Progress in Nonlinear Differential Equations
and Their Applications

Cristian E. Gutiérrez

The Monge-Ampere
Ecquation

Birkhauser



Copyrighted Material

Cristian E. Gutiérrez

The Monge—Ampere Equation

Birkhauser
Boston » Basel » Berlin

Copyrighted Material



Copyrighted Material

Cristian E. Gutiérrez
Department of Mathematics
Temple University
Philadelphia, PA 19122
US.A.

Library of Congress Cataloging-in-Publication Data

Gutiérrez, Cristian E., 1950-
The Monge-Ampére equation / Cristian E. Gutiérrez,
p. cm. — (Progress in nonlinear differential equations and their applications ; v. 44)
Includes bibliographical references and index.
ISBN 0-8176-4177-7 (alk. paper) — ISBN 3-7643-4177-7 (alk. paper)
. Monge-Ampére equations. [. Title. II. Series.

QA377.G8&7 2001
515".353-dc2] 2001025444

AMS Subject Classifications: 35J60, 35165, 53A15, 52A20

Printed on acid-free paper. . . ®
©2001 Birkhiuser Boston Birkhduser

All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Birkhiiuser Boston, c/o Springer-Verlag New York, Inc., 175 Fifth
Avenue, New York, NY 10010, USA), except for brief excerpts in connection with reviews or
scholarly analysis. Use in connection with any form of information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now known or hereafter

developed is forbidden,

The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the
former are not especially identified, is not to be taken as a sign that such names, as understood by the

Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

ISBN 0-8176-4177-7 SPIN 10761705
ISBN 3-7643-4177-7

Reformatted from author’s files in IATRX 2e by TgXniques, Inc., Cambridge, MA.
Printed and bound by Hamilton Printing Company, Rensselaer, NY.
Printed in the United States of America.

S 87654321

Copyrighted Material



Contents

Preface

Notation . . . . . . . . . . . . .

Generalized Solutions to Monge—Ampeére Equations
1.1 The normal mapping . . . . . . . . . . ... ... ... ..
1.1.1 Properties of the normal mapping . . . ... .. ..
1.2 Generalized solutions . . . . . . . . .. ... ... ...
1.3 Viscosity solutions . . . . ... .. .. ... ... ... ..
1.4 Maximum principles . . . . . . .. .. ... ... ...
1.4.1 Aleksandrov’s maximum principle . .. .. ... ..
1.4.2 Aleksandrov—Bakelman—Pucci’s maximum principle
1.4.3 Comparison principle . . . .. ... ... ... ...
1.5 The Dirichlet problem . . ... .. .. ... ... ......
1.6 The nonhomogeneous Dirichlet problem . . .. .. ... ..
1.7 Return to viscosity solutions. . . . . . ... ... ... ...
1.8 Ellipsoids of minimum volume . . . . . . .. ... ... ...
1.9 Notes . . . . . . . e

Uniformly Elliptic Equations in Nondivergence Form

2.1 Critical density estimates . . . . ... ... .. ... .. ..
2.2 Estimate of the distribution function of solutions . . . . . .
2.3 Harnack’s inequality . . . ... ... ... ... ...
24 Notes . . . . . . e

The Cross-sections of Monge—Ampére

3.1 Imtroduction. . . ... .. .. ... ... .. ... . ... ..

3.2 Preliminaryresults . . . . . ... ... ... ... ... ..

3.3 Properties of the sections . . . ... ... ... .. .....
3.3.1 The Monge-Ampeére measures satisfying (3.1.1) . . .
3.3.2 The engulfing property of the sections . . . .. . ..
3.3.3 The size of normalized sections . . . . . . ... ...

3.4 Notes . . . . . . . e

31
31
37
41
43



vi Contents

4 Convex Solutions of det D?u =1 in R” 63
4.1 Pogorelov’s Lemma . . . . ... .. .. ... 0., 63
4.2 Interior Holder estimates of D?u . . . . . . . ... .. ... 67
43 C%estimatesof D2u . . . . . . . ... ... ... ... ... 70
44 Notes . . . . . . . . ... 74

5 Regularity Theory for the Monge—Ampére Equation 75
5.1 Extremal points. . . . . .. ... ... ... .. ....... 75
5.2 Extremal points of solutions . . . . . . ... ... ... ... 77
5.3 A strict convexity result . . . .. ... ... ... 80
54 Ch%regularity . . .. .. .. ... ... 85
5.5 Examples . . ... ... .. ..o o 93
56 Notes . . . . . . . . . 93

6 W?2P Estimates for the Monge-Ampére Equation 95
6.1 Approximation Theorem . . . . . . .. ... ... ...... 95
6.2 Tangent paraboloids . . . . . .. ... ... ... ...... 99
6.3 Density estimates and power decay . . . . . . ... ... .. 101
6.4 LP estimates of second derivatives . . .. ... .. ... .. 108
6.5 Proof of the Covering Theorem 6.3.3 . . . . . ... ... .. 112
6.6 Regularity of the convex envelope . . . . . . ... ... ... 119
6.7 Notes . .. . .. . . . . . ... 122

Bibliography 126

Index 126



Preface

In recent years, the study of the Monge-Ampére equation has received
considerable attention and there have been many important advances. As
a consequence there is nowadays much interest in this equation and its
applications. This volume tries to reflect these advances in an essentially
self-contained systematic exposition of the theory of weak solutions, includ-
ing recent regularity results by L. A. Caffarelli. The theory has a geometric
flavor and uses some techniques from harmonic analysis such us covering
lemmas and set decompositions. An overview of the contents of the book
is as follows.

We shall be concerned with the Monge—Ampere equation, which for a
smooth function u, is given by

det D*u = f. (0.0.1)

There is a notion of a generalized or weak solution to (0.0.1): for u convex
in a domain (2, one can define a measure Mu in 2 such that if u is smooth,
then Mu has density det D?u. Therefore u is a generalized solution of (0.0.1)
if Mu = f. The notion of a generalized solution is based on the notion of
normal mapping.

In Chapter 1 we begin with two concepts, introduced by A. D. Alek-
sandrov, and we describe their basic properties. The notion of a viscosity
solution is also considered and compared with that of a generalized solu-
tion. We also introduce several maximum principles that are fundamental
in the study of the Monge—Ampere operator. The Dirichlet problem for
Monge-Ampere is then solved in the class of generalized solutions in Sec-
tions 1.5 and 1.6. Chapter 1 concludes with the concept of an ellipsoid
of minimum volume which is of particular importance in developing the
theory of cross-sections in Chapter 3.

In Chapter 2, we present the Krylov—Safonov form of Harnack’s inequal-
ity for nondivergence elliptic operators in view of some ideas used to study
the linearized Monge—Ampere equation. This is presented to illustrate these
ideas by an example simpler than the Monge—Ampere one.

Chapter 3 presents the theory of cross-sections of weak solutions to the

vii



viii Preface

Monge-Ampere equation and we prove several geometric properties that
are needed in the subsequent chapters. The cross-sections of u are the
level sets of the convex function w minus a supporting hyperplane. Of
special importance is the doubling condition (3.1.1) for the measure Mu that
permits us, from the characterization given in Theorem 3.3.5, to determine
invariance properties for the shapes of cross-sections that are valid under
appropriate normalizations using ellipsoids of minimum volume. A typical
situation is when the measure Mu satisfies

\|E| < Mu(E) < A|E|, (0.0.2)

for some positive constants A\, A and for all Borel subsets E of the convex
domain Q. The inequalities (0.0.2) resemble the uniform ellipticity condition
for linear operators. The results proved in this chapter permit us to work
with the cross-sections as if they were Euclidean balls and to establish the
covering lemmas needed later for the regularity theory in Chapters 4-6.

Chapter 4 concerns an application of the properties of the sections: a
result of Jorgens—Calabi—Pogorelov—Cheng and Yau about the characteri-
zation of global solutions of Mu = 1.

Chapter 5 contains Caffarelli’s C1® estimates for weak solutions. A
fundamental geometric result is Theorem 5.2.1 about the extremal points
of the set where a solution u equals a supporting hyperplane.

Finally, in Chapter 6 we present the W?2? estimates for the Monge—
Ampere equation recently developed by Caffarelli and extending classical
estimates of Pogorelov. The main result here is Theorem 6.4.2.

We have included bibliographical notes at the end of each chapter.
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% Preface

Notation

Du denotes the gradient of the function u.
D?u(z) denotes the Hessian of the function u, i.e., D?u(x) = <

1<i,j<n.
QCR", u:Q— Ris convex if for all 0 <t <1 and any z,y € Q such
that tz + (1 —t)y € Q we have

0?u(zx)
Ba:iaa:j ’

u(te+ (1—1t)y) <tu(z) + (1 —t)u(y).

Given a set E, xg(x) denotes the characteristic function of E.

|E| denotes the Lebesgue measure of the set E.

Bpr(z) denotes the Euclidean ball centered at 2 with radius R.

wy, denotes the measure of the unit ball in R™.

C(€2) denotes the class of real-valued functions that are continuous in
Q.

Given a positive integer k, C*(Q) denotes the class of real-valued func-
tions that are continuously differentiable in Q up to order k.

If E}, is a sequence of sets, then

E* =limsup E, =Ny, U2, Ex; E, =liminf E,, = U52, N2, Ex;

n—o0 n—0o0

Xe-(r) =limsup xg, (z);  xg.(z) =liminf xg, (z).
n—o00 n—oo

The real-valued function v is harmonic in the open set Q@ C R™ if u €
82
C2(Q) and Au(z) = 0, a“;(f) =0in Q.
If @ ¢ R* is a bounded alnd measurable set, the center of mass or
baricenter of Q) is the point z* defined by

ol
¥ = — [ zdx.
1] Jo

If AC BCR" and A C B, then we write A € B.

If a,b € R, then a Vb = max{a,b}.

If E is a set, then P(E) denotes the class of all subsets of E.

If Q C R" is a cube and a > 0, then a () denotes the cube concentric
with @ but with edge length equals « times the edge length of Q.




Chapter 1

Generalized Solutions to
Monge—Ampere Equations

1.1 The normal mapping

Let Q2 be an open subset of R” and v : Q@ = R. Given zg € Q, a supporting
hyperplane to the function u at the point (xg,u(xo)) is an affine function
£(x) = u(xo) + p- (x — mp) such that u(x) > £(x) for all z € Q.

Definition 1.1.1 The normal mapping of u, or subdifferential of u, is the
set-valued function Ou : Q@ — P(R™) defined by

Ou(zg) = {p:u(xz) > u(xzo) +p- (x —zp), forallz e N}.
Given E C Q, we define Ou(E) = |, cp Ou(z).

The set Ou(zo) may be empty. Let S = {z € Q : du(z) # 0}. If
u € C1(Q) and z € S, then du(x) = Du(z), the gradient of u at z, which
means that when wu is differentiable the normal mapping is basically the
gradient. If u € C%(Q) and x € S, then the Hessian of u is nonnegative
definite, that is D?u(z) > 0. This means that if u is C?, then S is the
set where the graph of u is concave up. Indeed, by Taylor’s Theorem

1
u(z + h) = u(z) + Du(x) - h + §(D2u(f)h, h), where ¢ lies on the segment

between x and = + h. Since u(z + h) > u(z) + Du(z) - h for all h sufficiently
small, the claim follows.

Example 1.1.2 It is useful to calculate the normal mapping of the function
u whose graph is a cone in R*"™!. Let Q = Bpg(zo) in R?, h > 0 and

1



2 Chapter 1. Generalized Solutions to Monge-Ampere Equations
u(z) = h L — 2ol

cone in R™*! with vertex at the point (zg,0) and base on the hyperplane
Zp4+1 = h. We shall show that

. The graph of u, for z € €, is an upside-down right-

h x—xo
Rz — zo|’

ou(z) =

Byr(0), for z = xy.

for 0 < |z — xo| < R,

If 0 < |z —xo| < R, then the value of du follows by calculating the gradient.

h
By the definition of normal mapping, p € du(zy) if and only if I |z —xzo| >
p-(x — x) for all © € Br(xp). If p # 0 and we pick = zo + R%, then

h h
Ip| < h It is clear that |p| < i implies p € du(xo).

1.1.1 Properties of the normal mapping

Lemma 1.1.3 If Q C R" is open, u € C() and K C Q is compact, then
Ou(K) is compact.

Proof. Let {pi} C Ou(K) be a sequence. We claim that py, is bounded. For
each k there exists x; € K such that py € du(zy), that is u(z) > u(zry) +
pr - (x — xp) for all z € Q. Since K is compact, K5 = {z : dist(z, K) < §}
is compact and contained in Q for all § sufficiently small, and we may
assume by passing if necessary through a subsequence that xy — zo. Then
zp + dw € Ky, and u(zy + dw) > u(zy) + dpy - w for all jw| =1 and for all

k. If pr #0 and w = |pi then we get maxg; u(z) > ming u(z) + 0|prl,
Pk

for all k. Since wu is locally bounded, the claim is proved. Hence there
exists a convergent subsequence pg,, — po- We claim that py € Ou(K). We
shall prove that pg € du(zo). We have u(x) > u(xyg,,) + pr,, - ( — xx,,)
for all z € Q and, since w is continuous, by letting m — oo we obtain
u(z) > u(xo) + po - (x — ) for all x € Q. This completes the proof of the
lemma. ]

Remark 1.1.4 We note that the proof above shows that if u is only locally
bounded in 2, then du(FE) is bounded whenever E is bounded with E C Q.

Remark 1.1.5 We note that given zy € €, the set du(zo) is convex. How-
ever, if K is convex and K C 2, then the set du(K) is not necessarily
convex. An example is given by u(z) = el?l” and K = {z e R” : |z;] <
1, ¢=1,...,n}. The set Ou(K) is a star-shaped symmetric set around
the origin that is not convex, see Figure 1.1.



1.1. The normal mapping 3

Figure 1.1. Ju(K)

Lemma 1.1.6 If u is a convex function in 0 and K C Q is compact, then
w s uniformly Lipschitz in K, that is, there exists a constant C = C(u, K)
such that |u(z) —u(y)| < Clz —y| for all z,y € K.

Proof. Since u is convex, u has a supporting hyperplane at any x € (.
Let C = sup{|p| : p € Ou(K)}. By Lemma 1.1.3, C < co. If z € K, then
u(y) > u(z) + p- (y — x) for p € Qu(x) and for all y € Q. In particular, if
y € K, then u(y) —u(x) > —|p|ly — z|. By reversing the roles of z and y we
get the lemma.

|

Lemma 1.1.7 If Q is open and u is Lipschitz continuous in §, then u is
differentiable a.e. in €.

Proof. See [EG92, p. 81]. ]

Lemma 1.1.8 If u is convex or concave in 2, then u is differentiable a.e.
in Q.

Proof. Follows immediately from Lemmas 1.1.6 and 1.1.7. ]
Remark 1.1.9 A deep result of Busemann—Feller—Aleksandrov establishes

that any convex function in € has second order derivatives a.e., see [EG92,
p. 242] and [Sch93, pp. 31-32].



4 Chapter 1. Generalized Solutions to Monge-Ampere Equations

Definition 1.1.10 The Legendre transform of the function v : @ — R is
the function u* : R® — R defined by
w*(p) = sup (z-p —u(x)).
Tz€EQ

Remark 1.1.11 If © is bounded and w is bounded in 2, then u* is finite.
Also, u* is convex in R™.

Lemma 1.1.12 IfQ is open and u is a continuous function in §2, then the
set of points in R™ that belong to the image by the normal mapping of more
than one point of Q has Lebesque measure zero. That is, the set

S = {p € R" : there ezist x,y € Q, © # y and p € du(z) N Ju(y)}

has measure zero. This also means that the set of supporting hyperplanes
that touch the graph of u at more than one point has measure zero.

Proof. We may assume that ) is bounded because otherwise we write
Q = UpQ, where Q C Q41 are open and Qj, are compact. If p € S, then
there exist z,y € Q, z # y and u(2) > u(z)+p (z—x),u(z) > u(y)+p-(2—y)
for all z € Q. Since €2 increases, x,y € (1, for some m and obviously the
previous inequalities hold true for z € Q,,. That is, if

Sm = {p € R" : there exist z,y € Q, z #y and p € I(u|Qn)(x) N O(u|m)(y)}

we have p € S, i.e.,, S C UpSy, and we then show that each S,, has
measure zero.

Let u* be the Legendre transform of u. By Remark 1.1.11 and Lemma 1.1.8,
u* is differentiable a.e. Let E = {p: u* is not differentiable at p}. We shall
show that

{p € R" : there exist z,y € Q, z # y and p € Ju(z) N Ju(y)} C E.

In fact, if p € Qu(x1) N du(xz) and 1 # x2, then u*(p) = x; - p — u(x;),
i=1,2. Alsou*(2) > z; -z —u(z;) and so u*(z) > u*(p) + z; - (z — p) for all
z,1 =1,2. Hence if u* were differentiable at p we would have Du*(p) = z;,
i = 1,2. This completes the proof of the lemma. [ |

Theorem 1.1.13 If Q is open and u € C(QQ), then the class
S={E CQ:0u(FE) is Lebesque measurable}
is a Borel o-algebra. The set function Mu : S — R defined by
Mu(E) = |0u(E)] (1.1.1)

is a measure, finite on compacts, that is called the Monge—Ampére measure
associated with the function u.



1.1. The normal mapping )

Proof. By Lemma 1.1.3, the class S contains all compact subsets of (2.
Also, if E,, is any sequence of subsets of , then 0u (U, Er) = U, Ou(Eny)-
Hence, if E,, € S, m = 1,2,..., then U, E,, € S. In particular, we may
write Q = U, K, with K,, compacts and we obtain 2 € S. To show that
S is a o-algebra it remains to show that if F € S, then Q\ E € S. We use
the following formula, which is valid for any set E C Q:

Bu(Q\ E) = (Ju(Q) \ du(E)) U (9u(Q \ E) N du(E)). (1.1.2)

By Lemma 1.1.12, |0u(Q\ E)NOu(E)| = 0 for any set E. Then from (1.1.2)
we get Q\ E € S when E € S.

We now show that Mu is o-additive. Let {E;}$2; be a sequence of
disjoint sets in S and set u(E;) = H;. We must show that

|Ou (U2, i) = Y |Hil.

i=1
Since du (U2, E;) = U2, H;, we shall show that
o0
U2, Hy| = 3 |Hil. (1.1.3)
i=1
We have E; N E; = () for i # j. Then by Lemma 1.1.12 |H; N H;| = 0 for
i # j. Let us write
URX,H; = HiU(Hs\ H)U(H3\ (HUH;))U(Hy\ (HsUHyUH))U--- |
where the sets on the right hand side are disjoint. Now
H,=H,Nn(H,-1UH, 2U---UH)JUH,\ (Ho-1 UH, 5 U---UH;)].
Then by Lemma 1.1.12, |H, N (Hp,—1 UH,_2U---UH;)| = 0 and we obtain
|H,| = |Hp, \ (Hp—1 UH, 2 U---UHy)|.

Consequently (1.1.3) follows, and the proof of the theorem is complete. B

Example 1.1.14 If u € C?(Q) is a convex function, then the Monge-
Ampere measure Mu associated with u satisfies

Mu(E):/EdetD2u(a¢) dz, (1.1.4)

for all Borel sets E C Q. To prove (1.1.4), we use the following result:
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Theorem 1.1.15 (Sard’s Theorem, see [Mil97]) Let Q@ C R" be an open
set and g : Q@ — R™ a C! function in Q. If Sop = {x € Q : det g'(z) = 0},
then |g(So)| = 0.

We first notice that since u is convex and C?(f2), then Du is one-to-
one on the set A = {z € Q : D?u(z) > 0}. Indeed, let z;,79 € A with
Du(xz1) = Du(zz). By convexity u(z) > u(z;) + Du(z;) - (z — ;) for all
z € Q,i=1,2. Hence u(z1) —u(zr2) = Du(z1)- (21 —22) = Du(x2)- (1 —22).
By the Taylor formula we can write

u(zy) = u(za) + Du(zs) - (1 — x2)

+ /0 t(D%u (x2 + t(z1 — 22)) (X1 — x2), 1 — T2) di.

Therefore the integral is zero and the integrand must vanish for 0 <¢ < 1.
Since z2 € A, it follows that xs + t(x; — x2) € A for t small. Therefore
1 = T3.

If u € C?(Q), then g = Du € C'(Q). We have Mu(E) = |Du(E)| and
Du(E) = Du(E N Sp) U Du(E \ Sp).
Since E C R" is a Borel set, EN Sy and E'\ Sy are also Borel sets. Hence,

by the formula of change of variables and Sard’s Theorem,

Mu(E) = Mu(ENSy)+Mu(E\Sp) = /

det D?*u(x) dx = / det D?*u(z) dz,
E\SO

E

which shows (1.1.4).

Example 1.1.16 If u(z) is the cone of Example 1.1.2, then the Monge—
Ampere measure associated with u is Mu = | By, | 6z,, where §,, denotes
the Dirac delta at xg.

1.2 Generalized solutions

Definition 1.2.1 Let v be a Borel measure defined in Q, an open and con-
vex subset of R™. The convex function u € C(Q) is a generalized solution,
or Aleksandrov solution, to the Monge—Ampére equation

det D*u =v

if the Monge—Ampére measure Mu associated with u defined by (1.1.1)
equals v.
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The following lemma implies that the notion of generalized solution is
closed under uniform limits. That is, if w are generalized solutions to
det D?>u = v in Q and u; — v uniformly on compact subsets of 2, then u
is also a generalized solution to det D?u = v in Q.

Lemma 1.2.2 Let u, € C(Q) be convex functions such that up, — u uni-

formly on compact subsets of Q).
Then:

(i) If K C Q is compact, then
lim sup Ouy (K) C u(K),

k—o0
and by Fatou
lim sup |Ou(K)| < |0u(K)|.

k—o0

(ii) If K is compact and U is open such that K C U C U C Q, then
Ou(K) C liminf duy(U),
k—o0

where the inequality holds for almost every point of the set on the
left-hand side, and by Fatou

|Ou(K)| < liminf |Ou (U)|.
k—o00

Proof. (i) If p € limsup,,_, ., Oug(K), then for each n there exist k, and
zy, € K such that p € Quy, (z, ). By selecting a subsequence z; of xy, we
may assume that z; = zo € K. On the other hand,

uj(x) > uj(z;) +p-(x—=x;), Veze,

and by letting j — oo, by the uniform convergence of u; on compacts we
get

u(z) > u(xo) +p- (xr — x0), Vz € Q,
that is p € Au(xo).

(ii) Let S = {p : p € Ju(z1) N Ou(zz) for some z1,22 € Q, 1 # x2}.
By Lemma 1.1.12, |S| = 0. Let K C Q be compact and consider Ju(K)\ S.
If p € Ou(K) \ S, then there exists a unique 2o € K such that p € u(zo)
and p ¢ Ou(xy) for all 1 € Q, x; # xo. Let U be open satisfying the
assumptions. If z; € Q and z; # zo, then u(z1) > u(zo) +p - (x1 — T0)-
Otherwise, u(x1) = u(xo) + p- (1 — xo) and since p € Ju(zp) we have

u(z) > u(zo) +p- (x — x0) Vo € Q
=u(z1) —p- (z1 —20) +p- (z — 20)
=u(z1)+p-(x—x1) Yz € 9,
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that is, p € Ou(z1) which is impossible because we removed S from Ju(K).

We may assume U is compact. Let £(xz) = u(zo) + p - (z — xp) and set
§ = minfu(z) — £(z) : * € U} > 0. We have that [u(z) — ug(z)| < /2 for
all z € U and for all k£ > kg. Now let

0 = max{l(x) — ur(x) + §/2}.

zeU

This maximum is attained at some z; € U. Since &; > 0 and uy(z) —€(z) >
0/2 for x € OU, we get that =, ¢ OU. We claim that p is the slope of a
supporting hyperplane to uy at the point (zy,u(zy)). Indeed,

O = u(xo) +p- (xp — x0) — ug(zg) +6/2

and so o

up(z) > up(zr) +p- (r — x8) Ve e U. (1.2.1)
Since uy, is convex in  and U is open, (1.2.1) holds for all z € , that is
p € Ouy(xy) for all k > kg. This implies that p € lim infy_, o, Qug(U). [ |

Lemma 1.2.3 If uy are convex functions in Q such that ur, — u uniformly
on compact subsets of Q, then the associated Monge—Ampére measures Muy,
tend to Mu weakly, that is

/ () dMug (z) — / () dMu(z),
Q Q

for every f continuous with compact support in ).

1.3 Viscosity solutions

Definition 1.3.1 Letu € C(Q) be a convez function and f € C(Q), f > 0.
The function u is a viscosity subsolution (supersolution) of the equation
det D?u = f in Q if whenever conver ¢ € C?(Q) and xo € Q) are such that
(u—9¢)(z) < (=) (u— ¢)(xg) for all x in a neighborhood of xo, then we
must have

det D2¢)(m0) > (L) f(zo).

Remark 1.3.2 We claim that if u € C(f) is convex, ¢ € C*(Q) and u — ¢
has a local maximum at zg € 2, then

D2¢(l'0) 2 0.

In fact, since ¢ € C?(12), we have

8(z) = (o) + Dé(z0)- (3~ 0) + 5{D*0(a0) (2 — 70, ~ 7o) ol — o ).
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Hence, for z close to z¢ we get

u(z) < ¢(z) + u(zo) — d(z0)
= u(zo) + D¢(z0) - (z — o)
+ %(D2¢(m0)(w —20), 7 — 20) + o(|z — z0|?).

Since u is convex, there exists p such that u(z) > u(zo) +p- (x — zo) for all
xz € Q. Given |w| =1 and p > 0 small, by letting x — 2o = pw we obtain

pp-w < p Do) -w + 3 p (D6 (0w, w) + 0(p?).

Dividing this expression by p, letting p — 0 and noting that the re-
sulting inequality holds for all |w| = 1 gives that p = D¢(z). Hence
(D2p(z)w,w) > 0 and the claim is proved.

Remark 1.3.3 We show that we may restrict the class of test functions
used in the definition of viscosity subsolution or supersolution to the class
of strictly convex quadratic polynomials. We shall first prove that, if the
statement giving a strictly convex quadratic polynomial ¢ and x € 2 such
that (u— @)(z) < (u—¢)(xp) for all z in a neighborhood of xy implies that

det D?¢(z0) > f(20),

then u is a viscosity subsolution of the equation det D?u = f in ). To prove
the remark, let ¢ € C?(Q) be convex such that u — ¢ has a local maximum
at xg € ). We write

d(x) = ¢(x0) + Do(x0) - (x — w0)
+ {D%0(@0)(x — 20),2 — 7o) + ol — ")
= P(z) + o(|z — zo|?). (1.3.1)

Let € > 0 and consider the quadratic polynomial P.(x) = P(z) + €| — zo|>.
We have
D?P,.(x0) = D*P(x0) + 2eld = D*¢(z0) + 2¢Id,

and so the polynomial P, is strictly convex. We have ¢(z) — P.(z) = o(|z —
7o|?) —€|lr—x0|? < 0 and so ¢— P, has a local maximum at xo. Hence u— P.
has a local maximum at zo. Then det D?P,(zo) = det (D?¢(zo) + 2eId) >
f(zo). By letting € — 0, we obtain the desired inequality.

To prove the statement for supersolutions, let ¢ € C?() be convex such
that u — ¢ has a local minimum at xq. If D?>¢(x() has some zero eigenvalue,
then det D%¢(xg) = 0 < f(mp). If all eigenvalues of D?¢(zo) are positive
and P(z) is given by (1.3.1), then P.(z) = P(z)—e€|z—mo|? is strictly convex
for all € > 0 sufficiently small. Proceeding as before, we now get that u— P
has a local minimum at z¢ and consequently det D?¢(z¢) < f(xo).
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We now compare the two notions of solutions: generalized solutions and
viscosity solutions.

Proposition 1.3.4 If u is a generalized solution to Mu = f with f con-
tinuwous, then u is a viscosity solution.

Proof. Let ¢ € C?(Q) be a strictly convex function such that u — ¢ has
a local maximum at zo € Q. We can assume that u(zo) = ¢(zg), then
u(z) < ¢(x) for all 0 < |z — x| < §. This can be achieved by adding
rlz — zo|? to ¢ and letting r — 0 at the end.

Let m = ming/s<|p—a0<s10(¥) —u(z)}. We have m > 0. Let 0 < e <m
and consider the set

Se = {x € Bs(xo) : u(z) + € > ¢(z)}.
If /2 < |z — xo| < J, then ¢(z) —u(z) > m and so z ¢ S.. Hence
Se C Bsja(20). Let z € S.. Then there exist z,, € Se and Z,, ¢ Se such
that z,, — 2z and Z, — z. Hence u + € = ¢ on 0S.. Since both functions
are convex in S, by Lemma 1.4.1, we have that

O(u + €)(Se) C 09(Se).

