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Preface

The main purpose of developing stability theory is to examine the dynamic re-
sponses of a system to disturbances as time approaches infinity. It has been and
still is the subject of intense investigations due to its intrinsic interest and its
relevance to all practical systems in engineering, finance, natural science and
social science. Lyapunov stability theory, one celebrated theory, is the founda-
tion of stability analyses for dynamic systems that are mathematically described
by ordinary differential equations (ODE). Inspired by numerous applications and
new emerging fields, it has been significantly developed and extended to sys-
tems that are modeled using difference equations (DE), differential-difference
equations (DDE), functional differential equations (FDE), integral-differential
equations (IDE), partial differential equations (PDE), and stochastic differential
equations (SDE). For instance, interest in automatic control starting in the 1950s
has generated the theories of global and absolute stability. Theory describing the
co-existence and sustainability of ecological systems originated from interest in
bio-systems analysis beginning in the 1970s. Interest in artificial neural networks
beginning in the 1980s has stimulated the solution of nonlinear equations by using
electronic circuit analogues.

The evolution of stability theory has been very rapid and extensive. Major de-
velopments are scattered throughout an array of scientific journals, making it often
difficult to discover what the real advances are, especially for a researcher new to
the field or a practitioner using the results in various applicable areas. Therefore,
it appears necessary to have monographs on topics of current interest to both
researchers and practitioners in the field. The present monograph is intended to
provide some state-of-the-art expositions of major advances in fundamental sta-
bility theories and methods for dynamical systems of ODE and DDE types and
in limit cycle, normal form and Hopf bifurcation control of nonlinear dynamic
systems.

The present monograph comes mainly from our research results and teach-
ing of graduate students in the stability of dynamical systems. Chapter 1 is the
introduction where we define various stabilities mathematically, illustrate their
relations using examples and discuss the main mathematical tools for stability
analyses (e.g., Lyapunov functions, K-class functions, Dini derivatives, differen-
tial and integral inequalities and matrices). In Chapter 2, we re-visit the stability
of linear systems with constant coefficients, present a new method for solving the
Lyapunov matrix equation and discuss our geometrical method for stability analy-
ses. Chapter 3 describes the stability of linear systems with variable coefficients.

v



vi Preface

Particularly, we first develop relations between the stabilities of homogeneous
and nonhomogeneous systems, and relations between Cauchy matrix properties
and various stabilities. We then discuss the robust stability, analytical expressions
of Cauchy matrix solutions for some linear systems and the Floquet–Lyapunov
theory for linear systems with periodic coefficients. Finally, we present the trun-
cated Cauchy matrix and partial variable stability. In Chapter 4, we present the
Lyapunov stability theory by using a modern approach that employs the K-class
function and Dini derivative. The necessary and sufficient conditions are system-
atically developed for stability, uniform stability, uniformly asymptotic stability,
exponential stability, and instability. We present classical Lyapunov theorems of
stability and their inverse theorems together to illustrate the universality of the
Lyapunov direct method. Also developed in Chapter 4 are some new sufficient
conditions for stability, asymptotic stability, and instability. This chapter ends with
a brief summary constructing Lyapunov functions. Chapter 5 presents a major ex-
tension and development of the Lyapunov direct method, including the LaSalle
invariant principle, theory of comparability, robust stability, practical stability,
Lipschitz stability, asymptotic equivalence, conditional stability, partial variable
stability, stability and the boundedness of sets. In Chapter 5, we also apply the
Lyapunov function to study the classical Lagrange stability, Lagrange asymptotic
stability and Lagrange exponential stability.

Chapter 6 is devoted to the stability of nonlinear systems with separable vari-
ables. The topics covered include linear and nonlinear Lyapunov functions, the
global stability of autonomous and nonautonomous systems, transformation into
systems with separable variables, and partial variable stability. This chapter pro-
vides the methods and tools for examining the absolute stability of nonlinear
control systems in Chapter 9 and the stability of neural networks in Chapter 10.
Chapter 7 describes the iteration method that uses the convergence of iteration for
stability analyses and avoids the difficulty encountered in constructing Lyapunov
functions. Particularly, we discuss iteration methods of Picard and Gauss–Seidel
types and their applications in examining the extreme stability and the station-
ary oscillation, in improving the freezing coefficient method, and in investigating
the robust stability of interval systems. Dynamical systems with temporal delay
are often modeled by differential-difference equations (DDE). The stability of
such systems is discussed in Chapter 8. We first present the Lyapunov functional
method and the Lyapunov function method with the Razumikhin technique for
the stability analyses of time-delaying nonlinear differential equations and DDE
with separable variables. We then apply the eigenvalue method and M matrix the-
ory to develop an algebraic method for modeling the stability of linear systems
with constant coefficients and constant time-delays. Finally, we use the iteration
method in Chapter 7 to examine the stability of neutral DDE systems with tem-
poral delays. Chapter 9 covers the absolute stability of Lurie control systems. The
topics contain some algebraic sufficient conditions for stability, and the necessary
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and sufficient conditions for the absolute stability of direct, indirect, critical and
time-delaying Lurie control systems and for the absolute stability of Lurie control
systems with multiple nonlinear controls or with feedback loops. Also discussed
in this chapter is the application of Lurie theory in chaos synchronization. Chap-
ter 10 focuses on stabilities (Lyapunov, globally asymptotic, globally exponential)
and exponential periodicity of various neural networks (Hopfield with and with-
out time-delay, Rosko bidirectional associative memory, cellular, generalized). In
Chapter 11, we present the computational methods of normal form and limit cy-
cle, the control of Hopf bifurcations and their engineering applications.

We acknowledge with gratitude the support received from the Huazhong Uni-
versity of Science and Technology (Department of Control Science and Engi-
neering), the University of Hong Kong (Department of Mechanical Engineer-
ing) and the University of Western Ontario (Department of Applied Mathemat-
ics). The support of our research program by the Natural Science Foundation
of China (NSFC 60274007 and 60474011), the Research Grant Council of the
Hong Kong Special Administration Region of China (RGC HKU7086/00E and
HKU7049/06P) and the Natural Sciences and Engineering Research Council of
Canada (NSERC R2686A02) is also greatly appreciated. We are very grateful
to Dr. Zhen Chen and Mr. Fei Xu who typed part of the manuscript. And, of
course, we owe special thanks to our respective families for their tolerance of the
obsession and the late nights that seemed necessary to bring this monograph to
completion. Looking ahead, we will appreciate it very much if users will write to
call our attention to the imperfections that may have slipped into the final version.

Xiaoxin Liao, Liqiu Wang, Pei Yu
London, Canada
December 2006
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Chapter 1

Fundamental Concepts and Mathematical Tools

In this chapter, we first present some definitions, examples, equivalent relations
and geometric explanation of Lyapunov function and wedge function (K-class
function). Lyapunov function method is a classical but still powerful tool for sta-
bility analysis, while wedge function approach is a modern tool in simplifying
and unifying the proofs of many stability and boundedness theorems. Then, we
introduce the Dini derivative of Lyapunov function. The Hurwitz condition, the
Sylvester condition and the M matrix condition in unified and simplified forms
are also discussed. Finally, we will discuss mathematical definitions and geomet-
rical explanations of various stability and attraction concepts. Several examples
are given to show the concepts and their relations.

Good mathematical tools are always useful and necessary in solving problems.
It would be helpful to know the basic concepts presented in this chapter in order
to understand well the materials given in the following chapters.

The contents presented in this chapter are based on the following sources: [153,
163,419] for Section 1.1, [98,151,234,298,300] for Section 1.2, [234,151] for
Section 1.3, [234,418] for Section 1.4, [163,419] for Section 1.5, [284] for Sec-
tion 1.6, [98,151,233,298,300] for Section 1.7, and [234] for Section 1.8.

1.1. Fundamental theorems of ordinary differential equations

As a preliminary, first of all, we list some principal theorems of ordinary differen-
tial equations without proofs. In fact, stability theory is based on these theorems
or, exactly, is established by extending these theorems. For example, stability in
Lyapunov sense is just an extension of the concept that a solution is continu-
ously dependent on its initial value by extending the finite interval to an infinite
one.

Consider the following equations:

(1.1.1)
dxi

dt
= gi(t, x1, x2, . . . , xn), i = 1, 2, . . . , n,

1



2 Chapter 1. Fundamental Concepts and Mathematical Tools

where t ∈ I := (t1, t2), t1 � −∞, t2 � +∞, the state vector x = (x1, x2,

. . . , xn)
T ∈ Ω ⊂ Rn, gi ∈ C[I × Ω,R1], i.e., I × Ω is a domain defined in

I × Rn and R1 is the image of the continuous function gi (i = 1, 2, . . . , n), Ω is
n-dimensional subset of Rn, 0 ∈ Ω . System (1.1.1) can be rewritten in the vector
form:

(1.1.2)
dx

dt
= g(t, x), g = (g1, . . . , gn)

T .

Assume that gi satisfies the Lipschitz condition, i.e., ∀x, y ∈ Ω , ∀t ∈ I , there
exists a constant L > 0 such that

∣
∣gi(t, x)− gi(t, y)

∣
∣ � L

n
∑

j=1

|xj − yj |.

Obviously, if | ∂gi (t,x1,...,xn)
∂xj

| � kij = constant, i, j = 1, 2, . . . , n, on I ×Ω , then
the Lipschitz condition is satisfied.

THEOREM 1.1.1 (Existence and uniqueness theorem). If g(t, x) = (g1(t, x), . . . ,

gn(t, x))
T satisfies the Lipschitz condition, then ∀(t0, x0) ∈ I ×Ω , ∃t∗ > 0, there

exists a unique solution x(t, t0, x0) which satisfies the differential equation (1.1.2)
with the initial conditions:

(1.1.3)x(t0, t0, x0) = x0,

(1.1.4)
dx(t, t0, x0)

dt
= g

(

t, x(t, t0, x0)
)

,

on the interval [t0 − t∗, t0 + t∗].
THEOREM 1.1.2 (Continuity and differentiability theorems for initial value prob-
lem). Suppose that the conditions of Theorem 1.1.1 are satisfied, and that two
solutions of (1.1.2) x(1)(t) := x(t, t0, x

(1)
0 ), x(2)(t) := x(t, t0, x

(2)
0 ) defined on

[t0, t1] × Ω . Then ∀ε > 0, ∃δ > 0, ‖x(1)0 − x
(2)
0 ‖ < δ implies ‖x(1)(t, t0, x0) −

x(2)(t, t0, x0)‖ < ε. The continuity of ∂gi
∂xj

(i, j = 1, 2, . . . , n) implies the conti-

nuity of ∂xi (t,t0,x0)
∂x0j

(i, j = 1, 2, . . . , n).

In the following, we consider the differential equations with parameters:

dx

dt
= g(t, x, μ),

where x ∈ Ω, t ∈ I and μ ∈ [μ1, μ2] is a parameter vector.

THEOREM 1.1.3 (Continuity and differentiability of solution with respect to pa-
rameter). Suppose that g(t, x, μ) ∈ C[I × Ω × [μ1, μ2], Rn], g satisfies the
Lipschitz condition for any values of parameter μ ∈ [μ1, μ2]. Then,
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(1) ∀t0 ∈ I, x0 ∈ Ω,μ0 ∈ [μ1, μ2] there exist constants ρ > 0, a > 0 such that
when |μ−μ0| � ρ, the solution of (1.1.2) x(t) := x(t, t0, x0, μ), defined on
[t0 − a, t0 + a] continuously depends on μ.

(2) gi being analytic with respect to all variables implies that x(t) := x(t, t0, x0,

μ) is also analytic with respect to μ.
(3) the continuous differentiability of gi with respect to x1, x2, . . . , xn and μ im-

plies the continuous differentiability of x(t) := x(t, t0, x0, μ) with respect
to μ.

EXAMPLE 1.1.4. Consider a second-order linear system:

(1.1.5)
d2x

dx2
+ λ

dx

dt
+ x = 0.

When λ = 0, equation (1.1.5) has a family of periodic solutions:

(1.1.6)

{

x(t) = A sin(t + α),

ẋ(t) = A cos(t + α),

where A and α are constants. Eliminating t in (1.1.6) yields the equation of or-
bit, ẋ2 + x2 = A2, which represents a family of circles when A is varied. When
0 < λ 	 1, according to Theorem 1.1.2, the solution orbit of system (1.1.6)
approximates the solution of (1.1.5), as shown in Figure 1.1.1.

Figure 1.1.1. Illustration of continuity on parameter.
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1.2. Lyapunov function

Suppose that the function W(x) ∈ C[Ω,R1], i.e., W :Ω → R1 is continuous,
W(0) = 0; V (t, x) ∈ C[I × Ω,R1], i.e., V (t, x) : I × Ω → R1 is continuous
and V (t, 0) ≡ 0.

DEFINITION 1.2.1. The function W(x) is said to be positive definite if

W(x)
{
> 0 for x ∈ Ω, x �= 0,
= 0 for x = 0.

W(x) is said to be positive semi-definite if W(x) � 0 for x ∈ Ω . The function
W(x) is said to be negative definite if W(x) is positive definite. W(x) is said to
be negative semi-definite, if W(x) � 0. The positive definite and negative definite
functions are called definite sign functions. The positive or negative semi-definite
functions are called constant sign functions.

DEFINITION 1.2.2. The function V (t, x) ∈ C[I × Ω,R1] (or W(x) ∈
C[Ω,R1]) is said varying if there exist t1, t2 ∈ I and x1, x2 ∈ Ω such that
V (t1, x1) > 0, V (t2, x2) < 0 (W(x1) > 0,W(x2) < 0).

EXAMPLE 1.2.3. W(x1, x2) = 3x2
1 + 2x2

2 + 2x1x2 is positive definite.

EXAMPLE 1.2.4. W(x1, x2) = x2
1 + x2

2 + 2x1x2 = (x1 + x2)
2 is positive semi-

definite.

EXAMPLE 1.2.5. W(x1, x2) = x2
1 + x2

2 − 3x1x2 is a variable sign function.

EXAMPLE 1.2.6. V (t, x1, x2) = x2
1 sin t + x2

2 cos t is a variable sign function.

DEFINITION 1.2.7. The function V (t, x) is said to be positive definite, if there
exists a positive definite function W(x) such that V (t, x) � W(x) and V (t, 0) ≡
0. The function V (t, x) is said to be negative definite, if −V (t, x) is positive
definite. The function V (t, x) ∈ C[I ×Ω,R1] is said to be positive semi-definite
if V (t, x) � 0. V (t, x) is negative semi-definite if V (t, x) � 0.

The meaning of Definition 1.2.7 is depicted in Figure 1.2.1.

EXAMPLE 1.2.8. V (t, x1, x2) = (2+ e−t )(x2
1 + x2

2 + x1x2) is positive definite,
because

V (t, x1, x2) =
(

2+ e−t
)(

x2
1 + x2

2 + x1x2
)

� x2
1 + x2

2 + x1x2 := W(x1, x2),

where W(x1, x2) is positive definite, and V (t, 0) = 0.
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Figure 1.2.1. Geometric demonstration of time-varying positive definite function.

EXAMPLE 1.2.9. V (t, x1, x2) = (e−t )(x2
1 + 3

5x1x2 + x2
2) is positive semi-

definite, since there does not exist a positive definite function W(x) such that
V (t, x1, x2) � W(x).

DEFINITION 1.2.10. The function W(x) ∈ C[Rn,R1] is said to be positive def-
inite and radially unbounded if W(x) is positive definite and x → ∞ implies
W(x)→+∞.

DEFINITION 1.2.11. The function V (t, x) ∈ C[I × Rn,R1] is said to be posi-
tive definite and radially unbounded if there exists a positive definite and radially
unbounded function W2(x) such that V (t, x) � W2(x). The function V (t, x) is
said to have infinitesimal upper bound if there exists a positive definite function
W1(x) such that |V (t, x)| � W1(x).

EXAMPLE 1.2.12.

W(x1, x2) = a2x2
1 + b2x2

2 + abx1x2 cos(x1 + x2)

� 1

2
a2x2

1 +
1

2
b2x2

2 +
1

2
a2x2

1 +
1

2
b2x2

2 − |ab||x1|x2|

= 1

2
a2x2

1 +
1

2
b2x2

2 +
1

2

(|ax1| − |bx2|
)2
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� 1

2
a2x2

1 +
1

2
b2x2

2 →+∞ as x2
1 + x2

2 →+∞,

W(0, 0) = 0,

so W(x1, x2) is positive definite and radially unbounded function.

EXAMPLE 1.2.13. V (t, x1, x2) = 2t
1+t2 x

2
1+x2

2 sin t � |x2
1 |+|x2|2 = W(x), thus

V (t, x1, x2) is a function with infinitesimal upper bound.

The geometric interpretation for positive definite function V (t, x) � W(x) is
shown in Figure 1.2.1. V (t, x) is a family of hypersurfaces in Rn+1, with para-
meter t , which locates over the fixed hypersurface W(x), i.e., the family of level
curves V (t, x) = c changed with respect to t is included in W(x) = c.

The geometric interpretation of positive definite function with infinitesimal up-
per bound

W1(x) � V (t, x) � W2(x)

is illustrated in Figure 1.2.2.
Assume W(x) is positive definite on ‖x‖ � H . The structure of W(x) = c

may be very complex, and may be not closed.

Figure 1.2.2. Geometric demonstration of time-varying positive definite function with infinitesimal
upper bound.
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EXAMPLE 1.2.14. Consider

W(x1, x2) = x2
1

1+ x2
1

+ x2
2

1+ x2
2

.

When 0 < c < 1, W(x1, x2) = c is a close curve; but when c � 1,W(x1, x2) = c

is not closed. In fact, when c � 1,

W(x1, 0) = x2
1

1+x2
1
= c has no finite solution for x1;

W(0, x2) = x2
2

1+x2
2
= c has no finite solution for x2.

So in the direction x1 (x2 = 0) or x1 (x2 = 0), W(x1, x2) = c is not closed.
However, when 0 < c < 1, let x2 = kx1, where k �= 0 is any real number, the
equation

kx2
1

1+ k2x2
1

+ x2
1

1+ x2
1

= c

has finite solution x1, therefore the curves W(x1x2) = c and the straight lines
x1 = kx1 have finite intersection points. Similarly, W(x1, x2) = c and x1 =
kx2(k �= 0) have finite intersection points. Thus, W(x1x2) = c (0 < c < 1) is a
closed curve (see Figure 1.2.3).

1.3. K-class function

In this section, we introduce K-class functions and discuss the relation between
K-class function and positive definite function.

Figure 1.2.3. V = c is a closed curve in the neighborhood of the origin.
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DEFINITION 1.3.1. If a function ϕ ∈ [R+, R+], where R+ := [0,+∞), or
ϕ ∈ C[[0, h], R+] is monotonically strictly increasing, and ϕ(0) = 0, we call ϕ a
Wedge function, or simply call it a K-class function, denoted by ϕ ∈ K .

DEFINITION 1.3.2. If ϕ ∈ [R+, R+] is a K-class function and limr→+∞ ϕ(r) =
+∞, then ϕ(r) is called a radially unbounded K-class function, denoted by ϕ ∈
KR.

Among the positive definite functions and theK-class functions, some essential
equivalent relations exist.

THEOREM 1.3.3. Let Ω := {x, ‖x‖ � h}. For a given arbitrarily positive defi-
nite function W(x) ∈ [Ω,R1], there exist two functions ϕ1, ϕ2 ∈ K such that

(1.3.1)ϕ1
(‖x‖) � W(x) � ϕ2

(‖x‖).

PROOF. For any h > 0, we prove that (1.3.1) holds for ‖x‖ � h. Let

ϕ(r) = inf
r�‖x‖�h

W(x).

Obviously, we have ϕ(0) = 0, ϕ(r) > 0 for r > 0 and ϕ(r) is a monotone
nondecreasing function on [0, h]. Now we prove that ϕ(r) is continuous. Since
W(x) is continuous, ∀ε > 0, there exists δ(ε) > 0 such that

ϕ(r2)− ϕ(r1) := inf
r2�‖x‖�h

W(x)− inf
r1�‖x‖�k

W(x)

= inf
r2�‖x‖�h

W(x)−W(x0)

� W(x1)−W(x0)

� ε when ‖x1 − x0‖ � r2 − r1 � δ(ε),

where we take x1 = x0 when x0 ∈ D2 := {x | r2 � ‖x‖ � h}.
When x0 ∈ D1 := {x|r1 � ‖x‖ � h}, take the intersection point of the

line Ox0 and ‖x‖ = r2, as shown in Figure 1.3.1. Let ϕ1(r) := rϕ(r)
R

� ϕ(r).
Evidently, we have ϕ1(0) = 0, and if 0 � r1 < r2 � h, we get

ϕ1(r1) = r1ϕ(r1)

h
� r1ϕ(r2)

h
<

r2ϕ(r2)

h
= ϕ1(r2).

Thus, ϕ1(r) is strictly monotone increasing and hence ϕ1 ∈ K . Let

ϕ(r) := max
‖x‖�r

W(x).

Then it follows that ϕ(0) = 0. By the same method, we can prove that ϕ(r) is
monotone nondecreasing and continuous. Choosing ϕ2(r) := ϕ(r)+ kr (k > 0),
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Figure 1.3.1. The relation between positive definite function and K-class function.

we have

ϕ2(r1) = ψ(r1)+ kr1 � ψ(r2)+ kr1 < ψ(r2)+ kr2 = ϕ2(r2).

Hence, ϕ2(r) is strictly monotone increasing and ϕ2(r) ∈ K . The above results
show that

ϕ1
(‖x‖) � ϕ

(‖x‖) := inf‖x‖�‖ξ‖�h
W(ξ) � W(x)

� max
‖ξ‖�‖x‖

W(ξ) := ψ
(‖x‖)

� ϕ2
(‖x‖).

Thus,

ϕ
(‖x‖) � W(x) � ϕ

(‖x‖).
The proof is complete. �

By a similar procedure, we can prove the following theorem.

THEOREM 1.3.4. For an arbitrarily given positive definite and radially un-
bounded function W(x) ∈ C[Rn,R1], there must exist two functions ϕ1(r), ϕ2(r)

∈ KR such that

ϕ1
(‖x‖) � W(x) � ϕ2

(‖x‖).

Consequently, without loss of generality, we usually replace the positive defi-
nite functions (or the radially unbounded and positive definite functions) by the
K-class functions (or radially unbounded K-class functions).
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1.4. Dini derivative

Let I := [t0,+∞], f (t) ∈ C[I, R1]. For any t ∈ I the following four derivatives:

D+f (t) := lim
h→0+

1

h

(

f (t + h)− f (t)
)

(1.4.1)= lim
h→0+

sup
1

h

(

f (t + h)− f (t)
)

,

D+f (t) := lim
h→0+

1

h

(

f (t + h)− f (t)
)

(1.4.2)= lim
h→0+

inf
1

h

(

f (t + h)− f (t)
)

,

D−f (t) := lim
h→0−

1

h

(

f (t + h)− f (t)
)

(1.4.3)= lim
h→0−

sup
1

h

(

f (t + h)− f (t)
)

,

D−f (t) := lim
h→0−

1

h

(

f (t + h)− f (t)
)

(1.4.4)= lim
h→0−

inf
1

h

(

f (t + h)− f (t)
)

,

are respectively called right-upper, right-lower, left-upper and left-lower deriva-
tives of f (t). They are all called Dini derivatives.

In some cases, the Dini derivative may become ±∞, otherwise, there always
exists finite Dini derivative. In particular, when f (t) satisfies the local Lipschitz
condition, the four Dini derivatives are finite. Moreover, the standard derivative
of f (t) exists if and only if the four Dini derivatives are equal.

For a continuous function, the relation between the monotonicity and the defi-
nite sign of the Dini derivative is as follows.

THEOREM 1.4.1. If f (t) ∈ C[I, R1], the necessary and sufficient condition for
f (t) being monotone nondecreasing on I is D+f (t) � 0 for t ∈ I .

PROOF. The necessity is obvious because t2 > t1 implies f (t2) � f (t1).
Now we prove the sufficiency. First, suppose D+f (t) > 0 on I . If there are two

points β ∈ I and α < β such that f (α) > f (β), then there exists μ satisfying
f (α) > μ > f (β) and some point t ∈ [α, β] such that f (t) > μ. Let ξ be the
supremum of these points. Then ξ ∈ [α, β] and the continuity of f (t) leads to
f (ξ) = μ. Therefore, for t ∈ [ξ, β], it follows that

(1.4.5)
f (t)− f (ξ)

t − ξ
< 0.
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Hence, we have D+f (ξ) � 0, which contradicts the hypotheses. Thus f (t) is
monotone nondecreasing.

Next assume that D+f (t) � 0. Then for any ξ > 0, we get

(1.4.6)D+(f (t)+ ξ t) = D+f (t)+ ξ � ξ > 0.

As a consequence, f (t) + ξ t is monotone nondecreasing since ξ is arbitrary. So
f (t) is monotone nondecreasing on I .

The theorem is proved. �

REMARK 1.4.2. If we replace D+f (t) � 0 by D+f (t) � 0, then the sufficient
condition of Theorem 1.4.1 still holds because the latter implies the former. Sim-
ilarly, if we replace D+f (t) � 0 by D−f (t) � 0, then it is sufficient to change
the supremum of the points satisfying f (t) � μ to the impious of the points sat-
isfying f (t) < μ. We may further intensify D−f (t) � 0 to be D−f (t) � 0, and
thus any of the four derivatives is not less than zero, each of which implies that
f (t) is monotone nondecreasing.

In the following, we consider the Dini derivative of a function along the solution
of a differential equation.

Consider a system of differential equations, given by

(1.4.7)
dx

dt
= f (t, x),

where f (t, x) ∈ C[I × Rn,Rn].

THEOREM 1.4.3. (See [418].) Suppose that V (t, x) ∈ C[I × Ω,R1], where
Ω ⊂ Rn, Ω is a neighborhood containing the origin and V (t, x) satisfies the
local Lipschitz condition on x with respect to t , i.e.,

∣
∣V (t, x)− V (t, y)

∣
∣ � L‖x − y‖.

Then the right-upper derivative and the right-lower derivative of V (t, x) along
the solution x(t) of (1.4.7) have the following forms:

D+V
(

t, x(t)
)∣
∣
(1.4.7)

(1.4.8)= lim
t→+∞

1

h

{

V (t + h), x + hf (t, x)− V (t, x)
}

,

D+V
(

t, x(t)
)∣
∣
(1.4.7)

(1.4.9)= lim
t→+∞

1

h

{

V (t + h, x + hf (t, x))− V (t, x)
}

.
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PROOF. Assume that the solution x(t) stays in the region I × Ω . For (t, x) ∈
I ×Ω , (t + h, x + hf (t, x)) ∈ U , (t + h, x(t + h)) ∈ U . Let L be the Lipschitz
constant of V (t, x) in I×Ω . Making use of the Taylor expansion and the Lipschitz
condition, we obtain

V
(

t + h, x(t + h)
)− V

(

t, x(t)
)

= V
(

t + h, x + hf (t, x)+ hε
)− V (t, x)

(1.4.10)< V
(

t + h, x + hf (t, x)
)+ Lh|ε| − V (t, x),

where ε→ 0 as h→+0. Hence,

D+V
(

t, x(t)
)∣
∣
(1.4.7) := lim

h→0+
1

h

[

V
(

t + h, x(t + h)
)− V

(

t, x(t)
)]

� lim
h→0+

1

h

[

V
(

t + h, x + hf (t, x)
)+ Lh|ε| − V (t, x)

]

(1.4.11)= lim
h→0+

1

h

[

V
(

t + h, x + hf (t, x)
)− V (t, x)

]

.

On the other hand,

V
(

t + h, x(t + h)
)− V

(

t, x(t)
)

= V
(

t + h, x + hf (t, x)+ hε
)− V (t, x)

(1.4.12)� V
(

t + h, x + hf (t, x)− Lh|ε|)− V (t, x).

Thus,

D+V
(

t, x(t)
)∣
∣
(1.4.7) := lim

h→0+
1

h

[

V
(

t + h, x(t + h)
)− V

(

t, x(t)
)]

(1.4.13)� lim
h→0+

1

h

[

V
(

t + h, x + hf (t, x)
)− V (t, x)

]

.

Combining (1.4.11) with (1.4.13), we have

D+V
(

t, x(t)
)∣
∣
(1.4.7) = lim

h→0+
1

h

[

V
(

t + h, x + hf (t, x)
)− V (t, x)

]

.

Thus (1.4.8) is true. The proof of (1.4.9) goes along the same line. Therefore, we
have

D+V
(

t, x(t)
)∣
∣
(1.4.7) = lim

h→0+

1

h

[

V
(

t + h, x + hf (t, x)
)− V (t, x)

]

.

If V (t, x) has a continuous partial derivative with respect to the first variable,
then along the solution x(t) of (1.4.7) we have

dV

dt

∣
∣
∣
∣
(1.4.7)

= D+V
(

t, x(t)
)∣
∣
(1.4.7) = D+V

(

t, x(t)
)∣
∣
(1.4.7)
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= D−V
(

t, x(t)
)∣
∣
(1.4.7) = D−V

(

t, x(t)
)∣
∣
(1.4.7)

= ∂V

∂t
+ ∂V

∂x
· f (t, x) = ∂V

∂t
+ gradV · f (t, x).

By Theorem 1.4.1, V (t, x(t)) is nondecreasing [nonincreasing] along the solution
of (1.4.7) if and only if

D+V
(

t, x(t)
)∣
∣
(1.4.7) � 0

[

D+V
(

t, x(t)
)∣
∣
(1.4.7) � 0

]

.

This completes the proof of Theorem 1.4.3. �

The significance of Theorem 1.4.3 lies in the fact that one does not need to
know the solution while calculating the Dini derivative of V (t, x) along the solu-
tion of (1.4.7).

1.5. Differential and integral inequalities

In this section we present some differential and integral inequalities, which are
important in dealing with stability.

THEOREM 1.5.1. Suppose that the function ϕ(t) is continuous on τ � t < b,
and the right-lower Dini derivative D+ϕ(t) exists and satisfies the differential
inequality

(1.5.1)D+ϕ(t) � F
(

t, ϕ(t)
)

, ϕ(τ ) = ξ,

where F(t, x) ∈ C[I ×Ω,R1], (t, ϕ(t)) ∈ I ×Ω . If x = Φ(t) is the maximum
right solution on [τ, b) for differential equations:

(1.5.2)

{
dx
dt
= F(t, x),

x(t0) = η � ϕ(τ) = ξ,

then ϕ(t) � Φ(t) (τ � t < b).

THEOREM 1.5.2. Assume that the function f(t,x) is continuous on R̄ = {(t, x)|t−
τ | � a − |x − ξ | � b} and nondecreasing for x, x = ϕ(t) is continuous, and
when |t − τ | � a, (t, ϕ(t)) ∈ R̄, ϕ(t) satisfies the integral inequality:

(1.5.3)

{

ϕ(t) � ξ + ∫ t

τ
f
(

s, ϕ(s)
)

ds, τ � t � τ + h,

ϕ(τ) � ξ,

and Φ(t) satisfies the differential equation on the interval τ � t � τ + h:

(1.5.4)

{
dx
dt
= f (t, x),

x(τ ) = ξ.
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Then we have the following inequality on t ∈ [τ, τ + h]:
(1.5.5)ϕ(t) � Φ(t),

where

h = min

(

a,
b

M

)

, M = max
t,x∈R̄

∣
∣f (t, x)

∣
∣.

According to Theorem 1.5.2, one can derive the well-known Gronwall–Bell-
man inequality.

COROLLARY 1.5.3 (Gronwall–Bellman inequality). Suppose that g(t) and u(t)
are continuous, nonnegative real functions, and c is a nonnegative real constant.
Then ∀t ∈ [t0, t1],

(1.5.6)u(t) � c +
t∫

t0

g(ξ)u(ξ) dξ

implies that the inequality

(1.5.7)u(t) � ce

∫ t
t0
g(ξ) dξ

is true.

PROOF. Consider the equation

(1.5.8)

{
dV (t)
dt

= g(t)V (t),

V (t0) = c,

which has the solution

V (t) = ce

∫ t
t0
g(ξ) d(ξ)

.

We have u(t) � V (t) = ce

∫ t
t0
g(ξ) dξ

by Theorem 1.5.2. �

Next, we introduce two comparison theorems.

THEOREM 1.5.4 (First comparison theorem). Let f (t, x) and F(t, x) be contin-
uous scalar functions on G, satisfying the inequality

(1.5.9)f (t, x) < F(t, x), (t, x) ∈ G.
Then x = ϕ(t), y = Φ(t) respectively stand for the solution of the ordinary
differential equations:

(1.5.10)

{
dx
dt
= f (t, x),

x(τ ) = ξ ;
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(1.5.11)

{
dx
dt
= F(t, x),

x(τ ) = ξ.

Then we have the following results:

(1) ϕ(t) < Φ(t), when t > τ and t belongs to the common existence interval.
(2) ϕ(t) > Φ(t), when t < τ and t belongs to the common existence interval.

PROOF. Let g(t) = Φ(t)− ϕ(t). Since

g(τ) = Φ(τ)− ϕ(τ) = ξ − ξ = 0,

g′(τ ) = Φ ′(τ )−ϕ′(τ ) = F(τ, ξ)−f (τ, ξ) > 0. Therefore, when 0 < t−τ 	 1,
g(t) > 0 holds.

If in the common existence interval, there is t > τ such that

(1.5.12)ϕ(t) � Φ(t).

Let the infimum of these t be α, which satisfies (1.5.12). Thus, τ < α, g(a) = 0,
g(t) > 0 (τ < t < α). Therefore, g′(α) � 0. Otherwise,

g′(α) = Φ ′(α)− ϕ′(α) = F
(

α,Φ(α)− f (α), ϕ(α)
)

> 0.

Since g(α) = 0, we have Φ(α) = ϕ(α) which is a contradiction. Thus conclu-
sion (1) holds. By using the same method we can prove that conclusion (2) is also
true. �

Similarly we can prove the following theorem.

THEOREM 1.5.5 (Second comparison theorem). Suppose that f (t, x) and
F(t, x) are continuous on G, and satisfy the inequality

(1.5.13)f (t, x) � F(t, x).

Let (τ, ξ) ∈ G, and x = ϕ(t) and x = Φ(t) be respectively the solutions of the
differential equations:

(1.5.14)

{
dx
dt
= f (t, x),

x(τ ) = ξ

and
{

dx
dt
= F(t, x),

x(τ ) = ξ,

on [a, b]. Then, the following conclusions hold:

(1) ϕ(t) � Φ(t) when τ � t < b;
(2) ϕ(t) � Φ(t) when a < t � τ .



16 Chapter 1. Fundamental Concepts and Mathematical Tools

1.6. A unified simple condition for stable matrix, p.d. matrix
and M matrix

The Hurwitz stability, positive definite (p.d.) or negative definite (n.d.) property
of a symmetric matrix and the M matrix property are often applied in stability
analysis. We now present a unified simple condition for Hurwitz stable matrix,
positive definite matrix and M matrix. Then, based on the established condition,
a simplified method is proposed, which is easy to be used in determining these
matrices.

Let A ∈ Rn×n be a real matrix, with

(1.6.1)det(A) = det |λE − A| = anλ
n + an−1λ

n−1 + · · · + a1λ+ a0.

If ai > 0 (i = 1, 2, . . . , n), then f (λ) is Hurwitz stable if and only if

Δ1 = a1 > 0,

Δ2 =
∣
∣
∣
∣

a1 a0
a3 a2

∣
∣
∣
∣
> 0,

...

Δn =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a1 a0 0 · · · 0
a3 a2 a1 · · · 0
...

an−1 an−2
a2n−1 a2n−2 · · · 0 an

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= Δn−1an > 0,

where as = 0 for s < 0 or s > n.
If the following quadratic form with real constant coefficients:

(1.6.2)f (x) =
n
∑

i=1

n
∑

j=1

aij xixj := xT Ax
(

A = AT
)

is positive definite, negative definite, positive semi-definite, and negative semi-
definite, we simply call A is positive definite, negative definite, positive semi-
definite, and negative semi-definite, respectively.

It is well known by Sylvester conditions that when A = AT , A is positive
definite if and only if

Δ1 = a11 > 0, Δ2 =
∣
∣
∣
∣

a11 a12
a21 a22

∣
∣
∣
∣
> 0, . . . ,

Δn =
∣
∣
∣
∣
∣
∣

a11 · · · a1n
...

...

an1 · · · ann

∣
∣
∣
∣
∣
∣

> 0.
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A being negative definite is equivalent to

Δ̃1 = a11 < 0, Δ̃2 = (−1)2
∣
∣
∣
∣

a11 a12
a21 a22

∣
∣
∣
∣
> 0, . . . ,

Δ̃n = (−1)n

∣
∣
∣
∣
∣
∣

a11 a12 · · · a1n
...

an−1 · · · · · · ann

∣
∣
∣
∣
∣
∣

> 0.

The sufficient and necessary conditions forA = AT to be positive semi-definite
are

Δ1 = a11 � 0, Δ2 =
∣
∣
∣
∣

a11 a12
a21 a22

∣
∣
∣
∣
� 0, . . . ,

Δn =
∣
∣
∣
∣
∣
∣

a11 · · · a1n
...

...

an1 · · · ann

∣
∣
∣
∣
∣
∣

� 0.

A is negative semi-definite if and only if

Δ̃1 = (−a11) � 0, Δ̃2 = (−1)2
∣
∣
∣
∣

a11 a12
a21 a22

∣
∣
∣
∣
� 0, . . . ,

Δ̃n = (−1)n

∣
∣
∣
∣
∣
∣

a11 · · · a1n
...

...

an1 · · · ann

∣
∣
∣
∣
∣
∣

� 0.

DEFINITION 1.6.1. The matrixA(aij )n×n is called a nonsingularM matrix (sim-
ply called M matrix), if

(1)

aii > 0, i = 1, 2, . . . , n, aij � 0, i �= j, i, j = 1, 2, . . . , n;
(2)

Δi =
∣
∣
∣
∣
∣
∣

a11 · · · a1i
...

ai1 · · · aii

∣
∣
∣
∣
∣
∣

> 0, i = 1, 2, . . . , n.

For M matrix, there are many equivalent conditions. The main equivalent condi-
tions are

(1) aii > 0 (i = 1, . . . , n), aij � 0 (i �= j, i, j = 1, . . . , n) and A−1 � 0, i.e.,
A−1 is a nonnegative matrix;

(2) aii > 0 (i = 1, 2, . . . , n), aij � 0 (i �= j, i, j = 1, . . . , n), −A is a Hurwitz
matrix;
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(3) aii > 0 (i = 1, 2, . . . , n), aij � 0 (i �= j, i, j = 1, 2, . . . , n) and there exist
n positive constants cj (j = 1, 2, . . . , n) such that

n
∑

j=1

cj aij > 0, i = 1, 2, . . . , n;

(4) aii > 0 (i = 1, 2, . . . , n), aij � 0 (i �= j, i, j = 1, 2, . . . , n) and there exist
n positive constants di (i = 1, 2, . . . , n) such that

n
∑

i=1

diaij > 0, j = 1, 2, . . . , n;

(5) aii > 0 (i = 1, 2, . . . , n), aij � 0 (i �= j, i, j = 1, 2, . . . , n) and the spectral
radius of matrix

B := (1− δij )

∥
∥
∥
∥

(
aij

aii

)

n×n

∥
∥
∥
∥

is smaller than 1. That is, ρ(B) < 1, namely, the norm of all eigenvalues of
G are smaller than 1, where δij is the Kronecker delta function.

The conditions given in Definition 1.6.1 for M matrix are more convenient to
use than any other equivalent conditions.

In the following, we present a unified simple method for checking the sign of
determinants.

DEFINITION 1.6.2. A transform of the determinant is said to be isogeny sign
transform, if any column or row of the determinant is multiplied by a positive
constant, or any column or row of the determinant is multiplied by any arbitrary
number plus other columns or rows. A transform of determinant is said to be
complete isogeny sign transform if every major subdeterminant is isogeny sign.

This complete isogeny sign transform is denoted by ψ , therefore, by several
complete isogeny sign transforms ψ , we have the following form

|A| :=

∣
∣
∣
∣
∣
∣
∣
∣

a11 a12 · · · a1n
a21 a22 · · · a2n
...

an1 · · · · · · ann

∣
∣
∣
∣
∣
∣
∣
∣

−→
ψ1

∣
∣
∣
∣
∣
∣
∣
∣
∣

b11 b12 · · · b1n

0 b22
...

...
. . .

...

0 0 · · · bnn

∣
∣
∣
∣
∣
∣
∣
∣
∣

:= |B|

or

|A| −→
ψ2

∣
∣
∣
∣
∣
∣
∣
∣
∣

c11 0 · · · 0

c21 c22
...

...
. . .

cm · · · · · · cnn

∣
∣
∣
∣
∣
∣
∣
∣
∣

:= |C|,
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where ψ1, ψ2 are complete isogeny sign transforms.

THEOREM 1.6.3.

(1) Let A = AT ∈ Rn×n. Choose a complete isogeny sign transform ψ1 or ψ2

such that

|A| −→
ψ1
|B|, or |A| −→

ψ2
|C|,

then the matrix A is positive definite (positive semi-definite) if and only if
bii > 0 or cii > 0 (bii � 0 or cii � 0), i = 1, 2, . . . , n.
A is negative definite (semi-negative definite) if and only if bii < 0 or

cii < 0 (bii � 0 or cii � 0), i = 1, 2, . . . n.
A has variable signs if and only if there exist bii > 0, bjj < 0 (or cii >

0, cjj < 0), i, j ∈ (1, . . . , n).
(2) Assume that aii > 0, aij � 0, i �= j , i, j = 1, 2, . . . , n, and there are

complete isogeny sign transforms ψ1, ψ2 such that

|A| −→
ψ1
|B|, or |A| −→

ψ2
|C|,

then A is a M matrix if and only if bii > 0 or cii > 0, i = 1, 2, . . . , n.
(3) Let f (λ) = det |λEn − A| = λn + an−1λ

n−1 + · · · + a1λ+ a0, ai > 0, i =
0, 1, . . . , n − 1. Then A is a Hurwitz matrix if and only if there exist ψ1, ψ2

such that

Δn−1 :=

∣
∣
∣
∣
∣
∣
∣
∣
∣

a1 a0 · · · 0

a3 a2
...

... an−2
a2n−3 · · · · · · an−1

∣
∣
∣
∣
∣
∣
∣
∣
∣

−→
ψ1

∣
∣
∣
∣
∣
∣
∣
∣

b11 b12 · · · b1n−1
b22 · · · b2n−1

0
. . .

...

bn−1n−1

∣
∣
∣
∣
∣
∣
∣
∣

,

or

Δn−1−→
ψ2

∣
∣
∣
∣
∣
∣
∣
∣

c11 0 · · · 0
c21 c22 0
...

. . .
...

cn−11 cn−1n−1

∣
∣
∣
∣
∣
∣
∣
∣

,

bii > 0 or cii > 0, i = 1, . . . , n− 1.

PROOF. We only prove the case of A = AT with a positive definite A. Proofs for
other cases are similar and thus omitted. Since A is positive definite if and only if

Δ1 = a11 > 0, Δ2 =
∣
∣
∣
∣

a11 a12
a21 a22

∣
∣
∣
∣
> 0, . . . ,
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∣
∣
∣
∣
∣
∣
∣
∣

a11 a12 · · · a1n
a21 a22 · · · a2n
...

an1 · · · · · · ann

∣
∣
∣
∣
∣
∣
∣
∣

> 0.

By a11 > 0, we have b11 > 0, and then

Δ2 =
∣
∣
∣
∣

a11 a12
a21 a22

∣
∣
∣
∣
> 0 implies

∣
∣
∣
∣

b11 b12
0 b22

∣
∣
∣
∣
> 0,

so b22 > 0. By mathematical induction we can prove that bii > 0 (i = 1, . . . , n).
Now, if bii > 0 (i = 1, 2, . . . , n), then

Δ̃11 = b11 > 0, Δ̃22 =
∣
∣
∣
∣

b11 b12
0 b22

∣
∣
∣
∣
> 0, . . . ,

Δ̃n =

∣
∣
∣
∣
∣
∣
∣
∣
∣

b11 b12 · · · b1n

b22
...

. . .
...

bnn

∣
∣
∣
∣
∣
∣
∣
∣
∣

> 0.

According to the property of the complete isogeny sign transform ψ , we have

Δ1 = a11 > 0, Δ2 =
∣
∣
∣
∣

a11 a12
a21 a22

∣
∣
∣
∣
> 0, . . . ,

Δn =
∣
∣
∣
∣
∣
∣

a11 a12 · · · a1n
...

an1 · · · · · · ann

∣
∣
∣
∣
∣
∣

> 0.

The proof is complete. �

EXAMPLE 1.6.4. Prove that

A =
⎡

⎢
⎣

4 −1 −2 −3
−1 3 −2 −1
− 1

2 −1 4 0
0 −1 −1 5

⎤

⎥
⎦

is an M matrix. Obviously, A satisfies that aii > 0, aij � 0, i �= j , i, j = 1, 2, 3,
4. Thus,

|A| :=

∣
∣
∣
∣
∣
∣
∣

4 −1 −2 −3
−1 3 −2 −1
− 1

2 −1 4 0
0 −1 −1 5

∣
∣
∣
∣
∣
∣
∣

2r3−r2−−−−→
4r3+r2
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=

∣
∣
∣
∣
∣
∣
∣

4 ∗ ∗ ∗
0 11 −10 −7
0 −5 10 1
0 −1 −1 5

∣
∣
∣
∣
∣
∣
∣

r3−5r4−−−−−→
11r4+r2

∣
∣
∣
∣
∣
∣
∣

4 ∗ ∗ ∗
0 11 ∗ ∗
0 0 15 −24
0 0 −21 48

∣
∣
∣
∣
∣
∣
∣

1
3 c3−−−→
2
24 c4

∣
∣
∣
∣
∣
∣
∣

4 ∗ ∗ ∗
0 11 ∗ ∗
0 0 5 −1
0 0 −7 2

∣
∣
∣
∣
∣
∣
∣

c3+ 7
2 c4−−−−→

∣
∣
∣
∣
∣
∣
∣

4 ∗ ∗ ∗
0 11 ∗ ∗
0 0 3

2 ∗
0 0 0 2

∣
∣
∣
∣
∣
∣
∣

:= |B|
and so b11 = 4 > 0, b22 = 11 > 0, b33 = 3

2 > 0, b44 = 2 > 0. Hence, A is an M
matrix. Here, ∗ denotes an element which does not affect the result.

1.7. Definition of Lyapunov stability

The stability considered in this section is in the Lyapunov sense. For convenience,
in the following we will simply call it stability. We consider physical systems that
can be described by the following ordinary differential equation:

(1.7.1)
dy

dt
= g(t, y),

where Ω ⊂ Rn, 0 ∈ Ω , g ∈ C[I ×Ω,Rn]. Assume that the solution of Cauchy
problem of (1.7.1) is unique. Let

y := (y1, y2, . . . , yn)
T ,

g(t, y) := (

g1(t, y), . . . , gn(t, y)
)T
.

Suppose that ȳ = ϕ(t) is a particular solution of (1.7.1). To study the properties
of solutions of (1.7.1) in the neighborhood of the solution ȳ(t), we substitute the
transformation

x = y − ϕ(t)

into system (1.7.1) to obtain a system for the new variable x:

(1.7.2)
dx

dt
= g

(

t, x + ϕ(t)
)− g

(

t, ϕ(t)
) := f (t, x).

Following Lyapunov, we call x = 0 or y = ϕ(t) the unperturbed motion or
unperturbed trajectory, and call equation (1.7.2) the equation of perturbed motion.
Thus, the solution y = ϕ(t) of (1.7.1) corresponds to the zero solution x = 0
of (1.7.2). Hence, we only study the stability of the zero solution x = 0 of (1.7.2).
Suppose f ∈ C[I × Ω,Rn], and the solution of Cauchy problem is uniquely
determined. f (t, x) = 0 if x = 0, x(t, t0, x0) represents the perturbed solution
which satisfies the initial condition x(t0) = x0.
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x(t, t0, x0) is a function of variables t, t0, x0. Generally, we consider t0, x0 as
parameters. Therefore, when we consider the asymptotic behavior of x(t, t0, x0)

with respect to t , we must investigate whether or not the asymptotic behavior
uniformly depends on t0 or x0. Hence, there are many stability definitions.

DEFINITION 1.7.1. The zero solution x = 0 of (1.7.2) is said to be stable, if ∀ε >
0,∀t0 ∈ I, ∃δ such that ∀x0, ‖x0‖ < δ(ε, t0) implies ‖x(t, t0, x0)‖ < ε for t � t0.
The zero solution x = 0 of (1.7.2) is said to be unstable (complete unstable), if
∃ε0, ∃t0,∀δ > 0, ∃x0(∀x0), ‖x0‖ < δ, but ∃t1 � t0 such that ‖x(t1, t0, x0)‖ � ε0.

DEFINITION 1.7.2. The zero solution x = 0 of (1.7.2) is said to be uniformly
stable with respect to t0, if ∀ε > 0, ∃δ(ε) > 0 (δ(ε) is independent of t0) such
that ‖x0‖ < δ implies ‖x(t, t0, x0)‖ < ε for t � t0.

DEFINITION 1.7.3. The zero solution x = 0 of (1.7.2) is said to be attractive,
if ∀t0 ∈ I, ∀ε > 0, ∃σ(t0) > 0, ∃T (ε, t0, x0) > 0, ‖x0‖ < σ(t0) implies
‖x(t, t0, x0)‖ < ε, for t � t0 + T , i.e.,

lim
t→+∞ x(t, t0, x0) = 0.

The above definitions of different stabilities are illustrated in Figures 1.7.1–
1.7.4.

DEFINITION 1.7.4. The zero solution x = 0 of (1.7.2) is said to be uniformly
attractive with respect to x0, if the T in Definition 1.7.3 is independent of x0, i.e.,
∀x0, ‖x0‖ < σ(t0) implies ‖x(t, t0, x0)‖ < ε for t � t0 + T (ε, t0). x = 0 is also
said to be equi-attractive.

DEFINITION 1.7.5. The zero solution x = 0 of (1.7.2) is said to be uniformly
attractive with respect to t0, x0, if x = 0 is equi-attractive, σ does not depend on

Figure 1.7.1. Stability.
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Figure 1.7.2. Instability.

Figure 1.7.3. Uniform stability.

Figure 1.7.4. Uniform attractivity.

t0, and T does not depend on x0 and t0 i.e., ‖x(t, t0, x0)‖ < ε for ‖x0‖ � σ and
t � t0 + T (ε).

The region Ω := {‖x‖ < σ } of Rn is said to lie in the region of attraction of
the point x = 0 (at t = t0), or simply called a region of attraction.
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DEFINITION 1.7.6. The zero solution x = 0 of (1.7.2) is respectively said to be
asymptotically stable, equi-asymptotically stable, quasi-uniformly asymptotically
stable, globally asymptotically stable, globally quasi-uniformly asymptotically
stable, if

(1) the zero solution x = 0 of (1.7.2) is stable;
(2) x = 0 is attractive, equi-attractive, uniformly attractive, globally attractive,

globally uniformly attractive, respectively.

DEFINITION 1.7.7. The zero solution x = 0 of (1.7.2) is said to be uniformly
asymptotically stable, globally uniformly asymptotically stable, respectively, if

(1) x = 0 is uniformly stable;
(2) x = 0 is uniformly attractive, globally uniformly attractive and all solu-

tions are uniformly bounded (i.e., ∀r > 0, ∃B(r) such that when ‖x0‖ <

r, ‖x(t, t0, x0)‖ < B(r) for t � t0) respectively.

DEFINITION 1.7.8. The zero solution x = 0 is said to have exponential stability,
if ∀ε > 0, ∃λ > 0, ∃δ(ε), ∀t0 ∈ I , ‖x0‖ < δ implies ‖x(t, t0, x0)‖ � εe−λ(t−t0)
(t � t0).

DEFINITION 1.7.9. The zero solution x = 0 is said to have globally exponential
stability, if ∀δ > 0, ∃λ > 0, ∃k(δ) > 0, when ‖x0‖ < δ, we have

∥
∥x(t, t0, x0)

∥
∥ � k(δ)e−λ(t−t0).

From the above definitions, we can find the relation between the stability and
attraction, which is discussed in the next section.

1.8. Some examples of stability relation

EXAMPLE 1.8.1. This example shows uniform stability but not asymptotic sta-
bility. Consider

(1.8.1)

{
dx1
dt
= −x2,

dx2
dt
= x1.

The general solution of (1.8.1) is

x1(t) = x1(t0) cos(t − t0)− x2(t0) sin(t − t0),

x2(t) = x1(t0) sin(t − t0)+ x2(t0) cos(t − t0),
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or x2
1(t) + x2

2(t) = x2
1(t0) + x2

2(t0). ∀ε > 0, take δ = δ(ε) = ε. When 0 <

x2
1(t0)+ x2

2(t0) < δ, we have

x2
1(t)+ x2

2(t) < δ = ε.

Hence the zero solution of (1.8.1) is uniformly stable, but

lim
t→∞

(

x2
1(t)+ x2

2(t)
) = x2

1(t0)+ x2
2(t0) �= 0.

This means that the zero solution is not attractive. Therefore, it is not asymptoti-
cally stable.

EXAMPLE 1.8.2. This example, given by

(1.8.2)

{
dx1
dt
= f (x1)+ x2,

dx2
dt
= −x1,

shows that a system can be attractive but unstable. Here,

f (x1) =
{−4x1, for x1 > 0,

2x1, for − 1 � x1 � 0,
−x1 − 3, for x1 < −1.

When x1 > 0, we can rewrite (1.8.2) as:

(1.8.3)

{
dx1
dt
= −4x1 + x2,

dx2
dt
= −x1.

Equation (1.8.3) has general solution:
{

x1(t) = c1(2−
√

3 )e(−2+√3)t + c2(2+
√

3 )e(−2−√3)t ,

x2(t) = c1e
(−2+√3)t + c2e

(−2−√3)t .

When −1 � x1 � 0, (1.8.2) becomes

(1.8.4)

{
dx1
dt
= 2x1 + x2,

dx2
dt
= −x1,

which has general solution:
{

x1(t) = c1e
t + c2te

t ,

x2(t) = (−c1 + c2)e
t − c2te

t .

When x1 < −1, (1.8.2) is

(1.8.5)

{
dx1
dt
= −x1 + x2 − 3,

dx2
dt
= −x1,
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Figure 1.8.1. The relation between different stabilities.

which has general solution:

x1(t) = 1

2
e−

1
2 t

(

c1

(

cos

√
3

2
t

)

+√3 sin

√
3

2
t

)

+ 1

2
e−

1
2 t

(

c2(sin

√
3

2
t)−√3 cos

√
3

2
t

)

,

x2(t) = c1e
− 1

2 t cos

√
3

2
t + c2e

− t
2 sin

√
3

2
t + 3.

On the phase plane, asymptotic behavior of the trajectories are shown in Fig-
ure 1.8.1.

For every solution x1(t), x2(t), the following asymptotic behavior holds

lim
t→+∞ x1(t) = lim

t→+∞ x2(t) = 0,

so the zero solution is attractive.
But on the other hand, the solution with the initial condition: x1(0) = −1,

x2(0) = 1 is x1(t) = −et , x2(t) = et . Thus, when t � 0, −1 � x1 � 0, and

lim
t→−∞ x1(t) = lim

t→−∞
(−et) = 0,

lim
t→−∞ x2(t) = lim

t→−∞ et = 0.

EXAMPLE 1.8.3. This example regards a system that is asymptotically stable,
but not uniformity asymptotically stable. The equation is given by

(1.8.6)
dx

dt
= − x

t + 1
,
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which has the general solution:

x(t, t0, x0) = x0
t0 + 1

t + 1
.

∀ε > 0, take δ = ε. When |x0| < δ, |x(t, t0, x0) � |x0| < δ = ε for t � t0 holds,
so the zero solution is uniformly stable, and limt0→+∞ x(t, t0, x0) = 0. Hence,
the zero solution is asymptotically stable. But ∀T > 0, we can choose t0 = t−T ,
i.e., for t = t0 + T , we obtain

x(t, t0, x0) = x0
t0 + 1

t0 + T + 1
→ x0 �= 0 as t →+∞.

This means that the zero solution is not uniformly attractive, and therefore, the
zero solution is not uniformly asymptotically stable.

EXAMPLE 1.8.4. This example regards a system that is equi-asymptotically sta-
ble, but not uniformly asymptotically stable. Consider

(1.8.7)
dx

dt
= (t sin t − cos t − 2)x.

Its general solution is x(t, t0, x0) = x0e
−2(t−t0)−t cos t+t0 cos t0 . ∀ε > 0, take δ =

εe−(t−t0). When |x0| < δ, we have
∣
∣x(t, t0, x0)

∣
∣ � |x0|e2t0e−(t−t0) < δe2t0 = ε.

Thus, the zero solution is stable. However, ∀ε > 0, if we take δ = ε, T = 2t0,
then when |x0| < δ, t � t0 + T , we have

∣
∣x(t, t0, x0)

∣
∣ � |x0|e−2(t−t0)+t+t0 = |x0|e2t0e−(t−t0) < δe2t0 = ε0.

Since T does not depend on x0, the zero solution is equi-attractive. Hence it is
equi-asymptotically stable. But, when x0 �= 0,

∣
∣
∣
∣
x

(

2nπ + π

α
, 2nπ, x0

)∣
∣
∣
∣
= |x0|e(2n−1)π →+∞ (n→∞).

Therefore, the zero solution is not uniformly stable.

EXAMPLE 1.8.5. A system with uniformly asymptotic stability but not exponen-
tial stability.

(1.8.8)
dx

dt
= −x3.

The general solution can be written as x(t, t0, x0) = x0[1 + 2x2
0(t − t0)]− 1

2 .
∀ε > 0, take δ = ε. So when |x0| < δ,

∣
∣x(t, t0, x0)

∣
∣ < ε,
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and ∀ε > 0, ∃T (ε) > 0, ∃σ > 0, when |x0| < σ , t � t0 + T (ε),

∣
∣x(t, t0, x0)

∣
∣ � |x0| 1

√

x2
0(t − t0)

= 1√
t − t0

<
1√
T
< ε.

Obviously, it can be seen from the above general solution that the zero solution is
globally uniformly asymptotically stable, but not exponentially stable.

EXAMPLE 1.8.6. A system with asymptotic stability but not equi-asymptotic sta-
bility.

(1.8.9)

{
dr
dt
= ġ(t,ϕ)

g(t,ϕ)
,

dϕ
dt
= 0,

where

g(t, ϕ) = cos4 ϕ

cos4 ϕ + (1− t cos2 ϕ)2
+ 1

1+ cos4 ϕ

1

1+ t2
.

Directly integrating equation (1.8.9) yields the general solution:
{

r(t) = r(t, t0, r0) = r0
g(t,ϕ0)
g(t0,ϕ0)

,

ϕ(t) = ϕ(t, t0, r0) = ϕ0.

Hence,

r(t) = r0
g(t, ϕ0)

g(t0, ϕ0)
� r0

2

g(t0, ϕ0)
∀ε > 0.

Take δ = εg(t0, ϕ0)/k, then when r0 < δ, we have

∣
∣g(t)

∣
∣ � r0

2

g(t0, ϕ0)
< δ

2

g(t0, ϕ0)
= ε,

so the zero solution is stable.
From the general solution, we can see that the zero solution is attractive, but is

not equi-attractive. In fact, take

t0 = 1

2 cos2 ϕ0
, t1 = 1

cos2 ϕ0
,

and let ϕ0 → kπ + π
2 and k→∞, then t1 →+∞. In this case,

r(t1) = r0
g(t1, ϕ0)

g(t0, ϕ0)
→∞ when ϕ0 → kπ + π

2
.

Thus, the zero solution is not equi-attractive, i.e., it is not equi-asymptotically
stable.
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EXAMPLE 1.8.7. A system showing exponential stability but not globally as-
ymptotic stability. The equation is

(1.8.10)
dx

dt
= −x + x2,

which has general solution

x(t, t0, x0) = x0e
−(t−t0)

x0e−(t−t0) − x0 + 1
.

Consider a region Ω0 := {x‖x‖ � r0 < 1}. ∀ε > 0, take δ = min{r0, (1 −
r0)ε}. Then, when t0 ∈ [t0 +∞), |x0| < δ, for all t � t0 we have

∣
∣x(t, t0, x0)

∣
∣ = x0e

−(t−t0)

1− x0
<

δ

1− r0
e−(t−t0)

= εe−(t−t0) � εe−(t−t0) for 0 � x0 � r0,

∣
∣x(t, t0, x0)

∣
∣ = |x0|e−(t−t0)

1− x0(1− e−(t−t0)
� |x0|e−(t−t0)

< εe−(t−t0) � ε for − r0 � x0 � 0.

From the above expression, we easily find that the zero solution is exponentially
stable. But if we take t = t0, x0 = 1, then the solution x(t, t0, x0) ≡ 1 (as
t →+∞). Hence, the zero solution is not globally stable.

EXAMPLE 1.8.8. A system with equi-asymptotic stability but not globally as-
ymptotic stability and not quasi-uniformly asymptotic stability.

Consider the differential equation:

(1.8.11)
dx

dt
=

⎧

⎪⎨

⎪⎩

− x
t
, for −1 � xt � 1,

x
t
− 2

t2
, for xt > 1,

x
t
+ 2

t2
, for xt < −1.

Its general solution is

x(t, t0, x0) =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

t0,x0
t
, for −1 � xt � 1,

1
t
+ t

(
x0
t0
− 1

t20

)

, for xt > 1,

− 1
t
+ t

(
x0
t0
− 1

t20

)

, for xt < −1.

∀ε > 0 (ε < 1), ∀t0 > 0, choose δ = min(1/t0, ε). Then |x0| < δ implies

∣
∣x(t1, t0, x0)

∣
∣ =

∣
∣
∣
∣

t0x0

t

∣
∣
∣
∣
� |x0| < ε.
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Hence the zero solution of (1.8.11) is stable. On the other hand, ∀ε > 0 (ε < 1),
∀t0 > 0, take η(t0) = 1

t0
, T (ε, t0) = t0η(t0)

ε
. Then, when |x0| < η(t0), we have

∣
∣x(t, t0, x0)

∣
∣ =

∣
∣
∣
∣

t0x0

t

∣
∣
∣
∣
= t0|x0|

t
� t0|x0|
t0 + T (ε, t0)

<
b0η(t0)

T (ε, t0)
= ε

for all t � t0 + T (ε, t0). So the zero solution is equi-attractive.
Let ε = 1

3 , δ > 0. Then, ∃t0 > 0 and x0 (|x0| < δ) such that t0x0 > 1. Taking

t1 = 1
3 max(t0,

t21
x0t0−1 ) results in

x(t1, t0, x0) = 1

t1
+ t1

(
x0

t0
− 1

t20

)

� t1
t0x0 − 1

t21

� 1

3
.

This means that the zero solution is not uniformly stable.
Choose ε1 = 1

2 , η > 0, ∃t0 > 0 and x0, |x0| < η such that t0x0 > 1. Take

T � max( 1
1

t20
t0x0−1 − t0, 0). Then, when t � t0 + T ,

∣
∣x(t, t0, x0)

∣
∣ =

∣
∣
∣
∣

1

t
+ t

(
x0

t0
− 1

t20

)∣
∣
∣
∣
> t

t0x0 − 1

t20

� (t0 + T )
t0x0 − 1

t20

� 1

2
.

Therefore, the zero solution is not uniformly attractive.
Finally, let t0x0 > 1. Then

x(t, t0, x0) = 1

t
+ t

(
x0

t0
− 1

t20

)

= 1

t
+ t

(
t0x0 − 1

t20

)

� as t →∞.

So the zero solution is not globally attractive.

The zero solution of (1.8.11) is only equi-asymptotically stable but not globally
asymptotically stable and nor quasi-uniformly asymptotically stable, as shown in
Figure 1.8.2.

The above eight examples show the difference in various stability definitions.
However, for certain specific systems such as time independent systems, periodic
systems and linear systems, there still exist some equivalent relations between
some stability definitions.

Consider the periodic system:

(1.8.12)
dx

dt
= f (t, x), f (t, 0) = 0,

f ∈ C[I×Rn]. Assure that the solution of (1.8.12) is unique for Cauchy problem.

THEOREM 1.8.9. If ∃ a period ω > 0 such that

f (t + ω, x) ≡ f (t, x),

then the zero solution of (1.8.12) is stable, if and only if it is uniformly stable.
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Figure 1.8.2. The relation of various stabilities.

PROOF. We only need to prove that the stability implies the uniform stability.
∀ε > 0, ∃δ1(ε, ω) > 0, when ‖x0‖ < δ1(ε, ω), ‖x(t, ω, x0)‖ < ε holds for
all t � ω. Let ‖x(t0, ω, x0)‖ � δ2 (0 � t0 � ω, ‖x0 < δ1), δ = min(δ1, δ2).
Then, when ‖x0‖ < δ, ∀t0 ∈ [0, ω], for all t � t0, we have ‖x(t, t0, x0)‖ < ε,
∀t̃0 ∈ [t0 + ∞). Let t̃0 = mω + t0, t̃ = mω + t , where m = [ t̃0

ω
] denotes the

largest integer part. Suppose that ξ(t̃ , t̃0, x0) is an arbitrary solution of (1.8.12),
set x(t +mω, t0 +mω, x0) := ξ(t̃ , t̃0, x0).

Since f (t + ω, x) ≡ f (t, x) implies that x(t, t0, x0) is also a solution
of (1.8.12), and x(t, t0, x0) ≡ x(t +mω, t0 +mω, x0) := ξ(t̃ , t̃0, x0), thus when
‖x0‖ < ξ , t ∈ [0,+∞), ‖ξ(t̃ , t̃0, x0)‖ = ‖x(t, t0, x0)‖ holds. So the zero solution
of (1.8.12) is uniformly stable. �

COROLLARY 1.8.10. If system (1.8.12) is autonomous, i.e., f (t, x) ≡ f (x), then
the stability and uniform stability of the zero solution of (1.8.12) are equivalent,
since the autonomous system is a specific case of periodic systems.

THEOREM 1.8.11. For periodic system (1.8.12), its zero solution is asymptoti-
cally stable if and only if it is uniformly asymptotically stable.

PROOF. We only need to prove that the attraction of the zero solution implies the
uniform attraction. By Theorem 1.8.9, ∀ε > 0, ∃σ(t0) > 0, ∃T (ε, σ, t0), when
t > t0 + T (ε, σ, t0), ‖x0‖ < σ(t0), we have

‖x0‖ <
∥
∥σ(t0)

∥
∥ < ε.
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For an arbitrary solution ξ(t̃ , t̃0, x0), let t̃0 = mω + t0, t̃ = mω + t and x(t +
mω, t0 +mω, x0) := ξ(t̃ , t̃0, x0) owing to the uniqueness of solution for (1.8.12)
and f (t + ω, x) ≡ f (t). Therefore,

x(t, t0, x0) ≡ x(t +mω, t0 +mω, x0) = ξ
(

t̃ , t̃0, x0
)

.

Thus, when

t +mω − t0 −mω = t − t0 > T (ε, σ, t0),
∥
∥ξ(t̃ , t̃0, x0)

∥
∥ = ∥

∥x(t, t0, x0)
∥
∥ < ε,

i.e., the zero solution of (1.8.12) is uniformly attractive.
The proof is complete. �

COROLLARY 1.8.12. If (1.8.12) is an autonomous system, i.e., f (t, x) ≡ f (x),
then the asymptotic stability and uniformly asymptotic stability of the zero solu-
tion are equivalent.

THEOREM 1.8.13. In (1.8.12), if f (t, x) = A(t)x, then the zero solution
of (1.8.11) has the following stability equivalent relations:

Figure 1.8.3. The equivalent relations of different stabilities: a© Ex. 1 b© Ex. 3 c© Ex. 4 d© Ex. 5
e© Ex. 6 f© Ex. 7 g© Ex. 8 I© Auto. or periodic system (Theorem 1.8.1) II© Periodic system (Theo-

rem 1.8.2) III© linear system (Theorem 1.8.3) 1© globally exponential stability 2© globally uniformly
asymptotic stability 3© globally quasi-uniformly asymptotic stability 4© globally equi-asymptotic sta-
bility 5© globally asymptotic stability 6© asymptotic stability 7© stability 8© uniform stability 9© uni-
formly asymptotic stability 10© exponential stability 11© equi-asymptotic stability 12© quasi-uniform

stability −→ imply
a©−→ imply under condition a© – –× – – not imply.
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(1) local asymptotic stability and global asymptotic stability are equivalent;
(2) asymptotic stability equivalent to equi-asymptotic stability;
(3) uniformly asymptotic stability and exponential stability are the same;
(4) if A(t) = A (a constant matrix), then asymptotic stability and exponential

stability are the same.

The proof for Theorem 1.8.13 will be given in Chapter 2. The equivalent rela-
tions of different stabilities are shown in Figure 1.8.3.
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Chapter 2

Linear Systems with Constant Coefficients

The solutions to linear differential equations with constant coefficients can be ex-
pressed as linear combination of the product of a polynomial and an exponential
function, i.e., linear combination of the terms Pi(x)eλi t . Solving a linear differ-
ential equation with constant coefficients can be transformed to solve a linear
algebraic problem, more precisely, an eigenvalue-eigenvector problem. There-
fore, there are many classical results and methods. Moreover, many practical
approaches are also available in computer software.

In this chapter, we elaborate various criteria of stability for linear system of
differential equations with constant coefficients. These results and methods are
practical for engineers, especially, for those who are concerned with automatic
control.

The materials presented in this chapter are mainly taken from [342,343]
for Section 2.1, [234] for Section 2.2, [342] for Section 2.3, [396] for Section 2.4,
and [395] for Section 2.5.

2.1. NASCs for stability and asymptotic stability

In this section, we consider the necessary and sufficient conditions (NASCs) for
stability and asymptotic stability. Consider the following n-dimensional linear
differential equations with real constant coefficients:

(2.1.1)
dx

dt
= Ax, x = (x1, . . . , xn)

T , A = (aij )n×n ∈ Rn×n.

Let λ(A) be the eigenvalue of A(aij )n×n.

DEFINITION 2.1.1. If all eigenvalues of matrix A(aij )n×n are located on the
open left side of complex plane, i.e., Reλi(A) < 0, i = 1, 2, . . . , n, then A is
said to be Hurwitz stable. If all eigenvalues of A lie on the closed left side of
complex plane, i.e., Re λi(A) � 0 (i = 1, . . . , n) and if Re λj0(A) = 0, λj0 only
correspond to simple elementary divisor of A, then A is said to be quasi-stable.

35
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THEOREM 2.1.2. The zero solution of systems (2.1.1) is asymptotically stable, if
and only if A is Hurwitz stable; the zero solution of (2.1.1) is stable if and only if
A is quasi-stable.

PROOF. The general solution of (2.1.1) can be expressed as

(2.1.2)x(t, t0, x0) = eA(t−t0)x0 = K(t, t0)x0,

whereK(t, t0) = eA(t−t0) is called Cauchy matrix solution or standard fundamen-
tal solution matrix.

Let A = SJS−1, J is a Jordan canonical form. Then,

eA(t−t0) = eSJS
−1(t−t0) = SeJ(t−t0)S−1,

eJ (t−t0) = diag
(

eJ1(t−t0), eJ2(t−t0), . . . , eJr (t−t0)
)

,

eJj (t−t0) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 (t − t0)
(t−t0)2

2! · · · (t−t0)nj−1

(nj−1):

0 1 t − t0
...

... 1
...

1 (t − t0)

0 · · · 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

nj×nj

eλj (t−t0),

r
∑

i=1

ni = n.

One can easily show that the stability of zero solution of system (2.1.1) is
determined by the boundedness of eA(t−t0), or the boundedness of eJ (t−t0) or
the boundedness of all eJi(t−t0) (i = 1, 2, . . . , r), i.e., Re λj � 0, and when
Re λj = 0, nj = 1, i.e., A is quasi-stable. Asymptotic stability of the zero solu-
tion of system (2.1.1) is given by

lim
t→+∞ eA(t−t0) = 0,

or

lim
t→+∞ eJ (t−t0) = 0,

which is equivalent to

lim
t→+∞ eJi(t−t0) (i = 1, 2, . . . , nr ).
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That is,

lim
t→+∞

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 t − t0
t−t0

2! · · · (t−t0)nj−1

(nj−1)!

0 1
...

...
...

. . .
...

...
... 1 t − t0

0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

eλj (t−t0) = 0

for all j = 1, 2, . . . , r,

and thus Re λj < 0 (j = 1, 2, . . . , n) implying that A is a Hurwitz matrix.
The proof is complete. �

Let

(2.1.3)fn(λ) := det(λEn − A) = a0 + a1λ+ · · · + λn,

where

a0 = (−1)n det |A|, a1 = (−1)
n
∑

i=1

aii,

a2 = (−1)2
∑

i<j

∣
∣
∣
∣

aii aij
aji ajj

∣
∣
∣
∣
, . . . , an = 1,

Mf :=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

a1 0 0 · · · 0

a3 a2 a1
...

...
...

an−1 an−2
a2n−1 a2n−2 · · · 0 an

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

where as = 0 when s < 0 or s > n.

THEOREM 2.1.3. Suppose ai > 0, i = 1, . . . , n. A is a Hurwitz matrix if and
only if

Δ1 = a1 > 0, Δ2 =
∣
∣
∣
∣

a1 a0
a3 a2

∣
∣
∣
∣
> 0, Δ3 =

∣
∣
∣
∣
∣

a1 a0 0
a3 a2 a1
a5 a4 a3

∣
∣
∣
∣
∣
> 0, . . . ,

Δn =

∣
∣
∣
∣
∣
∣
∣
∣
∣

a1 a0 · · · 0

a3 a2
...

...
... an−2

a2n−1 a2n−2 an

∣
∣
∣
∣
∣
∣
∣
∣
∣

= Δn−1an > 0, an = 1.
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This is a well-known result, and the proof can be found in [98]. IfA is a Hurwitz
matrix, we write fn(λ) ∈ H .

Next we study the quasi-stability of A.
We still consider system (2.1.3). If Re λ(A) � 0, the polynomial fn(λ) is called

Routh polynomial and denoted by fn(λ) ∈ qH . Obviously, A is quasi-stable only
if fn(λ) ∈ qH , and it is easy to prove that f (λ) ∈ qH only when ai � 0
(i = 1, . . . , n − 1). One may determine whether fn(x) ∈ qH by using Hurwitz
criterion. Demidovich [98] stated that fn(λ) ∈ qH if and only if

Δ1 = a1 � 0,

Δ2 =
∣
∣
∣
∣

a1 a0
a3 a2

∣
∣
∣
∣
� 0, . . . , Δn =

∣
∣
∣
∣
∣
∣
∣
∣
∣

a1 a0 · · · 0

a3 a2
...

... an−2
a2n−1 a2n−2 an

∣
∣
∣
∣
∣
∣
∣
∣
∣

� 0,

but without giving proof. Later, a counter-example [408] shows that the above
conditions are not sufficient. Now we discuss this issue further.

LEMMA 2.1.4. fn(λ) ∈ qH if and only if ∀ε > 0, gε(λ) := fn(λ+ ε) ∈ H .

PROOF. Necessity. Consider a fixed ε and ∀ε > 0. Let α = c + id (c, d are
real numbers) be any zero point of gε(λ) = fn(λ + ε), then fn((c + ε) + id) =
fn(α + ε) = gε(α) = 0. Thus, c+ ε + id is a zero point of fn(λ). Since fn(λ) ∈
qH, c + ε � 0, ε > 0, so c < 0. This mean that gε(λ) = fn(λ+ ε) ∈ H .

Sufficiency. Let λ0 = ξ + iη be any zero point of fn(λ).∀ε > 0 (ε 	 1), due
to gε(λ0 − ε) = fn((λ0 − ε)+ ε) = fn(λ0) = 0, λ0 − ε is a zero point of gε(λ)
and gε(λ) ∈ H . It implies Re(λ0 − ε) < 0. Since ε is arbitrary, Re λ0 � 0. i.e.,
fn(λ) ∈ qH .

Lemma 2.1.4 is proved. �

Let gε = fn(λ+ ε) = λn + ãn−1λ
n−1 + · · · + ã1(ε)λ+ ã0(ε). Corresponding

to gε, we can verify whether the matrix Mgε is Hurwitz. Here,

Mgε =

⎡

⎢
⎢
⎣

ã1(ε) ã0(ε) 0 · · · 0
ã3(ε) ã2(ε) ã1(ε) · · · 0
...

...

ã2n−1(ε) ã2n−2(ε) · · · · · · ãn(ε)

⎤

⎥
⎥
⎦

in which ãs(ε) = 0 for s > n or s < 0.

COROLLARY 2.1.5. gε ∈ H if and only if all major subdeterminants of Mgε are
greater than zero.
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Since ãi (ε) is a polynomial of ε, it is difficult to check the conditions of Corol-
lary 2.1.5. In the following, we give an equivalent and simple condition.

It is well known that for an mth-degree polynomial with real coefficients, given
by

g(x) = amx
m + am−1x

m−1 + · · · + a1x + a0,

if a0 = a1 = · · · = ak−1 = 0, ak �= 0, then when 0 < ε 	 1, g(ε)ak > 0.
Since g(ε) = (amε

m−k + · · · + ak)ε
k = akε

k[1 + 0(1)] (as ε → 0). Thus
g(ε)ak = a2

k ε
k[1+ 0(1)] > 0 as ε→ 0.

According to this fact, we can ignore higher order terms of ε in every term
of Mgε, which is denoted as MHε Thus, we obtain a new criterion for Hurwitz
method. That is, all major subdeterminants of Mgε are greater than zero if and
only if all major subdeterminants of MHε are greater than zero.

EXAMPLE 2.1.6. Verify f5(z) = 1+ z2 + z5 /∈ qH .
Let

gε(z) = f (z+ ε)

= 1+ (z+ ε)2 + (z+ ε)5

= z5 + 5εz4 + 10z2z3 + (

10z3 + 1
)

z2 + (

5ε4 + 2ε
)

z+ (

ε5 + ε2 + 1
)

,

Mgε =

⎡

⎢
⎢
⎢
⎣

5ε4 + 2ε ε5 + ε2 + 1 0 0 0
10ε2 10ε3 + 1 5ε4 + 2ε ε5 + ε2 + 1 0

1 5ε 10ε2 10ε3 + 1 5ε4 + 2ε
0 0 1 5ε 10ε2

0 0 0 0 1

⎤

⎥
⎥
⎥
⎦
,

MHε =

⎡

⎢
⎢
⎢
⎣

2ε 1 0 0 0
10ε2 1 2ε 1 0

1 5ε 10ε2 1 2ε
0 0 1 5ε 10ε2

0 0 0 0 1

⎤

⎥
⎥
⎥
⎦
.

Now we compute the major subdeterminants of MHε as follows:

Δ1 = 2ε > 0

Δ2 =
∣
∣
∣
∣

2ε 1
10ε2 1

∣
∣
∣
∣
= 2ε

[

1+ 0(1)
]

> 0 when 0 < ε 	 1,

Δ3 =
∣
∣
∣
∣
∣

2ε 1 0
10ε2 1 2ε

1 5ε 10ε2

∣
∣
∣
∣
∣
= 2ε

[

1+ 0(1)
]

> 0 when 0 < ε 	 1,

...
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Δn = 5εΔ3 −
∣
∣
∣
∣
∣

2ε 1 0
10ε2 1 1

1 5ε 1

∣
∣
∣
∣
∣
= −[1+ 0(1)

]

< 0 when 0 < ε 	 1,

so f (z) /∈ qH .

LEMMA 2.1.7. Let λ0 be an eigenvalue of real matrixA(aij )n×n. Suppose that its
algebraic multiplicity is S, then λ0 only corresponds to simple elementary divisor
of A(aij )n×n, if and only if rank(λ0I − A) = n− s.

PROOF. Let Cn be an n-dimensional compound vector space. Let Vλ0 = {β | β ∈
cn, Aβ = λ0β} be eigensubspace with λ0, τ = dimVλ0 = n − rank(λ0I − A)

is called the geometric dimension. So λ0 only corresponds to simple elementary
divisor of A(aij )n×n if and only if s = τ , i.e., if and only if n−rank(λ0I−A) = s

or rank(λ0I − A) = n− s. �

LEMMA 2.1.8. Let the order of Jordan block,

J =

⎡

⎢
⎢
⎢
⎢
⎣

a 1 0 · · · 0
0 a · · · · · · 0
...

. . .
...

...
. . . 1

0 · · · · · · · · · a

⎤

⎥
⎥
⎥
⎥
⎦

m×m
be m. Then m = 1 if and only if

(2.1.4)rank(αIn − J ) = rank(αIn − J )2.

PROOF. Necessity. When m = 1, aI − J = 0, so (aI − J )2 = 0, i.e., rank(aI −
J ) = rank(αI − J )2.

Sufficiency. If m > 1, when

J − aIm =

⎡

⎢
⎢
⎣

0 1 0 · · · 0
... 0

. . . 0
... 1
0 · · · · · · 0

⎤

⎥
⎥
⎦

m×m

,

(J − aIm)
2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 1 0
. . . 0
. . . 1
. . . 0

0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

m×m

.

Obviously, rank(J−aIm) > rank(J−aIm)2, which contradicts (2.1.4), som = 1.
The proof is complete. �
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COROLLARY 2.1.9. Let J = diag(J1, . . . , Jr ) and λ0 be an eigenvalue of J .
Then, λ0 only corresponds to simple elementary divisor if and only if rank(λ0I −
J ) = rank(λ0I − J )2.

PROOF. Since J 2 = diag(J 2
i , . . . , J

2
r ), by Lemma 2.1.8 we know that the con-

clusion is true. �

COROLLARY 2.1.10. Let λ0 be an eigenvalue ofAn×n. Then λ0 only corresponds
to simple elementary divisor if and only if

(2.1.5)rank(λ0I − A) = rank(λ0I − A)2.

PROOF. By Jordan theorem, there exists an invertible matrix T such that

T −1AT =
[

J1 0
0 Jr

]

:= J,

where Jk (k = 1, . . . , r) are Jordan blocks. This indicates that J has the same
elementary divisor. λ0 corresponds to simple elementary divisor of J if and only
if λ0 corresponds to simple elementary divisor of A. But since

λ0I = λ0I − T −1(λ0I − A)T ,

(λ0I − J )2 = T −1(λ0I − A)2T ,

rank(λ0I−J ) = rank(λ0I−J )2 if and only if rank(λ0I−A) = rank(λ0I−A)2. �

COROLLARY 2.1.11. A has no pure imaginary eigenvalues or A has pure imag-
inary eigenvalues (including zero) which only correspond to simple elementary
divisor of A if and only if rank(iωI − A) = rank(iωI − A)2 for all ω ∈ R1.

Based on the above lemmas and corollaries, we obtain the following theorems
for An×n being quasi-stable.

THEOREM 2.1.12. A is quasi-stable if and only if fn(λ) ∈ qH and rank(iωI −
A) = rank(iωI − A)2.

THEOREM 2.1.13. A is quasi-stable if and only if fn(λ) ∈ qH and for every real
number ω, the linear algebraic equation (iωI − A)2x = 0 and (iωI − A)x = 0
have the same solution.

THEOREM 2.1.14. If fn(λ) ∈ qH and

(2.1.6)

(

fn(λ),
dfn(λ)

dλ

)

= 1,

i.e., fn(λ) and dfn(λ)
dλ

have no common factors, then A is quasi-stable.
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PROOF. Equation (2.1.6) means that A has no multiple eigenvalues, so all eigen-
values correspond to simple elementary divisor of A. Thus, fn(λ) ∈ qH implies
A being quasi-stable. �

Let ω be a real number and fn(iω) = Un(ω) + iVn(ω), where Un(ω), Vn(ω)

are polynomials with real coefficients. Then we have the following result.

COROLLARY 2.1.15. If fn(λ) ∈ qH and

(2.1.7)

(

Un(ω),
dUn(ω)

dω

)

= 1 =
(

Vn(ω),
dVn(ω)

dω

)

,

then A is quasi-stable.

PROOF. It is easy to see from (2.1.7) that the pure imaginary eigenvalues of fn(λ)
are all mono-roots. Hence, they are only correspond to simple elementary divisor
and fn(λ) ∈ qH . Therefore, A is quasi-stable. �

EXAMPLE 2.1.16. Consider quasi-stability of

A =
[
a11 a12 a13
a21 a22 a23
a31 a32 a33

]

.

Let f3(λ) = |λI3 − A| = λ3 + a2λ
2 + a1λ+ a0.

(1) When a2
0 + a2

1 �= 0, A is quasi-stable if and only if f3(λ) ∈ qH .
(2) When a2

0 + a2
1 = 0, a2 �= 0 A is quasi-stable if and only if f3(λ) ∈ qH and

rank(A) = 1.
(3) When a0 = a1 = a2 = 0, A is quasi-stable if and only if A = 0.

PROOF. (1) Necessity is obvious. Sufficiency. When a0 �= 0, by f3(λ) ∈ qH we
know that f3(λ) has three negative real roots, or has one negative real root and
two complex conjugate roots with nonpositive real parts. Hence all of them are
mono-roots; when a0 = 0, but a1 �= 0, f3(λ) ∈ qH, a2

2 − 4a1 > 0 implies that
f3(λ) has three nonequal, nonpositive real roots; a2

2 − 4a1 < 0 implies that f3(λ)

has three different nonpositive real roots. While a2
2 − 4a1 = 0 implies that f3(λ)

has three nonpositive real roots which are all mono-roots. Thus, A is quasi-stable.
f3(λ) ∈ qH is obvious.

(2) When a1 = a0 = 0, a2 �= 0, f3(λ) = λ2(a2 + λ) has two multiroots λ = 0
and λ = −a2 < 0.

If A is quasi-stable, then f3(λ) ∈ qH and λ = 0 corresponds to simple el-
ementary divisor of A and the algebraic multiplicity number of λ = 0 is 2. By
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Lemma 2.1.7 we know that

dimV0 = 3− 2 = 1 = rank(OI − A3×3) = rank(−A3×3)

= rank(A3×3).

On the other hand, if f3(λ) ∈ qH , then a2 > 0, λ1 = 0, λ2 = 0, λ3 = −a2 are
three roots of f3(λ) = 0. Then by rank(A) = 1 and Lemma 2.1.1 we know that
λ = 0 only corresponds to linear elementary divisor. Thus, A is quasi-stable.

(3) f3(λ) = λ3 has three multiroot λ = 0, which only corresponds to linear
elementary divisor if and only if dimV0 = 3− 3 = 0 = rank(A) and therefore if
and only if A = 0. �

2.2. Sufficient conditions of Hurwitz matrix

By using the necessary and sufficient condition, theoretically, to check whether
a matrix A is Hurwitz or a quasi-stable matrix becomes an algebraic problem.
However, it becomes very involved when n is large, since it is very difficult to
expand det(λIn−A). Thus, we need some simple sufficient conditions in practical
designs. In this section, we present various algebraic sufficient conditions that
guarantee A to be a Hurwitz matrix.

LEMMA 2.2.1. Let B(bij )r×r be a real matrix, bij � 0 (i �= j). g(t, t0, c) and
z(t, t0, c) are respectively, the solutions of

(2.2.1)

{
dy
dt

� By + f (t),

y(t0) = c,

and

(2.2.2)

{
dz
dt
= Bz+ f (t),

z(t0) = c,

where f (t) = (f1(t), . . . , fn(t))
T ∈ C[I, Rn], z, y ∈ Rn. Then y(t, t0, c) �

z(t, t0, c), i.e., yi(t, t0, c) � zi(t, t0, c) ∀t � t0.

PROOF. Let W(t) := z(t)− y(t), U(t) := dW
dt
− BW � 0. Then, W(t) satisfies

the differential equation:

(2.2.3)

{
dW
dt
= BW + U(t),

W(t0) = 0.

Obviously, one can choose a constant k > 0 such that (B + kI) � 0 (i.e., every
element is nonnegative). Rewrite (2.2.3) as

(2.2.4)

{
dW
dt
= (−kIn + B + kIn)W + U(t),

W(t0) = 0.
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The solution of (2.2.4) is the continuous solution of the following integral equa-
tion:

(2.2.5)W(t) =
t∫

t0

[

e−kIn(t−t1)[B + kIn]W(t1)+ U(t1)
]

dt1.

By Picard step-by-step integration we find the solution of (2.2.5) from (2.2.4):

dW

dt

∣
∣
∣
∣
t=t0

= U(t0) � 0.

One can take zero degree approximation W(0)(t) � 0. Since (B + kIn) � 0,
so W(1)(t) � 0. By the method of mathematical induction, we can prove that
W(m)(t) � 0 hold for all m. Thus,

lim
m→∞W(m)(t) = W(t) � 0,

i.e., y(t, t0, c) � z(t, t0, c). �

Now, we rewrite (2.1.1) as

d

dt

⎛

⎜
⎜
⎝

x1
x2
...

xr

⎞

⎟
⎟
⎠
=

⎛

⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎣

A11 0 · · · 0

0 A22
...

...
. . .

...

0 · · · · · · Arr

⎤

⎥
⎥
⎥
⎦
+

⎡

⎢
⎢
⎣

0 A12 · · · A1r
A21 0 · · · A2r
...

Ar0 · · · · · · 0

⎤

⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎠

(2.2.6)×

⎛

⎜
⎜
⎝

x1
x2
...

xr

⎞

⎟
⎟
⎠
,

where xi ∈ Rni , Aii and Aij are ni × ni and ni × nj matrices, respectively,
satisfying

r
∑

i=1

ni = n.

Consider the isolated subsystem:

(2.2.7)
d

dt

⎛

⎜
⎜
⎝

x1
x2
...

xr

⎞

⎟
⎟
⎠
=

⎡

⎢
⎢
⎢
⎣

A11 0 · · · 0

0 A22
...

...
...

. . . 0
0 0 · · · Arr

⎤

⎥
⎥
⎥
⎦

⎛

⎜
⎜
⎝

x1
x2
...

xr

⎞

⎟
⎟
⎠
.
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THEOREM 2.2.2. If there exist constants Mi � 1, αi > 0 such that

(2.2.8)
∥
∥eAii (t−t0)∥∥ � Mie

−αi(t−t0), i = 1, 2, . . . , r,

then the r×r matrix B = (−δijαi+(1−δij )Mi‖Aij‖)r×r being a Hurwitz matrix
implies that A is a Hurwitz matrix.

PROOF. We can write the solution of (2.2.6) as

xi(t, t0, x0) = eAii (t−t0)x0i +
t∫

t0

eAii (t−t1)
r
∑

j=1

(1− δij )Aij xj (t1, t0, x0) dt1,

where

(2.2.9)δij =
{

1 if i = j,

0 if i �= j.

Further, we have

∥
∥xi(t, t0, x0)

∥
∥ � Mi‖xi0‖e−αi(t−t0) +

t∫

t0

Mie
−αi(t−t1)

×
r
∑

j=1

(1− δij )‖Aij‖
∥
∥xj (t1, t0, x0)

∥
∥ dt1, i = 1, 2, . . . , r.

Let

yi(t, t0, y0) :=
t∫

t0

Mie
−αi(t−t0)

r
∑

j=1

(1− δij )‖Aij‖
∥
∥xj (t1, t0, x0)

∥
∥ dt1,

then yi(t, t0, y0) satisfies

dyi

dt
� −αiyi +

r
∑

j=1

Mi‖Aij‖(1− δij )yi

+
r
∑

j=1

Mi‖xj0‖(1− δij )e
−αj (t−t0)‖Aij‖Mj,

(2.2.10)yi(t0) = 0, i = 1, 2, . . . , n.

Consider a system of comparison equations for (2.2.10):

dzi

dt
= −αizi +

r
∑

j=1

Mi‖Aij‖(1− δij )zi
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+
r
∑

i=1

Mi‖xj0‖(1− δij )e
−αi(t−t0)‖Aij‖Mj,

(2.2.11)zi(t0) = 0, i = 1, 2, . . . , n.

Rewrite (2.2.11) as a vector form:

(2.2.12)

{
dz
dt
= B(bij )z+ f (t),

z(t0) = 0,

where

f (t) :=
(

r
∑

j=2

M1‖xj :‖‖A1j‖Mje
−α1(t−t0), . . . ,

r−1
∑

j=1

Mr‖xj0‖‖Arj‖Mje
−αr (t−t0)

)T

.

Since B is a Hurwitz matrix, there exists constants h � 1, β > 0 such that
∥
∥eB(t−t0)

∥
∥ � he−β(t−t0).

The solution of (2.2.11) has the form

(2.2.13)z(t, t0, z0) =
t∫

t0

eB(t−t1)f (t1) dt1.

Thus, we have

∥
∥z(t)

∥
∥ �

t∫

t0

he−β(t−t1)f (t1) dt1 = he−βt
t∫

t0

eβt1
∥
∥f (t1)

∥
∥ dt1.

Further, with the fact

lim
t→∞

∥
∥f (t)

∥
∥ = 0

and using the L’Hospital rule, we obtain

lim
t→+∞h

t∫

t0

e−β(t−t1)
∥
∥f (t1)

∥
∥ dt1 = lim

t→+∞h
eβt‖f (t‖)
βeβt

= 0.

Hence, we have
∥
∥xi(t, t0, x0)

∥
∥ � Mi‖xi0‖e−αi(t−t0) + yi(t, t0, y0)

� Mi‖xi0‖e−αi(t−t0) + zi(t, t0, z0)
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� Mi‖xi0‖e−αi(t−t0) +
∥
∥zi(t, t0, z0)

∥
∥

� Mi‖xi0‖e−αi(t−t0) +
t∫

t0

he−β(t−t1)
∥
∥f (t1)

∥
∥ dt1

→ 0 as t →+∞, i = 1, 2, . . . , n.

This means that A is a Hurwitz matrix. �

EXAMPLE 2.2.3. Prove that the matrix

A =
⎡

⎢
⎣

−6 3 1/8 −1/8
−5 2 1/7 −1/7
1/2 1 −4 1
1 1/2 1 −4

⎤

⎥
⎦

is a Hurwitz matrix.

PROOF. Take

A11 =
[−6 3
−5 2

]

, A22 =
[−4 1

1 −4

]

,

A12 =
[

1/8 −1/8
1/7 −1/7

]

, A21 =
[

1/2 1
1 1/2

]

.

Then, λ1(A11) = λ1 = −3, λ2(A11) = λ2 = −1, λ1(A22) = λ̃1 = −5,
λ2(A22) = λ̃2 = −3. Further, choose t0 = 0. Then,

eA11(t) =
[ 5

2e
−3t − 3

2e
−t − 3

2e
−3t + 3

2e
−t

5
2e
−3t − 5

2e
−t − 3

2e
−3t + 5

2e
−t

]

,

eA22(t) =
[ 1

2e
−5t + 1

2e
−3t − 1

2e
−5t + 1

2e
−3t

1
2e
−5t − 1

2e
−3t 1

2e
−5t + 1

2e
−3t

]

,

∥
∥eA11t

∥
∥
m

� 3e−t ,
∥
∥eA22t

∥
∥
m

� 3

2
e−3t ,

‖A12‖m = 2

7
, ‖A21‖m = 3

2
,

M1 = 3, M2 = 3

2
, α1 = 1, α2 = 3.

Thus, B =
[ −1 6/7

9/4 −3

]

is a Hurwitz matrix, and so is A. Here,

‖A‖m := max
1�i�4

4
∑

j=1

|aij |. �
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In the following, for A(aij )2×2, we can directly give a formula for eA(t−t0).
Suppose a11a22 − a12a12 �= 0.

Let

f2(λ) = det(λI2 − A) = λ2 − (a11 + a22)λ+ a11a22 − a12a21 = 0,

Δ := (a11 + a12)
2 − 4(a11a22 − a12a21) = (a11 − a12)

2 + 4a12a21.

Then, we have the following formulas:

(1) when Δ > 0,

eAt =
⎡

⎣

− a22−a11−
√
Δ

2
√
Δ

eλ1t+ a22−a11−
√
Δ

2
√
Δ

eλ2t
a12√
Δ
(eλ1t−eλ2 t )

a12√
Δ
(eλ1 t−eλ2 t)

a22−a11+
√
Δ

2
√
Δ

eλ1 t− a22−a11−
√
Δ

2
√
Δ

eλ2 t

⎤

⎦ ;

(2) when Δ = 0, a12 �= 0,

eAt =
[

1− a22−a11
2 t a22t

− (a22−a11)
2

4a12
t 1+ a22−a11

2 t

]

e
a11+a22

2 t ;
(3) when Δ < 0,

eAt =
[

cosβt − a22−a11
2β sinβt a12

β
sinβt

a21
β

sinβt cosβt + a22−a11
2β sinβt

]

eαt ,

where β =
√−Δ
α

, α = a11+a22
2 .

COROLLARY 2.2.4. If aii < 0 (i = 1, 2, . . . , n), and matrix aij δij + (1 −
δij |aij |)n×n is a Hurwitz matrix, then A = (aij )n×n is a Hurwitz matrix.

PROOF. Take Aii = aii , ‖eAii t‖ = |eaii t | = e−aii t , Mi = 1, −αi = aii . Then,
the conditions in Theorem 2.2.2 are satisfied. Recall that the conditions of Corol-
lary 2.2.4 are equivalent to condition (6) of M matrix (Definition 1.6.1). �

COROLLARY 2.2.5. Assume aii < 0 (i = 1, . . . , n). Then any of the following
six conditions implies that A is a Hurwitz matrix:

(1) max
1�j�n

n
∑

i=1
i �=j

∣
∣
∣
∣

aij

ajj

∣
∣
∣
∣
< 1;

(2) max
1�i�n

n
∑

j=1
j �=i

∣
∣
∣
∣

aij

ajj

∣
∣
∣
∣
< 1;

(3)
n
∑

i,j=1
i �=j

(∣
∣
∣
∣

aij

ajj

∣
∣
∣
∣

)2

< 1;



2.2. Sufficient conditions of Hurwitz matrix 49

(4)
j−1
∑

i=1

∣
∣
∣
∣

aij

ajj

∣
∣
∣
∣
μi +

n
∑

i=j+1

∣
∣
∣
∣

aij

ajj

∣
∣
∣
∣
:= μj < 1, j = 1, 2, . . . , n;

(5) v(j) =
j−1
∑

i=1

∣
∣
∣
∣

aij

ajj

∣
∣
∣
∣
v(i) + max

j+1�i�n

∣
∣
∣
∣

aij

ajj

∣
∣
∣
∣
, j = 1, 2, . . . , n,

n
∑

j=1

v(j) < 1;

(6) j

(
j−1
∑

i=1

∣
∣
∣
∣

aij

ajj

∣
∣
∣
∣

2

σ 2
i +

n
∑

i=j+1

∣
∣
∣
∣

aij

ajj

∣
∣
∣
∣

2
)

:= σ 2
j , j = 1, 2, . . . , n,

n
∑

j=1

σ 2
j = σ 2 < 1.

PROOF. Any of the conditions (1), (2) and (3) implies ρ(B) � ‖B‖ < 1. By the
equivalent conditions (5), (6) of M matrix (Definition 1.6.1), we know that the
conclusion is true.

Consider the following nonhomogeneous linear algebraic equations:

(2.2.14)ηj =
n
∑

i=1
i �=j

∣
∣
∣
∣

aij

ajj

∣
∣
∣
∣
ηi + ωj (ωj = constant > 0, j = 1, 2, . . . , n).

By Gauss–Seidel iteration:

(2.2.15)η
(m)
j =

j−1
∑

i=1

∣
∣
∣
∣

aij

ajj

∣
∣
∣
∣
η
(m)
i +

n
∑

j=j+1

∣
∣
∣
∣

aij

ajj

∣
∣
∣
∣
η
(m−1)
i + ωj ,

one can show that any condition of (4), (5) and (6) is a sufficient condition for
the convergence of (2.2.15). So (2.2.14) has unique solution. Take η(0)j � 0 (j =
1, 2, . . . , n). Owing to ωj > 0, | aij

ajj
| � 0 (i, j = 1, 2, . . . , n, i �= j ),

η
(m)
j � ωj > 0 (m = 1, 2, . . . , j = 1, 2, . . . , n).

Thus,

η̃j := lim
m→∞ η

(m)
j � ωj > 0.

Further, we have

ajj η̃j +
n
∑

i=1
i �=j

|aij |ηi < 0.

By using the equivalent condition, A is a Hurwitz matrix. �
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EXAMPLE 2.2.6. Check whether matrix

A =
⎡

⎢
⎣

−8 1 −2 2
6 −6 0 1
−4 6 −8 0
12 0 0 −10

⎤

⎥
⎦

is a Hurwitz matrix.
Obviously, the diagonal elements of A, aii < 0, i = 1, 2, 3, 4. Thus,

μ1 = 1

8
+ 2

8
+ 2

8
= 5

8
< 1,

μ2 = 5

8
× 1+ 1

6
= 19

24
< 1,

μ3 = 5

8
× 1

2
+ 19

24
× 4

3
= 5

16
+ 57

96
= 87

96
< 1,

μ4 = 12

10
× 5

8
= 8

16
< 1.

Hence, A satisfies condition (4) in Corollary 2.2.5. Therefore A is a Hurwitz ma-
trix.

THEOREM 2.2.7. If the following conditions:

(1) aii < 0 (i = 1, 2, . . . , n) and detA �= 0; and
(2) there exist constants ci > 0 (i = 1, 2, . . . , n) such that

cjajj +
n
∑

i=1
i �=j

|ci ||aij | � 0, j = 1, 2, . . . , n;

are satisfied, then A is a Hurwitz matrix.

PROOF. Let C = diag(c1, c2, . . . , cn). By the transformation y = Cx, the equa-
tion dx

dt
= Ax becomes

dy

dt
= CAC−1y := By.

detB = detA �= 0 and the eigenvalues of the matrices A and B are the same.
By the Gershgorin’s circular disc theorem, all eigenvalues are on the following
circular disc:

|λ− ajj | �
n
∑

i=1
i �=j

|ciaij |
cj

� |ajj |.
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The above inequality takes equality if and only if when λ = 0. But λ = 0 is not
the eigenvalue of B. Thus,

|λ− ajj | < |ajj |,
i.e., Re λ(A) < 0, so A is a Hurwitz matrix. �

THEOREM 2.2.8. If there exist constants ξi > 0 (i = 1, . . . , n) such that the
matrix B := (ξiaij + ξj aji) is negative definite, then A is a Hurwitz matrix.

PROOF. Multiplying 2ξixi on both sides of the following equation:

(2.2.16)
dxi

dt
=

n
∑

j=1

aij xj

yields

(2.2.17)ξi
dx2

i

dt
=

n
∑

j=1

2ξiaij xixj .

Further, we have

d

dt

(
n
∑

i=1

ξix
2
i

)

= (x1, x2, . . . , xn)B(x1, . . . , xn)
T � λm

n
∑

i=1

x2
i

(2.2.18)� λm

max1�i�n |ξi |
n
∑

i=1

ξix
2
i ,

where λm is the maximum eigenvalue of B. Let

−δ = λm

max1�i�n |ξi | < 0.

Thus, integrating (2.2.18) results in

n
∑

i=1

ξix
2
i (t, t0, x0) �

n
∑

i=1

ξix
2
i (t0, t0, x0)e

−δ(t−t0).

So

(2.2.19)
n
∑

i=1

ξix
2
i (t, t0, x0) � 1

min1�i�n ξi

n
∑

i=1

ξix
2
i (t0, t0, x0)e

−δ(t−t0),

which shows that the zero solution of (2.2.16) is exponentially stable. Hence, A
is a Hurwitz matrix. �
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COROLLARY 2.2.9. If any of the following conditions:

(1) there exist constant ξi > 0, i = 1, 2, . . . , n, such that
n
∑

i=1
i �=j

|ξiaij + ξj aji | � −2ξiaii , i = 1, 2, . . . , n;

(2)
n
∑

j=1
j �=i

|aiiaij + ajj aji | � 2a2
ii and aii < 0, i = 1, 2, . . . , n;

(3)
n
∑

j=1
j �=i

|aij + aji | � −2aii;

holds, then A is a Hurwitz matrix.

PROOF. It is easy to verify that any of the conditions (1), (2) and (3) implies that
B is negative. �

EXAMPLE 2.2.10. Prove that

A =

⎡

⎢
⎢
⎢
⎣

−4 3 −6 −3 2
−3 −5 3 −4 3
5 −4 −4 −5 2
3 5 4 −5 1
−2 −3 −1 −2 −5

⎤

⎥
⎥
⎥
⎦

is a Hurwitz matrix.

PROOF. Since aii < 0, i = 1, 2, 3, 4, 5, and

5
∑

j=2
j �=1

|a11a1j + ajj aj1| = 12 < 32 = 2a2
11,

5
∑

j=1
j �=2

|a22a2j + ajj aj2| = 9 < 50 = 2a2
22,

5
∑

j=1
j �=3

|a33a3j + ajj aj3| = 8 < 32 = 2a2
33,
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5
∑

j=1
j �=4

|a44a4j + ajj aj4| = 13 < 50 = 2a2
44,

4
∑

j=1
j �=i=5

|a55a5j + ajj aj5| = 10 < 50 = 2a2
55,

condition (2) of Corollary 2.2.9 is satisfied. So A is a Hurwitz matrix. �

DEFINITION 2.2.11. If there exists a constant h > 0 such that

max
1�i�n

Re λi(A)+ h < 0,

A is called stable with degree h. By the above sufficient conditions of Hurwitz
matrix A, we can obtain the degree of stability of A.

THEOREM 2.2.12.

(1) If the conditions in Theorem 2.2.2 hold under the elements αi of B replaced
by αi + h (h > 0), then A has the degree of stability h.

(2) If any of the conditions in Corollary 2.2.4 or Corollary 2.2.5 holds under
the element aii of A(aij ) replaced by aii + h (h > 0), then A has degree of
stability h.

(3) If the condition in Theorem 2.2.7 or Theorem 2.2.8 or Corollary 2.2.9 holds
under the element aii of A(aij ) replaced by aii + h (h > 0), then A has
stability degree h.

PROOF. Let A = (aij )n×n, Ã = ((aij + h)δij + (1 − δij )aij ). Then, Re λ(Ã) =
Re λ(A)+h, and any of the above conditions implies Re λ(Ã) < 0. So Re λ(A)+
h < 0, i.e., Re λ(A) < −h < 0. Hence, A has stability of degree h. �

2.3. A new method for solving Lyapunov matrix equation:
BA + AT B = C

In this section we introduce a new method for solving Lyapunov matrix equation.

LEMMA 2.3.1. If there exists a symmetric, positive definite matrix B(bij )n×n
such that the matrix C := BA + AT B is negative definite, then A(aij )n×n is a
Hurwitz matrix.
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PROOF. Let

λ(C) = min
1�i�n

λi(C), λ(C) = max
1�i�n

λi(C),

be respectively the minimal and maximum eigenvalues of the symmetric ma-
trix C. Consider function V = xT Bx. Then

min
1�i�0

λi(B)x
T x = λ(B)xT x � xT Bx � λ(B)xT x = max

1�i�n
λi(B)x

T x

is true. Computing the derivative of V = xT Bx along the solution of (2.1.1), we
have

dV

dt
= xT (BA+ AT B)x

= xT Cx � λ(C)xT x

= λ(C)
λ(B)

λ(B)
xT x

(2.3.1)= λ(C)

λ(B)
λ(B)xT x � λ(C)

λ(B)
V (t).

Integrating (2.3.1) yields

V (t, t0, x0) � V (t0)e
(λ(C)/λ(B)(t−t0).

Thus,

λ(B)

n
∑

i=1

x2
i (t, t0, x0) � V (t, t0, x0) � V (x0)e

(λ(C)/λ(B)(t−t0).

Then, we obtain

(2.3.2)
n
∑

i=1

x2
i (t, t0, x0) � V (t0)/λ(B)e

(λ(C)/λ(B)(t−t0),

which means that A is a Hurwitz matrix.

(2.3.3)BA+ AT B = C

is called Lyapunov matrix equation. �

For a given negative definite, symmetric matrix, it is interesting to know
whether the Lyapunov matrix equation (2.3.3) has a symmetric, positive matrix
solution X = B or not. This problem has been studied by many scholars.

Now we introduce a new method. By using Kronecker product and pulling
linear operator, we may directly transform a Lyapunov matrix equation (2.3.3) to



2.3. A new method for solving Lyapunov matrix equation: BA+ AT B = C 55

a linear algebraic equation:

(2.3.4)My = b.

Thus, we can use a simple method to solve (2.3.3).

DEFINITION 2.3.2. Let A = (aij )m×n, B = (bij )j×l . Then,

A⊗ B :=
[
a11B a12B · · · a1nB

· · · · · · · · · · · ·
am1B · · · · · · amnB

]

is called a Kronecker product of A and B.

DEFINITION 2.3.3. Let A = (aij )m×n,
−→
A := (a11, a12, . . . a1n, a21, a22, . . . , a2n, . . . am1, . . . , amn)

T

is called a pulling linear operator.

From Definitions 2.3.2 and 2.3.3 one can easily prove that

(1) the pulling linear operator is linear operator, i.e.,
−−−−−→
A+ B = −→

A+−→B ,
−→
kA = k

−→
A;

(2) if A = (aij )m×m,B = (bij )n×n, then

(2.3.5)det(A⊗ B) = (detA)m(detB)n;
(3) A⊗ B has inverse matrix if and only if both A and B have inverse matrices,

and

(2.3.6)(A⊗ B)−1 = A−1 ⊗ B−1.

LEMMA 2.3.4. Let A = (aij )m×n. Eij denotes m × n matrix with only (i, j)
element as 1 and all other elements as 0. Let

ei = (0, . . . , 0, 1
︸ ︷︷ ︸

i

, 0, . . . , 0
︸ ︷︷ ︸

n−i
)T1×m,

where 1 is located at the ith position. Then,

(2.3.7)A =
m
∑

i=1

n
∑

j=1

aijEij ,

(2.3.8)Aei = (a1i , a2i , . . . , ami)
T ,

(2.3.9)eTi A = (ai1, ai2, . . . , ain),

(2.3.10)Eij = eie
T
j ,

(2.3.11)Eij = ei ⊗ ej .
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PROOF. It can be shown by a direct computation. �

LEMMA 2.3.5. Let A, B, C be n×m, m× s, s × t matrices, respectively. Then,

(2.3.12)
−−−−→
ABC = (

A⊗ CT
)−→
B.

PROOF. First prove

(2.3.13)
−−−−−→
AEijC =

(

A⊗ CT
)−−→
Eij .

Since
−−−−−→
AEijC

by (2.3.10)= −−−−−−→
Aeie

r
jC

by (2.3.8)=
by (2.3.4)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
(a1i , a2i , . . . , ani)

T (cj1, . . . , cjt )

(2.3.14)=

⎛

⎜
⎜
⎝

A1i
a2i
...

ani

⎞

⎟
⎟
⎠
⊗
⎛

⎝

cj1
...

cj t

⎞

⎠ ,

we have
(

A⊗ CT
)−−→
Eij =

(

A⊗ CT
)

(ei ⊗ ej ) = Aei ⊗ CT ej

(2.3.15)=
⎛

⎝

a1i
...

ani

⎞

⎠⊗ (

eTj C
)T =

⎛

⎝

a1i
...

ani

⎞

⎠⊗
⎛

⎝

cj1
...

cj t

⎞

⎠ .

Thus, (2.3.12) holds, and then

−−−−→
ABC = A

−−−−−−−−−−−−−−−−−→(
m
∑

i=1

s
∑

j=1

bijEij

)

C =
m
∑

i=1

s
∑

j=1

bij
−−−−−→
AEijC

=
m
∑

i=1

n
∑

j=1

bij
(

A⊗ CT
)−−→
Eij

= (

A⊗ CT
)

m
∑

i=1

s
∑

j=1

bij
−−→
Eij

= (

A⊗ CT
)−→
B. �

THEOREM 2.3.6. Let A, C be n × n real matrices. Then, the following four
propositions are equivalent:

(1) The Lyapunov matrix equation:

(2.3.16)ATX +XA = C

has unique matrix solution X = B.
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(2) The linear equation

(

AT ⊗ I + I ⊗ AT
)−→x = −→

C

has unique solution, where I is n× n identity matrix.
(3) rank(AT ⊗ I + I ⊗ AT ) = n2 or det(AT ⊗ I + I ⊗ AT ) �= 0.

(4)

r
∏

i,j=1

(λi + λj ) �= 0,

where λi and λj are eigenvalues of A.

PROOF. Since ATX +XA = C ⇐⇒ −−−−−−−−−−→
ATX +XA = −→

C , and
−−−−−−−−−−→
ATX +XA = −−−−−→

ATXI + −−−→
IXA = (

AT ⊗ I + I ⊗ AT
)−→
X,

(1) ⇐⇒ (2), (2) ⇐⇒ (3) are proved.
The remaining is to prove (3) ⇐⇒ (4), i.e.,

det
(

AT ⊗ I + I ⊗ AT
) =

n
∏

i,j=1

(λi + λj ).

By using the Jordan theorem, there exists an n× n inverse matrix S such that

S−1AT S =

⎡

⎢
⎢
⎣

λ1 ∗
λ2

. . .

0 λn

⎤

⎥
⎥
⎦
,

(S ⊗ S)−1(AT ⊗ I + I ⊗ AT
)

(S ⊗ S)

= (

S−1 ⊗ S−1)(AT ⊗ I
)

(S ⊗ S)+ (

S−1 ⊗ S−1)(I ⊗ AT
)

(S ⊗ S)

= S−1AT S ⊗ S−1IS + (

S−1IS
)⊗ (

S−1AT S
)

=
⎡

⎣

λ1 ∗
. . .

0 λn

⎤

⎦⊗

⎡

⎢
⎢
⎣

1 0 · · · 0
0 1
...

. . .

0 1

⎤

⎥
⎥
⎦

+

⎡

⎢
⎢
⎣

1 0 · · · 0
0 1
...

. . .

0 1

⎤

⎥
⎥
⎦
⊗

⎡

⎢
⎢
⎣

λ1 ∗
λ2

. . .

0 λn

⎤

⎥
⎥
⎦
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=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

λ1 ∗ · · · · · · · · · · · · ∗
0

. . .
...

... λ1
...

...
. . .

...
... λn

...
...

. . .
...

0 · · · · · · · · · · · · 0 λn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

λ1 ∗ · · · · · · · · · · · · ∗
0

. . .
...

... λn
...

...
. . .

...
... λn

...
...

. . .
...

0 · · · · · · · · · · · · 0 λn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

λ1+λ1 ∗ ··· ··· ··· ··· ··· ··· ··· ∗

0 λ1+λ2

...
... λ1+λn

...
... λ2+λ1

...
... ···

...
... λ2+λn

...
...

. . .
...

... λn+λ1

...
...

. . .
...

0 ··· ··· ··· ··· ··· ··· ··· 0 λn+λn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Therefore,

det
(

AT ⊗ I + I ⊗ AT
) = det(S ⊗ S)−1(AT ⊗ I + I ⊗ AT

)

,

(S ⊗ S) =
n
∏

i,j=1

(λi + λj ).

The proof of Theorem 2.3.6 is complete. �
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THEOREM 2.3.7.

(1) The Lyapunov matrix equation (2.3.16) has infinite number of solutions if and
only if

rank
(

AT ⊗ I + I ⊗ AT ,
−→
C
) = rank

(

AT ⊗ I + I ⊗ AT
)

< n2.

(2) ATX +XA = C has no solution if and only if

rank
(

AT ⊗ I + I ⊗ AT ,C
)

> rank
(

AT ⊗ I, I ⊗ AT
)

.

PROOF. A similar method to Theorem 2.3.6 can be used here and thus omitted. �

THEOREM 2.3.8. If A is a Hurwitz matrix, then

(1) the solution of the Lyapunov matrix equation (2.3.16) is unique;
(2) for a given arbitrary symmetric negative matrix C, there exists a unique sym-

metric positive matrix B satisfying AT B + BA = −C and

V (x) = xT Bx = 1

detΔ

∣
∣
∣
∣

0 X−→
CT Δ

∣
∣
∣
∣
,

where

Δ = AT ⊗ I + I ⊗ AT ,

X = (X1, X2, . . . , Xn),

X1 =
(

x2
1 , 2x1x2, . . . , 2x1xn

)

,

X2 =
(

0, x2
2 , . . . , 2x2xn

)

,

· · ·
Xn =

(

0, . . . , 0, x2
n

)

.

PROOF. (1) Since A is a Hurwitz matrix,

n
∏

i,j=1

(λi + λj ) �= 0.

By using condition (2) of Theorem 2.3.7, for any symmetric negative matrix, Lya-
punov matrix equation:

(2.3.17)ATX +XA = −C
has unique solution X = B, i.e.,

AT B + BA = −C.
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ByC = CT , we haveAT BT+BT A = −C. This means thatBT is also a solution.
Thus B = BT , and let

B1 :=
∞∫

0

etA
T

CetAdt,

and then B1 is symmetric positive definite.
(2) By uniqueness, B1 = B. Let B = (bij )n×n. Form (2.3.17) we have

(2.3.18)
(

AT ⊗ I + I ⊗ AT
)−→
B = −−→C.

Since detΔ = det(AT ⊗ I + I ⊗ AT ) �= 0, by the Gramer law, the solution
of (2.3.18) can be written as

(2.3.19)bij = detΔij

detΔ
(i, j = 1, 2, . . . , n),

where Δij is formed from Δ with its j th column replaced by
−→
C . Hence,

V = xT Bx =
n
∑

i,j=1

bij xixj .

On the other hand,

(2.3.20)V =
n
∑

i,j=1

bij xixi = 1

det

∣
∣
∣
∣

0 X−→
C Δ

∣
∣
∣
∣
.

�

EXAMPLE 2.3.9. Consider system

{
dx1
dt
= a11x1 + a12x2,

dx2
dt
= a21x1 + a22x2,

where

A =
[

a11 a12
a21 a22

]

is symmetric, positive definite,

C =
[

c11 c12
c21 c22

]

.
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Then, by (2.3.20) we have

V = 1

detΔ

∣
∣
∣
∣
∣
∣
∣
∣
∣

0 x2
1 2x1x2 0 x2

2
c11 2a11 a21 a21 0
c12 a12 a11 + a22 0 a21
c21 c12 0 a11 + a22 a21
c22 0 a12 a12 2a22

∣
∣
∣
∣
∣
∣
∣
∣
∣

,

where

Δ =
⎡

⎢
⎣

2a11 a21 0 0
a12 a11 + a22 0 a21
a12 0 a11 + a22 a21
0 a12 a12 2a22

⎤

⎥
⎦ .

EXAMPLE 2.3.10.
(
ẋ1
ẋ2
ẋ3

)

=
[
a11 a12 a13
a21 a22 a23
a31 a32 a33

](
x1
x2
x3

)

,

C =
[
c11 c11 c13
c21 c22 c23
c31 c32 c33

]

= CT .

Then

V = 1

detΔ

×

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

0 x2
1 2x1x2 2x1x3 0 x2

2 2x2x3 0 0 x3
2

c11 2a11 a21 a31 a21 0 0 a31 0 0
c12 c12 a11+a22 a32 0 a21 0 0 a31 0
c13 a13 a23 a21+a33 0 0 a21 0 0 a31
c21 a12 0 0 a11+a22 a21 a31 a32 0 0
c22 0 a12 0 a12 2a22 a32 0 a32 0
c23 0 0 a12 a13 a23 a22+a33 0 0 a32
c31 a13 0 0 a23 0 0 a11+a33 a21 a31
c32 0 a13 0 0 a23 0 a12 a22+a33 a32
c33 0 0 a13 0 0 a23 a13 a23 a33

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

where

Δ = AT ⊗ I + I ⊗ AT .

2.4. A simple geometrical NASC for Hurwitz matrix

We again consider

(2.4.1)fn(λ) = det(λI − A) := λn + an−1λ
n−1 + · · · + a0.

According to Cauchy’s argument principle, the following geometrical method for
judging Hurwitz matrix was obtained [326].
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THEOREM 2.4.1. Suppose that fn(λ) has no pure imaginary roots. Then, A is a
Hurwitz matrix if and only if when ω varies from 0 to+∞, the argument of f (iω)
increases to nϕ = π

2 , along the counter clock-wise direction.

The proof of this theorem is very complex and checking the condition is diffi-
cult [98], because it contains an infinite interval [0,+∞).

Wang [396] derived a simple sufficient and necessary condition for fn(λ) being
stable, using the boundedness and conjugate character of the zero points of fn(λ)
with real coefficients.

LEMMA 2.4.2. All zero points of fn(λ) lie inside the following circle:

|λ| < ρ := 1+ max
0�i�n−1

|ai |.

PROOF. ∀λ0, let

|λ0| � 1+ max
0�i�n−1

|ai |.
Then, we have

∣
∣f (λ0)

∣
∣ �

∣
∣λn0

∣
∣− [|an−1|

∣
∣λn−1

0

∣
∣+ · · · + |a0|

]

�
∣
∣λn0

∣
∣− max

0�i�n−1
|ai |

[

1+ |λ0| + · · · +
∣
∣λn−1

0

∣
∣
]

= ∣
∣λn0

∣
∣− max

0�i�n−1
|ai |

[ |λn0| − 1

|λ0| − 1

]

�
∣
∣λn0

∣
∣− max

0�i�n−1
|ai | |λn0| − 1

max0�i�n−1 |ai |
� 1 �= 0.

So all zero points of fn(λ) lie inside the circle:

|λ| < ρ = 1+ max
0�i�n−1

|ai |.
Now we construct a circle S, centered at (0, 0) with radius

ρ = 1+ max
0�i�n−1

|ai |.
Then, by Lemma 2.3.1 all zero points of fn(λ) lie inside this circle. �

Next, consider a quarter of circle
︷ ︷

A(ρ, 0) B(0, iρ) 0, as shown in Figure 2.4.1.
Let

ϕi = Δ
̂ABO

Arg fn(λ)
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Figure 2.4.1. The polynomial variable varied on the one-quarter circle ̂AOB, centered at the origin
with radius ρ.

denote the increment of argument ϕ when λ is varied along ÂB and imaginary
axis

−→
B0 from A to 0.

THEOREM 2.4.3. Let fn(iω) �= 0, ω ∈ [0, B]. Then

Φ := Δ
̂ABO

Arg fn(λ) = kπ

if and only if k = 0. A is a Hurwitz matrix if and only if 0 < k � n and fn(λ) has
k zero points with positive real parts.

PROOF. Let fn(λ) have 2p complex zero points zj , zj (j = 1, 2, . . . , p) and
q real zero points xr (r = 1, 2, . . . , q). Every zero is counted with multiplicity.
Then 2p + q = n.

By Lemma 2.3.1, |zi | < ρ, |xr | < ρ, i = 1, . . . , p, r = 1, 2, . . . , q. Decom-
pose fn(λ) into linear factors:

fn(λ) =
p
∏

j=1

(λ− zj )(λ− zj )

q
∏

k=1

(λ− rk).

Hence,

Φ := Δ
̂ABO

Arg fn(λ)

=
P
∑

j=1

Δ
̂ABO

[

Arg(λ− zj )
]+

P
∑

j=1

Δ
̂ABO

[

Arg(λ− zj )
]
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+
q
∑

k=1

Δ
̂ABO

[

Arg(λ− rk)
]

,

where Arg λ = arg λ + 2kπ (k = 1, 2, . . .) is a multi-valued function in (−π <

arg λ � π). When λ = ρ, let Arg λ = arg λ.
Let rk0 be any real negative number. Consider the variable of the argument of

λ− rk0 along ̂ABO (see Figure 2.4.2),

Δ
̂ABO

Arg(λ− rk0) = Δ
ÂB

Arg(λ− rk0)+ Δ
B̂O

Arg(λ− rk0) = 0− 0 = 0.

Let zj0 and zj0 are two conjugate complex zero points with negative real part.
By the symmetry, one can prove that the triangle ΔAzjOO ∼= ΔAzjOO. Thus,
|� AzjOO| = |� Azj0O|, and also

Δ
̂ABO

Arg(λ− zj0)+ Δ
̂ABO

Arg(λ− zj0)

= +|� Azj0B| − |� Bzj0O| + +|� Azj0B| − |� Bzj0O|
= −|� Azj0O| + |� AzjO|
= −θ + θ = 0,

which is shown in Figure 2.4.3.

Figure 2.4.2. The case having negative real root xk0 .



2.4. A simple geometrical NASC for Hurwitz matrix 65

Figure 2.4.3. The case having a complex conjugate pair with negative real part.

Figure 2.4.4. The case having positive real roots.

Let rk0 > 0 be any positive zero point of fn(λ). Consider variation of argument

λ− rk0 along ̂ABO (see Figure 2.4.4) to obtain

Δ
̂ABO

Arg(λ− rk0) = π.
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Let zj1 , zj1 be any two zero points with positive real parts of fn(λ). Then,
Azi1O

∼= Azj1O, and also |� Azj1O| = |� zjiO|. Further

Δ
̂ABO

Arg(A− zj1)+ Δ
̂ABO

Arg(λ− zj1) = 2π − |� Azj1O| + |� Azj1O|
= 2π.

Based on the above analysis, we obtain

Δ
̂ABO

(λ− zj )(λ− zj ) =
{

2π, when Re zj > 0,
0, when Re zj < 0,

Δ
̂ABO

(λ− rk) =
{

π, when rk > 0,
0, when rk < 0.

Thus, A is a Hurwitz matrix if and only if

Φ = Δ
̂ABO

Arg fn(λ) = kπ, k = 0,

and fn(λ) has k zero points with positive real parts if 0 < k � n. This case is
depicted in Figure 2.4.5. �

Let

ψ := Δ
̂OBA1

Arg fn(λ).

Figure 2.4.5. The case having a complex conjugate pair with positive real part.
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By inspecting the increment of argument when λ is varied along ÔB, ÂB1 from
O to A1, we have the following theorem.

THEOREM 2.4.4. Let fn(iω) �= 0, where ω ∈ [0, B].
ψ = Δ

̂OBA1

Arg fn(λ) = mπ,

if and only if m = n. A is a Hurwitz matrix if and only if m < n, fn(λ) has n−m

zero points with positive real parts.

One can follow the proof of Theorem 2.4.3 to prove Theorem 2.4.4.

REMARK 2.4.5. To check fn(iω) �= 0, ω ∈ [0, B], one only needs to check
(u(ω), v(ω)) = 1, where fn(iω) = u(ω)+ iv(ω). Later, we will use the division
algorithm to check this condition.

This method can be generalized to obtain the degree of stability of A. Moving
the half circle (see Figure 2.4.6) A(p, 0)-B(0, ip)-A(−p, 0) to left by h, we can
construct a new circle, centered at O ′ with the radius r = |Ô ′A|.

THEOREM 2.4.6. Suppose that fn(λ) has no zero points on O ′B∗. Let

Φ := Δ
̂AB∗O

Arg fn(λ) = k1π

(i.e., A has stability degree h), then Re λ(An×n) < −h < 0 if and only if k1 = 0.

Figure 2.4.6. Demonstration of the degree of stability.
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THEOREM 2.4.7. Assume that fn(λ) has no zero points on O ′B∗. Let

ψ := Δ
̂OB∗A′1

fn(λ) = m1π,

then A has stability degree h > 0 if and only if m1 = n.

EXAMPLE 2.4.8. Discuss the stability of f3(z) = z3 + 3z2 + 4z + 2.1. Take
ρ = 5, then

f1(θ) = 53 cos 3θ + 3× 52 cos 2θ + 20 cos θ + 2.1 := u,

f2(θ) = 53 sin 3θ + 3× 52 cos 2θ + 20 sin θ + 2.1 := v,

f̃1(ω) = −3ω2 + 2.1 := u,

f̃2(ω) = −ω3 + 4 := v.

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

θ◦ 0 10 20 30 40 50 60 70 80 90
f1 + + + +√ − − − − − −
f2 0

√ + + + + + + +√ − −
ω 5 4.6 4.2 3.8 3.4 3 2.6 2.2 1.8 1.4 1.0 0.6 0.2 0
f̃1 − − − − − − − − − − −√ + + +
f̃2 − − − − − − − −√ + + + + +√ 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

where
√

denotes varying sign variables. So the characteristic curve of f3(z), as

depicted in Figure 2.4.7, shows k = 0. So f3(z) is Hurwitz stable.

EXAMPLE 2.4.9. Check the stability of

f4(z) = z4 + 3z3 + 5z2 + 4z+ 2.

Taking ρ = 6 results in

f1 = 64 cos 4θ + 3× 63 cos 3θ + 5× 62 cos 2θ + 4× 6 cos θ + 2 := u,

f2 = 64 sin 4θ + 3× 63 sin 3θ + 5× 62 sin 2θ + 4× 6 sin θ + 2 := u,

f̃1 = ω4 − 5ω2 + 2 := u,

f̃2 = −3ω3 + 4ω := v.

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

θ◦ 0 10 20 30 40 50 60 70 80 90
f1 + + + − − − − −√ + +
f2 0 + + + + +√ − − − −
ω 6 5.5 5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0
f̃1 + + + + + + + +√ − − −√ + +
f̃v − − − − − − − − − −√ + +√ 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
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Figure 2.4.7. Characteristic curve for Example 2.4.8.

Figure 2.4.8. The characteristic curve for Example 2.4.9.

the characteristic curve f4(ξ) (see Figure 2.4.8) shows k = 0. Hence, f4(z) is
stable.

2.5. The geometry method for the stability of linear control
systems

Frequency-domain approach of classical control theory, the Nyquist criterion, is
a method widely used in control field. It has sound physical background and
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Figure 2.5.1. Illustration of input–output.

better geometrical explanation. Moreover, it is effective for both open-loop and
closed-loop control systems. Especially, it can be used to determine the stabil-
ity of closed-loop feedback systems according to the features of the open-loop
transfer function. However, this method requires constructing a so-called Nyquist
characteristic curve of a rational function on (−∞,+∞). For infinite interval, it is
very hard to construct such characteristic curves in practice. Using the important
information of the real-coefficients, such as the boundedness and conjugacy of the
zero and the apices, an improved geometrical criterion was developed, with which
the domain of the frequency characteristic curve is changed to [0, π2 ] and [0, ρ].
So calculation is significantly simplified. Moreover, a new geometrical necessary
and sufficient condition is obtained. The details of the improved geometrical cri-
terion are introduced as follows.

Consider a canonical linear system with feedback control, as shown in Fig-
ure 2.5.1, where G(s) is a transfer function of forward loop, and H(s) is the
transfer function of the feedback loop. G(s)H(s) is called system transfer func-
tion or open-loop transfer function.

(2.5.1)W(s) = Y(s)

u(s)
= G(s)

1+G(s)H(s)

is called the transfer function of this control system, where

G(s) := N1(s)

D1(s)
, H(s) := N2(s)

D2(s)
.

Let

f (s) := D1(s)D2(s) := (s − p1)(s − p2) · · · (s − pm)

=: bm + bm−1s + · · · + sm,

F (s) := 1+G(s)H(s)

:= D1(s)D2(s)+N1(s)N2(s)

D1(s)D2(s)

:= (s − s1)(s − s2) · · · (s − sn)

(s − p1)(s − p2) · · · (s − pm)
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:= an + an−1s + · · · + sn

bm + bm−1s + · · · + sm

:= F1(s)

f (s)
,

where si , ρi denote the zero points and poles of F(s), respectively. Let

ρ1 = 1+ max
1�i�n

|ai |, ρ2 = 1+ max
1�i�m

|bi |, ρ = max(ρ1, ρ2).

From Lemma 2.4.2, |si | < ρ1 (i = 1, . . . , m),

|sj | < ρ2, j = 1, 2, . . . , n.

Following the method in Section 2.4 we construct a circle S on the complex
plane, centered at (0, 0) with the radius ρ = max(ρ1, ρ2).

THEOREM 2.5.1. Let f (iω) �= 0, ω ∈ [0, ρ]. Then, f (s) has k zero points with
positive real parts if and only if

Φ := Δ
̂ABO

Arg f (s) = kπ � mπ.

Hence the open-loop control system is stable if and only if k = 0.

The proof is similar to proof of Theorem 2.4.3. If in Figure 2.5.2, let ρ = ρ2,
then for the closed-loop control system, we have a similar result.

THEOREM 2.5.2. If F1(iω) �= 0, ω ∈ [0, ρ2] and (Fi(s), f (s)) = 1. Then, F1(s)

has zero points with positive real parts if and only if

ψ := Δ
̂ABO

ArgF1(s) = lπ � nπ.

Hence the closed-loop control system is stable if and only if l = 0.

If in Figure 2.5.2, ρ = max(ρ1, ρ2), by Theorems 2.4.1 and 2.4.3, we further
obtain the following theorem.

THEOREM 2.5.3. Suppose that F(s) has no zero points and poles on line (OB)
and F(s) has q poles with Re s > 0. Then, F(s) has p zero points with Re s > 0
if and only if

k = 1

π
Δ

̂ABC

ArgF(s) = p − q.

Hence the closed-loop control system is stable if and only if k = −q (p = 0). The
open-loop control system and closed-loop control system are stable if and only if
p = q = k = 0.
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Figure 2.5.2. The polynomial variable varied on the one-quarter circle AOB, centered at the origin
with radius ρ.

Therefore, according to Theorems 2.5.1 and 2.5.3, we have the following pro-
gram to check the stability of control systems.

(1) For an open-loop control system with transfer function

G(s)H(s) = N1(s)N2(s)

D1(s)D2(s)
,

by Theorem 2.5.1 (take ρ = ρ1 in Figure 2.5.2), let

f
(

ρ1e
iθ
) := D1

(

ρ1e
iθ
)

D2
(

ρ2e
iθ
)

:= U1(ρ1, θ)+ iV1(ρ1, θ),

f (iω) = D1(iω)D2(iω)

:= U2(ω)+ iV2(ω),

0 � θ1 < θ2 < · · · < θk = π

2
,

ρ1 � ω1 > ω2 > · · · > ωe = 0.

Compute U1(ρ1, θi), V1(ρ1, θi), U2(ωj ), V2(ωj ) (i = 1, 2, . . . , k, j = 1,
. . . , l) and plot the characteristic curve f (z), using

Φ = Δ
̂ABO

Arg f (z) = kπ,

to obtain stability.
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(2) For a closed-loop control system with the transfer function

G(s)

1+G(s)H(s)
,

by Theorem 2.5.2 the stability (take ρ = ρ2 in the figure) can be obtained by
letting F1(s) := D1(s)D2(s)+N1(s)N2(s), computing

Φ := Δ
̂ABO

Arg f (z) = lπ,

and using l to determine stability.
(3) For the above closed-loop control system, by Theorem 2.5.3 one can study

the stability. Let F(s) = 1+G(s)H(s) = F1(s)
f (s)

,

F
(

ρeiθ
) := U3(ρ, θ)+ iV3(ρ, θ)

(

0 � θ � π

2

)

,

F (iω) := U4(i, ω)+ iV4(iω) (0 � ω � ρ).

Take 0 � θ1 < θ2 < · · · < θk = π
2 , ρ � ω1 > ω2 > · · · > ωk = 0.

Let Ũ3, Ṽ3, Ũ4, Ṽ4 be numerators of U3, V3, U4, V4, respectively. Since
their denominators are all positive, we only need to compute the signs of Ũ3,
Ṽ3, Ũ4, Ṽ4 at θi , ρj , i = 1, . . . , k, j = 1, 2, . . . , l.

Using the signs, plot the qualitative characteristic curve and obtain p =
k + q = 1

π
ΔArgF(s)+ q. Then use p to determine the stability.

EXAMPLE 2.5.4. Consider an open-loop control system with the transfer func-
tion

N1(s)

D1(s)

N2(s)

D2(s)
.

When

f (s) = D1(s)D2(s) = s3 + 3s2 + 4s + 2.1,

f1(θ) = 53 cos 3θ + 3× 52 cos 2θ + 20 cos θ + 2.1 := u1,

f2(θ) = 53 sin 3θ + 3× 52 sin 2θ + 20 sin θ + 2.1 := v1,

f̃1(ω) = −3ω2 + 2.1 := u2,

f̃2(ω) = −ω3 + 4ω := v2,

compute the sign
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

θ 0◦ 20◦ 40◦ 60◦ 80◦ 90◦
U1 + +√ − − − −
V1 0

√ + + +√ − −
ω 5 4.2 3.4 2.6 1.8 1.0 0.6 0
u2 − − − − − −√ + +
V2 − − − −√ + + + √

0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,
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Figure 2.5.3. The characteristic curve for Example 2.5.4.

where
√

denotes varying sign variables. The qualitative characteristic curve is
shown in Figure 2.5.3.

By Theorem 2.5.1, k = 0 and thus the open-loop system is stable.

EXAMPLE 2.5.5. Consider the stability of a closed-loop system with

F(z) = z3 − 5z2 + 8z− 6.1

z3 − 4z2 + 5z− 2
.

Since z3 − 4z2 + 5z − 2 = (z − 1)(z − 1)(z − 2), F(z) has three poles with
Re s > 0 (i.e., q = 3). Let

ρ = max[9, 6] = 9,

F
(

ρeiθ
) := U3(ρ, θ)+ iV3(ρ, θ),

F (iω) := U4(ω)+ iV4(ω).

One then obtains

Ũ3 :=
{[(

ρ3 cos 3θ − 4ρ2 cos 2θ + 5ρ cos θ − 2
)

× (

ρ3 cos 3θ − 5ρ2 cos 2θ + 8ρ cos θ − 6.1
)]

+ [(

ρ3 sin 3θ − 5ρ2 sin 2θ + 8ρ sin θ
)

× (

ρ3 sin 3θ − 4ρ2 sin 2θ + 5ρ sin θ
)]}

,
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Figure 2.5.4. The characteristic curve for Example 2.5.5.

Ṽ3 =
{[(

ρ3 cos 3θ − 4ρ2 cos 2θ + 5ρ cos θ − 2
)

× (

ρ3 sin 3θ − 5ρ2 sin 2θ + 8ρ sin θ
)]

+ [(

ρ3 cos 3θ − 5ρ2 cos 2θ + 8ρ cos θ − 6.1
)

× (

ρ3 sin 3θ − 4ρ2 sin 2θ + 5ρ sin θ
)]}

,

Ũ4 = ω6 + 7ω4 + 5.6ω2 + 12.2,

Ṽ4 = ω5 + 2.9ω3 + 14.5ω.

Thus,
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Q 0◦ 20◦ 40◦ 60◦ 80◦ 90◦
Ũ3 + + + + + +
Ṽ3 0

√ − √+ + + +
ω 9 7 5 2 0
Ũ4 + + + + +
Ṽ4 + + + +√ 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

so k = 0, p = q = 3.
The qualitative characteristic curve is shown in Figure 2.5.4. By Theorem 2.5.3

the closed-loop control system is unstable.
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Chapter 3

Time-Varying Linear Systems

The stability problem of linear systems with constant coefficients can be trans-
formed to a problem of eigenvalues of a matrix. However, the eigenvalue method
fails in solving linear systems with time-varying coefficients. Nevertheless, all so-
lutions of an n-dimensional linear system with time-varying coefficients form an
n-dimensional linear space. Therefore, the standard fundamental solution matrix,
i.e., the Cauchy matrix solution plays a very important role in determining the be-
havior of solutions. In this chapter, we concentrate on the Cauchy matrix solution
and discuss various properties of solutions for time-varying linear systems.

Materials are mainly selected from [98,151,234] for Section 3.1, [98,151,234]
for Section 3.2, [153,234] for Section 3.3, [98,400,459] for Section 3.4, [459]
for Section 3.5, [98,455] for Section 3.6 and [248,283] for Section 3.7.

3.1. Stabilities between homogeneous and nonhomogeneous
systems

Consider the n-dimensional nonhomogeneous time-varying linear differential
equations:

(3.1.1)
dx

dt
= A(t)x + f (x),

and the corresponding homogeneous time-varying linear differential equations:

(3.1.2)
dx

dt
= A(t)x,

where

x = (x1, . . . , xn)
T ,

A(t) = (

aij (t)
)

n×n ∈ C
[

I, Rn×n],

f (t) = (

f1(t), . . . , fn(t)
)T ∈ C[I, Rn

]

.

77
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It is well known that if x, y are any two solutions of (3.1.2), αx + βy is also a
solution of (3.1.2) ∀α, β ∈ R1. If x and y are solutions of (3.1.1), then x − y is
also solution of (3.1.2). Thus, n linearly independent solutions of (3.1.2) form the
basis of solution space of (3.1.2).

Let X(t) = (xij (t))n×n be fundamental solution matrix of (3.1.2). Then,
K(t, t0) := X(t)X−1(t0) is called standard fundamental solution matrix or
Cauchy matrix solution. The general solution of (3.1.2) can be expressed as

(3.1.3)x(t, t0, x0) = K(t, t0)x0.

By using the Lagrange formula of the variation of constants, the general solution
of (3.1.1) can be written as

(3.1.4)y(t, t0, y0) := y(t) = K(t, t0)y(t0)+
t∫

t0

K(t, t1)f (t1) dt1.

DEFINITION 3.1.1. If all solutions of (3.1.1) have same stability, then sys-
tems (3.1.1) is said to stable with this class of stability.

THEOREM 3.1.2. ∀f (t) ∈ C[I, Rn], system (3.1.1) has certain class of stability
if and only if the zero solution of (3.1.2) has the same type of stability.

PROOF. The general solutions of (3.1.1) and (3.1.2) can be expressed respectively
as

(3.1.5)y(t, t0, y0) = K(t, t0)C +
t∫

t0

K(t, t1)f (t1) dt1,

(3.1.6)x(t, t0, x0) = K(t, t0)C.

Let

ξ(t, t0, 0) = K(t, t0)0,

x(t, t0, x0) = K(t, t0)x0,

denote respectively the zero solution of (3.1.2) and any perturbed solution. Then

η(t, t0, η0) = K(t, t0)C +
t∫

t0

K(t, t1)f (t1) dt1

and

y(t, t0, y0) = K(t, t0)(C + x0)+
t∫

t0

K(t, t1)f (t1) dt1
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respectively represent the solution without perturbation and the corresponding
perturbed solution. Obviously, for any fixed C, x0 and x0 + C are one to one.
Thus,

(3.1.7)
∥
∥x(t, t0, x0)− ξ(t, t0, 0)

∥
∥ = ∥

∥K(t, t0)x0
∥
∥

and

(3.1.8)
∥
∥y(t, t0, y0)− η(t, t0, η0)

∥
∥ = ∥

∥K(t, t0)x0
∥
∥

have the same expression. Therefore, they have the same stability. �

COROLLARY 3.1.3. Systems (3.1.1) has certain type of stability if and only if
any solution of the system has the same stability.

PROOF. By Definition 3.1.1, a system with certain type of stability implies that
every solution of the system has the same stability. Now assume that any solution
η(t) of (3.1.1) is stable.

Assume x(t) = y(t)− η(t). Then, from Theorem 3.1.2 we know that the zero
solution of (3.1.2) has the same stability. Again, according to Theorem 3.1.2,
system (3.1.1) has the same stability. �

REMARK 3.1.4. There exists a homeomorphism between the solutions of (3.1.1)
and (3.1.2), as illustrated in Figures 3.1.1 and 3.1.2.

COROLLARY 3.1.5. Systems (3.1.1) has certain type of stability if and only if
system (3.1.2) has the same stability, i.e., if and only if the zero solution of sys-
tem (3.1.2) has the same stability.

Figure 3.1.1. The solution of the nonhomogeneous equation (3.1.1).
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Figure 3.1.2. The solution of the homogeneous equation (3.1.2).

PROOF. In Theorem 3.1.2 take f (t) = 0 and then the conclusion follows. �

REMARK 3.1.6. Theorem 3.1.2 means that for linear stability of system (3.1.1)
or (3.1.2), we only need to study the zero solution of (3.1.2). For example, in
modern control theory a linear system takes the general form:

(3.1.9)

{
dx
dt
= A(t)x(t)+ B(t)U(t),

y(t) = C(t)x(t)+D(t)U(t),

where U(t) is the input function, y(t) is the output function. A(t), B(t), C(t) and
D(t) are matrices with corresponding dimensions. To study the stability of (3.1.9),
we only need to consider the stability of the zero solution of this system.

3.2. Equivalent condition for the stability of linear systems

THEOREM 3.2.1. The zero solution of (3.1.2) is stable if and only if the Cauchy
matrix solution K(t, t0) (t � t0) of (3.1.2) is bounded.

PROOF. Sufficiency. Suppose any perturbed solution of the zero solution is given
by

(3.2.1)x(t, t0, x0) = K(t, t0)x(t0),

and there exists a constant M(t0) such that
∥
∥K(t, t0)

∥
∥ � M(t0).
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∀ε > 0, t � t0, take δ(ε, t0) = ε
M(t0)

. Then for ‖x(t0)‖ � δ, we have

∥
∥x(t, t0, x0)

∥
∥ �

∥
∥K(t, t0)

∥
∥
∥
∥x(t0)

∥
∥ <

M(t0)

M(t0)
ε = ε.

Necessity. Since ∀ε > 0, ∃δ(ε, t0) > 0 such that when ‖x(t0)‖ < δ,
∥
∥x(t, t0, x0)

∥
∥ = ∥

∥K(t, t0)x(t0)
∥
∥ < ε

is true.
Now, take

x(t0) = δ

2
( 0, . . . , 0
︸ ︷︷ ︸

k−1

, 1, 0, . . . , 0
︸ ︷︷ ︸

n−k
)T := δ

2
ek.

Then, the kth column, x(k), of K(t, t0) can be expressed as

(3.2.2)x(k)(t, t0, x0) = 2

δ
K(t, t0)x(t0).

‖x(t0)‖ < δ
2 < δ implies that

∥
∥x(k)(t, t0, x0)

∥
∥ = 2

δ

∥
∥x(t, t0, x0)

∥
∥ � 2ε

δ
:= M.

Thus every column of K(t, t0) is bounded.
Theorem 3.2.1 is proved. �

COROLLARY 3.2.2. If system (3.1.2) is stable, then all solutions of the system
are either bounded or unbounded.

THEOREM 3.2.3. The necessary and sufficient conditions (NASC) for any solu-
tion of (3.1.2) being stable is that K(t, t0) is bounded.

Following the proof of Theorem 3.2.1 one can prove this theorem.

THEOREM 3.2.4. The NASC for the zero solution of (3.2.2) to be asymptotically
stable is that the zero solution of (3.1.2) is attractive.

PROOF. Necessity is obvious.
For sufficiency, suppose that the zero solution of (3.1.2) is attractive. Then,

∀t0 ∈ I , ∃σ(t0) such that ‖x0‖ � σ(t0), so we have x(t, t0, x0) = K(t, t0)x0 → 0
as t → +∞ by (3.2.1) and thus x(k)(t, t0) = K(t, t0)ek → 0 as t → +∞.
So x(k)(t, t0) is bounded, and further K(t, t0) is bounded. By Theorem 3.2.1 we
know that the zero solution of (3.1.2) is stable.

The proof is complete. �
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Following the proof of Theorems 3.2.1 and 3.2.3, one can easily prove the
following theorem.

THEOREM 3.2.5. The uniform attraction of the zero solution of (3.1.2) is equiv-
alent to uniformly asymptotic stability of the zero solution of (3.1.2) and uniform
boundedness of K(t, t0).

COROLLARY 3.2.6. The asymptotic stability of the zero solution of (3.1.2) is
equivalent to its globally asymptotic stability.

PROOF. ∀x0 ∈ Rn since x(t, t0, x0) = K(t, t0)x0 → 0 as t → +∞, the conclu-
sion is true. �

COROLLARY 3.2.7. The uniformly asymptotic stability of the zero solution
of (3.1.2) is equivalent to its globally uniformly asymptotic stability.

THEOREM 3.2.8. The zero solution of (3.1.2) is asymptotically stable if and only
if K(t, t0) → 0 uniformly holds as (t − t0) → +∞, and K(t, t0) is uniformly
bounded for t � t0.

PROOF. Sufficiency. Since K(t, t0) → 0 as t − t0 → +∞ and K(t, t0) (t � t0)

is uniformly bounded, there exists a constant M such that

(3.2.3)
∥
∥K(t, t0)

∥
∥ � M, t � t0.

By Theorem 3.2.1 we know that the zero solution is stable. So according to
x(t, t0, x0) = K(t, t0)x0, x(t, t0, x0)→ 0 uniformly as (t − t0)→ 0.

For necessity, simply follow the proof of Corollary 3.2.2 and Theorem 3.2.3.
x(t, t0, x0) → 0 as (t − t0) → 0 uniformly for t0, the uniform boundedness of
x(t, t0, x0) implies that K(t, t0)→ 0 uniformly holds for t0, and thus K(t, t0) is
uniformly bounded. �

COROLLARY 3.2.9. The zero solution of (3.1.2) is asymptotically stable if and
only if K(t, t0)→ 0 as t →+∞.

THEOREM 3.2.10. The zero solution of (3.1.2) is attractive if and only if it is
quasi-attractive, namely, asymptotic stability is equivalent to quasi-asymptotic
stability.

PROOF. We only need to prove that attraction of the zero solution of (3.1.2) im-
plies its quasi-attraction.

Since the attraction of the zero solution of (3.1.2) implies K(t, t0) → 0 as
t → +∞, ∃σ(t0) > 0, ∀ε > 0, ∃T (t0, ε, σ ) such that ‖K(t, t0)‖ < ε

σ
when
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t � t0 + T . Therefore, when ‖x(t0)‖ � σ(t0), we have
∥
∥x(t, t0, x0)

∥
∥ �

∥
∥K(t, t0)

∥
∥
∥
∥x(t0)

∥
∥ <

ε

σ(t0)
σ (t0) = ε.

This means that the zero solution is quasi-attractive.
The proof is complete. �

THEOREM 3.2.11. The zero solution of (3.1.2) is uniformly asymptotically sta-
ble if and only if it is exponentially stable.

PROOF. One only needs to prove that the asymptotic stability of the zero solution
of (3.1.2) implies its exponential stability.
∀ε > 0 (0 < ε < 1) ∃τ(ε) > 0, when t � t0+T , ‖K(t, t0)‖ < ε holds. Owing

to the uniform stability of the zero solution, there exists a constant M > 0 such
that

∥
∥K(t, t0)

∥
∥ < M, t0 � t � t1 + T .

Assume that

nτ � t − t0 � (n+ 1)τ (n = 0, 1, 2, . . .).

Then, from the property of the Cauchy matrix solution K(t, t0), we have

K(t, t0) = K(t, t1)K(t1, t0) (t0 � t1 � t).

Therefore,

K(t, t0) = K(t, nτ + t0)

(3.2.4)×K
(

nτ + t0, (n− 1)τ + t0
) · · ·K(τ + t0, t0),

and thus
∥
∥K(t, t0)

∥
∥ �

∥
∥K(t, nτ + t0)

∥
∥

× ∥
∥K

(

nτ + t0, (n− 1)τ + t0
)∥
∥ · · · ∥∥K(τ + t0, t0)

∥
∥

� Meλτ e−(n+1)λτ

(3.2.5)� Ne−λ(t−t0),
where N = Meλτ . This implies that the zero solution of (3.1.2) is exponentially
stable. �

THEOREM 3.2.12. The zero solution of (3.1.2) is exponentially stable if and only
if the Cauchy matrix solution K(t, t0) satisfies

∥
∥K(t, t0)

∥
∥ � Me−α(t−t0),

where M � 1, α > 0 are constants.
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PROOF. Sufficiency. Since any solution x(t, t0, x0) of (3.1.2) can be expressed as

x(t, t0, x0) = K(t, t0)x0,

we have
∥
∥x(t, t0, x0)

∥
∥ �

∥
∥K(t, t0)x0

∥
∥ �

∥
∥K(t, t0)

∥
∥‖x0‖ � M‖x0‖e−α(t−t0).

This means that the zero solution of (3.1.2) is exponentially stable.
Necessity. Following the proof of the necessity for Theorem 3.2.1, we have

x(t, t0, x0) = K(t, t0)x(t0)

which yields
∥
∥x(t, t0, x0)

∥
∥ �

∥
∥K(t, t0)x(t0)

∥
∥ � M(x0)e

−α(t−t0).
Now, take

x(t0)
δ

2
( 0, 0, . . . , 0
︸ ︷︷ ︸

k−1

, 1, 0, 0, . . . , 0
︸ ︷︷ ︸

n−k
)T := δ

2
ek.

Then, the kth column x(k) of K(t, t0) can be expressed by

x(k)(t, t0, x0) = 2

σ
K(t, t0)x(t0),

which implies that

∥
∥x(k)(t, t0, x0)

∥
∥ � 2

σ

∥
∥K(t, t0)x(t0)

∥
∥ � 2

σ
M(x0)e

−α(t−t0)

:= M̃(x0)e
−α(t−t0).

Hence, ‖K(t, t0)‖ � N(x0)e
−α(t−t0), where N(x0) is a constant. �

3.3. Robust stability of linear systems

Consider a definite linear system

(3.3.1)
dx

dt
= A(t)x,

and an indefinite linear system

(3.3.2)
dx

dt
= A(t)x + B(t)x,

where x ∈ Rn,A(t) is a known n × n continuous matrix function and B(t) an
unknown n × n continuous matrix function. One only knows some boundedness
of B(t). We will discuss the equivalent problem of stabilities between systems
(3.3.1) and (3.3.2), so that one can use the simple and definite system (3.1.1) to
study the complex and indefinite system (3.3.2).
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THEOREM 3.3.1. If the following condition is satisfied:

+∞∫

0

∥
∥B(t)

∥
∥ dt := N <∞,

then the uniform stability of the zero solutions of (3.3.1) and (3.3.2) are equiva-
lent.

PROOF. Let the zero solution of (3.3.1) be uniformly stable. By Theorem 3.2.1,
there exists a constant M > 0 such that

∥
∥K(t, t0)

∥
∥ � M(t � t0).

However, the general solution of (3.3.2) can be written as

x(t, t0, x0) = K(t, t0)x0 +
t∫

t0

K(t, t1)B(t1)x(t1) dt1,

and so

∥
∥x(t, t0, x0)

∥
∥ �

∥
∥K(t, t0)

∥
∥‖x0‖ +

t∫

t0

∥
∥K(t, t1)

∥
∥
∥
∥B(t1)

∥
∥
∥
∥x(t1)

∥
∥ dt1

� M‖x0‖ +
t∫

t0

M
∥
∥B(t1)

∥
∥
∥
∥x(t1)

∥
∥ dt1.

By using the Gronwall–Bellman inequity, we have the estimation
∥
∥x(t, t0, x0)

∥
∥ � M‖x0‖eM

∫ t
t0
‖B(t1)‖ dt � M‖x0‖eMN.

Thus, ∀ε > 0 take δ(ε) = ε
MeNM

. Then, when ‖x0‖ < δ we obtain
∥
∥x(t, t0, x0)

∥
∥ � |δ|MeNM = ε,

which implies that the zero solution of (3.3.2) is uniformly stable.
On the other hand, (2.2.8) can be rewritten as

dx

dt
= A(t)x = (

A(t)+ B(t)
)

x − B(t)x

(3.3.3):= Ã(t)x + B̃(t)x,

where Ã(t) := A(t)+ B(t), B̃(t) := −B(t), implying that

+∞∫

0

∥
∥B̃(t)

∥
∥ dt =

+∞∫

0

∥
∥B(t)

∥
∥ dt = N <∞.
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Therefore, the uniform stability of the zero solution of (3.3.3) implies the uniform
stability of the zero solution of (3.3.2).

The proof is completed. �

THEOREM 3.3.2. If there exist constant M > 0 and 0 < r 	 1 such that the
following estimation

t∫

t0

∥
∥B(t1)

∥
∥ dt1 � r(t − t0)+M

is valid, then the exponential stabilities of the zero solutions of (3.3.1) and (3.3.2)
are equivalent.

PROOF. Assume that the zero solution of (3.3.1) is exponentially stable, then
there exist constants M1 > 0 and α1 > 0 such that the Cauchy matrix solution
of (3.3.1), K(t, t0), admits the estimation:

(3.3.4)
∥
∥K(t, t0)

∥
∥ � M1e

−α1(t−t0).
Let r < α1

M1
. Then, the general solution of (3.3.2) can be expressed as

x(t, t0, x0) = K(t, t0)x0 +
t∫

t0

K(t, t1)B(t1)x(t1) dt1.

Thus, we obtain

∥
∥x(t, t0, x0)

∥
∥ <

∥
∥K(t, t0)

∥
∥‖x0‖ +

t∫

t0

∥
∥K(t, t1)

∥
∥
∥
∥B(t1)

∥
∥
∥
∥x(t1)

∥
∥ dt1

� M1e
−α1(t−t0)‖x0‖ +

t∫

t0

M1e
−α1(t−t1)∥∥B(t1)

∥
∥
∥
∥x(t1)

∥
∥ dt1.

By using the Gronwall–Bellman inequity, we have the following estimation:
∥
∥x(t)

∥
∥eα1t � M1e

α1t0‖x0‖e
∫ t
t0
M1‖B(t1)‖ dt1

∥
∥x(t)

∥
∥ � M1e

−α1(t−t0)‖x0‖eM1r(t−t0)+M1M

(3.3.5)= M1e
M1M‖x0‖e−(α1−M1r)(t−t0).

This estimation shows that the zero solution of (3.3.2) is exponentially stable,
where r < α1/M1. On the other hand, system (3.3.1) can be rewritten as

dx

dt
= A(t)x = (

A(t)+ B(t)− B(t)
)

x := (

Ã(t)+ B̃(t)
)

x,



3.3. Robust stability of linear systems 87

where Ã(t) = A(t)+ B(t), B̃(t) = −B(t).
However,

t∫

0

∥
∥B̃(t)

∥
∥ dτ =

t∫

t0

∥
∥B(τ)

∥
∥ dτ � r(t − t0)+M.

From the above results, we know that the exponential stability of the zero solution
of (3.3.2) implies the exponential stability of the zero solution of (3.3.1).

The proof is complete. �

COROLLARY 3.3.3. If

lim
t→+∞B(t) = 0,

then the conclusion of Theorem 3.3.2 holds.

PROOF. Since

lim
t→+∞B(t) = 0

implies that

lim
t→+∞

∥
∥B(t)

∥
∥ = 0,

so ∀ε > 0, ∃T when t � t0 + T , we have
∥
∥B(t)

∥
∥ < ε

and

t∫

t0

∥
∥B(t1)

∥
∥ dt1 =

t0+T∫

t0

∥
∥B(t1)

∥
∥ dt1 +

t∫

t0+T

∥
∥B(t1)

∥
∥ dt1

(3.3.6)� M + ε(t − T − t0) � M + ε(t − t0).

Therefore, the conditions of Theorem 3.3.2 are satisfied.
This proves the corollary. �

The commonly used method in nonlinear systems is linearization, which is
based on the following theorem. Consider the nonlinear system:

(3.3.7)
dx

dt
= A(t)x + f (t, x),

where f (t, x) ∈ C[I × Rn,Rn], f (t, x) ≡ x if and only if x = 0.
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THEOREM 3.3.4. ∀ε > 0, ∃σ(ε), when x ∈ D := {x‖x‖ < σ }, t ∈ [t0 +∞),
the estimation

∥
∥f (t, x)

∥
∥ < ε‖x‖

holds. Then, the exponential stability of the zero solution of (3.3.1) implies the
exponential stability of the zero solution of (3.3.7).

PROOF. Suppose that the zero solution of (3.3.1) be exponentially stable. Then,
there exist constant M � 1 and α > 0 such that

∥
∥K(t, x0)

∥
∥ � Me−α(t−t0),

where K(t, t0) is the Cauchy matrix solution of (3.3.1). Take σ(ε) > 0 such that
when ‖x‖ < σ(ε), ‖f (t, x)‖ < ε‖x‖ is true. Then, the general solution of (3.3.7)
is

x(t) = K(t, t0)x(t0)+
t∫

t0

K(t, t1)f
(

t1, x(t1)
)

dt1.

Take ‖x(t0)‖ < σ . By the continuity of solution, there exists a constant δ > 0
such that ‖x(t, t0, x0)‖ < σ . Hence, when t ∈ [t0, t0 + δ], we have

∥
∥x(t, t0, x0)

∥
∥ � Me−α(t−t0)

∥
∥x(t0)

∥
∥+

t∫

t0

εMe−α(t−t1)
∥
∥x(t1)

∥
∥ dt1.

Furthermore, we obtain
∥
∥x(t)

∥
∥eαt � Meαt0

∥
∥x(t0)

∥
∥eεM(t−t0),

i.e.,
∥
∥x(t)

∥
∥ � M

∥
∥x(t0)

∥
∥e−α(t−t0)+εM(t−t0)

(3.3.8)= M
∥
∥x(t0)

∥
∥e−(α−εM)(t−t0), t ∈ [t0, t0 + δ].

Since α − εM > 0, when ‖x(t0)‖ < σ
M

, (3.3.8) holds for t � t0.
Theorem 3.3.4 is proved. �

COROLLARY 3.3.5. If ‖f (t,x)‖‖x‖ → 0 holds uniformly as ‖x‖ → 0 for t, and
f (t, x) ∈ C[I, Rn, Rn]), then the conditions of Theorem 3.3.4 are satisfied.

EXAMPLE 3.3.6. If A is a Hurwitz matrix, then the stability of the zero solutions
of the system

(3.3.9)
dx

dt
= (

Aet + p(t)B
)

x
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and the system

(3.3.10)
dx

dt
= Ax

is equivalent, where p(t) is any nth-degree polynomial of t , or any continuous
function satisfying p(t)

et
→ 0 as t →+∞.

PROOF. Introduce a transform τ = et to (3.3.9) to obtain

(3.3.11)
dx

dτ
= (

A+ f (τ)B
)

x,

where f (τ) = p(t)
et
= p(ln τ)

τ
.

Since τ → +∞⇐⇒ t → +∞, the two systems (3.3.9) and (3.3.11) have the
same stability. If replacing τ in (3.3.11) by t , then (3.3.11) becomes

(3.3.12)
dx

dt
= (

A+ f (t)B
)

x.

However, f (t)B → 0 as t → +∞, so the conditions of Corollary 3.3.3 are
satisfied. �

For the general nonlinear system

(3.3.13)
dx

dt
= f (t, x),

where f (t, x) ∈ C[I × Rn,Rn], f (t, x) ≡ x ⇐⇒ x = 0. One can
rewrite (3.3.13) as

(3.3.14)
dx

dt
= A(t)x + g(t, x),

where A(t) = ∂f
∂t
|x=0 is Jacobi matrix of f and g(t, x) represents higher order

terms. Then, the corresponding linear system is

(3.3.15)
dx

dt
= A(t)x,

which can be used to analyze the stability of the zero solution for (3.3.13). This is
the Lyapunov first approximation theory.

COROLLARY 3.3.7. If ∀ε > 0, ∃δ > 0 when ‖x‖ < δ it admits ‖g(t, x)‖ �
ε‖x‖, then the exponential stability of the zero solution of (3.3.15) implies the
exponential stability of the zero solution of (3.3.14).

COROLLARY 3.3.8. If A(t) = A, A is a Hurwitz matrix and other conditions of
Corollary 3.3.7 hold, then the zero solution of (3.3.14) is exponentially stable.
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3.4. The expression of Cauchy matrix solution

It is well know that for linear system (3.1.2), the Cauchy matrix solution K(t, t0)
plays a key role, since it determines all properties of the general solution of sys-
tem (3.1.2). However, except for the cases of A(t) being constant matrix, diagonal
matrix, or trigonometric matrix, K(t, t0) cannot be expressed in finite integral
form of the elements of A(t). For some certain specific form A(t), we can find
the expression of the Cauchy matrix solution K(t, t0) or its estimation, and obtain
the algebraic criteria for stability.

THEOREM 3.4.1. If the following conditions are satisfied:

(1) A(t) ∈ [I, Rn2 ];
(2) A(t)

∫ t

τ
A(t1) dt1 ≡

∫ t

τ
A(t1) dt1A(t) ∀(τ, t) ∈ [t0 +∞);

(3) Ā := limt→+∞ 1
t

∫ t

t0
A(t1) dt1 exists and is a Hurwitz matrix;

then

(1) the Cauchy matrix solution K(t, t0) of (3.1.2) can be expressed as

(3.4.1)K(t, t0) := Ω(t) := e

∫ t
t0
A(t1) dt1;

(2) the zero solution of (3.1.2) is exponentially stable.

PROOF.

(1) Obviously, condition (2) implies that

A(t)e

∫ t
t0
A(t1) dt1 = e

∫ t
t0
A(t1) dt1A(t).

Since Ω(t0) = In, and

dΩ(t)

dt
= e

∫ t
t0
A(t1) dt1A(t) = A(t)e

∫ t
t0
A(t1) dt1 = A(t)Ω(t),

K(t, t0) = Ω(t) = e

∫ t
t0
A(t1) dt1 is true.

(2) With the condition

(3.4.2)A(t)

t∫

s

A(t1) dt1 =
t∫

s

A(t1) dt1A(t),

computing the derivative of (3.4.2) with respect to variable s, we obtain
A(t)A(s) = A(s)A(t). Hence, we have

t∫

t0

A(t1) dt1
1

s

s∫

t0

A(t2) dt2 = 1

s

t∫

t0

dt1

s∫

t0

A(t1)A(t2) dt2
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= 1

s

t∫

t0

dt1

s∫

t0

A(t2)A(t1) dt2

(3.4.3)= 1

s

s∫

t0

A(t2) dt2

t∫

t0

A(t1) dt1.

Let s →+∞, the limit is

t∫

t0

A(t1) dt1Ā = Ā

t∫

t0

A(t1) dt1.

Suppose 1
t

∫ t

t0
A(t1) dt1 = Ā+B(t), where B(t)→ 0 as t →+∞. However,

(3.4.4)ĀB(t) = Ā

[

1

t

t∫

t0

A(t1) dt1 − Ā

]

= B(t)A.

So the zero solution of (3.1.2) can be expressed as

x(t, t0, x0) = e

∫ t
t0
A(t1) dt1x(t0) = etĀ+tB(t)x(t0)

(3.4.5)= etĀetB(t)x(t0).

Let

max
i�j�n

Re λj (Ā) = α < 0.

