The right-hand side of equation (7.6.20) is time-
invariant, so we may ignore time, and the stable manifold S and the unstable manifold
U each have dimension one. These manifolds are tangent at .5 to the lines

Vacry + (be/d)zy =0 and  — acxy + (be/d)zy = 0.

If 20 = a/band 0 < 27 < ¢/d, then &, = 0 and &5 > 0; if 3 > a/b and
0 < 1 < ¢/d, then &3 < 0 and &9 > 0; and if 21(0) = 0, then z1(t) = 0
for all t > 0. Therefore, the set G; = {(z1,22): 0 < 21 < ¢/d,z2 > a/b} is
positively invariant and all solutions (z1 (), z2(t)) that enter this set must satisfy the
condition that 25(t) — oo as t — co. In a similar manner we can conclude that the
set Go = {(x1,22): 1 > ¢/d,0 < x2 < a/b} is also positively invariant and all
solutions that enter G5 must satisfy the condition that 2 (t) — oo as t — oo.

X

el

Figure 7.6.3: Trajectory portrait for system (7.6.20).

Because the unstable manifold U of the equilibrium x5 is tangent to the line

Vacxy + (be/d)xoy = 0,

then, as shown in Figure 7.6.3, one branch of U enters G and one enters G5. The
stable manifold .S of .o cannot meet either G; or G. Hence, the trajectory portrait
for system (7.6.20) is completely determined, as shown in Figure 7.6.3. From this
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portrait we can conclude that for almost all initial conditions one of the competing
species will eventually die out and the second will grow. However, the outcome is
unpredictable in the sense that near the manifold S, a slight change in initial conditions
can radically alter the outcome. O

E. Stability of periodic solutions

We first consider T-periodic systems described by

i = f(t,x) (P)

where f € CR x Q,R"], Q C R" is a domain and f(¢,z) = f(t + T,x) for all
(t,z) € R x Q. Now let ¢ be a T-periodic solution of (P) with the property that
©(t) € Qforall t € R. Defining y = « — (t), we obtain from (P) that

Y= fz(tv @(t))y + h(ta y) (7.6.21)

where

h(t,y) = f(ty+e(t) = ft @) = fo(t, (t))y
satisfies Assumption 7.6.1. Corresponding to the perturbed linear system (7.6.21),
we have the linear system

v = fa(t,o(1))y. (7.6.22)

By the Floquet theory (refer to Subsection 7.8B), there is a periodic nonsingular
matrix V' (¢) that transforms (7.6.21), using y = V (¢)z, into a system of the form

L= Az + [V()] (¢, V(1)2)).

If A is noncritical, then this system satisfies all the hypotheses of Theorems 7.6.5 and
7.6.6 to yield the following result.

Theorem 7.6.7 Assume that f € C'[R x Q,R"] and let ¢ be a periodic solution of
(P) with period T'. Suppose that the linear variational system (7.6.22) for ¢(t) has k
characteristic exponents with negative real parts and (n — k) characteristic exponents
with positive real parts. Then there exist two hypersurfaces S and U for (P), each
containing (¢, ¢(t)) for all t € R, where S is positively invariant and U is negatively
invariant with respect to (P), and where S has dimension (k+1) and U has dimension
(n — k + 1) such that for any solution ¢ of (P) in a § neighborhood of ¢ and any
7 € R we have

@) ¥(t) —e(t) = 0ast — coif (1,9(7)) € 5;
(i) ¥(t) — p(t) = 0ast — —ooif (1,¢(7)) € U; and
(iii) 1 must leave the § neighborhood of ¢ in finite time as ¢ increases from 7 and
as ¢ decreases from 7 if (7,1 (7)) is notin S and not in U.

The sets S and U are the stable and the unstable manifolds associated with . When
k = n, then S is (n + 1)-dimensional, U consists only of the points (¢, p(t)) for
t € R, and ¢ is asymptotically stable. If k& < n, then clearly ¢ is unstable. O
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Next, assume that ¢ is a T-periodic solution of an autonomous system described by
&= f(z) (4)

where f € C1[Q, R"]. Using the transformation y = x — (), we obtain in this case
the variational equation

v = fa(p(t))y + h(t,y) (7.6.23)

where h(t,y) 2 fly + o(t)) — f(o(t)) — fz(o(t))y which satisfies Assumption
7.6.1. Corresponding to (7.6.23) we have the linear first approximation given by

¥ = fu(e(t)y. (7.6.24)

Because p(t) solves (A), H(t) is a T-periodic solution of (7.6.24). Therefore equation
(7.6.24) cannot possibly satisfy the hypothesis that no characteristic exponent has zero
real part. Indeed, one Floquet multiplier is one. Thus, the hypotheses of Theorem
7.6.7 can never be satisfied. Even if the remaining (n — 1) characteristic exponents
are all negative, ¢ cannot possibly be asymptotically stable. This can be seen by
noting that for small 7, ¢ (¢ + 7) is near ¢(t) att = 0, but |o(t + 7) — ©(t)| does not
tend to zero as t — oo. However, ¢ will satisfy the following more general notion
of stability.

Definition 7.6.2 A T'-periodic solution ¢ of system (A) is called orbitally stable if
there is a § > 0 such that any solution 1) of (A) with |)(7) — ©(7)| < 0 for some T
tends to the orbit

Cle(r) ={p(t): 0<t < T}

as t — oo. If in addition for each such 1) there is a constant « € [0,7") such that
P(t) — p(t+a) — 0ast — oo, then 1) is said to have asymptotic phase . a

We are now in a position to prove the following result.

Theorem 7.6.8 Let ¢ be a periodic solution of (A) with least period 7" > 0 and let
f € CYQ,R"] where Q C R" is a domain. If the linear system (7.6.24) has (n — 1)
characteristic exponents with negative real parts, then ¢ is orbitally stable and nearby
solutions of (A) possess an asymptotic phase.

Proof . By a change of variables of the form = Qw + (0), where @ is assumed
to be nonsingular, so that

w = Q7' f(Qu + ¢(0)),

Q can be arranged so that w(0) =0 and w(0) = Q1 ((0)) = (1,0, ...,0)T. Hence,
without loss of generality, we may assume in the original problem (A) that ¢(0) = 0
and $(0) = e; 2 (1,0,...,0)7.

Let ®( be areal fundamental matrix solution of (7.6.24). There is areal nonsingular
matrix C' such that o (t+7T) = $o(t)C allt € R (refer to Subsection 7.8B). Because
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&(t) is a solution of (7.6.24), one eigenvalue of C is equal to one (refer to (7.8.8)).
By hypothesis, all other eigenvalues of C' have magnitude less than one; that is, all
other characteristic exponents of (7.6.24) have negative real parts. Thus, there is a
real n X n matrix R such that

Ay 10
wen= [t 2]

where Dy is an (n — 1) x (n — 1) matrix and all eigenvalues of D have absolute
value less than one.
Now define @4 (t) = ®¢(¢) R so that ®; is a fundamental matrix for (7.6.24) and

y(t+T) = o(t + T)R = o(t)CR = () R(R™'CR) = 1 () [tl) DOJ '

The first column 1 (¢) of ®;(t) necessarily must satisfy the relation
01t +T)=p1(t) forallt € R;
that is, it must be 7" periodic. Because (n — 1) characteristic exponents of (7.6.24)

have negative real parts, there cannot be two linearly independent 7" periodic solutions
of (7.6.24). Thus, there is a constant k # 0 such that o1 = k. If @4 () is replaced by

B(t) £ @ (t)diag[k',1,..., 1],
then ® satisfies the same conditions as ®; but now k& = 1.

There is a T periodic matrix P(t) and a constant matrix B such that

B — [(1) go] . B(t) = P(t)e”.

(Both P(t) and B may be complex valued.) The matrix B can be taken in the block

diagonal form
0 O
2-[p 5]

where e#17 = D and B is a stable (n — 1) x (n — 1) matrix. Define

Ui(t,s) = P(t) [é 8} P1(s)

and

0at:9) = POy 5,600 PO

so that
Up(t,s) + Us(t,s) = P(t)ePEIP1(s) = &(1)d1(s).
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Clearly U; + Us is real-valued. Because

P(t) B 8] — (¢1,0,....,0),

this matrix is real. Similarly, the first row of

1 0| 51
o o
is the first row of ®~1(s) and the remaining rows are zero. Thus,

Gt =P |y ol o o 7
is a real matrix. Hence,
Us(t,s) = (1)@ (s) — Ui (t, )

is also real.

Choose constants K > 1 and o > 0 such that |U;(¢,s)| < K and |Us(t, s)| <
Ke=20(=5) forallt > s > 0. As in the proof of Theorem 7.6.5, we utilize an integral
equation. In the present case, it assumes the form

t

Mﬂ:&ﬁﬁk+/

T

Ug(t,s)h(s,w(s))ds/too Ui(t,s)h(s,¥(s))ds, (7.6.25)

where h is the function defined in (7.6.23). This integral equation is again solved
by successive approximations to obtain a unique, continuous solution ¥ (t, 7, §) for
t> 7,7 €R,and |¢| < § and with

[(t +7,7,6)| < 2K|¢le™ .

Solutions of (7.6.25) will be solutions of (7.6.23) provided that the condition

oo

Uy (t, 7)€ +/ Ui(t, s)h(s, (s, 7,£))ds =0 (7.6.26)

T

is satisfied. Because
1 0| _
Ul(tvs) = P(t) [0 O:| P l(s)a

one can write equivalently
B 8} <P1(7)§+/T Pl(s)h(s,¢(s777§))d5> —0.

Because h,, and )¢ exist and are continuous with h;(¢,0) = 0, then by the implicit
function theorem (Theorem 7.6.1) one can solve for some §; in terms of 7 and the
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other &,,s. Hence, the foregoing equation determines a local hypersurface. For any
7, let G be the set of all points £ such that (7, ) is on this hypersurface.

The set of points (7, £) that satisfy (7.6.26) is positively invariant with respect to
(7.6.23). Hence G, is mapped to G+ under the transformation determined by (A)
as t varies from 7 to /. As 7 varies over 0 < 7 < T, the surface G traces out a
neighborhood N of the orbit C((0)). Any solution that starts within N will tend
to C(p(0)) as t — oo. Indeed, for |G(7) — o(7')| sufficiently small, we define
¢1(t) = @(t + 7 — 7). Then @5 solves (A), |g1(7") — ¢(7')] is small, and so, by
continuity with respect to initial conditions, @1 (¢) will remain near ¢(t) long enough
to intersect G at 7 = 0 at some ¢;. Then as t — oo,

P1(t+t) —(t) — 0,
or
Pt =7 +1+t1) — p(t) — 0.
This completes the proof. |
The above result can be extended to obtain stable and unstable manifolds about a

periodic solution, as shown next. The reader may find it helpful to make reference to
Figure 7.6.4.

X

X1

Figure 7.6.4: Stable and unstable manifolds about a periodic solution.

Theorem 7.6.9 Let f € C'[Q,R"] where Q C R"™ is a domain and let ¢ be a T-
periodic solution of (A). Suppose k characteristic exponents of (7.6.24) have negative
real parts and (n — k — 1) characteristic exponents of (7.6.24) have positive real parts.
Then there exist T-periodic C'*-smooth manifolds S and U based at () such that
S has dimension (k + 1) and is positively invariant, U has dimension (n — k) and
is negatively invariant, and if ¢ is a solution of (A) with ¢(0) sufficiently close to
C(¢(0)), then the following statements are true.

(i) 9(t) tends to C'(¢(0)) as t — oo if (0,%(0)) € S.
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7

Figure 7.6.5: Nonlinear spring—unit mass system (7.6.27).

(ii) (¢) tends to C(p(0)) as t — —oo if (0,4(0)) € U.
(iii) v (t) must have a neighborhood of C'(¢(0)) as ¢ increases and as ¢ decreases if
(0,9(0)) ¢ SUU.

Proof . The proof of this theorem is very similar to the proof of Theorem 7.6.8. The
matrix R can be chosen so that

1 0 0
R'CR=1{0 Dy 0
0 0 Ds

where D, is a k x k matrix with eigenvalues that satisfy |\| < 1 and D3 is an
(n—k—1) x (n—k— 1) matrix whose eigenvalues satisfy || > 1. Define B so that

0 0 0
B=10 By 0], ePT = R71CR.
0 0 Bs

Define U, as before and define Us and Us using e?2? and e3¢, The rest of the proof
involves similar modifications. O

Exceptin special cases, such as second-order systems and certain classes of Hamil-
tonian systems, the determination of Floquet multipliers of periodic linear systems
is in general difficult. Nevertheless, results such as Theorems 7.6.8 and 7.6.9 are of
great theoretical importance.

Example 7.6.6 An important class of conservative dynamical systems is described

by equations of the form
Z+g(x)=0 (7.6.27)

where g € C![R,R] and zg(x) > 0 for all # # 0. Equation (7.6.27) can be used to
represent, for example, a mechanical system consisting of a unit mass and a nonlinear
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spring, as shown in Figure 7.6.5. Here, x denotes displacement and g(z) denotes the
restoring force due to the spring.
Letting x1 = x and x2 = &, we can express (7.6.27) equivalently as

(tl = T2
. 7.6.28
{ 2 = —g(1). (7:6:28)
The total energy for this system is given by
L o L o
v(@)=gxa+ | g(ndn = x5+ G(1) (7.6.29)
0

T1
where G(z1) = / g(n)dn. Note that v is positive definite and
0

V(7.6.28)(%) = 0. (7.6.30)

Therefore, (7.6.28) is a conservative dynamical system and (z1,72)T = (0,0)T isa
stable equilibrium. Note that because vE7.6_28) = 0, it follows that

%x% +G(z1) =c (7.6.31)
where ¢ is determined by the initial conditions (19, Z29). For different values of ¢
we obtain different trajectories, as shown in Figure 7.6.6. The exact shapes of these
trajectories depend on the function G. Note, however, that the curves determined
by (7.6.31) will always be symmetric with respect to the x;-axis. Furthermore, if
G(z) — oo as x| — oo then the entire x1— x5 plane can be covered by closed
trajectories, each of which is an invariant set with respect to (7.6.28).

X

ERRR
-

\

i

Figure 7.6.6: Trajectory portrait for system (7.6.27).

Now notice that no two periodic solutions of system (7.6.28) will approach each
other or recede from each other. From this we see that the Floquet multipliers of a
given periodic solution ¢ of system (7.6.28) must both be one. O
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7.7 Comparison Theory

In this section we establish stability and boundedness results for ordinary differen-
tial equations (F) and ordinary difference equations (D)) using comparison results
developed in Section 4.3.

A. Continuous-time systems

Our object of inquiry is systems described by differential equations

&= f(t,x) (E)

where z € R", f € C[RT x Q,R"], Q C R" is an open connected set, 0 € (2, and
f(t,0) =0 forall t € RT. For (E), we use comparison systems given by

y=g(ty) (€)

where y € R, g € C[R* x B(ry),R!] for some r; > 0, B(r;) € (RT)!, and
g(t,0) =0forallt € RT.
For a vector-valued function V: B(r) x R™ — R!, where B(r) c Q,r >0, we
use the notation
Vix,t) = [v1(z, 1), ..., vz, t)]T

and
V(/E) (z,1) = [vll(E) (,1),... 7UZ/(E) (@, t)]T’

In the results that follow, | - | denotes the Euclidean norm in R’

Theorem 7.7.1 Assume that there exists a function V' € C[B(r) x RT, (RT)!],
where B(r) C Q C R”,r > 0, such that |V (x, t)| is positive definite and decrescent,
and that there exists a function ¢ € C[R* x B(ry),R!], where B(r;) C (RT)!,
r1 > 0, which is quasi-monotone nondecreasing (refer to Definition 3.8.1) and has
the property that g(¢,0) = 0 for all t € R, and that

‘/(/E) ($,t) S g(ta V(‘T7t>)

holds componentwise for all (z,t) € B(r) x RT. Then the following statements are
true.
(a) The stability, asymptotic stability, uniform stability, and uniform asymptotic
stability of the equilibrium y. = 0 of (C') imply the same corresponding types
of stability of the equilibrium z. = 0 of (E).
(b) If in addition to the above assumptions,

|V (x,t)| > a|z|® for (z,t) € B(r) x RT,

where ¢ > 0 and b > 0 are constants, then the exponential stability of the
equilibrium y. = 0 of (C) implies the exponential stability of the equilibrium
z. = 0of (F).
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Proof . This theorem is a direct consequence of Theorem 4.3.2(b) and (c). O

Theorem 7.7.2 With 2 = R"™, assume that there exists a vector Lyapunov function
V € C[R™ x R*,(R*)!] such that |V (x,t)| is positive definite, decrescent, and
radially unbounded, and that there exists a quasi-monotone nondecreasing function
g € CR* x (R*)!,R!] such that g(t,0) = 0 for all ¢ € R* and such that the
inequality

‘/(/E) (:C’ t) < g(ta V(I, t))

holds componentwise for all (z,t) € R™ x R*. Then the uniform asymptotic stability
in the large of the equilibrium y. = 0 of (C) implies the uniform asymptotic stability
in the large of the equilibrium x. = 0 of (E). Also, the uniform boundedness and
the uniform ultimate boundedness of the set of solutions of (C), imply the same
corresponding types of boundedness of the set of solutions of (E).

Proof . The proof is a direct consequence of Theorem 4.3.2(d) and (f). O

In the special case when | = 1, ¢ is a scalar function that automatically satisfies
the quasi-monotone nondecreasing property. Accordingly, Theorems 7.7.1 and 7.7.2
are applicable to any scalar comparison system (with [ = 1).

Next, we consider comparison systems given by

y=Py+ m<y’t) (LC)

where P = [p;;] € R™! and m: B(r1) x RT — R! is assumed to satisfy the

condition

¢
lim 101

=0, uniformly for t € RT.
lwl=0 |yl

Applying Lyapunov’s First Method (i.e., Theorem 7.6.2) to (LC'), we obtain the fol-
lowing comparison results.

Corollary 7.7.1 Assume that there exists a function V € C[B(r) x Rt (R*)],
where B(r) C Q C R™,r > 0, such that |V (x, t)| is positive definite and decrescent,
and that there exist a real [ x [ matrix P = [p;;] and a quasi-monotone nondecreasing
function m € C[B(ry) x RT,R!], where B(r;) C (RT)!, r; > 0, such that the
inequality

Vi) (z,t) < PV (2,t) + m(V(z,1),1) (7.7.1)

holds componentwise for (x,¢) € B(r) x RT, and that

t
L Im. 0]

=0, uniformly fort € R"
lyl=o |yl

where p;; > 0 for 1 < ¢ # j < [. Then the following statements are true:

(a) If all eigenvalues of P have negative real parts, then the equilibrium z. = 0 of
(E) is uniformly asymptotically stable.
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(b) If in addition to (a), |V (z,t)| > a|z|® for (x,t) € B(r) x RT, where a > 0
and b > 0 are constants, then the equilibrium x, = 0 of (F) is exponentially
stable.

Proof. The proofs of the above results are a direct consequence of Theorems 7.6.2
and 7.7.1. ]

In connection with Corollary 7.7.1, we find the concept of the M-matrix very
useful. Before proceeding any further, it might be useful to recall the definition of
the M -matrix, along with some of the properties of such matrices (see, e.g., [3]).

Definition 7.7.1 A matrix B = [b;;] € R is called an M -matrix if bi; < 0 for all
1 < i # j <l and the real parts of all eigenvalues of B are positive. a

In the following we enumerate several useful equivalent characterizations of
M -matrices.

(i) B is an M -matrix.
(ii) The principal minors of B are all positive.
(iii)) The successive principal minors of B are all positive.
(iv) There is a vector u € (R )! such that Bu € (R, )! (recall that R = (0, 00)).
(v) There is a vector v € (R, ) such that BTv € (R;)".

(vi) B is nonsingular and all elements of B! are nonnegative (in fact, all diagonal
elements of B~ are positive).

Clearly, the condition in part (a) of Corollary 7.7.1 is equivalent to saying that — P
is an M -matrix, and thus, the equivalent conditions for M -matrix enumerated above,
apply to Corollary 7.7.1(a) as well.

Example 7.7.1 Consider the system
& = B(z,t)x (7.7.2)

where z € R, t € R, and B(z,t) = [b;;(z,t)] € C[B(r) x RT,R™*"], where
B(r) C R™, r > 0. Assume that

bii($,t)§aii, i:17...,n
and
|bij (2, )| < aij, 1<i#j<n,
for all (z,t) € B(r) x RT. Assume that —4 = —[a;;] € R™*" is an M-matrix.
Clearly, x. = 0 is an equilibrium of (7.7.2).
Choose the vector Lyapunov function V(z) = (|z1],...,|z,|)T where x =
(x1,...,2,)T. The upper-right Dini derivative of |x;| with respect to time is given by

T; ifz; >0
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In all three cases (z; > 0, z; < 0, x; = 0) we have along the solutions of (7.7.2),

D || < b, O)ls] + Y [big(a, )] ]a]
i#]
< agilz| + Zaij|l’j|
oy

n
= aglay).
j=1

‘We have
Vizz.2)(2) < AV (2)

for all z € B(r). Because by assumption —A is an M -matrix, it follows that all
eigenvalues of A have negative real parts. Hence, all conditions of Corollary 7.7.1(b)
are satisfied. Therefore, the equilibrium z. = 0 of (7.7.2) is exponentially stable. O

B. Discrete-time systems

The object of inquiry is systems described by difference equations
w(k+1) = f(k,z(k)) (D)

where k € N, f: N x Q — Q, and Q) is an open connected subset of R™ that contains
the origin. We assume that f(k,0) = 0 for all £ € N. For (D) we use comparison
systems given by

y(k+1) = h(k,y(k)) (DC)

where 5y € R and h: N x ©; — (RT)!, where € is an open neighborhood of the
origin in (RT)!. We assume that h(k,0) = 0 for all k € N.

Similarly as in the case of continuous-time systems, we employ vector-valued
Lyapunov functions V:  x N — (RT)’.

Theorem 7.7.3 Assume that there exists a function V € C[Q x N, (RT)!] such that
|V (x, k)| is positive definite and decrescent on 2 x N, and that there exists a function
h:NxQ — (R+)l that is monotone nondecreasing (refer to Definition 4.3.1), that

V(f(k,z),k+1) <h(k,V(z,k))

holds componentwise for all (z, k) € Q x N, and that V' (z, k) € Q; forall (x,k) €
Q x N. Then the following statements are true.

(a) The stability, asymptotic stability, uniform stability, and uniform asymptotic
stability of the equilibrium y. = 0 of system (DC) imply the same corre-
sponding types of stability of the equilibrium x, = 0 of system (D).

(b) If in addition to the above assumptions, |V (z, k)| > a|z|® for (x,k) € Q x N,
where ¢ > 0 and b > 0 are constants, then the exponential stability of the
equilibrium y. = 0 of (DC) implies the exponential stability of the equilibrium
ze = 0 of (D).
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(c) Let Q@ = R™. If |V (z, k)| is radially unbounded and decresent, then the uni-
form asymptotic stability in the large of y. = 0 of (DC) implies the uniform
asymptotic stability in the large of z. = 0 of (D). Furthermore, the uniform
boundedness and the uniform ultimate boundedness of the set of solutions of
(DC) imply the same corresponding types of boundedness of the set of solutions
of (D).

(d) In the case Q = R, if a1 |z|® < |V (z, k)| < az|z|® for all (x,k) € R® x N,
where as > a; > 0 and b > 0 are constants, then the exponential stability in
the large of the equilibrium y. = 0 of (DC') implies the exponential stability
in the large of the equilibrium z. = 0 of (D). O

The proofs of the above results can be accomplished by following similar steps to
the corresponding proofs for continuous-time systems given in Theorems 7.7.1 and
7.7.2, and are left to the reader as an exercise.

By applying the First Method of Lyapunov (Theorem 7.6.4) to Theorem 7.7.3, we
can readily establish the following results.

Corollary 7.7.2 Assume for (D) that there exists a function V € C[Q2 x N, (RT)!]
such that |V (z, k)| is positive definite and decrescent on {2 x N, and that there exist
areal | x [ matrix P = [p;;] € (R*)"*!, and a monotone nondecreasing function
m € C[B(r1) xN, (RT)!], where B(r1) C (R*)!, 71 > 0,suchthatV(z,k) € B(r1)
for all (z, k) € Q x N and such that the inequality

V(f(k,x),k) < PV(z,k)+m(V(x, k), k) (7.7.3)
holds componentwise for all (z, k) € © x N, and that

=0, uniformly for k¥ € N.
lyl—o [y

Under the above assumptions, the following statements are true.

(a) If all eigenvalues of P are within the unit circle of the complex plane, then the
equilibrium z. = 0 of (D) is uniformly asymptotically stable.

(b) If in addition to (a), |V (x,k)| > a|z|® for all (z,k) € Q x N, where a > 0
and b > 0 are constants, then the equilibrium z. = 0 of (D) is exponentially
stable. a

7.8 Appendix: Background Material on Differential
Equations and Difference Equations

In this section we address some background material concerning linear homogeneous
systems of ordinary differential equations and ordinary difference equations, linear
nonhomogeneous systems of ordinary differential equations, and successive approx-
imations of the solutions of ordinary differential equations. Because this material is
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standard fare in ordinary differential equations and linear systems, we do not include
proofs for the presented results. However, we point to sources where these proofs
can be found.

A. Linear homogeneous systems of differential equations

We consider linear homogeneous systems
= A(t)x (LH)

where ¢t € J = (a,b), z € R, and A € C[J,R"*"] (J = (—00,00) is allowed).
We let

Q={(t,z): t € Jandz € R"}
and we recall (see Chapter 2) that for every (to,zo) € €, (LH) possesses a unique

: A . o
solution (¢, tg, xg) = ¢(t) that exists over the entire interval J.

Theorem 7.8.1 The set of all solutions of (LH) on the interval J forms an n-
dimensional vector space. a

For a proof of Theorem 7.8.1, refer, for example, to [17, p. 89]. This result enables
us to introduce the concept of fundamental matrix.

Definition 7.8.1 A set of n linearly independent solutions of system (LH) on J,
{¢1,- -, pn}is called a fundamental set of solutions of (LH) and the n x n matrix
O =[p1 -+ py]iscalled a fundamental matrix of (LH). a

Note that there are infinitely many different fundamental matrices for (LH). In
the following result we let X = [z;;] denote an n X n matrix and we let X = [&;,].
If A(t) is the matrix given in (LH), then we call the system of n? equations,

X =At)X (7.8.1)
a matrix differential equation for (LH).

Theorem 7.8.2 A fundamental matrix ® of (L H) satisfies the matrix equation (7.8.1)
on the interval .J. O

The proof of Theorem 7.8.2 follows trivially from definitions. The next result,
called Abel’s formula, is used in the proofs of several of the subsequent results of this
section.

Theorem 7.8.3 If ® is a solution of the matrix equation (7.8.1) on an interval J and
if 7 is any point of .J, then

t

det ®(t) = det ®(7)exp {/T trA(s)ds}

for every t. O
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For a proof of Theorem 7.8.3, refer to [17, pp. 91, 92]. It follows from Theorem
7.8.3, because 7 € J is arbitrary, that either det ®(t) # 0 for each t € .J or that
det ®(t) = 0 forevery t € J.

Theorem 7.8.4 A solution ® of the matrix equation (7.8.1) is a fundamental matrix
of (LH) if and only if its determinant is nonzero for all ¢ € J. O

For a proof of Theorem 7.8.4, refer to [17, p. 93]. The next result is also required
in the development of some of the subsequent results.

Theorem 7.8.5 If ® is a fundamental matrix of (LH) and if C is any nonsingular
constant . X n matrix, then ®C is also a fundamental matrix of (LH). Moreover,
if ¥ is any other fundamental matrix of (L H), then there exists a constant n X n
nonsingular matrix P such that ¥ = ®P. O

For a proof of Theorem 7.8.5, refer, for example, to [17, pp. 94, 95].
In what follows, we make use of the natural basis for R", {ei,...,e,} where
er=(1,0,...,0)T, 2 = (0,1,0,...,007, ... en = (0,...,0,1)7.

Definition 7.8.2 A fundamental matrix ® of (LH) whose columns are determined
by the linearly independent solutions ¢, . . ., ¢, with

¢1(7)2617"'7¢n(7—):en7 T€J7

is called the state transition matrix ® for (LH ). Equivalently, if ¥ is any fundamental
matrix of (L H), then the matrix ® determined by

o(t, 1) 20 U(r)t  forallt,r e J
is said to be the state transition matrix of (LH). 0O

Note that the state transition matrix of (LH) is uniquely determined by the matrix
A(t) and is independent of the particular choice of the fundamental matrix. For exam-
ple, let U4 and W5 be two different fundamental matrices for (L H). By Theorem 7.8.5,
there exists a constant n X n nonsingular matrix P such that U5 = ¥, P. By the
definition of the state transition matrix, we have

O(t,7) = Wa(t)[Wo(7)] ™! = Wy (t) PP W (7)]7H = Wy () [T ()] "

This shows that ®(¢, 7) is independent of the fundamental matrix chosen.
In the next result, we summarize the principal properties of the state transition
matrix for (LH).

Theorem 7.8.6 Let 7 € J, let o(7) = &, and let ®(¢, 7) denote the state transition
matrix for (LH) for all t € J. Then

(i) ®(t,7) is the unique solution of the matrix equation

0 A
2t T) =t ) = A(t)e(t, 7)

with ®(7,7) = I, the n x n identity matrix;
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(ii) ®(¢,7) is nonsingular for all ¢ € .J;
(iii) for any t,0,7 € J, we have ®(¢t,7) = (¢, 0)P(0,7);

(iv) [B(t,7)]"" 2 &~ '(t,7) = ®(r,¢) forall ¢, 7 € J; and
(v) the unique solution (t, 7, &) of (LH), with (7, 7, ) = & specified, is given by
o(t,7,8) = ®(t,7)¢ forallt € J. (7.8.2)

O

For a proof of Theorem 7.8.6, refer, for example, to [17, pp. 96 and 97].

B. Linear systems with periodic coefficients

In this subsection we consider linear homogeneous systems
&= A(t)z, —00 < t < 00, (LP)
where A € C[R,R"*"] and where
Alt)=At+1T) (7.8.3)

for some T' > 0. System (L P) is called a linear periodic system and T is called a
period of A(t).

Theorem 7.8.7 Let B be a nonsingular n X n matrix. Then there exists an n X n
matrix C, called the logarithm of B, such that

e’ = B. (7.8.4)
O

For a proof of Theorem 7.8.7, refer to [17, pp. 112 and 113]. The matrix C'in the
above result is not unique, because, for example, eCt2mkil — oCo2mki — oC for all
integers k.

Theorem 7.8.8 Let (7.8.3) be true and let A € C[R, R"*™]. If ®(¢) is a fundamental
matrix for (LP), then so is ®(¢ + T'), t € R. Moreover, corresponding to every ®,
there exist a nonsingular matrix P that is also periodic with period T" and a constant
matrix R such that

d(t) = P(t)e'?. (7.8.5)

O

For a proof of Theorem 7.8.8, refer to [17, pp. 113 and 114].

Now let us suppose that ®(¢) is known only over the interval [tg, to + 7. Because
®(t + T) = ®(t)C, we have by setting t = tg, C = ®(tg) *®(tg + T) and
R is given by T~ togC. P(t) = ®(t)e ' is now determined over [to,ty + T.
However, P(t) is periodic over (—oo, 00). Therefore, ®(t) is given over (—oo, 00)
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by ®(t) = P(t)e!’*. In other words, Theorem 7.8.8 allows us to conclude that the
determination of a fundamental matrix ® for (LP) over any interval of length T,
leads at once to the determination of ® over (—o0, 00).

Next, let @, be any other fundamental matrix for (LP) with A(t+7T) = A(t). Then
® = &S for some constant nonsingular matrix S. Because ®(t + 1) = ®(t)e’ ",
we have @1 (t + T)S = ®;(t)Se'®, or

Oy (t+T) = d1()(SeTRS™) = @y (1)eT SRS, (7.8.6)

Therefore, every fundamental matrix ®; determines a matrix SeTRS—1 which is
similar to the matrix .

Conversely, let S be any constant nonsingular matrix. Then there exists a fun-
damental matrix of (LP) such that (7.8.6) holds. Thus, although ® does not deter-
mine R uniquely, the set of all fundamental matrices of (LP), and hence of A(¢),
determines uniquely all quantities associated with e’ that are invariant under a
similarity transformation. Specifically, the set of all fundamental matrices of A(t)
determines a unique set of eigenvalues of the matrix eTR N, ... , An, Which are
called the Floquet multipliers associated with A(t). None of these vanishes because
II)\; = det e £ 0. Also, the eigenvalues of R are called the characteristic expo-
nents.

Next, we let () be a constant nonsingular matrix such that J = Q' RQ where J
is the Jordan canonical form of R; that is,

Jo 0 - 0
0o J, -~ 0
J=1 . . . )
0o 0 - J

Let ®; = ®Q and P, = PQ. From Theorem 7.8.8 we have
®,(t) = P (t)e’ and Pi(t+T)= Pi(t). (7.8.7)

Let the eigenvalues of R be p1,...,p,. Then

etJo 0 . 0
. 0 et 0
e = .
0 0 etJs
where
etr 0 0
. 0 el 0
e 0 —

0 0 .- elPa
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and

Lot t2/2 - triT/(r; = 1)

0 1 t - tri72/(r; =2)! s
izt |00 1 =3 21 Y =

Do Do : i=1

oo o - 1
Now ); = eT?i. Thus, even though the p; are not uniquely determined, their real
parts are. In view of (7.8.7), the columns ¢, ..., @, of ®; are linearly independent
solutions of (LP). Let py, ..., p, denote the periodic column vectors of P;. Then

@1(t) = e"'pa(t),
©a(t) = e py(t),

Pq(t) = e'Pipy(t),
‘Pqul(t) = etpq+1pq+1(t)v
Pqr2(t) = Pt (tpgy1(t) + pasa(t)), (7.8.8)

ri—1

Patr (1) = effutt (MPQ+1(t) + o+ tPgtr —1(t) + Pty (t)>7

Pn—ry+1 (t) = etpq+spn—7“s+1 (t)v

re—1

Pn(t) = e'Prts (Mpn—ml(t) o+ tpna(t) + pn(t)>-
From (7.8.8) itis now clear that when Rep; = a; < 0, orequivalently, when | ;| < 1,
then there exists a & > 0 such that
loi(t)] < Ke®' — 0 as t — oo.

In other words, if the eigenvalues p;, ¢ = 1,...,n, of R have negative real parts,
then the norm of any solution of (L P) tends to zero as t — oo at an exponential rate.

From (7.8.5) we have P(t) = ®(t)e~*¥ and therefore it is easy to see that AP —
P = PR. Thus, for the transformation

x = P(t)y (7.8.9)

we compute

= A(t)r = A()P(t)y = P(t)y + P(t)i = - (P(t)y)



326 Chapter 7.  Finite-Dimensional Dynamical Systems: Specialized Results

or
y=P N t)(A(t)P(t) — P(t))y = P~ (t)(P(t)R)y = Ry.
This shows that the transformation (7.8.9) reduces the linear, homogeneous, periodic
system (L P) to
y = Ry,

a linear homogeneous system with constant coefficients.

C. Linear nonhomogeneous systems of differential equations

We consider linear nonhomogeneous systems of differential equations given by
b= A(t)e +g(t) (LN)
where g € C[J,R"] and all other symbols are as defined in (LH).

Theorem 7.8.9 Let 7 € J, let (1,£) € J x R", and let ®(¢,7) denote the state
transition matrix for (LH) for all ¢ € J. Then the unique solution (¢, 7, &) of (LN)
satisfying (7, 7,£) = £ is given by the variation of constants formula

t
(t,7.€) = B(t,T)E + / B(t, n)g(n)dn. (7.8.10)
O

For a proof of Theorem 7.8.9, refer, for example, to [17, p. 99].

D. Linear homogeneous systems of difference equations

We consider systems of linear homogeneous difference equations
x(k + ].) = A(k)(E(k), 1’(]6()) = Xy, k 2 k() Z 0 (LHD)

where A: N — R"*" (k) € R", and k, ko € N. We denote the solutions of (LHp)
by ¢(k, ko, z0) with p(ko, ko, 7o) = 0.

For system (LHp), several results that are analogous to corresponding results
given in Subsection 7.8A for system (L H), are still true. Thus, the set of the solutions
of system (LHp) over some subset J of N (say, J = {ko, ko + 1,..., ko + ns})
forms an n-dimensional vector space. To prove this, we note that the linear combi-
nation of solutions of system (L Hp) is also a solution of system (L H p), and hence,
this set of solutions forms a vector space. The dimension of this vector space is n.
To show this, we choose a set of linearly independent vector x, ..., z% in the n-
dimensional z-space and we show that the set of solutions (k, ko, z}),i = 1,...,n,
is linearly independent and spans the set of the solutions of (LH p) over the set J.

If in particular, we choose ¢(k,ko,e’), i = 1,...,n, where ¢*, i = 1,...,n
denotes the natural basis for R™, and if we let

(b(ka ko) = [@(kv k07 61)a tey g@(k, kOa e’ﬂ)]’
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then it is easily verified that the n x n matrix ®(k, ko) satisfies the matrix equation
O(k+1,ko) = A(k)D(k, ko), O (ko, ko) =1,

where I denotes the n X n identity matrix. Furthermore,

k—1

j=ko
and

QD(]{, ko,ﬁo) = (P(k, ko)xo, k > ko.

Other important properties that carry over from system (L H ) include, for example,
the semigroup property,

(k1) = o(k,m)®(m,1), k>m>1

However, whereas in the case of system (LH) it is possible to reverse time, this is
in general not valid for system (LHp). For example, in the case of system (LH),
if p(t) = ®(t,7)p(7), then we can compute (1) = (¢, 7)p(t) = (7, 1) ().
For (LH p), this does not apply, unless A~ (k) exists for all k € N.

E. Successive approximations of solutions of initial value problems

We consider initial value problems given by

&= f(t,z), a(r)=¢ (1)

where f € C[D,R"], D = J x Q (where J = (a,b) C Ris an interval and  C R"

is a domain), 7 € J, and z(7) € Q. For (I) we define the successive approximations
po(t) =¢&

t
pri=¢t [ S G=012. (7.8.11)

for |t — 7| < ¢ for some ¢ > 0.

Theorem 7.8.10 If f € C[D,R"], if f is Lipschitz continuous on a compact set
S C D with Lipschitz constant L, and if S contains a neighborhood of (7, &), then
the successive approximations ¢;, j = 0,1,2, ... givenin(7.8.11)existon [t—7| < ¢
for some ¢ > 0, are continuous there, and converge uniformly to the unique solution
o(t, 7,&) of (I) as j — oo. O

For a proof of Theorem 7.8.10, refer, for example, to [17, pp. 56-58].
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7.9 Notes and References

There are many excellent texts on the stability of finite dimensional dynamical systems
determined by ordinary differential equations that treat the topics addressed in this
chapter, including Hahn [5], Hale [6], Krasovskii [8], LaSalle and Lefschetz [12],
Yoshizawa [20], and Zubov [21]. Texts on these topics that emphasize engineering
applications include Khalil [7] and Vidyasagar [19]. Our presentation in this chapter
was greatly influenced by Antsaklis and Michel [1], Hahn [5], Michel et al. [16], and
Miller and Michel [17].

There are fewer sources dealing with the stability analysis of discrete-time systems
described by difference equations. In our presentation in this chapter, we found the
texts by LaSalle [11], Antsaklis and Michel [1], Hahn [5], and Michel et al. [16]
especially useful.

The results in Subsection 7.2A, along with other results that comprise the in-
variance theory for systems described by ordinary differential equations are due to
Barbashin and Krasovskii [2] and LaSalle [10]. Extensions of these results to other
types of dynamical system (e.g., systems described by difference equations, as in
Subsection 7.2B) have been reported, for example, in Michel ez al. [16].

The necessary and sufficient conditions for the various Lyapunov stability types
presented in Subsection 7.4C involving the Lyapunov matrix equation were originally
established by Lyapunov [13] for ordinary differential equations. Our presentation in
Subsection 7.5C of the analogous results for systems described by difference equations
are in the spirit of similar results given in LaSalle [11].

The results in Subsections 7.6B and 7.6C comprise the First Method of Lyapunov
(also called the Indirect Method of Lyapunov). For the case of ordinary differential
equations (Subsection 7.6B) these results were originally established by Lyapunov [13].
The results that we present in Subsection 7.6C for systems described by difference
equations are along similar lines as the results given in Antsaklis and Michel [1].

The stability results for autonomous systems (A), periodic systems (P), linear
homogeneous systems (LH), linear autonomous systems (L), linear periodic sys-
tems (L P), and linear second-order differential equations with constant coefficients
(Section 7.1, Subsections 7.4A, 7.4B, 7.4D, and 7.4E, resp.) are standard fare in texts
on stability of systems described by ordinary differential equations (e.g., [5S]-[8], [12],
[16], [17], [19]-[21]). Sources for the analogous results for linear systems described
by difference equations (Lp) and (LHp) (Subsections 7.5A and 7.5B) include, for
example, [1] and [11]. Results to estimate the domain of attraction of an equilibrium
(Subsection 7.3) are also included in most texts on stability theory of differential equa-
tions ([5], [7], [8], [12], [17], [19]-[21]). The results concerning stable and unstable
manifolds and stability properties of periodic solutions in perturbed linear systems
(Subsections 7.6D and 7.6E) are addressed in the usual texts on ordinary differential
equations (e.g., [6], [17]). A good source on the comparison theory for differential
equations (Subsection 7.7A) includes Lakshmikantham [9] and on difference equa-
tions (Subsection 7.7B), Michel ez al. [16]. For applications of the comparison theory
to large-scale dynamical systems, refer to Grujic et al. [4], Michel and Miller [15],
and Siljak [18].
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7.10 Problems

Problem 7.10.1 Consider the systems
= Ax (L)

and
y =P tAPy (7.10.1)

where A, P € R™ " and where P is assumed to be nonsingular. Show that the
equilibrium z. = 0 of (L) is stable, exponentially stable, unstable, and completely
unstable if and only if the equilibrium y. = 0 of (7.10.1) has the same corresponding
stability properties. O

Problem 7.10.2 There are several variants to the results that make up the Invariance
Theory. Corollary 7.2.1 provides conditions for global asymptotic stability of the
equilibrium z. = 0 of system (A). In the following we ask the reader to prove a local
result for asymptotic stability. O

Corollary 7.10.1 Assume that for system (A) there exists a function v € C[Q2, R]
where {2 C R™ is an open connected set containing the origin. Assume that v is
positive definite. Assume that 'UE A) (z) < 0on . Suppose that the origin is the only
invariant subset with respect to (A) of the set Z = {x € Q: v{,)(x) = 0}. Then the
equilibrium z, = 0 of (A) is asymprotically stable. O

Problem 7.10.3 Consider the system

{ i1 = 1y — e(wy — 23/3) (7.10.2)

Cbg = —

where ¢ > 0. This system has an equilibrium at the origin z, = 0 € R2.
First show that the equilibrium z. = 0 of system (7.10.2) is asymptotically stable,
choosing

1
v(r1,w2) = 5 (21 +a3)

2
and applying Corollary 7.10.1. Next, show that the region {x € R?: 27 + 23 < 3}
is contained in the domain of attraction of the equilibrium z. = 0 of (7.10.2). O

Problem 7.10.4 Consider the linear system
&= Az (L)

where x € R™ and A € R™*™. Assume that there exists a positive definite matrix G
such that the matrix
B=A"G+GA

is negative semidefinite. Prove that the equilibrium z. = 0 of (L) is exponentially
stable if and only if
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(a) the pair (B, A) is observable; that is, the n x n? matrix
[B BA --- BA"]

has full rank; or
(b) the pair (C, A — D) is observable, where C = PiB, D = P,B, P, € R™*"
is nonsingular and P, € R™*™ is any matrix.

Hint: Apply Corollary 7.2.1, letting v(z) = z”Gz. Then vy (@) = 2T Bz,
Show that Z = {x € R": 2T Bz = 0} = {z € R": Bz = 0}, using the fact that B
is negative semidefinite. Next, show that {0} C R"™ is the largest invariant set in Z.

For further details, refer to Miller and Michel [16a]. O

Problem 7.10.5 Consider a mechanical system consisting of n rigid bodies with

masses m;, ¢ = 1,...,n, that are interconnected by springs and are subjected to
viscous damping, and are described by the equations
g=M""p
{ p=—Hq+ KM-1p (7.10.3)

where ¢ € R" denotes the position vector, p € R" is the momentum vector, M =
diag/my,...,my], K = KT € R"*" and H = HT € R"*". We assume that
M and H are positive definite and that K is negative semidefinite. Prove that the
equilibrium (¢7, pT) = (07,07) of system (7.10.3) is exponentially stable if and
only if (K, M~1H) is observable.

Hint: Apply Problem 7.10.4(b) with

-1
A[—OH K%—l}’ B{g M—llo(M‘l}’
and 0 0
C:D:{o KM~1 ]
For further details, consult Miller and Michel [16a]. O

Problem 7.10.6 In the mechanical system depicted in Figure 7.10.1, x; denotes
displacement for mass m;, ¢ = 1,2,k;, ko, k denote linear spring constants, and
Bi, By, B denote viscous damping coefficients. We assume that m; > 0, k; > 0,
1=1,2,k>0,B; >0,B,>0,B >0, and By + By + B > 0. This system is
governed by the equations

miZi +l€1$1+k’(l‘1 —$2)+Bl.1'71 —I—B(.’i?l —3'72) =0 (7.10.4)
Made + kata + k(x2 — 1) + Boio + B(iy — 1) = 0. e
System (7.10.4) is a special case of system (7.10.3) with
(=B1—B) B (k1 + k) —k
D= H =
[ B (=By—B) |’ —k (ko + k) |’
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X1 Xy
g B, B B,
= = =
K my K m, K,
W WA Wi —

Figure 7.10.1: A mechanical system.

M = diag[m;, mz]. Prove that a necessary and sufficient condition for the exponen-
tial stability of the equilibrium x, = 0 € R* of system (7.10.4) is that

\detD| + |Bl| + |BQ| + |(k1/m1) — (kg/m2)| 7é 0.

Hint: Use the result given in Problem 7.10.5, taking into account the following
possibilities:

(1) det D #£ 0.
(iia) det D =0and B; = By = 0.
(iib) det D =0and B, = B =0.
(iic) det D =0and B, = B = 0.

For case (i), the pair (D, M~ H) is observable; for case (iia), the pair (D, M1 H)
is observable if and only if (k1 /my) # (kz/ms); for case (iib), the pair (D, M1 H)
is observable if Bk > 0, which is satisfied by assumption; and for case (iic), the pair
(D, M~'H) is observable if Bok > 0, which is true by assumption.

For further details, refer to Miller and Michel [16a]. O

Problem 7.10.7 Determine the state transition matrix ®(¢, to) of the system

.’tl _ —t 0 X

oty S)E s
Use the results of Subsection 7.4A to determine the stability properties of the equi-
librium (1, 22)T = (0,0)7 of system (7.10.5). a

Problem 7.10.8 Consider the equations
i = (cost)x (7.10.6)

and
& = (4tsint — 2t)x. (7.10.7)

Solve equations (7.10.6) and (7.10.7) and determine their stability properties. a

Problem 7.10.9 Prove Proposition 7.4.1. Prove Theorem 7.4.2. a
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Problem 7.10.10 Show that the trivial solution of an nth-order, linear autonomous
differential equation

any™ + an_1y™ "V + -+ a1y’ 4 agy = 0, an #0 (7.10.8)
is stable if and only if all roots of
p(A) =a, A"+ -+ aA+ag (7.10.9)

have nonpositive real parts and all roots with zero real parts are simple roots. (In

In the next few results, we use the following notation concerning quadratic forms.
If S = ST € R"™™and R = RT € R"*" then we write R > S if z7 Rz > 27 Sz
forallz € R" — {0}; R > Sifz? Rx > 27 Sz forallz € R*; R > 0if 2T Rz > 0
forall z € R" — {0}; R > 0if 27 Rz > 0 for all x € R™; and so forth.