Since u is a generalized solution, this implies that

[ f@)do < [ou+ (0] <109(8)] = [ det D0(a)da.
S, Se

By the continuity of f we obtain that det D2¢(xq) > f(z0).
A similar argument shows that u is a viscosity supersolution. [ |

We shall prove in Section 1.7 the converse of Proposition 1.3.4.

1.4 Maximum principles

In this section we prove two maximum principles and a comparison principle
for the Monge—Ampére equation.
We begin with the following basic lemma.

Lemma 1.4.1 Let Q C R" be a bounded open set, and u,v € C(Q). If
u=1v on O and v > u in Q, then

Ov(N) C du(N);

see Figure 1.2.
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Figure 1.2. 0v(Q) C 0u(f)

Proof. Let p € 0v(2). There exists zo €  such that
v(z) > v(zo) +p- (z — 20), Yz € Q.

Let

a = sup{v(zg) + p- (x — o) — u(x)}.
zEQ

Since v(zg) > u(zop), it follows that a > 0. We claim that v(xo)+p-(x—20)—
a is a supporting hyperplane to the function u at some point in €2. Since (2
is bounded, there exists z1 € Q such that a = v(zo) +p- (v1 — o) — u(x1)
and so

u(z) >v(re) +p-(x —xo) —a=u(z1) +p- (x —x1) Vo € Q.
We have
v(z1) > v(zo) +p- (21 — 20) = u(x1) + a.

Hence, if a > 0, then x; ¢ 09 and so the claim holds in this case. If a = 0,
then
u(z) > v(xo) +p- (x — o) > u(wo) + p- (T — 20)

and consequently u(xo) +p- (z — o) is a supporting hyperplane to u at xo.
| |

1.4.1 Aleksandrov’s maximum principle

The following estimate is fundamental in the study of the Monge—Ampere
operator.



12 Chapter 1. Generalized Solutions to Monge-Ampere Equations

Theorem 1.4.2 (Aleksandrov’s maximum principle) If Q C R™ is a bounded,
open and convex set with diameter A, and u € C(Q) is conver with u = 0
on 0N, then

lu(zo)|™ < Oy A" dist(xg, Q) |0u(Q)],

for all x¢ € Q, where C), is a constant depending only on the dimension n.

Proof. Fix zp € Q and let v be the convex function whose graph is the
upside-down cone with vertex (zo,u(zo)) and base Q, with v = 0 on 9.
Since w is convex, v > u in . By Lemma 1.4.1

Ov(Q) C Au(Q).

To prove the theorem, we shall estimate the measure of dv(§2) from below.
We first notice that the set Ov(Q) is convex. This is true because, if p €
Ov(Q), then there exists z1 €  such that p = dv(z1). If x4 # w0, since the
graph of v is a cone, then v(z1) + p- (z — x1) is a supporting hyperplane at
zg, that is p € dv(zg). So Ov(?) = v(xp) and since dv(zp) is convex we
are done.

—u(zo)
diSt(iEo, 89) )
This follows because €2 is convex. Indeed, we take x; € O such that
|z1 — zo| = dist(xo, 0N) and H is a supporting hyperplane to the set 2 at
z1. The hyperplane in R**! generated by H and the point (zg,u(zo)) is a
supporting hyperplane to v that has the desired slope.

—u(zo)

A

. Hence the convex hull of B and

Second, we notice that there exists py € Ov(Q) such that |pg| =

Now notice that the ball B with center at the origin and radius
—u(zg)
A

po is contained in Ov(Q?) and it has measure

o (F)"

which proves the theorem. [ |

is contained in Ov({2), and |po| >

Remark 1.4.3 The estimate in Theorem 1.4.2 is meaningful only if |0u(Q2)| =
Mu () < oo. If for example,

@) —Vz, if 0 <2 <1/2,
u(z) =
—V1—-z, ifl1/2<z<1,

then Ou ((0,1)) = (—o00,00). We also notice that an estimate of v in terms
of the distance to the boundary of (0,1) is not valid.
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1.4.2 Aleksandrov—Bakelman—Pucci’s maximum prin-
ciple
Consider u € C'(R2) with Q convex and the classes of functions
Flu) ={v:v(z) <ulz) VzeQ, vconvexin N},

Gu) ={w:w(z) >u(r) Ve, w concavein Q}.
Let

*

us(z) = sup wv(z), u*(z) = inf w(z). (14.1)
vEF (u) weG(u)
We have that u, is convex and u* is concave in 2. We call these functions
the convex and concave envelopes of u in ) respectively, and we have the
inequalities

ue(z) < u(z) <u*(z), Vz € Q.
We also have that
F(—u) = =G(u)
and hence
—(u*)(2) = (~u).(a). (14.2)

Consider the sets of contact points
Ce(u) ={z € Q:ui(z) =u(x)}, C*'(u) ={z € Q:u*(z) = u(z)}.

Then
Ci(u) = C*(—u). (1.4.3)

Since u, is convex, it follows that u, has a supporting hyperplane at z,
for zyp € C.(u). Since in addition u.(zo) = u(xo), this hyperplane is also a
supporting hyperplane to u at the same point. That is

O(uy)(zo) C Ou(xo), for zy € Ci(u),

and hence

() (Cs (u)) C Ou(Cu(uw))-

If g ¢ Ci(u), then du(xy) = 0. Also, if A, B are sets, then du(A U B) =
Ou(A) U du(B). Hence

Ou() = 0u(Cy(u) U (2\ Ci(u))) = 0u(Cy(u)) Udu(2\ Cu(u)) = 0u(Cy(u)).
By the definition of w.,
Fu(Cu(u)) C O(ux)(Cu(u)).

Thus
Ou() = 0u(Cu(u)) = O(us)(Ce(u)). (1.4.4)
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Let
D, (z0) ={p:u(x) <ulzo) +p-(z —xz), Vre}
0)-

Lemma 1.4.4 Let u € C(Q) such that u(z) < 0 on 9Q, and zo € Q with
u(zo) > 0. Then

Notice that ®_,(z¢) = —Ou(x

Qzo,u(z0)) C Pus (C*(u)),
where Q(z,t) = {y:y- (£ —x)+t >0,V e Q)
Proof. Let y € Q(xo,u(xo)); then
y - (£ —x0) +u(wo) > 0, VE € Q.

Let _
Ao =inf{A: A+y-(&—mzp) >u(§),VE €N}

By continuity we have
Xo+y-(E—x) >u(l), VEeq. (1.4.5)

Consider the minimum

min{Ao +y - (§ — o) —u(§)}.
£eQ

This minimum is attained at some point ¢ € 2, and we have

Ao+ 4+ (€ —x0) — u(€) =0.
Because on the contrary
X+y-(E—zo) —u(f) >e>0, Ve € Q,

and Ao would not be the infimum.
We claim that & € Q. Since u|sq < 0, the claim will be proved if we show

u(§) > 0. By taking & = zo in (1.4.5) we get u(zo) < Ao, and consequently
Y- (§—z0) +Xo >0, Ve € Q;
in particular, for ¢ = €,
u(@) =y - (€~ o) + o > 0.

_ Therefore we proved that if y € Q(zo,u(70)), then there exists a point
& € Q such that

w(€) =y (€ —x0) + Ao,



1.4. Maximum principles 15

and
u(@) <y-(E—z0)+ Ao, VEEQ

This means that A\g + v - (¢ — o) is a supporting hyperplane of u at €.
Since u* is minimal, we have u(§) < u*(§) <y - (£ —x0) + Ao, V€ € Q. In
particular, u(€) = u*(€) and y - (€ — zo) + Ao is a supporting hyperplane for
u* at &, ie., y € By (€). ]

Then under the assumptions of Lemma 1.4.4 we get

Q(zo,u(20)) C Pu-(C*(v)) = —0(—(u"))(C*(u)) = —0((—u))(Cs(—u))-
We also have the estimate
Wp t"
(w0, 1) > ([@am (@)™
To show (1.4.6), we first note that

Q(xo, t) = tQ(xo, 1),

which follows by writing y - (6 — z9) +¢t = ¢t (% (€ —mo) + 1) . Also, if
o € , then
B jdaiam(9)(0) C Q(zo,1). (1.4.7)

In fact, let £ € Q and y € B1 /diam() (0) and write

y - (§—mo) +1=y[|¢ — o[ cosp + 1
€ = ol
dlam(Q)
1€ — 2ol
diam(Q)

= |y|diam(Q) ————cosd + 1

Y%

—|y|diam(Q) >—7++ + 1> 0,

and (1.4.7) follows.
Hence, if u satisfies the hypotheses of Lemma 1.4.4, then we get

Wn, (o)™

m < | = 0((=uw)) (Cu(—u))l.
We then obtain the following maximum principle:

Theorem 1.4.5 (Aleksandrov—Bakelman—Pucci’s maximum principle) If
U €
C(Q) and u <0 on 09, then

mgxu( x) <w, ~1/n diam () |8((—u)*)(C*(—u))|1/”.
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If in addition u € C%(Q) (without any assumptions on the sign of u on 9Q)),
then

1/n
max u(z) < maxu(z) + w, /™ diam(Q) (/ | det D?u(z)| dar) .
Q@ 5% Cu(—u)

Proof. It only remains to prove the last inequality. Subtracting from u
the maximum on the boundary, we may assume that u < 0 on 9. From
(1.4.2), (1.4.3), and (1.4.4) we get I((—u)+) (Cu(—u)) = —0(—u) (Ci(—u)) .
If w € C? and z € C,(—u), then D?(—u)(z) > 0. Thus, by the formula for
change of variables we obtain

10(~u) (C.(~u) | < /C _ Je D @),

and the theorem is complete. [ |

1.4.3 Comparison principle
Theorem 1.4.6 Let u,v € C(Q) be convex functions such that
|Ou(E)| < |0v(E)], for every Borel set E C (.

Then
min{u(z) — v(z)} = min {u(z) —v(z)}.

zeQ z€0Q

Proof.  The proof is by contradiction. Let a = min_g{u(z) — v(z)},
b = mingepo{u(z) — v(z)}, and assume a < b. There exists zy € Q such
that a = u(zo) —v(xo). Pick § > 0 sufficiently small such that ¢ (diam$2)® <

%a,and let b
w(z) = v(z) + S|z — z0]* + —|2-a.

Consider the set G = {z € Q : u(z) < w(z)}. We have z; € G. Also,
GNoQ =0. In fact, if z € GN AN, then u(z) —v(z) > b and so
b—a
2
b—a
2

w(z) < u(z) + 6|z — 20]* —

< u(x) + d(diam®Q)? —
< u(z).

Hence w(z) < u(z) for z € 9N. This implies that 0G = {z € Q : u(x) =
w(x)}. By Lemma 1.4.1 we obtain dw(G) C du(G). Also dw = (v + |z —
7o|?), and we have the inequality

00w + 3z — 20*) (@)] > 90(@)] + PGla — xoP) @) (148)
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To prove (1.4.8), we observe that if A and B are symmetric and nonnegative
definite matrices, then

det(A + B) > det A + det B.

Hence, if v € C?, then (1.4.8) follows. In case v is not smooth, we can
approximate v by a sequence vy € C? of convex functions converging
uniformly on compact subsets of Q. This can be achieved by taking a
smooth function ¢ > 0 with support in B;(0) and [ ¢ =1 and then letting
ve = v x ¢. Hence (1.4.8) now follows from Lemma 1.2.2. Therefore

0u(G)| > [0w(G)| > [00(G)] + |0(3]z — z0*)(G)| = |ov(G)| + (20)"|G],

which contradicts the assumption of the theorem. [ |

Corollary 1.4.7 If u,v € C(Q) are convex functions such that |Ou(E)| =
|Ov(E)| for every Borel set E C 2 and u = v on O, then u = v in Q.

1.5 The Dirichlet problem

Definition 1.5.1 The open set Q C R” is strictly convez if for all z,y € Q
the open segment joining x and y lies in Q.

Theorem 1.5.2 Let Q0 C R" be bounded and strictly convez, and g : 02 —
R a continuous function. There exists a unique convex function u € C(Q)
generalized solution of the problem

det D?u =0 in €,
u=g on 0f).

Proof. Let F = {a(z) : a is an affine function and a < g on 9}. Since g
is continuous, F # (). Define

u(z) = sup{a(z) : a € F}.

Since u is the supremum of convex functions, u is convex and u(z) < g(z)
for x € 0N.

The first step is to show that u = ¢ on 9Q. Let £ € 99Q; we show that
u(€) > g(£). Given € > 0 there exists § > 0 such that |g(z) — g(§)| < €
for |x — ¢| < 6, x € 9Q. Let P(xz) = 0 be the equation of the supporting
hyperplane to  at the point &, and assume that Q C {z : P(z) > 0}. Since
Q is strictly convex, there exists 7 > 0 such that S = {z € O : P(z) <n} C
Bs(€). Let

M = min{g(z) : z € 0Q, P(z) > n}
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and consider
a(z) = g(§) —e — AP(z) (1.5.1)

where A is a constant satisfying

A> max{g(f)—#

We have a(§) = g(§) — e — AP(§) = g(&) — ¢, and if x € 9N we claim that
a(z) < g(z). Indeed, if z € 00N S, then g(§) —e < g(z) < g(€) + ¢, s0
g(x) > g(&) —e—AP(z)+ AP(z) > g(§) —e— AP(z) = a(z). If x € 02N S°,
then P(z) > n and by the definition of M and the choice of A we have

,0}.

g(x) >M =a(x) + M — g(&) + e+ AP(x)
>a(r) + M —g(€) +e+ An
> a(z).

Therefore a € F, and in particular u(§) > a(€) = g(§) — € for every € > 0
and therefore u(§) > g(&).

The second step is to show that u is continuous in Q. Since u is convex
in 2, u is continuous in Q. To prove the continuity on 9%, let £ € 912,
{z,} C Q with 2, — & We show that u(z,) — g(£). If a is the function
constructed before, then u(x) > a(z), in particular, u(z,) > a(z,) and so
liminf u(z,) > liminf a(z,) = liminf (g(¢) — e — AP(x,)) = g(§) —e for all
€ > 0. Hence liminf u(x,) > ¢g(§). We now prove that lim sup u(z,) < g(§).
Since 2 is convex, there exists h harmonic in Q such that » € C(Q) and
hlaq = g. If a is any affine function so that a < g on 92, then a is harmonic
and by the maximum principle a < h in Q2. By taking supremum over a we
obtain u(z) < h(z) for x € Q. In particular, u(z,) < h(z,) and therefore
lim sup u(zy,) < limsup h(z,) = g(§) and we are done.

The third step is to prove that

Ou() C {p € R" : there exist z,y € Q,  # y and p € Ju(z) N du(y)},
(1.5.2)
and by Lemma 1.1.12, [0u(Q)| = 0.

If p € Ou(Q), then there exists 2o € 2 such that u(z) > u(zo) +p- (z —
zo) = a(z) for all x € Q. Since u = g on 012, we have g(x) > a(z) for all
x € 9. There exists £ € 9 such that g(§) = a(§). Otherwise, there exists
some € > 0 such that g(z) > a(z)+e for all z € 9N and then u(z) > a(z)+e
for all z € Q, and in particular u(zo) > a(xo)+€ = u(xo)-+e¢, a contradiction.
Since ) is convex, the open segment [ joining xg and £ is contained in (2.
Now u(zo) = a(zo) and u(¢) = a(§). If z € I, then z = txo + (1 — )¢ and
by convexity u(z) < tu(xzo) + (1 — t)u(€) = ta(zo) + (1 — t)a(€) = a(z).
But u(z) > a(x) for all z € Q so a is a supporting hyperplane to v at any
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point on the segment I, therefore p € du(z) for all z € I and (1.5.2) is then
proved.

Uniqueness follows from Corollary 1.4.7, but to illustrate we also include
the following proof. Let v € C(Q), v convex and v = g on 9. Given
xo € (, there exists a supporting hyperplane a(z) at the point (zo,v(zo)),
i.e., v(x) > a(z) for all z € Q. Then g(z) = v(z) > a(z) for x € 00, and
so a € F and u(x) > a(z); in particular, u(zo) > a(xg) = v(xo). Therefore
v > v in Q and thus u is the largest convex function equal to g on 9Q. To
show that u < v, assume by contradiction that there exists o € Q such
that u(zo) > v(zo). We shall show that this implies that |Ou()| > 0. Let
€ = u(zo) — v(xg) > 0 and let a(xz) = u(xo) + p- (x — x0) be a supporting
hyperplane to u at zg, that is u(z) > a(x) for all x € Q. Consider the
hyperplanes of the form u(xo) + ¢- (x — x0) — % We shall show that for ¢

in a small ball around p this family of hyperplanes is below the graph of w.
In fact, we have

u(zo) +q - (@ —w0) — =

2
= u(wo) +p- (@ —30) + (¢ =) - (& = 70) = 5
< u(ao) +p- (x —z0) + g~ pllz — w0l — 5
<ufeo) +p- (¢ —a0) + 5~ 3
< u(@),

for |g — p| < ﬁ where M = diam(). We now lower each of these hyper-

planes until they become supporting hyperplanes to v at a certain point.
The proof is similar to that of Lemma 1.4.1. One takes a = sup,cq{u(zo)+

q-(z — zp) — % — v(z)}, and we have a > 0 because at © = ¢ we

have u(xo) — % —v(xg) = % > 0. Then there exists z; € Q such that
€ €

a = u(zo) +¢- (21 = 20) = 5 —v(21), 80 u(20) +¢- (2 —20) — 5 —a <w(z),

ie., u(ro)+q-(x—mxp)— % is a supporting hyperplane to v at x;. It remains

to show that 1 € Q. In fact, at 21 we have u(z;) > u(mo)-l-q-(a:l—a:o)—% =

v(21) + a > v(21), and so x; ¢ 9. Consequently, B, 2ps(p) C v(2) and
the proof of the theorem is complete. [ ]

Remark 1.5.3 The convex function u(z,y) = max(z? — 1,0) is a general-
ized solution of det D?u = 0 in B»(0,0) that has continuous boundary data
but is not regular because it has corners on the line z = 1.
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1.6 The nonhomogeneous Dirichlet problem

In this section we solve the nonhomogeneous Dirichlet problem for the
Monge-Ampere operator using the Perron method and Theorem 1.5.2. Let
2 be an open bounded and convex set, u a Borel measure in 2, and g €
C (09) . Set

F(p,g) ={v e C(Q):v convex, Mv > 1 in Q, v = g on Q}.

Suppose that F(u,g) # 0 and let v € F(u,g). Assume that Q is strictly
convex. By Theorem 1.5.2, let W € C (Q) be the unique convex solution
of MW =0in Q and W = g on 9. We have 0 = MWW < u < Mv in Q
and by the comparison principle, Theorem 1.4.6, we have that v < W in
Q. Therefore all functions in F(u, g) are uniformly bounded above and we
can define

U(z) = sup{v(z) : v € F(pu,9)}- (1.6.1)

The idea to solve the nonhomogeneous Dirichlet problem is first to con-
struct U when the measure p is a combination of delta masses, then to
approximate a general measure p by a sequence of measures of this form,
and in this way construct the desired solution. With this in mind we need
the following approximation lemma.

Lemma 1.6.1 Let QX C R" be a bounded open strictly convex domain, pj, p
be Borel measures in Q, u; € C'(Q) convez, and g € C(0Q) such that

1. uj =g on 09,

2. Muj = pj; in Q,

3. pj — p weakly in Q, and
4. 1 (Q) < A for all 5.

Then {yj} contains a subsequence, also denoted by u;, and there exists
u € C(Q) convex in Q such that u; converges to u uniformly on compact
subsets of Q, and Mu = p, u = g in 0f).

Proof. We have u; € F(uj,g) and therefore u; are uniformly bounded
above. We prove that u; are also uniformly bounded below in Q2. Let £ € 01,
€ >0, and a(z) = g(§) — e — A P(x) be the affine function given by (1.5.1).
Recall that a(z) < g(z) for x € 00, P(§) =0, P(x) > 0 for z € Q, and
A >0. Set vj(z) = uj(z) — a(z). If x € 09, then v;(z) = g(z) — a(z) > 0,
and the v; are convex in Q. If v;(z) > 0 for all z € , then u; is bounded
below in Q. If at some point v;(z) < 0, then by the Aleksandrov maximum
principle, Theorem 1.4.2, applied to v; on the set G = {z € Q : v;(z) < 0},
we obtain

(—vj(x))" < epdist(z, 09) A" M (Q) < ¢, dist(z, 00Q) A" A,
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with A = diam(9), and consequently v;(z) > — (c, dist(z, Q) A"~ A)l/n ,
that is
uj(z) > g(€) — e — AP(x) — C (dist(x,00))"/" (1.6.2)

which proves that w; are uniformly bounded below in Q. On the other
hand, u;(z) < w(z) with Aw =01in Q and w = g on IQ by the maximum
principle since u; is weakly subharmonic. Now dist(z,0Q) < |z — ¢| and
from (1.6.2) we obtain

w(z) > uj(z) > g(€) —e— AP(z) — Clz — &Y™, (1.6.3)

and therefore u;(z) — g(€) as ¢ — &.

Therefore by Lemma 1.1.6 and Lemma, 3.2.1, we get that u; are locally
uniformly Lipschitz in © and by Arzela—Ascoli there exists a subsequence,
denoted also u;, and a convex function u in Q such that u; — u uniformly
on compact subsets of 2. We also have from (1.6.3) that u € C'(Q2). The
lemma then follows from Lemma 1.2.3. ]

We now state and prove the main result in this section.

Theorem 1.6.2 If Q C R™ is open bounded and strictly convex, p is a
Borel measure in Q with p(Q) < 400, and g € C(9N), then there exists a
unique u € C(€Q) that is a convex solution to the problem Mu = p in Q and
u=g on ON.

Proof. The uniqueness follows by the comparison principle, Theorem 1.4.6.

There exists a sequence of measures p; converging weakly to p such that
each fi; is a finite combination of delta masses with positive coefficients and
p; () < A for all j. If we solve the Dirichlet problem for each p; with data
g, then the theorem follows from Lemma 1.6.1. Therefore we assume from
now on that

N
,u:Zai(Szi, z; € Q, a; > 0.
i=1

We claim that
(a) F(u,g) #0.
(b) If u,v € F(u,g), then uVv v € F(u,g).
(c) U € F(u,g), with U defined by (1.6.1).
Step 1: proof of (a). By Example 1.1.16, M(|z — z;|) = wy, s, , with wy,

1
the volume of the unit ball in R™. Let f(z) = n Zfi1 ai/n|x — ;| and
w

u be a solution to the Dirichlet problem Mu = 0 in Q with u = g— fon
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0. We claim that v = u + f € F(u,g). Indeed, it is clear that v € C (©2),
v is convex and v = g on 0€). Let us calculate Mv. We have

My = (u+f)>Mu+Mf>—ZM( l/nm—x,|) Za, 2 = M

Therefore F(u, g) # 0, and consequently U given by (1.6.1) is well defined.

Step 2: proof of (b). Let ¢ = uVwv, Qo = {z € Q: ulz) = v(z)},
M ={zeQ:ulz) >v(x)},and Oy = {z € Q:u(z) <v(x)}. If E C O,
then M¢(E) > Mu(FE), and if E C Qa, then M¢(E) > Mv(E). Also, if
E C Qp, then 0u(E) C 0¢(FE) and 0v(E) C 0¢(E). Given E C Q a Borel
set, write £ = Ey U Ey; U Es with E; C ;. We have

M¢(E) = M§(Eo) + M(E) + Mo (Es)
> Mu(Ey) + Mu(E,) + Mv(E-)
> u(Eo) + p(Er) + p(E2) = p(E).

Step 3: For each y €  there exists a uniformly bounded sequence
vm € F(u,g) converging uniformly on compact subsets of 2 to a function
w € F(u,g) so that w(y) = U(y), where U is given by (1.6.1).

By Step 1, let vo € F(u,g). if v € F(u,g), then v < W with W defined
at the beginning of this section. Fix y € 2, then by definition of U there
exists a sequence v, € F(u,g) such that v, (y) = U(y) as m — oco. Let
Uy = Vo VU, By Step 2, 0, € F(p, g) and therefore vy, (y) < 0 (y) < U(y)
and so U, (y) — U(y). Notice that |0,,(z)| < C for all z € Q. Therefore we
may assume that the original sequence v,, is bounded above and below in
Q. Since vy, is convex in (Q, it follows from Lemma 1.1.6 that given K C
compact, v,, is Lipschitz in K with constant

C(K,m) = sup{|p| : p € Ovpm(K)}.

We claim that C(K,m) is bounded uniformly in m. Let p € vy (xo)
with 2o € K. By Lemma 3.2.1, we get that |p| < m and the
claim follows. Therefore v,, are equicontinuous on K and bounded in .
By Arzela—Ascoli there exists a subsequence v,,; converging uniformly on
compact subsets of Q to a function w, and so w(y) = U(y). By Lemma
1.2.2 we have that w € F(u,g) and hence w < U in (.

Step 4: MU > p in . It is enough to prove that MU ({z;}) > a; for
i =1,...,N. We may assume i = 1. By Step 3, there exists a sequence
Um € F(i, g), uniformly bounded, such that v,, = w € F(u,g) uniformly
on compacts of 2 as m — oo with w(z1) = U(z1). We have Mw({z1}) > a;.
If p € Ow(zy), then w(z) > w(z1) +p- (z — 1) in Q and hence U(z) >
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U(z1) +p- (x —x1), that is p € OU(z1). So MU ({z1}) = [0U({z1})| >
|Ow({z1})] > ar.

Step 5: MU < p in Q. We first prove that the measure MU is concen-
trated on the set {z1,...,zn}. Let zg € Q with g # z;,i=1,..., N, and
choose r > 0 so that |z; — 29| > r for i =1,...,N and B,(z9) C Q. Solve
Mv =0 in B,(z¢) with v = U on 0B,(x0), and define the “lifting of U”

U('T) $€Q,|l‘—1‘0|27‘,
w(z) =
v(z) |z —x0| < T

We claim that w € F(u,g). In fact, w is convex, because by Step 4,
MU > p > 0 = Mv in B,(zp), and then by the comparison principle
Theorem 1.4.6, v > U in B,(z). It is clear that w € C (Q) . We verify that
Mw > pin Q. Let E C Q be a Borel set. We write

E = (EN By(20)) U (E N By (20)°)

and so
Mw(E) = Mw (E N By(x0)) + Mw (E N By (x0)°) .

Now notice that if FF C B,(zo), then Ow(F) = 0v(F), and if F C B,.(x0)°,
then Ow(F') = OU(F). Therefore

Muw(E) = My (E N B,(z0)) + MU (E N B, (20)°) = 0+ MU (E N B, (0)°)
> u(E N Br(z0)) > p(ENA{z1,...,2n}) = p(E),

by (c) and the definition of u. Therefore w < U, and since w = v > U
in By(x0), we get v = U in By(x9), so MU = Mv = 0 in B,(zo), where
B,.(z0) C Q is any ball with B,(zo) N {z1,...,2n} = 0. Hence if E C Q is
a Borel set with E N {z1,...,zx} = 0, then MU(E) = 0 by regularity of
MU. Therefore MU is concentrated on the set {z1,...,zn}, that is

N
MU:ZANNSM,

i=1

with \; > 1,7 =1,...,N. We claim that \; = 1 forall¢ = 1,...,N.
Suppose by contradiction that A; > 1 for some i. Without loss of generality,
we may assume that MU = Aadp, with A > 1 and in the ball B,(0). We
have |0U({0})] = Aa > 0. Since OU({0}) is convex, there exists a ball
B.(po) C OU({0}). Then U(x) > U(0) + p -z for all p € B.(pp) and z € .
Let V(z) =U(xz) —po - x. Then V(z) > V(0)+ (p—po) -« for all z € Q and
D € Be(po). Given z € Q take p — po = ex/|z| and so

Vi(z) 2 V(0) + e|z|
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for all z € Q. Let a be a constant such that V(0) — a is negative and
close to zero, and define V(z) = V(x) — a. We have V(0) is negative

— - V(0
and small, and V(z) > V(0) +e|z| for all z € Q. If r = —Q, then
€

V(z) > V(0) +e|z| >0 for all |z| > r. Let

(z) = V() if V(z) >0,
TN (@) i V() <o,

Notice that since A > 1, we have A\='/? V(z) > V(z) on the set {V(z) < 0}.
Consequently the function w is convex in . Also, on the set {V(z) < 0},
we have Mw = M(/\*l/” V) = %MV = %MU = adp. On the other hand
w =V on the set {V > 0}, so Mw = MV = MU > p on the same set.
Consequently, Mw > p in Q. This means that w € F(u,g), where g are
the boundary values of V(z) = U(x) — po -  — a. By definition of U,

V(z) =U(z) —po-z—a=sup{v(z) —po-z—a:v e F(ug)}

It is clear that v'(z) = v(z)—po-z—a € F(u, g) if and only if v(z) € F(u, g).
Therefore,
V(z) = sup{v' : v' € F(p,9)},

and since w € F(, g), we get that w(x) < V(z) for all z € Q. In particular,
w(0) < V(0) and so A~'/?V(0) < V(0), and since V(0) < 0 we obtain
A~1/7 > 1, a contradiction since A > 1. This completes the proof of Step 5
and the theorem.

|

1.7 Return to viscosity solutions
We prove here the following converse of Proposition 1.3.4.

Proposition 1.7.1 Let f € C(Q) with f > 0 in Q. If u is a viscosity
solution to det D?>u = f in Q, then u is a generalized solution to Mu = f
in €.

