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Preface

Dear Students,

We are going to publish a series of books for high
school students. These books will cover the basics in
mathematics. We will begin with algebra, geometry
and calculus. In this series we will also include two
books which were written 25 years ago for the
Mathematical School by Correspondence in the
Soviet Union. At that time I had organized this
school and I continue to direct it.

These books were quite popular and hundreds of
thousands of each were sold. Probably the reason for
their success was that they were useful for independ-
ent study, having been intended to reach students
who lived in remote places of the Soviet Union
where there were often very few teachers in mathe-
matics.

I would like to tell you a little bit about the Mathe-
matical School by Correspondence. The Soviet
Union, you realize, is a large country and there are
simply not enough teachers throughout the country
who can show all the students how wonderful, how
simple and how beautiful the subject of mathematics
is. The fact is that everywhere, in every country and
in every part of a country there are students interested
in mathematics. Realizing this, we organized the
School by Correspondence so that students from 12
to 17 years of age from any place could study. Since
the number of students we could take in had to be
restricted to about 1000, we chose to enroll those
who lived outside of such big cities as Moscow,
Leningrad and Kiev and who inhabited small cities
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and villages in remote areas. The books were written
for them. They, in turn, read them, did the problems
and sent us their solutions. We never graded their
work -- it was forbidden by our rules. If anyone was
unable to solve a problem then some personal help
was given so that the student could complete the
work.

Of course, it was not our intention that all these
students who studied from these books or even
completed the School should choose mathematics as
their future career. Nevertheless, no matter what they
would later choose, the results of this training re-
mained with them. For many, this had been their first
experience in being able to do something on their own
-- completely independently.

I would like to make one comment here. Some of my
American colleagues have explained to me that
American students are not really accustomed to think-
ing and working hard, and for this reason we must
make the material as attractive as possible. Permit me
to not completely agree with this opinion. From my
long experience with young students all over the
world I know that they are curious and inquisitive and
I believe that if they have some clear material pre-
sented in a simple form, they will prefer this to all
artificial means of attracting their attention -- much as
one buys books for their content and not for their
dazzling jacket designs that engage only for the
moment.

The most important thing a student can get from the
study of mathematics is the attainment of a higher
intellectual level. In this light I would like to point out
as an example the famous American physicist and
teacher Richard Feynman who succeeded in writing
both his popular books and scientific works in a
simple and attractive manner.

I.M. Gel'fand
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Foreword

TheMethod ofCoordinates is the method of transfer-
ring a geometrical image into formulas, while in the
previous book Functions and Graphs you learned
how to transfer formulas into picutres.

The systematic development of this method was
proposed by the outstanding French philosopher and
mathematician Rene Descartes about 350 years ago.
It was a great discovery and very much influenced the
development not only of mathematics but of other
sciences as well. Even today you cannot avoid the
method of coordinates. In any image on the computer
or TV, every transmission of the picture from one
place to another uses the transformation of the visual
information into numbers -- and vice versa.

Note to Teachers
This series of books includes the following material:

1. Functions and Graphs
2. The Method of Coordinates
3. Algebra
4. Geometry
5. Calculus
6. Combinatorics

Of course, all of the books may be studied independ-
ently. We would be very grateful for your comments
and suggestions. They are especially valuable be-
cause books 3 through 6 are in progress and we can
incorporate your remarks. For the book Functions
and Graphs we plan to write a second part in which
we will consider other functions and their graphs,
such as cubic polynomials, irrational functions, ex-
ponential function, trigonometrical functions and
even logarithms and equations.
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Introduction

When you read in the newspapers of the launching
of a new space satellite, pay attention to the statement:
"The satellite was placed in an orbit close to the one
that was calculated." Consider the following problem:
How can we calculate - that is, study numerically -
the orbit of the satellite-a line? For this we must be
able to translate geometrical concepts into the lan-
guage of numbers and in turn be able to define the
position of a point in space (or in the plane, or on the
surface of the earth, and so on) with the aid of
numbers.

The method of coordinates is the method that
enables us to define the position of a point or of a body
by numbers or other symbols.

The numbers with which the position of the points
is defined are called the coordinates of the point.

The geographical coordinates (with which you are
familiar) define the position of a point on a surface
(the surface of the earth); each point on the surface
of the earth has two coordinates: latitude and longi-
tude.

In order to define the position of a point in space,
we need not two numbers but three. For example, to
define the position of a satellite, we can indicate its
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height above the surface of the earth, and also the
latitude and longitude of the point which it is over.

if the trajectory of the satellite is known - that is,
if we know the line along which it is moving - then
in order to define the position of the satellite on this
line, it is enough to indicate one number, for example,
the distance traveled by the satellite from some point
on the trajectory.'

Similarly, the method of coordinates is used for
defining the position of a point on a railroad track:
one shows the number of kilometer posts. This
number then is the coordinate of the point on the
railway line. In the name "The Forty-second Kilo-
meter Platform," for example, the number 42 is the
coordinate of the station.

A peculiar kind of coordinates is used in chess,
where the position of figures on the board is defined
by letters and numbers. The vertical columns of
squares are indicated by letters of the alphabet and the
horizontal rows by numbers. To each square on the
board there correspond a letter, showing the vertical
column in which the block lies, and a number, in-
dicating the row. In Fig. I the white pawn lies in
square a2 and the black one in c4. Thus, we can regard
a2 as the coordinates of the white pawn and c4 as
those of the black.

The use of coordinates in chess allows us to play
the game by letter. In order to announce a move,
there is no need to draw the board and the positions
of the figures. It is sufficient, for example, to say: "The
Grand Master played e2 to e4," and everyone will
know how the game opened.

The coordinates used in mathematics allow us to
define numerically the position of an arbitrary point
in space, in a plane, or on a line. This enables us to
"cipher" various kinds of figures and to write them
down with the aid of numbers. You will find one of the

'Sometimes we say that a line has one dimension, a surface,
two, and space, three. By the dimension, then, we mean the
number of coordinates defining the position of a point.
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examples of this kind of ciphering in Exercise 1 in
Section 4.

The method of coordinates is particularly important
because it permits the use of modern computers not
only for various kinds of computations but also for
the solution of geometrical problems, for the in-
vestigation of arbitrary geometrical objects and rela-
tions.

We shall begin our acquaintance with the co-
ordinates used in mathematics with an analysis of the
simplest case: defining the position of a point on a
straight line.
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PART I





CHAPTER 1

The Coordinates of Points on a Line

1. The Number Axis

In order to give the position of a point on a line,
we proceed in the following manner. On the line we
choose an origin (some point 0), a unit of measure-
ment (a line segment e), and a direction to be con-
sidered positive (shown in Fig. 2 by an arrow).

A line on which an origin, a unit of measurement,
and a positive direction are given will be called a
number axis.

To define the position of a point on a number axis
it suffices to specify a single number - +5, for ex-
ample. This will indicate that the point lies 5 units of
measurement from the origin in the positive direction.

The number defining the position of a point on a
number axis is called the coordinate of the point on
this axis.

The coordinate of a point on a number axis is equal
to the distance of the point from the origin of co-
ordinates expressed in the chosen units of measure-
ment and taken with a plus sign if the point lies in the
positive direction from the origin, and with a minus
sign in the opposite case. The origin is frequently
called the origin of coordinates. The coordinate of the
origin (the point 0) is equal to zero.

Fig. 2
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We use the designation: M(-7), A(x), and so on.
The first of these indicates the point M with the
coordinate -7; the latter, the point A with the co-
ordinate x. Frequently we say more briefly: "the point
minus seven," "the point x," and so on.

In introducing coordinates, we have set up a correspon-
dence between numbers and points on a straight line. In
this situation the following remarkable property is satisfied :
to each point of the line there corresponds one and only
one number, and to each number there corresponds one
and only one point on the line.

Let us introduce a special term: a correspondence
between two sets is said to be one-to-one if for each element
of the first set there is one element of the second set and (in
this same correspondence) each element of the second set

2

4

corresponds to some element of the first set. In Examples
1 and 3 in the figure the correspondence is one-to-one, but
in 2 and 4 it is not. At first glance it appears quite simple
to set up a one-to-one correspondence between the points
on a line and the numbers. However, when mathematicians
considered the matter, it turned out that, in order to eluci-
date the exact meaning of the words in this statement, a
long and complicated theory had to be created. For
immediately two "simple" questions arise which are
difficult to answer: What is a number and what does one
mean by a point?

These questions are related to the foundations of geom-
etry and to the axiomatics of numbers. We shall examine
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the latter somewhat more closely in another booklet in our
series.

Although the question of defining the position of a
point on a line is quite simple, we must examine it
carefully in order to become accustomed to seeing
geometrical relations in numerical ones, and vice
versa.

Test yourself.
If you have correctly understood Section I, you will

have no difficulty with the exercises we have prepared
for you. If you cannot do them, this means that you
have left out or not understood something. In that
case, go back and read the passage over.

EXERCISES

1. (a) Draw on a number axis the points:

A(-2), B(1), K(O).

(b) On a number axis draw the point M(2). Find
the two points A and B on the number axis located a
distance of three units from the point M. What are the
coordinates of the points A and B?

2. (a) It is known that the point A(a) lies to the
right of the point B(b).' Which number is greater:
a or b?

(b) Without drawing the points on a number axis,
decide which of the two points is to the right of the
other: A(-3) or B(-4), A(3) or B(4), A(-3) or
B(4), A(3) or B(-4).

3. Which of these two points lies to the right of the
other: A(a) or B(-a)? (Answer. We cannot say. If
a is positive, then A lies to the right of B; if a is nega-
tive, then B lies to the right of A.)

4. Consider which of the following points lies to the
right of the other: (a) M(x) or N(2x); (b) A(c) or

'From here on we shall suppose (hat the axis is drawn hori-
zontally and that the positive direction is from left to right.
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B(c + 2); (c) A(x) or B(x - a). (Answer. If a is
greater than zero, then A is to the right; if a is less than
zero, then B is to the right. If a = 0, then A and B
coincide.) (d) A(x) or B(x2).

5. Draw the points A(-5) and B(7) on a number
axis. Find the coordinate of the center of the segment
AB.

6. With a red pencil, mark off on a number axis
the points whose coordinates are: (a) whole numbers;
(b) positive numbers.

7. Mark off all the points x on a number axis for
which: (a) x < 2; (b) x>5; (c) 2<x< 5;
(d)-3j <x<0.

2. The Absolute Value of a Number

By the absolute value of the number x (or the
modulus of the number x) we mean the distance of the
point A(x) from the origin of coordinates.

The modulus of the number x is denoted by vertical
lines: lxl is the modulus of x.

For example, 1- 31 = 3, 141 = 1.
From this it follows that

if x > 0, then lxi = x,
if x < 0, then lxl = -x,
if x = 0, then lxi = 0.

Since the points a and -a are located at the same
distance from the origin of coordinates, the numbers
a and -a have the same absolute value: Jaj = I-al.

EXERCISES

1. What values can the expression lxl/x take on?
2. How can the following expressions be written

without using the absolute value sign: (a) Ia2I;
(b) la - bi, if a > b; (c) la - bl, if a < b; (d)
-al, if a is a negative number?
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3. It is known that ix - 31 = x - 3. What can
x be?

4. Where on a number axis can the point x lie if
(a) jxj = 2; (b) jxj > 3?

Solution. If x is a positive number, then jxj = x,
and so x > 3; if x is a negative number, then
jxj = -x; thus from the inequality -x > 3, it
follows that x < - 3. (Answer. To the left of the
point -3 or to the right of the point 3. This answer
can be gotten more quickly if one takes into account
that lxj is the distance of the point x from the origin of
coordinates. It is then clear that the desired points are
located at a distance from the origin which is greater
than 3. The answer is obtained from a sketch.)
(c) lxi < 5; (d) 3 < jxj < 5? (e) Show where the
points lie for which Ix - 21 = 2 - x.

