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PREFACE

The heat equation is one of the three classical linear partial differential equations
of second order that form the basis of any elementary introduction to the area
of partial differential equations. Its success in describing the process of thermal
propagation has known a permanent popularity since Fourier’s essay Théorie
Analytique de la Chaleur was published in 1822 [237] and has motivated the
continuous growth of mathematics in the form of Fourier analysis, spectral
theory, set theory, operator theory, and so on. Later on, it contributed to the
development of measure theory and probability, among other topics.

The high regard of the heat equation has not been isolated. A number
of related equations have been proposed both by applied scientists and pure
mathematicians as objects of study. In a first extension of the field, the theory
of linear parabolic equations was developed, with constant and then variable
coefficients. The linear theory enjoyed much progress, but it was soon observed
that most of the equations modelling physical phenomena without excessive
simplification are nonlinear. However, the mathematical difficulties of building
theories for nonlinear versions of the three classical partial differential equations
(Laplace’s equation, the heat equation and the wave equation) made it impossible
to make significant progress until the twentieth century was well advanced. And
this observation applies to other important nonlinear PDEs or systems of PDEs,
like the Navier—Stokes equations.

The great development of functional analysis in the decades from the 1930s
to the 1960s made it possible for the first time to start building theories for these
nonlinear PDEs with full mathematical rigour. This happened in particular in the
area of parabolic equations where the theory of linear and quasilinear parabolic
equations in divergence form reached a degree of maturity reflected for instance
in the classical books of Ladyzhenskaya et al. [357] and Friedman [239].

The aim of the present text is to provide a systematic presentation of the
mathematical theory of the nonlinear heat equation

Ou=AWm), m>1, (PME)

usually called the porous medium equation (PME), posed in d-dimensional
Euclidean space, with interest in the cases d = 1,2,3 for the applied scientist,
with no dimension restriction for the mathematician. A = A, represents the
Laplace operator acting on the space variables. We will also study the complete
form, u; = A(|u[™"tu) + f, but in a less systematic way. Other variants appear
in the literature but will be given less attention, since we keep to the idea of
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presenting a rather complete account of the main results and methods for the
basic PME.

The reader may wonder why such a simple-looking variation of the famous
and well-known heat equation (HE): u; = Aw, needs a book of its own. There are
several answers to this question: the theory and properties of the PME depart
strongly from the heat equation; it contains interesting and sometimes sophis-
ticated developments of nonlinear analysis; there are a number of interesting
applications where this theory, with all its differences, is necessary and useful;
and, finally, similar treatises have been written for individual equations with a
strong personality. As for the latter argument, we have the example of the heat
equation itself, described in the monographs by Cannon [148] and Widder [525],
and also the Stefan problem that is closely related to the HE and the PME and
was reported in the books of Cannon [148], Rubinstein [454] and Meirmanov
[388].

Let us now comment on the first aspects listed some lines above. The theory
that has been developed and we present in this text not only settles the main
problems of existence, uniqueness, stability, smoothness, dynamical properties
and asymptotic behaviour. In doing so, it contributes a wealth of new ideas
with respect to the heat equation; great novelties occur also with respect to the
standard nonlinear theories, represented by the theory of nonlinear parabolic
equations in divergence form to which the porous medium equation belongs.
This is due to the fact that the equation is not parabolic at all points, but
only degenerate parabolic, a fact that has deep mathematical consequences, both
qualitative and quantitative. On the other hand, and as a sort of compensation,
the equation enjoys a number of nice properties due to its simple form, like
scaling invariance. This aspect makes the PME an interesting benchmark in
the development of nonlinear analytical tools for the quite general classes of
nonlinear, formally parabolic equations that continue to make their way into the
pure and applied sciences, and then into the mainstream of mathematics.

There are a number of physical applications where the simple PME model
appears in a natural way, mainly to describe processes involving fluid flow, heat
transfer or diffusion. Other applications have been proposed in mathematical
biology, lubrication, boundary layer theory, and other fields. All of these reasons
support the interest of its study both for the mathematician and the scientist.

Context

In spite of the simplicity of the equation and of having some important
applications, and due perhaps to its nonlinear and degenerate character, the
mathematical theory of the PME has been only gradually developed in the last
decades after the seminal paper of Oleinik et al. [408] in 1958; in the 1980s the
theory was finally on firm ground and has been rounded up since then. The
idea of the book arose out of the participation of the author in this progress
in the last three decades. The immediate motivation for writing the text is the
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feeling that the time is ripe for a reasonably complete version of the mathematics
of the PME, once the main mathematical issues have come to be fairly well
understood, and every result receives a proof in the style of analysis. We are
also aware of the need for researchers to apply to more complex models the
wealth of techniques that work so well here, hence the need for clear and
balanced expositions to learn the material. Therefore, we aim at providing a
description of the questions of existence, uniqueness and the main properties of
the solutions, whereby everything is derived from basic estimates using standard
functional analysis and well-known PDE results. And we have tried to provide
sound physical foundations throughout.
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1

INTRODUCTION

1.1 The subject
1.1.1  The porous medium equation

The aim of the text is to provide a systematic presentation of the mathematical
theory of the nonlinear heat equation

O =Au™), m>1, (PME)

usually called the porous medium equation, with due attention paid to its closest
relatives. The default settings are: u = u(x,t) is a non-negative scalar function
of space x € R? and time ¢ € R, the space dimension is d > 1, and m is a
constant larger than 1. A = A, represents the Laplace operator acting on the
space variables. We will refer to the equation by the label PME. The equation
can be posed for all € R? and 0 <t < oo, and then initial conditions are
needed to determine the solutions; but it is quite often posed, especially in
practical problems, in a bounded subdomain © C R? for 0 < t < T, and then
determination of a unique solution asks for boundary conditions as well as initial
conditions.

This equation is one of the simplest examples of a nonlinear evolution
equation of parabolic type. It appears in the description of different natural
phenomena, and its theory and properties depart strongly from the heat equa-
tion, u; = Aw, its most famous relative. Hence the interest of its study, both for
the pure mathematician and the applied scientist. We will also discuss in less
detail some important variants of the equation.

There are a number of physical applications where this simple model appears
in a natural way, mainly to describe processes involving fluid flow, heat transfer
or diffusion. Maybe the best known of them is the description of the flow of an
isentropic gas through a porous medium, modelled independently by Leibenzon
[367] and Muskat [394] around 1930. An earlier application is found in the study
of groundwater infiltration by Boussisnesq in 1903 [123]. Another important
application refers to heat radiation in plasmas, developed by Zel’dovich and
coworkers around 1950 [533]. Indeed, this application was at the base of the
rigorous mathematical development of the theory. Other applications have been
proposed in mathematical biology, spread of viscous fluids, boundary layer
theory, and other fields.

Most physical settings lead to the default restriction w > 0, which is math-
ematically convenient and currently followed. However, the restriction is not
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essential in developing a mathematical theory on the condition of properly
defining the nonlinearity for negative values of uw so that the equation is still
(formally) parabolic. The most used choice is the antisymmetric extension of
the nonlinearity, leading to the so-called signed PME,

O = Afu)™ ). (sPME)

We will also devote much attention to this equation. For brevity, we will often
write u™ instead of |u|™ 1w even if solutions have negative values in paragraphs
where no confusion is to be feared. There is a second important extension,
consisting of adding a forcing term in the right-hand side to get the complete
form

O = A(|u|™ tu) + f, (cPME)

where f = f(x,t). The full form is the natural framework of the abstract
functional theory for the PME, and has also received much attention when
f = f(u) and represents effects of reaction or absorption. The dependence of f
on Vu occurs when convection is taken into account. We will cover the complete
form in the text, but the information on the qualitative and quantitative aspects
is much less detailed in that generality, and we will not enter into the specific
properties of reaction—diffusion models. Specially in the second part of the book,
we want to concentrate on the plain equation (PME), hence the simple label for
that case. The complete porous medium equation is also referred to as the PME
with a source term, or the forced PME.

Equation (PME) for m = 1 is the famous heat equation (HE), that has a well
documented theory, cf. Widder [525]. The equation can also be considered for
the range of exponents m < 1. Some of the properties in this range are similar
to the case m > 1 studied here, but others are quite different, and it is called the
fast diffusion equation (FDE). Since it deserves a text of its own, the FDE will
only be covered in passing in this book. Note that when m < 0 the FDE has to
be written in the ‘modified form’

Ou = A(u™/m) = div(u™ ' Vu)

to keep the parabolic character of the equation. This form of the equation allows
us also to include the case m = 0 which reads d;u = div(u~'Vu) = Alog(u), and
is called logarithmic diffusion.

1.1.2 The PMFE as a nonlinear parabolic equation

The PME is an example of nonlinear evolution equation, formally of parabolic
type. In a sense, it is the simplest possible nonlinear version of the classical heat
equation, which can be considered as the limit m — 1 of the PME. Written in
its complete version and in divergence form,

Opu = div(D(u)Vu) + f, (1.1)
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we see that the diffusion coefficient D(u) of the PME equals mu™~! assuming
u > 0, and we have D(u) = m|u|™? for signed solutions (D(u) = |u[™"! in the
modified form). It is then clear that the equation is parabolic only at those points
where u # 0, while the vanishing of D(u) is recorded as saying that the PME
degenerates wherever u = 0. In other words, the PME is a degenerate parabolic
equation. The theory of nonlinear parabolic equations in divergence form deals
with the class of nonlinear parabolic equations of the form

Opu = divA(z, t,u, Du) + B(x, t, u, Du), (1.2)

where the vector function A = (A4;,...,A44) and the scalar function B satisfy
suitable structural assumptions and A satisfies moreover ellipticity conditions.
This topic became a main area of research in PDEs in the second half of the last
century, when the tools of functional analysis were ready for it. The theory
extends to systems of the same form, in which w = (uq,...,ux) is a vector
variable, A is an (m,d) matrix and B is an m-vector. Well-known areas, like
reaction—diffusion, are included in this generality. There is a large literature on
this topic, cf. e.g. the books [239, 357, 482] that we take as reference works.
The change of character of the PME at the level ©w =0 is most clearly
demonstrated when we perform the calculation of the Laplacian of the power
function in the case m = 2; assuming u > 0 for simplicity, we obtain the form

Opu = 2u Au + 2|Vul?. (1.3)

It is immediately clear that in the regions where u # 0 the leading term in
the right-hand side is the Laplacian modified by the variable coefficient 2u; on
the contrary, for u — 0, the equation simplifies into dyu ~ 2|Vul|?, the eikonal
equation (a first-order equation of Hamilton—Jacobi type, that propagates along
characteristics). A similar calculation can be done for general m # 1 after intro-
ducing the so-called pressure variable, v = cu™ ™! for some ¢ > 0. We then get

v = av Av +b|Vul?, (1.4)

with a =m/c, b=m/(c(m — 1)). This is a fundamental transformation in the
theory of the PME that allows us to get similar conclusions about the behaviour
of the equation for u,v ~ 0 when m # 2. The standard choice for ¢ in the
literature is ¢ = m/(m — 1), because it simplifies the formulas (a =m — 1,b = 1)
and makes sense for dynamical considerations (to be discussed in Section 2.1),
but ¢ =1 is also used. Mathematically, the choice of constant is not important.
Note that similar considerations apply to the FDE but then
_m
- |u|t=m

D(u) — o0 as u— 0, (1.5)
hence the name of fast diffusion which is well deserved when u ~ 0. The pressure
can be introduced, but being an inverse power of u, its role is different from that
in the PME. All this shows the kinship and differences from the start between
the two equations.
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In spite of the simplicity of the equation and of having some important
applications, a mathematical theory for the PME has been developed at a slow
pace over several decades, due most probably to the fact that it is a nonlinear
equation, and also a degenerate one. Though the techniques depart strongly
from the linear methods used in treating the heat equation, it is interesting to
remark that some of the basic techniques are not very difficult nor need a heavy
machinery. What is even more interesting, they can be applied in, or adapted to,
the study of many other nonlinear PDEs of parabolic type. The study of the PME
can provide the reader with an introduction to, and practice of some interesting
concepts and methods of nonlinear science, like the existence of free boundaries,
the occurrence of limited regularity, and interesting asymptotic behaviour.

1.2 Peculiar features of the PME

When considering the linear and quasilinear parabolic theories, the main ques-
tions are asked in comparison to what happens for the heat equation, which
is the model from which these theories take their inspiration. Thus, the three
main questions of existence, uniqueness, and continuous dependence are posed
in the literature, as well as the questions of regularity, the validity of maximum
principles, the existence of Harnack inequalities, and so on; in some sense, these
comparative questions receive positive answers, though the analogy breaks at
some points, thus originating novelty and interest.

1.2.1  Finite propagation and free boundaries

The same golden rule of comparison with the HE is applied to the theory
developed in this book for the PME. The main questions can be posed, but then
we see that such questions, though important, do not convey the special flavour
of the equation. Indeed, the PME offers a number of very peculiar traits that
separate it from the core of the parabolic theory. Mathematically, the difficulties
stem from the degenerate character, i.e., the fact that D(u) is not always positive.
Explaining the consequences implies changing the way the heat equation theory
is developed. We will be led to introducing dynamical concepts to account for
the main qualitative difference, which is the property called finite propagation
that will be precisely formulated and extensively explored in the text, especially
in Chapters 14 and 15. This property is in strong contrast with one of the better
known properties of the classical heat equation, the infinite speed of propagation,
one of the most contested aspects of the HE on physical grounds. Let us express
the contrast in simplest terms:

e HE: ‘A non-negative solution of the heat equation is automatically positive
everywhere in its domain of definition’; to be compared with

e PME: ‘Disturbances from the level w = 0 propagate in time with finite speed
for solutions of the porous medium equation’.
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In a sense, the property of finite propagation supports the physical soundness of
the PME to model diffusion or heat propagation.

A first consequence of the finite propagation property for the theory of
the PME is that the strong maximum principle cannot hold. On the positive
side, it means that, whenever the initial data are zero in some open domain of
the space, the property of finite propagation implies the appearance of a free
boundary that separates the regions where the solution is positive (i.e. where
‘there is gas’, according to the standard interpretation of u as a gas density,
see Chapter 2), from the ‘empty region’ where u = 0. Precisely, we define the free
boundary as

I'=0P,NQ, (1.6)
where @ is the domain of definition of the solution in space-time,
Pu={(z,t) € Q : u(x,t) > 0} (1.7)

is the positivity set, and O denotes boundary. Since I' moves as time passes,
it is also called the moving boundary. In some cases, especially in one space
dimension, the name interface is popular.

The theory of free boundaries, or propagation fronts, is an important and
difficult subject of the mathematical investigation, covered for instance in the
book by A. Friedman [240]. In principle, the free boundary of a nonlinear
problem can be a quite complicated closed subset of ). A main problem of
the PME theory consists of proving that it is at least a Holder continuous (C%)
hypersurface in R%t!, and then to investigate how smooth it really is. Let us
advance that it is often C'* smooth, but not always.

Let us illustrate the two main situations that will be encountered. In the first
of them, the space domain is R, the initial data ug have compact support, i.e.,
there exists a bounded closed set Sy C RY such that ug(x) = 0 for all x # S.
In that case, we will prove that the solution u(z, t) vanishes for all positive times
t > 0 outside a compact set that changes with time. More precisely, if we define
the positivity set at time t as P, (t) = {x € R? : u(x,t) > 0}, and the support at
time ¢ as S, (t) as the closure of P,(t), then both families of bounded sets are
shown to be expanding in time, or more precisely stated, non-contracting. Note
that positivity sets and supports are not defined in the everywhere sense unless
solutions are continuous; showing continuity of the solutions is a main issue in
the PME theory, and it has been a hot topic in nonlinear elliptic and parabolic
equations since the seminal papers of De Giorgi, Nash and Moser.

In the second scenario, the initial configuration ‘has a hole in the support’,
i.e., there is a bounded subdomain Dy # ) such that ug(z) =0 for every z in
the closure of Dy, and wug(x) > 0 otherwise. Then, the solution has a possibly
smaller hole for ¢ > 0. The fact that this hole does disappear in finite time (it is
filled up), motivates one of the most beautiful mathematical developments of the
PME theory, the so-called focusing problem that we will study in Chapter 19.
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1.2.2  The role of special solutions

Following a standard practice in applied nonlinear analysis and mechanics, before
developing a fully fledged theory, the question is posed whether there exist special
solutions in explicit or quasi-explicit form that serve as representative examples
of the typical or peculiar behaviour. The answer to that question is positive in
our case; a reduced number of representative examples have been found and they
give both insight and detailed information about the most relevant questions,
like existence, finite propagation, optimal continuity, higher smoothness, and so
on.

A fundamental example of solution was obtained around 1950 in Moscow by
Zel’dovich and Kompaneets [532] and Barenblatt [60], who found and analysed
a solution representing heat release from a point source. This solution has the
explicit formula

Uz, t) =t (C = klat27) 7T, (1.8)
where (s)4 = max{s, 0},
___ 4 _o poom-l)
= am-ntz "Ta T Tama (1.9)

and C' > 0 is an arbitrary constant. The solution was subsequently found by
Pattle [418] in 1959. The name source-type solution is due to the fact that it
takes as initial data a Dirac mass: as t — 0 we have U(z,t) — M 6(x), where
M is a function of the free constant C' (and m and d). We will use the shorter
term source solution, and very often the name ZKB solution that looks to us
convenient. We recall that the names Barenblatt solution and Barenblatt—Pattle
solution are found in the literature.

An analysis of this example shows many of the important features that we
have been talking about. Thus, the source solution has compact support in space
for every fixed time, since the free boundary is the surface given by the equation

t = cla|dm=D+2, (1.10)

where ¢ = ¢(C,m,d). In physical terms, the disturbance propagates with a
precise finite speed. This is to be compared with the properties of the Gaussian
kernel,

E(x,t) = M (47t)~¥? exp (—2% /4t), (1.11)

which is the source solution for the HE.

There are many other special solutions that have been studied and shed light
on different aspects of the theory. Some of the most important will be carefully
examined in Chapter 4 and then used in the theory developed in this text. They
take the main forms of separate-variables solutions, travelling waves and self-
similar solutions. Chapter 16 is entirely devoted to constructing solutions. They
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play a prominent role in Chapters 18 and 19, where the focusing solutions have
a key part in settling the regularity issue.

1.3 Nonlinear diffusion. Related equations

The PME is but one example of partial differential equation in the realm of
what is called nonlinear diffusion. Work in that wide area has frequent overlaps
between the different models, both in phenomena to be described, results to be
proved and techniques to be used. A quite general form of nonlinear diffusion
equation, as it appears in the specialized literature, is

d
OpH (z,t,u) =Y Op, (Ai(,t,u, Du)). (1.12)
i=1

Suitable conditions should be imposed on the functions H and A;. In particular,
OuH(z,t,u) >0 and the matrix (a;;) = (Ou, Ai(,t,u, Du)) should be positive
semidefinite. If we want to consider reaction and convection effects, the term
B(x,t,u, Du) is added to the right-hand side. A theory for equations in such a
generality has been in the making during the last few decades, but the richness
of phenomena that are included in the different examples covered in the general
formulation precludes a general theory with detailed enough information.

Progress has been quite remarkable on more specialized topics like ours. Let
us mention next four natural extensions of the PME in that direction. Though
they have some important traits in common with the PME, they are different
territories and we think that the deep study deserves a separate text in each
case.

(i) FAST DIFFUSION. Much of the theory can be and has been extended to the
simplest generalization of the PME consisting of the same formal equation, but
now in the range of exponents m < 1. Since the diffusion coefficient D(u) =
|u|™~! goes now to infinity as u — 0, the equation is called in this new range
the fast diffusion equation, FDE. In this terminology, the PME becomes a slow
diffusion equation.

There are strong analogies and also marked differences between the PME
and the FDE. For instance, the free boundary theory of the PME disappears for
the FDE. We will only make small incursions into it. We refer to the monograph
[515] and its references as a source of further information.

(ii) FILTRATION EQUATIONS. A further extension is the gemeralized porous
medium equation,

Opu = AP(u) + f, (GPME)

also called the filtration equation, specially in the Russian literature; ® is an
increasing function: Ry — R,, and usually f = 0. The diffusion coefficient is
now D(u) = ®’(u), and the condition ®'(u) > 0 is needed to make the equation
formally parabolic. Whenever @’ (u) = 0 for some u € R, we say that the equation
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degenerates at that u-level, since it ceases to be strictly parabolic. This is the
cause for more or less serious departures from the standard quasilinear theory,
as we have already explained in the PME case.

An important role in the development of the topic of the filtration equation
has been played by the Stefan problem, a simple but powerful model of phase
transition, developed in the study of the evolution of a medium composed of
water and ice. It can written as a filtration equation with

O(u)=(u—1)y foru>0, P®(u)=u foru<D0. (StE)

More generally, we can put ®(u) =c¢1(u— L)4 for u >0, and ®(u) = cau for
u < 0, where c¢y,co and L are positive constants. The Stefan problem and the
PME have had a somewhat parallel history.

Note Due to the interest of other GPME models, we will develop a large part
of the basic existence and uniqueness theory of this book for the GPME, and we
will then specialize to the PME in the detailed analysis of the last part of the
book.

(iii) p-LAPLACIAN EVOLUTIONS. There is another popular nonlinear degenerate
parabolic equation:

Oy = div(|VulP~2Vu), (PLE)

called the p-Laplacian evolution equation, PLE, which has also attracted much
attention from researchers. It is part of a general theory of diffusion with
diffusivity depending on the gradient of the main unknown. It has a parallel,
sometimes divergent, sometimes convergent theory. We can combine PME and
PLE to get the so-called doubly nonlinear diffusion equation

Opu = div(|Vu™[P~2Vu™). (DNDE)

Though these equations have many similarities with the PME, we will not deal
with them in this book.

(iv) PME WITH LOWER ORDER TERMS. These are equations of the form
Opu = A®(x,u) + B(x,t,u, Vu). (1.13)

We have written the general filtration diffusion, but ®(s) = |s|™~!s gives the
PME. The lower order term takes several forms in the applications. The best
known are:

(1) the form B = f(u) is a homogeneous reaction term, and the full equation
is then a PME-based reaction—diffusion model; when f <0 we have the
nonlinear diffusion-absorption model that has been studied extensively;

(2) when B =a-Vu? we have a convection term; a famous example is the
Burgers equation u; + uty = ft Ugy;

(3) when B = |Vu|? we have a diffusive Hamilton—Jacobi equation.
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We can see these latter equations as particular cases of the complete PME, but
this could be misleading: their theory is quite rich. Of particular interest are the
equations of the form

ou = A(lu|™ 1 u) + V- (a(z)u), a(z) =VV(z), (1.14)

called Fokker—Planck equations. The extra term stands for a confining effect due
to a potential V. In the case V(x) = c¢|z|? these equations are closely connected
to the study of the asymptotic behaviour of the plain PME/HE/FDE after a
convenient rescaling (see details in Chapter 18).

1.4 Contents

In a classical mathematical style, the foundation of the book is the study of
existence, uniqueness, stability and practical construction of suitably defined
solutions of the equation plus appropriate initial and boundary data. This theory
uses the machinery of nonlinear functional analysis, as developed extensively in
the last century. In the spirit of this theory, classical concepts of solution do
not suffice, which leads to the introduction of suitable concepts of generalized
solution, in the concrete form of weak, limit, strong and mild solution, among
others.

1.4.1  The main problems and the classes of solutions

There are three main problems that are posed in parabolic theories:

* Problem A is the initial value problem in the whole space, z € R?, d > 1, for
a time 0 < t < T with T finite or infinite. It is usually called the Cauchy
problem, CP, and is considered the reference problem in the literature
about the PME. It is usually posed for non-negative solutions without
a forcing term (u >0 and f =0), but we will also study it for signed
solutions, and with a forcing term.

¢ Problem B is posed in a subdomain Q or R?, and the additional data include
initial conditions and boundary conditions of Dirichlet type, u(x,t) =
g(z,t) for z € 90 and 0 <t < T. The same observations on the sign of
u and on f apply. By default €2 is bounded, © > 0, f =0, and g = 0.

e Problem C is similar to Problem B, but the data on the lateral boundary
are Neumann data, 0,u™(z,t) = h(xz,t). By default,  is bounded and
f=0,h=0.

There is a number of other problems posed on spatial domains €2 with more
general conditions of mixed or nonlinear type. In one space dimension a typical
problem is posed in a semi-infinite domain §2 = (0, c0). Typical data in that case
are u(0,t) = C or (u™),(0,t) = 0.

Once the problems are shown to be well-posed in suitable functional settings,
the next question is the study of the main qualitative properties. Prominent
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among them is the phenomenon of finite propagation and its consequences in the
form of free boundaries. The emphasis shifts now into dynamical considerations
and differential geometry.

A third important subject related to both previous ones is optimal regularity.
Let us illustrate it on the source-type solution. We have seen that it is continuous
in its domain of definition @ = R? x R, . However, it is not smooth at the free
boundary, again a consequence of the loss of the parabolic character of the
equation when u vanishes. In fact, the function ™! is Lipschitz continuous in
@ with jump discontinuities on I" (i.e., there exists a regularity threshold). On
the contrary, the solution is C'*°-smooth in P,. And we are interested in noting
that though w is not smooth on I', nevertheless the free boundary is a C'*°
smooth surface given by the equation (1.10). However, not all free boundaries of
solutions of the PME will be so smooth.

1.4.2  Chapter overview

The book is organized as follows. After this Introduction, we review the main
applications in Chapter 2. This pays homage to the fundamental role played
by these applications in motivating the mathematical research and supplying it
with problems, intuitions, concepts and conjectures.

We continue with two preparatory chapters. In Chapter 3 we review the main
facts and introduce the basic estimates we will need later in a classical framework.
Chapter 4 examines the fundamental examples, and we use the opportunity to
present in a simple and practical context some of the main topics of the theory,
like the property of finite propagation, the appearance of free boundaries, the
need for generalized solutions and the question of limited regularity. It even
shows cases of blow-up and the evolution of signed solutions.

This gives way to the study of the classical problems of existence, uniqueness
and regularity of a (generalized) solution for the tree main problems mentioned
above. There have been two basic approaches to the existence theory for the
PME in the literature: one of them is the so-called semigroup approach based
on posing the problem in the abstract setting of ODEs in Banach spaces; the
other one uses a priori estimates, approximation by related smooth problems (to
which the estimates apply uniformly), and passage to the limit. Though both
approaches have been fruitful, we have chosen to give priority to the latter,
which uses as a cornerstone the preparatory work of Chapter 3. It is used in
Chapters 5, 6 and 8 to study the Dirichlet boundary value problem, and in
Chapter 9 to treat the Cauchy problem. An intermediate Chapter 7 establishes
the continuity of the constructed solutions. Chapter 10 presents the semigroup
approach which is very different in spirit and has had a fundamental importance
in the historical development of the whole subject. The whole set of ideas is used
Chapter 11 to treat the Neumann problem as well as the problems posed on Rie-
mannian manifolds. This completes the first half of the book. Three remarks are
in order:
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(i) At this general level, there is an interest in considering not only the PME
but rather a wider class of equations to which most of the methods apply.
This is why a large part of the material is derived for the class of complete
generalized porous medium equations,

Ou = AD(u) + f.

(ii) For reasons of simplicity at this stage, most of the treatment is restricted
to integrable data, a sound assumption on physical grounds, though not
necessary from the point of view of mathematical analysis, as the sequel
will show.

(iii) A main point of the study is the introduction of the different types of
generalized solution that appear in the literature and are natural to the
problem, and the careful analysis of their scope and mutual relationships.

With this foundation, the second part of the book enters into more peculiar
aspects of the theory of the PME; existence with optimal data, free boundaries,
self-similar solutions, higher regularity, symmetrization and asymptotics; though
relying on the previous foundation, the new material is not necessarily more
difficult, and the aspects it covers can probably be more attractive for many
active researchers, both for theoretical or practical purposes.

Let us examine the contents of the different chapters in this part. The
existence and uniqueness theory is complemented with two beautiful chapters on
solutions for general classes of data, i.e., data that are not assumed to be either
integrable or bounded. Chapter 12 covers the theory of solutions with so-called
growing data. Optimal growth conditions are found that allows for a theory of
existence and uniqueness. Chapter 13 extends the analysis to solutions whose
initial value (so-called trace) is a Radon measure.

We are now ready for the main topics of the qualitative theory, which
are covered in the next block of four chapters. The propagation properties,
another fundamental topic in the PME theory, are discussed in detail in Chapter
14, including all questions related to finite propagation, free boundaries and
evolution of the support.

The PME theory in several space dimensions presented many difficulties
and was developed at a slow pace. Much of the earlier progress focused on
understanding the basic questions in a one-dimensional setting. Actually, we
have a much more detailed knowledge in that case, and we devote Chapter 15
to present the main features, like the 1D free boundary.

Chapter 16 contains the full analysis of self-similarity, which plays a big role
in the theory of the PME.

Chapter 17 deals with the principles of symmetrization and concentration
and their applications.

We devote the next three chapters to the questions of asymptotic behaviour
as t goes to infinity and higher regularity. Chapter 18 does the asymptotics for
the Cauchy problem, and Chapter 20 for the homogeneous Dirichlet problem.
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The former contains the famous result on stabilization of the integrable solutions
of the PME towards the ZKB profile which is the analogue for m > 1 of the
convergence towards the Gaussian profiles of the solutions of the heat equation.
Since this convergence is a way of expressing the central limit theorem of
probability theory, the convergence of the PME flow towards the ZKB is a
nonlinear central limit theorem.

Chapter 19 examines the actual regularity of the solutions of the Cauchy
problem; it concentrates on describing two of the main results for non-negative
and compactly supported solutions: the Lipschitz continuity of the pressure and
the free boundary for large times and the lesser regularity for small times of
the so-called focusing solutions (or hole-filling solutions). Partial C*° regularity
is also shown according to Koch, and the concavity properties according to
Daskalopoulos and Hamilton and Lee and Vazquez.

The last two chapters gather complements on the previous material. We
devote Chapter 21 to collect further applications to the physical sciences.

We will use notations that are rather standard in PDE texts, like Evans [229],
Gilbarg-Trudinger [261] or equivalent, which we assume known to the reader. A
detailed summary of the main basic concepts and notations of real and functional
analysis is contained in the Appendix. This chapter also contains a number of
technical appendices on material that is used in the book and was considered
not to have a place in the main flow of the text. One of these results is the proof
of the lack of contractivity of the PME flow in LP spaces with p large, which
answers a question raised by some experts and posed some open problems.

1.4.3  What is not covered

This is a basic book on a very rich subject that keeps growing in many exciting
directions. We list here some of the topics where much progress has been made
and have been nevertheless left out of the presentation.

(1) The theory of the so-called limit cases of the PME. First, the limit m — 1,
where we can get either the heat equation or the eikonal equation, u; =
|Vu|?, depending on the scaling of the data [50, 375]. We also have the
limit as m — o0, leading to the famous Mesa problem [85, 141, 242, 463].

(2) The detailed treatment of the fast diffusion equation. The reader can find
an expository account at a rather advanced level in the author’s Lecture
Notes [515]. A whole set of references is given.

(3) The more detailed study of the behaviour for large times, using recent
work on gradient flows, optimal transportation and the entropy—entropy
dissipation method [155, 413].

Also, the question of asymptotic geometry, in particular the question of
asymptotic concavity, cf. [196, 197, 365].

(4) The theory of viscosity solutions for the PME developed by Caffarelli and

Véazquez, [144], see also [125, 332].
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(5) More general boundary value problems: the general Dirichlet problem, and
then Neumann and mixed problems.

(6) The Lagrangian approach and particle trajectories, as developed in [279,
389]. See also [515].

(7) Numerical computation of PME flows, see [232].

(8) Stochastic versions of the porous medium equation, as in the work of da
Prato et al. [192].

(9) The porous medium equation posed on a Riemannian manifold [121, 413].
See Section 11.5 below.

Of course, we have left out the developments for parallel equations and
models, though their mathematical development has been closely connected to
that of the PME, like

(i) The combination of nonlinear diffusion and reaction or absorption. This is
a classical area where a wide literature exists.

(ii) The combined models involving nonlinear diffusion and convection, like
uy = A®(u) + V - F(u). This has been a very active area of research in
recent years.

(iii) Gradient flows and p-Laplacian equations, and their relation with the PME
in 1D.

(iv) The detailed study of the so-called dual equation, v; = (Au)™.

1.5 Reading the book

The whole book is aimed at providing a comprehensive coverage that hopes to be
useful both to the beginning researcher as a text, and to the specialist as a refer-
ence. For that purpose, it is organized in blocks of different difficulty and scope.

While trying to present the most relevant basic results with whole proofs in
each chapter, a parallel effort has been made to present an informative panorama
of the relevant results known about the topics of the chapter. However, and
especially in the second part of the book, many interesting results that can be
easily traced and read in the sources were discussed more briefly by evident
reasons of space. The more advanced sections have been marked with a star, *.
On the other hand, we have included the proof of many new results that the
author felt were needed to complete the presentation and were not reported
in the literature. Chapters contain detailed introductions where the topics to
be covered are announced and commented upon, and are supplied with a final
section of Notes (comments, historical notes or recommended reading) and a
list of problems. Problems contain many bits of proofs and some are used in
later chapters. Solving them is recommended to the reader, since we believe that
the best way of reading mathematics is active reading. We also include some
advanced problems; they are marked with a star, *.

The first part of the book has been devised as an introductory course on
nonlinear diffusion centred on the PME and the GPME. Selections of the text
centred on the PME and versions of it have been taught as such to PhD students
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having previously followed courses in classical analysis, functional analysis and
PDEs. Knowing some physics of continuous media or studying the subject in
parallel is useful, but not required. Several selections are possible for one semester
courses, the simplest one consisting of Chapters 2—11 plus 14, maybe jumping
over most over 6 and 7. Relevant and elementary material is also contained in
Chapters 15, 16, and 18. We will give extensive references when the material
used is not standard.

This is a book in PDEs and analysis at a theoretical level but covering the
interests of what is usually called applied analysis. We will pay a serious attention
to some, say, classical applications, but the reader need not be an expert in any
physical or natural science or engineering, since all relevant concepts will be
clearly defined.

The reader will notice that the subject is rich in methods and results, but
also in concepts and denominations, many taken from different branches of the
applied sciences, others from different areas of mathematics. We will underline all
new concepts by writing them in italics the first time they are precisely defined
and referencing the relevant ones in the index.

We hope that the material will make it easier for the interested reader to delve
into deeper or more specific literature. We have already mentioned that, although
we concentrate most of our effort in examining the non-negative solutions of the
PME, the natural functional framework leads the mathematician to work with
the signed PME. A number of important issues are still open for signed solutions.

Notes
Some historical notes

We have seen the important contribution of Zel’dovich and Kompaneets [532],
1950, who found the source solutions in a particular case, and Barenblatt [60],
who performed a complete study of these solutions in 1952. After the work in
the decade by Barenblatt et al. on self-similar solutions and finite propagation,
cf. [71] and the book [63], the systematic theory of the PME can be said
to have begun with the fundamental work of Oleinik and her collaborators
Kalashnikov and Czhou around 1958 [408], who introduced a suitable concept of
generalized solution and analysed both the Cauchy and the standard boundary
value problems in one space dimension. The work was continued by Sabinina,
[457], who extended the results to several space dimensions. The qualitative
analysis was advanced by Kalashnikov and many authors followed. The survey
of the last author contains a very complete reference list on the literature
concerning different aspects of the PME and related equations at the time. For
earlier history see the Notes of the next chapter.

Since the 1970s, the interest in the equation has touched many other scholars
from different countries. Here are some important landmarks. Bénilan [79] and
Crandall et al. [178, 180] constructed mild solutions, Brezis developed the theory
of maximal monotone operators [128], Aronson studied the properties of the free
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boundary [35, 36, 37], Kamin began the analysis of the asymptotic behaviour
[319, 320], and Peletier et al. studied self-similarity [54]. In the 1980s well-
posedness in classes of general data was established in Aronson-Caffarelli [42]
and Bénilan-Crandall-Pierre [91], and the study of solutions with measures as
data was initiated in Brezis-Friedman [131] and advanced by Pierre [434] and
Dahlberg-Kenig [187]. Basic continuity of solutions and free boundaries was
proved by Caffarelli and Friedman [138, 139, 140] and refined by DiBenedetto
[206, 207], Sacks [461] and a number of authors.

There exists today a relatively complete theory covering the subjects of
existence and uniqueness of suitably defined generalized solutions, regularity,
properties of the free boundary and asymptotic behaviour, for different initial
and boundary-value problems. Their names will appear in the development.

Previous reports on the PME and related equations

The text has as a precedent the notes prepared on the basis of the course taught
at the Université de Montréal in June-July of 1990, aimed at introducing the
subject and its techniques to young researchers [508]. The material has been
also used for graduate courses at the Universidad Auténoma de Madrid. It has
several earlier precedents. A short survey was published by Peletier [425] in
1981 and has been much used. A much longer survey paper is due to Aronson
[38], written in 1986. Another often cited contribution, more in the form of a
summary but including a discussion of related nonlinear parabolic equations and
a very extensive reference list is due to Kalashnikov [317] in 1987. These have
been main references during these years. In his book on Variational Principles
and Free-Boundary Problems [240], 1982, Friedman devotes a chapter to the
PME because of its strong connection with free boundary problems. Recently,
the book by four Chinese authors Wu, Yin, Li and Zhao [527], 2001, about
nonlinear diffusion equations is worth mentioning.

Both PME and p-Laplacian equations are tied together as degenerate diffu-
sions in DiBenedetto’s book [209]. The book [469] by Samarski et al. is mainly
devoted to reaction diffusion leading to blow-up but has wide information about
PME, specially related to self-similarity. A similar observation applies to [255] by
Galaktionov and the author which concentrates on asymptotic methods based
on self-similarity and dynamical systems ideas. This book contains a chapter
with the main facts about the PME that appear in the asymptotic studies.

A reference to the mathematics of diffusion is Crank [182] which contains a
bulk of basic information on the classical applied topics and results. Conduction
of heat in solids is treated by Carslaw and Jaeger [159]. A general text on
reaction—diffusion equations is Smoller’s [482]. The Stefan problem is covered
in the already mentioned books by Rubinstein [454] and Meirmanov [388].
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2

MAIN APPLICATIONS

The porous medium equation,
Ou=2A0u", m>1, u=u(z,1t), (2.1)

is a prominent example of nonlinear partial differential equation. In the particu-
lar case m = 2 it is called Boussinesq’s equation. We are going to describe a choice
of the main applications found in the literature that have served as a motivation
for the development of the mathematical theory. In Section 2.1 we describe
the standard model of gas flow through a porous medium (Darcy—Leibenzon—
Muskat), in Section 2.2 the model of nonlinear heat transfer (Zel’dovich-Raizer),
in Section 2.3 Boussinesq’s model of groundwater flow, and in Section 2.4 a model
of population dynamics (Gurtin—-McCamy). Further applications will be found
in Chapter 21.

An understanding of this chapter is recommended since we will be using some
of the images and names suggested by these applications.

2.1 Gas flow through a porous medium

The porous medium equation owes its name to its use in describing the flow of
an ideal gas in a homogeneous porous medium. According to Leibenzon [367)
and Muskat [394], this flow can be formulated from a macroscopic point of view
in terms of the variables density, which we represent by p; pressure, represented
by p; and wvelocity, represented by V, which are functions of space x and time ¢
(the former is a vector). These quantities are related by the following laws:

(i) Mass balance, also called continuity equation in fluid mechanics,
ept+V-(pV)=0. (2.2)

Here ¢ € (0,1) is the porosity of the medium, and V- represents the divergence
operator.

(ii) Darcy’s law, an empirical law formulated in 1856 by the French engineer
H. Darcy [193], which describes the dynamics of flows through porous media

nwV =—kVp. (2.3)

It replaces for that kind of media the usual Navier—-Stokes law of standard fluid
flows.

19
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(iii) State equation, which for perfect gases asserts that
p=pop’, (2.4)

where 7, is called the so-called polytropic exponent. Its values in the two main
cases covered by this state law when applied to gases are: 7 = 1 for isothermal
processes, and 7y larger than 1 for adiabatic ones (for air at normal temperature,
the value v = 1.405 is derived from the experimental data). In any case v > 1.

The parameters u (the viscosity of the fluid), € (the porosity of the medium),
k (the permeability of the medium) and pg (the reference pressure) are assumed
to be positive and constant, which constitutes an admissible simplification in
many practical instances, but need not be the case in a more general situation.
Accepting such hypothesis, an easy calculation allows us to reduce (2.2)—(2.4)
to the form

pr = cA(p™), (2.5)
with exponent m =1+~ and
Ykpo
c= ——F. 2.6
(v + Den (26)

The constant ¢ can be easily scaled out (define for instance a new time, t' = ct),
thus leaving us with the PME. Mathematically, we say that constants that can
be scaled out play no role, though the engineer will need to take a look at them;
this is an interesting philosophy that will be much used.

Observe that in the above applications the exponent m is always equal or
larger than 2. The mathematical theory to be developed below does not find
many differences between the exponents m as long as they are larger than
1, though the formulas look a bit simpler for m = 2. In all the formulas, the
operators V- = div, V = grad and A, the Laplacian, are supposed to act on the
space variables © = (z1,...,zq).

In order to adapt the notation to the mathematical taste and also adapt to
current usage in the PME, we will use the letter u instead of p for the density; and
the letter v is used for the pressure, which is exactly defined by the expression

m

v =

m—1
2.7
m—1" (2.7)
so-called mathematician’s pressure. This is an important definition that will
be used frequently in the book. It allows to easily recover the above physical
formulas with m = k = u = 1, that is, forgetting about physical constants. Thus,
Darcy’s law for the velocity is written in the form

V=-Vu=-mu" *Vu, (2.8)

and the mass balance can be written in the form 0;u + V -j =0, where the
quantity j = vV in this formula is called the mass fluz.
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2.1.1 Extensions
Non-homogeneous media

The consideration of flows where ¢, p and k are not constant, but functions
of space and maybe also time, provides us with a natural generalization of the
PME. The equation is then written in the form suitable for inhomogeneous
media, NHPME,

e(x,t) Opu =V - (c(x, t)Vu'™), (2.9)

where € and ¢ are given positive functions (or even, non-negative).

Filtration equation

A quite different approach is assuming that the state law is not power-like, but
has the form p = p(p), as happens in general barotropic gases, and also that &
and p may depend on p. In that case we get a final equation for the density of
the form

pe = A®(p) + f, (2.10)

where @ is a given monotone increasing function of p, p > 0. This is called the
filtration equation or generalized porous medium equation. In our application,
O'(p) = pk(p)p'(p)/u(p)e. The second term on the right-hand side, f = f(x,t)
represents mass sources or sinks distributed in the medium.

We can also combine both types of extensions. We leave the detail to the
reader. See also Section 5.11 for more general variants of the PME and the
filtration equation.

2.2 Nonlinear heat transfer

A quite important application, probably second in importance for the historic
development of the field, happens in the theory of heat propagation with
temperature-dependent thermal conductivity. The general equation describing
such a process (in the absence of heat sources or sinks) takes the form

cp or _ div(kVT), (2.11)
ot
where T is the temperature, ¢ the specific heat (at constant pressure), p the
density of the medium (which can be a solid, fluid or plasma) and « the thermal
conductivity. In principle all these quantities are functions of x € R? and t € R.
In the case where the variations of ¢, p and x are negligible, we obtain the classical
heat equation. However, when the range of variation of the temperatures is large,
say hundreds or thousands of degrees, such an assumption is not very reasonable.

(i) The simplest case of variable coefficients corresponds to constant ¢ and p and
variable k, a function of temperature, k = ¢(T"). We then write (2.11) in the
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form
T, = AD(T). (2.12)

The constitutive function ® is given by
1 (7
O(T)=— k() ds. (2.13)
€p Jo
This is sometimes called Kirchhoff’s transform. We find again the filtration equa-
tion (2.10), but now in a completely different applied context. If the dependence
is given by a power function

kK(T)=aT", (2.14)
with a and n > 0 constants, then we get
T, =bA(T™) with m=n+1, (2.15)
and b = a/(cpm), thus the PME but for the constant b which is easily scaled
out.

(ii) In case we also assume that cp is variable, c¢p = (T'), we still obtain a
generalized PME, though we have to work a bit more. Thus, we introduce a new
variable T" by the formula

T
T =¥(T) = / P(s)ds. (2.16)
0
We then obtain the following equation for 7"
o(T) = AD(T) (2.17)

which can also be written as a standard GPME in terms of the variable 7" by
inverting (2.16), i.e. ;7" = AF(T") with F = ® o U~!. Again, if the dependences
are given by power functions we obtain the PME with an appropriate exponent.

Zel’dovich and Raizer [533] propose model (i) to describe heat propagation
by radiation occurring in plasmas (ionized gases) at very high temperatures. In
that case energy is transferred mainly by electromagnetic radiation (as well as
by conduction and convection, but these are of lesser importance). According to
the mentioned reference, the radiation thermal conductivity is defined as

l
K= gccrad, Crad = T3, (2.18)
where c is speed of light, [ is Rosseland’s mean free path and the form of the

radiation specific heat ¢;,q comes from the law of black bodyradiation law. This
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is an approximation valid under circumstances called the ‘optically thick’ limit.
If [ is supposed to be constant we obtain the PME with m = 4.1

However, [ is usually temperature dependent, [ ~ aT"™, with different expo-
nents depending on the type of high-energy approximations of the process. For
multiply ionized gases the exponent n ranges in the interval from 1.5 to 2.5, and
then m — 1 = n + 3 ~ 4.5-5.5. This description is taken from Chapter X of [533]
where further details can be found. Other references: Longmire [378], Ockendon
et al. [404].

Remark The fast diffusion equation is found in plasma physics in a different
context. Plasma diffusion with the Okuda—-Dawson scaling implies a diffusion
coefficient (D ~ u~/?) in equation (1.1) where u is the particle density. This
leads to the FDE with m = 1/2. See Berryman and Holland [106]. On the other
hand, Berryman [105] reports that electron heat conduction in a plasma can be
modelled with the PME with exponent m = 3.5.

2.3 Groundwater flow. Boussinesq’s equation

We examine next another problem in fluid mechanics, this time related to liquids.
It deals with the filtration of an incompressible fluid (typically, water) through
a porous stratum, the main problem in groundwater infiltration. The model
was developed first by Boussinesq in 1903 [123] and is related to the original
motivation of Darcy [193]. See also Polubarinova-Kochina [439].

Modelling

We will impose the following simplifying assumptions:

(i) the stratum has height H and lies on top of a horizontal impervious bed,
which we label as z = 0;
(ii) we ignore the transversal variable y; and
(iii) the water mass which infiltrates the soil occupies a region described as

Q={(x,2) e R: z < h(z,t)}. (2.19)

In practical terms, we are assuming that there is no region of partial saturation.

This is an evolution model. Clearly, 0 < h(z,t) < H and the free boundary
function A is also an unknown of the problem. In this situation, we arrive at
a system of three equations with unknowns the two velocity components u,w
and the pressure p in a variable domain: one equation of mass conservation for
an incompressible fluid and two equations for the conservation of momentum
of the Navier—Stokes type. Add initial and boundary conditions to the recipe.
The resulting system is too complicated and can be simplified for the practical
computation after introducing a suitable assumption, the hypothesis of almost
horizontal flow, i.e., we assume that the flow has an almost horizontal speed

"'We will obtain the same exponent in the thin film example of Section 21.1.
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Figure 2.1: A schema of ground infiltration.

u ~ (u,0), so that h has small gradients. It follows that in the vertical component
of the momentum equations

du, B 5‘p
P dt T, — P9,

we may neglect the inertial term (the left-hand side). Integration in z gives for
this first approximation p + pgz = constant. We now calculate the constant on
the free surface z = h(x,t). If we impose continuity of the pressure across the
interface, we have p = 0 (assuming constant atmospheric pressure in the air that
fills the pores of the dry region z > h(x,t)). We then get

p=pg(h - z). (2.20)

In other words, the pressure is determined by means of the hydrostatic approxi-
mation.

We go now to the mass conservation law which will give us the equation. We
proceed as follows: we take a section S = (z,z 4+ a) X (0,C). Then,

a z+a h
5—/ / dydx = f/ u-ndl, (2.21)
ot J, 0 85

where ¢ is the porosity of the medium, i.e., the fraction of volume available for
the flow circulation, and u is the velocity, which obeys Darcy’s law in the form
that includes gravity effects

k
u= —;V(p + pgz). (2.22)

On the right-hand lateral surface we have u-n= (u,0)-(1,0) =u, ie.,
—(k/p)pz, while on the left-hand side we have —u. Using the formula for p
and differentiating in z, we get

7 pzkai —hdz (2.23)
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We thus obtain Boussinesq’s equation
he = k (h?) pa (2.24)

with constant k = pgk/2myu. This is the PME with m = 2. Tt is a fundamental
equation in groundwater infiltration. The system of nonlinear equations proposed
in the initial model is reduced to solving a unique nonlinear heat equation that
gives the height of the water mound. Once h(x,t) is calculated, we may calculate
the pressure via (2.20) and then the speed by means of Darcy’s law.

We have made the final step of the derivation of Boussinesq’s equation in one
dimension for simplicity, but it generalizes immediately to several dimensions and
gives

hy = k A(h?). (2.25)

FExtension

When there exists a water input into the porous stratum (by natural or artificial
recharge), or an output (by sinks or pumping), the equation takes the complete
form

hy = k A(h?) + f, (2.26)

where function f(x,z,t) reflects those effects. If we ideally assume that such
effects take place at precise space locations, we are led to consider instead of a
function f a sum of Dirac masses, which gives rise to interesting mathematical
problems.

Remark This is a fluid flow model and it involves a physical pressure that is
given by the hydrostatic law (2.20), a function of x and z. However, in average
over z it amounts to c¢h(z), which is in accordance with our assumption that
v ~ u™"1 of Section 2.1.

2.4 Population dynamics

A very interesting example concerns the spread of biological populations. The
simplest law regarding a population consisting of a single species is

Ou = div(k Vu) + f(u), (2.27)

where u stands for the density or concentration of the species, and the reaction
term f(u) accounts for symbiotic interaction within the species; the medium is
supposed to be homogeneous. According to Gurtin and McCamy [279], when
populations behave so as to avoid crowding it is reasonable to assume that the
diffusivity k is an increasing function of the population density, hence

k= ¢(u), ¢ increasing. (2.28)

A realistic assumption in some particular cases is ¢(u) = au. Disregarding the
reaction term we obtain the PME with m = 2.
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Of course, a complete study must take into account at least the reac-
tion terms, and very often, the presence of several species. This leads to the
consideration of nonlinear reaction—diffusion systems of equations of parabolic
type containing lower order terms, whose diffusive terms are of PME type.
Such equations and systems constitute therefore an interesting possibility of
generalization of the theory of the PME. Similar equations appear in chemistry
in the study of diffusive and reacting media.

2.5 Other applications and equations

The previous applications show how naturally the PME appears to replace the
classical heat equation in processes of heat transfer or diffusion of a substance
or population dispersal, whenever the assumption of constancy of the thermal
conductivity (resp. diffusivity) cannot be sustained, and, instead, it is reasonable
to assume that it depends in a power-like fashion (or almost power-like fashion)
on the temperature (resp. density or concentration).

Once the theory for the PME began to be known, a number of applications
have been proposed. Some of them concern the fast diffusion equation, the
generalized PME and the inhomogeneous versions already commented. There are
numerous examples with lower order terms, in the areas of reaction—diffusion,
where the PME is only responsible for one of the various mechanisms of the
equation or system.

We do not want to break the flow of the presentation of the theory with more
applications at this point. Therefore, we devote Chapter 21 to describe a number
of interesting applications for the reader’s benefit. For applications of the fast
diffusion equation we refer to the list of monograph [515].

2.6 Images, concepts and names taken from the applications

The presentation of the main applications of an equation or theory is a common
practice in PDEs, and serves the purpose of justifying the attention paid to a
particular topic, but also that of orienting the researcher in the difficult task of
finding concepts and tools in the wild forest of applied nonlinear analysis.

It also serves another purpose that we want to stress here. It gives us the
possibility of using a given application to put some flesh into the abstract think-
ing in the form of images, concepts and also a series of names that can be quite
useful in coining a form of speech that allows for insight and communication.

Thus, starting with the name, it is quite common in the literature to talk
about flows in porous media as the image behind the calculations. This brings us
to talking about densities (u), pressures (v) and velocities (—Vv). Such speech
will be quite useful, especially when studying the propagation aspects, like the
existence of free boundaries. In this point of view, the integral

M(Q,t) ::/Qu(x,t) dx
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is called the mass of gas contained in volume ) at time ¢. If  is the whole
domain of definition, we call it the total mass at time ¢. An important issue of
the theory is the conservation of the total mass in time (mass conservation law),
which holds for some problems and does not for others (e.g., if mass is allowed
to flow through the boundary).

We must remember, however, that for the pure mathematician all this is
a manner of speech, since our theories are model-independent; for the applied
mathematician, we must recall that the theory aspires to serve the needs of
different applied areas, and will at times use the images and denominations of
those other areas.

In our case, a quite important area is thermal propagation. Changing the
letter for the unknown in equation (2.15), this application gives us the possibility
of seeing equation O;u = Au™ in terms of heat transfer, thus allowing us to
assign the meaning of temperature to u, and temperature-dependent diffusivity
to D(u) = mu™~'. We remind the interested reader that Fourier’s law is now
written as ® = —k(u)Vu = —Vu™, where ® is the heat flux as defined in
standard heat theory. The total mass becomes now a total thermal energy (but
for the constant factor c¢p that we imagine put to 1).

The areas of population dynamics and chemistry add the possibility of
viewing u as a concentration, and now D(u) is the concentration-dependent
diffusivity. Concentration is the common concept in applications to nonlinear
Diffusion processes.

Notes
Some historical notes

Let us review some of the early history, previous to the systematic theory, as
far as we have discovered it. The French scientist J. Boussinesq seems to have
been the first author to propose the porous medium equation as a mathematical
model for a physical process [123] precisely to calculate the height of the water
mound in groundwater infiltration. He used as basic flow law the one proposed
by H. Darcy [193] in 1856, and under the so-called Dupuit assumption of small
gradient [223]. Note that the exponent is m = 2.

It is historically remarkable that, even if the PME looks like an innocent
nonlinear version of the heat equation, it took many years for it to be correctly
posed (in classes of weak solutions) and solved.

In the 1930s the equation appeared again, this time for m > 2, in the study of
gases in porous media, connected to oil extraction, in the works of two engineers,
the Russian L. Leibenzon [367] and the American M. Muskat [394]. Polubarinova-
Kochina [438] studied in 1948 the problem of groundwater infiltration into a
porous stratum and proposed a self-similar solution that improved the knowledge
of special solutions and their role in finite propagation.

Significant progress was made in Moscow in the 1950s, when Ya. Zel’dovich
and collaborators studied heat propagation in plasmas and landed again on the
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porous medium equation, and its relative the filtration equation. Such simplified
models are applicable for instance in the first stage after a nuclear explosion,
when thermal waves are propagated in a gas that can still be considered station-
ary. Heat conduction happens mainly by radiation and the thermal conductivity
is heavily dependent on temperature.

The mathematical study was seriously undertaken, attention to the presence
of a front was duly paid, and the famous source-type solutions were found by
Ya. Zel’dovich, A. Kompanyeets and B. Barenblatt, see the Introduction or
Chapter 4. Finally, the theory of well-posedness started with O. Oleinik and her
group around 1958. Basic results were obtained in Moscow in the early 1960s
for the problem in several space dimensions (E. Sabinina, A. Kalashnikov, Yu.
Dubinskii).

Reading notes

Earlier reference lists on applications of the PME can be found in: Berryman
[105], Peletier [425], Lacey, Ockendon and Tayler [355], and Aronson [38], among
other sources.

A general reference for the equations of fluid mechanics written with a
mathematical audience in mind is Chorin and Marsden [171]. Interesting further
reading on flows in porous media: Bear’s books [76, 77], Barenblatt, Entov and
Rhyzhik [67]. See also the author’s lecture notes on flows in porous media [507]. A
general reference for mathematical models in biology are Murray’s two volumes
[393].

Among the many works on nonlinear diffusion equations in population
dynamics, let us mention the early papers of Aronson and Weinberger [53] and
Aronson, Crandall and Peletier [46].

Problems

Problem 2.1 Scale out the constant ¢ in equation (2.5) by hiding it in the time
variable, as indicated in the text. Do it also by hiding it in the space variable.

Problem 2.2 Derive the equation of filtration of a gas with a barotropic law
in an inhomogenous medium.

Problem 2.3 Try to show formally that the mass conservation law should not
hold for positive solutions of the PME defined in a domain 2 C R? and satisfying
zero Dirichlet boundary conditions. How about zero Neumann conditions?

Problem 2.4 Derive the equation satisfied by the pressure v, defined by (2.7),
when the density obeys the PME with exponent m.