Proof. We have 0 < A < f(z) < Ain Q. Given 2o € Q and 0 < 1 < \/2,
there exists € > 0 such that f(x0) —n < f(z) < f(zo)+n for all € Bc(xo).
Let uy, € C*°(0B¢(70)) be a sequence such that maxyp, (z,) [u(z) —ur(z)| <
1/k, and v} and v, the convex solutions to

det D*vif = f(x0) £, in B(zo)

vki = uy, on 9B(xg).
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We have that vki € C%(B.(w9)) N C(Bc(p)), see [GT83, section 17.7] or
[CY77, Theorem 3, p. 59]; and
det D*v,. < f(z) < det D*v}, in B.(x9) and
Uy, :vki, on 0Bc(xg) .

By Lemma 1.7.2 below, we get
v (z) — % <u(zr) <wv (z)+ % for € Be(zo). (1.7.1)

By Theorem 1.6.2, let v* be the generalized solutions to

det D*v* = f(zo) £, in Be(zo)

vt =u, on OBc(xp) .

Applying the comparison principle Theorem 1.4.6, we get that |[v*(z) —
vif(x)| < 1/k and consequently letting k — oo in (1.7.1) yields

v(z) <u(z) <v (z) for x € Be(zo).
From Lemma 1.4.1 we obtain
Ov™ (B.(0)) C Ou(Bc(x0)) C v (B.(x0)),

and consequently

|Be(zo)| (f(zo) —m) < [0u(Be(wo))| = Mu(Be(zo)) < |Be(zo)| (f(ﬂfo)(+ 77)-)
1.7.2
Therefore if @ is a cube with diameter diam(Q) < e, then

Cr Q[ < Mu(Q) < G4 1), (1.7.3)

for some positive constants Cy,Cs. If FF C Q is a set of measure zero,
then given 0 > 0 there exist a sequence of nonoverlapping cubes Q; C Q
with diam(Q;) < e, F C UQj, and > |Q;| < 6. Then applying (1.7.3)
we obtain Mu(F) < Cs4d. That is, Mu is absolutely continuous with re-
spect to Lebesgue measure and therefore there exists h € L{, _(Q) such that
Mu(E) = [, h(z)dz. Dividing (1.7.2) by |Bc(zo)| and letting e — 0 we
get that f(xzo) —n < h(zo) < f(xo) +n for almost all 2y € Q and for all 5
sufficiently small. Hence Mu has density f. ]

Lemma 1.7.2 Suppose f € C(Q), f > 0, and u € C(Q) is a viscosity
supersolution (subsolution) to det D*u = f in Q. Suppose v € C?(Q)NC(Q)
is a classical convexr solution to det D*v > (<)g in Q with g € C(Q). If
f < (>)gin Q, then

Hgn(u —v) = Igg)n(u —v) (mgx(u —v) = r%?lx(u —0)).
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Proof. It is automatic from the definition (1.3.1). Suppose by contra-
diction that ming(u — v) < mingq(u — v). Then there exists zo €  such
that (u — v)(zp) = ming(u — v), and so v — v has a local minimum at
xo. Since u is a viscosity supersolution to det D?u = f in Q we get
g(zo) < det D?v(xg) < f(x0), a contradiction. [ ]

1.8 Ellipsoids of minimum volume

An ellipsoid centered at a point zg is a set of the form
E(A,20) = {z : (A(z — 7o), (x — m0)) < 1}

where A is an n x n matrix that is symmetric and positive definite. The

volume of E(A, ) is
W,

Vdet A’

where w,, is the volume of the unit ball in R™.

|E(A, z0)| =

Lemma 1.8.1 Let S C R™ be a bounded convez set.

(a) Assume that there exists ©o € S such that Br(xo) C S and consider
the class Fy of all ellipsoids with center at xo that contain the convex
S. Then Fy has an ellipsoid of minimum volume.

(b) Assume that S has nonempty interior and consider the class F; of
all ellipsoids that contain the convexr S. Then Fi has an ellipsoid of
minimum volume.

Proof. (a) Let E(A,x¢) be an ellipsoid containing S, A = (a;;). Then
Br(zo) C E(A, ) and
1

laijl < 25 (1.8.1)
In fact, if £ is a unit vector, then z = zy + R{ € Bg(xo), and since
Bgr(zo) C S we obtain
1

and (1.8.1) follows. Since S C E, we have |E(A4,z0)| > |S| > 0. Let
K={AeR"™" :SCE(A )}, and

. Wn,
a = inf

AEK \/det A’

We have that a > 0 and there exists a sequence A,, = (aj}) € K such that
Wn

Vdet 4,,

— a. By (1.8.1) there exists a convergent subsequence az'.;.”“ — a?j
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as k — oo. The matrix Ay = (af;) is symmetric and 4y > 0. Since a > 0,

it follows that det Ag > 0 and then A is positive definite. The desired
ellipsoid is then E(Ao,zo).

(b) Let E(A,z1) be an ellipsoid containing S, A = (a;;). Since S has
non-empty interior there exists Br(z2) C S. Then Br(z2) C E(A,z1).
Since E(A, 1) is an ellipsoid, Br(z1) C E(A,z1) and as before we get
la;;| < % If |z1] — oo, then |E(A,z;)] — oo. Hence it is enough to
consider |z;| < M with M sufficiently large. Let K' = {(4,z1) : S C
E(A,z1);]z1| < M} and a = infg/ |[E(A,z1)| > 0. By compactness we
again obtain the desired ellipsoid.

|

Theorem 1.8.2 If Q) C R” is a bounded convex set with nonempty interior
and E is the ellipsoid of minimum volume containing Q0 centered at the
center of mass of (1, then

an, ECQCE,

where a, = n~3/% and o E denotes the a-dilation of E with respect to its
center.

Proof. By using an affine transformation we may assume that E is the
unit ball with center at the origin, and hence the center of mass of 2 is 0.
Rotating the coordinates we may assume that dist(0,9€) = o = |xo| with
To = ge; € 00, o > 0 and e; the coordinate unit vector in the direction
x1 > 0. Since € is convex, it follows that the plane z; = ¢ is a supporting
hyperplane to Q at zo. Moving the plane z; = ¢ in a parallel fashion
in the direction of x; negative, we obtain a plane II that is a supporting
hyperplane to Q at a point P € 0QNII and I1 = {z; = —pu} for some p > 0.
Consider the slice S = {z €  : z; = 0}, and let T" be the cone with vertex
P passing through S and contained in the slab —p < 7 < o; see Figure
1.3.
The center of mass of I is

1
e(l) = m/rmd:n

Given —pu < t < o, let S; be the slice of ' passing through (¢,0,...,0)
and perpendicular to the zj-axis. The slice S; is obtained by dilating S

. . . t+ T
with respect to the point P, that is S; = Y7 PS5 Then by similarity,
In

t+p

n—1
) area(S). Hence, if ¢; is the z1-component of ¢(T),
7

area(S;) = (
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Figure 1.3. Theorem 1.8.2

then integrating on the slices we obtain

1 e nt
€= —area(S)/ t il dt.
Tl —u \

Notice that since  has center of mass 0, I' N 2 has center of mass located
to the right of S. Obviously, ' N Q C I' and therefore the cone I' also has
center of mass to the right of S, that is ¢; > 0. Hence

o n—1
t
/ ' <ﬂ> dt > 0.
—u I
Changing variables and integrating this expression yields

1
> —. 1.8.2
> (182

=19

Now consider

Sp={(w,2) i —p < <o, 2P <1-ai},
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and the ellipsoid

2 12
Eo = {(z1,2") : a—; + |b2| <1},

1

where 4 < a < 1 < b. We claim that if 4 < —, then there exist ¢ and b
n

such that Q C Sp C Ey and |Ep| < |B1(0)]. This contradicts the fact that

1
FE is the ellipsoid of minimum volume and therefore we must have y > —.
n

1
This inequality combined with (1.8.2) yields o > 37 and the theorem is
n
proved.

To show the claim we need that Sp C Ey. Since u > o, we have

)+
)

z? 2?22 1—ga?
_1+||<_1+ 1

a? b2 — a2
1
:b2+
+
<=+

b2
11
@ B
11

2 \az B
2

w1 -

“et TR

I

2

2 1— 2 2 1— 2
We have S C Ej if M—2+ i < 1 which is equivalent to b2 > M.
a b2 @z — 12
Also, |Ep| = ab™ 1|B1(0)|, and then |Ey| < |B1(0)| is equivalent to
ab®! < 1. Then we want to choose a and b such that

p<a<l<b, and

201 _ 2 1 2/(n—1)
GG(T;;) << <E> . (1.8.3)

201 _ 2 1 2/(n-1)
We have GQ(T;) < (E) if and only if a — p2 — a2/(n=1(1 —

p?) > 0. Consider the function f(t) =t — p? — t™/(*~(1 — y?). We have
1
f(1) =0 and f(1) =1 - %(1 — p?). The assumption p < N is
equivalent to f'(1) < 0. Hence f(t) > 0 for t < 1 and ¢ near 1. By picking
a2(1 _ MQ) 1 2/(n-1)
— < | = and hence we may
a? — p? a
choose b? > 1 satisfying (1.8.3). This proves the claim and hence the proof
of the theorem is complete. [ |

t = a® < 1 we obtain that
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1.9 Notes

The notions of normal mapping and generalized solutions to the Monge—
Ampere equation as well as their properties, Lemma 1.1.12 and Theorem
1.1.13 are due to A. D. Aleksandrov; see [Pog64] and [Pog73]. The notion
of viscosity solution is due to M. G. Crandall and P-L. Lions, see [CIL92].
The equivalence between the notions of generalized and viscosity solutions
proved in Propositions 1.3.4 and 1.7.1 is indicated in [Caf90a, pp. 137-139].
Theorem 1.4.2 is due to A. D. Aleksandrov, [Ale68]. The maximum prin-
ciple Theorem 1.4.5 was discovered independently by A. D. Aleksandrov,
I. Bakelman and C. Pucci; [Ale61], [Bak61], [Bak94], [Puc66]. Subsection
1.4.3, and Sections 1.5 and 1.6, are based on the paper [RT77]. The notion
of ellipsoid of minimum volume is due to F. John, [Joh48], see also [dGT75,
p. 139], and Theorem 1.8.2 is a variant of a result there, see [Caf92, Lemma
2] and [Pog78, p. 91].



Chapter 2

Uniformly Elliptic
Equations in
Nondivergence Form

In this chapter we consider linear operators of the form

n

Lu = Z a;j(z)Diju(z)

i,j=1

where the coefficient matrix A(z) = (a;;(2)) is symmetric and uniformly
elliptic, that is
A€ < (A(2)€,€) < A€,

for all £ € R* and z € 2 C R*. We assume that the coefficients a;; are
smooth functions, but the estimates we shall establish are independent of
the regularity of the coefficients and depend only on the ellipticity constants
A, A and the dimension n.

2.1 Critical density estimates

Theorem 2.1.1 There exist constants My > 1 and 0 < € < 1, depending
only on the structure, such that for any u > 0 solution of Lu < 0 in the
ball Bag(xo) such that
inf uw<l1,
BR(IO)
we have
[{z € Brr/a(wo) : u(z) < Mo}| > €|Brr/a(zo)|-

31
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Proof. Let y € Br/4(wo) and define the function

R2 _ a2
oy(@) = ey + LI

5
If x € Br(xo), then |z —y| < ZR and so

R? 5.\ 1
dy(x) < Zu(m) + ZR 3 for all z € Br(xo).

Therefore

R2 (5 \°1 33,
i <4+ (= - ="R%
pinf Gu(@) <=+ <4R> 5~ 3l

On the other hand, if € Byr(2o) \ Brr/a(wo), then |z —y| > |z — xo| —

6
|zo — y| > =R, and since u > 0,

4
36
Therefore
36 33
inf r) > —R>> _R>> inf ),
BQR(:L‘())\B7R/4(:L‘0) ¢y( ) - 32 32 - BR(CL‘()) ¢y( )

and consequently

inf z) = inf ).
Bar(zo) ¢y( ) Brr/a(20) ¢y( )

Hence, there exists z € Brg/4(zo) such that

inf )(by(:n) = ¢y(2).

Bar(zo
Let us consider the set

H = {z € Brga(wo) : Iy € Bgya(wo) such that ¢,(z) = 5 in(f )qby(a:)}.
2R(T0

That is, H is the set of all points z € Byg/4(%0) such that the minimum of

¢y(x) in B2g(2o) is attained at 2 for some y € Bg/4(70). Now observe that

D¢,(2) =0
D2¢y(z) > 0.

R? R?
Hence, 0 = D¢y, (z) = ZDu(z) + 2z —y, which gives y = TDu(z) +2. Let
us define the map
R2
®(z) = TDU(Z) + z.
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If y € Br/a(o), then there exists z € H such that ®(z) =y. Then

|Brya(zo)] < /

dmﬁ/ |Jg ()| dz.
&(H) H

2
Now Jg(z) = det (RZDQU(I‘) + Id> and since D¢, (z) > 0 for z € H, we
get
R2
D?¢,(z) = ZD2U($) +1d >0,

for z € H. Therefore
R2
|Br/a(zo)| < / det <TD2U($) + Id) dz
H

:/Hjjiijggdet (%DQu(w)+Id> dz

< n_"/H m (trace (A(:c) (RTQDQu(x) +Id>>>n dx

n

=n" /H m ((RTQLu(a:) + traceA(a:)) +> dz.

Let us estimate the set H. Let z € H; then there exists y € Br/4(xo) with

¢y(2) = min ¢, (z).

zEB2r (o)

Since infpy (4,) u < 1, there exists #1 € Bg(2o) such that u(x;) < 1. Then

R2 R2 _ a2
B < B + B 2 6,9
2 2
< gylm) = Tu(ey) + 22V

Therefore, if z € H, then u(z) < 33/8, that is
H C {x € Brg/a(wo) : u(z) < 33/8}.
This yields the estimate

| Brya(zo)]

n

1 R? M
< n_”/ — <—Lu(m) + traceA(a:)) dz.
{2€B1nya(wo)u(z)<33/8} det A(z) \ \ 4
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In particular, since Lu < 0 we obtain

| Brr/a(20)] < 7”n*”/ (traceA(z))" dx,

{2€B1nya(wo)u(z)<33/8} det A(z)

and since the operator is strictly elliptic we obtain the estimate

A n
Bryalao) <7 (5) 1o € Brnyatoo)  u(o) < 33/8)]
which completes the proof of the theorem. [ ]

Theorem 2.1.2 There exists a constant 0 < v < 1, depending only on
the structure, such that if w > 0 is any solution of Lu < 0 in Q with
U|Br(ag) = 1 and Bag(xo) C 2, then

UlBor (o) = -
Proof. Let 0 < € < 1 and consider u¢. We have
L(u®) = e(e — 1)u"?(ADu, Du) + eu* ' Lu.
Hence, if Lu(z) < 0, then by the ellipticity we get
L(—uf)(2) > Xe(1 — €)u(z) 2| Du(2)|*. (2.1.1)
Consider the function

h(z 4R? — |z — x0]?) .

)= (

Then L
0 S h(CU) S 5, in BQR(ZIZ()),

. 1
and since Dh(z) = 4—R2(a:0 — ),
L Dh@) < =, for R<|o—mo| < 2R (2.1.2)
iR S )| < 5p or R < |z — x| < 2R. 1.

Note also that u(z) > h(z) in Bg(zo). Let
0 = min{u(z) — h(z) : x € Bagr(zo)},

where € will be determined soon. By continuity, there exists P € Bog(xo)
such that
0 = u(P)¢ — h(P).
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Case 1. Assume that P € Bygr(20) \ Br(zo). We then have

D(u®)(P) = Dh(P)
D2(u)(P) > D*h(P)
By (2.1.1) we have
L(—uf)(P) > Xe(1 — €)u(P)* 2| Du(P)|?. (2.1.3)
But
D(uf)(P) = eu(P)* " 'Du(P) = Dh(P);
and

L(—u®)(P) = trace (A(P) (—D*(u®)(P))) < trace (A(P) (D*(—h)(P))) .

From (2.1.3) we then get

trace (A(P) (D*(=h)(P))) > A (1 — 6) L pwp)p.

€ u(P)¢
Since D2h(z) = 4_—R121d, it follows that
9 nA
trace (A(P) (D*(—h)(P))) < YR

Combining these inequalities and (2.1.2) we obtain
A\ 1 [1—¢
PyY>(—-)—
oz (1) ()
A\ 1 [1—¢€
> =) — .
5+h(P) > (A) 4n( : )

Since P € Bag(zo) \ Br(zo), it follows that h(P) < 3/8. Therefore, by
picking € > 0 sufficiently small we get

A 1 1—c¢ 3
> — ) — - — = .
0 <z\>4n< € > 8 CE>0

u(z) > Ce + h(z) > C,,

which yields

Thus

which yields
u(z) > C'El/e, for all z € Bag(xo)-
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1
Case 2. Assume that P € Bgr(xo). For this P we have h(P) < 3 and
80
1
0 =u(P)*—h(P)>1—-h(P) > 3
Hence
u(z)€ > 1 + h(z) > 1
- 2 - 27
and so
1 1/e
u(z) > <§> , for all z € Bag(xo)-

Case 3. Assume P € 0Byg(xo). Since h(P) = 0 for P € 0B2r(x),
0 = u(P)¢. Hence
u(z) > u(P)¢ + h(z) > h(x).

If € Byg/a(x0), then h(x) > 7/32 and thus
7 1/e€
u(z) > (3—2> , for all z € Bsg/» (o).
Consequently, in any case we get
u(x) > C. >0, for all x € Bsg/2(70), (2.1.4)

under the assumption u > 1 in Bg(xo).

Now, (2.1.4) implies that % > 1in B3pg/s(wo) and since % is also a

€ €
positive supersolution of Lu = 0, by application of the previous argument
we obtain

S
Y%

C., for all z € Byg/4(70),

Ce
and in particular u > (C,)? in B2g(7o) and we are done. [ |

Theorem 2.1.3 There exist constants My > 1 and 0 < € < 1, depending
only on the structure, such that for any u > 0 that is a solution of Lu <0
in the ball Bsp(xo) such that

inf u <1,
Bar(z0)

we have
|{$ S BR(ZIZ()) : ’U,(QZ) < M1}| Z €|BR(£L'0)|.

More generally, if infBQkR(IO) u <1, then
[{x € Br(zo) : u(z) < Mo/v***}| > ¢[Br(wo)|,

for k=12, ..., with My and -y the constants in Theorems 2.1.1 and 2.1.2.



2.2. Estimate of the distribution function of solutions 37

M,
Proof. Let My = —20 and assume that
v

{a € Br(ro) : u(w) < Mi}| < elBr(ao)|-
This obviously implies that

{o € Br(@o) : vu(x) < Mo}| < el Br(ao)l;
and since y?u is also a supersolution, by Theorem 2.1.1 it follows that

inf  4%u>1.
Bir/7(20)

Hence, by Theorem 2.1.2,

ie.,
inf u > 1.
Bsry7(%0) =

By applying again Theorem 2.1.2 to the supersolution v u, we obtain

inf u >y,
BleR/7(10)’y =7

that is
inf o wu>1

-_ )
Bisr/7(0)

and since Bag(z0) C Bigr/7(20), the proof of the theorem is complete. ®

Remark 2.1.4 Theorem (2.1.3) implies a similar statement with cubes
instead of balls and slightly different constants. This immediately follows
noticing that if @) is a cube with center z and edge length ¢, then 3Q C
B(z,3y/nt/2). Hence if inf; g u < 1, then applying Theorem (2.1.3) we get
{z € Q :u(z) < M'}| > €|Q|, where M' >1and 0 < €' < 1.

2.2 Estimate of the distribution function of
solutions

Let Q be a cube in R". We divide @ into 2" congruent subcubes Q* with
disjoint interiors such that |Q| = 2*¥*|Q¥|. Given a cube QF, its predecessor
is denoted by Q*, and Q" is obtained from Q" by bisecting its sides, i.e.,
Q¥ = 2"@Q"].
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Let A be a measurable set, and let () be a cube in R™. Suppose that
ACQ and
|A] <4|Q),

for some 0 < § < 1. The Calderdn—Zygmund decomposition of A at level &
consists of a family {Q*} of dyadic subcubes of Q such that

AcC [j Q*F a.e.,

k=1
AN Q*| > 01Q"|

and R R
AN Q| <6]Q|

for all Q dyadic such that Q # Q* and Q¥ ¢ Q c Q.

Lemma 2.2.1 Let A C B C Q be measurable sets and ) be a cube. As-
sume that there exists 0 < § < 1 such that

(i) 1Al <4|Ql,

(ii) if Q' is a dyadic cube of Q of the Calderén—Zygmund decomposition
of A satisfying ' }
|[ANQ"| > 61Q",

we then have Q' C B.
Then |A| < §|B|.
Proof. We can select a subfamily of predecessors {@“@ 172, such that their

interiors are disjoint and U;ﬁléi = Uz"zléik. Hence A C U2, Q% a.e. and
S0

A<D [ANQ™[ <6 ) 1Q™ <4|B].
k=1 k=1

Theorem 2.2.2 Let Qg be a cube such that 3Qg C Q2 and u a nonnegative
solution of Lu < 0 such that

inf u <1.
3Qo

Then there exist positive constants M > 1 and 0 < € < 1 depending only
on the ellipticity constants such that

Hz € Qo : u(z) > M*} < (1 —€)*|Qol, E=1,... (2.2.1)
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Proof. The proof is by induction. If & = 1, then the inequality follows
from Remark 2.1.4. Assume that (2.2.1) holds for k£ — 1, and let

A={x€Qo:ulx)> M}, B={z€Qo:u(x)> M1}

Since M > 1, we have A C B and by inductive hypothesis |B| < (1 —
€)k1Qo|. We claim that

Al < (1 - ¢)B].

To prove the claim we use Lemma 2.2.1. We need to show that (i) and (ii)
of that lemma hold. Since A C {z € Qo : v > M}, we have (i). To show
(ii) let {Q7} be the Calderén—Zygmund decomposition of A at level 1 — €.
We want to show that the predecessor Q7 of Q7 satisfies Q7 C B. Suppose
by contradiction that this is not true, i.e., there exists a point z € Q7 such
that z ¢ B, that is u(z) < M*~!. Suppose @/ has center z; and edge
length ¢;. Let Q1(0) = {z : |z]oc < 1/2}, and set Tz = a; + ; x. We have
TQ1(0) = Q7. Set
u(Tx
s = 122)

We have that @ is a supersolution and Q7 C TQ3(0) where Q3(0) = {z :
|z|oo < 3/2}. Hence
inf <1
Qs3(0)

and from Remark 2.1.4, |{z € Q1(0) : a(x) > M}| < (1 — ¢€). Since

)

{z€Qi(0):a(z) > M} =T "z €@ :u(x) > M},

we obtain ' '
Hz €@ :u(x) > M"}| < (1-6)Q],

a contradiction. Then @j C B and by Lemma 2.2.1 the proof is complete.
|

Theorem 2.2.3 Let u > 0 be a solution of Lu > 0 in Q and assume that
Q1 is a cube with edge length one and Q)3 is a cube with edge length three
concentric with @1, and infg,u < 1. Let M and € be the constants of
Theorem 2.2.2.

There exist positive constants kg and ¢ depending only on the ellipticity
constants with the following property:

If k > ko and xo € Q1 are such that

(1) u(wo) > M,
(2) d(z0,Q5) > c(1 - )"/,
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then for 2p = c(1 — €)*/™ we have

1
sup u > u(zo)(l+ —). (2.2.2)
By (o) M

Proof. By Theorem 2.2.2 we have
|A1| = {z € Q :u(z) > M* 1} < (1 —e) L.
Suppose by contradiction that (2.2.2) is not true and consider

u(zo) (1 + 37) — u(z)

u(zo)

w(z) = ;

P
4v/n’
u(zo)(1 + 4;), and consequently w(z) > 0 in B,(zo) and also w(zy) = 1.
Note also that Q* C B,(x¢). We apply Theorem 2.2.2 to w in Q* and we
obtain

and the cube Q* with center z¢ and edge length We have SUPRB, (z) U <

|42 = [{z € Q7 s w(z) > M} < (1 -€)|Q7.

We claim that Q* C A; U Ay. In fact, if z; ¢ Ay, then u(z;) < M*~! and
. Mu(z) M*
since w(z) = M +1 - ————=, we have w(z;) > M + 1 — ——. Then by
u(zo) u(zo)
(1) w(zy) > M, ie., z1 € As.
Consequently, |Q*| < |A1|+]A4z2| < (1—€)*~14+(1—¢)|Q*|, which implies

(1 —e)k—t

Q7| <

Hence by the definition of p we get

This implies that
8v/n
(T=ee/™

To obtain a contradiction we choose

8vn
(1 —e)e)t/n’

¢ <

c>

k/n

and k sufficiently large such that ¢(1 — €)*/™ is sufficiently small. [ |
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2.3 Harnack’s inequality

Theorem 2.3.1 There exists a constant C > 0 depending only on the
ellipticity constants and the dimension n, such that for any solution u > 0
of Lu = 0 in Q and for any cube QQ such that 3Q) C Q we have

supu < C'inf u.
Q Q
Proof. By changing variables and rescaling, it is enough to prove the

inequality for @ = Q1(0), the cube with edge length 1 centered at 0. We
may also assume by dividing u by its minimum in @ that

inf =1,
Q1(0)
and we shall prove that
sup u < C, (2.3.1)
Q1(0)

for some constant C' depending only on the structure. Given a cube @
with edge length 1 such that Q1 C Q2(0), (Q2(0) the cube with edge length
2 centered at 0) we have that @Q1(0) C 2Q; and so

infu < inf =1.
21 Q1(0)

We shall prove that
u(z) < Dod(z,0Q1) 7, for all z € @4, (2.3.2)

for some constants Dy and § depending only on the ellipticity constants and
the dimension n. The inequality (2.3.2) blows up on the boundary of Q.
By covering Q1(0) with a finite number of cubes §Q1, with @ as above,

and applying (2.3.2) on each of these cubes we obtain (2.3.1).
Let M and € be the constants of Theorem 2.2.3, and define 6 > 0 such

that 1
7=0- €)o/m.

Let

D = sup u(z)d(z,0Q,)°.
TEQL

Since u is continuous, there exists zg € (01 such that
D= U(l‘o)d(l‘o,an)6.
Pick an integer k such that

M* < u(wg) < MFFL,
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Hence

A0, 8C1) = <%>/ > (ML>/ - <%>/ (1- k. (2.33)

D
Let ¢ and kg be the constants of Theorem 2.2.3. If i < %, then

u(z)dist(z,0Q1)° < D < M,
and (2.3.2) follows.
D

If i > 9, then either k > ko or k < ko. If k < ko, then u(zo) < M*ot!
consequently D < M*otld(zy,0Q1)° < ¢, M*Fo+! and (2.3.2) follows.

The worst case is then when

D> M, k> k.

In this case the hypotheses of Theorem 2.2.3 are satisfied. We then have

1 D 1
sup u > u(zo)(l+ = 7(1+M).

B, (z0) M) - d($0,6Q1)5 (2.3.4)

On the other hand, B,(z¢) C Q1 and consequently

oo,
d(l‘,aQ1)5

S S— sup (u(z)d(x 4
= d(B,(x0),0Q1) BP(E))( (z)d(z,0Q1)°)
< D
= (d(w0,0Q1) — p)°°

Now from the definition of p and (2.3.3) we get

sup u = sup (
B, (o) B, (z0)

D\ 9
> [ = z
d(xg,0Q1) > <M> P

which applied to the previous estimate gives

D ¢ M\ C
S < " [1—= | — . 2.3.5
Bpl(lfo)u = d(x0,0Q1)° ( 2 <D> ) (2:3.5)

Comparing (2.3.4) and (2.3.5) yields

5
1 e (M\'°
—<l1-2(= .