Choose ε > 0 such that α + 2ε < 0, and T � 1 such that t � T > 0.
Suppose ‖B(t)‖ < ε holds. From (3.4.5) we know that there exists a constant
M > 0 such that

∥
∥x(t, t0, x0)

∥
∥ �

∥
∥etĀ

∥
∥
∥
∥etB(t)

∥
∥
∥
∥x(t0)

∥
∥ � Me(α+ε)t et‖B(t)‖

∥
∥x(t0)

∥
∥

(3.4.6)� M
∥
∥x(t0)

∥
∥e(α+2ε)t (t � T ),

which, due to α + 2ε < 0, implies that the zero solution of (3.1.2) is expo-
nentially stable.

�

THEOREM 3.4.2. If system (3.1.2) satisfies the following conditions:

(1)

A(t)

t∫

t0

A(t1) dt1 −
t∫

t0

A(t1) dt1A(t) := K(1)(t) �= 0,
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but

K(1)(t)

t∫

t0

A(t1) dt1 −
t∫

t0

A(t1) dt1K
(1)(t) := K(2)(t) = 0;

(2) limt→+∞ 1
t

∫ t

t0
A(t1) dt1 =: Ā exists and is a Hurwitz matrix;

(3) K(1)(t)→ 0 as t →+∞;

then the zero solution of (3.1.2) is exponentially stable.

PROOF. If condition (1) is satisfied, then the Cauchy matrix solution of (3.1.2) is

(3.4.7)X(t) = e

∫ t
t0
A(t1) dt1Y(t),

where Y(t) is the Cauchy matrix solution of

(3.4.8)
dy

dt
= K(1)(t)y.

By condition (2), let
∫ t

t0
A(t1) dt1 = Āt + tB(t), where B(t) → 0 as t → +∞.

Then, (3.4.7) can be expressed as X(t) = eĀt etB(t)Y (t). Furthermore, suppose

max
1�j�n

Re λj (A) = α < 0.

Therefore, there exists ε > 0 such that α + 3ε < 0, K(1)(t)→ 0 (as t → +∞)
implies that

∥
∥y(t, t0, y0)

∥
∥ �

∥
∥y(t0)

∥
∥e

∫ t
t0
‖K(1)(t1)‖ dt1 � M2e

εt (M2 = const),

and B(t)→ 0 as t →+∞ implies that there exists T > 0 such that when t > T ,
∥
∥B(t)

∥
∥ < ε

holds. Therefore, when t > T , we obtain
∥
∥X(t)

∥
∥ � M1e

(α+ε)t et‖B(t)‖
∥
∥Y(t)

∥
∥ � M1e

(α+2ε)tM2e
εt

(3.4.9):= Me(α+3ε)t ,

where M1 = constant and M = M1M2. (3.4.9) indicates that the zero solution of
(3.1.2) is exponentially stable. �

THEOREM 3.4.3. (See [459].) If (3.1.2) satisfies the following conditions:

(1) A(t) ∈ C1[I, Rn×n] and there exists constant matrix A1 ∈ Rn×n such that

(3.4.10)A1A(t)− A(t)A1 = Ȧ;
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(2) let

A2 := e−A1t0
[

A(t0)− A1
]

eA1t0 ,

α = max1�j�n Re λj (A1), β = max1�j�n Re λj (A2), and α + β < 0;

then:

(a) the Cauchy matrix solution of (3.1.2) can be expressed as

(3.4.11)K(t, t0) = eA1t eA2(t−t0)e−A1t ;
(b) the zero solution of (3.1.2) is exponentially stable.

PROOF. (1) Multiplying respectively e−A1(t−t0) and eA1(t−t0) to the left-hand and
right-hand sides of (3.4.10) yields

(3.4.12)
d

dt

[

e−A1(t−t0)A(t)eA1(t−t0)] = 0.

Integrating (3.4.12) results inA(t) = eA1(t−t0)A(t0)e−A1(t−t0). Take the transform
x(t) = eA1(t)y(t) into (3.1.2) yields

A1e
A1(t)y(t)+ eA1t ẏ(t) = A(t)eA1t y(t),

or

ẏ(t) = e−A1t0
[

A(t0)− A1
]

eA1t0y(t) = A2y(t).

So

y(t) = eA2(t−t0)y(t0) = eA2(t−t0)e−A1t0x(t0).

(2) Since K(t, t0) = eA1t eA2(t−t0)e−A1t0 , we have ‖K(t, t0)‖ � Me(α+β)(t−t0),
implying that the zero solution of (3.1.2) is exponentially stable, because
α + β < 0. �

THEOREM 3.4.4. (See [400].) If system (3.1.2) satisfies the following condi-
tions:

(1) A(t) ∈ C1[I, Rn×n], there exists a constant matrix A1 and function V (t) ∈
C1[I, R], V (t) �= 0 such that

(3.4.13)A1A(t)− A(t)A1 = d

dt

(
A(t)

V (t)

)

,

and
∫ +∞
t0

V (t) dt = +∞;
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(2) A2 = P(t0)− A1, where

P(t0) = lim
t→t0

A(t)

V (t)
,

and

α = max
1�j�n

Re λj (A1), β = max
1�j�n

Re λj (A2)

satisfying α + β < 0;

then the Cauchy matrix solution of (3.1.2) is

(3.4.14)K(t, t0) = e
A1

∫ t
t0
V (t1) dt1e

A2
∫ t
t0
V (t1) dt1,

and the zero solution of (3.1.2) is asymptotically stable.

PROOF. Multiplying respectively

e
−A1

∫ t
t0
V (t1) dt1 and e

A1
∫ t
t0
V (t1) dt1

to the left-hand and right-hand sides of (3.4.13) results in

(3.4.15)
d

dt

[

e
−A1

∫ t
t0
V (t1) dt1 A(t)

V (t)
e
A1

∫ t
t0
V (t1) dt1

]

= 0.

Then, integrating (3.4.15) gives

(3.4.16)A(t) = V (t)e
A1

∫ t
t0
V (t1) dt1P(t0)e

−A1
∫ t
t0
V (t1) dt1 .

Introduce the transform

x(t) = e
A1

∫ t
t0
V (t1) dt1y(t)

into (3.1.2) yields

A1V (t)e
A1

∫ t
t0
V (t1) dt1y(t)+ e

A1
∫ t
t0
V (t1) dt1 dy(t)

dt
= A(t)e

A1
∫ t
t0
V (t1) dt1y(t)

= V (t)
[

P(t0)− A1
]

y(t) := V (t)A2y(t).

So y(t) = e
A2

∫ t
t0
V (t1) dt1y(t0).

Thus the Cauchy matrix solution of (3.1.2) is

K(t, t0) = e
A1

∫ t
t0
V (t1) dt1e

A2
∫ t
t0
V (t1) dt1 .

Furthermore, we have
∥
∥K(t, t0)

∥
∥ �

∥
∥e

A1
∫ t
t0
V (t1) dt1

∥
∥
∥
∥e

A2
∫ t
t0
V (t1) dt1

∥
∥

� M1e
(α+ε) ∫ tt0 V (t1) dt1M2e

(β+δ) ∫ tt0 V (t1) dt1 = M1M2e
(α+β+ε+δ) ∫ tt0 V (t1) dt1,
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where M1,M2 are positive constants. Take T � 1. When t � T , for 0 < ε 	 1,
0 < δ 	 1, we have α + β + ε + δ < 0, due to

∫ t

t0
V (t1) dt1 →+∞.

This shows that the zero solution of (3.1.2) is asymptotically stable. �

EXAMPLE 3.4.5. Consider the stability of following system
{

dx1
dt
= −x1 − e2t x2,

dx2
dt
= e−2t x1 − 4x2,

where A(t) =
[ −1 −e2t

e−2t −4

]

. Take A1 =
[

3 0
0 1

]

. Then, we have A1A(t)−A(t)A1 =
A(t). Choose t0 = 0, A2 =

[−4 −1
1 −5

]

. Since

α = max
1�j�2

Re λj (A1) = 3,

β = max
1�j�2

Re λj (A2) = −9

2
,

α + β < 0,

by Theorem 3.4.3 we can conclude that the zero solution of this system is expo-
nentially stable.

3.5. Linear systems with periodic coefficients

Consider the following linear systems with periodic coefficients:

(3.5.1)
dx

dt
= A(t)x,

where A(t) = (aij (t)) ∈ C[I, Rn], x ∈ Rn, A(t + T ) ≡ A(t) and T > 0 is the
period.

Floquet–Lyapunov theory shows that the Cauchy matrix solution of (3.5.1) can
be expressed as

(3.5.2)X(t) = F(x)eKt ,

where F(t) is a periodic, continuous nonsingular matrix and

(3.5.3)K = 1

T
lnX(T ).

Therefore, the zero solution of (3.5.1) is exponentially stable if and only if K is
Hurwitz; the zero solution of (3.5.1) is stable if and only if K is quasi-stable.

It follows from (3.5.3) that K is a Hurwitz matrix ⇐⇒ the spectral radius of
matrix X(T ), ρ(X(T )) is less than one, i.e., ρ(X(T )) < 1.
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K is quasi-stable ⇐⇒ ρ(X(T )) � 1 and the eigenvalue λ0, |λ0| = 1,
only corresponds to simple elementary divisor of X(T ). However, computing the
eigenvalues of X(T ) is very difficult because one needs to compute the unknown
Cauchy matrix X(T ).

For some specific systems, we may be able to derive the formula for X(T ), and
then get the stability conditions.

First, we use an elemental method to derive the Floquet–Lyapunov theory.
Let X(t) be the Cauchy matrix solution of (3.5.1). Due to A(t + T ) ≡ A(t),

it is easy to prove that X(t + T ) is the fundamental solution matrix of (3.5.1).
Hence, X(t + T ) can be expressed by X(t), i.e.,

(3.5.4)X(t + T ) = X(t)C.

Let t = 0, then X(T ) = C. So

X(t + T ) = X(t)X(T ),

detX(t + T ) = detX(t) det
(

X(T )
) �= 0.

Let kT � t < (k + 1)T , t = [ t
T
]T + ( t

ω
) := kT + t1, k = [ t

T
], t1 = ( t

ω
). Thus,

we have

X(t) = X(kT + t1)

= X
(

(k − 1)T + t1 + T
)

= X
(

(k − 1)T + t1
)

X(T ) = · · ·
(3.5.5)= X(t1)X

k(T ),

where X(t1) is nonzero and is bounded. Equation (3.5.5) shows that

lim
t→+∞X(t) = 0

if and only if

lim
k→+∞Xk(T ) = 0.

X(t) is bounded ⇐⇒ Xk(T ) is bounded ⇐⇒ ρ(X(T )) � 1, and the λ satis-
fying λ(X(T )) = 1 only corresponds to simple elementary divisor of X(T ).

This is main result of Floquet–Lyapunov theory. In the following, for some
specific linear periodic systems of (3.5.1), we give the Cauchy matrix’s expression
and the stability criteria.

THEOREM 3.5.1. If the following conditions are satisfied:

(1) A(t)
∫ t

t0
A(τ) dτ = ∫ t

t0
A(τ) dτA(t);
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(2) B(T )− B(0) := ∫ T

0 A(t) dt is a Hurwitz matrix;

then the zero solution of (3.5.1) is exponentially stable.

PROOF. According to Theorem 3.4.1, the Cauchy matrix solution of (3.5.1) can

be repressed as X(t) = e

∫ t
t0
A(τ) dτ

.
Let t ∈ [kT , (k + 1)T ], i.e., t = kT + t1. Then, we have

(3.5.6)X(t) = X(t1)X
k(T ) = X(t1)e

kB(T )−B(0).

By condition (2) and (3.5.6), there exist constants M > 0 and α > 0 such that

(3.5.7)
∥
∥x(t)

∥
∥ � Me−

αkT
T = Me

α
T
t1e−

α
T
t := M∗e−

α
T
t ,

which means that the zero solution of (3.5.1) is exponentially stable. �

THEOREM 3.5.2. Assume that

(1) W(t) = A(t)
∫ t

t0
A(τ) dτ − ∫ t

t0
A(τ) dτA(t) �≡ 0;

(2) W(t)
∫ t

t0
W(τ) dτ − ∫ t

t0
W(τ) dτW(t) ≡ 0;

(3) A(t)W(t) − W(t)A(t) ≡ 0, B1(T ) − B1(0) =
∫ T

0 (A(τ) + 1
2W(t)) dt is a

Hurwitz matrix;

then the zero solution of (3.5.1) is exponentially stable.

PROOF. According to Theorem 3.4.2, the Cauchy matrix solution of (3.5.1) can
be written as

(3.5.8)X(t) = e
∫ t

0 A(τ) dτ Y (t),

where Y(t) is the Cauchy matrix solution of the following system

(3.5.9)
dy

dt
= W(t)y.

By conditions (2) and (3) and the conclusion of Theorem 3.4.2, we have

(3.5.10)X(t) = e
∫ t

0 A(τ) dt e
∫ t

0 W(τ) dτ = e
∫ t

0 (A(τ)+W(τ)) dτ ,

where W(t) is a matrix with period T . The rest of the proof follows the proof of
Theorem 3.4.2. �

THEOREM 3.5.3. If the conditions (1) and (2) of Theorem 3.5.2 are satisfied, and

B(T )− B(0) :=
T∫

0

A(t1) dt1
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and

B̃(T )− B̃(0) :=
T∫

0

ω(t1) dt1

are Hurwitz matrices, then the zero solution is exponentially stable.

PROOF. By using (3.5.10), the Cauchy matrix solution of (3.5.1) is

X(t) = e
∫ t

0 A(t1) dt1e
∫ t

0 W(t1) dt1 .

Let

Re λ
(

B(T )− B(0)
)

< −α1 < 0,

Re λ
(

B̃(T )− B̃(0)
)

< −α2 < 0.

Then, there exists a constant M > 0 such that
∥
∥X(t)

∥
∥ � Me−

α1
T
t e−

α2
T
t = Me−[

α1
T
+ α2

T
]t = Me−

α1+α2
T

t ,

and so the conclusion is true. �

THEOREM 3.5.4. Suppose that

(1) there exists a constant matrix A1 such that

(3.5.11)A1A(t)− A(t)A1 = dA(t)

dt
;

(2) A1A2 = A2A1, where A2 := e−A1t0[A(t0)− A1]eA1t0 ;
(3) A1 + A2 is a Hurwitz matrix;

then the zero solution of (3.5.1) is exponentially stable.

PROOF. Multiplying respectively e−A1(t−t0) and eA1(t−t0) to the left-hand and
right-hand sides of (3.5.11) we obtain

e−A1(t−t0)A1A(t)e
A1(t−t0) − e−A1(t−t0)A(t)A1e

A1(t−t0)

(3.5.12)= e−A1(t−t0) dA(t)
dt

eA1(t−t0),

i.e.,

(3.5.13)
d

dt

[

e−A1(t−t0)A(t)eA1(t−t0)] = 0.

Integrate (3.5.13) to obtain

A(t) = eA1(t−t0)A(t0)e−A1(t−t0).
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Hence, (3.5.1) can be rewritten as

(3.5.14)
dx

dt
= eA1(t−t0)A(t0)e−A1(t−t0)x.

Using the transformation

x(t) = eA1t y(t),

we get

dy

dt
= e−A1t0

[

A(t0)− A1
]

eA1t0y := A2y,

y(t) = eA2(t−t0)y(t0).

Finally, we obtain

X(t) = eA1t eA2(t−t0)e−A1(t0)x(t0),

which indicates that (3.5.1) has the following Cauchy matrix solution:

X(t) = eA1t eA2t = e(A1+A2)t .

So there exist constants M > 0 and α > 0 such that ‖X(t)‖ � Me−αt . This
implies that the zero solution of (3.5.1) is exponentially stable. �

THEOREM 3.5.5. Assume that

(1) the conditions (1) and (2) of Theorem 3.5.3 are satisfied;
(2) A1 and A2 = e−A1t0[A(t0)− A1]eA1t0 are Hurwitz matrices;

then the zero solution of (3.5.1) is exponentially stable.

PROOF. Following the proof of Theorem 3.5.4, we have the Cauchy matrix solu-
tion of (3.5.1), X(t) = eA1t eA2t . There exist constants M1 > 0,M2 > 0, α1 > 0
and α2 > 0 such that

∥
∥X(t)

∥
∥ � M1e

−α1tM2e
−α2t = M1M2e

−(α1+α2)t .

So the condition is true. �

EXAMPLE 3.5.6. Discuss the stability of the following periodic system

(3.5.15)

{
dx1
dt
= (a + cos bt)x1 − 1

2x2,

dx2
dt
= 1

2x1 + (a + cos bt)x2.
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Obviously, the coefficient matrix A(t) satisfies

A(t)

t∫

t0

A(t1) dt1 =
t∫

t0

A(t1) dt1A(t)

and

απ
|b|∫

0

A(t1) dt = B

(
απ

|b|
)

− B(0) =
[

a απ|b| − 1
α
απ
|b|

− 1
α
απ
|b| a απ|b|

]

.

B(απ|b| )− B(0) is a Hurwitz matrix if and only if α < − 1
2 .

B(απ|b| )− B(0) is quasi-stable if and only if α = − 1
2 .

Hence, the zero solution of system (3.5.15) is exponentially stable if and only
if α < − 1

2 ; and is stable if and only if α = − 1
2 .

3.6. Spectral estimation for linear systems

Let x(k)(t) be an arbitrary solution of (3.1.2). Then,

α := lim
t→∞

1

t
ln
∥
∥x(k)(t)

∥
∥

is called eigenexponent of x(k). All eigenexponents form a set called the spectral
of systems (3.1.2).

Lyapunov proved that if ‖A(t)‖ � c < ∞, then for every solution x(t) �= 0,
the eigenexponent is infinite.

Let x(t) be any solution of (3.1.2), we have the following estimation:

(3.6.1)
∥
∥x(t0)

∥
∥e

∫ t
t0
λ(t1) dt1 �

∥
∥x(t)

∥
∥ �

∥
∥x(t0)

∥
∥e

∫ t
t0
Λ(t1) dt1

where ‖ · ‖ denotes the Euclidean norm, λ(t) and Λ(t) are respectively the mini-
mum and maximum eigenvalues of the matrix

(3.6.2)AH = 1

2

[

A(t)+ AT (t)
]

.

Hence, from (3.6.2) one can obtain the interval of the spectral, [l, L], where

l = lim
t→∞

1

t

t∫

t0

λ(t1) dt1,
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L = lim
t→∞

1

t

t∫

t0

Λ(t1) dt1.

Further, it follows that

(1) if L < 0, then the zero solution of (3.1.2) is exponentially stable;
(2) if l > 0, then the zero solution of (3.1.2) is unstable.

Next, we present a general result.

DEFINITION 3.6.1. The matrix L(t) = (�ij (t))n×n ∈ C[I, Rn×n] is called Lya-
punov matrix, if

(1) ‖L̇(t)‖ <∞ and ‖L(t)‖ <∞,
(2) | detL(t)| > m > 0;

and y = L(t)x is called Lyapunov transformation.

THEOREM 3.6.2. Take a Lyapunov transformation

g = L(t)x := diag
(

�11(t), . . . , �nn(t)
)

x.

Then, any solution of (3.1.2) has the estimation:

∥
∥L(t)

∥
∥
−1∥
∥L(t0)x(t0)

∥
∥e

∫ t
t0
λ̃(t1) dt1

(3.6.3)�
∥
∥x(t)

∥
∥ �

∥
∥L−1(t)

∥
∥
∥
∥L(t0)x(t0)

∥
∥e

∫ t
t0
Λ̃(t1) dt1 ,

where ‖ · ‖ denotes the Euclidean norm, and λ̃(t) and Λ̃(t) are respectively mini-
mum and maximum eigenvalues of the matrix

(3.6.4)ÃH := 1

2

[

Ã(t)+ ÃT (t)
]

,

where

(3.6.5)Ã := (

L(t)A(t)L−1(t)− L(t)L̇−1(t)
)

.

PROOF. Since L(t) is a Lyapunov transformation, the inverse transformation
L−1(t) exists. Let x(t) = L−1(t)y. Then,

(3.6.6)
dy

dt
= (

L(t)A(t)L−1(t)− L̇(t)L−1(t)
)

y := Ã(t)y.

If y = (y1, . . . , yn)
T is a solution of (3.3.6), Then, y∗ = (ȳ1, ȳ2, . . . , ȳn) is the

solution of

(3.6.7)
dy∗

dt
= y∗AT .
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As a result, we have

d‖y‖2

dt
= dy∗y

dt
= y∗ dy

dt
+ dy∗

dt
y = y∗Ãy + y∗ÃT y

(3.6.8)= y∗
(

Ã(t)+ ÃT (t)
)

y = 2y∗ÃH y.

But since λ̃(t)y∗y � y∗AHy � Λ̃(t)y∗y, we obtain

2λ̃(t)
∥
∥y(t)

∥
∥2 � d‖y‖2

dt
� 2Λ̃(t)

∥
∥y(t)

∥
∥2
,

∥
∥y(t0)

∥
∥

2
e

2
∫ t
t0
λ̃(t1) dt1 �

∥
∥y(t)

∥
∥

2 �
∥
∥y(t0)

∥
∥

2
e

2
∫ t
t0
Λ̃(t1) dt1,

(3.6.9)
∥
∥y(t0)

∥
∥e

∫ t
t0
λ̃(t1) dt1 �

∥
∥y(t)

∥
∥ �

∥
∥y(t0)

∥
∥e

∫ t
t0
Λ̃(t1) dt1 .

Furthermore, we have

y(t) = L(t)x(t),
∥
∥y(t)

∥
∥ �

∥
∥L(t)

∥
∥
∥
∥x(t)

∥
∥,

∥
∥x(t)

∥
∥ �

∥
∥L−1(t)

∥
∥
∥
∥y(t)

∥
∥,

which yields

∥
∥L(t)

∥
∥−1∥∥y(t0)

∥
∥e

∫ t
t0
λ̃(t1) dt1

(3.6.10)= ∥
∥L(t)

∥
∥−1∥∥L(t0)

∥
∥
∥
∥x(t0)

∥
∥e

∫ t
t0
λ̃(t1) dt1 �

∥
∥x(t)

∥
∥,

and

(3.6.11)
∥
∥x(t)

∥
∥ �

∥
∥L−1(t)

∥
∥
∥
∥L(t0)x(t0)

∥
∥e

∫ t
t0
Λ̃(t1) dt1 .

Combining (3.6.10) and (3.6.11) shows that (3.6.3) is true.
The proof is completed. �

COROLLARY 3.6.3. The spectral of systems (3.1.2) is distributed on interval
[l, L], where

l = lim
t→∞

1

t

t∫

t0

λ̃(t1) dt1,

L̃ = lim
t→∞

1

t

t∫

t0

Λ̃(t1) dt1.

If L̃ < 0, the zero solution of (3.1.2) is exponentially stable; and if l > 0, the zero
solution of (3.1.2) is unstable.
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PROOF. Since L(t) and L−1(t) are bounded, we have

lim
t→+∞

1

t
ln
∥
∥L(t)

∥
∥ = 0, lim

t→+∞
1

t
ln
∥
∥L−1(t)

∥
∥ = 0.

Hence,

lim
t→+∞

1

t
ln
∥
∥L(t)

∥
∥−1∥

∥L(t0)x(t0)
∥
∥e

∫ t
t0
λ̃(t1) dt1 = lim

t→+∞
1

t

t∫

t0

λ̃(t1) dt1,

lim
t→+∞

1

t
ln
∥
∥L−1(t)

∥
∥

∥
∥
∥L(t0)x(t0)e

∫ t
t0
λ̃(t1) dt1

∥
∥
∥ = lim

t→+∞
1

t

t∫

t0

λ̃(t1) dt1,

l̃ := lim
t→+∞

1

t

t∫

t0

Λ̃(t1) dt1 � lim
t→+∞

1

t
ln
∥
∥x(t)

∥
∥

� lim
t→+∞

1

t

t∫

t0

Λ̃(t1) dt1 := L̃.

Thus, the conclusion is true. �

COROLLARY 3.6.4. If L(t) = L = diag(L11, . . . , Lnn) is a constant matrix,
then Ã = (LA(t)L−1). If L(t) = In, then l = l, L = L.

EXAMPLE 3.6.5. Consider the stability of the system

(3.6.12)

{
dx1
dt
= −(1+ 1

t

)

x1 + 81(1+ sin t)x2,

dx2
dt
= −(1+ sin t)x1 −

(

1+ 1
t

)

x2.

It is easy to obtain that

A(t) =
[ −1− 1

t
81(1+ sin t)

−(1+ sin t) −(1+ 1
t
)

]

,

1

2

[

A(t)+ AT (t)
] =

[ −1− 1
t

40(1+ sin t)
40(1+ sin t) −1− 1

t

]

,

λ = ±40(1+ sin t)− 1− 1

t
,

λ(t) = −41− 1

t
− 40 sin t,

Λ(t) = 39− 1

t
+ 40 sin t,
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l = lim
t→∞

t∫

t0

λ̃(t1) dt1 = −40,

L = lim
t→∞

t∫

t0

Λ(t1) dt = 39.

Since we only know that the spectral of (3.6.12) is distributed on interval
[−40, 39], we cannot determine the stability of the system.

Now using Theorem 3.6.2, let L = diag(1, 9), L−1 = diag(1, 1
9 ). Then, we

have

L = diag(1, 9), L−1 = diag

(

1,
1

9

)

,

Ã =
[

1 0
0 9

] [ −1− 1
t

81(1+ sin t)

−(1+ sin t) −1− 1
t

] [

1 0
0 1

9

]

=
[ −1− 1

t
9(1+ sin t)

−9(1+ sin t) −1− 1
t

]

,

1

2

[

Ã+ ÃT
] =

[−1− 1
t

0
0 −1− 1

t

]

,

λ̃(t) = −1− 1

t
, Λ̃(t) = −1− 1

t
.

Thus,

l = lim
t→∞

1

t

t∫

t0

λ̃(t1) dt1 = −1,

L̃ = lim
t→∞

1

t

t∫

t0

Λ̃(t1) dt1 = −1,

implying that the spectral of the system is −1. So the zero solution of the system
is exponentially stable.

3.7. Partial variable stability of linear systems

Partial variable stability theory is very useful and is still an active area. For sta-
tionary linear systems, many results on partial stability have been obtained. For
time-varying linear systems, however, general theory of partial variable stability
has not been established.
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In this section, we give a series of necessary and sufficient conditions for partial
variable stability of linear time-varying systems.

We rewrite (3.1.1) and (3.1.2) as

(3.7.1)

{
dy
dt
= A11(t)y + A12(t)z+ fI (t),

dz
dt
= A21(t)y + A22(t)z+ fII (t),

(3.7.2)

{
dy
dt
= A11(t)y + A12(t)z,

dz
dt
= A21(t)y + A22(t)z.

Let

y := (x1, . . . , xm)
T ,

z := (xm+1, . . . , xn)
T ,

y(n) := (x1, . . . , xm,

n−m
︷ ︸︸ ︷

0, . . . , 0)T , 1 � m � n,

A11(t) =
(

aij (t1)
)

m×m, i � i, j � m,

A12(t) =
(

aij (t)
)

m×(n−m), 1 � i � m, m+ 1 � j � n,

A21(t) =
(

aij (t)
)

(n−m)×n, m+ 1 � i � n, 1 � j � m,

A22(t) =
(

aij (t)
)

(n−m)×(n−m), m+ 1 � i, j � n,

fI (t) =
(

f1(t), f2(t), . . . , fm(t1)
)T
,

fII (t) =
(

fm+1(t), . . . , fn(t)
)T
,

f (t) = (

fI (t), fII(t)
)T
.

K(t, t0) is the Cauchy matrix solution of (3.7.2), km(t, t0) := EmK(t, t0) is called

cut matrix of K(t, t0), where Em =
[
Im 0
0 0

]

, Im is m×m unit matrix.

DEFINITION 3.7.1. The zero solution of (3.7.2) is said to be stable with respect
to variable y, if ∀ε > 0, ∀t0, ∃δ(t0, ε), ∀x0 ∈ Sδ := {x, ‖x‖ < δ} such that the
following condition

∥
∥y(t, t0, x0)

∥
∥ < ε, t � t0,

holds. If δ(t0, ε) = δ(ε), i.e., δ is independent of t0, then the zero solution is said
to be uniformly stable with respect to variable y.

DEFINITION 3.7.2. The zero solution of (3.7.2) is said to be attractive with re-
spect to variable y, if ∀t0 ∈ I , ∃σ(t0), ∀ε > 0, ∀x0 ∈ Sσ(t0) = {x, ‖x‖ � σ(t0)},
∃T (t0, x0, ε) such that when t � t0 + T ,

∥
∥y(t, t0, x0)

∥
∥ < ε.
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If σ(t0) = σ , T (t0, x0, ε) = T (ε), then the zero solution of (3.7.2) is said to be
uniformly attractive with respect to variable y.

DEFINITION 3.7.3. The zero solution of (3.7.2) is said to be asymptotically sta-
ble with respect to variable y, if x = 0 is stable and attractive with respect to
variable y.

Similarly we can define uniformly asymptotic stability, equi-asymptotic stabil-
ity, globally asymptotic stability, exponential stability with respect to variable y.

THEOREM 3.7.4. ∀f (t) ∈ C[I, Rn], system (3.7.1) has certain class of stability
with respect to variable y if and only if the zero solution of (3.1.2) has the same
stability with respect to variable y.

PROOF. Any solution x(t) of (3.7.1) corresponding to y(n)(t) can be expressed as

(3.7.3)y(n)(t) = EmX(t) = Km(t, t0)x(t0)+
t∫

t0

Km(t, τ )f (τ ) dτ.

Then any perturbed solution x̃(t) of x(t) corresponding to ŷ(n)(t) can be ex-
pressed as

(3.7.4)ŷ(n)(t) = Km(t, t0)x̂(t0)+
t∫

t0

Km(t, τ )f (τ ) dτ.

Hence, one can obtain

(3.7.5)y(n)(t)− ỹn(t) = Km(t, t0)
(

x(t0)− x̃(t0)
)

.

Let any perturbed solution for the zero solution of (3.7.2) corresponding to y(n)(t)
be η(t). Obviously, η(n)(t) = Km(t, t0)η(t0).

Let η(t0) = x(t0)− x̃(t0), η(n)(t0) = y(n)(t0)− ỹn(t0). Then,

(3.7.6)η(n)(t) = Km(t, t0)
(

x(t0)− x̃(t0)
)

.

Equations (3.7.4) and (3.7.6) imply that the conclusion is true. �

COROLLARY 3.7.5. Any solution of (3.7.2) has certain type of stability with
respect to partial variable y if and only if the zero solution of (3.7.2) has the
same stability with respect to variable y.

THEOREM 3.7.6. The zero solution of (3.7.2) is stable (uniformly stable) if and
only if Km(t, t0) is bounded (uniformly bounded).
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PROOF. Sufficiency. Any perturbed solution x(t) of the zero solution correspond-
ing to y(n) can be written as

(3.7.7)y(n) = Km(t, t0)x(t0),

whereKm(t, t0) is bounded (uniformly bounded). So there exists a constantM(t0)

(M > 0) such that ‖Km(t, t0)‖ � M(t0) (‖Km(t, t0)‖ � M) for t � t0. ∀ε > 0,
take δ(ε, t0) = ε

M(t0)
[δ(ε) = ε

M
]. Then, when ‖x(t0)‖ < δ, we have

(3.7.8)
∥
∥y(t)

∥
∥ = ∥

∥y(n)(t)
∥
∥ = ∥

∥Km(t, t0)
∥
∥
∥
∥x(t0)

∥
∥ < ε, t � t0.

Hence the zero solution of (3.7.2) is stable (uniformly stable) with respect to
variable y.

Necessity. Suppose the zero solution of (3.7.2) is stable (uniformly stable) with
respect to y. Then, for ε0, ∃δ(ε0, t0) > 0 (δ(ε0) > 0) such that

∥
∥x(t0)

∥
∥ < δ,

∥
∥y(t)

∥
∥ = ∥

∥y(n)(t)
∥
∥ = ∥

∥Km(t, t0)x(t0)
∥
∥ < ε0 (t � t0).

Take

(3.7.9)x(t0) = δ

2
(

k−1
︷ ︸︸ ︷

0, . . . , 0, 1,

n−k
︷ ︸︸ ︷

0, . . . , 0 )T := δ

2
ek, 1 � k � n.

Then, the kth column of Km(t, t0) can be expressed as

(

x1k(t), . . . , xmk(t), 0, . . . , 0
)T = 2

δ
Km(t, t0)x(t0), k = 1, 2, . . . , n,

and ‖x(t0)‖ = δ
2 < δ. So

∥
∥
(

x1k(t), . . . , xmk(t), 0, . . . , 0
)t∥∥ � 2

ε0

δ
:= M, k = 1, 2, . . . , n.

This implies that Km(t, t0) is bounded (uniformly bounded).
The proof is complete. �

THEOREM 3.7.7. The zero solution of (3.7.2) is asymptotically stable with re-
spect to variable y if and only if it is attract with respect to variable y.

PROOF. Necessity is obvious.
For sufficiency, by the conditions, ∀t0 ∈ I , ∃σ(t0) > 0 such that when

‖x(t0)‖ � σ(t0), ‖y(t)‖ = ‖y(n)(t)‖ = ‖Km(t, t0)x(t0)‖ → 0 as t → +∞.
Take

x(t0) = (

k−1
︷ ︸︸ ︷

0, . . . , 0, 1,

n−k
︷ ︸︸ ︷

0, . . . , 0 )T ,
σ (t0)

2
:= σ(t0)

2
ek.
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Then, we have

(

x1k(t), . . . , xmk(t), 0, . . . , 0
)T = 2

σ(t0)
Km(t, t0)

σ (t0)

2
ek → 0 as

t →+∞.

Hence when t � t0, Km(t, t0) is bounded. According to Theorem 3.7.2, the con-
clusion is true. �

THEOREM 3.7.8. The zero solution of (3.7.2) is uniformly asymptotically stable
with respect to variable y, if and only if it is uniformly attractive with respect to
variable y and Km(t, t0), t � t0, is uniformly bounded.

PROOF. Since the zero solution of (3.7.2) is uniformly asymptotically stable with
respect to variable y, it is uniformly stable and uniformly attractive with respect
to y. By Theorem 3.7.7, the uniform stability of the zero solution with respect to
y is equivalent to the uniform boundedness of Km(t, t0), t � t0. So the conclusion
is true. �

THEOREM 3.7.9. The zero solution of (3.7.2) is asymptotically stable (uniformly
asymptotically stable) if and only if Km(t, t0)→ 0 as t →∞ (Km(t, t0)⇒ 0 as
t − t0 →+∞ uniformly holds for t0).

PROOF. Sufficiency is obvious.
Necessity. By Theorems 3.7.6 and 3.7.7, we only need to prove the conditions

of Theorem 3.7.9 are necessary for the zero solution to be attract (uniformly
attractive) with respect to variable y. But this is just the conclusion of Theo-
rem 3.7.6. �

THEOREM 3.7.10. The zero solution of (3.7.2) is asymptotically stable (uni-
formly asymptotically stable) with respect to variable y if and only if it is globally
asymptotically stable (globally uniformly asymptotically stable).

The proof of the theorem is left to readers as an exercise.

THEOREM 3.7.11. The zero solution of (3.7.2) is asymptotically stable with re-
spect to y if and only if it is equi-asymptotically stable with respect to y.

PROOF. We only need to prove that the zero solution being attractive with respect
to y implies the equi-attractive of the zero solution with respect to y.

In fact, by Theorems 3.7.7 and 3.7.8, we have

Km(t, t0)→ 0 as t →+∞.
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Then, ∀t0 ∈ I , ∀α > 0, ∀ε > 0, ∃T (t, σ, ε) > 0 such that ‖Km(t, t0)‖ < ε/σ for
t > T . Therefore, when ‖x(t0)‖ < σ, t > T , we obtain

∥
∥y(t)

∥
∥ = ‖y(n)‖ =

∥
∥Km(t, t0)x(t0)

∥
∥ < ε.

This implies that the zero solution of (3.7.2) is equi-attractive with respect to
variable y. �

THEOREM 3.7.12. The zero solution of (3.7.2) is exponentially stable with re-
spect to variable y if and only if there exist constants M � 1 and α > 0 such
that

(3.7.10)
∥
∥Km(t, t0)

∥
∥ � Me−α(t−t0), t � t0.

PROOF. Sufficiency is obvious.
Necessity. If the zero solution of (3.7.2) is exponentially stable with respect

to y, then there exist constants M � 1 and α > 0 such that ∀t0 ∈ I , ∀x0 ∈ Rn the
following expression

∥
∥y(t)

∥
∥ = ∥

∥y(n)
∥
∥ = ∥

∥Km(t, t0)x(t0)
∥
∥ � M

∥
∥x(t0)

∥
∥e−α(t−t0) ∀t � t0,

holds. Hence, we have
∥
∥Km(t, t0)

∥
∥ � sup

‖x(t0)‖=1

∥
∥Km(t, t0)x(t0)

∥
∥ � Me−α(t−t0), t � t0.

The proof is complete. �

Generally, computing Km(t, t0) is difficult, but sometimes estimating
‖Km(t, t0)‖ is possible.

EXAMPLE 3.7.13. Discuses the stability of the zero solution with respect to x1
for the following system

(3.7.11)

{
dx1
dt
= −2x1 + 1

t+1e
−rt x2,

dx2
dt
= −10

1+t e
−rt x1 + x2,

where r � 1 is a constant.
Let (ξ1(t), ξ2(t))

T , (η1(t), η2(t))
T be solutions of (3.7.11) satisfying the initial

conditions ξ1(t0) = 1, ξ2(t0) = 0 and η1(t) = 0, η2(t0) = 1 respectively. Then,
we have

K1(t, t0)

=
[

e−2(t−t0) + ∫ t

t0
e−2(t−τ) 1

1+τ e
−rτ ξ2(τ ) dτ

∫ t

t0
e−2(t−τ) 1

1+τ e
−rτ η2(τ ) dτ

0 0

]

.
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For any solution (x1(t), x2(t))
T , by Theorem 3.7.12 the estimation is given by

∣
∣x2(t)

∣
∣ �

∣
∣x1(t)

∣
∣+ ∣

∣x2(t)
∣
∣ � M

(∣
∣x1(t)

∣
∣+ ∣

∣x2(t0)
∣
∣
)

et−t0,

where M > 0 is a constant. So when t � t0 > 0, we have

∥
∥K1(t, t0)

∥
∥ � Ne−2(t−t0) +NMe−t0

t∫

t0

e−2(t−τ) 1

τ + 1
e−τreτ dτ,

where N > 0 is a constant.
When r = 1 it is easy to show that

NMe−t0
t∫

t0

e−2(t−τ) 1

τ + 1
e−τ eτ dτ → 0, as t →+∞.

Therefore, K1(t, t0)→ 0 as t →+∞, implying that the zero solution of (3.7.11)
is asymptotically stable with respect to variable x1.

When r > 1, one can prove that there exist constants c > 0 and ε > 0 such
that

NMe−t0
t∫

t0

1

τ + 1
e−2(t−τ)e−rτ eτ dτ � ce−ε(t−t0) ∀ t � t0.

Hence, ‖K1(t, t0)‖ � Le−β(t−t0), where β = min(2, ε) and L is a constant. This
shows that the zero solution of the system is exponentially stable with respect to
variable x1.



Chapter 4

Lyapunov Direct Method

It is well know that Lyapunov direct method plays the key role in the stability
study of dynamical systems. Historically, Lyapunov presented four celebrated
original theorems on stability, asymptotic stability and instability, which are now
called the principal theorems of stability which are fundamental to stability of
dynamical systems.

Many researchers have extensively studied the Lyapunov direct method, in or-
der to explore the effectiveness of the principal theorems. While such work was
difficulty to perform, many good results were achieved. In particular, it was clar-
ified that almost all of the principal theorems have their inverses. This motivated
the development of stability theory. On the other hand, researchers have also ex-
tended and improved the principal theorems, and investigated how to constructing
Lyapunov functions. It had took a long time and hard work from the presentation
of Lyapunov principal theorems to establishing the inverse theorems.

In this chapter, we first give an example to show the Lyapunov direct method
geometrically. Then, we present Lyapunov principal theorems and their extended
versions together with their inverse theorems, since some of the inverse theorems
cannot be found in the existing literature or they are not expressed in detail. The
advantage of this treatment is that the panorama could be clarified easily.

From the view point of applications, inverse theorems are not perfect, since,
in their proofs (i.e., the necessary part of the theorems), the Lyapunov functions
are constructed based on the solutions of the equations. By this reason, we will
present the extensions of various stability theorems for applications. Furthermore,
Lyapunov direct method is not merely limited to stability study in the Lyapunov
sense. The results of using the Lyapunov direct method to other applications will
be discussed in Chapter 5.

The main results presented in this chapter are chosen from [234] for Sec-
tion 4.1, [298,330,331] for Section 4.2, [280,299,331,332] for Section 4.3, [98]
for Section 4.4, [292] for Section 4.5, [292] for Section 4.6, [76] for Section 4.7
and [234] for Section 4.8.
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4.1. Geometrical illustration of Lyapunov direct method

First, we illustrate the geometrical meaning of the Lyapunov direct method by
using a two-dimensional autonomous systems, described by:

(4.1.1)

{
dx1
dt
= f1(x1, x2),

dx2
dt
= f2(x1, x2),

where f1, f2 ∈ C[I, R2] satisfying f1(0, 0) = f2(0, 0) = 0, and assume that the
solution of (4.1.1) is unique.

Let V (x) = V (x1, x2) ∈ K and V (x) ∈ C1[R2, R1]. The solution x(t) =
(x1(t), x2(t))

T is unknown or finding solution is very difficult, but assume that its
derivative satisfies

(

ẋ1(t), ẋ2(t)
) = (

f1(x1, x2), f2(x1, x2)
)

.

If we substitute the solution x(t) into function V (t), we have V (t) := V (x(t)).
Then the stability, asymptotic stability and instability can be normally described
as

“Be around the origin and goes to the origin x1 = x2 = 0”,
“Does not leave the origin” and
“Leaves the origin”,

which are equivalent to V (x(t)) being nonincreasing, decreasing and increasing,
respectively, i.e.,

dV (x(t))

dt
� 0,

dV (x(t))

dt
< 0 and

dV (x(t))

dt
> 0.

Figure 4.1.1. Geometric expression of the Lyapunov direct method.
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Figure 4.1.2. Geometric expression of the Lyapunov function method.

This is shown in Figure 4.1.1.

dV

dt
=

2
∑

i=1

∂V

∂xi

∂V

dt
=

2
∑

i=1

∂V

∂xi
fi(x1, x2) = gradV • f

⎧

⎨

⎩

< 0, when θ > π
2 ,= 0, when θ = π
2 ,

> 0, when θ < π
2 ,

where θ is the angle between the directions of gradV and the vector f . (See
Figure 4.1.2.)

However, the last expression is independent of the solution x(t), but only de-
pends on the function V (x) and the known vector f (x). This is the original,
geometrical idea of the Lyapunov direct method.

4.2. NASCs for stability and uniform stability

Consider the general n-dimensional nonautonomous system:

(4.2.1)
dx

dt
= f (t, x)

where x = (x1, . . . , xn)
T ∈ Rn, f = (f1, f2, . . . , fn)

T ∈ C[I × Rn,Rn] which
assures the uniqueness of the solution of (4.2.1) and f (t, 0) ≡ 0.

THEOREM 4.2.1. (See [298,330].) The necessary and sufficient condition
(NASC) for the zero solution of system, (4.2.1) being stable is that there exists
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a positive definite function V (t, x) ∈ C[I ×GH,R
1] such that along the solution

of (4.2.1),

(4.2.2)
dV

dt

∣
∣
∣
∣
(4.2.1)

= ∂V

∂t
+

n
∑

i=1

∂V

∂xi
fi(t, x) � 0

holds, where GH := {(t, x), t � t0, ‖x‖ < H = constant}.

PROOF. Sufficiency (see [298]). Since V (t, x) is positive definite, there exists
ϕ(‖x‖) ∈ K such that

(4.2.3)V (t, x) � ϕ
(‖x‖).

∀ε > 0 (0 < ε < H ), ∃δ(t0, ε) > 0 such that V (t0, 0) = 0 and V (t0, x) � 0 is
continuous, and when ‖x0‖ < δ(t0, ε) we have

(4.2.4)V (t0, x0) < ϕ(ε).

Equations (4.2.3) and (4.2.4) imply that

V
(

t, x(t, t0, x0)
)

� V (t0, x0) < ϕ(ε) (t � t0).

Further,

ϕ
(∥
∥x(t, t0, x0)

∥
∥
)

� V
(

t, x(t0, x0)
)

� V (t0, x0) � ϕ(ε) (t � t0).

It follows from ϕ ∈ K that
∥
∥x(t, t0, x0)

∥
∥ < ε (t � t0),

i.e., the zero solution of (4.2.1) is stable.
Necessity. Let x(t, t0, a) be a solution of (4.2.1). By uniqueness of solution, we

have a(t0, t, x) ≡ a (see Figure 4.2.1).
Let

(4.2.5)V (t, x) = (

1+ e−t
)∥
∥a(t0, t, x)

∥
∥2
.

When t and x vary on a same integral curve, a(t0, t, x) is not varied. But when
t and x vary on different integral curves, a(t0, t0, x) takes different values. By
the continuity theorem on the initial value, we know that V (t, x) of (4.2.5) is
continuous.

(1) Prove that V (t, x) is positive definite. ∀ε > 0, ∃δ(t0, ε) > 0, when ‖x‖ < δ,
∥
∥x(t, t0, a)

∥
∥ < ε (t � t0).

Thus, for ε � ‖x‖ � H , we have

(4.2.6)
∥
∥a(t0, t, x)

∥
∥ = ‖a‖ � δ > 0.
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Figure 4.2.1. The relation between a(t0, t, x) and x(t, t0, a).

Hence, when ε � ‖x‖ � H ,

V (t, x) �
∥
∥a(t0, t, x)

∥
∥2 = ‖a‖2 � δ2 := η > 0.

Now let ε1 = H
2 , ε2 = H

3 , . . . , εn = H
n+1 . Then, we obtain corresponding

values η1 > η2 > · · · > ηn such that

V (t, x) > ηn

in the interval εn = H
n+1 � ‖x‖ � H

n
= εn−1.

Construct a function

W(x) := ηn+1 + n(n+ 1)

H
(ηn − ηn+1)

(

‖x‖ − H

n+ 1

)

,

see Figure 4.2.2 for the geometric meaning of this function.
Then obviously, we have

W(x) � ηn+1 + n(n+ 1)

H
(ηn − ηn+1)

(
H

n+ 1
− H

n+ 1

)

(4.2.7)= ηn+1 > 0 for
H

n+ 1
� ‖x‖ � H

n
,

W(x) � ηn+1 + n(n+ 1)

H
(ηn − ηn+1)

(
H

n
− H

n+ 1

)

= ηn+1 + n(n+ 1)

H
(ηn − ηn+1)

H

n(n+ 1)

(4.2.8)= ηn+1 + ηn − ηn+1 = ηn for
H

n+ 1
� ‖x‖ � H

n
.
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Figure 4.2.2. The geometric meaning of function W(x).

Therefore, V (t, x) � ηn � W(x). Since W(0+) � V (t, 0) = 0, we can
definite W(0) := 0. This implies that V (t, x) is positive definite.

(2) Along an arbitrary solution x(t, t0, a) of (4.2.1), we have

V (t) := V
(

t, x(t, t0, a)
) := (

1+ e−t
)∥
∥a
(

t0, t, x(t, t0, a)
)∥
∥2

(4.2.9)= (

1+ e−t
)∥
∥a(t0, t0, a)

∥
∥ = (

1+ e−t
)‖a‖2.

So

(4.2.10)
dV

dt

∣
∣
∣
∣
(4.2.1)

= −e−t∥∥a(t0, t0, x(t, t0, a)
)∥
∥2 � 0.

The proof of Theorem 4.2.1 is complete. �

EXAMPLE 4.2.2. (See [234].) If the definition of positive finite for V (t, x) is
changed to V (t, x) > 0 (x �= 0), V (t, 0) = 0, then the conclusion of Theo-
rem 4.2.1 does not hold. For example, consider

(4.2.11)

{
dx1
dt
= 1

2x1,

dx2
dt
= 1

2x2.

The general solution is

(4.2.12)

{

x1 = x
(0)
1 e

1
2 (t−t0),

x2 = x
(0)
2 e

1
2 (t−t0).

Obviously, the zero solution is unstable. But if we construct the function

V (t, x) = (

x2
1 + x2

2

)

e−2t ,
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then V (t, 0) = 0, V (t, x) > 0. For x �= 0

dV

dt
= ∂V

∂t
+ ∂V

∂t1

dx1

dt
+ ∂V

∂t2

dx2

dt

= −2e−2t(x2
1 + x2

2

)+ e−2t(x2
1 + x2

2

)

= −e−2t(x2
1 + x2

2

)

� 0.

Let V (t, x) = (x2
1 + x2

2)e
−2t = c, i.e.,

(4.2.13)x2
1 + x2

2 = c e2t .

It is easy to find that the equivalent solution curve (4.2.13) leaves the origin with a

rate e2t , but the solution (4.2.12) leaves the origin with a rate e
1
2 t . Hence, dV

dt
� 0

still holds. This shows that the definition of positive definite for V (t, x) cannot be
changed to V (t, x) > 0, x �= 0.

THEOREM 4.2.3. The zero solution of (4.2.1) is uniformly stable if and only if
there exists V (t, x) ∈ C[GH,R

1] with infinitesimal upper bound such that

(4.2.14)D+V (t, x)
∣
∣
(4.2.1) � 0.

PROOF. Sufficiency. By the given condition, ∃ϕ1, ϕ2 ∈ K such that

ϕ1
(‖x‖) � V (t, x) � ϕ2

(‖x‖),
Then, ∀ε > 0 (ε < H ) such that by taking δ = ϕ−1

2 (ϕ1(ε)), i.e., ε = ϕ−1
1 (ϕ2(δ)),

we have

ϕ1
(∥
∥x(t, x0, x0)

∥
∥
)

� V
(

t, x(t, t0, x0)
)

� V (t0, x0) � ϕ2
(‖x0‖

)

< ϕ2(δ).

Then, when ‖x0‖ < δ, it follows that.
∥
∥x(t, t0, x0)

∥
∥ < ϕ−1

1

(

ϕ2(δ)
) = ε (t � t0).

However, δ = ϕ−1
2 (ϕ1(ε)) = δ(ε) is independent of t0. So the zero solution is

uniformly stable.
Necessity. Choose

(4.2.15)V (t, x) := (

1+ e−t
)

inf
t0�τ�t

∥
∥p(τ, t, x)

∥
∥

2
.

(1) Obviously, V (t, x) is continuous and V (t, x) � 2‖p(t, t, x)‖2 = 2‖x‖2.
So V (t, x) is infinitesimally upper bounded.

(2) Prove that V (t, x) is positive definite. Since the zero solution of (4.2.1) is
uniformly stable, ∀ε > 0, ∃δ(ε), when ‖a‖ < σ , for all τ � t0 and t � τ , we
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Figure 4.2.3. The relation between a(τ∗, t∗, x∗) and x(t, t0, a).

have

(4.2.16)
∥
∥x(t, τ, a)

∥
∥ < ε.

Thus, when ε � ‖x‖ � H , for all t � τ � t0, we have

(4.2.17)
∥
∥p(τ, t, x)

∥
∥ � δ > 0.

Otherwise, for certain x∗, τ ∗, t∗, ε � ‖x∗‖ � H , t0 � τ ∗ � t∗, we have (see
Figure 4.2.3)

∥
∥p
(

τ ∗, t∗, x∗
)∥
∥ < δ.

Let a = p(τ ∗, t∗, x∗). Then, we have

x∗ = p
(

t∗, τ ∗, a
)

.

By uniform stability, when ‖a‖ = ‖p(τ ∗, t∗, x∗)‖ < δ, p(t, τ ∗, a)‖ < ε holds
for all t � τ ∗. Particularly, when t = t∗ > τ ∗, ‖p(t∗, τ ∗, a)‖ = ‖x∗‖ < ε, which
contradicts that ‖x∗‖ � ε. Thus, (4.2.16) is true.

Following the proof of Theorem 4.2.1, one can construct positive definite func-
tion W(x) such that V (t, x) � W(x). Therefore, V (t, x) is positive definite.

(3) Now prove D+V (t, x)|(4.2.1) � 0. Since x = p(t, t0, a) along an arbitrary
solution of (4.2.1), we have

V (t) := V
(

t, p(t, t0, a)
)

= (

1+ e−t
)

inf
t0�τ�t

∥
∥p
(

t, t, p(t, t0, a)
)∥
∥

= (

1+ e−t
)

inf
t0�τ�t

∥
∥p(τ, t0, a)

∥
∥,



4.3. NASCs for uniformly asymptotic and equi-asymptotic stabilities 119

showing that V (t) is a monotone increasing function of t . As a result,
D+V (t, x)|(4.2.1) � 0 is true.

The proof of Theorem 4.2.3 is complete. �

4.3. NASCs for uniformly asymptotic and equi-asymptotic
stabilities

We again consider system (4.2.1).

THEOREM 4.3.1. The zero solution of (4.2.1) is uniformly asymptotically sta-
ble if and only if there exists a positive definite function with infinitesimal upper
bounded, V (t, x) ∈ C1[GH,R

1], such that along the solutions of (4.2.1),

(4.3.1)
dV

dt

∣
∣
∣
∣
(4.2.1)

is negative definite, where GH is defined in Theorem 4.2.1.

PROOF. Sufficiency. Obviously, the conditions in Theorem 4.3.1 imply the con-
ditions of Theorem 4.2.2, so the zero solution of (4.2.1) is uniformly stable. Thus,
we only need to prove that the zero solution of (4.2.1) is uniformly attractive. By
the given conditions, there exist ϕ1, ϕ2, ϕ3 ∈ K such that

ϕ1
(‖x‖) � V (t, x) � ϕ2

(‖x‖),
and

dV

dt

∣
∣
∣
∣
(4.2.1)

� −ϕ3
(‖x‖) � −ϕ3

(

ϕ−1
2 V (t)

)

< 0,

i.e.,

V (t)∫

V (t0)

dV

ϕ3(ϕ
−1
2 V (t))

� −(t − t0),

or

(4.3.2)

V (t0)∫

V (t)

dV

ϕ3(ϕ
−1
2 V (t))

� t − t0.

Hence, V (t) := V (t, x(t, t0, x0)), ∀ε > 0 (ε < H). Using ϕ1(‖x(t)‖) � V (t) :=
V (t, x(t)) and V (t0) � ϕ2(‖x0‖) � ϕ2(H), we obtain

ϕ2(H)∫

ϕ1(‖x(t)‖)

dV

ϕ3(ϕ
−1
2 V (t))
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=
ϕ1(ε)∫

ϕ1(‖x(t)‖)

dV

ϕ3(ϕ
−1
2 V (t))

+
ϕ2(H)∫

ϕ1(ε)

dV

ϕ3(ϕ
−1
2 V (t))

(4.3.3)�
V (t0)∫

V (t)

dV

ϕ3(ϕ
−1
2 V (t))

� t − t0.

Take

(4.3.4)T = T (ε,H) >

ϕ2(H)∫

ϕ1(ε)

dV

ϕ3(ϕ
−1
2 V (t))

.

Then, when t � t0 + t , it follows that

ϕ1(ε)∫

ϕ1(‖x(t)‖)

dV

ϕ3(ϕ
−1
2 V (t))

� t − t0 −
ϕ2(H)∫

ϕ1(ε)

dV

ϕ3(ϕ
−1
2 V (t))

> t − t0 − T � 0.

Hence, we can obtain

ϕ1
(‖x(t)‖) < ϕ1(ε)

(

t � t0 + T (ε,H)
)

,

i.e., ‖x(t)‖ < ε. Since T = T (ε,H) is independent of t0 and x0, this means that
the zero solution of (4.2.1) is uniformly attractive. This completes the proof of
sufficiency.

We need the following lemma for proving necessity.

LEMMA 4.3.2. Let ϕ(τ) be a continuous decreasing function for τ � 0 and
limt→+∞ ϕ(τ) = 0, ξ(τ ) be continuous nondecreasing positive function for τ �
0. Then, there exists continuous increasing functionG(r) with G(0) = 0 such that
for arbitrary positive continuous function ϕ∗(τ ) (τ � 0) which satisfies ϕ∗(τ ) �
ϕ(τ), the inequality

(4.3.5)

+∞∫

0

G
(

ϕ∗(τ )
)

ξ(τ ) dτ < 1

holds.

The function φ(t) is shown in Figure 4.3.1.

PROOF. As Figure 4.3.1 shows, for function ϕ(t) we can choose a sequence {tn}
such that when t � tn,
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Figure 4.3.1. Function φ(t).

(4.3.6)ϕ(t) � 1

n+ 1

holds, where tn > 1, tn+1 > tn + 1.
Construct a function η(t) such that η(tn) = 1

n
and η(t) is linear in [tn, tn+1].

However, η(t) = ( t1
t
)p for 0 < t < t1, where p is the maximum positive integer

such that

η̇(t1 − 0) < η̇(t1 + 0).

Obviously, when t � t1, ϕ(t) < η(t) and

lim
t→∞ η(t) = lim

t→∞ϕ(t) = 0.

Let G(0) = 0,

G(r) =
{

e−η−1(r)

ξ(η−1(r))
for r > 0,

0 for r = 0,

where η−1 is the inverse function of η and η−1 is decreasing, and ϕ∗(τ ) � ϕ(τ)

holds for all t � t1. Hence,

η−1(ϕ∗(τ )
)

� η−1(ϕ(τ)
)

> η−1(η(τ)
) = τ,

e−η−1(ϕ∗(τ )) < e−τ ,
ξ
(

η−1(ϕ∗(τ )
))

� ξ(τ ).

Thus, we have estimation:

(4.3.7)G
(

ϕ∗(τ )
) = e−η−1(ϕ∗(τ ))

ξ(η−1(ϕ∗(τ )))
<

e−τ

ξ(τ )
.
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Integrating the above inequality from 0 to +∞ yields

(4.3.8)

+∞∫

0

G
(

ϕ∗(τ )
)

ξ(τ ) dτ <

+∞∫

0

e−τ

ξ(τ )
ξ(τ ) dτ =

+∞∫

0

e−τ dτ = 1.

Lemma 4.3.2 is proved. �

Now we prove the Necessity for Theorem 4.3.1. By the uniformly asymptotic
stability of the zero solution of (4.2.1), we can prove that there exist monotone
increasing function ϕ(τ), with ϕ(0) = 0 and positive continuous decreasing func-
tion σ(τ) with

lim
t→+∞ σ(τ) = 0,

such that the solution of (4.2.1) satisfies

(4.3.9)
∥
∥P(t0 + τ, t0, a)

∥
∥ � ϕ

(‖a‖)σ(τ)
in ‖a‖ � H . Take ϕ(τ) = ϕ(H)σ(τ), ξ(τ ) ≡ 1. According to Lemma 4.3.2 there
exists a continuous increasing function G(r) with G(0) = 0, which is positive
definite in the interval 0 � r � ϕ(0) = ϕ(H)σ(0).

Let g(τ) = G2(τ ). By the property of functions ϕ(τ) and σ(τ), we know that

g
(

ϕ
(‖a‖)σ(τ − t)

) = [

g
(

ϕ
(‖a‖)σ(τ − t)

)]1/2[
g
(

ϕ
(‖a‖)σ(τ − t)

)]1/2

(4.3.10)�
[

g
(

ϕ
(‖a‖)σ(0))]1/2[

g
(

ϕ
(‖a‖)σ(τ − t)

)]1/2
.

Now, we define

(4.3.11)V (t, x) :=
∞∫

t

g
(∥
∥p(τ, t, x)

∥
∥
)

dτ,

and then obtain

V (t, x) �
[

g
(

ϕ
(‖x‖)σ(0))]1/2

∞∫

t

[

g
(

ϕ(H)σ(τ − t)
)]1/2

dτ

= G
(

ϕ
(‖x‖)σ(0))

∞∫

t

G
(

ϕ(H)σ(τ − t)
)

dτ

= G
(

ϕ
(‖x‖)σ(0))

∞∫

0

G
(

ϕ(H)σ(τ)
)

dτ

< G
(

ϕ
(‖x‖)σ(0)).



4.3. NASCs for uniformly asymptotic and equi-asymptotic stabilities 123

Thus, V (t, x) exists, is continuous and has an infinitesimal upper bound. So
V (t, x) � 0 and

dV

dt

∣
∣
∣
∣
(4.2.1)

= −G2(
∥
∥p(t, t, x)

∥
∥
) = −G2(‖x‖).

By Theorem 4.2.3, there exists a positive definite function with infinitesimal
upper bound W(t, x) satisfying

ϕ1
(‖x‖) � W(t, x) � ϕ2

(‖x‖) (ϕ1, ϕ2 ∈ K),
dW

dt

∣
∣
∣
∣
(4.2.1)

� 0.

Defining U(t, x) = V (t, x)+W(t, x), we have

ϕ1
(‖x‖) � W(t, x) � U(t, x) � G

(

ϕ
(‖x‖)σ(0))+ ϕ2

(‖x‖).
Thus, U(t, x) is positive definite and has infinitesimal upper bound, and

dU(x)

dt

∣
∣
∣
∣
(4.2.11)

= dV (t, x)

dt

∣
∣
∣
∣
(4.2.1)

+ dW(x, x)

dt

∣
∣
∣
∣
(4.2.1)

� dV (t, x)

dt

∣
∣
∣
∣
(4.2.1)

= −G2(‖x‖).

Hence, U(t, x) satisfies the conditions of Theorem 4.3.1. �

REMARK 4.3.3. Lyapunov only proved that the conditions of Theorem 4.3.1 im-
ply that the zero solution of (4.2.1) is asymptotically stable. We have proved that
the conditions of Theorem 4.3.1 is sufficient for the zero solution of (4.2.1) to be
uniformly asymptotically stable.

EXAMPLE 4.3.4. Massera [308] gave the following illustrative example to show
that the infinitesimal upper bound condition is important for asymptotic stability.

Let g ∈ C1[I, R]. Then, as shown in Figure 4.3.2, g(n) = 1 (n = 1, 2, . . .).
Consider a differential equation

(4.3.12)
dx

dt
= g′(t)

g(t)
x,

which has general solution x(t) = g(t)
g(t0)

, and x(t0) does not tend to zero as t →∞.
So the zero solution is not asymptotically stable.

We construct a Lyapunov function:

V (t, x) = x2

g2(t)

[

3−
t∫

0

g2(s) ds

]

.
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Figure 4.3.2. Massera function.

Since

+∞∫

0

g2(s) ds <

+∞∫

0

e−s ds +
∞
∑

n=1

(
1

2

)n

= 1+
1
2

1− 1
2

= 2,

V (t, x) � x2

g2(t)
� x2 > 0 for x �= 0. Thus, V (t, x) is positive definite and

dV

dt
= ∂V

∂t
+ ∂V

∂x

dx

dt

= 2× [3− ∫ t

0 g
2(s) ds]

g2(t)
· g
′(t)
g(t)

x

+ −x
2g4(t)− x2[3− ∫ t

0 g
2(s) ds]2g(t)g′(t)

g4(t)

= −x2 < 0 (x �= 0).

But there does not exist a positive definite W(x) such that V (t, x) � W(x). This
illustrates that the infinitesimal upper bound condition is important.

EXAMPLE 4.3.5. We use this example to show that the condition of Theo-
rem 4.3.1 is not necessary, i.e., Lyapunov asymptotic stability theorem does not
have an inverse counterpart.

Consider the differential equation:

(4.3.13)
dx

dt
= − x

t + 1
.
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Its general solution is

x(t, t0, x0) = 1+ t0

1+ t
x0 → 0 as t →+∞.

∀ε > 0, take δ = ε. Then for |x0| < δ we obtain |x(t, t0, x0)| < |x0| < ε for
t > t0. So the zero solution is asymptotically stable, but there does not exist a
positive definite function V (t, x) with infinitesimal upper bound such that dV

dt
is

negative definite.
In fact, if otherwise, then ∀ε > 0, when ‖x‖ � δ, we have 0 � V (t, x) � ε for

all t � t0, and dV
dt

is negative definite. So there exists a positive definite function
W(x) such that

dV

dt

∣
∣
∣
∣
(4.3.13)

� −W(x).

Let

l = inf
δ
2 �|x|�H

W(x),

and take |x0| = δ. Then

V
(

t1, V (t1)
) = V (t0, x0)+

t∫

t0

dV

dt
dt

� V (t0, x0)− l(t1 − t0)

= V (t0, x0)− l(1+ t0) < 0 (taking t1 = 2t0 + 1) for t0 � 1.

But on the other hand, when t1 = 2t0 + 1, we have

x(t1, t0, x0) = 1+ t0

1+ t
x0 = 1+ t0

2(1+ t0)
x0 = x0

2
.

Thus,

∥
∥x(t1, t0, x0)

∥
∥ = δ

2
�= 0.

Hence V (t1, x(t1, t0, x0)) > 0, leading to a contradiction. This means that the
conclusion is true.

REMARK 4.3.6. Example 4.3.5 shows that if one only assumes V (t, x) is posi-
tive definite and dV

dt
is negative definite one still cannot assure the zero solution

being asymptotically stable. But if adding the infinitesimal upper bound condition,
then not only the asymptotic stability but also the uniformly asymptotic stability
of the zero solution are valid. Therefore, for asymptotic stability, the required
conditions of Theorem 4.3.1 may be relaxed.
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THEOREM 4.3.7. Suppose f (t, x) ∈ C1[GH,R
n]. Then the zero solution

of (4.2.1) is equi-asymptotically stable if and only if there exists positive defi-
nite V (t, x) ∈ C1[GH,R

1] such that dV
dt
|(4.2.1) � 0, and for any η > 0 and all

(t, x(t)), when V (t, x) < η holds uniformly, we have

(4.3.14)lim
t→∞

∥
∥x(t)

∥
∥ = 0.

PROOF. Necessity. Let x(t) = x(t, t0, x0) be solution of (4.2.1), and s a fixed
positive number. Construct a function

(4.3.15)V (t, x) = ∥
∥x(t0, t, x)

∥
∥

2(1+ e−t
)

.

Then, f (t, x) ∈ C1[GH,R
n] implies V (t, x) ∈ C1[GH,R

n]. So the zero solu-
tion of (4.2.1) is uniformly stable. Then, ∀ε > 0, ∃δ = δ(ε), when ‖x‖ > ε the
following inequality holds:

∥
∥x(t0, t, x)

∥
∥ � δ(ε).

So V (t, x) � δ2(ε) (‖x‖ � ε), i.e., V (t, x) is positive definite.
Because of the equi-attraction of the zero solution, there exists δ0 = δ(x0) > 0

such that ‖x0‖ = ‖x(t0, t, x)‖ � δ(t0). Thus, ∀ε > 0, there exists T = T (ε, t0)

such that
∥
∥x(t, t0, x0)

∥
∥ < ε (t � t0 + T ).

Take η = δ(t0). Then, when V (t, x) < η, we have

∥
∥x
(

t0, t, x(t)
)∥
∥2 = V (t, x(t))

1+ e−t
<

η

1+ e−t
< η = δ(t0).

Therefore, when t � t0 + T , ‖x(t)‖ < ε, i.e., for all (t, x(t)) which satisfy
V (t, x(t)) < η uniformly, we have

lim
t→+∞ x(t) = 0.

On the other hand,

V
(

t, x(t)
) = ∥

∥x
(

t0, x(t)
)∥
∥

2(1+ e−t
) = ‖x0‖2(1+ e−t

)

,

so

dV (t, x(t))

dt
= −e−t‖x0‖2

E = −e−t
∥
∥x
(

t0, t, x(t)
)∥
∥

2
E

= −e−t
1+ e−t

V
(

t, x(t)
)

� 0.

The necessity is proved.
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Sufficiency. If the condition is satisfied, obviously the zero solution is stable.
When V (t0, x0) < η, ‖x0‖ � δ(η) holds owing to

dV

dt

∣
∣
∣
∣
(4.2.1)

� 0.

Thus, one obtains V (t, x(t)) � V (t0, x0) < η. So

lim
t→+∞ x(t) = 0

uniformly holds for x0. This means that the zero solution is equi-asymptotically
stable.

The proof is complete. �

THEOREM 4.3.8. Assume f (t, x) ∈ C1[GH,R
n]. Then the zero solution

of (4.2.1) is asymptotically stable if and only if there exists a positive definite
V (t, x) ∈ C1[GH,R

1] such that

dV

dt

∣
∣
∣
∣
(4.2.1)

� 0,

and for any η > 0 and for all (t, x(t)) which satisfy V (t, x) < η,

lim
t→∞

∥
∥x(t)

∥
∥ = 0.

PROOF. The proof of Theorem 4.3.8 is almost the same as the proof of Theo-
rem 4.3.7, so is omitted. �

4.4. NASCs of exponential stability and instability

THEOREM 4.4.1. Let f (t, x) ∈ C[I × Rn,Rn], f (t, 0) ≡ 0 and f satisfy the
Lipschitz condition for x. Then the zero solution of (4.2.1) is globally exponen-
tially stable if and only if there exists V (t, x) ∈ C1[I × Rn,R1] such that

(1) ‖x‖ � V (t, x) � K(α)‖x‖, x ∈ Sα := {x: ‖x‖ � α};
(2) dV

dt
|(4.2.1) � −qcV (t, x), where 0 < q < 1, c > 0, q, c are constants.

PROOF. Sufficiency. ∀α > 0, when x0 ∈ Sα , let x(t) := x(t, t0, x0). By condi-
tion (2), we have

(4.4.1)
d

dt
V
(

t, x(t)
)

� −cqV (t, x(t)).
Consider the comparison equation:

(4.4.2)
du

dt
= −cqu.
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Let u0 = V (t0, x0). Then,

u(t, t0, u0) = u0e
−cq(t−t0).

By comparison theorem we obtain

V
(

t, x(t)
)

� u0e
−cq(t−t0) = V (t0, x0)e

−cq(t−t0), t � t0.

By conditions (1), we have
∥
∥x(t)

∥
∥ � V

(

t, x(t)
)

� K(α)‖x0‖e−cq(t−t0)
:= K(α)‖x0‖e−λ(t−t0)) (λ = cq > 0),

i.e.,
∥
∥x(t, t0, x0)

∥
∥ � K(α)‖x0‖e−λ(t−t0) (t � t0).

So the zero solution of (4.2.1) is globally exponentially stable.
Necessity. Let the zero solution of (4.2.1) be globally experientially stable.

Then there exists constant c > 0 such that ∀α > 0, ∃K(α) > 0, when x0 ∈ Sα ,

(4.4.3)
∥
∥x(t, t0, x0)

∥
∥ � K(α)‖x0‖e−c(t−t0)

holds. For 0 < q < 1, define a function:

V (t, x) := sup
τ�0

∥
∥x(t + τ, t, x)

∥
∥ecqτ .

Then, ∀x ∈ Sα , we have:
(1)

‖x‖ � V (t, x) � sup
τ�0

K(α)‖x‖e−cτ ecqτ

= K(α)‖x‖ sup
τ�0

e−(1−q)cτ � K(α)‖x‖,

i.e.,

(4.4.4)‖x‖ � V (t, x) � K(α)‖x‖.
(2) Let x∗ = x(t + h, t, x). It follows that

V
(

t + h, t, x∗
) = sup

τ�0

∥
∥x
(

t + h+ τ, t + h, x∗
)∥
∥ecqτ

= sup
τ�0

∥
∥x(t + h+ τ, t, x)

∥
∥ecqτ

� sup
τ�0

∥
∥x(t + h, t, x)

∥
∥ecqτ · e−cqh

= V (t, x)e−cqh.
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Furthermore, we can obtain

V (t + h, x∗)− V (t, x)

h
� V (t, x)

e−cqh − 1

h
.

Thus, we have

dV

dt

∣
∣
∣
∣
(4.2.1)

= lim
h→0+

V (t + h, x∗)− V (t, x)

h

� lim
h→0+

V (t, x)
e−cqh − 1

h

= V (t, x) lim
h→0+

e−cqh

h

= −cqV (t, x),
i.e.,

dV

dt

∣
∣
∣
∣
(4.2.1)

� −cqV (t, x).

The proof is complete. �

In the following, we present the NASC of instability [331,332].

THEOREM 4.4.2. Let f (t, x) ∈ C1[GH,R
n]. Then the zero solution is unstable

if and only if the following conditions hold:

(1) when t is fixed, V (t, x) and dV
dt
|(4.2.1) are positive definite;

(2) ∀ε > 0, there exist α > 0, T = T (ε) > 0 and ‖x0‖ = α such that V (T , x0) <

ε.

PROOF. Necessity. Assume that the zero solution of (4.2.1) is unstable and
x(t) := x(t, 0, x0) is an arbitrary solution. Construct a function

V (t, x) = ∥
∥x(t, 0, x0)

∥
∥

2 1+ 2t

1+ t
.

Since f (t, x) ∈ C1, V (t, x) ∈ C1 and x = 0 is the solution. Hence, for an
arbitrarily fixed t , when x �= 0, we have

V (t, x) �
∥
∥x(0, t, x)

∥
∥

2
> 0.

So when t is fixed, V (t, x) is positive definite. Furthermore, since

dV

dt

∣
∣
∣
∣
(4.2.1)

= d

dt

(
∥
∥x
(

0, t, x(t)
)∥
∥

2 1+ 2t

1+ t

)
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= ‖x0‖2 d

dt

(
1+ 2t

1+ t

)

= 1

(1+ t)(1+ 2t)
V
(

t, x(t)
)

,

dV
dt
|(4.2.1) is positive definite for a fixed t .

By the instability of the zero solution we know that for any ε > 0, there exist
α > 0, T > 0 and ‖x0‖ < ε

2 such that

∥
∥x(T , 0, x0)

∥
∥

2 = a.

Taking x̃0 = x(T , 0, x0), we obtain

V (T , x̃0) =
∥
∥x
(

0, T , x(T , 0, x0)
)∥
∥

2 1+ 2T

1+ T
= ‖x0‖2 1+ 2T

1+ T
<

ε

2
· 2 = ε.

The necessity is proved.
Sufficiency. Suppose that the conclusion were not true, i.e., the zero solution

of (4.2.1) is stable. Let V (t, x) ∈ C1[GH,R
1], which satisfies the conditions (1)

and (2). Then, ∀a > 0, there exists δ = δ(α) > 0 such that

∥
∥x(t, t0, x0)

∥
∥

2
< a (t � t0) when ‖x0‖ < δ,

because V (t, x) is positive definite for a fixed t . Then, there exists l > 0 such that

V (t0, x) � l when ‖x‖ � δ.

We take 0 < ε < l. By the given condition, ∃x and T � t0 such that

V (T , x) < ε when ‖x‖ = 2.

Let xT := x(T , t0, x0), ‖xT ‖2 = α. Then x0 = x(t0, T , xT ), which means that
‖x0‖ > δ. Otherwise, if ‖x0‖ � δ, then we have

α = ‖xT ‖2 = ∥
∥x(T , t0, x0)

∥
∥

2
< α.

This is impossible. So V (t0, x0) � l > ε > 0. By dV
dt
|(4.2.1) > 0,

ε � l � V (t0, x0) � V
(

T , x(T , t0, x0)
)

< ε.

This is a contradiction. Therefore, the zero solution of (4.2.1) is unstable. �

4.5. Sufficient conditions for stability

In this section, we present some sufficient conditions for stability.
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THEOREM 4.5.1. If there exist a positive definite function V (t, x) ∈ C1[GH,R
1]

with infinitesimal upper bound and a negative definite function V1(t, x) ∈ C[GH,

R1] such that in any fixed region 0 < λ � ‖x‖ � μ � H , ∀δ > 0, ∃t∗(δ), when
t ≥ t∗,

(4.5.1)
dV

dt

∣
∣
∣
∣
(4.2.1)

< V1(t, x)+ δ.

Then the zero solution of (4.2.1) is stable.

PROOF. By the given conditions of Theorem 4.5.1, we know that there exist func-
tions ϕ1, ϕ2, ϕ3 ∈ K such that

0 < ϕ1
(‖x‖) � V (t, x) � ϕ2

(‖x‖) for x �= 0,

V1(t, x) � −ϕ3
(‖x‖).

∀ε > 0, let

ε1 := ϕ−1
2

(

ϕ1(ε)
)

, λ := inf
‖x‖� ε1

2

ϕ3
(‖x‖),

and take δ = λ
2 . From the given conditions of the theorem we know that when

ε1
2 � ‖x‖ � H , for this δ > 0, ∃t∗(δ), where t � t∗, we have

dV

dt

∣
∣
∣
∣
(4.2.1)

< V1
(

t, x(t)
)+ δ

� −ϕ3
(∥
∥x(t)

∥
∥
)+ δ

� − inf
‖x‖� ε1

2

ϕ3
(∥
∥x(t)

∥
∥
)+ δ

= −λ
2
< 0.

Therefore, when ‖x(t∗, t0, x0)‖ := ‖x(t∗)‖ � ε1 for t � t∗, we have

ϕ1
(∥
∥x(t)

∥
∥
)

� V
(

t, x(t)
)

< V
(

t∗, x
(

t∗
))

� ϕ2
(∥
∥x
(

t∗
)∥
∥
)

� ϕ2(ε1).

Furthermore, we can show that ‖x(t)‖ � ϕ−1
1 (ϕ2(ε1)) = ε holds in a finite

interval [t0, t∗]. Then, by the continuity of Theorem 1.1.2 we only need ‖x0‖ �
η 	 1. Thus, ‖x(t, t0, x0)‖ � ε1, t � t0, and so the zero solution of (4.2.1) is
stable. �

REMARK 4.5.2. Theorem 4.5.1 is a generalization of the following Malkin’s the-
orem [300].
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MALKIN’S THEOREM. (See [300].) If there exists a positive definite V (t, x) with
infinitesimal upper bound and negative definite V1(t, x) such that

(4.5.2)lim
t→∞

(
dV

dt
− V1

)

= 0,

then the zero solution of (4.2.1) is stable.

Obviously, (4.5.2) holds if and only if ∀δ > 0, ∃t∗(δ), when t � t∗,

(4.5.3)V1(t, x)− δ <
dV

dt
< V1(t, x)+ δ.

The following example removes the restriction on the left-hand side of (4.5.3)
and admits dV

dt
being variable.

EXAMPLE 4.5.3. Consider the system

dxi

dt
=
(

1

1+ t
+ sin t − | sin t |

)( n
∑

j=1

aij xj

)

− x2n−1
i ,

(4.5.4)i = 1, 2, . . . , n,

where aij (i, j = 1, . . . , n) are constants, and the general quadratic form

xT Ax =
n
∑

i,j=1

aij xixj

is positive semi-definite, then the zero solution of (4.5.4) is stable.
In fact, choosing the Lyapunov function

V = 1

2

n
∑

i=1

x2
i ,

and evaluating the derivative along the solution of (4.5.4) yields

dV

dt

∣
∣
∣
∣
(4.5.4)

=
n
∑

i=1

xi ẋi

=
n
∑

i=1

[(
1

1+ t
+ sin t − | sin t |

)] n
∑

j=1

(aij xixj − x2n
i

(4.5.5)=
(

1

1+ t
+ sin t − | sin t |

)

xT Ax −
n
∑

i=1

x2n
i .
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Let

V1 = −
n
∑

i=1

x2n
i .

Obviously, V is positive definite with infinitesimal upper bound and V1 is negative
definite, but

(4.5.6)
dV

dt
= V1 +

(
1

1+ t
+ sin t − | sin t |

)

xT Ax

in any region λ � ‖x‖ � μ, satisfying

lim
t→+∞

(
dV

dt
− V1

)

�= 0.

But the conditions of Theorem 4.5.1 are satisfied, because dV
dt
− V1 � 1

1+t x
T Ax

and xT Ax is bounded. So the zero solution of (4.5.4) is stable.

THEOREM 4.5.4. (See [411].) Assume that

(1) h(t) ∈ C[I, R+], g(t) ∈ [I, R1]. 1
h(s)

and g(s) are integral functions on I,

and
∫ +∞
t0

g(t) dt is convergent;

(2) there exist V (t, x) ∈ C[GH,R
1] with V (t, 0) ≡ 0, ϕ1(‖x‖ � V (t, x)), when

T � 1, ϕ1 ∈ K , such that for arbitrary λ ∈ (0, ρ) (0 < ρ 	 1),

(4.5.7)
dV

dt

∣
∣
∣
∣
(4.2.1)

� g(t)h
(

V (t, x)
)

holds for ∀t � T , 0 < λ � V � ρ;

then the zero solution of (4.2.1) is stable.

PROOF. Given ε > 0 such that ε1 := ϕ1(ε) ∈ (0, ρ). Let

λ = 1

2
ε1, H(s) =

s∫

t0

dt

h(t)
(0 � t0 	 1).

h(t) � 0 implies H(ε1) − H(λ) > 0 by condition (1). Therefore, we know that
∃T > 0 such that

(4.5.8)

∣
∣
∣
∣
∣

t ′′∫

t ′
g(t) dt

∣
∣
∣
∣
∣
< H(ε1)−H(λ) ∀t ′, t ′′ ∈ [T ,∞).
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First, we prove that there exists δ1 < λ such that when VT = V (T , x(T )) < δ1,

(4.5.9)V (t) := V
(

t, x(t)
)

< ε1 = ϕ1(ε) for t � T .

Otherwise, we have t2 > t1 � T such that ∀t ∈ [t1, t2],
(4.5.10)V (t1) = λ � V (t) � V (t2) = ε1.

From (4.5.7), (4.5.9) and (4.5.10) we obtain

H(ε1) = H
(

V (t2)
)

� H
(

V (t1)
)+

∣
∣
∣
∣
∣

t2∫

t1

g(t) dt

∣
∣
∣
∣
∣

� H(λ)+ (

H(ε1)−H(λ)
)

= H(ε1).

Therefore (4.5.9) is valid. So we have

ϕ1
(∥
∥x(t, T , xT )

∥
∥
)

� V
(

t, x(t, T , xT )
)

< ϕ1(ε),

i.e., when VT < δ1,

(4.5.11)
∥
∥x(t, T , xT )

∥
∥ < ε ∀t � T .

Since V (t, x) is continuous, V (t, 0) ≡ 0, for the above-chosen δ1, there exists
δ2 < ε, when ‖xT ‖ < δ2,

0 < V (t, xT ) < δ1.

Using Theorem 1.1.2, for δ2, ∃δ, when ‖x0‖ < δ < r , we have

(4.5.12)
∥
∥x(t, t0, x0)

∥
∥ < δ2 < ε ∀t ∈ [t0, T ].

Combining (4.5.11) and (4.5.12) shows that the zero solution of (4.2.1) is stable.
Theorem 4.5.4 is proved. �

THEOREM 4.5.5. If the conditions in Theorem 4.5.4 hold and, in addition, there
exists ϕ2(‖x‖) ∈ K such that

V (t, x) � ϕ2
(‖x‖),

then the zero solution of (4.2.1) is uniformly stable.

By using the same method used for proving Theorem 4.5.4, one can easily
prove Theorem 4.5.5.
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EXAMPLE 4.5.6. Consider the system:

dx1

dt
= 1

1+ t2
x1
(

ex
2
1+x2

2 + 1
)− (sin t)x2,

(4.5.13)
dx2

dt
= (sin t)x1 + 1

1+ t2
x2
(

ex
2
1+x2

2 + 1
)

.

Take V (x1, x2) = x2
1 + x2

2 . Then,

dV

dt
= 2

1+ t2

(

V eV + V
)

.

Let

g(t) = 2

1+ t2
, ϕ1 = ϕ2 = x2

1 + x2
2 , h(v) = V eV + V,

∫ +∞
t0

g(t) dt is convergent, and 1
h(t)

and g(t) are integrated in [t0,+∞).
According to Theorem 4.5.5, the zero solution of (4.5.13) is uniformly stable.

THEOREM 4.5.7. Suppose that there exist positive definite function V (t, x) ∈
C1[GH,R

1], W(x) ∈ C1[GH,R
1] and θ(t) ∈ [I, R1] such that

dV

dt

∣
∣
∣
∣
(4.2.1)

� 0,
dU

dt

∣
∣
∣
∣
(4.2.1)

� 0,

where U(t, x) := V (t, x) − θ(t)W(t), θ(t) is a monotonic increasing function,
and

θ(t0) = 1, lim
t→+∞ θ(t) = +∞.

Then the zero solution of (4.2.1) is uniformly stable and is attractive.

PROOF. (1) If V (t, x)− θ(t)W(x) = 0, then

W
(

x(t)
) = V (t, x(t))

θ(t)
,

dV (t, x)

dt

∣
∣
∣
∣
(4.2.1)

� 0.

So V (t, x(t)) is monotonically decreasing. But θ(t) is a monotone increasing
function, so it follows that

dW(x(t))

dt

∣
∣
∣
∣
(4.2.1)

� 0.

This implies that the zero solution of (4.2.1) is stable. Owing to W(x) being pos-
itive definite, there exists ϕ ∈ K such that

ϕ
(∥
∥x(t)

∥
∥
)

� W
(

x(t)
) = V (t, x(t))

θ(t)
→ 0 as t →+∞.
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Thus, ‖x(t)‖ → 0 as t →+∞, i.e., the zero solution of (4.2.1) is attractive.
(2) If V (t, x)− θ(t)W(t) = U(t, x) �= 0, dU

dt
|(4.2.1) � 0. Let

Ṽ (t, x) := V (t, x)− U(t, x) = θ(t)W(x).

Then,

Ṽ (t, x)− θ(t)W(t) ≡ 0,

and so

dṼ

dt

∣
∣
∣
∣
(4.2.1)

= dV

dt

∣
∣
∣
∣
(4.2.1)

− dU

dt

∣
∣
∣
∣
(4.2.1)

� 0.

By the proof of (1) we know that the zero solution of (4.2.1) is stable and attrac-
tive.

The theorem is proved. �

EXAMPLE 4.5.8. Discuss the stability of the zero solution of the equation:

(4.5.14)
dx

dt
= − x

1+ t
.

We choose the positive definite function V (t, x) = (1 + t)x2 with no infin-
itesimal upper bound. Let W(x) = x2 and θ(t) = 1 + t . Then, U(t, x) =
V (t, x)− θW(x) ≡ 0, and

dV

dt

∣
∣
∣
∣
(4.5.1)

= −x2,
dU

dt
� 0.

So the zero solution of (4.5.14) is uniformly stable and attractive.
In the following, we consider the n-dimensional autonomous system:

(4.5.15)
dx

dt
= f (x), f (0) = 0,

where

x = (x1, x2, . . . , xn)
T ∈ Rn, f = (f1, f2, . . . , fn)

T ∈ C[ΩH,R
n
]

,

ΩH :=
{

x: ‖x‖ � H
}

.

THEOREM 4.5.9. (See [215].) Assume that

(1) there exist two positive number series {rk}, {ηk} with

lim
k→∞ rk = 0, ηk < rk;
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(2) there exists a positive definite function V (x) ∈ C1[ΩH,R
1] such that

dV

dt

∣
∣
∣
∣
(4.5.15)

� 0

(

x ∈ Dk := {x | rk � V (t) � rk − ηk > 0, k = 1, 2, . . .}).
Then the zero solution of (4.5.15) is stable.

PROOF. The theorem is illustrated in Figure 4.5.1. ∀ε > 0, ε < H , let l =
inf‖x‖=ε V (t) > 0. Since limk←∞ rk = 0, there exists K > 0, when k > K ,
rk < l holds. Take K̃ = K + 1. Due to limx→0 V (x) = 0, for rk > 0, ∃δ,
0 < δ < ε, when ‖x‖ < δ, we have

V (x) < r
k̃
− η

k̃
.

Now, we prove that for all t � t0, when ‖x0‖ < δ,
∥
∥x(t, t0, x0)

∥
∥ < ε, t � t0.

Otherwise, when 0 < t − t0 	 1, ‖x(t, t0, x0)‖ < ε holds, but ∃t∗ > t0 such
that ‖x(t∗, t0, x0)‖ = ε. By the mean value theorem of continuous function, there
must exist t2 > t1 > t0 such that

V
(

x(t1, t0, x0)
) = r

k̃
− η

k̃
,

V
(

x(t2, t0, x0)
) = r

k̃
.

Thus,

V
(

x(t1, t0, x0)
)

< V
(

x(t2, t0, x0)
)

.

Figure 4.5.1. Geometric expression of Theorem 4.5.9.
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However, on the other hand, since dV
dt
|(4.5.15) � 0 for r

k̃
− η

k̃
� V (t) � r

k̃
,

V (x(t, t0, x0)) is decreasing, implying that V (x(t2, t0, x0)) � V (t1, t0, x0). Thus
the zero solution of (4.5.15) is stable. �

REMARK 4.5.10. Theorem 4.5.9 is also valid for the case of a variable sign func-
tion dV

dt
.

EXAMPLE 4.5.11. Analyze the stability of the zero solution of the system:

dx

dt
=
{

−y + x(x2 + y2) sin( 1
x2+y2 ) when x2 + y2 �= 0,

−y when x2 + y2 = 0,

(4.5.16)
dy

dt
=
{

x + y(x2 + y2) sin( 1
x2+y2 ) when x2 + y2 �= 0,

x when x2 + y2 = 0.

Construct a positive definite Lyapunov function V = (x2 + y2), so

dV

dt

∣
∣
∣
∣
(4.5.16)

= 2
(

x2 + y2)2 sin

(
1

x2 + y2

)
(

when x2 + y2 �= 0
)

.

Taking

rk = 1

2kπ + 3π
2

> 0,

ηk = π/4

(2kπ + 3π
2 )(2kπ + 3π

2 + π
4 )

> 0 (k = 1, 2, . . .),

we have

lim
k→∞ rk = 0,

dV

dt

∣
∣
∣
∣
(4.5.16)

< 0

when rk − ηk � x2 + y2 � rk . All the conditions of Theorem 4.5.9 are satisfied,
and so the zero solution of (4.5.16) is stable.

REMARK 4.5.12. Let x = r cos θ , y = r sin θ . Then, system (4.5.16) can be
rewritten as

(4.5.17)

⎧

⎨

⎩

dr
dt
=
{

r3 sin 1
r2 when r �= 0,

0
dθ
dt
= 1.

Obviously, system (4.5.17) has a sequence of closed orbits, i.e., it has infinite
number of periodic solutions. Other trajectories are family of spirals.
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EXAMPLE 4.5.13. Study the stability of the zero solution of the system:
{

dx
dt
= −x(x2 + y2

)[

1− cos ln
(

x2 + y2
)− sin ln(x2 + y2)

]

dy
dt
= −y(x2 + y2

)[

1− cos ln
(

x2 + y2
)− sin ln

(

x2 + y2
)]

(4.5.18)when x2 + y2 �= 0;
{

dx
dt
= 0

dy
dt
= 0

when x2 + y2 = 0.

Choose a positive Lyapunov function V = x2 + y2. Then,

dV

dt

∣
∣
∣
∣
(4.5.17)

= −2
(

x2 + y2)2
[

1−√2 sin

(
π

4
+ ln

(

x2 + y2)
)]

.

Taking rk = e−2kπ− π
4 > 0, ηk = e−2kπ (e− π

4 − e− π
2 ) results in

lim
k→∞ e−2kπ− π

4 = 0,

and so dV
dt
|(4.5.17) < 0 when e−2kπ−π/2 � x2 + y2 � e−2kπ−π/4, implying that

the zero solution of (4.5.17) is stable.

4.6. Sufficient conditions for asymptotic stability

In this section, we present some sufficient conditions for asymptotic stability.

THEOREM 4.6.1. If there exist functions V (t, x) ∈ C[RH ,R1], negative semi-
definite function θ(t, x) ∈ C[RH ,R1] and positive definite function W(x) ∈
C[ΩH,R

1], such that

(1) V (t, x)− θ(t, x)W(x) � 0;
(2) θ(t, x)→+∞ as t →+∞ holds uniformly for x;
(3) dV

dt
|(4.2.1) � 0;

then the zero solution of (4.2.1) is asymptotically stable.

PROOF. Condition (2) implies that θ(t, x) � 1 holds uniformly for x when t � 1.
So V (t, x) � W(x), i.e., V (t, x) is positive definite. By conditions (3) we know
that the zero solution is stable.

Since W(x) is positive definite, there exists ϕ ∈ K such that W(x) � ϕ(‖x‖).
By condition (3), V (t, x(t)) is monotone decreasing and bounded. Hence, there
exists a constant M > 0 such that

M � V
(

t, x(t)
)

� θ
(

t, x(t)
)

W
(

x(t)
)

� θ
(

t, x(t)
)

ϕ
(∥
∥x(t)

∥
∥
)

.
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Therefore,

ϕ
(∥
∥x(t)

∥
∥
)

� M

θ(t, x(t))
.

∀ε > 0, ϕ(ε) > 0, there exists T , when t > T ,

θ
(

t, x(t)
)

>
M

ϕ(ε)
,

i.e., ϕ(ε) > M
θ(t,x(t))

. Thus, ϕ(‖x(t)‖) < ϕ(ε), and so

∥
∥x(t)

∥
∥ < ε,

i.e.,

lim
t→∞ x(t) = 0.

This implies that the zero solution of (4.2.1) is asymptotically stable.
The proof is complete. �

REMARK 4.6.2. Theorem 4.6.1 is a generation of Theorem 4.5.7.

EXAMPLE 4.6.3. Consider the asymptotic stability of the solution of the system

(4.6.1)
dx

dt
= − x

t + sin x

in [t0,+∞).
Choose V (t, x) = (t + sin x)x2, θ(t, x) = t + sin x (t0 � 2). Then,

dV

dt
= 2(t + sin x)x

( −x
t + sin x

)

+ x2
(

1− cos x · x

t + sin x

)

= −2x2 + x2
(

1− x cos x

t + sin x

)

= −x2
(

1+ x cos x

1+ sin x

)

� 0
(‖x‖ 	 1

)

.

Hence, when ‖x‖ � H 	 2, t � t0 � 1, the conditions of Theorem 4.6.1 are
satisfied. Therefore, the zero solution of (4.6.1) is asymptotically stable.

THEOREM 4.6.4. Assume that (4.2.1) satisfies the following conditions: f (t, x)
is bounded for t � 0, ‖x‖ � H , and there exists a positive definite function
V (t, x) ∈ C1[GH,R

1] such that dV
dt
|(4.2.1) is negative definite, then the zero solu-

tion of (4.2.1) is asymptotically stable.
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PROOF. Obviously, the conditions of Theorem 4.6.4 imply that the zero solution
of (4.2.1) is stable. Thus, we only need to prove that the zero solution of (4.2.1)
is attractive.

Otherwise, there exists an infinite sequence {tm}, where tm →+∞ as m→∞
such that for certain ε > 0, ‖x(tm, t0, x0)‖ � ε holds. By the boundedness of
f (t, x), there exists a constant k > 0 such that

∣
∣ẋ(t)

∣
∣ < k.

So in the close interval [tm − ε
2k , tm + ε

2k ], we have

x(t) = x(tm)+ ẋ(ξ)(t − tm) where ξ ∈
[

tm − ε

2k
, t − tm + ε

2k

]

,

∣
∣x(t)

∣
∣ � ε − k

(
ε

2k

)

= ε

2
.

Thus, in these intervals, there exists a constant c > 0 such that dV
dt

� −c. Without
loss of generality, suppose that t1 − ε

2k > t0 and these intervals do not intersect.
Then, we obtain

V

(

tm + ε

2k

)

− V (t0) =
tm+ ε

2k∫

t0

dV

dt
dt �

m
∑

k=1

tk+ ε
2k∫

tk− ε
2k

dV

dt
dt

� −cmε

k
→−∞ as m→∞,

which contradicts the fact that V (t, x) is positive definite. So the zero solution
of (4.2.1) is asymptotically stable. �

THEOREM 4.6.5. Consider (4.2.1) for t � 0 and assume that ‖x‖ � H satisfies
the following conditions:

(1) there exists positive definite function W(x) such that

(4.6.2)
dW

dt

∣
∣
∣
∣
(4.2.1)

=
n
∑

i=1

∂W

∂xi
fi(t, x) =

(
∂W

∂x
· f (t, x)

)

has upper bound or lower bound;
(2) there exists a positive definite function V (t, x) such that dV

dt
|(4.2.1) is negative;

then the zero solution of (4.2.1) is asymptotically stable.

PROOF. The condition (2) in Theorem 4.6.5 implies that the zero solution
of (4.2.1) is stable. So we only need to prove the attraction of zero solution
of (4.2.1).
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Consider the case of ( ∂W
∂x
, f (t, x)) with the upper bound. By the method of

reducing into a contradiction, suppose that the zero solution is not attractive. Then,
there exists an infinite sequence {tm}, tm →+∞ as m→∞, such that for certain
ε > 0,

(4.6.3)
∥
∥x(tm, t0, x0)

∥
∥ � ε.

By condition (1) of the theorem, there exists δ > 0 such that

(4.6.4)W
(

x(tm, t0, x0)
)

� δ

holds for all natural numbers, and there exists a constant k > 0 such that

(4.6.5)
dW(x(t))

dt
=
(
∂W

∂x
, f (t, x)

)

< k.

Next, we prove that ∀t ∈ [tm − δ
2k , tm],

(4.6.6)W
(

x(t)
)

� δ

2
.

In fact, otherwise, there exists t̄ ∈ [tm − δ
2k , tm] such that

W
(

x
(

t̃
))

<
δ

2
.

By the mean value theorem, there exists t∗ ∈ (t̄ , tm) such that

(4.6.7)
dW(x(t∗))

dt
= W(x(tm))−W(x(t̃0))

tm − t
�

δ − δ
2

δ
2k

= k,

which is a contradiction with (4.6.5). So (4.6.6) is true. By the property of W(x),
there exists η > 0 such that

∥
∥x(t)

∥
∥ � η > 0

holds for all natural numbers and for all t ∈ [tm − δ
2k , tm]. Since dV

dt
|(4.2.1) is

negative definite, there exists a constant c > 0 such that

dV

dt

∣
∣
∣
∣
(4.2.1)

� −c

is true for all t ∈ [tm − δ
2k , tm].

Without loss of generality, let t1− δ
2k > t0. Suppose that the above intervals do

not intersect. Then,

V (tm)− V (t0) =
tm∫

t0

dV

dt
dt �

m
∑

i=1

ti∫

ti− δ
2k

dV

dt
dt
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� −cm δ

2k
→−∞ as m→∞,

which contradicts that V (t, x) is positive definite. So the zero solution is asymp-
totically stable.

For the case of ( ∂W
∂x
, f (t, x)) having a lower bound, the proof is similar.

Suppose that there exists k > 0 such that

(4.6.8)
dW(x(t))

dt
=
(
∂W

∂x
, f (t, x)

)

> −k.
Using (4.6.4) and (4.6.8) one can obtain

(4.6.9)W
(

x(t)
)

� δ

2

for ∀t ∈ [tm, tm + δ
2k ]. Otherwise, ∃t̃ ∈ [tm, tm + δ

2k ] such that

W
(

x
(

t̄
))

<
δ

2
.

By the mean value theorem, ∃t∗ ∈ (tm, t̃) such that

dW(x(t∗))
dt

= W(t̃)−W(tm)

t̃ − tm
= −W(tm)−W(t̃)

t̃ − tm

(4.6.10)� −δ −
δ
2

δ
2k

= −k.

This contradicts that W(x(t)) > −k. So W(x(t)) � δ
2 . Then, we only need to

replace [tm − δ
2k , tm] by [tm, tm + δ

2k ]. Similar to the case of ( ∂W
∂x
, f (t, x)) with

an upper bound, we obtain

∥
∥x(t)

∥
∥ � η > 0,

dV

dt

∣
∣
∣
∣
(4.2.1)

� −c,

V (tm)− V (t0) =
tm∫

t0

dV

dt
dt �

m
∑

i=1

ti+ δ
2k∫

ti

dV

dt
dt � −cm δ

2k
→−∞

∀t ∈ [tm, tm + δ
2k ]. This is impossible, because V (t, x) is positive definite. So the

zero solution is asymptotically stable �

REMARK 4.6.6. Theorem 4.6.5 includes Theorem 4.6.4 as a special case.

EXAMPLE 4.6.7. Consider the asymptotic stability of the zero solution of system

(4.6.11)

{
dx
dt
= −x

1+t + t2y2k−1 − tx2r−1 + 1
t
xy2k,

dy
dt
= y

1+t − t2x2k−1 − ty2r−1 + 1
t
x2ky,
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where 0 < τ < t < +∞, τ = constant, r and k are natural numbers.

PROOF. To prove that the zero solution of (4.6.11) is asymptotically stable,
choose a positive definite Lyapunov function:

(4.6.12)V (t, x, y) = (1+ t)
(

x2k + y2k) � x2k + y2k

with no infinitesimal upper bound when

x2k + y2k � α2 := τ

2(1+ τ)
.

From

4k

(

1+ 1

τ

)

x2ky2k

= −2k

(

1+ 1

τ

)
(

x2k − y2k)2 + 2k

(

1+ 1

τ

)
(

x4k + y4k)

(4.6.13)� −2k

(

1+ 1

τ

)
(

x2k − y2k)2 + k
(

x2k + y2k),

we obtain

dV

dt

∣
∣
∣
∣
(4.6.11)

= (

x2k + y2k)+ 2k(1+ t)
(

x2k−1ẋ + y2k−1ẏ
)

= (

x2k + y2k)+ 2k(1+ t)

×
[

−x
2k + y2k

1+ t
− t

(

x2(k+r−1) + y2(k+r−1))+ 1

t
x2ky2k

]

< (1− 2k)
(

x2k + y2k)− 2kτ(1+ τ)
[

x2(k+r−1)

+ y2(k+r−1)]+ 4k

(

1+ 1

τ

)

x2ky2k

� −(2k − 1− k)
(

x2k + y2k)

(4.6.14)− 2kτ(1+ τ)
[

x2(k+r−1) + y2(k+r−1)].

So dV
dt
|(4.6.11) is negative definite.

Let W(x) = x2k + y2k . W(x) is positive definite and ∂W
∂x
= 2k(x2k−1, y2k−1).

Thus,
(
∂W

∂x
, f (t, x)

)

= 2k
(

x2k−1ẋ + y2k−1ẏ
)

= 2k

[

−x
2k + y2k

1+ t
− t

(

x2(k+r−1) + y2(k+r−1))+ 2

t
x2ky2k

]
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� 4k

τ
x2ky2k � 2k

τ

(

x2k + y2k)2 � 2k

τ
α4,

indicating that ( ∂W
∂x
, f (t, x)) has an upper bound, according to Theorem 4.6.4.

Hence, the zero solution is asymptotically stable. �

For autonomous systems, the Lyapunov asymptotic stability theorem has been
generalized [21,192].

Consider the n-dimensional autonomous system (4.5.15).

DEFINITION 4.6.8. The set E = {x | x(t, t0, x0), t � t0} is called positive half
trajectory with x(t0, t0, x0) = x0; when x0 �= 0, E is called nontrivial positive
half trajectory; x∗ ∈ ΩH is called ω-limit point of positive half trajectory, if there
exists a sequence {tk} (tk →+∞ as k→∞) such that

(4.6.15)x∗ = lim
tk→∞

x(tk, t0, x0).

The set consisting of ω-limit point is denoted by Ω(t0).

For example, if x = 0 is asymptotically stable, then x = 0 is an ω-limit point
of all positive half trajectory x(t, t0, x0), x0 in attractive basin of x = 0.

LEMMA 4.6.9. Let x∗ be ω limit point of x(t, t0, x0). Then, all the points of
positive half trajectories x(t, t0, x∗) are ω limit points of positive half trajectory.
Therefore, Ω is constituted by full positive half trajectories.

PROOF. Since there exists a sequence {tn} → ∞ as n→∞ such that

x∗ = lim
n→∞ x(tn, t0, x0).

Let x(τ, t0, x∗) be an arbitrary point on the trajectory x(t, t0, x∗). By the Group’s
property of autonomous systems, we have

x(tn + τ, t0, x0) = x
(

τ, t0, x(tn, t0, x0)
)

.

Furthermore,

lim
n→∞ x(tn + τ, t0, x0) = lim

n→∞ x
(

τ, t0, x(tn, t0, x0)
) = x

(

τ, t0, x
∗)

holds, i.e., x(τ, t0, x∗) is also an ω-limit point of x(t, t0, x∗).
Lemma 4.6.9 is proved. �

THEOREM 4.6.10. If there exists positive definite function V (x(t)) ∈ C1[D,R1]
such that

(4.6.16)
dV

dt

∣
∣
∣
∣
(4.5.15)

� 0,
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then the set M := {x| dV
dt
|(4.5.15) = 0, x ∈ D} excludes x = 0, i.e., it does not

include all positive half trajectories which are nonzero. Then, the zero solution of
(4.5.15) is asymptotically stable.

PROOF. Obviously, the conditions in Theorem 4.6.10 imply the conditions of
Lyapunov stability theorem (see Theorem 4.4.2) for autonomous cases. So the
zero solution is stable. ∀ε > 0 (0 < ε < H), ∃δ(ε), when ‖x0‖ < δ,
‖x(t, t0, x0)‖ < ε < H holds. By the Weierstrass accumulation principle we
know that the ω limit point set Ω(t0) is not empty and so Ω(t0) is bounded.

Now prove Ω(t0) = {0}. Otherwise, there exists {tn}, tn →∞ as n→∞ such
that

lim
n→+∞ x(tn, t0, x0) = x∗ �= 0.

By the property of positive definiteness of V (x(t)) and negative semi-definiteness
of dV

dt
, V (x(t, t0, x0)) is monotone decreasing, negative, and continuous. Hence,

we have

(4.6.17)lim
t→+∞V

(

x(t, t0, x0)
) = V

(

x∗
)

> 0.

Consider the trajectory x(t, t0, x∗). Since

dV

dt

∣
∣
∣
∣
(4.5.15)

� 0,

we have

V
(

x
(

t, t0, x
∗)) � V

(

x∗
)

.

If for all t � t0, V (x(t, t0, x∗0 )) ≡ V (x∗0 ) is true, then dV
dt
|(4.5.15) ≡ 0. Then, there

is no trivial full positive half trajectory

x
(

t, t0, x
∗) ⊂ M.

This is impossible. Thus, there exists t1 � t0 such that

V
(

x
(

t1, t0, x
∗)) < V

(

x∗
)

.

Lemma 4.6.9 shows that ∀t1 > t0, x(t1, t0, x∗) is anω-limit point of x(t, t0, x0).
Hence, there exists {t∗n }, t∗n → t1 as n→∞ such that

lim
n→∞ x

(

t∗n , t0, x0
) = x

(

t1, t0, x
∗).

It follows that

(4.6.18)lim
n→∞V

(

x
(

t∗n , t0, x0
)) = V

(

x
(

t1, t0, x
∗)) < V

(

x∗
)

,
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which contradicts (4.6.17), so Ω = {0}, i.e.,

lim
t→∞ x(t, t0, x0) = lim

t→∞
x(t, t0, x0) = 0 = lim

t→∞ x(t, t0, x0).

The proof of Theorem 4.6.10 is complete. �

EXAMPLE 4.6.11. Consider the stability of the equilibrium for a single pendu-
lum system with damping:

(4.6.19)
d2ϕ

dt2
+ H

m

dϕ

dt
+ g

l
sinϕ = 0,

where H > 0 is the damping coefficient, m is the mass of the pendulum, l is the
length of the pendulum, and g is the gravity constant. θ = 0 is an equilibrium, as
shown in Figure 4.6.1.

Solution: Let x = ϕ, y = dϕ
dt

. Then, equation (4.6.19) can be rewritten as

(4.6.20)

{
dx
dt
= y,

dy
dt
= − g

l
sin x − H

m
y.

Choose a Lyapunov function:

(4.6.21)V = 1

2
y2 + g

l
(1− cos x).

When 0 < x2 + y2 � 1, V is positive definite, and

dV

dt

∣
∣
∣
∣
(4.6.20)

= ∂V

∂x
y + ∂V

∂y

[

−g
l

sin x − H

m
y

]

= −H
m
y2 � 0.

Figure 4.6.1. Single pendulum.
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Letting dV
dt
= 0 yields

M = {y | y = 0}.
But y = 0 does not include full nonzero positive half trajectories. So the equilib-
rium θ = 0 of (4.6.21) is asymptotically stable.

THEOREM 4.6.12. (See [21].) Assume that there exists V (x) ∈ C1[Rn,R1],
which is positive definite and radially unbounded, and

dV

dt

∣
∣
∣
∣
(4.2.1)

� 0.

Then, the set M = {x| dV
dt
|(4.2.1) = 0} excludes x = 0, i.e., it does not include full

nonzero positive half trajectories. Then, the zero solution of (4.2.1) is globally
asymptotically stable.

PROOF. Obviously, the conditions of Theorem 4.6.12 imply that the zero solu-
tion of (4.2.1) is stable ∀x0 ∈ Rn and V (x(t, t0, x0)) � V (x0) holds, because
dV
dt
|(4.2.1) � 0.

Since V is a positive definite and radially unbounded function, ∀M > 0, ∃R
such that V (x) � R and V (x) � M holds. If V (x) � V (x0), ∃r > 0 such that
‖x‖ < r , then x(t, t0, x0) is in a compact set of Rn.

Following the proof of Theorem 4.6.10 one can show that

lim
t→∞ x(t, t0, x0) = 0.

The proof of Theorem 4.6.12 is complete. �

EXAMPLE 4.6.13. Prove that the zero solution of the system

(4.6.22)

⎧

⎪⎪⎨

⎪⎪⎩

dx
dt
= y,

dy
dt
= f (z)− az,

dz
dt
= −g(x)− by,

is globally asymptotically stable, where f (0) = g(0) = 0, a > 0, b > 0 are
constants. g(x) ∈ C1 and f (z) ∈ C satisfy

(1) xg(x) > 0 for x �= 0;
(2) zf (z) > 0 for z �= 0;
(3) ġ(x) < ab for x �= 0;
(4) V (t, x, z) = a

∫ x

0 g(ξ) dξ + yg(x) + ∫ z

0 f (η) dη + b
2y

2 → +∞ as (x2 +
y2 + z2)→∞.
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PROOF. Let

M(x, y) = a

x∫

0

g(ξ) dξ + yg(x)+ b

2
y2

:= aG(x)+ yg(x)+ bY (y)

=
[α√by(y)+ 1√

b
yg(x)]2

4Y(g)
+ 4aG(x)Y (y)− 1

b
y2g2(x)

4Y(g)
,

and

U(x, y) := 4aG(x)Y (y)− 1

b
y2g2(x)

= 4

x∫

0

g(x)

{ y∫

0

[

a − y′(t)
b

]

y dy

}

dx.

By conditions (1) and (3) we know that U(x, y) is positive definite. This implies
that M(t, y) is positive definite. Hence, V (x, y, z) is a positive definite and radi-
ally unbounded function, and

dV

dt

∣
∣
∣
∣
(4.6.22)

= y2[g′(x)− ab
]

� 0.

The set

M =
{

x, y, z,
dV

dt

∣
∣
∣
∣
(4.6.22)

= 0

}

= {y, y = 0}

does not include full nonzero positive half trajectory. Hence, the zero solution
of (4.6.22) is globally asymptotically stable. �

For general nonautonomous systems the above theorem is not true.

EXAMPLE 4.6.14. Consider the system

(4.6.23)

⎧

⎪⎪⎨

⎪⎪⎩

dx1

dt
= −3

1+ t2
x1 + 1

1+ t2
x2,

dx2

dt
= −1

1+ t2
x1 − 1

1+ t2
x2.

Taking V = 1
2 (x

2
1 + x2

2) we have

dV

dt

∣
∣
∣
∣
(4.6.23)

= − 3

1+ t2
x2

1 −
1

1+ t2
x2

2 � 0.
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M := {(t, x) | dV
dt
|(4.6.23) = 0} only includes {x1 = x2 = 0}, but the equation

admits a special solution:

x1(t) = x2(t) = e
−2

∫ t
t0

dξ

1+ξ2 = e−2[arctan(t)−arctan(t0)].

This special solution does not tend to zero as t → +∞. So the zero solution
of (4.6.23) is not asymptotically stable.

We again consider (4.2.1) but let (4.2.1) be a periodic system, i.e., ∃τ > 0 such
that f (t + τ, x) ≡ f (t, x).

THEOREM 4.6.15. (See [19].) Assume that there exists V (t, x) ∈ C1[GH,R
1]

with V (t + τ, x) ≡ V (t, x) such that

(1) V (t, x) is positive definite, i.e., there exists ϕ ∈ K such that V (t, x) �
ϕ(‖x‖);

(2) dV
dt
|(4.2.1) � 0;

(3) M := {(t, x) ∈ GH ∩ dV
dt
|(4.2.1) = 0} does not include nonzero full positive

half trajectory;

then the zero solution of (4.2.1) is uniformly asymptotically stable.

PROOF. The conditions in the theorem imply that the zero solution is stable. But
system (4.2.1) is periodic, so the stability is uniform, i.e.,

∀α > 0, ∃δ(α) > 0, when ‖x0‖ < δ,
∥
∥x(t, t0, x0)

∥
∥ � α.

Now, we prove that the zero solution is uniformly attractive. Since ‖x(t, t0, x0)‖
� α, the sequence

(4.6.24)x
(k)
0 := x(t0 + kτ, t0, x0)

has limit point x∗0 , i.e., there exists a convergent subsequence, still denoted by

{x{k}0 }, such that

lim
k→∞ x

(k)
0 = x∗0 .

First, we prove that x∗0 = 0. Otherwise, suppose x∗0 �= 0. Consider the solution
x(t, t0, x

∗
0 ). By condition (3) we know that there exists t∗ > t0 such that

(4.6.25)
dV (t∗, x(t∗, t0, x∗0 ))

dt
< 0.

Furthermore, for all t̃ � t∗ we have

(4.6.26)V
(

t∗, x
(

t∗, t0, x∗0
))

< V
(

t0, x
∗
0

)

.
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According to periodic propriety, we obtain

x
(

t∗, t0, x(k)0

) ≡ x
(

t∗ + kτ, t0 + kτ, x
(k)
0

)

≡ x
(

t∗ + kτ, t0 + kτ, x(t0 + kτ, x0, x0)
)

≡ x
(

t∗ + kτ, t0, x0
)

.

Without loss of generality, let t∗ = t0 + 2rτ . Using the periodic property of
V (t, x) with respect t we have

V
(

t0, x
∗) = lim

κ→∞V
(

t∗ + κτ, x
(

t∗ + kτ, t0, x0
))

= lim
κ→+∞V

(

t∗ + kτ, x(t∗ + kτ, t0, x0)
)

= lim
κ→∞V

(

t∗, x
(

t∗, t0, x(k)0

))

= V
(

t∗, x
(

t∗, t0, x∗0
))

(4.6.27)< V
(

t0, x
∗
0

)

.

This is a contradiction, and therefore x∗0 = 0.
Next, we prove that x∗0 = 0 implies limt→∞ x(t, t0, x0) = 0. Otherwise, there

exists {tn}, tn →∞ as n→∞ such that

lim
tn→∞

x(tn, t0, x0) = x̃ �= 0.

Therefore, on one hand, we have

lim
tn→∞

V
(

tn, x(tn, t0, x0)
) = lim

t→∞V
(

t, x(t, t0, x0)
)

= lim
k→∞V

(

t0 + kτ, x(t0 + kτ, t0, x0)
)

(4.6.28)= V
(

t0, x
∗
0

) = V (t0, 0) = 0,

but on the other hand, we have

lim
tn→∞

V
(

tn, x(tn, t0, x0)
)

� lim
tn→∞

ϕ
(∥
∥x(tn, t0, x0)

∥
∥
)

(4.6.29)= ϕ
(‖x̃‖) > 0.

This is a contradiction. Therefore x∗0 = 0, implying

lim
t→∞ x(t, t0, x0) = 0.

So the zero solution is attractive and is uniformly attractive by periodic propriety.
Therefore, the zero solution is uniformly asymptotically stable. �
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4.7. Sufficient conditions for instability

In this section, we introduce some sufficient conditions for instability.

THEOREM 4.7.1. If there exists V (t, x) ∈ C1[GH,R
1] with V (t, 0) = 0 such

that

(1) in any neighborhood of the origin of Rn, there exists a region such that V > 0
(t � t0);

(2) in region V > 0, V (t, x) is bounded;
(3) dV

dt
|(4.2.1) is positive definite in V > 0, i.e., ∀ε > 0, ∃l > 0 such that when

V � ε > 0,

(4.7.1)
dV

dt

∣
∣
∣
∣
(4.2.1)

� l > 0 ∀ t � t0

holds;

then the zero solution of (4.2.1) is unstable.

PROOF. Choose ε > 0, 0 < ε < H . ∀δ > 0, there exist x0 ∈ Sδ := {x, ‖x‖ < δ}
and t1 > t0 such that ‖x(t1, t0, x0)‖ � ε. Take x0 in the region V > 0, x0 ∈ Sδ ,
such that

V (t0, x0) > 0.

By condition (1), this is possible. Condition (2) implies that V (t, x(t, t0, x0)) �
V (t0, x0) > 0 for t � t0. If

∥
∥x
(

t, x(t, t0, x0)
)∥
∥ � V (t0, x0) > 0,

then due to condition (3) the trajectory x(t, t0, x0) stays in V > 0 ∀t ≥ t0. So
there exists l > 0 such that

dV (t, x(t))

dt

∣
∣
∣
∣
(4.2.1)

� l > 0.

Thus, by condition (2), we have

V
(

t, x(t)
) = V (t0, x0)+

t∫

t0

dV

dt
dt

(4.7.2)� V (t0, x0)+ l(t − t0)→+∞ as t →+∞.

This is impossible, therefore the zero solution of (4.2.1) is unstable. �

In the following we give two Lyapunov instability criteria, which are special
cases of Theorem 4.7.1.
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COROLLARY 4.7.2. (See [298].) If there exists V (t, x) ∈ C1[GH,R
1] with

V (t, 0) ≡ 0 such that

(1) condition (2) in Theorem 4.7.1 holds;
(2) V (t, x) has infinitesimal upper bound;
(3) dV

dt
|(4.2.1) is negative definite;

then the zero solution of (4.2.1) is unstable.

PROOF. By condition (2), there exists positive definite function W(x) such that
∣
∣V (t, x)

∣
∣ � W(x).

So ∀ε > 0, ∃δ(ε), when ‖x‖ < δ, we have
∣
∣V (t, x)

∣
∣ < ε ∀t > t0.

Hence, on the intersection set of certain neighborhood of the originOδ and V > 0,
V (t, x) is bounded, implying that the condition (2) in Theorem 4.7.1 holds.

Condition (3) implies that there exists a positive definite W(x) such that
dV
dt
|(4.2.1) � W(x). So ∀ε∗ > 0 on V � ε∗ and ‖x‖ � δ one can take

l = inf
δ�‖x‖�H

W(x).

Thus, dV
dt

� l > 0, i.e., dV
dt

is positive definite in V > 0. Thus, all conditions of
Theorem 4.7.1 are satisfied. Hence, the zero solution of (4.2.1) is unstable. �

COROLLARY 4.7.3. (See [298].) If there exists V (t, x) ∈ C1[GH,R
1] such that

(1) the condition (1) of Theorem 4.7.1 holds;
(2) V (t, x) is bounded in GH ;

(3)

(4.7.3)
dV

dt

∣
∣
∣
∣
(4.7.2)

= λV +W(t, x),

where λ > 0, W(t, x) � 0;

then the zero solution of (4.2.1) is unstable.

PROOF. Obviously, conditions (1) and (2) imply conditions (1) and (2) in Theo-
rem 4.7.1. ∀ε > 0, take l(ε) = λε. Then for V � ε,

dV

dt
� λε > 0.

Hence, condition (3) in Theorem 4.7.1 is satisfied. So the conclusion is true. �
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THEOREM 4.7.4. Assume that there exists V (t, x) ∈ C1[GH,R
1]with V (t, 0) =

0 such that

(1) in any neighborhood Bδ := {x, ‖x‖ < δ � H } of the origin there exists
region in which V > 0;

(2) in the region V > 0, V is bounded and

(4.7.4)
dV

dt

∣
∣
∣
∣
(4.2.1)

= ξ(t)K(V )+ U(t, x) � 0,

where ξ(t) is integrable in any bounded interval I and
∫ +∞
t0

ξ(t) dt = +∞,
K(V ) is a continuous function and when V > 0,K(V ) > 0 and U(t, x) � 0;

then the zero solution of (4.2.1) is unstable.

PROOF. According to condition (1), ∀δ > 0, one can take (t0, x0) such that
‖x0‖ < δ, V (t0, x0) = α > 0.

We now prove that for certain h that is 0 < h < H , there must exist t1 > t0
such that ‖x(t1, t0, x0)‖ > h. By condition (2),

V
(

t, x(t)
)

� V
(

t0, x(t0)
) = α > 0

holds. So x(t, t0, x0) stays in V > 0 ∀t ≥ t0.
Let ‖x(t, t0, x0)‖ � h < H for t � t0. By condition (2), we obtain

dV

dt

∣
∣
∣
∣
(4.2.1)

� ξ(t)K(V ).

Hence,

(4.7.5)

V (t,x(t))∫

V (t0,x0)

dV

K(V )
�

t∫

t0

ξ(t) dt →+∞ as t →+∞.

This implies V (t, x(t))→+∞ as t →+∞, which contradicts that V is bounded
in V > 0. Thus, ∃t1 such that ‖x(t1, t0, x0)‖ > h, i.e., the zero solution is unsta-
ble. �

EXAMPLE 4.7.5. Consider the stability of the zero solution of the system:

(4.7.6)

{
dx
dt
= 2

t+1 (x
2 + xy)ecos(x+y) + yesin t ,

dy
dt
= xesin t + y2ecos(x+y) (t � 0).

Let V (x, y) = x+y. Then in the positive definite regionD := {t � 0, x+y >
0}, as shown in Figure 4.7.1, one can show that

dV

dt

∣
∣
∣
∣
(4.7.6)

= dx

dt
+ dy

dt
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Figure 4.7.1. Illustration for Example 4.7.5.

= 2

t + 1

(

x2 + xy
)

ecos(x+y) + yesin t + xesin t + y2ecos(x+y)

= 1

1+ t
(x + y)2ecos(x+y) + x2

t + 1
ecos(x+y)

+ (x + y)esin t + y2ecos(x+y)
(

1− 1

t + 1

)

.

ξ(t) := 1

t + 1
> 0,

+∞∫

0

dt

1+ t
= +∞, K(V ) = V 2ecosV = (x + y)2ecos(x+y) > 0,

U(t, x, y) = y2
(

1− 1

t + 1

)

ecos(x+y) + (x + y)esin t

+ 1

1+ t
ecos(x+y) � 0.

According to Theorem 4.7.4 we know that the zero solution of (4.7.6) is unstable.

EXAMPLE 4.7.6. Analyze the stability of the zero solution of the system:

(4.7.7)

{
dx
dt
= x arctan(y − x2)+ x3 sin y − 1

t+1x
3,

dy
dt
= (4+ t)y arctan(y − x2)+ 2x2y (t � 0).
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Let V (x, y) = y − x2. Then D := {t, x, y | t � 0, y > x2} is a positive
definite region of V (x, y).

dV

dt

∣
∣
∣
∣
(4.7.7)

= (4+ t)y arctan
(

y − x2)+ 2x2y

− 2x

[

x arctan
(

y − x2)+ x3 sin y − 1

t + 1
x3
]

= 2
(

y − x2) arctan
(

y − x2)+ (2+ t)y arctan
(

y − x2)

+ 2x2y − 2x4 sin y + 2

t + 1
x4 � 0

in D.

ξ(t) := 2 > 0,

+∞∫

0

ξ(t) dt = +∞,

K(V ) = V arctanV = (

y − x2) arctan
(

y − x2) > 0,

U(t, x, y) = (2+ t)y arctan
(

y − x2)+ 2x2y − 2x4 sin y + 2

t + 1
x4

> (2+ t)y arctan
(

y − x2)+ 2x4(1− sin y)+ 2

1+ t
x4 > 0.

So the zero solution of (4.7.7) is unstable.

THEOREM 4.7.7. Suppose that there exist V (t, x) ∈ C1[GH,R
1] with V (t, 0) ≡

0 and ϕ(‖x‖) ∈ K such that

(1) in any neighborhood of the origin and I , there exist t and x such that
V (t, x) > 0;

(2) in region V (t, x) > 0,

(4.7.8)
dV

dt

∣
∣
∣
∣
(4.2.1)

� η
(

V (t, x), t
)

� 0, 0 � V (t, x) � ϕ
(‖x‖)

holds, where η(V, t) � 0, when α1 > α2, η(α1, t) � η(α2, t) and for any
α > 0,

∫ t

t0
η(α, t) dt is not bounded;

then the zero solution of (4.2.1) is unstable.

PROOF. We wish to prove that for certain ε > 0 (ε < H), ∀δ > 0 (δ < ε),
∃x0 ∈ Bδ := {x, ‖x‖ < δ} and t1 > t0 such that ‖x(t1, t0, x0)‖ � ε.

Otherwise, let ‖x(t, t0, x0)‖ < ε, t � t0. By condition (1) we know that
∃t1 � t0 and x1 ∈ Bδ such that V (t1, x1) > 0. The continuity of V (t, x)
implies that there exists a neighborhood D(t1, x1) of (t1, x1) such that when
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(t, x) ∈ D(t, x) ⊂ Bε = {x | ‖x‖ < ε}, 0 < V (t, x) � ϕ(‖x‖), x(t, t1, x1) ∈ Bε
(t � t0) holds.

By the condition (2), we have

(4.7.9)V̇(4.2.1)
(

t, x(t, t1, x1)
)

� η
(

V (t, x), t
)

� 0,

so when t � t1 � t0,

V
(

t, x(t, t1, x1)
)

� V (t1, x1) > 0.

Integrating (4.7.9) yields

V
(

t, x(t, t1, x1)
)− V (t1, x1) �

t∫

t1

η
(

V
(

s, x(s, t1, x1)
)

, s
)

ds

(4.7.10)�
t∫

t1

η
(

V (t1, x1), s
)

ds (t � t0).

Therefore, we have

V
(

t, x(t, t1, x1)
)

� V
(

t, x(t, t1, x1)
)− V (t1, x1) �

t∫

t1

η
(

V (t1, x1), s
)

ds.

Furthermore, we have

ϕ(H) � ϕ
(∥
∥x(t)

∥
∥
)

� V
(

t, x(t, t1, x1)
)

�
t∫

t1

η
(

V (t1, x1), s
)

ds,

which contradicts that
∫ t

t1
η(V (t1, x1), s) ds is unbound. So the zero solution

of (4.2.1) is unstable. �

For autonomous system (4.5.15) Karsovskii [192] generated the Lyapunov in-
stability theorem.

LEMMA 4.7.8. If there exists function V (x) ∈ C1[GH,R
1] with a lower bound

such that

(4.7.11)
dV

dt

∣
∣
∣
∣
(4.5.15)

� 0,

and any trajectory x(t, t0, x0) does not leave GH when t → +∞. Then, the ω-
limit set Ω is located on certain hypersurface V = V0 = constant.
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PROOF. Let x0 ∈ GH and y ∈ Ω(t0). Then, there exist {tn}, tn → +∞ as
n→+∞ such that

y = lim
n→+∞ x(tn, t0, x0),

owing to dV
dt
|(4.5.15) � 0.

The function V (x(tn, t0, x0)) is descending with a lower bound, so

(4.7.12)V0 = lim
n→+∞V

(

x(tn, t0, x0)
)

by using the continuity of V (t, x). Thus,

V (y) = lim
n→+∞V

(

x(tn, t0, x0)
)

.

Therefore, for any sequence {t̃n}, t̃n →∞ as n→∞,

lim
n→+∞V

(

x(tn, t0, x0)
) = V0,

i.e., for any y ∈ Ω , we have V (y) = V0. �

THEOREM 4.7.9. If the following conditions are satisfied:

(1) there exists a function V (x) ∈ C1[GH,R
1] with V (0) = 0, and in any neigh-

borhood of the origin there exists x0 such that V (x0) > 0;
(2) dV

dt
|(4.5.15) � 0 and M := {x, dV

dt
|(4.5.15) = 0} does not include full nonzero

positive half trajectories;

then the zero solution of (4.5.15) is unstable.

PROOF. By the conditions in Theorem 4.7.9, for some fixed ε > 0, ∀δ > 0
(δ < ε), there exists x0 ∈ Bδ = {x | ‖x‖ < δ} such that V (x0) = V0 > 0. The
continuity of V (x) and V (0) = 0 imply that there exists η > 0, 0 < η < δ, when
‖x‖ < η

∣
∣V (x)

∣
∣ < V0

holds.
Next, we prove that there exists t1 > t0 such that
∥
∥x(t1)

∥
∥ := ∥

∥x(t1, t0, x0)
∥
∥ � ε.

Otherwise, let ‖x(t)‖ < ε (t � t0). By dV
dt

� 0 one obtains

V
(

x(t)
)

� V (x0) > 0 (t � t0).

Hence, η � ‖x(t)‖ < ε. Since the ω limit set is not empty, ∀y ∈ Ω(x0), there
exist {tn}, tn →∞ as n→∞ such that

lim
n→+∞ x(tn, t0, x0) = y
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owing to dV (x(t))
dt

� 0 and V (x(t, t0, x0)) is increasing and has an upper bound.
Thus,

lim
t→+∞V

(

x(t, t0, x0)
) = c > 0

by using the continuity of V (x). Thus, ∀y ∈ Ω(x0), V (y) ≡ c and on Ω(t0),
dV
dt
= 0. But Ω(t0) consists of full positive half trajectories. This is a contradic-

tion. Therefore the zero solution of (4.5.15) is unstable. �

EXAMPLE 4.7.10. Consider the stability of the zero solution for the system:

(4.7.13)

{
dx1
dt
= x2,

dx2
dt
= −x1 + 3(1+ x2)

2x2.

Solution: Choose

V = x2
1 + x2

2 ,
dV

dt

∣
∣
∣
∣
(4.7.13)

= 6
(

1+ x2
2

)

x2
2 � 0.

Letting dV
dt
= 0 yields x2 = 0. Substitute x2(t) = 0 into

dx2

dt
= −x1 + 3(1+ x2)

2x2

to obtain x1 = 0. Hence, dV
dt

only includes x1 = x2 = 0. So the zero solution is
unstable.

We again consider (4.2.1) as a periodic system, i.e., ∃τ > 0 such that f (t +
τ, x) ≡ f (t, x).

THEOREM 4.7.11. If there exists V (t, x) ∈ C1[GH,R
1] with V (t + τ, x) ≡

V (t, x), V (t, 0) ≡ 0 such that

(1) in any neighborhood of the region Bδ := {x, ‖x‖ < δ} there exists a region
V > 0;

(2) in the region V > 0, dV
dt
|(4.2.1) � 0;

(3) the set M = {x | dV
dt
|(4.2.1) = 0 ∩ V (t, x) > 0} does not include full nonzero

positive half trajectories;

then the zero solution of (4.2.1) is unstable.

PROOF. By condition (1), there exists some ε0 > 0 in ‖x‖ � ε0 such that
V (t, x) > 0, and ∀δ(δ < ε0), ∃x0 ∈ V > 0 and ‖x0‖ < δ. Let V (t0, x0) =
V0 > 0. We want to show that there exists t1 > t0 such that

∥
∥x(t1, t0, x0)

∥
∥ > ε0.



160 Chapter 4. Lyapunov Direct Method

Otherwise, let ‖x(t, t0, x0)‖ � ε0. Condition (2) implies

V
(

t, x(t, t0, x0)
)

� V (t0, x0) = V0 > 0.

Thus, x(k)0 := (t0 + kτ, t0, x0) have limiting points. Without loss of generality, let

x
(k)
0 → x∗0 as k → ∞. Owing to that V (t, x(t, t0, x0)) is continuous, monotone

increasing and bounded, there exists the limit

(4.7.14)lim
t→+∞V

(

t, x(t, t0, x0)
) := V∞.

Since V (t + τ, x) ≡ V (t, x), the above limit can be obtained:

lim
t→+∞V

(

t, x(t, t0, x0)
) = lim

k→+∞V
(

t0 + kτ, x(t0 + kτ, t0, x0)
)

= lim
k→+∞V

(

t0, x(t0 + kτ, t0, x0)
)

= lim
k→+∞V

(

t0, x
(k)
)

(4.7.15)= V
(

t0, x
∗) = V∞.

But on the other hand, consider the solution x(t, t0, x∗0 ). By condition (3), ∃t∗ >
t0,

dV (t∗, x(t∗, t0, x∗0 ))
dt

> 0,

and

V
(

t∗, x
(

t∗, t0, x∗0
))

> V
(

t0, x
∗
0

)

.

Owing to f (t + τ, x) ≡ f (t, x) and V (t + τ, x) ≡ V (t, x) we have

x
(

t∗, t0, x(k)0

) = x
(

t∗ + kτ, t0 + kτ, x
(k)
0

)

= x
(

t∗ + kτ, t0 + kτ, x(t0 + kτ, t0, x0)
)

(4.7.16)= x
(

t∗ + kτ, t0, x0
)

and

V
(

t0, x
∗
0

) = lim
k→∞V

(

t∗ + kτ, x
(

t∗ + kτ, t0, x0
))

= lim
k→∞V

(

t∗, x
(

t∗, t0, x(k)0

))

= V
(

t∗, x
(

t∗, t0, x∗0
))

(4.7.17)> V
(

t0, x
∗
0

)

.

This is impossible. Hence, the zero solution of (4.2.1) is unstable. �
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EXAMPLE 4.7.12. Consider a third-order nonlinear equation:

(4.7.18)
...
x + f1

(

x, ẋ
)

ẍ + f2
(

x, ẋ
)

ẋ + f3(x) = 0,

where f1, f2 and f3 are continuous differentiable functions of x and ẋ and
f2(0, 0) = f3(0) = 0.

To analyze the stability of the zero solution, let ẋ = y and ẍ = z. Then, the
above equation can be rewritten as

(4.7.19)

{
ẋ = y,

ẏ = z,

ż = −f3(x)− f2(x, y)− f1(x, y, )z.

Let D1 = {x, y, z | y � x � 0, z � 0} and D2 be any small neighborhood of the
origin. In D1 ∩D2 the following conditions are satisfied:

(1) f1(x, y) < 0;
(2) xf3(x) > 0 (x �= 0), yf2(x, y) > 0 ∀y �= 0;

(3) ∂f2(x,y)
∂x

� 0, f ′3(x) > 0.

Then the zero solution of (4.7.18) is unstable.

PROOF. Choose a Lyapunov function:

V (x, y, z) = yf3(x)+ 1

2
z2 +

y∫

0

f2(x, y) dy.

By condition (2),

y∫

0

f2(x, y) dy > 0 ∀y �= 0,

in the region defined by y � x and yf3(x) � 0. So V (x, y, z) is positive definite
in D1 ∩D2. By condition (3) we have

dV

dt

∣
∣
∣
∣
(4.7.19)

= y2f ′3(x)− f1(x, y)z
2 + y

y∫

0

∂f2

∂x
dy � 0.

Letting dV
dt
|(4.7.19) = 0 yields y = z = 0 and x = c. If x = 0, then dV

dt
|(4.7.19)

only includes x = y = z = 0. If x = c �= 0, one can choose x = C ∈̄D1 ∩D2.
So the zero solution of (4.7.19) is unstable. �

EXAMPLE 4.7.13. Again consider system (4.7.19), but now let

D̃1 :=
{

x, y, z|z � x|},
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and D̃2 be any small neighborhood of the origin. In D̃1 ∩ D̃2, the following con-
ditions are satisfied:

(1) f1(x, y) > a > 0;
(2) yf2(x, y) < 0 (y �= 0, xf3(x) > 0, x �= 0);
(3) ∂f1(x,y)

∂x
y � 0.

Then the zero solution of (4.7.19) is unstable.

PROOF. Construct a Lyapunov function:

V (t, y, z) =
x∫

0

f3(x) dx + yz+
y∫

0

yf1(x, y) dy.

By condition (2) we know that
∫ x

0 f3(x) dx > 0 (x �= 0) in the region defined by
z � x and yz > 0. So V (x, y, z) is positive definite, and

dV

dt

∣
∣
∣
∣
(4.7.19)

= z2 − yf2(x, y)+ y

y∫

0

∂f1

∂x
y dy � 0.

Letting dv
dt
|(4.7.19) = 0, we obtain y = z = 0 and x = c. So the zero solution

of (4.7.19) is unstable. �

4.8. Summary of constructing Lyapunov functions

After the fundamental Lyapunov stability theory was established, further studies
were carried out by many scholars. Most of the basic Lyapunov theorems are
invertible. So theoretically, stability implies the existence of Lyapunov function.
To seek suitable Lyapunov function to perform stability analysis is of interest, but
is difficult because there is no general rule for constructing Lyapunov functions.
In most of situations, it relies on one’s experience and skill.

The success of constructing Lyapunov functions may depends on practical
background. For example, for some physical models, the V function has a clear
physical meaning. The kinetic and potential energies can be combined to construct
a V function for a conservative mechanical system. Also, one can employ linear
analogy method to have a similar V function for nonlinear differential equations.

There are two fundamental methods for constructing Lyapunov functions,
while they cannot ensure success.

By the first essential method, one tries to construct a positive definite function
and calculate the derivative dV

dt
along the solution of the system. If the conditions

of the system ensure dV
dt

to be negative definite or negative semi-definite, one can
get asymptotic stability or stability of the system. Otherwise, no result of stability
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can be obtained, and one has to try the other approaches. This method is used
by almost all books on stability. The good candidates of Lyapunov functions may
be (1) quadratic form; (2) sum of quadratic terms; (3) combination of absolute
values; (4) quadratic form plus nonlinear integrals, etc.

The second method is first to assume that dV
dt

is negative definite or negative
semi-definite, and then obtain V by integration. At the same time check the pos-
itive definiteness of V . If V is positive definite, one can determine asymptotic
stability or stability of the system Otherwise, there is no conclusion. By this
method, one can generalize the gradient-method, the variable gradient method,
the integral method and the energy measure method to develop new methods.

The third method is called differential variant method, that is, to construct V
and dV

dt
simultaneously.

Since energy function is usually employed in the analysis of neural network,
which is relevant to the second method. We will introduce the gradient method in
detail below.

Consider the n-dimensional nonlinear autonomous system:

(4.8.1)
dx

dt
= f (x),

where x ∈ Rn, f ∈ C[Rn,Rn] and f (0) = 0 and satisfies the Lipschitz condi-
tion. Consider a function V = V (x). The derivative of V along the solution of
system (4.8.1) is

(4.8.2)
dV

dt

∣
∣
∣
∣
(4.8.1)

= (gradV )T · f (x),

where gradV = ( ∂V
∂x1

, . . . , ∂V
∂xn

)T is the gradient of V . First, let gradV = W ,
where W is a given vector and satisfies

(4.8.3)
∂Wi

∂xj
= ∂Wj

∂xi
(i, j = 1, . . . , n).

Then, V is solved as the integral of gradV , i.e.,

(4.8.4)V =
x∫

0

(gradV )T dx =
x∫

0

WT dx,

where the upper limit of the integral is an arbitrary point in the phase space. From
equation (4.8.3), we know that the integral (4.8.4) is independent of the integration
path. Thus, we have

V =
x1∫

0

W1(τ1, 0, . . . , 0) dτ1 +
x2∫

0

W2(x1, τ2, 0, . . . , 0) dτ2
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(4.8.5)+ · · · +
xn∫

0

Wn(x1, . . . , xn−1, τn) dτn.

The problem is now reduced into the problem of determining the gradient:

gradV = W.

The key step is to choose dV
dt

such that the V solved from (4.8.5) is positive
definite or positive semi-definite. If so, the equilibrium x = 0 of system (4.8.1) is
stable.

According to the choice of the gradient gradV = W , the method can be gen-
eralized to the variable gradient method, the integrand method and the energy
measure method. In the following, we discuss the variable gradient method.

By this method, one can seek the energy function for a neural by assuming that
gradV = Bx, where B = (bij ) is to be determined. bij can be a constant or a
function of x and bij (x) = bji(x).

Choosing suitable bij such that W satisfies the general restrictive condi-
tion (4.8.3) and xT BT f (x) is positive definite or positive semi-definite as well.
For example, if f (x) = A(x)x, then (4.8.1) becomes

(4.8.6)ẋ = xT BT A(x)x,

where H(x) = BT A(x) = (hij ).
For general quadratic form H(x), the following condition is taken

(4.8.7)

{
hii < 0 or hii � 0,
hij + hji = 0, i, j = 1, . . . , n,

to ensure that V̇ is negative definite or negative semi-definite. Thus, hij should be
selected such that (4.8.7) and (4.8.3) are satisfied.

If B is given, by integral (4.8.5), we can calculate V and check whether it is
positive definite or positive semi-definite. One could adjust bij untill it satisfies
the conditions.

EXAMPLE 4.8.1. Consider the system:

(4.8.8)

{
ẋ1 = x2,

ẋ2 = −x2
2 − x2.

Assume that

W =
[

b11 b12
b21 b22

](
x1

x2

)

.

By (4.8.8) we have A =
[

0 1
−x2

1 −1

]

. Then, it follows from H = BT A and (4.8.7)

that
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h11 = −b21x
2
1 , h22 = b12 − b22 < 0,

(4.8.9)k12 + h21 = b11 − b12 − b22x
2
1 = 0.

Simplifying (4.8.9) yields

b21 > 0, b22 > b12, b11 = b21 + b22x
2
1 .

Let bij (i �= j ) be constants. Choosing b12 = 1, by using the general restrictive
condition (4.8.3), we have b12 = b21 and then b21 = 1. Let b21 = 2, we have
b11 = 1+ 2x2

1 and then obtain that

W =
[

1+ 2x2
1 1

1 2

](
x1

x2

)

=
(

2x3
1 + x1 + x2

x1 + 2x2

)

,

and

V̇ = WT f (x) =
(

2x3
1 + x1 + x2

x1 + 2x2

)T(
x2

x3
1 − x2

)

= −x4
1 − x2

2

is negative definite. Finally, performing the integration (4.8.5) we obtain

V =
x1∫

0

(

2τ 2
1 + τ1 + 0

)

dτ1 +
x2∫

0

(x1 + 2τ2) dτ2

= 1

2
x4

1 +
1

2
x2

1 + x1x2 + x2
2

=
(

1

2
x1 + x2

)2

+ 1

4
x2

1 +
1

2
x4

1 .

Obviously, V is a positive definite and radially unbounded. Furthermore, it can
be verified that dV

dt
|(4.8.8) is negative definite. Then, the zero solution of sys-

tem (4.8.8) is globally asymptotically stable.

Variable gradient method is a kind of exploring and assembling method if V
cannot be obtained by using one approach. This certainly does not mean that a
suitable V does not exist.

The technique to select bij could yield different V functions and could give
different attractive basins.
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Chapter 5

Development of Lyapunov Direct Method

Based on energy functions, Lyapunov direct method has its general significance
in both theoretical development and applications. This method can be used to
study not only the stability in the sense of Lyapunov, but also the asymptotic
behaviors of dynamical systems without solving equations. In this chapter, we
introduce typical extensions of Lyapunov direct method, such as LaSalle invariant
principle, comparison principle, Lagrange stability, robust boundedness, practical
stability, partial variable stability, asymptotic equivalence, conditional stability
and set stability, etc.

The materials given in this chapter are mainly chosen from [222] for Sec-
tion 5.1, [163] for Section 5.2, [151] for Section 5.3, [151,234] for Section 5.4,
[265] for Section 5.5, [299,153] for Section 5.6, [225] for Section 5.7, [127] for
Section 5.8, [268] for Section 5.9, [98] for Section 5.10, [333] for Section 5.11
and [234] for Section 5.12.

5.1. LaSalle’s invariant principle

In 1960, the well-known American mathematician LaSalle discovered the relation
between Lyapunov function and Birkhoff limit set. He extended Lyapunov direct
method and gave a uniform concept of Lyapunov’s theory. He considered the
limit position of a motion as an asymptotic behavior. Moreover, he pointed out
that based on a suitable Lyapunov function, especially by utilizing the invariance
of the limit set, one could obtain the information of the limit set. This idea is now
called “invariance principal”. By this principal, LaSalle presented the essential
theory for the stability of motion of dynamical systems.

In the following, for the dynamical systems composed of ordinary differential
equations, we introduce the LaSalle invariant principle.

Consider the n-dimensional autonomous system, described by

(5.1.1)
dx

dt
= f (x), f (0) = 0,

167
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where x = (x1, . . . , xn)
T ∈ Rn, f = (f1, f2, . . . , fn)

T ∈ C[Rn,Rn]. Assume
that the solution of (5.1.1) is unique.

DEFINITION 5.1.1. The set M ∈ Rn is called positive invariant set of solution
of (5.1.1), if ∀x0 ∈ M , the trajectory x(t, t0, x0) ⊂ M(t � t0); and x(t, t0, x0)→
M as t →∞ if there exist point p ∈ M and {tn}, tn →∞ as n→∞, such that
‖x(tn, t0, x0)− p‖ → 0.

LEMMA 5.1.2. If x(t, t0, x0) is bounded for all t � t0, then the ω-limit set Ω(x0)

has the following proprieties:

(1) Ω(x0) is not empty;
(2) Ω(x0) is compact (i.e., bounded and closed);
(3) Ω(x0) is invariant on the set of the trajectories of system (5.1.1);
(4) x(t, t0, x0)→ Ω(x0) when t →+∞.

PROOF. (1) By the Weierstrass accumulation principle, we know that there exist
tn →+∞ (n→+∞) such that

lim
tn→+∞

x(tn) := lim
tn→+∞

x(tn, t0, x0) = x∗ ∈ Ω(x0),

so Ω(x0) is not empty.
(2) ∀{pn} ∈ Ω(x0) satisfying pn → p (as n → ∞), we prove p ∈ Ω(x0).

∀ε > 0, ∃η0 such that pn0 ∈ Ω(x0) and ‖pn0 − p‖ < ε
2 . Hence, there exist {tn},

tn →∞ as n→∞, when n� 1 it holds
∥
∥x(tn)− pn0

∥
∥ <

ε

2
.

Thus, ‖x(tn) − p‖ � ‖x(tn) − Pn0‖ + ‖Pn0 − P‖ < ε by arbitrary property
of ε. This means that p ∈ Ω(x0) and Ω(x0) is a compact set.

(3) ∀p ∈ Ω(t0), there exist tn →∞ as n→+∞ such that

lim
n→+∞ x(tn, t0, x0) = p.

If using t = t0 = 0, x(0) = x0 in x(t, t0, p), then by the uniqueness of solution,
we have

x(t + tn, 0, x0) = x
(

t, 0, x(tn, 0, x0)
)

,

and

lim
n→+∞ x(t + tn, 0, x0) = x(t, 0, p).

Therefore, the solution x(t, 0, p) ⊂ Ω(x0) is positively invariant.
(4) Now, we prove x(t, 0, x0) → Ω(x0). If otherwise, let t → +∞, and as-

sume that x(t) does not move towards Ω(x0). Then, there exists ε0 > 0, ∀T > 0,
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∃t∗ > T , such that ∀p ∈ Ω(x0), we have
∥
∥x(t∗, 0, x0)− p

∥
∥ � ε.

So there exist {t∗n }, tn →+∞ (n→∞), such that for all p ∈ Ω(x0) it holds
∥
∥x(t∗n , 0, x0)− p

∥
∥ � ε.

But x(t, 0, x0) is bounded for t � 0. By Weierstrass accumulation principle,
there exists a limiting point x∗ ∈ Ω(x0) such that x(t∗n )→ x∗. This contradiction
shows that x(t, 0, x0)→ Ω(x0) as t →+∞. �

THEOREM 5.1.3 (LaSalle invariant principle [219]). Suppose D is a compact
set. ∀x0 ∈ D, x(t, t0, x0) ∈ D, i.e., D is a positive invariant set, and there exists
V (x) ∈ C1[D, R] such that

dV

dt

∣
∣
∣
∣
(5.1.1)

� 0.

Let E = {x | dV
dt
|(5.1.1) = 0, x ∈ D}. M ⊂ E is the biggest invariant set. Then,

x(t, t0, x0) → M as t → +∞. Particularly, if M = {0}, then the zero solution
of (5.1.1) is asymptotically stable.

PROOF. Let x0 ∈ D, so x(t, t0, x0) ∈ D by condition. Denote the ω-limit set of
x(t, t0, x0) byΩ(x0). Since dV

dt
|(5.1.1) � 0, V (x(t, t0, x0)) is monotone decreasing

and V (x(t, t0, x0)) is continuous on compact D. So we have the lower bound:

lim
t→+∞V

(

x(t, t0, x0)
) := V∞.

Thus, on Ω(x0) it holds

V (t) ≡ V∞ = C,
dV (x(t))

dt

∣
∣
∣
∣
(5.5.1)

= 0,

where x(t) ∈ Ω . However, Ω ⊂ E, so x(t, t0, x0) → Ω implies x(t, 0, x0) →
M .

Theorem 5.1.3 is proved. �

REMARK 5.1.4. The basic idea of Theorem 5.1.3 is, based on the LaSalle invari-
ant principle, to use the properties of the Lyapunov function V (x) and dV

dt
� 0 to

determine the position of the largest invariant set,

Ω ⊂ M ⊂ E ⊂ D.

In some applications, given a Lyapunov function V (x), and at the some time,
one can also find D. Define D as

D := {

x | V (x) � l
}

.
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If f is bounded, and in dV
dt
|(5.1.1) � 0, ∀x0 ∈ D, x(t, t0, x0) ⊂ D. Then, we have

the following theorem.

THEOREM 5.1.5. Let D := {x | V (x) � l} be bounded. V (x) ∈ C1[D, R1] and
dV
dt
|(5.1.1) � 0, then ∀x0 ∈ D, x(t, t0, x0) ∈ D and x(t, t0, x0)→ M ⊂ E := {x |

dV
dt
|(5.1.1) = 0}.

The proof is similar to that for Theorem 5.1.3 and thus omitted.

EXAMPLE 5.1.6. Consider the stability of the zero solution of the equation:

(5.1.2)
d2x

dt2
+ a

dx

dt
+ bx + x2 = 0 (a > 0, b > 0).

We first rewrite (5.1.2) as

(5.1.3)

{
dx1
dt
= x2,

dx2
dt
= −bx1 − ax2 − x2

1 .

Choose the function:

V (x1, x2) = 1

2
bx2

1 +
1

2
x2

2 +
1

3
x3

1 ,

and then construct the following bounded and closed region D, as shown in Fig-
ure 5.1.1.

Figure 5.1.1. Construction of set D for Example 5.1.6.
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Take

V � 1

2
α2β2, W1 = x1 � −β, W2 = x2 + ax1 � −αβ, β > 0.

Then, we prove that ∀x0 ∈ D, when t � t0, x(t, t0, x0) ⊂ D. Otherwise, the
trajectory x(t, t0, x0) will leave D. Then, it crosses over the curve ̂ABCD or the
lines AE, DE at certain t = t1 to Rn/D. But dV

dt
|(5.1.3) = −ax2

2 < 0, x2 �= 0

for (x1, x2) on ̂ABCD, so x(t, t0, x0) cannot move from D to Rn/D, crossing the
curve ̂ABCD. Further,

dW1

dt

∣
∣
∣
∣
(5.1.3)

= dx1

dt

∣
∣
∣
∣
x1=−β

= x2 > 0 (x2 �= 0, x1 on DE).

So x(t, t0, x0) cannot move from D to Rn/D crossing line DE.
On the line AE, x1 � 0 and −x1 = β + x2

a
< β (x2 �= 0) when 0 < β < b.

Thus, b + x1 > 0 (x2 �= 0). Hence, dW2
dt
|(5.1.3) = −x1(b + x1) > 0 (x2 �= 0) for

(x1, x2) on line AE. So x(t, t0, x0) cannot cross the line AE moving from D to
Rn/D.

Therefore,

dV

dt
= ax2

2 , E = {x2 = 0}, M = {0, 0},
i.e., when 0 < β < b, x(t, t0, x0)→ 0 as t →∞. As a result, the zero solution
of (5.1.3) is asymptotically stable.

REMARK 5.1.7. Compare LaSalle invariant principle with the Barabashin–
Krasovskii Theorem 4.6.10, the former, theoretically, is more general and it does
not request V (x) � 0, but only requires dV

dt
� 0. If M = {0}, then the ab-

sorbing area D is given by invariant principle, yet generally, the structure of the
maximum invariant set may be very complicated, and the Barabashin–Krasovskii
Theorem 4.6.10 is much convenient in verifying the conditions.

5.2. Comparability theory

The basic theorems of the Lyapunov direct method and some generalization pre-
sented in Chapter 4 can solve many problems in practice, but some problems
are still very hard to solve. Among other methods, the comparability method (or
called comparability theory) is the most useful theory and is widely used in appli-
cations.

First, we use the following simple example to explain the basic idea of this
method.
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EXAMPLE 5.2.1. Consider the following system:

(5.2.1)

{
dx1
dt
= (−3+ 8 sin t)x1 + 4

5 (sin t)x2,

dx2
dt
= 6

5 (cos t)x1 + (−3+ 8 sin t)x2.

If we choose the Lyapunov function, given by

V = 1

2

(

x2
1 + x2

2

)

.

Then,

dV

dt

∣
∣
∣
∣
(5.2.1)

= (−3+ 8 sin t)x2
1 +

4

5
(sin t)x1x2

(5.2.2)+ 6

5
(cos t)x1x2 + (−3+ 8 sin t)x2

2 .

Obviously, the sign of dV
dt
|(5.2.1) can be positive or negative. So we cannot use the

theorems in Chapter 4 to determine the stability of the zero solution of (5.2.1).
Now we change (5.2.2) to the following inequality:

dV

dt

∣
∣
∣
∣
(5.2.1)

� (−3+ 8 sin t)x2
1 + x2

1 + x2
2 + (−3+ 8 sin t)x2

2

= (−2+ 8 sin t)x2
1 + (−2+ 8 sin t)x2

2

(5.2.3)� 2(−2+ 8 sin t)V .

Then, we have

(5.2.4)V
(

t, x(t)
)

� V (t0, x0)e
2
∫ t
t0
(−2+8 sin s) ds → 0 as t →+∞.

From (5.2.4), we can conclude that the zero solution of (5.2.1) is asymptotically
stable. However, note that

V (t0, x0)e
2
∫ t
t0
(−2+8 sin s) ds

is actually just the solution of the following differential equation:

(5.2.5)

{
dU
dt
= 2(−2+ 8 sin t)U,

U(t0) = V (t0, x0).

This example tells us that combining the Lyapunov function with comparison
principle can lead to a more general conclusion on stability.

In the following, we present the general comparison principle. Consider the
general n-dimensional nonautonomous system:

(5.2.6)
dx

dt
= f (t, x),
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where x ∈ Rn, f = (f1, f2, . . . , fn)
T ∈ [I ×Rn,Rn], which assures the unique-

ness of solution of (5.2.6) and f (t, 0) ≡ 0. For comparison, consider a scale
differential equation:

(5.2.7)
dU

dt
= g(t, U),

where g ∈ C[I × R+, R1], g(t, 0) ≡ 0 if and only if U = 0.

THEOREM 5.2.2. If there exists positive definite function V (t, x) ∈ C[I × Rn,

R+], which satisfies the Lipschitz condition for x, and V (t, 0) ≡ 0, further,

D+V (t, x)|(5.2.6) � g(t, V ),

then the following conclusions hold:

(1) the stability of the zero solution of (5.2.7) implies the stability of the zero
solution of (5.2.6);

(2) if V has infinitesimal upper bound, then the uniform stability of the zero so-
lution of (5.2.7) implies the uniform stability of the zero solution of (5.2.6);

(3) the asymptotic stability of the zero solution of (5.2.7) implies the asymptotic
stability of (5.2.6);

(4) if V has infinitesimal upper bound, then the uniform asymptotic stability of
the zero solution of (5.2.7) implies the uniformly asymptotic stability of the
zero solution of (5.2.6);

(5) if there exist constants a > 0, b > 0 such that

(5.2.8)a‖x‖b � V (t, x),

and V has infinitesimal upper bound, then the exponential stability of the
zero solution of (5.2.7) implies the exponential stability of the zero solution
of (5.2.6);

(6) if there exist ϕ, ψ ∈ KR such that

(5.2.9)ϕ
(‖x‖) � V (t, x) � ψ

(‖x‖),
then the globally uniformly asymptotic stability of the zero solution of (5.2.7)
implies the same type stability of the zero solution of (5.2.6).

PROOF. (1) Since V (t, x) is positive definite, there exists φ(‖x‖) ∈ K such that
V (t, x) � ϕ(‖x‖). Further, since the zero solution of (5.2.7) is stable, ∀ε > 0,
∀t0 ∈ I , ∃δ∗(t0, ε) > 0, when 0 < U0 < δ∗, we have

U(t, t0, U0) < ϕ(ε).

By the continuity of V (t, x) and V (t, 0) ≡ 0, for the above δ∗ > 0, ∃δ(t0, ε) > 0
such that when ‖x0‖ < δ, it holds

0 < V (t0, x0) < δ∗.
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Let V (t) := V (t, x(t, t0, x0)). Then, we have

(5.2.10)

{

D+V (t)|(5.2.6) � g
(

t, V (t)
)

,

V (t0, x0) := V0.

Consider the comparison equation:

(5.2.11)

{
dU
dt
= g

(

t, U(t)
)

,

U(t0) = U0 := V0.

By Theorem 1.5.1 we obtain

ϕ
(‖x(t)‖) � V

(

t, x(t)
)

� U(t, t0, V0) < ϕ(ε),

i.e., ‖x(t)‖ < ε. So the zero solution of (5.2.6) is stable.
(2) Owing to V (t, x) with infinitesimal upper bound, there exist ϕ, ψ ∈ K such

that

ϕ
(‖x‖) � V (t, x) � ψ

(‖x‖).
∀ε > 0, ϕ(ε) > 0, for this ϕ(ε), ∃δ(ε) such that when ‖x0‖ < δ, we have

U0 := V (t0, x0) � ψ
(‖x0‖

)

< ψ
(

δ(ε)
)

,

U(t, t0, U0) < ϕ(ε).

With a similar method used in the proof of (1) we can show that

(5.2.12)ϕ
(∥
∥x(t)

∥
∥
)

� V
(

t, x(t)
)

� U(t, t0, U0) < ϕ(ε),

which implies ‖x(t)‖ < ε when ‖x0‖ < ε. Thus, the zero solution of (5.2.6) is
uniformly stable.

(3) Choose σ(t0) > 0. When ‖U0‖ < σ(t0), from (5.2.10), (5.2.11) and Theo-
rem 1.5.1, we have

ϕ
(∥
∥x(t)

∥
∥
)

� V
(

t, x(t)
)

� U(t, t0, U0)→ 0 as t →+∞.

So the zero solution of (5.2.6) is asymptotically stable.
(4) Obviously, the conditions assure that the zero solution of (5.2.6) is uni-

formly stable. Since the zero solution of (5.2.7) is uniformly asymptotically sta-
ble, ∀ε > 0, ∀t0 ∈ I , ∃η > 0 and T (ε) > 0 such that when 0 < U0 < η,
t � t0 + T (ε), it holds

0 < U(t, t0, U0) < ϕ(ε).

Further, choose δ0, U0, x0 such that

U0 = V (t0, x0) � ψ
(‖x0‖

)

< ψ(δ0) � η.

Thus, by (5.2.10), (5.2.12) and Theorem 1.5.1 we have

ϕ
(∥
∥x(t)

∥
∥
)

� V
(

t, x(t)
)

� U(t, t0, U0) < ϕ(ε).
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Therefore, ‖x(t)‖ < ε when t � t0 + T (ε), i.e., the zero solution of (5.2.6) is
uniformly asymptotically stable.

(5) According to the exponential stability of the zero solution of (5.2.7), there
exists constant α > 0, ∀ε > 0, ∃η(ε) > 0, when 0 < U0 < η(ε) we have

U(t, t0, U0) � εe−α(t−t0) ∀t � t0.

Take U0 = V (t0, x0) � ψ(‖x0‖) < ψ(δ(ε)) � η(ε). Then, by (5.2.10), (5.2.12)
and Theorem 1.5.1 we obtain

a
∥
∥x(t, t0, x0)

∥
∥
b � V

(

t, x(t)
)

� U(t, t0, U0) � εe−α(t−t0),

i.e.,

∥
∥x(t, t0, x0)

∥
∥ �

(
ε

a

)1/b

e−
a
b
(t−t0).

So the zero solution of (5.2.6) is exponentially stable.
(6) In this case, the conditions and conclusion of (2) hold. Thus, the zero

solution of (5.2.6) is uniformly stable. Then, we need to prove the uniform bound-
edness of all solutions of (5.2.6). ∀r > 0, for ϕ(r) > 0, when 0 � U0 < ϕ(r),
∃β̃(r) such that

U(t, t0, U0) < β̃(r).

So when ‖x0‖ < r ,

U0 = V (t0, x0) � ψ
(‖x0‖

)

< ψ(r),

It follows from (5.2.10), (5.2.12) and Theorem 1.5.1 that

ϕ
(∥
∥x(t, t0, x0)

∥
∥
)

� V
(

t, x(t, t0, x0)
)

� U(t, t0, U0) < β̃(r),

which can be rewritten as
∥
∥x(t, t0, x0)

∥
∥ < ϕ−1(β̃(r)

) := β(r).

This mean that all solutions of (5.2.6) are uniformly bounded.
Next, we prove the globally uniform attraction of the zero solution of (5.2.6).

∀ε, α > 0, t0 ∈ I then for ϕ(ε) > 0, ψ(α) > 0 and fixed ε, α, there exists
T (ε, α) > 0 such that when 0 < U0 < ψ(α), t � t0 + T (ε, α), it holds

U(t, t0, U0) < ϕ(ε).

Take U0 = V (t0, x0) � ψ(‖x0‖) < ψ(α). By (5.2.10), (5.2.12) and Theo-
rem 1.5.1 we get

ϕ
(∥
∥x(t, t0, x0)

∥
∥
)

� V
(

t, x(t)
)

� U(t, t0, U0) < ϕ(ε).



176 Chapter 5. Development of Lyapunov Direct Method

It follows that
∥
∥x(t, t0, x0)

∥
∥ < ε

which indicates that the zero solution of (5.2.6) is globally, uniformly and asymp-
totically stable.

The proof of Theorem 5.2.2 is complete. �

THEOREM 5.2.3. Let f (t, x) ∈ C[I × Bσ ,R
n], g(t, u) ∈ C[I × Bδ,R

1], and
there exists positive definite V (t, x) ∈ C[I × Bσ ,R

1], with infinitesimal upper
bound, such that

D+V |(5.2.6) � g(t, V ), (t, x) ∈ I × Bδ,

then the instability of the zero solution of (5.2.7) implies the instability of the zero
solution of (5.2.6).

PROOF. Since V (t, x) admits infinitesimal upper bound, there exists ϕ ∈ K such
that

ϕ
(‖x‖) � V (t, x).

By the instability of the zero solution of (5.2.7), ∃ε0, ∀δ > 0, ∀t0 ∈ I , ∃t1 > t0,
∃U0 > 0, U0 < δ such that

U(t1, t0, U0) � ϕ(ε0).

Take U0 = V (t0, x0). Applying (5.2.10), (5.2.12) and Theorem 1.5.1 yields

ϕ
(‖x(t1)‖

)

� V
(

t1, x(t1)
)

� U(t1, t0, U0) � ϕ(ε0).

Hence, ‖x(t1)‖ � ε0, i.e., the zero solution of (5.2.6) is unstable. �

REMARK 5.2.4. The conclusion of the comparison Theorem 5.2.2 can include
the sufficient condition of Lyapunov stability Theorem 4.2.1 as particular. The
great advantage of the comparison method does not require the sign invariant
of dV

dt
. However, this does not imply the Lyapunov asymptotic stability Theo-

rem 4.3.1 and Barabashin–Krasovskii Theorem 4.6.10 which require dV
dt

� 0. By
comparison theorems, one can only obtain the conclusion of stability. The failure
of the comparison method is usually due to the request that the expression has
to be given in a function form g(t, V ) for variables t, V . Sometimes this is very
difficult.

Figure 5.2.1 shows the idea of the comparison method.
We summarize various cases as follows:
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Figure 5.2.1. Illustration of the comparison method with respect to the Lyapunov direct method.

(1) when dV
dt

� 0, the stability of the zero solution of the system can be deter-
mined;

(2) the comparison method can be used to determine stability of the system;
(3) the comparison method can be used to determine asymptotic stability of the

system;
(4) when dV

dt
� 0, the asymptotic stability of the system can be determined.

5.3. Lagrange stability

In this section, we study another type of stability—Lagrange stability. We can still
use the Lyapunov direct method to analyze this stability.

Consider again the n-dimensional nonautonomous system:

(5.3.1)
dx

dt
= f (t, x),

where f (t, x) ∈ C[I × Rn,Rn]. Assume that the solution of (5.3.1) is unique.

DEFINITION 5.3.1. If every solution x(t, t0, x0) of (5.3.1) is bounded, i.e., there
exists a constant β(t0, x0) > 0 such that

∥
∥x(t, t0, x0)

∥
∥ � β(t0, x0) ∀x0 ∈ Rn,

then the solution x(t, t0, x0) is said to be Lagrange stable, or bounded.

DEFINITION 5.3.2. If ∀α > 0, ∀t0 ∈ I , there exists β(t0, α) > 0 such that
∀x0 ∈ Sα := {x, ‖x‖ � α} it holds

∥
∥x(t, t0, x0)

∥
∥ � β(t0, α) (t � t0),

then the solution of (5.3.1) is said to be equi-Lagrange stable or equi-bounded. If
the above β(t0, α) = β(α), independent of t0, then the solution of (5.3.1) is said
to be uniformly Lagrange stable or uniformly bounded.
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THEOREM 5.3.3. The solution of (5.3.1) is Lagrange stable if and only if there
exists V (t, x) ∈ C[I × Rn,R1] such that

(1) V (t, x) � ϕ(‖x‖) for ϕ(‖x‖) ∈ KR;
(2) for every solution x(t, t0, x0), V (t, x(t, t0, x0)) is not an increasing function

of t .

PROOF. Sufficiency. When the conditions are satisfied, we have

ϕ
(∥
∥x(t, t0, x0)

∥
∥
)

� V
(

t, x(t, t0, x0)
)

� V (t0, x0),

so
∥
∥x(t, t0, x0)

∥
∥ � ϕ−1(V (t0, x0)

) := β(t0, x0) (t � t0),

i.e., the solution x(t, t0, x0) is Lagrange stable.
Necessity. Let an arbitrary solution x(t, t0, x0) be bounded on [t0,+∞). Let

V (t, x) = sup
τ�0

∥
∥x(t + τ, t, x0)

∥
∥2 �

∥
∥x(t, t, x)

∥
∥2 = ‖x‖2 := ϕ

(‖x‖).