Problem 7.10.11 Let A € C[RT,R"*"] and x € R™ and consider the system
T = A(t)z. (LH)

Show that the equilibrium z, = 0 of (LH) is uniformly stable if there exists a
Q € CR*,R™ "] such that Q(¢) = [Q(¢)]” for all ¢ and if there exist constants
co > ¢1 > 0 such that

al <Qt) < e, teR (7.10.10)

and such that )
[AD)TQ() + QA +Q <0, teR (7.10.11)
where [ is the n X n identity matrix. a

Problem 7.10.12 Show that the equilibrium z. = 0 of (LH) is exponentially stable
if there exists a @ € C'[RT,R"*"] such that Q(¢) = [Q(¢)]” for all ¢ and if there
exist constants co > ¢; > 0 and c3 > 0 such that (7.10.10) holds and such that

[AB)TQ(M) + Q()A(t) + Q(t) < —csl,  teR. (7.10.12)
O

Problem 7.10.13 For (LH) let \,,(t) and Ay (¢) denote the smallest and largest
eigenvalues of A(t) + [A(t)]T at t € R, respectively. Let (¢, o, zo) denote the
unique solution of (L H) for the initial conditions z(ty) = xo = ¢(to, to, o)
(a) Show that for any zog € R” and any ¢, € R, the unique solution of (LH)
satisfies the estimate

t N N t N N
|1‘0|6(1/2) Jig Am(s)ds < |o(t, to, )| < |a:0|6(1/2)f‘0 /\M(é)db’ t>to.

(7.10.13)
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(b) Use the above result to show that the equilibrium z. = 0 of (LH) is uniformly
stable if there exists a constant ¢ such that

t
/ Au(s)ds < ¢ (7.10.14)
for all ¢, 0 such thatt > o.

(c) Use the result in item (a) to show that the equilibrium z. = 0 of (LH) is
exponentially stable if there exist constants € > 0, o > 0 such that

t
/ A(s)ds < —alt—o) +¢ (7.10.15)
forall £,0 such thatt > o. O

Problem 7.10.14 Show that if the equilibrium 2. = 0 of the system
z(k+1) = eta(k) (7.10.16)

is asymptotically stable, then the equilibrium x. = 0 of the system

= Ax (L)
is also asymptotically stable. In systems (7.10.16) and (L), x € R™, A € R"*", and
keN. O
Problem 7.10.15 Prove Theorem 7.5.1. Prove Theorem 7.5.2. a
Problem 7.10.16 Prove Theorem 7.5.3. Prove Theorem 7.5.4. a
Problem 7.10.17 Prove Theorem 7.5.5. a
Problem 7.10.18 Prove Theorem 7.5.6. o
Problem 7.10.19 Prove Proposition 7.5.1. ]
Problem 7.10.20 Prove Theorem 7.6.4. o

Problem 7.10.21 Consider the system

i= f(z) (4)

where f € C1[Q2, R"] and assume that . is an equilibrium of (4) (i.e., f(z.) = 0).
Define A € R"*" by
A= of

oz (ze)-
Prove the following.

(a) If A is a stable matrix, then the equilibrium z. is exponentially stable.
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(b) If A has an eigenvalue with a positive real part and no eigenvalue with zero
real part, then the equilibrium x. is unstable.

(c) If A is critical, then z, can be either stable or unstable. (Show this by using
specific examples.) m|

Problem 7.10.22 Using Problem 7.10.21, analyze the stability properties of each
equilibrium point of the following equations:

@i+e(x?—1)i+r=0,¢e#0.

(b) & + sinx = 0.

©i+x+az(x?—4)=0.

(d) 32 — 73 +3i +e®— 1 =0.

(e) & + ct +sinx = 3, ¢ # 0.

() & + 2@ + 2 = 23. ]

Problem 7.10.23 Ignoring the time dimension, for each equilibrium point in Prob-
lems 7.10.22(a)—(d), determine the dimensions of the stable manifold and the unstable
manifold. a

Problem 7.10.24 Analyze the stability properties of the trivial solution (origin) of
the following equations

(@) _5”1] = { 21 } M N { (et — 1) sin(wat)

To 7 3 X2 e_txlxg

[#1] [ arctanzy + a9
(b) _3'32} o [ sin(x1 — ) }
_i'l -3 -1 1 Ty 1T
(C) (tg = -1 —4 0 To| + X123
| T3 1 0 -4 T3 sin(zyzex3)
:1'?1 = —QapT2 — a1x3

(d)§ @2 ="Dbo(e™ —1)
T3 = —Ar3 + bl(eﬂh — 1)
where A > 0, b; # 0, and a;/b; > 0,i =0, 1. O

Problem 7.10.25 In Problem 7.10.24, when possible, determine a set of basis vectors
for the stable manifold for each associated linearized equation. O

Problem 7.10.26 Let F' satisfy Assumption 7.6.1, let T' = 27, and consider the
system

T —1+3(cos?t)/2 1 —3(sintcost)/2 | [z,
|:]:'2:| N { —1—3(sintcost)/2 —1+3(sin®t)/2 ] [xz] +F(t 2, 22)
=Py(t)x+ F(t,z). (7.10.17)
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(a) Show that y(t) = (cost, —sint)Te*/? is a solution of

v = Po(t)y. (7.10.18)

(b) Compute the Floquet multipliers of (7.10.18).
(c) Determine the stability properties of the trivial solution of (7.10.17).
(d) Compute the eigenvalues of Py(t). Discuss the possibility of using the eigen-

values of (7.10.18), rather than the Floquet multipliers, to determine the stability
properties of the trivial solution of (7.10.17). o

Problem 7.10.27 The system described by the differential equations

. 7.10.19
iy = —x1 + 2o(2? + 23) ( )

{ i = a9 + x1(2} + 23)
has an equilibrium at the origin (z1,22)7 = (0,0)7. Show that the trivial solution
of the linearization of system (7.10.19) is stable. Prove that the equilibrium z. = 0
of system (7.10.19) is unstable. (This example shows that the assumptions on the
matrix A in Theorems 7.6.2 and 7.6.3 are essential.) a

Problem 7.10.28 Use the results of Section 7.7 (Comparison Theory) to show that
the trivial solution of the system

i‘1 = —T1 — 233% + 2]<i$4
&2 = @ + 20122 (7.10.20)
i’g = 73%3 —+ T4 + kxl ’ ’
Ty = —2x4 — 23 — kxo
is uniformly asymptotically stable when |k| is small.
Hint: Choose vq (1, x2) = 2% + 23 and vo (w3, 24) = 23 + 23. O
Problem 7.10.29 Prove Theorem 7.7.3. a
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Chapter 8

Applications to
Finite-Dimensional
Dynamical Systems

In the present chapter we apply several of the results developed in Chapters 6 and
7 in the qualitative analysis of several important classes of dynamical systems, in-
cluding specific classes of continuous dynamical systems, discrete-time dynamical
systems, and discontinuous dynamical systems (DDS). The chapter is organized into
five parts. First, we address the stability analysis of nonlinear regulator systems,
using stability results for continuous dynamical systems. Next, we study the stability
properties of two important classes of neural networks, analog Hopfield neural net-
works and synchronous discrete-time Hopfield neural networks, using stability results
for continuous and discrete-time dynamical systems. In the third section we address
the stability analysis of an important class of discontinuous dynamical systems, dig-
ital control systems, using stability results for DDS. In the fourth part we conduct
a stability analysis of an important class of pulse-width-modulated feedback control
systems. Systems of this type are continuous dynamical systems whose motions have
discontinuous derivatives. We demonstrate in this section that the stability results for
DDS are also well suited in the analysis of certain types of continuous dynamical sys-
tems (such as pulse-width-modulated feedback control systems). Finally, in the fifth
section we address the stability analysis of an important class of dynamical systems
with saturation nonlinearities with an application to a class of digital filters, using
stability results for discrete-time dynamical systems.
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8.1 Absolute Stability of Regulator Systems

An important class of systems that arise in control theory is regulator systems de-
scribed by equations of the form

= Az +bu
o=clz+du (8.1.1)
u=—p(0)

where A € R"*™; b,c,x € R"; and d,0,u € R. We assume that ¢ € C[R,R] and
©(0) = 0, and is such that (8.1.1) possesses unique solutions for all ¢ > 0 and for
every x(0) € R™ that depend continuously on z(0).

System (8.1.1) can be represented in block diagram form as shown in Figure 8.1.1.
As can be seen from this figure, system (8.1.1) may be viewed as an interconnection
of a linear component with input » and output o, and a nonlinear component with
input o and output ¢(o).

i Nonlinear
I
1 component

Figure 8.1.1: Block diagram of system (8.1.1).

In Figure 8.1.1 r denotes “reference input.” Because we are interested in studying
the stability properties of the equilibrium z. = 0 of system (8.1.1), we choose r = 0.

Assuming z(0) = 0 and using the Laplace transform, we can easily obtain the
transfer function of the linear component of system (8.1.1) as

9(s) = ol (sl —A)~ b+ d. (8.1.2)

This in turn enables us to represent system (8.1.1) in block diagram form as shown
in Figure 8.1.2.
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r=0 + u

8(s)=cT(sI—A)'b+d

¢(o)

o(+)

Figure 8.1.2: Block diagram of system (8.1.1).

In addition to the preceding assumptions concerning the nonlinearity ¢(-), we
assume, for example, that

kio? < op(o) < koo? (8.1.3)

where ki, ko are real constants. In this case we say that ¢ belongs to the sector
[k1, k2]. Similarly, if we require that k102 < o¢(0) < koo?, we say that ¢ belongs
to the sector (k1, k2). Other sectors, such as (k1, k2| and [k1, k2 ) are defined similarly.
Also, when op(o) > 0 for all o € R, we say that ¢ belongs to the sector [0, 00).

Now let d = 0 and replace ¢(o) by ko, where k1 < k < ky. Then system (8.1.1)
reduces to the linear system

&= (A— kb, (8.1.4)

In 1949, Aizerman conjectured that if d = 0, if ¢ belongs to the sector [k1, k],
and if for each k € [k, ko] the matrix (A — kbc?) is a Hurwitz matrix, so that
system (8.1.4) is exponentially stable in the large, then the equilibrium z, = 0 of
the nonlinear system (8.1.1) is uniformly asymptotically stable in the large. It turns
out that this conjecture, called Aizerman’s conjecture, is false. Nevertheless, it is still
useful, because it serves as a benchmark in assessing how conservative some of the
subsequent results are in particular applications.

In the present section we address the following problem: find conditions on
A, b, ¢, d that ensure the equilibrium z, = 0 of system (8.1.1) is uniformly asymp-
totically stable in the large for any nonlinearity ¢ belonging to some specified sector.
A system (8.1.1) satisfying this property is said to be absolutely stable.

In the present section we address the absolute stability problem of regulator systems
using two different methods: Luré’s criterion and the Popov criterion.

A. Luré’s result

In the following result, we assume that d = 0, that A is a Hurwitz matrix, and that ¢
belongs to the sector [0, 00). We use a Lyapunov function of the form

v(z) = 2" Pr + /OU (&)de, (8.1.5)

where P = PT € R"*" is positive definite and 5 > 0. We require that P is a
solution of the Lyapunov matrix equation

ATP+PA=-C (8.1.6)

where C' = CO7 is a positive definite matrix of our choice.
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Theorem 8.1.1 (Luré) For system (8.1.1) assume that d = 0, that all eigenvalues of
A have negative real parts (i.e., A is Hurwitz), and that there exist positive definite
matrices P and C that satisfy (8.1.6). Also, assume that

Bl —wTC tw >0 (8.1.7)

where )
w::Pb—éﬂATc (8.1.8)

and § > 0 is some constant (see (8.1.5)).
Then the equilibrium z. = 0 of system (8.1.1) is asymptotically stable in the large
for any ¢ satisfying (o) > 0 for all o € R.

Proof. We choose as a Lyapunov function (8.1.5) which is continuous, positive def-
inite, and radially unbounded (because P is positive definite and because (o) > 0
for all o € R implies that foa p(s)ds > 0 for all ¢ € R). Along the solutions of
(8.1.1) we have
UES.I.l)(x) = a:TP(Ax —byp(0)) + ($TAT - ngp(o))Px + Bp(o)d

= 2T (PA+ ATP)x — 227 Pbp(0) + Byo(o)c’ (Ax — bp(o))

= 27 Cx — 227 Pbp(o) + BaT AT cp(o) — B(cTb)p(0)?

= —27Cx — 2p(0)xTw — B(cTh)p(o)?

= —(z4+C rwe(o)TClz+C  we(o)) — (B b—w? C~ w)p(o)?.
Invoking (8.1.7) and the positive definiteness of C, it follows that 028‘1_1) (x) is neg-
ative definite for all z € R"™. Indeed, if UESIM) (z) = 0, then p(o) = 0 and

r+Clwp(o) =2 +Cw-0=12=0.

It now follows from Theorem 6.2.3 that the equilibrium x, = 0 of system (8.1.1) is
asymptotically stable in the large for any ¢ satisfying cp(c) > 0 forallc e R. O

B. The Popov criterion

System (8.1.1) which we considered in the preceding subsection is referred to in
the literature as a direct control system. We now consider indirect control systems
described by equations of the form

& = Az — by(o)
o= o+ de (8.1.9)
£=—¢(0)

where 2,b,¢c € R", 0,£,d € R, and A € R™*" is assumed to be Hurwitz (i.e., all
the eigenvalues of A have negative real parts). We assume that d # 0, for otherwise,
(8.1.9) reduces to (8.1.1).
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System (8.1.9) can be rewritten as

=00 8+
oo [ d 7). (8.1.10)
n= —sa(aj M

Equation (8.1.10) is clearly of the same form as equation (8.1.1). However, in the
present case, the matrix of the linear system component is given by
~ A 0
=10
and satisfies the assumption that one eigenvalue is equal to zero because all the
eigenvalues of A have negative real parts. We note that Theorem 8.1.1 (for the direct
control problem) is not applicable to the indirect control problem (8.1.9).

In the following, we present the Popov stability criterion for system (8.1.9),
assuming that ¢ belongs to the sector (0, k], so that

0 < op(o) < ko? (8.1.11)

for all o € R, o # 0. In establishing his result, Popov relied heavily on results from
functional analysis. Presently, we make use of the Yacubovich—-Kalman Lemma to
establish the absolute stability of system (8.1.9). In this lemma, which we state
next, without proof, we assume that the pair (A, b) is controllable, that is, the matrix
[b Ab --- A"~1b] has full rank.

Lemma 8.1.1 (Yacubovich—Kalman) Assume that A € R™*" is a Hurwitz matrix
and that b € R™ is such that the pair (A, b) is controllable. Assume that Q = Q7 is
a positive definite matrix. Let v > 0 and € > 0. Then there exists an n X n positive
definite matrix P = PT and a vector ¢ € R" satisfying the equations

PA+ATP = —¢¢" —Q (8.1.12)

and
Pb—w = \/yq (8.1.13)

if and only if ¢ is sufficiently small and
v+ 2Re[w” (iwl — A)~'b] >0 (8.1.14)
for all w € R, where i = /—1 and I € R™"*™ denotes the identity matrix. a

For a proof of the Yacubovich—-Kalman Lemma, please refer, for example, to
Lefschetz [40, pp. 114-118].
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We can rewrite system (8.1.9) as

T = Az + bu
o=cl'z+d[u (8.1.15)
u=—p(0)

where [ denotes a primary function of u. Similarly asin system (8.1.1), we may view
(8.1.15) as an interconnection of a linear system component with input « and output o,
and a nonlinear component (refer to Figures 8.1.1 and 8.1.2). Assuming z(0) = 0 and
making use of the Laplace transform, we obtain in the present case the transfer function

Zgg =q(s) = g +cT(sI — A)~ b, (8.1.16)

Theorem 8.1.2 (Popov) For system (8.1.9) assume that d > 0, that A is a Hurwitz
matrix, and that there exists a nonnegative constant ¢ such that

Re[(1 4 iwd)g(iw)] + % >0 (8.1.17)

forallw € R, w # 0, where i = v/—1 and ¢(+) is given in (8.1.16).
Then the equilibrium (x, &) = (0,0) of system (8.1.9) is asymptotically stable in
the large for any ¢ belonging to the sector (0, k].

Proof . In proving this result, we make use of Lemma 8.1.1. Choose o > 0 and
B > 0 such that 6 = B(2ad)~!. Also, choose v = B(c'b + d) + (2ad)/k and
w = adc+ AT ¢/2. We must show that v > 0 and that (8.1.14) is satisfied.

Using (8.1.17) and the identity

s(sl — At =T+ A(sI — AL, (8.1.18)
we obtain
0 < Re[(1 + iwd)g(iw)] + &+
= k7' 4+ 6d + Re{cT [iw(iwl — A) 76 + (iwl — A)~']b}
=k~ 4 6d +Re{cT[6] + 0A(iwl — A)~! + (iwl — A)~1]b}
=k ' 4+ 6(d+c"b) + Re{cT[(6A + I)(iwl — A)~']b}
forall w > 0. Let A\ = 1/w. Then
lim Re{c"[(0A + I)(iwl — A)~'p} = lim Re{cT[(A+T)(il — ANA)~']b} = 0.

w— 00

Therefore there exists an > 0 such that
n <kt +6(d+c"b) + Re{c [(6A+TI)(iwl — A)~1]b}.
Letting w — oo, we have

<kl odt T =k B
O<nsk™+old+cb) T 2add+ Th)  2ad

Therefore, v > 0.
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Next, using the identity (8.1.18) and § = (3/(2ad), a straightforward computation
shows that inequality (8.1.17) implies inequality (8.1.14) with the given choices of v
and w.

We now invoke Lemma 8.1.1 to choose P, ¢ and € > 0. Define

v(z, &) = 2T Px 4 ad?¢® + /U p(s)ds
0

for the given choices of P, a, and 3. Along the solutions of (8.1.9) we have
”28.1.9)(% 3]

=T P(Az — bp(0)) + (2T AT — b7 p(0)) Px — 2d*alp(o) + Bp(o)d

=27 (PA+ AT P)x — 227 Pbp(0) — 2ad*Ep(0)
+ (o) [ (Az = bp(0)) — dp(0)]
v (—qq" — Q) — 22" (Pb— w)p(0) — B(c" b+ d)p(0)? — 2adop(0)

= —ex'Qu — 2"qq"w — 227 \/Yqp(0) — vp(0)? — 2ad [0 - %] (o)

< —ex?Qu — 2T qq"x — 22T (o) — yp(0)?

= —exlQx — [qu + \ﬁap(a)f
<0

where in the preceding computations we have used the relations w = adc+ % 6ATC,
Pb—w=./7q,7 = B(cTb + d) + (2ad) /k, and

2ad [a - %}p(a) > 0.
The above inequality is true inasmuch as ¢ belongs to the sector (0, k.

Next, we note that ’UES.LQ) (z,£) =0 implies that z = 0, because () is positive def-
inite, and that p(c) = 0. Because ¢(c) = 0 if and only if ¢ = 0 and because
o = cl'z + d&, where d > 0, it follows that 2 = 0 and ¢(c) = 0 implies that
(z,£) = 0. Therefore, UE&LQ) (z,€) is negative definite.

Finally, it is clear that v is positive definite and radially unbounded. Therefore,
it follows from Theorem 6.2.3 that the equilibrium (z,£) = 0 of system (8.1.9) is
asymptotically stable in the large for any ¢ belonging to the sector (0, k. a

Theorem 8.1.2 has a very useful geometric interpretation. If we plotin the complex
plane, Re[g(iw)] versus wIm[g(iw)], with w as a parameter (such a plot is called a
Popov plot or a modified Nyquist plot), then the condition (8.1.17) requires that there
exists anumber § > 0 such that the Popov plot of §(-) lies to the right of a straight line
with slope 1/§ and passing through the point —1/k + 4 - 0. In Figure 8.1.3 we depict
a typical situation for which condition (8.1.17) is satisfied, using this interpretation.

Note that it suffices to consider only w > 0 in generating a Popov plot, because both
Re[g(iw)] and wIm[g(iw)] are even functions. In Figure 8.1.3, the arrow indicates
the direction of increasing w.
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oImg(in)

1/8

“1k //\ =0 Redio)

Figure 8.1.3: Geometric interpretation of inequality (8.1.17).

We conclude by noting that Popov-type results, such as Theorem 8.1.2, have
also been established for direct control problems (such as system (8.1.1)) and Luré-
type results, such as Theorem 8.1.1, have also been established for indirect control
problems (such as system (8.1.9)). There is a large body of literature concerning
the absolute stability of regulator systems, including, as pointed out in Section 8.6,
several monographs.

8.2 Hopfield Neural Networks

An important class of artificial recurrent neural networks are Hopfield neural networks
described by equations of the form

t=-Bx+TS(z)+1 (H)

where 2= (11,...,2,)T€R", B=diag[by,...,b,] €ER™" with b; >0, 1 < i < n,
T = [T;;] € R, S(z) = [s1(x1), ..., 8n(zn)]T: R" = R, s; € CY[R, (-1, 1)]
is strictly monotonically increasing with s;(0) = 0 and x;s;(z;) > 0 for all z; # 0,
and I = [I,...,I,]T, where I; € C[RT,RR]. Such networks, which have been
popularized by Hopfield [20], have been applied in several areas, including image
processing, pattern recognition, and optimization. In the application to associative
memories, the external inputs I;, ¢ = 1, ..., n, are frequently constant functions, used
as bias terms. In the present section we assume that the I; are constant functions.
Hopfield neural networks have been realized in a variety of ways, including by
analog circuits, specialized digital hardware, and simulations on digital computers.
In the case of the latter two, (H) is replaced by difference equations that comprise the
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synchronous discrete-time Hopfield neural network model. In Figure 8.2.1 we depict
symbolically the realization of (H) by an analog circuit, using resistors, capacitors,
operational amplifiers (capable of signal sign inversions, as required), and external
inputs (bias terms). In Figure 8.2.1, dots indicate the presence of connections and
the T};s denote conductances. It is easily shown that application of Kirchhoff’s
current law to the circuit in Figure 8.2.1 results in the system description (H) where
x; = Cju;, B and T are determined by the resistors I; and the conductances Tj;,
and the nonlinearities s;(x;) are realized by the operational amplifiers.

I] IZ
Tas

Tis T

T2 T2
Nonlinear T
amplifier 1

G R, Cy R,

Nonlinear
inverting u u
amplifier L = 2 =

Vi vV =—V A4 V,=-V,

V3
Vr; =—V3

Figure 8.2.1: Hopfield neural network circuit.

In Chapter 9, we revisit the qualitative analysis of recurrent neural networks by
establishing global and local stability results for Cohen—Grossberg neural networks
endowed with time delays.

The present section consists of four parts. We first show that under reasonable
assumptions, all states of system (H) eventually approach an equilibrium, using the
Invariance Theory developed in Section 7.2 (Theorem 7.2.2). Next, we establish
sufficient conditions under which an equilibrium of (H) is asymptotically stable,
using the Comparison Theory developed in Section 7.7 (Corollary 7.7.1). In the third
subsection we use the results of Section 7.3 to obtain an estimate for the domain
of attraction of an asymptotically stable equilibrium of (H). In the final subsection
we use the results of Section 6.3 (Theorem 6.3.1(c)) to establish a set of sufficient
conditions for the asymptotic stability of an equilibrium of a class of synchronous
discrete-time Hopfield neural networks.
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A. A global result

In this subsection we present a result that serves as the basis for the application of
Hopfield neural networks in the areas enumerated earlier. We require the following
hypotheses.

(A-1) T is a symmetric matrix. O
ds;

(A=2) s; € CY[R, (~1,1)] and ds (n) > 0 forall 5 € R. 0
n

(A-3) System (H) has a finite number of equilibrium points. O

In [41], sufficient conditions are established which show that hypothesis (A-3) is
satisfied under reasonable assumptions for (H).

Theorem 8.2.1 Assume that hypotheses (A-1), (A-2), and (A-3) are true. Then
for every solution o(t) of (H), there exists an equilibrium x, of (H) such that
lim; o ©(t) = Te.

Proof . In view of the results given in Chapter 2 (refer to Subsection 2.3B) it is easily
established that for every x(0) € R”™, (H) possesses a unique solution ¢(t) with
©(0) = 2(0), which exists for all ¢ > 0.

To apply Theorem 7.2.2 in the present case, we first need to show that every
solution of (H) is bounded. To this end, let

n
i =Y |yl + |1l
j=1

i=1,...,n. Theninview of (A-2), every solution of (H), ¢(t) = [p1(t), . . ., ou(t)] %,
satisfies the inequalities

©i(t) < —=bipi(t) + ¢,

1 =1,...,n.Bythecomparison theorem for ordinary differential equations, Theorem
3.8.1 (for the case | = 1), we have that ¢;(t) < y;(¢) for all t > 0, where y;(0) =
x;(0) and where y;(t) is a solution of the differential equation

Ui(t) = —=biyi(t) + ci,

1 =1,...,n. Solving these equations, we have that
C; C; C; Ci
(t <J_(i_ iO) —bit o~ G | |G _ i0'7
o) < 3= (5~ m(0)e ™ < [ mi(0)
i=1,...,n,forall t € RT. Therefore, all the solutions of (H) are bounded from

above. In a similar manner, we can show that all the solutions ¢(t) of (H) are bounded
from below for all t € R™.
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Next, we choose as a Lyapunov function the “energy function” given by
1 T T - siles) -1
v(x) = =5 8(@)TTS(x) - S(z) "1+ > b s (n)dn.
i=1 70

Then v € C'[R™, R] and the gradient of v is given by
Vo(z) = V,S(z)[-TS(z) — I + Bx]

where

. ds dsy,
V.S(z) = diag [dacll(xl)’ e dm(xn)]

and hypothesis (A—1) has been used. Then
’UEH) () = —(=Bx +TS(z) + )TV, S(x)(~Bx + TS(z) + I) <0

for all z € R".
The set of all z € R™ such that UEH)(.I) = 0, given by

Z={z €eR": vy (r) =0} ={z €R": — Ba+TS(z)+1 =0},

is an invariant set of (H) because it is precisely equal to the set of all equilibrium
points of (). By hypothesis (A-3), Z consists of a finite number of points. All the
hypotheses of Theorem 7.2.2 are now satisfied and we conclude that every solution
©(t) of (H) approaches an equilibrium of (H) as t — oo. a

B. A local result

In applications (e.g., to associative memories), asymptotically stable equilibria (called
stable memories) are used to store information. It is important in such applications
to establish conditions under which a given equilibrium z,. of (H) is asymptotically
stable. We address this issue next.

Using the transformation w = x — x., system (/) assumes the form

W = —Bw + TS(w) (8.2.1)

where S(w) =S (w +x.) — S(z), S(0) =0, and w, = 0 is an equilibrium of (8.2.1).
We conclude that we may assume without loss of generality that . = 0 is an equi-
librium of the Hopfield neural network and that the network has the form

& =—Bx+TS(x), (H)
or equivalently,

Ty = —byx; + ZTiij(JUj)v (H;)

j=1
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i=1,...,n, where B and T are the same as in (H), S(z) = [s1(x1), ..., sn(2n)]T
forz = (z1,...,7,)7, s; € C[R, (=2,2)], s; is strictly monotonically increasing,
$;(0)= 0, and z;s;(x;) > 0O for all z; # 0. In what follows, we make the realistic
assumption that foralli = 1,... ,n,

si(z;)
Z;

0<

<§;, for 0< ‘.Z‘Z‘ < g;. (8.2.2)

System (ﬁi) (resp., (f[ )) can be rewritten as

.| F(x)z, x # 0,
&= { 0. N (8.2.3)
where F'(z) = [fij(x;)] and
8 () .
fii(mi):—biﬂ-ﬂii, CL'Z'#O, 1=1,...,n,
5i(2;) Ti (8.2.4)
Lj
Now let A = [a;;], where
i = —bi + Tii6;, 1<i<mn,
¢ - S (8.2.5)
aij = |Tij|05, 1<i#j<n
where §;,7=1,...,n, is defined in (8.2.2).

Choosing the vector Lyapunov function V(z) = [|z1],..., |xn|}T, where z =
(71,...,2,)T, and proceeding identically as in Example 7.7.1, we obtain along the
solutions of (H) the vector inequality

!
Vi (@) < AV (2) (8.2.6)
for all z € B(e), where ¢ = minj<;<,{e;} ande; > 0,7 = 1,...,n, is given in

(8.2.2). Identically as in Example 7.7.1, we now apply Corollary 7.7.1(b) to obtain
the following result.

Proposition 8.2.1 The equilibrium z, = 0 of (IA{T ) is exponentially stable if —A is
an M -matrix (where A is defined in (8.2.5)). O

Remark 8.2.1 In view of Definition 7.7.1, because the matrix D = —A given in
Proposition 8.2.1 is an M -matrix, the following equivalent statements are true.
(a) The principal minors of — A are all positive.
(b) The successive principal minors of — A are all positive.
(c) Thereisavectoru € (Ry)™suchthat —Au € (Ry)™ (recall that Ry = (0, 00)).
(d) There is a vector v € (R )" such that —ATv € (Ry)™.

(e) —A is nonsingular and all elements of —A~! are nonnegative (in fact, all
diagonal elements of — A~ are positive). O
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C. Domain of attraction

In applications (e.g., to associative memories), estimates for the domain of attraction
of an asymptotically stable equilibrium are also of great interest. In the present
subsection we apply the method developed in Section 7.3 to obtain estimates for the
domain of attraction of the equilibrium z. = 0 of system (H).

We assume that all the hypotheses of Proposition 8.2.1 are still in place. In par-
ticular, we assume that —A is an M-matrix where A = [a;;] is given in (8.2.5). In
accordance with the property of M -matrices given in Remark 8.2.1(c), there exist
A; > 0,7 =1,...,n,such that

n

Yo i=1,....n (8.2.7)

Aj

j=1

Proposition 8.2.2 Assume that all conditions of Proposition 8.2.1 are true. Let

1<i

S = {a: € R™: max \|z;| < min )\isi}

where \; and €;, 7 = 1,...,n, are defined in (8.2.2) and (8.2.7), respectively. Then
S is a subset of the domain of attraction of the equilibrium x, = 0 of system (H).

Proof. We choose as a Lyapunov function for (f[ )

v(z) = max Azl

Along the solutions of (ﬁ ), we have, in view of (8.2.7),

/ DT s
v(ﬁ)(x)glréliaéxn/\zD ;]

< max {)\Za”|x1| + Z it x]|}
- \ i#£j
< azv(x) + Z )\—;aijv(a:)
i#j
=\ Z% v(zx)
— \;
j=1

<0 (8.2.8)

for all |z;| < &;, 4 = 1,...,n. In the above inequalities we have evaluated the Dini
derivative D™ |z;| similarly as was done in Example 7.7.1.

For ¢ = miny<;<, Ai&;, any x € R” satisfying v(z) < ¢ must satisfy |z;| < ¢;
and therefore, (8.2.8) must be satisfied. From the method developed in Section 7.3 it
is now clear that the set

S={zeR":v(z)<c}= {Jc eR"™: 11;17:22(")\1|xz| < 1I§niléln)\l<€l}

is contained in the domain of attraction of the equilibrium z. = 0 of system (}NI ). O



350 Chapter 8. Applications to Finite-Dimensional Dynamical Systems

D. Synchronous discrete-time Hopfield neural networks

In this subsection we establish local stability results for synchronous discrete-time
Hopfield-type neural networks described by scalar-valued equations of the form

= zn:ﬂjvj(uj(kz)) — agui (k) + I, (W;)

vi(ui(k)) = gi(ui(k)),

i1 =1,...,n, k € N, where a; = 1 — At - b;, At denotes computation step size,
g; € CI[R, R], gz(O) =0, ulgz(ul) > ( for all Uj # O,

dg;
du;

(ul) > 0,

and g, (-) satisfies the sector condition

gi(o)

din < <di2 (8.2.9)

for all 0 € B(r;) — {0} for some r; > 0, ¢ = 1,...,n, where d;;,di2 > 0,
1 =1,...,n, are constants.
Letting u = (u1,...,up)’ € R", v = (vy,...,v,)T € R", T = [T};] € R™*",
A = diaglay,...,a,), I = (I1,...,I,)T,and g(*) = [01(-), . . ., gu ()]T: R* — R™,
system (WW;) assumes the form
u(k +1) = Tv(u(k)) + Au(k) + I,
v(u(k)) = g(u(k)),

k € N. Any point u. € R"™ that satisfies the condition
e = Tg(ue) + Aue + 1

or
0="Tg(ue)+ Bu.+ 1 (8.2.10)

where B = A — I, is an equilibrium for (). Letting

{ p(k) = u(k) — ue
G(p(k)) = g(u(k)) — g(ue)

where u, satisfies (8.2.10) and G(-) = [G1(-), ..., Gn()]T, system (W) reduces to
the system

(8.2.11)

p(k+1) = TG(p(k)) + Ap(k) W)

which has an equilibrium at p, = 0.
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System (W) can be rewritten in component form as

n

pik +1) = > T5;G;(p; (k) + aipi(k), (")
j=1
i =1,...,n. From the relationship (8.2.11) it follows that the functions G;(-) have
the same qualitative properties as the functions ¢;(-), ¢ = 1,...,n. In particular,
G;(0) = 0 and
G;
cin < (0) <o (8.2.12)
g

for all o € B(d;) — {0} for some §; > 0, = 1,...,n, where ¢;1,¢c;2 > 0,1 =
1,...,n, are constants (in general not equal to d;1, dlg given in (8.2.9)).

Asin[19], [51], and [64], we can view (Wi) as an interconnection of n subsystems
described by equations of the form

zi(k+1) = T;Gi(zi(k)) + aizi(k), (€2:)
1 = 1,...,n, with the interconnecting structure specified by
A n
hi(ry,.,a) = Y TiGy(ws(k), (8.2.13)
j=1,i#j

1 =1,...,n. Under this viewpoint, the stability properties of the equilibrium p, = 0
of (W) are established in terms of the qualitative properties of the subsystems (£2;),
1 =1,...,n, and the constraints imposed on the interconnecting structure of system
W). .

In the following, we assume that system (W) satisfies the following hypotheses.
(B-1) For subsystem (£;),

0<o;= (|al| + | Tiilciz) < 1

where c¢;5 is defined in (8.2.12). O

(B-2) Given o; in (B-1), the successive principal minors of the matrix Q = [g;;]
are all positive, where

) (o =1, 1<i=j<n
i = —oy, 1<i#j<n
where 0;; = |T;;|c;2 and c;s is defined in (8.2.12). O

We are now in a position to prove the last result of this section.

Theorem 8 22 If Assumptlons (B—1) and (B-2) are true, then the equilibrium p.= 0
of system (W) (resp., (W )) is asymptotically stable.



352 Chapter 8. Applications to Finite-Dimensional Dynamical Systems

Proof. We choose as a Lyapunov function for (W),

) = Z Ailpi (k)
i=1

for some constants A; > 0,7 = 1,...,n. The first forward difference of v evaluated
along the solutions of (W;) is given by

D iy v(p(k)) = v(p(k + 1)) — v(p(k))

= llpi(k + 1) — |ps(k)]]

= S + Y736 s )| - I
i—1 L j=1
SN IICIES oA SR
i—1 L j=1
SN CENTCES AN E
=1 - j—l
< Sl = Vi) + Z T:leslps ()]
=1 -
= 3o = )+ dealnthll + 3 (Tylesalns )]
i=1 L J=1,i#j
= ZA (i = Dpi(k |+Z>\ Y aijlpi()]
J=1ij
= —)\TQw
where A = (A1,...,\)T and w = (|p1],...,|pn|)T. Because by (B-2), gi; <0

when i # j, and because the successive principal minors of matrix @ are all positive,
it follows that () is an M -matrix (refer to Definition 7.7.1(iii)). Moreover, Q' exists
and each element of Q! is nonnegative (refer to Definition 7.7.1(vi)). Hence, there
exists a vector y = (y1,...,yn)" withy; > 0,7 =1,...,n, such that

—yTw <0 wherey? =\TQ

and
A=@Q Ny >o0.
We have shown that D(Wi)v(p(k)) is negative for all p(k) € B(d) — {0} where
0 = min;<;<y, 0; with §; defined in (8.2.12). Because v is positive definite, it follows

from Theorem 6.3.1(c) that the equilibrium point p. = 0 of (Wi) is asymptotically
stable. 0
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We conclude by noting that similarly as in Subsection 8.2C, it is possible to de-
termine estimates for the domain of attraction of the equilibrium p. = 0 of (W),
utilizing the method developed in Section 7.3.

8.3 Digital Control Systems

In the present section we apply the stability and boundedness results for DDS to inves-
tigate the qualitative behavior of digital feedback control systems with continuous-
time plants and with digital controllers and interface elements with or without signal
quantization.

A. Introduction and formulation of the problem

Digital feedback control systems, as shown in Figure 8.3.1, are hybrid dynamical
systems that usually consist of an interconnection of a continuous-time plant (which
can be described by a set of ordinary differential equations), a digital controller (which
can be described by a set of ordinary difference equations), and interface elements
(A/D and D/A converters).

r(t)=0, e(t) y(t)

—0 » Plant >
+

_ vk
8 1. P Digital .ﬁ

Controller

Figure 8.3.1: Nonlinear digital feedback control system.

The (nonlinear) plant is assumed to be given by equations of the form
{ &(t) = f(x(t)) + Fe(t), e(t) = e(k), telkk+1),
y(t) = Gz(t)

k € N, and the digital controller without quantizers is described by equations of
the form

(8.3.1)

- 3.2
p(k) = Ghu(h) &3
k € N, where z € R"; 3,0 € R, u € R%; e, ¢,p € R™; F,G,f,é, and C' are real
matrices of appropriate dimensions; and f: R™ — R" is assumed to be continuously
differentiable (i.e., f € C'[R",R"]) with f(0) = 0. The interconnecting elements
that make up the interfaces between the digital controller and the plant are A/D and
D/A converters (with or without quantization). It is usually assumed that the A/D
and D/A converters are synchronized in time. Also, as in Figure 8.3.1, we assume
throughout that the sampling period is fixed at 7" = 1.

{ u(k +1) = Cu(k) + Fo(k),
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B. Stability analysis of systems without quantizers

In the present subsection we assume ideal A/D and D/A converters (i.e., there are no
quantizers in the converters) and we assume infinite wordlength digital controllers
(i.e., there is no quantization in the digital controller). Then (k) = p(k) = Gu(k),
v(k) = y(k) = Gx(k), and the nonlinear digital feedback control system of Figure
8.3.1 is described by equations of the form

{ #(t) = f(z(t) + Bu(k),  te€[kk+1) (8.3.3)

u(k + 1) = Cu(k) + Dx(k),

k€N, where B=FG and D= FG. We note that because f(0) =0, (z7,uT)T= 0
is an equilibrium of system (8.3.3). We show that the stability (resp., instability)
properties of (8.3.3) can under reasonable conditions be deduced from the associated
linear system given by

{ i(t) = Az(t) + Bu(k), telkk+1) (8.3.4)

u(k +1) = Cu(k) + Dx(k),
k € N, where A € R™*"™ denotes the Jacobian of f evaluated at z = 0; that is,

A= {gi(m} . (8.3.5)

nxn

For the linear digital control system (8.3.4), the following results are well known
(refer, e.g., to [10], [14], [30]).

Lemma 8.3.1 The equilibrium (27, u7)" = (07,07)" of the linear digital control
system (8.3.4) is uniformly asymptotically stable in the large if and only if the matrix

AN H1 H2
H= [D C’} (8.3.6)

is Schur stable, where H; = e and Hy = 01 eA0-7)d4rB.
Lemma 8.3.2 Assume that the matrix H given in (8.3.6) has at least one eigenvalue

outside the unit circle. Then the equilibrium (27, uT)" = (07,07)" of the linear
digital control system (8.3.4) is unstable.

We now prove the first stability result for system (8.3.3).

Theorem 8.3.1 The equilibrium (27, «7)" = (07,07)" of the nonlinear digital con-
trol system (8.3.3) is uniformly asymptotically stable if the equilibrium (27, u”)" =
(07, OT)T of the linear digital control system (8.3.4) is uniformly asymptotically
stable, or equivalently, if the matrix H given in (8.3.6) is Schur stable.
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Proof . To show that the trivial solution of system (8.3.3) is uniformly asymptotically
stable, we verify that the conditions of Theorem 6.4.2 are satisfied.
Because f € C'[R",R"] and because f(0) = 0, we can represent f as

f(z) = Az + g(z), (8.3.7)

where A € R™*" is given in (8.3.5) and g € C''[R",R"] satisfies the condition

lim 9@ _ (8.3.8)

z—0 |z
The first equation in (8.3.3) now assumes the form
@(t) = Ax(t) + g(x(t)) + Bu(k) (8.3.9)
fort € [k,k + 1). By the continuity of x(t), the solution of equation (8.3.9) is

given by

z(t) = eAF (k) +/

t t
eA(t_T)Bu(k)dT-i-/ e Dg(a(r))dr - (8.3.10)
k

k

forall ¢t € [k, k + 1]. Specifically, att = k + 1, we have

k+1 k+1
x(kJrl) :eAac(k)+/ eA(k+177)d7_Bu(k)+/ eA(kJrl*T)g(:E(T))dT.

k k
(8.3.11)
Combining (8.3.11) and the second equation in (8.3.3), we obtain
z(k+1)| x(k) A(k)
where
A R
A(k) = / eA(kH_T)g(x(T))dT. (8.3.13)
k

By assumption H is Schur stable. Thus there exists a positive definite symmetric
matrix P such that H'PH — P = —1I, where I € R("*™)x(n+m) denotes the
identity matrix (refer to Theorem 7.5.8). Define a Lyapunov function as

v(w) = w! Pw (8.3.14)

where w € R"*™. Letting w(t) = (z(t)T,u(k))" when t € [k,k + 1), and

m(k) = (A(K)T, OT)T, equation (8.3.12) can be written more concisely as

w(k +1) = Hw(k) + m(k). (8.3.15)
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The first forward difference of v evaluated along the solutions of the discrete-time
system (8.3.15) yields

Do(w(k)) 2 v(w(k + 1)) = v(w(k))
=w(k+ 1) Pw(k + 1) — w(k)” Pw(k)
= [Hw(k) + m(k))T P[Hw(k) + m(k)] — w(k)T Pw(k)
=w(k)'[HT PH — Plw(k) + 2m(k)" PHw(k) + m(k)" Pm(k)
= —|w(k)|® + 2m(k)T PHw(k) + m(k)T Pm(k)
—|w(k)]? + 2| AK)|[| PH | [w(k)| + |AK)[?[ P (8.3.16)

Before proceeding further, we need the following result.

Proposition 8.3.1 For any given p > 0, there exists a § = d(u) > 0, such that

k+1
A(K)] < / g () dr < pluw(k) (8.3.17)

whenever |w(k)| < 0, for any k € N.

The proof of this result is presented at the end of this subsection. If we now
choose a p1p > 0 such that c(p) = 1 — 2uo|| PH|| — p||P|| > 0, then there exists a
0(p0) > 0 such that

Do(w(k)) < —lw(k)* + 2uol | PH||Jw(k)[* + || P[[w (k) ?
= —c(po)|w(k)|? (8.3.18)

whenever |w(k)| < d(uo). It follows from (8.3.14) and (8.3.18) that
A (P)w(k +1)2 < v(w(k +1)) < v(w(k)) < A(P)lw(k)>  (8.3.19)

where A\, (P ) and A M( ) denote the smallest and largest eigenvalues of P, respec-

tively. Let 4= VAR (P) /A (P)d (o). If Jw(kg)| < d for some ko, then (8.3.19)
yields |w(ko+1)| < 6(u0) Thus, (8 3.18) is applicable for k = ko + 1, which yields

v(w(ko+2)) < v(w(ko+1)) < v(w(ko)). Replacing (k+ 1) in (8.3.19) by (k + 2)
yields |w(ko + 2)| < §(uo). By induction, it follows that |w(k)| < §(po) for all
k > ko. Hence, (8.3.18) is satisfied for & > ko whenever |w(kq)| < d. Therefore,
(6.4.3) of Theorem 6.4.2 is satisfied.

Next, we note that for ¢ € [k, k + 1), it follows from (8.3.10) and (8.3.17) that

k+1
|z (t)] Se”A”Im(k)l+€”A”HBIIIU(k)I+/ el Jg(a(r)ldr

< el M/TH B2 [w(k)| + polw (k)]
- (e”A”m INyE +u0) lw (k). (8.3.20)
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Hence for £ <t < k + 1, we obtain that

v(w(t)) < A (P)(|2() + u(k)[?)

)
< )\M(P) (/T B2 + o + 1) |w(k)[?

< P AR + o+ 1)o(w(b),

Let ¢1(p0) = (A (P))/ (A (P))) (el A1\ /T+ B2 + po + 1). Then, (6.4.2) of
Theorem 6.4.1 is satisfied with f(r) = ¢1(uo)r. Noting that d is independent of
ko, we conclude from Theorem 6.4.2 that the trivial solution of system (8.3.3) is
uniformly asymptotically stable if [ is Schur stable. O

Theorem 8.3.2 Assume that the matrix H given in (8.3.6) has no eigenvalues on the

unit circle and has at least one eigenvalue outside the unit circle in the complex plane.

Then the equilibrium w, = (z7,uT)" = (07,07)" of the nonlinear digital feedback

control system (8.3.3) is unstable.

Proof . The proofis similar to the proof of Theorem 8.3.1. By assumption, there exists
a symmetric matrix P such that HT PH — P = I, where I € R("T™)*x(n+m) denotes
the identity matrix (refer to Theorem 7.5.8). As before, we consider a Lyapunov
function of the form v(w) = w? Pw. Because in the present case P has at least
one positive eigenvalue, there must exist points in every neighborhood of the origin
where v is positive. Using a similar argument as in the proof of Theorem 8.3.1, we
can show that there exists a d > 0 such that v(w(k + 1)) — v(w(k)) > cw(k)|? for
a certain positive constant ¢ whenever |w(k)| < d. Therefore, all the hypotheses of
Theorem 6.4.8 are satisfied. Hence, the equilibrium w, = 0 of (8.3.3) is unstable. O

Proof of Proposition 8.3.1. From (8.3.8) it follows that there exists a §; > 0 such
that |g(z)| < |z| whenever |z| < §;. If we let

e Glan

5
2 1
1+ B

then we can conclude that |z(¢)| < §; for all ¢ € [k, k + 1], whenever |w(k)| < da.
Otherwise, there must exist a ¢y € (k, k + 1) such that |z(t9)| = 0, and |z(t)| < 01
forall¢ € [k, to]. We show that this is impossible. Forany ¢ € [k, k+ 1], we have that

xz(t) = z(k) + /k (Ax(T) +g(z(7)) + Bu(k))dT, (8.3.21)
and therefore, when ¢ € [k, to], it is true that
2()] < (JetR)] + (¢ = B) | Bllu(k)]) + /k (14l2(r)] + lg(a(r))dr
<1+ [BI2|lw(k)| +/k (IA]| + 1) |z(7)|dr (8.3.22)
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where we have used in the last step of (8.3.22) the fact that |g(z(7))| < |z(7)],
because |z(7)| < §; for all 7 € [k, 1], by assumption. By the Gronwall inequality
(see, e.g., Problem 2.14.9), relation (8.3.22) implies that

] < VI + | BPlw(k)|ellAI+DE—k) (8.3.23)

forall ¢t € [k, to]. Hence,

z(to)| < /1 + || B]2|w(k)|eIAIFDE=k) 5, (8.3.24)

because g < k+ 1. Inequality (8.3.24) contradicts the assumption that |z (tg)| = d7.
x(t)| < o0y forallt € [k, k+1] whenever |w(k)| < ds.

For any given ;> 0, we choose y1; > 0 such that 1 = p; -eCII4I+D /T [ BJJ2.
There exists a d3 > 0 such that |g(z)| < p1|z|, whenever |x| < d3. Let

e min{dg7 3 }
V1 + || B|Ze(lAl+D)

It now follows from (8.3.23) that whenever |w(k)| < ¢, then

z(t)| < 64/1+ HB||2€(HAH+1) < 85

forall t € [k, k + 1]. Hence, for A(k) given by (8.3.13), we obtain

k+1
AR < / M4l g(a(r))|dr
k
< el Ay /1 + || BJ)2|w(k)|e 141+

= - w(k)

whenever |w(k)| < 6. O

C. Analysis of systems with quantization nonlinearities

In the implementation of digital controllers, quantization is unavoidable. This is due
to the fact that computers store numbers with finite bits. In the present subsection,
we investigate the nonlinear effects caused by quantization.