5. Solve the equations: (a) Ix - 21 = 3; (b)
Ix + 11 + Ix + 21 = I. (Answer. The equation has
infinitely many solutions: the collection of all solutions
fills the segment -2 < x < - I; that is, any number
which is greater than or equal to -2 and less than or
equal to - I satisfies the equation.)

3. The Distance Between Two Points

Let us begin with an exercise. Find the distance
between the points:

(a) A(---7) and B(-2);
(b) A(-31) and B(-9).
It is not difficult to solve these problems since,

knowing the coordinates of the points, one can figure
out which is to the right of the other, how they are
situated with respect to the origin of coordinates, and
so on. After this it is quite easy to see how to calculate
the desired distance.

We now propose that you derive a general formula
for the distance between two points on a number
axis, that is, that you solve the following problem:

11



Problem. Given the points A(xt) and B(x2);
define the distance d(A, B) between these points.'

There are six such cases. Let us first examine the
(a) A 8 three cases in which B is to the right of A (Fig. 3a, b,

0 a and c).
(b) A e In the first of these (Fig. 3a) the distance d(A, B) is

0 equal to the difference of the distances of the points
(0 A 6 B and A from the origin. Since in this case xt and x2

0 are positive,
Fig. 3 d(A, B) = x2 - x1.

Solution. Since the concrete values of the co-
ordinates of the points are not known, it is necessary
to draw all possible cases of the mutual relation of the
points A, B, and C (the origin).

In the second case (Fig. 3b) the distance is equal to
the sum of the distances of the points B and A from the
origin; that is, as before,

d(A, B) = x2 - x1,

(a)

(b) B

(C)
0

0 A

0
A

0
A

since in this case x2 is positive and x, negative.
Show that in the third case (Fig. 3c) the distance

will be defined by the same formula.
The other three cases (Fig. 4) differ from those al-

ready considered in that the roles of the points A and
B have been interchanged. In each of these cases one
can check that the distance between the points A and
B is equal to0

Fig. 4 d(A, B) = xt - x2.

Thus in all cases where x2 > x1, the distance
d(A, B) is equal to x2 - xt, and in all cases where
XI > x2 this distance is equal to xt - x2. Recalling
the definition of the absolute value, one can write this

'The letter d is usually used for designating a distance. The
expression d(A, B) designates the distance between the points
A and B.
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using a single formula valid in all six cases:

d(A, B) = Ix I - X21-

If desired this formula can also be written as

d(A, B) = Ix2 - X11-

To be rigorous, we must also consider the case where
XI = x2, that is, where the points A and B coincide.
It is clear that in this case as well,

d(A, B) = Ix2 - x 1I.

Thus the problem we have set has been solved in
full.

EXERCISES

1. Mark off on a number axis the points x for which
(a) d(x, 7) < 3; (b) Ix - 21 > 1; (c) Ix + 31 = 3.

2. On a number axis two points A(x I) and B(x2)
are given. Find the coordinate of the center of the
segment AB. (Hint. In solving this problem you must
examine all possible cases of the positions of A and B
on the number axis or else write down a solution
which would be valid at once for all cases.)

3. Find the coordinate of the point on the number
axis which is located twice as close to the point
A(-9) as to the point B(-3).

4. Solve the equations (a) and (b) of Exercise 5 on
page 9 using the concept of the distance between two
points.

5. Solve the following equations:

(a)Ix+31+Ix-1I=5;
(b)Ix+3I+Ix- lI=4;
(c)Ix+3I+Ix-1I=3;
(d) I x + 31 - I x - I I = 5 ;
(e)Ix+31-Ix-1I=4;
(f) Ix + 31 - Ix - 11 = 3.

13



CHAPTER 2

The Coordinates of Points in the Plane

M

Mf 01 x

Fig. 6

4. The Coordinate Plane

Y

0 x

Fig. 5

IY

Mt

In order to define the coordinates of a point in the
plane, we shall draw two mutually perpendicular
number axes. One of these will be called the abscissa
or x-axis (or Ox) and the other the ordinate or y-axis
(or Oy).

The direction of the axes is usually chosen so that
the positive semiaxis Ox will coincide with the positive
semiaxis Oy after a 90° rotation counterclockwise
(Fig. 5). The point of intersection of the axes is called
the origin of coordinates (or simply origin) and is
designated by the letter O. It is taken to be the origin
of coordinates for each of the number axes Ox and
Oy. The units of measurement on these axes are
chosen, as a rule, to be identical.

Let us take some point M on the plane and drop
perpendiculars from it to the axis Ox and to the axis
Oy (Fig. 6). The points of intersection M, and M2 of
these perpendiculars with the axes are called the
projections of the point M on the coordinate axes.

The point M, lies on the coordinate axis Ox, and
so there is a definite number x corresponding to it.
This number is taken to be the coordinate of M on the

14



x-axis. In the same way the point M2 corresponds to
some number y - its coordinate on the y-axis.

In this way, to each point M lying in the plane there
correspond two numbers x and y, which are called the
rectangular Cartesian coordinates of the point M.
The number x is called the abscissa of the point M,
and y is its ordinate.

On the other hand, for each pair of numbers x and
y it is possible to determine a point in the plane for
which x is the abscissa and y the ordinate.

Now we have set up a one-to-one correspondence'
between the points in the plane and pairs of number x
and y taken in a definite order (first x, then y).

Thus, the rectangular Cartesian coordinates of a
point in the plane are called the coordinates on the
coordinate axes of the projections of the point on
these axes.

The coordinates of the point M are usually written
in the following manner: M(x, y). The abscissa is
written first and then the ordinate. Sometimes instead
of "the point with the coordinates (3, - 8)" one speaks
of "the point (3, -8)."

The coordinate axes divide the plane into four
quarters (quadrants). The first quadrant is taken to be
the quadrant between the positive semiaxis Ox and the
positive semiaxis Oy. The other quadrants are num-
bered consecutively counterclockwise (Fig. 7).

To master the notion of coordinates in the plane, do
a few exercises.

EXERCISES

First we provide some quite simple problems.

1. What do the following symbols mean?
(6, 2), (9, 2), (12, 1), (12, 0), (I I , - 2), (9, - 2),

'A one-to-one correspondence between the points of a plane
and pairs of numbers is a correspondence such that to each point
there corresponds one definite pair of numbers and to each pair
of numbers there corresponds one definite point (cf. p. 8).

Y

II

M

Fig. 7

I!

x
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(4, -2), (2, - 1), (1, 1), (- 1, l), (-2, 0), (-2, -2),
(2, 1), (5, 2), (12, 2), (9, 1), (10, - 2), (10, 0), (4, 1),

(2, 2), (-2, 2), (-2, 1), (-2, -l), (0, 0), (2, 0),
(2, -2), (4, -1), (12, - 1), (12, -2), (11, 0), (7, 2),
(4, 0), (9, 0), (4, 2).

2. Without drawing the point A(I, -3), say what
quadrant it lies in.

3. In which quadrants can a point be located if its
abscissa is positive?

4. What will be the signs of the coordinates of
points located in the second quadrant? In the third
quadrant? In the fourth?

5. A point is taken on the Ox axis with the coordi-
nate -5. What will its coordinates be in the plane?
(Answer. The abscissa of the point is equal to -5,
and the ordinate is equal to zero.)

Here are some more complicated problems.

6. Draw the points A(4, 1), B(3, 5), C(- I, 4), and
D(0, 0). If you have drawn them correctly, you have
the vertices of a square. What is the length of the sides
of this square? What is its area?' Find the coordi-
nates of the midpoints of the sides of the square. Can
you show that ABCD is a square? Find four other
points (give their coordinates) that form the vertices
of a square.

7. Draw a regular hexagon ABCDEF. Take the
point A as the origin; direct the abscissa axis from A
to B; and for the unit of measurement take the seg-
ment AB. Find the coordinates of all the vertices of
this hexagon. How many solutions does this problem
have?

8. In a plane the points A(0, 0), B(xt, yt), and
D(x2, Y2) are given. What coordinates must the point
C have so that the quadrangle ABCD will be a paral-
lelogram?

'For the unit of measurement of area we take the area of a
square whose sides are equal to the unit of measurement on the
axes.

16



5. Relations Connecting Coordinates

If both coordinates of a point are known, then its
position in the plane is fully defined. What can one
say about the position of a point if only one of
its coordinates is known? For example, where do all
the points whose abscissas are equal to three lie?
Where are the points one of whose coordinates is
equal to three located?

Generally speaking, specifying one of the two
coordinates determines some curve. Indeed, the plot
of Jules Verne's novel, The Children of Captain Grant,
was based on this fact. The heroes of the book knew
only one coordinate of the place where a shipwreck
had occurred (the latitude), and therefore, in order to
examine all possible locations, they were forced to
circle the earth along an entire parallel -- the line for
each of whose points the latitude was equal to 37°11'.

A relation between coordinates usually defines
not merely a point but a set (collection) of points. For
example, if one marks off all points whose abscissas
are equal to their ordinates, that is, those points whose
coordinates satisfy the relation

one gets a straight line: the bisector of the first and
third coordinate angles (Fig. 8).

Sometimes, instead of a "set of points" one speaks
of a "locus of points." For example, the locus of
points whose coordinates satisfy the equation

x = y

is, as we have said, the bisector of the first and third
coordinate angles.

One should not suppose, however, that every rela-
tion between the coordinates necessarily gives a line
in the plane. For example, you can easily see that the
relation x2 + y2 = 0 defines a single point: the
origin. The relation x2 + y2 = -I is not satisfied

ty

Fig. 8

x
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by the coordinates of any point (it defines the so-called
empty set).

The relation

Fig. 9

Y

Fig. 10

x2 - y2 = o
leads to a pair of mutually perpendicular straight
lines (Fig. 9). The relation x2 - y2 > 0 gives a whole
region (Fig. 10).

EXERCISES

1. Try to decide by yourself which sets of points are
defined by these relations:

(a) IxI = Iyl ;
(b) x/IxI = y/Iyl;
(c) IxI + x = IyI + y;
(d) [x] = [y];t

(e) x - [x] = y - [y];

{ f) x -- [x] > y - [y]. (The answer to Exercise
if is given in a figure on page 73.)

2. A straight path separates a meadow from a field.
A pedestrian travels along the path at a speed of
5 km/hr, through the meadow at a speed of 4 km/hr,
and through the field at a speed of 3 km/hr. Initially,
the pedestrian is on the path. Draw the region which
the pedestrian can cover in 1 hour.

3. The plane is divided by the coordinate axes into
four quadrants. In the first and third quadrants (includ-
ing the coordinate axes) it is possible to travel at the
speed a, and in the second and fourth (excluding the
coordinate axes) one can travel at the speed b. Draw the
set of points which can be reached from the origin
over a given amount of time if:

(a) the speed a is twice as great as b;
(b) the speeds are connected by the relation

a=b/2.
'The symbol [x] denotes the whole part of the number x,

that is, the largest whole number not exceeding x. For example,
[3.5] = 3, (5] = 5,(-2.51 = -3.
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6. The Distance Between Two Points
We are now able to speak of points using numerical

terminology. For example, we do not need to say:
Take the point located three units to the right of the
y-axis and five units beneath the x-axis. It suffices to
say simply: Take the point (3, - 5).

We have already said that this creates definite
advantages. Thus, we can transmit a figure consisting
of points by telegraph or by a computer, which does
not understand sketches but does understand numbers.

In the preceding section, with the aid of relations
among numbers, we have given some sets of points
in the plane. Now let us try to translate other geo-
metrical concepts and facts into the language of
numbers.

We shall begin with a simple and ordinary problem:
to find the distance between two points in the plane.