Obviously, ϕ(‖x‖) ∈ KR. So condition (1) is satisfied.
Next, ∀t1, t2 ∈ I , let t0 < t1 < t2. By the uniqueness of the solution,

x(t, t2, x(t2, t0, x0)) is a continuation of x(t, t1, x(t1, t0, x0)), so we have

V (t1, x(t1, t0, x0))

= sup
τ�0

∥
∥x
(

t1 + τ, t1, x(t1, t0, x0)
)∥
∥2

= max
[

sup
0�τ�t2−t1

∥
∥x
(

t1 + τ, t1, x(t1, t0, x0)
)∥
∥

2
,

sup
τ�0

∥
∥x
(

t2 + τ, t2, x(t2, t0, x0)
)∥
∥

2
]

� sup
τ�0

∥
∥x
(

t2 + τ, t2, x(t2, t0, x0)
)∥
∥

2

= V
(

t2, x(t2, t0, x0)
)

.

This means that condition (2) is satisfied. �

REMARK 5.3.4. Condition (2) in Theorem 5.3.3 is very hard to verify. If
V (t, x) ∈ C1[I × Rn,R], then condition (2), as a sufficient condition, can be
replaced by D+V (t, x)|(5.3.1) � 0.

EXAMPLE 5.3.5. Discuss the Lagrange stability for the following system:

(5.3.2)
d2x

dt2
+ p(t)

dx

dt
+ q(t)f (x) = 0,
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where p(t) ∈ C[I, R], q(t) ∈ C1[I, R], f (x) ∈ C[R,R], satisfying

(1) 0 < q(t) � M = constant;
(2) p(t) � − q ′(t)

2q(t) ;

(3)
∫ ±∞

0 f (x) dx = +∞.

Then, an arbitrary solution x(t) and its derivative ẋ(t) are bounded.

PROOF. Rewrite (5.3.2) as

(5.3.3)

{
dx
dt
= y,

dy
dt
= −p(t)y − q(t)f (x).

Let

V (t, x, y) =
x∫

0

f (ξ) dξ + y2

2q(t)
.

According to condition (1), we have

V (t, x, y) �
x∫

0

f (ξ) dξ + y2

2M
= W(x, y)→+∞

when x2 + y2 →+∞.

So there exists ϕ ∈ KR such that

V (t, x, y) � ϕ
(

x2 + y2)

and

D+V
(

t, x(t), y(t)
)∣
∣
(5.3.3) = f

(

x(t)
)

y(t)+ y(t)

q(t)

dy

dt
− y2(t)q̇(t)

2q2(t)

= f
(

x(t)
)

y(t)− y(t)

q(t)

{

p(t)y(t)+ q(t)f
(

x(t)
)}− y2(t)q̇(t)

2q2(t)

= −y
2(t)

q(t)

[

p(t)+ q̇(t)

2q(t)

]

� 0,

indicating that x(t) and y(t) = ẋ(t) are bounded on I . �

THEOREM 5.3.6. The solution of (5.3.1) is equi-Lagrange stable if and only if
there exists V (t, x) ∈ C[I × Rn,R1] such that

(1) V (t, x) � ϕ(‖x‖) for ϕ ∈ KR;
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(2) for every solution x(t, t0, x0), V (t, x(t, t0, x0)) is not increasing;
(3) ∀α > 0, ∃β(t, α) > 0,∀x ∈ Sα := {x | ‖x‖ � α}, V (t, x) � β(t, α) holds.

PROOF. Sufficiency. Choose a Lyapunov function V (t, x) which satisfies the con-
ditions of Theorem 5.3.6. By condition (3), ∀α > 0, ∀x0 ∈ Sα := {x0 | ‖x0‖ �
α}, ∃β(t0, α) > 0 such that

V (t0, x0) < ϕ
(

β(t0, α)
)

.

Then, by the conditions (1) and (2), we have

ϕ
(∥
∥x(t)

∥
∥
)

� V
(

t, x(t)
)

� V
(

t0, x(t0)
)

� ϕ
(

β(t0, α)
)

,

so
∥
∥x(t)

∥
∥ � ϕ−1(β(t0, α)

) = β(t0, α),

i.e., the solution of (5.3.1) is equi-Lagrange stable or equi-bounded.
Necessity. Suppose the solution of (5.3.1) is equi-Lagrange stable. Let

V (t, x) = sup
τ�0

∥
∥x(t + τ, t, x)

∥
∥

2
.

Then, for any fixed t , on any compact set ‖x‖ � α, V (t, x) is bounded, i.e.,
condition (3) holds and

V (t, x) � ‖x‖2 := ϕ
(‖x‖) ∈ KR.

So condition (1) is true.
Following the proof of Theorem 5.3.3, it is easy to prove that V (t, x(t, t0, x0))

is a monotonically nonincreasing function. Thus, condition (2) holds.
The proof of Theorem 5.3.6 is complete. �

COROLLARY 5.3.7. If there exists V (t, x) ∈ C[I × Rn,R] such that

(1) V (t, x) � ϕ(‖x‖) for ϕ ∈ KR;
(2) D+V (t, x)|(5.3.1) � 0;

then the solution of (5.3.2) is equi-Lagrange stable.

PROOF. Choose a Lyapunov function V (t, x), which satisfies the conditions of
Corollary 5.3.7. Since V (t0, x) is continuous, ∀t0 ∈ I , on any compact set,
V (t0, x) is bounded. Thus, ∀α > 0, ∀x0 ∈ Sα := {x | ‖x‖ � α}, ∃β(t0, α) > 0
such that

V (t0, x) � ϕ
(

β(t0, α)
)

.
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By the conditions we have

ϕ
(∥
∥x(t)

∥
∥
)

� V
(

t, x(t, t0, x0)
)

� V (t0, x0) < ϕ
(

β(t0, α)
)

,

so
∥
∥x(t)

∥
∥ � β(t0, α),

i.e., the solution of (5.3.1) is equi-Lagrange stable. �

EXAMPLE 5.3.8. Consider the system

(5.3.4)

⎧

⎪⎪⎨

⎪⎪⎩

dx
dt
= 0,

dy
dt
= −z|x|,

dz
dt
= yx2,

and study the Lagrange stability of the solution of the system, with the initial
condition (0, x0, y0, z0). Obviously, if x0 = 0, then x(t) = 0, y(t) = y0, z(t) =
z0; if x0 �= 0, then the solution is given by

⎧

⎨

⎩

x = x0,

y = y0 cos
√|x0|3t − z0√|x0| sin

√|x0|3t,
z = y0

√|x0| sin
√|x0|3t + z0 cos

√|x0|3t.
So every solution is bounded. But when |x0| 	 1, |y| � 1, it indicates that the
solution of (5.3.4) is not equi-Lagrange stable.

REMARK 5.3.9. The condition V (t, x) ∈ C[I × Rn,R1] in Theorem 5.3.3 can
be changed to V (t, x) ∈ C[I ×ΩH,R1], where ΩH = {x | ‖x‖ � H }.

THEOREM 5.3.10. If f (t, x) satisfies the Lipschitz condition for x, i.e.,
∥
∥f (t, x)− f (x, y)

∥
∥ � L‖x − y‖,

then ∀x, y ∈ Sα = {x, ‖x‖ � α}, the solution of (5.3.1) is uniformly Lagrange
stable if and only if there exists V (t, x) ∈ C[I × Rn,R] such that

(1) ϕ1(‖x‖) � V (t, x) � ϕ2(‖x‖) for ϕ1, ϕ2 ∈ KR;
(2) D+V (t, x)|(5.3.1) � 0.

PROOF. Sufficiency. ∀α > 0, choose β(α) such that ϕ2(α) < ϕ1(β). Therefore,
∀x0 ∈ Sα := {x | ‖x‖ � α}, by the conditions (1) and (2), we have

ϕ1
(∥
∥x(t)

∥
∥
)

� V
(

t, x(t, t0, x0)
)

� V (t0, x0) � ϕ2
(‖x0‖

)

� ϕ2(α) < ϕ1(β).

So ‖x(t, t0, x0)‖ < β where β is independent of t0 and x0. As a result, the solution
of (5.3.1) is uniformly Lagrange stable.
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Necessity. (1) Let

V (t, x) := (

1+ e−t
)

inf
t0�τ�t

∥
∥x(τ, t, x)

∥
∥2
.

Obviously, V (t, x) is continuous and

V (t, x) � 2
∥
∥x(t, t, x)

∥
∥2 = 2‖x‖2 := ϕ2

(‖x‖).
Following the proof of Theorem 4.2.1, one can show that V (t, x) is positive defi-
nite. So there exists ϕ1(‖x‖) such that

ϕ1
(‖x‖) � V (t, x).

Hence, condition (1) holds.
(2) Along the arbitrary solution x(t, t0, a), we have

V (t2) := V
(

t2, x(t2, t0, α)
) := (

1+ e−t2
)

inf
t0�τ�t2

∥
∥x
(

τ, t2, x(t2, t0, α)
)∥
∥

= (

1+ e−t2
)

inf
t0�τ�t2

∥
∥x(τ, t0, α)

∥
∥

�
(

1+ e−t1
)

inf
t0�τ�t1

∥
∥x(τ, t0, α)

∥
∥

= V (t1).

Thus, V (t) is a continuously monotone decreasing function. Thus, we have

D+V (t)|(5.3.1) � 0,

and so condition (2) is satisfied.
The theorem is proved. �

EXAMPLE 5.3.11. Study the uniform Lagrange stability of the following system:

(5.3.5)
d2x

dt2
+ f (x, ẋ)

dx

dt
+ g(x) = p(t).

Assume that

(1) f (x, y), g(x) are continuous with respect to all variables;
(2) p(t) is continuous on I and

∫ +∞
0 |p(t)| dt < +∞;

(3) f (x, y) � 0 for all x, y;
(4) G(x) := ∫ x

0 g(u) du > 0 ∀x �= 0, and G(x)→+∞ as x →∞.

Then, the solution x(t) and its derivative ẋ(t) are uniformly bounded.

PROOF. Rewrite (5.3.5) as

(5.3.6)

{
dx
dt
= y,

dy
dt
= −f (x, y)y − g(x)+ p(t).
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Now take

V (t, x, y) =
√

y2 + 2G(x)−
t∫

0

∣
∣p(s)

∣
∣ ds.

When x2 + y2 � k2 � 1, it holds

ϕ1
(

x2 + y2) := 1

2

√

y2 + 2G(x) � V (t, x, y) �
√

y2 + 2G(x)

:= ϕ2
(

x2 + y2)

and

dV

dt

∣
∣
∣
∣
(5.3.6)

= 1
√

y2 + 2G(t)

{

g(x)y + y
(−f (x, y)y − g(x)+ p(t)

)}

− ∣
∣p(t)

∣
∣ � 0.

So all conditions of Theorem 5.3.10 are satisfied. This implies that the solution
x(t) and its derivative ẋ(t) are uniformly bounded. �

In the following, we introduce a theorem which is convenience in for certain
applications. Consider the system:

(5.3.7)

{
dx
dt
= F(t, x, y),

dy
dt
= G(t, x, y),

where x ∈ Rn, y ∈ Rm, F(t, x, y) ∈ C[I × Rn × Rm,Rn], G(t, x, y) ∈ C[I ×
Rn × Rm,Rm].

THEOREM 5.3.12. (See [418].) If there exists V (t, x, y) ∈ C[I ×ΩH,R1] such
that

(1) V (t, x, y)→+∞ as ‖y‖ → +∞ holds uniformly for (t, x);
(2) V (t, x, y) � b(‖x‖, ‖y‖), where b(r, s) is continuous positive function;
(3) dV

dt
|(5.3.7) � 0 where ΩH := {x, y | ‖x‖2 + ‖y‖2 � H > 0}.

Further, for every M > 0, there exists W(t, x, y) ∈ C[I ×ΩM,R] such that

(4) W(t, x, y)⇒ +∞ as ‖x‖ → +∞ holds for (x, y);
(5) W(t, x, y) � c(‖x‖), where c(r) is continuous positive function;
(6) dW

dt
|(5.3.7) � 0, where ΩM := {x, y, ‖x‖ � K(M), ‖y‖ � M}, K � 1.

Then the solution of (5.3.6) is uniformly Lagrange stable.

PROOF. Let x(t) := x(t, t0, x0, y0), y(t) := y(t, t0, x0, y0) be solutions of
(5.3.6) with the initial values ‖x0‖ + ‖y0‖ � α (α > H). Choose β(α) � 1
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such that

l = sup
‖x‖+‖y‖=α

t∈I
V (t, x, y) � sup

‖x‖+‖y‖=α
b
(‖x‖, ‖y‖) < inf‖y‖=β

t∈I
V (t, x, y).

This is possible under the conditions (1) and (2). By condition (3) we know that
‖x0‖2 + ‖y0‖2 � α2 which implies

(5.3.8)
∥
∥y(t, t0, x0, y0)

∥
∥ < β(α).

Otherwise, there exists t1 > t0 such that
∥
∥y(t1, t0, x0, y0)

∥
∥ = β(α).

On one band, it holds

V
(

t1, x(t1), y(t1)
)

� V (t0, x0, y0) � l;
while on the other hand, we have

V
(

t1, x(t1), y(t1)
)

� inf‖y‖=β V
(

t, x(t), y(t)
) = L > l.

This means that (5.3.8) is true.
Now consider W(t, x, y) ∈ C[I ×Ωk1(β), R1], where ΩK1(β) = {x, y | ‖x‖ �

K1(β), ‖y‖ � β}. Let α∗ = max{α,K1(β)} and r � 1 such that

sup
t∈I‖x‖=α∗, ‖y‖�β

{

W(t, x, y)
}

< inf
t∈I‖x‖=γ, ‖y‖�β

{

W(t, x, y)
}

.

This is possible under condition (4). From condition (6) we obtain ‖x(t)‖ < γ (α).
For all t � t0,

∥
∥x(t)

∥
∥ < γ (α),

∥
∥y(t)

∥
∥ < β(α).

Therefore, the solution of (5.3.8) is uniformly Lagrange stable.
Theorem 5.3.12 is proved. �

EXAMPLE 5.3.13. Consider the Lagrange stability of the solution of the equa-
tion:

(5.3.9)
d2x

dt2
+ f (x)

dx

dt
+ g(x) = p(t).

Assume that

(1) f (x) ∈ C[R1, R1] and F(x) := ∫ x

0 f (u) du→+∞ as x →±∞;
(2) g(x) ∈ C[R1, R1] and xg(x) > 0 for |x| > q � 1;
(3) p(t) ∈ C[I, R1] and p(t) := ∫ t

0 p(ξ) dξ is bounded.
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Then, the solution and its derivative are uniformly bounded.

PROOF. Consider the equivalent system of (5.3.9), given by

(5.3.10)

{
dx
dt
= y − F(x)+ p(t),

dy
dt
= −g(x).

Choose constants α > 0, b > 0. Let

G(x) =
x∫

0

g(u) du, U(x, y) = G(x)+ y2

2
.

Let

V (t, x, y) =

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

U(x, y) (x � a, |y| <∞),

U(x, y)− x + a (|x| � a, y � b),

U(x, y)+ 2a (x � −a, y � b),

U(x, y)+ 2a
b
y (x � −a, |y| < b),

U(x, y)− 2a (x � −a, y � −b),
U(x, y)+ x − a (|x| � a, y � −b).

It is easy to see that V (t, x, y) satisfies the conditions (1), (2) and (3) of Theo-
rem 5.3.12. For appropriate k1, on |x| > k1(M) and |y| � M define a function
W(t, x, y) := |x|, which satisfies the conditions (3), (4) and (5). Since y(t),
F(x(t)) and |p(t)| are bounded, the solution and its derivative are thus uniformly
bounded, i.e., the solution of (5.3.9) is uniformly Lagrange stable. �

REMARK 5.3.14. This example provides a good idea, that is, applying different
Lyapunov functions for different regions of state variables, and then summarizing
the results solves the global boundedness of the system.

5.4. Lagrange asymptotic stability

Consider the general n-dimensional nonautonomous system:

(5.4.1)
dx

dt
= f (t, x),

where f (t, x) ∈ C[I × Rn,Rn], f (t, x) assumes the uniqueness of the solution
of (5.4.1).

DEFINITION 5.4.1. If there exists a constant B > 0 such that every solution
x(t, t0, x0) of (5.4.1) satisfies limh→+∞ ‖x(t, t0, x0)‖ � B, i.e., there exists a
constant T (t0, x0) > 0, when t � t0 + T (t0, x0) it holds ‖x(t, t0, x0)‖ < B.
Then, (5.4.1) is said to be Lagrange asymptotically stable; or the system is called
a dissipative system with the limit bound B.
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DEFINITION 5.4.2. If there exists a constant B > 0, ∀α > 0, ∀x0 ∈ Sα :=
{x, ‖x‖ � α} such that limh→+∞ ‖x(t, t0, x0)‖ � B holds uniformly for any
x0 ∈ Sα , i.e., ∃T (t0, α) > 0 such that

∥
∥x(t, t0, x0)

∥
∥ < B

when t � t0 + T (t0, α). Then, (5.4.1) is said to be an equi-dissipative system
with limit bound B; or system (5.4.1) is said to be equi-Lagrange asymptotically
stable.

DEFINITION 5.4.3. If in Definition 4.5.2 T (t0, α) = T (α) independent of t0,
then (5.4.1) is an uniformly dissipative system with limit bound B; or sys-
tem (5.4.1) is said to be a uniformly Lagrange asymptotically stable. Here,
X(t) = (x(t), y(t), z(t)).

REMARK 5.4.4. The dissipation propriety of a system is merely the attractive
propriety of the set SB := {x | ‖x‖ � B}.

THEOREM 5.4.5. System (5.4.1) is uniformly Lagrange asymptotically stable for
bound B if and only if there exists V (t, x) ∈ C[I ×ΩH ] such that on [I ×ΩH ]
it holds:

(1) ϕ1(‖x‖) � V (t, x) � ϕ2(‖x‖) for ϕ1, ϕ2 ∈ K;
(2) D+V (t, x)|(5.4.1) � −ψ(‖x‖) for ψ ∈ K , where ΩH := {x | ‖x‖ � H },

0 < H < B.

PROOF. Sufficiency. ∀x0 ∈ Sα := {x: ‖x‖ � α}, α � H , choose β > B such
that ϕ2(α) < ϕ1(β). Then, condition (2) of the theorem implies that

ϕ1
(∥
∥x(t, t0, x0)

∥
∥
)

� V
(

t, x(t, t0, x0)
)

� V (t0, x0)

(5.4.2)� ϕ2
(∥
∥x(t, t0, x0)

∥
∥
)

� ϕ2(α) < ϕ1(β).

Hence,
∥
∥x(t, t0, x0)

∥
∥ < β (t � t0),

i.e., the solution of (5.4.1) is uniformly Lagrange stable
Choose B > H , ∀α > B, ∀x0 ∈ Sα = {x | ‖x‖ � α} there must exist t1 > t0

such that
∥
∥x(t1, t0, x0)

∥
∥ < B.

If otherwise for all t � t0 it holds

B �
∥
∥x(t, t0, x0)

∥
∥ � β.
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Let c∗ = c(β) = infB�‖x‖�β c(‖x‖) > 0, then

(5.4.3)V
(

t, x(t, t0, x0)
)

� V (t0, x0)− c∗(t − t0)→−∞.

This is imposable, and so ‖x(t1, t0, x0)‖ < B. Again choose B∗ satisfying B <

B∗ � α. Let T (α) = ϕ2(α)−ϕ1(B
∗)

c∗ > 0. Then, we have

ϕ1
(∥
∥x(t, t0, x0)

∥
∥
)

� V
(

t, x(t, t0, x0)
)

� V (t0, x0)− c∗ ϕ2(α)− ϕ1(B
∗)

c∗
� ϕ2

(‖x0‖
)− ϕ2(α)+ ϕ1

(

B∗
)

< ϕ2(α)− ϕ2(α)+ ϕ1
(

B∗
)

= ϕ1
(

B∗
)

for t � t0 + T (α). Hence, ‖x(t, t0, x0)‖ � B∗. This shows that system (5.4.1) is
uniformly Lagrange asymptotically stable with the limit bound B.

Necessity. Suppose system (5.4.1) is uniformly Lagrange asymptotically stable
with the limit bound B. Let MB = {x: ‖x‖ � B} and d(p(t0 + τ, t0, x0),MB)

represent the distance from point p(t0+ τ, t0, x0) to set MB . Then, one can apply
Lemma 4.3.2 to show that there exist monotone increasing function ψ(τ) with
ψ(0) = 0 and positive continuous decreasing function σ(t) → 0 (as t → +∞)
such that

d
(

p(t0 + τ, t0, x0),MB

)

� ψ
(

d(x0,MB)
)

σ(τ).

Take ϕ(τ) = ψ(α − β)σ (τ), ξ(τ ) ≡ 1. Then, there exists continuous increasing
function G(r) defined on 0 � r � ϕ(0) = ψ(α − β)σ (0) with G(0) = 0. Let
g(τ) = G2(τ ). By the property of ψ and σ we know that

g
(

ψ
(

d(x0,MB)
)

σ(τ − t)
)

= [

g
(

ψ
(

d(x0,MB)
)

σ(τ − t)
)] 1

2
[

g
(

ψ
(

d(x0,MB)
)

σ(τ − t)
)] 1

2

(5.4.4)�
[

g
(

ψ
(

d(x0,MB)
)

σ(0)
)] 1

2
[

g
(

ψ(α − β), σ (τ − t)
)] 1

2 ,

when τ � t , d(x0,MB) < α − β. Now we define the function:

(5.4.5)V (t, x) =
∞∫

t

g
(

d
(

p(t0 + τ, t0, x0),MB

))

dτ � 0.

Then,

V (t, x) �
[

g
(

ψ
(

d(x,MB)
)

σ(0)
)] 1

2

∞∫

t

g
(

ψ(α − β), σ (τ − t)
) 1

2 dτ
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= G
(

ψ
(

d(x,MB)σ(0)
))

∞∫

0

G
(

ψ(α − β), σ (τ )
)

dτ

< G
(

ψ
(

d(x,MB)σ(0)
)) := ϕ̃2

(‖x‖),
dV

dt

∣
∣
∣
∣
(5.4.1)

= −G2(d(x,MB)
) := c

(‖x‖).

According to Theorem 5.3.10, there exists W(t, x) ∈ C[I × Rn,R1] such that

(1) ϕ1(‖x‖) � W(t, x) � ϕ2(‖x‖) for ϕ1, ϕ2 ∈ KR;
(2) D+W(t, x)|(5.4.1) � 0.

Let U(t, x) := V (t, x)+W(t, x). Then, we have

ϕ1
(‖x‖) � W(t, x) � U(t, x) � ϕ2

(‖x‖)+ b
(‖x‖) := ϕ̃2

(‖x‖),
D+U(t, x)|(5.4.1) � D+V (t, x)|(5.4.1) +D+W(t, x)|(5.4.1)

(5.4.6)� −c(‖x‖),
so all the conditions are satisfied. The necessity is proved, and the proof is com-
plete. �

5.5. Lagrange exponential stability of the Lorenz system

As we know, so far not much work has been done on the Lagrange globally ex-
ponential stability and even very little has been discussed on this topic in the
literature. In this section, we introduce our new results on the Lagrange globally
exponential stability of the well-known Lorenz chaotic system. The method given
in this section may help study other chaotic systems.

Since Lorenz discovered the Lorenz chaotic attractor in 1963, extensive studies
have been given to the well-known Lorenz system [294]:

dx

dt
= a(y − x),

dy

dt
= cx − y − xz,

(5.5.1)
dz

dt
= xy − bz,

where a, b and c are parameters. The typical parameter values for system (5.5.1)
to exhibit a chaotic attractor are: a = 10, b = 8/3, c = 28. The Lorenz sys-
tem has played a fundamental role in the area of nonlinear science and chaotic
dynamics. Although everyone believes the existence of the Lorenz attractor, no
rigorous mathematical proof has been given so far. This problem has been listed
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as one of the fundamental mathematical problems, proposed by Smale [364] for
the 21st century. This problem is extensively discussed with the aid of numerical
computation. It has been realized that it is extremely difficult to obtain the infor-
mation of the chaotic attractor directly from the differential equation (5.5.1). Most
of the results in the literature are computer simulations. Even based on computa-
tion of Lyapunov exponents of the system, one needs to assume the system being
bounded in order to conclude that the system is chaotic. Therefore, the study of the
globally attractive set of the Lorenz system is not only theoretically significant,
but also practically important.

Chen and Lü [69] proposed the following Lorenz family:

dx

dt
= (25α + 10)(y − x) := aα(y − x),

dy

dt
= (28− 35α)x − xz+ (29α − 1)y := dαx − xz+ cαy,

(5.5.2)
dz

dt
= xy − α + 8

3
y := xy − bαz,

where α ∈ [0, 1/29). In the following, we consider the globally exponentially
Lagrange stability of systems (5.5.2) and (5.5.1).

Up to now, the concept of globally exponentially attractive set has not been
formally proposed in the literature for studying the bounds of chaotic attractors.
Thus, the convergent speed of trajectories from outside of the globally attractive
set to the boundary of the set is unknown. In this section, we propose the concept
of globally exponentially attractive set and apply it to obtain the exponential es-
timation of such set. Our results contain various existing results on the globally
exponentially attractive set as special cases.

DEFINITION 5.5.1. If there exists a positive number Lλ > 0, rλ > 0 and a
generalized positive definite and radially unbounded Lyapunov function for sys-
tem (5.5.2) such that for ∀X0 ∈ R3, it holds

Vλ
(

X(t)
)− Lλ �

(

Vλ(X0)− Lλ
)

e−rλ(t−t0)

when Vλ(X(t)) > Lλ, t � t0, then system (5.5.2) is said to be globally exponen-
tially Lagrange stable.

THEOREM 5.5.2. Define

Lλ = b2
α(λaα + cα)

2

8(bα − dα)dα
.

Then, we have estimation for the globally exponentially attractive set of sys-
tem (5.5.2), given by

Vλ
(

X(t)
)− Lλ �

(

Vλ(X0)− Lλ
)

e−2dλ(t−t0).
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In particular, the set

Ωλ =
{

X | Vλ(X) � Lλ
}

=
{

X
∣
∣ λx2 + y2 + (z− λaλ − cλ)

2 � b2
α(λaα + cα)

2

4(bα − dα)dα

}

is the globally attractive set of (5.5.2).

PROOF. Let f (z) = −(bα − dα)z
2 + (bα − 2dα)(λaα + cα)z. Then, setting

f ′(z) = −2(bα − dα)z+ (bα − 2dα)(λaα + cα) zero yields

z0 = (bα − 2dα)(λaα + cα)

2(bα − dα)
.

since bα > 2 > dα , 0 < dα � 1, it follows that z0 > 0 and f ′′(z0) = −2(bα −
dα) < 0. Thus,

sup
z∈R

f (z) = f (z0) = [(bα − 2dα)(λaα + cα)]2
4(bα − dα)

.

Then, using the facts that aα > 1 and 0 < dα � 1, we obtain

dVλ

dt

∣
∣
∣
∣
(5.5.2)

= λx2 = y2 + (z− λaα − cα)
2

= −λx2 − dαy
2 − dαz

2 + bα(λaα + cα)z

= −λx2 − dαy
2 − dαz

2 + 2dα(λaα + cα)z

− (bα − dα)z
2 + (bα − 2dα)(λaα + cα)z

� −λx2 − dαy
2 − dα(z− λaα − cα)

2 + dα(λaα + cα)
2 + f (z)

� −λx2 − dαy
2 − dα(z− λaα − cα)

2 + dα(λaα + cα)
2 + f (z0)

= −λx2 − dαy
2 − dα(z− λaα − cα)

2 + b2
α(λaα + cα)

2

4(bα − dα)

� −λx2 − dαy
2 − dα(z− λaα − cα)

2 + 2dαLα

� −2dαVλ + 2dαLλ

(5.5.3)� 0 when Vλ � Lλ.

By comparison theorem and integrating both sides of (5.5.3) yields

Vλ
(

X(t)
)

� Vλ(X0)e
−2dα(t−t0) +

t∫

t0

e−2dα(t−τ)2dαLλ dτ

(5.5.4)= Vλ(X0)e
−2dα(t−t0) + Lλ

(

1− e−2dα(t−t0)).
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So, if Vλ(X(t)) > Lλ, t � t0, we have the following estimation for the globally
exponentially attractive set:

Vλ
(

X(t)
)− Lλ �

(

Vλ(X0)− Lλ
)

e−2dλ(t−t0).

By the definition, taking the upper limit on both sides of the above inequality
results in

lim
h→∞Vλ

(

X(t)
)

� Lλ,

namely, the set

Ωλ =
{

X | Vλ(X) � Lλ
}

=
{

X | λx2 + y2 + (z− λaλ − cλ)
2 � b2

α(λaα + cα)
2

4(bα − dα)dα

}

is a globally exponentially attractive set, i.e., system (5.5.2) is Lagrange globally
exponentially stable. �

THEOREM 5.5.3. Let

V0 = 1

2

[

y2 + (z− cα)
2] and L0 = b2

αc
2
α

8(bα − dα)dα
.

Then, an estimation of the globally exponentially attractive set of the interval
Lorenz system (5.5.2) is

⎧

⎪⎨

⎪⎩

V0(X(t))− L0 � (V0(X0)− L0)e
−2dα(t−t0)

� (V0(X0)− L0)e
−min(2dα,aα)(t−t0),

x2(t)− 2L0 � (x2
0 − 2L0)e

−aα(t−t0) � (x2
0 − 2L0)e

−min(2dα,aα)(t−t0).
Especially, the set

(5.5.5)Ω0 =
{

X

∣
∣
∣
∣
∣

V0(X) � L0

x2 � 2L0

}

=

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

X

∣
∣
∣
∣
∣
∣
∣
∣
∣

y2 + (z− c)2 � b2
αc

2
α

4(bα − dα)dα

x2 � b2
αc

2
α

4(bα − dα)dα

⎫

⎪⎪⎪⎬

⎪⎪⎪⎭

is the globally attractive and positive invariant set of (5.5.2), where X = (y, z),
and so system (5.5.2) is Lagrange globally exponentially stable.

PROOF. Setting λ = 0 in Theorem 5.5.2, we analogously obtain the estimation
for the globally exponentially attractive set with respect to the variables y and z:

(5.5.6)V0
(

X(t)
)− L0 �

(

V0(X0)− L0
)

e−2dα(t−t0).
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Then, taking upper limit on both sides of (5.5.6) leads to

lim
h→∞V0

(

X(t)
)

� L0,

i.e.,

lim
h→∞

(

y2(t)+ (

z(t)− cα
)2) � b2

αc
2
α

4(bα − dα)dα
= 2L0.

So, the estimation of the ultimate bound for y is

y2 � 2L0.

Next, for the first equation of system (5.5.2), we construct the positive definite
and radially unbounded Lyapunov function:

V = 1

2
x2.

Then,

dV

dt

∣
∣
∣
∣
(5.5.2)

= −aαx2 + aαxy � −aαx2 + aα|x||y|

= −aαx2 + 1

2
aαx

2 + aαL0 = −aαV + aαL0.

Hence,

(5.5.7)V
(

X(t)
)− L0 �

(

V (x0)− L0
)

e−aα(t−t0),

i.e.,

x2(t)− b2
αc

2
α

4(bα − dα)dα
�
(

x2
0 −

b2
αc

2
α

4(bα − dα)dα

)

e−aα(t−t0).

Therefore, the ultimate bound is given by the upper limit

lim
h→∞ x2(t) � b2

αc
2
α

4(bα − dα)dα
= 2L0.

This implies that Ω0 is a globally attractive and positive invariant set of (5.5.2). �

Now, we return to system (5.5.1), but assume that the system parameters are
defined as a > 0, b > 1, c > 0. For convenience, we call such system (5.5.1)
the infinite interval Lorenz system family. Comparing with (5.5.2), though sys-
tem (5.5.1) has one less parameter (d), its parameter values are unbounded and
analysis is different from that of system (5.5.2). For certain values of the pa-
rameters, system (5.5.1) may be not chaotic. Here, we consider the globally
exponentially attractive set of (5.5.1), regardless whether it is chaotic or not.
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THEOREM 5.5.4. Let

V̄λ = 1

2

[

λx2 + y2 + (z− λa − c)2
]

,

L̄
(1)
λ = (λa + c)2b2

8(b − 1)
, L̄

(2)
λ = (λa + c)2

2
, L̄

(3)
λ = (λa + c)2b2

8a(b − a)
.

Then, the globally exponentially attractive and positive invariant sets of the infi-
nite interval Lorenz system (5.5.1) are given by

V̄λ
(

X(t)
)− L

(1)
λ �

(

V̄λ(X0)− L
(1)
λ

)

e−2(t−t0) when a � 1, b � 2,

V̄λ
(

X(t)
)− L

(2)
λ �

(

V̄λ(X0)− L
(2)
λ

)

e−2b(t−t0) when a >
b

2
, b < 2,

V̄λ
(

X(t)
)− L

(3)
λ �

(

V̄λ(X0)− L
(3)
λ

)

e−2a(t−t0) when 0 < a < 1, b � 2a.

Especially, the sets

Ω
(k)
λ = {

X | V̄λ(X) � L
(k)
λ

}

= {

X | λx2 + y2 + (z− λa − c)2 � 2L(k)λ
}

, k = 1, 2, 3,

are the estimations of the globally exponentially attractive and positive invariant
sets of system (5.5.1).

PROOF. Take

V̄λ = 1

2

[

λx2 + y2 + (z− λa − c)2
]

.

(1) When a � 1, b � 2, analogous to the proof of (5.5.3), we have

dV̄λ

dt

∣
∣
∣
∣
(5.5.1)

� −λx2 − y2 − (z− λa − c)2 + 2L(1)λ = −2V̄λ + 2L(1)λ ,

which yields

(5.5.8)V̄λ
(

X(t)
)− L

(1)
λ �

(

V̄λ(X0)− L
(1)
λ

)

e−2(t−t0).

(2) When a > b
2 , b < 2, we obtain

dV̄λ

dt

∣
∣
∣
∣
(5.5.1)

� −λax2 − y2 − bz2 + b(λa + c)z

� −λb
2
x2 − b

2
y2 − b

2
z2 + b

2
2(λa + c)z

� −λb
2
x2 − b

2
y2 − b

2
(z− λa − c)2 + b

2
(λa + c)2

� −b
2

(

2V̄λ − 2L(2)λ
) = −b(V̄λ − L

(2)
λ

)

.
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Thus,

(5.5.9)V̄λ
(

X(t)
)− L

(1)
λ �

(

V̄λ(X0)− L
(1)
λ

)

e−b(t−t0).

(3) When a < 1, b � 2a, we have

dV̄λ

dt

∣
∣
∣
∣
(5.5.1)

� −λax2 − y2 − bz2 + b(λa + c)z

� −λax2 − ay2 − az2 + 2a(λa + c)z− a(λa + c)2

+ (a − b)z2 + (b − 2a)(λa + c)z+ a(λa + c)2

� −a[λx2 + y2 + (z− λa − c)2
]

+ (a − b)z2 + (b − 2a)(λa + c)z+ a(λa + c)2

� −2a
(

V̄λ − L
(3)
λ

)

.

Hence,

(5.5.10)V̄λ
(

X(t)
)− L

(3)
λ �

(

V̄λ(X0)− L
(3)
λ

)

e−2a(t−t0).

Further, taking upper limit on both sides of (5.5.8), (5.5.9) and (5.5.10) yields

lim
h→∞

(

λx2 + y2(t)+ (

z(t)− λa − c
)2)

(5.5.11)�

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

(λa+c)2b2

4(b−1) when a � 1, b � 2,

(λa + c)2 when a > b
2 , b < 2,

(λa+c)2b2

4a(b−a) when a < 1, b > 2a.

�

THEOREM 5.5.5. Let

V0 = 1

2

[

y2 + (z− c)2
]

and L0 = b2c2

8(b − 1)
.

Then, the estimation of the globally exponentially attractive set of the infinite in-
terval Lorenz system (5.5.1) is

⎧

⎪⎪⎨

⎪⎪⎩

V̄0(X(t))− L
(1)
0 � (V̄0(X0)− L

(1)
0 )e−2b(t−t0)

� (V̄0(X0)− L̄0)e
−min(2b,a)(t−t0),

x2(t)− L0 � (x2
0 − L̄0)e

−a(t−t0) � (x2
0 − L̄0)e

−min(2b,aα)(t−t0).
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Especially, the set

(5.5.12)Ω̄0 =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

X

∣
∣
∣
∣
∣
∣
∣
∣
∣

y2 + (z− c)2 � b2c2

4(b − 1)dα

x2 � b2c2

4(b − 1)dα

⎫

⎪⎪⎪⎬

⎪⎪⎪⎭

is the globally attractive and positive invariant set of (5.5.1).

PROOF. Similar to the proofs for (5.5.7) and (5.5.9), differentiating V̄0 with re-
spect to time t and using the second and third equations of system (5.5.1) lead to
the conclusion. The details are omitted here for simplicity. �

Equilibrium points, periodic and almost-periodic solutions are all positive in-
variant sets. Therefore, as a direct application of the results obtained in this
section, we have the following theorem.

THEOREM 5.5.6. Outside the globally attractive sets of the interval Lorenz sys-
tems (5.5.1) and (5.5.2), there are no bounded positive invariant sets that do not
intersect the globally attractive sets.

PROOF. By contradiction, suppose Ω is the globally attractive set of (5.5.1) and
there is a bounded positive invariant set Q outside the set Ω , and Ω ∩ Q = Φ

(empty set). Thus, we have

inf
X∈Ω
X̄∈Q

‖X − X̄‖ > 0.

By the definition of positive invariant set, we have X(t, t0, X0) ∈ Q for X0 ∈ Q

and t � t0. Hence,

inf
X∈Ω

X(t,t0,X0)∈Q
t�t0

∥
∥X −X(t, t0, X0)

∥
∥ > 0.

On the other hand, since Ω is the globally attractive set, we have X(t, t0, X0)→
Ω as t →+∞. This implies that

inf
X∈Ω

X(t,t0,X0)∈Q
t�t0

∥
∥X −X(t, t0, X0)

∥
∥ = 0,

leading to a contradiction. �
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5.6. Robust stability under disturbance of system structure

It is well known that both the Lyapunov stability and the Lagrange stability are de-
fined in the sense of disturbance on initial conditions. In this section, we study the
robust stability of nonlinear systems, which admit simultaneously disturbances on
the structure of the system and the initial conditions.

Consider the general nonlinear system without disturbance:

(5.6.1)
dx

dt
= f (t, x),

where f (t, x) ≡ x if and only if x = 0, f ∈ C[I × SH ,R
n], and

SH :=
{

x | ‖x‖ � H
}

.

At the same time, we consider the system under disturbance on the structure of
the system:

(5.6.2)
dy

dt
= f (t, y)+ g(t, y), g ∈ C[I × SH ,R

n
]

.

DEFINITION 5.6.1. The zero solution of systems (5.6.1) is said to be robust sta-
ble in the sense of Lyapunov under disturbance of structure, if ∀ε > 0, ∃δ1(ε) > 0,
δ2(ε) > 0, when ‖g(t, y)‖ � δ1, ‖y0‖ � δ2, the solution y(t, t0, y0) of (5.6.2)
satisfies

(5.6.3)
∥
∥y(t, t0, y0)

∥
∥ < ε (t � t0).

LEMMA 5.6.2. If there exists a function V (t, x) ∈ C[I × SH ,R] such that

(1) ‖x‖ � V (t, x) � K(α)‖x‖ ∀x ∈ Sα ⊂ SH , K(α) = constant;
(2) D+V (t, x)|(5.6.1) � −cV (t, x) (c > 0);

then the zero solution of system (5.6.1) is exponentially stable.

The proof is similar to that of Theorem 4.4.1, and is thus omitted.

THEOREM 5.6.3. If there exists a function V (t, x) ∈ C[I × SH ,R
1], satisfying

(1) ϕ1(‖x‖) � V (t, x) � ϕ2(‖x‖);
(2) D+V (t, x)|(5.6.1) � −cV (t, x);
(3) ‖V (t, x)− V (t, y)‖ � k‖x − y‖.
Then the zero solution of system (5.6.1) is robust stable in the sense of Lyapunov
under disturbance of structure.
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PROOF. ∀ε > 0, take δ1(ε) < ε such that ϕ2(δ1) < ϕ1(ε), and choose 0 < δ 	 1
such that

Cϕ1(δ1)− kδ > 0 (δ < δ1).

In the following, we prove that when ‖g(t, y)‖ < δ, ‖y0‖ < δ1 it holds
∥
∥y(t, t0, y0)

∥
∥ < ε (t � t0).

If otherwise, suppose that there exist t1, t2, t1 < t2, such that
∥
∥y(t1, t0, y0)

∥
∥ = δ1,

∥
∥y(t2, t0, y0)

∥
∥ = ε,

and for t ∈ (t1, t2) it holds

δ1 <
∥
∥y(t, t0, y0)

∥
∥ < ε.

However, on other hand, for t ∈ [t1, t2] we have

D+V
(

t, y(t, t0, y0)
)∣
∣
(5.6.2) � −cV (t, y(t, t0, y0)

)+ k
∣
∣g
(

t, y(t, t0, y0)
)∣
∣

� −cϕ1(δ1)+ kδ

� 0.

This implies that

ϕ1(ε) � V
(

t2, y(t2, t0, y0)
)

� V
(

t1, y(t1, t0, y0)
)

� ϕ2(δ1) < ϕ1(ε),

leading to a contradiction. Hence, for all t � t0, we have
∥
∥y(t, t0, y0)

∥
∥ < ε,

i.e., the zero solution of systems (5.6.1) is robust stable in the sense of Lyapunov
under disturbance of structure. �

For linear systems, exponential stability implies robust stability in the sense of
Definition 5.6.1, but this not generally true for nonlinear systems.

THEOREM 5.6.4. Consider the linear system:

(5.6.4)
dx(t)

dt
= A(t)x,

where A(t) = (aij (t))n×n is a continuous matrix function. The robust stability of
the zero solution of (5.6.4) implies its exponential stability.
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PROOF. Since the zero solution of (5.6.4) is robust stable in the sense of Lya-
punov under disturbance of structure, in the region ‖x‖ � 1, for ε = 1

2 there
exists δ > 0 such that for the disturbed system (5.6.4):

(5.6.5)
dy

dt
= A(t)y + δy,

the solution of (5.6.5) y(t, t0, y0) (when ‖y0‖ < δ) satisfies

∥
∥y(t, t0, y0)

∥
∥ <

1

2
.

But the solution x(t, t0, x0) of (5.6.4) and the solution y(t, t0, y0) of (5.6.5) have
the following relation:

y(t, t0, y0) = x(t, t0, x0)e
δ(t−t0),

i.e., ‖x(t, t0, x0)‖ � 1
2e
−δ(t−t0). Hence, the zero solution of (5.6.4) is exponen-

tially stable. �

DEFINITION 5.6.5. The solution of (5.6.1) is said to be robust stable in the sense
of Lagrange under disturbance of structure, if ∀α > 0, there exist constants
β(α) > 0 and r(α) > 0 such that

∥
∥g(t, y)

∥
∥ < r(α),

and further if y0 ∈ Sα , then for all t � t0 it holds
∥
∥y(t, t0, y0)

∥
∥ < β(α),

where y(t, t0, y0) is the solution of (5.6.2).

THEOREM 5.6.6. If there exists V (t, x) ∈ C[I × Sk, R] such that on I × Sk it
holds

(1) ϕ1(‖x‖) � V (t, x) � ϕ2(‖x‖) for ϕ1, ϕ2 ∈ KR;
(2) on any compact k � α � x � β,

∣
∣V (t, x)− V

(

t, x∗
)∣
∣ � K(α, β)

∥
∥x − x∗

∥
∥, K(α, β) = constant;

(3) D+V (t, x)|(5.6.1) � −λ(‖x‖), C(r) is a continuous positive function.

Then the solution of (5.6.1) is robust stable in the sense of Lagrange under dis-
turbance of structure.

PROOF. ∀α > k > 0, take β(α) > α > 0 such that ϕ1(β) > ϕ2(α). By the
conditions (2) and (3), we have

∣
∣V (t, x)− V

(

t, x∗
)∣
∣ � K(α, β)

∥
∥x − x∗

∥
∥,
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D+V (t, x)|(5.6.1) � −λ(α).
So on 0 � t < +∞, α � ‖x‖ � β, we have

D+V (t, y)|(5.6.2) � D+V (t, y)|(5.6.1) +K(α, β)
∥
∥g(t, y)

∥
∥

� −λ(α)+K(α, β)
∥
∥g(t, y)

∥
∥.

Thus, we can choose r(α) > 0 such that

γ (α) � λ(α)

K(α, β)

on the region defined by 0 � t < +∞, α � ‖x‖ � β. If
∥
∥g(t, y)

∥
∥ � γ (α),

then D+V (t, y)|(5.6.2) � 0. Therefore, if g0 ∈ Sα , we have

ϕ1
(∥
∥y(t)

∥
∥
)

� V
(

t, y(t, t0, y0)
)

� V (t0, y0) � ϕ2
(‖y0‖

)

� ϕ2(α) � ϕ2(β),

i.e., ‖y(t)‖ � β. So the conclusion is true. �

DEFINITION 5.6.7. For a given function f (r) > 0, system (5.6.1) is said to be
robust dissipative under f (r) degree disturbance of structure, if there exist two
constants β > 0 and α > 0 such that for ‖y‖ � β it holds

∥
∥g(t, y)

∥
∥ < αf

(‖y‖)

and

lim
t→∞

∥
∥y(t, t0, y0)

∥
∥ < β,

where y(t, t0, y0) is a solution of (5.6.2).

THEOREM 5.6.8. Suppose the conditions of Theorem 5.6.4 are satisfied. LetL(r)
be the Lipschitz constant, i.e.,

∣
∣V (t, x)− V

(

t, x∗
)∣
∣ � L(r)

∥
∥x − x∗

∥
∥ ∀x, x∗ ∈ Sr,

and L(r)f (r) = 0(c(r)) as r →∞. Then, the system (5.6.1) is robust dissipative
under f (r) degree structure disturbance.

PROOF. According to the conditions, we can choose α > 0 such that

α � c(r)

2L(r)f (r)

when r � k (k is a constant). For this α, if ‖g(t, y)‖ � αf (‖y‖), then

D+V (t, y)|(5.6.2) � D+V (t, y)|(5.6.1) + L
(‖y‖)∥∥g(t, y)∥∥
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� −c(‖y‖)+ αL
(‖y‖)f (‖y‖)

� −1

2
c
(‖y‖) when ‖y‖ � k.

The above inequality indicates that system (5.6.1) is robust dissipative under f (r)
degree structure disturbance. �

REMARK 5.6.9. In the stability study under structural disturbance, the disturbing
function g(t, x) is unknown except for it being bounded by δ1. If more informa-
tion about g(t, x) is known, we could obtain stronger stability results.

5.7. Practical stability

In the definition of Lyapunov stability, ε is arbitrary and δ(ε) is only requested to
exist no matter how small it is. However, in practice if δ is too small, requiring
the initial disturbance not to exceed δ is impossible. Similarly, the discrepancy in
the actual running state and the ideal state is impossible or not necessary to be
infinitely small. Therefore, real systems admit to run within a given discrepancy
bound. For example, many air crafts and missiles work in such situation. Thus,
practical stability was necessary and developed. In the following, we briefly in-
troduce the practical stability according to Lefschetz [225].

Consider two n-dimensional nonautonomous systems, given by

(5.7.1)
dx

dt
= f (t, x), f (t, 0) ≡ 0, f ∈ C[I × SH ,R

n
]

,

(5.7.2)
dx

dt
= f (t, x)+ p(t, x)

(

p ∈ C[I × SH ,R
n
])

.

DEFINITION 5.7.1. For pre-defined positive number δ, and two sets Q and Q0,
where Q0 ⊂ Q ⊂ SH , if ∀x0 ∈ Q0, t0 � 0 and ∀p(t, x) ∈ P := {p(t, x) |
‖p(t, x)‖ � δ}, the solution of (5.7.2) x(t, t0, x0) ⊂ Q(t � t0). Then the zero
solution of (5.7.1) is said to be practically stable with respect to δ,Q and Q0.

The practical stability is correlated with δ, and the set {Q,Q0,Q} is the permis-
sive state set, Q0 is the initial state set. See the illustration given in Figure 5.7.1.
Before studying the practical stability, we must consider:

(1) the dimension of Q needed to ensure the system to perform normally;
(2) the admitted disturbance range (the value of δ);
(3) the deviation to be controlled by the initial condition (the dimension of Q0).

Note that the practical stability and the Lyapunov stability do not include each
other.
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Figure 5.7.1. Practical stability.

THEOREM 5.7.2. Let Q0 be a compact set of Rn, 0 ∈ Q0. If there exists
V (t, x) ∈ C[I × Rn,R] such that for all x ∈ Qc

0 it holds:

(5.7.3)D+V (t, x)|(5.7.1) � 0,

and ∀x1 ∈ Q0, x2 ∈ Qc,∀t2 � t � 0, we have the inequality:

(5.7.4)V (t1, x1) < V (t2, x2),

where Qc
0 and Qc are respectively the complementary sets of Q0 and Q, then

∀x0 ∈ Q0, the solution x(t, t0, x0) ⊂ Q, t � t0, i.e., the zero solution of (5.7.1)
is practically stable with respect to δ,Q and Q0.

PROOF. ∀x0 ∈ Q0, consider the solution x(t, t0, x0). If at certain T > t0,
x(T , t0, x0) ⊂ QC

0 , then there exist t1, t0 < t1 < T such that x(t, t0, x0) ⊂ Qc
0,

and when t1 < t � T , x(t1, t0, x0) ∈ Q0. Hence, we have

(5.7.5)V
(

t1, x(t1, t0, x0)
)

< V
(

T , x(T , t0, x0)
)

.

However, on the other hand, for t1 < t � T , by condition (5.7.3), we obtain

D+V (t, x)|(5.7.1) � 0.

It follows that

V
(

t, x(t, t0, x0)
)

� V
(

T , x(T , t0, x0)
)

.

Hence,

(5.7.6)V
(

t1, x(t1, t0, x0)
) = lim

t→t1
V
(

t, x(t)
)

� V
(

T , x(T )
)

.

The inequalities (5.7.5) and (5.7.6) show a contradiction. So x(t, t0, x0) ⊂ Q, i.e.,
the zero solution of (5.7.1) is practically stable with respect to δ,Q and Q0. �
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DEFINITION 5.7.3. The zero solution of (5.7.1) is said to be practically stable
in finite time interval [t0, t0 + T ] with respect to δ,Q and Q0, if ∀p ∈ P :=
{p(t, x) | ‖p(t, x)‖ � δ}, ∀x0 ∈ Q0, x(t, t0, x0) ⊂ Q when t ∈ [t0, t0 + T ].

THEOREM 5.7.4. If there exists V (t, x) ∈ C[I × Rn,R] such that V � l0 when
x ∈ Q0, and V � l when x ∈ Qc. Further, dV

dt
|(5.7.2) � (l − l0)/T when x ∈ Qc

0.
Then, ∀x0 ∈ Q0, x(t, t0, x0) ⊂ Q (when t ∈ [t0, t0 + T ]), i.e., the zero solution
of (5.7.1) is practically stable in finite time interval [t0, t0 + T ], with respect to
δ,Q and Q0.

PROOF. Let V (t, x(t)) := V (t, x(t, t0, x0)), and x0 ∈ Q0 when t > t0, and
x(t) ∈ Qc

0 when t ∈ [t0, t0 + T ]. Then, we have

V
(

t, x(t)
)− V

(

t0, x(t0)
) = V

(

ξ, x(ξ)
)

(t − t0)

� l − l0

T
(t − t0)

� l − l0

T
T = l − l0.

Hence, V (t, x(t)) � l − l0 + l0 = l. Thus, x(t, t0, x0) ⊂ Q, i.e., the conclusion
of theorem is true. �

DEFINITION 5.7.5. The zero solution of (5.7.1) is said to be practically strongly
stable with respect to δ,Q and Q0, if it is practically stable with respect to δ,Q
and Q0, and ∀x0 ∈ Q0, there exists T > 0 such that the solution x(t, t0, x0)

of (5.7.2) satisfies

x(t, t0, x0) ⊂ Q when t � t0 + T .

That is, the system (5.7.1) is robust dissipative.

THEOREM 5.7.6. If there exists V (t, x) ∈ C[I × Rn,Rn] such that V (t, x) →
+∞ when ‖x‖ → ∞ and dV

dt
|(5.7.2) � −ε < 0 for all x ∈ Q0 and for all p ∈ P ,

and V (t, x) < V (t, y) for all x ∈ Q0, y ∈ Qc, then the zero solution of (5.7.1)
is practically strongly stable with respect to δ,Q and Q0.

PROOF. First, we prove that the zero solution of (5.7.1) is practically stable
with respect to δ,Q and Q0. Suppose ∀x0 ∈ Q0, then at certain time T > t0,
x(T , t0, x0) ⊂ Qc, there exist t1, t0 < t1 < T such that x(t1, t0, x0) ∈ Q0, but
x(T , t0, x0) ⊂ Qc, and for all t ∈ [t1, T ], x(t, t0, x0) ⊂ Qc

0. Hence,

V
(

t1, x(t1, t0, x0)
)

< V
(

T , x(T , t0, x0)
)

,

which is impossible because V (t, x(t, t0, x0)) is monotone decreasing function of
t . So the zero solution of (5.7.1) is practically stable with respect to δ,Q and Q0.
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Next, we prove the dissipation, i.e., to prove that ∀x0 ∈ Qc there exists
T (t0, x0) such that

x(t, t0, x0) ⊂ Q ∀ t � t0 + T (t0, x0).

If otherwise, suppose for all t � t0 we have

x(t, t0, x0) ⊂ Qc.

Since dV
dt

� −ε < 0, it follows that

V
(

t, x(t, t0, x0)
)

� V (t0, x0)− ε(t − t0)→−∞ as t →+∞.

Therefore, we can take x0 ∈ Qc. Let y(t) := x(t, t0, x0). Then,

C := V (t0, x0) < V
(

t, y(t)
)→−∞ (t →∞),

leading to a contradiction. So the system (5.7.2) is robust dissipative. �

5.8. Lipschitz stability

Lipschitz stability is a new stability developed in recent years. It is often used to
analyze nonlinear problems. It is also useful in studying boundedness of solutions
and existence of periodic solutions. Application of this stability has been extended
from the dynamical systems defined by ordinary differential equation to those
described by functional differential equations or other types of equations. In this
chapter, we introduce the basic concepts of the Lipschitz stability theory.

Consider the n-dimensional system:

(5.8.1)
dx

dt
= f (t, x),

where f (t, x) ∈ C[I × Rn,Rn], f (t, 0) ≡ 0. Assume that the solution of (5.8.1)
is unique. Take x(t, t0, x0) as a solution of (5.8.1), and then define the variational
system of (5.8.1) as

(5.8.2)
dz

dt
= fx

(

t, x(t, t0, x0)
)

z,

where fx denotes the Jacobi matrix
( ∂fi
∂xj

)

n×n.

DEFINITION 5.8.1.

(1) The zero solution of (5.8.1) is said to be uniformly Lipschitz stable, if there
exist constants M > 0, δ > 0 such that ‖x0‖ < δ (t � t0 � 0) implies
‖x(t, t0, x0)‖ � M‖x0‖, where M is the Lipschitz constant.

(2) The zero solution of (5.8.1) is said to be globally uniformly Lipschitz stable,
if δ = +∞ in (1).
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(3) The zero solution of (5.8.1) is said to be uniformly variational Lipschitz sta-
ble, if there exit constantsM > 0, δ > 0 such that when ‖x0‖ < δ, t � t0 � 0,
‖K(t, t0, x0)‖ � M , where K(t, t0, x0) = ∂

∂x0
(x(t, t0, x0)).

(4) The zero solution of (5.8.1) is said to be uniformly variational globally Lip-
schitz stable, if δ = +∞ in (3).

The above definitions show that the uniform Lipschitz stability of the zero
solution of (5.8.1) implies the uniform Lyapunov stability of the zero solution
of (5.8.1), but the reverse is generally not true.

THEOREM 5.8.2. Let the zero solution of variational equation of (5.8.1) be

(5.8.3)
dz

dt
= fx(t, 0)z,

then the uniform Lipschitz stability of the zero solution of (5.8.1) implies the uni-
form Lipschitz stability of the zero solution of (5.8.3).

PROOF. Let the zero solution of (5.8.1) be uniformly Lipschitz stable. Then, there
exist α > 0, δ > 0 such that when ‖x0‖ � δ, ‖x(t, t0, x0)‖ � α‖x0‖ for t � t0.
Now take

x0i = eih, h � α, ei = (

i
︷ ︸︸ ︷

0, . . . , 1,

n−i
︷ ︸︸ ︷

0, . . . , 0 )T .

Then, we have
∥
∥
∥
∥

∂x(t, t0, 0)

∂x0i

∥
∥
∥
∥
=
∥
∥
∥
∥

lim
h→0

x(t, t0, x0)− x(t, t0, 0)

h

∥
∥
∥
∥

� lim
h→0

α‖x0‖
h

= α.

On the other hand,

∥
∥K(t, t0)

∥
∥ = ∥

∥K(t, t0, 0)
∥
∥ =

∥
∥
∥
∥

∂x(t, t0, 0)

∂x0

∥
∥
∥
∥

� α,

where K(t, t0) is the Cauchy matrix solution of (5.8.3). So the zero solution
of (5.8.1) is uniformly Lipschitz stable. �

EXAMPLE 5.8.3. Consider a nonlinear system:

(5.8.4)

{
dx1
dt
= x2,

dx2
dt
= −x3

1 .

We choose the positive definite Lyapunov function:

V (x1, x2) = 1

2
x4

1 + x2
2 .
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Then

dV

dt

∣
∣
∣
∣
(5.8.4)

= 2x3
1x2 − 2x3

1x2 = 0.

So the zero solution of (5.8.4) is Lyapunov uniformly stable. However, the zero
solution of (5.8.4) corresponds to the variational system:

(5.8.5)

{
dy1
dt
= y2,

dy2
dt
= 0,

which has the general solution:
{

y1 = y
(0)
2 (t − t0),

y2 = y
(0)
2 .

Obviously, the zero solution of (5.8.4) is Lipschitz unstable.

This example shows that for certain nonlinear systems, the Lipschitz stability
is stronger than the Lyapunov stability. But for the linear system:

(5.8.6)
dx

dt
= A(t)x,

the general solution can be expressed as

x(t, t0, x0) = K(t, t0)x0,

where K(t, t0) is the Cauchy matrix solution. It is well known that the Lipschitz
stability and the Lyapunov stability of the zero solution of (5.8.6) are equivalent
with respect to the boundedness of K(t, t0). Hence, for linear systems, the Lya-
punov stability and Lipschitz stability of the zero solution are equivalent.

In the following, we present several Lipschitz stability theorems.

THEOREM 5.8.4. Suppose that f (t, x) satisfies uniformly local Lipschitz con-
dition with respect to t . Then the zero solution of (5.8.1) is uniformly Lipschitz
stable if and only if there exists function V (t, x) ∈ [I × Sδ, R] such that on
U × Sδ the following conditions hold:

(1) ‖x‖ � V (t, x) � L‖x‖, L = const > 0;
(2) |V (t, x)− V (t, y)| � ‖x − y‖;
(3) D+V (t, x|(5.8.1)) � 0.

PROOF. Sufficiency. By the conditions, we have
∥
∥x(t, t0, x0)

∥
∥ � V

(

t, x(t, t0, x0)
)

� V (t0, x0) � L‖x0‖ when ‖x0‖ � δ.

So the sufficiency is true.
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Necessity. Let V (t, x) := supτ�0 ‖x(t + τ, t, x)‖(1+ e−τ−t ). Then,

‖x‖ := ∥
∥x(t, t, x)

∥
∥ �

∥
∥x(t, t, x)

∥
∥
(

1+ e−t
)

� V (t, x)

� M sup
τ�0

‖x‖(1+ e−τ−t
)

� 2M‖x‖ := L‖x‖.

It follows that condition (1) is true.
According to the Lipschitz propriety of f (t, x), it is easy to prove that there

exists K = K(M, δ) such that
∥
∥x(t + τ, t, x)− x(t + τ, t, y)

∥
∥ � ekτ‖x − y‖

for ‖x‖ � δ, ‖y‖ � δ, τ � 0.

Due to the Lipschitz stability of the zero solution of (5.8.1), we have
∥
∥x(t + τ, t, x)

∥
∥ � M‖x‖ � Mδ,

∥
∥x(t + τ, t, y)

∥
∥ � M‖y‖ � Mδ.

Thus,

sup
τ�0

∥
∥x(t + τ, t, x)

∥
∥
(

1+ e−τ−t
)

� sup
τ�0

(

eT + eT−(t+τ)
)‖x‖,

where T = lnM . When t < T , choose τ such that 0 � t + τ � T . When t � T ,
take τ = 0. Then, we have

∣
∣V (t, x)− V (t, y)

∣
∣ � sup

τ

{∥
∥x(t + τ, t, x)− x(t + τ, t, y)

∥
∥
(

1+ e−t−τ
)}

� sup
τ
ek‖x − y‖(1+ e−t−τ

)

� L‖x − y‖,
which leads to condition (2). Further,

D+V (t, x)|(5.8.1) � lim
h→0+

1

h

{

V
(

t + h, x(t + h, t, x)
)− V (t, x)

}

= lim
h→0+

1

h

{

sup
τ�0

∥
∥x(t + h+ τ, t, x)

∥
∥
(

1+ e−t−τ−h
)

− sup
τ�0

∥
∥x(t + τ, t, x)

∥
∥
(

1+ e−t−τ
)}

= lim
h→0+

1

h

{

sup
τ�h

∥
∥x(t + τ, t, x)

∥
∥
(

1+ e−t−τ
)

− sup
t�0

∥
∥x(t + τ, t, x)

∥
∥
(

1+ e−t−τ
)}

� 0,

i.e., condition (3) holds.
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To prove the continuity of V (t, x), we have
∣
∣V (t + h, x + y)− V (t, x)

∣
∣

�
∣
∣V (t + h, x + y)− V

(

t + h, x(t + h, t, x + y)
)∣
∣

+ ∣
∣V
(

t + h, x(t + h, t, x + y)
)− V (t, x + y)

∣
∣

(5.8.7)+ ∣
∣V (t, x + y)− V (t, x)

∣
∣.

By the Lipschitz propriety of V (t, x) and the continuity of the solution x(t, t0, x0),
the first term and third term in (5.8.7) are infinitesimal, and the second term is also
infinitesimal by the method of proving D+V (see Theorem 5.8.2). So V (t, x) is
continuous.

The proof of Theorem 5.8.4 is complete. �

THEOREM 5.8.5. If there exist function V (t, x) ∈ C[GH,R] and ϕ1, ϕ2 ∈ K

such that

ϕ1
(‖x‖) � V (t, x) � ϕ2

(‖x‖) (t � t0),

lim
s→0+

ϕ−1
1 (ϕ2(s))

s
� M = const (M � 1),

dV

dt

∣
∣
∣
∣
(5.8.1)

� 0 (t � t0),

then the zero solution of (5.8.1) is uniformly Lipschitz stable.

PROOF. Since by the conditions, one easily obtain:

ϕ1
(∥
∥x(t, t0, x0)

∥
∥
)

� V
(

t, x(t, t0, x0)
)

� V (t0, x0) � ϕ2
(‖x0‖

)

,

so ‖x(t, t0, x0)‖ � ϕ−1
1 ϕ2(‖x0‖) � M‖M0‖. �

THEOREM 5.8.6. If there exist constants L > 0, β > 1 and nondecreasing posi-
tive function α(t) such that

(1) α(t)‖x‖2 � xT G(t)x � Lα(t)‖x‖2;
(2) β‖G(t)F (t, x)‖ � ‖x‖,
where

F(t, x) = f (t, x)− fx(t, 0)x,

G(t) =
∞∫

t

ψT (s, t)ψ(s, t) ds,

in which ψ(t, t0) is the Cauchy matrix solution of (5.8.3), then the zero solution
of (5.8.1) is uniformly Lipschitz stable.
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PROOF. Choose V (t, x) = xT G(t)x. Obviously, G(t) is a symmetric positive
matrix. Then,

dV

dt

∣
∣
∣
∣
(5.8.1)

= xT Ġ(t)x + 2xT G(t)fx(t, 0)x + 2xT G(t)F (t, x),

where f (t, x) = fx(t, 0)x + F(t, x) = ∂f (t,0)
∂x

x + F(t, x). Owing to

∂ψ(s, t)

∂t
= −ψ(s, t)fx(t, 0),

Ġ(t) = −In +
∞∫

t

[
∂ψT (s, t)

∂t
ψ(s, t)+ ψT (s, t)

∂ψ(s, t)

∂t

]

ds,

one can further obtain

G′(t) = −In − f Tx (t, 0)G(t)−G(t)fx(t, 0)

and

dV

dt

∣
∣
∣
∣
(5.8.1)

= −xT x + 2xT G(t)F (t, x) � −xT x + xT x � 0.

Hence,

V
(

t, x(t, t0, x0)
)

� V (t0, x0).

Further, we have

α(t)
∥
∥x(t)

∥
∥

2 = xT (t)G(t)x(t)

� xT (t0)G(t0)x(t0)

� Lα(t0)
∥
∥x(t0)

∥
∥2
,

∥
∥x(t)

∥
∥

2 � α−1(t)α(t0)L
∥
∥x(t0)

∥
∥

2

� α−1(t0)α(t0)L‖x0‖2

= L2‖x0‖2,
∥
∥x(t)

∥
∥ � L‖x0‖,

implying that the zero solution of (5.8.1) is uniformly Lipschitz stable. Theo-
rem 5.8.6 is proved. �

5.9. Asymptotic equivalence of two dynamical systems

The process of using a mathematical model to describe a real physical system is
usually an approximation due to errors in measurements of experiments, model



5.9. Asymptotic equivalence of two dynamical systems 209

simplifications, or other factors. Hence, it is important to study the structural sta-
bility of systems under perturbations or the robust stability of systems (see [316,
361]).

In any study of the structural stability of dynamical systems under perturba-
tions, the asymptotic equivalence of two systems is one of the most important
concepts. It can be used to study the robustness of the unperturbed system or to
explore whether the behavior of a complicated system can be determined by that
of a simpler system. While there have been many studies of asymptotic equiv-
alence in the literature, there are few in large-scale systems. The basic idea in
studies of stability of large-scale systems seems to be to decompose the system
into isolated subsystems and their connecting systems, and then to determine the
stability of the original system by the asymptotic behavior of the subsystems. In
general, however, the original system and the subsystems may not be asymptoti-
cally equivalent, which may produce misleading results.

In this section, we study asymptotic equivalence of certain large-scale systems
and their isolated subsystems. The technique employed in this section is utilizing
different stability degrees of the isolated subsystems of a given large-scale system
to control the perturbations, in order to guarantee the stability of the large-scale
system. Sufficient conditions are obtained and an example is given to illustrate the
results.

Consider the following two systems

(5.9.1)
dx

dt
=f (t, x),

(5.9.2)
dy

dt
=g(t, y),

where f (t, x), g(t, y) : [t0,∞) × Rn → Rn are continuous. It is assumed that
solutions of (5.9.1) and (5.9.2) with initial values exist and are unique for t � t0.
We are concerned with the asymptotic behavior of solutions of (5.9.1) and (5.9.2).

DEFINITION 5.9.1. Let x(t, t0, x0) and y(t, t0, y0) be solutions of (5.9.1)
and (5.9.2) with initial values x0 and y0, respectively. If there is a homeomor-
phism which maps each x(t, t0, x0) to y(t, t0, y0) and

lim
t→∞

∥
∥x(t, t0, x0)− y(t, t0, y0)

∥
∥ = 0,

where ‖ · ‖ is a suitable norm, then the two systems (5.9.1) and (5.9.2) are said to
be asymptotically equivalent.

To obtain our main results stated later in this section we need the following
lemma, which is a special case of the comparison principle in [153].
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LEMMA 5.9.2. Let H(hij (t)) ∈ Rr×r be continuous in (t0,∞), with hij (t) � 0,
i �= j , hij (t) bounded, and let f (t) ∈ C[t0,∞). Assume that x ∈ Rn is a solution
of the system

{
dx
dt

� H(t)x + f (t),

x(t0) = x0,

and that y ∈ Rn is a solution of the system
{

dy
dt
= H(t)y + f (t),

y(t0) = y0.

Then whenever x0 = y0,

x(t, t0, x0) � y(t, t0, y0), t � t0,

i.e.,

xi(t, t0, x0) � yi(t, t0, y0), t � t0, i = 1, 2, . . . , n.

Now, consider a large-scale dynamical system governed by the following sys-
tem of equations

(5.9.3)
dy

dt
= diag

(

A11(t), . . . , Arr (t)
)

y + B
(

Bij (t)
)

y,

and its associated isolated subsystems

(5.9.4)
dx

dt
= diag

(

A11(t), . . . , Arr (t)
)

x,

where

y = (y1, . . . , yr )
T , yi =

(

y
(i)
1 , . . . , y(i)ni

)T ∈ Rni , i = 1, . . . , r,

x = (x1, . . . , xr )
T , xi =

(

x
(i)
1 , . . . , x(i)ni

)T ∈ Rni , i = 1, . . . , r,

Aii(t) ∈ Rni×ni and Bii(t) ∈ Rni×ni are continuous, and
∑r

i=1 ni = n.

THEOREM 5.9.3. Let P(t, t0) = diag(P11(t, t0), . . . , Prr (t, t0)) be the funda-
mental matrix of (5.9.4) with P(t0, t0) = I , where I is the n× n identity matrix.
Assume the following conditions are satisfied:

(1)
∥
∥Pii(t, t0)

∥
∥ � Mie

−αi(t−t0), i = 1, 2, . . . , r − 1,
∥
∥Prr(t, t0)

∥
∥ � Mr,

where Mi and αi are constants;
∥
∥Bij (t)

∥
∥ � Lij , i, j = 1, 2, . . . , r − 1;



5.9. Asymptotic equivalence of two dynamical systems 211

(2)

∞∫

t0

∥
∥Brj (t)

∥
∥ dt <∞,

∞∫

t0

∥
∥Bir(t)

∥
∥ dt <∞, i, j = 1, 2, . . . , r − 1,

where Lij are constants;
(3) The matrix

G := − diag(α1, . . . , αr−1)+ diag(M1, . . . ,Mr−1)(Lij )

∈ R(r−1)×(r−1)

is stable, i.e., all eigenvalues ofG have negative real part. Then system (5.9.3)
and its isolated subsystems (5.9.4) are asymptotically equivalent.

PROOF. (I) First, we show that all solutions of (5.9.3) are bounded.
Set yi(t, t0, y0) = yi(t) and yi(t) = yi0. The solutions of (5.9.3) can be written

as

yi(t) = Pii(t, t0)yi0

(5.9.5)+
t∫

t0

Pii(t, τ )

r
∑

j=1

Bij (τ )yj (τ ) dτ, i = 1, 2, . . . , r.

Then,

∥
∥yi(t)

∥
∥ � Mi‖yi0‖e−αi(t−t0) +Mi

r−1
∑

j=1

t∫

t0

e−αi(t−τ)Lij
∥
∥yj (τ )

∥
∥ dτ

+Mi

t∫

t0

e−αi(t−τ)
∥
∥Bir(τ )

∥
∥
∥
∥yr(τ )

∥
∥ dτ, i = 1, 2, . . . , r − 1,

(5.9.6)
∥
∥yr(t)

∥
∥ � Mr‖yr0‖ +Mr

r
∑

j=1

t∫

t0

∥
∥Brj (τ )

∥
∥
∥
∥yj (τ )

∥
∥ dτ.

Define

ξi(t) = Mi

r
∑

j=1

t∫

t0

e−αi(t−τ)Lij
∥
∥yj (τ )

∥
∥ dτ

+Mi

t∫

t0

e−αi(t−τ)
∥
∥Bir(τ )

∥
∥
∥
∥yr(τ )

∥
∥ dτ, i = 1, 2, . . . , r − 1,
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(5.9.7)ξr(t) = Mr

r
∑

j=1

t∫

t0

∥
∥Brj (τ )

∥
∥
∥
∥yj (τ )

∥
∥ dτ.

Then,
∥
∥yi(t)

∥
∥ � Mi‖yi0‖e−αi(t−t0) + ξi(t), i = 1, 2, . . . , r − 1,

(5.9.8)
∥
∥yr(t)

∥
∥ � Mr‖yr0‖ + ξr(t),

and hence,

(5.9.9)

⎧

⎪⎨

⎪⎩

dξi
dt

� −αiξi +Mi

∑r−1
j=1 Lij ξj +Mi‖Bir(t)‖ξr + fi(t),

i = 1, 2, . . . , r − 1,
dξr
dt

� Mr

∑r
j=1 ‖Brj (t)‖ξj + fr(t),

where

(5.9.10)

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

fi(t) = Mr

∑r−1
j=1 MjLij‖yj0‖e−αj (t−t0)

+MiMr‖Bir(t)‖‖yr0‖,
fi(t) = Mr

∑r−1
j=1 Mj‖Brj (t)‖‖yj0‖e−αj (t−t0)

+M2
r ‖Brr(t)‖‖yr0‖.

Now consider the comparison system of (5.9.9):

(5.9.11)

⎧

⎪⎨

⎪⎩

dηi
dt
= −αiηi +Mi

∑r−1
j=1 Lijηj +Mi‖Bir(t)‖ηr + fi(t),

i = 1, 2, . . . , r − 1,
dηr
dt
= Mr

∑r
j=1 ‖Brj (t)‖ηj + fr(t).

Let W be the matrix defined by

W =
[

G 0
0 0

]

∈ Rn×n.

Then from condition (3), W has only a simple zero eigenvalue and other eigen-
values of W all have negative real part. Thus, the fundamental matrix K(t, t0) of
the system

(5.9.12)
dη

dt
= Wη

is bounded for t � t0, where η = (η1, . . . , ηr )
T .

Let K̃(t, t0) be the fundamental matrix of the homogeneous system associated
with (5.9.11). Since ‖Brj (t)‖ ∈ L1(t0,∞) and ‖Bir(t)‖ ∈ L1(t0,∞), i, j =
1, 2, . . . , r , it follows from condition 2) that K̃(t, t0) is also bounded.
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The solutions of (5.9.11) can then be written as

(5.9.13)η(t) = K̃(t, t0)η(t0)+
t∫

t0

K̃(t, τ )f (τ ) dτ,

where f (t) = (f1(t), . . . , fr (t))
T is defined in (5.9.10).

Since f (t) ∈ L1(t0,∞), η(t) is bounded. In addition to (5.9.5) and (5.9.7), it
follows from Lemma 5.9.2 that y(t) is bounded.

(II) Then we show that limt→∞ yi(t, t0, y0) = 0, i = 1, 2, . . . , r − 1.
Set η̃ = (η1, . . . , ηr−1)

T and

f̃ (t) = (

M1
∥
∥B1r (t)

∥
∥ηr(t), . . . ,Mr−1

∥
∥Br−1r (t)

∥
∥ηr(t)

)T

+ (

f1(t), . . . , fr−1(t)
)T
.

Since ηr(t) is bounded and ‖Bir(t)‖ ∈ L1(t0,∞), i = 1, 2, . . . , r ,

∞∫

0

∥
∥f̃ (t)

∥
∥ dt � k,

for some k > 0.
It then follows from (5.9.11) that η̃ satisfies the following nonhomogeneous

equations:

(5.9.14)
dη̃

dt
= Gη̃ + f̃ (t).

Then,

(5.9.15)η̃(t, t0, η̃0) = eG(t−t0)η̃0 +
t∫

t0

eG(t−τ)f̃ (τ ) dτ.

Since G is stable from condition (3), there exist constants c > 0 and β > 0 such
that

∥
∥eG(t−τ)

∥
∥ � ce−β(t−τ).

Then, it follows that

∥
∥η̃(t, t0, η̃0)

∥
∥ � ce−β(t−τ)‖η̃0‖ +

t∫

t0

ce−β(t−τ)
∥
∥f̃ (τ )

∥
∥ dτ

� ce−β(t−τ)‖η̃0‖
t/2∫

t0

ce−β(t−τ)
∥
∥f̃ (τ )

∥
∥ dτ
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+
t∫

t/2

ce−β(t−τ)
∥
∥f̃ (τ )

∥
∥ dτ

� ce−β(t−τ)‖η̃0‖ + ck

2
e−

βt
2 + c

t∫

t/2

∥
∥f̃ (τ )

∥
∥ dτ

(5.9.16)→ 0 as t →∞,

which leads to ξi(t, t0, ξi0) → 0 and hence, yi(t, t0, yi0) → 0 as t → ∞, for
i = 1, 2, . . . , r − 1.

(III) We now construct a homeomorphic mapping between solutions of (5.9.3)
and (5.9.4) as follows.

I1 = diag
(

n1
︷ ︸︸ ︷

1, . . . , 1, 0, . . . , 0
) ∈ Rn×n,

I2 = diag
(

0, . . . , 0,

n2
︷ ︸︸ ︷

1, . . . , 1, 0, . . . , 0
) ∈ Rn×n,

...

(5.9.17)Ir = diag
(

0, . . . , 0,

nr
︷ ︸︸ ︷

1, . . . , 1
) ∈ Rn×n.

Then the fundamental matrix of (5.9.4) can be written as

(5.9.18)P(t, t0) =
r
∑

i=1

P(t, t0)Ii,

which gives that

y(t) = P(t, t0)y0 +
r
∑

i=1

t∫

t0

P(t, τ )IiB(τ)y(τ ) dτ

= P(t, t0)y0 +
r−1
∑

i=1

t∫

t0

P(t, τ )IiB(τ)y(τ ) dτ

+
∞∫

t0

P(t, τ )IrB(τ)y(τ ) dτ −
∞∫

t

P (t, τ )IrB(τ)y(τ ) dτ

= P(t, t0)y0

(

y0 +
∞∫

t0

P(t0, τ )IrB(τ)y(τ ) dτ

)
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(5.9.19)

+
r−1
∑

i=1

t∫

t0

P(t, τ )IiB(τ)y(τ ) dτ −
∞∫

t

P (t, τ )IrB(τ)y(τ ) dτ.

Let Y(t, t0) be the transition matrix of (5.9.3) and

x0 = y0 +
∞∫

t0

P(t0, τ )IrB(τ)y(τ ) dτ

(5.9.20)=
(

I +
∞∫

t0

P(t0, τ )IrB(τ)Y (τ, t0) dτ

)

y0.

it is clear from (5.9.20) that x0 is a single-valued continuous function of y0.
Denote

Z0 =
∞∫

t0

P(t0, τ )IrB(τ)Y (τ, t0) dτ.

It follows from the boundedness of y(t) and the absolute integrability of ‖Brj (t)‖,
i = 1, . . . , t , that Z0 → 0 as t → ∞. Hence, t0 can be chosen sufficiently large
so that the matrix I + Z0 is nonsingular. Then,

y0 = (I + Z0)
−1x0,

which implies that y0 is also a single-valued continuous function of x0. Therefore,
the mapping between the initial value spaces Rn

y0
and Rn

x0
given by (5.9.20) is

a homeomorphism. From the existence and uniqueness of solutions of (5.9.3)
and (5.9.4), this homeomorphic mapping is also a homeomorphism between the
solutions of (5.9.3) and (5.9.4).

(IV) Finally, we show that
∑

t→∞

∥
∥x(t, t0, x0)− y(t, t0, y0)

∥
∥ = 0, where x0 = (I + Z0)y0.

Denote y(t) = y(t, t0, y0) and x(t) = x(t, t0, x0). Then it follows from (5.9.19)
and (5.9.20) that

∥
∥y(t)− x(t)

∥
∥ �

r−1
∑

i=1

t∫

t0

∥
∥
∥
∥
∥

r−1
∑

i=1

P(t, τ )IiBij (τ )yj (τ )

∥
∥
∥
∥
∥
dτ

+
r−1
∑

i=1

t∫

t0

∥
∥P(t, τ )IiBir (τ )yr(τ )

∥
∥ dτ
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+
r
∑

j=1

∞∫

t0

∥
∥P(t, τ )IrBrj (τ )yj (τ )

∥
∥ dτ

�
r−1
∑

i=1

Mi

t∫

t0

e−αi(t−t0)
r−1
∑

j=1

∥
∥Bij (τ )

∥
∥
∥
∥yj (τ )

∥
∥ dτ

+
r−1
∑

i=1

Mi

t∫

t0

e−αi(t−t0)
∥
∥Bir (τ )

∥
∥
∥
∥yr(τ )

∥
∥ dτ

+
r
∑

j=1

∞∫

t0

∥
∥Prr(t, τ )

∥
∥
∥
∥Brj (τ )

∥
∥
∥
∥yj (τ )

∥
∥ dτ

:= J1 + J2 + J3.

Straightforward calculations yield

lim
t→∞ J1 lim

t→∞

r−1
∑

i=1

1

αi
Mi

r−1
∑

j=1

∥
∥Bij (t)

∥
∥
∥
∥yj (t)

∥
∥ = 0,

lim
t→∞ J2 =

r−1
∑

i=1

Mi lim
t→∞

t/2∫

t0

e−αi(t−τ)
∥
∥Bir(t)

∥
∥
∥
∥yr(t)

∥
∥ dτ

+
r−1
∑

i=1

Mi lim
t→∞

t∫

t/2

e−αi(t−τ)
∥
∥Bir(t)

∥
∥
∥
∥yr(t)

∥
∥ dτ

�
r−1
∑

i=1

(

lim
t→∞ c1e

− αi t

2 + lim
t→∞ c1

t∫

t/2

∥
∥Bir(t)

∥
∥ dτ

)

= 0,

where c1 is positive and sufficiently large, and

lim
t→∞ J3 =

r
∑

i=1

lim
t→∞

∞∫

t

∥
∥Prr(t, τ )

∥
∥
∥
∥Brj (τ )

∥
∥
∥
∥yr(τ )

∥
∥ dτ = 0.

The proof is complete. �

Next, we consider a nonlinear large-scale system governed by the following
equation

(5.9.21)
dy

dt
= diag

(

A11(t), . . . , Arr (t)
)

y + f (t, y),
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where f : [t0,∞)× Rn → Rn is continuous and f (t, 0) ≡ 0. Then, we have

THEOREM 5.9.4. Assume that the condition (1) and (3) in Theorem 5.9.3 hold
and that

∥
∥fi(t, x)− fi(t, y)

∥
∥ �

r
∑

j=1

∥
∥Bij (t)

∥
∥‖xj − yj‖ �

r
∑

j=1

Lij‖xj − yj‖,

where
∞∫

t0

∥
∥Brj (t)

∥
∥ dt <∞,

∞∫

t0

∥
∥Bir(t)

∥
∥ dt <∞, i, j = 1, 2, . . . , r.

Then the nonlinear system (5.9.21) and (5.9.4) are asymptotically equivalent.

The proof is similar to that of Theorem 5.9.3 and is omitted.
To end this section, we give an example to illustrate the significance of Theo-

rem 5.9.3.

EXAMPLE 5.9.5. Consider the following system

(5.9.22)
d

dt

(
y1
y2
y3

)

=
⎡

⎣

−2+ sin t cos t 1
1+t2

cos 2t −4+ 2 sin t te−t
cos t
1+t2 e−t sin t 0

⎤

⎦

(
y1
y2
y3

)

.

By rewriting (5.9.22) as

d

dt

(
y1
y2
y3

)

=
[−2 0 0

0 −4 0
0 0 0

](
y1
y2
y3

)

+
⎡

⎣

sin t cos t 1
1+t2

cos 2t 2 sin t te−t
cos t
1+t2 e−t sin t 0

⎤

⎦

(
y1
y2
y3

)

= diag(A11, A22, A33)y + B(Bij )y,

the isolated subsystems are

(5.9.23)

⎧

⎪⎪⎨

⎪⎪⎩

dx1
dt
= −2x1,

dx2
dt
= −4x2,

dx3
dt
= 0.

A fundamental matrix of (5.9.23) is given by

P(t, t0) =
[
e−2(t−t0) 0 0

0 e−4(t−t0) 0
0 0 1

]

.

SetMi = 1, i = 1, 2, 3, and α1 = 2, α2 = 4. Then condition (1) of Theorem 5.9.3
is satisfied.
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Clearly,

∥
∥Bij (t)

∥
∥ � Lij =

{
2 if i = j = 2,
1 otherwise.

Since, in addition,

∞∫

t0

(
1

1+ t2
+ te−t + | cos t |

1+ t2
+ ∣
∣e−t sin t

∣
∣+ e−t

)

dt <∞,

which indicates that condition (2) is satisfied.
Moreover, the matrix

G =
[−α1 0

0 −α2

]

+
[

M1L11 M1L12
M2L21 M2L22

]

=
[−1 1

1 −2

]

is stable, which satisfies condition (3). Then system (5.9.22) and its isolated
subsystems (5.9.23) are asymptotically equivalent. As (5.9.23) has a two-
dimensional exponentially stable manifold and a one-dimensional stable mani-
fold, so does (5.9.22). This is difficult to obtain by using any other criterion in the
literature.

5.10. Conditional stability

In the definitions of Lyapunov stability and asymptotic stability, it admits initial
disturbance in the n-dimensional neighborhood of positive equilibrium. If the ini-
tial disturbance is restricted, we have the following conditional stability.

First, we give an example to illustrate the concept. Consider the system

(5.10.1)

{
dx
dt
= x,

dy
dt
= −y.

The general solution of (5.10.1) is
{

x(t, 0, x0) = x0e
t ,

y(t, 0, y0) = y0e
−t .

Obviously, the zero solution of (5.10.1) is unstable. But if the initial value is cho-
sen from the set E = {x0 = 0}, then

x(t, 0, x0) = 0,

y(t, 0, y0) = y0e
−t → 0 as t →+∞.

In this case, the zero solution of systems (5.10.1) is said to be conditionally stable.
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Next, consider general n-dimensional system:

(5.10.2)
dx

dt
= f (t, x),

where f ∈ C[I × Rn,Rn], f (t, 0) ≡ 0.

DEFINITION 5.10.1. The solution ξ = ξ(t) of systems (5.10.2) is said to be
conditionally stable, if there exists a k-dimensional subset Sk(ξ(t0)) ⊂ Rn (1 �
k < n) such that ∀x(t0) ∈ Sk(ξ(t0)), when ‖x(t0)− ξ(t0)‖ < δ(ε), we have

∥
∥x(t, t0, x0)− ξ(t, t0, ξ0)

∥
∥ < ε (t � t0),

where x(t0 = x0), ξ(t0) = ξ0.
The solution ξ = ξ(t) of (5.10.2) is said to be conditionally asymptotically

stable, if it is conditionally stable and there exists σ = const > 0 such that
∥
∥x(t0)− ξ(t0)

∥
∥ < σ when x(t0) ∈ Sk,

and ‖x(t)− ξ(t)‖ → 0 as t →+∞.

Consider a quasi-linear system:

(5.10.3)
dx

dt
= Ax + ϕ(t, x), A = (aij )n×n, ϕ ∈ C[I × Rn,Rn

]

.

THEOREM 5.10.2. Assume thatA is a constant matrix having k eigenvalues with
negative real part and

lim
x→0

ϕ(t, x)

x
= 0

uniformly holds with respect to t . Further,
∥
∥ϕ(t, x′)− ϕ(t, x)

∥
∥ � L(Δ)

∥
∥x − x′

∥
∥

for t � 0, ‖x′‖ � Δ, ‖x‖ � Δ, where L = L(Δ)→ 0 as Δ→ 0. Then the zero
solution of (5.10.3) is conditionally asymptotically stable with respect to certain
k-dimensional subset Sk .

PROOF. Without loss of generality, choose the nonsingular linear transformation:

x = Cy,

whereC is an n×n real nonsingular matrix such thatC−1AC = B = diag(N, P ),
and

Re λj (N) < 0 (j = 1, 2, . . . , k),

Re λj (P ) � 0 (j = k + 1, . . . , n),
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then system (5.10.3) is transformed to

(5.10.4)
dy

dt
= By + ψ(t, y),

where ψ(t, y) = C−1ϕ(t, cy).
Let L1 = ‖C−1‖L. It only needs ‖y‖ < Δ1, ‖y′‖ < Δ1, where Δ1 = Δ/‖C‖.

Obviously, it holds:
∥
∥ψ(t, y′)− ψ(t, y)

∥
∥ � L1

∥
∥y′ − y

∥
∥ (t � 0).

Let β < 0, |β| 	 1, α > 0 be chosen such that α + |β| < min[−Re λj (N)] and
α � −2β. Then, we have

∥
∥eNt

∥
∥ < Ke−(α+|β|)t for t � 0,

∥
∥ept

∥
∥ < Keβt for t � 0,

where K is a positive constant satisfying K � 1. Let

(5.10.5)G(t) =
{

eBt diag(Ek, 0) when t � 0,
−eBt diag(0, En−k) when t � 0,

where Ek and En−k are kth- and (n − k)th-order unit matrices, respectively. Ob-
viously,

G(t + 0)−G(−0) = En.

From (5.10.5) and

eBt = diag
(

eNt , eP t
)

,

we obtain

(5.10.6)
∥
∥G(t)

∥
∥ �

{

Ke−(α+|β|t), t � 0,
Keβt , t � 0.

On the other hand, we have

G(t) = BG(t) (t �= 0).

Consider the single integral equation:

y(t, a) = z(t)a +
∞∫

0

G(t − s)ψ
(

s, y(s, a)
)

ds,

where z(t) = eBt diag(Ek, 0) = diag(eNt,0), and a is a constant vector with zeros
for the last (n − k) components. We solve the integral equation by the iterated
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method:

(5.10.7)

{
yl(t, a) = Z(t)a + ∫∞

0 G(t − s)ψ(s, yl−1(s, a)) ds,

y0(t, a) = 0, l = 1, 2, . . . .

Choose |Δ| 	 1 such that

L1 <
|B|
ψk

,

and let ‖a‖ < Δ1
2k = a0. Then for t � 0, it holds

∥
∥y1(t, a)− y0(t, a)

∥
∥ �

∥
∥z(t)

∥
∥‖a‖ � Ke−(α+|β|)t‖a‖

(5.10.8)� K‖a‖e−αt .
Let

∥
∥yl(t, a)− yl−1(t, a)

∥
∥ � K

2l−1
‖α‖e−αt when t � 0, l � 1.

By using (5.10.6) we can deduce from (5.10.7) that
∥
∥yl+1(t, a)− yl(t, a)

∥
∥

�
∞∫

0

∥
∥G(t − s)

∥
∥
∥
∥ψ

(

s, yl(s, a)
)− ψ

(

s, yl−1(s, a)
)∥
∥ ds

�
∞∫

0

Ke−(α+|β|)(k−s) |β|
4k

K

2p−1
‖α‖e−αs ds

+
∞∫

t

Keβ(k−s) |β|
4k

K

2l−1
‖a‖e−αs ds

= |β|K
2l+1

‖a‖e−(α+|β|)t e
|β|t − 1

|β| + |β|K
2l+1

‖a‖e
−(α+β)t

α + β
eβt

� K

2l+1
‖a‖e−αt

(

1+ |β|
α + β

)

= K

2l+1
‖a‖e−αt α

α + β

� K

2l
‖a‖e−αt , ∀t � 0.

Hence, all yl(t, a) are well defined and the inequity (5.10.8) holds for all inte-
gers l. So on the interval [0,+∞), yl(t, a) → y(t, a), and the limit function
y(t, a) is continuous on certain neighborhood of t and a, where 0 � t < ∞ and
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‖a‖ < a0. Thus,

lim
l→∞ yl(t, a) = z(t)a +

∞∫

0

G(t − s) lim
l→∞ψ

(

s, yl−1(s, a)
)

ds.

It follows that

(5.10.9)y(t, a) = z(t)a +
∞∫

0

G(t − s)ψ
(

s, y(s, a)
)

ds,

i.e., the limit function y(t, a) is the solution of the integral equation (5.10.9).
Differentiating (5.10.9) with respect to t yields

y′t (t, a) = Bz(t)a +
t∫

0

BG(t − s)ψ
(

s, y(s, a)
)

ds

+
∞∫

t

BG(t − s)ψ
(

s, y(s, a)
)

ds

+ (

G(t − 0)−G(−0)
)

ψ
(

t, y(t, a)
)

,

i.e., y′t (t, a) = By(t, a) + ψ(t, y(t, a)). Thus, y(t, a) is the solution of (5.10.4).
Using estimation (5.10.8), we have

∥
∥y(t, a)

∥
∥ �

∥
∥y0(t, a)

∥
∥+

∞
∑

l=1

∥
∥yl(t, a)− yl−1(t, a)

∥
∥

(5.10.10)�
∞
∑

l=1

k

2l−1
‖a‖e−αt = 2k‖a‖e−αt ,

which implies that

lim
t→+∞ y(t, a) = 0.

Therefore, y(t, a) is the solution family of system (5.10.4) which continuously
depends on a1, a2, . . . , ak . Let

yj (0, a) = y
(0)
j , j = 1, 2, . . . , k,

(5.10.11)yj (0, a) =
[ ∞∫

0

G(−s)ψ(s, y(s, a)) ds
]

j

(j = k + 1, . . . , n),
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where [∫ +∞0 G(−s)ψ(s, y(s, a)) ds]j denotes the j th component of the matrix
∫∞

0 G(−s)ψ(s, y(s, a)) ds. So y(0)j = [y(0, a)]j satisfies the equations:

y
(0)
k+j = Qj

(

y
(0)
j , . . . , y

(0)
k

)

, j = 1, 2, . . . , n− k,

which define certain k-dimensional manifold: Sk in Rn when y0 ∈ Sk . Further-
more,

y(t, t0, y0)→ 0 as t →+∞.

Since the transformation x = Cy is nonsingular, the solution x(t) of (5.10.3) have
the some propriety. This completes the proof. �

COROLLARY 5.10.3. Let the matrixA have k eigenvalues with negative real part
and (n − k) eigenvalues with positive real part, and ψ(t, x) satisfy the Lipschitz
condition:

∣
∣ψ(t, x)− ψ

(

t, x∗
)∣
∣ � L

∥
∥x − x∗

∥
∥

when 0 < L 	 l. Then there exist a k-dimensional manifold S+k and an (n− k)-
dimensional manifold S−n−k in certain neighborhood of x = 0 in Rn such that the
solution x(t) of (5.10.3) holds the following limit relations:
x(t)→ 0 when t →+∞ if x(0) ∈ S+k ;
x(t)→ 0 when t →−∞ if x(0) ∈ S−n−k .

This is illustrated in Figure 5.10.1.

Figure 5.10.1. Stable and unstable manifolds.
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5.11. Partial variable stability

Study of partial variable stability is demanded in practice. For instance, study of
stability for a higher-order scaler equation can be transformed into the study of
partial stability of a group of equations. Also, in some practical problems, one
could only focus on some partial variables of the system. The reason for devel-
oping such technique may be due to some technical difficulty. For example, the
remaining variables may be uncontrollable or unobservable. From the view point
of methodology, one may use different methods to deal with different variables,
and then synthesize them to solve the problem with respect to all system variables
(see [418,357]). It is seen in Chapter 9 of this book that the key idea to analyze
the absolute stability of a Lurie control system is to employ the partial variable
stability.

We again consider the system:

(5.11.1)
dx

dt
= f (t, x), f ∈ C[I × Rn,Rn

]

.

Let

y = (x1, . . . , xm)
T , z = (xm+1, . . . , xn)

T ,

x = (y, z)T , ‖x‖ :=
(

n
∑

i=1

x2
i

)1/2

,

‖y‖ :=
(

m
∑

i=1

x2
i

)1/2

, ‖z‖ =
(

n
∑

i=m+1

x2
i

)1/2

.

Then every solution of (5.11.1) is said to be an extension with respect to z, i.e.,
any solution x(t) is defined for t � t0 and ‖y(t)‖ � H = const.

DEFINITION 5.11.1. The zero solution of (5.11.1) is stable with respect to partial
variable y, if ∀ε > 0,∀t0 ∈ I, ∃δ(t0, ε),∀x0 ∈ Sδ := {x, ‖x‖ < δ} the following
inequality holds:

∥
∥y(t, t0, x0)

∥
∥ < ε (t � t0).

Otherwise, the zero solution of the system is said to be unstable with respect to
partial variable y. If δ(t0, ε) is independent of t0, then the zero solution of (5.11.1)
is said to be uniformly stable with respect to partial variable y.

DEFINITION 5.11.2. The zero solution of (5.11.1) is said to be attractive with
respect to partial variable y, if ∀t0 ∈ I, ∃σ(t0) > 0,∀ε > 0,∀x0 ∈ Sσ(t0) ={x: ‖x‖ � σ(t0)}, ∃T (t0, x0, ε) such that when t � t0 + T we have

∥
∥y(t, t0, x0)

∥
∥ < ε.
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Figure 5.11.1. Partial variable stability.

If σ(t0) = σ, T (t0, x0, ε) = T (ε), independent of t0 and x0, then the zero solution
of (5.11.1) is said to be uniformly attractive with respect to partial variable y.

DEFINITION 5.11.3. The zero solution of (5.11.1) is said to be asymptotically
stable with respect to partial variable y, if it is stable and attractive with respect
to y. The zero solution of (5.11.1) is said to be uniformly asymptotically stable
with respect to y, if it is uniformly stable and uniformly attractive with respect
to y.

Figures 5.11.1 and 5.11.2 geometrically illustrate partial variable stability in
Rn space, and partial variable attractivity in Rn space, respectively.

In the following, we give the definitions of positive definite or negative definite
with respect to partial variable y.

DEFINITION 5.11.4. The function V (t, x) ∈ C[I ×Rn,R] is said to be positive
definite (negative definite) with respect to partial variable y, if there exists ϕ1 ∈ K
such that

V (t, x) � ϕ1
(‖y‖) (

V (t, x) � −ϕ1
(‖y‖)).

Following the definitions of infinitesimal upper bound and radially unbounded-
ness of V (t, x), we can give similar definitions for V (t, x) ∈ C[I ×Rn,R1] with
respect to partial variable y.

THEOREM 5.11.5 (Stability theorem with respect to y).

(1) Assume that there exists V (t, x) ∈ C[I ×Ω,R1] such that V (t, x) � ϕ(‖y‖)
for ϕ ∈ k, and D+V (t, x)|(5.11.1) � 0, then the zero solution of (5.11.1) is
stable with respect to partial variable y.
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Figure 5.11.2. Partial variable attractivity.

(2) If condition (1) is satisfied and V (t, x) has infinitesimal upper bound, then the
zero solution of (5.11.1) is uniformly stable with respect to partial variable y.

PROOF. (1) ∀ε > 0,∀t0 ∈ I, ∃δ(t0, ε) > 0 such that ∀x0 ∈ Sδ it holds:

V (t0, x0) < ϕ(ε).

Let x(t) := x(t, t0, x0), x0 ∈ Sδ . By D+V (t, x)|(5.11.1) � 0, we have

ϕ
(∥
∥y(t, t0, x0)

∥
∥
)

� V
(

t, x(t, t0, x0)
)

� V (t0, x0) � ϕ(ε).

Hence, it follows that
∥
∥y(t, t0, x0)

∥
∥ < ε (t � t0).

So the zero solution of (5.11.1) is stable with respect to partial variable y.
(2) Since ϕ1(‖x‖) � V (t, x) � ϕ2(‖x‖), ∀ε > 0, take δ(ε) := ϕ−1

2 (ϕ1(ε)).
Then for ‖x0‖ < δ, we have

ϕ1
(‖y(t, t0, x0)‖

)

� V
(

t, , x(t, t0, x0)
)

� V (t0, x0)

� ϕ2
(‖x0‖

)

� ϕ2
(

ϕ−1
2

(

ϕ1(ε)
))

= ϕ1(ε).

Therefore, ‖y(t, t0, x0)‖ < ε (t � t0). Thus, the zero solution of (5.11.1) is
uniformly stable with respect to the partial variable y.

The theorem is proved. �
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THEOREM 5.11.6 (Asymptotic stability theorem with respect to y). If there exists
V (t, x) ∈ C[I ×Ω,R1] such that

ϕ1
(‖y‖) � V (t, x) � ϕ2

((
k
∑

i=1

x2
i

)1/2)

for m � k � n,

dV

dt

∣
∣
∣
∣
(5.11.1)

� −ψ
((

k
∑

i=1

x2
i

)1/2)

,

then the zero solution of (5.11.1) is asymptotically stable with respect to the par-
tial variable y.

PROOF. We only need to prove that the zero solution is attractive with respect
to y, because the condition implies the stability with respect to y. By Theo-
rem 5.11.5, ∃δ(t0),∀x0 ∈ Sδ it holds:

lim
t→∞V

(

t, x(t, t0, x0)
) = 0.

Therefore,

(5.11.2)ϕ1
(∥
∥y(t)

∥
∥
)

� V
(

t, x(t, t0, x0)
)→ 0 as t →+∞.

Now we show that (5.11.2) is true by contradiction. Assume that there exists
x0, ‖x0‖ < δ such that

V
(

t, x(t, t0, x0)
)→ 0 as t →+∞.

Since

dV (t, x(t, t0, x0))

dt
� 0

implies that

lim
t→∞V

(

t, x(t, t0, x0)
) = V∞,

hence, V (t, x(t, t0, x0)) � V∞ > 0. By the condition we have
(

k
∑

i=1

x2
i (t, t0, x0)

)1/2

� ϕ−1
2 (V∞) and

dV

dt
� −ψ(ϕ−1

2 (V∞)
)

,

and further we obtain

0 � V
(

t, x(t, t0, x0)
)

� V (t0, x0) � −ψ(ϕ−1
2 (V∞)

)

(t − t0)→−∞
as →+∞,

which is a contradiction. So (5.11.2) holds, implying that

lim
t→∞

∥
∥y(t)

∥
∥ = 0. �
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THEOREM 5.11.7 (Uniformly asymptotic stability theorem with respect to y).
Assume that there exists V (t, x) ∈ C[I ×Ω,R1] such that

(1) ϕ1(‖y‖) � V (t, x) � ϕ2(‖x‖) for ϕ1, ϕ2 ∈ K;
(2) D+V (t, x)|(5.11.1) � −ψ(‖x(t, t0, x0)‖) for ψ ∈ K .

Then the zero solution of (5.11.1) is uniformly asymptotically stable with respect
to partial variable y.

PROOF. By the condition, ∀ε > 0, take δ(ε) = ϕ−1
2 (ϕ1(ε)) such that when

‖x0‖ < δ we have

ϕ1
(∥
∥y(t, t0, x0)

∥
∥
)

� V
(

t, x(t, t0, x0)
)

� V (t0, x0) � ϕ2
(‖x0‖

)

� ϕ1(ε),

so we obtain
∥
∥y(t, t0, x0)

∥
∥ < ε (t � t0).

Let Δ0 = δ(H), T (ε) = ϕ2(Δ0)/ψ(δ(ε)), ‖x0‖ < Δ0, t0 ∈ I . We prove that
there exists t∗ ∈ (t0, t0 + T ) such that

(5.11.3)
∥
∥x
(

t∗, t0, x0
)∥
∥ < δ(ε).

If otherwise, assume that ‖x(t, t0, x0)‖ � δ(ε) for all t ∈ (t0, t0 + T ). Then by
condition (2) it must hold:

0 � V
(

t0 + t, x(t0 + T , t0, x0)
)

(5.11.4)� V (t0, x0)− ψ
(

δ(ε)
)

T < ψ(Δ0)− ψ
(

δ(ε)
)

T = 0,

which is a contradiction, and so (5.11.3) is true.
Hence, ‖y(t, t0, x0)‖ < ε when t � t0+T � t∗. This means that the conclusion

of Theorem 5.11.7 holds. �

In the following, we discuss instability with respect to partial variable y. We
only need to show that ∃δ > 0,∀δ1 = 0, ∃x0 ∈ Sδ1 and t1 > t0 such that
‖y(t1, t0, x0)‖ � δ1.

The function U(t, x) is said to be positive definite in the region defined by
V (t, x) > 0, where

V (t, x) ∈ C[I ×Ω,R],
if ∀ε > 0, ∃δ(ε), ∀(t, x) ∈ G(t0, x) := {(t, x) | t � t0, ‖y‖ � H, ‖z‖ < ∞}.
Then U(t, x) � δ > 0 holds when if V (t, x) � ε.

THEOREM 5.11.8 (Instability theorem with respect to y). If there exists V (t, x) ∈
C[I ×Ω,R1] for ∀t ∈ I,∀ε > 0, ‖x‖ � ε, then there exists a region defined by
V > 0 such that V is bounded on V > 0, and dV

dt
|(5.11.1) is positive definite in the

region V > 0. Then the zero solution of (5.11.1) is unstable.
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PROOF. By contradiction, if otherwise, assume that the zero solution of (5.11.1)
is stable. Then ∀ε > 0 (ε � H), ∀t0 ∈ I, ∃δ(t0, ε) such that when ‖x0‖ < δ, t �
t0 it holds:

∥
∥y(t, t0, x0)

∥
∥ < ε � H.

For given ε0 � H, t0 ∈ I , choose x0, ‖x0‖ < δ(t0, ε), such that

V (t0, x0) = V0 > 0.

Since dV
dt
|(5.11.1) is positive definite in the region V > 0, there exists l > 0 for V0

such that

dV (t, x(t))

dt
� l > 0 (t � t0).

Hence,

V
(

t, x(t, t0, x0)
)

� l(t − t0)+ V (t0, x0)→+∞ as t →+∞.

This is a contradiction with the boundedness of V > 0. So the zero solution is
unstable with respect to partial variable y. The proof of theorem is complete. �

In the following, we give some practically simple criteria of partial variable
stability for nonlinear, time-varying dynamical systems.

Consider the following nonlinear, time-varying dynamical system:

(5.11.5)
dx

dt
= A(t)x + g(t, x),

where

x = (x1, . . . , xn)
T , A(t) = (

aij (t)
)

n×n ∈ C
[

I, Rn2]
,

g(t, x) ∈ C[I ×Ω,Rn
]

, Ω = {|‖x‖ � H
}

,

g(t, 0) ≡ 0, g(t, x) = (

g1(t, x), . . . , gn(t, x)
)T
,

and ∂g(t,x)
∂x

exists.
We rewrite (5.11.5) as

(5.11.5)a
dy

dt
= A11(t)y + A12(t)z+ gI (t, x),

(5.11.5)b
dz

dt
= A21(t)y + A22(t)z+ gII (t, x),

where

y = (x1, . . . , xm)
T , z = (xm+1, . . . , xn)

T ,
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A11(t) =
(

aij (t)
)

m×m, 1 � i, j � m,

A12(t) =
(

aij (t)
)

m×(n−m), 1 � i � m, m+ 1 � j � n,

A21(t) =
(

aij (t)
)

(n−m)×n, m+ 1 � i � n, 1 � j � m,

A22(t) =
(

aij (t)
)

(n−m)×(n−m), m+ 1 � i, j � n;
gI (t, x) =

(

g1(t, x), . . . , gm(t, x)
)T
,

gII(t, x) =
(

gm+1(t, x), . . . , gn(t, x)
)T
,

∥
∥gi(t, x)

∥
∥ �

n
∑

j=1

lij (t)|xj | (i = 1, . . . , m),

∥
∥gII(t, x)

∥
∥ �

n
∑

j=1

lij (t)|xj | (i = m+ 1, . . . , n).

Let

L11(t) =
(

lij (t)
)

m×m, 1 � i, j � m,

L12(t) =
(

lij (t)
)

m×(n−m), 1 � i � m, m+ 1 � j � n,

L21(t) =
(

lij (t)
)

(n−m)×m, m+ 1 � i � n, 1 � j � m,

L22(t) =
(

lij (t)
)

(n−m)×(n−m), m+ 1 � i, j � n.

THEOREM 5.11.9. If the following conditions are satisfied:

(1)

+∞∫

t0

(∥
∥A11(t)

∥
∥+ ∥

∥L11(t)
∥
∥
)

dt := M < +∞,

(2)

+∞∫

t0

e

∫ t
t0
Λ(ξ) dξ (∥

∥A12(t)
∥
∥+ ∥

∥L12(t)
∥
∥
)

dt := k < +∞,

then the zero solution of (5.11.5) is partially stable with respect to partial variable
y, where Λ(t) = Λ1(t) + Λ2(t), Λ1(t) is the maximal eigenvalue of 1

2 (A(t) +
AT (t)), and Λ2(t) is the maximal eigenvalue of 1

2 (L(t) + LT (t)), where A(t) =
(aij (t))n×n, L(t) = (lij (t))n×n.

PROOF. Choose the Lyapunov function:

V = 1

2
x2.
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Use (x, x̃) to denote the inner product of vectors x and x̃. Let |x| = (|x1|, . . . ,
|xn|)T . Then

dV

dt

∣
∣
∣
∣
(5.11.5)

=
(
dx

dt
, x

)

= (Ax, x)+ (

g(t, x), x
)

� (Ax, x)+ (

L(t)|x|, |x|)

� 1

2
xT
(

A(t)+ AT (t)
)

x + 1

2
|x|T (L(t)+ LT (t)

)|x|
� Λ1(t)x

2 +Λ2(t)x
2

= Λ(t)x2 = 2Λ(t)V,

from which we obtain

(5.11.6)V (t) � V (t0)e

∫ t
t0

2Λ(ξ) dξ
,

which implies that

∥
∥x(t)

∥
∥

2 �
∥
∥x(t0)

∥
∥

2
e

∫ t
t0

2Λ(ξ) dξ
.

Thus,

(5.11.7)
∥
∥y(t)

∥
∥ �

∥
∥x(t)

∥
∥ �

∥
∥x(t0)

∥
∥e

∫ t
t0
Λ(ξ) dξ

,

(5.11.8)
∥
∥z(t)

∥
∥ �

∥
∥x(t)

∥
∥ �

∥
∥x(t0)

∥
∥e

∫ t
t0
Λ(ξ) dξ

.

Rewrite (5.11.5)a as an integral equation:

(5.11.9)y(t) = y(t0)+
t∫

t0

A11(τ )y(τ ) dτ +
t∫

t0

gI
(

τ, x(τ )
)

dτ.

Using (5.11.5) and (5.11.6) to estimate (5.11.9) yields

∥
∥y(t)

∥
∥ �

∥
∥y(t0)

∥
∥+

t∫

t0

∥
∥A11(τ )

∥
∥
∥
∥y(τ)

∥
∥ dτ +

t∫

t0

∥
∥L11(τ )

∥
∥
∥
∥y(τ)

∥
∥ dτ

+
t∫

t0

∥
∥A12(τ )

∥
∥
∥
∥z(τ )

∥
∥ dτ +

t∫

t0

∥
∥L12(τ )

∥
∥
∥
∥z(τ )

∥
∥ dτ

� ‖x0‖ + ‖x0‖
t∫

t0

(∥
∥A12(τ )

∥
∥+ ∥

∥L12(τ )
∥
∥
)

e

∫ τ
t0
Λ(ξ) dξ dτ
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+
t∫

t0

(∥
∥A11(τ )

∥
∥+ ∥

∥L11(τ )
∥
∥
)∥
∥y(τ)

∥
∥ dτ

�
∥
∥x(t0)

∥
∥(1+ k)+

t∫

t0

(∥
∥A11(τ )

∥
∥+ ∥

∥L11(τ )
∥
∥
)∥
∥y(τ)

∥
∥ dτ.

Now applying Gronwall–Bellman inequality, we finally obtain

∥
∥y(t)

∥
∥ �

∥
∥x(t0)

∥
∥(1+ k)e

∫ t
t0
(‖A11(τ )‖+‖L11(τ )‖) dτ

(5.11.10)�
∥
∥x(t0)

∥
∥(1+ k)eM,

from which we know that the zero solution of (5.11.5) is partially stable with
respect to partial variable y. �

THEOREM 5.11.10. If the following conditions are satisfied:

(1) For the m-dimensional linear system:

(5.11.11)
dy

dt
= A11(t)y,

its Cauchy matrix solution satisfies the following estimation:
∥
∥k(t, t0)

∥
∥ � Me−α(t−t0),

where M and α are positive constants;

(2)

e

∫ t
t0
Λ(ξ) dξ (∥

∥A12(t)
∥
∥+ ∥

∥L11(t)
∥
∥+ ∥

∥L12(t)
∥
∥
)→ 0 as t →+∞,

where Λ(t) is defined in Theorem 5.11.9,

then the zero solution of (5.11.5) is partially asymptotically stable with respect to
partial variable y.

PROOF. Based on equation (5.11.5)a, with the aid of the variation constant for-
mula, we have

y(t) = k(t, t0)y(t0)+
t∫

t0

k(t, τ )A12(τ )z(τ ) dτ

(5.11.12)+
t∫

t0

k(t, τ )gI
(

t, x(τ )
)

dτ.
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Hence,
∥
∥y(t)

∥
∥ � Me−α(t−t0)

∥
∥x(t0)

∥
∥

+
t∫

t0

Me−α(t−τ)
∥
∥A12(τ )

∥
∥
∥
∥x(t0)

∥
∥e

∫ τ
t0
Λ(ξ) dξ

dτ

(5.11.13)+
t∫

t0

Me−α(t−τ)
(∥
∥L11(τ )

∥
∥+ ∥

∥L12(τ )
∥
∥
)∥
∥x(t0)

∥
∥e

∫ τ
t0
Λ(ξ) dξ

dτ.

Let

I1(t) = M
∥
∥x(t0)

∥
∥e−α(t−t0),

I2(t) =
∥
∥x(t0)

∥
∥

t∫

t0

Me−α(t−τ)
(∥
∥A12(τ )

∥
∥+ ∥

∥L11(τ )
∥
∥+ ∥

∥L12(τ )
∥
∥
)

dτ.

Obviously, I1(t) and I2(t) are linearly dependent with respect to ‖x0‖, and

lim
t→+∞ I1(t) = 0,

lim
t→+∞ I2(t) = lim

t→+∞M
∥
∥x(t0)

∥
∥e−αt

×
t∫

t0

(∥
∥A12(τ )

∥
∥+ ∥

∥L11(τ )
∥
∥+ ∥

∥L12(τ )
∥
∥
)

eατ e

∫ τ
t0
Λ(ξ) dξ

dτ

= M
∥
∥x(t0)

∥
∥

× lim
t→+∞

(‖A12(t)‖ + ‖L11(t)‖ + ‖L12(t)‖)eαt e
∫ t
t0
Λ(ξ) dξ

αeαt

= 0.

Therefore, the zero solution of (5.11.5) is asymptotically stable with respect to
partial variable y. �

THEOREM 5.11.11. If the following conditions are satisfied:

(1) condition (1) of Theorem 5.11.10;

(2) e

∫ t
t0
Λ(ξ) dξ � eγ (t−t0), where γ is a constant, and Λ(t) is defined as in Theo-

rem 5.11.9;
(3) (‖A12(t)‖ + ‖L11(t)‖ + ‖L12(t)‖) � μeβl ,

where β,μ are positive constants and β+γ < 0, then the zero solution of (5.11.5)
is exponentially stable with respect to partial variable y.
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PROOF. Following Theorem 5.11.10, we can prove

(5.11.14)
∥
∥z(t)

∥
∥ �

∥
∥x(t)

∥
∥ �

∥
∥x(t0)

∥
∥ exp

( t∫

t0

Λ(ξ) dξ

)

� ‖x0‖eγ (t−t0),

(5.11.15)
∥
∥y(t)

∥
∥ �

∥
∥x(t)

∥
∥ �

∥
∥x(t0)

∥
∥ exp

( t∫

t0

Λ(ξ) dξ

)

� ‖x0‖eγ (t−t0).

Let

−ε = β + γ if α − ε > 0.

From (5.11.5)a and the variation constant formula, we obtain

y(t) = K(t, t0)y(t0)+
t∫

t0

K(t, τ )A12(τ )z(τ ) dτ

+
t∫

t0

K(t, τ )A12(τ )z(τ ) dτ +
t∫

t0

K(t, τ )gI
(

τ, x(τ )
)

dτ,

∥
∥y(t)

∥
∥ � Me−α(t−t0)

∥
∥x(t0)

∥
∥+

t∫

t0

Me−α(t−τ)
∥
∥A12(τ )

∥
∥
∥
∥z(τ )

∥
∥ dτ

+
t∫

t0

Me−α(t−τ)
(∥
∥L11(τ )

∥
∥
∥
∥y(τ)

∥
∥+ ∥

∥L12(τ )
∥
∥
∥
∥z(τ )

∥
∥
)

dτ

� Me−α(t−τ)
∥
∥x(t0)

∥
∥+M

∥
∥x(t0)

∥
∥

t∫

t0

Me−α(t−τ)
∥
∥A12(τ )

∥
∥
∥
∥z(τ )

∥
∥ dτ

+
t∫

t0

Me−α(t−τ)
(∥
∥L11(τ )

∥
∥
∥
∥y(τ)

∥
∥+ ∥

∥L12(τ )
∥
∥
∥
∥z(τ )

∥
∥
)

dτ

� Me−α(t−t0)
∥
∥x(t0)

∥
∥+M

∥
∥x(t0)

∥
∥

t∫

t0

Me−α(t−τ)
∥
∥A12(τ )

∥
∥eγ (t−t0) dτ

+M
∥
∥x(t0)

∥
∥

t∫

t0

Me−α(t−τ)
(∥
∥L11(τ )

∥
∥+ ∥

∥L12(τ )
∥
∥
)

eγ (t−t0) dτ
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� Me−α(t−t0)‖x0‖ + μM
∥
∥x(t0)

∥
∥e−γ t0e−αt

t∫

t0

Me(α+β+γ )τ dτ

= Me−α(t−t0)‖x0‖ + μM
∥
∥x(t0)

∥
∥e−γ t0e−αt

t∫

t0

e(α−ε)τ dτ

= Me−α(t−t0)‖x0‖ + μM
∥
∥x(t0)

∥
∥e−γ t0e−αt

[
e(α−ε)t

α − ε
− e(α−ε)t0

α − ε

]

� M‖x0‖e−ε(t−t0) + μMe−γ t0
α − ε

eεt0‖x0‖e−ε(t−t0)

=
[

M‖x0‖ + μMe(−γ+ε)t0
α − ε

‖x0‖
]

e−ε(t−t0)

(5.11.16):= M̃‖x0‖e−ε(t−t0),
where

M̃ = M + μMe(−γ+ε)t0
α − ε

.

Then if α − ε < 0, we have

∥
∥y(t)

∥
∥ � Me−α(t−t0)

∥
∥x(t0)

∥
∥+ μM

∥
∥x(t0)

∥
∥e−γ t0e−αt

[
e(α−ε)t

α − ε
− e(α−ε)t0

α − ε

]

� Me−α(t−t0)
∥
∥x(t0)

∥
∥+ μM

∥
∥x(t0)

∥
∥
e(−γ−ε)t0
ε − α

e−α(t−t0)

(5.11.17):= M∗∥∥x(t0)
∥
∥e−ε(t−t0),

where

M∗ = M + μM
e(−γ−ε)t0
ε − α

.

Finally, by (5.11.17) and (5.11.17), Theorem 5.11.11 is proved. �

5.12. Stability and boundedness of sets

The Lyapunov function method can be generalized to analyze the stability and
boundedness of set. The concept of stability and boundedness of set is very
general, which includes many other stabilities as particular, like the Lyapunov
stability, Lagrange stability and partial variable stability.

Consider the general system:

(5.12.1)
dx

dt
= f (t, x),
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Figure 5.12.1. The set M in I × Rn.

Figure 5.12.2. The projection of set M in Rn.

where f (t, x) ∈ C[I × Rn,Rn].
Consider a setM on I×Rn, which can be unbounded or bounded. LetM(σ) :=

{x, (σ, x) ∈ M} denote the intersect of hyperplane t = σ and M , and ΠM stands
for the projection of M on Rn, as shown in Figures 5.12.1 and 5.12.2.

If in Rn, there exists a set Q such that Q ⊃ ΠM , then M is bounded, and the
minimum distance from x to M is expressed as d(x,M),

(5.12.2)d(x,M) := inf
y∈ΠM

‖x − y‖.

Let M(σ, ε) be ε-neighborhood of M(σ) in Rn, which denotes the distance of
point of M(σ, ε) to M without exceeding ε.

DEFINITION 5.12.1. The set M is said to be stable (uniformly stable) with re-
spect to system (5.12.1) if ∀ε > 0, ∀α > 0, ∀t0 ∈ I ∃δ(t0, ε, α) > 0 (∃δ(ε) > 0)
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such that

∀x0 ∈ Sα :=
{

x | ‖x‖ � α
}

,

when d(x0,M(t0)) < δ(t0, ε, α) (< δ(ε)) it holds

(5.12.3)d
(

x(t, t0, x0),M(t)
)

< ε (t � t0).

DEFINITION 5.12.2. The set M is said to be globally attractive with respect to
system (5.12.1) if every solution x(t, t0, x0)→ M as t →+∞. The set M is said
to be globally uniformly attractive, if ∀ε > 0,∀η > 0,∀α > 0,∀t0 ∈ I , there
exists T (ε, η) > 0 such that when x0 ∈ Sα := {x | ‖x‖ � α} and

(5.12.4)d
(

x0,M(t0)
)

� η,

it holds d(x(t, t0, x0),M(t)) < ε (t � t0 + T ).

DEFINITION 5.12.3. If the set is stable and attractive, then it is called asymptot-
ically stable with respect to system (5.12.1).

DEFINITION 5.12.4. The set M is said to be uniformly bounded with respect to
systems (5.12.1), if ∀η > 0,∀α > 0,∀t0 ∈ I, ∃β(η) > 0 such that ∀x0 ∈ Rn and
when d(x0,M(t0)) < η, the following condition is satisfied:

(5.12.5)d
(

x(t, t0, x0),M(t)
)

< β(η) (t � t0).

The concept of set is very general. Some examples are given below.

(1) Let M(t) = {I × 0}. Then the stability, attraction of M(t) are just, respec-
tively, the stability and attraction of the zero solution in the sense of Lyapunov.

(2) Let M(t) = {I × x(t, t0, x0)}, and assume that system (5.12.1) is an au-
tonomous system. Then the stability and attraction are just the Lyapunov
stability for the solution x(t, t0, x0).

(3) Let M(t) = {I × y = 0}. Then the stability or attraction of M(t) is just the
stability or attraction of the partial variable stability with respect to the partial
variable y.

(4) Let M(t) = I × SB := {x | ‖x‖ � B}. Then the attraction of M(t) is just the
asymptotic stability of Lagrange.

THEOREM 5.12.5. If there exists a function V (t, x) ∈ C[I × DH,R],DH :=
{x | d(x,M(t)) � H } such that on I ×DH it holds:

(1) ϕ1(d(x,M(t))) � V (t, x) � ϕ2(d(x,M(t))) for ϕ1, ϕ2 ∈ K ,
(2) D+V (t, x)|(5.12.1) � 0,

then the set M is uniformly stable.
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PROOF. ∀ε > 0, (ε < H),∀(t0, x0) ∈ I ×DH , let x(t) = x(t, t0, x0), and take
δ = ϕ−1

2 (ϕ1(ε)), i.e., ε = ϕ−1
1 (ϕ2(δ)). Then when d(x0,M(t0)) < δ, it holds

ϕ1
(

d
(

x(t),M(t)
))

� V
(

t, x(t)
)

� V (t0, x0) � ϕ2
(

d
(

x0,M(t0)
))

< ϕ2(δ).

Therefore, we have

d
(

x(t),M(t)
)

< ϕ−1
1

(

ϕ2(δ)
) = ε (t � t0),

i.e., M(t) is uniformly stable. �

THEOREM 5.12.6. If there exists V (t, x) ∈ C(1)[I × Rn,Rn] such that

(1) ϕ1(d(x,M)) � V (t, x) � ϕ2(d(x,M)) for ϕ1, ϕ2 ∈ KR,

(2) dV (t,x)
dt

| � −ψ(d(x,M)) for ψ ∈ K ,

then the set M is uniformly, globally and asymptotically stable.

PROOF. First, since the conditions of Theorem 5.12.6 imply the conditions of
Theorem 5.12.5. Thus the set is uniformly stable.

Next, we prove the global attraction. ∀ε > 0,∀η > 0,∀α > 0, then ∀t0 ∈ I ,
by condition (2) it holds:

ϕ1
(

d
(

x(t),M(t)
))

� V
(

t, x(t)
)

� ϕ2
(

d
(

x(t),M(t)
))

.

Thus,

d
(

x(t),M(t)
)

� ϕ−1
2

(

V
(

t, x(t)
))

,

d

dt
V
(

t, x(t)
)

� −ψ(ϕ−1
2

(

V
(

t, x(t)
)))

< 0,

dV (t, x(t))

ψ(ϕ−1
2 (V (t, x(t))))

� −dt,

V (t,x(t))∫

V (t0,x(t0))

dV

ψ(ϕ−1
2 (V (t, x(t))))

� −(t − t0),

(5.12.6)

V (t0,x(t0))∫

V (t,x(t))

dV

ψ(ϕ−1
2 (V (t, x(t))))

� t − t0.

Let

V (t0) � ϕ2
(

d
(

x0,M(t0)
))

� ϕ2(η).
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Then, we have

t − t0 �
V (t0,x(t0))∫

V (t,x(t))

dV

ψ[ϕ−1
2 (V (t, x(t)))]

�
ϕ1(ε)∫

ϕ1(d(x(t),M(t)))

dV

ψ[ϕ−1
2 (V (t, x(t)))]

(5.12.7)+
ϕ2(η)∫

ϕ1(ε)

dV

ψ[ϕ−1
2 (V (t, x(t)))] .

Take

T = T (ε, η) >

ϕ2(η)∫

ϕ1(ε)

dV

ψ[ϕ−1
2 (V (t, x(t)))] .

Obviously, when t � t0 + T , the following holds:

ϕ1(ε)∫

ϕ1(d(x(t),M(t)))

dV

ψ[ϕ−1
2 (V (t, x(t)))] � t − t0,

−
ϕ2(η)∫

ϕ1(ε)

dV

ψ[ϕ−1
2 (V (t, x(t)))] � t − t0 − T � 0.

So ϕ1(ε) > ϕ1(d(x(t),M(t))), i.e.,

d
(

x(t),M(t)
)

< ε when t � t0 + T (ε, η).

Hence, M is globally, uniformly, asymptotically stable. �

Following the proof of Lagrange stability theorem, one can prove the following
theorem.

THEOREM 5.12.7. If there exists a function

V (t, x) ∈ C[I ×Dc
H ,R

1], Dc
H :=

{

x | d(x,M(t)
)

� H
}

such that on I ×Dc
H it holds:

(1) ϕ1(d(x,M(t))) � V (t, x) � ϕ2(d(x,M(t))) for ϕ1, ϕ2 ∈ KR,
(2) D+V (t, x)|(5.12.1) � 0,

then the set M is uniformly bounded with respect to system (5.12.1).
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Chapter 6

Nonlinear Systems with Separate Variables

There is some special interest of nonlinear systems with separated variables in
the field of control theory. The reason is that this kind of nonlinear systems is
a natural extension of linear systems. For example, if a part of components of a
linear system is changed into some appropriate nonlinear ones, the linear system
is changed into a nonlinear system with separated variables. Also, some nonlinear
systems can be transformed into this kind of systems by using certain invert-
ible transformations. The typical examples can be found in ecological systems,
Lurie control systems and some neural networks. Classical research for 2- and
3-dimensional systems was developed along with the Aizeman’s conjecture.

In this chapter, we first introduce a linear form of V function method. Then,
we present a general nonlinear form of V function method to obtain a general
criterion of global stability for autonomous nonlinear systems with separated
variables. By this method, we can study global stability of general systems with
separated variables and nonautonomous systems with separated variables. Finally,
we present some results on the properties of boundedness and dissipation for this
kind of systems.

More details for the results presented in this chapter can be found in [228,229,
235,237,248,253,263,350].

6.1. Linear Lyapunov function method

Consider a nonlinear system with separated variables:

(6.1.1)
dx

dt
=
(

n
∑

j=1

f1j (xj ), . . . ,

n
∑

j=1

fnj (xj )

)T

,

where fij (xj ) ∈ C[R,R], fij (0) = 0, i, j = 1, 2, . . . , n. Suppose that the
solution of the initial value problem (6.1.1) is unique.

We first introduce the results obtained in [228,229]. Let

(6.1.2)ϕi(xi) =
{

ai when xi � 0,
−bi when xi < 0,

i = 1, 2, . . . , n,

241
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where ai > 0 and bi > 0, i = 1, 2, . . . , n, are constants.

THEOREM 6.1.1. If there exist functions ϕi(xi), i = 1, . . . , n, such that

(6.1.3)
n
∑

i=1

ϕi(xi)fij (xj ) < 0 (xj �= 0, j = 1, 2, . . . , n),

then the zero solution of system (6.1.1) is globally asymptotically stable.

PROOF. We employ the Lyapunov function:

(6.1.4)V (x) =
n
∑

i=1

ϕi(xi)xi,

which is positive definite and radially unbounded. Consider any nonzero solution

(6.1.5)x(t) := x
(

t, t0, x
(0)).

Now we prove V (x(t)) < V (x(0)) for t > t0, i.e., V (x) is strictly monotone
decreasing.

From system (6.1.1), we find that

dxi(t)

dt

∣
∣
∣
∣
t=t0

= fi1
(

x
(0)
1

)+ · · · + fin
(

x(0)n

) := li (i = 1, 2, . . . , n),

that is,

lim
t→t0

xi(t)− x
(0)
i

t − t0
= li .

Thus, ∀ε > 0, there exists δ > 0, when t0 � t � t0 + δ we have

(6.1.6)li − ε <
xi(t)− x

(0)
i

t − t0
< li + ε,

which is equivalent to

(6.1.7)xi(t) < x
(0)
i + (li + ε)(t − t0),

(6.1.8)xi(t) > x
(0)
i + (li − ε)(t − t0).

Then, from ϕi(xi(t)) = ai > 0 for xi(t) > 0, and by (6.1.7), we drive that

(6.1.9)ϕi
(

xi(t)
)

xi(t) < ϕi
(

xi(t)
)

x
(0)
i + (li + ε)(t − t0)ϕi

(

xi(t)
)

,

and

ϕi
(

xi(t)
) = −bi < 0 for xi(t) < 0.
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It follows from (6.1.8) that

(6.1.10)ϕi
(

xi(t)
)

xi(t) < ϕi
(

xi(t)
)

x
(0)
i + (li − ε)(t − t0)ϕi

(

xi(t)
)

.

Let εi = ±ε. Combining (6.1.9) and (6.1.10) yields

(6.1.11)ϕi
(

xi(t)
)

xi(t) < ϕi
(

xi(t)
)

x
(0)
i + (li + εi)(t − t0)ϕi

(

xi(t)
)

.

Hence,

(6.1.12)V
(

x(t)
)

<

n
∑

i=1

ϕi
(

xi(t)
)

x
(0)
i +

n
∑

i=1

ϕi
(

xi(t)
)

(li + εi)(t − t0).

Since xi(t) is continuous with respect to t , when x(0) �= 0, we can choose δ > 0
such that xi(t) �= 0, and when t0 � t � t0 + δ, x(0)j xi(t) > 0, i.e.,

ϕj
(

xj (t)
) = ϕj

(

x
(0)
j

)

.

However,
n
∑

i=1

ϕi
(

xi(t)
)

li =
n
∑

i=1

ϕi
(

xi(t)
)

n
∑

j=1

fij
(

x
(0)
j

)

=
n
∑

i=1

n
∑

j=1

ϕi
(

xi(t)
)

fij
(

x
(0)
j

)

=
n
∑

j=1

(

ϕj
(

x
(0)
j

)

fjj
(

x
(0)
j

))+
n
∑

i=1
i �=j

ϕi
(

xi(t)
)

fij
(

x
(0)
j

)

(6.1.13):=
n
∑

j=1

−kj
(

x
(0)
j

)

.

As a result, it holds

V
(

x(t)
)

<

n
∑

i=1

ϕi
(

x
(0)
i

)

x
(0)
i + (t − t0)

{

−
n
∑

j=1

kj
(

x
(0)
j

)+
n
∑

i=1

ϕi
(

xi(t)
)

εi

}

,

where ki(x
(0)
i ) > 0 is a constant and 0 < εi 	 1, ϕi(xi(t)) is bounded. So we

can choose εi such that

−
n
∑

j=1

kj
(

x
(0)
j

)+
n
∑

i=1

ϕi
(

xi(t)
)

εi < 0.

Thus, there exists T > 0 such that

(6.1.14)V
(

x(t)
)

< V
(

x(0)
)

(t0 < t � T ).
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Next, we prove that (6.1.14) is true for all t > t0. If otherwise, there exists
t2 > t0 such that

V
(

x(t)
)

< V
(

x(0)
)

(t0 < t < t2),

V
(

x(t2)
) = V

(

x(0)
)

.

Owing to that V (x(t)) is a continuous function of t , there exists t1 ∈ (t0, t2) such
that

(6.1.15)V
(

x(t1)
)

� V
(

x(t)
)

.

Let x′ = x(t1, t0, x
(0)), x(t, t1, x′) = x(t, t0, x

(0)). Then, we have

V
(

x
(

t, t0, x
(0))) = V

(

x(t, t1, x
′)
)

< V (x′),
(6.1.16)t1 < t � t1 + δ1, 0 < δ1 	 1.

Combining (6.1.15) and (6.1.16) leads to a contradiction. Therefore, (6.1.14)
holds for all t > t0.

Let

λm := min
1�i�n

(ai, bi),

λM := max
1�i�n

(ai, bi),

‖x‖ :=
n
∑

i=1

|xi |, ∀ε > 0.

When

∥
∥x(0)

∥
∥ � δ(ε) := λm

λM
ε,

we have

(6.1.17)
∥
∥x(t)

∥
∥ � 1

λm
V
(

x(t)
)

� 1

λm
V
(

x(0)
)

� λM

λm

∥
∥x(0)

∥
∥ � ε (t � t0).

Hence, the zero solution of (6.1.1) is stable.
The limit

lim
t→∞V

(

x(t)
) = V0 � 0

exists. Since the solution has a nonempty ω-limit set, it has an ω-limit orbit x̃(t)
for every fixed t . So we can find {tk}, tk →∞, such that

lim
k→∞ x(tk) = x̃(t)
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and

(6.1.18)lim
k→∞V

(

x(tk)
) = V

(

x̃(t)
)

.

Thus, for all t it holds

V
(

x̃(t)
) = V0.

As a result, it has been verified that x̃(t) ≡ 0 and V0 = 0. Since the function
V (x(t)) is strictly monotone decreasing, this implies that

lim
t→∞ x(t) = 0.

The proof of Theorem 6.1.1 is complete. �

EXAMPLE 6.1.2. When n = 2, system (6.1.1) becomes
{

dx1
dt
= f11(x1)+ f12(x2),

dx2
dt
= f21(x1)+ f22(x2).

We take

V (x1, x2) = ϕ1(x1)x1 + ϕ2(x2)x2

=

⎧

⎪⎨

⎪⎩

a1x1 + a2x2 = c, x1 � 0, x2 � 0,
−b1x1 + a2x2 = c, x1 < 0, x2 � 0,
−b1x1 − b2x2 = c, x1 < 0, x2 < 0,
a1x1 − b2x2 = c, x1 � 0, x2 < 0.

The geometric interpretation of V is shown as in Figure 6.1.1.
If system (6.1.1) is a linear system, described by

(6.1.1)′dxi

dt
=

n
∑

j=1

aij xj , i = 1, 2, . . . , n,

then we have a stronger result, since the asymptotic stability of a linear system is
equivalent to the globally exponentially stability of the system.

COROLLARY 6.1.3. Consider the linear system (6.1.1)′. If ajj < 0 (j = 1, 2,
. . . , n) and there exist aj > 0, bj > 0 (j = 1, 2, . . . , n) such that

(6.1.19)ajajj +
n
∑

i=1
i �=j

ϕi(xi)aij < 0,

(6.1.20)−bjajj +
n
∑

i=1
i �=j

ϕi(xi)aij > 0,
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Figure 6.1.1. Linear Lyapunov functions.

then the zero solution of system (6.1.1)′ is globally exponentially stable.

PROOF. By (6.1.19) and (6.1.20), we have

ajajj xj +
n
∑

i=1
i �=j

ϕi(xi)aij xj < 0 for xj > 0,

−bjajj xj +
n
∑

i=1
i �=j

ϕi(xi)aij xj < 0 for xj < 0,

i.e., when xj �= 0, it holds

n
∑

j=1

ϕi(xi)aij xj < 0 for j = 1, 2, . . . , n.

Hence, the conditions in Theorem 6.1.1 are satisfied, and the conclusion holds. �

COROLLARY 6.1.4. Suppose ajj < 0, j = 1, 2, . . . , n. Let

a := max
j=2,...,n

{

max
i=1,2,...,n−1

∣
∣
∣
∣

naij

ajj

∣
∣
∣
∣

1
j−i }

(j > i),

1

b
:= max

j=1,2,...,n−1

{

max
i=2,...,n

∣
∣
∣
∣

ajj

naij

∣
∣
∣
∣

1
i−j }

(i > j).
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If b � a > 0, then the zero solution of the system (6.1.1)′ is globally exponentially
stable.

PROOF. From the conditions it follows that

a �
∣
∣
∣
∣

naij

ajj

∣
∣
∣
∣

1
j−i

, i.e.,
aj−i

n
�
∣
∣
∣
∣

aij

ajj

∣
∣
∣
∣

(j > i, j = 2, . . . , n),

1

b
�
∣
∣
∣
∣

naij

ajj

∣
∣
∣
∣

1
i−j

, i.e.,
aj−i

n
�
∣
∣
∣
∣

aji

ajj

∣
∣
∣
∣

(i > j, j = 1, 2, . . . , n− 1).

Taking ai = ai , bi = ai , i = 1, 2, . . . , n, we have

ajajj +
n
∑

i �=j
ϕi(xi)aij � ajajj +

n
∑

i=1,i �=j

∣
∣ϕi(xi)

∣
∣|aij |

= aj |ajj |
{

−1+
n
∑

i=1,i �=j

ai

aj

∣
∣
∣
∣

aij

ajj

∣
∣
∣
∣

}

� aj |ajj |
{

−1+
j−1
∑

i=1

ai−j a
j−i

n
+

n
∑

i=j+1

ai−j b
j−i

n

}

� aj |ajj |
{

−1+ j − 1

n
+

n
∑

i=j+1

ai−j a
j−i

n

}

= aj |ajj |
{

−1+ j − 1

n
+ n− j

n

}

= aj |aij |
(−1

n

)

< 0 for a � b, i > j, ai−j � bi−j .
By the same argument, one can prove that

−bjajj +
n
∑

i �=j
ϕj (xi)aij > 0.

Thus, the conclusion of Corollary 6.1.4 is true. �

Let

|B| :=

∣
∣
∣
∣
∣
∣
∣
∣

a11 |a21| · · · |an1|
|a12| a22 · · · |an2|
...

|a1n| |a2n| · · · ann

∣
∣
∣
∣
∣
∣
∣
∣

,
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and |Bij | denote the complement minor of the element (i, j) in |B|. Then we have
the following result.

COROLLARY 6.1.5. If |B||Bij | < 0, j = 1, 2, . . . , n, then the zero solution of
system (6.1.1)′ is globally exponentially stable.

PROOF. ∀δ1 > 0, take 0 < δi 	 1 (i = 1, 2, . . . , n) such that
(−δ1|B1s | − δ2|B2s | − · · · − δn|Bnz|

)(−δ1|B1s |
)

> 0.

Consider ξi (i = 1, 2, . . . , n) in the linear equations:

(6.1.21)

⎧

⎪⎪⎨

⎪⎪⎩

ξ1a11 + ξ2|a21| + · · · + ξn|an1| = −δ1,

ξ1|a12| + ξ2a22 + · · · + ξn|an2| = −δ2,
...

ξ1|a1n| + ξ2|a2n| + · · · + ξnann = −δn.
The solution is given by

ξj = 1

|B|
(−δ1|B1j | − δ2|B2j | − · · · − δn|Bnz|

)

(j = 1, 2, . . . , n).

By the choice of δj (j = 1, . . . , n) and |B||Bij | < 0 (j = 1, 2, . . . , n), we obtain

ξj ajj +
n
∑

i �=j
i=1

ϕi(xi)aij � ξj ajj +
n
∑

i �=j
i=1

ξi |aij | = −δj < 0.

So the conclusion is true. �

REMARK 6.1.6. Corollaries 6.1.3–6.1.5 are only applicable for linear systems.
Actually, the conclusion is also true for nonlinear systems. We have the following
result.

THEOREM 6.1.7. If xjfjj (xj ) < 0 for xj �= 0, j = 1, 2, . . . , n, and there exists
a constant α > 0 such that

∣
∣
∣
∣

fij (xj )

fjj (xj )

∣
∣
∣
∣
� aj−i

n
(i, j = 1, 2, . . . , n, i �= j),

then the zero solution to system (6.1.1) is globally asymptotically stable.

PROOF. Let ai = bi = ai , i = 1, 2, . . . , n. When xj �= 0, we have

n
∑

i=1

ϕi(xi)fij (xj ) = ϕj (xj )fjj (xj )+
n
∑

i=1
i �=j

ϕi(xi)fij (xj )
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= ∣
∣ϕj (xj )fjj (xj )

∣
∣

{

−1+
n
∑

i=1
i �=j

ϕi(xi)fij (xj )

|ϕj (xj )fjj (xj )|

}

�
∣
∣ϕj (xj )fjj (xj )

∣
∣

{

−1+
n
∑

i=1
i �=j

∣
∣
∣
∣

ϕi(xi)

ϕj (xj )

∣
∣
∣
∣

∣
∣
∣
∣

fij (xj )

fjj (xj )

∣
∣
∣
∣

}

�
∣
∣ϕj (xj )fjj (xj )

∣
∣

{

−1+
n
∑

i=1
i �=j

ai−j a
j−i

n

}

= −n−1
∣
∣ϕj (xj )fjj (xj )

∣
∣

< 0,

which implies that the conditions in Theorem 6.1.1 are satisfied. Thus, the con-
clusion of Theorem 6.1.7 is true. �

Let
∣
∣
∣
∣

fij (xj )

fjj (xj )

∣
∣
∣
∣

� aij (i, j = 1, 2, . . . , n, i �= j) for xj �= 0,

|A∗| :=

∣
∣
∣
∣
∣
∣
∣
∣

−1 a21 · · · an1
a12 −1 · · · an2
...

a1n · · · −1

∣
∣
∣
∣
∣
∣
∣
∣

,

where |A∗ij | denotes the complement minor of the element (i, j) in |A∗|.

THEOREM 6.1.8. If xjfjj (xj ) < 0, j = 1, 2, . . . , n, and |A∗||A∗ij | < 0, j = 1,
2, . . . , n, then the zero solution of system (6.1.1) is globally asymptotically stable.

PROOF. Following the proof of Corollary 6.1.5, ∀δ1 > 0, choose 0 < δi < 1
such that

aj (−1)+
n
∑

i=1
i �=j

aiaij = −δj , j = 1, 2, . . . , n,

where

ai = 1

|A∗|
(−δ1|A∗1i | − · · · − δn|A∗ni |

)

> 0, i = 1, 2, . . . , n.

Take bi = ai (i = 1, 2, . . . , n). Then xjϕj (xj ) > 0, xjfjj (xj ) < 0 and xj �= 0
imply

ϕj (xj )fjj (xj ) < 0, j = 1, 2, . . . , n, xj �= 0.
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Thus, we have

n
∑

i=1

ϕi(xi)fij (xj ) = ϕj (xj )fjj (xj )+
n
∑

i=1
i �=j

ϕi(xi)fij (xj )

�
∣
∣ϕj (xj )fjj (xj )

∣
∣

{

−1+
n
∑

i=1
i �=j

∣
∣
∣
∣

ϕi(xi)

ϕj (xj )

∣
∣
∣
∣

∣
∣
∣
∣

fij (xj )

fjj (xj )

∣
∣
∣
∣

}

�
∣
∣ϕj (xj )fjj (xj )

∣
∣

{

−1+
n
∑

i=1
i �=j

ai

aj
aij

}

= 1

aj

∣
∣ϕj (xj )fjj (xj )

∣
∣

{

aj (−1)+
n
∑

i=1
i �=j

aiaij

}

= 1

aj

∣
∣ϕj (xj )fjj (xj )

∣
∣{−δj } < 0 (xj �= 0, j = 1, 2, . . . , n),

which means that the conditions of Theorem 6.1.1 are satisfied. Hence, the zero
solution of system (6.1.1) is globally asymptotically stable. �

Note that the 2n constants ai , bi (i = 1, 2, . . . , n) need to be determined, but
under some very weak conditions. Only n constants need to be determined. We
have

THEOREM 6.1.9. (See [234,235].) If the sign of fij (xj ) (i �= j ) is variable, then
there exists a function

ϕi(xi) =
{

ai > 0, xi � 0,
−bi < 0, xi < 0,

such that

(6.1.22)
n
∑

i=1

ϕi(xi)fij (xj ) < 0, j = 1, 2, . . . , n

if and only if there exist constants ci > 0, i = 1, 2, . . . , n, such that

(6.1.23)−cj
∣
∣fjj (xj )

∣
∣+

n
∑

i=1
i �=j

ci
∣
∣fij (xj )

∣
∣ < 0, j = 1, 2, . . . , n.

PROOF. Obviously, (6.1.22) implies (6.1.23) because one can take bi = ai .
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Now suppose (6.1.23) is true. We rewrite (6.1.22) as

(6.1.24)ϕj (xj )fjj (xj )+
n
∑

i=1
i �=j

ϕi(xi)fij (xj ) < 0.

Since ϕi(xi) (i �= j ) are independent of fij (xj ), let ai0 > bi0 (i0 �= j ), then when
ϕi0(xi0) = ai0 , (6.1.24) becomes

(6.1.25)ϕj (xj )fjj (xj )+
n
∑

i=1
i �=j
i �=i0

ϕi(xi)fij (xj )+ ai0fi0j (xj ) < 0.

By the property of variable sign of fi0j (xj ), it must hold:

ϕj (xj )fjj (xj )+
n
∑

i=1
i �=i0, i �=j

ϕi(xi)fij (xj )+ ai0

∣
∣fi0,j (xj )

∣
∣ < 0.

For other cases when i �= j , a similar argument yields

ϕj (xj )fjj (xj )+
n
∑

i=1
i �=j

max{ai, bi}
∣
∣fij (xj )

∣
∣ < 0,

i.e.,

ajϕj (xj )fjj (xj )+
n
∑

i=1
i �=j

max{ai, bi}
∣
∣fij (xj )

∣
∣ < 0 (xj � 0),

−bjϕj (xj )fjj (xj )+
n
∑

i=1
i �=j

max{ai, bi}
∣
∣fij (xj )

∣
∣ < 0 (xj � 0).

Let

ci = max{ai, bi} (i = 1, 2, . . . , n).

Then,

−max{aj , bj }
∣
∣fjj (xj )

∣
∣+

n
∑

i=1
i �=j

max{ai, bi}
∣
∣fij (xj )

∣
∣

:= −cj
∣
∣fjj (xj )

∣
∣+

n
∑

i=1
i �=j

ci
∣
∣fij (xj )

∣
∣ < 0 (j = 1, 2, . . . , n).
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The proof of Theorem 6.1.9 is complete. �

In the following, we give some sufficient conditions for the existence of ci >
0 (i = 1, . . . , n) in Theorem 6.1.9.

THEOREM 6.1.10. Assume that

(1) xjfjj (xj ) < 0 for xj �= 0;

(2)
∣
∣
fij (xj )

fjj (xj )

∣
∣ � aij ;

(3) the matrix

A :=

∣
∣
∣
∣
∣
∣
∣
∣

1 −a12 · · · −a1n
−a21 1 · · · a2n
...

...

−an1 −an2 · · · 1

∣
∣
∣
∣
∣
∣
∣
∣

is an M matrix.

Then the zero solution of system (6.1.1) is globally asymptotically stable.

PROOF. Since A is an M matrix, AT is also M matrix. ∀ξ = (ξ1, . . . , ξn)
T > 0,

the linear equation for η:

AT η = ξ, η = (η1, . . . , ηn)
T

has positive solution C = η = (AT )−1ξ > 0. Take

ϕi(xi) = − sign fii(xi)ci .

Then,
n
∑

i=1

ϕi(xi)

n
∑

j=1

fij (xi) =
n
∑

i=1

−sign fii(xi)ci

n
∑

j=1

fij (xj )

�
n
∑

j=1

−cj
∣
∣fjj (xj )

∣
∣+

n
∑

i=1
i �=j

ci
∣
∣fij (xj )

∣
∣

�
n
∑

j=1

[

−cj +
n
∑

i=1
i �=j

ciaij

]

∣
∣fjj (xj )

∣
∣

= −
n
∑

j=1

ξi
∣
∣fjj (xj )

∣
∣

< 0 for x �= 0.

So the conclusion holds. �
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COROLLARY 6.1.11. If aij � 0 and one of the following conditions holds, then
A is an M matrix:

(1)
i−1
∑

j=1

aijμj +
n
∑

j=i+1

aij := μi < 1 (i = 1, 2, . . . , n);

(2) ρ1 = max
2�j�n

a1j , ρ2 = a21ρ1 + max
3�j�n

a2j , . . . ,

ρn :=
n−1
∑

j=1

anjρj ,

n
∑

j=1

ρj < 1;

(3)

[
i
∑

j=1

a2
ij σ

2
j +

n
∑

j=i+1

a2
ij

]

:= σ 2
i ,

n
∑

i=1

σ 2
i < 1;

(4) max
1�i�n

n
∑

j=1
j �=i

aij < 1;

(5) max
1�j�n

n
∑

i=1
i �=j

aij < 1;

(6)
n
∑

i,j=1
i �=j

a2
ij < 1;

(7) hi := 1−
n
∑

j=1
j �=i

1

2
(aij + aji) > 0.

The conclusion of Corollary 6.1.11 is obvious since each of the seven condi-
tions implies the sufficient condition of Theorem 6.1.10.

6.2. General nonlinear Lyapunov function with separable
variable

In this section, we generalize the method described in Section 6.1 to consider
general nonlinear Lyapunov function with separable variables.

Consider the general nonlinear autonomous system:

(6.2.1)
dx

dt
= f (x), f (0) = 0,
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where x ∈ Rn, f (x) ∈ C[Rn,Rn], f (x) = (f1(x), . . . , fn(x))
T . Assume that

the solution of the initial value problem of (6.2.1) is unique.

DEFINITION 6.2.1. A function ϕ(x) ∈ C[R,R] is said to have a discontinuous
point of the first kind at x0, if both the right limit

lim
x→x+0

ϕ(x),

and the left limit

lim
x→x−0

ϕ(x)

exist and are bounded.

THEOREM 6.2.2. If there exist functions ϕi(x) ∈ [R,R], i = 1, 2, . . . , n, which
are continuous or have only finite discontinuous points of the first kind, such that

(1) ϕi(xi)xi > 0 for xi �= 0;
(2)

∫ ±∞
0 ϕi(xi) dxi = +∞, i = 1, 2, . . . , n;

(3) G(x) :=∑n
i=1 ϕi(xi ± 0)fi(x) is negative definite;

then the zero solution of system (6.2.1) is globally asymptotically stable.

PROOF. We construct a positive definite and radially unbounded Lyapunov func-
tion:

(6.2.2)V (x) =
n
∑

i=1

xi∫

0

ϕi(xi) dxi .

We now prove that along any nonzero solution x(t, τ, ξ) of system (6.2.1),
V (x) is strictly monotone decreasing, i.e.,

(6.2.3)V
(

x(t, τ, ξ)
) := ψ(t) < ψ(τ) := V

(

x(τ, τ, ξ)
)

for t > τ.

First, we show that (6.2.3) holds when 0 < t − τ 	 1. Rewrite (6.2.1) as an
integral equation, and then by mean value theorem, we obtain

xi(t, τ, ξ) = ξi +
t∫

τ

fi
(

x(s, τ, ξ)
)

ds = ξi + (t − τ)fi
(

x(ti , τ, ξ)
)

(6.2.4)= ξi + (t − τ)fi(ξ)+ (t − τ)
[

fi
(

x(ti , τ, ξ)
)− fi(ξ)

]

for ti ∈ [τ, t], i = 1, 2, . . . , n. Thus, ∀εi1 > 0, εi2 > 0, by the continuity of
fi(x) and the solution x(t, τ, ξ), there exists δi > 0, i = 1, . . . , n, such that
for 0 < t − τ < δi there is no discontinuous point of ϕs(xs) on [ξi, ξi + (t −
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τ)fi(x(ti , τ, ξ))] except ξi and at least there is an i such that fi(x(ti , τ, ξ)) �= 0.
When fi(x(ti , τ, ξ)) > 0, applying the mean value theorem once again yields

xi∫

0

ϕi(xi) dxi =
ξi−0∫

0

ϕi(xi) dxi +
ξi+(t−τ)[fi (x(ti ,τ,ξ))−fi (ξ)]∫

ξi+0

ϕi(xi) dxi

<

ξi−0∫

0

ϕi(xi) dxi + (t − τ)
[

fi(ξ)ϕi
(

xi(t̄i , τ, ξ)
)+ εi1

∣
∣ϕi
(

xi(t̄i , τ, ξ)
)∣
∣
]

=
ξi−0∫

0

ϕi(xi) dx2 + (t − τ)
{

fi(ξ)
[

ϕi(ϕi ± 0)+ (

ϕi
(

xi(t̄i , τ, ξ)
))

− ϕi(ξi ± 0)
]}+ (t − τ)εi1

∣
∣ϕi
(

xi(t̄i , τ, ξ)
)∣
∣

<

ξi−0∫

0

ϕi(xi) dxi + (t − τ)fi(ξ)ϕi(ξi ± 0)+ (t − τ)εi2
∣
∣fi(ξ)

∣
∣

(6.2.5)+ (t − τ)εi1
∣
∣ϕi
(

xi(t̄i , τ, ξ)
)∣
∣, t̄i ∈ [τ, t], i = 1, 2, . . . , n.

When fi(x(ti , τ, ξ)) < 0, by using

xi∫

0

ϕi(xi) dxi =
ξi−0∫

0

ϕi(xi) dxi +
ξi+(t−τ)[fi (ξ)+fi (x(ti ,τ,ξ))−fi (ξ)]∫

ϕi+0

ϕi(xi) dxi,

we have a similar estimation as (6.2.5). Thus, we obtain

V
(

x(t, τ, ξ)
) =

n
∑

i=1

xi∫

0

ϕi(xi) dxi

<

n
∑

i=1

ξi∫

0

ϕi(xi) dxi + (t − τ)

[
n
∑

i=1

fi(ξ)ϕi(ξi ± 0)

+
n
∑

i=1

εi2
∣
∣fi(ξ)

∣
∣+

n
∑

i=1

εi1
∣
∣ϕi
(

xi(t̄i , τ, ξ)
)∣
∣

]

= V
(

x(τ, τ, ξ)
)+ (t − τ)

[
n
∑

i=1

fi(ξ)ϕi(ξ ± 0)

(6.2.6)+
n
∑

i=1

εi2
∣
∣fi(ξ)

∣
∣+

n
∑

i=1

εi1
∣
∣ϕi
(

xi(t̄i , τ, ξ)
)∣
∣

]

.
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By condition (3) and the arbitrary of εi1, εi2, when 0 < t − τ 	 1, (6.2.3) holds.
Second, we prove that (6.2.3) holds for all t > τ . Otherwise, assume that there

exists τ1 > τ such that ψ(τ1) = ψ(τ). Since ψ(t) is a continuous function, there
exists t∗ ∈ [τ, τ1] such that

(6.2.7)ψ(t∗) � ψ(t) ∀t ∈ [τ, τ1].
Let ξ∗ = x(t∗, τ, ξ). Then, x(t, t∗, ξ∗) ≡ x(t, τ, ξ) and it must have

(6.2.8)ψ(t) = V
(

x(t, t∗, ξ∗)
)

< ψ(t∗) for 0 < t − t∗ 	 1.

This is a contradiction. So (6.2.3) holds for all t � t0.
Now by (6.2.3), we prove that the zero solution of system (6.1.1) is stable, and

any solution is bounded. In fact, ∀ε > 0, let

l = inf‖x‖=ε V (x) > 0,

one can then choose 0 < η < ε such that

(6.2.9)V‖ξ‖�η

(

x(t, τ, ξ)
)

< V‖ξ‖�η

(

x(τ, τ, ξ)
)

< l (t > τ).

If there exists t1 > τ such that
∥
∥x(t1, τ, ξ)

∥
∥ = ε,

then

(6.2.10)
∣
∣V
(

x(t1, τ, ξ)
)∣
∣ � l

Comparing (6.2.9) with (6.2.10) leads to a contradiction. Thus, the zero solution
of system (6.2.1) is stable, and all solutions are bounded.

Finally, we prove

lim
t→+∞ x(t, τ, ξ) = 0 ∀ξ ∈ Rn.

Since ψ(t) is a strictly monotone decreasing function, the limit

lim
t→+∞V

(

x(t, τ, ξ)
) = V0

exists.
The solution x(t, τ, ξ) has a nonempty ω-limit set. So it has an ω-limit orbit

x̃(t) for every fixed t . We can choose a fixed sequence {tk}, tk → +∞ as k →
+∞, such that

lim
k→+∞ x(tk, τ, ξ) = x̃(t).

Hence,

lim
k→+∞V

(

x(tk, τ, ξ)
) = V

(

x̃(t)
)

.
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Thus, V (x̃(t)) = V0 for all t > τ . Therefore, x̃(t) ≡ 0 and V0 = 0, i.e.,

lim
t→+∞ x(t, τ, ξ) = 0.

The proof of Theorem 6.2.2 is complete. �

REMARK 6.2.3. If

fi(x) =
n
∑

j=1

fij (xj )

and

ϕi(xi) =
{

ai, xi � 0,
−bi, xi < 0,

i = 1, 2, . . . , n,

then we can obtain all results presented in Section 6.1 as particular cases of The-
orem 6.2.2.

THEOREM 6.2.4. Let Iδ := {x | ‖x‖ � δ}. If there exist δi > 0 and functions
ϕi(xi) ∈ [Iδ, R], which are continuous or only have finite discontinuous points of
the first kind, such that

(1) ϕi(xi)xi

{

> 0, i = 1, 2, . . . , m− 1,
< 0, i = m,m+ 1, . . . , n,

xi �= 0;

(2) G(x) :=∑n
i−1 ϕi(xi ± 0)fi(x) is negative definite;

then the zero solution of system (6.2.1) is unstable.

PROOF. For a given r > 0 (0 < r < δ) and ∀η > 0, we prove that one can
choose ξ �= 0 (‖ξ‖ � η) such that the solution x(t, τ, ξ) of system (6.2.1) at a
certain point t1 > τ satisfies ‖x(t1, τ, ξ)‖ � r .

In fact, by employing the Lyapunov function:

(6.2.11)V (x) =
n
∑

i=1

xi∫

0

ϕi(xi) dxi

one can find that the set E = {x | V (x) < 0} is not empty. Take ξ ∈ E and
‖ξ‖ � η. Using the same method applied in (6.2.5) results in

xi∫

0

ϕi(xi) dxi
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=
ξi∫

0

ϕi(xi) dxi +
ξi+(t−τ)fi (ξ)+(t−τ)[fi (x(ti ,τ,ξ))−fi (ξ)]∫

ξi±0

ϕi(xi) dxi

=
ξi∫

0

ϕi(xi) dxi + (t − τ)
{

fi(ξ)ϕi
(

xi(t̄i , τ, ξ)
)

+ [

fi
(

x(ti , τ, ξ)
)− fi(ξ)

]

ϕi
(

xi(t̄i , τ, ξ)
)}

=
ξi∫

0

ϕi(xi) dxi + (t − τ)
{

fi(ξ)ϕi(ξi ± 0)+ fi(ξ)
[(

ϕi
(

xi(t̄i , τ, ξ)
))

− ϕi(ξi ± 0)
]+ [

fi
(

x(ti , τ, ξ)
)− fi(ξ)

]

ϕi
(

xi(t̄i , τ, ξ)
)}

(6.2.12)for i = 1, 2, . . . , n, ti ∈ [τ, t], t̃i ∈ [τ, ti].
Then it follows that

V
(

x(t, τ, ξ)
) =

n
∑

i=1

xi∫

0

ϕi(xi) dxi

=
n
∑

i=1

ξi∫

0

ϕi(xi) dxi + (t − τ)

[
n
∑

i=1

fi(ξ)ϕi(ξi ± 0)

]

+ (t − τ)

{
n
∑

i=1

fi(ξ)
[

ϕi
(

xi(t̄i , τ, ξ)
)− ϕi(ξ ± 0)

]

+
n
∑

i=1

[

fi
(

x(ti , τ, ξ)
)− fi(ξ)

]

ϕi
(

xi(t̄i , τ, ξ)
)

}

= V (ξ)+G(ξ)(t − τ)

+ (t − τ)

{
n
∑

i=1

fi(ξ)
[

ϕi
(

xi(t̄i , τ, ξ)
)− ϕi(ξ ± 0)

]

(6.2.13)+
n
∑

i=1

[

fi
(

x(ti , τ, ξ)
)− fi(ξ)

]

ϕi
(

xi(t̄i , τ, ξ)
)

}

.

Let

μ = inf
x∈[x,V (x)�V (ξ)<0] ‖x‖, λ = inf

μ�‖x‖�H

∣
∣G(x)

∣
∣.
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Then μ > 0 and λ > 0. Note that

M1 = max
1�i�n
‖x‖�H

∣
∣fi(x)

∣
∣, M2 = sup

1�i�n
|xi |�δi

∣
∣ϕ
(

xi(t̄i , τ, s)
)∣
∣,

and choose 0 < δ 	 1 such that when 0 < t − τ < δ, the conditions are satisfied:

∣
∣ϕi
(

xi(t̄i , τ, ξ)
)− ϕi(ξ1 ± 0)

∣
∣ <

λ

3nM1
,

∣
∣fi
(

x(ti , τ, ξ, ξ)
)− fi(ξ)

∣
∣ <

λ

3nM2
.

Then by (6.2.13) we obtain

V
(

x(t, τ, ξ)
)

< V
(

x(τ, τ, ξ)
)− (t − τ)λ+

(
nM1λ

3nM1
+ nM2λ

3nM2

)

(t − τ)

(6.2.14)= V
(

x(τ, τ, ξ)
)− (t − τ)

λ

3
.

Choose {tn}, tn → ∞ as n → ∞ and 0 < ti − ti−1 	 1. Then it follows
from (6.2.14) that

(6.2.15)1V
(

x(t1, τ, ξ)
)

< V
(

x(τ, τ, ξ)
)− (t1 − τ)

λ

3
,

(6.2.15)2V
(

x(t2, τ, ξ)
)

< V
(

x(t1, τ, ξ)
)− (t2 − t1)

λ

3
,

...

(6.2.15)nV
(

x(tn, τ, ξ)
)

< V
(

x(tn−1, τ, ξ)
)− (tn − tn−1)

λ

3
.

From (6.2.15)1–(6.2.15)n we get

V
(

x(tn, τ, ξ)
)

< V
(

x(τ, τ, ξ)
)− (tn − τ)

λ

3
.

Since tn − τ � 1, V (x(τ, τ, ξ)) = const., |V (x(tn, τ, ξ))| � 1, we have
‖x(tn, τ, ξ)‖ � r , i.e., the solution of (6.2.1) is unstable.

The proof is complete. �

As applications of Theorems 6.2.2 and 6.2.4, we again consider system (6.2.1).

THEOREM 6.2.5. If system (6.2.1) satisfies the following conditions:

(1) fii(xi)xi < 0 for xi �= 0;
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(2)
∫ ±∞

0 fii(xi) dxi = −∞;
(3) there exist positive definite functions ci(xi) ∈ C[R1, R+], i = 1, 2, . . . , n,

such that the matrix A(aij (x)) is negative definite;

then the zero solution of system (6.2.1) is globally asymptotically stable. Here,

aij (x) =
⎧

⎨

⎩

−ci(xi), i = j = 1, 2, . . . , n,

− 1
2

( ci (xi )fij (xj )

fjj (xj )
+ cj (xj )fji (xi )

fii (xi )

)

, i �= j, xixj �= 0,
i, j = 1, 2, . . . , n.

PROOF. Let ϕi(xi) = −ci(xi)fii(xi) (i = 1, 2, . . . , n). We prove that

G(t) :=
n
∑

i=1

ϕi(xi)

n
∑

j=1

fij (xj )

is negative definite. ∀x = ξ , without loss the generality, let

k
∏

i=1

ξi �= 0,
n
∑

i=k+1

ξ2
i = 0 (1 � k � n).

Then,

G(ξ) =
k
∑

i=1

ϕi(ξi)

k
∑

j=1

fij (ξj ) = −
k
∑

i=1

ci(ξi)f
2
ii (ξi)

+
k
∑

i,j=1
i �=j

[−ci(ξi)fii(ξi)fij (ξj )
2

+ −cj (ξj )fjj (ξj )fji(ξi)
2

]

= −
k
∑

i=1

ci(ξi)f
2
ii (ξi)

−
k
∑

i=1
i �=j

k
∑

i=1
i �=j

(
ci(ξi)fij (ξi)

2fjj (ξj )
+ cj (ξj )fji(ξi)

2fii(ξi)

)

fii(ξi)fjj (ξj ).

By condition (3) we know that the general quadratic form

W(f11, f22, . . . , fkk) = −
k
∑

i=1

ci(ξi)f
2
ii (xi)

+
k
∑

i=1
i �=j

k
∑

j=1
i �=j

aij (ξi , ξj )fii(xi)fjj (xj )
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is negative definite with respect to f11, f22, . . . , fkk . By condition (1) and
fii(0) = 0 (i = 1, 2, . . . , n) we know that W(0) = 0, and

k
∑

i=1

f 2
ii = 0.