There are many types of quantization (see, e.g., [13], [55], and [56]). Presently, we
concern ourselves primarily with the most commonly used fixed-point quantization
which can be characterized by the relation

Q) =0+ q(0) (8.3.25)

where |¢(0)| < ¢, for all § € R and ¢ depends on the desired precision.

If we add fixed-point quantization to both the sampler (A/D converter) and to the
digital controller of the nonlinear digital feedback control system of Figure 8.3.1,
assuming 7 = 0, we obtain

v(k) = Qy(k)) = y(k) + a1 (y(k))
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u(k + 1) = Q(Cu(k) + Fu(k)) = Cu(k) + FGx(k) + g2(Cu(k) + Fu(k))
p(k) = Q(Gu(k)) = Gu(k) + g3(Gu(k)),

k € N, where q1, g2, and g3 should be interpreted as vectors whose components
contain quantization terms. By a slight abuse of notation, we henceforth write g1 (k)
in place of gy (y(k)), g2(k) in place of go(Cu(k) + Fu(k)), and so forth. It is easily
verified that there exist positive constants .J; that are independent of € such that
lgi (k)| < Jie, i = 1,2,3, k € N. (For further details concerning the inclusion of
quantizers into digital controllers, refer to [13], [55], [56], and [69].)

In the presence of the quantizer nonlinearities, we can no longer expect that the
system of Figure 8.3.1 will have a uniformly asymptotically stable equilibrium at the
origin; in fact, there may not even be an equilibrium at the origin. In view of this, we
investigate the (ultimate) boundedness of the solutions of the system of Figure 8.3.1,
including the dependence of the bounds on the quantization size.

In the following, we represent the system of Figure 8.3.1 by the equations

(8.3.26)

(t) = Ax(t) + g(x(t)) + FGu(k) + Fas(k),  te€[kk+1)
u(k + 1) = Cu(k) + FGz(k) + Fq1 (k) + q2(k),

k € N. Lettingw(t) = (x(k)T,u(k)T)T whent € [k, k+1), we obtain similarly as in
Subsection B, the equivalent representation of (8.3.26), valid at sampling instants, as

w(k +1) = Hw(k) + m(k) (8.3.27)

where H is defined as in (8.3.6) and where

k+1 1
m(k) = /k eA(k+1_T)~g(x(T))dT +/() eATdTFQ3(k) . (8.3.28)
Faqi(k) + q2(k)

Now assume that H is Schur stable. Then there exists a symmetric positive definite
matrix P such that HT PH — P = —1I. As in Subsection B, we choose as a Lyapunov
function v: R*t™ — RT,

v(w) = w? Pw. (8.3.29)

Lemma 8.3.3 For any d > 0 that satisfies the relation
1 —2d||PH| — d?||P| > 0, (8.3.30)
there exists a § = §(d) > 0 such that the estimate
im(k)| < dlw(k)| + Je, keN (8.3.31)
holds whenever /1 + || BJ|2|w(k)|+ | fol e7dr||||F||Jse < 8, where J is a positive

constant independent of €. (Recall that € denotes a bound for the quantization size
(see (8.3.25)) and J3 is obtained from the estimate |g3 (k)| < Jse.)
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Proof . The existence of d satisfying (8.3.30) is clear. By a similar argument as in the
proof of Proposition 8.3.1, there exists a § > 0 such that ka ellAl|g(z (7)) |dr <

d|w(k) V1+||B|?w(k)] + | fl eATdr||||F||Jse < 6. Therefore,
k+1 _
Im (k)| < / eA(kH*T)g(a:(T))dT —|—/ €ATdTFQ3(k)‘ + ‘Fql(k) + go(k)
k 0
< dlw(k)| + eV F|| Jse + | F|| Jie + Joe
= dlw(k)| + Je (8.3.32)

where J = elAl||F||J5 + ||F||Jy + J; whenever

1
V14 ||BJ?|lw(k)| + H/ eATdr
0

|F||Jse < 6. 0

Now let us consider the Lyapunov function v(w) given in (8.3.14). We compute the
first forward difference of v along the solutions of the discrete-time system (8.3.26)
to obtain

Dv(w(k))

v(w(k + 1)) — v(w(k))
w(k +1)" Pw(k + 1) — w(k)” Pw(k)
[Hw(k) +m(k)]T P[Hw(k) +m(k)] — w(k)” Pw(k)
=w(k)'[HT PH — Plw(k) + 2m(k)" PHw(k) + m(k)" Pm(k)
= —|w(k)|® + 2m(k)T PHw(k) + m(k)T Pm(k)
< —ar|w(k) > + aglw(k)|e + aze?, (8.3.33)
where a; = 1 — 2d|PH|| — d?||P||, az = 2(||PH|| + d||P||)J, and a3 = J?||P|.
L
« \/a% +4a1a3.

2(11
We are now in a position to prove the following result.

R=ay+

Theorem 8.3.3 (i) If the matrix H defined in (8.3.6) is Schur stable, then the solutions
of system (8.3.26) are uniformly bounded, provided that

1
V14 ||B|?|lw(ko)| + H/ eATdr
0

for some 6 > 0. (if) Let L 2 max { (R\/1+ || B2 + J5||F|)el A+ Xy (P)R},
where b is chosen such that |g(x)| < b|z| for all || < Re. Then for sufficiently large
k, the estimates

[ F'llJse < 0,

lw(k)| < Le (8.3.34)

2(t)] < (LT [BIE + Jo| F| ) el A+ (8.3.35)

hold, where by is such that |g(x)| < by |z| for all |z| < L.

and
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Proof. We apply Theorem 6.4.4 in the present proof.

It is readily verified that under the present assumptions Dv(w(k)) is negative
whenever |w(k)| > Re. Hence, (6.4.10) of Theorem 6.4.4 is satisfied with 2 = Re.
Furthermore, if |w(k)| > Re, then v(w(k + 1)) < v(w(k)) and thus |w(k 4+ 1)| <
)\]y[(P)RE < Le.

If |w(k)| < Re, then by applying the Gronwall inequality to equation (8.3.26)
when ¢t = k + 1, we obtain that |w(k + 1)| < Le. Thus, the last hypothesis of
Theorem 6.4.4 is satisfied with I' = Le.

Solving the first equation in (8.3.26), we obtain

t

t
z(t) = AP g (k) -|-/ A FGu(k)dr +/ M g(a(r))dr
k k

t
+ / AT s (k)dr
k

fort € (k, k + 1) and therefore, when |w(k)| < Re it is true that

()] < el (k)] + el 4| B [u(k)) +/k+1e'A' lg(z(m)ldr + 41 g5 | Fle

< T BIPw (k)] + dlw (k)] + eI T F]e.

We have used the fact that f:“ elAl|g(a(7))|dr < dw(k)|, whenever (refer to the
proof of Lemma 8.3.3)

1
V14 ||Bl?lw(k)| + H/ eATdr

0
Therefore, (6.4.11) of Theorem 6.4.4 is satisfied with

(r) = (I VTHTIBI + d)r + el Pl

It now follows from Theorem 6.4.4 that the solutions of system (8.3.26) are uni-
formly bounded.

We have also shown above that for sufficiently large &, |w (k)| < Le holds. Finally,
fort € (k,k + 1), we apply the same argument as in the proof of Theorem 8.3.1 to
obtain the bound (8.3.35) for |x(¢)|. This concludes the proof of the theorem. ad

|E|| T3¢ < 6.

In our final result we consider the difference in the response of the nonlinear digital
control system with ideal samplers, given by equation (8.3.3), and the nonlinear digital
control system with quantizers, given by (8.3.26). For our present purposes we rewrite
(8.3.15) as

@k +1) = Hao(k) + m(k), (8.3.36)
where @(k) = ((k)T,u(k)T)" and
k+1
mk) 2 /k eAMERTDg(i(r)dr | (8.3.37)

0
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Letting z(k) = w(k) — w(k), we obtain the relation
2(k+1)=Hz(k)

k+1 1
L e o) — gl Jar + [ etarra)
Fai(k) + g (k)
(8.3.38)

This equation is in the same form as equation (8.3.26), except that in (8.3.38) the
nonlinearity includes the term f:“ eARH1=7) (g(2(1)) — g(Z()))dr, rather than
the term fkkH eAE+1=7) g (2(7))dr. Now suppose that g(-) has the property

=0, (8.3.39)

which plays a similar role for system (8.3.38) as (8.3.8) does for system (8.3.26).
Using similar arguments as in the proof of Theorem 8.3.3, we obtain the following
result for the boundedness of z(k), k = 0,1,....

Theorem 8.3.4 Assume that H defined in (8.3.6) is Schur stable and g(-) satisfies
(8.3.39). Then there exista d > 0, a K > 0, and an ¢y > 0 such that

|z(k)| < Ke when k is sufficiently large (8.3.40)

whenever ¢ < g, |w(ko)| < d, and |W(ko)| < d, for some kg, where ¢ is the
quantization level. O

D. Examples

The purpose of the following specific example is to show that all conditions of
Theorem 8.3.1 can be satisfied.

Example 8.3.1 In system (8.3.3) (resp., (8.3.4)) take

—-0.6 -1 0
A=[28 ) so[8]. peresos c-ru
and in (8.3.7), take
| 0.013sin(zy)
9(x) = {0.008332 cos(:vg)] ’

Then |g(z)| < a|z| for all x, where a = 0.0083. We also compute that

0.2962 —0.6562 0.5174 3.2515  0.6514 1.8906
H= ] 05250 0.6899 0.0833 |, P= [0.6514 2.4873 —0.0755
—0.8000  0.3000 —1.0000 1.8906 —0.0755  2.9856
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po is computed to be 0.1225, and p3||P|| + 2uo||PH|| = 0.9035 < 1. It follows

from Theorem 8.3.1 that the equilibrium (7, uT)" = (07,07)" of this system is
uniformly asymptotically stable; in fact, it is uniformly asymptotically stable in the
large because the conditions of Theorem 8.3.1 are satisfied for all = (i.e., 6(up) =
+00, where §(110) is given in Proposition 8.3.1). |

Example 8.3.2 The present case is an example of the digital control of a nonlinear
plant (whose linearization is a double-integrator) adopted from [13]. The system is

given by
L=l o [+ L&l [ ve
The controller is given by
w(k+1) = [2 Cll] k) + H o(k),  wk) = [d du(k).

We choose a = 0, b = —0.3, ¢c = 4.4, d = —4.0, and T" = .25. Also, we assume
fixed-point magnitude truncation quantization with e = 0.01.

10 20 30
Time

Figure 8.3.2: Output y(¢): dashed line, without quantization; solid line, with quanti-
zation (Example 8.3.2).

In Figure 8.3.2 we depict the output y(t) of the above system with and without
quantization effects. As shown in the figure, the output in the presence of quanti-
zation follows the ideal output (i.e., without quantization). However, as depicted in
Figure 8.3.3, the difference between the ideal output and the output in the presence
of quantization does not diminish as ¢ increases. The difference stays within a certain
bound. O
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0.015

0.01

0.005

—-0.005

-0.01

0 10 20 30
Time

Figure 8.3.3: The difference between the ideal output and the output in the presence
of quantization (Example 8.3.2).

8.4 Pulse-Width-Modulated Feedback Control
Systems

In the present section we apply the stability and boundedness results for DDS to
establish stability results for pulse-width-modulated (PWM) feedback systems with
type II modulation.

A. Introduction and formulation of the problem

Pulse-width modulation has extensively been used in electronic, electrical, and elec-
tromechanical systems including attitude control systems, adaptive control systems,
signal processing, power control systems, modeling of neuron behavior, and the like.
The classical example of PWM control is the constant temperature oven suggested by
Gouy in 1897 [17] and the most well-known modern application is the attitude control
of satellites and space vehicles (see, e.g., [59]). In the latter it is usually required that
power (i.e., engine thrust) be modulated in an on—off fashion and that the control
computer be time-shared, thus almost always necessitating the use of pulse-width
modulation if anything more than simple relay control is desired. Other applications
where PWM feedback systems are used include the control of large electric furnaces,
the control of electrolytic metal refining plants [18], and radar rendezvous systems
[4]. Another interesting application is in the modeling of how information is trans-
mitted in human beings. Specifically, the cardiac pulsatory system and the nervous
system communication networks (see, e.g., [8], [33], and [46]) are believed to operate
under a combination of pulse duration control and pulse repetition control. Indeed,
such systems include one of the most important specific classes of practical nonlinear
control systems (see, among others, [34], [35], [67], [68], and [70]) using pulse-width
modulation.
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One advantage of PWM control is the simplicity of its realization: the control
variable typically assumes only two or three constant values, say +M, —M, and
0, and hence, the control action is realized through the operation of a switch. In
many cases it provides a finer and more precise response than does simple relay
control. Another reason for their wide applicability is that pulse-width modulators
make it possible to process large signals with high efficiency and low sensitivity to
noise. The advantages of PWM control also include the ability to regulate steady-
state ripple oscillation frequency, the elimination of dead zone, and the possibility for
time sharing of the control computer.

The PWM feedback control system considered is shown in Figure 8.4.1.

u(®) y(®)

r(t)
g Plant >

e(t
BURFONLNE T

Figure 8.4.1: PWM feedback system.

We assume that the plant is linear and has a state—space representation of the form

{ & = Az + Bu, (8.4.1)

y=Cx

where z € R™" y € R,u € R, and A, B, and C are real matrices of appropriate
dimensions.
The output of the pulse-width modulator is given by

Mo(e(kT)), te kT, kT + Tgl,

0, otherwise (8.4.2)

utt) = m(e(t) = {

where T is the sampling period, £ = 0,1,2,..., M is the amplitude of the pulse, Ty
is the pulse width, and the signum function o(+) is defined as

1, r >0,
o(r)y=1< 0, r=0,
-1, r < 0.

The sampling period T, the amplitude of the pulse M, and the positive value 3
(defined below) are all assumed to be constant.

The pulse-width modulator yields piecewise continuous outputs, as illustrated in
Figure 8.4.2. The amplitude of the pulses is fixed whereas their duration varies,
depending on the error signal e(t) and the type of modulation method being used.
There are two types of pulse-width modulators. In a type II pulse-width modulator
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u(t)

A

+M

T 2T 3T 4T

-M

Figure 8.4.2: Example of the outputs of the pulse-width modulator.

(also called pulse-width modulator with type Il modulation or with natural sampling),
the pulse width Ty, is the smallest value in [0, T] to satisfy all of the three conditions:

Tk = ﬁ|e(kT + Tk)|
(kT +T)| < 5
o(e(kT +Tg)) = o(e(kT))

and T, = T ifno such Ty exists. Graphically, Ty, can be interpreted as the first intersec-
tion of the plot 3|e(¢)| versus ¢ and the sawtooth signal in each interval [k T, (k + 1)T),
as shown in Figure 8.4.3. If there are no intersections, then Ty, = T. In a type I pulse-

3
—Ble®)
- - -sawtooth signal
2,
1r 7] 4 . ,
/ Al L S
‘ S [ ’
/s ’ s [ S
’ '/ 4 ,' ’
0 : '

Figure 8.4.3: Determining pulse widths using the sawtooth signal.

width modulator (also called pulse-width modulator with type I modulation or with
uniform sampling), the pulse duration Ty is solely determined by the error signal at
the sampling instant kT,

E:{BMH% le(kT)| < T/8,
T le(kT)| > T/p5.

)
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In this section, we investigate PWM feedback systems with type Il modulation. We
present sufficient conditions for uniform asymptotic stability in the large of the trivial
solution and necessary and sufficient conditions for uniform ultimate boundedness
of the solutions, respectively, for PWM feedback systems with Hurwitz stable linear
plants. We also incorporate a procedure to compute and optimize the sufficient
conditions for uniform asymptotic stability of the trivial solution presented herein.
We demonstrate the applicability of our results by means of two specific examples.

B. Type II PWM feedback systems with Hurwitz stable plants

In the present subsection, we assume that A in (8.4.1) is Hurwitz stable.

Throughout this section, we let 7o = 0 and 71 = kT + Tg, k € N. Combining
(8.4.1) and (8.4.2), the PWM feedback system of Figure 8.4.1 assumes the form (with
r(t) =0and e(t) = —y(t))

() = { Ax(t) — BMo(Cx(kT)), te kT, Thsr),

Au(b), telma, kT4T). &4

Over the time intervals [kT, 7x4+1] and [7x41, kT + T|, & € N, equation (8.4.3)
can be solved to yield the exact solution

t
eA=ET) 2(kT) —/ A dr BMo(Cx(kT)), t € [kT, k1],
kT

6A<t—Tk+1)"E(Tk+1)7 te [T}C+1, kT + T]
(8.4.4)

x(t) =

We note that the trivial solution x. = 0 is an equilibrium of system (8.4.3).
The first result is concerned with the ultimate boundedness of the solutions of the
PWM feedback system (8.4.3).

Theorem 8.4.1 The solutions of system (8.4.3) are uniformly bounded and uniformly
ultimately bounded for any choice of M and (.

Proof. To show that the solutions of system (8.4.3) are uniformly bounded and
uniformly ultimately bounded, we verify that the hypotheses of Theorems 6.4.4
and 6.4.5 are satisfied, respectively. In doing so, the set F is chosen to be £ =
{koT,koT+T,... }.

We recall that if A is Hurwitz stable, then eA7 is Schur stable and there exists a
positive definite matrix () such that

(eAT)T Q(eAT) —Q=-I
where I is the identity matrix of appropriate dimensions. Choose v: R” — R™ as
v(z) = 27 Qu.
The solutions of system (8.4.3) att = kT + T are given by
(kT +T) = e*T(2(kT) + A(KT)) (8.4.5)
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where

A(KT) 2 - /0 " e ATdrBMo(Cz(kT))

is bounded, because

Tk
|A(kT)\:/ eATdTBM’gTMelAiTHBH. (8.4.6)
0

Along the solutions of system (8.4.3) we have
Av(z(kT))
v(x(kT+T)) —v(z(kT))
(z(kT) "+ AGT)T) (Q — I) (z(kT) + AKT)) — 2(kT)" Qz(KT)
—|z(kT)|? + 2A(T)T(Q — Dz (kT) + ART)"(Q — I)A(KT)
< —Ja(kT)|? +2TM AT BI[|Q — 1]||2(kT))|
+ (el T B)*) @ ~ 1)

It is readily verified that Dv(z(kT)) = Av(z(kT))/T < 0 whenever |z(kT)| >

Q= TMAIT|BY|Q - I|(1+ T+ 1/]Q — 1I).

If |2(kT)| < €, we have that

2 _v(x(kT+T))
lz(kT+T)|” < @

v(z(kT)) + Av(z(kT))
- Am(Q)

(lQ = 11192 + 2TMel AT B 1@ - 1|92

Am(Q)
+ (Taze AT BI))|Q — 1))

where A, (+) is the smallest eigenvalue of a matrix.
Next, we obtain an estimate for x(t), ¢t € [kT,kT + T). It follows from (8.4.4)

that
2 (t)] < eI T2 (kT)| + Tel AT B[ M,

and thus
v(z(t)) < A (Q)|z(1)]?
< A (Q) (el 1|z (kT)| + TelAIT| B 1)
<A (@) (M /o (@ (kT)) A (Q) + TelAIT| Bl 01)?

where Ay () is the largest eigenvalue of a matrix.
Therefore, it follows from Theorems 6.4.4 and 6.4.5 that the solutions of system
(8.4.3) are uniformly bounded and uniformly ultimately bounded, respectively. O
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Remark 8.4.1 Note that the above proof does not rely on the modulation type. This
result is also true for PWM feedback systems with type I modulation (see [25]). O

In the above proof, we utilized equation (8.4.5), which describes system (8.4.3) at
discrete instants kT, k = 1,2, 3, .... This representation, however, does not aid the
analysis of the Lyapunov stability properties of system (8.4.3) due to the fact that we
cannot obtain an explicit estimate for A(kT) in terms of z(kT). We observe that the
magnitude of A(kT) is determined by T, which is directly related to x(7y1) rather
than z(kT), and we easily can obtain an estimate of Ty, in terms of z(7541). These
observations prompt us to consider system (8.4.3) at 7, k € N.

Noting that o (Cz(kT)) = o(Cx(7k41)), we have at t = 7541,

Tk
2(1pi1) = e a(kT) — / AT =D dr BMo(Ca(hy1)). (8.4.7)
0
To simplify equation (8.4.7), we let

T
T(Ths1) = —/ AT dr BMo (Ca(7ry1))
0

= AT (] — e AT AL BMo(Cx(7141))
= —MBe W (S )e™ T a(rhin)

where
5kéﬁ}cx(7k+1)| { i?ﬁ’ %i%
and W () is defined as
0, 0=0,
W () 4 _Ir_;_AéA_lBCeA‘S, 0<d<T, (8.4.8)
—W(T), §>T.

)
Equation (8.4.7) is then reduced to

2(thi1) = Ao a(kT) — MBe W (5)e™ A ax(741)

= ATk (x(sz) - MBW(ék)e_AT’“x(TkH)).

Substituting z(kT) = eAT=Tr-1)z(7;,) for k = 1,2,. .., we further can obtain
(I+MBW(Sk))e T a(rpyr) = e Te 4 Ti1a(y),  k=1,2,.... (84.9)
To simplify the analysis below, let z(7x11) 2 e AT x(r141),k € N and let

z(10) = e~ ATx(0). At the discrete time instants in the set ' = {79, 71, ... }, System
(8.4.3) is governed by the following equation

(I+ MBW(0k))2(hs1) = e 2(m),  k=1,2,.... (8.4.10)

Note that the above equation is also true when k = 0.
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We use a quadratic Lyapunov function which is constructed using a positive definite
matrix P such that

(eAT)TP(eAT) —P= —(eAT)TeAT. (8.4.11)
P is chosen such that P + I = (e’AT)TP(e*AT).
We now are in a position to prove the following result.

Theorem 8.4.2 The trivial solution . = 0 of the PWM feedback system (8.4.3) is
uniformly asymptotically stable in the large whenever M (3 satisfies

A
Oums 2 inf A (B8, MB)) >0 8.4.12
g = dnf (®(0,MB)) ( )

where
G1(9) = W(é)T(P + 1)+ (P+ D)W (o),
Go(8) = W(T (P + W (6),

W () is given by (8.4.8), and P is given in (8.4.11).

Proof. Choosing the Lyapunov function v: R® — R*, v(2) = 27 Pz, we obtain for
the first forward difference of v along the solutions of system (8.4.10), the expression

v(2(Tk41)) — v(2(7%))
= 2(1i41) T P2(is1) — 2(me) " (I + MBW (5;)) " (e 4T)" Pe=AT
X (I + MBW (1)) #(h+1)
— 2(rsn) (P = (I + MBW (50)) T (P + 1) (I + MBW(31)) ) 2(7h1)
= —2(1341) T ®(0k, MB)2(Ths1) (8.4.13)
for all £ € N. It follows from (8.4.13) that when M 3 satisfies (8.4.12) , it is true that

Do(z(my)) 2 ”(Z(T’“;if :Z}EZ(T’“)) < —crv(z(Tisr)). (8.4.14)
h
whnere i é @Mﬁ »
AT oTaP) T

Next, we obtain an estimate for 2 (¢) when t € [kT, 7;41). Itis easily seen from
the definition of Ty that

Ti < Ble(me)l < BICH 2 (r41)]-

Because ||e7|| <ellAIT for all € [0, T, it follows from (8.4.4) that

()] < T |2 (7pps)] (8.4.15)



Section 8.4 Pulse-Width-Modulated Feedback Control Systems 371

fort € [Tk41, kT + T). When t € [kT, 7541), we solve the first equation in (8.4.3)
to yield

t—Tr41
z(t) = AT ) () — / A1 =) dr BM o (Ca(13,)).
0

Thus, when ¢t € [kT, 7;41)
()] < ATz (rp)| + Tee T BIM < el T jz(mepn)] (8.4.16)

where ¢ 214 Mg\ C||||B]|- In view of (8.4.15), (8.4.16) is true for all ¢ €
kT, ET4+T).

We now conclude from Theorem 6.4.1 that . = 0 is uniformly stable. How-
ever, we cannot apply Theorem 6.4.6 directly to conclude that z. = 0 is uniformly
asymptotically stable in the large because relation (8.4.14) is slightly different from
(6.4.15) in Theorem 6.4.6. Nevertheless, in the following we can prove along similar
lines the global uniform attractivity of the equilibrium x. = 0 and hence the uniform
asymptotic stability in the large of z. = 0.

It follows from (8.4.14) that v(z(7))) is nonincreasing and that for all £* < k,

k* >0,
v(z(1r+)) — v(2(Thr—1)) < —c10(2(T6+)) (T — Thr—1)
< —c1v(z(7k)) (T — Thr—1)-

The above inequality yields

v(z(1)) — v(2(70)) < —c1v(2(%)) (T — 70) = —c1v(2(T)) Th-
Thus it is true for all £ > 0 that

(2(10)) —v(2(7)) _ v(2(0))

v
<
v(=(m)) < C1Tk ToaTk

(8.4.17)

For any € > 0 and o > 0, let
2 (P)e2IAIT o2
e2c1 Am (P)
For any 2(0) such that |2(0)| < «, and for all & > I"/T, we have 7, > I" and

(2(0)) - Az (P)e2IAIT o2 '

I =

v(z(my)) < 2

c1F c1F
Hence,
2l AT 2
< S
|z ()" < Am(P)U(z(Tk)) < Ze2MAIT

Now applying the estimates established in (8.4.16), we have for ¢t € [kT, kT +T)
that
lz(t)] < coel T |z(7)] < e

Therefore, we have shown that the trivial solution of (8.4.3) is uniformly asymp-
totically stable in the large. O
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To obtain the least conservative stability results given by Theorem 8.4.2, we need
to determine the largest upper bound of M 3 such that © ;5 < 0 is satisfied for all
state representations of (8.4.3). We denote this value by (M 3)opt. In Remark 8.4.2
given below, we outline a procedure for computing an estimate of the optimal value of
M 3 such that © yr5 < 0 for a given state representation. We call this (M 3)? .. The
values of (M 3);,,, for different but equivalent state representations will in general
vary. In Remark 8.4.3 given below, we outline a procedure for determining an estimate
of (M f3)opt using the different values of (M (3)},, obtained by employing different

state representations of (8.4.3). We denote the estimate of (M 3)opt, by (M 5)

opt*
Remark 8.4.2 To obtain (M ()7,

follows. Denote o 2 infsejo, 1) Am(G1(6)). Because G1(0) = G1(T)/d ford > T,
it is easily seen that

for a given state representation, we proceed as

inf A, 5)) = if <0,
561[61700) (G1(9)) =« if a<0

otherwise
inf A, (G1(8)) =0.
sl (G1(6))

The matrix G2(J) is positive semidefinite for all §. Thus, O3 > 0 whenever
Mp < —1/aif a < 0. When a > 0, © 75 > 0 for any choice of M.

We now assume that < 0. Let mg > 0 be such that ©;5 > 0 is true for all
MpB < mg (mg can be initialized by choosing, for example, —1/«a). Notice that
when § > T, it is true that

(6, MB) = I+ MBG1(6) + M?B°G5(0)

2
:I+Mﬂ;GNU+<Mﬂ;)C%U)

= (T,Mﬂ;) . (8.4.18)

Therefore, if we can show that the matrix ®(T, M 3) is positive definite for all M3
less than a certain value, say mq > 0, then in view of (8.4.18) the matrix ®(, M ()
is positive definite for all > T and all M3 < my.

Now let

Go(8) = ®(6,mo),  G1(6) = G1(6) + 2moGa(6). (8.4.19)
In order that © ;4 given in (8.4.12) be positive, it is necessary that
®(5, M) = Go + (MP —mo)G1(8) + (MB — mo)*Ga(9)

be positive definite. For this to be true, we obtain, using the same arguments as above,
that © 78 > 0 is true for all M 3 such that

_ Anl(Go(9). (8.4.20)
A

MpB <mg+ inf
o€ m(G1(9))

0,T]
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We repeat the above computation, replacing in (8.4.19) mg by the right-hand side of
(8.4.20) until the increment of my is negligible. Set (M 3);,, equal to the final value
of my. O

Remark 8.4.3 To determine (M f3),;.,

resentations, A = SAS~T, B= SB, C = CS~1, where S is a nonsingular matrix.
In doing so, we choose a set of nonsingular matrices S, say €2, using a random genera-
tor (e.g., the rand command in MATLAB). An estimate of (M 3)opt, (M), can be

we compute (M ()7, for different state rep-

*
opt

opt?
determined by setting (M f3),,,, = rér}aé{(M f3)5pt- The above procedure is repeated,
€

increasing the size of €2, until no further improvements are realized. a

Remark 8.4.4 If M is allowed to assume negative values (corresponding to positive
feedback in Figure 8.4.1), then similarly as above, we can obtain a lower bound for
M 3 given by

1 .
SUp — 4, if A (G1(6)) >0
MB > { seo,r M@0) (G (0)

—00, otherwise

where G1(0) is given in Theorem 8.4.2. O

Before giving two specific examples to demonstrate the applicability of the pre-
ceding results, we point out that results for the boundedness of solutions and the
asymptotic stability of the trivial solution for type Il PWM systems with linear plants
that have one pole at the origin have also been established [23].

C. Examples

To demonstrate the applicability of the results established in Subsection B, and to
illustrate how to compute estimates of upper bounds (M B)Opt, we consider in the
present subsection two examples. In order to be able to make comparisons with
existing results, we choose one identical example that was considered by Balestrino
et al. [5], and Gelig and Churilov [16]. However, before doing so, we outline in the
following a procedure for computing an estimate for the optimal stability bound for
M 3, based on Theorem 8.4.2 and Remarks 8.4.2 and 8.4.3.

Stability Bound Procedure: An upper bound of M [ that satisfies (8.4.12) can be
computed and optimized in the following manner.

(1) Determine P from (eAT)TPeAT —P= —(eAT)TeAT.

(2) Choose a precision level § > 0 and a correspondingly dense partition of [0, T],
say the set {to = 0,t1,...,ty = T}, where 0 < ;41 —t; < 0, ) =

0,1,...,N —1.
(3) Foreach j,j=0,1,..., N, compute W(t;), G1(t;), and Ga(t;).
.. . . o . 1
(4) Initialize mg by setting mg = o glﬁnN b (AL
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(5) Let (see (8.4.19))
Golty) = I +moGi(ty) — miGa(ty),  Gi(ty) = Gi(t;) — 2moGa(t;),
mgo = mg. Then let mq be (see (8.4.20))

mo = Mo+ min —
0<j<N

Am(Golt;))
Am(G1(t))

(6) Repeat Step (5) until the increment of my is negligible, say, mo — mg < £,
where £ > 0 is a chosen precision level. Set Wz = myg, where (M }3) ﬂ)
is an estimate of (M f3) opt*

(7) Repeat Steps (1)—(6), using finer partitions of the interval [0, T| (i.e, smaller §),

*
until there is no further significant improvement for (M 3),.

opt

(8) Repeat Steps (1)—(7) for different but equivalent matrices /T E and C. This can
be done, for example, by generating a set {2 of random (nonsingular) matrices,
and foreach S € Qletting A = SAS™, B = SB,and C = C'S~!. Determine

an optimal upper bound for M3 by setting (M3)_ . = = max (M ﬁ)opt. In

opt

general, the larger the size of 2, the closer the computed value (M 3)
actual upper bound of M j.

We are now in a position to consider two examples.
Example 8.4.1 (First-order system) In the present case, the plant is characterized
by a transfer function of the form
Gs) = — >0
s) = a
s + a7 )

or by the state—space representation (8.4.3) with A = —a, B = 1, C' = c¢. The upper
bound of M [ that satisfies (8.4.12) is

—G1—/GI =G, _1-e T

inf , ifc <0,
61€(0,T] 2G5 |c]
00, if ¢ Z O

The bound above is identical to the result reported in [5].
Using a method that employs averaging of the pulse-width modulator output, and
assuming M = 1 and ¢ > 0, the stability condition
1 2 2
— > —c+ ——=acT
B~ 1 w3
is obtained in [16]. For this particular example, the present result is clearly less
conservative than that obtained in [16].
Note that the optimal bound obtained for M [ above is the exact value, be-
cause in the present case it was not necessary to invoke approximations to apply
Theorem 8.4.2. O
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Example 8.4.2 (Second-order system) In this case the plant is characterized by the

transfer function
K

“O = ey

The state—space representation is given by
o1 0 1 oK _ 1
A—S[O _2]5 , B_S{K}’ cC=[1-1]8

where S is a nonsingular matrix. In applying the Stability Bound Procedure we let
6 = 0.001 and e = 0.0001 (the improvements of the computed results were negligible
for smaller § and ¢), and we generated 200 random matrices S to form the set 2. In
particular, when
g— {—3.1887 4.8612 ]
2.5351  —2.1877

the upper and lower bounds for M K are computed to be 6.3004 and -0.9670, respec-
tively; when
g = { 1.6130 —0.2781]
—1.1766  1.7069 |’

the upper and lower bounds are computed to be 2.8447 and —1.9370, respectively.

It follows from Theorem 8.4.2 that the trivial solution of (8.4.3) is uniformly
asymptotically stable in the large if —1.9370 < M K < 6.3004.

To determine the quality of the estimates of the bounds for M K obtained above,
we note that if M K = —2, then z(t) = (1,0.5)7 is an equilibrium of system (8.4.3)
with Ty, = T = 1 for all k. Also, when M K = 6.8, system (8.4.3) has a limit cycle
as shown in Figure 8.4.4. Therefore, the trivial solution of the PWM feedback system

0.04

0.02

004 0.02 0 002 004

Figure 8.4.4: Alimit cycle of the PWM feedback system when 3 = 1and M K = 6.8.

(8.4.3) cannot be uniformly asymptotically stable in the large for the above two cases.
This shows that our result, —1.9370 < M K < 6.3004, obtained by Theorem 8.4.2,
is very close to the actual lower and upper bounds for M K that ensure stability. We
would like to point out that the above result is very close to the result we obtained
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in [25] for a PWM feedback system having the above plant but with type I modulation
(—1.9789 < MK < 6.3278).

Although the stability bounds for PWM feedback systems with type I and type 11
modulation are close, the states generally approach the trivial solution faster when

using type Il modulation. This can be seen in Figure 8.4.5. O

1

0.5¢
0 L

0.5
—type | modulation

1 ‘ - type Il modulation

1 0.5 0 0.5 1

Figure 8.4.5: Example solutions of system (8.4.3) with type I and type Il modulations
(MK =6, B =1),respectively.

8.5 Digital Filters

In the final part of this chapter, we investigate stability properties of discrete-time
systems described by equations of the form

z(k 4+ 1) = sat[Az (k)] keN 8.5.1)

where z(k) € D" = {z € R": —1<z; <1}, A€ R™",

sat(x) = [sat(x1), sat(zo), . .., sat(x,)]”,
and
1, x; > 1
sat(x;) = ¢ @y, —-1<z; <1
-1, T, < —1

We say that system (8.5.1) is stable if . = 0 is the only equilibrium of system
(8.5.1) and z. = 0 is globally asymptotically stable. Because we have saturation
nonlinearities in (8.5.1), it is clear that for any x(0) ¢ D", x(k) € D", k > 1, will
always be true. Thus, without loss of generality, we assume that z(0) € D".
Equation (8.5.1) describes a class of discrete-time dynamical systems with sym-
metrically saturating states after normalization. Examples of such systems include
control systems having saturation-type nonlinearities on the state (see, e.g., [15], [43],
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and [56]), neural networks defined on hypercubes (see, e.g., [42] and [53]), and digital
filters using saturation overflow arithmetic (see, e.g., [43], [57], and [63]).

System (8.5.1) may be used to represent control systems with saturating states with
no external inputs. In the analysis and design of such systems, the first fundamental
question addresses stability: under what conditions is . =0 an equilibrium and when
is this equilibrium globally asymptotically stable?

The condition that A is a stable matrix, that is, every eigenvalue \; of A satisfies
|A;| < 1, is not sufficient for system (8.5.1) to be stable. (It is easy to give examples
for which A is a stable matrix, but system (8.5.1) is not stable.)

In many important applications, equation (8.5.1) may be used to represent digital
processing systems, including digital filters and digital control systems (see, e.g., [15],
[43], [56], [57], [63], and [72]) with finite wordlength arithmetic under zero external
inputs. In such systems, saturation arithmetic is used to cope with the overflow. The
absence of limit cycles in such systems is of great interest and can be guaranteed by
the global asymptotic stability of the equilibrium x. = 0 for (8.5.1). The Lyapunov
theory has been found to be an appropriate method for solving such problems (see,
e.g., [43], [57], and [72]).

A. A general result for discrete-time systems with state saturation
nonlinearities

In establishing our results, we make use of Lyapunov functions for the linear systems
corresponding to system (8.5.1), given by

w(k +1) = Aw(k), keN (8.5.2)

where A € R™*" is defined in (8.5.1).
We recall that for a general autonomous system

r(k+1) = f(z(k)), k €N, (8.5.3)
with (k) € R™ and f: R” — R", z. is an equilibrium for (8.5.3) if and only if
Te = f(ze)-

We assume, without loss of generality that x. =0 (refer to Subsection 6.1B). Recall
also that the equilibrium z. = 0 for system (8.5.3) is globally asymptotically stable,
or asymptotically stable in the large, if there exists a continuous function v: R — R
which is positive definite, radially unbounded, and along solutions of (8.5.3) satisfies
the condition that

Dugs 5.5 (x(k)) 2 v(a(k + 1)) — v(w(k) = o(F(@(K) — v(w(k))  (8.54)

is negative definite for all z(k) € R™ (refer to Theorem 6.3.2(a)).

In the stability analysis of the equilibrium . = 0 of system (8.5.1), we find it
useful to employ Lyapunov functions v whose value for a given state vectorw ¢ D™ is
greater than the value for the corresponding saturated state vector sat(w). Specifically,
we make the following assumption.
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Assumption 8.5.1 Assume that for system (8.5.2), there exists a continuous function
v: R™ — R with the following properties:

() v is positive definite, radially unbounded, and

Dus 5.2 (w(k)) = v(w(k +1)) — v(w(k)) = v(Aw(k)) — v(w(k))

is negative definite for all w(k) € R™ (and thus, the eigenvalues of A are within the
unit circle).
(43) For all w € R™ such that w ¢ D™, it is true that

v(sat(w)) < v(w) (8.5.5)
where D™ and sat(-) are defined in (8.5.1). O

An example of a function v; : R? — R that satisfies (8.5.5) is given by v (w) =
dlwf + dgwg, dy,ds > 0. On the other hand, the function vy: R? — R given by
vo(w) = w? + (2w + w)? does not satisfy (8.5.5). To see this, consider the point
w = [—0.99,1.05]7 ¢ D? and note that vz (sat(w)) = 1.9405 and ve(w) = 1.845.

We are now in a position to prove the following result.

Theorem 8.5.1 If Assumption 8.5.1 holds, then the equilibrium z, = 0 of system
(8.5.1) is globally asymptotically stable.

Proof . Because Assumption 8.5.1 is true, there exists a positive definite and radially
unbounded function v for system (8.5.2) such that (8.5.5) is true, which in turn implies
that v(sat(Aw)) < v(Aw) for all w € R™. Also, by Assumption 8.5.1, v(Aw(k)) —
v(w(k)) < 0 for all w(k) # 0. Thus, along the solutions of system (8.5.1), we have
Dugs.1)(@(k)) = v(z(k + 1)) —v(z(k))

= v(sat[Az(k)]) — v(z(k))

< v(Aw(k)) — v(a(k))

<0
for all x(k) # 0 and Dv(g 5.1)(x(k)) = 0if and only if z(k) = 0. Therefore, v(z) is
positive definite and radially unbounded, and Dv(s 5.1)(z) is negative definite for all

x. Hence, in view of Theorem 6.3.2(a), the equilibrium z. = 0 of system (8.5.1) is
globally asymptotically stable. m|

Remark 8.5.1 In particular, for fixed p, 1 < p < oo, let us choose

o(w) = ful, = (Z |wi|P)1/p

i=1
for system (8.5.2) and assume that || A||, < 1, where || A, denotes the matrix norm

induced by the vector norm |w|,. Under these conditions, Assumption 8.5.1 is true.
To see this, note that v is positive definite and radially unbounded, that

v(Aw) = [Awl, < ||Af|p|lwl, < |wl], = v(w),

and that |sat(w)|, < |w|,, for all w € R™ such that w ¢ D".
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Therefore, the equilibrium xz, = 0 of system (8.5.1) is globally asymptotically
stable if

Al < 1 (8.5.6)

for some p, 1 < p < 0.

In the case of digital filters, the above argument holds for any type of overflow
nonlinearity ¢: R — [—1, 1]. To see this, let f(w) = [@(w1), ..., p(w,)]T and note
that in this case | f(w)|, < |w|, for all w € R™ such that w ¢ D™. a

B. Results involving quadratic Lyapunov functions

In order to generate quadratic form Lyapunov functions that satisfy Assumption 8.5.1
for systems described by equation (8.5.1), we find it convenient to utilize the next
assumption.

Assumption 8.5.2 Let
z, = sat(z) = [sat(zy),...,sat(x,)]”
for x € R™ and let H € R™*"™ denote a positive definite matrix. Assume that
t'Hr, < 2" Ha, (8.5.7)
whenever x & D™, x € R™. |

An example of a matrix that satisfies Assumption 8.5.2 is any diagonal matrix
with positive diagonal elements. On the other hand, the positive definite matrix H

given by
5 2
n-[37]

does not satisfy Assumption 8.5.2. (To see this, refer to the example following
Assumption 8.5.1 by noting that vy (x) = 7 Hz.)

The next result gives a necessary and sufficient condition for matrices to satisfy
Assumption 8.5.2. This result is very useful in applications.

Lemma 8.5.1 Ann x n positive definite matrix H = [h;;] satisfies Assumption 8.5.2
if and only if

n

hii =Y Jhal, i=1,...,n. (8.5.8)

j=1.j#i

Proof . Thislemmais a special case of Lemma 8.5.2 (when L = 1). For the statement
and proof of Lemma 8.5.2, refer to Subsection C of the present section. O

The following result is a direct consequence of Theorem 8.5.1.
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Corollary 8.5.1 The equilibrium z, = 0 of system (8.5.1) is globally asymptotically
stable if there exists a matrix H that satisfies Assumption 8.5.2 such that

Q2 H-ATHA
is positive definite.
Proof . By choosing v(x) = 27 Hx, the proof follows from Theorem 8.5.1. a

In the next result, Theorem 8.5.2, we show that Corollary 8.5.1 is actually true
when () is only positive semidefinite, still assuming that A is stable.

Theorem 8.5.2 The equilibrium z. = 0 of system (8.5.1) is globally asymptotically
stable if A is stable and if there exists a matrix H that satisfies Assumption 8.5.2
such that

Q2 H-ATHA
is positive semidefinite.

Proof . Let us choose v(z(k)) = 27 (k)Hx (k) for the system (8.5.1). The function
v is clearly positive definite and radially unbounded. Also, because

Dvgs.1y(x(k)) = v(z(k + 1)) — v(z(k))
= [sat(Az(k))]" H[sat(Az(k))] — 27 (k) Hz (k)
<z (k)(ATHA — H)z(k),

and because H — AT H Ais positive semidefinite, Dus 5 1) ((k)) is negative semidef-
inite for all (k). Therefore, the equilibrium 2, = 0 is stable (refer to Theorem
6.3.1(a)). To show that it is asymptotically stable, we must show that z(k) — 0 as
k — oo (refer to Definition 6.1.1(h)).

Let us consider an n consecutive step iteration for system (8.5.1), from ny > 0 to
n + ng. Without loss of generality, assume that system (8.5.1) saturatesatk =1, [ €
[ng, n 4+ ng). In view of Assumption 8.5.2, it follows that

v(x(l+1)) =271 +1)Hz(l+1)
= [sat(Az(1))]" Hsat(Az(1))]
< [Az(D)]" HAz(1)
<P ()Hxz(l)
= v(z(1)).

On the other hand, if no saturation occurs during this period, then, using the fact
that if H — AT H A is positive semidefinite, then H — (AT)™ H A™ is positive definite
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for any n > 1 when A is stable (see, e.g., [72]), we have
v(z(n +ng)) = z7 (n + ng)Hx(n + ng)
= [A"z(no)| T HA x(no)
= 27 (no)(AT)"H A" x(ng)
< x¥ (ng)Hz(ng)

= v(z(no)).

Therefore, we can conclude that for the sequence {k: k = 1,2, ...}, there always
exists an infinite subsequence {k;: j = 1,2,...}, such that Dvg 5.1)(z(k;)) is
negative for z(k;) # 0 and that v(z(k)) < v(z(k;)) for all & > k;. Because v
is a positive definite quadratic form, it follows that v(z(k;)) — 0 as j — oo, and
therefore v(x(k)) — 0 as k — oo. This in turn implies that z(k) — 0 as k — oo.
Thus, the equilibrium z. = 0 of (8.5.1) is globally asymptotically stable. O

C. Stability of digital filters with generalized overflow
nonlinearities

Because no limit cycles can exist in a digital filter if its trivial solution is globally
asymptotically stable, we can use the results of this section to establish the following
results for n-th order digital filters with saturation arithmetic.

Corollary 8.5.2 (i) A digital filter described by (8.5.1) is free of limit cycles if
Assumption 8.5.1 is satisfied. (i7) A digital filter described by (8.5.1) is free of limit
cycles if A is stable and if there exists a matrix H that satisfies Assumption 8.5.2,
such that

QEH-ATHA
is positive semidefinite. O

We now consider nth-order digital filters described by equations of the form

z(k +1) = flAz(k)], keN (8.5.9)
where z(k) € R", A € R™*",
f(@) = [p(x1), p(z2), ..., ()", (8.5.10)

and ¢: R — [—1,1] is piecewise continuous. We call system (8.5.9) a fixed-point
digital filter using overflow arithmetic. For such filters, we make the following
assumption.

Assumption 8.5.3 Let f be defined as in (8.5.10). Assume that H € R"*™ is a
positive definite matrix and that

f@)'Hf(z) < 2" Hz, (8.5.11)
forallz € R™, x & D™. O
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In what follows, we let the function ¢ in (8.5.10) be defined as (see Figure 8.5.1)

L, x; > 1,
p(zi) = i —1<w <1, (8.5.12)
—L, x; < —1,
or (see Figure 8.5.2)
L<o(z) <1, x> 1,
p(xi) = 24, -1<a; <1, (8.5.13)
-1 < p(x;) < -L, T; < —1,

where —1 < L < 1. We call the function ¢ defined in (8.5.12) and (8.5.13) a
generalized overflow characteristic. Note that when defined in this way, the func-
tion ¢ includes as special cases the usual types of overflow arithmetic employed
in practice, such as zeroing, two’s complement, triangular, and saturation overflow
characteristics.

b o(x)

Figure 8.5.1: The generalized overflow nonlinearity described by (8.5.12).

To establish our next result, Theorem 8.5.3, we require the following preliminary
result, Lemma 8.5.2.

Lemma 8.5.2 [43] Assume that f is defined in (8.5.10) and ¢ is given in (8.5.12) or
in (8.5.13) with —1 < L < 1. An n X n positive definite matrix H = H” = [h;;]
satisfies Assumption 8.5.3 if and only if

A+ Lhi>2 > |hyl,  i=1,....n (8.5.14)
=1
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Figure 8.5.2: The generalized overflow nonlinearity described by (8.5.13).

Proof. We first prove this lemma for the overflow arithmetic given in Equation
(8.5.12).
We introduce the following notation. For ¢ defined in (8.5.12), let us denote

f@) = [p(x1),...,p(@n)]" = B
where F = diaglej,ea,...,e,], e; = 1if |z;| < 1, and e; = L/|x;| if |x;] > 1.
Then, we have
eTHry — f(2)THf(z) = 27 (H — EHE)z.