As always, we shall suppose that the points are given
by their coordinates; and thus our problem reduces
to the following: to find a rule according to which we
will be able to calculate the distance between two
points if we know their coordinates. In the derivation
of this rule, of course, resorting to a sketch will be
permitted, but the rule itself must not contain any
reference to the sketch but must show only how and in
what order one should operate with the given numbers
- the coordinates of the points - in order to obtain
the desired number - the distance between the points.

Possibly, to some of our readers this approach to
the solution of the problem will seem strange and
forced. What could be simpler, they will say, for the
points are given, even though by their coordinates.
Draw the points, take a ruler and measure the distance
between them.

This method sometimes is not so bad. But suppose
again that you are dealing with a digital computer.
There is no ruler in it, and it does not draw; but it is
able to compute so quickly' that this causes it no

'A modern computing machine carries out tens of thousands
of operations of addition and multiplication per second.
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difficulty. Notice that our problem is so set up that the
rule for calculating the distance between two points
will consist of commands which the machine can
carry out.

It is better first to solve the problem which we have
posed for the special case where one of the given points
lies at the origin of coordinates. Begin with some
numerical examples: find the distance from the origin
of the points (12, 5), (-3, 15), and (-4, -7).

Hint. Use the Pythagorean theorem.
Now write down a general formula for calculating

the distance of a point from the origin of coordinates.

Answer. The distance of the point M(x, y) from
the origin of coordinates is defined by the formula

d(O, M) = x2 i y2 .

Obviously, the rule expressed by this formula
satisfies the conditions set above. In particular, it can
be used to calculate with machines that can multiply
numbers, add them, and extract roots.

Let us now solve the general problem.

Problem. Given two points in the plane, A(xt, y )
and B(x2, y2), find the distance d(A, B) between
them.

Fig. 11

Solution. Let us denote by A 1, B1, A2, B2 (Fig. 11)
the projections of the points A and B on the coordinate
axis.

Let us denote the point of intersection of the
straight lines AA 1 and BB2 by the letter C. From the
right triangle ABC we get, from the Pythagorean
theorem,'

d2(A, B) d2(A, C) + d2(B, C). (*)

But the length of the segment AC is equal to the
length of the segment A2B2. The points A2 and B2

'By d2(A, B) we mean the square of the distance d(A, B).

20



lie on the axis Oy and have the coordinates yt and Y2,
respectively. According to the formula obtained on
page 11, the distance between them is equal to
IYI - Y21.

By an analogous argument we find that the length
of the segment BC is equal to Ixt - x2I. Substituting
the values of AC and BC that we have found in the
formula (*), we obtain:

d2(A, B) = (xt -- x2)2 + (Yt - Y2)2.

Thus, d(A, B) - the distance between the points
A(xl, yl) and B(x2i Y2)- is computed by the
formula

d(A, B) = (Xt - x2)2 _+(Y1 - Y2)2 .

Let us note that our entire argument is valid not
only for the disposition of points shown in Fig. 11
but for any other.

Make another sketch (for example, take the point A
in the first quadrant and the point B in the second) and
convince yourself that the entire argument can be
repeated word for word without even changing the
designations of the points.

Note also that the formula on page 10 for the dis-
tance between points on the straight line can be
written in an analogous form:'

d(A, B) = [(x1 - x2)2 .

'We use the fact that

x' = Ixl
(keep in mind the arithmetic value of the root). An inaccurate
use of this rule (sometimes people mistakenly calculate that
I/x2 = x) can lead to an incorrect conclusion. As an example,
we give a chain of reasoning containing such an inaccuracy
and invite you to try to discover it:

I --3 =4-6=1 -3+ =4/-6+
(1 - '')2 = (2 - J) 2 V O - )Y

J)' = t - j = 2 - t = 2.
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EXERCISES

1. In the plane three points A(3, -6), B(-2, 4)
and C(1, -2) are given. Prove that these three points
lie on the same line. (Hint. Show that one of the
sides of the "triangle" ABC is equal to the sum of the
other two sides.)

2. Apply the formula for the distance between two
points to prove the well-known theorem: In a paral-
lelogram the sum of the squares of the sides is equal
to the sum of the squares of the diagonals. (Hint.
Take one of the vertices of the parallelogram to be the
origin of coordinates and use the result of Problem 3
on page 16. You will see that the proof of the theorem
reduces to checking a simple algebraic identity.
Which?)

3. Using the method of coordinates, prove the
following theorem: if ABCD is a rectangle, then for an
arbitrary point M the equality

AM2 + CM2 = BM' + DM2

C(ab)

Fig. 12

is valid. What is the most convenient way of placing
the coordinate axes?

7. Defining Figures

In Section 5 we introduced some examples of rela-
tions between the coordinates that define figures on
the plane. We shall now go further into the study of
geometrical figures using relations between numbers.

We view each figure as a collection of points, the
points on the figure; and to give a figure will mean to
establish a method of telling whether or not a point
belongs to the figure under consideration.

In order to find such a method - for example, for
the circle - we use the definition of the circle as the
set of points whose distance from some point C
(the center of the circle) is equal to a number R (the
radius). This means that in order for the point
M(x, y) (Fig. 12) to lie on the circle with the center
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C(a, b), it is necessary and sufficient that d(M, C) be
equal to R.

Let us recall that the distance between points is
defined by the formula

d(4, B) = (xl - x2)2 + (Yl - Y2)2 .

Consequently, the condition that the point M(x, y)
lie on the circle with center C(a, b) and radius R is
expressed by the relation (x - a)2 + (y - b)2 = R,
which can be rewritten in the form

(x-a)2+(y-b)2=R2. (A)

Thus, in order to check whether or not a point lies
on a circle, we need merely check whether or not the
relation (A) is satisfied for this point. For this we must
substitute the coordinates of the given points for x
and y in (A). If we obtain an equality, then the point
lies on the circle; otherwise, the point does not lie on
the circle. Thus, knowing equation (A), we can
determine whether or not a given point in the plane
lies on the circle. Therefore equation (A) is called the
equation of the circle with center C(a, b) and radius R.

EXERCISES

1. Write the equation of the circle with center
C(-2, 3) and radius 5. Does this circle pass through
the point (2, - 1)?

2. Show that the equation

x2 + 2x + y2 = 0

specifies a circle in the plane. Find its center and radius.
(Hint. Put the equation in the form

(x2+2x+ I)+y2= 1,
or

(x + 1)2 + y2 = l.)

3. What set of points is specified by the equationx2+y2<4x+4y?
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(Solution. Rewrite the inequality in the form

x2-4x-{-4-+2-4y+4< 8,
or

(x - 2) 2 + (y - 2)2 < 8.)

As is now clear, this relation says that the distance
of any point in the desired set to the point (2, 2) is
less than or equal to V,'8-. It is evident that the points
satisfying this condition fill the circle with radius N/8
and center at (2, 2). Since equality is permitted in the
relation, the boundary of the circle also belongs to the
set.)

We have seen that a circle in the plane can be given
by means of an equation. In the same way one can
specify other curves; but their equations, of course,
will be different.

We have already said that the equation x2 - y2 = 0
specifies a pair of straight lines (see page 16). Let us
examine this somewhat more closely. If x2 - y2 = 0,
then x2 = y2 and consequently, (xI = (yj. On the
other hand, if Ixl = jyj, then x2 - y2 = 0; there-
fore, these relations are equivalent. But the absolute
value of the abscissa of a point is the distance of the
point from the axis Oy, and the absolute value of the
ordinate is its distance from the axis Ox. This means
that the points for which jxj = Iy' are equidistant
from the coordinate axes, that is, lie on the two bi-
sectors of the angles formed by these axes. It is clear,
conversely, that the coordinates of an arbitrary point
on each of these two bisectors satisfy the relation
x2 = y2. We shall say, therefore, that the equation
of the points on these two bisectors is the equation
x2-y2=0.

You know, of course, other examples of curves
that are given by means of an equation. For example,
the equation y = x2 is satisfied by all the points of a
parabola with vertex at the origin, and only by these
points. The equation y = x2 is called the equation of
this parabola.
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In general, by the equation of a curve we mean that
equation which becomes an identity whenever the
coordinates of any point on the curve are substituted
for x and y in the equation, and which is not satisfied
if one substitutes the coordinates of a point not lying
on the curve.

For example, without even knowing what the curve
specified by the equation

(x2+y2+y)2 = x2+y2 (*)

looks like, we can say that it passes through the origin,
since the numbers (0, 0) satisfy the equation. However,
the point (I, 1) does not lie on this curve, since
(12 + 12+ 12)2 120 12.

If you are interested in seeing what the curve speci-
fied by this equation looks like, look at Fig. 13.

This curve is called a cardioid since it has the shape
of a heart.

If a computer could feel affection toward someone,
it would probably transmit the figure of a heart in the
form of an equation to him; but on the other hand,
perhaps it would give a mathematical "bouquet" -
the equation of the curves shown in Fig. 14. As you
see, these curves are really quite similar to flowers.
We shall write out the equations of these mathe-
matical flowers when you have become acquainted
with polar coordinates,

8. We Begin to Solve Problems

The translation of geometrical concepts into the
language of coordinates permits us to consider alge-
braic problems in place of geometric ones. It turns
out that after such a translation the majority of
problems connected with lines and circles lead to
equations of the first and second degree; and there are
simple general formulas for the solution of these
equations. (It should be noted that in the seventeenth
century, when the method of coordinates was devised,

Fig. 13

Fig. 14a

Fig. 14b

x
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the art of solving algebraic equations has reached a
very high level. By this time, for example, mathe-
maticians had learned how to solve arbitrary equations
of the third and fourth degree. The French philosopher
Rene Descartes, in disclosing the method of co-
ordinates was able to boast: "I have solved all prob-
lems" - meaning the geometric problems of his
time.)

We shall now illustrate by a simple example the
reduction of geometric problems to algebraic ones.

Problem. Given the triangle ABC; find the center
of the circle circumscribed about this triangle.

Solution. Let us take the point A as the origin and
direct the x-axis from A to B. Then the point B will
have the coordinates (c, 0), where c is the length of
the segment AB. Let the point C have the coordinates
(q, h), and let the center of the desired circle have the
coordinates (a, b). The radius of this circle we denote
by R. We write down in coordinate language that the
points A(0, 0), B(c, 0), and C(q, h) lie on the desired
circle:

a2 + b2 = R2,

(c - a)2+b2= R2,

(q-a)2+(h-b)2= R2.

These conditions express the fact that the distance
of each of the points A(0, 0), B(c, 0), and C(q, h) from
the center of the circle (a, b) is equal to the radius.
One also obtains these conditions easily if one writes
down the equations of the unknown circle (the circle
with its center at (a, b) and radius R), that is,

(x - a) 2 + (y - b) 2 = R2,

and then substitutes the coordinates of the points
A, B, and C, lying on this circle, for x and y.
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This system of three equations with three unknowns
is easily solved, and we get

C bg2+h2-cq

a 2' 2h

R ` \/(q2 + h2)I(q - c)2 + h2].

2h

This problem is solved, since we have found the
coordinates of the center.'

Let us note that at the same time we have obtained a
formula for calculating the radius of the circle cir-
cumscribed about a triangle. We can simplify this
formula if we note that -,/q2 + h2 = d(A, C),
fq - c)2 + h2 = d(B, C), and the dimension h is
equal to the altitude of the triangle ABC dropped from
the vertex C. If we denote the lengths of the sides BC
and AC of the triangle by a and b, respectively, then
the formula for the radius assumes the beautiful and
useful form:

R 2h'

One can remark further that he = 2S, where S is the
area of the triangle ABC; and thus we can write our
formula in the form:

Now we wish to show you a problem which is
interesting because its geometric solution is quite
complicated, but if we translate it into the language of
coordinates, its solution becomes quite simple.

Problem. Given two points A and B in the plane,
find the locus of points M whose distance from A is
twice as great as from B.