(s
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This implies that

penl2(-(r2)")

and the proof of (2.3.2) is complete. [ |

2.4 Notes

The Harnack inequality for solutions of linear equations with nondivergence
structure, Theorem 2.3.1, is due to N. V. Krylov and M. Safonov, [KS80].
The approach used in this chapter follows [Caf89], and [CG97]. The critical
density Theorem 2.1.1 is proved without using the convex envelope and
follows an idea of X. Cabré, [Cab97]. Theorem 2.1.2 is proved adapting to a
simpler situation an argument used in [CG97, Theorem 2] for the linearized
Monge-Ampere operator. This is the linear partial differential operator,
in general nonuniformly elliptic, given by Lu = trace (®(z) D*u(z)) where
®(7) is the matrix of cofactors of the Hessian D?¢(z). In the paper [CG97],
we developed a theory for L which is analogous to the De Giorgi—Nash—
Moser theory for uniformly elliptic operators in divergence form and the
theory for elliptic equations in nondivergence form exposed in this chapter.
In [CGY97], Euclidean balls are replaced by cross-sections of the convex
function ¢ defined in Chapter 3, and Lebesgue measure by the Monge—
Ampere measure Mo.






Chapter 3

The Cross-sections of
Monge—Ampere

3.1 Introduction

Let ¢ : R — R be a convex function.

Definition 3.1.1 Givent >0, and {(z) = ¢(xo)+p-(x —x0) a supporting
hyperplane to ¢ at (xo, p(x0)), a cross-section , or section, of ¢ at height t
1s the conver set

Se(xo,p,t) ={x € R" : ¢(x) < l(z) + t}.

If ¢ is smooth, then € is unique, £(x) = ¢(x9) + Dd(zo) - (x — o), and we
write
S¢(.’L‘0, t) = S¢(.’L‘0,p, t)

We recall that ¢ denotes the normal mapping of ¢ given by Definition
1.1.1.

To illustrate the notion of cross-section we give two simple examples.
The first one is when the function ¢ is given by a paraboloid ¢(x) = |z —y|?,
y € R, In this case, it is easy to see that Ss(zo,t) = B ;(x0). The second
example is given by the function ¢(z) = h|x — y| whose graph is a cone,
y € R” and h € R. Any supporting hyperplane to ¢ at the point (y,0) that
is not parallel to any generator line of the cone gives rise to sections that
are ellipses. On the other hand, if we take a supporting hyperplane at a
point (z, ¢(x)) with x # y, then the corresponding sections are paraboloids
of n — 1 dimensions and therefore the sections are unbounded sets.

Our purpose in this chapter is to analyze in detail several important
geometric properties of the sections of the convex function ¢ when its asso-
ciated Monge—Ampere measure Mg, see Definition 1.1.1, satisfies a doubling

45
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Figure 3.1. cross-sections of 2% + y* at P = (2,3/2)

condition. One of the main results in this chapter is a geometric characteri-
zation of Monge-Ampere doubling measures, Theorem 3.3.5. This result is
used to obtain estimates of the shape of the sections and invariance prop-
erties valid under appropriated normalizations. The properties established
here will be used in subsequent chapters.

We shall assume throughout the chapter that the sections Sg(xo,p,t)
are bounded sets. Let z be the center of mass of Sy(zo,p,t). If A > 0,
then A Sy(zo,p,t) denotes the A-dilation of Sy(xo, p,t) with respect to its
center of mass, that is

ASy(zo,p,t) = {xg + Ma — z5) : ¢ € Sg(x0,p, 1)}

We introduce the following two doubling conditions. We say that the
Borel measure v is doubling with respect to the center of mass on the sections
of ¢ if there exist constants C' > 0 and 0 < a < 1 such that for all sections
S¢ ("Ij, p7 t))

v (Se(z,p,t)) < Cv(aSs(z,p,t)). (3.1.1)

On the other hand, we say that v is doubling with respect to the parameter
on the sections of ¢ if there exists a constant C’ > 0 such that for all
sections Sg(z,p,t),

v (Se(z,p,t)) < C'v(Sy(z,p,t/2)). (3.1.2)

Some comments about these doubling conditions are as follows. It will be
shown that condition (3.1.1) implies (3.1.2), but the converse is in gen-
eral false, see Corollary 3.3.2 and the subsequent remark. For examples of
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measures satisfying (3.1.1) see Remark 3.3.4. The assumption made that
the sections Sy (z,p,t) are bounded sets allows ¢ to have finite segments of
lines in the graph. It is easy to see that if ¢ is strictly convex, then all the
sections Sy (,p,t) are bounded sets, because otherwise the graph of ¢ may
contain half-lines. As a consequence of Theorem 3.3.8, it follows that if the
sections of ¢ are bounded sets and (3.1.1) holds, then ¢ is strictly convex,
Remark 3.3.9.

We remark that in case the convex function ¢ is defined only on a
convex open set 2 C R™, then the results of this chapter hold true with
straightforward modifications if we add to the hypothesis that the sections
are bounded by the following condition: given z € () there exists to such
that Sg(z,p,t) C Q for all t <ty and p € d¢(x). The chapter is organized
as follows. In Section 3.2, we present the basic facts needed in the proofs
of the properties of the sections. Section 3.3 is subdivided into three parts.
The characterization of Monge—Ampeére doubling measures is contained in
Section 3.3.1. Section 3.3.2 contains the proof of the engulfing property. A
quantitative estimate of the size of the sections and some consequences are
contained in Section 3.3.3.

3.2 Preliminary results

Let T : R® — R™ be an invertible affine transformation, i.e., Tx = Ax + b
where A is an n X n invertible real matrix and b € R". If ¢ : R® — R and

1
A >0, let a(y) = ng(T’ly). The function £(z) = ¢(zo) + p- (x — ) is
a supporting hyperplane of ¢ at the point (29, ¢(z0)) if and only if £(y) =
1
Y(Txo)+ X (A=Y tp-(y—Txp) is a supporting hyperplane of the function 1y

at the point (T'zg, ¥x(Txo)). Let u and i be the Monge—Ampere measures
associated with ¢ and ) respectively. That is

p(E) = |00(E)|,  B(E) = [0¢Ya(E)|-

Note that

S (A7) (@6(E) = s (TE)

and in case ¢ is regular,

(A=Y (D?p) (T ) A7 (3.2.1)

> =

D*Yy(x) =

Consequently
1
i(TE) = )\—n| det A~ u(E). (3.2.2)
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In addition, the sections of ¢ and v, are related by the formula

T(S(a,p,1) = Sy (T, 1 (A1), 3. (3:2.3)
Hence, noting that T (aSg(z,p,t)) = oT (Ss(z,p,t)), it follows that if p
satisfies either (3.1.1) or (3.1.2) on the sections of ¢, then the measure
satisfies (3.1.1) or (3.1.2) on the sections of 1) respectively and with the
same constants.
We recall Theorem 1.8.2 and let E be the ellipsoid of minimum volume
corresponding to 2 in that statement. There is an affine transformation T’
such that T'(E) = B(0,1). Then

B(0,a) C T(Q) C B(0,1). (3.2.4)

Here B(z,t) denotes the Euclidean ball with center z and radius ¢. The set
T () shall be called a normalization of 2, and T shall be called an affine
transformation that normalizes 2. The center of mass of T'(Q2) is 0 and by
taking Lebesgue measure in (3.2.4), it follows that

1 1
ay wp— < |det T| < wp—, (3.2.5)
€| €|
where w,, denotes the volume of the unit ball in R™. We say that the convex
set ) is normalized when its center of mass is 0 and B(0, «,,) C Q C B(0, 1).
If S is a section for the function ¢ then by (3.2.3) any normalization of S
is also a section corresponding to the function vy .
We will also keep in mind the Aleksandrov maximum principle, Theorem
1.4.2.
The following lemmas give estimates of the size of the slopes of support-
ing hyperplanes to a convex function, [Caf92] and [CGIT].

Lemma 3.2.1 Let ) C R" be a bounded convex open set and ¢ a convex
function in Q such that $ <0 on Q. If z € Q and {(y) = ¢(z) +p- (y — )
is a supporting hyperplane to ¢ at the point (x,d(x)), then

—9(x)

< ————F—. 2.
Ipl < dist(x,00) (3:26)
More generally, if ' C Q, then
' maxg/ (_¢)
09 () CB <0, 7dist(ﬂ’,8ﬂ)) . (3.2.7)

Proof. Assume p # 0. We have ¢(y) > ¢(z) +p- (y — ), for all y € Q. If
0 < r < dist(x,090), then yo = z + r2 € Qand 0 > d(yo) > é(x) + r|p|,

Ip|

which proves the lemma. [ |
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Lemma 3.2.2 Let Q C R” be a bounded convex open set, ¢ a convex func-
tion in Q, ¢ = 0 on 0N, and assume that the Monge—Ampére measure u
associated with ¢ satisfies u(Q) < co. Given A > 0, let AQ denote the set
obtained by A-dilating Q0 with respect to its center of mass. There exists a
positive constant ¢, depending only on n such that

| ming ¢|

for A < A <1 with

A - ma 1 1 1 | ming ¢| "
n = X ) — N .
2 en () \ diam(£2)
Proof. Let o be the center of mass of Q, and AQ = {zo+A(z—1x0) : z € Q}.

If x € 0 (A\Q), then dist(z,00) < (1—N)diam(Q). Thus, by the Aleksandrov
estimate

()" < e (diam(Q))" (1= ) (),

for x € 9(AQ2). We set my\ = mingq) #(z), m = ming ¢, and we have
m = ¢(zp) for some zg € Q. Let us choose 1/2 < A < 1 and such that

—m

cnmmmanw<1—xnnﬂ>s(7;)n.

For this choice of A we have m) > % Now take the cylinder C in R**!

perpendicular to R™ passing through the set 9(AQ2). Let A = CN{(z, ¢(x)) :
z € Q} and v the convex function whose graph is the cone with vertex
(20,%(20)) and passing through A. We have that v = ¢ on 9(A\Q) and
v(z) > ¢(x) for XQ. Therefore, by Lemma 1.4.1, we have that x, (AQ) C

. my —m . —-m
0). N hat B [0, 22— "™ L, (AQ). —m>
0¢ (AQ) . Notice that <0, diam(AQ)) C xv (AQ) . Since my —m > 5

m
. < 4 .
and diam(AQ) < diam(Q?), it follows that B <0, > diam () diam(Q)) C Xo (A2)
which proves the lemma. [ |

Combining Lemmas 3.2.1 and 3.2.2, we obtain the following proposition,
see [Caf92] and Lemma 1.1 of [CG97].

Proposition 3.2.3 Let Q) be a convex domain in R™ with center of mass
equal 0 and B(0,a,) C Q C B(0,1), and ¢ a convex function in Q, ¢ =0
on 0N). Let u be the Monge—Ampére measure associated with ¢ and assume
that there exist constants C > 0 and 0 < a < 1 such that p(Q) < C p(a ).
Then

O min " < () < Caf ming|"

where Cy,Cy are positive constants depending only on C,a and n.
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Proof. The first inequality follows from Lemma 3.2.2. By Lemma 3.2.1, it

follows that
maxa,o —@ >

9¢(at) C B (0’ dist (a2, 09)

Hence .
maxqy0 _¢
MN<cp| ———m=1 .
uef)) < e (dist(aﬂ,@ﬂ))

Notice that dist(af2,9Q) > «a, (1 — «). Indeed, there exist z € af) and
z' € 00 such that |z — /| = dist(a,00). Let z € 9N be the point
obtained by intersecting 92 with the ray emanating from 0 and passing
through z. If |z — z| > |z — 2'|, then the angle between the segments Zz
and 2z’ is smaller than 7/2. Let ¢ be the line joining 2z and z’. Since ( is
convex, the set £\ zz' does not intersect (2, i.e., if y € £\ zz', then |y| > ay,.
Let ¢' be the ray emanating from 0 that is parallel to the segment zz' and
lies on the plane containing z,z and z'. Let P be the intersection of ¢’
and ¢. The claim now follows by similarity, considering the triangle with
vertices z,z,x' and the triangle with vertices 0,2, P. We then obtain the
second inequality. [ |

Corollary 3.2.4 Let ¢ be convez in Q with0 < A < M¢p < A in Q. Suppose
that Sy(zo,p,t) C Q. Then |Sy(zo,p,t)| ~ t"/2.

Proof. Let T be an affine transformation normalizing Sg(zo,p,t). Then
by (3.2.3)

T(Sy(w0,p,t)) = Sy(Txo, A 'p,t) = {y € R" : ¢(y) < {(y) + t},

where ¢(z) = ¢(T'z), and £(y) = (Tzo) + (A1) ip- (y — Tzo). Applying

Proposition 3.2.3 to h(y) = ¢(y) — {(y) —t on the set Sy (Tzo, A~ 'p,t), and
using (3.2.2) and (3.2.4) we obtain the corollary. [ |

3.3 Properties of the sections

3.3.1 The Monge—Ampeére measures satisfying (3.1.1)

The purpose of this section is to give a geometric characterization of the
Monge-Ampere measures satisfying (3.1.1) and also to compare (3.1.1) and
(3.1.2). We begin with

Lemma 3.3.1 Let 0 < A < 1. Then

AS5(@0,p,t) € Solao,p, (1= (1= NTF) ),
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Proof. Let T be an affine transformation that normalizes Sy(zo,p,t).
We have T (A Sy4(zo,p,t)) = AT (Sy(z0,p,t)) and if ¥ (y) = ¢(T'y) and
q = (T7)'p, then by (3.2.3) T (A Sy(z0,p,t)) = ASy(To,q,t). We claim
that

Qp

A Sy(Txo,q,t) C Sy(Txo, 4, (1 —(1- A)T) ). (3.3.1)
In fact, since 0 € Sy (T'zo,q,t) and by the convexity, there exists a point
&€ € 0Sy(Txo,q,t) and 0 < § < 1 such that 0 = 0Tz + (1 — 0)&. Hence, by
(3.2.4)

> Kl on
T |Tzo - ¢ T 2

Let {(z) = ¢(Txo) +q - (x — To) be the hyperplane defining Sy (T, q, t).
Since ¥(y) — €(y) is convex, it follows that

0

¥(0) — 2(0) < 0 ((Tao) — UTwo)) + (1 - 6) ((€) — £(E)) < (1 - Z2)e.

2
Hence, if y € Sy (T'xg,q,t), then
Y(y) = Ey) <A ($) = Uy) + (1= X) (¥(0) = £(0))
<A (1—N)(1— %)t
Qnp
- 1—(1—)\)7)75,
and the claim follows. The lemma follows by taking 7! in (3.3.1). [ |

Corollary 3.3.2 ((3.1.1) implies (3.1.2)) Let u be a measure satisfying
(3.1.1). Then p satisfies (3.1.2).

Proof. By Lemma 3.3.1

H(Ss(w,p,1) < C p(aSs(w,p,1) < CplSy(a,p,08),  6=1-(1-a) T
By successive application of the last inequality

(S (z,p, 1)) < C* u(Ss(x, p,0"1)),
and by taking k such that 8% < 1/2, the corollary follows. [ ]

Remark 3.3.3 The converse of Corollary 3.3.2 is false. The function
¢(x) = e®, x € R, is strictly convex and the corresponding Monge-Ampere
measure satisfies (3.1.2) but not (3.1.1). For such ¢ we observe that

(1) Sy(zo,t) = x0 + Sp(0, te=0).
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(2) 1 (S (w0,1)) = €0|Sp(0, te=™)] = €0 u (S, (0, te)).

Any interval of the form (0,L), L > 0, is a section at some point. Given

L I l—a. 1
O<a<l,a(0,Ll)==2+al01)-2)= 5220 Thus
2 2 2 2
p((0,L) el —1

1@ 0,L)  e(Fab/z —gli—aiz %
if L — oo and hence (3.1.1) fails for any 0 < a < 1. Let us show that
(3.1.2) holds for this measure. We have that Sy(0,¢) = (my, M;) where
m; < 0 < M; and we have the following estimates:
(3) Int < My <In2t and —2t < my < —t for ¢t > 5.
(4) There exist positive constants € and ¢ such that ey/t < M; < /2t and
—evVt<my < =2t for 0 <t <5.
We write
p(56(0.0) _ 186001 | My—mi
1(Sp(0,/2))  [Ss(0,2/2)]  Myss —myys ’
and from (3) and (4) it follows that (¥) < C for all ¢ > 0. This combined
with (1) and (2) yields
p(Solen ) _ IS0 _ L,
1 (Sp(wo,t/2))  €7]Sy(0,¢/2e0)] = =

Remark 3.3.4 If p(z) is a polynomial in R™, then we shall show that the
measure |p(z)|dz satisfies (3.1.1) on the bounded sections of any convex
function ¢ (actually on any convex set under the hypothesis of Theorem
1.8.2) and with a constant depending only on the degree of p. Since the
polynomials of degree < d form a finite dimensional vector space, we have

that )
/ p(z)? dz < Cy (/ |p(z)] dm) ,
B1(0) B1(0)

for every polynomial p of degree < d. Hence by Schwartz’s inequality

/ Ip(2)] dz < wn (1 — (1—e)n)1/2cd/ ip(2)] dz
B1(0)\B1_.(0) B1(0)

<ca [ s,
B1(0)

with C = C(n,d). Thus

/ ip(a)] dz < 2 / Ip(2)] de,
B1(0) B1_(0)
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for e sufficiently small. By changing variables

/ Ip(e)] de < 2 / Ip(a)| d,
B,.(0) B1_6)~(0)

for all r > 0, and by iteration it follows that
/ z)|de < C / z)|dz,
B, (0) B, /2(0

where a, is the constant in Theorem 1.8.2. Now, let S be a section of ¢ and
T an affine transformation that normalizes S, i.e., B, (0) C S* = T'(S) C
B;(0). We then have

/ Ip(e)] de = / T et T dy < |det TV [ |p(T"y)] dy
s B1(0)
<cliar [ Tl
B, /2(0)
< C|detT~ 1|/ p(T~ y|dy—C'/ z)| dx,

since T'(3S) = £T(S). This completes the remark.

The following theorem is one of the main results in the chapter and
gives a geometric characterization of doubling Monge—Ampere measures.

Theorem 3.3.5 Let pu be the Monge—Ampére measure associated with the
convez function ¢. The following statements are equivalent:

(1) 1 satisfies the doubling condition (3.1.1).

(ii) There exist 0 < T, A <1 such that for all xo € R” and t >0

Se(xo,p, Tt) C ASg(x0,p,1). (3.3.2)

Proof. Let us assume (i). We shall show that there exists a dimensional
constant 0 < 3, < 1 such that (3.3.2) holds for all 7 and A such that
0<7<land1l-—,(1—-7)" <A< 1. Let T be an affine transformation
that normalizes Ss(wo,p,t), 2§ be the center of mass, and ¥(y) = ¢(T1y).
Let 0 < A < 1. By (3.2.3) we have T (S4(z0,p, At)) = Sy(T'zo, g, At), where
g = (T7')!p. Since the center of mass of Sy, (T'zg, ¢, At) is Tz = 0, we have

T (AS¢(xo,p,t)) =T{xg+ Nz —x5) : ¢ € Sp(mo,p, 1)}
={NT'z:z € Sp(xo,p,t)} = ASy(Tx0,q,1t).
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Set v*(y) = Y(y) — Y(Txo) — q- (y — Txg) — t. Then O¢* = Oy — q and
¢*|BS¢(Tmo,q,t) =0.If Yy € Stp (T-T()aq’t) \ /\Sd) (T-T()aq,t)a then

dist(y, Sy (T'o, q,1)) < 1= A,
and by Aleksandrov’s estimate Theorem 1.4.2 and Proposition 3.2.3,

[ ()" < endist(y, 0Sy(Two,q,1))|  min " (y)]" < ca(l = A"
S,/, (T.To,q,t)

Hence ¢v*(y) > —cﬁl/n(l — A/t which implies

b(y) = ¥(Ta0) = q- (y = Tao) > (1= ez /"1 =N/t > 71,
that is, y ¢ Sy (T'zo,q, 7t). Therefore
Sy (Txo,q,Tt) C ASy(Txo,q,t).

Hence, (3.3.2) follows by taking 7.
We now prove that (ii) implies (i). Let T be an affine transformation

normalizing Sy (2o, p,t) and ¢(y) = (H(T~'y) — d(z0) — q - (y — Txo))/t.
Obviously, by (3.3.2) we have
Sy (Tz0,0,7) C ASy(Tx0,0,1).

If £ € Sy(Txo,0,7) and ¢* is the slope of a supporting hyperplane to ¢ at
)

(z,v(z)), then by Lemma 3.2.2,
lg*| < ! <C,
1= Gist(z, 05, (Txo,0,1)) = ™%
and hence
fi (Sy(T20,0,7)) < Cy, . (3.3.3)

On the other hand, by applying Aleksandrov’s estimate to ¥ (y) — Z in

3
Sy(T'zo,0, %) it follows that

(%)" < Cofi (S(T0,0,7/2)). (3.3.4)
From (3.3.3) and (3.3.4) we obtain
fi (Sy(Tx0,0,7)) < Cfi(Sy(Tx0,0,7/2)),
which implies

1 (Sg(xo,p, 1)) < Cp(Sp(wo, p, 7t/2))
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where the constant C' is independent of ¢. If we pick k such that 27% < 7,
then by iteration we obtain

1 (Sp(xo,pst)) < Cpu(Sy(xo,pst/2))
< C*p (Sy(wo,p,27")) < C'u(S4(o,p, 71)) .
Now (i) follows from (3.3.2). [ |

As a first consequence of our characterization we obtain

Corollary 3.3.6 Let pu be the Monge-Ampére measure associated with the
convez function ¢ and assume that p satisfies (3.1.1). Let T be an affine
transformation that normalizes the section S4(x,p,t), (in particular, by
(3.2.3) T (Sp(z,p,t)) = Sy(Tx,q,t) where ¥(y) = S(T'y), and q =
(T=Ytp). Then

(i) There ezists co > 0 depending only on the constant in (3.1.1) and n
such that

dist(Sy(Txz,q,7t),0Sy(Tx,q,t)) > co(1 — )", for all0 < T < 1.

(i) There exists C > 0 depending only on the constant in (3.1.1) and n
such that if y ¢ Sg(x,p,t) then

B(T(y),Ce")NT (S¢(z,p, (1 —€)t)) =0, for all0 < e < 1.
(3.3.5)

Proof. (i). By Theorem 3.3.5, Sy(Tx,q,7t) C ASy(Tx,q,t) with A =
1—¢,(1—7)". Hence
dist (ASy (T, q,t),0Sy(Tz,q,t))) > an(l—X) =, (1-71)",
and (i) follows.
(ii). By (i) we have
dist(7'(Ss(x,p, (1 — €)t),T(y)) = dist(Sy(Tx,q, (1
> dist(Sy(Tz,q,(1
> co(l—(1=€)"

—ot),T(y))
- E)t)a 651,/1 (T'Ta q, t))
and hence (ii) follows with C' = ¢o. [ |

3.3.2 The engulfing property of the sections

The sections of a convex function whose Monge—Ampere measure satisfies
(3.1.1) satisfy the following property similar to the one enjoyed by the
Euclidean balls. Besides the importance of this property in the study of
the linearized Monge—Ampere equation, it also permits us to establish that
R™ equipped with the Monge—Ampere measure y and the family of sections
becomes a space of homogeneous type, see [AFT98].
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Theorem 3.3.7 (engulfing property) Assume that the Monge—Ampére mea-
sure p associated with ¢ satisfies (3.1.1). Then there ezists a constant§ > 1
such that if y € Sy(zo,p,t), then Sg(xo,p,t) C Ss(y,q,0t) for all g € 0p(y).

Proof. Let T be an affine transformation that normalizes the section
S¢(zo,p,2t), that is,

B(0,a,,) C T(S¢(o,p,2t)) C B(0,1).
Let ¢(y) = ¢(T~"'y), s = (T'~")'p, and
¢"(y) = ¥(y) —¥(Txo) — q1 - (y — Txo) — 2t.
By (3.2.3), T(Ss(w0,p,2t)) = Sy(Tx0,q1,2t). If o € 0¢*(Ty), then by

Lemma 3.2.1
2t

< .
< dist(Ty, 0Sy (Txo,q1,2t))
Since y € Sg(x0,p,t), Ty € Sy(Txo,q1,t). Thus, by Corollary 3.3.6(i)

|(I2

lg2| < Cit.
By taking 7!, the desired inclusion is equivalent to showing that
Sy(Txo,q1,t) C Sy(Ty, (T 1)'q,0t), for all g € 0¢(y).
Let z € Sy(Txo,q1,t). We want to show
P(2) <P(Ty) + (T~1)'q- (2 = Ty) +6t,  for all ¢ € Ip(y).

We have 0¢* = 01 —q1, and observe that ¢ € d¢(y) if and only if (T1)iq €
99(Ty). Hence, if ¢ € ¢(y), then (T")'q = g2 + 1 with g2 € 9¢*(Ty).
Therefore

(Ty) + (T7")'q-(z— Ty) + 6t

O(Ty) +q-(z—Ty)+q - (2 —Ty) + 0t

Y(Txo) +qu - (Ty —Txo) +q2- (2 = Ty) +q1 - (2 = Ty) + 0t
=p(Two) +q1 - (2 —Txo) + g2 - (z — Ty) + 0t

() —t+q-(z—Ty)+ 0t = (x) since z € Sy (Txo, q1,1).

Now |g2 - (z —=Ty)| < Citlz —Ty| < 2C1t. Hence ¢ - (2 —Ty) > —2C4t, and
consequently

(x) > P(z) =t —2C1t + 0t = (2) + (6 — (2C1 + 1))t.

The property now follows by picking 8 > 2C + 1. [ ]
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3.3.3 The size of normalized sections

The following theorem gives a quantitative estimate of the size of normal-
ized sections. It says that if two sections intersect and we normalize the
largest of them, then the other one looks like a ball with proportional ra-
dius at the scale in which the largest section is normalized. The statement
below gives a more precise estimate than the one used in [CG96]; compare
with condition (A) in that paper.

Theorem 3.3.8 Assume that the Monge-Ampére measure u associated

with ¢ satisfies (3.1.1). There exist positive constants Ky, Ky, K3 and €

such that if S¢(20,po,70) and Sg(z1,p1,71) are sections with r1 < ro,
S(20,P0,70) N Sp(21,p1,71) # 0

and T is an affine transformation that normalizes S¢(20,po,70), then

B (Tzl,K2:—1> C T(Sy(z1,p1,m1)) C B <T21,K1 <:—1> ) . (3.3.6)
0 0
and Tz € B(0, K3).
1
Proof. Let ¥(y) = T—qﬁ(T_ly) and set
0
| PSS | P 1
Tzy=xz9, Tz =2, p=—(T )'po, q=—T Yp, t=—.
To To To

Hence by (3.2.3) we have T'(S4(z0,p0,70)) = Sy(z0,p,1) and

T(Sy(21,p1,71)) = Sy(,q,1).

For the rest of the proof, we shall omit the subscript ¥ understanding that
the defining function in all sections is ¢). Then the inclusions in the theorem
are equivalent to

B (z,Kst) C S(z,q,t) C B (z, K t%).