Sufficiency: Suppose x = [w1,Z2,...,2,]%, |zk| > 1 and |z;| < 1 fori # k

(x & D™). We have —1 < e} < 1 and e; = 1 for i # k, and therefore,
H-EHE

0 0 hie(l—ep) 0 0
0 0 hk—l,k(l_ek) 0 0
=lhil—er) -+ hppal—er) hrpl—ei) hprril—er) -+ hpn(l—ex)
0 0 hk-‘—l,k(l*@k) 0 0
0 - 0 B (L —e1) 0 0]

and

2T (H — EHE)z = (1 — e,) <hkk(1 +ex)ri 42 Z hik:cia:k). (8.5.15)
i=1,i#k
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Note that in the above equation we have used the fact that h;; = hj;.
From |x;| < 1fori # k, |zk| > 1, ex|zr| = Land L > —1, we have

(1 + L)|zswr] < 1+ L)|aw] < (Jox| + L)lax| = (1 + ex)ah
Hence, from (8.5.15), we have

27 (H - EHE)zx > (1—ek)<hkk(1+ek -2 Z |k xk)
i=1,i#k

9 n
i=1,i#k
> 0;

b

thatis, 2" Hx > 2T EHEx = f(x)TH f(x).
Denote M = {1,2,...,m} forany m,0 < m < n, and

N:{ki:0<ki§n, k‘i#kj, Whel’li;éj, i,jEM}.

Now suppose that z = [x1, 22, ..., 2,]7, |zx| > 1fork€ N and |z;| < 1forig N
(z ¢ D™). Following the same procedure as above, we have

xT(H — FEHE)x = Z (1—eg) (hkk(l + ek)xi +2 Z hikmixk>

keEN i=1igN
+ Z Z hiuzrzi(1 — eper)
kEN LEN Ik
> Z 1—eg) (hkk(l +ep)ry —2 Z |hikz;zr| )
keEN i=1,i¢gN
+ Z Z hazkzi (1 — exer)
kEN IEN Ik
1 —
>3 (- @) <hkk =S |h1k|)
keN i=1,i¢N
)Y hmaem(l - exer)
kEN LEN I£k
n
~Y (e (hkk > |hi,€|)
keEN =1k
2
tor > (=€ Y [hal
1+L =
keN i€ N, i#k
+ Z Z hklxkxl(l - ekel). (8.5.16)

kEN LEN, £k
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The first summation of the right-hand side in (8.5.16) is nonnegative, by assump-
tion. Considering the last two terms in (8.5.16), by noting that —1 < e < 1 and
ex|zr| = Lfork € N, and —1 < L < 1, we have

1+LZ 1—e)x Z |hm\+z Z hrazki(1 — eger)

kEN 1€N,i;£k KEN IEN, £k
Z Z Z (1 - 6%)Ii|hkl| - Z Z |hklxkxl|(1 - ekel)
keN leN,l#k keN leN,l#k
= Z Z \hklxk|(|zk| — el — |£Cl| -+ ekL)
kEN IEN, £k
=D > ek =30 > Ihamead
kEN IEN, £k kEN IEN, £k
= Z Z |hkl\(xi+x12)—22 Z |hr1zra|
keN leN,i>k keN IleN,I>k
=30 Jhwal(lonl - ja])” >
keEN IEN,I>k

Therefore,
eTHr — f(x)THf(z) = 2T (H — EHE)x > 0,

for any z € R"™ such that x ¢ D".

This proves the sufficiency.
Necessity: It suffices to show that if (8.5.14) does not hold, there always exist some
points « ¢ D™, such that

tTHx < f(x)THf(z).
Suppose that (8.5.14) does not hold for ¢ = k; that is,
522 3" |hyl — (1+ L) > 0.
j=1,j#k

Let us choose |zi| =1+ &,€ > 0, and x; = —sign(hxzk), ¢ # k, where

1, y >0,
sign(y) = { 0, y=0,
-1, y <0.

Then, x = [z1,...,7,]T & D™ and (8.5.15) becomes

o' (H — EHE)z = (1 — ey) (hkk(l + ex)xy — 2 Z |hzk1'k|>
i=1,i#k

= (1 — eg)|zk| (hkkf + (1 + L)hgr —2 Z |hk1>

i=1,itk
= (1 —ep)|zr|(harg — 9).
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Clearly, when we choose 0 < & < &/hg, we have
eTHe — f(2)"Hf(2) = 2" (H — EHE)z < 0.

Note here that hy; > 0 because H is positive definite.

This proves the necessity.

For the overflow nonlinearity given in (8.5.13), the proof of sufficiency is similar to
the proof given above. To prove necessity, we note that for a given L, when |z;| > 1,
©(x;) in (8.5.13) may assume any value in the crosshatched regions in 8.5.2 including
4L (which is the case for the arithmetic given by (8.5.12)). O

We note that condition (8.5.14) is usually called a diagonal dominance condition
in the literature [51].
We are now in a position to prove the following result.

Theorem 8.5.3 The nth-order digital filter described by (8.5.9), in which ¢ is given
in (8.5.12) or (8.5.13) with —1 < L < 1, is free of limit cycles, if A is stable and if
there exists a positive definite matrix H that satisfies (8.5.14), such that

Q2 H-ATHA
is positive semidefinite.

Proof. We can follow the same procedure as in the proof of Theorem 8.5.2 to prove
that under the present conditions, the equilibrium x, = 0 of system (8.5.9) is glob-
ally asymptotically stable. Thus the digital filter described by (8.5.9) is free of limit
cycles. O

For the two’s complement and triangular overflow characteristics, we have the
following.

Lemma 8.5.3 Ann x n positive definite matrix H = [h;;] satisfies Assumption 8.5.3
when f represents the two’s complement or the triangular arithmetic, if and only if
H is a diagonal matrix with positive diagonal elements.

Proof . The proof is similar to the proof of Lemma 8.5.2. O

D. Examples

To demonstrate the applicability of the results in the previous two subsections, we
now consider two specific examples.

Example 8.5.1 For system (8.5.1) with

1 273
A= [ o1 oo ] : (8.5.17)

we have ||A||, > 1, p = 1,2, or co. Therefore, condition (8.5.6) fails as a global
asymptotic stability test for this example, as shown in the following.
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Assumption 8.5.2 is satisfied for this example by choosing

1 05
H= [ 05 0.8 ] (8.5.18)

Inasmuch as

Q:H_ATHA:|: 0.092  0.00325 ]

0.00325 0.023875

is positive definite, all conditions of Theorem 8.5.2 are satisfied and the equilibrium
ze = 0 of system (8.5.1) with A specified by (8.5.17) is globally asymptotically
stable. O

Example 8.5.2 For system (8.5.1) with A given by

-1 0 01 0
02 —-06 O 0.8
A= -01 01 038 0 ’ (8.5.19)

0.1 0 01 -05

it can easily be verified that || A||, > 1, p = 1,2, or co. Hence, condition (8.5.6) fails
again as a global asymptotic stability test for the present example.
Assumption 8.5.2 is satisfied for this example by choosing

1.4 0 —-02 04
0 1.6 02 -04
H= -0.2 0.2 3.4 0.5 |- (8.5.20)

04 —-04 0.5 3

Because

0.026  0.161 —0.003 0.077
0.161 1.014 —0.003 0.497
—0.003 -0.003 1.124 0.774
0.077 0497  0.774 0.906

Q=H—-ATHA =

is positive definite, all conditions of Theorem 8.5.2 are satisfied, and the equilibrium
ze = 0 of system (8.5.1) with such a coefficient matrix is globally asymptotically
stable. O

8.6 Notes and References

For further details concerning Luré-type of results (Theorem 8.1.1), refer to [45].
The Yacubovich—-Kalman Lemma (Lemma 8.1.1) was independently established by
Yacubovich [73] and Kalman [32]. The proof of Popov’s criterion (Theorem 8.1.2),
using the Yacubovich—Kalman Lemma, follows along the proof given in Lefschetz
[40]. In the original proof of results of this type, Popov relied on functional analysis
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techniques [62]. In addition to [40], there are several other monographs on the
absolute stability of regulator systems, including Aizerman and Gantmacher [2] and
Narendra and Taylor [60]. Our treatment in Section 8.1 of the absolute stability of
regulator systems is in the spirit of the presentation on this subject given in [52]
and [54].

For background material and further qualitative studies of the class of artificial
neural networks considered in Section 8.2, refer, for example, to [9], [11], [20], [37],
[41], and [47]-[50]. The particular method used in this section was popularized by
Hopfield [20]. The first rigorous proof of Theorem 8.2.1 (in a more general setting)
was given in [11] by Cohen and Grossberg. For further results concerning associate
memories realized by means of feedback artificial neural networks, refer to [47], [49],
and [50]. The idea of viewing neural networks as interconnected systems is motivated
by the viewpoints adopted in [19], [51], and [64]. Our presentation in Section 8.2 is
primarily based on [48], [49], and [50].

The analysis and synthesis of linear digital feedback control systems with one uni-
form sampling rate have been of interest for a long time ([1], [3], [14], [15], [30]) and
in recent works, systems with nonuniform sampling rates have also been addressed
(e.g., [28], and [29]). The implementation of the controllers of such systems by digital
computers, resulting in digital feedback control systems, has brought about several
investigations of the effects of the quantization nonlinearities (e.g., [7], [10], [13],
[21], [26], [27], [55], [56], [65], and [69]). Additionally, analyses of digital control
systems with nonlinear plants have also been conducted (e.g., [6], [21], and [26]).
These works address the particular conditions under which a linearization of the plant
is permissible (i.e., under which conditions the stability properties of the feedback
control systems with nonlinear plants can be deduced from the corresponding feed-
back control systems with the nonlinear plants replaced by their linearization). We
note here that although similar in spirit, the results presented in [26] apply to a sub-
stantially larger class of systems than those considered in [6]. Our presentation in
Section 8.3 follows closely the development given in [21] and [26].

The results of Section 8.4 concerning pulse-width-modulated feedback control
systems are based on [22]. There have only been a few results ([5], [16], [23], [36],
[38]) concerning PWM feedback systems with type II modulation. (The majority
stability results reported in the literature are for PWM feedback systems with type 1
modulation, e.g., [5], [25], [58], and [71].) The examples treated in this section are
from [5] and [16]. Our comparisons, using these examples, indicate that the stability
results reported in Section 8.4 are less conservative than the results reported in the
above references. The reason for this appears twofold. First, the results in Section 8.4
are based on the general stability results for DDS which require that the quadratic
Lyapunov functions employed in the analysis decrease along the solutions of the
PWM systems only at instants when the PWM controller is turned off (and satisfy
certain bounds at the remaining times) whereas the results reported in [5] require
that the Lyapunov functions that are utilized (usually quadratic ones) decrease along
the solutions of the PWM system at all times and results in [16] use an averaging
method combined with the Popov criterion or the circle criterion. Additionally, the
stability results for PWM feedback control systems reported in Section 8.4 incorporate
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optimization procedures to decrease conservatism, which is not the case in the stability
results cited above.

For additional references on PWM feedback control systems (not necessarily deal-
ing with stability), the reader may want to consult [4], [12], [17], [18], [31], [33]-[35],
[39], [46], [61], [66]-[68], and [70], [71].

For a discussion of stability results of systems endowed with saturation nonlin-
earities and their applications to digital filters, refer to the monograph [44] and the
references cited therein. The material in Section 8.5 is based on results presented in
[24] and [43].
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Chapter 9

Infinite-Dimensional
Dynamical Systems

In this chapter we address the Lyapunov stability and the boundedness of motions of
infinite-dimensional dynamical systems determined by differential equations defined
on Banach spaces and semigroups. As in Chapters 6, 7, and 8, we concentrate
on the qualitative properties of equilibria and we consider continuous as well as
discontinuous dynamical systems (DDS).

This chapter consists of eleven parts. In the first section we establish some of the
notation used throughout this chapter. In the second section we present the principal
Lyapunov stability and instability results of an equilibrium for dynamical systems
determined by general differential equations in Banach spaces, as well as results for
the boundedness of motions (Lagrange stability) for such systems. Most of these
results are direct consequences of the corresponding results established in Chapter 3
for dynamical systems defined on metric spaces. We demonstrate the applicability
of these results in the analysis of several specific classes of differential equations de-
fined on different Banach spaces. In the third section we present converse theorems
(necessary conditions) for most of the results (sufficient conditions) established in the
second section. Most of these results are also direct consequences of corresponding
results given in Chapter 3 for dynamical systems defined on metric spaces. In the
fourth section we present the invariance theory for autonomous differential equations
defined on Banach spaces and we apply these results in the analysis of specific classes
of systems. In the fifth section we develop a comparison theory for general differen-
tial equations defined on Banach spaces and we apply these results in a subsequent
section. In the sixth section we present stability results for composite systems de-
fined on Banach spaces described by a mixture of different differential equations and
we apply these results in the analysis of a specific class of systems. In the seventh
section we apply the results developed in the fifth section in the stability analysis of
a point kinetics model of a multicore nuclear reactor (described by Volterra integrod-
ifferential equations). In the eighth section we present general stability, instability,
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and boundedness results for dynamical systems determined by retarded functional
differential equations (RFDESs) (a special important class of differential equations in
Banach spaces). In addition to these general results, we present results concerning
the invariance theory for RFDEs and Razumikhin-type theorems for such systems.
In the ninth section we apply the results of the eighth section in the analysis of a
class of artificial neural networks with time delays. In the tenth section we address
stability and boundedness results for discontinuous dynamical systems determined by
differential equations in Banach spaces. We address local and global stability and in-
stability results of an equilibrium and results for the boundedness of motions, as well
as converse theorems. We apply these results in the analysis of several specific classes
of systems. Finally, in the eleventh section we present stability results for discontinu-
ous dynamical systems determined by linear and nonlinear semigroups and we apply
these results in the analysis of several specific classes of infinite-dimensional DDS.

9.1 Preliminaries

Let X be a Banach space with norm || - ||, let C be a subset of X, let 0 € C and let
F: R x C — X. Recall from Subsection 2.6A that the equation

& = F(t,z) (GE)

is called a differential equation in Banach space, where & = dx/dt. A function
©: [to,to +¢) — C, ¢ > 0,is called a solution of (GE) if ¢ € C [[to,to + ¢), C], if
¢ is differentiable with respect to ¢ for ¢ € [to, tg + ¢) and if ¢ satisfies the equation
(dep/dt)(t) = F(t,p(t)) forall t € [tg,to + c). Associated with (GE) we have the
initial value problem given by

&= F(t,z), z(to) = mo. (Igk)

Throughout this chapter we assume that for each (tg,zo) € RT x C there exists at
least one solution of (Igg), ¢(t, to, o), that satisfies the initial condition z(tg) =
xo = @(to,to, To). The reader should refer to Subsection 2.6A for a discussion
concerning the existence and uniqueness of solutions of the initial value problem
(Igg)-

As discussed throughout Chapter 2, special classes of differential equations on Ba-
nach spaces include ordinary differential equations, functional differential equations,
Volterra integrodifferential equations and partial differential equations. All of these
determine dynamical systems. We denote a dynamical system determined by (GE)
by S GE-

In a similar manner as in the case of finite-dimensional dynamical systems Sg
determined by (E) (refer to Chapter 6), we use the phrase “M is an invariant set of
(GE)” in place of the phrase “M is an invariant set with respect to S, the phrase
“the invariant set M of (GE) is stable” in place of “the invariant set M is stable with
respect to Sgr”, and similar phrases for all other remaining stability, instability, and
boundedness types that we encounter.
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As in Chapters 6 through 8, we continue to focus on equilibria for (GE); that is,
M = {x.}. We use the phrase “the equilibrium x. of (GE) is stable” in place of “the
invariant set {x.} of (GE) is stable”, “the equilibrium x. of (GE) is asymptotically
stable” in place of “the invariant set {z.} of (GE) is asymptotically stable”, and so
forth.

We recall that in the case of finite-dimensional dynamical systems, all norms
are topologically equivalent and therefore, when addressing convergence properties,
(e.g., the stability of an equilibrium), the particular choice of norm plays no impor-
tant role. This is in general not the case for dynamical systems defined on infinite-
dimensional spaces. Specifically, for dynamical systems determined by (GFE), the
various stability and boundedness properties depend on the choice of the norm,
because on infinite-dimensional normed linear spaces, different norms are in gen-
eral not topologically equivalent. Accordingly, it is usually necessary to specify
explicitly which norm is being used in a given result.

Similarly as in the case of finite-dimensional dynamical systems, we may assume
without loss of generality that . = 0 is an equilibrium for (G FE).

As in Chapters 6 and 7, we employ lowercase letters to denote scalar-valued
Lyapunov functions (e.g., v) and uppercase letters to denote vector-valued Lyapunov
functions (e.g., V). Also, we denote scalar Lyapunov functions that are the compo-
nents of vector Lyapunov functions by lowercase letters (e.g., v;).

We can characterize a scalar Lyapunov function v € C[B(r) x RT,R] (resp.,
v € C[X x RT,R)]) as being positive definite (negative definite), positive semidef-
inite (negative semidefinite), decrescent, or radially unbounded, by modifying Def-
initions 6.1.8-6.1.13 (resp., Theorems 6.1.1-6.1.3) in an appropriate way, replacing
R*"by X, Q C R"by C C X, and B(r) C Q2 by B(r) C C. As in the case of
the various stability and boundedness concepts, the above characterizations are tied
to the choice of the particular Banach space being used. Thus, we may have to use
phrases such as “v is positive definite with respect to the space X, and similar other
phrases.

Let (-, to, zo) denote a solution of (G E). Forevery functionv € C[B(r) xR, R],
where B(r) = {x € X: ||z|| < r} with r > 0 and B(r) C C, we define the upper-
right derivative of v with respect to t along the solutions of (GE) by

— 1
12 _ 0
Vg (T:t) = A11£1_r>%+ w(t?gg:x AL [v(p(t+ At t,z),t + At) — v(z,t)]. (9.1.1)

When (GE) has a unique solution for every z(tg) = zo = ¢(to,to, o) with
(to,zo) € RT x B(r), then (9.1.1) reduces to

— 1
/ .
ver)(®,t) = Pn%ﬁ AL [v(p(t + At,t, @), t + At) — v(z,1)]. 9.1.2)

If in addition to the above assumptions, v satisfies a local Lipschitz condition in z,
that is, if for every T' > 0 there exists an L > 0 such that

lv(z,t) — v(y,t)| < Lilz -y (9.1.3)
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forallz,y € B(r) andforall¢ € [0, T, then (9.1.2) can equivalently be expressed as

— 1
! _ s _ .
Vap)(T,t) = A}tlg(lﬁ A7 [v(z + ALF(t,z),t + At) — v(z,t)]. (9.14)

We ask the reader to verify relation (9.1.4) in the problem section.

9.2 The Principal Lyapunov Stability and
Boundedness Results for Differential
Equations in Banach Spaces

In the present section we address stability and boundedness properties of infinite-
dimensional dynamical systems determined by differential equations in Banach spaces
(GE).

A. Local results

We assume that C' C X, x, = 0 € C, x, = 0 is an equilibrium for (GF) and we let
|l - || denote the norm for the Banach space X.

Theorem 9.2.1 Assume that for system (G E) there exists a positive definite function
v € C[B(r) x RT,R] such that V(G ) is negative semidefinite where B(r) C C for
some 7 > 0. Then the following are true.

(a) The equilibrium z. = 0 of (GF) is stable.
(b) If in addition to the above, v is decrescent, then x, = 0 of (GF) is uniformly
stable.
(c) Ifin (b), UZGE) is negative definite, then . = 0 of (GFE) is uniformly asymp-
totically stable.
(d) Ifin (c), v satisfies
alzl® <oz, t) < el

and
Viam (@, 1) < —csllz|”

for all (z,t) € B(r) x R, where c1, co, c3 and b are positive constants, then
ze = 0 of (GE) is exponentially stable.

Proof. The proof of this theorem follows from the proofs of Theorems 3.3.1-3.3.3
and follows along the lines of the proof of Theorems 6.2.1, 6.2.2, and 6.2.4. We omit
the details in the interest of brevity. m|

In order to apply Theorem 9.2.1 (and the other Lyapunov theorems that we con-
sider) in the stability analysis of initial value and boundary value problems determined
by partial differential equations, we need to show that such problems may be viewed
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as systems of differential equations (GE). To fix some of the ideas involved, we
consider in the following an important specific class of initial value and boundary
value problems determined by partial differential equations.

Let 2 be a bounded domain in R™ with smooth boundary 02 (i.e., 92 is of
class C*° (refer to Section 2.10)), let 0% denote the operator 912! /(921 - - - 9% for

x=(z1,...,2n)and o = (aq,...,@,) with |a] = a3 + -+ - + «a,, and let f denote
areal n vector-valued C'*° function of ¢, z, u, and 0%u for all « such that |a| < 2m,
where u = (u1,...,u)T: RT x @ — R and 8%u = (081 uy -+~ 0%uy)™. We

now consider the class of partial differential equations with initial conditions and
boundary conditions given by

%(t,x) = f(t,x,u,0pu, ..., 00u,...), (t,z) € [tg,0) X
0%u(t,z) =0, || < m, (t, ) € [to,00) x O
u(to, z) = up(x), r e

9.2.1)

where Ou/0t = (Ouy/0t, ..., 0u /ot)", to € RT, and uy € C*°[Q), R!] satisfies
lim,_,90 0%ug(z) = 0 for all |a] < m.

Assume that for every to € R* and ug € C°[Q, R!], there exists at least one
solution u € C>|[tg,00) x Q,R!] that satisfies (9.2.1). Conditions that ensure
this for linear parabolic equations are given in Theorem 2.10.2. For results that
ensure the existence of certain classes of nonlinear parabolic equations, refer to [17]
and [19].

Now let C = C*[Q,R!] N H*(Q), let U(t) = u(t, ) € C°°[Q,R!], and define
F:RT xC — Cby

F@t,U@)(z) = f(t, x,u,0pu,...,00u,...).

x

(Refer to Section 2.10 for the definition of H[*(€2).) We can now rewrite (9.2.1) as

% = F(t, U), U(t()) = Ug (922)

where t € [tg, 00), (to,up) € RT xCand F: RT x C — C. Then (9.2.2) constitutes
an initial value problem defined on the Banach space X = H{"(2) for the differential
equation

dau
— =F(t,U 9.2.3
= ) ©023)
which is a special case of the differential equation (G E).

We conclude by noting that there are more general classes of initial value and
boundary value problems than (9.2.1) which can be cast as special cases of (GE).

We now apply Theorem 9.2.1 in the stability analysis of a specific example of
(9.2.1).
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Example 9.2.1 A special case of (9.2.1) is the initial value and boundary value prob-
lem for the fourth-order linear scalar parabolic partial differential equation given by

Ou 0*u

Fri —@(t x), (t,z) € R x (0,1)
u(0,z) = Y (x), xz € (0,1)
u(t,O):u(t,l):%(t,O) :%(m):o, tER*,

(9.2.4)

In view of Theorem 2.10.2, for each ¢ € X = H*[(0,1),R] N HZ[(0,1), R] there
exists a unique solution v = u(t, z) of (9.2.4) such that u(¢,-) € X for each fixed
t € RT, and U, defined by U(t) = u(t,-), is a continuously differentiable function
from R to X with respect to the H?-norm (refer, e.g., to [33, p. 210]).

In view of our discussion of the class of systems (9.2.1), we may view (9.2.4) as
an initial value problem for a differential equation of the form (GE) in the Banach
space X with the H2-norm. It is easily shown that ¢, = 0 € X is an equilibrium for
(9.2.4).

In applying Theorem 9.2.1, we choose the Lyapunov function

1 2 2 2
== [ [(5) +(5) +ar 029

and we denote a solution of (9.2.4) by u(t, z).
Along the solutions of (9.2.4) we have

d“(u)—z/1 Pu\ 0 (Pu\ (w0 (Ou)  ou]
de~ 7 )y [\ 922 ) ot \ 922 oz ) i\ o o
Lr/o?u\ o%u  [ou\dPu 9w
__2/0 [(W)aa;ﬁ+<agg)ax5+ 5 4]dx (9.2.6)

In order to ascertain the definiteness of (dv/dt)(u), we rewrite the three terms in
brackets in (9.2.6). We first consider the second term. Recalling the expression for

integration by parts,
1 1 1
/pdq:pq’ —/ qdp
0 0 0

_o op_ 9
P=%z ox 0z’ = 8x2

oM . oy
1= gat dq_(azs>d d(a4)

and applying the initial conditions, we obtain

1 8’!/1 aow B 1 63,(/] 83¢ _ 1 83w 2
/0 (ax> o5 ‘[‘/o (aw) (w) d‘”] —/0 (w) -

and letting
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In a similar manner, we obtain for the first term in brackets in (9.2.6)

/1 Al é“iwdl._/l CAIARS
o \0z2) ax6""  J, \ Ox?
and for the third term,
1 62111 2
/ waz‘* /0 (am) de.
Hence, we have

d’U()__Q/l @24_@24_@2
at = 0 ozt Ox3 Oz 8:62

Therefore, along the solutions of (9.2.4) we have

dv 9%u|?

) H <0 9.2.7)
dt 022 || 2

forall u € X.

It now follows from (9.2.5), (9.2.7) and Theorem 9.2.1 that the equilibrium ¢, = 0
of (9.2.4) is uniformly stable with respect to the H?-norm.

In Section 9.4 (see Example 9.4.2) we show, utilizing a result from the invari-
ance theory for infinite-dimensional systems, that the equilibrium ¢, = 0 of system
(9.2.4) is actually uniformly asymptotically stable in the large with respect to the
H'-norm. 0

B. Global results

In the case of global results we let C' = X.

Theorem 9.2.2 Assume that there exists a functionv € C[X x R™, R], two functions
1,2 € Koo, and a function i3 € K such that

i(llzl]) < vl t) < ga(ll]])

and

vigy(T,t) < —vs(||z]])
forall (z,t) € X x R*. Then the equilibrium z, = 0 of (GE) is uniformly asymptot-
ically stable in the large. Furthermore, if there exist four positive constants ¢, cs, c3,
and b such that

cllz])® < v(z,t) < e

and

viam (@ 1) < —csz)l’
forall (z,t) € X x RY, then the equilibrium z, = 0 of (GE) is exponentially stable
in the large.
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Proof. The proof of this theorem is a direct consequence of Theorems 3.3.6 and
3.3.7. O

We apply the above results in the analysis of the heat equation.

Example 9.2.2 A class of initial and boundary value problems determined by the
heat equation is given by

ou

— = a%Au, (t,r) e RT x Q

ot 9238
u(0,2) = ¢¥(z), x e ©.2.8)
u(t,xz) =0, (t,x) € RT x 9Q

where Q CR™ is a bounded domain with smooth boundary 052, a® >0 is a constant,
and A=3"" | 0%/ 0z denotes the Laplacian. Foreach) eX=H?[Q,R] N Hj[Q, R]
there exists a unique solution u = wu(t, z) of (9.2.8) such that u(t,-) € X for each
fixed t € RT and U, defined by U(t) = wu(t,-), is a continuously differentiable
function from R™ to X with respect to the H L_norm (refer, e.g., to [33, p. 210]).
Then (9.2.8) can be written as an abstract Cauchy problem in the space X with
respect to the H'-norm (refer to the discussion of (9.2.2)),

U(t) = AU(t), t>0
with initial condition U (0) = ¢ € X, where the operator A is linear and is defined
by A=>", a*d*/da?.

In Chapter 3 we showed that 0 € X is an equilibrium for (9.2.8). We now show,
using Theorem 9.2.2, that the equilibrium x, = 0 is exponentially stable with respect
to the H'-norm. In doing so, we make use of Gauss’ Divergence Theorem [8], which
we recall here in the context of the problem on hand: the volume integral of the
divergence of any continuously differentiable vector () is equal to the closed surface
integral of the outward normal component of (); that is,

/ VQ(z)dz = / Qndx

Q o0

where Q = (Q1,...,Qn)T, VQ = (0Q1/0x1,...,0Q,/0x,)T and Qn is the
directional derivative of (Q in the outward normal direction.

Now let Q = u”'Vu, where u is a solution of (9.2.8). Then for any u(t,-) €
HLQ, R] we have

/Q [(Vu)TVu + uAu} doe = / e =

which implies that
/ uAudr = — |Vu|2dx.
Q Q

In applying Theorem 9.2.2, we choose as a Lyapunov function

o) = ]2 = / (Vo[ + [0]?2)de. ©2.9)
Q
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Let u(t, z) denote a solution of (9.2.8). Then

dv, . D[ [ uN2
= | () )
= ouy *u Ju
_/Q {;2<8mi)8x-5t+2 &}dx
i 0?u du
=- 2/ —dx + 2a* /uAuda:
; o 0x? Ot Q
= —2a? /( —2a? /|Vu| dx
—2a? /\Vu\ dz.

By Poincaré’s inequality [34], we have that

/\u|2daz<7 /|Vu\ dx

where v can be chosen as §/y/n and Q can be put into a cube of length 6. Hence,

we have
dv 2 2 1 2 2
—(u) < —a VulPde + — | |u[*dz | < —cllullz
dt Q 7 Ja

where ¢ = a®? min{1, 1/~%}. Therefore,

IN

Vo2 (%) < —cll¥lFn (9.2.10)

forall v € X.
Itnow follows from (9.2.9), (9.2.10), and Theorem 9.2.2 that the equilibrium 0 € X
of (9.2.8) is exponentially stable in the large with respect to the H*'-norm. O

Example 9.2.3 Scalar linear Volterra integrodifferential equations are of the form

t

i(t) = —ax(t) +/_ k(t — s)z(s)ds, t=20 (9.2.11)

x(t) = o(t), t<0

where a > 0 is a constant. As shown in Subsection 2.9D (refer to Example 2.9.3),
such systems may be viewed as retarded functional differential equations, replacing
the delay [—r, 0] by (—o0, 0]. System (9.2.11) can be rewritten as

i(t) = —am(0) + | k(=s)zi(s)ds, t=0 9.2.12)
2(t) = (), =0

For (9.2.12) we define the fading memory space X as consisting of all measurable
functions ¢: (—o00,0) — R with norm

0
llellz, = (0 |2+K/ (s)]Pel*ds < oo (9.2.13)
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with K > 0 to be determined as needed and L > 0 a fixed constant. We assume that
k() € X and we define Cp, = ([ |k(s)[*e"*ds)*/2.

If we define F'(t, ) = F(¢) = —p(0) + fi)o k(—s)p(s)ds forall ¢ € X, then
(9.2.12) is a special case of the differential equation in Banach space (GE) with the
Banach space as specified above.

To obtain an estimate of solution bounds for (9.2.12) we choose for any ¢ € X,

v(e) = llell2, (9.2.14)

and we let y(t) = v(z;). Along the solutions of (9.2.12) we have
y(t) = (K — 2a)|z(t)|* + 2CLz(t)2(t) — K L|2(t)|? 9.2.15)
where z(t) = (f?oo |z (s)|2e*ds)'/2. The right side of (9.2.15) is negative definite

if and only if the matrix
_ 2a — K —CL
P = [ —cy, KL} (9.2.16)
is positive definite which is the case when (i) 0 < K < 2a, (ii) KL > 0 (which is
always true), and (iii) C,/ VL < a. Therefore, when C},/ VL < a, there exists a
K > 0 such that the right-hand side of (9.2.15) is negative definite.
We want to show that there exists an o < 0 such that

y(t) < ay(t). (9.2.17)
Letting
Q= [(1) IO(] : (9.2.18)

this is equivalent to finding an « such that P > —a(). It is easy to see that this is the

case when
>\m(P)

max{1, K} <
where A, (P) denotes the smallest eigenvalue of P.

We conclude that if C,/v/L < a and K is chosen appropriately, then there exists
an e < 0 such that §(t) < ay(t). Therefore,

0 (9.2.19)

[z¢]lm < 2 ||z0)lm,  a <0 (9.2.20)

and we conclude that the equilibrium ¢, = 0 of system (9.2.12) is exponentially
stable in the large with respect to the norm || - ||, a

Theorem 9.2.3 Assume that there exists a function v € C[X x RT, R] that satisfies
the following conditions.
(i) There exist two continuous, real-valued and strictly increasing functions ¥y, ¥y
that are defined on R* with lim, ., 1;(r) = 400, i = 1,2, and a constant
M > 0 such that

Prlzf]) < vl t) < o(ll]])
forall ||z|| > M and t € RT.
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(i) Forall ||z|| > M and ¢t € RT,
vigmy(,t) <0.

Then the solutions of (GE) are uniformly bounded.
If in addition to hypotheses (i) and (ii) there exists a function 3 € K such that

Vg (T, t) < —s(||z]])

for all ||z|| > M and t € R, then the solutions of (GE) are uniformly ultimately
bounded.

Proof. The proof of this theorem is a direct consequence of Theorems 3.3.4 and
3.3.5. |

We conclude this subsection with two examples.

Example 9.2.4 We consider the dynamical system determined by (9.2.4) in Exam-
ple 9.2.1. Because the function v defined in (9.2.5) is positive definite, decrescent,
and radially unbounded with respect to the H2-norm, it follows from (9.2.7) and
Theorem 9.2.3 that the solutions of (9.2.4) are uniformly bounded with respect to the
H?-norm. |

Example 9.2.5 We consider the dynamical system determined by (9.2.8) in Exam-
ple 9.2.2. Because the function v defined in (9.2.9) is positive definite, decrescent,
and radially unbounded with respect to the H!-norm, it follows from (9.2.10) and
Theorem 9.2.3 that the solutions of (9.2.8) are uniformly ultimately bounded with
respect to the H'-norm. O

C. Instability

As in Subsection A, we assume in the following that C' C X, z. =0¢€ C, z, =0is
an equilibrium for (GE) and we let || - || denote the norm for the Banach space X.

Theorem 9.2.4 (Lyapunov’s First Instability Theorem for differential equations in
Banach spaces) The equilibrium z. = 0 of (GE) is unstable if there exista ty € RT
and a decrescent function v € C[B(r) x R*, R] for some r > 0, B(r) C C, such that
’UE GE) is positive definite (negative definite) and if in every neighborhood of the origin
there is a point « such that v(x,ty) > 0 (v(z,t9) < 0). Moreover, if v is positive
definite (negative definite), then the equilibrium z. = 0 is completely unstable.

Proof. The proof of this result is a direct consequence of Theorem 3.3.8. O

We apply the above result in the stability analysis of the backward heat equation.
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Example 9.2.6 Consider the initial and boundary value problem given by

du = —a*Au, (t,z) eRT x Q

ot 9.2.21
u(0,2) = (), x e ©.2.21)
u(t,z) =0, (t,x) € RT x 9

where a? > 0is a constant,  C R" is a bounded domain with smooth boundary 952,
A denotes the Laplacian, and 1) € Cy[€2, R]. We may view (9.2.21) as a differential
equation in the Banach space X = H[Q2, R]. (Refer to Section 2.10 for the definitions
of Cy[2, R] and Hy[2, R].) Itis easy to show that0 € X is an equilibrium of (9.2.21).

In applying Theorem 9.2.4 in the stability analysis of (9.2.21), we choose as a
Lyapunov function

v(p) = /Q lo(a)|2dz = [lo]2, 9.2.22)

for all ¢ € X. This function is clearly positive definite with respect to the Ly-norm.
Along the solutions of (9.2.21) we have

d
onan (@) =2 [ o Fdo=-2 [ p(ap)da,
Q Q

By Gauss’ Divergence Theorem and Poincaré’s Inequality (refer to Example 9.2.2)
we have

2 2
- / P(Ap)dz =2 / Volde > 2 / odz = 2 |lgl 1,
Q Q 7 Ja vy

for all ¢ € X, where ~ is a positive constant that depends on € (refer to Example

9.2.2). Therefore,
2
Vig.2.21) () = @IwIILz (9.2.23)

which shows that 029.2.21) is positive definite. It now follows from (9.2.22), (9.2.23),
and Theorem 9.2.4 that the equilibrium x. = 0 of (9.2.21) is completely unstable
with respect to the Lo-norm. O

Theorem 9.2.5 (Lyapunov’s Second Instability Theorem for differential equations
in Banach spaces) Assume that for system (G'E) there exists a bounded function
v € C[B(e) x [to,00),R] where ¢ > 0 and B(¢) C C, having the following
properties.

(i) Forall (x,t) € B(e) X [to,o0),
vigp)(T,t) > Mv(z,t)

where A > 0 is a constant.

(ii) In every neighborhood of =, = 0, there exists an x such that v(x, ¢1) > 0 for
a fixed 1 > to.

Then the equilibrium z, = 0 of (GE) is unstable.
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Proof . The proof of this result is a direct consequence of Theorem 3.3.10. o

We demonstrate the applicability of Theorem 9.2.5 in the analysis of a specific
example.

Example 9.2.7 Consider the initial value and boundary value problem given by

8;; 7u1+UQ+Zajaul (t,z) e RTx Q

Oug Ouz

e = u; + uy —|—ij —|—Au2, (t,z) e RTx Q

u1(0 .’ﬂ) wz(‘r)v SﬂEQ, Z:LQ

wi(t,z) =0, (t,r) e RTx 00, i=1,2

(9.2.24)

where Q C R™ is a bounded domain with smooth boundary, A = Y77, 8*/0x3
denotes the Laplacian, a;, b; are real constants, j = 1,...,n, and ¢, € Cy[Q, R],

i =1, 2. (Refer to Section 2.10 for the definition of Cy[Q2, R].)

Equations (9.2.24) may be viewed as differential equations in the Banach space
X = Hy[Q,R] x Ho[Q, R]. Tt is easily verified that the origin of X is an equilibrium
of (9.2.24).

In the following, we show that the equilibrium 0 € X of system (9.2.24) is unstable
with respect to the Ly-norm, using Theorem 9.2.5.

We choose as a Lyapunov function,

v(p) =/Q(\s01|2— lp2|?)dz (9.2.25)

where ¢ = (¢1, p2) € X. Along the solutions of (9.2.24) we have

”29.2.24)(@ = 2/ p1 [991 + a2 + Zaj . }dx

—2/902[<P1+902+Zb e +A902}
=2v(s0)—2/ P2(Aps)dr
Q

where in the last step we have used the fact that

2
a‘pz de — 8[901]
53:] Q axj

j=1,...,n,foryp; € Co[Q,R],iZ 1,2.
Invoking Gauss’ Divergence Theorem, we have

2 dr =0

2v(p) — 2 /Q ©2(Apa)da = 2v(p) + 2/Q Vo |2da > 20(p)
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for all ¢ € X. Therefore,
V(o.2.24) () = 20() (9.2.26)

forall ¢ € X.
Clearly, v(go) is bounded on

={p=(e1,02) € X:llo|l* = lenllZ, + llenllZ, <1}

and v(yp) > 0if ¢ = (¢1,0) and ||¢1||z, # 0. Therefore, condition (ii) in
Theorem 9.2.5 is satisfied. It follows from (9.2.26) and Theorem 9.2.5 that the
equilibrium ¢, = 0 € X of (9.2.24) is unstable with respect to the La-norm. a

We now state the last result of the present section.

Theorem 9.2.6 (Chetaev’s Instability Theorem for differential equations in Banach
spaces) Assume that for system (G E) there exist a function v € C[B(r) x RT,R]
for some r > 0, where B(r) C C C X, and aty € RT such that the following
conditions are satisfied.
(i) There exists acomponent D of the set {(x,t) € B(r) xR™: v(z,t) < 0} such
that for every neighborhood of the origin there exists an z in this neighborhood
such that (x,tg) € D.
(i1) v is bounded from below on D.
(i) vigp (@,t) < —¥(jv(z,t)|) forall (z,t) € D where ) € K.

Then the equilibrium z. = 0 of (GFE) is unstable. O

We ask the reader to prove Theorem 9.2.6.

9.3 Converse Theorems for Differential Equations in
Banach Spaces

In the present section we establish converse results for some of the principal Lyapunov
stability and boundedness results for differential equations in Banach spaces presented
in Section 9.2. We recall the differential equation in Banach space given by

&= F(t,x) (GE)

where F': R x C' — X. We assume that . = 0 is an equilibrium for the dynamical
system determined by (G E) and that the set C contains a neighborhood of the origin
x, = 0. Also, we assume that for every (tg,z9) € RT x C, there exists a unique
noncontinuable solution of (GFE) with initial condition x(ty) = xo that depends
continuously on (g, o).

We present only local results. Our first result concerns uniform stability.

Theorem 9.3.1 If the equilibrium z. = 0 of (GE) is uniformly stable, then there
exists a positive definite and decrescent function v € C[B(r) x R*,R*] for some
r >0, where B(r) C C, such that v( 5 is negative semidefinite.



Section 9.4 Invariance Theory for Differential Equations in Banach Spaces 409

Proof . The proof of this result is a direct consequence of Theorem 3.6.1 and follows
along the lines of the proof of Theorem 6.5.1. The continuity of v is a consequence of
the assumed continuity of the solution (¢, tg, z¢) of (GF) with respect to the initial
data. O

The next result concerns uniform asymptotic stability.

Theorem 9.3.2 If the equilibrium z.= 0 of (GFE) is uniformly asymptotically stable,
then there exists a positive definite and decrescent function v € C[B(r) x Rt R™"]
for some r > 0, where B(r) C C, such that UEG ) is negative definite.

Proof. The proof of this result is a consequence of Theorem 3.6.2, the continuity
of the solutions of (GE) with respect to initial conditions and the continuity results
given in Subsection 3.6B. |

As in the case for finite-dimensional systems (see Theorem 6.5.3), the next result,
which addresses the exponential stability of the equilibrium z. = 0 for (GE), is not
symmetric to the exponential stability result given in Theorem 9.2.1d. Nevertheless,
this result does provide a set of necessary conditions for exponential stability.

Theorem 9.3.3 If the equilibrium z. = 0 of (GFE) is exponentially stable, then there
exists a positive definite and decrescent function v € C[B(r) x R*,R™] for some
r > 0, where B(r) C C, such that

UZGE) (‘Ta t) < 7C’U(I, t)
forall (z,t) € B(r) x R, where ¢ > 0 is a constant.

Proof. The proof of this result is a direct consequence of Theorem 3.6.3 and the
continuity of the solutions of (GE). m|

We conclude by noting that converse theorems for system (G E) for uniform bound-
edness, uniform ultimate boundedness, uniform asymptotic stability in the large,
exponential stability in the large, and instability can also be established, using the
methodology employed in the preceding results.

9.4 Invariance Theory for Differential Equations in
Banach Spaces

In the present section we consider infinite-dimensional dynamical systems determined
by a class of autonomous differential equations in Banach space given by

i = F(z) (GA)

where F': C' — X, C' C X, and X is a Banach space. We assume that . = 0 is
an equilibrium for the dynamical system determined by (G A) and that C' contains a
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neighborhood of the origin x, = 0. Furthermore, we assume that for each g € C,
there exists one and only one solution of (G A) for the initial condition 2:(0) = .
Under these conditions, the solutions of (G'A) determine a semigroup and the invari-
ance theory for dynamical systems developed in Section 4.2 is applicable to dynamical
systems determined by (GA). Our aim in the present section is to improve some of
the stability results presented in Section 9.2.

Theorem 9.4.1 Assume that for system (G A) there exists a function v € C[C,R]
such that UE GA) () < Oforallz € C. Let M be the largest invariant set with respect

to the dynamical system determined by (G A) in the set
Z ={x € C: vigay(x) =0}, (94.1)

Then for every solution ¢ of (GA) such that the closure of the trajectory of ¢ is
compact, ¢(t) approaches M ast — oo.

Proof . The proof of this theorem is a direct consequence of Theorem 4.2.1, where
X is generated by taking the closure of every solution ¢ of (G A) having the property
that the closure of ¢ is compact. O

We apply the above result in the analysis of a scalar Volterra integrodifferential
equation.

Example 9.4.1 Consider the equation (refer to [9])

t
() = — / at — w)g(w(w))du 9.4.2)
where t € RY, a € C?*[RT,R], a(t) > 0, a(t) < 0,and i(t) > 0 forallt € R*, and
limy .o t?a(t) = 0 and [ t?a(t)dt < oc. The fading memory space X for (9.4.2)
is the Banach space consisting of all functions ¢: (—oo, 0] — R such that

0

lel® = |<P(0)I+/ k(0)]0(0)|d6

is finite, where k(0) > 0for —oo < 6 <0, ono k(0)df < co,and k(#) > 0. Assume
that g(z) has a finite number of zeros and that g € C'[R, R], and that [ g(s)ds — oo
as |z| — oo.

In the following, we apply Theorem 9.4.1 to prove that every solution of (9.4.2)
with initial condition ¢ € X satisfying sup__,_g<o|¢(0)| < oo approaches an
equilibrium of (9.4.2).

Choose

)= | o5 [ a0y ([ atotonas) a
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for p€ X. The second term in v is defined for all p € X satisfying sup_ . _g<o [¢(6)]
= L < oo because
2

o< [ OOC at-0) ([ Og«o(s))ds) a0

S—( sup g(s)|)21/0 a(—0)62de

_L<s<L 2/«
< 0. (9.4.3)

Therefore v is defined for all p € X satisfying sup_ ., .g<¢ ()| < oc.

Suppose that (¢, to, o) is a solution of (9.4.2) with the initial condition ¢y € X
satisfying sup_ .. _g<;, [#0(0)| < oo. Then by the continuity of x(t, o, po) with
respect to £, sup_ o, p<¢ |2(t, Lo, ¢o)| < oo and hence, v(z;) is defined for all ¢ > to.

Along the solutions of (9.4.2), we have

1 /0 0 2
oan(e) =3 [ _at-0) ([ atate+)as) ap <o
which implies that v(x;) is nonincreasing and hence, v(xz;) < v(pg) for all t > to.

By hypothesis, foi(t) g(s)ds — oo if |x(t)| — oo. Therefore there exists an L > 0
such that |z(t)| < L for all —co < ¢t < oo. We now have an estimate for the norm
of T,

lzel|? = o (t)] + /_OOO k(0)|z(t + 60)|d0 < L (1 + /_OOO k:(e)d0> ,

which implies that the trajectory v+ (z) = {z(t0, wo): t>1o} is a bounded setin X.

Next we show that the closure of the trajectory T (x) is compact. Because in
Banach spaces compactness is equivalent to sequential compactness and x; is con-
tinuous with respect to ¢ in X, we only need to show that there is a convergent
subsequence for any sequence {x, }ren With ¢, — oo monotonically as k — oo.
For any A > 0, {x, } with t; > A is equicontinuous on [—A, 0] and uniformly
bounded on (—o0,0] (J(t)| < L was shown earlier). By the Ascoli-Arzela Lemma
(refer to Problem 2.14.7), there exists a subsequence that converges uniformly to a
function p4 € C[[—A,0],R]. Choosing A = 1,2,..., there exist subsequences
{tar} such that {tx} D {tix} D {t2x} D --- and the subsequences {x,, } con-
verge uniformly to a function o4 € C[[—A,0],R] for all A = 1,2,.... Then the
subsequence {z¢,, : kK = 1,2,...} converges uniformly on all compact subsets of
(—00, 0] to a function ¢ € C[(—00,0],R]. ¢ is bounded by the same bound L and
thus, ¢ € X. Whatis left to be shown is that z;,, — ¢ as k — oo using the norm || - ||
in X. Lete > 0 be arbitrary. There exists an A > 0 such that f:;: k(6)do < e/(2L).

‘We have
0

|2t = @lI* = |24, (0) = £(0)] +/ k(0)|z(trr + 0) — 0 (0)]d0

— 00

0
< |z(tpr) — p(0)] + e+ [A k(0)|z(tpr + 0) — ©(0)]d6.



412 Chapter 9. Infinite-Dimensional Dynamical Systems

On the compact set [— A, 0], there exists an m > 0 such that the first and last term in
the above expression are less than ¢ for all kK > m. Hence x,, — ¢ as k — oo.
Finally, if ) € Z = {2 € X: v{g 4 5 () = 0}, then

2

Vg a2y () = / ") ( /9 gt + s))ds) d = .

— 00

Because d(t) > 0, it must be true that

0
/ g(W(t+s))ds=0 forall —oco <t < o0 (9.4.4)
0

whenever i(—6) > 0. From the assumptions that t?a(t) — 0 as ¢t — oo and
a(t) > 0, there must exist a to and a d with top > ¢ > 0 such that a(s) > 0 for all
s € [tg — §,to + 0]. In view of (9.4.4), we have

s
/ g(W(t+s))ds=0 forall — oo <t < o0,
sy
forall s1, s9 € [tg — 9, to + d]. This is true if and only if g(¢)(t)) = 0 for all ¢. Under
the assumption that g(+) has a finite number of zeros, the set Z is comprised of these
zeros, which are also the equilibria of (9.4.2). It now follows from Theorem 9.4.1
that =, approaches an equilibrium of (9.4.2). o

In our next result we require the following concept.