By noticing that

W(f11, . . . , fkk) < 0 ⇐⇒
k
∑

i=1

f 2
ii �= 0

and

k
∑

i=1

f 2
ii = 0 ⇐⇒

k
∑

i=1

x2
i = 0,

W is negative definite with respect to x1, x2, . . . , xk , and in particular, G(ξ) =
W(f11(ξ1), . . . , fkk(ξk)) < 0. Due to ξ being arbitrary and G(0) = 0, we know
that G(x) is negative definite. Hence, the zero solution of system (6.2.1) is glob-
ally asymptotically stable. �

REMARK 6.2.6. If the elements of A(aij (x)) are changed to

aij (x)

{= −ci(xi), i = j,

� 1
2

∣
∣
ci (xi )fij (xj )

fjj (xj )
+ cj (xj )fji (xi )

fii (xi )

∣
∣, i �= j, xi, xj �= 0,

then the conditions of Theorem 6.2.5 are still satisfied, and the conclusion holds.
Thus, we can choose easier computing method, for example, we can use aij (t) =
constant i �= j to check the negative definiteness of matrix A(aij (t)) easier.

COROLLARY 6.2.7. If the conditions (1) and (2) in Theorem 6.2.2 are satisfied,
and in condition (3) there exist functions ci(xi) > δ > 0, ci(xi) ∈ C[R,R], i =
1, 2, . . . , n, and M(j)

i (xi, xj ), M
(i)
j (xi, xj ) � 0 such that

∣
∣
∣
∣

ci(xi)fij (xi)

2fjj (xj )
+ cj (xj )fji(xi)

2fii(xi)

∣
∣
∣
∣
� M

(j)
i (xi, xj )M

(i)
j (xi, xj ),

for i �= j, i, j = 1, 2, . . . , n, xi, xj �= 0, and

n
∑

j=1
j �=i

(

M
(j)
i (xi, xj )

)2
< ci(xi) (i = 1, 2, . . . , n);

then the zero solution of system (6.2.1) is globally asymptotically stable.
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PROOF. Let ϕi(xi) = −ci(xi)fii(xi) (i = 1, 2, . . . , n). ∀x = ξ , where

k
∏

i=1

ξi �= 0,
n
∑

i=k+1

ξ2
i = 0 (1 � k � n),

we have

G(ξ) =
k
∑

i=1

ϕi(ξi)

k
∑

j=1

fij (ξj ) = −
k
∑

i=1

ci(ξi)fii(ξi)

k
∑

j=1

fij (ξj )

� −
k
∑

i=1

ci(ξi)f
2
ii (ξi)

+
k
∑

i=1
i �=j

k
∑

j=1
i �=j

∣
∣
∣
∣

−ci(ξi)fij (ξj )
2fjj (ξj )

+ −cj (ξj )fji(ξi)
2fii(ξi)

∣
∣
∣
∣

∣
∣fii(ξi)fjj (ξj )

∣
∣

� −
k
∑

i=1

ci(ξi)f
2
ii (ξi)

+
k
∑

i=1
i �=j

k
∑

j=1
i �=j

∣
∣
∣
∣

−ci(ξi)fij (ξj )
2fjj (ξj )

+ −cj (ξj )fji(ξi)
2fii(ξi)

∣
∣
∣
∣

∣
∣fii(ξi)fjj (ξj )

∣
∣

� −
k
∑

i=1

ci(ξi)f
2
ii (ξi)

+
k
∑

i=1
i �=j

k
∑

j=1
i �=j

M
(i)
i (ξi , ξj )M

(i)
j (ξj , ξi)

∣
∣fii(ξi)

∣
∣
∣
∣fjj (ξj )

∣
∣

� −
k
∑

i=1

ci(ξi)f
2
ii (ξi)+

k
∑

i=1
i �=j

k
∑

j=1
i �=j

(

M
(j)
i (ξi , ξj )

)2
f 2
jj (ξi)

=
k
∑

j=1

[

−cj (ξj )+
k
∑

j=1
j �=i

M
(j)
i (ξi , ξj )

2

]

f 2
jj (ξj ) < 0.

By the arbitrary of ξ , we know that G(t) is negative definite. So the zero solution
of system (6.2.1) is globally asymptotically stable. �
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REMARK 6.2.8. If take ci(x1) = 1, then

M
(j)
i (xi, xj ) = M

(i)
j (xj , xi) =

√

1

2

∣
∣
∣
∣

fij (xj )

fjj (xj )
+ fji(xi)

fii(xi)

∣
∣
∣
∣
,

and condition (3) of Corollary 6.2.7 becomes

n
∑

j=1
j �=i

∣
∣
∣
∣

fij (xj )

fjj (xj )
+ fji(xi)

fii(xi)

∣
∣
∣
∣
< 2, xixj �= 0.

THEOREM 6.2.9. If in certain neighborhood of x = 0, system (6.1.1) satisfies

(1)

fii(xi)xi < 0, xi �= 0, i = 1, 2, . . . , m− 1,

fii(xi)xi > 0, xi �= 0, i = m,m+ 1, . . . , n;
(2) there exist ci(xi) � δ > 0 such that the matrix A(aij (x)) is negative definite,

where

aij (x) =
⎧

⎨

⎩

−ci(xi), i = j = 1, 2, . . . , n

− 1
2

[ ci (xi )fij (xj )

fjj (xj )
+ cj (xj )fji (xi )

fii (xi )

]

, i �= j, xixj �= 0,
j = 1, 2, . . . , n;

then the zero solution of system (6.1.1) is unstable.

PROOF. One can follow the proof of Theorem 6.2.5 to prove this theorem. �

6.3. Systems which can be transformed to separable variable
systems

In this section, we consider some systems which can be transformed to separable
variables systems.

Consider the system:

(6.3.1)
dxi

dt
= Fi

(
n
∑

j=1

aij xj

)

, i = 1, 2, . . . , n,

where Fi(0) = 0, yiFi(yi) > 0 for yi �= 0 and Fi(yi) ∈ C[R1, R1]. Assume that
the solution of the Cauchy problem (6.3.1) is unique.

THEOREM 6.3.1. If system (6.3.1) satisfies the following conditions:
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(1)
∫ ±∞

0 Fj (yj ) = +∞;
(2) ajj < 0, j = 1, 2, . . . , n;
(3) the matrix A is Lyapunov–Volterra stable, i.e., there exist constants ci > 0,

i = 1, . . . , n, such that the matrix B(bij )n×n is negative definite, where

bij =
{
ci |aii |, i = j = 1, 2, . . . , n,
1
2 [ciaij + cjaji], i �= j, i, j = 1, 2, . . . , n;

then the zero solution of system (6.3.1) is globally asymptotically stable.

PROOF. Let us consider an auxiliary linear system:

(6.3.2)
dzi

dt
=

n
∑

j=1

aij zj , i = 1, 2, . . . , n.

By employing the positive definite and radially unbounded Lyapunov function

V (z) =
n
∑

i=1

zi∫

0

cizi dzi,

we obtain

dV (z)

dt
=

n
∑

i=1

−ci |aii |z2
i +

k
∑

i=1
i �=j

k
∑

j=1
j �=i

1

2
(ciaij + cjaji)zizj < 0 for z �= 0,

showing that the zero solution of system (6.3.2) is globally asymptotically stable,
and so det |A| �= 0.

By a nonsingular linear transformation:

yi =
n
∑

j=1

aij xj , i = 1, 2, . . . , n,

system (6.3.1) is transformed to

(6.3.3)
dyi

dt
=

n
∑

j=1

aij
dxj

dt
=

n
∑

j=1

aijFj (yj ).

The stability of the zero solutions of systems (6.3.1) and (6.3.3) are equivalent,
but system (6.3.3) has separable variables.

Let ϕi(yi) = ciFi(yi). Then

G(y) :=
n
∑

i=1

ϕi(yi)

n
∑

j=1

aijFj (yj )
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=
n
∑

i=1

ciFi(yi)

n
∑

j=1

aijFj (yj )

=
n
∑

i=1

ciaiiF
2
i (yi)+

1

2

n
∑

i=1
i �=j

n
∑

j=1
i �=j

(ciaij + cj aji)Fi(yi)Fj (yj )

= FT (y)BF(y) < 0 for F(y) �= 0.

By condition (3) and ymF(ym) > 0, Fm(0) = 0, we can apply the same method
to prove that G(y) is negative definite with respect to y.

Thus, the zero solution of system (6.3.1) is globally asymptotically stable. �

THEOREM 6.3.2. Assume that

(1)
∫ ±∞

0 Fi(yi) dyi = +∞ (i = 1, 2, . . . , n);

(2)
⎡

⎢
⎢
⎣

−a11 |a12| · · · |a1n|
−|a12| −a22 · · · |a2n|

...
...

−|ann| · · · −ann

⎤

⎥
⎥
⎦

is an M matrix.

Then the zero solution of system (6.3.1) is globally asymptotically stable.

PROOF. This conclusion is true simply because condition (2) implies the condi-
tions (2) and (3) in Theorem 6.3.1. �

THEOREM 6.3.3. If detA �= 0, aii �= 0, i = 1, 2, . . . , n, and there exist ai0i0 >
0, ci �= 0 (i = 1, . . . , n), ci0 > 0 such that the matrix B̃(b̃ij ) is negative definite,
where

b̃ij = b̃j i =
⎧

⎨

⎩

−ci(sign aii)aii , i = j = 1, 2, . . . , n,

− 1
2

[

ci(sign aii)aij + cj (sign ajj )aji
]

,

i �= j, i, j = 1, . . . , n,

then the zero solution of system (6.3.1) is unstable.

PROOF. Let ϕi(yi) = −ci(sign aii)Fi(yi). Then,

G(y) =
n
∑

i=1

ϕi(yi)

n
∑

j=1

aijFj (yj )
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=
n
∑

i=1

ci(sign aii)Fi(yi)
n
∑

j=1

aijFj (yj )

= −
n
∑

i=1

ci(sign aii)aiiF
2
i (yj )

− 1

2

n
∑

i=1
i �=j

n
∑

j=1
i �=j

[

ci(sign aii)aij + cj (sign ajj )aji
]

Fi(yi)Fj (yj )

= −
n
∑

i=1

ci(sign aii)aiiF
2
i (yi)+

n
∑

i=1
i �=j

n
∑

j=1
i �=j

b̃ijFi(yi)Fj (yj )

< 0 for y �= 0.

So the conclusion is true. �

THEOREM 6.3.4. If there exist ai0i0 > 0, and
⎡

⎢
⎢
⎣

|a11| −|a12| · · · −|a1n|
−|a21| |a22| −|a2n|

...
. . .

...

−|ann| · · · · · · |ann|

⎤

⎥
⎥
⎦

being an M matrix, then the zero solution of system (6.3.1) is unstable.

PROOF. One can follow Theorem 6.3.3 to prove this theorem. �

In the following, we consider the Volterra-type ecological systems, described
by

(6.3.4)
dxi

dt
= xi

(

ri +
n
∑

j=1

aij xj

)

, i = 1, 2, . . . , n.

This is the earliest mathematical model that describes the ecological system with
n kinds of species, including animals, plants and microbes as nourishing elements.

Here, xi is the amount (or density, or some other character) of the ith species,
dxi
dt

is the increasing rate of the whole ith species, and dri
dt

is the relative increasing
rate (ri is the inner increasing rate of xi). If others do not exists, ri > 0 and ri < 0
denote the increasing rate and the mortality of the species, respectively. aii refers
to the ith species’s own increasing rate being curbed (aii < 0) or helped (aii > 0),
or not influenced (aii = 0) by the limited food and the restrict environment; aij
refers to the interaction between xi and xj , aij > 0, aij = 0 and aij < 0 mean
that the j th species is helpful to, has no relation to, or retains the ith species.
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According to the ecological meaning, the nonnegative conditions of the species,
we confine xi � 0, i = 1, 2, . . . , n

Let xi > 0 (i = 1, 2, . . . , n) and xi = x∗i > 0, i = 1, 2, . . . , n, denotes an
equilibrium point. By the topological transformation

(6.3.5)yi = ln
xi

x∗i
, i.e., xi = x∗i eyi (i = 1, 2, . . . , n),

we have y :Rn+ := {x | x > 0} → Rn
y , i.e., the transformation (6.3.5) transforms

Rn+ to Rn
y = {y | y ∈ Rn}, and thus system (6.3.4) becomes

dyi

dt
= ri +

n
∑

j=1

aij xj = −
n
∑

j=1

aij x
∗
j +

n
∑

j=1

x∗j aij eyj

(6.3.6)=
n
∑

j=1

aij x
∗
j

(

eyj − 1
) :=

n
∑

j=1

aij fj (yj ),

where fj (yj ) = x∗j (eyj −1). Obviously, the equilibrium point x = x∗ of (6.3.4) is
globally asymptotically stable if and only if the zero solution of (6.3.6) is globally
asymptotically stable. However, (6.3.6) is a system with separable variables.

THEOREM 6.3.5. If matrix A is Lyapunov–Volterra stable, then the zero solution
of (6.3.6) is globally asymptotically stable. Hence, the equilibrium point x = x∗
is globally asymptotically stable in Rn+.

PROOF. The condition implies that there exists a positive definite matrix P =
diag(p1, p2, . . . , pn) such that

PA+ AT P

is negative definite.
By choosing the Lyapunov function:

(6.3.7)V (y) =
n
∑

i=1

pi

yi∫

0

fi(yi) dyi =
n
∑

i=1

pix
∗
i

(

eyi − yi − 1
)

,

we have

dV (y)

dt

∣
∣
∣
∣
(6.3.6)

=
n
∑

i=1

n
∑

j=1

piaij fi(yi)fj (yj )

= 1

2

(

f1(y1), . . . , fn(yn)
)(

PA+ AT P
)(

f1(y1), . . . , fn(yn)
)T

< 0 for f (y) �= 0,

implying that the conclusion holds. �
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THEOREM 6.3.6. If system (6.3.4) has a positive equilibrium point x = x∗ and
there exists an M matrix −G(gij ) such that

aii � gii, |aij | � gij (i �= j, i, j = 1, 2, . . . , n),

then the equilibrium point x = x∗ of (6.3.4) is globally asymptotically stable in
Rn+.

PROOF. Since −G(gij ) is an M matrix, gii < 0 and −GT is also an M matrix.
Thus, ∀(ξ1, . . . , ξn)

T > 0, the equation −GT P = ξ has a positive solution

P = (

p1, p2, . . . , pn
)T = (−GT

)−1
ξ > 0.

Choose the positive definite and radially unbounded Lyapunov function:

V (y) =
n
∑

i=1

pi |yi |

to obtain

D+V (y)|(6.3.6) �
n
∑

i=1

pi sign yi

n
∑

j=1

aijfj (yj )

�
n
∑

j=1

(

pjajj +
n
∑

i=1
i �=j

pi |aij |
)

∣
∣fj (yj )

∣
∣

�
n
∑

j=1

(

pjgjj +
n
∑

i=1
i �=j

pigij

)

∣
∣fj (yj )

∣
∣

� −
n
∑

j=1

ξj
∣
∣fj (yj )

∣
∣

< 0 for f (y) �= 0.

So the conclusion is true. �

6.4. Partial variable stability for systems with separable
variables

In this section, we preset partial variable stability of systems with separable vari-
ables. Let y = (x1, . . . , xm)

T , z = (xm+1, . . . , xn)
T . Then system (6.2.1) is

reduced to

(6.4.1)

⎧

⎪⎨

⎪⎩

dy
dt
=
(
∑n

j=1 f1j (xj ), . . . ,
∑n

j=1 fmj (xj )
)T

,

dz
dt
=
(
∑n

j=1 fm+1,j (xj ), . . . ,
∑n

j=1 fnj (xj )
)T

.
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Similar to the discussion in the Sylvester’s condition, we first establish a criterion
for positive definiteness and negative definiteness of quadratic forms with respect
to partial variables.

DEFINITION 6.4.1. The quadratic form
(
y

z

)T [
A11 A12
A21 A22

](
y

z

)

is said to be positive (negative) definite with respect to y if there are constants
εi > 0 (i = 1, . . . , m) such that

xT Ax �
m
∑

i=1

εix
2
i

(

xT Ax � −
m
∑

i=1

εix
2
i

)

,

where

A =
[

A11 A12
A21 A22

]

.

LEMMA 6.4.2. The quadratic form
(
y

z

)T [
A11 A12
A21 A22

](
y

z

)

is positive (negative) definite with respect to variable y if and only if there exists
a constant ε > 0 such that

[

A11 − εIm A12
A21 A22

]

is positive semi-definite,

([

A11 + εIm A12
A21 A22

]

is positive semi-definite

)

,

where Im is an m×m unit matrix.

PROOF. For an illustration, we prove the case of positive definite. The proof for
other cases is similar and thus omitted.

Necessity. Since
(
y

z

)T [
A11 A12
A21 A22

](
y

z

)

is positive definite with respect to variable y, there exist some constants εi >
0 (i = 1, . . . , m) such that

(6.4.2)

(
y

z

)T [
A11 A12
A21 A22

](
y

z

)

�
m
∑

i=1

εix
2
i .
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Let ε = min1�i�m εi . Then we can find

(
y

z

)T [
A11 A12
A21 A22

](
y

z

)

�
m
∑

i=1

εix
2
i � ε

n
∑

i=1

x2
i

(6.4.3)=
(
y

z

)T [
εIm 0

0 0

](
y

z

)

.

Thus,
(
y

z

)T [
A11 − εIm A12

A21 A22

](
y

z

)

� 0 and

[

A11 − εIm A12
A21 A22

]

is positive semi-definite. In particular, A11 is positive definite.
Sufficiency. The assumptions can be reduced to
(
y

z

)T [
A11 − εIm A12

A21 A22

](
y

z

)

� 0.

Thus, we have
(
y

z

)T [
A11 A12
A21 A22

](
y

z

)

�
m
∑

i=1

εx2
i .

This implies our claim. �

LEMMA 6.4.3. If there exist functions φi(xi) (i = 1, . . . , n) on (−∞,+∞),
which are continuous or have only finite discontinuous points of the first kind,
such that

(1) φi(xi > 0) for xi �= 0, i = 1, . . . , m, φi(xi)xi � 0, i = m+ 1, . . . , n;
(2)

∫ ±∞
0 φi(xi) dxi = +∞, i = 1, . . . , m;

(3) there is a positive definite function ψ(y) satisfying

G(x) =
n
∑

i=1

φi(xi ± 0)
n
∑

j=1

fij (xj ) � −ψ(y);

then the zero solution of system (6.4.1) is globally stable with respect to vari-
able y.

PROOF. Construct the Lyapunov function:

(6.4.4)V (x) =
n
∑

i=1

xi∫

0

φi(xi) dxi .
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Obviously, the conditions (1) and (2) imply that

V (x) �
m
∑

i=1

xi∫

0

φi(xi) dxi = ϕ(y)→+∞ as ‖y‖ → +∞.

Hence, V (x) is positive definite and radially unbounded with respect to y; and
along the solution of (6.4.1), the Dini derivative of V (x) is

D+V (x)|(6.4.1)

=

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑n
i=1 φi(xi)

∑n
j=1 fij (xj )

at the continuous points of φi(xi), i = 1, . . . , n,

max
{
∑n

i=1 φi(xi + 0)
∑n

j=1 fij (xj ),
∑n

i=1 φi(xi − 0)
∑n

j=1 fij (xj )
}

at the discontinuous points of φi(xi), i = 1, . . . , n.

Hence, condition (3) implies that

D+V (x)|(6.4.1) � −ψ(‖y‖).
As a result, the zero solution of system (6.4.1) is globally asymptotically stable
with respect to variable y. �

REMARK 6.4.4. In case m = n, conditions in Lemma 6.4.3 imply that the zero
solution of system (6.4.1) is globally stable for all variables. In Theorem 6.4.5
below, when m = n, the statement follows from global stability of all variables.

THEOREM 6.4.5. If system (6.4.2) satisfies

(1) fii(xi)xi < 0 for xi �= 0, i = 1, . . . , m, fii(xi)xi � 0, i = m + 1, . . . , n,
and

±∞∫

0

fii(xi) dxi = −∞, i = 1, . . . , m;

(2) there are constants ci > 0 (i = 1, . . . , m), cj � 0 (j = m+1, . . . , n), ε > 0
such that

A
(

aij (x)
)

n×n +
[

εEm×m 0
0 0

]

n×n
is negative semi-definite, where

(

aij (x)
)

n×n =
{

− 1
2

( cifij (xj )

fjj (xj )
+ cj fji (xi )

fii (xi )

)

, xixj �= 0,

0, xixj = 0,
i, j = 1, . . . , n;

then the zero solution of system (6.4.1) is globally stable with respect to y.
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PROOF. Construct the Lyapunov function:

(6.4.5)V (x) = −
n
∑

i=1

xi∫

0

cifii(xi) dxi .

Then, clearly V (x) is positive definite and radially unbounded with respect to y,
since

V (x) � −
m
∑

i=1

xi∫

0

cifii(xi) dxi := ϕ(y)→+∞ as ‖y‖ → +∞.

Now, we prove that

dV

dt

∣
∣
∣
∣
(6.4.1)

= G(x) = −
n
∑

i=1

cifii(xi)

n
∑

j=1

fij (xj )

is negative definite with respect to y. For any x = ξ ∈ Rn, without loss of
generality, we can assume that

k
∏

i=1

ξi �= 0,
n
∑

i=k+1

ξ2
i = 0, 1 � k � n.

Then, we obtain

G(ξ) = −
k
∑

i=1

cifii(ξi)

k
∑

j=1

fij (ξj )

= −1

2

k
∑

i,j=1

[

cifii(ξi)fij (ξj )+ cjfjj (ξj )fji(ξi)
]

= −
n
∑

i=1

cif
2
ii (ξi)−

k
∑

i,j=1
i �=j

1

2

[
cifij (ξj )

fjj (ξj )
+ cjfji(ξi)

fii(ξi)

]

fii(ξi)fjj (ξj )

=
k
∑

i=1

aii(ξ)f
2
ii (ξi)+

m
∑

i=1

εf 2
ii (ξi)

+
k
∑

i,j=1
i �=j

aij (ξ)fii(ξi)fjj (ξj )−
m
∑

i=1

εf 2
ii (ξi)

(6.4.6)� −
m
∑

i=1

εf 2
ii (ξi) < 0.
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Since ξ is arbitrary, we have shown that G(x) is negative definite with respect
to y. Then the zero solution of system (6.4.1) is globally stable with respect to
variable y. �

THEOREM 6.4.6. Suppose that system (6.4.1) satisfies the following conditions:

(1) condition (1) of Theorem 6.4.5 holds;
(2) there exist n functions ci(xi) (i = 1, . . . , n), which are continuous or have

only finite discontinuous points of the first or third kind, and satisfy

ci(xi)xi > 0 for xi �= 0 and
±∞∫

0

ci(xi) dxi = +∞, i = 1, . . . , m,

ci(xi)xi � 0, for i = m+ 1, . . . , n;
(3) there exist functions εi(xi) > 0 (i = 1, . . . , n) such that

Ã
(

ãij (x)
)

n×n +
(

diag(ε1(x1), . . . , εm(xm)) 0
0 0

)

n×n
is negative semi-definite, where

ãij (x) =
⎧

⎨

⎩

1
2

[
ci (xi )fij (xj )√|fii (xi )fjj (xj )| +

cj (xj )fji (xi )√|fjj (xj )fii (xi )|
]

, xixj �= 0,

0, xixj = 0, i, j = 1, . . . , n.

Then the zero solution of system (6.4.1) is globally stable with respect to y.

PROOF. Choose

V (x) =
n
∑

i=1

xi∫

0

ci(xi) dxi,

and proceed along the lines of Theorem 6.4.5 to complete the proof. �

THEOREM 6.4.7. If system (6.4.1) satisfies that

(1) condition (1) of Theorem 6.4.5 holds;
(2) there exist constants ci > 0 (i = 1, . . . , m), cj � 0 (j = m+ 1, . . . , n) such

that

−cj
∣
∣fjj (xj )

∣
∣+

n
∑

i=1
i �=j

ci
∣
∣fij (xj )

∣
∣ < 0, for xj �= 0, j = 1, . . . , m,
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−cj
∣
∣fjj (xj )

∣
∣+

n
∑

i=1
i �=j

ci
∣
∣fij (xj )

∣
∣ � 0 for j = m+ 1, . . . , n;

then the zero solution of system (6.4.1) is globally stable with respect to vari-
able y.

PROOF. Construct the Lyapunov function

V (x) =
n
∑

i=1

ci |xi |.

Clearly,

V (x) �
m
∑

i=1

ci |xi | := ϕ(y)→+∞ as ‖y‖ → +∞,

and ϕ(y) is positive definite. On the other hand, we have

D+V (x)|(6.4.1) �
n
∑

j=1

[

−cj
∣
∣fjj (xj )

∣
∣+

n
∑

i=1
i �=j

ci
∣
∣fij (xj )

∣
∣

]

�
m
∑

j=1

[

−cj
∣
∣fjj (xj )

∣
∣+

n
∑

i=1
i �=j

ci
∣
∣fij (xj )

∣
∣

]

< 0 for y �= 0.

Therefore, the zero solution of system (6.4.1) is globally stable with respect
to y. �

THEOREM 6.4.8. Suppose that system (6.4.1) satisfies the following conditions:

(1) condition (1) of Theorem 6.4.5 holds;

(2)
∣
∣
fij (xj )

fjj (xj )

∣
∣ � bij = const., i �= j, i, j = 1, . . . , n;

(3)

Ã :=

⎡

⎢
⎢
⎣

1 −b21 · · · −bn1
−b12 1 · · · −bn2
...

...
...

−b1n −b2n · · · 1

⎤

⎥
⎥
⎦
:=

[

Ã11 Ã12
Ã21 Ã22

]

,

where Ã11, Ã22 and Im−Ã−1
11 Ã12Ã

−1
22 Ã21 areM matrices, in which Ã11, Ã12,

Ã21 and Ã22 are m×m,m× p, p ×m and p × p matrices, respectively.

Then the zero solution of system (6.4.1) is globally stable with respect to y.
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PROOF. For any ξ = (ξ1, . . . , ξm)
T > 0, η = (η1, . . . , ηp)

T � 0 andm+p = n,
we consider the linear algebraic equations with respect to c = (c1, . . . , cm)

T and
c̃ = (c̃1, . . . , c̃p)

T :

(6.4.7)

{

Ã11c + Ã12c̃ = ξ,

Ã21c + Ã22c̃ = η,

or the equivalent ones:

(6.4.8)

{

c̃ = −Ã−1
22 Ã21c + Ã−1

22 η,

c = Ã−1
11 Ã12Ã

−1
22 Ã21c − Ã−1

11 Ã12Ã
−1
22 η + Ã−1

11 ξ.

Since Ã11 and Ã22 are M matrices, we have

Ã−1
11 � 0, Ã−1

22 � 0;
but Ã12 � 0 and ξ > 0, η � 0. Therefore, we obtain

−Ã−1
11 Ã12Ã

−1
22 η � 0, Ã−1

11 ξ > 0,

since (Im − Ã−1
11 Ã12Ã

−1
22 Ã21) is an M matrix. The second equation in (6.4.8) has

a positive solution with respect to c, and the first one in (6.4.8) has a nonnegative
solution with respect to c̃. Thus, the conditions in Theorem 6.4.7 are satisfied.

Hence, we conclude that the zero solution of system (6.4.1) is globally stable
with respect to variable y. �

In the following, we consider a more specific system:

dy

dt
=
(

n
∑

i=1

a1j fj (xj ), . . . ,

n
∑

j=1

amjfj (xj )

)T

,

(6.4.9)
dz

dt
=
(

n
∑

j=1

am+1,j fj (xj ), . . . ,

n
∑

j=1

anjfj (xj )

)T

,

where fj (xj ) ∈ C[R,R], fj (0) = 0, j = 1, . . . , n. It is assumed that the solution
of the initial value problem (6.4.9) is unique.

THEOREM 6.4.9. Suppose system (6.4.9) satisfies the following conditions:

(1) fi(xi)xi > 0 for xi �= 0,
∫ ±∞

0 fi(xi) dxi = +∞, aii < 0, i = 1, . . . , m,
aii � 0, fi(xi)xi � 0, i = m+ 1, . . . , n;

(2) there exist constants ci > 0 (i = 1, . . . , m), cj � 0 (j = m + 1, . . . , n),
ε > 0 such that

B(bij )n×n +
[

εIm 0
0 0

]

n×n
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is negative semi-definite, where

bij =
{−ci |aii |, i = j = 1, . . . , n,

− 1
2 (ciaij + cjaji), i �= j, i, j = 1, . . . , n.

Then the zero solution of system (6.4.9) is globally stable with respect to vari-
able y.

PROOF. Construct the positive definite and radially unbounded Lyapunov func-
tion:

V (x) =
n
∑

i=1

ci

xi∫

0

f (xi) dxi,

then the proof is analogous to that of Theorem 6.4.9, and thus omitted. �

THEOREM 6.4.10. Suppose system (6.4.9) satisfy the following conditions:

(1) fi(xi)xi < 0 for xi �= 0, aii > 0, i = 1, . . . , m, fi(xi)xi � 0, aii � 0,
i = m+ 1, . . . , n;

(2) there exist functions ci(xi) (i = 1, . . . , n), which are continuous or have only
finite discontinuous points of the first or third kind, such that

ci(xi) > 0 for xi �= 0,

±∞∫

0

ci(xi) dxi = +∞, i = 1, . . . , m,

ci(xi) � 0 for i = m+ 1, . . . , n;
(3) there exist functions εi(xi) > 0 (i = 1, . . . , m) such that

B̃
(

b̃ij (x)
)

n×n +
[

diag(ε1(x1), . . . , εm(xm)) 0
0 0

]

is negative semi-definite, where

b̃ij =
⎧

⎨

⎩

1
2

[
ci (xi )aij fj (xj )√|fi(xi )fj (xj )| +

cj (xj )ajifi (xi )√|fj (xj )fi (xi )|
]

, xixj �= 0,

0, xixj = 0, i, j = 1, . . . , n.

Then the zero solution of the system (6.4.9) is globally stable with respect to vari-
able y.

PROOF. Choose the positive definite and radially unbounded Lyapunov function
with respect to y:

V (x) =
n
∑

i=1

xi∫

0

ci(xi) dxi .
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Then the proof is similar to that of Theorem 6.4.5 and so omitted. �

THEOREM 6.4.11. If system (6.4.9) satisfies the following conditions:

(1) fi(xi)xi > 0 for xi �= 0, aii < 0, i = 1, . . . , m, fi(xi)xi � 0, aii � 0,
i = m+ 1, . . . , n;

(2) there exist constants ci > 0 (i = 1, . . . , m), cj � 0 (j = m+ 1, . . . , n) such
that

−cj |ajj | +
n
∑

i=1
i �=j

|aij | < 0, j = i, . . . , m,

−cj |ajj | +
n
∑

i=1
i �=j

|aij | � 0, j = m+ 1, . . . , n;

then the zero solution of (6.4.9) is globally stable with respect to y.

PROOF. Construct the positive definite and radially unbounded Lyapunov func-
tion with respect to y:

V (x) =
n
∑

i=1

ci |xi |,

and then follow the proof for Theorem 6.4.9. �

THEOREM 6.4.12. Suppose system (6.4.9) satisfies the following conditions:

(1) fi(xi)xi > 0 for xi �= 0, i = 1, . . . , m, fi(xi)xi � 0, i = m + 1, . . . , n,
aii < 0, i = 1, . . . , n;

(2)

Ã =

⎡

⎢
⎢
⎢
⎢
⎣

1 −| a21
a11
| · · · −| an1

a11
|

−| a12
a22
| 1 · · · −| an2

a22
|

...
...

...

= | a1n
ann
| −| a2n

ann
| · · · 1

⎤

⎥
⎥
⎥
⎥
⎦

=
[

Ã11 Ã12
Ã21 Ã22

]

.

where Ã11, Ã22 and Im−Ã−1
11 Ã12Ã

−1
22 Ã21 are M matrices, in which Ã11, Ã12,

Ã21 and Ã22 represent m×m,m×p, p×m and p×p matrices, respectively.

Then the zero solution of system (6.4.9) is globally asymptotically stable with
respect to variable y.

PROOF. We can follow the approach applied in the proof of Theorem 6.4.8. �



278 Chapter 6. Nonlinear Systems with Separate Variables

6.5. Autonomous systems with generalized separable variables

Consider the system with generalized separable variables:

(6.5.1)
dxi

dt
=

n
∑

j=1

Fij (x) · fij (xj ), i = 1, . . . , n,

where x = (x1, x2, . . . , xn)
T , Fij ∈ C[Rn,R], fij ∈ C[R,R], fij (0) =

0, i, j = 1, . . . , n. Suppose the solution of the initial value problem (6.5.1) is
unique.

Let y = (x1, . . . , xm)
T , z = (xm+1, . . . , xn)

T . Rewrite system (6.5.1) as

(6.5.2)

⎧

⎪⎨

⎪⎩

dy
dt
=
(
∑n

j=1 F1j (x)f1j (xj ), . . . ,
∑n

j=1 Fmj (x)fmj (xj )
)T

,

dz
dt
=
(
∑n

j=1 Fm+1,j (x)fm+1,j (xj ), . . . ,
∑n

j=1 Fnj (x)fnj (xj )
)T

.

THEOREM 6.5.1. If system (6.5.2) satisfies the following conditions:

(1) fii(xi)xi > 0 for xi �= 0 and
∫ ±∞

0 fii(xi) dxi = +∞, i = 1, . . . , m,
fii(xi)xi � 0, i = m+ 1, . . . , n;

(2) there exist constants ci > 0 (i = 1, . . . , m), cj � 0 (j = m+ 1, . . . , n), ε >
0 such that

B
(

bij (x)
)

n×n +
[

εEm×m 0
0 0

]

n×n
is negative semi-definite, where

bij (x) =
{

1
2

(
Fij (x)fij (xj )

fjj (xj )
+ Fji (x)fji (xi )

fii (xi )

)

, xixj �= 0,

0, xixj = 0 (i, j = 1, . . . , n);
then the zero solution of system (6.5.2) is globally asymptotically stable with re-
spect to variable y.

PROOF. Choose the Lyapunov function:

V (x) =
n
∑

i=1

xi∫

0

fii(xi) dxi .

Clearly,

V (x) �
n
∑

j=1

xi∫

0

fii(xi) dxi := ϕ
(‖y‖)→∞ as ‖y‖ → +∞.
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Hence, V (x) is positive definite and radially unbounded with respect to y.
Now we proceed to prove that

dV

dt

∣
∣
∣
∣
(6.5.2)

=
n
∑

i=1

fii(xi)

n
∑

j=1

Fij (x)fij (xj )

is negative definite with respect to y.
For any x = ξ ∈ Rn, without loss of generality, we assume that

k
∏

j=1

ξj �= 0,
n
∑

i=k+1

ξ2
i = 0, 1 � k � n.

Then it follows that

G(ξ) =
k
∑

i=1

fii(ξi)

k
∑

j=1

Fij (ξ)fij (ξj )

=
k
∑

i=1

Fii(ξ)f
2
ii (ξi)

+ 1

2

k
∑

i,j=1
i �=j

[

fii(ξi)Fij (ξ)fij (ξj )+ fjj (ξj )Fji(ξ)fji(ξi)
]

=
k
∑

i=1

bii(ξ)f
2
ii (ξi)+

m
∑

i=1

εf 2
ii (ξi)

+
k
∑

i,j=1
i �=j

bij (ξ)fii(ξi)fjj (ξj )−
m
∑

i=1

εf 2
ii (ξi)

� −
m
∑

i=1

εf 2
ii (ξi)

< 0.

Since ξ is arbitrary, we have shown that dV
dt
|(6.5.2) is negative definite with respect

to y.
The proof is complete. �

THEOREM 6.5.2. If system (6.5.2) satisfies the following conditions:

(1) Fii(x)fii(xi)xi < 0 for xi �= 0, i = 1, . . . , m, Fii(x)fii(xi)xi � 0, i =
m+ 1, . . . , n;
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(2) there exist constants ci > 0 (i = 1, . . . , m), cj � 0 (j = m+ 1, . . . , n) such
that

−cj
∣
∣Fjj (x)fjj (xj )

∣
∣+

n
∑

i=1
i �=j

ci
∣
∣Fij (x)fij (xj )

∣
∣ < 0

for xj �= 0, j = 1, . . . , m,

−cj
∣
∣Fjj (x)fjj (xj )

∣
∣+

n
∑

i=1
i �=j

ci
∣
∣Fij (x)fij (xj )

∣
∣ � 0

for j = m+ 1, . . . , m;
then the zero solution of (6.5.2) is globally stable with respect with y.

PROOF. Choose the Lyapunov function:

V (x) =
n
∑

i=1

ci |xi |,

which is positive definite and radially unbounded with respect to y, and then fol-
low the proof of Theorem 6.4.7 to complete the proof. �

6.6. Nonautonomous systems with separable variables

Consider the nonautonomous system with separable variables:

dy

dt
=
(

n
∑

j=1

f1j (t, xj ), . . . ,

n
∑

j=1

fmj (t, xj )

)T

,

(6.6.1)
dz

dt
=
(

n
∑

j=1

fm+1,j (t, xj ), . . . ,

n
∑

j=1

fnj (t, xj )

)T

,

where y = (x1, . . . , xm)
T , z = (xm+1, . . . , xn)

T , fij (t, xj ) ∈ C[I × R1, R1],
fij (t, 0) ≡ 0, i, j = 1, . . . , n. Suppose the solution of the initial value problem
(6.6.1) is unique.

LEMMA 6.6.1. If there exist functions φi(xi) (i = 1, . . . , n) on (−∞,+∞),
which are continuous or have only finite discontinuous points of the first or third
kind, such that

(1) φi(xi)xi > 0 for xi �= 0, i = 1, . . . , m, φi(xi)xi � 0, i = m+ 1, . . . , n;
(2)

∫ ±∞
0 φi(xi) dxi = +∞, i = 1, . . . , m;
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(3) there is a positive definite function ψ satisfying

G(x) =
n
∑

i=1

φi(xi ± 0)
n
∑

j=1

fij (t, xj ) � −ψ(y);

then the zero solution of system (6.6.1) is globally stable with respect to y.

PROOF. The proof repeats that for Lemma 6.4.3 and is omitted. �

THEOREM 6.6.2. Suppose system (6.6.1) satisfies the following conditions:

(1) fii(t, xi)xi < 0 for xi �= 0, i = 1, . . . , m, fii(t, xi)xi � 0, i = m+ 1, . . . , n;
(2) there exist functions Fii(xi) ∈ C[R1, R1] (i = 1, . . . , n), which are contin-

uous or have only finite discontinuous points of the first or third kind, such
that

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

Fii(xi)xi > 0 for xi �= 0, i = 1, . . . , m,

Fii(xi)xi � 0, i = m+ 1, . . . , n,
∫ ±∞

0 Fii(xi) dxi = +∞, i = 1, . . . , m,

|Fii(xi)| � |fii(t, xi)|, i = 1, . . . , n;
(3) the matrix

A
(

aij (t, x)
)

n×n +
[

εEm×m 0
0 0

]

n×n
is negative semi-definite, where 0 < ε 	 1, and

aij (t, x) =

⎧

⎪⎨

⎪⎩

−1, i = j = 1, . . . , n,
1
2

(
fij (t,xj )

Fjj (xj )
+ fji (t,xi )

Fii (xi )

)

, i �= j, xixj �= 0, i, j = 1, . . . , n,

0, i �= j, xixj = 0, i, j = 1, . . . , n.

Then the zero solution of system (6.6.1) is globally stable with respect to y.

PROOF. Consider the Lyapunov function:

V (x) =
n
∑

i=1

xi∫

0

Fii(xi) dxi .

Then

V (x) �
m
∑

i=1

xi∫

0

Fii(xi) dxi = ϕ(y).
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Clearly, we have

ϕ(y)→+∞ as ‖y‖ → +∞.

So V (x) is positive definite and radially unbounded with respect to y.
We now prove that

dV

dt

∣
∣
∣
∣
(6.6.1)

= G(t, x) =
n
∑

i=1

Fii(xi)

n
∑

j=1

fij (t, xj )

is negative definite with respect to y.
For any x = ξ ∈ Rn, without loss of generality, we assume that

k
∏

i=1

ξi �= 0,
n
∑

i=k+1

ξ2
i = 0, 1 � k � n.

Then, it follows that

G(t, ξ) =
k
∑

i=1

Fii(ξi)

k
∑

j=1

fij (t, ξj )

�
k
∑

i=1

aii(t, ξ)F
2
ii (ξi)+

m
∑

i=1

εF 2
ii (ξi)

+
k
∑

i,j=1
i �=j

aij (t, ξ)Fii(ξi)Fjj (ξj )−
m
∑

i=1

εF 2
ii (ξi)

� −
m
∑

i=1

εF 2
ii (ξi)

< 0.

Since ξ is arbitrary, we have shown that dV
dt
|(6.6.1) is negative definite with respect

to y. Hence, the zero solution of system (6.6.1) is globally stable with respect
to y. �

THEOREM 6.6.3. If system (6.6.1) satisfies the following conditions:

(1) fii(t, xi)xi < 0 for xi �= 0, i = 1, . . . , m, fii(t, xi)xi � 0, i = m+ 1, . . . , n;
(2) there exist constants ci > 0 (i = i, . . . , m), cj � 0 (j = m+ 1, . . . , n) such

that

−cj
∣
∣fjj (t, xj )

∣
∣+

n
∑

i=1
i �=j

ci
∣
∣fij (t, xj )

∣
∣ < 0 for xj �= 0, j = 1, . . . , m,
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−cj
∣
∣fjj (t, xj )

∣
∣+

n
∑

i=1
i �=j

ci
∣
∣fij (t, xj )

∣
∣ � 0 for j = m+ 1, . . . , n;

then the zero solution of system (6.6.1) is globally stable with respect to vari-
able y.

PROOF. Let us choose

V (x) =
n
∑

i=1

ci |xi |,

then analogous to the proof of Theorem 6.4.7, we can verify the validity of this
theorem. �

THEOREM 6.6.4. Assume that system (6.6.1) satisfies the following assertion:

(1) there exist function φi(xi) ∈ [R1, R1] (i = 1, . . . , n), which are continu-
ous or have only finite discontinuous points of the first or third kind, such
that φi(xi)xi > 0 for xi �= 0 and

∫ ±∞
0 φi(xi) dxi = +∞, i = 1, . . . , m,

φi(xi)xi � 0, i = m+ 1, . . . , n;
(2) there are functions ai(xi) with ai(xi) > 0 for xi �= 0 (i = 1, . . . , m) such

that
n
∑

i=1

φi(xi)fij (xj ) � −aj (xj ), for j = 1, . . . , m,

n
∑

i=1

φi(xi)fij (xj ) � 0, for j = m+ 1, . . . , n.

Then the zero solution of system (6.6.1) is globally stable with respect to y.

PROOF. Construct the positive definite and radially unbounded Lyapunov func-
tion with respect to y:

V (x) =
n
∑

i=1

xi∫

0

φi(xi) dxi .

Then, we have

dV

dt

∣
∣
∣
∣
(6.6.1)

=
n
∑

i=1

φi(xi)

n
∑

j=1

fij (t, xj ) �
n
∑

j=1

m
∑

i=1

φi(xi)fij (t, xj )

� −
m
∑

j=1

aj (xj ),
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which indicates that dV
dt
|(6.6.1) is negative definite with respect to y. Therefore, the

zero solution of system (6.6.1) is globally stable with respect to variable y. �



Chapter 7

Iteration Method for Stability

In the study of the stability of general nonlinear systems, the Lyapunov direct
method is the main and powerful tool. However, generally great difficulties arise
in applying this method to higher-dimensional systems with complicated struc-
ture, because there is no universal and systematic procedure available for con-
structing the required Lyapunov function. Therefore, it is necessary and important
to develop explicit algebraic criteria for stability analysis.

In this chapter, we explore an approach for stability analysis, called iteration
method. This method is based on the idea of Picard’s iterative approach, which
has been used in the proof of the existence and uniqueness theorem of differential
equations. This method avoids the difficulties in constructing Lyapunov function
and complex calculations. This method uses the estimation of the integral of the
function on the right-hand side of the system, and yields algebraic criteria of sta-
bility. Because of the average property of an integral, this method does not require
the slowly time-variant feature of a system; and can even be applied to systems
with large time-variant amplitude of motions. It should be emphasized that though
involved calculations appear for proving theorems, the procedure of calculation
in each iterative step is not necessary. The convergent conditions of the iteration
can yield various criteria of stability. Moreover, the internal relations between it-
erative convergence and stability are established. The advantage of this method is
the independence of unknown functions or parameters of the systems. Further, this
method can be used to consider the stability problems of other kind of dynamic
systems, such as discrete systems, functional differential systems. In this chap-
ter, we introduce this method only for ordinary differential equations. In the next
chapter, this method will also be employed to study delay differential equations.

Part of materials presented in this chapter are chosen from [237,242,234,279,
244,245,361].

7.1. Picard iteration type method

We consider the following nonlinear time-dependent, large-scale dynamical
system:

285
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(7.1.1)
dx

dt
= diag

(

A11(t), A22(t), . . . , Arr (t)
)

x + F(t, x),

where

F(t, x) ∈ C[I × Rn,Rn
]

, F (t, 0) = 0,

F (t, x) = (

F1(t, x), . . . , Fr(t, x)
)T
, Fi(t, x) ∈ C

[

I × Rn,Rni
]

,

x = (x1, . . . , xr )
T , xi ∈ Rni ,

r
∑

i=1

ni = n, i = 1, 2, . . . , n,

and Fi(t, x), Aii(t) are ni × ni matrices of continuous functions Fi(t, x), satis-
fying the Lipschitz conditions:

∥
∥Fi(t, x)− Fi(t, y)

∥
∥ �

r
∑

j=1

gij (t)‖xj − yj‖, i = 1, 2, . . . , r.

At the same time, we consider the isolated subsystem:

(7.1.2)
dx

dt
= diag

(

A11(t), . . . , Arr (t)
)

.

Assume that K(t, t0) = diag(K11(t, t0), . . . , Krr (t, t0)) is the standard fun-
damental solution matrix of (7.1.2), called Cauchy matrix solution (or simply
Cauchy matrix), i.e.,

dK(t, t0)

dt
= diag

(

A11(t, t0), . . . , Arr (t, t0)
)

K(t, t0),

K(t, t0) = In×n.

THEOREM 7.1.1. Suppose the following conditions hold:

(1) there exist secular function αi(t) ∈ C[I, R+], ε(t) ∈ C[I, R1] and constants
Mi (i = 1, 2, . . . , r) such that

∥
∥Kii(t, t0)

∥
∥ � Mie

− ∫ tt0 αi(ξ) dξ

� Mie
− ∫ tt0 ε(ξ) dξ , i = 1, . . . , r, t � t0;

(2) there exist constants hij such that

t∫

t0

Mie
− ∫ tt1 (αi (ξ)−ε(ξ)) dξ gij (t1) dt1 � hij , i, j = 1, 2, . . . , r;

(3) the spectral radius of the matrixH(hij )r×r , ρ(H), is less than 1, i.e., ρ(H) <

1 (particularly ‖H‖ < 1).
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Then the flowing conclusions hold:

(a)
∫ t

t0
ε(ξ) dξ � l(t0) = const. (t � t0 � 0);

(b)
∫ t

t0
ε(ξ) dξ � l = const. (t � t0 � 0);

(c)
∫ +∞
t0

ε(ξ) dξ = +∞;

(d)
∫ t

t0
ε(ξ) dξ →+∞ as t − t0 →+∞ holds uniformly for t0;

(e)
∫ t

t0
ε(ξ) dξ � l(t0) � α(t − t0) (α = const. > 0);

which respectively imply that:

(a) the zero solution of system (7.1.1) is stable;
(b) the zero solution of system (7.1.1) is uniformly stable;
(c) the zero solution of system (7.1.1) is asymptotically stable;
(d) the zero solution of system (7.1.1) is uniformly asymptotically stable;
(e) the zero solution of system (7.1.1) is exponentially stable.

PROOF. By the method of constant variation, we can prove that the general so-
lution x(t, t0, x0) of system (7.1.1) is equivalent to the continuous solution of the
following integral equations:

xi(t) := xi(t, t0, x0) = Ki(t, t0)x0i

(7.1.3)+
t∫

t0

Ki(t, t1)Fi
(

t1, x(t1)
)

dt1, i = 1, 2, . . . , r.

Applying the Picard iteration to equation (7.1.3), we have

(7.1.4)x
(0)
i (t) = Kii(t, t0)xi0, i = 1, 2, . . . , r,

(7.1.5)x
(m)
i (t) = x

(0)
i (t)+

t∫

t0

Ki(t, t1)Fi
(

t1, x
(m−1)(t1)

)

dt1.

Hence, we obtain

(7.1.6)
(∥
∥x

(0)
1 (t)

∥
∥, . . . ,

∥
∥x(0)r (t)

∥
∥
)T � (M1, . . . ,Mr)

T e
− ∫ tt0 ε(ξ) dξ ,

∥
∥x

(1)
i (t)

∥
∥ �

∥
∥x

(0)
i (t)

∥
∥

+
( t∫

t0

Mie
− ∫ tt1 (αi (ξ)−ε(ξ)) dξ

n
∑

j=1

gij (t1),Mj dt1

)

e
− ∫ tt0 ε(ξ) dξ

(7.1.7)� Mie
− ∫ tt0 ε(ξ) dξ +

r
∑

j=1

hijMje
− ∫ tt0 ε(ξ) dξ , i = 1, . . . , n,
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(∥
∥x

(1)
1 (t)

∥
∥, . . . ,

∥
∥x(1)r (t)

∥
∥
)T

(7.1.8)� (I +H)(M1,M2, . . . ,Mr)
T e
− ∫ tt0 ε(ξ) dξ (t � t0).

Then, one can easily prove that

(∥
∥x

(1)
1 (t)− x

(0)
1 (t)

∥
∥, . . . ,

∥
∥x(1)r (t)− x(0)r (t)

∥
∥
)T

(7.1.9)� H(M1,M2, . . . ,Mr)
T e
− ∫ tt0 ε(ξ) dξ (t � t0).

Suppose

(∥
∥x

(m)
1 (t)

∥
∥, . . . ,

∥
∥x(m)r (t)

∥
∥
)T

(7.1.10)� (I +H, . . . ,+Hm)(M1, . . . ,Mr)
T e
− ∫ tt0 ε(ξ) dξ (t � t0),

(∥
∥x

(m)
1 (t)− x

(m−1)
1 (t)

∥
∥, . . . ,

∥
∥x(m)r (t)− x(m−1)

r (t)
∥
∥
)T

(7.1.11)� Hm(M1,M2, . . . ,Mr)
T e
− ∫ tt0 ε(ξ) dξ (t �0).

Let Hm = (h
(m)
ij )r×r . Then, it follows that

∥
∥x

(m+1)
i (t)

∥
∥ �

∥
∥x

(0)
i (t)

∥
∥+

{ t∫

t0

Mie
− ∫ tt1 (αi (ξ)−ε(ξ)) dξ

n
∑

j=1

gij (t1)

×
[

r
∑

s=1

(

δjs + hjs + · · · + h
(m)
js

)

Mj dt1

]}

e
− ∫ tt0 ε(ξ) dξ

� Mie
− ∫ tt0 ε(ξ) dξ

+
r
∑

j=1

hij

[
r
∑

s=1

δjs + hjs + · · · + h
(m)
js

]

Mse
− ∫ tt0 ε(ξ) dξ

=
r
∑

s=1

[

δjs + hjs + · · · + h
(m+1)
js

]

Mse
− ∫ tt0 ε(ξ) dξ ,

(7.1.12)i = 1, 2, . . . , r, t � t0,

where

δjs =
{

1, j = s,

0, j �= s,
i = 1, 2, . . . , r.

Thus, we have
∥
∥x

(m+1)
i (t)− x

(m)
i (t)

∥
∥
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�
{ t∫

t0

Mie
− ∫ tt1 (αi (ξ)−ε(ξ)) dξ

r
∑

j=1

gij (t1)

(
r
∑

s=1

h
(m)
js Ms

)

dt1

}

e
− ∫ tt0 ε(ξ) dξ

(7.1.13)�
r
∑

j=1

hij

r
∑

s=1

h
(m)
js Mse

− ∫ tt0 ε(ξ) dξ , i = 1, 2, . . . , n, t � t0.

Hence, by the method of mathematical induction, the estimations given in (7.1.10)
and (7.1.11) hold for arbitrary natural number m.

It is well known that
∑∞

m=1 H
m is convergent and

+∞
∑

m=0

Hm = (I −Q)−1.

So on any finite interval [t0, T ], the convergence of

(7.1.14)
+∞
∑

m=0

Hm(M1,M2, . . . ,Mr)
T e
− ∫ tt0 ε(ξ) dξ

implies the convergence of

+∞
∑

m=0

(∥
∥x

(m)
1 (t)− x

(m−1)
1 (t)

∥
∥, . . . ,

∥
∥x(m)r (t)− x(m−1)

r (t)
∥
∥
)T

(7.1.15)+ (∥
∥x

(0)
1 (t)

∥
∥, . . . ,

∥
∥x(0)r (t)

∥
∥
)T
.

But, the convergence of (7.1.15) implies the convergence of the following iteration

(7.1.16)
(

x
(m)
1 (t), . . . , x(m)r (t)

)T
.

Therefore, on an arbitrary finite interval [t0, T ], we have

(

x
(m)
1 (t), . . . , x(m)r (t)

)T → (

x1(t), . . . , xr (t)
)T

as m→+∞.

Therefore,
(∥
∥x1(t)

∥
∥, . . . ,

∥
∥xr(t)

∥
∥
)T

(7.1.17)� (I −H)−1(M1,M2, . . . ,Mr)
T e
− ∫ tt0 ε(ξ) dξ ,

from which we can conclude that the conclusions (a)–(e) are true.
The proof of Theorem 7.1.1 is complete. �

REMARK 7.1.2. In general, to find K(t, t0) of the isolated system (7.1.2) is dif-
ficult. But it is easy to find K(t, t0) for the following special cases.
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(1) Aii(t) = aii(t), i.e., every isolated subsystems is one-dimensional, then

Kii(t, t0) = e
− ∫ tt0 aii (t) dt , i = 1, 2, . . . , n.

(2) Aii(t) ≡ Aii , i.e., Aii is a constant matrix. Then Kii(t, t0) = eAii (t−t0), i =
1, 2, . . . , r .

(3) The variation of Aii(t) is sufficiently slow. Let Aii(t) = Åii(t0) + Aii(t) −
Aii(t0). In the isolated subsystem (7.1.2) with Åii (t0) to replace Aii(t), we
may combine Åii(t0)− Aii(t0) with the associated terms.

(4) If limt→∞Aii(t) = Aii , (Aii is a constant matrix). Let Aii(t) = Aii +
Aii(t) − Aii . We may combine Aii(t) − Aii with the associated terms as
in (3).

(5) If Aii(t)
∫ t

t0
Aii(ξ) dξ ≡

∫ t

t0
Aii(ξ) dξAii(t), then Kii(t, t0) = e

∫ t
t0
Aii (ξ) dξ .

(6) We may use the expression of K(t, t0) for some particular linear isolated
subsystem.

EXAMPLE 7.1.3. Consider the linear equations:

(7.1.18)
dxi

dt
=

n
∑

j=1

aij xj , i = 1, 2, . . . , n.

If

(1) aii < 0 (i = 1, 2, . . . , n);
(2) ρ(Ã) < 1, where Ã := In −

( |aij |
|ajj |

)

n×n;

then system (7.1.18) is exponentially stable by Theorem 7.1.1.

7.2. Gauss–Seidel type iteration method

In this section, we still consider systems (7.1.1) and (7.1.2), but for (7.1.3) we
apply the Gauss–Seidel type iteration:

(7.2.1)x
(0)
i (t) = Kii(t, t0)x0i , i = 1, 2, . . . , r,

x
(m)
i (t) = Kii(t, t0)x0i

+
t∫

t0

Kii(t, t1)Fi
(

t, x
(m)
1 (t1), . . . , x

(m)
i−1(t1), x

(m−1)
i (t1), . . . , x

(m−1)
r (t1)

)

dt,

(7.2.2)i = 1, 2, . . . , r.

THEOREM 7.2.1. If the conditions (1) and (2) in Theorem 7.1.1 are satisfied,
and (3) the spectral radius ρ(H̃ ) of matrix H̃ := (I − H�)−1H� is less than 1
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(particularly ‖H̃‖ < 1), where

H� :=

⎡

⎢
⎢
⎢
⎣

0 · · · · · · 0

h21 0
...

...
. . .

...

hr1 · · · hr,r−1 0

⎤

⎥
⎥
⎥
⎦
, H� := H −H�,

then the same conclusion of Theorem 7.1.1 holds.

PROOF. From condition (1) we have

(7.2.3)
∥
∥x

(0)
i (t)

∥
∥ � Mie

− ∫ tt0 ε(ξ) dξ := ∥
∥y

(0)
i (t)

∥
∥ i = 1, 2, . . . , r, t � t0,

∥
∥x

(1)
1 (t)− x

(0)
1 (t)

∥
∥

�
[ t∫

t0

M1e
− ∫ tt1 α1(ξ)dξ

n
∑

j=1

gij (t1)e

∫ t
t1
ε(ξ) dξ

Mj dt1

]

e
− ∫ tt0 ε(ξ) dξ

�
r
∑

j=1

hijMje
− ∫ tt0 ε(ξ) dξ

(7.2.4)1=
n
∑

j=1

hij
∥
∥y

(0)
j (t)

∥
∥ := ∥

∥y
(1)
1 (t)− y

(0)
1 (t)

∥
∥ (t � t0),

∥
∥x

(0)
2 (t)− x

(0)
2 (t)

∥
∥

�
[ t∫

t0

M2e
− ∫ tt1 α2(ξ) dξ g2i (t1)e

∫ t
t1
ε(ξ) dξ

r
∑

j=1

h1jMj dt1

]

e
− ∫ tt0 ε(ξ) dξ

+
[ t∫

t0

M2e
− ∫ tt1 α2(ξ) dξ

r
∑

j=2

g2j (t1)e

∫ t
t1
ε(ξ) dξ

Mj dt1

]

e
− ∫ tt0 ε(ξ) dξ

= h21
∥
∥y

(1)
1 (t)− y

(0)
1 (t)

∥
∥+

r
∑

j=2

h2jMj

∥
∥y

(0)
j (t)

∥
∥

(7.2.4)2:= ∥
∥y

(1)
2 (t)− y

(0)
2 (t)

∥
∥

...

∥
∥x(1)r (t)− x(0)r (t)

∥
∥
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�
[ t∫

t0

Mre
− ∫ tt1 αr (ξ) dξ+

∫ t
t1
ε(ξ) dξ

r−1
∑

j=1

grj (t1) dt1

]

∥
∥y

(1)
j (t)− y

(0)
j (t)

∥
∥

+
[ t∫

t0

Mre
− ∫ tt1 αr (ξ) dξ grr (t1) dt1

]

∥
∥g(0)r (t)

∥
∥

= hr1
∥
∥y(1)(t)− y

(0)
1 (t)

∥
∥+ hr2

∥
∥y

(1)
2 (t)− y

(0)
2 (t)

∥
∥+ · · ·

+ hr,r−1
∥
∥y

(1)
r−1(t)− y

(0)
r−1(t)

∥
∥+ hrr

∥
∥y(0)r (t)

∥
∥

(7.2.4)r:= ∥
∥y(1)r (t)− y(0)r (t)

∥
∥.

We rewrite (7.2.4)1–(7.2.4)r as

In
(∥
∥y

(1)
1 (t)− y

(0)
1 (t)

∥
∥, . . . ,

∥
∥y(1)r (t)− y(0)r (t)

∥
∥
)T

= H�
(∥
∥y

(1)
1 (t)− y(0)r (t)

∥
∥, . . . ,

∥
∥y(1)r (t)− y(0)r (t)

∥
∥
)T

+H�(∥∥y(0)1 (t)
∥
∥, . . . ,

∥
∥y(0)r

∥
∥
)T
.

Since the matrix (In −H�) is nonsingular, we have
(∥
∥x

(1)
1 (t)− x(0)r (t)

∥
∥, . . . ,

∥
∥x(1)r (t)− x(0)r (t)

∥
∥
)T

�
(∥
∥y

(1)
1 (t)− y

(0)
1 (t)

∥
∥, . . . ,

∥
∥y(0)r (t)− y(0)r (t)

∥
∥
)T

= (In −H�)−1(
∥
∥y

(0)
1 (t)

∥
∥, . . . ,

∥
∥y(0)r (t)

∥
∥
)T

(7.2.5):= H̃
(∥
∥y

(0)
1 (t)

∥
∥, . . . ,

∥
∥y(0)r (t)

∥
∥
)T
.

Let H̃m := (h
(m)
ij )r×r . Then we can express (7.2.5) as

(7.2.6)
∥
∥x

(m)
i (t)− x

(m−1)
i (t)

∥
∥ �

n
∑

j=1

h
(m)
ij

∥
∥y

(0)
j (t)

∥
∥ (i = 1, 2, . . . , r).

Similarly, following the derivation of (7.2.4)1–(7.2.4)r we can prove that

∥
∥x

(m+1)
1 (t)− x

(m)
1 (t)

∥
∥ �

r
∑

j=1

r
∑

s=1

hijh
(m)
js

∥
∥y

(0)
j (t)

∥
∥

(7.2.7):= ∥
∥y

(m+1)
1 (t)− y

(m)
1 (t)

∥
∥,

∥
∥x

(m+1)
2 (t)− x

(m)
2 (t)

∥
∥ � h21

∥
∥y

(m+1)
1 (t)− y

(m)
1 (t)

∥
∥

+
r
∑

j=2

h2j
∥
∥y

(m)
j (t)− y

(m−1)
j (t)

∥
∥

(7.2.8):= ∥
∥y

(m+1)
2 (t)− y

(m)
2 (t)

∥
∥,
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∥
∥x(m+1)

r (t)− x(m)r (t)
∥
∥ � h21

∥
∥y

(m+1)
1 (t)− y

(m)
1 (t)

∥
∥

+ hr2
∥
∥y

(m+1)
2 (t)− y

(m)
2 (t)

∥
∥

+ · · · + hrr
∥
∥y(m)r (t)− y(m−1)

r (t)
∥
∥

(7.2.9):= ∥
∥y(m+1)

r (t)− y(m)r (t)
∥
∥.

So we obtain
(∥
∥x

(m+1)
1 (t)− x

(m)
1 (t)

∥
∥, . . . ,

∥
∥x(m+1)

r (t)− x(m)r (t)
∥
∥
)T

� H̃ H̃m
(∥
∥y

(0)
1 (t)

∥
∥, . . . ,

∥
∥y(0)r (t)

∥
∥
)T

(7.2.10)= H̃m+1(M1,M2, . . . ,Mr)
T e
− ∫ tt0 ε(ξ) dξ .

Hence, by the method of mathematical induction, we conclude that (7.2.10) holds
for arbitrary natural numbers m, and

(∥
∥x

(m+1)
1 (t)

∥
∥, . . . ,

∥
∥x(m+1)

r (t)
∥
∥
)T

�
(∥
∥x

(m+1)
1 (t)− x

(m)
1 (t)

∥
∥, . . . ,

∥
∥x(m+1)

r (t)− x(m)r (t)
∥
∥
)T

+ · · · + (∥
∥x

(1)
1 (t)− x

(0)
1 (t)

∥
∥, . . . ,

∥
∥x(1)r (t)− x(0)r (t)

∥
∥
)T

+ (∥
∥x

(0)
1 (t)

∥
∥, . . . ,

∥
∥x(0)r (t)

∥
∥
)T

�
(

In + H̃ , . . . , H̃m+1)(M1, . . . ,Mr)
T e
− ∫ tt0 ε(ξ) dξ

� (In − H̃ )−1(M1,M2, . . . ,Mr)
T e
− ∫ tt0 ε(ξ) dξ .

Finally, by proceeding as in the proof of Theorem 7.1.1, Theorem 7.2.1 is
proved. �

THEOREM 7.2.2. Suppose that

(1) condition (1) in Theorem 7.1.1 holds;

(2) let bij (t) := bij (t, t0) :=
∫ t

t0
e
− ∫ tt1 (αi (ξ)−ε(ξ)) dξ gij (t1) dt1, i, j = 1, . . . , r ,

n
∑

j=2

bij (t, t0) � μ1 < 1,

b21(t, t0)μ1 +
n
∑

j=2

bij (t, t0) � μ2 < 1,

...
r−1
∑

j=1

brj (t, t0)μj + brr (t, t0) � μr < 1.
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Then the conclusions (a)–(e) in Theorem 7.1.1 hold, respectively, under the con-
ditions (a)–(e) of condition (3) of Theorem 7.1.1.

PROOF. Let ci = xi0, xi(t, t0, c) := xi(t). Take

c := max
1�i�r

|ci |,

k := sup
1�i�r
t�t0

{
r
∑

j=1

bij (t, t0)+ 1

}

,

μ := max
1�i�r

μi.

We again consider systems (7.1.1) and (7.1.2), but for (7.1.3) we apply the
following Gauss–Seidel type iteration:

x
(1)
i (t) = Kii(t, t0)ci

+
t∫

t0

Kii(t, t1)Fi
(

t1, x
(0)
i (t1), . . . , x

(0)
i−1(t1), 0, . . . , 0

)

dt1,

(7.2.11)i = 1, . . . , r,

x
(m)
i (t) = Kii(t, t0)ci

+
t∫

t0

Kii(t, t1)Fi
(

t1, x
(m)
1 (t1), . . . , x

(m)
i−1(t1), x

(m−1)
i (t1), . . . ,

x(m−1)
r (t1)

)

dt1,

(7.2.12)m = 2, 3, . . . , i = 1, 2, . . . , n.

We obtain the following estimations:

∥
∥x

(1)
1 (t)

∥
∥ � cMe

− ∫ tt0 ε(ξ) dξ ,
∥
∥x

(1)
2 (t)

∥
∥ � cMe

− ∫ tt0 αi(ξ) dξ

+
t∫

t0

e
− ∫ tt1 [α2(ξ)−ε(ξ)] dξ g21(t1)e

∫ t
t1
−ε(ξ) dξ

cMe
− ∫ tt0 −ε(ξ)dξ dt1

� cMe

∫ t
t0
−ε(ξ) dξ + cMb21(t)e

∫ t
t0
−ε(ξ) dξ

� kcMe
− ∫ tt0 ε(ξ) dξ ,

...
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∥
∥x(1)r (t)

∥
∥ � cMe

− ∫ tt0 ε(ξ) dξ +
r−1
∑

j=1

e
− ∫ tt0 αj (ξ) dξ grj (t1)

∣
∣x
(i)
j (t1)

∣
∣ dt1

� cMe
− ∫ tt0 ε(ξ) dξ + bn1(t)cMe

− ∫ tt0 ε(ξ) dξ

+ br2(t)kcMe
− ∫ tt0 ε(ξ) dξ

+ · · · + br,r−1(t)k
r−1cMe

− ∫ tt0 ε(ξ) dξ

� kncMe
− ∫ tt0 ε(ξ) dξ ,

i.e., it holds

(7.2.13)
∥
∥x

(1)
i (t)

∥
∥ � krcMe

− ∫ tt0 ε(ξ) dξ (i = 1, 2, . . . , r).

∥
∥x

(2)
1 (t)− x

(1)
1 (t)

∥
∥

�
n
∑

j=1

t∫

t0

e
− ∫ tt1 [α11(ξ)−ε(ξ)] dξ g1j (t1)e

− ∫ tt1 ε(ξ) dξ krcMe
− ∫ tt0 ε(ξ)dξ dt1

�
n
∑

j=1

krcMbij (t)e
− ∫ tt0 ε(ξ) dξ

(7.2.14)1� μ1k
rcMe

− ∫ tt0 ε(ξ) dξ ,
∥
∥x

(2)
2 (t)− x

(1)
2 (t)

∥
∥

�
t∫

t0

e
− ∫ tt1 α22(ξ) dξ g2i (t1)

∥
∥x

(2)
1 (t1)− x

(1)
1 (t1)

∥
∥ dt1

+
n
∑

j=1

t∫

t0

e
− ∫ tt1 α22(ξ) dξ g2j (t1)

∥
∥x

(1)
j (t1)

∥
∥ dt1

�
t∫

t0

e
− ∫ tt1 [α22(ξ)−ε(ξ)] dξ g21(t1)e

− ∫ tt1 ε(ξ) dξμ1k
rcMe

− ∫ t1t0 ε(ξ) dξ
dt1

+
n
∑

j=2

t∫

t0

e

∫ t
t1
[α22(ξ)−ε(ξ)] dξ g2j (t1)k

rcMe
− ∫ tt1 ε(ξ) dξ e−

∫ t1
t0
ε(ξ) dξ

dt1

�
[

μ1b21(t)+
r
∑

j=2

b2j (t)

]

krcMe
− ∫ tt0 ε(ξ) dξ
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(7.2.14)2� μ2k
rcMe

− ∫ tt0 ε(ξ) dξ

...

∥
∥x(2)n (t)− x(1)n (t)

∥
∥

�
r−1
∑

j=1

t∫

t0

e
− ∫ tt1 (αn(ξ)−ε(ξ)) dξ grj (t1)e

− ∫ tt1 ε(ξ) dξ
∥
∥x

(2)
j (t1)− x

(1)
j (t1)

∥
∥ dt1

+
t∫

t0

e
− ∫ tt1 (αn(ξ)−ε(ξ)) dξ grr (t1)e

− ∫ tt1 ε(ξ) dξ
∥
∥x

(1)
j (t1)

∥
∥ dt1

�
n−1
∑

j=1

μjbnj (t)k
ncMe

− ∫ tt0 ε(ξ) dξ + brr (t)k
ncMe

− ∫ tt0 ε(ξ) dξ

(7.2.14)r� μrk
rcMe

− ∫ tt0 ε(ξ) dξ .

Now, by the method of mathematical induction, we can prove that

(7.2.15)
∥
∥x

(m)
j (t)− x

(m−1)
j (t)

∥
∥ � μm−1krcMe

− ∫ tt0 ε(ξ) dξ , j = 1, . . . , r,

hold for arbitrary natural number m, which implies that

∥
∥x

(m+1)
i (t)

∥
∥ �

m
∑

j=1

∥
∥x

(j+1)
i (t)− x

(j)
i (t)

∥
∥+ ∥

∥x
(1)
i (t)

∥
∥

�
(

m
∑

j=0

μj

)

kr−1cMe
− ∫ tt0 ε(ξ) dξ

(7.2.16)� kr

1− μ
cMe

− ∫ tt0 ε(ξ) dξ ,

and thus, for arbitrary natural number p, we have

∥
∥x

(m+p)
i (t)− x

(m)
i (t)

∥
∥ �

m+p
∑

j=m+1

∥
∥x

(j)
i (t)− x

(j−1)
i (t)

∥
∥

�
(

m+p
∑

j=m+1

μj

)

krcMe
− ∫ tt0 ε(ξ) dξ

(7.2.17)� μm

1− μ
krcMe

− ∫ tt0 ε(ξ) dξ .
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Therefore, on any finite interval [t0, T ] {x(m)i (t)} is a fundamental sequence
(Cauchy sequence).

Next, we prove that the zero solution of (7.1.1) is stable. Otherwise, assume that
∃ε > 0, ∀δ > 0, ∃t0 and ∃τ > 0, ‖x0‖ < δ the system at east has the solution:

(7.2.18)
∥
∥x0i (t0 + τ, t0, x0)

∥
∥ � ε.

However, since the continuous function space C[t0, t0+ 2T ] with uniformly con-
vergent topology structure is a Banach space, we have

x
(m)
i → xi(t) as m→∞, i = 1, . . . , n.

Thus, xi(t) admits the estimation:
∥
∥xi(t)

∥
∥ � krcM

1− μ
e
− ∫ tt0 ε(ξ) dξ (i = 1, 2, . . . , n)

on [t0, t0 + 2T ].
Now we choose

0 < δ < (1− μ)ε/mkr max
t0�t�t0+2T

e
− ∫ tt0 ε(ξ) dξ ,

and then for 0 < ‖x0‖ < δ we have
∥
∥xi(t)

∥
∥ � krcM

1− μ
e
− ∫ tt0 ε(ξ) dξ < ε,

(7.2.19)i = 1, 2, . . . , n, t ∈ [t0, t0 + 2T ],
which is a contradiction with (7.2.18). So the zero solution of system (7.1.1) is
stable. By the estimation (7.2.16) one can obtain all conclusions in Theorem 7.2.2.

The proof of Theorem 7.2.2 is complete. �

COROLLARY 7.2.3. If the following conditions hold:

(1) ‖Kii(t, t0)‖ � Mie
−αi(t−t0) (t � t0, i = 1, 2, . . . , r);

(2) gij (t) = gij = const, i, j = 1, 2, . . . , r ,

n
∑

j=1

g1j

α1
M1 � μ1 < 1,

g21M2

α2
μ1 +

n
∑

j=2

M2g2j

α2
� μ2 < 1,

...

(7.2.20)
r−1
∑

j=1

grjMr

αr
Mj + grr � μn < 1;

then the zero solution of system (7.1.1) is exponentially stable.
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PROOF. Choose 0 < ε 	 αi (i = 1, 2, . . . , r). Then, we have

(1) ‖Kii(t, t0)‖ � Mie
−αi(t−t0) � Me−ε(t − t0), i.e., the condition (1) in Theo-

rem 7.2.2 holds.
(2) Since

bij (t, t0) =
t∫

t0

Mie
−(αi−ε)(t−t1)gij dt1 � e−(αi−ε)Migij · e

(ai−ε)t

ai − ε

= Migij

ai − ε
,

one can take 0 < ε 	 1 such that
r
∑

j=1

gijM1

a1 − ε
� μ̃1 < 1,

a21M2

a2 − ε
μ1 +

n
∑

j=2

g2jM2 � μ̃2 < 1,

...
r−1
∑

j=1

grjMr

an − ε
μ̃j + grrMr � μ̃r < 1.

Hence, condition (2) of Theorem 7.2.2 hold.

The conclusion is true. �

THEOREM 7.2.4. Assume that

(1) condition (1) of Theorem 7.2.2 holds;
(2) bij (t) defined in condition (2) of Theorem 7.2.2 satisfies

max
1�j�n

b1j (t, t0) � ρ(1),

b21(t, t0)ρ
(1) + max

2�j�n
b2j (t, t0) � ρ(2),

...
r−1
∑

j=1

brj (t, t0)ρ
(j) + brr (t, t0) � ρ(r),

(7.2.21)
r
∑

j=1

ρ(j) := ρ < 1.
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Then the conclusions of Theorem 7.2.2 hold.

PROOF. Along the derivation from (7.2.11) to (7.2.13) and let M , c, k be that
defined in Theorem 7.2.2, we have

∥
∥x

(2)
1 (t)− x

(1)
1 (t)

∥
∥

�
n
∑

j=1

( t∫

t0

M1e
− ∫ tt0 (α1(ξ)−ε(ξ)) dξ g1j (t1)k

j−1cMdt1

)

e
− ∫ tt0 ε(ξ) dξ

� ρ(1)rkr−1cMe
− ∫ tt0 ε(ξ) dξ ,

∥
∥x

(2)
2 (t)− x

(1)
2 (t)

∥
∥

�
t∫

t0

M2e
− ∫ tt1 (α2(ξ)−ε(ξ)) dξ g21(t1)

∥
∥x

(2)
1 (t1)− x

(1)
1 (t1)

∥
∥ dt1

+
n
∑

j=2

t∫

t0

M2e
− ∫ tt0 α2(ξ)g2j (t1)

∥
∥x

(1)
j (t1)

∥
∥ dt1

�
( t∫

t0

Me
− ∫ tt0 (α2(ξ)−ε(ξ))g2j (t1)ρ

(1)rkr−1cM dt1

+ max
2�j�n

t∫

t0

M2e
− ∫ tt1 [α2(ξ)−ε(ξ)] dξ g2j (t1) dt1nk

n−1cM

)

e
− ∫ tt0 ε(ξ) dξ

� ρ(2)rkr−1cMe
− ∫ tt0 ε(ξ) dξ ,

...
∥
∥x(2)r (t)− x(1)r (t)

∥
∥

�
r−1
∑

j=1

t∫

t0

Mre
− ∫ tt1 (αr (ξ)−ε(ξ)) dξ grj (t1)

∥
∥x

(2)
j (t1)− x

(1)
j (t1)

∥
∥ dt1

� rkr−1cMρ(r)e
− ∫ tt0 ε(ξ) dξ .

Thus, we obtain

r
∑

j=1

∥
∥x

(2)
j (t)− x

(1)
j (t)

∥
∥ � rkr−1cMρe

− ∫ tt0 ε(ξ) dξ .
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Then, by the method of mathematical induction one can prove that

r
∑

j=1

∥
∥x

(m)
j (t)− x

(m−1)
j (t)

∥
∥ � ρm−1rkr−1cMe

− ∫ tt0 ε(ξ) dξ

holds for arbitrary natural number m, and

r
∑

j=1

∥
∥x

(m)
j (t)

∥
∥ �

n
∑

j=1

∥
∥x

(m)
j (t)− x

(m−1)
j (t)

∥
∥

+
n
∑

j=1

∥
∥x

(m−1)
j (t)− x

(m−2)
j (t)

∥
∥+ · · · +

n
∑

j=1

∥
∥x

(1)
j (t)

∥
∥

�
(

ρm−1 + ρm−2 + · · · + 1
)

rkr−1cMe
− ∫ tt0 ε(ξ) dξ

� 1

1− ρ
rkr−1cMe

− ∫ tt0 ε(ξ) dξ .

Therefore, {x(m)j (t)} is a fundamental sequence
Finally, it follows from the proof of Theorem 7.2.2 that the conclusion is true. �

COROLLARY 7.2.5. If the following conditions are satisfied:

(1) condition (1) of Corollary 7.2.3 holds;
(2) gij (t) = gij = const., i, j = 1, 2, . . . , r ,

max
1�j�r

gij
M1

α1
� ρ(1),

g21M2

α2
ρ(1) + max

2�j�r

gijM2

α2
� ρ(2),

r−1
∑

j=1

grj
Mr

αr
ρ(j) + Mr

αr
· grr � ρ(r),

r
∑

j=1

ρ(j) = ρ < 1;

then the zero solution of (7.1.1) is exponentially stable.

PROOF. The proof is similar to that for Corollary 7.2.3 and is thus omitted. �

EXAMPLE 7.2.6. Consider the stability of the linear system:

(7.2.22)

{
dx1
dt
= (−1+ 2 sin t)x1 + a2(cosm t)x2,

dx2
dt
= b2(sinn t)x1 + (−1+ 2 cos t)x2,



7.2. Gauss–Seidel type iteration method 301

where a2 < 0.9
e4 , b2 < 0.92

e4 .

We check the conditions of Corollary 7.2.3 for system (7.2.22).

(1) Take ε(t) = 0.1, M = e4. Then, we have

e

∫ t
t0
[−1+2 sin ξ ] dξ � e4e

− ∫ tt0 dξ � e4e−0.1(t−t0) → 0 as t →+∞
e

∫ t
t0
[−1+2 cos ξ ] dξ � e4e−0.1(t−t0) → 0 as t →+∞;

(2)

b12(t, t0) :=
t∫

t0

e

∫ t
t0
[−0.9+2 sin ξ ] dξ ∣

∣a2 cosm t1
∣
∣ dt1

� a2e4

t∫

t0

e−0.9t e+0.9t1 dt1

= a2e4

0.9
e−0.9t(e0.9t − e0.9t0

)

� a2e4

0.9
:= μ1 < 1,

b21(t, t0)μ1 = a2e4

0.9

t∫

t0

e

∫ t
t1
[−0.9+2 cos ξ ] dξ ∣

∣b2 sin2 t1
∣
∣ dt1

� a2e4

0.9
b2e4e−0.9t(e0.9t − e0.9t0

)

� a2b2

0.92
e8

= μ2 < 1.

Hence, the conditions are satisfied. So the zero solution of system (7.2.22) is
exponentially stable.

For exponentially stable system, the estimation of exponential rate is very
important, which is usually called decay rate, as appeared in automatic control
systems.

EXAMPLE 7.2.7. Estimate the decay rate of the system:

(7.2.23)

{
dx1
dt
= −3x1 + (sin t)x2,

dx2
dt
= at

1+t2 x1 + (−3+ cos t)x2,

where it is assumed that |a| < 4.
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Since e
∫ t
t0
a11 dξ = e

− ∫ tt0 3 dξ = e−3(t−t0) � e−(t−t0) (taking ε = 1), we have

t∫

t0

e
− ∫ tt1 (−3+1) dξ | sin t1| dt1 � 1

2
:= μ1,

t∫

t0

e

∫ t
t1
(−3+cos ξ+1) dξ

∣
∣
∣
∣

at1

1+ t21

∣
∣
∣
∣
dt1 �

t∫

t0

e−(t−t1) |a|
2
dt1

1

2
<
|a|
4
= μ2 < 1.

Thus, the solution of (7.2.23) admits that estimation:
∥
∥x(t)

∥
∥ � Me−(t−t0) by taking α = 1,

i.e., the system (7.2.23) at least has the decay rate α = 1.

7.3. Application of iteration method to extreme stability

In this section, we apply the iteration method to investigate the extreme stability
for a class of nonlinear systems.

Consider the system:

(7.3.1)
dxi

dt
=

n
∑

j=1

pij (t)xj + fi(t, x), i = 1, 2, . . . , n,

where x = (x1, . . . , xn)
T , fi(t, x) ∈ C[SH ,Rn], pij (t) ∈ C[I, R1], SH = {x |

‖x‖ � H }.
Suppose f = (f1, . . . , fn)

T satisfies the Lipschitz condition:
∣
∣
∣
∣
∣

n
∑

j=1
j �=i

pij (t)(xj − yj )+ fi(t, x)− fi(t, y)

∣
∣
∣
∣
∣

�
n
∑

j=1

lij (t)|xj − yi | for lij (t) ∈ C
[

I, R1+
]

.

DEFINITION 7.3.1. System (7.3.1) is said to be extremely stable (uniformly ex-
tremely stable) with respect to H ∗ (H ∗ < H ) if ∀ε > 0, ∀t0 ∈ I , ∃δ(ε, t0) (δ(ε)),
∀x0 ∈ S∗H , y0 ∈ S∗H , S∗H = {x | ‖x‖ � H ∗} such that when ‖x0 − y0‖ < δ(ε, t0)

it holds
∥
∥x(t, t0, x0)− y(t, t0, y0)

∥
∥ < ε, t � t0.
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DEFINITION 7.3.2. System (7.3.1) is said to be extremely attractive (uniformly
extremely attractive) with respect to (H ∗,H ) if ∀ε > 0, ∃δ(ε) and T (ε, t0) > 0
(T (ε) > 0) such that ∀x0 ∈ S∗H , y0 ∈ S∗H , when ‖x0 − y0‖ < δ for all t �
t0 + T (ε, t0) (t � t0 + T (ε)) it holds

∥
∥x(t, t0, x0)− y(t, t0, y0)

∥
∥ < ε.

DEFINITION 7.3.3. If system (7.3.1) is extremely stable and extremely attrac-
tive (extremely uniformly stable and extremely uniformly attractive), then sys-
tem (7.3.1) is said to be extremely asymptotically stable (extremely uniformly
asymptotically stable).

DEFINITION 7.3.4. System (7.3.1) is said to be extremely exponentially stable if
∀x0 ∈ S∗H , y0 ∈ S∗H , there exist M(x0, y0) � 1 and α > 0 such that

∥
∥x(t, t0, x0)− y(t, t0, y0)

∥
∥ < M(x0, y0)e

−α(t−t0).

THEOREM 7.3.5. If system (7.3.1) satisfies the following conditions:

(1) there exist function ε(t) ∈ C[I, R1] and constant M > 0 such that

e

∫ t
t0
pii (ξ) dξ � Me

− ∫ tt0 ε(ξ) dξ ;
(2) aij (t) :=

∫ t

t0
e

∫ t
t1
[pii (ξ)+ε(ξ)] dξ lij (t1) dt1 (i, j = 1, 2, . . . , n), and

n
∑

j=1

aij (t) � μ1 < 1,

a21(t)μ1 +
n
∑

j=2

a2j (t) � μ2 < 1,

n−1
∑

j=1

anj (t)μj + ann(t) � μn < 1,

where μi (i = 1, 2, . . . , n) are positive constants;

then,

(1)
∫ t

t0
ε(ξ) dξ � k(t0) = const. (t � t0 � 0);

(2)
∫ t

t0
ε(ξ) dξ � k = const. (t � t0 � 0);

(3)
∫ +∞
t0

ε(ξ) dξ = +∞;

(4)
∫ t

t0
ε(ξ) dξ →+∞ with respect to t0, as t − t0 →+∞;

(5)
∫ t

t0
ε(ξ) dξ � α(t − t0) (α = const. > 0);
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which imply, respectively, the solution of (7.3.1) to be

(1) extremely stable;
(2) uniformly extremely stable;
(3) extremely asymptotically stable;
(4) uniformly extremely asymptotically stable;
(5) extremely exponentially stable;

PROOF. Let the solution of (7.3.1) be

(7.3.2)xi(t, t0, x0) := xi(t),

(7.3.3)yi(t, t0, y0) := yi(t).

Applying the method of constant variation, we have

xi(t) = x0ie

∫ t
t0
pii (ξ) dξ +

t∫

t0

e

∫ t
t1
pii (ξ) dξ

[
n
∑

j=1
j �=i

pij (t1)xj (t1)

(7.3.4)+ fi
(

t1, x1(t1), . . . , xn(t1)
)

]

dt1, i = 1, 2, . . . , n,

yi(t) = y0ie

∫ t
t0
pii (ξ) dξ +

t∫

t0

e

∫ t
t1
pii (ξ) dξ

[
n
∑

j=1
j �=i

pij (t1)yj (t1)

(7.3.5)+ fi
(

t1, y1(t1), . . . , yn(t1)
)

]

dt1, i = 1, 2, . . . , n.

For equations (7.3.4) and (7.3.5), we respectively apply the iteration to obtain

x
(m)
i (t) = x0ie

∫ t
t0
pii (ξ) dξ

+
t∫

t0

e

∫ t
t1
pii (ξ) dξ

[
j−1
∑

j=1

pij (t1)x
(m)
j (t1)+

n
∑

j=i+1

pij (t1)x
(m−1)
j (t1)

+ fi
(

t1, x
(m)
1 (t1), . . . , x

(m)
i−1(t1), x

(m−1)
i (t1), . . . , x

(m−1)
n (t1)

)

]

dt1

(7.3.6)(m = 2, 3, . . . , i = 1, 2, . . . , n),

x
(1)
i (t) = x0ie

∫ t
t0
pii (ξ) dξ +

t∫

t0

e

∫ t
t1
pii (ξ) dξ

[
j−1
∑

j=1

pij (t1)x
(1)
j (t1)



7.3. Application of iteration method to extreme stability 305

+ fi
(

t1, x
(1)
1 (t1), . . . , x

(1)
i−1(t1), 0, . . . , 0

)

]

dt1,

(7.3.7)i = 1, 2, . . . , n,

y
(m)
i (t) = y0ie

∫ t
t0
pii (ξ) dξ

+
t∫

t0

e

∫ t
t1
pii (ξ) dξ

[
i−1
∑

j=1

pij (t1)y
(m)
j (t1)+

n
∑

j=i+1

pij (t1)y
(m−1)
j (t1)

+ fi
(

t1, y
(m)
1 (t1), . . . , y

(m)
i−1(t1), y

(m−1)
i (t1), . . . , y

(m−1)
n (t1)

)

]

dt1

(7.3.8)(m = 2, 3, . . . , i = 1, 2, . . . , n),

y
(1)
i (t) = y0ie

∫ t
t0
pii (ξ) dξ +

t∫

t0

e

∫ t
t1
pii (ξ) dξ

[
i−1
∑

j=1

pij (t1)y
(1)
j (t1)

(7.3.9)+ fi
(

t1, y
(1)
1 (t1), . . . , y

(1)
i−1(t1), 0, . . . , 0

)

]

dt1.

Let z(m)i (t) = x
(m)
i (t) − y

(m)
i (t), zi(t) = xi(t) − yi(t), z0i = x0i − yi0, i =

1, 2, . . . , n, m = 1, 2, . . . . Then we have

z
(m)
i (t) = z0ie

∫ t
t0
pii (ξ) dξ

+
t∫

t0

e

∫ t
t1
pii (ξ) dξ

[
i−1
∑

j=1

pij (t1)z
(m)
j (t)+

n
∑

j=i+1

pij (t1)z
(m−1)
j (t1)

+ fi
(

t1, x
(m)
1 (t1), . . . , x

(m)
i−1(t1), x

(m−1)
i (t1), . . . , x

(m−1)
n (t1)

)

− fi
(

t, y
(m)
1 (t1), . . . , y

(m)
i−1(t1), y

(m−1)
i (t1), . . . , y

(m−1)
n (t1)

)

]

dt1

(7.3.10)(i = 1, 2, . . . , n, m = 2, 3, . . .),

z
(1)
i (t) = z0ie

∫ t
t0
pii (ξ) dξ +

t∫

t0

e

∫ t
t1
pii (ξ) dξ

[
i−1
∑

j=1

pij (t1)z
(1)
j (t1)

+ fi
(

t1, x
(1)
1 (t1), . . . , x

(1)
i−1(t1), 0, . . . , 0

)

(7.3.11)− fi
(

t1, y
(1)
1 (t1), . . . , y

(1)
i−1(t1), 0, . . . , 0

)

]

dt1.
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Following the proof of Theorem 7.2.2 and employing the method of mathemat-
ical induction, one can prove that for an arbitrary natural number m, it holds

∥
∥z

(m+1)
i (t)− z

(m)
i (t)

∥
∥ � μmkn−1cMe

∫ t
t0
pii (ξ) dξ

� μmkn−1cMe
− ∫ tt0 ε(ξ) dξ (i = 1, 2, . . . , n),

∥
∥z

(m+1)
i (t)

∥
∥ � kn−1cM

1− μ
e

∫ t
t0
pii (ξ) dξ

� kn−1cM

1− μ
e
− ∫ tt0 ε(ξ) dξ (i = 1, 2, . . . , n).

Hence, we have the estimation:

∥
∥zi(t)

∥
∥ � kn−1cM

1− μ
e

∫ t
t0
pii (ξ) dξ

(7.3.12)� kn−1cM

1− μ
e
− ∫ tt0 ε(ξ) dξ (i = 1, 2, . . . , n),

where c = max1�i�n |x0i−y0i |. Equation (7.3.12) shows that all the conclusions
of Theorem 7.3.5 are true. �

THEOREM 7.3.6. If system (7.3.1) satisfies that

(1) condition (1) of Theorem 7.3.5 holds;

(2)

max
1�j�n

aij (t) � ρ(1) = const.,

a21(t)ρ
(1) + max

2�j�n
aij (t) � ρ(2) = const.,

n−1
∑

j=1

anj (t)ρ
(j) + ann(t) � ρ(n) = const.,

n
∑

j=1

ρ(j) = ρ < 1,

where

aij (t) =
t∫

t0

e

∫ t
t1
[pii (ξ)+ε(ξ)] dξ lij (t1) dt1;

then all the conclusions of Theorem 7.2.1 hold.
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PROOF. Following the procedures as in the proof of Theorems 7.3.5 and 7.2.4,
one can complete the proof for this theorem. �

7.4. Application of iteration method to stationary oscillation

In this section, we consider a class of nonlinear time-varying periodic systems,
described by

dxi

dt
=

n
∑

j=1

pij (t)xj + fi
(

t, xi(t), . . . , xn(t)
)+ gi(t),

(7.4.1)i = 1, 2, . . . , n,

where

pij (t + w) ≡ pij (t), fi(t + w, x) ≡ fi(t, x),

gi(t + w) ≡ gi(t), w = const. > 0,

pij (t) ∈ C
[

I, R1], ξi(t) ∈ C
[

I, R1],

fij (t, x1, . . . , xn) ∈ C
[

I × Rn,R1].

DEFINITION 7.4.1. If there exists a unique periodic solution η(t, t0, x0) with
period ω, which is globally asymptotically stable, then the system (7.4.1) is called
a stationary oscillating system.

THEOREM 7.4.2. If system (7.4.1) satisfies the following conditions:

(1)
∣
∣
∣
∣
∣

n
∑

j=1
j �=i

pij (t)(xj − yj )+ fi(t, x)− fi(t, y)

∣
∣
∣
∣
∣
�

n
∑

j=1

lij (t)|xj − yj |,

for i = 1, 2, . . . , n and lij (t) ∈ C[I, R1+];
(2) there exist function ε(t) ∈ C[I, R1] and constant M > 0 such that

e

∫ t
t0
pii (ξ) dξ � Me

− ∫ tt0 ε(ξ) dξ → 0 as t →+∞;
(3)

aij (t) :=
t∫

t

e

∫ t
t1
(pii (ξ)+ε(ξ)) dξ lij (t1) dt1

� ãij = const. (i, j = 1, 2, . . . , n) (t � t0),
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where the spectral radius ρ(Ã) of the matrix Ã is less than 1, i.e., ρ(Ã) < 1
(particularly ‖Ã‖ < 1);

then the system (7.4.1) is a stationary oscillating system.

PROOF. First, we express the solution of (7.4.1) as

xi(t) = e

∫ t
t0
pii (ξ) dξ

x0i +
t∫

t0

[
n
∑

j=1
j �=i

e

∫ t
t1
pii (ξ)pij (t1)xj (t1)

+ e

∫ t
t1
pii (ξ) dξ fi

(

t1, x1(t1)
)

, . . . , xn(t1)

]

dt1

(7.4.2)+
t∫

t0

e

∫ t
t1
pii (ξ) dξ gi(t1) dt1, i = 1, 2, . . . , n.

Since continuous periodic function is bounded, let ‖g(t)‖ � k = const. Then
applying the Picard type iteration to (7.4.2) we obtain

x
(1)
i (t) = x0ie

∫ t
t0
pii (ξ) dξ +

t∫

t0

e

∫ t
t1
pii (ξ) dξ gi(t) dt1 (i = 1, 2, . . . , n),

x
(m)
i (t) = x0ie

∫ t
t0
pii (ξ) dξ +

t∫

t0

e

∫ t
t1
pii (ξ) dξ

[
n
∑

j=1
j �=i

pij (t1)x
(m−1)
j (t1)

+ fi
(

t1, x
(m−1)(t1), . . . , x

(m−1)
n (t1)

)

]

dt1,

i = 1, 2, . . . , n, m = 2, 3, . . . .

So, we have

∣
∣x
(1)
i (t)

∣
∣ � |x0i |e−αi(t−t0) +

t∫

t0

e−αi(t−t1)k dt1

� |x0i | + k

αi

:= M̃i (i = 1, 2, . . . , r),

that is,

(7.4.3)
(∣
∣x
(1)
1 (t)

∣
∣, . . . ,

∣
∣x(1)n (t1)

∣
∣
)T � In

(

M̃1, . . . , M̃r

)T
,
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∣
∣x
(1)
i (t)

∣
∣ � M̃i +

n
∑

j=1

t∫

t0

e−αi(t−t1)Lij (t1)
∣
∣x
(1)
j (t1) dt1

∣
∣

= M̃i +
n
∑

j=1

ãij M̃j .

Hence, (|x(2)1 (t)|, . . . , |x(2)n (t)|)T � (In + Ã)(M̃1, . . . , M̃r )
T .

Finally, one can use the method of mathematical induction to prove (|x(m)1 (t)|,
. . . , |x(m)1 (t)|)T � (In + Ã+ · · · + Ãm) · (M̃1, M̃r )

T . Since ρ(Ã) < 1, we have
(∣
∣x1(t)

∣
∣, . . . ,

∣
∣xn(t)

∣
∣
)T �

(

In − Ã
)−1(

M̃1, . . . , M̃n

)T
,

which shows that the solution is bounded. According to Theorem 7.3.5, we know
that the solution of system (7.1.1) is extremely asymptotically stable, and thus the
system (7.1.1) is a stationary oscillating system.

The proof of Theorem 7.4.2 is complete. �

7.5. Application of iteration method to improve frozen
coefficient method

In this section, we employ the iteration method to improve frozen coefficient
method. Consider the linear time-varying system:

(7.5.1)
dx

dt
= A(t)x A(t) ∈ C[I, Rn×n], x ∈ Rn.

The classical frozen coefficient method can be stated as follows [344]. Assume
that

(1) ∀t1, t2 ∈ [t0,+∞], ∃c = constant > 0 such that
n
∑

i,j=1

∣
∣aij (t1)− aij (t2)

∣
∣ � c;

(2) Re λ(A(t)) < −r < 0;
(3) the Cauchy matrix solution K(t, t0) of the system:

(7.5.2)
dx

dt
= A(t0)x

satisfies
n
∑

i,j=1

∣
∣kij (t, t0)

∣
∣ � be−

r
2 (t−t0)

and bc < r
4 .
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Then the solution x(t) of system (7.5.1) admits the estimation:
∥
∥x(t)

∥
∥ � b‖x0‖e− r

4 (t−t0).

The procedure of applying the iteration method to improve the classical frozen
coefficient method is described below.

(1) The frozen is only needed at certain point t∗0 . The frozen coefficient matrix
A(t∗0 ) is stable. Replace Re λ(A(t)) < −r by Re λ(A∗(t0)) < −r .

(2) Apply the integral average property to broad the demand of relaxation variety
in classical frozen coefficient method.

(3) Make use of the different stable degree of the frozen coefficient matrix of
the isolated subsystem to control the different coupling, and to estimate the
solution’s accessing property accurately.

(4) Convert the calculation of high-dimensional Cauchy matrix solution to the
calculation of low-dimensional Cauchy matrix solution, which augments the
possibility of calculation, and extends the application of frozen coefficient
method adopted in solving engineering problems.

Rewrite system (7.5.1) as

dx

dt
= diag

(

A11(t0), . . . , Arr (t0)
)

x

+ diag
(

(A11(t)− A11(t0)
)

, . . . ,
(

A11(t)− Arr(t0)
)

x

(7.5.3)+ (

Aij (t)σij
)

x,

where Aii(t) and Aij (t) are ni × ni and ni × nj matrices, respectively. Aii(t0) is
the frozen matrix of Aii(t) at t = t0, and

xi =
(

x
(1)
1 , . . . , x(i)ni

)T
, x = (

xT1 , . . . , x
T
r

)T
,

r
∑

i=1

ni = n, σij = 1− δij , 1 � i, j � r.

For the isolated subsystem:

(7.5.4)
dx

dt
= diag

(

A11(t0), . . . , Arr (t0)
)

x,

we have the following theorem.

THEOREM 7.5.1. If the following conditions are satisfied:

(1) the Cauchy matrix solution of (7.5.4) admits the estimation:

P(t, t0) = diag
(

P11(t, t0), . . . , Prr (t − t0)
)

= diag
(

eA11(t0)(t−t0), . . . , eArr (t0)(t−t0))
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with

(7.5.5)
∥
∥Pii(t, t0)

∥
∥ � mie

−αi(t−t1),

where mi � 1 and αi are positive constants;

(2)

(7.5.6)
∥
∥Aii(t)− Aii(t0)

∥
∥ � lii (t),

∥
∥Aij (t)

∥
∥ � lij (t),

where lij (t) ∈ C[I, R1+];
(3) there exists constant ε (0 < ε < min1�i�n αi) such that

(7.5.7)bij (t) :=
t∫

t0

mie
−(αi−ε)(t−t1)lij (t1) dt1 � b̃ij = const.,

and the spectral radius ρ(B̃) of the matrix B̃ is ρ(B̃) < 1 (particularly
‖B̃‖ < 1);

then the zero solution of system (7.5.3) is exponentially stable.

PROOF. Any solution of system (7.5.3) x(t) := x(t, t0, x0) satisfies

xi(t) = eAii (t0)(t−t0)x0i

+
t∫

t0

eAii (t0)(t−t0)
[

(

Aii(t1)− Aii(t0)
)

xi(t1)

(7.5.8)+
r
∑

j=1

Aij (t1)σij xj (t1) dt1

]

.

Applying the Picard iteration to (7.5.8) yields

(7.5.9)

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

x
(m)
i (t) = eAii (t0)(t−t0)x0i +

∫ t

t0
eAii (t0)(t−t1)

[

(Aii(t1)− Aii(t0))x
(m−1)
i (t1)

+∑n
j=1 Aij (t1)σij x

(m−1)
j (t1)

]

dt1,

x
(0)
i (t) = eAii (t0)(t−t0)x0i .

Further, we can prove that
(∥
∥x

(m)
1 (t)

∥
∥, . . . ,

∥
∥x(m)r (t)

∥
∥
)T

�
((

In + B + · · · + Bm
)(

m1‖x01‖, . . . , mr‖x0r‖
)

e−ε(t−t0)
)T

�
( ∞
∑

m=0

Bm

)

(

m1‖x01‖, . . . , mr‖x0r‖
)T
e−ε(t−t0)
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(7.5.10)= (In − B)−1(m1‖x01‖, . . . , mr‖x0r‖
)T
e−ε(t−t0)

holds for all natural numbers, which means that the zero solution of system (7.5.3)
is exponentially stable. �

COROLLARY 7.5.2. If

(1) condition (1) in Theorem 7.5.1 holds;
(2) lij (t) = lij = const. in condition (2) of Theorem 7.5.3;

(3) ρ(B(
mi lij
αi

))r×r < 1 (particularly ‖B(mi lij
αi

)‖ < 1);

then the zero solution of system (7.5.3) is exponentially stable.

PROOF. Choose 0 < ε 	 1 such that

bij (t) :=
t∫

t0

mie
−(αi−ε)(t−t1)lij dt1 � milij

αi − ε
:= b̃ij .

Since

ρ

(

B

(
milij

αi

))

< 1

(∥
∥
∥
∥
B

(
milij

αi

)∥
∥
∥
∥
< 1

)

implies

ρ

(

B

(
milij

αi − ε

))

< 1

(∥
∥
∥
∥
B

(
milij

αi − ε

)∥
∥
∥
∥
< 1

)

when 0 < ε 	 1.
So the conclusion is true. �

THEOREM 7.5.3. If the conditions (1) and (2) in Theorem 7.5.1 are satisfied,
and

(3) bij (t) defined by (7.5.7) satisfy

i−1
∑

j=1

bij (t)μj +
r
∑

j=i
bij (t) � μj = const. < 1

(7.5.11)(i = 1, 2, . . . , r),

then the zero solution of system (7.5.3) is exponentially stable.

PROOF. Apply the following iterations to system (7.6.1):

x
(m)
i (t) = eAii (t0)(t−t0)x0i +

t∫

t0

eAii (t0)(t−t0)
[
i−1
∑

j=1

Aij (t1)x
(m)
j (t1)
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+ (

Aii(t1)− Aii(t0)
)

x
(m−1)
i (t1)+

r
∑

j=i+1

Aij (t1)x
(m−1)
j (t1)

]

dt1

(m = 2, 3, . . . , i = 1, 2, . . . , r),

x
(1)
i (t) = eAii (t0)(t−t0)x0i +

t∫

t0

eAii (t−t1)
[
i−1
∑

j=1

Aij (t1)x
(1)
j (t1)

]

dt1,

(7.5.12)i = 1, 2, . . . , r.

Let

M = max
1�i�r

mi, c = max
1�j�r

‖x0j‖,

k = sup
1�i�r
t�t0

{
r
∑

j=1

bij (t)+ 1

}

, μ = max
1�i�r

μi,

σ = kr−1cM.

Then, we can prove that for any natural numbers,
∥
∥x

(m)
i (t)

∥
∥ � σ

1− μ
e−ε(t−t0), x

(m)
i (t)→ xi(t)

which implies that ‖xi(t)‖ � σ
1−μe

−ε(t−t0). Hence, the zero solution of system
(7.5.3) is exponentially stable. �

EXAMPLE 7.5.4. Consider a 4-dimensional time-varying linear system:

⎛

⎜
⎝

ẋ1
ẋ2
ẋ3
ẋ4

⎞

⎟
⎠ =

⎡

⎢
⎢
⎢
⎢
⎣

−6 3 sin t
8

1
8 cos t

−5 2 1
7 sin t 1

7 cos t
t

1+t2
1
2 cos t −4+ 1

2 sin t 1

1
2 sin t t

1+t2 1 −4− 1
2 sin t

⎤

⎥
⎥
⎥
⎥
⎦

⎛

⎜
⎝

x1
x2
x3
x4

⎞

⎟
⎠

at t0=0−−−−→
frozen

⎡

⎢
⎣

−6 3 0 0
−5 2 0 0
0 0 −4 1
0 0 1 −4

⎤

⎥
⎦

⎛

⎜
⎝

x1
x2
x3
x4

⎞

⎟
⎠

+

⎡

⎢
⎢
⎢
⎢
⎣

0 0 sin 1
8 t

1
8 cos t

0 0 1
7 sin t 1

7 cos t
t

1+t2
1
2 cos t 1

2 sin t 0

1
2 sin t t

1+t2 0 − 1
2 sin t

⎤

⎥
⎥
⎥
⎥
⎦

⎛

⎜
⎝

x1
x2
x3
x4

⎞

⎟
⎠
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or
⎛

⎜
⎝

ẋ1
ẋ2
ẋ3
ẋ4

⎞

⎟
⎠ =

[

A11(0) 02
02 A22(0)

]

⎛

⎜
⎝

x1
x2
x3
x4

⎞

⎟
⎠

(7.5.13)+
[

A11(t)− A11(0) A12(t)

A21(t) A22(t)− A22(0)

]

⎛

⎜
⎝

x1
x2
x3
x4

⎞

⎟
⎠ .

The eigenvalues of

A11(0) =
[−6 3
−5 2

]

are λ1 = −3, λ2 = −1, and that of

A22(0) =
(−4 1

1 −4

)

are λ1 = −5, λ2 = −3. Thus, the Cauchy matrix solution to the first isolated
subsystem:

(7.5.14)

(
ẋ1

ẋ2

)

=
[−6 3
−5 2

](
x1

x2

)

= A11(0)

(
x1

x2

)

is

(7.5.15)eA11(0)t =
[ 5

2e
−3t − 3

2e
−t − 3

2e
−3t + 3

2e
−t

3
2e
−3t − 3

2e
−t − 3

2e
−3t + 5

2e
−t

]

,

while the Cauchy matrix solution to the second isolated subsystem:

(7.5.16)

(
ẋ3

ẋ4

)

=
[−4 1

1 −4

](
x3

x4

)

= A22(0)

(
x3

x4

)

is

(7.5.17)eA22(0)t =
[ 1

2e
−5t + 1

2e
−3t − 1

2e
−5t + 1

2e
−3t

− 1
2e
−5t + 1

2e
−3t 1

2e
−5t + 1

2e
−3t

]

.

Hence, we have
∥
∥eA11(0)t

∥
∥ � 3e−t ,

∥
∥eA22(0)t

∥
∥ � 3

2
e−3t ,

∥
∥A12(t)

∥
∥ � 2

7
,

∥
∥A21(t)

∥
∥ � 1,
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∥
∥A22(t)− A22(0)

∥
∥ � 1

2
,

and
t∫

0

∥
∥eA11(0)(t−τ)∥∥∥∥A12(τ )

∥
∥ dτ � 3

t∫

0

e−(t−τ) 2

7
dτ � 6

7
< 1,

t∫

0

∥
∥eA11(0)(t−τ)∥∥[∥∥A21(τ )

∥
∥+ ∥

∥A22(τ )− A22(0)
∥
∥
]

dτ

� 3

2

t∫

0

e−3(t−τ) 3

2
dτ � 3

4
< 1.

Obviously, one can choose 0 < ε 	 1 such that any one of the conditions in
Theorem 7.5.1 holds. Thus, system (7.5.13) is exponentially stable.

7.6. Application of iteration method to interval matrix

It is well known that an n× n internal matrix N [P,Q] is a set of real matrices:

N [PQ] = [

A = A(aij ) | P(pij ) � A(aij ) � Q(qij )
]

,

i.e., pij � aij � qij , where pij , qij are known, while aij is unknown.
The set N [P,Q] is said to be stable, if every A ∈ N [P,Q] is stable.
The idea of frozen coefficient method can be applied to study the stability of

interval matrix.
Let

A = diag(A11, A22, . . . , Arr )+
(

(1− δij )Aij

)

,

P = diag(P11, P22, . . . , Prr )+
(

(1− δij )Pij
)

,

Q = diag(Q11,Q22, . . . ,Qrr )+
(

(1− δij )Qij

)

,

Aij ∈ N(Pij ,Qij ),

Åii = 1

2
(Pii +Qii), Bii = Aii − Åii , i, j = 1, 2, . . . , r,

where Aij , Pij ,Qij are ni × nj matrices, and

r
∑

i=1

ni = n.

δij is the Kronecker delta function, mij = max ‖Aij‖ and Aij ∈ N(Pij ,Qij ).
Then ‖Bii‖ � mii

2 , i = 1, 2, . . . , r .
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We consider a linear dynamical system:

(7.6.1)

⎧

⎨

⎩

dx
dt
= diag(A11, . . . , Arr )x + ((1− δij )Aij )x

= diag(Å11, . . . , Årr )x + diag(B11, . . . , Brr )x + ((1− δij )Aij )x

x(t0) = xn,

or

(7.6.2)

{
dxi
dt
= Åiixi + Biixi +∑r

j=1 Aijxj ,

xi(t0) = x0i , i = 1, 2, . . . , r,

where

xi =
(

x
(i)
1 , . . . , x(i)ni

)T
, i = 1, 2, . . . , r,

r
∑

i=1

ni = n.

At the same time, we consider the isolated subsystem:

(7.6.3)

{
dxi
dt
= Åiixi,

x = x0i .

THEOREM 7.6.1. Assume that

(1) there exist constants Mi > 1, αi > 0 such that

eÅii (t−t0) � Mie
−αi(t−t0), i = 1, 2, . . . , r;

(2) let cij := Mi

αi
(1− δij )mij + Mimii

2αi
,

then ρ(C) < 1 (in particular ‖C‖ < 1) implies that the interval matrix N [P,Q]
is stable. where ρ(C) is the spectral radius of the matrix C.

PROOF. From the method of constant variation, the solution of (7.6.2) can he
written as

xi(t) = eÅii (t−t0)x0i

(7.6.4)+
t∫

t0

eÅii (t−t1)
[

Bii(t1)xi(t1)+
n
∑

j=1

(1− δij )Aij xj (t1)

]

dt1.

Let

c̃ij = Mi

αi − ε

(

1− δijmij + Mimij

2αi − ε

)

, C̃ = (c̃ij ).

Since the eigenvalues of a matrix continuously depend on its elements, ρ(C) < 1
(‖C‖ < 1) implies ρ(C̃) < 1 (‖c̃‖ < 1) for 0 < ε 	 1. We now apply the
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iteration to (7.6.4) to obtain

(7.6.5)

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

x
(m)
i (t) = eÅii (t−t0)x0i

+ ∫ t
t0
eÅii (t−t1)

[

Biixi(t1)+∑r
j=1(1− δij )Aij x

(m−1)
j

]

dt1

x
(0)
i (t) = eÅii (t−t0)x0i , i = 1, 2, . . . , r, m = 1, 2, . . . ,

where t � t0, 0 < ε < min1�i�r αi . We obtain
∥
∥x

(0)
i (t)

∥
∥ � Mi‖x0i‖e−αi(t−t0) � Mi‖x0i‖e−ε(t−t0),

(∥
∥x

(0)
1 (t)

∥
∥, . . . ,

∥
∥x(0)r (t)

∥
∥
)T � Ir

(

M1‖x0i‖, . . . ,Mr‖x0r‖
)T
e−ε(t−t0),

∥
∥x

(1)
i (t)

∥
∥ � Mi‖x0i‖e−ε(t−t0) +

t∫

t0

Mir
−(αi−ε)(t−t1)

×
[

‖Bii‖‖x0i‖ +
r
∑

j=1

(1− δij )‖Aij‖Mj‖x0j‖ dt1
]

e−ε(t−t0)

� Mi‖x0i‖e−ε(t−t0) + Mimii

2(αi − ε)
‖x0i‖

+
r
∑

j=1

(1− δij )mijMj‖x0j‖
αi − ε

e−ε(t−t0),

∥
∥x

(1)
i (t)− x

(0)
i (t)

∥
∥ �

(
r
∑

j=1

(
1− δij

αi − ε

)

mijMj + Mimij

2(αi − ε)

)

e−ε(t−t0),

(7.6.6)i = 1, 2, . . . , r,

that is,
(∥
∥x

(1)
1 (t)

∥
∥, . . . ,

∥
∥x(1)r (t)

∥
∥
)T

(7.6.7)� (E + B̃)
(

M1‖x01‖, . . . ,Mr‖x0r‖
)T
e−ε(t−t0),

(∥
∥x

(1)
1 (t)− x

(1)
0 (t)

∥
∥, . . . ,

∥
∥x(1)r (t)− x(0)r (t)

∥
∥
)T

(7.6.8)� B̃
(

M1‖x01‖, . . . ,Mr‖x0r‖
)T
e−ε(t−t0).

Finally, by the method of mathematical induction we obtain
∥
∥x

(m)
1 (t)

∥
∥, . . . ,

∥
∥x(m)r (t)

∥
∥

�
(

Ir + C̃ + · · · + C̃m
)(

M1‖x01‖, . . . ,Mr‖x0r‖
)T

(7.6.9)� (Ir − C̃)−1(M1‖x01‖, . . . ,Mr‖x0r‖
)T
e−ε(t−t0),
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and

(∥
∥x

(m)
1 (t)

∥
∥, . . . ,

∥
∥x(m)r (t)

∥
∥
)T

(7.6.10)� (Ir − C̃)−1(M1‖x0i‖, . . . ,Mr‖x0r‖
)T
e−ε(t−0)

which shows that the conclusion of Theorem 7.6.1 is true. �

EXAMPLE 7.6.2. Consider the stability of a mechanical system with angular
speed ω [361]:

Ẋ1 =
[

0 1
−1 −1

]

X1 +
[

0 0
ω2 0

]

X1 +
[

0 0
0 2ω

]

X2,

Ẋ2 =
[

0 1
−1 −1

]

X2 +
[

0 0
0 −2ω

]

X1 +
[

0 0
ω2 0

]

X2,

where

X1 = (x1, x2)
T , X2 = (x3, x4)

T .

We are interested in estimating the stability region for the coupling parameter
ω � 0. Siljak [361] applied the decomposition-aggregation method with Lya-
punov vector function to determine the stability interval for ω as 0 � ω � 0.05,
i.e., the interval matrix

N(P,Q)

=
⎡

⎢
⎣

0 1 0 0
[−2,−1+ (0.05)2] −1 0 [0, 0.1]

0 0 0 1
0 [−0.1, 0] [−1,−1+ (0.05)2] −1

⎤

⎥
⎦

is stable. Here, we have applied Theorem 7.6.1 to obtain a greater interval of ω
for the stability as 0 � ω � 0.08768.

For the isolated subsystem:

Ẋi =
[

0 1
−1 −1

]

Xi, i = 1, 2,

we have

exp

([

0 1
−1 −1

]

t

)

= e−
t
2

[

cos
√

3
2 t +

√
3

3 sin
√

3
2 t 2

√
3

3 sin
√

3
2 t

−2
√

3
3 sin

√
3

2 t cos
√

3
2 t −

√
3

3 sin
√

3
2 t

]

.
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Therefore,
∥
∥
∥
∥

exp

([

0 1
−1 −1

]

t

)∥
∥
∥
∥

� (1+√3)e−
t
2 ,

t∫

t0

(1+√3)e−
t−τ

2 ω2 dτ � 2(1+√3)ω2,

t∫

0

(1+√3)e−
t−τ

2 � 4ω(1+√3).

Let 2(1 + √3)ω2 + 4(1 + √3)ω − 1 < 0. Then 0 � ω � 0.08768, i.e., the
interval matrix, given by

N(P,Q)

=
[

0 1 0 0
[−1,−1+ (0.08768)2] −1 0 [0, 0.17436]

0 0 0 1
0 [−0.17436, 0] [−1,−1+ (0.08768)2] −1

]

,

is stable.
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Chapter 8

Dynamical Systems with Time Delay

As we know, ordinary differential equation is an important mathematical tool,
not only in solving problems in natural science and social science, but also playing
a significant role in the development of dynamical system theory and method-
ologies. As a matter of fact, general theory of Lyapunov stability theory was
developed over a century ago by using ordinary differential equations. Later, the
theory was extended to different types of dynamic systems, described by dif-
ference equations, differential difference equations, functional equations, partial
differential equations, stochastic differential equations and so on. The research on
the direct Lyapunov method for constructing stability criteria is still a main topic
in dynamical systems.

Whether from development of theory or from applications, the most important
part is still the stability of dynamical systems described by differential difference
equations with time delays. In this chapter, we systematically introduce the sta-
bility theory of the differential difference equations.

The materials presented in this chapter are chosen from various sources, in par-
ticular, [231] for Section 8.1, [344,231] for Section 8.2, [280] for Section 8.7,
[139] for Section 8.8, [243] for Section 8.9, Section 8.10 and [155,280] for Sec-
tion 8.11.

8.1. Basic concepts

In natural or social phenomena, the trend or the future status of many systems
are not only determined by their current situation but also determined by their
history. Such phenomena are called delay or genetic effect. Many mathematical
models arising from engineering, physics, mechanics, control theory, chemical re-
action, or biomedicine always involve delays. For example, the delitescence of a
contagion in biomedicine, the hysteresis in elastic mechanics, and especially, any
automatic control systems with feedback in general always contain time delay.
This is because these systems have only limited time to receive information and
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react accordingly. Such a system cannot be described by purely differential equa-
tions, but has to be treated with differential difference equations or the so called
differential equations with difference variables.

For illustration, let us consider the motion of a swing ship. Let θ(t) denote the
angle to the vertical position. Then θ satisfies the following differential equation:

(8.1.1)mθ̈(t)+ cθ̇(t)+ kθ(t) = f (t).

To reduce the swing, besides increasing the damping c, some ships are equipped
with water pumps on both sides, which can transfer water from one cabin to an-
other in order to increase the damping qθ̇(t). Since there always exists delay in
the servo of control system, system (8.1.1) should be more precisely described by

(8.1.2)mθ̈(t)+ Cθ̇(t)+ qθ̇(t − τ)+ kθ(t) = f (t),

where τ is the delay. This is a typical time-delay differential equation.
Although some differential equation with difference variables appeared as early

as in 1750 in Euler’s geometrical problem, systematic studies started only in the
20th century. The development of this research and its applications were first re-
lated to automatic control theory. Recently, researchers paid particular attention
to the stability of neural network with time delay.

When different values are introduced to the independent variable t of an un-
known function x(t) in a differential equation, the equation is called differential
difference equation. For example,

(8.1.3)ẋ(t) = g
(

t, x(t), x
(

t − τ(t)
))

(8.1.4)ẋ(t) = g
(

t, x(t), x(t − τ1), x(t − τ2), . . . , x(t − τn)
)

(8.1.5)ẍ(t) = g
(

t, x(t), ẋ(t), x
(

t − τ(t)
)

, ẋ
(

t − τ(t)
))

(8.1.6)ẍ(t) = g

(

t, x

(
t

2

)

, ẋ

(
t

2

)

, x(t), ẋ(t)

)

.

If the independent variable in the highest-order derivatives is not less than any
other order derivatives as well as the independent variable t , it is called delayed
differential difference equation. For example, if τ1 > 0 in (8.1.3) (8.1.5), τ1 >

0, τ2 > 0, . . . , τn > 0 in (8.1.4), and t
2 = t − t

2 � 0 in (8.1.6), then all these
equations are called differential difference equations.

Another type of delayed differential difference equations is called neutral dif-
ferential difference equation. For example,

(8.1.7)ẋ(t) = g
(

t, x(t), x(t − τ), ẋ(t − τ)
)

, τ > 0,

(8.1.8)ẍ(t) = g
(

t, x(t), ẋ
(

t − τ(t)
)

, ẋ
(

t − τ(t)
)

ẍ
(

t − τ(t)
))

.
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The independent variable in the highest-order derivatives can take different val-
ues. So, general time-delay differential difference equations can be described by

dy

dt
= g

(

t, y(t), y
(

t − τ1(t)
)

, . . . , y
(

t − τm(t)
))

, τi(t) � 0,

(8.1.9)y(t) = ψ̃(t) ∈ Et0 =
{

t0 − sup
t�t0

τi(t), i = 1, . . . , m
}

.

Suppose the function on the right-hand side of (8.1.9) is smooth enough, such that
the existence and uniqueness of Cauchy problem is guaranteed.

To study the stability of any solution of (8.1.9), ŷ(t), we only need a transfor-
mation x(t) = y(t)− ŷ(t) so that it is equivalent to study the stability of the zero
solution of the following equation

(8.1.10)
dx

dt
= f

(

t, x(t), x
(

t − τ1(t)
)

, . . . , x
(

t − τm(t)
))

.

Let x ∈ Rn, f ∈ [I×
m

︷ ︸︸ ︷

Rn × Rn × · · · × Rn,Rn]. In the following, we first give
the definitions of different stabilities for differential difference equations. For the
neural type equations, it is not difficult for readers to obtain their definitions.

DEFINITION 8.1.1. The zero solution of (8.1.10) is said to be stable, if ∀t0 ∈
I,∀ε > 0, ∃δ(ε, t0) > 0,∀ξ(t) ∈ Et0 , when ‖ξ(t)‖ < δ, it holds

∥
∥x(t, t0, ξ)

∥
∥ < ε ∀t � t0.

If δ(ε, t0) in the above definition is independent of t0, then the zero solution
of (8.1.10) is said to be uniformly stable.

If the zero solution of (8.1.10) is stable, and ∃σ(t0) > 0, ∀ξ(t) ∈ Et0 , when
‖ξ(t)‖ < σ(t0), it holds

lim
t→+∞

∥
∥x(t, t0, ξ)

∥
∥ = 0,

then the zero solution of (8.1.10) is said to be asymptotically stable.

DEFINITION 8.1.2. The zero solution of system (8.1.10) is said to be uniformly
asymptotically stable, if it is uniformly stable, and there exists σ > 0 (indepen-
dent of t1), ∀ε > 0, ∃T (ε) > 0 (also independent of t1), when t > t1 + T (ε),
‖ξ(t)‖ < σ , ‖x(t, t0, ξ)‖ < ε holds. Here, ξ(t) is an arbitrary function defined on
Et1 for t1 � t0.

DEFINITION 8.1.3. The zero solution of system (8.1.10) is said to be exponen-
tially stable, if there exist δ > 0, α > 0, B(δ) � 1 such that when ‖ξ‖ < δ and
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t > T ,

(8.1.11)
∥
∥x(t, t0, ξ)

∥
∥ � B(δ)

(

max
t∈Et0

‖ξ‖
)

e−α(t−t0).

DEFINITION 8.1.4. The zero solution of system (8.1.10) is said to be globally
asymptotically stable, if it is stable and for any initial value function ξ(t) (i.e., the
δ in Definition 8.1.1 can be arbitrarily large),

lim
t→+∞

∥
∥x(t, t0, ξ)

∥
∥ = 0

holds.

For the neutral equation:

(8.1.12)

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

dx(t)
dt

= f (x, x(t), x(t − τ1(t)), . . . , x(t − τm(t)),

ẋ(t − τ1(t)), . . . , ẋ(t − τm(t))),

x(t) = ξ(t), t ∈ Et0,

ẋ(t) = ξ̇ (t), t ∈ Et0,

the definitions of different stabilities for its solution are similar to Defini-
tions 8.1.1–8.1.4, one only needs to change the initial condition ‖φ(t)‖ < δ in
Definitions 8.1.1–8.1.4 to ‖ξ(t)‖ < δ, ‖ξ̇ (t) < δ‖.

8.2. Lyapunov function method for stability

It is natural to extend the basic ideas and approaches of Lyapunov function method
developed for the stability of ordinary differential equations to that of the differ-
ential difference equations.

To make easy understand and readable, we, instead of (8.1.10), use a simpler
system:

(8.2.1)
dx

dt
= f

(

t, x(t), x
(

t − τ(t)
))

where x ∈ Rn, f ∈ C[I × Rn × Rn,Rn], f (t, 0, 0) ≡ 0, 0 � τ(t) < t < +∞,
and

x
(

t − τ(t)
) = (

x1
(

t − τ1(t)
)

, . . . , xn
(

t − τn(t)
))T

,

0 � τi(t) � τi = constant.

Similar to the results of stability obtained in Chapter 4, it is easy to obtain the
following theorem.

For convenience, let x(t) := x(t, t0, ξ). x(θ) = ξ(θ) when θ ∈ [t0 − τ, t0].
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THEOREM 8.2.1. If there exists a positive definite function V (t, x) in some re-
gion GH := {(t, x), t � t0, ‖x‖ � H } such that

(8.2.2)D+V (t, x)|(8.2.1) � 0.

(Specifically, dV (t,x)
dt

|(8.2.1) = ∂V
∂t
+∑n

i=1
∂V
∂xi

fi(t, x(t), x(t − τ(t))) � 0.) Then
the zero solution of (8.2.1) is stable.

PROOF. Since V (t, x) is positive definite, there exists

(8.2.3)ϕ
(‖x‖) � V (t, x), ∀ε > 0.

Because V (t, 0) = 0, there exists δ(t0) such that when ‖x0‖ � δ(t0), V (t0, x0) <

ϕ(ε). It then follows from (8.2.2) and (8.2.3) that

ϕ
(∥
∥x(t)

∥
∥
)

� V
(

t0, x(t)
)

� V (t0, x0) � ϕ(ε),

implying that ‖x(t)‖ � ε, t � t0. Thus, the zero solution of (8.2.1) is stable. �

THEOREM 8.2.2. If there exists a positive definite function V (t, x) with infini-
tesimal upper bound in some region GH such that

D+V (t, x)|(8.2.1) � 0.

(In particular, dV (t,x)
dt

|(8.2.1) = ∂V
∂t
+∑n

i=1
∂V
∂xi

fi(t, x(t), x(t − τ(t))) � 0.) Then,
the zero solution of (8.2.1) is uniformly stable.

PROOF. Because V (t, x) is positive definite with infinitesimal upper bound, there
exist ϕ1, ϕ2 ∈ K such that

ϕ1
(‖x‖) � V (t, x) � ϕ2

(‖x‖) ∀ε > 0.

Choose δ(ε) = ϕ−1
2 (ϕ1(ε)). When ‖x0‖ < δ(ε), from the assumption we have

ϕ1
(∥
∥x(t)

∥
∥
)

� V
(

t, x(t)
)

� V (t0, x0) � ϕ2
(‖x0‖

)

� ϕ2
(∥
∥δ(ε)

∥
∥
)

.

So ‖x(t)‖ � ϕ−1
1 ϕ2(‖δ(ε)‖) � ε‖, implying that the zero solution of (8.2.1) is

uniformly stable. �

EXAMPLE 8.2.3. Consider the stability of the zero solution of the following two
dimensional delayed system:

(8.2.4)

⎧

⎪⎨

⎪⎩

dx1
dt
= (−3+ sin t)x1(t)(1+ sin(x2

1(t − τ2(t))))

+ x2(t) sin(x1)(t − τ1(t)),

dx2
dt
= −2x1 sin(x1(t − τ1(t)))− 2x(1+ 1

2 cos(x2(t − τ2(t))))x2,

where 0 � τi(t) � τi = constant, i = 1, 2.
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PROOF. Consider the positive definite Lyapunov function with infinitesimal up-
per bound:

V = x2
1 +

1

2
x2

2 .

We have

dV

dt

∣
∣
∣
∣
(8.2.4)

= 2(−3+ sin t)x2
1(t)

(

1+ sin x2
1

(

t − τ1(t)
))

+ 2x1(t)x2(t) sin x1
(

t − τ1(t)
)

− 2x1(t)x2(t) sin x1
(

t − τ1(t)
)

− 2

(

1+ 1

2
cos

(

x2
(

t − τ1(t)
))
)

x2
2(t)

� −4x2
1(t)− x2

2(t) < 0 when x2
1 + x2

2 �= 0.

Thus the zero solution of (8.2.4) is uniformly stable. �

THEOREM 8.2.4. If there exists a positive definite function V (t, x) with infini-
tesimal upper bound in some region GH such that

D+V (t, x)|(8.2.4)

is negative definite, in particular, if

dV (t, x)

dt

∣
∣
∣
∣
(8.2.4)

= ∂V

∂t
+

n
∑

i=1

∂V

∂xi
fi
(

t, x(t), x
(

t − τ(t)
))

is negative definite, then the zero solution of (8.2.4) is uniformly asymptotically
stable.

When GH = Rn, the conclusion of Theorem 8.2.4 becomes globally asymp-
totically stable.

PROOF. Let V (t) := V (t, x(t)). From the condition we know that there exist
ϕ1, ϕ2 ∈ K such that

ϕ1
(‖x‖) � V (t, x) � ϕ2

(‖x‖).
Because D+V (t, x)|(8.2.4) is negative definite, dV

dt
|(8.2.4) is negative definite. This

implies that D+V (t, x)|(8.2.4) ( dV
dt
|(8.2.4)) is negative definite about x(t). There-

fore, ∃ϕ3(‖x‖) ∈ K such that

D+V
(

t, x(t)
)∣
∣
(8.2.4) � −ϕ3

(∥
∥x(t)

∥
∥
)

� −ϕ3
(∥
∥ϕ−1

2

(

V (t)
)∥
∥
)

� 0,
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i.e.,

V (t)∫

V (t0)

dV

ϕ3(ϕ
−1
2 (V (t)))

� −(t − t0),

or

V (t0)∫

V (t)

dV

ϕ3(ϕ
−1
2 (V (t)))

� t − t0.

∀ε < H , using

ϕ1
(∥
∥x(t)

∥
∥
)

� V (t) := V
(

t, x(t)
)

and

V (t0) � ϕ2
(‖x0‖

)

� ϕ2(H),

we have

ϕ2(H)∫

ϕ1(‖x(t)‖)

dV

ϕ3(ϕ
−1
2 (V (t)))

=
ϕ1(ε)∫

ϕ1(‖x(t)‖)

dV

ϕ3(ϕ
−1
2 (V (t)))

+
ϕ2(H)∫

ϕ1(ε)

dV

ϕ3(ϕ
−1
2 (V (t)))

�
V (t0)∫

V (t)

dV

ϕ3(ϕ
−1
2 (V (t)))

� t − t0.

Thus,

T = T (ε,H) >

ϕ2(H)∫

ϕ1(ε)

dV

ϕ3(ϕ
−1
2 (V (t)))

.

Obviously, when t � t0 + T , it is easy to obtain from the above equation:

ϕ1(ε)∫

ϕ1(‖x(t)‖)

dV

ϕ3(ϕ
−1
2 (V (t)))

� t − t0 −
ϕ2(H)∫

ϕ1(ε)

dV

ϕ3(ϕ
−1
2 (V (t)))

(8.2.5)� t − t0 − T � 0

from which we can deduce that

ϕ1
(∥
∥x(t)

∥
∥
)

< ϕ1(ε), when t � t0 + T (ε,H).

Since T = T (ε,H) is independent of t0 and x0, x = 0 is uniformly attractive.
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Further, noticing that the conditions in Theorem 8.2.4 imply the conditions of
Theorem 8.2.2, we know that x = 0 is uniformly stable. Therefore, x = 0 is
uniformly asymptotically stable. �

Again we consider Example 8.2.3. Obviously, for this example, the conditions
in Theorem 8.2.4 are satisfied. Hence, x = 0 of Example 8.2.3 is uniformly as-
ymptotically stable.

THEOREM 8.2.5. If there exists function V (t, x) ∈ [I×GH,R] in GH satisfying
the following conditions:

(1) ‖x‖ � V (t, x) � k(H)‖x‖, x ∈ GH ;
(2) dV

dt
|(8.2.4) � −cV (t, x), where c > 0 is a constant;

then the zero solution of (8.2.4) is exponentially stable.
If GH = Rn, the conclusion of Theorem 8.2.5 is globally exponentially stable.

PROOF. From condition (2), we know that

V
(

t, x(t)
)

� V
(

t0, x(t0)
)

� V (t0, x0)e
−c(t−t0).

Thus, the conclusion is true. �

EXAMPLE 8.2.6. Consider the stability of the zero solution for the following
nonlinear system with variable time delays:

(8.2.6)

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

dx1
dt
= −x1(t)(1+ x2

2(t − τ2(t)))

+ 2x2(t)x1(t − τ1(t))x2(t − τ2(t)),
dx2
dt
= −3x1(t)x1(t − τ1(t))x2(t − τ2(t))

− x2(t)(2+ sin x1(t − τ1(t))),

where 0 � τi(t) � τi = constant, i = 1, 2, . . . , n.
Construct the positive definite and radially unbounded Lyapunov function:

V = (3x2
1 + 2x2

2)

2
.

Then, we have

dV

dt

∣
∣
∣
∣
(8.2.6)

= −3x2
1(t)

(

1+ x2
2

(

t − τ1(t)
))

+ 6x1(t)x2(t)x1
(

t − τ1(t)
)

x2
(

t − τ2(t)
)

− 6x1(t)x2(t)x1
(

t − τ1(t)
)

x2
(

t − τ2(t)
)

− 2x2
2

(

2+ sin x1
(

t − τ1(t)
))
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� −3x2
1(t)− 2x2

2(t)

= −2V
(

t, x(t)
)

,

which satisfies the conditions in Theorem 8.2.5. Thus, the zero solution of (8.2.6)
is globally exponentially stable.

THEOREM 8.2.7. If there exists function V (t, x) ∈ C[GH,R] such that
V (t, 0) = 0 and

(1) for t � t0, in any neighborhood of the origin, there exists region such that
V > 0;

(2) in the region where V > 0, V (t, x) is bounded;
(3) in the region where V > 0, dV

dt
|(8.2.6) is positive definite;

then the zero solution of (8.2.6) is unstable.

PROOF. In the region V > 0, the meaning of dV
dt
|(8.2.6) being positive definite is:

∀ε > 0, ∃l > 0 in the region V � ε > 0, ∀t � t0, it holds

dV

dt

∣
∣
∣
∣
(8.2.6)

� l > 0.

Now choose ε > 0 such that 0 < ε < H . We want to show that there exists x0, no
matter how small ‖x0‖ is, the solution x(t, t0, x0) moves out the region defined
by ‖x‖ < ε.

To achieve this, from condition (1), in the region of V > 0, we can choose any
x0 such that |x0| is arbitrarily small and satisfies V (t0, x0) > 0.

Suppose the solution orbit x(t, t0, x0) does not move out the region ‖x‖ < ε.
Since

dV

dt

∣
∣
∣
∣
(8.2.1)

� 0 (t > t0), and V
(

t, x(t, t0, x0)
)

� V (t0, x0) > 0,

so the solution x(t, t0, x0) would stay in the region V (t, x) > 0 for t � t0. Then
from condition (3) we know that there exists l > 0 such that

dV (t, x(t))

dt
� l > 0.

Hence,

(8.2.7)V
(

t, x(t)
) = V (t0, x0)+

t∫

t0

dV

dt
dt � V (t0, x0)+ l(t − t0),

which implies that when t � 1, V (t, x(t)) can be arbitrary large. This contradicts
condition (2). So the conclusion of Theorem 8.2.7 is true. �
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Theorems 8.2.1–8.2.7 are almost parallel extensions of the Lyapunov stabilities
of ordinary differential equations.

Generally, the expression of the derivative of V (t, x), dV
dt

, involves both in-
stant state variables, x1(t), . . . , xn(t), and past (delayed) state variables, x1(t −
τ1(t)), . . . , xn(t − τn(t)). Sometimes it even contains the derivatives of the past
state variables, ẋ1(t−τ1(t)), . . . , ẋn(t−τn(t)). So it is very difficult to determine
whether dV

dt
is negative definite or not.

The above simple examples are proved by enlarging the inequality to eliminate
the delayed state variables. Certainly, such cases are very rare.

There are approaches to overcome this difficulty. The first is to consider dV
dt

as a function of 2n variables, x1(t), . . . , xn(t), x1(t − τ1(t)), . . . , xn(t − τn(t))

or even 3n variables, x1(t), . . . , xn(t), x1(t − τ1(t)), . . . , xn(t − τn(t)), ẋ1(t −
τ1(t)), . . . , ẋn(t − τn(t)). Then if dV

dt
is negative definite for these variables, one

can conclude that dV
dt

is negative definite about x1(t − τ1(t)), . . . , xn(t − τn(t)).
This brings difficulty due to the dimension increase of the system.

Another effective method is the Razumikhin method, which will be discussed
in the next section.

8.3. Lyapunov function method with Razumikhin technique

First, we use a very simple example to illustrate the original idea of the Lyapunov
function method with Razumikhin technique, proposed in the 1960s by the fa-
mous former Soviet scholar, Razumikhin [228].

Consider the stability of a 1-dimensional ordinary differential equation with a
constant delay:

(8.3.1)
dx

dt
= ax(t)+ bx

(

t − τ(t)
)

,

where 0 � τ(t) � τ = constant.
If we construct the positive definite and radially unbounded Lyapunov function

V = 1

2
x2,

then,

(8.3.2)
dV

dt
= ax2(t)+ bx(t)x

(

t − τ(t)
)

.

In this case, even if assume a < 0, |b| 	 1, we cannot deduce the negative defi-
niteness of dV

dt
about x(t) even if dV

dt
is negative definite about x(t) and x(t − τ).

For more complicated systems, it is more difficult to determine whether dV
dt

is
negative definite or not about x(t) by increasing the dimension of the system with
additional variables x(t − τ).
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Figure 8.3.1. Geometric expression of the Lyapunov direct method.

The right-hand side of (8.3.2) is a function of x(t) and x(t − τ). Roughly
speaking, the stability of a system is to study the relation between the future state
and the current state. When |x(t − τ)| > |x(t)|, the trend of the solution becomes
decreasing (or stable), which does not add any constrains on dV

dt
. Thus, one only

needs to apply restriction to the increasing trend. In other words, when |x(t)| �
|x(t − τ)|, we use the condition dV

dt
< 0, which is exactly used to overcome

the instability of the system. However, there does not necessarily exist relation
between the condition |x(t)| � |x(t − τ)| and the sign of dV

dt
.

Consequently, we only need to show dV
dt

� 0 when |x(t)| � |x(t − τ)| (i.e.,
|V (x(t))| � |V (x(t − τ))|). In other words, it is not necessary to show dV

dt
� 0

for the whole x(t)-x(t − τ) plane, but just for the shaded sector, as shown in
Figure 8.3.1.

Back to system (8.3.1), when |x(t − τ)| � |x(t)|,
dV

dt
� ax2(t)+ ∣

∣bx(t)
∣
∣
∣
∣x(t − τ)

∣
∣ � ax2(t)+ |b|x2(t).

When a + |b| < 0, dV
dt

is negative definite about x(t). Thus, if a + |b| < 0, we
can conclude that the zero solution of (8.3.2) is globally asymptotically stable.

Now, consider a general delayed system:

(8.3.3)
dx

dt
= f

(

t, x(t), x
(

t − τ(t)
))

,

where x ∈ Rn, f ∈ C[I ×Rn×Rn,Rn] and f (t, 0, 0) = 0, 0 � τ(t) � τ <∞.
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THEOREM 8.3.1. (See [228].)

(1) If there exists function V (t, x) ∈ C[GH,R
1] and ϕ1, ϕ2 ∈ K such that

ϕ1
(‖x‖) � V (t, x) � ϕ2

(‖x‖)

in GH ;
(2) the Dini derivative of V (t, x) along the solution of (8.3.3) satisfies

D+V (t, x)|(8.3.3) := lim
h→0+

1

h

[

V
(

t + h, x(t + h, t, x0)
)− V (t, x0)

]

� g(t)F
(

V
(

t, x(t)
))

when

(8.3.4)V
(

t − τ(t)
)

, x
(

t − τ(t)
)

� V
(

t, x(t)
)

,

where F(V ) > 0 and when V > 0, F(0) = 0;

(3)

(8.3.5)lim
h→0+

b∫

a

dr

F (r)
= +∞.

Then the zero solution of (8.3.3) is uniformly stable. Here, a > b, g(t) � 0,
∫ +∞

0 g(t) dt = M > 0.

PROOF. Construct the following equation:

(8.3.6)
dy

dt
= g(t)F (y), where g(t) = g(t)+ 1

t2 + 1
.

Then from condition (3) we know that there exists y0 such that

(8.3.7)

ε1∫

y(0)

dy

F (y)
= M =

+∞∫

0

g(t) dt.

Assuming that y(t) is the solution of (8.3.6) and y(t0) = y0 > 0, we have

(8.3.8)

y(t)∫

y0

dy

F(y)
=

t∫

t0

g(s) ds <

+∞∫

0

g(s) ds := M =
ε∫

y(0)

dy

F (y)
.

So, 0 < y(t) < ε1, t � t0
Let

(8.3.9)0 < δ < y0, ϕ2(δ) < y0,
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where the initial value function ξ(t) satisfies
∥
∥ξ(t)

∥
∥ < δ.

Now, we prove that for the solution of (8.3.3) x(t) := x(t, t0, ξ) satisfying
‖ξ‖ � δ, we have

(8.3.10)V
(

t, x(t)
) := V (t) � y(t), t � t0.

Otherwise, there exists t1 > t0 such that

V (t) � y(t), t � t1, V (t1) = y(t1),

and there exists 0 < r 	 1 for which there is an infinite number of t i (i =
1, 2, . . .) such that t i →+∞, t i ∈ [ti , x1 + r] and V (ti) > y(t i). It follows from
the definition of upper limit that

(8.3.11)D+V (t1) � dy

dt

∣
∣
∣
∣
t=t1

= g(t1)F
(

y(t1)
) = g(t1)F

(

V (t1)
)

.

But

V (ξ) � V (t1), t1 − r � ξ � t1,

(8.3.12)D+V (t1) � g(t1)F
(

V (t1)
)

< g(t1)F
(

V (t1)
)

.

This contradicts (8.3.11), so (8.3.10) holds. Thus,

ϕ1
(∥
∥x(t)

∥
∥
)

� V (t) � g(t) < ε1 � ϕ1(ε),

implying that ‖x(t)‖ < ε, t � t0. Since δ < y0 is independent of t0, the zero
solution of (8.3.3) is uniformly stable. �

COROLLARY 8.3.2. If

(1) condition (1) in Theorem 8.3.1 holds; and
(2) condition (2) in Theorem 8.3.1 is changed to

D+V (t, x)|(8.3.1) � 0;
then the zero solution of (8.3.3) is uniformly stable.

This is the improved Razumikhin theorem which can be used to find the stabil-
ity of the zero solution of differential difference equation (8.3.3).

THEOREM 8.3.3. Assume the following conditions hold:

(1) condition (1) in Theorem 8.3.1 holds;
(2) there exist nonnegative continuous functions F(t, x), ψ(t, x) such that ∀σ >

0, when |x| � δ, t � t0 it holds
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(8.3.13)F
(

t, x(t)
)

� ψ(t, σ ) � 0,

and

(8.3.14)

t∫

t0

ψ(t, σ ) dt ⇒ +∞ (uniformly about t0) as t →+∞;

(3) there exists continuous nondecreasing function P(s) > s, when s > 0 and

(8.3.15)V
(

t − τ(t), x
(

t − τ(t)
))

� PV
(

t, x(t)
)

,

it holds

(8.3.16)D+V
(

t, x(t)
)∣
∣
(8.3.3) � −F (t, x(t));

then the zero solution of (8.3.3) is uniformly stable.

PROOF. Let x(t) := x(t, t0, ϕ), V (t) := V (t, x(t)). Obviously,

−F (t, x(t)) � 1

t2 + 1
V (t).

So the conditions in Theorem 8.3.1 are satisfied, and thus the zero solution
of (8.3.1) is uniformly stable.

Next, we prove that the zero solution is uniformly asymptotically stable. ∀σ <

ε1 < H , ∃δ > 0, when the initial value function |ϕ| < δ, there exist |x(t0)| < H

and

V (t, x0) < ϕ2(ε1), t � t0,

∀η > 0, 0 < η < min(ε1, δ),

such that 0 < ϕ1(η) < ϕ2(ε).
We want to prove that ∃tN such that |x(t)| � η when t � tN . To achieve this,

let

a = inf
[

P(s)− s
]

> 0 when ϕ1(η) � s � ϕ2(ε1).

Further, there exists σ > 0 such that ϕ1(η) � ϕ2(σ ) > 0. So, when ϕ2(‖x(t0)‖) �
ϕ1(η) � ϕ2(σ ) > 0, we have ‖x(t0)‖ � σ > 0 and

(8.3.17)F
(

t,
∥
∥x(t0)

∥
∥
)

� ψ(t, σ ).

Assume that N is a positive integer such that

(8.3.18)ϕ1(η)+Na � ϕ2(ε1) > ϕ1(η1)+ (N − 1)a.

Then, there must exists T1 � t0 + r such that

(8.3.19)V (T1) < ϕ1(η1)+ (N − 1)a.



8.3. Lyapunov function method with Razumikhin technique 335

Otherwise, we have

V (t) � ϕ1(η1)+ (N − 1)a, t > t0 + r.

On the other hand,

P
(

V (t)
)

� V (t)+ a � ϕ1(η)+Na � ϕ2(ε1)

> V (ξ) when t − r � ξ � t.

Since

ϕ2
(∥
∥x(t)

∥
∥
)

� V (t) � ϕ1(η) > ϕ2(σ )

and ‖x(t)‖ � σ , from condition (2) and (3) we can get

D+V (t) � −F (t, ∥∥x(t)∥∥) � −ψ(t, σ ), t � t0 + r.

Therefore,

V (t) � V (t0 + r)−
t∫

t0−r
ψ(s, σ ) ds →−∞ when t →∞.

This is impossible. Thus, (8.3.19) is true.
Since D+V (t) � 0, ∀t � T1,

V (t) � ϕ2(η)+ (N − 1)a

holds. Repeating the above process, we can show that there must exist T2, . . . , TN
such that

V (t) � ϕ2(η)+ (N − l)a, t � Tl, l = 1, . . . , N,

from which we obtain

ϕ1
(∥
∥x(t)

∥
∥
)

� V
(

t, x(t)
)

� ϕ1(η), t � TN .

Thus,
∥
∥x(t)

∥
∥ � η, t � TN .

Due to the arbitrary of η, we know that the zero solution of (8.3.12) is uniformly
asymptotically stable. �

COROLLARY 8.3.4. Assume that the conditions in Theorem 8.3.3 are satisfied,
while F(t, ‖x(t0)‖) = ψ(t)W(‖x(t0)‖), ψ(t) > 0, t � t0, and for arbitrarily
given β > 0, there exists α(β) > 0 such that

∫ t

t1
ψ(s) ds � β holds uniformly

for t � t1 + α(β) (irrelevant to t1 � t0 � 0). Then the zero solution of (8.3.3) is
uniformly asymptotically stable.
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Particularly, if take ψ(t) ≡ 1, then all conditions in Corollary 8.3.4 hold, and
thus the zero solution of (8.3.3) is uniformly asymptotically stable.

EXAMPLE 8.3.5. Consider the stability of the following 2-dimensional time-
delay prototype system:

(8.3.20)

{
dx1
dt
= −3x1(t)+ a12x2(t)+ 1

3x1(t − τ(t))+ 1
2x2(t − τ(t)),

dx2
dt
= a21x1(t)− 4x2(t)+ 2

3x1(t − τ(t))+ 1
2x2(t − τ(t)),

where a12 and a21 are real constants.
Construct the Lyapunov function:

V (x1, x2) = |x1| + |x2|.
Obviously, V (x1, x2) is positive definite and radially unbounded. Then, we have
that when |x1(t − τ(t))| + |x2(t − τ(t))| � |x1(t)| + |x2(t)|,

D+V (x1, x2)|(8.3.20) �
(−3+ |a21|

)∣
∣x1(t)

∣
∣+ (−4+ |a12|

)∣
∣x2(t)

∣
∣

+ ∣
∣x1

(

t − τ(t)
)∣
∣+ ∣

∣x2
(

t − τ(t)
)∣
∣

�
(−3+ |a21|

)∣
∣x1(t)

∣
∣+ (−4+ |a12|

)∣
∣x2(t)

∣
∣

+ ∣
∣x1(t)

∣
∣+ ∣

∣x2(t)
∣
∣

= (−2+ |a21|
)∣
∣x1(t)

∣
∣+ (−3+ |a12|

)∣
∣x2(t)

∣
∣

(8.3.21)� 0 (x �= 0).

Based on Corollary 8.3.2, when |a21| � 2 and |a12| � 3, the zero solution of
(8.3.20) is stable.

When |a21| < 2 and |a12| < 3, according to Corollary 8.3.4, the zero solution
of (8.3.20) is asymptotically stable. In fact, let 2 − |a21| = ε1, 3 − |a12| = ε2.
Choose P(S) = (1+ 1

2 min(ε1, ε2))S. Then, when V (x1(t−τ(t)), x2(t−τ(t))) �
PV (x1(t), x2(t)), we have

D+V (x1, x2)|(8.3.19) �
(−3+ |a21|

)∣
∣x1(t)

∣
∣+ (−4+ |a12|

)∣
∣x2(t)

∣
∣

+ ∣
∣x1

(

t − τ(t)
)∣
∣+ ∣

∣x2
(

t − τ(t)
)∣
∣

�
(−3+ |a21|

)∣
∣x1(t)

∣
∣+ (−4+ |a12|

)∣
∣x2(t)

∣
∣

+
(

1+ 1

2
min(ε1, ε2)

)
(∣
∣x1(t)

∣
∣+ ∣

∣x2(t)
∣
∣
)

=
(

−2+ 1

2
ε1 + |a21|

)
∣
∣x1(t)

∣
∣

+
(

−3+ 1

2
ε1 + |a21|

)
∣
∣x2(t)

∣
∣

� −ε1
∣
∣x1(t)

∣
∣− ε2

∣
∣x2(t)

∣
∣
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< 0 when x2
1 + x2

1 �= 0.

In addition, we have

V
(

x1(t − τt ), x2(t − τt )
)

� P
(

V
(

x1(t), x2(t)
))

.

Thus, the zero solution of (8.3.20) is asymptotically stable.

EXAMPLE 8.3.6. Consider the time-delay system:

(8.3.22)

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

dx1
dt
= −a2

11x1(t)− a12x2(t)+ b11x1(t − τ(t))

+ b12x2(t − τ(t)),
dx2
dt
= 2a12x1(t)− a2

22x2(t)+ b21x1(t − τ(t))

+ b22x2(t − τ(t)),

and determine the range of the values of the coefficients such that the zero solution
of the system is stable.

Construct the Lyapunov function:

V (x1, x2) = x2
1 +

1

2
x2

2 .

Then, we have

dV

dt

∣
∣
∣
∣
(8.3.22)

= −2a2
11x

2
1(t)− a2

22x
2
2(t)+ 2b11x1(t)x1

(

t − τ(t)
)

+ 2b12x1(t)x2
(

t − τ(t)
)+ b21x2(t)x1

(

t − τ(t)
)

+ b22x2(t)x2
(

t − τ(t)
)

� −2a2
11x

2
1(t)− a2

22x
2
2(t)+ b2

11x
2
1(t)+ x2

1(t)
(

t − τ(t)
)

+ 2b2
12x

2
1(t)+

x2
2(t − τ(t))

2
+ b2

21

4
x2

2(t)

+ x2
1

(

t − τ(t)
)+ b2

22

2
x2

2(t)+
x2

2(t − τ(t))

2

= −[2a2
11 − b2

11 − 2b2
12 − 1

]

x2
1(t)−

[

a2
22 −

b2
21

4
− b2

22

2

]

x2
2(t)

+ 2V
(

x1
(

t − τ(t)
)

, x2
(

t − τ(t)
))

� −[2a2
11 − b2

11 − 2b2
12 − 1

]

x2
1(t)−

[

a2
22 −

b2
21

4
− b2

22

2

]

x2
2(t).

Thus, when
{

2a2
11 � b2

11 + 2b2
12 + 1,

a2
22 � b2

21
4 + b2

22
2 ,

the zero solution of system (8.3.22) is stable.
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When the above two inequalities take strict inequalities, similarly following the
proof of Example 8.3.5 we can show that the zero solution of system (8.3.22) is
globally asymptotically stable.

8.4. Lyapunov functional method for stability analysis

Razumikhin method is still an important research topic that has been continuously
studied, promoted and improved by scientists. One of its advantages is that it does
not need to verify whether the derivative of function V , dV

dt
, is negative definite

or not about the state variables x1(t − τ1(t)), . . . , xn(t − τn(t)), but only needs to
show that dV

dt
, satisfying V (x(t − τ(t))) < P (V (x(t))) (where P(s) > s when

s �= 0 is a function to be determined), is negative definite about the variables
x1, . . . , xn. However, in general, there are various types of dV

dt
, and it is hard to

obtain a V (x(t)) satisfying the form of P(V (x(t − τ(t)))) > V (x(t − τ(t))),
except for some very special V and dV

dt
.

In this section, we discuss the method introduced by Krasovskii, which uses
Lyapunov functional to replace Lyapunov function to study stability. This is one
of the most important methods in the study of stability of differential difference
equations.

First, we introduce several norms of functionals defined on C[−τ, 0] as fol-
lows:

∥
∥x(s)

∥
∥
τ
= sup
−τ�s�0
1�i�n

|xi |,

∥
∥x(s)

∥
∥

2
τ
=
( 0∫

−τ

n
∑

i=1

x2
i (s) ds

)1/2

,

‖x‖1 = sup
1�i�n

|xi |,

‖x‖2 =
(

n
∑

i=1

x2
1

)1/2

.

DEFINITION 8.4.1. Functional V (t, x(s)), t � t0, −τ � s � 0, is said to
be positive definite, if there exists ϕ1 ∈ K such that ϕ1(‖x(s)‖τ ) � V (t, x(s)).
Functional V (t, x(s)), t � t0, −τ � s � 0, is said to have infinitesimal upper
bound, if there exists ϕ ∈ K such that V (t, x(s)) � ϕ2(‖x(s)‖τ ).

Similarly, we can define the negative definite and radially unboundedness of
functional V (t, x(s)).
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Let xt (ξ) denote the solution of (8.3.3) satisfying the initial value condition
x(t) = ξ(t), −τ � t � 0.

THEOREM 8.4.2. If there exists positive definite functional V (t, x(s)) with infin-
itesimal upper bound in some region GH = {(t, x), ‖x(s)‖τ < H,−τ � s �
0, t � t0} such that the Dini derivative of V (t, x(s)) along the solution (8.3.3),
defined by

D+V
(

t, x(x)
)∣
∣
(8.3.3)

(8.4.1):= lim
h→0+

1

h

(

V
(

t + h, xt+h(ξ)
))− V

(

t, xt (ξ)
)

� 0,

is positive definite, then the zero solution of (8.3.3) is uniformly stable.

PROOF. Assume that there exist ϕ1, ϕ2 ∈ K satisfying

ϕ1
(∥
∥x(s)

∥
∥
τ

)

� V
(

t, x(s)
)

� ϕ2
(∥
∥x(s)

∥
∥
τ

)

.

∀ε > 0 (0 < ε < h), choose δ(ε) > 0 such that ϕ2(t) < ϕ1(t). Then, when
‖ξ(s)‖ < δ, we have

ϕ1
(∥
∥xt (ξ)

∥
∥
)

� V
(

t, xt (ξ)
)

� V
(

t0, ξ(s)
)

� ϕ2
(‖ξ‖τ

)

� ϕ2(δ) < ϕ1(ε).

Thus,
∥
∥xt (ξ)

∥
∥
T
< ε,

which indicates that the zero solution of (8.3.3) is uniformly stable. �

THEOREM 8.4.3. If there exists positive definite functional V (t, x(s)) in region
GH , with infinitesimal upper bound, such that its Dini derivative is negative def-
inite along the solution of (8.3.3), then the zero solution of (8.3.3) is uniformly
asymptotically stable.

PROOF. Assume that there exist ϕ1, ϕ2 ∈ K and positive definite function W

such that

ϕ1
(∥
∥x(s)

∥
∥
τ

)

� V
(

t, x(s)
)

� ϕ2
(∥
∥x(s)

∥
∥
τ

)

,

(8.4.2)D+V
(

t, x(s)
)∣
∣
(8.3.3) � −W (

x(0)
)

.

Since the conditions in Theorem 8.4.3 imply that the conditions in Theorem 8.4.2
are satisfied, the zero solution of (8.3.3) is uniformly stable.

Now we prove that the zero solution of (8.3.3) is uniformly attractive. ∀η > 0,
choose σ(η) > 0 such that

sup
‖x(s)‖τ�σ1(η)

V
(

t, x(s)
)

< inf‖x(s)‖τ=η
V
(

t, x(s)
)

, t � t0.
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Next, we show that there exists T > 0, when t∗ = t0 + T , it holds
∥
∥x∗t (ξ )

∥
∥
τ
< σ(η).

Otherwise, suppose

σ(η) �
∥
∥xt (ξ)

∥
∥
τ

� H.

Let α = infα�‖x‖‖�H W(x). Then, there exists

D+V
(

t, x(s)
)

� −α on α � ‖x‖ � H.

Thus, ∀t � t0, we have

V
(

t, xt (ξ)
)

� V
(

t0, xt0(ξ)
)− α(t − t0)→−∞ as t →+∞.

This implies that there exists T > 1
2V [t0, x0(ξ)]+αt0 such that ‖xT (ξ)‖τ < σ(η).

Thus, when t > t0 + T , we have ‖xt (ξ)‖ < η, while σ(η) is independent on t0.
So, the zero solution is uniformly asymptotically stable. �

THEOREM 8.4.4.

(1) If there exist functional V (t, x(s)) and ϕ1, ϕ2,W1,W2 ∈ K and positive def-
inite function V (t, x(s)) satisfying

V
(

t, x(s)
)

� ϕ1
(∥
∥x(0)

∥
∥
)+ ϕ2

(∥
∥x(ξ)

∥
∥

2
τ

)

,

V
(

t, x(s)
)

� W1
(∥
∥x(0)

∥
∥
);

(2) D+V (t, x(s))|(8.3.3) � −W2(‖x(0)‖);
then the zero solution of (8.3.3) is uniformly asymptotically stable.

PROOF. One can follow the proofs of Theorems 8.4.2 and 8.4.3 to finish the proof
of Theorem 8.4.4. Thus, the details are omitted. �

In the above we only discussed general principle and method of how to use the
Lyapunov functional to study the stability of time-delay systems. The key prob-
lem is how to construct the Lyapunov functional, which will be discussed further
later with more examples given in Section 8.6, Chapter 9 (Absolute stability), and
Chapter 10 (Stability of neural networks).

EXAMPLE 8.4.5. Consider an n-dimensional time-delay system with constant
coefficients

(8.4.3)
dx

dt
= Ax(t)+ Bx(t − τ),

where R ∈ Rn, A,B are all n× n constant matrices, and τ = constant > 0.
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The stability of the zero solution of system (8.4.3) can be determined by using
eigenvalue. Here, we use the Lyapunov functional method to solve the problem.

Assuming A is stable, for an arbitrary given n× n symmetric positive definite
matrix D, the Lyapunov matrix equation

AT C + CA = −D
has symmetric positive definite matrix solution Cn×n.

Choose Lyapunov functional

(8.4.4)V (x) = xT Cx +
t∫

t−τ
xT (s)Gx(s) ds.

Then we have

dV

dt

∣
∣
∣
∣
(8.4.3)

= −xT (t)Dx(t)+ 2xT (t)CBx(t − τ)

(8.4.5)+ xT (t)Gx(t)− xT (t − r)Gx(t − r).

Consider the right-hand side of the above equation as a quadratic form about x(t)
and x(t − τ), with some constrains on matrices A and B so that C and G can be
solved, under which the quadratic form (8.4.4) is negative definite. Thus, the zero
solution of (8.4.3) is asymptotically stable. To achieve this, we only need

[

D −G −CB
−BT C G

]

being negative definite.
The above condition can be even further weakened by requiring the above

quadratic form being negative definite only about x(t), not necessarily for both
x(t) and x(t − τ).

8.5. Nonlinear autonomous systems with various time delays

Nonlinear systems with separate various time delays are often encountered in
autonomic control, biomathematics, and specially, in neural networks. In this
section, we discuss general methods in determining the stability of nonlinear au-
tonomous systems with separate various time delays.

Consider the following nonlinear autonomous system with separate various
time delays:

dxi

dt
=

n
∑

j=1

aijfj
(

xj (t)
)+

n
∑

j=1

bij gj
(

x
(

t − τj (t)
))

,

(8.5.1)i = 1, 2, . . . , n,
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where fj (·) ∈ C[(−∞+∞), R], gj (·) ∈ C[(−∞+∞), R], but |gi(·)| � |fi(·)|.
Suppose that these conditions guarantee the uniqueness of the Cauchy problem,
and

fj (0) = 0, j = 1, 2, . . . , n, 0 � τj (t) � τj = constant,

and A = (aij )n×n, B = (Bij )n×n are given real matrices.

THEOREM 8.5.1. For system (8.5.1), if the following conditions are satisfied:

(1) fj (xj )xj > 0 when xj �= 0,
∫ +∞

0 fj (xj ) dxj = +∞;

(2) 1− τ̇j (t) � δj > 0, j = 1, 2, . . . , n; and
(3) there exist positive definite diagonal matrices P = diag(p1, . . . , pn) and

ξ = diag(ξ1, . . . , ξn) such that the matrix
[

PA+ AT P + ξδ−1 PB

BT P −ξ
]

is negative definite, where δ−1 = diag( 1
δ1
, . . . , 1

δn
),

then the zero solution of (8.5.1) is globally asymptotically stable.

PROOF. We construct a positive definite and radially unbounded Lyapunov func-
tional as follows:

(8.5.2)V
(

x(t), t
) =

n
∑

i=1

2pi

xi∫

0

fi(xi) dxi +
n
∑

j=1

ξi

δi

t∫

t−τi (t)
gi
(

x(s)
)

ds.

Differentiating V (x(t), t)with respect to time t along the solution of (8.5.1) yields

dV (x(t), t)

dt
=

n
∑

i=1

n
∑

j=1

2piaij fi
(

xi(t)
)

fj
(

xj (t)
)

+ 2
n
∑

i=1

n
∑

j=1

pibij fi
(

xi(t)
)

gj
(

xj
(

t − τj (t)
))

+
n
∑

i=1

ξi

δi
g2
i

(

xi(t)
)−

n
∑

i=1

ξi

δi
g2
i

(

xi
(

t − τi(t)
))(

1− τ̇i (t)
)

�
n
∑

i=1

n
∑

j=1

2piaij fi
(

xi(t)
)

fj
(

xj (t)
)

+
n
∑

i=1

n
∑

j=1

2pibij fi
(

xi(t)
)

fj
(

xj
(

t − τj (t)
))
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+
n
∑

i=1

ξi

δi
f 2
i

(

xi(t)
)−

n
∑

i=1

ξig
2
i

(

xi
(

t − τi(t)
))

�
(

f (x(t))

g(x(t − τ(t)))

)T [
PA++AT P + ξδ−1 PB

BT P −ξ
]

×
(

f (x(t))

g(x(t − τ(t)))

)

< 0 when x �= 0,

where

f
(

x(t)
) = (

f1
(

x1(t)
)

, . . . , fn
(

xn(t)
))T

g
(

x
(

t − τ(t)
)) = (

g1
(

x1
(

t − τ1(t)
))

, . . . , gn
(

xn
(

t − τn(t)
)))T

.

Thus, the conclusion is true. �

Particularly, choosing P = In, we have

COROLLARY 8.5.2. If the conditions (1) and (2) in Theorem 8.5.1 hold, and
(3)

[

A+ AT + ξδ−1 B

BT −ξ
]

is negative definite, then the conclusion in Theorem 8.5.1 holds.

REMARK 8.5.3. It is generally assumed that τ̇j (t) � 0 in the literature. The
identity matrix In is often used to replace ξ , i.e., using the negative definite matrix

[

PA+ AT P + In PB

BT P −In
]

to replace condition (3) in Theorem 8.5.1. Here, we use ξ to replace In so that ξ or
ξ1, . . . , ξn can be appropriately chosen depending upon the diagonal elements of
PA+ AT P . For example, when the diagonal elements of PA+ AT P , 2piaii >
−1, choosing In would not satisfy the conditions. Therefore, sometimes one can
adjust ξ1, . . . , ξn to satisfy the conditions in Theorem 8.5.1 or Corollary 8.5.2.

EXAMPLE 8.5.4. Consider a 2-dimensional nonlinear system with constant time
delays:

(8.5.3)

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dx1
dt
= − 1

2f1(x1(t))+ 8f2(x2(t))

+ 1
4f1(x1(t − τ1))+ 1

5f2(x2(t − τ2)),

dx2
dt
= −8f1(x1(t))− f2(x2(t))

− 1
5f1(x1(t − τ1))+ 1

4f2(x2(t − τ2)),
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where τi = constant, i = 1, 2, fi(0) = 0, i = 1, 2, satisfying the basic assump-
tions in Theorem 8.5.1.

Obviously,

[

A+ AT + I2 B

BT −I2

]

=

⎡

⎢
⎢
⎢
⎢
⎣

−1+ 1 0 1
4

1
5

0 −2+ 1 − 1
5

1
4

1
4 − 1

5 −1 0
1
5

1
4 0 −1

⎤

⎥
⎥
⎥
⎥
⎦

is not negative definite, but negative semi-definite.
If we choose ξ1 = 1

2 and ξ2 = 1, then

[

A+ AT + ξ B

BT −ξ
]

=

⎡

⎢
⎢
⎢
⎢
⎣

− 1
2 0 1

4
1
5

0 −1 − 1
5

1
4

1
4 − 1

5 − 1
2 0

1
5

1
4 0 −1

⎤

⎥
⎥
⎥
⎥
⎦

is negative definite. So the conditions in Corollary 8.5.2 are satisfied. Thus, the
zero solution of Example 8.5.4 is globally asymptotically stable.

In the following, we discuss another more general class of nonlinear time-delay
systems with separable variables, described by

dxi

dt
=

n
∑

j=1

aijfj
(

xj (t)
)+

n
∑

j=1

bij gj
(

xj
(

t − τij (t)
))

,

(8.5.4)i = 1, 2, . . . , n,

where τij (t) �≡ τj (t), and fj (·) satisfies the basic assumptions given for sys-
tem (8.5.1).

