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I dislike arguments of any kind.
They are always vulgar, and often convincing.

Oscar Wilde, The Importance of Being Earnest
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Preface

These notes are concerned with the representation theories of the quantum
general linear groups, the q-Schur algebras and the Hecke algebras of type
A, and, most importantly, the relationships between these theories. Roughly
speaking, we are presenting a q-analogue of the monograph by J. A. Green,
[51], which treats the representation theory of general linear groups, Schur
algebras and symmetric groups. The theory developed here is a generaliza-
tion of the classical case (which one recovers by putting q = 1). But the
main difference between [51] and this text is that whereas Green's approach
is combinatorial ours is (for the most part) homological, informed (or made
possible even) by Kempf's vanishing theorem (for quantum GL,,). This ap-
proach is a continuation of one developed in our earlier papers on Schur
algebras and related algebras, [31], [32], [33], [34], [35].

The version of quantum GL,, that we shall use is the one introduced
by R. Dipper and the author. The q-Schur algebras were introduced by
Dipper and James, [21], as endomorphism algebras of certain modules over
Hecke algebras. Mostly, we work over an arbitrary field k and q is an ele-
ment of k, which is usually required to be non-zero. For a positive integer
n and a non-negative integer r, we have the Schur algebra Sq(n, r). In the
approach taken here (modelled on the treatment of ordinary Schur alge-
bras by Green, [51]) Sq(n, r) is constructed as the dual algebra of a certain
coalgebra. More precisely, the coordinate algebra k[Gq(n)] of the quantum
general linear group Gq(n) of degree n is generated by "coefficient func-
tions" cij, 1 < i, j < n, and the inverse of the quantum determinant. Thus
the (in general non-commutative) algebra Aq(n) generated by the ci, is a
subbialgebra of k[Gq(n)], and Aq(n) has an algebra grading and coalgebra
decomposition Aq(n) = ®°_o Aq(n, r) in which each cij has degree 1. The
coalgebra Aq(n, r) has dimension (n2 T+'- 1) and its dual algebra is Sq(n, r). A
module for Sq(n, r) is naturally an Aq(n, r)-comodule and hence a k[Gq(n)]-
comodule, i.e. a module for the quantum group Gq(n). Thus the category
of Sq(n, r)-modules is naturally embedded as a full subcategory of the cat-
egory of Gq(n)-modules, namely the category of Gq(n)-modules which are
polynomial of degree r.

Suppose now that r < n. Then there is a distinguished idempotent
e E Sq(n, r) such that eSq(n, r)e is the Hecke algebra Hec(r) defined by
the symmetric group Sym(r) of degree r (regarded as a Coxeter group).
Thus one has, as in the classical case q = 1 (see Green, [51, Chapter 6]),
the Schur functor from the category of Sq(n, r)-modules to the category of
Hec(r)-modules, taking an Sq(n, r)-module V to the subspace eV, viewed as a
module for Hec(r) = eSq(n, r)e. Our philosophy here is to proceed uniformly
in this direction: that is, to first prove results about our quantum version
of GLn, then to use this knowledge to deduce results about the q-Schur
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algebras and finally, by a further "descent", to obtain results on the Hecke
algebra. Our purpose then is twofold: not only to present new results but also
to rederive known results by these descents. Perhaps an extreme example
of the latter, given in Section 4.3, is the determination of the labelling of
irreducible modules for Hecke algebras, first obtained by Dipper and James,
[20], by decomposing E®', the rth tensor power of the natural module for
quantum GL, viewed as a tilting module. An exception to this philosophy
is Section 2.2, where we use the representation theory of the Hecke algebra
at q = 0 to describe explicitly the characters of the irreducible modules for
the 0-Schur algebras.

These notes started life as part of a manuscript which dealt with the
standard homological properties of Gq(n) as well as some other topics. We
published the homological parts separately, [36], and prepared as a compan-
ion paper the other topics (as detailed in the last paragraph of the introduc-
tion of [36]). However, as time went by, we kept adding to this manuscript,
and a desire to keep the material together and the prospect of an opportunity
to present the material from the uniform point of view described above led
to the existence of the notes in their present form. The original intention of
publication as a research article is responsible for the terse journal style of
the main body of the text (and the fact that these notes are referred to in
various places as "On Schur algebras and related algebras VI: The q-Schur
algebra"). We have tried to compensate for this, and to make the notes
reasonably self contained, by adding a long expository introductory chapter,
which starts with the representation theory of algebraic groups and makes
a gradual transition to the representation theory of quantum GL,,, and also
by adding an appendix on quasihereditary algebras.

We defer a more detailed description of the contents of the notes until
the end of the introductory chapter, so as to avail ourselves of the notation
and definitions given there.

I am grateful to the School of Mathematical Sciences (especially to the
Algebraic Lie Theory seminar) of Queen Mary and Westfield College, Uni-
versity of London, for the opportunity to present various parts of these notes
at various times and also to the Institute for Experimental Mathematics,
Essen, for the opportunity to lecture there (on the results given in Section
4.1 and Section 4.2(14), on the Ringel dual of the q-Schur algebras) in April
1994.

I am grateful to Anton Cox for his help in detecting numerous minor
errors in earlier versions of these notes.



0. Introduction

0.1 In this chapter we endeavour to take the reader slowly from the fa-
miliar world of rational representations of algebraic groups to that of rational
representations of general linear quantum groups, q-Schur algebras and Hecke
algebras of type A. We do this partly to stress the close analogies between
the theories, partly to establish some notation and list in a convenient form
some results which are to be used in the sequel, and partly so that we will
be able to describe in outline, towards the end of this chapter, the contents
of the main part of these notes. Appropriate references for each section are
given at the end of the chapter.

0.2 We fix an algebraically closed field K and a subfield k. We begin by
recalling the basics of the theory of affine varieties and linear algebraic groups
over K. Suppose given a set V and an algebra R of K-valued functions on
V. For each point x E V we have the evaluation map ex : R -> K, defined
by E.(f) = f (x), for f E R. The pair (V, R) is called an affine variety (over
K) if the algebra R is finitely generated over K and the map x -, E,,, from V
to the set Homx_alg(R, K), of K-algebra homomorphisms from R to K, is
bijective. An affine variety (V, R) is usually abbreviated to V. The algebra
R, usually written K[V], is called the coordinate algebra of V, or algebra of
regular functions on V.

If (V, R) and (W, S) are affine varieties, a map 4' : V -> W is a morphism
of affine varieties if we have g o 4' E R for every g E S. Such a map determines
a K-algebra homomorphism 4'* : S -> R, given by 4'*(g) = g o 0, and
conversely, one checks that each K-algebra homomorphism 0 : S -> R may
be written 0 = 0* for a unique morphism 0 : V -, W. For a subset Z of
V we define Iz = If E R I f(x) = 0 for all x E Z}. A subset Z is closed if
there exist regular functions fl, ... , fr on V such that Z = {x E V I fl(x) _

= fr(x) = 0). The closed sets of V form the closed sets of the Zariski
topology of V. If Z is closed in V then Z is naturally an affine variety with
coordinate algebra K[V]/Iz. (That is, the regular functions on Z are just
the restriction to Z of regular functions on V.)

We write An for K x . . . x K (n times). For 1 < i < n we have
the coordinate function Xi : An -* K, defined by X1(x) = xi, for x =
(xl, , xn) E An. The functions X1i ... , Xn are algebraically independent
over K and one quickly verifies that (Jr, K[X1i ... , Xn]) is an affine algebraic
variety. Moreover if V is an algebraic variety, with coordinate algebra A
generated by a1, ... , a,., then the algebra map 0 : K[X1 i ... , X,.] A given
by 6(Xi) = ai, 1 < i < r, corresponds to a morphism 0 : V -> A' which
identifies V with a closed subset of A'. (The image of 0 is the set of x E A'
such that f (x) = 0 for all f in the kernel of 8 : K[X1, ... , X,.] -+ A.) In this
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way we recover the usual description of affine K-varieties as closed subsets
of affine r-space.

Given a finitely generated commutative K-algebra R without nilpotent
elements (i.e. frn = 0 implies f = 0, for f E R and m > 0) we may con-
struct an affine variety with R as its coordinate algebra. For V we take
HorK_ajg(R, K). For each f E R we have the function f : V -. K defined
by f (x) = x(f), x E V. We define R to be the algebra of functions on V
consisting of all 1, f E R. If 0 0 f E R we may choose a maximal ideal
M of R not containing f. By the Nullstellensatz, inclusion K -> R induces
an isomorphism K -> RIM. Thus we have some K-algebra homomorphism
x : R -> K with kernel M and x(f) # 0. Hence the natural map R --+ R
is injective and therefore an isomorphism. Identifying R with R via this
map we have that (V, R) is an affine variety. Thus the category of affine
K-varieties is equivalent to the category of reduced (i.e. without nilpotent
elements) finitely generated commutative K-algebras.

Let (V, R) and (W, S) be affine varieties. For f E R, g E S we have the
function hf,9 : V x W , K defined by h f,g(x, y) = f(x)g(y), for x E V,
y E Y. Let T be the algebra of K-valued functions on V x W generated by
all such functions. The natural map R ®K S -> T (taking f (D g to h f,g) is
an isomorphism and we thereby identify R OK S with T. One checks that
(V x W, T) is an affine K-variety and indeed this is the product of (V, R)
and (W, S) in the category of affine varieties. (Alternatively, we could define
V x W to be the affine variety whose coordinate algebra is R OK S, in view
of the paragraph above.) Note that we have R' x (-fin = li""+n.

0.3 By a linear algebraic group over K we mean a group G which is also
an affine K-variety in such a way that the structure maps m : G x G ->
G (multiplication) and i : G -> G (inversion) are morphisms of varieties.
Consider the general linear group GLn(K) of invertible n x n matrices. We
define ci9 : GLn(K) - K to be the (i, j) coordinate function, 1 < i, j < n.
We define d : GLn(K) -+ K to be the determinant function. The coordinate
functions cij, 1 < i, j < n, are algebraically independent over K. The
coordinate algebra K[GLn(K)] is, by definition, the algebra of K-valued
functions on GLn(K) generated by all coordinate functions ci9 together with
d-1 (the function taking x E GLn(K) to the reciprocal of the determinant
of x). Then GLn(K) is a linear algebraic group (with coordinate algebra
K[GLn(K)]).

0.4 Let G be a linear algebraic group. We say that a matrix representa-
tion p : G , GLn(K) is rational if p is a homomorphism of linear algebraic
groups (i.e. a group homomorphism and a morphism of varieties). We say
that a finite dimensional KG-module V is rational if it affords a rational
matrix representation with respect to some (and hence every) basis. Let us
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be quite explicit. Choose a K-basis v1,... , v of V and define coefficient
functions fij : G -+ K by the equations

n

xvi = > fji(x)vj (x E G,1 < i < n).
j=1

The coefficient space of V is defined to be the space of K-valued functions
on G spanned by the coefficient functions fij, 1 < i, j < n. This space
is independent of the choice of basis and we denote it by cf(V). Then the
condition for V to be rational is that cf(V) should consist of regular functions,
i.e. cf(V) < K[G]. Note that if V, W are finite dimensional KG-modules
then we have cf(V ®K W) = cf(V).cf(W), the K-span of all functions fg
with f E cf(V), g E cf(W). In particular V OK W is rational if V and W
are rational. For a K-valued function f on G we write f for the K-valued
function on G defined by the formula j (x) = f (x-1), x E G. Note that
f = i*(f) E K[G] if f E K[G]. For a finite dimensional (left) KG-module
V with coefficient space C we have that the coefficient space of the dual left
module V* is C = { f f E C}. It follows that if V is rational then so is V*.

We say that a KG-module V of arbitrary dimension is rational if it is
the union of finite dimensional rational submodules. If V is rational then
so is every submodule and quotient module. A module is rational if it is
generated by rational submodules.

0.5 Let G be a linear algebraic group over K. Then K[G] is naturally
a left KG-module for the left regular action, which we now describe. For
x E G, f E K[G] the function x f is given by the formula (x f)(y) = f (yx),
f o r y E G. If m*(f) = E$

1
fi ®f; then we have x f = E$ 1 f, (x) fi . In

particular x f E K[G] and so K[G] is naturally a left KG-module. We choose
a basis {vi I i E I} of K[G]. Then, for i E I, we have m*(vi) = >jEI Vi ® fji
for elements fij of K[G]. We fix an i E I. For x E G we have xvi =
EjEI fji(x)vj. Since only finitely many of the fji are non-zero (for fixed i),
for all x E G the element xvi lies in the finite dimensional space spanned by
the vj for which fji is non-zero. Hence the KG-module V, say, generated by
vi, is finite dimensional. Let W = V and let w1,.. . , wi be a basis of W. We
have m*(wr) ws 0 gs,., for elements g,.s E K[G] with 1 < r, s < 1.
Hence xw,. = Es=1 gsr(x)ws and the coefficient space of W is the K-span
of the g,.s, in particular V is a rational module. But K[G] = EiEI V and
hence K[G] is a rational G-module with respect to the left regular action.

0.6 An importance consequence of 0.5 is that every linear algebraic
group is isomorphic to a closed subgroup of
G Let a1,... , an be a set of algebra generators
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of K[G] and let W be a finite dimensional subspace of K[G] which contains
these generators and is a submodule for the left regular G-module action.
Let w1, . . . , w,, be a basis of W and let fij be the corresponding coefficient
functions. Thus we have xwi = 1 fji(x)wj, for 1 < i < n. We define
p : G -> by p(x) = x E G. Then p is a group homomor-
phism. We claim that p is a morphism of varieties, and hence a morphism of
algebraic groups. We have ci j o p = fi j , and hence cop E K [G] for all c in the
subalgebra of K[GLn (K)] generated by all cij. Moreover, since K[GL,,(K)] is
generated by all ci j together with d-1, it suffices to show that d-1 o p E K [G].
So let f = do p and g = d-1 op. Then we have fg = 1 and hence f is a
regular function on G which is everywhere non-zero. However, it is a general
fact that if h is a regular function on an affine variety V which is everywhere
non-zero then h-1 = 1/h is regular. (If not then the ideal of K[V] generated
by h is a proper ideal and hence contained in a maximal ideal M, say. By
the Nullstellensatz, once more, M has codimension 1 in K[V] and there is a
K-algebra homomorphism 0 : K[V] -- K which vanishes on M. But we have
0 = s., for some x E V and h(x) = s.,(h) = 0(h) = 0, a contradiction.) Hence
g = d'10 p E K[G]. Thus p : G -> is indeed a morphism of algebraic
groups. The image of p* contains the generators a1i ... , a,,, of K[G]. Thus
p* : K[GL,,(K)] -> K[G] is surjective and it follows that the image of p is
closed in and that p induces an isomorphism of algebraic groups
from G onto the image of p.

0.7 Let k be an arbitrary field. We take tensor products over k. A
coalgebra over k (or k-coalgebra) is a triple (C, 6, s) consisting of a k-vector
space C and linear maps b : C - C ® C (comultiplication) ands : C k
(the counit or augmentation map) satisfying the equations

(6 0 id)o6=(id(D 6)ob:C-.C0 C®C

and

(s®id)o6=(id(D s)o6=id :C-->C

where id denotes the identity map on C. The first equation is called the
coassociativity condition and the second is called the counit condition.

A bialgebra over k (or k-bialgebra) is a coalgebra (A, 6, s) such that A is
a k-algebra and the structure maps b : A -+ A ® A and E : A -> k are algebra
homomorphisms. A bialgebra (A, b, s) is called a Hopf algebra if there exists
a linear map o : A -* A such that

p(u ®id)b = p(1 ®o)b = E

where p : A 0 A - A is the multiplication map and E : A --> A is defined by
E(a) = e(a)1, for a E A. The above equation is called the antipode condition.
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If such a linear map as : A , A exists, it is uniquely determined by the
antipode condition and called the antipode of (A, b, e). A bialgebra (or Hopf
algebra) is said to be commutative if the algebra A is commutative. In general
the antipode of a Hopf algebra (A, 6, e) is an algebra anti-homomorphism and
hence is an algebra homomorphism if A is commutative. If (A, 6, e), (A', 6', E')
are coalgebras, a linear map di : A A' is a morphism of coalgebras if 6'o4i =
(0 ®0) o b and e' o 0 = e. A coalgebra, bialgebra or Hopf algebra (A, b, E)
will often be abbreviated to A. If A, A' are bialgebras a map 0 : A -> A'
is a morphism of bialgebras if it is an algebra and coalgebra morphism. If
A, A' are Hopf algebras with antipodes a morphism of bialgebras
0 : A -* A' automatically has the property that a' o 4 _ 4 o v, and such a
map 0 is also called a morphism of Hopf algebras.

Let G be a linear algebraic group over K. Then it is easy to check
that (K[G], m*, el) is a commutative Hopf algebra over K with antipode i*.
Conversely, suppose that (A, 6, E) is a commutative Hopf K-algebra with an-
tipode a' and suppose that A is finitely generated and reduced (i.e. is without
nilpotent elements). Then we associate with A the set G = HomK_alg(A, K)
and regard (G, A) as an affine variety, as in 0.2. We have m : G x G -> G
given by m(x, y) = (x ®y) o b, x, y E G, and i : G -> G given by i(x) = x o a',

x E G. Moreover G is a group with multiplication m : G x G -; G, inver-
sion i : G - G and identity e. By construction we have f o m = 6(f) E
K[G] ®K[G] and f o i = a(f) E K[G], for f E K[G]. Thus G is an algebraic
group and m* = b, i* = o,. In this way we obtain an equivalence of categories
between linear algebraic groups over K and finitely generated, commutative,
reduced Hopf algebras over K.

0.8 As well as preparing the way for our transition to quantum groups,
the formalism of the previous paragraph provides a convenient language for
discussing rationality properties of algebraic groups. So now let k be a sub-
field of our algebraically closed field K. For a K-vector space N, a k-form of
N is a k-subspace M such that the natural map K ®k M , N is an isomor-
phism. (This amounts to saying that some, and hence every, k-basis of M is
a K-basis of N.) For a K-algebra S we say that R is an algebra k-form of S
if R is a k-subalgebra of S and a (vector space) k-form of S. Let (V, K[V]) be
an affine algebraic variety over K. By the expression "V is a k-varietiJ" we
indicate that we have in mind a fixed algebra k-form k[V] of K[V]. For exam-
ple, affine n-space P has coordinate algebra K [X 1 i ... , X,,] and is usually
regarded as a k-variety by taking k[A'b] = k[X1, ... , X,]. Let Z be a closed
subset in the of ine k-variety V. We say that Z is defined over k if the ideal
Iz is spanned, over K, by k[V] fl Iz. If this is the case then the natural map
K ®k k[V] -> K[V] restricts to an isomorphism K ®k (k[V] fl iz) -> Iz and
Z is viewed as a k-variety with k[Z] consisting of the k-algebra of functions
f 1z, for f E k[V].
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Let (C, 6, E) be a coalgebra over K. We say that B is a coalgebra k-form
of C if B is a vector space k-form of C which is closed under the structure
maps, i.e. if 6(B) < B ®k B and s(B) < k. If B is a coalgebra k-form of C
then B is naturally a k-coalgebra whose structure maps B - B ®k B and
B -> k are the restrictions of 6 and e. If (C, 6, e) is a bialgebra we say that
B is a bialgebra k-form of C if B is both an algebra and coalgebra k-form
of C. Finally, if (C, 6, E) is a Hopf algebra with antipode v then we say that
B is a Hopf k-form of C if B is a bialgebra k-form and o(B) < B. If B is a
bialgebra k-form of the K-bialgebra C then B is naturally a bialgebra over k
with comultiplication and counit as above. If B is a Hopf k-form of the Hopf
K-algebra C, with antipode v, then B is a Hopf algebra whose antipode is
the restriction of o-.

By the expression "G is a k-group" or "G is a linear algebraic group
defined over k" we indicate that G is a linear algebraic group over K and
that we have in mind a Hopf k-form of K[G], which we denote k[G]. We say
that a closed subgroup H is defined over k if H is defined over k, as a closed
set in G. In this case H has a natural k-group structure.

Suppose that G and H are k-groups. A map 0: G -+ H is a morphism
of k-groups if it is morphism of linear algebraic groups such that 4*(k[H]) <
k[G]. Thus 0 gives rise to a morphism of Hopf algebras k[H] -+ k[G] and,
conversely, a morphism of Hopf algebras k[H] -+ k[G] corresponds to a unique
morphism of k-groups G -> H.

We regard the linear algebraic group GL,,(K) as a k-group via the Hopf
form k[GLn(K)] = k[cii, c12, ... , cnn, d-1] of K[GLn(K)]. From now on we
shall also write GLn for GLn(K), regarded as a k-group.

0.9 Let (C, 6, e) be a k-coalgebra. By a right C-comodule we mean a
pair (V, r) consisting of a k-space V and a linear map r : V -> V 0 C such
that

(rOid)or=(idO6)or: V V®C0C
and

(idOe)or =id :V-+V

where id is the identity map on V. We often write simply V for the comodule
(V, r) and call r the structure map of the comodule V. Let {vi I i E I} be a
basis of V. We have elements c1, i, j E I, defined by the equations

r(vi) = vj O cji
jEI

(for i E I). The k-span of {cij I i, j E I} is called the coefficient space of V
and denoted cf(V). It is independent of the choice of basis of V. Note that
cf(V) is a subcoalgebra of C and that V is naturally a right cf(V)-comodule.
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Let (V, r), (V', r') be (right) comodules. A linear map 0 : V --r V' is a
morphism of comodules (or comodule homomorphism) if r' o ¢ = (0 0 idc) or
(where idc is the identity map on C). We write Comod(C) for the category
of right C-comodules and comod(C) for the category of finite dimensional
right C-comodules. A subspace U of a comodule V is a subcomodule if
r(U) < U 0 C, where r is the structure map of V. A subcomodule U is
naturally a comodule whose structure map U -> U 0 C is the restriction of
r : V -> V 0 C. The structure map r also induces a map V/U -* V/U 0 C,
making V/U into a comodule. The inclusion map U -> V and the quotient
map V --- V/U are homomorphisms of comodules. An important feature of
the representation theory of coalgebras is the local finiteness property. If V
is any right C-comodule then for every finite dimensional subspace T there is
a finite dimensional subcomodule U of V such that T < U. The argument is
similar to that of 0.5. Left comodules are defined similarly and have similar
properties.

The dual space C* = Homk(C, k) has the structure of an associative
k-algebra with multiplication a)3 = (a 0 )3)6, for a,)3 E C*, and identity
1c. = E. For an algebra S, we write Mod(S) for the category of left S-
modules and mod(S) for the category of finite dimensional left S-modules.
Let (V, r) be a right C-comodule. We regard the k-space V as a left C*-
module via the product av = (id 0 a)r(v), for a E C*, v E V. For X,Y E
Comod(C), a linear map : X -* Y is a morphism of C-comodules if
and only if it is a morphism of C*-modules. In this way we obtain a full
embedding of Comod(C) into Mod(C*). If C is finite dimensional then we
obtain, in this way, equivalences of categories Comod(C) - Mod(C*) and
comod(C) -> mod(C*).

0.10 We now return to our discussion of the representation theory of
linear algebraic groups in general, and general linear groups in particular.
Let G be a linear algebraic group over K. Let V be a (possibly infinite
dimensional) rational representation and let {v; I i E I} be a basis of V. We
have coefficient functions fgj E K[G] defined by

xvz = E fji(x)vj
IEl

foriEI. We definer:V-*V®K[G] by

r(vi) = , vj 0 fji
jEl

for i e I. Then (V, r) is a K[G]-comodule and we obtain, in this way, an
equivalence of categories between rational left G-modules and right K[G]-
comodules. Similar remarks apply to rational right G-modules and left K[G]-
comodules.
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We identify the categories of left rational G-modules and right K[G]-
comodules via the above. We now want to discuss the representation theory
of k-groups. Let G be a k-group. We shall simply define a left module
for G to be a right k[G]-comodule and write Mod(G) (resp. mod(G)) for
Comod(k[G]) (resp. comod(k[G]). One could instead decree that a rational
G-module over k is a rational G-module V together with a vector space k-
form U of V such that for some (and hence every) basis {ui I i E I} the
corresponding coefficient functions fij all belong to k[G]. We leave it to the
reader to check the equivalence of this with the comodule point of view.

0.11 Let G be a k-group. We write G(k) for the set of x E G such that
E.(k[G]) < k. It is easy to check that G(k) is a subgroup of G (called the
subgroup of k-rational points). If G(k) is dense in the Zariski topology on G
then we have available yet another description of the category of G-modules
(defined over k). This is very close to our original formulation of the notion
of a rational module for a linear algebraic group. For f E k[G] let f be the
k-valued function on G(k) defined by j (x) = E.,(f ), x E G(k). Let R be
the algebra of k-valued functions on G(k) consisting of all functions f , with
f E k[G]. Note that if f = 0 then the closed set Z = {x E G I f(x) = 0} of
G contains G(k), hence G, and therefore f = 0. Thus the map k[G] R,
taking f to f, is injective, and we identify k[G] with a k-algebra of functions
on G(k) by this map. We say that a finite dimensional kG(k)-module V
is rational if for some (and hence every) basis v1, ... , vn, the corresponding
k-valued functions fij on G(k), defined by the equations

n

xvi = E fji(x)vj
j=1

for 1 < i < n, all belong to k[G]. Given such a kG(k)-module we ob-
tain a k[G]-comodule structure on V by defining r : V -> V 0 k[G] by
r(vi) = E7=1 vj ® fji. We leave it to the reader to check that one obtains,
in this way, an equivalence of categories between finite dimensional ratio-
nal left kG(k)-modules and finite dimensional right k[G]-comodules, hence
G-modules (defined over k).

0.12 We consider now the representation theory of a torus, i.e. a linear
algebraic group of the form GL1(K)n = GL1(K) x . . . x GL1(K) (n times).
Thus K[GLI (K)n] is the Laurent polynomial algebra K[t1, ti 1, ... , tn,, t,y 1],

where ti(xl,...,xn) = xi, 1 < i < n, for (x1i...,xn) E GL1(K)n. We
consider GL1(K)n as a k-group, which we now write as GL", via the form
k[GL1] = We put X(n) = P. For a = (al,...,an) E
X(n) put to = tl1 ... t"^. We have the 1-dimensional GLi-module ka with
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structure map k« -> k® ® k[GLi] taking x E k« to x 0 P. We have the
comodule decomposition k[GLi ] = ®aEX(,n) W. It follows that {ka I a E
X(n) } is a complete set of pairwise non-isomorphic irreducible GLi -modules
and that every GL'-module is completely reducible.

We form the integral group ring ZX(n). This has Z-basis {e(a) I a E
X (n)} whose elements multiply according to the rule e(a)e(Q) = e(a + (3).
For a GLi-module V and a E X(n) we have the corresponding weight space
Va = {v E V I r(v) = v®ta}, where r : V V®k[GLi ] is the structure map.
We say that a E X (n) is a weight of V if V' # 0. The character ch V of a fi-
nite dimensional GLi-module is defined by ch V = EaEX(n)(dim Va)e(a) E
ZX(n).

Note that each a = (a1, ... , a,,,) E X (n) gives rise to an algebraic
group homomorphism GLi -> GL1, also denoted a and given by the formula
a(x) = xi 1 ... xm , for x = (xi, ... , x,,,) E GLi . If k is infinite then GL1(k)n
is dense in GL1(K)n and, by the formalism of 0.11, for a rational GLi -module
V (over K) and aEX(n)wehave Va={vEV I xv=a(x)vfor all xE
GLi }.

0.13 We now wish to discuss the rational representation theory of GLn.
Let k be a subfield of K. We view GLn as a group over k, as in 0.8.

Let 0 : B C be a morphism of k-coalgebras. If (V, r) is a B-comodule
then we may regard V as a C-comodule via the structure map (id ®0) or :
V -> V ®C. We say that this C-comodule is obtained by 0-inflation, or just
inflation if 0 is inclusion. Suppose that B is a subcoalgebra of C. We say that
a C-comodule V belongs to B if cf(V) < B. The C-comodules belonging to
B are the objects of a full subcategory of Comod(C) and inflation defines an
equivalence of categories between B-comodules and C-comodules belonging
to B.

Let A be a bialgebra. For right comodules (V, rv ), (W, rw) we have the
tensor product right comodule (V 0 W, rv(&w). The structure map rv w
is given by rv®w(v 0 w) = Ei j v, ® wj ®figj, for v E V, W E W with
rv (v) = Ei vi 0 fi and rw (w) = wj ® gj. Moreover, if A is a Hopf
algebra and (V, rV) is a finite dimensional right A-comodule then we have
the dual right comodule (V*, rv.). The structure map r* : V* -+ V* 0 A
may be described as follows. Let v1,.. . , v, be a basis of V and let al.... , a,.
be the dual basis of V*. Then we have r* (a j) = E$ 1 ai 0 a-(fi j ), where
r(vi) = F_j_1 vj 0 fji, for 1 < i < n, and where c is the antipode. In the case
in which A = K [G], for a linear algebraic group G over K, these constructions
correspond, via the formalism of 0.10, to the usual group action on the tensor
product of modules and on the dual of a finite dimensional module. Similar
remarks apply to left comodules and right modules.

We set A(n) = k[cij 1 < i, j < n]. Then A(n) is a subbialgebra of
k[GLn] and we say that a GLn-module V is polynomial if cf(V) < A(n), i.e.
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if V belongs to A(n). We identify the category of polynomial GLn-modules
with the category of A(n)-comodules, via the equivalence above. Thus a
finite dimensional KGL,,(K)-module V is polynomial if and only if for some
(and hence every) basis {vi I i E I} the corresponding coefficient functions
fij, determined by the equations

xvi = fji(x)vj
jEl

for x E GL,,,(K) and i E I, all lie in K[cii,... , cnn]. More generally, if k is
infinite then GLn(k) is dense in GLn(K) and, by the formalism of 0.11, we
have the same description of polynomial GLn-modules. That is, a finite di-
mensional polynomial GLn-module is is a finite dimensional kGLn(k)-module
V such that for some (and hence every) basis {vi I i E I} the corresponding
coefficient functions fij, determined by the equations

xvi = E hi(x)vj
jEI

for x E GL,,(k) and i E 1, all lie in k[cil,... , cnn]. In [51], Green considers
polynomial GLn-modules (over an infinite field k) from this perspective.

We have the natural GLn-module E with basis el,... , en and structure
map r:E->E®k[G]given by r(ei)=Z7lej0cji,for1<i<n. Note
that E is a polynomial module. Moreover (since A(n) is a bialgebra) V 0 W
is a polynomial module if V and W are polynomial modules. Hence the rth
tensor power E®r, the rth symmetric power SrE and the rth exterior power
ArE are polynomial modules, for r any non-negative integer. In particular
the determinant module D= A E is polynomial.

From the point of view of algebraic group representation theory, one is
interested in the category of rational modules. However, as we now describe,
this differs only trivially from the category of polynomial modules, and the
latter category has strong connections with the theory of representations of
certain finite dimensional algebras. So let V be a finite dimensional GLn-
module. Then cf(V) is a finite dimensional subspace of k[G], which is the
localization of A(n) at the determinant d. Hence we have cf(V) < d-r.N,
for some finite dimensional subspace N of A(n), and so cf(D®r ® V) =
cf(D)r.cf(V) = dr.cf(V) < A(n). Thus D®' (& V is a polynomial module, for
r >> 0, and every finite dimensional rational module is isomorphic to one of
the form D®'r 0 U, for some r > 0 and polynomial module U (where D®-r

denotes the dual of D®r).
Thus all finite dimensional rational modules can be understood in terms

of the polynomial ones. We regard A(n) as a graded algebra by giving each
cij degree 1. So A(n) decomposes

00

A(n) = ® A(n,r) (*)

r=0
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into homogeneous components. The dimension of A(n, r) is the number of
monomials in n2 variables of total degree r, and this is

(n2}1-r).
Since

6(Cij) = Eia_1 Cih 0 Chj, for 1 < i, j < n, we have 6(A(n,1)) < A(n, 1) 0
A(n, 1), and then since b is an algebra homomorphism we get b(A(n, r)) <
A(n, r) ® A(n, r). Hence (*) is a coalgebra decomposition. We say that
a polynomial module has degree r if it belongs to A(n, r) and say that a
polynomial module is homogeneous if it has degree r for some r > 0. Let V
be a polynomial module (i.e. an A(n)-comodule) and for r > 0, let V(r) be
the largest subcomodule of V belonging to A(n, r). It follows from (*) that
we have

00

V = ®V(r).
r-0

Hence every polynomial module is a direct sum of homogeneous modules. We
define the Schur algebra S(n, r) = A(n, r)*, the dual algebra. We identify
right A(n, r)-comodules with left S(n, r)-modules, as in 0.9. To summarize:
for any finite dimensional rational module U, we have that U is isomorphic
to D®-r ® V, for some polynomial module V, each polynomial module de-
composes into a direct sum of homogeneous modules and the category of
polynomial modules of degree r is equivalent to the category of modules for
the Schur algebra S(n, r).

Thus from the representation theory of the the finite dimensional alge-
bras S(n, r), one can obtain all finite dimensional rational modules. However,
the point of view relevant for this work is that one should use the represen-
tation theory of GL,, to illuminate the representation theory of the finite
dimensional algebras S(n, r) and from there, via the Schur functors, the rep-
resentation theory of the symmetric groups. It is the q-analogue of this point
of view (from quantum general linear groups to q-Schur algebras to Hecke
algebras) that is explored in detail in the subsequent chapters.

0.14 Before going further, we give another version of the theory of weights
for GLn-modules. We now write G(n) for GLn. We write T(n) for the
group of diagonal matrices in G(n). We identify T(n) with GL' via the
map GL" -* T(n) taking x = (xl,... , xn) to diag(x), the diagonal matrix
with (1,1)-entry x1, with (2,2)-entry x2 and so on. In particular, T(n) has
the structure of a k-group, and we have the theory of weights for T(n), as
developed in 0.12. We define the weight spaces and character of a G(n)-
module to be the weight spaces and character of its restriction to T(n).

If V is a polynomial module of degree r we may also assign weight spaces
in another way. We write I(n, r) for the set of functions i : [1, r] -> [1, n].
We often represent i E 1(n, r) as the r-tuple (i1 i ... , ir) (where iQ = i(a),
1 < a < r). For i, j E I(n, r) we put cij = Ciiji ... ci,j,.. Note that the
symmetric group Sym(r) has a natural right action on I(n, r). Moreover,
we have cij = ciij, if and only if the sequence of pairs (i1,j1),...,(ir,jr) is
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a permutation of the sequence of pairs (ii, j'1), . . . , (irJ,,), i.e. if and only if
(i, j), (i', j') E I(n, r) x I(n, r) belong to the same Sym(r)-orbit. We write
the dual basis jj, i, j E I(n, r), with the understanding that ti = &j' if
(i, j) and (i', j') are Sym(r)-conjugate.

For a sequence a = (al, a2, ...) of non-negative integers we set Ial _
a1 + a2 + . Let A(n, r) denote the set of a E No such that jal = r. We
define the content a = (al, ... , ate,) E A(n, r) of i E I(n, r) by as = Ii-1(a)I,
1 < a < n. Thus we have $a = 1i if and only if i and j have the same
content. For a E A(n, r) we write fa for f,i, where i E I(n, r) has content a.
Now

1 = E a
aEA(n,r)

is a decomposition of 1 as an orthogonal sum of idempotents in S(n, r).
Moreover, for a polynomial module V of degree r and a E A(n, r) we have
Va = aV.

0.15 We define the so-called dominance order on X(n) = Zn. For a =
(a1,...,an), Q=(thy...,/3n)we write a<pif jal_

1 + + ,8 a , f o r all 1 < a < n. W e say that A = 0 1 , ... , An) E X ( n ) is

dominant if Al >_ A2, A2 >_ A3, ..., An-1 > An- We write X+(n) for the set of
dominant weights. For each A E X+(n) there is an irreducible G(n)-module
L(A) such that dim L(A)a = 1 and p < A for every weight p of L(A) not
equal to A. Moreover, {L(A) I A E X+(n)} is a complete set of irreducible,
mutually non-isomorphic G(n)-modules. From this, and the fact that

ch L(A) = e(A) + lower terms,

it follows that finite dimensional rational modules V, V' have the same compo-
sition factors (counted according to multiplicity) if and only if ch V = ch V.
Thus the character of a finite dimensional rational module plays the same
role as the Brauer character of a finite dimensional module for a finite group.

0.16 We wish to give a sketch of how the parametrization of irreducible
modules in 0.15 may be brought about. We shall need a theory of induction
for coalgebras. Let C be a coalgebra. Let V E Comod(C) and let X be a
k-vector space (which may come to us with some additional structure). We
write IX I ® V for the vector space X 0 V regarded as a right C-comodule
via the structure map id ® r : X ® V -> X ® V 0 C, where r : V -> V 0 C
is the structure map of V. For any right comodule V, the structure map
r: V -> IV 10 C is a morphism of right comodules.

Let 0 : C -p D be a coalgebra map. We have already seen that we
have a functor Comod(C) --} Comod(D), given by "O-inflation". We now
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write 0° for this functor. Now let W E Comod(D). We write B°(W) for
the C-subcomodule of JW 0 C consisting of the elements f E W ® C such
that (T 0 idc)(f) = (idyy (D (0 ® idc) o 6)(f), where b : C -> C 0 C is
comultiplication. If a : W -+ W' is a morphism of D-comodules, then
(a 0 idc) : JWI ® C - 1W', 0 C restricts to a C-comodule map 0°(W) -+
0°(W'), which we denote 0°(a). In this way we get a left exact functor
0° : Comod(D) -- Comod(C). There is a natural map v : 0°(B°(W)) -+ W,
namely the restriction of (idOE) : W®C --> W, where s : C -+ k is the counit.
Moreover, the functors 0° and 0° are adjoint in that, for any V E Comod(C)
and W E Comod(D), the map Homc(V, 0°(W)) -+ HomD(B°(V),W), taking
a : V -> 0°(W) to v o a : 0°(V) -+ W, is a linear isomorphism.

Now let 0 : Gl - G2 be a morphism of k-groups. Then we have
the associated comorphism 0 : k[G2] - k[G1]. We write Res(q) for B° :

Mod(G2) - Mod(Gi) and Ind(q) for 0° : Mod(Gi) -> Mod(G2). We
call Res(4) : Mod(G2) , Mod(Gi) the ¢,-restriction functor and Ind(qS) :

Mod(G2) -* Mod(G1) the cS-induction functor. If 0 : H -> G is inclusion
then we also write Res(4)(U) as ResHU, or just UCH, and call it the restric-
tion of U to H, for U E Mod(G); we also write Ind(qS)(V) as IndHV, and
call this the G-module induced from V, for V E Mod(H).

We now consider the general linear k-group G(n). We take B(n) to
be the Borel subgroup consisting of the lower triangular matrices. We have
a homomorphism B(n) -+ T(n) taking a lower triangular matrix to the
corresponding diagonal matrix. For each A E X (n) we have the 1-dimensional
T(n)-module ka, and we regard this as a B(n)-module via inflation. The
modules are finite dimensional and we have IndB(n))ka # 0 if and

only if A is dominant. For A E X+(n) we put V(A) = IndB(n)kA. Then one
proves that V(A) has a simple socle L(A), say, and that {L(A) I A E X+(n)}
is a complete set of pairwise non-isomorphic G(n)-modules.

In fact it is not difficult to produce, for each dominant weight A, an
irreducible module L(A) such that dim L(a)y` = 1 and p < A for every weight
p of L(A) not equal to A. Suppose first that all entries of A = (A1, ... ., A,,) are
non-negative. For any finite sequence a = (al, a2i ...) with entries in [0, n],
we define the polynomial module AaE _ A`Y'E®A"E® . One may check
that if a is the transpose of the partition A then A«E has unique highest
weight A and that A occurs with multiplicity 1. Hence there is a unique
composition factor, with these properties, which we may take to be L(A).
For an arbitrary dominant A, we may choose r >> 0 such that all entries
of p = A + r(1,1, ... ,1) are non-negative and take for L(A) the module

D®_r ® L(p).
Let A+ (n, r) = A(n, r) (1 X+(n). The character of V(A), A E X+(n),

is given by Weyl's character formula and, for A E A+(n, r), may be viewed
as the corresponding Schur symmetric function. Moreover the characters of
the V(A) and L(A), A E A+ (n, r), are connected by a unitriangular matrix.
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One of the main problems of this area is to obtain an explicit formula for
ch L(A), for A E A+(n, r), for example as an explicit Z-linear combination of
the ch V(p), p E A+(n, r). A solution to this problem would also give an
explicit formula for the Brauer characters of all irreducible modules for the
symmetric groups.

0.17 It follows from 0.14 that the weights of any G(n)-module which is
polynomial of degree r belong to A(n, r). The modules L(A), A E A+(n, r),
are all polynomial of degree r and we therefore obtain that {L(A) I A E
A+(n, r)} is a complete set of pairwise non-isomorphic irreducible S(n, r)-
modules. Moreover, the modules O(A), A E A+(n, r), are all polynomial.
Thus the main problem (of finding the characters of the irreducible G(n)-
modules) may be formulated entirely within the representation theory of
the Schur algebras S(n, r). We have the S(n, r)-modules V(A), L(A), for
A E A+(n, r), and a knowledge of the composition multiplicities [V (A) : L(P)],
for A, p E A+(n, r), would give an explicit formula for the character of the
irreducible modules L(A), A E A+(n, r).

Not only is there a strong connection between simple modules for the
k-group G(n), and the finite dimensional algebra S(n, r), but also between
the homological algebra of these objects. More precisely, let U, V be homoge-
neous G(n)-modules which have the same degree r. Then we have a natural
isomorphism

Exts(n,r)(U, V) = ExtG(n)(U) V)

for each i > 0. The observation that this was the case (for a class of groups
and algebras including the general linear groups and Schur algebras) was the
starting point of our investigations into Schur algebras and related algebras
(see [31],[32],[34],[35],[40]) of which the present work is a continuation.

0.18 The above section describes the first "process of descent" and we now
come to the second, from Schur algebras to group algebras of symmetric
groups. W e assume that r < n and let w = (1, ... , 1) E A(n, r). We put
S = S(n, r) and e = u, E S. We call eSe a subalgebra of S even though
the identity element, e, of eSe is not the identity of S(n, r) (unless r = 1).
Let u = (1,2,. .. , r) E I(n, r). Then the subalgebra eSe has basis
7r E Sym(r), and these elements multiply according to the rule

bu,r,uSux',u = Surrr"u

Thus eSe is a realization of the group algebra over k of the symmetric group of
degree r. We have the exact functor f : mod(S) -+ mod(eSe), known as the
Schur functor, given by fV = eV = V' on objects and given by restriction of
mappings on morphisms. If L E mod(S) is simple then eL is either simple or
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zero. Moreover the set of modules eL(A), as A runs over those A E A+(n, r)
for which eL(A) is not zero, form a complete set of pairwise non-isomorphic
simple eSe-modules.

Let p be a positive integer. W e say that A = (A1,... , A ) E A+(n, r)
is column p-regular if A - A2+1 < p for all 1 < i < n. We say that A E
A+(n, r) is row p-regular if the transpose partition A' is column p-regular.
Thus A = (A1, ... , An) is row p-regular if there is no i with 0 < i < n - p
such that A +i = ... = Ai+n > 0. All elements of A+(n, r) are declared to
be column 0-regular and row 0-regular. Now let p be the characteristic of
k. We write A+(n, r),oi (resp. A+(n, r)row) for the set of column p-regular
(resp. row p-regular) elements in A+(n, r).

The set of A E A+ (n, r) such that eL(A) $ 0 is exactly A+(n, r)ool and
thus we have the parametrization { f L(A) I A E A+(n, r),oi} of irreducible
modules of the symmetric group of degree r. Applying the Schur functor to
other naturally occurring modules for S(n, r)-modules (i.e. polynomial G(n)-
modules of degree r) produces other modules familiar from the representation
theory of the symmetric group. For example applying the Schur functor to
V(A) yields the Specht module and applying the Schur functor to the injective
envelope, as an S(n, r)-module, of L(A) yields the Young module, labelled
by A.

0.19 The story so far has been both a review of the classical theory and a
dry run for the q-analogue, which we now describe. One has a well known
q-analogue of the group algebra of the symmetric group Sym(r), namely the
Hecke algebra Hec(r). We fix a field k and an element q E k. We denote the
length of w E Sym(r) by l(w). Then Hec(r) has k-basis Tw, w E Sym(r),
and multiplication satisfying

TTTT' = Twwi, if l(ww') = 1(w) + l(w')
(T3+1)(T,-q)=0

for w, w' E Sym(r), and a basic transposition s E W.
The idea is to study the representation theory of the Hecke algebra

Hec(r), as in the classical case, by a sequence of two descents: from a quan-
tization (i.e. q-analogue) of G(n) to a q-Schur algebra and from there to the
Hecke algebra via a Schur functor. The point of view taken in these notes is
that the information should flow uniformly in this direction. (Other points
of view are possible, see the work of Dipper and James, e.g. [21], and there
is an exception to this principle in Section 2.2, where we use the representa-
tion theory of Hecke algebras to determine the characters of the irreducible
modules for the q-Schur algebras at q = 0.)

0.20 We view G(n) as a group over k. Recall that a G(n)-module is, by
definition, a right comodule for the Hopf algebra k[G(n)]. We shall introduce
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a deformation of this Hopf algebra. Thus our quantum general linear group
will, in reality, be a Hopf k-algebra. However, we do not wish to abandon,
at this point, the carefully developed intuition and notation of group repre-
sentation theory and therefore stretch the analogy between groups and Hopf
algebras somewhat beyond its legal limits. That is, we shall regard the cat-
egory of quantum groups as the opposite category of the category of Hopf
algebras. Thus, when we say "G is a quantum group over k", we mean that
we have in mind a Hopf algebra which is denoted k[G], and when we say
that 0 : G1 -> G2 is a morphism of quantum groups we mean that we have
in mind a homomorphism of Hopf algebras : k[G2] , k[G1]. We call the
comorphism of 0. We use the expression "H is a quantum subgroup of G" (or
just "H is a subgroup of G") to indicate that we have in mind a Hopf ideal IH
of k[G] (i.e. IH is an ideal of k[G] such that 6(IH) < k[G] ® IH + IH 0 k[G],
E(IH) = 0 and o (IH) < IH) and that k[H] = k[G]/IH. In this case we
have the morphism 0 : H -* G, called inclusion, whose comorphism is the
natural map k[G] - k[G]/IH.

Let G be a quantum group. A left G-module is, by definition, a right
k[G]-comodule. We write Mod(G) for Comod(k[G]) and write mod(G) for
comod(k[G]). Let 0 : G1 -> G2 be a morphism of quantum groups and let 0 =

: k[G2] - k[G1]. As in 0.16, we write Res(q) for Bo : Mod(G2) -> Mod(Gi)
and Ind(qi) for 00 : Mod(Gi) -- Mod(G2). We call Res(c) : Mod(G2) ->
Mod(Gi) the 0-restriction functor and Ind(O) : Mod(G1) -> Mod(G2) the
0-induction functor. If 0 : H --+ G is inclusion then we also write Res(O)(U)
as ResHU, or just UIH, and call it the restriction of U to H, for U E Mod(G);
we also write Ind(q)(V) as IndHV, and call this the G-module induced from
V, for V E Mod(H).

To construct our quantization of the general linear group G(n), we start
with the associative algebra F freely generated by Xij, 1 < i, j < n. Define
b : F -} F ® F to be the algebra map such that 6(Xi1) = Er=1 Xir 0 Xrj
and E : F k to be the algebra map such that e(Xij) = bij (the Kronecker
delta), for 1 < i, j < n. Then (F, b, e) is a bialgebra over k. We view F as a
graded k-algebra, by giving Xij degree 1, for 1 < i, j < n. Let I be the ideal
of F generated by the elements

XirXis - XisXir for all i, r, s
XjrXis-gXi5Xjr for alli<j and r<s

XjsXir-Xi.Xjs-(q-1)Xi8Xjr for alli<j andr<s
(for 1 < i, j, r, s < n). Then I is a biideal, i.e. we have b(I) < F ®I + 10 F
and e(I) = 0. The quotient algebra Aq(n) = F/I is therefore a bialgebra
with structure maps, also denoted b, E, induced from those of F. Thus Aq (n)
is the k-algebra generated by cij, 1 < i, j < n, subject to the relations

Cir Cis = cis cir for all i, r, s
CjrCis = gciscjr for all i < j, and r < s

CjsCir = CirCjs + (q - 1)Ciscjr for all i < j, and r< s
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(for 1 < i, j, r, s < n). The bialgebra structure on Aq(n) is given by

n

b(cij) _ cir ® Crj and -(cij) = bij
r=1

for 1 < i, j < n. Moreover, the generators of I above are homogeneous so
that I is a graded ideal and Aq(n) inherits the structure of a graded algebra
with cij having degree 1, for 1 < i, j < n. Note that putting q = 1 gives the
bialgebra A(n) discussed above.

For a all, a12. , ann) E Nn2 we put Ca = Call Cal, Ca^^ The( 0 11 12 n n

elements ca, a E N'3, form a k-basis of Aq(n). From the grading on Aq(n)
we get a coalgebra decomposition Aq(n) = ®°_o Aq(n, r). Hence we get an
algebra Sq(n, r) = Aq(n, r)* of dimension (n2}r-1), for r > 0. The algebras
Sq(n, r) are called the q-Schur algebras, and were originally constructed (by
other means) by Dipper and James.

We have now constructed a q-analogue of the algebra A(n) and of the
Schur algebras S(n, r). To make possible our investigation of the representa-
tion of Hec(r) by means of the sequence of descents outlined above, we need
to construct a Hopf algebra k[Gq(n)], to take the place of k[G(n)] in the case
q = 1. Recall that k[G(n)] is the localization of A(n) at the determinant.
We define the quantum determinant

dq = sgn(ir)c1,1,C2,2,r Cn,nr E Aq(n).
irESym(n)

Then we have e(dq) = 1 and b(dq) = dg ® dq, i.e. dq is a group-like element of
Aq(n). Assume now that q # 0. We have cijdq = gi'jdgcij, for 1 < i, j < n.
It follows that we can localize the bialgebra Aq(n) at dq. It turns out that
the localization Aq(n)d9 is a Hopf algebra and we define the quantum general
linear group Gq(n) to be the quantum group whose coordinate algebra is
Aq(n)dg.

0.21 We now consider the representation theory of Gq(n). We do this, as
in the classical case (q = 1), by means of subgroups Tq(n) and Bq(n). The
defining ideal of Tq(n) is the Hopf ideal of k[Gq(n)] generated by all cij,
with i # j. We have an isomorphism of Hopf algebras k[T(n)] -+ k[Tq(n)]
taking t= to cii + ITQ(n), for 1 < i < n. In particular, Tq(n) is independent
of q, and we identify it with T(n) via the above isomorphism. Thus we
have a theory of weights for Gq(n) and, as before, for V E mod(Gq(n))
we define the character ch V E ZX(n) to be the character of VIT(n). The
defining ideal of Bq(n) is the Hopf ideal of k[G] generated by all cij with
i < j. We have T(n) < Bq(n) < Gq(n). We also have a homomorphism
0 : Bq(n) --r T(n), whose comorphism : k[T(n)] -* k[Gq(n)] takes ti to
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E88 = cii + IB,(n), for 1 < i < n. Thus each irreducible T(n)-module ka,
for a = (al, ... , a,,) E X (n), may be regarded as a Bq(n)-module, by 0-
restriction. Precisely, the structure map r : k« -> k« 0 k[Bq(n)] is given by
r(x) = x (D E', for x E ka, where c" = Eii ...E"n. Then {k« I a E X (n)}
is a full set of simple Bq(n)-modules. We have the following fundamental
properties of induction from Bq(n) to Gq(n) and its derived functors. The
second property is known as Grothendieck vanishing.

(1) The derived functor R''IndBq(nj takes finite dimensional modules to fi-

nite dimensional modules, for i > 0, and RaIndBq(n) = 0 for i > (2).

Of central importance to our approach is Kempf's vanishing theorem, which
is the second assertion of (2) below.

(2) For A E X(n), we have IndB9(n)ka # 0 if and only if A E X+(n) and

furthermore we have 0, for A E X+(n) and i > 0.

We define V ,(A) = for A E X+(n). We define Lq(A) to be the
socle of Vq(A), for A E X+(n).

(3) For A E X+(n), the module Vq(A) has character given by Weyl's charac-
ter formula. Moreover Lq (A) is a simple module of highest weight A and fur-
thermore {Lq(A) I A E X+(n)} is a complete set of pairwise non-isomorphic
simple Gq (n)-modules.

Thus we are in the same situation as in the non-quantized case. Two fi-
nite dimensional Gq(n)-modules have the same composition factors (counting
multiplicities) if and only if they have the same character. The main prob-
lem is to find the characters of the irreducible modules. We have a supply
of modules whose characters are well understood, i.e. the Vq(A)'s, and the
characters of the simple modules Lq(A) are related to those of the Vq(A)'s by
a unitriangular matrix. The main problem is thus equivalent to determining
the decomposition matrix ([A : p]), where, for A,µ E X+(n), we are writing
[A : p] for the multiplicity of L,(µ) as a composition factor of Vq(A).

0.22 We now turn to the q-Schur algebra Sq(n,r). For A E A+(n, r),
the Gq(n)-module Vq(A) is polynomial of degree r, and thus naturally an
Sq(n, r)-module. Furthermore {Lq(A) I A E A+(n, r)} is a complete set of
pairwise non-isomorphic simple Sq(n, r)-modules. Moreover we have, as in
0.17, natural isomorphisms

Extsq(n,r) (U, V) = (U, V)
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for i > 0 and U, V E mod(Sq(n, r)).
One also has a q-version of the theory of weights for S(n, r) described in

0.14. We first construct a suitable basis of Aq(n, r). For i = (i 1, ... , ir), j =
E I(n,r) we put ci1 = ci,2,...ci,j,. For a = (a,,...,an) E

A(n, r), we write I- (a) for the set of all j = (ii, ... , Jr) E I (n, r) such that
ii >- >- ja,, da,+1 >- ' >- ja,+a2, and so on. We write U for the set of
all pairs (i, j) E I(n, r) x I(n, r) such that i is weakly increasing of content
a, say, and j E I- (a). Then {cij I (i, j) E U} is a basis of A(n, r). Thus we
get a dual basis {l ij I (i, j) E U} of Sq(n, r). For a = (al, ... , an) E A(n, r)
we put is = (1, . . . , 1 , 2, ... , 2, 3, ...) (where 1 occurs a1 times, 2 occurs a2
times, and so on). We put a = fia ice. Then each fa is an idempotent and
we have the orthogonal decomposition

1 = 4"
aEA(n,r)

as before. Moreover, if q # 0 and V E mod(Gq(n)), we have Va = l;aV, for
a E A(n, r).

0.23 We now assume r < n. As in the classical case, we single out the
idempotent e = lw for special treatment, where w = (1, ... ,1) E A(n, r).
Then we have:

(1) eSq(n,r)e has basis it E Sym(r)}, where u = (1,2,,. . , r) E
I(n, r).

We define T,,, = for w E Sym(r). For 1 < a < r we write sa for the
basic transposition (a, a + 1). Then we have the following.

(2) Let 1 < a < r and w E Sym(r). We have

Ta, TEaw' if 1(saw) = 1(w) + 1;
gTsau, + (q - 1)T,,,, if 1(saw) = 1(w) - 1.

These are defining relations for the Hecke algebra Hec(r). Thus we get a
surjection Hec(r) --> eSq(n, r)e. However, both Hec(r) and eSq(n, r)e have
dimension r!, so that Hec(r) -> eSq(n, r)e is an isomorphism, and eSq(n, r)e
is the Hecke algebra of type Ar_1 on generators T,a.

Thus we have, as in the classical case, the Schur functor

fq : mod(Sq(n, r)) -> Hec(r),

taking an object V E mod(Sq(n, r)) to eV E mod(eSg(n, r)e). The non-zero
modules among the fqLq(A) parametrize the simple modules for Hec(r). To



20 0. Introduction

describe this set we need some more notation. If q is not a root of unity
then we set A+(n, r)col = A+(n, r). If q = 1 and k has characteristic 0, we
again set A+(n, r),oi = A+(n, r). In the remaining cases we define a positive
integer s to be the (non-zero) characteristic of k if q = 1 and to be 1 if q is
a primitive Ith root of unity (and l > 1). We write A+(n, r),ol for the set of
column s-regular elements of A+(n, r).

(3) For A E A+(n, r), the Hec(r)-module fqLq (A) is non-zero if and only if
A E A+ (n, r)cot. Moreover { fgLq(A) I A E A+ (n, r)col} is a complete set of
pairwise non-isomorphic simple Hec(r)-modules.