Let us begin with the proof of the second inclusion. Since S(zg,p,1) is
normalized, the center of mass ¢(S(zg,p,1)) = 0. By Theorem 3.3.5, given
0 < 7 <1 there exists 0 < A <1, A= A(r,n) =1 — f,(1 — 7)™ such that

S(z,q,7) CAS(z,q,1) ={x1 + My —21) : y € S(z,q,1),21 = ¢(S(z,q,1))}
={1-=Nz1+ My :y € S(z,q,1), 21 = c(S(z,q,1))}.
In the same fashion
S(z,q,7%) C AS(z,q,7)
={1-Nz2+ Ay :y € S(z,q,7),22 = c(S(z,q,7))}
C{(1=Nzs+ A1 =Nz + X%y :y € S(z,q,1),
z1 = c(S(x,q,1)),z2 = ¢(S(z,q,7))}.
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For the same reason we obtain

S(z,q, 7N C AS(x,q,7"),
and if we set x;11 = ¢(S(x,q,7%)), i = 0,1,2,..., then continuing in this
way we obtain

N-1
S(z,q, ™) C {(1-N) Z Nay_i+ ANy :y e S(z,q,1)}.
=0

If * € S(xo,p,1) N S(x,q,t), then Theorem 3.3.7 implies that S(x,q¢,1) C
S(z*,q',0) and S(xo,p,1) C S(z*,q¢',0) for all ¢’ € O(x*). The last inclu-
sion, again by the engulfing property, implies that S(z*,q',8) C S(xzo,p,6?).
On the other hand, the convexity of ¢ implies that

Sy(xo,p,7) C 2o +7(Sy(x0,p,1) —x0) = {®0+7(2—20) : 2 € Sys(x0,p,1)},

(3.3.7)
for each r > 1. Indeed, given x € Sy(zo,p,r) we let z = Lo + (1 — L)z
and we have z € Sy (20,p,1). Hence

S({I?,q, 1) - S(w()ap: 62) C xo + 02(5(:1707])7 1) - QIZ())-
Since S(zo,p, 1) is normalized,

$0+02(S($0,p,1) _ZL'())
= (z0 — 0°20) + 6°S(0,p,1) C B(zo — 8%x0,0%) C B(0, K),

with K = 26> — 1. Then S(z,q,1) C B(0,K) and consequently x;.; =
c(S(z,q,7")) € B(0,K), i =0,1,.... Let N > 0 be such that 7V+! <t <
V. Then

S(z,q,t) C S(z,q,7")

N-1
Cluv+\y:ye S, )},  yv=0-X> Nay;
=0

C B(yn,\VK).
log, t N eyt 3 1 s
We have N +1 > , hence AV < ATex™ " = —thr. Since |yn| <
log, T A
1
(1 -AN)K—— = K, we obtain

1-A

K K
S(l‘,q,t) - B <yNa Xt€> C B (1’,2xt6> )

In A
where € = a4 .
nrT
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Let us now show the first inclusion. If y € S(zo,p,1) N S(z,q,t),
then by the engulfing property S(z,q,t) C S(y,q',0t) and S(zo,p,1) C
S(y,q',0) for all ¢ € 0¥ (y). Again by the engulfing property, Theorem
3.3.7, S(y,q',0) C S(zo,p,0%) and consequently S(z,q,t) C S(zo,p,6?%),
since t < 1. By (3.3.7)

S(xo,p, 30%) C {xo + 36*(y — x0) : y € S(zo,p,1)} C B(0, K),
with K = 662 — 1. Let

¥*(2) = ¥(2) = Y(20) — p (2 — o) — 367,

We claim that

o* (S(wo,p,26%)) C B(0,CH?) (3.3.8)
with a universal constant C'. To show the claim, we first observe that
if i is the Monge—Ampere measure associated with ¢ and S(zg,p,1) is
normalized, then by Proposition 3.2.3 we have ji(S(xo,p,1)) = 1. Hence by
the doubling property

(S (20,0, 260%) = C(0),  [(S(zo,p,36%)) =~ C(6).

By Aleksandrov’s estimate applied to ¢ (x) = ¥(z)—1)(z0)—p-(x—x0) —26
on the section S(zg,p,26?), we obtain

(6*)" < Cdist(S(xo,p, 0%),0S(x0, p, 26%)) (S (z0, p, 26%)).
Thus
diSt(S(l‘O,p, 92)7 BS(I'o,p, 292)) > C.

A similar argument yields
dist(S(zo,p, 26°), 05 (zo, p, 36%)) > C.

Hence by applying Lemma 3.2.1 to the function ¢* in the set S(zo, p, 26°)
we obtain (3.3.8). Let z € S(zo,p,0?)(C B(0,K)). We shall pick K> such
that B(x, Kot) C S(x,q,t). Since dist(S(xo, p,0?), dS (w0, p, 20%)) > C; and
t < 1, it follows that B(z,Cit/4) C S(zo,p,20%). Let y € B(z, Kat)
with Ko < C1/4. If ¢’ € 0Y(y), then ¥(z) > ¥(y) + ¢ - (z — y) and
q € OY*(y) + p by definition of ¢*. From (3.3.8), |¢' — p| < C#? and
analogously |¢ — p| < C#2. Thus |¢’ — ¢| < 2C6? and

0<9y) —v@)—q-(y—2)<~¢-(x—y)—q-(y—2)
<2007y — x| < 2C0° Kot < t,

by picking K> such that 2C0?K> < 1. Thus y € S(x,q,t). The proof of
Theorem 3.3.8 is now complete. [ |
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Remark 3.3.9 Theorem 3.3.8 implies that if the sections of the convex
function ¢ are bounded sets and the corresponding Monge-Ampere measure
satisfies (3.1.1), then ¢ is strictly convex. In fact, if P, = (z1,¢(z1))
and P> = (x2,¢(z2)) are points such that the segment P; P> is contained
in the graph of ¢ and zp = toz1 + (1 — to)x2, 0 < to < 1, then any
supporting hyperplane of ¢ at the point (zo,¢(z0)) contains P, P,. Then
Py P, C S4(20,p,t) for p € 0¢(2p) and all t > 0. Then by Theorem 3.3.8
the segment P, P, reduces to a point.

This implies that if the Monge—Ampere measure M¢ satisfies the dou-
bling property (3.1.1), then the sections S4(20, p,t) are strictly convex sets.
Suppose by contradiction this is not true. Let £,,(x) be the supporting
hyperplane to u at zo defining the section Sg(xo,p,t). Then there ex-
ists 1 # x5 such that ¢(x) — £, () = t for  in the segment Z;Z5. Let
¥(x) = ¢(x) — Ly, (x). Then My is also doubling and therefore ¢) must be
strictly convex. But the segment P, P, with P; = (z;,t) is contained in the
graph of 1, contradiction.

Also as a consequence of Theorem 3.3.8 we obtain the following result of
importance in the study of the solutions of the linearized Monge—Ampere
equation, [CG97].

Theorem 3.3.10 Assume that the Monge—-Ampére measure u associated
with ¢ satisfies (3.1.1). Then

(i) There exist Co > 0 and p1 > 1 such that for 0 <r <s<1,t>0 and
x € Sy(zo,p, rt) we have

S(j)(l',q, CO(S - r)plt)) C S¢(£0,p, St)'

(i) There exist C1 > 0 and py > 1 such that for0 <r <s<1,t>0 and
x € Sy(zo,p,t) \ Sp(z0,p, st) we have

Ss(x,q,C1(s —r)Pt) N Sy (zo,p,rt) = 0.

Proof. (i). Let T be an affine transformation normalizing S, (o, p, st).
Then by (3.2.3)

T (Scﬁ(m()apa St)) = SlP(Tan q1, S)
where 9(y) = %(b(T*ly), and ¢ = %(T’l)tp. Also
T (S¢($07p7 ’I"t)) = S¢(Tm07 q1, T),
T (S¢(l', q, CO(S - r)plt)) = Sz/»(TCU:QQa CO(S - T)Pl),
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1
where ¢z = ;(T‘l)tq. To show (i), it suffices to prove that if Tz €
Sy(Tzo,q1,7), then

Sy(Tx,q2,Co(s —r)P') C Sy(Txo, qu, S)- (3.3.9)

Set 7 = _ < 1. Let § < s be chosen in a moment, and z € Sy(T'z, ¢2,9).
s
Then

U(2) <Y(Tx)+qz- (2 —Tx) + 6
(Tzo)+q1 - (Tx —Txo)+r+q-(z—Tx)+0

=(Txo)+q1 - (z—Txo) +7+ (g2 — q1) - (z — Tx) + 6.

<9
<9

We have ¢1 € 0yY(Txg), ¢2 € 0Y(Tx), and Tz, Txg € Sy(Txo,q1,7). By
applying Lemma 3.2.1 to the function h(z) = ¢¥(z) — Y(Tzo) — 1 - (z —
Txo) — s on the set Sy(T'xo,q1,s), and using Corollary 3.3.6(i), it follows
that

O — q) (Tz) C B (o —MTz) ) CB <o, %) :

" dist(Tx, 0Sy (Txo, q1, 8)) F)n
C C n+1
This implies that |go — ¢1] < 5 _ F —. Therefore, by Theorem

(1=rr  (s=r)
3.3.8

U(z) <Y(Two) +qr- (2 —Txo) +r+ (@2 —q1) - (2 —Tx)+9

Csnt! AN
<Y(Txo) +qu - (2 —Txo) +7 + Ki|-) +¢6
(s —r)" s

CK
< (Txo) + q1 - (2 — Txo) + 1 + G _Tl)néf +9,

(S _ T.)n+1 1/e
since e < 1.If § = (807) , then 0 < (s —r)/2 and (3.3.9) follows
1
1\ n+1
ith Cp = | —— = .
with Cy <8K10> and p .

(ii). Let T normalize Sy (zo,p,2t) and ¢(y) = 2lt¢)(T’1y). Then
T (Scﬁ(x()apa Qt)) = SlP(Tan q1, ]-)7

1
with g1 = ﬂ(T—l)tp_ It is sufficient to show that if Tx € Sy (Txo,q1,1/2)\
Sy(Txo,q1,5/2), then

Sy(Tx,q2,Ci(s — )P /2) N Sy (Txo, q1,7/2) = 0.
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We have ¢; € 0¢(T'zo) and g2 € 09(Tx). By Corollary 3.3.6(i) and Lemma
321, |¢2—q:1| <C. Let 6 <1and z € Sy(Tz,¢2,6). By Theorem 3.3.8
Tx)+ g2 (2 —Tx)

Txzo) 4+ q1 - (Tx — Txo) +§+q2-(z—Ta:)

W(
W(
=¢(Txo) + q1 - (z — Two) + g +(2—q) - (z—Tx)
(Tw0) + a1 - (2 = Tao) + 5 — K"

W(

Tao) +q1 - (= = Tao) + 3,

_ b1
if § satisfies 6 < <(2SCI;)> and p; = 1/e. The desired conclusion then
1

follows with Cy < [ |

(QCKl)pl )
From Theorem 3.3.10, we conclude that there exists § > 0 such that if
z € Sy(zo,p,3t/4) \ Ss(xo,p,t/2), then

Se(z,q,0t) C Se(zo,p,t) \ S¢(xo,p,t/4).

3.4 Notes

The notion of cross-section of solutions to the Monge—Ampere equation was
introduced by L. A. Caffarelli in [Caf90a]. The exposition in this chapter
largely follows the paper [GHO00], and the geometric properties given in The-
orems 3.3.7 and 3.3.8 are fundamental for the regularity theory developed in
the following chapters. They are also used to study the linearizations, both
elliptic and parabolic, of the Monge—Ampere equation, and in real harmonic
analysis, see [Caf92], [Caf91], [CG96], [CGI7] and [Hua99]. In particular,
the covering lemma of Besicovitch type with cross-sections (Lemma 6.5.2)
in Chapter 6 follows from these geometric properties. Condition (3.1.2)
appears in [CG96] and is used there to establish with the aid of Lemma
6.5.2 a covering theorem of Calderén—-Zygmund type; see [CG96, main The-
orem] and our Theorem 6.3.3. This covering theorem is used in the study of
the linearized Monge—Ampeére operator, see [CG97]. Also, some geometric
properties proved in this chapter imply that R™ equipped with the Monge—
Ampere measure and the family of sections is a space of homogeneous type,
see [AFT98].



Chapter 4

Convex Solutions of
det D%y = 1 in R"”

4.1 Pogorelov’s Lemma
We begin with an important and useful lemma due to Pogorelov.

Lemma 4.1.1 Let Q@ C R" be a conver open and bounded domain, and
u € C*(Q)NC?*(Q) a conver solution to the problem

det D?u =1, in €,
u =0, on ON).

Let a be a unit vector,
h(@) = [u(@)| Daqu(w)es "=,

and M = maxg h(z). Then there exists P € Q where the mazimum M is
attained and we have the inequality

M < C(n) ePeu(P)?,
where C(n) is a positive constant depending only on the dimension n.

Proof. Since u = 0 on 92 and wu is strictly convex in €2, it follows that the
maximum M is attained at some P € Q. Since D?>u(P) > 0, there exists a
unimodular matrix O, i.e., det O = 1, such that O D?u(P)O is diagonal and
if a(xz) = u(Ox), then Dia(z) = Dyu(Oz) and D11%(x) = Dyeu(Ox); in
particular, D?u(P") is diagonal where P’ = O~! P. To prove this statement,
we first rotate the coordinates to have « as one of the axes. That is, let @ be
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an orthogonal matrix such that Qe; = «, and first let v(z) = u(Qz). Then
the first column of @ is the vector @ and we have Dyv(z) = (D,u) (Qx) and
Dy1v(z) = (Daau) (Qx). Next, given A = (a;5), an n X n positive definite
and symmetric matrix, consider

1 —@i2 _@i3 _@i4 ., _0inT]

a1l a1l all @11
0 1 0 0 0
0 0 1 0 0
B=19 o 0 1 0
: 0

0 0 0 0 1 J

We have
+ _|a11 0
B'AB = { 0 31] ,

where B; is an (n — 1) x (n — 1) matrix. Since A is positive definite and
symmetric, it follows that B is also positive definite and symmetric. Hence
there exists an orthogonal matrix O; such that O! B;O; is diagonal. Let

1 0
0= [O OJ.
Now, we choose A = (D%v) (Q'P) and set a(z) = v(BOz). Then
D%u((BO)~'Q!P) is diagonal. Combining the changes of coordinates, the

matrix O = QBO does the job.
Therefore, we may assume that o = (1,0, ...,0) and so

h(z) = Ju(z)| Dyyu(z)es @),

and the matrix D?u(P) is diagonal.
Let L be the linearized operator at P,

~ 1
L= ——— Dy;.

Z uii(P) "

i=1
Since h attains its maximum at P, it follows that the function

1 2
w = log |u| + log Dy u + 3 (D1u)

also attains its maximum at P, and so Dw(P) = 0 and D?*w(P) < 0.

Consequently
L(w)(P) <0. (4.1.1)
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Now

Hence

U; U114
wi = —+ + ug s,
u U1
Ui u%’l
k%3 Z
- + ulz + U1 U145
U1 u?,

2 ) i)
) ﬁ guz;P) i (2) u(i«)2 ; Z(En 1):)
+ unl(w) L(u1)(x) - ulltwﬁ z:; “;1:(;)2
p u((a];); +u1 () L(ur) (2).
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(4.1.2)

Since D?u(P) is diagonal, differentiating det D>u = 1 with respect to
yields L(u1)(P) = 0. In addition, L(u)(P) = n, and

n

Ulkl
u .
W kgl it (P) i )
Then from (4.1.1)
ui(P)? 1 - u (P)?
Lw(P) =
( ) ’U,( 2 - U/u ) ull(P) kgz:l Uk)k(P)U”(P)
Z u11;(P uy;(P)? <0
Ull i—1 uzz U,“'(P) =
Now
zn: Uuz B " uyq(P)?
uu k=1 ukk(P) un P) ui1(P)? i=1 u;i(P)
_ ! i ur(P)? i wi(P)? i u11;(P)?
uy1(P) — uy1 (P) uy(P) kSTt gk (P)uy (P) P 11 (P) ui; (P)
zn: Uuz (P)?
“11 L wkk (P) ua( (P)
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Hence
n _ 1 n ’U,Z(P)2 1 n Ulkl(P)2
U(P) U,(P)2 ; u“(P) + U,11(P) k>1z,l:1 ukk(P) u”(P)
o uli(P)2
+ ; Py SO (4.1.3)

Since P is a maximum for w, from (4.1.2)

13((1];)) 1;11111'((1133)) +u (P)uyi(P)=0, i=1,---,m.

We have u1;(P) = 0 for i # 1 since D?u(P) is diagonal. Then
’U,,(P) o _uni(P)

= , fori #1,
U(P) un(P) ;é
and so Py (Py?
Uq U114 .
= fi 1.
WPE (P v
Therefore
1 - ulkl(P)2
UH(P) ESTi=1 ukk(P) u”(P)

_ = w11 (P)? n = w1 (P)?
b2 ukk(P) un(P)Q I—2 U,11(P) ukk(P) u”(P)
w11 (P)? .

——————— + positive terms

’U,kk(P) ’11,11(1:))2 P

[
M3

k

3
©)

LP)Q + positive terms
ugk (P) u(P)? g |

k

M

Inserting the last expression in (4.1.3) and dropping positive terms yields

n _ 1 ’U,l(P)2 - ’U,M(P)2
u(P) "~ ulPR un(P) T & ua@) =
which yields
no 1 w(P)? "
WP) Py un(py ) <0

Multiplying the last expression by ui1 (P) u(P)2 e (P)* we obtain

h(P)? — ne P2 p(P) — u (P)2 e (P <0,



4.2. Interior Holder estimates of D2u 67

and so
h(P) < n e (P12 4 \/(n? 4 duy (P)?)ens (P
- 2
— pui(P)?/2 (” RRYAL 4U1(P)2> < C(n)em P,
5 <

4.2 Interior Holder estimates of D?u

We use the notation

[’LL] Q= sup |’LL(.T) - u(y)|
a,Q = .
vye T —yl®

Theorem 4.2.1 Let Q@ C R" be a conver open domain B,,(0) C Q C
B1(0) and u € C*(Q) N C(Q) convez solution to the problem

det D?u =1, in Q
u =0, on 0N.

Given € >0 and Q. = {z € Q : u(x) < —€} there exist constants C = C(n)
and 0 < a < 1 depending only on € and the dimension n such that

[DQU]ng <C.

Proof. Step 1. There exists a constant Cy > 0, depending only on the
structure, such that
dist(Q,, Q) > Coe™. (4.2.1)

This follows from properties of the sections in Chapter 3. Indeed, let
m = ming u, and xg € Q such that m = wu(xg). Since u is convex and
u =0 on 99, it follows that m < 0 and u(z) < 0 for z € Q. It is clear that
£(x) = m is a supporting hyperplane to u at (zo,u(zo)). Let S(zo,0,t) =
{z :u(xz) < m +t}. We have that S(z,0,—m) = {z : u(z) < 0} = Q, and

S(x0,0,—m —€) = Q..
Since S(xo,0, —m) =  is normalized, by Corollary 3.3.6 we get that
dist(S(xg,0, —m — €),9S(xg, 0, —m))
= (—m)),8S (w0, 0, ~m))

—m
(- a5
—m —m

= diSt(S(l‘o, 0,
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By Proposition 3.2.3, m = C), and then (4.2.1) follows.
Step 2. We have the estimate

|Du(z)] < Ce™ ", for all z € Q.. (4.2.2)

By Lemma 3.2.1 we have

maxqg_ —U
D B _ Q..
u(z) € (0’ dist(Qe,69)>’ vek

Hence (4.2.2) follows from (4.2.1).
Step 3. If |a| =1, then

Doyou(z) < C(e), for all z € Q.. (4.2.3)
In fact, consider the function v(z) = u(x) + 2¢. We have

det D%y =1, in Oy,
v =0, on 0.

We apply Lemma 4.1.1 to v on the set Q5. and we obtain

max h(z) < C’neD"‘“(P)2,

Qo
where h(z) = |v(m)|DaaU(a?)e%D””(””)2, and h(P) = maxg_-h(z). Since
Dae C Q, by (4.2.2) we get |Dyv(P)| = |Dou(P)| < Ce™™, and conse-
quently

h(z) = |v(:n)|Dc,au(a,“)e%D"“(’”)2 < Cpe ™", for all z € Qa. (4.2.4)

If ¢ € Q3,, then v(z) = u(x) + 2e < —3e+ 2e = —¢, that is |v(z)| > € in Q3
and from (4.2.4) we obtain

n

eDyqu(z) < C’neC(2 , for all z € Q..

—2n
eCe

This yields (4.2.3) with C(e) = Cy,
Step 4. Let \j(z), j =1,...,n be the eigenvalues of D*u(z). Then

Aj(T) > !

e W, for all = S 935, (425)
€

where C(€) is the constant in Step 3.
In fact, since det D?u = 1, we have A\;(z)---A\,(z) = 1. Hence
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From Step 3,
Dyqu(x) = Z D;ju(x)a;a5 < Cle),
ij=1
for all @ = (ai,...,a,);|a] = 1. Since D?u(x) is symmetric, there exists

an orthogonal matrix O such that

Al (l‘) 0
OD2U(1‘)Ot = 0 0
0 An ()

If 2 = (21,...,20), |2| = 1, then (D?*u(z)0%z,0!z) = (OD*u(z)0!z,2) =
ST Ai(x)27. Hence \j(z) < C(e) for 1 < j < n and we obtain (4.2.5).

Step 5. Combining Steps 3 and 4 we obtain that

1
ClonT Id < D*u(x) < C(e)Hd, for all z € Q3. (4.2.6)

Step 6. We now recall the following result due to L. C. Evans, see
[GT83, Section 17.4]:

Theorem 4.2.2 Let F € C?(R**"),g € C*(Q),u € C*(Q) and
F(D*u) =g in Q.
Assume that

1. F is uniformly elliptic with respect to u, i.e., there exist positive con-
stants X\, A such that

ME? < Fyj (D*u(z)) &&5 < AJE?,

F
for all { € R™ and x € Q. Here F}; = 8_
Baij

2. F is concave with respect to u, i.e., F' is a concave function in the
range of D*u(z), that is
0*F

Fiip = ———
s Baijaakl

satisfies

0°F

Day; O (D*u()) uij(z)un () <0, for all x € Q.
ij ke
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Then there exist positive constants C' and 0 < a < 1 depending only on
A, A and n such that for each ball B, C Q and R < Ry we have

R (67
oscp, D*u < C <_R > (oscBRO D?u + Ro|Dgloq + R(2)|D2g|0,9) .
0

We shall apply this result to the equation
F(D?u) = log (det D*u) =log1 =0.

Here (D?*u(z)) = u¥(z), where (u'(z)) is the inverse matrix of

Buij
D?u(z). Since D*u(z) satisfies the inequalities in (4.2.6) and det D?u = 1,
the inverse matrix also satisfies similar inequalities. Also, F/(D?u) is con-
cave. Since g = 0, we obtain

oscg, D*u < C <R£> 0SCBp, D?u
0

for any ball Br, C Q3. and R < Ry. By Step 3, oscp,, D*u < C(e), for
Bpr, C Q3. By covering Q4. with a finite number of balls contained in 3,
and by application of the previous inequality, we obtain the theorem. ®

4.3 C* estimates of D?u

We can now prove the main result in this chapter.

Theorem 4.3.1 Let u € C*(R?) be a convex function such that det D?u =
1 in R™. There exist positive constants C'(n),Cy and 0 < a < 1 such that
for all A > 0 we have the inequality

[Dijula,B(0,ci0172) A2 < C(n).
In particular, v must be a quadratic polynomial.
Proof. We may assume that
u(0) = 0; Du(0) = 0; and D*u(0) = Id,

which implies that u > 0. Indeed, we first let v(z) = u(z) — u(0) — Du(0) - =
and we have v(0) = 0, Dv(0) = 0 and det D?>v(z) = 1. Since D?v(0) is
symmetric and positive definite, there exists an orthogonal matrix O such

that
d -~ 0

O'D*v(0)0 = | : S
0 .- d,
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whered; > 0,i =1,...,n.Let w(z) = v(Ox). Then D?*w(z) = O'D*v(0z)O
and det D?>w = 1 and also w(0) = 0, Dw(0) = O*(Dv)(00) = O*(Dv)(0) =
0. Hence

d - 0
D?w(0) = | :
0 dp,
Now let w(z) = w <%, . j;_n> Then

iw <a:1 a:n> 1 w (a:l a:n>
d AV, VAV, V&V,

1 w (Cﬂl :Un> iw (& :Un>
V. J/d, \Vd) T VA, dpy " \Vd TV,

_ 1 T T .
and so det D?w(z) = —— (det D?w <—,...,—n>, and since
(z) dl"'dn( ) Vdi Vdy
dy - -d, =1, we get det D*w(x) = 1 and D*w(0) = Id.
Let A > 0 and Sy = {z : u(z) < A} and E\ be the ellipsoid of minimum

volume containing Sy with center at x, the center of mass of Sy. We note
that if O is a rotation, then

O(Sy) = {z:u(0O'2) < \}.

By changing u by u(O~!-), we may assume that the axes of the ellipsoid
FE, lie on the coordinate axes. If T' = T is an affine transformation that
normalizes Sy, that is By, (0) C T'(Sx) C B1(0), then T'(Ey) = B1(0) and
Tx = Ax + x9, A = A) where A is a diagonal matrix

l’Ll .. O
A=|": :
0 Un
We also note that
(z1 — w%\)2 (zn — CU;\L)2
E, = : .- <1
A {l‘ a% + + a% = }7

and
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that is
— 0
ai
Tz=|: D (=) = Az — ).
1
0 =
Gn

We claim that
pim A"V =1, n.

To show the claim, let

1 A
* —— T—1 -,
u”(y) vu( y) 5

1
where v is chosen such that det D?u*(y) = —|det T'|~2 = 1. Hence
/Yn

|Du* (T'(Sy)) | =~ 1.
The function u* is convex and satisfies

det D*u* =1, in T(Sy),
u* =0, on 9T (S)y).
By Proposition 3.2.3,

| min u*| ~ C,.
T(Sx)

On the other hand, since maxg, u = A, we have that

Hence
— =~ C). (4.3.1)

We also note that 7~'y = A~'y +z,. Applying Step 5 from Theorem 4.2.1
to u* (see (4.2.6)) we obtain

Ca(€)Id < D*u*(z) < Cy(e) M, for all z € {z : u"(z) < —€}.

Since T' = T normalizes Sy, by Theorem 3.3.8 applied to the sections
Sy, Sra with 0 < 7 < 1 we get that

B(T(O), KzT) C T(ST)‘)
Also by (4.3.1), we obtain that

T(S:\) C{x:u"(zx) < —(1-7)8},
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with # > 0 a constant depending only on n. Thus, there exists constants
€0 > 0 and ¢g > 0 such that

B(T(0),c0) C 2 ={z:u*(x) < —€} (4.3.2)
for all € < ¢y. On the other hand,

1
D2u*(y) = ;(A_l)tDQU (A_ly + CU)\) AY

and by letting y = T'(0) = —Az we obtain

1 1
D*u*(T(0)) = — (A1) D*u(0)A~" = = (471)" A~
Y Y
Consequently
1
Co(e)Id < > (A A < Oy (e)ld
Now 1
— 0
1431
A—l —
=10 0|
1
0 il
1451
and therefore 11
C’QS__QSCI, i:l,...,n.

(3

A
Since — & Cp, the claim follows. Note also that since |det T||Sy| = C' we

Y
get that |Sy| &~ \/2.
We have

and by Theorem 4.2.1
C(TL) Z [Diju*]a@:.

We now observe that if A is any invertible matrix and v4(z) = v(A™ z+yo),

then
1

> — .
[UA]Oz7Q = ||A||a[v]a"4 1(Q)+y0

We have
1 1 1 1
ngU*(y) = - ngu <<_ylaa_yn> +l‘)\> )
Hn

Y My 231
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and so by (4.3.2)

C(n) > [Diju*]a,0: > [Diju’]a,B(T(0),c0)

> 1 1 [D;;u]
iy (max ) 0 eATHBTO)c0) Faas

Since T'(0) = — Axy, it follows that A~! (B(T'(0),co))+zx = A~ (B(0,¢0)) =
B(0,X'/2¢) and consequently,

C(n) > X*"[Dijuly pot/2e0)-
By letting A — oo, we obtain that D;ju are constant on each bounded set
and the proof is complete. [ |

4.4 Notes

The characterization of global solutions to det D?>u = 1 given in Theorem
4.3.1, was done by Jorgens [J6r54] in one dimension (see also [Nit57]), by
Calabi [Cal58] in dimensions less than six, and by Pogorelov [Pog72] in
any dimension by extending Calabi’s method; see also the paper by Cheng
and Yau [CY86]. Recently, Caffarelli [Caf96] extended this characterization
to viscosity solutions and in this chapter we have basically followed these
ideas. Pogorelov’s Lemma 4.1.1 appears in [Pog71]. For extensions of the
results of this chapter to the parabolic case see [GHOS].



Chapter 5

Regularity Theory for the
Monge—Ampere Equation

5.1 Extremal points

Definition 5.1.1 Let Q be a convex subset of R™". The point xo € O is
an extremal point of Q0 if xo is not a convex combination of other points in

Q.

Remark 5.1.2 Let E be the set of extremal points of Q. Then the convex
hull of E equals .

Lemma 5.1.3 Let Q # 0 be a closed convex and bounded subset of R™.
Then the set E of extremal points of Q0 is nonempty.

For a proof of the properties above see [Sch93, pp. 17—-20].

Lemma 5.1.4 Let 2o be an extremal point of Q. Then given 6 > 0 there
exist a supporting hyperplane ¢(x) at some point of Q) (not necessarily xo ),
and €9 > 0 such that

(a) @ C{x:{(z) >0},
(b) diam{z € Q:0 < l(z) < e} <6, and
(c) 0 < {(zp) < €.

Remark 5.1.5 To see that £(z) can be a supporting hyperplane at a point
other than z(, consider for example in two dimensions a domain whose
boundary is the segment on the z-axis joining the origin with the point
(—1,0) and the arc of parabola y = z? for z > 0. Every supporting
hyperplane at the point zo = (0,0) has slope zero.