Definition 9.4.1 Let X and X be two Banach spaces and assume that X C X. The
embedding X C X is said to be compact if every closed and bounded subset of X is
compact in X with respect to the norm | - || ¢ 5 of X. O

Now let Q@ C R”™ be a bounded domain with smooth boundary 02. One of
Sobolev’s Embedding Theorems (see, e.g., [6] and [33]) ensures that the embedding
H™[Q,R] C H'[Q,R] is compact and continuous for all m > [. Accordingly, the
embedding H"[Q2, R] C H}[Q, R] is also compact and continuous for m > [.

The differential equation (G A) may be defined on different Banach spaces. This
will always be true for the Banach spaces X and X when X C X. Therefore,
the Sobolev Embedding Theorem cited above suggests the next result, where || - || ¢

denotes the norm for X and where we assume that C' = X.

Theorem 9.4.2 Assume that for the dynamical system determined by (GA) there
exists a Banach space X O X such that the embedding X C Xis compact. Assume
that there exists a function v: X — R that is continuous with respect to the norm
|| - |l that satisfies the following conditions.

(i) v(ga)(x) < Oforallz € X.
(i) v(x) > v(0) =0forallz € X — {0}.
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(i) v(z) — oo as ||z| g — oo.
(iv) {0} is the only invariant subset in

Z = {z e X: v(ga () =0}.

Then the equilibrium z, = 0 of (G A) is uniformly asymprotically stable in the large
in X with respect to the norm || - || ;.

Proof. The proof of this theorem is a direct consequence of Corollary 4.2.2, where
we let X be equipped with the norm || - || 3. We note that X is locally compact
with respect to the norm || - || and that in the proof of Corollary 4.2.2, the local
compactness of X is used, rather than the compactness of X. O

Example 9.4.2 We now revisit system (9.2.4) given in Example 9.2.1 where X =
H(0,1),R] N HZ[(0,1),R] with the H?-norm. We choose X = H{[(0,1),R].
In view of Sobolev’s Embedding Theorem cited above, the embedding X C X is
compact. In applying Theorem 9.4.2, we choose as a Lyapunov function

1 ) 2
o) = Wl = oy = [ | (52) + ]

The function v: X — R is clearly continuous with respect to the norm || - || z:. Ina
similar manner as was done in Example 9.2.1, we compute

Ug.0.0) (1) = —2/01 [(?}:f)2 + (gizé))?} dx = —2‘

forall z € X. _
We have v(0) = 0 and v(¢)) > 0 for all v € X — {0}, and in particular, for all
1 € X — {0}. Moreover, v(y)) — oo as ||| g1 — oo also holds. Finally,

Z = { € X: vy, (1) =0} = {0}

because d?1)/dx? = 0 and ¢(0) = (1) = 0 imply that ) = 0 for ¢ € C2[(0,1),R]
and because C?[(0,1), R] N X is dense in X.

All hypotheses of Theorem 9.4.2 are satisfied and therefore, the equilibrium ¢, =
0 € X of system (9.2.4) is uniformly asymptotically stable in the large with respect
to the H'-norm. O

d*y

e <0

‘Hl

9.5 Comparison Theory for Differential Equations in
Banach Spaces
In the present section we specialize the results of Section 4.3 to develop a comparison

theory in the stability analysis of infinite-dimensional dynamical systems determined
by differential equations in Banach spaces.
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We consider once more a class of differential equations defined on a Banach space
X of the form
&= F(t,x) (GE)

where F': Rt x C — X, C C X. We assume that 2z, = 0 € C and that . = 0 is
an equilibrium of (G F),

For the [-dimensional Euclidean vector space, (R, | - |), we let in the following
R! D Bp(r)={z € R": |z| < r}, and as usual, we let B(r)={z € X: ||z|| < r}.
Also, for a vector-valued function V': B(r) x Rt — R!, where B(r) C C C X for
some r > 0, we use the notation

V(z,t) = [v1(z,t),...,v(x, t)]T

and
Vigr) (@:t) = [vygp (@,1), ... 7UZ(GE)(33775)}T-

For system (GE) we employ as a comparison system ordinary differential equa-
tions of the form

v =g(t,y) (@)

wheret € RT,y € R!, g € C[RT x Bg(ry),R!] forsome r; > 0, Bg(r;) C (R1)!,
and g(t,0) = O forall ¢ € R™. By making use of (C), we first establish local results.

Theorem 9.5.1 Assume that there exists a function V € C[B(r) x R*, (R*+)'], where
B(r)Cc C cC X for some r >0, such that |V (z, )| is positive definite and decrescent,
and there exists a quasi-monotone nondecreasing function g€ C[R* x Bg(r;),R/],
where Bg(r1) C (R*)! for some 7; > 0, which satisfies the conditions that g(, 0) =0
forall t € RT and

Vv(/GE) (l’,t) < g<ta V((L’,t))

for all (z,t) € B(r) x RT. In the above, inequality is to be interpreted component-
wise. Then the following statements are true.

(a) The stability, asymptotic stability, uniform stability and uniform asymptotic
stability of the equilibrium y. = 0 of (C) implies the same corresponding
types of stability of the equilibrium . = 0 of (GE).

(b) If in addition to the above assumptions, |V (x,t)| > alz|® for all (z,t) €
B(r) x RT, where @ > 0 and b > 0, then the exponential stability of the
equilibrium y, = 0 of (C') implies the exponential stability of the equilibrium
ze. = 0 of (GE).

Proof . The proofs of these results follow directly from Theorem 4.3.2(b) and (c). O
In the next theorem, where we address global results, we assume that C' = X.

Theorem 9.5.2 Assume that for (GE) there exists a function V € C[X x R*, (R*)']
such that |V (x, t)] is positive definite, decrescent, and radially unbounded, and that



Section 9.6 Composite Systems 415

there exists a quasi-monotone nondecreasing function g € C[R* x (R*)! R] such
that g(¢,0) = 0 for all t € R™ and such that the inequality

Vigs (@,t) < g(t,V(2,1))

holds componentwise for all (z,) € X x RT. Then the following statements are
true.

(a) The uniform asymptotic stability in the large of the equilibrium y. = 0 of (C)
implies the uniform asymptotic stability in the large of the equilibrium z, = 0
of (GE).

(b) If in addition to the above assumptions, a;|z|® < |V (z,t)| < ag|x|® for all
(z,t) € X x RT, where az > a; > 0and b > 0, then the exponential stability
in the large of the equilibrium y. = 0 of (C) implies the exponential stability
in the large of the equilibrium z. = 0 of (GE).

(c) The uniform boundedness and uniform ultimate boundedness of the solutions
of (C) imply the same corresponding types of boundedness properties of the
solutions of (GE). O

We leave the proofs of the above results as an exercise.

We note that when | = 1, the quasi-monotonicity condition in Theorems 9.5.1 and
9.5.2 are automatically satisfied because this is always true for scalar-valued functions
(refer to Definition 3.8.1).

In applications, the comparison system given by

y=Py+m(t,y) (9.5.1)

is especially useful, where P = [p”] e RY*L satisfies the condition that psj > 0 for
i,j=1,...,land i # j, and where m: RT x Bg(r;) — R/ for some r; > 0 and
Bg(ry) C (RT)!, is assumed to satisfy the condition

t

=0  uniformly for t € RT.
=0 [yl

Applying Lyapunov’s First Method (Theorem 7.6.2), it follows that the equilibrium
Ye = 0 of (9.5.1) is uniformly asymptotically stable if —P is an M -matrix (refer to
Definition 7.7.1 for the definition of M-matrix and the discussion following that
definition for several equivalent characterizations of M -matrices).

We conclude by noting that in Section 9.7 we apply some of the results of the
present section in the analysis of the model of a multicore nuclear reactor described
by a class of Volterra integrodifferential equations.

9.6 Composite Systems

In Section 2.11 we introduced composite dynamical systems on metric spaces. We
now address the stability analysis of such systems in the context of composite dyna-
mical systems defined on normed linear spaces.
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We let (X, - 1), (Xi, |l - li)s @ = 1,...,1, be normed linear spaces; we assume
that X = X; x --- X, and that there are constants ¢; > 0 and ¢ > 0 such that

l
cullall < 3 Mzl < ol

i=1

for all x € X, where z = (z1,...,21)%, z; € X;, i = 1,...,1. We can define
the norm || - || on X in a variety of ways, including ||z|| = le':l ||;]];- We define
a composite dynamical system, {RT X, A, S}, defined on a normed linear space
(X, ] - |I) by modifying Definition 2.11.1 in the obvious way, choosing for metric
spaces (X, d), (X;,d;), i = 1,...,1, normed linear spaces (X, || - ||), (Xi, || - Il:),
1 =1,...,1[, respectively.

In our first result, we define for M; C X,

Theorem 9.6.1 Let {R", X, A, S} be a dynamical system where X = X7 x - - - X X

and X;,7 = 1,...,1l, are normed linear spaces with norms || - ||;,¢ = 1,...,[, re-
spectively. Assume that M = M;j x --- X M; is an invariant set (i.e., (S, M) is
invariant), where M; C X;,¢ = 1,...,[, and assume that the following hypotheses

are satisfied.
(i) There existv; € C[X; x RT,R] and ;1,2 € K, 4 =1,...,1, such that

Vi1 (di(xi, My)) < vi(i, t) < io(ds (x4, M;))

forall x; € X; andt € RT.

(ii) Givenwv; inhypothesis (i), there exist constants a;; € R and functions ;4 € K,
1,7 =1,...,1, such that

Dvi(pi(tv a,to) ) < 11%4 Pu Zamwjél p]v ))

for allp(a a, tO) = [pl('7 a, t0)7 cee 7pl('u a, tO)]T: Lph s 7pl]T€ Sandt > to,
where D denotes a fixed Dini derivative with respect to t € RY.

(iii) There exists an l-vector o’ = (v, ..., 1), ; > 0,7 = 1,...,1, such that the
test matrix B = [b;;] € R\*! specified by

1 ..
bij = E(aiaij —i—ozjaji), 1,7 =1,.. o,

is either negative semidefinite or negative definite.
Then the following statements are true.

(a) If B is negative semidefinite, then (S, M) is uniformly stable.
(b) If B is negative definite, then (S, M) is uniformly asymptotically stable.
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(c) If B is negative semidefinite, if M is bounded, and if 1;1,¥;2 € Koo for all
1 =1,...,1, then S is uniformly bounded.

(d) If in (c), B is negative definite, then S is uniformly ultimately bounded and
furthermore, (S, M) is uniformly asymptotically stable in the large.

(e) If B is negative definite and if there exist positive numbers a1, as, b, and ¢
such that

apr? < i1 (r) < ahia(r) < agr®
and

71)24( ) > CT
forallr € RT,i=1,...,1,then (S, M) is exponentially stable in the large.

Proof. The proof of this theorem is a consequence of Theorems 3.3.1-3.3.7. We
present here only the proofs of parts (a) and (b). The proofs of the remaining parts
follow along similar lines.

We choose

!
= Z ;v (w4, 1)
i=1

where = [x1,...,2;]T and @ = [aq,...,q]T is given in hypothesis (iii). By
hypothesis (i), we have

Zazwzl xu z)) < U xz, t < Zazwﬂ xuMz))

=1

forall z=[xq,...,7]T€ X1 x --- xX; = X. Letr =d(x, M) and r; = d(z;, M;),
1 < ¢ < [. We may assume without loss of generality that r = 2221 r;. We have

that ) .
Z aiiz(ri) < Z aithin(r) = Pa(r).
i=1 i=1

Also, we let 91 (1) = minj<;<;{¥;1(r)} and a = minj<;<;{c;}. Then

Zaﬂ/m (r;) > max {alwll(m)}

i=1

> 1rI<1aX {O‘zwl (7“1)}

a max {wl (r:)}

1<l
ahy ( g%{n})
athy (r/1)
Pi(r).

Y

e v
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Hence,

P (r) < v(z,t) < aha(r) (9.6.1)

forall x € X and ¢t € T, where ¥n,¢9 € K. Letr; = d;(pi, M;), i = 1,...,1.
Furthermore, in view of hypothesis (ii),

1 l
Dup(t.a.to),1) <o (wi4(ri> 2 aijtia(rs) )
i=1 i=1
= w! Rw
T (R + RT> w
2

= wT Bw

< A (B)|wl?

forallt > toand p(-,a,to) € S, where w = [t14(r1), ..., ua(r)]*, R = [ova44] €
R*! and A\ (B) denotes the largest eigenvalue of B.

Let 3 (r) = min<;<;{¢%,(r)} and d(p, M) = r = 3>\, ;. Then
jwf? > max (i (i)} > max (Gs(ri)} > Gs(r/1) = s(r).

Thus,
Du(p(t,a,to),t) < A (B)s(d(p, M)). (9.6.2)

In view of (9.6.1) and (9.6.2), it follows from Theorem 3.3.1 that (.S, M) is uni-
formly stable if B is negative semidefinite and from Theorem 3.3.2 that (S, M) is
uniformly asymptotically stable if B is negative definite. O

Our next result is easier to apply than Theorem 9.6.1; however, because it requires
some restrictions on the hypotheses of that theorem, it is more conservative than
Theorem 9.6.1.

Corollary 9.6.1 Assume that the hypotheses (i) and (ii) of Theorem 9.6.1 are true and
that —A = [—a;;] € R™!is an M-matrix where the a;; are given in Theorem 9.6.1.
Then the following statements are true.

(a) (S, M) is uniformly asymptotically stable.

(b) If in hypothesis (i) of Theorem 9.6.1, 11,2 € Koo, @ = 1,...,1, and if
M is bounded then S is uniformly bounded, and uniformly ultimately bounded.
Furthermore, under these conditions, (.S, M) is uniformly asymptotically stable
in the large.

(c) If in hypotheses (i) and (ii) of Theorem 9.6.1, ¢;;, = a;r with a;, >0, by, >0
and by = by = 2by, 0 = 1,...,0, k = 1,2,4, and r € RT, then (S, M) is
exponentially stable in the large.
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Proof. The proofs of all parts are consequences of Theorem 9.6.1 by invoking the
following property of M-matrices [25]: if D € R!*! is an M-matrix, then there
exists a matrix A = diaglay, ..., o], a; > 0,4 = 1,...,1, such that the matrix
AD + DTA is positive definite. Choosing D = — A, we see that hypothesis (iii)
of Theorem 9.6.1 is satisfied by choosing B = [b;;]ixi = (AA + ATA)/2 (e,
bij = (asa:5 + ojajzi) /2,1 < 14,5 < j), where B is negative definite. O

We now reconsider Example 2.11.1, which may be viewed as a control problem
consisting of an infinite-dimensional plant (the heat equation) and a finite-dimensional
controller (an ordinary differential equation), utilizing distributed control (in contrast
to boundary control). As in Example 2.11.1, the state variables for the controller and
the plant are denoted by 21 (¢) and z5(t, x), respectively.

Example 9.6.1 [25], [36] We consider the composite system given by

2:“1 (t) = AZl (t) + b/ f(l')ZQ(t,I)dl‘7 te R+

Q
%(bx) = aAzy(t,x) + g(fﬂ)CTzl(t), (t.2) R x O 9.63)
z(t,z) =0 (t.2) € RY x 50

where z; € R™, 2z € R, A € R™*™ bhc € R™, fand g € L2[Q,R], a > 0,
Q is a bounded domain in R" with smooth boundary 92, and A = >"" | 9% /927
denotes the Laplacian. System (9.6.3) may be viewed as a differential equation in the
product Banach space X = R™ x Hy|Q, R] where H[2, R] denotes the completion
of Cy[€2, R] with respect to the Lo-norm and where Hy[Q2, R] C Ly[Q2, R] (refer to
Section 2.10). In [26] it is shown that this initial value and boundary value problem is
well posed: for every initial condition zo = (219, 220)T€ R™ x Hy[(2, R] there exists
a unique solution z(¢, zp) that depends continuously on zg. It is easily shown that
the set {(z1,22)7} = {(0,0)7} C X is an invariant set for the dynamical system
determined by (9.6.3).

Now assume that all the eigenvalues of A have negative real parts. Then there
exists a positive definite matrix P = P7" such that

PA+ATP=C (9.6.4)

where C' is negative definite (refer to Section 7.4).
Next, we choose the Lyapunov functions

v1(21) = 27 Pz (9.6.5)

and ) )
vali2) = g2l = 5 [ leala) P 9.66)
2 2 Jo

where P is given in (9.6.4). Then

A (P21 2 € vi(21) < Ay (P)|z1)? (9.6.7)
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for all z; € R™, where Ay (P) > 0 and A, (P) > 0 denote the largest and smallest
eigenvalues of P, respectively. In the notation of Theorem 9.6.1, we now have, in
view of (9.6.4)—(9.6.7), that 111 (1) = A\ (P)r2, ¥12(r) = A (P)r?, and 19y (1) =
oa(r) = r? forall r € R,

Along the solutions of (9.6.3) we now have

Vi9.6.3)(21) = 2{ Cz1 + 2z1TPb/Q f(x)z2(x)dx

< =yl + 2Bl Pll2ll £l 2.2 [ 22l 2,

where —y < 0 denotes the largest eigenvalue of C' and || - ||2 denotes the matrix norm
induced by the Euclidean vector norm | - | defined on R™. Also, along the solutions
of (9.6.3) we have, invoking Gauss’ Divergence Theorem and Poincaré’s Inequality
(refer to Example 9.2.2),

U/2(9‘6.3)(22) :a/ Zz(Azz)da?+/ 209¢! z1dx
Q Q

:—a/ |v22|2dl’+CT21/ zogdx
Q Q
< —al||z|l7, + lellgllz.lz1 22 2, (9.6.8)

for all z= (21, 22)7€ X, where I' >n?/§? and where Q) can be put into a hypercube
of length 4.
It now follows that hypotheses (i) and (ii) of Theorem 9.6.1 are satisfied with

AL [a;;] given by

a— | v 2Pl .
el lgll . —al’

If —A is an M -matrix, then the hypotheses of Corollary 9.6.1 are satisfied as well.
It follows that the equilibrium z. = 0 of system (9.6.3) is exponentially stable in the
large if

yal' > 2[0f [e] [|Plla]| f]|z. 9]l .- o

9.7 Analysis of a Point Kinetics Model of a Multicore
Nuclear Reactor

We now return to the point kinetics model of a multicore nuclear reactor presented in
Example 2.8.1 described by the Volterra integrodifferential equations [25], [35]

t

pit) = — Kipilt) + / Fi(t — s)pi(s)ds + pi(t) / ni(t — s)pi(s)ds

— 00 — 00

l t
+ Z/ Gyt —s)p;(s)ds, i=1,...,1, 9.7.1)

J=10#5 7
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for t > 0. For the meaning of all the symbols given in (9.7.1), as well as background
material concerning the above model, the reader should refer to Example 2.8.1. As
pointed out in that example, the initial conditions for (9.7.1) given by p;(t) = ;(t)
fort € (—o0, 0] where ¢; € Z;, the fading memory space of all absolutely continuous
functions v; defined on (—o0, 0] such that

0

il = s + [ Juts)Peeds < o 0.2
where L; > 0,4 = 1,...,l, are constants that are specified later. The set of all
solutions of system (9.7.1), generated by varying @; over Z;,% = 1, ..., 1, determines

a dynamical system in the Banach space X which is the completion of Z; X --- X Z;
with respect to the norm defined by (9.7.2).
For ¢ = [¢1,...,¢1]T € X we now choose the vector Lyapunov function

V(p) = [v1(e1),...,ule)]”,

1/2
vi(pi) = (SDZ 21 K; / u)?els “du> )

Now define p;+(0) = p;(t + 6),0 € (—o0,0]. For p;z € Z;, we have along the
solutions of (9.7.1),

where

Vigo.7.1)(Pit) = . {21%( )pi(t) +K/ pl(t—&- u)] )eLiSdu}

2v;(pit)
= 2vi(lpit) {ZPit(O) [ — Kipir(0) + /_Ooo F;(—s)pit(s)ds
0 l 0
+ it (0) /_OO n;(—s)pit(s)ds +j=§;¢i/_oo Gij(—s)pit(s)d8:|

+ K {[Pz‘t(o)]z - L /_OOO[Pit(S)P@L"SdS] }

0 1/2
b; 2 <K,/ [pit(s)}QeLisd8>

and assume that L; > 0,7 =1, ..., are such that

(/OOO[FZ-(S)]QeL”ds> v < 0,
(f m[m-<s>12eLiSds)1/2 < o0,

Now let

1>

&

>

d;
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and
A 00 1/2
cij = (/ [Gij(s)]ze’:"“‘ds) < 0.
0
Then
1 2pit(0)cibi dlbz
f i) < 50— Kipir(0)? + T 2220 4 9y (0) 2L
'1)7/(9.7‘1)<p t) < 2vz(pzt){ pit(0)° + N + 2p;t(0) VK,
+2plt Z Cij—F— +szzt(0) - le?}
j=li#j VY K;
! { Kipin(0)2 + 25, (0)b; — Lit?
S o s —=Di i — Lib;
2v;(pit) ' VK
1
2d; Cij
+ S0P b+ (o). ©1.3
K j—lz,i#j K;
Now if
K/ L; > ¢, 9.7.4)
then the symmetric matrix given by
_ K; —ci/VK;
D; = |:Cz/ i L. 9.7.5)
is positive definite. Let o; > 0 denote the smallest eigenvalue of D;, i = 1,...,1.
Then for any ¢ > 0 withe < 0;,4 =1, ..., there exists an » = r(g) > 0 such that

if ||¢|| < 7, where || - || denotes the norm defined by (9.7.2), then

2.
oy O)Qbi < ey 0)2 + b?

T 0 < (0 + 1)

where b; is defined as above. From (9.7.3) we now obtain

l

@020+ Y ()

02(9.7.1)(1/%‘) =

201(1/)1) s2rins VEs
- Ul zl: c” (9.7.6)
j=1,
1=1,...,[. Letting
A=lay], ay= % and  a; = \;I% i # 7, 9.7.7)
foralli,j =1,...,1, we can rewrite (9.7.6) more compactly in matrix form as

Vigr () < —(A—el)V () (9.7.8)
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for all ||¢]| < r. In (9.7.8), inequality is interpreted componentwise and I denotes
the [ x [ identity matrix.

Now assume that A in (9.7.8) is an M-matrix. Then there exists an ¢ > 0,
sufficiently small, so that A — e1 is also an M -matrix. It follows from Theorem 9.5.1
(refer also to the discussion concerning equation (9.5.1)) that the exponential stability
of the equilibrium y, = 0 of the comparison system

y=—(A—el)y 9.7.9)

implies the exponential stability of the equilibrium 1), = 0 of the dynamical system
determined by (9.7.1).

We have proved (using the comparison theory of Section 9.5) that the equilibrium
e = 00f (9.7.1) is exponentially stable if (9.7.4) is true forall¢ = 1, ...l and if the
matrix A given in (9.7.7) is an M -matrix. (Refer to Definition 7.7.1 for the defini-
tion of M -matrix and the discussion following that definition for several equivalent
characterizations of M -matrices.)

9.8 Results for Retarded Functional Differential
Equations

Referring to Section 2.7, we recall dynamical systems determined by retarded func-
tional differential equations given by

i(t) = F(t.z,) (F)

where F € C[R*x C,R"], C is an open connected subset of X=C,. =C[[—r, 0], R"],
and z; € C, is determined by x:(s) = x(t + s), s € [-r,0]. On C, we define the
norm

lipll = _max {le(s)[} (9.8.1)
where | - | denotes a norm on R™. Then (X, || - ||) is a Banach space.

From Section 2.7 we recall that a function p € C[tg — r,7 + ¢),R"], ¢ > 0, is
a solution of (F) if (t,x:) € Rx Cforallt € [tgo —r,r +¢) and p = F(t,pt)
for t € [to,to + ¢). The reader should refer to Section 2.7 for results that ensure the
existence, uniqueness, and continuation of solutions of (F'). We assume that 0 € C'
and that F'(¢,0) = 0 for all t € R, so that . = 0 is an equilibrium for (F').

We employ functions v € C[C' x RT,R] (resp., v € C[C, x RT,R]). Along the
solutions of (F'), the upper-right derivative of v with respect to ¢ is given by

— 1
UEF)(% t) = hlg(r)l+ 7 [v(zin(t, ), t+h) —v(p,t)] (9.8.2)
where 241, (¢, ) denotes the solution of (F') through (¢, ¢).

Finally, we let B(h) = {¢ € C,: ||¢|| < h} for some h > 0. Throughout this
section, all results constitute statements relative to the norm || - || given in (9.8.1).
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The stability and boundedness results that we presented in the preceding sections
for differential equations defined on Banach spaces are of course applicable in partic-
ular to dynamical systems determined by retarded functional differential equations.
(Recall from Section 2.7 that system (F') can be transformed into an equivalent sys-
tem (F') which is a special case of the general differential equation (G E) defined on
Banach spaces.) However, because a solution of (F') is a function of ¢ with range in
R™, it is reasonable to expect that one should be able to improve some of the results
presented thus far for systems determined by (F’). This is indeed the case.

A. Stability and boundedness results

We first present local results.

Theorem 9.8.1 (i) Assume that for every bounded set G in C., the range of F' on the
setRT x Gisbounded in R™. Assume that there existafunctionv € C[B(h) xR, R],
with b > 0 and B(h) C C, and two functions 1, ¥ € K, such that

1(le(0)]) < v(p,t) < ¥a(llell) (9.8.3)

where | - | denotes a norm on R™, and
V() (p,t) <0 (9.8.4)

forall p€ B(h) and t e R*. Then the equilibrium ¢, = 0 of (F) is uniformly stable.
(ii) If in addition to the above conditions there exists a function 13 € K such that

Uiy (9, 1) < —13(]9(0)]) (9.8.5)

for all ¢ € B(h) and t € RT, then the equilibrium ¢, = 0 of (F) is uniformly
asymptotically stable.

Proof. (i) For given ¢ > 0 and ¢y > 0, we can assume without loss of generality
that ¢ < h, and we choose § = min{e, ;' o 1b1(e)}. Then ¥o(d) < ¥y(e).
Because (9.8.4) is true by assumption, we know that for ¢ € B(h), v(x¢(-, to, ), t)
is nonincreasing for t > to, where (-, tg, ¢) denotes a solution of (F') with initial
condition x¢, = ¢. Therefore,

Y1(|z¢(0, 20, ©)|) z¢(-, to, ), )

T, (- to, ), to)

[ VAR VAN
S < <
—~ o~

INACIA
s e e
5=

s

N
—~
m

VVE

for all t > ¢y whenever ¢ € B(6). Thus, |2:(0,t9, ¢)| < € for all ¢t > t; whenever
¢ € B(0). Furthermore, because for all ¢ > t,

)

(- o, )| = max |z 5(0, 20, )]
s€[—r,0]
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and fortg >t — s > tog — r, |[21—5(0,t0, )| = |p(t —s —to)| < [l¢]| < d < e
if o € B(9), then ||a¢(-, to, )| < e for all ¢ > t; whenever ¢ € B(J). We have
proved that the equilibrium ¢, = 0 is uniformly stable.

(ii) Because the uniform stability of the equilibrium ¢, = 0 of (F') has been
proved above, we only need to prove the uniform attractivity of . = 0 of (F)).
Specifically, we need to prove that there exists an 1 > 0 (independent of € and %),
and for every € > 0 and for every tqg € R, there exists a T = T'(¢) (independent
of to) such that ||z:(-, %o, ¢)|| < € forall t > to + T whenever ||¢|| < 1. By the
uniform stability of ¢, = 0, there exists an n > 0 such that ||z:(-, o, ¢)|| < (r/2)
for all t > to whenever ¢ € B(n). We now claim that the equilibrium ¢, = 0
is uniformly attractive in B(7). For if this were not true, then there would exist an
g0 > 0,atg € RT,andapy € B(n) suchthat ||z, (-, to, ¢0)|| > o for a sequence of
ti > to with limy o0 t = 00. Now ||z, (+, to, ¥0)|| > €0 implies that there exists
a sequence s € [—r, 0] such that |z(tx + sk, to, vo)| = |zt (Sk, o, Yo)| > €o. Let
tj, = tx + s} and assume without loss of generality that ¢}, > ¢ + 1 (if this is not
the case, then choose a subsequence of ). By our assumption on F' for the bounded
set B(r/2), there exists a constant L such that |z (¢, to, ©o)| = |F(t,2+)| < L for all
t > tg, and such that L > 2. We now have

€0 0 )
|2 (¢, to, ¥o)| 25 for t € [tk_ﬂ’t%—i_ﬂ} ,

Therefore, by (9.8.5), we have for t € [t} — (§/2L),t} + (0/2L)] that
€
oy (@ to, 90)s ) < =t to, o)) < —vs ()
andifwelet hy, =t} +6/(2L) and i, = ¢}, —6/(2L), then v(xy, , hi) —v(zy, , Ik)

—3(e0/2)0/L, k = 1,2,.... Because I, > hy_1, it follows that v(z;,, )
v(@h,_ys hk—1). Thus, v(xp, , hi) — v(z1,, 1) < —3(e0/2)dk/ L. For

INIA

v(ay, 1)L

V3(g0/2)0
we now have v(zp, , hi) < 0, which is in contradiction with (9.8.3). We have proved
that the equilibrium @, = 0 of (F) is uniformly asymptotically stable. O

Next, we consider some global results.

Theorem 9.8.2 Assume that C' = C). and that for every bounded set G in C,., the
range of F' on the set RT™ x G is a bounded set in R™. Assume that there exist a
function v € C[C, x RT,R] and two functions 11, 12 € K such that

D1(le(0)]) < v(p,t) < ¥a(llel)) (9.8.6)

and such that
Vi (@ t) <0 (9.8.7)
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for all ||¢|| > M for some M > 0 and for all t € RT. Then Sp, the set of all
solutions of (F'), is uniformly bounded.

If in addition to the conditions given above, there exists a function ¥3 € K such
that

Vi (0, 1) < —3(]0(0)]) 9.8.8)

forall ||¢|| > M and all t € R, then S is uniformly ultimately bounded.

Proof . (i) For every a > 0, we choose 8 = max{(¥; "' o ¥o)(),,2M}. If
¢ € B(a), then for all ¢ > ¢, such that ||z, (0, to, )| > M, we have

wl(|xt(05t05¢)‘) xt('at0a¢)7t)
xto('7t03 QO),to)
7t0)

lell)
)

IA N
ER-N-Y
©

<
[\v] V)
X ©

IN A CIA
= &

=

and therefore, |x,(0,%0, )| < 8. It follows that ||x,(-,t0, )| < G forall t > to
whenever ¢ € B(«a). We have proved that Sr is uniformly bounded.

(i1) The proof of uniform ultimate boundedness can be accomplished in a similar
manner as the proof of part (ii) of Theorem 9.8.1 and is left as an exercise. o

Theorem 9.8.3 Assume that C' = C,. and that for every bounded set GG in C,., the
range of F on the set R™ x G is a bounded set in R™. Assume that there exist a
function v € C[C, x RT,R], two functions 11,5 € K, and a function 13 € K
such that

D1(lp(0)]) < v(p,t) < Pa(llell) (9.8.9)

and
Vi (0, t) < —3(]0(0)]) (9.8.10)

for all ¢ € C, and ¢ € RT. Then the equilibrium ¢, = 0 of (F) is uniformly
asymptotically stable in the large.

Proof . 1t follows from Theorems 9.8.1 and 9.8.2 that the equilibrium ¢, = 0 of
(F) is uniformly stable and that Sr is uniformly bounded. To prove part (iii) of
Definition 3.1.16, we repeat the proof given in part (ii) of Theorem 9.8.1 with 7
replaced by « and /2 replaced by 3, where « and 3 are the constants used above in
the proof of Theorem 9.8.2. We omit the details. o

Before presenting instability results, we consider some specific examples.
Example 9.8.1 Let us consider the retarded functional differential equation

i(t) = Az(t) + Bz(t—r), r>0 (9.8.11)
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where x € R™ and A, B € R™"*"™. We assume that A is a stable matrix (i.e., all the
eigenvalues of A have negative real parts).
If we let B = 0, then (9.8.11) reduces to the linear ordinary differential equation

z(t) = Ax(t). (9.8.12)
For (9.8.12) we can construct a Lyapunov function
w(z) =27 Px (9.8.13)
where P = PT € R™*" is a positive definite matrix (i.e., P > 0) such that
wég.s.lz)(x) =—2"Cx (9.8.14)

where C = CT € R"*" is a positive definite matrix (i.e., C > 0). The validity of
(9.8.13) and (9.8.14) follows from the fact that for every positive definite matrix C'
there exists a unique positive definite matrix P such that

ATP+PA=—C. (9.8.15)

When B # 0, we cannot use (9.8.13) as a Lyapunov function for (9.8.11), because this
function would not capture the effects of the delayed term Bx(t — ). To accomplish
this, we append to (9.8.13) a term, resulting in the Lyapunov function

0
o(p) = T (0)P(0) + / 7 (0)Ep(6)d6 (9.8.16)

-Tr

where E = ET ¢ R"*" isa positive definite matrix (i.e., ' > 0).
Let 01 and - denote the smallest and largest eigenvalues of P, respectively, and
let ;11 and po denote the smallest and largest eigenvalues of E, respectively. Then

0
o) < Salp(0)2 + / 1o o (0) 0

< Sallell® + perllel®
= (82 + por) |l l|%.

Also, v(p) > 61]4(0)|?. Thus, there are constants co > ¢; > 0 such that

c1le(0)* < v(p) < el (9.8.17)

for all p € C.
Along the solutions of (9.8.11) we have
o811y (%) = =" (0)Cp(0) + 20" (0) PBy(
+ 9T (0)Ep(0) — T (=) Ep(—7)
)

— [T (0) T (—1)] {(_C(P—B% —EB} M(_Oz)], (9.8.18)
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If the matrix C' — FE is positive definite (i.e., C — E > 0 or C' > FE), and if A; denotes
the smallest eigenvalue of C' — F, then

IT(C —E)x > /\1|x|2 and zTEx > ,LL1|:17|2 (9.8.19)
for all z € R™. Then
Vio.8.11)(#) < =A1lp(0)]* + 2| PBJ| [(0)||(—7)| — palo(—r)[?

==l 1) |y T[] esa

Thus, vy g ;) is negative definite if \; > 0 (which is given) and Ay i — || PB|*> > 0.

In this case we obtain

Yo.8.11) () < —e3(|(0)1* + [(=1)?) < —esle(0) 9.8.21)

forall p € C,., where c3 > 0 denotes the smallest eigenvalue of the symmetric matrix
given in (9.8.20).

It now follows from (9.8.17), (9.8.21), and Theorem 9.8.3 that under the above
assumptions, the equilibrium ¢, = 0 of system (9.8.11) is uniformly asymptotically
stable in the large.

We have shown that if the matrix A in (9.8.11) is stable and if the matrix B is
sufficiently small in norm, then the equilibrium ¢, = 0 of system (9.8.11) is uniformly
asymptotically stable in the large for all r > 0. O

Example 9.8.2 We now consider the system described by the scalar equation
z(t) = —a(t)x(t) — b(t)x(t — ) (9.8.22)

where ¢ € R*,r > 0,a(-) and b(-) are real-valued, bounded, and continuous func-
tions and a(t) > 0 for all t € R*. We choose as a Lyapunov function

1 0
v(p) = 50(0)* + pr / p(0)>do (9.8.23)

-

where  is a positive constant. Then

1 1
clp(0)* = S1(0)* < v(p) < SlIgll* + prliel® = callol® (9.8.24)

for all p € C,.
Along the solutions of (9.8.22) we have

tosam(@) =~ [e0)  ol=n) [0 MO SO 0ss)

for all p € C,.. Now assume that for some § > 0, (a(t) — p)u — b(t)?/4 > 5 >0
for all t € R, or equivalently, that

b(t)? —4(a(t) —p)p < =6 <0 (9.8.26)
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for all ¢ € RT. Note that inequality (9.8.26) also implies that a(¢) > u > 0 (and
a(t) < M for some M > 0, by assumption). Therefore, under these assumptions,
the symmetric matrix in (9.8.25) is positive definite. From the characteristic equation

N = a(t)A+ (alt) — p)u — b(t)* /4 =0,
the smallest eigenvalue of the above-mentioned matrix can be estimated as

N e O e e G N i et
2 - 2 —4M

Therefore,

V{g.8.02) () < —e3(0(0)? + p(—1)?) < —c3(0)? (9.8.27)
for all ¢ € C,, where ¢c3 = §/4M. Inequality (9.8.24) and (9.8.27) along with
Theorem 9.8.3 imply that the equilibrium ¢, = 0 of system (9.8.22) is uniformly
asymptotically stable in the large if there exist ¢ > 0 and § > 0 such that inequality
(9.8.26) is satisfied. In particular, these conditions are satisfied for b(¢t) = b and
a(t) = aif |b| < a. In this case we choose ;1 = a/2 and § = a® — b°. O

Example 9.8.3 In this example we demonstrate the advantage of the stability results
of the present section over those of Section 9.2, when applied to functional differential
equations. To this end, we reconsider system (9.8.22), using the same Lyapunov
function as before, restated here as

0
op) = 5002 +n [ (0.

We have in the present case

allell? < v(p) < el (9.8.28)

where ¢; = min{1/2, u} and ¢ = max{1/2, u} and where the norm is given by
(9.8.1).
As in Example 9.8.2, we have along the solutions of system (9.8.22) the estimate

Vig.s.22) (%) < —e3(0(0)” + p(=7)’)

for all ¢ € C,.. Therefore, 029'&22) is negative semidefinite with respect to the norm
I - || and we can conclude from Theorem 9.2.1(b) that the equilibrium ¢, = 0 of
system (9.8.22) is uniformly stable. However, because we cannot show in the present

case that vE9.8_22) is negative definite with respect to the norm || - ||, we cannot apply
Theorem 9.2.1(c) (resp., Theorem 9.2.2) to conclude that the equilibrium ¢, = 0 of
system (9.8.22) is uniformly asymptotically stable (in the large). o

B. Instability results

We now present instability results for retarded functional differential equations (F)
which in general will yield less conservative results than the corresponding instability
results given in Subsection 9.2C.
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Theorem 9.8.4 (Lyapunov’s First Instability Theorem for retarded functional differ-
ential equations) Assume that there exist a function v € C[B(h) x RT, R] for some
h > 0, where B(h) C C, and a tg € RT, such that the following conditions are
satisfied.

(i) There exists a function ¢; € K defined on [0, ] such that

v(,t) < P1(lp(0)]) (9.8.29)

forall o € B(h)andt € RT.
(ii) There exists a function 12 € K defined on [0, h] such that

vy (p:t) = 2(l9(0)]) (9.8.30)

forall o € B(h)andt € RT.

(iii) In every neighborhood of the origin ¢, = 0 € C,, there are points ¢ such that
v(p,to) > 0.

Then the equilibrium ¢, = 0 of (F') is unstable.
Proof . For a given € € (0, h), let {¢m }men be a sequence with ¢,,, € B(e), such

that ||, || — 0 as m — oo, and v(¢, to) > 0, where we have used condition (iii).
Let (-, to, ¢m) be a solution of (F') with the initial condition x:, = ¢, and let

U (1) 2 v(x¢(+, to, om), ). It suffices to prove that for every m € N, (-, %o, om)
must reach the boundary of B(g) in finite time. For otherwise, we would have
|z (-, to, om)|| < € for all t > tg, and in particular, that |z:(0, to, ¢m)| < € for all
t > to. It follows from hypothesis (ii) that v,,(¢) is nondecreasing for ¢ > ¢y, and
from hypothesis (i) it follows that

P1(|7¢(0, 0, om)]) = vm(t) 2 vm(to) = v(em, to) >0
or
_ A
|xt(07t07@m)| 2 1;[}1 1(vm(t0)) = Qp > 0
for all ¢ > ty. Using hypothesis (iii), we now have
wl(‘g) > ¢1(|xt(07t07¥7m)|) > Um(t)
t
Z U'rn(tO) +/ ¢2(am)d8
to
= vm(to) + Y2(am)(t — to)

for all ¢ > ¢¢. But this is impossible. Therefore, the equilibrium ¢, = 0 of (F) is
unstable. a

We demonstrate the applicability of Theorem 9.8.4 by means of a specific example.
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Example 9.8.4 We consider the scalar retarded functional differential equation

z(t) = —az(t) — bx(t —r) (9.8.31)
where t € RT,r > 0is a constant, and a, b € R. We choose as a Lyapunov function
1 2 ’ 2
v(p) = 59(0)" —n [ ¢(0)°dd (9.8.32)
for all ¢ € C, where p > 0 is a constant. Clearly,
1
v(p) < 50(0)* (9.8.33)

for all ¢ € C,.. Along the solutions of (9.8.31) we have
1 | Tlet ) =b/2] (0

-0 s [T TP 0]

A( (02 +o(=r)?)

Ao (0)2 (9.8.34)

U(g 8. 31)

AVARLY,

where A denotes the smallest eigenvalue of the symmetric matrix given in (9.8.34).
Now A > 0 if and only if

a+p<0 and —4(a+ p)u > b2 (9.8.35)
The second inequality in (9.8.35) is equivalent to the inequality
(a+2u)* + (b — a?) < 0.

Thus, the conditions in (9.8.35) hold for some p > 0 if and only if —a > |b].
Hypothesis (iii) in Theorem 9.8.4 is clearly satisfied for the choice of v(y) given

in (9.8.32). It now follows from (9.8.33), (9.8.34), and Theorem 9.8.4 that the equi-

librium @, = 0 of system (9.8.31) is unstable if —a > |b|. O

Before addressing the next instability result, we note that Lyapunov’s Second In-
stability Theorem for functional differential equations is identical in form to The-
orem 9.2.5 (Lyapunov’s Second Instability Theorem for differential equations in
Banach space) and is not restated here.

Theorem 9.8.5 (Chetaev’s Instability Theorem for retarded functional differential
equations) Assume that there exist a function v € C[B(h) x Rt R] for some h > 0,
where B(h) C C,aty € R" and an hg > 0, such that the following conditions are
satisfied.

(i) There exists a component G of the set
D = {(p,t) € B(h) x R : v(ip,t) < 0and [|¢]| < ho}

such that in every neighborhood of the origin ¢, = 0 € (., there exists a
with (¢, t0) € G.
() v(p,t) > —1(]le|) for all (¢,t) € G, where ¢ € K.
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(i) o] (18) < —a(0(0)]) for all (¢, 1) € G, where 6 € K.
Then the equilibrium ¢, = 0 of (F') is unstable.

Proof . Let {pm, tmen be a sequence in C,. such that (¢,,,t9) € D and such that
lom|l — 0 as m — oo. The existence of such a sequence {¢,,} is guaranteed by
hypothesis (i). Let 2+ (-, to, ©.m ) be a solution of (F') with initial condition 2+, = @p,.
It suffices to prove that for every m € N, (-, to, ¢sm) must reach the boundary of
B(hp) in finite time. For otherwise, we would have ||x;(-,to, om)|| < ho for all
t > to. Hypothesis (iii) implies now that v(z(+, to, ®m ), t) is nonincreasing for all
t > ty and that
¢
ol o o)) < olipmsto) = [ (2007 (ho)ds
to
= v(pm, to) — (2 091 1) (ho)(t — to)

where we have assumed without loss of generality that hg is in the range of ;.
(Should this not be the case, then we can always replace hy by a smaller number.)
Therefore, v(z(+, to, Ym),t) — —o0 as t — oo. But this contradicts hypothesis (ii)
which implies that v is bounded from below on D. This proves the theorem. a

We apply Theorem 9.8.5 in the stability analysis of a specific example.

Example 9.8.5 We consider a scalar retarded functional differential equation given by

i(t) = —ax(t)® — bx(t —r)? (9.8.36)
where t € RT, r > 0, and a,b € R. We choose as a Lyapunov function
v(p) = —%0)4 + u/o ©(6)°do (9.8.37)
for all ¢ € C, where p > 0 is a constant. Clearly,
v(p) > —W (9.8.38)

for all ¢ € C,.. Along the solutions of (9.8.36) we have
3 e [—la+ ) —b/2] [ @(0)?
w0 pt-r?) |7 AR

)=-1 p
< =A((0)° +p(=1)°)
< —Ap(0)° (9.8.39)

UEQ.S.BG) (¢

forall p € C,.. Now A > 0 (where A denotes the smallest eigenvalue of the symmetric
matrix given in (9.8.39) if and only if

a+p<0 and —4(a+ p)pu > b2 (9.8.40)

In anidentical manner as in Example 9.8.4, we can show that the conditions in (9.8.40)
are satisfied if and only if —a > |b].
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For any hg > 0, let G1 be any component of the set D={¢ € B(hg): v(p) <0}
such that ¢, = 0 € G, and let G = G x R*. It now follows from Theorem 9.8.5
that the equilibrium ¢, = 0 of system (9.8.36) is unstable if —a > |b|. o

C. Invariance theory

We next address the stability analysis of dynamical systems determined by autonomous
retarded functional differential equations given by

(1) = F(x) (FA)

where F' € C[C,R"] and C is an open connected subset of C,. with norm || - || defined
in (9.8.1). In the present subsection we assume that F' is completely continuous; that
is, for any bounded closed set B C C, the closure of F'(B) = {F(z): z € B} is
compact.

Theorem 9.8.6 Assume that F'in (F'A) is completely continuous and that there exists
a function v € C[C, R] such that UEFA) (¢) < Oforall p € C. Let M be the largest
invariant set with respect to (F'A) in the set

Z ={p € C:v(pa(p) =0} (9.8.41)
Then every bounded solution of (F A) approaches M as t — oo.

Proof . By Theorem 9.4.1 it suffices to prove that for every bounded solution ¢, (+)
of (F'A), the closure of the trajectory of {¢;(-)} is compact in C).. Given a bounded
solution ¢;(-) of (F'A), because F' is completely continuous, there exists a constant
L > 0 such that |[¢(t)] < L for all t € R, where p(t) = ¢4(0). Therefore, by
using the Ascoli—-Arzela lemma (refer to Problem 2.14.7), we can prove that for every
sequence ¢, (+), t, € R, there exists a subsequence ¢y, (-) that converges in
C,. This proves that the closure of the trajectory of {(:(-)} is compact in C,.. This
completes the proof of the theorem. m|

In the next result we assume that ¢, = 0 is an equilibrium of system (F' A).

Theorem 9.8.7 Assume that C = () and that F in (F'A) is completely continu-
ous. Assume that there exists a function v € C[C,., R] that satisfies the following
conditions.

@) UEFA)(()D> < 0Oforall p € C,.

(ii) There exists a function ¢ € K, such that

Y(l(0)]) < v(ep) (9.8.42)

for all p € C.
(iii) {0} C C, is the only invariant subset in

Z ={p € Cr: v(pa)(p) = 0}. (9.8.43)

Then the equilibrium ¢, = 0 of system (F A) is uniformly asymptotically stable
in the large.
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Proof . Let Uy = {¢ € Cr:v(p) < n}. If ¢ € Uy, because vipy () < 0,
z4(p, to) € Uy, for all t > to. It follows from (9.8.43) that |z, (¢, to)| < ¥y ' (n) for
all t > ¢ if ¢ € U,,, which implies that z (¢, o) is uniformly bounded.

The uniform stability follows from Theorem 9.8.1. In applying Theorem 9.8.1 we
note that if v is independent of ¢, then the condition v(¢) < 12(||¢||) can be deleted
for uniform stability, inasmuch as in this case the continuity of v can be utilized
instead in the proof of Theorem 9.8.1.

It now follows from Theorem 9.8.6 that the equilibrium ¢, = 0 of system (F'A)
is uniformly asymptotically stable in the large. O

In Example 9.8.2 we showed that for the system described by
&(t) = —ax(t) — bx(t — 1), (9.8.44)

the equilibrium ¢, = 0 is uniformly asymptotically stable in the large if || < a and
in Example 9.8.4 we showed that the equilibrium ¢, = 0 of this system is unstable if
—a > |b|. In the next example we address some of the critical cases for this system,
using the results of the present subsection. Specifically, we show thatif a = b > 0,
then the equilibrium ¢, = 0 of the above system is uniformly asymptotically stable
in the large and if @ = —b > 0, then the solutions ¢ of this system must approach a
constant as { — oo.