0.24 Having described the general framework, we now briefly describe the
contents of these notes. There is a well-known basis of bideterminants of the
polynomial algebra A(n), in the n2 commuting variables cad. The bideter-
minants are products of minors of the matrix (c;j). This basis gives rise to
a certain filtration of A(n) as a (G(n), G(n))-bimodule. In Chapter 1, we
give a q-analogue of this. The bideterminants are realized as coefficient func-
tions of exterior powers of the natural Gq(n)-module. In the second chapter,
we describe the formalism of the q-Schur functor and use it to describe the
character of the irreducible Sq(n, r)-modules when q = 0.

The third chapter is concerned with the infinitesimal theory of Gq(n),
assuming that q is a primitive Ith root of 1, with 1 > 1; this proceeds by
analogy with Jantzen's theory of G1T modules, for a reductive group G
with maximal torus T. We have the finite quantum subgroup Gq(n)1, whose
defining ideal IG9(m), is generated by all c;i, with i # j. We discuss the repre-
sentation theory of Gq(n)1, in particular the irreducible modules, Steinberg's
tensor product theorem, the principal indecomposable modules, we describe
the theory of tilting modules for quantum GL,, and use the infinitesimal the-
ory to completely determine the tilting modules for quantum GL2. This has
an application to decomposition numbers for Hecke algebras, which is given
in 4.5.

The final chapter is concerned with the connections between the Hecke
algebra and the q-Schur algebra, as well as various other topics. Among
the other topics is the determination of the global dimension of Sq(n, r), for
r < n, given in 4.8. This is strongly influenced by the recent work of Totaro
dealing with the classical case q = 1.

We conclude this exposition with a warning that the index q, added in
the above to the notation given in the classical case, will be dropped in the
main text. This is unlikely to lead to confusion, since we do not often need
to compare with the classical case, and avoids some unnecessary notational
complications. Thus we shall simply write G(n) for Gg(n), write S(n, r) for
Sq(n, r), write L(A) for Lq(A) and so on.

0.25 The approach to linear algebraic groups in 0.2 to 0.6 is taken from



0. Introduction 21

Chapter 1 of Steinberg, [74]. For more on k-groups and their relationship
with Hopf k-algebras (Sections 0.7, 0.8 and 0.10, 0.11, 0.12) see Chapter AG
of Borel, [6]. For further reading relevant to 0.9 see the thorough account
of the representation theory of coalgebras given by Green in [50]. For the
aspects of the representation theory of GLi and GL featured in 0.12, 0.13,
0.14 and 0.15 see Green, [51], especially Chapter 3 and Sections 2.1, 2.2, 2.3.
For the approach to the induced modules 0(\) in 0.16, see Jantzen, [61],
Part II, Chapter 5. For the isomorphism Exts(,a r) (U, V) -> Ex*(-) (U, V)
of 0.17 see [31]. For the material of 0.18 as formulated here see Green, [51],
Chapter 6. Section 0.19 needs no reference. The construction of quantum
GL,, given in 0.20 is taken from [18]. The material on quantum GL in 0.21
is taken from [36]. The q-Schur algebras were introduced by Dipper and
James, [21]. For the isomorphism Ext*,(n,,.)(U, V) -> Ext;4(,,)(U, V) of 0.22
see [36]. The rest of 0.22 and the remaining sections concern topics to be
described in more detail in the main body of the text. The parametrization
of the irreducible modules for Hecke algebras of type A, given in 0.22, is due
to Dipper and James, [20].



1. Exterior Algebra

The purpose of this chapter is to give a basis of A(n) consisting of bidetermi-
nants. This basis is a q-analogue of the basis given by several authors in the
classical case: see Mead, [67]; Doubilet, Rota and Stein, [43]; De Concini,
Eisenbud and Procesi, [17]; and Green, [52]. Our treatment differs from
these in that we view the bideterminants throughout as coefficient functions
on modules for quantum GL,, which are tensor products of exterior powers
of the natural module.

We shall later give a basis of the induced module V(A) (for A E A+(n, r))
consisting of bideterminants, Proposition 4.5.2, in the spirit of Green's treat-
ment in the classical case, [51; (4.5a)].

We shall also see later that the tensor products of exterior powers of
the natural module are distinguished by being tilting modules for GLn and
that every indecomposable polynomial tilting module is a direct summand of
such a module. However, these features are not used in this chapter, which
is entirely combinatorial.

In the first section we introduce the notion of a comodule pairing and
list some elementary properties for future use. In the second section we
describe an algebra which is a quotient of the tensor algebra on the exterior
algebra of the natural module E for the quantum general linear group. In
the last section we define (two kinds of) bideterminants as certain coefficient
functions and prove the basis theorem.

1.1 Preliminaries

We begin by establishing some notation and listing, without proof, some
elementary properties of representations of comodules for future use. For a
set X we denote by idx (or simply id) the identity map on X. We fix a
field k. Let (A, b, s) be a k-coalgebra. We often denote by rE (resp. rv)
the structure map E -> E ® A (resp. V -> A ® V) of a right (resp. left) A-
comodule E (resp. V). Suppose that 0 : Y -* Z is a morphism of comodules.
Recall that we have cf(Y) < cf(Z) if 0 is injective and that cf(Z) < cf(Y) if
0 is surjective, [50; (1.2c)].

For a k-space X we write IX ® E for the k-space X ® E, regarded as a
comodule via the structure map id 0 rE : X 0 E -> X ® E ® A. Similarly
we define a right comodule E 0 IX I. We define left comodules V 0 IX I and
IX 0 V in the same way. Note that the structure maps E -+ JEl ® A and
V -> A 0 IV I are morphisms of comodules.

We shall identify a bilinear map b : X x Y -+ k with its k-linear extension
X ® Y -} k. We say that a bilinear map b : V x E -> k is a pairing if it is
non-singular and (id ® b) o (rv ® id) _ (b 0 id) o (id ®rE). If b is a pairing we
write 4b for the map (id (D b) o (rv (D id) = (b ® id) o (id 0 rE) : V 0 E -> A.
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By an (A, A)-bicomodule we mean a triple (U, A, p) consisting of a k-
space U and linear maps A : U -* A ® U, p : U ---f U ® A such that (U, A) is
a left A-comodule, (U, p) is a right A-comodule and we have (id ® p) o A =
(A ® id) o p : U --> A ® U ® A. Note that (A, b, b) is an (A, A)-bicomodule.
Note also that V ® E is naturally an (A, A)-comodule with structure maps
rv®id:V®E-->A®V®Eand id®rE:V®E->V®E®A. LetTand
U be A-bicomodules. A map 0 : T --+ U is a morphism of bicomodules if it
is a morphism of left comodules and a morphism of right comodules. The
following is an easy consequence of the definitions.

Lemma 1.1.1 Suppose that b : V x E -+ k is a pairing.
(i) -bb : V ® E --+ A is a morphism of (A, A)-bicomodules.
(ii) cf(V) = cf(E).

For left (resp. right) A-comodules X, Y we denote by HomA(X, Y) the
space of comodule homomorphisms from X to Y. For a k-space Z we denote
the dual space Homk(Z, K) by Z*. For a linear map a : Z1 -> Z2 we write a*
for the dual map ZZ -> Zl . For a comodule X we have a natural isomorphism
HomA(X,A) - X*, taking B E HomA(X,A) to E o B E X. In particular
the functor HomA (-,A), from A-comodules to k-spaces, is exact and so A is
injective as a comodule over itself. (A detailed account of the representation
theory of coalgebras is to be found in [50].) We now suppose that E is finite
dimensional and let a8, i E I, be the basis dual to e;, i E I. We make E* into
a right module with structure map rE. satisfying rE.(a;) = EjEI C'i 0 ai .
The construction does not depend on the choice of basis. Similarly the dual
V* of the left A-comodule V is naturally a right A-comodule. We leave it to
the reader to check the following.

Lemma 1.1.2 (i) Let X1 and X2 be either both finite dimensional left
A-comodules or both finite dimensional right A-comodules. Then we have
the natural isomorphism

HomA (X1, X2) -> HomA (X2*, X1)

taking a E HomA(X1, X2) to a* E HomA(X2, X1).
(ii) If V (resp. E) is injective then V* (resp. E*) is projective and if V (resp.
E) is projective then V* (resp. E*) is injective.
(iii) Suppose we have a pairing V x E --+ k. Then we have V* 5--- E and
E* = V, as A-comodules. If V (resp. E) is injective then E (resp. V) is
projective. If V (resp. E) is projective then E (resp. V) is injective.
(iv) Suppose we have pairings b1 : V1 x E1 --+ k, b2 : V2 x E2 -> k of finite
dimensional A-comodules. For each 0 E Homk(V1, V2) we have the adjoint
map ad(O) E Homk(E2i El), defined by b1(vl, ad(O)e2) = b2(cb(vl), e2), for
v1 E V1, e2 E E2. Furthermore 0 is an A-comodule map if and only if ad(c5)
is an A-comodule map.
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1.2 Exterior algebra

For integers a < b we write [a, b] for the set of integers m such that a < m < b.
For a set X we write Sym(X) for the group of permutations of X. Thus
Sym(r) = Sym[1, r], for r > 1.

We fix a positive integer n. Let R be a commutative ring and q E R.
Let A(n) = AR,q(n) be the R-algebra generated by cij, 1 < i, j < n, subject
to the relations

AI CirCis = CisCir for all i, r, s;
All Cjrcis=gciscjr for alli<jandr<s;
AIII CjsCir = CirCjs + (q - 1)ciscjr for all i < j and r < s

(with i, j, r, s e [l, n]). Note that AIII, in the presence of AI, All, is equiva-
lent to

AII!' CirCjs+CjrCis = CjsCir+CisCjr, for all 1 < i < j < n, 1 < r < s < n.

iFor elements a, b, c, d of a ring X we write a b

c d
AIII' may be expressed

for ad - be E X. Thus

AIII"
I

Cir Cis

I

= - I Cjr Cjs

Cjr Cjs Cir Cis

for all 1 < i < j < n, 1<r<s<n.
Note that A(n) has a natural R-algebra grading A(n) = ®' u A(n, r),

where each cij has degree 1. From [18; 1.1.8 Theorem] we have that the con-
struction commutes with base change, i.e. the natural map R®a[t]Az[t],t(n) -
AR,q(n) (where t is an indeterminant) is an R-algebra isomorphism, inducing
an R-module isomorphism R ®a[t] Az[t],t(n, r) - AR,Q(n, r) in each degree.

Suppose R = k, a field. We denote by M = M(n) the quantum monoid
with coordinate algebra k[M] = A(n), where k is a field. Here, by analogy
with 0.20, we use the expression "H is a quantum monoid" simply to indicate
that we have in mind a k-bialgebra denoted k[H] and called the coordinate
algebra of M. By definition a left (resp. right) H-module is a right (resp.
left) k[H] comodule and a homomorphism of H-modules is a k[H]-comodule
map.

Now assume that q # 0. Then, as in 0.20, the quantum group G = G(n)
with coordinate algebra k[G] = A(n)d is obtained by localizing A(n) at the
(quantum) determinant d. If 0 0 q then any left (resp. right) M-module
V, with structure map r : V -> V 0 k[M] (resp. r : V -+ k[M] ® V), is
naturally a G-module with structure map r' = t o r, where t is inclusion
V ® k[M] -> V ® k[G] (resp. k[M] ® V - k[G] ® V). A G-module V may be
obtained from an M-module in this way if and only if the coefficient space
cf(V) lies in k[M] (i.e. V is a polynomial G-module).

We now take E to be the natural left M-module and V to be the natural
right M-module. Thus E has k-basis e1, ... , en and structure map taking ei
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to E?=1 ej 0 cji and V has k-basis v1,... , vn and structure map taking vi
to cij ® vj (for 1 < i < n). We recall from [18; 2.1] the construction of
the exterior powers of the natural modules E and V. Let T(E) = 10000 E®r
be the tensor algebra on E. We define J to be the ideal of T(E) generated
by the elements eh, with 1 < h < n, and eiej + gejei, with 1 < i < j <
n. Then J is an M-submodule of T(E). We define A(E) = T(E)/J and
write A for the multiplication in A(E). Since J is homogeneous we have
an induced grading and M-module decomposition A(E) = ®r o E. The
rth exterior power ArE has k-basis consisting of the elements ei, A .. A ei,,
with n > i1 > > it > 1. Moreover, it follows from the invariance of the
character of ArE under the action of Sym(r) that ArE is an irreducible left
M-module, for 1 < r < n, see [36; Remark 3.7]. Similarly we define K to
be the ideal of T(V) generated by the elements vh, with 1 < h < n, and
vivj + vjvi, with 1 < i < j < n. Then K is an M-submodule of T(V). We
define A(V) = T(V)/K and write A for the multiplication in A(V). Since K
is homogeneous we have an induced grading and M-module decomposition
A(V) = ®0° o Ar V. The rth exterior power /fir V has k-basis consisting of
the elements vi, n A vi,, with 1 < i1 < < it < n. Moreover, ANV is an
irreducible right M-module, for 1 < r < n.

Recall, from 0.14, that I(n, r) denotes the set of functions i : [1, r]
[1, n]. We shall often write i E I(n, r) as the sequence (i1, ... , ir) (where
is = i(a), 1 < a < r). Let i = (i1 i ... , ir) E I(n, r). We define ei =
ei, ® ® eir E E®'* and vi = vi, ® ® vi,. E V®'. We define ei =
ei, A A eir E AE, the image of ei under the natural map E®r -> ArE
and define vi = vi, A A vi, E A' V, the image of vi under the natural map
V®r->ArV.

We write P = P(n) for a certain set of sequences of non-negative in-
tegers. We define P to be 0 together with sequences a = (a1, ... , am), for
some positive integer m, with entries a1, ... , am E [1, n]. For E P we
define (al/i)to be a if /3 = 0, to be 3 if a = 0 and to be the concatenation
(al) ... , al, Qi, .... Xn) if a = (a1, ... , N3 = (N1.... , /3m). We make P
into a monoid with binary operation (aI/3). For a E P we set AaE = k
if a = 0 and AaE = AalE ®. ®A'-E if a = (a,, ... , a.). In the
same way, we setAaV=kifa=0andAaV=Aa1V® ®AO-Vif
a = (a1, ... , a,,,).

We set P(n, 0) = {0}. For r > 0 we write P(n, r) for the set of a =
(a1, ... , a,,,) E P(n) such that El ai = r. We write P+(n, r) for the set
of partitions in P(n, r) (for r > 0). For a E P we denote by a the partition
associated with a, i.e. the partition obtained by arranging the terms in a
in descending order. We shall use the natural (dominance) partial order on
partitions. Thus, for partitions A = (Al, A2, ...) and it = (µ1, µ2i ...) we
write A>pifJAI 1

(see 0.15). For a partition A we denote by A' the conjugate partition. For
partitions A, p we have the partition A U p, whose parts are those of A and p
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arranged in descending order (see 63; I,1]) Note that for a,,3, y E P with
a>/3wehave aU1>aU1,i.e. (a1y)>(fly),for any 7EP.

Let R denote the tensor algebra on ®$ 1 /ONE. Thus we have an M-
module decomposition R = ®"E p R", where R'= A"E, a E P.

For a E P we write J" for the M-submodule of R" generated by the
images of all M-module homomorphisms RO -> R" for /3 E P with /3 ¢ a.
We set j = (3),,E P J"

Proposition 1.2.1 (i) J is an ideal of R.
(ii) For a E P, the module R"/J" has unique highest weight a' and

dim (R"/J")"' = 1.

Proof (i) Let a, /0 E P. Clearly J"RP, R"JP° C J if a or /3 is 0. We
suppose a,)3 # 0 and show that R"JO C J (the other case is similar). It
suffices to show that R"®Im(O) C J for any M-map 0 : R'Y -> Ra with 1 ¢ /3.
However, we have R" ®Im(B) = Im(4'), where 0 = (id 0 0)- R('Iry) --* R("I #).
Thus R" ® Im(O) is contained in J unless (a1y) < (ajf). However, that
would give a U1 < a U /3 and hence, by [63,I,(1.8)], a' + > a' + /3', and
so 1' > /3' and ,;17 < (3, a contradiction.
(ii) Suppose 0 # a = (al, ... , a.,,a) E P. If a is a partition then it is easy to
see that e1A ..Ae", ®e1A...ne, 2®... spans the a' weight space of AaE and
a' is the unique highest weight of R'= n"E. For general a the module R"
has the same character, hence the same weight multiplicities, as R". Hence
R' has unique highest weight a' and this occurs with multiplicity 1. Note
this holds also in the case a = 0. To get the required assertion, we need to
know that a' is not a weight of the image of a homomorphism Ra -} R"
with ,Q a. But this would give that a' is a weight of Ra and so a' < ,3'
and hence /3 < a, a contradiction.

We now introduce some additional notation. Let r be a positive integer.
We write Io(n, r) for the set of i E I(n, r) with distinct entries and define
Ii(n, r) to be the set of strictly decreasing sequences in I(n, r). For a parti-
tion A = (A, ... , An) we write Tab(A) for the set of A-tableaux with entries
in [1, n]. We call a A-tableau standard if the entries are strictly increasing
along rows and weakly increasing down columns. (Note that we have re-
versed rows and columns in the notion of standard used in [51].) We call a
A-tableau antistandard if the entries are strictly decreasing along rows and
weakly decreasing down columns. We write AStan(A) for the set of antis-
tandard A-tableaux. We write Tabo(A) for the set of A-tableaux S such that
the entries in each row of S are distinct and write Tabi(A) for the set of
A-tableaux such that the entries in each row of S are strictly decreasing. For
S E Tabo(A) we write 9 for the element of Tabl(A) obtained by arranging
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the elements in each row of S in descending order. For a partition A E P
and S E Tab(A) we put

es = es(1 1) A ... A es(1,A1) ® es(2,1) A ... A es(2,A2) ®.. .

We note that es = 0 if S V Tabo(A). We note also that for S E Tabo(A) we
have es = (-q)ies for some I > 0 (from the description of A(E) given above)
and that the elements es, S E Tabl(A), form a basis of AAE. The content
of a A-tableau S is c = (c1, ... , E Z", where Cr is the number positions in
the tableau in which the entry r appears, for 1 < r < n.

We order r-tuples of non-negative integers lexicographically. We order
elements of Tab1(A) of given content lexicographically by row. Thus if S and
T are in Tab1(A) with rows S1, ... , Sm and T',. .. , T' respectively (where
A = (A1, ... , A,,,)) then S < T if S and T have the same content and, for
some 1<a<m, we have S'= T' for i<a and Sa < T0.

Lemma 1.2.2 For a E P(n) we have an M-pairing b : n"V x n"E -> k
such that (vs, eT) = as,T, for S, T E Tab1(a).

Proof We have a pairing bl : V®r x E®r -> k such that b1(vi,e,) = bij,
for i, j E I(n, r), see [36], the discussion preceding Lemma 3.3. We have the
natural map : A

rE --> E®r, 0(e1) ErESym(r) sgn(7r)ej,,, for j E I1(n, r),
and hence a map b2 : V®r x ArE .- k given by b2(x, y) = bl(x, tP(y)) (for
x E V®r, Y E A'E). Specifically, we have b2(vi, ej) = E,rESym(r) sgn(7r)bi,j r,
for i E I(n, r) and j E 11 (n, r). The kernel N, say, of the natural map
V®r - ArV is spanned by elements vi such that i has a repeated entry,
together with the elements vi - c E Sym(r). However, we have
b2(v, ej) = 0, for j E Ii(n, r), if v is one of these elements. Hence b2(v, e) = 0
for all v E N, e E ArE and b2 induces a map b3 : A'V ® /\'E -> k. For
i, j E Ii (n, r) we have b3(vi, ej) = b2(vi, ej) = bi(vi, ej) = bij. Thus, for each
i, we have a pairing A" V x A" E -> k as above and for b: n"V x n"E -> k
we take the product form (see [36; Section 3]).

We write X (r, s) for the set of v E Sym(r+s) such that o-(a) < whenever

Lemma 1.2.3 The linear map V): /\r+sE -> A 'E ®A$E given by
l(ei) = Y:7 x(r,s) for i E Ii(n, r+s), where eio denotes the image
of eio under the natural map E®(r+s) - E®r ® E®", is an M-module map.

Proof We have the natural pairings nr+sV x nr+sE - k and ArV 0
AT x ArE ®A8E k. We leave it to the reader to check that the map 1'
is the adjoint of multiplication ArV 0 A8V -> p r+sV (cf. [18; Section 2.1])
and so is an M-module map, by Lemma 1.1.2(iv).
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Theorem 1.2.4 Let A be a partition in P. For each S E Tab(A) there
exist elements CT of k, for T E AStan(A), such that CT = 0 unless T > S and
es = >TEAStan(A) cTeT (mod JA). In particular, the elements es + JA,
S E AStan(A), form a spanning set of R'/J'.

Proof If A = 0 there is nothing to prove. If A = (A1) (a 1-part partition)
then AAE = AA1E is simple, J) = 0 and again the result is clear.

Now suppose that A has 2 parts, A = (1, m), say, with I > m > 0. If
S Tabo(A), then es = 0. We assume inductively that S E Tabo(A) and
that the result holds for all U E Tabo(A) with U > S. We have es = (-q)'eg,
for some r > 0, so we may assume that S E Tabi(A). Let S(1,1) = il, ...,
S(1,1) = it and S(2,1) = jl, ..., S(2, m) = j,,. Thus we have it > > ii,
ji > ... > If S is antistandard there is nothing to prove. So we assume
S 0 AStan(A) and let a be as small as possible such that is < ja. Thus
we have ji > > ja > is > > il. We have the map 0 : A'+1E ->
A1+1-aE

® A
a E of Lemma 1.2.3 and the multiplication maps 8 : Aa-1E

A'+1-aE -> A'E and rt :A a E ®Af1-aE -AmE. Hence we have the map
= (9(0 11)o (id 0 (D id) :

Aa-1E
0 A' 1E0A" aE -* A'EOAmE.

Let p = (a - 1,1 + 1, m - a). The first part of µ is I + 1 so that p ¢ A and
therefore Im(') < J'. Let h = (hl,... , h,+i) _ (ji) ... , ja, ia, ... , it), the
result of arranging the sequence (ia, ... , ii, jl, ... , ja) in descending order.
We have

' (ei1 A ... A eia-1 0 eh 0 eia+1 A ... A eim )

_ sgn(v)(9 (D r1)(ei1 A ... A eia-1 0 eh, 0 eia+1
A ... A eim)

aEX

where X = XY + 1 - a, a). For o E X we write fo = (ho(1), , ho(i+1-a))
and g, = (ho(t+2-a), , ho(t+1)) Thus we have

' (ei1 A ... A eia-1 0 eh 0 eja+1 A ... A eim)

_ sgn(o-)ei1 A ... A eia-1 A ef, 0 ey, A eja+1 A ... A eim

and hence

aEX

T, sgn(v)ei1 A ... A eia-1 A 6f, 0 h A
eia+1

A ... A eim E JA.
aEX

This may also be expressed

1: sgn(o)es, E Ja

aEX
(*)

where Sa is the A-tableau whose first row is (il,... , ha(1), ...1 ho(i+1-a))
and second row is (ha(l+2-a), ... , ho(1+l), ja+1, . , Note that, for Q E
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X, the first a - 1 entries of the first row of the tableau S° are i1, ... , is-1
and the remaining entries belong to the set {ia, ... , ij, j1, .... ja}. There is a
unique permutation a'o E X such that

(h°p(1) ... , hgo(1+1)) = (ia, ... , ii, jl, ... , ja).

Thus we have S°o = S. For any o-o # a' E X, some j8, with 1 < s < a, occurs
in the first I - a + 1 entries of (h°(1), ... ) h°(i+1)), so that js occurs in the
first row of S,, in position a or later. Since js > ja > ia, we have S° > S,
for Q # co. From (*) we get

eS = sgn(a'ao)eso (mod JA)
aEX,° °o

and therefore

es = E aTeT (mod J'`)
T

for scalars aT with aT = 0 for T S. By the inductive hypothesis each eT,
with T > S, has an expression (mod J)) of the required form and therefore
so does eS.

Now let A be arbitrary. We assume inductively that for each U E Tab(A)
with U > S the element eU has an expression of the required form. Again we
may suppose that S E Tab1(A) and that S is not antistandard. Thus there is
some h such that the tableau obtained by deleting all rows except the hth and
(h + 1)st is not antistandard. We define a = (A1, ... ,.\h-1), ,3 = (Ah, Ah+1),
y = (Ah+2.... ). Thus we have R'' = R" 0 Ra ® R'. Let A denote the
tableau formed by the first h - 1 rows of S, let B denote the tableau formed
by rows h, h + 1 of S and let C denote the tableau formed by rows h + 2 etc.
of S. Now by the case considered already we have eB -> B' cB eB E J13, for
B' E Tab(3) with CB' = 0 unless B' > B. By Proposition 1.2.1(i) we have
that R"®J'3®J'y <R' and es=CA®eB®eC so we get

eS-1: CB4A0 eB'06CEJA.
B'

Now, for cB # 0, we have B' > B and hence eA 0 eB ® ec = CS' with
S' > S. The result follows now from the inductive hypothesis on S.

Remark The above development works also with the natural right
M-module V in place of E. Thus, for r, s > 0, one has an M-
module map 0 : Ar+sV -> ArV 0 AT given by 0(vj) =
for i a decreasing sequence in I(n, r + s). We define, for a E P, the
module Q' _ A"V to be k if a = 0 and A"V 0 . 0 Aa-V if a =
(a1i ... , We form the algebra Q = ®aEP Qa, graded as an alge-
bra and M-module. For a E P we define I« < Q' to be the submodule
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generated by the image of all M-module homomorphisms Qa -> Qa with
> a. Then I = ®aEP I" is an ideal and there exists a "straightening

formula", vT = E,T'EAStan(a) CT VT' (mod Ia), for T E Tab(a).

1.3 Bideterminants

We work over an arbitrary commutative ring R.

Definitions For i = (i1,. .. , ir), j = (ii,.. . , jr) with entries in [1, n] we
define the determinant (i : j) = E"ESym(r)sgn(r)ci j". Let S,T be tableaux
of shape A with entries in [1, n]. We define the bideterminant (S : T) = (S1 :
T1)(S2 : T2) ... (S' : T), where A = (\i,.. . , .\m) and Si (resp. Tj) is the
jth row of S (resp. T), for 1 < j < m.

In fact there are two contenders for the title determinant and for the
title bideterminant. Let i, j, S, T, A be as above. We define

(i : j) = E (-q)1(")ci"a
"ESym(r)

and (S : T) _ (S1 : T1) ... (S' : Tm).
For a tableau S, of shape A = (al, ... , A,,,) and with entries in [1, n], we

define (by analogy with the definition of es in Section 1.2)

vS = VS(1,1) A ... A vs(1,A1) 0 VS(2,1) A ... AVS(2,),2) ®..

Lemma 1.3.1 Suppose R = k, a field. Let A E P(n) and let rl : A'k V
k[M] ® AAV and r2 : AAE -> A"E 0 k[M] be the structure maps.
(i) For S E Tab, (A) we have

rl(vs) (S:T)®vT
TETab1(A)

and

r2(es) = eT ®(T : S).
TETab1(A)

(ii) For S,T E Tab1(A) we have (S : T) = (S : T).

Proof (i) Let 1 < r < m andput a = ar, Sr = i = (il,...,ia), Io -
Io(n, a), Il = I,(n, a). Then we have

rl(vs*) =,r1(vi) = ri(vi1 A ... A via)

ci,j1 ... Cia,1a 0 vj, A ... A vja = E cij ® vj
jEIo

ci,j" 0 ij" = sgn(1)ci,j, ® vj
j EIi,"E Sym(r) j E.11,"ESym(r)

_ E(i : j) ® vj.
jEli
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Thus we get

ri(U$) = T( i 0 ... 0 vs+n)

(Sl :T1)...(Sm :Tm)0VTl 0...0VT"
T*EIi(n,Ar),r=1,...,m

(S : T) ®fT.
TETabi(A)

The proof of the second assertion is similar.
(ii) We use the pairing b : A;'V x AAE -> k of Lemma 1.2.2. The result
follows by applying (id 0 b) o (rl ® id) = (b 0 id) o (id 0 r2) to vs 0 T.

Lemma 1.3.2 Let a = (al,... , a,r,) E P(n) and let S, T be a-tableaux.
(i) If S or T has a repeated entry in some row then (S : T) = 0.
(ii) If S' is obtained by permuting the entries in a row of S according to the
permutation 7r and T' is obtained by permuting the entries in a row of T
according to the permutation p then we have (S' : T') = sgn(7rp)(S : T).

Proof The assertions follow by base change from the case R = Z[t], q = t
(an indeterminant). This case follows from the case R = Q(t), q = t. In
particular we may assume that R is a field. Since we have (S : T) _ (Sl :

T') ... (S'n : T"") both assertions immediately reduce to the case of a single-
rowed partition. Thus we must prove that for i, j E I(n, r) we have (i : j) = 0
if i or j has a repeated entry and (iir : jp) = sgn(7rp)(i : j), for ir, p E Sym(r).
We have (h : jp) = sgn(p)(h : j), for any h E I(n,r), directly from the
definition. Thus it suffices to show (in the generic case) that (i : j) = 0 if
i has a repeated entry and that (io : j) = sgn(o)(i : j), for i and j strictly
decreasing. Let r :A rV , k[M] ® A r V denote the structure map. We have

r(va) = sgn(7r)r(vj,(1) A ... A vix(r))

= sgn(7r) A ... A vj,.
91,- ,jr

= sgn(7r)
j EIi (n,r),PE SYm(r)

sgn(p)car,jp 0 vi

= sgn(7r) (iir : j) ®vj.
JEI1(n,r)

But we also have 7-(v$) = EjEII(nr)(i : j) ® vi and comparing terms in vj
with the above gives that (iir : j) = sgn(7r)(i : j).

Now suppose that i has a repeated entry. Then the natural map
V®r - ArV takes vi to 0. Since 0 is an M-module map, we have ro0(v1) _
(id 0 0) o r(v,). Thus we have

0 = c$j 0 vj = sgn(a)ci,j,,- 0 vj.
jEI(n,r) jEIi(n,r),irESym(r)
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Equating terms in I j gives (i : j) = 0 for j E I,(n, r).

In order to prove our main result we shall need to know that, up to
M-module isomorphism, AaE does not depend on the order of the parts of
a E P(n). This is of course obvious in the classical case q = 1 but requires
some argument in general. However, it is a consequence of the theory of
tilting modules which we discuss in Chapter 4. (Tilting modules with the
same character are isomorphic: this is clear from 3.3(1).) To make this
chapter self contained, we give below a sketch proof from first principles. In
the following lemma we shall take R to be a field. Let Hec(m) denote the
Hecke algebra of Sym(m). Let {T,, I w E Sym(m)} be the usual generators
of Hec(m) (see 0.23). Recall we have an action of Hec(m) on E®'", as M-
module endomorphisms, as described in [18; Section 3.1]. For s = (a, a + 1),
a basic transposition (with 1 < a < m), and i E I(n, m) we have

Tse$ _ qe;s, if is < is+l
ets + (q - 1)e;, if is > is+i

For w E Sym(m) denote by N(w) the set of pairs (a, b) such that 1 < a <
b < m and w(a) > w(b). (Thus we have 1(w) _ JN(w)j, for w E Sym(m).)
It follows by an easy induction on 1(w) that T,,,e; = q'(w)eiw-, provided that
is < ib for all (a, b) E N(w) (for w E Sym(m), i E I(n, m)). In particular we
have Twei = gl(w)e$w-1 if it < . <

For 1 < a < m we write sa for the basic transposition (a, a + 1).

Lemma 1.3.3 Let R = k, a field, and suppose q 0.

(i) Let r, s > 1. There is an M-module isomorphism : ArE®A$E --> A8E®
A'E such that O(r1(d)) = ((Td), for all d E E®(r+s), where tj : E®(r+s) ,
ArE ® A8E, C : E®(r+s) -> A"E ® ArE are the natural maps and o E
Sym(r+s) is defined by o(i) = i+s, 1 < i < r, and o(r+j) = j, 1 < j < s.
Furthermore we have q(ea ®ei) = q'(°)e1®e; for all i = (i1, ... , ir) E I(n, r),
j= E I(n,s) with it < < it < jl < < js.
(ii) If a,,8 E P(n) and a then we have A V - A3V, as right M-modules,
and A«E A 3E, as left M-modules.

Proof (i) For X C Sym(r+s) define eX = EwEX(-q)-'(w)T,,, E Hec(r+s)

and define EX : E®(r+s) -* E®(r+s) by EXh = EXh, for h E E®(r+s). We
now put X = Sym[1, r] x Sym[r + 1, r + s], Y = fir E Sym(r + s) I 7r[l, r] =
[1+s,r-{-s] and 7r[r+1,r+s] = [1,s]} and Z = Sym[l,s] xSym[1+s,r+s].
We have Y = oX = Zo, where o E Y is defined by o(i) = i + s, 1 < i < r.
Furthermore, as one may easily check, we have 1(oir) = 1(0)+1(7r), for 7r E X,
and 1(7ra) = 1(7r) + 1(0), for 7r E Z. Hence we have

ey = (-q)-'(°)ToeX = (-q)-1(a)ezTo (0
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We now show that Ey factors through the natural map E®('+') ->
A' E ® ABE. Let N be the kernel of this map. Let a E [1, r - 1] U[r +
1, r + s - 1]. Then we have ej + geisa. E N if is < is+1 and also ej E N
if ja = ja+, (for i, j E I(n, r + s)). Moreover it follows from the definition
of the exterior powers that N is spanned by all such elements. So let a, i, j
be as above. We have a factorization Ex = -X'(l - q-1Tsa), where X' C X
is the set of left coset representatives of Sym[a, a + 1] of shortest length. It
follows that EXh = 0, for h = ei + geisa and h = ej. Thus, by (t), Ey factors
through the natural map E®(r+s) -> A r E 0 ASE, giving an induced map
Ey : A"E0A$E-->Im(Ey)=K, say.

We claim that Ey is an isomorphism. It suffices to prove that the image
has dimension at least dim ArE ® A8E By (t), it suffices to
prove that the dimension of the image of EX is at least (r) (3). Define 0
E®(r+s) - E®(r+s) to be the k-linear map taking ei, ® ®ei,®ej, ® . ®ej,
to itself if i, < ... < ir, ji < ... < j3, and to 0 otherwise. Then the image
of the composite map 0 o EX contains all tensors of the form ei, ® 0 ei, 0
ej, ® ® ej, with i, < ... < ir, j, < ... < j8. Thus the image of 0 o Ex
has dimension at least (T) (s), and hence the image of Ex has at least this
dimension, as required.

Similarly, Ez : E®(r+s) . E®(r+s) factors through E®('+-) -.. AsE ®
ArE, giving an injective map Ez : A$E 0 ArE Im(Ez), and by (t) we
have Im E K. Thus we have an isomorphism 1(°)E1 o Ey
Ar E ®A8 E As E ®A" E.

Let i : E®('+-) -> ArE ® A8E and ( : E®(r+s) -> A"E ® A"E be the
natural maps. For d E E®(r+s) we have (-q)''(°)EZ(0(,(d))) = Ey(rt(d) and
hence (-q)-i(°)EZ(O(r7(d))) = Ey(d) so that Ez(((Td)) = Ez(O(17(d))), by
(t), and therefore

O(q(d)) = ((Tod). (f)

Now suppose that h = (hl, ... , hr+s) E I(n, r + s) is strictly increasing.
Then we have Teh = Now if i = (ii, ... , ir) E I(n, r), j =
(ji, ... , js) E I(n, s) satisfy i, < < i,t < ii < // < js then taking h =
(i1, ... )it,j1, ....js) and d = ei ®ej in (+) we get 0(6i ( S ) = gl(a)(ej ®ei),
as required.

(ii) In view of Lemma 1.1.2(iv) and the pairing of Lemma 1.2.2 it suffices
to prove that A«E N OE. This follows from (i) and the fact that any
permutation is a product of basic transpositions.

We define a filtration on A(n, r) = AR,q(n, r). For A E P+(n, r) we
define C(a) to be the R-span of all bideterminants (S : T), with S, T E
Tab(\). Notice that C(a) is spanned by all bideterminants (S : T) with
S, T E Tab, (A), by Lemma 1.3.2, and that if R is a field then C(a) is the
coefficient space of A V and of AAE, by Lemma 1.3.1. We define F(.) =
FR,q(A) to be the sum of all C(p)'s with p E P+(n, r) and p 14 A. We define



34 1. Exterior Algebra

F'(A) = F, ',,(A) to be the sum of all C(p)'s with p E P+(n, r) and It ¢ A.
We are now ready to prove the main result of this chapter.

Theorem 1.3.4 For any commutative ring R, any unit q E R and any
A E P+(n, r), the bideterminants (S : T), with S,T antistandard of shape
p 14 A, form an R-basis of F(A). In particular, AR,q(n, r) has R-basis (S : T),
with S, T antistandard of shape p E P+(n, r).

Proof We first suppose that R = k, a field. For A E P+(n, r) let dA
denote the number of antistandard tableaux of shape A. If R = C and
q = 1 then dA is the dimension of the irreducible M-module L(A'), whose
highest weight is the transpose A', see [51; (5.3b),(2.6e)]. Moreover, by
[51; (3.5a)(iii)], the modules L(A'), A E P+(n, r), form a complete set of
pairwise non-isomorphic irreducible modules for the dual algebra S(n, r)
of the coalgebra A(n, r). By Wedderburn's theorem, and absolute irre-
ducibility [51; (3.5a)], we have S(n, r) = ®AEP+(n r) Endc(L(A')) and hence
dim S(n, r) = EAEP+(n r)(dim L(A'))2 = >AEP+(n r) da. However, the di-
mension of A(n, r) is independent of the field of definition and of the choice
of parameter q (see 0.20). Hence we get

dimAk,q(n,r)= d2

AEP+(n,r)

Fix A E P+ (n, r) and let T1 : AAV -+ k[M] 0 AAV and r2 : /SAE

AAE ® k[M] be the structure maps. We have the natural map = (id 0 b) o
(r1(Did) = (b®id)o(id®r2) : A'V®AAE -> k[M] (where b : AAV x A''E -* k
is the natural pairing of Lemma 1.2.2). Now 4i is an (M, M)-bimodule map
and the image is the coefficient space of AAV and A;'E. Thus ol has image in
F(A) and induces an (M, M)-bimodule map * : AAV ®AAE -* F(A)/F'(A).
We claim that 4D maps I' 0 AAE + ASV 0 J;k into F'(A). We shall prove
4)(1" 0 A'E) = 0; the proof that ob(AAV 0 J)) = 0 is similar. It suffices
to show that if U is the image of an M-homomorphism 0 : A 'V - AAV
with µ ¢ A then '1(U 0 AAE) < F'(A). Moreover, by Lemma 1.3.3 we
can assume p E P+ (n, r). Now 1 o (0 ® id) : A'V 0 AAE -> k[M] is a
morphism of left M-modules and hence has image in the coefficient space
of A 'V 0 IAAEI (see [50; (1.2c)(i),(1.2f)]) which is C(p). Hence T maps
Ia 0 AAE + A\ 0 J' into F'(A) and therefore induces a surjective map Q :
AAV 0 AAE - F(A)/F'(A) , where AAV = AAV/Ia and ASE _ AAE/J;'.
By Theorem 1.2.4 we have that F(A) is spanned, modulo F(A), by the
elements S2(is 0 eT + (IA 0 AAE + AAV (D JA)), with S, T antistandard
of shape A. Thus the elements 0 eT), with S,T E AStan(A), span
F(A) modulo F'(A). Thus F(A) is spanned by F'(A) and the bideterminants
(S : T) = D(vs 0 eT), with S,T E AStan(A).
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Now, for A E P+(n, r), we define a(A) to be the cardinality of {µ E
P+ (n, r) I p A}. We claim that F(A) is spanned by all bideterminants (S :
T), with S, T antistandard of shape p -A A, and we prove this by induction on
a(A). We assume that the claim holds for p E P+(n, r) with a(p) < a(A). By
the paragraph above, F(A) is spanned by all (S : T), with S,T antistandard
of shape A, together with F'(A) _ E>aga F(CC). Moreover, for p A, we
have a(p) < a(A) so that, by the inducitve hypothesis, F(p) is spanned by
all (S : T), with S,T antistandard of shape r p. Hence F(A) is spanned
by all (S : T) with S, T antistandard of shape p A, as required.

Taking A = (1'1) we get F(A) = A(n, r) and hence A(n, r) is spanned
by all bideterminants (S : T) with S,T antistandard of shape p E P+(n, r).
By (§) the number of these is dim A(n, r) and hence the elements (S : T),
with S,T antistandard of the same shape, are linearly independent. Hence
we have for arbitrary A E P+(n, r) that the bideterminants (S : T), with
S, T antistandard of shape p A, form a k-basis of F(A).

We now deal with the case of an arbitrary coefficient ring R and unit
q E R. Clearly this follows, by base change via the natural isomorphism
R ®z[t,t-1] AZ[t,t-1],t(n, r) -> AR(n, r), from the case R = Z[t, t-1], q = t (an
indeterminant). Certainly the elements (S : T) (with S,T antistandard of
the same shape) are independent over Z[t, t-1] since they are over Q(t) by the
above (and we have the natural isomorphism Q(t) ®Y[t,t-1] Ai[t,t-1] t(n, r) ->
AQ(t) t(n, r)). It therefore suffices to show that the antistandard bidetermi-

nants span F(A) (for A E P+(n, r)) over an arbitrary commutative ring R.
We let F1(A) denote the R-span of the bideterminants (S : T), with S,T an-
tistandard of shape p > A. Then, for every field k, inclusion F1(A) --+ F(A)
induces an isomorphism k OR F1(A) -+ k OR F(A) for every field homomor-
phism R -> k, by the above. However, if X is a submodule of a finitely
generated module Y over a commutative ring R such that k OR X -> k ®R Y
is onto, for every homomorphism from R into a field k, then X = Y. Hence
we have F1(A) = F(A), as required.

Remark This does not work if q = 0. For example consider the case n = 2,
r = 3 and A = (2, 1). Then F(A) is the coefficient space of A2E ® E and is
spanned by the elements dci j , with 1 < i, j < 2, where d is the determinant
c11c12 - c12c21. By direct calculation using AIII or by [18; 4.1.9 Theorem],
we have dc12 = 0. Hence F(A) has dimension at most (and in fact exactly) 3.
But there are 2 antistandard A tableaux and hence 4 bideterminants (S : T)
with S, T antistandard of shape A.

It is easy to check that cf(E®A2E) has k-basis c11d, c12d, c22d and that
cf(E ®A2E) # cf(A2E (D E); hence A2E ®E E®/\2E and Lemma 1.3.3
also fails if q = 0.



2. The Schur Functor and a Character Formula
In the first part of this chapter we shall make some remarks on the Schur
functor, from modules for the Schur algebra to modules for the Hecke algebra.
In the latter part we concentrate on the case q = 0 and obtain a formula for
the character of the simple modules. The first part proceeds by analogy with
the classical case q = 1, [51], and there is some overlap here with S. Martin,
[66]. A further study of the Schur functor and the relationship between
the representation theories of Schur algebra and Hecke algebra is made in
Chapter 4 (see especially Section 4.4). The second part of this chapter uses
work of Norton, [69], on 0-Hecke algebras. I am grateful to Richard Dipper
for bringing the work of Norton to my attention.

2.1 The Schur functor

We begin by recalling from [18; 2.1] the construction of the symmetric powers
of the natural modules E and V. We define J to be the ideal of the tensor
algebra T(E) generated by the elements eiej - ejei, with 1 < i, j < n.
Then J is an M-submodule of T(E). We define S(E) = T(E)/J. Since J
is homogeneous we have an induced grading and M-module decomposition
S(E) = ®°_o SEE. The rth symmetric power S''E has k-basis consisting
of the elements ei, ... ei,, with n > it > > i,. > 1. Similarly we define
K to be the ideal of the tensor algebra T(V) generated by the elements
gvivj - vjvi, for 1 < i < j < n. Then K is an M-submodule of T(V). We
define S(V) = T(V)/K. Since K is homogeneous we have an induced grading
and M-module decomposition S(V) = ®1 o SrV. The rth symmetric power
S''V has k-basis consisting of the elements vi, ...vi,, with 1 < it < <
it < n. For i E I(n, r), we define ei E Sr E to be the image of ei under the
natural map E®'' -> S''E and define vi E S''V to be the image of vi under
the natural map V®' --S'V. For a = (al, ... , an,) E A(n,r) we define
the left M-module S"E = S" E ® ® S'- E and the right M-module
S"V = S1111 ®... ®S"^ V.

We briefly discuss multiplication in the Schur algebra S(n, r) = A(n, r)*.
For i E I(n, r) and a E A(n, r) we write i E a to indicate that i has content
a. We write i - j, for i, j E I(n, r), to indicate that i and j have the same
content. W e define elements i", j" E a by i" = ( 1 , ... , 1 , 2, ... , 2, 3, ...) and
j" = (...,3,2,..... 2 1 1) (where 1 occurs a1 times, 2 occurs a2 times
and so on). W e define I+(a) to be the set of i = (ii, ... , ir) E I(n, r) such
that it < < i" 2",+1 < < 2",{."a and so on and define I- (a) to be the
set of i = (ii, ... , ir) E I (n, r) such that it > > i"1 , ia1+1 > > ia,+aa
and so on. We define "A(n, r) to be the k-span of the elements cij with
i E a and define A(n, r)" to be the k-span of the elements cij with j E a.
Then "A(n, r) is a left M-submodule of A(n, r) and A(n, r)" is a right M-
submodule of A(n, r). It is easy to check, from the defining relations, that
A(n) is spanned by the elements ci. j, with a E A(n, r) for some r and
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j E I- (a), and that A(n) is spanned by the elements cija, with a E A(n, r)
for some r and i E I+(a). It follows that for a E A(n,r), the elements ciaj
with j E I-(a) span "A(n, r) and the elements cija, with i E I+(a) span
A(n, r)". For a E A(n, r) the linear map E®r -> A(n, r) taking ej to ciaj (for
j E I(n, r)) induces an M-module epimorphism 0" : S"E "A(n, r). Thus
we have a surjective homomorphism 0 : ®"EA(n,r) S"E -> A(n, r). In the
special case q = 1 this map is an isomorphism, by [51; Section 4.8], but the
dimension of both domain and codomain of 0 is independent of q and hence
0 is an isomorphism in general. Similar remarks apply to the corresponding
right modules and so we have the following.

(1) (i) For each a E A(n, r) we have an isomorphism of left M-modules
O" : S"E -> "A(n, r) such that 0"(ej) = ci-j, for j E I(n, r), and an
isomorphism of right M-modules zk" : S"V --> A(n, r)", such that
cij., for i E I(n, r).
(ii) We have an isomorphism : ®"EA(n,r) S"E -> A(n, r) of left M-modules
and an isomorphism 0 : ®"EA(n r) S"V -* A(n, r) of right M-modules.

In particular, for a E A(n, r), the elements c, j E I- (a), form a basis
of "A(n, r) and the elements cija, i E I+(a), form a basis of A(n, r)". For
3 E A(n, r) we write "A(n, r)Q for the span of the elements cij with i E a,
j E Q. Now by [18; 2.2.1] we have A(n, r) = ®" pEA(n,r) "A(n, r)3 from
which we get the following.

(2) 'A(n, r)13 has a basis consisting of the elements cia j with j E I- (a) of
content f3 and has a basis consisting of the elements cij, with i E I+(p) of
content a.

Let U denote the set of pairs (i, j) of elements of I(n, r) such that i is weakly
increasing of content a, say, and j E I-(a). We define ij, (i, j) E U, to be
the basis of S(n, r) dual to the basis cij, (i, j) E U, of A(n, r). Let U' denote
the set of pairs (i, j) of elements of I(n, r) such that j is weakly decreasing
of content ,8, say, and i E I+(p). We define $j, (i, j) E U, to be the basis of
S(n, r) dual to the basis cij, (i, j) E U', of A(n, r).

From (2) we note that if (i, j) E U and s,t E I(n,r) then i1(c,t)
0 unless i - s and j - t. We put ia,ia and note that

" (f) = e(f) for f E "A(n, r)" and " (f) = 0 for f E QA(n, r)ry with
()3, y) (a, a). Similar remarks apply to '« and so we get:

(3) " = '", for a E A(n, r).

Let (i, j), (s, t) E UCCandCCa, b E I(n, r). We have

t
lbij * S,t)(Cab) = E Sij(Cah)bst(Chb)-

hEI(n,r)
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From this and earlier remarks one sees:

(4) (i) 4if * st = 0 unless j - s.
(ii) 1 = EaEA(n,r) 4- is an orthogonal decomposition.

Fix E A(n, r). Let B denote the span of the set B of elements
where j has content Q, and let B' denote the span of the set B' of elements
Si,j,3, where i has content a. Then B = B' is exactly the set of elements
which vanish on aoA(n, r)a0 , for all (ao, Oo) # (a,#). It is easy to deduce
the following.

(5) The elements i.j (resp. &j s) with j E I-(a) of content )3 (resp. i E
I+(a) of content a) form a basis of

W e now suppose r < n and put w = ( 1 , 1, ... , 1) E A(n, r), u = (1, 2, ... , r)
and v = (r, .. . , 2, 1). Putting e = ,,, we have the following.

(6) eSe has a basis 7r E Sym(r)} and a basis { v I ir E Sym(r)}.

We shall also need the following.

(7) We have a left S-module isomorphism 0 : Se -* E®r satisfying B(e) =
e and a right S-module isomorphism ? : eS - V®r satisfying rt(e) = v,,.
In particular E®r is a projective left S-module and V®r is a projective right
S-module.

We prove only the left module version. Let B : S -* E®r be the S-module
homomorphism defined by i(s) = se,,, s E S. We have B(£;,,) = ;ve _
rr.1EI(n,r) C'iv (cJv)e7 = ei This shows that 0 is surjective and that B(e) = e .u
Thus S(1 - e) < Ker(B) and so the restriction 0 of B to Se is surjective.
However, it follows from (5) that Se has basis biv, i E I(n, r). By dimensions
we obtain that 0 : Se -> E®r is an isomorphism.

For a left S(n, r)-module X we write X' for aX , for a E A(n, r).
Regarding X as a right A(n, r)-comodule, hence a k[G(n)]-comodule, i.e. a
G(n)-module, we have that Xa is the a weight space of X, see 0.22. More-
over, we have Xa = {x E X I r(x) E X (& A(n,r)a), by [18; 2.2] (where
r : X -* X ® A(n, r) is the structure map of X, regarded as a right A(n, r)-
comodule). Similar remarks apply to right S(n, r)-modules. In particular
A(n, r) is naturally an (S(n, r), S(n, r))-bimodule. The left and right actions
are given by c e(c$)ci and c f (ci)c8, for E S(n, r) and
c E A(n, r) with 5(c) _ >i ci ® c;. It is easy to check that aA(n, r) _
A(n, and A(n, r)a = aA(n, r). We have the canonical linear isomor-
phism 1 : X* -+ Homs(n,r)(X, A(n, r)), given by -t(rt)(x) = (rt (D id)r(x),
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for x E X. Moreover is an isomorphism of right S(n, r)-modules and
induces an isomorphism X*Ea -+ Homs(n,r)(X,A(n,r))l;a, i.e. (X£a)* -
Homs(n,r)(X, A(n, r)1 a). Thus we have that X' and Homs(n,r)(X, UA(n, r))
are isomorphic k-spaces. Combining this with (1)(i) and the corresponding
results for right modules we obtain the following. (See also the proof of [32;
(2.4)] for the classical case.)

(8) Let a E A(n, r). For any finite dimensional left (resp. right) S-module X
we have Homs(X, SUE) = XU (resp. Homs(X, SUV) = XU). In particular
SUE (resp. SUV) is an injective left (resp. right) S-module.

We shall now discuss the Schur functor. We are interested in the algebra
eS(n, r)e. For or E Sym(r) we put ba = fu uo, b'o = uo,v It is easy to check
the following from the defining relations.

(9) Let 1 < a < r and o E Sym(r). We have

_ gcu,uasa ,
C'U3a,160 -

cu,uasa + (q - 1)cu,uo

and
gcvosa,v ,

cvo,vs, _ vvasa,v - (q - 1)wo,v,

if o(a) < o(a + 1);
if o(a) > o(a + 1)

if o(a) < o(a + 1);
if o(a) > o(a + 1).

From (9) we obtain the following.

(10) Let 1 < a < r and o E Sym(r). We have

b3a ba - bas,
gba5a + (q - 1)ba,

and

if l(osa) = 1(0) + 1;
if 1(o8a) = 1(o) - 1

b' b' = r bO3a, if l(osa) = 1(o) + 1;
a 3a l gbO3a - (q - 1)bo, if 1(0-sa) = 1(o) - 1.

We write Ta for ba-,, o E Sym(r). The first part of (10) may thus be
reformulated as follows.

(10)' Let 1 < a < r and o E Sym(r). We have

T, _ TS a, if 1(sao) = 1(o) + 1;
gTsao + (q - 1)Ta, if 1(Sao) = 1(0) - 1.

Thus eS(n, r)e is the Hecke algebra of Sym(r) with basic generators

T31,..., T3,,_1.
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We often write eS(n, r)e as Hec(r), or just H(r) or even simply H.

As in [51; Chapter 6], we have the Schur functor f : mod(S(n, r))
mod(Hec(r)) defined as follows. For X E mod(S), f(X) is the k-space eX
viewed as an H-module by restricting the action. For a morphism y : X -> Y,
of S-modules, f (r7) : eX -> eY is the restriction of r7.

Remarks (i) For q = 1 and o- E Sym(r) we have To = Su,uo-1 = uo,u so
that, in the classical case, IT, o E Sym(r)} is the basis which Green uses
to identify eSe with the group algebra kSym(r), [51; (6.1d)].
(ii) We have the natural functor F : Homs(Se, -) : mod(S) -+ mod(B°P),
where B = Ends(Se) = eSe and B°P is the opposite algebra. We also
have an algebra isomorphism 0 : H -* (eSe)°P given by q(Tq) = bo-l,
for v E Sym(r) (by (6) and (10)). This gives rise to an equivalence of
categories : mod((eSe)°P) -+ mod(H). It is clear from the construction
that f = o F. Note that we have also observed that Hec(r) is naturally
isomorphic to Ends(Se) = EndM(E®'').
(iii) Suppose q # 0. Suppose further that q is not a root of unity or that k has
characteristic 0 and q = 1. Then S(n, r) is semisimple, by [36; Section 4,(8)],
and {V(a) I a E A+(n, r)} is a complete set of inequivalent simple modules.
Let n > r. We get that Hec(r) - Ends(,,r.)(E®'') is semisimple. Moreover,
we have fV(a) = V(a)w # 0, for each a E A+(n,r), so that { fV(a) I a E
A+(n, r)} is a complete set of inequivalent irreducible Hec(r)-modules, by
[51; (6.2g) Theorem], and it follows that f : mod(S(n, r)) -+ mod(H(r)) is
an equivalence of categories.

We now define a non-degenerate associative bilinear form on H. Recall
that we have the pairing V®0' x E®T -> k, satisfying (vi, a?) = bij, for i, j E
I(n, r). In general if C is a coalgebra and (,) : X ® Y -> k is a pairing of
C-comodules then it follows directly from the defining property of a pairing
that (xs, y). _ (x, sy), for all s E C* (regarding X as a right and Y as a left S-
module in the natural way.) Regarding V®' as a right S-module and E®' as
a left S-module we thus have (xs, y) = (x, sy), for all x E V®', Y E E®' and
s E S. We introduce a form on S by defining (x, y) _ (vux, y

x, E S we have (xy, z) = (vuxy, (vux, (x, yz), i.e. (, )
is associative. Now for v, rr E Sym(r) we have

vubo = Eba(cuj)vj = vuv

and

9

b' e =T

so that
1, ifuo =vTr;
0, otherwise.
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Putting wo = (1, r)(2, r - 1) ... we obtain:

(11) (b.,, b;, o,r) = b, in particular (,) is non-singular on H, and hence H
is a Frobenius algebra.

We note that (be, 1) = (1, b,) is 1 if o = wo and 0 otherwise. Hence we have,
for x, y E H:

(12) (x, y) is equal to the coefficient of b,,0 when xy is expressed as a linear
combination of the elements bo, o- E Sym(r), and is equal to the coefficient
of b;,,o when xy is expressed as a linear combination of the elements b',,
7r E Sym(r).