'Notice that in the solution of this problem we have not
resorted to a sketch.
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Solution. Let us choose a system of coordinates on
the plane such that the origin is located at the point A
and the positive part of the x-axis lies along AB.
We take the length of AB as the unit of length. Then
the point A will have coordinates (0, 0), and the point
B will have the coordinates (1, 0). The coordinates of
the point M we denote by (x, y). The condition
d(A, M) = 2d(B, M) is written in coordinates as
follows:

Vix2 + y2 = 2,, (x
We have obtained the equation of the desired locus

of points. In order to determine what this locus looks
like, we transform the equation into a more familiar
form. Squaring both sides, removing the parentheses,
and transposing like terms, we get the equation

3x2-8x+4+3y2=0.
This equation can be rewritten as follows:

X2 $x+_y+y2 = g,
or

(x - )2 + y2 = (3)2.

You already know that this equation is the equation
of the circle with center at the point (1, 0) and radius
equal to J. This means that our locus of points is a
circle.

For our solution it is inessential that d(A, M) be
specifically two times as large as d(B, M), since in fact
we have solved it more general problem: We have
proved that the locus of points M, the ratio of whose
distances to the given points A and B is constant:

N

*

=
M )a(e,

(k is a given positive number not equal to 1), is a
circle.'

'We have excluded the case k = 1; you of course know that
in this case the locus is a straight line (the point M is equi-
distant from A and B). Prove this analytically.

d(A, M) k
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In order to convince yourself of the power of the
method of coordinates, try to solve this same problem
geometrically. (Hint. Draw the bisectors of the internal
and external angles of the triangle AMB at the point
M. Let K and L be the points of intersection of these
bisectors with the line AB. Show that the position of
these points does not depend on the choice of the
point M in the desired locus of points. Show that the
angle KML is equal to 90°.)

We should remark that even the ancient Greeks
knew how to cope with such problems. The geometrical
solution of this problem is found in the treatise "On
Circles" by the ancient Greek mathematician Apol-
lonius (second century a.c.).

Solve the following problem by yourself:
Find the locus of points M the difference of the

squares of whose distances from two given points
A and B is equal to a given value c. For what values of
c does the problem have a solution?

9. Other Systems of Coordinates

In the plane, coordinate systems other than a rec-
tangular Cartesian one are often used. In Fig. 15 an oblique
Cartesian system of coordinates is depicted. It is clear
from the picture how the coordinates of a point are defined
in such a system. In some cases it is necessary to take
different units of measurement along the coordinate axes.

There are coordinates that are more essentially different
from rectangular Cartesian ones. An example of these
coordinates is the system of polar coordinates to which we
have already referred.
The polar coordinates of a point in the plane are de-

fined in the following way.
A number axis is chosen in the plane (Fig. 16). The

origin of coordinates of this axis (the point 0) is called the
pole, and the axis itself is the polar axis. To define the
position of a point M it suffices to indicate two numbers -
p, the polar radius (the distance of the point from the pole),
and 0, the polar angle' (the angle of rotation from the
polar axis to the half-line OM). In our sketch the polar

'p and o are the Greek letters rho and phi.

Fig. 15

Fig. 16
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radius is equal to 3.5 and the polar angle 0 is equal to
225° or 57r/4.1

Thus, in a polar system of coordinates the position of a
point is specified by two numbers, which indicate the
direction in which the point is to be found and the distance
to this point. Such a method of defining position is quite
simple and is frequently used. For example, in order to
explain the way to someone who is lost in a forest, one
might say: "Turn east (the direction) at the burnt pine
(the pole), go two kilometers (the polar distance) and there
you will find the lodge (the point)."

Anyone who has traveled as a tourist will easily see that
going along an azimuth is based on the same principle as
polar coordinates.

Polar coordinates, like Cartesian ones, can be used to
specify various sets of points in the plane. The equation of
a circle in polar coordinates, for example, turns out to be
quite simple if the center of the circle is taken as the pole.
If the radius of the circle is equal to R, then the polar radius
of any point of the circle (and only of points on this circle)
is also equal to R, so that the equation of this circle has the
form

p = R,

where R is some constant quantity.
What set of points is determined by the equation
= a, where a is some constant number (for example,

4 or 31r/2)? The answer is clear: the points for which 0 is
constant and equal to a are the points on the half-line
directed outward from the pole at an angle a to the polar
axis. For example, if a = 1, this half-line passes along at
an angle equal approximately to 28°,2 and if a = 3a/2,

'For measuring angles in the polar system of coordinates we
use either the degree or the radian - the central angle formed by
an arc with length I of a circle of radius 1. A full angle of 360°
formed by an entire circle (of radius I) acquires the radian
measure 2Tr, a 180° angle - the measure ,r, a right angle - the
measure ,r/2, a 45° angle - the measure ,r/4, and so on. A
radian is equal to 180°/r 180°/3.14 57'17'45". It turns
out that in many problems radian measure is significantly more
convenient than degree measure.

°Let us recall that the number serving as the coordinate o
must be interpreted as the radian measure of the angle (see
the previous note). An angle of ?} radian is approximately
equal to 28°; an angle of 3w/2 radians is equal to 270° (exactly).
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the half-line is directed vertically downward; that is, the
angle between the positive direction of the axis and the
half-line is equal to 270°.

Let us take two more examples. The equation

P=0

describes a spiral (Fig. 17a). In fact, for 4 = 0 we have
p = 0 (the pole); and as 46 grows, the quantity p also
grows, so that a point traveling around the pole (in a
counterclockwise direction) simultaneously gets farther
away from it.

Another spiral is described by the equation

P =

(Fig. 17b). In this case, for 0 close to 0 the value of p is
large; but with the growth of ¢ the value of p diminishes
and is small for large ¢. Therefore, the spiral winds into
the point 0 as 0 grows large without bound.

The equations of curves in the polar system of coor-
dinates might be more difficult for you to understand,
particularly if you have not studied trigonometry. If you
are somewhat familiar with this subject, try to figure out
what sets of points are determined by these relations:

p = sin ¢, p(cos 0 + sin 0) + I = 0.

The polar system of coordinates is in some cases more
convenient than the Cartesian. Here, for example, is the
equation of the cardioid in polar coordinates (see
Section 7):

p = I - sin 0.

Some knowledge of trigonometry will enable you to
visualize the curve somewhat more easily from this equa-
tion than from the equation of the curve in Cartesian
coordinates. Using polar coordinates, you will also be able
to describe the flowers shown in Fig. 14 by the following
equations, which are quite simple:

p = sin 50 (Fig. 14a),

(p - 2)(p - 2 - Icos 3.01) = 0 (Fig. 14b).

Fig. 17a

Fig. 17b
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We have not spoken about one-to-one correspondences
between the points on the plane and polar coordinates.
This is because such a one-to-one correspondence simply
does not exist. In fact, if you add an arbitrary integral
multiple of 2,r (that is, of the angle 360°) to the angle ¢,
then the direction of a half-line at the angle ¢ to the polar
axis is clearly not changed. In other words, points with the
polar coordinates p, 0 and p, ¢ + 2ka, where p > 0
and k is any integer, coincide. We wish to introduce
still another example where the correspondence is not
one-to-one.

In the Introduction we remarked that it is possible to
define coordinates on curves, and in Chapter 1 we ex-
amined coordinates on the simplest kind of curve: a
straight line. Now we shall show that it is possible to
devise coordinates for still another curve: a circle. For
this, as in Chapter 1, we choose some point on the circle
as the origin (the point 0 in Fig. 18). As usual, we shall
take clockwise motion as the positive direction of motion
on the circle. The unit of measure on the circle can likewise
be chosen in a natural manner: We take the radius of the
circle as the unit of measure Then the coordinate of the

Fig. 18 point M on the circle will be the length of the arc OM,
taken with a plus sign if the rotation from 0 to M is in the
positive direction and with a minus sign in the opposite
case.

Immediately an important difference becomes apparent
between these coordinates and the coordinates of a point
on the line: here there is no one-to-one correspondence
between numbers (coordinates) and points. It is clear that
for each number there is defined exactly one point on the
circle. However, suppose the number a is given; in order
to lind the point on the circle corresponding to it (that is,
the point with the coordinate a), one must lay off on the
circle an arc of length a radii in the positive direction if
the number a is positive and in the negative direction if a
is negative. Thus, for example, the point with coordinate
27r coincides with the origin. In our example the point 0
is obtained when the coordinate is equal to zero and when
it is equal to 21r. Thus in the other direction the corre-
spondence is not single-valued; that is, to the same point
there corresponds more than one number. One easily sees
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that to each point on the circle there corresponds an
infinite set of numbers.'

'Note that the coordinate introduced for points on the circle
coincides with the angle m of the polar system of coordinates, if
the latter is measured in radians. Thus, the failure of polar
coordinates to be one-to-one is once again illustrated here.
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CHAPTER 3

Fig. 19

Fig. 20

The Coordinates of a Point in Space

10. Coordinate Axes and Planes

For the definition of the position of a point in space
it is necessary to take not two number axes (as in the
case of the plane) but three: the x-axis, the y-axis,
and the z-axis. These axes pass through a common
point - the origin of coordinates 0 -- in such a
manner that any two of them are mutually per-
pendicular. The direction of the axes is usually chosen
so that the positive half of the x-axis will coincide
with the positive half of the y-axis after a 90° rotation
counterclockwise if one is looking from the positive
part of the z-axis (Fig. 19).

In space, it is convenient to consider, in addition to
the coordinate axes, the coordinate planes, that is, the
planes passing through any two coordinate axes.
There are three such planes (Fig. 20).

The xy-plane (passing through the x- and y-axes) is
the set of points of the form (x, y, 0), where x and y
are arbitrary numbers.

The xz-plane (passing through the x- and z-axes) is
the set of points of the form (x, 0, z), where x and z
are arbitrary numbers.
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The yz-plane (passing through the y- and z-axes) is
the set of points of the form (0, y, z), where y and z
are arbitrary numbers.

Now for each point M in space one can find three
numbers x, y, and z that will serve as its coordinates.

In order to find the first number x, we construct
through the point M the plane parallel to the coordi-
nate plane yz (the plane so constructed will also be
perpendicular to the x-axis). The point of intersection
of this plane with the x-axis (the point M, in Figure
2la) has the coordinate x on this axis. This number
x is the coordinate of the point MI on the x-axis and is
called the x-coordinate of the point M.

In order to find the second coordinate, we construct
through the point M the plane parallel to the xz-plane
(perpendicular to the y-axis), and find the point M2
on the y-axis (Fig. 21 b). The number y is the coordinate
of the point M2 on the y-axis and is called ttie y-
coordinate of the point M.

Analogously, by constructing through the point M
the plane parallel to the xy-plant (perpendicular to
the z-axis), we find the number z -- the coordinate of
the point M3 (Fig. 21c) on the z-axis. This number z
is called the z-coordinate of the point M.

In this way, we have defined for each point in space
a triple of numbers to serve as coordinates: the
x-coordinate, the y-coordinate, and the z-coordinate.

Conversely, to each triple of numbers (x, y, z) in a
definite order (first x, then y, then z) one can place in
correspondence a definite point M in space. For this
one must use the construction already described,
carrying it out in the reverse order: mark off on the
axes the points M1, M2, and M3 having the co-
ordinates x, y, and z, respectively, on these axes, and
then construct through these points the planes parallel
to the coordinate planes. The point of intersection of
these three planes will be the desired point M. It is
evident that the numbers (x, y, z) will be its coordinates.

In this way, we have set up a one-to-one correspondence 1

'For the definition of a one-to-one correspondence see page 6.

Fig. 21a

Fig. 21b

Fig. 21c
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between the points of space and ordered triples of numbers
(the coordinates of these points).

Mastering coordinates in space will be more difficult
for you than mastering coordinates on a plane was: for
the study of coordinates in space requires some
knowledge of solid geometry. The material necessary
for understanding space coordinates, which you will
understand easily on account of their simplicity and
obviousness, is given a somewhat more rigorous
foundation in courses in solid geometry.