Solution: v; = (m — 1)v Av + |[Vo|2
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Problem 2.5 PRESSURE FOR THE FILTRATION EQUATION. When we consider
equation (2.10), i.e., py = A®(p), it can be written in the conservation form

pt+V-(pV):0.
(i) Show that this implies that V = —Vuv if v is defined as a function of p by

the formula
P P(s
v =p(p) ::/ ( )ds,
0

s
whenever this integral is convergent.
(ii) Find the equation satisfied by v. [Solution. The equation is
v = a(v)Av + |Vo]2.

and a(v) = ®'(p). See more in [125, 343].
(iii) Check that in the PME case this gives the usual formulas for the pressure
and its equation.
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PRELIMINARIES AND BASIC ESTIMATES

This chapter covers preliminary material on parabolic equations needed to
develop the main theories of the book. In this and the following chapters we work
on subdomains of the Euclidean space R¢ or the whole such space. However, we
will see in Chapter 11 that the main facts of the theory extend in a natural way
to equations posed on a Riemannian manifold.

We start with a review of useful properties of quasilinear parabolic equations.
Next, Section 3.2 is devoted to non-degenerate versions of the generalized PME
that will be used in approximating the degenerate cases. We derive for these
better-behaved equations the basic estimates which will be used in developing
the general theory for the class of possibly degenerate equations we have in mind.

We then specialize in Section 3.3 to properties that are formally satisfied by
the PME; they will be justified in later chapters and used in the constructions
of the different theories. Finally, Section 3.4 reviews the properties of the most
popular alternative formulations of the PME.

In this chapter we consider solutions with changing sign. In most of the
calculations ® is not assumed to be a power. Sections 3.2 and 3.3 can be
considered as basic material to be borrowed by later chapters.

3.1 Quasilinear equations and the PME

Let us review the properties of the solutions to quasilinear parabolic problems
of the form

d
O = Z %ai(x, t,u, Vu) + b(x, t,u, Vu). (3.1)
i=1

where a;(x,t,u,p1,...,pqs) and b(z,t,u,p1,...,pq) are called structural func-
tions. They must satisfy certain conditions to ensure that a theory including
existence, uniqueness and a certain regularity can be developed. The main
condition is parabolicity to be explained presently. We will follow Ladyzhenskaya
et al. [357], Friedman [239] or the more recent Lieberman [371] for reference to
the classical theory of solutions of these equations.

3.1.1  Eumistence of classical solutions

In the classical theory, we assume that the structural functions a;(z,t,u,
P1y-..,pa) and b(z,t,u,p1,...,pq) are bounded and C* in their arguments.
The wuniform parabolicity condition is formulated as follows: there exist

30
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constants 0 < ¢; < ¢ < oo such that for every vector £ = (£1,...,&q), the fol-
lowing inequalities hold
4 da;
alg? <> ap? (2,8, u, ug,) &5 < caf¢]. (3.2)
i=1 "+

Here are some of the most basic results under the classical assumptions:

(i) Given bounded and continuous initial data, the Cauchy problem can be solved
and the solution u(z, ) is unique, C° smooth in @ = R¢ x (0, 0o) and continuous
downtot =0, i.e.,u € C(R? x [0,00)) and u(z,0) = ug(z). If the initial data are
only bounded, then the initial data are taken only in the sense of a. e. convergence
(and more precisely along time cones).

(ii) A main property in the theory of parabolic equations is the mazimum prin-
ciple, that is better termed the comparison principle in the nonlinear context.
In the classical theory it takes a strong form that says:

Strong mazimum principle

Given two classical solutions u(x,t) and v(z,t) of the same equation of type (3.1),
defined and continuous in S =R x [0,T], if we assume that u(z,0) < v(x,0),
then either u = v everywhere in S, or u < v everywhere in S.

(iii) The existence, uniqueness and regularity theory of classical solutions extends
to the mixed problems posed in cylindrical domains of the form Q = Q x (0,7)
where 2 is a bounded domain of R? with smooth boundary. Then, we have to give
information not only of the initial data but also of data on the lateral boundary
Y =0Q x [0,T), which takes the form of Dirichlet data, Neumann data or some
other versions that are found in the literature. This is why the problems are
usually called ‘initial and boundary value problems’, IBVPs. If the initial and
boundary data are compatible for x € 992 and ¢t = 0, these mixed problems also
have existence, uniqueness and regularity and the strong maximum principle
holds: the same conclusion u < v applies if S =Q x[0,7], Q is a bounded
open set with smooth boundary, and boundary data u < v are prescribed on
¥ =00 x[0,T].

3.1.2  Weak theories and the PMFE

In practice, the classical assumptions on a; and b are not met in many problems
of interest in the applied sciences. This is the origin of the weak theories, where
relaxed conditions are accepted and then generalized solutions are obtained
in Sobolev classes of weakly differentiable functions. The condition of uniform
parabolicity is usually kept.

We will quote the results from the weak theory of non-degenerate quasilinear
parabolic equations as the need arises. But let us mention that the strong
maximum principle need not hold, and the typical comparison result states
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that if the data of a Cauchy problem are ordered by the relation <, so are
the solutions a.e. This applies also to the Dirichlet and Neumann problems with
suitable ordering of the boundary data.

We turn now to the PME example. The assumptions of smoothness fail in
our case since the PME is a particular case of equation (3.1) where

a(z,t,u,p) = |u|™ 'p

with © € R, p € R%, and b = 0. The main problem is non-uniform parabolicity;
indeed, even for bounded non-negative solutions, condition (3.2) can only hold
when ¢; = 0. This extension of the concept of parabolicity is called degenerate
parabolicity. In physical speech, when thinking in terms of thermal propagation,
it means that the thermal conductivity vanishes at zero temperature; in diffusion
problems, we call it degenerate diffusivity. In any case and with any name, the
study of the consequences of degenerate parabolicity is the reason of this book.

We still can save the classical theory as long as we consider ‘non-degenerate’
data wug, i.e., data in the range ¢ < ug(x) < 1/ with € > 0. More generally, in
the signed PME we may choose this option or —1/¢ < ug(z) < —e. In order to
solve the Cauchy problem for the PME with such data, we take a(z,t,u,p) =
m|u|™ !p for € < |u|] < 1/e, and extend the function as a linear function of u
and p for v near 0 or infinity, making a smooth connection around the values
u = +e and u = +1/e. With these modifications, we pose the problem of finding
a solution of the perturbed equation

O = div (¢p(u)Vu) = AD(u).

Since the degeneracy has been eliminated, there is a unique classical solution,
and it satisfies the same bounds ¢ < |u(z,t)| < 1/e. But this means that u never
takes values in the region of perturbed values, hence we get a classical solution
of the PME. Let us state the result for the record.

Theorem 3.1 (Classical solutions of the PME) Assume that ug is a continuous
function in R with

e <wuplx) <1/e

for some e > 0 and all x € R, Then there exists a classical solution of the PME
satisfying

e <ulx,t) <1/e

for every x € R? and 0 < t < co. If ug is C*-smooth, so is u at t = 0; if ug is
only bounded, then the convergence to the initial data takes place a.e. along time
cones.

The same applies to the signed PME with values in the range —1/e < ugp(z) <
—¢&; a classical solution exists and —1/e < u(x,t) < —¢.

A similar argument applies to the Cauchy-Dirichlet problem when the
boundary data satisfy the same condition & < u(x,t) < 1/e for x € 9Q, t > 0,
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and are compatible with the initial data. It also applies to the problem with
zero Neumann boundary conditions, and to other variants. The extensions to
negative solutions also hold.

If, on the contrary, the data take zero values inside ) the classical theories
cannot apply, the strong maximum principle does not either, and there is no
way to circumvent the weak theories. Moreover, a number of curious phenomena
appear, like finite propagation and free boundaries, which are at the core of this
book.

Let us finally recall that when data are unbounded we meet another problem,
namely that da;/0p; = m|u|™! goes to infinity, so that the equation loses the
upper bound on parabolicity. This is a different phenomenon, it will be less
visible, but will also affect all calculations with large values of u, in the sense
that the estimates will be different from the ones for the HE also in this case.

3.2 The GPME with good ¢. Main estimates

Our aim is to establish an existence and uniqueness theory of generalized
solutions for the PME, and also the generalized PME with quite general ®.
This will be done in Chapter 5 and following in the class of weak solutions, and
we will also obtain the most important properties of that class of solutions. The
program offers a main difficulty the fact that the PME is a degenerate equation.
Three other difficulties complicate the task: the generality of the nonlinearity @,
the generality of the data, and the sign of the solutions.

A standard approach to the construction of solutions for the PME and other
degenerate cases will be approximation with non-degenerate problems. A quite
useful choice, though not the only one possible, is approximation with a GPME
having a nonlinearity ® : R — R which is C? smooth and with ®'(u) > 0 for all
s € R. Under such assumptions, the equation is parabolic non-degenerate, and we
may apply standard quasilinear theory to obtain the existence and uniqueness
of classical solutions, i.e., solutions such all the derivatives appearing in the
equation exist and are continuous and the equation is satisfied everywhere in
the space-time domain where we are working. This is what we will do in this
section as a preliminary for the full treatment. We will assume the normalization
®(0) =0, since this implies no loss of generality (the equation is invariant
under addition of a constant to ®). We also ask the domain to have a smooth
boundary, I' = 9Q € C%“. Actually, the consideration of inhomogeneous media
recommends a bit more of generality and we will assume that ® : O x R — R, it
is smooth in both variables, it is strictly increasing in the second, and ®(z,0) = 0
for all x € (.

There are two main problems: the homogeneous Dirichlet problem is

Ou = A®(z,u)+ f in Qp, (3.3)
u(z,0) = ug(x) in , (3.4)
u(z,t) =0 in X, (3.5)
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where Qr = Q x (0,T), and Xpr = 9Q x [0,T) is the lateral boundary. On the
other hand, the homogeneous Neumann problem consists of equations (3.3), (3.4)
and

(,%@(x,u) =0 in X7, (3.6)
where v is the outer normal to the boundary 02 As for the data, we will
assume that ug and f are bounded and C' functions, and ug(z) = 0 for x € 9.
Under such assumptions, we apply the quasilinear theory to obtain the following
existence result and, what is more important for later use, the main estimates
on which the weak theory will be based.

Theorem 3.2 Under the above regularity assumptions, the Dirichlet problem
(3.3)-(3.5) admits a classical solution u in the space C*1(Q). If ®, uy and f are
C®, then so is u in Q. Same results apply to the Neumann problem.

The above Dirichlet problem usually serves to produce the approximate solu-
tions that will be used to construct weak solutions of the PME and other cases
of the filtration equation. Besides, it allows us to derive the main quantitative
estimates on which the subsequent study is based. This is the content of the
next subsections. The first two of them contain bounds for the solution. Next,
we obtain the stability estimate in L' norm, one of most peculiar mathematical
properties of these nonlinear diffusion processes. Three further estimates contain
bounds for the derivatives that will be used to ensure compactness in the
approximation processes.

3.2.1  Mazimum principle and comparison

It applies to the solutions of both Dirichlet and Neumann problems. It has a
simple form when ® does not depend explicitly on z.

Lemma 3.3 If ® = ®(u), then the solutions of the homogeneous Dirichlet or
Neumann problem for equation (3.3) satisfy

lullx@r) < luollx(e) + Tllfllx@r)- (3.7)

Proof Let M =sup(ug) and N = supg, f. As an immediate consequence of
the classical maximum principle, we have

u(z,t) <M+ Nt inQ, (3.8)

and a similar estimate applies as a lower bound. Hence, for bounded data wg
and f we have a bound on the solution.

The comparison principle holds for smooth solutions: if u,u are solutions
with initial data such that ug <y a.e. in Q and f < f a.e. in Q, then u <1
a.e. in ). In particular, if ug, f > 0 in , then v > 0 in Q. |
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An inhomogeneous extension

In case ® depends on z, things are not so simple. We have to make some
assumption. Suppose to fix ideas that

A P(z,2) < K1+ Koz (3.9)

for all x € R and all z > My and constants K7, Ko > 0. We argue on a point
where u(z,t) touches from below the function

Uz, t) =M+ Ct+e. (3.10)

If u < U we get an estimate. If not, there is a first contact point (zo,tg), and
there the difference f(x) = w(z,to) — ®(z,U(ty)), with w = ®(x, u), attains a
space maximum (equal 0). At that point A,w < A, ®(z,U(ty)), and

5‘tu(xo,to) = f(iﬂo,to) + Azw($0,t0) < N + Az@({ﬂ, U(to))
If moreover U(xg,tg) > My we get
8tu(x07t0) < N + K1 + KQ(M + 6) + KQCtO.

on the other hand, at the first touching point u;(xg,to) > Us(xo,te) = C. There-
fore, we avoid the touching point if

N+ Ky + Ko(M +¢) + KyCty < C.

Suppose now that tg € [0,1/(2K53)]. Then we may take C =2(N + K; +
K3(M +¢€)). Letting € — 0 we get the result

Lemma 3.4 Let us take the situation of Lemma 3.3, but now ® = ®(z,u). If
(3.9) holds, then

u(z,t) <min{M + Ct, My} C=2(N+ K; + K:M) (3.11)
forallz € Q and 0 <t < 1/(2K3).

If we want to extend the time interval when Ky # 0, we argue in time steps
of 1/(2K3). We get in this way a possible exponential increase in time. On the
other, a similar argument applies to the negative part by using the change of
variables u© = —u. The necessary bound for A,® now has the form

—A,P(x,2) < K — Koz Vz < —Mj.

3.2.2  Other boundedness estimates

We now start the typical technique of the weak theories consisting in multiplying
the equation by suitable multipliers, integrating in space or in space-time and
then performing a number of integrations by parts and other calculus tricks.
In our first example we take a function p € C'(R) such that p’(s) > 0 for all
s € R, and let j be the primitive of p with j(0) = 0. Then, if ® does not depend
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explicitly on  we have

5 [ iz = [pwauds = [y@e@Ivapds+ [ fpw)de, (312

with integrals in Q2. The reader should check that this calculation applies to the
solutions of both Dirichlet and Neumann problems. Since the term containing
|Vu|? is negative, integrating in time from 0 to t > 0 we have

/ J(u(t)) dz < / J(ug) dz + / [ rpwdsar (3.13)

If f =0 this means that J(u = [j(u )) dzx is a monotone non-increasing
function of time. Even if f 75 0 we can get estimates. For instance, if f is
bounded and p(u)/j(u) bounded as u — oo, we get boundedness of [ j(u(t))dz
for bounded times, see Problem 3.3. An interesting particular case happens when
j(s) =|s|" for some r > 1. When f = 0 we get monotonicity of the L” norm

%/|u(t)|7ﬁ dz <0.

In case ® depends on z, we above argument does not work because of
the derivatives of ®(x,z) with respect to x. We refrain from entering into the
modifications which are not at immediate.

3.2.3  The stability estimate. L' contraction

This is a very important estimate which has played a key role in the PME and
the GPME theory. It will allow us to develop existence, uniqueness and stability
theory in the space L!(2). Actually, the concept of L' contraction turns out to
be a very powerful tool in the theory of nonlinear diffusion equations. There is
no problem in admitting explicit dependence of ® on zx.

Proposition 3.5 (L!-contraction principle) Let u and @ be two smooth solu-
tions, possibly of changing sign and with initial data uo, Uy and forcing terms f,
f respectively. We have for everyt > 1 >0

/Q(u(x,t)—ﬂ(x,t))erxS/Q(u(x,T) u(x,7) +d;v+/ / f- f dzdt.
(3.14)
As a consequence,

t
[u(t) =u@)]lx < lluo —olly +/ 1f(s) = f(s)llds. (3.15)

0
Proof of the proposition This result applies to the solutions of both Dirichlet
and Neumann problems. It is so important that we give two quite different proofs.

First proof This is a standard proof in the literature. The tech-
nique goes as follows: Let p € C1(R) be such that 0 <p <1, p(s)=0 for
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s <0, p'(s) >0for s >0.Let w= P(x,u) — ®(x,u) which vanishes on ¥ for the
Dirichlet problem. Subtracting the equations satisfied by v and @, multiplying
by p(w) and integrating in 2, and observing that p(w) = 0 on X, we have for
t>0

Jw-tnpwias = [ swpwids+ [ 7 ptw)ds
=~ [IVuPpw)de+ [ (7= P do

Note the first term in the right-hand side is non-positive. Therefore, letting
7] ~
p converge to the sign function signg, and observing that Q(u —u)y = (u—
), signg (u — @), cf. [261], and also observing that
signd (u — 1) = signg (®(z,u) — ®(z,7)),
(a crucial fact based on the strict monotonicity of ®), we get

4
dt

~

(- @)sds < [( = Prda,
which implies (3.14) for u,u. To obtain (3.15), combine (3.14) applied first to u
and @ and then to @ and u. The Neumann problem is completely analogous. W

Second proof of the proposition This contains two arguments, one for
ordered solutions, another one for the maximum of two solutions.

Lemma 3.6 Assume that u and U are two smooth solutions such that ug < Uy
and f < f. Then, for every t > 0 we have u(t) < u(t) and

/(ﬂ(m,t) (b)) dz < /(ao(a;) —uo(a:))dx+//t(f— Fdzdt.  (3.16)

This result is immediate. Note that in the case of the Neumann problem we
have equality, for the Dirichlet problem only inequality. The second lemma is
also elementary.

Lemma 3.7 Assume that uw and u are two smooth solutions, and let U be
the solution with initial data U(z,0) = max{ug,Uo} and forcing term F =
max{f, f}. Then, for every t >0, U(t) > max{u(t), u(t)}.

In order to prove the contraction principle using these lemmas, we observe
that for every t > 0 we have

U(t) = u(t) = max{u(t), u(t)} —u(t) = (u(t) —u(t))+
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while equality holds at ¢ = 0. Hence, by Lemma 3.6 we conclude that

Q Q Q

= /(Uo — Up)+dx + //(f — f)+ dadt.
Qt

Q

/(u(t) — ) 4dz < /(U(t) —at))dzx < /(U(O) —To)dz + //(F — f) dadt
Q1

This ends the proof. |
Taking & = 0 we get an interesting consequence.

Corollary 3.8 For every smooth solution and everyt > 0
/ (u(z, )+ d < / (uo () + d + / Fo(2,t) dadt. (3.17)
Q Q Qt

3.2.4  The energy identity

We want to control the derivatives of the solution or some function thereof in
order to apply compactness arguments. With respect to spatial gradients, the
natural function to control turns out to be w = ®(x,u). In order to bound Vw
we need to introduce the function ¥ which is the primitive of ® with respect to
u with ¥(z,0) =0, i.e.,

U(z,s) = /OS O(z,0)do. (3.18)

Note that for the PME we have ¥(z, s) = |s|™!/(m + 1). Generally, ¥(z,u) > 0
and moreover, ¥(z,u) > O(Ju|) for all large |u|. On the other hand, ¥(z,u) <
|P (2, u)ul.

Since we are assuming that ® is smooth and the solution is classical, we can
multiply equation (3.3) by ®(x,u) and integrate in Qr to obtain

//|V<I>(a:,u)|2da:dt+/\Il(m,u(a:,T))dm - /\If(x,uo(x))dx
Qr

Q Q

+C[T/ FO(a,u) dedt,  (3.19)

where we have integrated by parts in space in the term [[ A®(z, u)®(z,u) dzdt
and integrated in time the term [[ ®(z,u)u;dxdt = [[ V(z,u); dxdt. This
important formula will be used in Chapter 5 to provide key estimates in the
existence theory for weak solutions. It is interesting therefore to supply some
physical meaning to its terms. Thus, the estimate leads us to consider the
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expression

Bu(t) = /Q U(z, ult)) dz (3.20)

as a natural energy for the evolution, and then

T
DE(u):/O /Q|V<1>(a;,u)\2d:cdt (3.21)

is the dissipated energy, while f f f®(x,u)dxdt, represents the work of the
external forces. Formula (3.19) is known as the energy identity. If f = 0, it takes
the simple form

//|V<I>(z,u)|2d:vdt+/\If(x,u(x,T)) d:c:/\If(x,uo(:c)) dz. (3.22)
Qr

Q Q

In case f # 0, we use Holder’s inequality to split the last term into

i//fQ dxdt+c// ®(x, u)? ddt.

In the case of the homogeneous Dirichlet problem, the Poincaré inequality allows
as to control the last term by the first term in the right-hand side. In this way
we get

;JT |V(I>(x,u)|2dﬂcdt+ﬂ/\I!(x,u(x,T))dx<!\I/(x,uo(x))dx+04/f2 dadt,
(3.23)

where C' depends on  trough the constant in the Poincaré inequality. Since
the right-hand side is bounded for every fixed T > 0, it follows that V®(z,u) is
bounded in L?(Q).

In the Neumann problem we still apply Holder’s inequality to the last term of
(3.19); we can then bound [[ ®(z,u)? dzdt in terms of [[|V®(x,u)|* dzdt and
some LP norm of ® (or even of u is ® behaves like a power). For that purpose
we can use the boundedness estimates of Subsection 3.2.2. It then follows that
it follows that V®(z,u) is bounded in L*(Q).

Local version

An interesting version of this estimate proceeds by multiplying also by n?, where
1 is a smooth cut-off function, 0 < 7 < 1. If the rest of the process is the same
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we get
// |VO(z,u)*n? dxdt+/\ll(x,u(x,T))772 dx
Qr Q
= /\Il(gc,uo(gc))n2 dx —|—/ f ®(x,u)n? dedt
Q Qr
- 2//‘13(.13, uw)(Vn - VO (z,u))n dzdt.
Qr
Therefore,

/ |VO(x,u)*n? dedt + 2 / U (x, u(z, T))n* dx
Qr o (3.24)

< 2/\11(:10,u0(x))172 dx + // 20 dadt + // % (u)(4|Vn|? + n?) dadt.
Q Qr Qr
This allows to obtain local bounds in L? for |[V®(z,u)| when local bounds are

available for ®(x,u) and f, as well as for ¥(z,ug) in Li (R?).

loc

3.2.5 Estimate of a time derivative

The function whose time derivative we control is z(z,t) = Z(z,u(x,t)), where
the new function Z is defined in terms of ® by

Z(x,s) = /0 S(<I>u(x, s))'/2ds. (3.25)

Hence, z; = ®'(u)'/?0;u. Note that since 2(®,(z,s))/? <1+ ®,(z,s), we have
|1Z] < (1/2)|s 4+ ®(x, s)|, hence |z| < (1/2)|u + ®(x,u)|. For the PME we have
z = c(m) |u|(m+D/2,

In order to estimate z;, we multiply the equation by wy, with w = ®(x, u), and
integrate by parts in space to obtain (both for Dirichlet and Neumann problems)

/wtatudx:/thwdm—i-/fwtdx:—/Vw-thdx—i—/fwtdx

1d ,
——§a/\Vw\ dz+/fwtd:c,

where we have taken into account the fact that w, =0 (or V,, =0) on .
Moreover, this estimate has a simple form if f = 0 upon integration in time

// fbu(x,u)|3tu|2dzdt+%/ |Vw(x,T)|2dx:%/ |Vw(z,7)|*dv.  (3.26)
4 0 Q
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If f # 0, there are several alternatives. Thus, multiplication by ((t), where ¢
is a smooth function with ¢(0) = ¢((T") = 1, and integration in time can be used
to obtain

// Oy (z,u)|0u|? dedt = // { |V (z,u)> - (fC)tq)(%,u)} dadt.

(3.27)

The middle term is bounded in view of the energy estimate, and the last one
is also if f; is bounded. Therefore, we get an estimate on the first, which is a
non-negative expression, another kind of energy.

Without the extra condition on f, a typical approach consists of multiplica-
tion by ¢ and integration in time from 0 to 7" to give

//t@u(:c,u)|8tu|2 dxdt + Z/|Vw(:v,T)|2dx
2 (3.28)

= % / / |Vw[? dadt + / / £f By, (2, 1) Dy davdlt.

In order to obtain a uniform bound on the right-hand side, and since the term
[ |Vw|? dzdt is bounded, we only need to control the last term, that we may
estimate as

// tf @, (z, u)Orudrdt < %// 0, (z,u) f* dedt + %//t@u(x,u)|8tu|2 dxdt.

The last term is absorbed by the first term of the previous expression. We get

//ttl)u(x,u)\atu\Qdmdt—i—T/|Vw(nc,T)|2d:c g/ |Vw|? dedt (3.29)

+ / / t®, (z,u) f* dedt

and the last term is bounded for bounded f and bounded u. This estimate means
that for every 7' > 7 > 0 the integral fTT [ @ (z,u)|0ul? dedt = [[ 22 dzdt is
bounded.

As a further alternative, we drop the multiplication by ¢ and integrate in
time from 7 to T we get

1
// ®,(z,u)|0pu|? dedt + 5/ |Vw(z, T)|? dx
T Q

1 (3.30)
= f/ \Vw(z, 7)|* dr + / F@u(z, u)uy dadt.
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Local version

The same idea of multiplying also by 2 allows as to derive local versions of the
time derivative estimates under some assumptions. We have

/wt umz dr = f/Vw . Vwm2 dx + / fwm2 dr — 2/watV77n dx
so that

/wtum dr + 5%/\Vw\2n2dx—/fwm dx—Q/watVnndac

In order to proceed, assume that u is bounded, |u| < M, and that ®,(s) < c|s|
for |s| < M (note: this happeuns for the PME). Then, |w;| > c|u| and, integrating
in space in Q and in time from 7 > 0 to 7" we get

%//(wt)Qndedt—&—/|Vw(T)|2n2dx
< /|Vw(7')|2n2 da:+0//f2772 da:+C//\Vw|2\Vn|2dxdt.

The last term is supposed to be bounded by the first local estimate (3.24).

(3.31)

3.2.6 The BV estimates

We consider the solutions of the Dirichlet problem. We differentiate the equation
with respect to ¢ and put v = Jyu to get the equation

0w = A(Py (z,u)v). (3.32)

We multiply by p(®,(z,u)v) where p is an approximation of the sign function
with the properties already mentioned above: p € C*(R) be such that 0 < p < 1,
p(s) =0 for s <0, p/'(s) >0 for s > 0. Then, putting w = &, (x,u)v and inte-
grating in ), we get

[pwowds = [ Awpw)ds = - [ )T iz <o

Therefore, [ p(w)dyvdz < 0. Now we let p tend to the sign function and observe
that sign(w) = s1gn( ) and dpvsign(v) = |v]; a.e. to conclude that

% / 10y dz < 0. (3.33)

Actually, we can let p tend to the function sign™ (resp. sign™) to obtain the
partial results

jt /(atu) dz <0 (jt /(&UL dz < 0)- (8:34)

Together, they imply (3.33).
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Space estimates

When & does not depend explicitly on «, this trick can be repeated with any
space derivative, putting v = du/dz;. We also get

% / 05| d < 0. (3.35)

and the corresponding estimates for the positive and negative signs.

With these estimates we can control u in the space W11(Q) if the initial
data satisfy certain estimates. It is important to note that, when dealing with
more general equations by approximation and passing to the limit in the approx-
imations, the L' estimates obtained here may become estimates in the space of
measures (since bounded sets in L' are not closed under weak convergence).
Therefore, the estimates become estimates in the space of functions of bounded
variation, BV (Q).

3.3 Properties of the PME

The mathematical study of the PME and the GPME has a drawback common
to all nonlinear theories: the absence of good representation formulas for the
solutions in terms of the data; think of the role of the Gaussian kernel in the
heat equation and the Green function in the Laplace equation. On the other
hand, the very simplicity of the PME implies a number of interesting properties
of other types, like scaling invariance, conservation laws and dissipation laws,
that play a big role as technical tools. This properties hold for the GPME as
long as ® does not depend on x.

3.3.1 Elementary invariance

We assume the restriction ®(u) in this subsection.

Translations

The HE, the PME, the FDE and more generally, the GPME, are invariant under
displacement of the coordinate axes, since their behaviour is homogeneous in
space and time. To be specific, if u(z,t) is a solution of the PME defined in a
space-time domain @, then, for every h € R% and 7 € R the function

u(y,s) =uly—h,s —7) (3.36)
is also a solution, now defined in the translated domain
Q =Q+ (h,7)={(z+h,t+7):(x,t) € Q}. (3.37)

Space symmetries

The PME and its relatives mentioned above are invariant under the symmetry
with respect to a coordinate space hyperplane. Thus, if u(x,t) is a solution in a
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domain @), so is

u(y,t) = u(—y1,92, .-, Ya,t), (3.38)

defined in @’ the domain of space-time that is symmetric of @ respect to the
symmetry w.r.t. ;1 = 0. The same happens for any other space variable. By
iteration, we may consider symmetries in a number of coordinates.

Space rotations

Indeed, we can perform any rigid motion in space since the Laplacian commutes
with all the transformations in the orthogonal group. If A is the matrix of such
a transformation and u(z,t) is a solution in a domain @, so is

u(y,t) = u(Ay, 1), (3.39)
defined in Q" = {(A~1z,t) : (x,t) € Q}. These arguments apply to any filtration
equation dyu = A (u).

Sign change

The filtration equation is invariant under the symmetry u — —u, if we change

the nonlinearity ® into ®(s) = —®(—s). To be precise, if a function u is a solution
of Problem HDP with initial data ug and nonlinearity ®, then @(z,t) = —u(x,t)
is a solution with data ug(z) = —ug(z) and nonlinearity ®(s) = —®(—s).

3.3.2  Scaling

The HE, the PME and the FDE also share a powerful property inherited from the
power-like form of the nonlinearity. This is the invariance under a transformation
group of homotheties, usually known the scaling group. Indeed, whenever u(x,t)
is a classical solution of the equation d;u = A(|u|™ 1), the rescaled function

(z,t) = K u(Lx, Tt) (3.40)
is also a solution if the three real parameters K, L, T > 0 are tied by the relation
K™ 112 =T. (3.41)

We get in this way a two-parameter family of transformed solutions.

We can further restrict the family to a one-parameter family by imposing
another condition. This happens for instance when the solutions are defined in
the whole space and we impose the condition of preserving the LP-norm of the
data or the solution. In the first case, it reads

/ luf? (z,0) dz — / K [uf?(Lz, 0) dz, (3.42)
Rd R

which implies the condition K? = L™. This allows as to determine two parame-
ters in terms of the third, and we can choose at will the free parameter but for
some exceptional cases. See Problem 3.2.
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As a first practical application, in Section 4.4 we will impose the conservation
of the L' norm in time and we will find the source solutions, probably the most
relevant example of the whole theory.

Later on we will introduce classes of generalized solutions (weak, strong,
mild, ...) and we will show that scaling applies to them.

3.3.3  Conservation and dissipation

These arguments apply to any equation dyu = AP (z,u) with &(x,0) =0 and
non-decreasing. The space domain is R, d > 1.

Mass conservation

Given a classical solution u(x,t) of the CP for the Filtration equation, we can
multiply the equation by a cut-off function {(x) and integrate to obtain

pr u(z,t)((x) de = /Aq)(x,u)g“dx = /@(x,u)AC dx.

Rd
If u is integrable in space and goes to zero at infinity then we may let { — 1 and
get in the limit

/u(x,t) dx = /u(x,O) dx. (3.43)

This is called mass conservation.

The same argument holds for the IBVP posed in a bounded domain with
zero Neumann data 9, ®(x,u) = 0, since ( =1 is an admissible multiplier (i.e.,
it does not produce extra boundary terms when integrating by parts). In the case
of Dirichlet data u = 0 on the boundary (and u > 0), we do not get conservation
but decrease
%/u(m,t) dx <0. (3.44)

These formal computations will be carefully justified for the classes of weak
solutions that make up the bulk of our theory.

Conservation of the first moment

Assume that the solution of the Cauchy Problem for the filtration equation is
such that the integral [ |z|u(z,t)dx is finite. Then, using that ¢ vanishes for
large |z| and that Axz; = 0, we formally get

d

&t ) ziu(z, t)C(x) de = /A@(m,u) ;¢ dx

= /@(x,u)xiACdx—F 2/<I>(ac,u)8ig“dx.
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Passing to the limit ( = 1 we get the result

d
T /xiu(aj,t) dx = 0. (3.45)

This result is still true in one dimension for the problem posed in Q = (0, c0) with
zero boundary data at = 0 and suitable decay at infinity, since the boundary
terms obtained when integrating by parts both vanish. But the result is not true
for the Dirichlet or Neumann problems in general.

Conservation for the homogeneous Dirichlet problem

When such a problem is posed in a bounded smooth domain 2 we may use as a
multiplier the solution ¢ of the problem

AC=-1 in Q (=0 in 9, (3.46)

to get the estimate
d
%/C(x)u(x,t) dr = —/@(u(w,t)) dz. (3.47)

Dissipation and the LP norms

The following formal computation works for the solutions of the CP that tend
to zero at infinity, and also for the solutions of the homogeneous Dirichlet and
Neumann problems:

%/M”daj :p/|u\p_2uA(I>(u) dx

— - 1) / By () |ulP2|Vul? de < 0, (3.48)

which shows that the LP-norm decays with time. Moreover, integration in time
gives

/|u(x,t)v’dx+p(p—1)/0 @u(u)\u|p_2|Vu|2dx:/|u0(x)|pda:. (3.49)

The second integral is therefore finite when t — co and measures the amount of
dissipation of the LP-norm in time.

3.4 Alternative formulations of the PME and associated equations

There are some alternative formulations of the PME, where the lack of parabol-
icity is seen in a slightly different way. There are also some equation that can be
derived from the PME d;u = A(|Ju|™!u) through transformations.

3.4.1 Formulations

(i) One of alternative formulations consists in making the change of variables
|u|™ "ty = w (or simply, w = u™ if u > 0). Formally, when m > 1 we arrive at
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the equation
Ow = m|w|" Aw, (3.50)

with exponent n = (m — 1)/m € (0,1). Now, we fall into the theory of nonlinear
equations in non-divergence form, and it is immediately seen that the equation
is parabolic for |w| > 0 and degenerates at w = 0.

(ii) The second change is the pressure formulation introduced in Section 1.1.2,
that is used for non-negative solutions, mostly when m > 1, and uses the variable
v=cu™ L. Ifc=m/(m—1) we get

0w = (m — 1) vAv + | Vo2, (3.51)

which is again non-divergence. Cf. formulas (1.3), (1.4) and the physical inter-
pretation of Section 2.1, see (2.7), hence the usual name of pressure variable
that we will keep. It has an extra gradient term, but the nonlinearity of the
right-hand side is homogeneous quadratic in u, and this is very useful for many
calculations.

A technical detail: sometimes the equation is written as dyu = A(u™/m).
Then we may define the pressure as v = (1/(m — 1))u™~! and the equation for
the pressure is still (3.51).

If the equation is the GPME the calculations are proposed as Problem 3.6.

3.4.2  Dual equation

Suppose that we have a smooth solution the GPME defined in the whole space
R? for 0 <t < T and let us assume that u(t) € L'(R?) for all t. Assume also
that d > 3. We can take the Newtonian potential of u at every time ¢ > 0 to get

u(t) = N(u(t)) = Bg % u(t)

so that v is a uniquely defined function in the Marcinkiewicz space M (4=2)(R%)
and Av(t) = —u(t) (see more on potentials in Section A.6, and on Marcinkiewicz
spaces in Section A.5). Then,

o(x,t) = Eg % (AD(z,u(t)) = —P(z, u(t)).
In other words, v solves the nonlinear evolution equation ;v = —®(z,u), i.e.,
dyv = O(Av) (3.52)

where ®(z,u) = —®(z, —u). This is called the dual filtration equation. It is a
formally parabolic, in principle degenerate, equation in non-divergence form. In
the case of the PME the dual equation is just

Opv = |Av|™ T Aw. (3.53)

Some questions are better understood in terms of the dual equation satisfied by
the potentials, see e.g. Chapter 13. The key point is that solutions of the dual
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equation have a better regularity since they are potentials. This is a fundamental
calculation, obtained after differentiation and integration by parts
d 2
— Vo|?de = -2 | u®(x,u)dz. (3.54)
dt Rd Rd
Another useful observation comes from integration of equation (3.52) in time.
We get for 0 <s<t<T,

v(x,t) + / O (u(z, 7)) dr = v(s,t)

so that bounds on v at time s and a condition like v > 0 imply bounds on
the integrated function U(z,t) = [ ®(u)dt. This function is the function to be
controlled in some theories.

In dimensions d = 1,2 the potential approach in the whole space has some
difficulties that we need not treat at this point. Let us give some details about the
treatment in a bounded domain. Using the Green function with zero boundary
conditions, G = Gg(z), as explained in Section A.6 to define Gf € Wy (Q) by
v(x,t) = Gu(t)(x) = [pa u(y,t)Galx,y) dy. Then, —Auv(t) = u(t) again, but now
we have

Now, for general smooth functions it is not true that GA = —I (because of the
boundary conditions) and we can only conclude that

0w =h — D(u), (3.55)

where h is a harmonic function with boundary conditions h|pq = ®(u)|sq. Of
course, if ®(u) satisfies zero Dirichlet data we have h = 0 and the same type of
dual equation holds.

We will return to potentials and dual equations in Chapter 13.

3.4.3  The p-Laplacian equation in d = 1

When d = 1 and w is depends on two variables (z,t) € Qr, we can imagine that
the filtration equation is just the condition that makes a differential form exact.
A bit of reflection shows that such a form is w = udx + ®(x, u).dt. Therefore,
we can define a function of two variables

v(z,t) = vz, to) + /(u dx + O(x,u),dt) (3.56)

along any piecewise continuous path that joins the fixed point (zp,tg) to any
(z,t) € Qr. The integral does not depend on the path . We easily see that
v, = u and that v satisfies the PDE

O = (P(x,vz)) - (3.57)
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If ®(u) = |u|/™ u, then the equation for v is the standard p-Laplacian equation
0o = (|va""%03)a, p=m+1. (3.58)

This calculation performed for classical solutions has to be justified in the theory
when dealing with generalized solutions.

Unfortunately, this relationship between the equations (PME and PLE) does
not extend to higher space dimensions.

Notes

Section 3.1. References [357], [239] and [371] can be consulted as the need
arises.

Section 3.2. The proof of the energy bound for V®(u) and z; is adapted from
Bénilan and Crandall [88].

Section 3.3. Scaling arguments are well known and very successful in the
applied literature, see Barenblatt’s book [63] and our Chapter 16. In Chapter 17
we will use scaling and special solutions that are scaling-invariant, in combination
with symmetrization and mass comparison, as basic tools in obtaining basic
estimates for the solutions.

Section 3.4. The dual equation was used in [202] in the study of extinction in
fast diffusion, in [191] in the study of uniqueness of general weak solutions, and
in [103] in the study of self-similarity and asymptotics.

The p-Laplacian equation has a very extensive literature, cf. the monograph
[209].

Problems
Problem 3.1 SiGNED PME. Make the change of variables w = |u|"~1u for some
r > 0. Obtain the equation for w
wy = m |w|"Aw + cjw|"2w|Vw|?, (3.59)
with n = (m —1)/r and ¢ = m(m —r)/r.
Problem 3.2 SCALING TRANSFORMATION.
(i) Prove that the scaling transformation that preserves the PME and the
L? norm of the data can be solved for K and L in terms of 7' unless
n(1 —m) = 2p (which implies m < 1 since p > 1). Find the explicit expres-
sions
K =77/0m=1+2p) - — pp/(n(m=1)+2p)
(ii) Find the admissible scaling if n(1 — m) = 2p.
(iii) Explore the possibilities of taking K, L and T negative. Derive for L = —1

an invariance under symmetry. What happens when K = —17 Is T'= —1
admissible?
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Problem 3.3 Consider the homogeneous GPME.

(i) Prove the boundedness of [ j(u(t))dz in formula (3.13) for finite times
when f is bounded and |p(u)| < Clj( )+ Coa.
(ii) Prove that for every r > 1

/|u(t)|Td:r§/|u0|rdx+r/ flul"~t dxdt.

Derive from this that whenever [° | f(t)|» dt is bounded then |u(t)|, is
uniformly bounded for 0 < ¢ < co.
(iii) Put f = 0 and obtain the estimate

J Gy

Problem 3.4 There is another useful conservation law for the GPME when the
problem is posed in an exterior domain = R? — K, where K is a compact set
with smooth boundary. Prove that in dimensions d > 3 there exist a solution

¢ >0 of
AC=0 in Q, (=0 in 99, (3.60)

with the additional condition ¢ — 1 as |z| — oco. Show that if u is a classical
solution of the exterior problem with uw = 0 on 0f2, and u decays at infinity so
that u(-,t) is integrable in space, then

%/C(z) u(z,t)de = 0.

This law is fundamental in the study of large time asymptotics done in [124].

Problem 3.5 Prove the following local energy estimate as a variant of estimate
(3.24). We take f = 0 for simplicity. For every n € C?(Qr), we have

// |V®(u)|?n dedt = // V2 An dxdt + // (z,u)n
Qr

This means that there is a bound for V®(u) in L (Qr) in terms of the local
norms of ®(u) in L (Qr) and ¥(z,u) in L (Qr).

Problem 3.6 Take the GPME 0,u = A®(u) and take as new variable w = ®(u).
Putting 3(-) = ®(-)~!, the equation becomes

Of(w) = Aw. (3.61)
This generalizes (3.50). If § is differentiable the equation becomes
B (w)dw = Aw. (3.62)

which is convenient in the theory of fast diffusion. Write down the calculation
for the so-called superslow diffusion equation where ®(u) = e~ /%
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Problem 3.7
(i) In order to generalize the pressure change to the case dyu = A®(u), we
write
u @/
v(z,t) = P(u(x,t)), Pu)= / % du. (3.63)

Writing V®(u) = uVu, 0w = &' (u)0su/u, the equation for v is then
O = a(v)Av + |Av]?. (3.64)

where o(v) = ®'(u). Work out the details and compare with (3.51).

(ii) Assume that ® is C2 for u > 0. Prove that ¢ is C* at v = 0 if and only if
there exists

u®” (u)

1 T
o' (0) = lim 5y

(iii) Calculate the pressure in the superslow diffusion case ®(u) = e~ /%, u > 0.
See further details in [125].

Problem 3.8 Derive carefully the associated equations (3.53), (3.55), and
(3.58).

Problem 3.9* Try to derive the a priori estimates of Section 3.2 for an
inhomogeneous equation of the form

Opu = ZB aij (2, )0y, ®(w)) . (3.65)

where (a;;) is a symmetric positive-definite matrix defending smoothly on z
and ¢.
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BASIC EXAMPLES

In this chapter we present five interesting types of solutions that will play a role
in the development of the theory: separate-variables solutions, travelling waves,
source-type solutions, blow-up solutions and constant-height solutions. Other
solutions, like dipoles and general fronts, serve to complete the picture.

We will use the presentation to introduce and use important concepts for the
sequel, like scaling, limit solutions, finite propagation, free boundaries, existence
under optimal conditions, blow-up, limited regularity, and initial traces. These
questions will receive a full rigourous treatment later on.

Solutions with changing sign will also be considered; therefore the equation by
default is the signed PME, u; = A(|u|™ 1u). The main emphasis should be laid
however on non-negative solutions of the standard PME. The last two sections
can be skipped in a first reading.

4.1 Some very simple solutions

The PME admits a number of explicit solutions that play an role in developing
the theory. Without any doubt, the simplest solutions are the ones that do not
change in time, called stationary solutions. They satisfy the condition u; = 0,
hence u depends only on the space variable, u = u(x), and w = u™ has to satisfy
the equation

Aw = 0. (4.1)

Therefore, any harmonic function w(z) provides a stationary solution of the
PME putting u(z,t) = w(z)/™ if w > 0, u(x,t) = |w(x)|"/™sign(w) for signed
solutions. If in particular we ask for solutions defined and non-negative in the
whole space, then such solutions must be constant. We call such solutions trivial
solutions. They are the simplest solutions.

In one dimension the rest of the stationary solutions are linear functions,
u™ = Az + B, A # 0. If we insist on non-negativity, then we must restrict the
definition to the hyperspace where u > 0. Thus, the solutions defined for x > 0
and vanishing at the lateral boundary z = 0 are given by the formula v = Cz'/™,
C € R. Note that they are not C' functions on the boundary! The restriction
x > 0 is not necessary if signed solutions are admitted but then we have to worry
about the concept of solution at the transition point = 0. This will be the task
of the next chapter. The same applies to stationary ‘solutions’ in two dimensions

52
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like
w(z,y,t) =2 —y*+¢, ceR

2

in d = 2 with w = |u|/™ 'u. Here, the problematic locus is 22 = y* — c.

4.2 Separation of variables

For our first model of non-trivial special solution, we follow the typical procedure
of the Fourier approach for the linear heat equation (which is formally the case
m =1 of the PME), and we make the ansatz

u(z,t) = T(t) F(z). (4.2)

This leads to separate equations for T'(t), the time factor, and F(z), called the
space profile:

T'(t) = —AT(t)™,  AF™(z) + AF(z) = 0. (4.3)

The constant A is in principle arbitrary, but it serves to couple both equations.
When it is zero, the solutions are stationary in time, a case already discussed.
Assuming in the sequel that A # 0, the first equation is easy to solve and gives

T(t) = (C + (m — 1))~ V=1,

Therefore, we have reduced finding these special solutions of the PME to solving
the nonlinear elliptic equation for F', the right-hand formula of (4.3). This is a
nonlinear version of the eigenvalue problem to be solved in the Fourier analysis of
the heat equation. The usual process is also the same: a domain 2 is chosen and
boundary conditions are assigned on 0§2; the boundary problem is then solved.
But the results are remarkably different. As usual, the analysis depends on the
sign of A.

4.2.1 Positive X\. Nonlinear eigenvalue problem

The first curious feature of the nonlinear elliptic problem is that the general
value A > 0 can be reduced to A = 1 by changing appropriately the value of F'.
In fact, if Fy(x) is a solution of the equation with A =1,

A(F ™ F) + F, =0. (4.4)
the transformation
F(z) = pFi(z), p=A/0m"1, (4.5)

is a solution of the original equation with A > 0, A # 1, A(|F|™"'F) + A\F =0,
and conversely. Equation (4.5) is the simplest case of what we call a scaling
transformation.’

1We have seen in Subsection 3.3.2 transformations in which the space and time variables are also
changed by homothety.
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It is convenient to further change the variable F into G = |F|™ ! F and write
the Nonlinear elliptic equation as

AG(z) + |G ()P LG (z) = 0, (4.6)

where p = 1/m € (0,1). When this equation is posed in a bounded domain with
regular boundary and we take zero boundary conditions, there exists precisely
one positive solution of the problem, and not many as in the linear case. In case )
has a special shape, like a ball or a cube, the solution is easy to find by standard
ODE methods, see Problem 4.1 below. In the case of a general bounded domain,
the existence and uniqueness of a positive solution of (4.6) can be obtained by
variational methods, as in [511]. We will find an indirect proof in the Chapter 5.

Summing up, the problem is quite different from the linear eigenvalue prob-
lem: there is existence and uniqueness of a positive solution for all A > 0. Let
us note that the solution is continuous (actually, Holder continuous) up to the
boundary of €2, and C°° smooth inside €.

Granted the existence of that solution, F'(z; A, ), the semi-explicit solution
that we get for the PME has the form u(z,t) = (C + (m — 1)t)~Y/(m=D p(z),
that we can also write as

(@, t) = ((m = 1)(t = to)) """V F(x), (4.7)

where tg is arbitrary. This form is called a separated variables solution. It is
clear that the formula produces a classical solution of the PME in the space-
time domain Q x (g, 00) and takes on zero boundary data. There is no essential
restriction in assuming that tg = 0 (since the difference is a time translation), but
the family of solutions depends on €2 through the profile F' in a non-trivial way.
Let us point out a quite strange feature: The initial data at ¢t = ¢ is u(z,tg) =
400, something unheard of in the linear case.

Note The method does not produce any classical solution defined in the whole
space R? for the PME.

4.2.2  Negative A = —1 < 0. Blow-up

We get solutions with time factor
Tt)=(C—-(m— 1)lt)—1/(m—1) = ((m—1)(tg — t))—l/(m—1)7

which blows up in finite time. We can again reduce us to the case [ = 1 and solve
the elliptic equation for the profile

AF™(z) = F(z) (4.8)

after a scaling. We cannot solve that problem in the same setting as before and
obtain non-trivial solutions. But it is easy to find radially symmetric solutions
defined in the whole space by solving the corresponding ODE. A particular
solution is well-known, and will be studied below in Section 4.5, devoted to
presenting blow-up solutions, see formula (4.44).
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Remark We have concentrated on the values m > 1. Separable solutions can be
constructed for m < 1, but they take the form U(z,t) = (T — t)/(~™ F(z). F
still solves an elliptic equation, see Problem 5.15.

4.3 Planar travelling waves

In the second model, we look for solutions of the form
u=f(n), n=x1—cteR. (4.9)

This type of solution represents a wave that moves in time along an axis (here,
x1), without changing its shape. The form does not depend on the variables
Z9,...,xq, hence the name planar (that is usually omitted so that they are
simply known as travelling waves, TWs for short). The parameter c is the wave
speed. We may assume that ¢ # 0, since for ¢ = 0 we find again the stationary
solutions, and the case ¢ < 0 can be reduced to ¢ > 0 by a reflection (changing
u(z,t) into u(—x,t) we find another solution of the equation moving in opposite
direction). Note that a wave with ¢ > 0 travels in the positive direction of the
axis. Note finally that TWs are one-dimensional in their space dependence.

We have taken as wave direction a coordinate axis, but the invariance under
rotations explained in Section 3.3 above allows us to find a wave that travels
along any straight direction n of space R%. The formula would then be (4.9)
with n =x-n — ct.

Taking thus ¢ > 0 fixed, and substituting (4.9) into la u; = Au™ we arrive
at the ODE

(f™)"+cf =0, (4.10)
where prime indicates derivative respect to n. Integrating once we get
(f™) +cf = K, (4.11)

with arbitrary integration constant K € R. In order to choose this constant we
think of the situation where the wave advances against an ‘empty region’, i.e.,
we want f(n) = f'(n) =0 for all » > 0. This condition leads to the conclusion
that K = 0, so that (4.11) becomes

mfm 2 4 e =0, (4.12)
which is easily integrated to give

m _
mfm ! =—cn+ Ky =c(no —n). (4.13)

This conclusion is very neat, since, according to our definition of the mathe-
matical pressure, cf. formulas (1.4), (2.7), it means that the pressure is a linear
function

v(z,t) = K1 — c(x — ct) = c(xg + ct — x). (4.14)
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This is a perfectly valid classical solution of the PME in the expanding region
{(z,t) : x < xp + ct}, where u is positive.

Analytical problems and ways of solution

However, this conclusion is not satisfactory, since formula (4.14) fails to provide
a solution of the PME in the whole space, which is the natural framework for
a TW. The problem is serious; actually, v becomes negative for = > xy + ct,
a situation that goes squarely against the physics of many problems. One such
problem was the heat transfer that the Moscow group was trying to solve around
1950. The way out of this dilemma is a crucial moment in the history of the PME,
and a powerful argument in favour of the influence of the applications on the
theory. It consists of two parallel moves: drastically modifying formula (4.14),
and abandoning the concept of classical solutions. Both are quite natural today,
but we are talking about 1950.

Indeed, the solution of the difficulty is quite natural and relies on the strategy
of the limit problem: to solve an approximate problem for which the difficulty is
not present, to pass to the limit and to examine the obtained result. Specifically,
we take as boundary condition for equation (4.11)

f(OO) =é, fl(oo) =0, (415)

so that the problem is non-degenerate. We obtain for K the value K =ec¢ > 0.
We then write (4.11) as

f—e¢

mfmfl

fl=-c (4.16)
which is an ODE in separate-variable form, immediate to integrate, at least
graphically and implicitly. We are interested in solutions f > e.

Proposition 4.1 For every e € (0,1) there exists a unique solution f-(n) of
equation (4.16) satisfying the initial condition f(0) = 1. It has end condition
fe(oo) = €. Moreover f. : R — (g,00) is a monotone decreasing and C*> func-
tion such that f.(—oo0) = co. In the limit ¢ — 0 we have

om
lim mfe Hn) = c(no —n)+ (4.17)

with no = m/c(m — 1). The limit is uniform in sets of the form [a, o).

We have taken the normalization value f.(0) = 1 without loss of generality.
Since the equation is autonomous, we can get a one-parameter family of C'*°
solutions f > e with f — e as n — oo by horizontal translation of the one
obtained in the proposition. Since the proof of the proposition is based on a
simple phase plane analysis, and we assume that the reader is familiar with the
elements of that technique, we assign the task as Problem 4.2. We are also asking
him/her to perform the graphical integration to get a visual evidence. Thanking
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Figure 4.1: Travelling waves for € > 0 and their limit.

the reader in advance, we will devote the spared space to discuss the meaning
of the result.

4.3.1 Limit solutions

Inserting formula (4.17) into the form (4.9) and passing to the pressure, we get
the formula

v(x,t) = c(xg +ct — ) 4. (4.18)

Since it is obtained as a limit of perfectly safe classical solutions, a quite strong
intuition developed in the applied sciences tells us that this qualifies as a valid
physical solution in some sense to be made precise. In the meantime, we will call
it a limit solution.

The introduction of limit solutions solves some problems and poses a number
of other problems. Thus, we now have a concept of travelling wave to describe
the movement of a mass of gas (or liquid, or heat) bordering on its right-hand
side with empty space, a situation of enormous applied importance.

On the other hand, let us examine the problems. This limit solution is not a
classical solution of the PME. Closer inspection shows that it is a broken version
of the formula obtained by purely algebraic computations, (4.14), and it has a
problem of differentiability at the line x = xg + ct, precisely, at the points where
the equation passes from the classical state to the degenerate state. This set is
called the free boundary, an important object of study as we have said.
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Another problem of the concept of limit solution is the possibility of obtaining
different solutions for the same problem, depending on the type of approximation
used. We will introduce in subsequent chapters different concepts of generalized
solutions that allow us to (i) solve the problem in a unique way, (ii) include the
classical solutions if they exist, as well as their limits, and (iii) show existence
in cases where there is no classical solution. Such an effort will prove that the
limit solution we have just accepted is indeed a ‘good solution’.

4.3.2  Finite propagation and Darcy’s law

Travelling waves consist of space functions (called profiles) that propagate with
constant speed without changing shape. They are also called constant-shape
fronts. Such fronts exist also for the heat equation, but they have different form
and properties. Let us examine more closely the differences between the PME
and the HE. For the latter, the TWs have the form

u(z,t) = Ceclet=2),

On one hand, they are classical solutions. On the other hand, they are always
positive, and reach the level u =0 at z = oo after developing an infinitely
long exponential tail. It is precisely this property of the heat equation, namely
that non-negative solutions are actually positive everywhere, what is sometimes
mentioned as an unphysical property of an otherwise quite effective model.

We have constructed an explicit (limit) solution of the PME that
has a sharp and finite front separating the regions {u >0} and
{u =0}, and this front propagates in time with constant speed. This is the
first appearance of the property of finite speed of propagation, usually called
finite propagation, a fundamental property of the PME, that we will discuss at
length later on.

Darcy’s law on the free boundary

In trying to understand the lack of regularity of the TW at the free boundary,
it is quite useful to go back to the modelling of a gas in a porous medium,
Section 2.1. Putting xg = 0 without loss of generality, the pressure in the gas is
given by

v(x,t) =c(ct — ) 4.

According to Darcy’s law, the speed is V = —Vu = cejy. In physical terms, every
particle of whole mass of gas moves with the same speed and the pressure
must grow linearly near the free boundary to account for Darcy’s law. On
the other hand, v =0 on the empty region according to our mathematical
definition (2.7).

Summing up, we have concluded that Darcy’s law forces the gradient of v to
jump at the free boundary points x = ct.
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u(-,t)

Figure 4.2: Fundamental solution of the heat equation.

4.4 Source-type solutions. Self-similarity

In the next example we look for the solution corresponding to PME flow starting
from a finite mass concentrated at a single point of space, say, x = 0. A classical
problem in the thermal propagation theory is to describe the evolution of a heat
distribution after a point source release. In mathematical terms, we want to find
a solution of the HE with initial data

u(z,0) = M o(x), (4.19)

where M > 0 and 9§ is Dirac’s delta function. This is called in engineering a point
source, hence the name source solution widely used in the Russian literature.
Such type of solution is well-known in the case of the heat equation (i.e., for
m = 1) and is called the fundamental solution, with formula

E(x,t) = M (47t)"™"2 exp (—a? /4t). (4.20)

The Gaussian kernel, as it is also known, plays a fundamental role in developing
the PDE theory of the heat equation, and is also of paramount importance in
the probabilistic approach to diffusion (central limit theorems).

This motivates the interest in the similar question about the existence of a
source solution for our nonlinear diffusion equation, PME. Indeed, as we have
indicated in Section 1.1, the source solution exists for m > 1 and, fortunately
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enough, it is explicitly given by a formula that we will now write as

Uz, t; M) = t-OF(zt-9/4) P(g) = (C — k€T T, (4.21)
where
B d _ (m—-1)a

We ask the reader to check that indeed it takes on a Dirac delta as initial trace,
i.e., that

tlirr(l)bi(ac,t) = M do(x), (4.23)

in the sense of measures. The free parameter C > 0 in formula (4.21) is in
principle arbitrary; it can be uniquely determined by the condition of total mass,
f Udx = M, which gives the following relation between the ‘mass’ M and C:

d

— y - *
M =a(m,d)C7, =~ S —1a’

(4.24)
Note a and v are functions of only m and d; the exact calculation of a is not
needed at this point, cf. Section 17.5. We shall use quite often in the sequel the
name ZKB solutions for the source solutions as explained in the Introduction;
they are also quite widely known as Barenblatt solutions or Barenblatt—Pattle
solutions. Notation: using the mass as parameter we denote it by U(x,t; M), or
even Uy, (z,t; M) if the dependence on m is important.
According to the previous calculations, putting

C = Hgg M2(m71)a/d’
then formula (4.21) is transformed into

1 Mro/d T
Z/{m(x,t,M> == Mum(w,M t,l) == tOC Fm$1 ((Mvzlﬂa/d)’ (4.25)

where Fy, 1 = (k(&5 — 52))1/(7”71) is the profile with exponent m and mass 1.
It is maybe a good idea to write the ZKB solution in terms of the pressure
variable v = u™ 1m/(m — 1) and then we get the formula

(Ct2a/n _ b$2)+
t

Vin(x,t; M) = (4.26)

with b= «/2d and C >0 is a free parameter. We see that in terms of the
pressure, the ZKB has a simpler expression, a parabolic shape for all m > 1.
This observation has strongly influenced a number of developments of the theory.
About the shape see Problem 4.6.
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u(-,t)

Figure 4.3: The ZKB solution of the PME.