To make further progress it is convenient to make use of some of the homo-
logical properties of G and S(n, r) established in [36]. Suppose that q # 0.
We say that a G-module filtration 0 = Xo < Xi < < X,. < of
X E mod(G) is good if X = U°°1Xi and for each i > 1, we have that
X;/Xi_1 is either 0 or isomorphic to 0(Ai), for some Ai E X+(n). We write
X E F(V) to indicate that X E mod(G) admits a good filtration. We may
also call a good filtration a V-filtration.

Let wo be the longest element of Sym(n). For A E X(n) we set A* _
-woA. For A E X+(n) we write A(A) for the dual module V(A*)*.

(13) (i) For dominant weights A, p and i > 1 we have Ext' (V(A), V(p)) = 0
unless A > p.
(ii) For a G-module X the following are equivalent:
(a) X E .F(V);
(b) Ext'(A(A), X) = 0 for all dominant weights A;
(c) ExtG(0(A),X) = 0 for all i > 1 and all dominant weights A.
(iii) Let 0 -+ X' -* X -* X" --> 0 be a short exact sequence of G-modules.
If X', X E Y (V) then X" E .F(V) and if X', X" E F(0) then X E F(0).

The proofs of (i) and (ii) are as in the case of semisimple algebraic groups:
for (i) see [29; Lemma 3.2.1] (a consequence of a result of Cline, Parshall,
Scott and van der Kallen, [13; (3.2) Corollary]); and for (ii) see [49] (or
[26; Corollary 1.3] for the finite dimensional case) and [36; Section 4(2)].
Part (iii) follows from (ii). Alternatively, one may remark that S(n, r) is
a quasihereditary algebra with standard modules {0(A) I A E A+(n, r)}
and costandard modules {V(A) I A E A+ (n, r)}, with respect to the natural
partial order on A+(n, r) (see e.g. [36; Section 4]). Moreover, one has a
natural isomorphism Exts( r) (X, Y) -* Ext'(X, Y), for each i > 0, by 0.17.
Thus one may deduce the above (for X finite dimensional) from standard
properties of modules over a quasihereditary algebra, see Appendix, A2.2
Proposition.



42 2. The Schur Functor and a Character Formula

Definition We shall call an epimorphism of G-modules 0 : X - Y good
if X, Y and the kernel of 0 belong to .T(V). We shall call a monomorphism
of G-modules 0 : X - Y good if X and Y belong to .F(V) (and in this case
the cokernel of 0 also belongs to 1(V), by (13)(iii)).

(14) If 4i : Xi -; Y is a good epimorphism (resp. monomorphism), for
1 < i < m, then 01 ®...®o,,, : X1 ®...®X,,, --*Y1 ®...®Y,,, is agood
epimorphism (resp. monomorphism).

We give the argument for epimorphisms. It suffices to consider the case
m = 2. Let 0 = 01®02. Note that X1®X2,Y10 Y2 E 1(V), by [36; Section
4(3)(i)]. Thus it suffices to show that Ker(V) E 1(V). Let Ki = Ker(oi),
i = 1, 2. Then 0 has kernel K1 ® X2 + X1 0 K2. However, we have a short
exact sequence 0 -> Kl®K2 -> Kl®X2 ®Xi®K2 - Kl®X2+X1®K2 - 0
and K1 ®K2 and Kl ®X2 ® X1 ® K2 belong to 1(V), by [36; Section 4,
(3)(i)] (and (13)(ii) above). Hence Ker(O) E 1(V), by (13)(iii), as required.

Remark These definitions and arguments (and results) also apply to
rational modules for reductive groups.

(15) Suppose that q # 0.
(i) (a) For A E A+ (n, r) the space HomG(A' E, 0(A)) is 1-dimensional and
any non-zero element is a good epimorphism.
(b) For A E A+ (n, r) the space HomG(V(A), SAE) is 1-dimensional and any
non-zero element is a good monomorphism.
(ii)(a) The space HomG(E®r, SrE) (resp. HomG(ArE, E®r)) is 1-dimensional
and any non-zero element is a good epimorphism (resp good monomorphism).
(b) For any a E A(n, r), the natural map E®r -+ S'E (resp. AaE -+ E®')
is a good epimorphism (resp. good monomorphism).

The module AA'E has a good filtration, [36; Section 4(3)(i)], and [36; Re-
mark 3.7], and has unique highest weight A, which occurs with multiplicity
1. From these facts (i)(a) follows via a standard argument, see e.g. [29; proof
of (11.4.1) Theorem]. Part (i)(b) follows in the same way using (8). Noting
that SrE = 0(r, 0, ... , 0), [36; Remark 3.7], we get (ii)(a) in the same way.
Part (ii)(b) follows from (ii)(a) and (14).

(16) Suppose that q 0 0.
(i) If X, Y E 1(V) are polynomial modules of degree r then restriction
Horns (X,Y) -> HomH(fX, fY) is injective.
(ii) For a E A(n, r) and Y E1(V) restriction

Horns (S"E,Y) -> HomH(fS"E, fY)

is an isomorphism.
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(iii) For a E A(n, r) and X E .F(V) restriction

Homs(X, naE) - HomH(fX, fAaE)

is an isomorphism.
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For (i) we argue (as in [66; Section 4]) using a mixture of the argument given
in the classical case [32; (2.3)], and a refinement due to Erdmann, [45; 1.8].
For (i) one reduces (as in the classical case) to X = V(A). However, we have
an epimorphism Se -+ E®' , AA E , V(A) = X (the first map is the map
0 of (7), the second map is the natural map, and the third map comes from
(15)(i)(a)). We conclude that Homs(X, Y) - HomH(f X, fY) is injective by
part (3) of the argument of the proof of [45; 1.8 Proposition ] (or by invoking
the Proposition directly).

For (ii) we use the argument of [45; 1.8 Proposition] once again. Cer-
tainly Homs(S"E, Y) HomH(f S"E, fY) is injective by (i). Let 0 :

E®' - S«E be a good epimorphism (see (15)(ii)(b) and let K = Ker(O).
We have a commutative diagram

0 - Homs(S"E,Y) -+ Homs (E3', Y) -+ Horns (K, Y)
I 1 1

0 -> HomH(fS°'E, fY) -> HomH(fE®', fY) --* HomH(fK, fY)

with rows exact and injective vertical maps. Furthermore we have

dim Horns (E®',Y) = dim Y' = dim fY,

by (8) (ii), and dim HomH(fE®', fY) = dim fY, since fE®' 5_-- fSe = H.
Thus the central vertical map is an isomorphism. Now a diagram chase gives
that Horns (S«E,Y) -> HomH(fS', fY) is surjective, as required.

We now consider (iii). First take a = w. We have dim Homs(X, E®') _
dim X' = dim fX, by (8), and

dim HomH(fX, fE®'") = dim HomH(fX,H) = dim fX

since H is Frobenius. Moreover Horns (X, E®"') - HomH (f X, f E®') is in-
jective, by (i), and hence is an isomorphism, by dimensions. Now let a be
arbitrary. We have a short exact sequence O --> A«E -, E®' --+ Q --> 0, with
Q E Y(V), by (15)(ii)(b). Thus we have a commutative diagram

0 - Horns V, AaE) Homs(X, E®'') Homs(X, Q)
I I I

0 -* HomH(fX, fl\"E) -+ HomH(fX, fE®') -, HomH(fX, fQ)

and the surjectivity of Homs(X, AaE) -+ HomH(fX, fA'E) follows from a
diagram chase.
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We have linear characters v,,- of the Hecke algebra H given by v(T-) =
ql(W) and e(T,,) = sgn(w), for w E W. We call these (respectively) the trivial
and sign representations of H. We write simply k (resp. ks) for the field k
regarded as a left H-module via the representation v (resp. E).

We set N = (2) . The following is an exercise (which we leave to the
reader) in the use of the form (, ).

(17) (i) We have v(ba) = qu(a), e(ba) = sgn(o), for o E Sym(r).
(ii) We have EoE Sym(r) ba - EaESym(r) qr'-I('r)b' = bv, say, and

:vESym(r)(-g)N-B(a)ba = EiESym(r) ba = bE, say.
(iii) The elements b and bE belong to the centre of H and span left H-
submodules of H affording representations v and e respectively.

We now fix 1 < a < r and calculate the action of Tsa on (E®r)'. For
o E Sym(r) we have vuba = vua (see before (11)). Hence we have

vuabsa = vubabsa

_ vubs., if l(Sao) = 1(0-) + 1;
gvubsao + (q - l)vua, if 1(Sao) = 1(o) - 1

vusao, if 1(sao) = 1(0) + 1;
gvusaa + (q - 1)vua, if l(sao) = 1(o) - 1.

We have bsaeu,r = ZaESym(r) Aaeua for scalars aa. Now as = (vua, bs,eur) _
(vuabsa,eu,r) from which it is easy to determine A, o E Sym(r) and obtain
the following.

(18) For 1<a<rand oESym(r) we have

Ts,eua - geus,o, if 1(sao) = 1(o) + 1;
eusaa + (q - 1)eua, if 1(Sao) = 1(0) - 1.

By writing vo as uwoo we deduce the following.

(19) For l < a < r, o E Sym(r) we have

gevs,_aa, ifl(sr_ao) = 1(o) - 1;
Tsae°O + (q - if 1(sr_ao) = 1(o) + 1.

Let a = (ai i ... , E A(n, r). For 1 < i < r we define a subset J1(a)
of [1, r-1] as follows. We define J, (a) to be the set of a such that 1 < a < a1
and, for i > 1, define J1(a) to be the set of a such that a1 + + aa_1 <
a < al + + aa. We define J(a) = U' l J;(a). We write Sym(a) for the
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Young subgroup Sym[l, all x Sym[al -!-1, al + a2] x . . of Sym(r). We write
H(a) for the subalgebra of H(r) generated by IT,. I a E J(a)}. We have a
natural isomorphism H(a) = H(al) ® H(a2) ® . Moreover, H is free as a
right H(a)-module of rank r!/(al!a2! ...).

Notation
We write x(a) for EwE Sym(a) T,,, and y(a) for E.

E Sym(a)( q)N-I(w)Tw

The following is the q-analogue of [33; (3.5) Lemma].

(20) (i) For a E A(n, r) we have an isomorphism of left H(r)-modules
0 : H(r) OH(a) k - f S"E taking (1 ® 1) to e and an isomorphism of left
H(r)-modules i : H(r) ®H(a) k -> H(r)x(a) taking 1 ® 1 to x(a).
(ii) Let a = (al, ... , a,,.) be a composition of r and let /3 = al). We
have an isomorphism of left H(r) -modules C : H(r) ®H(p) k.,- f A' E taking
10 1 to e and an isomorphism of left H(r)-modules ij : H(r) OH(p) k, -
H(r)y(13) taking 1® 1 to y(/3).

Proof (i) We get T,ae = e for all a E J(a) from (18) so that ke = k,
as H(a)-modules. Thus (by the universal property of induction) the H(a)-
map k -> fS"E gives rise to a H(r)-module homomorphism 0: H(r) OH(")
k -+ fS"E taking 10 1 to e,,. We have dim H(r) OH(a) k = dim fS"E =
[Sym(r) : Sym(a)]; hence we only have to check that ¢ is surjective, i.e.
fS"E = H(r)e,,. But we have b' e = for 7r E Sym(r) (see before
(11)) and the result follows. We let Hi(a) be the subalgebra of H gener-
ated by the elements T,a, a E Ji(a). The subalgebras Hi(a),Hj(a) com-
mute for i # j and we have x(a) = xl(a)x2(a).... We have a natural
isomorphism H(ai) -> Hi(a) and it follows that T,axi(a) = gxi(a) for
a E Ji(a). Thus we get T,ax(a) = qx(a), for a E J(a). By the univer-
sal property of induction, this gives rise to an H(r)-module homomorphism
0 : H(r) OH(a) k -> H(r)x(a), taking 1®1 to x(a). Now tk is surjective and
dim H(r) OH(a) k = dim H(r)x(a) = [Sym(r) : Sym(a)] (this follows from
the freeness of H(r) over H(a)) and hence i is an isomorphism.
(ii) For a E J(,8) we have r-a E J(a) and hence T,ne = +(q-1)e _
-qe + (q - 1)e = -e,,, by (19). Hence ke = k as H(/3)-modules. By the
universal property of induction we get an H(r)-module map ( : H(r) ®H(p)
k, WE taking 1 O 1 to e,,. The image of ( is H(r)e and b' 6, = for
it E Sym(r), so H(r)e = f naE and ( is surjective. Now dim H(r) OH(p)
k, = [Sym(r) : Sym(f )] _ [Sym(r) : Sym(a)] = dim f AaE so that (is an
isomorphism.

One gets the isomorphism y : H(r) ®H(p) k, -> H(r)y(,8) by arguing as
in part (i).
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2.2 The 0-Schur algebra

We fix a field k. We shall derive a simple formula for the character of the
irreducible S(n, r)-modules at q = 0. This will emerge as a consequence
of the analysis of the the Hecke algebra of a finite Coxeter group at q = 0
made by P. N. Norton, [69] (a variation on a theme of Solomon, [73]). The
representation theory of the 0-Schur algebra is also discussed by Krob and
Thibon, [62].

For 1 < i < n we define ei to be the element (0, ... , 0,1, 0, ... , 0) (with
1 in the ith position) of X(n). Thus we have X(n) = Zee, ® . ® Zen.

Suppose that n > m. Let 1; = EaEA("n r) l;a. We shall produce an
isomorphism : S(m, r) -> I S(n, r)1;. The classical case, q = 1, is given in
[51, Section 6.5]. The general case is somewhat more complicated, at least
from the point of view of notation.

To emphasize dependence on n (resp. m) we write, for the moment, 'cij
(resp. mcij) for the element of A(n) (resp. A(m)) previously denoted cij, for
i, j E I(n, r) (resp. i, j E I(m, r)) and r > 1.

Also we write, for the moment, 'I-(a) (resp. 'I-(a)) for the set pre-
viously denoted I- (a), for a E A(n,r) (resp. a E A(m,r)). We also write

(resp. ""l;a) and "liaj (resp. 'li-j) for the elements of S(n,r) (resp.
S(m, r)) previously denoted l;a and iaj, for a E A(n, r) (resp. a E A(m, r))
and j E "I-(a) (resp. j E ml- (a)). We identify I(m,r) with a subset of
I(n, r) and identify A(m, r) with a subset of A(n, r) and identify mI-(a)
with a subset of " I-(a), for a E A(m, r), in the obvious way.

From the description of A(m) and A(n) by generators and relations we
see that there is a k-algebra map 0 : A(m) -; A(n) taking 'cij to "'cij.
Moreover, from the basis of A(m, r) (resp. A(n, r)), for r > 0, given in
2.1(2), we see that 0 is injective. We write A(m, r) for the image of A(m, r)
under 0. Then we have A(m, r) _ ®a OEA(,n r) aA(n, r)a and so we have a
decomposition A(n, r) = A(m, r) ® Z, where Z = (D, ,,,p aA(n, r)a, the sum
running over (a, /3) E A(n, r) x A(n, r) with either a or ,D not in A(m, r). Let
7r : A(n, r) -* A(m, r) be the projection. Thus we have

7r (nC..) _ "cij, if i, j E I(m, r);
" 0, otherwise.

We define E : A(m, r) -+ k to be the restriction of E : A(n, r) -+ k. We
define 6 : A(m, r) -> A(m, r) ® A(m, r) to be (ir ® 7r) o 6 o t, where t :

A(m, r) -} A(n, r) is inclusion. Let 0 : A(m, r) -> A(m, r) be the restriction
of 0 : A(m) -+ A(n). Thus 0 is a linear isomorphism. We write ne and n6
for the augmentation and comultiplication maps for the coalgebra A(n, r)
and we write mE and m5 for the augmentation and comultiplication maps
for the coalgebra A(m, r). For i, j E I(m, r) we have f o 0(mcaj) = E(nCj) =
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E(nCij) = bij = "'c(mcij) and hence o 0 = mE. Moreover, we have

b 0 0(mcij) = b(nCij) = (ir 0 ir)( E 'Cih ®nChi)
hEI(n,r)

nCih ®nChi)
hEI(m,r)

_ (0 ®0) 0 mb(mcij)

for i, j E I(m, r), and so bog = (B®0)omb. Thus (A(m, r), S, ) is the coalge-
bra obtained by transport of structure from the coalgebra (A(m, r), m b, mE),
via the linear isomorphism 0: A(m, r) -> A(m, r). In particular, (A(m,
is a k-coalgebra and 0 : A(m, r) -+ A(m, r) is a coalgebra isomorphism. Let
S(m, r) the the dual algebra of the coalgebra A(m, r).

We define a linear map X : S(m, r) --> S(n, r) by X(x) = x o 7r, for
x E S(m, r). For i, j E I(n, r) we have

X(1)(nCi9) = E(7r(nCj))

_ b(" Cij), if i, j E I(m, r);
0, otherwise

= f bij, if i, j E I(m, r);
0, otherwise.

Hence we have x(l) = EaEA(m,r) nfa = . We now prove that X is multi-
plicative. Let x, y E S(m, r) and i, j E I(n, r). For i, j E I(m, r) we have

X(xy)(ncij) _ (xy)(r(ncij))
_ (x ®y)(b(nCij ))

E x(7r(nCih))y(7r(nChj))
hEI(n,r)

_ (X(x)X(y))(nCij).

Moreover, if i or j is not in I(n, r) then X(xy)(ncij) _ (xy)(7r(ncj)) = 0 and

(X(x)X(y))(nCij) = x(Ir(nCih))y(1r(nChj)) = 0.
hEI(n,r)

Hence X(xy) = x(x)x(y), and X is multiplicative. Now we have X(x) _
X(lxl) = X(l)X(x)X(l) E S(n, r) and the restriction Xo : S(m, r) -->

1;S(n, r)1;, of X : S(m, r) -> S(n, r), is an algebra map. Since 7r is surjec-
tive, Xo is injective. The dimension of S(m, r) is equal to the dimension of
S(m, r) and it follows from 2.1(5) that this is also the dimension of .S(n, r)1;.
Hence Xo is an isomorphism. We put 0 = Xo o (0*)-1 : S(m, r) -> 1 S(n, r)e,
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where 0* : S(m, r) -> S(m, r) is the algebra isomorphism dual to the coalge-
bra isomorphism 9 : A(m, r) -,- A(m, r). We claim that

'('Ci°j)
= %i-j (*)

for a E A(m, r), j E "''I-(a). For a E A(m, r) and j E mI-(a) we write
for the restriction of "£j. j to A(m, r). Then {&j Ice E A(m, r), j E mI- (a)}
is the basis of S(m, r) dual to the basis {nCia j I a E A(m, r), j E -I- (a)}
of A(m, r). Thus we have ='nfiaj and, to prove (*), it suffices to
show that X°(6° j) = %i- j . So let a E A(n, r) and suppose that a E A(m, r)
or a E Z. Then we have

Xo(Si°j)(a) =

if a E A(m,r);
0, otherwise

= nS,_,(a)

(since ntiaj(a) = 0 if a E Z) and hence Xo(fiaj) = ntioj, completing the
proof of (*). To summarize: we have shown the following.

(1) For m < n, there is an algebra isomorphism 0 : S(m, r) -> S(n, r)
such that O(mn ,.j) = for all a E A(m, r), j E"l-(a).

For the rest of this section we take q = 0.

(2) Suppose A = (al, ... , An) E X (n) and Ai, ... , An # 0. Then there is a
1-dimensional M(n)-module of weight A.

Proof Let p = (p1,...,µn) E X(n) with µ1,...,µn > 0. We define cµ =
cil ... cnn. We claim that dcµ is a group-like element of k[M], i.e. that
dcµ 0 0 and b(dcµ) = b(dcµ) ® b(dcµ). Note that -(dc") = 1 (where d is
the determinant), in particular dc" # 0. Certainly d = dc° is group-like (e.g.
because of the status of d as coefficient function of An E, cf. [18; Section 4.1]).
Now suppose that p = (p1 ) ... with µ", # 0 and suppose that
dc" is group-like f o r v = p - e, =..(p1, . , µ,,, - 1, 0, ... , 0). Recall that we
have dcij=qj-icijd,if 1<i<j<n,and cijd=ga-jdcij,if 1<j<i<_n,
for arbitrary q, see [18; 4.1.9 Theorem]. Thus, in our situation, we have
dcij=0,for t<i<j<n,and dcrr=crrd,for 1<r<n. Thus we have
do"=c"d and

n

6(dcµ) = 6(dc")6(c,n n) = (dc" 0 do")(> cmi 0 Cim)
i=1

n

= (c"
0

c")(J: dcmi ® dcim)
i=1

= (c" ® c")(dc,,,,,, 0 dc,,,,,,) = dcµ 0 dcµ.
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Thus we get that dc" is group-like for all p E X (n), with p1, ... , pn > 0, by
induction.

Now let p = A - (1, ... , 1) and put f = dc". Then 6(f) = f ®f so that
k f is a 1-dimensional M-submodule of k[M], of weight A.

We write Xo (n) for the set of A = (A1,... , A,a) E X(n) such that, for
someO<m<n,wehaveAi#0forall1<i<mandAi=Ofori>m.

(3) (i) F o r A = (A1, ... , A,,,, 0, ... , 0) E Xo (n), with a,,, # 0, there exists
an irreducible M(n)-module L(A), say, such that L(A) has weight A, which
occurs with multiplicity 1, and if p = ( p1 , .. , pn) is any other weight then
pi 96 0 for some m.
(ii) The modules L(A), A E Xo (n), are pairwise non-isomorphic.

Proof (i) We take as in (1). By (1) and (2), there is a 1-dimensional
simple S(n, with weight A. By the general theory of the Schur
functor, Appendix A1(4)(iv), there exists a simple S(n, r)-module L, say,
such that £L is a 1-dimensional eS(n, r)e-module of weight A. Now we have
L = EaEA(m,r) aL = ®aEA(m,r) La, from which we deduce that dim La =
1 and La = 0 for A # a E A(m, r). Thus L(A) = L has the required
properties.
(ii) It follows from the description of weight spaces of L(A) that ch L(A) #
ch L(p) and therefore L(A) and L(p) are not isomorphic for distinct elements
A, p of Xo (n).

(4) For a E A(n, r) the natural map E®r --+ SaE is a split epimorphism.

Proof If Oi : Xi -+ Yi is a split epimorphism of M-modules, for 1 < i < m,
then 01 ®. . . ®0m : X 1 ® ®X,,, --r Yl ® ®Ym is a split epimorphism.
Hence it suffices to show that the natural map ri : ED' -+ SrE is split. Let
Q denote the k-span of ei E E®r with i weakly increasing and let r : E®r
E®r 0 k[M(n)] denote the structure map. Then we have

r(ei) _ ei ® cji
jEI(n,r)

f o r i E I(n, r). If i = (il, ... , ir) is weakly decreasing and j = (j1, ... , jr)
has ja > ja+l for some 1 < a < r then, by the defining relations, we have
C7uioe.7o+1ia+1 = qCja+Iia+ICAaia = 0 and hence chi = 0. Thus r(Q) < Q 0
k[M(n)] and Q is an M-submodule of E. Now rl : E®r -+ S'E restricts
to an isomorphism on Q and so q is split.

(5) For r < n we have:
(i) S(n, r) is a quasi-Frobenius algebra;
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(ii) E®r is a projective generator of S(n, r);
(iii) the algebras S(n, r) and H(r) are Morita equivalent via the equivalence
of categories f : mod(S(n, r)) -> mod(H(r)).

Proof Let S = S(n, r). We have A(n, r) = ®aEA(n r) S"E, by 2.1(1)(ii).
Hence any injective indecomposable S-module is isomorphic to a component
of S"E for some a E A(n, r) and hence, by (4), isomorphic to a direct
summand of E®''. Hence, by 2.1(7), every injective S-module is projective
and so S is quasi-Frobenius. A projective indecomposable module is therefore
injective and hence a component of E®'. Hence E®r is a projective generator.
Recall the factorization f = 4ioF of Remark (ii) of Section 2.1 following (10)'.
Certainly is an isomorphism and since E®r is a projective generator we
have that F : mod(S) -> mod(Ends (E®'')°P) is an equivalence of categories,
see e.g. [4; Lemma 2.2.3]. Hence f is an equivalence of categories.

Let r > 1. We put Ao (n, r) = Xo (n) f1A(n, r). From [69], we have that
the irreducible H(r)-modules are labelled by the subsets J of [1, r - 1]. To
A = (A1 i ... ) Am, 0, ... , 0) E Ao (n, r) (with a,,, # 0) there corresponds the
subset J(A) = [1, Al - 1] U[A1 + 1, Al + A2 - 1] U . From [69; Section 3],
we get a 1-dimensional H(r)-module k,, such that

T,.x= 0, ifaEJ(A);
-1, ifa¢J(A)

for z E kA, and furthermore {kA A E Ao (n, r)} is a complete set of pairwise
non-isomorphic irreducible H(r)-modules.

From (5)(iii), the number of isomorphism classes of irreducible S(n, r)-
modules, for r < n, is equal to the number of isomorphism classes of irre-
ducible H(r)-modules, i.e. 2r-1. But this is also the number of isomorphism
classes of irreducible M-modules of degree r, i.e. S(n, r)-modules, described
in (3). Thus we have the following.

(6) The modules {L(A) I A E Ao (n, r)} (of (3) above) form a complete set
of pairwise non-isomorphic irreducible S(n, r)-modules, for r < n.

Let P(A) denote the projective cover of kA and Q(A) denote the injective
hull of kA, for A E Ao (n, r). Since H(r) is a Frobenius algebra (there is a
non-singular invariant bilinear form on H(r) by 2.1(11)) there is a bijection
A A such that P(A) = Q(A), for A E Ao (n, r). Now by the explicit
description of P(A) given by Norton, [69; 4.22 Theorem], and by [69; 4.23
Lemma], we have that A,), for A = (A,, ... , A,,,) E Ao (n, r)
(with A,,., # 0).

We write I(A) for the injective hull of L(A), A E Ao (n, r). Since f is an
equivalence of categories, we have a bijection A f-+ A on AQ (n, r) determined
by the condition f I(A) - Q(A). We claim that in fact A = A, for A E Ao (n, r).
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Now, for A E Ao (n, r), the module SAE is injective and hence a direct sum
of copies of I(p), p E Ao (n, r). Further, since f is an equivalence, the
multiplicity of I(p) as a summand of SAE is equal to the multiplicity of f I(p)
as a summand of f SAE, which is isomorphic to H(r)x(A), by 2.1(20)(i). But
we have

H(r)x(t) - ® P(p) = ® Q(j) (t)
ACA ACA

by [69; 4.14 Corollary (2)] (and [69; 4.22 Theorem]), where A C u means
that J(A) C J(p). Hence the multiplicity of I(p), as a summand of SAE, is
at most 1 and we have

SAE = ®
AEF(A)

for some subset F(A) of Ao (n, r). By 2.1(8), the multiplicity of I(p) as a
summand of SAE is dim L(A)A. By (3)(i) we have

SAE - I(A) ®( (@ I(µ))
AEF1(A)

where F1(A) consists of elements of Ao (n, r) which have more parts than A.
We can assume inductively that f I(p) = Q(µ) for all p E F1(A). Hence we
obtain

Hx(A) - fSAE = Q(.) ®( (D Q(µ)).
AEF1(A)

By (t) (and the Krull-Schmidt theorem) Q(A) occurs as a summand of f SAE.
But A is not equal to µ for any p E F1(A) (since all elements of F1(A) have
more parts than A). Hence we must have A = a.

Since L(A) is the socle of I(A) and ka is the socle of Q(A) we get f L(A)
kA, for A E Ao (n, r). Let a E A(n, r) and write a for the element of Ao (n, r)
obtained by deleting the zeros from a = (al, a2i ... , an). Now we have
S"E = S"E and so

dim L(A)" = dim Homs(L(A), S"E) = dim Homs(L(A), S"E)
= dim HomH(ka, H(r)x(a))

which (by (t)) is 1 if a C A and 0 otherwise.
We write x$ for the canonical generator e(eti) of the character ring ZX

(see 0.12) and write x' for xi 1 ... xm for a E A(n, r). We have shown that,
for A E Ao (n, r), the character of L(A) is given by the formula

ch L(A) _ x". ($)

aEA(n,r),&CA

We now note that A C p implies A < p (where < is the usual partial
order) for A, ,a E Ao (n, r). Let A = (A,, A2, ...) and p = (µl, ... , Pb) 0, ... , 0),
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with p , 54 0. Then J(\) _ [1, r]\{Ai, Al +A2, ...} and J(p) = [1, r]\{ pi, pi +
p2 i ...} so that J(A) C P 2 A 21 In
particular µl = A + + A,, for some 1 < s < n, giving Al < µl. Now
suppose that 1 < h < b and we have proved Al + + Ah < pl + + µh.

I fsome
we get

_/11+...+ph <_1p1+...+111+1

so we must have equality throughout. But then we have µh+1 = 0, a contra-
diction. Hence we have 1 > h and hence Al+ +Ah+Ah+1 < Ai+ +Al =
µ1 Thusweget

A < p.
Now let m > 1, r > 0 and choose n >> 0. For A E Ao (n, r) the l;S(n, r)--

module i;L(A) is either 0 or a simple I;S(n, r)l;-module and each irreducible
f S(n, r)1;-module is isomorphic to some such eL(A), by the general theory
of the Schur functor, Appendix A1(4)(iv). Now I;L(A) = ®"EA(m,r) L(A)"
is non-zero if and only if there is some a E A(m, r) with a < A, by M.
In that case we have & < A and so r = &1 + + &m < Al + + Am
(where a = (dl, a2, ...)) This gives Al + + Am = r so that Am+i = 0
and A E Ao (m, r). Hence the number of isomorphism classes of l;S(n, r)--
modules is at most IAo (m, r)I. By (1) and (3)(ii), it is at least this number.
Hence {l;L(A) I A E Ao (m, r)} is a complete set of pairwise inequivalent
irreducible I;S(n, r)1;-modules. Applying 1; to a weight space decomposition
of L(A), using (t) and (1) and replacing m by n we get the following.

(7) {L(A) I A E Ao (n)} is a complete set of pairwise non-isomorphic irre-
ducible M(n)-modules and, for A E Xo (n), we have

ch L(A) = E X".
"EA(n,r),&CA



3. Infinitesimal Theory and
Steinberg's Tensor Product Theorem

Suppose that q is a primitive lth root of unity. Then the quantum general
linear group G = G(n) has a finite subgroup G1, called the infinitesimal sub-
group, and G1 plays the role that the first infinitesimal subgroup enjoys in
the representation theory of reductive groups in positive characteristic (as in
[61; I Chapter 9, II Chapter 9]). We establish the main features of the rep-
resentation theory of G1 and related subgroups in Section 3.1. Of particular
importance is the subgroup G1, generated by G1 and the torus T = T(n).
The main attraction of GI is that while its representation differs only triv-
ially from that of G1 in most respects it has, unlike G1, a theory of weights,
and the weight structure of a G-module is preserved on restriction to G1. We
call G1 and related subgroups "Jantzen subgroups". These correspond to the
subgroups introduced into the representation theory of reductive groups in
positive characteristic by Jantzen, [59]. Most of the results of 3.1 have been
proved for the Manin quantization (and 1 odd) by Parshall and Wang, [71;
Chapter 9].

In Section 3.2 we give the q-analogue of the famous tensor product theo-
rem of Steinberg. The proof we shall give is similar to that given by Parshall
and Wang, [71; (9.4.1) Theorem], for the Manin quantization when q is an
odd root of unity, and has some elements in common with the proof of the
classical Steinberg tensor product theorem given in [5]. Cliff, [9], has given
a proof of this theorem for the Manin quantization in the remaining cases.
Moreover Dipper and Du, [19; 5.6 Theorem], have given a proof of the ten-
sor product theorem for the quantization we use here. Their proof is quite
different from that given here and is based on the representation theory of
the Hecke algebra of type A.

In Section 3.3 we record the basic properties of tilting modules for quan-
tum general linear group G and relationships with modules for infinitesimal
subgroups of G. Here the arguments of [33] carry over with little change.

In the final section we give the tilting modules for quantum GL2 and
again, for the most part, this is simply a modification of the classical case,
[33; Section 2, Example 2].

3.1 Infinitesimal theory

If H is a quantum group and H1, H2 are subgroups then we denote by H1nH2
the subgroup whose defining ideal of k[H] is IH1 + IH,

Throughout this section q is a primitive Ith root of unity, for some
positive integer 1. We put N = (2), the number of positive roots. We consider
the quantum subgroup G1 of G defined by the ideal of k[G] generated by the
elements c;1 - 52-j, 1 < i, j < n. We define B1 = B n G1, Bi = B+ n G1
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and T1 = T n G1. To keep track of weight spaces in the infinitesimal theory
we define the Jantzen subgroups G1, B1 and Bi of G. The group G1 has
ideal Id, (of k[G]) generated by the elements with 1 < i, j < n and
i $ j. We put Bl = B n Gl and Bl = B+ fl G1. Since the irreducible
modules for T, B and B+ are 1-dimensional we get (cf. the argument of
[36; Lemma 2.6]) that any irreducible T1, B1 or Bi -module is a restriction
of a 1-dimensional module for the corresponding "global" quantum group.
More precisely, writing X1 for the set of A = (.A, ... , A,-,) E X such that
Al - A2, . , An-1 - An, An E [0,1 - 1], it is easy to derive the following
results.

(1) {kA I A E X} is a full set of irreducible H-modules, for H = T, Bl and
Bl .

(2) For A, p E X we have kAIH, = kµ IH, if and only if A - p E IX and
indeed {ka I H, I A E X1 } is a full set of irreducible Hl-modules, for H = T, B
and B+.

Let H be an arbitrary finite quantum group over k. We write IHI for the
dimension of k[H] (and call IHI the order of H). Let J be a (quantum)
subgroup of H. Then k[H]Ij is a direct sum of copies of k[J], by [38] or
by (the dual of the main result of) [68]. This, together with [71; (2.9.1)
Theorem], gives the following.

(3) If J is a subgroup of a finite quantum group H then JJI divides IHj.
For V E mod(J) we have dim IndHV = [H : J] dim V. In particular Indj is
exact.

We are writing [H : J] for the integer IHI/IJI, which we call the index of J
in H. For A E X we write 11(A) for the injective hull of ka as a Bi -module
and I1(A) for the injective hull of ka as a Bi -module. It is easy to check
that the images of the elements cii' ... cn, 1 < a11, ... , ann < 1, under the
restriction map k[G] - k[G1], form a k-basis of k[G1]. From this and similar
observations we obtain:

(4) IG1 = 1n', IB1 I = IBi I = 1(°2') and IT1 I = In.

Let p = (n, n - 1, ... ,1) E X. Let oD+ _ {ei - e1 1 1 < i < j < n},the
set of positive roots. For A E X let A(A) _ ErESym(n) sgn(a)e(rrA) E ZX.
Then A(A+p) is divisible by A(p) in ZX(n) (see e.g. [29; (2.2.7)]) and we set
x(A) = A(A + p)/A(p) , for A E X. Note that x(A) is the Schur symmetric
function in n variables, for A a dominant polynomial weight, see e.g. [63;
I,(3.1)]. The character formula may also be expressed in the form x(A) =
A(A + p)e(-p)/ flaE-P+(1 - e(-a)), cf. [54; Section 24.2]. Taking A = 0, we
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get A(p)e(-p) = 11aE ,+(1 - e(-a)). We consider the case A = (r - 1)p,
for r > 1. For 0 = E.EX mme(p) E ZX, we write ,(r) for EpEX mµe(rp).
Note the map ZX -> ZX sending Ik to O(r) is a ring homomorphism. Now
we have

X((r - 1)p) = E sgn(w)e(rwp)e(-p)/ II (1 - e(-a))
wESym(n) aEI+

= e(-p)( E sgn(w)e(wp))(r)/ fJ (1 - e(-a))
wESym(n) aE4,+

= e(-p)(e(p) 11 (1 - e(-a))(r)/ 11 (1 - e(-a))
aE(D+

= e((r - 1)p) 11 (1 - 11 (1 - e(-a))
aEfi+ aEI+

= e((r - 1)p) 11 (1 - e(-a) - - e(-(r - 1)a)).
aE4P+

Now by the argument of the proof of [36; Lemma 2.8(i)] (or compare
with the algebraic group case, [61; II, 9.2]) we have that for A, P E X, the
dimension of 4 0? is the number of ways of expressing A -,a as a sum
EaE,p+ raa, with 0 < ra < I for a E 4't+, and that I1(A) = IndT'kA.
Thus i ((1- 1)p) has character given by the Weyl character X((l - 1)p) and
ch Ii(A) = e(A - (1 - 1)p)ch Ii((1 - 1)p).

(5) ForAEX we haveI1(A)=IndT'ka and

ch I1(A) = e(A - (I - 1)p)X((1 - 1)p)

From (4) we have dim IndTi kA = [Bi : T1] = 1(2). It follows from Frobe-

nius reciprocity that IndTi kA contains kA in its socle and, since induction
takes injectives to injectives, must therefore contain a copy of 11(A). Hence
dim I1(A) < 1N. However, we have a B+-module decomposition k[Bi ]
$AEX111(A) (by [50; (1.5g)(iii)]). It follows from a dimension count that
dim I,(A) = 1N, for A E X1. Also, the natural map k[Bj ] -+ k[T] 0 k[Bi ]
is injective and it follows that 11(A) = IndT'kA has a simple Bi -socle kA.
Thus I1(A)IB- embeds in I1(A) and by dimensions we must have:

(6) I1(A)1B+ = I, (A), for A E X.

We define V1(A) = and '1(A) = IndB'ka, for A E X. It is easy to
prove (cf. [36; Lemma 2.9]) that the natural maps k[G1] -> k[B1] 0 k[Bi ]
and k[G1] -> k[B1] 0 k[Bj ] are injective and we get the following.
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(7) For A E X we have socB+V1(A) = ka and socB+V(A) = kx.

Now from (3) and (4) we get dim V1 (A) = IN and so, from (7), we get:

(8) 01(A)(Bl ^'Ii(.\)forallAEX.

We define a quotient group S of dl by setting k[S] to be the k-subalgebra
of k[G1] generated by (the images in k[G1] of) the elements cil, ... , c;,,, and
d-1. Note that S is an n-dimensional split torus and hence every S-module
is completely reducible. Note also that k[S] is central in k[G] and that the
subgroup of G1 defined by the ideal generated by Ker(eG1) fl k[S] is G1.
Indeed k[G1] is faithfully flat (in fact free) over k[S]. Similar remarks apply
to Bl and Bi . Hence we get the following, from [71; (2.10.2) Theorem] and
[36; Corollary 1.4].

(9) The restriction of any injective H1-module to H1 is injective and IndH,
is exact, for H = G, B and B+.

The following result may be applied in several cases in the present set-up.

(10) Let H be a quantum group. Suppose that J and K are subgroups
such that the natural map k[H] -+ k[J] ® k[K] is injective. A subspace of an
H-module is an H-submodule if and only if it is both a J-submodule and a
K-submodule.

Proof Let Z be an H-module and let V be a subspace of Z. Certainly if
V is an H-submodule then it is a J-submodule and a K-submodule. Now
suppose that V is a J-submodule and a K-submodule. Let x,., r E R, be
a k-basis of Z such that x,., r E Ro, is a k-basis of V for some subset Ro
of R. We have rz(x,.) = E$ER xs ® fs, for some elements f,., E k[G]. By
hypothesis we have far E Ij fl IK, for r E Ro and s E R\R0. However, we
have 5(fs,.) _ EtER fst ® .ftr and it follows that the canonical map k[H] ->
k[J] 0 k[K] takes fs, to 0. Hence fs,. = 0 for r E Ro, s E R\Ro, and V is a
G-submodule.

We leave it to the reader to verify injectivity of the appropriate map (cf. [36;
Lemma 2.9]) in each of the cases below.

(11) In each of the following cases the natural map k[H] -> k[J] 0 k[K] is
injective and hence a subspace of an H-module is an H-submodule if and
only if it is both a J-submodule and a K-submodule: (a) H = G, J =
B,K=B+; (b) H=G1,J=B1iK=Bi ; (c)H=G1iJ=G1,K=T; (d)
H=B1iJ=B1,K=T; (e)H=Bi,J=Bi,K=T.
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We shall also need:

(12) Each isotypic component of the B1-socle (resp. Bi-socle) of any B-
module (resp. B+-module) is a B-submodule (resp. B+-submodule).

Proof We shall prove the B-version. Let V be a B-module and let VA be
the kA-isotypic component of the B1-socle of V. We have Vo = VB', which
is B-stable by [36; Proposition 1.5(i)]. For general A E X1 we note that
identifying V with kA ® (k_,\ ® V) identifies VA with kA ® (k_A ® V)0, which
is a B-submodule by the case already considered.

We now consider the simple G1-modules and simple G1-modules. For
A E X the G1-module V1(A) has a simple Gl-socle, which we denote by
L1(A), and the G1-module V1(A) has a simple Gl-socle, which we denote
L1(A). Let V be a simple G1-module and let A E X be such that there is
a non-zero B1-homomorphism V --> kA. By Frobenius reciprocity, we have
a non-zero G1-module homomorphism V -> Vj(A) and hence V L1(A).
Similar remarks apply to G1 so we obtain the following.

(13) (i) For A E X the G1-socle (resp. Gl-socle) of V1(A) (resp. 71(A)) is
isomorphic to L1(A) (resp. L1(A)).
(ii) For A E X the G1-module L1(A) has a simple Bi -socle kA and the G1-
module L1(A) has a simple Bi -socle kaIB1.
(iii) {L1(A) I A E X1} is afull set of simpleG1-modules and {L1(A) I A E X}
is a full set of simple G1-modules.

Let K be an extension field of k. For a k-coalgebra C we write CK for the
K-coalgebra K®kC obtained by base change. For a quantum group H over k
we write HK for the quantum group over K obtained by base change, i.e. HK
is the quantum group whose coordinate algebra is K®k k[H]. Recall that if V
is a finite dimensional simple module over a k-algebra A then V is absolutely
irreducible if and only if EndA(V) = k (see [16; (29.13) Theorem]). Now
let C be a k-coalgebra, let V be an irreducible C-comodule and let D be a
finite dimensional subcoalgebra of C containing the coefficient space of V.
Then the comodule VK = K ®k V is irreducible over CK if and only if it
is irreducible over DK. Furthermore, every (right) D-comodule is naturally
a left module for the dual coalgebra D* = Homk(D, k) and in this way we
have an equivalence of categories between (right) D-comodules and (left)
D*-modules. Furthermore we have a natural isomorphism (D*)K -> (DK)*.
It follows that V is absolutely irreducible if and only if Endc(V) = EndD(V)
is equal to k. Thus we have the following.

(14) A simple module V for a quantum group H over k is absolutely irre-
ducible (i.e. the HK-module VK obtained by base change is irreducible for
every field extension K of k) if and only if EndH(V) = k.
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Now if 0 is a Gl-endomorphism of L1(\) (for A E X) then 0 stabilizes the
Bi -socle of L1(A) and hence, by (13)(ii), 0 - cI is zero on the Bi -socle for
some c E k, where I is the identity map on L1(\). Thus the kernel of 0 - c7
is non-zero and therefore equal to L1(A). Hence EndG,(L1(.A)) = k. The
same argument applies to Gl and G so we obtain the following.

(15) Every simple H-module is absolutely irreducible, for H = G, G1, G1,
B, i31, B1, B+, Bi and Bi .

Let H be a quantum group over k and let K be an extension field. If V is an
essential submodule of an H-module Z then VK is an essential submodule of
the HK-module ZK, e.g. by [37; Lemma 6(i)]. Hence we get the following.

(16) For any H-module V we have socH(V)K = socHK(VK), for H =
G, Gl, Gl, B, B1, B1, B+, Bi and Bi .

For A = (),. .. , A,,) E X, the element clil ... cn; spans a 1-dimensional S-
submodule, Ma, say, of k[S]. We regard MA as a G1-module by q-restriction
(see 0.16). The weight of this module is IA. Hence we obtain that L1(IA) is
1-dimensional and trivial as a G1-module. We shall often write simply kla
for L1(la). We now get the following.

(17) L1(A + lp) = L1(A) 0 k1µ as G1-modules, for A, p E X.

Note that if k is algebraically closed then T may be identified with the group
of its k-rational points and, furthermore, if T acts as k-algebra automor-
phisms of some finite dimensional k-algebra A then T fixes some decomposi-
tion of 1 as a sum of mutually orthogonal primitive idempotents. This is well
known but we include a proof for the sake of completeness. Suppose not and
that A is a counterexample of minimal dimension. If T fixes a non-trivial
idempotent e, say, then by minimality T fixes a primitive decomposition in
e and in (1 - e)A(1 - e), and putting these together gives a primitive de-
composition of 1 in A fixed by T. Thus T fixes no non-trivial idempotent.
Now there are finitely many central idempotents and these are permuted by
T. Since T is connected, T must fix all central idempotents. Hence the only
central idempotents are 0 and 1, and A consists of a single block. If the
nilpotent radical N of A is non-zero and A/N has non-trivial idempotents,
then, by minimality, there is a non-trivial f, say, of A/N fixed by T. But
the sequence of fixed points 0 -r NT --> AT --} (A/N)T -* 0 is exact, since
T is linearly reductive, and hence there is an element x E AT such that
f = x + N. But now one gets an idempotent g E A, such that g is a polyno-
mial in x and x + N = f, by the usual idempotent lifting procedure, see e.g.
[41; Section 44], and this is a contradiction. But then A/N, and hence A,
has only trivial idempotents and A is not a counterexample. Thus we must
have N = 0. Thus A is a product of matrix algebras over k and, since A has
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only one block, A = M,.{k), the algebra of r x r matrices, for some positive
integer r. Now every algebra automorphism of Mr(k) is inner and hence, for
each t E T, there exists some gt E GL,b(k), such that t a = gtagt 1, for all
a E A. Moreover gt is determined up to a scalar multiple so we get a homo-
morphism of algebraic groups 0: T -> PGLr(K), given by 0(t) = ctZ, where
Z is the centre of GLr(K), i.e. the group of non-zero scalar matrices. Now
the image of 0 is a torus. The maximal tori in PGLr(k) are the conjugates
of To, say, the image in PGLr(k) of the group of invertible diagonal matrices
in GLr(k). Thus there exists some h E GL,.(k) such that hcth-1 is diagonal

for all t E T. Now let ei be the matrix with entry 1 in the (i, i)-position
and all other entries 0, for 1 < i < r. Then ei is centralized by hcth-1 (for
1 < i < r, t E T) and T fixes the decomposition 1 = ei + + e;., where
e$ = h-leih, for 1 < i < r, a contradiction.

(18) Let H = G, B or B+.
(i) Suppose that k is algebraically closed and let V, V', V" be finite dimen-
sional Hl-modules. Then T acts on HomH1(V', V") and Homq,(V', V") =
HomH1(V', V")T . The action of T on EndH, (V) is by k-algebra automor-
phisms. Furthermore, V is indecomposable as an Hl-module if and only if it
is in decomposable as an H1 -module.
(ii) We have L1(A)I G, = L1(A), for any A E X.
(iii) For any H1-module V we have socH, (V) = socH, (V) and furthermore,
each isotypic component of socH, (V) is an H1-submodule.

Proof We have that

HomH1(V', V") = Homk (V', V")H,

is an Hl-submodule of Homk(V', V"), by [36; Proposition 1.5]. Since T < H1
we have HomEI (V', V") < HomH1 (V', V")T and the reverse inclusion holds
by (11) above. Note that T acts on Endk(V) naturally as k-algebra automor-
phisms and hence on the T-stable subalgebra EndH, (V). If V is a decompos-
able H1-module then the length n, say, of an expression for 1 E EndH,(V)
as a sum of mutually orthogonal primitive idempotents is greater than 1.
By the remark above, 1 can be written as a sum of n mutually orthogonal
idempotents in Endf1(V). In particular EndE1(V) contains a non-trivial
idempotent and hence V is a decomposable Hl-module. This proves that if
V is indecomposable then V IH, is indecomposable. The converse is clear and
the proof of (i) is complete.

In proving (ii) and (iii) we may assume, by (16), that k is algebraically
closed. We claim that if Z is an Hl-module, U is an Hl-submodule of
Z and t E T then t U is also an Hl-submodule. We may assume that
Z is finite dimensional. Suppose first that H = B+. Let P be a finite
dimensional projective Bi -module mapping onto U. Since Bi is finite, P is
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injective. It follows from (6) that there is an injective B1-module P such that
PJB1 = P. Now P is also projective as a B1-module. Now T acts naturally
on HomB1(P, Z). Let 0 E HomBi (P, Z) be such that Im(9) = U. Then
Im(t 9) = t U and hence t U is a Bl-submodule.

The case H = B is similar. Now consider the case H = G. So let Z
be a G1-module and let U be a Gl-submodule. Then U is a Bl-submodule
and Bi -submodule. Hence, by the above, t U is a Bl-submodule and B i -
submodule. Hence t U is a Gl-submodule, by (11)(a). This proves the
claim.

Now let L be a simple Hl-submodule of V. For t E T, t L is an Hl-
submodule of V and must be simple, for if J is an Hl-submodule oft L then
t-1 J is an HI-submodule of the simple H1-module L. Thus socH1(Z) is
an Hl-submodule and a T-submodule of Z and hence, by (11),(c)-(e), also
an Hl-submodule. By (i), each indecomposable H1-summand of socH1(V)
is also indecomposable, and hence simple, as an H1-module. Thus we have
soCH1(V) < socE1(V). Let L be a simple Hl-module. Then socH1(L) is
an Hl-submodule and therefore L = SOCH1(L), i.e. L is semisimple as an
Hi-module. Now (i) gives that L is simple as an Hl-module. We get that
socEl(V) < socH1(V) and so socH1(V) = socE1(V). Furthermore we get
that, for A E X, the G1-module L1(A) is simple as a G1-module. Now
(13)(ii) implies that L1(A)IG1 is isomorphic to L1(A).

It only remains to prove the last assertion of (iii). We may assume that V
is finite dimensional and, replacing V by socH1(V), that V is semisimple as an
H1-module. Let V = V1 ® . . . ® VV, be the decomposition of V into isotypic
components. The idempotent ei E A = EndH, (V ), describing projection
onto V, is central. Moreover, T permutes the central idempotents of A.
Since A is finite dimensional it has only finitely many central idempotents
and since T is a connected group it must fix each central idempotent. By
(i), each e$ belongs to EndR1(V) and hence V, the image of e87 is an HI-
submodule of V.

We consider now induction from T to G1. The coordinate algebra
k[G1] has a basis of (right and left) weight vectors c"' cn

a b12
n"c12 ... cn'-1,n

with all, ... , ann E Z and b12, ... , bn-1,n E [0,1 - 1]. (We are writing
the restriction of a coordinate function c8j to G1 also as cqj.) Let A E
X. For each choice of b12, ... , bn-1,n E [0,1 - 1], there is exactly 1 way
of choosing the a11, ... , ann E Z in such a way that the basis element
can Cnnc 2 ... C,bnn- ll,, ,n11

n nn 1 12 has weight A. It follows that the A weight space of1

k[GI] has dimension 12N. Hence the induced module IndG' k), has dimension
12N. By exactness of induction we get the following.

(19) For V E mod(T) we have dim Ind61 V = 12N dim V.

We shall also need:
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(20) (i) dim IndBi V = IN dim V, for all V E mod(al), in particular Ind6,
is exact.
(ii) V1(A)1B+ = Ii(.)), and so ch01(A) = e(\ - (1- 1)p)X((1- 1)p), for all
AEX.

Proof From (7) we get that t1(A)IE embeds in I1(A). Furthermore, by

(5), we have dim I1(A) = IN, so it will follow from (i) that this is an isomor-
phism. The second assertion of (ii) follows from the first and (5). Thus it
only remains to prove (i).

Let V E mod(B1). By left exactness we have dim IndT' V < IN dim V.
Let Y = IndB, V. Frobenius reciprocity provides us with an embedding V ->
Y, so we have a short exact sequence of B1-modules 0 -> V -> Y -> Q 0.

Moreover, we have dim IndB'Y = dim Ind4' V = 12N dim V, by (19) (and
transitivity of induction). By left exactness and the first paragraph of the
proof we have

12N dim V < dim IndG' V+dim IndG'Q < IN dim V+IN dim Q = IN dim Y.Bl Bl

But dim Y < IN dim V. It follows that we have equality throughout and that
dim IndBi V = IN dim V, as required.

We have the so called dot action of Sym(n) on X defined by w A =
w(A+ p) - p, for w E Sym(r), A E X. Let A E X. We have ch01(A) =
e(A - (1 - 1)p)X((1 - 1)p) and therefore ti(A) has unique smallest weight
) + (1 - 1)wo 0, and this occurs with multiplicity 1. Hence Vi(A)* has
highest weight p, where -p = A + (1 - 1)wo 0. Hence there is a non-
zero Bl-homomorphism 4) : V1(A)* --> kµ. and, by Frobenius reciprocity,
a G1-homomorphism : 71(A)* -+ t1(p), such that 0 = 11 o 4), where
rl : O1(µ) -> kµ is the natural map. Since Bi is finite, V1(A) is projective
as well as injective. Hence the dual 71(.)* is an injective indecomposable
Bi -module. Hence V1(.)* has a simple Bi -socle kµ. Since 4) is non-zero
on (V1(.)*)/' the map must be injective and hence an isomorphism. Thus
we have the following important result (the q-analogue of a result sometimes
known as Serre duality).

(21) For A E X we have 71(A)* - 01(-.\ - (1 - 1)wo 0) as G1-modules,
and hence also V1(A)* = V1(-A - (1 - 1)wo 0) (as Gl-modules).

From (21) we obtain:

(22) For A E X the G1-module (resp. G1-module) 01(.X) (resp. V1(.A)) has
simple head, which is isomorphic to L1(-A - (1- 1)wo 0)* (resp. L1(-A -
(1- 1)wo 0)*).
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3.2 Steinberg's tensor product theorem

Let a = (al, ... , a,,,) be a composition of n. Thus a1,... , a,,, are positive
integers whose sum is n. We recall, from [36; Section 2], the construction of
various subgroups defined by a. Let be the subset [1, a1]2 x [al + 1, a1 +
a2]2 x ... x [a,+ ..+a,,.a_1+1, n]2 of [1, n]2. Let iy+ _ {(i, j) 1 < i < j < n},
IF- = {(i, j) 1 < j < i < n} and let 1+(a) _ ly+ U 1Y(a), l1 (a) =

U '1(a). We define P(a) (resp. P+(a)) to be the subgroup of G whose
defining ideal is generated by the elements c;j with (i, j) E [1, n]2\'11 (a)
(resp. (i, j) E [1, n]2\lY+(a)). We define G(a) = P+(a) fl P(a), B(a) = B fl
G(a) and B+(a) = B(a)flG(a). We have natural isomorphisms G(al) x . . . x
G(a,,,) -> G(a), B(al) x . . . x B(a,,,) -> B(a) and B+(al) x . . . x B+(a,,,)
B(a) (see [36; Section 2]).

We shall need the following.

(1) F o r 1 < r < n let a(r) be the composition (1, ... , 1, 2,1, ... , 1) (where
2 occurs in the rth position) of n and put A = {a(1), ... , a(n - 1)}. For
a B-module (resp. B+-module) Z, a subspace V is a B-submodule (resp.
B+-submodule) if and only if it is a B(a) (resp. B+(a)-submodule) for all
aEA.

Proof We shall prove the version involving B. Certainly if V is a B-
submodule then it is a B(a)-submodule for all a E A. We now prove the
converse. By local finiteness we can assume that Z is finite dimensional.
Suppose the result is false and choose Z of minimal dimension for which it
fails. Let L be a non-zero B-submodule of Z. Now (L + V)/L is a B(a)-
submodule of Z/L, for all a E A, and hence, by minimality, a B-submodule.
If L + V 54 Z then, by minimality, V is a B-submodule of L + V and hence
of Z, a contradiction. Thus L + V = Z for every non-zero B-submodule L
of Z. Taking, in particular, L to be a 1-dimensional submodule we get that
V has codimension 1 in Z. Let N be a B-submodule of Z of codimension 1.
Now v fl N is subspace of N which is 13(a)-stable, for all a E A, and hence
a B-submodule. If V fl N # 0 we therefore get z = (V fl N) + N = N, a
contradiction. Hence v fl N = 0. Thus Z is 2-dimensional and Z = L®V, for
some 1-dimensional submodule L. Tensoring Z by (Z/L)*, we can assume
that Z/L is trivial. If L is trivial then Z is a trivial B-module, by [36;
Lemma 2.8(ii)]. But then every subspace is a B-submodule and again we
have a contradiction. Thus L = ke i say, for some 0 # 8 = (9k, ... , E X X.