75
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Lemma 5.1.6 Let ' be a conver and bounded domain of R™, and u a
convex, function in T' such that u = 0 on the boundary of U. If T is an affine
transformation that normalizes I, then

{z € : dist(Tx,0T (L)) >n} C{x € :u(z) <nb, H{ﬂinu},
for all 0 < n < 1, where 8,, is a constant depending only on n.

Proof. Let x§ be the center of mass of I and zp € T such that u(zg) =
minp u(z). Let T be an affine transformation that normalizes I'. That is,
B,,(0) ¢ T(T') C B1(0) and the center of mass of T(I') = I'* is 0. Note
that v(z) = u(T~'z) is convex in I'* and is zero on the boundary of I'*. Let
y1 €E0* y1 #0. Then 0 = fy; + (1 — )& for some £ € IT* and 0 < 6 < 1.
Hence

€] a

lyi =& = 2

=0,.

Thus
v(0) < Bv(y1) + (1 = 0)v(§) = Ov(y1) < rv(y1)

for all y; € I'*. In particular, v(0) < 6,v(Tzy) = 6, minr u. Hence, if
z=0+4+ Az —0) with z € I'"* and 0 < A < 1, then

v(z) < v(z) + (1 —A)v(0) < (1-A)v(0) < (1-A)6, rr}in u.

That is

A" C{z el :v(z) < (1-XN)b, rr%inu}.
Given 0 < i < 1, let us now prove that

{z eI :dist(z,0T") >n} C (1L —n)I".

Indeed, for z € I'* we write 2 = A0 + (1 — X)zp, with x5 € OT'*. Since the
center of mass of I'* is zero and dist(z,0T*) > 7, it follows that

|z — za|

\ =
|za|

- )

which yields z € (1 — n)T*. Therefore we obtain the inequality

{z e " : dist(z,0T") > n} C {z € ' 1 v(z) < nb, mFinu},

and the result follows by applying T!. [ |
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5.2 A result on extremal points of zeroes of
solutions to Monge—Ampere

Theorem 5.2.1 Let Q be an open convexr and bounded domain in R™, and
u a convex function in 0 such that

0<X<detD*u<A

in the Aleksandrov sense. Assume that u > 0 in Q and let

I'={zeQ:u(z) =0}

If T is nonempty and contains more than one point, then T has no extremal
points in the interior of Q.

Proof. We proceed by contradiction. Assume that zy in the interior of
is an extremal point of I'. Since v > 0, I is convex. Then by Lemma 5.1.4
given § < %dist(a?o,aﬂ), there exist ¢y > 0 and a supporting hyperplane
£(x) at some point 21 € T such that I' C {z : ¢(x) > 0}, diam{z € ' : 0 <
L(z) <€} <dand 0 < {(xg) < €g. Define
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S={zxel:0<{(z) <e},
I ={z:4(z) = e},
I, = {x : {(x) = 0},
Te={z € Q:4(z) <ep,ulx) <eleg —L(x))},
with € > 0. We have S C T for all € > 0 and N¢sol'c = S C interior(Q).
Hence I C interior(f2) for € sufficiently small. Note that T is convex. Now

move II, in a parallel fashion to the left until it touches OT'c at a point .
and let us denote by II3 the plane parallel to II» at z., i.e.,

I3 = {z: l(z) = =6}, ze € I3, L. C{z:l(x) > —dc},

with d. > 0, see Figure 5.1.

Figure 5.1. Theorem 5.2.1

Let ue(x) = u(z) —e(eg — £(x)). We have that u, is convex and infr, u, <
0. The first assertion is trivial, and the second follows because z; € ', and
ue(z1) = u(z1) — €(eo — £(z1)) = 0 — eeg < 0. We also have

diSt(Hz, Hg) = (55 diSt(Hl, HQ) = €p,
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diSt(Hg, H3) (56
28 D and S - 0.
50 diSt(Hl, HQ) €0 an Oas e 0

Let us now study the quantity

|ue(z1)|
| infpe U,€| '

We have u(x) —e(ep —£(x)) > (infr, u) —e(eg—£(x)) for all z € T';. Since u =
0 on IT; NT, it follows that infr, u = 0. Hence u.(z) > —e(eo — £(x)) for all
z € I'¢, and so infp_ u. > infp, {—€(eg — 4(x))} = —€(eo+0¢). Consequently,

|U5(l'1)| € €Q €p

|infr, uc|  |infp, u | = €0 + 6.’

and since §, — 0 as e = 0, we obtain

Let T, be an affine transformation that normalizes T, i.e., By;,(0) C
T.(T.) C By(0),and u}(x) = | det T|*/™ u (T "' x). We have A < det D?u* <
A and uf = 0 on OT}, with T’ = T, (T'.). Then by the previous argument
we get that

|ug (Tea)|

| inf[*: Uz|

>0 >0 (5.2.1)

for € small.
We shall show that
dist(Tex1,0T%) — 0
as € = 0. Let II; = T.II;, with ¢ = 1,2,3. We shall prove that
dist (115, IT%)
——" 50 5.2.2
dist(I, 1) (522)

as € = 0. First observe that dist(Il7,II5) < C, because dist(IIF,1I5) <
dist(ITf N T*, T3 N TF) < 2, since T'* C B (0). Also,

dist(IT3, II3)  dist(I», I5) 6. o
dist(IT;, I3)  dist(IT;, II2) €

as € = 0 and (5.2.2) follows, and consequently dist(II5, II3) — 0. By Propo-
sition 3.2.3 we have |infr. u?| & (Mu?(I'?))'/", and from (5.2.1) we then
obtain |u}(Texz;)| > C (Mu:(F:))l/". Let OI'; be the part of the boundary
of I'! contained in the slab bounded by the planes II} and II} and let P, be
a point on OI'y such that the line through T,z and P, is perpendicular to
IT5. Then

dist(T.ay,0TF) < dist(T.ay,0T%) < |Towy — P.| < dist(IT5, I03),
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which implies that dist(Tez1,0) — 0, as € — 0. On the other hand,
applying Aleksandrov’s maximum principle, Theorem 1.4.2; to u¥ in I'} we
obtain

|ul(Texq)|™ < Cp dist(Texy,OT)) Mul (TF).
Therefore, we get dist(T.z1,0T%) > C1, a contradiction. [ ]

5.3 A strict convexity result
We begin with the following selection result.

Lemma 5.3.1 Let I'; be a sequence of convex domains such that By, (0) C
T; C B1(0); and let u; be a convex function in T that is a solution to

A S M’LL]' S A mn F]‘,
u; =0 on OT';.
Then there exist
(1) a normalized convex set T,

(2) a convex function us that is a solution to A < Muy < A in Ty,
with uoo|arw =0,

and o subsequence of u; converging to u. uniformly on compact subsets of
| P

If in addition, for each j we have x; € I'; such that dist(z;,T;) > € and
li(x) a supporting hyperplane to u; at x; such that

1
SJ‘ ={ze Iy :Uj(.CL‘) < 6](1') + ;} g {z € Ly :’LL]'(.CL‘) < =Ce},
then there exist
(8) a point xoo € Ty such that dist(xo,Ts0) > €, and

(4) a supporting hyperplane o, t0 Us Gt Too
such that

Soo = {7 € Top 1 o () <hoo(2)} € Too = {# € Teo : U (z) < —Cle}.
Proof. There exists a convex function in R", z = Fj(z) such that
F]‘ = {.CL' e R"” F](l‘) < 0}

and Fj(z) = 0 for « € OT';. For example, Fj(x) is the function that defines
the cone in R**! generated by dI'; x {0} with vertex at (0, —1).
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We shall prove that there exists a subsequence of F}, denoted also by
Fj, such that
Fj(z) = F(x)

for some F' continuous in the Euclidean ball By(0), where the convergence
is uniform. Since I'; is normalized,

By, (0) cl;CchB (0)

If p € 0F;(x), then |p| < ¢(n). We have —1 < Fj(z) < ¢/(n) in B2(0).
Therefore, the F}; are equicontinuous and bounded in B»(0) and by Arzela—
Ascoli, there is a subsequence that is uniformly convergent in Bs(0).

Let T = {z € B2(0) : F(z) < 0}. The function F is convex and
therefore so is I',. Let us show that

Bl/n(O) Clw C By (0)

If v € T, then F(z) < 0 and since Fj(z) = F(z), we have that F;(z) <0
for j large, that is ¢ € T'; C B1(0). We shall now prove that By, _5(0) C T'
for every 6 > 0. Let || < a, — ¢. By similarity we have for y € JT;
| (@)l = i, that is, |Fj(z)| = [z = vl > vl = |21 > 4. That is
[z =yl 1yl lyl |yl
|Fj(x)| > 6, and so Fj(z) < —¢. By letting j — oo we get F(z) < —0, i.e.,
T €.

Next, we prove that for every compact K € I', there exist positive
constants jo(K) and ¢(K) such that

that

K c {z €T, :dist(z,0T;) > ¢(K)},

for all j > jo(K). In fact, since K € ', dist(K,0T«) > €o(K) and then
F(z) < —no(K) for all x € K. Since F; — F, we have F;(z) < —@ for
all z € K and so K C I';. By the Aleksandrov maximum principle

|Fj(z)|" < Cp dist(x, 9T;) MF;(T;) < Cy, dist(x, IT;),

K n
and therefore dist(z,d;) > (%) for all z € K, and the claim is
proved.
We now claim that for every compact K € I', there exists C(K) such
that
lu; ()] + |p| < C(K), Ve € K, Vp€ du;(z).

By the properties of normalized solutions, |u;(z)| < C(n,A,A) in T';. By
Lemma 3.2.1, and the previous step, we have that |p| < C(K) for every
p € Ouj(z) for € K. Hence |uj(z) —u;(2)] < C(K)|z — 2| for 2,2z € K.
Then by Arzela—Ascoli there exists a uniformly convergent subsequence in
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K. We now take a sequence of compacts K1 C Ky C --- C 'y, such that
U;K; = T' and by a diagonal process we construct a subsequence u;(x)
that is uniformly convergent in any compact K C .
We define
Uoo(z) = lim u;(x), z € Deo.

j—oo
By Lemma 1.2.2, we have that u., satisfies

A< Mus <A

in 'y in the generalized sense, and since u;(x) < 0 we have that u, <0
in ['s. L

We shall prove that us € C' (I'ag) and us(z) = 0 on T To this end,
we first prove that for every n > 0 there exists a jo(n) such that

{z € T : dist(z,0T;) > n} C {z € ' : dist(z,0Tx) > en™}, (5.3.1)

for all j > jo(n). In fact, if yo € T'; and dist(yo,I';) > n, then by Lemma
5.1.6 applied to F; we get that Fj(yo) < —6,7. Since F; — F, we get
that F'(yo) < —Cn/2. By the Aleksandrov maximum principle applied to
F (note that F|sor_, = 0) we obtain

[F'(yo)|" < Crdist(yo, 0To0) MF(Tos),
which yields dist(yg, 0Ts) > (%) ' .
Next, we claim that
{r €T t ux(2) < —€} E T,
for each € > 0. In fact, by Aleksandrov,
{z el :uj(z) < —€/2} C {z €T, : dist(z,0;) > Ce"},
and hence by (5.3.1)
{z €T; : dist(z,dT;) > Ce"} C {z € T, : dist(z,00a0) > Ce™ } =4 K (e),
for j > jo(e). Therefore
Ujsjo{z € Ty tuj(x) < —e/2} C K(e). (5.3.2)
Since u; — U, it follows that
{ €T 1 U () < —€} C K(€).

It is now clear from the definition of K (¢) that lim,_,sr_ uso(z) = 0.
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It remains to construct the point ., and the supporting plane £, with
the desired properties. We have that

Sj ={z e Ly :Uj(l‘) < éj(l') + %} g {z € Iy :Uj(l‘) < —Ce} = Tj,

and consequently a point y; € I'; such that u;(y;) < £;(y;) + %, with £; a
supporting hyperplane to u; at ; and u;(y;) > —C e and dist(z;,0;) > e.
By choosing the constant C' appropriately and depending only on the
structure, we may assume that u;(y;) = —C'e. Indeed, by Lemma 5.1.6,
uj(z;) < €6, minp; u; < —eC(n, A, A). By joining the points z; and y;
with a segment, by continuity we can pick gy; on this segment so that
u;(f;) = —Ce.
By (5.3.1), z; € I'c and

dist(z;,0T~) > C€", (5.3.3)

for j large. Also by Aleksandrov,
(Ce)" = |u;(y;)|" < Cpdist(y;,0r;) Mu;(T;),
which implies dist(y;,d;) > C'e'/™. So again by (5.3.1)
dist(y;, 0T ) > C(e,n, A).
Then by choosing a subsequence z; — o, and y; — Yoo. Let {;(z) =
uj(z;) + p;j - (x — z;). By Lemma 3.2.1, we have |p;| < C. for j large and
by choosing a subsequence, p; = p~. Recall that u; = u uniformly on
compact subsets of T's. By (5.3.3) we have dist(zs, 0 ) > Ce™. Now
uj(x) > uj(z;) +pj - (x—x;), Voely,
and by letting j — oo,
Uoo(Z) > Uoo(Too) + Poo - (T — Too), Vr € Dy.

Then £ () = Uoo(Too) + Do - (T — Too) is a supporting hyperplane to

Uso at Zoo. Also, uj(y;) = —Ce, which implies u(yso) = —Ce, and also
Yoo € I'o. In addition, u;j(y;) < ¢;(y;) +% and by letting j — oo we

get Uoo (Yoo) < loo(Yoo), which means that yo, € Seo and Yoo ¢ Teo. This
completes the proof of the lemma. [ ]

Lemma 5.3.2 Let u be convex in ', not necessarily normalized, such that
for some zo € ['° we have

u(z) > u(xo) for all x € OT.
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Let 0, be a supporting hyperplane to u at xq. If the set
E={zx el u(x)="_{,(x)}
has more than one point, then E has an extremal point in the interior of T.

Proof. Suppose by contradiction that E has no extremal points in I'°. If
E* is the set of extremal points of E, then E* C OI'. By Remark 5.1.2,
To = Ziil i z; for some z; € E* and \; > 0 with Ziil A; = 1. Then

a contradiction. n

We are now in a position to prove the main result of this section.

Theorem 5.3.3 Given I' a convex and bounded normalized domain in R™,
consider u convez in ', a generalized solution of the problem

A < det D*u < A, u|ar = 0. (5.3.4)

Then for each € > O there exists 6 = 0(e) such that for all T normalized,
for all xo such that dist(xg,dT) > ¢, for all u that are solutions of (5.3.4),
and for all £(x) supporting hyperplanes of u at xo, we have

{rel:u(z) <lz)+0}el
where the inclusion is compact. Moreover
{r el u(z) <l(z)+06} C{x el ulx) < —Ce},

with C = C(n,\,A). We remark that ¢ is independent of zo, u, £ and T,
and depends only on e, \, A and n.

Proof. The proof is by contradiction. Suppose that there exists € > 0
such that for each § = % there exist a point z;, a normalized convex set I';,
dist(z;,I';) > €, a solution u; to (5.3.4) in I'; and a supporting hyperplane
¢; to u; at z; such that

Sj = {l‘ € Fj :Uj(.fl') < 6](1') + %} g {l’ S Fj 1Uj(-T) < _Ce}-
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By Lemma 5.3.1 we have

a normalized convex set [y,
a convex function us, a solution of (5.3.4) in T'e,
a point o € [y, such that dist(zo,['s) > €,

and a supporting hyperplane £, t0 s at oo
such that
Soo ={# € Tog 1 Uoo () <loo(2)} € Too = {& € Tog : Uso(x) < —Cle}.

That is, there exists z € Sy such that us(z) > —Ce. By Lemma 5.1.6,
Too € Teo, 1-€., Uno(Too) < —C'€, and so the segment Tooz has more than
one point. We have Tooz C Soo = {# € T : uno(z) = l(2)}, and by
Theorem 5.2.1, S, has no extremal points in the interior of I',. On the
other hand, by Lemma 5.3.1(2) we have that e (Too) < Ueo(z) = 0 for
all z € 0I'x and from Lemma 5.3.2 we conclude that S,, must have an
extremal point in the interior of I'y,, a contradiction. This completes the
proof of the theorem. [ |

5.4 C'* regularity

Lemma 5.4.1 Let ' be a convex normalized domain and u a generalized
solution to A < Mu < A in T with ulsr = 0. Given 0 <n < 1, set

Iy={zel:ulx)<(1-n) rr%inu},
and u(xg) = minp u. Then there exists p = (A, A,n) < 1 such that
1

where the dilations are with respect to .

Proof. Notice that by Theorem 5.2.1, there can be only one point where
the minimum is attained. )
Suppose by contradiction that for each j = 1,2,... and each p; =1——,
J
there exists a normalized domain I'; and a solution u; of A < Mu; < Ain
T; with ujlsr = 0, such that $T; ¢ p; (T';)1/2, where the dilation is with
respect to x; and minr; u; = u;j(z;). Notice that z; € $T; N pj (T;)12;
thus 3TN0 (uj (T))1/2) # 0 and so we can pick y; € 575,10 (1 (Tj)1/2) -
There is a subsequence y; — Y. By the selection Lemma 5.3.1 there is
a normalized domain 'y, and a convex function u,, a solution to A <
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Mus < Ain Iy, with us|r,, = 0, and u; = s, for some subsequence,
uniformly on compact subsets of I'o,. We claim that

1
Yoo € 5T N (Toc), 2 (5.4.2)

where the dilation is with respect t0 Zoo, Uoo(Too) = minp_ .. Assume
(5.4.2) for now. Construct the line segment through z,, and y., crossing
Ol at yZ . Since Yo, € 0 (Foo)l/2, it follows that teo(Yoo) = % minp__ Ueo,
and us(yk,) = 0 since yi, € Ilo. We have yoo = 0200 + (1 — 0) y, for
some 6 € (0,1). By convexity

DN | =

Uoo (Yoo ) = rlglinuoo < Ouoo(Too) + (L — Q) un(yi,) =6 rlglinuoo,

and since minp_ us, < 0, we get < 1/2. Suppose 0 < 1/2. Then y, =
Toot+(1-0) (Y —Too) € (1—0) OT o, but this is impossible since yo, € % L.
Therefore, § = 1/2 and 0 Y, is the midpoint of the segment z.y* . This
implies that u., is affine on this segment and hence if £ is a supporting
hyperplane containing this segment, we have that the set £ = {u = ¢}
has more than one point. By Theorem 5.2.1 applied to u, — ¢, it follows
that E has no extremal points in the interior of I's,. On the other hand,
u(z) > u(rs) for all x € Ol and by Lemma 5.3.2, E has an extremal
point in the interior of I'y,. This is a contradiction.

Let us prove (5.4.2). We have y; = z; + % (zj —z;) with z; € T';. By
Aleksandrov’s estimate, Theorem 1.4.2, dist(z;,0T';) > € since u;(z;) ~
C(n,\ A). By (5.3.1), z; € ' and dist(z;,0l'«) > C'€g, for j large. By
passing to a subsequence, ; — Z, and since dist(Z,0w) > C ey, there
exists € > 0 such that B.(Z) C I's. Since u; — uo uniformly on compact
subsets, u;j(z;) = Uoo(Z). Also uj(z;) < wj(z) for z € T'j, and letting
J — 00 We get Uoo(ZT) < Uoo() in Tyy. Therefore T = o, Now select a sub-
sequence so that z; = zo. We have Fj(z;) < 0, where F} are the defining
cones of I'; in the proof of the selection Lemma 5.3.1. Hence F(2+0) < 0,
SO Zoo € I'so. Then yoo = Zoo + % (Zoo — o) SO Yoo € %K It remains
to show that yo € O(T'sc)1/2- We have y; € 0 (uj (T)1/2) = pj O(L)1/2,
so y; = x; + pj (z; — x;), z; € 0(T;)1/2, uj(z;) = § minr, uj. Select a
subsequence z; — z* (again Aleksandrov guarantees that the z; are away
from the boundary), and by uniform convergence oo (2*) = lim;_, o0 u;(2;).

Hence too(2*) = §tioo(Too), 1., 2° € O(T's0)1/2. Passing to the limit in
yj =& + pj (25 — xj) yields yoo = 2*.
This completes the proof of the lemma. ]

Remark 5.4.2 Given 0 < n < 1, let V;(z) be the function whose graph
is the cone in R**! with vertex at (z9,0) and passing through the set
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{z el :u(z) =1 —n) u(zg)} x {—nu(xo)}. Then (5.4.1) is equivalent to
Vija(x) < pVi(z) for all € T'. Indeed, given x € T' consider the ray
emanating from xy and passing through z, and let ' = 7081“1/2 and z" =
u(zo) |z — o]

7 N Ir'. By similarity of triangles we get that Vi 5(2) = — > I i
r — Xp

|z — @0

1 1
and Vi (z) = —u(zo) Since $0+§(a:”—270) € §I‘, by (5.4.1) there

|z — ol
exists z € I'y /o such that § (2" —z0) = (2 — 20) and so |2" — zo| = 2p|z —
To| < 2ul2" — 20, and we get Vi z(z) < pVi(x). Conversely, if x € ' then
1 |z — xo] |z — zo] |z — xo]
2" — o]

1
So 5|a¢—xo|§u |2" — 20| < plz’ —x0].

2 |z —zo] =" |2 — x|’

1
That is, zo + 5(37 —x0) € uly)s.

We now show that the constant p in Lemma 5.4.1 is invariant under
affine changes of variables.

Lemma 5.4.3 LetT' be a bounded convex domain (not necessarily normal-
ized), and u a generalized solution to A < Mu < A in T with ulor = S,
B € R. Suppose u(xog) = minp u. Then

1 1

§Fc,u {wEF:u(w) < 3 (H}ﬂinu-{—ﬁ)},

where the dilation is with respect to xp, and 0 < u < 1 is the constant in
Lemma 5.4.1.

Proof. Let T be an affine transformation normalizing ', T(') = T'*,
and v(z) = | det T|*/™ (u(T~'z) — B) . The function v attains its minimum
at Tzg. Applying Lemma 5.4.1 to v in I'* yields %F* C p(T*)12, with
dilations with respect to Txzo. If 0 < < 1, then (I'*),, =T({z € T : u(z) <
(1—n) minp u+Sn}). Lettingn =1/2and E = {z € I' : u(z) < & (minp u+
B)}, we get (I'*);/, = T(E). On the other hand, u(I'*); /2 = T'(u E) and
iT* =T (3 T), where in both identities the first dilation is with respect to
Txo and the second with respect to zo. The lemma then follows by taking

T-1 ]

Corollary 5.4.4 Under the hypotheses of Lemma 5.4.1, we have that
I'C(2u)"Ty ), fork=1,2,...

Proof. By Lemma 5.4.1, T C 2uT'; /5. Applying Lemma 5.4.3 to I'y /, with

B = 5 minr u, and noticing that minr, , u = u(zo), we have that

1, . 1 .
[y C2uf{r €Ty u(z) < i(mrlnu-i— §rr¥nu)}
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So
1 1
L c2ulys C2u)P{z €Ty u(z) < (5 + Z)mrlnu}

Applying Lemma 5.4.3 to the set {z € 'y : u(z) < (3 + 1) minp u} with

B = (3 + 1) minru, we get

1 1 1
3 ) L Y
Fc@u’{zel: ux) < (2 +1t 8)rr¥nu}.
Continuing in this way
1 1 1 1
Ic@uk{zel:u) < (§+Z+§+---+27)H¥nu}
1
=C2wr{rel ulx) < (1- Q_k) rr%inu},
and the corollary is proved. ]

Theorem 5.4.5 If I is convex and u is a solution to A < Mu < A in T
with uw = 0 on AT, then u is C%® in the interior of T.

Proof. We proceed in a sequence of steps.

Step 1. If [ is normalized, then u is C"® at its minimum.

Let zg be the point where u attains its minimum. We shall prove that
u is CH* at x9. We have u(zg) = minr u ~ C(n,\,A). Then by Aleksan-
drov’s estimate, Theorem 1.4.2, dist(xq,dT") > €g, and so B, (z9) C I'. Let
x €I, x # xp, and pick k£ > 1 such that

—u(z0) 27% < u(z) — u(zo) < —u(zo) 2751

1
So u(x) > u(zo) (1 —> , and consequently z € I'y /5x. Then by Corol-

ok
lary 5.4.4, © & (2u) *T. So & & (21) % Bey(20) = Beyj2ur(20), ie.,
|2 — xo| > €0 (21) *. Since Ty j» C T and by Lemma 5.4.1, ircC pLya, it
follows that g > 1/2. Then p = 27% with 0 < § < 1. So |z — 20| > €0 (2
270k = €5 (27%)1 0. From u(z) —u(zo) < 2= *F1 (—u(xo)), we get 27F >
u(r) — u(zo)

—2u(xg)
fore

1-9
, and consequently ey (27%)1 =% > ¢4 <%&(?)> . There-
- 0

0 < u(z) — u(zo) < Cleo,n, A, A) [z — zo [/ 70

Step 2. If T is not necessarily normalized, then u is C* at its mini-
mum.

Again, let 9 be the point where u attains its minimum. Normalize
I with T, affine. Set T(I') = T* and w*(y) = |det T|>/®u(T~'y). Then
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A < Mu* < A and u* = 0 on 9T*. We have minp- u* = | det T|*/™ minp u =
| det T2/ u(zo) = u*(Txo). We also have dist(T'zg, 8T*) > C(n, A, A) since
T'* is normalized and the minimum is at Txg. Then

0 <u*(y) —u*(Txo) < Cly — Two| ™

by Step 1, and consequently

0 <u(z) —u(zo) |Tx — Taxo| 7.

< C
= |detT|?/n
Letting Tx = Az + b, we get

0 < u(z) — u(xo) ¢

= < rqergpr I b= ol

Step 3. If I' is normalized, and dist(zg, OT') > g, then |u(z) — £, (z)] <
C(\ A n,e) |z — 20|+, with £,, a supporting hyperplane to u at zq.

By Theorem 5.3.3, there exists § = d(eg, A, A, n) such that T'y, 5 = {z €
T:u(x) < lyy(z)+} €T Let v(z) = u(z) — €y, (z) —5. Then A < Mv < A
in [z,6, v =0o0n 0,5, and v(zo) = —6 = minr, , v. By Step 2,

0 < w(z) = v(zo) < Cleo, A, A) | A" [det T| /" |2 — o',

where Tz = Az+b normalizes I';, 5. To prove the claim we need to estimate
| All and | det T). Let u*(y) = v(T~"y) | det T|*/™. We have u* = 0 on I},
with I 5 = T(Ty,,5), and from (3.2.2) A < Mu* < A. Then by Proposition
3.2.3, we get minp- u* &~ C(n, A, A), but minp:  u* = —0|det T?/™ and
so |detT| ~ 6="/2. Tt remains to estimate ||A||. Let E be the ellipsoid
of minimum volume containing I';, s and suppose E has axes of length
AL, ..., Ap. The matrix A maps E to a translate of the unit ball. After

a rotation we can assume A is diagonal, A = diag{u,..., s} Assume
b= 0, then A(E) = B1(0), and so (0,...,0,);,0,...,0) € OF implies

A(O,...,O,)\i,o,...,O):(0,...,0,Mi/\i,0,...,0) EBl(O)

That is p; = A\;". Then ||A|| = max;{\; '}, and since det A = \; " -\, ~
6™ and \; < 1, we get that ||A|| < C §~™/2. Therefore

0 S ’U(ZL’) - ’1}(1170) S 0(607>‘7A7n) |£L' - w0|1+a’

for all z € 'y, 5.

Step 4. If T is not necessarily normalized, then the same conclusion as
in Step 3 holds.

Normalize I with T affine and apply Step 3 to u*(y) = | det T'|>/"™ u(T~'y)
in T'(T"). Notice that the constant now will also depend on the eccentricity
of . ]
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Lemma 5.4.6 Let T' be strictly convex, not necessarily normalized, and

feC(ar). Let
v(f)(x) = sup{l(x) : £ is affine and £ < f in OT'}.

Suppose u is a convezx solution to A < Mu < A in T’ with w = f on OI. If
u(zo) S V(f)(xo), then u is CH* at zo.

Proof. We may assume that u(zo) < v(f)(zo) — € for some ¢ > 0. We
claim that if dist(zq,dT) > €p, then there exists § > 0 such that

{z €T :u(z) < ly,(x)+0} €T.