We can also pass to the limit m — 1 (with a fixed choice of the mass M) and
obtain the fundamental solution of the heat equation,

lim Uy (a, 8; M) = M E(x,1). (4.27)

This is a relatively easy calculus result. We ask the reader to try his-her calculus
ability.

4.4.1  Comparison of ZKB profiles with Gaussian profiles.
Anomalous diffusion

We begin by pointing out that the ZKB solutions start from a point source and
spread in space like O(t%). Since 3 < 1/2 for m > 1, this is a slower rate (i.e.,
with a smaller power) than the average spread rate O(t'/2) of the Heat Equation;
such a spread rate was indicated by Einstein in his famous 1905 paper [538] as the
characteristic average spread rate of Brownian motion; observe furthermore than
8 — 0 as m — oo. Such a deviation is not just a particular case, since we will
show in Chapter 18 that the ZKB solutions represent the standard asymptotic
behaviour of finite mass solutions both in size and spread rate; we conclude



62 Basic examples

that the PME is an example of anomalous diffusion in the sense described for
instance in [537].

Then, we notice the difference in propagation. While the HE solution travels
immediately to the whole space, the PME solution is supported in the region
|z| < r(t) behind the free boundary

r(t) = (C/r)Y*t5.

Use of the maximum principle will allow us to conclude in later chapters that all
weak solutions u > 0 of the PME with bounded and compactly supported initial
data are located for positive and bounded times ¢ > 0 in an expanding but still
bounded region.

Secondly, the fundamental solution of the HE is a C'*° function, while the
ZKB solutions are only Holder continuous. Actually, the regularity depends on
m but the regularity of the pressure does not. It is Lipschitz continuous and not
C', just as in the TWs.

Besides, it is not difficult to check that Darcy’s law holds on the free boundary
in the sense that

lim Vo= —r(t), (4.28)
|z —r(t)—
where the limit is taken as |z| — r(¢) but only for |z| < r(t), i.e., only in the
gas region. This formula equates the speed of the particles with the speed of the
moving surface.

Let us finally say that the fundamental solution of the HE allows us to
derive the whole theory of the equation using the representation formulas, a
most powerful tool of linear analysis. This is not to be expected in the case of
the PME where no valid equivalent of such formulas has been found. However,
skillful use of the properties of the ZKB solution have allowed to obtain enormous
progress in the theory of the PME. Therefore, carefully inspecting the properties
of the ZKB is a most fruitful investment and we shall do it quite often. See in
this direction Problem 4.5(vi). However, the development of the theory of the
PME owes much to the other solutions mentioned in this chapter.

4.4.2  Self-similarity. Derivation of the ZKB solution

The most natural way of deriving formula (4.21) is using self-similarity, a most
important concept in the theory that follows. It means that there is a scaling
of the variables after which the ZKB become stationary solutions. Precisely, it
holds that

W' = f(z'),  with o =uwt®, o =t (4.29)
The self-similar form is then
Ula,t) =t~ f(n), n=at"" (4.30)

The exponents « and 3 are called similarity exponents, and function f is the
self-similar profile. In particular, « is the density contraction rate, while (3 is the
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space expansion rate. We have to determine exponents and profile so that the
resulting function U is a solution and has suitable additional data.

Self-similarity is a principal concept in mechanics and, generally speaking in
the applied sciences. Note that the fundamental solution of the heat equation
(4.20) is self-similar with exponents a = d/2 , 3 = 1/2, and a Gaussian function
as profile.

e In the case of the PME, we try the self-similar ansatz (4.30) in the PME.
Since

Uy = —at™ " f(n) + 17V f(n) - at™ " (=p)
= —t=* Yaf(n) +BYf(n)-n),
and
AU™) =t A (f™(wt™P)) =t AL (™) (),

the equation U = AU™ becomes

O (—af () = fn - V() = " TEAL (). (4.31)

® We now eliminate the time dependence (this is a kind of separated variables
argument). This implies a first relation between the exponents:

am—1)+28 =1, (4.32)

and allows us to express one exponent in terms of the other (e.g., o in
terms of ). We then get the profile equation,

Af™+p6n-Vi+af=0, (4.33)

which is a nonlinear elliptic equation with a free parameter (say, 3). We
only need to specify the boundary or other conditions to get a well-specified
nonlinear eigenvalue problem.

e We will see in Chapter 16 how to solve this problem for different values of
B, and in another particular example in Section 4.6 below. In the present
case, the ‘eigenvalue’ 3 is fixed by means of a physical law, conservation of
mass: [U(x,t)dr = constant. When applied to the self-similar formula, it
gives

/L{(x,t)da: :/t*af(:ctfﬁ) dzx = t*atﬁ”/f(n)dn = const(t), (4.34)

which implies the relation o = d3. Summing up, we have

am—-1)+26=1, a = (3d, (4.35)
so that the exponents have the values:
1 d
= - = . 4.36
f=dm-D+2 T dm-1)+2 (4.36)
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e We still have to solve equation (4.33) in R? for these values of o and 3. We
want non-negative solutions. Since the problem is rotationally invariant we
look for a radially symmetric solution, f = f(r), r = |z|. We have

N g+ B =0,

which can be written as

(4 () B fY =0,

This is a fortunate calculation, since we can integrate once to get

PN Y + 80 = C (4.37)
Boundary conditions enter: since we want f — 0 as 7 — oo, we take C' = 0,
so that
(f™) +Brf=0, mf"2f =—pr, (4.38)
hence
%f’”*l = 7%702 +C, fmt=A- [3(7;77;1)#. (4.39)

This is the end of the integration. We have obtained the announced quadratic
profile for the pressure of the source solution.

Problems again

(i) We find that the formula produces a smooth solution of the PME whenever
U > 0, but we again face the problem of negative values if we want this formal
solution to serve as a solution in the whole space. Since this is precisely the
situation we have encountered in the study of TWs, we know how to proceed.
Approximate the delta function by a positive function solve the classical prob-
lems and pass to the limit. Unfortunately, we are not technically strong enough
to perform that feat. But Zeldovich et al. found numerically that the result is
similar: taking the maximum between 0 and the formal solution. In other words,
cutting off the unwanted part of the profile. We thus arrive at formula (4.21).

This way of waving hands at the proofs is quite unsatisfying (but see
Problems 4.4 to 4.6). We will devote the next chapters to develop the theory
of weak solutions. We will prove that (4.21) is a weak solution. We will prove
that when initial data are taken in a suitable class of integrable functions, and
weak solutions are suitably defined, the weak solution of the problem exists
and is unique; moreover, it is shown that classical solutions are weak solutions,
and so are their limits.

(ii) Another problem appears. In Chapter 9 the class where weak solutions lie is
C([0,T) : L*(R%)). Now, U(-,t) € L*(R?) for every ¢t > 0, but not for ¢ = 0, we
have a problem with the initial data. We will have to enlarge the class of data



Source-type solutions. Self-similarity 65

U(',t)

/\

X

Figure 4.4: Source solution for FDE for d = 3, m = 1/2.

to measures in order to have a well-posed generalized theory that includes our
favourite special solution.

This discussion leads to an important conclusion: the abstract theory has
been strongly influenced by underlying physical considerations and special
solutions.

4.4.3 FExtension tom < 1

It was soon realized that the source solution also exists with many similar
properties as long as a > 0, i.e., it can be extended to the fast diffusion equation,
m < 1, but only in the range m. < m < 1, cf. [359], with

me=0 for d=1,2, me=(d—2)/d for d>3.

Formula (4.21) is basically the same, but now m — 1 and k are negative numbers,
so that U,, is everywhere positive with power-like tails at infinity. More precisely,

Un (2,8, M) = t=OF (2t F(€) = (C + k1 €2) .77 (4.40)

with same value of o and k1 = —x = (1 — m)«/(2d).
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4.5 Blow-up. Limits for the existence theory
Let us start by an elementary, but interesting observation. If u(x,t) is a classical

solution of the PME and it is given as a smooth expression of 2% and ¢ in the
form

u=F(a%1),
then
U= F(—2% -t

is again a classical solution of the equation. This trick is an extended form of
the scaling transformations studied in Subsection 3.3.2. We may try the trick
on the solutions of the last section, though they are not classical, and see what
happens. Using it on equation (4.21) we get the formula

1

Uz, t) = (—t)" (C+ k |z (=) ) 77 (4.41)

with a and & given in (4.22). Let us examine this formula for the different values
of the free constant C'

(i) When C > 0 formula (4.41) produces a function that is well defined and
positive in the domain where z € R¢ and ¢ < 0. It is moreover a classical solution
of the PME in that domain and tends to infinity as ¢ — 0 at every point x. This
is what we call blow-up.

It is customary to change the origin of time to some T > 0, write the solution
as

U(x,t:C) = (T — 1)~ (C + 5 |2|2(T — 1)~28) "7 | (4.42)

and consider times 0 <t < T (or even —oo < t < T'). The formula is even easier
in terms of the pressure

C(T —1)% + K |z|?
T—1
where K = «/2d = mk/(m — 1), and C > 0 is arbitrary.

V(z,t;C) = (4.43)

(ii) Case C' = 0. We get an explicit solution whose pressure is a quadratic function
that blows up in finite time

~ K |z|?
V(z,t;0) = T |f|t )

This is a classical blow-up solution for the pressure equation, it has a separate
variables form, and is defined in {(z,t) : ¢t <T'}.

(4.44)

(iii) Case C' = —D? < 0. In this case the solution that we obtain is not classical:

U(x,t;—D) = (T — )~ (K [a"(T — )2 = D) 77 (4.45)
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with a free boundary given by the hypersurface
|| = DK~Y2(T —t)P. (4.46)

Notice that in this case the empty region (where u = 0) is a contracting hole
located inside the support.

4.5.1 Optimal existence versus blow-up

The existence of solutions that blow up in finite time can be combined with
the maximum principle to show that non-negative solutions of the PME whose
initial data grow as || — oo not less than O(|=|?/(™~1) must necessarily cease
to exist at a time T that can be estimated by using the above formulas. It is
then shown that such a growth estimate is optimal, in the sense that solutions
with data

uo(x) = o((1+ |z[*)t/ =) (4.47)

exist for all time (here, we use symbols O and o in the sense of Landau). This is
no wonder, since similar transformations and blow-up solutions exist for the heat
equation. But, whereas in the case of the HE the maximum admitted growth is
square exponential, for the PME it is power-like with exponent 1/(m — 1) (i.e.,
quadratic growth for the pressure). We conclude that as m grows the class of
existence decreases.

The question of existence for optimal classes of data will be investigated
carefully in Chapter 12, where all the statements will be proved.

4.5.2  Non-contractivity in uniform norm

One of the most important properties of the class of filtration equations studied
in Chapter 3 is the property of (non-strict) contraction with respect to the L!
norm. This property is one of the cornerstones on which the general theory of
the PME if founded. One may wonder if the PME evolution is also contractive
with respect to other L? spaces. Actually, the heat equation is for all p € [1, o0]
and this is quite easy to prove and useful. We will show below that the PME
is not contractive with respect to the LP norms for any p > 1. The main idea
is based on the following observation about the blow-up solutions (4.42), or in
pressure terms (4.43). We note that for two different constants 0 < C; < Cs we
have

Cy—C4

V(z,t;Cy) = V(z,t;Ch) = (T —fom—1)-

(4.48)
If m = 2 this immediately implies that the L norm of the difference of two
solutions U; and Us increases with time like an inverse power of T' — ¢, so that
it actually goes to infinity.

The reader may object that our solutions are not bounded themselves. The
adaptation will have to wait for the theory to be developed. Moreover, examples
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of non-contractivity will be constructed when m # 2 or when p € (1,0), but
we will have to know a bit more about the theory. The proofs are contained in
Section A.11.

4.6 Two solutions in groundwater infiltration

There are a number of self-similar solutions that play important roles in the
theory. We present in this section two solutions for problems posed in a half
line of one-dimensional space. They are motivated by the model introduced in
Section 2.3 for groundwater infiltration into a horizontal porous stratum, which
leads to the PME with m =2 as we have shown. In an idealized situation,
typical of the self-similar analysis, we assume that the stratum is horizontal
with an impervious lower bed at z =0 and point the z-axis in the direction
perpendicular to the border, which is supposed to be x = 0. Forgetting the y
direction, the PME is posed for the variable z = h(z,t) with z > 0 and boundary
conditions

h(0,t) = Hy >0, h(oo,t) = 0. (4.49)

The first condition represents border infiltration so that the groundwater level
is kept constant at x = 0. There are then two main cases that have been
studied.

4.6.1 The Polubarinova-Kochina solution

In case the height Hy > 0 there exists a self-similar solution the form (4.30).
The boundary condition is compatible with this form only if @ = 0. But then
the compatibility with the equation (4.32) implies that 8 = 1/2. The solution is
therefore written as

h(w,t=f(n), n=wz/t" (4.50)
Corresponding initial data are
h(x,0) =0 for x> 0. (4.51)

This represents infiltration into an empty stratum from a lateral source with
constant height, and was studied by Mrs. Polubarinova-Kochina in 1948.
The groundwater model problem is reduced to solving the ODE problem

(P + 50 f) =0, 0<n<oo f0)=Hy floc)=0.  (452)

The constant Hj is inessential and can be replaced by 1 without loss of generality
by rescaling. The paper [438] makes a numerical study of this ODE and concludes
that there is a correct solution that lands on the z-axis at a finite distance 7.,
even if the slope does not go to zero at this point. We get in this way finite
propagation in the way we have seen above. Figure 4.5 shows the solutions as
well as nearby orbits obtained by shooting in the ODE problem with different
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Figure 4.5: Groundwater solution and other orbits.

initial slopes. These calculations will be rigourously established in this book as

the theory proceeds.

4.6.2 The dipole solution

There is a second solution that has the explicit form

1
1 o m+1 m—1 mt1 ) ™T
Ugip(z,t) =t~ ||/ ™sign () (Ct zm? — St D) || " >+ . (4.53)

This corresponds to self-similarity with exponents o = 1/m and = 1/(2m),
and profile

Jap(€) = [¢1"sign(€) (¢ - w ¢

o ) o (4.54)
+

We usually consider this solution as defined in the quarter of plane, @, =
(0,00) x (0,00), and then Ugip, > 0, and the mass M (t) = [;° u(z,t) dz decreases
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Figure 4.6: The dipole solution at different times, m = 2.

with time like O(t~'/?™), while the momentum is conserved,

/ zu(z,t)de = Cy, (4.55)
0

cf. formula (3.45) of Section 3.3.3. A curious situation happens, namely that
both the initial and boundary conditions vanish:

Udip(2,0) =0 forall z >0, Ugip(0,t) =0 forallt>0. (4.56)

The question is then: should not the solution be trivial? An explanation of the
negative answer comes from the realization that a singularity occurs (namely,
u is unbounded) as we approach the corner point (xz =0,t = 0). We conclude
that uniqueness of unbounded solutions is not necessarily true (even if the
solution is non-negative and the divergence takes place only as ¢t — 0); this
observation will affect the theory to be developed in this book. We will discuss in
Section 13.5 a theory which allows for solutions with initial singularities like the
dipole. Another illuminating observation consists of looking at the behaviour
of the flux (Ug}). near zero. Indeed, we have (Ugy,)s ~ Ct=m+1/m which
diverges as t — 0.
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The phenomenon is better understood if we consider the function as a signed
solution of u; = (Ju|™ 'u)., in Q2 = R x (0,00). Then, it is not difficult to see
that for every test function ¢ € C°(R)

hm/ Udgip (@, t)¢(z) dz = M ¢'(0) (4.57)

with M = M(m,C) > 0. In other words, Uqip(-,t) — M §'(x), where ¢'(x) is
the distributional derivative of the delta function. This is called in physics the
elementary dipole, hence the name dipole solution of the PME for Ugs,. The data
that are taken in the sense of the weak limit, (4.57), are called initial traces. They
are a very natural and general form of data and will be considered in detail when
the so-called theory with optimal data is done in Chapter 12.
The dipole solution can be extended to the FDE with 0 < m < 1 but then it
reads
1-m)/mg;
Usgip (0, £) ™ = tm( rsign(z) (4.58)
Otz,n2 + 2m(m+1) |x|(m+1)/m

Note the behaviour as x — oo, u! =™ ~ ct/z?, which is the same as in the ZKB
and is typical of the FDE, both in exponents and coefficients.

See Problem 4.12 for the derivation of the dipole solution from the source
solution of the p-Laplacian equation and the limit m — 1.

4.6.3  Signed self-similar solutions

The dipole solution opens the question of constructing other self-similar signed
solutions of the PME in the whole space having compact support, maybe in a
explicit or semi-explicit way. We will see in Chapter 16 how to construct self-
similar solutions in a systematic way. The case of compactly supported solutions
in d = 1 was analysed by Hulshof in [296]. The form is

u(z,t) =t U(m), n=at""

with the standard constraint (m — 1)« + 28 = 1; then, U satisfies the differential
equation

(U™ U)" 4 U’ + U = 0.

The theorem says that there exists a strictly decreasing sequence oy =
1/(m+1)<a;=1/m<az<...7T1/(m—1) such that compactly supported
similarity solutions of the type above exist if and only if a = aj. The first
exponent corresponds to the Barenblatt solution, the second to the dipole. The
third was investigated in [103] where it was shown that the exponent is not
derived from a conservation law (in other words, it is anomalous, and the simple
extrapolation of the elementary algebraic conjecture breaks down).

It is also proved in [296] that & equals the number of times U(n) changes its
sign and U(n) is symmetric if k is even (antisymmetric if k is odd). The reader
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should note that for the wrong « (i.e., not in the list) self-similar solutions exist
but they are compactly supported. Actually, they are not integrable.

A similar analysis holds for compactly supported, radially symmetric solu-
tions of the PME in R?, d > 1.

4.7 General planar front solutions

As an extension of the theory of travelling waves, we now examine the class of
solutions that propagate with a certain speed c(t) and keep their space shape
constant in time but for a scale factor A(t). We call them fronts. The general
form is then

u(z,t) = A(t)U(x1 — s(t), za,...,2q) (4.59)

but for a possible rotation of the space direction. The PME implies then the
differential equation

AU () = (AT, = A" (HAU™ (1),

with ¢(t) = §'(t). Since we want non-trivial solutions, we assume A(t) # 0. In
that case, a simple separation of variables argument implies that the following
two conditions must hold:

Al(t) = = XA™(t), c(t)A(t) = pA™(t). (4.60)
The case A = 0 allows us to recover the travelling waves of Section 4.3, and the
case p = 0 gives ¢(t) = 0, hence, the solutions in separate-variables form.

New solutions are obtained when both parameters are non-zero. In that case,
we get from the first equation

_ 1 _ 1
AW = Exm e U= G am o (461)

Case A >0

In this case the second equation integrates to give a speed of the form
s(t) = ¢plog(C + A(m — 1)t),

which goes to infinity but slows down as ¢ — oo, something that also happens for
the ZKB solution (with a different rate though). The time factor also decreases
in a power fashion, A(t) = O(t~*/(m=1)  the same as the separate-variables
solutions. The equation for the profile U becomes

AU™(n) + AU (n) + uUy, (n) = 0, (4.62)

m

which is a variation of the basic nonlinear elliptic equation (4.4). Using scaling,
there is no loss of generality in reducing the case p > 0 to = 1. The case of
negative u can be reduced to positive p by reflection (which only changes the
direction of the wave).
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4.7.1  Solutions with a blow-up interface

The case A = —[ < 0 is more interesting, because it leads to interesting solutions
whose interface blows up in a finite time. Indeed, in this case we get
s(t) = —¢glog(C — I(m — 1)t) = colog(1/(T —t)) + ¢1. (4.63)

which blows up as t — T = C/I(m — 1). This means that the location of the
interface, if there is one, reaches infinity in finite time with a logarithmic rate.
Also, the scale factor A(t) blows up as ¢t — T. Let us calculate the profile U in
that case. The equation becomes

AU™(n) —1U(n) + pUy, (n) = 0. (4.64)

Ezistence and analysis of a special solution

Since this type of solution has a certain interest and seems not be described

in the literature, we pay some attention to a particular solution in one space

dimension. The exercise allows us to review some interesting ODE techniques.
Again, there is no loss of generality in fixing 4 = 1. In d = 1 we can write

(U™)'(n) =1U(n) +U'(n) = 0. (4.65)

Our next task is integrating this equation. We use a phase plane argument.
Letting V = —(U™)’, we have V' = —IU + U’. We get the system:

1
G
dg X (4.66)
— =-lU - —VUu'™,
dn m
so that
av ImU™
— =1 . 4.
ik + v (4.67)

We cannot integrate this ODE explicitly, but the usual qualitative techniques
allow us to understand the existence and behaviour of the different solutions
(UM),V(n)). Let us recall that dV/dU =1 is the equation for the TWs of
Section 4.3, while dV/dU = ImU™ /V describes the blow-up solution of Section
4.5 in one dimension. Therefore, we expect (4.67) to combine properties of both
equations.

e Let us now examine the different orbits V' = V(U) in the first quadrant of
the (U, V) plane. We see that they are increasing with dV/dU > 1. They
can get started at any point of the vertical axis, i.e., Uy = 0 and Vj > 0, and
then the initial slope is dV/dU = 1. We can also shoot from the horizontal
axis, Up > 0 and Vj = 0 with initial slope dV/dU = oc. Finally, there exists
one separatrix solution between the two families, which starts from (0, 0).
Such a separatrix is unique by monotonicity arguments.



74

Basic examples

UV plot

n-U plot

L L 4 0 L L L L L L
0 05 1 15 2 25 3 % T2 "0 S 6 " 2 0
u n

Figure 4.7: General front with blow-up. Left, the phase-plane with the solution
in bold line. Right, the plot of u versus 1. Parameters m =2, [ = 1.

e Local analysis of that orbit near the origin is as follows: since dV/dU > 1,
we have V' > U, hence the equation simplifies for U ~ 0 to dV/dU ~ 1 (the
last term is smaller, O(U™™1)), so that V/U — 1. We can now use the
definition of V' to conclude that there exists a constant 7y such that

me1 m—1
U™~ ———(mo —n)

as n — 1o with n < ng; no is an arbitrary constant, and we can take ng =0

to normalize. We have obtained the correct behaviour near a free boundary.
e Behaviour for large values. As U — oo, we derive an estimate as follows:

since dV/dU > U™ /V we have V2 > C;U™T!; using the differential equa-

tion we conclude that dV/dU < 1+ U™~1/2 hence V < CoU(™+1)/2 for

all large U. But that means that the equation can be simplified for all large

U to dV/DU ~ mlU™ /V, which gives the exact estimate to first order

V =cUMHD/2 L ey = (2lm/(m + 1))V
Recalling that V = —mu™'U’ and integrating, this gives the estimate as
n — —o0:
2
—1 21
U = e’ + ... = (= .
an t+., G ( 5 m(m + 1)

It follows that

1 x? n
2m+1)T—¢t 7

m

m—1
m—lu (

z,t) =

as x — —oo. This is precisely the behaviour of the standard blow-up
solution (4.44) in d = 1.
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Remark on the blow-up rate As ¢t — T, and uniformly on bounded sets
|z| < K, the solution blows U(x,t) up with the rate

C

T —pi7om=p (os/(T = 1))°. (4.68)

Uz, t) ~ A(t)U(s(t)) ~
This is faster than the blow-up rate of the standard blow-up solutions of
Section 4.5. See the Open problem in the Problems.

Notes

Section 4.2. The existence of the separate variable solution in a bounded
domain was rigourously proved by Aronson and Peletier in [49]. If we eliminate
the restriction of non-negativity, we may obtain an infinite family of solutions
of the elliptic problem with increasingly complicated sign-change patterns,
of. [511].

The method can be applied to the fast diffusion equation, and then it
produces solutions which vanish in finite time of the form

u(a, ) = (L —m)(T - 1)V D F(a), (4.69)

where T is the extinction time, a free parameter. The existence of a posi-
tive profile vanishing on the boundary of a bounded domain is proved for
m > (d —2)/(d + 2) while for 0 < m < (d — 2)/(d + 2) the profile is positive in
the whole space, cf. [99].

Section 4.3. Travelling waves are constant-shape fronts moving with constant
speed | V| = ¢ wherever u > 0, while in the empty region (where v = 0) the speed,
defined as the gradient of the pressure v, is zero. This gives rise to a discontinuous
function to represent V.= —Vw. This reminds us of the discontinuous solutions
of standard gas dynamics and their shock waves, cf. [171, 175, 359]. Indeed, this
analogy has been used to develop the theory, cf. [501].

Section 4.4. The origin of the source-type solutions has been explained in the
Introduction and Chapter 2. The applied problem that motivated the studies
was a problem in plasma physics, nothing to do with porous media! We will
study their role as asymptotic patterns in Chapter 18.

The ZKB solutions can be continued algebraically for m < (d — 2)/d, but
they have different geometry, they do not solve the same initial value problem
and they also lose their important role as asymptotic patterns for a large class
of initial data. For a detailed analysis of this issue, cf. our monograph [515].

Section 4.5. Blow-up solutions will play a big role in setting limits to the
existence theory, and as handy comparison functions.

The example of expansion of the L norm of Subsection 4.5.2 seems to be
due to the author.
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Section 4.6. The first type of solutions of this section was studied by
Polubarinova-Kochina in 1948 [438]. A study for the general equation
up = (D(u)uy), was performed by [431] in 1955. This author finds cases with
explicit solutions in [432]. These are interesting early references to mathematical
work on the PME.

These solutions have appeared often in studies of groundwater infiltration.
Solutions with changing sign in d = 1 were constructed by van Duijn et al. [221].

The dipole solution is due to Zel’dovich and Barenblatt [530] and has
been used by Kamin and Vdzquez [326] in describing the asymptotic behav-
iour of more general signed solutions. The extension to fast diffusion is
new. For recent theory and experiments on dipole solutions see King and
Woods [342].

A dipole solution for the signed PME in several space dimensions was
constructed by Hulshof and Vézquez [299)].

Section 4.7. General planar front solutions seem to be new in the literature.
Our special solution shows that the free boundary may blow up in finite
time.

Note on self-similarity

This is a principal concept in mechanics and, generally speaking, in the applied
sciences. Thus, it has been pointed out in many papers and corroborated by
numerical experiments that similarity solutions furnish the asymptotic repre-
sentation for solutions of a wide range of problems in mathematical physics.
The reader is referred to the book of G. Barenblatt [63, 64] for a detailed
discussion of this subject. As these books say, it must be borne in mind
that, even if arisen to solve problems in the practical applications, self-similar
solutions are ideal constructs that represent idealized situations and will only
represent observed behaviour in a limit sense. However, it is discovered by the
practical scientist that this sense has the deepest influence on the rest of the
theory.

There are a number of other self-similar solutions that play a prominent role
in the theory, like the hole-filling solutions of Graveleau and Aronson [48] that
played a big role in the studies of optimal regularity. We will devote the whole
Chapter 16 to the study of self-similarity. This set of ideas is better known in
theoretical physics as the renormalization group.

FEternal solutions

This is the name given to solutions that are defined for the whole time span,
—00 < t < oo. The travelling wave solutions are eternal, and some of the planar
fronts also are; the rest of the examples of this chapter exist either forward in time
(separate-variables, source-type, dipole, constant-height solution) or backward in
time (the blow-up solutions).
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Problems

Problem 4.1 SEPARATED VARIABLES.

(i) Take @ = Bgr(0) and solve the nonlinear elliptic problem (4.5) by writing
Fi(x) = f(r), r = |z|, and solving the ODE for g(r) = f™(r)

d—1 1
" a—1 P_y _ =
g )+ ——gr)+g(r)" =0, p=—,
with g(0) = h, ¢’(0) = 0. Find A > 0 so that g(R) = 0.
(ii) Check that taking A # 1 still produces the same family of solutions (4.7) in
separated variables.

Problem 4.2 TRAVELLING WAVES. Prove Proposition 4.1.

Hint: The function f. is obtained by integration of equation (4.16). It is better
to think that it defines n in terms of f in the range f > e. Here is a work
plan:

(i) Get the formula for n = n.(f):
m ! fm—l

n=—-— df.

& 1 f*a?

(ii) Show that 7 ranges from 0 to oo while f goes from ¢ to oo, and
the dependence is monotone decreasing. Note that n.(1) =0 for every
e € (0,1).

(iii) Show that as € — 0 we get uniform converge on sets of the form [1/a,a]
to the solution of the limit equation

d77 _ m m—2
df ¢ U
(iv) Conclude the announced result.

(v) Perform the explicit computation for m = 2 and pass to the limit in the
obtained formula.

Problem 4.3 SIGNED TRAVELLING WAVES. Construct a travelling wave with
changing sign by considering the case K <0 in formula (4.11). Show that
f— K/c <0 as n — oo. Sketch the profile f and determine the optimal reg-
ularity in terms of m.

Solution: f € C'/™(R), with minimal regularity at the sign transition, f = 0.

Conclude from the analysis that the transition from plus to minus sign of
these signed solutions implies a blow-up for the gradient of the pressure.

Problem 4.4 TRAVELLING WAVES FOR THE GPME. Consider the existence of
TWs for the equation d;u = A®(u) of the form (4.9), u = f(x — ct).
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(i) Show that the equation of the TW such that u(z,t) — 0 as * — oo is given
by the ODE
O(f) +cf =0, (4.70)

which leads to the implicit expression

f
| et - (1)

S

(ii) Show that the TW has a finite interface if and only if

/1 d2(s) < 00. (4.72)

S
(iii) Check that this happens for ®(u) = ™ iff m > 1.
See continuation in Problem 15.11.
Problem 4.5 THE ZKB SOLUTION.

(i) Show that formula (4.21) is actually a classical solution of the PME in the
region where it is positive.

(ii) Show that the initial data are taken in the sense of (4.23), i.e., that for
every test function ¢ € Cp(R?), ¢ > 0 we have

lim [ U(x,t)p(x)de = M ¢(0).
t—0 R4
(iii) Show that the pressure V' of the ZKB solution is Lipschitz continuous but
not C'! on the free boundary.
(iv) Check Darcy’s law for the ZKB solution.
(v) Prove formula (4.27) for the convergence of ZKB profiles to Gaussian
profiles as m — 1. Determine in what sense and where the limit is taken.
(vi) Write the formula for the pressure and prove that

AV = _g (4.73)

in the set {(z,t) : U > 0} (the solution is even concave on that set). This
is a much used property of the ZKB pressure inside the solution support.

Problem 4.6 SHAPE OF THE ZKB SOLUTION. Show that for m = 2 the shape
of the density u of the source solution in terms of |z| for fixed time is a parabola.
Show that for m = 3 it is an ellipse with vertical slope at the front. Show that
for m =3/2 it is a fourth-order polynomial with flat contact with the z-axis.
Write the explicit expression for d =1, ¢t =1 and C = 1/15.

Problem 4.7 In later chapters we will be able to show that the ZKB solution
is a limit solution by following this program: approximate the delta function
by a sequence of positive functions wug, (x); solve the PME with these data and
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find classical solutions w,(x,t); pass to the limit as n — oo and find the ZKB
solution.
Study those chapters and perform this programme.

Problem 4.8 Derive the formula for the velocity of the ZKB solutions and show
that it is a discontinuous function. See more in Subsection 18.7.2.

Problem 4.9 Write the formula for the pressure of solution (4.45) and show
that it is not a C'* function. Calculate the velocity. How does it evolve with time
on the free boundary?

Problem 4.10 BLow-up. Write the formulas of explicit blow-up solutions for
the heat equation. The simplest has the form

T 2
Ulz,t) = (T —t)"%exp <4(|T_t))

Find a whole family. Compare the rate of blow-up with the PME case.
Problem 4.11 THE DIPOLE SOLUTION.

(i) Check that function Uy;p, defined in (4.53) is singular near (0, 0) by checking
that ||Udip(+,t)||eo = c(m,C)t~1/™ and the maximum for fixed ¢ is reached
along a line of the form z = ¢ t!/2™.

(ii) Calculate the relation between M and C' in formula (4.57).

(iii) Calculate the constant x(m).

(iv) The free boundary of the dipole solution propagates like |z| = O(t'/?™),
while the ZKB propagates like |z| = O(t'/(™+1) in 1D. Find a justification
for the smaller rate.

Problem 4.12 THE BARENBLATT SOLUTION FOR THE p-LAPLACIAN EQUA-
TION.

(i) Show that the function

Wiz, t) =t (C _ k(m)|g|mwfl):*1

with C' > 0 arbitrary, &€ = xt~ /2" and

_moly -1/m
k= Sy (2m) ,
is a generalized solution of the p-Laplacian equation w; = (|w,|™ 1w,),
for every m > 1, in the sense that the equation is satisfied in the classical
sense whenever w, # 0, and it is C'! function for all (z,t). Cf. [68].
(ii) Prove that W(-,t) — M é(z) for some M = M(m,C) > 0. This justifies
the name of source-type solution.
(iii) Differentiate this solution with respect to x to find the dipole solution of
the PME, Ugp = —W,.
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(iv) Show that in the limit m — 1 with constant moment we obtain the dipole
of the heat equation in d =1
Mz
t3/2exp (—x2/4t)"

Udip(z,t;m=1) = (4.74)

Problem 4.13

(i) Use ODE techniques to obtain a description of the solutions of system
(4.66) that enter the region V' < 0. Draw the corresponding profiles U(n).

(ii) Use ODE techniques to obtain a description of the solutions of Section 4.7
when A > 0. Draw the corresponding profiles U (7).

Hint: The analysis at the origin is delicate. ODE techniques are intensely studied
in Chapter 16.

Open problem

(i) The free boundary of the solution constructed in Section 4.7.1 blows up
with a logarithmic rate, s(t) = O(|log(T" — t)|). Are there any free boundary
solutions of the PME with free boundaries which blow up in finite time with
a power rate? The task is to construct one such solution in semi-explicit
form.

(ii) The correction factor in the blow-up expression (4.68) is logarithmic. Is it
the unique possible form? Are there any solutions with faster rates?
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THE DIRICHLET PROBLEM I. WEAK SOLUTIONS

In this long chapter we start the systematic study of the questions of existence,
uniqueness and main properties of the solutions of the PME by concentrating
on the first boundary-value problem posed in a spatial domain €2, which is a
bounded subdomain of R%, d > 1. We focus on homogeneous Dirichlet boundary
conditions, © = 0 on 92, in order to obtain a simple problem for which a fairly
complete theory can be easily developed as a first stage in understanding the
theory of the PME. This is called the homogeneous Cauchy—Dirichlet problem,
or more simply, the homogeneous Dirichlet problem.

Even if the main goal of the text is to develop a theory for non-negative
solutions of the PME, the theory of this chapter can be safely done for the
complete generalized porous medium equation, also called the filtration equation,
up = A®(u) + f, under conditions that include the whole range of exponents
0 < m < o of the PME, HE and FDE. We pursue this course for four reasons:
it does not imply undue extra effort, the generality can be illustrative of the
functional analysis involved, it will be of help in the future, and finally the
filtration equation is an important subject of study in itself. We recall that
the full form is important for its application to the study of reaction-diffusion
processes where the forcing term depends on u, f = f(x,t,u), while convection
processes include a term of the form f =", 0;F;(x,t, u).

The problem is shown to be well-posed globally in time in particular classes
of generalized solutions, specifically, in a class of weak energy solutions. The
main points for future reference are the definition of solution, Definition 5.4, the
uniqueness result, Theorem 5.3, and the existence result, Theorem 5.7.

In this chapter we will use the symbols Q =Q xRy, Qr =Q x (0,7),
QT =Qx(r,00), and QT =Q x (7,T). We also use the sloppier notation
Q*=Qx (1,T). > =00 x[0,T) is the lateral boundary, > = 9 x [0, co].
We recall the fact that when 2 is a bounded domain with Lipschitz boundary,
then H{ () coincides with the restriction of the functions u € L?(£2) that belong
to H*(R?) when extended by zero in R%\ (.

5.1 Introducing generalized solutions

A consequence of the degeneracy of the PME is that we do not expect to have
classical solutions of the problem when the initial data take on the value u = 0,
say, in an open subset of ). Therefore, we need to introduce an appropriate
concept of generalized solution of the equation. At the same time, we have to

81



82 The Dirichlet problem I. Weak solutions

define in what sense the initial and boundary conditions are taken. In many cases,
this latter information can be built into the definition of generalized solution.

There are different ways of defining generalized solutions, and we will explore
in the book some natural choices, the most usual idea being that of multiplying
the equation by suitable test functions, integrating by parts some or all of the
terms, and asking for a regularity of the solution that allows this expression to
make sense. Then, we say that the solution is a weak solution.

In any case, the concept of generalized solution changes the meaning of the
term solution, so we have to be careful to ensure that the new definition makes
good theoretical and practical sense. From the first point of view, we ask the
theory to be well posed. Then, the new solutions must be defined so that they
include all classical solutions whenever the latter exist (compatibility). Moreover,
a concept of generalized solution will be useful if the problem becomes well-posed
for a reasonably wide class of data, i.e., if a unique such solution exists for each
set of data in a given class and it depends continuously on the data in the
appropriate topologies.

As we will see, it can happen that several concepts of generalized solution
arise naturally. It is then important to check that they agree in their common
domain of definition (i.e., for data which are compatible with two of them).
Selecting one them as the preferred definition depends of several factors, the
most important being in principle that of having the largest domain. However,
one could consider a more restrictive definition which still covers the applications
in mind if it involves simpler statements or more natural concepts, or when it
leads to simpler proofs of its basic properties.

Let us review the contents of the chapter in some detail. The study starts in
Section 5.2 by considering a rather general setting, where a natural concept of
weak solution is introduced to solve the complete filtration equation with zero
boundary data and integrable initial data and forcing term. The idea is to lay
the foundation of subsequent existence and uniqueness theories. The alternative
of defining so-called very weak solutions is introduced and briefly commented,
but will not be further developed for the moment, since the chapter is focused
on weak solutions. The proof of uniqueness is quite immediate in that setting,
Section 5.3. The existence of data for which there can be no classical solution
immediately follows, thus justifying the need for a weak theory.

The class of weak solutions is rather general, and it is convenient in the
development of the existence theory to restrict somewhat the generality in order
to get simplicity and clarity, and to be able to make interesting calculations
and approximations without undue effort in justifying them. In that sense, this
chapter is based on the construction of the subclass of weak energy solutions,
WES, which are weak solutions that satisfy a version of the energy estimates
which have been introduced in Section 3.2 in the classical setting. Such weak
solutions form a class large enough for the purposes of the usual theory found
in the literature. For instance, the class provides us with a unique solution when
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initial data are bounded, a safe assumption for many purposes. They also serve
as a foundation for the more advanced topics of the next chapter, where we will
strive for the largest generality of the data.

The construction of weak solutions in the case of general ® and general data
proceeds by approximation with smooth nonlinearities and data; the study of
the question of existence under good assumptions on ® and the data has been
addressed in Section 3.2, and a number of important properties of the solutions
have been obtained in that smooth setting. With this information at hand,
the study of the problem with general ® proceeds first for non-negative data,
Section 5.4, and then for data with changing sign, Section 5.5. The technique
is based on a priori estimates that force some restrictions on the data that are
characteristic of weak energy solutions; thus, the initial data are restricted to
the space Ly(Q), a subspace of L*(Q) (for the PME, it equals L™+1(£2)), and
the forcing term must belong to some dual space, cf. Theorem 5.7 and Corollary
5.6. These restrictions are compensated by the fact that such solutions enjoy
energy inequalities, see formulas (5.20) or (5.39), that would be lost for more
general data.

Let us note that, though the solution of the approximate problems by classical
methods is performed in spatial domains with a smooth boundary, the main facts
of the theory are formulated for Lipschitz domains. Such generality allows us to
consider domains with corners, typical in many applications.

Once existence and uniqueness of these weak solutions are settled, we estab-
lish some of the main properties in Section 5.6.

We consider in Section 5.7 the problem with non-homogeneous boundary
data (on a smooth boundary). This is the most general setting that will appear
sometimes in the sequel. It departs a bit from the rest of this chapter, centred
on the problem with zero boundary data, but provides insight and is used as an
auxiliary tool, e.g., to understand different super- and subsolutions.

We recall that it is to be expected in a parabolic problem that the solutions
enjoy some extra regularity properties. We will not address at this point the
question of continuity for the weak solutions of the GPME we have constructed
in the context of several space dimensions, because this involves heavy work that
will be tackled in Chapter 7.

We continue the basic theory with the topics of universal bounds and maximal
solutions for the PME and also for filtration equations with strongly superlinear
®. The existence of the universal bound is treated in Section 5.8.

In Section 5.9 we establish the existence of a special solution with infinite
initial data. This solution is unique and acts as an absolute upper bound for all
solutions of the Dirichlet problem. The existence of such a solution is a typical
nonlinear effect, which is not possible in the linear theory. For the PME it takes
the form U (z,t) = f(z)t~* with decay rate a = 1/(m — 1). Since it takes infinite
initial data but it becomes bounded for positive times, this solution will be called
the Friendly Giant.
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We apply the same techniques in Section 5.10 to the fast diffusion equations
with a different conclusion, extinction in finite time, and a comment on singular
diffusion.

We end the chapter with a suggestion for advanced work: applying the tech-
niques of this chapter to a number of more general equations of inhomogeneous
media, Section 5.11.

The basic material is contained in Sections 5.2-5.7. The last section is an
introduction to advanced reading.

5.2 Weak solutions for the complete GPME

We assume that €2 is a bounded domain in R%, d > 1, with Lipschitz continuous
boundary I" = 9). We pose the homogeneous Dirichlet problem for the filtration
equation in complete form, u; = A®(u) + f. We make the following assumption
on ®, which we call the constitutive function, or, in more familiar terms, the
‘nonlinearity’.

(Hs) The function ® : R — R s continuous, strictly increasing and ®(£oo) =
+oo. We also admit the normalization ®(0) = 0.

These assumptions will be kept throughout the chapter unless we mention
to the contrary. The PME and its signed counterpart are included as the special
case ®(s) = [s|™ 1s with m > 1. Note that the case m =1 is also included.
Relaxing the assumptions on @ is possible with a small cost in complication
that we have considered not necessary. The possible dependence of ® on x to
account for the presence of so-called inhomogeneous media will be discussed in
Section 5.11.

Problem HDP

Given ug € L'(Q), f € LYQ), find a locally integrable function u = u(z,t)
defined in Qr, T > 0, that solves the set of equations

up = A®(u)+ f  in Qr, (5.1)
u(x,0) = ug(z) in (5.2)
u(z,t) =0 in Y. (5.3)

in a weak sense to be precisely defined. The time T > 0 can be finite or infinite.
Moreover, we want to find u in a suitable functional class that guarantees
uniqueness and continuous dependence on the data.

Though we will obtain solutions for all T' > 0, i.e. with T" = o0, it is interesting
for technical reasons to allow T < co.

We are going to introduce next precise definitions of what we understand
by solution of Problem HDP. Since there are several options available for the
concept of solution of the equation, and also for the sense in which the data are
taken, it is important to carefully specify the choices we make at every instance.
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5.2.1 Concepts of weak and very weak solution

First of all, we introduce a suitable concept of weak solution for the filtration
equation in @7, avoiding at this moment any reference to initial or boundary
data.

Definition 5.1 A weak solution of equation (5.1) in Qr is a locally integrable
function, u € LL _(Qr), such that
(i) w=®u) e LL_(0,T: W,-'(Q));

loc loc

(ii) the identity
//{Vw -Vn —un}dedt = // fndxdt, (5.4)
Qr

Qr
holds for any test function n € CL(Qr).

Equation (5.4) is obtained by extrapolating a property of classical solutions.
Indeed, if u is a smooth solution of the GPME in Q7 and we multiply the
equation by 7 and integrate by parts we obtain (5.4). Observe that the equation
is satisfied only in the sense that all these tests are true; this is called a weak
sense. In particular, the definition does not require the derivatives appearing in
equation (5.1) to be actual functions, they need merely exist in the sense of
distributions.

Note that, in the PME the assumption u € L{. (Q7) is implied by the condi-
tion ®(u) € L .(Qr), which is a part of (i). This implication is not necessarily
true for more general @, like the FDE with m < 1.

The previous definition of weak solution of the GPME is not the only
possibility at hand. Actually, there is a very natural alternative where the
regularity assumptions are relaxed by integrating once again in space, so that
no space derivatives appear in the statement.

Definition 5.2 A very weak solution of equation (5.1) in Qr is a locally inte-
grable function, u € L, (Qr), such that w = ®(u) € Ll (Qr), and the identity

//{w An +uny + fn}dedt =0 (5.5)
QT

holds for any test function n € C>1(Qr).

We can simply say that the equation is satisfied in the sense of distributions
in Qr or that it is a distributional solution. But note that we are asking u and
®(u) to be integrable functions. We can also call these solutions weak-0 solutions
to stress the fact that we do not use any derivatives of u or ®(u) in defining them,
and then the weak solutions become weak-1 solutions. It is clear that all weak
solutions are very weak solutions according to these definitions.
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There are advantages and disadvantages to both definitions. We will work
in this chapter with the concept of weak solution which seems to us suitable to
develop the basic theory and present the main techniques.

Remarks

(1) In the definitions, we have chosen the space L{ (Qr) as base space for the

sake of generality. However, the simplicity of the most common existence and
uniqueness proof recommends replacing such a space by other smaller LV (Qr)
spaces, 1 < p < co. We recall that in the usual practice the weak solutions will be
locally bounded, even continuous, either because we prove that a more general

solution has this property, or because the author so assumes from the beginning.

(2) Since the weak theory is more restrictive than the very weak one, it allows
for a simpler uniqueness proof. An existence theorem would be easier to prove
in the more general context of very weak solutions, but we will obtain in this
chapter a result on existence of weak solutions that is general enough for many
purposes and allows us to develop interesting energy estimates.

On the other hand, very weak solutions allow for a more general theory that
will be discussed in Section 6.2 as part of the more advanced topics. Quite strong
uniqueness and comparison results will be proved.

(3) Note that we could go in the opposite direction of asking for more regularity
than the theory provides; we will thus arrive at the quite useful concepts
of continuous weak solution and strong solution. The former is discussed in
Chapter 7 and used thereafter, while strong solutions are studied in Chap-
ter 8; they are the preferred option in the study of the Cauchy problem in
Chapter 9. These are not the only options: mild solutions will appear as a
consequence of the semigroup approach of Chapter 10. See the related comment
at the end of the chapter.

5.2.2  Definition of weak solutions for the HDP

The definition of weak solution we have proposed applies in the interior of the
space-time domain (we usually say that it is a local weak solution), and does
not take into account initial or boundary conditions, which are an essential part
of Problem (5.1)—(5.3). Inserting the homogeneous boundary condition leads to
the following standard definition.

Definition 5.3 A locally integrable function uw defined in Qr is said to be a
weak solution of equation (5.1) with boundary condition (5.3) if

(i) we LYQ x (1, T = 7)) for all 7 > 0 and w = ®(u) € L. (0,T : Wy ());
(ii) the identity

/ / (VO(u) - Vi — uny} dadt — / fndudt (5.6)

Qr Qr
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holds for all test functions n € CY(Q) which vanish on Y7, and also for
0<t<T7,and forT —7 <t<T for some T >0.

We may wonder where is the boundary condition (5.3) included in this
formulation. The answer is that it is hidden in the functional space WO1 1),
a typical trick of weak theories. Caution: note the change in the class of test
functions.

The final step consists of including the initial data. There are several ways
of doing it. Following [408] and [457], we propose a definition of solution of the
whole problem.

Definition 5.4 A locally integrable function u defined in QT is said to be a
weak solution of Problem (5.1)—(5.3) if

(i) uwe LY(Qr) and w = ®(u) € L*(0,T : Wy (Q));
(ii) w satisfies the identity

/ {VO(u) - Vn —un} dedt = /uo(x)n(x,())dx +/ fndxdt  (5.7)
Qr Q Qr

for any function n € CY(Qr) which vanishes on ¥ and fort =T.

We call WS the class of functions thus obtained when ug € L'(Q2) and
f € LY(Q7). The initial function ugy of condition (5.2) is built into the integral
formulation (5.7), and is actually satisfied in a very weak sense. The function
should be selected so that the integral involving ug in (5.7) be well defined. The
natural option in the present setting is asking that ug € L'(£2), which contains
all spaces LP(Q) for p > 1.

Note that the space of test functions can be modified in several ways without
modifying the defined class of weak functions. This remark will be of much use.
Thus, we may replace the condition 7 € C*(Qr) by n € C*(Q7) which reduces
in principle the amount of test. But the full force of condition (ii) is recovered
by approximation. In the other direction, we may enlarge to set of test functions
to n € WH*°(Qr) as long as we may approximate it with functions 7. in the
class stated in the definition. This technically means that the trace of n on the
parabolic boundary of Q1 has to be zero.

As in the case of weak solutions, the definition of very weak solution can be
made precise to include initial and boundary data. See Section 6.2.

5.2.3  About the initial data

The inclusion of the initial data into the definition of weak solution is not the
only natural option. As an indication of the scope of the above definition and its
alternatives, we indicate another natural way of defining a weak solution, and
show that it is included in Definition 5.4.
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Proposition 5.1 Let u € L*(Q7) be such that
(i) ®(u) € M0, T : Wy (Q);
(ii) for any function n € C°(Qr), u satisfies the identity

/ / (VD) - Vi — uny ydadt — / fn dudt; (5.8)
Qr Qr

(iii) for every t > 0 we have u(t) € L* () and u(t) — ug ast — 0 in L}(Q).
Then, u is a weak solution to Problem (5.1)—(5.3) according to Definition 5.4.

Proof Suppose that u is as in the statement. We have to prove that (5.7) holds.
Let n be as in (5.7) but we also assume that it vanishes in a neighbourhood of ¥.
We take a cut-off function ¢ € C*°(R), 0 < ¢ <1, such that {(¢) =0 for ¢ <0,
C(t)=1for t >1 and ¢’ >0, and let ¢,(t) = {(nt). Applying (5.8) with test
function n(x, t)(,(t) gives

/{W’ Vn—um}Cn—//fnCn //uném—//uncm
Qi/n
//(U—Uo Cnt+//uo (2, 1)Cn,e ().

Qi/n Qi/n

(5.9)

Fix & > 0 and let n be so large that ||u — ug|[1 < e for 0 < ¢ < 1/n. Then the
first integral in the last line can be estimated as €|[n||oo [ Cn,tdt = €]|n]|oo Which
vanishes as n — 0o, € — 0. As for the last term, we get

//uo (@, 1) Cnt()dxdt:/u( i <:c >dx—//u077tcndxdt
Q

Qi/n Qi/n

and this tends to [, uo(z)n(x,0)dz as n — oo, which proves (5.7) in this case.
It is very easy to see that (5.7) continues to hold when n € C*(Qr) with

7 =0 on the boundary of Qr (Hint: approximate n with 7. € C2° and pass to

the limit). [ |

Actually, the definition of weak solution implies convergence to the initial
data in a weaker sense. We ask the reader to prove the following statement (see
Problem 5.2).

Proposition 5.2 If u is a weak solution of HDP in the sense of Definition
5.4 then u(t) converges to ug weakly in the sense that for every o € CY(Q) with
© =0 on 0 we have

lim u(t)godac:/uogodac. (5.10)
Q Q

t—0
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Such poor convergence is immediate to obtain but not realistic. We will
show below that the energy solutions constructed in this chapter, Sections 5.4
and 5.5, take the initial data in a much nicer way, indeed in the sense of strong
convergence in L'(Q). Actually, this will apply to all limit solutions, as reflected
in Theorem 6.2.

5.2.4  Examples of weak solutions for the PME

(i) Compatibility. Classical implies weak. Every classical solution of Problem
(5.1)—(5.3) is automatically a weak solution of the problem. This is the required
property of agreement between classical and weak concepts, a must for every
reasonable generalized solution.

(ii) We continue with less trivial examples for the PME with f = 0. One of them
is the separate-variables solution

u(z,t;C) = T()F(x), (5.11)

where T(t) = (C + (1 —m)t)"/™=1) and F >0 is the solution of a certain
nonlinear elliptic equation that vanishes on the boundary, cf. Section 4.2. Since
Fis C*(Q) and C* in Q, and F™ € C1(Q), it is clear that for every C' > 0 this
is a weak solution of the problem. Now, for C' = 0 we obtain a limit solution that
is perfect for ¢ > 0, but takes on infinite values at ¢ = 0 in the sense that

%i_r}% u(z,t;0) =00 Ve Q. (5.12)
We thus find a kind of giant solution that is infinite everywhere at t = 0. But
since it becomes bounded and smooth for ¢ > 0, it is rather a Friendly Giant. We
refer to Section 5.9 for a detailed construction of this special solution. Separate-
variables solutions with changing sign can also be constructed, cf. [511].

(iii) Another non-trivial solution of the PME with f = 0 is the explicit source-
type solution U(z,t) = U(z,t;C) of Section 4.4. This is not a weak solution
according to our definition because of two reasons: its initial data are singular,
and the boundary data are not necessarily 0. However, we can obtain from it
weak solutions in our setting by the following method: take xg € 2, let 7 > 0
and let the constant C in U be small enough. Then the function

w(z,t) =U(x — zo,t + 7;C) (5.13)

is a weak solution of the Dirichlet problem (5.1)—(5.3) in any time interval (0,7")
in which the free boundary lies inside of €2, i.e., if

T + 7 < cdist(xg, 9Q)Hm=1+2

cf. (1.10). Observe that w is a weak solution but not a classical solution, which
shows that the weak theory is a non-trivial extension of the classical theory. See
Problem 5.3.
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(iv) The dipole solution Ugip(z,t) given by formula (4.53) is a non-negative
solution of the PME in any cylinder of the form @; = (0, R) x (0,T), hence
d =1, as long as the free boundary does not reach the fixed boundary z = R. If
we want integrable initial data we have to insert a time delay and replace it by
Udip(z,t + 7).

When posed in the symmetric cylinder Q2 = (—R, R) x (0,7T), it is a signed
solution of the signed PME under the same conditions. The change of sign takes
place at = 0, where we see that the solution is not C; to be precise, it is C'*/™
in 2. This solution also shows that initial data more general than measures can
occur in the theory with changing sign.

5.3 Uniqueness of weak solutions

The goal of the theory is to establish existence, uniqueness and other impor-
tant properties of weak solutions of Problem (5.1)—(5.3). This will be done
in the present chapter for the class of weak solutions under a small addi-
tional restriction. Moreover, the uniqueness of weak solutions is settled by
means of an interesting and easy proof, based on using a quite specific test
function.

Theorem 5.3 Under the additional assumption that ®(u) € L?(0,T : H}(2))
and u € L*(Qr), Problem (5.1)~(5.3) has at most one weak solution.

Proof Suppose that we have two such solutions w; and uy. We write w; =
V&(u;). By (5.7) we have

//(V(w1 —wy) -V — (ug —u2)n) dedt =0 (5.14)
Qr

for all test functions 7. We want to use as a test function the one introduced by
Oleinik,

T .
(@, t) = {({t (wy(x, 8) — wa(z,s))ds 1£?§;<T (5.15)

where T' > 0. Even if n does not have the required smoothness, we may approx-
imate it with smooth functions 7. for which (5.14) will hold with these test
functions. Since

{m = —(w1 —w2) € L*(Q7), (5.16)

V= [T (Vwr — V) ds € L2(Qr),
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and moreover n(t) € Hi(2) and n(T) = 0, we may pass to the limit ¢ — 0 and
(5.7) will still hold for 7. Hence,

// (w1 — wa)(uy — ug) dadt

T

// (w1 — w2)) /(Vw1 — Vws)ds | dxdt = 0.

t

Integration of the last term gives

T 2
// (w1 — wo)(ur —ug)dzdt + = / /Vw1 Vuws)d dx = 0.
0

Since both terms are non-negative, we conclude that u; = us a.e. in Q. |

Remark on the approximation Given a function 7 € L2(0,7 : H}(Q)), we
first cut it at height n in the form

N, = max{—n, min{n, n}}

to obtain a sequence of bounded functions 7, — n in L?(0,T : H}(Q)). In a
second step, every n,, is approximated by functions 7, , as in Definition 5.4.

5.3.1 Non-existence of classical solutions

As a consequence of the uniqueness of weak solutions and the constructed
examples, we have the following:

Corollary 5.4 There exist initial data for which Problem HDP for the PME
does not admit a classical solution, even if the solution is non-negative and f = 0.

Proof This is a rather standard argument. Firstly, we note that a classical
solution of Problem (5.1)—(5.3) is necessarily a weak solution in our sense.
Secondly, we remark that the particular example of weak solution w(z,t) defined
in (5.13) has the regularity of Theorem 5.3 and is not a classical solution. By the
uniqueness result, there cannot be any other weak solution of (5.1)—(5.3) with
the same data. Therefore, no classical solution exists for those data.