Now V = ZT and if Z is semisimple then V = ZB, a B-submodule. Thus
Z is a non-split extension of k by ke. By [36; Lemma 2.8(ii)], we have
8 < 0, in particular we have 8 - 8;+1 < 0 for some 1 < i < n. We take
a = (1, ... , 1, 2, 1, ... ,1), with 2 in the ith position. For any v E X\X+(a)
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we have the 5-term exact sequence

0 --> H1(P(a), H1(B, (RhIndB(a)kv)P(a)

H2 (P(a), IndB(a)kv) -' H2(B,

from [36; Proposition 1.1]. Thus we have
It follows from [36; Lemmas 3.1(iv) and 2.12] that v = sa for some s <
0, where a = eti - c$+1. Putting S = {s < 0 1 H1(B,k,a) 0 0} we get
that dim HI (B,k,a) = 1 for all s E S. Another application of the 5-term
exact sequence gives that H1(B(a),k,a) - for s < 0,
and [36; Lemma 2.12] gives that H1(B(a), k,a) # 0 if and only if s E S
and dim H1(B(a), k,a) = 1 for all s E S. Thus there is precisely 1 non-
split B-module extension of k by k,a, and precisely 1 non-split B(a)-module
extension of k by k,a (up to isomorphism) for each s E S. However, we
have a natural homomorphism B -> B(a) and each B(a)-module extension
0 -> k,a -> E -+ k --+ 0 gives rise, via inflation, to a B-module extension
and the extension is B-split if and only if it is B(a)-split. In particular Z
is a non-split B(a)-module extension, in contradiction to the B(a)-module
decomposition Z = L ® V.

(2) Let A E X+. The B-socle of V(A) is isomorphic to k,,,0A and the B+-
socle of V(A) is isomorphic to kA.

Proof For P E X we have HomB(kµ, V(A)) - (k_µ®V(A))B - (IndBk_µ,(D
V(A))G, by the tensor identity and Frobenius reciprocity. If kµ appears in
the B-socle of V(A) we therefore have IndBk_1, # 0 and hence, by 0.21(2),
we have -p E X. In that case we get HomB(kµ,V(A)) - H°(G,V(-p)
V(A)) = k, if p = w°a, and 0 otherwise, by [36; Section 4(2)]. This shows
that k,,,oa is the B-socle of V(A).

We write the restriction of c;j to B+ also as c;j. Now k[B+] has a
k-algebra grading k[B+] = ®aEx k[B+]a, where cgj has degree e;. Then
k[B+] = ®QEx k[B+]a is a left B+-module decomposition and k[B+]a is the
injective hull of ka, as a B+-module, for a E X (see [36; Lemma 2.7] for the
B-version). Now V(A) = IndGka is naturally identified with the submodule
of k[G] consisting of the elements f such that (7r 0 id)b(f) = ff, 0 f, where
7r : k[G] -+ k[B] is the natural map and fA = 7r(ci c22 ... c'-n). The natural
map (7r®7r+)ob : k[G] --> k[B]®k[B+] is injective (where 7r+ : k[G] -+ k[B+]
is restriction). It follows that restriction V(A) -> k[B+] is injective and it
is easy to check that the image of this map lies in k[B+]a. Hence V(A) has
simple B+-socle kA.

We now take q to be a primitive Ith root of unity and write, as in Section
3.1, X1 f o r {A = (Al, ..., An) E X 10 < Al - A2, ... , An-1 - An, An < 1}.
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We write G for the algebraic group scheme For 1 < i, j < n let
xij denote the (i,j)-coordinate function on Now c; is a centralj
element of k[G] (see [18; 1.3.2 Corollary]). We have the Frobenius morphism
F : G -+ G whose comorphism takes xij to cii, for 1 < i, j < n. For A E X+
let L(A) denote the irreducible rational G-module of highest weight A. Then
the G-module L(A)F is irreducible and has highest weight 1A and hence is
isomorphic to L(1A).

We can now prove, as in [71; (9.3.4) Proposition], the following.

(3) {L(A)NG, I A E X1} is a full set of irreducible G1-modules.

Proof We shall show that if A= (A1, ... , An) E X+ and 0 < ai - ai+1 < 1,
for 1 < i < n, then L(A)NG, is irreducible. It will be important to know that
if A - ra is a weight of L(A), for a simple root a and r > 0, then r < 1.
Since L(A) is a submodule of V(A) it suffices to observe this for V(A). Now
the character of 0(A) is given by Weyl's character formula and it is easy to
deduce the required property from Freudenthal's formula, [54; 22.3 Theorem]
(or by reducing to the rank 1 case using [27; p. 230 para. 2]).

We claim that L(A) has simple Bi -socle kAIBi. By (2) and the fact
that L(A) embeds in 0(t), we have that L(A) has simple B+-socle ka. This
gives, by 3.2(11), that the Bi -socle is sum of copies of kAIBi . Let L be the
B+-socle and let N be the Bi -socle of L(A). We assume, for a contradiction,
that L # N. Let p be a maximal weight of M/L. Then p = A - Iv, for some
v E X. Since A occurs with multiplicity 1 as a weight of L(A), we have
v # 0. By (the B+ version of) [36; Lemma 2.8(ii)], there is a 1-dimensional
B+ submodule M/L, say, of NIL of weight p. Let 1 < r < n and take
a = a(r) as in (1). If the extension M, of M/L by L, is non-split as a B+(a)-
module then we have, by (the B+(a) version of) [36; Lemma 2.8(ii)], that
A - p = 1v is a multiple of a = e,. - E,._1. But then visa multiple of a and p
has the form A+1sa for some s 0 0, contrary to the paragraph above. Hence
the extension of B+(a(r))-modules splits and Mµ is a B(a(r))-submodule of
L(A), for 1 < r < n. By (1) we get that Mµ is a B+-submodule of L(A),
contrary to the fact that the B+-socle of L(A) is L. This proves the claim.
Similarly we have that L(A) has simple B-socle k,,oa.

Hence L(A) has simple G1-socle R, say, and R contains L(a)y`. But now,
the dual module L(A)* - L(A*) has simple B1-socle k,,,oa. = k_a. Hence
L(A) has simple head kA, as a B1-module. Hence there is a unique maximal
G1-submodule S, say, and S¢ L(A)' = L. If S :A 0 then S contains R and
hence L, a contradiction. Hence S = 0 and L(A) is simple, as a G1-module.

Let L1 be an irreducible G1-module. Then L1 is a composition factor
of some G-module and hence of some irreducible G-module L(µ), say, with
p E X+. We can express p as A + Iv, where A E X1 and v E X+. Then
L(A) 0 L(v)' has highest weight p so that L(p) is a composition factor of
L(A) ® L(v)' and hence L1 is a G1 composition factor of L(A) ® L(v)F . But
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L(a) 0 L(v)', as a G1-module, is a direct sum of the irreducible G1-module
L(.)IG1. Hence L1 is isomorphic to L(A)IG1. Now by 3.1(13)(iii), the number
of isomorphism classes of irreducible G1-modules is the cardinality of X1 and
therefore we must have that {L(A)IG1 I A E X1} is a complete set of pairwise
inequivalent irreducible G1-modules, as required.

Now we obtain, as in [71; bottom of p. 107]:

(4) For A E X1 and V E mod(G), the natural map HomG1(L(A), V) 0
L(A) , V is a morphism of G-modules. In particular the L(.))-isotypic
component of the Gl-socle of V is a G-submodule.

(5) (Steinberg's tensor product theorem) For A E Xl and it E X+ we
have

L(. + lµ) = L(a) ®L(p)F

Proof (Compare with [71; (9.41)] or [23; 2.4(A)].) Let V be a non-zero
submodule of L(a) 0 L(p)F. Then we have the G-module isomorphism
HomG,(L(A), V) 0 L(a) -+ V. Moreover we have

HomG1 (L(a), V) < HomG1 (L(A), L(a) ® L(p)F) EndG1 (L(a)) ®L(p)F

L(P)F

by Schur's lemma and (3). Since L(p)F is irreducible, we get

HomG1(L(.\), V) = L(P)F

so that dim HomG, (L(a), V) = dim L(p)F and

dim V = dim L(a). dim L(p)F

and hence V = L(a) 0 L(p)F.

We record the following for future use.

(6) Let a,,3 E X1 and A, P E X. If Ext ,(L(a + la), L(/3 + lp)) # 0 then
either a = /3 or ExtG1 (L(a), L(/3)) # 0.

Proof For y E X1i r E X+ the G-module L(r)F ®L(7) has highest weight
y + lr and so has L(y) 0 L(r)' as a composition factor. By dimensions
we must have L(r)F ®L(y) = L(y) ® L(r)F. Thus we have ExtG(L(a +
la), L(,0+ lp)) - ExtG(L(A)F ® L(a), L(p)F 0 L(/3)), which is isomorphic to
H1(G, L(p)F ® L(/3) ® L(a)* 0 (L(\)F')*), by [71; (2.4.1) Lemma and (2.8.2)
Proposition (3)]. If this non-zero then, by the 5-term exact sequence (see [71;
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(2.11.2) Corollary] and the proof of [36; Proposition 3.10]), we must have
H1(G, H°(G1,

L(p)F,

0 L(,3) 0 L(a)* ® (L())F)*)) 0 0 or HI(GI, L(p)F
L(13) 0 L(a)* 0 (L(A)F)*)G # 0. Since L(A)F and L(,u )F are trivial, as
G1-modules, the first condition gives H°(G1, L(,0) 0 L(a)*) $ 0 and the
second gives H1(Gi, L(/3) ® L(a)*) $ 0. A further application of [71; (2.8.2)
Proposition,(3)] (and (3) above) gives a = /3 or ExtG11(L(a), L(,3)) # 0.

We now consider the effect of the Weyl group on the composition mul-
tiplicities [ti(A) : L1(µ)] (for A, P E X).

(7) For )A, v E X, P E Xi and w E W we have [O1(7) : L1(p + lv)] _
[Vi(w A - lw, 0) : L1(p + Iwv)].

Proof We have

ch 01(rr) = e(r - (1- 1)p)X((l - 1)p)

for any r E X so that

w(e(. - (1 - 1)p))X((l - 1)p)

= w(ch Di(A))

= w( E [71(A) : L1(µ + lv)]e(lu)ch Li(p))
zEXi,vEX

[[i(A) : L1(p+1v)]e(lwv)chLi(p)
IAEX1,vEX

and we also have

E LI(p+lwv)]e(lwv)chLi(p).
IAEX1,vEX

Comparing these two expressions gives the result.

We call o- = (0-1, ... , o,,) E X a Steinberg weight if a1 - 0-2, ... , Qn-1 -
vn = -1 modulo 1.

(8) For a Steinberg weight o- we have Di(cr) S-: Lj(o-) (as 61-modules) and
V1(a) = Li(o) (as Gi-modules).

Clearly the second assertion follows from the first, which we now prove. Since
Li(a) embeds in Vi(a) and Vi(o) has dimension 1N it suffices to prove
that L1(v) also has this dimension. We can write v = (I - 1)p + lv + rw
for suitable v E X and r E No where w = (1, 1, ... ,1). We have LI(a )
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Li((1-1)p)®L1(ly)®L1(w)®'', and both L, (1v) and L, (W) are 1-dimensional
so we may assume a = (1 - 1)p. By 3.1(21) the head of V1((1 - 1)p) is
L1(-(1 - 1)p - (l - 1)wo 0)* = L1(-(1 - 1)wop)*. Now (1 - 1)p E X1 so
that L1((1 - 1)p) = L((1 - 1)p)ld, and hence L1((1- 1)p) has lowest weight
(1- 1)wop and L1((1- 1)p)* has highest weight -(1- 1)wop. Hence we have
L1(-(1-1)wop)* = L1((1-1)p). Thus both the head and socle of 01((1-1)p)
are isomorphic to L1((1- 1)p). Since (1- 1)p occurs with multiplicity 1 as a
weight of V1((1- 1)p) we must have V1((1- 1)p) = L1((1-1)p), as required.

We continue with some further "classical" infinitesimal theory. The
head of a finite dimensional module Y will be denoted MY. We define
t+(A)(A) = IndBlka, for A E X. Arguing as in 3.1(13)(i), (20)(ii), (21) and
(22) we get the following.

(9) Let A E X. Then Di (A)jj, is the injective hull of kA in mod(B1). The
character of t+(A) is e(\ - (1- 1)p)x((1- 1)p) and t +(A)* = Di (-A + (1-
1)wo 0). We have socG101 (A) = L1(-A)* and hdG101 (A) = L1(A - (1-
1)wo 0).

For A E X we write Q1(A) for the injective envelope of L1(A) (as a
G1-module) and write Q1(A) for the injective envelope of L1(A) (as a G1-
module). Note that, for A E X, the simple module L1(A) embeds in the
induced module IndT'kA and hence the injective envelope Q1(A) of L1(A)
occurs as a summand of IndT'ka. This gives the first part of the following.
The second part holds since tensoring with a 1-dimensional module preserves
injectivity and indecomposability. The final part may be obtained by arguing
as in the proof of 3.1(18).

(10) Let A E X. Then
(i) Q1(A) is finite dimensional;
(ii) Q1(A) 0 k1u - Q1(A + 1p), for every p E X;
(iii) Q1(A)IG, Q1(A)

We shall write V E F(71) to indicate that V is a finite dimensional
G1-module which has a filtration 0 = Vo < V1 < < V,. = V such that,
for each 1 < i < r, we have V /V _ 1 is either 0 or isomorphic to V 1(A) for
some A E X. Note that if V E .x7(V1) as above then ch V = >%EJ e(Aj -
(1 - 1)p)x((l - 1)p), where I is the set of i E [1,r] such that Vi/V_1 # 0
and where V/14..4 = V(A), for i E I. It follows that, for each A E X, the
cardinality of {i E [1, r] I Vi/V_1 = V1(A)} is independent of the choice of
the 01-filtration. We denote this cardinality by (V : V1(A)).

For A E X we define 01(A) = t+ (-A)*. Then ch01(A) = ch V1(A) and
01(A) has simple G1-head L1(A).
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We obtain the following as in the "global" case.

(11) ( i ) F o r A,p E X we have Extk (O1(A), V1(p)) = 0 for A p.
(ii) For i E No, A, µ E X we have

i 1k, ifi=O,A=µ;Ext6,(DI(A), VI(µ)) = to, otherwise.

(iii) For V E mod(el) we have V E .S(DI) if and only ifExtk (DI(a), V)) _
0forallAEX.
(iv) For V E .F(DI) andµ EX wehave (V: Vi(µ))=dim Homd,(DI(p), V).
(v) For all A E X we have Q1(A) E .T(71) and (Q1(A) : Oi(µ)) = [ti(p)
L1(A)]

Proof We have

ExtGl(VI(A),DI(µ)) ExtBl(Vi(A),k1,)

by Shapiro's lemma (valid in this context since IndB' is exact). If this is
non-zero then, by the long exact sequence, we have ExtB1(kr, kA) # 0 for
some weight r of 71(A). Hence we have r > p, by [36; Lemma 2.8(ii)]. But
A is the unique highest weight of V1(A) so we get A > p, proving (i).

We have ExtGl(O1(A),V1(p)) = ExtBl(O1(A),kµ). This is 0 if i > 0
since 7i (A) is injective and hence projective as a B1-module. For i = 0 we
get HomE1(DI(A), k,,). Now A is the highest weight of AI (A) and occurs with

multiplicity 1 so we get dim HomE1(Ol (A), kA) = 1. Furthermore AI (A)1E1 is

an injective, hence projective, indecomposable E1-module (by (9)) and so has
a simple head. Thus the head of O,(A) is kA and we get HomEl (A1(A), k1) _
0forA#p.

One now obtains (iii) from the argument of [26; Corollary 1.3]. Part
(iv) follows directly from (ii).

Since Q1(A) is injective it satisfies the condition of (iii) and so has a
V1-filtration. Since V1(A) has socle L1(A) the first term in a V1-filtration of

QI(A) must be 01(A). Hence we have a short exact sequence 0 --> O1(A) ->
Q1(A) -> Y -} 0, where Y E .F(V1(A)) We now get by dimension shift-
ing that Ext',(Vi (v),0(A)) = 0 for all i > 0. The filtration multiplicity
(QI(A) : 7i(p)) is equal to dim which is the compo-

sition multiplicity [A1(µ) : L1(A)] = [O1(p) : L1(A)] (since A1(p) and' (p)
have the same character), proving the last part of (v).

Let v be a Steinberg weight. Then we have (Qi(o) : ti(p)) = [t1(µ)
LI(o)], which is 1 if o = p and 0 otherwise (since V1(o) = L1(v) is simple).
Thus we have Q1(Q) = V1(Q). This gives part (i) of the following.
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(12) Let o be a Steinberg weight.
(i) We have Q1(o) = 01(0) = L1(o), as G1-modules.
(ii) If o E X+ then V(o)16 L1(o).

For part (ii) we note that, by Weyl's dimensional formula (or the argument
after 3.1(4)) we have dim V(o) = IN. Since V(o) has highest weight o it has
L1(o) as a G1-composition factor and since dim L1(o) = dim V1(0) = IN
we must have V(o)Idl = Ll(o), as required.

Now fix a Steinberg weight o E X1 and let 7rv = {o + IA I A E X+}.
For any subset 7r of X+ and V E mod(G) we say that V belongs to 7r if all
composition factors of V belong to {L(A) I A E 7r}. We write mod(7r) for the
full subcategory of mod(G) whose objects are the G-modules belonging to 7r.
The arguments of for example [35; Section 4, Theorem], combined with (6)
above, give the following.

(13) Ira is a union of blocks of G and the functor g : mod(e) -* mod(Tro),
taking V -> L(o) 0VF, is an equivalence of categories and g(V(A)) = L(o)
V(A)F is isomorphic to V(o + IA), for A E X+.

We now consider the effect of the operation of the Weyl group on filtra-
tion multiplicities of the injective G1-modules.

(14) Let AEX1i p,vEX andwEW.
(i) (Q1(A + Iv) : Vi(p)) = (Q1(A+ lwv) : V1(w p - 1w 0)).
(ii) The module Q1(A) has unique smallest weight A - (I - 1)wo 0, and this
weight occurs with multiplicity 1.
(iii) ch(Q1(A) E (ZX)W.
(iv) Q1(A) has unique highest weight and this weight occurs
with multiplicity 1.
(v) (Q1(A) : Vi(w A - lw 0)) = 1 for all w E W and if (Q1(A) : V1(r)) # 0
forsome 7EX then we have
(vi) Q1(A) has a simple head L1(A).

Proof (i) This follows from (7) and (11)(iii).
(ii) For v E X we have

dim Q1(A)" = E (Q (A) (pt)) dim (y)'
IBEX

L1(A)] dim ti(p)"
pEX

_ E[O1(p) (A)] dim ti (,u)v.
µ>a
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Now (v) follows from the fact that ti(p) has unique lowest weight p - (I -
1)wo p, and this weight occurs with multiplicity 1, for p E X.
(iii) We have

chQi(A) J:(Q1(A) Di(p))chti(p)

_

pEX

(Q1(A) : Di(p))e(p - (I - 1)p)x((l - 1)p)

_

I+EX

(Q, (A) : O1(p + (I - l)p))e(p)X((l - 1)p)
µEX

Hence chQi(A) E (ZX)w provided that (Q1(A) :7i(p+(d-1)p) = (Q1(A)
(wp + (1- 1)p), for w E W, and this is true by (i).

Now part (iv) follows from (iii) and (11)(v) and part (v) follows from
(iv) and (11)(v).
(vi) The module Q1(A) is an injective indecomposable G1-module and hence
a projective indecomposable G1-module. Thus Q1(A) has a simple head as
a G1-module and therefore as a G1-module. It follows from (v) and (11)(i)
that there is an epimorphism Q1(A) -> V1(wo - (I - 1)wo 0). Hence the
head of Q1(A) is the head of 01(woA - (I - 1)wo 0), which by 3.1(22) is the
dual of L1(-woA), i.e. L1(A).

3.3 Tilting modules

In this section and the next we briefly describe the application of infinites-
imal methods to the calculation of tilting modules and work out explicitly
the tilting modules for quantum GL2. This calculation gives the decom-
position numbers for 2-rowed partitions for the Hecke algebra, as we shall
see in Section 4.4. We write .F(0) for the class of finite dimensional G-
modules which have a filtration with sections isomorphic to modules of the
form 0(A), A E X. We recall that S(n, r) is a quasihereditary algebra with
standard modules 0(A) and costandard modules V(A), for A E A+(n, r) (and
the dominance order on partitions), see [36; Section 4]. Thus we have, by
results of Ringel (see the Appendix, Section A4), for each A E X+, an in-
decomposable finite dimensional S(n, r)-module T(A) E Y(V) fl F(A) such
that (T(A) : V(A)) = 1 and, for p E A+(n, r), (T(A) : 0(p)) = 0 unless
p < A. Thus we have dim T(A)B` = 1 and, for p E A+(n, r), dim T(A)I` = 0
unless p < A. (See also [36; Section 4(6)] and compare with [33, Section 1].)
Furthermore, every module in .F(V) fl F(s) is isomorphic to a direct sum
of the modules T(A), A E X+. Modules in 1(V) fl .1(o) are here called the
tilting modules.

We note that, by [36; Section 4(3)(ii)], if T,T' E F(0) fl 1(v) then
T ® T' E .F(A) fl 1(V). Moreover we have ArE = V(lr) = z(1''), for
1 < r < n, so that ^rE E 1(A)fl.77(V). Hence we get Aa'E®...®AamE E



3.3 Tilting modules 71

. r(0)n.F(v). By examining the highest weight of a tensor product of exterior
powers of the natural module we get the following (as in the classical case
[33; Section 3]).

(1) The indecomposable tilting modules for S(n, r) are precisely the in-
decomposable summands of A" E, for a E A+(n, r). Furthermore, for
a E A+(n, r), the module T(a) occurs exactly once as a summand of A"E
and if T(A) is a summand of A"I E then A < a (for A E A+ (n, r)).

(Here a' denotes the transpose of the partition a.)

Remarks (i) From the classification of tilting modules discussed in the
first paragraph above it follows that tilting modules T, T' are isomorphic if
and only if they have the same character. If a, /3 E P(n) and /3 is obtained
by permuting the parts of a then we have chA"E = chA'°E and therefore
AaE and A E are isomorphic. Similar remarks apply to right M-modules
so that the classification of partial tilting modules by highest weight gives a
short, calculation-free proof of Lemma 1.3.3.

We also have the corresponding results for symmetric powers. Let 7r E
A+(n, r) and, for A E ir, let I,(A) denote the injective hull of L(A) as an
S(n, r)-module. It follows from the reciprocity principle, [36, Section 4(4)],
that the characters of the I,r(A), A E a, are linearly independent and that
injective finite dimensional S(n, r)-modules I and I' are isomorphic if and
only if ch I = ch I'. It follows that the symmetric powers S'E and SQE are
isomorphic if a is obtained by permuting the parts of /3 (for a, Q E A(n, r)).
Similar remarks apply to the symmetric powers of the natural right module
V.

(ii) Note that (1) describes the polynomial tilting modules. We say an arbi-
trary finite dimensional G-module T is a tilting module if T EP(A) fl.F(V).
Suppose T is an indecomposable tilting module. Then T ® L(sw) is polyno-
mial, for s >> 0. Hence we have T ® L(sw) = T(A) for A E A+(n, r) (and
some r > 0). Hence we have T = T(A) ® L(-sw) and therefore (1) describes
all indecomposable tilting modules for G.

We assume, in the next 2 statements, that q is a root of unity. One has
the following, by the arguments of [33; Section 2].

(2) For A E X+, the tilting module T(A) is projective as a Gl-module
(equivalently as a Gi-module) if and only if A - Ai+1 > 1 - 1, for i =
1, ,n-1.
For A = (A1, ... , an) E X we define f (A) = Al -An- We obtain the following
by the arguments of the proof of [33; (2.5) Theorem] (an observation of
Cornelius Pillen).
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(3) Let a-,µ E Xl and suppose that a- is a Steinberg weight.
(i) Let V = L(o) 0 L(µ) or T(u + p). Then HomG1(L(a + wop),V) _
HomG(L(o-+woµ), V) = k and moreover whenever HomG1(L(a), V) # 0, for
o- + woµ 0 A E Xl, we have f (A) > f (v + woµ)
(ii)T(a+p) occurs exactly once as a component ofL(o)®L(µ) and contains
a copy of L(o + wop) in its G-socle.
(iii) Q1 (a + wop) occurs exactly once as a Gl -component of T(a + p).

The next 2 statements are made in order to justify a q-analogue of [33; (2.1)
Proposition]. We start with some generalities. Let H be a quantum group
over k and Z E mod(es). We call Z absolutely indecomposable if the module
ZK, obtained by base change from Z, is an indecomposable GK-module
(where GK is the K-quantum group obtained by base change), for every field
extension K of k. For V, Z E mod(H) the natural map K ®k HomG(V, Z) ->
HomGK (VK, ZK) is an isomorphism (where K is an extension of k) and we
get the following result.

(4) A finite dimensional G-module Z is absolutely indecomposable if and
only if the nilpotent radical of EndG(Z) has codimension 1.

We assume again that q is a root of unity. The following is an analogue of
[25; Section 2, Lemma].

(5) Let V, Z E mod(G) and suppose that VIG, is absolutely indecompos-
able, that G1 acts trivially on Z and that Z is absolutely indecomposable as
a G-module. Then V 0 Z is an absolutely indecomposable G-module.

Proof Let Q, R E mod(H), for a quantum group H over k; then we re-
gard Homk (Q, R) as an H-module via the canonical isomorphism R ® Q* ->
Homk(Q, R) (as in [71; (2.4.2) Theorem]). Suppose also S E mod(H). The
natural map Q* ® Q -+ k is a G-module homomorphism. Thus we get a
G-module homomorphism S ® Q* 0 Q 0 R* - S 0 R* and so the linear
map Homk(Q, R) ® Homk(R, S) ---r Homk(Q, S), taking a ®/3 to /3 o a (for
a E Homk(Q, R), /3 E Homk(R, S)) is a G-module map. In particular, mul-
tiplication Endk(Q)°P 0 Endk(Q)°P -* Endk(Q)°P is a G-module map.

By (4) we can assume that k is algebraically closed. From the hy-
potheses, the natural map EndG,(V) 0 EndG(Z) -> EndG,(V 0 Z) is a G-
module isomorphism. Also, from the hypotheses, we have a k-algebra map
0 : EndG, (V)°P -> k with nilpotent kernel. Such a map must be given by
the formula q(cI + x) = c, for c E k and x nilpotent, where I : V -> V is the
identity map. Since x E EndG, (V) is nilpotent if and only if it is nilpotent
as an element of EndG, (V)°P, the linear map 0 is also an algebra map when
EndG, (V) is regarded as a k-algebra in the natural manner. Hence we get a k-
algebra map 4) = 0 (D id : EndG, (V ®Z) = EndG, (V) ® Endk (Z) -> Endk (Z)
with nilpotent kernel. By restriction we have a k-algebra map 41 : EndG(V ®
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Z) = EndG1(V 0 Z)G -p Endk(Z)G = EndG(Z). But Z is indecomposable
so that EndG(Z) is local and hence there is a k-algebra O : EndG(Z) -> k
with nilpotent kernel. The composite O o IF : EndG (V (9 Z) --* k has nilpotent
kernel. Hence EndG (V ®Z) is a local k-algebra and V ®Z is indecomposable.

Let A E X1 and suppose there exists a module Q(A) E mod(G) such that
Q(A) IG1 = Q1(A) and assume furthermore that Q(A) is a tilting module. The
top weight of Q1(A) (for A E X1) is woa - (1 - 1)wo 0 so we have:

(6) Q(A) = T(woA - (1- 1) wo 0), for A E Xi.

For A E X+ we write T(A) for the indecomposable tilting module and
V(A) for the induced G-module of highest weight A. Using (5), we obtain as
in [33; (2.1) Proposition]:

(7) Q(A) ®T(p)F - T(woA - (1- 1)wo 0 -I-1µ), for A E X1 and u E X+.

In particular, for a Steinberg weight v we have T(o-) = L(v) so we have:

(8) L(cr) ®T (p)' = T(o + l p), for all p E X+.

Now a G-module filtration 0 = To < Tl < ... < T,. = T(p) with T1/Ti-1
V(Ai), for 1 < i < r, gives rise to a filtration 0 = L(o) ®To < L(Q) ®Ti <

< L(o,) o TT' = L(v) 0 T(p)F. Hence, using 2.1(13) we get a q-analogue
of a result of Erdmann, [47; (2.2) Corollary].

(9) For a Steinberg weight o E X1 and A,µ E X+ we have

(T(v + IA) :17(p)) = 10,(T(A) : fi(r)), if p = v + Ir, for some r E X+;
otherwise.

In particular, defining t : X+ -, X+ by t(A) = (I - 1)6 + la, where 6 =
(n - 1, ... ,1, 0), we have (T(t(A)) : V (t(p)) = (T(A) : 0(µ)).

Here, for a finite dimensional 0-module V which has a filtration with sections
of the form 0(a), a E X+, (i.e. a good 0-module filtration) and r E X+,
we are using (V : 0(r)) to denote the number of occurrences of V(r) as a
section in such a filtration.

3.4 Tilting modules for quantum GL2

We are now in a position to calculate the characters of the tilting modules
for quantum GL2. The tilting modules were described in the classical case
for SL2 in [33]. If q is not a root of unity then all G-modules are completely
reducible and it follows that T(A) = V(A), for all A E X+. We assume
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therefore that q is a primitive lth root of unity, and 1 > 1. Let ir denote the
subset of X+ consisting of elements (a, b) with a, b > 0 and a - b < 2(1- 1).
Let mod(7r) denote the category of finite dimensional G-modules V such that
every composition factor of V comes from {L(A) I A E 7r}. Note that 7r is a
saturated subset of X+, i.e. it has the property that whenever p E 7r and A is a
dominant weight such that A < p then A E 7r. Hence mod(ir) is equivalent to
the category of finite dimensional modules for the generalized Schur algebra
S(ir) (see [36; Section 4]). We have L(A) = V(A) if Al - A2 < 1, e.g. by [75].
Hence we have L(A) = V(A) = 0(A), in that case, and so T(A) = V(A).
If Al - A2 = I + r with 0 < r < 1 - 2 then V(A) has composition factors
L(A) = L(A-lei) ®L(1,0)F and L(A-(r+1)(el-e2)). We denote by Ir(a)
the injective hull of L(A) in mod(ir), for A E ir. By reciprocity, [36; Section
4,(6)], we have (I,,(A) : V(p)) = [V(p) : L(A)], for A,p E 7r. Specifically,
we have 1,r(A) = V(A) if Al - A2 > 1 - 1. For Al - A2 = I + r we put
p = A - (r + 1)(ci - e2). Then we have (I,r(p) : 0(r)) = 1 if r = A or
p and is 0 otherwise (for r E 7r) Thus the block of A in mod(7r) is {A} if
A1-A2=(1-1), and if A,-A2=1+rwith 0<r<1-2 then the block
containing A is {A, A - (r + 1)(cl - e2)}. Each block of mod(r) (or S(7r)) is
of one of the kinds just specified.

An explicit description of the blocks of the q-Schur algebra S(n, r), for
arbitrary n, r, q, has been given by Cox, [15; Chapter 4].

Now suppose A = (A1, A2) E 7r and that Al - A2 = I + r, for some
0 < r < I - 2. We have the Steinberg weight o = (I - 1 + A2, A2) and
A = o + p, where p = (A1 - A2 - 1 + 1, 0). We have the Clebsch-Gordan
expansion x(v)x(p) = E$+o X(A - i(e1 - e2)). We write T'(A) for the block
component of 0(o)®0(µ) which has highest weight A. Then T'(A) is a tilting
module and has character X(A) + X(A - (r + 1)(el - e2)). The dimension
ofT'(A) is A1-A2+1+A1-A2-2(r+1)+1 = 21. Now T(A) is a
direct summand of T'(A) and hence we get dim T(A) < 21. Furthermore,
by 3.3(3)(iii), dim Q1(1 - 1 + A2, Al - 1 + 1) < 21 and therefore we have
dim Q, (v) < 21 for any non-Steinberg weight v E Xl. Now, as left G1-
modules, we have k[G1] = $pEX, Q1(v)(dv), where d is the dimension of
L(v) (for v E X1). Hence we have 14 = dim k[G1] _ d dim Q1(v).
Forv=(vl,v2)EXi we have L(v)<dim V(v)=v1-v2+1. If
v1- v2 = 1-1 then v is a Steinberg weight and so dim Q(v) = dim V(v) = 1.
Now we have Xl = {(a + b, b) 10 < a, b < 1} giving

14 < (v1 - v2 + 1)21 +
12

vEXl,v1-v2#1-1 vEX1,vi-v2=1-1
1-2 1-1 1-1

=1: 1: 2(a+1)1+1: 12=l(1-1)12+13=14.
a=O b=0 a=O

It follows that we must have dim Q1(v) = 21 for all non-Steinberg weights
in X1. Further we deduce that T'(A) = T(A) and (from 3.3(3)(iii)) deduce
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that T(A) jd1 Q1(1 - 1 + .\2, Al - 1 + 1). For v = (VI, v2) E X+ with
vi - v2 < 1 we write Q(v) for T(i%), where i = (1 - 1 + v2i v1 - l + 1). By
the above discussion we have Q(v)l j, t--- Q1(v) if v E ir. We write w for
the non-identity element of W. By tensoring with a suitable power of the
(1-dimensional) determinant representation L(1,1), it follows that for any
A = (A1,.\2) E X with 0 < A1- \2 < 1, writing Q(A) for T(wa - (I -1)w 0),
we have:

(1) Q(.)16, - Q1(\) and ch Q(A) = s(wA - (1- 1)wp)X((1- 1)p)

Here, for v E X, we are writing s(v) for the orbit sum, i.e. s(v) = e(v) if
v = wv and s(v) = e(v) + e(wv) if wv # v.

For 0 = Eu aue(p) E ZX, we put OF = µ aµe(lp) E ZX. Thus for
V E mod(G) we have chVF = (chV)F. We denote by F the (ordinary)
Frobenius morphism on G-modules and similarly define F on ZX.

We denote by p the characteristic of k. We shall give the character of
the tilting module T(.) in terms of the (1, p) expansion of a non-negative
integer associated with A E X+. Let a be a non-negative integer. Then
a has a unique expression in the form a = a_1 + lao, with 0 < a_1 < 1.
If p = 0 we call this expression the (1, p)-expansion of a. If p > 0 then a
has a unique expression of the form a_1 + 1 E°_o piai, with 0 < a_1 < I
and 0 < ao, al, ... < p, and we call this expression the (1,p)-expansion of a.
Assume first that p > 0. For p = (p1,,42) E X+ with P1 - p2 < p we write
Q(p) for the tilting module for G of highest weight wp - (p - 1)w 0. By
[33; Section 2, Example 1], we have that Q(p) ®T(v)F is an indecomposable
tilting module, for any v E X+. (Actually in [33], this remark is made for
the group SL2 but the same argument applies to GL2.) Hence, inductively
for A(-1), a(0), ... , )t(m - 1), p E X+ with .\(-1)1 - A(-1)2 < 1, )x(0)1 -
A(0)2 i ... , A(m - 1)1 - A(m - 1)2, pl - p2 < p, we get that Q(.(-1)) 0
(Q(A(0)) ®. . ®Q(A(m - 1))Fm-' ®0(p)Fm)F is an indecomposable tilting
module. This has highest weight

rra-1

wA(-1) - (1- 1)w 0+1 E (p(wA(i) - (p - 1)w 0) + p'"p)
i-0

so we get

M-1
T(wA(-1) - (1- 1)w 0 + 1 (pz(wa(i) - (p - 1)w 0) + p"',))

ic0

= Q(X(-1)) ® (Q()(0)) ® ... ® Q(A(m - 1)P--') (D 0(p)Fm)F

Replacing A(-1) by (1 - 1)p + w.(-1) and A(i) by (p - 1)p + w.(i), for
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0 < i < m - 1, we get

m-1

T(A(-1) + (1- 1)p + 1 E (p'(t (i) + (p - 1)p) + pmp))
i=0

= Q((1- 1)p + wA(-1)) ® (Q((p - 1)p + wa(0))

® ... ®Q((p - 1)p + w\(m - 1))F"'-' ®v(p)Fm )F.

Now for v E X+ with v1 - v2 < p, the character of Q((1- 1)p+ wv) is X((I -
1)p)s(v) and for v E X1 the character of Q((p- 1)p+wv) is x((p- 'Ws(v)
(by the argument of (1) or the GL2 version of [33; Section 2, Example 1]).
Thus we get

m-1
ch T(.(-1) + (1- 1)p + I E (p'(.(i) - (p - 1)p) + pmp))

=0
m-1

= X((1- 1)p)s(A(-1))(x(p)Fm jI x((p- 1)p)F`s(\(i))F)F
i=o

m-1
= x((1-1)p)s(A(-1))(X((pm - 1)p)x(p)Fm 11 S(A(i))F')F

4=0

m-1

= x((lpm - 1)p + lpmp)s(A(-l))( jI s()(i))F' )F

1=0

using the fact that x((1-1)p)x(p)F = x((I-1)p+lµ) and x((p-1)p)x(p)F =
x((p-1)p+pp), for p E X+, by e.g. [58; equation (7')] (or direct calculation).

Setting A = A(-1) + I Em- 1 p.(i) we get

m-1
chT(.X+(Ipm_1)p+Ipmp) = X((1pm_1)p+Ipmp)s(A(-1))(rl s(;(i))Fi)F.

g=o

To recapitulate, we have the following.

(2) Suppose that A(-1),.\(0), ... , A(m-1), p E Xt with A(-1)1-.\(-1)2 <
1, with a(i)l - A(i)2 < p for 0 < i < m, and with pl - p2 < p. Then we have

m-1
chT(A+(lpm_l)p+lpmp)

= X((1pm_1)p+lpmp)s(X(-1))(jI s(\(i))F')F.
1=0

Let a be a non-negative integer with (1, p) expansion

m-1

a=a-1 +EIp'ai.
i=0
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For a subset J of [-1, m - 1] we define aJ to be the sum of the terms indexed
by J, i.e. we define aJ to be a_1 + E-1?EiEJ lpiai if -1 E J, and to be
>iE J lpai if -10 J. Now let A = (A,, A2), suppose that Al - A2 > 1- 1 and
let m be the non-negative integer such that lp' - 1 < Al - A2 < lpm+l - 1.
We write a1 - A2 in the form (Ipt - 1) + a + lpmb for (uniquely determined)
integers a, b with 0 < a < lpt - 1, 0 < b < p. Let D = L(1,1) be the
determinant module. Then we have

T(A) = T(A1, A2) - DO 2 ® T((A1 - A2)el)
D®a2 ® T((lpm - 1)e1 + ae1 + Ipmbel)
D®(a2-(IP_-1)) ® T((lpm - 1)p + ae1 + lpmbel)

and hence, from (2), we have

chT(A) =EX((A2 -(lpm - 1))w)X((lpm -1)p+ae1-aj(el-e2)+lp"'bel)
JC[-1,m-1]

_ T, X(A2w)X((lpm - 1)e1 + ae1 - aj(ei - e2) + lpmbei)
JC[-1,m-1]

E x(A - aJ(el - e2))
JC[-1,m-1]

Thus we have proved the following.

(3) Let A = (Al, A2) E X+. If Al - A2 < 1 - 1 then T(A) = V(A). If
Ai_A2>1-1andAi_A2=lp'-1+a+lprb,witha<lpr-land
0<b<p, then forpEX+ we have

(T(A):0(p))_ f 1, ifp=A-aj(e1-e2)forsomeJC[-1,m-1];
0, otherwise.

Now suppose that p = 0. A much shortened version of the above discussion
gives the following.

(4) Let A = (A,, A2) E X. If Al - A2 < 1 - 1 then T(A) _ V(A). If
Al-A2> 1-1 and Al-A2=1-1+a+1b, with 0<a<then for
p E X+ we have

(T(A) : 0(µ)) = S
1, if p = A or A - a(e1 - e2);
0, otherwise.



4. Further Topics
This chapter is concerned with diverse topics in the representation theory of
q-Schur algebra and connections with the Hecke algebra. We shall not give a
general introduction to the chapter but rather treat each section separately.

4.1 The Ringel dual of the Schur algebra

In [33] we determined the Morita type of the "Ringel dual" of the ordinary
Schur algebra S(n, r). The result was obtained with the aid of the Schur
functor from S(n, r)-modules to Sym(r)-modules. Another treatment, valid
in somewhat more generality, was given in [35; Section 5(2)], by making
the exterior algebra on the space of n x n-matrices into an (S(n, r), S(n, r))-
bimodule. This is the approach we take here. So the main point is to produce
an appropriate q-exterior algebra which is an (S(n, r), S(n, r))-bimodule.
This we do by brute calculation.

Note that B = V ® E is naturally an (M, M)-bimodule with left M-
module structure map structure map A : B - B ® A and right M-module
structure map p : B -> A ® B given on bi, = vi 0 e, by

n

A(bis) = E bat ® cts
t_i

and
n

p(bi3)=Eciy®bjs

for 1 < i, s < n. We have an induced (M, M)-bimodule structure on the
tensor algebra T(B) = ®r_u B®'. Let J = J(n) be the ideal of T(B)
generated by the elements

TI b? for all l _< i, s < n;
TII bi,bjt + bjtbi, for all 1 < i < j < n, 1 < s < t < n;
Till bi, bit + gbitbi, for all 1 < i < n, 1 < s < t < n;
TIV bj,bit+gbitbj,+(q-1)bjtbi, for all 1 < i < j < n, 1 < s < t < n.

Note that J is generated by all elements of the form TI-TIII together with
those of the form

TIV bibjt + gbjtbi, + bj,bit + gbitbj 1 < i < j < n, 1 < s < t < n.

Lemma 4.1.1 J is a subbimodule of T(B).

Proof We need to check that J is both a left and right submodule. This
may done in eight stages by checking that the generators of type TI-TIV
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map into J ® A under A and into A ® J under p. We label the calculation
showing that generators of type TI-TIV map into J ®A under A by RI-RIV,
and the calculation showing that generators of type TI-TIV map into A 0 J
under p by LI-LIV. In RI-RIV the symbol - denotes congruence modulo
J ® A and in LI-LIV denotes congruence modulo A 0 J.

LI For I <i,s<n wehave

A(bis) = bikbil ® CksCls
k,l

bikbil 0 CksCls + bilbik 0 C1sCks
k<1 k<1

_ (bikbil + Qbilbik) ® CksCls
k<1

0

using All from Section 1.2 and the fact that elements of types TI,TIII belong
to J.

RI For l < i, s < n we have

p(b s) _ CikCil ®bksbls
k,l

1: CikCil ® bklbis + CilCik ® blsbks
k<1 k<1

1: CikCil 0 (bklbls + blsbks)_
k<1

0

using AI and the fact that elements of types TI,TII belong to J.

LII Let1<i<j<nand1<s<t<n. Wehave

A(bisbjt + bjtbis) _ bikbil 0 CksClt + 1 bikbil ® CktCls
k,l k,l

_ bikbil ® Cksclt + bikbik 0 CksCkt
k<1 k

+ bilbik 0 ClsCkt + bikbil ® CktCls
k<1 k<1

+ T, bjkbik 0 CktCks + bilbik 0 C1tCks
k k<1



80 4. Further Topics

Moreover we have bikbjk 0 cksCkt + bjkbik 0 cktcks E A 0 J, by AI and TII.
Thus we have

)(bisbjt + bjtbis) bikbjl ® CksClt + bilbjk ® ClsCkt
k<l k<1

+ bjkbil ® CktCls + bjlbik 0 CitCks
k<l k<l

If s = t this is

>(bikbjl + gbilbjk + bjkbil + gbjlbil) 0CksC1s
k<l

by All, and this belongs to J ® A, since elements of type TIV belong to J.
Now suppose s < t. We get

)(bisbjt + bjtbis) = bikbjl ® CksClt + q bilbjk 0 CktCls
k<1 k<l

+ E bjkbil ® CktCls + E bjlbik 0 CksCit
k<l k<1

+ (q - 1) bjlbik ® CktCls
k<1

by All and AIII. In this the "coefficient" of CksClt is bikbjl + bjlbik, which is
an element of type TII and so belongs to J, and the "coefficient" of CktCls is
gbilbjk+bjkbil+(q-1)bjlbik, which is an element of type TIV and so belongs
to J. Hence we have )t(bisbjt + bjtbis) E J 0 A, as required.

RII Let 1<i<j <nand 1<s<t<n. Wehave

p(bisbjt + bjtbis) _ E CikCjl 0 bksblt + CjkCil ® bktbls
k,i k,l

_ E CikCjl ® bksblt + E CikCjk ® bksbkt
k<l k

+ j CilCjk ® blsbkt + Cjkcil ® bktbls
k<1 k<l

+ CjkCik ® bktbks + T, Cj1Cik 0 bitbks
k k<1

_ E CikCjl 0 bksblt + T, CikCjk 0 bksbkt
k<1 k

+ CilCjk ® blsbkt + q CilCjk ® bktbls
k<1 k<1

+ q CikCjk 0 bktbks
k

+ E CikCjl 0 bitbks + (q - 1) E CilCjk 0 bltbks
k<l k<1
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using All and AIII. However, we have cikcji ® bk,bit +cikCJi ®bitbk, E A® J
by TII and CikCjk ® bk,bkt + gcikclk ® bktbks E A® J by TIII. Hence we have

p(basbjt + bjtbis) = E cart?k ® (bl,bkt + gbktbis + (q - 1)brtbks)
k<1

which belongs to A ® J by TIV.
By similar, but somewhat more complicated calculations, which we leave

to the reader, one obtains:

LIII For 1<i<nand 1<s<t<nwe have .(bi,bit+gbitbas)EJ®A.
RIII For 1 < i < n and 1 < s < t < n we have p(basbit+gbitbi,) E A® J.

LIV For1<i<j<nand1<s<t<nwehave)t(bisbjt+gbitb?s+
(q - 1)bjtbis) E J 0 A.

RIV For1<i<j<nand1<s<1<nwehave p(bi,bjt+gbitbj,+
(q - 1)b,tbi,) E J ®A.

We have shown that elements of the form TI-TIV span an (M, M) sub-
bimodule of (V (9 E)02. However, p : T(B) -} A 0 T(B) and A : T(B) ->
T(B) 0 A are algebra maps sothat p(J) < A ® J and A(J) < J ® A, as
required.

We write A(V (0 E) for T(V 0 E)/J. We write x A y for the product xy
in A(V ®E) (for x, y E A(V ® E)). Notice that J is a homogeneous ideal
for the natural grading of T(V ® E). Thus A(V (D E) inherits a grading.
We write A"(V (D E) for the rth component of A(V (D E), r > 0. We order
the basis vi ® e, for V ® E by vi ® e, < vj ® et if i < j or i = j and
s < t. Let {vi ®e, 1 < i < n, 1 < s < n} = {ml, m2, ... , mlz }, with
m1 < m2 < < We leave it to the reader to check the following.

Lemma 4.1.2 Let r be a positive integer. The set {mh1 A A mh, I 1 _<

Let a = (al, a2i ...) E P(n, r) (see Section 1.2). We define a map
E®r -; Ar(E ® V) to be the k-map taking ei to (vi ®eil) A A (vl

eio.,) A (v2 ® A ... A (v2 (D eaca,+.,)) A . It is easy to check that
q5a is a morphism of left M-modules. Furthermore, it follows from TI that
0a(ei)=0if we have ia=is+ifor some 1<a<a,or <a<
al +. +a,,+am+l with m > 1. It follows from TIII that ga(ei+gei,a) = 0
if is < is+l, for some 1 < a < al or al+ +am < a < al +. +am+a,,,+1
with m > 1. Hence 0a induces an M-module homomorphism a : AaE ->
Ar(V (D E), satisfying a(ei) = ¢a(ei), for all i E I(n, r). It follows from
Lemma 4.1.1 that 4a is injective and that Ar(V ® E) = ®QEP(n r) Im(Qia).

In particular we get part (i) of the following. The second part is obtained by
the mirror argument.
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Lemma 4.1.3 (1) Ar(E ® V) - ®«E p(n r) AaE, as left M modules.
(ii) nr(E 0 V) = ®aE p(u r) A'V, as right M -modules.

Suppose now that r < n. By 3.3(1), the left module T = nr(V ®E) is a
full tilting module for S(n, r). We write S(n, r)' for Ends(m,r)(T), the Ringel
dual of S(n, r). It follows, e.g. from 2.1(13), that the dimension of S(n, r)'
is independent of q and the characteristic of k (cf. the proof of [35; Section
5(2)]). Hence, by [33; (3.7) Proposition], we have dim S(n, r)' = dim S(n, r).
Now T is a polynomial right M-module of degree r, and hence a right S(n, r)-
module. We thus get a homomorphism q : S(n, r)°P --> S(n, r)', given by
rl(s)(x) = xs, for x E T, s E S(n, r). It follows from the fact that the
coefficient space of V®r is A(n, r) that V®r is a faithful right S(n, r)-module.
Moreover V or is a right M-module summand of Ar (V (D E), by Lemma 4.1.3,
so that Ar(V (D E) is faithful and n : S(n, r)°P -> S(n, r)' is injective. Now
by dimensions we have:

(1) r/ : S(n, r)°P -> S(n, r)' is an isomorphism.

We have the involutory antiautomorphism J of the Hecke algebra H(r)
defined on the generators by J(T3) = T3, for a simple basic reflection s.
For i = (il, ... , ir) E I(n, r) we define d(i) to be the number of the set
of pairs (a, b) of elements of [1, r] such that a < b and is < ib. We de-
fine a bilinear form (, ) on E®r by (ei, ej) = bij qd(i), for i, j E I(n, r).
Note that (, ) is symmetric and non-degenerate (since q $ 0) so we have
an involutory antiautomorphism J' : Endk(E®r) -> Endk(E®r), given by
(eei, ej) _ (ei, for E Endk(E®) and i, j E I(n, r). Now the natu-
ral representation S(n, r) -> Endk(E®r) is faithful and the image is exactly
the centralizer of the action p : H(r) , Endk(E®r), given in [18; Section
3.1]. Moreover, it is easy to check that (p(TS)ei, ej) = (ei, p(T8)ej), for sim-
ple reflections s and all i, j E I(n, r). It follows that if E EndH(E®r)
then J'(£) E EndH(E®r). Thus we obtain, by restriction, an involutory
antiautomorphism of S(n, r), also denoted P.

We claim that, for r < n, we have for all E H(r) <
S(n, r). It suffices to prove this for = T8 , 1 < a < r. We put T = T3 . We
must show that (Tei,ej) = (ei,Tej) for all i, j E I(n,r). We have

(Tei, ej) = E T(chi)(eh, ej) = gd(i)T(cji)
hEI(n,r)

and similarly
(ei,Tej) = gd(i)T(cij)

Furthermore, for x, y E I(ni r), we have T(cxy) = Su,usa (cxy) = 0 unless both
x and y have content w. Thus it suffices to show that qd(u°)T(cuo,us) _

i.e.

gl('r)T(euo,u,r) = ql(")T(cu7r,uo) (*)
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for all 7r, a E Sym(r).
We have

vuaT = vuTgTsa
_ vuTosa, if 1(0-sa) > l(a);

gvuTasa + (q - 1)vuTa, if 1(asa) < l(a).

Equating coefficients of vu,r we get

T(euo,u7r) =
Su,uasa(eu,u,r), if l(asa) > 1(a);

(q - 1)l;u,ua(cu u,,), if l(ass) <

i.e.

T(cua,ur) = bos. ,zr, if 1(0-s") > l(a);
gSosa ,r + (q - 1)bv,,r, if I(asa) < l(o').

Hence we also have

b,rsa,a, if 1(irsa) > l(i);
T(cun,uo) = gb,sa,a + (q - 1)67r,a, if l(7rsa) < l(7r).

Thus both sides of (*) are 0 unless asa = it or o- = ir, and both sides are
equal in the case a = ir. If asa = it and 1(a) < l(r) then both sides of (*)
are ql( ). If asa = 7r and l(a) < l(r) then both sides of (*) are q'(0 . This
completes the proof of the claim. By abuse of notation we now write J for
J'.

For 1; E S(n, r) and i, j E I(n, r) from (f ei, ej) = (ei, J(.)ej) we obtain
In particular, for h E I(n,r) we have 0

for i 54 j and cii(l;hh) = bhi. It follows that J(l;a) = l;«, for all a E A(n, r).

Remarks (i) Given a finite dimensional left H(r)-module U we write U°
for the dual space Homk(U, k) regarded as an H(r)-module via the action
(h8)(u) = O(J(h)u), for h E H(r), 8 E Homk(U, k) and u E U.
(ii) Given a finite dimensional left S(n, r)-module U we write U° for the
dual space Homk(U, k) regarded as an S(n, r)-module via the action (h8)(u) =
8(J(h)u), for h E S(n,r), 8 E Homk(U, k) and u E U. We call U° the
contravariant dual (see [51; Section 2.7] for the classical case). Since J(l;«) =
l;a, for a E A(n, r), the character of U° is equal to the character of U. Hence
we have L(A)' = L(a), for all A E A+(n, r). Moreover, since J : H(r) -+
H(r) is the restriction of J : S(n, r) -> S(n, r), we have (f U)° f U°, for
U E mod(S(n, r)). Since J is an involution on S(n, r) the natural linear
map U -> (U°)° is an S(n, r)-module isomorphism. Note also that the
natural isomorphism : E®' , (E®'')°, given by b(ei)(ej) = (ei, ej), for
i, j E I(n, r), is an S(n, r)-module isomorphism.

Combining the antiautomorphism J with rl we get, from (1), the follow-
ing.
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Proposition 4.1.4 We have a k-algebra isomorphism 9 : S(n, r)
S(n, r)' given by 9(C)(x) = xJ(C), for C E S(n, r), x E E®*.

We have the functor F : mod S(n, r) -+ mod S(n, r)', satisfying
F(V) = Homs( r) (T, V), for V E mod S(n, r). We thus have the functor
F : mod S(n, r) --> mod S(n, r) satisfying F(V) _ (FV )B (for V E mod S(n, r)),
the S(n, r)-module obtained from FV by composing the action S(n, r)' -+
Endk(FV) with 9 : S(n, r) -+ S(n, r)'. For a E A(n, r) we put Ca = B(ra).
An easy check reveals that « is the identity map on Im(ga) A 'E and is 0
on Im(Op) = ARE, for ,Q # a. Now the arguments of the proof of [33; (3.8)
Corollary and (3.9) Corollary] give the following.

Proposition 4.1.5 Assume r < n.
(1) We have F(V(A)) = 0(A'), for A E A+ (n, r).
(ii) For A, P E A+(n, r) we have (T(A) : V (p)) _ [O(p') : L(A')].
(iii) Ext'(V(A), O(p)) - Ext'(A(A'), A(µ')), for all A, p E A+(n, r) and
i>0.

Finally we record the following results for use later.

Proposition 4.1.6 For A E A+(n, r) we have 0(A)° = V(A) and O(A)°
A(A).

Proof Since 0(A) has head L(A) the contravariant dual A(A)' has simple
socle L(A) and the same character as V(A), and hence A(A)° - V(A) (cf. the
argument of [36; Section 4(1)]).

Proposition 4.1.7 For a E A(n, r) we have (A E)° - ^a E.

Proof From Proposition 4.1.6 we get that a E A(n, r) and (A' E)' - AaE
are tilting modules with the same character and are hence isomorphic.

One can also construct a more elementary proof by showing that the
image of the natural embedding AaE -+ E®' is orthogonal to the kernel
of the natural map E®r -+ AaE and hence the form on E®* induces a
non-singular bilinear form (, )a : AaE x AaE -+ k such that (fix, y)a =
(x, J(C)y)a, for all x, y E AaE and C E S(n, r).