If we prove the claim, then the result follows from Steps 3 and 4 above.
Suppose by contradiction that the claim is false. Then given § = 1/k,
there exist xy € T' with dist(zy,dT) > €o, a solution uy and a supporting
hyperplane ¢, to uy at z such that

{z €T :up(z) < by, (z) + %} @r,

and ug(zr) < v(f)(zr) — €. Then there exists yi € OT such that

Fr) = wn(we) < Lo, (i) + % (5.4.3)

We want a subsequence uj — u, uniformly on compact subsets of I' such
that us = f on 0T and u, € C(I). Since the uy are convex, we have
ug(z) < maxp f for all k and z € T'. By Theorem 1.6.2, let v solve Mv =
A > Mup in T; v = f on OT'. By the comparison principle, Theorem
1.4.6, ur > v in I'. Therefore the uj are uniformly bounded in I'. Hence
by Lemma 3.2.1, dui(T') is a uniformly bounded set in k for T" C T.
Therefore as in the proof of Lemma 5.3.1, we can select a subsequence of
uy such that up — uy and we get that A\ < Mu, < A. We now select
subsequences T — Too, dist(Zeo, ) > €, Yp — Yoo € O and £, a
supporting hyperplane t0 us at . Passing to the limit in (5.4.3), we
obtain f(yso) < £y (Yso), and since £, is a supporting hyperplane to
Uoo, it follows that £, (Yoo) = Uoo(Yoo)- Also £y (Too) = Ueo(Too), and
therefore uoo = £, on the segment Too¥. Hence Ty C E = {z €
I : ux(z) = £, (z)}, and by Theorem 5.2.1, E* C OT', where E* is the
set of extremal points of E. Then us(z) = £, (2) = f(z2) for z € E*.
Since £,_ is a supporting hyperplane to us and u., = f on T, we have
Ly (z) < f(x) for x € OT and so £, (x) < y(f)(z) for x € T. At z € E*
we have f(z) = £,_(z) < v(f)(2), therefore £, _(z) = v(f)(z). Now write
Too = Ziil Aiz; with z; € E*. Then

N N
V() (To) < ZAz Y(f)(zi) = ZAz loo (20) = Lo (Too) = Uoo(Too)-
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On the other hand, passing to the limit in ug(xg) < v(f)(2r) — € yields
Uoo (Too) < Y(f) () — €, a contradiction. [ |

Theorem 5.4.7 Let u be the convex solution to A < Mu < A, u = f on
Or with f € C*P(dT) and B > 1— 2. Then u is strictly convez in T

Proof. Suppose u is not strictly convex and let xg,z; € T' be such that
the segment PyP; is contained in the graph of u with Py = (zo,u(x0))
and P; = (z1,u(xy)). Let £ be a supporting hyperplane to u at the point
(o +21)/2, and let E = {x € T : u(x) — €(z) = 0}. We have Toz1 C E
and by Theorem 5.2.1, we have that E* C 0", with E* the set of extremal
points of . We claim that there are at least two distinct points zg, 21 € E*
such that ZgziNE # 0. In fact, it is impossible that ZgztNE = ) for all pairs
20,21 € E* because by convexity u — ¢ = 0 on Zyzy, and since xg,z; € E,
the segment Zox7 is generated by points in E*. By rotating and translating
the coordinates we may assume that Zpz7 lies on the coordinate axis z; and
(20 + 21)/2 is the origin. Let u*(x) = u(x) — ¢(x). We have u* > 0 and
A< Mu* < A. We set zg = —tger, 21 = tge; and we have u* = 0 on Zpz7.
Let ' = (z2,...,2,). We shall construct T, a thin tube of diameter 2¢
intersected with I' around the segment Zpz1, see Figure 5.2, and a barrier
B(t,z") such that B(t,z') > u* on 0T, B(0,0) =0, and MB < Mu*. Then
by the comparison principle, Theorem 1.4.6, B > u* in T¢, and consequently
u*(0) < 0, a contradiction.
Let

1
B(t,x'")=C (a"_l t?+— |w'|2> ,
a
where C and a are constants to be determined. We first claim that
0 <u*(t,z') < Cy|z'|'+7, for (t,2') € T.. (5.4.4)

Given (t,z') € T,, we write (¢t,2") = 0z, + (1 — 0)z{ with z{,2] € T. N IT,
andso 0 < uw*(t,z') < Of*(2))+(1—0)f*(z}), where f* is the corresponding
data after changing the coordinates. Now f*(z;) = u*(z;) =0 fori =0,1,
and since u* > 0 on OI' we have that Df*(z) = Df*(z1) = 0. Since
f* € CH8(aT), we then have f*(z) — f*(20) = o(|z0 — 24| *?), and since
OT is Lipschitz, we have |z{—2o| < c|z'| and consequently f*(z}) < c|z'|*+7.
Analogously, f*(2}) < e|2'|**”, and (5.4.4) is then proved.

Next we compare u* and B on OT.. First on the lateral side of OT.

1
Here |t| < to (roughly) and |2'| = €, and we then have B(t,z') > C€* —.
a

On the other hand, by (5.4.4) we get u*(t,z') < C; €5, Consequently to
get u* < B on the lateral side we need

1
Cé? E > Oy €1+6. (545)
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Figure 5.2. T,

C
On T.NOT, we have |t| ~ tg and so B(t,z') > Ca™ 2 > By a" 1 2. Again
by (5.4.4) we get u*(t,z2') < C} €!+7, and therefore we need that

Q

3 a" ik > O e P (5.4.6)

We now have that MB = (2C)" and if we pick C so that (2C)" < A we

obtain MB < Mu*.
61’6

We choose a = where 7y is a large number to be determined in a

Y
moment. Inserting this value of @ in (5.4.5) yields that we need vC > C}.
Inserting the same value of a in (5.4.6) yields that

c 21 —1)(n—

— ¢ +H+H(B-D(n-1) 5.4.7
2')/”7101 0 > € ( )
The exponent of € in (5.4.7) is positive if and only if § > 1 — % Therefore
picking e sufficiently small in (5.4.7) yields the desired domain T, and the
construction is complete. [ |



5.5. Examples 93

5.5 Examples

The following example shows that Theorem 5.4.7 is sharp. Let € R™ and

set z = (z1,2'); r = (X1, m%)lﬂ; u(t,r) a function of two variables and
z(x) = z(z1,...,2,) = u(zy,r). We have
n—2
det D%z = (utt Upy — (utr)2) (%) . (5.5.1)

Assume that n > 3 and let u(t,7) = (1 + ) r®. We shall prove that for
an appropriate choice of o, z is convex but not strictly convex and det D?z
is bounded between two positive constants in a small ball. By (5.5.1),

det D*z = 20" (14 #7)" % (@ — 1 — (o + 1)t2) p(@ 722,

2
Pick « so that n(a —2) +2 =0, i.e., « =2 — —, then
n
2\" ! 2 2
det D’z =2 (2-= 1+ 2 (1-=—(3-=)22) = )
ap’=2(2-2) (4l 2 2)a2) = ota)

The function z is a generalized solution to the equation above that is strictly
convex away from z' = 0. We show that A < Mz < A in a sufficiently small

1 2 2
ball B.(0). Indeed, 3 (1— —) — <3— —> 2?2 > 0 for |z1] < /C, = e
n n

Notice that z is convex in B(0) since it is continuous, nonnegative and

convex away from z' = 0. By the choice of a we have that z(z1,...,z,) =
(1+23) (X0, m?)l_l/n , and so on the boundary of B,(0) we have z(z) =

(1 + 22)(e2 — 22)* /", We have that z € C™1=2/"(dB.(0)), but z ¢
C™8(8B.(0)) for 3 > 1 — 2, showing that Theorem 5.4.7 is sharp.

n
In the same vein, we let 2(z,2') = |2/| + |2/|* (1 + 2}) with a = n/2.
As before, we have that Mz is bounded by two positive constants in a
sufficiently small ball B.(0), z is convex but is not strictly convex, z is
Lipschitz with constant 1, and Dz is only L*° and is not Holder continuous.

5.6 Notes

The results in this chapter are due to Caffarelli, [Caf90b] and [Caf91]. The
main result is the striking Theorem 5.2.1 about the extremal points of the
set where u equals a supporting hyperplane. The examples in Section 5.5
are basically contained in [Pog78, pp. 81-86]. For counterexamples and
results related to the C estimates of this chapter see [Caf93], [Wan92]
and [Wan95].
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Chapter 6

W2P Estimates for the
Monge—Ampere Equation

Our purpose in this chapter is to prove Caffarelli’s interior LP estimates
for second derivatives of solutions to the Monge—Ampeére equation. That
is, solutions u to Mu = f with f positive and continuous have second
derivatives in LP, for 0 < p < oo, Theorem 6.4.2. The origin of these
estimates goes back to Pogorelov [Pog71] who proved that convex solutions
to det D?u = 1 on a bounded convex domain 2 with u = 0 on 99 satisfy
the L* estimate

C1(Q,0) Id < D*u(x) < C2(Q,9Q) Id, (6.0.1)

for z € ', where Q' is a convex domain with closure contained in Q, Id is
the identity matrix, and C; are positive constants depending only on the
domains. The estimates (6.0.1) have been proved in Chapter 4, and they
follow as a consequence of Lemma 4.1.1; see (4.2.6).

6.1 Approximation Theorem

Theorem 6.1.1 Assume Q is a strictly convexr domain with C? boundary
such that By, (0) C Q C B1(0), 0 < € < 1/2, and u is a convex function
in Q that is a classical solution of

1—e<detD?u<1+e¢, in Q (6.1.1)
u =0, on 0f).

Let 0 < a < 1 and define the set

Dy ={ze€:ulz)<(l-a) Hgnu}.

95



96 Chapter 6. W?2P Estimates for the Monge-Ampere Equation

Given a positive number A define
Ay ={zo € Q: 3 U(z) affine such that

u(z) > %|m —20|? + £(z),Vz € Q and {(z0) = u(zo)}.

Then there exist a number o = o(a) and a constant C = C, depending
only on the dimension n, and both independent of Q, u and €, such that

|Qa \ Aa(a)| < Cpe.
Proof. Let w be a solution of

det D?w =1 in Q,
w=20 on 0N.

We have that w € C(Q) N C*>(2), see [CY77, Theorem 3, p. 59]. Also
det D*((1 + €)w) = (14 €)™ det D*w > (1 + €) det D*w > det D?u,
and by the comparison principle, Theorem 1.4.6,
1+ew<u in Q. (6.1.2)
Also,
det D*((1 — €)w) = (1 — €)" det D*w < (1 — €) det D*w < det D?u,

and consequently
(I-ew>u in Q.

So we get the estimate
lI+ew<u<(1l—ew in Q.

Thus )
— <u——=—<|=-— i . 1.
<2+e>w_u 2_<2 e)w in Q (6.1.3)

Since Q is normalized and w|pg = 0, we have by Proposition 3.2.3 that
| ming w| &~ 1 and consequently

w
- —|=1
m(zza,x|u 2|
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Let T'(z) be the convex envelope of u — % in Q.

Claim 1. For all z € Q we have the inequality

M) p)] < Cue

In fact, by (6.1.3) and the fact that w is convex we have

(% N e) w(z) < T(x) < G _ e) wiz) inQ, (6.1.4)

which yields

ie, |T'(z) — #| < e(—w(z)) < Cye, since | maxg(—w(z))| ~ 1.
Claim 2.
a(% — w(Q) C aT(Q) C a(% + w(Q).

By (6.1.4) and since w = 0 on 912, the claim follows from Lemma 1.4.1.
Claim 3. T' € C11(Q) and det D?T" = 0 a.e. outside of the contact set

Cz{mEQ:F(m):u(m)—@}.

This follows from Proposition 6.6.1.
If 2o € C, then the function u — % — I' attains its minimum 0 at the

point z¢ and hence D?(u — %)(xo) > D?T'(x9) > 0, for a.e. o € C. Now

for A, B symmetric and nonnegative matrices, we have the inequality
(det(A + B))Y™ > (det A)Y/™ + (det B)/™.

Hence

w /n

(det D?*(u — %)(mg))l/n + (det D2(5)(m0))1 < (det D2u(a:o))1/na

which implies

(det DT (z0))'/™ < (det D2u(x0))'/" - (det D2(%)(w0))1/n

)l/n
1 1 1
<+t -o<
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This inequality is valid for a.e. point in C. Then by Claim 2,

05 — w()| < |or(@)],

and so by Claim 3,

1 n 1 "
(— - e) / det D*w(z) dx < / det D’T'(z) dz < (— + e) IC|.
2 o . 2

This yields the estimate

L_\"
1> (35) 11> (- a0/

2

and therefore
|2\ C| < 4€|9|. (6.1.5)

On the set Q,, the function w is regular and by Pogorelov’s estimate
(4.2.6)
meld < D*w(z) < Mald Yz € Q,, (6.1.6)

with constants my, M, depending only on « and n. Hence, if g € Q,,
then by the convexity of w, we have the estimate

w(z) > w(xe) + Dw(wo) - (x — o) + %m|w — x0]%,

for all z € 2 and m a positive constant depending only on n and «. This
inequality follows from the Taylor formula. Indeed,

w(z) — w(zo) — Dw(xo) - (x — x0)
= /0 (Dw(zo + t(x — o)) — Dw(xp)) - (z — x0) dt,

and

(Dw(z) - Dw(y)) - (z — y) = / (D*w(y +0(z — ) (= — y), 2 — y) db,
imply that

w(z) — — Dw(zo) - (x — z0)

w(zo +0t(x — x0))(x — o), T — o) dBdL

| /
/ /1/2 w(zy +0t(r — x0))(T — 0), T — T0) dOdt
> [

v

1/2
|z — zo|* db,
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by (6.1.6), with m = m(«); because from the convexity of w and (6.1.2) we
have that o + 0 t(z — x0) € Qo, with o = 2 + 3a, for all 0 < 0 < 1/2,
0<t<1,and z € Q.

On the other hand, since I is the convex envelope of u(z) — M, we

2
have u(z) — M > T'(z),Vz € Q. Since I is convex and x € C, let £,, be
2 0

a supporting hyperplane to I' at zo. Then

1
u(@) > L@ + U2 > t() + Imle -, vaeo
This means that given 0 < o < 1, there exists a constant o, depending only
on « and n, such that

QW NCC Ay NQ, a:%, (6.1.7)
which implies
Qa\ 4, CQu\C.
Therefore from (6.1.5) we get
|QC¥ \ Aa(a)| < Cn €, (618)
and the theorem follows. [ |

6.2 Tangent paraboloids

The following lemma shows that if a solution to Monge—Ampére has a
touching paraboloid from below, then it has locally a touching paraboloid
from above.

Lemma 6.2.1 Let u be convex in Q such that A < Mu < A, u >0 in Q,
u(zo) =0 and
u(z) > oolz — w0, Vo € Q.

Then there exists a constant C = C'(n, A\, A) such that
u(@) < Cog "o — ol
for |x — xo| < & with & sufficiently small.

Proof. Let Sy = {z € Q : u(z) < t}. Noticing that S; is a section, by
Theorem 5.3.3 and Corollary 3.2.4, we get that |S;| ~ t™/2, for t < 6. Now

{wEQ:u(w)<t}C{w€Q:UO|w—m0|2<t}CB\/T(:U0).

g0
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Let v(z) = u(z) —t. We have v = 0 on 9S;, and by the Aleksandrov
maximum principle,

lo(z)|™ < C, dist(x,0S;) (diam(S;))"* Mv(S;).

Taking x = xg yields

n—1
" < C(n,\, A) dist (2o, IS;) (\/t/ao) /2

n—1

Therefore dist(zg,S;) > C(n,\,A) 0, > +/t, and so

Bc(m}\,A)\/wg—fl(wo) c Sy,
for t < 0. Hence, if € Q, then x ¢ Sy, and if u(z) < § we have

z ¢ B%W(mo). That is |z — 20| > cpy/u(z)oy™" and the lemma
follows. ]

We assume that A < Mu < Ain Q. If 0 < a < ag < 1 then there exists
no > 0 depending only on ag such that Si(zo) C Q(ag41)/2 for all £ < ng
and zg € Q. Then given A > 0 we define

DS = {zo € Q4 : St(xo) C By (o) for all t <o}
Also
Ar(u) = {wo € Q:u() > ol —=0f* + Du(zo) - (z—z0) +u(z0), Va €0}

Lemma 6.2.2 There exists a constant Cy > 0 depending only on ap, A,
A, n, and diam  such that

DY = Qo N Ayye(u),
forall A\ >C; and 0 < a < ag < 1.

Proof. By Theorem 5.3.3, there exists an 19 > 0 depending only on the
dimension (note that €2/, and the set of points = such that dist(z,0Q) >
1/4 are comparable) such that

Si(ro) € Q, Vo € Oy, vt < no.

Let g € D§ and £, be a supporting hyperplane to u at zo. Given z € (2,
let p = u(z) — £y, (2)(> 0). Then z € S,(xo). If v < 1o, then S, (x0) C
By /u(0), that is, |z — zo|* < A?(u(2) — £e,(2)), which implies

|~

u(z) >

5 |z — zo|* + €a,(2).

>
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If, on the other hand, u > 1o, then

0 2 Mo
Ly, — 0)? > ,
w(z) — lyo(2) > mo Tiam (@) diam(Q)* > diam(ﬂ)2|z zo|
for all z € 2. So, f > 1 the
T i — n
z Q7 2 52

that is, zo € Ay /52 (u).
If 2o € QaNAj/x2 (u) and x € Si(xo) with ¢ < ng, then u(z) —ly, () <t

1
and therefore ¢ > §|az — x0|%. This completes the proof of the lemma. ®

6.3 Density estimates and power decay

Proposition 6.3.1 Let0 < e < 1/2, and u a solution of 1—e < Mu < 1+4¢
in the normalized convexr domain Q with u = 0 on 9. Then there exists a
constant cog > 0 depending only on n and o in the Approzimation Theorem
6.1.1 such that if xg € Ny, and h < 1y/2, then we have

1Sh(20) \ Aco n(w)]

< Cpe.
1S (0)] ‘

2
Moreover, if A\ > ——, then
o 7o

IS (o) \ A1/x(u)]
|Sh (o)

< Che,

1
for h > v (C,, is the constant in the approzimation Theorem 6.1.1).
Co

Proof. The idea of the proof is to normalize u and then apply the approx-
imation Theorem 6.1.1 on a section. Notice that by Remark 3.3.9 Sp(z0)
is strictly convex, and since u is a classical solution, the boundary 9S,(xo)
is C2. Let T be the affine transformation that normalizes Sj,(xo). That is,

Ban (0) C T(Sh(wo)) C Bl(O)

We have Sp,(z0) = {x : u(z) < £y, (x) + h} with £,,(z) = u(zo) + Du(zo) -
(x — zp). Let
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where C is a constant that will be determined in a moment. Set

and
Si(wo) =T (Sn(wo)) -
We have o
D*u*(y) = o (T ) (D*u)(T ())(T ).
Hence

det D?u* (y) = (%) | det 7712 det D*u(T*(y)).

We now pick C' such that

% |det 771> = 1.

Since u satisfies the equation 1 —e < Mu < 1+¢, it follows that u* satisfies

1—e<detD?u* <1+e¢ in Sy (zo),
u* =0 on 05} (xo).

By definition of u* we have that

min u* = —C.
Sy (zo)

By Corollary 3.2.4, we have that |Sy,(zo)| & h™/?, for h < § depending only
on the structure and, since |T'(Sp(z0))| ~ 1, it follows that |det T'||Sy| =~ 1
and consequently |det T'| &~ h~"/2. Therefore C' ~ C,,. We then apply the

Approximation Theorem 6.1.1 with @ — Sy (zo) = S*, o = §, and u — u*
and we obtain

|55 (o) \ A (u”)]
|Sz<3h($0)|
Notice that (S*)g = (Sj(%0))s = T(Spn(x0)), and the doubling property

implies that |Sj,(z0)| = C(8). We now show that there exist universal
constants 0 < 8 < 1 and ¢y > 0 such that

<Cne,  with T(Sgn(z0)) = S5 (o).

St a(@0) N Ag(u®) C T (Sgn(0) N Acyn(u)) . (6.3.1)

Let z* € S;,(z0) N Ay(u*). Then z* = Tz with 21 € Sgp(wo). Since
z* € A, (u*), we have that

w*(z) > u*(z*) + Du*(z*) - (x — 2*) + o |z — z*|%,
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for all z € S} (xp). Changing variables back we obtain
h 2
u(z) —ly, () >0 ol |Tz — Tz |?,

for all x € Sp(zo). Recall that if x;, = center of mass of Sy(zp) and E

is the ellipsoid of minimum volume centered at xj and containing Sy, (zo),

the transformation 7T is such that T'(Sy(z0)) C T(E) = B1(0). Rotating the

coordinates, we may assume that the ellipsoid F has axes on the coordinate
_ ol _ pen

axes. That is, Tx = (m1 Th ey In xh) where p; are the axes of the

M1 n
ellipsoid. Since E C 3 and 2 is bounded, we have that u; < const, and
so ;' > const. Therefore [Tz — Txy| > C' |z — ;|- Consequently,

u(z) — Ly, (z) > C'ohl|z — 21, in Sp(zo). (6.3.2)

We now want to show that a similar inequality holds in all . Since z; €
San(zo), by the engulfing property, Theorem 3.3.7, Sgpn(z0) C Sopn(z1)
and hence g € Sggp(z1). Again by the engulfing property Spsn(z1) C
Sp2 g n(xo). If we pick 8 = 1/6?, then Shyo(x1) C Sp(xo), and the inequality
(6.3.2) holds for z € Sy g(x1). If @ & Sp,/9(21), then u(z) — Ly, (x) > h/6,
and we write

vl > C(6,0)holz — 12,

| >

1
o

pollz—nf
0 |z — a1 2

since |z — x1| < diam(Q). That is z; € As,p,(u) and therefore (6.3.1)

follows with ¢y = C o, and 8 = 1/6>.
By (6.3.1),

(%) \ A (u") = (57)s\((S™)s N Ag(u")) D (S™)s\T (Spn(w0) N Acyn(u)) -

Applying T! to both terms and setting L = Sz (z0) N Agyn(u) yields
1878\ Ar(w) DT ((SM)s \ T (L))

Since T='(A\ B) = T71(A) \ T~ (B), we get

(87 \ As(u™) D TTH(S)s) \ L
= Sﬂh( 0) \ (Ssn(0) NV Aco () = Spn(0) \ Acy n(w)-

Consequently
1S54 (20) \ Acon(w)| _ 1T~ (S54(x0) \ As (w))| _ [S54(20) \ Ag (u”)] <C e
1S5 n(0)] - TS5 R (x0)] |55 1 (o) Y

for h < ng, which yields the first conclusion of the proposition.
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To prove the second conclusion, notice that if o > u, then A,(u) C
Ayu(u). Hence Aqp(u) C Aiyx(u) for 1/X < coh. Now h < 19/2 and if
we assume h > 1/coA we have 19/2 > 1/coA, which forces us to choose
A Z 2/007]0. |

Theorem 6.3.2 Let 0 < e < 1/2; 1 — e < Mu < 1+ € in Q normalized
with u|lsq = 0.. There exist positive constants M, po, and Cs, independent
of €, such that

12\ Disal £ VCre|Qa \ DX,
forall A > Cs and 0 < 7 < a < ap with o — 7 = (M) ~Po.

Proof. Let O = Q. \ D}, and notice that O is open since D7, is closed.
By Lemma 6.2.2, D}, = Q- N Ay (a2 (u) for each X such that M > C4
and 0 < 7 < ap. Hence O = Q. \ Ay/(arn)2(u), and so Si(x9) N O C
Sh(zo) \ A1/(arr)2 (). Then by Proposition 6.3.1,

|Sk(20) N O
TR Ch e, (6.3.3)

1 Mo
for z9 € Qug, MA > max{cl,,/ﬁm}, and 5 << G On the
other hand, since O is open, we have that
. |Sh(zo) N O] _

lim 1

. f €0.
h—0 |Sh(l‘0)| or %o

We now use the following theorem.

Theorem 6.3.3 (Covering Theorem) Let O be a bounded open set and
0 < € small. Suppose that for each © € O a section Sy, (z) is given with
h, <3, and
|Sh, (z) N O] _
|Sh, ()]

Then there exists a subfamily of sections {Sh, (xr)}32, such that

C, e.

(1) z. € O and hy, < B for all k;
(2) O C UL, Shy (h);

|Shy (z1) N O]
|Shy (1)]

(4) |O| S vV Cn€| U]%i1 Shk (xk)|

(3) = Che€; and
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We postpone the proof of this theorem to Section 6.5.

If O =Q;\Dj,,, then for 2 € O we choose h, to be the largest h such

|Sh(z) NO| 1

——=—— > (Cye. From (6.3.3), h, < ————. By Lemma 6.5.1 the
Su@)] - (033, he < apyye BY

ratio |Sp(z) N O|/|Sk(z)| is a continuous function of h, and consequently

|Sh, () N O|/|Sh, ()] = Cre. Applying the covering theorem to O and

that

8= e we obtain a family of sections Sy, (z,) satisfying (1)—(4).

Claim: There exist M, pg, positive constants, such that
Shi(xK) C Qo \ DY, for all k&, (6.3.4)

for 0 < 7 < a < ap with a — 7 = (M) P,
We first show that

Shi(zr) C Qa, for all &, (6.3.5)

for 0 < 7 < a < ag with a — 7 = (MX)~P°. We apply Theorem 3.3.10
(i) with ¢ = —u(xg) = —mingu,r = 7,8 = «, and noticing that Q, =
Su(zo, a(—u(x))) and Q; = Sy (xo, 7(—u(x0))). Since zy € Qr, Sy(zk, Co(a—
)P u(x9)) C Sy(zo, —au(xp)). Since €2 is normalized, we have that u(zo) =

1
Cr- It Co(a — 1)Pru(zg) ~ e then we obtain (6.3.5).

Second we prove that
Sh,(zr) C (DY)". (6.3.6)
Suppose by contradiction that there exists zg € Sp, (zx) N DY. By the

1
engulfing property, Sh, (zr) C Son, (20). Since hy, < N we can pick A

sufficiently large such that 82h; < 19, and since o € DY we get

She (x) C San,, (x) C Soan,, (z0) C B(xo,A\\/20hy) C B(:L'Z,Q)n/ 20hy),

with 2} = center of mass of Sap, (zx). Let T' be an affine transformation
normalizing the section Sap, (zf),

Ban (0) C T(S2hk (Z‘k)) = S;: C Bl(O),

with Tz} = 0. Then B, (0) C T (B(z},2A\v/26h)) . We claim that

T=' (B(yo,h)) C B (T‘1y0,4a;1/\h\/0hk) , (6.3.7)

for any h > 0 and yo. Indeed, given z € B(yo, h) we write z = yo + e h with
le] < 1. We have e = a,' (ay€) = a,' TS, with B € B(z},2X\/20hs).
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Now Tz = A(x — z}) and T 'z = A~'z + z}. Then

T 12 =T 'yol = A" (eh)| = a," h|A (e an)]
= a; ' h|ATH(A(Br — 7))
=a, ' h|Br — 7}| < a,t h2X\\/20h,

and (6.3.7) is proved.
Let v(z) = % (u(z) — £y, () — 2hy) , and u*(y) = v(Ty) with C as
k
in the previous proposition. We have that 1 —e¢ < Mu* <1+4+eand u* =0
on 0S};. By the Approximation Theorem 6.1.1
[(Si)1/2 \ Ag (u™)] < Crel(Sk)1/2l- (6.3.8)
Notice that T'(S, (1)) = (S;)1/2. We claim that
T~ ((Sg)1/2 N Ay (u*)) C Diypy, (6.3.9)

for M sufficiently large. Let y* € A, (u*) with y* = Ty, y € Sp,, (zx). We
have
u*(z*) — O (2*) > olz* —y*?, for each z* € Sj.

So if x* € Sy« (y*,r) and r < §, where ¢ is the number in Theorem 5.3.3,

then |z* — y*| < \/r/0o, i.e.,
Su(y*,7) C B(y*,\/r/o), for r < §' with §' < 4. (6.3.10)

By definition of v, T=! (S, (y*,7)) = Su(y,2rhi/C). Then by (6.3.7)

T Y(B(y*,\/r/0)) C B(y,4a,* \\/0hi\/7/0),

and consequently

Su(y,2rhi,/C) C B(y,4a;, ' \/0hi\/r /o). (6.3.11)

We shall prove that y € D¢, for M large, ie., y € Qo and S,(y,h) C
B(y, MAVh). From (6.3.5), y € Q,.

Case 1. Assume that chn < ¢ < 6. Applying (6.3.11) with r = Ch
2hy, 2 hy,
yields

Su(y,h) C B(y,4a; " A\\/C0/20V'h),
and the claim follows with M = 4a,'/C6/20.
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Case 2. Assume that % > d',and h < ny. We pick 6’ = min{4,0 C/2}.
k

C C
Hence h;, < ﬁh and y € Sy <$k, 25

orem 3.3.7 and since zg € Sy, (xr), it follows that

c 6C
Y,To € Su (-Tka 2_6,h> - Su <y7 2_6,h> .