Remark Such an argument will apply to all the unique weak non-classical
solutions that will be constructed in the sequel. Moreover, in later chapters we
will have the opportunity of finding weak solutions of the PME corresponding to
smooth initial data that cease to be classical after some time. One such example
is presented in Problem 5.7. However, if the data are positive, then we will prove
below that the solution stays classical.
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5.3.2  The subclass of energy solutions

Uniqueness has been proved in a subclass of WS formed by the weak solutions
such that v € L?(Qr) and ®(u) € L%(0,T : H}(R)). The extra regularity allows
us to define the dissipated energy

DE(u):/O /Q\vq>(u)\2dxdt (5.17)

and try to reproduce in this general context the energy calculation of Subsection
3.2.4. That estimate leads us to consider the expression

B(w) = Eu(t) = / W(u(t)) dz (5.18)
Q

(¥ is defined in (5.19)) as a natural energy for the evolution. In this chapter,

solutions will be constructed in the class of square integrable functions such that

DE(u) and E, are finite. We will refer to this class as weak energy solutions

WES.

5.4 Existence of weak energy solutions for general ¢. Case of
non-negative data

We address in this section the existence of non-negative solutions w with non-
negative data, ug and f. This is the most typical problem that is solved for the
PME. Though the results are superseded by the construction of Section 5.5 for
data of any sign, the present construction uses less functional machinery and is
the one currently found in the literature. The technique that we are going to use
allows us to cover the following generality:

e &: R, — R, is continuous and strictly increasing in u with ®(0+) = 0;
e O(u) is smooth with ®'(u) > 0 for u > 0.

We want to construct solutions enjoying an energy estimate as discussed in
Subsection 3.2.4. Such an estimate is essential in the existence proof that we
give. We need to recall the function ¥, the primitive of ® defined as in (3.18):

(s) = /0 "B (s) ds. (5.19)

Concerning the initial data, such a setting leads us to assume that ug is a
measurable function such that W(ug(z)) € L*(£2). We call this space X = Ly ().
It is a subspace of L!(Q). Note that for the PME, X = L™*1(Q). Concerning
the forcing term f we need the expression [[ f®(u)dzdt to make sense. This
leads us to ask f to belong to the dual space Y of the space L?(0,7T : H}(Q2))
where ®(u) lies. Since our interest in f is minor (at least at this point), we will
assume that f is bounded for simplicity.

This is the existence and comparison result for weak solutions that we prove
at this stage.
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Theorem 5.5 Under the above assumptions on ®, there exists a weak solution
of Problem (5.1)—(5.3) with initial data ug € L*(Q), ¥(ug) € L (Q), ug > 0, and
forcing term f > 0, f bounded, where solution is understood in the weak sense of
Definition 5.4. This solution is non-negative, and the time interval is unbounded
(T =c0).

We have ¥(u) € L>¥(0,T: L*(Q)) for all T >0 and ®(u) € L?(0,T :
HL(Q)). An energy inequality is satisfied

/ |V<I>(u)|2d:rdt+/\Il(u(ac,T))da:g/\I/(uo(:c))d:v—i—/ FO(u) dudt.

Qr Q Q Qr
(5.20)

It is therefore a weak energy solution. The comparison principle holds for these
solutions:Aif u, U are weak solutions with initial data such that ug < g a.e. in Q
and f < f a.e. in Q, then u < W a.e. in Q. In particular, if ug, f > 0 in Q, then
u>01inQ.

Remark The comparison principle is mentioned in the result because it is
a basic property to be expected in a parabolic equation, linear or nonlinear,
degenerate or not.

Proof It will be divided into several steps. Firstly, we will consider the case
of smooth functions ug and f and prove the existence result by approximation,
compactness and monotone limit.

First step: We assume that T = 09 € C?T%, that ug is a non-negative and C?(Q)
Junction with compact support in 2, and f >0 is continuous and bounded

n Q.
We begin by constructing a sequence of approximate initial data ug, which does

not take the value u = 0, so as to avoid the degeneracy of the equation. That
allows us to use the results of Section 3.2. We may simply put

1
uon () = uo(x) + g (5.21)
Let M = sup(up) and N =supg f. We also approximate f by a sequence of
smooth functions f,, in a monotone decreasing way, keeping the bound 0 < f,, <

N, = N + 1/n. We now solve the problem

(un)t = AP(up)+ frn in@Q, (5.22)
Un (2,0) = upp () in Q, (5.23)
un(x,t) =1/n on X. (5.24)

The maximum principle, which holds for classical solutions, implies that

1 1 —
— <up(z,t) <M+ -+ Nyt in Q. (5.25)
n n
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Therefore, we are dealing in practice with a uniformly parabolic problem. Actu-
ally, Problem (5.22)(5.24) has a unique solution u, € C*!(Q). The rigourous
justification uses the already mentioned trick consisting of replacing equation
(5.22) by

(un)t = div(an(un) vun) + fn7 (526)

where a,, (u) is a positive and smooth function, a,(u) > ¢ > 0, and a, (u) = '(u)
in the interval [1/n, M + 1/n+ NT]. This equation is not degencrate and a
unique solution wu, of (5.26), (5.23), (5.24) exists in the space C’ﬁtl(@) by the
standard quasilinear theory of Chapter 3, and it satisfies (5.25). Moreover, by
repeated differentiation and interior regularity results for parabolic equations,
we are able to conclude that u,, € C*°(Q). Now, due to the definition of a,,, equa-
tions (5.22) and (5.26) coincide on the range of w,. In this way, Problem (5.22)—
(5.24) is solved in a classical sense and the degeneracy of the equation is avoided.
Moreover, again by the maximum principle

Unt1(z,t) <up(z,t) in Q (5.27)
for all n > 1. Hence, we may define the function

u(z,t) = lim u,(z,t), (x,t) € Q. (5.28)

n—oo

as a monotone limit of bounded non-negative functions. We see that w,, converges
to u in LP(Qr) for every 1 < p < co. In order to show that this u is the weak
solution of Problem (5.1)—(5.3), we need to estimate the spatial gradient of
D (uy,). First of all, from (5.25) we get

0<u<M+Nt in Q.

We control V®(u,) as in the energy identity of the Subsection 3.2.4. Since
un, = 1/n on the lateral boundary, we have to multiply equation (5.22) by
M = ®(un) — ®(1/n). Integrating by parts in Qr, we obtain

// VO (u,)[>dzdt = /{\Il(uon(x)) — ®(1/n)upn(z)} dx
Q

Qr

-_]/{W(un@gzn)-qx1/nyh¢x,fj}dx
Q

+// fn(@(uy) — ®(1/n)) dedt
Qr

g/m%@mm+/yummawm+/‘hMMMMt

Q Q Qr
(5.29)
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We may use the boundedness of f in L? and the Poincaré inequality on the last
term to estimate it in the form:

//f@(un)dxdt < C//f2 dzdt+C’//<I>(1/n)2dS+%//|V‘1>(un)|2dxdt.
Qr z Qr

Qr

We can absorb the influence of the last term into the first term of the left-
hand side of (5.29), and the other two terms in this last formula are bounded.
Then, since T is arbitrary, it follows that {V®(u,)} is uniformly bounded in
L?(Q), and therefore a subsequence of it converges to some limit 1) weakly in
L?(Q). Since also ®(u,) — ®(u) everywhere, it follows that ¢ = V®(u) in the
sense of distributions. The limit is uniquely defined so that the whole sequence
must converge to it. Passing to the limit in (5.29), we get the energy identity
transformed into the energy inequality (5.20).

On the other hand, since u,, € C(Q), u,(z,t) =1/n on ¥ and 0 < u < u,,
we have

(m}tl)rgzu(x,t) =0

with uniform convergence. Hence ®(u(-,t)) € H}(Q) for a.e. t > 0.

Finally, since w,, is a classical solution of (5.1), it clearly satisfies (5.7) with
ug replaced by wug,. Letting n — oo we obtain (5.7) for u. Therefore, u is a weak
solution of (5.1)-(5.3).

Let us remark, to end this step, that if we have data (ug, f) and (4g, f) such

~

that ug < g and f < f, then the above approximation process produces ordered
approximating sequences, ug, < tg,. By the classical maximum principle, we
have u, <, for every n > 1. In the limit, u < 4.

Second step: We assume that ug is bounded and vanishes near the boundary, and
f is bounded and non-negative.

The method of the previous step can still be applied, but now f is approximated
by a sequence of smooth functions f, that converge to f a.e. According to
the quasilinear theory, cf. [357], now the approximate solutions u, € C*(Q) N
C?1(Q UX) are not continuous down to t = 0 unless the data are; instead, they
take the initial data in LP(Q2) for every p < co. Passage to the limit in wu,, is
now based not on monotonicity, but on the L' dependence of the solutions
on the data which is described in Subsection 3.2.3: it follows that u,, — u in
C([0,T) : L*(£2)). Since the functions are bounded, convergence also takes place
in C([0,T) : LP(R2)) for all p < co. The convergence of the gradients is unchanged
and the proof ends as before. Comparison still applies.

Third step: General case.

For general I' and general data, ¥(ug) € L1(2), up > 0, we first approximate
the domain by an increasing family €, of domains with C%% boundary Ty, we
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take an increasing sequence of cut-off functions (j(x) which vanish near T'y, and
consider the sequence of approximations of the initial data

ok () = min{ug(2)(x (), k}. (5.30)

Using Step 2 we solve Problem (5.1)-(5.3) with initial data wgr and forcing
term fr = f(i to obtain a unique weak solution wuy defined in Qx = Q x (0,7T).
By the comparison remark, ugi1 > ur in Qi (note that ugy1 >0 on 3g). On
the other hand, by estimate (5.20) the family {¥(uy)} is uniformly bounded in
L*(0,00 : LY(Q4)) and V®(uy) is likewise in L?(Qy). Hence, extending ug by 0
in @\ Q, we have that {uy} converges a.e. to a function u € L>°(0,00 : Ly (2)).
On the other hand, V®(uy) is uniformly bounded, hence it converges weakly in
L2(Q) to V®(u), and (5.20) holds for u. It follows that ®(u) € L%(0, co; HE (Q2)).
Finally, equation (5.7) is satisfied, as the reader may easily check passing to the
limit in the similar expressions for wug. ]

Motivation for the initial data

We see from the proof that the choice of space for the initial data depends
essentially on the energy estimate (5.20), which is a cornerstone of this chapter.
A priori estimates are one of the most powerful and widely used tools in the
study of PDE. This approach will be stressed in our treatment of the existence,
uniqueness and qualitative properties of solutions to the different problems.

5.4.1 Improvement of the assumption on f

The approximation proof used above can be performed under weaker assump-
tions on the forcing term:

Corollary 5.6 The result of Theorem 5.5 on existence of weak energy solutions
holds if f >0, f € LP(Q), with p=2d/(d+ 2) if d > 3; for some p > 1 if d=
1,2.

Actually, the technique of passage to the limit in the L' norm allows us to obtain
a limit u = limuy,(x,t) even if f is not an L? function, as long as f € L'(Qr).
However, if we want to obtain a weak solution in the sense of Definition 5.4 we
need to keep a control for V®(u) in L?(Qr). In view of the energy estimate and
Sobolev’s embedding theorem, this is possible under the stated assumptions on
f. These assumptions guarantee precisely that the energy estimate still holds
with finite terms.

5.4.2  Non-positive solutions

The results of this section not only show the existence of weak solutions with non-
negative data such that ¥(ug) € L*(Q) and f > 0, but also the same problem
with non-positive data ug < 0 in the same integrable class, and f < 0, under a
similar assumption of regularity of ®(s) for s < 0. Indeed, the filtration equation
is invariant under the symmetry u +— u = —u, if we change the nonlinearity
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® into ®(s) = —B(—s). It is quite easy to check that, if a function u is a
weak solution of Problem HDP with initial data wg, f, and nonlinearity &,

then u(z,t) = —u(x,t) is a weak solution with data ug(x) = —ug(z), f(z,t) =
—f(z,t) and nonlinearity ®(s) = —®(—s).

5.5 Existence of weak signed solutions

We address in this section the main problem of existence of signed solutions
for the complete GPME. As in the previous section, our goal is to obtain weak
energy solutions, which forces us to impose some conditions on the data. Such
restrictions will eliminated in the following chapters by different techniques and
with different concepts of solution. We assume that ® satisfies the conditions
(Hg) stated at the beginning of Section 5.2.

Theorem 5.7 Assume that ug € Ly () and f € LP(Q), with p =2d/(d + 2)
if d>3 (f € LP(Q) for some p>1 if d=1,2). Then, Problem (5.1)—(5.3)
has a weak solution defined in an infinite time interval, T = co. We have
u€ L>®(0,T: Ly(Q)) and ®(u) € L?(0,T : H} (), and the energy inequality
(5.20) holds. Comparison holds as in Theorem 5.5.

Proof In our situation we cannot simply modify the initial data to obtain
a problem with a classical solution, as we did in Theorem 5.5, since
such approximations will necessarily be of changing sign, and the equa-
tion may degenerate (in the key case of the PME, it does so at the level
u =0, and that level cannot be avoided for solutions that change sign). There-
fore, we also modify the equation into a non-degenerate parabolic equation
by changing the nonlinearity ® in the following form. We pick a sequence of
functions ®,, such that

(i) ®, € C*°(R) and @} (u) > 0 for every n > 1 and every u € R;
(ii) ®,, — @ uniformly on compact sets;
(iii) @,(0) =0 for every x € Q.

Lemma 5.8 The result holds when ug, f and f; are bounded, T = 09 € C>°,
and ® is locally Lipschitz continuous in u.

Proof of the lemma (i) We fix T > 0 and consider the approximate equations
up = A®,(u) + f, in Qr, (5.31)

where f,, is a smooth approximation converging to f in LP(Qr) for all p < oc.
We solve the problem formed by (5.31) with initial data

un(2,0) = ugy(x) in Q, (5.32)

where ug, € C°(§)) approximates ug in Ly (£2); it will be convenient to ask that
|won (2)] < n. We also impose boundary data

un(xz,t) =0 on X. (5.33)
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Since T' € C?T“, Problem (5.31)—(5.33) has a unique solution u,, € C*(Q) N
C>*(Q), cf. [357, Theorem 6, p. 452]. Moreover, if My = sup (—uq), M2 = sup uy,
Ny =sup(—f), and Ny = sup f, we get by the standard maximum principle

—M1 — Nlt S un(x,t) S M2 + Ngt in @ (534)

(i) Let wy, = D, (uy,). We want to control the spatial derivative Vw,, uniformly
in n in terms of the initial data. As we know, the idea is to multiply the equation
by w,, and integrate by parts in @), to obtain for every T' > 0 an energy estimate
of the form

/Q U, (un (2, T)) d + Z / Vw2 dedt = /Q U, (uon () dz + C[ / Fotwn ddt,

(5.35)

where W, is the primitive of ®, with ¥,(0) =0. Arguing as in (5.29), we
conclude that the integral [, [Vw,|? dzdt is bounded independently of n.

(iii) We produce next a compactness estimate in time as indicated in formula
(3.27) for smooth solutions. The idea is to multiply the equation by (w,, ¢, with
wy, = Pp(un) and ((t) a cut-off function, and integrate by parts in space to
obtain the expression

/QTC<I> (tn) [t ¢ |* dadt = //T{ IV, (u,)[? _(fg)th(un)} dedt.

We conclude from this, the previous energy estimate, and the assumption on f,
that for every 7 > 0 the integral [~ [ ®! (uy)|(un)¢|? dzdt is uniformly bounded.

(iv) Under our assumptions, the w, are uniformly bounded by some C; in Qr,
and @ is locally Lipschitz continuous, so that ®/,(s) < C for all n and for |s| < C}.
Since |(wn)¢|? = (P!, (un)(un)t)?, we conclude that (wy); € L?(Q x (1,00)) with
bound independent of n.

The two previous estimates imply that the sequence {w,} is bounded in
HY(Q*), with Q* = Q x (7,T). This allows us to pass to the limit n — oo along
a subsequence {n;} to obtain a function

w(z,t) = lim wy,(x,t), (5.36)
J—00
and w € L?(Q*). Choosing a subsequence, the convergence wy,; — w takes place
almost everywhere. It is also clear that w € L2(0,00 : H}(Q)).

It is straightforward to check that, under these circumstances, the uniformly
bounded sequence {uy,} also converges to a bounded function u a.e. and that
w = ®(u) a.e. Moreover, we have

2
Q/ [Vw| dxdtS/Q\I/(uo(x))dm—i—/ fwdzdt. (5.37)
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By virtue of estimate (3.29) applied to the approximations, after passing to the
limit we also have t'/2w € L°°(0, 00 : H}(Q2)) and

%/ \Vw(x,T)|2dx§// |Vw|? dzdt + C(T). (5.38)
Q Qr

No major difficulty arises in checking that u satisfies the conditions of
Definition 5.4, so that it is a weak solution of the problem. By uniqueness,
we conclude that the whole sequence u,, converges to u, the unique solution of
the problem. Estimate (5.35) becomes in the limit

/Q\IJ(U(T))dx+Q/ |V<I>(u)|2dxdt§/Q\IJ(uo)dx+CZ f®(u)dxdt, (5.39)

while the time derivative estimate can be written as

/QTC(Z( * dadt = //T{ Ve (u)[? (fC)#Nu)} dedt,  (5.40)

with Z as in (3.25), or in the alternative form

//T@’(u)|ut|2dxdt+€/ﬂVw(T)Fdx (5.41)

< 1// |Vw|2dxdt+// tfw; dadt.
2 T Qr

We also observe that in the limit of the approximations,
—M; — N1t < u(zx,t) < sup Ma + Not. (5.42)

Let us recall at this stage that the maximum principle holds for the approximate
problems. If we have two initial data wug,lg such that ug < g, f < f, then
the above approximation process can be performed so as to produce ordered
approximating sequences, u, < iy,. In the limit, u < @. Therefore, the proof is
complete in this case. |

Lemma 5.9 The result also holds when the previous condition on ® is elimi-
nated.

Proof We have to tackle now the case where ® is not Lipschitz continuous, for
instance in the case of the FDE (0 < m < 1). In that case we cannot conclude
that w; is bounded in some space and we need a slight modification in the passage
to the limit of the previous step to arrive at the desired conclusion also in this
case. Here is a way: we introduce the non-decreasing function Z(s) defined by
the differential rule, dZ = min{ds, d®(s)}, and its approximations

_ /0 min{1, . (s)} ds.
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Clearly, the Z,, are strictly increasing functions, uniformly Lipschitz continu-
ous, we have |Z,(s)| < |s|, |Zn(s)] < |P,(s)], and finally Z,(s) — Z(s) locally
uniformly in R.

We then define z,(z,t) = Z,(u,(z,t)), and immediately see that the
sequence z,(z,t) is uniformly bounded in Q7. Moreover, from steps (ii) and (iii)
we conclude that (z,,); and Vz, are uniformly bounded in L?(Q*). Therefore,
after passing to a subsequence, z, converges in L?(Q*) and a.e. to a bounded
function z. It is then easy to conclude that also w, — w, u, — u weakly and
a.e. and that w = ®(u), since both are related to z by continuous and increasing
functions. See Problem 5.4. The rest is similar to Step (iv). [ |

Lemma 5.10 The result also holds when the initial data ug is not bounded
and/or f and f; are not bounded.

Proof We use approximations of these functions by functions wg,, f, as in
the lemma, and such that: ug, is uniformly bounded in Ly (£2) and wg,, — ug in
LY(Q); f, is uniformly bounded in LP(Qr) and f, — f in L'(Qr). Using the
L' stability result, Proposition 3.5, we conclude that u, converges in L>(0,T :
L'(Q)) towards a function u. By the a priori estimates, u € L>(0,T : Ly (Q)).
Moreover, the energy argument used above implies that w,, converges weakly to
some w € L?(Qr) with Vw, converging in the same way to Vw. We also have
w = ®(u) a.e. In the limit of the weak formulation satisfied by wu,, we conclude
that u is a weak solution of the problem. [ |

End of proof of the theorem We still need to consider the case where T is
not C?T® smooth. As in the end of proof of Theorem 5.5, we approximate § by
an increasing sequence €, of domains strictly contained in € and having C2+*
boundary Ty, we take an increasing sequence of cut-off functions (i (x) supported
in Qg, and define ugr, = uolx, frx = fCx. Then, solving the problems with these
data in Q = Q x (0,7T), and extending uy by 01in Q \ Qy, the uniform estimates
give boundedness of W(u,) and compactness of the corresponding functions
Zk, so that in the end up — u, which is a solution of the desired problem
in QT- [ |

Remarks

(1) Every solution with changing sign obtained as a limit of this process is
bounded above by the non-negative solution with data ug () = sup{ug(z),0},
fi(x,t) =sup{f(z,t),0}, and below by the non-positive solution with initial
data ug () = inf{ug(x), 0}, and forcing term f_(z,t) = min{f(z,t),0}.

(2) In the PME case, it is convenient to organize the approximation of ® as
follows: we first pick a function ®; € C*°(R) such that: (i) ®1(s) = ®(s) for
|s| >1; (i) ®1(—s) = —P(s); (iii) Py is linear in the interval (—1/2,1/2),
® = ¢s; (iv) Py is convex for s > 0.
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We then define for every integer n > 1 the function
D,(s) =n""®P(ns). (5.43)
Observe that ®,,(s) is just ®(s) if |s| > 1/n, while ® = n'=™s for |s| < 1/(2n).

(3) Let us recall that the convergence of u,, to u in the approximations takes
place in L'(Q) without having to introduce any time delay.

5.5.1 Constant boundary data

We can also modify Theorem 5.7 to solve some problems with non-zero boundary
data. We note that solving those problems implies introducing a suitable concept
of solution, a task that will be performed in detail in Section 5.7. For the
moment, we can use the recently proved theorem to solve the question with
constant boundary data as follows. We observe that in the smooth case, the
vertical displacement of a solution u of the GPME u; = A®(u) + f produces
another solution % =wu+ C of the GPME with a new nonlinearity, ®(s) =
®(s+ C) — ®(C), that is also in the same class as ®. Namely, i, = AD(a) + f.
Besides, if w =0 on 3, then w = C on X. We take this transformation as the
definition of solution for the new boundary value problem. We immediately
have:

Corollary 5.11 We can uniquely solve the Dirichlet problem for the GPME
under the same assumptions on ug and f but with constant non-zero boundary
data u=C on X. If C > 0 the solutions are larger than in the standard HDP;
if C < 0 they are smaller.

The comparison principle holds; it is easy in the smooth case, it is justified
in the general case by approximation.

5.6 Some properties of weak solutions

Now that we know that weak solutions exist and are unique, we may proceed
with the qualitative analysis. Though weak solutions with data which are not
strictly positive need not be classical solutions, they enjoy some interesting
regularity properties, some of them a consequence of the estimates satisfied
by smooth solutions that we have presented in Section 3.2, and some others
that will be derived as a consequence of new estimates. In the first type, let us
mention:

e The energy inequality given by formulas (5.20) or (5.39) that asserts that
®(u) € L2(0,T : H}(2)) with a bound that depends only on the norm of
up in Ly () and the norm of f in LP(Qr). It also asserts that w(t) is
estimated in L>°(0,7T : Ly(€2)) in the same way.

e Time derivative control is given by (5.40), showing that Z(u); is bounded
in L?(QF) if f, f: € LP(Qr). In the case of the PME, this means that
O (u(mtD/2y € L2(Q%). When @& is bounded, also ®(u); € L*(Q%). The
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same happens when u is bounded for ¢ > 7 and ® is locally Lipschitz. We
will find in Section 5.8 a priori bounds for the sup norm of |u| when ® is
superlinear at infinity and f is bounded.

e When ®'(u) is bounded, inequality (5.41) implies that V®(u) is actually
bounded in L>®(7,T : H}(Q2)). Same comment for bounded u as before.

These estimates take on a much nicer form when applied to the incomplete
equation, i.e., for f = 0, which is the case usually considered in the PME theory.
Thus, the energy estimate becomes

/Q\I/(U(x,T))da:—&-Q//WwF dﬂ?dtﬁ/ﬂ‘ll(uo(x))da:, (5.44)

which means that [, ¥(u(x,t)) dz is a non-increasing function of time, and that
V®(u) is square integrable in the whole @ = Q x (0, 00). For future reference,
we write this estimate in the case of the PME:

! 1
TH/Q lu(z, T)[™+ dm+//|V(|u|m71u)|2 dadt < m+1/ﬂ|u°($)|mﬂ da.
Qr

(5.45)

On the other hand, the time derivative estimate reads

T 1
// t@’(u)|ut|2d:pdt+—/ |Vw(m,T)\2dx§f// Vwl dedt,  (5.46)
Qr 2 Ja 2)Jar

or in the alternative forms, like

1 1
//(I)/(u)|ut|2dxdt+§/ |Vw(z, T)|? de < 5/ \Vw(z, 7)|* dr. (5.47)
Q Q
Q7

For the PME this estimate reads
2m//|u|m_1\ut|2dmdt+/ |V(|u\m_1u)(x,T)\2dx§/ IV (Ju™ ") (, 7) 2 dv.
Q Q
25

(5.48)
These estimates are satisfied with equality for classical solutions. The ques-
tion will be discussed for weak solutions in Subsection 8.2.1.

e A very important property of the approximate equations is the contractiv-
ity with respect to the L'(2) norm. This property passes to the limit and
gives for two weak energy solutions v and u as in Theorem 5.7 the estimate

lu(t) —a(t)[l1 < [luo — Tollx +A 1f(s) = F(s)]l1ds. (5.49)

This implies the stability of such solutions. We will develop this issue in
depth in the next chapter.
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® We can also obtain a priori bounds in the norm L*°(0,7 : LP(Q2)) when
both ug and f are LP functions by passing to the limit the estimates of
Subsection 3.2.2. When f = 0, we can also obtain monotonicity in all the
LP norms, 1 < p < oo.
Proposition 5.12 In the situation of Theorem 5.7, if moreover the initial data
belong to the space LP(Q), p > 1, and f =0, then u(-,t) € LP(Q) for any t >0
and

[uC )l < lluollp- (5.50)

Proof It is based on passing to the limit the estimate obtained for smooth
solutions (3.13). In the case of the PME the complete calculation reads

dalg +1 m//{v | dzdtJr/ uwl™ (z, T)dx S/ wdt (x)dz, (5.51)
Q

(g+m)? Q

valid for ¢ > 0. To get the case p = 1 we pass to the limit as ¢ — 0. The proof
is justified by approximation. |

5.7 Weak solutions with non-zero boundary data

We consider here the extension of the theory developed thus far in this chapter
to the case where the boundary data are not homogeneous. Let us assume that
Q) is a bounded domain in R, d > 1, with regular boundary I' = 9Q € C?**;
as in Section 5.2 we assume that ® : R +— R is a continuous increasing function
with ®(£oo) = £oo. We pose the general Dirichlet problem for the filtration
equation:

Problem GDP

Given measurable functions ug in Q, g in X, and f in Qr, find a locally
integrable function u = u(x,t) defined in Qr that solves the set of equations

ug = A®(u) + f  in Qr, (5.52)
u(z,0) = ug(x) in €, (5.53)
D(u(x,t)) = g(x,t) in X, (5.54)

in a weak sense to be precisely defined. The time T > 0 can be finite or infinite.

Functional setting. Traces

We want to find w in a suitable functional class that guarantees uniqueness
and continuous dependence on the data. Depending on that functional choice,
suitable functional spaces are chosen for the data ug, f and g. Definition 5.1
is still good enough as a local weak solution. We need some changes to define
a suitable concept of solution for the new problem that accounts for non-zero
boundary data. We will ask ®(u) € L2(0,T : H*(R)), forgetting about the zero
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boundary conditions. Next, we need to recall some facts about the theory of
boundary traces:

(i) Functions f € H'(Q) have boundary values called traces, Toqf, on the
boundary 9Q; moreover, the linear trace map Tpo maps H'(£2) onto the
space H'/2(0Q) C L?(00).!

(ii) In the time-dependent context, the trace operator can be naturally
extended into a continuous linear map

Ts : L?(0,T : HY(Q)) — L*(0,T : HY2(09Q)) ¢ L*(Z7). (5.55)

(iii) We will also need a further result. The trace operator admits a continuous
lifting map, j : H'/2(0Q) — H(Q) such that Tx(j(g)) = g for every g €
H'/2(09); we say that j is a right inverse of Tx. This extends to a lifting
map

J:L20,T : HY2(09Q)) — L*(0,T : H'(Q)).
After these considerations, we propose the following definition.

Definition 5.5 Given ug € L'(Q), g € L?>(0,T : H/2(0Q)), and f € LY(Qr),
a locally integrable function u defined in Qp is said to be a weak solution of
Problem (5.52)—(5.54) if

(i) ®(u) € L?(0,T : HY(Q)), and Ts(®(u)) = g;
(i) uwe L2(Q x (0,T));
(iii) w satisfies the identity

/ {V®(u) - Vn —un} dedt = /uo(x)n(x, 0)dx + / fndzdt (5.56)
Qr Q Qr

for any function n € CY(Qr) which vanishes on ¥ and fort =T.

Clearly, the weak solutions we have constructed for the homogeneous Dirich-
let problem. HDP are the particular case of this definition which assumes
zero boundary trace, g = 0. This theory covers also the existence for con-
stant boundary data advanced in Corollary 5.11. Note, however, that the have
restricted the generality of the discussion of the HDP to the case of weak energy
solutions.

As in the homogeneous problem, the goal of the theory is to establish
existence, uniqueness, continuous dependence and other important properties
of weak solutions of the general Problem (5.52)—(5.54). The uniqueness of
weak solutions as defined above is settled by exactly the same result as in
Theorem 5.3, and even the proof is the same.

'References for this topic are e.g. Adams [4] or Dautray and Lions [198].
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Theorem 5.13 Problem (5.52)—(5.54) has at most one weak solution.

The reader should only notice that the test function 7 defined in (5.15) is
still acceptable because it continues to have zero boundary trace, and also that
the data up and f disappear from the weak formulation when subtracting the
expressions satisfied by the two solutions.

Concerning the existence theory, we repeat the assumptions on the initial
data and forcing term made in Sections 5.4 and 5.5 and repeat the outline of the
existence proofs with a suitable choice of boundary data. The choice is somewhat
stricter:

(HG) We assume that there is a function G € L*(0,T : H*(2)) such that g =
T5(G), and we assume further that G, Gy, Gy € L>=(Q).

Theorem 5.14 Under the above assumptions on G, for every ug € Ly (Q) and
f € L3(Q7), there exists a weak solution of Problem GDP with u € L>(0, 00 :
Ly (). The comparison principle applies to these solutions: if u,u are weak

solutions and ug < Uy a.e. in Q, f < f a.e. in Qr, and g < g a.e. in X, then
u < u a.e. in Qr. In particular, If ug, f,g > 0, then u > 0.

Proof The proof we give follows the outline of Theorem 5.7. Therefore, we
need only to stress the differences. We perform an approximation process where
the data are bounded; we take as boundary value for the approximate solutions,
D, (up) = gn(x,t), where g, is the trace on X of a smooth and positive function
G, that approximates G in its space, L?(0,T : H(Q)) N L>(Qr). We call the
solutions u,, and put w, = ®,(u,). Multiplying the equation satisfied by the
smooth solution u, by ®,(u,) — G, € L*(0,T : H}(2)), we get in the usual
way

/ V(1) - (VO (1) — VG dadt + / / (@ (1) — Gt 1 davdt

/ Fo (B (un) — Gy) dadt.

Hence,

/ Vo, un)|2dxdt—|—/ n(@, un (T dx—i—// G iy, dmdt—l—//un
Qr

/ (%, Un,0) dz +/ fn (@n(uy) — Gp) dxdt—i—/ (VO,,(uy,) - VG,,) dxdt

Q
+ [ upn(T)G,(T) dz.
/
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After some easy computations, and using the regularity of the data and Sobolev’s
embeddings, we may derive estimates of the form

/ VO, (u,)|? dzdt < C, /\Iln(un)dx <C,
Qr Q

which are uniform in n and in ¢ € (0, 7).

At least in the signed case, we also need an estimate on a time derivative just
as in Theorem 5.7. We multiply the equation satisfied by u,, by 0;(w,, — G,,) and
integrate by parts in space to obtain

/(wn — Gp)t (up)r dx = —/ Vuwy, - V(w, — Gp)e dx —|—/ fn(wp, — Gy de.
Q Q Q

Multiplying now by a smooth function {(¢) > 0 that vanishes for t = 0and ¢t = T,
and integrating in time and rearranging, we get (integrals in Q)

J[ @i dude = 5 [[ €190, do [ [(€(Guisun dode

+ / VCwy, - V(Gp)edzdt

- //(Cfn)t (wn — Gy) dazdt.

In this way, a uniform estimate is obtained for [[ ®/ (u,)|(uy,):|?* dzdt.

The rest of the proof offers few novelties and is left to the reader as a
long review exercise. Finally, the maximum principle applies to the approximate
problems, and this property is conserved in the limit. |

Remarks

(1) The regularity of Gy is not needed when treating non-negative solutions
under the assumptions on ¢ made in Theorem 5.5 using monotonicity. Also the
assumption on Gy may be relaxed.

(2) The condition on the forcing term for the result to be true can be weakened
into f € LP(Q), with p = 2d/(d + 2) if d > 3, and some p > 1if d =1,2.

Examples All the examples of ‘naive’ solutions considered in Chapter 4 are all
of them weak solutions of the GDP for the PME when restricted to a proper
cylinder of the form @ = Q x (0,T). This applies for instance to the stationary
solutions of the form u = |w|"/™sign(w) with Aw = 0 in R%; when restricted to
x € Q) they are acceptable weak solutions with sign change.

The ZKB and the TW solutions show that weak non-negative solutions of the
GDP need not be differentiable functions. But, since we also see that the lack of
differentiability concerns only the free boundary, we may propose a compromise
in the form of the concept of classical free boundary solution. We refer the reader
to Problem 5.13 for this topic.



Weak solutions with non-zero boundary data 107

5.7.1  Properties of radial solutions

Weak solutions for the complete problem have properties that extend the ones
derived in Section 5.6 for the homogeneous case. Instead of revising them, we
will devote some space to consider the special properties of solutions in the
so-called radially symmetric case in a homogeneous medium. We will use them
in the study of initial continuity in Section 7.5.1.

We assume that the domain is a ball Q = Br(0), the data are radially
symmetric, ug(x) = ¢(r), and also f(z,t) = ¢(r,t) and the boundary data are
constant in space, g(x,t) = g(¢).

Proposition 5.15 (Property of radial symmetry) Under those assumptions, the
weak solution of Theorem 5.14 is also radially symmetric in the space variable,
u(z,t) = u(r,t).

This follows from the invariance of the equation under orthogonal transforma-
tions plus the uniqueness for weak solutions that we have already proved. By
abuse of language, we simply say that the solution is ‘radial’ and write v = wu(r, t),
as well as ug(r), f(r,t).

Proposition 5.16 (Property of radial monotonicity) Assume moreover that
the radial profile is non-decreasing in r, i.e., (ug(r)) >0, that O, f(r,t) > 0, and
finally that ¢'(t) > 0 and g(0) > uo(R). Then, the solution satisfies Opu(r,t) > 0.

Proof The result is first proved for smooth solutions of filtration equations
with smooth ® such that ®'(u) > 0 and ®”(u) # 0, and smooth data wug, f and
g with u((r) > 0 and g(0) = uo(R). In this case, the result is a consequence of
the maximum principle applied to the equation for v = u, := d,u(r,t):

d—1

vp = Ap (P (w)v) — —5—=@"(u)v + fr(r,1),

r

where A, is the radial version of the Laplacian. As boundary conditions we
take v = 0 at » = 0 due to smoothness and symmetry. At r = R we have u = g,
which implies u; = ¢’ > 0 so that A®(u) > 0, i.e., (r?1®'(u)v), = 0. In view of
the values of r = R and ®'(0), ®”(0), we get an expression of the form

a(t)v, + b(t)v? >0,

with a(¢) > 0. This implies that v(R,t) > 0 for all ¢ > 0. Since v(r,0) > 0, the
maximum principle implies that v > 0.

For general ® and general radial data, the result follows by approximation.

|

Of course, the same result holds if we replace the condition of radially
non-decreasing by radially non-increasing and change the signs of g; then we
would get dru(r,t) < 0.
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5.8 Universal bound in sup norm

We investigate here a very well-known property of the PME, the boundedness
for positive times of the solutions of Problem HDP. This bound holds also for
the GPME with a strongly superlinear nonlinearity. It is a useful tool what will
give us a convenient control on the solution used in many calculations.

Proposition 5.17 FEvery weak energy solution u of Problem HDP for the com-
plete PME (m > 1) with bounded f (constructed by approzimation with smooth
functions) is bounded above in QF = Q x (1,T) for every T > T > 0. Moreover,
we have a universal decay estimate of the form

1

u(z,t) < c(m, d) (R% + (N/R2)1/mTﬁ) = (5.57)

where c(m, d) > 0, R is the radius of a ball containing 2, and N = supg,. f.
The same result holds for the GPME under the following growth condition
on ®: for all large u > ¢y, ® is C'-smooth and

' (u) > a®™ /™ for some a > 0,m > 1. (5.58)
Then, R must be large and c depends also on cy.

By universal we mean that the bound does not depend in any way on the
size of the initial data we are considering, neither in the form of the expression
nor in the constants that appear.

Proof We will use the fact that the solutions are constructed by approximation
with smooth functions. We state and do the proof first for the PME, where the
estimate is quite explicit and accurate.

(i) Let us first consider the case where ug is continuous and vanishes on 0f2.
We will construct an explicit supersolution z(z,t) with which to compare the
approximate solutions u,, to (5.22)—(5.24).

In fact, we fix T >0 and take a ball Br = Br(0) of radius R strictly
containing (2, i.e., with I' = 92 C Bpg, and consider the function z(z,t) defined
in Bg x (0,T") by

2™ (z,t) = A(t +7)"*(R?* — 2?) (5.59)

for suitable constants A, 7 and « > 0 to be chosen presently. To begin with, we
put @« = m/(m — 1). We want to prove that u,(x,t) < z(x,t) in Q. This implies
checking on the parabolic boundary: since function z is positive in B x (0, 00),
for all large n we have

1
Up(x,t) = — < 2z(z,t) in X,
n

if A,7 are kept fixed. Moreover, we choose 7 small enough so that

uon(z) < 2(z,0).
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Finally, we will obtain the inequality z; — A(z™) > f,, whenever
1
2dA > (t4 7)™/ M=V f () + 71,41/’”(32 — g)t/m (5.60)
m—

for |z| < R and 0 <t < T. This happens for instance if
A > R¥Ym=D A > c,NT™/ (M=),

With these choices, and since uy — AP, (uy,) — fr =0, and &, (z) = 2™ due
to the fact that z(x,t) > 1/n, the classical maximum principle implies that
un(x,t) < z(z,t) in Qr. Passing to the limit n — oo and 7 — 0, we get finally
get

1/m

u(z,t) < AYmw (R? - 22) ™ < AV R My (5.61)

By approximation, (5.61) holds for every weak solution obtained as a limit.

(ii) Let us now consider the GPME. We assume that ®'(u) > cu™* for u > no,
and we also assume that the approximate constitutive functions ®,, satisfy the
same condition @/, (u) > cu™~! for u > Cy. We repeat the outline of the previous
proof, taking

w = B, (2 (2,1) := At + 7)"*(R* — 2?) (5.62)

with R large enough so that z, will be larger than a certain constant Cj on 0f2
for 0 <t < T. We have to pay attention to the supersolution condition for the
equation that now reads z,; — Aw — f,, > 0 in Qr, or, in another form,

wy = (b;(Zn)(Aw - fn)

Since wy, Aw < 0 and @’ (z) > cw(™ /™ this means that
1
|Aw| 2 f + w0,
a

and we arrive at (5.60) but for a factor 1/c in the last term, that is not
important. |

Remarks

(1) The existence of a universal upper bound is not true for the heat equation,
uy = Au, simply because it is linear, so that given any solution u(x,t) > 0, we
can also consider all multiples cu(x,t), and this fact makes a universal bound
impossible. The main requirement in order to obtain a universal upper bound is
superlinearity of ® at infinity.

(2) There are however estimates that imply boundedness for positive times when
the nonlinearity has only linear growth, but then the L® norm of u(¢) must
depend on the L! norm of the uy (or other convenient measure of the size of
initial data). Symmetrization techniques are very useful in establishing such
results. See Chapter 17.



110 The Dirichlet problem I. Weak solutions

(3) Since the bound is universal in its form, it will still be true when we extend
the solutions to deal with L'(£2) initial data in the next chapter. Indeed, it is a
universal bound.

(4) The estimate is accurate. Indeed, for f =0 we will construct in the next
section an actual exact solution that has the predicted decay for the PME,
O(t—1/(m=1),

(5) A convenient condition of superlinearity that appears in the literature is
s®'(s)
D(s)

It is easy to prove that this implies ®(s) > C's® for all large s, hence ®'(s) >
K®'=1/¢_ the condition used in the proof with ¢ = m.

>c>1 forall s> c. (5.63)

(6) The growth assumption on ® can also be weakened.

(7) On the other hand, the assumption on f can be weakened; for instance
the universal bound that we have obtained depends only on the L° norm of
F(z,t) = t™/(m=1 f(x,t). However, improving f is not a priority for us. We
may also take f in an LP space with large p.

We can also get a universal bound for the problem with boundary data.

Proposition 5.18 Let u be a weak solution u of (5.52)—(5.54) constructed by
approximation with smooth functions, and assume that f+ € L®(Qr), g* €
L>®(Xr). If ® is superlinear in the sense of Proposition 5.17, then, u is bounded
above in QT for every T > 0, and we have a universal decay estimate of the form

u(z,t) < F(t), (5.64)

where F is a decreasing function of t that depends on || f oo, ||lg7 |loo, and the
radius R of a ball strictly containing 2. Moreover, for small t > 0 the estimate
has the form

w(z,t) < C(m,d) RmT twT | (5.65)

Proof We only need to consider non-negative data and solutions. We still try
a supersolution of the form (5.59),

2 (2, t) = A(t+ 7)™ (1 — ba?).

We need to satisfy the conditions: wg,(x) < z(z,0), which offers no novelty;
un(x,t) < z(z,t) on X, which is satisfied if

A(L=bR?) > g™ |loo(t + 7)™/ "1
and z > A(z™) + fT(x,t), which is implied by the two conditions
dbA > (t+ 7)™ V| s,  db(m —1)AMD/m > 1,
The result follows. u
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5.9 Construction of the Friendly Giant

We want to explore now the question of how precise is the universal bound
of the previous section. We investigate that issue by constructing a suitable
solution that will later play a role in the theory. Considering for simplicity the
case where f =0, we show that there exists a special solution U which is the
largest element in the class of functions which are weak solutions of the Dirichlet
problem in @ in the sense of Definition 5.3 with f = 0. This solution is the
mazximal solution of the Cauchy—Dirichlet problem. It takes infinite initial data
everywhere in ). Following Dahlberg and Kenig, we call this solution the Friendly
Giant. Moreover, when the equation is the PME, U is a solution in separated-
variables form; actually, it is the special solution discussed in Section 4.2, that
is obtained here as a nice consequence of the general theory.

Theorem 5.19 Let us assume that ® satisfies the growth condition (5.58). Then
there exists a unique weak solution of the Dirichlet problem for the GPME with
f =g =0 that takes initial values uo(x,0) = 400 and the divergence is uniform
away from the boundary. This solution is an upper bound for all weak energy
solutions of Problem (5.1)—(5.3) with f = 0. It is a decreasing function of time
for all x € Q.

Proof (i) Weak solution is meant in the sense of Definition 5.3 and such that
u € C((0,00) : LY(Q)) and for all 7> 0 v(z,t) = u(x,t+7) is a weak energy
solution (this is assumed to simplify matters at this stage, cf. Section 6.5 below).
For every integer n > 1 we solve the problem

ou,  =Ad(u,) in Q,
(Pn) un(x,0) =n in Q,
un(x,t) =0 on X.

Let w, be the weak solution to this problem. Clearly, the sequence {u,} is
monotone: u,y1 > U,. We also know from Proposition 5.17 that for every n

up(x,t) < F(t) in Q, (5.66)

where F' is a decreasing function of ¢ that does not depend on n. Therefore, we
may pass to the limit and find a function

(7(33,15) = lim wuy,(z,t),
n—oo
also satisfying estimate (5.66). Let us examine the properties of U:

As a monotone limit of bounded solutions u, in @7 such that the functions
®(u,,) are bounded above by a function in L?(7, 00 : H}(Q)), it is straightforward
to conclude that U is a weak solution of the Cauchy—Dirichlet problem for the
GPME in any time interval (7, 00).

It is also clear that it takes on the value 17(30, 0) = 400 everywhere in . The
divergence is uniform thanks to a simple barrier argument: since the solutions
un(x,t) are continuous down to ¢ = 0 at all interior points (see Proposition 7.13
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for a proof), for every € > 0 there exists 7 > 0 such that w,(z,t) >n —¢ if
d(z,00) > e and 0 < t < 7. Now, recall that u,, < U to conclude.

(ii) Let us now prove that U is larger than any weak solution of the Cauchy—
Dirichlet problem in @ with f = 0. By Proposition 5.17 we know that every such
solution satisfies

u(z,7) < F(1) < o00.
Taking n > F(7), it follows from the maximum principle that
w(z,t+7) <up(z,t) <U(z,t) in Q.
Using the fact that u € C([0,00) : L' (Q2)) (see Section 6.1 for more details on
this issue) and letting now 7 — 0 we get u(x,t) < U(z,t) in @ as desired.

(iii) Next, we prove the uniqueness of the solution with u(z,0) = +oc0. Assume
that v is another such solution. Since we assume that v(z,t+7) is a weak
solution of problem (5.1)—(5.3), v(z,7) must be an element in Hg(£2), hence
v(x,27) is bounded by Proposition 5.17. By comparison with the sequence u,,
we conclude that v(z,t + 27) < u,(z,t) in @ for some n large enough. Letting
T — 0 we get

v(z,t) < U, t). (5.67)

On the other hand, a function v which has infinite initial values is larger than
the solutions u,,, hence v > U. The precise argument is as follows: the uniform
divergence of v at t = 0 and the contraction property imply that for any n there
is a small 7 = 7(n) such that

/ (1 (0) — (7)) dz < e,
Q

since uy, (0) = n. Therefore, [ (un(t) —v(t + 7))y dx < e for every t > 0. In the
limit, U < v. Putting both inequalities together, we get v = U.

(iv) To prove the monotonicity in time, we fix 7 > 0 and observe that, by the a
priori estimate, there exists n; = ni(7) such that for every n > 1

un (2, 7) < Ny = up, (z,0).

By the maximum principle, we conclude that u,(z,t+ 7) < Uy, (2,t) in Q. In
the limit we have U(z,t + 7) < uy, (z,t) for every ¢ > 0, hence

Ulz,t+7) <U(z,t) in Q. (5.68)

This proves the monotonicity. |
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Theorem 5.20 For the PME this special function has the separate-variables
form

Uz, t) = tmT F(z). (5.69)

U can be characterized as the mazimal solution of the PME in Q with zero
Dirichlet conditions. Besides, g = F™ 1is the unique positive solution of the
nonlinear eigenvalue problem

Ag+

1 1
o= Hg(9). :
g% =0, geH}(®) (5.70)
Proof To show that U has the form (5.69), we introduce the scaling transfor-
mation

(Tu)(z,t) = Mu(z, ™), A>0. (5.71)

This transformation leaves the equation invariant (see Subsection 3.3.2 for more
details on scaling). It is interesting to see what happens when it is applied to
our latter sequence {u, }: checking the initial and boundary values, we see that

(Tup)(2,t) = urn(z,t) in Q. (5.72)
Passing to the limit n — oo in (5.72) we get
(TU)(z,t) = U 1), (5.73)

which holds for every (z,t) € @ and every A > 0. Fixing (z,t) and setting A\ =
t=1/(m=1) we get (5.69) with F(z) = U(z, 1).
The fact that g = F™ satisfies (5.70) is also obvious. |

Remarks

(1) The reader should compare this function with the similar situation for the
linear case m = 1. Then, the solution of the equation equivalent to (5.70), i.e.,
AF + cF = 0, is the sine,

F(z)=Asin(wz), with w=mx/|Q], (5.74)

|2 being the length of the interval , and ¢ = w?. Thus, we may say that for
m > 1 the profile of the giant is a kind of nonlinear sine function. In the linear
case we have a free parameter A > 0 which does not exist in the nonlinear case.

Moreover, U = e~ **F(x), \; = w?, is the asymptotic first approximation for
non-negative solutions, but not an universal upper bound.

(2) The maximal solution shows that more general data are possible than those
covered in this chapter. We will pursue this issue later in the book, starting with
the next chapter. It is immediate to see that the present solution is also maximal
with respect to the limit solutions defined there.
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(3) There is no essential reason to consider maximal solutions only for forcing
term f = 0. In fact, the proof of Theorem 5.19 goes through under the restriction
f<Coreven f < Ct—™/(m=1)  See Problem 5.11.

(4) The Friendly Giant will play a prominent role in the study of asymptotic
behaviour of Section 20.1, where a new proof of existence will be given.

5.10 Properties of fast diffusion

We will mainly be interested in the PME equation where ®(u) = |u|™ ' with
m > 1, and the associated properties like finite propagation and free boundaries.
But the concepts and construction of solutions of this chapter apply equally well
to the fast diffusion range 0 < m < 1. There are, however, marked qualitative
differences like extinction that we comment next.

5.10.1  Eztinction in finite time

The techniques of Section 5.8 can be applied to the fast diffusion equation,
0 < m < 1, but they lead to very different conclusions. In that case we have:

Proposition 5.21 FEvery weak energy solution u of Problem HDP for the signed
FDE with bounded initial data (and f =0) vanishes identically after a finite
time T > 0 with a bound that depends on ||ug|ls. Moreover, we have the upper
estimate

w(z,t) < c(m,d) R~ Tm (T — )T | (5.75)

where c¢(m,d) >0, R is the radius of a ball containing Q and T >
c1(m,d)M*=™R? where M = supq, ug. Similar estimates apply to the negative
part.

Proof The construction is similar to the PME case of Proposition 5.17. We
assume that the ball Br(0) of radius R/2 contains €, and consider the function
z(z,t) defined in Bag x (0,7) by

2™(x,t) = A(T — t)*(4R? — 2?) (5.76)

for suitable constants A,T, and « =m/(1 —m); note the sign changes with
respect to the PME case. We want to prove that there exist approximations as
in the PME case such that u, (x,t) < z(x,t) in Q7. This implies checking on the
parabolic boundary: since function z is positive in Bag x (0, 00), for all large n
we have

1
Un(x,t) = — < z(z,t) in X,
n

if A,T are kept fixed. Moreover, we choose T large enough so that wug,(z) <
z(x,0). This happens if

M™ < 4AT“R?. (5.77)
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Next, we obtain the inequality z; — A(z™) > 0 whenever

1
2dA > 17,41/7"(4}32 —z?)l/m (5.78)

—m
for |z| < 2R and 0 <t < T'. This happens if
A< CQR—2/(1—m)

with co(m, d) > 0. Our value for ¢y is (2d(1 —m))™/(1=m)4=1/(1=m) Note that
when we choose the best value for A according to this restriction, we get from
(5.77) the condition T > ¢1(m,d)M'~™R?. With these choices, and since u,, ; —
A, (uy) =0, and ®,(z) = 2™ due to the fact that z(z,¢) > 1/n, the classical
maximum principle implies that w,(x,t) < z(z,t) in Q7. Passing to the limit,
we get u(x,t) < z(z,t). |

Corollary 5.22 All weak energy solutions of the FDE with bounded initial data
vanish in finite time.

Remark Finding that the weak solution with non-trivial data becomes identi-
cally zero for a degenerate parabolic equation was in its day a big surprise. It
is tied to the fact that the exponent is less than one. The simplest case of an
evolution equation where the phenomenon of extinction happens is the ODE

%:fup for 0<p<1,

with initial data u(0) > 0. Actually, there is a proof of the phenomenon of
extinction based on energy inequalities that leads to an ODE like this one.
Suppose that d > 3 and the solution is non-negative, and smooth so that the
calculations are justified. Then, for every ¢ > 1 we have by the usual methods
of integration by parts applied to the FDE

i/ wldr = —q(q — 1)m/ um+q_3|Vu|2 dx S —C(WL,CL(],Q) (/ up)
dt Q Q Q

with p=(m+q¢q—1)d/(d—2) and r = (d — 2)/d. We have used the Sobolev
embedding in the last inequality. We now choose ¢ > d(1 — m)/2 so that p > g,
and put I, = fQ u? dzx to get from the comparison of LP and L? norms

dI 1—-m

q<_C =1—
a = e 7

€ (0,1) (5.79)

(v = rp/q). Integration of the ODE for I, leads to extinction in a finite time T
depending only on m, ¢, and I,(0). This estimate is conserved when we make
an approximation process. We leave it to the reader to prove the cases d = 1,2
with similar conclusion that we state next.

Proposition 5.23 Eztinction in finite time happens in the FDE for all0 < m <
1 if the initial data ug belong to the space L1(Q) with ¢ > 1, ¢ > d(1 —m)/2.
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We will not pursue the study of extinction for fast diffusion since our aim
is the study of the PME. But see Notes and Problem 5.15. The problem in the
whole space is treated in full detail in the monograph [515].

5.10.2  Singular fast diffusion

The equation u; = Au™ cannot be continued for m < 0 because it is trivial for
m = 0 and becomes inverse parabolic for m < 0. But the rescaled form

Ou =V - (Ju|™"'Vu) (5.80)

makes perfect sense as a singular parabolic equation (called singular because of
the limit D(u) = |u|/™™! — oo as u — 0). It has appeared in several applications
that have motivated the mathematical study in classes of non-negative solutions.
The theory has some surprising features in the form of non-existence and non-
uniqueness of solutions for bounded data. We refer the reader to the detailed
study contained in the monograph [515]. We point out that in order to use the

notation of this chapter we should consider for m = —n < 0 a nonlinearity of the
form
1 —-n
O(u)=c——u"", u>0.
n

This falls out of our assumption (Hg) because of the limits ®(0+) = —oo,
O(+00) =c¢ < 0o0. In the case m =0 we have ®(u) =log(u) with the same
conclusion.

5.11 Equations of inhomogeneous media. A short review

There are a number of extensions of the PME and its generalization the GPME
that appear in the literature in the study of mass diffusion, and heat propagation
of gas flow in non-homogeneous media. Here are some of the options.

(i) A natural generalization of the GPME in view of the existing theory of
parabolic equations is the equation

dyu = Za ai;(x,t) 0p, ®(u)), (5.81)

where ® is as above and (a;;) is a symmetric matrix of bounded measurable
functions which is positive definite or at least non-negative. The equation is
for instance suggested as a mathematical model for the flow of a gas in a non-
homogeneous porous medium according to the model of Section 2.1 when the
permeability or the viscosity depend on x and/or ¢, see Subsection 2.1.1. We can
think for instance of periodic media.

In order to re-do the theory of this chapter, the reader is advised to review
the estimates of Section 3.2 and impose conditions on the derivatives of a;; on
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z, t and u. The main item, the parabolicity conditions may read
AT <ay(x,0)&E <A forae. (z,t) € Q, (5.82)

for all ¢ € R?, for some A > 1. We may also ask the coefficients ai; to be con-
tinuous or differentiable. As an example, Bertsch and Kamin study in [112] the
one-dimensional version of this problem under the assumptions: (i) ®(u) = u™,
(ii) a(x,t) is a C*? function and satisfies (5.82); (iii) up > 0 is bounded and
continuous; and (iv) the space domain is R.

(ii) More generally, we may consider an equation of the form
d
Opu = Z Oz, (Ai(x,t,u, Vu)) (5.83)
1

and derive an existence and uniqueness theory of weak solutions under
convenient assumptions on the functions A;. We may write a;;(z,t) =
Op,; Ai(z,t,u, p)|p:vu7 and impose parabolicity conditions as before. The very
influential paper of Alt and Luckhaus [11], 1983, treats the initial boundary value
problems for quasilinear systems of the form

b (u) — V - [a? (b(u), Viu)] = £7(b(u)), (5.84)

j=1,...,m. General structure conditions (ellipticity of a and subdifferentiabil-
ity of b) allow for elliptic—parabolic equations, non-steady filtration problems
and even Stefan problems. Existence, uniqueness and regularity results are
established. Many subsequent papers have used and extended those results. This
generality will be found below in extending the continuity results of Chapter 7,
see e.g. DiBenedetto [207], and in extending the work on propagation, e.g.
Antontsev [31] and Diaz-Véron [203].

The study of the so-called parabolic—elliptic boundary value problems has
originated an extensive literature.

(iii) The previous models concern equations in divergence form, an important
feature in developing the mathematical theory. The consideration of the gas flow
model in porous media with variable porosity leads to the equation of the form
(2.9): p(x,t) Ou = V - ((c(x,t)Vu'™), or more generally

p(z,t) Ou =V - (c(z,t)VO(u)), (5.85)

which have non-divergent form (note that p > 0 is given). A particular instance
of this mathematical model was proposed by Kamin and Rosenau [322], [452], in
the study of thermal propagation in an unbounded medium. The equation has
the form

p(x) Opu = A®P(u), (5.86)
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where u stands for the temperature and p is the mass density. In the last case

we fix the total mass
m= / p(x)dz,
Q

which may be finite or infinite; Q is a bounded domain or R?. The thermal energy
is then

Bt) = /Q (e, )p(z) dz.