In such a course one shows that the points M1, M2,
and M3, constructed as the points of intersection of
the coordinate axes with the planes drawn through the
point M parallel to the coordinate planes, are the
projections of the point M on the coordinate axes,
that is, that they are the bases of the perpendiculars
dropped from the point M to the coordinate axes.
Thus for coordinates in space we can give a definition
analogous to the definition of coordinates of a point
in the plane:

The coordinates of a point M in space are the
coordinates on the coordinate axes of the projections
of the point M onto these axes.

One can show that many formulas derived for the
plane become valid for space with only a slight change
in their form. Thus, for example, the distance between
two points A(x1i y1i z1) and B(x2,y2, z2) can be
calculated by the formula

d(A, B) = (x1 - x2)2 + (Y1 - Y2)2 + (z1 - z2)2.

(The derivation of this formula is quite similar to the
derivation of the analogous formula for the plane.
Try to carry it out by yourself.)

In particular, the distance between a point
A(x, y, z) and the origin is expressed by the formula

d(O, A) = Vx2 -+y2 + z2.
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EXERCISES

1. Take these eight points: (1, 1, l), (1, 1, -1),

1), (-1, -1, -1). Which of these points is
farthest from the point (1, 1, 1)? Find the distance of
this point from (1, I, 1). Which points lie closest to the
point (1, 1, 1)? What is the distance of these points
from (I, 1, 1)?

2. Draw a cube. Direct the coordinate axes along
the three edges adjacent to any one vertex. Take the
edge of the cube as the unit of measurement. Denote
the vertices of the cube by the letters A, B, C, D, A
B1i C1, D,, as in Fig. 22.

(a) Find the coordinates of the vertices of the cube.
(b) Find the coordinates of the midpoint of the

edge CC1.
(c) Find the coordinate of the point of intersection

of the diagonals of the face AA 1 BIB.
3. What is the distance from the vertex (0, 0, 0) of

the cube in Problem I to the point of intersection of
the diagonals of the edge BB1C1C?

4. Which of the following points

A(I, 0, 5), B(3, 0, 1), CO, i, 4),
D(3,), E(, -, 0), F(I, 4, 4)

do you think lie inside the cube in Problem 1, and
which lie outside?

5. Write down the relations which the coordinates
of the points lying inside and on the boundary of the
cube in Problem I satisfy.

(Answer. The coordinates x, y, and z of the points
lying inside our cube and on its boundary can take on
all numerical values from zero to one inclusive; that
is, they satisfy the relations

0<x< 1,
0<y< 1,
0<z< 1.)

Fig. 22
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Fig. 23

y: b

I I. Defining Figures in Space

Just as in the plane, coordinates in space enable us
to define by means of numbers and numerical relations
not only points but also sets of points such as curves
and surfaces. We can, for example, define the
set of points by specifying two coordinates - say
the x-coordinate and the y-coordinate - and taking
the third one arbitrarily. The conditions x = a,
y = b, where a and b are given numbers (for example,
a = 5, b = 4), define in space a straight line parallel
to the z-axis (Fig. 23). All of the points of this line
have the same x-coordinate and y-coordinate; their
z-coordinates assume arbitrary values.

In exactly the same way the conditions

y=b, z=c
define a straight line parallel to the x-axis; and the
conditions

z=c, x=a
define a straight line parallel to the y-axis.

Here is an interesting question: What set of points
is obtained if one specifies only one coordinate, for
example,

z = 1?

Fig. 24

The answer is clear from Fig. 24: it is the plane
parallel to the xy-coordinate plane (that is, the plane
passing through the x- and y-axes) and at a distance of
I from it in the direction of the positive semiaxis z.

Let us take some more examples showing how one
can define various sets of points in space with the aid
of equations and other relations between the coordi-
nates.

1. Let us examine the equation

x2 + y2 + z2 = R2. (*)

As the distance of the point (x, y, z) from the origin of
coordinates is given by the expression x2 yy2 + z2,
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it is clear that, translated into geometrical language,
the relation (*) indicates that the point with the co-
ordinates (x, y, z) satisfying this relation is located at a
distance R from the origin of coordinates. This means
that the set of all points for which the relation (*) is
satisfied is the surface of a sphere - the sphere with
center at the origin and with radius R.

2. Where are the points located whose coordinates
satisfy the relation

x2 + y2 + z2 < I?

Answer. Since this relation means that the distance
of the point (x, y, z) from the origin is less than 1, the
desired set is the set of points lying within the sphere
with center at the origin and with radius equal to 1.

3. What set of points is specified by the following
equation?

x2 + y2 = 1. (**)

Let us examine first only the points on the xy-plane
satisfying this relation, that is, the points for which
z = 0. Then this equation, as we have seen before
(page 21), defines a circle with center at the origin
and radius equal to 1. Each of these points has its
z-coordinate equal to 0, and the x- and y-coordinates
satisfy the relation (**). For example, the point
(, 1, 0) satisfies this equation (**) (Fig. 25). More-
over, knowing this one point, we can immediately
find many other points satisfying the same equation.
In fact, since z is not present in the equation (**),
the point (i;, 1, 10), the point (, $, -5), and in
general the points (, f, z), where the value of the
z-coordinate is absolutely arbitrary, satisfy the equa-
tion. All of these points lie on the straight line passing
through the point (, g, 0) parallel to the z-axis.

In this way each point (x*, y*, 0) of our circle in
the xy-plane gives rise to many points satisfying
equation (**) - the points on the straight line passing

Fig. 25
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through this point parallel to the z-axis. All of the
points of this line will have the same x- and y-coordi-
nates as the point on the circle, but z can be an
arbitrary number, that is, they will be points of the
form (x*, y*, z). But since z does not enter into
equation (**) and the numbers (x*, y*, 0) satisfy the
equation, the numbers (x*, y*, z) also satisfy equa-
tion (**) for any z. It is clear that in this way one
obtains every point satisfying equation (**).

Thus, the set of points determined by equation (**)
is obtained in the following manner: Take the circle
with its center at the origin and radius I lying in the
xy-plane, and through each point of this circle con-
struct a straight line parallel to the z-axis. We thus
obtain a cylindrical surface (Fig. 25).

4. We have seen that a single equation generally
defines a surface in space. But this is not always so.
For example, the equation x2 + y2 = 0 is satisfied
only by the points of a line - the z-axis - since it
follows from the equation that x and y are equal to
zero, and all points for which these coordinates are
equal to zero lie on the z-axis. The equation x2 + y2 +
z2 = 0 describes a single point (the origin); but the
equation x2 + y2 + z2 = _I is satisfied by no
points at all, and so it corresponds to the empty set.

5. What happens if we consider points whose
coordinates satisfy not a single equation but a system
of equations?

Let us examine such a system of questions:

x2 + y2 + z2 = 4,1 (***)
z = I.

The points satisfying the first equation fill up the
surface of a sphere of radius 2 and center at the
origin. The points satisfying the second equation fill
up the plane parallel to the xy-plane and located at a
distance of I from it on the positive side of the z-axis.
The points satisfying both the first and second equa-
tion must therefore lie both on the sphere x2 + y2 +
z2 = 4 and on the plane z = l; that is, they lie on the
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curve of intersection. Thus, this system defines a circle:
the curve of intersection of a sphere and a plane
(Fig. 26).

We see that each of the equations of the system de-
fines a surface, but both equations taken together
define a line.

Question. Which of the following points lie on the
first surface, which on the second, and which on their
line of intersection?

A(,12-, V2-, 0), B(/, N/2-, 1),
C(/ , 02, v), D(l, VJ, 0),
E(0, VJ, I), F(-1, - f, 1).

6. How can one give in space a circle located in the
xz-plane with center at the origin and radius I ?

As you have already seen, the equation x2 + z2 = 1
defines a cylindrical surface in space. In order to get
only the points on the circle we need, we must add to
this equation the condition y = 0, distinguishing the
points of the cylinder lying on the xz-plane from the
rest of the points of the cylinder (Fig. 27). We there-
fore obtain the system

x2+z2 = 1,
y=0.

EXERCISES

1. What sets of points are defined in space by the
relations: (a) z2 = I ; (b) y2 + z2 = I ; (c) x2 +
Y2 + z2 = I?

2. Consider the three systems of equations:

(a)
I

x2 + y2 + z2 =
Y2+z2 = I;

(b)

I

x2+y2+z2=
x=0;

(c)
I
Y2 + z2 = I,

x = 0.

Fig. 26

Fig. 27
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Which of these define the same curve, and which
define different ones?

3. How can one define in space the bisector of the
angle xOy? What set of points in space will be given
by the single equation x = y?
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PART II





CHAPTER 1

Introduction

You now know something about the method of
coordinates, and we can discuss some interesting
things more closely related to modern mathematics.

1. Some General Considerations

Algebra and geometry, which most students today
consider completely different subjects, are in fact quite
closely related. With the aid of the method of co-
ordinates it would be possible to present the entire
school course in geometry without using a single
sketch, using only numbers and algebraic operations.
A course in plane geometry would begin with the
words: "Let us define a point to be a pair of numbers
(x, y)...." It would be further possible to define a
circle as the set of points satisfying an equation of the
form (x - a)2 + (y - b)2 = R2. A straight line
would be defined as the set of points satisfying an
equation ax + by + c = 0, and so on. All geometric
theorems would be converted in this approach into
some algebraic relations.

Establishing a connection between algebra and
geometry was, in essence, a revolution in mathe-
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matics. It restored mathematics as a single science, in
which there is no "Chinese wall" between its individual
parts. The French philosopher and mathematician
Ren6 Descartes (1596-1650) is considered the creator
of the method of coordinates. In the last part of his
great philosophical treatise, published in 1637, a
description of the method of coordinates was given,
together with its application to the solution of geo-
metric problems. The development of Descartes' idea
led to the origin of a special branch of mathematics,
now called analytic geometry.

The name itself indicates the fundamental idea of the
theory. Analytic geometry is that branch of mathe-
matics which solves geometric problems by analytical
(that is, algebraic) means. Although analytic geom-
etry today is a fully developed and perfected branch
of mathematics, the idea on which it is based has given
rise to new branches. One of these that has appeared
and is being developed is algebraic geometry, in
which the properties of curves and surfaces given by
algebraic equations are studied. This field of mathe-
matics can in no way be considered to be fully per-
fected. In fact, in recent years new fundamental results
have been obtained in this field, and these have had a
great influence upon other fields of mathematics as
well.

2. Geometry as an Aid in Calculation

One aspect of the method of coordinates is of great
importance in the solution of geometric problems: the
analytic interpretation of geometric concepts and the
translation of geometric forms and relations into the
language of numbers. The other aspect of the method
of coordinates, however - the geometric interpreta-
tion of numbers and of numerical relations - has
acquired an equal significance. The distinguished
mathematician Hermann Minkowski (I864-I909)
used a geometric approach for the solution of equa-
tions in integers, and the mathematicians of his time
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were struck by how simple and clear some hitherto
difficult questions in the theory of numbers turned
out to be.

Here we shall take one quite simple example show-
ing how geometry can help us to solve algebraic
problems.

Problem. Let us consider the inequality

x2+y2<n,

where n is some integer. We would like to know how
many solutions in integers this inequality has.

For small values of n, this question is easy to answer.
For example, for n = 0, there is only one solution:
x = 0, y = 0. For n = 1, there are four additional
solutions: x = 0, y = 1; x = 1, y = 0; x = 0,
y= -1; and x= -I, y = 0. Thus for n = 1,
there will be five solutions in all.

For n = 2, there will be four more solutions be-
sides the ones already enumerated: x = 1, y = 1;
x= - l,y= l;x= l,y= - l;x= -1,y= -1.
For n = 2, there are thus 9 solutions in all. Proceed-
ing in this way, we can set up a table.