Example 9.8.6 [29] For system (9.8.44) we assume that t €R™,r >0, and a, b€ R.
We choose as a Lyapunov function

0
v(p) = %@(0)2 + % / 0(0)2d0. (9.8.45)
For a > 0, we have 1
v(p) > 5 ¢(0)* (9.8.46)
and
/ a b 0
Vig.8.42) () = = [(0)  (=7)] [b a] [f((g,)} . (9.8.47)

The symmetric matrix in (9.8.47) is positive semidefinite if and only if a? — b* > 0
and therefore, v£9_8.44) (¢p) < 0forall ¢ € C, if and only if |b| < a. In the following

we address the critical case a = |b|. We accomplish this by considering the cases
a=b>0anda=—-b>0.

(a) When a = b > 0, then

Z={p € Cr:v(gga(p) =0} = {p € Cr: p(0) = —p(—r)}.

If M is the largest invariant subsetin Z, then 2+ (-) € M implies thatz(t) = —z(t—r),
and therefore, by invoking (9.8.44) it follows that #(¢) = 0. Therefore, 2:(t) = ¢, a
constant, and in fact ¢ = 0. It follows that M = {0}. All conditions of Theorem 9.8.7
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are satisfied and we conclude that the equilibrium ¢, = 0 of system (9.8.44) is
uniformly asymptotically stable in the large.
(b) When a = —b > 0, then

Z = {90 €Cy: UE9.8.44)(50) = 0} = {90 €Cr:p(0) = 90(_7’)}-

Similarly as in part (a), we can show that the largest invariant subset in Z is given
by M = {¢ € C,: ¢ = k}; that is, ¢ is a constant function. It follows from
Theorem 9.8.2 that the solutions of system (9.8.44) are uniformly bounded. From
the proof of Theorem 9.8.6 it follows that the trajectory of every solution of (9.8.44)
must have a compact closure and from the proof of Lemma 4.2.2, that v(x¢) — ¢,
a constant, as t — oo. Therefore, the w-limit set of z;, w(x), must be a subset of
the set v~!(c) N M. Now in the case when ¢ is a constant function, we have that
v(¢) is a quadratic polynomial in ¢ and v~ (c¢) N M consists of at most two constant
functions. Therefore, z,; approaches a constant as t — oc. a

In the next section, we apply Theorem 9.8.7 further in the analysis of a class of
artificial neural networks with time delays.

D. Razumikhin-type theorems

The stability analysis of dynamical systems determined by retarded functional differ-
ential equations (F') by the results presented thus far is in general more complicated
than the analysis of dynamical systems determined by ordinary differential equations
because the former involve hypotheses in the setting of the space C,. whereas the hy-
potheses of the latter involve assumptions defined on R™ (which is much simpler than
the space C'.). Stability results of the Razumikhin-type circumvent such difficulties
by requiring hypotheses that are defined exclusively on R™.

In the present subsection we return to dynamical systems determined by retarded
functional differential equations (F'), as described at the beginning of the present
section. In the following results, we let Bg(h) = {x € R™: |z| < h} C R" for
some h > 0, and as before B(h) = {¢ € C,: ||¢|| < h} C C C C,.

Theorem 9.8.8 Assume that for every bounded set GG in C,. the range of F' on the
set RT x G is a bounded set in R". Assume that for (F) there exist a function
v € C[Bg(h) x [-r,00),R] and two functions 11,12 € K and a nondecreasing
function 13 € C[R™, R*] such that

P1(|z]) < vz, t) < o(|x]) (9.8.48)

and for all t > —r and all ¢ € B(h), and

V() (9(0),1) < =3(|@(0)]) if v(p(6),t + 0) < v(p(0),) for all § € [—r,0].
(9.8.49)
Then the following statements are true.

(i) The equilibrium @, = 0 of (F) is uniformly stable.



436 Chapter 9. Infinite-Dimensional Dynamical Systems

(i) If 13 € K and there exists a nondecreasing function f € C[R™, R™] such that
f(s) > sfor s € (0, h] such that for all £ > —r and all ¢ € B(h),

Uipy (0(0), 1) < —¥3(le(0)]) if v(p(0),t+0) < f(v(p(0),1))
forall 6 € [—r, 0], (9.8.50)

then the equilibrium ¢, = 0 of (F) is uniformly asymprotically stable.

Proof . (a) Let .
= sup v(p(0),t+0)
oe[—r,0]

(e, )

for all (p,t) € B(h) x RT.
If v(z¢(to, v0), t) = v(x(t, to, vo), t), that is,

v(x(t+0,t0,00),t +0) <v(x(t to, o), t) < f(v(x(t, to, o)1),

then EZF) (z+(to, ¥0),t) <0 by hypothesis (ii). If 0(z¢(to, v0),t) <v(z(t, to, ©0),t),
then for 7 > 0 sufficiently small

6(xt+’r(t0a 900)7 t+ T) = ’5(!1%@0, 800)7 t)

Hence 5&,) (x¢(to, 0),t) = 0. Therefore, ¥’ (¢ (o, ¥0),t) < 0 under the present
assumptions.

It follows from (9.8.48) that 11 (|¢(0)]) < v(p,t) < v2(]l¢|]). From Theo-
rem 9.8.1 we conclude that the equilibrium ¢, = 0 of (F) is uniformly stable.

(b) We first note that from part (a) and by (9.8.48) it follows that for a given ey > 0
there exists a do > 0 such that supge_,.q) [2(t + 0)| < go for all t > to — r and
for any solution z(t) of (F') whenever supge(_,. ) |2(to + 6)| < do. To prove the
uniform attractivity of the equilibrium ¢, = 0 of (F') we need to show that for every
n > 0 there exists a T = T'(n,09) > 0 such that |z(¢)| < npforallt > tc + T
whenever supge_,. o) |2(to + 6)[ < do.

Without loss of generality, assume that 7 is sufficiently small so that ¢ (n) <
12(d0). Then there exists an a > O such that f(s) —s > aforall s € [1)1(n), 12(do)].
Also, there exists a positive integer N such that 1)1 (n) + Na > 15(dy). For every
fixed n > 0 and every fixed solution z(t) of (F'), define

Fy = {t € [tg,00): v(x(t),t) > Y1 (n) + (N — 1)a}.

Then for every t € F7, it follows that
fu(z(t),t) > v(z(t),t) +a

>v(x(t+6),t+0).
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It follows from (9.8.50) that
vy (@), 1) < —¢s(|z(8)]) <0 (9.8.51)

forallt € F.

We next show that F is bounded. Suppose that | # 0. Let ¢, = inf{t € F}}.
It must be true that v(z(tm ), tm) > Y1(n) + (N — Da. If t,,, > £, then (9.8.51)
holds for ¢ = t,,, which implies that v(z(t,, — At), ty, — At) > v(x(tm), tm) for
At > 0 sufficiently small. Therefore, t,,, — At € F}. This contradicts the definition
of t,,. Therefore, t,,, = t¢ and furthermore, ¢y < t; € Fy implies that [to, ;] C F7.
For any t € I}, we have

z(t)] = (3 " o) (@(t),t) > by " (Y1(n) + (N — 1)a).
Hence, for any ¢y < t1 € I,
v(z(ty), t1) < v(z(to), to) — (Y30 v3 ") (V1(n) + (N — 1)a)(t1 — to).

From this we conclude that F} is bounded, for otherwise for sufficiently large ¢4,
v(z(t1), t1) will become negative, which contradicts the fact that v is positive definite.
For F; bounded there exists a 77 > to such that v(z(t),t) < ¥1(n) + (N — 1)a
forall t > Tj.
IfN >1,let

Fy={t €[T1,00): v(x(t),t) > ¢¥1(n) + (N — 2)a}.
In a similar manner as for F, we can show that F5 is bounded. Inductively, define F3
if N>2,..., Fy. Then Fly is bounded. Therefore, there existsa Ty > --- >T7 >t

such that 11 (|z(¢)]) < v(z(t),t) < ¥1(n) (e., |x(t)] < nforall t > Ty). The
proof is completed. O

We conclude the present section with a specific example that demonstrates the
applicability of Theorem 9.8.8.

Example 9.8.7 We consider the scalar retarded functional differential equation

B(t) = —a(t)z(t) = Y _b;(t)a(t —r;(t)) (9.8.52)
j=1
where a, bj, 7;, 7 = 1,...,n, are continuous functions on R that satisfy a(t) > &

forsome d > Oand 3°7_, [b; ()] < k6,0 < k < 1,and0 <7;(t) <r,j=1,...,m,
forallt € RT.
We choose as a Lyapunov function

v(z) = 3%
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Along the solutions of (9.8.52) we have

n

Vo.s52)(2(1) = —a()z(t)* = Y bj()a(t)a(t —ri(t)).

Jj=1

Assume that (6)? < gz(t)%,t —r < 6 < t and choose f(s) = g¢s,q = 1/k > 1.
Then

V(o.8.52)(x(t)) < +Z\b Ygz(t)? < (= 6+ ko) (t)?.

Therefore, the equilibrium z(¢) = 0 of system (9.8.52) is uniformly asymptotically
stable in the large. O

9.9 Applications to a Class of Artificial Neural
Networks with Time Delays

An important class of artificial recurrent neural networks, Cohen—Grossberg neural
networks, is described by the set of ordinary differential equations,

i(t) = —ailws(0) i (1) = D tigs ;1) 99.1)
j=1
i =1,...,n, where x; denotes the state variable associated with the ¢th neuron, the

function a;(-) represents an amplification function, and b;(-) is an arbitrary function;
however, we require that b;(-) be sufficiently well behaved to keep the solutions of
(9.9.1) bounded. The matrix 7" = [t;;] € R™*" represents the neuron interconnec-
tions and the real function s;(-) is a sigmoidal nonlinearity (specified later), repre-
senting the ith neuron. Letting 7 = (21, ...,1,), A(z) = diaglai(z), ..., a,(2)],
B(x) = [bi(z1),...,bn(z,)]T, and S(x) = [s1(21), -, 8n(z4)]T, (9.9.1) can be
rewritten as

#(t) = —A(x(t)[B(z(t)) — TS(x(1))]. 9.9.2)

If T =TT, then (9.9.2) constitutes the Cohen—Grossberg neural network model.

Frequently, multiple time delays are incurred in such networks, either intentionally
or unavoidably. Such networks are described by differential-difference equations of
the form

(1) = —ai(ws(0) [bi(@a(6) = D2 1555 (1) Z S s, a0 - )]

j=1 k=1 j=1

(9.9.3)
i=1,...,n, where tgf), i,7 = 1,...,n, denote the interconnections that are associ-
ated with time delay 7, K = 0,1, ..., K. We assume without loss of generality that
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0=179 <7 < -+ < 7k.The symbols z;, a;(-), b;(+), and s;(-), are the same as in
(9.9.1). System (9.9.3) can now be expressed as

K
i(t) = —A(2(t) | Ba(t) - ToS(@(t) — 3 TeS((t - m)} 9.9.4)
k=1

where z, A(-), B(+), and S(-) are defined similarly as in (9.9.2) and where T}, makes
up the interconnections associated with delay 7%, £ = 0,1,..., K, so that T =
To+Ty+ -+ Tk.

Throughout this section we assume that the Cohen—Grossberg neural networks
without delay, given by (9.9.1), and with delays, given by (9.9.3), satisfy the following
assumptions.

Assumption 9.9.1
(i) The function a;(-) is continuous, positive, and bounded.
(ii) The function b;(-) is continuous.
(iii) T = [t;;] is symmetric; thatis, T = T7.
(iv) s; € C'[R,R] is a sigmoidal function; that is, s;(0) = 0,

A ds;
si(x;) = %;(fj) >0,

limy; o0 8j(75) = 1, limg, o0 8j(7;) = —1, and lim, | o 8j(z;) = 0.
(V) limg, 00 bi(x;) = 00 and limg,,, o b;(x;) = —00. O

Lemma 9.9.1 If Assumption 9.9.1 is satisfied, then the solutions of systems (9.9.1)
and (9.9.3) are bounded.

Proof. Because system (9.9.1) may be viewed as a special case of system (9.9.3),
we consider in our proof only system (9.9.3).
We know from Assumption 9.9.1 that the terms s;(z;(t)) and s;(z;(t — %))

are bounded for all j = 1, ..., n. Furthermore, because lim,, ,, b;(z;) = oo and
lim,,, , oo b;(2;) = —o0, there must exist an M > 0 such that
bi(zi(t)) — Zt”) ZZ#’“) (z;(t — 7)) >0
Jj=1 k=1j=1

whenever x;(t) > M and

n K n
—;tf.?)sj kZZt() izt — 1)) <0
= -1

whenever z;(t) < —M for all ¢ = 1,...,n. Because a;(z;(t)) is positive by
Assumption 9.9.1, we can conclude that for any solution z(t) of (9.9.3), Z;(¢) < 0
whenever x;(t) > M and &;(t) > 0 whenever z;(t) < —M foralli =1,...,n. We
may assume that for the initial condition z;, € Cr,, ||xt,|| < M. If this is not the
case, we just pick a larger M. Therefore, we can conclude that |z;(t)| < M for all
t>0andalli=1,...,n. O
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If every nonequilibrium solution of (9.9.1) (and of (9.9.3)) converges to an equi-
librium, then system (9.9.1) (and system (9.9.3)) is said to be globally stable. In order
to ensure that the Cohen—Grossberg neural networks (9.9.1) and (9.9.3) are globally
stable, we require that the sets of equilibria for these systems are discrete sets. It turns
out that the next assumption ensures this automatically.

Assumption 9.9.2 For any equilibrium z, of system (9.9.2), the matrix J(z.) is
nonsingular, where

/ /
J(z) = —T + diag i}(?) ., bul@n)
1

and b;(ﬂ?l) = (dbz/dmz)(ml),z: 1,....n. O

Using Sard’s Theorem [1], it can be shown that for almost all 7' € R™*™ (except
a set with Lebesgue measure zero), system (9.9.2) satisfies Assumption 9.9.2. Fur-
thermore, by making use of the implicit function theorem (refer to Subsection 7.6A),
it can be shown that the set of all equilibria of system (9.9.2) is a discrete set. Be-
cause the set of equilibria of system (9.9.2), {z.(0)} C R", and the set of vectors
{¢c(0)} C R™, determined by the set of equilibria {¢x} C C,, of system (9.9.4)
are identical, we have the following result.

Lemma 9.9.2 If system (9.9.4) satisfies Assumption 9.9.2, then the set of equilibria
of system (9.9.4) is a discrete set (i.e., with T' = Ty + Zszl T}, the set of points z.
such that B(z.) — T'S(z.) = 0 is discrete, where T' = T7'). Furthermore, system
(9.9.4) satisfies Assumption 9.9.2 forall T = T € R™*" except on a set of Lebesgue
measure Zero. O

For a proof of Lemma 9.9.2, the reader should refer to [21].

A. A global result

We are now in a position to prove the following result.

Theorem 9.9.1 [42] Suppose that for system (9.9.3) Assumptions 9.9.1 and 9.9.2
are satisfied and that

=

> (BT < 1 9.9.5)

k=1

where 3 = max,ern ||A(x)S’(x)|| where S’(z) = diag[s)(x1),..., s, (zn)]. Then
system (9.9.3) is globally stable.

Proof . Because inequality (9.9.5) is satisfied, there must exist a sequence of positive
numbers (asq, . . ., &k ), such that

Yap=1, BTl <ap for k=1,... K. (9.9.6)
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To prove the present result, we define for any z, € C[[—7x,0],R"] an “energy
functional” E(x;) associated with (9.9.3) by

n [+ (0)]:
E(w)= — ST (2,(0)TS(2:(0)) + 2> /o bi(0)s,(0)do

=1

K 0
+ Z - /m () =S (e ()] Ty fr(0) T[S (w4 (8)) — S (4(0))]db
9.9.7)

where (a1, ...,ak) is a sequence of positive numbers such that condition (9.9.6)
is satisfied and fi(0) € C[[-74,0,R"], k = 1,..., K, is specified later. After
changing integration variables, (9.9.7) can be written as

no pwi(t)
E(z) = ST (@()TS((t) +23 / bi(0)s!(0)do

i=1

K t
+> aik/ [S(x(w)) =S (2 TE fu(w — ) T[S (x(w)) — S(x(t))]dw.
k=1 L=y,
(9.9.8)

The derivative of E(x;) with respect to ¢ along any solution of (9.9.3) is com-
puted as

E£9.9.3)(37t)

— 257 (0TS (o) A1) |~ Ba(0) +ToS +2Tks =)

+2xT(t>B<x<t>>s’<x<t>>A<x<t>>[—B(<>>+To D4 TS (e t—m)}

k=1

]~

{[S(x(t =) = S@ON Ti fie(=m) T[S (x(t — 7)) — S(x(1))]

1
g

o
Il
Rl

[S(a(w)) = ST fi.(w — ) T[S (z(w)) — S(x(t))]dw

+
T~

—Tk

t K

T
{B( () + ToS(x +§ TeS(z tTk)):|
e P

(@()S" (@) Ty fu(w — )T, [5($(w)) S(a(t))ldw

t

[S(a(w)) = S(e@®) T fulw — )TwS' (x(t)) Ax(1))

— T

+
T

b

X

+
T~

K

— B(x(t) + ToS(x(t) + > _ TxS( trk))}d } (9.9.9)

k=1

X

—



442 Chapter 9. Infinite-Dimensional Dynamical Systems

where f/(6) = (df /df)(0). If we adopt the notation

K
Hy = —B(x(t)) + ToS(x(t) + > TeS(a(t — 7)), (9.9.10)
k=1
Hy = Ti[S(x(t — %)) — S(x(t))], k=1,....K, (9.9.11)
Gr, = Ti[S(z(w)) — S(z(t))], k=1,....K, (9.9.12)
Q = A(z(1))S"(z(t)) = 5" (z(t)) A(z(1)), (9.9.13)
(9.9.9) can be rewritten as
E29,9.3) (1)
K
= 257 (a(t))TQHo + 22(t)" B(x (1) QHo — Y alk{HkT fe(=mx)Hy,
k=1

t
+ [ 6T - G+ HEQIE fulw ~ 0Gi + G fulw - t>TkQHo]dw}
t—Tg
K

K
= —QHgQHO + 2ZH]ZQH0 - Z ;{Hgfk(—Tk)Hk
k=1 k=1
t
+ / (G fi(w = )Gr + Hy QT} fu(w — )Gy, + Gi fro(w — t)TkQHO]dw}
t—Tp

(9.9.14)
K

1
=> {2H1€TQH0 - %{QHgQHO + Hi, fr(—7) Hy,

k=1

t
+ [ 16T - 06+ HEQTE futw - 06 + GL it - t)TkQHonwH
t

Tk

= —Z/ [ (02, )] My (04, ) (1, )6
o

where [nx (7, 0)]T = [H()T,Hg,éf]T with Hy and Hj given by (9.9.10) and
9.9.11),

Gp = Tp[S(z(t+0)) — S(z(t))], k=1,...,K, (9.9.15)
20,Q /7, -Q/ QT f1(0)/
My (¢, 0) = [ —Q/ 1y Jr(=mi) I/ (Tiou) 0 (9.9.16)
Fe(0)T0Q/ v 0 FL(O)I )y,

and I denotes the n X n identity matrix. To obtain the last expression of (9.9.14), we
changed the integration variables from w to 6.
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We now show that if the hypotheses of Theorem 9.9.1 are satisfied, then My (x, 0)
is positive definite for all § € [—7y, 0] and all z; that satisfy (9.9.3), fork = 1,..., K.
In doing so, we let U = UsUsU;, where

I/)a, 0 0
U= | 1/@ya) Jarl 0
0

I 0 0
U; = 0 I 0
T fi(0)T/(20x) 0 1
and
I 0 0
U3=1]0 I 0
0 fe(@)TkQUsfow I
where .
1 [ fr(—m%) Q|
= | IR 2
Us 2 [ Tk 27

It is not difficult to verify that Mk = UMjy(z,0)U Tisa diagonal matrix. In fact

Mj, = diag[Mj,1, My,.2, My s3] (9.9.17)
where 5
My, = 2Q (9.9.18)
Tk
My, = T, Q (9.9.19)
: Tk QTk
and

My 5= f1.(0)I — —
k.3 fk( ) 20y, Tk 27k 20

(9.9.20)

J(0)T:Q ka(—m)] - Q >1+2TkQ_1] QT fr(0)

It follows that M (x¢, ) is positive definite if and only if M, & 1s positive definite and
if and only if My, 1, M}, 2, and M}, 5 are all positive definite.
We now show that if the condition 71, 3|| T || < v is satisfied, where

B = max | A(2)S' (@) = max Q]

then we can always find a suitable fi.() € C1[[—7x, 0], RT] such that My 1, My o,
and Mj, 3 are positive definite for all x, that satisfy (9.9.3) and for all § € [—7y, 0].
From this it follows that My (x4, 6) is positive definite for all k& = 1,..., K and
therefore E69_9_3) (z¢) < 0 along any solution z; of (9.9.3).
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By the assumption that s}(z;) > 0 and a;(x;) > 0 for all z; € R, the matrix M}, 1
is automatically positive definite. The matrix My, o is always positive definite if the
condition

2fx(—m) — B8 >0 (9.9.21)

is satisfied. For Mj, 3, it is easily shown that if

—1
QHTk||2 Q[(M]_Q> _|_27-le‘| QH (9.9.22)

k

fr(0) > f()

Tk 2Tk

is true, then Mj, 3 is also positive definite. Notice that the matrix

D2 Q l(fk(—Tk)I_ Q)_l-i-?TkQ_l] Q

Tk 2’7’k

is adiagonal matrix; thatis, D = diag[ds, . .., d,]. Ifwedenote Q = diag[q, .. ., ¢»],
then it is easy to show that

4fr(—7k) ik
2fk(—7k) — qi

Because ¢; < 3 by the definitions of 3 and @, we have, in view of (9.9.21), that

4 f(—7r) BTk
2fu(=m) = 5

d; = fori=1,...,n.

d; <

Therefore, we obtain

4fk(=71) BTk

2fr(=7mk) = B

and, furthermore, condition (9.9.22) is satisfied if (9.9.21) is satisfied and

o | Tell® 4fx(=71)B7k
o2 2fp(—m) — B

I1D] <

1
THOESIAC) (9.9.23)
is satisfied.

Next, we need to show that there is an f € C1[[—7,0], R] such that conditions
(9.9.21) and (9.9.23) are satisfied. We choose

T, 2
fro(=7) = { 2 ”a’“H } (9.9.24)

k
Condition (9.9.21) is satisfied by the choice (9.9.24). Furthermore,

2 2
Xk

HTkH A 1 ay
B2 || T || B2 || T ||

ar Bl Th]|

is true because B7x || Tk || < a. It follows from (9.9.25) that

2
Te(=7k) } +1— <0 (9.9.25)

Ofe(=m)m <1 (9.9.26)
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where

_ TP fre (=) BT

ai[2fe(=k) = O]

Because 0 fx(—7,)7x < 1, we can always find an [ such that 0 < [ < 1, and
0 fx(—7x) 7 < l. Therefore, we always have v > 0 where +y is given by

l

9.9.27)

= — Tk 9.9.28
T e ( )
We now choose fi(6) on [—7%, 0] as
l
fr(0) = =) (9.9.29)

It is easily verified that this choice is consistent with condition (9.9.24). Clearly,
fr € C[—7%,0],R"] because v > 0. The derivative of fx(6) is given by

M = % Te(0)? > 5£1(6)? (9.9.30)
because [ < 1. Combining (9.9.27) and (9.9.30), we can verify that f;(6) satisfies
condition (9.9.23).

Therefore, we have shown that if 37 ||Tk|| < ., then there exists an f;(6) (given
by (9.9.29), where f(—7%), 0, and  are given by (9.9.24), (9.9.27), and (9.9.28),
respectively) such that conditions (9.9.21) and (9.9.23) are satisfied. Thus My (x, )
is positive definite for all z; satisfying (9.9.3) and all § € [—74,0] fork =1,..., K.
We have shown that

fi(0) =

Elg g3 () <0 (9.9.31)

along any solution z; of (9.9.3), where E(z;) is the “energy functional” given by
(9.9.7).

We know from (9.9.14) that if Eg g 5 (2:) = 0, then Ho = 0, Hj, = 0, and
ék =0fork =1,..., K, where Hy, Hy, and ék are given by (9.'9.10), (9.9.11),
and (9.9.15), respectwely For any ¢ € C[[—7,0],R"], we denote E, = 0 if

—B((0)) + ToS(¢(0)) + ZTkS (9.9.32)
T[S (e(—1)) — S(p(0))] = 0, k=1,....K (9.9.33)
Tk [S(e(—0)) — S(¢(0))] =0 forall§ € [—7x,0], k=1,...,K. (9.9.34)

It is obvious that for any solution z; of (9.9.3), EE9.943) (z¢)=0if and only if Ea:,, =0.
Because for any x; satisfying (9.9.3), x; is bounded (Lemma 9.9.1) and because

Elg. 94 () <0,

it follows from the invariance theory (see Theorem 9.8.6) that the limit set of x; as
t — oo is the invariant subset of the set A = {¢ € C[[-7x,0],R"]: E, = 0}.
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Therefore, we have |x; — ¢| — 0 as t — oo for some ¢ € A. In particular, we have
24(0) — (0) and z¢(—7) — @(—7%) ast — oo, k = 1,..., K. Combining this
with (9.9.32) and (9.9.33), we conclude that

K

—B(x4(0)) + ToS(x¢(0)) + Y TS (xs(—71)) — 0
k=1

and
T [S(zi(p(—7K))) — S(x4(0))] — 0, k=1,....K

as t — oo. It follows that
—B(z(0)) + T'S(2+(0)) — 0,

or
—B(x(t)) + TS(x(t) — 0,

as t approaches co. Now because z; is bounded (Lemma 9.9.1), we conclude that
any point in the limit set of x(¢) as ¢ — oo is an equilibrium of system (9.9.3) (or,
equivalently, an equilibrium of system (9.9.1)). Furthermore, inasmuch as the set
of equilibria of system (9.9.3) is a discrete set (Lemma 9.9.2), it follows that z(t)
approaches some equilibrium of system (9.9.3) as ¢ tends to oco. O

Ifr, =0fork =1,..., K, then Theorem 9.9.1 reduces to a global stability result
for Cohen—Grossberg neural networks without time delays: if for system (9.9.1)
Assumptions 9.9.1 and 9.9.2 are satisfied, then system (9.9.1) is globally stable.

When the results given above apply, one can partition the state space, using the
domains of attraction of the asymptotically stable equilibria of system (9.9.2) or
(9.9.4). These partitions in turn determine equivalence relations that can be used as
the basis for a variety of applications (e.g., in applications of associative memories
to pattern recognition problems, classification of data, sorting problems, and the
like). Algorithms have been established that provide estimates for the total number
of equilibria and the total number of asymptotically stable equilibria (called stable
memories). Also, algorithms have been developed that make it possible to place
equilibria at desired locations and to minimize the number of undesired asymptotically
stable equilibria (called spurious states). For additional material on these topics, the
reader may wish to consult [24].

B. Local results

Good criteria that ensure the asymptotic stability of an equilibrium of system (9.9.3)
are of great interest. We address this issue in the present subsection. By necessity,
these results are local in nature.

We make use of the “energy functional” given in (9.9.7) which was used in the
proof of Theorem 9.9.1. In the following, we require the following concept.

Definition 9.9.1 Let 7 =7x. An element ¢ € C [[—7, 0], R"] = C; is called a local
minimum of the “energy functional” defined in (9.9.7) if there exists a § > 0 such
that for any ¢ € C., E(p) < E(@) whenever || — ¢| < 4. 0
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Before stating and proving our next result, we recall that . € R™ is an equilibrium
of system (9.9.2) if
B(z.) — TS(z.) = 0.

Consistent with Lemma 9.9.2, ¢, € C, is an equilibrium of system (9.9.4) if
0z, (0) =2, —7 < 6 <0, and

B(z.) —TS(z.) =0,
where T = Ty + Zle Ty.

Theorem 9.9.2 Suppose that the conditions of Theorem 9.9.1 are satisfied. If ¢, is
an equilibrium of (9.9.4), then the following statements are equivalent.

(a) g, 1s a stable equilibrium of (9.9.4).
(b) ¢, is an asymptotically stable equilibrium of (9.9.4).

(¢) g, is alocal minimum of the “energy functional” E' given by (9.9.7), where,
as defined above, ., € C; such that v, () = z., —7 < 6 <0.

(d) J(z.) is positive definite, where J(z) is defined in Assumption 9.9.2.

Proof. (a) = (b). Because Assumption 9.9.2 is satisfied, the set of equilibria of
system (9.9.4) is a discrete set by Lemma 9.9.2. Therefore, when ¢ > 0 is sufficiently
small, there is no other equilibrium ¢, of (9.9.4) such that

2, € U(ze,€) 2 {x e R™: |x — x| <} (9.9.35)

Because ¢, is a stable equilibrium of (9.9.4), there exists an 7 > 0 such that for
any ¢ € C, satisfying || — @z, || < n, ||zt — ¢z || < € forall t > 0, where x; is
the solution of (9.9.4) with initial condition ¢. Thus z; € C[[—7, 0], U(z,, )] for all
t. In view of Theorem 9.9.1 z; will converge to some equilibrium of system (9.9.4).
Because ., is the only equilibrium of (9.9.4) with z; € C[[—7,0],U(z.,¢)], it
follows that z; converges to ¢, . Thus we have shown that ¢,  is an attractive
equilibrium of system (9.9.4). Therefore the stable equilibrium ¢,_ of (9.9.4) is an
asymptotically stable equilibrium of system (9.9.4).

(b) = (c). Because ¢, is an asymptotically stable equilibrium of system (9.9.4),
there exists an > 0 such that for any ¢ € C. satisfying |[¢ — @ || < 7, =4
converges to ¢, , where x; is the solution of (9.9.4) with initial condition ¢. Therefore
E(ps,) < E(x) < E(yp) for any ¢ € C; satisfying ||¢ — ¢4 || < n. Therefore,
¢z, 1s a local minimum of the energy functional E.

(c) = (d). Let E be a function from R™ to R defined by

D) 2

E(z) = =S(x)TTS(z) + 2 Z /Ozi bi(o)s;(o)do. (9.9.36)

Comparing E with E, we note that E is a function defined on R™, and F is a functional
defined on C';. Because ¢, is a local minimum of E, z. must be a local minimum
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of E. Otherwise there would exist a sequence {z,} C R™ such that z,, — z. as
n — oo and E(x,) < E(z.). Let ¢, denote the constant function ¢, = x, in
C. Then |¢,, — @z.| — 0asn — oo and

E(pz,) = E(wn) < E(me) = E(¢z,).

This contradicts the fact that ¢, is a local minimum of E. Therefore, Te is a local
minimum of E. Hence .J (xe) is positive semidefinite (see [21]), where J ( ) is the
Hessian matrix of F given by

~ O*E
J(x) = D0z, (9.9.37)
It can be shown that _
J(z) =25 (z)J(2)S' (z) (9.9.38)
where
S'(z) = diag[s}(x1), ..., s, (zn)] (9.9.39)

and J(z) is given in Assumption 9.9.2. Therefore, J (. ) is also positive semidefinite.
By Assumption 9.9.2, J(x.) is a nonsingular matrix. Thus we have shown that J ()
is positive definite.

(d) = (a). We need to prove that ¢, is a stable equilibrium of system (9.9.4);
that is, for any € > 0, there exists ad > 0 such that for any ¢ € Cr,if ||p— 4. || < 9,
then ||z; — ¢, || < €, where x; is the solution of (9.9.4) with initial condition .

Because .J (2, ) is positive definite, then .J () must also be positive definite where
J(x) is the Hessian matrix of E given by (9.9.38). Furthermore,

V.E(z) = 2[-TS(z) + B(z)|T S (2)

where S’(z) is given in (9.9.39). Therefore, V,E(z.) = 0 because ¢, is an
equilibrium of (9.9.4). It follows (see [21]) that x is a local minimum of E; that is,
there exists a d; > 0, §; < &, such that whenever 0 < |z — z.| < 41, ( e) < E(x).
Let r = mm{E( ): |z — 2| = &1}. Then it is true that r > E(z.). Because
E(p,.) = E(x.),itfollows thatr > E(,, ). Note that E is a continuous functional.
Therefore, there exists a § € (0,d7) such that whenever ||¢ — ¢, | < 0, where
v € C,, we have E(p) < r. Suppose x; is any solution of (9.9.4) with the initial
condition ¢ such that || — ¢5_|| < §. We show that ||z — ¢, || < 61 < €. Otherwise
there would exist a tg > 0 such that |z, (0) — z.| = 01 (i.e., |z(to) — x| = 01). By
the definition of E and E, we have E(z,,) > E(x(to)) > r. Therefore, we obtain
E(z4,) > E(yp), which contradicts the fact that E is monotonically decreasing along
any solution of (9.9.4). Thus we have shown that ¢, _ is an asymptotically stable
equilibrium of system (9.9.4). O

We note that statement (d) in Theorem 9.9.2 is independent of the delays 7y,
k=1,..., K. Therefore, if system (9.9.4) satisfies Assumptions 9.9.1 and 9.9.2 and
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if the condition Zle TB||Tk|| < 1 1is satisfied, then the locations of the (asymp-
totically) stable equilibria of system (9.9.4) will not depend on the delays 7;, for
k = 1,..., K. This is true if, in particular, 7, = 0, k = 1,..., K. Therefore, if
Zle 70| Tk|| < 1, then systems (9.9.4) and (9.9.2) (obtained by letting 75, = 0 for
k=1,...,K in (9.9.4)) will have identical (asymptotically) stable equilibria. We
state this in the form of a corollary.

Corollary 9.9.1 Under the conditions of Theorem 9.9.1, ¢,  is an asymptotically
stable equilibrium of system (9.9.4) if and only if z. is an asymptotically stable
equilibrium of system (9.9.2). This is true if and only if J(x.) is positive definite,
where J(x) is given in Assumption 9.9.2. O

Corollary 9.9.1 provides an effective criterion for testing the (asymptotic) stabil-
ity of any equilibrium of Cohen—Grossberg neural networks with multiple delays
described by (9.9.4). This criterion constitutes necessary and sufficient conditions,
as long as

K
> BTkl < 1.

k=1

9.10 Discontinuous Dynamical Systems Determined
by Differential Equations in Banach Spaces

In the present section we address infinite-dimensional discontinuous dynamical sys-

tems (infinite-dimensional DDS), {T, X, A, S}, where T' = R™, X is a Banach space

withnorm ||-||, X D A, and the motions S are determined by the solutions z (-, to, z¢)

of discontinuous differential equations defined on Banach spaces, specified later. As

in Chapter 3, we assume that the set of times at which discontinuities may occur is
unbounded and discrete and is of the form

E,={r75,...i1f <1y <.}
The notation F, signifies that different motions may possess different sets of times
at which discontinuities may occur. Usually, the particular set £, in question is clear
from context and accordingly, we are able to suppress the x-notation and simply write

E={n,m,....11 <72 <---}

As in Subsection 2.12C, we sometimes find it useful to express the motions (solu-
tions) of infinite-dimensional DDS by

a(t, 70, 20) = ™ (t, i, ), T <t < Thy1, (9.10.1)

k € N, where 7 and z( are given initial conditions.
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The most general class of infinite-dimensional DDS that we consider in the present
section is generated by differential equations of the form (refer to Subsection 2.12C),

{ = Fy(t, z(t)), T ST < Tpta
2(Try1) = gr(@(7511))s keN
where foreach k € N, Fj,: RT x X — X, & =dx/dt, gr: X — X,and z(t7) =

limy/ 4 yr<¢ x(t"). As in Subsection 2.12C, associated with (SG), we consider the
family of initial value problems, given by

{ i(t) = Fi(t,z(1)), t>m (SGy)

(1) = xg,

(5G)

k € N. For each k € N, we assume that for every (7, z;) € RT x X, (SGy)
possesses a unique solution (¥ (¢, 7., x1,) that exists for all ¢ € [73, 00). We express
this by saying that (SGy,) is well posed.

Under the above assumptions, it is clear that for every (79, 79) € RT x X, (SG)
has a unique solution z(¢, 79, o) that exists for all ¢ € [y, 00). This solution is
made up of a sequence of solution segments z(*) (¢, 7, 21, ) defined over the intervals
[Tky Tkt1), k € N, where x, = (1), k = 1,2, ... and where (79, z¢) are given. At
points {7x+1}, & € N, the solutions of (SG) may have discontinuities (determined
by gx("))-

In addition to the above, we assume that for every k € N, Fy(¢,0)=0forall t e R™
and g;,(0) = 0. This ensures the existence of the zero solution x(¥) (¢, 73, 1) = 0,
t > 73, with x, = 0, which means that z. = 0 is an equilibrium of (SGy), k € N.
Furthermore, x. = 0 is also an equilibrium for (SG).

A. Local stability results
We first address local results.

Theorem 9.10.1 Assume that there exist a function v: X x Rt — R™ and functions
1,19 € K defined on R* such that

Yr(llzl]) < vlx,t) < ba(l|z]) (9.10.2)
forallz € X and t € RT.

(a) Assume that for every solution x(-, 79, zo) of (SG), v(z(t, 19, o), t) is con-
tinuous everywhere on R = {t € R*:¢ > 70} except on an unbounded
and discrete subset £ = {11,72,...: 71 < 7o < ---} of Rjﬂ. Also, as-
sume that there exists a neighborhood U C X of the origin 0 € X such that
v(x(Tk, To, To), Tx) is nonincreasing for all zo € U and all k € N, and assume
that there exists a function f € C[R™, R*], independent of z(-, 79, 7o), such
that f(0) = 0 and that

’U(I(t,Tg,l‘o),t) < f(?](x(Tk,To, 31‘0), Tk))a te (Tka Tk+1)7 (9.10.3)

kEeN
Then the equilibrium z, = 0 of (SG) is uniformly stable.
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(b) If in addition to the above assumptions, there exists a function ¢3 € X defined
on R such that

Do (a(Tk, 70, %0), i) < =93([|2(7k, 70, 20) ) (©.10.4)

for all xy € U, k € N, where

1
Du(a(7k, 70, Z0), Th) = T [0((Tht1, 70, 0), Th1)
-
— v((7k, T0, T0), k)], (9.10.5)

then the equilibrium x, = 0 of (SG) is uniformly asymptotically stable.

Proof . Parts (a) and (b) of this theorem are a direct consequence of Theorems 3.2.1
and 3.2.2, respectively. |

Theorem 9.10.2 Assume that there exist a function v: X x Rt — R* and four
positive constants ¢y, ¢z, 3, and b such that

cleHb <w(zx,t) < 02||m|\b (9.10.6)

forallz € X and ¢t € RT.

Assume that there exists a neighborhood U of the origin . = 0 such that for all
solutions z (-, 7, 2o ) of (SG) withxg € U, v(x(t, 70, Zo), t) is continuous everywhere
on Rio except on an unbounded and discrete subset E={71,72,...: 1 <72 < -+ }
of R} . Furthermore, assume that there exists a function f € C[R*, R}, independent
of (-, 70, o), such that f(0) = 0 and that

v(x(t, 10, %0),t) < fv(x(Tk, 0, 0), Tk))s t € (Thy Tht1)s (9.10.7)
for all k& € N, and that for some positive ¢, f(-) satisfies
fr)y=o(r?)  asr— 0" (9.10.8)
(i.e., lim, g+ [f(r)/r?] = 0). Also, assume that for all k£ € N,
Dv(z (7, 70, %0), Tk) < —c3|2(Th, 0, 7o) |° (9.10.9)

for all solutions z (-, 79, o) of (SG) with zy € U, where Dv is defined in (9.10.5).
Then the equilibrium z. = 0 of (SG) is exponentially stable.

Proof . This result is a direct consequence of Theorem 3.2.3. a

B. Global results

Next, we address global stability and boundedness results.



452 Chapter 9. Infinite-Dimensional Dynamical Systems

Theorem 9.10.3 (a) Assume that in Theorem 9.10.1, ¥1,%9 € Ko, and that U = X.
Then the equilibrium x, = 0 of (SG) is uniformly asymptotically stable in the large.

(b) Assume that in Theorem 9.10.2, U = X. Then the equilibrium z. = 0 of (SG)
is exponentially stable in the large.

Proof . Parts (a) and (b) of this theorem are a direct consequence of Theorems 3.2.6
and 3.2.7, respectively. a

Theorem 9.10.4 Assume that there exist a function v: X x Rt — R* and two
strictly increasing functions 1,12 € C[R™ RT] with lim,_, o, ¥;(r) = 00,i=1,2,
such that

Vi(llzll) < v(z,t) < Pa([|z]]) (9.10.10)

forall z € X and all t € RT whenever ||z| > 2, where  is a positive constant.

Assume that for all solutions (-, 79, ) of (SG), v(x(t, 70, x0), t) is continuous
everywhere on Rio except on an unbounded subset E={7y,73,...: ;1 < T2 < -+ }
of Rjﬂ. Also, assume that for every solution z(-, 79, o) of (SG),

V(2 (Tra1, T0, ©0)s Tkt1) < v(2(Tk, To, To), Tk) (9.10.11)

for all 7, whenever ||z (7%, 70, 2o)|| > Q.
Furthermore, assume that there exists a function f € C[R™, R*], independent of
x(+, 7o, o), such that for all £ € N and all z(-, 79, z)

v(x(t, 10,20),t) < f(v(x(Th, T0,%0), k), t € (Th, Ths1), 9.10.12)

whenever ||z(t, 79, zo)|| > €.
Moreover, assume that there exists a positive constant I' such that

|2(Tk+1, 0, w0)[| < T

whenever ||z(7x, 70, Zo)|| < € for all solutions (-, 79, zg) of (SG).
Then the solutions of (SG) are uniformly bounded.

Proof . This result is a direct consequence of Theorem 3.2.4. O

Theorem 9.10.5 If in addition to the assumptions of Theorem 9.10.4 there exists a
function 13 € K defined on R™ such that for all solutions x(-, 7, o) of (SG),

Du(x(7, 70, %0), k) < —U3(||2(T, 70, 70)||) (9.10.13)

for all 73, whenever ||z(7x, 7o, Zo)|| > 2, where Du is defined in (9.10.5), then the
solutions of (SG) are uniformly ultimately bounded.

Proof . This result is a direct consequence of Theorem 3.2.5. O

C. Instability results

Next, we address instability results.
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Theorem 9.10.6 Assume that for (SG) there exist a function v: X x RT — R and
a1y € RT that satisfy the following conditions.

(i) There exists a function v € K defined on R such that
v(z,t) < a(|x]) (9.10.14)

forallz € X andt € RT.

(i1) In every neighborhood of the origin z. = 0 there is a point = such that
v(x,19) > 0.

(iii) For any xzo € X such that v(xg, 79) > 0 and any solution z(+, 79, ) of (SG),
v(x(t, 10, o), t) is continuous everywhere on R}, except on an unbounded and
discrete subset E = {71, 72,...: 71 < 7a < ---}of ]ijo. Assume that there
exists a function 1; € K defined on R™ such that

Dv(x(1h, 70, o), Tk) > 1 ([v(2(Tr, 0, 20), Tk)]) (9.10.15)

for all £ € N, where Duv is defined in (9.10.5).
Then the equilibrium z, = 0 of (SG) is unstable.

Proof . This result is a direct consequence of Theorem 3.2.8. O

Theorem 9.10.7 If in addition to the assumptions in Theorem 9.10.6, v(x, 79) > 0
for all z # 0, then the equilibrium z. = 0 of (SG) is completely unstable.

Proof . This result is a direct consequence of Theorem 3.2.9. O

D. Converse theorems

We now establish necessary stability and boundedness results for infinite-dimensional
dynamical systems determined by differential equations in Banach spaces. Recall that
we assume that (SG) possesses unique solutions x (-, 7o, ¢ ) for the initial conditions

(To,l‘o).

Theorem 9.10.8 Assume that the equilibrium x, = 0 of system (SG) is uniformly
stable and that Assumption 3.5.1 holds. Then there exist neighborhoods A; and X,
of 0 € X such that A; C X; and a mapping v: X; x RT — RT that satisfies the
following conditions.

(i) There exist 11,15 € K such that

Pr(llll) < vl t) < da(ll2]])

forallt € RT and z € X;.

(ii) For every solution x(-, 79, x¢) of (SG) with xg € A;, v(x(t, 10, 20),t) is
nonincreasing for all ¢ > 9. O
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The proof of Theorem 9.10.8 is identical to the proof of Theorem 9.3.1 for uniform
stability of continuous dynamical systems determined by differential equations in
Banach spaces. In the next result, we address uniform asymptotic stability.

Theorem 9.10.9 Assume that Assumptions 3.5.1 and 3.5.2 hold for system (SG).
If the equilibrium x, = 0 of system (SG) is uniformly asymptotically stable, then
there exist neighborhoods A; and X; of 0 € X such that A; C X; and a mapping
v: X1 x Rt — RT that satisfies the following conditions.

(i) There exist ¥1,19 € K such that

i(llzl]) < v, t) < ga(ll])

forallt € Rt and 2 € X;.

(ii) There exists 13 € K such that for all solutions (-, 79, o) we have

DU(JU(Tk;7 T0, x0)7 Tk‘) S _¢3(“x(TkJ7 T0, 3;0) ||)
for all k£ € N, where x¢y € A1, and Dv is defined in (9.10.5).
(iii) There exists a function f € C[R™,R*] such that f(0) = 0 and
’U(Z‘(t, 70, 330)7 t) < f(U(.I?(Tk, 70, .730), Tk))

forall z(-, 79, %0), t € (Tk, Thy1), k €N, 29 € Ay, and 79 € RT.

Proof . This result is a direct consequence of Theorem 3.5.2. O

The next result, where we address a converse result for the exponential stability
of the equilibrium z. = 0 of (SG), is not symmetric with the conditions given in
Theorem 9.10.2 for exponential stability. Nevertheless, this result does provide us
with a set of necessary conditions for exponential stability.

Theorem 9.10.10 Assume that Assumptions 3.5.1 and 3.5.2 hold for system (SG).
If the equilibrium x, = 0 of system (SG) is exponentially stable, then there exist
neighborhoods A; and X; of 0 € X such that A; C X and a mapping v: X7 X
R* — RT that satisfies the following conditions.

(i) There exist 11,12 € K such that

r(llll) < vl t) < da(ll2]])

forallt € Rt and z € X;.

(ii) There exists a constant ¢ > 0 such that for all solutions z(-, 79, o), we have
Dv(z(7g, 10, %0), Tk) < —cv(x(Tk, To, T0), Tk)

for all £ € N, where 2y € A1 and Dwv is defined in (9.10.5).
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(iii) There exists a function f € C[R™, R*] such that

v(z(t, 70, 20),t) < f(v(z(Tk, T0,70), T))

for all z(-,79,%0), t € (Tk,Tks1), kK € N, 29 € Ay, and 79 € RT, and such
that for some positive ¢, f(+) satisfies

f(ry=o0(r? asr—0t.

Proof . This result is a direct consequence of Theorem 3.5.3. O

There are also converse results for uniform asymptotic stability in the large, expo-
nential stability in the large, instability, and complete instability of the equilibrium
ze = 0 of system (SG), as well as for the uniform boundedness and uniform ultimate
boundedness of solutions of (SG). We do not address these.

The converse theorems presented above involve Lyapunov functions that need not
necessarily be continuous. In the next result, we show that under some additional very
mild assumptions, the Lyapunov functions for the converse theorems are continuous
with respect to initial conditions. (We consider only the case for Theorem 9.10.9.)

Theorem 9.10.11 If in addition to the assumptions given in Theorem 9.10.9, the
motions in S are continuous with respect to initial conditions (in the sense of Def-
inition 3.5.2), then there exists a continuous Lyapunov function that satisfies the
conditions of Theorem 9.10.9.

Proof. The proof of this theorem is a direct consequence of Theorem 3.5.5. a

E. Examples

In the present subsection we apply the results of the preceding subsections in the
analysis of several specific classes of infinite-dimensional discontinuous dynamical
systems described by differential equations in Banach spaces.