The authors pose the problem in d = 1, 2 = R, with finite total mass and finite
initial energy. The assumptions on the equation structure are: p(x) is smooth,
and @ satisfies ®(0) =0, ®'(0) > 0, ®'(u) > 0 for u > 0; the initial data satisfy
0 < ug(z) < M. Existence and uniqueness of solutions for this problem can be
obtained by methods that are variations of the ones of this chapter and have
been developed by a number of authors for d = 1 and d > 1 both in the case of a
bounded domain or in the case of the whole space (to be treated in Chapter 9).
In the latter case, the behaviour of the density at infinity is a matter of concern.
The typical assumption is power decay as |z| — oo:

p(x) ~|z|7% a>0.

There is a great difference between the case a < d (infinite mass) and a > d
(finite mass). The value a = 2 is critical. Let us mention that the problem in the
whole space leads to interesting non-uniqueness results even for bounded initial
data, cf. [225, 280, 448].

(iv) A simple inhomogeneous model that appears in the literature consists of the
equation

Oru = AD(x,u) + f. (5.87)

This version already appears in the pioneering work of Oleinik et al. [408] (with
f =10). A convenient assumption on ¥ is

(Hg) The function ® : Q x R — R is continuous in both variables and strictly
increasing in the second. We also have ®(x,0) = 0 for all € Q.

As indicated in Chapter 3, many of the basic estimates on which the theory
relies can be easily adapted to this case, so that the whole theory of this chapter
can be generalized. Additional assumptions on the dependence of ® on x will be
needed to round up the existence theorems.

(v) We have mentioned one famous case in which the GPME involves a function
® that is not strictly increasing, namely the Stefan problem, described in the
Introduction, Section 1.3, to which many of the developments of this chapter
apply. The combination of degenerate diffusion and the Stefan problem is treated
by Bertsch et al. in [108].
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At the other end, there is an interest in graphs ® which have vertical parts,
in other words, the inverse graph ¢ = ®~! has a flat part. The corresponding
equation

c(w)y = Aw + f, (5.88)

represents the so-called elliptic—parabolic problems, which also develop interest-
ing free boundaries. Again, much of this chapter applies to such models. We refer
for this topic to the work of J. Hulshof and coworkers [109, 294, 295].

(vi) A different question is the solution of forward-backward nonlinear heat
equations of the form

Oru = Ad(u), (5.89)

where @ is a non-monotone function, typically with a cubic type structure: it
is increasing for large and small values of u but decreasing in an intermediate
u-interval. The standard Dirichlet and Cauchy problems for this equation are
ill-posed with the usual function spaces and topologies. Novick-Cohen and Pego
[402] study the problem by means of a regularization of the form

0w = A(P(u) + vuy), v >0, (5.90)

(Sobolev regularization), with Neumann boundary conditions n-V(®(u) 4+
vur) =0 on 92 X Ry as a model for isothermal phase separation of a binary
mixture. Padron [416] finds this problem as a model of aggregating populations
and uses the same regularization to find existence and uniqueness of global in
time solutions of the HDP and certain regularity properties when ® is coercive
in some sense. The fine analysis of the weak limits and the hysteresis effects is
done in Plotnikov [437] and Evans and Portilheiro [231].

These ill-posed problems can be regularized by a number of other methods
with possibly different limits.

(vii) As a curiosity, Antontsev and Shmarev [33] have recently studied a model
of porous medium equationwith variable exponent of nonlinearity:

wi(a,t) — div(ju] "D Vulz, t)) = f(2), (5.91)

for (z,t) € Qr = Q x (0,T] with initial data «(0,z) = ue(z), = € €, and Dirich-
let boundary conditions u(x,t) =0, (z,t) € I'r = 9Q x (0,T]. They assume that
-1 <~ <~(z,t) <yt < +o0, for some given constants y~,~y". It is proved
that the above-stated problem admits a unique weak solution if ~(x,t) > 0.
Qualitative properties of the solution are derived in terms of the values of ~.

Notes

Section 5.2. As we have explained above, solutions for the Cauchy, Dirichlet
and Neumann problems were first announced by Oleinik [406], published in
1957, and explained in detail in [408], 1958. The case of one space dimension
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was considered, f = 0, and a class of so-called generalized solutions was intro-
duced. Actually, a slightly more general equation was considered, u; = ®(x, u) 4o
under convenient regularity assumptions on ® and wug. The uniqueness result,
Theorem 5.3, follows the proof in [408]. Dubinskii [219] proves existence the-
orems for generalized solutions of the Dirchlet and the Cauchy problem for
the PME and other much more general degenerating higher-order parabolic
equations.

The semigroup approach to existence and uniqueness will be explained in
Chapter 10. It has the advantage of allowing quite naturally for a greater
generality for ® which can then be a maximal monotone graph; this allows
for instance to have graphs ® with horizontal parts, like in the Stefan problem.
Such problems are very important in theory and applications but they are not
our concern.

A study of the properties of weak solutions to the Dirichlet problem was
done by Aronson and Peletier in [49], who use a definition similar to our
Definition 5.4. These works refer to non-negative solutions, but the semigroup
approach applies to both signs.

The change to L? instead of L' as the basic space behind the functional
setting is done for convenience in the uniqueness proof, and is then supported
by the existence result, but our larger goal is to work in L', a space that has a
prominent role in the complete theory. This aspect will be explored in the next
chapters.

Sections 5.4, 5.5. Usually, proofs of the existence of solutions with changing
sign were done in the framework of semigroups, thus obtaining mild solutions.
We have chosen to offer a comparative presentation for non-negative solutions
and solutions of both signs, so that the reader can feel from the beginning the
problems of extending the theory to the case of changing sign.

Section 5.7. A complete theory for the non-homogeneous problem can be
developed on this foundation. We will not pursue such a line of work, since
the present text must address other more urgent issues. The interested reader is
offered a continuation of the investigation in Problem 5.9.

The boundary conditions are taken in the sense of traces. However,
in many practical applications the weak solutions will also be continuous
inside the domain and up to the boundary, so that the concept of trace is
simple.

Section 5.8. The universal bound in sup norm is a very strong regularity result.
It is used to propose a new definition of weak solution with finite energy in the
next chapter.

Section 5.9. The existence of the special solution (5.69) is established in [49] by
a different method, consisting in studying the elliptic equation (5.66). A more
general result can be found in Dahlberg and Kenig [190] who introduced the
term Friendly Giant in 1988.
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The uniqueness of the Friendly Giant by elliptic methods is discussed in
[511]. This survey paper reviews the Dirichlet problem for the PME with special
attention to the asymptotic behaviour as ¢ — oco. See Chapter 20.

Section 5.10. The theory of the family of fast diffusion equations with 1 >
m > —oo offers many theoretical surprises like instantaneous extinction, non-
uniqueness, and lack of regularity. These aspects are studied in detail in the
monograph [515].

The theory of solutions for the HDP for the GPME was studied by Evans in
[227]. Under the assumption that ®~! is globally Lipschitz continuous, a unique
solution is produced in the class of strong solutions (improved properties with
respect to weak solutions, see Chapter 8).

The property of extinction in finite time was first proved by Sabinina [458,
459] for a class of one-dimensional parabolic equations of fast diffusion type in
bounded intervals.

The extinction phenomenon for the GPME with general nonlinearities was
studied by Diaz and Diaz who obtain in [202] the necessary and sufficient
conditions on ® for the existence of finite extinction time for solutions of the
GPME in bounded domain. It reads

“ ds
/O B < (5.92)

The study is generalized by a number of authors to the GPME with zero-order
terms [315], [331], and with nonlinear boundary conditions in [369].

Section 5.11. Here are some additional observations:

(1) The study of reaction—diffusion equations with porous medium diffusion term
has a very extensive literature that falls completely outside of the scope of our
text. We refer to the book of Samarski et al. [469] which specializes in blow-
up problems. For early references we can mention [46, 53]. The presence of
convection terms has also been studied by a number of authors, cf. [446] and
its references.

(2) The theory of equations in non-smooth domains is important in the applica-
tions but not often treated in the theory. We refer for recent work to [1, 2].

Summary and perspective

Let us recapitulate our progress thus far. We have posed the problem, introduced
a concept of weak solution, and proved existence and uniqueness results in that
framework for a suitable class of data that includes all bounded functions ug and
f- The solutions belong to the energy class. Moreover, for ® similar to the PME
case the solutions for non-negative (or non-positive) data can be constructed
as limits of classical solutions of the same equation after approximating the
data, while for data of both signs the equation has to be approximated too. The
solutions also satisfy the expected comparison theorem.
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Though we have shown the order properties of the constructed solutions, the
proof of continuous dependence will be left to the next chapter where it will be
addressed by the L' technique, an important tool that deserves some attention.

We have started the qualitative analysis by showing that solutions are
uniformly bounded for ¢t > 7 > 0 for the kind of equations we want to study.
A number of other properties have been established. This fits into the picture
we had in mind.

The chapter covers the basic existence and uniqueness theory and some of
the main properties. A large number of more advanced questions are left open
and will be tackled in the following chapters. Note finally that for most of the
results of this chapter, the restriction of superlinear growth on @ is not needed
and the PME with m > 0 is acceptable. Small changes are needed in the proofs,
but we will leave to the reader such extensions into the realm of so-called fast
diffusion, with the help of suitable literature.

Future chapters will introduce new definitions of generalized solution, like L*
limit solutions, very weak solutions, continuous weak solutions, strong solutions
and mild solutions, needed to account for more generality in the data, more
general equations or different approach. And there are further options like
entropy solutions, renormalized entropy solutions, viscosity solutions, kinetic
solutions and dissipative solutions to be used in more general contexts, not
needed at the basic level. We should not forget singular solutions which is a
different direction. This variety is one of the aspects that makes the theory of
nonlinear diffusion an active research field.

Problems

Problem 5.1 In the context of Problem PHD, check that a classical solution
of Problem (5.1)—(5.3) is automatically a weak solution of the problem.

(ii) Prove that a weak solution in Qr is also a weak solution in Qp, if 0 <
T <T.

Problem 5.2 The concept of initial data implicit in Definition 5.4 implies
a weak form of convergence to the initial data as stated in Proposition 5.2.
Prove it.

Problem 5.3 Prove that function w given by the ZKB formula (5.13) is a weak
solution of the equation under the conditions stated below the formula.

Hint: In order to check the integral equalities (5.7) we may proceed as follows:
First, we note that the function w is C* away from the free boundary |z| = r(¢).
We then divide Q7 into two regions Q1 = {(z,t) € Qr : |z| < r(t)}, where u >
0, and Q2 = Qr \ Q1 where u = 0. The integrals are then reduced to Q1. Now
use the fact that w is a classical solution of the equation inside 1 and also that
w™ is C* up to |z| = 7(t) to eliminate the boundary terms in the integrations
by parts.
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Problem 5.4 (i) Complete the convergence parts of Lemma 5.9. In particular,
show that Z(s) and Z,,(s) are strictly increasing continuous functions and that
Zn(s) — Z(s) uniformly on compacts; show that if A =271, A, = Z, 1, they
are also increasing continuous functions and that A,(s) — A(s) uniformly on
compacts; (ii) show that u, = A, 'z, converges uniformly to u, the weak limit
of u,: show that w, = ®,,(A,(z,)) also converges uniformly to w.

Problem 5.5 Using (5.51), obtain a decay rate for the PME of the form

// I(uq)tlzdxdt0<7253i)>// V™ *dadt. (5.93)

Hint: We only need to observe that
(u?)s = (2q/(m + 1))t~ (D2 E02),

and recall that u is bounded in Q™ by Proposition 5.17. Combining inequalities
(5.47) and (5.44) in (7,T), with T'— oo, with the L> estimate (5.57), we get
(5.93).

Problem 5.6 Prove that we have the following result for weak energy solutions
of the PME:

8m d, im
i ] )
QIZ

where 0 < t; < 5 and Q12 = Q X (t1,12).

+ / VU (a2, 1) [2da < / Vu (a2, 1) Pda,
Q Q

(5.94)

Problem 5.7 ARONSON’S NON-SMOOTHNESS EXAMPLE. Take as domain a ball
Q = Br(0), take smooth initial data wuo(x), that are radially symmetric, and
assume that ug(z) = clz|? for 0 <z <r; < R, and is positive and integrable
outside with ug(R) = 0. Prove that in a finite time the solution cannot have a
smooth pressure.

Hint: Write the equation for the pressure
pr = (m = 1)pAp + |Vp|*.

The solution is radially symmetric by uniqueness. As long as p is smooth, it must
be zero at x = 0. Now derive the equation for 6, the Laplacian of the pressure:

0, = (m — 1)pA0 + 2mVpVe + (m — 1)|0)> + 22 0% p)>.

At © =0 we get, as long as p = 0,

0, = (m —1|e|2+2z (0%p)* = (m —1)|0)%.
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Since 6(0,0) = 2dc > 0, integrating the inequality means that 6(0,¢) blows up in
finite time. At this time, p cannot be C? in space nor C'! in time.

Problem 5.8 THE HEAT EQUATION. Adapt the theory of this chapter to the
heat equation u; = Awu. In particular;

(i) Use the methods of this section to prove existence, uniqueness and contin-
uous dependence.
(ii) Show that the solutions are bounded for positive times but there cannot
be a universal bound like (5.57).
(iii) Show that solutions are C'*°(Q) and not only continuous. A continuity
higher than Holder continuity is false for the PME due to the example of
the ZKB solutions.

Problem 5.9 THE NON-HOMOGENEOUS BOUNDARY PROBLEM.

(i) Prove the boundedness of solutions of Proposition 5.18 under the assump-
tions

g/ (m=1) ¢ gm/(m=1) 6 hounded.

(ii) Prove an L' contraction result for fixed boundary data: If u and u are
two weak solutions with data (uo, f,g) and (4o, f, g) resp., then

1((®) —u(®)) 4l < [[(uo = @o)+ +/0 I(f(s) = F(s))+Ihds.  (5.95)

(iii)* Use this estimate to construct a theory of weak solutions with L! initial
data and forcing term, and bounded and regular data on 3.

(iv)* Consider the inhomogeneous boundary problem with less regular bound-
ary.

Problem 5.10* Prove a universal L> bound as in Proposition 5.17 under
weaker growth assumptions on &.

Problem 5.11 FRIENDLY GIANTS.

(i) Check that for every 7 > 0, U(x, ¢ 4 7) is a weak solution of problem HDP.
(ii) Construct the special solution with initial data U(z,0) = +oo and forcing
term f = C' > 0 and show that it is the maximal solution for a certain class
of weak solutions.
(iii) Do the same for the PME with f =¢="/(m*UC. Find the associated
nonlinear elliptic problem and solve it.

Problem 5.12 Continues the previous problem in d = 1.

(i) Compute numerically the nonlinear sine function fn,(x) and discuss its
shape as a function of m. Consider theoretically and numerically the limit
situation m — oo. [Hint: use an appropriate variable in order not to lose
the detail of the asymptotic information. See [511].]
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(ii) Study the convergence as m — 1 of the Friendly Giant to the linear approx-
imant in the generality of bounded domains in several space dimensions.
Note that a convenient scaling is needed.

Problem 5.13 CLASSICAL FREE BOUNDARY SOLUTIONS. We assume for sim-
plicity that ®(s) is smooth for s > 0. We propose the following definition:

Definition 5.6 A function u > 0 defined in a closed cylinder Q = Q x [0,T], Q
as before, is called a classical free boundary solution if there is a C'' hypersurface
I' € @ with normal not oriented along the t-axis, and such that

(i) T =0{u >0} Nn{u=0};
(ii) ueC’( ), u € C*°({u > 0}); and
(iii) V4®(u) is continuous up to the free boundary I" and V,®(u) =0 on T

(Other variants are possible but need not bother us now; the condition on
the normal means that there is always a well-defined space normal.)

(i) Prove that the (delayed) ZKB and the TWs are classical free boundary
solutions.

(ii) Prove that a classical free boundary solution is a weak solution and satisfies
the energy estimates.

Problem 5.14 Construct a separable solution of the FDE in the range 0 <
m < 1 of the form U(x,t) = (T — t)/=™) F(z) by solving the elliptic equation
for F'. See Section A.9.1. Or solve the ODE for F' in case () is a ball and F' is
radially symmetric.

Problem 5.15*% Construct a Friendly Giant for the GPME in inhomogeneous
media, & = ®(z,u). Derive a universal a priori bound.

Problem 5.16* Establish the main existence and uniqueness results of this
chapter without the assumption that ® is strictly increasing.
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THE DIRICHLET PROBLEM II. LIMIT SOLUTIONS,
VERY WEAK SOLUTIONS AND SOME
OTHER VARIANTS

We continue in this and the next chapter the analysis of the initial and boundary
value problem. In Chapter 5 the GPME was considered, the Dirichlet problem
was posed in a spatial bounded domain 2, and the problem was shown to be
uniquely solvable in a class of weak solutions. It was also shown that these weak
solutions are not always classical solutions. Some important questions were left
open and are worth exploring, like: How general can the data be? Are there
any natural and useful alternatives to the proposed definition of weak solution?
Here, we address these questions and present extensions of the already developed
theory. We recall that the central issue is to construct an existence theory as
wide as possible and complement it with uniqueness and stability. Now, it is not
automatic that the most natural class of data for existence purposes coincides
with the class where uniqueness and stability can be proved. This is a standard
source of complication in the theories, namely, combining well-posedness with
having the widest possible (or at least wide enough) class of data.

We first discuss stability and limit solutions. A main property of the classical
solutions examined in Chapter 3 is the continuous dependence with respect to
the data, that is shown to take place in L' norm according to Proposition 3.5.
This idea can be extended to prove continuous dependence of the weak solutions
constructed in Chapter 5 with respect to the data. In this way, well-posedness is
established. But once this is done, it is quite easy to perform an extension of the
class of solutions to encompass merely integrable data. This is done however at
the price of resorting to a new solution concept, limit solution. See Section 6.1.
We solve in this way the homogeneous Dirichlet problem for the GPME with
general L' data. Limit solutions will appear again in Chapter 10 in a slightly
different guise associated to time discretizations, and that version will be called
mild solutions. The equivalence of both approaches must be proved!

Limit solutions are a real extension of the concept of weak solution, but lack
an intrinsic functional characterization other than the indirect statement that
they are limits of weak solutions. Section 6.2 addresses this inconvenience by
resorting to the concept of very weak solution. Uniqueness results are proved in
that setting, cf. Theorem 6.5 and Corollary 6.7, which improve in a substantial
way the uniqueness of weak solutions of Theorem 5.3. A key point of this section
is the technique of duality used in the uniqueness proof, which is presented here
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in a simple setting. The section also includes the definition of trace of a solution
at a given time.

In Section 6.3 we briefly explore the dependence of the solutions on the
variation of the domain, a question of practical interest.

In Section 6.4 we specialize to the case f = g = 0 and present the main ideas
of semigroups applied to the GPME in the context of limit solutions.

We then revisit the basic theory of weak solutions to address the issue of
solutions with L' initial data. Such extension can be obtained at a low cost if
® is superlinear and f is assumed to be bounded. This is done in Section 6.5
and needs a modification of the old concept to accommodate the new data. The
relation of both concepts of weak solution is carefully analysed.

Finally, we return to the question of possible generality of the data and
present two further extensions of the theory already developed. In Section 6.6
we consider the existence of weak and limit solutions with more general initial
data, taken in weighted spaces. Section 6.7 contains another extension: we now
allow for data in the space H ~1(Q); this is not a space of functions, but a space
of distributions.

We can consider the material of this chapter as advanced reading, except for
Sections 6.1 and 6.4 that are recommended at the basic level.

6.1 L' theory. Stability. Limit solutions

This section takes into account the L! contraction principle that we have proved
in Section 3.2.3 for smooth solutions of the filtration equation, and that has
appeared at some stages of the constructions of Chapter 5. We use this property
to establish the stability of the constructed solutions and also to make an
extension of the existence result.

6.1.1  Stability of weak solutions

It is easily seen that the L' contraction principle continues to hold in the limit
for the weak solutions constructed from classical solutions by approximation.
Let us explicitly state the property in our present setting.

Proposition 6.1 The statement of Proposition 3.5 holds for the weak solutions
constructed in Theorem 5.7. In other words, for two weak energy solutions u and
u with initial data ug, Uy and forcing terms f, [ respectively, we have for every
t>72>0

[(u() = u(®) 4+ < |[(u(r) = (7)) 4] +/ /() = F(s))+lhds.  (6.1)

Remarks

(1) This is a fundamental property that will allow us to develop exis-
tence, uniqueness and stability theory in the space L'(f2). For the moment
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it serves the purpose of providing us with a stability result for the
just constructed weak energy solutions. We recall that, as pointed out in
Section 3.2.3, formula (6.1) implies the plain contraction:

lu(t) — A < lluo — Tolls + / 1£(s) — F(s)lnds. (6.2)

(2) This result implies the uniqueness of solutions of problem (5.1)-(5.3) by a
new technique (the L! technique) which is completely different from that of
Theorem 5.3. Indeed, estimate (6.1) not only implies L*-dependence of solutions
on data, but also the comparison principle, as stated at the end of Theorem 5.5:
if up < g a.e. and f < f a.e. in @, then (up — ug)+ = 0 a.e., then by estimate
(6.1) it follows that (u(t) —u(t))+ = 0 a.e., hence, u(t) < u(t) a.e.

(3) The following is an important observation for the theory of the PME and
related equations: the proof of the L' contraction principle does not depend on
any particular properties of the nonlinearity ®(u). It works in the same way
whenever ® is a monotone function. This has made the L' estimate a key item
in the theory of the filtration equation u; = A®(u). On the contrary, similar
estimates for LP norms with p > 1 do not exist if the filtration equation is not
linear (i.e., unless we deal with the heat equation).

6.1.2  Limit solutions in the L' setting

The L' techniques are quite different in spirit from the energy estimates that
form the core of the previous chapter. We pursue here the exploitation of such
L' estimates to construct generalized solutions of a new type for more general
data.

Indeed, the continuous dependence in L' norm stated in Proposition 6.1
allows us to introduce a concept of solution of Problem HDP for data ug €
LY(Q) and f € L'(Q7). This is done by approximation with a sequence of
data (uon, fn) € Ly(Q) x L>®(Qr) such that ug, — up in L'(Q) and f, — f
in L'(Q7). We may even take as data for the approximations bounded or
continuous functions, since these subspaces are dense in L'. The limit is well
defined by virtue of estimate (6.1).

Definition 6.1 We call every such function a limit solution of Problem HDP
for the GPME. The class is denoted as LS.

We obtain the following result for limit solutions.

Theorem 6.2 Let ® be a monotone function as in Section 5.2. Then, for any
(ug, f) € L*(Q) x LY(Q7) there exists a unique u € C([0,00) : L*(Q)) that solves
problem HDP in the sense of limit solutions. The weak solutions of Theorem

5.7 are limit solutions. The map: (ug, f) — u is an ordered contraction from
LY(Q) x LY(Qr) into C([0,00) : L1(2)) in the sense that (6.1) holds.
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Proof Note that the last statement implies continuous dependence in L!
norms and means that the problem is well-posed in those spaces. We have to
prove that the limit is independent of the approximating sequence, and also that
it is continuous from [0, c0) into L(2).

(i) The independence of the approximating sequence is an easy consequence
of the L' dependence estimate.

(ii) For the proof of continuity, assume first that ug is continuous in Q and f
bounded. Then, the method of initial barriers presented in detail in Section
7.5.1 proves that u is continuous at ¢ = 0. Hence, for every € > 0 there is
a 7 >0 such that ||u(h) —u(0)|; <e if 0 <h < 7. By the L' stability
estimate

[ut +h) = u(@)lly < [lu(h) —w(0)]1 <&

for every ¢t > 0 and 0 < h < 7. It follows that u € C([0,T] : L*(Q)).
(iii) For any ug, we approximate with functions 4y, f as above and write, using
Proposition 6.1,
lu(r) = uolls < flu(r) = a(T)ll1 + |luo — ol + [|(7) —Uollx

o~

< 2[|ug — ol +/0 1£(s) = f(8)llr ds + [[u(r) = ol|1-

Therefore, as g — up and 7 | 0 we get u(7) — ug. This settles the conti-
nuity at ¢ = 0. To settle it at any other time ¢ > 0, we may displace the
origin of time and argue as before at the times ¢ and ¢ + 7. |

Abstract dynamics

We have arrived at an interesting concept, seeing solutions as continuous curves
moving around in an infinite-dimensional metric space X (here, the function
space L*(£2)). Viewing solutions as continuous curves in a general space is the
starting point of the abstract theory of differential equations, a way that we will
travel quite often. In the so-called abstract dynamics it is typical to forget the
variable = in the notation and look at the map t — u(t) € X, where u(t) is the
abbreviated form for u(-,?).

Remarks

(1) Note that the theorem allows to define the value u(t) of a limit solution (in
particular, of a weak solution) u at any time ¢ > 0 as a well-defined element of
LY(Q). Actually, in many cases, as when ® is superlinear and f is bounded, it is
an element of L™ (€2).

(2) If up and f are bounded the initial regularity is better. In that case the
initial data are taken in the LP sense: @(t) — @(0) in LP(Q2), for every p < oco.
We will see later that the solution u(z,t) is Holder continuous for all ¢ > 0; if
ug is continuous, then the convergence takes place uniformly in x as t — 0, see
Section 7.5.1.
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(3) Unfortunately, there are no equivalent L' estimates for the Dirichlet problem
with non-homogeneous data g # 0.

We end this subsection with a simple but very useful consequence.

Corollary 6.3 Let u be a limit solution with data ug € L*(Q) and f € LY(Q). If
ty >0, then u(x,t) = u(x,t + t1) is the limit solution with data to(x) = u(w,t;)
and forcing term f(x,t) = f(x,t +t1).

This important result is immediate for the approximations. We leave the details
to the reader.

Remark Let us note that any concept of limit solution depends on the type
of admissible approximations and on the functional setting in which limits are
taken. The definition we propose applies in the L! setting. If needed, these
solutions will be called L'-limit solutions. For an extension see Section 6.6.

6.2 Theory of very weak solutions

The continuous dependence with respect to the L' norm is a powerful property.
It has allowed us to extend the existence result for weak solutions of the preceding
section and consider as data any non-negative function ug € L*(f2) at the price
of introducing the concept of limit solution, a function u € C([0,00) : L(2))
with u(0) = uo that is obtained as limit of weak energy solutions.

However, an important question remains: Is the limit solution itself a weak
solution according to Definition 5.4% It turns out that in general we lose the
control on V®(u), which is important in giving a sense to identity (5.7). So, we
are left with the problem of relating limit solutions to some weaker theory of
solutions. Uniquely identifying the limit solutions as weak solutions in a certain
sense is not an easy task. Though the text is not primarily intended to discuss
the full theory of the GPME, we will explore in the sequel some aspects of the
use of alternative theories of weak solutions to describe limit solutions.

We consider here the concept of very weak solution that was introduced in
Definition 5.2 as a possible alternative to build a theory of generalized solutions.
We recall that a very weak solution is a distribution solution with certain
integrable derivatives. We apply the definition of very weak solution to the
general Dirichlet problem with boundary data ®(u) = g on Y7 as follows.! We
assume that ug, f and g are integrable functions in their respective domains.

Definition 6.2 An integrable function u defined in Q1 is said to be a very weak
solution of Problem (5.52)—(5.54) if

(1) U, (I)(u) € Ll(QT);

LAs before, B = 00 x [0, T) is the lateral boundary with measure dSdt; v is the outer normal
vector field.
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(ii) the identity

/ {®(u) An +un+ fn} d:cdt—!—/uo(:v)n(z,O)d:c: /g(z,t)&/ﬁ(x,t)det

Qr Q S
(6.3)

holds for any function n € C*Y(Q) which vanishes on Xt and fort = T.

As an extension of the definition, if u satisfies a modified condition (ii) with
inequality < (instead of equality) for every test function 7 > 0, then we call it a
very weak supersolution; if the same happens with inequalities > 0, then u is a
very weak subsolution of the GPME.

We see that the present concept generalizes the work done so far.

Example 6.1 Let ® be a good nonlinearity in the sense of Section 3.2, let
us assume that the data f,g,ug are smooth, and let us define a classical
supersolution as a C?! smooth function u such that

{ut > A®(u) + f in Qr,

u>g on Y. (6.4)

Then u is a supersolution in the present sense. The proof only needs a convenient
integration by parts justified by the regularity we have. The same applies to
classical subsolutions.

Proposition 6.4 The weak solution in the sense of Definitions 5.4 and 5.5 is a
very weak solution in the present sense. All limit solutions of the homogeneous
Dirichlet problem constructed in Subsection 6.1.2 are also very weak solutions.

Proof The two first statements are clear by integration by parts. For the
limit solutions, assume first the situation applied to a classical solution. Then,
equation (6.3) holds. For limit solutions we perform a passage to the limit. The
control of the L' (Q) norm of u is guaranteed by the L' stability estimate. As for
the control of the approximations ®(u,) in L'(Q), we need a further estimate
that we will develop in Section 6.6. It is as follows: according to formula (6.27),
for any pair of approximating solutions

/ [ty — U | () d + / |P(up,) — P(up,)| dxdt

t
< n - m d n — Jm d d . 65
< [ @) —wn@lc@ e+ [ [ 15,0 = a0 ) daat. 65)
where ( is the unique solution of the problem

AC(= -1 in €, (=0 on0N.
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This means that ®(u,,) converges in L*(Qr). By the monotonicity of ®, the limit
is ®(u) a.e. [ |

Alternative definitions

There are equivalent definitions of weak and very weak solution where integration
in time is done in an interval [t1,¢s] with 0 < ¢; < t5 < T and the values at the
end-times ¢; and ty enter the definition. These versions appear often in the
literature. We refer to Problems 6.3 and 6.4 for that interesting issue.

6.2.1 Uniqueness of very weak solutions

As commented above, the introduction of generalized solutions poses two related
problems, first the problem of recognizing them as such when a candidate is
given, then the problem of uniqueness of such objects. While the first problem
leads naturally to the desire to relax the conditions in the definition of solution,
the second is obviously easier if the definition of solution is stricter. Therefore,
very weak solutions are likely to have a problem with uniqueness.

We present next a quite general uniqueness result for very weak solutions that
imposes however some mild assumption on the integrability of the solutions. The
main idea is solving a dual problem.

Theorem 6.5 Let €2 be a bounded domain with smooth boundary. Let u; be a
very weak subsolution of the GPME defined in Qr for data w1, f1,91, and let
ug be a very weak supersolution for data ugz, f2,go. Assume moreover that both
satisfy u;, ®(u;) € L*(Qr). If the data are ordered, ug; < uge a.e., f1 < fa a.e.,
and g1 < g2, then uy < us in Q.

Proof (i) We write the weak inequalities satisfied by u; and ug with respect
to a test function ¢ € C’S’Q (Qr). We subtract to get

0< /S {(u1 —u2)pr + (P(u1) — D(u2)) A} ddt.

We now write u = u; — ug. Defining

P(u1) — P(uz)

a(z,t) = F—

where u; #Zwus and a(z,t) =0 if u; =wuy, we may write ®(uj)— P(uz) =
a(x,t)u(z,t) for a measurable function a > 0.

(ii) The next step is choosing a smooth test function 6(z,t) > 0 compactly
supported in Q7 and solving the inverse-time problem

o+ a:Ap+60=0 in Qr,
=0 on X, (6.6)
oz, T)=0 for x € Q,

where a. is a smooth approximation of a such that ¢ < a. < K. Note that this
is a correct parabolic problem if we define a new time as t' =T — ¢ (i.e., inverse
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time). Therefore, it has a smooth solution ¢ > 0. We then get for the difference
u = u; — ug the estimate:

// w6 dadt < // lulla — ac||A¢| dzdt = J. (6.7)
T Qr

In view of the estimates that follow, we write the last term as

J< (// aE(Acp)Qda:dt)l/z (//"‘ZL:‘EPWFth)UQ. (6.8)

(iii) We need an a priori estimate for the term with Ag. We multiply the equation
satisfied by ¢ by (Ap where 1/2 < ((t) <1 is a smooth and positive function
for 0 <t < T with {; > ¢ > 0. Integrating gives

// cpt(Ag)dxdt+// Ca:(Ap)? dxdt+// COAp dzdt = 0.

Integrating the first term by parts, using that ¢(z,T) = 0, gives

1
/ CorAp drdt = 7// (V- Vo, dedt > 5/ |Vo|? ¢ ddt.

It follows that

%//|Vg0\2<tdzdt+//CaE(Aga)Zd:Edt§ //c(va-vgp)dzdt.

In view of the assumptions on (, a very easy application of Hélder’s inequality
gives the desired estimate in the form

// aE|A<p|2d:cdt+//|Vg0|2dxdt§C’// |VO|? dzdt.
T T

This estimate allows to return to (6.7), (6.8) and get

a—acl? 2\
ufdzdt < C||VE|2 TM dxdt . (6.9)

(iv) At this stage we have to examine the way we construct the approximation
so that the latter quantity goes to zero as ¢ — 0, and the process is independent
of 8. We do it like this: given € > 0 we select two height K > e > 0 and define
ak . = min{K, max{e,a}} (we will be taking K very large and ¢ very small).
We take smooth approximations a, — ax . in LP for all p < co. Then, we have

// la — an|*|ul? dzdt < 2/ lag.c — an|?|ul? dedt

+2 //((a — K) 4 +¢)?|u)? dadt.
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Call the last integrals I; and I5. The latter integrand is pointwise bounded by
2|uf®(a® + %) = 2(®(u1) — ®(u2))* + 2¢%[ul?,

where y(a > k) is the characteristic function of the indicated set. Therefore,
using the square integrability of ®(u;) and u;, we may take K large enough so
that Iy < (1/2)Ce?. Choosing now n = n(e, K) large enough we also get I; <
Ce?/2. Then,

/ la — an|?|ul? dedt < Ce?.
Since a,, > €, we get in the end from (6.9) an estimate of the form

// wfdzdt < Ce'/?|Vo||s.

T

Finally, since € > 0 was independent of 6, we conclude that

// uldxdt <0.
QT

By the arbitrary choice of the smooth test function 8 > 0, we get v < 0 a.e. in
Qr. [ |

The same line of proof can be used to treat the cases where the data ug and
f are not ordered. We get the L' dependence in another way.

Theorem 6.6 Let 2 be a bounded domain with smooth boundary. Let u; be a
very weak subsolution of the GPME defined in Qr for data uoi, f1,91, and let
us be a very weak supersolution for data wugs, fo,gs. Assume that both satisfy
ui, ®(u;) € L*(Qr). Then, if g1 < ga, we have for every ty € (0,T):

to
/(ul(x,to) —ug(x,tg))+ dx §/ (uo1 () — wp2(x))+ dz —|—/ / f1— f2)4dadt.
Q Q
(6.10)
Proof We repeat the proof, but taking now into account the differences ug; —

ug2 and fi — fo that now do not disappear since they do not have a definite sign.
In the end we get the inequality

// (u1 — ug) O dadt < M/ (uo1(x) — up2(x))+ o(x,0)dx
Qr Q

[ [ - P nat, (6.11)

where M is a uniform limit of the functions ®(z,t) used in the preceeding proof.

Now, we choose 8 = ¢(z)p(t — tg) with 0 < ¢ < 1 and p, a standard smooth-
ing kernel in one variable. By the maximum principle, we find that ¢ is bounded
by a function C(t) with C(T) =0, C'(t) = —p(t — to), which tends to the
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characteristic function xo 4, (t). Hence, writing wic (z, to) = [ ui(x,t)p(t — to) dt
we have

/ (ure (i o) — tuze (i, t0)) () d < / (01 () — oz (2)) 4 da
Q

Q

+/0t0+6/g(f1 — fa)4dxdt.

Passing to the limit ¢ — 0 we get the inequality. |

Corollary 6.7 Very weak solutions of Problem HDP for the GPME defined in
Qr and such that u, ®(u) € L?>(Qr) are uniquely determined by their data. They
coincide therefore with the limit solutions. They are weak solutions if they also
meet the conditions of Theorem 5.7 on the data.

6.2.2  Traces of very weak solutions

The definition of very weak solution allows us to identify the value of the solution
u at almost every time ¢ € (0,T) as a function u(t) € L*(£2). But we would like to
have a definite value at all times. This is possible with some extra work thanks
to the theory of traces, that we start here. The result holds for a local very
weak solution of the GPME u; = A®(u) + f in Qr = Q x (0,7T), in the sense
that w € L1(0,T : LL _(2)) and Definition 6.2 holds for every n € C?1(Q,) which

loc

vanishes for t = T and near Yr; also, f € L*(0,T : LL (Q)).

loc

Theorem 6.8 Let u be a local very weak solution of the GPME in the above
sense. Then, for every t > 0 there exists a distribution u(t) such that

lim [ wu(z,s)n(x)dr = (u(t),n) (6.12)

s—t Rd

holds for all test functions n € CZ(Q). Moreover, for a.e. t u(t) is a measure with
density w: du(t) = u(x,t)dx. If u > 0, then u(t) is a Radon measure.

Proof (i) Take a test function p(z) € C°(Q) and define the function

L(t) = /Q w(z, (@) da, (6.13)

which is a locally integrable function of ¢ € (0,T), well-defined for a.e. t. We
want to define L, (t) for all ¢t. In order to do that, we use a test function of the
form n(x,t) = ¢(z)0(t) in the definition of very weak solution to get

—/ Lw(t)atﬁdt://{fb(u) Ap(z) + fo(z)}0(t) dzdt. (6.14)
’ Qr

Now take 0 <3 <t <ty < T, take a test function () > 0 such that 6(¢) =0
for 0 <t<t; and to <t <T, but 6(t) =1 for t; + h <t <ty — k. Then, pass

to the limit as h, k — 0 to obtain the function §(¢) = 1 for ¢; <t < to, and zero
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otherwise. Due to the local integrability of f and ®(u), the limit in the right-
hand side exists for every 0 < t; < t < t9 < T. Taking limits in the left-hand side
we have

Lo(ts) — Lo(t)) = /t : /Q (®(w) Ap + fo} dudt (6.15)

for a.e. t € [0,T); let us call this set of times 7, the Lebesgue points of L.
But the right-hand side makes sense for all 0 < t1,to < T, and it is in fact a
continuous function of ¢1,t,. Taking ¢, fixed in 7, and ty; — t with ty; € 7, we
may use the formula

X0 = Lot + [ [ (0 Apla) + fe@}dsat (610

as a definition of L, (t) for all 0 <t < T. It is easy to see that the limit is
independent of ¢;. Since it is finite for all p € CZ(Q2), we conclude that there is
a linear functional on the set of functions CZ(2), a distribution u(t), such that

, dim A u(z, t1)p(x) dr = (u(t), ¢). (6.17)
The limit has been taken as t; Tt but it is easy to see that the limit as ¢1 | ¢
gives the same value. This formula is the definition of the trace of u at time ¢.
We recall that for a.e. time ¢ the trace is the value of u(t); usually, we simply
write u(t) for the trace by abuse of notation. In that notation we can write the
definition of very weak solution in the equivalent form

/{u(m,tg)n(x,tg) —u(x,ty)n(x,t)}de = // {®(u) Anp + un + fn} dadt
Q QX (t1,t2) (6.18)

for all 0 < t; <ty < T and all test functions n € C*1(Qr) which are compactly
supported in the space variable (uniformly in time).

(ii) Some properties of the family u(t) are immediate. Thus, equation (6.16)
implies that

u(tg)—u(tl):A/t?¢>(u)dt+/t2fdt (6.19)

in the sense of distributions, D’(Q2). Usually, u is a function, but it need not be
in general. A sufficient condition is: if uw € L2 (0,7 : L{, (Q)) with 1 < p < o0,

loc
then wu(t) € LY () for all ¢. [ |

We will make much use of traces in Chapter 13. We point out that the set of
test functions that enter into formula (6.12) is C3(€2).
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6.3 Problems in different domains

An interesting application of the preceding ideas happens when we consider the
solutions of Problem HDP in two different domains Q7 C Q2 € R%. On the one
hand, we can compare the solution of the problem posed in Q2 = Qs x (0,7)
with data g2, fo, with the solution u; of the problem posed in Q1 = Q4 x (0,7)
with initial data ug1, f1, if we know that ug > 0.

Proposition 6.9 Let uy be the energy weak (or limit) solution of the HDP posed
i Q1 with data ugy, f1 and let ug be the solution of the HDP posed in Qo with
data uoz, fa. Ifug >0 in Qa, ue1(z) < uga(x) for x € Qq, and f1(z,t) < fa(z,t)
mn @1, then

ui(x,t) <wug(x,t) for every (z,t) € Q1. (6.20)

The proof relies on noting that we can easily take the approximations ug ,, to
solution ug in such a way that ug ,,(x,t) > u; ,, on the parabolic boundary of Q1,
where u,, are the approximations to solution u;. Since the equation satisfied
in @7 is the same but for the forcing term, the maximum principle implies that
U.n(x,t) > u1 p(x,t) in Q1. Note that a similar result holds if ug < 0 if we change
all the inequalities.

On the other hand, we have a continuity result with respect to the domain.

Proposition 6.10 Let Q, a non-decreasing (resp. non-increasing) family of
bounded domains with Lipschitz continuous boundary and let Q be a domain
with the same regularity. We assume that Q =J, Q, (resp., @ =, Q). Let
up, be the weak (or limit) solution of the HDP in Q, with data (uon, fn), and
let u be the weak (or limit) solution of the HDP in §,, with data (uo, f). Under
the assumption that ug , — ug and f, — f in L', we have u, — u in the same
norm.

The convergence of the data is understood in the sense that we extend the data
and solutions by 0 for « & Q,, resp. z & €2, and then we assume that ug, — o
in L}(RY) and f, — f in LY(R? x (0,7)).

Proof (i) Assume first that the family €2, is increasing. We will need a metric
fact: the boundary of €, tends to 0f) in the sense that

dp, = max{d(z,09) : x € 00, }

tends to zero as n — co. We leave to the reader to check that fact.

Assume to begin with that all the data are uniformly bounded, so that the
solutions are too. Then, with the notation of Theorem 5.7, the estimates on
V. ®(u,) and 0;Z(u,) are uniform locally in R? x (0,T), so that we can pass
to the limit and obtain a bounded function wu(z,t) with convergence a.e. in
Q x (0,T). The energy estimate passes to the limit and we obtain ®(u,) —
®(u) weakly in L2(0,T : H'(R?)). We now observe that since the support of all
functions ®(u,) is contained in Q, the limit takes place in L2(0,T : H}(12)).
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In order to check that the equation is satisfied we try to pass to the limit
in the weak formulation of the solution w, (given in formula (5.4)) for a test
function 7 as in the definition and with compact support in space. Since d,, — 0,
such a function is also an admissible test function for u,, when n is large enough.
The weak convergences allow us to pass to the limit and show that u is a solution
in  x (0,7T) with the correct data.

(ii) We consider now the case where the family €, is decreasing under the same
boundedness assumptions on the data. The same argument shows that u, — u
and ®(u,) — ®(u) weakly and a.e. in  x (0,7T). The weak formulation of the
equation is now immediately satisfied. We have to justify that ®(u(t)) € HJ ()
for a.e. t and this follows from the fact that the support of ®(u,,) is contained
in €,, x [0, 7] and the relation between €,, and {2 appearing in the statement.

(iii) Under any of the monotonicity assumptions on €, if the data are general
and converge in L*(R%), L*(R¢ x (0,T)) resp., we use the L' stability to conclude
the result for limit solutions. |

We continue the study of the relation between the concept of solution in
different nested domains in Problem 6.9.

6.4 Limit solutions build a semigroup

Let us now pay attention to the functional properties of the class of solutions
generated by the GPME with f = g¢ = 0. In that situation, and as we have
pointed out, if u(z, t) is a limit solution with data ug(x) and 7 > 0, then v(z,t) =
u(z,t + 7) is the solution corresponding to data vg(x) = u(x, 7). This allows us
to show that the definition generates a very interesting functional object, a
semigroup of contractions.

Definition 6.3 (Semigroup) Let S, t > 0, be a family of maps of a metric space
(E,d) into itself. It is called a semigroup if the following conditions hold

(i) So is the identity map;
(ii) for every t,s > 0 we have

Ss+t = St o SS.
In case we have
(iii)
lim Syx = x
t—0
for every x € E, we say that Sy is a strongly continuous semigroup, also known
as a Cy semigroup.

Notice that in the usual notation S;, the subscript ¢ does not indicate partial
derivative. In order to avoid confusions we favour the notation S(t)z, but the
standard notation is as it is.
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There are different classes of semigroups considered in the literature. Thus, in
the quite developed linear theory, the metric space is a normed space, or better a
Banach space, and the maps: ug — u(t) = Siug are linear transformations in the
linear space. It is called a linear semigroup. But the theory of nonlinear operators
can dispense with that requirement, and F is quite often a closed convex subset
of a Banach space of functions. The denomination nonlinear semigroup refers to
the general theory and includes in practice all semigroups, linear or not.

Semigroups as a language. Types of semigroups

This is not a book about semigroups. We rather think of semigroup theory as
a convenient and motivating language in which our problems can be seen from
a global point of view, which may also add some intuitions. Thus, a theory
of existence and uniqueness is called existence of a semigroup, construction by
approximation is seen as convergence of semigroups, a theory with comparison is
termed an ordered semigroup, and the universal bound gives rise to a universally
bounded semigroup.

Some questions are easier to understand in this new language. Thus, we
will be interested in knowing whether our weak solutions are indeed bounded,
or classical solutions, or at least continuous functions, or belong to a compact
class. This translates in terms of classes of semigroups.

Definition 6.4 A semigroup acting on a metric space E is called bounded if
it maps bounded sets K C E into bounded sets for every t > 0. If the bound of
S¢(K) is uniform for all t > 0, then we say that it is uniformly bounded.

It is called contractive if Sy satisfies

d(Sex, Siy) < d(z,y).

We also say that it is a semigroup of contractions. Actually, the more accurate
term should be non-expansive, and contractive should be reserved for the case
d(Siz, Sry) < d(z,y), but the usual language in PDEs is as described.

A semigroup is called reqularizing, or smoothing, if it maps the space into a
subspace F' of smoother functions.

A semigroup is called compact if it maps bounded subsets of E into compact
subsets for every t > 0.

The reference semigroups in diffusion theory are the ones generated by the
heat equation. As is well known, all the above properties apply in the case of
the HDP in a bounded domain. See Problem 6.4.

The GPME semigroup

Let us go back to the GPME with zero forcing term f = 0. We consider as linear
space X = L'(Q), and as a special convex set

E=0L'"();={geLl'(Q):g9g>0ae}.



140 Dirichlet problem IT

We define the maps Sy : X — X or Sy : E — E by
St(ug) = u(t), (6.21)

where ug € F and u(t) is the limit solution of the HDP for the PME. We have
proved the following result.

Theorem 6.11 The maps S; define a continuous semigroup of contractions in
X = LY(Q), and S; preserves E. The semigroup is uniformly bounded. If ® is
superlinear, it is regularizing into L ().

Note that the semigroup property is equivalent to checking that, given a
solution u = u(t) with initial data ug and given a time s > 0, the solution with
initial data u(s) is

v(t) = u(s + t).

In other words, it is an existence and uniqueness theorem. At times we will refer
to the contractions as L' contractions to make clear what is the norm used in
the statement.

We will prove in the next chapter that bounded solutions are indeed C¢
functions for some « € (0,1). In other words, we will prove that our semigroup
regularizes from L'(Q) into C%(£2). The same idea proves that the semigroup
is compact. This property is important for many applications, for instance in
the study of asymptotic behaviour.

6.5 Weak solutions with bounded forcing

We have extended the class of weak energy solutions into a larger class, the limit
solutions, and we have mentioned that this new class enjoys the properties of
well-posedness but lacks a good characterization as solutions of the equation. The
characterization of limit solutions can be done by slightly modifying the concept
of weak solution under some restriction on the forcing data. Recall that f =0
is a current assumption anyway in the applications. Here, we admit bounded f.
We also assume that @ is superlinear as in Theorem 5.17.

It happens that, thanks to the universal bound, in passing to the limit n — oo
in the sequence u, considered in Section 6.1.2 and checking that w is a weak
solution, we encounter difficulties near ¢ = 0. In general, u does not satisfy
the condition ®(u) € L%(0,00 : H}(2)), which is important in giving a sense
to identity (5.7), therefore we must change our definition of weak solution.

A convenient modification of the definition of weak solution to circumvent
that difficulty and deal with solutions with L' data is as follows.

Definition 6.5 A non-negative function u € C([0,00) : L*(Q2)) is said to be a
weak solution of Problem (5.1)—(5.3) if
(i) ®(u) € L?

loc

(0,00 : Hy(92));
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(ii) w satisfies the identity

/ {VO(u) - Vn—un — fn}dxdt =0 (6.22)
Q

for any function n € C}(Q) which vanishes everywhere for 0 <t <t for
some T > 0.
(iii) u(0) = uo.

Note that ®(u) € L (0,00 : H}(2)) means that ®(u) € L3(,T : H}(S2)) for
every 0 < 7 < T < oo, but not necessarily for 7 = 0. We immediately see that
a weak solution in the sense of Definition 5.4 is also a weak solution in the
present sense if we can ensure that it belongs to the class C([0, 00) : L}(Q)). We
will come back to the relation between both definitions. Let us for the moment
denote both concepts of solution, old and new, as weak-1 and weak-2.

Theorem 6.12 Let us assume that ® is superlinear and f is bounded. Then,
there exists a unique weak-2 solution of Problem (5.1)—(5.3) with given initial
data ug € L*(Q). The comparison principle, the contraction principle, and the
universal sup bound hold for this class of weak solutions.

Proof (i) FEuxistence. We construct approximations w, as indicated in
Section 6.1.2 and pass to the limit using the L°° estimate derived in Proposition
5.17, and the L' estimates of Propositions 3.5 and 6.1, plus the energy estimate
(5.20), (5.39). The limit solution is a weak-2 solution, and the reader is asked to
carefully verify the details.

(ii) Uniqueness. It relies on a rather tricky way of reducing the problem to the old
uniqueness proof plus stability estimates. Let uy,us be weak-2 solutions of the
problem with same initial data ug. By the continuity assumption, given ¢ > 0,
there exists 7 > 0 such that [Jui(t) — uol|1, |Jue(t) — uol|1 < e for 0 <t < 7.

Consider now the functions w;(z,t) = u;(z,t + 7), i = 1,2. Function w; sat-
isfies the assumptions of Proposition 5.1, hence it is a weak-1 solution of the
same problem with initial data u;(xz,7) (see also Problem 6.3). On the other
hand, the assumption ®(u) € L2 (0,00 : H}(Q)) implies that for a.e. 7> 0,
®(u;(7)) € L2(Q); since ¥(u) < |®(u)u| < C|®(u)|?, for such a 7 the weak-1
solution ;(t) satisfies all the conclusions of Theorem 5.7, and also the L!
dependence of Proposition 6.1. We thus get for t > 7,

[ua(t) = ua (Bl = [[@a (t = 7) = Ua(t = 7)1
< [[a1(0) — u2(0)[lx
= |lu1(7) —ua(7) |1 <e.

We may now let ,7 — 0 to get ui(t) = uz(t) a.e. for every ¢ > 0.
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(iii) The validity of the sup bound (Proposition 5.17), the contraction principle
(Proposition 3.5), and the comparison principle are just a consequence of the
limit process. ]

Eliminating the restriction of superlinearity

The assumption of superlinearity of ® is used to ensure the existence of a
universal L*° bound for the weak-1 solutions, which is used to prove that
uy(x,t) = u(x,t +7) is a weak-1 solution for 7 > 0, hence V®(u) € L?(r,T :
L2(Q).

It is to be noted that any L> bound depending on the initial L' or L? norm
will do the job:

(i) We show in Section 7.7 that in one space dimension weak solutions are auto-
matically bounded for t > 7 > 0. Hence, the assumption of superlinearity
on ® is not needed in that case.

(ii) Bounds can be obtained under much less stringent conditions on ®, like the
one found by Bénilan and Berger [84] for d > 3:

o0
/ B(s)" V=2 s < o0,
1

and a similar growth condition as s — —oo. This condition is always implied
by our standing assumption |®(u)| > c|u|. Their bound for |u(t)| depends
on ® and |lug||;. They put f = 0 and the proof is based on symmetrization
techniques.

Therefore, Theorem 6.12 is true under such assumptions.

6.5.1 Relating the concepts of solution

We have been led to introduce two concepts of weak solution for the same initial
and boundary value problem in Definitions 5.4 and 6.5. This is a bad situation,
so we need to establish the relationship between both definitions and make a
choice if possible. Fortunately for us, the relationship turns out to be clear and
easy.

Theorem 6.13 Under the above assumptions on ® and f, if ug € Ly (Q), the
concepts of weak-1 energy solution and weak-2 solution are equivalent. If ug €
LY(Q), the limit solution is a weak-2 solution.

Proof (i) If u is a weak-1 solution and uy € Ly (), then it is also a weak-2
solution. Indeed, we have proved the continuity of the solution curve in Theorem
6.2. This part does not need any assumption on .

(ii) Suppose on the converse that u is a weak-2 solution and ug € Ly (Q). By
uniqueness, it must be the weak-1 solution constructed in Theorem 5.5. |

Both definitions have advantages, though Definition 6.5 seems to have the
upper hand since it is an extension. It also has the advantage over Definition 5.4
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that the comparison, boundedness and stability results proved in the last and
this chapter are immediately seen to hold for all solutions with data in the larger
class. We have started with the historical Definition 5.4 essentially because it
has an easy uniqueness proof.

In comparison with the concept of limit solution, that has the advantage of
a wider application, weak-2 solutions are easier to recognize by means of their
characterization.

We can also prove that very weak solutions are weak solutions in some cases.
Here is a first result in that direction. We use the notation @* = Q x (7, 7).

Proposition 6.14 Let u be a very weak solution of Problem HDP for the GPME
and assume that u € C([0,T] : L(Q)), ®(u) € L*(Q*) and f € LP(Q*) with p
large as before. Then, u is the weak solution for positive times t > 7 > 0.

This type of condition will be met quite often in the future.

6.6 More general initial data. The case L};

In this section we extend the existence theory to data in the class of locally
integrable functions that are allowed to diverge mildly at the boundary, since
this more general setting fits nicely with the basic concept of L'-stability. In
order to develop such results, we have to introduce new estimates that are of
interest in themselves. For simplicity we assume here that Q has a C?*t® regular
boundary.

We need some notation: we denote by LF(Q) = LP(;6(x)dx) the class of
functions f € LY (2) such that

loc
/If(x)l 6(z)dx < oo, (6.23)

where 6(z) = d(z,08) is the distance from a point z € Q to the boundary 0.
Besides, let ¢ be the unique solution of the problem

A(=-1 inQ, ¢=0 on 0. (6.24)

It is known that ¢ € C*°(£2), ¢ > 0 in §, and whenever 9 € C?, then ((x) is C?
up to the boundary and behaves like d(x) in the sense that there exist constants
c1,co > 0 such that

c16(x) < ((z) < c26(x)
in a neighbourhood of the boundary.

Theorem 6.15 For every ug € L}(Q) and f € L*(0,T : Ly () there exists a
unique function w € C([0,00) : L} () which is a limit solution of the HDP for
the GPME in the sense that it is obtained by approzimation with weak solutions.
We also have

/ u(z, t)C(z) dz + / / ®(u) dadt = / o ()¢ () da + / fCdzdt,  (6.25)
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and
/|u(x,t)|§(x) do +//|<I>(u)|d:vdt g/|u0(x)\g(x) do +/ \FIC dzdt.  (6.26)

Moreover, the comparison principle holds for these solutions: if u,u are two such
solutions with initial data ug, Uy € Ly (), and up < ug a.e. in Q, f < f a.e. in
Q, then u < u a.e. in Q. More precisely, for any two solutions we have

/(u — )4 C(x) dz + //(cb(u) — &(a)). dwdt

< / (o (&) — o (2)) 4 C (&) dz + / / (f(at) — Flar 0)) ¢ () derd

Proof The proof should be easy after the developments of Chapter 5 and
Section 6.1.2 once the new contraction inequality given by formula (6.27) is
proved. We call such inequality the weighted contraction principle.

(6.27)

(1) Let us indicate the calculations to obtain formula (6.27) for smooth solutions.
Let p € C1(R) N L*(R) be such that p(s) = 0 for s < 0, p’(s) > 0 for s > 0 and

0<p<1,andlet j(r) = [p(s)ds be a primitive of p. We subtract the equation
0

for both solutions, multiply by p(w)¢ with w = ®(u1) — ®(us), and integrate by
parts to get

/ (ulz, t) — (@, £))p(w)C(x) d

-~

— ~ [Fw)Vulcds~ [ pw)VoTcds+ [ (7~ Pptw)c da.

Dropping the negative term and integrating the next one, we get

/ (ula, ) — (e £))p(w)C(z) do < / j(w) ACdr + / (f — Pplw)C de.

We now let p tend to the function sign-plus and integrate in time. See a more
detailed similar proof in Lemma 9.1.