4.2 Truncation to Levi subgroups

We now consider the effect of truncation to Levi subgroups on modules and
decomposition numbers. Let a = (al, ....a,,,) be a composition of n. We
associate to a a subset Ea of the set H = {al,... , of simple roots. We
define Ea to be the set {al, ... , aal_1, aa,+l, ... , aa,+a2-1, aa,+a2+1, ...}.
The assignment a f-+ Ea defines a bijection between the set of composi-
tions of n and the set of subsets of H. We now fix a subset E of H with
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corresponding composition a = (al, ... , a,,,). We write PE, Gr and BE for
the subgroups of G denoted P(a), G(a) and B(a) in [36; Section 2]. We
shall study truncation mod(G) -* mod(GE). We write X+ for the set de-
noted X+(a), in [36; Section 2], we write LE(A) for the GE-module de-
noted La(A) in [36; Section 2], and write VE(A) for the induced module
IndB£ka, for A E X. We shall now describe the character of VE(A). For
a = ca - Ea+1 E II we write sa for the transposition (a, a + 1) and WE for
the subgroup of W = Sym(n) generated by s,,,, a E E. For A E X we write
AE(A) for EwEWE sgn(w)ewA. Then AE(A) is divisible by AE(p) in ZX and
we write XE(A) for the quotient AE(A + p)/AE(p). For E = II and A E X+
we have XE(A) = X(A) and by [36; Theorem 3.6] we have ch V(A) = x(A)
(Weyl's character formula). For A(1) E X+(al), A(2) E X+(a2), ..., and
A = (A(1), A(2), ...) (the concatenation) we have A E XE . Moreover, via the
natural isomorphism G(a) -> G(al) x G(a2) x ... the module IndG'kA iden-
tifies with From this (or arguing directly
from [36; Theorem 3.4] (Kempf's vanishing theorem) as in the classical case
[29; Section 2.2]) one obtains:

(1) For any AEXE wehavechVE(A)=XE(A).

For A, ,u E X we write A >E p to mean that A - p has an expression
«EE r«a with r« > 0, for all a E E. We write A >E p to indicate that

A >E p and A # p. It follows from (1) that A >E p for every weight p
of VE(A) different from A, and since LE(A) embeds in VE(A) we also have
A >E p for every weight p of LE(A) different from A.

(2) Let A, p E XE.
(i) If Ext1 (LE(A), VE(p)) # 0 then A > p.
(ii) If ExtG£(LE(A), LE(p)) $ 0 then A -p E ZE.

Proof (i) We have R' IndB£ kµ = 0 for all i > 0, by [36; Theorem 3.4]. It
follows from [36; Proposition 1.1] that ExtB(LE(A), 0. Thus we get
v > p for some weight v of LE(A), by [36; Lemma 2.8(ii)], and since A > v
we have A > p.
(ii) We have a short exact sequence of GE-modules

0-'LE(p)-pVE(p)-rQ->0.

Applying HomGE(LE(A),-) we obtain that either HomGE(LE(A),Q) 0 0 or
0. In the first case we have that A is a weight of

VE(p) and hence A-p E ZE. So we suppose ExtG,(LE(A), VE(p)) # 0. We
have 0 for all i > 0, by [36; Theorem 3.4 and Lemma 2.12].
It follows from [36; Proposition 1.1] that ExtB£(LE(A), kj,) 0 0. Thus we
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get v >E µ, in particular v - µ E ZE, for some weight v of LE(A), by [36;
Lemma 2.8(ii)], and since A - v E ZE we have A - µ E ZE.

We now define submodules of GE-modules and filtrations of PE-modules
as in [29; Section 3.3]. We define an R-linear map f : R ®Z X --> R by setting
f (a) = 0 for a E E and f(a)=1foraElI\E. Let r E R. For a T-module
V we define F(0V to be the sum of the weight spaces V" with f (µ) = r. We
define FV to be the sum of all weight spaces V ' with f (µ) < f (A).

(3) (i) If V is a GE-module then F(r)V is a GE-module summand.
(ii) If V is a PE-module then F?'V is a PE-submodule.

Proof In both (i) and (ii) we may assume that V is finite dimensional. For
A E XE the GE-module LE(A) embeds in VE(A). It follows from (1) that f
is constant on the weights of °E(A) and hence on the weights of LE(A). In
proving (i) we may assume that V is indecomposable. But then (2)(ii) gives
that f is constant on the weights which occur as composition factors of V
and hence, by the above remarks, constant on all weights of V. Thus F(r)V
is either 0 or V and so certainly a module summand.

We now turn to (ii). If V is simple we have V = LE(A) for some
AEXE. Then we haveF'V=V if f(A)<randF''V=Oif f(A) >0. Now
assume that V is not simple and the result holds for all modules of smaller
dimension. Clearly we may (and do) assume that V is indecomposable. Let
S be a simple submodule of V. We have F'(V/S) = U/S for some submodule
U of V and we get F''V = F'U. Thus we are done unless F''(V/S) = V/S.
Thus we may assume that f (A) < r for every composition factor LE(A) of
V/S. By indecomposability we thus have LE(p)) # 0, for some
A E XE with f (A) < r, where S = LE(p). We have a short exact sequence
0 -} LE(µ) -> °E(µ) -> Q -> 0. Applying HompL(LE(A), -) we deduce that
either LE(A) is a composition factor of °E(µ) or that ExtPr.(LE(A), °E(µ)) #
0. The first possibility gives A - p E ZE and hence f (A) = f (p). The second
possibility gives A > p and hence f (A) > f (µ). Hence we get S < F"V and
so f(v) < r for every weight v of V, and therefore F''V = V.

Fix an element A E X+- It follows from (2)(ii) that if V is a finite
dimensional indecomposable GE-module which has A as a weight then for
each weight p of V we have A-p E ZE. It follows that if V is any rational GE-
module then ®µEX,A-PEZE V" is a GE-submodule. We thus obtain an exact
functor TrA : Mod(G) -> Mod(GE) such that TrAV = ®µEx,a_AEZE Vµ, for
V E Mod(G). We call TrA the (A, E)-truncation functor.

(4) For y E X+ we have:
if

o)
A - µ E ZE;

o, otherwise
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and
i TrA L _ LE(p), if A- p E ZE;

(µ) 0, otherwise.

Proof (i) By the argument of [27; p. 230] we have that the character of
F0(µ) is ch XE(µ) if A-µ E ZE and is 0 otherwise. Thus we get FrAV(µ) = 0
if A -p V ZE. Suppose that A - µ E ZE. Then by [36; Section 4, (3)(ii)],
V(p) has a GE-module section isomorphic to 0E(µ). It follows that VE(p) is
a section of F 0(µ) and since ch F 0(µ) = XE(µ) we get FFV(p) ^_' 0E(µ).
(ii) We have an embedding L(p) -> 17(p). Hence TrAL(p) embeds in TrAEV(µ)
and so Tr L(p) = 0 if A-p ¢ ZE. Now suppose A-p E ZE. Then TrA = Tr'
so may assume A = p. Since VE(A) = TrA has a simple GE-socle LE(A) so
has FFL(p). Let r = f(A). Since A is the unique highest weight of L(A)
we have F'L(A) = TrAL(A) and L(A) = ®$<r F( )L(A). Thus we have
L(A) = U ® Tr L(A), where U = 1:,<, FSL(A). Since TrAL(A) has a simple
GE-socle LE(A) we have that L(A)/U has a simple PE-socle LE(A). Sup-
pose that LE(v) occurs in the PE-module head of L(A)/U. Then we have
Hompr (L(A), LE(v)) # 0 and hence Homp£(L(A), VE(v)) # 0. Thus, by
Frobenius reciprocity and transitivity of induction, we have

HomG(L(A),IndG HomG(L(A),IndGB Pr
= 0.

Thus IndGk # 0, giving v E X+, and HomG(L(A), V(v)) 54 0, giving A = v.
Thus L(A)/U has a simple socle isomorphic to LE(A) and moreover LE(A)
also occurs in the head of L(A)/U. Since A occurs with multiplicity 1 as a
weight of L(A) we must have L(A)/U =' LE(A). Hence we have TrAL(A) _
LE(A).

We write [VE(A) : VE(p)] for the multiplicity of LE(p) as a GE-module
composition factor of VE(A). Applying TrA to a composition series of V(A)
we deduce the following analogue of [27; Section 2, Theorem].

(5) We have [V(A) : L(µ)] = [VE(A) : LE(p)], for A,µ E X+ with A -p E
ZE.

Now suppose n = h + 1 and put E = {al, ... , ah_1}. Let A, p be parti-
tions of r into at most h parts. Then we have A -,a E ZE and hence we have
[V(A) : L(µ)] _ [VE(A) : LE(µ)]. Now we have the natural isomorphism
G(h) x G(l) --> GE = G(h, 1). Writing now Vh(v) for the induced G(h)-
module and Lh(V) for the simple G(h)-module of highest weight v E X+(h)
we have that VE(A) identifies with Vh(A) 0 k and LE(µ) identifies with
Lh(µ) ® k (where k denotes the trivial G(1)-module). It follows that the
multiplicity of LE(p) as a composition factor of VE(A) is equal to the multi-
plicity of Lh(p) as a composition factor of Vh(A). Thus we have the following
analogue of [51; (6.6e) Theorem (i)].
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(6) Let A and p be fixed partitions of r. The composition multiplicity
[V(A) : L(p)] is the same for all quantum groups G(n) such that A and p
have at most n parts.

We denote this stable composition multiplicity [A : p].
Let A E XE have non-negative entries. We can write A uniquely as the

concatenation A = (A(1), ... , A(m)), with A(i) E X+(ai), for 1 < i < m. We
similarly write p = (p(1), ... , p(m)) E XE, where p(1), ... ,p(m) also have
non-negative entries. Identifying V(A) with Va1(A(1)) ® 0 Vam(A(m))
and L(p) with Lal(p(1)) ® ... ® Lam(p(m)) we get:

(7) [DE(A) : VE(p)] = [I', [A(i) : p(i)].

Thus from (5) we have:

(8) If A - p E ZE then [A : p] _ fl,"1[A(i) : p(i)].

Suppose that A = (A1, ...) and p = (p1, ...) are partitions of r. We
say that the partitions (A, p) admit a horizontal h-cut if we have Al + +
Ah = P1 + ... + ph. Put At(h) = (A1, ... , Ah), Ab(h) _ (Ah+l, Ah+2.... ) and
pt(h) = (p1, ... , ph), pb(h) = (ph+l, ph}2i ...) (the top and bottom parts of
A and p). Taking E corresponding to the composition (h, n - h) of n we get:

(9) If A and p are a pair of partitions admitting a horizontal h-cut then we
have [A : p] = [At(h) : pb(h))]

This is a q-analogue of [28; Theorem 1] (generalizing James's result on row
removal for decomposition numbers,[55]). The result was also proved for q
a prime power in [57], and the argument given there is valid for arbitrary
(non-zero) q.

We now discuss the effect of truncation on tilting modules. We first note
that mod(GE) has a tilting theory. For A E X+(n) we write Tn(A) for the
tilting module for G(n) of highest weight A if we wish to emphasize the role of
n. We write V E F (VE) to denote that V is a finite dimensional GE-module
which has a filtration with sections isomorphic to VE(A), for various A E XE.
We write WE for the longest element of the Weyl group WE. For A E XE
we write AE(A) for the dual module VE(-wEA)*. It follows from (1) that
ch AE(A) = ch VE(A) = xE(A) We write V E .O(DE) to indicate that V is a
finite dimensional GE-module which has a filtration with sections oE(A), for
various A E XE. We write V E .T(VE) n.1(DE) to indicate that V E .F(VE)
and V E F(DE) It follows from the natural isomorphism G(al) x ... x
G(a,,,) -> G(a) = GE and the first paragraph of Section 3.3, that for each
A E XE there is a unique (up to isomorphism) indecomposable module TE(A)
such that TE(A) E F(VE)flF(DE) and that TE(A) has unique highest weight
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A and this weight occurs with multiplicity 1. We call TE(A) the tilting module
for GE of highest weight A. We write (TE(A) : VE(p)) for the multiplicity
of VE(p) as a section in a filtration of TE(A) with all sections of the form
VE(v) (for various v E XE). Note that (TE(A) : VE(p)) is independent of
the choice of such a filtration as it is the coefficient of XE(µ) in an expression
of chTE(A) as a linear combination of XE(v)'s (v E XE). It follows from
the natural isomorphism G(al) x . x G(a,,,) -> G(a) = GE that we may
identify TE(A) with Ta,(A(1))® ®Ta,,,(A(m)), where A = (A(1),...,A(m)),
with A(1) E X+(al), ... , A(m) E X+(a,,,). Writing µ E XE also in the form
p = (µ(1), ... , µ(m)) with p(l) E X+(al),... , µ(m) E X+(m) we obtain:

(10) (TE(A) : VE(µ)) = llin l(Ta,(A(i)) : Va,(µ(i)))

Furthermore, the arguments of [33; (1.5) Proposition and (1.6) Corol-
lary] go through essentially unchanged and we obtain we obtain the following
results.

(11) Let A E X+-
(1) If U E .F(0), V E F(V) and every weight of U and V is < A then the
map HomG(U, V) -> HomG (TrAU,TrAV) is surjective.
(ii) For A E X+ we have Tr£T(A) TE(A).

(12) For A E X+ and y E XE we have

(TE(A) : VE(µ))
(T(A) : V(µ)), oif P E X+

therwise.
and A - p E ZE;

In particular, if we have that n = h + 1 and A, p are partitions of h, taking
E = {al,... , ah_1} and arguing as in the paragraph preceding (6) we get
that (Th(A) : Vh(p)). Thus we have:

(13) Let A and p be fixed partitions of r. The filtration multiplicity (T(A) :
V(µ)) is the same for all quantum groups G(n) such that A and µ have at
most n parts.

This gives the following version of Proposition 4.1.5(i) without restrictions
on n and r:

(14) For A, µ E A+ (n, r) we have (T(A) : V(µ)) = [p' : A'].

Suppose that A, µ are partitions of r and let A' _ 77, µ' = S. We say that the
pair (A, p) admits a vertical h-cut if the pair (rt, admits a horizontal h-cut.
We put A1(h) = r)t(h)', A"(h) = r7b(h)' and p(h) = t'(h)', µ''(h) = (6(h)'
(the left and right parts of A and p); for a pictorial representation see [28;
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Section 1]). Now we have [A : p] = (T(p') : V(A')), by (14), and applying (12)
and (10) with E = {al, ... ) ah_1 i ah.i.l, ... , an_0 we get (T(p') : 0(a')) =
(Th(p'(h)') : Vh(!!(h)').(TT_h(,1r(h)') Tn_h(A''(h)'). Reformulating this
equation via (14) we obtain the following.

(15) If A and p are a pair of partitions admitting a vertical h-cut then we
have [A : p] = [)I(h) : pl pr(h))].

This is a q analogue of [28; Theorem 2] (generalizing James's result on column
removal for decomposition numbers,[55]). It was proved, in case the case in
which q is a prime power, in [57]. It may also be deduced from (9) by
dualizing, as in [28].

We now give (in (17) below) a homological analogue of (5). This will
be not be used in this book, so we shall be brief with the details. For the
case q = 1 (for arbitrary reductive groups) see [46; (4.3) Corollary]. For
the moment let G be an arbitrary quantum group over k and let G be a
quotient group (i.e. k[G] is a sub Hopf algebra of k[G]). For V E Mod(G)
we obtain inflation maps H'(G, V) -+ H1(G, V) in the following manner.
Choose an injective G-module resolution 0 -> k -> E° -+ El -- of the
trivial G-module and an injective resolution 0 --+ k F0 -> F1 -> of the
trivial G-module. Then (by injectivity) there are G-module homomorphisms
Ez->F,,i>0,such that

0 k -+ E0 -, El -
1 1 1 1

0 k - FO -> F1 ->

commutes. Let V E Mod(G). Calculating H* (G, V) as the homology of
the complex 0 -- V ® EO -> V ®El -> and H*(G, V) as the homology
of the complex 0 --- V ® FO , V ® Fl . we obtain induced maps
H'(G,V)-pH'(G,V),fori>0.

We now identify GE with a quotient of PE via the natural map PE -# GE.

(16) Suppose that all weights of the GE-module V lie in ZE. Then we have
H'(GE,V) = H'(PE,V), for all i > 0.

The morphisms H'(GE,V) -> H'(PE,V) constructed above commute
with direct limits so we may suppose V finite dimensional. Certainly we
have H°(GE, V) = H°(PE, V) so the result is true in degree 0. We suppose
now that i > 0 and the result holds in degree i - 1 for all finite dimensional
GE-modules (satisfying the hypotheses). Consider first the special case V =
VE(A), where A E XE and A E ZE. We get H'(GE, VE(A)) - H'(BE, kA) and
H'(PE, VE(A)) = H'(B, k),), by [36; Theorem 3.4] (Kempf's vanishing theo-
rem) and Lemma 2.12. If either of these cohomology spaces is non-zero then
we get A < 0, by [36; Lemma 2.8]. Since A E ZE we get A = - EaEE raa,



4.2 Truncation to Levi subgroups 91

where ra > 0 for a E E and rp # 0 for some !3 E E. However, this is
incompatible with the condition A E XE. Thus we have H$(GE, VE(A)) =
H'(PE,VE(A)) = 0. Hence we also have H$(GE,V) = H'(PE,V) = 0, for
every GE-module which is filtered by VE(A), A E XE fl ZE. Now let V be a
finite dimensional GE-module such that all weights of E belong to ZE. We
claim that V embeds in a finite dimensional GE-module which has a filtration
with sections of the form VE(A), A E XE fl ZE. If U1, U2 are submodules
of V and V/U1 embeds in Z1 and V/U2 embeds in Z2 then V embeds in
Z1 ® Z2. We may therefore suppose that V has a simple socle LE(A) (with
A E XE fl ZE). Let p(1), ... , p(r) E XE be the set of maximal weights of
V and let 7r be the set of weights v E XE such that v < p(i) for some
1 < i < r. We say that a GE-module Y belongs to 7r if all composition
factors of Y come from {LE(v) I v E it}. For an arbitrary GE-module Y
we write O,r(Y) for the largest submodule belonging to rr. We write IE(A)
for the GE-module injective hull of LE(A). Let Z = O,(I(A)). Then Z is
a finite dimensional submodule of IE(A) and has a filtration with sections
belonging to {VE(v) I v E XE}. Moreover for each section VE(v) occurring
we have A <E p(i), for some i, which gives v E XE fl ZE. Now we have an
embedding LE(A) -> V and this extends (by injectivity) to an embedding
V -* IE(A) and hence to an embedding V = O,r(V) -+ O,r(IE(A)) = Z. This
proves the claim. Thus, for V a finite dimensional GE-module with weights
in ZE, let Z be a finite dimensional GE-module containing V such that Z
has a filtration with sections VE(v), v E XE fl ZE. Let Q = Z/V. Now we
have H$(GE,Y) = H'(PE,Y) for all i > 0 by the case already considered.
Thus for i = 1 we have a commutative diagram

0 -; H°(GE,V) -' H°(GE,Y) -' H°(GE,Q) -' H1(GE,V) -} 0
1 1 1 1

0 - H°(PE,V) -' H°(PE,Y) -' H°(PE,Q) -' H'(PE,V) .--> 0

with rows exact and the first three vertical maps isomorphisms. Hence the
map H1(GE,V) - H1(PE,V) is also an isomorphism. For i > 1 we have, by
dimension shifting, H'(GE,V) = Hi-1(GE,Q) and Hi (Pr,, V) 5--- H'(PE, Q),
from which the result follows by induction.

Now the arguments of [46; Section 4] (including the arguments used in
the results cited from [29]) go through without change and we get:

(17) ForA,pEX+ withA - pEZE andalli>0 we have

ExtGE(VE(A), VE(p)) = ExtP£(VE(A), VE(p)) = ExtG(V(A), V(p)).

We conclude this section by giving a description of S(n, r)', for general
n, r, as a generalized Schur algebra (cf. [33; (3.11) Proposition]). Suppose
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that 7r C a- are finite saturated subsets of X+. Then we have generalized
Schur coalgebras A(7r) < A(a) (see [36; Section 4]) and the restriction map
Res : S(o-) S(7r) between the generalized Schur algebras. We have the
(T, T)-weight space decomposition A(u) = ®A,,EX AA(n, r)P. For a E Wa-
we define a E A(o.)* = S(o-) to be the projection onto aA(a')a followed
by the evaluation map. (Note that this coincides with our use of the sym-
bol a in Chapter 2, in the case v = A+ (n, r), i.e. S(n, r).) Then
1 = EaEWo Ca is decomposition of 1 as a sum of mutually orthogonal idem-
potents. By the argument of [33; (3.3) Lemma] we get the q-analogue of that
result:

(18) Res : S(ir) induces an isomorphism S/SeS -> S(ir), where
S = S(a) and e = >aEWo\Wa Sa

Now let n, r be arbitrary and choose N > r and n. Let E denote the the natu-
ral left M(N)-module and let V denote the natural right M(N)-module. Let
T= Ar(E 0 V) and S(N, r)' = EndG(N)(T). Let E = {aii ... , arra_1}, A =

Net and TrA. The natural map S(N, r)' -> EndG£(Tr£T) is surjective, by
(11)(i). Moreover we have (as in [33; p. 57]) EndGE(Tr£T) = EndG(n)(TrAT)
and T is a full tilting module for G = G(n). Thus, we obtain a surjective al-
gebra map : S(N, r) -> S(N, r)' -> S(n, r)' = EndG(TrAT), where the first
map is the map 9 of Proposition 4.1.4. Arguing as in the proof of [33; (3.7)
Proposition], we obtain that the kernel of 0 is exactly S(N, r)eS(N, r), where

e = EaEA(N,r)\Sym(N)A+(n,r)/ a (and A+(n,r)' = {a' I a E A+(n,r)}).
Hence, by (17), we obtain the following general form of Proposition 4.1.4.

(19) Let n, r be arbitrary and N > n and r. Then the Ringel dual S(n, r)'
is naturally isomorphic to the generalized Schur algebra S(7r), determined
by the quantum group G(N) and the saturated subset 7r = A+(n, r)' of
A+ (N, r).

Remark Using the cell structure of the Hecke algebra, Du, Parshall and
Scott have recently also obtained a similar result, and also a proof of (14)
above in the case n = r, see [44; (7.9) Theorem and (8.3) Proposition].

4.3 Components of E®r

We now wish to consider some connections between representations of the
Schur algebra and the Hecke algebra. It is convenient to first consider which
modules occur as components of E®r. Throughout this section we assume
r < n. Let w = (1, 1, ... , 1, 0, ... , 0) E A(n, r).. Recall the definition of
A+(n, r)row and A+ (n, r)col from 0.18.

(1) Let A E A+ (n, r). If L(.)" 0 0 then A E A+ (n, r)ooI.
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Proof If q is not a root of unity or k has characteristic 0 and q = 1 then
there is nothing to prove.

We now assume that q is a primitive Ith root of unity and suppose first
that I > 1. We write A = p + Iv, with p E X1 and v E X+. By Steinberg's
tensor product theorem we have L(A) = L(µ) ® L(v)F, where F : G -> G is
the (quantum) Frobenius map. Then p E A+ (n, s) and v E A+ (n, t) for some
s,t with r = s+lt. The weights of L(A) thus have the form a+1,3, where a is
a weight of L(p) and,3 is a weight of L(v). If w = a+1,3 we deduce that Q = 0
and a = w. Thus t = 0 and v = 0. Hence A E A+ (n, r) fl Xl = A+ (n, r)COI.
Similarly, if 1 = 1 and k has characteristic p > 0, writing A = p+pv and using
the (ordinary) Steinberg tensor product theorem we get A E A+(n, r),.I.

For A E A+(n, r) we denote by I(A) the injective envelope of L(A) and
by P(A) the projective cover of L(A), as S(n, r)-modules. Recall that for
V E mod S(n, r), we have the contravariant dual V°, defined in Section 4.1.

(2) (i) For X, Y E mod S(n, r) we have

Homs(n r)(X,Y) - Homs(9,,r)(Y°, X°).

(ii) We have P(A)° = I(A) and I(A)' = P(A), for each A E A+(n, r).
(iii) We have (E®r)° - E®r.

Proof (i) This is true because J : S(n, r) -+ S(n, r) is an antiautomor-
phism.
(ii) It follows from (i) and the fact that J : S(n, r) -> S(n, r) is an involution
that P E mod S(n, r) is projective if and only if P° is injective. Now L(A)' is
a simple S(n, r)-module and ch L(A)° = ch L(A) (see Remark (ii) of Section
4.1). Hence we have L(A)° - L(A). Now P(A) is a projective module with
socle L(A) and hence P(A)° is an injective module with socle L(A)° - L(A)
and so we have P(A)° - I(A).
(iii) See Remark (ii) of Section 4.1.

To make further progress we need the following, which is a well known
property of symmetric functions.

(3) We have WE : V(A')) = (S"E : V(A)) for all a E A(n, r) and A E
A+ (n, r).

Proof Since ch S"E = ch SOE and ch AaE = ch /DOE if # E A(n, r) is
obtained by rearranging the parts of a, we may assume that a E A+(n, r).
Let e1, e2.... denote the elementary symmetric functions and hl, h2.... the
complete symmetric functions in infinitely many variables x1i X2,..., as in
[63; I]. For any partition A = (A,, A2, ...) we have symmetric functions ea =
eA, eA, ..., ha = hal ha, ... and the Schur function sA (see [63; I, Sections
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2 and 3]). We identify the character of an S(n, r)-module as a symmetric
function in the n variables x1 = e(el), ... , xn = e(c, ). Restricting the Schur
function sA to n variables we obtain the character X(A), for A E A+(n, r) (see
[63; I, (3.1)]). We write ea and ha as linear combinations of Schur functions:

ea = aasa and ha = E basa.
AEA+(n,r) AEA+(n,r)

Now there is the ring automorphism w (denoted w in [63]) on the ring of
symmetric functions, defined by w(er) = hr, for r > 1. Furthermore we
have w(sa) = say, for all partitions A, by [63; (5.6)]. Applying w to the
above equations we get bA = ax', for all A E A+(n, r). Restricting ea to n
variables gives ch AaE and restricting ha gives ch SaE so we get ch AaE =

:F-aEA+(n,r) aaX(A) and ch SaE = 1:),EA+(n,r) aA,X(A). Thus we get WE
v(A')) = (SaE : V(A)), for all A E A+(n, r), as required.

For modules Y, Z of finite length with Z indecomposable we write (Y I Z)
for the number of components of Y isomorphic to Z in a decomposition of
Z as a direct sum of indecomposable modules.

(4) Let A E A+ (n, r).
(i) We have (SaE I I(A)) = (AaE I T(A')) for all a E A(n, r). In particular
I(A) occurs as a component of E®r if and only if T(A') occurs as a component
of E®r.
(ii) The following are equivalent:
(a) I(A) is projective;
(b) I(A) occurs as a component of E®r;
(c) I(A) is a tilting module;
(d) L(A)W # 0.

Proof (i) As in the proof of (3) we may assume that a is dominant. For
a, .u E A+ (n, r) we have

{I(v) : o(p))(SaE I I(v)) aE I T(v')),
lEA+(n,r) vEA+(n,r)

E [,u : v](SaE I I(v)) _ E [µ : v](AaE I T(v')),
vEA+(n,r) vEA+(n,r)

by Proposition 4.1.5 and [36; Section 4, (6)]. The matrix ([p : v])u,,,EA+(n,r)
is invertible (in fact unitriangular) so we get (I(p) I SaE) = (AaE I T(µ')),
for all p E A+ (n, r).

#(ii) Suppose that I(A) is projective. We have HomG(L(A), SAE) = L(A)'
0 and hence L(A) embeds in SAE. Thus I(A) is a component of SAE so
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there is an epimorphism S'E -> I(.). Composing with the natural map
E®' --+ SAE we get an epimorphism E®' --> I(.)). By projectivity this
map splits and so I(A) occurs as a component of E. If I(\) occurs as a
component of E®T then it is tilting module, by 3.3(1). If I()) is tilting module
then I(A) embeds in AaE, for some a E A+(n, r), by 3.3(1). Tensoring
together natural embeddings AaE -> E®', [36; Lemma 3.3(i)], (where a
runs over the components of a) we obtain an embedding A 'E - E®' and
hence an embedding I(A) -> E®''. By injectivity this splits, so I(A) occurs
as a component of E®''. If I(A) occurs as a component of E®'' then it is
projective, by 2.1(7). Thus (a), (b) and (c) are equivalent. Now I(X) occurs
as a component of E®'' if and only if HomG(L(A), E®'') # 0. By 2.1(8) this
holds if and only if L(a)w $ 0 and so (b) and (d) are equivalent.

We now describe explicitly the set of A E A+ (n, r) which satisfy (4) (ii).
We shall need a couple of preliminary remarks.

(5) (1) Let H be a quantum group over k. Let g be a group-like element of
k[H] and let Lg be the corresponding 1-dimensional H-module. (Thus the
structure map takes x E L9 to x 0 g E Lg (D k[H].) Suppose further that k[H]
has a k-basis fi, i E I, such that g fig-' is a scalar multiple of fi, for each
i E I. If U, V E Mod H, if 0 : U ®V - V ®U is an H-module monomorphism
and if L is a submodule of U isomorphic to L. then {v E V I O(L®v) < vOL}
is an H-submodule of V.
(ii) For H = B or B+ every group-like element of k[H] has the property
described in (i).

Proof (i) Let Vo = {v E V I c(L ®v) < v ®L}. We have gfig-' = Aifi,
for scalars Ai, i E I. We have L = kuo, for some uo E U satisfying ru(uo) =
no ®g. Now suppose that v E Vo, q(uo ® v) = a(v ® uo) (with a E k) and
that rv(v) = Zi vi ® fi. We have

rv(DuqS(uo 0 v) = a vi ® uo 0 fig

and

( ® id)ru®v(uo ® v) = a O(uo ® vi) 0 gfi = a AiO(uo ® vi) 0 fig.
i i

Since 0 is a module homomorphism these two expressions are equal and since
fig, i E I, is a basis of k[H] we have q(uo (D vi) = Ai(vi 0 uo), for all i E I.
Thus all vi E Vo and Vo is an H-submodule of V.
(ii) We consider H B and leave B+ to the reader. By abuse of notation
we write simply cij for the restriction of cij E k[G] to B. The modules
ka, A E X, form a complete set of 1-dimensional B-modules and it follows
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that the elements cA = cii ... cnn, with A = (A1, ... , E X, are exactly the
group-like elements of k[B] (see the proof of [36; Lemma 2.6]). Let 1 < i < n.
It follows from the defining relations, given in Section 1.2, that ciicr, E k[B]
is a scalar multiple of cr,cii E k[B]. Thus we have that cii fcigl is a scalar
multiple of f, and therefore that c' f c-;k is a scalar multiple of f, for any
monomial f in the elements c,., (1 < s < r < n) and any A E X. Since k[B]
has a basis consisting of monomials in the c,.,, [36; Corollary 2.4], we get
that each c' (with A E X) has the property described in (i).

Now let a, b > 1 with a + b < n. Recall, we have the isomorphism
O :

AaE®AbE -> A"E®naE of Lemma 1.3.3. To save on notation, for the
rest of this section we shall indicate multiplication in the exterior algebra on
E simply by juxtaposition.

(6) q (e1 ... ea ®v) is a scalar multiple of v ®ei ... ea, for all v E AbE.

Proof This holds for v = ej with j = (n - b + 1, ... , n) by Lemma 1.3.3(i).
Moreover, no = el ... ea spans a 1-dimensional B+-submodule of AaE. Thus,
by (5), the set l7o of elements v of AbE such that q(uo (D v) is a multiple
of v 0 uo is a B+-submodule of AbE. However, it is easy to check that ej
generates AbE, as a B+-module, so that Vo = AbE, as required.

We shall need the fact that the natural map E®r -> A'E splits when
r is "small". It is convenient to record at this point the following list of
semisimple q-Schur algebras. Here r is arbitrary once more. The result for
q = 1 is given in [42].

(7) S(n, r) is semisimple if and only if either:
(i) q is not a root of unity or k has characteristic 0 and q = 1; or
(ii) q is a primitive 1 th root of unity with 1 > 1 and r < 1; or
(iii) k has characteristic p > 0, q = 1 and r < p; or
(iv)n=2,1=2andr=3; or
(v)n=2,1=1,p=2andr=3; or
(vi) n = 1 and 1, p are arbitrary.
In particular, in these cases, the natural map E®'' _ AaE splits, for a E
A(n, r).

Proof If (i),(ii) or (iii) then S(n, r) is semisimple by the argument of [36;
Section 4, (7)]. Also, in cases (iv),(v) one gets L(A) = 0(A) = V(A), for
A = (3, 0), (2, 1), using the Steinberg tensor product theorem, and again one
gets that S(n, r) is semisimple by the argument of [36; Section 4, (7)]. If
n = 1 then S(n, r) is 1-dimensional, and hence semisimple.

Now suppose that S(n, r) is semisimple. Then we have L(A) = V(A)
for all A E A+ (n, r). Suppose that n > 3. Suppose 1 > 1 and r > 1. We
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write r = r_1 + Is, with 0 < r_1 < 1. By the Steinberg tensor product
theorem we have S'E = L(rel) = L(r_lel) 0 L(sei)F. Moreover L(r_ici)
is a submodule of S''-' E so that every weight of S' E is a weight of S''-1 E ®
L(sei)F. In particular (Is - 1 , r_1,1, 0, ... , 0) may be expressed in the form
a + 113, with a, 0 E X and a a weight of S''-1 E. But then we have I a I > r_ 1,
a contradiction. Hence n < 2. If 1 = 1 and r > p we get n < 2 by the
same argument but using the ordinary Steinberg tensor product theorem. It
remains to consider the case n = 2. Suppose 1 > 1 and r > 1. We write
r = r_1 + Is as above. Again S"'E embeds in ST-'E 0 L(sei)F and the
weight (Is - 1, r_1 + 1) has the from a + 1,3, with jal = r_1. This can only
happen if r_1 = 1- 1, i.e. r - -1 (mod 1). But applying the same argument
to L(r - 1,1) = 0(r - 1,1) we get that r - 2 - -1 (mod 1). Hence 2 - 0
mod I so I = 2 and r = 1 + 2s is odd. Suppose that r is at least 5. Ifs = 2m
is even we get

S''E = L(rel) = L(ei) ® L(sei)F = L(ei) ® (L(mei)F)F

and comparing dimensions gives r + 1 < 2(m + 1), i.e. 1 + 4m < 2m + 2,
a contradiction. Hence s is even. Applying this argument to L(r - 1, 1) we
get that s - 1 is also even, which is impossible. Hence r is at least 2, is odd
and is less than 5. Thus r = 3. Similarly, if I = 1, k has characteristic p > 0
and r > p we get p = 2 and r = 3 by the same argument, using the ordinary
Steinberg tensor product theorem.

We now embark on the converse of (1).

(8) For al, ... , a., b > 0 with al + + a. + b < n there is a G-module
isomorphism V)
such that ii(x1 0 . . . 0 x,,, 0 e1e2 ... eb) is a scalar multiple of e1e2 ... eb ®
xl®. 0x,,,,forallxiEAa`E, 1<i<m.

Proof In the case m = 1 we can take the inverse of the map 0 of (6). Now
assume m > 1. Let y = e1e2 ... eb. We have an isomorphism 01 : AamE 0
AbE -+ AbE ® no"'E taking x 0 y to a multiple of y 0 x, for x E na'"E.
We put tki = (id®V1) : Aa'E®...®

a,"-lE®A'-E®AbE -> pa,E,®

0 p a,,,-' E O AbE ® Aa"` E. We can
`assume

inductively that there is an
isomorphism. b2 : Aa'E®...®nam-'E®AbE -+ A'E®na'E®...®nam-'E
such that '2(x1 ® ®xra_1 0 y) is a multiple of y ® xl ® . . . ® x,,,-,, for
xiEna'E,1<i<m-1. Putting 02'=02®id a'"-'E®
nbE ® nam E - Ab

E (D
Aa, E ® ... ® nam-' E ® nam E we have that the

map V) = V)'oV)' :
has the required property.

We are now ready to prove the main result of this section.
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(9) For A E A+ (n, r) we have L(7)' # 0 if and only if )A E A+ (n, r),oi.

Proof If L(,\)w # 0 then A E A+ (n, r),oI, by (1).
The reverse is equivalent, by (4), to the statement that T(\) is a com-

ponent of E®'' for A E A+ (n, r)row, and this is what we shall prove. So let
A E A+(n, r)row. Let A' = a = (al, ... , a,,,). Then T(.X) is isomorphic to an
indecomposable component of naE containing the highest weight vector. If
S(n, r) is semisimple then we get that T(A) is a component of E®r by (7).
Thus we can, and do, assume either 1 > 1 or 1 = 1 and k has characteristic
p>0.

We shall produce a G-endomorphism 9 of A«E which is non-zero on
the highest weight space (n«E)a and factors through E®r. For the rest of
this proof we shall write simply nb for nbE, b > 0, and n" for AVE, for
N = (a1,...,/3h), 01...... h > 0. Let a = (a2,...,am) and let s = r- al.
We can assume, inductively, that there is an endomorphism 0 : n« - na
which is non-zero on the highest weight space and which factors through
E®'. For a subset X of [1, n] we write ex for the element ez1 . . . exe of At

where X = {x1,.. . , xt} with x1 < < xt. Suppose that a1, ... , at > 0
and a = a1 + + at. By iterating the map of Lemma 1.2.3 we get an
injective G-module homomorphism x : A a - Aa1 ® na2 0 ... 0 nat given
by x(ei1 ... eia) = >AEA CAeA1 ® 0 eA where A is the set of sequences
A = (A1, . . . , At) of subsets of [1, n] such that {i1, ... , ia} is the disjoint union
of A , ,... , At and where each CA is ±1. Taking a1 = al -a2, a2 = a2 -a3,...,
am_1 = am_1-am, am = am, we get a G-module homomorphism 0 = x®cna -- Ac"C12 ®... ® Aarn-l-am ® A"m ®

A O'2 ®
A03 ®... ® AA /`"m

We put yi = el ... ea, E na', for 1 < i < m. Now by (8) we have a
G-module isomorphism f : n«2-a3 ® ®

Ac- 0
Aa2

A O'2 ® A
012-a3 ®

®Aam taking to a multiple
xi E na,-«i}1 , 1 < i < m, and x,,,. E na"` . Hence we have the isomorphism
91 = (id®f ®id) : na1-a2®na2-a30 ...0 nam0 n"20 na30 ...®n"m --
Ace' -a2®^a2®na2-a3®...®n"m®n"3®...®n"m taking x1 0 x2®...®

x,11.®y2®y3®...0Ym to a multiple Of x1®y2®x2®...®x,,,®y3®...®ym,
for xi E n«'-a'}1 for 1 < i < m and x?1b E Ace-

Similarly, we have an isomorphism 92 : Ace" 0 na2 0 na2-a3 0
na3-a4 ®.. . ® nam 0 A'3 ® ... ® nam _.} na1-a2 0 na2 ® /

\a2_a3 0
na3

®
na3-a4®...®Ace- ®n"3®...®n"m taking xl®y2®x2®x3®...®x,,.,®

y3®...0y,,, to a multiple of xl0 y20 x2®y30 x30 ...0 x,,.,0 y3®...0 y,,,

for xi E na`-«,+'' for 1 < i < m and x,.. E Aam
Continuing in this way we obtain isomorphisms 93,94.... and the com-

posite g = 9 m - 1 ° ° 9 1 : Ace'
-a2 ® na2-a3 ®... ® nam ® A02 ® na3 ®.. .

no'- - no"-a2 ® na2 ® na2-a3 ® na3 ®... ® nam_1-am ® Ac- ® nam

takes x1®x2®...0 to amultiple Of x1®y2®x2®
y3 0. ®x,,,_ 1 ®ym ®x,,,, for xi E A"', for 1 < i < m, and xm E Aa`

-

Let hi : A«'-«'+1 0 A" -, A«, be the multiplication map, for 1 < i < m,
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and let h = (hi ®... (g hm-i ® id) : n"1-a2 ®na2 0 nag-a3 0 Aa3 ®.. .

no'--1-am ® nam Ac- - na.
We claim that the composite map 8 = h o g o n" - n" is a G-module

homomorphism which factors through E®' and acts as non-zero scalar multi-
plication on yl ® ® y,,,. We first observe that 8 does indeed factor through
E®'. It suffices to show that 0 factors through E. Moreover 0 = x 0 0
and, by assumption, 4 factors through E®(''-"1), so it suffices to show that
x : n"1-> Ac"-c2 ® /n a2-a3 ®' .. 0

nam factors through E®"1 . Since
A E A+(n, r)row we I > 1 and 0 < al - a2i ... , am-1 - am, am < I
or I = 1 and k has characteristic p > 0. By (7) we have homomorphisms
(i AO:-a:+1 - E®(a;-a:+1) and (m : n'- + E®'- such that (i o t1i = id,
where the maps rti : E®(ai-ai+1) --, na'-"++1 and 11,,, : E®am -> n"- are the
natural maps, 1 < i < m. Thus we have x = 77 o (, where ( = (Cl ® ®(m)

-a2 ®. . . ® am-l-am ® am - E® al and -->A"' n n = (1710 ... (Di7m) : E®"1
Act'-a2 ®... ® nam-'_am 0 nam

We now track the effect of 8 = h o g o zG on yl 0 Y2 0 ... 0 y,,,. We
have b(yl®y2®...®ym) =>AEACACAI®...®eAm®y2®...®ym,

where A is the set of sequences A = (A1,... , A,,,) of sets such that [1, al]
is the disjoint union of A1, . . . , Am, and each CA is ±1. Applying g we get
>2AEA bAeAl ®y2 0 ... ® eA2 0 Y3 ®' .. ® eAm_, ®ym ® 6A-, where each bA is
a non-zero scalar. Thus we obtain 8(y1® . ® y,,,) = >AEA bAeA1 y2 ®
eAm-1 ym ® eA,,,. However, Al is some subset of [1, all of size a1 - a2 and
y2 = e1e2 ... eat so that eA1 y2i when written as a product of ei's, contains a
repeated entry and hence is 0 unless Al = [a2+1, al]. Thus for any non-zero
term bAeA1 y2 ® . . . 0 eAm-1 ym 0 eAm we have Al = [a2 + 1, al]. Hence, in
a non-zero term, we have A2 C [1, a2] (since [1, al] is the disjoint union of
the Ai's) and the condition eA2 y3 # 0 now gives A2 = [a3 + 1, a2]. Carrying
on in this way we get that, in any non-zero term, we have Ai = [ai+l, ail,
for 1 < i < m - 1, and since [1, all is the disjoint union of A1i ... , A,,,,
we must also have Am = [1, a,,,]. For this choice of A1,... , Am we have
eA,Yi+1 = ±yi, for 1 < i < m, and eAm = y,,,. Thus we have 8(y1®...®y,,,) =
±byl 0 Y2 ® 0 y,,,, where b = bA, for A = (A1,... , Am) as above. This
proves the claim.

Now T(A) occurs exactly once as a component of n", by 3.3(1). Let
i : T(A) -+' and j : n" T(A) be G-module maps such that j o i is the
identity map on T(A). Then is = j o 8 o i is an endomorphism of T(A) which
is non-zero on T(A)A and factors through E®'. Since T(A) is absolutely
indecomposable EndG(T(A)) is local and i is an isomorphism. Hence the
identity map T(A) -- T(A) factors through E®' and so T(A) occurs as a
component of E®".

(10) (i) For A E A+(n, r)row we have T(A)° - T(A) and I(A')° = I(A).
(ii) There is a bijection i : A+ (n, r),oi -> A+(n, r)ro, such that I(A) - T(i(A))
(for all A E A+(n, r),ot).
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(iii) For A E A+(n, r),oi the injective module I(A) has simple head L(A) and
the tilting module T(i(A)) has simple head L(A).
(iv) For A E A+(n, r),,oi the module V(i(A)) has simple head L(A) and the
module A(i(A)) has simple socle L(A).

Proof Since T(A) is a component of E®r and (E®r)° - E®T we have that
T(A)° is component of E®'. Hence T(A)° is a tilting module T(µ) for some
p. Since tilting modules are classified by highest weight and ch J° = ch J, for
any finite dimensional S(n, r)-module J, we have p = A, i.e. T(A)° = T(A).
Since the modules I(A), with A E A+(n, r)coi, and the modules T(A), with
A E A+(n, r)row, are exactly the indecomposable components of E®r we
must have, for A E A+(n, r),oi, that I(A) is isomorphic to T(p), for some
p E A+(n, r)row, and therefore I(A)' - I(A). This completes the proof of (i)
and also proves (ii). Part (iii) follows from (ii). Part (iv) follows from (iii)
since V(i(A)) is a homomorphic image of T(i(A)), for A E A+(n, r),oi.

4.4 Connections with the Hecke algebra

In the first part of this section we apply the Schur functor

f : mod(S(n, r)) -> Hec(r)

to various results already obtained for the q-Schur algebra to obtain results
for the Hecke algebra. In particular we obtain the parametrization of Young
modules and signed Young modules (many treatments of the parametrization
are available in the classical case, see e.g. Section 3 of [33] and the references
given there). Applying the Schur functor to filtration results on injective
modules and tilting modules for S(n, r) gives, as in the classical case (see [32;
Section 2] for Young modules), the existence of Specht filtrations for Young
modules and signed Young modules (compare with the paper of Martin, [66]).
Applying the Schur functor to the irreducible S(n, r)-module and using 4.3(9)
gives the parametrization of irreducible Hec(r)-modules due to Dipper and
James, [20; Section 6]. Our approach is close to the treatment of the classical
case given in [51; Chapter 6]. We give the relationship between filtration
multiplicities for tilting modules of S(n, r) and decomposition numbers for
the Hecke algebra and give the q-version of a result of Erdmann, [47; (2.3)
Proposition].

In the second part of the section we form a graded ring whose degree d
component is the Grothendieck group of finite dimensional Hec(d)-modules.
We give a description of this ring by generators and relations. This is related
to recent work of Erdmann, [48].

We assume that r < n. Throughout this section e denotes the idempo-
tent involved in the definition of f. We write S short for S(n, r) and H or
H(r) short for Hec(r).
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Definitions Let A E A+ (n, r). We write Y(A) for fI(A) (where I(A) is the
S(n, r)-module injective envelope of L(A)) and call Y(A) the Young module
labelled by A. We write Y,(A) for fT(A) and call Y,(A) the signed Young
module labelled by A.

We summarize the main properties of Young modules and signed Young
modules. For the first assertion see also [20].

(1) (i) Suppose a,# E A(n, r) have the same content. Then we have
H(r) ®H(«) k = H(r) ®H(p) k and H(r) ®H(«) k8 = H(r) ®H(p) k8.
(ii) For finite dimensional S-modules Il,'2i with Il injective and 12 E .1(V),
the natural map Homs(I,, 12) -> HomH(fll, fI2) is an isomorphism and for
finite dimensional S-modules T1, T2, with Ti E .T(V) and T2 a tilting module,
the natural map Homs(Tl,T2) -} HomH(fTl, fT2) is an isomorphism.
(iii) The modules {Y(A) I A E A+(n, r)} are pairwise non-isomorphic and are
precisely (up to isomorphism) the indecomposable summands of the modules
H(r) ®H(,,) k, a E A(n, r).
(iv) The modules {Y, (A) I A E A+(n, r)} are pairwise non-isomorphic and are
precisely (up to isomorphism) the indecomposable summands of the modules
H(r) ®H(a) k8, a E A(n, r).
(v) For A E A+ (n, r), pEA(n,r) we have

(H(r) ®H(j,) k I Y(A)) = (S' E I I(A)) = dim L(A)P.

In particular (H(r) ®H(µ) k I Y(A)) is 1 for A = p and is 0 for A p.
(vi) For A E A+(n, r), p E A(n,r) we have (H(r) ®H(µ) k, I Y,(A)) _
WE I T(A)) = dim L(A')µ. In particular (H(r) ®H(p) k, I Y(A)) is 1
forA'=p and is0forA' p.

Proof (i) To prove H(r) ®H(«) k = H(r) ®H(p) k it suffices, by 2.1(20)(i),
to note that S°'E - SOE, which is true since S'E and SOE are injective
modules with the same character. To prove H(r) ®H(«) k, - H(r) ®H(p) k,
it suffices, by 2.1(20)(ii), to note that A«E - AVE, which is true since A«E
and A 6E are tilting modules with the same character.
(ii) Since every injective module is a direct sum of I(A)'s it suffices to show
that Homs(I(A),I2) -} HorH(fI(A), fI2) is an isomorphism. Since I(A)
is a direct summand of S"E it suffices to note that Homs(SAE, I2) ->
HomH(f S'E, fI2) is an isomorphism and this is the case by 2.1(16)(ii).

Similarly it suffices to observe that

Homs(Ti, AAE) --> HomH(fT,, f/\AE)

is an isomorphism, for A E A+ (n, r), and this is true by 2.1(16) (iii).
(iii) For A E A+(n, r), Ends(I(A)) is a local algebra since I(A) is indecom-
posable. Hence EndH(fI(A)) is local by (ii) and so Y(A) = fI(A) is inde-
composable. Let A, ,u E A+ (n, r) and suppose that 0 : f I(A) -+ f I(p) is an
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H-module isomorphism with inverse 0, say. Then 0 is the restriction of some
0 E Homs(I(A), I(p)) and 0 is the restriction of some 0 E Homs(I(p), I(A)),
by (ii). Then ' o 0 E Ends(I(A)) is the identity on fl(A) and hence
0 o = ide(a), by (ii). Similarly ' o = idJ(u) so that I(A) = 1(p)
and A = p. Hence the modules {Y(A) I A E A+(n, r)} are pairwise non-
isomorphic. Let A E A+(n, r). The multiplicity of I(t) as a component
of SAE is dim Homs(L(A),SAE) = 1. Thus Y(A) = fI(A) occurs as a
component of f SAE = H(r) ®H(A) k. For a E A(n, r) the module S°'E is
injective and hence a direct sum of modules I(p), P E A+(n, r) and thus
H(r) ®H(,) k - f S"E is a direct sum of modules Y(p), p E A+(n, r). This
completes the proof of (iii).
(iv) Similar to (iii).
(v) This follows from (i),(iii) and the fact that the multiplicity of I(A) as a
component of S"E (for A E A+(n, r), a E A(n, r)) is dim L(A)".
(vi) This follows from (iv) and 4.3(3).

(2) (i) The modules if L(A) I A E A+(n, r),ol} form a complete set of in-
equivalent irreducible representations of H(r).
(ii) The modules Y(A), A E A+ (n, r),oi, are precisely the projective indecom-
posable H(r)-modules and the modules Y,(A), A E A+(n, r)row, are precisely
the projective indecomposable H(r)-modules. We have Y(A) = Y,(i(A)), for
A E A+(n, r)oo1, where i is the bijection of 4.3(10)(ii).

Proof (i) This is true by 4.3(9) and the Appendix, A1(4).
(ii) This is true by A1(4)(v) and 4.3(4) and (10).

Definition For A E A+(n, r) we call the Hec(r)-module Sp(A) = fV(A)
the Specht module labelled by A.

(3) Let A E A+ (n, r).
(i) There exist pl, ... , pU E A+ (n, r) and an H-module filtration 0 = Y° <
Y' < ... < Yu = Y(A) such that pi pi for 1 < i < j < u, such that

Y'/Y'-1 - Sp(p') for 1 < i < u and such that for each p E A+(n, r) we have
Ili E [1, u] I p' = p} I = [µ : A].
( i i ) There exist p1, ... , p° E A+(n, r) and an H-module filtration 0 = Y° <
Y,1 < ... <Y° =Y,(A) such that pi pi f o r such that

Y'/Y'-1 '" Sp(p$) for 1 < i < v and such that for each p E A+(n, r) we have
{iE[1,s] I p'=P}I =[p':A'].

Proof These results are obtained by applying the Schur functor from the
corresponding results for I(A) and T(A) (see [36; Section 4, (6)] and Propo-
sition 4.1.5(ii) above) and 2.1(13).

(4) Suppose q is a root of unity.
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(i) For A E A+ (n, r)row the head hd Sp(a) of the Specht module Sp(A) is
simple.
(ii) The modules hd Sp(a), A E A+(n, r),coi, form a complete set of in-
equivalent irreducible H-modules and we have fL(A) - hdSp(i(A)), for
A E A+(n, r),oi, where i : A+(n, r),oi -4 A+(n, r)row is the bijection of
4.3(10)(ii).

Proof (i) Let A E A+(n, r)vow. We have a filtration 0 = Yo < Y1 < ... <
Y" = Y8(A) as in (3)(ii). For 1 < i < v we have [p' : A'] # 0 and hence
p' < A. Thus we must have p" = A. Hence Sp(A) is an epimorphic image of
Y8(A). Now Y8(A) is a projective indecomposable H-module and hence has
a simple head. Thus hd Sp(a) = hdY8(A) is simple.
(ii) Since {Y8(A) I A E A+(n, r)row} is a full set of projective indecomposable
modules, {hdYB(A) I A E A+(n, r)row} is a full set of irreducible H-modules,
i.e. {hd Sp(a) I A E A+(n, r)row} is a full set of simple H-modules. For
A E A+(n, r)coi we have an epimorphism V(i(a)) - L(A), by 4.3(10)(iii),
and hence we have an epimorphism Sp(i(A)) = fV(i(A)) -> fL(A). Hence
we have f L(A) - hd Sp(i(A)), as required.

Definition We write D(A) for the irreducible H-module hd'7(A), for A E
A+(n, r)row.

For the q = 1 case of the following see [45; 4.5 Lemma].

(5) Suppose q is a root of unity. For A E A+(n, r)row and p E A+(n, r) we
have (T(A) : 0(p)) = [Sp(p) : D(A)].

Proof We write A = i(v), for v E A+(n, r)ooi (where i is as in 4.3(10)(ii).
We have (T(i(v)) : '7(p)) = [I(v) : 0(p)], by 4.3(10)(ii), which is [0(p) :
L(v)], by [36; Section 4, (6)]. However, by applying the Schur functor to a
composition series of 0(p), one sees that [o(p) : L(v)] _ [f '7(p) : f L(v)],
which is [Sp(p) : D(i(v))], by (4)(ii).

We can now read off the Hecke algebra decomposition multiplicities for
2-part partitions from 3.4(3) and 4.2(6). We assume for definiteness that
1 > 1 and k has characteristic p > 0. (A derivation along similar lines in the
classical case I = 1 is given in [45; Section 6].) As James has pointed out, the
result may be obtained by methods similar to those used in [56; Section 20]
to determine the decomposition numbers for 2-part partitions for the finite
general linear groups.

Recall, from Section 3.4, that if a has (1,p) decomposition a = a_1 +
1 $"_ol p'ai and J is a subset of [-1, m - 1] then aj denotes the sum of
the terms indexed by J, i.e. aj denotes a_1 + E_1#iEJ lp'ai if -1 E J, and
denotes EiEJ lpai if -1 V J.
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(6) Let A = (x1,12), µ = (µ1,µ2) be 2-part partitions of r and assume
µ E A+(n, r)row. Ifµl-µ2 < 1-1 then [SP(A) : D(µ)] = baµ. Ifµ1-µ2 > 1-1
and pi -µ2=lpm-l+a+lp"'bwith a<lpm-l and 0<b<pthen for
A E X+ we have

1, ifA=(pi-aj,µ2+aj)forsomeJC[-l,m-1];(Sp(a) : D(µ)) =
0, otherwise.

Combining (5) and 3.3(9) we get (where t is as in 3.3(9)):

(7) Suppose that q 1 is a root of unity. For A, p E A+ (n, r) we have
[Sp(t(p')) : Sp(t(A'))] _ [0(µ) : L(A)].

Here 0(µ) denotes the Weyl module of highest weight µ for the ordinary gen-
eral linear group G of degree n. This is the formal q-analogue of Erdmann's
result, [47; (2.3) Proposition], proved for ordinary general linear groups and
symmetric groups. The result in the classical case has the consequence that
each decomposition number for a general linear group is also a decomposi-
tion number for a symmetric group. However, in our case the decomposition
number on the left of the equation is for a Hecke algebra and on the right is
for an ordinary general linear group, so we have no such q-analogue of this
punch-line.

We now consider an involution # : A+(n, r)row -> A+ (n, r)row which
is closely related to the bijection c : A+(n, r),.1 -+ A+(n, r)row From the
standard description of H(r) by generators and relations one sees that there
is an involutory algebra automorphism # : H(r) -> H(r) given on the gen-
erators by #(Tsa) = -T3 + (q - 1)1, for 1 < a < r. We also write #(h)
as h#, for h E H(r). For an H(r)-module U affording the representation
r : H(r) -> Endk(U) we write U# for the vector space U regarded as an
H(r)-module via the representation 7r o #. Putting 0# = 0, for a morphism
0 : U -> U' of finite dimensional H(r)-modules, we obtain an isomorphism
from the category of finite dimensional H(r)-modules to itself.

From the definitions, we have:

(8) # o J = J o # and therefore (U°)# - (U#)°, for U E mod(H(r)).

We shall also need:

(9) for a= (al, ... , a,,) E A+(n, r) we have x(a)# = (-1)'"(O1)y(a), where
n(a) is the number of parts of a of size 2.