Example 9.10.1 (DDS system (SG)) For system (SGy,) we assume that Fj, satisfies
the Lipschitz condition

| Fr(t,z) — Fr(t,y)|| < Killz —yl| (9.10.16)

for all z,y € X and t € RT. Recalling our assumption that F}(¢,0) = 0 for all
t € RT, and making use of the Gronwall inequality in a similar manner as was done
in Example 6.4.5, we obtain the estimate

25 (¢, 73, 23) || < €BECET0) ||| (9.10.17)
forall t > 74 and all x;, € X. We assume that

sup K, = K < oo. (9.10.18)
keN
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Recall that for system (SG) we assume that for all k € N, g,(0) = 0. In addition,
we assume that

g (@)]] < vellz]| (9.10.19)
for all z € X, that

supye =1 < oo, (9.10.20)

kEN

and letting 7,41 — T, = Ak, that

sup A, = A < oo. (9.10.21)
kEN
Proposition 9.10.1 Let K, vk, Ak, K, ', and A be the parameters for system (SG)
given in (9.10.16)—(9.10.21).
(a) Ifforallk € N,y ef+* < 1, then the equilibrium x, = 0 of (SG) is uniformly
stable.
(b) If for all £ € N, VkeKk‘)"“ < a < 1, where o > 0 is a constant, then the
equilibrium z, = 0 of (SG) is uniformly asymptotically stable in the large, in
fact, exponentially stable in the large.

Proof. We choose for system (SG) the Lyapunov function v(z,t) = v(z) = ||z
x € X, which when evaluated along the solutions of (SG) assumes the form

s

v(x(t, 10, 0)) = v(@® (t, 7, 21)) = [|a® (¢, 7, 2|, TR <t < TR,
(9.10.22)
k € N, where z(F) (-, 75, z1.) denotes the solution segment of the solution (-, 7o, 2)
of (SG) over the interval |7y, 7x+1). Clearly,

Pr(ll]l) < vlz) < P2(ll]) (9.10.23)

for all z € X, where 1)1 (s) = ¢2(s) = s > 0; that is, ¥1, )2 € Koo
Along the solutions of (SG) we have, in view of (9.10.17), that

Hx(k)(t,m,xk)ﬂ < eK’“(t_T’“)HJ:kH = eKk(t_Tk)Hx(k) (Tkes Tk i) || (9.10.24)
fort € |7k, Tk+1). Att = 71 we have, in view of (9.10.19), that

2 * D (T, Torts Tra) | = Nlg@® (ry, 7 ) < 2™ (71 7 )]
(9.10.25)
Combining (9.10.24) and (9.10.25), we have

e ® ) (Thg1, Togr, ) | < e 2P (7, 7, @) (©.10.26)

and because by assumption 7%+ < 1, we have
v(@ D (11, T @) = 2D (T, T ) |

< 2™ (ri, 7, ) |
= v(a™ (i, 7, 1)) (9.10.27)
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Because (9.10.27) holds for arbitrary k € N, it follows that v(z(7g, 70, 20)) is
nonincreasing.

Next, from (9.10.24) we have, recalling that sup, ¢y K =K and supycy A =A,
that

U(x(k) (tv Tk ‘rk)) = ”1,(19) (t’ Tk xk)”
< eKAv(ac(k) (Tke, Ther Tk))

= f(o(=™ (1, 71, 1)), (9.10.28)

t € [Tk Thy1), k € N, where f(s) = eXs. Therefore, all conditions of Theorem
9.10.1(a) are satisfied and we conclude that the equilibrium x, = 0 of system (SG)
is uniformly stable.

If in (9.10.26) we assume that v,ef** < a < 1, we have

v(x(kﬂ) (Thet1s Th 15 Thy1)) < Oév(ff(k) (Ths Ty Ti)) (9.10.29)
and

(@™ (rg1, T, 2rr1)) — 0(@®) (7, 7, 20))] / (Thegr — 7h)
< [(a = 1)/AJo(@™ (74, 70, 1))
4

—¢3(||$(k) (T]W Tk, xk)”)
= —Ys3(||z(7k, 70, 70) ||) (9.10.30)

for all £ € N and (19,29) € RT x X. In (9.10.30) we have ¢3(s) = [(1 —
a)/A]s, s > 0 (ie., 3 € Ko ). Therefore, all conditions of Theorem 9.10.1(b)
and Theorem 9.10.3(a) are satisfied and we conclude that the equilibrium z, = 0 of
system (SG) is uniformly asymptotically stable in the large.

Finally, from (9.10.23), it is clear that in relation (9.10.6) in Theorem 9.10.2 we
have ¢; = ¢ = b = 1 and from (9.10.30), it is clear that in relation (9.10.9) in
Theorem 9.10.2 we have ¢5 = (1 — a)/A. We have already shown that (9.10.7)
of Theorem 9.10.2 is true, and clearly, for f(s) = eX%s, we have f(s) = o(s9)
as s — 0 for any ¢ € (0,1). Therefore, all the conditions of Theorems 9.10.2 and
9.10.3(b) are satisfied and we can conclude that the equilibrium z. = 0 of (SG) is
exponentially stable in the large. O

Example 9.10.2 (Time-invariant linear functional differential equations) If we let
X = C, and Fi(t,z) = Ly, where C,., xt, and Ly, are defined as in Example 2.7.1,
then (SG},) assumes the form

{ i(t) = Ly, (9.10.31)
ka = (le

k eN,t € [rg,00). If in (SG) we let g (n) = Gin where G, : C;. — C, is a linear
operator, then (SG) assumes the form

i(t) = Lyay, <t<
{ () = L Tk =S The (9.10.32)

Try, = Gr L ke N.
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For each k € N, Ly, is defined, as in (2.7.2), by

0
L) = [ [aBu(s)]elo). 9.1033)
where B(s) = [b;;(s)] is an n x n matrix whose entries are functions of bounded
variation on [—7, 0]. Then Ly, is Lipschitz continuous on C),. with Lipschitz constant
K, less than or equal to the variation of By, and as such, condition (9.10.17) still
holds for (9.10.31). As in (2.9.14), the spectrum of Ly, consists of all solutions of the
equation
0

det (/ e dBy(s) — /\k.I) =0. (9.10.34)
In accordance with (2.9.15), when all the solutions of (9.10.34) satisfy the relation
Re); < —ayp, then for any positive « < v, there is a constant My (ay) > 0 such
that the solutions of (9.10.31) allow the estimate

128 (7 i) || < My )e == (9.10.35)

forallt > 7, > 0 and i € C,. When the above assumption is not true, then in
accordance with (9.10.17), the solutions of (9.10.31) still allow the estimate

2§ (7, i) || < X[ (9.10.36)
for all ¢ > 7y and @y, € C,.. Thus, in all cases we have
™ (71, )| < Qre™ |y | (9.10.37)

forallt > 1, > Oand ¢y € C,., where Q = 1 and wy, = K} when (9.10.36) applies
and Qr = My (o) and wg, = —ay, o > 0, when (9.10.35) applies.
Finally, for each k € N, we have

IGrnll < IGll [l (9.10.38)

for all n € C,, where ||Gy|| is the norm of the linear operator G}, induced by the
norm || - || defined on C..
In the following, we still assume that (9.10.18) and (9.10.21) hold and we assume
that
sup My (o) = M < 0. (9.10.39)
keN
Proposition 9.10.2 Letwy, |G|, Qr, Ak, A, M, and K be the parameters for system
(9.10.32) defined above.
(a) If for all k € N, ||Gr||Qre”*** < 1, then the equilibrium z, = 0 of system
(9.10.32) is uniformly stable.
(b) Ifforall k € N, |Gy ||Qre®** < o < 1, where a > 0 is a constant, then the
equilibrium x, = 0 of system (9.10.32) is uniformly asymptotically stable in
the large, and in fact, exponentially stable in the large.
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Proof . Choosing v(y,t) = v(¢) = ||¢ll, ¢ € C.., we obtain the relations

(10, 20)) = (@ (T 1)) = o (s i)l e S < Thgr (9.10.40)

k € N, and
Yi(llzl]) < v(z) < ¥a(llz) (9.10.41)

forall x € X, where 11 (s) = a(s) = s, s > 0; that is, 1, 19 € Ko
Along the solutions of (9.10.32) we have, in view of (9.10.37),

1267 (rie, i)l < Que =ik ]| = Que™ =™ (7, 1) | (9:.10.42)

for ¢ € [Tk, Tk41). At t = Ti1+1 we have, when (9.10.36) applies

o), (esns pran) | < IGkIIS (i)l < Gkl il 9.1043)

Tht1
and when (9.10.35) applies,

28D (g1, @) < NGl Mic(e)e™ [ (9.10.44)
Thus, in either case we have

2%+ (Teg1, errn) | < Gl Que™ M 28 (7, o). (©.1045)

Tk+1

When |G ||Qre ** < 1, we obtain

U(x(fﬁill)(TkH"pkH) = ||m-(ri:11)(7—k+17§0k+1)”
< ||$(k)(Tk,%0k)H
=v(a®™ (i, 01)), keN. (9.10.46)

Therefore, v(z, (70, %)), k € N, is nonincreasing.
Next, from (9.10.42), we have

v(@® (1, 01)) < Que T o(@® (7, 1)), (9.10.47)

t € [Tk, Tk+1), & € N. When (9.10.36) applies, @ = 1 and wy = K} and when
(9.10.35) applies, Q = My (ay) and wy, = —ay, < 0. Recall that sup, .y K = K,
SUpgen Ak = A, and supycy Mk (o) = M. Let P = max{e**, M} and choose
f(s) = Ps, s > 0. From (9.10.47) we now obtain

vz (1, 01)) < F0EP (7, 01))), (9.10.48)

te [Tk,TkJrl).

All conditions of Theorem 9.10.1(a) are satisfied and therefore the equilibrium
e = 0 of system (9.10.32) is uniformly stable.

When ||G||Qre“** < a < 1, we have

(k+1) (k)(

v (2T (T, prr1)) < ao (@l (7, 01)
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and

[U(T/(rﬁll)(TkH» Pr+1)) — v(xﬁ'i)(% o))/ (ier = 7r)
< (= 1)/AJo(z®) (3., 1))
2

~t3 (I8 (7, 1) 1)
= —¥3([|lz+. (10, 0)]) (9.10.49)

forall k € Nand ¢ € C,. In (9.10.49), we have ¥3(s) = [(1 — «)/A]s; that is,
13 € K. Therefore, all conditions of Theorem 9.10.1(b) and Theorem 9.10.3(a) are
satisfied and the equilibrium z. = 0 of system (9.10.32) is uniformly asymptotically
stable in the large.

In the notation of Theorems 9.10.2 and 9.10.3(b), we have ¢y = ¢ = b =1 and
c3 = (1 —a)/A. Also, f(s) = Ps, sothat f(s) = 0(s?) as s — 0 where ¢ € (0,1).
Therefore, all the conditions of Theorems 9.10.2 and 9.10.3(b) are satisfied and we
conclude that the equilibrium z. = 0 of system (9.10.32) is exponentially stable in
the large. O

Example 9.10.3 (Heat equation) We consider a family of initial value and boundary
value problems determined by the heat equation

% = aiAua (t,l’) € [Tk,OO) x 0
u(Tg, ) = Yr(x), zeN (9.10.50)
u(t,r) =0, (t,z) € |11, 00) x 09,

k € N, where @ C R™ is a bounded domain with smooth boundary 99, a? > 0
are constants, and A = Y7 | 9?/dx? denotes the Laplacian. For a discussion and
stability analysis of system (9.10.50), refer to Example 9.2.2.

Next, we consider a discontinuous dynamical system determined by

ou

E = aiAu, (t,x) € [Tvak-H) x

B B (9.10.51)
U(Tk+1, ) = gk(U(Tker ))
u(t,z) =0, (t,z) € RT x 09

where all terms are defined similarly as in (9.10.50), g;: X — X,
X = H?[Q, RN H[Q,R]

with the H!-norm (refer to Example 9.2.2), k € N. We assume that g (0) = 0 and
that for each k € N, there exists a v, > 0 such that ||gx(¥)|| g1 < Y&||¢|| g2 for all
P e X.

If, similarly as in Example 9.2.2, we define U ) (t) = u(®) (¢, -) (u®) (¢, 1)) denotes
the unique solution of system (9.10.50); see Example 9.2.2), we obtain the estimate

IS @)l < e 2T ()]s 9.10.52)
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for t > 73, where ¢, = min{a?,a} /v}, where y can be chosen as 6 /y/n and €2 can
be put into a cube of length § (refer to Example 9.2.2, in particular, (9.2.10)).

Each solution u(t,x,1,79) of (9.10.51) is made up of a sequence of solution
segments u'¥) (t, , 1), 79), defined on |1y, 7,4 1) for k € N, that are determined by
(9.10.50) with ), = u(7g, ).

Proposition 9.10.3 For system (9.10.51), let wy = —ci/2 and A\ = Tgy1 — Tks
k € N. Assume that sup,cy A = A < 00 and supcy wi = w < 00.

(a) If for all k € N, y,e®** < 1, then the equilibrium 1), = 0 € X for system
(9.10.51) is uniformly stable (with respect to the H!-norm).

(b) If forall £k € N, Wke“’k’\k < a < 1, where a > 0 is a constant, then the
equilibrium ), = 0 for system (9.10.51) is uniformly asymptotically stable in
the large, in fact, exponentially stable in the large.

Proof . We choose the Lyapunov function v(¢, t) = v(¢) = ||| g1, ¥ € X, which
when evaluated along the solutions u(t, z, %, 7o) of (9.10.51) assumes the form

v(U(t, 10,)) = v(UB (¢, 73, 90%)) = TP (¢, 7, o) | 111 T <t < Thy1
(9.10.53)
k € N. Clearly,

P19l an) < v(@) < da(ll¢]la) (9.10.54)

for all ¢ € X, where 11 (s) = ¥a(s) = s, s > 0; that is, ¢, 19 € K.
Along the solutions of (9.10.51) we have, in view of (9.10.52), that

NUB (b, 70,1 || n < e T2 |y | g = e~k 02 TR (7 ) || g

(9.10.55)
fort € [Tk, Tk+1). At t = 711, we have, in view of (9.10.51), that
HU(kH)(TkH,Tk+1,1/1k+1)HH1 = ||9(U(k)(71;+177k7wk))”Hl
<lUP (r e ) L. 9.10.56)

Combining (9.10.55) and (9.10.56), we have
1T (1, Trogr, g L < e M2 (7, 7, ) e (9.10.57)

where —cy, /2 = wy, and because by assumption vkewk)"c <1, we have

V(U (rhgr, g1, Yag1)) = [UFD (g, T, ) e
< |U™ (16, T, i) || 1
= o(U®) (1, 73, V1))

Because this holds for arbitrary k& € N, it follows that v(U (7%, 70,%)), k € N, is
nonincreasing.
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Next, from (9.10.55) we have, recalling that sup; ¢y wr = w < oo and

sup A\ = A < o0,
keN

that

U(U(k) (ta Tk 11[}1?)) = ||U(k) (tv Tk 7/}/6)||H1
< e M(UM (14, 7, 1))

2 F oUW (1, 7, 1)),

t € [, Tks1), k € N, where f(s) = e*s. Therefore, all conditions of Theorem
9.10.1(a) are satisfied and we conclude that the equilibrium ¢ = 0 € X of system
(9.10.51) is uniformly stable.

If in (9.10.57) we assume that y,e** < a < 1, we have

V(U (141, T, Yae)) < (U (7g, 7, 1))

and

[o(U D (11, Trer, Y1) = (U S (e, 70, 0))] / (P = 70)
< (= 1)/AJo (U™ (70, 70, 9x))
2

b3 (|UP (1., 70, k) |)
—3(||U (75, 70, ) ) (9.10.58)

forall k € N and (79,%) € Rt x X. In (9.10.58) we have ¥3(s) = [(1 — a)/A]s,
s > 0; that is, )3 € K. Therefore, all conditions of Theorems 9.10.1(b) and
9.10.3(a) are satisfied and the equilibrium ¥ = 0 € X of system (9.10.51) is
uniformly asymptotically stable in the large.

In the notation of Theorems 9.10.2 and 9.10.3(b), we have ¢; = ¢ = b = 1 and
c3 = (1—a)/A. We have already shown that f(s) = s and thus, f(s) = o(s7) as
s — 0 forany ¢ € (0, 1). Therefore, all conditions of Theorems 9.10.2 and 9.10.3(b)
are satisfied and we conclude that the equilibrium 7). = 0 of system (9.10.32) is
exponentially stable in the large. O

Example 9.10.4 (Linear scalar Volterra integrodifferential equation) We consider
a family of scalar linear Volterra integrodifferential equations given by

t
#(t) = —anz(t) +/ kn(t = s)z(s)ds,  t=m, (9.10.59)

— 00

{E(Tn) = Pn;
n € N, which can equivalently be expressed as

0
i(t) = —an2(0) +/ kn(=s)zi(s)ds,  t=m, (9.10.60)

—0o0

(Tn) = Pn.-
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In (9.10.60), all terms are defined similarly as in Example 9.2.3. In particular,
the state space is the fading memory space X consisting of all measurable functions
¢: (—00,0) — R with norm given by

lllZ, = [(0)* + K, / (s)]?e™*ds < oo, (9.10.61)

where K, is determined later. Let Cp, = (f;~ [kn(s)[?e*ds) "2 for some fixed

L > 0. From Example 9.2.3, when CL,n/\E < an,, with appropriate K, (0 <
K,, < 2a,), we can obtain «,, < 0 such that

12| < €9n =) 2|, (9.10.62)
where w, = /2, ap, = =\ (Pp)/ max{1, K}, where

Pn — |: 20% - Kn *CL,n

—c, K 1 (9.10.63)

is positive definite.
We now consider discontinuous dynamical systems described by

0
g‘c(t):—anxt(OH/ kn(=s)ze(s)ds, L€ [ Ti1) g0 64

— 00

gy = G”xmﬂ

n € N, where the GG, are bounded linear mappings. For (9.10.64), we assume that
inf,en an, = a > 0, and we assume that C’L,n/\/f < a,, for all n € N. Then we can
find an appropriate K (0 < K < 2a) such that (9.10.62) is true with K,, = K for
any n € N.

Proposition 9.10.4 For system (9.10.64), let w,, = /2 and \;, = Tp41 — Tn,
n € N. Assume that sup,,cy An = A < 00 and sup,,cy Wk = w < 0.

wnAn < 1, then the equilibrium 0 € X of system
(9.10.64) is uniformly stable.

(b) If for all n € N, ||G,,|le¥"* < & < 1, where § > 0 is a constant, then the
equilibrium 0 € X of system (9.10.64) is uniformly asymptotically stable in
the large, and in fact, exponentially stable in the large. O

The proof is similar to the proof of Proposition 9.10.3 and is left as an exercise.

9.11 Discontinuous Dynamical Systems Determined
by Semigroups

In this section we establish stability results for discontinuous dynamical systems
determined by linear semigroups (Cp-semigroups) and nonlinear semigroups (refer
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to Section 2.9). In contrast to the preceding stability results for DDS, in the results of
the present section we do not make use of Lyapunov functions, but instead, we bring
to bear results known for linear and nonlinear semigroups.

A. DDS determined by semigroups

In the following, we require a given collection of Cy-semigroups 7 = {T;(t)}
(each T;(t) is defined on a Banach space X), a given collection of bounded lin-
ear operators H = {H;} (H;: X — X), and a given unbounded and discrete set
E = {10,71,72,...: 70 < T4 < Tg <---} CR*. The number of elements in T
and H may be finite or infinite.

We now consider dynamical systems whose motions y(-, yo, to) with initial time
to = 70 € R and initial state y(to) = yo € X are given by

{ y(t,90,t0) = Tie(t — )y (Th), Tk ST <Thi (9.11.1)

y(t)ZHky(t_), t = Tit1, keN

where foreach k € N, Ty (t) € T, H, € H,and 7, € E. We define the discontinuous
dynamical system determined by linear semigroups, Spc,, as

Spcy = {y =y(,z,to): y(t,z,to) = Ti(t — Te)y(Tk), Tk < < Thy1,
y(t) = Hky(t_), t= Tha1, ke N,
t0270€R+, y(T()):l'EX}.

Note that every motion y(+, z, to) is unique, with y(to, , ty) = z, exists for all ¢ > ¢y,
and is continuous with respect to ¢ on [tg,00) — {71, 72, ...}, and that at t = 7,

k=1,2,...,y(-,x,ty) may be discontinuous. We call the set £ 2 {m1,72,... }
the set of discontinuities for the motion y(-, z, to). Because Hj, and T(t),t € RT,
are linear, it follows that in particular y(¢,0,t9) = 0 for all ¢ > ¢y. We call z, = 0
the equilibrium for the dynamical system Spc, and y(t, 0,t9) = 0, ¢ > to, the trivial
motion.

In the following, we require a given collection of nonlinear semigroups 7 =
{T;(t)} (each T;(t) is defined on C' C X), a given collection of bounded continuous
mappings H = {H;} (H;: C — C) and a given unbounded and discrete set £ =
{to = 70,71, 72,...: To < 71 < T2 < -+ }. As before, the number of elements in 7
and H may be finite or infinite.

We now consider dynamical systems whose motions y(+, yo, to) with initial time
t = 19 € RT and initial state y(to) = yo € C' C X are given by

{ y(t,yo,to) = Th(t — 1) (y(7x)), Tk S < Tht (9.11.2)

y(t) = He(y(t7)), t = Thp1, keN
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where foreach k € N, Ty (t) € 7, H, € H,and 7, € E. We define the discontinuous
dynamical system determined by nonlinear semigroups, Sp, similarly, by

Spn ={y=y(,z.t0): y(t,z,t0) = Tu(t — ) (y(Th)), o <t < Thp,
y(t) = Hk(y(t_))7 t= Tk+1, ke N7
to=m €R, y(nn)=z€CCX}. (9.11.3)

We assume that the origin y = 0 is in the interior of C'. Note that every motion
y(-, x,to) is unique, with y(tp, z,tg) = x, exists for all ¢ > t¢, is continuous with
respecttot on [tg,00) — {711, T2, ... },and thatatt = 74, k = 1,2,...,y(-, 2, ty) may
be discontinuous. Throughout, we assume that Ty (¢)(x) = O forallt > 0if z = 0
and that Hy(z) = 0if z = 0 for all k¥ € N. From this it follows that y(¢, z, %) = 0
forallt > ¢y ifx = 0 € C. We call z. = 0 an equilibrium and y(t,0,t5) = 0,
t > tg, a trivial motion for the dynamical system Sp .

Remark 9.11.1 For different initial conditions (z, ¢g), resulting in different motions
y(-,x,to), we allow the set of discontinuities Fy = {71, 72,. ..}, the set of semi-
groups {1} C 7T, and the set of functions { H, } C H to differ, and accordingly, the
notation B = {r7" wpto 1 {TP"}, and {H;"" } might be more appropri-
ate. However, because in all cases all meaning is clear from context, we do not use
such superscripts. O

Remark 9.11.2 The DDS models considered herein (Sp¢, and Spy) are very gen-
eral and include large classes of finite-dimensional dynamical systems determined by
ordinary differential equations and by large classes of infinite-dimensional dynam-
ical systems determined by differential-difference equations, functional differential
equations, Volterra integrodifferential equations, certain classes of partial differen-
tial equations, and more generally, differential equations and inclusions defined on
Banach spaces. This generality allows analysis of distributed parameter systems,
systems with delays, systems endowed with hysteresis effects, and the like. O

Remark 9.11.3 The dynamical system models Spc, and Spy are very flexible, and
include as special cases many of the DDS considered in the literature, as well as
general autonomous continuous dynamical systems: (a) if Ty (¢) = T'(t) for all k
(7 has only one element) and if H; = I for all k£, where I denotes the identity
transformation, then Spc, reduces to an autonomous, linear, continuous dynamical
system and Sp n to an autonomous nonlinear, continuous dynamical system; (b) in the
case of dynamical systems subjected to impulsive effects (considered in the literature
for finite-dimensional systems; see, e.g., [2]), one would choose T (t) = T'(t) forall k
whereas the impulse effects are captured by an infinite family of functions H = {H} };
(c) in the case of switched systems, frequently only a finite number of systems that
are being switched are required, and so in this case one would choose a finite family
of semigroups 7 = {T;(t)} (see, e.g., [5], [22], [23], and [40]); and so forth. O

Remark 9.11.4 Perhaps it needs pointing out that even though systems Spy and
Spc, are determined by families of semigroups (and nonlinearities), by themselves
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they are not semigroups, because in general, they are time-varying and do not satisfy
the hypotheses (i)—(iii) given in Definitions 2.9.1 and 2.9.5. However, each individual
semigroup 7T (t), used in describing Spy or Spc,, does possess the semigroup
properties, albeit, only over a finite interval (7%, 7x+1), k € N. O

B. Qualitative characterizations of DDS

Recall that the DDS Spc, determined by linear semigroups, is defined on a Banach
space X whereas the DDS given by Spy is defined on C C X. Recall also that
the origin 0 is assumed to be in the interior of C' and that y. = 0 is an equilibrium
for both Spc, and Spy. Because the following definitions pertain to both Sp and
Spc,, we refer to either of them simply as S.

Definition 9.11.1 The equilibrium y. = 0 of S is stable if for every ¢ > 0 and
every to > 0, there exists a & = d(g,tg) > 0 such that for all y(-,y0,t0) € S,
lly(t, yo,t0)|| < € for all t > ty, whenever ||yo|| < 0 (and yo € C). The equilibrium
Ye = 01s uniformly stable if § is independent of ¢¢; thatis, § = d(&). The equilibrium
ye = 0 of S is unstable if it is not stable. O

Definition 9.11.2 The equilibrium y. = 0 of S is attractive if there exists an =
n(to) > 0 such that
Jim [ly(t. yo. to) ]| = 0 (9.11.4)

for all y(-,y,to) € S whenever ||yo|| < 7 (and yo € O). O

We call the set of all yy € C' such that (9.11.4) holds the domain of attraction of
Ye = 0.

Definition 9.11.3 The equilibrium y. = 0 of S'is asymptotically stable if it is stable
and attractive. O

Definition 9.11.4 The equilibrium y, = 0 of S is uniformly attractive if for every
e > 0 and every ty > 0, there exist a § > 0, independent of ¢y and ¢, and a
= p(e) > 0, independent of ¢, such that ||y (¢, yo, to)|| < & forall ¢ > ¢o + u and
for all y(-,yo,t0) € S, whenever ||yo|| < d (and yo € C). a

Definition 9.11.5 The equilibrium y. = 0 of S is uniformly asymptotically stable if
it is uniformly stable and uniformly attractive. o

Definition 9.11.6 The equilibrium y. = 0 of S is exponentially stable if there exists
an o > 0, and for every € > 0 and every ty > 0, there exists a § = d(g) > 0 such
that ||y(t, yo, to)|| < ee=*(=%) for all t > t and for all y(-, yo, o) € S whenever
[[y0ll < 9 (and yo € O). 0

The preceding definitions concern local characterizations of an equilibrium. In
the following, we address global characterizations. In this case we find it convenient
tolet C' = X.
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Definition 9.11.7 The equilibrium y. = 0 of S is asymptotically stable in the large if
(i) it is stable; and
(ii) for every y(-,90,%0) € S and for all (¢g,y9) € RT x X, (9.11.4) holds. ]

In this case, the domain of attraction of y. = 0 is all of X.

Definition 9.11.8 The equilibrium y. = 0 of S is uniformly asymptotically stable in
the large if

(i) it is uniformly stable;

(i) itis uniformly bounded, that is, for any o > 0 and every to € R™, there exists a

B=0(a) > 0 (independent of ty) such that if ||yo|| < cv, then ||y(¢, yo, to)|| < 3
for all t > ¢, for all y(-, yo, to) € S; and

(iii) it is uniformly attractive in the large; that is, for every a > 0 and every € > 0,
and for every ¢ty > 0, there exists a u = u(e, ) > 0 (independent of tp),
such that if ||yo|| < «, then for all y(-, yo,%0) € S, |ly(t,yo,%0)| < € for all
t > 1o+ p. O

Definition 9.11.9 The equilibrium y. = 0 of S is exponentially stable in the large if
there exist an > 0 and a v > 0, and for every 3 > 0, there exists a k() > 0 such
that

ly(t, 5o, to) | < k(B)llyol[ Ve~ T0) (9.11.5)
for all y(-, yo,to) € S, for all t > to, whenever ||yo| < S O

C. The principal stability results for DDS determined by
semigroups

In our first result we establish sufficient conditions for various stability properties for
system Spy. We assume in these results that for each nonlinear semigroup Tk ()
there exist constants M > 1 and w, € R, k € N, such that

[Tk () ()| < Mye ||y (9.11.6)

forally € C,t > 0. We recall from Subsection 2.9C (see (2.9.1)) that in partic-
ular, (9.11.6) is always satisfied for a quasi-contractive semigroup Ty (t) for some
computable parameters (M}, wy), My > 1 and wy, € R, whereas for a contractive
semigroup Ty (t), inequality (9.11.6) is satisfied with M > 1 and wy < 0.

Also, in our first results we let

)\k:Tk+1_Tk7 keN (9117)
and we assume that each mapping Hy: C' — C satisfies the condition

| Hi ()]l < crllyll (9.11.8)

forally € C, k € N, where ¢ > 0 is a constant.
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. . . . A
We require some additional notation. For any given [y € N and [, € NZ'E 11 =

{lo+1,lp+2,...}, weletm, ;, = 1, and we let m;, ;, and a;, ;, denote the finite
products

k—
{ et~ Hi:Ol(cliMlieWZi)\li)

(9.11.9)
Al 1o = Mlke((wzk+|wlk|)/2)>\lkm}gJW ke N ={1,2,...}.

Theorem 9.11.1 (a) For system Spy, under the conditions (9.11.6) and (9.11.8),
assume that for any ly € N there exists a constant v(lg) > 0 such that

ai i, < v(lo) (9.11.10)

for all & € N, where qy, ;, is defined in (9.11.9). Then the equilibrium y. = 0 of
Spn is stable.

(b) If in part (a), v(lp) = v (i.e., v(lp) in (9.11.10)) can be chosen independent of
lp € N, then the equilibrium y. = 0 of Spy is uniformly stable.

(c) If in part (a), (9.11.10) is replaced by

Jim_ay, i, =0 (9.11.11)

for all /[y € N, then the equilibrium y. = 0 of Spy is asymptotically stable.

(d) If the conditions of part (b) are satisfied and if in part (c) relation (9.11.11) is
satisfied uniformly with respectto lp € N (i.e., forevery e > O and every [y € N there
exists a K (¢) € N, independent of [y € N, such that a;, ;, < € for all k > K (¢)),
then the equilibrium y. = 0 of Spy is uniformly asymptotically stable.

(e) Assume that in part (a), (9.11.10) is replaced by

a1, <ap*,  lpeN, keN (9.11.12)
where @ > 0 and 0 < p < 1. Assume also that
Ak = Tpp1 — Tk <0, keN (9.11.13)

where # > 0 is a constant. Then the equilibrium y. = 0 of Spy is exponentially
stable.

(f) If in parts (c), (d), and (e), respectively, conditions (9.11.6) and (9.11.8) hold
for all y € X, then the equilibrium y. = 0 of Spy is asymptotically stable in the
large, uniformly asymptotically stable in the large, and exponentially stable in the
large, respectively.

Proof. (a) For system Spy, with E = {79, 71, T2, ... }, we associate each interval
[Tk, Tk+1) With the index & € N. We find it convenient to employ a relabeling of
indices. To this end, let [y = [to] = [7o], where [z] denotes the integer part of = € R,
andletly+1 = lx + 1, k € N. Then we can relabel E as {7;,, 7, ...} and [T, Tk+1)
as [le ) le+1)'
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If y(to) = y(1,) = yo and yo € C, we have
y(t) < My,eo =700 [y(my,) | < My, elrot o D720 |y |
fort € [1,,71,+1). Therefore, in view of (9.11.9),

”y(t)” < alo7lo||y0||7 te [TloaTlo-i-l) (9.11.14)

is true. It is clear that

wlo

Iy (io 1) < €1 Mige'o™o [lyo]|.

Similarly, for t € [r,,7,+1), k € Nf = {1,2,...},ify(r,) € C, then
ly()]] < My, e ||y ()| < My, et |y (m, )|
is true for t € |7, , Ty, +1), and
ly ()| < v My ek [y
Therefore, by (9.11.9) and (9.11.14), we have
ly®I < aiollvoll,  t€[m,,m41), keN. 9.11.15)

Forany e > 0 and ly € N, let §'(g,1ly) = /v (lp). From (9.11.10) and (9.11.15),
it now follows that ||y(¢)|| < e, t € [, Ti,+1)> k¥ € N, whenever ||yl < ¢ and
yo € C. Because Iy = [to] and because for all Iy € N and all k € N we can equate
0(g,t0) = 0’ (e, [to]), to > 0, it follows that the equilibrium y. = 0 of Sp is stable.

(b) In proving part (b), note that ¢’ (¢, ly) = ¢’(¢) = /v canbe chosen independent
of lp € N, and consequently, §(e,to) = &' (¢, [to]) = 0’(¢) = d(¢) can also be chosen
independent of ¢y € RT. Therefore, the equilibrium y, = 0 of Spy is uniformly
stable.

(c) From the assumptions on E = {t¢y = 79, 71, T2, . . . } it follows that lim_, - 7%
= 00. Hence, ngol Ai = T — 79 — 00 as k — oo. Because for any ¢ € 1y, Tk41)
we have t = ¢, —i—Zf;ol Ai +&; = T + & forsome 0 < & < 71 — Tk = Ak, then
t — oo when k — oo. Hence, it follows from (9.11.11) and (9.11.15) that (9.11.4)
holds for all (-, yo,t0) € Spn whenever yo € C. Therefore, the equilibrium y. = 0
of Spyv is attractive and its domain of attraction coincides with the entire set C C X.
Because (9.11.10) follows from (9.11.11), then, as in part (a), y. = 0 of Spy is
stable. Hence, the equilibrium y. = 0 of Spy is asymptotically stable.

(d) The conditions of part (b) are satisfied, and thus the equilibrium y. = 0 of
system Spy is uniformly stable. Therefore, we only need to prove that y. = 0 is
uniformly attractive.

Choose ¢ > 0 in such a way that Bj 2 {yo: llyo]l < 0} C C. Because (9.11.11)
is satisfied uniformly with respect to [y € N, then for every ¢* > 0 and every [y € N
there exists a K*(¢*) € N (independent of Iy € N) such that a;, ;, < €* for all
k > K*(e*). Hence, from (9.11.15), we have ||y(t)|| < ai,.i,||yol| < €*6 for all
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t € [, 71,+1) and for all k > K*(&*). Lete* = ¢/0. Then K*(e*) = K*(¢/6) =
K(e) and |ly(t)|| < e forallt > 7, (o). If we let pu(e) = 74k (e) — 710, then
we have that ||y(¢, yo,t0)|| < € for all t > to + p and for all y(-, yo,t0) € Spn,
whenever ||yo|| < J. Hence, the equilibrium y. = 0 of Spy is uniformly attractive
and uniformly asymptotically stable.

(e) To prove part (), note that as was shown in the proofs of parts (a) and (c), for any
to € RT and any ¢ > tg, there existan ]y € Nanda k € Nsuch thatt € [, , 7, +1)
and (9.11.15) holds. Becauset—tg < 77, 41—71, = Zf;k:lo A; andinview of (9.11.13),
Zﬁ’;lo Ai < (Ig —lp+ 1), and therefore, we have I, — o > ((t—to)/6) — 1. Hence,
in view of (9.11.12), we have |[y(t)|| < ap{=%)/O)=1||y||. For any ¢ > 0, let
§ = (ep)/a. Then for any yo € C with ||yo|| < &, we have ||y(t)| < ce@(t—t0),
t > to, where « = (—1Inp)/6 > 0. Therefore, the equilibrium y, = 0 of Spy is
exponentially stable.

(f) We note that if the estimates (9.11.6) and (9.11.8) hold for all y € X, then
inequality (9.11.15) is valid for all yo € X.

(i) Repeating the reasoning in the proof of part (c) for any 1o € X and any to € R™,
we can conclude that in this case (9.11.4) holds for all y(-,yo,t0) € Spn
whenever yo € X and tq € R*. Therefore, the equilibrium y, = 0 of Spy is
asymptotically stable in the large.

(i) Theequilibriumy, = Oisuniformly stable and (9.11.15)is valid forall yg € X.

Therefore, whenever ||yo|| < 0, then ||y(¢, yo,%0)|| < € for all ¢ > t,, where
e = &(). Therefore, for any a > 0 and every ty € RT, there exists a § =
B(a) > 0, independent of ¢, such that when ||y || < d, then |ly(, yo, t0)|| < B
forallt > to and all y(+, yo, to) € S. Therefore, the system Spy is uniformly
bounded.
Next, similarly as in the proof of part (d), for every o > 0 and for every € > 0
there exists a K (¢, @) € N (independent of ty > 0), such that ||y(¢)|| < ¢ for
allt > 7, + K(e, ). If we let pu(e, o) = 7y 4 K(c,a) — T1,, then we have that
lly(t, yo,t0)|| < € forall £ > ¢ty + p and for all y(-, yo,%0) € Spn, whenever
llyol] < &. Hence, the equilibrium y. = 0 of Sp is uniformly asymptotically
stable in the large.

(iii) For every 8 > 0 and for every |lyo|| < (8 we have similarly as in the proof of
part (e) above that

Lyl < (a/p)p"~* ) yoll = (c/ p) lyolle™ ")

forall t > ¢y > 0, where « = —Inp/0 > 0. Let k(8) = «/p. It now follows
that the equilibrium y. = 0 of Spy is exponentially stable in the large. This
completes the proof. O

Corollary 9.11.1 (a) For system Spy assume that the following statements are
true.

(i) Condition (9.11.6) holds (with parameters M, w).
(i) Condition (9.11.8) holds (with parameter cy,).
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(iii) Forall k € N, Ay = Tpqp1 — 7 < 0 < 0.
(iv) Forallk e N, M, < M < o and wy, < w < oo where M > 1andw € R are
constants.

(v) Forall k € N,
cp Mpe® N < 1. (9.11.16)

Then the equilibrium y. = 0 of Spy is stable and uniformly stable.
(b) If in part (a), hypothesis (v) is replaced by

cpMpe e < § < 1 (9.11.17)

for all £ € N, where § > 0, then the equilibrium y. = 0 of Spy is asymptotically
stable, uniformly asymptotically stable, and exponentially stable.

(c) If in part (a) it is assumed that inequalities (9.11.6) and (9.11.8) hold for all
y € X and inequality (9.11.16) is replaced by (9.11.17), then the equilibrium y, = 0
of Spn is asymptotically stable in the large, uniformly asymptotically stable in the
large, and exponentially stable in the large.

Proof . (a) It is easily shown that in part (a) the estimate (9.11.10) is satisfied with

v(lo) = v = Mel(wtwD/2)9 "independent of [y € N. Therefore, the conditions in

parts (a) and (b) of Theorem 9.11.1 are satisfied. This proves part (a) of the corollary.
(b) In view of inequality (9.11.17) the estimate (9.11.12) is true with

0 = (M + 1)el@tleh/2)0

and p = ¢§. Therefore the limit relation (9.11.11) is satisfied uniformly with respect
to lp € N. This proves part (b) of the corollary.

(c) The conclusions of part (c) of this corollary follow directly from part (f) of
Theorem 9.11.1. m]

From Theorem 2.9.1, we recall that for any Cy-semigroup T (t), there will exist
wg > 0and pgi > 1 such that

T (t)]| < pre*s*,  t>0. 9.11.18)

Furthermore, in accordance with Theorem 2.9.5, if T} (¢) is a Cp-semigroup that is
differentiable for ¢ > r, if Ay, is its infinitesimal generator, and if ReA;, < —ay,, for
all A, € o(Ay), then given any positive oy, < ay,, there is a constant K (ay) > 0
such that

1Tk (t)|] < K (ag)e t>r. (9.11.19)

These facts simplify considerably the estimates of the analogous parts of Theorem
9.11.1 and Corollary 9.11.1, valid for Cj-semigroups. We state these results in the
following. Their proofs are very similar to the corresponding proofs given in Theorem
9.11.1 and Corollary 9.11.1 and are omitted.

Similarly as in Theorem 9.11.1, we utilize in our next result the relation

[T ()] < Mpes*,  t>0 (9.11.20)
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where, depending on the situation on hand, the constants M, > 1 and wy, € R are
obtained from either (9.11.18) or (9.11.19).
Similarly as in (9.11.9), we define in the case of DDS Spc¢, the finite products

k—1 A
Ty lo = Hi:O (”Hh Mlz‘ewll ll)
2) Ak
T nflke((wzk-i-\wlk\)/ ) Tl

9.11.21)

ke Ny ={1,2,...}, where ||Hy|, k € N, denotes the norm of the bounded linear
operator H, used in defining the DDS Sp¢, in (9.11.1).

Theorem 9.11.2 (a) For system Sp¢, assume that (9.11.20) is true and that for any
lo € N there exists a constant v/(ly) > 0 such that

a,, 1o < v(lo) (9.11.22)

holds for all k € N, where a;, ;, is defined in (9.11.21). Then the equilibrium y. = 0
of Spc, is stable.

(b) If in part (a), v(lg) = v > 0 can be chosen independent of [, € N, then the
equilibrium y. = 0 of Spc, is uniformly stable.

(c) If in part (a), hypothesis (9.11.22) is replaced by

Jim ay, g, =0 (9.11.23)

for all [ € N, then the equilibrium y. = 0 of Spc, is asymptotically stable in the
large.

(d) If the conditions of part (b) are satisfied and in part (c), the limit relation
(9.11.23) is satisfied uniformly with respect to [y € N, then the equilibrium y. = 0
of Spc, is uniformly asymptotically stable in the large.

(e) If in part (d) relations (9.11.12) and (9.11.13) hold, then the equilibrium y. = 0
of Spc, is exponentially stable in the large. O

Corollary 9.11.2 For system Spc, assume that
(i) Forallk e N, \y = 1541 — 1% < 0 < o¢.
(i) Forallk e N, M, < M < ocoandwy < w < ocowhere M > 1andw € R are
constants (M}, and wy, are given in (9.11.20)).

(a) Assume that
||HkHMkewk>\k S 1

for all k£ € N. Then the equilibrium y. = 0 of Sp¢, is stable and uniformly stable.
(b) Assume that
| Hp || Mpes ™ < 6 < 1

for all & € N. Then the equilibrium y. = 0 of Spc, is asymptotically stable,
uniformly asymptotically stable, uniformly asymptotically stable in the large, expo-
nentially stable, and exponentially stable in the large. O
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Remark 9.11.5 Corollaries 9.11.1 and 9.11.2 are more conservative than Theorems
9.11.1 and 9.11.2 because in the case of the latter we put restrictions on partial prod-
ucts (see, e.g., (9.11.10)) whereas in the case of the former, we put corresponding
restrictions on the individual members of the partial products (see, e.g., (9.11.16)).
However, the corollaries are easier to apply than the theorems. O

Remark 9.11.6 In contrast to the stability results for DDS given in the preceding
section, the results of the present section do not require determination of appropriate
Lyapunov functions, which is not necessarily an easy task. Instead, in the application
of Theorems 9.11.1 and 9.11.2 and Corollaries 9.11.1 and 9.11.2, we bring to bear the
qualitative theory of semigroups in determining appropriate estimates of bounds of the
norms of semigroups. It must be pointed out, however, that the determination of such
estimates is not necessarily an easy task either. Moreover, the ambiguity involved in
the search of Lyapunov functions in the application of the results for DDS involving
such functions offers flexibility in efforts of reducing conservatism of results. a

D. Applications

We now apply the results of the present section in the stability analysis of three classes
of discontinuous dynamical systems.

Example 9.11.1 (Autonomous first-order retarded functional differential equations)

(1) Dynamical systems determined by nonlinear semigroups

Consider initial value problems described by a system of autonomous first-order
retarded functional differential equations (with delay r) given by

&(t) = f(@e), t>0
{ 368 =<p((t),) —jStSO (©.11.24)

where f: C — R, C C C,, C, = C[[-r,0],R"] is a Banach space with norm
defined by

|| = max{|p(t)]: —r <t <0} (9.11.25)
and z; € C is the function determined by x+(s) = x(t + s) for —r < s < 0. We

assume that C' is a neighborhood of the origin.
Assume that f satisfies a Lipschitz condition

[£(&) = fn)] < K| =]l (9.11.26)

for all £, € C. Under these conditions, the initial value problem (9.11.24) has a
unique solution for every initial condition ¢ € C, denoted by (¢, ) that exists for
all t € R (see Example 2.9.2). In this case, the mapping T'(t): C' — C given by
T(t)(p) = (-, ), or equivalently, (T'(t)p)(s) = ¥(t + s, ), defines a nonlinear
semigroup on C' C C,.. In fact, T'(t) is a quasi-contractive semigroup, and

IT(6)(&) =T ()| < e**llg =] (9.11.27)
forallt € R* and &, 7 € C (see Example 2.9.2).



474 Chapter 9. Infinite-Dimensional Dynamical Systems

If we define A: D(A)—Cby Ap=p, D(A)={peC: peCand 9(0)= f(p)},
then D(A) is dense in C, A is the generator and also the infinitesimal generator of
T(t), and T'(t) is differentiable for ¢ > r (see Example 2.9.2).

(2) Discontinuous dynamical systems determined by nonlinear semigroups

Now consider the system of discontinuous retarded functional differential equa-
tions given by

x'(t)ZFk(l‘t), T <t < Tpt1
{ $t:Hk(l't—), t:Tk+17 k€N (91]28)
where { F}, } and { H), } are given collections of mappings Fj,: C—R™ and Hy: C— C
and F = {to = 70,71, 72,...: To < 71 < To < --- } is a given unbounded set. We
assume that for all k € N, Hy, € C[C, C], H,(0) = 0, and
1HE (I < Crli€ (9.11.29)

for all £ € C, where C, > 0 is a finite constant. Also, we assume that F},(0) = 0
and that F}, satisfies the Lipschitz condition

|Fx(§) — Fr.(n)| < Kill§ —nll (9.11.30)

forall¢,n e C.
For every k € N, the initial value problem

a'c(t):Fk(xt), t> 1k
{ 2y = o) o (9.11.31)

possesses a unique solution 1) (-, (¥ 7,.) for every initial condition ¢*) € C that
exists for all ¢ > 75, with @/}TI,Z)(-, ©®) 71.) = p*). Therefore, it follows that for
every (), (9.11.28) possesses a unique solution that exists for all > tq = 75 > 0,

given by

(0) Q/ngk)(» Sp(k)ka)7 T <t < Tpt1
1/%('790 77—0) = (k) (k) k1
Hk('(/}t, (7%0 7Tk)) :SO 5 t:Tk;+17 kGN

(9.11.32)

Note that o® = Hy_1(p" (., o®=D 7 1)), k = 1,2,... . Also, note that
Tk

Yy (-, 0 o) is continuous with respect to ¢ on [tg,00) — {71, 72, ...} and that at
t="1r, k=1,2,..., ¢, 0, to) may be discontinuous. Furthermore, note that

¢ = 0is an equilibrium of (9.11.28) and that (-, 0,ty) = 0 for all ¢ > ¢.
Next, for the initial value problem (9.11.31) we define

F o™ ) = Tt — ) (o),

Tie(t —13): C — C,t > 7. It follows that T (s), s € RY, is a quasi-contractive
semigroup. This allows us to characterize system (9.11.28) as

{ y(t7 90(0)7150) = Tk(t - Tk)gp(k))a Tk <t< Tk+1 (9 11 33)
vt = Hi(ye-), t = Thgt, k € N. o
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Finally, it is clear that (9.11.28) (resp., (9.11.33)) determines a discontinuous dynam-
ical system that is a special case of the DDS Sp .

Proposition 9.11.1 (a)For system (9.11.28) (resp., (9.11.33)) assume the following.

(i) Foreach k € N, the function F}, satisfies the Lipschitz condition (9.11.30) with
Lipschitz constant K}, for all £,7 € C' C C,, where C' is a neighborhood of
the origin.