(ii) We can now construct the limit solution by first approximating uy and f
with sequences of bounded functions ug, and f, that converge resp. to ug in
Li(Q) and to f in L*(0,T : L}(2)). If u, is the sequence of solutions of the
approximate problems, estimate (6.27) implies that

up —u in L*(0,T : LE(Q)),
P(u,) — v in LY(0,T : L' ().
By taking subsequences we may assume that the convergence takes place almost

everywhere. It is then clear that v(z,t) = ®(u(x,t)) a.e.

(iii) The weighted contraction principle implies that all smooth approximations
of this kind produce the same limit. It is also easy to prove that the weak energy
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solutions of the preceding chapter and the limit solutions of previous sections are
particular cases of these solutions. Finally, we can use the data of such cases as
approximations in the construction and still get the same limit. We leave these
details to the reader as a training exercise.

(iv) The proof of the fact that u € C(]0,00) : L}(€)) copies the proof done in the
previous sections for the L' case. We can be interested in the way the equation is
satisfied since the energy inequality does not necessarily make sense as a relation
between finite quantities. This topic will be further investigated in the next
section. |

Note that for a.e. 7 > 0 we have ®(u(r)) € L'(Q); when ®(s) has superlinear
or linear growth as (s) — oo we then have u(7) € L'(Q2) and the standard theory
of L'-limit solutions applies for ¢ > 7.

The solutions also enjoy the rest of estimates of weak solutions, like the
energy estimate, once the origin of time is shifted a bit. If ® is superlinear and
f is bounded, the solutions also enjoy the universal bound (5.57).

It is also clear that when f = 0 we have

Theorem 6.16 The HDP for the PME generates an ordered contraction semi-
group in the space L'(Q; ¢ dx).

Remark Very weak solutions can be considered with data in the weighted spaces
L} as in the previous section. We leave the details as a problem.

6.7 More general initial data. The case H~!

This section is devoted to a still different extension of the class of data, namely
taking initial data in the space H~1(Q), dual of Hg(£2). The difficulty does not
lie now with the size but with the regularity: the data are not necessarily locally
integrable functions. We take as € a bounded subset of R? with I' = 9Q € C?+<.

6.7.1 Review of functional analysis

The space H = H1() is defined as the dual of the Hilbert space Hg(£2). It can
be identified as the space of distributions that can be written in the form

1 of,

f=/fo+ o,

1

for functions fy, f1,. .., fa € L*(Q). A key fact in the theory is the following: the
map A = —A is an isomorphism from H} () onto H 1 (£2). Let us call its inverse
G. For every f € H71(Q), F = Gf is the weak solution of equation AF = —f
with data F' =0 on I'. We define a dot product in H by means of the formula

(f1, f2)m = (G(f1), G(f2))mp = /VFl - VF, de, (6.28)
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where we write F; = G(f;). In this way, H becomes a Hilbert space and || ||z =
|G ()|l 2 - For more information, see [4, 373].

6.7.2 Basic identities

The basic calculations are better performed under the assumptions of
Section 3.2: ® : R +— R is C? smooth, ®(0) = 0, and ®'(u) > 0 for all s € R; ug
and f are bounded and continuous functions, and ug(z) = 0 for z € 9Q. Then u
is smooth and we have the following computations:

(i) We apply to all terms of the GPME the operator G acting on the space
functions for every fixed time ¢ to obtain the equation

Up=—®(u) + F, (6.29)
(ii) The important new computation concerns the H~! norms:

d d
Glully = G0 =2 [ VU -0 ds

:—2/AUUtd;v=—2/u@(u)dm+2/uFdx.

Since [uFdx = — [(AU)Fdx = [ VU -VFdx = (u, f)u, we get

t
0

%Hu(t)ni, +//u<1>(u) drdt = %nwuz +/ (u(s), £(s)) ds. (6.30)

Therefore, the norm ||u(t)||m stays bounded in any time interval with the
following precise bound

lu®)llar < Juollx + / 1£(3) e ds.

(iii) This computation can be improved into a computation for the difference of

two solutions wuy, us with data (w1, f1) and (ug2, f2) resp. We get
1d
3ol — el + 2 [ (w1~ ua) (@) — @(ua) do = (1~ ua, i fo.
(6.31)

Note that the second term has a non-negative integrand precisely because of the
assumption that ® is monotone non-decreasing. This implies the estimate

t
lur(t) — u2(O)llar < [Juor — uozllm +/O I f1(s) = fallm ds.

(iv) We now make use of the estimate on [[ u®(u)dzdt. Indeed, since

d(s®(s)) = sd®(s) + ®(s)ds > D(s)ds = d¥(s),
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we have U(s) < s®(s) for every s. Therefore, we have

// dxdt<//u<1> dxdt<C||uo|H+C</ 1£(s) ||Hds>2. (6.32)

This means that for a.e. 7> 0 we have [u(7)®(u(7))dz € L'(Q2) and we
enter into the energy calculations of weak energy solutions.

6.7.3  General setting. Existence of H™! solutions

Assume now that ® is a monotone function as introduced in Section 5.2. All of
the preceding estimates can be used together with a process of approximation
and passage to the limit in order to obtain the following result.

Theorem 6.17 For anyuy € H=*(Q) and f € L?>(0,T : H~1(Q)) there exists a
unique u € C([0,00) : H=*(Q)) obtained as limit of weak solutions of the HDP
with data (uon, frn) that approzimate (ug, f) in the indicated spaces. Moreover,

(i) for a.e. t >0, ®(u(t)) € L*(Q), and (6.32) holds;
(ii) u(t) — ug ast — 0 in the sense of H=1(Q);
(iii) the map: (uo, f) — u is a contraction from H~*(Q) x L*(0,T : H-*(Q))
into C([0,00) : H~Y(Q)).
Note that the weak solutions of Theorem 5.7 are particular cases of H !

solutions.

Case with no forcing. Time decay

It is interesting to discuss the special properties of these solutions when f = 0.
We immediately see that the norm Hu( )N decreases in time. If we combine this
with the already known fact that J(¢) = [ U(u(t)) dz is non-increasing in time,
we then get the estimate

[ty < Tuol. (6.33)

We also know from estimate (5.47) that [ |V®(u(x,T))|? dz is non-increasing in
time so that

/|V(I>(u(T))|2dx < (C/1) //\V@(U)Fdxdt.

In this way, and using (5.39) a second decay estimate is obtained:

C C
/|vq> NP de < — : /\Il(u(t/2))dw < t—2||u0||%{. (6.34)
We have the following result

Theorem 6.18 When f = 0 the solutions of Theorem 6.17 are weak solutions in
any interval t € (1,T), with 7 > 0 and the decay estimates (6.33) and (6.34) hold.
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The GPME generates a semigroup of contractions in H—1(Q). This semigroup
18 compact.

It is interesting to compare these decay estimates with the actual decay of
the Friendly Giant that we have constructed in the previous chapter. In the case
of the PME, the explicit formula (5.69) implies that

/ U(t)m+1 dr = O(t—m/(m—l))’ / |VUm|2 dr = O(t—Qm/(m—l))’
Q Q

which improve the exponents of the above a priori decay estimates for large t,
but are worse for small ¢t. We ask the reader to think about this fact.

Remark We will prove in the next section that in the case of the PME,
uy = A(|u]™ ), the solutions have better regularity; they are actually strong
solutions.

Notes

Section 6.1. In dealing with limit solutions we must bear in mind that since
the weak energy solutions are also constructed by an approximation method,
they can be justly called limit solutions. The point to be stressed in the new
class is that we lack at this moment a functional characterization of the set LS
as solutions in some weak or similar sense.

Stability is proved, though with respect to a different norm, L'. This reflects
the different type of estimate involved. The mixture of norms is typical of non-
linear problems. Actually, the new technique produces a new solution concept,
the limit solution.

Section 6.2. The duality proof of Theorem 6.5 is inspired in the proof by Kamin
for the Stefan Problem [318] and by Kalashnikov [313] who studied the case d = 1
of the GPME; the idea was used for the PME and d > 1 by Bénilan, Crandall
and Pierre [91]. See more uses in Chapters 12 and 13. The method of proof of
uniqueness theorem for evolutionary differential equations based on duality is
originally due to Holmgren, see [482, Chapter 5|, and was adapted by Oleinik
for nonlinear equations. Traces are treated in [191].

Section 6.4. The generation of semigroups by abstract nonlinear differential
equations was a main subject of research in the late 1960s and early 1970s.
A main reference is Crandall and Liggett’s [180]. We will study that aspect in
greater detail in Chapter 10.

Section 6.6. We have basically followed [88].

Section 6.7. The problem in H~! was investigated in the framework of the
theory of contractive semigroups in Hilbert spaces by Brezis [127, 128]. We will
study that theory in Chapter 10.
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Problems

Problem 6.1 Show that the construction of limit solutions can be performed
for boundary data g as in Theorem 5.14. Show that we can prove L! continuous
dependence on ug and f, but not on g.

Problem 6.2 Prove the statements of Theorem 6.8 in detail. In particular:

(i) Show that the definition of very weak solution can be written in the
equivalent form

/ {ule, t2)n(e, t2) —ulz, (e, )} do = / {®(u) g+ unet f} dads
Q Qx(t1,t2)
(6.35)

for all 0 <t; <ty <T and all test functions n € C**(Qr) which are
compactly supported in the space variable (uniformly in time).
(ii) Show that we have

u(ts) — u(ty) :A/2f1>(u) dt+/2fdt (6.36)

in the sense of distributions, D’(Q); the values of u(t) are the traces.

Problem 6.3 Prove that the following definition of weak solution is equivalent
to Definition 6.5 for the PME. The difference lies in the explicit occurrence of
the initial and end-values of the solution.

Definition 6.6 A non-negative function u € C(|0,00) : L*(Q)) is said to be a
weak solution of Problem (5.1)—(5.3) if

(i) ®(u) € L2 (0,00 : HY(Q));

loc

(ii) for every 0 < t1 < ta, u satisfies the identity

/ (V@) - Vi — un, ydadt = / w(z, ), ) do (6.37)
Q12 Q

- /u(x, to)n(x,tz) dx
Q

for any function n € CY(Q) that vanishes on the lateral boundary ¥ =
o0 x (O, OO),' here, ng =0 x (tl,tg),'
(iii) u(0) = uo.

Problem 6.4 Show that for the HE a semigroup of contractions is generated
in all spaces LP(R?), 1 < p < oo, and not only in L'(R?).
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Problem 6.5 CONTINUOUS DEPENDENCE ON ®. Prove that when ®, is smooth
and approximates ® then the solutions of the Dirichlet problem converge as
e —0.

Problem 6.6

(i) Develop the theory for general initial data of Section 6.6 for the GPME.
(ii) Construct very weak solutions with data in weighted spaces (i.e., L}).

Problem 6.7 Repeat the theory of weak-2 solutions of Section 6.5 for the
GPME u; = A®(u) + f when & satisfies the assumptions of [84] and f is
bounded.

Problem 6.8 Repeat the theory of weak-2 solutions for H ! initial data when
f # 0 but is still regular.

Problem 6.9 RESTRICTION OF NON-NEGATIVE SUPERSOLUTIONS.

(i) Let u be a non-negative very weak supersolution to the GPME posed in
a domain ; with zero boundary data (in the sense of Definition 6.2 and
subsequent comment). Let © be a domain strictly contained in ;. Show
that u is still a supersolution of the GPME posed in 2 with zero boundary
data.

(ii) Show that the result is not true if we replace supersolution by solution or
subsolution.

Hint: Part (ii) is easy by construction of examples. In part (i) we take the
definition of supersolution

/ {®(u) An + uny + fn} dzdt + /uo(x)n(x, 0)dz <0 (6.38)
Qr Q

for any non-negative function n € C?1(Q) which vanishes on ¥ and for t = T In
order to prove this result we proceed as follows. First, we extend 1 to 21 x (0, 7))
by putting u(x,t) = 0 when x # Q. We make convolution with a smooth kernel
pe > 0 to obtain a smooth function 7. that is acceptable as a test function for «
as a supersolution in @1 = Q1 x (0,7). Therefore, we have

I:= / {®(u) Ane + une ¢ + fne} dedt + /uo(m)ng(x,O)dx <0.
Q1 931

We now observe that 7., || are uniformly bounded for all € > 0 small, and
An, is uniformly bounded below (though not above near the boundary of 2
where An has a Dirac delta). We separate the integral in tree regions: the
interior region Q; where z € Q and d(z,09Q) > 1/n, the exterior Q. where
x € Oy \ Qand d(z,09) > 1/n and the neighbourhood of the boundary Qp where
d(z,00) < 1/n. Write integral I as I; + I. + I;. Prove that I, = 0 if € is small.
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Prove also that I, > —0 if € and 1/n are small (use the integrability of u and
®(u)). Conclude that I; < d. Take the limit to get the desired result.

Project® Extend as much as possible of the theory of this chapter to equations
of the form u; = A®(z,u).

Open problem Prove that any weak-1 solution in the sense of Definition 5.4 is
a very weak solution in the sense of Definition 6.2.

Are weak-1 solutions always limit solutions? Same question for weak-2
solutions.
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CONTINUITY OF LOCAL SOLUTIONS

In this chapter we address a main issue of the theory, namely, the continuity of
the solutions for times ¢ > 0. This is a necessary complement to the existence
results of the previous chapters. In view of its application to different problem
settings to appear later, the solutions are only assumed to be local solutions, i.e.,
weak solutions defined in a subdomain of space-time, and initial and boundary
conditions will not matter. Such solutions have arisen as solutions of the Dirichlet
problem, and they will appear in the sequel as solutions of the Cauchy problem,
the Neumann problem, or from other possibilities. The equation we treat in this
chapter is a generalized version of the GPME.

The question of continuity is introduced in Section 7.1. The precise problem
and conditions are stated in Section 7.2; the main result, Theorem 7.1, asserts
the uniform equicontinuity of bounded solutions with a definite modulus of
continuity that depends only on the bounds on the data and the structural
conditions of the equation. The proofs are organized in Sections 7.3 and 7.4.
The continuity result is a major fact of the theory, and the proof is rather long
and difficult.

The application to the weak solutions constructed in Chapter 5 and the
questions of initial and boundary regularity are discussed in Section 7.5.

Once continuity is proved, the natural question is to know how regular the
solutions of the PME and related equations are. A first step in that direction is
Holder continuity which is proved for the PME in Section 7.6.

A much simpler proof of continuity in the case of one space dimension is
presented in Section 7.7. It holds under weaker assumptions on the data and
equation. Holder continuity with explicit exponents is obtained.

The existence of classical positive solutions is briefly discussed in Section 7.8.

Continuity is a typical property of parabolic equations, linear or nonlinear,
and even degenerate equations like the PME enjoy this property. But there are
limits in the direction of so-called singular coefficients. Examples of those limits
will be given in the short Section 7.9.

This chapter covers the continuity questions that are relevant at this point
of the theory. The question of higher regularity will be taken up in earnest in
Chapter 19.

7.1 Continuity in several space dimensions

A typical result of the quasilinear elliptic and parabolic theories says that
bounded functions, or even functions in some Lebesgue space, say L?, that satisfy

152



Continuity in several space dimensions 153

in a weak sense an equation of such types (i.e., elliptic or parabolic) with certain
structural assumptions, are in fact Holder continuous with Holder exponents
and constants depending only on the L? norm of the solution and the bounds in
the structure assumptions. This is the content of the much celebrated regularity
results of De Giorgi, Nash and Moser in the late 1950s, cf. [201, 390, 396], and
they have been extended in the following decades to wide classes of equations,
first of linear type and then quasilinear.

The question is then posed to prove the continuity of weak solutions (or other
types of solutions) to nonlinear elliptic and parabolic equations of degenerate
type, under convenient assumptions on the data, coefficients and nonlinearities
of the problem.

The equation under consideration in this chapter is basically the GPME that
we will write according to the convention of papers that deal with the continuity
issue in the form

8B(v) = Av + f, (7.1)

after the change of variables v = ®(u), so that u = 3(v) where [ is the
inverse function of ®. Assuming that @ is strictly increasing with total range,
Im(®) =R, then =& ! is a monotone and continuous function defined
in R.

We will not need to deal with solutions of specific initial and boundary value
problems; our requirement is that the solutions will be defined in a space-time
domain; we will refer to them as local solutions. It is convenient to assume that
the domain is a parabolic cylinder of the form @ = Bgr(zg) x (t1,t2), or even
Q@ = Bgr(0) x (0,T), which implies no loss of generality in view of the local form
of our results and the invariance of the equations.

The type of solution on which the continuity estimates are proved in the
literature can be one of the weak types we have introduced. Now, we have seen
that in the GPME case the solutions of the HDP have been constructed as
limits of classical solutions. Taking that fact into account, and accepting for
the moment that this will be a rule in the future, a convenient approach to
deriving regularity results for general weak solutions is to show that a class
of classical solutions enjoy continuity estimates in the form of a modulus of
continuity that depends on constants or functions that are calculated only in
terms of integrals of the solution and the structure of the equation. We then
use such solutions to construct classical approximating sequences u, to the
weak solution u under consideration; the equicontinuity of u, with a certain
modulus will imply the continuity of u with the same modulus if we can show
that the estimates are uniform for the approximating sequence. This is a usual
approach in the field of PDEs; it was followed by Caffarelli and Evans in their
fundamental work on the Stefan problem [137], and used also by P. Sacks in
[461] to study the general filtration equation that covers the Stefan problem and
the PME.
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Notations

¢ We follow the notations of preceding chapters. For a measurable set £ C R?
or E C R¥! |E| or meas(E) denotes the Lebesgue measure. We will use
the notation {u > k} for the set of points in the domain of u where u > k.

e We need to recall the concept of modulus of continuity. It is a continuous
and non-decreasing real function w : R™ — R with w(0) = 0. A function
f is continuous with modulus w in a domain € if

[f(@) = f(@")] < w(lw - 2]) (7.2)

for every z,x’ € Q. A similar definition applies for functions u(zx, t) defined
in Q. Particular cases are w(s) = Cs, called Lipschitz continuity, and
w(s) = Cs* with 0 < a < 1, called Holder continuity. When

[t <=

we talk about Dini continuity.

¢ The equation and main computations will be performed on parabolic or
space-time cylinders. It will be convenient to use the so-called parabolic
scale in those cylinders. Thus, we will use the parabolic cylinders with
base at a point P(wzg,tp) € R4t defined as

Qr(P) = {(x,t): |z —x0| <R, to — R* <t < to}. (7.3)

These are the correct half-neighbourhoods where the estimates of the
parabolic theory are naturally performed. In stating the final continuity
conclusions we will use the full neighbourhoods

QRp(P) ={(x,t): |z —x0| <R, |t —to] < R*}. (7.4)

e The parabolic boundary of a cylinder @ = Q x (0,7 is the subset of 9Q
formed by the initial section and the lateral boundary,

2,Q=0x{0}Uux, ¥ =0Qx][0,T].
e We will use the functional space
Va(Qr) = L*(0,T : Hy(Q)) N L>(0,T : L*(Q)).

with norm given by

||UH%/2(QT) = sup /U(',t)2 dﬂC-l—// |Vu|? dadt.

0<t<T

We have a continuous embedding from this space into L2(4+2)/ 4(Qr) with
embedding constant depending only on d, cf. the textbook [357].
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* We denote by ¢, f(z) dz the average of an integral over a ball B = Bgr(xo),
ie.,

_i xT)ax x = W d
$ t@ds =z [ f@)de. Baao)| =k

The same notation applies to a cylinder

%ﬁ@ﬂWﬁZQ/AﬂmMMt

7.2 Problem, assumptions and result

Following Sacks [461] we consider a problem of the form
0:f(v) = Av + F(x,t,v). (7.5)
The following structural assumptions are made on the functions 8 and F"
® For every s # 0, 0 < 3'(s) < oo and [’ satisfies the following Property B:
there exist functions 0 < p1(8) < pe(8) defined in R™ such that
p1(8) < B'(s) < pe(8)  for every|s| >8> 0. (7.6)

Without loss of generality we may assume that g1 is monotone increasing
and o is monotone decreasing. We assume the normalization condition
B(0) =0, which entails no loss of generality. Moreover, we assume the
regularity 3 € C?(R), but this assumption will not affect the modulus of
continuity.

Property B implies that the equation is uniformly parabolic in regions
where v is not near zero. However, we point out that the nonlinearity 3(v)
is not supposed to have any good behaviour at v = 0. It may even have a
jump, as in the Stefan problem case, where

Bv) = cv + H(v),

H being the Heaviside function, H(v) = signg (v). In the PME case,

B(v) = [v]'/"sign(v)

which is not Lipschitz continuous at v = 0 if m > 1; at least it does not
degenerate near v = 0, 3'(v) is bounded below away from zero for v = 0.
We have in that case u(r) = (1/m)|r|~(™=1D/™ swhile p; depends on the
maximum of |v|, say, M: pu(r) = (1/m)M—(m=1/m,

e About F, following our line of thought, we assume that F € C'(Qr x R)
but that regularity will not affect the modulus of continuity. Practically,
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we may assume that it is a measurable function of its three arguments and
moreover, that it is bounded whenever v varies in a bounded interval

|F(x,t,v)] < Co(K) if |v| < K.
for some continuous function Cj.
Here is the main continuity result.

Theorem 7.1 Let v be a classical solution of equation (7.5) defined in the
cylinder @ = Bgr(0) x (0,T). Then, v is Holder continuous in every subdomain
Q' strictly contained in Q with a space-time modulus of continuity w that depends
only on

d, (), p2(), dist(Q',0,Q), and Cy, (7.7)
where Cy = max{|[v|[L=(@), 18()lL~(q): [F (- v)ll~@)}-

The modulus of continuity is usually written in the form
[v(z1,t1) — v(22,t2)] < Waata,@ (|21 — 2| + [t — tz\l/z),

for every pair of points (z;,t;) € @', i = 1,2. Note that the result asserts the
continuity of v = ®(u). In the PME this implies also the continuity of u = (v)
since 3 is continuous. But for cases like the Stefan Problem, the continuity of «
is not true.

Note also that the values taken by B and F for v > |[v][z~(g) or v <
—[Jv| ~(@) are not important for the result.

The next two sections will be devoted to the proof of this difficult result.
The main difficulty lies at the value v = 0, where the equation is not uniformly
parabolic. The difficult technical work will be concentrated in proving that near
a point P = (xo,t9) where v =0, we can find a shrinking family of parabolic
cylinders Qg, (P) where |v| < My, and My, R, — 0. Moreover, we will show that
the sequences My, Ry depend only on the data (7.7). This represents a uniform
modulus of continuity at every point where v vanishes.

The extension to the rest of the points is then comparatively easy, since the
equation is uniformly parabolic and for such equations the equicontinuity result is
known under quite general assumptions, both for divergence and non-divergence
equations, cf. [353, 357] respectively.

Qk

Figure 7.1: A schema of the cylinders.
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7.3 Lemmas controlling the size of v

In our first technical result, we assume that v < M in a cylinder Qr(P) C Qr
based at a point P = (zg,t), and prove that v > M/2 in the smaller cylinder
QRr/2(P) under a smallness condition on the integral average of M — v. This
introduces the first technical function related to the future modulus of continuity,
Hi.

Lemma 7.2 Assume that the hypotheses of Theorem 7.1 are satisfied. Then,
there exists a non-decreasing function Hy(r) defined for r > 0, with 0 < Hy(r) <
/2, and such that the conditions

(1) v <M in Qr(P) C Qr, with0 < M < C1; and
(i)

7{ (M —v)dxdt < Hy (M),
Qr(P)
imply that

v>M/2 in Qrs(P).

Proof We denote by C' different constants depending on d and C7, and write
Q(R) = Qr(P). We set w =M —v > 0in Q(R). It satisfies the equation

B'(M —w)w, = Aw — F(z,t; M — w).

Local energy estimates come from a calculation performed on w with respect
to different heights k € [0, M/2]. We proceed as follows: let ¢ be a smooth cut-off
function that vanishes near 9,Q(R), multiply the equation by (w — k);¢?, and
integrate in Q' (R, T) = Bgr(zo) X (to — R?,7) for some 7 € (ty — R?,ty). We get

// B (M — w)w(w — k)4 dxdt = —/ Vw - V((w - k)4¢?) dodt

- // F(z,t, M — w)(w — k)4 (* dxdt.

The first term on the right is computed as
_ // IV (w — k), |22 dadt — 2 //(w RV (w — k) - VC dadt
< % // IV (w — )4 |22 dudt + C//(w K2 |VCP dadt,
Thus,
[[ 80— w2+ 5 [ [1900 = 0)22¢ dade

(7.8)
< C//(w — k)% (¢ +|V(?) dadt.
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Moreover, the second term on the left may be replaced by

5 [ 1900 = )P dade

since the difference may be absorbed into the right-hand side. We now transform
the first term in (7.8). We introduce the function B(r) = By (r) by the formula

_ / B(M =k — s)sds. (7.9)
0
This is convenient since

(B((w—k)4)) = /(M — w)(w — k)wy,

which appears in the integrand of the first term of (7.8). The growth of B will
play a role in the estimates. In order to go further, we need to examine that
issue. We need an auxiliary result:

Lemma 7.3 Let M > 0, assume that pi(s) = p1(—s) and define for r >0

- 1 T 1 T S
B(r,M) = 772/0 w1 (M — s)sds, us(r) = 167/0 /0 w1 (t) dtds.

Then, pis is non-decreasing and B(r,m) > us(r) for 0 <r < 4M.

Proof By direct calculation,

1 T 1 T S
dus/dr = — ds — — t) dtd
i =g [ () s =gz [ [ iaoavas,

which is non-negative because the function fOT 11(s) ds is convex. We also have
dB(r,M)/dr <0

for 0 < r < M. Therefore,

M
B(r,M)>B(M,M)= ]\;2/ ul(M—ssds>—/ /Hl )dtds > pis(M).

On the other hand, for M < r < 4M we have

~ 1M 1 M

B(T’M)Zﬁ/o w1 (M — s)sds > 16M2/ (M — s)sds > ps(M).
This completes the proof. Note that in the PME case (r) = aM—(m=1/m
hence B(r,M) = bM~"=D/m and pz(r) = eM~(m=D/™ with b = a/2,
c=a/32. [ |
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Resuming the proof of the main lemma, we consider again the function B
and observe that

(w—k)+
B((w—k)4) > / pi (M — ks — )sds = (w — k)2 B((w — k), M — k).

Since (w — k)4 € [0,4(M — k)], we have the lower estimate for B:
B((w—k)y) > (w— k)2 s (M — k) > (w — k)2 ua(M2).

On the other hand,
(w—k)+
Bllw=H)0) < =kl [ FOI— k=) ds = (w— kLB ~ b

_/B(M - w)]»

and this can be bounded above by C(w — k)4, with C = max{8(M), —5(—M)}.
After this, we can go back to the first term of (7.8), that is estimated as follows:

[ = w1 = [ Bw-00¢,_, do-2 [[Bw- b

> 13(M/2) / (w - k)10, da

Br(zo)

~c [[w=n1ial

Putting this estimate into (7.8), we get
1
po/2) [ (80P et L ([ 1900 R
Br(zo) 4
< [[ w2 + Ve + (g da.

By truncating p; from above, we may assume that u3(M/2) < 1/4. Taking the
supremum of the above expression over 7 € [tg — R?, o] we get

C
l(w = &)+l 0emy) < 1s(M)2) //Dk(C2 + |[VC? 4 [¢]) dadt (7.10)

where Dy, = {w > k} Nsupp(¢). This completes the basic local energy estimate.
We can still use the embedding from V2(Q(R) from this space into
L24+2)/4(Q(R)) to get the same estimate with left-hand side in that space

C
[ (w — k)+§||2L2<d+2>/d(Q(R)) < s (M72) //Dk (P + V¢ + 1G|) dadt. (7.11)
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ITERATION STEP: We perform the iteration process in a nested sequence of
cylinders Q; = Q(R;), j > 0, with a decreasing sequence of radii

1 ,
R; = SR(1+27).

Put also kj = (M/2)(1 —277) — M /2, and let

J, = @ // (w — k;)2 dedt.

Let ¢; be a smooth test function with 0 < (; <1, (; =1 in Qj41, {; = 0 near
0pQ;, and such that

c4J
VG, 1G. < T

By Holder’s inequality we have

d/(d+2)
|Q0|J+l<(// (w— M”ddmt) Q5 0 {w > kya }PE ()

We apply now the energy estimate (7.11) with k = k;41, ( = {;. Putting v =
d/(d+2) and Dj = {w > kj;1} N Q;. we get

! v
(//QJ+1 . +(d+2)/dd dt) (//]«w _ kj+1)+Cj)2(d+2)/ddxdt>

_ ¢ ) .
= p3(M/2) /DJ(C +IVCI7 +[G]*) dadt

_ . cw
= RPus(M)2)

IN

1Q; N {w > kji1}] (**)
Now, since

(kjs1 — ) 1Q; N{w > kji1}] < // w — k) dl‘dt

we have
C47 R3—2

|Q; N{w > kj1}| < e Jj.

Combining this with (*) and (**) we arrive at

Jj

7

o4 (Capiz N\
< .
= R25(M)2) ( M2 J)

hence

Ca \2(d48)/(d+2) 71+2/(d+2)
i1 = MR/ (@+2) 15 (M /2) (47) 7 : (7.12)
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This kind of superlinear iterative relation is studied in the classical book [357],
where it is proved that J; — 0 as j — oo under a condition on the size of the
initial data of the form

Jo < Co M*4 (g (M2)) @+D)/2, (7.13)
for some C, = C,(d,Cs). We now take

HA(0M) = min { 5 (14 (01/2) 2%, 5.

If

lQlR//R(Mu) dadt < Hy(M),

then Jy fulfils the necessary condition, so that
2

0= lim szi// <wM> dxdt.
J=ee ‘QR| QRry2 2 +

We conclude that w < M/2 in Q(R/2), which completes the proof. |

This result has the following corollary, that controls the fraction of the
measure of a cylinder where v is substantially smaller than M. The definition of
function H(r) is important for the final result.

Corollary 7.4 Under the hypotheses of Theorem 7.1 there exists an increasing
function H(r) with 0 < H(r) < r/2 for r > 0, such that the conditions

(i) v< M in Qr(P) C Qr, with0 < M < Cy; and
(ii) there exists a point Py € Qp/2(P) such that v(P1) < M/2,

imply that
|Qr(P)N{v <M —H(M)}| = H(M)|Qr(P)- (7.14)

Proof We only need to put H(r) = Hy(r)/(2Cy + 1)), where H; is the function
defined in Lemma 7.2. If the conclusion is false then fQ(R)(M — v) dxdt can be
computed as

(M — v) dxdt + / (M —v) dxdt.

/Q<R)n{vszw—H<M)} QR)N{v>M—H(M)}

The last integral is bounded above by H(M)|Q(R)| and the first by 2C1|Qr(P) N
{v < M — H(M)}|. Using estimate (7.14) with reversed inequality we get

| 0= vdei < m(0QR).
Q(R)

The conclusion of Lemma 7.2 contradicts the existence of the point P;. |
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We proceed now with the last preliminary estimate. We fix a subdomain Q’
compactly embedded in Q7 and let D = dist(Q’, 9,Qr). We assume that v is a
solution of equation (7.5) as in Theorem 7.1, that P € Q" and R is such that
Q(R) = Qr(P) C Q. Besides, we modify v: given e,n > 0 it is easy to find a
function g = g. ,, € C°(R) such that ¢ > 0,0<g¢' <1, ¢’ >0, and

(s—e—(1/n))+ <g(s) < (s —¢)+
We then define the function
z(z,t) = gen(v(z,t)). (7.15)

We point out that the choice of the constant £ will play an important role in the
iterative construction of Proposition 7.10. On the contrary, n is only chosen for
smoothness reasons and can be any large number.

We derive the following lemma that shows how an upper bound for z in a
cylinder can be improved (i.e., lowered) when we shrink the cylinder, if a certain
technical condition on level sets is fulfilled.

Lemma 7.5 Let M,e,0 and n be positive constants, and let z be defined by
(7.15). Under the hypotheses of Theorem 7.1, there exist constants R. and o,
such that 0 < R, < D/2, 0 < 0, < M/2, and the following holds: if 0 < R < R,
and

(i) z2< M in Q(R);
(i) |Q(R) N {z =0} > 0|Q(R)|,

then
z< M —o, in Q(kadR).
Moreover, R, and o, depend only on M,e,0 and the data (7.7).

Before attacking the proof of this result, we need some preparatory work. We
first see that z satisfies a parabolic inequality.

Lemma 7.6 Under the above hypotheses, z satisfies
2zt —a(x, t) Az < bz, t).
with functions a(x,t),b(x,t) such that
§<alx,t) <5t bz, b)) <671,
for some § > 0 depending only on €, u2(e), us(e) and Cy.
Proof By direct computation,

B'(v)zs — Az < |F)|
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pointwise in Q. Take now v(z,t) = max(v(x,t),e) and set

1 |F(x,t,v(z, )|
a(z,t) = ————~, b(z,t) = — =7+,
D= Faen YT aEE)
to have the conclusion of the lemma, recalling that z; = Vz = Az = 0 on the set
{v<e}. [ |

We now recall the work by Krylov and Safonov [353] on Harnack inequalities
for linear parabolic equations in non-divergence form, which proves the following
positivity result.

Proposition 7.7 Assume w is a smooth function satisfying

i) w=>0 in Q(R);
(i) ws — ajj wee; >0 in Q(R) under the conditions

SIEP < ai&i&y, €€R?, agllw <67 §>0;
(iii) |Q(R) N{w =1} = 0|Q(R)|.
Then, there is a constant ag = ao(d,d,0) > 0 such that
w(z,ty) > a9 for |z —xzo| < R/2.
This result can be easily extended as follows.

Corollary 7.8 Under the assumptions of Proposition 7.7 there exists a constant
ao(d, d,0) > 0 such that

w(z,t) > a9 for (z,t) € Q(KOR) = Quor(P), (7.16)

where k(d,0) > 0 is given by

#(d)? = min {1/5, Gei%fl] (1—-(1- 9/2)2/<d+2>)/92}. (7.17)

Proof For te€[to— (aR)? to] with a =k, we have Q s=gzp(20,t) C
Qr(P). Also,

Qr(P) = Qr=azr (@0, )] = (1 = (1 = o) “T/2)|Qr(P)],
and this is less than (0/2)|Qr(P)| by the definition of k. Therefore,
0 0
Qui=azr(@0,t) N {w 2 1} 2 S |1Qr(P)| 2 5 |Qy1=azr (20, 1)].

We may now apply Proposition 7.7 to w in each of the cylinders Q 1=z (70,t)
to conclude that there exists a constant ag > 0 such that w(z,t) > aq if

1
lv — xo| < 5\/1 — o2R, to — (aR)* <t < to.
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But since a? < 1/5, we have o < (v/1—a?)/2 and the positivity conclusion
follows in Q(aR) = Q(kHR). |

Applying this corollary to the function

w(zx,t) = % (M + (M’;R2> - z(m)),

Corollary 7.9 Let z be a smooth function satisfying

() <M in QR);
(i) 2zt — aijze,0; <b in Q(R) under the conditions

we finally get

§1€)* < aij&i&i, € ERY aillos, Iblloo <671, 8> 0;
(i) [Q(R)N{z < (M/2)}| = 0|Q(R)],
Then, there is a constant ag = ao(d,d,0) > 0 such that

M 2
Qo _ % in Q(kOR).

We may now proceed with the proof of Lemma 7.5. By Lemma 7.6, z defined
by (7.15) satisfies conditions (i), (ii) and (iii) of Corollary 7.9 with ¢ depending
only on € and the data (7.7). Corollary 7.9 applies to give a positivity constant
ao depending on this § and the given §. We now set

R, = min gl Maogd 2 0% = min % Mag
* 2’ 4 ’ * 27 2 )

Then, Corollary 7.9 implies that

M R?
aO—TSM—O*

in Q(kOR) provided that R < R,. [ |

2(x,t) < M —

z< M —

7.4 Proof of the continuity theorem

We proceed in three steps: behaviour near a vanishing point, behaviour near a
non-vanishing point, and final step.

7.4.1 Behaviour near a vanishing point
We have the following result that sums up the main difficulty of the continuity
argument. It relies on Corollary 7.4 and Lemma 7.5.

Proposition 7.10 Under the hypotheses of Theorem 7.1, let v(P) = 0 at a point
P = (x0,t0) € Q'. Then there exist sequences My, Ry, | 0 depending only on the
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data list (7.7), such that
lv(z,t)] < My in Qgr,(P).

Proof We fix the valuese = M — H(M), 0 = H(M) and change M into H (M)
in the functions o, (M, €, 0) and R, (M, ¢, 0) introduced in Lemma 7.5, and define
the functions

o(M) = o.(H(M), M — H(M), H(M)),
R(M) = R.(H(M),M — H(M), H(M)).
Function H is defined in Corollary 7.4. For 0 < M < C7 we have
0<o(M)<H(M)/2, 0<R.(M)<D)2.
We now define iteratively the sequences My, and Rg:
My =Cy, My = My, —o(My)
R1 = R(Ml), Rk—l—l = min (R(Mk+l)a HH(Mk)Rk)
These definitions depend only on the stated data. Both sequences tend to zero
as k — oo. Clearly, the stated conclusion holds for k = 1.
Suppose now that k¥ > 1 and |v] < My in Q(Ry). We consider the function
z = gen(v(z,t)) for the choice ¢ =e(My) = My — H(My), n > 0. Then,
z<(v—e(Mp))+ < H(My) in Q(Ry).
Since v(P) = 0, by Corollary 7.4, and using the exact value of e(My) = M, —
H(Mjy), we have
|Q(Ry) N{z =0} > |Q(Ry) N {v < My, — H(My)}| > H(My) |Q(Ry)]-

This motivates the choice of € in the definition of o(M) and R(M). Since
Ry < R(My), using the definition of R(M) and Lemma 7.5 we obtain the
improvement

z § H(Mk) - O'(Mk) in Q(HH(Mk)Rk)
Writing v < (v —e(My) — (1/n))4+ +e(Mg) + (1/n), we translate it into the
following estimate for v in Q(Ry41)
v < H(My) = o(My) +e(Mi) + (1/n) < My — o (M) + (1/n) = Myq1 + (1/n).

Since this is true for all n > 0, we must have v < My41 in Q(Rg+1)-
In the same way we can prove that —v < Mp41 in Q(Rg+1). This completes
the proof. |

7.4.2  Behaviour near a non-vanishing point

We now consider the solution v near a point P where v(P) # 0 and show that
it remains bounded away from zero in some full neighbourhood Q% (P). It relies
on Corollary 7.4 and the preceding proposition.
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Proposition 7.11 Let the hypotheses of Theorem 7.1 be satisfied, and let
My, R, be the sequences constructed in Proposition 7.10. Let P € Q) with
dist(P, 0,Q) > 2D and suppose that

Mko-‘rl < U(P) < Mko'

for some ky. Then, we have
1
> — ; *
|v(z,t)| > 5 My, in QRkO(P)’

where Ry, = min(R, 41, R, /2)-
Proof Letu(zy,t1) < My/2 at some point P, = (z1,t1) in Q’}i% (P). We exam-
k

ine two possibilities: if t; <ty then by Corollary 7.4 the indu[()ztion argument
of Proposition 7.10 may be carried out until the kqo-th step. It follows that
v(z,t) < Mi41 in Qr,,, (P), a contradiction.

If t1 > to then P € Qg,,,(P1) and again the induction argument of Propo-
sition 7.10 may be carried out until the ko-th step. It follows that v(z,t) < M1
in Qr,,, (1), a contradiction. [ ]

7.4.3 End of proof

Let € > 0 and let P = (z9,%9) € Q'. We must find n > 0 depending only on ¢
such that

[v(z1,t1) —v(xo,t0)| < €

for all Py = (z1,t1) € Q' such that dist(P, P1) < 7. We may assume that L =
v(P) > 0, otherwise we apply the argument to —v.

If L <¢e/3. Then by Proposition 7.11 there exists 71 > 0 depending only on
€ and the data such that

v(z,t) < 2¢/3  for dist(P, P1) <m.

Thus, |[v(z1,t1) — v(zo,t0)| < € in that case.
On the other hand, if L > /3, by the same Proposition 7.11

v(z,t) >¢e/6 for dist(P,P;) <19,
i.e., in a cylinder Q%(P)7 where R depends only on e and the data. In this
cylinder v satisfies a linear equation of the form
up = a(x,t)Av + b(x,t)
which is uniformly parabolic, since

1 F(z,t,v(z,t)

@)= ey "0 @)
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and £/6 < v < C in that cylinder. The bounds on the coefficients depend only on
¢ and the data. The theory of linear parabolic equations of [353], cf. Theorem 4.2,
implies that v is continuous in QE /Q(P) with a modulus of continuity that
depends on ¢ and the data. In conclusion, we may find 13 > 0 such that

w(P) —v(P)|<e if dist(Py, P) <ns.

Take now 7 = min(ny,n3) to finish the proof. |

7.5 Continuity of weak solutions of the Dirichlet problem

We now apply the continuity result to the weak solutions constructed in the
previous chapter. In this way we can settle the question of interior regularity.

Corollary 7.12 The weak energy solutions we have constructed in Chapter 5
are continuous functions in Qr = Q x (0,T) when ug, f and g are bounded.

The proof consists only of noticing that in any inner subdomain Q' C Qr,
the sequences of approximating classical solutions are uniformly equicontinuous
with a fixed modulus of continuity. Actually, we may reduce the assumptions
to: w and f are locally bounded, but this needs some work in justifying the
approximations.

7.5.1  Initial regularity

We have shown in the previous chapter that weak energy solutions, and even
all limit solutions, take on the initial data in the sense of strong convergence
in L1(£2). However, when the initial data have some continuity property, that
continuity is reflected in the way the solution behaves for ¢t ~ 0. This is the
standard result about initial pointwise continuity.

Proposition 7.13 If u is a weak energy solution as in Theorems 5.7 or 5.14
with bounded data, ug, f (and g), and ug is continuous at a point xo € 2, then
u(z,t) is continuous at (zg,0).

Our proof of the proposition uses a technical lemma based on the previous
study of radial solutions.

Lemma 7.14 If moreover the data are radially symmetric, non-decreasing in r
and ug is continuous at r = 0, while f is bounded, then u(r,t) is continuous at
r =20, t =0. In the non-homogeneous case, we also assume that g is constant,
g > ug(R).

Proof of the lemma The lower bound is easy: we use the facts that
g > up(r) > up(0) =a and f > —N to conclude from the maximum principle
that

u(r,t) > a — Nt,
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see formula (5.34) in the proof of Theorem 5.7. We conclude that
liminf; g u(r,t) > a for every r > 0.

As for the upper bound, we argue as follows: fix £ > 0 and let p be a small
radius such that ug(r) < a + ¢ for r < 2p; and let (r) be a radial cut-off function
supported in the annulus p/2 < r < 3p with value 1 in the annulus p < r < 2p.
Then, from the definition of weak solution we get

/Q (ulat) = wo(@)C e = [ t [ (@ac+ rcya.

which goes to zero as t — 0, hence it is less than € for 0 < ¢ < 7. Now,

/Q(U(wvt) —uo(z))Cdr > / p(u(p, t) = uo(2p)) " dr = Clulp, ) — uo(2p))p".

Since p is fixed, we conclude that lim sup,_,, u(p,t) < a + . Putting both things
together, the continuity of u(r,t) at (0,0) follows. [ |

Proof of the proposition Let ug(xzg) = a. We may assume without loss of
generality that zo =0, and let Bg(0) C Q. Let f < N and let K be an upper
bound of |u| in Q7.

In order to get an upper bound for u near (0, 0), we introduce the radial weak
solution u; defined in Q1 = Br(0) x (0,7) with radial initial data w1 (r) > u(x)
(r=|z|), fi(z,t) = Na, and boundary data ui(R,t) = K. By comparison, we
have u(x,t) < wui(r,t). If we assume that wy(r,0) is increasing, then wy(r,t) is
continuous at (0,0). But we may take u;1(0,0) as close as ug(0) = a as we want.
It follows that

limsup u(z,t) < a.
(z,t)—(0,0)

The lower bound is similar, using a bound from below. |

Remark. These types of functions, usually solutions of auxiliary problems,
that are constructed on purpose to serve as upper (or lower) bounds are called
barriers and will be of much use in many situations. They can be upper or lower
barriers. Usually, they are solutions of the same equation with different data and
are also called supersolutions and subsolutions resp. See more on this topic in
Section 6.2 and Subsection 8.2.2.

The above proposition is the main step behind a much more appealing result.

Corollary 7.15 A modulus of continuity in x for a bounded weak solution of the
GPME at a time tg > 0 implies a modulus of continuity in t att = to+, and the
modulus of continuity in time depends only on ®, d, the modulus of continuity
of ug and the L norm of the data. If the space modulus is uniform in a certain
strip S = Q X [t1,t2], then u is continuous in S.
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Proof The first part is immediate after the proof of the proposition. The
argument applies to tg > 0 by translation of the origin of time. The notation
t = to+ means that u is continuous in time for ¢ > tg.

As for the second part, we have a uniform space modulus and a uniform
time modulus for positive time increments. It is then immediate that the time
modulus works also for negative time increments. We ask the reader to prove
this calculus fact. |

7.5.2  Boundary reqularity

We now address the remaining question of boundary regularity.

Proposition 7.16 Bounded weak solutions of the Dirichlet problem are contin-
uous up to the lateral boundary with a modulus of continuity that depends only
on the conditions of Theorem 7.1 and the modulus of continuity of the boundary
data.

Proof (i) Let u be a solution of Problem (5.1)-(5.3). We have to prove that u
is continuous at the lateral boundary 9€ x (0, 00) and to control the modulus of
continuity near that boundary. We have two options, either to re-do the previous
theory from the start in a neighbourhood of a point Py = (x¢,to) of the lateral
boundary, or to develop some ad hoc theory using the method of barriers. The
first approach could be considered natural and allows us to revise the contents
of the main result. We refer the reader to Ziemer’s [536] for details on how to
proceed.

(ii) In the case of the homogeneous Dirichlet problem the second approach is
quite easy using barriers: a possible argument uses the fact that w is bounded
above by the separated-variable solution (Friendly Giant). That solution serves
as a continuous upper barrier and minus this function will be the lower barrier.

Another more general argument is as follows: we approximate the zero
boundary data by a positive constant g = ¢, we also raise the initial data by
¢ and obtain in this way a smooth supersolution u. < u that is continuous
up to the lateral boundary and has a modulus of continuity that depends on
the arguments explained in Theorem 7.1 and on e. Since u. | u, the conclusion
follows in this case.

(i) Assume now that g is bounded and continuous at a boundary point
Py = (zg, tp) € X and let g(xo,to) = ¢p > 0. The barrier from above is imme-
diate, arguing by raising the data as before. The construction of a lower barrier
is not so immediate. We may proceed locally: we select a small full parabolic
neighbourhood Q* centred at Py, define Q' = Q* N Qr and construct a con-
tinuous subsolution u; with boundary data cy — e near Py and very negative
otherwise, u = —M. The initial data for t; = to —r? are u(x,t;) = —M. If we
prove that u; is continuous, it will be enough for our purposes. The construction
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of such a subsolution is not difficult with the results of later chapters or by direct
trial in the case of the PME. ]

7.6 Holder continuity for porous media equations

Under the general assumptions in the above class of equations, only a modulus of
continuity is achieved as an answer to the question of how regular the solutions
are. But the PME has a simple power structure in its nonlinearity and this helps
in getting Holder continuity, which is the standard regularity in the De Giorgi—
Nash—Moser tradition. This is the corresponding result. We take 2 a domain (or
even an open rectangle) in R%, Q7 = Q x (0,T) and Q% = Q° x (¢2 x T) where
Qf ={x € Q:d(z,00) > e},

Theorem 7.17 Let u be a weak energy solution of the porous medium equation
defined in the cylinder Qr and assume that u is bounded, ||u||p~q.)y < M. Then
there are positive constants C > 0 and a € (0,1) such that for every pair of points
(x1,t1), (x2,t2) € QF we have

|u(x1,t1) — u(:c2,t2)| < O(|1‘1 - 1‘2|a + |t1 — t2|a/2). (718)
The constants C' and « depend only on M and €.

Proof This result was proved by DiBenedetto and Friedman [211] in 1985. The
result is achieved by working on cylinders suitably scaled to reflect in a precise
quantitative way the power-like degeneracy of the equation. We will follow their
proof, with references to the original paper for some technical parts. In addition
to the standard parabolic cylinders Qr(P) defined in (7.3), we will use some
types with dimensions adapted to the scale structure of the equation. They are

Q%, (Po) = Br,(z0) x (to — B3 %, to).
where Py = (xg,t0) is a point in Qr, and
QR(Po,w) = BR(I()) X (to - RQ(.uia,to),
1
Q% (Po,w) = Br(xo) x (to — ipRQW_a,to)

where a = mTfl Note the special time scale in all cases.

(i) We present the details of the proof for non-negative solutions. Let v = u™
which satisfies the equation
o(v?) =Av, qg=1/m.

We take a fixed Py = (zg,t0) € Q7 and let Ry > 0 such that the cylinder Qg =
Q5r, (Fo) is contained in Q7. There is no lack of generality in the arguments
that follow in assuming that xg = 0 and tg = 0 (by translation of the axes). We
then drop the reference to Py in the cylinders. Let

pt =sup{v(z,t): (z,t) € Qo}, p~ =inf{v(z,t): (z,t) € Qp}.
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and pick a number
w>pt —p = osc(v; Qo).
Take now R € (0, Rp] and suppose first that
w® > R®,
where o = (m — 1)/m. Then, the cylinder
Qr(w) = Br(0) x (~R*w™*,0)
is contained in Qgp, hence

osc (v; Qr(w)) <w

171

(7.19)

(7.20)

(7.21)

(ii) Let us assume further that the infimum is small in relative size, in the sense

that

po < w/4.

Under this assumption we derive some inequalities for v. We multiply the

equation satisfied by v by (v — k)*¢?

in Qpr(w) which equals 1 in the subcylinder

Q" = Qr(w;01,02) = B(1_g)r(0) X (—(1 = 02) R*w™,0).

Put t; = —(1 — 02)R?w™% and Ry = R — o1 R. We get

€ss SUPt1<t<o/

BRl

: (2R )2”( a Q*Jrc//ga (/ (kj:f)E*1

(v—k)~= L
(/0 (kif)m‘1€d£> dz + V(v —k)*[3.0

where k£ > 0 and ( is a cut-off function

§d§> ¢, dadt.

We shall now use this expression with the choice (v — k)~ and k = p~ + w277,

s > 1. By the current assumption u~ < w/4, we have the lower bound

(v=h)" . 1
| m—oredes oo -0 2 co (-

as well as the upper bound

(v—k)"
/ (k—&)mlede < Cw'/™(w—k)~.
0
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Note that (v — k)~ < w. Taking ¢ such that 0 < (; < 2w® /(02 R?), we obtain

w™%ess supy, oy <ollv(t) = (7 +27°wW) 713 pg,y + IV = (07 +27°w)7 |3 o

(.«)2 0 wa+1+1/m 0
< A _— A
<0 [ 101+ 0 [ 1aa)

where A g(t) is the set {x € Br(zo) : v(z,t) < p~ + 2 °w}. It follows that

ess supy, <y<ollo(t) = (1™ +270)) 7112 pay, + IV (0 = (1™ +2750)) "3 o

< Cuw?te [(O’lR)2 + (02R2)71} ' ‘As R(t)| dt. *
4. )

(iii) We now need two technical lemmas which describe the process of bound
improvement by suitable reduction of the domain in its two aspects.

Claim 1
There exists a number p € (0,1), independent of w, such that if
1
meas {(ax,t) € Qr(w) : vz, t) <pu” + 2w} < p|Qr(w)] (7.22)
then
v(x,t) > p +w/4 V(z,t) € Qr/o(w). (7.23)

The outline of the proof is as follows: We first renormalize the problem by
making the change of time variable

T =wt.
Then, the cylinders Qgr(w) and Qr(w; 01, 02) become
Qr = Br(0) x (=R%,0), and
Qk = Qr(01,02) = Br_o,r(0) x (—(1 — 02)R?,0).
Write also
v(z,7) =v(z,w 1), A={ye Br(0): v(y,7) <p +2 °w}
We can then write expression (*) in the form

[T — (= + 2*%))*\\%/1,0(%) < Cw? [(01R)? + (02R?) 1] fERQ |AS7R(t)|(dt. |
7.24

Under these circumstances we can use the standard techniques of bound improve-
ment used in previous sections. The details in this case are contained in
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[210, Lemma 6.5]. Since the constant C in (7.24) is independent of w, also
p is.

A second technical lemma is needed to cover the possibility of bound improve-
ment from above.

Claim 2

Suppose now that (7.22) is not satisfied. Then, there exists a number sq, inde-
pendent of w, such that

o, t) <t = o W(at) € Oy (). (7.25)

We refrain from giving the details of these lengthy technical arguments for
which we refer to the paper and references.

(iv) We may now prove the theorem. We have assumed that p~ <w/4. If

osc (v; Qr(w)) < w and moreover (7.22) holds, then by Claim 1, the oscillation

of v in Qr/o(w) is less than (1 — 1/4)w = (3/4)w. On the other hand, if it does

not hold, then Claim 2 implies that the oscillation is less then (1 —27%)w in
%/2 (w). Setting n =1 — 27%° we have in both cases

05CQr (w)V <nw, (7.26)

which is the desired improvement of (7.21).

We now perform an iterative process. By the existence of the cylinder Qp
and condition w§ > R§ we arrived at the starting conclusion, formula (7.21),
that the oscillation in Qf,(wp) is less than wy. Using the preceding improvement
argument under the assumption

w
47

and proceeding inductively from the initial values wg, Ry, we conclude that there
exist sequences {w,} and {R,} such that wy = w, and

Wn41 = NWn, Rn—i—l =coRRp, (727)

such that oscg, v < 1" wy. The constant ¢y is determined by the condition
QRn+1 (wn+1) - Q%n (wn), hence

1
o < 577@/2P1/2-

Note that the numbers 0 < n,p < 1 are the product of the technical lemmas
where the structure of the equation has a direct effect. Relating n to R,, we get

oscg,, v < C(R,/Ro)? (7.28)
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for some o > 0 which is determined by the condition
2,01/0 < na/2p1/2’

hence, it can be taken independent of Ry and pu. Putting p = n7, this yields
Holder continuity with exponent o < 2/(a + 7).

(v) Let us consider now the case where the infimum is not comparatively small,
ie, p~ > w/4. Since w§ > R§, we then have

. 1 a
1357) > ERS/ .

We may then rescale the equation in the x or ¢ direction so as to obtain a
uniformly parabolic operator, to which we may apply standard local estimates.
Going back to the original coordinates we easily get the dimensional form

[v(@1,t1) = v(zo, to)] < CRG” (lor = @l + 2 — to]/?)
for suitable o > 0 and § > 0.

(vi) We have completed the proof in case w® > R§ holds. If it does not hold
the situation is in some sense better since the oscillation is small. In order to
apply the preceding scheme we try to see if it holds for Ry/2 instead of Ry, or
if eventually there is a k such that

e/a
R R
osc(v; QQJCRO) < <2k31>

for some k > 2 an integer. Then there is no problem with step (iv), and step (v)
will work if o is small enough. In that case we have to take care of the situation
around Py and around P;. Finally, the case k = oo can be treated is a similar
way. The proof for non-negative solutions is complete.

(vii) The proof extends to signed solutions of the PME, u; = A(Ju|™ 1u).

Outline of proof of this extension: we notice that when =~ > 0 no change is
needed. If on the contrary, = < 0, we argue as follows: when p~ < —w/4 then
for the levels k = u~ + 27 %w, s > 3, there is non-degeneracy on {(v — k)~ > 0}
as before. If —w/4 < p~ < 0, we can work with the levels

woow
k=p +5+

3 28
for which there is non-degeneracy on {(v — k)~ > 0}. We conclude that any local
weak energy solution of the PME is Holder continuous. |

Remark The authors of [211] state the result for non-negative solutions of the
generalized porous medium equation

up— > (@@, t, Vu)(u™)e))a, = f(a,t,u, Vu) (7.29)

2%
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which is an anisotropic version of the PME. The solutions under consideration
are local in the sense that they are defined in a cylinder Q7 = Q x (0,7T) without
reference to boundary conditions. The following structure assumptions are made:
m > 1 and

>, ARG > col€?, |aM < e,

|f(l’,t, Uu, VU)| S 02‘vum| + C3,
for some constants cg, ¢1, c2, c3 > 0.

Theorem 7.18 Let u be a weak energy solution of porous medium equation
(7.29) defined in a cylinder Qr and assume that u is bounded, ||ul|p~q) < M,
and the structure assumptions hold. Then there are positive constants C > 0 and
a € (0,1) such that for every pair of points (x1,t1), (x2,t2) € QF we have

|U(l‘1,t1) - u($2,t2)| S C(|Z‘1 — l‘2|a + |t1 — t2|a/2). (730)

The constants C' and « depend only on M, € and the structure constants c;.

7.7 Continuity of weak solutions in 1D

As we have seen, the question of continuity of weak solutions of the GPME in
the context of several space dimensions involves heavy work. But this important
question can be easily settled when the problem is posed in one space dimension,
d = 1, since it involves quite simple calculations. We address the problem in the
general class of weak solutions defined in a cylinder Q = I x (0,7T) with I = (a,b)
a bounded interval in R, without reference to its boundary or initial conditions.