Proof It is enough to consider the case a = (r). Since H(r) is a Frobenius
algebra, there is a unique submodule of H(r) isomorphic to the trivial mod-
ule. It follows that kx(r) = {h E H(r) I Tsah = qh, for all 1 < a < r}, and
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similarly we have ky(r) = {h E H(r) I T,ah = -h, for all 1 < a < r}. Now
for 1 <a < r we have

T,ax(r)# _ (_T# + (q - 1)1)x(r)#
_ _(Tsa x(r))# + (q - 1)x(r)#

_ _x(r)#

so that x(r)# E ky(r) and x(r)# = cy(r) for some c E k. Comparing
coefficients of T,,0 in x(r)# and cy(r) we get c = (-1)(2), which gives the
result.

(10) For a = (al, ... , a,,,) E A+ (n, r) we have

(H(r) ®H(a) k)# - H(r) ®H(a) k,.

Proof We have H(r) ®H(a) k - Hx(a) and H(r) ®H(a) k, = Hy(a) by
2.1(20). The restriction of # : H(r) -> H(r) defines an H(r)-module isomor-
phism (Hx(a))# --> Hy(a).

We also have the following, from Proposition 4.1.7 and the remarks before
Proposition 4.1.4.

(11) For a = (al,... , a,,,) E A+(n, r) we have

(H(r) ®H(a) k,)° = H(r) ®H(a) k,.

Now from (8) and (10) we obtain:

(12) (H(r) ®H(a) k)° = H(r) ®H(a) k, for a E A(n, r).

Let S be a finite dimensional k-algebra. We write Grot(S) for the
Grothendieck group of the category of finite dimensional left S-modules. For
a finite dimensional left S-module X we write [X] for the corresponding ele-
ment of Grot(S). Note that since the functor f : mod(S(n, r)) -> mod(H(r))
is exact, it defines a homomorphism [f] : Grot(S(n, r)) - Grot(H(r)) satis-
fying [f]([X]) = [fX], for a finite dimensional S(n, r)-module X. Similarly
we have defined a homomorphism Grot(H(r)) -> Grot(H(r)) taking [U] to
[U#], for a finite dimensional H(r)-module U.

(13) For A E A+(n, r) we have [Sp(A)#] = [Sp(A')].

Remark We give a more precise version of this in the next section, see
Proposition 4.5.9.
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Proof We write w for the standard involution of symmetric function theory
(denoted w in [63]). We identify the formal character of a G-module which
is polynomial of degree r with a symmetric function of degree r. We have
w(ch A"E) = ch S'E, from the definition of Co, and w(x(p)) = x(µ') for all
p E A+ (n, r), by [63; I, (3.8)]. We have ch A E = x(A) + >, a px(p), for
non-negative integers ap, p E A+(n, r), with aµ zero unless p > A. Applying
Co, we also have ch Sa' E = x(A') + EA aµx(p'). Hence we have the formulas

[A"' E] = [o(A)] + a,, [V (,a)]
u

and

[SA'E] = [o(A')]+ au[V(p')]

in Grot(S(n, r)). Applying [f] and using 2.1(20), and (1) we obtain the
formulas

[H(r) ®H(A') k$] = [Sp(A)] + au[Sp(p)]
It

and
[H(r) ®H(A') k] = [Sp(A')] + Ea. [Sp(p']

13

in Grot(H(r)). Applying the homomorphism Grot(H(r)) -, Grot(H(r))
defined by the automorphism # : H(r) -> H(r) to the first formula and
invoking (11) we obtain

[H(r) ®H(A') k] = [Sp(A)#] + a.[Sp(p#)]

Assuming inductively that [Sp(p)#] = [Sp(p')] for all p > A and comparing
the above displayed formula with the previous one we obtain [Sp(A)#] _
[Sp(A')], as required.

We now give the promised relationship between # and t. We define an
involution A , A# on A+(n, r)row by D(A)# = D(A#).

(14) For A E A+(n, r)row we have A# = t(a).

Proof We have

1 = (T(t(A)) : 0(A'))
_ [Sp(A') : D(t(A))] = [Sp(A) : D(t(A)#)]

_ (T(t(.A)#) : 0(A))
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and hence A < t(A')#. Thus we have a bijection

0 : A+(n r)row -> A+(n, r)row,

O(A) = t(A')#, such that O (A) > A for all A. It follows that 0 is the identity,
i.e. A# = t(A'), for all A E A+ (n) r)row.

We consider the direct sum of the Grothendieck groups of finite dimen-
sional H(r)-modules, for r > 0. We make a graded commutative ring with
identity R = ®d>° Rd, where Rd = Grot(H(d)) for d > 0 and where R° is
freely generated, as an abelian group, by 1R. The multiplication R° x Rb -.
R' +b is given by [X] [Y] _ [Indl (a b)(X ® Y)], for X E mod(H(a)),
Y E mod(H(b)) (and a, b > 0). We leave it to the reader to check that mul-
tiplication is well-defined, associative and commutative (cf. the case q = 1 in
[63; I,Section 7]). This ring is also discussed, in the classical case q = 1, in
[39; Section 4.7, Remark 3] and in [48]. We shall give a description of R by
generators and relations.

Let A denote the ring of symmetric functions in infinitely many variables
x1i x21 ..., as in [63]. Thus A = ®d>° Ad is a graded ring, freely generated
by the complete symmetric functions hd E Ad, d > 0. For A = (A,, A2, ...)
we put ha = hal ha, ... (as in [63]). The complete symmetric functions hA
form a Z-basis of A, consisting of homogeneous elements, as do the mono-
mial symmetric functions mA (as A varies over partitions). We define a ring
homomorphism 0 : A -> R by putting 0(hd) = [k] E Rd, for d > 0. Then
0 = ®d>° Bd is a homomorphism of graded rings and Ker(B) = ®d>° Ker(Bd)
is a homogeneous ideal of A.

Let n > d. We identify a character of an S(n, d)-module with an ele-
ment of Ad, in the usual way (see Section 4.3). Thus we have B(ch S,\E) =
9(h,) = [H(d) ®H(A) k] = [fS\E], by 2.1(20), for any A E A+(n,d), where
f : mod(S(n, d)) --> mod(H(d)) denotes the Schur functor. However, the
elements ha = ch SAE, A E A+(n, d), generate the additive group Ad and
so we must have 0(chX) = [fX], for every X E mod(S(n,d)). Thus, from
(2)(ii), we have 9(A d) = Grot(H(d)) and 0 : A - R is surjective. If q is not
a root of unity, or q = 1 and k has characteristic 0, then the Schur functor
f : mod(S(n, d)) -> mod(H(d)) (for n > d) is an equivalence of categories,
Section 2.1 Remark (iii), and it follows that 0 : A -> R is an isomorphism (cf.
[63; I, Section 7], where the case q = 1, k = C is discussed). So we assume
for the rest of this section that q is a primitive lth root of unity and either
that 1 > 1 or that 1 = 1 and k has characteristic p > 0.

For an integer t, we denote by ikt : A -> A the corresponding Adams
operation. Thus 0t is the ring homomorphism such that it(mA) = mtA, for a
partition A. We nowtake ttobelif1> 1andtake ttobepifl= 1andkhas
characteristic p > 0. The map it is essentially the map induced on characters
by the appropriate Frobenius morphism. Suppose first that 1 > 0. We fix a
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degree d > 0 and choose n > id. We have the quantum general linear group
G of degree n, the "classical" general linear group scheme G of degree n and
the quantum Frobenius morphism F : G -* G. For A E A+ (n, d) we have the
simple G-module L(a) and hence the simple S(n, 1d)-module L(A)F L(la).
Thus the character of L(la) is Ot(chL(A)). Since fL(1)) = 0, by 4.3(1), we
have B(ch L(la)) = 0. Moreover Ad is spanned by the characters ch L(,X),
A E A+ (n, d), so that 0(0t(Ad)) = 0. Similarly, in the case 1 = 1, one may
argue as above using the ordinary Frobenius morphism G -> G so that we
have 8(,t(Ad)) = 0 in that case too.

Let I _< Ker(B) be the ideal of A generated by 0t(Ad), for all d > 0.
Note that I = ®d>O Id is a homogeneous ideal of A. A partition A may be
expressed in the form a + t/3, for unique partitions a, /3 with a restricted.
Moreover, we have mamtp E m«+tp + Eµ<a+tp Zm,. Hence the elements
m«mtp (a,/3 partitions and a restricted) form a Z-basis of A, consisting of
homogeneous elements. Thus Ad/Id is a free abelian group of rank equal
to the number of restricted partitions of d, for d > 0. Thus Bd induces a
surjective homomorphism Bd : Ad/Id Grot(H(d)) and, since Ad/Id and
Grot(H(d)) are free abelian groups of the same rank, Bd is an isomorphism
and hence Id = Ker(B)d, for d > 0, and I = Ker(B).

Remark The characteristic map of symmetric function theory is an iso-
morphism between the graded commutative ring whose dth component is
the group X(Sym(d)) of generalized characters of Sym(d) and Ad, see [63;
I, Section 7]. Under the isomorphism X(Sym(d)) -+ Ad, the subgroup Id =
Ker(B)d corresponds to the additive group of generalized characters which
vanish of all r-regular elements of Sym(d), where we say that g E Sym(d)
is r-regular if no cycle length of g is divisible by r (cf. [48]). We leave the
details to the interested reader.

Now A is free on the complete symmetric functions hd, d > 1, so that, to
describe R = A/I by generators and relations, it is enough to give an explicit
formula for Vi(hd) in terms of the generators hr. Let ( E C be a primitive
tth root of unity. We have the formula

0t(hd) _ ma(11()...,(t-1)hA (*)
AEA+(t,td)

due to Nuttall, [70].
There are many instances of a formal similarity between the represen-

tation theory of the symmetric groups over a field of characteristic p > 0
and that of the Hecke algebras over a field of characteristic 0 at a pth root
of unity, for example in the works of Dipper and James [20]. From (*), and
the fact that I = Ker(O), proved above, we have another example of this
phenomenon, as follows.
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(15) Let p be a prime. Let k1 be a field of characteristic p > 0 and let q be a
primitive pth root of unity in a field k2. Then the rings ®d>o Grot(k1Sym(d))
and ®d>o Grot(H(d)) are isomorphic (as graded rings), where H(d) denotes
the Hecke algebra of degree d over k2 constructed via q.

It remains to give the promised explicit description of ,0t(hd), for d > 0.
Let S be the set of sequences of positive integers of length at most t, includ-
ing the empty sequence which we denote by 0. For 0 # a = (al, ... , au) E
S, we define the "unnormalized monomial symmetric polynomial" m« =

x"- where the sum runs over sequences (i1, ... , of dis-
tinct elements of [1, t]. We put in-0 = 1. Our aim is to give an explicit formula
for f(a) =

Let 0 # a = (al, ... , au) E S. Note that if t divides a then we have
xa = 1 , for x E { 1, C, ... (t-1), from which we get:

(i) f (al, ... , au) = (t - u + 1) f (al, ... , au_1), if a,, is a multiple of t.

Note also that if t does not divide a then Et=l (($-1)a = 0, from which we
get:

(ii) f(al,...,au) _ -f(al+au,a2,...,au_1)-f(al,a2+au,...,au-1)
- f(a,,...,au_1 + au)
- i$=1 f (a (z))

if a is not a multiple oft, where a(i) _ (a1i ... , a$_ 1, a$+au, a$+1) .... au-1),
for1<i<u-1.

W e denote the length of a E S by u(a). F o r 0 a = (al, ... , au) E S we
consider a set S(a) of associated partitions. Precisely, we denote by S(a) the
set of all sequences A = (A1, . . . , A,) of non-empty subsets of [1, u] such that
[1, u] is the disjoint union of A1,... , A,, and such that EiEA, a$ is divisible
by t, for 1 < j < r. We denote the number of components of A E S(a) by
r(A). For A E S(a) we set

na(A) = r(1A)!(-1)T(A)+u(a)tv(A)(IA1I -1)!...(IAr(A)I - 1)!

We claim that
E n«(A) (t)

AES(a)

that is, f (a) = g(a), where

g(a) _ na(A)

AES(a)
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for 0 # a E S. We set g(0) = 1. Clearly, f : S -> Z is determined by
the properties (i),(ii), and the condition f (0) = 1, so it suffices to show that
g : S --- Z also has these properties.

Consider property (i). Let a = (al, ... , and suppose that a,, is
divisible by t. Let S(a)' denote the set of A E S(a) such that {u} occurs
as some component of A and let S(a)" denote the complement of S(a)' in
S(a). Note that S(a)' is the disjoint union of the sets S(a, j)', j > 1, where
S(a, j)' is the set of A = (A1i ... , Ar) E S(a) such that Aj = {u}. Thus we
have

g(a) = 1: 1: na(A) + na(A).
j>1 AES(a,j)' AES(a)"

Let l3 = (al, ... , For B = (B1, ... , Br) E S(3) we define
B'(j) _ (B1, ... , Bj_1, {u}, Bj, Bj+1, .... Br), for 1 < j < r + 1. Then we
have

r(B)+1

na(A) _ na(B'(j))
AES(a)' BES(p) j=1

Now we have

na(B'(j))= (r(B) +
1),(-1)u(a)+1+r(B)+ltr(B)+1(IB1I-1)! ... (IBr(B)I-1)!

_ t
r(B) + 1 nP(B)

for B E S(,3), 1 < j < r(B) + 1. Hence we have IAES(a)' na(A) = tg((3).
Now consider I:AES(a)" na(A). For B = (B1, ... , Br) E S(/3) we define

B"(j) = (B1i ... , Bj_1, Bj U{u}, Bj+1i ... , Br), for 1 < j < r. We get

r(B)

na(A) _ na(B"(.1))
AES(a)" BES(/3) j=1

Now we have

na(B"(j))
1 (-1)u(a)+l+r(B)tr(B)

r(B)!
x (IB1I -1)!...(IBj-1I -1)!IBjl!(IBj+II -1)!...(IBr(B)I -1)!

=-IBjlntp(B)

for B E S(O), 1 < j < r(B). Thus we have

r(B)

E na(B"(j)) = -(u - 1)na(B)
j=1
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and hence

L, na(A) = -(u - 1)g(3)
AES(a)"

Thus we have g(a) = (t - u + 1)g(Q).
We now consider property (ii). So let a = (al, ... , au) E S with au

not divisible by t. Let X C [1, u - 1] x N x S(a) be the subset consisting
of the triples (i, j, A) such that i and u belong to the component Aj of
A = (A1, A2, ... , A,). Consider the sum

9 (a) = E na(A)

(i.j,A)EX
I Aj1 - 1

We have

g' (a) = 2
na(

IAI
-
-17jEN (i,A)EXi

where Xj is the subset of [1, u - 1] x S(a) consisting of the pairs (i, A) such
that (i, j, A) E X. Now for given j and A such that Aj contains u, there are
IAj I - 1 values of i E [1, u - 1] such that (i, A) E Xj. Hence we have

g'(a) _ 1: 1: na(A) _ na(A)
jEN AES(a,j) AES(a)

= g(a)

where S(a, j) _ {A E S(a) I it E Aj}.
We now break the sum up another way. We have

u-1 na(A)
g(a)=g,(a)=E

i=1 (j,A)EX'
I Aj I - 1

where Xi = {(j,A) E N x S(a) I (i, j, A) E X}, for 1 < i < it - 1.
We write Yi for the subset of N x S(a(i)) consisting of those pairs (j, B)
such that i E B1. Note that if (j,B) E Y`, then (j,B(i)) E Xi, where
B(i) = (B1, ... , Bj_ 1 i Bj U{u}, Bj+1 i .... Br), and moreover, the assign-
ment (j, B) i-} (j, B(i)) determines a bijection from Yi to X. Hence we
have

u-1 na(B(i))g(a) _ 1: 1: IB
ji=1 (j,B)EY' 2

Now we have

1

na(B(i)) = r(B), (-1)''(B)+u(a(i))+1

x (IB11-1)! ... (I Bj. i I -1)!IBj I!(IBj+1l - 1)! ... (IBr(B)I - 1)!

_ - I Bj I na(i)(B)
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for (j, B) E Y. Thus we get

u-1

g(a) E E n«(i)(B)
i=1 (j,B)EI"
U-1

1: g(a(i))-
i=1

as required.
We have shown that g : S - Z has the properties (i),(ii) enjoyed by

f : S -> Z. Therefore f = g and (t) holds for all 0 0 a E S.
We can rewrite (t) so that the summands do not involve denominators

as follows. We write S(a) for the set of "normalized" partitions in S(a),
that is, the set of A = (A1,. .. , A,) E S(a) such that 1 occurs in Al, such
that the minimal element of A\A1 occurs in A2, and so on. We define
na(A) = (-1)''(A)+u(a)(IA, I - 1)! ... (IAr(A)I - 1)!, for A E S(a). Note that
na(A) is the sum of all terms na(A'), in which A' is obtained by permuting
the components of A. Thus we have

AES(a)

Finally, note that, for A = (1Y12Y2 ...), we have

1

so that identifying A/I with R, via the map induced by 0, we get the follow-
ing.

(16) R is the commutative ring given by generators hd, d > 1 and relations

E E rt;k (A)hi1h22 ... = 0
a-(1a12b2...) yl!y2! ...

AES(a)

for d > 1, where the sum is over partitions of td having at most t parts. In
this presentation hd corresponds to [k] E Grot(H(d)), d > 0.

4.5 Some identifications

We identify the module V(A) with the module of bideterminants, as in [51],
and we identify the Specht module Sp(A) with the Dipper-James Specht
module, as in [20]. We first describe 0(a) by bideterminants.

Recall that, for A E X(n), we have a 1-dimensional B-module k,, with
weight A. Let ra : kA --+ kA ® k[B] be the structure map and let as E k[B] be

1
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the element given by 7-,x(x) = x 0 aa, for all x E k,\. By definition, for A E
X+(n), the module V(A) = IndGka is the space of elements x Of E ka®k[G]
such that (raoid)(x(Df) _ (id®(7r(Did)6)(xo f ), where a : k[G] -+ k[B] is the
restriction map. We identify V(A) with the G-submodule of k[G] consisting
of the elements f such that as ® f = (ir ® id)b(f ).

Proposition 4.5.1 Let M be a finite dimensional G-module with high
weight A E X+(n) and dim MA = 1. Let ml, , m, be a basis of weight
vectors with m1 E Ma, and let fij, l < i, j < r, be the corresponding
coefficient functions.
(1) We have f1i E V(A), for 1 < i < r.
(ii) If M has a good filtration then V(A) is spanned by the elements fli,1 <
i < r.

Proof (i) Let N = Et,#a Mµ = km2 +... + km,.. Since A is a high weight
of M, we have that N is a B-submodule of M. Since M/N '-' ka we have
as = ir(fll). To show that f1i E V(.A), we must verify that as 0 f1i =
(7r ® id)b(f1i), i.e.

7r(fil) 0 f1i = E ir(flj) 0 7r(fji) l*)

for 1 < i < r. However, for 2 < j < r, we have rN(mj) = Ei mi ® ir(fij) E
N 0 k[B] and hence 7r(flj) = 0. This gives (*).
(ii) Since M has high weight A, occurring with multiplicity 1, and has a
good filtration, there is a G-submodule M', say, such that M/M' = V(A)
and A is not a weight of M'. The linear map 0 : M -> V(A), defined by
0(mi) = fli,1 < i < r, is a G-module homomorphism. Since -(fl) = 1,
the map ¢ is not zero. Since L(A) < V(A), and has weight A, we have
¢(M') fl L(A) = 0. But L(A) is the G-socle of 0(A) so that q(M') = 0 and
so 0 induces a non-zero G-module homomorphism 0 : M/M' -+ V(A). Now
M/M' V(A) and EndG(V(A)) = k, so that any non-zero homomorphism
M/M' -+ V(A) is an isomorphism. In particular is an isomorphism and
is surjective, i.e. V(A) is spanned by the coefficient functions fit,1 < i < r.

Proposition 4.5.2 Let A E A+(n, r) and let A' = p = (p1, u2, .. )
Let S denote the p-tableau with first row entries 111, ... , 2, 1 (from left to
right), second row entries P2i ... , 2,1 and so on. Then V(A) has k-basis
{(S: T) I T E AStan(p)}.

Proof The module A'E has a good filtration and has highest weight A,
which occurs with multiplicity 1. The module A 'E has basis of weight
vectors eT, T E Tabl(p), in the notation of Section 1.2. Furthermore we
have es E (A E)', so that, by Proposition 4.5.1 and Lemma 1.3.1, V(A)
is spanned by {(S : T) I T E Tabl(p)}. By Theorem 1.3.4, the elements
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(S : T), T E AStan(p), are linearly independent and hence the dimension
of the space V(A)' spanned by all such bideterminants has dimension equal
of the number of antistandard p-tableaux. This is equal to the number of
standard A-tableaux. Moreover, the dimension of V(A) is independent of q
(e.g. by Weyl's character formula) and is equal to the number of standard
A-tableaux when q = 1 (e.g. by [51; (4.5a)]). Hence we have V(A)' = V(A)
and {(S : T) I T E AStan(p)} is a k-basis.

For the rest of this section we assume r < n. To identify the Specht
module Sp(A) with that of Dipper and James we give another realization
of V(A), this time as the image of a homomorphism between an exterior
power and a symmetric power. For a E A(n, r), we write a for the partition
obtained by writing the parts of a in descending order.

Proposition 4.5.3 Let a, a E A(n, r) with A = & and p = Q-
(i) If HomG(A'E, SAE) ,- 0 then we have A' > p and if A' = p then we have
HomG(A«E, S/E) = k.
(ii) The image of any non-zero homomorphism from A E - SµE is isomor-
phic to o(p).

Proof By 3.3 Remark (i) we have AaE = A\E and S16E = SµE so that
we may assume a = A and /3 = p. By 2.1(8), we have HomG(A'E, SµE)
(AAE)". Now both assertions of (i) follow from the fact that A E has unique
highest weight A' and this occurs with multiplicity 1.

Let 0 : Aµ'E -} SµE be a non-zero homomorphism. Since Aµ'E E
.''(0) and has highest weight p occurring with multiplicity 1, there is a
submodule M of A "E such that nµ E/M is isomorphic to V(p) and all
weights of M are less than p. We now get HomG(M, SO E) = 0, by 2.1(8), and
hence O(M) = 0. Thus 0 induces a non-zero homomorphism : V(p) -. SµE
and the image of is the image of 0. If (L(p)) = 0 then induces a non-
zero map V(p)/L(p) - SµE. But all weights of 0(µ)/L(p) are less than
p so that another application of 2.1(8) gives HomG(V(p)/L(p), SµE) = 0.
Thus we must have /(L(p)) 0 0 and, since L(p) is the socle of 0(p), we get
that is injective. Thus the image of , and therefore also of 0, is isomorphic
to 0(p), as required.

To continue we shall need the following generality.

Proposition 4.5.4 Let X E J7(17) be polynomial of degree r. We have
X = S(n, r) Xw, where w = (1, 1, ... , 1) E A+(n, r).

Proof We first take X = Se, where S = S(n, r) and e = &4,. We have S
Xw = SeSe = Se = X. Now suppose that X = V(A) for some A E A+(n, r).
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We have Se E®' by 2.1(7) and we have an S-module epimorphism 0
E®' -> V(A). Hence we have S V(A)' = S 0((E®'')w) = 8(S (E®*)') _
8(E®') = X. Now suppose that X has a submodule Y E F(V) with X/Y S,
V(A) for some A E A+ (n, r) and that Y = S Y'. From the above we get
X/Y = Hence we have X =
S Xw and so the result follows for arbitrary X E Y(V)
by induction on filtration length.

We now execute a base change argument. Let R = k[t,t-1], where t is
an indeterminant. Recall that any S(n, r)R-module X has its weight space
decomposition X = ®aEA(n r)X", where X" = qX, a E A(n, r).

Proposition 4.5.5 Suppose X is a finitely generated S(n, r)R-module such
that, for every homomorphism of R into a field, R -> k', the S(n, r)kl -module
Xk' = k' OR X has a good filtration. Then we have X = S(n, r)R Xw.

Remark The base change condition on X is equivalent to the condition
that it has a good filtration (suitably defined) as an S(n,r)R-module; see
[66].

Proof Let Y = S(n, r)R Xw. Let R -> k' be a homomorphism into a field.
The image of k' OR Y - k' COR X is S(n, r)kl . Xk, and this is Xk by the
hypothesis. Thus we have Y = X, as in the last paragraph of the proof of
Theorem 1.3.4.

We fix A = (A,, A2, ...) E A+(n, r). Let T1 : [A] -> [1, r] be the tableau
whose first row is 1, ... , A1, whose second row is Al+1,... , a1+A2, and so on,
and let T2 : [A] --> [1, r] be the tableau whose first column is 1, ... , µ1, whose
second column is p1 + 2, ... , p I + µ2, and so on, where p = (µ1,µ2, ...) is
the transpose A' of A. W 'e have a uniquely determined element wa E Sym(r)
such that T2 = wa o T1.

By [20; proof of 4.1 Lemma], we have a unique (Sym(A'), Sym(A)) double
coset in Sym(r), D = Sym(A')dSym(A) such that d-1Sym(A')d fl Sym(A) =
{1}. By [20; 1.6 Lemma. (iii)], each element g E Sym(A')dSym(A) has a
unique expression g = udv with u E Sym(A'), v E Sym(A) and, if d is
chosen to have minimal length in this double coset, then we have l(udv) =
1(u) + 1(d) + 1(v). Thus we have y(A')Tdx(A) = EgED c9T9, where c9 =
(-q)N-1(u) for g E D with g= udv, u E Sym(A'), v E Sym(A). In particular
we have y(A')Tdx(A) # 0. Moreover, if g = udv E D (with u E Sym(A')
and v E Sym(A)) then we have y(A')T9x(A) = (-q)1(')y(a')Tdx(A) # 0.
Furthermore we have D = by [20; proof of 4.1 Lemma],
so we have:

Proposition 4.5.6 y(A')T,,,,,,r(A) 0 0.
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We append k' to our usual notation when we wish to emphasize that the
construction is with respect to the general linear quantum group over the
field V. Let K = k(t) and take, as above, R = k[t,t-1] (where t is an
indeterminant). Let )A' = u = (pi,. .. , µ,,,) (with p,,, > 0) and let a denote
the element of A(n, r) obtained by reversing the order of the parts of A', i.e.
a = (/gym, ,p1).

By Proposition 4.5.6, right multiplication by T,,,,,,,Kx(A)K defines a non-
zero H(r)K-module H(r)Ky(a')K --* H(r)Kx(A). By 2.1(20), we have the
isomorphism H(r)K ®H(a)K Ks -> H(r)Ky(\')K taking 1 ® 1 to y(t')K
and the isomorphism H(r)K ®H(A)K k -> H(r)Kx(.)K taking 1 ® 1 to
x(A)K. Hence we have a non-zero homomorphism H(r)K ®H(a)K Ks
H(r)K®H(A)K K taking 1®1 to y(.')KT,,,,,,K®1. In view of the isomorphisms

H(r)K ®H(a) Ks --> fKAA'EK and H(r)K ®H(A) K - fKSAEK, of 2.1(20),
we have a non-zero H(r)K-module homomorphism fKA EK -> fKSAEK
taking ev,K to T,,,a,,Keu,K. Now by 2.1 Remark (iii), this H(r)K-module
homomorphism extends to an S(n, r)K-module homomorphism A"EK ->
SAEK. Thus we have an S(n,r)K-module A"EK -* SAEK such that
0(ev,K) = Twa,,Keu,K

We write ER for Rel,K + + Re,,,K. We write H(r)R for the R-
subalgebra of H(r)K generated by Tsa, a E [1, n - 1], and write H(a)R for
the R-subalgebra generated by Tsa, a E J(a), where J(a) is as in 2.1. We
write Rs for R viewed as an H(r)R-submodule of Ks. We write n"ER for the
R-submodule of n"EK spanned by the elements ei,K, i E I(n, r). Similarly
we write SAER for the R-submodule of SAEK spanned by the elements ei,R,
i E I(n, r). It is easy to check that AaER is an S(n, r)R-submodule of
A"EK and that SAER is an S(n, r)R-submodule of SAEK. Furthermore, it
is easy to check that one has, for any homomorphism R -# V into a field, an
S(n, r)k,-module isomorphism V OR A"ER - A"Ek, taking 1® ei,K to ei,k,
and an S(n, r)k,-module isomorphism V®R SAER -* SAEk, taking 1 ®ei,K
to ei,k,, for i E I(n, r).

We leave it to the reader to check that the isomorphism H(r)K ®H(a)K
Ks -} !KA°EK restricts to an isomorphism H(r)R ®H(a)R Rs - (AaER)w
In particular we have (A"ER)" = H(r)Re,,. Now A"Ek, has a good S(n, r)k,-
module filtration for every homomorphism R -> k' and every field k' so that,
by Proposition 4.5.4, we have n"ER = S(n, r)R H(r)Re, = S(n, r)Re,,.
Thus we have O(AaER) < S(n, r)Ry(A')KT,,,,,,,Keu,K < SAER. Thus, by
base change, we obtain an S(n, r)-module homomorphism 0 : A"E -+ SAE
such that y(A')T,,,a,eu. Now we have Im(B) = B(S(n,
S(n, r)y(A')TWa,e, . Thus from Proposition 4.5.3 we have the following.

Proposition 4.5.7 V(A) is isomorphic to the submodule of SAE generated
by y()1')Tu,a,eu.

Applying the Schur functor and identifying fSAE with Hx(A), as in 2.1(20),
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we obtain our promised identification of Sp(A) with the Dipper-James defi-
nition of the Specht module.

Proposition 4.5.8 Sp(A) = H(r)y(A')T,,,,, x(A).

Remarks (i) This shows incidentally that the module Sp(a) is independent
of the choice of n > r.
(ii) The presence of T,,,,, in the above rather than T,,,,, which occurs in [20],
may be accounted for by the fact that our Specht module is a left H(r)-
module and that of Dipper and James is a right H(r)-module.

Examples Taking A = (r) we get Sp(r) < Hx(r) = kx(r) so that Sp(r)
k. Similarly we get Sp(1'') = k,.

We now give the promised improvement on 4.4(13).

Proposition 4.5.9 For A E A+(n, r) we have Sp(A')# - Sp(a).

Proof Note that if S(n, r) (and hence H(r)) is semisimple then this is true
by 4.4,(13). Let A' = µ = and let a = a2, a1). We
have a surjective homomorphism AaE -* V(A) and so a surjection fo :
WE -* f 0(A) with kernel N, say. We have a non-singular contravariant
form on AaE, inducing one on f AaE (see the final paragraph of Section 4.1).
Thus we get NJ- - Sp(a)°. On the other hand, since Sp(A') is isomorphic
to the left ideal H(r)y(A)T,,Ax(A'), by Proposition 4.5.8, we get Sp(A')#
#(H(r)y(A)Twax(A')) = H(r)x(A)T# y(A') so that, in view of 2.1(20)(ii), we
have

Sp(A')# - H(r)x(A)T#6, fA E. (f)

Thus it suffices to prove that H(r)x(A)T#6 = N'. Indeed it suffices to
prove that

x(A)Tw#a 2 E N-'

for then we get Sp(A')# - H(r)x(A)T#e < N' - Sp(A)° and, since
dim Sp(A')# = dim Sp(A)° (e.g. by 4.4(13)), we must have equality.

Note that if S(n, r) is semisimple then AaE contains a unique submodule
isomorphic to L(A) and f AEE contains a unique submodule isomorphic to
Sp(a), and this is isomorphic to Sp(A')#, by 4.4(13). Thus, by (t) we get
H(r)x(A)T#ev = N' - Sp(A)° - Sp(a). In particular we have x(A)T#e E
Nl, in this case.

We now append k' to our notation to indicate that constructions are
made with respect to the quantum general linear group over the field P. Let
K = k(t), where t is an indeterminant, and let R = k[t]. Let OK : AaEK ->
SAEK be the GK-homomorphism such that cK(ev,K) = TW,,,,Keu,K (see
the proof of Proposition 4.5.6). Then ¢K restricts to an S(n, r)R-module
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homomorphism OR : A«ER -* S'ER (where the notation is as in the proof
of Proposition 4.5.6). Let NR denote the intersection of the kernel of OR with
f A"EK fl A«ER. Note that the form on A"ER is obtained by base change
from the form on AaEK and that Nk = k OR NR. Since x(A)KT# Kev,K E
NK we get x(A)kTw ke,,,k E N, - by base change, as required.

4.6 Standard Levi subalgebras of Schur algebras

Let v = (v1,... , v,,,) be a composition of n. We put Zi(v) _ [l, vi], Z2(v) =
[v1i VI + v2], ..., [vi + + v._1 + 1, n]. We write D(v, r) for the
set of (i, j) E I(n, r) x I(n, r) such that, for all 1 < a < r and 1 < b < m, we
have is E Zb(v) if and only if j, E Zb(v). We define the v-type of i E I(n, r)
to be p = (pi, ... , E A(m, r), where Pb = ji-1Zb(v)I, for 1 < b < m.
We define D(v, p) to be the set of elements (i, j) E- D(v, r) such that i (and
hence j) is of v-type p.

Let A = (A1 i A2, ...) E A(n, r). We say that j E I(n, r) is A-decreasing
if ja1 > ... > 72 >_ .11, jA,+aa > ... > Ja,+1, and so on. We write Q(n, r)
for the set of all (i, j) E I(n, r) x I(n, r) such that i is weakly increasing and
j is A-decreasing, where A is the content of i. We recall, from Section 2.1,
that A(n, r) has k-basis {cij I (i, j) E Q(n, r)} and hence S(n, r) has the dual
basis {Sij I (i, j) E Q(n, r)}.

We have the quantum submonoid M(v) of M(n), as defined in [36;
Section 2]. Let A(v) = k[M(v)] and let R(v) be the kernel of restriction
k[M(n)] -> k[M(v)] (i.e. R(v) is the defining ideal of M(v) in M(n)).
For i, j E I(n, r) we write cij for the restriction of cij to M(v). Now
R(v) = ®T_o R(v, r) is a graded biideal and coideal so that A(v) inher-
its a grading A(v) = ®°_o A(v, r). Furthermore, we have the natural iso-
morphism M(v) -> M(vi) x . . . x M(v,,,) so that, by transport of struc-
ture, we obtain a multigrading A(v) = ®PENr A(v, p), with A(v,r) =
®PEA(m,r) A(v, p), for r > 0. We write flip for the coalgebra isomorphism
A(v1i pi) ® ... ® A(v,,,,, pm) -> A(v, p), obtained by restricting the isomor-
phism k[M(vi) x ... x M(v,,,)] -+ k[M(v)] to degree p = (pi, ... , E N.
We have

m m

dim A(v, p) = 11 dim A(vi, pi) _ I Q (vi , pi) I

i=1 i=1

and so

m

dim A(v, r) = E dim A(v, p) = II jQ(vi, pi)I
PEA(m,r) pEA(m,r) i=1

for P = (Pi, , Pm) E No
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We set Q(v, p) = Q(n, r)flD(v, p) and note that IQ(v, p) l = I'1 IQ(p, p) I.
Suppose that (i, j) E Q(n, r)\ UpEA(m r) Q(v, p). Then, for some 1 < a < r
and 1 < b < m, we have is E Zb(v) and ja V Zb(v) so that ciaja E R(v) and
hence cij E R(v). By a dimension count we therefore get:

(1) {ci2 I (i, j) E Q(n, r)\ UPEA(m,r) Q(v)p)} is a k-basis of R(v)
and {eij I (i, j) E UpEA(m.,r) Q(v, p)} is a k-basis of A(v, r).

Similarly we get:

(2) For P E A(m,r) we have that {eij I (i,j) E Q(v,p)} is a k-basis of
A(v, p).

We define the dual algebras S(v, r) = A(v, r)* and S(v, p) = A(v, p)*,
for r E No, P E A(m, r). The dual of restriction A(n, r) -> A(v, r) gives an
injective algebra map S(v, r) -> S(n, r) by which we identify S(v, r) with
a subalgebra of S(n, r). Dualizing the coalgebra decomposition A(v, r) =
®pEA(m,r) A(v, p) gives an algebra decomposition S(v, r) = ®pEA(m r)S(v, p).
We call the algebras S(v, r) and S(v, p) Levi subalgebras of S(n, r), for r E No,
p E A(m, r). From (1) and (2) we get:

(3) {Sij I (i, j) E Q(v, p)} is a k-basis of S(v, p).

Writing 1 = EpEA(m r) as an orthogonal sum of central idempotents,
according to the algebra decomposition S(v, r) = ®pEA(m r) S(v, p), it is not
difficult to convince oneself of the following.

(4) For p E A(m, r) we have rl,p where the sum is over all &, = iii
with i of v-type p.

We have an exact functor mod(S(v, r)) -* mod(S(v, p)) as follows.
For U E mod(S(v, r)) we set and for a morphism 0 : U , U'
of S(v, r)-modules we set to be the restriction of 0.

We now take r = n. Recall that e = u , where w = (1, ... , 1).

(5) eS(v, v)e = H(v).

Proof Note that eS(v, v)e = eS(n, n)e fl S(v, v). For ir E Sym(v) we have
u,ua E eS(v, v)e, by (3). Hence H(v), the k-span of {Su,u.r I it E Sym(v)}, is

contained in eS(v, v)e. Now let (i, j) E Q(v, v) and suppose that
0. Then we have i - u, by 2.1(4). Since i is weakly increasing we have i = u.
Also, 0 gives j - u. Hence j = uir, for some 7 E Sym(r), and the
condition (u, u7r) E Q(v, v) gives 7 E Sym(v).
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Thus we have an exact functor f : mod(S(v, v)) - mod(H(v)), defined
on objects by fU = eU, and defined on morphisms by restriction.

We need to keep track of the degree of the general linear group over
which we are working so we now write V(n, A) for the G(n)-module V(.\) if
we wish to emphasize the role of n. For p = (pi, ... , Pm) E No let A+(v, p) _
A+(vl, pl) x . x A+ (v,,,, pm). For A = (A(1), ... , A(m)) E A+(v, p) we have
the module DE(A) for G(v) (where E is the subset of H corresponding to v,
as in Section 4.2). Regarding the G(vi) x x O(vl, A(1))

®0(v,,,, a(m)) as a G(v)-module via the natural isomorphism G(v)
G(vi) x ... x G(v,,,) we have VE(A) = V(vi, )(1)) ® ... ®p(vm, )1(m))

Now DE(A) is a polynomial G(v)-module of degree r and any polynomial
G(v)-module U of degree r decomposes as a direct sum U = ®PEA(m r)
Since VE(A) is indecomposable we must have rjvpVE(.\) # 0 for precisely one
p E A+(m, r). We also write A E A(n, r) for the result of concatenating
a(1),)(2), ... , A(m). We have dim V(A);' = 1 so that eA V(A)' # 0 and
hence 0, where p = (p1,... , pm), with pi = IA(i)I, for 1 < i < m.
Hence we have:

(6) ?I,.p0E(X) = { o E(A),

for P E A(m, r).

if p = (IA(1)I,..., IA(m)I);

otherwise

We express the character X(.\) as a sum of characters of VE(p)'s, i.e.

x(A) = E apxr(µ).
PEA(m,r) PEA+(v,p)

The coefficient aµ is the multiplicity of 0E(µ) as a composition factor of
in the (very) classical case k = C and q = 1.

(7) 0(a) has an S(v, r)-module filtration 0 = Vo < O1 < ... < Oh = V(A),
where Vi/Vi-1 - V (µi) and I{i E [1, h] I µi = p} 1 = a,,, for µ E A+(v, r).
Moreover, we may arrange the order such that µi <E pi implies i < j.

Applying for p E A(m, r), we get the following.

(8) has an S(v, p)-module filtration 0 = Do < V < ... < O', =
where Vz/Di_1 - VE(r ), with T$ E A+(v, p), for 1 _< g < g, and

I{i E [l,g] I T' = T}I = a,, for T E A+ (v, p). Moreover, we may arrange the
order such that Ti <E Ti implies i < j.

We now specialize to the case n = r and p= v. For µ = (µ(l), .. . , µ(m)) E
A+ (v, v) we set SpE(µ) = eVE(p), which is naturally an H(v)-module, as
H(v) = eS(v, v)e. Our identification of DE(p) with O(vl, p(1)) ® . . . 0
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V(vm, p(m)) identifies VE(p)W with V(vl,p(1))W1 ® ® 0(v,,,, p(m))Wm
(where wi _ (1, 1, ... , 1) E A(vi, vi) and I p(i)I = vi, for 1 < i < m) so we
have:

(9) Sp (/-p) = Sp(p(1)) ®... ® Sp(p(m)), as H(v) = H(vi) ®... 0 H(v.)-
modules.

Moreover, from (8) we get:

(10) Sp(a) = eV(A) has an H(v)-module filtration 0 = Spo < Spl < <
Spy = Sp(a) with Spi/Spi-1 - Spr(r) and {i E [1,g]

I
T' = 7}1 = a7,

for p E A' (v, p). Moreover, we may arrange the order such that Ti <E T
implies i <j.

We conclude with a result which will be needed in Section 4.7.

(11) Let X E .T(V).
(i) For any Y E mod(S(n, r)) the natural mapHomG(X,Y)-->HomH(fX, fY)
is injective.
(ii) Assume that 1 + q # 0. For p E A(n, r), the natural map
HomG(X, SµE) -# HomH(fX, f SO E) is an isomorphism.

Proof (i) Let 9 E HomG(X,Y). If 0(f X) = 0 then 9 = 0 by Proposition
4.5.4.
(ii) We have dim HomG(X,SPE) = dim Xµ so, by part (i), it suffices to
show that dim HomH(fX, fSµE) < dim Xµ. Thus, by left exactness of
HomH(f -, SµE), it suffices to prove this in the case X = V(A), for A E
A+ (n, r).

We prove this first in the case p = (r). Assume HomH(f V(A), fSµE) #
0. Let a denote the element of A+(n, r) obtained by writing the entries in
a' in reverse order. Thus we have a surjection AaE 0(a), by Proposition
4.5.3(ii). We have Hx(r) = k so that if HomH(Sp(\), Hx(r)) # 0 then
HomH(f AaE, k) i4 0. Moreover we have f ARE by 2.1(20)(ii).
Thus we get HomH(a!)(k3, k) # 0, by Frobenius reciprocity, i.e. ks and k are
isomorphic as H(ay)-modules. In particular, if a is any entry of A' then
ks = k as H(a)-modules. Since q + 1 # 0, this can only happen if a = 1.
Thus A' = (jr) and A = (r). For A = (r) we have HomH(Sp(.), Hx(r)) =
HomH(k, k) = k and we get dim HomH(Sp(A), Hx(r)) = dim 0(a)("') in all
cases.

Now let A, ,u be arbitrary. Note that, for any U E mod(H), we have

HomH(U, Hx(p)) = HomH((Hx(p))°, U°)

HorH(Hx(p), U°) = HomH(µ)(k, U°)

HomH(µ)(U, k)
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by 4.4(11) and Frobenius reciprocity. Thus we have HomH(Sp(A), Hx(p))
HomH(u)(Sp(A), k). Moreover, by (10), we have an H(p)-module filtration
0 = Spo < Spl < ... < Spy = Sp(a) with Spi/Sp2-1 - Spz(rt) and Ifi E
[1, g] 1 T-t = r} I = aT, where E is the subset of H corresponding to p and the
numbers aT are defined by the equation

x(.) _ aTXE(r)
PEA(m,r) TEA+(µ,P)

Thus we get, by left exactness,

dim HomH(Sp(A), Hx(p)) < E aT dim HomH(m)(Spr(r), k)
T

and, by the case already considered, and (9), this is aµ. Moreover, in the
generic case (q an indeterminate) this gives dim HomH(Sp(.), Hx(p)) = a,,
by complete reducibility. Furthermore, in the generic case, the Schur functor
is an equivalence of categories and hence au. = dim HomG(V(.), SHE)
dim V(.\)/'. Thus, in general, we have
dim HomG(V(.), SAE) > dim HomH(Sp(.), Hx(p)), completing the proof.

4.7 Quotients of Hecke algebras

Let n > r and let 7r C A+ (n, r) be a cosaturated set of dominant weights
consisting of row regular partitions. Here cosaturated means that the com-
plement 7r` = A+(n, r)\7r is saturated, in the sense that whenever we have
A E lrC and p E A+(n, r) is such that p < A then we also have u E lr`.
Associated to it we have an idempotent E S(n, r). The algebra S(n, r) is
quasihereditary and we shall show that the Ringel dual is equiv-
alent to a certain quotient of the Hecke algebra H(r). This generalizes a
result of Erdmann, [45], which applies when q = 1 and 7r = A+(m, r) (for
m < n) consists of row regular partitions.

We first observe that S(n, r) has a theory of weights, in the sense of
the Appendix, Definition A3.8. We define 9 : A(n, r) , S(n, r) by B(a) =
a. Note that 1 = EaEA(n r) 9(a) = 1:aEA(n,r) a is an decomposition of
1 as an orthogonal sum of non-zero idempotents, and condition (i) for a
theory of weights is satisfied. For a E A(n, r) and A E A+(n, r) we have
dim Homs(n,r)(S(n, L(A)) = dim L(A)a. Thus, writing

S(n r)Ea = ® P(A)(da)
aEA+(n,r)

(where P(.\) is the projective cover of L()t)) we have da = dim L(.\)a. In par-
ticular we have da = 1 (where & is the dominant weight conjugate obtained
by writing the parts of a in descending order) and if dµ 0 0, for p E A+ (n, r),
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then L(p)a # 0 and hence it > a. This verifies condition (ii) and shows that
the element a+ of condition (ii) is a, for a E A(n, r). Certainly the map
A(n, r) - A+ (n, r), taking a to a+ = a, is onto, so that property (iii) is
satisfied and 9 : A(n, r) -+ S(n, r) is a theory of weights. (Indeed this is the
motivating example for the general definition.)

Let 7r be a cosaturated subset of A+(n, r) and let F C A be such that
t+ = 7r (where r+ = {a+ I a E r}). We put = er, i.e. & = >aErS.. As-
sume that n > r and let e = fu,. We put S = S(n, r) and Se = We have
Se = E®r. In particular Se is a tilting module. Hence, by the Appendix,
Lemma A3.9, the restriction map p : Ends(Se) is surjective.
We calculate the dimension of the kernel of p. For A E A+(n, r) we have (Se :
V(A)) = dim Homs(Se, 0(A)) = dim V(A)w = dim Sp(a), by Proposition
A2.2(ii). Thus we have ch E®r = Y:AEA+(f,r) dim Sp(A)ch V(A). Since we

have ch V(A) = ch O(A) we also have ch E®r = I:AEA+(n,r) dim Sp(A)ch A(A)
and so (Se : A(A)) = dim Sp(a), for A E A+(n, r). Hence, by Proposition
A2.2(ii), we have dim Ends(Se) = EAEA+(dim Sp(A))2. It follows from
Proposition A3.11(ii) (and Proposition A2.2(ii)) that dim Ends, (f Se) _
F-aE7r dim (Sp(A))2. Hence we have:

(1) p :Ends (Se) ---> Ends, is surjective and Ker(p) has dimension
EAE rC dim Sp(a)t, where ir` = A+\ir.

Note we have an isomorphism (eSe)°P --> Ends(Se) and so, combin-
ing this with the above, we have the surjective algebra homomorphism p' :

(eSe)°P -> Ends, given by p'(x)(y) = yx, for x E eSe, y E Se. Since
Se = E®r we have Se E .F(0) and hence O,rc(Se) E F,.(17) and it follows
from Proposition A3.11(i), that O,rc(Se) = 0. Hence eOrc(Se) < Ker(p').
However, O,c(Se) has a filtration with sections V(A), A E Ire, by Lemma
A3.1(ii), with V(A) occurring dim O(A)w = dim Sp(A) times. Thus we have:

(2) eO,rc(Se) has dimension EAE7.C(dim Sp(A))2 and is precisely the kernel
of p'. Hence p' induces an isomorphism (eSe)°P/eO,rc (Se) - Endst (Se).

eSe = H(r) and we have the antiauto-
morphism J : H(r) -> H(r) taking Tsa , Tsa, for 1 < a < r. Combining this
with the above we obtain an isomorphism p" : H(r)/I(7rc) Ends,

There is another description of I(7r`), which we now give. Let K = k(t)
(where t is an indeterminate). Let SK = S(n, r)K be the Schur algebra over
K and S(n, r)R the Schur algebra over R = k[t, t'1]. Let eR, &,R E S(n, r)R
be the idempotents as above but over R. We let I(7rc)K be the corresponding
ideal over K and I(lrc)R = I(lr`)Kf1H(r)R. Then we have I(lr`)R < Ker(p")
and by base change we obtain k ® I(ir`)R < Ker(p"). By dimensions we
obtain:

(3) I(7r`) = k ®R I(lr`)R.
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Note that, from the semisimplicity of S(n, r)K, we get that I(7r')K is the
direct sum of all submodules of H(r)K which are isomorphic to Sp(A)K for
some A E wrC.

Now assume that 7r consists of row regular partitions. We define T =
Se $ (®AE, T(A)). By 4.3(4), (9) and (10) we have that T(A) occurs as a
component of Se, for all A E a. Thus T is a full tilting module. Hence we
have S'(7r) = Ends, (eT)°P = Ends, by Proposition A4.9, and so:

(4) Sp(a) = S£P - Ends{ (f Se)°P is isomorphic to H(r)/I(7rc).

In particular H(r)/I(irc) is a quasihereditary algebra.
It was claimed in [45] that the category .F,r(Sp) of finite dimensional

H(r)-modules which have a filtration by the modules of the form Sp(a),
A E a (for q = 1, a = A+ (m, r), m < n), is equivalent to the category of
S(n, r)-modules which have a filtration with terms 0(A), A E a. However,
as noticed by Cline, Parshall and Scott, [12], it is not shown in [45] that
such an H(r)-module must be annihilated by 1(7r). This problem is rectified
in [12; (3.8.3)] (for the case q = 1, a = A+ (n, r)). We found the following
general argument (which is anyway quite different) before seeing [12], but
after being informed of the difficulty in [45].

(5) Suppose that 1 + q # 0. Let a be a cosaturated subset of A+ (n, r)
consisting of row regular weights. Then I(a) acts trivially on every H(r)-
module which admits a filtration with sections of the form Sp(a), A E a.

Proof Let H = H(r), I = 1(a) and A = H/I. We claim that ExtH(A, Y) _
0 for all Y E mod(H) which are filtered by Sp(p)'s, with p E a. It suffices
to prove that ExtH(A, Sp(p)) = 0, for p E a. We have an exact sequence

0 - HomH(A, Sp(p)) -> HomH(H, Sp(p)) - HomH(I, Sp(p))

ExtH(A Sp(p)) 0.

Now HomH(A, Sp(p)) = HomA(A, Sp(p)) (as Sp(p) is an A-module) so
dim HomH(A, Sp(y)) = dim Sp(p) and of course dim HomH(H, Sp(p)) =
dim Sp(p) so that HomH(I, Sp(p)) = Extk(A, Sp(p)). To establish the claim
it therefore suffices to show that HomH(I, Sp(p)) = 0, for all p E a. Since
Sp(p) embeds in Hx(p), it therefore suffices to prove that HomH(I, Hx(p)) =
0. Since I is filtered by modules Sp(A), with A E a`, it suffices to note
that HomH(Sp(A), Hx(p)) = 0, for A E 7r°, p E a. By 4.6(10), we have
HomH(Sp(A), Hx(p)) = HomG(0(A), SPE) 0(A)µ. If this is non-zero
then one must have p < A and since a` is saturated, p E a°, which is impos-
sible since p E a. This completes the proof of the claim.

Now suppose that X,Y E mod(A) admit filtrations by Sp(A)'s, with
A E a. Let F E mod(A) be a free module mapping onto X with kernel N,
say. We get exact sequences

(X0 , HomA(X,Y) -+ HomA(F,Y) -+ HomA(N,Y) __+ ExtA,Y) -- 0
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and

0 -+ HomH(X,Y) , HomH(F,Y) -> HomH(N,Y) -+ ExtH(X,Y) -> 0

since ExtH(F,Y) = 0, by the claim just proved. But HomH(X,Y) =
HomH(X,Y) (for all A-modules X,Y). Hence we have dim ExtA(X,Y) =
dim HomH(X,Y) so the natural (injective) map ExtA(X,Y) -> ExtH(X,Y),
on equivalence classes of extensions, is an isomorphism. In particular, every
H-module extension of Y by X arises via an A-module extension of Y by
X. By induction on the filtration length one therefore concludes that every
H-module which admits a filtration by Sp(A)'s, with A E ir, arises from an
A-module (i.e. I acts as zero on every such module).

Now the quasihereditary algebra SS has costandard modules 4V(A), A E
7r, by Proposition A3.11(ii). Hence, by Theorem A4.7, the quasihereditary
algebra Ends, has standard modules 0'(A) = Horns, OV(A)), A E
ir. Hence the isomorphism H(r)/I(lrc) -+ Ends, gives H(r)11(7) the
structure of a quasihereditary algebra with standard modules

Horns, OV(A))

Now by Proposition A3.13, the natural map

Homs(Se, 0(A)) -> Horns, f V(A))

is a linear isomorphism. Clearly this commutes with the action of H(r) so
we get that H(r)/I(7r) has standard modules Homs(Se, 0(A)) = Sp(a), for
AE7r.

Thus we get that the category of H(r)/1(7r)-modules with a filtration by
Sp(a), A E 7r, is equivalent to the category of S'(7r)-modules with a filtration
by !'(A), A E 7r. By Proposition A3.3, this is equivalent to the category
of modules for S' which have a filtration by modules z'(A), A E 7r, and it
follows from Proposition A4.8(i), that this is equivalent to the category of
S-modules with a filtration by V(A), A E 7r. Summarizing and using (5), we
have:

(6) Let 7r be a cosaturated subset of A+ (n, r) consisting of row regular
partitions. The category of H(r)/I(ir)-modules which have a filtration with
sections from {Sp(a) I A E ir} is equivalent to the category of S(n, r)-modules
which have a filtration with sections from {V(A) I A E it}. If 1 + q # 0,
these categories are equivalent to the category of H(r)-modules which have
a filtration with sections from {Sp(a) I A E it}.

Let m < n and suppose that A+(m, r) consists of row regular partitions.
We take r = A(m, r). We write for the natural left G(m)-module,
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and we view this as a G(m)-submodule of E. We identify SS with S(m, r)
via the natural isomorphism given at the beginning of Section 2.2. Now
I;Se = E®' = E®' and the isomorphism H(r)/I(ir) , of
(4) gives an isomorphism H(r)/I(7r) --> S(m, r)', the Ringel dual of S(m, r).
Thus H(r)/I(7r) is quasihereditary and, as above, we find that the standard
modules are Sp(a), A E A+(n, r), and obtain the following.

(7) Let m < n and suppose that 7r = A+(m, r) consists of row regular
partitions. Then H(r)/I(7r) is the Ringel dual of S(m, r). Furthermore, the
category of H(r)11(7r)-modules which have a filtration with sections from
{Sp(a) I A E A+ (m, r)} is equivalent to the category of S(m, r)-modules
which have a filtration with sections from {0(A) I A E A+(m, r)}. If l+q # 0,
these categories are equivalent to the category of H(r)-modules which have
a filtration with sections from {Sp(a) I A E A+ (m, r)}.

This is the q-analogue of Erdmann, [45; 4.4 Theorem].

4.8 The global dimension of the Schur algebras for r < n

We calculate the global dimension of the Schur algebra S(n, r), for r < n.
Our result generalizes a recent result of Totaro, [76], who determined this
in the classical case, q = 1, and our arguments are based very firmly on his
work. If q is not a root of unity then S(n, r) is semisimple. We assume
from now on that q is a primitive 1th root of unity and that r < n. Let
the characteristic of k be p > 0. If p = 0 and r has (1,p) expansion r =
r_1 + Ir' we define d(r) = r_1 + r' and if p > 0 and r has (l, p) expansion
r = r_1 + Iro + lprl + 1p2r2+''' we define d(r) = r_1 + ro + rl + (the
sum of the digits). We show that the global dimension of S(n, r) is precisely
2(r - d(r)).

We begin by introducing the divided powers modules. Recall that we
have the pairing V®r x E®'' --i k. Let A = (A1, A2i ...) be a composition of
r and let XA denote the kernel of the natural map V®'' --> SAV. We define
the divided powers module D A E = (XA)1 = {y E E®r I (XA, y) = 0}. Then
we have the induced form SAV x DAE -> k. From the definitions we have

XA = XA1 ®V®A2 ®... + V®A® ® XA2 ®... + V®A® ®V®A2 ® XA®®... +...

so that

(X,\)1 = (X'\1)1 ® (Xa2)1 ®... = DA1 (D D\2

Thus we have:

(1) D\E = DAIS ®D'\2E ®...,
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The right divided powers modules DA V, A E A(n, r), may be defined analo-
gously (though these are not used in the sequel). Dualizing the isomorphism
A(n, r) - ®AEA(n,r) SAV, 2.1(1)(ii), of right G-modules, and using Lemma
1.1.2(iii), we obtain a left S(n, r)-module decomposition:

(2) S(n, r) ®AEA(n,r) D'E.