Again by the engulfing property,
0C 62 C
Su (y,2—6,h> C Su (.’L‘(),Q—élh) .
6% C

If ——h < ng, then

24’
6% C e
Su <.’L‘0,2—6lh> CB (l‘o,A 26' h)

since g € DY. So

h). By the engulfing property, The-

6C 62 C

0
By the choice of §' we have —C > 1 and consequently

248" —

e 24’
Su(y,h) C B (y,Q)\ 2—6’h> for h < 022? =1y < No-

If nj < h < no, then
di Q
Su(y,h) € Q C B(y,diam(Q)) = B (y mﬂ)

Vh
cB (y,(ﬁL\/n_(lm\/ﬁ> .
0

Therefore y € D, for

2 .
M > max 4 2 0 C',dlam(Q) ,
Vo5

and A > 1. This completes the proof of (6.3.9).
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Finally, with the aid of (6.3.9) we shall contradict (3) in the Covering
Theorem 6.3.3. We write

Shi(@p) N O = Sp, (z1) N (Q: \ Diyy)
= S (xr) N Q7 N (D)
= Sh(zr) N Q- N{Q- N Ay (u) }¢
= Shy, () N N (D) U (Ay(arnyz (w)}
= Shy (T) N Q2 N (A1 (a2 (w)°
C She () N Qo N (Aryarnyz (1) = (%)

It follows from Lemma 6.2.2 that QN (A1 /(arr)2 (v))¢ C (D3;y)¢- Therefore
(%) C Shy,(x) N (Diigy) = (%),
We claim that () C T~ ((Sp)1/2 \ 4o (u*)) . In fact, by (6.3.9)
(SE)1/2 \ As (W) = (S0)1/2 \ (0172 N Ae (W) D (Si)1/2 \ T (D) -
Applying T~ yields

T ((Spy2 \ Ae (™) DT ((Sp)1/2 \ T (D31y))
=7 ((S$)1/2) \ Dira = Shy, (1) \ Dl

and the claim is proved.

Therefore
[Sne (2) N O] _ [T~ ((Sp)1/2 \ Ar(u)) |
1S (&) =T (( Siy2) |
A,
_ [ k)1/2*\ @Il Ce.
|(Sk)1/2|
by (6.3.8). This contradicts (3) in the Covering Theorem 6.3.3 and com-
pletes the proof of the theorem. [ ]

6.4 LP estimates of second derivatives

We first prove the W2P estimates with data zero and right-hand side suf-
ficiently close to 1.

Theorem 6.4.1 Let Q be a normalized convex domain. Let 0 < € < 1/2
and suppose u is a convex classical solution to (6.1.1) with u = 0 on Of.
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Then given 0 < p < 00 and 0 < 7 < a < ag, there exists e(p,7) > 0 such
that

/ Decu(z)? dz < C,
Q.

for all le] =1 and 0 < € < €(p,T), with C a constant depending only on
p, T, and n.

Proof. We iterate the inequality in Theorem 6.3.2. Notice that we can
pick M large so that the statement of that theorem holds for all A > M.
We then begin the iteration with A = M and let a; = o — M ~2P°. We get

194, \D?\}l2| <VCne|Q\ Dyl
If A= M? and as = ay — M 3P0, then

Qa2 \ Difs| < VelQay \ Dife] < (VE)? [Qa \ DYy

Continuing in this way we let oy, = gy —M —(F+1po = a—Zle M—G+Dro
and obtain
|00, \ D] < (VCn 0 [\ Diy.

We fix 7 < a and choose M even larger than before (now depend-
ing also on 7) so that ap > a — Y22, MUt > 7 If 5 € A, (u)
then u(z) > |z — zo|*> + sy (x) for all x € Q. Then by Lemma 6.2.1,
u(z) < C(n)y~ " |z — zo|? + £y, (x) for = close to . That is Deou(zg) <
2C(n)y~ (™1 where e is any unit vector. By Lemma 6.2.2, if z; € D3iiss,s
then zo € Qa,NA; /2041 (1) and consequently Deeu(zo) < 2C(n) M= DL,
Therefore

D%y C{mo € Qq, : Decu(z) <2C(n) MDY
and consequently

{z0 € D, : Deeu(xo) > 20 (n) MDY 7\ D

Mi+1-
Now we can estimate the LP-norm of D..u. We have
||Deeu||lzp(gf)
[ee]
<ae-iria 4y [ Deou(w)? dz
=0 {z€Q, : M2(n-D(+D) <D, u(z)<M2(n-1(i+2)}
o0
< M= |+ Z/ D..u(z)P dex
=0 M {2 €0, : M2 =D+ < D, u(z) <M2An—1)(E+2) )

00
S O(Ma n,a, Tap) + Z |Qai \ D?\}ii+1 | M2(n71)(i+2)p

i=0

<C(M,n,a,1,p) +C(n) Z(, /Crr )1 MDD < o
i=0

2
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for € sufficiently small. [ ]

Notice that if A is an n X n symmetric matrix, then the eigenvalues of
A, AL > Ao > -+ > )\, are given by the formula:

An—k+1 —1‘£1kf {me‘gﬁ;{l:I}A:ﬂ T, k=1,...,n,
where the infimum is taken over all subspaces Sy of R” with dimension k;
see [CH53, vol. I, p. 32]. Noticing that in the previous argument the vector
e can be replaced by an arbitrary measurable function e(z) : Q, — S™71,
we obtain that
1A (@)||Lr (. < C,

for j = 1,...,n, where \;(z) is the j-th eigenvalue of the matrix D?u(z).
This generalizes the estimate (4.2.6).

Theorem 6.4.2 Let Q be a normalized conver domain and f € C(Q) with
0 < X< f(z) <A inQ. Suppose u is a solution to Mu = f in Q with
u|qg = 0. Then for each 0 < p < 00 and 0 < a < 1 we have

/ Decu(@)? dz < C(n,p, ),
Qq

for all |e] = 1.

Proof. Let y €  and suppose that we have a section S = S, (y,d) C Q
such that |f(y) — f(z)| < e, for each z € S,(y,d). Notice that since Q is
normalized we have from the property of size of sections, Theorem 3.3.8,
that

B(y,K10) C S(y,9) C B(y, K26, (6.4.1)

with Ky, K, b positive constants depending only on A, A and n. Let T be
an affine transformation normalizing S5(y) and consider the function

| det TP/
v(@) = fly)r/m

where ¢, is the supporting hyperplane to u at y. We look at v on the set
T(Su(y,9)), and we have v =0 on 0T (S,(y,9)), and

(W(T™'z) — €,(T"'2) = 4),

2 _ |detT|2/” “t (D2 (T—1z) T}
D*v(z) = 7f(y)1/” {(T Y (D*u)(T " x)T }
Hence
. | det T')? =2 () (T-12) — f(Tz)
Mou(z) = W) |det T|=° (Mu)(T™ z) = T
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Now f(y) —e < f(z) < f(y) + € for z € S, and so

LY (G i
SO R [ R ()
for z € T(S). Since f(y) > A, it follows that
e _f(T™'z) €
I_XSWS1+X’ for z € T(S).

Then applying Theorem 6.4.1 on the set T'(.S) to the function v we get that
/ D..v(x)P dx < C(n,a,p),
(T(S))a

for each unit vector e and € < €p 4.
By definition of v we have that

D2u(a:) - M Tt

= D*v)(Tz)T
|detT|2/n ( U)( l') Y

and consequently
Decu(z) = (D?u(x) e, €)

1/n
-t (T" (D*v)(Tx) Te,e)

" et T|?/n
fytr

B ﬁ (D*0)(T) Te, Te)

_ 2 /(2 1o ,  Te

= roegrm T (DT ) o =

f(y)l/n 2
= ————|T D.ov)(Tz).
ez [Tel (Do) (T2)
We have S = {z : u(z) — {y(xz) — 0 < 0} and so Sy = Sy(y,ad). On the
other hand, since T'(S) = Syor-1(Ty,d), it follows that (T'(S))q = T(Sa)-
Also Syor—1(Ty,ad) = {z : v(x) < (1 — @) minpgy v} by definition of v.
Therefore

/ Docu(wy? de = SO poen / (Do) (TP d
S | det T'[2p/n Sa

Fy)rm

= [det T|2/n [Te™ /(T(S)) (Dererv)(2)P |det T| ™" dz

|Tel?
|det T+

< fly)P/" ( ) C(a,m,p).
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To estimate the term between parentheses, let E be the ellipsoid of mini-
mum volume containing S, and let 1, ..., y, be the axes of E. If § is small,
then by Corollary 3.2.4 we have that |S| ~ 6"/2. The affine transformation
that normalizes S has the form

0 0
r; — ] Ty — Ty,
Tar:( sy ,
M1 Hn

where (29,...,29) is the center of the ellipsoid E (the center of mass of .9).

We have | det T| ~ 6 ™/2, and from (6.4.1) it follows that u; > K; 6. Hence

2
&21 ~ |Tel>6' T2 < C o2,
|det T|= % -

and consequently
/ Deou(x)P dz < C(\,A,n,a,p)d2P. (6.4.2)
Sa

We now pick § small depending only on the parameters A, A, a and the
modulus of continuity of f, so that |f(y)— f(z)| < e in B(y, K5 6°), y € Qq,
and next select a finite covering of Q, by balls {B(y;, K1 6)}?’:1 with y; €
Q4. The desired inequality then follows by adding (6.4.2) over (S(y;,9))a-
|

6.5 Proof of the Covering Theorem 6.3.3

We begin by stating and proving two lemmas. The following lemma shows
that the Lebesgue measure is doubling on the sections of a convex function.

Lemma 6.5.1 Let ¢ be a convex function in R™ whose sections Sy(z,p,t)
are bounded sets. Then

(a) |Ss(2,p,1)| < 2"|S4(x,p, 1/2)].
(b) For all0 <6 <1, |Sy(x,p,t)] — |Se(z,p,0t)| < n(l—0)|Se(z,p,t)|

Proof. Let £(z) be a supporting hyperplane to ¢ at the point (z, ¢(z))
with slope p. We have Sy(z,p,t) = {2 : #(2) < €(z)+t}. Let I be the cone
in R**! with vertex (x,#(z)) and base B spanned by the set {(z,¢(z)) :
z € 0Sy(x,p,t)}. Since ¢ is convex, I' C {(z, s) : ¢(z) < s}. The orthogonal
projection of B on R™ is the section Sg(z,p,t). Let 0 < 6 < 1, Hs =
I'n{(z,4(z) + dt) : z € R*}, and Bs the orthogonal projection of Hs
on R*. The convexity of ¢ implies that Bs C Sg(z,p,dt). Let I's be the
cone with vertex (z,¢(z)) and base Hs. We have |T's| = 6" |[|,|T| =
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1 1 . .
h|B|, and |T's] = —— d h|Hjs|, where h is the height of the cone
n+1 n+1

I. Hence |Hs| = 6™ |B|. On the other hand, |S4(x,p,t)] = c1|B| and
| Bs| = ¢1 |Hs|. Therefore,

1So(2,p, 1) = 07" [Bs| < 6" |Sg (2, p, )],
which is the doubling condition if § = 1/2. We also have
|S¢($,p,t)| - |S¢(Cﬂ,p’ 6t)| < |S¢(£U,p,t)| - |B(5|

= |S¢(-Tapat)| —o" |S¢(l‘,p,t)|
< (1—=6")[Ss(z,p,t)| <n(1—0)|Se(z,p, 1)l

It is well known that the Besicovitch covering lemma (see [Ste93, §8.17,
p.44]) does not hold for general families of convex sets. However, for the
convex sets Sy (z,t) we have the following result.

Lemma 6.5.2 Suppose that u is a convex function whose cross-sections
satisfy the conclusions of Theorem 3.3.8 and Corollary 3.3.6 (ii). Let A C
R™ be a bounded set. Suppose that for each x € A a section S,(z,t) is
given such that t is bounded by a fired number M. Let us denote by F the
family of all these sections. Then there exists a countable subfamily of F,
{Su(zk,tr)}32,, with the following properties:

(i) A CUZ, Suler th).
(ZZ) T §§ Uj<k5u(l‘j,tj), Vk > 2.

(i) For 0 < € < €, with €y sufficiently small depending only on the
constants in (3.3.6) and (3.3.5), we have that the family

Fe= {Su(xka (1 - E)tk)}z‘;l

has bounded overlaps. More precisely,
= 1
ZXSH(“,(ke)tk)(CU) < K log Py
k=1

where K is a constant depending only on the constants in (3.3.6) and
(3.3.5); xr denotes the characteristic function of the set E.

Proof.  To simplify the notation we write Sy(z,t) = S(z,t). We may
assume M = sup{t: S(z,t) € F}. Let

Fo={S(z,1) : % <t<M, S(z,t)eF},
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and

Ag ={x: S(z,t) € Fo}.
Pick S(z1,t1) € Fo such that t; > 2M. Then either Ay \ S(zy1,t1) =0 or
Ap \ S(z1,t1) # 0. In the first case, Ag C S(z1,t1) and we stop. In the
second case, the set

{t:S(z,t) € Fo and = € Ap \ S(z1,t1)}

is nonempty and we let as denote its supremum. Pick ¢ in this set such

that as > ty > %ag and let S(x2,t2) be the corresponding section. We

then have x5 ¢ S(x1,t1) and t; > %M > %ag > %t2. Again, we have either
A() \ (5(2171, tl) US(CUQ, t2)) = @ or A() \ (5(2171, tl) US(CUQ, t2)) ;é @ In the first
case, we have Ay C S(x1,t1) U S(x2,t2) and we stop. In the second case,
we continue the process. In general, for the jth-stage we pick ¢; such that
aj >t; > %aj where

aj =sup{t: S(z,t) € Fp and z € Ag \ U Sz, ti)},
i<j
and select S(z;,t;). We have ¢; > (2)77%; for j > i. Continuing in this
way we construct a family, possibly infinite, which we denote by
Fo = {S(@p, th) I

with
29 € A\ | S, 1)).

i<j

We now consider the family 71 = {S(z,t) : &L <t < 2} TLet

Ay ={z:Sx,t)eF and z¢ GS(w?,t?)}.

i=1

We repeat the construction above for the set A;, obtaining a family of
sections denoted by
Fi={S(z;, 1)}

We continue this process and in the kth-stage we consider the family Fj, =
{S(z,t) : 4= <t < 3£} and the set

Ay ={z:S(z,t) € F, and =z ¢ U sections previously selected}.
In the same way as before, we obtain a family of sections denoted by

Fi = {8, )}y

177
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Obviously, each section S(z¥,t¥) in the generation F, has the property that

R

M _ . M
2k+1 <t1 —2k

We claim that the collection of all the sections in all generations Fj,,
k > 1, is the family that satisfies the conclusions of the lemma.

To show (i), we shall first prove that each generation Fj, has overlapping
bounded by a constant depending only on the parameters in (3.3.6), and
independent of k£ and M. Second, we shall deduce from this that each
generation Fj, has a finite number of members; in particular, by relabeling
the members of 7} we obtain (ii). This implies that the process in the
construction of F, stopped at some point and therefore all the points of Ay
are covered by the union of F}. Consequently, (i) follows.

Let us then show that each generation F; has bounded overlapping.
Suppose that

2o € S( -N S(

with S(z7, k tk) € F. To simplify the notation we set a:f =z, t;;, = t;,
and let to be the maximum of all these ¢;, 1 < i < N. We may assume by
construction that z; ¢ S(x;,t;) for I > i. By (3.3.6) we have that

Jl’ ]1) JN’ JN)

B (2, Kot /to) C T(S(x4,t;)) C B <ZZ,K1 (t_>> ,

to

for 1 < i < N, where T is an affine transformation that normalizes S(zo, to),
z; = T(x;), and |z;| < K3. Since 2k+1 <t; <M o, we get

B (2i, K2/2) C T(S(zi,t:)) C B(z, K1).
Since z; ¢ S(x;,t;), we have that

T(x) ¢ T(S(xi,t), 1>,
and consequently,
|T(z1) — T(x;)| > K2/2, l>i. (6.5.1)

Let @ be the cube in R” with center 0 and edgelength 2(K1 + K3). We
have T'(S(z;,t;)) C Q, 1 <4 < N. We divide the cube @ into o™ congruent
subcubes Q with edgelength 2(K; + K3)/a. If T(z1,), T () € Q then

(T(x) = Tla)| < 2 2

If we select a large such that 2/n < K>/2, then by (6.5.1) each

subcube @ contains at most one T(x;). Therefore the overlapping in each

K1+ K3
a
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generation F, is at the most o™, where a can be taken to be the smallest
K+ K3

Ky, -

Let us now prove that the family Fj, = {S(z¥,t¥)}°, is finite. We set
again for simplicity ¥ = z; and t¥ = ¢t;. Since A is bounded, let C' > M /2*
be a constant such that A C S(z,C) for some z. From (3.3.6) we obtain

integer bigger than 4 \/n

B (2, Kat:/C) C T(S(xi,1:)) C B <zK1 <%>) ,

where T is an affine transformation that normalizes S(z,C), and z; = T'z;
with |z;| < K3. We have that

IN
—

M
c

Qls

and therefore

B (zi,K2£> C T(S(wits)) C B0, Ky + Ks).

2kC

Since the family Fj, has overlapping bounded by a™, the family T'(S(z;, t;))
also has overlapping bounded by ™. Then

> XT(S(ia) (@) < @™,
which implies
ZXB(ZZ-7K2M/2’“C) (z) < a™

Integration of this inequality over the ball B(0, K), where K = K; + K3,

yields
an < ¥e ) <a"w, K",

which implies that the number of terms in the sum is finite and we are
done.

We now estimate the overlapping of sections belonging to different
generations, but for this we need to “shrink” the sections selected. Let
0<e<1and

20 € ﬂs )te), (6.5.2)
where e; < ey < -+ < ¢ M2*(e'+1) <ty < M27¢%, and for
simplicity in the notation we set a:l = z;i and ¢; = t7i. Fix ¢ and let

J > i; we shall measure the gap between e; and e;. Let T; be an affine
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transformation that normalizes the section S(z;,t;). We have ¢; > t; for
j > i. Then again by (3.3.6)

i\
B (Zij,thj/ti) C Ti(S(.CL‘j,tj)) CB (Zij,Kl <t—J> ) R
i
where z;; = T;(x;) and |2;;] < K3. By construction x; ¢ S(x;,t;). Then by
(3.3.5) we have that

B(TZ(.CL‘J), Cen) N TZ(S(.CL‘“ (]. - E)ti)) = 0.
Consequently,

i\
Ce" <|Ti(z;) — Ti(20)| < K1 (—J> < 29 2eimei)e,

i
Hence 1
ej—e; <Ciln-,
€

where C is a constant depending only on €;,n,C and Ky, for all ¢ > 0
small, smallness depending only on the previous constants. In particular,
the number of members in (6.5.2) is at the most C; In(1/€), which together
with the fact previously proved that the overlapping of members in the
same generation is at the most o™ gives (iii), and the proof of the lemma
is complete. [ |

We can now prove Theorem 6.3.3.

Proof. (of Theorem 6.3.3) Set § = C), €. Let us take p > 0 small and apply
the variant of Besicovitch’s covering lemma, Lemma 6.5.2, to the family
of sections F = {S(z,hy)}zco. Then we can select from F a countable
subfamily, denoted by {S, = S(xk, hi)}32,, such that O C U2, S(zk, hi)
and

ZXS(zk,(lfu)hk)(w) < Cy log(1/p).
k=1

Let n’y(z) be the overlapping function for the finite family S} = S(xy, (1 -
w)hg) with k =1,...,N, i.e.,

n (z) = #{k:x € S(zp, (1 —phe)}, if z € U S(zk, (1 — p)hy),
) b if £ ¢ UY_,S(zp, (1 — p)hs).

We have the formula

1 N
Xoy 50 (@) = = > xse (2). (6.5.3)
ny(z) 4
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By Lemma 6.5.2(iii) we have n/y(z) < K log(1/pu).
We have

O] = |ONUL,Sk| = lim |ONUN_, Sk,
N—o00

and since |O N Si| = §|Sk|, it follows that

N N
0NU, Skl <D 10N S <6 |Sk]

k=1 k=1
N N
=0 [Sk\SEI+6 ) ISk
k=1 k=1
=T1+11I.
We first estimate I. By Lemma 6.5.1(b), we have |Si, \ Si| < np|Sk]
1
and consequently % < =g Thus

N
I<dnp Y ISkl <

k=1 =1

l_n’u/ZXs“
n 1 al

N

n 1
<§—K log(1 /— u(x)dx
<O K 1osW/n) | S I;xSk( )

n
=07 K log(1/) | Uil Si-

To estimate I] we write

<6 K log(1/u) /%ZXS;;(QJ) dx
k=1

= 0 K log(1/p) | U, Sg|-
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Therefore

1 —
< 20K log(1/p) | U2, SP,

I+1I<6K log(1/p) <1+ "’;/) |UN, S

for 0 < p < po with o sufficiently small (o = min{1/2n, €y} where € is the
constant in Lemma 6.5.2). The function ¢ () = 2 K log(1/p) is decreasing

1
on (0, o] and tends to +oo as g — 0. If § is such that — > 9(uo), then

. V6
we can pick p € (0, po] such that 7 = 1(p) and we obtain
(O] < VoI URZy SEI < VB[ U2y Sl

This completes the proof of the covering theorem. [ |

6.6 Regularity of the convex envelope

Let Q be a bounded convex domain in R?, and u € C(Q). Let T, be the
convex envelope of u in €2 defined by (1.4.1), and C the contact set, that is

C={zeQ:u(x)=T()}.
The goal in this section is to show the following.

Proposition 6.6.1 Let u € C?(Q) such that u =0 on 0Q and u < 0 in Q.
Then T, € CYY(Q) and det D>T,(z) = 0 for almost all z € Q\ C.

Lemma 6.6.2 Suppose u € C(Q). Let 2o € Q\C and L(z) = a+p- =
a supporting hyperplane to I, at xo. Then there exist at most n + 1 points

z; € C such that
n+1

To = E Az T,
i=1

where A; > 0, Y04 Ai =1, and L(z;) = Ty(w;) = u(x;), i = 1,...,n + 1.
In addition, if u € C'(Q) then p= Du(x;),i=1,...,n+ 1.

Proof. We have I, (z9) < u(zo). Since L(x) is a supporting hyperplane to
I, at zo, we have T}, () > L(z) for all z € Q and I,(zo) = L(zo). Since
u(z) > L,(x), it follows that u(z) > L(z) for all z € Q.
Let
H={zx€Q:u(r)=L(x)}.
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First, H # 0. Otherwise, u(z) > L(z) in Q and by compactness u(z) —
L(z) > ¢ > 0 on the same set and for some ¢ > 0. By definition of convex
envelope, I, (z) > L(z) + 6 in Q and so T, (z0) > L(x) + 6 = Ty (x0) + 6. A
contradiction.

Second, it is clear that H is closed.

Third, H C C. Indeed, let z € H, then u(z) = L(z) < I',(2). Hence
u(z) = Lu(2).

Fourth, zo € Con(H), the convex hull of H. Assume by contradiction
that o ¢ Con(H) and let N be a neighborhood of Con(H) and ¢(x) an
affine function such that £(zp) > 0 and ¢(z) < 0 in N. We have

min{u(z) — L(z) :z € A\ N} > § > 0.

Then there exists € > 0 such that u(z) — L(z) > ef(x) for all x ¢ N. On the
other hand, u(z) — L(xz) > 0 > el(z) in N. Therefore u(x) — L(z) > el(z)
in Q, i.e., u(z) > L(z) + el(z) and consequently T,(z) > L(x) + ef(x) for
all z € Q. Since L(zo) = Tu(zo), letting 2 = z¢ we obtain £(zy) < 0, a
contradiction.

Therefore by Caratheodory’s theorem [Sch93, Theorem 1.1.3, p. 3]

n+1

To = E Az T,
i=1

where \; > 0, Z::ll Ai =1, and ; € H. Then u(z;)

u(z;) > Lu(z;) > L(;), we obtain u(z;) > T,(z;) > L(z
supporting hyperplane to u at z;. If u € C'(Q) then

L(z;) and since
;). Hence L is a
L(z) <u(x) =u(z;) + Du(z;) - (z — ;) + o(|z — z4]), (6.6.1)

as x — z;. We have L(z) = u(z;) + p- (x — z;) and therefore inserting this
expression in (6.6.1) and letting x — x; yields p = Du(x;). [ |

Lemma 6.6.3 Let u € C*(Q). If zp € C N, then there exist constants
§ >0, M > 0, depending only on u (bounded by the C*>-norm of u in Q)
such that

Lu(z) < Tulwo) +p- (¢ — 70) + M (|2 — zo?)

for all © € Bs(xo) N Q, with p = Du(x).

Proof. By the Taylor expansion

1
u(z) = u(wo) + Du(xo) - (x — o) + E(DQu(wo)(w —x0), 2 — o) +0(|z —20]?),
as ¢ — xg. Since T, (z) < u(x) and Ty (zo) = u(xp), it follows that

Lu(x) < Tu(zo)+ Du(ro)-(z—0)+ 3 (D*u(io, fo) (z—0), 7o) +e(lr—o ),
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for some € > 0 and |z — 20| < ¢. The lemma then follows with M =
| D?u(zo)|| + €. |

Proof. (of Proposition 6.6.1) We now assume that v = 0 on 99, and u < 0
in . Suppose g € 2\ C, and let K be compact, K C Q, zy € K, and
L a supporting hyperplane to I, at zg, and z; the corresponding points
from Lemma 6.6.3, zg = Z?jll i ;- We claim that there exist a compact
Ko C Q, a constant C' > 0, and 1 < j < n + 1, depending only on K and
u, such that A\; > C and z; € Ky. Indeed, let —dy = maxg u < 0. Since
u=0in9Q, u < 0in Q and u € C(Q), there exists a compact set Ky C

in O\ Ko. We have L(zo) = 2?2-1-11 N L(z;) =

SN u(z), and —dp > u(zo) > Lzo) = 207 Aju(x;). Hence &y <
(n + 1) maxi<i<nt1{Ai(—u(z;))}. Relabeling the indices, we may assume
that the maximum is attained when i = 1. Then §y < (n + 1) A (—u(z1)).

do
Since A, < 1, . < -
ince \; <1, we get u(z;) < T

do
(n +1)(—u(z1))

1)
such that u > ——2
n+1

and consequently, z; € Ky. We also

get Ay > , and since u(x;) > ming u, we obtain

do
> =C.
= (n + 1)(— ming u) ¢

Recall that zg € Q\C and zy = Z::ll Aix;, with Ay > C and 21 € QNC;
L(z) is a supporting hyperplane to I, at o and by Lemma 6.6.2, L(z;) =
Tu(z;) = u(x;), L(z) = u(z;) + Du(z;) - ( — x;), and L is a supporting
hyperplane to [}, at z;, i =1,...,n+ 1.

Let h < dist(K,00Q). We write

L(ZIZO + h) < Fu(ilf() + h)

h
=TI, (Z)\lmz + A\ (:L'1 + /\—1>>
i>1

h
< ZN Lu(z;) + M Ty <€U1 + )\_>

i>1 1

h h
SZ/\iL(l‘i)+/\1 (L <1‘1+>\—1> +M‘)\_1

i>1

n+1 M
=L (Z Aix; + h) + )\—1|h|2

i=1

2
) , by Lemma 6.6.3

M
= L(xo + h) + —|h|%.
At

We claim that T,(z) is affine in the simplex generated by {z;};!.
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In fact, let x = Y p;x; with p; > 0 and > p; = 1. Since T, (z;) = L(z;)
and [, (z) > L(z) for all z, we get

L(z) < Tu(D miws) <Y plu(ws)
<Y wilul) =Y pil(x:) = L(w),

and so [,,(3" pix;) = L(>_ piz;) which proves the claim.

Consequently, det DT, (z) = 0 for x in the simplex generated by {z; ?2'11
and in particular for z = x. [ |
6.7 Notes

The W?P-estimates for the Monge-Ampere equation in this chapter are
from [Caf90a]. See also related results by Urbas [Urb88]. For examples of
weak solutions u to Monge—Ampere equations with f continuous and posi-
tive such that D?u & L> see [Wan95, p. 845] and [Wan92]. Lemma 6.5.2
is taken from [CG96] and it can be extended to metric balls, for example,
in the Heisenberg group [Gut]. The estimates of this chapter have been
recently extended to the parabolic Monge-Ampere operator —u; det D2u
in [GH].
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