The idea is very simple: in view of the regularity of weak solutions proved
in Theorem 5.7 we consider as main function w = ®(u) and use the following
calculus lemma.

Lemma 7.19 Let w be a function in L*(Q) for some cylinder Q = I x (0,T)
and let w, € L>°(0,T : L*(I)) and w, € L*(Q). Then, w admits a continuous
representative in C1/>1/%(Q).

Proof (i) Let us assume that w is a smooth function in (). We will obtain
uniform estimates for the Holder norm of w in terms of the norms of w, and
wy in the stated spaces. The uniform continuity in z is easy from the standard
inequality

fw(a, t) = w(y,t)] < a0 e — g1/ (7.31)

This means that w is uniformly Holder continuous as a function of x in the
rectangle [a,b] x (0,7).

The continuity in time takes some more effort, and comes from a calculation
in the spirit of interpolation theory. We fix times 0 <t <t =t + h < T, a point
xo € I and take a space interval of the form J = (xg — §, o] or J = [xg,z¢ + 0)
contained in I. One of the two possibilities holds if 6 < (b — a)/2. Then, we



176 Continuity of local solutions

calculate
5 w(zo, ') — w(zo, |</|w (0. 1') — wly,0)| dy
/] (w0, ) — wy, )] + lw(zo, ) — wly, 1)) dy.

The last two terms can be evaluated using (7.31). The first integral can be
evaluated as equal or less than

t/
/t /J|wt| dyds < w20y (h 6)V/2.
Putting it together we get
lw(xo,t) — w(zo, 7)| < Cllwg|| 6Y/2 + Clwy|| 672012,

When h =t — 7 is small, optimization of this formula with respect to § happens
for 6 = C'|lwe|| h'/? /||ws ||, and we get the desired estimate

[w(wo, t) — w(zo, 7)| < C"[lwa||V/2 e | /> A1, (7.32)

(ii) If w is not smooth we approximate it by smooth functions, obtain the uniform
bounds as above and pass to the limit. We obtain a continuous solution satisfying
estimates (7.31) and (7.32). [ |

Corollary 7.20 Bounded weak solutions of Problem (5.1)-(5.3) are continuous
functions in Qr UX. More precisely, if ® is locally Lipschitz continuous, then
w = ®(u) belongs to the class C1/21/4(Q7) for every T > 0, and the Hélder norm
depends only on the norm of ug and f in Ly () and L?(Qr) resp. For general
D, the function Z(u) defined in Lemma 5.9 has this regqularity property.

Proof Function Z(u) is defined by the rule, dZ(u) = min{du,d®(u)}. The
proof relies on recalling the estimates obtained in the proof of Theorem 5.7, that
have been summarized at the beginning of Section 5.6. The continuity at the
boundary has already been discussed in the lemma. |

Remarks (1) We have proved in Section 5.8 that solutions of the GPME are
bounded for all positive times if ® is strongly superlinear and f bounded.
Actually, in one dimension the condition of bounded f is sufficient. The argument
is as follows: by virtue of estimate (7.31) since w, € L*(I) for a.e. t, u(t)
is bounded. But once wu(t) is bounded, say by M, then w(t') is bounded by
M+ (¢ —t)N for allt’ > t, where N = Hf||OO Therefore, u is uniformly bounded
on sets of the form 0 <7 <t <T.

(2) The regularity stated in Corollary 7.20 is not the best possible regularity
result that can be obtained, but it serves our purpose at this time: it contains
a quite clear statement of uniform continuity, it holds under assumptions that
include the solutions we have constructed and others that will be encountered,
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and it has a quite simple proof. The question of optimal regularity in one space
dimension is addressed in Chapter 15.

Continuity of radial solutions

There is no difficulty in repeating the outline of the preceding proof for radial
solutions defined in any annular domain of the form {ry < |z| < ry}, since the
equation is quite similar. However, near the origin the calculations are different
because of the weight 71 in the Laplace operator, and we have to resort to the
general theory developed in previous sections.

7.8 Existence of classical solutions

Once a solution of the equation is constructed in some generalized sense, it
is an important point to decide if it is indeed a classical solution. Though we
know that in general this will not be the case, it can happen under additional
requirements on the data. We prove next that when the initial data are smooth
and positive inside €2, the equation is parabolic non-degenerate and we obtain a
classical solution by essentially using the standard quasilinear theory.

Proposition 7.21 Let ug € C(Q) be positive in Q and vanish on its boundary
I, let f>0 be C smooth and let u be the corresponding weak solution of

the PME. Then u € C*(Q)NC(Q), u is positive in Q and vanishes on X. If
f c C2k+a,k+a/2(Q)’ then u € C2k+2+a,k+l+a/2(Q)‘

Proof The first step is proving that for every point z¢ € Q where ug(zg) > 0
we will have u(zg,t) > 0 for every ¢ > 0. In the case of the PME this is done
by the classical method of barriers, comparing v with a suitable source-type
solution that solves the equation with f = 0. Actually, if B = B,.(z) is a ball
of radius r where wg is positive, say ug(z) > ¢ > 0 for € B, we consider the
Barenblatt function

a=U(x —xzo,t + 1;C).

We may choose C small enough so that ug(z) > @(z,0) in B, and also that the
support of @ is contained in Q7 for a given T' > 0. This support is of the form
S={(x,t) : clx —xo|" < (t+ 1)} with y =d(m — 1)+ 2 (cf. (0.5)), u € C>(S)
and @ vanishes on the lateral boundary of S.

Hence, by the classical maximum principle applied in SN Q7 to u and
a smooth approximation to u we conclude that v > @ in S, hence u(x,t) is
bounded uniformly away from 0 in a neighbourhood of the form N = By x (0,7T),
Bl = BT (l‘o)

Therefore, when taking the limit w, — w in the approximation process of
Theorem 5.5, we can apply in N the regularity theory of quasilinear non-
degenerate parabolic equations, and conclude that v € C*°(N) and the initial
data are taken continuously in Bj.
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The fact that uw vanishes continuously on ¥ is a simple consequence of
the approximation process (5.21)-(5.24). In fact, u < un,u, € C*°(Q) and
un(z,t) =L on X. [ |

Of course, if moreover ug is smooth, e.g. if ug € C*(Q) for some k > 0, this
regularity is reflected in the regularity of u near ¢ = 0, according to the same
quasilinear theory. We leave it to the reader to prove similar results for the
GPME when @ is smooth for u # 0. The regularity holds then at points where

uo(z) # 0.

7.9 Extensions

Here are some complements to the information of this chapter.

7.9.1 Fast diffusions

Chen and DiBenedetto study in [167] the question of Holder estimates of
solutions of singular parabolic equations with measurable coefficients of the p-
Laplacian type, and the methods apply to the PME equations in the fast diffusion
range. The Harnack inequality for non-negative solutions of singular parabolic
equations is proved in [168]. The equation may have bounded measurable coef-
ficients and have the form u; — (a; (2, t)|u|™ 'uz,)s, = 0 with 0 < m < 1. The
authors use an iteration method in the context of quasilinear singular parabolic
equations that is different from the classical iteration techniques of E. De Giorgi
[201].

7.9.2  When continuity fails

There are two scenarios that come in progression when the nonlinearity of
the GPME u; = A®(u) is allowed to be singular at w = 0, i.e., when we allow
@' (0+) = oo.

(i) Weak non-negative solutions of the fast diffusion u; = A(u™), m < 1, need
not be bounded, a fortiori they are not continuous, when m < m. = (d — 2)/d.
See the study of this question in the Lecture Notes [515]. The exponent m, is
sharp, since weak solutions with locally integrable data are locally bounded and
continuous for m > m,, see [190, 286, 435].

(ii) On the other hand, when m < 0 even bounded solutions need not be con-
tinuous. Examples of bounded discontinuities, called needles, are given in [513].
The dimension can even be one and the equation is written as u; = (™ tuy),.

7.9.3  Equations with measurable coefficients

Here (a;;) is a symmetric matrix of bounded measurable functions which satisfies
the ellipticity condition

AT < a;;(x) §¢& < AE? ae. in R
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for all £ € RY, for some A > 1. The equation is suggested as a mathematical
model for the flow of a gas in a non-homogeneous porous medium.

7.9.4  Other

Holder estimates for solutions of doubly nonlinear degenerate parabolic equations
are studied by a number of authors.

Notes

Section 7.1. Continuity of the solutions of the PME in the several-dimensional
context is due to several authors in slightly different contexts: the first several
dimensional results seems to be due to Caffarelli and Friedman [139], 1979, who
study non-negative solutions of the plain PME in the whole space and obtain a
logarithmic modulus of continuity. In [140], 1980, the authors prove that weak
solutions are locally Holder continuous with free boundaries which are locally
Holder continuous surfaces. Then, Gilding and Peletier [269], 1981, treated the
homogeneous Dirichlet problem. Solutions of both signs are treated a bit later
for more general classes of equations by different authors: thus, Caffarelli and
Evans [137] study equations that include the two-phase Stefan problem and has
f = 0; DiBenedetto [206, 207], Sacks [461], and Ziemer [536] treat rather general
classes of degenerate parabolic equations of the form

B(u)y = divA(z, t,u, Du) + B(z,t,u, Du)

under structural conditions on A and B. Technical conditions are imposed on 3’
near u = 0. The standard assumption is that 3’ is locally bounded from above
and below. The local lower bound on @’ is eliminated in Sacks [461], 1983, see
also DiBenedetto [215], 1985.

We repeat that the assumption of smoothness of the solution made in
Subsection 7.2 is made for convenience in justifying the calculations, and
the conclusions will then apply to solutions obtained as limits of smooth
solutions. The same is true about the C? assumption on (. However, the
approach of working directly with less smooth weak solutions is followed by some
authors.

The question of time regularity can be reduced to obtaining first space
regularity thanks to the work of Kruzhkov [351], 1967. He proved that for
bounded solutions of a wide class of parabolic equations Hoélder continuity of
u with respect to the spatial variable x, with exponent o € (0, 1] implies Holder
continuity in time with exponent a* = «/(2 4+ «). This exponent was improved
by Gilding [262] to a** = «/2. We will return to the precise exponents in
Chapter 15 for the PME in d = 1 and in Chapter 19 for d > 1.

Section 7.2. The statement of the continuity Theorem and the proof performed
in Sections are taken from the paper [461] by P. Sacks. Actually, that paper treats
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a somewhat more general equation with convection term
9B(v) = Av+q- (Vy(v)) + F(z,t,v)

with q € C1(Qr), v € C*(R). On the other hand, DiBenedetto [207] treats
equations of the more general form

BB(u) =V - A(z,t,u, Vou) + Bla, t,u, Vou) 3 0, (7.33)

where the increasing function S may have a jump at u = 0. Structural assump-
—
tions are imposed on 3, A and B.

Section 7.6. Caffarelli and Friedman proved in [140] that for a non-negative
solution of the porous medium equation u; = Au™, m > 1, the boundary of the
set [u > 0] is a locally Hélder continuous surface and as a consequence that the
solution itself is locally Holder continuous. Free boundaries will be studied in
depth in Chapter 14.

The main part of DiBenedetto and Friedman’s paper [211] is devoted to
proving Holder continuity for the gradient of local weak solutions of degenerate
parabolic systems

Dyu? — div(|Vul[P~2Vu?) = Fj(z,t, Vu),

in m unknowns, 1 < j < m. Better regularity than a certain Holder exponent
cannot be achieved in view of the explicit examples of solutions with free
boundaries, like the ZKB family and the travelling waves. This phenomenon of
limited regularity is a general property of solutions with moving free boundaries,
as we will see in Chapter 14 devoted to study propagation and free boundaries.

Section 7.7. The study of one-dimensional continuity will be continued in
Chapter 15 and is intimately related to the properties of the free boundary
or interface. Optimal regularity will be found.

The topic of determination of optimal regularity in the several dimensional
setting still offers many open problems. We will return to it in Chapter 19.

Problems

Problem 7.1 Prove that the iterative relation (7.12) has a solution that tends
to zero as j — oo if Jy is small enough, as indicated in (7.13).

Problem 7.2

(i) Complete the details of the proof of Theorem 7.17 as indicated in the text.
(ii) Prove Theorem 7.18.
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THE DIRICHLET PROBLEM III. STRONG SOLUTIONS

We devote the present chapter to addressing the question of how regular actually
are the solutions constructed in previous chapters. We recall the results of
Chapter 7 where the continuity of bounded solutions was established, but the
results of this chapter take another direction.

Here, we begin to concentrate our interest towards the PME, so that
®(s) = |s|™1s for some m > 1 and take forcing term f = 0, a case most often
found both in the theory and the applications. We consider the solutions of the
homogeneous Dirichlet problem for the signed PME, posed in a bounded spatial
domain with initial data ug € L*(£2). In this setting, we describe solutions with
a better regularity than the one provided by the weak solutions of Chapter 5.

In Section 8.1 we address the question of further regularity of the time
derivative u;. Both in the case u > 0 and in the signed case, we prove that
uy is a locally integrable function.

This allows us to introduce in Section 8.2 the more stringent concept of
solution called strong solutions, i.e., weak solutions such that both u; and A®(u)
are locally integrable functions.

Strong solutions have nice calculus properties. Some of those properties are
examined in detail. We also discuss the concepts of super- and subsolutions,
important technical tools in developing the theory.

We denote by M(Q) is the space of bounded and signed Radon measures in
a subdomain 2 of the Euclidean space of any dimension.

8.1 Regularity for the PME. Bounds for u;

To begin with, we recall the results we have derived in the preceding chapters
for the GPME, rephrasing them in terms of the PME with f = 0. We know that
for any ug € L'(€) there exists a unique weak solution (as in Definition 6.5) of
the signed PME that is bounded for positive times. The universal estimate in
terms of the Friendly Giant gives the following upper bound for all solutions

u(z, )| < C =7 (8.1)

for a constant C' = C(2, m). Moreover, the solutions are continuous for ¢t > 0 and
we have uniform estimates on V(|u|™'u) and (Ju|™+1/2), in L2(7,T : L*(Q))
with 7 > 0.

181
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8.1.1 Bounds for us if u >0

Unfortunately, none of the previous estimates allows for a direct control of the

derivative u; appearing in the equation. We obtain next a universal estimate

for us. Such an estimate is a quite useful tool. Though such estimates exist for

signed solutions, the strongest one happens when u > 0. We complement the

result with an improvement into the form of LP integrability for some p > 1.
Let us start with the universal bound.

Lemma 8.1 All non-negative weak or limit solutions of problem HDP for the
PMFE satisfy the estimate

up > —ﬁ (8.2)

in the sense of distributions in Qr

First proof Let u = u, be one of the approximate solutions to Problem (5.1)—
(5.3). Consider the function

z:=(m — 1)tu, + u. (8.3)
A simple computation shows that z is a solution in @ of the equation
2= A(mu™ 12). (8.4)

Also, that z(x,t) = u(z,t) > 0 on 3 and z(z,0) > 0 for all © € Q. Hence, by the
standard maximum principle z(z,t) > 0, which is equivalent to (8.2). In this case
we obtain a pointwise inequality.

We now pass to the limit in (8.2) to obtain the estimate for any limit solution
of the HDP, as formulated in equations (5.1)—(5.3). This can only be done on the
weak or distributional form of the inequality, which is obtained by multiplying
by a test function ¢ € C2°(Q), ¢ > 0, and integrating by parts, i.e.

// <Mu¢ - W’t) dxdt > 0.

Second proof The reader may wonder how we found the precise combination
z=u+ (m— 1D)tu

to which the maximum principle can be applied. There is a beautiful and simple
argument based on scaling which produces such a magic function. It is as follows:
given a smooth solution u and a constant A > 1, we consider the function

a(z,t) = du(z, N1 t). (8.5)

This is again a solution of the PME. Moreover, for A > 1 we have a(z,0) =
Au(z,0) > u(x,0), hence by the maximum principle & > w in Q. Now differentiate
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(8.5) with respect to A and put A = 1. We get

0< %ﬁ(x7t)|,\:1 — u(z, ) + (m — Dtug(a, 1),

namely (8.2). |

The fact that both estimates hold in the sense of distributions does not mean
that u; is a function. At least, since u is the limit of a sequence {u,} for which
(un): is locally bounded below uniformly in 7, u, is in principle a Radon measure.

We continue the study in the context of non-negative solutions of the PME
to prove that u; is actually an integrable function. For that purpose, we have
to use Lemma 8.1 and combine it with the estimate for (u(™*1/2); into an LP-
estimate for u;. This is rather technical. We use the following result.

Lemma 8.2 Let K be a subset of R? with finite measure, let I = [to,t1] and
assume that v is a function defined in K x I that satisfies

(i) ve L®(I : LYK)),v > 0,0;v > 0;

d
(ii) v* and a(UA) € L"(K x I) for some A\,r > 1.

d
Then, 7Y € LP(K x I) for every p € [1,p1), where

rA

oo+ € (1,r).

p1=

Proof Without loss of generality we may assume that v > & > 0in K x I by
replacing v by v 4 € since our estimates will not depend on e. Now, for any
p € (1,r) and v € (0,p) we have

v p—v

’dU’p_
dat! dt

1 dov?
A dt

where 1 — o =v(A—1)/(p — v). We choose v such that p — v + (v/r) = 1, that
is

_(p=Dr
r—1 "~

Clearly, 0 < v < p. Moreover, we obtain for ¢ the value

rip—1A-1)
r—p

oc=1-
so that o > 0 if p < p;. With the assumption we have in K x I

Hal =) (- fal) ™

dv dv
dt dt
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Finally, the last integral is estimated at every fixed time as

l/v"al:c < l(measK)l"7 (/ vdx) .
o o m

These calculations must be justified for general functions by approximation.

Corollary 8.3 Any non-negative weak solution of Problem (5.1)—(5.3) satisfies
up € Ly, (Q) for any p € [1, (m +1)/m).

Proof Again, we may restrict ourselves to classical solutions by approximation.
If w is the solution, then

v(x,t) = tu(x, t™h)

satisfies the conditions of Lemma 8.2. Observe in particular that v; > 0 is a

consequence of (8.2). By estimate (5.41) of Theorem 5.7, we may take A = mTJrl,

r =2, hence py = (m+1)/m. [ |
As a consequence of Proposition 5.12, Lemma 8.1, and Corollary 8.3 we have

Corollary 8.4 For any non-negative weak solution we have tuy € L>(0,00 :
LY(Q)) and

Juwdr<o. ol < -l (3.6)

m—1

Proof In case u is smooth the first inequality follows from (5.50) for p = 1.
Since uy = (ug)t — (u¢) ™, and |ug| = (ug)™ + (ur)~, we have

(u)tde < [ (we)"dr and [ |ug|de = [ (Juf |+ |u; |)de <2 [ |u; | de.
Joras | Jae= | /

We now use (8.2) to obtain (8.6)-right. [ |

Remark If Ay is bounded below as in (8.17) the bound (8.6)-right for u; can
be improved and u; € L>(0, 00 : L*(€)). See Problem 8.1.

8.1.2  Bound for u; for signed solutions

There is also a weaker universal estimate for signed solutions

Lemma 8.5 All weak solutions of problem HDP for the PME have a distribu-
tional time derivative us in the space L>=((1,00) : M(R?) for all 7 > 0 with a
bound of the form

2[[uollx
”ut(t)HM(]Rd) < m (8.7)

Proof Arguing as in the second proof of the Lemma 8.1, if u is a solution with
data ug and X is a positive constant, then

a(z,t) = Mu(z, \" 1 t)
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is the solution with data @g(z) = Aug(z). Now fix t and h > 0 and put \™ "'t =
t + h so that A > 1. Then,
u(z,t 4+ h) —u(z,t) = Az, t) — u(z, t),

which can split into (A~ — 1)a(z,t) + (a(z,t) — u(x,t)). Using L' contractivity
to estimate the last term, we get

AT = D|aolly + (A = 1)[Juol]1- (8.8)

In the limit A — 0 (with ¢ fixed), we have A — 1 and (A — 1)/h — 1/((m — 1)¢).
Therefore, we get for h ~ 0

[uz, £+ h) —u(z, )]l <

2
lu(z,t + h) —u(z, t)||1 < M(thO(h)). (8.9)
This implies that wus, the limit of the time-increment quotients, is a Radon
measure, and satisfies estimate (8.7), since the norm || - ||; goes over in the limit
to the norm in the space M (). |

Actually, we know that for ¢ > 7 > 0 our solutions are bounded and also C'*®
on the set {u # 0}. There is a general result of measure theory that says that
under such circumstances, if u; is a bounded Radon measure, then it must be a
plain integrable function. Such a result is proved in a slightly more general form
in Lemma A.2 for the reader’s convenience. In this way we conclude

Corollary 8.6 The solutions of problem HDP for the PMFE have a distributional
time derivative u; in the space L>((1,00) : LY(R%)) with the bound

2||uoll1

Hut(t)”l < m

(8.10)

Remark Estimates (8.2) and (8.7) lose their information as ¢ — 0. This is quite
natural since the estimates are universal and the initial data need not be good.

8.2 Strong solutions

We take into account the regularity just proved to propose a new concept of
solution that appears naturally in the literature. Let us begin by a general
statement: a locally integrable function w for which all the derivatives which
appear in an equation are functions rather than distributions and such that
the Fequation is satisfied a.e. in its domain is called a strong solution of that
equation.
For equation (5.1) these requirements amount to the following:
(i) u, ®(u), ur, A®(u) € L (Q);
(ii) ur = A®(u) + f as locally integrable functions in @ (i.e., almost every-
where).
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This is the definition of strong solution for the PME posed in @), where no
reference to initial or boundary data is made.

A precise definition of strong solution for a problem, like (5.1)—(5.3), asks for
functional spaces which allow to define in what sense the initial and boundary
data are taken. Again, a convenient choice of spaces should allow both for
existence for a suitable class of data and, on the other side, for uniqueness.

In our case, the estimates obtained in the previous subsection imply the
following result when ®(s) = |s|™ " !s and f = 0.

Theorem 8.7 For every ug € L' (S2), the weak solution of the HDP for the PME
s a strong solution in the following sense:

(i) u™ € L3(1,00 : H}(Q)) for every T > 0;
(i) wy and Au™ € LL (0,00 : LY(Q)) and uy = Au™ a.e. in Q;

loc

(iii) w € C([0,T) : L(2)) and u(0) = uo.

For brevity, we often write u™ instead of |u|™~!u. Conditions (i) and (iii) have
been already established. As for (ii), we have even proved that u; € LS. (0, 00 :
LY Q)N LY (Q)for 0 < p< p;ifu>0.Using equation (6.22) withn € C°(Q),
we conclude that V(u™) has u; as its weak divergence, hence A(u™) € LV (Q)

with p > 1 as in Corollary 8.3. By standard theory, all the second spatial
derivatives of u™ belong to LY (Q). Moreover, the PME is satisfied in Q. W

loc
We give next a summary of the additional properties of the solution
Theorem 8.8 The strong solution of the above problem also satisfies:
(i) w € L™ (Q7) and the L>™ bound (5.57) holds.

(ii) V(u") € L3(Q™) for every v > m/2 and the bounds (5.20), (5.50) and (5.51)
hold.

(iii) tuy € L>°(0,00 : L*(Q)) and the bounds (5.47), (5.93) and (8.10) hold.

(iv) If ug > 0, then uy € L}, () for 1 <p < p1 and the bounds (8.2) and (8.6)
hold.

(v) For every two solutions u,u we have the contraction estimates (6.1), (6.2).
In particular, ug < Uy implies u < U in Q.

(vi) For everyt > 1 >0 and every 1 < p < co we have ||u(t)|lp, < ||u(r)]lp.

(vii) If ug € C(Q),up(z) > 0 for x € Q and ug(x) =0 for x € IQ, then u is a
classical solution, positive in Q.

Remark The condition u € C([0,00) : L1(£2)) does not look essential in the
definition. Nevertheless, it is natural since we want to view our solution as
a continuous curve in some functional space, in this case t € [0,00) — u(t) €
LY(Q). Anyway, in our case it does not mean any extra condition, since ®(u) €
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L2 (0,00 : H}(Q)) clearly implies u € L (0,00 : L*(2)) which together with

loc
uy € LL (0,00 : LY(Q)) gives u € C((0,00) : L(2)). We make the assumption
of continuity at t = 0 in order to satisfy the initial condition u(0) = wy. |

8.2.1 The energy identity. Dissipation

One of the benefits of the improved regularity of strong solutions is found in
making (easier) proofs of results that depend on integration and/or taking limits.
Let us prove here that strong solutions of the PME satisfy the energy identity
that had been stated in formulas (5.20), (5.39) as inequality.

Proposition 8.9 (Energy identity) For the strong solution of Theorem 8.7 we
have the energy identity

(m+1) //\Vum|2dxdt+/|u|’”+1(x,t2) dx :/\u|m+1(m,t1)daz (8.11)
Q12
where Q12 = Q X (t1,t2) and 0 < t1 < ty. This translates into the dissipation law

4 lu|" Tt dr = —(m +1) / |Vu™|? ds, (8.12)

valid for a.e. t > 0.
Proof For a classical solution the calculation is easy: we have
Oe(Jul™ ) = (m + Du™uy,

where we write u™ instead of |u|™sign(u). Then,
d
—/ |u|™ T do = (m + 1)/ uuy dr = (m + 1)/ u™ Au™ dx
dt Jo Q o

and this equals —(m + 1) [ |[Vu™[?ds.

For a strong solution, since u; is integrable and u is also bounded, the first
displayed line is true for a.e. time. Then, we approximate ©™ by smooth functions
¢, so that also the spatial gradient converges weakly in L? to Vu™. We get for
a.e. t

/ Au™py, dx + / (Vu™ - Vp,)de =0,
Q Q
so that in the limit the equation
// u™ Au™h(t) dedt + //(Vum -Vu™)h(t) dedt =0

holds for every test function h(t) with compact support in (0,7). We conclude
that

/ / (™), h(t) dedt = — / IVu™[h(t) dadt.



188 The Dirichlet problem III. Strong solutions

Letting h converge to the characteristic function of the interval [t1,¢2] we obtain
(8.11). This easily gives (8.12) for a.e. time t. [ |

We have taken as ‘energy’ the expression [ |u|™ 1 da for convenience because
of its simpler form. We could perform a similar calculation and obtain a
dissipation formula for powers [ |ulP dz with p > 1, using as a starting point
Proposition 5.12.

8.2.2  Super- and subsolutions. Barriers

The property of comparison enjoyed by the semigroup of weak solutions has an
interesting technical consequence that is much employed in the theory, namely
the possibility of getting estimates by using comparisons with functions that are
not exact solutions but satisfy a suitable inequality. This has been done in a
certain sense in Section 5.7 by considering problems with a forcing term and a
boundary condition. Super- and subsolutions have been considered in Section 6.2
for the very weak theory, see specially Theorem 6.6.

Definition 8.1

(A) A non-negative function u € C((0,00) : L*(Q)) is said to be a strong super-
solution of the GPME in Q = Q x (0,T) if

(i) ®(u) € L2 (0,00 : HY(Q)), and u; € L (0,00 : L}(Q));

loc loc
(ii) w satisfies the inequalities

/ {V®(u) - Vn+umn— fn}dxdt >0 (8.13)
Q
for any function n € CH(Q), n > 0.

(B) A strong supersolution of the GPME in QQ = Q x (0,T) is said to be a
strong supersolution of the homogeneous Dirichlet problem if u € C(]0,00) :
LY(Q)) and

(iil) u(0) > ug.
A similar definition applies to subsolutions.
Definition 8.2

(A) A non-negative function u € C((0,00) : L*(Q)) is said to be a strong sub-
solution of the GPME in Q = Q x (0,T) if

(i) ®(u) € L2 (0,00 : HY(Q)), and u; € L (0,00 : LY(Q));

loc loc
(ii) w satisfies the inequalities

/ {V®(u) - Vn+wun— fn}dedt <0 (8.14)
Q
for any function n € CL(Q), n > 0.
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(B) A strong subsolution of the GPME in Q = Q x (0,T) is said to be a strong
subsolution of Problem (5.1)—(5.3) if u € C([0,00) : LY(Q)) and

(iif) u(0) < wo.

It is clear that any strong solution is at the time a strong supersolution and
a strong subsolution. We recall that functions with the regularity of the above
definitions have traces on the lateral boundary, ¥ = 99 x (0,T) if the boundary
is a smooth surface, and the trace Ts(®(u)) € L2(0,T : W/2(9Q)) € L*(X). The
weak solutions we have constructed for the homogeneous Dirichlet problem have
trace zero, Trs(®(u)) = 0. We have the following comparison result.

Theorem 8.10 It u is a strong supersolution of problem HDP with data ug, f,
and v is a strong subsolution of the same problem with data vy, g, and ug > v,
f > g and we assume that the trace of u on the lateral boundary ¥ is a.e. larger
than the trace of v. Then, for every t > 0 we have u(t) > v(t) a.e. in Q.

Theorem 8.10 is a consequence of the following lemma.

Lemma 8.11 Given u a strong supersolution of problem HDP with data ug, f,
and v a strong subsolution of the same problem with data vy, g, and assume that
Trs(u) > Trs(v). Then, we have

I[o(t) = u®)]+ @) < llvo — o]+l (e)- (8.15)

Proof We copy from the proof of Proposition 3.5, but now a prior approxima-
tion is used. Let p € C1(R) be such that 0 < p < 1, p(s) =0 for s < 0, p/(s) >0
for s > 0, and consider a sequence w, of C! approximations of ®(v) — ®(u)
in L2(7,T : H*(Q)). We may also ask that w, <0 on ¥ and converges a.e. to
®(v) — ®(u). Since Vp(wy,) = p'(w,)Vw, and p(w,) =0 on X, we can take as
test function n = p(wy)h(t) with 0 < h <1 smooth. We get

/ / (V(@(v) — B(u)) - Vp(w,)) h(t)dzdt — / / (v — w)ep(wn (. £))h(t) ddt < 0,

Now, the first integral converges to

/ V(@ () — B(w) 0 ((v) — D(w)) h(t)drdr,

which is non-negative, while the second integral converges to
//(v —u)p(P(u) — (v)) h(t)dzdt.

Therefore, letting p converge to the sign function Signar, we get

//(v — u)signg (®(u) — ®(v)) h(t)dzdt < 0.
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We now observe that signg (®(u) — ®(v)) = signg (u — v), and

Liy—u)

+ _
dt =

v —u)signg (v — u),

cf. [261]. Hence,

/ ([ — uls) h(t)dadt < 0.

After some calculation this means that

d
pn [v —u]tdz <0,

which implies that ||[v(¢) — u(t)]4 |1 is non-increasing in time. This proves the
result. [ |

Remark See the definition of classical super- and subsolutions in Problem 8.5.

Use as barriers

The standard way of employing supersolutions is as follows. We want to estimate
the behaviour of a strong solution w of the PME in terms of its initial data wug
(f =0). We construct a more or less explicit supersolution u; with equal or
larger initial data. By Theorem 8.10, the explicit supersolution is on top of the
solution, u; > u, and estimates from above for v can be performed on u;. We say
that u; is an upper barrier for u. The reader will realize at this moment that the
proof of the universal bound of Proposition 5.17 uses such a barrier argument.

Another easy application of the preceding theory happens when we con-
sider the solutions of the PME in two different domains ; C Qs C R, as in
Section 6.3. It is immediate that any strong supersolution (subsolution) of the
PME in a domain 9 is automatically a strong supersolution (subsolution) of
the PME in a smaller domain Q. In the case of Problem HDP, the solution
of the problem posed in Q2 = Qs x (0,T) with initial data uge is automatically
a supersolution of the problem posed in @1 = Q4 x (0,T) with initial data oy
such that ug1(z) < up2(x) for x € Q.

Corollary 8.12 In the above situation 1 C Qs, let uy be the solution of the
HDP posed in Q1 with data ug; and let us be the solution of the HDP posed in
Q2 with data ugz. Then, we have

ur(x,t) <wug(x,t) for every (z,t) € Q1. (8.16)

The same type of comment applies to subsolutions used as lower barriers.
The use of barriers and the corresponding construction of ‘artificial approximate
solutions’ is a whole line of work for some very skillful specialists.



Strong solutions 191

Notes

Section 8.2.1. Some of the estimates are more or less classical in nonlinear
parabolic equations.

The first proof of the control of u; from below in Lemmas 8.1 follows
the proof of Caffarelli and Friedman in [138], while an argument close to the
second proof was used in [145] in the study of the regularity of the Cauchy
problem.

Lemma 8.5 is due to Bénilan and Crandall [89] using the clever homogeneity
arguments that have wider applicability. Lemma 8.2 is due to Bénilan [82]. These
estimates are crucial in establishing that the weak solution is strong.

Section 8.2. Strong solutions are the preferred choice in the works of many
authors, like Bénilan, but note that they need a nicer equation than the usual
rule in nonlinear filtration. A convenient reference is the paper by Bénilan and
Gariepy [93], where the authors prove that any L>°(Q) distributional solution
uw of the initial value problem w; = A®(u) + div F(u) + f on Q = (0,T) x
with u(0,-) = ug is a strong Li (Q) solution. It is assumed that ug € L>(Q),

loc

fel? (Q), ®cCYR), FeCYR?), & >0 ae., and there exists o € C(R)

loc

such that |F'|> < o®'.

Problems

Problem 8.1

(i) Extend estimate (8.2) to an L™ estimate down to ¢t = 0 if ug if Aug® is
conveniently controlled from below. Prove that when

(m —1)Auf’ > —aug (8.17)

for some constant a > 0, then

auy

U T at1)

(8.18)

Hint: Compare the functions z; = (m — 1)(at + 1)us + au and 25 = 0: both
are solutions of (8.4) in @ and z; > z3 on the parabolic boundary of Q.
Hence, by the maximum principle which is again justified by approxima-
tion, we obtain z; > 2z, i.e., the desired estimate.

(ii) Show that condition (8.17) is implied for instance by the pressure bound

mAugl_l > —a.

(iii) Show that under the above conditions, the bound (8.6)-right for u; can be
improved and u; € L>(0,00 : L}(£)).
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Problem 8.2

(i) Show that the lower bound (8.2) can be obtained for the solutions of the
Dirichlet problem for the PME with f, g # 0 if

mf+(m—1)tf; >0, g+ (m—1)tg: >0
in the sense of distributions in their respective domains.
(ii) Show that ug > 0 and Aug* < 0 imply that u; < 0 in Q7 when the forcing
and boundary data vanish, f =g = 0.

Hint: Approximate by smooth solutions and write the equation for w;.

Problem 8.3 Prove that formulas (5.51) are satisfied as identities for the
solutions of the PME. Derive the dissipation formula

i/u"“d:c_ 4qq+1m/\v
dt Jq (g+m)?

for a.e. time ¢ > 0.

\ de. (8.19)

Problem 8.4 Combine estimates (5.94) and (5.20) we get estimates of the left-
hand side of (5.94) in terms of [ u{'"'dx. Thus,

d 2

& (ymt)/2
// t’dt e
Q

Conclude that

// 'C‘Zt(u(mﬂ)/?) ’

T

m—+1
< m—+1 .
dxdt < v /Quo (z)dx

m+1
mT

dadt < / u(z, 7)™ () da.
Q

Problem 8.5 Assume that v > 0 is a continuous function in @ such that wu;
and Au™ are continuous, and satisfies

Ut Z Au™

in Q. Show that it is a strong supersolution of the PME. If w is continuous at
t =0 with initial trace w(z,0) > ug(z), show that w is a supersolution of the
Problem (5.1)—(5.3). This is called a classical supersolution.

State a similar result for classical subsolutions and prove it.
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Problem 8.6 The estimates for u; of Section 8.1 apply to the FDE since they
can be proved by scaling methods that rely on the power nonlinearities with
exponent m # 1; precisely the linear case is excluded!
(i) Prove Lemma 8.1 in the form
U
(1 —m)t’

(ii) Prove the analogous to Lemma 8.5.

up <

(8.20)

Open problem Does the dissipation law (8.12) hold for all times?
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THE CAUCHY PROBLEM. L'-THEORY

This chapter is devoted to study the Cauchy problem, or pure initial value
problem, for the PME and the GPME in d-dimensional space, d > 1. In order to
focus on our main objective, we concentrate the main effort on the PME with
zero forcing term. We will work with integrable initial data, ug € L'(R?). Con-
sequently, we consider solutions which are integrable with respect to the space
variables, so-called solutions with finite mass, and develop the corresponding L'
theory. We will establish well-posedness for the Cauchy problem in this setting,
which is the one most often found in the literature and the applications.

We pose the problem in the class of strong solutions in Section 9.1 and prove
first uniqueness and L!-stability.

We address in Section 9.2 the existence of non-negative solutions for non-
negative initial data, which is a standard restriction in the applications. The
problem enjoys then some nice properties absent in the signed case. We investi-
gate these properties, among them the fundamental estimate in Section 9.3, and
the boundedness of the solutions for ¢ > 7 > 0 in Section 9.4. The contents up
to this moment is absolutely basic material, whose careful study is required.

We solve the problem of existence of signed solutions in Section 9.5. We
prove the conservation of mass in Subsection 9.5.1, and special properties in
Section 9.6. A main physical property of the PME is the finite propagation
property. The topic is presented in Subsection 9.6.3. It allows us to introduce
a main geometrical object, the free boundary, that will be the main object of
study of Chapter 14. This is also basic material, required in the sequel.

Many ideas and estimates are common to the study of the Dirichlet problem
in previous chapters. The main new feature arising in the study of the Cauchy
problem lies in the fact that we have to take into account the behaviour of the
data and solutions as |x| — oco. In some sense, working with data and solutions
with finite mass is a way of expressing that the solutions and data are small at
infinity. However, the mathematical theory is concerned with more general data
which may grow at infinity. Such a study is left for the advanced Chapters 12
and 13.

We devote Section 9.7 to extend the results to the homogeneous Dirichlet
problem posed in a possibly unbounded subdomain of R?, thus completing the
theory developed in Chapters 5, 6, and 8.

Keeping with the spirit of previous chapters, we turn our attention at the
end of the chapter to the Cauchy problem for the GPME in Section 9.8. We still
work in the L' framework. The idea is to obtain solutions of the Cauchy problem
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as limits of solutions of the Dirichlet problem posed in a bounded domain, e.g.,
a ball, and then let the bounded domain tend to the whole of R?. Many of the
ideas of previous chapters are used in this setting.

In this chapter we will use the symbols Q = R? x Ry and Q7 = R? x (0,T)).
An important constant of the theory appears in the estimates, o = d/(d(m —
1) +2). Even if solutions have negative values we often write u™ instead of
|u|™~tu for the sake of brevity. Sections 9.7 and 9.8 can be skipped in a first
reading.

9.1 Definition of strong solution. Uniqueness

Let us consider the initial value problem, CP:

{ut = A(ju|™tu) in Q 9.1)

u(z,0) = ug(x) for x € R4,

where m > 1 and ug € L(Q). We will pay special attention to the case ug > 0
that produces solutions u > 0. No difficulties arise in restricting time to the
interval 0 <t < T and replacing @ by Q. Following the motivation of Chapter
8, we will first give a suitable definition of strong solution for our initial value
problem and then prove existence, uniqueness and a series of basic properties of
such solutions.

Definition 9.1 We say that a function u € C([0,00) : L}(R%)) is a strong L'
solution of problem (9.1) if

(i) /|ul™ tu e LL (0,00 : LY(R?)) and us, A(Ju|™1u) € LL (Q);

loc loc
(i) uy = A(u|™"tu) ae. in Q;
(iii) u(t) — ug ast — 0 in LY(R?).

Equivalently, we could have said in (ii) that u; = A(u™) in the sense of
distributions in D(Q). In the rest of the chapter strong solution will always
mean strong L'-solution. Qur first step in the study of strong solutions will be
to establish the crucial L!-order-contraction property, similar to Proposition 3.5.

Proposition 9.1 Let uy, us be two strong solutions of Problem (9.1) in Qr. For
every 0 < t1 < ty we have

/[ul(x,tg) sl ta)] 1 da < /[ul(x,tl) Cuplmt)edz. (9.2)

Proof Let p e CY(R)N L>®(R) be such that p(s) =0 for s <0, p'(s) > 0 for
s>0and 0 <p<1,andlet j(r) = [p(s)ds be a primitive of p. We will choose
0

p as an approximation to the sign function

signd (r) = 1ifr >0, signj(r) =0ifr <0, (9.3)
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hence j will approximate the function s+ [s]+. Moreover, consider a cut-off
function ¢; € C2°(R?) such that 0 < (o <1, ¢i(z) =1 if 2| <1, ¢ (z) =0 if
|z| > 2 and let ¢ = (,(z) = G1(x/n). Asn — 00, T 1.

We subtract the equations satisfied by w; and wus, multiply by n =
p(uf® — ui) ¢ and integrate on S = R? x [t, 5] to obtain, with w = uf* — ul*,

[ = waenwic = [ swpwic (9.4)

Now, approximate w by means of a smooth kernel sequence p,,. If w, = w * p,
(here, x denotes convolution) we have w,, — w, Vw,, - Vw and Aw,, — Aw in
Ll .(Q) and almost everywhere for a subsequence, so that p(w,) — p(w) a.e.
Moreover,

[[ptwnswnc [[pwvulcs [[ v, -ve-o

We observe that the second integral is uniformly bounded above, since the first
and the third are uniformly bounded. Letting n — oo we get by Fatou’s lemma

// w)|Vwl*¢ < — // w)Aw¢ — // w)Vw - VC. (9.5)

Hence, returning to (9.4) we get

[ = wa)eptwic < - [[p@ivarc- [[pwve-ve
// W)V - vg——/ Viw)- V¢ (9.6)
~ [[iwacs [[ 1120,

where integration is understood on Q7. Letting now p tend to signar and observ-

\ /\

d
ing that our regularity justifies the formula ﬁ[ul — ug]y = signd (ug — UQ)%

(u1 — uz), we get after performing the time integration,

/[m(x,tz) — ug (1, t2)]+Cdx < /[ul(x,tl) — ug(z, 1)) C da
(9.7)
Hadle [[ ot oldzd,

Sn{|z|>n}

We let now n — oo to obtain (9.2), since w € LY (t1,to : LY (R?)) and || A |lco =
1ACL [0 /n. u
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Remark The proof of Proposition 9.1 actually uses the following requirements
on u and u™: u € C([0,00) : LL (RY)), u™ € L (Q) and

loc loc

(ul" — udt) 4 (x, t)dzdt = o(n?) as n — oo, (9.8)
/!
Shn

where S, = {(z,t) :n <|z| <2n, t; <t<ty} with 0<?t; <to, which are
weaker than our Definition 9.1. Therefore, Proposition 9.1 also holds under the
above hypotheses, if (9.8) holds uniformly for 0 < ¢ < ¢5 and if the initial data

are taken continuously in L{ (R?). We shall use this remark later on.

Again, as in Chapter 5, we obtain uniqueness and comparison as simple
consequences of this result.

Theorem 9.2 Problem (9.1) has at most one strong solution. If uy, us are strong
solutions with initial data ug1, uoe resp. and ugr < ugz are in RY, then up < uo
a.e. in Q. In particular, if upr = upz a.e. then uy = ug a.e. The map ug — u(t)
is an ordered contraction in L*(R?) (wherever defined, see below).

Examples Many of the examples mentioned so far in Chapters 4 and 5 are
examples in the new context, but not all.

(1) Though the source-type solution U(z,t) fails to be a strong solution of the
Cauchy problem because of the singularity of its initial data, any time-delayed
version u(z,t) = U(x,t + 1) with 7 > 0 is indeed a strong solution. Moreover,
U=>0.

(2) The dipole solution Ug(x,t) of formula (4.53) is an example of one-
dimensional signed solution with finite mass, once a proper delay is inserted to
account for the singularity of the initial data. The signed, compactly supported
solutions constructed in Subsection 4.6.3 are further examples of signed solutions
of the PME.

(3) The constant functions u(x,t) = ¢ are strong solutions at the local level, but
when ¢ # 0 they fail to satisfy the finite mass criterion. They will be included in
the extended theory of Chapter 12. Also the travelling waves of Section 4.3 will
be included at that moment.

9.2 Existence of non-negative solutions

We proceed next with the construction of non-negative solutions. We start by the
case of bounded initial data by using an approximation process and the results
of the previous chapters. The existence result for general initial data in L*(R9)
will follow once we show that every solution is bounded for ¢ > 7 > 0, which will
be done in Section 9.4.

Theorem 9.3 For every non-negative function ug € L*(R?) N L>®(RY) there
exists a strong solution u >0 of Problem (9.1). Moreover, u; € LY. (Q) for

loc
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1<p<(m+1)/m and

u

2||uollx
Jue(- )] < m (9.10)
If ug € LP(R?) for 1 < p < oo, then u(t) € LP(R?) and
lu@)llp < [luollp- (9.11)

Moreover, the map ug +— u(t) is an ordered contraction in L'(R?).

Proof (i) We begin by assuming that ug is not only bounded and integrable
over R?, but also that it is strictly positive, C* smooth and all its derivatives
are bounded in R?. Finally, (8.17) holds. Under these conditions we construct a
strong and classical solution. For that we consider the Cauchy-Dirichlet problems

Ut =A@Wm) in Q, = Bp(0) x (0,00),
(Pn) u(z,0) = ugp(x) for |z| <n,
u(z,t) =0 for |z|=mn,t>0,

where ug, = uoCn, {¢n} being a cut-off sequence with the following properties:
Cn € C®RY), (u(x) =1 for |z| <n—1, ¢u(z) =0 for |x| >n, 0< (u(z) <1
for n —1 < |z| < n, the derivatives of the ¢, up to second order are bounded
uniformly in z € R, and n > 2. Finally, AC™~! is uniformly bounded below.
By the results of Chapter 5 (Theorem 5.5 and Proposition 7.21), (B,)
admits a unique classical solution u, € C*(Q,) N C(Q,,) and u, >0 in Q,.
In particular, u,,1 will be a classical solution of the PME in @Q,, with positive
boundary data and initial data larger than ug,. We conclude from the classical
maximum principle that w,+1 > uy in @y, i.e., the sequence {u,} is monotone.
Moreover, we get from the two previous chapters uniform estimates for

(a) {u,} in L®°(0,00: LP(BL(0)), 1 <p < o0
(b) {(un)e} —in L>(0,00 : L'(Bn(0))) N Lf,(@n) for 1 <p < py
(c) {up} in L*(0,00 : Hy(B(0))).

Since all of these estimates involve bounds which are independent of n, we may
pass to the limit n — oo and obtain a positive function u € L*°(0, 00 : LP(R%))
for every p € [1,00), such that us, u™, Au™ belong to the same spaces to which
(Un)e, ul, A(ul™) belonged, and equation (9.1) holds in Q.

To check the smoothness of u, we first observe that in a neighbourhood
N C Q of any point (z,t) € Q,uy,(z,t) is defined and positive, say wu,(z,t) >
¢ > 0 for every (x,t) € N if n > ng. Since the sequence {u,} is monotone non-
decreasing and bounded, the interior regularity theory for uniformly parabolic
quasilinear equations gives uniform bounds for all the derivatives of u,,n > ng,
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in a smaller neighbourhood of (z,t). In the limit we conclude that u € C*°(Q).
Moreover for t = 0 we get u(z,t) = ug(z), = € RL

We have proved that, under the present assumptions, u is classical solution
of Problem (9.1). To comply with our definition of strong solution, we still have
to check the continuity of u = wu(t) as a map from [0,00) into L'(R9). It is
a consequence of the fact that u € L>(0,00 : L'(R%)) (for instance, by (5.50))
and u; € L*>(0,00 : L}(R?)) (cf. Remark to Corollary 8.4) so that u is absolutely
continuous from [0, 00) into L (R9).

Estimates (9.9), (9.10), (9.11) are an easy consequence of similar estimates for
the Cauchy-Dirichlet problem after passing to the limit. In particular, we have
0 < (2, ) < [luo]loo-

(ii) If up € L*(R%) N L>=(R?) does not fulfill the above requirements, we approx-
imate it by a sequence {ug,} of such functions. We may always do in such a
way that ||Jugn|l1 < [uoll1s |tonllee < ||tollsos Uon — uo in L*(RY). Let u, be the
solution with data wg,. It follows from Proposition 9.1 that u, converges in
C([0,00) : LY(R%)) to a function u and u(0) = ug.

Again estimates (a), (b), (c) of the previous step will hold uniformly in n
so that passing to the limit n — oo produces a strong solution of (9.1), which
satisfies the estimates (9.9), (9.10), (9.11). [ |

9.3 The fundamental estimate for the CP

Perhaps the most significant novelty of the Cauchy problem (with data ug > 0)
is the existence of a lower bound for the Laplacian of the pressure. Indeed, we
have

Proposition 9.4 Let v =mu™"/(m — 1). Then,

d

(0%
Av > —— ith = =
YTy T ) 2

(9.12)

The inequality is understood in the sense of distributions in . This bound
has been used so often in the theory of non-negative solutions in the whole space
(which is the most treated theory) that we consider it the fundamental estimate
for the Cauchy problem. It is usually known as the Aronson—Bénilan estimate
after its authors. Let us also remark that (9.12) is optimal in the sense that
equality is actually attained by the source-type or ZKB solutions, which are
a kind of worst case with respect to this bound, a fact which has interesting
consequences.

Proof (i) The formal derivation of the estimate is very simple. We first write
the PDE satisfied by the pressure v, i.e.,

vy = (m — DvAv + |Vo|?. (9.13)
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Then we write the equation satisfied by p = Av by differentiating (9.13) twice.
We have

) 2
pt(ml)vAp+2va'Vp+(m1)p2+22<83;x‘> '
i e

Since

Z(aij)2 > Z(an‘)Q > % (Z Clu‘) ;

we get

d

Here L is a quasilinear parabolic operator with smooth variable coefficients, since
we consider v as a given function of x and ¢t. We now apply £ to the trial function
_ C

t+71
and observe that £(P) <0 if and only if C > a=1/(m -1+ (2/d)). We fix
C = «. By choosing 7 small enough we may also obtain

p(z,0) = Av(x,0) > P(x,0) = —37 (9.15)

2
L(p)=pt — (m —1)vAp —2mVv-Vp — (m—1+>p2>0,

P(z,t) = (9.14)

from which the classical maximum principle should allow us to conclude that
p > P in Q. Letting 7 — 0 we would then obtain a pointwise inequality Av >
—alft.

(ii) The application of the maximum principle is justified when considering
classical solutions of (9.13) such that v,Vov and p = Av are bounded and v
is bounded below away from 0 so that the equation is uniformly parabolic.
Therefore, we need to construct new approximate solutions. This we do as
follows. We may always restrict ourselves to initial data ug which are bounded,
smooth and positive, thanks to Proposition 9.1. Consider now initial data

uoe () = uo(z) +¢, €>0. (9.16)

According to [357], there exists exactly one function u. € C°°(Q) that solves
(9.1) with initial data uo., and € < u, < M + ¢, where M = ||ug||co. Moreover, by
interior regularity results all the derivatives of u. are bounded in Q. In particular,
equation (9.1) is uniformly parabolic on w.. It follows that the fundamental
estimate (9.12) holds for v., the pressure of u..

Now, if we prove that v. — v as € — 0 in L{ _(Q), then (9.12) will still hold

loc
in the limit for v, though only in distribution sense, i.e.

// (UAcp - %w) dwdt > 0 (9.17)
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for every ¢ € C°(Q), ¢ > 0. Therefore, the proof is complete with the following
convergence result. |

Lemma 9.5 Ase — 0 u. — u locally uniformly in Q.

Proof The result is a consequence of the general theory to be developed later
in Chapter 12. However, we will give an ad hoc proof at this point for the reader’s
convenience. We first observe that, by the maximum principle, the family {u.}
is non-increasing as € | 0. It is also easy to establish that every u. is above the
solution u with initial data uy (Hint: compare u. with the approximations u,, to
u constructed in step 1 of Theorem 5.5 in the domain @,, and let n — oco). Since
w is strictly positive in @ and u. > u, and thanks again to the interior regularity
results, not only {u.} converges to a function @, but also the derivatives converge,
so that @ is a C*° solution of Problem (9.1) in @, u(-,0) = up and @ > u. |

To conclude that @ = u we still need some control of u™ as |z| — oo, as in
(9.8), to be able to apply Theorem 9.2. We use the following result

Lemma 9.6 For every € and t > 0 we have
/(ue(x,t) —e)dr < /uo(sc) dz. (9.18)
Proof Formally, we have [u.;dx = [ Au”dz = 0, hence

/(us(x,t) —e)dx = /(uOE(ac) —e)dx = /uo(x) dz.

More rigourously, we approximate u. with the solution w., of the following
Cauchy-Dirichlet problem

Ut = A(um) in @,
w(z,0) =upn(xz) +e  for |z| <n
u(z,t) =¢ for |z| =n and ¢t > 0,

for which we argue as in Chapter 5 and get a contraction formula as (6.1), which
we apply to ue, and @, = € to get (9.18) for u.,. Letting n — oo we obtain that
Uen, converges (the sequence is compact by the interior regularity theory) to a
solution of (9.1) which is u. by uniqueness. In the limit (9.18) holds.

Going back now to the main argument, we let £ — 0 to obtain

/ﬁ(m,t)dx < /uo(m)dx.

It follows that 7(t) € L>°(0,00 : L'(R%)) N L>=(Q), hence by the Remark to
Proposition 9.1 we conclude that & =wu in Q. This ends the proof of the
fundamental estimate. |

Estimate (9.12) is exact for the ZKB solutions. It implies the following
improvement of (9.9), (9.10).
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Corollary 9.7 u; € L2 (0,00 : LY(R?)) and

loc

us z—% in D(Q), (9.19)

|t < 2a|uolf1.- (9.20)
Proof The first inequality is a consequence of
ve = (m — 1DvAv + |Vo|? > (m — 1)vAw,

together with vy/v = (m — 1)uy/u and (9.12). For the second one argue as in
Corollary 8.4. Again the calculations are justified for smooth solutions and hold
in the limit for every solution. |

9.4 Boundedness of the solutions

We are now in a position to prove that all solutions are bounded for ¢t > 7 > 0,
the so-called L'~L>® smoothing effect. The proof is not so easy as in the Dirichlet
problem of Chapter 5; compare with Proposition 5.17.

Proposition 9.8 For every t > 0 we have

u(z,t) < Cluol|f t77, (9.21)
where 0 =2/(d(m — 1) +2), a=d/(d(m —1)+2) and C > 0 depends only on
m and d. The exponents are sharp.

The result will be derived as a consequence of the fundamental estimate
(9.12), thanks to the following result.

Lemma 9.9 Let g be any non-negative, smooth, bounded and integrable function
in R such that

Alg™H > -K (9.22)

for somem > 1 and K > 0. Then g € L=(R?) and ||g||c depends only on m,K,
d and ||g||1 in the form

glloe < C(m, d) [lg]l7 K7, (9.23)
with p=2/(24+d(m —1)) and 0 =d/(2+ d(m — 1)).

For a proof of this calculus lemma see Section A.8. Given the result, it suffices
to fix t > 0, and put g(z) = u(x,t) and K = a(m — 1)/mt (see formula (9.12))
to obtain Proposition 9.8 in the case where the solution u is positive everywhere,
hence smooth. The general case is done by approximation.

Formula (9.21) not only asserts that solutions with L' data are bounded
for positive times, but also gives a very precise quantitative estimate of the
bound. In fact, the exponents appearing in the formula can be derived from the
general boundedness statement thanks to a scaling argument. Since this kind of
argument has wider applicability, we give here a proof of this implication.
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Lemma 9.10 Suppose that for all solutions of the PME with ||ugll1 < 1 we have
at t =1 the uniform bound ||u(-,1)|jcc < C with C = C(m,d) > 0. Then (9.21)
necessarily holds.

Proof Let u be any solution of (9.1) with ||ugll1 = M > 0. Now, if we consider
the rescaled function

u(x,t) = Ku(Lx, Tt),
with constants K, L,T > 0,% is again a solution of (9.1) if
K™ 'L*=T.
On the other hand, ||uglly = 1 if
KM = L%

Both equalities are satisfied for T arbitrary, K = M T, L = (M™'T)% with
8 = a/d. Under these conditions our assumptions say that u(x,1) < C. Then,

u(z,T) = K '4(Lz,1) < C/K = CM°T~°. -

It is interesting to remark that if we calculate the decay rate of the Barenblatt
solution in the sup norm, we find that formula (9.21) holds with a certain precise
constant. We will show in Chapter 17 that the constant corresponding to the
Barenblatt solution is the optimal constant in inequality (9.21). This means
that the Barenblatt solutions solve an extremal problem, that of maximizing
sup,, u(zx,t) for given ¢t > 0 and given |lug|ly = M.

We point out that these arguments are quite different from the boundedness
proof in Chapter 5, compare with Proposition 5.7. The same techniques (or
interpolation) can be used to prove a more general version of the smoothing
effect:

Proposition 9.11 For everyt >0 and 1 <p < q¢ < oo we have
[u(®)llq < Clluolljt™ (9.24)
whenever ug € LP(R?). The constants C,~ and o depend only m,p,q and d.

We leave it to the reader to fill in the details and also to calculate the explicit
values of v and d, which are given again by a scaling argument. See also [515],
Chapters 2, 3.