We write glob(S) for the global dimension of an algebra S. For X E
mod(S(n,r)) we write inj(X) for the injective dimension and proj(X) for
the projective dimension of X. Let N = glob(S), where S = S(n, r), and let
X, Y E mod(S) be such that Exts (X, y) # 0. We have Y 5_-- FIR for some
free module F E mod(S) and submodule R. We have an exact sequence
ExtN (X, F) -> Exts (X,Y) --f Exts+1(X, R). Since Exts (X, y) # 0 and

R) = 0 we have Exts (X, F) # 0. Thus the global dimension of
S is the injective dimension of F, which is the injective dimension of the left
regular module S. Thus, from (2), we get:

(3) glob(S(n, r)) = max{inj(DAE) I A E A(n, r)}.

This prompts the following observation.

(4) Suppose that r, s E No, r+s < n, X E mod(S(n, r)), Y E mod(S(n, s)).
Then we have inj(X ®Y) < inj(X) + inj(Y) (resp. proj(X ®Y) < proj(X) +
proj (Y)). In particular if X and Y are injective (resp. projective) then X ®Y
is injective (resp. projective).

Proof We suppose first that X and Y and injective and prove that X ®Y is
injective. We may assume that X and Y are indecomposable. By 2.1(1)(ii),
we have that X is isomorphic to a component of SAE and Y is isomorphic
to a summand of SI`E for some A = (A,, ... , Ar) E A(n, r) and some p =
(pi, ... , ps) E A(n, s). But then X ® Y is isomorphic to a direct summand
of ST E, where r = (A,.... ) .\r, pi , ... , Its) E A(n, r + s) and this is injective,
by a further application of 2.1(1)(ii). Hence X ® Y is injective. In general
one gets that inj(X ® Y) < inj(X) + inj(Y), either by dimension shifting, or
by tensoring an injective resolution of X with an injective resolution of Y to
get one of X 0 Y, in the usual way.

The arguments for projective dimension are similar, using (2) to get that
X ® Y is projective if both X and Y are projective.

Now from (3) we get:

(5) F o r r < n w e have glob(S(n, r)) < max{>i inj(Da1E) I)t = (ti,.\2, ...) E
A+ (n, r)}.

We shall also need to construct resolutions for the divided powers modules.
We could do this by arguing as in [1], to produce projective resolutions, but
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(for the sake of variety) our treatment is based on the Koszul resolution,
which we now produce. We write An for the algebra given by generators
x1, ... , xn subject to the relations xj xi = gxixj, for i < j. We write simply
k for An/(x1,... , xn). We identify An_1 with a subalgebra of An and note
that An = Anxn ®An-1 (for n > 1). We write Wn for the n-dimensional
vector space on basis y1i ... , y, and, as usual, write AWn for the exterior
algebra ®j>o NWn. We identify AWn-1 with a subalgebra of AWn (for
n > 1). For 1 < r < n we define 0n : A® ® A'Wn --+ A® ® Ar-1Wn to be
the linear map such that

orn f®y1...yir)=fxii®yi2...yir-gfxia®yi1MI ...yir+...
... + (-q)r-1fxi,, ®yl ... yir_1

for f E An and n > i1 > . . > it > 1. We claim that:

(6) 0 - A0 nnW. , ... -, An o ArW. __+ An 0 Ar-1

An ®Wn -+ An --> k , 0 is exact.
Wn-4...-4

We call this the q-Koszul resolution of the An-module k. It is easy to check
that it is a complex. Also, exactness at An is clear and we leave it to the
reader to check that A® ® / \nWn -> An o An-1 Wn is injective. To prove
that Ker(On) < Im(on+1), for n > r > 1, we argue by induction on n. For
n = 1 there is nothing to prove. We now suppose that n > 1 and that the
result holds for n - 1 > r > 1. We note that the restriction of on maps
An_1 0 nrWn_1 into An-1 ®Ar-1Wn_1 via on-1. Note also that we have
a k-space decomposition

A. 0 AnWn = An-1 ®nrWn-1 ®Cnr

where Cr, = Anx® ® A rWn-i + An 0 ynnr-lWn-1. Let it : A® ® KKWn -*
An-1 ® A'Wn_1 be the projection.

We must show that if 0n' (F) = 0, where F = EiCI,(n,r) A 0 yi, with
fi E An and yi = yi1 ... yir for i = (i1, ... ir) E I1(n, r), then F E Im(dirn+l).
Let X = I1(n, r)\I1(n-1, r). For each i E 11(n- 1, r) we write fi = fixn+fi',
with fi E An, f," E An_1. We have

0ra(F) _ On( fixn®yi)+0n( f"(D yi)+0"(>fi0yi) = 0.
iEIi(n,r) iEIi(n-l,r) iEX

Note that or (fa'xn ®yi) E Cr, for i E I1 (n - 1 r), and Or (fa
,
® yi) E Cr,nn n n for

i E X. Thus, applying ir, we get on(EiEl1(n r) f$' (D yi) = 0, i.e.

Or _J(
® =0.n-1( fi yi)

iEI1(n-l,r)
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If r=n-1we get >iEl,(n,r)fi/®yi=0and if r<n-1we get, by the
inductive hypothesis,

f// ® yi E Im(On{ 1) < l
iEI

+11

1(n,r)

Thus F is congruent to LiEIi(n-1,r) fixn®ya+EiEx fi®yi, modulo Im(Or+1)
We may therefore assume F = EiEI,(n-l,r) fi xn ® Yi + EiEX fi ® y.

We put U = EiEX An O yi = An ® ynnr-1Wn_1. Now, for i =
(il,...,ir) E I(n - 1,r), we have

on+1(fi ® Y. Y,)
/= fix. ®yi, ... yi, - q'fi xi, ®ynyi2 ... yi, .+(-q')rfi xi, ®ynyil ... yi,_1

= fi/ ® yi + Gi

for some Gi E U. Thus we have that F is congruent to I:iEI,(n-l,r) Gi +
>iEX fi 0 yi modulo Im(Or+1). Hence we can assume that F E U. We have
F = EiEI,(n-l r) 9i 0 ynyi for some gi E An. But the condition 0'(F) = 0
gives

(gixn®yi1...yi,-ggixi,®ynyi2...yi,+

+(-q)rgixi, 0 ynyi, ... yi,_,) = 0

and hence gixn = 0 and therefore 9i = 0, for all i E Il(n - 1,r). Thus we
have F = 0 E Im(or+1), as required.

We fix a degree r and, for 1 < a < r, let Ba, :
S,-aV®naV -> Sr+l-aV®

na-1 V be the k-map given by

Ba(f 0 vi, A ... A via) = f vi, ® vi2 A ... A via - q f vi2 ® vi1 A via A ... A via

+ ... + (-q)a-lfvia ® vi1 A ... A via_1

for f ESa-1V,n>il>...>ia>1.

(7) 0 - a A rV -r V ® p r-1V . ... -> Sr-aV 0 AaV -> Sr+l-a V ®
a-1 V -T S'-1V /®\

V -p S''V -+ 0 is an exact sequence of right,G-modules.

Proof We have a natural grading on An such that xi has degree 1, and an
isomorphism of graded algebras An -> S(V), taking xi to vi, for 1 < i < n.
Moreover, the linear isomorphism Wn.-* V, taking yi to vi, 1 < i < n,
induces an isomorphism of k-spaces A2Wn --b A'' V, for each j > 0. Thus
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we have natural isomorphisms A,, ® A'Wn S(V) ® /INV. We obtain, by
transport of structure from (6), a resolution of graded S(V)-modules

0,S(V)0 k- 0

and the rth component of this is the sequence (7), which is therefore exact.
It remains to show that each map 8a : S'-'V ® Acv -+ Sr+1-aV ® A'- 1V

is a G-module map. Note that 0a factorizes as (m ® id) o (id ®0), where m :
Sr-aV ®V --> Sr+1-aV is multiplication and where c : AaV - V ®p a-1 V

is the linear map given by

W(vi, A ... A via) = 7111 ® vie A ... / via - gvi2 ®vil A via n ... A via

+ ... + (-q)a-lvia ® vi® ® vi1 A ... A via-1

for it > > ia. Thus it suffices to prove that 0 is a G-module homomor-
phism. This may be easily checked by observing that 0 may be obtained
by dualizing multiplication E ® na-1E -> AaE, via the natural pairing
V® pa-1V x E® n a-l E -> k.

Now for a, b E

/No

we have pairings SaV x DaE -> k and ^
A' V x AbE -> k

and hence the product pairing SaV 0 AbV x DaE ® n"E
/-

k. Dualizing
(7) using these pairings:

(8) We have an exact sequence of left G-modules 0 - D''E -* D''-lE®E ->
... Dr+1-aE®na-1E D'.-aE®AaE - ... E®Ar-1E -, nrE
0.

By dimension shifting we have the following.

(9) If 0 - A -+ X0 -+ Xl -+ -> X,,, -p 0 is an exact sequence of
modules over a ring then we have inj(A) < max{inj(X1) + j 10 < j < m}.

Thus from (4), the usual Koszul resolution 0 -> A'' E -> E®Ani'-1E ,
-+ S"a-1E ® E - SmE --+ 0 (we leave it to the reader to check that the

maps are G-homomorphisms) and induction we get:

(10) injWE)<m-1,for 1<m<n.

From (8), (10), (9) and (4) (and induction) we get:

(11) inj(Dm'E)<2(m-1),for1<m<n.

We fix non-negative integers r and a and let f (x) E Z[x] be the corre-
sponding Gaussian polynomial (see e.g. [2; p. 33]). Thus the value of f (x) at
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a prime power q is the number of a-dimensional subspaces in a vector space
of dimension r, over the field of cardinality q. We claim that for r > a we
have

f(s) _ x'(-)
aEX(a,b)

where b = r - a and X(a, b), as in Section 1.2, is the set of o E Sym(r) such
that o-(i) < o(j) whenever 1 < i < j < a or a + 1 < i < j < r. It suffices to
show that the polynomials agree at prime powers q. We have f (q) = [GLr (q) :
P], where P is the stabilizer of an a-dimensional subspace. We take P to be
the set of g = (g;j) E GLr(q) such that gad = 0 for (i, j) E [1, a] x [a+ 1, a+ b].
Let (D+ = {(i, j) 1 1 < i < j < n} = {c,. .. , aN} (where N = (2)). For
a E (D+ let Ua denote the corresponding root subgroups of GLr(q). For
o E Sym(n) let I = {(i, j) E 4)+ 1 o(i) > o(j)} and let Ua = Ua,,1 ... U«,,m,
where DQ = {ahl , ... , ahm } and h1 < < h,,,. Then JUa 1 for
o- E Sym(r). We identify 0- E Sym(n) with the corresponding permutation
matrix. It follows from the Bruhat decomposition that GL,,(q) is the disjoint
union of the sets U0QP, Q E X(a,b), and that the map Ua x P -> Uo-P
is bijective (for v E X (a, b)). This gives [GL,,(q) : P] = EoEX(ab) qr(a) as
required.

We now return to our usual understanding that q is a non-zero element
of the field k. We write [a] for EaEX(a,b) ql(a) By [75; Lemma 2.1(i)],
if q is a primitive lth root of unity and r = r_1 + lr', s = s_1 + ls', with
0 < r_1i s-1 < l then we have

Is -
[S-1J (SI)

. (*)

(12) Proposition Let a, b > 0. Let X = AaE ®/\bE (resp. ^ a+bV, resp.
SaE ® SbE, resp. Da+bV, resp. Da+b E, resp. SaV ® SbV) and

\Y

= Aa+bE
(resp. AKV ®AbV, resp. DGV ®DbV, resp. Sa+b E, resp. DaE ®DbE, resp.
Sa+bV). Then dim HomG(X,Y) =1 and the natural map X -p Y is split if
and only if [aab] # 0.

Proof By using suitable pairings and Lemma 1.1.2, we are reduced to prov-
ing this for X= AaE ® /AbE (resp. SQE (D SbE, resp. say ® SbV) and
Y = Aa+bE (resp. Sa+b E, resp. Sa+bV).

Let r = a + b. We first consider the case X= AaE ® A 'E and
Y = ArE. Since ArE E F(0) and AaE®AtE ET(V) we get, from the Ap-
pendix, Proposition A2.2(ii), dim HomG(ArE, /EKE®AbE) = (AaE®AbE :
Aa+b E). This the coefficient of sp in Sloslb (where s), denotes the Schur
symmetric function determined by the partition A) expressed as a Z-linear
combination of Schur symmetric functions, and this is 1 e.g. by [63; I,(5.17)].
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By Lemma 1.2.3, the natural G-module map 77 : A aEOA bE-- p a+bE

is split if and only ¢ o 71 E EndG(A'"E) is a non-zero multiple of
th/e`iden-

tity, where 0 : A 'E , A a E ® A b E is the linear map such that 0(ei) =
F-°EX(a,b) 7r(e2°), for i E Ii(n, r) (and where 7r : E®' - AaE ®AbE is the
natural map). Moreover, since EndG(ArE) = k, we have that 77 is split if
and only if 7r o 77 # 0. Now for i = (il, ... , ir) E Ii(n, r) we have

7r o 77
(6,) _ 1: (-1)1(17)6;°.

°EX(a,b)

Moreover, it follows from the defining relations for A(E) that ei° = (-q)'(°)ei,
for i E I,(n,r) and a E Sym(r). Thus we have

a+b
7r o 77(ei) ei

°EX(a,b)
a

for i E Ii(n, r). Thus 77 is split if and only if [a+b] # 0.
We now consider the case X = SaE ® SbE and Y = S'E. By 2.1(8) we

have dimHomG(S'E, SaE ® SbE) = dimSrE(a,b,o.... ) and this is 1.

We now consider the natural map 77 : SaE ® SbE -* SrE. We produce
a non-zero G-homomorphism SrE , SaE ® SbE. Recall we have the iso-
morphism 0 : SaE 0 SbE "A(n, r), of 2.1(1), where p = (a, b). Let '
be the inverse of 0 and let S''E -> SaE 0 SbE be the composite 7/) o /3,
where /3 : SrE ->'A(n, r) is given by /3(ei) = EjEU cji. Note that /3 is a
G-map since we have /3 = (v (D id)r, where r : SrE -> SrE ® A(n, r) is the
structure map and v : SrE -> k is the linear map such that v(eae2) = 1 and
v(SrE") = 0 for p a E A(n,r). Note also that e/3(eieb) = e(cii) = 1,
where i = (1,1, ... , 1, 2, 2, ... , 2). Thus /3, and hence y, is a non-zero G-
map. Thus, multiplication 77 : SaE ® SbE , S''E splits if and only if
77 o y E EndG(S''E) is an isomorphism, and since EndG(SrE) = k, this is if
and only if 77oy is non-zero. Thus 77 is split if and only if 77y(er) 0, i.e. if and
only if 777P(EiEµ Cji) # 0, where now i = (1, 1, ... , 1). Let h E I(n, r) and let
h' E I(n, r) be the result of writing the components of h in ascending order.
It is easy to check, from the defining relations, that chi = g0chl i, where g is
the number of pairs (u, v), of elements of [1, r], such that u < v and hu > h,,.
Let h = ( 1 , 1 , ... , 1, 2, 2, ... , 2). Then each j E u may be written uniquely in
the form ho', for a E X (a, b). We get ch° i = gI(°)Ch,i, for a E X (a, b). More-
over, we have O(chi) = el (De1 so we get 77OCjEµ Ci,) = EOEX(a,b) g1(°))ei

and so 77 is split if and only if [aab] # 0.
The case X = SaV ® SbV and Y = Sa+bV is similar.

We assume that l > 0 and that k has characteristic p > 0, and leave it
to the reader to make the simplifications in the following arguments needed
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to cover the remaining cases. Let m < n and let m = in_ 1 + lmo + I pmt +
be the (l, p)-expansion. By repeated application of (12), using (*), we get
that AmE is a G-module summand of E®"11-1 0 (A'E)®m0 ® (AhPE)m1 ®. .
and that SmV is a G-module direct summand of V®"'"-1 0 (S'V)®""O ®
(SIPV)®ml ® , and hence, by duality, that DmE is a G-module summand
of E®"n-1 ® (DIE)®mo ® (DIP)®"n1 ® ... Thus, from (4), (10) and (11) we
obtain:

(13) inj(/\mE) < m - d(m) and inj(DmE) < 2(m - d(m)).

It is easy to check that, for A = (A1, A2, ...) E A(n, r) we have d(Ai) +
d(A2) + < d(r). Hence, from (3), (5) and (13) we have:

(14) glob(S(n, r)) < 2(r - d(r)), for r < n.

We now show that in fact we have equality.

(15) For r < n we have glob(D''E) = 2(r - d(r)).

Proof By (14) we may assume r > I and r > p if I = 1. Moreover, by
(14), it suffices to demonstrate the existence of some A, B E mod(S(n, r))
with Ext2r-d(r))(A, B) $ 0.

Let r = r_1 + fro + lprl + be the (I, p) expansion of r. We take
A = SAE and B = DAE where A = (lr-1Iro(lp)r1 ...).

For each component m of A = (lr-11r0(Ip)r1 ...), we have, by (8), the
exact sequence 0 , D"17E -+ Xo -+ X1 --> - Xii_1 -+ 0, where Xj =
Dm_1-jE ®A3+1E. By (4), (10) and (11) we have inj(Xj) < 2(m - 1) - j,
for 0 < j < m - 1, and inj(Xj) < 2(m - 1) - j - 2 for j < m - 1. Tensoring
together all such sequences we obtain an exact sequence 0 --> DAE + Yo ->

-> YN - 0, where N = r - d(r) and YN = A E. Moreover, by (4), we
have inj(Yj) < 2N - j - 2, for j < N. Thus we have Ext2 (SAE, DA E) _
ExtG (SA,YN) = ExtG(SAE,A E).

Now by [1], we have, for a positive integer m, an exact sequence of
vector spaces 0 --+ K -> Xo -> X1 -+ - X,,-1 -> 0, where Xm_1_a is
the direct sum of all tensor products Sj1E ® . . . ® Sj°E with j1i ... , ja > 1
and j1 + . + ja = m, for 0 < a < m - 1. Moreover K -+ Xo is inclusion
and Xa_1 -+ Xa is derived from multiplication in the symmetric algebra
S(E), for 1 < a < m. Thus 0 -+ K -- Xo -> Xi -+ -- Xrr_1 - 0
is an exact sequence of G-modules. In the classical case, by [1], we have
K AmE, and so the character of K, in general, is chAmE. Since AmE
is an irreducible G-module, we must have K AmE, in general. Hence,
for each component m of A = (l,-11r0(lp)r1 ...) we have an exact sequence
of G-modules 0 -+ AmE -+ Xo -+ -> Xria_1 -+ 0. Tensoring together
all such sequences we obtain an injective resolution 0 -> AAE -+ Yo -+
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- YN -> 0, with YN = SAE. Hence we get that ExtG (SAE, AAE) # 0
provided that HomG(SAE,YN_1) -> HomG(SAE,YN) = HomG(SAE,SAE)
is not surjective, and this will certainly be so if YN_1 YN is non-split.

We shall prove (cf. [76]) that any homomorphism SAE -; YN_1 is zero
on the (r, 0, ...) weight space. Note that YN_1 is a direct sum of modules of
the form SHE, where p is obtained from A = (ir_llro(Ip)r, ...) by replacing
one of the components Ip°' by the pair (Ipr - 1, 1). Thus it suffices to show
that, for all such p, every G-module homomorphism SAE -> S"E is 0 on
the (r, 0, ...) weight space. One may do this by giving a q-analogue of the
argument of Totaro, [76]. For the sake of variety, we give a deduction based
on the Steinberg tensor product theorem. Suppose, for a contradiction, that
we have a G-module homomorphism SAE - S'E which is non-zero on
the (r, 0, ...) weight space. Now S"'E is a G-module direct summand of
SAE (see the proof of (13)) so there must be a G-module homomorphism
SrE - S" E which is non-zero on the G-socle L = L(r, 0, ...) of SEE. Thus
we get dim HomG(L, 0 and therefore, by 2.1(8), p is a weight of L.
By the Steinberg tensor product theorem, 3.2(5), we have L = L(r_i, 0, ...)®
L(s, 0, ...)F, where r = r_1 + Is. Thus p has the form a + 1/3, for suitable
weights a of L(r_1, 0, ...) and / 3 of L(s, 0, ...). Now, in p, we have 1 and
1pr - 1 occurring as entries in consecutive positions. Restricting to these
positions we get (1, 1p"" - 1) = 7 + Iv, for y = (a, b), v = (c, d) and a + b < 1.

This is clearly impossible. Thus we have that L(r, 0,.. .)" = 0, that any
homomorphism YN -> YN_1 is 0 on the (r, 0, ...) weight space of YN and
that YN_1 -> YN is non-split, as required.

Remark Though we knew at the outset that S(n, r) has finite global di-
mension, this follows from the resolutions given in this section. We have
inj(SA E) = 0 < oo, for all A E A(n, r). We have inj(A'E) < oo, by (6),
(4) and induction. Hence we have inj(AaE) < oo for all a E A(n, r), by (4).
Assume that A E A+ (n, r) and we have inj(L(p)) < oo for all p E A+ (n, r)
which are less than A in the dominance order. The simple module L(A) oc-
curs exactly once as a composition factor of AaE, where a is the transpose
of A, and all other composition factors have highest weight smaller than A
in the dominance order. Thus we have submodules N1 < N2 of AaE, with
N2/N1 = L(A) and all weights of N1 and AaE/N2 less than A. By the
inductive hypothesis we have inj(N1),inj(/\aE/N2) < oo. It follows that
inj(N2) < oo and therefore inj(L(A)) = inj(N2/Nl) < oo.

Thus, by induction, we have inj(L(A)) < oo for all A E A+(n, r), i.e.
inj(L) < oo for all simple modules L and therefore glob(S) < oo.
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We give a self contained account of the theory of quasihereditary algebras
and their associated tilting modules. References are given in the discussion
in A5.

Al Let k be a field and let S be a finite dimensional k-algebra. We assume
that S is Schurian, in the (other) sense that Ends(L) = k, for every simple
S-module L. We fix a complete set of pairwise non-isomorphic simple S-
modules {L(A) I A E A+}. For A E A+, we fix a (minimal) projective cover
P(A) and a (minimal) injective envelope I(A) of L(A).

We write mod(S) for the category of finite dimensional left S-modules
and, for X E mod(S), A E A+, write [X : L(A)] for the multiplicity of L(A)
as a composition factor of X.

Let it be a subset of A+. We say that V E mod(S) belongs to 7r if all
composition factors of V belong to {L(A) I A E it}. Among all submodules
belonging to ir, of an arbitrary V E mod(S), there is a unique maximal one
which we denote O"(V) (by analogy with the standard notation O"(G) for
the largest normal 7r subgroup of G, for G a finite group and 7r a set of
primes). Moreover, among all submodules U of V such that V/U belongs to
it there is a unique minimal one, which we denote by O"(V) (also by analogy
with standard notation in finite group theory). Note that if 0 : V -> V' is
a morphism in mod(S) then q(O,r(V)) < 0,,(V) and 0(0'(V)) < 0'(V).
Defining O"(0) : 0, (V) - 0, (V') and O"(0) : 0'(V) - 0'(V) to be the
restrictions of 0, we have functors O, and O" from mod(S) to the category
of k-spaces. It is easy to check that O, is left exact and that O" is right
exact.

Let x E S and let 4 : S -> S be right multiplication by x. Then we have
0(O"(S)) < O"(S), by functoriality, i.e. O"(S)x < 0r(S) so that O"(S) is
an ideal of S.

(1) For V E mod(S) we have 0r(V) = O"(S) V. In particular we have
O"(S) V = 0 if V belongs to ir.

This trivially holds for V = S and hence also for V a direct sum of copies
of S. In general we write V = FIT, where F E mod(S) is free and T is
a submodule. By right exactness we have O"(F/T) = (O"(F) + T)/T =
(O"(S) F +T)/T = O"(S) (F/T).

Now if V belongs to it then O"(V) = 0 so that O"(S) V = 0.

We put S(7r) = S/O"(S) and regard O"(V) and V/O"(V) as S(7r)-
modules, for V E mod(S). Note that, for A E 7r, we have that L(A) is
naturally an S(7r)-module and indeed it is easy to check that:
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(2) {L(A) I A E ir} is a complete set of pairwise non-isomorphic simple
S(ir)-modules, P(A)/O'(P(A)) is an S(7r)-module projective cover of L(A),
and O..(I(A)) is an S(ir)-module injective envelope of L(A), for A E 7r.

As well as the "truncation functor" O, we shall also consider a trun-
cation functor defined by an idempotent. Let E S be a non-zero idem-
potent and let Se denote the algebra We have the Schur functor
f : mod(S) -> mod(SS). For V a finite dimensional left S-module, fV is
the subspace V of V regarded as a left and for a morphism
0 : V -+ V' of left S-modules, f O : f V , f V' is the restriction of 0.
Note that we have a natural k-space isomorphism Homs(Se, V) V, for
V E mod(S), and since S. is a projective module (or arguing directly) we
get:

(3) f : mod(S) -, mod(S£) is exact.

Let At = {A E A+ I AL(A) 0 0}. For a finite dimensional left S-module V
we regard the dual space V* = Homk(V, k) as a left module for the opposite
algebra S°P in the usual way. Note that the natural map Homs(U, V) ->
Homsop(V*, U*) is a k-space isomorphism, for U, V E mod(S). In particular,
for X E mod(S), the algebra Ends(X) is local if and only if EndsoP(X*)
is local so that X is indecomposable if and only if X* is indecomposable.
Similarly, we get that X E mod(S) is projective (resp. injective) if and only
if X* E mod(S°P) is injective (resp. projective).

Let g : mod(S°P) -* mod(SSP) be the Schur functor.

(4) (i) For V E mod(S) restriction gV* -> (fV)* is an isomorphism of
S£P-modules.
(ii) At is the set of A E A+ such that P(A) is a direct summand of
(iii) For A E At and V E mod(S), the natural map Horns (P(A), V)
Homs, (f P(A), f V) is an isomorphism.
(iv) If L(A) I A E A£ } is a complete set of pairwise non-isomorphic irreducible
SE-modules.
(v) f P(A) is a projective cover of f L(A), for A E A+ .

(vi) f I(A) is an injective envelope of f L(A), for A E A+ .

(vii) For X E mod(S) and A E A+, we have [X : L(A)] = [fX : fL(A)].

Proof We leave (i) for the reader to check.
We take parts (ii) to (v) together. We note that if U is a simple left

S-module then f U is either simple or zero. Suppose 0 # eu E U. Then
we have Since U is simple, we have U and hence

Thus f U, if non-zero, is generated by each non-zero element
and hence is simple. Now let 0 = Vo < Vi < ... < V, be a composition
series of Then we get a series 0 = f Vo < f Vi < ... < f 1/ for the left
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regular module S£ . For 1 < i < n, the section f V / f V _ 1 is isomorphic to
f (Vi/Vi-1) and hence is either 0 or simple. Thus every composition factor
of S is isomorphic to f U, for some simple module S-module U. Since every
simple left Se-module is a composition factor of the left regular module every
simple left S£-module is isomorphic to f U, for some simple S-module U.

If fL(\) # 0 then Horns (S£, L(A)) # 0 so that P(X) occurs as a direct
summand of Now suppose that P(a) is a direct summand of S. We
write f = S1 + + G, as an orthogonal sum of primitive idempotents.
Thus we have S£ = Ski ® ... ® S£m and P(.) = for some 1 < i <
n. Let V E mod(S) and consider the restriction map V) -

Let 0 E Horns (SI;i,V). Then we have sv for all
s E S, where v = 8(l;i) = E V. If the restriction of 8 to is
zero then v = 8(£i) = 0 and 0 = 0. Now suppose that r) E
Then we have ij(sfi) = sv', for all s E Sg, where v' = E iV. Then
rj is the restriction to of the S-module homomorphism 0' : S -* V,
defined by sv', for s E S. Hence restriction Homs(P(\), V) -
Homs (f P(A), f V) is an isomorphism. Since f P(.\) = f Ski = is a direct
summand of the left regular module SS, it is projective. Taking V = P(\)
we have a k-algebra isomorphism Ends(P(A)) -> Ends { (f P(A)) and, since
P(A) is indecomposable, we obtain that fP(A) is indecomposable. Taking
V = L(p), for p E A+, we get Horns, (f P()t), f L(p)) = Homs(P(A), L(p)),
which is 0 for p # A. This gives that f P(\) has head f L(a), in particular that
f L(A) # 0 and also that f L(a) f L(p), for p # A. Thus At is precisely the
set of A E A+ such that P(a) is a direct summand of S and f L(a) f L(p),
f P(a) f P(a), for A, p distinct elements of A£ . This completes the proof
of (ii)-(v).

Now let I be an injective indecomposable with socle L. Then P = 1*
is a projective SIP-module with head H = L*. If f I $ 0 then gP 0,
by (i), and has head gH = (f L)*, by (v) and (i). Thus f L # 0, i.e. L
L(A) and I - I(A), for some A E A£ . Moreover gP - (f I)* is projective
indecomposable and hence fl is injective indecomposable. Conversely, for
A E At we have f L(a) $ 0 and hence fl(A) $ 0 and so is the injective
indecomposable S£-module with socle fL(A). This proves (vi).

We get (vii) from (iv) and (3) above.

We now fix a partial ordering < on A+. For A E A+ we define i(A)
{p E A+ I p < A}. Let M(A) be the unique maximal submodule of P(A). We
define K(A) = O"()(M(A)) and O(A) = P(A)/K(A). Similarly we define
V(A) < I(A) by the formula V(A)/L(A) = O"(a)(I(A)/L(a)). We call the
modules A(A), A E A+, the standard modules and the modules V(A), A E A+,
the costandard modules.

(5) We have Ends(O(A)) = k and Ends(V(A)) = k, for all A E A+.

Proof Let 0 E Ends(A(A)). Now O(A) has a unique maximal submodule
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M = M(A)/K(A) and 6 induces a homomorphism 0, say, on the head
O(A)/M. But we have 0(A)/M - L(A) and Ends(L(A)) = k so that 0
is scalar multiplication by c, say. Thus, putting 0 = 0 - c.id (where id
is the identity map on 0(A)) we have q(O(A)) < M. Thus L(A) is not a
composition factor of Im(O) and hence is a composition factor of Ker(O). If
Ker(¢) # O(A) then Ker(q') < M, which does not have L(A) as a composi-
tion factor. Hence Ker(O) = 0(A) so 0 = 0 and 0 is multiplication by c. This
shows that Ends(A(A)) = k, and one similarly shows that Ends(O(A)) = k.

(6) (i) For A, p E A+, we have

r
Homs(O(A), V(u))

k, if A= µ;
0, otherwise.

(ii) Let X E mod(S) and A E A+. If Exts(O(A), X) # 0 or Exts(X, V(A)) #
0 then X has a composition factor L(µ) with p yf A.

Proof (i) Suppose 0 # 0 E Homs(O(A), V(µ)). Since V(µ) has simple
socle L(µ), we have that L(µ) occurs as a composition factor of Im(q) and
hence of A(A). This gives A > p. We have Ker(q) # A(A) and A(A) has a
unique maximal submodule M = M(A)/K(A) and L(A) - O(A)/M. Thus
L(A) is a composition factor of O(A)/Ker(q) and hence of Im(O) < V(p).
This gives A < p and hence A = p.

Let 0 : O(A) -* V(A) be any homomorphism. Now M, and hence
AG(M), does not have L(A) as a composition factor. However, V(A) has
simple socle L(A) so that every non-zero submodule of V(A) has L(A) as
a composition factor. Thus M < Ker(O) and 0 induces a homomorphism

: L(A) -+ o(A). Moreover, the image of 0 is contained in the socle L(A)
of V(A). In this way we obtain an endomorphism of L(A) and obtain an
isomorphism Horns (O(A), 0(A)) -+ Ends(L(A)) = k.
(ii) By the long exact sequence we may assume that X = L(µ) for some
p E A+. Suppose that Exts(A(A), L(p)) # 0. From the short exact sequence
0 -+ K(A) -+ P(A) --> A(A) -+ 0, we get an exact sequence

Homs(K(A), L(p)) -+ Exts(O(A), L(p)) -+ 0

(since P(A) is projective). Thus we have Homs(K(A), L(p)) # 0 and hence
there is a submodule K' of K(A) such that K(A)/K' - L(p). But now, if
p < A then both M(A)/K(A) and K(A)/K' belong to 7r(A) and therefore
M(A)/K' belongs to ir(A). Thus we have K(A) = O" 0)(M(A)) K' <
K(A), a contradiction. Hence we have p _ A. If Exts(L(p), V(A) 0 we
similarly obtain p yf A.

For X E mod(S) we write [X] for the class of X in Grot(S), the
Grothendieck group of mod(S). Thus Grot(S) is free abelian on {[L(a)] I A E
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A+}. Moreover, L(A) occurs with multiplicity 1 in 0(A) and other composi-
tion factors have the form L(p), with it < A. Thus we have

[0(A)] _ [L(A)] + E aµ[L(u)]
µ<A

for certain non-negative integers aµ. Thus the sets of the elements [V(A)],
A E A+, and [L(A)], A E A+, are related by a unitriangular matrix and
therefore the elements [0(A)], A E A+, form a Z-basis of Grot(S). Similar
remarks apply to the modules V(A), A E A+. To summarize, we have the
following.

(7) The Grothendieck group Grot(S) of mod(S) has Z-bases:
(i) {[L(a)] I A E A+}, (ii) {[0(A)] I A E A+}, and, (iii) {[0(A)] I A E A+}.

By exactness of Homs(P(A), -) and Homs(-, I(A)) we have:

(8) dim Homs(P(A), X) = dim Homs(X, I(A)) = [X : L(A)], for X E
mod(S) and A E A+.

For X E mod(S), in addition to the composition multiplicities, we have the
integers (X : 0(A)) and (X : V(A)) (for A E A+) defined by the equations

[X] = (X : A(A))[A(A)]
AEA+

and
[X] _ (X : 0(A))[0(A)]

AEA+

Note that the functions X i (X : 0(A)) and X i--f (X : V(A)) are additive
on short exact sequences of S-modules.

Let X E mod(S). We call an S-module filtration 0 = Xo < X1 <
< X,. = X of X a A-filtration (resp. V-filtration) if, for 1 < i < r, the

factor Xi/Xi_1 is either 0 or isomorphic to 0(A) (resp. isomorphic to V(A))
for some A E A+. We write X E .P(0) (resp. X E .P(V)) to indicate that
X is a finite dimensional left S-module which has some A-filtration (resp.
V-filtration). Note that if X E F(0) (resp. X E F(V)) then (X : 0(a))
(resp. (X : V(A))) is the multiplicity of 0(A) (resp. V(A)) as a factor in any
A-filtration (resp. V-filtration) of X.

A2 We are now ready to give the key definition.
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Definition A2.1 We say that mod(S) is a high weight category (with
respect to the ordering <) if the following properties hold for all A E A+:
(1) I(\)/0(A) E .T(o);
(ii) whenever (I(A)/V(A) : 0(p)) # 0, for P E A+, we have p > A.

To emphasize the dependence on the ordering we will sometimes say that
(mod(S), <) is a high weight category, or that (mod(S), A+) is a high weight
category. We assume from now on that mod(S) is a high weight category.
We call the elements of A+ dominant weights.

Some basic properties are summarized as follows.

Proposition A2.2 (i) Let X E mod(S) and A E A+. If Exts(A(A), X) # 0

or
Exts(X, V(A)) # 0 then X has a composition factor L(p) with p > A.
In particular if Exts(A(A), 0(p)) # 0 or Exts(0(p), 0(A)) 0 0, for some
PEA+, then we have p > A.
(ii) For X E .F(0) and Y E .F(0) we have

dim Exts(X,Y) = EUEA+(X : A(v))(Y : 0(v)), 'f'=O;
1 0, otherwise.

In particular, for A, p E A+, we have

A = P;Exts(0(A) 170-1))
k, if i = 0,
0,

otherwise

e.

We have
(X 0(a)) = dim Homs(X, V(A))

and
(Y : V(A)) = dim Homs(0(A),Y)

for AEA+.
(iii) For X E mod(S) we have X E F(A) (resp. X E .T(7)) if and only if

Exts(X, V(A)) = 0

(resp. Ext1(A(A), X) = 0) for all A E A.
(iv) For A E A+ we have P(A) E .F(A) (resp. I(A) E .F(7)) and

(P(A) : 0(p)) = [0(P) : L(A)]

(resp. (I(A) : V(P)) = [0(P) : L(A)]) for P E At
(v) Let 0 X' -> X -* X" -> 0 be a short exact sequence in mod(S). If
X', X E .F(0) (resp. X, X" E T(A)) then X" E .F(V) (resp. X' E F(o)).
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(vi) If X E 1(i) (resp. X E 1(V)) and Y is a direct summand of X then
Y E .F(A) (resp. Y E 1(V)).

Proof (i) Assume that Ext,15(X, 0(.\)) # 0. By the long exact sequence we
can assume that X = L(µ) for some dominant weight p. The short exact
sequence 0 - D(.) I(A) -* I(.)/V(.\) - 0 gives rise to an exact sequence

Homs(L(p), I(A)/17(A)) - Exts(L(µ), 0(A)) -> 0

(since I(A) is injective). Thus we have Homs(L(p), I(A)/V(A)) # 0. Now
I(A)/V(A) has a filtration with sections of the form 0(r), with r > A. By left
exactness of Homs(L(µ), -), we get Horns (L(p),V(r)) # 0 for some r > A.
But o(r) has simple socle L(r) so we get p =,r > A.

We deal with the remaining part of (i) at the end of the proof of the
proposition.
(ii) We suppose first that X = 0(A) and Y = V(µ). The case i = 0 is
Al(6)(i). Now consider the case i = 1. If Ext,1.(A(A), V(µ)) 36 0 then
we have A > p, by what we proved of part (i), and A L µ, by A1(6)(ii), a
contradiction. By induction on filtration length, and the long exact sequence,
we get Ext,15(X, Y) = 0 for all X E .F(A), Y E 1(V). Now suppose that i > 1
and we have proved that ExtS'-'(X, Y) = 0 for all X E .F(0), Y E .F(V).
Let X E 1(o) and µ E A+. From the short exact sequence 0 -- V(p) -
1(p) -} I(µ)/D(µ) -> 0 we obtain

Exts 1(X, I(µ)/V(p)) = Exts(X, 0(µ))

and, since I(µ)/V(µ) E 1(V), we get Exts(X, V(µ)) = 0. By the long exact
sequence (and induction on filtration length) we get Exts(X,Y) = 0 for all
Y E 1(V). Hence we have Exts(X,Y) = 0 for all X E 1(0), Y E .F(7)
and i > 1 by induction.

The formula dimHoms(X,Y) = >UEA+(X : A(v))(Y : V(v)) is valid
for X = 0(A), Y = V(p) by A1(6)(i). For arbitrary X E1(0), Y E 1(V),
the formula follows by induction on filtration length (and the vanishing of
Exts' (X', Y) for X' E 1(0), Y' E 1(V)).
(iii) If X E 1(0) (resp. X E 1(V)) then Ext,15(X, V(A)) = 0
(resp. Exts(A(A), X) = 0) for all A E A+ by (ii).

Now suppose that X E mod(S) and Exts' (A(A), X) = 0 for all A E A+.
(The other case is similar.) We argue by induction on the dimension of
X. There is nothing to prove if X = 0. We now assume X # 0 and that
X' E 1(V), whenever X' E mod(S) with dim X' < dim X satisfies the
condition Ext,15(A(A), X') = 0 for all A E A+.

Let µ E A+ be as small as possible such that Homs(L(p),X) # 0. We
claim that Exts(L(v),X) = 0 for all v < p. For such an element v we have
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a short exact sequence 0 --> N 0(v) , L(v) , 0 and hence an exact
sequence

Homs(N,X) -i Exts(L(v),X) -> Exts(A(v),X).

For a composition factor L(v) of N we have v' < v and therefore v' < p.
Hence we have Homs(N, X) = 0 by the choice of p. But we also have
Exts(A(v), X) = 0, by the hypothesis, and so we get Exts(L(v), X) = 0,
proving the claim.

We have a short exact sequence 0 -> L(p) -+ 0(p) -> Q , 0 and hence
an exact sequence

Horns (17 (p), X) -> Homs(L(p),X) -> Ext1(Q,X).

Composition factors of Q have the form L(v), with v < p, so we have
Exts(Q, X) = 0, by the claim. Thus the map

Homs(V(p), X) , Horns (L (p), X)

is onto, and we have a homomorphism V(p) -, X, whose restriction to
L(p) is non-zero. Since 0(p) has simple socle L(p), this homomorphism is
injective. Thus we have a copy XI, say, of V(p) in X. Now for A E A+, by
the long exact sequence, we have an exact sequence

Exts(A(.\), X) --> Exts(A(.), X/X1) -* Exts(A(A), X1).

We have Exts(A(.), X) = 0 by hypothesis and

Exts(/(a), Xi) '' Exts(A(A), V(p)) = 0,

by (ii), and hence we have Exts(A()t),X/Xl) = 0 for all A E A+. By the
inductive hypothesis we have X/X1 E .P(V). But X1 = 0(p) so we get
X E .T(0).
(iv) We have Exts(P(A), V(p)) = 0, for all p E A+, since P(a) is projective.
Hence P(a) E .P(0), by (iii). We have

(P(.\) : 0(p)) = dim Homs(P(.), V(p)) = [0(p) : L(A)]

by (ii) and A1(8). We have I(A) E 1(V) by hypothesis and

(I(.\) : 0(p)) = dim Homs(A(p), I(A)) = {0(p) : L(A))

by (ii) and A1(8) again.
(v),(vi) These follow from (iii).

Finally, returning to (i), we now have, by (iv) and (v), that K(A) has
a filtration with sections of the form 0()t'), with A' > A. The dual of the
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argument given above at the start of the proof shows that if Exts' (O(A), X) #
0 then X has a composition factor L(y) with p > A.

For A E A+ we define 1(A) = 1, where I is the length of a longest chain
Ao < Al < < Al = A in A+. Define 1(A+) to be the maximum of the
lengths 1(A), for A E A+.

Proposition A2.3 We have Ext'.(L(A), L(p)) = 0 for A, p E A+ and
i > 1(A) + 1(p). Thus S has finite global dimension, bounded by 21(A+).

Proof We argue by induction on 1(a)+l(p). We assume that for all A', P' E
A+ with 1(A') + 1(µ') < 1(A) + l(p) we have Ext5(L(A'), L(p')) = 0 for all
i > l(A')+l(p'). We have a short exact sequence 0 , N -+ O(A) --> L(A) -+ 0
and, for every composition factor L(v) of N, we have v < A and hence
1(v) < 1(A). For i > 1(A) + l(p), we have the exact sequence

Exts 1(N, L(µ)) -p Exts(L(A), L(µ)) -+ Exts(O(A), L(µ)).

Now i - 1 > 1(v) + 1(p) for every composition factor L(v) of N and hence,
by the inductive hypothesis, we have Exts 1(N,L(p)) = 0. Thus it suffices
to prove that Exts(O(A), L(p)) = 0. We have a short exact sequence 0 -
L(p) - O(p) -> Q -p 0 and for every composition factor L(v) of Q, we have
v < p. We get an exact sequence

Exts 1(O(A), Q) -+ Exts(O(A), L(µ)) -+ Exts(O(A),1(p)).

Now, for every composition factor L(A') of O(A) and every composition factor
L(v) of Q, we have 1(A') + 1(v) < 1(A) + 1(v) < 1(A) + 1(p) and therefore
i - 1 > 1(A') + 1(v). Thus we have Exts 1(O(A), Q) = 0, by the inductive
hypothesis. We also have Ext' (O(A), O(p)) = 0, by Proposition A2.2(ii),
and therefore Ext' (A(A), L(p)) = 0 and hence Ext' (L(A), L(p)) = 0, as
required.

A3 We call a set 7r of dominant weights saturated if it has the property
that A E 7r whenever A < It and p E 7r.

Lemma A3.1 (i) Let X E .F(V) (resp. X E .F(O)) and let p be a minimal
element of the set {v E A+ I (X : V(v)) # 0} (resp. {v E A+ I (X : O(v)) #
0}). Then some submodule (resp. quotient module) of X is isomorphic to
V(p) (resp. O(p)).

Let 7r be a saturated set of dominant weights.
(ii) If X E .''(V) then O,r(X) E .F(V) and, for A E A+, we have

otE 7r;(O,,(X) : V(A)) = S (X : V(A)),
if A

herwise.
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(iii) If X E .T(0) then O"(X), X/O"(X) E .''(0) and we have

(X/O"(X) : A(A)) (X : A(A)), oif A

therwise.

Proof Part (i) follows from Proposition A2.2(i).
We now prove part (ii), and leave part (iii) to the reader. We argue

by induction on dimension. If X = 0 there is nothing to prove. We leave
the case in which X = V(p), for some p E A+, to the reader. Now assume
X # 0 and the result holds for all X' E r(V) with dim X' < dim X. Let
p be a minimal element of the set {v E A+ I (X : V(v)) $ 0}. By (i), X
contains a submodule Xl isomorphic to V(p). Suppose first that p E ir.
Then Xl < O"(X) and it follows that 0"(X)/X, = O"(X/X1). By the
inductive hypothesis 0"(X/X,) has a V-filtration and

(0"(X/X,) :17(A)) = r (X/X, . V(A)),
otherwise.

Thus O"(X)/Xl E F(V) and therefore O"(X) E .F(V). For A E a we get

(O"(X) :17(A)) =(O (X)/X1 : V(A)) + (Xi : V(A))
= (X/X1 : V(A)) + (Xi : V(A))
= (X : V(A))

and for A ir we get

(o"(X) :17(A)) =(O (X)/X1 : V(A)) + (Xi : V(A))
=0+0=0

using the inductive hypothesis and the fact that A # p.
Thus we may assume that no minimal element of the support of X

belongs to 7r. But then (X : V(A)) = 0 for every A E it so that X has a
filtration in which we have 0, (Y) = 0 for each section Y. Hence 0, (X) = 0,
and the result holds.

For a set of dominant weights 7r we now regard O" as a functor from
mod(S) to mod(S(7r)) (as in Al). We consider now the right derived functors
R2'O". We regard an S(ir)-module X also as an S-module (also denoted X)
via the natural map S -> S(7r). Note that, for V E mod(S(Tr)) and W E
mod(S), the image of any S-module homomorphism V -> W lies in O"(W).
Thus we have Homs(V, W) = Homs")(V,O"(W)) and hence we have the
factorization Homs(V, -) = Homs")(V, -) o O". Note that O"(I(A)) = 0 if
A 0 it and, by A1(2), O"(I(A)) is the injective envelope of L(A) in mod(S(7r)),
if A E ir. Thus O" mod(S) --+ mod(S(7r)) takes injectives to acyclics and
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we therefore have, for W E mod(S), a Grothendieck spectral sequence with
E2-page Exts(,,,) (V, RI O,r(W)), converging to Exts(V,W).

Proposition A3.2 Let it be a saturated set of dominant weights.
(i)ForW E.T(O) we have R'O,r(W)=0 foralli>0.
(ii) For X E mod(S) belonging to it we have RZO,r(X) for all i > 0.

Proof (i) Consider first the case i = 1. For A E A+ we have a short exact
sequence 0 --> V(A) -* I(A) -> Q(A) - 0, where Q(7) has a V-filtration with
sections of the form V(p), p > A. Hence we get an exact sequence

0 -> O,(V(A)) , O,(I(A)) -+ O,(Q(A)) -+ RO,(V(A)) -> 0.

Suppose that A E it. Then we have O,(I(A)/V(A)) = O,,(I(A))/V(A) so
that O,,.(I(A)) -* O,(Q(A)) is surjective and RO,(O(A)) = 0. Now suppose
A it. Then Q(A) is filtered by modules O(p), with p > A, and no such
p belongs to it. Hence O,r(Q(A)) = 0 and again RO,(V(A)) = 0. Hence
in all cases RO,(V(A)) = 0 and therefore, by the long exact sequence, we
have RO,.(X) = 0 for all X E .F(V). Now suppose, for some i > 0, we
have shown that RiO, (X) = 0 for all X E .F(V). We get RS+bO,r(V(A)) =
RiO,r(Q(A)) = 0 and hence Ri+1O,r(X) = 0, for all X E .1(V), by the long
exact sequence. This proves (i) by induction on i.
(ii) For A E it we have a short exact sequence 0 - L(A) V(A) ->
V(A)/L(A) -+ 0 and hence, by (i), an exact sequence

0 -> L(A) - V(A) -> V(A)/L(A) - RO,(L(A)) -+ 0

and isomorphisms R'-1O,r(O(A))/L(A)) , RZO,r(L(A)), for i > 1. Thus we
get
RO,(L(A)) = 0, and hence ROF(X) = 0 for X belonging to it. Now suppose
that i > 1 and that R'-'O, (X) for all X belonging to it. Then, for A E it,
we get R$O,r(L(A)) = Ri-'O.,(V(A)/L(A)) = 0 and hence, R'O,F(X) = 0
for all X belonging to it. Thus we have RiO,(X) = 0 for all i > 1 and X
belonging to it, by induction.

We leave it to the reader to formulate and prove the corresponding results
for 0'.

Proposition A3.3 Let M, N be finite dimensional S-modules belonging
to the saturated set it. Then, for all i > 0, we have

Exts(,r)(M, N) = Exts(M, N).

Proof By the discussion before Proposition A3.2, we have a Grothendieck
spectral sequence with E2-page Exts(,,)(M,Ri0,r(N)) which converges to
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Exts(M, N). But RIO"(N) = 0 for j > 0, so the spectral sequence degener-
ates and we have Exts(M, N) = Extsl,,l(M, N) for all r > 0.

Let it be a saturated set of dominant weights. By A1(2) {L(A) I A E 7r}
is a complete set of pairwise non-isomorphic irreducible S(ir)-modules and,
moreover, for A E 7r, the S(ir)-module I"(A) = O"(I(A)) is the injective
envelope of L(A). By Lemma A3.1(ii), I"(A)/0(') has a filtration with
sections of the form O(µ), with A < p E 7r. Let a = {v E A+ I v < A}.
We have O,(0(µ)) = 0 for p > A (since o(µ) has socle L(µ)) and hence, by
left exactness of O we have O,(I"(A)/V(X)) = 0. Hence, applying 0, to
the short exact sequence 0 -> O(A)/L(A) - I"(A)/L(A) - I"(A)/0(A) 0,
we get O,(I"(A)/L(A)) = 0,(V(A)/L(A)) _ V(A)/L(A). Hence the modules
V(A), A E 7r, are the costandard modules for S(ir). Now we have that
I,r(A)/0(A) has a 0-filtration, by Lemma A3.1(ii), and 1,(A)/V(A) has a
filtration with sections V(µ). Moreover, we have (I,(A)/V(A) : O(µ)) =
(I.-(A) : V(µ)) - (V(A) : V(µ)), which gives that we have A < µ E 7r,
whenever (I"(A)/V(A) : V(µ)) # 0. This shows that mod(S(ir)) is a high
weight category with costandard modules V(A), A E ir. A similar argument,
using Lemma A3.1(iii), shows that the modules A(A), A E 7r, are the standard
modules. We collect these facts together for future reference.

Proposition A3.4 For a saturated set of dominant weights 7r we have that
mod(S(7r)) is a high weight category with standard modules 0(A), A E ir,
and costandard modules V(A), A E 7, with respect to the labelling of the
complete set of irreducible modules {L(A) I A E ir} and the induced partial
ordering on 7r.

We drop, for the moment, our standing assumption that mod(S) is a
high weight category.

Lemma A3.5 (S, A+) is a high weight category if and only if the following
properties hold for all A E A+:
(i) K(A) E J7(A);
(ii) whenever (K(A) : O(µ)) # 0, for p E A+, we have p > A.

Proof Suppose that (S, A+) is a high weight category. Let A E A+ and
let 7r = {p E A+ I p A}. Note that P(A)/K(A) belongs to 7r so that
O"(P(a)) < K(A). For µ E 7r we have (P(A)/O"(P(a)) : O(p)) = (P(A) :
0(µ)) = [O(µ) : L(A)], by Lemma A3.1(iii), so when this is non-zero we have
µ > A, and hence p = A. In this case we get (P(A)/O"(P(a)) : A(A)) =
[V(A) : L(A)] = 1. Hence we have dim P(A)/O"(P(a)) = dim A(A) =
dim P(A)/K(A) so that dim O"(P(a)) = dim K(A) and hence O"(P(a))
K(A). Thus we have K(A) E .F(A) and (K(A) : O(µ)) = 0, for p E ir, by
Lemma A3.1(iii), so that whenever (K(A) : O(µ)) # 0, we have p > A, as
required.
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Now suppose that (i) and (ii) hold for all A E A+. These conditions are
dual to the defining conditions for mod(S) to be a high weight category and
imply that mod(S°P) is a high weight category with respect to the labelling
{L(A)* I A E A+} of the irreducible S°P-modules, and moreover, the mod-
ules (P(A)/K(A))*, A E A+, are the costandard modules for S°P. Writing
P*(A) = I(A)* we then get that the maximal submodule M*(\) of P*(A)
is (I(A)/L(A))* and that the submodule K*(A), such that M*(A)/K*(A)
is the largest quotient of M*(A) belonging to 7r(A), is (I(A)/V(A))* and
A*(A) = P*(A)/K*(A) = O(A)*. Now, by what we have proved so far, the
conditions (i) and (ii) hold for the algebra S°P. Hence (I(.),)/O(A))* has a
filtration with sections O(p)*, with it > A, and it follows that I(A)/V(A)
has a filtration with sections O(p), p > A. Hence mod(S) is a high weight
category, with respect to the given ordering <.

An ideal H of S is called a hereditary ideal if it satisfies the following
conditions:
(i) H is projective as a left S-module;
(ii) Homs(H, S/H) = 0;
(iii) HNH = 0, where N is the radical of S.

Definition A3.6 The algebra S is called quasihereditary if there exists a
chain of ideals S = Ho > Hl > . . > H, = 0 with Ha/Hi+l hereditary in
S/Hi+1, for 0 < i < n. Such a chain of ideals is called a hereditary chain.

Proposition A3.7 (i) Suppose that mod(S) is a high weight category with
respect to a given partial order <. Write out the elements of A+ as A1, ... , A1,
in such a way that i < j whenever Ai < A2 and define 7r(i) _ {A1,.. . , Ai },
for 1 < i < n. Then S > O r(1)(S) > ... > O'r(-)(S) = 0 is a hereditary
chain of ideals, and hence S is quasihereditary.
(ii) Suppose given a hereditary chain S = Ho > Hl > > H, = 0 in S.
Let {L(A) I A E A+} be a complete set of pairwise inequivalent irreducible
S-modules. Let A+(i) be the set of A E A+ such that L(A) occurs as a
composition factor of S/Hi, for 1 < i < n, and define a positive integer
r(A) < n, for A E At by the condition A E A+(r(A))\A+(r(A) - 1) (where
A+(0) is the empty set). Let < be the partial ordering such that A < p if and
only if r(A) < r(p) (for A, it E A+). Then mod(S) is a high weight category
with respect to <.

Proof (i) We first show that if p is any maximal element of A+ and o =
A+\{p} then O°(S) is a hereditary ideal of S. Since S is a direct sum
of the modules P(A), A E A+, and each P(A) E P(O), the left regular
module S has a A-filtration. By Lemma A3.1(iii), O°(S) has a filtration
with sections all of the form A(p). Hence, by Proposition A2.2(i), O°(S) is a
direct sum of copies of O(p). But K(p) < P(p) has a filtration with sections
of the form O(v), v > p, and p is maximal in A+ so that K(p) = 0, i.e.
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P(p) = 0(p) and 0(p) is projective. Hence O°(S) is projective. We have
dim Homs(P(p), S/O°(S)) = [S/S°(S) : L(p)] = 0, since all composition
factors of S/O°(S) come from {L(A) I A E and p o. Hence we have
Horns (0' (S), S/0,7 (S)) = 0.

We write O'(S) = Al ® At, with O1, ... , At isomorphic to 0(p).
Now 0(p) has unique maximal submodule M(p), so that N O$ = M(p)
belongs to o, for 1 < i < t. By A1(2) we therefore have O°(S)NO$ = 0,
1 < i < t, and hence O°(S)NO°(S) = 0. Thus O°(S) is a hereditary ideal
in S.