The Number
The Number n of Solutions N The Ratio N/n

0 1 -
1 5 5

2 9 4.5
3 9 3

4 13 3.25
5 21 4.2

10 37 3.7

20 69 3.45

50 161 3.22

100 317 3.17

47



Fig. 28

We see that the number of solutions N grows as n
increases, but to guess the exact law for the change of
N is quite difficult. One might conjecture in looking
at the right column of the table that the ratio N/n
converges to some number as n increases.

With the aid of a geometric interpretation we shall
now show that this is in fact what occurs and that the
ratio N/n converges to a number ,r = 3.14159265....

Let us consider the pair of numbers (x, y) as a point
on the plane (with abscissa x and ordinate y). The
inequality x2 + y2 < n means that the point (x y)
lies inside the circle K with radius f and with its
center at the origin (Fig. 28). In this way, we see that
our inequality has the same number of solutions in
integers as there are points with integral coordinates
lying inside the circle K".

It is geometrically clear that the points with integral
coordinates are "uniformly distributed in the plane"
and that to a unit square there will correspond one
and only one such point. Therefore it is clear that the
number of solutions must be approximately equal to
the area of the circle. Thus we get the approximate
formula:

N~irn.

Fig. 29

"

We give a short proof of this formula. We first divide
the plane into unit squares by straight lines parallel to the
coordinate axes, letting the integral points be the vertices
of these squares. Let there be N integral points inside the
circle K. Let us place in correspondence with each of
these points the unit square of which it is the upper right-
hand vertex. The figure formed by these squares we de-
note by An (Fig. 29, the darkened part). It is evident that
the area of An is equal to N (that is, to the number of
squares in this figure).

Let us compare the area of this figure with the area of
the circle K,,. Let us consider, together with the circle
K,,, two other circles with the origin as center: the circle
Kn of radius -/n - \/2 and the circle KR' of radius
\/n + V2. The figure A. lies entirely within the circle
Kn' and contains the circle Kn entirely within itself. (Prove
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this on your own, using the theorem that in a triangle the
length of any side is less than the sum of the lengths of
the other two sides.) Thus the area of A is greater than
the area of Kn and less than that of Kn'; that is,

7r( n - v2)2 < N < 7r(-\/n + V)2.

From this we get our approximate formula N = 7rn
together with an estimate of its error:

N - 7rnI < 27r(/ + 1).

Let us now set up the analogous problem for three
unknowns: flow many solutions in integers does the
following inequality have?

x2+y2+z2 <11.

The answer is obtained quite easily if one again uses
a geometric interpretation. The number of solutions
to the problem is approximately equal to the volume
of a sphere of radius 11 - that is, 47x11 11. To obtain
this result purely algebraically would be quite difficult.

3. The Need for Introducing Four-Dimensional Space

But what would happen if we had to find the number
of integral solutions of the inequality

x2+y2+z2+U2 <11,

in which there are four unknowns? In the solution of
this problem for two and three unknowns, we have
used a geometric interpretation. We have regarded a
solution of the inequality for two unknowns - that
is, a pair of numbers - as a point in the plane; we
have regarded a solution for three unknowns - that
is, a triple of numbers - as a point in space. Let us try
to extend this method. Then the quadruple of numbers
(x, y, z, u) must be considered as a point in some
space having four dimensions (jour-dimensional space).
The inequality x2 + y2 + z2 + u2 < n could then
be viewed as the condition that the point (x, y, z, u) lie
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within the four-dimensional sphere with radius tt and
with its center at the origin. In addition, it would be
necessary to decompose four-dimensional space into
four-dimensional cubes. Finally, we would have to
calculate the volume of the four-dimensional sphere. I
In other words, we would have to begin to develop
the geometry of four-dimensional space.

We shall not carry all of this out in this booklet.
We shall be able to discuss only a very little bit of the
subject here. As an introduction to four-dimensional
space we shall discuss only the simplest figure in it:
the four-dimensional cube.

Your interest has probably been aroused by the
questions of how seriously one can speak about this
imaginary four-dimensional space, of the extent to
which one can construct the geometry of this space
by analogy with ordinary geometry, and of the
differences and similarities between four-dimensional
and three-dimensional geometry. Mathematicians
who have studied these questions have obtained the
following answer:

Yes, it is possible to develop such a geometry; it is in
many respects similar to ordinary geometry. More-
over, this geometry contains ordinary geometry as a
special case, exactly as solid geometry (geometry in
space) contains plane geometry as a special case. But,
of course, the geometry of four-dimensional space
will also have quite essential differences from ordinary
geometry. The fantasy-writer H. G. Wells has written
a very interesting story based on the peculiarities of a
four-dimensional world.

But we will now show that these peculiarities are
essentially quite similar to the peculiarities that

'We shall not study the derivation of the formulas for comput-
ing the volume of the four-dimensional sphere. Here we shall
mention however, that the volume of the four-dimensional
sphere is equal to ,r2R'/2. For comparison we point out that the
volume of the five-dimensional sphere is equal to 8,r2Rs/l5,
that of the six-dimensional sphere is r3R°/6, and that of the
seven-dimensional one is l6,r3R°/105.
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distinguish the geometry of three-dimensional space
from the geometry of the two-dimensional plane.

4. The Peculiarities of Four-Dimensional Space

Draw a circle in the plane and imagine yourself to
be a creature in a two-dimensional world - or better,
a point that can move on the plane but cannot go out
into space. (You do not even know that space exists
and cannot conceive of it.) Then the boundary of the
circle, the circumference, will be an insurmountable
barrier for you: you will not be able to leave the
circle because the edge will block your path in every
direction (Fig. 30a).

Fig. 30(a) The point, remaining within the limits of
the plane, cannot leave the circle; (b) the point
is free to leave the circle py going out into space.

Now imagine that this plane with the circle drawn
in it is placed in three-dimensional space and that
you have surmised the existence of a third dimension.
You can now leave the limits of the circle without
difficulty, of course, by simply stepping across the
edge (Fig. 30b).

Now suppose you are a creature in a three-dimen-
sional world (as before, if you do not object, we will
consider you to be a point - this is, of course,
entirely inessential). Suppose that you are situated
inside a sphere beyond whose surface you cannot
pass. You will be unable to leave the limits of this
sphere. But if the sphere is placed in four-dimensional
space and you have knowledge of the existence of a
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fourth dimension, then you will be able to leave the
confines of the sphere without any difficulty.

There is nothing especially mystical about this - it
is simply that the surface of the three-dimensional
sphere does not separate four-dimensional space into
two parts, although it does separate three-dimensional
space. This is fully analogous to the fact that the
boundary of a circle (the circumference) does not
separate three-dimensional space, although it does
separate the plane in which it lies.

One more example: It is clear that two figures in the
plane which are mirror images of one another cannot
be made to coincide without moving one of them out
of the plane in which they lie. But a butterfly at rest
unfolds its wings by moving them from the horizontal
plane to the vertical (see the diagram on the back
cover). Similarly, in a space of three dimensions it is
impossible to make symmetric space figures coincide.
For example, it is impossible to make a left-handed
glove into a right-handed one although they are the
same geometric shapes. But in a space of four-dimen-
sions, three-dimensional symmetric figures can be
made to coincide exactly as plane symmetric figures
can be made to coincide if one moves them into three-
dimensional space.

Thus, there is nothing surprising in the fact that the
hero of the H. G. Wells story turned out to be re-
versed after his journey in four-dimensional space (his
heart, for example, was now on the right, and his body
was symmetric to what it had been before). This
happened because when he went into four-dimensional
space he was turned about in it.

5. Some Physics

Four-dimensional geometry has turned out to be
an exceedingly useful and even an indispensable tool
for modern physics. Without the tool of multi-
dimensional geometry it would have been quite
difficult to expound and use such important branches
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of contemporary physics as Einstein's theory of
relativity.

Every mathematician can envy Minkowski, who,
after using geometry very successfully in the theory of
numbers, was able again with the aid of graphic
geometric concepts to bring clarity to difficult mathe-
matical questions - this time, concerning the theory
of relativity. At the heart of the theory of relativity lies
the idea of the indissoluble connection between space
and time. That is, it is natural to consider the moment
of time in which an event occurs as the fourth co-
ordinate of this event together with the first three
defining the point of space in which the event occurs.

The four-dimensional space so obtained is called the
Minkowski space. A modern course in the theory of
relativity will always begin with the description of this
space. Minkowski's discovery was the fact that the
principal formulas of the theory of relativity - the
formulas of Lorentz - are quite simple when written
in the terminology of the coordinates of this special
four-dimensional space.

In this way, it was a great stroke of luck for modern
physics that at the time of the discovery of the theory
of relativity mathematicians had prepared the con-
venient, compact, and beautiful tool of multidimen-
sional geometry, which in a number of cases signifi-
cantly simplifies the solution of problems.
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CHAPTER 2

Four-Dimensional Space

In the concluding chapters we shall discuss the
geometry of four-dimensional space, as we promised
earlier.

In the construction of geometry on the line, in the
plane, and in three-dimensional space we have two
possibilities: we can present the material with the aid
of visual representations (since this is the method
generally used in the school course, it is difficult to
imagine a geometry textbook without sketches); or -
and this is the possibility that the method of co-
ordinates gives us - we can present it purely ana-
lytically, defining a point of the plane, for example, as
a pair of numbers (the coordinates of the point), and
a point in space as a triple of numbers.

For four-dimensional space the first possibility is
not present. We cannot use visual geometric repre-
sentations directly because the space surrounding us
has three dimensions in all. The second way, however,
is not barred to us. Indeed, we define a point of a line
as a number, a point of a plane as a pair of numbers,
and a point of three-dimensional space as a triple of
numbers. Therefore .it is completely natural to con-
struct the geometry of four-dimensional space by
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defining a point of this imaginary space as a quadruple
of numbers. By geometric figures in such a space we
shall have to mean sets of points (just as in ordinary
geometry), Let us proceed now to the exact definitions.

6. Coordinate Axes and Planes

Definition. An ordered' quadruple of numbers
(x, y, z, u) is a point of four-dimensional space.

What are the coordinate axes in a space of four-
dimensions and how many of them are there?

In order to answer this question, we return tem-
porarily to the plane and three-dimensional space.

In the plane (that is, in a space of two dimensions)
the coordinate axes are the sets of points one of whose
coordinates can have any numerical value but whose
other coordinate is equal to zero. Thus, the abscissa
axis is the set of points of the form (x, 0), where x is
any number. For example, the points (1, 0), (-3, 0),
(21, 0) all lie on the abscissa axis; but the point
(k, 2) does not lie on this axis. Similarly, the ordinate
axis is the set of points of the form (0, y), where y is
any number.

Three-dimensional space has three axes:

The x-axis - the set of points of the form (x, 0, 0),
where x is any number.

The y-axis - the set of points of the form (0, y, 0),
where y is any number.

The z-axis - the set of points of the form (0, 0, z),
where z is any number.

In four-dimensional space consisting of all points
of the form (x, y, z, u), where x, y, z, and it are
arbitrary numbers, it is natural to take the coordinate
axes to be the sets of points one of whose coordinates
can take on arbitrary numerical values but whose

'We say "ordered," since different orderings of the same
numbers in a quadruple give different points: for example, the
point (1, -2, 3, 8) is different from the point (3, 1, 8, -2).
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remaining coordinates are equal to zero. Then it is
clear that four-dimensional space has four coordinate
axes:

The x-axis - the set of points of the form (x, 0, 0. 0),
where x is any number.

They-axis - the set of points of the form (0, y, 0, 0),
where y is any number.

The z-axis - the set of points of the form (0, 0, z, 0),
where z is any number.

The ii-axis - the set of points of the form (0, 0, 0, u),
where u is any number.