At this stage we can complete the proof of existence of a non-negative solution
for every ug € L'(R?), ug > 0, using the fact that all the approximations are
uniformly bounded functions for ¢ > 7 > 0. But actually, we may as well address
the problem of existence without any sign restriction.
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9.5 Existence with general L' data

We study now the existence of solutions without the sign restriction on the data
or solutions.

Theorem 9.12 For every ug € L*(R?) there exists a unique strong solution u
of Problem (9.1) such that u € C([0,00) : LY(R%)) NL*®(RY x (7,00)) for every
T > 0. The solution satisfies estimates (9.10) and (9.11); |u| satisfies the L™
estimate

u(z, )] < Cluol|7 7, (9.25)
with C, o, a as in Proposition 9.8.

Proof (i) We approximate uo with a sequence of functions ug, € L'(R%) N
L>(R?) converging to ug, say

ugn () = max(—n, min(up(x),n)) X5, (0)(T)- (9.26)

We may apply to those data the results of existence of solutions of the homo-
geneous Cauchy-Dirichlet problem in bounded domains € = Bs,, (0) derived in
previous sections, to obtain solutions wu,,.

In order to pass to the limit, we examine the available estimates:

(a) Since ||ugn|l1 < |luoll1, there is an estimate in L>(0, 0o : L*(Ba,(0)) inde-
pendent of n:

lun ()1 < [luollr  Vt,n.

(b) Since the solutions u,, are bounded above by the solutions v,, of the problem
with non-negative data v,o(z) = max(ug,(x),0), by the boundedness result
of previous section, the sequence {u, (-, )} is also bounded above in L>(R%)
uniformly in n and ¢ for ¢ > 7 > 0. A similar argument shows that it is
uniformly bounded below.

(c) Using Theorem 5.7, uniform estimates hold for V(u!") in the space
L3(7,00 : L*(B,(0))):

T
1
/ / |Vu|? dadt < / |t (2, )| T da < C' < 0.
7 JBan(0) m+1Jp,.0

(d) Lemma 8.5 and Corollary 8.6 imply that we have a uniform bound on u,
of the form

2||uol|1

e (9.27)

[[un ()]l <

(e) The continuous dependence C((0,00) : L*(R?)) follows from the last esti-

mate. For ¢ = 0 we need another argument based on approximation, bar-

riers, and the L!-stability property (6.1), cf. Theorem 6.2, (ii). We leave
these details to the reader.
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Since all of these estimates involve bounds which are independent of n, we
may pass to the limit n — oo and obtain a function u € L>(0, 00 : LP(R?)) for
every p € [1,00), such that ug,u™, Au™ belong to the same spaces to which
(tn)e, u, A(u™) belonged, and equation (9.1) holds in Q.

(ii) Uniqueness of strong solutions was settled in Proposition 9.1. ]

Let us list some of the properties that these solutions satisfy that come as
direct consequence of the proof.

Proposition 9.13

(i) The solutions are continuous functions of (x,t) in @ with a uniform
modulus of continuity fort > 7 > 0.

(ii) For t > 7 > 0 the solutions are energy weak solutions with the regularity
|Vu™| € L?(R? x (1,00)) and

T
1
/ / |Vu™|? dedt + ——— |u(z, T)|" T da
T Rd m + ]. Rd

= ;/ |u(z, 7)™ d.
m + 1 Rd
This estimate holds down to T = 0 if ug € L™TH(RY).
(iii) The mazimum principle holds, and even formula (9.2).
) If uo is non-negative, then u > 0 and estimates (9.12) and (9.19) hold.
) If ug is strictly positive and continuous, then u € C*(Q) N C(Q) and is a
classical solution of (9.1).

Proof The question of continuity has been settled for bounded solutions in a
local setting in Chapter 7 and the results apply here. For the equality sign in
(ii) see Section 8.2.1. The rest is also easy. |

Remarks

(1) We point out that the pointwise derivative estimates (9.12), (9.19) are typical
of non-negative solutions and need not be true for solutions of changing sign. Of
course they hold for negative solutions (with reversed inequality).

(2) Note also that estimate (9.19) improves the constant of (9.9) (a fact that is
not so important for m > 1 but has a strong influence on the theory for m < 1,
see [515]).

(3) Moreover, if ug is smooth this is reflected in the smoothness of u down to
t = 0 that holds at all points where ug(z) # 0.

Corollary 9.14 The strong solutions of the Cauchy problem (9.1) for the PME
form an ordered contraction semigroup in the space L*(RY).
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Definition 9.2 The class of solutions constructed in this section is the most
frequently encountered in the literature, specially when ug,u > 0. We will refer
to it as the class Sy. We shall sometimes write u(t) = S¢(ug) for the function
u(-,t) where u is the strong solution on this class with data ug.

These notations are useful in Chapter 12.

9.5.1 Mass conservation

The solutions of the Cauchy problem (9.1) have an important conservation
property, not enjoyed by the solutions of the Cauchy-Dirichlet problem.

Proposition 9.15 For every t > 0 we have

/ u(z, t)ds = / uo(z)dz. (9.28)

Proof We take a cut-off function (,, as in Theorem 9.3 and integrate by parts
as follows:

/u(x,t)(n(sc)d:lc - /uo(x)(n(m)dx = // u Gy dadt

:/ Au™(, dxdt
= // u" A, dxdt — 0 as  n — oo.

The calculation is justified if u is smooth and bounded. For general u it follows
by approximation, using Proposition 9.1. |

This law is usually called conservation of total mass, or mass conservation
law. The motivation is as follows: when u > 0, we will interpret a strong solution
u = u(t) of the Cauchy problem as the density distribution at time ¢ of a certain
substance that evolves in time according to the PME while keeping the whole
mass constant. In the case of the Cauchy-Dirichlet problem posed in a domain €2
such a mass is not conserved because a part of it flows out through the boundary
09. Conservation is also true for the solutions of the homogeneous Neumann
problem, see Chapter 11.

Note that the law is true for signed solutions, where the interpretation is not
just the same.

9.5.2  More properties of L' solutions

We investigate further the regularity of the constructed solutions. In particular,
we show that the initial data are taken in the most standard sense of weak
solutions. For ¢ > 7 > 0 they are local weak energy solutions.

Proposition 9.16 If u is a solution of the class S1 with initial data
up € LY(R?), then |u|™ € LY(S) for all sets S = Br(0)x[0,T], R>0,
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0 < T < T(ug). Moreover, for all n € C°(R? x [0,T(ug)) we have

/ {Ju|™ uAn + un;} dedt = /uo(x)n(a:, 0) dx. (9.29)

Moreover, |u|™ tu € HE_((R?) x (0,T(ug)).

Proof Letd e C*(R) with0 <60 <1and®f(x)=0for |z| > R >r. In view of
the local boundedness estimate (9.21) for the solutions of the class Sy, for T > 0
we have

// |u]™6 dxdt < cR2||u0||f’8(m71) // lu(z, s)|s~P4m=Y dsda.
Qr S

Using the uniform bound in L! we get
// |u|™0 drdt < c¢(R)|juol|ST~%°, §=26(m—1)+ 1.
T

This proves the first claim.

As for the integration formula, if we admit that the estimates in H. _((R?) x
(0, T(up)) apply uniformly to the approximations u,,, then we can pass to the
limit in the formulas for the approximations with time origin ¢ = 7 > 0. We then
pass to the limit 7 — 0. |

9.5.3  Sub- and supersolutions. More on comparison

Theorem 9.2 allows us to compare solutions of the Cauchy problem. However,
in many cases we will be interested in functions which either are defined in a
subdomain of @) or are not exact solutions of (9.1). A first observation is the
following: if u is a strong solution of the Cauchy problem and €2 C R? is any
bounded space domain, then w is both a supersolution and a subsolution of
the PME in @ = Q x (0,T'), and will have a non-negative trace on the lateral
boundary 3 = 99 x (0,7). We are now in a position to apply the results of
Sections 6.2.1 and 8.2.2 and obtain comparison results.

In our context, the natural definitions of super- and subsolution are as follows:
a function u defined in a subdomain S of @ is called a (strong) supersolution of
(9.1) in S if u,u™, uy and Au™ € Li (Q) and uy > Au™ a.e. in S. A subsolution
is defined in a similar way, only u; < Au™.

We ask the reader to check that a strong supersolution (resp. subsolution)
of the CP becomes a weak supersolution (resp. subsolution) of the DP when
restricted to Q@ = Q x (0,T) if @ C S. In particular, this applies to the solutions
of the CP defined in Q =R? x (0,7) are supersolutions of the HDP when
restricted to a subdomain of the form Q x (0,7") with  a subdomain of R%.

We present in Problem 9.1 a useful variant of Proposition 9.1.

We can also modify the above results to provide comparison for a subsolution
and a supersolution defined in unbounded domains, see Section 11.4.
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9.6 Solutions with special properties

The semigroup generated by the PME in the whole space has interesting
properties when the class of data is restricted. We will discuss in the sequel
two different scenarios: symmetric data and compactly supported data.

9.6.1 Invariance and symmetry

The PME enjoys a number of invariance and symmetry properties that we have
already mentioned at the formal level in Chapter 3. There is no difficulty in
proving that they hold for the CP studied in this chapter:

(i) INVARIANCE UNDER SPACE AND TIME TRANSLATIONS. If u is a strong solution
of the PME defined in Q =R% x (0,7), and a € R%, 7 >0, then u(x,t) =
u(x + a,t + 7) is a strong solution of the PME defined in Q' = R? x (—7,T — 7).
Moreover, if 7 > 0, it is solution of the PME posed in Q" = R% x (0,7 — 1) with
initial data u(x,0) = u(z, 7).

(ii) ScALING. If w is a strong solution of the CP for the PME defined in
Q =R9 x (0,T), and k, I are positive constants, then

u(z,t) = ku(lz, K™ 12t)

is again a solution of the CP for the PME defined in Q' =R¢ x (0,T') with
T = Tkl-m~2.
(iii) SYMMETRY. If u is a strong solution of the CP for the PME defined in
Q =R4 x (0,7), then

u(x,t) = u(—=x,t)
is again a strong solution of the CP for the PME defined in @ with initial data
u(x,0) = up(—x).
(iv) ROTATION. If w is a strong solution of the CP for the PME defined in
Q =R? x (0,T), and R is a rotation of the space around the origin, then

(x,t) = u(Rx,t)
is again a strong solution of the CP for the PME defined in @) with initial data
u(x,0) = ug(Rxz). We can generalize that into all orthogonal transformations.

(v) RADIAL SYMMETRY. As a conclusion of the previous result, we derive the
following property: if u is a strong solution of the CP for the PME defined in
Q =R4x (0,T), uo(x) = fo(|z|), then the solution is also radially symmetric
with respect to the space variable,

u(z,t) = f(lzl, ).
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(vi) PLANAR SYMMETRY. If u is a strong solution of the CP for the PME defined
in Q =R? x (0,T), then

ﬂ(z7t) = u(f‘rlax% cee 7xdat)

is again a strong solution of the CP for the PME defined in @) with initial data
u(z,0) = uo(—z1,x2,...,2z4). Moreover, this holds when we consider symmetries
with respect to a hyperplane, H of R?.

9.6.2  Aleksandrov’s reflection principle

All of the above properties hold for signed solutions. In the case of non-negative
solutions, a more general result can be obtained, called Aleksandrov’s reflection
principle. We need some notation. Any H, hyperplane of R¢, divides R? into two
half spaces Q1 (H) and Q3 (H ). We denote by m = 7y the specular symmetry that
maps a point x € ; into its symmetric image with respect to H, 7(x) € Qs.

Lemma 9.17 Let u > 0 be solution of the Cauchy problem for the PME with
initial data ug € L*(R?) and assume that for a given hyperplane H we have

uo(ma () < uo(x) (9.30)
for all x € Qi (H). Then, for all times
u(rg(z),t) <ulx,t), =z Q(H). (9.31)
Proof By rotation and translation we may assume that H = {x; = 0}, so that
(X1, Zp) = (=21, ..., Ty).

and Q; = {z1 > 0}. By approximation we may assume that the solutions are
continuous and even smooth, even at ¢ = 0. We consider in Q = 2 x (0,00) the
solution u; = u and a second solution

us(z,t) = u(m(z),t).

By the symmetry invariance, us is also a strong solution of the PME; it
has initial values us(z,0) < uy(z,0) by assumption. The boundary values on
¥ = H x (0,T) are the same. If we are able to justify the maximum principle
for these solutions, then

Ug(ﬂ?,t) S Ul(-r; t)

in @, which proves the result. When € is a bounded set, this justification
is contained in Theorem 8.10. In our unbounded situation, we have to extend
the result as indicated in the previous section: we take approximations of u by
solutions of the Cauchy-Dirichlet problem posed in Bg(0) with zero boundary
data, show the result in that case, and pass to the limit as R — oo. This is
precisely the way solutions of the CP are constructed in Section 9.2. |
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As the reader may have observed, there is nothing very particular of the
PME in the proof. Indeed, the reflection principle holds for the typical parabolic
equations with space independent coefficients, like the heat equation, the fast
diffusion equation, the p-Laplacian equation, Stefan problem, reaction—diffusion,
and so on. The consequences of Aleksandrov’s principle on the behaviour of
solutions and free boundaries are discussed in Section 14.6.2.

9.6.3  Solutions with compactly supported data

We consider now the behaviour of solutions with compactly supported initial
data. Then the spatial support is bounded for all ¢ > 0, which is the simplest
version of the property of finite propagation. We sometimes use in that case the
expression ‘compactly supported solutions’ for simplicity by abuse or language.
We get the following property for the evolution of the support of the solution.

Proposition 9.18 Let u be the strong solution to Problem (9.1) with initial data
up € LY(RY) N L°(R?), and assume that ug is supported in a bounded set of RY.
Then for every t > 0 the support of u(-,t) is a bounded set.

Proof (i) For ug > 0, it consists merely of noting that we can find a delayed
Barenblatt solution centred for instance at 0 that lies on top of ug a.e.:

up(z) < Uz, 75 M).
By Theorem 9.2 we get u(x,t) < U(z,t+ 7; M), hence the result.

(ii) If up has changing sign, we bound it above by the solution u; = S;(ug) and
below by the solution ug = Si(—uy ). [ |

This result is complemented by estimates from above and below for the
expansion of the support when ug > 0.

Proposition 9.19 Assume moreover ug > 0 and ug is not zero. Then, given
any point xo where ug(xg) > 0 in a neighbourhood, there exist constants cy, ca
such that

Bg, ) (z0) C{z :u(z,t) > 0} C Br,u41)(z0) (9.32)

holds for t >0, where R;i(t) = ¢;t®/? and ¢; = c;i(ug). The estimate from above
is true for signed solutions.

Proof (i) If there is a point xg such that ug(x) > ¢ > 0 in a neighbourhood of
Zg, then, we can find a Barenblatt solution centred at xy above and below uyg:
there exist M and M’, 7 and 7’ such that

U(x —x0,7s M) < up(z) <U(x — 20,73 M).

By Theorem 9.2 we get U(x — xo,t + 7' M) < u(x,t) <U(x — xo,t+ 73 M),
hence the result. Note that there is no problem with the upper bound even
without the assumption ug(z) > ¢ > 0.
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(ii) We may eliminate the assumption of strict positivity on the initial data and
still get a lower bound for times ¢t > 7 > 0. Since u is continuous there exist
z1 € R% and M’ and 7 > 0 such that

u(@,7) 2 Uz —a1,7s M').
By the comparison theorem it follows that for every ¢ > 7 we have

w@,t) 2 Uz — 21, t+7 — 7 M),

hence

{1 u(z,t) > 0} D Bryqr—r)(71), (9.33)
which gives the desired lower bound. |
Remarks

(1) The upper bound can still be obtained for all compactly supported data
ug € L*(R?). This needs however a further tool that will be developed in Chapter
14, see Proposition 14.24.

(2) Since the initial data of Proposition 9.18 are dense in L!(R?), and the
semigroup is contractive, we conclude that solutions with compact support of

the form (9.32) form a dense set of strong solutions with respect to the norm of
C([0,00) : L}(R%)).

(3) The solutions of the Cauchy problem (9.1) having compact support as
described above are automatically solutions of the HDP (5.1)—(5.3) in any
domain @ = Q x (0,T) such that the support of u(t) is contained in Q for
0 <t <T. By choosing as 2 a ball with a very large radius we may conserve
this property for a time as large as desired. When this requirement is no longer
satisfied, they become super-solutions because of the boundary condition.

Note that classical free boundary solutions can be defined as in Section 5.13
of Chapter 5. We will pursue further the study of the evolution of solutions
with compact support in Chapter 14, Section 14.6, where the emphasis is laid
on monotonicity and the location of the free boundary, in Chapter 19 where the
main question is regularity, and in Chapter 18 which is devoted to asymptotic
behaviour.

9.6.4  Solutions with finite moments

Let us concentrate again on non-negative solutions. For any function f € L'(R?),
f > 0 the moment of order p > 0, or p-moment, is the integral

M) = [l f(a)da,
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finite or infinite. We introduce the spaces X, as the set of integrable and non-
negative functions with finite p-moment,

X, ={f € L*(RY): f>0,M,(f) < oo}

We want to show that the PME semigroup preserves the class &, for every
p > 0. Note that for p = 0, A} is the usual class of integrable and non-negative
functions, and conservation of mass answers the question, since it implies that
the O-moment is constant.

Moments are used in the theories of probability and diffusion to evaluate the
way a stochastic process or a mass distribution, represented by wu(z,t), spread
in time. In probability the total mass My = 1; when this is not the case in the
PME, we may use rescaling to reduce all the calculations to the case My(ug) = 1.
There are several choices, but we favour the rescaling

ug(z,t) = ku(z, k™1, (9.34)

and put k = My(ug) to obtain My(ug) = 1.
Two further elementary observations: by interpolation (Holder) we get for
every 0 <p <gq

M, (f) < Mo(f)!= @10 My(£)7/0.

Therefore (or using the fact that |z[? < |z|? + C(p,q)) we have

My(f) < My(f) + C(p, ) Mo(f)-

After these preliminaries, we proceed with the main result on the evolution
of moments.

Proposition 9.20 Let u be the solution of the CP with data ug € L*(R?), ug >
0. If for some p > 2 we have Mp(ug) < 0o, then the moment M,(u(t)) is finite
for everyt > 0 and we have the growth estimate for large times: M,(t) = O(t"P),
where 8 = (d(m — 1) +2)~1 < 1/2. The same is true for p € (0,2) if we assume
moreover that ug € Xs.

Proof We recall that O(t?) is the expansion rate of the ZKB solution. For
brevity we call M,(t) = M,(u(t)). (i) Iterative calculation. For every p > 0 we
get the formal computation

d
%Mpw(t) :/\x|p+2ut dz:/|z|p+2Aumd:v.

If u is assumed to be small enough at infinity, we get after integration by parts

d

i Mpr2(t) = (p+2)(d +p) / j2lPu™ dz < (p+2)(d + p) |u(t)||5 My (2).
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Use now use the estimate ||u(t)||co < C’Mgﬁt*dﬂ, see formula (9.21), to get the
basic iteration formula

d

— M,

dt— "
with 0 < 28 <1 and ¢; = ¢1(p,d, m) > 0. For initial data with the generality
of the statement we argue by approximation with compactly supported or fast

decaying solutions.

a(t) < et MM (1), (9.35)

(ii) We now use induction on p. Starting from My(t) = |luo|l1 constant, the
induction step allows us to obtain when p > 2 is an even integer the estimate
My (t) = O(t?B).

(iii) For the rest of the cases, the assumption ug € X, with p > 2 implies ug € As;
by the above iterative formula we reduce the calculation to the lower moments
Mp_5(t), ... until we reach M (t) for 0 < ¢ < 2. Let us tackle that case: assuming
that ug € X5, we use interpolation to get

M, (t) < Mo(t) D72 My ()72 < O(t7P). (9.36)
This ends the proof for p < 2. The rate for p > 2 is obtained by induction. W

Remarks

(1) Computing the moments on the ZKB solution (an easy calculation since it
is self-similar) we see that the asymptotic formula M, (t) = O(tP?) has the best
possible rate. Indeed, if u(x,t) = U(x,t + 7; My) is a ZKB solution then

My (u(t)) = c(m, )My ™™ PP 4 7B (9.37)

This is one of the many instances where ZKB solutions will prove to be the
model for the rest of the L! solutions of the CP problem.

(2) The above result leaves a small gap, namely, proving that M,(¢) is finite and
has the correct growth under the sole assumption that ug € X}, when 0 < p < 2.
In fact, the result is true, but it needs some extra work that we discuss next,
and we also show precise large-time estimates.’

Proposition 9.21 Let u be the solution of the CP with data ug € &), for some
p > 0. Then, we also have

My (t) < M,(0) + C, My P =15 s (9.38)

and C, depends actually on m,d,p (and M,_2(0) if p>2). Also, the double
integral I, = fot Jra(1+ |z|?)P=2/2y™ d is finite, and

My () = Moy (0) = p(d+p —2) /0 / P20 da. (9.39)

' We recommend skipping this result in a first reading.
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Proof (i) Starting from My(t) = ||ug|/1 constant, the iteration step allows us
to obtain formula (9.38) when p > 2 is an even integer, since integration of (9.35)
gives

t
Mp+2(t) SMp+2(0)+Cl/ (MP(O)+Cng-‘rp(M—1)ﬂtpﬂ)M§(m—1)ﬂt2B—l dt
0

SMP+2(0)+CMP(O)M2(m 1)5t2,8+cl 1+(P+2)(m 1)5t(p+2),8

We get, (9.38) with a leading constant C,, = c¢(m, d, p) MF"™ ™ V” Formula (9.39)
holds so that I, is finite and grows in ¢ like M (¢).

(ii) Recall that by scaling we may always assume My = 1 and then the obtained
dependence on t has to be replaced by dependence on Mg”_lt.

(iii) We tackle next the case 0 < p < 2. It will be convenient to replace the
moments by the following modified moments,

N, (1) = /u(l +1e2)P2 da

Then, we have

d ~ u™ u™

@M =pp+d=2) / A5 22 ™ +pd/ TS =Rk

In any case,

d ~ u™
%Mp(ﬁ SC/ (1—|—x2 (2— p)/2 /|x|2 p

Here we use a more advanced technique. According to the theory of symmetriza-
tion to be developed in a later chapter, the last integral for u(-,¢) is bounded
above by the same type of integral when the initial data is a Dirac mass,
ug(x) = My d(z). Such a solution is the ZKB U(x,t;1), and then the integral
is explicit, and can be approximated by

I <c¢(m, d)tpﬁ_l.

By integration, the result holds. This ends the proofifd >2ord=1and p > 1,
so that the coefficient p(p +d —2) > 0.

(iv) Consider now the case d =1, 0 <p <1 and let us control I,. If p <1
the two integrals have opposite sign but the first is dominant for |z| > 1,
while the integral for |z| <1 is of the order to Cft*mﬂ for t large, which is
integrable in time. It only remains to consider the case p = 1, d = 1, where the
computation allows us to control only the integral [[ u(1 + 22)73/2 dzx. Note also
the computation

7 u(x, t)|z| de = 2u™(0,1),
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which predicts also the correct size M;(t) = M;(0) + (M 't)?; symmetriza-

b

tion implies also the best constant is obtained when u is a ZKB. |

We propose another method in Problem 9.10, where an almost optimal rate
is obtained, of the form M,(t) = O(t*?) for all p’ > p.

The study of moments can be extended to signed solutions. With the
appropriate definition of moment, the above results can be extended, and the
proofs can be obtained from the maximum principle by comparison with positive
solutions. We refrain from entering into the details and differences.

9.6.5 Centre of mass and mean deviation

The most important moments in the applications are those with p =1 and p = 2
that we discuss in more detail next. For p =1 we may introduce the linear
moments along each axis,

My (t) = /u(x,t)xi dr, 1=1,2,...,d. (9.40)
This is a very important quantity when we think of u(z, t) as a mass distribution,
since then the vector T = (Z1,...,Z4) defined by
~ M,y ;(t)
(t) = J
xZ( ) Mo(t)

is called the centre of mass of the distribution u(-,t). In probability the notation
(z;) is used and the integral [ u(z,t)dz = 1.

Proposition 9.22 For every ug € X the centre of mass of a solution of the
PME is finite and an invariant of the motion.

Proof The formal calculation is as follows

d My i(t) = /ut(%t)xi dr = —/umAxi dx = 0.

dt

This is true for smooth solutions of approximate problems and holds in the limit
by approximation. [ ]

Once we know that the centre of mass does not move, we may translate the
origin to that point and normalize the solution to have z; = 0 for all 7. In that
case, we pass to the second moment which becomes, after renormalization, the
square of the mean deviation of the mass distribution,

o2 (u(t)) = Melt).
Mo (t)

Our previous analysis if that case gives the precise estimate

t
My(t) = Ma(0) + 2d / / W (o, ) dr < Mo (0) + c(m, d)MTHm D328,
0

Therefore, we have
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Proposition 9.23 The following estimate holds for the solutions of the PME
in class Xs:

o(t) = O(M{™ VP, (9.41)
Again, this estimate has an exact rate.

Note that as m — 1 we get the well-known rate of the heat equation and
Brownian motion, see Problem 9.7.

9.7 The Cauchy-Dirichlet problem in unbounded domains

The strategy developed in constructing solutions of the Cauchy problem from the
solutions of the Cauchy-Dirichlet problem in expanding bounded domains can be
used to solve the Cauchy-Dirichlet problem posed in an unbounded domain 2 C
R?. We assume that the boundary is locally a Lipschitz-continuous hypersurface
of R%. We refer briefly to the Cauchy-Dirichlet problem as the Dirichlet problem.

More precisely, the homogeneous Dirichlet problem is well posed and
Theorem 9.12 is true, conveniently restated so that R¢ becomes  throughout.
The proof is done by solving Dirichlet problems in domains

Q= QN B,(0),

and approximating the data wp(x), x € Q, into a sequence of functions wugy,
defined in ©Q,, as in formula (9.26).

In dealing with non-negative solutions we have to recall that the pointwise
derivative estimates (9.12), (9.19) are typical of the Cauchy problem and are not
necessarily valid for non-negative solutions of the present Dirichlet problems. But
we can use an important bound:

Lemma 9.24 Ifu, is the solution of the approximate problem with non-negative
initial data, and u, = Si(uon) are the solutions of the Cauchy problem with the
same data, then

0 <up(z,t) <up(z,t) < Si(ug) Ve eQ,, t>0.

In view of the L> bound (9.25) for the Cauchy problem, this gives uniform
bounds for the sequence u,, when ¢ > 7 > 0, and helps in passing to the monotone
limit. The proof for changing sign solutions now offers no novelties. The
uniqueness proof of Proposition 9.1 need not be changed and Proposition 9.13
holds but for the last part of (iv).

On the other hand, mass conservation does not hold in general and the
symmetry properties apply only if the domain has the same symmetry property.
The application of the Aleksandrov principle is not easy.

Finally, the property of compact support is a simple consequence of the
comparison of the solutions of Dirichlet problem with the corresponding solutions
of the Cauchy problem, so that Proposition 9.18 and its upper estimate are true.
The lower estimates of Proposition 9.19 depend on the possible collision of the
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support of the solution with the lateral boundary ¥ = 9€Q x (0,7T). This issue
will be investigated in Chapter 14, see Subsection 14.2.2.

Non-homogeneous Dirichlet problems

There is also interest in solving such problems as in Section 5.7, now in
unbounded domains. The most famous case concerns the so-called exterior
problems, where the domain is the complement of the closure of a bounded
domain of R?, typically the exterior of a ball.

Another very typical problem of this kind is posed in d = 1 on a semi-infinite
domain Q = (0,00), the so-called half line. Typical data in that case are of
Dirichlet type u(0,t) = C or Neumann type, (u™),(0,t) = 0. The existence and
uniqueness theory offers no difficulties. See Problem 9.18.

9.8 The Cauchy problem for the GPME

We pose the Cauchy problem for the GPME in complete form, u; = A®(u) + f.
We follow closely the approach of Chapter 5. We assume that the constitutive
function ® is a continuous and increasing function : R — R, ®(0) = 0, and has at
least linear growth at infinity in the sense that |®(s)| > ¢|s| > 0 for some ¢ > 0
and all large |s|. Here is the problem statement.

Problem CP Given ug € L. _(R?) and f € LL (Qr), find a locally integrable

loc loc

function w = u(x,t) defined in Qr, T > 0, that solves the set of equations

up = A®(u)+ f  in Qr,

u(z,0) = uo(z) in Q, (9.42)

in a sense to be precisely defined.

The time T > 0 can be finite or infinite. Moreover, we want to find « in a
suitable functional class that guarantees existence, uniqueness and continuous
dependence on the data. To that effect, the data (ug, f) will have to be chosen
in suitable functional spaces.

9.8.1 Weak theory

In a first step, we introduce a suitable concept of weak solution. This does not
differ at all from the concepts introduced in Definitions 5.1 and 5.2. The most
general definition concerns the class of very weak solutions of equation GPME
in Q7, which are functions u € L _(Q7) with ®(u) € L _(Qr) and such that

loc

/ (®(u) Ay + g + f} dwdt = 0 (9.43)
QT

holds for any test function n € C°(Qr). We assume that f € Ll (Q7). In the

loc
more restrictive concept of weak solution of the GPME, we also ask that V®(u) €
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L .(Qr) and the equation takes the form

//{V@(u) -Vn —un — fn}dedt = 0. (9.44)
Qr

After inserting the initial conditions, as in Chapter 5, a suitable definition of
weak solution for Problem CP is

Definition 9.3 A locally integrable function u defined in Qr is said to be a
weak solution of Problem CP if

(i) ®(u) € L2(0,T : H' (RY));
(ii) w satisfies the identity

//{V@(u) -V —un} dedt = /uo(m)n(m,O)dx + // fndzdt (9.45)
Qr Qr

Rd

for any function n € C1(Q1) which vanishes for t =T and has uniformly
bounded support in the space variable.

We get existence and uniqueness results that are very similar to what
was derived for the Dirichlet problem in bounded domains. In the spirit of
Theorem 5.7, we get a basic existence result as follows: we define Ly (R9) as the
space of measurable functions 1y defined in R? and such that ¥(ug) € L'(R?).
Recall that ¥, the primitive of ® defined in (3.18):

U(s) = /0 &(r) dr.

Let X = Lg(RY)NLYRY), YV = L2(Q7) N LY(Q7), for some 0 < T < oo. In
contrast with the situation of the Dirichlet problem studied in Chapter 5, it
is important to note that we do not have an ordering of the LP spaces in the
present situation; in particular, we cannot assert that L. (R%) is a subspace of
any LP(R?), only that L, (R?) c L2 (R9).

loc

The following result parallels Theorem 5.7.
Theorem 9.25 Let ug € X and f € Y. Then, Problem CP has a unique weak
solution defined in the full time interval (0,T), and V®(u) € L?(Q7). Moreover,

we also have u € L*®((0,T) : X). The solution is obtained as limit of weak
solutions of HDP problems.

Proof (i) Uniqueness parallels Theorem 5.3. We formulate the result as an
independent lemma for ease of reference. The proof offers no real changes.

Lemma 9.26 Problem CP has at most one weak solution if also u € L*(Qr).

(ii) The standard way in which the solution of the Cauchy problem is obtained
as limit of the weak solutions of the HDP problems is as follows: we take domains
2, = B,(0); in each of them the initial data ug,(z) is the restriction of ug to
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Q,; we may also use a cut-off function to make it take zero boundary value at
|| = n in a continuous way: we take zero boundary data on %,,; we then solve
the HDP Problem to get a weak solution u.,; finally, we need to pass to the limit
as n — 00.

We also have uniform estimates for the masses of u,, due to the L' stability

estimate
/,

for 0 <t <T; this means a uniform control of the quantities [{X : |u,(z,t)| >
k}| which are bounded above by a constant Cy, that does not depend on ¢ € [0, T
or n. Moreover, C, — 0 as K — oo.

The energy inequality (5.20) applies to all approximate solutions in the form

t
|un(t)|dx§/ |u0n|dx+/ / \fo (2, 7)| dwdr < C1
B, 0 JB,

n

/B \Il(un(T))der// |V<I>(un)|2dxdt§/3 \Il(uOn)der/Q f®(uy,) drdt.
' ' h (9.46)

where Q,, = B,(0) x (0,T). In view of the assumptions on uy and f, when wg is
also bounded the right-hand side is uniformly bounded (for the last term observe
that ®(u,) is bounded in L*°(Q) while f is integrable). We thus get uniform
boundedness in n of three sequences:

/\I/(un(T))deCg, // B(up)? dadt < Ci, // VD ()2 dadt < Cs.
B"r n QW,

The constants C1,...,Cs do not depend on n or t. When ug is not assumed to
be bounded we need to show that ®(u(t)) € L2(0,T : H'(R%)). We may go back
to formula (9.46) and estimate in a finer way the contribution of the last term.
If d > 3 we use the Sobolev imbedding to get

1/2
|// O (uy,) frdzdt] < Cg <// |V<I>(un)|2dxdt>
Qn Qn
T 1/2
X </0 ||fn|i2n/n+2(3n)dt>

The last factor is bounded since f € Y and we can absorb the other one into the
left-hand side and conclude as before. Note that the constants C, ..., Cg do not
depend on n or t.

We ask the reader to complete the details also for d = 1,2. Use the extra
assumption that f is compactly supported to simplify the calculation.

(iii) When up > 0 the sequence w,, is monotone non-decreasing and we have
uniform bounds on the norms of the spaces stated in the result. We can pass to
the limit and obtain a weak solution of the Cauchy problem.
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(iv) For data of any sign we may perform a double passage to the limit using
monotonicity or we can use compactness.

The first approach is outlined in Problem 9.9.

The second approach uses the local energy estimates (3.24) and (3.31) if ® is
locally Lipschitz continuous. Or it can use the continuity with a uniform modulus
if the weaker assumption of Theorem 7.1 is met.

We leave both options as exercises for the reader. ]

Corollary 9.27

(i) The solution belongs to the usual space C([0,T) : L*(R%)).
(ii) Comparison holds as in Theorem 5.5, and consequently ug > 0 and f >0
imply u > 0 a.e.
(iii) We have the usual L* stability: for any two solutions the following inequal-
ity holds

[[(u(t) —u(t)+[lr < [[(u(r) —u(r))+Ix +/ 1(£(s) = F(5))+]l1 ds.
’ (9.47)

(iv) If up € LP(R?) for some p € [1,00], then u(t) € LP(R?) for all t > 0 and
the LP norm is non-increasing in time.

(v) Under the Lipschitz continuity hypothesis B of Theorem 7.1 on @,
the solution is continuous with a modulus of continuity with the usual
dependence.

Remark It is possible to relax the assumptions of Theorem 9.25 and still get
weak solutions. Different ideas of Chapters 5, 6 and 8 can be easily adapted. We
consider that this is not a priority at this point. We prefer to consider the theory
with L! data.

9.8.2 Limit L' theory

We first remark that, when we work in the whole space R? there is no order
relation between the functional spaces LP for different p € [1,00], hence the
theory for L' data loses its character of extension of other LP theories. It is
however an extension of the theory posed in L'(R?) N L>(RY).

On the other hand, the extension to L' data is quite natural on mathematical
grounds in view of the powerful L' stability that the equation enjoys and we
have proved for the case of data L' N L> just treated. Moreover, the physical
interpretation of non-negative L' solutions as solutions with finite mass is very
appealing; or in the theory of heat propagation, it means a solution with finite
thermal energy.

In any case, the theory for L' provokes the introduction of limit solutions
starting from the results of the previous subsection, that is completely parallel
to Section 6.1.2 for the HDP. We have
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Theorem 9.28 For any (ug, f) € L*(RY) x L' (Q7) there exists a unique func-
tion u € C([0,00) : LY(R%)) that solves Problem CP in the sense of limits of the
weak solutions of Theorem 9.25. The map: (ug, f) — u is an order contraction
from LY(Q) x LY(Qr) into C([0,00) : LY(R)). Properties (ii), (iii), (iv) of Corol-
lary 9.27 also hold. Property (v) holds if the solution is locally bounded.

Specializing the result to the case f = 0, there is no problem in proving that
the strong solutions of the Cauchy problem form a semigroup of contractions in
L'(R%).

We refrain at this point from discussing the theory of very weak solutions for
the Cauchy problem of the GPME by lack of space and leave it as an advanced
topic. We refer the reader to Section 6.2 for the same topic in the Dirichlet
problem.

9.8.3  Relating the Cauchy-Dirichlet and Cauchy problems

We can compare the non-negative solutions of the homogeneous Cauchy-Dirichlet
and the solutions of a corresponding Cauchy problem.

Proposition 9.29 Let ug € L'(2), ug > 0, and let up be the solution of the
HDP for the GMPE and let uc the solution of the Cauchy problem with initial
data ug(z) such that uo(x) > up(x) >0 for x € Q. Let f = f =0. Then,

0 <up(x,t) <uclz,t)  in Q.
The result also holds when 0 < f < f mn (.

Proof The proof is immediate in the classical case by the maximum principle
(note that up =0 < ux on X, and up = uy for t = 0). Passing to the limit we
get the result for all limit solutions. ]

We can also prove that solutions of the Cauchy-Dirichlet problems in expand-
ing domains converge to the solution of the Cauchy problem if the data converge
conveniently. We leave this result as an exercise for the reader, see Problem 9.19.

Notes

Section 9.1. As explained in preceding chapters, pioneering work is due to
Oleinik and collaborators in one space dimension. Sabinina [457] made the
extension to several dimensions in 1961.

Section 9.3. The fundamental estimate is due to Aronson and Bénilan [40],
1979. The authors point out its optimality by checking it on the Barenblatt
solutions and use the estimate in establishing existence of a strong solution of
the Cauchy problem with L! data.

Section 9.4. The boundedness of the solutions was first obtained by and
Bénilan [81], 1976, and Véron [520], 1979. The proof given here, based on
the fundamental estimate, is new (and considerably shorter). The Barenblatt
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solutions as extremal solutions for the L'-L° effect will be discussed in
Chapter 17. In this way, very sharp versions of the effect will be obtained.

Estimates of the form Av > —C play a role in the theory of Hamilton—Jacobi
equations, cf. e.g. [374]. Such functions are called semi-subharmonic functions.

Most of the results of Chapter 5 have immediate adaptation to the Cauchy
problem, but not all. In particular, the universal bound of Section 5.8 is not
true in RY. This is easily understood when we assert that the constants will be
acceptable solutions in our theory (once extended).

Section 9.6.2. The reflection principle is a quite important tool in the analysis
of propagation properties, but also in the general theory of elliptic and parabolic
equations. It was introduced by A.D. Aleksandrov [6, 7]. It is also known and
used as the moving plane method. Pioneering applications of Aleksandrov’s
reflection principle are due to Serrin [476]. A famous application of symmetriza-
tion phenomena for nonlinear elliptic and parabolic problems is described by
Gidas, Ni and Nirenberg in [260]. Another symmetrization argument, based on
Aleksandrov’s reflection principle, is given in Section 5 of [325]. The application
to the PME is presented in the book [255].

Section 9.6.3. The control of the growth of the support as ¢ — co (formula
(9.32)) was first obtained in d =1 by Knerr [343], 1977. Sharp results will
described in Chapter 18.

Section 9.6.4. The study of moments seems to be new.

Section 9.8. We can also consider the problem in the H~! context along the
lines of Section 6.7. We leave the work to Problem 9.11.

The questions of further regularity and strong solutions have been studied
in the chapter in the case of the PME without forcing. When applied to the
GPME, or the PME with forcing, these questions are left to the interested reader
as further topics of study.

Fast diffusion equations

The theory of the Cauchy problem can be repeated to a large extent for the
FDE in the range 0 < m < 1. Thus, the existence of a semigroup of solutions
u € C([0,00) : L'(R?)), the maximum principle and L' contraction hold, cf. [79].
There are however remarkable differences like the absence of free boundaries.
Also for m < (d —1)/d the conservation of mass is lost and actually many
solutions extinguish in finite time. This very interesting topic falls out of the
scope of this volume. We refer the reader to the monograph [515] where extensive
references are given. See also Problem 9.12.

Problems

Problem 9.1 Using a modification of the arguments of Proposition 9.1, prove
the following result.
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Lemma 9.30 Let Q be a bounded subset of R® with C' boundary, let S = Q x
I CQ, withI = (t1,t2), and let uy be a subsolution, us a supersolution of (9.1)
in S. Assume moreover that uy and ug are continuous in S and u; < ug on
O x I. Then, for everyt € [t1,t2]

/[ul(:ct) —ug(x,t)]4dx < /[ul(z,tl) — ug(x, ta)]du. (9.48)
In particular, if u1(-,t1) < wus(-,t1) in Q we have uy < ug in S.

Problem 9.2 THE HEAT EQUATION. Adapt the theory of this chapter to the
heat equation u; = Aw. In particular,

(i) Prove that it generates a semigroup of contractions in all spaces L (RY),
1 < p < 00, and not only in Lt (R?).

(ii) Prove the fundamental estimate and the bundedness estimates and show
that they coincide with the limit m — 1 of the ones calculated in this
chapter.

(iii) Prove the conservation of mass and centre of mass.

(iv) Repeat the calculation of the estimates for the moments in the case of the
heat equation. Then, put formally m = 1 in the results of this chapter and
compare the results.

(iv) Prove that the time rate of the estimate for the mean deviation o(t) in
Proposition 9.23 is exact by calculating a lower bound with a ZKB solution.

Problem 9.3 SPACE DECAY

(i) Show that when the initial data satisfy a bound of the form 0 < ug(z) <
C/(1 4+ |z]?)® with a > 0 then for every t > 0 we have u(z,t) = O(|z|~2%)
as |z| — oo and the estimate holds uniformly in ¢ € (0,T), T finite.

(ii) Prove a similar estimate for 0 < ug(z) < Ce®l*l.

(iii) Extend to the heat equation and the fast diffusion equation if possible.

Hint: For (i) Use a supersolution of the form U(z,t) = C(x1 — ct)~2*. Generalize
the estimate by rotation invariance. For (iii) the result about the power decay is
true for the FDE depending on the power, the exponential decay is never true
(see [515]).

Problem 9.4 ELLIPSOIDAL BLOW-UP SUPERSOLUTIONS. Consider the following
formulas for the pressure

1
= — k. 9.49
v T _ t - ‘r’b ( )

This is a variation of the blow-up solution (4.41) with ellipsoids as level sets. Let
k1 = max k; and \; = k;/k1. Show that it is a supersolution if

k1(2 4 (m — 1)ZA,-) < %

The ellipsoids are elongated along the axes zo,...,zq4.
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Problem 9.5 Prove the energy estimates equivalent to the ones obtained in the
two previous chapters. Prove the decay estimates of Proposition 9.11.

Problem 9.6 Take the GPME with a function ® € C® and write the equation
for the pressure v = P(u) as in Problem 3.7. Now write the equation for p = Av
in the form

2 2
pr =0 (v)Ap+2(c’(v) +1)Vv - Vp + o' (v)p*+2 ; (825@) + " (v)|Vv|*p.
(9.50)
Assuming that ¢”(v) < 0 and o’(v) > a > 0 obtain the a priori estimate
C d
Av>—— = . 51
Y= ¢ da +2 (9:51)

Compare with the case ®(u) = cu™.

Problem 9.7

(i) Use the mass conservation property to prove that when w is a non-negative
solution in &y, then u(t) cannot be trivial for ¢ > 0 unless ug = 0.
(ii)* Such an assertion for signed solutions is an open problem.

Problem 9.8 REMOVABLE SINGULARITIES. There are cases in which a solution
of the PME is obtained by some process and we know that it is a weak
solution of the equation unless at one or several points, where such property
is under question. We usually say that the solution may have one or several
singularities. Under suitable assumptions such singularities can be removed. Here
is an example:

(i) Prove that a non-negative and weak solution of the PME defined in @* =
(RN {0}) x (0,T), d > 2, that is bounded is also a solution in Q = R x
(0, 7). In other words, the singularity can be removed.

(ii) Show that this is not true for d = 1.

Hint: Here is a standard proof: take a smooth cut-off function 0 < ¢ <1
that vanishes near x =0 and is 1 for |z| > 1 and put ¢.(x) =¢(z/r). We
now write the weak formulation of the PME with respect to a test function
o(x,t) = (2, )1, (z) where ¢| € C(R? x (0,00)). Since ¢ = 0 near z = 0, this
test function is admissible for the solution with a bounded singularity. Since uq
is bounded, the limit » — 0 shows that it is a solution of the PME for all ¢t > 0,
r € R

Problem 9.9 DOUBLE MONOTONICITY. Make an alternative existence proof
for the signed part of Theorem 9.25, using the trick of double monotonicity.
Idea:
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(i) Use the approximations

w0,m.n () = uo(x) "X B,0) — uo(x) X8, (0) (9.52)
in balls B, = B,.(0) with r > max(m,n). Solve the HDP in Q = B, with
data ug m,n to get a solution wy pm p-

(ii) Use the uniform bounds to pass to the limit as » — oo for fixed m,n and
prove that the limit w,, , is a weak solution of the Cauchy problem with
data ug m.n(z), € R<. Show that U, s monotone non-decreasing with
n, non-increasing with m.

Pass the monotone limit in n — oo for m fixed to obtain a weak solution u,,.
Pass now to the monotone limit m — oo to get the final solution u. Show that
it is a weak solution.

Problem 9.10 Show that the construction of solutions of Theorem 9.25 can be
done under the assumptions

ug € Ly(RY), f € LP(Qr) with p=2d/(d +2) if d > 3.
Check which properties of Corollary 9.27 still hold.

Problem 9.11 Construct a theory for the Cauchy problem in the setting of
H~1(Q), following the lines of Section 6.7.

Problem 9.12 FAST DIFFUSION EQUATIONS. Much of the theory of this chapter
has an equivalent for fast diffusion equations, at least when m > (d — 2)/d.

(i) Prove the fundamental estimate, Proposition 9.4, for (d — 2)/d < m < 1.

(ii) Prove that in that range we have bounds from above and below for u;:

u o u
— < < ——.
t = T A—m)t

Problem 9.13 Investigate the behaviour of the moments for the solutions of

the homogeneous Cauchy-Dirichlet problem of Chapters 5 and 6. Show that the
result is trivial. What does it say?

Problem 9.14* Prove that the p-moments are finite for 0 < p < 2 under the
assumption ug € &), without using symmetrization.

Hint: Using the modified moments, Mp(t) = [u (14 |z|*)° dz where e =p/2 €
(0,1), we have

d ~ u™ u™
L) = d-2) | ———de+pd | ————da.
dt p(t) =p(p+ )/ (1+ 2= T +p /(1+x2)2—6 X

In any case we have

d ~ u™
— < — da.
dtMp(t) < C’/ e dx
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We use Holder’s inequality on the last integral

[ e < oz ( Jua+ |x|2>fdw)1_6 ( | fﬁw)é-

with the relation 7 =1 —ed between the two new parameters. We need to
impose the conditions v > d/2 (for the last integral to be bounded), and 0 <
0 < 1. This is perfectly compatible with the relation since §(y + ¢) = 1. Making
such a choice, we arrive at the inequality

d — — —
%Mp(t) < CMp(t)l—(St—d,ﬁ‘(m—l—O—é) _ (/‘1]\4})(t)l—étf}@—dé)—l7
which can be integrated to give
M, (1)" < My(0)° + CtPE=),

hence M, (t) < M,(0) + Ct*# with k = (2 — d&)/5. We want this to be 2. It
implies 6 = 1/(d + 2¢), which in turn implies v = d/2, the limit case that is
excluded. We therefore obtain the correct exponent plus a bit, M, (t) < C + cP?
for all p’ > p.

Problem 9.15 Extend the study of the evolution of moments to signed solu-
tions. Use as definition

M,(f) = /]Rd |z|P f(z) dx,
or the absolute version
My(f) = /Rd ||P | f(x)] dz.

Compare the results.

Problem 9.16* Write the law of conservation of mass and the evolution of the
centre of mass for signed solutions of

O = A(|u|™ tu) + f. (9.53)
Find the formulas
dM
— = f(z,t) dx, i/ ziu(z,t)de = /xif(x,t) dzx. (9.54)
dt Rd dt Rd

State the conditions under which they hold and the sense in which they do.

Problem 9.17* CONTINUOUS DEPENDENCE ON ®. Prove that when ®. is
smooth and approximates ®, then the solutions of the Cauchy problem with
. converge as ¢ — 0 to the solution with ®. See in this respect [88].

Problem 9.18 State and prove the existence and uniqueness theorem for the
non-homogeneous Dirichlet problem for the GPME in the half line, z € (0, 00).
Same in an exterior domain, Q \ G, where G is a bounded set of R?, d > 2.
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Problem 9.19 Prove the following result: Let ), an expanding sequence of
smooth domains such that |J, Q, =R?. Let ug, € L*(Qy,), uo € L'(R?) and
assume that ug, — ug in the obvious L'(R?) sense (i.e., extending uo, by zero
outside Q). Let u,, be the limit solution of the HDP in Q, =, € Ry with
data ey, and let u be the limit solution of the CP in Q = R? x R. Prove that
U, — u in C([0,00) : LY(RY)).

Problem 9.20* Prove the following comparison result for very weak solutions.
Two bounded and non-negative, ordered very weak solutions ui,us of the filtra-
tion equation GPME with the same data are the same if ® is Lipschitz continuous
on the range of the solutions.

Idea of the proof Let u(z,t) = uj(z,t) — ua(x,t) > 0. Then, u(x,0) = 0. Let
us define

M(t) = /R (e, () da

for some smooth ¢ € L'(R?) to be chosen below. Integrating by parts we get

d
M(t) = 7/ (i — wp)pdr = [ A (B(uy) — B(us)) da.
dt Rd Rd
We now choose ¢ as the solution of the equation —Ayp + ¢ = 1, for some smooth
Y € L'(R?), ¢ > 0. It is well known that a unique ¢ exists, ¢ > 0 and Jpdx =
J ¥ dz. Using also the fact that ® is monotone and Lipschitz continuous we get

M'(t) = /]Rd o(P(u1) — P(ug)) da — 9 Y(D(uy) — P(ug))de < K y wp dx

= KM(1),

where K is an upper bound of @' in the range of u; and ws. Note that the
last term before the inequality is negative and can be dropped. Since M (0) = 0,
we conclude from the differential inequality M'(¢t) < KM (t) that M = 0, hence
uniqueness. We ask the reader to justify this calculation. ]

Problem 9.21* MINIMAL NON-NEGATIVE SOLUTIONS. Prove that for every
given ug € L (Q) and f € LY (Qr), with ug, f > 0, the limit solution of the CP
is the minimal element among all non-negative very weak solutions such that
u, ®(u) € L (Qr).

Hint: Solve approximate problems with bounded data wug,, f,, > 0 increasing
to ug, f and posed @, = B, x (0,T), where B,, is the ball with centre 0 and
radius R,, = n. If the (weak energy) solution is u,, we have 0 < u,, < up4+1. By
Problem 6.9, any non-negative very weak solution U of the CP with data ug, f
is a supersolution for the restricted problems. According to Theorem 6.5, we

have u,, < U in @,. We may now pass to the limit and define the candidate to
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minimal solution

Umin (2, 1) = lim u,(z,1). (9.55)

n—oo

Showing that this definition is minimal, it is independent of the construction
and coincides with the limit solution is immediate.

Problem 9.22* Read Chapter 17 and complete the details of the end of proof
of Proposition 9.21.

Problem 9.23* Prove the mass conservation law for very weak solutions.
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THE PME AS AN ABSTRACT EVOLUTION EQUATION.
SEMIGROUP APPROACH

In this chapter we address the question of construction of solutions of the GPME
by viewing it as an abstract evolution equation, more precisely as an ordinary
differential equation with values in a Hilbert or Banach space. In this approach
to evolution problems we use the shortened notation u(t) instead of u(x,t) since
emphasis is laid on the ¢t-dependence and wu(t) is for every ¢ an element of a
functional space thanks to its remaining x-dependence. We are interested in
solving abstract Cauchy problems of the form

Wy aw) =1 u(0) =, (10.1)
where A is a (possibly nonlinear) operator acting in a Banach space X, and the
solution u is supposed to be a function from a time interval [0, 7] into X. In the
classical setting A is a continuous linear operator and then we are able to find
a differentiable solution u € C*([0,T) : X) if up € X and f € C([0,T) : X) that
can be written as

t
u(t) = eMtug + / (=94 f(s) ds, (10.2)
0

a so-called variation of constants formula.

Our aim here is to treat possibly nonlinear and discontinuous operators like
the ones corresponding to the GPME and other parabolic and even hyperbolic
equations. In the case of a linear operator, the typical example of such problems
is the heat equation; the operator is then A = —A, minus the Laplacian acting
on a space of integrable functions, say L?(Q), or more generally LP(Q2) with 1 <
p < oo, where  is for instance a bounded domain of R¢ with smooth boundary.

In the linear case, the answer to the question of existence at this abstract
level is given by the theory developed by E. Hille, Y. Yosida and R. Phillips in
the 1930s which applies to linear operators A which are maximal monotone in a
Hilbert space H or m-accretive in a Banach space X. This theory is covered in
the classical books.

The extension to nonlinear operators takes two directions of interest for us.
One of them is the theory of mazimal monotone operators in Hilbert spaces and
the second one the theory of m-accretive operators in Banach spaces. Both have
played a role in the development of the PME theory and we devote this chapter
to present the relevant results.

229
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A practical side of this approach is the construction of approximate solutions
by the implicit version of the famous Euler method, which is called in this
context the implicit time discretization (ITD) scheme. This means that even
if the context may be very abstract, the numerical implementation is quite
natural.

When the forcing term is zero, a semigroup is constructed. Actually, the
approach of this section is usually called the semigroup approach and the ensuing
solutions obtained by approximation are sometimes called semigroup solutions.

The outline of the chapter is as follows. Section 10.1 deals with the theory
of maximal monotone operators in Hilbert spaces; its application to the PME
allows us to recover the construction of solutions with data in H—! of Section 6.7.

Section 10.2 introduces the time discretizations, and the concepts of mild
solutions and the accretive operators in Banach spaces. Since our main interest
is not the theory of monotone or accretive operators which are covered in the
specialized literature, we will give a number of useful results without proofs in
both sections.

Section 10.3 applies the theory of accretive operators to the filtration equa-
tion. In that context, let us point out another quite important aspect of the
theory: each of the steps of the ITD scheme consists in solving a nonlinear elliptic
problem, and the study of such problems is quite important in itself, while the
connection between the ensuing parabolic and elliptic theories has been a source
of progress on both sides of the dividing line. We also establish the relation of
the new concept of solution, i.e., mild solution, with the solution concepts of
previous chapters. Peculiar nonlinearities give rise to a semigroup with curious
properties, as shown in Subsection 10.3.3.

We end the chapter with the new ideas of mass transportation and gradient
flows, Section 10.4, and a review of different extensions to more general equations
where new concepts of solution are needed, Section 10.5. This is advanced
reading.

The Notes contain reading suggestions and references to early work in the
semigroup approach to these evolution equations.

We point out that the abstract theory can be applied in various settings;
this is actually its strongest point. In the next chapter we will see it applied to
Neumann problems and problems on manifolds.

10.1 Maximal monotone operators and semigroups
10.1.1  Generalities on mazimal monotone operators

In the whole section we follow notations and results of [129] and [128] to which
we refer for further details. Let H be a Hilbert space over the reals with scalar
product denoted either as u - v or as (u, v) and norm denoted by |u|. The notation
u, — u denotes the strong convergence in H and u,, — u the weak convergence.
We identify the dual H' of H with H in the standard way. If C' is a closed convex
subset in H, then Proj,z denotes the projection of an element x on C.
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Definition 10.1 A single-valued nonlinear monotone operator A in a Hilbert
space is a map A from a subset of D(A) C H, called the domain of A, into H,
and such that for every ui,us € D(A) we have

<A(U1) — A(UQ>,’IL1 — U2> Z 0. (10.1)
We say that A is dissipative if —A is monotone.

However, the theory of nonlinear monotone operators in Hilbert spaces deals
naturally with multivalued operators, so care has to be taken from the beginning
to get used to the correct concepts and notation. The following modifications
apply to the definition:

(i) The map A goes from D(A) C H into the set of parts of H (denoted by
P(H) = 2H), so that for every u € D(A), A(u) is a subset of H, not an
element of H.

(ii) The monotonicity assumption then reads: for every ui, us € D(A) and every
v € A(uy), v2 € A(uz) we have

<’U1 — V2,U1 — UQ> Z 0. (102)

Note that the single-valued case is recovered when A(u) is a singleton for
every u € H (i.e., the set A(u) consists of a unique element that we also call A(u)
in that case). In the sequel, our monotone operators are allowed to be nonlinear
and multivalued. We will not assume that D(A) = H which is usually false, the
closure of D(A) is generally a convex closed subset of H. We will denote by R(A)
the range of A, a subset of H. Note that there is no problem in defining the inverse
A=Y of a multivalued operator (actually, this property is one the reasons for
using multivalued maps). For more details on operators see Section A.2. Finally,
if u € D(A) we denote by A°u the element with minimal norm in Au. We will
follow in this chapter the multivalued notation. However, for most purposes the
reader may assume that the operators are single-valued, that we may write A(u)
instead of v € A(u), and that the signs € and > may be replaced by =.

The following property is fundamental in the study of monotone operators.

Proposition 10.1 Let A be a nonlinear operator in H. Then A is monotone
if and only if the following property holds: for every ui,us € D(A), every vy €
A(uq), v2 € A(ug