(i) Foreach k € N, the function H,, satisfies condition (9.11.29) with constant C,
forall £ € C.

(iii) ForeachkeN, (Tk+1—rk)é/\k <0< 0,0k <vy<oo,and K < K < 0.
(iv) Forall k € N,

Crefrie < 1. (9.11.34)

Then the equilibrium £ = 0 of system (9.11.28) (resp., (9.11.33)) is uniformly stable.
(b) In part (a) above, replace (iv) by the following hypothesis.
(v) forall k € N,
CrefM <5 < 1. (9.11.35)

Then the equilibrium £ = 0 of system (9.11.28) (resp., (9.11.33)) is uniformly asymp-
totically stable and exponentially stable.

(c) In part (a) above, replace (iv) by hypothesis (v) and assume that conditions
(9.11.29) and (9.11.30) hold for C = C.. Then the equilibrium £ = 0 of system
(9.11.28) (resp., (9.11.33)) is uniformly asymptotically stable in the large and expo-
nentially stable in the large.

Proof . In view of (9.11.27), we have, because Fj(0) = 0,
ITe (B < e ¢l (9.11.36)

forallt > 0,k € N, and £ € C, resp., £ € C,.. Setting My = 1, ¢ = C%, and
w, = K}, we can see that all hypotheses of Corollary 9.11.1 are satisfied. This
completes the proof. a

(3) Dynamical systems determined by linear semigroups

Now assume C' = C,.. Ifin (9.11.24), f = L is a linear mapping from C,. to R™
defined by the Stieltjes integral

L(p) = /_ [dB(s)]¢(s), (9.11.37)

we obtain the initial value problem (see Example 2.9.2)

i(t) = L(z), t>0,
{ (1) = (1), —r <t <0. (9.11.38)
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In (9.11.37), B(s) = [b;;(s)] is an n x n matrix whose entries are assumed to be
functions of bounded variation on [—r, 0]. Then L is Lipschitz continuous on C, with
Lipschitz constant K less than or equal to the variation of B in (9.11.37). In this case,
the semigroup T'(t) is a Cp-semigroup. The spectrum of its generator consists of all
solutions of the equation

0
det ( / e*dB(s) — AI) =0. (9.11.39)

-

If in particular, all the solutions of (9.11.39) satisfy the relation Re\ < —qy for some
ag > 0, then it follows from Theorem 2.9.5 that for any positive o < «vg, there is a
constant P(«) > 0 such that

IT@®)] < Pla)e ™,  t>0. (9.11.40)

When the above assumptions do not hold, then in view of Theorem 2.9.1 we still have
the estimate

IT@®)] <Qe,  t>0, (9.11.41)

for some 4 > 0and Q > 1.

Next, let Fy,(x;) = Lpx; where Ly : C,. — R" is defined similarly as in (9.11.37)
by Li(¢) = [° [dB(s)]p(s) and let Hy(a;) = Gra, where Gy € C[C,, C,] is
assumed to be a bounded linear operator. Then system (9.11.28) assumes the form

{ ab(t):Lka:t, T <t < Tht1, (9.11.42)

zt:kat*a t:Tk+1, k e N.

It is clear that (9.11.42) determines a DDS determined by linear semigroups that is a
special case of Spc,.
In the following, when all the solutions of the characteristic equation

det (/0 M3 d[By(s)] — A,J) =0

-r

satisfy the condition Re\;, < —ag, then givenany 0 < g < ag, there is a constant
Py, (au;) > 0 such that

[Tk ()| < Pe(ar)e™ ", t>0 (9.11.43)
(see (9.11.40)). Otherwise, we still have the estimate
[T (el < Qre™t, >0 (9.11.44)

for some Qr > 1, ux > 0 (see (9.11.41)).
When (9.11.43) applies, we let in the following

My, = Pr.(ou), —ap = wg (9.11.45)
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and when (9.11.44) applies, we let
My =Qr,  px = W (9.11.46)
Thus, in all cases we have the estimate
T (t)|| < Myest, ¢ >0. (9.11.47)

Proposition 9.11.2 (a) For system (9.11.42) assume the following.

(i) ForeachkeN, (7541 —7%) 2 A <0 <oo, My, < M < oo,andwy, < w < 00.
(ii) Foreach k € N,
|G| Mpe? s < 1 (9.11.48)
where M}, and wy, are given in (9.11.43)—(9.11.46).

Then the equilibrium £ = 0 of system (9.11.42) is uniformly stable.
(b) In part (a) above, replace (9.11.48) by

|Grl|Myer < 6 < 1. (9.11.49)

Then the equilibrium £ = 0 of system (9.11.42) is uniformly asymptotically stable in
the large and exponentially stable in the large.

Proof . The proof follows directly from Corollary 9.11.2. O

Example 9.11.2 (Heat equation)
(1) Dynamical systems determined by the heat equation

We consider initial and boundary value problems described by equations of the

form
ou

— =d*Au, (t,x) € [to,00) x N

ot

ulto, z) = ¢(x), reQ (9.11.50)
u(t,xz) =0, (t,x) € [to, 00) x O

where 0 C R" is a bounded domain with smooth boundary 9, A = """ | 9% /0x?
denotes the Laplacian and a? > 0 is a constant.

We assume thatin (9.11.50), ¢ € X = H?[Q, R]N H[Q, R] where H} [, R] and
H?[Q, R] are Sobolev spaces (refer to Section 2.10). For any ¢ € X, we define the
H'-norm by

ol = / (Vel? + o) da ©.115)

where V! = (0¢/0x1,...,0p/0z,,).

It has been shown (see, e.g., [33]) that for each ¢ € X there exists a unique
solution v = u(t,x), t > to, ¢ € ) for (9.11.50) such that u(¢,-) € X for each
fixed t > tg and u(¢,-) € X is a continuously differentiable functions from [tg, c0)
to X with respect to the H'-norm (9.11.51). In the present case, (9.11.50) can be
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cast as an initial value problem in the space X with respect to the H'-norm, letting
u(t,-) = U(t) and assuming, without loss of generality, that ¢, = 0,

{ Ut)=AU(t), t>0

U0 —p € X (9.11.52)

where A is the linear operator determined by A = > | a?0? /027 with U(t, ¢),
t > 0, denoting the solution of (9.11.52) with U (0, ¢) = ¢. Furthermore, it has been
shown (e.g., [33]) that (9.11.52) determines a Cy-semigroup 7'(t): X — X, where
forany ¢ € X, U(t,p) = T(t)p. Because U(t,0) =0,t > 0,then p =0 € X is
an equilibrium for (9.11.52) (resp., for (9.11.50)). Also (see (9.10.52) or [33]),

T < e Dt >0 (9.11.53)

where ¢ = min{a?, a?/v%}, vy = 6//n and © can be put into a cube of length 4.
(2) Discontinuous dynamical systems determined by the heat equation

Now consider the DDS determined by the equations

i a;Au, (t,x) € [T, Tht1) X

ult,) = gr(u(t=, ) £ or (), t = Thy1 (9.11.54)
u(t()w%') = WO(x)v z €

u(t,x) =0, (t,x) € [tg,00) x Of,

k € N, where all symbols are defined similarly as in (9.11.50), ai > 0, k € N, are
constants, {gy } is a given family of mappings g € C[X, X], k € N, and

E:{tQZTQ,Tl,TQ,...:TQ<Tl<7'2<"'}

is a given unbounded set. We assume that g (0) = 0 and that there exists a constant
dj > 0 such that
lgr(@)llm < dillplla (9.11.55)
forallp € X,k e N.
Associated with (9.11.54) we have a family of initial and boundary value problems
determined by

ou

pri ai Au, (t,x) € [Tk, 00) x

_ (9.11.56)
u(Tk, ) = pr(x), x €N
u(t,z) =0, (t,x) € [Tk, 00) x OQ

k € N. Because for every k € N and every (g, pr) € RT x X, the initial and
boundary value problem (9.11.56) possesses a unique solution uy (¢, -) that exists for
all t > 75 with ug (7, ) = ¢r(x), it follows that for every ¢y € X, (9.11.54)
possesses a unique solution u(¢, -) that exists for all ¢ > 79 > 0, given by

A (9.11.57)

Uk(t, ')7 T St < Tk+1
gr(ur(t™,°)) = @rt1(+), t="Tpy1, KEN
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with u(tg, z) = ¢o(z). Notice that every solution u(t, -) is continuous with respect to
ton [tg,00) — {71, 72,... },and thatatt = 7, k = 1,2, ..., u(t, -) may be discontin-
uous. Furthermore, ¢, = 0 € X is an equilibrium for (9.11.54) and u(t, -)|,—0 = 0
forall t > tg > 0 is a trivial motion.

Next, as in the initial and boundary value problem (9.11.50), we can cast the initial
and boundary value problems (9.11.56) as initial value problems (as in (9.11.52)) that
determine Cy-semigroups Ty (t — 7% ), t > 7%, k € N, that admit the estimates

T (t — 70) | 2 < e~ (n/2) =) (9.11.58)

where ¢, = min{a},a /v*}. Letting ug(t,-) = Ty (t — 7% )uk (7%, -) in (9.11.57),
system (9.11.54) can be characterized as

{ u(t, ) = Tr(t — i )ur(Th, ), Tk ST < Tk (9.11.59)

U(t, ) = gk(uk(t_a ))7 t= Tk+15 k e N.

Finally, it is clear that (9.11.54) (resp., (9.11.59)) determines a discontinuous dynam-
ical system that is a special case of the DDS Sp .

Proposition 9.11.3 For system (9.11.54) (resp., (9.11.59)) assume that

A N
Ak = Try1 — Tk < 0 < 00, wp = —c/2 < w < oo,

andd, < d < oo,k €N.

(a) Ifforeach k € N,
dper e <1, (9.11.60)

then the equilibrium ¢, = 0 of system (9.11.54) is uniformly stable with respect
to the H*-norm.

(b) Ifforall kK € N,
dpe* M < § < 1, (9.11.61)

where § > 0 is a constant, then the equilibrium ¢, = 0 of system (9.11.54)
is uniformly asymptotically stable in the large and exponentially stable in the
large.

Proof . The proof follows directly from Corollary 9.11.1. O

9.12 Notes and References

The proofs of most of the results given in Sections 9.2-9.5, for dynamical systems de-
termined by differential equations defined on Banach spaces, are direct consequences
of corresponding results presented in Chapter 3, for dynamical systems defined on
metric spaces. The results for composite systems presented in Section 9.6, which
constitute generalizations of results established in [36], are motivated by results
given in [29] for composite systems defined on metric spaces. The example given in
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Section 9.6 is similar to an example considered in [36]. A good reference on point
kinetics models of multicore nuclear reactors is [35]. Our presentation of the stability
analysis of such models in Section 9.7 is based on the results established in [25].
Good references on retarded functional differential equations include [10], [15], and
[43]. Razumikhin-type theorems (originally presented in [37] and [38]) are presented
in [10] and [18]. The examples given in Section 9.8 are motivated by similar exam-
ples addressed in [10], [18], and [29]. Our analysis of the Cohen—Grossberg neural
networks with delays in Section 9.9 is based on the results established in [42]. For
additional results on this subject, the reader should consult [24] and [41]. Finally,
Sections 9.10 and 9.11 are based on results established in [27] and [28], respectively.
For related results concerning DDS determined by retarded functional differential
equations, refer to [39]. Throughout this chapter we considered specific examples
of infinite-dimensional dynamical systems determined by a variety of different types
of equations. Material concerning these equations, along with many other specific
classes of infinite-dimensional dynamical systems can be found in many references,
including, for example, [3], [4], [6], [7], [9]-[18], [20], [25], [29], [33], and [43].

9.13 Problems

Problem 9.13.1 Similarly as in the case of finite-dimensional systems, show that if
(GE) has an equilibrium, say x. € X, then we may assume without loss of generality

that z, = 0. O
Problem 9.13.2 Prove relation (9.1.4). O
Problem 9.13.3 Prove Theorem 9.2.6. ]
Problem 9.13.4 Prove Theorem 9.5.2. o
Problem 9.13.5 Complete the proof of Theorem 9.6.1. O

Problem 9.13.6 In Theorem9.6.1let M; = {0} C X;,i=1,...,l,let M = {0} C
X, and replace hypothesis (i) by the following hypothesis.

(') Let L={1,...,1,L=PUQ,PNQ=0,and Q # 0.

(a) For i € P, assume there exists v; € C[X; x RT R*] and ;1,12 € K such
that

Vit ([|lzil]i) < vilxs,t) < Yao(l|xills)

forall z; € X; andt € RT.
(b) For i € Q, assume there exist v; € C[X; x RT R] and 9,2 € K such that
v;(0,t) = 0forall t € R and

VYo (l|zills) < —vi(zi,t)

forallz; € X;andt € RT.
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Assume that hypotheses (ii) and (iii) of Theorem 9.6.1 are true and that the matrix
B is negative definite.

Prove that if the above assumptions are true, then the equilibrium z. = 0 of the
composite system {R™, X, A, S} is unstable (i.e., (S, {0}) is unstable). If in addition,
@ = L, then the equilibrium z. = 0 is completely unstable. O

Problem 9.13.7 Assume that the hypotheses in Problem 9.13.6 are true and that
—A = [a;;] € R™!is an M-matrix, where the a;; are given in Theorem 9.6.1 (and
Corollary 9.6.1). Then the equilibrium z, = 0 of the composite system {RT, X, A, S }
is unstable.

Problem 9.13.8 Now let us reconsider the composite system (9.6.3) given in Exam-
ple 9.6.1, except now assume that the matrix A € R”*" has at least one eigenvalue
with real part greater than zero and no eigenvalues with zero part. (We allow the possi-
bility that A is completely unstable.) After an appropriate nonsingular transformation
w = Bz, we obtain

(9.13.1)

BAB™! = [ A0 }

0 A

where — A, is a stable k£ X k matrix and As is a stable j X j matrix with k + j = m
Then system (9.6.3) can be rewritten as

wy = Ajwy + by / f(@)z2(t, x)dx, teRT
Q
We = Agwy + by / f(.’)S)ZQ(t,LL')d,T7 te Rt
Q
ddZtQ (t,x) = alzo(t, 2)+ g(z)(cFwi + T wy), (t,x) e R*x Q
29(t,x) =0 (t,x) € R* x 02

(9.13.2)
where by, ba, c1, and c; are defined in the obvious way as consequences of the transfor-
mation givenin (9.13.1) and all other symbols in (9.13.2) are defined in Example 9.6.1.

Because A; is completely unstable, there exists a matrix P; = P{' > 0 such that
the matrix
(=A)TPL+ Pi(—A1) = Qs

is negative definite, and because As is stable, there exists a matrix P, = PQT >0
such that the matrix
AT Py + PyAy = Qy

is negative definite.
Let Ay (Q1) and Aps(Q2) denote the largest eigenvalues of ()1 and @2, respec-
tively, and let I" be as defined in (9.6.8). Let

A (@) 0 2| Prll2fba] 11|
S = 0 A (Qz2) 2| Pal2lba] (| f]I L,
lgllz.lerl  lgllz,leal —al’
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Using the results given in Problems 9.13.6 and 9.13.7, prove that the equilibrium
(wl wl’ 25) = 0 of system (9.13.2) is unstable if the successive principal minors of
the matrix —.S are positive.

Problem 9.13.9 Complete the proof of Theorem 9.8.2 for uniform ultimate
boundedness.

Problem 9.13.10 Fill in the details for the proof of Theorem 9.8.3.
Problem 9.13.11 Consider the system
#(t) = Ax(t) + Bx(t —r) (9.13.3)

where A, B € R™"*", Assume that the matrix W = (A+ B) + (A + B)T is negative
definite. Choose as a Lyapunov function v = z”x. Using Theorem 9.8.8, show
that the equilibrium ¢, = 0 € C; of system (9.13.3) is uniformly asymptotically
stable if

2q|| Bl + 1B + BT < A

where ¢ > lisaconstantand Ay (W) = —A (A\pr (W) denotes the largest eigenvalue
of W). O

Problem 9.13.12 We recall from Chapter 8 the model for Hopfield neural networks,
given by
&=-Bx+TS(x)+1 (H)

where z = (21,...,2,)7 € R", B = diag[by,...,b,], b; >0,i=1,...,n, T =
[T;5] € R TT =T,8(z) = [s1(21), ..., sn(@n)]T,and I = [1,...,I,)T € R™.
The z;,7 = 1, ..., n denotes the state variable associated with the ith neuron, the b;,
t = 1,...,n represent self-feedback coefficients, the T;; represent interconnection
weights among the neurons, the I;,7 = 1, ..., n denote external inputs and bias terms,
and the s;(-), ¢ = 1,...,n are sigmoidal functions that represent the neurons. In the
present case we have s; € C[R, (—1,1)], s;(-) is strictly increasing, x;s;(x;) > 0 for
all z; # 0, and s;(0) = 0.

Frequently, time delays are introduced intentionally or unavoidably into the inter-
connection structure of (H), resulting in neural networks described by equations of
the form

#(t) = —Ba(t) + TS(x(t — 7)) + 1, (HD)

where 7 > 0 denotes a time delay and all other symbols are as defined in (H).

Theorem 9.13.1 For system (H D) assume the following:
(i) T is symmetric.

(ii) ForS(z) = [s1(x1),---,5n(zn)]T,5: € CHR, (—1,1)],and (ds; /dz;)(x;)
si(xz;) >0foralla; e R,i=1,...,n.

>
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(iii) 78||T||2 < 1, where || - ||2 denotes the matrix norm induced by the Euclidean
norm on R™ and 3 = sup,¢p» ||S(2)|2 where

S(z) £ diagls} (z1), ..., s (z2)].
(iv) System (H D) has a finite number of equilibria.

Prove that for every solution ¢ of (H D), there exists an equilibrium x, such that
lim; o ©(t) = Te.

Hint: Lety = S(z) and y; = S(z;) € C[[—7,0],R"] and choose as a Lyapunov
function

n r@e(0)
v(zy) = — yl (0)Ty(0) + 2 Z/ bis; H(o)ds
i=170

0
2T (0)] + / e (6) — (07T F(OYT [y1(6) — o (0)]d

—T

where f € C! [[—7,0], RT] is to be determined in such a manner that vEHD) (x¢) <0
along any solution of (H D). Then apply Theorem 9.8.6. O
Problem 9.13.13 Prove Theorem 9.10.8. o
Problem 9.13.14 Prove Proposition 9.10.4. O
Problem 9.13.15 Prove Theorem 9.11.2. o
Problem 9.13.16 Prove Proposition 9.11.3. a

Problem 9.13.17 [32] Consider dynamical systems determined by countably infinite
systems of ordinary differential equations given by

in=ha(t,z), n=12.... (9.13.4)
. PSP : _ (T T T T, pw .
Here z is the infinite-dimensional vector x = (27 , 23 , ..., 25, ... ) €ER¥, z, €R™n,

and h,: RTx R¥ — R™~. The infinite product R¥ = R™! x ... x R™» x ...
is equipped with the usual product topology, which is equivalent to introducing the

metric
/1 |2 — Zn|
d(z,2) = — | 9.13.5
(#:2) ;(2")<1+zn—zn> ©139
so that R¥ is a metric space (a convex Fréchet space).

A solution of (9.13.4) is a function z: [a,b] — D C R¥ b > a > 0 such
that z, € C'[[a,b],R™"] and %,(t) = h,(¢,z(t)) for all t € [a,b] and for all
n=123,....

Frequently we view system (9.13.4) as an interconnected system of the form (see,
e.g., [25])

Zn = fu(t, zn) + gnl(t, ), n=12,... (%)
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where in the notation of (9.13.4), h, (¢, z) £ fu(t,zn) + gn(t, ). We view (X) as
an interconnection of countably infinitely many isolated or free subsystems described
by equations of the form

n = 1,2,..., where w, € R™. The terms g, (¢,x), n = 1,2,... comprise the
interconnecting structure of system (3).
In the following, we let for some r,, > 0,

Dy={z=(2,22,. . )" €RY: |z, <kr,, n=1,2,...}, (9.13.6)

k > 0, and we assume that for every initial condition z(tg) = ¢ with (t,x9) €
R* x D, system (X) has at least one solution that exists over a finite or an infinite
interval. For conditions that ensure this, refer to [32].

The system of equations (X) determines a dynamical system {7, X, A, S} where
T =R" X =R¥ A= Dp,and S = Sk, the set of motions determined by the
solutions of (X). We note that because R“ is a product of infinitely many Banach

spaces R™», n = 1,2, ..., the results for composite systems established in Section
9.6 are not applicable, because these systems are defined on a finite product of Banach
spaces.

In the next result, we say that the trivial solution z = 0 of system (X) is uniformly
stable with respect to a set D (resp., (Sx|p, {0}) is uniformly stable) if for any € > 0
there is a 6(¢) > 0 such that when ¢ € D and d(c,0) < 6, then d(x(¢, ¢, tp),0) < €
for all t > ty > 0. The uniform asymptotic stability of the trivial solution x = 0 of
system (X2) with respect to set D is defined similarly.

Theorem 9.13.2 [32] Assume that for system (), the following hypotheses are
true.

(i) For each isolated subsystem (2,), n = 1,2, ..., there exist a function v,, €
C[B,, (r,) x RT,R], where By, (r,) = {z, € R™: |z,| < r,} for some
rn > 0, and three functions 1, ¥2,, Y3, € K, and a constant o, € R,
such that

and
’U;L(Zn) (va t) < O'n¢3n (Zn)

forall |z,| < r, andt € RT.

(i1) Given 13, in hypothesis (i), there are constants a,; € R such that
VU (2n, ) gn(t, (21, .., 25,0,0,...))

N
< ¢3n(|zn‘)1/2zanj¢3j(|zn|)1/2

Jj=1

forall |z,| < r,andallt > 0,andall N =1,2,....
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,2,..., such that

(iii) There exists a sequence of positive numbers {\;}, i = 1
—1,2,...,the N x N

>0 Atban(rn) < oo and such that for each N

n=1
matrix By = [b;;] defined by
b — Ai(oi 4 aii), 1=
Y (Niaij + Ajaji)/2, i # ]

is negative semidefinite.

Prove that (Sx;| p, , {0}) is invariant and uniformly stable (D is defined in (9.13.6)
fork =1).

Hint: Note that because D is compact, then for every function w € C[D1,R]
such that w(x) > 0 for z € D; — {0}, there must exist 11, 12 € K such that

P2(d(z,0)) = w(z) = 1 (d(z,0))
for all x € D;. Now follow the proof of Theorem 9.6.1. O

Problem 9.13.18 [32] Consider the countably infinite system of scalar differential
equations
1= -2
{ Z9 = —2p + Zp_1, n > 2. ©-137)
Prove that the trivial solution z. = 0 of (9.13.7) is stable with respect to Dy, for any
k> 0.
Hint: Apply Theorem 9.13.2, choosing 7, = 7 > 0, v, (2,) = 22/2, and \,, =
1/2™. O

Problem 9.13.19 [32] (Invariance theorem for (3)) Assume that the functions f,,
and g, in (X)) are independent of ¢, n = 1,2,..., and assume that any solution
x(t) € Dy, for some k > 1 and all ¢ > ¢( whenever x(ty) € Dy, where Dy, is defined
in (9.13.6). Assume that there exists a function v € C[Dy, R] such that v(y, () < 0
for all x € R¥. Let M be the largest invariant set with respect to (X) in the set
Z ={x € Dy: v, () = 0}. Prove that z(t) approaches M as ¢ — oo whenever
$(t0) € Ds.

Hint: Noting that Dy, is compact, apply Theorem 4.2.1. O

Problem 9.13.20 [32] Consider the countably infinite system of scalar differential
equations

2'11 = —221 + 29
. 9.13.8
{ Zn = Zn—1 *22n+zn+1; n = 2. ( )
Prove that there exists a sequence of positive numbers {r,, }, n = 1,2, ... such that

{5(9.13.8)|Dk7 {O}} is invariant and uniformly asymptotically stable.

Hint: Let r, = 1/2™, choose v(x) = > o, |2s| for x = (z1,22,...) € Dy,
and show that v{g 15 ¢)(2) = —|21| < Oforall 2 € Dy. Next, show that the origin
0 € R¥ is the only invariant setin Z = {a € Dj: z; = 0}, and then, apply the result
given in Problem 9.13.19. o
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242,243,245,257,293,409,
454
uniform stability, 113, 126, 133,
232,241,243,279,408,453
countably infinite system of ordinary
differential equations, 483
C[[-r,0],R"], 31
critical eigenvalue, 273, 288
Cp-semigroup, 38
contraction, 39
differentiable, 40
infinitesimal generator, 39, 40
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(D), 26,75, 163, 188, 241, 319
(DA), 259, 264
D/A converter, 353
d’Alembert’s formula, 66
(DC), 319
DDS,
see discontinuous dynami-
cal system
decentralized system,
see composite dynamical sys-
tem, 51
decrescent, 192, 194
decrescent function, 193, 194, 397
delay differential equation, 2
DES,
see discrete-event system
DYf.D=f,D,f,D_f, 19
(DI), 28, 163
difference equation, 5-7, 26
autonomous, 142, 259
linear autonomous homogeneous,
286, 288
linear homogeneous, 10, 285, 287,
326
linear perturbed, 300
difference inequality, 7, 28, 62
differentiable Cy- semigroup,
see Cy-semigroup
differential equation, 4-7, 20
autonomous, 10, 210, 256
linear autonomous, 266, 271
linear homogeneous, 10, 23, 207,
266, 267, 321
linear nonhomogeneous, 326
linear periodic, 10, 280, 323
linear periodic perturbed, 300
linear perturbed, 298
linear second-order, 10, 281
successive approximation of so-
lutions, 327
differential equation in Banach space,
5,7, 11, 28, 396
differential inclusion in Banach space,
5,7,29
differential inequality, 7, 25, 61

differential-difference equation, 2, 31,
32
digital control system, 3, 11, 337, 353
digital controller, 353
with quantizer, 358, 363
without quantizer, 353, 354, 363
digital filter, 11, 337, 376, 377
fixed-point with overflow arith-
metic, 381
second order section, 27
with generalized overflow non-
linearity, 381, 382
Dini derivative, 19
direct control system, direct control
problem, 11, 340, 344
Direct method of Lyapunov,
see the Second Method of
Lyapunov
discontinuities, 53, 188, 449
discontinuous dynamical system, 2, 3,
6, 7, 19, 53, 82, 112, 188,
219, 243, 449
differential equations, 10, 55, 189
differential equations in Banach
spaces, 12, 56, 449
functional differential equations,
55,474
heat equation, 58, 478
linear semigroup, 12, 57,463,476
nonlinear semigroup, 12, 57,463,
474
semigroup, 57, 463
discrete-event motion, 174
discrete-event system, 3, 9, 173, 174
discrete load, 180
discrete-time dynamical system, 1, 6,
19
discrete-time semigroup on metric space,
153,
see also semigroup
dissipative linear operator, 40
distributed parameter system, 2
(Dy), 61
domain of attraction, 4, 10, 76, 190,
263-265, 349, 466
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dynamical system, 1, 7, 19
autonomous, 1, 9, 149, 174
continuous, 1, 19
continuous-time, 1, 6, 19
determined by a Cy-semigroup,
40

determined by differential inclu-
sion in Banach space, 29

determined by discrete-event sys-
tem, 175

determined by functional differ-
ential equation, 34

determined by linear parabolic par-
tial differential equation, 50

determined by linear Volterra in-
tegrodifferential equation, 36

determined by nonlinear semigroup,

43
determined by ordinary difference
equation, 27, 188
determined by ordinary difference
inequality, 28
determined by ordinary differen-
tial equation, 23, 186
determined by ordinary differen-
tial equation in Banach space,
28
determined by ordinary differen-
tial inequality, 26
determined by Volterra integro-
differential equation, 35, 36
discontinuous, 19, 53
discrete-time, 1, 6, 19
finite-dimensional, 19, 185, 337
infinite-dimensional, 19, 395
periodic, 76
subjected to impulsive effects, 465
uniformly bounded, 77
uniformly ultimately bounded, 77
uniqueness property, 75

(E), 20, 30, 74, 158, 186, 232, 235,
239, 245, 248, 316
(E*), 235

(E), 21

(EI), 26,137, 158
embedding, 412
(Ey), 61
enable function, 174, 177
enabled event, 174
energy function, 315, 347
energy functional, 441, 445, 446
local minimum, 446
e-approximate solution, 63
equicontinuous, 63
equilibrium, 2, 8, 74
finite-dimensional DDS, 188
heat equation, 75
ordinary difference equation, 75,
188, 250
ordinary differential equation, 74,
186, 250
ordinary differential equation in
Banach space, 75, 397, 480
semigroup, 75
equilibrium point,
see equilibrium
Euclidean metric, 26
Euclidean norm, 18
event
event operator, 177
null event, 174
set of events, 173
event trajectory, 174
evolution forward in time, continuable
forward in time, 20, 73
existence of solutions
functional differential equation,
33
ordinary differential equation, 22
ordinary differential equation in
Banach space, 28
exponential stability,
see exponentially stable
exponentially stable, 2, 8,77, 78, 145,
190, 191, 466
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continuous dynamical systems de-
fined on metric spaces, 95,
98, 158, 159, 170-172

continuous finite-dimensional dy-

namical systems, 79,204,251,

270,272,275,298,316,318,
333, 348

continuous infinite-dimensional dy-

namical systems, 398, 401,
414,415, 418, 423
discontinuous dynamical systems
defined on metric spaces, 85,
90
discontinuous finite-dimensional
dynamical systems, 221,222
discontinuous infinite-dimensional
dynamical systems, 451,452,
466-468,471, 472
discrete-time dynamical systems
defined on metric spaces, 105,
108, 163, 164, 170-172

discrete-time finite-dimensional dy-
namical systems, 79,212,215,

287,288,290,301,319,320
exponentially stable in the large,

see exponentially stable
extended solution, 22, 34
extension, 22

(F) 31 166, 423
(F),3
(FA), 433
fading memory space, 34, 403, 410,
421, 463
family of motions, 1, 19
finite-dimensional dynamical system,
2,5,7,19, 185, 255, 337
continuous, 2, 5, 10, 186, 199,
232,256, 258, 266, 316
discontinuous, 6, 10, 188, 219,
243
discrete-time, 2, 6, 10, 187, 211,
241, 259, 285, 319
First Method of Lyapunov, 4, 10, 295,
300, 317, 320, 415

fixed-point digital filter, 381
fixed-point quantization, 358
Floquet multiplier, 310, 314, 315, 324
function
decrescent, 192—-194
definite, 195
indefinite, 192
monotone nondecreasing, 163
negative definite, 191, 192, 194
negative semidefinite, 192—-194
positive definite, 191-194
positive semidefinite, 192, 194
quasi-monotone nondecreasing,
137, 138
radially unbounded, 191-194
semidefinite, 195
functional differential equation, 2, 5,
7, 11, 28,423, 473
linear retarded, 32, 457
neutral, 2, 34
retarded, 2, 11, 32, 423, 473
fundamental matrix, 321

(@), 297
(GA), 409
Gauss’ divergence theorem, 402, 406,
407, 420
(GE), 28, 396, 408, 414
generalized distance functions, 274
generalized momentum coordinates,
24,202
generalized overflow characteristic, 382
generalized position coordinates, 24,
25, 202
generalized potential force, 24
generalized solution, 39
(GI), 29
global exponential stability,
see exponentially stable
global stability,
see globally stable
global uniform asymptotic stability,
see asymptotically stable
globally asymptotically stable,
see asymptotically stable



494

Index

globally stable, 440, 446

globally uniformly attractive,
see uniformly attractive in
the large

Gronwall inequality, 64

(H), 344,482
(H), 347
Hamiltonian function, 24, 202
Hamiltonian system, 73, 201, 208
(HD), 482
heat equation, 58, 66, 74, 75, 80, 402,
B 460, 477
(H;), 347
Hille—Yoshida—Phillips theorem, 39
H'Q,C), H)[2, C), H'[Q,R], H)[Q, R],
47
Hopfield neural network, 11,337,344,
482
circuit, 345
with time delay, 482
hybrid dynamical system, 1, 3, 6, 8,
11, 51
hypersurface, 296
local hypersurface, 296
tangent hypersurface, 296
hysteresis effect, 2, 6

mplicit function theorem, 295, 296
In), 41

incidence matrix, 182

indefinite function, 192

indefinite matrix, 275
indirect control system, 11, 340, 344
Indirect Method of Lyapunov,
see the First Method of Lya-
punov
infinite-dimensional dynamical system,
2,5-7,19, 395
infinitesimal generator
Cy-semigroup, 39
nonlinear semigroup, 42
initial condition, 19
initial data, 19
initial state, 1
initial time, 19
initial value and boundary value prob-
lem, 74
initial value problem, 20
differential inclusion in Banach
space, 29
functional differential equation,
32
heat equation, 59, 80
linear parabolic partial differen-
tial equation, 50
linear partial differential equation
with constant coefficients, 47
linear Volterra integrodifferential
equation, 36
ordinary difference equation, 26
ordinary differential equation, 20
ordinary differential equation in
Banach space, 28, 396
ordinary differential inequality, 26,
28
Volterra integrodifferential equa-
tion, 35
well posed, 43
instability,
see unstable
integral equation, 21
interconnected system, 51, 351, 483
interconnecting structure, 351, 484
interface element, 3, 53, 353
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invariance principle,
see invariance theorem, in-
variance theory
invariance theorem, invariance theory,
4, 153, 258, 409, 433, 485
countably infinite system of ordi-
nary differential equations,
485
dynamical system defined on met-
ric space, 9, 153
finite-dimensional dynamical sys-
tem, 10, 258

infinite-dimensional dynamical sys-

tem, 11, 409, 433
semigroup defined on metric space,

9,153

invariant, invariant set, 1, 8, 73, 83,
93, 104, 159, 162, 175

(Ip), 47

(Ipp),50

(Iv), 35

Jacobian, 296, 354
Jacobian matrix, 296
Jordan block
order greater than one, 272, 288
orderone, 79, 162, 165,272, 280,
288
Jordan canonical form, 271

kinetic energy, 200

(L), 266,271,274, 298
Lagrange stability, 1, 2, 8, 11, 78, 190
Lagrange’s equation, 25
Lagrangian, 25

Laplacian, 52, 58, 402, 477
large-scale system, 5

(LC), 317

(Lp), 286,288, 289

level curve, 196

(LF), 32

(LH), 23, 65,207, 266, 321
(LHp), 285, 326

Lienard equation, 298

limit cycle, 375, 377, 381, 386

linear digital control system, 354
linear homogeneous ordinary differ-
ential equation, 23,207, 266,
267
linear operator
bounded, 38
closed, 38
continuous, 38
dissipative, 40
graph, 38
spectral set, spectrum, 38
strongly elliptic, 50
linear ordinary difference equation with
constant coefficients, 79
linear ordinary differential equation with
constant coefficients, 78, 266,
271
linear parabolic equation with smooth
coefficients, 49
linear partial differential equation with
constant coefficients, 47
linear periodic ordinary differential equa-
tion, 280, 323
linear retarded functional differential
equation, 32, 457
linear sampled-data feedback control
system,
see linear digital control sys-
tem
linear semigroup, 2, 6, 7, 12, 38,
see also Cy-semigroup
linear system with state saturation, 377
linear Volterra integrodifferential equa-
tion, 35, 403, 462
linearization, 297
Lipschitz condition, 22, 33, 44, 166,
187, 397, 455
(LN), 326
load balancing of a computer network,
179
locally compact metric space, 157
lower left-hand Dini derivative, 19
lower right-hand Dini derivative, 19
(LP), 280, 300, 323
L,[G,U], 18
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lumped parameter system, 2, 6
Luré’s result, 5, 10, 339, 340, 344
(LV), 35
Lyapunov function, 4
quadratic, 194, 276, 278
vector, 161
Lyapunov matrix equation, 4,274, 275,
289, 290
unique solution, 277, 279, 291
Lyapunov stability, 1, 2, 8, 11, 78
Lyapunov stability results, geometric
interpretation, 10, 197
Lyapunov’s first instability theorem
dynamical system defined on met-
ric spaces, 99, 108
ordinary difference equation, 218
ordinary differential equation, 208
ordinary differential equation in
Banach spaces, 405

retarded functional differential equa-

tion, 430
Lyapunov’s First Method,
see the First Method of Lya-
punov
Lyapunov’s Indirect Method,
see the First Method of Lya-
punov
Lyapunov’s second instability theorem
dynamical system defined on met-
ric spaces, 100, 109
ordinary difference equation, 218
ordinary differential equation, 209
ordinary differential equation in
Banach spaces, 406
Lyapunov’s Second Method,
see the Second Method of
Lyapunov

manufacturing system, 3, 9, 176
matrix
critical, 273, 288
Hurwitz, 273, 340
Hurwitz stable, 273, 340
indefinite, 275
logarithm, 323

negative definite, 275
negative semidefinite, 275
positive definite, 275
positive semidefinite, 275
Schur, 288
Schur stable, 288
stable, 273, 278, 288
triangular, 277
triangularized, 277
unstable, 273, 288
matrix differential equation, 321
matrix measure, 225
maximal solution, 138
noncontinuable, 140
metric space, 1, 18
minimal solution, 138
M -matrix, 162, 318, 348
modified Nyquist plot, 343
monotone nondecreasing function, 163
motion, 1, 19
bounded, 19, 77
continuable, 20
continuable forward for all time,
20
continuation, 20
continuity with respect to initial
conditions, 123, 131, 186,
245,247, 248
noncontinuable, 20
periodic, 76
unique forward in time, 75
uniqueness, 165, 166
multirate digital feedback control sys-
tem, 67
multicore nuclear reactor, 11, 36, 420
multivalued operator, 42

N, 18

natural basis, 322

n degrees of freedom, 25

negative definite function, 191, 192,
194, 195, 397

negative definite matrix, 275

negative invariant set, 73, 297
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negative semidefinite function, 192—
195, 397
negative semidefinite matrix, 275
negative semitrajectory, 76
negatively invariant set,
see negative invariant set
neighborhood of a set, 83
neural network, 11, 337, 344, 438
neutral functional differential equation,

see functional differential equa-

tion of the neutral type
noncontinuable maximal solution, 140
noncontinuable motion, noncontinuable
solution, 20, 34
nonlinear semigroup, 2, 6, 7, 12, 41,
42
contraction, 41
infinitesimal generator, 42
quasi-contractive, 41
nth-order ordinary difference equation,
61
nth-order ordinary differential equa-
tion, 61
null event, 174

O notation, 272, 295
© notation, 295
object of inquiry, 158, 316, 319
observable, 330
(Q), 351
one-dimensional wave equation, 66
operator
multivalued, 42
principal part, 50
strongly elliptic, 50
w-accretive, 42
orbital stability,
see orbitally stable
orbitally stable, 310
ordinary difference equation,
see difference equation
ordinary difference inequality,
see difference inequality
ordinary differential equation,
see differential equation

ordinary differential equation in Ba-
nach spaces,
see differential equation in
Banach spaces
ordinary differential inequality,
see differential inequality
output bin, 176

(P), 256, 309
partial differential equation, 2, 5, 7,
11, 46, 50
hyperbolic equation, 48
initial and boundary value prob-
lem, 74, 399, 402, 406, 477,
478
initial value problem, 47, 50, 59,
80

linear parabolic equation with smooth

coefficients, 49, 399
nonlinear parabolic equation, 399
parabolic equation, 48, 399
parabolic equation with smooth

coefficients, 399

partial motion, 112

(PE), 297, 301

(PE'), 303

Peano—Cauchy existence theorem, 22
pendulum, 200, 299

perfect load balancing, 180

period, 76, 280, 323

periodic differential equation, 10, 256,

280, 323

linear, 280, 323
periodic dynamical system, 76, 256
periodic motion, 76
periodic system, 309
perturbed linear periodic system, 300
perturbed linear system, 10, 298, 300
Petri net, 3, 6, 173, 182
plant, 353, 365
Poincaré’s inequality, 403, 406, 420
point kinetics model of a multicore nu-

clear reactor, 11, 36, 420

Poisson’s formula, 66, 80
Popov criterion, 5, 11, 339, 340, 342
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Popov plot, 343, 344
positive definite function, 191-195, 275,
397
positive definite matrix, 275
positive invariant set, 73, 297
positive semidefinite function, 192, 194,
195, 275, 397
positive semidefinite matrix, 275
positive semitrajectory, 76
positively invariant set,
see positive invariant set
potential energy, 200
principal boundedness results
dynamical system defined on met-
ric spaces, 8, 82, 92, 103
finite-dimensional dynamical sys-
tem, 10, 199, 211, 219
infinite-dimensional dynamical sys-
tem, 11, 398, 404, 424
principal Lagrange stability results,
see principal boundedness re-
sults
principal Lyapunov stability results
dynamical system defined on met-
ric spaces, 8, 82, 92, 103
finite-dimensional dynamical sys-
tem, 10, 199, 211, 219
infinite-dimensional dynamical sys-
tem, 11, 398, 424
producer, 176
proper set (with respect to motions),
81
pulse-width modulation, 364
type I, 366
type 11, 366, 367
pulse-width-modulated feedback sys-
tem, 11, 337, 364
with Hurwitz stable plant, 367

quadratic form, 10, 194, 274,276, 289

quadratic Lyapunov function, 194,274,
276

quantization level, quantization size,
359, 362

quantization, quantizer, 11, 353, 358

fixed point, 358
quasi-contractive semigroup, 41, 42,
44, 467, 473
quasi-monotone nondecreasing func-
tion, 137, 138

R, 18

RT, 18

R™, 18

radially unbounded function, 191-194,
397

Rayleigh’s dissipation function, 25

Razumikhin-type theorem, 11, 435

regulator system, 337, 338

resolvent set, 38

restriction of a dynamical system, 100

retarded functional differential equa-
tion,
see functional differential equa-
tion of the retarded type

saddle, 281, 283
safe operating mode, 178
sampled-data control system, 53
saturation function, 215
saturation nonlinearity, 376, 377
scalar differential-difference equation,
32
Schauder’s fixed point theorem, 64
Schur stable matrix, 288
(SE), 55, 189
second method of Lyapunov, 4, 201
second-order linear system, 281
sector, sector condition, 5, 30, 339,
350
(SEyg), 55, 189
semidefinite Lyapunov function, 195
semigroup, 2, 11, 38,
see also Cy-semigroup,
see also nonlinear semigroup
contraction, contractive, 467
defined on metric spaces, 153
determined by functional differ-
ential equation, 44
determined by ordinary differen-
tial equation, 44
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determined by Volterra integro-
differential equation, 45
quasi-contractive, 41, 467, 473
set of allowed event trajectories, 174
set of discontinuities, 54, 82, 188, 464
set of events, 173
set of initial conditions, 19
set of initial states, 1
set of states, 173
set of valid event trajectories, 174
set—valued mapping, 29
(SF),5
(SFy),5
(SG), 56 450
(SGy), 56 450
(SH), 5
(2), 483
(X)), 484
sigmoidal function, 439, 482
simple pendulum, 200, 299
Sobolev space, 47, 477
Sobolev’s embedding theorem, 412,
413
solution, 20
spatially distributed parameters, 6
spectral set, 38
spectrum of a linear semigroup, 38
stability,
see stable
in the sense of Lyapunov, 2, 78
stability of periodic motions, 10, 309
stable, 2, 8, 76, 144, 189, 190, 466
continuous dynamical systems de-
fined on metric spaces, 93,
150, 151, 158,159,170, 171
continuous finite-dimensional dy-
namical systems, 79, 200, 251,
256,267,268,272,275,280,
316, 333
continuous infinite-dimensional dy-
namical systems, 398, 414,
416, 424, 435, 447, 484
discontinuous dynamical systems
defined on metric spaces, 83

discontinuous finite-dimensional
dynamical systems, 220
discontinuous infinite-dimensional
dynamical systems, 450, 466,
468, 471,472
discrete-time dynamical systems
defined on metric spaces, 104,
150, 151,163,164,170,171
discrete-time finite-dimensional dy-
namical systems, 79,212,287,
290, 319
stable focus, 281, 285, 286
stable manifold, 10,296,301-303, 309,
313
stable node, 281, 282, 284
state space, 1, 19
state trajectory, 174
state transition matrix, 322
strong solution, 38, 43
strongly elliptic operator, 50
subsystem, 19
free, isolated, 484
successive approximations of solutions,
see differential equation
switched system, 3, 465
Sylvester inequalities, 195
synchronous discrete-time Hopfield neu-
ral network, 337, 350
system, 19
system of differential inclusions, 29
system of first-order ordinary differ-
ence equations, 26
system of first-order ordinary differ-
ential equations, 20
system subjected to impulsive effects,
3,465
system with saturation nonlinearities,
11, 337,377

task, 176

time lag, 2, 6

time set, 1, 19

trajectory, 39, 75,
see also negative
semitrajectory,
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see also positive

semitrajectory
transfer function, 338
transportation delay, 2, 6
trivial solution, 188

uniform asymptotic stability,
see asymptotically stable
uniform asymptotic stability in the large,
see asymptotically stable
uniform boundedness,
see uniformly bounded
uniform global asymptotic stability,
see asymptotically stable
uniform stability,
see stable
uniform ultimate boundedness,

see uniformly ultimately bounded

uniformly asymptotically stable,
see asymptotically stable
uniformly asymptotically stable in the
large,
see asymptotically stable
uniformly attractive, 77, 79, 145, 190,
466
in the large, 78, 191, 467
uniformly bounded, 2, 77, 190
continuous dynamical systems de-
fined on metric spaces, 95,
159, 160, 170, 171
continuous finite-dimensional dy-
namical systems, 79, 205, 251,
267,287, 317
continuous infinite-dimensional dy-
namical systems, 405, 415,
417,418, 426
discontinuous dynamical systems
defined on metric spaces, 87
discontinuous finite-dimensional
dynamical systems, 221
discontinuous infinite-dimensional
dynamical systems, 452,467
discrete-time dynamical systems
defined on metric spaces, 106,
163, 164, 170, 171

discrete-time finite-dimensional dy-
namical systems, 79,217,287,
320
uniformly bounded sequence of func-
tions, 63
uniformly stable,
see stable
uniformly ultimately bounded, 2, 8,
77, 190
continuous dynamical systems de-
fined on metric spaces, 96,
159, 160, 170, 171
continuous finite-dimensional dy-
namical systems, 79,205,317
continuous infinite-dimensional dy-
namical systems, 405, 415,
417,418, 426
discontinuous dynamical systems
defined on metric spaces, 88
discontinuous finite-dimensional
dynamical systems, 221
discontinuous infinite-dimensional
dynamical systems, 452
discrete-time dynamical systems
defined on metric spaces, 106,
163, 164, 170, 171
discrete-time finite-dimensional dy-
namical systems, 79,217,320
uniqueness of motion, 165
uniqueness of solutions
ordinary differential equation, 22
ordinary differential equation in
Banach spaces, 9, 29, 166
retarded functional differential equa-
tion, 33
uniqueness property, 75
unstable, 2, 8, 77, 81, 82, 191, 466
continuous dynamical systems de-
fined on metric spaces, 99,
100
continuous finite-dimensional dy-
namical systems, 79, 199, 208,
209,272,275,279,299, 300,
334
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continuous infinite-dimensional dy-
namical systems, 405, 406,
408, 430-432
discontinuous dynamical systems
defined on metric spaces, 92
discontinuous finite-dimensional
dynamical systems, 223, 354,
357
discontinuous infinite-dimensional
dynamical systems, 453, 466
discrete-time dynamical systems
defined on metric spaces, 108,
109
discrete-time finite-dimensional dy-
namical systems, 79,218, 288,
290, 301
unstable focus, 281, 285
unstable manifold, 10, 295, 296, 301—
303, 307-309, 313
unstable node, 281-283
upper left-hand Dini derivative, 19
upper right-hand Dini derivative, 19

(V),34

valid event trajectory, 174

variation of constants formula, 326

vector exponent, 46

vector index, 46

vector Lyapunov function, 161, 316,
348, 421

Volterra competition equation, 307

Volterra integrodifferential equation,
2,5,7, 11, 34, 403,
410, 462

(W), 350

w-accretive, 42

wave equation, 48, 66

(W), 350

(W;), 351

w-limit set, 154

Yacubovich—Kalman lemma, 5, 341

Zubov’s theorem, 10, 264
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