In three dimensional space there are, in addition to
the coordinate axes, the coordinate planes. These are
the planes passing through any pair of coordinate
axes. The yz-plane, for example, is the plane passing
through the y- and z-axes. In three-dimensional space
there are three coordinate planes in all:

The xy-plane - the set of points of the form
(x, y, 0), where x and y are arbitrary numbers.

The yz-plane - the set of points of the form (0, y, z),
where y and z are arbitrary numbers.

The xy-plane - the set of points of the form
(x, 0, z), where x and z are arbitrary numbers.

Thus it is natural to define the coordinate planes in
four-dimensional space as the sets of points for which
two of the four coordinates take on arbitrary numerical
values and the other two are equal to zero. For
example, we shall take as the xz coordinate plane in
four-dimensional space the set of points of the form
(x, 0, z,0). How many of these planes are there in
all?

This is not difficult to figure out. We can simply
write them all down:

The xy-plane - the set of points of the form
(x, y, 0, 0).

The xz-plane - the set of points of the form
(x, 0, z, 0).
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The xu-plane - the set of points of the form
(x, 0, 0, u).

The yz-plane - the set of points of the form
(0,Y,z,0).

The yu-plane - the set of points of the form
(0, Y, 0, u).

The zu-plane - the set of points of the form
(0, 0, z, u).

For each of these planes the variable coordinates
can take on arbitrary numerical values, including
zero. For example, the point (5, 0, 0, 0) belongs to
the xy-plane and to the xu-plane (and to which other?).
Thus it is easy to see that the yz-plane, for example,
"passes" through the y-axis in the sense that each
point of the y-axis belongs to this plane. For in fact,
any point on the y-axis - that is, any point of the
form (0, y, 0, 0) - belongs to the set of points of the
form (0, y, z, 0) - that is, to the yz-plane.

Question. What set is formed by the points belong-
ing simultaneously to theyz-plane and to the xz-plane?

Answer. This set consists of all points of the form
(0, 0, z, 0) - that is, it is the z-axis.

Thus, there exist in four-dimensional space sets of
points analogous to the coordinate planes of three-
dimensional space. There are six of them. Each of
them consists of the points that, like the points of the
coordinate planes of three-dimensional space, have
two coordinates allowed to take on arbitrary numerical
values and have the remaining coordinates equal to
zero. Each of these coordinate planes "passes"
through two coordinate axes: the yz-plane, for
example, passes through the y-axis and the z-axis.
On the other hand, three coordinate planes pass
through each axis. For example, the xy-, xz-, and xu-
planes pass through the x-axis. We shall therefore
say that the x-axis is the intersection of these planes.
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The six coordinate axes contain only one point in
common. This is the point (0, 0, 0, 0) - the origin.

Question. What set of points is the intersection of
the xy-plane and the yz-plane? of the xy-plane and the
zu-plane?

We see that we obtain a picture fully analogous to
the one in three-dimensional space. We can even try
to make a schematic diagram that will help to create
some visual model for the disposition of the co-
ordinate planes and axes of four-dimensional space.
In Fig. 31 the coordinate planes are depicted by paral-
lelograms, and the axes, by straight lines: everything is
exactly as in Fig. 20 for three-dimensional space.

Fig. 31

There are, however, still other sets of points in four-
dimensional space which can be called coordinate
planes. One should, incidentally, have expected this:
for the straight line has only the origin; the plane has
both the origin and the axes; and three-dimensional
space has the coordinate planes in addition to the
origin and the axes. Thus it is natural that in four-
dimensional space new sets should appear, which we
shall call the three-dimensional coordinate planes.

These planes are the sets consisting of all points for
which three of the four coordinates take on all possible
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numerical values but the fourth coordinate is equal to
zero. An example of one of these three-dimensional
coordinate planes is the set of points of the form
(x, 0, z, u), where x, z, and u take on all possible values.
This set is called the three-dimensional coordinate
plane xzu. It is easy to see that in four-dimensional
space there exist four three-dimensional coordinate
planes:

The xyz-plane - the set of points of the form

(x, y, z, 0).
The xyu-plane - the set of points of the form

(x, y, 0, u).
The xzu-plane - the set of points of the form

(x, 0, z, u).
The yzu-plane - the set of points of the form

(0, y, z, u).

One can say, too, that each of the three-dimensional
coordinate planes "passes" through the origin and
that each of these planes "passes" through three
of the coordinate axes (we use the word "passes"
here in the sense that the origin and each of the points
of the axes belong to the plane). For example, the
three-dimensional plane xyu passes through the
axes x, y, and U.

THREE-DIMENSIONAL
PLANE I XY%

Fig. 32
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Analogously, one can say that each of the two-
dimensional planes is the intersection of two three-
dimensional planes. The xy-plane, for example, is the
intersection of the xyz-plane and the xyu-plane, that
is, consists of all points belonging simultaneously to
each of these three-dimensional planes.

Examine Fig. 32. It is different from Fig. 31 in that
we have drawn in it the three-dimensional coordinate
plane xyz. It is depicted as a parallelepiped. It is
evident that this plane contains the x-, y-, and z-axes
and the xy-, xz-, and yz-planes.

7. Some Problems

Let us now try to determine in what sense we can
speak of the distance between points of four-dimen-
siona l space.

In Sections 3, 6, and 9 of Part I of this volume we
showed that the method of coordinates enables us to
define the distance between points without relying
upon a geometric representation. In fact, the distance
can be computed for the points A(xl) and B(x2) of
the line by the formula

d(A, B) = Ixl - x21,
or

d(A, B) _ v"(x1 - x2)2,

for the points A(x1, y1) and B(x2iY2) of the plane by
the formula

d(A, B) _ (X1 - x2)2 + (Y1 - Y2)2,

and for the points A(x1, y,, zj) and B(x2, y2, z2) of
three-dimensional space by the formula

d(A, B) = VJC1 - x2)2 + (V'1 - Y2)2 + (Z1 - z2)z.

It is natural therefore for four-dimensional space to
define the distance in an analogous way and to
introduce the following
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Definition. The distance between two points
A(xl,yl, zl, ul) and B(x2,y2, z2, u2) of four-dimen-
sional space is defined to be the number d(A, B) given
by the formula

d(A, B) /_ (xl-X2 )2+(Yi-Y2)2+(zl-z2)2+(ul-u2)2.

In particular, the distance of the point A(x, y, z, u)
from the origin is given by the formula

d(O, A) = x2 + y2-+z2 + u2.
Using this definition, one can solve problems of the

geometry of four-dimensional space quite like those
that one solves in school problem-books.

EXERCISES

1. Prove that the triangle with vertices
A(4, 7, -3, 5), B(3, 0, -3, I), and C(-1, 7, -3, 0) is
isosceles.

2. Consider the four points of four-dimensional
space: A(I, 1, 1, l), B(-1, -1, 1, l), C(-1, 1, 1, -1),
and D(1, -1, 1, -1). Prove that these four points are
equidistant from one another.

3. Let A, B, and C be points of four-dimensional
space. We can define the angle ABC in the following
way. As we are able to compute distances in four-
dimensional space, we can find d(A, B), d(B, C), and
d(A, C), that is, the "lengths of the sides" of the
triangle ABC. We now construct in the ordinary two-
dimensional plane a triangle A'B'C' such that its sides
A'B', B'C', and C'A' are equal to d(A, B), d(B, C),
and d(C, A), respectively. Then the angle A'B'C' of
this triangle is defined to be the angle ABC in four-
dimensional space.

Prove that the triangle with vertices A(4, 7, - 3, 5),
B(3, 0, -3, 1), and C(I, 3, -2, 0) is a right triangle.

4. Take the points A, B, and C of Exercise 1.

Compute the angles A, B, and C of the triangle ABC.
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CHAPTER 3

The Four-Dimensional Cube

8. The Definition of the Sphere and the Cube

Let us now consider geometric figures in four-
dimensional space. By a geometric figure (as in
ordinary geometry) we shall mean some set of points.

Let us consider the definition of a sphere: a sphere
is the set of points whose distance from some fixed
point is a certain fixed value. This definition can be
used to define a sphere in four-dimensional space, for
we know what a point in four-dimensional space is,
and we also know what the distance between two
points is. We thus take the same definition, translating
it into the terminology of numbers (for simplicity, as
in the case of three-dimensional space, we take the
center of the sphere to be the origin).

Definition. The set of points (x, y, z, u) satisfying
the relation

x2+y2+z2+u2 = R2
is called the four-dimensional sphere with center at the
origin and radius R.

Let us now discuss the four-dimensional cube. From
the name, we see that this is a figure analogous to the
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familiar three-dimensional cube (Fig. 33a). In the
plane there is also a figure analogous to the cube -
the square. One can see the analogy between them
particularly easily if one examines the analytic defini-
tions of the cube and the square.

In fact (as you already know from Exercise 4 in
Section 10 of Part I), one can give the following
definition:

The cube is the set of points (x, y, z) satisfying the
relations

0<x< 1,
0<y< I,
0 < z < 1.

(*)

This "arithmetical" definition does not require any
sketch. But it fully corresponds to the geometric
definition of the cube. I

For the square one can also give an arithmetical
definition:

The square is the set of points (x, y) satisfying the
relations (Fig. 33b)

0<x<
0 < Y < 1.

Comparing these two definitions, one easily sees
that the square really is, as they say, the two-dimen-
sional analogue of the cube. We shall sometimes call
the square the "two-dimensional cube."

One can also examine an analogue of these figures
in a space of one dimension, that is, on the line. For
we can take the set of points x of the line satisfying

'Of course, there are other cubes in space as well. For ex-
ample, the set of points defined by the relations -1 < x < 1,
-I < y < 1, -1 < z < 1 is also a cube. This cube is quite
conveniently situated with respect to the coordinate axes: the
origin is its center; and the coordinate axes and planes are the
axes and planes of symmetry. However, we have decided to
consider as fundamental the cube defined by relations (*). We
shall sometimes call this cube the unit cube in order to distin-
guish it from other cubes.

Fig. 33a

Y

(0,1)

(0.0) ('.o) x

Fig. 33b
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the relations
0 < x < 1.

It is clear that this "one-dimensional cube" is a line
o r x segment (Fig. 33c).

Fig. 33c Hopefully, then, you will now accept as completely
natural the following

Definition. The four-dimensional cube is the set of
points (x, y, z, u) satisfying the relations

0<x< I,
0<y< I,
0<z< I,
0 < U < 1.

There is no need to be distressed because we have
not introduced a picture of the four-dimensional
cube; we shall do this later on. (Do not be surprised
that it is possible to draw the four-dimensional cube:
after all, we draw the three-dimensional cube on a flat
sheet of paper.) In order to give a drawing of the four-
dimensional cube, however, it will be necessary first
to discuss how this cube is "constructed" and what
elements in it can be distinguished.

9. The Structure of the Four-Dimensional Cube

Let us examine the "cubes" of various dimensions,
that is, the line segment, the square, and the ordinary
cube.

The segment, defined by relations 0 _< x < I is a
very simple figure. All we can say about it, maybe, is
that its boundary consists of two points: 0 and 1. The
remaining points of the segment we shall call interior
points.

The boundary of the square consists of four points
(the vertices) and four segments. Thus, the square has
on its boundary elements of two types: points and line
segments. The boundary of the three-dimensional cube
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contains elements of three types: vertices - eight of
them, edges (line segments) - twelve of them, and
faces (squares) - of which there are six.

Let us write this down in a table. This table can be
abbreviated if we agree to write, instead of the name

Composition Segments Squares
of the Boundary Points (Sides, (Faces)

(The Figure) (Vertices) Edges)

The Segment .. 2 - -
The Square ... 4 4 -
The Cube .... 8 12 6

of the figure, the number it equal to its dimension: for
the segment, it = 1; for the square, n = 2; for the
cube, it = 3. Instead of the name of the element of
the boundary, we can likewise write down merely
the dimension of this element: for the face, n = 2;
for the edge, it = 1. For convenience, we consider the
point (the vertex) to have zero dimension (n = 0).
Then this table takes on a different form.