THEOREM 8.5.5. If the following conditions are satisfied for system (8.5.4)

(1) fj (xj )xj > 0 when xj �= 0;
(2) τij (t) is differentiable and 1− τ̇ij (t) � δij = constant > 0;
(3) |gi(·)| � fi(·);
(4) A = (aij )m×n is an M matrix;

then the zero solution of (8.5.4) is globally asymptotically stable. Here,

aij =
{−aij , i = j = 1, 2, . . . , n

−|aij | − |bij |
δij

, i = j = 1, 2, . . . , n, i �= j.
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PROOF. Since A = (aij )m×n is an M matrix, there exists positive numbers pi >
0, i = 1, 2, . . . , n, such that

pjajj +
n
∑

i=1
i �=j

pi |aij | +
n
∑

i=1

pi
|bij |
δij

< 0, j = 1, 2, . . . , n.

Construct a positive definite and radially unbounded Lyapunov functional:

(8.5.5)V
(

x(t), t
) =

n
∑

i=1

pi
∣
∣xi(t)

∣
∣+

n
∑

i=1

n
∑

j=1

pi
|bij |
δij

t∫

t−τij (t)

∣
∣gj

(

xj (s)
)∣
∣ ds.

Taking the Dini derivative of V (x(t), t) along the solution of (8.5.4) yields

D+V
(

x(t), t
)

�
n
∑

i=1

piD
+∣∣xi(t)

∣
∣+

n
∑

i=1

n
∑

j=1

pi
|bij |
δij

∣
∣gj

(

xj (t)
)∣
∣

−
n
∑

i=1

n
∑

j=1

pi
|bij |
δij

∣
∣gj

(

xj
(

t − τij (t)
))∣
∣
(

1− τ̇ij (t)
)

�
n
∑

j=1

pjajj
∣
∣fj

(

xj (t)
)∣
∣+

n
∑

i=1
i �=j

pi
∣
∣aij

∣
∣
∣
∣fj

(

xj (t)
)∣
∣

+
n
∑

i=1

pi |bij |
∣
∣gj

(

xj
(

t − τij (t)
))∣
∣

+
n
∑

j=1

n
∑

i=1

pi
|bij |
δij

∣
∣gj

(

xj (t)
)∣
∣

−
n
∑

j=1

n
∑

i=1

pi |bij |
∣
∣gj

(

xj
(

t − τij (t)
))∣
∣

�
n
∑

j=1

(

pjajj +
n
∑

i=1
i �=j

pi |aij | +
n
∑

i=1

pi
|bij |
δij

)

∣
∣fj

(

xj (t)
)∣
∣

< 0 when x �= 0.

So, the conclusion of Theorem 8.5.5 is true. �

COROLLARY 8.5.6. If the conditions (1), (2) and (3) in Theorem 8.5.5 hold, and

ajj +
n
∑

i=1
i �=j

|ajj | +
n
∑

i=1

|bjj |
δij

< 0,
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or

aii +
n
∑

j=1
j �=i

|ajj | +
n
∑

j=1

|bjj |
δij

< 0,

then the conclusion of Theorem 8.5.5 holds.

Since the conditions in Corollary 8.5.6 imply that Aij (aij )n×n is an M matrix,
the conclusion of Corollary 8.5.6 is true.

REMARK 8.5.7. In Theorems 8.5.1, 8.5.5 and in Corollary 8.5.6, when the time
delays are constants (τij (t) = τij = constant), or τ̇ij (t) � 0, the conclusions still
hold.

EXAMPLE 8.5.8. Consider the following nonlinear system with variable time
delays:

(8.5.6)

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1(t)
dt

= a11f1(x1(t))+ a12f2(x2(t))+ b11g1(x1(t − τ11(t)))

+ b12g2(x2(t − τ12(t)))

= −3x3
1(t)+ 1

2x
5
2(t)+ 1

2
2x1(t− 1

2 sin(t))

1+x2
1 (t− 1

2 sin(t))
x3

1(t − 1
2 sin(t))

+ 1
2e
−x2

2 (t− 1
3 cos(t))x5

2(t − 1
3 cos(t)),

dx2(t)
dt

= a21f1(x1(t))+ a22f2(x2(t))+ b21g1(x1(t − τ11(t)))

+ b22g2(x2(t − τ22(t)))

= 1
2x

3
1(t)− 3x5

2(t)+ 2
3

2x1(t− 1
3 sin(t))

1+x2
1 (t− 1

2 sin(t))
x3

1(t − 1
3 sin(t))

+ 2
3e
−x2

2 (t− 1
3 cos(t))x5

2(t − 1
3 cos(t)),

where 1− τ̇i1(t) � 1
2 = δi1, i = 1, 2, and 1− τ̇i2(t) � 2

3 = δi2, i = 1, 2.
Obviously,

∣
∣g1(x1)

∣
∣ =

∣
∣
∣
∣

2x1

1+ x2
1

x3
1

∣
∣
∣
∣
� x3

1 =
∣
∣f1(x1)

∣
∣,

∣
∣g2(x2)

∣
∣ = ∣

∣e−x2
2x5

2

∣
∣ � x5

2 =
∣
∣f2(x2)

∣
∣,

a11 + |a21| + |b11|
δ11

+ |b21|
δ21

= −3+ 1

2
+ 1

2

1
1
2

+ 2

3

1
1
2

= −3+ 1

2
+ 1+ 4

3
= −1

6
< 0,
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a22 + |a12| + |b12|
δ12

+ |b22|
δ22

= −3+ 1

2
+ 2

3

3

2
+ 2

3

3

2

= −1

2
< 0.

Hence, this Example 8.5.8 satisfies all the conditions in Corollary 8.5.6, and so
the zero solution of (8.5.6) is globally asymptotically stable.

Next we consider nonlinear time-varying system with varying time delays:

(8.5.7)
dxi

dt
=

n
∑

j=1

aij (t)fj xj (t)+
n
∑

j=1

bij (t)gj xj
(

t − τj (t)
)

,

where f (·), g(·) and τj (t) satisfy the conditions given in (8.5.1) and (8.5.4).
A(t) = (aij (t))n×n and B(t) = (bij (t))n×n are continuous matrix functions.
The condition (1) and (2) in Theorem 8.5.1 still hold, but only to replace Con-
dition (3) by the following: there exist positive definite diagonal matrices P =
diag(p1, . . . , pn) and ξ = diag(ξ1, . . . , ξn) such that

[

PA(t)+ AT (t)P + ξδ−1 PB(t)

BT (t)P −ξ
]

is negative definite, then the zero solution of (8.5.7) is globally asymptotically
stable. However, it is very difficult to verify whether a time varying matrix is
negative definite or not.

Similarly, if the conditions (1), (2) and (3) in Theorem 8.5.5 still hold, but
condition (4) is changed to that A(aij (t))n×n is an M matrix, where

(8.5.8)aij (t) =
{−aij (t) for i = j = 1, . . . , n,

−∣∣aij (t)
∣
∣− |bij (t)|

δij
for i, j = 1, . . . , n, i �= j,

then the zero solution of (8.5.7) is globally asymptotically stable. Again, it is very
difficult to verify whether a time varying matrix is an M matrix or not.

If the conditions in Corollary 8.5.6 are changed to

ajj (t)+
n
∑

i=1
i �=j

∣
∣aij (t)

∣
∣+

n
∑

i=1

|bij (t)|
δij

< 0

or

aii(t)+
n
∑

j=1
j �=i

∣
∣aij (t)

∣
∣+

n
∑

j=1

|bij (t)|
δij

< 0,

(then the zero solution of (8.8.7) is globally asymptotically stable), then these
conditions are relatively easy to verify.
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For convenience in verifying the conditions, in the following we present some
results with stronger conditions.

THEOREM 8.5.9. If the following conditions are satisfied for system (8.5.7):

(1) fi(xi)xi > 0 when xi �= 0, fi(0) = 0,
∫ ±∞

0 fi(xi) dxi = +∞;

(2) τj (t) is differentiable and 1− τ̇j (t) � δj = constant > 0;
(3) |gi(·)| � |fi(·)|;
(4) there exists positive definite diagonal matrices P = diag(p1, . . . , pn) > 0

and ξ = diag(ξ1, . . . , ξn) > 0 such that
[

PA∗ + A∗T P + ξδ−1 PB∗
B∗T P −ξ

]

is negative definite;

then the zero solution of (8.5.7) is globally asymptotically stable. Here,

a∗ij =
{

a∗ii = supt∈[t0,+∞){aii(t)}, i = j = 1, . . . , n,

a∗ij = supt∈[t0,+∞) |aij (t)|, i �= j, i, j = 1, . . . , n,

b∗ij = sup
t∈[t0,+∞)

∣
∣bij (t)

∣
∣, j = 1, . . . , n.

PROOF. Construct the positive definite and radially unbounded Lyapunov func-
tional:

V
(

x(t), t
) =

n
∑

i=1

xi∫

0

fi(xi) dxi +
n
∑

i=1

ξiδ
−1
i

t∫

t−τi (t)
g2
i

(

xi(s)
)

ds.

Then, we have

dV

dt

∣
∣
∣
∣
(8.5.7)

�
n
∑

i=1

pifi(xi)
dxi

dt
+

n
∑

i=1

ξiδ
−1
i g2

i

(

xi(t)
)

−
n
∑

i=1

ξig
2
i

(

xi
(

t − τi(t)
))(

1− τ̇i (t)
)

�
n
∑

i=1

pia
∗
ij

∣
∣fi
(

xi(t)
)∣
∣
∣
∣fj

(

xi(t)
)∣
∣

+
n
∑

i=1

pib
∗
ij

∣
∣fi
(

xi(t)
)∣
∣
∣
∣gj

(

xi
(

t − τj (t)
))∣
∣

+
n
∑

i=1

ξiδ
−1
i f 2

j

(

xi(t)
)−

n
∑

i=1

ξig
2
i

(

xi
(

t − τi(t)
))
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�
( |f (x(t))|
|g(x(t − τ(t)))|

)T [
PA∗ + A∗P + ξδ−1 PB∗

B∗T P −ξ
]

×
( |f (x(t))|
|g(x(t − τ(t)))|

)

< 0 when x �= 0,

where,
∣
∣f
(

x(t)
)∣
∣ = (∣

∣f1
(

x1(t)
)∣
∣, . . . ,

∣
∣fn

(

xn(t)
)∣
∣
)T

and
∣
∣g
(

x
(

t − τ(t)
))∣
∣ = (∣

∣g1
(

x1
(

t − τ(t)
))∣
∣, . . . ,

∣
∣gn

(

xn
(

t − τn(t)
))∣
∣
)T
.

Thus, the conclusion is true. �

COROLLARY 8.5.10. If the conditions (1) and (2) in Theorem 8.5.9 hold, and
condition (3) is changed to

[

A∗ + A∗T + ξδ−1 B∗
B∗T −ξ

]

being negative definite, then the zero solution of (8.5.7) is globally asymptotically
stable.

Now we allow τij (t) = τj (t) in (8.5.7), yielding

THEOREM 8.5.11. If condition (1) in Theorem 8.5.9 holds, and |gi(·)| � |fi(·)|,
(2) τij (t) is differentiable and 1− τ̇ij (t) � δij = constant > 0, j = 1, 2, . . . , n;
(3) there exist pi > 0, i = 1, 2, . . . , n, such that

pja
∗
jj +

n
∑

i=1
i �=j

pia
∗
ij +

n
∑

i=1

pi
b∗ij
δj

< 0;

then the zero solution of (8.5.7) is globally asymptotically stable.

PROOF. Construct the positive definite and radially unbounded Lyapunov func-
tional:

V
(

x(t), t
) =

n
∑

i=1

pi
∣
∣xi(t)

∣
∣+

n
∑

i=1

n
∑

j=1

pi
b∗ij
δij

t∫

t−τj (t)

∣
∣gi
(

xi(s)
)∣
∣ ds,
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from which we obtain

D+V
(

x(t), t
)∣
∣
(8.5.7) �

n
∑

j=1

piajj (t)
∣
∣fj

(

xj (t)
)∣
∣+

n
∑

i=1
i �=j

pi
∣
∣aij (t)

∣
∣
∣
∣fj

(

xj (t)
)∣
∣

+
n
∑

i=1

pi
∣
∣bij (t)

∣
∣
∣
∣gj

(

xj
(

t − τj (t)
))∣
∣

+
n
∑

i=1

n
∑

j=1

pi
bij

δij

∣
∣gj

(

xj (t)
)∣
∣

−
n
∑

i=1

n
∑

j=1

pi
b∗ij
δij

∣
∣gj

(

xj
(

t − τij (t)
))∣
∣
(

1− τ̇ij
)

�
n
∑

j=1

(

pia
∗
jj +

n
∑

i=1
i �=j

pia
∗
ij +

n
∑

i=1

Pi
b∗ij
σ

)

∣
∣fj

(

xj (t)
)∣
∣

< 0 when x �= 0.

So the zero solution of (8.5.7) is globally asymptotically stable. �

COROLLARY 8.5.12. If the conditions (1) and (2) in Theorem 8.5.9 hold, and
(3)

a∗jj +
n
∑

i=1
i �=j

a∗ij +
n
∑

i=1

b∗ij
δij

< 0,

or

a∗ii +
n
∑

j=1
j �=i

a∗ij +
n
∑

j=1

b∗ij
δ

< 0,

then the zero solution of (8.5.7) is globally asymptotically stable.

8.6. Application of inequality with time delay and comparison
principle

Differential inequality and comparison principle play a great role in the study of
stability in ordinary differential equation. It is Halanay who first extended dif-
ferential inequality to differential difference inequality. Here, we first extend the
Halanay one-dimensional time-delay differential inequality from standard deriv-
ative to Dini derivative inequality.
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LEMMA 8.6.1 (Extended Halanay one-dimensional time-delay differential in-
equality). Assume that constants a > b > 0, and that function x(t) is a non-
negative unitary continuous function on [t0 − τ, t] with the following inequality
held

(8.6.1)D+x(t) � −ax(t)+ bx(t),

where

x(t) := sup
t−τ�s�t

{

x(s)
}

, τ � 0,

is a constant. Then, there exists

(8.6.2)x(t) � x(t0)e
−λ(t−t0), ∀t � t0,

where λ is the unique positive root of the following transcendent equation:

(8.6.3)λ = a − beλτ .

PROOF. First, we prove that the transcendent equation (8.6.3) has only one posi-
tive solution. To achieve this, consider

Δ(μ) = μ− a + beμt , μ ∈ [0, a],
Δ(0) = −a + b < 0, Δ(a) = beat > 0,

Δ′(μ) = 1+ bτeμt > 0,

whereΔ(μ) is a strictly monotone increasing function. Thus, there exists a unique
λ ∈ (0, α) on [0, a] satisfying (8.6.3).

Let

(8.6.4)y(t) = x(t0)e
−λ(t−t0), t0 − τ � t < β.

Assume k > 1 is an arbitrary constant. Then x(t) < ky(t) holds on t0 − τ � t �
t0.

Now, suppose that for some t ∈ (t0, β), where β > t0 is arbitrary, we have
x(t) = ky(t). Since x(t) and y(t) are continuous functions, there must exist t1 ∈
(t0, β) such that

(8.6.5)x(t) < ky(t), t0 − τ � t < t1, x(t1) < ky(t1).

Thus, D+x(t1) � ky′(t1).
On the other hand, due to (8.6.1), we have

D+x(t1) � −ax(t1)+ bx(t1) < −aky(t1)+ bky(t1 − τ) = ky′(t1),
i.e.,

(8.6.6)D+x(t1) < ky′(t1).
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This shows that (8.6.5) and (8.6.6) are contradictory, thus, for any β > t we have

x(t) < ky(t) ∀t ∈ [t0, β].
Finally, letting k→ 1 results in

(8.6.7)x(t) � y(t) = x(t0)e
−λ(t−t0).

The proof is complete. �

Next, we extend the case of one-dimensional inequality to higher dimensional
cases.

Assume that Cn is a set consisting of all functions f ∈ C[I × Rn × Cn,Rn].

DEFINITION 8.6.2. G(t, x, y) is said to be an Hn class function, if the following
conditions are satisfied:

(1) ∀t ∈ I, ∀x ∈ Rn, ∀y(1), y(2) ∈ Cn, when y(1) � y(2) (i.e., y(1)i � y
(2)
i ,

i = 1, 2, . . . , n) it holds

(8.6.8)G
(

t, x, y(1)
)

� G
(

t, x, y(2)
);

(2) ∀t ∈ I , ∀y ∈ Cn, ∀x(1), x(2) ∈ Rn, when

(8.6.9)x(1) � x(2) (but x(1)i = x
(2)
i for some i)

it holds

(8.6.10)gi
(

t, x(1), y
)

� gi
(

t, x(2), y
)

for these i’s.

LEMMA 8.6.3. If a continuous n-dimensional vector function

x(t), y(t), x(t) := sup
ξ∈[t−τ,t]

x(ξ), y(t) := sup
ξ∈[t−τ,t]

y(ξ)

satisfies the following conditions:

(1) x(θ) < y(θ), θ ∈ [−τ, 0];
(2) D+yi(t) > gi(t, y(t), y(t)), i = 1, 2, . . . , n, t � 0; D+xi(t) � gi(t, x(t),

x(t)), i = 1, 2, . . . , n, t � 0;

then x(t) < y(t) for t > 0. Here,

G
(

t, x(t), x(t)
) = (

g1
(

t, x(t), x(t)
)

, . . . , gn
(

t, x(t), x(t)
))T

.

PROOF. By contradiction. Suppose there exists a constant η > 0 and some i such
that

xi(η) = yi(η).
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Let Z = {η | xi(η) = yi(η) for some i}. Obviously, Z is not empty. Thus, from
condition (1), ∃η0 = infη∈z η such that

x(θ) < y(θ), θ ∈ [−τ, 0],
and thus η0 > 0, x(θ) � y(η0) and x(θ) � y(η). This implies that there exists j ,
1 � j � n, such that

xj (η0) = yj (η0).

From G ∈ Hn and condition (2) we have

D+xj (t0) � gj
(

η0, x(η0), x(η0)
)

(8.6.11)� gj
(

η0, y(η0), y(η0)
)

< D+yj (η0).

However, when 0 < t < η0, we have

x(t) < y(t), i.e., xj (t) < yj (t), but xj (η0) < yj (η0).

Hence, we obtain

(8.6.12)D+xj (η0) � D+yj (η0).

�

Consider the following n-dimensional varying time delay linear system:

(8.6.13)
dxi

dt
=

n
∑

j=1

ãij xj (t)+
n
∑

j=1

b̃ij x
(

t − τj (t)
)

, i = 1, 2, . . . , n,

where aij ’s are real coefficients and 0 � τj (t) � τj = constant, j = 1, 2, . . . , n.

THEOREM 8.6.4. Assume that the following conditions are satisfied:

(1)

D+|xi | �
n
∑

j=1

aij
∣
∣xj (t)

∣
∣+

n
∑

j=1

bij x
(

t − τj (t)
)

, i = 1, 2, . . . , n,

where

aij =
{
ãii , i = j = 1, . . . , n,
|ãij |, i �= j, i, j = 1, . . . , n,

bij =
∣
∣b̃ij

∣
∣, i, j = 1, . . . , n,

aij � 0, i �= j, bij � 0, i, j = 1, . . . , n,
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and
n
∑

i=1

xi(t0) > 0, xj (t0) = sup
t−τ�s�t

{

xj (s)
};

(2) M := −(aij + bij )n×n is an M matrix.

Then, there exist constants γi > 0, ai > 0 such that the solution of differential
inequality (8.6.3) has the following estimation

(8.6.14)
∣
∣xi(t)

∣
∣ � γi

[
n
∑

j=1

∣
∣xj (t0)

∣
∣

]

e−a(t−t0).

This implies that the zero solution of (8.6.13) is globally exponentially stable.

PROOF. Let

gi
(

t,
∣
∣x(t)

∣
∣,
∣
∣x(t)

∣
∣
) =

(
n
∑

j=1

aij
∣
∣xj (t)

∣
∣+

n
∑

j=1

bij
∣
∣xj (t)

∣
∣

)

,

G
(

t,
∣
∣x(t)

∣
∣,
∣
∣x(t)

∣
∣
)

= (

g1
(

t,
∣
∣x(t)

∣
∣,
∣
∣x(t)

∣
∣
)

, . . . , gn
(

t,
∣
∣x(t)

∣
∣,
∣
∣x(t)

∣
∣
))T ∈ Hn.

Then from condition (2) we know that there exist δ > 0 and dj > 0 (j = 1, 2,
. . . , n) such that

(8.6.15)
n
∑

j=1

(aij + bij )dj < −δ, i = 1, 2, . . . , n.

Choose 0 < a 	 1 such that

(8.6.16)adi +
n
∑

j=1

aij di +
n
∑

j=1

bij dj e
aτ < 0.

When t ∈ [t0 − τ, t0], j �= i, choose R � 1 such that

(8.6.17)Rdie
aτ > 1.

∀ε > 0, let

(8.6.18)qi(t) = Rdi

[
n
∑

j=1

∣
∣xj (t0)

∣
∣+ ε

]

e−a(t−t0).

Then, from (8.6.16) we have

D+qi(t) = −aRdi
[

n
∑

j=1

∣
∣xj (t0)

∣
∣+ ε

]

e−a(t−t0)
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�
n
∑

j=1

[

aij dj + bij dj e
aτ
]

R

[
n
∑

j=1

∣
∣xj (t0)

∣
∣+ ε

]

e−a(t−t0)

=
n
∑

j=1

aij djR

[
n
∑

j=1

∣
∣xj (t0)

∣
∣+ ε

]

e−a(t−t0)

+
n
∑

j=1

bij djR

[
n
∑

j=1

∣
∣xj (t0)

∣
∣+ ε

]

e−a(t−t0)eaτ

�
n
∑

j=1

aij qj (t)+
n
∑

j=1

bij qj (t)

= gi
(

t, q(t), q(t)
)

,

which indicates that D+qi(t) > gi(t, q(t), q(t)). Thus, when t ∈ [t0 − τ, t0], it
follows from (8.6.17) that

qi(t) = Rdi

[
n
∑

j=1

∣
∣xj (t0)

∣
∣+ ε

]

e−a(t−t0) >
n
∑

j=1

∣
∣xj (t0)

∣
∣+ ε.

Now, let

∣
∣xi(t)

∣
∣ �

n
∑

j=1

∣
∣xj (t0)

∣
∣+ ε.

Then, when t ∈ [t0 − τ, t0], from Lemma 8.6.3 we know that

∣
∣xi(t)

∣
∣ < qi(t) = Rdi

[
n
∑

j=1

∣
∣xj (t0)

∣
∣+ ε

]

e−a(t−t0).

Finally, let ε→ 0+, Rdi = γi . Then, by using Theorem 8.6.4, we obtain

∣
∣xi(t)

∣
∣ � γi

[
n
∑

j=1

∣
∣xj (t0)

∣
∣

]

e−a(t−t0) when t � t0, i = 1, . . . , n,

and thus the zero solution of (8.6.13) is globally exponentially stable. �

REMARK 8.6.5. The greatest advantage of using differential inequality method
is that it avoids the strict constrains that the delay I (t) is differentiable when ap-
plying the Lyapunov functional method. In this section, we only discussed linear
differential systems with constant coefficients. More applications will be given in
Chapter 10 for neural networks. Readers can try, instead of Lyapunov functional
method, to employ Lyapunov function method with Razumikhin principle to get
similar results.
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8.7. Algebraic method for LDS with constant coefficients and
time delay

In this section, we introduce algebraic methods for studying the stability of linear
delay systems (LDS) with constant coefficients and constant time delays.

Consider a general linear system with constant coefficients and constant time
delay [153]

(8.7.1)
dx

dt
= A0x(t)+

N
∑

k=1

Akx(t − γk · r),

where x ∈ Rn, every Ak is an n × n real constant matrix, r = (r1, . . . , rm) and
γk = (γk1 , . . . , γkm), γkj > 0 are given nonnegative integers, and

γkr =
m
∑

j=1

γkj rj (k = 1, 2, . . . , m).

The characteristic equation of (8.7.1) is

(8.7.2)f (λ, r, A) = det

[

λI − A0 −
n
∑

k=1

Ake
−λγk ·r

]

= 0,

where A0, A2, . . . , An ∈ Rn2
.

Similar to linear systems described by ordinary differential equations with con-
stant coefficients, the distribution of the roots of characteristic equation (8.7.2)
plays the key role in determining the stability of the zero solution of the system.

LEMMA 8.7.1. The necessary and sufficient conditions for the zero solution
of (8.7.1) being time delay independent, asymptotically stable are

(1) when the time delay is zero, all roots of

f (λ, 0, A) = det

[

λI −
N
∑

k=0

Ak

]

= 0

are located on the open left-half of the complex plane, i.e., Re λ < 0;

(2)

f (iy, r, A) = det

[

iyI − A0 −
N
∑

k=1

Ake
−λrk ·r

]

�= 0 ∀y ∈ R.

The basic idea of this lemma is simple. Condition (1) implies that when r = 0,
the roots of (8.7.2) are all located in the open left-half of the complex plane.
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Because of the continuous dependence of the roots on the coefficients, if some
roots move to right-half of the complex plane or reach the imaginary axis, they
must reach the imaginary axis at some τ0 > 0. However, condition (2) excludes
this possibility, and thus the conclusion is true.

If (8.7.2) has eigenvalues with positive real part, then the zero solution of (8.7.2)
is unstable. But it is very difficult to verify the conditions (1) and (2) for the
characteristic equation (8.7.2). In this section, we will give some simple sufficient
conditions in determining stability.

DEFINITION 8.7.2. System (8.7.1) is said to be asymptotically stable about
(r, A), if its characteristic equation has only eigenvalues with negative real parts,
i.e., Re λ < 0.

For given r ∈ (R+)m, define the radial line Γr passing through r as

(8.7.3)Γr :=
{

r | dr ∈ (R+)m, d � 0
}

.

DEFINITION 8.7.3. For given r0 ∈ (R+)M , the asymptotically stable cone, Sr0 ,
about r is defined as

Sr0 := {

A ∈ (Rn2(N+1)) | (8.7.1) is asymptotically stable about (r, A)

(8.7.4)for every r ∈ Γr0

};
and the asymptotically stable cone S is defined as [153]

(8.7.5)S =
⋂

r

(

Sr : r ∈
(

R+
)m)

.

Let Re λ(A) denote the real part of the eigenvalues of matrix A. To obtain some
practically useful criteria, we need the following lemma.

LEMMA 8.7.4. (See [280].) Assume G(gij )n×n is a complex matrix, and
H(hij )n×n is an M matrix, where

hij =
{ |gij |, i = j = 1, 2, . . . , n,
−|gij |, i �= j, i, j = 1, 2, . . . , n.

Then detG(gij ) �= 0.

PROOF. Since M is an M matrix, there exist constants βi > 0 (i = 1, 2, . . . , n)
such that

(8.7.6)|gii |βi −
n
∑

j=1
j �=i

βi |gij | > 0 (i = 1, 2, . . . , n).
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From the Gershgorin disk theorem we know that zero is not an eigenvalue of
matrix G diag(β1, . . . , βn). Thus,

det(G) diag(β1, . . . , βn) = det(G) det
(

diag(β1, . . . , βn)
) �= 0.

But

det
(

diag(β1, . . . , βn)
) =

n
∏

i=1

βi �= 0.

Therefore, detG �= 0. The lemma is proved. �

LEMMA 8.7.5. (See [280].) For the two given matrices H(hij ) and Ĥ (h̃ij ), if

(1) H is an M matrix;
(2) hij � h̃ij , i, j = 1, 2, . . . , n, i, j = 1, 2, . . . , n, h̃ij � 0, i �= j, i, j =

1, 2, . . . , n;

then Ĥ is also an M matrix.

PROOF. From the properties of M matrix we know that H is an M matrix, if and
only if there exist n constants βi > 0 (i = 1, 2, . . . , n) such that

∑n
j=1 hijβj > 0.

However, h̃ii � hii > 0, i = 1, 2, . . . , n, hii � h̃ii � 0, i �= j, i, j = 1, 2,
. . . , n. Thus,

n
∑

j=1

h̃ij βj �
n
∑

j=1

hijβj > 0,

which means that H̃ is an M matrix. �

Let the elements of Ak be a(k)ij , i.e., Ak = (a
(k)
ij )n×n.

THEOREM 8.7.6. (See [280].) Assume

bij :=
⎧

⎨

⎩

∣
∣a0
ii

∣
∣−∑N

k=1

∣
∣a
(k)
ii

∣
∣, i = j = 1, 2, . . . , n,

−∑N
k=1

∣
∣a
(k)
ij

∣
∣, i �= j, i, j = 1, 2, . . . , n.

If B(bij )n×n is an M matrix, and Re λ(
∑N

k=0 Ak) < 0 (particularly, a(0)ii <

0, i = 1, 2, . . . , n), then A ∈ S, i.e., the zero solution of (8.7.1) is globally
asymptotically stable.
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PROOF. Define

B̂
(

b̂ij
)

:=

⎡

⎢
⎢
⎢
⎣

∣
∣a
(0)
11 − iy

∣
∣−∑N

k=1

∣
∣a
(k)
11

∣
∣ −∑N

k=0

∣
∣a
(k)
12

∣
∣ · · · −∑N

k=0

∣
∣a
(k)
1n

∣
∣

−∑N
k=0

∣
∣a
(k)
21

∣
∣

∣
∣a0

22 − iy| −∑N
k=1 |a(k)22

∣
∣ · · · −∑N

k=0

∣
∣a
(k)
2n

∣
∣

.

.

.
.
.
.

.

.

.
.
.
.

−∑N
k=0

∣
∣a
(k)
n1

∣
∣ −∑n

k=0

∣
∣a
(k)
n2

∣
∣ · · · ∣

∣a
(0)
nn − iy

∣
∣−∑N

k=1

∣
∣a
(k)
nn

∣
∣

⎤

⎥
⎥
⎥
⎦
.

Since B(bij )n×n is an M matrix and satisfies

b̂ij = bij � 0, i �= j,

(8.7.7)b̂ii =
∣
∣a
(0)
ii − iy

∣
∣−

N
∑

k=1

∣
∣a
(k)
ii

∣
∣ �

∣
∣a
(0)
ii

∣
∣−

N
∑

k=1

∣
∣a
(k)
ii

∣
∣ = bii > 0.

By Lemma 8.7.4, we know that B̂(b̂ij )n×n is an M matrix. Further, also from
Lemma 8.7.4, we have

det
sj∈C
|sj |=1

=
[

iyI − A0 −
N
∑

k=1

Aksrk1
, . . . , srkm

]

�= 0,

which, together with the condition Re(
∑N

k=1 Ak) < 0, we know that the zero
solution of (8.7.1) is asymptotically stable by Lemma 8.7.1. �

COROLLARY 8.7.7. If bii > 0 (i = 1, 2, . . . , n), Re λ(
∑n

k=1 Ak) < 0 (par-

ticularly, a(0)ii < 0, i = 1, 2, . . . , n), and any one of the following conditions is
satisfied:

(1) bjj >

N
∑

i=1
i �=j

|bij |, j = 1, 2, . . . , n;

(2) bii >

n
∑

j=1
j �=i

|bij |, i = 1, 2, . . . , n;

(3) bii >
1

2

n
∑

j=1
j �=i

(|bij | + |bji |
)

, i = 1, 2, . . . , n;

(4)
n
∑

i=1
i �=j

( |bij |
|bii |

)2

< 1;
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(5) b2
ii >

n
∑

j=1
j �=i

1

2

(|biibij | + |bjj bji |
);

then A ∈ S, the zero solution of system (8.7.1) is asymptotically stable.

PROOF. According to the property of M matrix, we know that any of the above
conditions implies that B(bij )n×n is an M matrix. Thus, the conditions of Theo-
rem 8.7.6 hold. �

EXAMPLE 8.7.8. Consider the following system

(8.7.8)

(

ẋ1(t)

ẋ2(t)

)

=
[
a
(0)
11 a

(0)
12

a
(0)
21 a

(0)
22

](

x1(t)

x2(t)

)

+
[
a
(1)
11 a

(1)
12

a
(1)
21 a

(1)
22

](

x1(t − τ)

x2(t − τ)

)

,

where τ = constant > 0, and

A0 =
[
a
(0)
11 a

(0)
12

a
(0)
21 a

(0)
22

]

, A1 =
[
a
(1)
11 a

(1)
12

a
(1)
21 a

(1)
22

]

.

Assume that

(1) a
(0)
11 + a

(0)
22 + a

(1)
11 + a

(1)
22 < 0 and

det

[
a
(0)
11 + a

(1)
11 a

(0)
12 + a

(1)
12

a
(0)
21 + a

(1)
21 a

(0)
22 + a

(1)
22

]

> 0;

(2) |a(0)ii | − |a(1)ii | > 0, i = 1, 2, and

(∣
∣a
(0)
11

∣
∣− ∣

∣a
(1)
11

∣
∣
)(∣
∣a
(0)
22

∣
∣− ∣

∣a
(1)
22

∣
∣
)

− (∣
∣a
(0)
12

∣
∣+ ∣

∣a
(1)
12

∣
∣
)(∣
∣a
(0)
21

∣
∣+ ∣

∣a
(1)
21

∣
∣
)

> 0;
then (A0, A1) ∈ S.

Since (A0, A1) ∈ S, if and only if

(1◦) Re λ(A0 + A1) < 0;
(2◦) ∀τ > 0, ∀y ∈ R,

detΔ :=
∣
∣
∣
∣

a
(0)
11 + a

(1)
11 e

−iyτ − iy a
(0)
12 + a

(1)
12 e

−iyτ

a
(0)
21 + a

(1)
21 e

−iyτ a
(0)
22 + a

(1)
22 e

−iyτ − iy

∣
∣
∣
∣
�= 0.

Obviously (1◦) and (1) are equivalent. Now we prove that (2) implies (2◦).
In fact,

|Δ| � (

a
(0)
11 + a

(1)
11 e

−iyτ − iy
)(

a
(0)
22 + a

(1)
22 e

−iyτ − iy
)

− (

a
(0)
12 + a

(1)
12 e

−iyτ )(a(0)21 + a
(1)
21 e

−iyτ )
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�
∣
∣a
(0)
11 + a

(1)
11 cos τy

∣
∣
∣
∣a
(0)
22 + a

(1)
22 cos τy

∣
∣− ∣

∣a
(0)
12

∣
∣+ ∣

∣a
(1)
12

∣
∣
∣
∣a
(0)
21

∣
∣+ ∣

∣a
(1)
21

∣
∣

�
(∣
∣a
(0)
11

∣
∣− ∣

∣a
(1)
11

∣
∣
)(∣
∣a
(0)
22 − a

(1)
22

∣
∣
)− (∣

∣a
(0)
12

∣
∣+ ∣

∣a
(1)
12

∣
∣
)(∣
∣a
(0)
21

∣
∣+ ∣

∣a
(1)
21

∣
∣
)

> 0.

Thus, Δ �= 0 and so (A1, A2) ∈ S. This implies that the zero solution of (8.7.8)
is asymptotically stable.

EXAMPLE 8.7.9. Consider the following scalar equation:

(8.7.9)
dx

dt
= a0x(t)+

N
∑

k=1

akx(t − τk).

From Theorem 8.7.6 we know that if

|a0| >
N
∑

k=1

|ak| and a < 0,

then a ∈ S, which indicates that the zero solution of (8.7.9) is asymptotically
stable.

J. Hale [155] once raised the following question: Does an asymptotically stable
cone have the property of convexity? That is, given A ∈ S and Â ∈ S, does
that αA + (1 − α)Ã also belong to S for 0 � α � 1? The significance of this
question is that if the answer is positive, then any combinations of two convex
asymptotically stable cones yields a new asymptotically stable cone, and thus it
can generate infinite number of asymptotically stable cones.

However, generally, the answer to this question is no, unless the system is a
scalar system or the system has symmetric coefficients.

In the following, we give sufficient conditions for a system to be asymptotically
stable cone.

THEOREM 8.7.10. (See [280].) Assume system (8.7.1) satisfies the following
conditions:

(1) a
(0)
ii < 0, i = 1, 2, . . . , n;

(2)1 bii −
n
∑

j=1,j �=i

1

2
|bij + bji | > 0, i = 1, 2, . . . , n, or

(2)2 bii −
√
√
√
√

n
∑

j=1,j �=i

(biibij + bjj bji)

2
> 0, i = 1, 2, . . . , n or

(2)3 B(bij )n×n is a symmetric M matrix;
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where bij ’s are defined in Theorem 8.7.6. Denote the system satisfying the condi-
tions (1) and (2)q ((q = 1, 2, 3) as Sq ).

Then Sq ⊂ S and Sq is convex.

PROOF. ∀A, Â ∈ S1, ∀α ∈ [01], we have

αA+ (1− α)Â =
(

α

N
∑

k=0

a
(k)
ij + (1− α)

N
∑

k=0

â
(k)
ij

)

.

Since a(0)ii < 0 and ã(0)ii < 0, it holds

αa
(0)
ii + (1− α)ã

(0)
ii < 0, i = 1, 2, . . . , n,

αbii + (1− α)b̃ii > α
|bij + bji |

2
+ (1− α)

|b̃ij + b̃j i |
2

� 1

2

∣
∣αbij + (1− α)b̃ij + αbji + (1− α)b̃ji

∣
∣,

i.e.,

αbii + (1− α)b̃ii − 1

2

∣
∣αbij + (1− α)b̃ij + αbji + (1− α)b̃ji

∣
∣ > 0.

Moreover, αA + (1 − α)Ã ∈ S1, S1 is convex. S1 ∈ S has been proved in Theo-
rem 8.7.6 and Corollary 8.7.7.

Similarly, we can prove that S2 ∈ S is convex.
S3 ∈ S has been proved in Theorem 8.7.6 and Corollary 8.7.7. Now we prove

that S3 is convex. ∀A, Â ∈ S3, ∀α ∈ [01], a(0)ii < 0, â(0)ii < 0 we have

αa
(0)
ii + (1− α)a

(0)
ii < 0, α ∈ [01].

Because B and B̂ are symmetric, so is αB + (1 − α)B̂. Moreover, it is an M

matrix. So, αA+ (1− α)Â ∈ S3. Thus, S3 is convex. �

8.8. A class of time delay neutral differential difference systems

Consider a general neutral differential difference system [139]

(8.8.1)
dx(t)

dt
= f

(

t, x(t), x
(

t − τ(t)
)

, ẋ
(

t − τ(t)
))

,

where x ∈ Rn, f ∈ C[I×Rn×Rn×Rn,Rn], f (t, 0, 0, 0) = 0, 0 � τ(t) < +∞,

x
(

t − τ(t)
) = (

x1
(

t − τ1(t)
)

, . . . , xn
(

t − τn(t)
))

,
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and

ẋ
(

t − τ(t)
) = (

ẋ1
(

t − τ1(t)
)

, . . . , ẋn
(

t − τn(t)
))

.

All results in Theorems 8.2.1 to 8.2.7, about delayed differential difference
equation (8.2.1), can be extended to neutral systems. If we have method to deter-
mine the negative definiteness of dV

dt
about x1, . . . , xn, then similar conclusions

can be obtained. However, generally dV
dt

is a function of 3n variables, it is difficult
to determine whether dV

dt
is negative definite or not.

First, we consider a special class of time-delay linear neutral differential dif-
ference equations. This class of systems was first developed from electrical net-
works.

In the following, we extend the results from the constant time-delay system
(8.2.1) to varying time-delay systems.

Consider the following more general time-varying linear neutral system [139]:

dxi(t)

dt
=

n
∑

j=1

aij (t)xj (t)+
n
∑

j=1

bij (t)xj
(

t − τ
(1)
ij (t)

)

(8.8.2)+
n
∑

j=1

cij (t)ẋj
(

t − τ
(2)
ij (t)

)

,

where

(8.8.3)

ẋj
(

t − τ
(2)
ij (t)

) = dxj (t − τ
(2)
ij (t))

dt
, 0 � τ

(i)
ij (t) � τ

(i)
ij = constant,

(8.8.4)xi(s) = ϕi(s), s ∈ [−τ, 0],
dxi(s)

dt
= ψi(s), s ∈ [−τ, 0], τ = max

1�i,j�n

(

τ
(1)
ij , τ

(2)
ij

)

, i = 1, 2, . . . , n.

Here, ψi (i = 1, 2, . . . , n) is almost piecewise continuous on [−τ, 0], ϕi (i =
1, 2, . . . , n) is bounded and integrable on [−τ, 0], satisfying

dϕi(s)

ds
= ψi(s), i = 1, 2, . . . , n.

THEOREM 8.8.1. Assume that the varying coefficients in (8.8.1) satisfy

(1) aij (t), bij (t), cij (t) are all continuous bounded functions on [−τ,+∞];
(2) there exists a nonnegative constant c such that

max
i�j�n

c∗j := c < 1, where c∗j = sup
t�−τ

n
∑

i=1

∣
∣cij (t)

∣
∣,

(8.8.5)j = 1, 2, . . . , n;



364 Chapter 8. Dynamical Systems with Time Delay

(3) there exist positive constants α and β such that

ajj (t) � −α < 0

and
∣
∣ajj (t)

∣
∣−

n
∑

i=1
i �=j

∣
∣aij (t)

∣
∣−

n
∑

i=1

∣
∣bij

(

t + τ
(2)
ij (t)

)∣
∣ � β > 0,

(8.8.6)t � 0;
(4) τ̇

(i)
ij � 0, i, j = 1, 2, . . . , n;

then the zero solution of (8.8.2) is asymptotically stable.

PROOF. If ẋi (t) has an infinite number of isolated zero points on [0,+∞], then
for any t > 0, choose t∗i such that ẋi does not change its sign on (t∗i , t); if t is a
zero of ẋi , let t∗i = t ; if ẋi has a finite number of isolated zero points on (0,+∞),
let t∗i be the last zero of ẋi ; if ẋi does not have zero points on (0,+∞), let t∗i = 0.

Now, we construct the positive definite and radially unbounded Lyapunov func-
tional:

V (t) =
n
∑

i=1

[

∣
∣xi(t)

∣
∣+ ∣

∣xi
(

t∗i
)∣
∣− c∗i

t∫

t∗i

∣
∣
∣
∣

dxi(t)

ds

∣
∣
∣
∣
ds

]

+
n
∑

j=1

t∫

t−τ (1)ij (t)

∣
∣bij

(

s + τ
(1)
ij (s)

)∣
∣
∣
∣xj (s)

∣
∣ ds

(8.8.7)+
n
∑

j=1

[ t∫

t−τ (2)ij (t)

∣
∣cij

(

s + τ
(2)
ij (s)

)∣
∣
∣
∣ẋj (s)

∣
∣ ds

]

.

From the initial condition and the assumption of the coefficients we know that
V (0) is finite. Thus,

(8.8.8)V (t) �
n
∑

i=1

[∣
∣xi(t)

∣
∣− c∗i

∣
∣xi(t)

∣
∣
]

� (1− c)

n
∑

i=1

∣
∣xi(t)

∣
∣, t � 0.

Using τ̇ (1)ij (t) � 0, we have

D+V |(8.8.2) �
n
∑

i=1

[(
dxi

dt

)

sign xi − c∗i
∣
∣ẋi (t)

∣
∣

]

+
n
∑

j=1

{∣
∣bij

(

t + τ
(1)
ij (t)

)∣
∣
∣
∣xj (t)

∣
∣− ∣

∣bij (t)
∣
∣
∣
∣xj

(

t − τ
(1)
ij (t)

)∣
∣
}(

1− τ̇
(1)
ij (t)

)
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+
n
∑

j=1

{∣
∣cij

(

t + τ
(2)
ij (t)

)∣
∣
∣
∣xj (t)

∣
∣− ∣

∣cij (t)
∣
∣
∣
∣xj

(

t − τ
(2)
ij (t)

)∣
∣
}(

1− τ̇
(2)
ij (t)

)

�
n
∑

i=1

[

−∣∣aii(t)
∣
∣
∣
∣xi(t)

∣
∣+

n
∑

j=1
j �=1

∣
∣aij (t)

∣
∣
∣
∣xj (t)

∣
∣− c∗i

∣
∣ẋi (t)

∣
∣

+
n
∑

j=1

∣
∣bij

(

t + τ
(1)
ij (t)

)∣
∣
∣
∣xj (t)

∣
∣+

n
∑

j=1

∣
∣cij

(

t + τ
(2)
ij (t)

)∣
∣
∣
∣ẋj (t)

∣
∣

]

�
n
∑

j=1

[

−∣∣ajj (t)
∣
∣+

n
∑

i=1
i �=j

∣
∣aij (t)

∣
∣+

n
∑

i=1

∣
∣bij

(

t + τ
(1)
ij (t)

)∣
∣

]

∣
∣xj (t)

∣
∣

+
n
∑

j=1

[
n
∑

i=1

∣
∣cij

(

t + τ
(2)
ij (t)

)∣
∣− c∗j

]

∣
∣ẋj (t)

∣
∣

� −β
n
∑

j=1

∣
∣xj (t)

∣
∣+

n
∑

j=1

[
n
∑

i=1

∣
∣cij

(

t + τ
(2)
ij (t)

)∣
∣− c∗j

]

∣
∣ẋj (t)

∣
∣

(8.8.9)� −β
n
∑

j=1

∣
∣xj (t)

∣
∣.

It then follows from (8.8.9) that

V (t) � V (0)− β

t∫

0

(
n
∑

i=1

∣
∣xi(s)

∣
∣

)

ds.

Further, by using (8.8.8) we obtain

(8.8.10)(1− c)

n
∑

i=1

∣
∣xi(t)

∣
∣+ β

t∫

0

(
n
∑

i=1

∣
∣xi(s)

∣
∣

)

ds � V (0) <∞, t � 0,

which means that xi(t) (i = 1, . . . , n) is bounded.
From (8.8.2), we have

∣
∣
∣
∣

dx

dt

∣
∣
∣
∣
=
∣
∣
∣
∣

n
∑

i=1

dxi

dt

∣
∣
∣
∣

�
n
∑

i=1

n
∑

j=1

∣
∣aij (t)

∣
∣
∣
∣xj (t)

∣
∣+

n
∑

i=1

n
∑

j=1

∣
∣bij (t)

∣
∣
∣
∣xj

(

tj
(

t − τ
(1)
ij (t)

))∣
∣
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(8.8.11)+
n
∑

i=1

n
∑

j=1

∣
∣cij (t)

∣
∣
∣
∣ẋj

(

tj
(

t − τ
(2)
ij (t)

))∣
∣.

Define

(8.8.12)m(t) :=
n
∑

i=1

(

sup
s∈[t−τ,t]

∣
∣ẋi (s)

∣
∣

)

.

By the assumption, we have

(8.8.13)sup
t�−τ

n
∑

i=1

n
∑

j=1

[

∣
∣aij (t)

∣
∣+

∣
∣
∣
∣
∣

sup
t�−τ

n
∑

i=1

n
∑

j=1

bij (t)

∣
∣
∣
∣
∣

]

<∞.

Then it follows from (8.8.10)–(8.8.12) that

m(t) �
{

sup
t�−τ

n
∑

i=1

n
∑

j=1

[

∣
∣aij (t)

∣
∣+

∣
∣
∣
∣
∣

sup
t�−τ

n
∑

i=1

n
∑

j=1

bij (t)

∣
∣
∣
∣
∣

]}
(

sup
t�−τ

∣
∣xj (t)

∣
∣

)

+
[

n
∑

i=1

n
∑

j=1

sup
t�−τ

∣
∣cij (t)

∣
∣

]
(

sup
s∈[t−τ,t]

∣
∣ẋj (s)

∣
∣

)

(8.8.14)� σ + cm(t),

where

σ = sup
t�−τ

n
∑

i=1

n
∑

j=1

[

∣
∣aij (t)

∣
∣+

∣
∣
∣
∣
∣

sup
t�−τ

n
∑

i=1

n
∑

j=1

bij (t)

∣
∣
∣
∣
∣

]

(8.8.15)×
(

n
∑

j=1

sup
t�−τ

∣
∣xj (t)

∣
∣

)

<∞.

Since c < 1, from (8.8.13) we know that m(t) � σ
1−c for t � 0.

Therefore, the derivative of xi(t) is bounded on [0,∞], so
∑n

i=1 |xi(t)| is uni-
formly continuous on [0,∞], and

∑n
i=1 |xi(t)| ∈ L1(0,∞). Thus, from (8.8.15)

we know that limt→∞
∑n

i=1 |xi(t)| = 0, implying that the zero solution of (8.8.2)
is asymptotically stable. �

8.9. The method of iteration by parts for large-scale neural
systems

The basic idea for analyzing large-scale systems is to decompose the large-scale
system into a number of lower order isolated subsystems, and then determine the
stability of the whole large system on the basis of stability degree of the subsys-
tems as well as connection strength between the subsystems. The current mostly
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used methods are still the Lyapunov vector function (functional) method or the
weight and scalar Lyapunov function (functional) method. The main difficulty in
using these methods is that there do not exist general rules or skills in construct-
ing such Lyapunov functions (functionals). So the results obtained are mainly for
existence.

In this section, we introduce a comparison method for stability study of large-
scale neutral systems. The main idea of this method is as follows: Based on the
integral estimation of the subsystem’s Cauchy matrix solution and couping matrix
solution, for the solution of the whole system, we find estimations for each sub-
system, and then construct explicit comparison system from which we determine
the stability of the whole large system.

First we give a lemma as follows.

LEMMA 8.9.1. Assume H(hij (t))r×r ∈ C[I, Rr×r ], hij (t) � 0, i �= j , i, j =
1, . . . , r , f (t) ∈ C[I, Rr ]. Then the solution of the differential inequality:

(8.9.1)

{
dx(t)
dt

� H(t)x(t)+ f (t),

x(t0) = x0,

is right-up limited by the solution of the differential equation:

(8.9.2)

{
dy(t)
dt

= H(t)y(t)+ f (t),

y(t0) = y0 � x0,

i.e., x(t) � y(t), t � t0 or xi(t) � yi(t), i = 1, . . . , r .

PROOF. Let

z(t) := y(t)− x(t) := y(t, t0, y0)− x(t, t0, x0) = z(t, t0, z0)

and

g(t) := dz(t)

dt
−H(t)z � 0, DH (t) := diag

(

h11(t), . . . , hττ (t)
)

,

then z(t) satisfies

(8.9.3)

{
dz(t)
dt

= [

DH(t)+H(t)−DH(t)
]

z(t)+ g(t),

z(t0) = z0,

and

z(t) = z0e

∫ t
t0
DH (t) dt

(8.9.4)+
t∫

t0

[

e
∫ t
τ DH (ξ) dξ

(

H(τ)−DH(τ)
)

z(τ )+ g(τ)
]

dτ.
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Choosing z(0)(t) = z(0)e

∫ t
t0
DH (t) dt � 0, one may apply the Picard iteration

method to obtain

z(m)(t) = z(0)e

∫ t
t0
DH (t) dt

+
t∫

t0

[

e
∫ t
τ DH (ξ) dξ

(

H(τ)−DH(τ)
)

z(m−1)(τ )+ g(τ)
]

dτ.

Since for any natural number m, z(m)(t) � 0, and thus

lim
m→∞ z(m)(t) = z(t) � 0, i.e., x(t, t0, x0) � y(t, t0, y0).

�

Consider the following large-scale linear system described by the neutral dif-
ferential difference equation [243]:

dx(t)

dt
= diag

(

A11(t), . . . , A11(t)
)

x(t)+ (

(1− δij )Aij (t)
)

x(t)

(8.9.5)+ (

Bij (t)
)

x(t − τ)+ (

Cij (t)
)

ẋ(t − τ),

where Cij (t) is ni × ni continuously differentiable matrix function on [t0,+∞],
Aij (t) and Bij (t) are ni × ni , continuous matrix functions, and τ is a positive
constant.

Assume that ϕ(t) is a continuously differentiable matrix function on [t0−τ, t0],
and Pii(t, t0) is the Cauchy matrix solution of the subsystems:

(8.9.6)
dxi

dt
= Aii(t)xi, xi =

(

xi1, . . . , x
i
ni

)T
, i = 1, 2, . . . , r.

Let

fi(t) := Pii(t, t0)ϕi(t0)+
t0∫

t0−τ
Pii(t, t1 + τ)

r
∑

j=1

Bij (t1 + τ)ϕj (t1) dt1

− Pii(t, t0)

r
∑

j=1

Cij (t0)ϕj (t0 − τ)

+
t0∫

t0−τ
Aii(t1 + τ)Pii(t, t1 + τ)

r
∑

j=1

Cij (t1 + τ)ϕj (t1) dt1

−
t0∫

t0−τ
Pii(t, t1 + τ)

r
∑

j=1

Ċij (t1 + τ)ϕj (t1) dt1, i = 1, 2, . . . , r.

THEOREM 8.9.2. Suppose the following conditions are satisfied:
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(1) there exist scalar function α(t) ∈ C[t0,+∞] and constants Mi � 1, Mi � 1
such that

∥
∥fi(t)

∥
∥ � Mie

− ∫ tt0 α(ξ) dξ , t � t0,

∥
∥Pii(t, t0)

∥
∥ � Mie

− ∫ tt0 α(ξ) dξ , t � t0;
(2) ‖Cij (t)‖ is a monotone nonincreasing function of t ;
(3) there exists scalar function β(t) ∈ C[t0,+∞] such that the Cauchy matrix

solution R(t, t0) of the following ordinary differential equations:

dξi

dt
=

r
∑

j=1

[

Mi(1− δij )
∥
∥Aij (t)

∥
∥+MiK

∥
∥Bij (t + τ)

∥
∥

+MiK
∥
∥Aii(t + τ)

∥
∥
∥
∥Cij (t + τ)

∥
∥

+MiK
∥
∥ĊiJ (t + τ)

∥
∥+ K

τ

∥
∥Cij (t + τ)

∥
∥

]

ξj , i = 1, 2, . . . , r,

has the estimation

∥
∥R(t, t0)

∥
∥ � N exp

( t∫

t0

β(ξ) dξ

)

,

where

K := sup
t�t0

exp

( t∫

t−τ
α(ξ) dξ

)

< +∞,

N � 1 is a constant.

Then the following five conditions:

(1)
∫ t

t0
[α(ξ)− β(ξ)] dξ � c(t0) > −∞ (t � t0),

(2)
∫ t

t0
[α(ξ)− β(ξ)] dξ � c > −∞ (t � t0),

(3)
∫ +∞
t0

[α(ξ)− β(ξ)] dξ = +∞,

(4)
∫ t

t0
[α(ξ)− β(ξ)] dξ = +∞ when (t − t0)→+∞ (uniformly about t0),

(5)
∫ t

t0
[α(ξ)− β(ξ)] dξ � γ (t − t0) (t � t0, γ > 0 being a constant)

imply that the trivial zero solution of (8.9.5) is stable, uniformly stable, asymp-
totically stable, uniformly asymptotically stable, and exponentially stable, respec-
tively.

PROOF. Denote the solution of (8.9.5) as x(t) which satisfies the initial condition
x(t) = ϕ(t), ẋ(t) = ψ(t) and t0− τ � t � t0. By using the variation of constants
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formula for integration substitution and integrate by parts, we can show that

xi(t) = Pii(t, t0)ϕi(t0)+
t0∫

t0−τ
Pii(t, t1 + τ)

r
∑

j=1

Bij (t1 + τ)ϕj (t1) dt1

− Pii(t, t0)

r
∑

j=1

Cij (t0)ϕj (t0 − τ)

+
t0∫

t0−τ
Aii(t1 + τ)Pii(t, t1 + τ)

r
∑

j=1

Cij (t1 + τ)ϕj (t1) dt1

−
t0∫

t0−τ
Pii(t, t1 + τ)

r
∑

j=1

Ċij (t1 + τ)ϕj (t1) dt1

+
t∫

t0

Pii(t, t1)

r
∑

j=1

(1− δij )Aij (t1)xj (t1) dt1

+
t−τ∫

t0

Pii(t, t1 + τ)

r
∑

j=1

Bij (t1 + τ)xj (t1) dt1

+
t−τ∫

t0

Aii(t1 + τ)Pii(t, t1 + τ)

r
∑

j=1

Cij (t1 + τ)xj (t1) dt1

−
t−τ∫

t0

Pii(t, t1 + τ)

r
∑

j=1

Ċij (t1 + τ)xj (t1) dt1

+
r
∑

j=1

Cij (t)xj (t − τ).

Thus, we have

∥
∥xi(t)

∥
∥ =

r
∑

j=1

Mi

t∫

t0

(1− δij )
∥
∥Aij (t1)

∥
∥e
− ∫ tt1 α(ξ) dξ

∥
∥xj (t1)

∥
∥ dt1

+
r
∑

j=1

t∫

t0

Mi

∥
∥Bij (t1 + τ)

∥
∥e
− ∫ tt1+τ α(ξ) dξ

∥
∥xj (t1)

∥
∥ dt1
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+
r
∑

j=1

t∫

t0

Mi

∥
∥Aij (t1 + τ)

∥
∥e
− ∫ tt1+τ α(ξ) dξ

∥
∥Cij (t1 + τ)

∥
∥
∥
∥xj (t1)

∥
∥ dt1

+
r
∑

j=1

t∫

t0

Mie
− ∫ tt1+τ α(ξ) dξ

∥
∥Ċij (t1 + τ)

∥
∥
∥
∥xj (t1)

∥
∥ dt1

+
r
∑

j=1

∥
∥Cij (t)

∥
∥
∥
∥x1(t − τ)

∥
∥+Mie

− ∫ tt0 α(ξ) dξ ,

which, in turn, gives

∥
∥xi(t)

∥
∥e

∫ t
t0
α(ξ) dξ �

r
∑

j=1

t∫

t0

(1− δij )Mi

∥
∥Aij (t1)

∥
∥e

∫ t1
t0
α(ξ) dξ

∥
∥xj (t1)

∥
∥ dt1

+
r
∑

j=1

t∫

t0

Mi

∥
∥Bij (t1 + τ)

∥
∥e

∫ t1+τ
t1

α(ξ) dξ
∥
∥xj (t1)

∥
∥e

∫ t1
t0
α(ξ) dξ

dt1

+
r
∑

j=1

t∫

t0

Mi

∥
∥Aij (t1 + τ)

∥
∥e

∫ t1+τ
t1

α(ξ) dξ

× ∥
∥Cij (t1 + τ)

∥
∥
∥
∥xj (t1)

∥
∥e

∫ t1
t0
α(ξ) dξ

dt1

+
r
∑

j=1

t∫

t0

Mie
∫ t1+τ
t1

α(ξ) dξ
∥
∥Ċij (t1 + τ)

∥
∥
∥
∥xj (t1)

∥
∥e

∫ t1
t0
α(ξ) dξ

dt1

+
r
∑

j=1

∥
∥Cij (t)

∥
∥e

∫ t
t−τ α(ξ) dξ

∥
∥xi(t − τ)

∥
∥e

∫ t−τ
t0

α(ξ) dξ +Mi.

Let

yi(t) =
∑

t0−τ�t1�t

∥
∥xi(t1)

∥
∥ exp

t1∫

t0

α(ξ) dξ.

Then, using the properties of monotone nondecreasing of yi(t) and monotone
nonincreasing of ‖Cij (t)‖, we obtain

∥
∥xi(t)

∥
∥e

∫ t
t0
α(ξ) dξ

� Mi +
r
∑

j=1

t∫

t0

[

Mi(1− δij )
∥
∥Aij (t1)

∥
∥+MiK

∥
∥Bjj (t1 + τ)

∥
∥
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+MiK
∥
∥Aii(t1 + τ)

∥
∥
∥
∥Cij (t1 + τ)

∥
∥

+MiK
∥
∥Ċij (t1 + τ)

∥
∥
]

yi(t1) dt1

+ K

τ

t∫

t−τ

r
∑

j=1

∥
∥Ċij (t1)

∥
∥y1(t1) dt1

� M∗
i +

r
∑

j=1

t∫

t0

[

(1− δij )
∥
∥Aij (t1)

∥
∥

+MiK
∥
∥Bij (t1 + τ)

∥
∥+MiK

∥
∥Aii(t1 + τ)

∥
∥
∥
∥Cij (t1 + τ)

∥
∥

(8.9.7)+MiK
∥
∥Ċij (t1 + τ)

∥
∥+ K

τ

∥
∥Cij (t1)

∥
∥

]

yi(t1) dt1,

where

M∗
i := Mi + K

τ

t0∫

t0−τ

r
∑

j=1

∥
∥Cij (t1)

∥
∥y∗j (t1) dt1,

y∗i := max
t0−τ<t1<t<t0

∥
∥ϕj (t1)

∥
∥e

∫ t1
t0
α(ξ) dξ

.

Denote the right-hand side of (8.9.7) as ηi(t). Since ηi(t) is monotone non-
decreasing, yi(t) � ηi(t) and ηi(t) satisfies the following set of differential
inequalities:

(8.9.8)

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dηi
dt

�
∑r

j=1

[

Mi(1− δij )‖Aij (t)‖ +MiK‖Bij (t + τ)‖
+MiK‖Aii(t + τ)‖‖Cij (t + τ)‖
+MiK‖Cij (t + τ)‖ + K

τ
‖Cij (t)‖

]

ηi,

ηi(t) = M∗
i , i = 1, 2, . . . , r.

Assume that ξi(t) satisfies the following set of differential equalities:

(8.9.9)

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

dξi
dt
=∑r

j=1

[

Mi(1− δij )‖Aij (t)‖ +MiK‖Bij (t + τ)‖
+MiK‖Aii(t + τ)‖‖Cij (t + τ)‖
+MiK‖Ċij (t + τ)‖ + K

τ
‖Cij (t)‖

]

ξi,

ξi(t0) = M∗
i , i = 1, 2, . . . , r.

Then, from Lemma 8.9.1 we know that ηi(t) � ξi(t), i = 1, 2, . . . , r . Further,
by condition (3) we have

∥
∥
(∥
∥x1(t)

∥
∥, . . . ,

∥
∥xr(t)

∥
∥
)T ∥
∥e

∫ t
t0
α(ξ) dξ � N

(

M∗
1 , . . . ,M

∗
r

)T
e

∫ t
t0
β(ξ) dξ

,
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and finally we obtain
∥
∥
(∥
∥x1(t)

∥
∥, . . . ,

∥
∥xr(t)

∥
∥
)T ∥
∥

(8.9.10)� N
(

M∗
1 , . . . ,M

∗
r

)T
eY−

t∫

t0

[

α(ξ)− β(ξ)
]

dξ,

which implies that the conclusion of the theorem is true.
The proof is complete. �

8.10. Stability of large-scale neutral systems on C1 space

Consider a class of large-scale nonlinear neutral system with varying time delays:

(8.10.1)

⎧

⎪⎨

⎪⎩

dx
dt
= diag(A11, . . . , Arr )x(t)

+ F
((

t, x
(

t −Δ(t)
))

, ẋ
(

t −Δ(t)
))

,

x(t) = Φ, ẋ(t) = Φ̇(t), for t0 −Δ � t � t0,

and the isolated subsystems:

(8.10.2)
dx

dt
= diag(A11, . . . , Arr )x(t),

where

F ∈ C[I × Rn × Rn,Rn
]

, F (t, 0, 0) ≡ 0, x ∈ Rn.

Let P(t, t0) = diag(P11(t, t0), . . . , Prr (t, t0))x(t) be a Cauchy matrix solution
of (8.10.2).

If the trivial solution of (8.10.1) is asymptotically stable about x and ẋ, then it
is said to be asymptotically stable on C1.

THEOREM 8.10.1. If

(1) in an open neighborhood of D enclosing the origin, F(t, x, y) satisfies

(8.10.3)
∥
∥Fi(t, x, y)

∥
∥ �

r
∑

j=1

gij (t)
[‖xj‖ + ‖yj‖

]

,

where gij (t) ∈ C[t0,+∞] is a nonnegative bounded function, and

xi ∈ Rn, yi ∈ Rn,

r
∑

j=1

ni = n;
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(2) the Cauchy matrix solution of (8.10.2), P(t, t0), has the estimation:

∥
∥P11(t, t0)

∥
∥ � Mie

− ∫ tt0 αi(ξ) dξ → 0 as t →+∞,

where Mi > 0 is a known constant, and αi(t) ∈ C[t0,+∞] (i = 1, 2, . . . , r)
are given functions;

(3) the spectral radius of matrix Ω(σij ), ρ(Ω) < 1 (particularly ‖Ω‖ < 1),
where

σii =
(

1−Kg̃ii
)−1

+∞∫

0

miKigii(t1) dt1 + δij
(

1− kg̃ii
)−1

Kig̃ij ,

Ki = sup
t�t0

e
∫ t
t−Δ(t) αi (ξ) dξ ,

mi =
(

1+ Ãii

)

Mi, Ãii = sup
t�t0

∥
∥Aii(t)

∥
∥,

g̃ij = sup
t�t0

gij (t), Kig̃ij < 1;

then the trivial solution of (8.10.1) is asymptotically stable on C1.

PROOF. Let the solution of (8.10.1), x(t), be expressed as

xi(t) = Pii(t, t0)Φi(t0)

(8.10.4)+
t∫

t0

Pii(t, t1)
(

Fi
(

t1, x
(

t1 −Δ(t1)
))

, ẋ
(

t1 −Δ(t1)
))

dt1,

ẋi(t) = AiiPii(t, t0)Φi(t0)

+
t∫

t0

AiiPii(t, t1)
(

Fi
(

t1, x
(

t1 −Δ(t1)
))

, ẋ
(

t1 −Δ(t1)
))

dt1

(8.10.5)+ (

Fi
(

t, x
(

t −Δ(t)
))

, ẋ
(

t −Δ(t)
))

,

∥
∥xi(t)

∥
∥ � Mi

∥
∥Φi(t0)

∥
∥e
− ∫ tt0 αi(ξ) dξ

+
t∫

t0

Mie
− ∫ tt1 αi(ξ) dξ

r
∑

j=1

gij (t1)
[∥
∥xj

(

t1 −Δ(t1)
)∥
∥

(8.10.6)+ ∥
∥ẋj

(

t1 −Δ(t1)
)∥
∥
]

dt1,

∥
∥xi(t)

∥
∥ �

∥
∥Aii(t)

∥
∥Mi

∥
∥Φi(t0)

∥
∥e
− ∫ tt0 αi(ξ) dξ
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+
t∫

t0

∥
∥Aii(t)

∥
∥Mie

− ∫ tt1 αi(ξ) dξ
r
∑

j=1

gij (t1)
[∥
∥xj

(

t1 −Δ(t1)
)∥
∥

+ ∥
∥ẋi

(

t1 −Δ(t1)
)∥
∥
]

dt1

(8.10.7)+
r
∑

j=1

gij (t)
[∥
∥xj

(

t −Δ(t)
)∥
∥+ ∥

∥ẋj
(

t −Δ(t)
)∥
∥
]

.

Let

Ãii = sup
t�t0

‖Aii‖, Ki = sup
t�t0

e
∫ t
t−Δ(t) αi (ξ) dξ ,

mi =
(

1+ Ãii

)

Mi and g̃ij = sup
t�t0

gij (t).

Then, it follows from (8.10.6) and (8.10.7) that

(∥
∥xi(t)

∥
∥+ ∥

∥ẋi (t)
∥
∥
)

e

∫ t
t0
αi(ξ) dξ

� mi

∥
∥Φi(t0)

∥
∥+

t∫

t0

Mie

∫

t1−Δ(t1) αi (ξ) dξ
r
∑

j=1

gij (t1)
[∥
∥xj

(

t1 −Δ(t1)
)∥
∥

+ ∥
∥ẋj

(

t1 −Δ(t1)
)∥
∥
]

e

∫ t−Δ(t)
t0

αi(ξ) dξ + e

∫ t
t0−Δ(t) αi (ξ) dξ

×
n
∑

j=1

gij (t)
[∥
∥xj

(

t −Δ(t)
)∥
∥
∥
∥ẋj

(

t −Δ(t)
)∥
∥
]

e

∫ t−Δ(t)
t0

αi(ξ) dξ

� mi

∥
∥Φi(t0)

∥
∥+

t∫

t0

Kimi

[
r
∑

j=1

gij (t1)
∥
∥xj

(

t1 −Δ(t1)
)∥
∥

+Ki

r
∑

j=1

gij (t)
[∥
∥xj

(

t −Δ(t)
)∥
∥

(8.10.8)+ ∥
∥ẋi

(

t −Δ(t)
)∥
∥
]

e

∫ t−Δt
t0

αi(ξ) dξ

]

dt.

Let

ui(t) = sup
t0−Δ�t1�t

{∥
∥xi(t1)

∥
∥+ ∥

∥ẋi (t1)
∥
∥
}

e

∫ t
t0
αi(ξ) dξ

,

where xi(t) = Φi(t), ẋi (t) = Φ̇i(t), t0 −Δ � t1 � t0. Then, we have
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(∥
∥xi(t)

∥
∥+ ∥

∥ẋi (t)
∥
∥
)

e

∫ t
t0
αi(ξ) dξ

� mi

∥
∥Φi(t0)

∥
∥+

t∫

t0

miKi

r
∑

j=1

gij (t1)uj (t1) dt1

(8.10.9)+K

r
∑

j=1

g̃ij uj (t).

Since the right-hand side of (8.10.9) is a monotone nondecreasing function of t ,
we obtain

ui(t) � mi

∥
∥Φi(t0)

∥
∥+

t∫

t0

miki

r
∑

j=1

gij (t1)uj (t1) dt1

(8.10.10)+K

r
∑

j=1

g̃ij uj (t).

Further, because of the right-hand side of (8.10.10) being nonnegative, we have

ui(t) � mi

∥
∥Φi(t0)

∥
∥
(

1−Kig̃ii
)−1

+ (

1−Kig̃ii
)−1

t∫

t0

miKi

r
∑

j=1

gij (t1)uj (t1) dt1

(8.10.11)+ (

1−Kig̃ii
)−1

Ki

r
∑

j=1
j �=i

g̃ij uj (t).

Consider the following integral equation:

ũi (t) = mi

∥
∥Φi(t0)

∥
∥
(

1−Kig̃ii
)−1

+ (

1−Kig̃ii
)−1

t∫

t0

miKi

r
∑

j=1

gij (t1)ũj (t1) dt1

+ (

1−Kig̃ii
)−1

Ki

r
∑

j=1
j �=i

g̃ij ũj (t)

(8.10.12):= L(ũ).

We prove that on any finite interval [t0, T ], the solutions of the integral inequality
system (8.10.11) and the integral equation (8.10.12), with the same initial value,
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satisfy

ui(t) � ũi (t).

Due to the condition in the theorem, ρ(Ω) < 1, integral operator L(u) is es-
sentially a contraction operator, and thus the following iteration

ũ
(0)
i (t) = mi

∥
∥Φi(t0)

∥
∥
(

1−Kig̃ii
)−1

,

ũ
(m)
i (t) = mi

∥
∥Φi(t0)

∥
∥
(

1−Kig̃ii
)−1

+ (1−Kig̃ii)
−1

t∫

t0

miKi

r
∑

j=1

gij (t1)ũ
(m−1)
j (t1) dt1

(8.10.13)+ (

1−Kig̃ii
)−1

Ki

r
∑

j=1
j �=i

g̃ij ũ
(m−1)
j (t), m = 1, 2, . . . ,

converges to some limit function u∗i (t) (i = 1, 2, . . . , r) in any finite interval
[t0, T ]. This leads to the following estimation:

(

ũ
(m)
1 (t), . . . , ũ(m)r (t)

)T �
∞
∑

m=0

Ωm(σij )
(

ũ
(0)
1 (t), . . . , ũ(0)r (t)

)T

= (E −Ω)−1(ũ
(0)
1 (t), . . . , ũ(0)r (t)

)T
,

implying that

(8.10.14)
(

u∗1(t), . . . , u∗r (t)
)T � (E −Ω)−1(ũ

(0)
1 (t), . . . , ũ(0)r (t)

)T
.

On the interval [t0, T ], in principle, one can repeatedly employ varying step
sizes to transform the neutral system (8.10.11) into several corresponding ordi-
nary differential systems and then to solve the IVP (initial value problem) of these
differential systems. The ordinary differential equations deduced from the condi-
tions of the theorem will take some linear ordinary differential equations as their
control equations. Therefore, they have lower limit on [t0, T ], and thus we may
take

sup
to�t�T

{

ui(t)− u
(0)
i (t)

} := Ni < +∞.

It follows from (8.10.11) and (8.10.13) that

ui(t)− ũ
(1)
i �

(

1−Kig̃ii
)−1

t∫

t0

miKi

r
∑

j=1

gij (t1)uj
(

t1 − u
(0)
j (t1)

)

dt1
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+ (

1−Kig̃ii
)−1

Ki

r
∑

j=1
j �=i

g̃ij
[

uj (t)− u
(0)
j (t)

]

�
(

1−Kig̃ii
)−1

t∫

t0

miKi

r
∑

j=1

gij (t1)Nj dt1

+ (

1−Kig̃ii
)−1

Ki

r
∑

j=1
j �=i

g̃ijNi

(8.10.15)�
r
∑

j=1

σijNj .

So, (u1(t)− ũ(1)1 (t), . . . , ur (t)− ũ(1)r (t))T � Ω(N1, N2, . . . , Nr)
T . Thus, we can

apply the method of mathematical induction to show that
(

u1(t)− ũ
(m)
1 (t), . . . , ur (t)− ũ(m)r (t)

)T � Ω(m)(N1, N2, . . . , Nr)
T .

Since ρ(Ω) < 1, we have limn→∞Ωn = 0. When [t0, T ] is determined, Ni (i =
1, 2, . . . , r) are fixed. Thus,

(8.10.16)
(

u1(t)− ũ∗1(t), . . . , ur (t)− ũ∗r (t)
)T = 0.

Since [t0, T ] is an arbitrarily finite interval, (8.10.16) holds on [t0,∞]. This
indicates that

(

u1(t), u2(t), . . . , ur (t)
)T �

(

u∗1(t), u∗2(t), . . . , u∗r (t)
)T

� (E −Ω)−1(u
(0)
1 (t), u

(0)
2 (t), . . . , u(0)r (t)

)T
,

from which we obtain
(∥
∥x1(t)

∥
∥+ ∥

∥ẋ1(t)
∥
∥, . . . ,

∥
∥xr(t)

∥
∥+ ∥

∥ẋr (t)
∥
∥
)T

(8.10.17)� (E −Ω)−1 col
(

u
(0)
1 (t)e

∫ t
t0
α1(ξ) dξ , . . . , u(0)r (t)e

− ∫ tt0 αr (ξ) dξ
)

.

Obviously, the last inequality (8.10.17) implies that the trivial solution of (8.10.11)
is asymptotically stable on C1. �

8.11. Algebraic methods for GLNS with constant coefficients

Consider the following general linear neutral system (GLNS) with constant coef-
ficients:

(8.11.1)
d

dt

[

x(t)−
N
∑

k=1

Bkx(t − γk, r)

]

= A0xt +
N
∑

k=1

Akx(t − γkr),
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where Bk is an n×n real matrix, while all the other notations are the same as that
defined in (8.7.1).

To study the stability of system (8.11.1), we first consider difference system

(8.11.2)x(t)−
N
∑

k=1

Bkx(t − γkr) = 0.

The characteristic equation of (8.11.2) is

e(λ, r, B) := det

[

I −
N
∑

k=1

Bke
−λγkr

]

= 0.

DEFINITION 8.11.1. (See [155].) System (8.11.2) is said to be uniformly asymp-
totically stable about (r, B) if

(8.11.3)
{

Re λ: e(λ, r, B) = 0
} ∩ [−δ,+∞] = ∅,

where δ > 0 is a constant. Equation (8.11.3) means that the eigenvalue of (8.11.2)
Re λ � −δ < 0.

DEFINITION 8.11.2. (See [155].) System (8.11.2) is said to be locally asymp-
totically stable about (r0, B), if there exists a neighborhood of r0, U(r0), such
that ∀r ∈ U(r0), system (8.11.2) is asymptotically stable about B. If for every
r ∈ (R+)M , (8.11.2) is asymptotically stable about (r, B), then system (8.11.2) is
said to be globally asymptotically stable about B.

It should be noted that the above definitions of asymptotic stability and global
asymptotic stability are different from those of Lyapunov stabilities.

Now we discuss how to determine these stabilities. Let

(8.11.4)ηij :=
{−∑N

k=1

∣
∣b
(k)
ii

∣
∣, i = j, i, j = 1, 2, . . . , n,

−∑N
k=1

∣
∣b
(k)
ij

∣
∣, i �= j, i, j = 1, 2, . . . , n.

THEOREM 8.11.3. If (ηij )n×n is an M matrix, then (8.11.2) is globally asymp-
totically stable.

PROOF. ∀μ(θ), |μ(θ)| � 1, we obtain

∣
∣
∣
∣
∣
μ(θ)−

N
∑

k=1

biie
iγkθ

∣
∣
∣
∣
∣
�
∣
∣μ(θ)

∣
∣−

N
∑

k=1

∣
∣b
(k)
ii

∣
∣ � 1−

N
∑

k=1

∣
∣b
(k)
ii

∣
∣ > 0.



380 Chapter 8. Dynamical Systems with Time Delay

According to Lemmas 8.7.4 and 8.7.5 we have

det

[

μ(θ)I −
N
∑

k=1

Bke
iγkθ

]

�= 0,

which shows that the difference system (8.11.2) is globally asymptotically stable
about B. �

COROLLARY 8.11.4. If

n
∑

j=1

N
∑

k=1

∣
∣b
(k)
ij

∣
∣ < 1, i = 1, 2, . . . , n,

or

n
∑

i=1

N
∑

k=1

∣
∣b
(k)
ij

∣
∣ < 1, j = 1, 2, . . . , n,

then system (8.11.2) is globally asymptotically stable about B.

In the following, when we discuss the stability of the neutral system (8.11.1),
we always assume that (8.11.2) is uniformly asymptotically stable.

Now, we study the stability of the neutral system (8.11.1). The characteristic
equation of (8.11.1) is

g(λ, r, A,B) := det

[

λ

(

I −
N
∑

k=1

Bke
−λγkr

)

− A0

(8.11.5)−
N
∑

k=1

Ake
−λγkr

]

= 0,

where A = (A0, A1, . . . , AN) and B = (B1, . . . , BN).

DEFINITION 8.11.5. (See [155].) System (8.11.1) is said to be uniformly asymp-
totically stable about (r, A,B), if

(8.11.6)
{

Re λ: g(λ, r, A,B) = 0
} ∩ [−δ,+∞] = ∅.

DEFINITION 8.11.6. (See [155].) For a given r0 ∈ (R+)M ,

Sr0 = {

(A,B) ∈ Rn2(N+1) × Rn2(N+1), system (8.11.1) is

asymptotically stable about (r, A,B) for every r = αr0, α � 0
}

is called asymptotically stable cone about r0.
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Let

(8.11.7)S =
⋂

r

Sr

be an asymptotically stable cone.

LEMMA 8.11.7. (See [155].) For system (8.11.1), the necessary and sufficient
conditions for (A,B) ∈ Sr are

(1)

(8.11.8)Re

[(

I −
N
∑

k=1

Bk

)−1 N
∑

k=0

Ak

]

< 0;

(2)

(8.11.9)g(iy, α, r, A,B) �= 0 for all y ∈ R, y �= 0, α � 0.

Similar to Lemma 8.7.1, the idea of Lemma 8.11.7 is simple and the proof is
omitted.

Let

(8.11.10)σij :=

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

∣
∣a0
ij + iy

∣
∣−∑N

k=1

∣
∣b
(k)
ii iy

∣
∣−∑N

k=1

∣
∣a
(k)
ii

∣
∣,

i = j = 1, . . . , n,

−∑N
k=1

∣
∣iyb

(k)
ij

∣
∣−∑N

k=1

∣
∣a
(k)
ij

∣
∣,

i �= j, i, j = 1, . . . , n,

(8.11.11)η(ηij ) :=
[(

I −
N
∑

k=1

Bk

)−1 N
∑

k=1

Ak

]

,

(8.11.12)η̃ii :=
{−δij , i = j = 1, 2, . . . , n,
−|δij |, i �= j, i, j = 1, 2, . . . , n.

THEOREM 8.11.8. (See [280].) If for all y ∈ R, α � 0, and σ(σij )n×n is an
M matrix, in addition, (η̃ij )n×n is also an M matrix, then (A,B) ∈ Sr , i.e.,
system (8.11.1) is globally asymptotically stable.

PROOF. According to the condition of the theorem, and Lemmas 8.7.4 and 8.11.7,
it is easy to prove that

g(iy, αγ,A,B) := det

[

iy

(

I −
N
∑

k=1

Bke
−iykαγ

)

− A0
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−
N
∑

k=1

Ake
−iYrk αγ

]

�= 0

for all α � 0 and y ∈ R. Thus condition (2) in Lemma 8.11.1 is satisfied.
Since η̃(η̃ij )n×n is an M matrix, η(ηij )n×n is stable. Therefore,

(8.11.13)Re λ

((

I −
N
∑

k=1

Bk

)−1 N
∑

k=1

Ak

)

< 0,

which indicates that Condition (1) in Lemma 8.11.7 holds, so (A,B) ∈ Sr . �

COROLLARY 8.11.9. If any of the following conditions is satisfied:

(1)

∣
∣−a(0)ii − iy

∣
∣ >

n
∑

j=1

N
∑

k=1

∣
∣b
(k)
ij iy

∣
∣+

n
∑

k=1

N
∑

k=1

∣
∣a
(k)
ij

∣
∣+

n
∑

j=1,j �=1

∣
∣a
(0)
ij

∣
∣;

(2)

−ηii >
n
∑

j=1
j �=i

∣
∣η
(0)
ij

∣
∣, i = 1, 2, . . . , n;

then (A,B) ∈ Sr , so system (8.11.1) is globally asymptotically stable.

PROOF. It is easy to verify that the conditions in Lemma 8.11.7 are satisfied. �

COROLLARY 8.11.10. If any of the following conditions is satisfied:

(1) both

1√
2

∣
∣a
(0)
ii

∣
∣ >

n
∑

j=1

N
∑

k=1

∣
∣a
(k)
ij

∣
∣+

n
∑

j=1
j �=i

∣
∣a
(0)
ij

∣
∣ and

1√
2
>

n
∑

j=1

N
∑

k=1

∣
∣a
(k)
ij

∣
∣

hold;
(2) condition (2) in Corollary 8.11.9 is satisfied;

then (A,B) ∈ Sr , so system (8.11.1) is globally stable.

PROOF. Since

∣
∣−a(0)ii + iy

∣
∣ =

√
(

a
(0)
ii

)2 + y2 �
|a(0)ii |√

2
+ |iy|√

2
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(8.11.14)>

n
∑

j=1

N
∑

k=1

∣
∣b
(k)
ij iy

∣
∣+

n
∑

j=1

N
∑

k=1

∣
∣a
(k)
ij

∣
∣+

n
∑

j=1,j �=i

∣
∣a
(0)
ij

∣
∣,

all the conditions in Corollary 8.11.9 are satisfied. Thus, the conclusion of Corol-
lary 8.11.10 is true. �

Let

(ξij )n×n := −
(

I −
N
∑

k=1

Bks
γ k1
1 , . . . , s

γ km
m

)−1

×
(

A0 +
N
∑

k=1

Aks
γ k1
1 , . . . , s

γ km
m

)

,

ξ̃ij =
{ |ξij |, i = j = 1, 2, . . . , n,
−|ξij |, i �= j, i, j = 1, 2, . . . , n.

Similarly, we can prove the following

THEOREM 8.11.11. (See [280].) If system (8.11.11) satisfies that

(1) all the conditions in Theorem 8.11.3 hold;
(2) (ξ̃ij )n×n is an M matrix;
(3) (η̃ij )n×n is an M matrix;

then (A,B) ∈ S, and so system (8.11.1) is globally stable.

J. Hale [155] once raised a question: Is the asymptotically stable cone of the
neutral system (8.11.1) convex? In general, the answer is no. Here is a counter
example.

EXAMPLE 8.11.12. Consider the following scalar function:

d

dt

(

x(t)+ Bx(t − τ)
) = A0x(t)+ A1x(t − τ),

(8.11.15)N = 1, n = 2, x ∈ R2.

Take

B(1) =
[

1/2 0
0 1/2

]

, A
(1)
0 =

[−2 0
4 −2

]

, A
(1)
1 =

[−1 0
6 −1

]

,

B(2) =
[

1/3 0
0 1/3

]

, A
(2)
0 =

[−2 4
0 −2

]

, A
(2)
1 =

[−1 6
0 −1

]

.

It is easy to verify that (A(1)
0 , A

(1)
1 , B(1)) ∈ S and (A(2)

0 , A
(2)
1 , B(2)) ∈ S.
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Further, choose r = 1
2 . Then, we have

B = rB(1) + (1− r)B(2) = 5

12
I,

A0 = rA
(1)
0 + (1− r)A

(2)
0 =

[−2 2
2 −2

]

,

A1 = rA
(1)
1 + (1− r)A

(2)
1 =

[−2 3
3 −2

]

,

Re λ
[

(I − B)−1(A0 + A1)
] = Re λ

[− 60
7

75
7

75
7 − 60

7

]

�<0.

This shows that (AB) /∈ S, and so S is not a convex set.

To prove that the asymptotically stable cone of the neutral system (8.11.1) is
convex, more conditions are needed.

THEOREM 8.11.13. (See [280].) For the scalar neutral function:

(8.11.16)
d

dt

[

x(t)−
N
∑

k=1

bkx(t − γk)

]

= a0x(t)+
N
∑

k=1

akx(t − γk),

S is a convex set.

PROOF. It is known [154] that (a, b) ∈ S, if and only if the following conditions
are satisfied:

(1)
∑N

k=1 |bk| < 1,
(2)

∑N
k=1 ak < 0 and

∑N
k=0 |ak| � |a0|.

Choose a
(j)
i and b

(j)
i (i = 1, 2, . . . , N, j = 1, 2) to satisfy conditions (1)

and (2). Then, a(j)0 < 0, and for 0 � r � 1 we have

N
∑

k=1

∣
∣rb

(1)
k + (1− r)b

(2)
k

∣
∣ � r

N
∑

k=1

∣
∣b
(1)
k

∣
∣+ (1− r)

N
∑

k=1

∣
∣b
(2)
k

∣
∣

� max

[
N
∑

k=1

∣
∣b
(1)
k

∣
∣,

N
∑

k=1

∣
∣b
(2)
k

∣
∣

]

< 1,
N
∑

k=0

ra
(1)
k +

N
∑

k=1

(1− r)a
(2)
k = r

N
∑

k=1

a
(1)
k + (1− r)

N
∑

k=1

a
(2)
k

< 0,
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N
∑

k=0

∣
∣ra

(1)
k + (1− r)a

(2)
k

∣
∣ � r

N
∑

k=1

∣
∣a
(1)
k

∣
∣+ (1− r)

N
∑

k=1

∣
∣a
(1)
k

∣
∣

�
∣
∣ra

(1)
0

∣
∣+ (1− r)

∣
∣a
(2)
0

∣
∣

= ∣
∣ra

(1)
0 + (1− r)a

(2)
0

∣
∣.

These conditions imply that S is convex. �

THEOREM 8.11.14. (See [280].) Assume in system (8.11.1) thatBk := diag(b(k)11 ,

. . . , b
(k)
nn ) which satisfy

(1)
∑N

k=1 |b(k)ii | < 1, i = 1, 2, . . . , n;

(2) a
(0)
ii < 0, i = 1, 2, . . . , n, and

∣
∣a
(0)
ii

∣
∣ >

N
∑

k=1

n
∑

j=1

∣
∣a
(k)
ii

∣
∣+

n
∑

j=1
j �=i

∣
∣a
(0)
ij

∣
∣, i = 1, 2, . . . , n.

These conditions mean that S1 includes all (A,B) that satisfies conditions (1)
and (2). Thus, (A,B) ∈ S1 ⊂ S and S1 is convex.

PROOF. Let

(8.11.17)μij :=

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
1−∑N

k=1 |b(k)ii |
(∣
∣a
(0)
ii

∣
∣−∑N

k=1

∣
∣a
(k)
ii

∣
∣

)

,

i = j = 1, 2, . . . , n,

− 1
1−∑N

k=1 |b(k)ii |
(
∑N

k=0 |a(k)ij |
)

,

i �= j, i, j = 1, 2, . . . , n.

From conditions (1), (2), and Lemmas 8.7.1 and 8.11.7, it is easy to prove that
S1 ⊂ S. So, we only prove that S1 is convex.

For (A(1), B(1)) ∈ S1 and (A(2), B(2)) ∈ S1, let

(A,B) := (

γA(1) + (1− λ)A(2), γ B(1) + (1− γ )B(2)), 0 � γ � 1,

(8.11.18)μ̃ij :=

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∣
∣γ a

(1.0)
ii +(1−γ )a(2.0)ii

∣
∣−(∑N

k=1
∣
∣γ a

(1.k)
ii +(1−γ )a(2.k)ii

∣
∣
)

1−∑N
k=1

∣
∣γ b

(1.k)
ii +(1−γ )b(2.k)ii

∣
∣

,

i, j = 1, . . . , n,

−(∑N
k=1

∣
∣γ a

(1.k)
ij +(1−γ )a(2.k)ij

∣
∣
)

1−∑N
k=1

∣
∣γ b

(2.k)
ii +(1−γ )b(2.k)ii

∣
∣
,

i �= j, i, j = 1, . . . , n,
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N
∑

k=1

∣
∣γ b

(1.k)
ii + (1− γ )b

(2.k)
ii

∣
∣ � γ

N
∑

k=1

∣
∣b
(1.k)
ii

∣
∣+ (1− γ ),

(8.11.19)
N
∑

k=1

∣
∣b
(2.k)
ii

∣
∣ � max

(
N
∑

k=1

∣
∣b
(1.k)
ii

∣
∣,

N
∑

k=1

∣
∣b
(2.k)
ii

∣
∣

)

< 1.

Since a(1.0)ii < 0, j = 1, 2, . . . , n, we have

γ a
(1.0)
ii + (1− γ )a

(2.0)
ii < 0, i = 1, 2, . . . , n,

and
∣
∣γ a

(1.0)
ii + (1− γ )a

(2.0)
ii

∣
∣ = γ

∣
∣a
(1.0)
ii

∣
∣+ (1− γ )

∣
∣a
(2.0)
ii

∣
∣

> γ

[
N
∑

k=1

∣
∣a
(1.k)
ii

∣
∣+

n
∑

j=1

N
∑

k=1

∣
∣a
(1.k)
ij

∣
∣+

n
∑

j=1
j �=i

∣
∣a
(1.0)
ij

∣
∣

]

�
N
∑

k=1

∣
∣γ a

(1.k)
ii

∣
∣+ (1− γ )

∣
∣a
(2.k)
ii

∣
∣

+
n
∑

j=1
j �=i

∣
∣γ a

(1.0)
ij

∣
∣+ (1− γ )

∣
∣a
(2.0)
ij

∣
∣.

Thus, the conditions in Theorem 8.11.11 are satisfied, and so S1 is convex. �

THEOREM 8.11.15. (See [280].) Assume that Bk := diag(b(k)11 , . . . , b
(k)
nn ), k =

1, 2, . . . , N , and

(1)
∑N

k=1 |b(k)ii | < 1, i = 1, 2, . . . , n;

(2) a
(0)
ii < 0, i = 1, 2, . . . , n, and (μij )n×n is a symmetric positive definite

matrix.

Then (A,B) ⊂ S2 ⊂ S and S2 is convex.

PROOF. By employing a similar method as that used in Theorem 8.11.14, it is
easy to prove that S2 ⊂ S. We thus only prove that S2 is convex.
∀(A(1), B(1)) ∈ S2, (A(2), B(2)) ∈ S2, consider

(A,B) = (

γA(1) + (1− λ)A(2), γ B(1) + (1− γ )B(2)).

Choose (8.11.18), so (8.11.19) holds and condition (1) in Theorem 8.11.15 is
satisfied.
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Since a(j.0)ii < 0, we have
∣
∣γ a

(1.0)
ii + (1− γ )a

(2.0)
ii

∣
∣− ∣

∣γ a
(1.0)
ii + (1− γ )a

(2.0)
ii

∣
∣

−
N
∑

k=1

∣
∣γ a

(1.k)
ii + (1− γ )a

(2.k)
ii

∣
∣

� γ
∣
∣a
(1.0)
ii

∣
∣+ (1− γ )

∣
∣a
(2.0)
ii

∣
∣− γ

N
∑

k=1

∣
∣a
(1.k)
ii

∣
∣− (1− γ )

N
∑

k=1

∣
∣a
(2.k)
ii

∣
∣,

γμ
(1)
ij :=

⎧

⎪⎪⎨

⎪⎪⎩

γ
∣
∣a
(1.0)
ii

∣
∣−γ ∑N

k=1
∣
∣a
(1.k)
ii

∣
∣

1−∑N
k=1

∣
∣γ b

(1.k)
i +(1−γ )b(2.k)ii

∣
∣
, i = j = 1, 2, . . . , n,

−γ ∑N
k=0

∣
∣a
(1.k)
ij

∣
∣

1−∑N
k=1

∣
∣γ b

(1.k)
ii +(1−γ )b(2.k)ii

∣
∣
, i �= j, i, j = 1, 2, . . . , n,

and

(1− γ )μ
(2)
ij :=

⎧

⎪⎪⎨

⎪⎪⎩

(1−γ )∣∣a(2.0)ii

∣
∣−(1−γ )∑N

k=1
∣
∣a
(2.k)
ii

∣
∣

1−∑N
k=1

∣
∣γ b

(1.k)
ii +(1−γ )b(2.k)ii

∣
∣
, i = j = 1, 2, . . . , n,

(1−γ )∑N
k=0

∣
∣a
(2.k)
ij

∣
∣

1−∑N
k=1

∣
∣γ b

(1.k)
ii +(1−γ )b(2.k)ii

∣
∣
, i �= j, i, j = 1, 2, . . . , n.

Since (μ(1)ij ) and (μ(2)ij ) are symmetric and positive definite for γ ∈ [0, 1],
(

γμ
(1)
ij

)

,
(

(1− γ )μ
(2)
ij

)

and
(

γμ
(1)
ij + (1− γ )

(

μ
(2)
ij

))

are all symmetric and positive definite. Thus S2 is convex. �
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Chapter 9

Absolute Stability of Nonlinear Control Systems

The automatic control theory was originally motivated by the stability analysis of
Watt centrifugal governor by Maxwell. In early 1940s, the former Soviet Union
scholars Lurie, Postnikov and others developed method to deal with a class of
nonlinear systems, now called nonlinear isolate method. Lurie and his co-workers
studied many real control systems, including the Bulgakov problem of aircraft
automatic control. They first isolated the nonlinear part from the system and con-
sidered it as a feedback control of the system so that the system has a closed-loop
form. Thus, the well-known Lurie problem was proposed, which initiated the re-
search on the robust control and robust stability for nondeterministic systems or
multivalued differential equations. It promoted the application and development
of stability theory.

This chapter introduces the background of Lurie problem, the methodology
for solving Lurie problem, and in particular present three classical methods for
studying absolute stability—the Lyapunov–Lurie type V -function method (i.e.,
the V function containing integrals and quadric form), the S-program method,
and Popov frequency-domain criteria. Main attention is given to sufficient and
necessary conditions for absolute stability and some simple algebraic sufficient
conditions.

The materials presented in this chapter include both classical results and new
results obtained recently. Details can be found from [368] for Section 9.1, [403,
346] for Section 9.2, [456,458] for Section 9.3, [337,350,451,452] for Section 9.4,
[239] for Section 9.5, [246] for Section 9.6, [247,242] for Section 9.7, [255,282]
for Section 9.8, [271] for Section 9.9, [261] for Section 9.10 and [285] for Sec-
tion 9.11.

9.1. The principal of centrifugal governor and general Lurie
systems

First we introduce the centrifugal governor, as shown in Figure 9.1.1, which is the
earliest example of Lurie control system. The work principal of the centrifugal

389
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Figure 9.1.1. Centrifugal governor model.

governor is described as follows. The angle velocity of the generator, ω, is mea-
sured by the centrifugal governor. The centrifugal governor is connected to the
server 4 through the level 2 and the sliding valve 3. The server 4 makes the regu-
lator 5 move so that the generator is rotating with a constant speed. When the load
of the generator is reducing and so the speed of the generator is increasing, the
governor sleeve is moving up to raise the sliding valve via the level. Thus, high
pressure gasoline enters the upper part of the server cylinder, and the gasoline left
in the lower part of the cylinder is drained off through the lower narrow passage.
Therefore, the piston descends to move the regulator to reduce the amount of
gasoline and so the angle velocity of the generator is reduced. On the other hand,
when the speed of the generator is below the normal speed, the server moves up
to adjust the regulator to increase the amount of gasoline. Thus, the speed of the
generator increases. Due to the negative feedback of the centrifugal governor, the
generator’s angle velocity can be kept in a constant value. As we know, a genera-
tor is usually working in the environment that the end-users’ loads are frequently
varying. If the generator cannot be kept in a constant angle velocity, the users will
not have a constant currency, which could cause damage or even disaster.

Now, we consider the mathematical model of the centrifugal governor. The
differential equation of motion of the generator is

J
dΔω

dt
= k1Δω + k2ΔL,

where J is the angular inertia, Δω is the increment of the angular velocity, ΔL is
the position increment of the regulator, and k1 and k2 are the rates of the changes
of the moments per unit.
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The dynamic equation of motion for the centrifugal activator is given by

M
d2ΔZ

dt2
+ C

dΔz

dt
= F1Δω + F2Δz,

where M is the generalized mass, C is the damping coefficient, ΔZ is the mea-
surement of the position change of the governor sleeve, F1 and F2 denote the
generalized forces per unit, respectively, for ω and Z.

The equation of motion for the server is

A
dΔL

dt
= f (Δs),

where A is the cross-area of the governor cylinder, Δs is the amount of change
of the sliding valve, f (Δs) is the quantity of gasoline entering into the cylinder
per unit time. The nonlinear function f is determined by the shape of the sliding
valve. In general, it is difficulty to know the exact form of function f .

The kinematics of the feedback lever is

Δs = aΔZ − bΔL,

where a and b are constants.
The above four equations can be transformed to the following dimensionless

equations:
⎧

⎪⎨

⎪⎩

a1ϕ + a2ϕ = −μ,
b1η + b2η + b3η = ϕ,

μ̇ = f (σ ),

σ = c1η − c2μ,

where ϕ, η, μ, σ are, respectively, the variables proportional to Δω, ΔZ, ΔL,
Δs, while σ is the control signal which determines the amount of the gasoline
entering into the cylinder.

Let ϕ = x1, η = x2,
dη
dt
= x3, μ = x4. Then, the above equations can be

rewritten as
⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dx1
dt
= − a2

a1
x1 − 1

a1
x4,

dx2
dt
= x3,

dx3
dt
= 1

b1
x1 − b3

b1
x2 − b2

b1
x3,

dx4
dt
= f (σ ),

σ = c1x1 − c2x2.

When the generator is working in normal condition, we have x1 = x2 = x3 =
x4 = 0 which is the equilibrium position of the system, which required to be kept
globally stable.
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Next, we introduce the Lurie type nonlinear control system [295–297], i.e.,
the so-called Lurie problem and its mathematical description. Around 1944, the
former Soviet Union mathematical control scholar, A.I. Lurie, based on the study
of aircraft automatic control system, proposed a control model, described by the
following general differential equations:

(9.1.1)

{
dx
dt
= Ax + bf (σ ),

σ = cT x =∑n
i=1 cixi,

where x ∈ Rn is the state variable, b, c ∈ Rn are known vectors, σ is the feedback
control variable, f (σ ) is a nonlinear function. The form of f is not specified, but
it is known that it belongs to some type of functions F[0,k], F[0,k), or F∞. Here,

F[0,k] :=
{

f | f (0) = 0, 0 < σf (σ) � kσ 2, σ �= 0, f continuous
};

F[0,k) :=
{

f | f (0) = 0, 0 < σf (σ) < kσ 2, σ �= 0, f continuous
};

F∞ :=
{

f | f (0) = 0, σf (σ ) > 0, σ �= 0, f continuous
}

.

Many practical nonlinear feedback control problems can be described by sys-
tem (9.1.1), but the form of f is usually not known. Partial information about f
may be obtained from experiments. However, experiments can only be carried out
under specific loads, and thus f depends upon the leads. Usually one only knows
that f belongs to F[0,k), F[0,k], or F∞. No any other information is available in
practice. So strictly speaking, system (9.1.1) is indefinite or is called a multiple
valued system.

The classification of system (9.1.1) is given follows:

(1) If A is a Hurwitz matrix, (9.1.1) is called direct control system.
(2) If A has only one zero eigenvalue, and others have negative real parts, (9.1.1)

is called indirect control system.
(3) If Re λ(A) � 0 and it does not belong to indirect control, then (9.1.1) is called

critical control system.

DEFINITION 9.1.1. The zero solution of system (9.1.1) is said to be absolutely
stable, if for any f ∈ F∞, the zero solution of (9.1.1) is globally asymptotically
stable. The zero solution of (9.1.1) is said to be absolutely stable in the Hurwitz
angle [0, k], ([0, k)), if ∀f ∈ F[0,k] (f ∈ F[0,k)) the zero solution of (9.1.1) is
globally asymptotically stable.

In the following, we introduce some frequently used necessary conditions for
the zero solution of system (9.1.1) to be absolutely stable.

THEOREM 9.1.2. If the zero solution of system (9.1.1) is absolutely stable, then
one of the following conditions must hold:
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(1) ∀ε > 0 (0 < ε < k), A+ εbcT is a Hurwitz matrix;
(2) Re λ(A) � 0, i.e., A has no eigenvalues with positive real parts;
(3) cT b � 0;
(4) if A is stable, then cT A−1b � 0.

PROOF. (1) Let f (σ ) = εσ = εcT x. Then the first equation of (9.1.1) becomes

(9.1.2)
dx

dt
= (

A+ εbcT
)

x,

whose zero solution is asymptotically stable. So A+ εbcT is a Hurwitz matrix.
(2) Suppose there exists an eigenvalue λ0 with Re λ0(A) > 0. By taking

f (σ ) = εσ (0 < ε 	 1), the eigenvalues of A + εbcT depend continuously
on the coefficients. For 0 < ε 	 1, the coefficient matrix (9.1.2) must have an
eigenvalue λ̃0 with Re λ̄0 > 0. This is a contradiction with the fact that the zero
solution of (9.1.1) is absolutely stable. So Re λ(A) � 0.

(3) Let f (σ ) = hσ . Then system (9.1.1) becomes dx
dt
= (A + hbcT )x. So the

trace of the matrix A+ hbcT satisfies

tr
(

A+ hbcT
) = trA+ h tr bcT =

n
∑

i=1

aii + h

n
∑

i=1

cibi < 0.

But when cT b > 0, for h� 1, it follows
n
∑

i=1

aii + h

n
∑

i=1

cibi > 0,

which is impossible, showing that cT b � 0.
(4) We first verify the identity of the linear algebraic equation:

det(I +GH) = det(I +HG),

where G and H are arbitrary matrices for which GH and HG exist, The unit
matrices on both sides of the equation can be in different order. Then,

det(I +GH) = det

[

I +GH 0
H I

]

= det

([

I G

0 I

] [

I −G
H I

])

= det

([

I −G
H I

] [

I G

0 I

])

= det

[

I 0
H HG+ I

]

= det(I +HG).
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Next, we prove cT A−1b � 0. Since A and A + εbcT (ε > 0) are stable, for
λ = 0, we have

det
(

Iλ− (

A+ εbcT
)) = det(Iλ− A) det

[

I − ε(Iλ− A)−1bcT
]

= det(Iλ− A) det
[

I − εcT (Iλ− A)−1b
] �= 0

if cT A−1b < 0. Then, there must exist ε0 > 0 such that

(9.1.3)1− ε0c
T (−A)−1b = 1+ ε0c

T A−1b = 0,

leading to a contradiction. As a result, cT A−1b � 0.
The proof of Theorem 9.1.2 is complete. �

9.2. Lyapunov–Lurie type V function method

In this section, we present the sufficient conditions for absolute stability by using
the Lyapunov–Lurie type V function.

Let (9.1.1) be a direct control system. That is, A is a Hurwitz matrix, Lurie first
constructed the following Lyapunov–Lure type function:

(9.2.1)V (t) = xT Px + β

σ∫

0

f (σ ) dσ,

for which, for any given symmetric positive matrix B, the Lyapunov matrix equa-
tion:

(9.2.2)AT P + PA = −B
has a unique symmetric positive matrix solution P .

THEOREM 9.2.1. (See [296].) Assume that there exist constant β � 0 and an
n× n symmetric positive definite matrix such that

(9.2.3)V (x) = xT Px + β

σ∫

0

f (σ ) dσ,

and the derivative of V along the solution of (9.1.1), given by

(9.2.4)
dV

dt

∣
∣
∣
∣
(9.1.1)

= −xT Bx + 2

(

Pb + 1

2
βAT c

)T

xf (σ )+ βcT bf 2(σ ),

is negative definite. Then the zero solution of system (9.1.1) is absolutely stable.
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PROOF. For any f ∈ F∞ (or f ∈ F[0,k] or f ∈ F[0,k)), the Lyapunov func-
tion (9.2.3) is positive definite and radially unbounded. In addition to that
dV
dt
|(9.1.1) is negative, by the Lyapunov globally asymptotic stability theorem, the

conclusion is true. �

Determining the negative definite propriety of (9.2.4) is a difficult problem.
Equation (9.2.4) looks like a quadric form for x, f (σ ), but the Sylvester condition
is not satisfied here. Lurie developed a method called S-program method, which
can be used as a sufficient condition to determine the negative definite propriety
of (9.2.4).

First, we give a lemma which is needed in the following analysis.

LEMMA 9.2.2. Given a real symmetric positive matrix:

G =
[

K d

dT r

]

,

where K ∈ Rn×n, KT = K , d ∈ Rn, r ∈ R1. Then, G is positive definite if and
only if (1) K is a positive definite and r−dT K−1d > 0; or (2) r > 0, K− 1

r
ddT

is positive definite.

PROOF. By a direct calculation, we obtain
[

I − 1
r
d

0 1

] [

K d

dT r

] [

I 0
− 1

r
dT 1

]

=
[

K − 1
r
ddT 0

0 r

]

,

[

I 0
−dT K−1 1

] [

K d

dT r

] [

I −K−1d

0 1

]

=
[

K 0
0 r − dT K−1d

]

.

So the conclusion is true. �

Therefore, we can observe that the Lyapunov–Lurie function:

(9.2.5)V (x) = xT Px + β

t∫

0

f (σ ) dσ,

where β > 0 is constant and P is a symmetric positive matrix, is equivalent to

(9.2.6)W(x) = xTQx +
t∫

0

f (σ ) dσ,

where Q is a symmetric positive matrix.
It is easy to see from (9.2.5) and (9.2.6) that letting β = 1, Q = P

β
and so

W(x) = V (x)
β

, then (9.2.5) becomes (9.2.6). Therefore, in the following analysis
we will use (9.2.6), instead of (9.2.5) since it has one less parameter.
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Now, we present Lurie’s S-program method, which is a sufficient condition to
assure that (9.2.4) is negative definite. ∀f (σ ) ∈ F∞, we can rewrite (9.2.4) as

−dV
dt

∣
∣
∣
∣
(9.1.1)

= xT Bx − 2

(
1

2
cT A+ bT P + τcT

)

xf (σ )− cT bf 2(σ )

(9.2.7)+ 2τσf (σ ) := S(x, f )+ 2τσf (σ ),

where τ > 0 is a certain constant. Obviously, if

(9.2.8)S(x, f ) := xT Bx − 2

(
1

2
cT A+ bT P + τcT

)

xf (σ )− cT bf 2(σ ),

is positive definite with respect to x, f , then (9.2.4) is negative definite.
However, to determine whether S(x, f ) is positive definite or not, one may use

the famous Sylvester condition. The Sylvester condition holds if and only if a
one-variable quadratic equation has positive solution. To be more specific, since
B is positive definite, ∀x �= 0, let y = Bx, then we have

yT B−1y = xT BT B−1Bx = xT BB−1Bx = xT Bx > 0 for x �= 0.

SoB−1 is also positive definite. Further, sinceB is positive definite, the conditions
for S(x, f ) to be positive definite with respect to x, f (σ ) are given by

(9.2.9)det

[

B −( 1
2A

T c + Pb + τc
)

−( 1
2A

T c + Pb + τc
)T −cT b

]

> 0,

which is equivalent to

det

[

B−1 0
0 1

]

det

[

B −( 1
2A

T c + Pb + τc
)

−( 1
2A

T c + Pb + τc
)T −cT b

]

= det

[

I −B−1
( 1

2A
T c + Pb + τc

)

−( 1
2A

T c + Pb + τc
)T −cT b

]

= −cT b −
(

1

2
AT c + Pb + τc

)T

B−1
(

1

2
AT c + Pb + τc

)

(9.2.10)> 0.

Therefore, we have the following theorem.

THEOREM 9.2.3. (See [345].) If there exist symmetric positive matrix B and a
positive number τ such that

(9.2.11)−cT b >
(

1

2
AT c + Pb + τc

)T

B−1
(

1

2
AT c + Pb + τc

)

,

then (9.2.4) is negative definite. Thus, the zero solution of system (9.1.1) is ab-
solutely stable.
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COROLLARY 9.2.4. If there exists a symmetric positive matrix B such that

(9.2.12)−cT b >
(

1

2
AT c + Pb + c

)T

B−1
(

1

2
AT c + Pb + c

)

,

then (9.2.4) is negative definite, and hence the zero solution of system (9.1.1) is
absolutely stable.

If f (σ ) ∈ F[0,k), then in (9.2.4) we can add and subtract a same term:
2τf (σ )(σ − 1

k
f (σ )) (τ > 0 is a constant) to obtain

dV

dt

∣
∣
∣
∣
(9.1.1)

= −xT Bx + 2

(
1

2
AT c + Pb + τc

)T

xf (σ )

+
(

cT b − 2τ

k

)

f 2(σ )− 2τf (σ )

(

σ − 1

k
f (σ )

)

(9.2.13):= −S1
(

x, f (σ )
)− 2τf (σ )

(

σ − 1

k
f (σ )

)

.

Since f (σ )(σ − 1
k
f (σ )) > 0, ∀σ �= 0, if

S1
(

xf (σ )
) = xT Bx − 2

(
1

2
AT c + Pb + τc

)T

xf (σ )

−
(

cT b − 2τ

k

)

f 2(σ )

is positive definite for (x, f (σ )), then (9.2.13) is negative definite for x. Hence,
the following result is obtained.

THEOREM 9.2.5. (See [345].) If there exist a symmetric positive matrix B and a
constant τ > 0 such that

−
(

cT b − 2τ

k

)

>

(
1

2
AT c + Pb + τc

)T

B−1
(

1

2
AT c + Pb + τc

)

,

then the zero solution of system (9.1.1) is absolutely stable within the Hurwitz
angle [0, k).

If ∀f (σ ) ∈ F[0,k], similarly we can add and subtract a same term

2τ

[

f (σ )

(

σ − 1

k + ε
f (σ )

)]

into (9.2.4) to obtain

dV

dt

∣
∣
∣
∣
(9.1.1)

= −xT Bx + 2

(
1

2
AT c + Pb + τc

)T

xf (σ )
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+
(

cT b − 2τ

k + ε

)

f 2(σ )− 2τf (σ )

(

σ − f (σ )

k + ε

)

:= −S2

(

x, f (σ )

(

σ − 1

k + ε
f (σ )

))

(9.2.14)= −S2
(

x, f (σ )
)− 2τf (σ )

(

σ − f (σ )

k + ε

)

.

So if

S2(x, f ) = xT Bx − 2

(
1

2
AT c + Pb + τc

)T

xf (σ )

−
(

cT b − 2τ

k

)

f 2(σ )

is positive definite for (x, f (σ )), then (9.2.14) is negative definite, leading to the
following theorem.

THEOREM 9.2.6. If there exist a symmetric positive matrix B and a positive
number τ > 0 such that

−
(

cT b − 2τ

k + ε

)

>

(
1

2
AT c + Pb + τc

)T

B−1
(

1

2
AT c + Pb + τc

)

,

then the zero solution of system (9.1.1) is absolutely stable within the Hurwitz
angle [0, k].

The method described above is called S-method, which is simple and practi-
cally useful. However, note that the positive definite property is only a sufficient
condition for the negative definite of dV

dt
|(9.1.1), which is not necessary.

EXAMPLE 9.2.7. (See [458].) Consider the following system:

(9.2.15)

{
dx1
dt
= −2x1 + f (x2),

dx2
dt
= −x2 − 1

2f (x2).

We can show that the Lyapunov–Lurie V function exists such that dV
dt
|(9.2.15) is

negative definite, but there does not exist τ > 0 such that S(x, f ) is positive
definite.
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9.3. NASCs of negative definite for derivative of
Lyapunov–Lurie type function

In this section, we present the necessary and sufficient conditions (NASCs) for
the derivative of the following Lyapunov–Lurie type V function:

(9.3.1)V (x) = xT Px +
t∫

0

f (σ ) dσ (in which β has been set 1)

to be negative definite along the solution of system (9.1.1).

THEOREM 9.3.1. (See [456].) Let system (9.1.1) be a direct control systems.
Then the derivative of (9.3.1) with respect to time t along the solution of sys-
tem (9.1.1), given by

(9.3.2)
dV

dt

∣
∣
∣
∣
(9.1.1)

= −xT Bx − (

cT A+ 2bT P
)

x + f (σ )+ cT bf 2(σ ),

is negative definite with respect x if and only if

(1) W(x) := xT Bx − (cT A + 2bT P )x − cT b � 0 when cT x = σ = 0, i.e.,
W(x) is positive semi-definite on hyperplane cT x = σ = 0;

(2) cT HH(AT c + 2PT b) � 0, where HT BH = In.

The proof of the theorem is quite long and is omitted here. Interested readers
can find the detailed proof in [456]. Later, Zhu [463] showed that the condition (1)
in Theorem 9.3.1 is still difficult to verify. His improved result is given in the
following theorem.

THEOREM 9.3.2. (See [463].) Let A be stable. Then ∀f ∈ F[0,k], the derivative
of V given in (9.3.1),

dV

dt

∣
∣
∣
∣
(9.1.1)

= −xT Bx + (

cT A+ 2bT P
)

xf (σ )+ cT bf 2(σ ),

is negative definite with respect to x if and only if

(9.3.3)
1

k
− cT B−1d > 0,

and

(9.3.4)
1

cT B−1c

(
1

k
− cT B−1d

)2

− dT B−1d − cT b > 0,

where d = Pb + 1
2A

T c. Thus, when (9.3.3) and (9.3.4) hold, the zero solution of
system (9.1.1) is absolutely stable.
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PROOF. B is symmetric positive definite and so is B−1. In addition, there exists a
matrixH such thatB = HTH andB−1 = H−1(H−1)T . Clearly, V (x) is positive
definite and radially unbounded. Equation (9.3.2) can be reduced to

−dV
dt

∣
∣
∣
∣
(9.1.1)

= xT Bx − 2xT
(

Pb + 1

2
AcT

)

f (σ )− cT bf 2(σ )

= xT HT Hx − 2xT df (σ )− cT bf 2(σ )

= (Hx)T (Hx)− 2(Hx)T
(

H−1)T df (σ )− cT bf 2(σ )

= [

Hx − (

H−1)T df (σ )
]T [

Hx − (

H−1)T df (σ )
]

− (

dT B−1dcT b
)

f 2(σ )

(9.3.5)=
{ 0, when x = 0,
(Hx)T (Hx) = xT Bx > 0, when f (σ ) = 0, x �= 0,
Uf 2(σ )f,

where

U :=
[

H
x

f (σ)
− (

H−1)d

]T [

H
c

f (σ)
− (

H−1)T d

]

(9.3.6)− (

dT B−1)d + cT b.

Therefore, it is suffice to show that U > 0 for any cT x � 1
k

. To complete the
proof, we use the topological transformation:

y = Hx − (

H−1)T d

to reduce U to U = yT y − ρ, where ρ = dT B−1d + cT b, and the condition
cT x � 1

k
is equivalent to

(9.3.7)cT H−1[y + (

H−1)T d
]

� 1

k
.

As a result, we only need to show that in the half space of y satisfying (9.3.7) the
expression U = yT y − ρ satisfies U > 0. It is easy to prove that for ρ � 0, when
y = 0 we have U � 0. Therefore, it only needs to guarantee that y = 0 is not on
the half space of (9.3.7), i.e,.

cT H−1[0+ (

H−1)T d
] = cT H−1(H−1)T d = cT B−1d <

1

k
,

which is just exactly the condition (9.3.3).
Clearly, on the half space of (9.3.7) V reaches its minimum at y = y∗, i.e., at

the intersection point of the hyperplane

cT H−1[y + (

H−1)T d
] = 1

k
,

and the normal line passing through the point y = 0.
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Let y∗ = λ(cT H−1)T , where λ is to be determined. Then the expression

cT H−1[λ
(

cT H−1)T d
] = 1

k

leads to

λ =
1
k
− cT B−1d

cT B−1c
.

As a result, we have

V (y∗) = [

λ
(

cT H−1)T ]T [λ
(

cT H−1)T ]− P

= λ2cT B−1c − (

dT B−1d + cT b
)

= 1

cT B−1c

(
1

k
− cT B−1d

)2

− dT
(

B−1)d − cT d > 0.

This is just the condition (9.3.4), and the proof of theorem is complete. �

Through the proof for Theorem 9.3.2, we may find the following results.

COROLLARY 9.3.3. (See [463].) Let A be a Hurwitz matrix. Then ∀f (σ ) ∈
F[0,k), the derivative of V of (9.3.1),

dV

dt

∣
∣
∣
∣
(9.1.1)

= −xT Bx + (

cT A+ 2bT P
)

xf (σ )+ cT bf 2(σ ),

is negative definite with respect to x if and only if

(9.3.8)
1

k
− cT B−1d � 0,

(9.3.9)
1

cT B−1c

(
1

k
− cT B−1d

)2

− dT B−1d − cT b � 0.

Taking k→+∞, then 1
k
= 0 and we have

COROLLARY 9.3.4. (See [463].) Let A be stable. Then ∀f (σ ) ∈ F∞, the deriv-
ative of V of (9.3.1),

dV

dt

∣
∣
∣
∣
(9.1.1)

= −xT Bx + (

cT A+ 2bT P
)

xf (σ )+ cT bf 2(σ ),

is negative definite with respect to x if and only if

(9.3.10)cT B−1d � 0,

(9.3.11)
1

cT B−1c

(

cT B−1d
)2 − dT B−1d − cT b � 0.
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9.4. Popov’s criterion and improved criterion

THEOREM 9.4.1. (See [337].) Let A be stable. If there exists a real constant q
such that

(9.4.1)Re
{

(1+ iqω)W(iω)
}+ 1

k
> 0, ω ∈ [0,+∞),

then the zero solution of system (9.1.1) is absolutely stable within the Hurwitz
angle [0, k], where

(9.4.2)W(iω) := K(iω)

D(iω)
=

det
[
iωIn−A b

cT 0

]

det(iωIn − A)
.

The above theorem is a well-known result. Its proof is very long and omitted
here. Readers can find the details in [337,350].

THEOREM 9.4.2. Assume Re λ(A) � 0. If there exists a real constant q such
that (9.4.1) holds, then for ∀f (σ ) ∈ F[ε,k] := [f | 0 < ε � f (σ )

σ
� k, σ �= 0},

the zero solution of system (9.1.1) is globally stable. In this case, the zero solution
of (9.1.1) is said to be absolutely stable within the Hurwitz angle [ε, k].

By setting k → ∞, we easily obtain the conditions of absolute stability in
Popov’s absolutely stable condition within the Hurwitz angle [0,+∞), ([ε,+∞])
as

(9.4.3)Re
{

(1+ iqω)W(iw)
}

> 0.

Since the frequency ω is varied on the infinite interval [0,+∞), verifying these
conditions is still difficult. Now, we introduce an improved criterion due to
Zhang [451], which changes the infinite [0,+∞) into a finite interval [0, ρ]. We
still consider the direct control system (9.1.1).

Let

(9.4.4)W(iω) := −cT (iωIn − A)−1b := K(iω)

D(iω)
,

where

(9.4.5)D(iω) := det(iωI − A).

Denote

(9.4.6)X(ω) := ReW(iω) = Re{K(iω)D̄(iω)}
|D(iω)|2

(9.4.7)Y(ω) := ImW(iω) = Im{K(iω)D̄(iω)}
|D(iω)|2 := H(ω)

|D(iω)|2 ,
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where

(9.4.8)H(ω) = h2n + h2n−1ω + · · · + h1ω
2n−1.

According to the estimation of the boundedness of zeros of polynomials, all the
zero points are located within the circle:

‖z‖ < ρ := 1+ max
1�i�2n

|hi |.

LEMMA 9.4.3. Let f (σ ) = εσ (0 � ε � k) in (9.1.1). Then the necessary
and sufficient condition for the corresponding linearized system of (9.1.1) to be
asymptotically stable is that the frequency characteristic curve W(iω) (0 � ω �
ρ) and the line (−∞,− 1

k
) on the real axis has no intersection points.

PROOF. Necessity. By Theorem 9.4.1, the necessary and sufficient condition for
the asymptotic stability of the linearized system of (9.1.1) is that the frequency
characteristic curve W(iω) (−∞ � ω � ∞) and the line (−∞,− 1

k
) on the real

axis has no intersection points. So, the necessity is obvious.
Sufficiency. Since W(iω) = X(ω) + iY (ω), all the zero points ωj satisfying

|wj | < ρ, 1 � j � 2n− 1. When |W | > ρ, H(ω) �= 0, i.e., y(ω) �= 0. By

x(ω) = K(iω)D(−iω)+K(−iω)D(iω)
2D(iω)D(−iω) ,

we get X(−ω) = X(ω). So if the curve W(iω) (0 � ω � ρ) and the line
(−∞,− 1

k
) have no intersection points, then the curve W(iω) (−ρ � ω � 0) and

the line (−∞,− 1
k
) have no intersection points. Hence W(iω) (−∞ � ω � +∞)

and the line (−∞,− 1
k
) do not intersect. The sufficiency is proved. �

In the following, for convenience, we use the notations:

X∗(ω) = ReW(iω) = ωIm{K(iω)D̄(iω)}
|D(iω)|2 := A(ω)

In(ω)
,

Y ∗(ω) = ω ImW(iω) = ωIm{K(iω)D̄(iω)}
|D(iω)|2 := B(ω)

In(ω)
.

THEOREM 9.4.4. If there exists a real number q such that

(9.4.9)Re
{

1+ iqωW(iω)
}+ 1

k
> 0, ω ∈ [0, ρ],

then the zero solution of system (9.1.1) is absolutely stable within the Hurwitz
angle [0, k], where

ρ = 1+ max
2�i�2n+1

ρi (i = 2, 3, . . . , 2n+ 1).
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Here, ρi’s are the coefficients of the polynomial function:

(9.4.10)P(ω) := A(ω)− qB(ω)+ 1

k
In(ω).

PROOF. The condition (9.4.9) is equivalent to

(9.4.11)X∗(ω)− qy∗(ω)+ 1

k
> 0, ω ∈ [0, ρ],

i.e.,

A(ω)

In(ω)
− q

B(ω)

In(ω)
+ 1

k
> 0, ω ∈ [0, ρ],

or

(9.4.12)
A(ω)− qB(ω)+ 1

k
In(ω)

In(ω)
= P(ω)

In(ω)
, ω ∈ [0, ρ].

By the definition of ρ and the zero points ωi of the polynomial function P(ω)

with |ωi | < ρ, we have P(ω) �= 0 when ω � ρ and P(ρ) > 0. Hence, P(ω) > 0
when ω > ρ, i.e.,

(9.4.13)X∗(ω)− qy∗(ω)+ 1

k
= P(ω)

E(ω)
> 0 when ω > ρ.

Combining (9.4.8) and (9.4.13) yields

Re(Hiqω)W(iω)+ 1

k
> 0 for all ω � 0.

Hence, by Popov theorem, we know that the zero solution of system (9.1.1) is
absolutely stable within the Hurwitz angle [0, k].

The proof of Theorem 9.4.4 is complete. �

However, it is noted in Theorem 9.4.4 that although ρ is independent of q, k, q
is a parameter for existence. Determining ρ is still a difficult task. Therefore, we
need to further specify the parameters.

For a given k > 0, let

G(ω) := A(ω)+ 1

k
In(ω) = x2n + c2n−1ω + · · · + c0ω

2n,

B(ω) := b2n + b2n−1ω + · · · + b1ω
2n−1 + b0ω

2n,

ρ1 = 1+ max
1�i�2n

∣
∣
∣
∣

ci

c0

∣
∣
∣
∣
,

ρ2 = 1+ max
1�i�2n

∣
∣
∣
∣

bi

b0

∣
∣
∣
∣
.
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THEOREM 9.4.5. (See [417].) If one of the following two conditions holds:

(1) b0 < 0 (or b0 = 0, b1 < 1) and there exists q � 0 such that

(9.4.14)Re
{

(1+ iqω)W(iω)
}+ 1

k
> 0, ω ∈ [0, ρ];

(2) b0 > 0 (or b0 = 0, b1 > 1) and there exists q � 0 such that

(9.4.15)Re
{

(1+ iqω)W(iω)
}+ 1

k
> 0, ω ∈ [0, ρ];

then the zero solution of system (9.1.1) is absolutely stable within the Hurwitz
angle [0, k].

PROOF. The condition (9.4.14) is equivalent to

(9.4.16)
A(ω)− qB(ω)+ 1

k
In(ω)

In(ω)
> 0, ω ∈ [0, ρ].

Thus one only needs to prove that under the condition:

(9.4.17)A(ω)− qB(ω)+ 1

k
In(ω) = G(ω)− qB(ω) > 0 for ω > ρ,

the conclusion is true.
If condition (1) holds, then by the definition of ρ it must hold G(ω) �= 0,

B(ω) �= 0 when ω > ρ, and by b0 < c (or b0 = 0, b1 < 0), when ω � 1,
B(ω) < 0. However, the degree of A(ω) is lower than the degree of E(ω) at least
by one. So the coefficient of the highest degree of G(ω) is the same as that of 1

k
.

Thus, when ω � 1, G(ω) > 0. Further, we have G(ω) > 0 and B(ω) < 0 when
ω > ρ, i.e., (9.4.17) holds. By a similar method, one can show that the condition
implies (9.4.17) to be held.

If the condition holds, one can similarly prove (9.4.17).
Theorem 9.4.5 is proved. �

Next, we present a criterion in which ρ is independent of q, k.
Let

A(ω) = a2n−1 + a2n−2ω + · · · + a1ω
2n−2 + aoω

2n−1,

where

a0, a1, a2
0 + a2

1 �= 0, ρ3 = 1+ max
1�i�2n−1

∣
∣
∣
∣

ai

a0

∣
∣
∣
∣
.

THEOREM 9.4.6. (See [451].) If one of the following two conditions holds:

(1) a0 > 0 (or a0 = 0, a1 < 0), b0 < 0 (or b0 = 0, b1 > 0) and there exists
q � 0 such that
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(9.4.18)Re
{

(1+ iqω)W(iω)
}+ 1

k
> 0, ∀ω ∈ [0, ρ];

(2) a0 < 0 (or a0 = 0, a1 < 0), b0 > 0 (or b0 = 0, b1 > 0) and there exists
q � 0 such that

(9.4.19)Re
{

(1+ iqω)W(iω)
}+ 1

k
> 0, ∀ω ∈ [0, ρ];

then the zero solution of system (9.1.1) is absolutely stable within the Hurwitz
angle [0, k], where ρ = max{ρ1, ρ2}.

PROOF. If condition (1) holds, then (9.4.18) is equivalent to

X∗(ω)− qȳ∗(ω)+ 1

k

(9.4.20)= A(ω)

In(ω)
− q

B(ω)

In(ω)
+ 1

k
> 0, ∀ω ∈ [0, ρ].

By the definition of ρ, we have A(ω) �= 0, B(ω) < 0 when ω > ρ. But, on the
other hand, condition (1) implies A(ω) > 0, B(ω) < 0 when ω > ρ, so when
ω > ρ, A(ω)− qB(ω) > 0 is true. Thus, when ω > ρ it holds

(9.4.21)
A(ω)

In(ω)
− q

B(ω)

In(ω)
+ 1

k
>

1

k
> 0.

combining (9.4.18) and (9.4.21) yields

Re
{

(1+ iqω)W(iω)
}+ 1

k
> 0 when ω � 0,

implying that the zero solution of system (9.1.1) is absolutely stable.
If condition (2) holds, by a same argument one can prove that the conclusion is

true. �

The improved Popov’s criterion described above only requests that the indepen-
dent variable is varied in the range [0, ρ] for the frequency characteristic curve.
Therefore, the computation of the characteristic curve can be executed on a com-
puter system. Although the conditions in Theorems 9.4.5 and 9.4.6 are a little bit
stronger than those in the Popov frequency criterion, the former is more conve-
nient in application.

So far, we have introduced the main methods and results of the Lurie prob-
lem, namely, the quadratic form V function method with integrals, the S-method
based on the V function method, and the Popov frequency domain method. There
methods were developed during the same period of time, and motivated the devel-
opment of new mathematical theory and methodology, such as complex function,
mathematical analysis and matrix theory, positive real function theory, etc.
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9.5. Simple algebraic criterion

In the previous sections, we introduced several classical methods for determin-
ing the derivative of the Lyapunov–Lurie function. However, a common point
is observed: whether the V function method, or the Lyapunov Lurie type method
combined with the S-method, or the Popov frequency domain method, all the con-
ditions are based on the existence description and are merely sufficient conditions.
In particular, when the dimension of a given system is large, the computation
demanding increases significantly even with computers. Moreover, note that we
must repeat a process so that p is obtained from solving the Lyapunov matrix
equation. From the view point of application, practical engineers or designers pre-
fer algebraic expressions since they are easy to verify. Especially, it is convenient
for control designs since it enables one to easily consider stability requirement. In
this section, we introduce some constructive, explicit algebraic conditions, which
are independent of the existence matrices or parameters. For most of the results
presented here, we only briefly state the results without giving detailed proof, but
provide the necessary references.

We still consider system (9.1.1). Let

g(σ ) =
{

f (σ )
σ

, when σ �= 0,
0, when σ = 0,

Fij (σ ) :=
(

aij + bicjg(σ )
)

.

Then (9.1.1) can be rewritten as

(9.5.1)
dxi

dt
=

n
∑

j=1

Fij (σ )xj .

Let

0 � g(σ ) � k <∞,

b̃ii =
{

aii , when bici � 0
aii + bicik, when bici > 0

(i = 1, 2, . . . , n),

b̃ij = b̃j i =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

1
2 max

[|aij + aji |, k|bicj + bj ci |
]

when (aij + aji)(bicj + cjbi) � 0, i �= j,

1
2 |aij + aji + k(bicj + bj ci)|

when (aij + aji)(bicj + bj ci) > 0

(i = 1, 2, . . . , n).

PROPOSITION 9.5.1. If B̃(b̃ij )n×n is a Hurwitz matrix, then the zero solution of
system (9.5.1) is absolutely stable within the Hurwitz angle [0, k].
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REMARK 9.5.2. One can use the simple Lyapunov function:

V (t) =
n
∑

i=1

x2
i

to prove the proposition.

PROPOSITION 9.5.3. If the matrix −Ã(ãij )n×n is an M matrix, then the zero
solution of system (9.5.1) is absolutely stable within the Hurwitz angle [0, k],
where

ãii =
{

aii , for bici � 0,
aii + kbici, for bici > 0

(i = 1, 2, . . . , n),

ãij :=
{

max{|aij |kbicj |}, for aij bicj � 0, i �= j,

|aij + k|bicj |, for aij bicj > 0

(i �= j, i, j = 1, 2, . . . , n).

REMARK 9.5.4. One can employ the Lyapunov function:

V (x) =
n
∑

i=1

ηi |xi |

to complete the proof, where ηi satisfy

ηj ãjj +
n
∑

i=1
i �=j

ãij ηi < 0, j = 1, 2, . . . , n.

In the following, we consider a more general case. Without loss of generality,
let

bici < 0 (i = 1, 2, . . . , i1), bici > 0 (i = i1 + 1, . . . , i2),

bi = ci = 0 (i = i2 + 1, . . . , i3), bi = 0,

ci �= 0 (i = i3 + 1, . . . , i4),

bi �= 0, ci = 0 (i = i4 + 1, . . . , n, 1 � i1 � i2 � i3 � i4 � n).

PROPOSITION 9.5.5. If the matrix [R(rij )n×n + S(sij )n×n] is negative definite,
then the zero solution of system (9.5.1) is absolutely stable within the Hurwitz
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angle [0, k], where

rij = rji =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

− ci
bi
aii (i = j = 1, 2, . . . , i1),

ci
bi
aii (i = j = i1 + 1, . . . , i2),

aii (i = j = i2 + 1, . . . , n),
1
α

[ riiaij
aii

+ rjj aji
ajj

]

(i �= j, i = j = 1, 2, . . . , n),

Sij = Sji =

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 (i = j = 1, 2, . . . , i1, i1 + 1, . . . , i2),
0 (i �= j, i, j = 1, 2, . . . , n),

3(i2 − i1)kc
2
i (i = j = i2 + 1, . . . , i3),

3
4 (i4 − i3)kc

2
i (i = j = i3 + 1, . . . , i4),

3
4 (n− i4)kb

2
i (i = j = i4 + 1, . . . , n).

REMARK 9.5.6. One may choose the following Lyapunov function:

V (x) = −
i1∑

i=1

ci

bi
x2
i +

i2∑

i=i1+1

ci

bi
x2
i +

n
∑

i=i2+1

x2
2

to prove the proposition.

PROPOSITION 9.5.7. If aii < 0 (i = 1, 2, . . . , n), the matrix G(gij )n×n is neg-
ative definite, then the zero solution of system (9.5.1) is absolutely stable within
the Hurwitz angle [0, k], where

gij = gji =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−a2
ii when bici � 0, i = j = 1, 2, . . . , n,

−a2
ii − a2

iibicik when bici > 0, i = j = 1, 2, . . . , n,

max
[ 1

2 |aiiaij + ajj aji |, 1
2k|bicj aii + bj ciaij |

]

when (aiiaij + ajj aji)(bicj aij + bj ciaji) � 0,
i �= j, i, j = 1, 2, . . . , n,

1
2

∣
∣aiiaij + ajj aji + k(bicj aij + bjaiaji)

∣
∣

when (aiiaij + ajj aji)(bicj aii + bj ciaji) > 0,

i �= j, i, j = 1, 2, . . . , n.

REMARK 9.5.8. We take the Lyapunov function:

V (t) = −
n
∑

i=1

aii

2
x2
i

to prove that dV
dt
|(9.5.1) is negative definite. So the conclusion is true.

PROPOSITION 9.5.9. If there exist constants ri > 0 (i = 1, 2, . . . , n) and α > 0
such that ribi = −αci , i = 1, 2, . . . , n, and the matrix U(uij )n×n is negative
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definite, then the zero solution of system (9.5.1) is absolutely stable, where

uij = uji = 1

2
(riaij + rj aji), i, j = 1, 2, . . . , n.

REMARK 9.5.10. Choosing

V (x) =
n
∑

i=1

rix
2
i ,

we can show that dV
dt
|(9.5.1) is negative definite, and thus the zero solution of sys-

tem (9.5.1) is absolutely stable.

In the following, we consider a class of simplified systems, called first standard
form:

dxi

dt
= −ρixi + f (σ ), ρi > 0, i = 1, 2, . . . , n,

σ =
n
∑

i=1

cixi, f (0) = 0,

(9.5.2)0 < σf (σ) � kσ 2, σ �= 0, 0 < k �∞.

Let

ci

{
> 0 when i = 1, . . . , i1,
= 0 when i = i1 + 1, . . . , i2,
< 0 when i = i2 + 1, . . . , n.

PROPOSITION 9.5.11. If ρi > 2k(n − i2)ci , i = i2 + 1, . . . , n, then the zero
solution of system (9.5.2) is absolutely stable within the Hurwitz angle [0, k].

REMARK 9.5.12. By using the Lyapunov function

V (x) = −
i1∑

i=1

cix
2
i +

i2∑

i=i1+1

εix
2
i +

n
∑

i=i2+1

cix
2
i ,

where 0 < εi <
2ρi

k(i2−i1) , one can easily prove that dV
dt
|(9.5.2) is negative definite.

So the conclusion is true.

COROLLARY 9.5.13. If ci � 0 (i = 1, 2, . . . , n), then the zero solution of sys-
tem (9.5.2) is absolutely stable within the Hurwitz angle [0, k].

COROLLARY 9.5.14. If ci < 0 (i = 1, 2, . . . , n), then the zero solution of sys-
tem (9.5.2) is absolutely stable.
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PROPOSITION 9.5.15. Suppose the system (9.5.2) is a critical control system. Let
ρi > 0 (i = 1, 2, . . . , n− 1), ρn = 0, cn < 0, ci <

ρi
2k(n−1) , i = 1, 2, . . . , n− 1.

Then the zero solution of system (9.5.2) is absolutely stable within the Hurwitz
angle [0, k].

PROOF. Consider a system of quadric inequalities for yi :

k(n− 1)y2
i + 2

[

k(n− 1)ci − ρi
]

yi + k(n− 1)c2
i < 0

(9.5.3)(i = 1, 2, . . . , n− 1)

which has positive real solutions if and only if

ci <
ρi

2k(n− 1)
, i = 1, 2, . . . , n.

Let yi = ri (i = 1, 2, . . . , n− 1) be some positive solutions for (9.5.3).
Construct the Lyapunov function:

V (x) =
n−1
∑

i=1

rix
2
i − cnx

2
n.

Then, we have

G(x) := dV

dt

∣
∣
∣
∣
(9.5.2)

= −2
n−1
∑

i=1

riρix
2
i + 2

n−1
∑

i=1

rixif (σ )− 2cnxnf (σ )

= −2
n−1
∑

i=1

riρix
2
i + 2

n−1
∑

i=1

(ri + ci)xif (σ )−
n
∑

i=1

2cixif (σ )

� −2
n−1
∑

i=1

riρix
2
i + 2

∣
∣
∣
∣
∣

√
k

n−1
∑

i=1

(ri + ci)xi

∣
∣
∣
∣
∣
x

∣
∣
∣
∣

f (σ )√
k

∣
∣
∣
∣
− 2σf (σ )

� −2
n−1
∑

i=1

riρix
2
i + k(n− 1)

n−1
∑

i=1

(ri + ci)
2x2

i + σf (σ )− 2σ(σ )

� −
n−1
∑

i=1

[

k(n− 1)(ri + ci)
2 − 2riρi

]

x2
i − σf (σ )

� −
n−1
∑

i=1

[

k(n− 1)r2
i + 2

[

k(n− 1)ci − ρi
]

ri +K(n− 1)c2
i

]

x2
i

− σf (σ ) := W(x)

� 0.
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Since G(0) = W(0) = 0, G(x) � W(x) � 0, if there exists x̃ such that W(x̃) =
0, then

n−1
∑

i=1

x̃2
i = 0,

and σf (σ ) = 0, i.e., cnx̃nf (x̃n) = 0. Thus, cnx̃n = 0, W(x) is negative definite.
Further, we know that G(x) is negative definite, implying that the zero solution
of system (9.5.2) is absolutely stable within the Hurwitz angle [0, k]. �

COROLLARY 9.5.16. If ρi > 0 (i = 1, 2, . . . , n− 1), ρn = 0, cn < 0, ci � 0,
i = 1, 2, . . . , n − 1, then the zero solution of system (9.5.2) is absolutely stable
within the Hurwitz angle [0, k].

COROLLARY 9.5.17. If ρi > 0 (i = 1, 2, . . . , n − 1), ρn = 0, ci < 0, i =
1, 2, . . . , n− 1, then the null solution of (9.5.2) is absolutely stable.

Now we turn to consider the algebraic criterion for the Popov method [253,254,
417].

PROPOSITION 9.5.18. Consider a class of specific control systems in the
form (9.1.1):

(9.5.4)

{
dx
dt
= Ax + bf (σ ),

σ = cT x,

where

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−λ 1 0 · · · 0
0 −λ 0 · · · 0

0
. . . 0

...
. . .

...

0 0 0 · · · −λ

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, λ > 0.

Then the zero solution of system (9.5.4) is absolutely stable if and only if

(9.5.5)cT b � 0 and cT A−1b � 0.

PROOF. Necessity has been proved in Theorem 9.1.2. We only need to prove
sufficiency. To show this, suppose there exists constants q � 0 such that

(9.5.6)Re
{

(1+ iωq)W(iω)
}

� 0 for ω � 0,

where

W(z) = −cT (Inz− A)−1b,
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then the zero solution of system (9.5.4) is absolutely stable. Rewrite (9.5.6) to an
equivalent form:

Re
{

(1+ iωq)cT A−1
iω b

}

� 0 for ω � 0,

where Aiω = iωIn − A. Then, we have

Aiω =

⎡

⎢
⎢
⎣

iω + λ −1 0 · · · 0
0 iω + λ 0
...

...
. . .

...

0 0 · · · iω + λ

⎤

⎥
⎥
⎦
,

A−1
iω =

⎡

⎢
⎢
⎣

1
iω+λ

1
(iω+λ)2 0 · · · 0

0 1
iω+λ · · · 0

· · ·
0 · · · 1

iω+λ

⎤

⎥
⎥
⎦
,

cT A−1
iω b = (c1, c2, . . . , cn)A

−1
iω (b1, . . . , bn)

T

=
n
∑

j=1

bj cj

iω + λ
+ c1b2

(iω + λ)2

= cT b(λ− iω)

λ2 + ω2
+ c1b2(λ

2 − ω2)− 2c1b2Wiλi

(λ2 − ω2)2 + 4ω2λ2
.

It follows that

Re
{

(1+ iωq)cT A−1
iω b

}

= cT bλ

λ2 + ω2
+ c1b2(λ

2 − ω2)

(λ2 − ω2)2 + 4ω2λ2
+ qω2(cT b)

λ2 + ω2
+ 2qω2c1b2λ

(λ2 − ω2)+ 4ω2λ2

:= F(ω3)

(λ2 + ω2)[(λ2 − ω2)2 + 4λ2ω2] ,

where

F
(

ω2) = [(

λ2 − ω2)+ 4ω2λ2][(ctb
)

λ+ qω2(cT b
)]

+ [

λ2 + ω2][c1b2
(

λ2 − ω2)+ 2qω2c1b2λ
]

= (

cT b
)[(

λ4 + 2ω2λ2 + ω4)][λ+ qω2]+ c1b2
(

λ4 − ω4)

+ 2qλ3ω2c1b2 + 2qω4c1b2λ

= q
(

cT b
)

ω6 + [(

cT b
)

λ+ 2
(

cT b
)

λ2q − c1b2 + 2qc1b2λ
]

ω4

+ [(

cT b
)

λ4q + 2
(

cT b
)

λ3 + 2qλ3c1b2
]

ω2 + [(

cT b
)

λ5 + c1b2λ
4].
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The conditions cT b � 0 and −cT A−1b = 1
λ2 [(cb)λ + c1b1] � 0 imply that

the first term and the constant term in F(ω2) are not positive. Now, consider the
coefficients of the terms ω4 and ω2.

(1) If c1b2 � 0, then for any q � 0 it holds (cT b)x4q+2(cT b)λ3+2qλ3ab2 � 0.
Choose q > 1

2λ to get

(

cT b
)

λ+ 2
(

cT b
)

λ2q − c1b2 + 2qc1b2λ

= (

cT b
)

λ+ 2
(

cT b
)

λ2q + c1b2(2qλ− 1)

< 0.

Therefore, the coefficients of ω4 and ω2 are not positive.
(2) If a1b2 > 0, then choose q = 0 so that the coefficient of ω4 term is (cT b)λ−

c1b2 � 0, and the coefficient of ω2 term is 2(cT b)λ3 � 0.

Thus, in any case, one can find q � 0 such that F(ω2) � 0. So the zero solution
of system (9.5.4) is absolutely stable. �

COROLLARY 9.5.19. If there exists a similar transformation x = By, B ∈
Rn×n such that system (9.1.1) is transformed into system (9.5.4), then the zero
solution of system (9.1.1) is absolutely stable.

PROOF. We only need to prove that cT b and cT A−1b are invariant under the
similar transformation. Since system (9.1.1) becomes

dy

dt
= B−1ABy + B−1bf

(

cT By
) = Ãy + b̃f

(

c̃T y
)

,

where Ã = B−1AB, b̃ = B−1b, c̃ = BT c, we have

c̃T b̃ = cT BB−1b = cT b,

c̃T Ã−1b̃ = cT BB−1A−1BB−1b = cT A−1b.

Therefore, the conclusion is true. �

PROPOSITION 9.5.20. In system (9.1.1) let

A =
[

A1 0
0 A2

]

=
[−λI1 0

0 −ρI2

]

where λ > 0, ρ > 0, I1 ∈ Rn1×n1 , I2 ∈ Rn2×n2
, n1 + n2 = n. Then the

zero solution of system (9.1.1) is absolutely stable if and only if cT b � 0 and
cT A−1b � 0.
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PROOF. The necessity has been proved. We only need to prove the sufficiency.
Since

Aiω

[

(iω + λ)I1 0
0 (iω + ρ)I2

]

, A−1
iω

[ 1
iω+λI1 0

0 1
iω+ρ I2

]

,

we take

ĉ1 =
[

I1 0
0 0

]

n×n
c, ĉ2 =

[

0 0
0 In

]

n×n
c,

b̂1 =
[

I1 0
0 0

]

b, b̂2 =
[

0 0
0 I2

]

b.

Then,

cT A−1
iω b =

ĉT1 b̂1

iω + λ
+ ĉT2 b̂2

iω + ρ

= ĉT1 b̂1λ− iĉT1 b̂1ω

ω2 + λ2
+ ĉT2 b̂2ρ − iĉT2 b̂2ω

ω2 + ρ2
,

Re
{

(1+ iωq)cT A−1
iω b

} = ĉT1 b̂1λ+ qω2ĉT1 b̂1

ω2 + λ2
+ ĉT2 b̂2ρ + qω2c̃T2 b̃2

ω2 + ρ2

:= F(ω2)

(ω2 + λ2)(ω2 + ρ2)
,

where

F
(

ω2) = q
(

c̄T1 b̄1 + c̄T2 b̄2
)

ω4 + [(

ĉT1 b̄1λ+ ĉT1 b̄2ρ
)

+ q
(

c̄T1 b̄1ρ
2 + c̄T2 b̄2λ

2)]ω2 +
(
c̄T1 b̄1

λ
+ c̄T2 b̄2

ρ

)

λ2ρ2.

By the conditions we have

cT b = c̄T1 b̃1 + c̃T2 b̂2 � 0,

−cT A−1b = ĉT1 b̂1

λ
+ ĉT2 b̂2

ρ
� 0.

Then it is easy to prove that there exists q � 0 such that
(

c̃T1 b̃1λ+ c̃T2 b̂2ρ
)+ q

(

c̃T1 b̃1ρ
2 + c̃T2 b̂2λ

2) � 0,

i.e., there exists q � 0 satisfying F(ω2) � 0. So the zero solution of sys-
tem (9.1.1) is absolutely stable under the conditions of Proposition 9.5.20. �

PROPOSITION 9.5.21. Let b a right eigenvector of A and c be the corresponding
left eigenvector of A. Then, the zero solution of system (9.1.1) is absolutely stable
if and only if cT b � 0.
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PROOF. Necessity is obvious, so we only prove sufficiency. Let Ab = −λb (λ >
0). Then

(iωA)b = [λ+ iω]b, ω � 0,

(iωA)−1 = 1

λ+ iω
b,

and then cT (iωI − A)−1b = cT b
iω+λ holds. By the condition cT b � 0 we have

Re
{

cT (iωI − A)−1b
} = λcT b

λ2 + ω2
� 0.

Hence, the zero solution of system (9.1.1) is absolutely stable.
Next, let AT c = −λc (λ > 0). Then, we have

(

iωI − AT
)−1

c = 1

iω + λ
c,

[(

iωI − AT
)−1

c
]T
b = 1

iω + λ
cT b,

i.e.,

cT (iωI − A)−1b = cT b

iω + λ
.

So the zero solution of system (9.1.1) is absolutely stable. �

EXAMPLE 9.5.22. Consider a 3-dimensional control system:

(9.5.7)

⎧

⎪⎪⎨

⎪⎪⎩

dx1
dt
= −x1 + x2 − x3 + f (x1 − x2 − x3),

dx2
dt
= x1 − x2 − x3 + f (x1 − x2 − x3),

dx3
dt
= x1 + x2 − 3x3 + f (x1 − x2 − x3),

with

A :=
(−1 1 −1

1 −1 −1
1 1 −3

)

, b :=
( 1

1
1

)

, c =
( 1
−1
−1

)

, f ∈ F∞.

It is easy to cheek that A is stable, b is an eigenvector of A associated with the
eigenvalue λ = −1. Since cT b = −1, the zero solution of system (9.5.5) is
absolutely stable.

PROPOSITION 9.5.23. In system (9.1.1), let

A = diag(A1, A2, . . . , Am),

b = (

b̃T1 , b̃
T
2 , . . . , b̃

T
m

)T
,
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c = (

c̃T1 , c̃
T
2 , . . . , c̃

T
m

)T
,

where Ar (r = 1, 2, . . . , m) is an nr × nr matrix, and

m
∑

r=1

nr = m.

If b̃r is a right eigenvector of Ar and c̃r is the corresponding left eigenvector of
AT
R (r = 1, 2, . . . , m), then c̃Tr b̃r � 0 (r = 1, 2, . . . , m) implies that the zero

solution of system (9.1.1) is absolutely stable.

PROOF. Since Arb̃r = −λb̃r , we have

c̃Tr (iωIr − Ar)
−1b̃r = λc̃Tr b̃r

λ+ iω
.

Then,

Re
{

c̃Tr (iωIr − Ar)
−1b̃r

} = λc̃Tr b̃r

λ2 + ω2
, i = 1, 2, . . . , m.

Further, since AT
r c̃r = −λc̃, it holds

c̃Tr (iωIr − Ar)
−1b̃r = λc̃Tr b̃r

iω + λ
,

Re
{

c̃Tr (iωIr − Ar)
−1b̃r

}

� 0, r = 1, 2, . . . , m.

From

A = diag(A1, . . . , An),

Ai∞ = diag(iωI1 − A1, iωI2 − A2, . . . , iωIm − Am),

cT A−1
iω b =

(

c̃T1 , . . . , c̃
T
m

) · diag
(

(iωI1 − λ1)
−1, . . . , (Im − λm)

−1)

· (b̃T1 , . . . , b̃Tm
)T

=
m
∑

r=1

c̃Ti (iωIr − Ar)
−1b̃r ,

it follows that

Re
(

cT A−1
iωb

) =
m
∑

r=1

Re c̄Tr (iωIr , Ar)
−1b̃r � 0.

Hence, the zero solution of system (9.1.1) is absolutely stable. �
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Now, we consider the first standard form (9.5.2) for real number q � 0. Let

aj =

⎧

⎪⎨

⎪⎩

cjq if cj (qpj − 1) > 0,
cj /ρj if cj (qρj − 1) < 0,
cj /ρj if cj (qρj − 1) = 0, cj �= 0,
0 if cj (qρj − 1) = 0, cj = 0.

PROPOSITION 9.5.24. If there exists q � 0 such that

n
∑

j=1

aj <
1

k
,

then the zero solution of system (9.5.2) is absolutely stable within the Hurwitz
angle [0, k].

PROOF. Since

A =

⎡

⎢
⎢
⎢
⎣

−ρ1 0 · · · 0

0 −ρ2
...

...
. . . 0

0 · · · −ρn

⎤

⎥
⎥
⎥
⎦
, A−1

iω =

⎡

⎢
⎢
⎢
⎣

1
iω+ρ1

0 · · · 0

0 1
iω+ρ2

0
...

...
. . .

...

0 0 · · · 1
iω+ρn

⎤

⎥
⎥
⎥
⎦
,

we have

cT A−1
iω b =

n
∑

j=1

cj

iω + ρj
,

Re
{

(1+ iωq)cT A−1
iω b

} =
n
∑

j=1

cj (ρj + qω2)

ω2 + ρ2
j

.

Let

fj (ω) = cj (ρj + qω2)

ω2 + ρ2
j

.

Then, it holds

d

dω
fj (ω) = αcjqω

(

ω2 + ρ2
j

)− (

cjρj + cj qω
2)2ω = αcjρj (qρj − 1)ω

(ω2 + ρ2
j )

2
.

It can been seen that
dfj (ω)

d∞ = 0 only when ω = 0, and fj (ω) is monotone
increasing in [0,+∞) when cj (qρj − 1) > 0, so fj (ω) � fj (∞) = ρiq; and
fi(ω) is monotone decreasing in [0,+∞) when cj (qpj − 1) < 0, so fj (ω) �
fj (0) = ci/ρj .
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Since
dfj (ω)

dω
= 0, when cj (qρj − 1) = 0, cj �= 0, i.e., q = 1/ρj , we obtain

fj (ω) = cj (ρj + ω2/ρj )

ω2 + ρ2
j

= cj

ρj
.

Thus, when cj (qρj − 1) = 0, cj = 0, fi(ω) = 0.
Choose αj such that fj (ω) � αj . Then, from the conditions of the theorem we

have

Re
{

(1+ iωq)cT A−1
iω b

} =
n
∑

j=1

cj (ρj + qω2)

ω2 + ρ2
j

=
n
∑

j=1

fj (ω) �
n
∑

j=1

aj <
1

k
,

i.e.,

Re
{

(1+ iωq)cT A−1
iω b

}− 1

k
< 0.

Therefore, the zero solution of system (9.5.2) is absolutely stable. �

COROLLARY 9.5.25. Let

cj =
{
< 0 for j = 1, 2, . . . , i1,
= 0 for j = i1 + 1, . . . , i2,
> 0 for j = i2 + 1, 2, . . . , n.

If

n
∑

j=j2+1

cj

ρj
<

1

k
,

then the zero solution of system (9.5.2) is absolutely stable within the Hurwitz
angle [0, k].

This corollary can be proved by using the approach in proving Proposi-
tion 9.5.23 with q = 0.

COROLLARY 9.5.26. If there exists q � 0 such that

n
∑

j=1

dj � 0,

then the zero solution of system (9.5.2) is absolutely stable, where αj is defined
in (9.5.6).

PROOF. Following the proof of Proposition 9.5.23 one can show that

fj (ω) � αj .
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Thus, we have

Re
{

(1+ iωI)cT A−1
iω b

} =
n
∑

j=1

fj (ω) �
n
∑

j=1

αj � 0. �

9.6. NASCs of absolute stability for indirect control systems

The main objective in the study of the Lurie problem is to find the necessary and
sufficient condition (NASC) for absolute stability. This problem has been stud-
ied by many authors. As Burton [46] has pointed out that the major advantage is
based on finding NASCs of certain Lyapunov functions which are positive defi-
nite with negative definite derivative. However, the approaches introduced in the
preceding sections do not necessarily imply NASCs for the Lurie problem, since
the Lyapunov function may be poorly chosen. We have studied the Lurie problem
and found that it is possible to obtain the NASCs for all solutions of Lurie systems
which tend to zero under any nonlinear restriction on f (σ ).

In this section, we present a method which transforms the Lurie indirect control
systems into a nonlinear system with separate variables by a topological transfor-
mation. We then introduce a definition of absolute stability with respect to partial
variables. The NASCs for absolute stability of Lurie indirect control systems are
obtained, and some sufficient conditions are also given.

Consider the mth-order indirect control systems of Lurie type:

(9.6.1)

{
dxi
dt
=∑n

j=1 aij xj + hiξ, i = 1, 2, . . . , n,
dξ
dt
= f (σ ),

σ =
n
∑

i=1

cixi − ρξ,

where aij , hi , ρ (i, j = 1, 2, . . . , n) are real constants, ρ �= 0, y = (y1, . . . , yn,

σ )T , x = (x1, . . . , xn, ξ)
T . By the topological transformation

(9.6.2)

{
yi = xi, i = 1, 2, . . . , n,

yn+1 = σ =∑n
j=1 cixi − ρξ.

We can transform system (9.6.1) into a system with separate variables:

dyi

dt
=

n+1
∑

j=1

ãij yj , i = 1, 2, . . . , n,

(9.6.3)
dyn+1

dt
=

n+1
∑

j=1

ãn+1,j yj − ρf (yn+1),
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where

ãij = aij + hi

ρ
cj (i, j = 1, 2, . . . , n),

ãi,n+1 = −hi
ρ

(i, j = 1, 2, . . . , n),

ãn+1,j =
n
∑

i=1

ci ãij =
n
∑

i=1

ci

(

aij + hicj

ρ

)

(j = 1, 2, . . . , n),

(9.6.4)ãn+1,n+1 =
n
∑

i=1

ci ãi,n+1 =
n
∑

i=1

ci

(−hi
ρ

)

.

Obviously, the absolute stabilities of the zero solutions of systems (9.6.1)
and (9.6.3) are equivalent.

DEFINITION 9.6.1. The zero solution of system (9.6.3) is absolutely stable with
respect to partial variable yn+1, if ∀f (yn+1) ∈ F∞, and ∀ε > 0, ∃δ(ε) > 0 such
that the solution y(t, t0, y0) of system (9.6.3) satisfies ‖yn+1(t, t0, y0)‖ < ε for
t � t0, when the initial value ‖y0‖ < δ(ε), ∀y0 ∈ Rn+1, and in addition,

lim
t→+∞ yn+1(t, t0, y0) = 0.

DEFINITION 9.6.2. The zero solution of system (9.6.3) is absolutely stable withe
respect to partial variables yj , . . . , yn+1 (1 < j � n+1), if ∀f (σ ) ∈ F∞, ∀ε > 0,
∀δ > 0 and ‖y0‖ < δ(ε), the following condition

n+1
∑

i=j
y2
i (t, t0, y0) < ε, t � t0;

is satisfied, and ∀y(t0) ∈ Rn+1 it holds

(9.6.5)lim
t→+∞

n+1
∑

i=j
y2
i (t, t0, y0) = 0 with y0 = y(t0).

THEOREM 9.6.3. The NASC for the zero solution of system (9.6.3) to be ab-
solutely stable is subject to

(1) The zero solution of system (9.6.3) is absolutely stable with respect to partial
variable yn+1;

(2) The matrix B = (bij )(n+1)×(n+1) is Hurwitz stable, where

bij =
{
ãn+1,n+1 − ρ for i = j = n+ 1,
ãij otherwise.
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PROOF. Necessity. The zero solution is absolutely stable, and so is yn+1. If
f (yn+1) = yn+1, then system (9.6.3) can be transformed into

dy1

dt
=

n+1
∑

j=1

bij yj (i = 1, 2, . . . , n+ 1).

Hence, B(bij ) is Hurwitz stable, and thus the necessity is proved.
Sufficiency. According to the method of constant variation, the solution of sys-

tem (9.6.3) is given by

y(t) = y(t, t0, y0),

satisfying

(9.6.6)y(t) = eB(t−t0)y(t0)+
t∫

t0

eB(t−τ)h̃
[

f
(

yn+1(τ )
)− yn+1(τ )

]

dτ,

where h̃ = (
︷ ︸︸ ︷

0, . . . , 0,−ρ)T . Since B is stable, there exist constants α > 0 and
k � 1 such that

∥
∥eB(t−t0)

∥
∥ � ke−α(t−t0) for t � t0.

Because yn+1(t, t0, y0) → 0 as t → +∞, yn+1(t) continuously depends on
the initial value y0, and f (yn+1(t, t0, y0)) is a compound continuous function of
y0 and f (yn+1(t, t0, y0))→ 0 as t → +∞, so ∀ε > 0, ∃ε > 0, ∃δ1(ε) > 0, and
t1 > t0, when ‖y0‖ < δ1(ε), we have

(9.6.7)

t1∫

t0

ke−α(t−τ)
[∥
∥h̃f

(

yn+1(τ )
)∥
∥+ ∥

∥h̃yn+1(τ )
∥
∥
]

dτ <
ε

3
,

(9.6.8)

t∫

t1

ke−α(t−τ)
[∥
∥h̃f

(

yn+1(τ )
)∥
∥+ ∥

∥h̃yn+1(τ )
∥
∥
]

dτ <
ε

3
.

Take δ2(ε) = ε
3k , δ(ε) = min(δ1(ε), δ2(ε)). For ‖y(t0)‖ < δ(ε), it follows from

(9.6.6)–(9.6.8) that

∥
∥y(t)

∥
∥ �

∥
∥eB(t−t0)

∥
∥‖y0‖ +

t∫

t0

∥
∥eB(t−τ)h̃f

(

yn+1(τ )
)∥
∥

+
t∫

t0

∥
∥eB(t−τ)h̃yn+1(τ )

∥
∥ dτ
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� ke−α(t−t0)‖y0‖ +
t1∫

t0

ke−α(t−τ)
∥
∥h̃f

(

yn+1(τ )
)∥
∥ dτ

+
t∫

t1

ke−α(t−τ)
∥
∥h̃f

(

yn+1(τ )
)∥
∥ dτ +

t1∫

t0

ke−α(t−τ)
∥
∥h̃yn+1(τ )

∥
∥ dτ

+
t∫

t1

ke−α(t−τ)
∥
∥h̃yn+1(τ )

∥
∥ dτ

(9.6.9)<
ε

3
+ ε

3
+ ε

3
= ε.

Therefore, the zero solution of system (9.6.3) is stable. Further, ∀y0 ∈ Rn+1, by
using the L’Hospital rule we have

0 � lim
t→+∞

∥
∥y(t)

∥
∥ � lim

t→+∞ ke−α(t−t0)

+ lim
t→+∞

t∫

t0

ke−α(t−τ)
[∥
∥h̃f

(

yn+1(τ )
)∥
∥+ ∥

∥h̃yn+1(τ )
∥
∥
]

dτ

= 0+ lim
t→+∞

1

eαt

t∫

t0

keατ
[∥
∥h̃f

(

yn+1(τ )
)∥
∥+ ∥

∥h̃yn+1(τ )
∥
∥
]

dτ

(9.6.10)= 0.

Hence, the zero solution of system (9.6.3) is absolutely stable.
The proof of Theorem 9.6.3 is complete. �

THEOREM 9.6.4. The zero solution of system (9.6.3) is absolutely stable if and
only if

(1) condition (2) in Theorem 9.6.3 is satisfied;
(2) the zero solution of system (9.6.3) is absolutely stable with respect to partial

variables yj , . . . , yn+1 (1 < j � n+ 1).

PROOF. Since when condition (1) holds, the absolute stabilities of the zero so-
lution of system (9.6.3) with respect to yj , . . . , yn+1 and yn+1 are equivalent.
On account of that the absolute stability with respect to partial variable yn+1

implies the absolute stability with respect to partial variables y1, . . . , yn+1 (by
Theorem 9.6.3), and in particular implies the absolute stability with respect to
partial variables yj , . . . , yn+1; while the absolute stability with respect to partial
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variables yj , . . . , yn+1 obviously implies the absolute stability with respect to the
variable yn+1. Thus, Theorem 9.6.4 is proved. �

Since the matrix B =
[
A h

cT −ρ
]

is Hurwitz stable, B is a nonsingular matrix. By

the following nonsingular linear transformation:

z = Ax + hξ, z = (z1, . . . , zn)
T ,

(9.6.11)zn =
n
∑

i=1

cixi − ρξ, x = (x1, . . . , xn)
T ,

we can transform system (9.6.1) to

dzi

dt
=

n
∑

j=1

ãij zj + h̃if (zn+1), i = 1, 2, . . . , n,

(9.6.12)
dzn+1

dt
=

n
∑

j=1

cj zj − ρf (zn+1).

Following the proof of Theorems 9.6.3 and 9.6.4 we have the following results.

THEOREM 9.6.5. The zero solution of system (9.6.12) is absolutely stable if and
only if

(1) the zero solution of system (9.6.12) is absolutely stable with respect to partial
variable zn+1;

(2) the matrix B =
[
Ã h̃

cT −ρ
]

is Hurwitz stable, where h̃ = (h̃1, . . . , h̃n)
T , cT =

(c1, . . . , cn).

THEOREM 9.6.6. The zero solution of system (9.6.12) is absolutely stable if and
only if

(1) the zero solution of system (9.6.12) is absolutely stable with respect to partial
variables zj , . . . , zn+1 (1 < j � n+ 1);

(2) condition (2) in Theorem 9.6.5 is satisfied.

Theorems 9.6.5 and 9.6.6 can be proved analogously.
From the above theorems, we can see that the key step is to determine the stabil-

ity with respect to partial variables. In the following, we present some sufficient
conditions for the stability with respect to partial variables. Since ρ � 0 is the
necessary condition for the absolute stability, in the following we suppose ρ > 0.
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THEOREM 9.6.7. If there exist some constants c̃i (i = 1, 2, . . . , n+ 1) such that

(9.6.13)−c̃j ãjj �
n+1
∑

i=1
i �=1

c̃i |ãij |, j = 1, 2, . . . , n+ 1,

then the zero solution of system (9.6.3) is absolutely stable with respect to partial
variable yn+1.

PROOF. Construct the Lyapunov function:

V (y) =
n+1
∑

i=1

c̃i |yi |,

for yn+1 �= 0. Here, V (y) > 0 and V (y) is positive definite and radially un-
bounded for yn+1. Next, we show that

D+V |(9.6.3) �
n+1
∑

j=1

[

c̃j ãjj +
n+1
∑

i=1
i �=1

c̃i |ãij |
]

∣
∣yj (t)

∣
∣− ρc̃n+1

∣
∣f (yn+1)

∣
∣

(9.6.14)� −ρc̃n+1|f (yn+1)| < 0 when yn+1 �= 0.

Therefore, D+V |(9.6.3) is negatively definite for yn+1, indicating that the zero so-
lution of system (9.5.3) is absolutely stable with respect to partial variable yn+1. �

THEOREM 9.6.8. If there exist some constants ri > 0 (i = 1, 2, . . . , n+ 1) such
that

−rj ãjj �
n
∑

i=1, i �=j
ri |ãij | + rn+1|cj |, j = 1, 2, . . . , n,

(9.6.15)rn+1ρ >

n
∑

i=1

ri |h̃i |,

then the zero solution of system (9.6.12) is absolutely stable with respect to partial
variable zn+1.