Now we must show that O"(i)(S)/Ow(1+1)(S) is a hereditary ideal in
S/O"(+1)(S), for 0 < i < n. Let Tr = 7r(i + 1), a = 7r(i) and define A E 7r
by {A} = 7r\o-. We must show that O°(S)/O"(S) is a hereditary ideal of
S/O"(S), i.e. that O°(S(7r)) is a hereditary ideal of S(ir). But this is true
by the previous paragraph and Proposition A3.4.
(ii) Let H = Hn,_1 and let 7r = A+(n - 1) with the partial ordering in-
duced from the specified partial ordering on A+. We assume inductively that
mod(S/H) is a high weight category for the partial ordering on 7r induced by
that on A+. Since H is projective, we have H - ®AEA+ P(\)(da), for non-
negative integers da. If da > 0 with A E n then we have dim Homs(H, S/H) >
dim Homs(P(A), S/H) = [S/H : L(A)] $ 0, a contradiction. Hence we have
H = ®1E" P(p)(dµ), where ar, = A+\7r, the complement of 7r. Hence S/H
is the largest quotient of S belonging to ir, i.e. we have H = O"(S).

Now if da # 0 then M(A) = NP(.) embeds in NO"(S). But we have
O"(S)NO"(S) = 0 so that O"(S)M(A) = 0 and M(A) is an S/H-module
and so belongs to 7r, by A1(1). Thus all composition factors of M(A) have
the form L(p), for p < A, and so K(.) = 0, i.e. P(a) = 0(A). Moreover,
since each L(µ), with p E Ire, occurs as a composition factor of H and hence
as a composition factor of P(A) for some A E 7r, with da > 0, we must have
da>0forallAEire. Thus wehaveH=®aE". P(a)(da),with da>0for
all A E ire. For A E 7r, we have shown P(A) = 0(A) and K(A) = 0 so that
K(A) E .F(0) and trivially K(A) has a filtration with sections 0(µ), p > A.

For A E it define R(A) = O"(P(a)) = HP(A). Then Po(A) = P(A)/R(A)
is the projective cover of L(A), as an S(ir) = S/H-module, by A1(2). We
define Mo(A) to be the unique maximal submodule of Po(A) and define
Ko(A) < M0(A) by the condition that Mo(A)/Ko(A) is the largest quotient
of Mo(A) with all composition factors of the form L(v), with v < A, i.e.
Ko(A) = O"()(Mo(A)). By hypothesis, H = O"(S) is projective and, since
P(A) is a direct summand of S, we get that R(A) = O"(P(a)) is projec-
tive. Moreover, R(A) has no quotient belonging to 7r. Hence if P(µ) is a
summand of R(A) then u E 1r, and hence P(p) = 0(p). In particular, we
have O r(A)(R(A)) = 0 and so, applying O"() to the short exact sequence
0 , R(A) - M(A) - Mo(A) --f 0, we get O"(\)(M(A)) = O"(a)(Mo(A)) and
hence P(A) -> Po(A) induces an isomorphism 0(A) -> Ao(A). Now we have
a short exact sequence 0 -> R(A) -> K(A) -+ Ko(A) , 0. By the inductive
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hypothesis, KO(A) has a filtration with sections 0(p), with A < p E ir, and,
as we have shown, R(A) has a filtration with sections 0(p) with p E ire, and
therefore p > A. Hence mod(S) is a high weight category with respect to <,
by Lemma A3.5.

From now on we shall use the expressions "S is quasihereditary" and
"mod(S) is a high weight category" interchangeably. We return to our stand-
ing assumption that (S, A+) is a quasihereditary algebra.

We now explore a form of truncation, defined by an idempotent, analo-
gous to that brought about by the 0, functor. It is convenient to introduce
at this point the concept of a theory of weights for a quasihereditary algebra.

Definition A3.8 A theory of weights for (S, A+) is an injective map 9
A -> S which has the following properties:
(i) {9(a)} consists of pairwise orthogonal non-zero idempotents whose sum
is 1;
(ii) for each a E A, writing S9(a) = ®AEA+ P(a)nda>, the set {A E A+ I da #
0} has a unique minimal element, which we write a+, and da+ = 1;
(iii) the map A , A+, given by a i a+, is surjective.

Note that the quasihereditary algebra (S, A+) has the following trivial
theory of weights. Let 1 = 1 e$ be a primitive orthogonal decomposition
of 1. We take A = [1, n] and define 0 : A -* S by 0(i) = ei, i E [1, n]. Then
9 is a theory of weights and, for i E [1, n], we have i+ = A, where A is the
dominant weight such that Se$ = P(A).

We assume from now on that (S, A+) is a quasihereditary algebra with
a given theory of weights 9. We call the elements of A weights. For F C A
we set r+ = {a+ I a E r}. We write a for 9(a), for a E A, and write &r for
EaErl;a, for IF C A. For U E mod(S) we define the weight space U" = I;aU
and note that Ua = Homs(Sl;a, U). Thus we have

dim Ua = E d,, dim Homs(P(p), U) _ E d, [U : L(p)]
IJEA+ IPEA+

where Sl;a = ®µEA+ P(p)(di ). From the property (ii) we get:

(1) dim L(A)' = 1 if A = a+ and L(A)' # 0 implies a+ < A, for A E
A+, a E A.

From the defining properties of A(A) and V(A) we also get the following.

(2) For U = 0(A) or V(A) we have that dim Ua = 1 if a+ = A and that
Ua # 0 implies a+ < A.
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Lemma A3.9 Let 7r be a saturated set of dominant weights. We have
O"(S)=S&rS, where F={aEA I a+Vir}.

Proof Let a E A and suppose that Sea. Then we have
O"(P(a)) # P(A) for some A > a+. Since P(a) has unique simple quo-
tient L(A) we get A E ar and hence, by saturation, a+ E r. Hence we
get Sfa < O"(S), for all a E A with a+ V 7r, and therefore
Sir < O"(S). Since O"(S) is an ideal, we have SrS < O'(S). Suppose, for
a contradiction, that O"(S). Then we have a maximal submodule
M, say, of 0r(S) containing S&rS with O"(S)/M = L(A) and A 0 7r. Let
a E A with a+ = A. Then we have aL(A) = L(A)' # 0 and therefore
&L(A) # 0 and hence . pO"(S) S&S, which is not true. Thus we have
O"(S) = S(rS, as required.

Lemma A3.10 Let 7r be a saturated set of dominant weights. The quasi-
hereditary algebra S = S(ir) has the theory of weights 0 : A -> ir, where
A = {a E A I a+ E 7r} and 0(a) = 0(a) + O"(S), for a E A.

Proof We set 4a = a + O" (S), for a E A. Since 1 = EaEA f a is an
orthogonal decomposition in S and t:a E O"(S) for-a 0A, by Lemma A3.9,
we have the orthogonal decomposition 1 = EaEA a in S(ir). Moreover, if
a c A and 4a = 0 then we have £a E 0" (S) = giving £a E

and hence and therefore From the
defining property (ii), of a theory of weights, we get that P(A) = O"(P(a)),
where A = a+ E ir. But P(A) has simple quotient L(A) so O"(P(a)) # P(A),
a contradiction. Hence the image of 0 consists of non-zero idempotents. For
a E A we have S(ir)t a = O"(S))/O"(S) = Writing

®aEA+ P(A)(da) we get ®aE"(P(A)/O"(P(A))(da
which gives property (ii).

We now consider the form of truncation defined by idempotents corre-
sponding to cosaturated subsets.

Proposition A3.11 Let it be a set of dominant weights which is cosatu-
rated (i.e. A+\7r is saturated). Let r be a set of weights such that r+ = 7r,
let = &r and let f : mod(S) , mod(S{) be the Schur functor.
(i) For A E A+ we have f L(A) # 0 (resp. f O(A) # 0, resp. f 0(.1) $ 0) if and
only if A E ir.
(ii) If L(A) I A E 7r} is a complete set of pairwise non-isomorphic irreducible

and (Sg, ir) is a quasihereditary algebra (where the ordering on
7r is induced from that on A+) with standard modules f 0(A), A E 7r, and
costandard modules fV(A), A E 7r.

Proof (i) This follows from (2) above.
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(ii) The first statement holds by A1(4)(iv). Let A E 7r. The surjection P(A) -->
0(A) gives rise to a surjection fP(A) - f 0(A). Now f P(\) has simple
head fL(A), by A1(4)(v), so that f0(A) has simple head fL(A). Similarly
f 17(A) has simple socle f L(A). By exactness of f , we have f P(A)/ f M(A)
f L(A) so that f M(A) is the unique maximal submodule of f P(A). Let Kg(A)
be the smallest submodule of f M(A) such that all composition factors of
f M(A)/Kg (A) come from If L(p) I p < A, p E 7r}. Certainly all composition
factors of f M(a)/ f K(t) have this form (by exactness) so we have Kg (A) <
fK(A). Now if Ke(A) # fK(A) then f K(A)/Ke(A), and hence fK(A), has
a quotient f L(p) with p < A, p E Tr. But fK(A) is filtered by modules
of the form f 0(v), with v > A, so that some f A(v), with v > A, would
have to have a quotient fL(p). But f0(v) has simple head fL(v) so we
would get p = v > A, a contradiction. Hence we have Ke(A) = fK(A)
and, putting Ag(A) = f0(A) we have, by exactness, that Kg(A) is filtered
by the modules 0g(p), with p > A. Hence mod(Se) is quasihereditary with
standard modules 1 (A) = f 0(A), A E x. Similarly we obtain that f 0(a),
A E 7r are the costandard modules.

We record the following for future use.

Lemma A3.12 Assume the hypotheses and notation of Proposition A3.11.
For X E F(A) and Y E .P(V) the natural map

Homs(X,Y) , Homs,(fX, fY)

is surjective.

Proof Suppose we have a short exact sequence 0 - X' --> X -r X" -> 0
with X', X" E .P(0). Then we get the commutative diagram

0 , Homs(X",Y) --> Homs(X,Y) - Horns (X', Y) 0

1 1 1

0 Homs,(fX", fY) Homsf(fX, fY) -> Homs,(fX', fY) -+ 0

with rows exact (by Proposition A2.2(ii)). If the outer vertical maps are sur-
jective then so is the middle one. Thus, by induction on the dimension of X,
we are reduced to the case X = 0(A), for some A E A+. A similar reduction
allows us to assume that Y = V(p), for some p E A+. If either A or p does
not belong to a then f X = 0 or fY = 0 so that Homs{ (f X, fY) = 0 and
the map is certainly surjective. Thus we may assume A, p E ir. If A # p we
get Horns, (f X, fY) = 0 by Proposition A2.2(ii). Thus we may assume that
X = A(A) and Y = V(A). But now dim Homs{(fX, fY) = 1, by Proposi-
tion A2.2(ii), and it suffices to prove that Homs(X,Y) -> Homs,(fX, fY) is
not the zero map. Let 0 : X -> Y be the composition 0(A) -> L(A) -> 0(A),
where the first map is the canonical surjection and the second is inclu-
sion. By exactness f 0 is the composition f 0(A) -> f L(A) -> f 0(A), and
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the the first map is surjective and the second injective. Thus f O 0 and
Homs(X, Y) -+ Homs4 (f X, fY) is surjective.

For 7r C A+ we write V E .F,r(A) to indicate that V E mod(S) has a
filtration with sections belonging to {A(\) I ) E it}.

We have the following relationship between the homological algebra of
S and S£.

Proposition A3.13 Let 7r be a cosaturated subset of A+, let r C A be
such that r+ = ir, and let = fir. For X E Y E mod(S) and i > 0
we have Exts(X,Y) - Exts{

Proof We consider first the case i = 0. For U E .P (A) we define

S(U)={pEA+ I µ>aforsome AEA+with (U:A(A))#0}

and define the depth of U to be the cardinality of S(U). We claim that, for
given X E .F,r(A), the restriction map Homs(X,Y) -+ Horns, is an
isomorphism for all Y E mod(S).

We first prove injectivity. Suppose that X = A(.), for some A E 7r.
If g E Homs(A(A), Y) maps to 0 then g(£A(A)) = 0. If g # 0 then the
kernel of g lies in the unique maximal submodule M, say, of A(A). Choosing
a E r such that a+ = A, we have g(A(A)") = 0, giving A(A)c' < M. But
A(A) is generated by any weight space A(X)" with a+ = ) (by (1) and
(2)) so this is impossible. Hence g = 0 and restriction Homs(A(A), Y) -+
Homs, fY) is injective. Now suppose that X is not isomorphic to
A(A), for any A E 7r. Then we have a short exact sequence 0 -+ X' - X -+
X" -+ 0, where 0 0 X', X" E Y, (A). Thus we get a commutative diagram

0

0

--+ Homs(X",Y) -+ Homs(X,Y) -+ Homs(X',Y)
I I I

Homs, fY) Homs, fY) -+ Homs (eX',.Y)

with rows exact. Assuming inductively that the first and third vertical maps
are injective, a diagram chase reveals that the second is too. Hence we
get that Homs(X,Y) - is injective for all X E
Y E mod(S), by induction on dimension.

Now suppose that X = P(\), for some A E 7r. The dimension of
Homs(P(A), X) is the composition multiplicity [X : L(.\)] and the dimension
of Homs (SP (A), fY) is the composition multiplicity [[X AL (A)]. However,
we have [X : L(A)] = [[X : AL(A)], by A1(4)(vii), so that

dim Homs(P(\),Y) = dim Homs(fP(X), fY).

Since we know that the map Homs(P(A),Y) -+ fY) is in-
jective, it must be an isomorphism. Hence the claim holds for projective
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modules in Now let P be the projective cover of X and let J be
the kernel of a surjection P , X. Then P E Hence we also have
J E 1,,.(L ), by Proposition A2.2(v), and the additivity of (- : A(A)) on
mod(S), for A E A+ (see Al). We get a commutative diagram

0

0

Homs(X,Y) -> Homs(P,Y) -> Homs(J,Y)
I I I

Homs (fX, fY) -* Homs (fP, fY) -> HomsE (f J, fY)

with rows exact, vertical maps injective and middle vertical map an iso-
morphism. A diagram chase reveals that Homs(X, Y) ---> Homs4(CX, fY) is
surjective.

Thus we have, for fixed X E .FR (A), an isomorphism of (left exact)
functors Homs (X, -) -> Homs, (fX, Taking derived functors we obtain
an isomorphism

Exts(X,-) -> R'Homsf(fX, f-)

in each degree. Now F = Homs (fX, f -) is the composite G o H, where
H = f- : mod(S) mod(SS) (the Schur functor) and G = Homs (fX, -) :
mod(SS) -* mod(k). If I E mod(S) is injective then I E 1(V) and hence
H(I) = fI is a Se-module which has a costandard filtration. Since fX has a
standard filtration we have Exts(f X, f I) = 0 for i > 0. Thus H takes injec-
tive modules to G-acyclic modules and thus we have a Grothendieck spectral
sequence with E2-page RAG o RJH(Y) converging to R*F(Y). But H is ex-
act, so the spectral sequence degenerates and we get R'F(Y) = R$G(H(Y)),
in other words R$Homs(fX, fY) = Exts{(fX, fY), for all i > 0. Thus we
have Exts (X, Y) = Exts, (f X, f Y), for all i > 0.

A4 We now describe the theory of tilting modules for a quasihereditary
algebra (S, A+), due to Ringel. We call a finite dimensional S-module X a
tilting module if X E F(A) and X E 1(V), i.e. if X has both a A-filtration
and a V-filtration.

For X E mod(S) define the defect set of X to be the set of A E A+ such
that for some p E A+ we have A < p and Exts(A(µ), X) # 0.

Lemma A4.1 Let X E 1(A). Then X embeds in some tilting module
T. Moreover, if there is some A E A+ such that (X : A(A)) = 1 and
v < A whenever (X : A(v)) # 0 then we can choose T so that we also have
(T: A(A)) = 1 andv<A whenever (T: A(v)) # 0.

Proof Suppose not and let A be a defect set of smallest possible size among
all counterexamples X. If A is empty then X E .F(V), by Proposition
A2.2(iii), so we may take T = X, a contradiction. Thus A is non-empty.
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Let p be a maximal element of A and let X be a counterexample with
defect set A such that dim Exts(A(p),X) is as small as possible. Now we
have a non-split extension 0 -> X --f X , A(µ) --> 0 and this gives rise to
an exact sequence

0 ->Homs(A(v), X) -p Homs(A(v), X) , Homs(A(v), A(µ))

-->Exts(A(v), X) -, Exts(A(v), X) -; Exts(A(v), A(µ))

for v E A+. Thus if Exts(A(v), X) # 0 then either Exts(A(v), X) # 0, in
which case v E A, or Exts(A(v), A(µ)) # 0, in which case we get v < µ, by
Proposition A2.2(i), and again v E A. Hence the defect set of X is contained
in A. We now take v =y. Any homomorphism 0 : A(p) -> X has image in
X, for otherwise 0 would induce a non-zero map 0 : A(µ) -> X/X and since
X/X = A(µ) and Ends(A(p)) = k, this map would have to be an isomor-
phism. But then we would have X = X ®Im(8), contradicting the fact that X
is a non-split extension. Hence the map Homs(A(p),X) -+ Homs(A(p),X)
is an isomorphism and Homs(A(p), X) - Homs(A(p), A(µ)) is the zero
map. Thus we have an exact sequence

0-+Homs(A(p), A(p))--Exts(A(p), X)-Exts(A(p), X)- Exts(A(p), A(µ))

But now Homs(A(p), A(µ)) = k and Exts(A(p), A(µ)) = 0 so we get
dim Exts(A(p), X) = dim Ext1(A(p), X) - 1. Thus, by the choice of X, the
module X embeds in a tilting module. Hence X embeds in a tilting module.

Suppose A E A+ is such that (X : A(A)) = 1 and v < A for all v such that
(X : A(v)) # 0. Since Exts(A(µ), X) # 0 we have Ext1(A(p), A(v)) # 0
for some v E A+ with (X : A(v)) # 0. Thus we have p < v and v < A
and hence p < A. Thus X also has the property that (X : A(A)) = 1 and
v < A whenever (X : A(v)) $ 0. Again, by the choice of X, the module
X, and hence X, embeds in some tilting module T with the property that
(T:A(A))= 1 and v < A whenever (T:A(v))#0.

We can now prove the classification of tilting modules.

Theorem A4.2 (i) For each A E A+ there exists a unique (up to isomor-
phism) indecomposable tilting module T(A) such that [T(A) : L(A)] = 1 and
p<A whenever [T(A):L(p)]#0.
(ii) Every tilting module is a direct sum of the modules T(A), A E A+.
(iii) Every indecomposable tilting module is absolutely indecomposable.

Proof For A E A+ we take X = A(A) in Lemma A4.1 and obtain a tilting
module TX such that (TA : A(A)) = 1 and p < A whenever (T : A(p)) # 0.
Note that every indecomposable summand of T is also a tilting module, by
Proposition A2.2(vi). Let T(A) be the indecomposable direct summand of T
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such that (T(\) : 0(a)) = 1. Then T(A) is an indecomposable tilting module
with the required properties.

For A E A+ we put r(A) = {p E A+ I p < A} and define U(.) _
O,(A)(T(.A)) and V(.\) = O"(')(T(A)). Then we have T(A)/U(.) - V(A)
and V(.) = A(A), by Lemma A3.1(ii),(iii). Let 9 E Ends(T(A)). Then 9
induces an endomorphism of T(A)/U(A) and, since Ends(V(A)) = k, the
induced endomorphism is multiplication by a scalar c, say. Thus, putting
0 = 9-c.id (where id is the identity map on T(\)), we have q(T(A)) < U(\).
By indecomposability and the Fitting lemma, we have that 0 is nilpotent.
Thus the ideal I = {9 E Ends(T(.)) I 9(T(\)) < U(.\)} of Ends(T(.)) is
nilpotent and Ends(T(.)) = k.id ® I. Hence I is the nilpotent radical of
Ends(T(.\)) and, since Ends(T(A))/I = k, the module T(A) is absolutely
indecomposable.

Let T be a non-zero tilting module and let A E A+ be maximal such that
(T : 17 (A)) # 0. From Proposition A2.2(i), we get that T has a homomorphic
image isomorphic to V(.), and hence there exists an epimorphism T
T(A)/U(t) - V(A). Now we have an exact sequence

Horns (T, T(A)) -> Horns (T,T(A)/U(A)) -> Ext1(T, U(A)).

Moreover Exts(T, U(.X)) = 0 (since T E Y(A), U(A) E F(V)) and hence
there exists a homomorphism : T --> T(t) inducing a surjection T ->
T(A) -p T(A)/U(.X). Let U = Ker(q). By the same argument we have
a homomorphism 0 : T(A) , T inducing a surjection : T(.X) -> T
T/U = V(A). Now L(.X) does not occur as a composition factor of U(.)
and hence does not occur as a composition factor of'(U(A)). However, the
module O(A) has simple socle L(\) and so we must have (U(.)) = 0. Since
dim T(A)/U(A) = dim T/U = dim O(.), we must have U(A) = Ker(V) and
so T induces an isomorphism V) : T(A)/U(.) -* T/U. Thus the composite
OoV : T(A) -+T(A) induces an isomorphism T()t)/U(.) -+T()t)/U(.). Thus
0oz/' E Ends(T(.)) is not nilpotent. But the nilpotent radical of Ends (T(A))
has codimension 1, so 0 o 0 is an isomorphism and hence 0 : T -> T(A) is
a splitting. Thus T(A) is a direct summand of T. By induction on the
dimension of T we obtain that T is a direct sum of copies of T(A), A E A+.
In particular an indecomposable tilting module is isomorphic to T(A), for
some A E A+, and so is absolutely indecomposable.

For X E .F(V) we define the support, denoted supp(X), to be the set of
A E A+ such that we have A < p for some p E A+ such that (X : O(µ)) # 0.

Lemma A4.3 Let 0 X E F(V) Then there exists a short exact sequence
0 - X' -> T -> X -> 0 in mod(S) such that T is a tilting module and
X' E Y(V) has support strictly contained in the support of X.

Proof We suppose, inductively, that the result holds for all non-zero mod-
ules in F(V) which have support strictly contained in supp(X). Let A be
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maximal such that L(a) is a composition factor of X and let A=supp(X)\{a}.
Then by Proposition A2.2(i), we have a submodule Y, say, such that X/Y is
a direct sum of copies of V(.\), say n of them, and A supp(Y). Now T(.)
has a submodule U(A), say, such that T(A)/U(A) = V(A), and U(A) E .F(V).
Putting To = T(A)(n) and Uo = U(t)( ), we have To/Uo = X/Y. We choose
an epimorphism a : To -p X/Y with kernel Uo. We have an exact sequence

Horns (TO, X) --+ Horns (To, X1 Y) --+ Ext Is (TO, Y)

and Exts(To, Y) = 0 by Proposition A2.2(ii), so there is an S-homomorphism
0 : To -} X such that the composite To -p X -> X/Y is the surjective map
7r. Let & : To ®Y -+ X be the sum of 0 and the inclusion map Y --r X.
Then V, is surjective and the kernel consists of those pairs (to, y) E To ® Y
with 0(to) + y = 0. Thus we have Ker(V) = {(to, -O(to)) I to E Uo}, which
is isomorphic to Uo.

We have supp(Y) < supp(X)\{.}. Hence, by minimality, there is an
epimorphism ( : T1 -+ Y such that T1 is a tilting module and Ker(() E .F(V)
has support in supp(Y). Let (: T = To ® T1 , To ® Y be the sum of the
identity map and ( and let o : T -- X be the composite V) o C.

We must show that the kernel X' of o belongs to 1(V) and has support
contained in A. We have X' = Ker(o) = Ker(tk o () = (-1(Ker(')). Thus
( induces an isomorphism (: X'/Ker(() - Ker(O). Now both Ker(() and
Ker(O) are in 1(V) and have support in A so that

supp(X') C supp(Ker(()) U supp(Ker(')) C A,

as required.

Proposition A4.4 For X E mod(S) we have X E 1(V) if and only if X
has a finite left resolution by tilting modules.

Proof Suppose that X has a finite left resolution by tilting modules. In
particular X has a resolution 0 -> X,. -> -> Xo -> X -+ 0, for some
Xo, ... , X,. E .17(V), and this implies X E .F(V) by Proposition A2.2(v)
(and induction).

Now suppose X E .F(V) and assume inductively that every module
in 1(V) which has support strictly contained in the support of X has a
finite resolution by tilting modules. By Lemma A4.3 we have a short exact
sequence 0 --r X' -> T --+ X --> 0, where T is a tilting module and X' E
.1(0) has support strictly contained in the support of X. By the inductive
hypothesis there is a resolution 0 --> T,. -+ To .- X' . 0, where each
T$ is a tilting module. Combining these sequences, we obtain a resolution
0 -> T,. _+ . -To -> T --+ X --p 0, of the required form.

Remark Suppose that the global dimension of S is n and that we have a
resolution 0 --> T,. -* -> Tl -+ To --> X -> 0 of X E 1(V) by tilting
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modules, with r > n. Let Ij be the image of the map Tj --+ Tj_1i for
r > j > 1. Thus we have exact sequences 0 -> T,. -> Tr_1 -' Ir_1 -+ 0, and
0-+Ij->Tj_1-+Ij_1-'O,forr-1>j>2,and 0->Il-To->X->0.
Using Proposition A2.2(ii), we obtain

Exts(Ir-2,Tr) _ ... = Exts '(11, T,) = Exts(X,Tr) = 0.

Hence Tr -+ Tr_1 is split. Thus Ir_1 is a direct summand of a tilting module,
and hence a tilting module. Hence we have a resolution by tilting modules
0 ` Ir_ 1 -> Tr _ 2 -> ---* To -+ X --> 0, of length r - 1. Continuing in this
way, we obtain, for X E Y(V), a tilting module resolution 0 T -} Tn_1 -+
...-+To->X,0,oflength atmost n.

We call the indecomposable tilting modules T(A), A E A+, as above, the
partial tilting modules. The partial tilting modules behave well under both
forms of truncation.

Lemma A4.5 Let A E A+.
(i) Let 7r be a saturated subset of A+. If A E 7r then O,r(T(A)) = T(A) and
this is the partial tilting module for S(ir), labelled by A.
(ii) Let 7r be a cosaturated subset of A+. Assume that S has a theory of
weights 0 : A --+ S. Let F be a set of weights such that t+ = 7r, let = &r
and let f mod(S) -+ mod(SS) be the Schur functor. If A E 7r then fT(A) is
the partial tilting module for Sc, labelled by A. If A ¢ 7r then fT(A) = 0.

Proof (i) Every composition factor of T(\) belongs to {L(A) I A E 7r}, i.e.
T(A) belongs to 7r and so O,r(T(A)) = T(A). Since T(A), regarded as an S(7r)-
module, has a A-filtration and a V-filtration, it is a tilting module and since
it is indecomposable T(A) is a partial tilting module for S(7r). Moreover,
since T(A) has a V-filtration with V(A) occurring once and other sections of
the form V(p) with p < A, we have that T(A) is the tilting module for S(ir)
labelled by A.
(ii) Let A E 7r. Then f O(A) 0 0 and so, by exactness, we have fT(A) # 0.
Moreover, as an Se-module, fT(A) has a V-filtration and a A-filtration, by
PropositionA3.11(ii). Thus fT(A) is a tilting module. The natural map
Ends(T(A)) -+ Ends, (fT(A)) is surjective by Lemma A3.12 and since T(A)
is indecomposable, fT(A) is too. Thus fT(A) is a partial tilting module.
Since fT(A) has a filtration by modules of the form f0(µ), with p < A, and
f V(A) occurring exactly once, fT(A) is the partial tilting module labelled
by A.

By a full tilting module we mean a tilting module T such that T(A)
occurs as a component of T, for every A E A+. Let T be a full tilting
module. We define S' = Ends(T)°P and call S' the Ringel dual of S. (Note
that if To is any full tilting module then Ends(TO) is Morita equivalent, but
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not necessarily isomorphic, to Ends(T) so that to be accurate we should
perhaps call Ends(T) a Ringel dual of S.) For X E mod(X) we define
FX to be Homs(T, X ), regarded as an S'-module in the natural manner.
For a morphism 0 : X -> X' in mod(S) we define FO : FX -> FX' by
F4(a) = 0 o a, for a E Horns (T, X). In this way we have a left exact functor
F : mod(S) -> mod(S'). We put P'(A) = FT(A), for A E A+, and note that
{P'(A) I A E A+} is a complete set of pairwise non-isomorphic projective
indecomposable S'-modules. Thus defining L'(A) to be the head of P'(A),
for A E A+, we have that {L'(A) I A E A+} is a complete set of pairwise non-
isomorphic simple S'-modules. We further define A'(A) = FV(A), A E A+.

(1) (i) If 0 , X' -+ X -* X" , 0 is a short exact sequence of finite
dimensional S-modules with X' E F(V) then 0 -> FX' -> FX --* FX" -> 0
is exact.
(ii) For any tilting module To and X E mod(S) the map
Horns (To, X) , Horns, (FTo, FX) is an isomorphism.

Proof (i) This follows from Proposition A2.2(ii).
(ii) Since To is a direct summand of a direct sum of copies of T, it is enough
to prove this with To = T. If 9 E Homs(T, X) and F(9) = 0 then Boa = 0
for all a E Homs(T), in particular 9 o id = 0, where id is the identity map
on T, and hence 9 = 0. Thus Homs(T, X) -> Horns, (FT, FX) is injective.
However, we have dim Horns (T, X) = dim FX and dim Horns, (FT, FX) _
dim Horns, (S', FX) = dim FX so that
Horns (T, X) -> Horns, (FT, FX) is an isomorphism.

(2) S' is Schurian, i.e. we have Ends,(L'(A)) = k for all A E A+.

Proof For A E A+ we have Ends(T(A)) = Ends,(P'(A)), by (1)(ii). More-
over, T(A) is absolutely indecomposable, by Theorem A4.2(iii). Hence P'(A)
is absolutely indecomposable. Now the quotient map P'(A) , L'(A) gives
rise to a surjective map Ends,(P'(A)) -> Ends,(L'(A)). But Ends,(P'(A))
has a nilpotent ideal of codimension 1 and Ends,(L'(A)) is a division ring.
It follows that Ends,(L'(A)) = k, and L'(A) is absolutely irreducible.

Lemma A4.6 For A, P E A+ we have [A(A) : L'(p)] = (T(It) : A(A)).

Proof We have
[A'(A) : L'(µ)] = dim Homs,(P'(p), A(A))

= dim Homs(T(p), V(A)) = (T(p) : A(A))

by A1(8), and (1)(ii) above and Proposition A2.2(ii).

We denote the partial ordering on A+ opposite to the given order < by
<'. We now prove that S' is a quasihereditary algebra with respect to the
labelling of simples {L'(A) I A E A+} and opposite order <' on A+.
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Theorem A4.7 (S', <') is a quasihereditary algebra with standard mod-
ules 0(A), A E A+.

Proof Applying F to a V-filtration of T(A) with final section V(A), we
have, by (1)(i), that P(A) has filtration 0 = PO' < . < P,, = P, say, with
P'/Pi'-1 = A'(Ai) with A,, = A and Ai >' A (i.e. Ai < A) for 1 < i < n. Note
that all composition factors of 0'(A) come from the set {L'(p) I It <' A} and
that [0'(A) : L'(A)] = 1, by Lemma A4.5. Thus if A'(A) = P'(A)/K'(A) and
L'(A) = P'(A)/M'(A), then M'(A)/K'(A) is the largest quotient of M'(A) all
of whose composition factors come from {L'(p) I p <' A) and S' is quasi-
hereditary, with respect to the ordering <', as required.

For a homomorphism 0 : S1 -> S2, of finite dimensional algebras, and
V E mod(S2) we write V95 for the k-space V regarded as an S1-module
via the action x * v = q5(x)v, for x E S1, v c V. Now suppose given
quasihereditary algebras (S1iA1 ), with simple modules L1(A), A E A+, and
(S2, A+), ), with simple modules L2(A), A E AZ . We say that an algebra
isomorphism q : Sl --> S2 is an isomorphism of quasihereditary algebras if
the bijection v : At -+ AZ , defined by L1(A) = L2(v(A))O, for A E Ai , is
order preserving.

For A E A+ we write T'(A) for an indecomposable tilting module for S'
with highest composition factor L'(A).

Proposition A4.8 (i) Let X, Y E .T(V). Then F induces isomorphisms
Exts(X, Y) -> Exts, (FX, FY), for all i > 0.
(ii) We have T'(A) = FI(A), for A E A+.
(iii) A suitable choice of full tilting modules for S and S' gives rise to an
isomorphism S --> S" of quasihereditary algebras.

Proof (i) Let I E mod(S) be injective. We have FI E .F(0') by (1)(i). By
Proposition A4.4, we have a finite resolution 0 -p T,. -> Ti --. To ->
X -> 0. Thus we get an exact sequence 0 - FT,. -+ -* FT1 -> FTo
FX -> 0 and, since each FTC is projective, this is a projective resolution of
FX. Now we get complexes

0 -> Homs(TO, I) -+ Homs(T1i I) , . . - Homs(T,., I) -> 0

and

0 -> Homs,(FT0, FI) - Horns, (FT1, FI) -> - Homs, (FT,., FI) -. 0.

Moreover, we have the canonical isomorphisms

Homs(Tj, I) -> Homs,(FIj, FI),
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for 0 < j < r. Thus the complexes have the same homology. The top
complex has homology Homs(X, I) in degree 0 and homology 0 in posi-
tive degree, since I is injective, and the homology of the bottom complex
is Exts,(FX, FI). Hence we get that the natural map Homs(X, I)
Horns, (FX, FI) is an isomorphism and Exts, (FX, FI) = 0, for i > 0.

Let 0 --> Y , I , Q -* 0 be an exact sequence with I injective,
and hence Q E F(V) by Proposition A2.2(iv),(v). We have a commutative
diagram

Homs(X,Y) -+ Homs(X,I) -> Homs(X,Q) -+ Exts' (X, Y)
I I I I

Homs,(FX,FY) --+ Homs,(FX,FI) Homs,(FX,FQ) -> Ext,15,(FX,FY)

where, in each row, the sequence is exact, the first map is injective, and the
final map is surjective. Moreover, the map Homs(X, I) -* Homs,(FX, FI)
is an isomorphism. It follows that Homs(X,Y) -+ Homs,(FX,FY) is in-
jective, and hence also Homs(X, Q) -> Homs,(FX, FQ) is injective. Now a
diagram chase reveals that Homs(X, Y) -> Homs,(FX, FY) is an epimor-
phism and hence an isomorphism. Hence Homs(X, Q) - Homs,(FX, FQ)
is also an isomorphism. We now have that the first three vertical maps
are isomorphisms, and hence so is the final map. Thus we have that for
i = 0, 1 Exts(X,Y) -+ Exts(FX, FY) is an isomorphism. For i > 1 we have
Exts(X,Y) = Exts1(X, Q) and Exts,(FX, FY) t--- Ext's-1 1(FX, FQ) (since
Exts,(FX, FI) = 0, for j > 2, as proved above) so we get Exts(X,Y)
Exts,(FX, FY) for all i by induction.
(ii) Taking X = V(p) in (i), with p E A+, we get Ext,1s,(0'(p), FI) = 0, for I
injective. Hence, by Proposition A2.2(iii), FI E .F(V'). Thus, FI is a tilting
module, for I injective. Let A E A+ and take X = I = I(\), in (i). We get
an isomorphism Ends(I(A)) Ends,(FI(.)). Hence FI(A) is absolutely
indecomposable. Moreover, I(.X) has a filtration with sections 0(p), with
p > A and V(.\) occurring precisely once. Hence FI(A) has filtration with
sections 0'(µ), with p <' A and 0'(a) occurring precisely once. Hence FI(A)
is the partial tilting module T'(\) with highest composition factor L'(A).
(iii) We take I = (Ss)*, the natural left dual of the right regular module.
It follows from (ii) that I is a full tilting module for S'. Moreover, by (i),
the map Ends((Ss)*) -> Ends,(F(Ss)*) is an isomorphism, giving an iso-
morphism Ends((Ss)*) -> (S")°p. However, we have a natural isomorphism
S°p - Ends((Ss)*) and hence an isomorphism S°p -> (S")°p, and hence an
isomorphism S S", which, as one can easily check, is an isomorphism of
quasihereditary algebras.

Remark It follows from Proposition A4.8(i) that the category .1(V), of
S-modules filtered by V(A)'s, is equivalent to the category of S'-
modules filtered by z '(.)'s. In view of the isomorphism S -+ S" we also get
that that the category .F(0) of S-modules filtered by A(A)'s is equivalent to
the category .F(V') of S'-modules filtered by V'(a)'s.
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We leave it to the reader to check the following.

(3) Suppose we have a finite set S2 and for each a E Sl a partial tilting
module Ta such that, writing Ta = ®AEA+T())(' ), we have that the set
{A E A+ I da 0 0} has a unique maximal element, which we denote a+, and
da+ = 1. Suppose also that the map 0 A+, a f-+ a+, is surjective. Put
T = ®aEa Tu,. Then the Ringel dual algebra S' = Ends(T) has theory of
weights rl : S2 -> S' given by r7(a) = 1;«, where i;'a E S' is projection onto Ta,
for aEft

We shall call a system of tilting modules {Ta I a E Sl} satisfying the hy-
potheses of (3) a weighted system of tilting modules. Note we always have
the trivial weighted system Q = A+, T), = T(A), for A E A+.

We conclude by showing that the two forms of truncation are inter-
changed by Ringel's dual construction. Recall that, for X, Y E mod(S) with
Y indecomposable, we are writing (X I Y) for the multiplicity of Y as a
direct summand of X.

Proposition A4.9 Let 0 : A -+ A+ be a theory of weights for (S, A+). Let
T be a full tilting module. Let it be a cosaturated subset of A+ and let r
be a subset of A such that r+ = a. Restriction Ends(T) -+
induces an isomorphism S'(ir) --+ End£rs£r(fpT)°P

Proof Put e = &. We first check that the dimension of S'(ir) agrees with
that of Ends, (fT). From Proposition A2.2(ii) for X E .P(A), Y E 1'(0) we
have dim Homs(X,Y) = F-AEA+(X : A(A))(Y : V(A)). Applying this to the
S£-module fT we get

dim Ends, (CT) _ BO(A)).
AEa

We have (T I T(A)) = (S' I P'(A)) = dim L'(A). Thus we have

dim S(7r) = dim S'/O"(S') = E dim L(A). dim P(A)/O'(P(A))
AEr

dim L'(A).(P'(A) : A'(p)). dim A'(µ)
11,A E 7r

dim L'(A).(T(A) : V(p)). dim Homs(T, V(µ))
a,AEr

(T I T(A)).(T(A) V(,u)).(T : A(µ))
A,,U E it

_ E(T : 0(µ))(T : A(µ)) = E(ET : V(µ))(4T : A(lu))
µE7r UE7r

= dim Ends, (ET).
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Thus the dimensions agree. Moreover, the restriction map 4D : Ends(T) ->
Ends{ (fT) is surjective, by Lemma A3.12. Let T = Tl ® . . . ® T,,, be a
decomposition of T with indecomposable (non-zero) summands. We regard
{Ti 1 < i < m} as a weighted system, in the trivial way, i.e. we put
S2 = [1, m] so that, for i E [1, m], we have i+ = A where A E A+ is such that
Ti T(.). We let fa E Ends(T) be projection onto Ti, for i E [1, m]. Thus
by (3) and Lemma A3.9, the ideal O"(S') is generated by the fi such that
Ti is not isomorphic to T(.\), for any A E it. Let i E [1, m]. If 0

then f' is not zero on fT and hence fTi # 0. This gives fTi+ # 0 and hence
i+ E it. Thus 4 is zero on the generators of O"(S') described above. But
now, S'(ir) = S'/O"(S'), so that J induces a surjective map ' : S'(ir) ->
Ends{ (f T)°P and by dimensions this is an isomorphism.

A5 The definitions of quasihereditary algebra and high weight category
first appeared in the paper by Cline, Parshall and Scott, [11]. These ideas
provide a common framework for discussing representation theory in various
situations, including the category 0 of Bernstein, Gel'fand and Gel'fand and
the rational representation theory of reductive algebraic groups in positive
characteristic. In the category 0 the notion of a A-filtration corresponds to
a filtration by Verma modules and in the category of rational representations
the notion of a V-filtration corresponds to that of a good filtration. We should
also mention Jantzen's treatment of the basic properties of rational modules
with a Weyl filtration (corresponding to a A-filtration in the general theory)
in [59]. Many of the results and arguments were around in these contexts
prior to [11] and much of the treatment of the fundamental properties that
we give here is based on our own work on good filtrations in the algebraic
group context. In particular we make consistent use of the O" functors,
introduced in [26].

Our notation and terminology is chosen to emphasize the analogy with
weight theory for Lie algebras and algebraic groups. Thus we write A+ for our
partially ordered set, calling the elements of A+ the dominant weights, and
write A for the set of weights (as defined in A3), adopting the notation of [51]
from the representation theory of the general linear group. Moreover we call
a set of dominant weights which is downward closed under the partial order
a saturated set, as in Lie theory, [54; 13.4], rather than an ideal. (This also
avoids possible confusion with the algebraic structure of the quasihereditary
algebra S.)

The algebra Sg is discussed in [3] and [51; Chapter 6]. We now make
some remarks on parts of Proposition A2.2. The vanishing of

Exts(O(A), O(µ)) = 0

for all i > 0, of part (ii), was proved in [11] (see the proof of [11; Theorem
3.11]). In the context of algebraic groups, it was proved by Cline, Parshall,
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Scott and van der Kallen, [13; (3.3) Corollary], as a corollary of Kempf's
vanishing theorem. From our perspective, [13; (3.3) Corollary] is seen as the
origin and kernel of the theory of quasihereditary algebras. Part (iii) in the
context of rational modules is the criterion, due to the author, for a module to
have a good filtration appearing in [26; Corollary 1.3], from which the proof
is taken. Part (iv) is often known as Brauer-Humphreys reciprocity because
of the obvious analogy with the well known Brauer reciprocity for finite
groups, [7; p. 257] and Humphreys reciprocity for Chevalley Lie algebras,
[53; 4.4,4.5], though neither of these can be derived as a special case of
Proposition A2.2(iv). However, the formula ((P(a) : 0(µ)) = [V(p) : L(a)]
is the well known Bernstein-Gel'fand-Gel'fand reciprocity in the category
0, see e.g. [60; 2.24,(1)]. The formula (I(X) : 0(µ)) = [0(p) : L(A)] in
the category of rational modules was proved in [26; Theorem 2.6]. It was
proved for "generalized Schur algebras" (which include the ordinary Schur
algebras S(n, r), see [32; (1.3)]) in [31; (2.2h)]. This proved in particular
that mod(S(n, r)) has the defining properties of a highest weight category
(though somewhat before the phrase had been coined). For algebras Morita
equivalent to the generalized Schur algebras see [10].

Proposition A2.3 is proved for generalized Schur algebras in [31; (2.2e)],
from which we have taken the proof given here. For Lemma A3.1 (and its
proof) in the context of rational representations see [29; (12.1.6)] (also [26;
Remark (2)]). For Proposition A3.2 (in the rational module context) see [31;
(2.1b),(2.1c)] and Proposition A3.3 (in the context of rational modules and
generalized Schur algebras) see [31; (2,2d)]. The equivalence of the notions of
high weight category and quasihereditary algebra is shown in [11; Theorem
3.6] (by arguments different from those given here). Lemma A3.9 is taken
from [33; (3.3)]. A3 Proposition A3.11 and Lemma A3.12, due to Erdmann,
are taken from [45; 1.6] and [45; 1.7] (in turn modelled on the algebraic group
case [33; 1.5]). This covers the case when is a sum of pairwise inequivalent
idempotents: the notion of theory of weights is introduced in A3 to make a
slight generalization to a context directly applicable to Schur algebras.

Section A4 is largely concerned with the theory of tilting modules as-
sociated with a quasihereditary algebra, as introduced by Ringel, [72]. The
corresponding notion was introduced in the category 0 by Collingwood and
Irving, [14], and in the rational module context by the author, [30], where
a set of tilting modules was called a "special resolving system" (though it
should be pointed out that we had at that time existence only for GL,, in gen-
eral and under certain characteristic assumptions for other reductive groups,
and we had no uniqueness statement). Most of A4 is based on Ringel's pa-
per, though we have expressed the arguments so as to be independent of
earlier work of Happel and of Auslander and Reiten. For Lemma A4.3 and
Proposition A4.4, see [30; Section 1, Theorem and Lemma 2]. For Lemma
A4.5 in the basic context see [45; 1.7], and see [33; 1.5] for the algebraic
group setting.
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Finally, we mention the excellent survey article by Dlab and Ringel,
[22], which has similar aims to those of our appendix. The general set-
up we have adopted is similar to theirs. In particular, for A1(6) see [22;
Lemma 1.2(c) and Lemma 1.3], for Proposition A2.2(i) see [22; Lemma 1.3],
for Proposition A2.2(ii),(iii) see [22; Theorem 1 and Lemma 2.4], and for
Proposition A2.2(iv) see [22; Lemma 2.4 and Lemma 2.5].
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with entries with entries in the field K, 0.3
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d the determinant function on GL,,(K), 0.3
K[GL,,(K)] the coordinate algebra of GL,a(K), 0.3
cf(V) the coefficient space of a module V, 0.4
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Comod(C) the category of right C-comodules, for a coalgebra C, 0.9
comod(C) the category of finite dimensional right C-comodules, for

a coalgebra C, 0.9
Mod(S) the category of left S-modules, for an algebra S, 0.9
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algebra S, 0.9
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Va the a weight space of the module V, 0.12
ZX(n) the integral group ring of X(n), 0.12
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S''E the rth symmetric power of E, 0.13
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D the determinant module, 0.13
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A(n, r) the degree r component of A(n), 0.13
S(n, r) the Schur algebra, i.e. the dual algebra of the

coalgebra A(n, r), 0.13
G(n) GLn, 0.14
T(n) GLi , 0.14
I(n, r) the set of all maps i : [1, r] -+ [1, n], 0.14
Sym(r) the symmetric group of degree r, 0.14
Ial al + a2 . (for a = (al, a2, ...)), 0.14
A(n, r) the set of a E N such that jal = r, 0.14
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basis of A(n, r), 0.14
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< the natural (dominance) partial order, 0.15
X+(n) the set of dominant weights, 0.15
L(a the simple of high weight A, 0.15
IndH the induction functor from H-modules
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A+ (n, r) A(n, r) fl X+(n), 0.16
[V(A) : L(µ)] the multiplicity of L(p) as a composition factor

of V(A), 0.17
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A+(n, r),oW set of row regular partitions, 0.18
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f the Schur functor, 0.18 (and 2.1)
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1(w) the length of w E Sym(r), 0.19
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Aq(n) a q-deformation of A(n), 0.20
Aq(n, r) the degree r component of Aq(n), 0.20
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generated by c$j, i < j, 0.21
Vq(.\) IndBq(»))kA, 0.21
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Chapter 1

cf(E) the coefficient space of a comodule E, 1.1
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Sym(X) the group of permutations of a set X, 1.2
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A(E), A(V )
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P(n)
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AStan(A)

Tabo(A)
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is

X (r, s)

(i j)
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(i i)
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an R-algebra defined by generators and relations, 1.2
the degree r component of A(n), 1.2
the quantum general linear monoid, 1.2
the quantum general linear group, 1.2
the natural left and right M-modules, 1.2
the (quantum) exterior algebras over E and V, 1.2
the rth (quantum) exterior powers of E and V, 1.2
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entries, 1.2
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of S are distinct, 1.2
the set of A-tableaux S such that the entries in each row
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a<banda,bE[l,r]ora,bE[r+1,r+s], 1.2
EvESym(r) sgn(r)ci i,r, for i, j E I(n, r), 1.3
(Sl : T')(S2 : T2) ... (S"` : Tm), where S and T are
A tableaux//with rows Sl, ... , Sm and T1, ... , T, 1.3
E7ESym(r)(_qP7r)ei,rj, for i, j E I(n, r), 1.3
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Sr(E), S'(V)
ei

vi

S` E
say
iEa
i - j
is
ja

I+(a)

1 ( a )

A(n, r)a
aA(n, r)
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the (quantum) symmetric algebras over E and V, 2.1
the rth (quantum) symmetric powers of E and V, 2.1
the image of ei under the natural map E®r -+ SEE, 2.1
the image of vi under the natural map Vor -> SrV, 2.1
Sal E ® Sa2E ® , for a = (al, a2, ...), 2.1
Sa1V 0 Sa2V ®..., for a = (al, a2....), 2.1
i E I(n, r) has content a E A(n, r), 2.1
i, j E I(n, r) have the same content, 2.1
(1,.. . ,1, 2 ... , 2,3 .3,. ..), for a E A(n, r), 2.1
( .... 3, 2, ... , 2, 1, ...., 1)for a E A(n, r), 2.1
the set of (il, ... , ir) E I(n, r) such that it < <
2a1+1 < -:5 ial+a2+ ..., for a=(al,...,ar)EA(n,r), 2.1
the set of (i1,...,ir) E I(n,r) such that i1 > ... > ia1,
ial+1 ... 1 ial+a2,..., for a = (al, ... , ar) E A(n, r), 2.1
the k-span of the elements cij with j E a, 2.1
the k-span of the elements cij with i E a, 2.1
the k-span of the elements cij with i E a, j E 2.1
an element of a certain basis of S(n, r), 2.1
an element of a certain basis of S(n, r), 2.1
Si°i-, for a E A(n, r), 2.1
(1, ... ,1) E A(n, r), 2.1
(1,2,...,r), 2.1
(r,...,2,1), 2.1

2.1

bu,uo, for a E Sym(r), 2.1
vo,a for v E Sym(r), 2.1

ba-1, for o E Sym(r), 2.1
eS(n, r)e, 2.1 (and the abstract Hecke algebra in 0.19)
the Schur functor, 2.1 (and 0.18)
X E mod(G) admits a good filtration (V-filtration), 2.1
the longest element of Sym(n), 2.1
-woa,forA E X(n),2.1
V(A*)*, for ) E X+(n), 2.1
the trivial representation of the Hecke algebra,
v(TT) = qi(w), 2.1
the sign representation of the Hecke algebra,
E(T,,) = sgn(w), 2.1
1-dimensional trivial module for a Hecke algebra, 2.1
1-dimensional sign module for a Hecke algebra, 2.1
the subset of [1, r] defined by a E A(n, r), 2.1
the subgroup of Sym(r) defined by a E A(n, r), 2.1
the subalgebra of H(r) defined by a E A(n, r), 2.1
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x(a)
y(a)

E.wESym(«)T., 2.1

wE Sym(a)(-q)N-'(w)Tw, for a E A(n, r),

ci

where N = (2), 2.1
(0,...,0,1,0,...,0), 2.2

Xo (n) the set of A _ ()11 i ... , Am, 0, ... , 0) E X (n) with

AC
A,, ... , An # 0 (for some m), 2.2
J(A)CJ(µ),2.2

Chapter 3

G1 infinitesimal subgroup of G, 3.1
B1, B + , T, infinitesimal subgroups B n G1, B+ n G1, T n G1

of B, B+, T, 3.1
Gl Jantzen subgroup of G, 3.1
B1, Bj Jantzen subgroups GI n B, GI n Bj of B, B+, 3.1
X1 the set of A = (A,, ... , E X such that

0<A1-A2,...,A.-1-A ,An<1,3.1
JHI the order of a finite quantum group H, 3.1
[H : J] the index IHI/IJI of a finite quantum subgroup in a

finite quantum group H, 3.1
I, (A) the injective hull of the Bj -module kA, 3.1
ii(A) the injective hull of the Bj -module ka, 3.1
x(\) Weyl character and Schur symmetric function, 3.1
O1(A) IndGl kA, 3.1

t1(A) Inddlka, 3.1
L1(A) the (simple) socle of the G1-module V1(.\), 3.1
L1(A) the (simple) socle of the G1-module V1(A), 3.1
w A the "dot" action, i.e. w A = w(. + p) - p

forwESym(n),AEX,3.1
G ordinary GL, regarded as a k-group, 3.2
F : G , G the (quantum) Frobenius morphism, 3.2
Q1(A) the injective envelope of the G1-module L1(\),

forAEX,3.2
Q1(A) the injective envelope of the G1-module L1(A),

forAEX,3.2
V E .F(V1) V is a G1-module which admits a filtration with sections

of the form V1(.), A E X, 3.2
T(\) indecomposable tilting module with highest weight A, 3.3
t(A) (1- 1)6 + 1A, where 6 = (n - 1, ... ,1, 0), 3.3P:0-0 the ordinary Frobenius morphism, 3.4



176 Index of notation

Chapter 4

A(E ® V) exterior algebra on E ® V, 4.1
J a certain antiautomorphism of H(r) and S(n, r), 4.1
U° the contravariant dual of an H(r)-module

or S(n, r)-module U, 4.1
GE a subgroup of the quantum general linear group defined

by a set E of simple roots, 4.2
LE(A) simple GE-module of highest weight A, 4.2
A(ir) a generalized Schur coalgebra, 4.2
S(7r) a generalized Schur algebra, 4.2
el, e2, ... elementary symmetric functions, 4.3
hl, h2, ... complete symmetric functions, 4.3
sA, Schur symmetric function, 4.3
i(A) the image of A under a certain bijection

A+ (n, r),.,, --- A+ (n, r),,,I, 4.3
Y(A) the Young module labelled by A, 4.4
Y3(A) the signed Young module labelled by A, 4.4
Sp(A) the Specht module labelled by A, 4.4
D(A) irreducible H(r)-module labelled by A, 4.4
# a certain antiautomorphism of H(r), 4.4
A(v) k[M(v)], for v a composition of n, 4.6
A(v, p) pth component of the graded algebra A(v), 4.6
S(v, p) algebra dual of the coalgebra A(v, p), 4.6
DAE divided powers module, 4.8
inj(X) the injective dimension of a module X, 4.8
proj(X) the projective dimension of a module X, 4.8
glob(S) the global dimension of an algebra S, 4.8

Appendix

L(A) simple S-module labelled by A E A+, Al
P(A) projective cover of L(A), Al
I(A) injective envelope of L(A), Al
mod(S) category of finite dimensional left S-modules, Al
[X : L(A)] multiplicity of L(A) as a composition factor of

X E mod(S), Al
a a subset of A+, Al
0" (V) the largest submodule of V belonging to a, Al
Ol(V) the smallest submodule of V such that V/O"(V)

belongs to 7r, Al
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S(7r) S/O"(S), Al
Se f Sf , for an idempotent E S, Al
f V V E mod(SS), for V E mod(S), Al
At {A E A+ I AL(A) # 0}, Al
V* Homk(V, k) regarded as a left S°p-module

(for V E mod(S)), Al
< a partial order on A+, Al
M(A) the maximal submodule of P(A), Al
a(A) {pEA+ Ip<A},Al
K(A) O"(a)(M(A)), Al
O(A) P(A)/K(A), Al
O(A) defined by V(A)/L(A) = 0,(,\)(I(A)/L(A), Al
Grot(S) the Grothendieck group of finite dimensional

left S-modules, Al
[X] the class of X E mod(S) in Grot(S), Al
(X O(A)) defined by [X] = EAEA+(X : A(A))[0(A)],

for X E mod(S), Al
(X V(.A)) defined by [X] = UREA+(X V(A))[0(A)],

for X E mod(S), Al
.F(0) the class of finite dimensional left S-modules which admit

a filtration with sections from {o(A) I A E A+}, Al
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1(A+) the maximum value of 1(A), A E A+, A2
k0" right derived functors of 0", A3
0 : A - S a theory of weights, A3

0(a),foraEA,A3r EaEr G,, for r C A, A3
.1" (0) the class of finite dimensional dimensional left

S-modules which admit a filtration with sections
from {O(A) I A E it}, A3

T(A) the indecomposable tilting module labelled by A E A+, A4
supp(X) the support of X E .1(V), i.e. the set of A E A+ such that
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signed Young module, 4.4
Specht tableau, 4.4
standard module, Al
standard module, 1.2
Steinberg's tensor

product theorem, 3.2
Steinberg weight, 3.2
support, A4

rational module, 0.4
regular action, 0.5
restriction, 0.16
Ringel dual, 4.1
row regular, 0.18

saturated, A3
Schur algebras, 0.13
Schur functor, 2.1
Schurian algebras, Al
Serre duality, 3.1

theory of weights, A3
tilting module, A4
truncation, 4.12
weight space, 0.12
Weyl's character formula, 0.16

Young module, 4.4

Zariski topology, 0.2
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