Dimension of the Boundary 0 1 2

Dimension of the Cube

l 2 - -
2 4 4 -
3 8 12 6

4

Our aim is to complete the fourth row of this table.
For this, we once again examine the boundaries of the
segment, the square, and the cube, but this time
analytically,' and try to see by analogy how the
boundary of the four-dimensional cube is constructed.

'That is, purely arithmetically.
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The boundary of the segment 0 < x < I consists
of two points: x = 0 and x = I.

The boundary of the square 0 < x < 1, 0 < y < I
contains four vertices: x = 0, y = 0; x = 0, y = I ;
x = 1, y = 0; and x = 1, y = 1, that is, the points
(0, 0), (0, 1), (1, 0), and (I, 1).

The cube 0<x< 1, 0<y< 1, 0<z< I
contains eight vertices. Each of these is a point
(x, y, z) in which x, y, and z are either 0 or I. One
obtains the following eight points: (0, 0, 0), (0, 0, 1),
(0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, I), (1, 1, 0), (1, 1, 1).

The vertices of the four-dimensional cube,

0<x<
0<y<
0<z< 1,
0<u< 1,

are taken to be the points (x, y, z, u) for which x, y, z,
and it are either 0 or I.

There are sixteen such vertices, for it is possible to
write down sixteen different quadruples of zeros and
ones. In fact, let us take the triples composed of the
coordinates of the vertices of the three-dimensional
cube (there are eight of them), and to each such triple
let us assign first 0, then 1. Then in this way, for each
such triple we get two quadruples; and so there will be
8 X 2 = 16 quadruples in all. Thus we have com-
puted the number of vertices of the four-dimensional
cube.

Let us consider now what we should call the edge
of the four-dimensional cube. Again we make use of
analogy. For the square the edges (sides) are defined
by the following relations (see Fig. 33b):

0<x< 1, y=0(edge AB);
X = I, 0 < y I (edge BC);

0 < x < 1, y = l (edge CD);
x = 0, 0 < y < 1 (edge DA).
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As we see, the edges of the square are characterized
by the property that for each point of a given edge, one
of the coordinates has a definite numerical value:
0 or 1, whereas the second coordinate can take on all
values between 0 and 1.

Let us further examine the edges of the (three-di-
mensional) cube. We have (see Fig. 33a)

x=0, y=0, 0<z<1 (edgeAA1);
0<x<1, y=0, z=1 (edge AIB1);
x= 1, 0<y< 1, z = 1 (edgeB,C,),

and so on.
By analogy we give the following

Definition. The edges of the four-dimensional cube
are the sets of points for which all of the coordinates
except one are constant (and equal to 0 or I), whereas
the fourth can take on all possible values from 0 to 1.

Examples of edges are

(1)x=0, y=0, z= 1,0<u<<1;
(2)0<x< I, Y= I, z0, u= 1;
(3)x= I, 0<y<1, z=0, a=0,

and so on.

Let us try to compute the number of edges of the
four-dimensional cube, that is, the number of such
lines that can be written down. In order to avoid
becoming confused we shall count them in a definite
order. First, we shall distinguish four groups of edges:
for the first group let the variable coordinate be
x(0 < x < 1), and let y, z, and u have the constant
values 0 and 1 in all possible combinations. We
already know that there exist 8 different triples
consisting of zeros and ones (recall how many vertices
the three-dimensional cube has). Therefore there
exist 8 edges of the first group (for which the variable
coordinate is x). It is easy to see that there are likewise
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8 edges in the second group, for which the variable
coordinate is not x but y. Thus it is clear that the four-
dimensional cube has 4 X 8 = 32 edges.

We can now easily write down the relations defining
each of these edges without fear of leaving out any of
them:

First Group: Second Group:

0 < x < l

Third Group:

z U

0 0

0 l

l 0

1 1

0 0

0 l

1 0

1 1

0 < y < I

x z u

0

0

0

0

0

1

0

l

0

Fourth Group:

0 < z < I

x

0

0

Y

0

0

U

0

l

0 < u < l

x

0

0

Y

0

0

z

0

l

The three-dimensional cube has faces, in addition
to vertices and edges. On each of the faces two co-
ordinates vary (taking on all possible values from
0 to 1), but one coordinate is constant (equal to
0 or 1). For example, the face ABBIA (Fig. 33a) is
defined by the relations

0<x< 1, y=0, 0<z< 1.
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By analogy we can give the following

Definition. A two-dimensional face' of the four-
dimensional cube is the set of points for which any
two coordinates can take on all possible values be-
tween 0 and 1, whereas the other two remain constant
(equal to either 0 or 1).

Examples of faces are the following:

x=0, 0<y< I, z= 1, 0<u< 1.

EXERCISE

Calculate the number of faces of the four-dimen-
sional cube. (Hint. We advise you not to resort to a
sketch but to use only analytic (arithmetical) defini-
tions and to write down all six rows of relations
defining each of the six faces of the ordinary three-
dimensional cube. Answer. The four-dimensional
cube has 24 two-dimensional faces.)

We can now fill in the fourth row of our table. The
table, however, is clearly still incomplete: the entry

Dimension of the Boundary 0 1 2 3

Dimension of the Cube

1 2 - - -
2 4 4 - -
3 8 12 6 -
4 16 32 24

in the lower right-hand corner is missing. The fact is
that for the four-dimensional cube it will be necessary
to add another column. For the segment, indeed,
there was only one type of boundary: the vertices; the
square had two types: vertices and edges; and the
cube had two-dimensional faces as well. One should
expect, therefore, that the four-dimensional cube will

'The necessity for specifying that the face should be two-
dimensional will be explained somewhat later.
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Fig. 34

have a new type of element making up its boundary
in addition to those we have seen and that the dimen-
sion of this new element will be equal to three.

We therefore give the following

Definition. A three-dimensional face of the four-
dimensional cube is a set of points for which three of
the coordinates take on all possible values from 0 to I
and the fourth is constant (equal to 0 or to 1).

One can easily compute the number of three-
dimensional faces. There are eight of them, since for
each of the four coordinates there are two possible
values: 0 and I, and we have 2 X 4 = 8.

Let us now took at Fig. 34. Here we have drawn a
four-dimensional cube. All 16 vertices are visible in the
diagram, as well as the 32 edges, the 24 two-dimen-
sional faces (shown as parallelograms), and the
8 three-dimensional faces (shown as parallelepipeds).
From the diagram it is quite clear which face contains
which edge, and so on.

How is this diagram obtained? Consider how one
draws the ordinary cube on a flat sheet of paper. One
really draws the so-called parallel projection of the
three-dimensional cube on the two-dimensional
plane. t In order to obtain our diagram, we first make
a space model of the projection of the four-dimensional
cube onto three-dimensional space and then draw this

'In a course in solid geometry you will become more familiar
with the parallel projection. In order to see what the parallel
projections of the ordinary cube on the plane are, proceed in
this way: make a cube out of wire (that is, make the framework
of a cube) and examine the shadow that it casts on a sheet of
paper or on a wall on a sunny day. If you place the cube prop-
erly, the shadow you obtain will be the figure that you usually
see in books. This is the parallel projection of the cube onto the
plane. To obtain it, one must construct a straight line through
each point of the cube parallel to a fixed direction (the sun's
rays are all parallel to one another) but not necessarily per-
pendicular to the plane. Then the intersection of these lines with
the plane onto which we are projecting is the parallel projection
of the figure.
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model. If you are skillful, then you too can make
such a model. You can, for example, use ordinary
matches, fastening them together with wax beads.
(How many matches will you need? And how many
beads? How many matches must be inserted in each
bead?)

One can obtain a visual representation of the four-
dimensional cube by other means as well. Suppose
that we have asked you to send us a model of the
ordinary three-dimensional cube. You could, of
course, mail a "three-dimensional" package, but this
is involved. Therefore it is better to proceed as follows:
glue the cube together out of paper; then unfasten the
cube and send us the pattern or, as mathematicians
would say, the development of the cube. Such a
development is depicted in Fig. 35. As the coordinates
of the vertices have been inserted in the figure, one
can easily see how to fasten together the pattern in
order to obtain the cube itself.

EXERCISES

1. Write down the relations defining each of the
three-dimensional faces of the four-dimensional cube.

2. One can construct a development of the four-
dimensional cube. This will be a three-dimensional
figure. It is evident that it will consist of 8 cubes. If you
succeed in making the development or in seeing how it
should be made, make a drawing of it and show the
coordinates of each vertex on the drawing.

10. Problems on the Cube

We have discussed the construction of the four-
dimensional cube. Let us now talk about its dimen-
sions. The length of each of the edges of the four-
dimensional cube is equal to one, just as in the ordinary
cube and the square (by the length of an edge we mean

Fig. 35
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the distance between the vertices lying on this edge).
For this reason we have called our "cubes" unit cubes.

1. Calculate the distances between the vertices of
the cube not lying on a single edge. (Take one of the
vertices, say (0, 0, 0, 0), and calculate the distance
between this vertex and the others. You have the
formula for computing the distance between points;
and since you know the coordinates of the vertices,
all that remains is to carry out some simple computa-
tions.)

2. Having solved Problem 1, you see that the ver-
tices can be classified into four groups. The vertices
of the first group are located at a distance of I from
(0, 0, 0, 0); the vertices of the second group are a
distance of %/2 from this point; the vertices of the
third group are \/3 away; and those of the fourth are
-,!4 = 2 away. How many of the vertices of the four-
dimensional cube are in each group?

3. The vertex (l, I, I, 1) is located at the greatest
distance from the vertex (0, 0, 0, 0); that is, its dis-
tance from this point is equal to 2. We shall call this
vertex the vertex opposite the vertex (0, 0, 0, 0); the
segment joining them is called the main diagonal of
the four-dimensional cube. What should one take to be
the main diagonal for cubes of other dimensions,
and what are the lengths of their main diagonals?

4. Suppose now that the three-dimensional cube is
made of wire and that an ant is sitting at the vertex
(0, 0, 0). Suppose further that the ant must crawl from
one vertex to the other. How many edges must the
ant cross in order to get from the vertex (0, 0, 0) to
the vertex (l, I, I)? It must cross three edges. There-
fore we shall call the vertex (I, 1, I) a vertex of the
third order. The path from the vertex (0, 0, 0) to the
vertex (0, I, 1) along the edges consists of two links.
Such a vertex we shall call a vertex of the second order.
In the cube there are vertices of the first order as well:
those which the ant can get to by traversing a single
edge. There are three such vertices: (0, 0, I), (0, 1, 0),
and (1, 0, 0). The cube also has three vertices of
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the second order. Write down their coordinates
(Problem 4a). There exist two paths from (0, 0, 0) to
each of the vertices of the second order consisting of
two links. For example, one can get to the vertex
(0, I, I) through the vertex (0, 0, I) and also through
the vertex (0, 1, 0). How many paths containing three
links are there connecting a vertex with its opposite
vertex (Problem 4b)?

5. Take the four-dimensional cube with the center
at the origin, that is, the set of points satisfying the
following relations:

-I <x< I,
-I <y <
-I<z<I,
-l<u<I.

Find the distance from the vertex (I, I, I, I) to each of
the other vertices of this cube.

Which vertices will be vertices of the first order with
respect to the vertex (I, 1, 1, I) (that is, which vertices
can one get to from the vertex (I, I, I. 1), traversing
only one edge)? Which vertices will be vertices of the
second order? of the third? of the fourth?

6. And the last question, to test your understanding
of the four-dimensional cube: How many paths are
there having four links and leading from the vertex
(0, 0, 0, 0) of the four-dimensional cube to the
opposite vertex (I, 1, 1, I) going along the edges of
this cube? Write down each path specifically, showing
in order the vertices that one must pass.

y
AAA

Answer to Exercise 1 f on page 18.
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