PROOF. We choose the Lyapunov function:

V =
n+1
∑

i=1

ri |zi |.
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and then obtain

D+V |(9.6.12) �
n
∑

j=1

[

rj ãjj +
n
∑

i=1
i �=j

|ãij |ri + rn+1|cj |
]

|zj |

+
[

−ρrn+1 +
n
∑

i=1

ri |h̃i |
]

∣
∣f (zn+1)

∣
∣

�
[

−ρrn+1 +
n
∑

i=1

ri |h̃i |
]

∣
∣f (zn+1)

∣
∣ < 0

(9.6.16)for zn+1 �= 0.

Consequently, the zero solution of system (9.6.12) is absolutely stable with re-
spect to partial variable zn+1. �

THEOREM 9.6.9. If there exist some constants ri > 0 (i = 1, 2, . . . , n) such that

−rj ãjj �
n
∑

i=1
i �=j

|ãij |ri + rn+1|cj |, j = 1, 2, . . . , n, j �= j0,

rn+1ρ �
n
∑

i=1

ri |h̃i |,

−rj0 ãj0j0 >

n
∑

i=1
i �=j0

|ãij |ri + rn+1|cj0 |,

then the zero solution of system (9.6.12) is absolutely stable with respect to partial
variable zi0 .

PROOF. Construct the Lyapunov function:

V =
n+1
∑

i=1

ri |zi |,

and we then obtain

D+V |(9.6.12) �
n
∑

j=1
j �=j0

[

rj ãjj +
n
∑

i=1
i �=j

|aij |ri + rn+1|cj |
]

|zj |

+
[

−ρrn+1 +
n
∑

i=1

ri |h̃i |
]

∣
∣f (zn+1)

∣
∣
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�
[

rj0 ãj0j0 +
n
∑

i=1
i �=j0

|aij0 |ri + rn+1|cj0 |
]

|zj0 | < 0

(9.6.17)for |zj0 | �= 0.

This shows that the zero solution system (9.6.12) is absolutely stable with respect
to partial variable zj0 . The conclusion is true. �

THEOREM 9.6.10. If there exists a symmetric and positive semi-definite matrix
in the form

(9.6.18)B =

⎡

⎢
⎢
⎣

b11 · · · b1n 0
...

...
...

bn1 · · · bnn 0
0 · · · 0 bn+1,n+1

⎤

⎥
⎥
⎦
, where bn+1,n+1 > 0

such that ÃT B + BÃ is negative semi-definite, then the zero solution of sys-
tem (9.6.3) is absolutely stable with respect to partial variable yn+1.

PROOF. Choose the Lyapunov function V (y) = yT By. Then,

V (y) � bn+1,n+1y
2
n+1 →+∞ as |yn+1| → ∞,

and V (y) > 0 for yn+1 �= 0. Let

h̃ = (

n
︷ ︸︸ ︷

0, . . . , 0,−ρ)T .
Then,

dV

dt

∣
∣
∣
∣
(9.6.3)

= yT By + yT By

= yT ÃT By + yT BAy + (

h̃T By + yT Bh̃
)

f (yn+1)

= yT
(

ÃT B + BÃ
)

y − ρbn+1,n+1f (yn+1)yn+1

(9.6.19)� −ρbn+1,n+1f (yn+1) · yn+1 < 0, for yn+1 �= 0.

This completes the proof of Theorem 9.6.10. �

THEOREM 9.6.11. If there exist a constant ε > 0 and the symmetric positive
definite matrix B of (n+ 1)-order such that

[
ÃT B + BÃ Bh̃+ 1

2 Ãn+1 + εen

(Bh̃+ 1
2 Ãn+1 + εen)

T −ρ
]



428 Chapter 9. Absolute Stability of Nonlinear Control Systems

is negative semi-definite, where

Ãn+1 = (ãn+1,1, . . . , ãn+1,n+1)
T ,

h̃ = (

n
︷ ︸︸ ︷

0, . . . , 0,−ρ)T , en =
(

n−1
︷ ︸︸ ︷

0, . . . , 0, 1
)T
,

±∞∫

0

f (yn+1) dyn+1 = +∞,

then the zero solution system (9.6.3) is absolutely stable with respect to partial
variable yn+1.

PROOF. Take a Lyapunov function as follows:

(9.6.20)V = yT By +
yn+1∫

0

f (yn+1) dyn+1.

Obviously,

V (y) �
yn+1∫

0

f (yn+1) dyn+1 > 0 for yn+1 �= 0,

and V (y)→+∞ as |yn+1| → +∞. Further, we obtain

dV

dt

∣
∣
∣
∣
(9.6.3)

= yT By + yT By + [

Ãn+1y − ρf (yn+1)
]

f (yn+1)

= [

Ãy + h̃f (yn+1)
]T
By + yT B

[

Ãy + h̃f (yn+1)
]

+ [

Ãn+1y − ρf (yn+1)
]

f (yn+1)

= yT ÃBy + yT BÃy + [

h̃T By + yT Bh̃+ Ãn+1y
]

f (yn+1)

− ρf 2(yn+1)

=

⎛

⎜
⎜
⎝

y1
...

yn+1
f (ynn)

⎞

⎟
⎟
⎠

T
[

ÃT B + BÃ Bh̃+ 1
2 Ãn+1 + εen

(Bh̃+ 1
2 Ãn+1 + εen)

T −ρ

]

×

⎛

⎜
⎜
⎝

y1
...

yn+1
f (yn+1)

⎞

⎟
⎟
⎠
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−

⎛

⎜
⎜
⎜
⎜
⎝

y1
y2
...

yn+1
f (yn+1)

⎞

⎟
⎟
⎟
⎟
⎠

T

[

0 εen
(εen)

T 0

]

⎛

⎜
⎜
⎜
⎜
⎝

y1
y2
...

yn+1
f (yn+1)

⎞

⎟
⎟
⎟
⎟
⎠

(9.6.21)� −2εyn+1f (yn+1) < 0 for yn+1 �= 0.

Theorem 9.6.11 is proved. �

THEOREM 9.6.12. Suppose that there exists an n×n symmetric positive matrixB
such that ÃT B +BÃ = −P is negative semi-definite, and there exists a constant
ε > 0 such that

det

[
P −(Bh∗ + 1

2c)

−(Bh∗ + 1
2c)

T ρ − ε

]

� 0,

(9.6.22)

±∞∫

0

f (zn+1) dzn+1 = +∞.

Then the zero solution of system (9.6.12) is absolutely stable with respect to par-
tial variable zn+1, where

h∗ = (

h̃1, . . . , h̃n
)T
.

PROOF. Choose the Lyapunov function:

V (x) = zT Bz+
xn+1∫

0

f (zn+1) dzn+1,

where z = (z1, . . . , zn)
T . Obviously, V (z) is positively definite for zn+1 and

V (z)→∞ as zn+1 →∞. Further, we obtain

dV (z)

dt

∣
∣
∣
∣
(9.6.12)

= zT Bz+ zT Bz+ znf (n+1)

= zT
(

ÃT B + BÃ
)

z+ (

h∗T Bz+ zT Bh∗ + cT z
)

f (zn+1)

− ρf 2(zn+1)

= −zT P I + 2f (zn+1)

(

Bh∗ + 1

2
c

)T

z− ρf 2(zn+1)

=

⎛

⎜
⎜
⎝

z1
...

zn
f (zn+1)

⎞

⎟
⎟
⎠

T

[ −P (Bh∗ + 1
2c)

(Bh∗ + 1
2c)

T −ρ + ε

]
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×

⎛

⎜
⎜
⎝

z1
...

zn
f (zn+1)

⎞

⎟
⎟
⎠
− εf 2(zn+1)

(9.6.23)� −εf 2(zn+1) < 0.

Therefore, the zero solution of system (9.6.12) is absolutely stable with respect to
partial variable zn+1. The proof of Theorem 9.6.12 is finished. �

EXAMPLE 9.6.13. Consider the third-order system:

(9.6.24)

⎧

⎪⎪⎨

⎪⎪⎩

dx1
dt
= 0x1 − x2 + f (σ ),

dx2
dt
= x1 + 0x2 − f (σ ),

dσ
dt
= −x1 + x2 − ρf (σ ),

where ρ > 0, f (σ ) ∈ F∞) and
∫ ±∞

0 f (σ ) dσ = +∞, and A =
[

0 −1
1 0

]

.

Given an arbitrary positive definite matrix P , the Lyapunov matrix AT B +
BA = −P does not have positive definite matrix solution, and thus the conven-
tional method fails. Using our method described above, we can prove the stability.
To achieve this, we choose the Lyapunov function:

V (x, σ ) = 1

2

(

x2
1 + x2

2

)+
σ∫

0

f (σ ) dσ,

and then obtain

dV

dt

∣
∣
∣
∣
(9.6.24)

= −x1x2 + x1f (σ )+ x1x2 − x2f (σ )− x1f (σ )

+ x2f (σ )− ρf 2(σ )

= −ρf 2(σ ) < 0 for σ �= 0.

Then, the zero solution of system (9.6.24) is absolutely stable with respect to σ .
Let f (σ ) ≡ σ . Then, we have the following system:

(9.6.25)

⎧

⎪⎪⎨

⎪⎪⎩

dx1
dt
= 0x1 − x2 + σ,

dx2
dt
= x1 + 0x2 − σ,

dx3
dt
= −x1 + x2 − ρσ.

The characteristic polynomial of the above system is

det

[
λ 1 −1
−1 λ 1
1 −1 λ+ ρ

]

= λ2(ρ + λ)+ λ+ λ+ λ+ ρ
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= λ3 + ρλ2 + 3λ+ ρ = 0

which is a Hurwitz polynomial if and only if

ρ > 0, Δ1 = 3 > 0, Δ2 =
∣
∣
∣
∣

3 ρ

1 ρ

∣
∣
∣
∣
= 2ρ > 0.

One can verify that when ρ > 0, the conditions of Theorem 9.6.3 are satisfied,
and therefore the zero solution of system (9.6.24) is absolutely stable.

In the following, we give an application to the second canonical form [226].
Consider the second canonical form of control system:

dxi

dt
= −ρixi + σ (i = 1, 2, . . . , n),

(9.6.26)
dσ

dt
=

n
∑

j=1

βjxj − pσ − rf (σ ),

with constants p > 0, r > 0, ρi > 0 (i = 1, 2, . . . , n).

THEOREM 9.6.14. (See [246].) If

(9.6.27)p �
n
∑

i=1

(
1+ sign(βi)

2

)
βi

ρi
,

then the zero solution of system (9.6.26) is absolutely stable.

PROOF. Choose the Lyapunov function:

V (x, σ ) =
n
∑

j=1

cix
2
i + σ 2,

where

ci =
{−βi if βi < 0,
εi, 0 < εi 	 1, if βi = 0,
βi if βi > 0.

One can show that

dV

dt

∣
∣
∣
∣
(9.6.26)

=

⎛

⎜
⎜
⎝

x1
...

xn
σ

⎞

⎟
⎟
⎠

T

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−2c1ρ1 0 · · · (c1 + β1)

0 −2c1ρ2
...

...
...

...

0 0 (cn + βn)

(c1 + β1) (c2 + β2) −2p

⎤

⎥
⎥
⎥
⎥
⎥
⎦
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×

⎛

⎜
⎜
⎝

x1
...

xn
σ

⎞

⎟
⎟
⎠
− 2rσf (σ )

(9.6.28)� −2rσf (σ ) < 0 for σ �= 0.

Then the zero solution of (9.6.26) is absolutely stable about σ .
On the other hand, let f (σ ) = σ in (9.6.26). Then the following equalities are

valid:

dxi

dt
= −ρixi + σ,

(9.6.29)
dσ

dt
=

n
∑

j=1

βjxj − (p + r)σ.

Applying the Lyapunov function V (x, σ ) =∑n
i=1 cix

2
i + σ 2, we have

dV

dt

∣
∣
∣
∣
(9.6.26)

=

⎛

⎜
⎜
⎝

x1
...

xn
σ

⎞

⎟
⎟
⎠

T

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−2c1ρ1 0 · · · (c1 + β1)

0 −2c1ρ2
...

...
...

...

0 0 (cn + βn)

(c1 + β1) · · · −(cn + βn) −2p − 2r

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(9.6.30)×

⎛

⎜
⎜
⎝

x1
...

xn
σ

⎞

⎟
⎟
⎠
.

Since

D = 1

2n−2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

2c1ρ1 0 · · · −(c1 + β1)

0 2c2ρ2
...

...
...

...

0 0 2cnβn −(cnβn)
−(c1 + β1) · · · −(cn + βn) 2p + 2r

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 4
n
∏

i=1

ciρi(p + r)−
n
∑

j=1

n
∏

j=1

ciρi(cj + αj )
2

� 4
n
∏

i=1

ciρir > 0,
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so dV
dt
|(9.6.29) is negative definite. Hence, the coefficient matrix of system (9.6.29)

is stable. By Theorem 9.6.3 we know that the zero solution of system (9.6.26) is
absolutely stable. The proof is complete. �

As a particular example of system (9.6.26), we consider the equation of the
longitudinal motion of an air plane:

dxi

dt
= −ρixi + σ, i = 1, 2, 3, 4, . . . ,

(9.6.31)
dσ

dt
=

n
∑

i=
βixi − rp2σ − f (σ ),

where rρ2 > 0, ρi > 0, f (σ ) ∈ F∞. It is known that some stability parametric
region are given as [316,346]

(1)

(9.6.32)min ρ2
i r

2p2
2 − 16

(
4
∑

i=1

β2
i

)

> 0,

(2)

(9.6.33)min
1�i�4

ρirp2 − 4 max
1�i�4

|βi | > 0,

(3)

(9.6.34)min ρ2
i r

2p2
2 − 4

(
4
∑

i=1

β2
i

)

> 0.

As a corollary, we have the following result.

COROLLARY 9.6.15. If

(9.6.35)rp2 �
4
∑

j=1

1

2

(

1+ sign(βi)
)βi

ρi
,

then the zero solution of system (9.6.27) is absolutely stable.

Let

R = min
1�i�4

ρirpi .

Then the stability parameter regions defined in (9.6.32)–(9.6.34) have the follow-
ing geometric interpretations, as shown in Figure 9.6.1.
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Figure 9.6.1. Stable parameter regimes for (a)
∑4

i=1 β
2
i

< R
4 ; (b) max1�i�4 |βi | < R

4 ;

(c) max1�i�4 |βi | < R
2 ; and (d) rp2 �

∑4
i=1

1+signβi
2

βi
ρi

.

9.7. NASCs of absolute stability for direct and critical control
system

In this section, we discuss the necessary and sufficient condition (NASC) of ab-
solute stability for direct and critical Lurie control systems. For most of results, we
only present the conclusions, but omit the detailed proofs because the proofs are
similar to those given in the previous section. Without loss generality, let c11 �= 0.
By the topological transformation:

⎛

⎜
⎝

y1
y2
· · ·
yn

⎞

⎟
⎠ =

⎡

⎢
⎢
⎣

1 0 · · · · · · 0
0 1 0 · · · 0
...

...

c1 c2 · · · · · · cn

⎤

⎥
⎥
⎦

⎛

⎜
⎝

x1
x2
· · ·
xn

⎞

⎟
⎠ ,

which is simply denoted as y = Gx.
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We can transform system (9.1.1) to a system with separate variables:

dyi

dt
=

n
∑

j=1

ãij yj + b̃if (yn), i = 1, 2, . . . , n− 1,

(9.7.1)
dyn

dt
=

n
∑

j=1

ãnj yj + b̃nf (yn),

where yn = σ is an independent variable. The absolute stabilities of the zero
solution of (9.1.1) and (9.7.1) are equivalent. Here,

ãij =
(

aij − ain

cn
cj

)

(i, j = 1, 2, . . . , n− 1),

ãin = ain

cn
(i = 1, 2, . . . , n− 1),

ãnj =
n
∑

j=1

ciaij −
n
∑

i=1

ci
ain

cn
cj (j = 1, 2, . . . , n− 1),

ãnn =
∑n

i=1 ciain

ain
,

(9.7.2)b̃i = bi, i = 1, 2, . . . , n− 1, b̃n =
n
∑

i=1

cibi .

THEOREM 9.7.1. When system (9.1.1) is a direct control system, i.e., A is Hur-
witz stable, then the zero solution of system (9.1.1) is absolutely stable if and only
if the zero solution of system (9.7.1) is absolutely stable with respect to partial
variable yn.

PROOF. One can follow the proof of Theorem 9.6.3 to prove this theorem. �

THEOREM 9.7.2. When A is Hurwitz stable, then the zero solution of sys-
tem (9.1.1) is absolutely stable it and only if the zero solution of system (9.7.1)
is absolutely stable with respect to partial variables yj , . . . , yn.

PROOF. If the zero solution of system (9.7.1) is absolutely stable with respect
to partial variables yj , . . . , yn (1 � j � n). Particularly, it is absolutely stable
with respect to variable yn. So the conditions of Theorem 9.7.1 are satisfied. On
the other hand, if the zero solution of system (9.1.1) is absolutely stable, and in
particular, it is absolutely stable with respect to partial variables xj , xj+1, . . . , xn,
∑n

i=1 cixi is absolutely stable. However, since yi = xi, i = j, j + 1, . . . , n− 1,
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and

yn =
n
∑

i=1

cixi,

the zero solution of system (9.7.1) is absolutely stable with respect to partial vari-
ables yj , . . . , yn. �

THEOREM 9.7.3. When Re λ(A) � 0, the zero solution of system (9.1.1) is ab-
solutely stable if and only if

(1) the matrix A+ bcT is stable;
(2) the zero solution of system (9.7.1) is absolutely stable with respect to partial

variable yn.

PROOF. Necessity. Take f (σ ) = σ . Then system (9.1.1) becomes

(9.7.3)
dx

dt
= (

A+ bcT
)

x.

So A+ bcT must be stable, i.e., condition (1) holds. The absolute stability of the
zero solution of system (9.1.1) implies the absolute stability of the zero solution
with respect to yn, i.e., condition (2) holds.

Sufficiency. We rewrite system (9.1.1) as

(9.7.4)
dx

dt
= (

A+ bcT
)

x + bf (σ )− bσ.

Since the zero solution of system (9.7.1) is absolutely stable with respect to partial
variable yn, bf (σ (t))− bσ(t)→ 0 as t →+∞. Since A+ bcT is stable, similar
to the proof of Theorem 9.6.3 one can finish the proof of this theorem. �

EXAMPLE 9.7.4. Suppose A(aij )n×n of (9.1.1) is Hurwitz stable, and the coef-
ficients of (9.7.1) satisfy

n−1
∑

j=1

ã2
nj = 0 and ãnn � 0; b̃n =

n
∑

i=1

cibi < 0,

or

n−1
∑

j=1

ã2
nj = 0 and ãnn < 0; b̃n =

n
∑

i=1

cibi � 0.

Then the zero solution of system (9.1.1) is absolutely stable.
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We can choose the Lyapunov function V (y) = y2
n to show that

dV

dt

∣
∣
∣
∣
(9.7.1)

= 2ãnny
2
n + 2

n
∑

i=1

cibiynf (yn) < 0 when yn �= 0.

Thus, by Theorem 9.7.2 we know that the conclusion is true.

THEOREM 9.7.5. When Re λ(A) � 0, the zero solution of system (9.1.1) is ab-
solutely stable if and only if

(1) the zero solution of system (9.1.1) is absolutely stable with respect to partial
variables yj , yj+1, . . . , yn;

(2) A+ bcT is stable.

THEOREM 9.7.6. When Re λ(A) � 0, the zero solution of system (9.1.1) is ab-
solutely stable if and only if

(1) the zero solution of system (9.1.1) is absolutely stable with respect to partial
variable yn;

(2) there exists a constant vector η = (η1, . . . , ηn)
T such that the matrix

B̃(b̃ij )n×n is stable, where

b̃ij =
{

ãij , 1 � i � n, 1 � j � n− 1,
ãin + ηi, 1 � i � n, j = n.

PROOF. Necessity. The existence of η is obvious. For example, take η = b.
Sufficiency. We rewrite system (9.7.1) as

dyi

dt
=

n
∑

j=1

b̃ij yj + b̃if (yn)− ηiyn, i = 1, 2, . . . , n.

By the method of constant variation formula, the solution y(t) = y(t, t0, y0) can
be expressed as

y(t, t0, y0)e
B̃(t−t0)y0 +

t∫

t0

eB̃(t−τ)b̃f
(

yn(τ )
)

dτ −
t∫

t0

eB̃(t−τ)ηyn(τ ) dτ.

Similar to the proof of Theorem 9.6.3, one can show that the conclusion is true. �

EXAMPLE 9.7.7. If the zero solution of system (9.7.1) is absolutely stable with
respect to yn, and

Ã(n−1) :=
⎡

⎣

ã11 · · · ã1n−1
...

...

ãn−11 · · · ãn−1,n−1

⎤

⎦

(n−1)×(n−1)
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is Hurwitz stable, then the zero solution of system (9.7.1) is absolutely stable.
In fact, as an application of Theorem 9.7.6, we take ηi = −ãin (1 � i � n−1),

ηn = −ãnn − 1. Thus,

B̃(b̃ij )n×n =

⎡

⎢
⎢
⎣

0
Ãn−1 0

...

ãn1 · · · ãn,n−1 −1

⎤

⎥
⎥
⎦

n×n
where the matrix Ãn−1(ãij )(n−1)×(n−1) is stable, implying that B̃(b̃ij )n×n is sta-
ble. So the conditions of Theorem 9.7.6 are satisfied.

THEOREM 9.7.8. If the zero solution of system (9.7.1) is absolutely stable with
respect to partial variables yi+1, . . . , yn (1 � j � n), and the matrix

Ã(j) =
⎡

⎣

ã11 · · · ã1j
...

...

ãj1 · · · ãjj

⎤

⎦

it Hurwitz stable, then the zero solution of system (9.7.1) is absolutely stable.

PROOF. Let

y(j)(t) := y(j)(t, t0, y0) :=
(

y1(t1, t0, y0), . . . , yj (t, t0, y0)
)T
,

y(n−j)(t) = y(n−j)(t, t0, y0) =
(

yj+1(t1, t0, y0), . . . , yn(t1, t0, y0)
)T
,

b(j) := (

h̃1, . . . , b̃j
)T
,

b(n−j) := (

b̃j+1, . . . , b̃n
)T
,

Ã(n−j) =
⎡

⎣

ã1j+1 · · · ã1n
...

...

ajj+1 · · · ãjn

⎤

⎦ .

The first j components of the solution of system (9.7.1) satisfy

y(j)(t) = eA(j)(t−t0)y(j)(t0)+
t∫

t0

eA
(j)(t−τ)Ã(n−j)

r y(n−j)(τ ) dτ

(9.7.5)+
t∫

t0

eA
(j)(t−τ)A(n−j)f

(

yn(τ )
)

dτ.

Then following the proof for the sufficiency of Theorem 9.7.1, one can prove that
the zero solution of system (9.7.1) is absolutely stable. �
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In the following, we give some sufficient conditions for absolute stability with
respect to partial variables.

THEOREM 9.7.9. Let Ãn = (ãn1, ãn2, . . . , ãnn)
T . If there exists a function

V = yT By +
yn∫

0

f (yn) dyn

which is positive definite and radially unbounded with respect to partial variable
yn, and moreover, there exists a constant ε > 0 such that the matrix

[
AT B + BÃ Bb̃ + 1

2 Ãn + εen

(Bb̃ + 1
2 Ãn + εen)

T bn

]

is negative semi-definite, then the zero solution of system (9.7.1) is absolutely
stable with respect to partial variable yn.

PROOF. By employing the Lyapunov function:

V (y) = yT By +
yn∫

0

f (yn) dyn,

we obtain

dV

dt

∣
∣
∣
∣
(9.7.1)

= ẏT By + yT Bẏ + [

Ãny + b̃nf (yn)
]

f (yn)

= [

Ãy + b̃nf (yn)
]T
By + yT B

[

Ãy + b̃f (yn)
]

+ [

Ãny + b̃nf (yn)
]

f (yn)

=

⎛

⎜
⎜
⎜
⎜
⎝

y1
y2
...

yn
f (yn)

⎞

⎟
⎟
⎟
⎟
⎠

T

[
ÃT B + BÃ Bb̃ + 1

2An + εen

(Bb̃ + 1
2An + εen)

T b̃n

]

×

⎛

⎜
⎜
⎜
⎜
⎝

y1
y2
...

yn
f (yn)

⎞

⎟
⎟
⎟
⎟
⎠

−

⎛

⎜
⎜
⎝

y1
...

yn
f (yn)

⎞

⎟
⎟
⎠

T

[

0 εen
(εen)

T 0

]

⎛

⎜
⎜
⎝

y1
...

yn
f (yn)

⎞

⎟
⎟
⎠

� −2εynf (yn) < 0 when yn �= 0.

Thus, the zero solution of system (9.7.1) is absolutely stable with respect to yn. �
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Note that b̃n � 0 is the necessary condition for absolute stability. Let bn < 0.
By a nonsingular linear transformation z = Hy, where

H :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 · · · −b1
bn

0 1 · · · −b2
bn

...
. . .

...
... · · · − bn−1

bn

0 0 · · · 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

we can transform system (9.7.1) to

dzi

dt
=

n
∑

j=1

dij zi, i = 1, 2, . . . , n− 1,

(9.7.6)
dzn

dt
=

n
∑

j=1

dnj zi + b̃nf (zn),

where D(dij ) = HÃH−1. Let b̃∗ = (0, . . . , 0, b̃n)T . We have the following
result.

THEOREM 9.7.10. Assume that there exists a matrix, given in the form:

S =

⎡

⎢
⎢
⎣

s11 · · · s1,n−1 0
...

...

sn−1,1 · · · sn−1,n−1 0
0 · · · 0 snn

⎤

⎥
⎥
⎦
= ST ,

which is positive definite, such that SD + DT S is negative semi-definite. Then
the zero solution of system (9.7.6) is absolutely stable with respect to partial vari-
able zn.

PROOF. Choose the Lyapunov function V (t) = zT Sz, which is positive definite
and radially unbounded with respect to partial variable zn. Further, we have

dV

dt

∣
∣
∣
∣
(9.7.9)

= żT sz+ zT Sż

= zT DT Sz+ zT SDz+ (

zT Sb̃∗ + ñ∗T Sz
)

f (zn)

= zT
(

SD +DT S
)

z+ (2b̃nsnn)f (zn) · zn
� 2b̃nsnnf (zn)zn < 0 when zn �= 0.

Thus, the zero solution of system (9.7.6) is absolutely stable with respect to partial
variable zn. �
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COROLLARY 9.7.11. If there exist constants pi � 0, i = 1, . . . , n − 1, pn > 0
such that

PD + PT P

is negative semi-definite, then the zero solution of system (9.7.6) is absolutely
stable with respect to partial variable zn, where

P = diag(p1, p2, . . . , pn).

PROOF. Take the Lyapunov function:

V (z) =
n
∑

i=1

piz
2
i

which is positive definite and radially unbounded with respect to partial variable
zn. Then we have

dV

dt

∣
∣
∣
∣
(9.7.1)

= zT
(

PD +DT P
)

z+ 2pnb̃nf (zn)zn

� 2pnb̃nznf (zn) < 0 when zn �= 0.

Thus, the zero solution of system (9.7.1) is absolutely stable with respect to partial
variable zn. �

THEOREM 9.7.12. Assume that there exist positive constant ξi (i = 1, 2, . . . , n)
such that

(9.7.7)−ξj ãjj �
n
∑

i=1
i �=j

ξi |ãij |, j = 1, 2, . . . , n− 1,

(9.7.8)−ξnãnn �
n−1
∑

i=1

ξi |ãin|,

(9.7.9)−ξnb̃nn �
n−1
∑

i=1

ξi |b̃i |.

(1) If the strict inequalities hold in equations (9.7.8) or (9.7.9), then the zero so-
lution of system (9.7.1) is absolutely stable with respect to partial variable yn.

(2) If the (n− j0 + 1) strict inequalities hold in (9.7.7), let

−ξj ãjj >
n
∑

i=1
i �=j

ξi |ãij |, j = j0, j0 + 1, . . . , n− 1,



442 Chapter 9. Absolute Stability of Nonlinear Control Systems

then the zero solution of system (9.7.1) is absolutely stable with respect to
partial variables yj0, yj0+1, . . . , yn−1.

PROOF. Choose the Lyapunov function:

V (y) =
n
∑

i=1

ξi |yi |

which is positive definite and radially unbounded. Then, we have

D+V (y)|(9.7.1)

�
n
∑

j=1

[

ξj ãjj +
n
∑

i=1
i �=j

ξi |ãij |
]

|yj | +
[

ξnb̃n +
n−1
∑

i=1

ξi |b̃i |
]

∣
∣f (yn)

∣
∣

�
n
∑

j=1

[

ξnãnn +
n−1
∑

i=1

|ãin|
]

|yn| +
[

ξnb̃n +
n−1
∑

i=1

ξi |b̃i |
]

∣
∣f (yn)

∣
∣

< 0 for yn �= 0 (when condition (1) holds),

D+V (y)|(9.7.1)

�
n
∑

j=j0

[

ξj ãjj +
n
∑

i=1
i �=j

ξi |ãij |
]

|yj | +
[

ξnb̃n +
n−1
∑

i=1

ξi |b̃i |
]

∣
∣f (yn)

∣
∣

< 0 for yn �= 0 (when condition (2) holds)

So, the conclusion is true. �

9.8. NASCs of absolute stability for control systems with
multiple nonlinear controls

Consider the control system with m nonlinear control terms

(9.8.1)

{
dx
dt
= Ax +∑m

j=1 bjfj (σj ),

σj = cTj x =
∑n

i=1 cij xi, j = 1, . . . , m,

where

A ∈ Rn×n, x = (x1, . . . , xn)
T ,

bj = (b1j , . . . , bnj )
T , cj = (c1j , . . . , cnj )

T ,

fi ∈ F =
{

f : f (0) = 0, f (σ )σ > 0, σ �= 0, f (σ ) ∈ [(−∞,+∞), R1]},

j = 1, . . . , m,
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with Re λ(A) � 0. Let

Ωi =
{

x: σi = cTi x = 0
}

, i = 1, . . . , m,

Ω =
{

x: ‖σ‖ =
n
∑

j=1

|σj | =
n
∑

j=1

∣
∣cTj x

∣
∣ = 0

}

.

DEFINITION 9.8.1. The zero solution of system (9.8.1) is said to be absolutely
stable for the set Ω (Ωj) if for any fj (σj ) ∈ F (j = 1, . . . , m) and any ε > 0,
there exists δ(ε) > 0 such that if ‖x0‖ < δ(ε), then the distance from the solution
x(t) := x(t, t0, x0) to the set Ω (Ωj) satisfies

ρ(x,Ω) :=
m
∑

j=1

∣
∣cTj x(t)

∣
∣ < ε

(

ρ(x,Ωj ) :=
∣
∣cTj x(t)

∣
∣ < ε

)

and such that

lim
t→+∞

m
∑

j=1

∣
∣cTj x(t)

∣
∣ = 0

(

lim
t→+∞

∣
∣cTj x(t)

∣
∣ = 0

)

for every x0 ∈ Rn.

DEFINITION 9.8.2. The function V (x) ∈ C[Rn,R] is said to be positive definite
with respect to the set Ω (Ωj) if

V (x)
{= 0 for x ∈ Ω,

> 0 for x /∈ Ω.

(

V (x) =
{= 0 for x ∈ Ωj,

> 0 for x /∈ Ωj .

)

The function V (x) ∈ C[Rn,R] is said to be negative definite with respect to the
set Ω (Ωj) if −V (x) is positive definite for Ω (Ωj).

DEFINITION 9.8.3. The function V (x) ∈ C[Rn,R] is said to be positive definite
and radially unbounded for Ω (Ωj) if V (x) is positive definite for Ω (Ωj) and
V (x)→+∞ as

∑m
j=1 |σj | → +∞ (|σj | → +∞).

THEOREM 9.8.4. The necessary and sufficient conditions of absolute stability
for the zero solution of system (9.8.1) are

(1) B = A +∑n
j=1 θjbj c

T
j is Hurwitz stable with θj = 1 or θj = 0, j = 1,

. . . , m;
(2) the zero solution of system (9.8.1) is absolutely stable with respect to Ω .

PROOF. Necessity. (1) In the case Re λ(A) < 0, we take θj = 0, j = 1, . . . , m,
and B = A. Then B is obviously Hurwitz stable. In the case Re λ(A) � 0, we
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take some θj = 1. Let fj (σj ) = σj = cTj x (j = 1, . . . , m). Then system (9.8.1)
can be transformed into

dx

dt
=
[

A+
m
∑

j=1

θj bj c
T
j

]

x.

Therefore,

B = A+
m
∑

j=1

θjbj c
T
j

is Hurwitz stable.
(2) For any ε > 0, choose

ε̄ = ε
∑m

j=1 ‖cTj ‖
.

There exists δ(ε̄) > 0 such that if ‖x0‖ < δ(ε̄), then

∥
∥x(t)

∥
∥ := ∥

∥x(t, t0, x0)
∥
∥ :=

m
∑

j=1

∣
∣xj (t)

∣
∣ < ε̄ for all t � t0.

This implies that

m
∑

j=1

∥
∥cTj x(t)

∥
∥ �

m
∑

j=1

∥
∥cTj

∥
∥
∥
∥x(t)

∥
∥ <

m
∑

j=1

∥
∥cTj

∥
∥ε̄ = ε for all t � t0.

Furthermore, we have limt→+∞ ‖x(t)‖ = 0 for every x0 ∈ Rn, and thus

0 � lim
t→+∞

m
∑

j=1

∥
∥cTj x(t)

∥
∥ �

m
∑

j=1

∥
∥cTj

∥
∥ lim
t→+∞

∥
∥x(t)

∥
∥ = 0.

Consequently, the zero solution of system (9.8.1) is absolutely stable for Ω . The
necessity is proved.

Sufficiency. In accordance with the method of constant variation, the solution
x(t) := x(t, t0, x0) of system (9.8.1) satisfies

x(t) = eB(t−t0)x0 +
t∫

t0

eB(t−τ)
[

m
∑

j=1

bjfj
(

σj (τ )
)−

m
∑

j=1

θj bjσj (τ )

]

dτ.

Since B is stable, there exist constants M � 1 and α > 0 such that
∥
∥eB(t−t0)

∥
∥ � Me−α(t−t0) for t � t0.

Define σj (t) = σj (t, t0, x0). Since σ =∑n
j=1 |σj (t)| → 0 as t →+∞, we have

limt→+∞ σj (t) = 0. Because σj (t) continuously depends on the initial value x0
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and fj (σj (t)) is a composite continuous function of x0 and fj (σj (t)) → +∞
as t → +∞, thus for any ε > 0, there exist δ(ε) > 0 and t1 > t0 such that
‖x0‖ < δ(ε) implies that

∥
∥eB(t−t0)x0

∥
∥ �

∥
∥eB(t−t0)

∥
∥‖x0‖ < ε

3
,

t1∫

t0

Me−α(t−τ)
[

m
∑

j=1

∥
∥bjfj

(

σj (τ )
)∥
∥+

m
∑

j=1

θj
∥
∥bjσj (τ )

∥
∥

]

dτ <
ε

3
,

and

t∫

t1

Me−α(t−τ)
[

m
∑

j=1

∥
∥bjfj

(

σj (τ )
)∥
∥+

m
∑

j=1

θj
∥
∥bjσj (τ )

∥
∥

]

dτ <
ε

3
.

Thus, we have
∥
∥x(t)

∥
∥ �

∥
∥eB(t−τ)x0

∥
∥

+
t1∫

t0

Me−α(t−τ)
[

m
∑

j=1

∥
∥bjfj

(

σj (τ )
)∥
∥+

m
∑

j=1

θj
∥
∥bjσj (τ )

∥
∥

]

dτ

+
t∫

t1

Me−α(t−τ)
[

m
∑

j=1

∥
∥bjfj

(

σj (τ )
)∥
∥+

m
∑

j=1

θj
∥
∥bjσj (τ )

∥
∥

]

dτ

<
ε

3
+ ε

3
+ ε

3
= ε.

For any x0 ∈ Rn, by the L’Hospital rule, we get

0 � lim
t→+∞

∥
∥x(t)

∥
∥

� lim
t→+∞Me−α(t−t0)

+ lim
t→+∞

t∫

t0

Me−α(t−τ)
[

m
∑

j=1

∥
∥bjfj

(

σj (τ )
)∥
∥+

m
∑

j=1

θj
∥
∥bjσj (τ )

∥
∥

]

dτ

= 0.

Thus, the zero solution of system (9.8.1) is absolutely stable. The proof of the
theorem is complete. �

THEOREM 9.8.5. The zero solution of system (9.8.1) is absolutely stable if and
only if
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(1) A +∑m
j=1 θjbj c

T
j := B is Hurwitz stable, where θj = 0 or θj = 1, j = 1,

. . . , m;
(2) there exists a differential function Vf ∈ [Rn,R], where Vf (x) is positive

definite and radially unbounded forΩ , i.e., there exists ϕf ∈ KR andψf ∈ K
such that

(9.8.2)Vf (x) � ϕf (σ ),
dV

dt

∣
∣
∣
∣
(9.8.1)

� −ψf (σ ).

PROOF. Sufficiency. It is suffice to prove that condition (2) implies that the zero
solution of system (9.8.1) is absolutely stable about Ω .

Since Vf (0) = 0, 0 ∈ Ω and Vf (x) is a continuous function of x, for any ε > 0
there exists δ(ε) > 0 such that

Vf (x0) < ϕf (ε) for ‖x0‖ < δ(ε).

It follows from (9.8.2) that

ϕf
(∣
∣σ(t)

∣
∣
)

� Vf
(

x(t)
)

� Vf (x0) � ϕf (ε),

and therefore |σ(t)| < ε. Thus, the zero solution of (9.8.1) is stable about Ω .
Now, we prove that limt→+∞ σ(t, t0, x0) = 0 for any x0 ∈ Rn. Since

Vf (x(t)) := Vf (t) is a monotone decreasing and bounded function, we have

inf
t�t0

Vf
(

x(t)
) := lim

t→+∞Vf
(

x(t)
) := α � 0.

Next, we show that α can be reached only in Ω . If otherwise, suppose it can be
reached outside Ω , then there must exists a constant β > 0 such that |σ(t)| �
β > 0 for t0 � t < +∞, or there must exist a sequence {tk} with tk → +∞ as
k→+∞ such that limtk→+∞ σ(tk) = 0. As a result,

α = lim
tk→+∞

Vf (tk) = lim
tk→+∞
s(tk)=0

Vf (tk).

In other words, α can be reached in Ω , leading to the contradiction with the pre-
sumption that α can reached outside Ω .

For any x0 ∈ Rn, the expression (9.8.2) gives
∣
∣σ(t)

∣
∣ �

∣
∣σ(t0)

∣
∣ := h < H < +∞.

We now prove that limt→+∞ σ(t) = 0. Assume that limt→+∞ σ(t) �= 0. Since
σ(t) is uniformly continuous, there exist constants β > 0, η > 0 and point
sequence {tj } such that |σ(t)| � β for t ∈ [tj − η, tj + η], j = 1, 2, . . . .

Setting ηf = infβ�σ ψf (σ ), we deduce

0 � Vf (t) � Vf (t0)+
t∫

t0

dVf

dt
dt
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� Vf (t0)−
t∫

t0

ψf
(∣
∣σ(τ)

∣
∣
)

dτ

� Vf (t0)−
n
∑

j=1

tj+ψ∫

tj−ψ
ψf

(∣
∣σ(τ)

∣
∣
)

dτ

� Vf (t0)− 2nηηf →−∞ as n→+∞.

This yields a contradiction, and thus limt→+∞ σ(t) = 0. This proves that the zero
solution of (9.8.1) is absolutely stable for Ω . The sufficiency is proved.

Necessity. Suppose the zero solution of system (9.8.1) is absolutely stable. Rn

is an attractive space. For any fj ∈ F (j = 1, . . . , m) and any x ∈ Rn, let

Wf (x) := sup
{∥
∥xf (t, 0, x)

∥
∥2
, t � 0

}

,

where xf (t) denotes a solution of (9.8.1). From Theorem 9.8.4 of Bhatia and
Szegö [29], we know that Wf (x) has the following properties:

(1) Wf (x) � 0, and Wf (x) = 0 if and only if x = 0, Wf (x) is positive definite
and radially unbounded;

(2) Wf (x) is a monotone decreasing function;
(3) Wf (x) is continuous in Rn.

Furthermore, we define

(9.8.3)Vf (x) :=
+∞∫

0

Wf

(

xf (η, 0, x)
)

e−η dη.

Obviously, Vf (x) is positive definite and radially unbounded. Thus, there exists
ϕ̄f ∈ KR such that

Vf (x) � ϕ̄f
(‖x‖).

Let

Φ =
t+η∫

0

Wf

(

xf (ξ)
)

dξ.

It follows that

Φ ′η = Φ ′t = Wf

(

xf (t + η)
)

.

Integrating (9.8.3) by parts yields

Vf
(

xf (t)
) =

+∞∫

0

e−η dΦ
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= e−η
t+η∫

0

Wf

(

xf (ξ)
)

dξ

∣
∣
∣
∣

+∞

0
+

+∞∫

0

Φ(t + η)e−η dη

= −
t∫

0

Wf

(

xf (ξ)
)

dξ +
+∞∫

0

Φ(t + η)e−η dη.

Since Wf (xf (t)) is a monotone nonincreasing function, Wf (xf (t)) is bounded.
Furthermore, we note that

lim
η→+∞ e−η

t+η∫

0

Wf

(

xf (ξ)
)

dξ = 0,

dVf

dt

∣
∣
∣
∣
(9.8.1)

= −Wf

(

xf (t)
)+

+∞∫

0

Φ ′t e−η dη

= −Wf

(

xf (t)
)+

+∞∫

0

Wf

(

xf (t + η)
)

e−η dη

(9.8.4)=
+∞∫

0

[

Wf

(

xf (t + η)
)−Wf

(

xf (t)
)]

dη.

Since Wf (xf (t)) is a monotone nonincreasing function, we obtain

Wf

(

xf (t)
)

� Wf

(

xf (t + η)
)

for η � 0.

In particular, if x(t) is a nonzero solution of system (9.8.1), we have

Wf

(

xf (t)
) �= Wf

(

xf (t + η)
)

,

or

Wf

(

xf (t)
) ≡ Wf

(

xf (t + η)
)→ 0 as η→+∞.

Thus, Wf (xf (t)) ≡ 0, which contradicts the fact that

Wf (x) = sup
{∥
∥xf (t, 0, x)

∥
∥

2
, t � 0

} �= 0.

Therefore, if xf (t) �≡ 0, we have

+∞∫

0

[

Wf

(

xf (t + η)
)−Wf

(

xf (t)
)]

e−η dη < 0,
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i.e.,

dVf

dt

∣
∣
∣
∣
(9.8.1)

< 0 for x �= 0.

Consequently, we obtain

dVf

dt

∣
∣
∣
∣
(9.8.1)

� −uf (x),

with uf (x) being a positive definite function. Thus, we have

uf (x) � ϕ̄f
(‖x‖) := ϕ̃f

(
n
∑

i=1

|xi |
)

� ϕ̄f

(

1

m

n
∑

j=1

1

max1�i,j�n |cij |
n
∑

i,j=1

|cij xj |
)

� ϕ̄f

(

1

m

1

max1�i,j�n |cij |
n
∑

i,j=1

|cij xj |
)

(9.8.5):= ϕf (σ ) ∈ KR.

Hence, uf (x) is positive definite and radially unbounded for Ω . Further, we can
show that

dVf

dt

∣
∣
∣
∣
(9.8.1)

� −uf (x) � −ϕ̄f
(‖x‖) � −ϕf (σ ) for ϕf ∈ K,

indicating that condition (2) of Theorem 9.8.4 is satisfied. Satisfactory of condi-
tion (1) of this theorem is trivial. The necessity is proved. �

THEOREM 9.8.6. The zero solution of system (9.8.1) is absolutely stable if and
only if

(1) condition (1) in Theorem 9.8.4 is satisfied;
(2) for any fj ∈ F (j = 1, . . . , m), there exist m Lyapunov functions Vj (x) ∈

[Rn,R] (j = 1, . . . , m) such that

Vj (x) � ϕj
(|σj |

)

, ϕj ∈ KR, j = 1, . . . , m,

dVj

dt

∣
∣
∣
∣
(9.8.1)

� −ψj
(|σj |

)

, ψj ∈ K, j = 1, . . . , m.

PROOF. Necessity. Theorem 9.8.5 guarantees that the condition (1) is satisfied,
and that there exists Vf (x) � ϕf (σ ) ∈ KR such that

dVf (x)

dt

∣
∣
∣
∣
(9.8.1)

� −ψf (σ ) for ϕf ∈ K.
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Take Vj = Vf (x), j = 1, . . . , m. Due to that

Vj = Vf (x) � ϕf (σ ) = ϕf

(
m
∑

j=1

∣
∣cTj x

∣
∣

)

� ϕf
(|cTj x|

)

= ϕf
(|σj |

) ∈ KR, j = 1, . . . , m,

we have

dVj

dt

∣
∣
∣
∣
∣
(9.8.1)

= dVf

dt

∣
∣
∣
∣
(9.8.1)

� −ψf (σ ) = −ψf
(

m
∑

j=1

∣
∣cTj x

∣
∣

)

� −ψf

(∣
∣cTj x

∣
∣
) = −ψj(σj ), σj ∈ K, j = 1, . . . , m.

This verifies the necessity.
Sufficiency. Similar to the proof for the sufficiency of Theorem 9.8.5, condi-

tion (2) implies that the zero solution of system (9.8.1) is absolutely stable about
Ωj , j = 1, . . . , m. Then, as in the proof for Theorem 9.8.4 one can show that the
zero solution of system (9.8.1) is absolutely stable. This verifies the sufficiency. �

THEOREM 9.8.7. If the following conditions are satisfied:

(1) condition (1) in Theorem 9.8.4 holds;
(2) there exist an n × n real symmetric matrix B and constants βi � 0 (i =

1, . . . , m), α > 0 such that

(9.8.6)V (x) = xT Bx +
m
∑

j=1

βj

σj∫

0

fj (σj ) dσj

with

xT Bx � α

n
∑

i=1

x2
i

or

V (x) �
m
∑

j=1

βi

σj∫

0

fj (σj ) dσj , βj > 0,

+∞∫

0

f (σj ) dσj = +∞, j = 1, . . . , m;
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(3)

dV

dt

∣
∣
∣
∣
(9.8.1)

� −ετ, τ ∈
{

σ 2,

m
∑

j=1

σjfj (σj ),

m
∑

j=1

f 2
j (σj )

}

;

then the zero solution of system (9.8.1) is absolutely stable.

PROOF. It is suffice to prove that the conditions (2) and (3) of this theorem imply
the condition of Theorem 9.8.4.

In fact, for the Lyapunov function:

(9.8.7)V (x) = xT Bx +
m
∑

j=1

βj

σj∫

0

fj (σj ) dσj ,

condition (2) implies that there exists 0 < ξ 	 1 such that

V (x) � ξ

m
∑

i=1

σ 2
j +

m
∑

j=1

βj

σj∫

0

fj (σj ) dσj = ϕ(σ) ∈ KR

or

V (x) �
m
∑

j=1

βj

σj∫

0

fj (σj ) dσj := ϕ1(σ ) ∈ KR

with

dV

dt

∣
∣
∣
∣
(9.8.1)

= −ετ := −ψ(σ) for ψ ∈ K.

Therefore, the conditions of Theorem 9.8.4 are satisfied, and Theorem 9.8.7 is
thus proved. �

COROLLARY 9.8.8. Suppose that there exist constants βj � 0 (j = 1, . . . , m)
and a symmetric positive definite matrix P such that the function

(9.8.8)V (x) = xT Px +
m
∑

j=1

βj

σj∫

0

fj (σj ) dσj

satisfies dV
dt
|(9.8.1) < 0, x �= 0. Then the zero solution of system (9.8.1) is ab-

solutely stable.

PROOF. It is suffice to prove that V (x) is positive definite and radially unbounded
for Ω , while dV

dt
|(9.8.1) is negative definite for Ω .
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Let

c̄ = max
1�i�n
1�j�m

|cij |, λ = min
1�i�n

λi(P ),

λi being the eigenvalues of P . Then

V (x) � xT Px � λxT x � λ

∑m
j=1 σ

2
j

nmc̄
:= ϕ

(|σ |) ∈ KR.

Therefore, V (x) is positive definite and radially unbounded for Ω , and

dV

dt

∣
∣
∣
∣
(9.8.1)

� −ψ(‖x‖) � −ψ
(

1

mc̄

m
∑

j=1

|σj |
)

:= −ψ1(σ ) for ψ1 ∈ K.

Thus, dV
dt
|(9.8.1) is negative definite for Ω . The conditions of Theorem 9.8.6 are

satisfied. The proof of Corollary 9.8.8 is complete. �

To end this section, we present some simple sufficient conditions for ab-
solute stability. Without loss of generality, we assume that ci = (ci1, . . . , cin)

T

(i = 1, . . . , m) are linearly independent. By an n-dimensional nonsingular linear
transformation, system (9.8.1) can be transformed into the following form:

(9.8.9)
dx

dt
= Ax +

n
∑

j=n−m+1

bjfj (xj ),

or in the vector component form:

(9.8.10)
dxi

dt
=

n
∑

j=1

aij xj +
n
∑

j=n−m+1

bij fj (xj ), j = 1, . . . , m.

THEOREM 9.8.9. Suppose that

(1) A = (aij )n×n is a Hurwitz matrix;
(2) there exist constants ri � 0 (i = 1, . . . , n−m), ri > 0 (i = n−m+1, . . . , n)

such that
⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−rj ajj +∑n
i=1
i �=j

ri |aij | � 0, j = 1, . . . , n−m,

−rj ajj +∑n
i=1
i �=j

ri |aij | < 0, j = n−m+ 1, . . . , n,

−rj bjj +∑n
i=1
i �=j

ri |bij | � 0, j = n−m+ 1, . . . , n,
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or
⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−cjajj +∑n
i=1
i �=j

ci |aij | � 0, j = 1, . . . , n−m,

−cjajj +∑n
i=1
i �=j

ci |aij | � 0, j = n−m+ 1, . . . , n,

−cjbjj +∑n
i=1
i �=j

ci |bij | < 0, j = n−m+ 1, . . . , n.

Then the zero solution of system (9.8.9) is absolutely stable.

PROOF. Construct the Lyapunov function:

V =
n
∑

i=1

ci |xi |.

Obviously, we have

V =
n
∑

i=1

ci |xi | �
n
∑

i=n−m+1

ci |xi | → +∞ as
n
∑

i=n−m+1

|xi | → +∞.

Thus, V is positive definite and radially unbounded for xn−m+1, . . . , xn. Since

D+V |(9.8.9) �
n
∑

j=1

[

cj ajj +
n
∑

i=1
i �=j

ci |aij |
]

|xi |

+
n
∑

i=n−m+1

[

cibii +
n
∑

i=1
i �=j

|cibj |
]

∣
∣fi(xi)

∣
∣

< 0 for
n
∑

j=n−m+1

|xj | �= 0.

Thus, the zero solution of system (9.8.9) is absolutely stable with respect to partial
variables xn−m+1, . . . , xn. Since matrix A is stable, there exist M � 1 and α > 0
such that

∥
∥eA(t−t0)

∥
∥ � Meα(t−t0).

The solution of system (9.8.9) can be expressed in the following form:

x(t, t0, x0) = eA(t−t0)x0 +
t∫

t0

eA(t−τ)
m
∑

j=1

bjfj
(

xn−m+k(τ )
)

dτ.

Following the proof of Theorem 9.8.4, we can prove that the zero solution of
system (9.8.9) is absolutely stable. �
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EXAMPLE 9.8.10. Consider the problem of absolute stability of the system:

(9.8.11)

{
dx1
dt
= −x1 − 2f1(x1)+ 2f2(x2),

dx2
dt
= −x2 + 2f1(x1)− 2f2(x2),

f1, f2 ∈ F.

We choose the Lyapunov function:

V = |x1| + |x2|,
and then obtain

D+V (x)|(9.8.11) � −|x1| − |x2| + [−2+ 2]|f1(x1)| + [−2+ 2]∣∣f2(x2)
∣
∣

� −|x1| − |x2| < 0 for x �= 0.

Therefore, the zero solution of system (9.8.11) is absolutely stable.

9.9. NASCs of absolute stability for systems with feedback
loops

Consider the general control system with multi-nonlinear and loop feedback
terms:

(9.9.1)

{
dx
dt
= Ax +∑m

j=1 bjfj (σj ),

σj = cTj x − djfj (σj ),

where A ∈ Rn×n, Re λ(A) � 0, x, bj , cj ∈ Rn.
Let F,Ω and Ωi be defined as that in Section 9.8. The definitions for the

absolute stability of the zero solution of system with respect to Ω,Ωi , and the
definition for V (x) being positive definite and radially unbounded with respect to
set Ω,Ωi are given below.

DEFINITION 9.9.1. The zero solution of system (9.9.1) is said to be absolutely
stable about the variable σ (σj ), if ∀fj ∈ F and ∀ε > 0, ∃δ(ε) > 0 such that

‖σ‖ =
m
∑

j=1

|σj | < ε
(|σj | < ε

)

when ‖x0‖ < δ(ε), and

lim
t→+∞

m
∑

j=1

|σj | = 0
(

lim
t→+∞ |σj | = 0

)

,

∀x0 ∈ Rn, σ = (σ1, σ2, . . . , σm)
T .
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DEFINITION 9.9.2. The function V ∈ C[Rn,R] is said to be positive definite
with respect to variable σ (σj ) if

V (σ)

{= 0 for σ = 0
> 0 for σ �= 0

(

V (σj )

{= 0 for σj = 0
> 0 for σj �= 0

)

.

DEFINITION 9.9.3. The function V ∈ C[Rn,R] is said to be positive definite and
radially unbounded with respect to the variable σ (σj ), if V (σ) is positive definite
for σ (σj ), and V (x, σ )→ ∞ as

∑m
j=1 |σj | → ∞ (|σj | → ∞), whereas V (σ)

is negative definite with respect to σ (σj ) if−V (σ) is positive definite for σ (σj ).

REMARK 9.9.4. Verifying the conditions of Definitions 9.9.2 and 9.9.3 are very
difficulty, because σj + djfj (σj ) = 0 is an implicit formula.

Assume that |σj −djfj (σj )| is positive definite for σ . Obviously. If any one of
the following conditions is satisfied:

(1) dj � 0 (which was considered by Gan and Ge [128]);

(2) dj < 0 but |fj (σj )| < 1
|dj | |σj |, σj �= 0;

(3) dj < 0 but |fj (σj )| > 1
|dj | |σj |, σj �= 0;

then |σj − djfj (σj )| is positive definite for σ .

THEOREM 9.9.5. The zero solution of system (9.9.1) is absolutely stable if and
only if it is absolutely stable for G(Gi).

PROOF. Let the zero solution of (9.9.1) be absolutely stable for σ . ∀ε > 0,
∃δ(ε) > 0, when |σ0| < δ, we have

∣
∣σj (t, t0, σ0)

∣
∣ <

ε

2m
and

∣
∣df fj

(

σj (t, t0, σ0)
)∣
∣ <

ε

2m
.

This is possible because fj ∈ F, fj (0) = 0, and ∀x0 ∈ Rn,

lim
t→+∞

m
∑

i=1

∣
∣cTj xj (t, t0, x0)

∣
∣ � lim

t→+∞

m
∑

j=1

∣
∣σj (t, t0, σ0)

∣
∣

+ lim
t→+∞

m
∑

j=1

∣
∣djfj

(

σj (t, t0, σ0)
)∣
∣

= 0.

So the zero solution of system (9.9.1) is absolutely stable for G(Gi).
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Otherwise, let the zero solution of system (9.9.1) be absolutely stable for
Ω (Ωj) = 0. Since |σj − djfj (σj )| is positive definite, according to the equiv-
alence relation of positive definite function and K-class function, we know that
there exists ϕ(|σj |) ∈ K such that

ϕj
(|σj |

)

�
∣
∣σj − djfj (σj )

∣
∣ = ∣

∣cTj x(t, t0, x0)
∣
∣,

and so
∣
∣σj (t, t0, σ0)

∣
∣ < ϕ−1

j

(∣
∣cTj x(t, t0, x0)

∣
∣
)

.

Then ∀ε > 0, ∃δ(ε) > 0, when |x0| < δ(ε), it holds

ϕ−1
j

∣
∣cTj x(t, t0, x0)

∣
∣ <

ε

m
.

Hence,

∣
∣σ(t, t0, σ0)

∣
∣ �

m
∑

j=1

∣
∣σj (t, t0, σ0)

∣
∣ <

m
∑

j=1

ϕ−1
j

∣
∣cTj x(t, t0, x0)

∣
∣ < ε.

Further, ∀x0 ∈ Rn we have

∣
∣σ(t, t0, σ0)

∣
∣ <

m
∑

j=1

∣
∣σj (t, t0, σ0)

∣
∣

<

m
∑

j=1

ϕ−1
j

(∣
∣cTj x(t, t0, x0)

∣
∣
)→ 0 as t →+∞.

Therefore, the zero solution of system (9.9.1) is absolutely stable with respect to
σ (σj ). �

REMARK 9.9.6. Theorem 9.9.5 was improved and generalized by Gan and
Ge [128].

THEOREM 9.9.7. The NASCs of the zero solution of system (9.9.1) are:

(1) B := A+∑m
i=1 θibic

T
i is a Hurwitz matrix, where

{

θi = 1
2 when di = 0,

θi = 1
3di

when di �= 0,
i = 1, 2, . . . , n;

(2) the zero solution of system (9.9.1) is absolutely stable with respect to Ω .

PROOF. Sufficiency. When dj �= 0, we take fj (σj ) = 1
2dj

δj ; when dj = 0 take

fj (σj ) = 1
2C

T
j x. Obviously, |σj + djfj (σj )| is positive definite with respect to

σj .
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By the formula of constant variation, the solution x(t) = x(t, t0, x0) of sys-
tem (9.9.1) can be expressed as

x(t) = eB(t−t0)x0

(9.9.2)+
t∫

t0

eB(t−τ)
[

m
∑

j=1

bjfj
(

σj (τ )
)−

m
∑

j=1

θj bjσj (τ )

]

dτ.

Since B is a Hurwitz matrix, then it holds:
∥
∥eB(t−t0)

∥
∥ � Me−α(t−t0), t � t0,

where M � 1, α > 0.
Let σj = σj (t, t0, x0). Then σj (t, t0, x0) → 0 as t → +∞, j = 1, 2, . . . , n,

is equivalent to

σ(t, t0, x0) =
n
∑

j=1

∣
∣σj (t, t0, x0)

∣
∣→ 0 as t →+∞.

So we have limt→∞ σj (t) = 0. Obviously, σj (t) continuously depends on the
initial value x0, and fj (σj (t)) is a composite continuous function of x0, then,
limt→∞ fj (σj (t)) = 0. Thus ∀ε > 0, ∃δ(ε) > 0, and t1 > t0 such that ‖x0‖ <
δ(ε) and for every fixed fj (σj ), it is implied that

∥
∥eB(t−t0)x0

∥
∥ �

∥
∥eB(t−t0)

∥
∥‖x0‖ < ε

3
,

t1∫

t0

Me−α(t−τ)
[

m
∑

j=1

∥
∥bjfj

(

σj (τ )
)∥
∥+

m
∑

j=1

θj
∥
∥bjσj (τ )

∥
∥

]

dτ <
ε

3
,

t∫

t1

Me−α(t−τ)
[

m
∑

j=1

∥
∥bjfj

(

σj (τ )
)∥
∥+

m
∑

j=1

θj
∥
∥bjσj (τ )

∥
∥

]

dτ <
ε

3

for t � t1.

Thus, ‖x(t)‖ < ε
3 + ε

3 + ε
3 = ε, i.e., x = 0 is stable.

Next, ∀x0 ∈ Rn, by the L’Hospital rule, we deduce that

0 � lim
t→+∞

∥
∥x(t)

∥
∥ � lim

t→+∞Me−α(t−t0)

+ lim
t→+∞

t∫

t0

Me−α(t−t0)
[

m
∑

j=1

∥
∥bjfj

(

σj (τ )
)∥
∥

+
m
∑

j=1

θj
∥
∥bjσj (τ )

∥
∥

]

dτ = 0,
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indicating that the zero solution of system (9.9.1) is absolutely stable.
Necessity. When dj �= 0, take fj (σj ) = σj

2dj
; when dj = 0, take fj (σj ) =

1
2c

T
j x. Then system (9.9.1) can be transformed into

(9.9.3)
dx

dt
=
[

A+
n
∑

j=1

θj bj c
T
j

]

x,

so B = A+∑n
j=1 θjbj c

T
j is a Hurwitz matrix. ∀ε > 0, take

ε̂ = ε
∑m

j=1 ‖cTj ‖
,

there exists δ(ε) such that when ‖x0‖ < δ(ε) it holds

∥
∥x(t)

∥
∥ =

n
∑

j=1

∥
∥xj (t)

∥
∥ < ε̃ for t � t0.

Therefore,
m
∑

j=1

∥
∥cTj x(t)

∥
∥ �

m
∑

j=1

∥
∥cTj

∥
∥
∥
∥x(t)

∥
∥ �

m
∑

j=1

∥
∥cTj

∥
∥ε̃ = ε,

and limt→∞ ‖x(t)‖ = 0 for ∀x0 ∈ Rn.
Consequently, the zero solution of (9.9.1) is absolutely stable for G, and the

necessity is proved. The proof of Theorem 9.9.7 is complete. �

THEOREM 9.9.8. The zero solution of system (9.9.1) is absolutely stable if and
only if

(1) condition (1) in Theorem 9.9.7 holds;
(2) there exists V (x) ∈ C[Rn,R], ϕ ∈ KR and ψ ∈ K such that

V � ϕ
(∥
∥cT x

∥
∥
)

,
dV

dt

∣
∣
∣
∣
(9.9.1)

� −ψ(∥∥cT x∥∥).

The proof of Theorem 9.9.8 is similar to that for Theorem 9.8.5, and thus omit-
ted.

EXAMPLE 9.9.9. Consider the following system:

(9.9.4)

⎧

⎪⎪⎨

⎪⎪⎩

(
ẋ1
ẋ2

) =
[−1 0

0 −1

] (
x1
x2

)+ (−1
0

)

f1(σ1)+
( 0
−1

)

f2(σ2),

σ1 = (1 0)
(
x1
x2

)− 0.5f1(σ1),

σ2 = (0 1)
(
x1
x2

)− 0.3f2(σ2).
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(1) A =
[−1 0

0 −1

]

is stable.

(2) Take the Lyapunov function as

V (x) =
m
∑

j=1

σj∫

0

fj (σj ) dσj − 1

2

m
∑

j=1

djf
2
j (σj )

with
σj∫

0

fj (σj ) dσj = +∞, or lim
t→+∞ f 2

j (σj ) = +∞,

where d1 = −0.5, d2 = −0.3.

(3)

dV

dt

∣
∣
∣
∣
(9.9.4)

= −σ1f1(σ1)− σ2f2(σ2)− f 2
1 (σ1)− f 2

2 (σ2) < 0,

while σj �= 0, j = 1, 2.

Hence, the zero solution of system (9.9.4) is absolutely stable.

9.10. Chaos synchronization as a stabilization problem of
Lurie system

Chaos synchronization has been a focusing topic of intensive researching the past
decade (see, for example, Chen and Dong [67]. One unified approach to chaos
synchronization is to reformulate it as a (generalized) Lurie system and then dis-
cuss the absolute stability of its error dynamics [92].

Consider a uni-directional feedback-controlled chaos synchronization system
in the following form of a classical Lurie system:

(9.10.1)

{
dx
dt
= A1x + B1f (c

T x, t) (drive),
dy
dt
= A2x + B2f (c

T y, t)−K(x − y)− g(y, t) (response),

where x(t), y(t), c ∈ Rn, Ai, Bi, K ∈ Rn×n, and f ∈ C[R1 × (t0,∞), R1].
Let the synchronization error be

(9.10.2)e = x − y.

Then, system (9.10.1) can be reformulated to

de

dt
= A1x − A2y + B1

(

f
(

cT x, t
)− B2f

(

cT y, t
))

(9.10.3)+Ke + g(y, t).
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The objective is to choose the constant feedback gain K and a simplest possible
control signal g(y, t) such that e(t)→ 0 as t → ∞, thereby achieving synchro-
nization y(t)→ x(t) as t →∞.

Note that in system (9.10.1) for synchronization purpose the control term
g(y, t) is only a function of the y signal but not the x signal. Therefore, this set-
ting can be easily implemented as a component of the response (receiver), which
usually has the same structure as the drive (transmitter).

LEMMA 9.10.1. For the chaos synchronization system (9.10.1) there always ex-
ist a constant feedback gain K and a control signal g(y, t) such that the error
dynamics (9.10.2) can be rewritten in the classical Lurie system form as follows:

(9.10.4)
de

dt
= (A1 +K)e + B1F

(

cT e, t
)

,

where

F(σ, t) := f
(

cT x, t
)− f

(

cT y, t
)

.

PROOF.

de

dt
= dx

dt
− dy

dt

= A1x − A2y + B1f
(

cT x, t
)− B2f

(

cT y, t
)+K(x − y)+ g(y, t)

= A1e + (A1 − A2)y + B1
(

f
(

cT x, t
)− f

(

cT y, t
))

+(B1 − B2)f
(

xT y, t
)+Ke + g(y, t)

= (A1 +K)e + B1F
(

cT e, t
)

as claimed, where

g(y, t) = (A2 − A1)y + (B2 − B1)f
(

cT y, t
)

.
�

Note that if K �= 0 in (9.10.4) can be arbitrarily chosen, then we can deter-
mine a K such that (A1 +K) is Hurwitz stable, if, moreover, the function F(·, t)
satisfies the sector condition:

(9.10.5)0 � F(σ, t)

σ
= f (cT e + cT y, t)− f (cT y, t)

cT e
� β <∞,

then we arrive at a typical Lurie system. This Lurie system may satisfy some
existing sufficient conditions for synchronization. However, if K is in a restricted
form so that K+A1 cannot be stabilized, then even if the function F(·, t) satisfies
the sector condition, it dose not result in a classical Lurie system. In this case, we
have to develop a new criterion for the intended synchronization, which will be
carried out in the next section.
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First, consider the case where B1 = (b1, . . . , bn)
T := b. Without loss of gen-

erality, suppose that cn �= 0 in c = (c1, . . . , cn)
T . Let

Ω =

⎡

⎢
⎢
⎣

1 0 · · · 0
0 1 · · · 0
...

. . .
...

c1 c2 · · · cn

⎤

⎥
⎥
⎦
,

and consider the transform

(9.10.6)η = Ωe,

where η = (η1, . . . , ηn)
T and e = (e1, . . . , en)

T . Since Ω is nonsingular, it is
clear that e(t)→ 0 if and only if η(t)→ 0 as t →+∞.

Under transform (9.10.6), system (9.10.4) becomes

dη

dt
= Ω(A1 +K)Ω−1η +ΩbF

(

ηn(t), t
)

(9.10.7):= (

Ā+ K̄
)

η + b̃F
(

ηn(t), t
)

,

where

āij + k̃ij =
(

aij + kij − ain + kin

cn
aij

)

, i, j = 1, 2, . . . , n− 1,

āin + k̃in = ain + kin

cn
, i = 1, 2, . . . , n− 1,

ānj + k̃nj =
n
∑

i=1

ci(aij + kij )−
n
∑

i=1

ci
ain + kin

cn
cj , j = 1, 2, . . . , n− 1,

ānn + k̃nn = 1

cn

m
∑

i=1

ci(ain + kin),

b̄i = bi, i = 1, 2, . . . , n− 1,

b̄n =
n
∑

i=1

cibi .

THEOREM 9.10.2. If the zero solution of system (9.10.7) is absolutely stable
about its partial variable ηn, with F(·, t) satisfying (9.10.5) and if the matrix
(Ã+ K̃) is Hurwitz stable, then the zero solution of system (9.10.7) is absolutely
stable. Consequently, the zero solution of system (9.10.4) is globally stable, and
so system (9.10.1) synchronizes.
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PROOF. Since the general solution of equation (9.10.7) can be expressed as

η(t, t0, η0) = e(t−t0)(Ã+K̄)η0 +
t∫

t0

e(t−τ)(Ā+K̄)b̄f
(

ηn(τ ), τ
)

dτ,

and since Ā+ K̄ is Hurwitz, there exist constants α > 0 and M � 1 such that

(9.10.8)
∥
∥e(t−t0)(Ā+K̄)

∥
∥ � Me−α(t−t0).

Since (9.10.7) is absolutely stable about its partial variables ηn, we have
ηn(t, t0, η0) → 0 as t → ∞. Therefore, for any ε > 0, there is a t∗ � t0
such that

t∫

t∗

∥
∥e(t−τ)(Ã+K̄)b̄F (ηn(τ ), τ )

∥
∥ dτ �

t∫

t∗
Me−α(t−τ)‖b̃‖∥∥F (ηn(τ ), τ

)∥
∥ dτ

(9.10.9)�
t∫

t∗
Me−α(t−τ)‖b̄‖∥∥βηn(τ)

∥
∥ dτ <

ε

3
.

Note that solution η(t) is continuously dependent on the initial condition η0, so
is the continuous function F(·, t). Hence, for the ε > 0 above, there is a constant
δ1(ε) > 0 such that when ‖η0‖ < δ1(ε),

(9.10.10)

t∗∫

t0

Me−α(t−τ)
∥
∥b̄F

(

ηn(τ ), τ
)∥
∥ dτ <

ε

3
.

Now, take δ2(ε) = ε/(3M) and δ(ε) = min{δ1(ε), δ2(ε)}. It then follows
from (9.10.8), (9.10.10) that, when ‖η0‖ < δ(ε),

∥
∥η(t)

∥
∥ �

∥
∥e(t−t0)(Ā+K̃)η0

∥
∥+

t∫

t0

∥
∥e(t−τ)(Ā+K̄)b̄F

(

ηn(τ ), τ
)∥
∥ dτ

� Me−α(t−t0)‖η0‖ +
t∗∫

t0

Me−α(t−τ)‖b̄‖β∥∥ηn(τ )
∥
∥ dτ

+
t∫

t∗
Me−α(t−τ)‖b̄‖β∥∥ηn(τ )

∥
∥ dτ

<
ε

3
+ ε

3
+ ε

3
= ε.

Therefore, the zero solution of system (9.10.7) is stable.
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On the other hand, for any η0 ∈ Rn, we have

∥
∥η(t, t0, η0)

∥
∥ � Me−α(t−t0)‖η0‖ +

t∫

t0

Me−α(t−τ)‖b̄‖∥∥F(ηn(τ ), τ )
∥
∥ dτ

= Me−α(t−t0)‖η0‖ +
M‖b̃‖ ∫ t

t0
eατ‖βηn(τ)‖ dτ
eαt

.

By using L’Hospital’s rule, it follows that

0 � lim
t→+∞

∥
∥η(t, t0, η0)

∥
∥

� lim
t→+∞Me−α(t−t0)‖η0‖ + lim

t→+∞
M‖b̃‖ ∫ t

t0
eατ‖βηn(τ)‖ dτ
eαt

= 0+ lim
t→+∞

M‖b̃‖eατ‖βηn(τ)‖
αeαt

= 0.

In conclusion, the zero solution of system (9.10.7) is absolutely stable, so that
the zero solution of system (9.10.4) is also absolutely stable, implying that system
(9.10.1) synchronizes. This completes the proof of the theorem. �

It is well known that for an autonomous Lurie system, since F(σ(t), t) =
F(σ(t)), a necessary condition for absolute stability is b̃n � 0. For this reason,
we will assume this condition below.

THEOREM 9.10.3. Assume that b̄n � 0. Then, it is always possible to select
appropriate elements K̃ij in K such that ãnj + k̃nj = 0, j = 1, 2, . . . , n− 1, and
ãnn+knn < 0, and, moreover, (Ā+ K̃) is a Hurwitz stable matrix. As a result, the
zero solution of system (9.10.7) is absolutely stable, and so is the zero solution of
system (9.10.4) implying that system (9.10.1) synchronizes.

PROOF. For system (9.10.7), use the Lyapunov function V = η2
n, which gives

dη2
n

dt
= 2(ānn + k̄nn)η

2
n + 2b̄nηnF

(

ηn(t), t
)

� 2(ānn + k̄nn)η
2
n < 0

for ηn �= 0. Therefore, the zero solution of system (9.10.7) is absolutely stable
about its partial variable ηn(t). The rest of the proof is similar to that in the proof
of Theorem 9.10.2. �

THEOREM 9.10.4. Assume that

0 � F(σ(t), t)

σ (t)
�∞, with F

(

σ(t), t
)→ 0
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uniformly as σ(t) → 0 for all t � t0. Also, assume that b̃n � 0. Then, it is
always possible to select appropriate elements k̃ij in K such that ãnj + k̃nj = 0,
j = 1, 2, . . . , n−1, and ãnn+k̃nn < 0, and moreover, (Ã+K̄) is a Hurwitz stable
matrix. As a result, the zero solution of system (9.10.7) is absolutely stable, and so
is the zero solution of system (9.10.4) implying that system (9.10.1) synchronizes.

PROOF. For system (9.10.7), use the Lyapunov function V = η2
n, which yields

dV

dt
= 2(ãnn + k̃nn)η

2
n + 2b̄nηnF

(

ηn(t), t
)

� 2(ãnn + k̃nn)η
2
n < 0

for all ηn �= 0. Therefore, the zero solution of system (9.10.7) is absolutely stable
about its partial variable ηn(t). Since F(σ(t), t)→ 0 uniformly as σ(t)→ 0 for
all t � t0. Similarly to the proof of Theorem 1, we can prove that

η(t, t0, η0) = e(t−t0)(Ã+K̃)η0

+
t∫

t0

e(t−τ)(Ã+K̄)b̄F
(

ηn(τ ), τ
)

dτ → 0 as t →+∞.

This completes the proof of the theorem. �

THEOREM 9.10.5. Assume that b̃n < 0 but condition (5) holds. Then, it is still
always possible to select appropriate elements k̃ij in K̃ such that ānj + k̃nj = 0,
j = 1, 2, . . . , n− 1, and ānn + k̃nn + b̄nβ < 0, and moreover, (Ã+ K̃) is a Hur-
witz stable matrix. As a result, the zero solution of system (9.10.4) is absolutely
stable, and so is the zero solution of system (9.10.4) implying that system (9.10.1)
synchronizes.

PROOF. For system (9.10.7) we still use the Lyapunov function V = η2
n, which

yields

dV

dt
= 2(ānn + k̃nn)η

2
n + 2b̃nηnF

(

ηn(t), t
)

� 2(ānn + k̃nn)η
2
n + 2b̃nβη

2
n

= 2(ānn + k̃nn + b̃nβ)η
2
n < 0

for ηn �= 0. Therefore, the zero solution of system (9.10.7) is absolutely stable
about its partial variable ηn(t). The rest of the proof is similar to that in the proof
of Theorem 9.10.3. �

THEOREM 9.10.6. Assume that in system (9.10.7) F(·, t) satisfies (9.10.5). If
it is possible to select an appropriate K̃ such that the zero solution of (9.10.7)
is absolutely stable about its partial variables ηj+1, ηj+2, . . . , ηn, where j =
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1, 2, . . . , n− 1, and such that

B(j) :=
⎡

⎣

ā11 + k̃11 . . . ā1j + k̃1j
...

...

āj1 + k̃j1 . . . ājj + k̃jj

⎤

⎦ , j = 1, 2, . . . , n− 1,

is Hurwitz stable, then the zero solution of system (9.10.7) is absolutely stable, so
is the zero solution of system (9.10.4), implying that system (9.10.7) synchronizes.

PROOF. Let

η(j)(t) := (

η1(t, t0, η0), . . . , ηj (t, t0, η0)
)T
,

η(n−j)(t) := (

ηj+1(t, t0, η0), . . . , ηn(t, t0, η0)
)T
,

b̄(j) := (b̄1, . . . , b̃j )
T ,

b̄(n−j) := (b̄j+1, . . . , b̃n)
T ,

B(n−j) :=
⎡

⎣

ã1,j+1 + k̄1,j+1 · · · ã1j + k̄1j
...

...

ãj,j+1 + k̄j,j+1 · · · ãjn + k̄jn

⎤

⎦ , j = 1, 2, . . . , n− 1.

Then, the first j components of (9.10.7) are given by

η(j)(t) = e(t−t0)B(j)η(j)(t0)+
t∫

t0

e(t−τ)B(j)B(n−j)η(n−j)(τ ) dτ

(9.10.11)+
t∫

t0

e(t−τ)B(j)b̃(n−j)F
(

ηn(τ ), τ
)

dτ.

Since B(j) is Hurwitz stable, there are constants M � 1 and α > 0 such that
‖et−t0η(j)‖ � Me−α(t−t0). Similar to the proof of Theorem 9.10.2 we have

∥
∥η(j)(t)

∥
∥ �

∥
∥e(t−t0)B(j)η(j)(t0)

∥
∥+

t∫

t0

∥
∥e(t−τ)B(j)∥

∥
∥
∥B(n−j)∥∥∥∥η(n−j)(τ )

∥
∥ dτ

+
t∫

t0

∥
∥e(t−τ)B(j)∥

∥
∥
∥b̄(n−j)

∥
∥
∥
∥F(ηn(τ ), τ )

∥
∥ dτ

� Me−α(t−t0)
∥
∥η(j)(t0)

∥
∥+

t∫

t0

Me−α(t−τ)
∥
∥B(n−j)∥∥∥∥b̃(n−j)

∥
∥ dτ
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+
t∫

t0

Me−α(t−τ)
∥
∥b̃(n−j)

∥
∥
∥
∥F

(

ηn(τ ), τ
)∥
∥ dτ → 0 as t →∞.

Therefore, the zero solution of system (9.10.7) is also absolutely stable about
its partial variables ηj , . . . , ηn. Consequently, the zero solution of system (9.10.4)
is absolutely stable, so that system (9.10.1) synchronizes. �

Consider the following Lurie type system:

(9.10.12)

{
dx
dt
= Ax + f (t, qT1 x, . . . , q

T
n x)(bc

T − cbT )x,

dy
dt
= Ay + f (t, qT1 x, . . . , q

T
n x)(bc

T − cbT )y −K(x − y),

where f ∈ [t0,∞)×Rr,R] is continuous, 1 � r � n, and K ∈ Rn×n is the gain
matrix to be determined.

Let e = x − y. Then, the error dynamics system is

(9.10.13)
de

dt
= Ae + f

(

t, qT1 x, . . . , q
T
n x
)(

bcT − cbT
)

e +Ke.

The following is the main result of Curran and Chua [92].

THEOREM 9.10.7. Suppose that f is bounded for any bounded variables, and
that there exists a positive definite and symmetric matrix P such that

(9.10.14)(A+ P)T P + P(A+K) < 0 and BT P + PB = 0.

where B = bcT − cbT . Then, the zero solution of system (9.10.3) is globally
asymptotically stable, so that system (9.10.12) synchronizes.

Note that B = bcT − cbT is a very special asymmetric matrix, therefore the
second equation in (9.10.14) always has a solution (e.g., the identity matrix or a
quasi-diagonal matrix). As a result, by selecting an appropriate gain matrix K ,
equations in (9.10.4) are always solvable.

Note also that although system (9.10.12) includes the Lorenz system as a spe-
cial case, it does not include many other chaotic systems such as the simple yet
similar Chen and Rössler systems.

To be even more general, we now consider the following generalized Lurie
system:

(9.10.15)

{
dx
dt
= Ax + f (t, qT1 x, . . . , q

T
n x)Bx,

dy
dt
= Ay + f (t, qT1 x, . . . , q

T
n x)By −K(x − y),

where B ∈ Rn×n is an arbitrary constant matrix and K ∈ Rn×n is the gain matrix
to be determined. Again, let e = x − y, so as to obtain the error dynamics system

(9.10.16)
de

dt
= Ae + f

(

t, qT1 x, . . . , q
r
nx
)

Be +Ke.
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It should be pointed out that under the conditions given in Theorem 9.10.8,
the zero solution of system (9.10.16) can be globally asymptotically stable, if
the equations in (9.10.14) have a solution. However, for a general matrix B �=
bcT − cbT , these matrix equations in (9.10.14) usually do not have a solution.
Thus, Theorem 9.10.8 can not be applied. We hence have to resort to a different
approach, which is further discussed below.

Notice that most of people believe that chaotic orbits are ultimately bounded.
Recently, we have proved that the general Lorenz system, the Chen system and
Lü system [69] as well the smooth Chua system [287] all have globally exponen-
tially attractive sets. Moreover, we gave explicit estimations for these attractive
sets. Therefore, for such well-known typical chaotic systems, the answer for the
existence of globally exponentially attractive set is positive.

Since f is continuous and the system is ultimately bounded, there exists a con-
stant M > 0 such that

∣
∣f
(

t, qT1 x, . . . , q
T
n x
)∣
∣ � M <∞

in the chaos synchronization problem studied here. Denote the matrix D =
(M|bij |)n×n. We have the following results, which provide some very simple al-
gebraic conditions and are very easy to use for synchronization verification and
design.

THEOREM 9.10.8. If the gain matrix K is selected such that

(A+K +D)+ (A+K +D)T < 0,

then the zero solution of system (9.10.16) is absolutely stable, implying that sys-
tem (9.10.15) synchronizes.

Note that obviously it is very easy to choose a K to satisfy the above negative
definiteness condition, which does not require solving any matrix equation or
inequality. The following two corollaries will make this point even clearer.

PROOF. Choose the Lyapunov function V = eT e. Then

dV

dt
= eT

(

(A+K)+ (A+K)T + f
(

t, qT1 x, . . . , q
T
n x
)

B

+ f
(

t, qT1 x, . . . , q
T
r x
)

BT
)

e

� eT
(

(A+K)+ (A+K)T
)

e + eT De

(9.10.17)= eT ((A+K +D)+ (A+K +D)T )e < 0

for all e �= 0. This yields the result, and completes the proof of the theorem. �
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COROLLARY 9.10.9. Let λmax be the largest eigenvalue of matrix (A+AT +D+
DT ). If λmax < 0, then one may simply choose K = 0; if λmax � 0, then one may
choose K = μI with 2μ < −λmax. In both cases, the zero solution of the error
dynamites system (9.10.16) is absolutely stable, implying that system (9.10.15)
synchronizes.

PROOF. When λmax < 0, we select K = 0, so

(A+K +D)+ (A+K +D)T = (A+D)+ (A+D)T < 0,

implying the result of (9.10.17). When λmax � 0, since

eT
(

(A+K +D)+ (A+K +D)T
)

e

= eT
(

A+D + (A+D)
)T
e + eT

(

K +KT
)

e

� λmaxe
T e + 2μeT e < 0

for all e �= 0, we also have the result of (9.10.17) completing the proof of the
corollary. �

COROLLARY 9.10.10. Let

H = (

A+ AT + E +DT
) := (hij )n×n,

l = max
1�i�n

n
∑

j=1, j �=i
|hij |.

If K = μI and 2μ + hii < −l, then the zero solution of the error dynamics
system (9.10.15) is absolutely stable, implying that system (9.10.15) synchronizes.

PROOF. Since

(A+K +D)+ (A+K +D)T = (

A+ AT +D +DT
)+ 2μI

and

2μ+ hii < −l = − max
1�i�n

n
∑

j=1, j �=i
|hij |,

it follows from the well-known Gershgorin theorem that all the eigenvalues of the
matrix (A + K + D) + (A + K + D)T are located on the left-hand side of the
complex plane, which means that this matrix is negative definite. As a result, the
zero solution of the error dynamics system (9.10.16) is absolutely stable. �
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The Chen system [69] is given by

(9.10.18)

{
ẋ = a(y − x),

ẏ = (c − a)x − xy + cy,

ż = xy − bz.

With constants a = 35, b = 3, and c = 8, it generates chaos.
Let (xd, yd, zd) and xr , yr , zr be the variables of the drive and the response,

respectively, and let e1 = xd − xr , e2 = yd − yr , e3 = zd − zr , and y := yd = yr .
Then the error dynamics system is

(9.10.19)

{
ė1 = −ae1,

ė2 = (c − a)e1 − ye1 + ce2,

ė3 = e1y − be3.

It can be verified that the analytic method developed in [261,262] can only
prove that e1 → 0, ė2 → 0, and e3 → 0 exponentially, but cannot prove e2 → 0,
as t → ∞. Here, it can be easily verified that by using a simple feedback on the
second equation of (9.10.19) −ke2 with k > c1 conditions of Theorem 9.10.8 are
satisfied, so two Chen systems synchronize. In fact, a direct calculation yields

e1(t) = e1(t0)e
−a(t−t0) → 0, as t →∞,

e2(t) = e2(t0)e
−(k−c)(t−t0) +

t∫

t0

e−(k−c)(t−τ)
[

(c − a)e1(t0)e
−a(τ−t0)

− y(τ)e1(t0)e
−a(τ−t0)] dτ → 0 as t →∞

e3(t) = e3(t0)e
−b(t−t0) +

t∫

t0

e−b(t−τ)e1(t0)e
−a(τ−t0)y(τ ) dτ → 0,

as t →∞
all exponentially. Therefore, two Chen systems synchronize, as claimed.

9.11. NASCs for absolute stability of time-delayed Lurie
control systems

Consider the following Lurie system with constant time delays:

(9.11.1)

⎧

⎪⎨

⎪⎩

dz
dt
= Ãz(t)+ B̃z(t − τ1)+ h̃f (σ (t − τ2)),

h̃ = (h̃1, h̃2, . . . , h̃n)
T ,

σ = cT z =∑n
i=1 cizi,

where c, h̃ ∈ Rn are constant vectors, z ∈ Rn is the state vector, and Ã, B̃ ∈ Rn×n
are real matrices; the time delays τ1 > 0 and τ2 > 0 are constants; the function f
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is defined as

f (·) ∈ F∞ :=
{

f | f (0) = 0, σf (σ ) > 0, σ �= 0, f ∈ (−∞,+∞)
}

or

f (·) ∈ F[0,k] :=
{

f | f (0) = 0, 0 < σf (σ) � kσ 2, σ �= 0,

f ∈ (−∞,+∞)
}

,

where k is a positive real number. Let τ = max{τ1, τ2}, then C[[−τ, 0], Rn]
represents a Banach space with uniform, continuous topological structure.

DEFINITION 9.11.1. If ∀f (·) ∈ F∞ (or ∀f (·) ∈ F[0,k]), the zero solution of
system (9.11.1) is globally asymptotically stable for any values of τ1, τ2 � 0,
then the zero solution of system (9.11.1) is said to be time-delay independent ab-
solutely stable (or time-delay independent absolutely stable in the Hurwitz sector
[0, k]).

It is easy to show that the necessary condition for system (9.11.1) to be time-
delay independent absolutely stable is cT h̃ � 0; and the necessary condition for
system (9.11.1) to be time-delay independent absolutely stable in the Hurwitz
sector [0, k] is that ∀μ ∈ [0, k], the matrix Ã+ B̃ + μh̃cT is a Hurwitz matrix.

In fact, let

f
(

σ(t − τ2)
) = μσ(t − τ2) =

n
∑

i=1

μcizi(t − τ2).

Then system (9.11.1) becomes

(9.11.2)
dz

dt
= Ãz(t)+ B̃z(t − τ1)+ μh̃cT z

(

σ(t − τ2)
)

.

In particular, when τ1 = τ2 = 0, for an arbitrary μ ∈ [0,+∞), the matrix
Ã+ B̃ + μh̃cT is a Hurwitz matrix. Thus, we have

tr
(

Ã+ B̃ + μh̃cT
) = tr Ã+ tr B̃ + tr

(

h̃cT
) = tr Ã+ tr B̃ + μcT h̃ < 0,

which holds for μ� 1, implying that cT h̃ � 0.
Next, take μ ∈ [0, k], f (σ (t − τ2)) = μσ(t − τ2), τ1 = τ2 = 0. Then it is easy

to see that Ã+ B̃ + μh̃cT must be a Hurwitz matrix.
In the following, we use two nonsingular linear transforms to change sys-

tem (9.11.1) into a separable nonlinear system. There are two cases.

(1) When cT h̃ � 0. Without loss of generality, suppose cn �= 0. Let

(9.11.3)x = Ωz,
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where

Ω =

⎡

⎢
⎢
⎢
⎢
⎣

1 0 · · · 0 0
0 1 · · · 0 0
...

... · · · ...
...

0 0 0 1 0
c1 c2 · · · cn−1 cn

⎤

⎥
⎥
⎥
⎥
⎦

.

Then system (9.11.1) becomes

dx

dt
= ΩÃΩ−1x(t)+ΩB̃Ω−1x(t − τ1)+Ωh̃f

(

xn(t − τ2)
)

(9.11.4):= Ax(t)+ BX(t − τ1)+ hf
(

xn(t − τ2)
)

,

where A = ΩÃΩ−1, B = ΩB̃Ω−1, and h = Ωh̃. Since (9.11.3) is a non-
singular linear transformation, the time-delay independent absolute stabilities
of the zero solutions of systems (9.11.1) and (9.11.4) are equivalent.

(2) When cT h̃ < 0. Without loss of generality, assume h̃ncn �= 0. Let y = Gz,
where

G =

⎡

⎢
⎢
⎢
⎢
⎣

h̃n 0 · · · 0 −h̃1
0 h̃n · · · 0 −h̃2
...

... · · · ...
...

0 0 0 h̃n −h̃n−1
c1 c2 · · · cn−1 cn

⎤

⎥
⎥
⎥
⎥
⎦

.

Then system (9.11.4) can be rewritten as

dy

dt
= GÃG−1y(t)+GB̃G−1y(t − τ1)+Gh̃f

(

yn(t − τ2)
)

(9.11.5):= Py(t)+Qy(t − τ1)+ bf
(

yn(t − τ2)
)

,

where P = GÃG−1, Q = GB̃G−1, and b = Gh̃ = (

n−1
︷ ︸︸ ︷

0, 0, . . . , 0, cT h̃)T .
Similarly, due to the nonsingularity ofG, the time-delay independent absolute
stabilities of the zero solutions of systems (9.11.1) and (9.11.5) are equivalent.

DEFINITION 9.11.2. The zero solution of system (9.11.4) is said to be time-
delay independent absolutely stable (or time-delay independent absolute stable in
the Hurwitz sector [0, k]) with respect to (w.r.t.) partial variable xn of the system,
if ∀f (·) ∈ F∞ (or ∀f (·) ∈ F[0,k]), the zero solution of system (9.11.4) is globally
asymptotically time-delay independently stable (or globally asymptotically time-
delay independently stable in the Hurwitz sector [0, k]) w.r.t. partial variable xn
of the system.
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Similarly, we can define for the zero solution of system (9.11.5) to be time-
delay independently stable w.r.t. partial variable yn.

THEOREM 9.11.3. The sufficient and necessary conditions for the zero solution
of system (9.11.4) to be time-delay independently stable are:

(1) The matrix A + B + (On×(n−1), hθ) is a Hurwitz matrix, where θ = 0 or
θ = 1, and

(On×(n−1), hθ) =
⎡

⎣

0 · · · 0 h1θ
...

...
...

...

0 · · · 0 hnθ

⎤

⎦

n×n
.

(2) det(iσ − A− Be−iσ τ1 − (On×(n−1), hθ)e
−iσ τ2) �= 0 ∀σ ∈ R, ∀τ1, τ2 � 0.

(3) The zero solution of system (9.11.4) is time-delay independent absolutely sta-
ble w.r.t. partial variable xn.

PROOF. Necessity. Suppose that the zero solution of system (9.11.4) is time-delay
independent absolutely stable. When A + B is a Hurwitz matrix, we can choose
θ = 0 and thusA+B+(On×(n−1), hθ) = A+B is a Hurwitz matrix. WhenA+B
is not a Hurwitz matrix, we take f (xn) = xn. Then system (9.11.4) becomes a
linear time-delayed system:

(9.11.6)
dx

dt
= Ax(t)+ Bx(t − τ)+ hxn(t − τ2).

From the sufficient and necessary conditions of global time-delay independent
stability for constant time-delayed systems with constant coefficients, we know
that all the eigenvalues of the characteristic equation of system (9.11.5), given by

(9.11.7)det
(

λI − A− Be−iλτ1 − (On×(n−1), hθ)e
−iλτ2

) = 0,

must have negative real parts. This is equivalent to the conditions (1) and (2) in
Theorem 9.11.3 (θ = 1). The condition (3) of Theorem 9.11.3 is obvious. The
necessity is proved.

Sufficiency. Rewrite system (9.11.4) as

dx

dt
= Ax(t)+ Bx(t − τ)+ hθxn(t − τ2)

(9.11.8)+ hf
(

xn(t − τ2)− θhxn(t − τ2)
)

.

Let x∗(t) = x(t0, φ)(t) be the solution of the following system:

dx

dt
= Ax(t)+ Bx(t − τ)+ hθxn(t − τ2),

(9.11.9)x(t) = φ(t), t0 − τ � t � t0.
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Then from the method of constant variation, we know that the solution of (9.11.8)
passing through the initial point (t0, φ) can be expressed as

(9.11.10)x(t) = x∗(t)+
t∫

t0

U(t, s)
[

hf
(

xn(s − τ2)− θhxn(t − τ2)
)]

ds,

where U(t, s) is the fundamental matrix solution, satisfying

∂U(t, s)

∂t
= AU(t, s)+ BU(t − τ1, s)+ (On×(n−1), hθ)U(t − τ2, s),

U(t, s) =
{

0 when τ − s � t � s,

I when t = s.

From the conditions given in Theorem 9.11.3, it is known that there exist con-
stants M � 1, N � 1 and α > 0 such that

(9.11.11)
∥
∥x∗(t)(t0, φ)(t)

∥
∥ � M‖φ‖e−α(t−t0) when t � t0,

(9.11.12)
∥
∥U(t, s)

∥
∥ � Ne−α(t−s) when t � s.

Therefore, we have

∥
∥x(t)

∥
∥ � M‖φ‖e−α(t−t0) +N

t∫

t0

e−α(t−s)
[∥
∥hf

(

xn(t − τ1)
)∥
∥

(9.11.13)+ ∥
∥θhxn(s − τ2)

∥
∥
]

ds (t � t0).

∀ε > 0, since xn(t) → 0 as t → +∞ and f (·) is a continuous function of x0,
there exists δ1(ε) > 0 such that when ‖φ‖ < δ1(ε), the following inequalities
hold:

N

t1∫

t0

e−α(t−s)
[∥
∥hf

(

xn(t − τ1)
)∥
∥+ ∥

∥θhxn(s − τ2)
∥
∥
]

ds <
ε

3

when t1 > t0,

N

t∫

t1

e−α(t−s)
[∥
∥hf

(

xn(t − τ1)
)∥
∥+ ∥

∥θhxn(s − τ2)
∥
∥
]

ds <
ε

3

(9.11.14)when t > t1.

Further, let δ2 = ε
3M , and M‖φ‖e−α(t−t0) � ε

3 when ‖φ‖ � δ2. Then define

(9.11.15)δ(ε) = min
(

δ1(ε), δ2(ε)
)

.

Now combining equations (9.11.13), (9.11.14) and (9.11.15) yields ‖x(t)‖ < ε

when t � t0 and ‖φ‖ < δ(ε). Hence, the zero solution of system (9.11.8) is stable
in the sense of Lyapunov.
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Further, it can be shown by applying L’Hospital rule to equation (9.11.13) that
∀x0 ∈ Rn,

lim
t→+∞

∥
∥x(t)

∥
∥ � lim

t→+∞M‖φ‖e−α(t−t0)

+ lim
t→+∞

1

eαt

t∫

t0

eαs
[∥
∥hf

(

xn(s − τ1)
)∥
∥+ ∥

∥θhxn(s − τ2)
∥
∥
]

dτ

= 0+ 1

α
lim

t→+∞
[∥
∥hf

(

xn(t − τ1)
)∥
∥+ ∥

∥θhxn(t − τ2)
∥
∥
]

= 0,

which implies that the zero solution of system (9.11.8) is globally asymptotically
stable. Due to the arbitrary of f (·) ∈ F , the zero solution of system (9.11.4) is
time-delay independent absolutely stable. The sufficiency is also proved. �

THEOREM 9.11.4. The sufficient and necessary conditions for system (9.11.4) to
be time-delay independent absolutely stable are:

(1) There exists nonnegative vector η = (η1, . . . , ηn)
T such that the matrix A +

B + (On×(n−1), η) is a Hurwitz matrix.
(2) det(iσ − A− Be−iσ τ1 − (On×(n−1), η)e

−iσ τ2) �= 0 ∀σ ∈ R.
(3) The zero solution of system (9.11.4) is time-delay independent absolutely sta-

ble w.r.t. partial variable xn.

The proof of Theorem 9.11.4 is similar to that for Theorem 9.11.3, and thus
omitted for brevity.

REMARK 9.11.5. The existence of the vector η = (η1, . . . , ηn)
T is obvious.

For example, η = θ . [θ is defined in condition (1) of Theorem 9.11.3, which
is a constructive condition, while condition (1) in Theorem 9.11.4 is an existence
condition, which is certainly not as good as condition (1) of Theorem 9.11.3.] The
condition (1) of Theorem 9.11.3 is easy to be verified. However, if an appropriate
η is chosen, it may simplify the validation of other conditions in the theorem.

Similar to Theorems 9.11.3 and 9.11.4, we have the following theorems.

THEOREM 9.11.6. The sufficient and necessary conditions for system (9.11.5) to
be time-delay independent absolutely stable are:

(1) The matrix P +Q+ (On×(n−1), θb) is a Hurwitz matrix, where

(On×(n−1), θb) =
⎡

⎣

0 · · · 0 θb1
...

...
...

...

0 · · · 0 θbn

⎤

⎦

n×n
:= (θij )n×n.
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(2) det(iσ − P −Qe−iσ τ1 − (On×(n−1), θb)e
−iσ τ2) �= 0 ∀σ ∈ R.

(3) The zero solution of system (9.11.5) is time-delay independent absolutely sta-
ble w.r.t. partial variable yn.

THEOREM 9.11.7. The sufficient and necessary conditions for system (9.11.5) to
be time-delay independent absolutely stable are:

(1) There exists nonnegative vector η = (η1, . . . , ηn)
T such that the matrix P +

Q+ (On×(n−1), η) is a Hurwitz matrix.
(2) det(iσ − P −Qe−iσ τ1 − (On×(n−1), η)e

−iσ τ2) �= 0 ∀σ ∈ R.
(3) The zero solution of system (9.11.5) is time-delay independent absolutely sta-

ble w.r.t. partial variable yn.

Now we derive some simple and easy-applicable algebraic criteria. These cri-
teria are easy to be verified in practice and can be applied in designing absolutely
stable systems or stabilizing an existing control system.

In system (9.11.4), assume that f (·) ∈ F[0,k] := {f | f (0) = 0, 0 � xnf (xn)

� kx2
n}, and f is continuous. Then we have the following theorem.

THEOREM 9.11.8. If system (9.11.4) satisfies the following conditions:

(1) aii < 0, i = 1, 2, . . . , n.
(2) G = (−(−1)δij |aij | − |bij | − θij |hi |k)n×n is an M matrix,

where

θij =
{

1 when i = 1, . . . , n, j = n,

0 when i = 1, . . . , n, j = 1, . . . , n− 1,

δij =
{

1 when i = j,

0 when i �= j.

Then the zero solution of system (9.11.4) is time-delay independent absolutely
stable in the Hurwitz sector [0, k].

PROOF. Since G is an M matrix, it is known from the property of M matrix that
∀β = (β1, . . . , βn)

T > 0 (i.e., βi > 0, i = 1, 2, . . . , n), there exist constants
ci > 0, i = 1, 2, . . . , n, such that c = (GT )−1β, c = (c1, . . . , cn)

T , i.e.,

−cj ajj −
(

n
∑

i=1,i �=j
|aij |ci +

n
∑

i=1

|bij |ci +
n
∑

i=1

ciθij‖hi‖k
)

= βj ,

j = 1, 2, . . . , n.
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Consider a positive definite and radially unbounded Lyapunov functional:

V (t) =
n
∑

i=1

ci

[

∣
∣xi(t)

∣
∣+

n
∑

j=1

|bij |
t∫

t−τ1

∣
∣xj (s)

∣
∣ ds

+
n
∑

i=1

θij |hi |k
t∫

t−τ2

∣
∣xi(s)

∣
∣ ds

]

.

Suppose that the initial condition for the solution of system (9.11.4) is given by
x(t) = φ(t), −τ � t � 0. Then we have

V (t0) �
n
∑

i=1

ci

[

∣
∣xi(t0)

∣
∣+

n
∑

j=1

|bij |‖φ‖τ +
n
∑

i=1

θij |hi |k‖φ‖τ2

]

:= M < +∞
and V (t) �

∑n
i=1 ci |xi(t)|. Thus along the trajectory of system (9.11.4) differen-

tiating V with respect to time yields

D+V (t)|(9.11.4) �
n
∑

i=1

ci

[

dxi

dt
sign(xi)+

n
∑

j=1

|bij |
∣
∣xj (t)

∣
∣

−
n
∑

j=1

|bij |
∣
∣xj (t − τ1)

∣
∣+

n
∑

i=1

θij |hj |
∣
∣xi(t)

∣
∣−

n
∑

i=1

θij |hj |
∣
∣xj (t − τ2)

∣
∣

]

�
n
∑

i=1

ci

{[
n
∑

i=1

aij xj (t)+
n
∑

j=1

bij xj (t − τ1)

+
n
∑

i=1

θijhif
(

xn(t − τ2)
)

]

sign(xi)+
n
∑

j=1

|bij |
∣
∣xj (t)

∣
∣

−
n
∑

j=1

|bij |
∣
∣xj (t − τ1)

∣
∣+

n
∑

i=1

θij |hj |
∣
∣xi(t)

∣
∣−

n
∑

i=1

θij |hj |
∣
∣xi(t − τ2)

∣
∣

}

�
n
∑

j=1

[

cjajj +
n
∑

j=1
j �=i

ci |aij | +
n
∑

j=1

ci |bij | +
n
∑

i=1

θij |hi |k
]

∣
∣xj (t)

∣
∣

(9.11.16)� −
n
∑

j=1

βj
∣
∣xj (t)

∣
∣.
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Hence,

(9.11.17)0 � V (t) � V (t0)−
t∫

t0

n
∑

j=1

βj
∣
∣xj (τ )

∣
∣ dτ � V (t0).

Equation (9.11.17) clearly indicates that the zero solution of system (9.11.4) is
time-delay independently stable in the Hurwitz sector [0, k].

Next, we show that the zero solution of system (9.11.4) is time-delay indepen-
dently attractive in the Hurwitz sector [0, k].

Because

0 � min
1�i�n

ci

n
∑

i=1

∣
∣xi(t)

∣
∣ � V (t) � V (t0) < +∞,

∑n
i=1 |xi(t)| is bounded, and thus

∑n
i=1 | dxidt | is bounded in [t0,+∞). This im-

plies that
∑n

i=1 |xi(t)| is uniformly continuous in [t0,+∞). On the other hand, it
follows from equation (9.11.17) that

t∫

t0

n
∑

j=1

βj
∣
∣xj (t)

∣
∣ dt � V (t0),

which, in turn, results in
∑n

i=1 |xi(t)| ∈ L1[0,+∞). Therefore, it follows from
calculus that ∀φ ∈ C[[−τ, 0], Rn],

lim
t→+∞

n
∑

i=1

∣
∣xi(t)

∣
∣ = 0,

which implies that the zero solution of system (9.11.4) is time-delay indepen-
dently attractive in the Hurwitz sector [0, k]. The proof of Theorem 9.11.8 is
complete. �

COROLLARY 9.11.9. If one of the following conditions are satisfied:

(1) −ajj >
n
∑

i=1,i �=j
|aij | +

n
∑

i=1

|bij | +
n
∑

i=1

θij |hi |k, j = 1, 2, . . . , n.

(2) −aii >
n
∑

j=1,j �=i
|aij | +

n
∑

j=1

|bij | +
n
∑

j=1

θij |hi |k, i = 1, 2, . . . , n.

(3) −aii > 1

2

n
∑

j=1,j �=i

(|aij | + |aji |
)+ 1

2

n
∑

j=1

(|bij | + |bji |
)

+ 1

2

n
∑

j=1

(

θij |hi |k + θji |hj |k
)

.
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Then the zero solution of system (9.11.4) is time-delay independently attractive in
the Hurwitz sector [0, k].

This is simply because that any of the above conditions implies that aii <

0 (i = 1, 2, . . . , n) and G is an M matrix.
Similar to Theorem 9.11.8 and Corollary 9.11.9, we have the following theorem

and corollary.

THEOREM 9.11.10. If system (9.11.5) satisfies the following conditions:

(1) pii < 0, i = 1, 2, . . . , n.
(2) G̃ = (−(−1)δij |pij | − |qij | − θij |bi |k)n×n is an M matrix, where θij and δij

are defined in Theorem 9.11.3.

Then the zero solution of system (9.11.4) is time-delay independent absolutely
stable in the Hurwitz sector [0, k].

COROLLARY 9.11.11. If one of the following conditions is satisfied:

(1) −pjj >
n
∑

i=1,i �=j
|pij | +

n
∑

i=1

|qij | +
n
∑

i=1

θij |hi |k, j = 1, 2, . . . , n.

(2) −pii >
n
∑

j=1,j �=i
|pij | +

n
∑

j=1

|qij | +
n
∑

j=1

θij |hi |k, i = 1, 2, . . . , n.

(3) −pii > 1

2

n
∑

j=1,j �=i

(|pij | + |pji |
)+ 1

2

n
∑

j=1

(|qij | + |qji |
)

+ 1

2

n
∑

j=1

(

θij |bi |k + θji |bj |k
)

.

Then the zero solution of system (9.11.5) is time-delay independently attractive in
the Hurwitz sector [0, k].

Further, we have the following result.

THEOREM 9.11.12. If system (9.11.4) satisfies the following conditions:

(1) There exist constants ci, i = 1, 2, . . . , n, such that

cj ajj +
n
∑

i=1,i �=j
ci |pij | +

n
∑

i=1

ci |qij | � 0, j = 1, 2, . . . , n− 1;
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and

cnann +
n−1
∑

i=1

ci |ain| +
n
∑

i=1

ci |bin| +
n
∑

i=1

ciθin|hi |k � −δ < 0.

(2) All eigenvalues of det(λIn − A− Be−iλτ1) = 0 have negative real part.

Then the zero solution of system (9.11.4) is time-delay independent absolutely
stable in the Hurwitz sector [0, k].

PROOF. Construct a positive definite and radially unbounded Lyapunov func-
tional as follows:

V (t) =
n
∑

i=1

ci

[

∣
∣xi(t)

∣
∣+

n
∑

j=1

|bij |
t∫

t−τ1

∣
∣xj (s)

∣
∣ ds

(9.11.18)+
n
∑

j=1

θij |hi |k
t∫

t−τ2

∣
∣xj (s)

∣
∣ ds

]

.

Following the proof of Theorem 1 we obtain

D+V (t)|(9.11.4) �
n
∑

j=1

[

cjajj +
n
∑

j=1,j �=i
ci |aij | +

n
∑

j=1

ci |bij |
]

∣
∣xj (t)

∣
∣

�
[

cnann +
n−1
∑

i=1

ci |ain| +
n
∑

i=1

ci |bin| +
n
∑

j=1

ciθij |hi |k
]

∣
∣xn(t)

∣
∣

(9.11.19)� −δ∣∣xn(t)
∣
∣.

Hence, we have

(9.11.20)0 � V (t) � V (t0)− δ

t∫

t0

∣
∣xn(s)

∣
∣ ds � V (t0),

which indicates that the zero solution of system (9.11.4) is time-delay indepen-
dently stable.

Again, similar to Theorem 9.11.3, we can prove that
∫ t

t0
δ|xn(s)| ds � V (t0)

and |xn(t)| ∈ L1[0,+∞). Therefore, limt→+∞ |xn(t)| = 0, which implies that
the zero solution of system (9.11.4) is time-delay independently attractive w.r.t.
partial variable xn in the Hurwitz sector [0, k].
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Following the proof of Theorem 9.11.3, we can express the solution of sys-
tem (9.11.4) as

x(t) = x∗(t)+
t∫

t0

U(t, s)
[

hf
(

xn(s − τ)
)]

ds,

where U(t, s) satisfies the following system:

∂U(t, s)

∂t
= AU(t, s)+ BU(t − τ, s)+ (On×(n−1), hθ)U(t − τ2, s),

(9.11.21)U(t, s) =
{

0 when τ − s0 � t � s0,

I when t = s0,

and x∗(t) = x(t0, φ) is the solution of the following equation:

dx

dt
= Ax(t)+ Bx(t − τ1)+ hθx(t − τ2),

(9.11.22)x(t) = φ(t), −τ � t � t0.

The remaining part of the proof can follow the derivation given in the proof of
Theorem 9.11.3 from equations (9.11.11) to (9.11.15). The details are omitted
here. This finishes the proof of Theorem 9.11.12. �

Similar to Theorem 9.11.12, we have

THEOREM 9.11.13. If system (9.11.5) satisfies the following conditions:

(1) There exist constants ci, i = 1, 2, . . . , n, such that

cjpjj +
n
∑

i=1, i �=j
ci |pij | +

n
∑

i=1, i �=j
ci |qij | � 0, j = 1, 2, . . . , n− 1;

and

cnpnn +
n−1
∑

i=1

ci |pin| +
n
∑

i=1

ci |qin| +
n
∑

i=1

ciθin|hi |k � −δ < 0.

(2) All eigenvalues of det(λIn − P −Qe−iλτ1) = 0 have negative real part.

Then the zero solution of system (9.11.5) is time-delay independent absolutely
stable in the Hurwitz sector [0, k].

To end this section, we give an example to demonstrate the applicability of the
theoretical results obtained in this section.
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EXAMPLE 9.11.14. Consider a 3-dimensional Lurie control system in the form
of (9.11.4), given by

⎛

⎜
⎝

dx1
dt

dx2
dt

dx3
dt

⎞

⎟
⎠ =

⎡

⎢
⎣

−4 0 3
4

3
2 −4 5

4
1
2 1 −6

⎤

⎥
⎦

(
x1(t)

x2(t)

x3(t)

)

+
⎡

⎢
⎣

1 − 1
2 − 1

2
1
2

2
3

1
4

1
2 − 1

3
1
4

⎤

⎥
⎦

(
x1(t − τ1)

x2(t − τ1)

x3(t − τ1)

)

+
( 2

3
1

)

f
(

x3(t − τ2)
)

,

where f (·) ∈ F[0,1/2]. It is seen that a11 = −4 < 0, a22 = −4 < 0 and a33 =
−6 < 0, and easy to verify that

G =
⎡

⎢
⎣

4− 1 − 1
2 − 3

4 − 1
2 − 1

− 3
2 − 1

2 4− 2
3 − 5

4 − 1
4 − 3

2

− 1
2 − 1

2 −1− 1
3 6− 1

4 − 1
2

⎤

⎥
⎦ =

⎡

⎣

3 − 1
2 − 7

4
−2 10

3 −3
−1 − 4

3
21
4

⎤

⎦

is an M matrix. Thus, the conditions given in Theorem 9.11.8 are satisfied, and
the zero solution of this example is time-delay absolutely stable in the Hurwitz
sector [0, 1

2 ].
In the following, we consider using a decomposition method to obtain the ab-

solute stability of the whole system’s states, based on lower dimensional linear
system which has negative real part for its eigenvalues and that partial variables
of the system are stable.

Let

A :=
[

Am×m Am×(n−m)
A(n−m)×m A(n−m)×(n−m)

]

,

B :=
[

Bm×m Bm×(n−m)
B(n−m)×m B(n−m)×(n−m)

]

,

(On×(n−1) hθ) := D =
[

Dm×m Dm×(n−m)
D(n−m)×m D(n−m)×(n−m)

]

,

h(m) := (h1, h2, . . . , hm)
T , h(n−m) := (hm+1, hm+2, . . . , hn)

T ,

x(m) := (x1, x2, . . . , xm)
T , x(n−m) := (xm+1, xm+2, . . . , xn)

T .

Then system (9.11.4) can be rewritten as

dx(m)

dt
= Am×mx(m)(t)+ Bm×mx(m)(t − τ1)+Dm×mx(m)(t)

+ Am×(n−m)x(n−m)(t)+ Bm×(n−m)x(n−m)(t − τ1)

+Dm×(n−m)x(n−m)(t − τ1)

(9.11.23)+ k(m)
[

f
(

xn(t − τ2)
)− θxn(t − τ2)

]

,
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dx(n−m)
dt

= A(n−m)×mx(m)(t)+ B(n−m)×mx(n−m)(t − τ1)

+D(n−m)×mx(n−m)(t)
+ A(n−m)×(n−m)x(n−m)(t)+ B(n−m)×(n−m)x(n−m)(t − τ1)

+D(n−m)×(n−m)x(n−m)(t − τ1)

(9.11.24)+ k(n−m)
[

f
(

xn(t − τ2)
)− θxn(t − τ2)

]

.

It is obvious that the solutions of system (9.11.4) are equivalent to that of equa-
tions (9.11.23) and (9.11.24).

THEOREM 9.11.15. If the following conditions are satisfied:

(1) All the eigenvalues of det(λIm − Am×m − Bm×me−iλτ1 −Dm×me−iλτ2) = 0
have negative real part.

(2) There exist constants ci � 0, i = 1, 2, . . . , m, and ci > 0, j = m+ 1,m+
2, . . . , n, such that

cj ajj +
(

n
∑

i=1, i �=j
ci |aij | +

n
∑

i=1

ci |bij |
)

� 0, j = 1, 2, . . . , m.

cj ajj +
(

n
∑

i=1, i �=j
ci |aij | +

n
∑

i=1

ci |bij |
)

< 0,

j = m+ 1,m+ 2, . . . , n.

cnann +
(

n
∑

i=1, i �=j
ci |ain| +

n
∑

i=1

ci |bin| +
n
∑

i=1

ci |hi |k
)

< 0.

Then the zero solution of system (9.11.23)–(9.11.24) is time-delay independent
absolutely stable in the Hurwitz sector [0, k].
PROOF. For the partial variables of the system: xm+1, xm+2, . . . , xn, construct
the positive definite and radially unbounded Lyapunov functional:

V (x, t) =
n
∑

i=1

ci |xi | +
n
∑

i=1

n
∑

j=1

t∫

t−τ1

ci |bij |
∣
∣xj (s)

∣
∣ ds

+
n
∑

i=1

ci |hi |
t∫

t−τ2

k
∣
∣xn(s)

∣
∣ ds.

Then

D+V (x, t)|(9.11.4) �
n
∑

i=1

ci
dxi

dt
sign(xi)+

n
∑

i=1

n
∑

j=1

ci |bij |
∣
∣xj (t)

∣
∣
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−
n
∑

i=1

n
∑

j=1

ci |bij |
∣
∣xj (t − τ1)

∣
∣

+
n
∑

i=1

ci |hi |k
∣
∣xn(t)

∣
∣−

n
∑

i=1

ci |hi |k
∣
∣xn(t − τ2)

∣
∣

�
n−1
∑

j=1

[

cjajj +
(

n
∑

i=1,i �=j
ci |aij | +

n
∑

i=1

ci |bij |
)]

∣
∣xj (t)

∣
∣

+
[

cnann +
(
n−1
∑

i=1

ci |ain| +
n
∑

i=1

ci |bin| +
n
∑

i=1

ci |hi |k
)]

∣
∣xn(t)

∣
∣

�
n−1
∑

j=m+1

[

cjajj +
(

n
∑

i=1,i �=j
ci |aij | +

n
∑

j=1

ci |bij |
)]

∣
∣xj (t)

∣
∣

+
[

cnann +
(
n−1
∑

i=1

ci |ain| +
n
∑

i=1

ci |bin| +
n
∑

i=1

ci |hi |k
)]

∣
∣xn(t)

∣
∣

< 0 when ‖x(n−m)‖ �= 0.

Therefore, the complete solution of system (9.11.23)–(9.11.24), namely the com-
plete solution of system (9.11.4), is absolutely stable w.r.t. partial variables
xm+1, xm+2, . . . , xn.

Now let x∗(m)(t) = xm(t0, φm)(t) be the solution of the homogeneous part of
equation (9.11.23):

dx(m)

dt
= Am×mx(m)(t)+ Bm×mx(m)(t − τ1)+Dm×mx(m)(t),

xm(t) = φm(t), −τ � t � 0.

Then we may follow the proof of Theorem 9.11.3 to write the solution of equa-
tion (9.11.23) as

xm(t) = x∗(m)(t)+
t∫

t0

U(m)(t, s)
{

Am×(n−m)x(n−m)(s)

+ Bm×(n−m)x(n−m)(s − τ1)+Dm×(n−m)x(n−m)(s − τ1)

+ k(n−m)
[

f
(

xn(s − τ2)− θxn(s − τ2)
)]}

ds,

where U(m)(t, s) is the fundamental matrix solution of the system:

∂U(m)(t, s)

∂t
= Am×mU(m)(t, s)+ Bm×mU(m)(t − τ1, s)

+Dm×mU(m)(t − τ2, s),



484 Chapter 9. Absolute Stability of Nonlinear Control Systems

U(m)(t, s) =
{

0 when τ − s � t � s0,

Im when t = s0.

Finally, we can follow the last part of the proof for Theorem 9.11.3 to show that
the zero solution of system (9.11.4) w.r.t. x(m) is also time-delay independent
absolutely stable. This completes the proof of Theorem 9.11.15. �

Similarly, let

P :=
[

Pm×m Pm×(n−m)
P(n−m)×m P(n−m)×(n−m)

]

,

Q :=
[

Qm×m Qm×(n−m)
Q(n−m)×m Q(n−m)×(n−m)

]

,

(On×(n−1) bθ) := D =
[

Dm×m Dm×(n−m)
D(n−m)×m D(n−m)×(n−m)

]

,

b(m) := (b1, b2, . . . , bm)
T , b(n−m) := (bm+1, bm+2, . . . , bn)

T ,

y(m) := (y1, y2, . . . , ym)
T , y(n−m) := (ym+1, ym+2, . . . , yn)

T .

Then system (9.11.5) can be equivalently written as

dy(m)

dt
= Pm×my(m)(t)+Qm×my(m)(t − τ1)+Dm×my(m)(t)

+ Pm×(n−m)y(n−m)(t)+Qm×(n−m)y(n−m)(t − τ1)

+Dm×(n−m)y(n−m)(t − τ1)

(9.11.25)+ b(m)
[

f
(

yn(t − τ2)− θyn(t − τ2)
)]

,

dy(n−m)
dt

= P(n−m)×my(m)(t)+Q(n−m)×my(n−m)(t)+D(n−m)×my(n−m)(t)

+ P(n−m)×(n−m)y(n−m)(t)+Q(n−m)×(n−m)y(n−m)(t)
+D(n−m)×(n−m)y(n−m)(t)

(9.11.26)+ b(n−m)
[

f
(

yn(t − τ2)− θyn(t − τ2)
)]

.

Thus we have a similar theorem, as given below.

THEOREM 9.11.16. If the following conditions are satisfied:

(1) All the eigenvalues of det(λIm − Pm×m −Qm×me−iλτ1 −Dm×me−iλτ2) = 0
have negative real part.

(2) There exist constants ci � 0, i = 1, 2, . . . , m, and ci > 0, j = m+ 1,m+
2, . . . , n, such that

cjpjj +
(

n
∑

i=1, i �=j
ci |pij | +

n
∑

i=1

ci |qij |
)

� 0, j = 1, 2, . . . , m.
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cjpjj +
(

n
∑

i=1, i �=j
ci |pij | +

n
∑

i=1

ci |qij |
)

< 0,

j = m+ 1,m+ 2, . . . , n.

cnpnn +
(

n
∑

i=1, i �=j
ci |pin| +

n
∑

i=1

ci |qin| +
n
∑

j=1

ci |hi |k
)

< 0.

Then the zero solution of system (9.11.25)–(9.11.26), namely the zero solution of
system (9.11.5), is time-delay independent absolutely stable in the Hurwitz sector
[0, k].

The proof of Theorem 9.11.16 is similar to Theorem 9.11.15 and thus omitted.
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Chapter 10

Stability of Neural Networks

In the past decade, the research in the area of neural networks has received con-
siderable attention from scientists and engineers. So far, about 20 well-known
Journals are related to this research. It is unprecedented that neural network has
covered a wide range of subjects, not to mention a wide range of applications and
an incredible diversity of theoretical results. Hopfield and his co-workers [172–
177] introduced an energy function to investigate the stability of neural networks,
which has been applied to study associative memory and optimal computing for
symmetric feedback neural networks. This method has subsequently been mod-
elled by many other scholars.

In this chapter, we first present an exact definition of stability in the sense of
Hopfield for neural networks to show the difference between this stability and
Lyapunov stability. We also present general methods of constructing energy func-
tion. Then we introduce some Lyapunov stability results, related to cell neural
networks, bidirectional associative memory neural networks, and general neural
networks.

Some materials presented in this chapter are chosen from [172–174] for Sec-
tion 10.1, [276] for Section 10.2, [234] for Section 10.3, [265] for Section 10.4,
[72,278] for Section 10.5, [269] for Section 10.6, [270] for Section 10.7, [372,
373] for Section 10.8, [87] for Section 10.9, [82,83] for Section 10.10,

10.1. Hopfield energy function method

The neural network proposed by Hopfield and his co-workers [173,176,177] can
be described by a system of ordinary differential equations as follows:

(10.1.1)

{

Ci
dui
dt
=∑n

j=1 TijVj − ui
Ri
+ I ∗i := fi, i = 1, 2, . . . , n,

Vi = gi(ui),

where the variable ui(t) represents the voltage on the input of the ith neuron.
Each neuron is characterized by an input capacitance, Ci , and a transfer func-
tion, gi(ui), called sigmoid function. The parallel resistance at the input of the

487
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ith neuron is expressed by Ri , Ii is the current on the input of the ith neuron.
The nonlinear transfer function gi(u) is a sigmoid function, saturating at ±1 with
maximum slope at ui = 0. In term of mathematics, gi(ui) is strictly monotone
increasing function.

Let Tij = Tji . Hopfield [172] first constructed the following energy function:

(10.1.2)E = −1

2

n
∑

i=1

n
∑

j=1

TijViVj −
n
∑

i=1

ViIi +
n
∑

i=1

1

Ri

Vi∫

0

g−1
i (ξ) dξ.

Differentiating E with respect to time t along the solution of system (10.1.1)
yields

dE

dt

∣
∣
∣
∣
(10.1.1)

=
n
∑

i=1

∂E

∂Vi

dVi

dt

=
n
∑

i=1

[

−1

2

n
∑

j=1

TijVj − 1

2

n
∑

j=1

TjiVj + ui

Ri
− Ii

]

dVi

dt

=
n
∑

i=1

[

−1

2

n
∑

j=1

(Tij − Tij )Vj −
(

n
∑

j=1

TijVj − ui

Ri
+ Ii

)]

dVi

dt

=
n
∑

i=1

(

−Ci dui
dt

dVi

dt

)

(10.1.3)= −
n
∑

i=1

ci ġ
−1
i (Vi)

(
dVi

dt

)2

� 0.

Since ġi > 0,

dE

dt

∣
∣
∣
∣
(10.1.1)

= 0 ⇔ dVi

dt
= 0 (i = 1, 2, . . . , n),

implying that

(10.1.4)− ui

Ri
+

n
∑

j=1

TijVj + Ii = 0 (i = 1, 2, . . . , n).

Based on (10.1.3) and (10.1.4), one obtains the following conclusions:

(1) the neural network (10.1.1) is stable;
(2) the network tends to some static points which are the minimum of the energy

function E.
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However, we would like to point out that this class stability of neural networks
is essentially different from Lyapunov stability. For Lyapunov stability, the equi-
libria of dynamical systems are known, and the constructed Lyapunov function
V has a definite sign in the neighborhood of a known equilibrium, while the time
derivative of V on trajectories of the system has the opposite sign of V . For neural
networks, the equilibria are unknown, even if the existence and uniqueness of the
equilibria are known. The constructed Hopfield type energy functions may have
varying signs. In fact, the stability of a neural network means that the network
tends to transfer from dynamic state to static state. Thus, it is necessary to estab-
lish an exact definition for the stability of neural networks.

DEFINITION 10.1.1. The set ΩE of equilibria u of system (10.1.1) is said to be
attractive, if for any K > 0 and any u0 ∈ SK := {u, ‖u‖ < K}, the solution
of (10.1.1), u(t, t0, u0), with the initial point u = u0, satisfies

ρ
{

u(t, t0, u0),ΩE

}→ 0 as t →∞,

where ρ(u,ΩE) denotes the distance from the point u to ΩE . System (10.1.1) is
said to be Hopfield stable, if the set ΩE of equilibria of (10.1.1) is attractive.

Generally, there are many equilibria in a neural network. Attraction of the set
of equilibria is not equivalent to the attraction of every equilibrium. The Hopfield
energy function method can merely guarantee that a solution u(t, t0, u0) tends to a
certain equilibrium u∗(u0) of system (10.1.1), where u∗(u0) depends on the initial
point u0, u∗ may be unstable in the sense of Lyapunov. Even for a given equilib-
rium u = u∗, Hopfield energy function method is not able to answer whether
it is stable or attractive. Hence, in the following, we first present a series of re-
sults concerning the Lyapunov asymptotic stability of a given equilibrium point
of certain neural networks.

For the energy function described above, we try to explore the principles of
constructing the energy function (10.1.2) of neural network (10.1.1). The princi-
ples of other energy functions may be analyzed analogously.

Based upon the gradient method for constructing Lyapunov functions, the time
derivative of E(V ) on the trajectory of (10.1.1) can be expressed as

(10.1.5)
dE

dt

∣
∣
∣
∣
(10.1.1)

= (gradE)T • f =
n
∑

i=1

∂E

∂Vi
fi,

where

gradE =
(
∂E

∂Vi
, . . . ,

∂E

∂Vn

)T
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denotes the gradient of E(u), f = (f1, . . . , fn)
T . Set gradE = −f . Then

(10.1.6)(gradE)T · f = −
n
∑

i=1

f 2
i � 0,

which is equal to zero if and only if fi = 0, i = 1, 2, . . . , n.
The hypotheses Tij = Tji is merely the result of the general rotation:

(10.1.7)
∂fi

∂Vj
= Tij = Tji = ∂fj

∂Vi
.

Integrating gradE = −f and noting that the integration is not related to the
integral path, we have

E(V ) = −
V1∫

0

f1(ξ1, 0, . . . , 0) dξ1 −
V2∫

0

f2(V1, ξ2, 0, . . . , 0) dξ1 + · · ·

−
Vn∫

0

fn(V1, V2, . . . , Vn−1, ξn) dξn

(10.1.8)= −1

2

n
∑

j=1

n
∑

j=1

TijViVj −
n
∑

i=1

IiVi +
n
∑

i=1

1

Ri

Vi∫

0

g−1
i (ξ) dξ,

which, in fact, is the energy function (10.1.2). This is the reason behind develop-
ment of Hopfield type energy function.

EXAMPLE 10.1.2. Consider a Hopfield network (n = 2):
{

C1
du1
dt
= − u1

R1
+ T11V1 + T12V2 + I1 := f1,

C2
du2
dt
= − u2

R2
+ T21V1 + T22V2 + I2 := f2.

Let T12 = T21. Then we have

E(V ) = −
V1∫

0

f1(ξ1, 0) dξ1 −
V2∫

0

f2(V1, ξ2) dξ2

=
V1∫

0

(
u1

R1
− T11V1 − I1

)

dV1 +
V2∫

0

(
u2

R2
− T21V1 − T22V2 − I2

)

dV2

=
V1∫

0

g−1
1 (V1)

R1
dV1 +

V2∫

0

g−1
2 (V2)

R2
dV2 − 1

2
T11V

2
1 − I1V1
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− T21V1V2 − 1

2
T22V

2
2 − I2V2

(10.1.9)= −1

2

2
∑

i=1

2
∑

j=1

TijViVj +
2
∑

i=1

1

Ri

Vi∫

0

g−1
i (ξ) dξ −

2
∑

i=1

IiVi .

10.2. Lagrange globally exponential stability of general neural
network

In this section, we consider the general recursive neural network model with mul-
tiple time delays

Ci
dui

dt
= −diui(t)+

n
∑

j=1

Tij gj
(

uj (t)
)

(10.2.1)+
n
∑

j=1

rij gj
(

uj (t − τij )
)+ Ii, i = 1, 2, . . . , n,

where T = (Tij )n×n ∈ Rn×n, r = (rij )n×n ∈ Rn×n, σ < τij � τ = constant.
Assume that the gi(ui) is a sigmoidal function, defined as

Si =
{

gi(u) | g(0) = 0,
∣
∣gi(u)

∣
∣ � ki, i = 1, 2, . . . , n, D+gi(ui) � 0

}

.

We first consider the Lagrange globally exponential stability. We have found
that all neural networks with bounded activation functions, such as Hopfield
neural network, bidirectional associative memory neural network, cellular neural
network (CNN), are Lagrange globally exponentially stable. This general char-
acteristics, independent of time delay, plays the key role in the study of neural
networks. More specifically, its importance has several major aspects.

Firstly, one of the important applications of neural networks is computational
optimization in finding the equilibrium points of neural networks. One of the
novelty of neural networks is that it can be used to solve nonlinear algebraic or
transcendent equations by using electronic circuits to realize differential equa-
tions. The globally exponentially attractive set can provide prior knowledge for
optimization. That is, having found such an attractive set, the bound of the opti-
mization solution can be roughly determined.

Secondly, it has been recently found the neural network described by (10.2.1)
can exhibit chaotic motions. To identify chaos, one usually needs to assure that the
system is ultimately bounded and the system has at least one positive Lyapunov
exponent. Therefore, it is important to study stability in the sense of Lagrange
since it is directly related to the ultimate boundedness of the system.
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Thirdly, the global stability in the sense of Lyapunov on unique equilibrium
point and the stability in the sense of Hopfield on equilibrium point set can be
treated as special cases of stability in the sense of Lagrange.

Let

∣
∣gi(ui)

∣
∣ � ki, 2Mi :=

n
∑

j=1

(|Tij | + |rij |
)

kj + |Ii |,

and

Ω =
{

u

∣
∣
∣

n
∑

i=1

1

2
Ciu

2
i �

∑n
i=1 M

2
i /εi

2 min1�j�n(di − εi)/Ci

}

, where σ < εi < di.

THEOREM 10.2.1. If g(u) ∈ S, then the neural network (10.2.1) is Lagrange
globally exponentially stable, and the set Ω is a globally exponentially attractive
set.

PROOF. We employ the positive definite and radially unbounded Lyapunov func-
tion:

V (u) = 1

2

n
∑

i=1

Ciu
2
i ,

and choose εi such that 0 < εi < di . Then,

dV

dt

∣
∣
∣
∣
(10.2.1)

=
n
∑

i=1

Ciui
dui

dt

�
n
∑

i=1

[
n
∑

j=1

(|Tij | + |rij |
)

kj |ui | − diu
2
i + |Ii ||ui |

]

= −
n
∑

i=1

{

−
[

diu
2
i −

(
n
∑

j=1

(|Tij | + |rij |
)

kj + |Ii |
)

|ui |
]}

= −
n
∑

i=1

diu
2
i +

n
∑

i=1

2Mi |ui |

� −
n
∑

i=1

diu
2
i +

n
∑

i=1

εiu
2
i +

n
∑

i=1

M2
i

εi

� − min
1�i�n

di − εi

Ci

n
∑

i=1

Ciu
2
i +

n
∑

i=1

M2
i

εi
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= −2 min
1�i�n

di − εi

Ci
V
(

u(t)
)+

n
∑

i=1

M2
i

εi

� −2 min
1�i�n

di − εi

Ci

(10.2.2)×
[

V
(

u(t)
)−

∑n
i=1 M

2
i /εi

2 min1�j�n(di − εi)/Ci

]

.

Hence, when

V
(

u(t)
)

>

∑n
i=1 M

2
i /εi

2 min1�j�n(di − εi)/ci
for t � t0,

we have

V
(

u(t)
)−

∑n
i=1 M

2
i /εi

2 min1�j�n(di − εi)/Ci

�
[

V
(

u(0)
)−

∑n
i=1 M

2
i /εi

2 min1�j�n(di − εi)/Ci

]

(10.2.3)× e
−2 min1�i�n

di−εi
Ci

(t−t0)
.

This indicates that the ellipse Ω is a globally exponentially attractive set
of (10.2.1), i.e., system (10.2.1) is Lagrange globally exponentially stable. �

10.3. Extension of Hopfield energy function method

In this section, by using LaSalle invariant principle, we prove more general sta-
bility theorems for Hopfield neural network.

THEOREM 10.3.1. If there exist some positive constants βi (i = 1, 2, . . . , n)
such that (βiTij )n×n is a symmetric matrix, then the network (10.1.1) is stable in
the sense of Hopfield.

PROOF. We employ the general Hopfield type energy function:

W(u) = −1

2

n
∑

i=1

n
∑

j=1

(βiTij )ViVj −
n
∑

i=1

βiIiVi

(10.3.1)+
n
∑

i=1

βi
1

Ri

Vi∫

0

g−1
i (ξ) dξ,
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and obtain

dW(u)

dt

∣
∣
∣
∣
(10.1.1)

=
n
∑

i=1

∂E

∂Vi

dVi

dt

=
n
∑

i=1

[

−1

2

n
∑

j=1

(βjTji)Vj − 1

2

n
∑

j=1

(βiTij )Vj + βi
ui

Ri
− βiIi

]

dVi

dt

=
n
∑

i=1

[

−1

2

(

βjTji − βiTij
)

Vj −
n
∑

i=1

(βiTij )Vj + βi
ui

Ri
− βiIi

]

dVi

dt

= −
n
∑

i=1

Ciβi
dui

dt

dVi

dt

(10.3.2)= −
n
∑

i=1

Ciβi ġi(ui)

(
dui

dt

)2

� 0.

Since ġi (ui) > 0,

dW

dt
= 0 ⇐⇒ dui

dt
= 0 (i = 1, 2, . . . , n),

implying that

− ui

Ri
+

n
∑

j=1

TijVj + Ii = 0, i = 1, 2, . . . , n.

Since W(u(t)) is monotone decreasing, W(u(t)) is bounded in D. Thus,
limt→∞W(u(t)) = W0. ∀u0 ∈ D, let Ω(u0) be ω-limit set of u(t, t0, u0), E
the set of equilibria of (10.1.1), M the largest invariant set of (10.1.1) in D. Then,
by LaSalle invariance principle [222], we have

u(t, t0, u0)→ M as (t →+∞),

but Ω(u0) ⊆ M ⊆ E.
Hence, E is attractive, i.e., system (10.1.1) is stable in the sense of Hopfield. �

Especially, for βi ≡ 1, i = 1, 2, . . . , n, W(u) is the original energy function
proposed by Hopfield [175].

EXAMPLE 10.3.2. (See [234].) For the following neural network:

(10.3.3)

{
du1
dt
= −u1 + 2V1 + V2 + I1,

du2
dt
= −u1 + 3V1 + 4V2 + I2,
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the weight matrix T =
[

2 1
3 4

]

is not symmetric. However, if we take β1 = 3,

β2 = 1, then

(βiTij ) =
[

6 3
3 4

]

is a symmetric matrix.
Obviously, we cannot determine the asymptotic behavior of this system by the

original Hopfield energy function. But we can do so using our extensive energy
function.

EXAMPLE 10.3.3. (See [234].) Consider the following Hopfield network (n =3):

(10.3.4)

(
u̇1
u̇2
u̇3

)

=
(−u1
−u2
−u3

)

+
[ 1 1 1

2 2 4
1/2 1 1

](
V1
V2
V3

)

+
(
I1
I2
I3

)

.

Take

β1 = 2, β2 = 1, β3 = 4,

and thus

(βiTij ) =
[ 2 2 2

2 2 4
2 4 4

]

is a symmetric matrix.
So system (10.3.4) is stable in the sense of Hopfield.

In the following, by the method and results of interval matrix stability, we ana-
lyze the Hopfield type stability of (10.1.1).

Let yi = dui
dt

(i = 1, 2, . . . , n). Then system (10.1.1) can be rewritten as

(10.3.5)
dyi

dt
= − yi

CiRi
+

n
∑

j=1

Tij

Ci
g′j (uj )yj .

Let

T ij = inf
uj∈R1

{
Tij

Ci
g′j (uj )

}

, T ij = sup
uj∈R1

{
Tij

Ci
g′j (uj )

}

.

We consider an interval dynamical system:

(10.3.6)
dyi

dt
= − yi

RiCi
+

n
∑

j=1

aij yj (i = 1, 2, . . . , n),

where aij ∈ [T ij , T ij ].
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THEOREM 10.3.4. Assume that

(1) − 1
CiRi

+ T ii < 0 (i = 1, 2, . . . , n);

(2)

B :=
{(

− 1

CiRi
− T ii

)

− (1− δij )max
{∣
∣T ij

∣
∣,
∣
∣T ij

∣
∣
}
}

n×n
:= (bij )n×n

is an M matrix.

Then the zero solution of system (10.3.6) is asymptotically stable. Hence, the sys-
tem (10.1.1) is stable in the sense of Hopfield.

PROOF. Since M is an M matrix, (BT )−1 � 0. Then, ∀ξ = (ξ1, . . . , ξn)
T > 0,

η := (BT )−1ξ > 0, i.e., ξi > 0, ηi > 0 (i = 1, 2, . . . , n). ∀aij ∈ [T ij , T ij ], by
employing the positive definite and radially unbounded Lyapunov function:

W(y) =
n
∑

i=1

ηi |yi |,

we have

D+W(y)|(10.3.6) =
n
∑

i=1

sgn(yi)

(

− 1

CiRi
yi +

n
∑

j=1

aij yj

)

ηi

� −|y|T BT η

= −
n
∑

i=1

ξi |yi | < 0 when y �= 0.

So, the conclusion is true. �

THEOREM 10.3.5. If the matrix B∗ = (b∗ij )n×n is positive definite, then the zero
solution of system (10.3.6) is asymptotically stable and thus the system (10.1.1) is
stable in the sense of Hopfield, where

b∗ii =
1

CiRi
− T ii, i = 1, 2, . . . , n,

b∗ij = max
i �=j

[ |T ij + T ji |
2

,
|T ij + Tji |

2

]

, i �= j, i, j = 1, 2, . . . , n.

PROOF. Choose the positive definite and radially unbounded Lyapunov function:

W(y) =
n
∑

i=1

1

2
y2
i ,
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which results in

dW(y)

dt

∣
∣
∣
∣
(10.3.6)

=
n
∑

i=1

yi
dyi

dt
=

n
∑

i=1

y2
i

CiRi
+

n
∑

j=1

n
∑

j=1

aij yiyj

� −
n
∑

i=1

(
1

CiRi
− T ii

)

y2
i +

n
∑

i,j=1
i �=j

(
aij + aji

2

)

yiyj

� −
n
∑

i=1

(
1

CiRi
− T ii

)2

+
n
∑

i,j=1
i �=j

b∗ij |yi ||yj |

�
(|y1| · · · |yn|

)(

B∗
)(|y1|, . . . , |yn|

)T

< 0 when y �= 0.

Thus, the conclusion is true. �

EXAMPLE 10.3.6. (See [234].) Consider a 2-dimension Hopfield neural net-
work:

(10.3.7)

{

C1
du1
dt
= − 1

R1
+ T11g1(u1)+ T12g2(u2)+ I1,

C2
du2
dt
= − 1

R2
+ T21g1(u1)+ T22g2(u2)+ I2.

Assume that

Ci = 1

2
, Ri = 1

3
(i = 1, 2), T ii = 2 (i = 1, 2),

T ii = −2 (i = 1, 2),

T 12 = −3.5, T 12 = 3, T 21 = −3, T 21 = 3.5.

(10.3.8)T ii = inf
uj∈R1

{
Tij

Ci
ġi(uj )

}

, T ij = sup
uj∈R1

{
Tij

Ci
ġj (uj )

}

.

Thus,

− 1

CiRi
+ T ii = −6+ 2 = −4 < 0 (i = 1, 2),

B :=
[ 1

C1R1
− T 11 −max(|T 12|, |T 12|)

−max(|T 21|, |T 21|) 1
C2R2

− T 22

]

=
[

4 −3.5
−3.5 4

]

.

It is clear that B is positive definite, and so system (10.3.7) is stable in the sense
of Hopfield by Theorem 10.3.4.
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EXAMPLE 10.3.7. (See [234].) Consider a 3-dimensional Hopfield neural net-
work:

(10.3.9)Ci
dui

dt
= − 1

Ri
+

3
∑

j=1

Tij gj (uj )+ Ii (i = 1, 2, 3).

Let

Ci = 1

2
, Ri = 1

2
(i = 1, 2, 3), T ii = 1 (i = 1, 2, 3), T 12 = −1,

T 21 = −2, T 12 = 2, T 21 = 1, T 13 = T 31 = −1,

T 13 = T 31 = 1.4, T 23 = T 32 = −1.2, T 23 = T 32 = 1.3,

where T ij , T ij are obtained by using (10.3.8). By Theorem 10.3.5, construct the
matrix B∗ as

B∗ =
[ 3 1.5 1.4

1.5 3 1.3
1.4 1.3 3

]

which is positive definite. So, system (10.3.9) is stable in the sense of Hopfield.

In the following, we use Karsovskii’s theorem [193] to study the Hopfield type
stability. Rewrite (10.1.1) as

(10.3.10)
dui

dt
= − ui

CiRi
+

n
∑

j=1

Tij

Ci
Vj + Ii

Ci
:= fi(ui), j = 1, 2, . . . , n.

THEOREM 10.3.8. If there exists a symmetric positive matrix P = (pij )n×n such
that the matrix Q := (PJ + JT P ) is negative definite, then system (10.3.10) is
stable in the sense of Hopfield, where J = (

∂fi
∂tij

)n×n is the Jacobian matrix of f .

PROOF. Take the Lyapunov function:

W(x) = f T (u)Pf (u),

where f = (f1(u), . . . , fn(u))
T . Obviously, W(u) � 0, W(u) = 0 if and only if

u is an equilibrium point. Further, we have

dW

dt

∣
∣
∣
∣
(10.3.10)

= f T P ḟ + ḟ T Pf = f T PJf + (Jf )T Pf

(10.3.11)= f T
(

PJ + J T P
)

f = f TQf � 0,

and dW
dt
= 0 if and only if u is an equilibrium point of (10.3.10). So, the conclu-

sion is true. �
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The Hopfield energy function method can only guarantee that a solution
u(t, t0, u0) tends to a certain equilibrium u∗(u) of (10.1.1) but cannot answer
whether u = u∗ is stable or attractive in the sense of Lyapunov. Now we employ
another Lyapunov function:

E∗(V ) = −1

2

n
∑

i=1

n
∑

j=1

TijViVj +
n
∑

i=1

Vi∫

V ∗i

g−1
i (Vi)

Ri
dVi

(10.3.12)−
n
∑

i=1

Ii
(

Vi − V ∗i
)+ 1

2

n
∑

i=1

n
∑

j=1

TijV
∗
i V

∗
j

where V ∗i = gi(u
∗
i ), u = u∗ is an equilibrium point of system (10.3.10).

THEOREM 10.3.9. If the matrix

(10.3.13)

(
∂2E∗

∂V 2

)

V=V ∗
:=

(
∂2E∗

∂Vi∂Vj

)

n×n

∣
∣
∣
∣
V=V ∗

is positive definite, then u = u∗ of (10.3.10) is asymptotically stable in the sense
of Lyapunov.

PROOF. We have E∗(V ∗) = 0, and

∂E∗(V )
∂Vi

∣
∣
∣
∣
V=V ∗

= −
n
∑

j=1

TijV
∗
j +

1

Ri
g−1
i

(

V ∗i
)− Ii = 0 (i = 1, . . . , n),

∂2E∗(V )
∂V 2

i

∣
∣
∣
∣
V=V ∗

= −Tii + 1

Ri

(

g−1
i

(

V ∗i
))

(i = 1, . . . , n),

∂2E∗(V )
∂Vi∂Vj

∣
∣
∣
∣
V=V ∗

= ∂2E∗

∂Vj ∂Vi

∣
∣
∣
∣
V=V ∗

= −Tij = −Tji (i �= j, i, j = 1, . . . , n).

Since ( ∂
2E

∂V 2 )V=V ∗ is positive definite, so is E∗(V ) in certain neighborhood of
u = u∗. Moreover,

dE∗(V )
dt

∣
∣
∣
∣
(10.3.10)

=
n
∑

i=1

(

−
n
∑

j=1

TijVj + g−1
i (Vi)

Ri
− Ii

)

dVi

dt

−
n
∑

i=1

Ciġ
−1
i (Vi)

(
dVi

dt

)2 {
< 0 (V �= V ∗)
= 0 (V = V ∗)

(10.3.14)for
∥
∥V − V ∗

∥
∥	 1.
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Therefore, u = u∗ of (10.3.10) is asymptotically stable in the sense of Lya-
punov. �

COROLLARY 10.3.10. If (g−1
i (Vi))

′ � 0 and the matrix (Tij )n×n is symmetric
negative definite, then any equilibrium point of (10.3.10) is asymptotically stable
in the sense of Lyapunov.

PROOF. Since 1
Ri
(g−1
i (Vi))

′ � 0, we have that

diag

(
1

R1
ġ−1

1

(

V ∗1
)

, . . . ,
1

Rn
g′ −1
n

(

V ∗n
)
)

is positive semi-definite. Hence, the quadratic form:

(

V − V ∗
)T
(

∂2E

∂Vi∂Vj

)

n×n

∣
∣
∣
∣
V=V ∗

(

V − V ∗
)

= −(V − V ∗
)T
(Tij )n×n

(

V − V ∗
)+ (

V − V ∗
)T

× diag

[(
1

R1
g′−1

1

(

V ∗1
)

, . . . ,
1

Rn
g′−1
n

(

V ∗n
)
)]
(

V − V ∗
)

�
(

V − V ∗
)T
(Tij )n×n

(

V − V ∗
)

(10.3.15)> 0 for V �= V ∗,
∥
∥V − V ∗

∥
∥	 1,

indicating that the conclusion is true. �

COROLLARY 10.3.11. If ġi (ui) > 0 (i = 1, 2, . . . , n) and the matrix (Tij )n×n
is symmetric negative semi-definite, then any equilibrium point of (10.3.10) is
asymptotically stable.

PROOF. By (10.3.15) we have

(

V − V ∗
)T
(

∂2E

∂Vi∂Vj

)
(

V − V ∗
)

= −(V − V ∗
)T
(Tij )n×n

(

V − V ∗
)+ (

V − V ∗
)T

× diag

[(
1

R1
ġ−1

1 (u1), . . . ,
1

Rn
ġ−1
n (un)

)]
(

V − V ∗
)

�
(

V − V ∗
)T diag

[
1

R1
ġ−1(V ∗1

)

, . . . ,− 1

Rn
ġ−1(V ∗n

)
]
(

V − V ∗
)

> 0 for V �= V ∗,

which implies that the conditions in Theorem 10.3.9 are satisfied, and thus the
conclusion holds. �
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THEOREM 10.3.12. If the matrix ( ∂2E
∂Vi∂Vj

)n×n|V=V ∗ is negative definite, then any

equilibrium point of (10.1.1) is unstable.

PROOF. The condition of Theorem 10.3.12 implies that E∗(V ) is negative defi-
nite in certain neighborhood of u = u∗ and so is dE∗(V )

dt
. By Lyapunov unstable

theorem, the conclusion is true. �

In the following, we use the first approximation theory to study the stability.
Let

(10.3.16)Bij =
⎧

⎨

⎩

Tii
Ci

∂gi (ui )
∂ui

∣
∣
ui=u∗i −

1
Ci
, i = j = 1, 2, . . . , n,

1
Cj
Tij

∂gi (ui )
∂ui

∣
∣
ui=u∗i , i �= j, i = j = 1, 2, . . . , n.

THEOREM 10.3.13. If ((−1)δij |bij |)n×n is a Hurwitz matrix, then (1) bii < 0
implies that u = u∗ of (10.3.10) is asymptotically stable; and (2) u = u∗
of (10.3.10) is unstable if there exists at least one bi0i0 > 0.

PROOF. The first approximation of system (10.3.10) is

du

dt
= B(u− u∗), B = (bij )n×n.

(1) ((−1)δij |bij |) is a Hurwitz matrix ⇐⇒ ∃ constants ξi > 0 (i = 1, . . . , n)
such that

ξj bjj +
n
∑

i=1
i �=j

ξi |bij | < 0, j = 1, 2, . . . , n,

for (10.3.10). Then it holds

E+W(u)|(10.3.10) =
n
∑

i=1

ξi
dui

dt
sgn

∣
∣ui − u∗i

∣
∣

(10.3.17)�
n
∑

j=1

[

ξj bjj +
n
∑

i=1
i �=j

ξibij

]

∣
∣ui − u∗i

∣
∣ < 0

for u �= u∗. So B is stable. According to the first approximation theory, we know
that u = u∗ of (10.3.10) is asymptotically stable.

(2) ((−1)δij |bij |) is a Hurwitz matrix and at least one bi0i0 > 0. Without loss
of generality, we assume that

bii < 0, i = 1, 2, . . . , m,
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bii > 0, i = m+ 1, . . . , n, 1 � m < n.

Therefore, there exist constants ξi > 0 such that

ξj bjj +
n
∑

i=1
i �=j

ξi |bij | < 0, for j = 1, . . . , m,

−ξj bjj +
n
∑

i=1
i �=j

ξi |bij | < 0, for j = m+ 1, . . . , m.

Choose the function

(10.3.18)W(u) =
m
∑

i=1

ξi
∣
∣ui − u∗i

∣
∣−

n
∑

i=m+1

ξi
∣
∣ui − u∗i

∣
∣.

Then, we obtain

D+W(u)|(10.3.10) �
m
∑

j=1

[

ξj bjj +
n
∑

i=1
i �=j

ξi |bij |
]

∣
∣uj − u∗j

∣
∣

−
n
∑

j=m+1

[

ξj bjj −
n
∑

i=1
i �=j

ξi |bij |
]

∣
∣uj − u∗j

∣
∣ < 0

for u = u∗. Furthermore, we can prove that D+W(u)|(10.3.10) is negative definite
in the neighborhood of u = u∗. So u = u∗ is unstable. �

10.4. Globally exponential stability of Hopfield neural network

In recent years, research on global stability of Hopfield neural network has re-
ceived considerable attention. However in all existing results, the activation func-
tions of neural networks are restricted to sigmoid functions, or piecewise linear
monotone nondecreasing functions, or Lipschitz type functions, i.e., gi or ġi is
bounded.

In this section, we first consider a strapping nonlinear activation function,
which only requires ġi (ui) � 0, without assuming that: (1) gi and ġi are bounded;
and (2) the weight matrices are symmetry.

Two global exponential stability theorems are given below. Let u = (u1, . . . ,

un)
T , and u∗ = (u∗1, . . . , u∗n)T be an equilibrium of system (10.1.1).

THEOREM 10.4.1. If there exist constants ξi > 0, ηi > 0, i = 1, . . . , n, such
that the following matrix A is negative definite, then

(1) the equilibrium u = u∗ of system (10.1.1) is globally exponentially stable;
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(2) ε = λ
μ

is estimation of the Lyapunov exponent, where

A =
[

A11 A12
AT

12 A22

]

2n×2n
, A11 = diag

(

− ξ1

R1
, . . . ,− ξn

Rn

)

,

A12 = diag

(

− η1

2R1
, . . . ,− ηn

2Rn

)

n×n
+
(
ξiTij + ξjTji

2

)

n×n
,

A22 =
(
ηiTij + ηjTij

2

)

n×n
, B =

[

B11 B12
BT

12 B22

]

2n×2n
,

B11 = diag

(
C1ξ1

2
, . . . ,

Cnξn

2

)

n×n
,

B12 = BT
12 = diag

(
η1C1

2
, . . . ,

ηnCn

2

)

n×n
,

B22 = On×n,
−λ = λmax(A), μ = λmax(B)

in which λmax(A) and λmax(B) denote the maximum eigenvalues for A and
B, respectively.

PROOF. (1) Let

x = (x1, . . . , xn)
T = (

u1 − u∗1, . . . , un − u∗n
)T
,

fi(xi) = gi
(

xi + u∗i
)− gi

(

u∗i
)

.

We rewrite (10.1.1) as

(10.4.1)Ci
dxi

dt
=

n
∑

j=i
Tij fj (xj )− xi

Ri
(i = 1, . . . , n).

Then the stability of u∗ of (10.1.1) is equivalent to the stability of the zero solution
of (10.4.1). We employ the Lyapunov function:

(10.4.2)V (x) =
n
∑

i=1

Ciξi

2
x2
i +

∑

i=1

ηiCi

xi∫

0

fi(xi) dxi,

with

V (0) = 0, V (x) > 0 for x �= 0,

V (x) �
n
∑

i=1

Ciξi

2
x2
i →∞ as x →∞.
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Thus, V (x) is a positive definite and radially unbounded Lyapunov function. Dif-
ferentiating V with respect to time t along the solution of (10.4.1) yields

dV

dt

∣
∣
∣
∣
(10.4.1)

= −
n
∑

i=1

ξi

Ri
x2
i +

n
∑

i=1

ξixi

n
∑

j=1

Tij fj (xj )

−
n
∑

i=1

ηixi

Ri
fi(xi)+

n
∑

i=1

ηi

n
∑

j=1

Tij fj (xj )fi(xi)

(10.4.3)=
(

x

f (x)

)T [
A11 A12
AT

12 A22

](
x

f (x)

)

.

Let W = eεtV , where 0 < ε 	 1. Due to D+fi(xi) � 0, we have

dW

dt

∣
∣
∣
∣
(10.4.1)

= εeεtV + eεt
dV

dt

∣
∣
∣
∣
(10.4.1)

= eεt
{

εV +
(

x

f (x)

)T [
A11 A12
AT

12 A22

](
x

f (x)

)}

= eεt

{

ε

(
n
∑

i=1

Ciξi

2
x2
i +

n
∑

i=1

ηiCi

xi∫

0

fi(xi) dxi

)

+
(

x

f (x)

)T [
A11 A12
AT

12 A22

](
x

f (x)

)}

� eεt

{

ε

(
n
∑

i=1

Ciξi

2
x2
i +

n
∑

i=1

ηiCixifi(xi)

)

+
(

x

f (x)

)T [
A11 A12
AT

12 A22

](
x

f (x)

)}

(10.4.4)= eεt
(

x

f (x)

)T [
A11 + B11ε A12 + B12ε

AT
12 + BT

12ε A22 + B22ε

](
x

f (x)

)

when 0 < ε 	 1. The negative definite property of
[

A11 A12
AT

12 A22

]

implies that
[

A11 + B11ε A12 + B12ε

AT
12 + BT

12ε A22 + B22ε

]
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is negative definite. So, when 0 < ε 	 1

(10.4.5)
dW

dt

∣
∣
∣
∣
(10.4.1)

� 0.

Integrating both sides of (10.4.5) from 0 to arbitrary t∗ > 0, we obtain

eεtV
(

x(t)
) = W

(

x(t)
)

� W
(

x(0)
) := W0 <∞.

Hence, it holds

(10.4.6)
n
∑

i=1

Ciξi

2
x2
i � V

(

x(t)
)

� e−εtW0,

(10.4.7)
n
∑

i=1

x2
i � W0

min1�i�n
Ciξi

2

e−αt (ε > 0).

The inequality (10.4.7) shows that the zero solution of (10.4.1) is globally expo-
nentially stable, i.e., the u = u∗ of (10.1.1) is globally exponentially stable.

(2) Let −λ = λmax(A), μ = λmax(B). Then, we have

dW

dt

∣
∣
∣
∣
(10.4.1)

� eεt

{(
x

f (x)

)T [
A11 A12
AT

12 A22

](
x

f (x)

)}

+ eεt

[

ε

(
n
∑

i=1

Ciξi

2
x2
i +

n
∑

i=1

ηiCixifi(xi)

)]

� eεt (−λ)
(

n
∑

i=1

x2
i +

n
∑

i=1

f 2
i (xi)

)

+ eεt ε

(
x

f (x)

)2 [
B11 B12
BT

12 B0

](
x

f (x)

)

(10.4.8)� eεt (−λ+ εμ)

(
n
∑

i=1

x2
i +

n
∑

i=1

f 2
i (xi)

)

� 0.

Therefore, ε = λ
μ

can be taken as the Lyapunov exponent.
The proof of Theorem 10.4.1 is complete. �

Let

Ã =
[

Ã11 Ã12
ÃT

12 Ã22

]

, where Ã11 = − diag

(
1

R1
, . . . ,

1

Rn

)

n×n
,

Ã12 = − diag

(
1

2R1
, . . . ,

1

2Rn

)

n×n
+
[
Tij + Tji

2

]

n×n
,
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Ã22 =
[
Tij + Tji

2

]

n×n
,

B̃ =
[

B̃11 B̃12,

B̃T
12 B̃22

]

2n×2n
,

B̃11 = diag

(
C1

2
, . . . ,

Cn

2

)

n×n
,

B̃12 = B̃T
12 = diag

(
C1

2
, . . . ,

Cn

2

)

n×n
,

B̃22 = On×n.

COROLLARY 10.4.2. If Ã is negative definite, then the equilibrium u = u∗ is

globally exponentially stable, and ε̃ = λ̃
μ̃

can be taken as the Lyapunov exponent,

where λ̃ = λmax(Ã), μ̃ = λmax(B̃).

PROOF. One can take ξi = ηi = 1, i = 1, . . . , n, in Theorem 10.4.1 to directly
prove this corollary. �

THEOREM 10.4.3. If there exist constants ξi > 0, ηi > 0, i = 1, 2, . . . , n, such
that the matrix G is negative definite, and moreover it holds:

(10.4.9)ε = min

[

min
1�i�n

ηiRi − ξiTji

ηiCi
,
λ∗

μ∗

]

> 0,

then the conclusion of Theorem 10.4.1 is true. Here,

−λ∗ = λmax(G),

μ∗ = max
1�i�n

Ciξi

2
,

G =
[

G11 G12
G21 G22

]

2n×2n
,

G11 = − diag

(
ξ1

R1
, . . . ,

ξn

Rn

)

,

G12 = GT
12 =

[

(1− δij )
ξiTij + ξjTji

2

]

n×n
,

G22 =
[
ηiTij + ηjTji

2

]

n×n
.

PROOF. The negative definite condition of G implies Tii < 0 (i = 1, . . . , n).
Again using the Lyapunov function (10.4.2) and similar to the derivation leading
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to (10.4.3), we obtain

dV

dt
=
(

x

f (x)

)T [
G11 G12
GT

12 G22

](
x

f (x)

)

+
n
∑

i=1

ξiTixifi(xi)

(10.4.10)−
n
∑

Ri

ηi

Ri
xifi(xi).

Let W = eεtV . Then,

dW

dt

∣
∣
∣
∣
(10.4.1)

= eεt

{(
x

f (x)

)T [
G11 G12
GT

12 G22

](
x

f (x)

)

+ ε

n
∑

i=1

ξiCi

2
x2
i

+
n
∑

i=1

(

εηiCi + ξiTij − ηi

Ri

)

xifi(xi)

}

� eεt

{

−λ∗
(

n
∑

i=1

x2
i +

n
∑

i=1

f 2
i (xi)

)

+ μ∗ε
n
∑

i=1

x2
i

−
n
∑

i=1

(

εηiCi + ξiTii − ηi

Ri

)

xifi(xi)

}

� 0.

The remaining proof is similar to the last part of the proof of Theorem 10.4.1, and
thus is omitted. �

In the following, we consider a weaker nonlinear activation function. Assume
that

(10.4.11)0 < sup
ui∈R1

D+gi(ui) � Mi, i = 1, . . . , n.

Let

Ω1 = diag

(
1

R1
− T11M1, . . . ,

1

Rn
− TnnMn

)

n×n
− (

σij |Tij |Mj

)

n×n,

Ω2 = diag

(

− 1

R1M1
, . . . ,− 1

RnMn

)

+ (Tij )n×n,

where

σij =
{

0 if i = j,

1 if i �= j,
i, j = 1, . . . , n.

THEOREM 10.4.4. If Ω1 is an M matrix, then u = u∗ of (10.1.1) is globally
exponentially stable.
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PROOF. Since Ω1 is an M matrix, there exist constants ξi > 0 such that

(10.4.12)ξj

(

− 1

Rj
+ TjjMj

)

+
n
∑

i=1

ξiσij |Tij |Mj < 0, j = 1, . . . , n.

Without loss of generality, we have

ξjTjj +
n
∑

i=1

ξiσij |Tij | � 0, j = 1, . . . , n0, 1 � n0 � n,

ξjTjj +
n
∑

i=1

ξiσij |Tij | > 0, j = n0 + 1, . . . , n.

Let

λ = min
1�k�n0

n0+1�j�n

[

1

RkCk
,

1

ξjCj

(

ξj

Rj
− ξjTjjMj −

n
∑

i=1

σij ξi |Tij |Mj

)]

.

Choose the positive definite and radially unbounded Lyapunov function:

(10.4.13)V (x) =
n
∑

i=1

ξiCi |xi |.

Then, we have

D+V (x)|(10.4.1) =
n
∑

i=1

ξiCixi sgn(xi)

�
n
∑

i=1

ξi

[

− 1

Ri
|xi | + Tii

∣
∣fi(xi)

∣
∣+

n
∑

j=1

σij |Tij |
∣
∣fj (xj )

∣
∣

]

�
n0∑

j=1

ξi

(

− 1

Rj

)

|xj | +
n0∑

j=1

(

ξiTjj +
n
∑

i=1

σij |Tij |
)

∣
∣fj (xj )

∣
∣

+
n
∑

j=n0+1

(

− ξj

Rj

)

|xj | +
n
∑

j=n0+1

(

ξiTjj +
n
∑

i=1

σij |Tij |
)

Mj

∣
∣(xj )

∣
∣

�
n0∑

j=1

(

− ξj

Rj

)

|xj |

+
n
∑

j=n0+1

[

− ξj

Rj
+
(

ξjTjjMj +
n
∑

i=1

σij ξi |Tij |Mj

)]

|xj |

(10.4.14)� −λV (x).



10.4. Globally exponential stability of Hopfield neural network 509

So

(10.4.15)0 < V
(

x(t)
)

� V
(

x(0)
)

e−λt

(10.4.16)
∣
∣xi(t)

∣
∣ � 1

min(ξiCi)
V
(

x(0)
)

e−λt .

The inequality (10.4.16) shows that the u = u∗ of (10.1.1) is globally exponen-
tially stable. �

REMARK 10.4.5. Assume that

Ri = Mi = 1, i = 1, 2, . . . , n.

The sufficient conditions for globally asymptotic stability in the literature can be
summarized as follows [147,169,196,309,315,412]:

‖T ‖∞ := max
1�i�n

n
∑

j=1

|Tij | < 1,

μ∞(T ) := max
1�i�n

(

Tii +
n
∑

j=1
j �=i

|Tij |
)

< 1,

μ1(T ) := max
1�j�n

(

Tjj +
n
∑

i=1
i �=j

|Tij |
)

< 1,

‖T ‖m :=
(

n
∑

i=1

n
∑

j=1

T 2
ij

)1/2

< 1,

max
1�i�n

[

Tii + 1

2

n
∑

j �=1
j=i

(|Tij | + |Tji |
)

]

< 1,

‖T ‖2 = sup
x

[|TX|2/|x|2
] = λmax

(

T T T
)1/2

< 1.

By the propriety of M matrix, any of the above conditions is a sufficient condition
for Ω1 to be M matrix.

PROOF. If the matrix Ω2 is Lyapunov diagonally stable, then there exists a pos-
itive definite matrix H = diag(h1, . . . , hn) such that Q = 1

2 (HΩ2 + H2H) is
negative definite.

Let λ ∈ (0,min1�i�n
1

RiCi
) be the maximal positive number such that

Q+ λ diag

(
C1h1

M1
, . . . ,

Cnhn

Mn

)
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is negative semi-definite. We employ the Lyapunov function:

V (x) =
n
∑

i=1

Cihi

xi∫

0

fi(xi) dxi,

which is obviously positive definite.
Let mi = min|x|�1 |f ′i (xi)|, mi = min[fi(1), |fi(−1)|]. ∀x ∈ Rn, without loss

of generality let |x1| � 1, i = 1, 2, . . . , l0, and |x1| > 1, i = l0 + 1, . . . , n. Then,
by the monotone nondecreasing propriety of fi(xi), we have

V (x) =
n
∑

i=1

Cihi

xi∫

0

fi(xi) dxi

�
l0∑

i=1

Cihimix
2
i +

n
∑

i=l0+1

Cihimi |xi | → ∞ as |x| → ∞.

Thus, V (x) is positive definite and radially unbounded. Further, similarly we ob-
tain

deλtV

dt
= λeλt

n
∑

i=1

Cihi

xi∫

0

fi(xi) dxi + eλt
n
∑

i=1

Cihifi(xi)
dxi

dt

� eλt

[

λ

n
∑

i=1

Cihixifi(xi)−
n
∑

i=1

hi

Ri
xifi(xi)+

n
∑

i=1

n
∑

j=1

hifi(xi)Tij fj (xj )

]

= eλt

[

−
n
∑

i=1

(
hi

Ri
− Cihiλ

)

xifi(xi)+
n
∑

i=1

n
∑

j=1

hiTij fi(xi)fj (xj )

]

= eλt

[

−
n
∑

i=1

(
hi

RiMi

− hiCiλ

Mi

)

f 2
i (xi)+

n
∑

i=1

n
∑

j=1

hiTij fi(xj )fj (xj )

]

= eλt
{
(

f1(x1), . . . , fn(xn)
)
[

1

2

(

HΩ2 +ΩT
2 H

)

+ λ diag

(
C1h1

M1
, . . . ,

Cnhn

Mn

)
(

f1(x1), . . . , fn(xn)
)T
]}

= eλt

{(
f1(x1)

· · ·
fn(xn)

)T [

Q+ λ diag

(
C1h1

M1
, . . . ,

Cnhn

Mn

)

(10.4.17)×
(
f1(x1)

· · ·
fn(xn)

)]}

.
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Integrating both sides of (10.4.17) from 0 to arbitrary t yields

V
(

x(t)
)

� e−λtV
(

x(0)
) := e−λtV0,

i.e.,

(10.4.18)
l0∑

i=1

1

2
Cihimix

2
i +

n
∑

i=l0+1

Cihimi |xi | � V0e
−λt

from which we get

∣
∣xi(t)

∣
∣ �

√

2

Cihimi

√

V0e
− λ

2 t for 1 � i � l0,

∣
∣xi(t)

∣
∣ � 1

Cihimi

V0e
−λt � 1

Cihimi

V0e
− λ

2 t for l0 + 1 � i � n.

Let

k = max
1�i�l0

l0+1�i�n

[√

2

Cihimi

V0,
1

Cihimi

V0

]

.

Then, we have

(10.4.19)
∣
∣xi(t)

∣
∣ � ke−

λ
2 t , i = 1, . . . , n,

which shows that the conclusion is true. �

THEOREM 10.4.6. If there exists a positive definite matrix P = diag(p1, p2, . . . ,

pn) > 0 such that T T P + PT � 0 is negative semi-definite, then the equilib-
rium point u = u∗ of (10.1.1) is globally exponentially stable, where T T is the
transpose of T .

PROOF. Rewrite (10.1.1) as the following equivalent form:

(10.4.20)Ci
d(ui − u∗i )

dt
=

n
∑

j=1

Tij
(

gj (uj )− gj
(

u∗i
))− ui − u∗i

Ri
.

Since there exists P = diag(p1, p2, . . . , pn) > 0 such that

PT + T T P � 0,

we choose the Lyapunov function:

(10.4.21)W(u) =
n
∑

i=1

piCi

ui∫

u∗i

(

gi(ui)− gi
(

u∗i
))

dui
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which obviously satisfies W(u∗) = 0 and W(u) > 0 for u �= u∗. So W(u) is a
positive definite and radially unbounded Lyapunov function.

Computing the derivative of W(u) along the solution of (10.1.1) and simplify-
ing the result, we obtain

dW(u)

dt

∣
∣
∣
∣
(10.4.20)

= (
(

g(u)− g
(

u∗
))T

(PT + T T P )
(

g(u)− g
(

u∗
))

−
n
∑

i=1

pi

(
ui − u∗i
Ri

)
(

gi(ui)− gi
(

u∗i
))

� −
n
∑

i=1

pi

Ri

(

gi(ui)− gi
(

u∗i
))(

ui − u∗i
)

� − min
1�i�n

1

RiCi

n
∑

i=1

Cipi

ui∫

0

(

gi(ui)− gi
(

u∗i
))

dui

� − min
1�i�n

1

RiCi
W
(

u(t)
)

.

Thus,

W
(

u(t)
)

� W
(

u(t0)
)

e
−min1�i�n{ 1

RiCi
}(t−t0)

,

indicating that the equilibrium point u = u∗ of (10.1.1) is globally asymptotically
stable. �

COROLLARY 10.4.7. If one of the following conditions is satisfied:

(1) T = T T � 0;
(2) T + T T � 0;
(3) T is antisymmetric;

then u = u∗ of (10.1.1) is globally exponentially stable.

The proof for this corollary can follow the proof for Theorem 10.4.4, and the
estimations (10.3.7) and (10.3.8).

THEOREM 10.4.8. If one of following conditions is satisfied:

(1) there exist constants ξi > 0 (i = 1, . . . , n) and ηi (i = 1, . . . , n) such that

ξjTjj +
n
∑

i=1
i �=j

ξi |Tij | � 0;
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(2)

ηiiTii +
n
∑

j=1
j �=i

ηj |Tij | � 0;

then u = u∗ of (10.4.20) is globally exponentially stable.

PROOF. If condition (1) holds, we choose the positive definite and radially un-
bounded Lyapunov function

W(u) =
n
∑

i=1

ξiCi
∣
∣ui − u∗i

∣
∣,

and then have

D+W(u)|(10.4.20) �
n
∑

j=1

[

ξjTjj +
n
∑

i=1
i �=j

ξi |Tij |
]

[

gj (uj )− gj
(

u∗j
)]

−
n
∑

i=1

ξi

Ri

∣
∣ui − u∗i

∣
∣

� −
n
∑

j=1

ξj

Rj

∣
∣uj − u∗j

∣
∣

� − min
1�i�n

1

RiCi

n
∑

j=1

ξjCj
∣
∣uj − u∗j

∣
∣

� − min
1�i�n

1

RiCi
W(u).

So,

W
(

u(t)
)

� W
(

u(t0)
)

e
−min1�i�n

1
RiCi

(t−t0)

in the neighborhood of u = u∗.
If condition (2) is satisfied, then we can employ another positive definite and

radially unbounded Lyapunov function:

(10.4.22)W(u) = ηl
∣
∣ul − u∗l

∣
∣ := max

1�i�n
ηi
∣
∣ui − u∗i

∣
∣.

Then it holds

D+W(u)|(10.4.20) � 1

Cl

[

ηlTll +
n
∑

j=1
j �=l

ηj |Tlj |
]

[

gl(ul)− gl
(

u∗l
)]
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− ηl

Cl

∣
∣ul − u∗l

∣
∣

(10.4.23)� − 1

Cl
W(u),

which implies that

W
(

u(t)
)

� W
(

u(t0)
)

e
− 1

Cl
(t−t0)

in the neighborhood of u �= u∗. Therefore, the conclusion of Theorem 10.4.8 is
true. �

COROLLARY 10.4.9. If Tii < 0 (i = 1, 2, . . . , n) and (−1)δij |Tij | is a Hurwitz
matrix, then u = u∗ of (10.1.1) is globally exponentially stable. Here,

δij =
{

1 for i = j,

0 otherwise,
i, j = 1, 2, . . . , n.

PROOF. Since (−1)δij |Tij | being a Hurwitz matrix is equivalent to −(−1)δij |Tij |
being an M matrix. According to the property of M matrix, there exist constants
ξi > 0 (i = 1, 2, . . . , n) such that

ξjTjj +
n
∑

i=1

ξi |Tij | < 0, j = 1, 2, . . . , n,

indicating that the conditions in Theorem 10.4.8 are satisfied, and thus the con-
clusion of the corollary is true. �

COROLLARY 10.4.10. Assume that Tii < 0, i = 1, 2, . . . , n, and one of the
following conditions holds:

(1) |Tjj | >
n
∑

i=1
i �=j

|Tij |, j = 1, 2, . . . , n;

(2) |Tii | >
n
∑

j=1
j �=i

|Tij |, i = 1, 2, . . . , n;

(3)
n
∑

i,j=1

(
(1− δij )Tij

Tii

)2

< 1;

(4) |Tjj | > 1

2

n
∑

j=1
j �=i

(|Tij | + |Tji |
)

, j = 1, 2, . . . , n;

then u = u∗ of (10.1.1) is globally exponentially stable.
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10.5. Globally asymptotic stability of a class of Hopfield neural
networks

So far, most of the results on globally asymptotic stability are actually globally
exponential stability. Very rare cases have been found that a system is globally
asymptotically stable, but not globally exponentially stable. However, such cases
do exist and need further investigation. In this section, we further discuss stabil-
ity problems of Hopfield network, but particular attention is given to the neural
networks with a special class of functions and consider the problem that such sys-
tems may be globally asymptotically stable, but not globally exponentially stable.
More specifically, we consider system (10.1.1) but with the following activation
functions:

gi(ui) = tanh(βiui), i = 1, 2, . . . , n.

Some new results presented here with weaker conditions and thus less restrictive,
improving and generalizing those results obtained in [72].

According to Theorem 10.2.1, we only need to consider the stability in the
global attractive sets. Before presenting the main theorem, we introduce a lemma.

LEMMA 10.5.1. If aii � 0, aij � 0, i �= j, i, j = 1, 2, . . . , n, there exist
constants ξi > 0, i = 1, 2, . . . , n, such that

(10.5.1)
n
∑

j=1

ξiaij � 0,

then

det

⎡

⎣

a11 · · · a1i
...

...

ai1 · · · aii

⎤

⎦ � 0, i = 1, 2, . . . , n.

PROOF. ∀ε > 0, by the condition of lemma we have

ξi(aii + ε)+
n
∑

j=1
j �=i

ξj aij � ξiε > 0.

According to the property of M matrix, we know that the matrix
⎡

⎣

a11 + ε · · · a1n
...

...

an1 · · · ann + ε

⎤

⎦
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is an M matrix. Thus,

det

⎡

⎣

a11 + ε · · · a1i
...

...

ai1 · · · aii + ε

⎤

⎦ > 0, i = 1, 2, . . . , n.

Letting ε→ 0 results in

det

⎡

⎣

a11 · · · a1i
...

...

ai1 · · · aii

⎤

⎦ � 0, i = 1, 2, . . . , n,

and the proof is complete. �

Let gi(ui) = tanh(βiui) in (10.1.1) and (10.4.1), and

B =
[

− 1

Riβi
δij + Tij

]

n×n
, where δij =

{

1 for i = j = 1, . . . , n,
0 for i �= j.

THEOREM 10.5.2. If there exists a positive definite matrix ξ = diag(ξi, . . . , ξn)
such that ξB + BT ξ is negative semi-definite, then the equilibrium u = u∗
of (10.1.1) is globally asymptotically stable.

PROOF. We employ the positive definite and unbounded Lyapunov function:

(10.5.2)V =
n
∑

i=1

Ciξi

ui∫

u∗i

(

gi(ui)− gi
(

u∗i
))

dui.

Then, we have

dV

dt

∣
∣
∣
∣
(10.4.1)

= −
n
∑

j=1

ξi

Ri

(

ui − u∗i
)[

gi(ui)− gi
(

u∗i
)]

+
n
∑

i=1

n
∑

j=1

ξiTij
[

gi(ui)− gi
(

u∗i
)][

gj (uj )− gj
(

u∗j
)]

= −
n
∑

i=1

ξi

Riβi

(

gi(ui)− gi
(

u∗i
))2

+
n
∑

i=1

n
∑

j=1

ξiTij
[

gi(ui)− gi
(

u∗i
)][

gj (uj )− gj
(

u∗j
)]
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+
n
∑

i=1

{
ξi

Riβi

[

gi(ui)− gi
(

u∗i
)]2 − (ui − u∗i )ξi

Ri

}
[

gi(ui)− gi
(

u∗i
)]

= 1

2

⎛

⎝

g1(u1)− g1(u
∗
1)

...

gn(un)− gn
(

u∗n
)

⎞

⎠

T

[

ξB + BT ξ
]

⎛

⎝

g1(u1)− g1(u
∗
1)

...

gn(un)− gn(u
∗
n)

⎞

⎠

+
n
∑

i=1

ξi

[
gi(ui)− gi(u

∗
i )

Riβi
− (ui − u∗i )

Ri

]
[

gi(ui)− gi
(

u∗i
)]

�
n
∑

i=1

ξi

[

− (ui − u∗i )
Ri

+ gi(ui)− gi(u
∗
i )

Riβi

]
∣
∣gi(ui)− gi

(

u∗i
)∣
∣

=
n
∑

i=1

ξi

[

−|ui − u∗i |
Ri

+ |gi(ui)− gi(u
∗
i )|

Riβi

]
∣
∣gi(ui)− gi

(

u∗i
)∣
∣ � 0.

Therefore, by Theorem 4.7.9 or Theorem 5.1.3 we know that the conclusion is
true and Theorem 10.5.2 is proved. �

THEOREM 10.5.3. If there exist constants ξi > 0, i = 1, . . . , n, such that

(10.5.3)− ξi

Ri
+ ξiTii +

n
∑

j=1
j �=i

ξj |Tij | � 0,

then the equilibrium u = u∗ of (10.1.1) is globally asymptotically stable.

PROOF. Choose the positive definite and radially unbounded Lyapunov function:

(10.5.4)V = max
1�j�n

∣
∣ξ−1
i

(

ui − u∗i
)∣
∣ := ∣

∣ξ−1
l

(

ul − u∗l
)∣
∣.

By the property of the sigmoid function,

gi(ui) = tanh(βiui),

we have |gi(ui)− gi(u
∗
i )| < βi |ui − u∗i | for ui �= u∗i , which yields

D+V |(10.4.1)

� C−1
l ξ−1

l

{

−ξl
∣
∣
∣
∣
ξ−1
l

(ul − u∗l )
Rl

∣
∣
∣
∣
+ ξlTllξ

−1
l

∣
∣gl(ul)− gl

(

u∗l
)∣
∣

+
n
∑

j=1
j �=l

ξj |Tlj |
∣
∣ξ−1
j

(

gj (uj )− gj
(

u∗j
))∣
∣

}
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� C−1
l ξ−1

l

{

− ξl

Rl

∣
∣ξ−1
l

(

ul − u∗l
)∣
∣

+
[∣
∣
∣
∣
∣
ξlTll +

n
∑

j=1
j �=l

ξj |Tlj |
∣
∣
∣
∣
∣

]

[

ξ−1
l

(

gl(ul)− gl
(

u∗l
))]

}

< C−1
l ξ−1

l

{

− ξl

Rl

∣
∣ξ−1
l

(

ul − u∗l
)∣
∣

+
[

ξlTll +
n
∑

j=1
j �=l

ξj |Tlj |
]

βl
∣
∣ξ−1
l

(

ul − u∗l
)∣
∣

}

� 0 when ul �= u∗l .

So by Theorem 4.7.9 or Theorem 5.1.3, the conclusion is true. �

THEOREM 10.5.4. If there exist constants ξi > 0, i = 1, . . . , n, such that

(10.5.5)ξi

[

β∗i Tii −
1

Ri

]

+
n
∑

i=1

1

2

[

ξβi |Tij | + ξjβj |Tij |
]

� 0,

then the equilibrium u = u∗ of (10.1.1) is globally asymptotically stable, where

β∗i =
{
βi for Tii � 0,
β
i

for Tii < 0, β
i
= inf

ui∈Ω
D+gi(ui) = D+gi(li),

where Ω is the globally exponentially attractive set defined in Theorem 10.2.1.

PROOF. Choose the Lyapunov function:

(10.5.6)V (u) = 1

2

n
∑

i=1

ξi
(

ui − u∗i
)2
.

Then for u = u∗, we have

dV

dt

∣
∣
∣
∣
(10.3.1)

= −
n
∑

i=1

ξi

Ri

(

ui − u∗i
)2 +

n
∑

i=1

n
∑

j=1

ξiTij
(

ui − u∗i
)[

gj (uj )− gj
(

u∗j
)]

<

⎛

⎝

u1 − u∗1
...

un − u∗n

⎞

⎠

T
[

ξi

(

β∗i Tii −
1

Ri

)

δij



10.5. Globally asymptotic stability of a class of Hopfield neural networks 519

+ 1

2

(

ξiβj |Tij | + ξjβi |Tji |
)

(1− δij )

]

n×n

⎛

⎝

u1 − u∗1
...

un − u∗n

⎞

⎠

� 0.

Hence, by Theorem 4.7.9 or Theorem 5.1.3, the conclusion is true. �

THEOREM 10.5.5. (See [72].) Let y+ = max{0, y}, where y is an arbitrary real
number. If there exist constants ξi > 0, i = 1, . . . , n, such that

ξi
[

βiT
+
ii − R−1

i

]+
n
∑

j=1
j �=i

1

2

[

ξiβi |Tij | + ξjβj |Tji |
]

� 0,

(10.5.7)i = 1, . . . , n,

then the equilibrium u = u∗ of (10.4.1) is globally asymptotically stable.

THEOREM 10.5.6. If there exist constants ξ > 0, i = 1, 2, . . . , n, such that

− ξi

Ri
+ ξiβ

∗
i Tii +

n
∑

j=1
j �=i

ξj βj |Tij | � 0, i = 1, 2, . . . , n,

then the equilibrium u = u∗ of (10.4.1) is globally asymptotically stable, where

β∗i =
{
βi for Tii � 0,
β
i

for Tii < 0, β
i
= inf

ui∈Ω
D+gi(ui).

PROOF. We again use the Lyapunov function (10.5.4). By the property of the
sigmoid function gi(ui) = tanh(βiui), we have

β
i

∣
∣ui − u∗i

∣
∣ <

∣
∣gi(ui)− gi

(

u∗i
)∣
∣ < βi

∣
∣ui − u∗i

∣
∣ for ui ∈ Ω,

and

D+V |(10.4.1) � C−1
l ξ−1

l D+
∣
∣Cl

(

ul − u∗l
)∣
∣

= C−1
l ξ−1

l Cl
d(ui − u∗i )

dt
sgn

(

ul − u∗l
)

= C−1
l ξ−1

l

{

−ξl
∣
∣
∣
∣
ξ−1
l

ul − u∗l
Rl

∣
∣
∣
∣
+ Tll

∣
∣gl(ul)− gl

(

u∗l
)∣
∣

+
n
∑

j=1
j �=l

ξj |Tlj |
∣
∣ξ−1
j

(

gj (uj )− gj
(

u∗j
))∣
∣

}
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= C−1
l ξ−1

l

{

− ξl

Rl

∣
∣ξ−1
l

(

ul − u∗l
)∣
∣+ ξlTllξ

−1
l β∗l

∣
∣ul − u∗l

∣
∣

+ Tll
∣
∣gl(ul)− gl

(

u∗l
)∣
∣− ξlTllξ

−1
l β∗l

∣
∣ul − u∗l

∣
∣

+
n
∑

j=1
j �=l

ξj |Tlj |ξ−1
j βj

∣
∣uj − u∗j

∣
∣

+
n
∑

j=1
j �=l

|Tlj |
∣
∣ξ−1
j

(

gj (uj )− gj
(

u∗j
))∣
∣

−
n
∑

j=1
j �=i

ξj |Tlj |ξ−1
j βj

∣
∣uj − u∗j

∣
∣

}

< C−1
l ξ−1

l

{

− ξl

Rl

∣
∣ul − u∗l

∣
∣+ ξlTllβ

∗
l ξ
−1
l

∣
∣ul − u∗l

∣
∣

+
n
∑

j=1
j �=l

ξj |Tlj |βj
∣
∣ξ−1
j

(

uj − u∗j
)∣
∣

}

� ξ−1
l C−1

l

{

− ξl

Rl
+ ξlβ

∗
l Tll +

n
∑

j=1
j �=l

ξj βj |Tlj |
}

∣
∣ξ−1
l

(

ul − u∗l
)∣
∣

� 0,

i.e., D+V |(10.4.1) is negative definite. So the conclusion is true, and the proof is
complete. �

REMARK 10.5.7. When Tii � 0, Theorem 10.5.4 is equivalent to Theo-
rem 10.5.5, but when some Tii < 0, the conditions in Theorem 10.5.4 are weaker
than that of Theorem 10.5.5. When Tii � 0 (i = 1, 2, . . . , n), Theorem 10.5.6 is
equivalent to the following theorem [72].

THEOREM 10.5.8. If for some constants ξi > 0, i = 1, . . . , n, there exist

(10.5.8)ξi
[

βiT
+
ii − R−1

i

]+
n
∑

j=1
j �=l

ξj βj |Tij | � 0, i = 1, 2, . . . , n,

then the equilibrium u = u∗ of (10.1.1) is globally asymptotically stable.
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When some Tii < 0, Theorem 10.5.6 is better than Theorem 10.5.8.

THEOREM 10.5.9. If there exist constants ξi > 0, i = 1, . . . , n, such that

(10.5.9)− ξj

Rj
+ β∗j ξj Tjj +

n
∑

i=1
i �=j

ξi |Tij | � 0, j = 1, 2, . . . , n,

then the equilibrium u = u∗ of (10.1.1) is globally asymptotically stable.

PROOF. Choosing the positive definite and radially unbounded Lyapunov func-
tion:

(10.5.10)V =
n
∑

i=1

ciξi
∣
∣ui − u∗i

∣
∣,

we have

D+V |(10.4.1) �
n
∑

j=1

ξi

{

− 1

Riβi

[

gi(ui)− gi
(

u∗i
)]

+
n
∑

j=1

Tij
[

gj (uj )− gj
(

u∗j
)]

−
[
ui − u∗i
Ri

− 1

Riβi

(

gi(ui)− gi
(

u∗i
))
]}

sgn
(

ui − u∗i
)

=
n
∑

j=1

(

− ξj

Rjβj
+ ξjβ

∗
j Tjj +

n
∑

i=1
i �=j

ξi |Tij |
)

∣
∣gj (uj )− gj

(

u∗j
)∣
∣

−
n
∑

i=1

( |ui − u∗i |
Ri

− |gi(ui)− gi(u
∗
i )|

Riβi

)

ξi

� −
n
∑

j=1

( |ui − u∗i |
Ri

− |gi(ui)− gi(u
∗
i )|

Riβi

)

ξi < 0 for u �= u∗,

so the conclusion is true. �

REMARK 10.5.10. Theorem 10.5.9 is equivalent to the following theorem.
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THEOREM 10.5.11. If for some constants ξi > 0, i = 1, . . . , n, the following
inequalities:

(10.5.11)− ξj

Rj
+ βj

{

ξjTjj +
n
∑

i=1
i �=j

ξi |Tij |
}+

� 0, j = 1, . . . , n,

are satisfied, then the equilibrium u = u∗ of (10.1.1) is globally asymptotically
stable.

However, by Theorem 10.5.9 one can obtain better estimation for the conver-
gent rate.

EXAMPLE 10.5.12. Consider a two-state neural network:
(

u̇1(t)

u̇2(t)

)

=
[−1 0

0 −1

](

u1(t)

u2(t)

)

+
[ −2 8
−16 1

](

g1(u1(t))

g2(u2(t))

)

(10.5.12)+
(

I1
I2

)

,

where gi(ui) = tanh(ui) and Ri = Ci = βi = 1, i = 1, 2. According to
Theorem 10.5.2, we have

B =
[−1− 2 8
−16 −1+ 1

]

=
[ −3 8
−16 0

]

.

Take ξ1 = 2, ξ1 = 1. Then ξB + BT ξ =
[−12 0

0 0

]

is negative semi-definite. The

conditions in Theorem 10.5.2 are satisfied. So the equilibrium u = u∗ of (10.1.1)
is globally asymptotically stable.

EXAMPLE 10.5.13. Consider a Hopfield neural networks, described by
(

u̇1(t)

u̇2(t)

)

=
[−1 0

0 −1

](

u1(t)

u2(t)

)

+
[ −2 3/2

3/2 −2

](

g1(u1(t))

g2(u2(t))

)

(10.5.13)+
(
I1

I2

)

,

where Ri = βi = Ci = 1, i = 1, 2, Tii = −2, T12 = T21 = 3
2 . Suppose β∗i = 1

3 ,
i = 1, 2. Then,

[− 1
R1

0

0 − 1
R2

]

+
[

β∗1T11 |T12|
|T21| β∗2T12

]

=
[− 5

3
3
2

3
2 − 5

3

]

,

and it is easy to verify that the conditions in Theorems 10.5.2, 10.5.3, 10.5.4 and
Theorem 10.5.6 are satisfied, while the conditions of Theorems 10.5.8 and 10.5.11
are not satisfied by Lemma 10.5.1.
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EXAMPLE 10.5.14. Consider a 2-dimensional neural networks, given below:

(10.5.14)

(

u̇1(t)

u̇2(t)

)

=
[−2 0

0 −2

](

u1(t)

u2(t)

)

+
[−5 1

1 −5

](

g1(u1(t))

g2(u2(t))

)

,

where Ri = 1
2 , i = 1, 2, Tii = −5, i = 1, 2, T12 = T21 = 1, βi = 2, i = 1, 2.

Further, suppose β∗u = 1.
Choose the Lyapunov function:

V =
2
∑

i=1

|yi |.

By Theorem 10.5.11, one can only obtain

D+V � −2V, and
2
∑

i=1

∣
∣yi(t)

∣
∣ = V (t) � V0e

−2(t−t0).

However, applying Theorem 10.5.9 yields

D+V � −6V,

leading to

2
∑

i=1

∣
∣yi(t)

∣
∣ = V (t) � V0e

−6(t−t0),

which is better than the above estimation.

In the following, we study globally asymptotical stability of a class of neural
networks with variable time delay. Consider the following system

C
dy(t)

dt
= −R−1y(t)+ Af

(

y(t)
)+ Bf

(

y
(

t − τ(t)
))+ I,

(10.5.15)y(t) = η(t) for t ∈ [t − τ, t0],
where

C = diag(C1, . . . , Cn)
T > 0, R−1 = diag

(

R−1
1 , . . . , R−1

n

)T
> 0,

A,B ∈ Rn×n, I = (I1, . . . , In)
T ,

y = (y1, . . . , yn)
T , f

(

y(t)
) = (

f1
(

y1(t)
)

, . . . , f1
(

yn(t)
))T

,

f
(

y
(

t − τ(t)
)) = (

f1
(

y1
(

t − τ1(t)
))

, . . . , f1
(

yn
(

t − τn(t)
)))T

,

τ (t) = (

τ1(t), . . . , τn(t)
)T
, 0 � τi(t) � τi = constant, i = 1, 2, . . . , n.

Assume τ̇i (t) � 0.
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Let y∗ be a unique equilibrium of (10.5.15), and x = y − y∗, f (x) = f (x +
y∗)− f (y∗), g(x(t − τ(t)) = f (x(t − τ(t))+ y∗)− f (y∗). Then (10.5.15) can
be rewritten as

(10.5.16)C
dx(t)

dt
= −R−1x(t)+ Ag

(

x(t)
)+ Bg

(

x
(

t − τ(t)
))

.

Further, define

G := {

fi(yi) ∈ C
[

R1, R1], D+fi(yi) � 0, i = 1, 2, . . . , n
}

,

L =
{

fi(yi) ∈ C
[

R1, R1],

fi(y
(1)
i )− fi(y

(i)
i )

y
(1)
i − y

(i)
i

� Li < +∞, i = 1, 2, . . . , n

}

.

THEOREM 10.5.15. Let fi(·) ∈ G, gi(·) ∈ G and

Li := sup
xi∈R

D+gi(xi) = sup
yi∈R

D+fi(yi)

= D+fi(0) �= D+fi(yi), yi �= 0, i = 1, . . . , n.

If there exist positive definite diagonal matrices P = diag(p1, . . . , pn) > 0 and
ξ = diag(ξ1, . . . , ξn) > 0 such that the matrix

Q := PA+ AT P − 2PL−1R−1 + ξ + PBξ−1BT P � 0

(i.e., negative semi-definite), then the equilibrium y = y∗ of (10.5.15) (i.e., x = 0
of (10.5.16)) is globally asymptotically stable.

PROOF. Construct the positive definite and radially unbounded Lyapunov func-
tion:

(10.5.17)V (t, x) = 2
n
∑

i=1

Cipi

xi∫

0

gi(xi) dxi +
n
∑

j=1

ξj

t∫

t−τj (t)
g2
j

(

xi(s)
)

ds.

Calculating the time derivative of V (t, x) along the positive half trajectory
of (10.5.16) yields

dV (t, x)

dt

∣
∣
∣
∣
(10.5.16)

= (

g(t)
)T (

PA+ AT P
)

g
(

x(t)
)− (

x(t)
)T
PR−1g

(

x(t)
)

+
n
∑

j=1

ξjg
2
j

(

xj (t)
)−

n
∑

j=1

ξjg
2
j

(

xj
(

t − τj (t)
))(

1− τ̇j (t)
)
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+
n
∑

i=1

2pigi
(

xi(t)
)

n
∑

j=1

bij gj
(

xj
(

t − τj (t)
))

�
(

g(t)
)T [

PA+ AT P − 2PL−1R−1 + ξ
]

g
(

x(t)
)

−
n
∑

j=1

ξj

[

gj
(

xj
(

t − τj (t)
))−

∑n
i=1 pigi(xi(t))bij

ξj

]2

+
n
∑

j=1

(
∑n

i=1 pigi(xi(t))bij )
2

ξj

� g
(

(t)
)T [

PA+ AT P − 2PL−1R−1 + ξ + PBξ−1BT P
]

g
(

x(t)
)

(10.5.18)� 0,

where ξ−1 = diag(ξ−1
1 , . . . , ξ−1

n ), L−1 = diag(L−1
1 , . . . , L−1

n ), and dV
dt
= 0 is

reached at x = 0 or x = −y∗, but x = −y∗ is not the equilibrium of (10.5.16)
since x = 0 is the unique equilibrium of (10.5.16).

Next, we prove that the set E := {x | dV (t,x)
dt

|(10.5.16) = 0} does not include the
positive half trajectory except x = 0, i.e., E does not include any other invariant
set of (10.5.16), except x = 0.

Since

Lj = sup
x∈R

D+gj (xj ) = sup
y∈R

D+fj (yj ) = D+fj (0)

�= D+gj
(−y∗j

)

> D+gj (yj ) �= 0, yi �= y∗i .

Without loss of generality, let

x = (x1, . . . , xj−1, xj , . . . , xn) �= 0 and

xi �= −y∗i , i = j, j + 1, . . . , n,

be any nonequilibrium state in positive half trajectory xi �= 0 for j � i � n.
Then,

δi := D+gi(xi) < sup
x∈R

D+gi(xi) = D+gi
(−y∗i

) = Lj ,

i = j, j + 1, . . . , n,

and we obtain

dV

dt

∣
∣
∣
∣
(10.5.16)

= gT
(

x(t)
)
[

PBξ−1BT P + ξ

+ P

(

A− diag

(
1

L1R1
, . . . ,

1

Lj−1Rj−1
,

1

δjRj
, . . . ,

1

δnRn

)
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+ AT − diag

(
1

L1R1
, . . . ,

1

Lj−1Rj−1
,

1

δjRj
, . . . ,

1

δnRn

))

P

]

g
(

x(t)
)

= gT
(

x(t)
)
[

PBξ−1BT P + ξ

+ P

(

A− diag

(
1

L1R1
, . . . ,

1

Lj−1Rj−1
,

1

δjRj
, . . . ,

1

δnRn

)

+ AT − diag

(
1

L1R1
, . . . ,

1

Lj−1Rj−1
,

1

δjRj
, . . . ,

1

δnRn

))

P

]

g
(

x(t)
)

− gT
(

x(t)
)
[

PBξ−1BT P + ξ

+ P

(

A− diag

(
1

L1R1
, . . . ,

1

Lj−1Rj−1
,

1

LjRj
, . . . ,

1

LnRn

))

+
(

AT − diag

(
1

L1R1
, . . . ,

1

Lj−1Rj−1
,

1

LjRj
, . . . ,

1

LnRn

))

P

]

g
(

x(t)
)

+ gT
(

x(t)
)[

PBξ−1BT P + ξ

+ P
(

A− PL−1R−1)+ (

A− PL−1R−1)T P
]

g
(

x(t)
)

� gT
(

x(t)
)
[

P

(

diag

(

0, . . . , 0,
1

LjRj
− 1

δjRj
, . . . ,

1

LnRn
− 1

δnRn

)

+ diag

(

0, . . . , 0,
1

LjRj
− 1

δjRj
, . . . ,

1

LnRn
− 1

δnRn

))

P

]

g
(

x(t)
)

(10.5.19)=
n
∑

i=j
pi

(
1

LiRi
− 1

δiRi

)

g2
i

(

xi(t)
)

< 0 ∀x �= 0.

So dV
dt
|(10.5.16) � 0 and E = {x | dV

dt
|(10.4.23) = 0}. Thus, except x = 0, any other

positive half trajectory (i.e., invariant set) is not included in E.
According to the LaSalle invariant principle [220], we know that the equilib-

rium point x = 0 of (10.5.16) (i.e., y = y∗ of (10.5.15)) is globally asymptotically
stable. �

COROLLARY 10.5.16. If Q∗1 := A + AT − 2L−1R−1 + In + BBT is negative
semi-definite, then x = 0 of (10.5.16) (i.e., y = y∗ of (10.5.15)) is globally
asymptotically stable.

COROLLARY 10.5.17. If B = 0, then the conditions in Theorem 10.5.15 become
that

Q1 := PA+ AT P − 2L−1R−1 is negative semi-definite.
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EXAMPLE 10.5.18. For the following two-state neural network (no delay terms):

(10.5.20)

{
dy1
dt
= −y1 − 2f1(y1)+ 9f2(y2)+ I1,

dy2
dt
= −y2 + f1(y1)− 2f2(y2)+ I2,

suppose fi(yi) ∈ L and Ci = Ri = Li = 1, i = 1, 2.
For system (10.5.16), we have

Ā := A− L−1R−1 =
[−3 9

1 −3

]

:=
[

ā11 ā12
ā21 ā22

]

.

Ā is Lyapunov diagonally stable if and only if ā11 < 0, ā22 < 0, and ā11ā22 >

ā12ā21. However, here ā11ā22 = ā12ā21 = 9, hence Ā is not Lyapunov diagonally
stable. Now, we take P = diag(p1, p2) = diag(1/3, 3). Then,

PA+ AT P =
[ 1

3 0
0 3

] [−3 9
1 −3

]

+
[−3 9

1 −3

] [ 1
3 0
0 3

]

=
[−1 3

3 −9

]

+
[−1 3

3 −9

]

=
[−2 6

6 −18

]

< 0,

indicating that the conditions in Corollary 10.5.17 are satisfied. Therefore, the
equilibrium y = y∗ of (10.5.16) is globally asymptotically stable.

THEOREM 10.5.19. Let f (·) ∈ L and

Li = sup
y∈R

D+fi(yi) = D+fi(0) > D+fi(yi), yi �= 0.

If there exist n positive constants pi > 0 (i = 1, 2, . . . , n) such that

pj

(

ajj − 1

LjRj

)

+
n
∑

i=1
i �=j

pi |aij | +
n
∑

i=1

pi |bij | � 0,

then the equilibrium point x = 0 of (10.5.16) (i.e., y = y∗ of (10.5.15)) is
globally asymptotically stable.

PROOF. Let the positive definite and radially unbounded Lyapunov function be

V (t, x) =
n
∑

i=1

piCi |xi | +
n
∑

i,j=1

pi

t∫

t−τj (t)
|bij |

∣
∣gj (s)

∣
∣ ds.

Evaluating the right-upper Dini derivative of V , we obtain
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D+V (t, x)|(10.5.16)

�
n
∑

i=1

piCi
dxi

dt
sign(xi)+

n
∑

i=1

pi

n
∑

j=1

|bij |
∣
∣g
(

xj (t)
)∣
∣

−
n
∑

i=1

n
∑

j=1

|bij |
∣
∣gj

(

xj
(

t − τj (t)
))∣
∣
(

1− τ̇j (t)
)

�
n
∑

j=1

[

pj

(

ajj − 1

RjLj

)

+
n
∑

i=1
i �=j

pi |ajj |
]

∣
∣gj

(

xj (t)
)∣
∣

+
n
∑

j=1

pi

n
∑

j=1

|bij |
∣
∣gj

(

xj
(

t − τj (t)
))∣
∣

+
n
∑

i=1

pi

n
∑

j=1

|bij |
∣
∣gj

(

xj (t)
)∣
∣

−
n
∑

j=1

pi

n
∑

j=1

|bij |
∣
∣gj

(

xj
(

t − τj (t)
))∣
∣

�
n
∑

j=1

[

pj

(

ajj − 1

RjLj

)

+
n
∑

i=1
i �=j

pi |aij | +
n
∑

i=1

pi |bij |
]

∣
∣gj

(

xj (t)
)∣
∣

(10.5.21)� 0.

Since x = −y∗ is not an equilibrium of (10.5.16), we only need to prove that the
set E := {x | D+V |(10.5.16)} does not include the positive half trajectory except
x = 0.

Without loss of generality, let any nonequilibrium state in the positive half tra-
jectory of (10.5.16) be x = (0, . . . , 0, xi, . . . , xn) �= 0, and δj = D+yj (xj ) >
D+yj (−y∗) = Lj , j = i, i + 1, . . . , n. Then, xi �= −y∗i , xi �= 0, i = j,

j + 1, . . . , n. We have

D+V
(

t, x(t)
)∣
∣
(10.5.16)

�
i−1
∑

j=1

[

pj

(

ajj − 1

LjRj

)

+
n
∑

i=1
i �=j

pi |aij | +
n
∑

i=1

pi |bij |
]

∣
∣gj

(

xj (t)
)∣
∣

+
n
∑

j=i

[

pj

(

ajj − 1

δjRj

)

+
n
∑

i=1
i �=j

pi |aij | +
n
∑

i=1

pi |bij |
]

∣
∣gj

(

xj (t)
)∣
∣
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−
n
∑

j=1

[

pj

(

ajj − 1

LjRj

)

+
n
∑

i=1
i �=j

pi |aij | +
n
∑

i=1

pi |bij |
]
∣
∣gj

(

xj (t)
)∣
∣

+
n
∑

j=1

[

pj

(

ajj − 1

LjRj

)

+
n
∑

i=1
i �=j

pi |aij | +
n
∑

i=1

pi |bij |
]

∣
∣gj

(

xj (t)
)∣
∣

(10.5.22)�
n
∑

j=i

[

−pj
(

1

δjRj
− 1

LjRj

)]
∣
∣gj

(

xj (t)
)∣
∣ < 0 when x �= 0.

Thus, the equilibrium x = 0 of (10.5.16) (i.e., y = y∗ of (10.5.15)) is globally
asymptotically stable. �

COROLLARY 10.5.20. Let g(·) ∈ L. If

(

ajj − 1

LjRj

)

+
n
∑

i=1
i �=j

|aij | +
n
∑

i=1

|bij | � 0,

then the equilibrium x = 0 of (10.5.16) (i.e., y = y∗ of (10.5.15)) is globally
asymptotically stable.

EXAMPLE 10.5.21. Consider the following 3-dimensional neural network with-
out time delay (i.e., B = 0):

(10.5.23)

⎧

⎪⎪⎨

⎪⎪⎩

dy1
dt
= −y1 − 3f1(y1)− 2f2(y2)− 2f3(y3)+ I1,

dy2
dt
= −y2 + 3f1(y1)− 3f2(y2)+ f3(y3)+ I2,

dy3
dt
= −y3 + f1(y1)+ 2f2(y2)− 2f3(y3)+ I3,

where fi(yi) ∈ L, Ci = Ri = Li = 1, i = 1, 2, 3.
Because

Ã =
⎡

⎣

a11 − 1
L1R1

|a12| |a13|
|a21| a22 − 1

L2R2
|a23|

|a31| |a32| a33 − 1
L3R3

⎤

⎦ =
[ 4 −2 −2
−3 4 −1
−1 −2 3

]

,

det(Ã) = 0, indicating that Ã is not an M matrix. So, for this example, one cannot
use M matrix theory to determine the stability of the equilibrium of (10.5.23).

Now, let us take p1 = p2 = p3 = 1, which satisfies the condition in Corol-
lary 10.5.20. Thus, the equilibrium point of (10.5.23) is globally asymptotically
stable.
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10.6. Stability of bidirectional associative memory neural
network

The stability and encoding properties of two-layer nonlinear feedback neural net-
work were studied by Kösko [208] based on the following systems:

(10.6.1)ẋi = −xi −
m
∑

j=1

S(yj )mij + Ii, i = 1, 2, . . . , n,

(10.6.2)ẏj = −yj −
n
∑

i=1

S(xi)mij + Ij , j = 1, 2, . . . , m.

This dynamical model is a direct generalization of Hopfield continuous circuit
model, where the meaning of the constants Ii, Ij , mij and the variables xi, yj can
be found in [208]. Assume that 0 < dS(ξ)

dξ
� 1.

Now, we present the results about the energy function obtained by Roska [352],
as well as some methods and results concerning with globally exponential stabil-
ity of a specific equilibrium position for more general bidirectional associative
memory systems.

With the following energy function:

E(x, y) =
n
∑

i=1

xi∫

0

Ṡ(xi)xi dxi −
n
∑

i=1

m
∑

j=1

S(xi)S(yi)mij

(10.6.3)−
n
∑

i=1

S(xi)Ii +
m
∑

j=1

yi∫

0

Ṡ(yj )yi dyj −
m
∑

j=1

S(yj )Ij .

Kosko [206] analyzed the stability of equations (10.6.1) and (10.6.2). However,
for a specific equilibrium position x = x∗, y = y∗, one cannot determine its
Lyapunov stability by using this method. In the following, we carry out a further
study and develop a new result.

Let x = (x1, . . . , xn)
T , y = (y1, . . . , ym)

T .

THEOREM 10.6.1. Assume that

(1) (x, y) = (x∗, y∗) is an equilibrium position of equations (10.6.1) and
(10.6.2);

(2) S(ξ) ∈ C2, ξ ∈ R;
(3) The matrix H(hij )(n+m)(n+m) is positive definite;

then the equilibrium position (x∗, y∗) of equations (10.6.1) and (10.6.2) is asymp-
totically stable, where

hij = −Ṡ
(

x∗i
)

S
(

y∗j
)

mij = −Ṡ
(

y∗j
)

S
(

x∗i
)

mji
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= hji, i = 1, 2, . . . , n, j = 1, 2, . . . , m, i �= j,

hii = Ṡ
(

x∗i
)

, i = 1, 2, . . . , n,

hjj = Ṡ
(

y∗j
)

, j = 1, 2, . . . , m.

PROOF. Here, we construct a new positive definite and radially unbounded Lya-
punov function:

W(x, y) = E(x, y)− E
(

x∗, y∗
)

.

Obviously, W(x∗, y∗) = 0 and

∂W

∂xi

∣
∣
∣
∣ x=x∗
y=y∗

=
(

x∗i −
m
∑

j=1

S
(

y∗j
)

mij − Ii

)

Ṡ
(

x∗i
) = 0, i = 1, . . . , n,

∂W

∂yj

∣
∣
∣
∣ x=x∗
y=y∗

=
(

y∗j −
n
∑

i=1

S
(

y∗i
)

mij − Jj

)

Ṡ
(

y∗j
) = 0, j = 1, . . . , m,

hij = ∂2W

∂xi∂yj

∣
∣
∣
∣ (x=x∗)
(y=y∗)

= −Ṡ(x∗i )S
(

y∗j
)

mij = −Ṡ
(

y∗j
)

Ṡ
(

x∗i
)

mji

= ∂2W

∂yj∂xi

∣
∣
∣
∣ (x=x∗)
(y=y∗)

= hji,

i �= j, i = 1, 2, . . . , n, j = 1, 2, . . . , m,

hii = ∂2W

∂x2
i

∣
∣
∣
∣ (x=x∗)
(y=y∗)

= Ṡi
(

x∗i
)

, i = 1, 2, . . . , n,

hjj = ∂2W

∂y2
j

∣
∣
∣
∣ (x=x∗)
(y=y∗)

= Ṡj
(

y∗j
)

, j = 1, 2, . . . , m.

According to the minimax theorem of multivariate function, we know that the
positive (negative) definiteness of matrix H(hij ) implies that the equilibrium po-
sition (x∗, y∗) is the minimal (maximal) value point of W(x, y), i.e., W(x, y) is
positive (negative) definite in some neighborhood of (x, y) = (x∗, y∗). In addi-
tion,

dW

dt

∣
∣
∣
∣
(10.6.1)∪(10.6.2)

=
n
∑

i=1

Ṡ(xi)x
2
i −

m
∑

j=1

Ṡ(yj )y
2
j � 0.

Therefore,

dW

dt

∣
∣
∣
∣
(10.6.1), (10.6.2)

< 0 if and only if x �= x∗ or y �= y∗,
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dW

dt

∣
∣
∣
∣
(10.6.1), (10.6.2)

= 0 if and only if x = x∗ and y = y∗.

By Lyapunov asymptotic stability theorem, the equilibrium point (x, y) =
(x∗, y∗) is asymptotically stable.

The proof is complete. �

Now we consider more general bidirectional associative memory models, de-
scribed by

(10.6.4)

(
ẋ

ẏ

)

=
[−En 0

0 −Em

](
x

y

)

+
[

0 T

R 0

](
S(x)

S(y)

)

+
(
I

J

)

,

where

x = (x1, . . . , xn)
T , y = (y1, . . . , ym)

T , T = (Tij )n×m,
R = (Rjk)n×m, I = (I1, . . . , In)

T , J = (J1, . . . , Jm)
T ,

S(x) = (

S(x1), . . . , S(xn)
)T
, S(y) = (

S(y1), . . . , S(ym)
)T
.

En and Em are n× n and m×m unit matrices, respectively.
We admit RT �= T . Obviously, when RT = T , equation (10.6.4) becomes

equations (10.5.1) and (10.5.2). Here, RT is a transpose of R.
Let (x, y) = (x∗, y∗) be an equilibrium position of (10.6.4). Then equa-

tion (10.6.4) can be rewritten as

(10.6.5)

(
ẋ

ẏ

)

=
[−En 0

0 −Em

](
x − x∗

y − y∗

)

+
[

0 T

R 0

](
S(x)− S(x∗)
S(y)− S(y∗)

)

.

THEOREM 10.6.2. If there exist two positive definite matrices ξ = diag(ξ, . . . ,
ξn) and η = diag(η1, . . . , ηm) such that the matrix

Ω =
⎡

⎢
⎣

−ξEn 0 0 ξT

0 −ηEm ηR 0
0 RT η −ξEm 0

T T ξ 0 0 −ηEm

⎤

⎥
⎦

is negative definite, then the equilibrium position (x∗, y∗) of equation (10.6.5) is
globally exponentially stable and λ/μ can be defined as the Lyapunov exponent,
where −λ is the biggest eigenvalue of Ω , and μ = max1�i�n{ξi, ηi}.

PROOF. We employ the positive definite and radially unbounded Lyapunov func-
tion:

(10.6.6)V (a, b) =
(
x − x∗

y − y∗

)T [
ξ 0
0 η

](
x − x∗

y − y∗

)

.
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Using the facts:
∣
∣S(xi)− S

(

x∗i
)∣
∣ �

∣
∣xi − x∗i

∣
∣, i = 1, 2, . . . , n,

∣
∣S(yj )− S

(

y∗j
)∣
∣ �

∣
∣yj − y∗j

∣
∣, j = 1, 2, . . . , m,

along the solution of equation (10.6.5), we compute the derivatives of V (x, y)
and eλt/μV (x, y), respectively, and obtain the following results:

dV

dt

∣
∣
∣
∣
(10.6.5)

=
(
x − x∗

y − y∗

)T [
ξ 0
0 η

]{[−En 0
0 −Em

](
x − x∗

y − y∗

)

+
(

0 T

R 0

)(
S(x)− S(x∗)
S(y)− S(y∗)

)}

+
{[−En 0

0 −Em

](
x − x∗

y − y∗

)

+
[

0 T

R 0

](
S(x)− S(x∗)
S(y)− S(y∗)

)}T

×
[

ξ 0
0 η

](
x − x∗

y − y∗

)

� −(x − x∗
)T
(ξEn)

(

x − x∗
)

− (

S(x)− S
(

x∗
))T

(ξEn)
(

S(x)− S
(

x∗
))

− (

y − y∗
)T
(ηEm)

(

y − y∗
)

− (

S(y)− S
(

y∗
))T

(ηEn)
(

S(y)− S
(

y∗
))

+
(
x − x∗

y − y∗

)[

0 ξT

ηR 0

](
S(x)− S(x∗)
S(y)− S(y∗)

)

+
(
S(x)− S(x∗)
S(y)− S(y∗)

)T [
0 RT η

T T ξ 0

](
x − x∗

y − y∗

)

=
⎛

⎜
⎝

x − x∗
y − y∗

S(x)− S(x∗)
S(y)− S(y∗)

⎞

⎟
⎠

T ⎡

⎢
⎣

−ξEr 0 0 ξT

0 −ηEm ηR 0
0 RT η −ξEn 0

T T ξ 0 0 −ηEm

⎤

⎥
⎦

×
⎛

⎜
⎝

x − x∗
y − y∗

S(x)− S(x∗)
S(y)− S(y∗)

⎞

⎟
⎠

� −λ
[

n
∑

i=1

(

xi − x∗j
)2 +

m
∑

j=1

(

yj − y∗j
)2 +

m
∑

j=1

(

S(y)− S
(

y∗j
))2

]
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(10.6.7)< 0 for x �= x∗ or y �= y∗,

deλt/μV (x, y)

dt

∣
∣
∣
∣
(10.4.2)

� eλ/μ

{

λ

μ
μ

[
n
∑

i=1

(

xi − x∗i
)2 +

m
∑

j=1

(

yj − y∗j
)2

]

− λ

[
n
∑

i=1

(

xi − x∗i
)2 +

m
∑

j=1

(

yj − y∗j
)2

]}

(10.6.8)� 0.

Integrating both sides of equation (10.6.8) from 0 to t yields

eλt/μV
(

x(t), y(t)
)− V

(

x(0), y(0)
)

� 0,

i.e.,

eλt/μV
(

x(t), y(t)
)

� V
(

x(0), y(0)
)

<∞.

Therefore, let μ = mini,j [ξi, ηj ]. Then, we have

μ

[
n
∑

i=1

(

xi − x∗i
)2 +

m
∑

j=1

(

yj − y∗j
)2

]

� V
(

x(t), y(t)
)

(10.6.9)� e−λt/μV
(

x(0), y(0)
)

,

which implies immediately that the equilibrium position (x∗, y∗) is globally ex-
ponentially stable, and λ/μ is the Lyapunov exponent.

The proof of the theorem is complete. �

EXAMPLE 10.6.3. Consider the following system:
(

ẋ1
ẋ2

)

=
[−1 0

0 −1

](

x1
x2

)

+
[

0.5 0.5
−0.5 0.5

](
S1(y1)

S2(y2)

)(
I1

I2

)

,

(10.6.10)

(
y1

y2

)

=
[

0.5 −0.5
0.5 0.5

](

S1(x1)

S2(x2)

)

+
[−1 0

0 −1

](
y1

y2

)

+
(
J1

J2

)

.

By choosing ξ = diag(1, 1) and η = diag(1, 1), one can verify that Ω is negative
definite, and therefore the equilibrium position (x∗, y∗) of system (10.6.10) is
globally exponentially stable.

10.7. Stability of BAM neural networks with variable delays

In this section, we consider more general bidirectional associative memory
(BAM) neural networks with time delays as follows:

(10.7.1)
dxi

dt
= −αixi +

m
∑

j=1

aij gj
(

yj
(

t − τij (t)
))+ Ii, i = 1, 2, . . . , n,
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(10.7.2)
dyi

dt
= −αiyi +

m
∑

j=1

bijhj
(

xk
(

t − σjk(t)
))+ Ij , j = 1, 2, . . . , m,

where αi , βj are some positive constants; aij , bjk are weight coefficients, we ad-
mit aij �= bij ; τij (t) > 0 and σjk(t) > 0 are variable time delays; satisfying
0 � τij (t) � τij = constant, τ̇ij (t) � 0 and 0 � σjk(t) � σjk = constant,
τ̇jk(t) � 0; the constant inputs Ii and Jj can be interpreted as the sustained envi-
ronmental stimuli or as the stable reverberation from an adjoining neural network;
k = 1, 2, . . . , n, j = 1, 2, . . . , m.

We assume that output functions gj , hk satisfy

0 <
dgj (ξ)

dξ
� 1, 0 <

dhk(ξ)

dξ
� 1,

j = 1, 2, . . . , m, k = 1, 2, . . . , n.

We first investigate the existence, uniqueness and globally asymptotic stability
of the equilibrium points.

THEOREM 10.7.1. Assume that the matrix

Ω =
[

α −|A|
−|B| β

]

(n+m)×(n+m)
is an M matrix. Then the equilibrium point (x, y) = (x∗, y∗) of systems (10.7.1)
and (10.7.2) exists uniquely, and is globally asymptotically stable. Here,

α = diag(α1, . . . , αn), β = diag(β1, . . . , βm),

|A| = (|aij |
)

n×m, |B| = (|bij |
)

m×n.

PROOF. First, we prove the existence and uniqueness of the equilibrium point of
systems (10.7.1) and (10.7.2). Consider the following equations:

(10.7.3)xi =
m
∑

j=1

aij

αi
gj (yj )+ Ii, i = 1, 2, . . . , n,

(10.7.4)yj =
n
∑

k=1

bij

σj
hk(xk)+ Ij , j = 1, 2, . . . , m.

Then ∀x(1), x(2) ∈ Rn and ∀y(1), y(2) ∈ Rm, we have
m
∑

j=1

aij

αi
gj
(

y
(1)
j

)+ Ii −
m
∑

j=1

aij

αi
gj
(

y
(2)
j

)− Ii

(10.7.5)�
m
∑

j=1

|aij |
αi

∣
∣y
(1)
j − y

(2)
j

∣
∣, i = 1, 2, . . . , n,
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n
∑

k=1

bjk

βj
hk
(

x
(1)
k

)+ Ij −
n
∑

k=1

bjk

βk
hk
(

x
(2)
k

)− Ij

(10.7.6)�
m
∑

j=1

|bjk|
βj

∣
∣x
(1)
k − x

(2)
k

∣
∣, j = 1, 2, . . . , m.

By the property of M matrix, we know that Ω being an M matrix implies that
ρ(H) < 1, where ρ(H) is the spectral radius of matrix H , and

H =
[

α 0
0 β

]

.

Note that ρ(H) < 1 implies that the fixed point (x, y) = (x∗, y∗) uniquely exists,
which satisfies equations (10.7.3) and (10.7.4), i.e.,

(10.7.7)αix
∗
i =

m
∑

j=1

aij gj
(

y∗j
)+ II ,

(10.7.8)βjy
∗
j =

n
∑

k=1

bjkhk
(

x∗k
)+ Ij ,

Therefore, (x, y) = (x∗, y∗) is the unique equilibrium point of systems (10.7.1)
and (10.7.2).

Next, we prove that (x, y) = (x∗, y∗) is globally asymptotically stable. Ac-
cording to the property of M matrix, the conditions in the theorem imply that
there exist n+m positive constants ξ1, . . . , ξn, η1, . . . , ηm such that

(10.7.9)ξkαk −
m
∑

j=1

|bjk|ηj > 0, k = 1, 2, . . . , n,

(10.7.10)ηjβj −
n
∑

i=1

|aij |ξi > 0, j = 1, 2, . . . , m.

We choose the Lyapunov functional as follows:

V (x, y, t) =
n
∑

i=1

ξi
∣
∣xi − x∗i

∣
∣+

m
∑

j=1

ηj
∣
∣yj − y∗j

∣
∣

+
n
∑

i=1

m
∑

j=1

t∫

t−τij (t)
ξi |aij |

∣
∣gj

(

yj (s)
)− gj

(

y∗j
)∣
∣ ds

(10.7.11)+
m
∑

j=1

n
∑

k=1

t∫

t−σjk(t)
ηj |bjk|

∣
∣hk

(

xk(s)
)− hk

(

x∗k
)∣
∣ ds.
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Obviously V (x∗, y∗, t) = 0, V (x∗, y∗, t) > 0 for x �= x∗, y �= y∗ and V →
+∞ as |x|2 + |y|2 →∞.

Calculating the right-upper Dini derivative D+V of V along the solution of
systems (10.7.1) and (10.7.2) yields

dxi

dt
= −αi

(

xi − x∗i
)+

m
∑

j=1

aij
[

gj
(

yj (t − τij )
)− gj

(

y∗j
)]

,

(10.7.12)i = 1, . . . , n,

dyj

dt
= −βj

(

yj − y∗j
)+

n
∑

k=1

bjk
[

hk
(

xk(t − σjk)
)− hk

(

x∗k
)]

,

(10.7.13)j = 1, . . . , m.

By using the facts τ̇ij (t) � 0 and σ̇jk(t) � 0, we have

D+V |(10.7.12)∪(10.7.13)

� −
n
∑

i=1

ξiαi
∣
∣xi − x∗i

∣
∣+

n
∑

i=1

m
∑

j=1

ξi |aij |
∣
∣gj

(

yj (t)
)− gj

(

y∗j
)∣
∣

−
m
∑

j=1

ηjβj
∣
∣yj − y∗j

∣
∣+

m
∑

j=1

n
∑

k=1

ηj |bjk|
∣
∣hk

(

xk(t)
)− hk

(

x∗k
)∣
∣

�
n
∑

k=1

[

−ξkαk +
m
∑

j=1

ηj |bjk|
]

∣
∣xk(t)− x∗k

∣
∣

+
m
∑

j=1

[

−ηjβj +
n
∑

i=1

ξi |aij |
]

∣
∣yj (t)− y∗j

∣
∣

< 0 for x �= x∗ or y �= y∗.

So, the conclusion of the theorem is true. �

Now, we consider another BAM model with time delays:
(

ẋ

ẏ

)

=
[−α 0

0 −β
](

x

y

)

+
[

0 A

B 0

](

g(y(t − τ(t)))

h(x(t − σ(t)))

)

(10.7.14)+
(
I

J

)

,

where α = (α1, . . . , αn) and β = (β1, . . . , βn), A = (aij )n×m and B = (bij )m×n
are two positive definite matrices; τ(t) = (τ1(t), . . . , τn(t))

T satisfying 0 �
τi(t) � τi = constant, τ̇i (t) � 0, i = 1, 2, . . . , n; σ(t) = (σ1(t), . . . , σm(t))

T

satisfying 0 � σj (t) � σj = constant, σ̇j (t) � 0, j = 1, 2, . . . , m. Generally,



538 Chapter 10. Stability of Neural Networks

A �= BT , x = (x1, . . . , xn)
T , y = (y1, . . . , ym)

T , and

g
(

y
(

t − τ(t)
)) = (

g1
(

y1
(

t − τ1(t)
))

, . . . , gm
(

ym
(

t − τm(t)
)))T

,

h
(

x
(

t − σ(t)
)) = (

h1
(

x1
(

t − σ1(t)
))

, . . . , hn
(

xn
(

t − σn(t)
)))T

,

0 <
dgj (ξ)

dξ
� 1, j = 1, 2, . . . , n,

0 <
dhi(ξ)

dξ
� 1, i = 1, 2, . . . , m.

Let (x, y) = (x∗, y∗) be a known equilibrium point. We rewrite equation (10.7.14)
as

(

ẋ

ẏ

)

=
[−α 0

0 −β
](

x − x∗
y − y∗

)

+
[

0 A

B 0

]

(10.7.15)×
(

h(x(t − σ(t)))− h(x∗)
g(y(t − τ(t)))− g(y∗)

)

.

THEOREM 10.7.2. If there exist four positive definite matrices ξ = diag(ξ1, . . . ,

ξn), η = diag(η1, . . . , ηn), λ = diag(λ1, . . . , λn) and μ = diag(μ1, . . . , μm)

such that

Q =
⎡

⎢
⎣

−2ξα + λ 0 0 ξA

0 −2ηβ + μ ηB 0
0 BT η −λ 0

AT ξ 0 0 −μ

⎤

⎥
⎦

is negative definite, then the equilibrium point x = x∗, y = y∗ is globally asymp-
totically stable.

PROOF. We construct the Lyapunov function:

V (x, y, t) =
(

x − x∗
y − y∗

)T [
ξ 0
0 η

](

x − x∗
y − y∗

)

+
n
∑

j=1

t∫

t−τj (t)

(

gj
(

yj (s)
)− gj

(

y∗j
))2

ds

(10.7.16)+
m
∑

i=1

t∫

t−σi(t)

(

hi
(

xi(s)
)− hi

(

x∗i
))2

ds.

Since
∣
∣gj (yj )− gj

(

y∗j
)∣
∣ �

∣
∣yj − y∗j

∣
∣, j = 1, 2, . . . , n,
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∣
∣hi(xi)− hi

(

x∗i
)∣
∣ �

∣
∣xi − x∗i

∣
∣, i = 1, 2, . . . , m,

we calculate the derivative V along the solution of (10.7.15) to obtain

dV

dt

∣
∣
∣
∣
(10.7.15)

�
(

x − x∗
y − y∗

)T [
ξ 0
0 η

]{[−α 0
0 −β

](

x − x∗
y − y∗

)

+
[

0 A

B 0

](

h(x(t − σ))− h(x∗)
g(y(t − τ))− g(y∗)

)}

+
{[−α 0

0 −β
](

x − x∗
y − y∗

)

+
[

0 A

B 0

](

h(x(t − σ))− h(x∗)
g(y(t − τ))− g(y∗)

)}T

×
[

ξ 0
0 η

](

x − x∗
y − y∗

)

+
(

x − x∗
y − y∗

)[

λ 0
0 μ

](

x − x∗
y − y∗

)

−
(

h(x(t − σ))− h(x∗)
g(y(t − τ))− g(y∗)

)[

λ 0
0 μ

](

h(x(t − σ))− h(x∗)
g(y(t − τ))− g(y∗)

)

= 2

(

x − x∗
y − y∗

)T [−αξ 0
0 −βη

](

x − x∗
y − y∗

)

+
(

x − x∗
y − y∗

)T [
λ 0
0 μ

](

x − x∗
y − y∗

)

+
(

x − x∗
y − y∗

)T [
0 ξA

ηB 0

](

h(x(t − σ(t)))− h(x∗)
g(y(t − τ(t)))− g(y∗)

)

+
(

h(x(t − σ(t)))− h(x∗)
g(y(t − τ(t)))− g(y∗)

)T [
0 ηBT

ξAT 0

](

x − x∗
y − y∗

)

−
(

h(x(t − σ(t)))− h(x∗)
g(y(t − τ(t)))− g(y∗)

)T [
In 0
0 Im

](

h(x(t − σ(t)))− h(x∗)
g(y(t − τ(t)))− g(y∗)

)

=
⎛

⎜
⎝

x − x∗
y − y∗

h(x(t − σ(t)))− h(x∗)
g(y(t − τ(t)))− g(y∗)

⎞

⎟
⎠

T ⎡

⎢
⎣

−2ξα + λ 0 0 ξA

0 −2ηβ + μ ηB 0
0 BT η −λ 0

AT ξ 0 0 −μ

⎤

⎥
⎦

(10.7.17)×
⎛

⎜
⎝

x − x∗
y − y∗

h(x(t − σ(t)))− h(x∗)
g(y(t − τ(t)))− g(y∗)

⎞

⎟
⎠ < 0 for x �= x∗ or y �= y∗.

This means that the equilibrium point x = x∗, y = y∗ is globally asymptotically
stable. The proof of the theorem is complete. �
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EXAMPLE 10.7.3. Let us consider a 4-dimensional BAM neural network with
delays:

dx1

dt
= −2x1 + g1

(

y1(t − τ11)
)+ 1

2
g2
(

y2(t − τ12)
)+ I1,

dx2

dt
= −3x2 + 3

2
g1
(

y1(t − τ21)
)− g2

(

y2(t − τ22)
)+ I2,

dy1

dt
= −3y1 − 3

2
h1
(

x1(t − σ11)
)+ h2

(

x2(t − σ22)
)+ J1,

(10.7.18)
dy2

dt
= −2y2 − h1

(

x1(t − σ21)
)+ 1

2
h2
(

x2(t − σ22)
)+ J2.

Assume that gi and hj satisfy

0 <
dgi(ξ)

dξ
� 1, 0 <

dhj (ξ)

dξ
� 1, i, j = 1, 2,

and τij > 0, σij > 0, i, j = 1, 2, are time delays. By Theorem 10.7.1, we have

α = diag(α1, α2) = diag(2, 3), β = diag(β1, β2) = diag(3, 2),

A =
[

1 0.5
1.5 −1

]

, B =
[−1.5 1
−1 0.5

]

.

Obviously,

Ω =
[

α −|A|
−|B| β

]

4×4
=
⎡

⎢
⎣

2 0 −1 −0.5
0 3 −1.5 −1
−1.5 −1 3 0
−1 −0.5 0 2

⎤

⎥
⎦

is an M matrix.
According to Theorem 10.7.1, we know that the equilibrium point x = x∗, y =

y∗ of system (10.7.18) exists uniquely, and is globally asymptotically stable.

EXAMPLE 10.7.4. For a comparison, we consider another 4-dimensional BAM
neural network with delays:

(

ẋ1
ẋ2

)

=
[−1 0

0 −1

](

x1
x2

)

+
[

0.5 −0.5
0.5 0.5

](

g1(y1(t − τ1))

g2(y2(t − τ2))

)

+
(

I1
I2

)

,

(

ẏ1
ẏ2

)

=
[−1 0

0 −1

](

y1
y2

)

+
[

0.5 0.5
−0.5 0.5

](

h1(x1(t − σ1))

h2(x2(t − σ2))

)

(10.7.19)+
(

J1
J2

)

,
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where

α = β =
[

1 0
0 1

]

, A =
[

0.5 −0.5
0.5 0.5

]

, B =
[

0.5 0.5
−0.5 0.5

]

.

Since

Ω =
[

α −|A|
−|B| β

]

4×4
=
⎡

⎢
⎣

1 0 −0.5 −0.5
0 1 −0.5 −0.5
−0.5 −0.5 1 0
−0.5 −0.5 0 1

⎤

⎥
⎦

is not an M matrix, Theorem 10.7.1 cannot be applied here. However, the condi-
tions in Theorem 10.7.2 are satisfied. In fact, if we take

ξ = η =
[

1 0
0 1

]

,

then it is easy to verify that Q is negative definite. Hence, the equilibrium point
of system (10.7.10) exists uniquely and is globally asymptotically stable.

10.8. Exp. stability and exp. periodicity of DNN with Lipschitz
type activation function

In this section, we consider the model of neural networks with delays, described
by the following DDEs:

dyi

dt
= −diyi +

n
∑

j=1

aijfj
(

yj
(

t − τj (t)
))+ Ii, t � 0,

(10.8.1)yi(t) = φi(t), −τ � t � 0,

where 0 � τj (t) � τj = constant, τ̇j (t) � 0, j = 1, 2, . . . , n, and

fi(·) ∈ L := {yi | 0 � ẏi � L}.

DEFINITION 10.8.1. An equilibrium point y∗ ∈ Rn of system (10.8.1) is said to
be globally exponentially stable if there exist two positive constants α � 1 and
β > 0 such that for any y0 ∈ Rn and t ∈ [0,+∞),

∥
∥y(t)− y∗

∥
∥ � α

∥
∥φ − y∗

∥
∥e−βt .

THEOREM 10.8.2. Suppose g ∈ L and DL−1 − |A| is an M matrix, where
D = diag(d1, . . . , dn). Then, the equilibrium point y∗ of the delayed neural sys-
tem (10.8.1) is globally exponentially stable.
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PROOF. Since DL−1−|A| is an M matrix, the neural system (10.8.1) has unique
equilibrium point y∗. Let xi = yi − y∗i and gj (xj ) = fj (xj + y∗j )− fj (y

∗
j ), then

system (10.8.1) can be rewritten as

(10.8.2)
dxi

dt
= −dixi +

n
∑

j=1

aij gj
(

xj
(

t − τj (t)
))

, t � 0,

and now x∗ = 0 is the unique equilibrium point of system (10.8.2).
Since DL−1 − |A| is an M matrix, there exists a positive definite matrix Λ =

diag(λ1, . . . , λn) such that

λidi − Li

n
∑

j=1

λj |aji | > 0 for i = 1, 2, . . . , n.

Thus, we can choose a small ε > 0 such that

λi(di − ε)− Li

n
∑

j=1

λj e
ετ |aji | > 0 for i = 1, 2, . . . , n,

where τ = max1�i�n τi . We use the following positive definite and radially un-
bounded Lyapunov function:

V (x) =
n
∑

i=1

λi

(

|xi |eετ +
n
∑

j=1

|aij |
t∫

t−τj

∣
∣gj

(

xj (s)
)∣
∣es+ετj ds

)

.

Computing the right-upper derivative along the solution of (10.8.2), we have

D+V
(

x(t)
)∣
∣
(10.8.2)

=
n
∑

i=1

λi sign
(

xi(t)
)

[

−dixi(t)+
n
∑

j=1

aij gj
(

xj (t − τj )
)

]

eεt

+
n
∑

i=1

λi
∣
∣xi(t)

∣
∣εeεt +

n
∑

i=1

n
∑

j=1

λi |aij |
(∣
∣gj

(

xj (t)
)∣
∣et+ετj

− ∣
∣gj

(

xj (t − τj )
)∣
∣eεt

(

1− τ̇j (t)
))

�
n
∑

i=1

λi

[

(ε − di)|xi | +
n
∑

j=1

|aij |eετ
∣
∣gj (xj )

∣
∣

]

eεt

� −
n
∑

i=1

[

λi(ε − di)−
n
∑

j=1

eετ |aji |Liλj
]

|xj |eεt

(10.8.3)� 0.
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Therefore,

V (t) � V (0), t � 0,

from which we obtain

eεt
(

min
1�i�n

λi

) n
∑

i=1

∣
∣yi − y∗i

∣
∣ � V (t)

and

V (0) =
n
∑

i=1

λi

[

∣
∣xi(0)

∣
∣+

n
∑

j=1

|aij |
0∫

−τj (t)

∣
∣gj

(

xj (s)
)∣
∣es+ετj ds

]

�
[

max
1�i�n

λi + Lτeετ
n
∑

i=1

λi max
1�i�n

|aij |
]

∥
∥φ − y∗

∥
∥,

where L = max1�i�n Li is a constant. Therefore, we obtain

(10.8.4)
∥
∥y(t)− y∗

∥
∥

1 � α
∥
∥φ − y∗

∥
∥

1e
−εt ∀t � 0,

in which

α = max1�i�n λi + Lτeετ
∑n

i=1 λi max1�i�n |aij |
min1�i�n λi

� 1.

It then follows from (10.8.4) that the equilibrium point of (10.8.1) is globally
exponentially stable for any delays, in view of the equivalence of the norms ‖x‖1

and ‖x‖. �

REMARK 10.8.3. Theorem 10.8.2 improves and generalizes the result in [349]
(see Theorem 2 therein). Here, we have used variable time delays to replace the
constant delays used in [349].

THEOREM 10.8.4. (See [266].) Assume that there exist constants αi > 0, βi >
0, i = 1, 2, . . . , n, such that the matrix

W

=
[

diag(−2β1d1 + α1L
2
1, . . . ,−2β1d1 + αnL

2
n) βiaij + βjaji

(βiaij + βjaji)
T diag(−α1, . . . ,−αn)

]

2n×2n

is negative definite. Then the equilibrium y = y∗ of system (10.8.1) is globally
exponentially stable. Here, β = diag(β1, . . . , βn).
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PROOF. Construct the Lyapunov functional

(10.8.5)V
(

x(t), t
) =

n
∑

i=1

βix
2
i (t)+

n
∑

i=1

αi

t∫

t−τj (t)
g2
j

(

x(s)
)

ds.

Obviously, V (x(t), t) is positive definite and radially unbounded. Calculating the
derivative of V (x(t), t) along the solution of (10.8.2) results in

dV

dt

∣
∣
∣
∣
(10.8.2)

= −2
n
∑

i=1

βidix
2
i (t)+ 2

n
∑

i=1

βixi(t)

n
∑

j=1

aij gj
(

xj
(

t − τj (t)
))

+
n
∑

i=1

αi
[

g2
i

(

xi(t)
)− g2

i

(

xi
(

t − τi(t)
))(

1− τ̇j (t)
)]

� −
n
∑

i=1

(

2βidi − αiL
2
i

)

x2
i (t)

+ 2
n
∑

i=1

βixi(t)

n
∑

j=1

aij gj
(

xj
(

t − τj (t)
))

−
n
∑

i=1

αig
2
i

(

xi
(

t − τi(t)
))

=
(

x(t)

g(x(t − τ(t)))

)T

W

(

x(t)

g(x(t − τ(t)))

)

(10.8.6)� −μ[xT (t)x(t)+ gT
(

x
(

t − τ(t)
))

g
(

x
(

t − τ(t)
))]

,

where W is defined in the theorem, and −μ is the maximum eigenvalue of matrix
W . Note that W is the coefficient matrix of (10.8.6).

Let ε be the unique positive solution to the equation

max
1�i�n

(

εβi + εαiτie
ετiL2

i

) = μ.

Then the derivative of eεtV (x(t), t) along the solution of system (10.7.2) is given
by

deεtV (x(t), t)

dt

∣
∣
∣
∣
(10.8.2)

� eεt ε

[
n
∑

i=1

βix
2
i (t)+

n
∑

i=1

αi

t∫

t−τi (t)
g2
i

(

xi(s)
)

ds

]

− eεtμ

[
n
∑

i=1

x2
i (t)+

n
∑

i=1

g2
i

(

xi
(

t − τi(t)
))

]
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� eεtμ

[

ε

n
∑

i=1

αi

t∫

t−τi
g2
i

(

xi(s)
)

ds

(10.8.7)−
n
∑

i=1

(μ− εβi)x
2
i (t)

]

.

Integrating both sides of (10.8.7) from 0 to t1 yields

eεt1V
(

x(t1), t1
)

� V
(

x(0), 0
)+

t1∫

0

eεt
n
∑

i=1

αi

t∫

t−τi
g2
i

(

xi(s)
)

ds dt

(10.8.8)−
t1∫

0

(μ− εβi)x
2
i (s)e

εt ds.

Now, we estimate the integral

t1∫

0

eεt εαi

t∫

t−τi
f 2
i

(

xi(s)
)

ds dt.

By the condition |gi(xi)| � Li |xi | and changing the order of integration, we have

t1∫

0

eεt εαi

t∫

t−τi
g2
i

(

xi(s)
)

ds dt

� εαi

t1∫

−τi

( min[s+τi ,t1]∫

max[s,0]
eεt dt

)

L2
i

∣
∣xi(s)

∣
∣
2
ds

� εαi

t1∫

−τi
τie

ε(s+τi )L2
i

∣
∣xi(s)

∣
∣
2
ds

� εαi

0∫

−τi
τie

ε(s+τi )L2
i

∣
∣xi(s)

∣
∣
2
ds + εαi

t1∫

0

τie
ε(s+τi )L2

i

∣
∣xi(s)

∣
∣
2
ds

(10.8.9)� εαiτie
ετi

[ 0∫

−τi
L2
i

∣
∣xi(s)

∣
∣
2
ds + L2

i

t1∫

0

L2
i e

εs
∣
∣xi(s)

∣
∣
2
ds

]

.
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Now, substituting the inequalities (10.8.9) and (10.8.8) yields

eεt1V
(

x(t1), t1
)

� V
(

x(0), 0
)+

n
∑

i=1

εαiτie
ετi

0∫

−τi
L2
i

∣
∣xi(s)

∣
∣
2
ds

−
0∫

−τi

n
∑

i=1

(

μ− εβi − εαiτie
ετiL2

i

)

eεs
∣
∣xi(s)

∣
∣2 ds

� V
(

x(0), 0
)+

n
∑

i=1

εαiτie
ετi

0∫

−τi
L2
i

∣
∣xi(s)

∣
∣
2
ds

� M̄ = some positive constant.

Therefore, the following estimation is satisfied for any t1 > 0:

eεt1
n
∑

i=1

βix
2
i (t) � eεt1V

(

x(t1), t1
)

� M̄,

which implies that the equilibrium point of system (10.8.1) is globally exponen-
tially stable, and the proof is complete. �

REMARK 10.8.5. It should be noted that the method used in proving Theo-
rem 10.8.4 is different from that of Theorem 10.8.2 because the two functionals
employed in the two theorems are different.

In the following, we consider the model of continuous-time neural network
with delays described by the following differential equations with delay [373]:

dxi(t)

dt
= −dixi(t)+

n
∑

i=1

diaij gj
(

xi(t)
)+

n
∑

i=1

bij gj
(

xj (t − τj )
)+ Ii(t),

t � 0,

(10.8.10)xi(t) = φi(t), −τ � t � 0, i = 1, 2, . . . , n.

Define xt (θ) = x(t + θ), θ ∈ [−τ, 0], t � 0. Let

(10.8.11)‖xt‖ = sup
−τ�θ�0

n
∑

i=1

∣
∣xi(t + θ)

∣
∣.

DEFINITION 10.8.6. The neural system (10.8.10) is said to be exponentially pe-
riodic if there exists one ω-periodic solution of the system and all other solutions
of the system converge exponentially to it as t →+∞.
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Let C = C([−τ, i], Rn) be the Banach space of all continuous functions from
[−τ, 0] to Rn with the topology of uniform convergence. For any φ ∈ C, let

‖φ‖ = sup
−τ�t�0

n
∑

i=1

∥
∥φi(t)

∥
∥.

Given any φ,ψ ∈ C, let x(t, φ) = (x1(t, φ), x2(t, φ), . . . , xn(t, φ))
T and

x(t, φ) = (x1(t, ψ), x2(t, ψ), . . . , xn(t, ψ))
T be the solutions of (10.8.10) start-

ing from φ and ψ , respectively.

THEOREM 10.8.7. Suppose g ∈ L. Let M = (mij )n×n, where mij = |aij | +
|bij |. If DL−1 −M is an M matrix, where D = diag(d1, . . . , dn), then for every
periodic input I (·), the delayed neural system (10.8.10) is exponentially periodic.

PROOF. Define xt (φ) = x(t + θ, φ), θ ∈ [−τ, 0], then xt (φ) ∈ C for all t � 0.
Thus, it follows from (10.8.10) that

d

dt

(

xi(t, φ)− xi(t, φ)
) = −(xi(t, φ)− xi(t, φ)

)

+
n
∑

j=1

aij
(

gj
(

xj (t, φ)
)− gj

(

xj (t, φ)
))

(10.8.12)+
n
∑

j=1

bij
(

gj
(

xj (t − τj , φ)
)− gj

(

xj (t − τj , φ)
))

for t � 0, i = 1, 2, . . . , n. By noticing g ∈ L, it is easy to deduce that there exist
ki (0 � ki � Li) such that |gi(xi(t, φ))− gi(xi(t, ψ))| � ki |xi(t, φ)− xi(t, ψ)|.

Since DL−1 −M is an M matrix, there exists a positive diagonal matrix Λ =
diag(λ1, . . . , λn) such that

λidi − kiλi |aii | − ki

n
∑

j=1,j �=i
λj |aji | − ki

n
∑

j=1

λj |bji | > 0,

(10.8.13)i = 1, 2, . . . , n,

and there exists a constant ε > 0 such that

Fi(ε) = λi(di − ε)− kiλi |aii | − ki

n
∑

j=1,j �=i
λj |aji |

(10.8.14)− kie
ετ

n
∑

j=1

λj |bji | > 0, i = 1, 2, . . . , n.
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Now, define a positive definite and radially unbounded Lyapunov function as
follows:

V (t) =
n
∑

i=1

λi

(

∣
∣xi(t, φ)− xi(t, ψ)

∣
∣eεt +

n
∑

j=1

|bji |
t∫

t−τj

∣
∣gj

(

xj (s, φ)
)

(10.8.15)− gj
(

xj (s, ψ)
)∣
∣eε(s+τj ) ds

)

.

Then computing the right-upper derivative of V (t) along the solution of (10.8.12)
for t � 0 yields

dV

dt

∣
∣
∣
∣
(10.8.12)

=
n
∑

i=1

λi sign
(

xi(t, φ)− xi(t, ψ)
)

[

−(dixi(t, φ)− dixi(t, ψ)
)

+
n
∑

i=1

aij
(

gj
(

xj (t, φ)
)− gj

(

xj (t, ψ)
))

+
n
∑

j=1

bij
(

gj
(

xj (t − τj , φ)
)− gj

(

xj (t − τj , ψ)
))

]

eεt

+
n
∑

i=1

λi
∣
∣xi(t, φ)− xi(t, ψ)

∣
∣εeεt

+
n
∑

i=1

n
∑

j=1

λi |bij |
[∣
∣gj

(

xj (t, φ)
)− gj

(

xj (t, ψ)
)∣
∣eε(s+τj )

− ∣
∣
(

gj
(

xj (t − τj , φ)
)− gj

(

xj (t − τj , ψ)
))∣
∣eεt

]

=
n
∑

i=1

λi

[

−di
∣
∣xi(t, φ)− xi(t, ψ)

∣
∣

+
n
∑

i=1

|aij |
∣
∣gj

(

xj (t, φ)
)− gj

(

xj (t, ψ)
)∣
∣

+
n
∑

j=1

|bij |
∣
∣gj

(

xj (t, φ)
)− gj

(

xj (t, ψ)
)∣
∣

]

eεt

+
n
∑

i=1

λi
∣
∣xi(t, φ)− xi(t, ψ)

∣
∣εeεt

+
n
∑

i=1

n
∑

j=1

λi |bij |
[∣
∣gj

(

xj (t, φ)
)− gj

(

xj (t, ψ)
)∣
∣eε(s+τj )
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− ∣
∣
(

gj
(

xj (t − τj , φ)
)− gj

(

xj (t − τj , ψ)
))∣
∣eεt

]

�
n
∑

i=1

λi

[

−di
∣
∣xi(t, φ)− xi(t, ψ)

∣
∣

+
n
∑

j=1

|aij |
∣
∣gj

(

xj (t, φ)
)− gj

(

xj (t, ψ)
)∣
∣
]

eεt

+
n
∑

i=1

λi
∣
∣xi(t, φ)− xi(t, ψ)

∣
∣εeεt

+
n
∑

i=1

n
∑

j=1

λi |bij |
[∣
∣gj

(

xj (t, φ)
)− gj

(

xj (t, ψ)
)∣
∣eε(s+τj )

]

� −
n
∑

i=1

[

λi(di − ε)− kiλi |aii | − ki

n
∑

j=1,j �=i
λj |aji |

− kie
ετ

n
∑

j=1

λj |bji |
]

∣
∣xi(t, φ)− xi(t, ψ)

∣
∣ � 0.

Therefore,

(10.8.16)V (t) � V (0), t � 0.

From (10.8.16), we obtain

eεt
(

min
1�i�n

λi

) n
∑

i=1

∣
∣xi(t, φ)− xi(t, ψ)

∣
∣ � V (t)

and

V (0) =
n
∑

i=1

λi

[

∥
∥xi(0, φ)− xi(0, ψ)

∥
∥

+
n
∑

j=1

|bij |
0∫

−τj

∣
∣gj

(

xj (s, φ)
)− gj

(

xj (s, ψ)
)∣
∣es+ετj ds

]

�
[

max
1�i�n

λi + Lmaxτe
ετ

n
∑

i=1

λi max
1�i�n

|bij |
]

‖φ − ψ‖,

where Lmax = max1�i�n Li is a constant. Therefore, from (10.8.16) we obtain

(10.8.17)
n
∑

i=1

∣
∣xi(t, φ)− xi(t, ψ)

∣
∣ � α‖φ − ψ‖1e

−εt ∀ t � 0,
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in which

α = max1�i�n λi + Lmaxτe
ετ
∑n

i=1 λi max1�i�n |bij |
min1�i�n λi

� 1.

It then follows from (10.8.17) that

(10.8.18)αe−ε(mω−τ) � 1

4
.

Define a Poincaré mapping H :C → C by Hφ = xω(φ). Then it follows
from (10.8.10) that

(10.8.19)
∥
∥Hmφ −Hmψ

∥
∥ � 1

4
‖φ − ψ‖.

This implies that Hm is a contraction mapping. Therefore, there exists a unique
fixed point φ∗ ∈ C such that Hmφ∗ = φ∗. So, Hm(Hφ∗) = H(Hmφ∗) = Hφ∗.
This shows that Hφ∗ ∈ C is also a fixed point of Hm, hence, Hmφ∗ = φ∗, i.e.,
xω(φ

∗) = φ∗. Let x(t, φ∗) be the solution of (10.8.12) through (0, φ∗). By using
I (t + ω) = I (t) for t � 0, x(t + ω, φ∗) is also a solution of (10.8.12). Note that
xt+ω(φ∗) = xt (xω(φ

∗)) = xt (φ
∗) for t � 0, then x(t + ω, φ∗) = x(t, φ∗) for

t � 0. This shows that x(t, φ∗) is a periodic solution of (10.8.12) with period ω.
From (10.8.18), it is easy to see that all other solutions of (10.8.12) converge to
this periodic solution exponentially as t →+∞.

The proof is finished. �

10.9. Stability of general ecological systems and neural
networks

Stability of general neural networks and ecological systems has been investigated
by using the Lyapunov function method and the LaSalle invariant principle [87].
However, it has been noted that the LaSalle invariant principle can only be applied
to orbits which tend to a maximal invariant set. Because the structure of a maximal
invariant set is very complex in general, for any known equilibrium x = x∗, its
stability cannot be determined by using these methods.

In this section, we present a number of methods and results concerning the
Lyapunov asymptotic stability of a specific equilibrium position for a class of
general neural networks and ecological systems.

Consider the following general dynamical system [87]:

(10.9.1)
dx

dt
= A(x)

[

B(x)− CD(x)
]

,

where

A(x) = diag
(

a1(x1), . . . , an(xn)
)

,
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B(x) = (

b1(x1), . . . , bn(xn)
)T
,

C = (cij )n×n,

D(x) = (

d1(x1), . . . , dn(xn)
)T
,

and ai(xi), bi(xi) ∈ [R+, R], ai(xi) > 0 for xi > 0, cij are constants.
In [87] it has been shown that system (10.9.1) includes the Volterra–Lotka

systems, the Gilpin and Ayala models of competition, the Eigen and Schuster
equation, and many other nonlinear neural networks as specific examples.

Let x = x∗ > 0 (i.e., x∗i > 0, i = 1, 2, . . . , n) be an equilibrium position
of (10.9.1). Thinking of real biological systems, we only study the stability of
system (10.9.1) in Rn+ = {x: xi > 0, i = 1, 2, . . . , n}.

Rewrite system (10.9.1) as

(10.9.2)
dx(t)

dt
= A(x)

[(

B(x)− B
(

x∗
))− (

CD(x)− CD
(

x∗
))]

.

Cohen and Grossberg [87] used the LaSalle invariant principle and the Lyapunov
function of the form:

(10.9.3)V (x) = −
n
∑

i=1

xi∫

0

bi(ξi)ḋi(ξi) dξi + 1

2

n
∑

j,k=1

cjkdj (xj )dk(xk),

to analyze the stability of (10.9.1). However, for a specific equilibrium position
x = x∗, this method cannot be used to determine its Lyapunov stability. A further
study on this topic is given below [259].

THEOREM 10.9.1. Assume that cij = cji, i, j = 1, 2, . . . , n, di(xi) ∈ C2,
bi(xi) ∈ C1, i = 1, 2, . . . , n, ḋi (xi) > 0, i = 1, 2, . . . , n. If the matrixH(hij )n×n
is positive definite, then x = x∗ is asymptotically stable, where

hij = ∂2V

∂xi∂xj

∣
∣
∣
∣
x=x∗

= ∂2V

∂xj ∂xi

∣
∣
∣
∣
x=x∗

= hji .

PROOF. We construct a new Lyapunov function:

W(x) = V (x)− V
(

x∗
)

,

where V (x) is defined in (10.9.3) and V (x∗) is the value of V (x) at x = x∗.
Obviously, W(x∗) = 0 and

∂W

∂xi

∣
∣
∣
∣
x=x∗

= −bi
(

x∗i
)

ḋi
(

x∗i
)+

n
∑

j=1

cij ḋi
(

x∗i
)

dj
(

x∗j
)

= −ḋi
(

x∗i
)

[

bi
(

x∗i
)−

n
∑

j=1

cij dj
(

x∗i
)

]

= 0, i = 1, 2, . . . , n,
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∂W

∂xj

∣
∣
∣
∣
x=x∗

= −ḋj
(

x∗j
)

[

bj
(

x∗j
)−

n
∑

i=1

cij di
(

x∗i
)

]

= 0, j = 1, 2, . . . , n,

∂2W

∂x2
i

∣
∣
∣
∣
x=x∗

= −ḋ ′i (xi)
[

bi(xi)−
n
∑

j=1

cij dj (xj )

]∣
∣
∣
∣
∣
x=x∗

− ḋi (xi)
[

b′i (xi)− cii ḋi (xi)
]∣
∣
x=x∗

= −ḋi
(

x∗i
)[

g′i
(

x∗i
)− cii ḋi

(

x∗i
)] = hii, i = 1, 2, . . . , n,

hij = ∂2W

∂xi∂xj

∣
∣
∣
∣
x=x∗

= cij ḋj
(

x∗j
)

ḋi
(

x∗i
) = cji ḋi

(

x∗i
)

ḋj
(

x∗j
)

= ∂2W

∂xj∂xi

∣
∣
∣
∣
x=x∗

= hij , i �= j, i, j = 1, 2, . . . , n.

According to the minimax principle of multivariate function we know that the
positive (negative) definiteness of the matrix H(hij )n×n implies x = x∗ to be the
minimal (maximal) value point of W(x), i.e., W(x) is positive (negative) definite
in some neighborhood of x∗. In addition,

dW

dt

∣
∣
∣
∣
(10.9.1)

= −
n
∑

i=1

ai(xi)ḋi (xi)

[

bi(xi)−
n
∑

j=1

cij dj (xj )

]2

< 0

for x �= x∗.

By Lyapunov asymptotic stability, the conclusion is true. �

Now, we apply the Lyapunov first method to study the stability of x = x∗ of
system (10.9.1).

Let

yi =
xi∫

x∗i

dξi

αi(ξi)
, y∗i = 0.

Since ẏi = 1
αi(xi )

> 0, the inverse function, xi = ϕi(yi), exists. Note that x∗i =
ϕi(0). Set

b̃i (yi) := bi
(

ϕi(yi)
) = bi(xi),

d̃i(yi) := di
(

ϕi(yi)
)

) = di(xi).

Then (10.9.2) can be transformed into

(10.9.4)
dyi

dt
= b̃i (yi)− b̃i (0)−

n
∑

j=1

cij
[

d̃j (yi)− d̄j (0)
]

, i = 1, . . . , n.
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Applying the Lyapunov first method we study the stability of the zero solution,
y = 0, of (10.9.4).

Assume that by the first method, system (10.9.4) can be written as

(10.9.5)
dyi

dt
= ˙̃bi(0)yi −

n
∑

j=1

cij
˙̃
dj (0)yj :=

n
∑

j=1

σij yj , i, 2, . . . , n,

where

σij =
{

−cii ˙̃di(0)+ ˙̃bi(0), for i = j = 1, 2, . . . , n,

−cij ˙̃dj (0), for i �= j, i, j = 1, 2, . . . , n.

THEOREM 10.9.2. Suppose that ((−1)δij |σij |)n×n is a Hurwitz matrix. Then
σii < 0 (i = 1, 2, . . . , n) imply the zero solution of (10.9.5) to be asymptoti-
cally stable. If there are at least some σii i0 > 0 (1 � i0 � n), then the zero
solution of (10.9.5) is unstable.

PROOF. Since ((−1)δij |σij |)n×n is a Hurwitz matrix, there exist constants pi >
0 (i = 1, 2, . . . , n) such that

pj |σjj | −
n
∑

i=1
i �=j

pi |σij | > 0, j = 1, 2, . . . , n,

or

|sjj | −
n
∑

i=1
i �=j

pi

pj
|σij | > 0, j = 1, 2, . . . , n.

Let zi = piyi, i = 1, 2, 3, . . . , n. Then system (10.9.5) can be transformed
into

(10.9.6)
dzi

dt
=

n
∑

j=1

pi

pj
σij zj , j = 1, 2, . . . , n.

The eigenvalues of (σij )n×n and (σijpi/pj )n×n are the same. From Gershgorin’s
theorem, σij < 0 (i = 1, 2, . . . , n) imply that all eigenvalues of (σij )n×n are in
the open left half of the complex plane. Moreover, if there exist some σi0i0 > 0,
then at least there is an eigenvalue in the open right-half of the complex plane.
Hence, according to the first Lyapunov method we know that the conclusion
holds. �

In the following, we further study the asymptotic stability and globally asymp-
totic stability for a given equilibrium position of (10.9.1) [259].
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DEFINITION 10.9.3. A real matrix F(fij )n×n is said to be Lyapunov–Volterra
(L-V) stable (quasi Lyapunov–Volterra stable) if there exists a positive definite
matrix P = diag(pi, . . . , pn) such that PF + FT P is negative definite (negative
semi-definite). Here, FT is the transpose of F .

In the following, let x = x∗ > 0 be an equilibrium position of (10.9.1).

THEOREM 10.9.4. Suppose that

(1) (dj (xj )−dj (x∗j ))(xj −x∗j ) > 0 for xj �= x∗j (j = 1, 2, . . . , n) and (bj (xj )−
bj (x

∗
j ))(xj − x∗j ) < 0 for xj �= x∗j (j = 1, 2, . . . , n);

(2) the matrix −C = (−cij )n×n is quasi Lyapunov–Volterra stable.

Then x = x∗ of (10.9.2) is asymptotically stable.

PROOF. Since the matrix −C is quasi L-V stable, there exists P = diag(p1, . . . ,

pn) > 0 such that

−[PC + CT P
]

� 0.

Choose a Lyapunov function:

(10.9.7)V (x) =
n
∑

i=1

pi

xi∫

x∗i

(

di(xi)− di
(

x∗i
)) dxi

ai(xi)
.

Obviously, V (x∗) = 0. Due to condition (10.9.1) we known that V (x) is positive
definite in some neighborhood of x∗.

Computing the derivative D+V (x) of V (x) along the solution of (10.9.2) and
simplifying the result yields

dV

dt

∣
∣
∣
∣
(10.9.2)

= −1

2

(

d(x)− d
(

x∗
))T (

PC + CT P
)(

d(x)− d
(

x∗
))

(10.9.8)+
n
∑

i=1

pi
(

di(xi)− di
(

x∗i
))(

bi(xi)− bi
(

x∗i
))

�
n
∑

i=1

pi
(

bi(xi)− bi
(

x∗i
))

(10.9.9)< 0 for x, x �= x∗,
i.e., dV

dt
|(10.9.2) is negative definite in the same neighborhood of x∗. So the equi-

librium point x∗ of (10.9.1) is asymptotically stable. �

COROLLARY 10.9.5. Suppose condition (1) of Theorem 10.9.4 holds, and more-
over one of the following conditions is satisfied:
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(1) −C is Lyapunov–Volterra stable;
(2) C + CT is positive semi-definite;
(3) C = CT is positive semi-definite;
(4) C = −CT .

Then x = x∗ of (10.9.1) is asymptotically stable.

PROOF. Since any one of the conditions (1)–(4) implies −C to be quasi Lyapu-
nov–Volterra stable, condition (2) of Theorem 10.6.1 is satisfied. �

THEOREM 10.9.6. If the conditions of Theorem 10.9.4 hold, and

0∫

x∗i

(

di(xi)− di
(

x∗i
)) dxi

ai(xi)
=

+∞∫

x∗i

(

di(xi)− di
(

x∗i
)) dxi

ai(xi)
= +∞

is true, then x = x∗ of (10.9.1) is globally asymptotically stable in Rn+.

PROOF. Choose the positive definite Lyapunov function:

V (x) =
n
∑

i=1

pi

xi∫

x∗i

(

di(xi)− di
(

x∗i
)) dxi

ai(xi)
.

Obviously, V (t)→ +∞ as xi → +∞ or xi → 0+. Thus, the proof is similar
to that of Theorem 10.9.4. �

THEOREM 10.9.7. Assume that

(1) condition (1) of Theorem 10.9.4 holds;
(2) cii > 0 (i = 1, 2, . . . , n), ((−1)δij |cij |)n×n is a Hurwitz matrix, where

δij =
{

1 for i = j,

0 for i �= j.

Then x = x∗ is (10.9.1) is asymptotically stable.

PROOF. According to the property of M matrix, condition (1) is equivalent to the
statement that there exist constants pi > 0 (i = 1, 2, . . . , n) such that

−pjcjj +
n
∑

i=1
i �=j

pi |cij | < 0, j = 1, 2, . . . , n.
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Choose the positive definite Lyapunov function:

(10.9.10)V (x) =
n
∑

i=1

pi

∣
∣
∣
∣
∣

xi∫

x∗i

dxi

ai(xi)

∣
∣
∣
∣
∣
,

and then compute the Dini derivative, D+V (x), along the solution of (10.9.1) to
obtain

D+V (x)|(10.9.2) = lim
h→0+

V (x(t + h))− V (x(t))

h

=
n
∑

i=1

pi sgn
(

xi − x∗i
) 1

ai(xi)

dxi

dt

=
n
∑

i=1

pi sgn
(

xi − x∗i
)

[

bi(xi)− bi
(

x∗i
)

−
n
∑

j=1

cij
(

dj (xj )− dj
(

x∗j
))

]

�
n
∑

j=1

[

−pjcjj +
n
∑

i=1
i �=j

pi |xij |
]

∣
∣dj (xj )− dj

(

x∗j
)∣
∣

+
n
∑

i=1

pi
(

bi(xi)− bi
(

x∗i
))

sgn
(

x1 − x∗i
)

< 0 for x �= x∗,

which clearly indicates that x = x∗ is asymptotically stable. �

THEOREM 10.9.8. If the conditions in Theorem 10.9.7 are satisfied, and in ad-
dition,

∣
∣
∣
∣
∣

0∫

x∗i

dxi

ai(xi)

∣
∣
∣
∣
∣
=

+∞∫

x∗i

dxi

ai(xi)
= +∞,

then x = x∗ of (10.9.2) is globally asymptotically stable in Rn+.

PROOF. Again using the Lyapunov function (10.9.6), by V (x)→ +∞ as xi →
0+ (or xi → +∞), one can follow the proof of Theorem 10.9.7 to complete the
proof. �
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COROLLARY 10.9.9. If condition (1) of Theorem 10.9.7 holds, and in addition
one of the following conditions is satisfied:

(1) cjj >
∑n

i=1
i �=j

|cij |, j = 1, 2, . . . , n;

(2) cii >
∑n

j=1
j �=i

|cij |, i = 1, 2, . . . , n;

(3) cii >
1
2

∑n
j=1
j �=i

(|cij | + |cji |), j = 1, 2, . . . , n;

(4)
∑n

i,j=1(
(1−δij )cij

cii
)2 < 1, cii > 0, i = 1, 2, . . . , n;

then x = x∗ of (10.9.2) is asymptotically stable. Furthermore, if

(10.9.11)

∣
∣
∣
∣
∣

0∫

x∗i

dxi

ai(xi)

∣
∣
∣
∣
∣
=

+∞∫

x∗i

dxi

ai(xi)
= +∞,

then x = x∗ is globally asymptotically stable in Rn+.

PROOF. By the property of M matrix, any of the conditions (1)–(4) implies con-
dition (2) of Theorem 10.9.7. So the conclusion of Corollary 10.9.9 is true. �

THEOREM 10.9.10. Suppose that

(1) condition (1) of Theorem 10.9.4 holds;
(2) there exist constants pi > 0 (i = 1, 2, . . . , n) such that

pjcjj −
n
∑

i=1
i �=j

pi |cij | � 0.

Then x = x∗ is asymptotically stable. Furthermore, if

∣
∣
∣
∣
∣

0∫

x∗i

dxi

ai(xi)

∣
∣
∣
∣
∣
=

+∞∫

x∗i

dxi

ai(xi)
= +∞,

then x = x∗ is globally asymptotically stable in Rn+.

PROOF. Construct the positive definite Lyapunov function:

V (x) =
n
∑

i=1

pi

∣
∣
∣
∣
∣

xi∫

x∗i

dxi

ai(xi)

∣
∣
∣
∣
∣
.
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Then, we have

D+V (x) =
n
∑

i=1

pi
dxi

dt
sgn

(

xi − x∗i
)

�
N
∑

j=1

[

−pjcjj +
n
∑

i=1
i �=j

pi |cij |
]

∣
∣dj

(

xj − dj
(

x∗j
))∣
∣

+
n
∑

i=1

pi
(

bi(xi)− bi
(

x∗i
))

sgn
(

xi − x∗i
)

�
n
∑

i=1

pi
(

bi(xi)− bi
(

x∗i
))

sgn
(

xi − x∗i
)

(10.9.12)< 0 for x �= x∗.

So the conclusion is true. �

THEOREM 10.9.11. Suppose the following conditions are satisfied:

(1) condition (1) of Theorem 10.9.4 holds with cii > 0, i = 1, 2, . . . , n;

(2)

0∫

x∗i

(

bi(xi)− bi
(

x∗i
)) dxi

ai(xi)
=

+∞∫

x∗i

(

bi(xi)− bi
(

x∗i
)) dxi

ai(xi)
= −∞;

(3) there exist constants pi > 0 (i = 1, 2, . . . , n) such that the matrix G =
(gij )n×n is negative semi-definite, where

gii =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

−pi, i = j = 1, 2, . . . , n,

1

2

(
pj (cji(di(xi)− di(x

∗
i )))

bi(xi)− bi(x
∗
i )

+ pi(cij (dj (xj )− dj (x
∗
j )))

bj (xj )− bj (x
∗
j )

)

,

i �= j, i, j = 1, 2, . . . , n.

Then x = x∗ is globally asymptotically stable in Rn+.

PROOF. We take the positive definite and radially unbounded Lyapunov function:

(10.9.13)V (x) = −
n
∑

i=1

pi

xi∫

x∗i

(

bi(xi)− bi
(

x∗i
)) dxi

ai(xi)
.
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Then differentiating V with respect to time t along the solution of (10.9.2) yields

dV

dt

∣
∣
∣
∣
(10.9.2)

= −
n
∑

i=1

pi
[

bi(xi)− bi
(

x∗i
)]2

+
n
∑

i=1

ciipi
[

bi(xi)− bi
(

x∗i
)][

di(xi)− di
(

x∗i
)]

+
n
∑

i,j=1

1

2

{

pi
[

bi(xi)− bi
(

x∗i
)]

cij
[

dj (xi)− dj
(

x∗j
)]

+ pj
[

bj (xj )− bj
(

x∗j
)]

cji
[

di(xi)− di
(

x∗i
)]}

� −
n
∑

i=1

pi
[

bi(xi)− bi
(

x∗i
)]2

+
n
∑

i=1

ciipi
[

bi(xi)− bi
(

x∗i
)][

di(xi)− di
(

x∗i
)]

+
n
∑

i,j=1

1

2

[∣
∣
∣
∣

picij (dj (xj )− dj (x
∗
j ))

bj (xj )− bj (x
∗
j )

+ pjcji(di(xi)− di(x
∗
i ))

bi(xi)− bi(x
∗
i )

∣
∣
∣
∣

× ∣
∣bj (xj )− bj

(

x∗j
)∣
∣
∣
∣bi(xi)− bi

(

x∗i
)∣
∣

]

=
n
∑

i=1

ciipi
[

bi(xi)− bi
(

x∗i
)][

di(xi)− di
(

x∗i
)]

+
(
b1(x1)− b1(x

∗
1 )· · ·

bn(xn)− bn(x
∗
n)

)T

G

(
b1(x1)− b1(x

∗
1 )· · ·

bn(xn)− bn(x
∗
n)

)

�
n
∑

i=1

ciipi
[

bi(xi)− bi
(

x∗i
)][

di(xi)− di
(

x∗i
)]

(10.9.14)< 0 for x �= 0.

Consequently, x = x∗ is globally asymptotically stable in Rn+. �

THEOREM 10.9.12. Suppose that
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(1) condition (1) of Theorem 10.9.4 holds, and
∣
∣
∣
∣
∣

0∫

x∗i

dxi

ai(xi)

∣
∣
∣
∣
∣
=

+∞∫

x∗i

dxi

ai(xi)
= +∞;

(2)

∣
∣
∣
∣

cij (dj (xj )− dj (x
∗
j ))

bj (xj )− bj (x
∗
j )

∣
∣
∣
∣
� aij = const., i �= j, i, j = 1, 2, . . . , n;

(3) there exist constants pi > 0 (i = 1, 2, . . . , n) such that

pj −
n
∑

i=1,i �=j
piaij � 0.

Then the solution x = x∗ is globally asymptotically stable in Rn+.

PROOF. Choosing the Lyapunov function as given in (10.9.9), we have

D+V (x)|(10.9.1)

=
n
∑

i=1

pi
dxi

dt
sgn

(

xi − x∗i
)

� −
n
∑

i=1

picii
∣
∣di(xi)− di

(

x∗i
)∣
∣−

n
∑

i=1

pi
∣
∣bi(xi)− bi

(

x∗i
)∣
∣

−
n
∑

i=1

pi

n
∑

i=1
i �=j

cij
∣
∣dj (xj )− dj

(

x∗j
)∣
∣

� −
n
∑

i=1

picii
∣
∣di(xi)− di

(

x∗i
)∣
∣

−
n
∑

j=1

[

pj −
n
∑

i=1
i �=j

pi |cij (dj (xj )− dj (x
∗
j ))|

|bj (xj − bj (x
∗
j ))|

]

[∣
∣bj (xj )− bj

(

x∗j
)∣
∣
]

� −
n
∑

i=1

picii
∣
∣di(xi)− di

(

x∗i
)∣
∣

−
n
∑

j=1

[

pj −
n
∑

i=1
i �=j

pi |aij |
]

∣
∣bj (xj )− bj

(

x∗j
)∣
∣

(10.9.15)� −
n
∑

i=1

picii
∣
∣di(xi)− di

(

x∗i
)∣
∣ < 0 for x = x∗.
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Hence, the conclusion is true. �

THEOREM 10.9.13. Assume that

(1) condition (1) of Theorem 10.9.4 holds, with cii � 0, i = 1, 2, . . . , n;
(2) it holds that

∣
∣
∣
∣
∣

0∫

x∗i

[

cii
(

di(xi)− di
(

x∗i
))+ bi(xi)− bi

(

x∗i
)] dxi

ai(xi)

∣
∣
∣
∣
∣

=
+∞∫

x∗i

[

cii
(

di(xi)− di
(

x∗i
))+ bi(xi)− bi

(

x∗i
)] dxi

ai(xi)
= +∞;

(3) there exist constants pi > 0 (i = 1, 2, . . . , n) such that the matrixW(ωij )n×n
is negative definite, where

ωij =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−pi, i = j = 1, 2, . . . , n,

1

2

∣
∣
∣
∣

pixij (dj (xj )− dj (x
∗
j ))

cjj (dj (xj )− dj (x
∗
j ))+ bj (xj )− bj (x

∗
j )

+ pjxji(di(xi)− di(x
∗
i ))

cii(di(xi)− di(x
∗
i ))+ bi(xi)− bi(x

∗
i )

∣
∣
∣
∣
,

i �= j, i, j = 1, 2, . . . , n.

Then x = x∗ is globally asymptotically stable.

PROOF. Choosing the Lyapunov function:

V (x) =
n
∑

i=1

pi

xi∫

x∗i

[

cii
(

di(xi)− di(x
∗
i )
)+ bi(xi)− bi

(

x∗i
)]

dxi,

we obtain

dV

dt

∣
∣
∣
∣
(10.9.1)

=
n
∑

i=1

pi
[

cii
(

di(xi)− di
(

x∗i
))+ bi(xi)− bi

(

x∗i
)]2

+
n
∑

i=1

pi
[

cii
(

di(xi)− di
(

x∗i
))+ bi(xi)− bi

(

x∗i
)]

×
n
∑

j=1
j �=i

cij
[

dj (xj )− dj
(

x∗j
)]
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�
n
∑

i=1

pi
[

cii
(

di(xi)− di
(

x∗i
))+ bi(xi)− bi

(

x∗i
)]2

+
n
∑

i,j=1
i �=j

2ωij
∣
∣cii

(

di(xi)− di
(

x∗i
))+ bi(xi)− bi

(

x∗i
)∣
∣

× ∣
∣cjj

(

dj (xj )− dj
(

x∗j
))+ bj (xj )− bj

(

x∗j
)∣
∣

(10.9.16)< 0 for x �= x∗.

Therefore, the proof of Theorem 10.9.13 is complete. �

THEOREM 10.9.14. If the following conditions are satisfied:

(1) condition (1) of Theorem 10.8.7 holds;

(2)

cij (dj (xj )− dj (x
∗
j ))

cjj (dj (xj )− dj (x
∗
j ))+ bj (xj )− bj (x

∗
j )

� ηij = const.,

i �= j, i, j = 1, 2, . . . , n;
(3) there exist constants pi > 0 (i = 1, 2, . . . , n) such that

pj −
n
∑

i=1
i �=j

pjηij > 0

and
∣
∣
∣
∣
∣

0∫

x∗i

dxi

ai(xi)

∣
∣
∣
∣
∣
=

+∞∫

x∗i

dxi

ai(xi)
= +∞;

then x = x∗ is globally asymptotically stable in Rn+.

PROOF. Taking the positive definite Lyapunov function:

V (x) =
n
∑

i=1

pi

∣
∣
∣
∣
∣

xi∫

x∗i

dxi

ai(xi)

∣
∣
∣
∣
∣
,

we have

D+V (x)|(10.9.1) =
n
∑

i=1

pi
dxi

dt
sign

(

xi − x∗i
)
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� −
n
∑

i=1

pi
∣
∣cii

(

di(xi)− di
(

x∗i
))+ bi(xi)− bi

(

x∗i
)∣
∣

+
n
∑

j=1

pi

n
∑

j=1
j �=i

∣
∣cij

(

dj (xj )− dj
(

x∗j
))∣
∣

� −
n
∑

j=1

pj
∣
∣cjj

(

dj (xj )− dj
(

x∗j
))+ bj (xj )− bj

(

x∗j
)∣
∣

+
n
∑

j=1

n
∑

i=1
i �=j

pi
∣
∣cij

(

dj (xj )− dj
(

x∗j
))∣
∣

= −
n
∑

j=1

∣
∣
∣
∣
∣
pj −

n
∑

i=1
i �=j

pi |cij |(dj (xj )− dj (x
∗
j ))

|cjj (dj (xj )− dj (x
∗
j ))+ bj (xj )− bj (x

∗
j )|

∣
∣
∣
∣
∣

× ∣
∣cjj

(

dj (xj )− dj
(

x∗j
))+ bj (xj )− bj

(

x∗j
)∣
∣

� −
n
∑

j=1

(

pj −
n
∑

i=1
i �=j

piηij

)

∣
∣cij

(

dj (xj )− dj
(

x∗j
))+ bj (xj )− bj

(

x∗j
)∣
∣

(10.9.17)< 0 for x = x∗.

Thus, x = x∗ is globally asymptotically stable in Rn+. �

10.10. Cellular neural network

The cellular neural network (CNN) is a new type of analog circuits proposed
by Chua and Yang [82,83], which has many desirable properties. Cellular neural
network possesses some of key features of neural networks and has important
potential applications in image processing, pattern recognition, optimal computa-
tion, etc.

A cellular neural network may be described by the following set of differential
equations:

C
dVxij

dt
= − 1

Rx
Vxij (t)+

∑

(k,l)∈Nr(i,j)

A(i, j, k, l)Vykl (t)

(10.10.1)+
∑

(k,l)∈Nr(i,j)

B(i, j, k, l)Vukl + I, 1 � i � M, 1 � j � N,
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where the physical meanings of C, Vxij , Vykl and Vukl and I can be found in [82,
83]. The output equations of the CNN is given by

Vyij :=
1

2

[|Vxij + 1| − |Vxij − 1|], 1 � i � M, 1 � j � N,

while the input equations are

Vuij = Eij , |Eij | � 1, 1 � i � M, 1 � j � N.

Since the CNN is easy to be realized using electronic circuits, it has wide appli-
cations in computational optimization, signal processing, pattern recognition, etc.
Up to now, CNN theory, methodology and applications have been the main topics
in many international conferences and symposiums. Many scientific articles have
been published in the literature so far. In this section, we briefly introduce the
basic stability theory of CNN. Because CNN is a special type of Hopfield neural
network, the Lagrange stability theory discussed in Section 10.2, related to gen-
eral neural network (with time delay), is certainly applicable to CNN, and thus
not repeated here.

By using appropriate transformation and simplified notations, we can transform
system (10.10.1) to the following system:

(10.10.2)
dxi

dt
= −dixi

n
∑

j=1

aijfj (xj )+ Ii, i = 1, 2, . . . , n,

where

fj (xj ) = 1

2

[|xi + 1| − |x1 − 1|].
Let

σj (xj ) =
{

0 for |xj | � 1,
1 for |xj | < 1;

wj(xj ) =
⎧

⎨

⎩

−1 for xj � −1,
0 for |xj | � 1,
1 for xj � 1,

j = 1, . . . , n.

Then, we can further rewrite (10.10.2) as

(10.10.3)
dxi

dt
= −dixi +

n
∑

j=1

aij σj (xj )fj (xj )+
n
∑

j=1

aijwj (xj )+ Ii .

Let

A := diag(−d1, . . . ,−dn)+
(

aij σj (xj )
)

n×n, C = (aij )n×nw(x),

w(x) := (

w1(x), . . . , wn(x)
)T
, I = (I1, . . . , In)

T .
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Now, we consider the existence and number of equilibrium points of the CNN
model (10.10.3).

THEOREM 10.10.1.

(1) The number of the equilibrium points of the CNN (10.10.3) is not less than
one.

(2) If every matrix Â is nonsingular, then the number of the equilibrium points of
the CNN (10.10.3) is not more than 3n.

(3) All equilibrium points of (10.10.3) can be expressed as

x = −Â−1(I + C) := x∗,
(10.10.4)σj (xj ) ≡ σj

(

x∗j
)

,

where σj (xj ) ≡ σj (x
∗
j ) implies that xj and x∗j belong to the same interval

(−∞,−1], (−1, 1), or [1,+∞).

PROOF. (1) Let the right-hand side of (10.10.3) be equal to zero and rearrange
the resulting equation as

(10.10.5)xi = d−1
i

[
n
∑

j=1

aij σj (xj )fj (xj )+
n
∑

j=1

aijwj (xj )+ Ii

]

.

Consider an operator φ(x), defined by

φi(xi) = d−1
i

[
n
∑

j=1

aij σj (xj )fj (xj )+
n
∑

j=1

aijwj (xj )+ Ii

]

,

(10.10.6)1 � i, j � n.

Further, let

M = max
1�i,j�n

[

di

n
∑

j=1

|aij |r + |Ii |
]

.

Obviously, the operator φ maps the set

Q = {

xi | |x| � M, 1 � i, j � n
}

into Q, which is a compact convex set. According to Brown fixed point theorem,
we know that for the map φ :Q → Q, there exists at least one fixed point x =
x∗, i.e., x = x∗ is an equilibrium point of (10.10.3). Therefore, the number of
equilibrium points of the CNN (10.10.3) is not less than one.

(2) We divide the interval (−∞,+∞) into three intervals: (−∞,−1], (−1, 1)
and [1,+∞). Thus, the whole space Rn is divided into 3n independent regions,
and so σj (xj ) and wj(xj ) have and only have 3n different regions to take values.
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(3) For every Â, det Â �= 0. Let the right-hand side of (10.10.3) be equal to
zero, and rewrite the resulting equation in a matrix form:

Âx + I + C = 0.

Then solving the above equation in an arbitrary region Di0 , we have

(10.10.7)x = −Â−1(I + C) := x∗.

It may have x∗ /∈ Di0 if x∗ is not a solution of (10.10.4), and x∗ ∈ Di0 only
if x∗ is a real solution of (10.10.4). Therefore, the number of equilibrium points
of (10.10.3) are at most equal to 3n, and every equilibrium point can be expressed
by (10.10.4).

The proof is complete. �

For linear systems with constant coefficients, asymptotic stability is equivalent
to globally exponential stability, thus one may apply linear system stability to
CNN systems, since though CNN systems are nonlinear in general, they are usu-
ally linear if considered in separate regions. So far, since almost all results related
to asymptotic stability in the literature are exponential stability, the results pre-
sented in this section are only concerned with exponential stability and globally
exponential stability [257,258].

THEOREM 10.10.2. Let D−1 = diag(d−1
1 , d−1

2 , . . . , d−1
n ). If ρ(D−1(A)) < 1,

where ρ(D−1(A)) is the spectral radius of the matrix (D−1|A|), then the equilib-
rium point of the CNN (10.10.3) is globally exponentially stable.

PROOF. Theorem 10.10.1 implies the existence of equilibrium point of the
CNN (10.10.3). Let x = x∗ be an equilibrium point of (10.10.3), then rewrite
(10.10.3) as

(10.10.8)
d(xi − x∗i )

dt
= −di

(

xi − x∗i
)+

n
∑

j=1

aij
[

fj (xj )− fj
(

x∗j
)]

.

Since ρ(D−1(A)) < 1 ⇔ (In−D−1|A|) is an M matrix, where In is a n×n unit
matrix, there exist constants pi > 0, i = 1, 2, . . . , n, such that

−pjdj +
n
∑

i=1

pi |aij | = −δj < 0.

Now, we employ the positive definite and radially unbounded Lyapunov function:

(10.10.9)V (x) =
n
∑

i=1

pi
∣
∣xi − x∗i

∣
∣,
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and compute the right-upper Dini derivative D+V of V along the solution
of (10.10.8) and simplifying the result yields

D+V (x)|(10.10.9) �
n
∑

j=1

[

−pjdj +
n
∑

i=1

pi |aij |
]

∣
∣xi − x∗i

∣
∣ (< 0 for x �= x∗)

� −
n
∑

j=1

δj
∣
∣xj − x∗j

∣
∣

� − min
1�j�n

(
δj

pj

) n
∑

i=1

pi
∣
∣xi − x∗i

∣
∣,

and hence,

V
(

x(t, t0, x0)
)

� V
(

x(t0)
)

e
−min1�j�n(

δj
pj
)(t−t0)

which shows that x = x∗ of (10.10.3) is globally exponentially stable. �

THEOREM 10.10.3. If aii < 0, i = 1, 2, . . . , n, and the matrix

H =
[ − diag(d1, d2, . . . , dn)

1
2 (A− diag(a11, a22, . . . , ann)

1
2 (A

T − diag(a11, a22, . . . , ann) diag(a11, a22, . . . , ann)

]

is negative definite, then the equilibrium point of (10.10.3) is globally exponen-
tially stable.

PROOF. We choose the positive definite and radially unbounded Lyapunov func-
tion:

(10.10.10)V (x) = 1

2

n
∑

i=1

(

xi − x∗i
)2
.

Then using the fact

−(xi − x∗i
)(

fi(xi)− fi
(

x∗i
))

� −[fi(xi)− fi
(

x∗i
)]2

and computing the derivative of V (t) along the solution of (10.10.3) yields

dV

dt

∣
∣
∣
∣
(10.10.3)

= −
n
∑

i=1

di
(

xi − x∗i
)2 +

n
∑

i=1

aii
(

xi − x∗i
)(

fi(xi)− fi
(

x∗i
))

+
n
∑

j=1,j �=i
aij
(

xi − x∗i
)(

fi(xi)− fi
(

x∗i
))

�
n
∑

i=1

−di
(

xi − x∗i
)2 +

n
∑

i=1

aii
(

fj (xi)− fi
(

x∗i
))2
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+
n
∑

j=1,j �=i
aij
(

xi − x∗i
)(

fj (xi)− fj
(

x∗i
))

�
(

x − x∗
f (x)− f (x∗)

)T

H

(

x − x∗
f (x)− f (x∗)

)

� λmax(H)

[
n
∑

i=1

(

xi − x∗i
)2 +

n
∑

i=1

(

fi(xi)− fi
(

x∗i
))2

]

� λmax(H)

[
n
∑

i=1

(

xi − x∗i
)2

]

.

So

V
(

x(t, t0, x0)
)

� V
(

x(t0)
)

e2λmax(H)(t−t0),

where λmax(H) is the largest eigenvalue of matrix H . This shows that the equi-
librium point x = x∗ of CNN (10.10.3) is globally exponentially stable. �

THEOREM 10.10.4. If aii < 0, i = 1, 2, . . . , n, and there exist ε > 0 such that
the matrix

H +
[

Inε 0
0 0

]

is negative semi-definite, then the equilibrium point of (10.10.3) is globally expo-
nentially stable.

PROOF. By employing the same Lyapunov function (10.10.10), we have

dV

dt

∣
∣
∣
∣
(10.10.3)

=
n
∑

j=1

(−dj + ε)
(

xj − x∗j
)2

+
n
∑

j=1

ajj
(

xj − x∗j
)(

fj (xj )− fj
(

x∗j
))

+
n
∑

j=1,j �=i
aij
(

xi − x∗i
)(

fj (xi)− fj
(

x∗i
))− ε

n
∑

j=1

(

xj − x∗j
)2

� −ε
n
∑

j=1

(

xj − x∗j
)2
,

and thus

(10.10.11)V
(

x(t, t0, x0)
)

� V
(

x(t0)
)

e−2ε(t−t0).
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(10.10.11) clearly indicates that the equilibrium point x = x∗ of CNN (10.10.3)
is globally exponentially stable. �

COROLLARY 10.10.5. If

di >

n
∑

j=1, j �=i

1

2
|aij |, i = 1, 2, . . . , n,

and

−ajj �
n
∑

i=1, i �=j

1

2
|aij |, j = 1, 2, . . . , n,

then the equilibrium point x = x∗ of (10.10.3) is globally exponentially stable.

PROOF. The conditions of this corollary imply that there exists ε such that

di − ε �
n
∑

j=1, j �=i

1

2
|aij |, i = 1, 2, . . . , n,

−ajj �
n
∑

i=1, i �=j

1

2
|aij |, j = 1, 2, . . . , n.

Hence, the matrix

H +
[

Inε 0
0 0

]

is negative semi-definite, and so the conditions of Theorem 10.10.4 are satis-
fied. �

THEOREM 10.10.6. If −diaii < 0, i = 1, 2, . . . , n, and the matrix
[−di + aii +

(

1− δij |aij |
)]

n×n
is a Hurwitz matrix, then the equilibrium point x = x∗ of (10.10.3) is globally
exponentially stable. Here, δij is a Kronecker sign function.

PROOF. The conditions of this theorem imply that−[−di+aii+(1−δij |aij |]n×n
is an M matrix. Thus, there exist constants pi > 0 (i = 1, 2, . . . , n) such that

(−dj + ajj )pj +
n
∑

i=1, i �=j
pi |aij | < 0, j = 1, 2, . . . , n,
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which implies that there exists ε > 0 such that

(−dj + ajj + ε)pj +
n
∑

i=1, i �=j
pi |aij | � 0, j = 1, 2, . . . , n.

Next, we take the Lyapunov function:

(10.10.12)V (x) =
n
∑

i=1

pi
∣
∣xi − x∗i

∣
∣.

Due to that −|xi − x∗i | � −|fi(xi)− fi(x
∗
i )|, we have

D+V |(10.10.3)

=
n
∑

i=1

pi

[

−di
(

xi − x∗i
)+

n
∑

j=1

aij
(

fj (xj )− fj
(

x∗j
))

]

sign
(

xi − x∗i
)

�
n
∑

j=1

{[

−pjdj
(

xj − x∗j
)+ ajj

∣
∣fj (xj )− fj

(

x∗j
)∣
∣

]

+
n
∑

i=1,i �=j
pi |aij |

∣
∣fj (xj )− fj

(

x∗j
)∣
∣

}

� −
n
∑

j=1

pjε
∣
∣xj − x∗j

∣
∣+

n
∑

j=1

{

−pjdj + pjε + ajj

+
n
∑

i=1, i �=j
pi |aij |

∣
∣fj (xj )− fj

(

x∗j
)∣
∣

}

� −
n
∑

j=1

pjε
∣
∣xj − x∗j

∣
∣

which, in turn, yields

(10.10.13)V
(

X(t)
)

� V
(

X(t0)
)

e−ε(t−t0).

The inequality (10.10.13) shows that the equilibrium point x = x∗ of CNN
(10.10.3) is globally exponentially stable. �

Finally, we consider the globally exponential stability of CNNs with time de-
lays [277]. Consider a CNN with multiple varying time delays

dxi

dt
= −xi +

n
∑

j=1

aijf
(

xj (t)
)
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(10.10.14)+
n
∑

j=1

bij f
(

xj
(

t − τij (t)
))

, i = 1, 2, . . . , n,

where x = (x1, . . . , xn)
T ∈ Rn is the state vector, A ∈ Rn×n and B ∈ Rn×n are

respectively the connection weight matrices associated with state vectors with-
out and with time delays, f (xj ) = 1

2 (|xj + 1| − |xj − 1|) (j = 1, . . . , n) is
the piecewise-linear activation function, u = (u1, . . . , un)

T is the external input
vector, and 0 � τij (t) � τij = constant, τ̇ij (t) � 0, i, j = 1, 2, . . . , n.

Let x∗ be an equilibrium state of (10.10.14). Without loss of generality, let
|x∗i | < 1, i = 1, 2, . . . , m1, x

∗
i � 1, i = m1 + 1, . . . , m2, x

∗
i � −1, i =

m2 + 1, . . . , n. Rewrite (10.10.14) as

dxi

dt
= −(xi − x∗i

)+
n
∑

j=1

aij
(

f
(

xj (t)
)− f

(

x∗j
))

(10.10.15)+
n
∑

j=1

bij
(

f
(

xj
(

t − τij (t)
))− f

(

x∗j
))

, i = 1, 2, . . . , n.

Then the stability of x∗ of system (10.10.14) is equivalent to the stability of zero
solution of system (10.10.15).

LEMMA 10.10.7. Define

h
(

xi − x∗i
) := (

xi − x∗i
)− (

f (xi)− f
(

x∗i
))

,

where h(·) is a function. Then we have

∣
∣xi − x∗i

∣
∣ = ∣

∣f (xi)− f
(

x∗i
)∣
∣+ ∣

∣h
(

xi − x∗i
)∣
∣.

PROOF. Because (xi − x∗i )(f (xi)− f (x∗i )) � 0, so |h(xi − x∗i )| � xi − x∗i |. �

THEOREM 10.10.8. The equilibrium state x∗ of (10.10.14) is globally exponen-
tially stable if

(10.10.16)1− ajj >

n
∑

i=1, i �=j
|aij | +

n
∑

i=1

|bij |, j = 1, 2, . . . , n,

or

(10.10.17)1− aii >

n
∑

j=1, j �=i
|aij | +

n
∑

j=1

|bij |, i = 1, 2, . . . , n.
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PROOF. First, we consider the conditions in (10.10.16). Let

δ = min
1�j�n

{

1− ajj >

n
∑

i=1, i �=j
|aij | +

n
∑

i=1

|bij |, j = 1, 2, . . . , n

}

.

We construct a positive definite and radially unbounded Lyapunov functional:

V
(

x(t), t
)

(10.10.18)=
n
∑

i=1

∣
∣xi − x∗i

∣
∣+

n
∑

i,j=1

t∫

t−τij (t)
|bij |

∣
∣f (s)− f

(

x∗j
)∣
∣ ds.

By τ̇ij (t) � 0, we have

D+V
(

x(t), t
)∣
∣
(10.10.15)

=
n
∑

i=1

D+
∣
∣xi − x∗i

∣
∣+

n
∑

i,j=1

|bij |
∣
∣f
(

xj (t)
)− f

(

x∗j
)∣
∣

−
n
∑

i,j=1

|bij |
∣
∣f
(

xj
(

t − τij (t)
))− f

(

x∗j
)∣
∣
(

1− τ̇ij (t)
)

�
n
∑

i,j=1

[

−∣∣xi − x∗i
∣
∣+ aii

∣
∣f
(

xi(t)
)− f

(

x∗i
)∣
∣

+
n
∑

j=1,j �=i
|aij |

∣
∣f
(

xj (t)
)− f

(

x∗j
)∣
∣

+
n
∑

j=1

|bij |
∣
∣f
(

xj
(

t − τij (t)
))− f

(

x∗j
)∣
∣

]

+
n
∑

i,j=1

|bij |
∣
∣f
(

xj (t)
)− f

(

x∗j
)∣
∣

−
n
∑

i,j=1

|bij |
∣
∣f
(

xj
(

t − τij (t)
))− f

(

x∗j
)∣
∣

=
n
∑

i=1

(−1+ aii)
∣
∣f
(

xi(t)
)− f

(

x∗i
)∣
∣+

n
∑

j=1,j �=i
|aij |

∣
∣f
(

xj (t)
)− f

(

x∗j
)∣
∣

+
n
∑

j=1

|bij |
∣
∣f
(

xj
(

t − τij (t)
))− f

(

x∗j
)∣
∣− h

(

xi − x∗i
)
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=
n
∑

j=1

[

(−1+ aii)+
n
∑

i=1,i �=j
|aij | +

n
∑

i=1

|bij |
]

∣
∣f
(

xj (t)
)− f

(

x∗j
)∣
∣

−
n
∑

j=1

∣
∣h
(

xi − x∗i
)∣
∣

� −δ
n
∑

j=1

∣
∣f
(

xj (t)
)− f

(

x∗j
)∣
∣−

n
∑

j=1

∣
∣h
(

xi − x∗i
)∣
∣

� −min{δ, 1}
[

n
∑

j=1

∣
∣f
(

xj (t)
)− f

(

x∗j
)∣
∣+

n
∑

j=1

∣
∣h
(

xj − x∗j
)∣
∣

]

(10.10.19)= −min{δ, 1}
n
∑

j=1

∣
∣xj − x∗j

∣
∣.

Choose ε > 0 to satisfy the following condition:

(10.10.20)min{δ, 1} − ε − ε

n
∑

i=1

τij |bij |eετij � 0.

Deriving the Dini derivative of eεtV (x(t), t) and using

t∫

t−τij (t)
|bij |

∣
∣f
(

xj (s)
)− f

(

x∗j
)∣
∣ ds �

t∫

t−τij (t)
|bij |

∣
∣f
(

xj (s)
)− f

(

x∗j
)∣
∣ ds,

we have

D+
(

eεtV
(

x(t), t
)) = eεtD+V

(

x(t), t
)

� eεt

[

ε

(
n
∑

j=1

∣
∣xj (t)− x∗j

∣
∣+

n
∑

i,j=1

t∫

t−τij (t)
|bij |

∣
∣f
(

xj (s)
)− f

(

x∗j
)∣
∣ ds

)

(10.10.21)−min{δ, 1}
n
∑

j=1

∣
∣xj − x∗j

∣
∣

]

.

Integrating both sides of (10.10.21) from t0 to an arbitrary t∗ > t0, we can
obtain

eεt
∗
V
(

x
(

t∗
)

, t∗
)− V

(

x(t0), t0
)

�
t∗∫

t0

εeεt

t∫

t−τij

n
∑

i,j=1

|bij |
∣
∣f
(

xj (s)
)− f

(

x∗j
)∣
∣ ds dt
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(10.10.22)−
n
∑

j=1

(

min{δ, 1} − ε
)

t∗∫

t0

eεt
∣
∣xj (t)− x∗j

∣
∣ dt.

Estimating the first term on the right-hand side of (10.10.22) by exchanging the
integrals, we have

n
∑

i,j=1

ε|bij |
t∗∫

t0

eεt

t∫

t−τij

∣
∣f
(

xj (s)
)− f

(

x∗j
)∣
∣ ds dt

�
n
∑

i,j=1

ε|bij |
t∗∫

−τij

min{s+τij ,t}∫

max{s,0}
eεt dt

∣
∣f
(

xj (s)
)− f

(

x∗j
)∣
∣ ds

�
n
∑

i,j=1

ε|bij |
t∗∫

−τij
τij e

ε(s+τij )∣∣xj (s)− x∗j
∣
∣ ds

=
n
∑

i,j=1

ε|bij |τij
0∫

−τij
eε(s+τij )

∣
∣xj (s)− x∗j

∣
∣ ds

+
n
∑

i,j=1

ε|bij |τij
t∗∫

t0

eε(s+τij )
∣
∣xj (s)− x∗j

∣
∣ ds

�
n
∑

i,j=1

ε|bij |τij eετij
t0∫

−τij

∣
∣xj (s)− x∗j

∣
∣ ds

(10.10.23)+
n
∑

i,j=1

ετij |bij |eετij
t∗∫

t0

eεs
∣
∣xj (s)− x∗j

∣
∣ ds.

Then substituting (10.10.23) into (10.10.22) yields

eεt
∗
V
(

x
(

t∗
)

, t∗
)

� V
(

x(t0), t0
)−

n
∑

j=1

(

min{δ, 1} − ε −
n
∑

i=1

ετij |bij |eετij
)

×
t∗∫

t0

eεs
∣
∣xj (s)− x∗j

∣
∣ ds
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+
n
∑

i,j=1

ετij |bij |eετij
t0∫

−τij

∣
∣xj (s)− x∗j

∣
∣ ds

� M = constant.

So

(10.10.24)V
(

x(t), t
)

� e−εtM ∀t � t0.

According to (10.10.18) and (10.10.24), we have

(10.10.25)
n
∑

i=1

∣
∣xi − x∗i

∣
∣ � V

(

x(t), t
)

� e−εtM,

which implies that the equilibrium state x∗ of (10.10.14) is globally exponentially
stable.

Now we consider (10.10.17). Let

η = min
1�i�n

{

1− aii >

n
∑

j=1, j �=i
|aij | +

n
∑

j=1

|bij |, i = 1, 2, . . . , n

}

.

Assume
∣
∣x� − x∗�

∣
∣ = max

1�i�n

∣
∣xi − x∗i

∣
∣.

We construct a positive definite and radially unbounded Lyapunov function:

V
(

x(t), t
) = max

1�i�n

∣
∣xi − x∗i

∣
∣+

n
∑

j=1

|bij |
∣
∣f
(

xj (s)
)− f

(

x∗j
)∣
∣

(10.10.26)= ∣
∣x� − x∗�

∣
∣+

n
∑

j=1

|bij |
∣
∣f
(

xj (s)
)− f

(

x∗j
)∣
∣.

Then, using Lemma 10.10.7, for any fixed � ∈ {1, 2, . . . , n}, we obtain

D+V
(

x(t), t
)∣
∣
(10.10.15) � D+

∣
∣x� − x∗�

∣
∣+

n
∑

j=1

|b�j |
∣
∣f
(

xj (t)
)− f

(

x∗j
)∣
∣

−
n
∑

j=1

|b�j |
∣
∣f
(

xj (t − τij )
)− f

(

x∗j
)∣
∣

� −∣∣x� − x∗�
∣
∣+ a��

∣
∣f
(

x�(t)
)− f

(

x∗�
)∣
∣

+
n
∑

j=1,j �=�
|a�j |

∣
∣f
(

x�(t)
)− f

(

x∗�
)∣
∣
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+
n
∑

j=1

|b�j |
∣
∣f
(

xj (t)
)− f

(

x∗j
)∣
∣

�
(

−1+ a�� +
n
∑

j=1,j �=�
|a�j | +

n
∑

j=1

|b�j |
)

× ∣
∣f
(

x�(t)
)− f

(

x∗�
)∣
∣− ∣

∣h
(

x� − x∗�
)∣
∣

� −η∣∣f (x�(t)
)− f

(

x∗�
)∣
∣− ∣

∣h
(

x� − x∗�
)∣
∣

� −min{η, 1}∣∣(x� − x∗�
)∣
∣ < 0

(10.10.27)for x� �= x∗� .

When � is time varying, suppose t0 < t1 < · · · , define �i := �(t1), i = 1, 2, . . . .
Since |x� − x∗� | = |x�i − x∗�i | for t = ti , i = 1, 2, . . . , V (x(t1), t1) >

V (x(t2), t2) > V (x(t3), t3) > · · · . Because V (x(t), t) is monotone decreasing
and bounded below, there exist a minimum limt→∞ V (x(t), t) = V . Now we
show that V = 0 so that limt→∞ x(t) = x∗. Suppose that the minimum V > 0.
Then, in the compact level set {x | V (x(t), t) = V }, according to the Weierstrass
accumulation principle, there exists {t̃k} such that x(t̃k) → x̂ �= x∗. In addition,
since D+V (x̂(t), t) < 0, V (x̂(t), t) < V . This contradicts that V is a minimum.
Therefore, limt→∞ x(t) = x∗.

The remaining proof is similar to the last part (from (10.10.20)–(10.10.25)) of
part (i), and is thus omitted. �

REMARK 10.10.9. The result in Theorem 10.10.8 can be easily generalized to
the following: The equilibrium state x∗ of (10.10.14) is globally exponentially
stable, if the matrix

In − diag(a11, . . . , ann)−
(

(1− δij )|aij |
)

n×n −
(|bij |

)

n×n
is an M matrix.

THEOREM 10.10.10. The equilibrium state x∗ of (10.10.14) is globally expo-
nentially stable, if A+ AT +Q− 2In is negative definite, where

Q = diag

(
n
∑

j=1

|b1j | + |bj1|, . . . ,
n
∑

j=1

|bnj | + |bjn|
)

.

PROOF. We prove Theorem 10.10.10 in two steps. In the first step, we show
that the set Ω = {x | f (x) − f (x∗) = 0} is globally exponentially attractive
and x∗1 , . . . , x∗m are globally exponentially stable. In the second step, we prove
x∗m+1, . . . , x

∗
n to be globally exponentially stable.
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(1) First step, we prove that the set

Ω := {

x | f (x)− f (x∗) = 0
}

≡ {

x | xi = x∗i , i = 1, . . . , m1, xix
∗
i > 0,

|xi | � 1,
∣
∣x∗i

∣
∣ � 1, i = m1 + 1, . . . , n

}

to be globally exponentially attractive, so x∗i , i = 1, 2, . . . , m1, is globally expo-
nentially stable.

Construct a positive definite but not radially unbounded Lyapunov function as
follows:

V
(

x(t), t
) =

n
∑

i=1

2

xi∫

x∗i

(

f (xi)− f
(

x∗i
))

dxi

(10.10.28)+
n
∑

i,j=1

t∫

t−τij (t)
|bij |

(

f
(

xj (s)
)− f

(

x∗j
))2

ds.

Then,

dV (x(t), t)

dt

∣
∣
∣
∣
(10.10.15)

= −2
n
∑

i=1

(

xi(t)− x∗i
)(

f
(

xi(t)
)− f

(

x∗i
))

+ 2
n
∑

i,j=1

aij
(

f
(

xi(t)
)− f

(

x∗i
))(

f
(

xj (t)
)− f

(

x∗j
))

+ 2
n
∑

i,j=1

bij
(

f
(

xi(t)
)− f

(

x∗i
))(

f
(

xj
(

t − τij (t)
))− f

(

x∗j
))

+
n
∑

i,j=1

|bij |
[(

f
(

xi(t)
)− f

(

x∗i
))2

− (

f
(

xj
(

t − τij (t)
))− f

(

x∗j
))2](1− τ̇ij (t)

)

� −2
n
∑

i=1

(

f
(

xi(t)
)− f

(

x∗i
))2

+ 2
n
∑

i,j=1

aij
(

f
(

xi(t)
)− f

(

x∗i
))(

f
(

xj (t)
)− f

(

x∗j
))

+
n
∑

i,j=1

|bij |
[(

f
(

xi(t)
)− f

(

x∗i
))2 + (

f
(

xj
(

t − τij (t)
))− f

(

x∗j
))2]
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+
n
∑

i,j=1

|bij |
[(

f
(

xj (t)
)− f

(

x∗j
))2 − (

f
(

xj
(

t − τij (t)
))− f (x∗j )

)2]

− 2
n
∑

i=1

(

xi(t)− x∗i
)(

f
(

xi(t)
)− f

(

x∗i
))+ 2

n
∑

i=1

(

f
(

xi(t)
)− f

(

x∗i
))2

= (

f
(

x(t)
)− f

(

x∗
))T [−2In + A+ AT +Q

](

f (x(t))− f
(

x∗
))

− 2
(

f
(

x(t)
)− f

(

x∗
))T [(

x(t)− x∗
)− (

f
(

x(t)
)− f

(

x∗
))]

� −λ(f (x(t))− f
(

x∗
))T (

f
(

x(t)
)− f

(

x∗
))

− 2
(

f
(

x(t)
)− f

(

x∗
))T [(

x(t)− x∗
)− (

f
(

x(t)
)− f

(

x∗
))]

,

where−λ is the maximum eigenvalue of [−2In+A+AT +Q]. Since λ > 0, we
can choose ε to satisfy

(10.10.29)λ− 2ε − τij ε

n
∑

i=1

|bij |eετij � 0, j = 1, 2, . . . , n.

Deriving the time derivative of eεtV (x(t), t) and by the monotone property of
f (xi), we have

deεtV (x(t), t)

dt

∣
∣
∣
∣
(10.10.15)

= εeεtV
(

x(t), t
)+ eεt

dV (x(t), t)

dt

∣
∣
∣
∣
(10.10.15)

� εeεt
n
∑

i,j=1

t∫

t−τij (t)
|bij |

(

f
(

xj (s)
)− f

(

x∗j
))2

ds

+ eεt

[

2ε
n
∑

i=1

xi∫

x∗i

(

f (xi)− f
(

x∗i
))

dxi

+ (2− λ)
(

f
(

x(t)
)− f

(

x∗
))T (

f
(

x(t)
)− f

(

x∗
))

− 2
(

f
(

x(t)
)− f

(

x∗
))T (

x(t)− x∗
)

]

� εeεt
n
∑

i,j=1

t∫

t−τij
|bij |

∣
∣f
(

xj (s)
)− f

(

x∗j
)∣
∣
2
ds

+ eεt
n
∑

i,j=1

[−(2− 2ε)
(

f
(

x(t)
)− f

(

x∗
))T (

x(t)− x∗
)

+ (2− λ)
(

f
(

x(t)
)− f

(

x∗
))T (

x(t)− x∗
)]
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= εeεt
n
∑

i,j=1

t∫

t−τij
|bij |

∣
∣f
(

xj (s)
)− f

(

x∗j
)∣
∣
2
ds

(10.10.30)+ eεt
[−(λ− 2ε)

(

f
(

x(t)
)− f

(

x∗
))T (

x(t)− x∗
)]

.

Integrating both sides of (10.10.30) from t0 to an arbitrary t∗ > t0 yields

eεt
∗
V
(

x
(

t∗
)

, t∗
)

� V
(

x(t0), t0
)−

t∗∫

t0

εeεt

t∫

t−τij

n
∑

i,j=1

|bij |
∣
∣f
(

xj (s)
)− f

(

x∗j
)∣
∣
2
ds dt

(10.10.31)−
n
∑

j=1

(λ− 2ε)

t∗∫

t0

eεt
(

f
(

xj (t)
)− f

(

x∗j
))∣
∣xj (t)− x∗j

∣
∣ dt.

Estimating the first term of (10.10.31) by exchanging the order of integration, we
obtain

n
∑

i,j=1

ε

t∗∫

t0

eεt

t∫

t−τij
|bij |

∣
∣f
(

xj (s)
)− f

(

x∗j
)∣
∣
2
ds dt

�
n
∑

i,j=1

ε|bij |
t∫

−τij

min{s+τij ,t}∫

max{s,0}
eεt dt

(

xj (s)− x∗j
)(

f
(

xj (s)
)− f

(

x∗j
))

ds

�
n
∑

i,j=1

ε|bij |
t∫

−τij
τij e

ε(s+τij )(xj (s)− x∗j
)(

f
(

xj (s)
)− f

(

x∗j
))

ds

=
n
∑

i,j=1

ετij |bij |
t0∫

−τij
eε(s+τij )

(

xj (s)− x∗j
)(

f
(

xj (s)
)− f

(

x∗j
))

ds

+
n
∑

i,j=1

ετij |bij |
t∗∫

t0

eε(s+τij )
(

xj (s)− x∗j
)(

f
(

xj (s)
)− f

(

x∗j
))

ds

�
n
∑

i,j=1

ετij |bij |eετij
t0∫

−τij

(

xj (s)− x∗j
)(

f
(

xj (s)
)− f

(

x∗j
))

ds
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(10.10.32)

+
n
∑

i,j=1

ετij |bij |eετij
t∗∫

t0

eεs
(

xj (s)− x∗j
)(

f
(

xj (s)
)− f

(

x∗j
))

ds.

Then substituting (10.10.32) into (10.10.31) yields

eεt
∗
V
(

x
(

t∗
)

, t∗
)

� V
(

x(t0), t0
)−

n
∑

j=1

(

λ− 2ε − τij

n
∑

i=1

|bij |eετij
)

×
n
∑

i=1

t∗∫

t0

eεs
(

xj (s)− x∗j
)(

f
(

xj (s)
)− f

(

x∗j
))

ds

+
n
∑

i,j=1

ετij |bij |eετij
t0∫

−τij

(

xj (s)− x∗j
)(

f
(

xj (s)
)− f

(

x∗j
))

ds

(10.10.33)� M = constant.

According to (10.10.28) and (10.10.33), we have

(10.10.34)
n
∑

i=1

x∗i∫

xi

(

f (xi)− f
(

x∗i
))

dxi � V
(

x(t), t
)

� e−εtM.

We now prove that the set Ω is globally exponentially attractive by (10.10.28)–
(10.10.34), and x∗1 , . . . , x∗n is globally exponentially stable, ∀i ∈ {1, . . . , m}, i.e.,
|x∗i | < 1. By (10.10.33) and (10.10.34), we have

1

2

∣
∣xi(t)− x∗i

∣
∣
2 =

xi (t)∫

x∗i

(

f (xi)− f
(

x∗i
))

dxi

(10.10.35)� V
(

x(t), t
)

� e−εtM for |xi | < 1,

(

1− x∗i
)∣
∣xi(t)− x∗i

∣
∣ =

xi (t)∫

x∗i

(

f (xi)− f
(

x∗i
))

dxi

(10.10.36)� V
(

x(t), t
)

� e−εtM for |xi | � 1,

(−1− x∗i
)∣
∣xi(t)− x∗i

∣
∣ =

xi (t)∫

x∗i

(

f (xi)− f
(

x∗i
))

dxi

(10.10.37)� V
(

x(t), t
)

� e−εtM for |xi | � 1.
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Equations (10.10.35)–(10.10.37) show that x∗i , i = 1, 2, . . . , m1, are globally
exponentially stable.
∀i ∈ {m1 + 1, . . . , m2}, i.e., x∗i � 1, by (10.10.33) and (10.10.34), we can

obtain that when |xi | � 1,

1

2

(

xi(t)− 1
)2 =

xi (t)∫

x∗i

(

f (xi)− f
(

x∗i
))

dxi

=
1∫

x∗i

(

f (xi)− f
(

x∗i
))

dxi +
xi (t)∫

1

(

f (xi)− f
(

x∗i
))

dxi

(10.10.38)� V
(

x(t), t
)

� e−εtM,

which shows that xi(t) moves into [1,+∞) from |xi | � 1.
When xi � −1, we have

xi (t)∫

x∗i

(

f (xi)− f
(

x∗i
))

dxi

=
1∫

x∗i

(

f (xi)− f
(

x∗i
))

dxi +
−1∫

1

(

f (xi)− f
(

x∗i
))

dxi

+
ti (t)∫

−1

(

f (xi)− f
(

x∗i
))

dxi

= 0+
−1∫

1

(xi − 1) dxi +
ti (t)∫

−1

−2 dxi

= 2+ (−2)
(

xi(t)+ 1
)

= −2xi(t),

so,

(10.10.39)−2xi(t) � V
(

x(t), t
)

� e−εtM.

Equation (10.10.39) implies that xi(t) moves from [−∞,−1] into [−1, 1] expo-
nentially, therefore, it further moves into [1+∞) by (10.10.38).
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Similarly, ∀i ∈ {m2 + 1, . . . , n}, i.e., x∗i � −1, by (10.10.33) and (10.10.34),
we obtain the following results. When |xi | � 1,

xi (t)∫

x∗i

(

f (xi)− f
(

x∗i
))

dxi

=
−1∫

x∗i

(

f (xi)− f
(

x∗i
))

dxi +
ti (t)∫

−1

(

f (xi)− f
(

x∗i
))

dxi

= 0+
ti (t)∫

−1

(xi + 1) dxi

= 1

2
(xi + 1)2,

and so

(10.10.40)
1

2
(xi + 1)2 � V

(

x(t), t
)

� e−εtM,

implying that xi(t) moves into (−∞,−1) exponentially.
When xi � 1, we obtain

xi (t)∫

x∗i

(

f (xi)− f
(

x∗i
))

dxi

=
−1∫

x∗i

(

f (xi)− f
(

x∗i
))

dxi +
1∫

−1

(

f (xi)− f
(

x∗i
))

dxi

+
xi (t)∫

1

(

f (xi)− f
(

x∗i
))

dxi

= 0+
1∫

−1

(xi + 1) dxi +
xi (t)∫

1

2 dxi

= 2+ 2
(

xi(t)− 1
)

= 2xi(t),

and thus,

(10.10.41)2xi(t) � V
(

x(t), t
)

� e−εtM.
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Equation (10.10.41) indicates that xi(t) moves from [1,+∞] into [−1, 1]. There-
fore, xi(t) further moves into (−∞, 1) exponentially due to (10.10.40).

(2) Second step. We prove x∗j (j = m1 + 1, . . . , n) to be also globally expo-
nentially stable. When t � 1, f (xj ) = f (x∗j ), j = m1 + 1, . . . , n.

Rewrite (10.10.15) as the following two equations:

dxi

dy
= −(xi − x∗i

)+
m1∑

j=1

aij
(

f
(

xj (t)
)− f

(

x∗j
))

+
n
∑

j=1

bij
(

f
(

xj
(

t − τij (t)
))− f

(

x∗j
))

,

(10.10.42)i = 1, 2, . . . , m1,

dxi

dy
= −(xi − x∗i

)+
m1∑

j=1

aij
(

f
(

xj (t)
)− f

(

x∗j
))

+
n
∑

j=1

bij
(

f
(

xj
(

t − τij (t)
))− f

(

x∗j
))

,

(10.10.43)i = m1 + 1, . . . , n.

Let |xi(t)− x∗i | � Mie
−ε(t−t0), i = 1, 2, . . . , m1. by substituting the solution

of (10.10.42) into (10.10.43) and using the variation of constants, the solution
of (10.10.43) can be expressed as

xi(t) = e−(t−t0)
(

xi(t0)− x∗i
)+

m1∑

j=1

aij

t∫

t0

e−(t−s)
(

f
(

xj (s)
)− f

(

x∗j
))

ds

+
m1∑

j=1

bij

t∫

t0

e−(t−s)
(

f
(

xj
(

s − τij (s)
))− f

(

x∗j
))

ds

(i = m1 + 1, . . . , n),

and thus
∣
∣xi(t, t0, x0)

∣
∣

� e−(t−t0)
∣
∣xi(t0)− x∗i

∣
∣+

m1∑

j=1

|aij |
t∫

t0

e−(t−s)
∣
∣f
(

xj (s)
)− f

(

x∗j
)∣
∣ ds

+
m1∑

j=1

|bij |
t∫

t0

e−(t−s)
∣
∣xj

(

s − τij (s)
)− x∗j

∣
∣ ds e−(t−t0)

∣
∣xi(t0)− x∗i

∣
∣
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+
m1∑

j=1

|aij |Mj

t∫

t0

e−(t−s)e−ε(s−t0) ds

+
m1∑

j=1

|bij |Mj

t∫

t0

e−(t−s)e−ε(s−τij−t0) ds e−(t−t0)
∣
∣xi(t0)− x∗i

∣
∣

+
m1∑

j=1

|aij |Mj

e−ε(t−t0)

1− ε

(10.10.44)+
m1∑

j=1

|bij |Mje
−ετij e

−ε(t−t0)

1− ε
, i = m1 + 1, . . . , n.

Equation (10.10.44) shows that the equilibrium x∗i , i = m1 + 1, . . . , n, is also
globally exponentially stable.

The proof for Theorem 10.10.10 is complete. �

REMARK 10.10.11. The condition in Theorem 10.10.10 can be easily general-
ized to: there exists a positive definite diagonal matrix P = diag(p1, p2, . . . , pn)

such that

PA+ AT P − 2P + In

+ diag

(
n
∑

j=1

(

p1|b1j | + pj |bj1|
)

, . . . ,

n
∑

j=1

(

p1|b1j | + pj |bj1|
)

)

is negative definite. Then the conclusion of Theorem 10.10.8 holds.

COROLLARY 10.10.12. The equilibrium x∗ of (10.10.14) is globally exponen-
tially stable if any one of the following conditions is satisfied:

(1) λmax(A+ AT ) � 0, and max1�i�n

∑n
j=1(|bij | + |bji |) < 2;

(2) λmax(A+ AT ) < 0, and max1�i�n

∑n
j=1(|bij | + |bji |) < 2;

(3) λmax(A+ AT +Q) < 2;
(4) A = 0, and max1�i�n

∑n
j=1(|bij | + |bji |) < 2.

PROOF. We only prove (1), the other cases are similar. ∀y �= 0, we have

yT
(

A+ AT +Q− 2In
)

y = yT
(

A+ AT
)

y + yT (Q)y − 2yT y

� λmaxy
T y + max

1�i�n

n
∑

j=1

(|bij | + |bji |
)

yT y − 2yT y
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�
(

max
1�i�n

n
∑

j=1

(|bij | + |bji |
)− 2

)

yT y < 0.

Thus, A + AT + Q − 2In is negative definite. According to Theorem 10.10.10,
the equilibrium x∗ of (10.10.14) is globally exponentially stable. �

THEOREM 10.10.13. Let τij (t) = τj (t). The equilibrium state x∗ of (10.10.14)
is globally exponentially stable, if A+ AT + BBT − In is negative definite.

PROOF. Here, we again employ the positive definite but not radially bounded
Lyapunov function (10.10.28):

V
(

x(t), t
) =

n
∑

i=1

2

xi∫

x∗i

(

f (xi)− f
(

x∗i
))

dxi

+
n
∑

j=1

t∫

t−τj (t)
|bij |

(

f
(

xj (s)
)− f

(

x∗j
))2

ds.

Since A+ AT + BBT − In is negative definite, we obtain

dV (x(t), t)

dt

∣
∣
∣
∣
(10.10.15)

= −2
(

f
(

x(t)− f
(

x∗
)))T (

f
(

x(t)− f
(

x∗
)))

+ 2
(

f
(

x(t)− f
(

x∗
)))T

A
(

f
(

x(t)− f
(

x∗
)))

+ 2
(

f
(

x(t)− f
(

x∗
)))T

B
(

f
(

x(t − τ)− f
(

x∗
)))

+ (

f
(

x(t)− f
(

x∗
)))T (

f
(

x(t)− f
(

x∗
)))

− (

f
(

x(t − τ)− f
(

x∗
)))T (

f
(

x(t − τ)− f
(

x∗
)))

− 2
(

x(t)− (

x∗
))T (

f
(

x(t)− f
(

x∗
)))

+ 2
(

f
(

x(t)− f
(

x∗
)))T (

f
(

x(t)− f
(

x∗
)))

= (

f
(

x(t)− f
(

x∗
)))T (

A+ AT − In
)(

f
(

x(t)− f
(

x∗
)))

+ 2
(

f
(

x(t)− f
(

x∗
)))T

B
(

f
(

x(t − τ)− f
(

x∗
)))

− (

f
(

x(t − τ)− f
(

x∗
)))T (

f
(

x(t − τ)− f
(

x∗
)))

− 2
(

x(t)− (

x∗
))T (

f
(

x(t)− f
(

x∗
)))

+ 2
(

f
(

x(t)− f
(

x∗
)))T (

f
(

x(t)− f
(

x∗
)))

= (

f
(

x(t)− f
(

x∗
)))T (

A+ AT − In
)(

f
(

x(t)− f
(

x∗
)))



586 Chapter 10. Stability of Neural Networks

+ (

f
(

x(t)− f
(

x∗
)))T

BBT
(

f
(

x(t)− f
(

x∗
)))

− [

BT f
(

x(t)− f
(

x∗
))− (

f
(

x(t − τ)− f
(

x∗
)))]T

× [

BT f
(

x(t)− f
(

x∗
))− (

f
(

x(t − τ)− f
(

x∗
)))]

− 2
(

x(t)− (

x∗
))T (

f
(

x(t)− f
(

x∗
)))

+ 2
(

f
(

x(t)− f
(

x∗
)))T (

f
(

x(t)− f
(

x∗
)))

�
(

f
(

x(t)− f
(

x∗
)))T (

A+ AT BBT − In
)(

f
(

x(t)− f
(

x∗
)))

− 2
(

x(t)− (

x∗
))T (

f
(

x(t)− f
(

x∗
)))

+ 2
(

f
(

x(t)− f
(

x∗
)))T (

f
(

x(t)− f
(

x∗
)))

� −μ(f (x(t)− f
(

x∗
)))T (

f
(

x(t)− f
(

x∗
)))

− 2
(

x(t)− (

x∗
))T (

f
(

x(t)− f
(

x∗
)))

(10.10.45)+ 2
(

f
(

x(t)− f
(

x∗
)))T (

f
(

x(t)− f
(

x∗
)))

,

where−μ is the maximum eigenvalue ofA+AT BBT−In. The remaining proof is
similar to the last part of the proof for Theorem 10.10.10, and hence is omitted. �

REMARK 10.10.14. The condition in Theorem 10.10.13 can be easily general-
ized to: If there exist pi > 0, i = 1, . . . , n, such that the matrix PBP − BT P +
PA+ AT P − P is negative definite, where P = diag(p1, . . . , pn).

In [233], it is shown that a CNN is asymptotically stable if there is a constant
β such that

(10.10.46)A+ AT + βIn < 0 (i.e., negative definite),

(10.10.47)‖B‖2
2 � 1+ 1

2
β.

Subsequently, in [232], the second condition in (10.10.47) is relaxed to

(10.10.48)‖B‖2
2 � 1+ β.

The following corollary shows that Theorem 10.10.13 is an extension and im-
provement of the main results in [232,233].

COROLLARY 10.10.15. If there is a constant β such that (10.10.46) and
(10.10.47) or (10.10.48) are satisfied, then the condition in Theorem 10.10.13
is satisfied.

PROOF. If there is a constant β such that A+AT +βIn < 0 and ‖B‖2
2 � 1+ 1

2β,
then A + AT + βIn < 0 and ‖B‖2

2 � 1 + β (the conditions in [232]). Since
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λmax(BB
T ) � ‖BBT ‖2 = ‖B2‖2 � ‖B‖2

2 � 1+β, BBT − (1+β)In is negative
semi-definite, where λmax(BB

T ) is the maximum eigenvalue of BBT . combining
this with the first condition (10.10.46), we have A+ AT BBT − In < 0. �

COROLLARY 10.10.16. The equilibrium of (10.10.14) is globally exponentially
stable if any of the following conditions hods:

(1) λmax(A+ AT ) � 0, and ‖B‖2 < 1, where ‖B‖2 =
√

λmax(BBT );
(2) λmax(A+ AT ) < 0, and ‖B‖2 � 1;
(3) λmax(A+ AT + BBT ) < 0;
4) A = 0, and ‖B‖2 < 1.

The proof is simple and thus omitted.
In the following, we present five examples to compare the new results with the

existing ones.

EXAMPLE 10.10.17. Consider the following two-state CNN:

dx1

dt
= −x1 − 2f

(

x1(t)
)+ 2f

(

x2(t)
)+ 0.99f

(

x1(t)
)+ 0.99f

(

x2(t − τ)
)

,

dx2

dt
= −x2 + 2f

(

x1(t)
)− 2f

(

x2(t)
)

,

which gives

A =
[−2 2

2 −2

]

, B =
[

0.99 0.99
0 0

]

, BB2 =
[

1.9602 0
0 0

]

.

Thus,

A+ AT + BBT − I2 =
[−3.0398 4

4 −5

]

is not negative definite. So the condition in theorem of [232] does not hold, but
the condition in (10.10.16) of Theorem 10.10.8 is satisfied.

EXAMPLE 10.10.18. Consider the following two-state CNN:

dx1

dt
= −x1 + 0.89f

(

x1(t − τ1)
)+ 0.1f

(

x2(t − τ2)
)+ u1,

dx2

dt
= −x2 + 0.89f

(

x1(t − τ1)
)+ 0.1f

(

x2(t − τ2)
)+ u2.

For this system, we have

A =
[

0 0
0 0

]

, B =
[

0.89 0.1
0.89 0.1

]

, BB2 =
[

0.8021 0.8021
0.8021 0.8021

]

.
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Since ‖B‖2 = 1.6042 > 0, the conditions of theorem in [9] are not satisfied.
Moreover,

A+ AT + BBT − I2 =
[−0.1979 0.8021

0.8021 −0.1979

]

is not negative definite, so the condition of the main theorem in [9] is not satisfied.
However, the condition in (10.10.17) of Theorem 10.10.8 is satisfied.

EXAMPLE 10.10.19. Consider a two-state CNN as follows:

dx1

dt
= −x1 − f

(

x1(t)
)+ f

(

x2(t)
)+ 0.78f

(

x1(t − τ1)
)

+ 0.2f
(

x2(t − τ2)
)+ u1,

dx2

dt
= −x2 + f

(

x1(t)
)− f

(

x2(t)
)+ 0.78f

(

x1(t − τ1)
)

+ 0.2f
(

x2(t − τ2)
)+ u2.

For this example,

A =
[−1 1

1 −1

]

, B =
[

0.78 0.2
0.78 0.2

]

, BB2 =
[

0.6484 0.6484
0.6484 0.6484

]

.

Then,

A+ AT + BBT − I2 =
[−2.3516 2.6484

2.6484 −2.3516

]

is not negative definite, so the condition of the theorems in [7] and [232] are not
satisfied. However, it satisfies the condition in (10.10.17) of Theorem 10.10.8.

EXAMPLE 10.10.20. Consider a two-state CNN:

dx1

dt
= −x1 − 2.1f (x1)+ 8f (x2)+ f

(

x1(t − τ1)
)

− 2f
(

x2(t − τ2)
)+ u1,

dx2

dt
= −x2 − 8f (x1)+ 3.2f (x2)+ 2f

(

x1(t − τ1)
)

− 2f
(

x2(t − τ2)
)+ u2,

for which

A =
[−2.1 8
−8 3.2

]

, B =
[

1 −2
2 −2

]

,

so

A+ AT =
[−4.2 0

0 6.4

]

,
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Q = diag
(|b11| + |b11| + |b12| + |b21|

+ |b22| + |b22| + |b21| + |b12|
)− 2I2

=
[

2+ 4 0
0 4+ 4

]

−
[

2 0
0 2

]

=
[

4 0
0 6

]

,

A+ AT +Q− 2I2 =
[−0.2 0

0 −0.4

]

which is negative definite, so the condition of Theorem 10.10.10 holds. But the
conditions in [353] (Theorems 3.1 and 3.2) and that in [8] (Theorem 1) are not
satisfied.

EXAMPLE 10.10.21. Let

A =
[−1/2 −5

5 −2

]

, B =
[

2/3 −2/3
−2/3 2/3

]

.

Then, we have

A+ AT =
[−1 0

0 −4

]

, ‖B‖2 = 4

3
,

(

1− ‖B‖2
) = −1

3
> λmax

(

A+ AT
) = −1.

Hence, the condition of Theorem 10.10.13 holds but the condition of [8] (Theo-
rem 1), that of the theorem in [7], the conditions of the theorem in [353], and that
of the main theorem in [232] are not satisfied.
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Chapter 11

Limit Cycle, Normal Form and Hopf Bifurcation
Control

In this chapter, we study nonlinear dynamical systems, with particular attention
given to the computation of normal form and limit cycle, Hopf bifurcation control,
and their applications. Both mathematical and practical engineering problems are
presented, which are described by ordinary differential equations, discrete maps
and time-delay differential equations.

11.1. Introduction

Nonlinear dynamics, more grandly called “nonlinear science” or “chaos theory”,
is a rapidly-growing area, which plays an important role in the study of almost
all disciplines of science and engineering, including mathematics, mechanics,
aeronautics, electrical circuits, control systems, population problems, economics,
financial systems, stock markets, ecological systems, etc. In general, any dynam-
ical system contains certain parameters (usually called bifurcation parameters or
control parameters) and thus it is vital to study the dynamic behavior of such sys-
tems as the parameters are varied. The complex dynamical phenomena include
instability, bifurcation and chaos (e.g., see [12,146,399,67,160,427]). Studies of
nonlinear dynamical systems may be roughly divided into two main categories:
local analysis and global analysis. For instance, post-critical behavior such as
saddle-node bifurcation and Hopf bifurcation can be studied locally in the vicin-
ity of a critical point, while heteroclinic and homoclinic orbits, and chaos are
essentially global behavior and have to be studied globally. These two categories
need to be treated with different theories and methodologies.

In studying the local behavior of a dynamical system, in particular for qual-
itative properties, the first step is usually to simplify the system. Such a sim-
plification should keep the dynamical behavior of the system unchanged. Many
methodologies have been developed in analyzing local dynamics, such as cen-
ter manifold theory, normal form theory, averaging method, multiple time scales,
Lyapunov–Schmidt reduction, the method of succession functions, the intrinsic
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harmonic balancing technique, etc. These methods can be used to obtain the so
called “simplified” governing differential equations which describe the dynam-
ics of the system in the vicinity of a point of interest. The “simplified” system is
topologically equivalent to the original system, and thus it greatly simplifies the
analysis of the original system. Usually, center manifold theory is applied first
to reduce the system to a low dimensional center manifold, and then the method
of normal forms is employed to further simplify the system [146,322]. However,
approaches have been developed which combine the two theories into one uni-
fied procedure without applying center manifold theory [420,422,423,441]. In this
chapter, the local dynamical analysis is mainly based on this unified procedure of
normal forms. The normal form of a nonlinear dynamical system is not uniquely
defined and computing the explicit formula of a normal form in terms of the origi-
nal system’s coefficients is not easy. In the past few years, efficient methodologies
and software based on symbolic computations using Maple and Mathematica have
been successfully employed in normal form computations.

The phenomenon of limit cycle was first discovered and studied by Poincaré
[333] who presented the break through qualitative theory of differential equations.
In order to determine the existence of limit cycles for a given differential equation
and the properties of limit cycles, Poincaré introduced the well-known method
of Poincaré Map, which is still the most basic tool for studying the stability and
bifurcations of periodic orbits. The driving force behind the study of limit cycle
theory was the invention of triode vacuum tube which was able to produce sta-
ble self-excited oscillations of constant amplitude. It was noted that such kind of
oscillation phenomenon could not be described by linear differential equations.
At the end of the 1920s Van der Pol [387] developed a differential equation to
describe the oscillations of constant amplitude of a triode vacuum tube:

(11.1.1)ẍ + μ
(

x2 − 1
)

ẋ + x = 0 (μ �= 0),

where the dot denotes a differentiation with respect to time t , andμ is a parameter.
Equation (11.1.1) is now called Van der Pol’s equation. Later a more general
equation called Liénard equation [289] was developed, for which Van der Pol’s
equation is a special case.

Limit cycles are generated through bifurcations, among which the most popu-
lar and important one is Hopf bifurcation [171]. Consider the following general
nonlinear system:

(11.1.2)ẋ = f (x, μ), x ∈ Rn, μ ∈ R, f :Rn+1 → Rn,

where x is an n-dimensional state vector while μ is a scalar parameter, called
bifurcation parameter. (Note that in general one may assume that μ is an m-
dimensional vector for m � 1.) The function f is assumed to be analytic with
respect to both x and μ. Equilibrium solutions of system (11.1.2) can be found
by solving the nonlinear algebraic equation f (x, μ) = 0 for all real μ. Let x∗
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be an equilibrium (or fixed point) of the system, i.e., f (x∗, μ) ≡ 0 for any
real value of μ. Further, suppose that the Jacobian of the system evaluated at
the equilibrium x∗ has a pair of complex conjugates, denoted by λ1,2(μ) with
λ1 = λ̄2 = α(μ)+ iω(μ) such that α(μ∗) = 0 and dα(μ∗)

dμ
�= 0. Here, the second

condition is usually called transversality condition, implying that the crossing of
the complex conjugate pair at the imaginary axis is not tangent to the imaginary
axis. Then Hopf bifurcation occurs at the critical point μ = μ∗, giving rise to bi-
furcation of a family of limit cycles. Other local bifurcations such as double-zero,
Hopf-zero, double Hopf, etc. bifurcations may result in more complex dynamical
behaviors. In this chapter, Hopf bifurcations will be particularly studied.

The normal form of Hopf bifurcation can be used to analyze bifurcation and
stability of limit cycles in the vicinity of a Hopf critical point. To determine the
existence of multiple limit cycles in the neighborhood of a Hopf critical point,
one needs to compute the coefficients of the normal form, or the focus values of
the critical point [420,291,62,290,63]. Many methodologies have been developed
for computing normal forms and focus values. To find maximal number of mul-
tiple limit cycles, one needs to compute high-order normal forms or high-order
focus values, which must be found in explicit symbolic expressions. This raises a
crucial problem—computation efficiency, since a nonefficient computer program
would quickly cause a computer system to crash. Therefore, it is important to
study the existing methods of computing normal forms and focus values. In this
chapter, we will present three typical methods: the Takens method [377,378], a
perturbation method based on multiple time scales [322,420], and the singular
point value method [291,62,290,63]. Examples will be presented to show that
these three methods yield the same computational complexity.

Global bifurcation analysis, on the other hand, is more difficult than local
analysis. Besides homoclinic and heteroclinic bifurcations [146], the most excit-
ing discovery in nonlinear dynamics is chaos. Since the discovery of the Lorenz
attractor [294], which has led to a new era in the study of nonlinear dynamical sys-
tems, many researchers from different disciplines such as mathematics, physics
and engineering extensively investigated the dynamical property of chaotic sys-
tems. For a quite long period, people thought that chaos was not predictable nor
controllable. However, the OGY method [328] developed in 90s of the last century
has completely changed the situation, and the study of bifurcation and chaos con-
trol begun. The general goal of bifurcation control is to design a controller such
that the bifurcation characteristics of a nonlinear system undergoing bifurcation
can be modified to achieve certain desirable dynamical behavior, such as changing
a Hopf bifurcation from subcritical to supercritical [427,66,70]. The main goal of
chaos control is to simply eliminate chaotic motion so that the system’s trajecto-
ries eventually converge to an equilibrium point or a periodic motion [67].

Bifurcation and chaos control, which as an emerging research field has be-
come challenging, stimulating, and yet quite promising. Unlike classical control
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theory, bifurcation control refers to the task of designing a controller to modify
the bifurcation properties of a given nonlinear system, thereby achieving some
desirable dynamical behaviors. Particularly, Hopf bifurcation control in both dis-
crete and continuous time-delay dynamical systems is studied. Recently, feedback
controllers using polynomial functions have been developed for controlling Hopf
bifurcations in both continuous systems and discrete maps [430,73,74], which
have been shown to have superior properties than traditional controllers such as
the washout filter controller [393]. The new controller is easy to be implemented,
which not only preserves the system’s equilibrium points, but also keeps the di-
mension of the system unchanged. This approach can be extended to study higher
dimensional dynamical systems.

The rest of the chapter is organized as follows. In the next section, three
typical methods for computing normal forms (focus values) are presented. In
Section 11.3, the simplest normal form (SNF) is introduced, and the SNFs for
codimension-one bifurcations are particularly discussed. Section 11.4 is devoted
to study Hopf bifurcation control. Both mathematical and practical problems are
presented in each section to illustrate the application of theories.

11.2. Computation of normal forms and focus values

In this section, we present three typical methods for computing normal forms
and the focus value, which are widely used in applications associated with Hopf
bifurcation. We first introduce the Takens method [377,378], then discuss a per-
turbation method using multiple time scales [322,420] and finally present the
singular point value method [291,62,290,63]. Note that the Takens method and
the singular point value method are only applicable to 2-dimensional systems,
while the perturbation method can be applied to general n-dimensional systems.
In other words, if one wants to apply the Takens method or the singular point
value method to compute normal forms (focus values), one must first apply center
manifold theory, while with the perturbation method one does not need applying
center manifold theory since it combines normal form theory and center manifold
theory in one unified approach.

11.2.1. The Takens method

Consider the following general 2-dimensional system

(11.2.1)ẋ = Lx + f (x) ≡ v1 + f 2(x)+ f 3(x)+ · · · + f k(x)+ · · · ,
where x = (x1, x2)

T ∈ R2, and

(11.2.2)L =
[

0 1
−1 0

]

.
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Let v1 = Lx ≡ Jx. (Usually J is used to denote the Jacobian matrix. Here L
is used in consistent with the Lie bracket notation.) It is assumed that all eigen-
values of L have zero real parts, implying that the dynamics of system (11.2.1) is
described on a 2-D center manifold. f k(x) denotes the kth-order vector homoge-
neous polynomials of x.

The basic idea of the Takens normal form theory is to find a near-identity non-
linear transformation, given by

(11.2.3)x = y + h(y) ≡ y + h2(y)+ h3(y)+ · · · + hk(y)+ · · ·
such that the resulting system

(11.2.4)ẏ = Ly + g(y) ≡ Ly + g2(y)+ g3(y)+ · · · + gk(y)+ · · ·
becomes as simple as possible. Here, both hk(y) and gk(y) are the kth-order
vector homogeneous polynomials of y.

To apply normal form theory, first define an operator as follows:

Lk :Hk #→ Hk,

(11.2.5)Uk ∈ Hk #→ Lk(Uk) = [Uk, v1] ∈ Hk,

where Hn denotes a linear vector space consisting of the kth-order vector homo-
geneous polynomials. The operator [Uk, v1] is called Lie bracket, defined as

(11.2.6)[Uk, v1] = Dv1 · Uk −DUk · v1.

Next, define the space Rk as the range of Lk , and the complementary space of
Rk as Kk = Ker(Lk). Thus,

(11.2.7)Hk = Rk ⊕Kk,

and we can then choose bases for Rk and Kk . Consequently, a vector homoge-
neous polynomial f k ∈ Hk can be split into two parts: one is spanned by the
basis of Rk and the other by that of Kk . Normal form theory shows that the part
of f k belonging to Rk can be eliminated while the part belonging to Kk must be
retained, which is called normal form.

By applying the Takens normal form theory [378], one can find the kth-order
normal form gk(y), while the part belonging to Rk can be removed by appro-
priately choosing the coefficients of the nonlinear transformation hk(y). The
“form” of the normal form gk(y) depends upon the basis of the complementary
space Kk , which is determined by the linear vector v1. We may apply the matrix
method [146] to find the basis of the space Rk and then determine the basis of the
complementary space Kk . Once the basis of Kk is chosen, the form of gk(y) can
be determined, which actually represents the normal form.

In general, when one applies normal form theory to a system, one can find the
“form” of the normal form (i.e., the basis of the complementary space Kk), but
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not the explicit expressions. However, in practical applications, the solutions for
the normal form and the nonlinear transformation need to be found explicitly. To
achieve this, one may assume a general form of the nonlinear transformation and
substitute it back into the original differential equation, with the aid of normal
form theory, to obtain the kth-order algebraic equations by balancing the coeffi-
cients of the homogeneous polynomial terms. These algebraic equations are then
used to determine the coefficients of the normal form and the nonlinear transfor-
mation. Thus, the key step in the computation of the kth-order normal form is to
find the kth-order algebraic equations.

The following theorem [438] gives the recursive formula for computing the ex-
act k-order algebraic equations, from which normal form and associated nonlinear
transformation can be explicitly obtained.

THEOREM 11.2.1. The recursive formula for computing the coefficients of the
k-order normal form and nonlinear transformation is given by

gk = f k + [hk, v1] +
k−1
∑

i=2

{[hk−i+1,f i] +Dhi (f k−i+1 − gk−i+1)
}

(11.2.8)

+
[ k2 ]∑

m=2

1

m!
k−m
∑

i=m
Dmf i

∑

l1+l2+···+lmj=k−(i−m)
2�l1,l2,...,lm�k−(i−m)−2(m−1)

hl1hl2 · · ·hlm

for k = 2, 3, . . . , where f k , hk , and gk are the kth-order vector homogeneous
polynomials of y (where y has been dropped for simplicity). f k represents the kth-
order terms of the original system, hk is the kth-order nonlinear transformation,
and gk denotes the kth-order normal form.

When the eigenvalues of a Jacobian involve one or more pure imaginary pairs, a
complex analysis may simplify the solution procedure. It has actually been noted
that the real analysis given in [421] yields the coupled algebraic equations, while
it will be seen that the complex analysis can decouple the algebraic equations.

Thus, introduce the linear transformation:

(11.2.9)

{

x1 = 1
2 (z+ z),

x2 = i
2 (z− z),

i.e.,

{

z = x1 − ix2,

z = x1 + ix2,

where i is the unit of imaginary number, satisfying i2 = −1, and z is the complex
conjugate of z. Then the linear part of system (11.2.1), v1, becomes

v1 = x2
∂

∂x1
− x1

∂

∂x2
∂x1 = (iz− iz)T .



11.2. Computation of normal forms and focus values 597

Applying the transformation (11.2.9) into system (11.2.1) yields

(11.2.10)ż = iz+ f
(

z, z
)

, ż = −iz+ f
(

z, z
)

,

where f is a polynomial in z and z starting from the second order terms, and f

is the complex conjugate of f . Here, for convenience we use the same notation
f = (f, f )T for the complex analysis.

To find the normal form of Hopf singularity, one may assume a nonlinear trans-
formation, given by

(11.2.11)z = y +
∑

hk
(

y, y
)

, z = y +
∑

hk
(

y, y
)

,

and determines the basis, gk , for the complementary space of Kk , or employ
Poincaré normal form theory to determine the so called “resonant” terms. It is well
known that the “resonant” terms are given in the form of zj zj−1 (e.g., see [146]),
and the kth-order normal form is

(11.2.12)gk
(

y, y
) =

(
(b1k + ib2k)y

(k+1)/2y(k−1)/2

(b1k − ib2k)y
(k+1)/2y(k−1)/2

)

,

where b1k and b2k are real coefficients to be determined. It is obvious to see from
equation (11.2.12) that the normal form contains odd order terms only, as ex-
pected. In normal form computation, the two kth-order coefficients b1k and b2k
should be, in general, retained in the normal form.

Finally, based on equations (11.2.4), (11.2.10)–(11.2.12), one can use the alge-
braic equation (11.2.9) order by order starting from k = 2, and then apply normal
form theory to solve for the coefficients b1k (k is odd) explicitly in terms of the
original system coefficients. Summarizing the above results gives the following
theorem.

THEOREM 11.2.2. For system (11.2.1) with L given by (11.2.2), the normal form
is given by equation (11.2.12), where b1k is the kth-order focus value.

11.2.2. A perturbation method

In this subsection we present a perturbation technique based multiple time scales
to compute the normal form associated with Hopf singularity [420]. This ap-
proach has been used to develop a unified approach to directly compute the normal
forms of Hopf and degenerate Hopf bifurcations for general n-dimensional sys-
tems without the application of center manifold theory [420]. In the following, we
briefly describe the perturbation approach.

Consider the general n-D differential equation:

(11.2.13)ẋ = Jx + f (x), x ∈ Rn, f :Rn → Rn,
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where Jx represents the linear terms of the system, and the nonlinear function f

is assumed to be analytic; and x = 0 is an equilibrium point of the system, i.e.,
f (0) = 0. Further, assume that the Jacobian of system (11.2.13) evaluated at the
equilibrium point 0 contains a pair of purely imaginary eigenvalues ±i, and thus
the Jacobian of system (11.2.13) may be assumed in the Jordan canonical form:

(11.2.14)J =
[ 0 1 0
−1 0 0
0 0 A

]

, A ∈ R(n−2)×(n−2),

where A is stable (i.e. all of its eigenvalues have negative real parts).
The basic idea of the perturbation technique based on multiple scales is as

follows: Instead of a single time variable, multiple independent variables or scales
are used in the expansion of the system response. To achieve this, introducing
the new independent time variables Tk = εkt, k = 0, 1, 2, . . . , yields partial
derivatives with respect to Tk as follows:

d

dt
= ∂T0

∂t

∂

∂T0
+ ∂T1

∂t

∂

∂T1
+ ∂T2

∂t

∂

∂T2
+ · · ·

(11.2.15)= D0 + εD1 + ε2D2 + · · ·
where Dk = ∂

∂Tk
denotes a differentiation operator. Then, assume that the so-

lutions of system (11.2.13) in the neighborhood of x = 0 are expanded in the
series:

(11.2.16)x(t; ε) = εx1(T0, T1, . . .)+ ε2x2(T0, T1, . . .)+ · · · .
Note that the same perturbation parameter, ε, is used in both the time and space
scalings (see equations (11.2.15) and (11.2.16)). In other words, this perturbation
approach treats time and space in a unified scaling.

Applying the formulas (11.2.15) and (11.2.16) into system (11.2.13), and
solving the resulting ordered linear differential equations finally yields the nor-
mal form, given in polar coordinates (the detailed procedure can be found in
(see [420]):

dr

dt
= ∂r

∂T0

∂T0

∂t
+ ∂r

∂T1

∂T1

∂t
+ ∂r

∂T2

∂T2

∂t
+ · · ·

(11.2.17)= D0r +D1r +D2r + · · · ,
dφ

dt
= ∂φ

∂T0

∂T0

∂t
+ ∂φ

∂T1

∂T1

∂t
+ ∂φ

∂T2

∂T2

∂t
+ · · ·

(11.2.18)= D0φ +D1φ +D2φ + · · · ,
where Dir and Diφ are uniquely determined, implying that the normal form
given by equations (11.2.17) and (11.2.18) is unique. Further, it has been shown
that [420] the derivatives Dir and Diφ are functions of r only, and only D2kr
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and D2kφ are nonzero, which can be expressed as D2kr = v2k+1r
2k+1 and

D2kφ = t2k+1r
2k , where both v2k+1 and t2k+1 are expressed in terms of the origi-

nal system’s coefficients. The coefficient v2k+1 is called the kth-order focus value
of the Hopf-type critical point (the origin). Summarizing the above results gives
the following theorem.

THEOREM 11.2.3. For the general n-dimensional system (11.2.13), which has
a Hopf-type singular point at the origin, i.e., the linearized system of (11.2.13)
has a pair of purely imaginary eigenvalues and the remaining eigenvalues have
negative real parts, the normal form for the Hopf or generalized Hopf bifurcations
up to (2k + 1)th order term is given by

(11.2.19)ṙ = r
(

v1 + v3r
2 + v5r

4 + · · · + v2k+1r
2k),

(11.2.20)θ̇ = 1+ φ̇ = 1+ t3r
2 + t5r

4 + · · · + t2k+1r
2k,

where the constants v2k+1 = D2kr/r
2k+1 and t2k+1 = D2kφ/r

2k+1 are explicitly
expressed in terms of the original system parameters, and D2kr and D2kφ are
obtained recursively using multiple time scales.

11.2.3. The singular point value method

This iterative method computes focus value via the computation of singular point
quantities (see [62,290,63] for details).

To introduce this method, consider the planar polynomial differential system:

(11.2.21)ẋ = δx − y +
∞
∑

k=2

Xk(x, y), ẏ = x + δy +
∞
∑

k=2

Xk(x, y),

whereXk(x, y) and Yk(x, y) are homogeneous polynomials of x, y with degree k.
The origin (x, y) = (0, 0) is a singular point of system (11.2.21), which is either
a focus or a center (when δ = 0). Since we are interested in the computation of
focus value, we assume δ = 0 in the following analysis. Introducing the transfor-
mations, given by

(11.2.22)z = x + iy, w = x − iy, T = it, i = √−1,

into system (11.2.21) results in

dz

dT
= z+

∞
∑

k=2

Zk(z,w) = Z(z,w),

(11.2.23)
dw

dT
= −w −

∞
∑

k=2

Wk(z,w) = −W(z,w),
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where z,w and T are complex variables, and

(11.2.24)Zk(z,w) =
∑

α+β=k
aαβz

αwβ, Wk =
∑

α+β=k
bαβw

αzβ.

System (11.2.21) and (11.2.23) are said to be concomitant.
If system (11.2.21) is a real planar, differential system, then the coefficients of

system (11.2.23) must satisfy the conjugate conditions:

(11.2.25)aαβ = bαβ, α � 0, β � 0, α + β � 2.

By the following transformations:

(11.2.26)z = reiθ , w = re−iθ , T = it,

system (11.2.23) can be transformed into

dr

dt
= ir

2

∞
∑

m=1

∑

α+β=m+2

(aα,β−1 − bβ,α−1)e
i(α−β)θ rm,

(11.2.27)
dθ

dt
= 1+ 1

2

∞
∑

m=1

∑

α+β=m+2

(aα,β−1 + bβ,α−1)e
i(α−β)θ rm.

For a complex constant h, |h| 	 1, we may write the solution of (11.2.27) satis-
fying the initial condition r|θ=0 = h as

(11.2.28)r = r̃(θ, h) = h+
∞
∑

k=2

vk(θ)h
k.

Evidently, if system (11.2.21) is a real system, then v2k+1(2π) (k = 1, 2, . . .) is
the kth-order focal (or focus) value of the origin.

For system (11.2.21), we can uniquely derive the following formal series:

ϕ(z,w) = z+
∞
∑

k+j=2

ckj z
kwj ,

(11.2.29)ψ(z,w) = w +
∞
∑

k+j=2

dk,jw
kzj ,

where

(11.2.30)ck+1,k = dk+1,k = 0, k = 1, 2, . . . ,

such that

(11.2.31)
dϕ

dt
= ϕ +

∞
∑

j=1

pjϕ
j+1ψj ,

dψ

dt
= −ψ −

∞
∑

j=1

qjψ
j+1ϕj .
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Let μ0 = 0, μk = pk − qk, k = 1, 2, . . . . μk , is called the kth-order singular
point quantity of the origin of system (11.2.23) [62]. Based on the singular quan-
tities, we can define the order of the singular critical point and extended center as
follows.

If μ0 = μ1 = · · · = μk−1 = 0 and μk �= 0, then the origin of system (11.2.23)
is called the kth-order weak critical singular point. In other words, k is the multi-
plicity of the origin of system (11.2.23).

If μk = 0 for k = 1, 2, . . . , then the origin of system (11.2.23) is called an
extended center (complex center).

If system (11.2.21) is a real autonomous differential system with the concomi-
tant system (11.2.23), then for the origin, the kth-order focus value v2k+1 of sys-
tem (11.2.21) and the kth-order quantity of the singular point of system (11.2.23)
have the relation [291,290], given in the following theorem.

THEOREM 11.2.4. Given system (11.2.21) (δ = 0) or (11.2.23), for any positive
integer m, the following assertion holds:

(11.2.32)v2k+1(2π) = iπ

(

μk +
k−1
∑

j=1

ξ
(j)
k μj

)

, k = 1, 2, . . . ,

where ξ (j)m (j = 1, 2, . . . , k − 1) are polynomial functions of coefficients of sys-
tem (11.2.23).

Furthermore, we have the following results [62].

THEOREM 11.2.5. The recursive formulas for computing the singular point
quantities of system (11.2.23) is given by c11 = 1, c20 = c02 = ckk = 0, k =
2, 3, . . . , and ∀(α, β), α �= β, and m � 1:

Cαβ = 1

β − α

α+β+2
∑

k+j=3

[

(α − k + 1)ak,j−1 − (β − j + 1)bj,k−1
]

(11.2.33)× Cα−k+1,β−j+1

and

μm =
2m+4
∑

k+j=3

[

(m− k + 2)ak,j−1 − (m− j + 2)bj,k−1
]

(11.2.34)× Cm−k+2,m−j+2,

where akj = bkj = Ckj = 0 for k < 0 or j < 0.
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It is clearly seen from equation (11.2.32) that

μ1 = μ2 = · · · = μk−1 = 0 ⇐⇒ v3 = v5 = · · · = v2k−1 = 0.

Therefore, when determining the conditions such that v1 = v2 = · · · = vk−1 = 0,
one can instead use the equations: μ1 = μ2 = · · · = μk−1 = 0. If the μk’s
are simpler than the vk’s then this method is better than the method of directly
computing vk . However, in general such μk are not necessarily simpler than vk .
We shall see this in the next two subsections.

It should be pointed out that since the normal form (focus value) is not unique,
the focus values obtained using different methods are not necessarily the same.
However, the first nonzero focus value must be identical (ignoring a constant
multiplier). This implies that for different focus values obtained using different
approaches, the solution to the equations v3 = v5 = · · · = v2k−1 = 0 (or
μ1 = μ3 = · · · = μk−1 = 0) must be identical.

For the three methods described above, symbolic programs have been devel-
oped using Maple, which will be used in the following two subsections.

11.2.4. Applications

The Brusselator model

We first use the well-known Brusselator model to consider the application of
the three methods described in the previous subsection. The model is described
by [325]

ẇ1 = A− (1+ B)w1 + w2
1w2,

(11.2.35)ẇ2 = Bw1 − w2
1w2,

where A,B > 0 are parameters. The system has a unique equilibrium point:

(11.2.36)w1e = A, w2e = B

A
.

Evaluating the Jacobian of system (11.2.35) at the equilibrium point (11.2.36)
shows that a Hopf bifurcation occurs at the critical point B = 1+ A2. Letting

(11.2.37)B = 1+ A2 + μ,

where μ is a perturbation parameter, then the Jacobian has eigenvalues λ = ±Ai.
Suppose A = 1, and then introduce the transformation: w1 = w1e + x1, w2 =
w2e − x1 + x2 into (11.2.35) to obtain the new system:

ẋ1 = x2 + μx1 + μx2
1 + 2x1x2 − x3

1 + x2
1x2,

(11.2.38)ẋ2 = −x1.
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Now at the critical point defined by μ = 0, we apply the three methods described
in the previous subsection to compute the first-order focus value. The Maple pro-
grams are employed to obtain the following results.

The Takens method: b13 = − 3
8 ;

The perturbation method: v3 = − 3
8 ;

The singular point value method: μ1 = 3
4 i.

It is seen that b13 = v3 = i
2μ1. Ignoring the constant factor i

2 , the three methods
give the identical result for the first-order focus value: − 3

8 . This shows that the
limit cycles bifurcating from the critical point μ = 0 in the vicinity of the equilib-
rium point (w1c, w2c) is supercritical, i.e., the bifurcating limit cycles are stable
since the first-order focus value is negative.

Further, computing the second order focus value yields

The Takens method: b15 = − 1
96 ;

The perturbation method: v5 = − 1
96 ;

The singular point value method: μ2 = − 67
48 i.

This indicates that the Takens method and the perturbation method still give same
second-order focus value, but the singular point value method yields a different
μ2. This is not surprising since the second-order singular point value is a combi-
nation of μ1 and μ2.

One more further step computation shows that

The Takens method: b17 = − 2695
36864 ;

The perturbation method: v5 = − 4543
36864 ;

The singular point value method: μ2 = 6239
2304 i.

For the third-order focus value, even the Takens method and the perturbation
method give different answers.

Numerical simulation results obtained from the original system (11.2.35) are
shown in Figure 11.2.1. This figure clearly indicates that when A = 1.0,
B = 1.95, the trajectory converges to the stable equilibrium point (w1c, w2c) =
(1, 1.95) (see Figure 11.2.1(a)); while when A = 1.0, B = 2.05, the equilibrium
point becomes unstable and a stable limit cycle bifurcates from the equilibrium
point (see Figure 11.2.1(b)).

The induction machine model

In this subsection, we present a model of induction machine to demonstrate the
application of the results obtained in the previous subsections. The model is based
on the one discussed in [212] and the same notations are adopted here. Since in
this chapter we are mainly interested in the application of focus value computa-
tion, we will not give the detailed derivation of the model.



604 Chapter 11. Limit Cycle, Normal Form and Hopf Bifurcation Control

Figure 11.2.1. Simulated trajectories of the Brusselator model (11.2.35) for A = 1.0 with the initial
point (w1, w2) = (2,−1): (a) convergent to the stable equilibrium point w+ when B = 1.95; and (b)

convergent to a stable limit cycle when B = 2.05.

An induction machine (or asynchronous machine) is one of the electrical ma-
chines which is widely used in industry. The behavior of induction machine was
studied for years, but the main attention has been focused on steady state solutions
due to the complexity of the model (even with simplifying assumptions). In order
to study dynamical behavior of the model such as instability and bifurcations, it
needs to determine the conditions of the bifurcation (critical) points.

The model is described by a system of seven ordinary differential equations,
given by

φ̇qs = ωb

{

uq − φds + rs

X1s

[

Xaq

(
φqs

X1s
+ φ′qr
X′1r

)

− φqs

]}

,

φ̇ds = ωb

{

ud + φqs + rs

X1s

[

Xaq

(
φds

X1s
+ φ′dr
X′1r

)

− φds

]}

,

φ̇0s = ωb

{
rs

X1s
(−φ0s)

}

,

φ̇′qr = ωb

{

−(1− ωr)φ
′
dr +

r ′r
X′1r

[

Xaq

(
φqs

X1s
+ φ′qr
X′1r

)

− φ′qr
]}

,

φ̇′dr = ωb

{

(1− ωr)φ
′
qr +

r ′r
X′1r

[

Xaq

(
φds

X1s
+ φ′dr
X′1r

)

− φ′dr
]}

,

φ̇0r = ωb

{
r ′r
X′1r

(−φ′0r
)
}

,

(11.2.39)ω̇′r =
1

2H

{
Xad

X1sX
′
1r

(

φqsφ
′
dr − φdsφ

′
qr

)− TL

}

,
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where, except for the state variables, all variables denote the system parameters.
Letting

w1 = φqs, w2 = φds, w3 = φ0s , w4 = φ′qr , w5 = φ′dr ,
w6 = φ′0r , w7 = ωr,

and substituting proper parameter values to equation (11.2.39) finally yields a
model of a 3hp induction machine as ẇ = f (w, V ):

ẇ1 = − 3

10
w1 − w2 + 3

10
w4 + V,

ẇ2 = w1 − 3

10
w2 + 3

10
w5,

ẇ3 = −3

5
w3,

ẇ4 = 1

2
w1 − 1

2
w4 − w5 + w5w7,

ẇ5 = 1

2
w2 + w4 − 1

2
w5 − w4w7,

ẇ6 = −w6,

(11.2.40)ẇ7 = 7

120π3
(14w1w5 − 14w2w4 − 1),

where V > 0 is a bifurcation parameter, representing the input voltage of the
motor.

Setting ẇi = 0, i = 1, 2, . . . , 7, results in two equilibrium solutions (fixed
points):

w±1 = −
3(−350V 2 + 15± 10S)

7630V
,

w±2 =
7315V 2 − 150± 9S

7360V
,

w±3 = 0,

w±4 = −
1

14V
,

w±5 =
35V 2 ± S

70V
,

w±6 = 0,

(11.2.41)w±7 =
−350V 2 + 124± 10S

109
,
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where S = √
1225V 4 − 105V 2 − 25, indicating that the equilibrium solutions

exist when V 2 � 3+√109
70 . The Jacobian of equation (11.2.40) is given by

(11.2.42)J (w) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− 3
10 −1 0 3

10 0 0 0

1 − 3
10 0 0 3

10 0 0

0 0 − 3
5 0 0 0 0

1
2 0 0 − 1

2 −1+ w7 0 w5

0 1
2 0 1− w7 − 1

2 0 −w4

0 0 0 0 0 −1 0
49w5
60π3 − 49w4

60π3 0 − 49w2
60π3

49w1
60π3 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The conditions for various singularities of the system have been obtained
in [428], but the stability of bifurcating limit cycles was not discussed. Here,
we will consider the stability of limit cycles generated from a Hopf bifurcation
for which the Jacobian of (11.2.42) has a pair of purely imaginary eigenvalues,
which requires that V � V0 = ((3+√109)/70)1/2 ≈ 0.4381830425 [428]. Since
w− is always unstable when V > V0, we only consider w+ which can be shown
to be stable when V ∈ (0.4381830425, 6.2395593195) ∪ (7.75369242394,∞)

and unstable when V ∈ (6.2395593195, 7.35369242394). The point V0 =
0.4381830425 is a static critical point. Furthermore, we can employ the criterion
given in [428] to show that

(11.2.43)Vh1 = 6.2395593195 and Vh2 = 7.35369242394

are two solutions at which Hopf bifurcations occur. When V = Vh1, the eigenval-
ues of J (x) are:

±0.7905733366i, −1, −0.6, −0.5630004665,

−0.5184997667± 1.0893171380i,

at which the equilibrium solution w+ becomes (see equation (11.2.41))

w+1 = 0.0000063079, w+2 = 6.2361231187,

w+4 = −0.0114476949,

w+5 = 6.2361020924, w+7 = 0.9990816376,

(11.2.44)w+3 = w+6 = 0.

To find the focus values associated with the Hopf critical point Vh1 =
6.2395593195, introduce the following transformation:

(11.2.45)w = w+ + T x,
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where T is given by

T =

⎡

⎢
⎢
⎣

0.10862467 0.46795879 0 0 −0.34351003 −0.06005005 0.41854500
0.50584433 −0.00073468 0 0 −0.16247093 0.33909080 −0.01044227

0 0 0 1 0 0 0
0.56158663 0.75176240 0 0 −0.24042543 −0.34572171 −0.55769267
0.14569817 −0.22757384 0 0 1.28746653 −0.00888757 −0.15628647

0 0 1 0 0 0 0
−0.05896448 0.09391575 0 0 0.03016055 0.10325630 −0.09231719

⎤

⎥
⎥
⎦

under which the transformed system is given in the canonical form:

(11.2.46)ẋ = Jx + f 2(x),

where J is

J =

⎡

⎢
⎢
⎢
⎣

0 0.79057334 0 0 0 0 0
−0.79057334 0 0 0 0 0 0

0 0 −1 0 0 0 0
0 0 0 −0.6 0 0 0
0 0 0 0 −0.56300047 0 0
0 0 0 0 0 −0.51849977 1.08931714
0 0 0 0 0 −1.08931714 −0.51849979

⎤

⎥
⎥
⎥
⎦
.

Then applying the Maple program [420] results in the following focus values:

v3 = −0.17753379× 10−2, v5 = −0.93206291× 10−5,

(11.2.47)v7 = −0.15369758× 10−6,

which indicates that the family of limit cycles bifurcating from the critical point
Vh1 in the neighborhood of w+ is stable.

Simulation results for this example using system (11.2.40) for V = 6.0
and V = 6.5 are depicted in Figure 11.2.2. The initial point is chosen as

Figure 11.2.2. Simulated trajectories of the induction machine model (11.2.40) projected
on the w1 − w2 plane with the initial point w0 = (0.5, 5.5, 2.0,−3.0, 1.0, 4.0,−5.0)T :
(a) convergent to the stable equilibrium point w+ = (0.0000070946, 5.9964264430, 0,
−0.0119047619, 5.9964027942, 0, 0.9990067495)T when V = 6.0; and (b) convergent to a stable

limit cycle when V = 6.5.
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w0 = (0.5, 5.5, 2.0, −3.0, 1.0, 4.0, −5.0)T . It can be seen from this fig-
ure, as expected, that when V = 6.0 < Vh1 the trajectory converges to the stable
equilibrium point:

w+ = (0.00000709, 5.99642644, 0, −0.01190476,

5.99640279, 0, 0.99900675)T ,

as shown in Figure 11.2.2(a). When V = 6.5 > Vh1, the equilibrium point be-
comes unstable and a supercritical Hopf bifurcation occurs, giving rise to a stable
limit cycle (see Figure 11.2.2(b)).

It should be pointed out that the perturbation method can be applied to the
7-D system (11.2.46) without employing center manifold theory (more precisely,
the center manifold theory is incorporated in the unified approach), while the
Takens method and the singular point value method cannot be directly applied to
system (11.2.46).

Note that in the above two examples, except for the bifurcation parameters, all
system parameters are fixed. In the next section, we will consider a system with
free parameters and want to find maximal number of limit cycles by appropriately
choosing parameter values.

Hilbert’s 16th problem

The well-known 23 mathematical problems proposed by Hilbert in 1990 [167]
have significant impact on the mathematics of the 20th century. Two of the 23
problems remain unsolved, one of them is the 16th problem. This problem in-
cludes two parts: the first part studies the relative positions of separate branches of
algebraic curves, while the second part considers the upper bound of the number
of limit cycles and their relative locations in polynomial vector fields. Generally,
the second part of this problem is what usually meant when talking about Hilbert’s
16th problem. The recent developments on Hilbert’s 16th problem may be found
in the survey articles [227,429]. A simplified version—the Liénard equation—of
the second part of Hilbert’s 16th problem has been recently chosen by Smale [364]
as one of the 18 most challenging mathematical problems for the 21st century. Al-
though it is still far away from completely solving the problem, the research on
this problem has made great progress with contributions to the development of
modern mathematics.

Roughly speaking, the second part of Hilbert’s 16th problem is to consider the
planar vector fields, described by the following polynomial differential equations:

(11.2.48)ẋ = Pn(x, y), ẏ = Qn(x, y),

where Pn(x, y) and Qn(x, y) represent the nth-degree polynomials of x and y.
The problem is to find the upper bound, known as the Hilbert number H(n), on
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the number of limit cycles that the system can have. In general, this is a very dif-
ficult technical problem, in particular, for determining global (large) limit cycles.
Although it has not been possible to obtain a precise number for H(n), a great
deal of efforts have been made in finding the maximal number of limit cycles and
raising the lower bound of Hilbert number H(n) for general planar polynomial
systems of certain degree, hoping to be close to the real upper bound of H(n).

If the problem is restricted to a neighborhood of isolated fixed points, then the
question reduces to studying degenerate Hopf bifurcations, which gives rise to fine
focus points. Alternatively, this is equivalent to computing the normal form of dif-
ferential equations associated with Hopf or degenerate Hopf bifurcation. Suppose
the normal form associated with this Hopf singularity is given in polar coordinates
(obtained using, say, the method given in [420]) described by equation (11.2.19).
The basic idea of finding k small limit cycles around the origin is as follows: First,
find the conditions such that v1 = v3 = · · · = v2k−1 = 0, but v2k+1 �= 0, and then
perform appropriate small perturbations to prove the existence of k limit cycles. In
1952 Bautin [22] proved that a quadratic planar polynomial vector field can have
maximal 3 small limit cycles, i.e., H(2) � 3. Later, it was shown that H(2) � 4.
For cubic systems, the best result obtained so far is H(3) � 12 [424,431,432].

In the following, we will particularly show that a cubic-order, Z2-equivariant
vector field can have 12 limit cycles. To achieve this, we apply the standard com-
plex formula [227]:

(11.2.49)ż = F2
(

z, z
)

, ż = F 2
(

z, z
)

,

where

(11.2.50)F2
(

z, z
) = (

A0 + A1|z|2
)

z+ (

A2 + A3|z|2
)

z+ A4z
3 + A5z

3.

Let z = w1 + iw2, z = w1 − iw2, Aj = aj + ibj , where w1, w2 and aj , bj are
all real. Then system (11.2.49) is transformed to the following real form:

ẇ1 = (a0 + a2)w1 − (b0 − b2)w2 + (a1 + a3 + a4 + a5)w
3
1

− (b1 − b3 + 3b4 − 3b5)w
2
1w2 + (a1 + a3 − 3a4 − 3a5)w1w

2
2

− (b1 − b3 − b4 + b5)w
3
2,

ẇ2 = (b0 + b2)w1 + (a0 − a2)w2 + (b1 + b3 + b4 + b5)w
3
1

+ (a1 − a3 + 3a4 − 3a5)w
2
1w2 + (b1 + b3 − 3b4 − 3b5)w1w

2
2

(11.2.51)+ (a1 − a3 − a4 + a5)w
3
2.

The two eigenvalues of the Jacobian of system (11.2.51) evaluated at the origin

(w1, w2) = (0, 0) are a0 ±
√

a2
2 + b2

2 − b2
0, indicating that the origin (0, 0) is a

saddle point or a node when a2
2 + b2

2 − b2
0 � 0, or a focus point or a center if

a2
2 + b2

2 − b2
0 < 0. When a2

2 + b2
2 − b2

0 = 0, the origin is either a node or a double
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zero singular point. By a parametric transformation, rename the coefficients of the
resulting system to yield the following system:

ẋ = ax + by + a30x
3 + a21x

2y + a12xy
2 + a03y

3,

(11.2.52)ẏ = ±bx + ay + b30x
3 + b21x

2y + b12xy
2 + b03y

3,

where b > 0.
For a vector field with Z2-symmetry, naturally the best way is to have two sym-

metric focus points about the origin. Thus, if N small limit cycles are found in the
neighborhood of one focus point, the whole system would have 2N limit cycles.
Without loss of generality, the two symmetric focus points can be assumed on the
y-axis (or the x-axis), and further assumed to be located at (0,±1) with a proper
scaling, leading to the conditions a03 = −b and b03 = −a. Another condition
a12 = a comes from making the two focus points be Hopf type. Furthermore, by
applying proper parameter scaling and time scaling, we obtain the following new
system [432]:

du

dτ
= v + 2a21u

2 + 4auv − 3

2
v2 + 4ba30u

3 − 2a21u
2v − 2auv2 + 1

2
v3,

dv

dτ
= −u− 4b21u

2 + 2
(

2a2 ∓ 2b2 + 1
)

uv − 8b30u
3 + 4b21u

2v

(11.2.53)− (

2a2 ∓ b2 + 1
)

uv2,

where the coefficients a21, b21, a30 and b30 are expressed in terms of the origi-
nal parameters a, b, a21, b21, a30, b30. Thus, based on equation (11.2.53), we can
compute focus values and consider the existence of small limit cycles.

Note that system (11.2.53) contains 6 free parameters, which suggests that we
may set 6 focus values zero and obtain 7 small limit cycles for system (11.2.53),
and therefore, the original system may have 14 small limit cycles. However, it
has been shown in [432] that the existence of 14 limit cycles is not possible.
The maximal number of small limit cycles that a cubic-order system with Z2
symmetry can have is 12.

We now apply the three methods given in the previous subsection to compute
the focus values of system (11.2.53) to obtain the following results:

With the Takens method:
b13:=1/2*a-2*a^2*b21b-2*a21b*b21b-a21b*a+2*b^2*b21b+3/2*b*a30b

-1/2*b21b:
b15:=-11/36*a-7/3*a*a21b*b^2-25/9*b21b*a21b*a^2-1/6*a21b*b*a30b

+92/9*b21b*b^2*a^2-11/9*b21b*a21b*b^2-8/9*b21b*a21b^2
-14/3*b21b*a^4-50/9*b21b*b^4+11/9*a*a21b^2+2/3*b^3*a30b
+11/36*b21b+1/9*a^3*a21b-5/3*a*b30b+2*b21b^2*a+23/3*b21b*b30b
-2/9*a*b^4+4/9*a^3*b^2-2/9*a^5-40/9*b21b^3+152/9*a^3*b21b^2
-2/3*b^5*a30b+40/9*b^6*b21b-160/9*a^2*b21b^3-16/3*a^3*b30b
+2/9*a21b^2*a^3-1/9*a^3-6*b21b*a*b*a30b-8*a21b*b21b*b^2*a^2
-1/3*a21b*a^2*b*a30b-8/9*a21b*a^3*b^2+4*a21b*b21b*a^4
+4*a21b*b21b*b^4-2/9*a21b^2*b^2*a-4*a21b^2*b^2*b21b
+4*a21b^2*a^2*b21b-2/3*a^4*b*a30b-152/9*b^2*b21b^2*a
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+4/3*a^2*b^3*a30b+40/3*b21b^2*b*a30b+10/3*a21b^2*b*a30b
+8*a21b*b21b^2*a+4/9*a21b*a*b^4+52/3*a^2*b21b*b30b
-40/3*a^2*b21b*b^4-52/3*b^2*b21b*b30b+16/3*b^2*a*b30b
+40/3*b^2*b21b*a^4-3*b*a30b*b30b+1/3*a21b*b^3*a30b
+52/3*a21b*b21b*b30b-10/3*a21b*a*b30b+23/18*a21b*b21b
-11/12*b*a30b+11/9*b^2*a+5/9*b^2*b21b+5/9*a21b*a+7/9*a^2*b21b
-40/9*a21b^3*b21b-20/9*a21b^3*a+4/9*a21b*a^5-40/9*a^6*b21b
+160/9*b^2*b21b^3-160/9*a21b*b21b^3:

b17 := ... (87 lines)
b19 := ... (355 lines)
v111:= ... (1180 lines)

With the perturbation method:
v3 :=-2*a21b*b21b-a21b*a+1/2*a-1/2*b21b+3/2*b*a30b+2*b21b*b^2

-2*b21b*a^2:
v5 :=4*a21b^2*b21b*a^2-7/3*a21b*a*b^2-8/9*a21b*b^2*a^3

-11/9*a21b*b21b*b^2-2/9*a21b^2*a*b^2-11/36*a+16/3*a*b^2*b30b
+4/3*b^3*a30b*a^2-25/9*a21b*b21b*a^2-4*a21b^2*b21b*b^2
-1/6*a21b*b*a30b+40/3*b*a30b*b21b^2-152/9*a*b21b^2*b^2
-10/3*a21b*a*b30b-40/3*b21b*b^4*a^2+4/9*a21b*a*b^4
-2/3*b*a30b*a^4+92/9*b21b*b^2*a^2-3*b*a30b*b30b
-11/12*b*a30b+11/36*b21b+4*a21b*b21b*b^4+4*a21b*b21b*a^4
-52/3*b21b*b^2*b30b+52/3*a21b*b21b*b30b+52/3*b21b*a^2*b30b
+1/3*a21b*b^3*a30b+40/3*b21b*b^2*a^4+160/9*b21b^3*b^2
-16/3*a^3*b30b+23/3*b21b*b30b+11/9*a*b^2+4/9*b^2*a^3+5/9*a21b*a
-40/9*a21b^3*b21b-20/9*a21b^3*a+40/9*b21b*b^6-40/9*b21b*a^6
+152/9*b21b^2*a^3+1/9*a21b*a^3-5/3*a*b30b+2*a*b21b^2
-8/9*a21b^2*b21b+11/9*a21b^2*a+7/9*b21b*a^2+5/9*b21b*b^2
-2/3*b^5*a30b-160/9*a21b*b21b^3-160/9*b21b^3*a^2+2/9*a21b^2*a^3
+2/3*b^3*a30b+4/9*a21b*a^5-2/9*a*b^4-14/3*b21b*a^4-50/9*b21b*b^4
+23/18*a21b*b21b-1/3*a21b*b*a30b*a^2-8*a21b*b21b*b^2*a^2
-6*a*b*a30b*b21b+10/3*a21b^2*b*a30b+8*a21b*a*b21b^2-40/9*b21b^3
-1/9*a^3-2/9*a^5:

v7 := ... (83 lines)
v9 := ... (344 lines)
v11:= ... (1173 lines)

With the singular point value method:
mu1:=I*(-3*b*a30b-a+b21b+4*b21b*a^2-4*b21b*b^2+4*a21b*b21b+2*a21b*a):
mu2:=-1/48*I*(736*b21b*b30b-17*a+1664*a21b*b21b*b30b+264*a21b*b*a30b

-960*b21b^2*b*a30b-2544*a21b^2*b*a30b-352*a^3*a21b+64*b^2*a
+1152*a^4*b21b-96*b^3*a30b-384*b^4*b21b-160*a*b30b
-320*a*a21b*b30b+1664*a^2*b21b*b30b-1664*b^2*b21b*b30b
-928*a^2*b*a30b-768*b^2*b21b*a^2+2976*b^3*a21b*a30b
+864*b^2*a*a21b-384*b^4*a+768*b^2*a^3-1152*b^5*a30b+17*b21b
-51*b*a30b-1152*a^4*b*a30b-1664*b21b^2*a+496*a21b^2*b21b
-1024*a21b^2*a-20*a21b*b21b+122*a*a21b+1444*a^2*b21b
+156*b^2*b21b+3392*a21b^3*b21b+1280*a^2*b21b^3+1280*b21b^3*a21b
-1024*b^6*b21b+1024*a^6*b21b+768*a^5*a21b-2816*a^3*b21b^2
+1984*a^3*a21b^2-512*a^3*b30b+1696*a*a21b^3-1280*b^2*b21b^3
+2304*b^3*a30b*a^2-320*a^3-384*a^5+5760*a^4*a21b*b21b
+512*a*b30b*b^2+5760*b^4*a21b*b21b+320*b21b^3+768*b^4*a*a21b

-1536*b^2*a^3*a21b-3072*b^2*a^4*b21b+3072*b^4*a^2*b21b
-512*b^2*a21b*b21b-288*b*a30b*b30b-11520*b^2*a^2*a21b*b21b
+2752*a*b21b*b*a30b-2976*a^2*a21b*b*a30b-640*a^2*a21b*b21b
-1984*b^2*a*a21b^2-8128*b^2*a21b^2*b21b-2176*a*b21b^2*a21b
+8128*a^2*b21b*a21b^2+2816*b^2*a*b21b^2):

mu3:= ... (85 lines)
mu4:= ... (355 lines)
mu5:= ... (1156 lines)

The numbers given in the brackets denote the number of lines in the computer
output files.
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It is easy to see that

b13 = v3 = i

2
μ1,

which shows that the three different methods give the same first-order focus value
(at most by a difference of a constant fact), as expected. For the second-order
focus values, it can be shown that b15 = v5, but v5 �= μ2 (within a difference
of a constant fact). Further, for the third-order focus values, b17 �= v7. However,
setting b13 = v3 = μ1 = 0 results in

a30 = a(2a21 − 1)+ b21(4a21 + 4a2 − 4b2 + 1)

3b
,

and then

b15 = v5 = i

2
μ2.

Further letting b15 = v5 = μ2 = 0 (from which one can obtain b30 =
b30(a, b, a21, b21)) yields

b17 = v7 = i

2
μ3.

This process can be carried out to higher-order focus values, i.e., when b1(2i+1) =
v2i+1 = μi = 0, i = 1, 2, . . . , k − 1, we have

b1(2k+1) = v2k+1 = i

2
μk.

For generic case, it has been shown [432] that one can find the following para-
meter values such that vi = 0, i = 1, 2, . . . , 5, but v6 �= 0; there are two solutions
for which the origin is a saddle point:

b = ±15.7264394069a,

b̄21 = −1.1061229255a,

ā21 = 0.7000000000+ 103.3880431509a2,

b̄30 = 0.2564102564a2(0.0089196607+0.0982810312a2+0.2527227926a4)

0.0661528794+0.2704669566a2 ,

(11.2.54)ā30 = ∓
(

0.0806130156− 17.7870588470a2),

and other two solutions for which the origin is a node:

b = ±0.4765747114a,

b̄21 = 0.2033343806a,

ā21 = 0.7000000000+ 1.0149654014a2,
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Figure 11.2.3. The phase portraits of system (11.2.52) having 12 limit cycles: (a) when the ori-
gin is a saddle point for a = a12 = −b03 = −0.0883176873, b = −a03 = 1.3898788398,
a30 = 0.0282840060, a21 = 1.1005496998, b30 = 0.7230834412, b21 = −0.1483513686,
b12 = −1.0189112324; and (b) when the origin is a focus point for a = a12 = −b03 = −0.7,
b = −a03 = −0.5889218635, a30 = 2.2161956860, a21 = −2.5682071892,
b30 = −0.7072960219, b21 = 2.2961669830, b12 = −3.1019886923, where the two square boxes

denote the locations of the 12 limit cycles.

b̄30 = a2(0.0481488581+ 65.9546167690a2 − 9379.2591506305a4)

0.0008286738− 0.1076372236a2
,

(11.2.55)ā30 = ±
(

0.8202076319+ 2.4368685248a2).

Here, a is an arbitrary real number. It has also been shown that when the origin
is a focus point, there still exist 12 small limit cycles [432]. The main result for
cubic systems is given in the following theorem.

THEOREM 11.2.6. For the cubic system (11.2.52), suppose it has property of
Z2-symmetry, then the maximal number of small limit cycles that the system can
exhibit is 12, i.e., H(3) � 12.

We shall not discuss further the procedures and formulas to obtain the 12 limit
cycles. Interested readers can find more details from references [431,432]. We
give two numerical simulation results below, as shown in Figure 11.2.3, one for
the case of the origin being saddle point and the other for the origin being focus
point. The case of the origin being a node can be found in [432].

11.3. Computation of the SNF with parameters

The computation of normal forms has been mainly restricted to systems which
do not contain perturbation parameters. However, in practice a physical system or
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a control problem always involves some parameters, usually called perturbation
parameters or unfolding. Such normal forms are very important in applications.
A conventional normal form (CNF considered in Section 11.2) with unfolding is
usually obtained in two steps: First ignore the perturbation parameter and compute
the normal form for the corresponding “reduced” system (by setting the parame-
ters zero), and then add an unfolding to the resulting normal form. This way it
greatly reduces the computation effort, with the cost that it does not provide the
transformation between the original system and the normal form. For the sim-
plest normal form (SNF), on the other hand, since Ushiki [386] introduced the
method of infinitesimal deformation in 1984 to study the SNF of vector fields,
although many researchers have considered several cases of singularities (for ex-
ample, see [421,386,17,80,81,358,390,68,443]), no single application using the
SNF has been reported. This is because that the main attention in this area has
been focused on the computation of the SNF without perturbation parameters.
Recently, single zero and Hopf singularities have been considered and the ex-
plicit SNFs with unfolding have been obtained by introducing time and parameter
rescalings [425,435]. In this section, after general formulas presented, a brief sum-
mary for the SNFs associated with dimension-one singularities (single zero and
Hopf) will be given.

For a general nonlinear physical or engineering system, which may include
stable manifold, normal form theory is usually employed together with center
manifold theory [59] in order to take the contribution from the stable manifold.
In general, given a nonlinear system, center manifold theory is applied before
employing normal form theory. The idea of center manifold theory is similar to
normal form theory—simplify the system by applying successive nonlinear trans-
formations. It reduces the original system to a center manifold which has smaller
dimension than that of the original system. Different methods have been devel-
oped to combine center manifold theory with normal form theory in one unified
procedure (e.g., see [420,426,434]). In [426] an efficient computation method and
Maple programs are developed for general systems associated with semi-simple
cases. However, the normal form computation presented in [426] does not contain
perturbation parameters (unfolding), and thus is not directly applicable in solving
practical problems.

11.3.1. General formulation

In this section, we shall present an efficient approach for computing the SNF with
perturbation parameters (unfolding) directly from general n-D systems which are
not necessarily described on center manifold, and apply the method to consider
controlling bifurcations. An explicit, recursive formula will be derived for com-
puting the normal forms associated with general semi-simple cases. The approach
is efficient since it reduces the computation to minimum at each step of finding
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ordered algebraic equations. Based on the general recursive formula, the SNFs for
single zero and Hopf singularities are obtained.

In this section, we shall derive the explicit formulas for computing the normal
forms associated with semi-simple cases. We restrict to autonomous systems. In
order for the formulas derived in this section to be used in the next section for
controlled systems. Consider the following general control system, given by

(11.3.1)ẋ = F (x,μ)+ u, x,u ∈ Rn, μ ∈ Rs, F :Rn+s → Rn,

where x, u and μ are state variable, control variable and system parameter, re-
spectively. μ may be considered as control parameters. Usually, μ is not explicitly
shown in a control system. In this chapter, μ is explicitly shown for the conve-
nience of bifurcation analysis. The control function u can be, in general, any kind
of function of the parameter μ as well as time t , which renders system (11.3.1)
nonautonomous. However, when a control law is determined, system (11.3.1) may
be transformed to an autonomous one. For instance, suppose the feedback, given
by

(11.3.2)u = u(x,μ),

is chosen, then system (11.3.1) becomes autonomous, and the bifurcation theory
for differential equations can be applied with the μ as control parameter. Then,
system (11.3.1) can be rewritten as

(11.3.3)ẋ = F (x,μ)+ u(x,μ)
�= Jx + f (x,μ), x ∈ Rn, μ ∈ Rs ,

where Jx denotes the linear terms. Further, without loss of generality, it is as-
sumed that x = 0 is an equilibrium point of the system for any real values of μ,
i.e., f (0,μ) ≡ 0. The nonlinear function f is assumed to be analytic with respect
to x and μ. J is the Jacobian matrix of the system evaluated at the equilibrium
point x = 0, when the parameter μ reaches its critical point μ = 0, given in the
form of

(11.3.4)J =
[

J0 0
0 J1

]

,

where both J0 and J1 are assumed in diagonal form, indicating that all eigenvalues
of the Jacobian are semi-simple. J0 includes the eigenvalues λ1, λ2, . . . , λn0 with
zero real parts, while J1 has the eigenvalues λn0+1, λn0+1, . . . , λn with negative
real parts. In other words, system (11.3.3) does not contain unstable manifold in
the vicinity of x.

To find the normal form of system (11.3.3), one may expand the dimension of
system (11.3.3) from n to n+ s, by adding the equation μ̇ = 0 to system (11.3.3)
to obtain a new system:

(11.3.5)ẋ = Jx + f (x,μ), μ̇ = 0, x ∈ Rn, μ ∈ Rs .
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Then a general near-identity transformation may be assumed either in the form of

(11.3.6)x = y + h(y, ν), μ = ν,

or

(11.3.7)x = y + h1(y, ν), μ = ν + h2(y, ν),

where h(y, ν), h1(y, ν) and h2(y, ν) are nonlinear analytic functions of y and
ν. The equation μ = ν given in equation (11.3.6) emphasizes that the parame-
ter μ is not changed under the transformation (11.3.6), i.e., reparametrization
is not applied. For convenience, we may call transformation (11.3.6) as state
transformation since it only changes state variable x, while call equation (11.3.7)
as state-parameter transformation because the parameter μ is also expressed in
terms of both y and ν. The state transformation is a natural way from the physical
point of view since the parameter ν is not a function of time. The state-parameter
transformation however contains time variation in parameter μ since it involves
the state variable y. In this chapter we only consider the near-identity state trans-
formation or simply near-identity (nonlinear) transformation (11.3.6) but with
reparametrization μ = ν + p(ν). Thus, transformation (11.3.6) becomes

(11.3.8)x = y + h(y, ν), μ = ν + p(ν).

For the transformation (11.3.8), we can show that it is not necessary to extend
the n-D system (11.3.3) to (n + s)-D system (11.3.5). In fact, directly applying
normal form theory to system (11.3.3) is equivalent to using system (11.3.5). To
prove this, we assume that the transformed system (normal form) is given by

(11.3.9)ẏ = Jy + g(y, ν), ν̇ = 0.

Then differentiating the first equation of (11.3.9) with respect to t results in

dx

dt
= dy

dt
+ ∂h

∂y

dy

dt
+ ∂h

∂ν

dν

dt

and then substituting equations (11.3.5) and (11.3.9) into the resulting equation
yields

(11.3.10)

(

1+ ∂h

∂y

)

g(y, ν) = Lh(y, ν)− ∂h

∂y
Ly + f

(

y + h(y, ν), ν
)

.

Hence, the computation of the normal form of system (11.3.5) completely de-
pends upon equation (11.3.10). However, it is easy to see that equation (11.3.10)
can be also directly derived from equation (11.3.3) with the aid of the first
equations of (11.3.6) and (11.3.9). Therefore, in this chapter we shall use equa-
tion (11.3.3).

Now back to the original system (11.3.3), and let x = (x1, x2)
T , where x1 and

x2 are variables associated with the eigenvalues of J0 and J1, respectively. Then,
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equation (11.3.3) can be rewritten as

(11.3.11)ẋ1 = J0x1 + f 1(x1, x2,μ), ẋ2 = J1x2 + f 2(x1, x2,μ).

By center manifold theory [59], x2 can be expressed in terms of x1 as

(11.3.12)x2 = N(x1,μ), satisfying N(0, 0) = 0,
∂N(0, 0)
∂x1∂μ

= 0,

under which the second equation of (11.3.11) can be rewritten as

Dx1N(x1,μ)
[

J0x1 + f 1(x1,N(x1,μ),μ)
]

(11.3.13)= J1N(x1,μ)+ f 2
(

x1,N(x1,μ),μ
)

.

Having found N(x1,μ) from the above equation, the first equation of (11.3.11)
becomes

(11.3.14)ẋ1 = J0x1 + f 1
(

x1,N(x1,μ),μ
)

,

which governs the dynamics of the original system (11.3.3) in the vicinity of
(x,μ) = (0, 0).

In order to further simplify equation (11.3.14), introduce the following nonlin-
ear transformation

(11.3.15)x1 = w +H (w, ν)
�= w +

∞
∑

m=2

Hm(w, ν),

and the time rescaling

(11.3.16)t = (

T0 + T (w, ν)
)

τ
�= τ +

∞
∑

m=1

Tm(w, ν)τ,

where ν indicates the parameter rescaling, given in the form of

(11.3.17)μ = ν + p(ν)
�= ν +

∞
∑

m=2

pm(ν).

Note that unlike the transformation (11.3.7), here μ given in equation (11.3.17)
does not involve the time-variant variable w. Also, note that T0 has been taken as
1 for convenience.

Further, assume that the normal form of system (11.3.14) is given by

(11.3.18)
dw

dτ
= J0w + C(w, ν)

�= J0w +
∞
∑

m=2

Cm(w, ν).

Here, Hm(w, ν) and Cm(w, ν) are the mth-degree, n0-D vector homogeneous
polynomials of w and ν, and pm(ν) is the mth-degree, s-D vector homogeneous
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polynomials of ν, while Tm(w, ν) is the mth-degree, scalar homogeneous polyno-
mials of its components.

To find the normal form, first differentiating equation (11.3.15) and substituting
it into equation (11.3.14) yields

(

I +DwH (w, ν)
)dw

dτ

= dt

dτ

[

J0
(

w +H (w, ν)
)+ f 1

(

w +H (w, ν),

(11.3.19)N
(

w +H (w, ν), ν + p(ν)
)

, ν + p(ν)
)]

,

and then using equation (11.3.16) and substituting equation (11.3.10) into the
above equation and rearranging results in

DwH (w, ν)J0w − J0H (w, ν)

= f 1
(

w +H (w, ν),h(w, ν), ν + p(ν)
)

−DwH (w, ν)C(w, ν)− C(w, ν)

+ T (w, ν)
[

J0
(

w +H (w, ν)
)

(11.3.20)+ f 1
(

w +H (w, ν),h(w, ν), ν + p(ν)
)]

,

where h(w, ν) ≡ N(w +H (w, ν), ν + p(ν)).
Next, one may substitute equation (11.3.15) into equation (11.3.13), and use

equation (11.3.20) to find the following equation:

Dx1N(x1,μ)
{(

I +DwH (w, ν)
)(

J0w + C(w, ν)
)

− T (w, ν)
[

J0
(

w +H (w, ν)
)

+ f 1
(

w +H (w, ν),h(w, ν), ν + p(ν)
)]}

(11.3.21)= J1h(w, ν)+ f 2
(

w +H (w, ν),h(w, ν), ν + p(ν)
)

.

By chain rule, Dx1N(x1, ν)(I + DwH (w, ν)) = Dwh(w, ν), one can rewrite
equation (11.3.21) as

Dwh(w, ν)J0w − J1h(w,w)

= f 2
(

w +H (w, ν),h(w, ν), ν + p(ν)
)−Dwh(w, ν)C(w, ν)

+ T (w, ν)Dwh(w, ν)
[

I +DwH (w, ν)
]−1[

J0
(

w +H (w, ν)
)

(11.3.22)+ f 1
(

w +H (w, ν),h(w, ν), ν + p(ν)
)]

.

Finally, combining equations (11.3.20) and (11.3.22) yields the following com-
pact form:

D

(

H (w, ν)

h(w, ν)

)

J0w −
[

J0 0
0 J1

](

H (w, ν)

h(w, ν)

)
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=
(

f 1(w +H (w, ν),h(w, ν), ν + p(ν))

f 2(w +H (w, ν),h(w, ν), ν + p(ν))

)

−D

(

H (w, ν)

h(w, ν)

)

C(w, ν)−
(

C(w, ν)

0

)

+ T (w, ν)

[

I

Dh(w, ν)[I +DH (w, ν)]−1

]
[

J0
(

w +H (w, ν)
)

(11.3.23)+ f 1
(

w +H (w, ν),h(w, ν), ν + p(ν)
)]

,

where the differential operator D ≡ Dw.
Equation (11.3.23) is all what we need for computing the normal form C(w, ν),

the nonlinear transformations H (w, ν) and h(w, ν), the time rescaling T (w, ν),
and the reparametrization p(ν). Note that all C(w, ν), H (w, ν) and h(w, ν) start
from second order terms and can be expressed in terms of vector homogeneous
polynomials of w and ν. C(w, ν) and H (w, ν) are n0-D vectors while h(w, ν) is
a (n− n0)-D vector. T (w, ν) is a scalar function while p(ν) is a s-D vector.

Since, in general, it is not possible to find the closed-form solutions for
C(w, ν), H (w, ν), h(w, ν), T (w, ν) and p(ν) from equation (11.3.22), we may
assume the approximate solutions given by

C(w, ν) =
∞
∑

m=2

Cm(w, ν) =
∞
∑

m=2

∑

m

Cmw
m1
1 · · ·wmn0

n0 ν
mn0+1

1 · · · νmn0+s
s ,

H (w, ν) =
∞
∑

m=2

Hm(w, ν) =
∞
∑

m=2

∑

m

Hmw
m1
1 · · ·wmn0

n0 ν
mn0+1

1 · · · νmn0+s
s ,

h(w, ν) =
∞
∑

m=2

hm(w, ν)

(11.3.24)=
∞
∑

m=2

∑

m

hmw
m1
1 · · ·wmn0

n0 ν
mn0+1

1 · · · νmn0+s
s ,

and

T (w, ν) =
∞
∑

m=1

Tm(w, ν) =
∞
∑

m=1

∑

m

Tmw
m1
1 · · ·wmn0

n0 ν
mn0+1

1 · · · νmn0+s
s ,

(11.3.25)p(ν) =
∞
∑

m=2

pm(ν) =
∞
∑

m=2

∑

m

pmν
m1
1 ν

m2
2 · · ·wms

s ,

where Cm, Hm, hm, Tm and pm represent the mth-order coefficients. The sub-
script m means that for all possible nonnegative integers, m1,m2, . . . , mn0+s
satisfy m1 +m2 + · · · +mn0+s = m (or m1 +m2 + · · · +ms = m for pm).
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Further, for an arbitrary m � 2, one can show that

D

(

Hm(w, ν)

hm(w, ν)

)

J0w

=
∑

m

D

(

Hm

hm

)

w
m1
1 · · ·wmn0

n0 ν
mn0+1

1 · · · νmn0+s
s (J0w)

=
∑

m

[
n0∑

i=1

∂

∂wi

(

Hm

hm

)

w
m1
1 · · ·wmn0

n0 ν
mn0+1

1 · · · νmn0+s
s λiwi

]

=
∑

m

(m1λ1 + · · · +mn0λn0)

(

Hm

hm

)

w
m1
1 · · ·wmn0

n0 ν
mn0+1

1 · · · νmn0+s
s

=
∑

m

λ0

(

Hm

hm

)

w
m1
1 · · ·wmn0

n0 ν
mn0+1

1 · · · νmn0+s
s

(11.3.26)= λ0

(

Hm(w, ν)

hm(w, ν)

)

,

where

(11.3.27)λ0 = m1λ1 +m2λ2 + · · · +mn0 .

Thus, one can obtain the following equation from equation (11.3.23) for solving
the mth-order coefficients: Cm, Hm, hm, Tm and pm:

(11.3.28)

( [λ0I − J0]Hm

[λ0I − J1]hm
)

=
(

f̃ 1m
f̃ 2m

)

−
(

Cm

0

)

,

where the mth-order coefficients f̃ 1m and f̃ 2m are extracted from

f̃ 1 = f 1
(

w +H (w, ν),h(w, ν), ν + p(w)
)−DH (w, ν)C(w, ν)

+ T (w, ν)
[

J0
(

w +H (w, ν)
)

(11.3.29)+ f 1
(

w +H (w, ν),h(w, ν), ν + p(ν)
)]

and

f̃ 2 = f 2
(

w +H (w, ν),h(w, ν), ν + p(w)
)−Dh(w, ν)C(w, ν)

+ T (w, ν)Dh(w, ν)
[

I +DH (w, ν)
]−1[

J0
(

w +H (w, ν)
)

(11.3.30)+ f 1
(

w +H (w, ν),h(w, ν), ν + p(ν)
)]

,

respectively. Note that f̃1 and f̃2 contain Tm and pm.
Now we can determine the mth-order normal form coefficients Cm, and the

nonlinear transformation coefficients Hm and hm as well as the rescalings Tm and
pm from equation (11.3.28) order by order starting fromm = 2. Firstly, note from
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equation (11.3.23) that the mth-order coefficients f̃ 1m and f̃ 2m contain C, H , h,
T and p coefficients whose orders are lower than m. Therefore, the undetermined
lower order coefficients may be involved in the two coefficients f̃ 1m and f̃ 2m.
Secondly, since λ0 only contains the eigenvalues of J0 (with zero real parts) and
all eigenvalues of J1 have nonzero real parts, λ0I − J1 cannot equal zero for
any of its components. This suggests that hm can be uniquely determined from
equation (11.3.28) as

(11.3.31)hm = [λ0I − J1]−1f̃ 2m,

or, by noting that [λ0I − J1] is a diagonal matrix,

(11.3.32)h(k)m = f̃
(k)
2m

λ0 − λn0+k
for k = 1, 2, . . . , n− n0,

where h(k)m and f̃ (k)
2m are the kth components of hm and f̃ 2m, respectively.

Finally, we need to solve the equation:

(11.3.33)[λ0I − J0]Hm = f̃ 1m − Cm

to determine Cm and Hm. Note that f̃ 1m contains the lower-order coefficients
of C, H , T and p, and thus unlike the CNF computation, we may use the lower
order H , h, T and p coefficients to eliminate Cm, leading to the SNF. Similarly,
due to the semi-simple property, the matrix [λ0I − J0] is a diagonal matrix, one
can rewrite equation (11.3.33) in the component form:

(11.3.34)(λ0 − λk)H
(k)
m = f̃

(k)
1m − C(k)

m for k = 1, 2, . . . , n0,

where H(k)
m , f̃ (k)

1m and C(k)
m are the kth components of Hm, f̃ 1m and Cm, respec-

tively. Then when λ0 − λk �= 0, we may uniquely determine

(11.3.35)C(k)
m = 0 and H(k)

m = f̃1m

λ0 − λk
.

However, when λ0 − λk = 0, we may use the lower order H , h, T and p coeffi-
cients involved in f̃1m to possibly eliminate C(k)

m . If there are no such lower-order
coefficients which can be used at this order, then C(k)

m = f̃1m. The rule determin-
ing how to choose the lower-order coefficients depends upon the singularity under
consideration.

Having found the explicit formulas (11.3.32) and (11.3.34), it seems that the
computation of the coefficients of the normal form and nonlinear transformation
is straightforward. However, it has been noted that directly employing these for-
mulas can cause computation problem: A computer may quickly run out of its
memory due to enormous algebraic manipulations. As we know that in the com-
putation of normal forms, higher order computations do not affect lower order
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results, but lower order results influence all higher order calculations. In general,
when one finishes k < m order computations, one substitutes the lower order so-
lutions into the original nonlinear function f to obtain the equation for computing
the mth-order normal form. The expression of the resulting equation includes all
order (< m and � m) expressions and one needs to extract the exact mth-order
part from the enormous large expression. In fact, the semi-simple case has been
considered with the “extract” method. It has been found that such an approach is
not efficient and can easily cause a computer “crash” even for a not very compli-
cated problem. In order to overcome this difficulty, it needs to directly find the
expression which only belongs to the mth-order equation. This can greatly reduce
the computation time and computer memory demanding. The detailed efficient
computation approach will not be discussed in this chapter. Interested readers are
referred to the references [438,425,426,434,439].

In the above, we have developed an efficient computation method and de-
rived recursive formulas for computing the coefficients of the SNF and associated
transformations (see equations (11.3.31) and (11.3.34)). It has been shown that
the transformation for the noncritical variables, h, is uniquely determined by
equation (11.3.31). However, computing the center manifold part is not straight-
forward. (The computation of this part for the CNF is straightforward, uniquely
determined by equation (11.3.33), see [426].) To find the SNF from equa-
tion (11.3.34) one must carefully consider not only the coefficients of H , but also
that of T and p which are implicitly involved in f̃ 1. It should be emphasized that
equation (11.3.34) does not contain h coefficients since the kth-order coefficients
hk are solved and only solved from the kth-order algebraic equation (11.3.31).
This implies that equation (11.3.34) only contains H , T and p which are associ-
ated with the center manifold variables, u and ν. Therefore, the final step in com-
puting the SNF is to solve equation (11.3.34), which is similar to finding the SNF
of a system which is described on center manifold. However, we cannot obtain a
general form or procedure applicable for all semi-simple cases. One has to deal
with the singularities case by case. In this chapter, we focus on codimension-one
singularities: single zero and Hopf bifurcation. The SNFs for the two singularities
based on center manifold (i.e., the original system (11.3.3) is not a general n-D
system, but described on center manifold) have been obtained in [425,435]. In the
following, we outline the SNF computation rules for the two singularities.

11.3.2. The SNF for single zero

To find the computation rules of the SNF of single zero singularity, we may as-
sume that the original system is described on 1-D center manifold as follows:

(11.3.36)
dy

dt
= f (y, μ) =

∞
∑

i=1

a1iμ
iy +

∞
∑

i=0

a2iμ
iy2 +

∞
∑

i=0

a3iμ
iy3 + · · ·
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which has an equilibrium x = 0 for any real values of μ. The near-identity non-
linear transformation and the time scaling are, respectively, given by

(11.3.37)y = x +H(x,μ) = x +
∞
∑

i=1

b1iμ
ix +

∞
∑

i=0

b2iμ
ix2 + · · ·

and

T0 + T (x, μ) = 1+
∞
∑

i=1

T0iμ
i +

∞
∑

i=0

T1iμ
ix

(11.3.38)+
∞
∑

i=0

T3iμ
ix2 + · · · .

As shown in [425], the case of zero singularity does not need parameter scaling
(reparametrization). Thus, instead of ν, the original parameter μ is used in equa-
tions (11.3.37) and (11.3.38).

It has been proved [425] that the SNF of system (11.3.36) is given by the fol-
lowing theorem.

THEOREM 11.3.1. Under the conditions: a11 �= 0 and ak0 �= 0 (k � 2), where
ak0 is the first nonzero coefficients of aj0’s, the SNF of system (11.3.36) is given
by

(11.3.39)
dx

dτ
= a11μx + ak0x

k (k � 2),

up to any order.

Note that the coefficients a11 (for the 2nd-order equation) and ak0 (for the kth-
order equation) are known coefficients of the original system, indicating that the
2nd-order equation cannot be reduced. The detailed procedure for computing the
coefficients of bij and Tij can be found in [425]. The above results are based on
the assumption a11 �= 0, which results in the unfolding a11μx. Other possible
unfolding may not be so simple if a11 = 0. However, they can be easily obtained
by executing the Maple program we developed to find the SNF. For example,
suppose a11 = a12 = 0, but a13 �= 0 and a21 �= 0, then the SNF is found to be

(11.3.40)
dx

dτ
= a13μ

3x + a21μx
2 + ak0x

k (k � 2).

The above rules obtained based on center manifold can be applied to solve the
key equation (11.3.34) for the general original system (11.3.3). However, it should
be noted that the coefficient ak0 cannot be directly observed from the original
equation (e.g., usually the first equation of the system) since noncenter manifold
equations may have contributions to these coefficients. This can be easily handled
in symbolic computation.
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11.3.3. The SNF for Hopf bifurcation

We now turn to Hopf bifurcation. We discuss the system given on a 2-D center
manifold to find the rules of computing the coefficients of the SNF and transfor-
mations. Suppose the system is described in complex form:

dz

dt
=
[

i 0
0 −i

]

z+ f (z, μ)

(11.3.41)≡
[

i 0
0 −i

](

z

z̄

)

+
(

f (z, z̄, μ)

f̄ (z, z̄, μ)

)

,

where z = (z, z̄)T and f = (f, f̄ )T , T represents a transpose. z̄ and f̄ are
complex conjugates of z and f , respectively.

Further, assume that

fk =
∑

j+l+m=k
(a1j lm + ia2j lm)z

j z̄lμm,

Hk =
∑

j+l+m=k
(b1j lm + ib2j lm)x

j x̄lνm,

C2 =
[

(α1 + iβ1)x + (α2 + iβ2)x̄
]

ν,

Ck = (c1k + ic2k)x
(k+1)/2x̄(k−1)/2 (k � 3, odd integer),

t = (

T0 + T
(

x, x̄, ν
))

τ

(

1+
∑

k=1

∑

j+m=k
tjm

[
1

2

(

x + x̄
)
]j

νm

)

τ,

(11.3.42)μ = p0ν + p(ν) = ν +
∑

j=2

pjν
j ,

where C2 represents the linear unfolding.
Applying the 2nd-order (k = 2) equations of (11.3.34) yields the following

solutions:

b1200 = a2200, b2200 = −a12001, b1020 = −1

3
a2020,

(11.3.43)b2020 = 1

3
a1020, b1110 = −a2110, b2110 = a1110,

and

α1 = a1101, t01 = −a2101, b1011 = −1

2
a2011,

(11.3.44)b2011 = 1

2
a1011,
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which results in

(11.3.45)β1 = α2 = β2 = 0.

Next, for k = 3, similarly we can find the following solutions:

c13 = a1210 − A1210, t20 = 2(b23 − a2210 + A2210),

p2 = − 1

a1101
(a1102 + A1102),

t02 = a2101

a1101
(a1102 + A1102)− (a2102 + A2102),

b2300 = −1

2
(a1300 + A1300), b1300 = 1

2
(a2300 + A2300 + 1

4
t20),

b2030 = 1

4
(a1030 − A1030), b1030 = −1

4
(a2030 − A2030)

b2120 = 1

2
(a1120 − A1120), b1120 = −1

2
(a2120 − A2120 + 1

4
t20),

b2201 = −(a1201 + A1201), b1201 = a2201 + A2201,

b2021 = 1

3
(a1021 − A1021), b1021 = −1

3
(a2021 − A2021),

b2111 = a1111 − A1111, b1111 = −(a2111 − A2111),

b2012 = 1

2
(a1012 − A1012 + p2a1011),

b1012 = −1

2
(a2012 − A2012 + p2a2011),

(11.3.46)b1101 = c2101 = t11 = 0,

where Ajkl’s are known expressions, given in terms of aijlm’s. We can now apply
the above procedure to solve higher order equations using the general rules given
in [435]. Note that most of the equations are uniquely solved using the coefficients
bijlm.

Therefore, the complex SNF of Hopf bifurcation is given by

dx

dτ
= ix + a1101xν + (a1210 − a1200a2110 − a2200a1110)x

2x̄

(11.3.47)+ i

∞
∑

m=1

c2(2m+1)x
m+1xm,

where c2j are explicitly obtained in terms of the original system coefficients
aijlm’s.

Let x = ReiΘ , where R and Θ are, respectively, the amplitude and phase of
motion. Then the SNF for the Hopf bifurcation of system (11.3.41) is given as
follows.
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THEOREM 11.3.2. The SNF for system (11.3.41) associated with Hopf bifurca-
tion, given in polar coordinates, is

(11.3.48)
dR

dτ
= a1101νR + (a1210 − a1200a2110 − a2200a1110)R

3,

(11.3.49)
dΘ

dτ
= 1+ c23R

2 + c25R
4 + · · · + c2(2m+1)R

2m + · · ·
up to arbitrary order.

Note that when we derive the SNF of Hopf bifurcation it has been assumed that
a1101 �= 0. This is clear from equation (11.3.48) that no linear universal unfolding
will be present if a1101 = 0. The bifurcation and stability analysis can be carried
out using equation (11.3.48). The steady-state solutions are given by

(11.3.50)

(I) R = 0,

(II) R2 = − a1101ν

a1210 − a1200a2110 − a2200a1110
,

where solution (I) actually represents the original equilibrium, while solution (II)
denotes a family of limit cycles. The stability of the steady-state solutions can be
easily determined by using the Jacobian of equation (11.3.48) as follows: Solution
(I) is stable (unstable) if a1101ν < 0 (> 0). Solution (II) is stable (unstable) if
SLC ≡ a1210− a1200a2110− a2200a1110 < 0 (> 0). If SLC < 0, then the existence
of the limit cycles for a1101ν > 0 implies that the original equilibrium and the
periodic solution exchange their stabilities at the critical point ν = 0. In this
case, the Hopf bifurcation is supercritical. Otherwise, it is called subcritical Hopf
bifurcation.

The above analysis seems like a typical Hopf bifurcation analysis using the
CNF. However, it should be noted that all higher order terms (> 3) have been
removed from the SNF while the CNF has infinite higher order terms. Thus, Hopf
bifurcation analysis based on the CNF up to 3rd-order terms means that all higher
order terms in the CNF are neglected. For the SNF, however, the exact 3rd-degree
polynomial is used for the analysis.

The above procedure can be directly applied to the general original n-D sys-
tem (11.3.3). Symbolic program has been coded using Maple.

An application of using the SNF to solve Hopf bifurcation control problem will
be given in the next section.

11.4. Hopf bifurcation control

In the past two decades, there has been rapidly growing interest in bifurcation dy-
namics of control systems, including controlling and anti-controlling bifurcations
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and chaos. Such bifurcation and chaos control techniques have been widely ap-
plied to solve physical and engineering problems (e.g., see [66,1,433,28,61,77,
144,189,323,327]). The general goal of bifurcation control is to design a con-
troller such that the bifurcation characteristics of a nonlinear system undergo-
ing bifurcation can be modified to achieve certain desirable dynamical behavior,
such as changing a Hopf bifurcation from subcritical to supercritical, eliminating
chaotic motions, etc.

In this section, we consider bifurcation control using nonlinear state feedback.
A general explicit formula is derived for the control strategy, given in the form of
simple homogeneous polynomials. The formula keeps the equilibria of the origi-
nal system unchanged. The linear part of the formula can be used to modify the
system’s linear stability, in order to eliminate or delay an existing bifurcation. The
nonlinear part, on the other hand, can change the stability of bifurcation solutions,
for example, converting a subcritical Hopf bifurcation to supercritical.

Here we want to particularly study Hopf bifurcation since the limit cycles
generated by Hopf bifurcation is the most popular phenomenon exhibited in non-
linear dynamical systems. In the following sections, we first consider continuous
systems, then study discrete maps and finally discuss time delay differential equa-
tions.

11.4.1. Continuous-time systems

For convenience, we will use the Lorenz system and an electrical circuit as ex-
amples to illustrate the theory and methodology of Hopf bifurcation control for
continuous-time systems, described by ordinary differential equations. In par-
ticular, for the Lorenz system, we will apply the CNF to find the stability of
bifurcating limit cycles; while for the electrical circuit, we will employ the SNF
to analyze the stability of periodic motions.

Consider the general nonlinear system (11.1.2):

(11.4.1)ẋ = f (x, μ), x ∈ Rn, μ ∈ R, f :Rn+1 → Rn,

where x is an n-D state vector while μ is a scalar parameter, called bifurcation
parameter. Suppose that at the critical point μ = μ∗ on an equilibrium solution
x = x∗, the Jacobian of the system has a complex pair of eigenvalues to first cross
the imaginary axis. Then Hopf bifurcation occurs at the critical point and a family
of limit cycles bifurcate from the equilibrium solution x∗.

Suppose system (11.4.1) has k equilibria, given by

(11.4.2)x∗i (μ) =
(

x∗1i , x∗2i , . . . , x∗ni
)

, i = 1, 2, . . . , k.
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Feedback controller using polynomial function

A general nonlinear state feedback control is applied so that system (11.4.1) be-
comes

(11.4.3)ẋ = f (x, μ)+ u(x, μ).

In order for the controlled system (11.4.3) to keep all the original k equilibria un-
changed under the control u, it requires that the following conditions be satisfied:

(11.4.4)u
(

x∗i , μ
) ≡ (u1, u2, . . . , un)

T = 0

for i = 1, 2, . . . , k. Then we have the following result [430].

THEOREM 11.4.1. For system (11.4.3), the feedback control can take the follow-
ing polynomial function:

uq
(

x, x∗1, x∗2, . . . , x∗k, μ
)

=
n
∑

i=1

Aqi

k
∏

j=1

(

xi − x∗ij
)+

n
∑

i=1

k
∑

j=1

Bqij
(

xi − x∗ij
)

k
∏

p=1

(

xi − x∗ip
)

+
n
∑

i=1

k
∑

j=1

Cqij
(

xi − x∗ij
)2

k
∏

p=1

(

xi − x∗ip
)

+
n
∑

i=1

k
∑

j=1

Dqij

(

xi − x∗ij
)2

k
∏

p=1

(

xi − x∗ip
)2 + · · ·

(11.4.5)(q = 1, 2, . . . , n).

It is easy to verify that uq(x∗i , x∗1, x∗2, . . . , x∗k, μ) = 0 for i = 1, 2, . . . , k.
Usually, terms given in equation (11.4.5) up to Dqij are enough for controlling
a bifurcation if the singularity of the system is not highly degenerate. The coef-
ficients Aqi , Bqij , Cqij and Dqij , which may be functions of μ, are determined
from the stabilities of an equilibrium under consideration and that of the asso-
ciated bifurcation solutions. More precisely, linear terms are determined by the
requirement of shifting an existing bifurcation (e.g., delaying an existing Hopf
bifurcation). The nonlinear terms, on the other hand, can be used to change the
stability of an existing bifurcation or create a new bifurcation (e.g., changing an
existing subcritical Hopf bifurcation to supercritical). Note that not just Aqi terms
may involve linear terms; Bqij terms, etc. may also contain linear terms.

It is not necessary to take all the components uq, i = 1, 2, . . . , n, in the con-
troller. In most cases, using fewer components or just one component may be
enough to satisfy the pre-designed control objectives. It is preferable to have a
simplest possible design for engineering applications. If x∗i1 = x∗i2 = · · · = x∗ik
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for some i, then one only needs to use these terms and omits the remaining terms
in the control law. Moreover, lower-order terms related to these equilibrium com-
ponents can be added. This greatly simplify the control formula. For example, if
i = 1, then the general controller can be taken as

uq =
k−1
∑

i=1

aqi
(

x1 − x∗11

)i + Aq1
(

x1 − x∗11

)k + Bq11
(

x1 − x∗11

)k+1

+ Cq11
(

x1 − x∗11

)k+2
,

where aqi’s denote the added lower-order terms.
The goals of Hopf bifurcation control are:

(i) to move the critical point (x∗, μ∗) to a designated position (x̃, μ̃);
(ii) to stabilize all possible Hopf bifurcations.

Goal (i) only requires linear analysis, while goal (ii) must apply nonlinear sys-
tems theory. In general, if the purpose of the control is to avoid bifurcations, one
should employ linear analysis to maximize the stable interval for the equilibrium.
The best result is to completely eliminate possible bifurcations using a feedback
control. If this is not feasible, then one may have to consider stabilizing the limit
cycles by using a nonlinear state feedback.

The Lorenz system

It is well known that the Lorenz system can exhibit very rich periodic and chaotic
motions. In this subsection, we use a different version of Lorenz equation, which
contains only two parameters, given below [70,393]:

ẋ = −p(x − y),

ẏ = −xz− y,

(11.4.6)ż = xy − z− r,

where p and r are positive constants, which are considered as control parame-
ters. One can easily show that system (11.4.6) is a special case of the general
system [430].

System (11.4.6) has three equilibrium solutions, C0, C+ and C−, given by

C0: x0
e = y0

e = 0, z0
e = −r,

(11.4.7)C±: x±e = y±e = ±
√
r − 1, z±e = −1.

Suppose the parameters p and r are positive. Then C0 is stable for 0 � r < 1,
and a pitchfork bifurcation occurs at r = 1, where the equilibrium C0 looses its
stability and bifurcates into either C+ or C−. The two equilibria C+ and C− are
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stable for 1 < r < rH , where

(11.4.8)rH = p(p + 4)

p − 2
(p > 2),

and at this critical point C+ and C− loose their stabilities, giving rise to Hopf
bifurcation. We fix p = 4, which was used in [70,393]. Then rH = 16, and the
Lorenz system (11.4.6) exhibits chaotic motion when r > 16. In fact, one can
employ numerical simulation to show the coexistence of locally stable equilib-
ria C± and (global) chaotic attractors at a same value of r , with different initial
conditions [430].

(A) Without control. We first consider system (11.4.6) without control. The crit-
ical point is p = 4, rH = 16 at which the Jacobian of system (11.4.6) evaluated
at C+ and C− has a real eigenvalue−6 and a purely imaginary pair±2

√
5. Using

the shift, given by

(11.4.9)x = ±√r − 1+ x̃, y = ±√r − 1+ ỹ, z = −1+ z̃,

to move C± to the origin and then applying an appropriate linear transformation
to system (11.4.6), we obtain the following system:

˙̃x = 2
√

5ỹ + 1

84

(

x̃ + 4
√

5ỹ − 6z̃
)

μ−
√

15

21

(

x̃ − 2
√

5ỹ
)(

x̃ − 2z̃
)+ · · · ,

˙̃y = −2
√

5x̃ −
√

5

2100

(

155x̃ − 10
√

5ỹ − 6z̃
)

μ

−
√

3

105

(

55x̃ − 5
√

5ỹ + 42z̃
)(

x̃ − 2z̃
)+ · · · ,

˙̃z = −6z̃+ 1

168

(

x̃ + 4
√

5ỹ − 6z̃
)

μ−
√

15

42

(

x̃ − 2
√

5ỹ
)(

x̃ − 2z̃
)+ · · · ,

where μ = r − 16 is a bifurcation parameter.
Employing the Maple programs developed in [420] for computing the normal

forms of Hopf and generalized Hopf bifurcations yields the following normal
form:

ρ̇ = ρ

(
1

56
μ+ 31

3248
ρ2
)

+ . . . ,

(11.4.10)θ̇ = 2
√

5

(

1+ 17

560
μ− 851

48720
ρ2
)

+ · · · ,

where ρ and θ represent the amplitude and phase of the motion, respectively. The
first equation of (11.4.10) clearly shows that the Hopf bifurcation is subcritical
since the coefficient of ρ3 is 31

3248 > 0.
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(B) With control. Now, we apply a feedback control to stabilize system (11.4.6).
A washout filter control has been used by Wang and Abed [393] for the Lorenz
system (11.4.6). The disadvantage of this method is that it increases the dimen-
sion of the original system by one, unnecessarily increases the complexity of
the controlled system and difficulty in analysis. Here we apply the control for-
mula (11.4.8) to control the Hopf bifurcation. Due to the symmetry of the system
and z± = −1, we may use a control law with one variable only:

(11.4.11)u3 = −k31(z+ 1)− k33(z+ 1)3.

The closed-loop system is now given by

ẋ = −p(x − y),

ẏ = −xz− y,

(11.4.12)ż = xy − z− r − k31(z+ 1)− k33(z+ 1)3,

where the negative signs are used for kij ’s in consistence with that of the con-
troller based on the washout filter. Introducing the transformation (11.4.9) into
equation (11.4.12) results in

ẋ = −p(x̃ − ỹ),

ẏ = −x̃z̃+ x̃ − ỹ ∓√r − 1 z̃,

(11.4.13)ż = x̃ỹ ±√r − 1
(

x̃ + ỹ
)− z̃− k31z̃− k33z̃

3.

Then Oe = (x̃, ỹ, z̃) = (0, 0, 0) is an equilibrium of system (11.4.13), cor-
responding to the equilibria C+ and C− of the original system (11.4.6). The
characteristic polynomial of system (11.4.13) for the equilibrium point Oc is

P(λ) = λ3 + (p + 2+ k31)λ
2 + (p + r + k31 + pk31)λ+ 2p(r − 1),

which shows that only the linear term of the controller u3 affects the linear stabil-
ity. The stability conditions for Oe (under the assumption that p, r > 0) can be
obtained as

p + 2+ k31 > 0,

p + r + k31(p + 1) > 0,

2p(r − 1) > 0,

p(p + 4)− r(p − 2− kc)+ k2
31(p + 1)+ k31

(

p2 + 4p + 2
)

> 0.

If choosing k31 > 0, then it only requires r > 1 to satisfy the above first 3
inequalities. The last condition implies a critical point at which the controlled
system has a Hopf bifurcation emerging from the equilibrium Oe, defined by

(11.4.14)rH = p(p + 4)+ k2
31(p + 1)+ k31(p

2 + 4p + 2)

(p − 2− k31)
,

for 0 < k31 < p − 2.
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Setting k31 = 0 yields rH = p(p+4)
p−2 (p > 2) which is the condition given

in equation (11.4.8) for the system without control. It can be seen from equa-
tion (11.4.14) that the parameter rH for the controlled system can reach very large
values as long as k31 is chosen close to p−2. For example, when p = 4, choosing
k31 = 1.5 gives rH = 188.5 (and rH = 71 if k31 = 1). These values of rH are
much larger than rH = 16 for the uncontrolled system. If we choose r > 1 and
0 < p − 2 < k31, then the equilibria C+ and C− are always stable, and no Hopf
bifurcation occurs from the two equilibria.

Next, we perform a nonlinear analysis to determine the stability of Hopf
bifurcation. If p = 4, then k31 ∈ (0, 2), and for determination we choose

k31 = 2
√

1006−58
5 ≈ 1.087, thus rH = 82. Let r = rH + μ = 82 + μ, where

μ is a perturbation from the critical point. Then, we have the closed-loop system

˙̃x = −8(x̃ − ỹ),

˙̃y = −x̃z̃+ x̃ − ỹ ∓√

81+ μz̃,

(11.4.15)˙̃z = x̃ỹ ±√

81+ μ(x̃ + ỹ)− 2
√

1006− 53

5
z̃− k33z̃

3.

The eigenvalues of the Jacobian of system (11.4.15), when evaluated at

the equilibrium Oe, are: λ1,2 = ±
√

2
√

1006+ 28i ≈ 9.5621i and λ3 =
− 2

√
1006−28

5 ≈ −7.0870. To apply the method of normal forms [146,420,422],
we introduce the following transformation:

x̃ = u− 24+√1006

43
w,

ỹ = u+ 2
√

1006+ 28

4
v + w,

z̃ = ±
√

1006+ 14

18
u∓ 5(2

√
1006+ 28)

36
v ± 9

√
1006− 171

215
w,

to equation (11.4.15), and then employ the Maple program [420] to obtain an
identical CNF for the system associated with the two equilibria C+ and C−, given
in polar coordinates as

ρ̇ = ρ

[
1249− 34

√
1006

52942
μ

+
(

4646315818− 102399253
√

1006

358010321904

(11.4.16)− 5746272+ 187233
√

1006

4235360
k33

)

ρ2
]

+ · · · ,
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θ̇ =
√

2
√

1006+ 28

[

1+ 122602− 773
√

1006

17153208
μ

−
(

21706679417+ 211691192
√

1006

6444185794272

(11.4.17)+ 34871+ 1594
√

1006

16941440
k33

)

ρ2
]

+ · · · .

Approximations up to 3rd-order for the steady-state solutions and their stabil-
ities can be found from equation (11.4.16): The solution ρ = 0 represents the
initial equilibrium solution Oe (or C± for the original system (11.4.6)), which is
stable when μ < 0 (i.e., r < rH = 82) and unstable when μ > 0 (r > 82). The
supercritical Hopf bifurcation solution can be obtained, if

4646315818− 102399253
√

1006

358010321904
− 5746272+ 187233

√
1006

4235360
k33 < 0,

i.e.,

k33 >
3672843514

√
1006− 115816173526

478327912875
≈ 0.001416.

Choosing k33 = 0.01, we have the controller:

(11.4.18)u = −1.087(z+ 1)− 0.01(z+ 1)3.

So the controlled system described in the original states is given by

ẋ = −4(x − y),

ẏ = −xz− y,

(11.4.19)ż = xy − z− r − 1.087(z+ 1)− 0.01(z+ 1)3.

The corresponding normal form then becomes

ρ̇ = ρ(0.003222μ− 0.023683ρ2)+ · · · ,
θ̇ = 9.562165+ 0.054678μ− 0.046512ρ2 + · · ·

and the solution for the family of bifurcating limit cycles is obtained as

(11.4.20)ρ = 0.136070
√
μ = 0.136070

√
r − 82.

Some numerical simulation results, obtained from the controlled system
(11.4.19), are given in Figures 11.4.1 and 11.4.2. Figure 11.4.1 depicts that the
trajectories converge to the equilibria C+ and C− for 1 < r < 82, while Fig-
ure 11.4.2 demonstrates the stable limit cycles bifurcating from the system when
r > 82. By using equation (11.4.20), one can estimate the amplitudes of the three
limit cycles shown in Figure 11.4.2 as 0.136, 0.385 and 0.593, respectively. These
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Figure 11.4.1. Stable equilibria C± of the controlled Lorenz system (11.4.19) with the control
law (11.4.18) with the initial conditions (x0, y0, z0) = (±3.0,±12.0,−2.5) when (a) and (b) r = 20;

(c) and (d) r = 55; and (e) and (f) r = 81.

approximations give a good prediction, confirmed by the numerical simulation re-
sults. It can be seen from Figures 11.4.1 and 11.4.2 that the symmetry of the two
equilibria C+ and C− remain unchanged before and after the Hopf bifurcation
generated by using the simple control (11.4.18).

A nonlinear electrical circuit

Now we use a nonlinear electrical circuit to demonstrate the use of the SNF to
consider Hopf bifurcation. The electrical circuit, shown in Figure 11.4.3, consists
of an inductor, L, two capacitors C1 and C2, two resistors R1 and R2, a tunnel-
diode and a conductance. Suppose L,C1, C2, R1 and R2 are linear components,
and in addition, R1 may be varied. The tunnel-diode and the conductance are
nonlinear elements, and they are voltage-controlled. The conductance is a combi-
nation of a tunnel-diode and a current-reversing device. The characteristics of the
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Figure 11.4.2. Stable limit cycles around C± of the controlled Lorenz system (11.4.19) with the
control law (11.4.18) with the initial conditions (x0, y0, z0) = (±3.0,±12.0,−2.5) when (a) and (b)

r = 83; (c) and (d) r = 90; and (e) and (f) r = 101.

tunnel-diode is given by [79] by

id = f (Vd)
�= 0.01776Vd − 0.10379V 2

d + 0.22962V 3
d

(11.4.21)− 0.22631V 4
d + 0.08372V 5

d .

Thus, the characteristics of the conductance is iG = −f (VG). The current in the
inductor and the voltages across the capacitors are chosen as the state variables
(as shown in Figure 11.4.3), leading to the following differential equations:

L
diL

dt
= −R1iL − VC1 ,

C1
dVC1

dt
= −iG + iL − 1

R2
(VC1 − VC2),
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Figure 11.4.3. A nonlinear electrical circuit.

(11.4.22)C2
dVC2

dt
= −id + 1

R2
(VC1 − VC2).

Denoting the state variables iL1 , VC1 and VC2 by x, y and z, respectively, we may
rewrite equation (11.4.22) as

dx

dt
= −R1x − y,

dy

dt
= x − 0.001(y − z)+ 0.01776y − 0.10379y2 + 0.22962y3

− 0.22631y4 + 0.08372y5,

dz

dt
= 0.001(y − z)− 0.01776z+ 0.10379z2 − 0.22962z3

(11.4.23)+ 0.22631z4 − 0.08372z5,

where L,C1, C2 and R2 have been chosen respectively, the values 1, 1, 1 and
1000 in the corresponding units, while R1 is treated as a control parameter.

System (11.4.23) has multiple equilibrium solutions obtained from ẋ = ẏ =
ż = 0. Here, we only consider bifurcations from the trivial solution x = y =
z = 0, and pay particular attention to Hopf bifurcation. It is easy to obtain the
characteristic polynomial of system (11.4.23) evaluated at the trivial equilibrium
solution as

P(λ) = λ3 + (0.002+ R1)λ
2 + (0.9996845824+ 0.002R1)λ

+ 0.01876− 0.0003154176R1.

Applying the Hurwitz criterion yields the stability condition for the trivial equi-
librium:

(11.4.24)0.0167600020 < R1 < 59.4767064362.
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Further, it can be shown that a static bifurcation occurs at R1 = 59.4767064362
while a Hopf bifurcation emerges at R1 = 0.0167600020. Suppose the current
state of the system is under the selection of R1 = 30, and we decrease R1 until
R1 = 0.0167600020 at which the trivial equilibrium solution becomes unstable,
and a family of limit cycles bifurcates as R1 further decreases.

(A) Without control. First, consider the case without control. To obtain the sta-
bility condition using the SNF described in Section 11.3, let

(11.4.25)R1 = 0.0167600020− μ.

Then, introduce the transformation (x, y, z)T = Q(x̃, ỹ, z̃), where Q is

(11.4.26)Q =
[ 1.0000431639 0.0107620497 −0.0009999305
−0.0060001928 −1.0000825710 −0.0000019999
−0.0009999841 −0.0000127613 1.0000014998

]

,

to system (11.4.23) to obtain

dx̃

dt
= 0.9998590413ỹ + (

1.0000655704x̃ + 0.0107622908ỹ

− 0.0009999529z̃
)

μ− 0.0000000401x̃2 − 0.0011171091ỹ2

+ 0.0001037875z̃2 − 0.0000134046x̃ỹ − 0.0000002076x̃z̃

− 0.0000000071ỹz̃+ · · · ,
dỹ

dt
= −0.9998590413x̃ − (

0.0060000928x̃ + 0.0000645705ỹ

− 0.0000059994z̃
)

μ+ 0.0000037366x̃2 + 0.1038052724ỹ2

− 0.0000008302z̃2 + 0.0012456004x̃ỹ + 0.0000000042x̃z̃

+ 0.0000004152ỹz̃+ · · · ,
dz̃

dt
= −0.0187600020z̃+ (

0.0009999716x̃ + 0.0000107613ỹ

− 0.0000009999z̃
)

μ+ 0.0000001038x̃2 + 0.0000002076ỹ2

+ 0.1037902594z̃2 + 0.0000000051x̃ỹ − 0.0002075769x̃z̃

(11.4.27)− 0.0000026490ỹz̃+ · · · ,
where · · · represents higher order terms. System (11.4.27) clearly shows that its
Jacobian evaluated at the origin x̃ = ỹ = z̃ = 0 is in Jordan canonical form.

Executing the Maple program yields the following SNF:

dR

dτ
= R

(

0.5000005000ν + 0.0861699786R2),
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dΘ

dτ
= 0.9998590408+ 0.0083811918ν − 0.3163637547R2

(11.4.28)+ · · ·
up to arbitrary order, which clearly indicates that a subcritical Hopf bifurcation
occurs at the critical point ν = 0, and thus the bifurcating limit cycles of the
uncontrolled system (11.4.23) are unstable.

(B) With control. Now, consider adding a feedback control to system (11.4.23).
It is required that the control does not change the equilibrium x = y = z = 0, but
converts the subcritical Hopf bifurcation to supercritical. There exist many ways
to design the feedback control. We take a simple one, given in the form of

(11.4.29)u2 = −kny3,

which is added to the second equation of equation (11.4.23). Then, under the same
transformation used in the case of no control, employing the Maple program to
obtain the following SNF for the controlled system:

dR

dτ
= R

[

0.5000005000ν + (0.0861699786− 0.3750754316kn)R
2],

dΘ

dτ
= 0.9998590408

+ 0.0104785841k2
n − 0.0126007750kn + 0.0726815346

kn − 0.2297403970
R2

(11.4.30)+ · · · .
Thus, as long as

0.0861699786− 0.3750754316kn < 0
kn − 0.2297403970 �= 0

}

(11.4.31)i.e., kn > 0.2297403971,

the Hopf bifurcation of the controlled system is supercritical.
The numerical simulation results of the electrical circuit are shown in Fig-

ures 11.4.4 and 11.4.5, respectively for the uncontrolled and controlled systems.
It is seen from Figure 11.4.4(a) and Figure 11.4.5(a) that the trajectories converge
to the origin x = y = z = 0 when R1 = 1.0 (i.e., μ = −0.983239998) for both
controlled and uncontrolled systems. This indicates that the origin x = y = z = 0
is stable when μ < 0. However, when R1 = 0.012 (i.e., μ = 0.004760002) the
trajectory of the uncontrolled system diverges to infinity even from an initial point
close to the origin (see Figure 11.4.4(b)) implying that the origin is unstable and
the Hopf bifurcation is subcritical; while the trajectory of the controlled system
converges to a stable limit cycle (see Figure 11.4.5(b) where only the final steady-
state of the limit cycle is shown and the initial point is marked by +). This indeed
verifies that the Hopf bifurcation of the controlled system becomes supercritical.
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Figure 11.4.4. Simulated trajectories of the uncontrolled electrical circuit (11.4.23): (a) R1 = 1,
convergent to the origin x = y = z = 0 from the initial point (1.0,−0.8, 1.0); and (b) R1 = 0.012,

divergent to infinity from the initial point (0.05,−0.05, 0.08).

Figure 11.4.5. Simulated trajectories of the controlled electrical circuit (11.4.23) with the con-
troller (11.4.29) with kn = 0.5: (a) R1 = 1, convergent to the origin x = y = z = 0 from the
initial point (−1.0, 0.8,−1.0); and (b) R1 = 0.012, convergent to a limit cycle from the initial point

(0.05,−0.05, 0.08).

Note that the feedback control (11.4.29) changes the second equation of
(11.4.23) to

dy

dt
= x − 0.001(y − z)+ 0.01776y − 0.10379y2 − 0.27038y3

− 0.22631y4 + 0.08372y5.

It is seen from the above equation that the sign of the third order term has been
changed from positive to negative, which renders the subcritical Hopf bifurcation
to supercritical.
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11.4.2. Discrete maps

There are wide potential applications in controlling and anti-controlling bifur-
cations. For bifurcation control, the potential applications include delaying or
avoiding voltage collapse in electric power systems, controlling pathological heart
rhythms, and enhancing the operability of the compression system in jet engines.
Anti-controlling bifurcations, on the other hand, can serve as a warning signal.
For example, the occurrence of a saddle node bifurcation in an electric system
has been linked to the incipient instability, a stable limit cycle can be used as the
warning signal of impending collapse or catastrophe by introducing a supercritical
Hopf bifurcation near the bifurcation point. Also, anti-control of Hopf bifurcation
is viewed as an approach of generating limit cycles in dynamical systems [397]. In
this section, the polynomial type of controller will be extended to consider control
and anti-control of Hopf bifurcations in discrete maps.

2-D discrete maps

Consider the following general 2-dimensional parametrized map:

xn+1 = F(xn, yn, μ),

(11.4.32)yn+1 = G(xn, yn, μ),

which exhibits Hopf bifurcation if a simple pair of complex conjugate eigenvalues
of the linearized map crosses the unit circle [146,136,214]. One can divide the
Hopf bifurcation into resonant and nonresonant cases depending on whether these
eigenvalues cross at the roots of unity. Further, if the pair of eigenvalues λ0 and
λ̄0 do not satisfy λn0 = 1 for n = 1, 2, 3, 4, then the Hopf bifurcation is called
week resonance, otherwise, it is strong resonance. In the case of strong resonance,
the dynamical motion is complex and the bifurcation could generate a stable or
unstable fixed point of order-4 subharmonic solution, or a Hopf circle. While in
the case of nonresonance or week resonance, a Hopf bifurcation occurs [136]. The
main results are summarized below.

THEOREM 11.4.2. Suppose that the discrete system (11.4.32) satisfiesF(0, 0, μ)
= G(0, 0, μ) = 0 on some neighborhood of μ = 0 and that when μ = 0 the
Jacobian matrix of the map at the fixed point (x, y) = (0, 0) is given by

(11.4.33)J
(

θ0(μ)
) =

[

cos θ0 − sin θ0
sin θ0 cos θ0

]

,

where eniθ0 �= 1 for n = 1, 2, 3, 4. Further, if the following conditions:

(11.4.34)cos θ0(Fμx +Gμy)+ sin θ0(Gμx − Fμy) �= 0
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and

(11.4.35)ReA(0) �= 0

are satisfied, then an invariant circle bifurcates for either μ > 0 or μ < 0,
depending upon the sign of ReA(0). Here, the partial derivatives are evaluated
at the critical point (x, y, μ) = (0, 0, 0) and A(μ) is a complex function of μ,
and ReA(0) = cos θ0 Re(α1(0))+ sin θ0 Im(α1(0)), where

α1(0) = γ ′32(0) = γ32 + |γ21|2
1− λ̄0

(11.4.36)+ 2|γ20|2
λ2

0 − λ̄0
+ γ21γ22

2λ0 − 1

λ0(1− λ0)
,

in which

γ22 = 1

8

[

(Fxx + 2Gxy − Fyy)+ i(Gxx − 2Fxy −Gyy)
]

,

γ21 = 1

4

[

(Fxx + Fyy)+ i(Gxx +Gyy)
]

,

γ20 = 1

8

[

(Fxx − 2Gxy − Fyy)+ i(Gxx + 2Fxy −Gyy)
]

,

γ32 = 1

16

[

(3Fxxx + Fxyy +Gxxy + 3Gyyy)

(11.4.37)+ i(3Gxxx +Gxyy − Fxxy − 3Fyyy)
]

.

This invariant circle is attracting (a supercritical bifurcation) if it bifurcates into
the region of μ for which the trivial equilibrium point (origin) is unstable and
repelling (a subcritical bifurcation) if it bifurcates into the region for which the
origin is stable.

Note that the above theorem assumes that the bifurcation point is (x, y, μ) =
(0, 0, 0). In general case, if the bifurcation point is not at the origin, one can in-
troduce a linear transformation to shift the bifurcation point to the origin. The
condition (11.4.33) guarantees that system (11.4.32) has a pair of complex con-
jugate eigenvalues crossing the unit circle, while condition (11.4.34) implies a
nonzero transversality condition, i.e., d|λ|

dμ
(0) �= 0. Also, note that an invariant

circle bifurcates from the origin when μ = 0 in system (11.4.32) provided con-
dition (11.4.35) holds, in which the value of ReA(0) is obtained via a change of
the system’s coordinates.

3-D discrete maps

The critical condition at which a Hopf bifurcation occurs in high dimensional
discrete maps is usually derived from the Schur–Cohn criterion [397,223]. Unlike
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a 2-D system, in this case, center manifold theory is applied first to reduce the
high dimensional system to a 2-D center manifold, and then normal formal theory
is employed to determine the stability of the Hopf bifurcation.

The Schur–Cohn criterion, similar to the well-known Hurwitz criterion for the
continuous-time system, can be used to determine the conditions that the roots of
characteristic polynomial lie inside the unit circle, which is described as follows.

THEOREM 11.4.3 (Schur–Cohn criterion [223]). Suppose that the characteristic
polynomial, P(λ), of an n× n Jacobian matrix J , is given by

(11.4.38)λn + an−1λ
n−1 + · · · + a1λ+ a0 = 0,

then the necessary and sufficient conditions for P(λ) to have all its roots inside
the unit circle are:

(i) P(1) > 0 and (−1)nP (−1) > 0;
(ii) the two (n− 1)× (n− 1) matrices:

Δ±n−1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 · · · · · · 0

an−1 1
...

...
...

...
...

...

a3
...

a2 a3 · · · an−1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

±

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 · · · · · · 0 a0
... a0 a1
...

...
...

...
...

0 an−1
a0 a1 · · · an−1 an−2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

are both positive innerwise.

For example, when n = 3, P(λ) = λ3 + a2λ
2 + a1λ + a0. Its roots lie inside

the unit circle if and only if

|a0 + a2| < 1+ a1 and |a1 − a0a2| < 1− a2
0 .

When n = 4, the roots of P(λ) are all lie inside the unit circle if and only if

|a0| < 1, |a1 + a3| < 1+ a2 + a0, and
∣
∣a2(1− a0)+ a0

(

1− a2
0

)+ a3(a0a3 − a1)
∣
∣

< a0a2(1− a0)+
(

1− a2
0

)+ a1(a0a3 − a1).

The conditions for a Hopf bifurcation require that at a critical parameter value, a
pair of complex conjugate eigenvalues lie on the unit circle and other eigenvalues
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are still inside the unit circle. The critical conditions for a Hopf bifurcation to
occur in high dimensional discrete maps can be derived using the Schur–Cohn
criterion. Recently, Wen et al. obtained the criterion of Hopf bifurcation for 3-D
[397] and 4-D discrete maps [398].

For the 3-D case, the result obtained by Wen et al. in [397] is stated below.

THEOREM 11.4.4. (See [397].) For a matrix M = (mij )3×3, the necessary and
sufficient conditions for M to have a pair of complex conjugate eigenvalues lo-
cated on the unit circle and the remaining eigenvalues inside the unit circle are

(i) |a0| < 1,
(ii) |a0 + a2| < 1+ a1,

(iii) a1 − a0a2 = 1− a2
0 ,

where ak = ak(mij ) ∈ R, k = 0, 1, 2, are the coefficients of the characteristic
polynomial of the matrix M .

Denote the pair of complex conjugate eigenvalues of matrix M by λ1(ε) and
λ̄1(ε), where ε is a bifurcation parameter. Then the critical condition for the Hopf
bifurcation together with the transversality condition ( ∂|λ1(ε)|

∂ε
|ε=0 �= 0) and the

nonresonance condition (λn1(0) �= 1) can determine the occurrence of a Hopf
bifurcation.

To determine the stability of a Hopf bifurcation in a high dimensional dis-
crete map, the center manifold reduction and Iooss’s Hopf bifurcation theory are
used [397,181]. To achieve this, consider a 3-D map, given by

(11.4.39)Xk+1 = G(Xk;μ),
where Xk = (xk, yk, wk), and μ is a bifurcation parameter. Suppose that a Hopf
bifurcation occurs at the desired location X0 = (x0, y0, w0), and the critical value
of μ for the occurrence of the Hopf bifurcation at X0 is μ0. Let ε = μ0 − μ and
ΔXk = (xk − x0, yk − y0, wk − w0). Then system (11.4.39) can be written as

(11.4.40)ΔXk+1 = G̃(ΔXk; ε).
The Jacobian DG̃(0; 0) satisfies the necessary conditions for Hopf bifurcation.
Let P be the eigenmatrix corresponding to DG̃(0; ε). Then under the transforma-
tion ΔXk = PYk , system (11.4.40) becomes

(11.4.41)Yk+1 = F(Yk; ε),
where Yk = (y1k, y2k, y3k)

T , F (Yk, ε) = (F1, F2, F3)
T , and DF(0; ε) takes the

form:

(11.4.42)DF(0; ε) =
[Re λ1(ε) − Im λ1(ε) 0

Im λ1(ε) Re λ1(ε) 0
0 0 λ3

]

.
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Under the complex transformation zk = y1k + iy2k , z̄k = y1k − iy2k , Wk = y3k ,
system (11.4.41) can be rewritten as

(11.4.43)zk+1 = λ1(ε)zk +G
(

zk, z̄k,Wk; ε
)

,

(11.4.44)Wk+1 = λ3(ε)Wk +H
(

zk, z̄k,Wk; ε
)

,

where G(zk, z̄k,Wk; ε) = F1+iF2−λ1(ε)zk , H(zk, z̄k,Wk; ε) = F3−λ3(ε)Wk .
There exists a local center manifold for equations (11.4.43) and (11.4.44), given
in a series form:

(11.4.45)Wk

(

zk, z̄k; ε
) =

m
∑

i+j=2

wij (ε)z
i
kz̄
j
k + o

(|zk|m+1),

where wij can be determined by substituting (11.4.45) into (11.4.44). Thus, we
obtain a center manifold (a 2-D map) by substituting (11.4.45) (where wij is
known) into (11.4.43), which can be expressed as

(11.4.46)Φ̃ε

(

zk, z̄k
) = λ1(ε)zk +

3
∑

i+j=2

ξij (ε)z
i
kz̄
j
k + o

(|zk|4
)

.

Based on Iooss’s Hopf bifurcation theory [181], we can make a smooth ε-depend-
ent transformation of coordinates from Φ̃ε(zk, z̄k) to the normal form, denoted by
Φε(zk, z̄k):

(11.4.47)Φε

(

zk, z̄k
) = λ1(ε)zk + α1(ε)z

2
k z̄k + O

(|zk|5
)

,

where α1(ε) is the coefficient of the normal form, satisfying

α1(0) = ξ21 + 2|ξ02|2
λ2

1(0)− λ̄1(0)
+ |ξ11|2

1− λ̄1(0)

(11.4.48)+ (1− 2λ1(0))ξ11ξ20

λ2
1(0)− λ1(0)

,

where ξij = ξij (ε)|ε=0. The stability of the Hopf bifurcation is then determined
by the sign of

(11.4.49)ReA(0) = Re
(

λ1(0)
)

Re
(

α1(0)
)+ Im

(

λ1(0)
)

Im
(

α1(0)
)

.

If ReA(0) is positive (negative), a stable (unstable) Hopf bifurcation is formed.
It should be noted that in analogous to continuous-time systems [420], the

above two steps in the Schur–Cohn process can be combined to develop one uni-
fied approach. This approach directly reduces the original system to the normal
form on a 2-D center manifold. The detailed formulation for this general method
is out of the scope of the chapter, and thus will not be further discussed here.
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Polynomial bifurcation controller for discrete maps

In this subsection, we introduce a feedback controller using polynomial func-
tions for discrete maps. This method has been discussed in Section 4.1.1 for
continuous-time systems and successfully applied to study the Lorenz system and
a nonlinear electrical circuit.

Consider a general discrete map, given by

(11.4.50)xn+1 = f (xn, μ), x ∈ Rn, μ ∈ Rm, f :Rn+m → Rn,

with k equilibria, determined from the equation x = f (x, μ). Suppose the equi-
libria are given by

x∗i (μ) =
(

x∗1i , x∗2i , . . . , x∗ni
)

, i = 1, 2, . . . , k.

The goal of Hopf bifurcation control is to design a controller, given in the form of

h = h(x, μ),

such that the original equilibrium point x∗ is unchanged under the control h. Thus,
it requires

h
(

x∗i , μ
) = (h1, h2, . . . , hn)

T = 0.

Similar to the control formula (11.4.5) used for continuous-time systems [430],
we propose a general polynomial control function for discrete maps as follows:

hq(x, μ) =
n
∑

i=1

Aqi

k
∏

j=1

(

xi − x∗ij
)

+
n
∑

i=1

k
∑

j=1

Bqij
(

xi − x∗ij
)

k
∏

p=1

(

xi − x∗ip
)

+
n
∑

i=1

k
∑

j=1

Cqij
(

xi − x∗ij
)2

k
∏

p=1

(

xi − x∗ip
)

+
n
∑

i=1

k
∑

j=1

Dqij

(

xi − x∗ij
)3

k
∏

p=1

(

xi − x∗ip
)+ · · ·

(11.4.51)(q = 1, 2, . . . , n).

Then controlled system is then given by

(11.4.52)xn+1 = f (xn, μ)+ h(xn;μ) ≡ F(xn, μ),

and the two goals of the control are the same as that of continuous-time systems.
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Examples

In this subsection, we use the polynomial feedback controller (11.4.51) to con-
trol and anti-control Hopf bifurcations in discrete maps. First, we consider the
classical delay logistic map and show that using a simple polynomial feedback
controller can not only delay the onset of an existing Hopf bifurcation at the
nontrivial fixed point (controlling Hopf bifurcation), but also create a new Hopf
bifurcation at the trivial fixed point (anti-controlling Hopf bifurcation). In both
cases, the structure of the original system is preserved. That is, the polynomial
law will not change the stability properties of the equilibrium point which is not
the control object. Then, we study anti-controlling Hopf bifurcations at a period-1
fixed point in Hénon map, which was considered in [397] using a washout filter
controller. For comparison, we choose the same parameter values used in [397]. It
will be shown that with a simple polynomial controller, we can effectively create
a Hopf bifurcation at the period-1 fixed point in Hénon map without increasing
the dimension of the system and keep the stability property of the other fixed
point. Compared to the washout filter controller, our method is easier to be im-
plemented, and the analysis is simpler. Finally, a polynomial controller is applied
to a high dimensional discrete map (a 3-D Hénon map). Anti-control of Hopf bi-
furcation is considered at a critical point, leading to a strange attractor. Central
manifold theory and normal form theory are applied to determine the stability of
the Hopf bifurcation. It will be shown that our approach is much easier to apply
and the derivation is less involved compared to using the traditional washout filter
controller [397].

(A) Delay logistic map. We begin with the design of a polynomial controller to
control and anti-control Hopf bifurcation in the classical delay logistic map, given
by

(11.4.53)yn+1 = μyn(1− yn−1).

Letting xn = yn−1, equation (11.4.53) is transformed into a system of 2-D discrete
map:

xn+1 = yn,

(11.4.54)yn+1 = μyn(1− xn).

System (11.4.54) has a trivial fixed point (x, y) = (0, 0) and a nontrivial fixed
point (x, y) = (

μ−1
μ
,
μ−1
μ
). It is easy to show that when μ > 1, the trivial fixed

point is a saddle node. At the nontrivial fixed point, the Jacobian matrix is
[

0 1
1− μ 1

]

,
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which has eigenvalues:

λ1,2 = 1

2

(

1±√

5− 4μ
)

.

For μ > 5
4 , the eigenvalues are complex conjugate and can be written as

λ, λ̄ = (μ− 1)e±ic, c = tan−1
√

4μ− 5.

Thus, at μ = 2, λ, λ̄ = e±iπ/3 are the sixth roots of the unity, and

d

dμ

∣
∣λ(μ)

∣
∣
μ=2 = 1 �= 0.

Thus, system (11.4.54) undergoes a Hopf bifurcation when μ = 2, at which the
system has a trivial fixed point (the origin) and a nontrivial fixed point: (x, y) =
( 1

2 ,
1
2 ). When μ > 2, |λ| = |λ̄| = μ − 1 > 1, the nontrivial fixed point is an

unstable node while the trivial fixed point is a saddle point.
To determine the stability coefficient ReA(0), we first transform system

(11.4.54) into a normal form. Note that when μ = 2, the complex eigenvector
corresponding to the eigenvalue eiπ/3 is given by

(11.4.55)

[
1

1
2 +

√
3

2 i

]

=
[

1
1
2

]

+ i

[
0√

3
2

]

≡ e1 + ie2.

Applying a change of the coordinates at the nontrivial fixed point (x, y) = ( 1
2 ,

1
2 ):

(11.4.56)

[
x

y

]

=
[ 1

2
1
2

]

+ [e2 e1]
[
u

v

]

=
[ 1

2
1
2

]

+
[

0 1√
3

2
1
2

] [
u

v

]

,

into system (11.4.54) yields the normal form:

(11.4.57)

[

u

v

]

→
[

1
2 −

√
3

2√
3

2
1
2

][

u

v

]

−
[

2uv + 2v2

0

]

.

Using formulas (11.4.36) and (11.4.37), we can easily obtain that γ22 = 1
2 + 1

2 i,

γ21 = −1, γ20 = 1
2 − 1

2 i, γ32 = 0, α1(0) =
√

3
2 + 1

4 − 5
√

3
4 i. Thus,

(11.4.58)ReA(0) =
√

3− 7

4
< 0,

indicating that a stable Hopf bifurcation occurs at μ = 2. The numerical sim-
ulation result is shown in Figure 11.4.6(a), confirming the existence of a stable
closed orbit in the phase space.

Now, consider adding a polynomial controller to system (11.4.54) so that we
may delay the Hopf bifurcation from the nontrivial fixed point. For the sake of
simplification, we may only choose a control component for the second equa-
tion of system (11.4.54). By using formula (11.4.51), we can explicitly write the
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Figure 11.4.6. The Hopf bifurcation in the delay logistic equation (4.2): (a) without control; and (b)
with a feedback controller (11.4.59) with μ = 3.05, A11 = μ and A12 = 0.

controller as

(11.4.59)hn = A11(xn − 0)

(

xn − μ− 1

μ

)

+ A12(yn − 0)

(

yn − μ− 1

μ

)

,

which preserves the two equilibria of system (11.4.54). Higher order terms are
neglected for simplicity. The controlled system is then given by

xn+1 = yn,

yn+1 = μyn(1− xn)+ A11(xn − 0)

(

xn − μ− 1

μ

)

(11.4.60)+ A12(yn − 0)

(

yn − μ− 1

μ

)

.

The Jacobian matrix of (11.4.60) evaluated at the nontrivial fixed point (x, y) =
(
μ−1
μ
,
μ−1
μ
) is

(11.4.61)

[

0 1
1− μ+ μ−1

μ
A11 1+ μ−1

μ
A12

]

.

Denote the eigenvalues of (11.4.61) by λ1, λ2. In order that the controlled sys-
tem has a Hopf bifurcation, the conditions λ1 = λ̄2 and |λ1| = 1 must be satisfied.
Under the choice of A11 = 1

2μ, the necessary conditions for (11.4.61) to have a
pair of complex conjugate eigenvalues are

1− μ+ μ− 1

μ
A11 = −1,

(11.4.62)

(

1+ 2

3
A12

)2

< 4.
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Thus, we may further choose μ = 3, A12 = 0. Then the Jacobian matrix evalu-
ated at the nontrivial fixed point of the controlled system becomes

(11.4.63)

[

0 1
−1 1

]

,

which has a pair of complex conjugate eigenvalues: λ, λ̄ = e±iπ/3 and

d

dμ

∣
∣λ(μ)

∣
∣
μ=3 =

1

2
�= 0,

indicating that a Hopf bifurcation occurs at μ = 3 for the controlled sys-
tem (11.4.60) instead of a Hopf bifurcation at μ = 2 for the uncontrolled sys-
tem (11.4.54). This clearly shows that the Hopf bifurcation at the nontrivial fixed
point is delayed by using a polynomial controller. While at the trivial fixed point,
the Jacobian matrix for the controlled system is

(11.4.64)

[

0 1
−1 3

]

,

which has eigenvalues λ1 = 3+√5
2 > 1 and λ2 = 3−√5

2 < 1. So the trivial fixed
point is still a saddle point. That means, when we delay the Hopf bifurcation at
the nontrivial point, we do not change the stability of the trivial point. In other
words, the stability of the trivial fixed point is still under control. To determine
the stability of the Hopf bifurcation in the controlled system, we apply a similar
change of the coordinates:

(11.4.65)

[
x

y

]

=
[ 2

3
2
3

]

+
[

0 1√
3

2
1
2

] [
u

v

]

,

to bring system (11.4.60) into the normal form:

(11.4.66)

[

u

v

]

→
[

1
2 −

√
3

2√
3

2
1
2

][

u

v

]

−
[

3uv
0

]

.

Using formulas (11.4.36) and (11.4.37), we obtain that γ22 = 3
4 i, γ20 = − 3

4 i,

γ21 = γ32 = 0, α1(0) = − 9
32 − 9

√
3

32 i. Thus,

(11.4.67)ReA(0) = − 9

16
< 0.

Since ReA(0) < 0, the Hopf bifurcation of the controlled system is stable.
The phase portrait obtained from a numerical simulation is depicted in Fig-
ure 11.4.6(b) to show a stable closed orbit.

Next, we show that the polynomial feedback controller can also be used to
anti-control the Hopf bifurcation, that is, to generate a Hopf bifurcation when it is
desirable. Consider the same delay logistic equation. Now our aim is to create a
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Hopf bifurcation at the trivial fixed point (x, y) = (0, 0). As we know, for μ > 1,
the trivial fixed point is a saddle node. Physically, the saddle node is linked to
incipient instability in an electric system. In this case, the artificially generated
stable limit cycle can be served as a warning signal. Introducing a supercritical
Hopf bifurcation may be beneficial in this case.

For convenience, we employ the same form of the controller used in delaying
the Hopf bifurcation at the nontrivial fixed point. The controlled system is

xn+1 = yn,

yn+1 = μyn(1− xn)+ A11(xn − 0)

(

xn − μ− 1

μ

)

(11.4.68)+ A12(yn − 0)

(

yn − μ− 1

μ

)

,

whose Jacobian matrix evaluated at (x, y) = (0, 0) is

(11.4.69)

[

0 1
1−μ
μ
A11 μ+ 1−μ

μ
A12

]

.

Using a similar analysis as above, we may choose A12 = μ and A11 = 3
2 . Then

a Hopf bifurcation occurs at the trivial fixed point when μ = 3. The Jacobian
matrix at the trivial fixed point for the controlled system when μ = 3 is given
by (11.4.63). Thus, the eigenvalues of (11.4.69) are λ, λ̄ = e±iπ/3 and

d

dμ

∣
∣λ(μ)

∣
∣
μ=3 =

1

6
�= 0.

Further, introducing

(11.4.70)

[
x

y

]

=
[

0 1√
3

2
1
2

] [
u

v

]

,

into system (11.4.68) results in the normal form:

(11.4.71)

[

u

v

]

→
[

1
2 −

√
3

2√
3

2
1
2

][

u

v

]

+
[√

3u2 +√3v2

0

]

.

Then, using formulas (11.4.36) and (11.4.37), we find γ22 = γ20 = γ32 = 0,

γ21 =
√

3, α1(0) = 3
2 − 3

√
3

2 i. Thus,

(11.4.72)ReA(0) = −3

2
< 0,

implying that a stable Hopf bifurcation occurs at μ = 3 for the controlled system
from the trivial fixed point (0, 0). See the numerical simulation result shown in
Figure 11.4.7.
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Figure 11.4.7. The Hopf bifurcation from the trivial equilibrium of the delay logistic equation (4.2)
under a feedback controller (11.4.59) with μ = 3.05, A11 = 1.5 and A12 = μ.

It should be noted that at μ = 3, the nontrivial fixed point is an unstable node
for the uncontrolled delay logistic map. For the controlled system (11.4.68), its
Jacobian matrix evaluated at the nontrivial fixed point is

(11.4.73)

[

0 1
− 9

4 3

]

,

which gives the eigenvalues λ1 = λ2 = 3
2 > 1. This indicates that under the

control, the nontrivial fixed point is still an unstable node at the critical point
μ = 3. Note that the above design procedure is an illustration, by no means the
polynomial controller is unique. We can design different polynomial controllers
for a specified system to reach different types of bifurcation control. For example,
for the above anti-bifurcation control, we may want to design a controller such
that a Hopf bifurcation occurs from the trivial fixed point while the nontrivial
fixed point is stabilized, or another Hopf bifurcation emerges from the nontrivial
fixed point, etc. Such an control strategy will be demonstrated in the next example.

(B) 2-D Hénon map. Now, we turn to use a polynomial feedback controller to
anti-control Hopf bifurcations in a 2-dimensional Hénon map. The results are
compared with that obtained by Wen et al. with the widely used washout filter
controller [397]. For a consistent comparison, we apply the polynomial feedback
control to reach the same objective considered in [397], that is, to create a Hopf
bifurcation at the period-1 fixed point of the 2-D Hénon map. The 2-D Hénon
system can be described by a 2-D discrete map:

xn+1 = ρ − x2
n + 0.3yn,

(11.4.74)yn+1 = xn,

which has a classical period-doubling cascade to chaos when the bifurcation pa-
rameter varies from 0.1 to 4. The period-1 fixed points (x0, y0) and (x1, y1) are
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given by

(11.4.75)
(

x0, y0) =
(

1

2

(−0.7+√

0.49+ 4ρ
)

,
1

2

(−0.7+√

0.49+ 4ρ
)
)

and

(11.4.76)
(

x1, y1) =
(

1

2

(−0.7−√

0.49+ 4ρ
)

,
1

2

(−0.7−√

0.49+ 4ρ
)
)

.

Our objective is to create a Hopf bifurcation at the desired location (x0, y0) for
different values of the parameter ρ. Note that the fixed point (x1, y1), which is not
the anti-bifurcation control object, is a saddle point when 0.1 < ρ < 4.0. In [397],
a controller with washout filter is designed to generate a Hopf bifurcation at the
period-1 fixed point (x0, y0). The original 2-D system becomes three-dimension
due to introducing the washout filter. This not only changes the structure of the
2-D Hénon map, but also increases the complexity of dynamical analysis.

In the following, we shall show that with a simple polynomial feedback con-
troller, we can achieve the same goal in [397] without changing the structure of
the 2-D Hénon map. Moreover, we shall show that besides using a controller to
generate a Hopf bifurcation from the fixed point (x0, y0), we can use the same
control to keep the stability of the fixed point (x1, y1) unchanged (i.e., it is still a
saddle point), or change it from a saddle point to a stable node. This will clearly
demonstrate the advantage of our control method using polynomial functions.

To achieve this, we use a polynomial feedback controller in the form of

hn1 = A11
(

xn − x0)(xn − x1)+ A12
(

yn − y0)(yn − y1)

+ A21
(

xn − x0)2(
xn − x1)+ A22

(

xn − x0)(xn − x1)2
,

(11.4.77)hn2 = B11
(

xn − x0)2(
xn − x1).

The linear terms in the controller are used to modify the Jacobian matrix of the
linearized system, thus to control the appearance of Hopf bifurcation. On the other
hand, the nonlinear terms can be used to control the stability of the Hopf bifur-
cation. The Hopf bifurcation may be supercritical or subcritical depending upon
the choice of appropriate nonlinear coefficients. For Hopf bifurcation, nonlinear
terms up to third order are enough. With the controller defined in (11.4.77), the
controlled 2-D Hénon map is given by

xn+1 = ρ − x2
n + 0.3yn + hn1,

(11.4.78)yn+1 = xn + hn2.

The Jacobian matrix of (11.4.78) evaluated at (x0, y0) is

(11.4.79)

[−2x0 + A11(x
0 − x1)+ A22(x

0 − x1)2 0.3+ A12(y
0 − y1)

1 0

]

.
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By a similar analysis as that for the delay logistic map, choosing A11 = 1, we

obtain a Hopf bifurcation when A12 = − 13√
49+400ρ

and A22 = 30
49+400ρ , for which

the Jacobian matrix (11.4.79) has a pair of complex conjugate eigenvalues 1
2 ±√

3
2 i. Applying the transformation

(11.4.80)

[
x

y

]

=
[
x0

y0

]

+
[ √3

2
1
2

0 1

] [
u

v

]

into the controlled 2-D Hénon map (11.4.78) yields the normal form:

un+1 = −
√

3

60

[−40A21x
0x1vn − 40A22x

0x1vn − 20
√

3A11unvn

+ 20
√

3A11x
1un + 20

√
3A11x

0un − 15
√

3A21unv
2
n − 20

√
3A21

(

x0)2
un

− 15
√

3A22unv
2
n − 20

√
3A22

(

x1)2
un + 10v2

n − 10A11v
2
n − 40A12v

2
n

+ 20A22x
1v2

n + 20A11x
1vn + 20A11x

0vn − 40A11x
0x1 + 40A12y

1vn

− 40A12y
0vn − 40A12y

0y1 + 10A21x
1v2

n + 20A21x
0v2

n − 20A21
(

x0)2
vn

+ 40A21
(

x0)2
x1− 20A22

(

x1)2
vn + 10A22x

0v2
n + 40A22x

0(x1)2

+ 20
√

3unvn − 45A21u
2
nvn + 60A21x

0u2
n − 45A22u

2
nvn + 60A22x

1u2
n

+ 30A22x
0u2

n − 15
√

3A21u
3
n − 15

√
3A22u

3
n − 5A21v

3
n − 5A22v

3
n

− 30A11u
2
n + 30u2

n + 20
√

3A21x
1unvn + 40

√
3A21x

0unvn

− 40
√

3A21x
0x1un + 40

√
3A22x

1unvn + 20
√

3A22x
0unvn

− 40
√

3A22x
0x1un + 10

√
3un − 40ρ − 2vn + 30A21x

1u2
n

]

+
√

3

120
B21

[−40x0x1vn − 15
√

3unv
2
n − 20

√
3
(

x0)2
un + 10x1v2

n

+ 20x0v2
n − 20

(

x0)2
vn + 40

(

x0)2
x1 − 15

√
3u3

n − 45u2
nvn + 30x1u2

n

+ 60x0u2
n − 5v3

n + 20
√

3x1unvn

(11.4.81)+ 40
√

3x0unvn − 40
√

3x0x1un
]

,

vn+1 =
√

3

2
un + 1

2
+ vn + B21

[

−1

2
x0v2

n +
3
√

3

8
u3
n +

9

8
u2
nvn −

3

4
x1u2

n

+ 3
√

3

8
unv

2
n −

√
3

2
x1unvn − 3

2
x0u2

n −
√

3x0unvn +
√

3x0x1un

+ 1

8
v3
n −

1

4
x1v2

n −
(

x0)2
x1 + x0x1vn +

√
3

2

(

x0)2
un

(11.4.82)+ 1

2

(

x0)2
vn

]

.
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Figure 11.4.8. Simulated phase portraits when ρ = 0.3 for: (a) a period-1 fixed point of the
2-D Hénon map (11.4.74) without control; and (b) a Hopf bifurcation in the controlled 2-D Hénon

map (11.4.78) with ρ = 0.305, A11 = A21 = 1, A12 = −1, A22 = 30
169 , B21 = 0.

It is easy to show that the coefficients A21 and B21 can be used to modify ReA(0)
(and thus to control the stability of Hopf bifurcation generated at (x0, y0)), and
also to control the stability of the fixed point (x1, y1)). For example, when ρ =
0.3, we may set A21 = 1 and B21 = 0, then the Jacobian matrix for the controlled
2-D Hénon map (11.4.78) evaluated at the fixed point (x1, y1) has eigenvalues
2.935 and−0.545, indicating that it is a saddle point, same as the original system.
For the fixed point (x0, y0), it follows from equations (11.4.36) and (11.4.37)
that γ22 = 0.225

√
3 − 0.175i, γ21 = −0.099

√
3, γ20 = −0.225

√
3 + 0.175i,

γ32 = −1.104− 0.221
√

3i, α1(0) = 0.975− 0.683i. Thus,

(11.4.83)ReA(0) = −0.104,

implying that a stable Hopf bifurcation occurs at the fixed point (x0, y0). For
a consistent comparison with the results obtained in [397], we choose ρ =
0.3, 0.4, 1.4, corresponding to the uncontrolled 2-D Hénon map to have a stable
period-1 orbit, a period-2 orbit and a chaotic attractor, respectively. The numerical
simulation results are shown in Figures 11.4.8–11.4.10, where a Hopf bifurca-
tion occurs from the period-1 orbit (see Figure 11.4.8) and period-2 orbit (see
Figure 11.4.9) under the feedback control. In Figure 11.4.10, the chaotic motion
becomes periodic under the control.

For this example, we can also choose different values of the coefficients A21

andB21 to obtain different bifurcation controls for different control objectives. For
example, if one, besides generating a stable Hopf bifurcation from (x0, y0), also
wants to stabilize the saddle point (x1, y1). This can be achieved, for ρ = 0.3,
by choosing A21 = −1 and B21 = 100

169 . Indeed, under these choices, a stable
Hopf bifurcation occurs at the fixed point (x0, y0), and the fixed point (x1, y1) is
stabilized (see Figure 11.4.11).
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Figure 11.4.9. Simulated phase portraits when ρ = 0.4 for: (a) a period-2 fixed point of 2-D Hénon
map (11.4.74) without control; and (b) a Hopf bifurcation in the controlled 2-D Hénon map (11.4.78)

with ρ = 0.405, A11 = 1, A12 = − 13√
209

, A21 = 0, A22 = 30
209 , B21 = 0.

Figure 11.4.10. Simulated phase portraits when ρ = 1.4 for: (a) a chaos of 2-D Hénon map (11.4.74)
without control; and (b) a Hopf bifurcation in the controlled 2-D Hénon map (11.4.78) with ρ = 1.405,

A11 = 1, A12 = − 13√
609

, A21 = 0, A22 = 30
609 , B21 = 0.

Figure 11.4.11. Simulated phase portraits when ρ = 0.3 for: (a) a Hopf bifurcation at (x0, y0) in the
controlled 2-D Hénon map (11.4.78) with ρ = 0.305, A11 = 1, A12 = −1, A21 = −1, A22 = 30

169 ,

B21 = 100
169 ; and (b) a stable node at that fixed point (x1, y1).
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(C) 3-D Hénon map. Finally, we consider an example of anti-control of Hopf
bifurcation in a higher dimensional discrete map using polynomial function. We
use the modified 3-dimensional Hénon map [398] to illustrate chaos control by
creating a Hopf bifurcation. The modified 3-D Hénon map is given by

xn+1 = ρ − y2
n − 0.3zn,

yn+1 = xn,

(11.4.84)zn+1 = yn,

where ρ is a bifurcation parameter. The 3-D Hénon map without control exhibits
a strange attractor at ρ = ρ0 = 1.4. In [398], a washout filter controller was used
to generate a Hopf bifurcation at the period-1 fixed point, given by

(

x0, y0, z0) = (−0.65+ 0.5
√

1.69+ 4ρ, −0.65+ 0.5
√

1.69+ 4ρ,

− 0.65+ 0.5
√

1.69+ 4ρ
)

,

when ρ = ρ0 = 1.4. As we pointed out before, the dimension of the original
system is increased by one when a washout filter controller is introduced. The
increase of the dimension of a discrete-time dynamical system complicates the
system and analysis. Here, a simple polynomial controller is used to generate
a Hopf bifurcation from the period-1 fixed point, meanwhile keeping the local
stability property of the fixed point:

(

x1, y1, z1) = (−0.65− 0.5
√

1.69+ 4ρ,

− 0.65− 0.5
√

1.69+ 4ρ, −0.65− 0.5
√

1.69+ 4ρ
)

.

Due to the similarity between the 2-D Hénon map and the 3-D Hénon map, we
employ the same form of the polynomial controller used in the 2-D Hénon map for
the first equation of the 3-D Hénon map (for convenience, we do not add controls
to the second and third equations), which is then in the form of

hn = A11
(

xn − x0)(xn − x1)+ A12
(

yn − y0)(yn − y1)

(11.4.85)+ A21
(

xn − x0)2(
xn − x1)+ A22

(

xn − x0)(xn − x1)2
.

Thus, the controlled system is

xn+1 = ρ − y2
n − 0.3zn + hn,

yn+1 = xn,

(11.4.86)zn+1 = yn.

The Jacobian matrix of (11.4.86) evaluated at (x0, y0, z0) when ρ = 1.4 is
⎡

⎣

27
10A11 + 729

100A22 − 7
5 + 27

10A12 − 3
10

1 0 0
0 1 0

⎤

⎦ .
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By Theorem 11.4.4, it is easy to use A11 and A12 to determine the critical
conditions of Hopf bifurcation. From the condition (iii) in Theorem 11.4.4, we
obtain the critical values of A11 and A12 as

A11 = −27

10
A22 − 4981 and A12 = 0,

where |a0| = 0.3 < 1 and |a0 + a2| = 1.933 < 2.4 = 1+ a1.
Further, it is easy to verify that

(11.4.87)
∂|λ1(ε)|
∂ε

∣
∣
∣
∣
ε=0

= 0.264 and λn1(0) �= 1,

indicating that both the transversality condition and the nonresonant condition
are satisfied. A21 and A22 can be chosen arbitrarily to determine the stability of
the Hopf bifurcation, and also to control the stability of the other fixed point,
(x1, y1, z1). For example, when A22 = 0 and A21 = − 490

2187 , the eigenvalues for
the Jacobian matrix of the controlled system (11.4.86) evaluated at (x1, y1, z1)

are −2.036, 1.961 and 0.075, which are the same as that of the original 3-D
Hénon map when ρ = 1.4. Thus, the stability of the fixed point (x1, y1, z1) is
unchanged under the control when ρ = 1.4. The stability of the Hopf bifurcation
is determined by the sign of ReA(0) (see equation (11.4.49)). By applying the
center manifold and normal form theories, it can be shown that

(11.4.88)ReA(0) = 4.414,

and thus a stable Hopf bifurcation is obtained under the control. The numerical
simulation results are shown in Figure 11.4.12.

Figure 11.4.12. Simulated 3-D phase portraits when ρ = 1.4 for: (a) a chaos of the 3-D Hénon
map (11.4.84) without control; and (b) a Hopf bifurcation in the controlled 3-D Hénon map (11.4.86)

with ρ = 1.41, A11 = − 49
81 , A12 = 0, A21 = − 490

2187 and A22 = 0.
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11.4.3. 2-D lifting surface

The final application of Hopf bifurcation control is for a nonlinear aeroelastic
problem related to 2-D supersonic lifting surface. Due to its evident practical im-
portance, the study of the flutter instability of flight vehicle constitutes an essential
prerequisite in their design process. The flutter instability can jeopardize aircraft
performance and dramatically affect its survivability. Moreover, the tendency of
increasing structural flexibility and maximum operating speed increase the like-
lihood of the flutter occurrence within the aircraft operational envelope. In order
to prevent such events to occur, two principal issues have been discussed [306]:
(i) increase, without weight penalties, of the flutter speed, and (ii) possibilities to
convert unstable limit cycles into stable ones. Both two issues are related to con-
trolling Hopf bifurcations. In particular, issue (i) implies increase of the stability
of an equilibrium and delay of the occurrence of Hopf bifurcations [146,420,305];
while issue (ii) is related to controlling Hopf bifurcations once a periodic vibration
has been initiated [66].

This study primarily deals with the determination and control of the flutter
speed of supersonic/hypersonic lifting surfaces, based on the character of the
flutter boundary. This implies the determination of the conditions generating the
catastrophic type of flutter boundary, and implementation of an active control
capability enabling one to convert this type of flutter boundary into a benign
one. This issue is of a considerable importance toward the expansion, without
catastrophic failures, of the flight envelope of the vehicle. In contrast to the issue
of the determination of the flutter boundary that requires a linearized analysis, the
problem of the determination of the character of the flutter boundary, requires a
nonlinear analysis. As it has been shown [288,287] at hypersonic speeds the aero-
dynamic nonlinearities play a detrimental role, in the sense that they contribute to
conversion of the benign flutter boundary to a catastrophic one. Therefore, an ac-
tive control capability enabling one to prevent conversion of the flutter boundary
into a catastrophic one should be implemented.

The investigation is based on a nonlinear model of a wing section of the high
speed aircraft incorporating active control in [306]. The geometry of the model is
shown in Figure 11.4.13. Structural, aerodynamic and control nonlinearities have
been included in the present aeroelastic model. In this context, the parameter B
represents a measure of the degree of the structural nonlinearity of the system, in
the sense that, corresponding to B < 0 or B > 0, the structural nonlinearities are
soft or hard, respectively, while for B = 0, the system is structurally linear. The
linear and nonlinear active controls are given in terms of two normalized control
gain parameters Ψ1 and Ψ2, respectively. Based on Piston Theory Aerodynamics
(PTA), the nonlinear unsteady aerodynamic lift and moment are obtained through
the integration of the pressure difference on the upper and lower surfaces of the
airfoil. Notice also that the aerodynamic correction factor γ = M∞/

√

M2∞ − 1
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Figure 11.4.13. Geometry of the cross-section of lifting surface.

which enables one to extend the applicability of the PTA to the low supersonic
flight speed range, has been included in the present model. In the context pre-
viously described, the system of dimensionless aeroelastic governing equations
including linear and nonlinear time-delay feedback controls can be described by

ξ̈ + χαα̈ + 2ζh

(
ω

V

)

ξ̇ +
(
ω

V

)2

ξ = L(t),

χα

r2
α

ξ̈ + α̈ + 2ζα
V

α̇ + 1

V 2
α + 1

V 2
Bα3

(11.4.89)=M(t)− Ψ1

V 2
α(t − τ)− Ψ2

V 2
α3(t − τ),

where

L(t) = − γ

12μM∞
{

12α + δAM
2∞(1+ κ)γ 2α3 + 12

[

ξ̇ + α̇(b − xea)/b
]}

,

M(t) = − γ

12μM∞
1

r2
αb

{

12(b − xea)α + δAM
2∞(b − xea)(1+ κ)γ 2α3

(11.4.90)+ 4
[

3(b − xea)ξ̇ + α̇
(

4b2 − 6bxea + 3x2
ea

)

/b
]}

,

and ξ(t) = h(t)/b (h is the plunging displacement), α(t) is the twist angle about
the pitch axis, L(t) and M(t) denote the dimensionless aerodynamic lift and
moment, respectively, while τ is the time delay. The meaning of the remaining
parameters can be found in a nomenclature (see [306,288,444]).

Mathematical model is generally the first approximation of the considered real
system. More realistic models should include some of the past states of the sys-
tem, that is, the model should include time delay. The time delay in control can
occur either beyond our will or it can be designed as to increase the performance
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of the system [307]. For this reason, as a necessary prerequisite, a good under-
standing of its effects on the flutter instability boundary and its character (benign
or catastrophic) is required.

In order to capture the effect of time delay, τ , introduced in the related terms
Ψ1 and Ψ2, let ξ = x1, α = x2, ξ̇ = x3, α̇ = x4 and x2t = x2(t − τ). Then, one
can rewrite equation (11.4.89) as a set of four first-order differential equations:

ẋ1 = x3,

ẋ2 = x4,

ẋ3 = a1x1 + a2x2 + a3x3 + a4x4 + a5x
3
2 + e1x2t + e2x

3
2t ,

(11.4.91)ẋ4 = b1x1 + b2x2 + b3x3 + b4x4 + b5x
3
2 + f1x2t + f2x

3
2t ,

where all the coefficients are explicitly expressed in terms of the parameters of
equation (11.4.89), which can be found in [444].

For convenience in the following analysis, rewrite equation (11.4.91) in the
vector form:

(11.4.92)ẋ(t) = A1x(t)+ A2x(t − τ)+ F
(

x(t), x(t − τ)
)

,

where x,F ∈ R4, A1 and A2 are 4× 4 matrices. A1, A2 and F are given by

A1 =
⎡

⎢
⎣

0 0 1 0
0 0 0 1
a1 a2 a3 a4
b1 b2 b3 b4

⎤

⎥
⎦ , A2 =

⎡

⎢
⎣

0 0 0 0
0 0 0 0
0 e1 0 0
0 f1 0 0

⎤

⎥
⎦ , and

(11.4.93)F =
⎛

⎜
⎝

0
0

a5x
3
2(t)+ e2x

3
2(t − τ)

b5x
3
2(t)+ f2x

3
2(t − τ)

⎞

⎟
⎠ ,

respectively.
Hopf bifurcation has been extensively studied using many different meth-

ods [146,305], for example, Lyapunov’s quantity used in the context of the su-
personic panel flutter where the effects of structural, aerodynamical and physical
nonlinearities have been incorporated [287]. In [306,307], the dynamic behavior
of the system without time delay in the control was studied in the vicinity of a
Hopf-type critical point. In particular, the effect of the active control on the char-
acter of the flutter boundary (where the Jacobian has a purely imaginary pair) is
investigated. It is shown that for different flight speeds, stable (unstable) equilib-
rium and stable (unstable) limit cycles exist.

In this subsection, we will consider the effect of the time delay involved in the
feedback control. Nonlinear systems involving time delay have been studied by
many authors (e.g., see [70,349,24,156,108,440]). The main attention here will be
focused on Hopf bifurcation. Th results obtained from the model (11.4.89) reveal
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an important fact: time delay in the linear control can contribute to the expansion
of the flight envelope, while in nonlinear control it can contribute to the conversion
of the unstable limit cycles into a stable one.

Linearized system

As the first step, we analyze the stability of the trivial solution of the linearized
system of (11.4.92), which is given by

(11.4.94)ẋ(t) = A1x(t)+ A2x(t − τ), x ∈ R4.

The characteristic function can be obtained by substituting the trial solution,
x(t) = ceλτ , where c is a constant vector, into the linear part to find

D(λ) = det
(

λI − A1 − A2e
−λτ )

= λ4 − (a3 + b3)λ
3 + (a3b4 − a4b3 − b2 − a1)λ

2

+ (b2a3 − b3a2 + a1b4 − b1a4)λ+ a1b2 − a2b1

(11.4.95)− [

f1λ
2 + (b3e1 − a3f1)λ+ (b1e1 − a1f1)

]

e−λτ ,

where I denotes the identify matrix. Based on equation (11.4.95), it can be
shown [440] that The number of the eigenvalues of the characteristic equation
(11.4.95) with negative real parts, counting multiplicities, can change only when
the eigenvalues become pure imaginary pairs as the time delay τ and the compo-
nents of A1 and A2 are varied.

It is seen from equation (11.4.95) that when a1(b2 + f1) �= b1(a2 + e1), none
of the roots of D(λ) is zero. Thus, the trivial equilibrium x = 0 becomes unstable
only when equation (11.4.95) has at least a pair of purely imaginary roots λ =
±iω (i is the imaginary unit), at which a Hopf bifurcation occurs. The critical
value for a Hopf bifurcation to occur can be found from the following equation:

D(iω) = [(

f1ω
2 + a1f1 − b1e1

)

cos(ωτ)+ ω(f1a3 − b3e1) sin(ωτ)+ ω4

+ (b2 + a1 − a3b4 + a4b3)ω
2 + a1b2 − b1a2

]

+ [

ω(f1a3 − b3e1) cos(ωτ)− (

a1f1 + f1ω
2 − b1e1

)

sin(ωτ)

(11.4.96)+ (a4 + b3)ω
3 + (b2a3 − b3a2 + a1b4 − b1a4)ω

]

i.

Setting the real and imaginary parts of D(iω) zero results in

(11.4.97)cos(ωτ) = P1/P and sin(ωτ) = P2/P,

where

P1 = −f1ω
6 + (

a3b3e1 + b4b3e1 − f1a4b3 − a2
3f1 + b1e1

− 2f1a1 − f1b2
)

ω4 + (

a1b4b3e1 + b1a4f1a3 + b2a3b3e1 − b2
3a2e1
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− b2a
2
3f1 − b1e1a3b4 + b3a2f1a3 − a1f1a4b3 − 2f1a1b2 + f1b1a2

+ b1e1b2 + b1e1a1 − a2
1f1

)

ω2 + (a1f1 − b1e1)(b1a2 − a1b2),

P2 = ω
[

(f1b4 + b3e1)ω
4 + (

f1b4a
2
3 − f1a3a4b3 − f1b1a4 − f1b3a2

+ 2f1a1b4 − b1e1a3 − a3b4b3e1 + b2b3e1

− b1e1b4 + a1b3e1 + a4b
2
3e1

)

ω2 + b1a4(b1e1 − a1f1)
]

+ a1f1(a1b4 − a2b3)+ a3b1(f1a2 − e1b2)+ a1e1(b2b3 − b1b4),

P = f 2
1 ω

4 + [

(b3e1 − f1a3)
2 + 2f1(f1a1 − b1e1)

]

ω2

(11.4.98)+ (b1e1 − a1f1)
2.

With the aid of equations (11.4.97) and (11.4.98), one may apply the identity
sin2(ωτ) + cos2(ωτ) = 1 to obtain the following 8th-degree characteristic poly-
nomial of ω:

(11.4.99)ω8 + q1ω
6 + q2ω

4 + q3ω
2 + q4 = 0,

where

q1 = a2
3 + b2

4 + 2(b2 + a4b3 + a1),

q2 = (a1 + b1)
2 + (a3b4 − a4b3)

2 − f 2
1

+ 2
[

a3(b2a3 − a2b3)+ a4(a1b4 − b1a3)
]

+ 2
[

b3(a4b2 − a2b4)+ b4(a1b4 − b1a4)
]

,

q3 = (a1b4 − a4b1)
2 + (a2b3 − a3b2)

2 − (a3f1 − b3e1)
2

+ 2(a4b2 − a2b4)(a1b3 − a3b1)

+ 2
[

(a1 + b1)(a1b2 − a2b1)+ f1(b1e1 − f1a1)
]

,

(11.4.100)q4 = (a1b2 − a2b1)
2 − (a1f1 − b1e1)

2.

If equation (11.4.99) has no positive real roots (for ω2), then system (11.4.94)
does not contain center manifold, but only stable and unstable manifolds. On the
other hand, if equation (11.4.99) has at least one positive solution for ω, one may
substitute the solution(s) into equation (11.4.97) to find the smallest τmin, at which
the system undergoes a Hopf bifurcation.

Although closed-form solution exists for the roots of a general 4th-degree poly-
nomial (we can consider equation (11.4.99) as a 4th-degree polynomial of ω2), it
is not useful here in finding the relations between the parameters since the ex-
pressions are too involved to be treated analytically. In this chapter, we will use a
numerical approach to find the relations among the flutter speed VF (≡ UF/bωα),
flight Mach Number M∞, time delay τ and control gains Ψ1, Ψ2. More computa-
tion results will be given later in Section 4.3.3.
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Center manifold reduction

In order to obtain the explicit analytical expressions for the stability condition of
Hopf bifurcation solutions (limit cycles), we need to reduce system (1) to its cen-
ter manifold [156]. While studying the critical infinite dimensional problem on a
2-D center manifold, we express the delay equation as an abstract evolution equa-
tion on Banach space H of continuously differentiable function u: [−τ, 0] → R2

as

(11.4.101)ẋ = Axt + F (t, xt ),

where xt (θ) = x(t+θ) for−τ � θ � 0, and A is a linear operator for the critical
case, expressed by

(11.4.102)Au(θ) =
{

du(θ)
dθ

for θ ∈ [−τ, 0),

A1u(0)+ A2u(−τ) for θ = 0.

The nonlinear operator F is in the form of

(11.4.103)F (u)(θ) =
{

0 for θ ∈ [−τ, 0)
F (u(0),u(−τ)) for θ = 0.

Similarly, we can define the dual/adjoint space H ∗ of continuously differentiable
function v : [0, τ ] → R2 with the dual operator

(11.4.104)A∗v(σ ) =
{

− dv(σ )
dσ

for σ ∈ (0, τ ],
A∗1v(0)+ A∗2v(τ ) for σ = 0.

From the discussion given in the previous subsection, we know that the char-
acteristic equation (11.4.95) has single pair of purely imaginary eigenvalues
Λ = ±iω. Therefore, H can be split into two subspaces as H = PΛ ⊕ QΛ,
where PΛ is a 2-D space spanned by the eigenvectors of the operator A associ-
ated with the eigenvalues Λ, while QΛ is the complementary space of PΛ. Then
for u ∈ H and v ∈ H ∗, we can define a bilinear operator:

〈v,u〉 = vT (0)u(0)−
0∫

−τ

θ∫

0

vT (ξ − θ)
[

dη(θ)
]

u(ξ) dξ

(11.4.105)= vT (0)u(0)+
0∫

−τ
vT (ξ + θ)A2(ξ)u(ξ) dξ.

Corresponding to the critical characteristic root iω, the complex eigenvector
q(θ) ∈ H satisfies

dq(θ)

dθ
= iωq(θ), for θ ∈ [−τ, 0),
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(11.4.106)A1q(0)+ A2q(−τ) = iωq(0), for θ = 0.

The general solution of equation (11.4.106) is

(11.4.107)q(θ) = Ceiωθ .

From the boundary conditions we find the following matrix equation:

(11.4.108)

⎡

⎢
⎣

−iω 0 1 0
0 −iω 0 1
a1 a2 + e1e

−iωτ a3 − iω a4
b1 b2 + f1e

−iωτ b3 b4 − iω

⎤

⎥
⎦C = 0.

By letting C = (C1, C2, C3, C4)
T and choosing C1 = 1, we uniquely determine

C2, C3 and C4. Then the eigenvector q(θ) = Ceiωθ is found. Thus, the real basis
for PΛ is obtained as Φ(θ) = (ϕ1,ϕ2) = (Re(q(θ)), Im(q(θ))), that is,

(11.4.109)Φ(θ) =

⎡

⎢
⎢
⎢
⎣

cos(ωθ) sin(ωθ)
L1 cos(ωθ)+ωL2 sin(ωθ)

L0

L1 sin(ωθ)−ωL2 cos(ωθ)
L0

−ω sin(ωθ) ω cos(ωθ)
ω(ωL2 cos(ωθ)−L1 sin(ωθ))

L0

ω(ωL2 sin(ωθ)+L1 cos(ωθ))
L0

⎤

⎥
⎥
⎥
⎦
,

where Li (i = 0, . . . , 2) are explicitly expressed in terms of the original system
parameters.

Similarly, from the equation

A∗q∗(σ ) = −iωq∗(σ )

or

−dq∗(σ )
dσ

= −iωq∗(σ ) for σ ∈ [0, τ ),

(11.4.110)A∗1q∗(0)+ A∗2q∗(τ ) = −iωq∗(0) for σ = 0,

one can choose the real basis for the dual space QΛ as

Ψ (σ) = (ψ1,ψ2) =
(

Re
(

q∗(σ )
)

, Im
(

q∗(σ )
))

(11.4.111)=

⎡

⎢
⎢
⎢
⎣

L3 cos(ωσ)+L4 sin(ωσ)
M

L3 sin(ωσ)−L4 cos(ωσ)
M

L5 cos(ωσ)+L6 sin(ωσ)
M

L5 sin(ωσ)−L6 cos(ωσ)
M

L7 cos(ωσ)+L8 sin(ωσ)
M

L7 sin(ωσ)−L8 cos(ωσ)
M

N1 cos(ωσ)−N2 sin(ωσ) N1 sin(ωσ)+N2 cos(ωσ)

⎤

⎥
⎥
⎥
⎦
,
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where the explicit expressions ofLi (i = 3, . . . , 8) andM are expressed explicitly
in terms of the original system’s parameters [444], and N1 and N2 can be obtained
from the relation 〈Ψ,Φ〉 = I , given in terms of ω, τ and the coefficients ai, bi, ei
and fi in equation (11.4.107).

Next, by defining w ≡ (w1, w2)
T = 〈Ψ,ut 〉 (which actually represents the

local coordinate system on the 2-D center manifold, induced by the basis Ψ ),
then with the aid of equations (11.4.109) and (11.4.111), one can decompose ut
into two parts to obtain

(11.4.112)ut = u
PΛ
t + u

QΛ
t = Φ〈Ψ,ut 〉 + u

QΛ
t = Φw + u

QΛ
t ,

which implies that the projection of ut on the center manifold is Φw. Then, ap-
plying equations (11.4.101) and (11.4.112) results in

(11.4.113)
〈

Ψ,Φẇ + u̇t
Q
〉 = 〈

Ψ,A
(

Φw + u
Q
t

)〉+ 〈

Ψ,F
(

t, Φw + u
Q
t

)〉

,

and therefore,

〈Ψ,Φ〉ẇ = 〈Ψ,AΦ〉w + 〈

Ψ,F
(

t, Φw + u
Q
t

)〉

which can be written as

I ẇ = DΛw +N (w).

Finally, we obtain the equation of the center manifold, as given in the following
theorem.

THEOREM 11.4.5. The 2-D center manifold of system (11.4.91) associated with
Hopf bifurcation is given by

(11.4.114)ẇ =
[

0 ω

−ω 0

]

w +N (w),

where N (w) represents the nonlinear terms contributed from the original system
to the center manifold.

The lowest order nonlinear terms of the center manifold, needed to determine
the solutions, are:

N3(w) = Ψ T (0)F (Φw) = Ψ T (0)

⎛

⎜
⎜
⎝

0
0

a5(Φ(0)w)32 + e2(Φ(−τ)w)32
b5(Φ(0)w)32 + f2(Φ(−τ)w)32

⎞

⎟
⎟
⎠

(11.4.115)=
(
C1

30w
3
1 + C1

21w
2
1w2 + C1

12w1w
2
2 + C1

03w
3
2

C1
30w

3
2 + C2

21w
2
1w2 + C2

12w1w
2
2 + C2

03w
3
2

)

,
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where “(· · ·)32” denotes the cubic order terms extracted from the second compo-
nent of the vector (· · ·). In fact, since Φ is a 4× 2 matrix and w is a 2× 1 vector,
Φw is a 4 × 1 vector which may include higher order terms in the components,
we just intercept the third order terms. Therefore, we obtain the normal form as
follows.

THEOREM 11.4.6. The normal form of system (11.4.91) associated with Hopf
bifurcation is

ṙ = Lr3,

(11.4.116)θ̇ = ω + br2,

where L is a Lyapunov coefficient, also called as Lyapunov First Quantity (LFQ),
given by

(11.4.117)L = 1

8

(

3C1
30 + C1

12 + C2
21 + 3C2

03

)

.

When L < 0 (> 0), the Hopf bifurcation is supercritical (subcritical).

Results

In this subsection, some numerical results are presented to investigate the stabil-
ity with respect to the choices of the time delay, τ , and the linear and nonlinear
control gains, Ψ1 and Ψ2, using the formulas presented in the previous sections.

In order to compare the results with those given in [306] where the ap-
proach [287] was used and no time delay is presented, we shall take the same
parameter values used in [306]. The main chosen varying parameters are M∞,
Ψ1, Ψ2 and time delay τ , while other parameters given in equation (11.4.107) are
fixed:

b = 1.5, μ = 50, ω = 1.0, rα = 0.5,

χα = 0.25, ζh = ζα = 0,

γ = 1, κ = 1.4, δA = 1, B = 1,

(11.4.118)x0 = 0.5, ωα = 60.

The stability of the aeroelastic system in the vicinity of the flutter boundary is
analyzed on the basis of equations (11.4.109) and (11.4.111).

We know from [306] that when either the linear or the nonlinear control gain is
added, at relatively moderate supersonic flight Mach numbers the flutter boundary
is benign, while with the increase of the flight Mach number, due to the built-up
aerodynamic nonlinearities that become prevalent, the flutter boundary becomes
catastrophic. Here, we will show how the stability changes when the time delay
is introduced.
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Four typical cases are discussed below. Note that in the discussions, VF denotes
the flutter velocity at which Hopf bifurcation (due to flutter instability) is initiated,
leading to periodic motions. The stability of bifurcating limit cycles is determined
by the sign of L—the Lyapunov coefficient. The computation of L is based on the
center manifold and equation (11.4.117) described in the previous subsection.

CASE 1. τ = 0 (i.e., no delay), Ψ1 is varied, while Ψ2 = 0 (nonlinear feedback
control is not applied).

Consider the linear feedback control with gain Ψ1, but without the time delay.
The results of the flutter velocity with respect to flight Mach number for dif-
ferent values of Ψ1 and the corresponding Lyapunov coefficients recover what
obtained in [306]. This constitutes an excellent validation of our methodology
since the results in [306] were produced with a different method (see [287]).
The effect of the linear control on VF is depicted in Figure 11.4.14(b) (as solid
lines), while the effect on L has the similar trend as the case with time delay, τ
(see Figure 11.4.15(a)). It is shown that the flutter speed monotonically increases
with increases of flight Mach numbers, M∞, and/or the control gain, Ψ1. When
L < 0 (> 0), the corresponding motion is stable (unstable) in the sense of Hopf
bifurcation. We may define the value of the Mach number at which L = 0 as
the critical value, MTR , where T R means transitory indicating L is crossing the
zero critical value. It can be seen that in general the motions are stable for smaller
Mach numbers, and unstable for larger Mach numbers. Moreover, it is interesting
to observe that the slopes of the curves are slightly decreasing as the Ψ1 is in-
creasing, suggesting that the MTR is larger for larger values of Ψ1, and physically
giving a measure of the rapidity of transition of the aeroelastic system, from the

Figure 11.4.14. (a) The LFQ corresponding to Ψ2 = 10Ψ1 for τ = 0; and (b) effects of the linear
control with or without time delay on the flutter boundary.
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Figure 11.4.15. (a) The LFQ corresponding to Ψ2 = 0, τ = 1 for Ψ1 = 0.1, 0.2, 0.3, 0.4; and (b)
the LFQ corresponding to Ψ2 = 10Ψ1, τ = 1 for Ψ1 = 0.1, 0.2, 0.3, 0.4.

benign state to the catastrophic one, i.e., an idea of the occurrence of a mild or
explosive type of flutter.

CASE 2. τ = 0 (i.e., no delay), but Ψ2 = 10Ψ1.

Here, for convenience in comparison, we take Ψ2 = 10Ψ1. The presence of Ψ2
does not change the relation between the flutter velocity and Mach number since
the flutter speed is only determined by linear terms. The Lyapunov coefficients for
this case are depicted in Figure 11.4.14(a). This result is also in good agreement
with that in [306]. It clearly shows that the nonlinear feedback control is more ef-
fective than the linear feedback control in rendering the flutter boundary a benign
one.

CASE 3. Time delay τ is fixed, Ψ1 is varied while Ψ2 = 0.

It should be noted that the time delay τ given in equation (11.4.107) is nondi-
mensionalized. The real time delay is τ̂ = τωα . We fix the time delay (τ = 1
is selected in this chapter) and investigate the effects of the linear and nonlinear
control gains on the flutter stability boundary.

The results for considering the linear control only are shown in Figures
11.4.14(b) and 11.4.15(a). It is noted from Figure 11.4.14(b) that the trends are
similar to that of the case without time delay. VF is a monotonically increasing
function of the linear control gain, Ψ1, and the flight Mach number, M∞. How-
ever, it should be noted that the value of VF with the time delay, for any particular
point (Ψ1,M∞), has an increase, compared to the case without time delay. Com-
pared with the case without time delay, it is seen that the effect of τ becomes more
prominent for larger values of Ψ1. This suggests that employing time delay in the



11.4. Hopf bifurcation control 669

feedback control is beneficial in controlling flutter instability, and a better control
may be obtained using a proper combination of time delay with a larger linear
control gain. Similar trends can also be observed from Figure 11.4.15(a) where
the values of Lyapunov coefficient are shown. Again, comparing this figure with
that in [306] indicates that the time delay helps stabilize vibrating motions.

CASE 4. Time delay τ is fixed, with Ψ2 = 10Ψ1.

The results obtained for this case are shown in Figure 11.4.15(b). The effect
of the nonlinear control combined with the linear control can be clearly observed
from this figure. Further, a comparison between Figures 11.4.14(a), 11.4.15(a),
and 11.4.15(b) again confirm that time delay and nonlinear control lay much more
stress on the stability.

It is seen from the above results that introducing a time delay into the feedback
control can have a profound effect on the stability of the bifurcating motions. It
can transfer subcritical Hopf bifurcations (occurring in the presence of aerody-
namic nonlinearities), to supercritical. To obtain the best controller in controlling
both the initiation of Hopf bifurcation and the stability of bifurcating motions,
further parametric study is needed.

In this chapter, we have studied normal form computations, bifurcation of limit
cycles, and Hopf bifurcation control. Several recently developed methods are
introduced. Illustrative examples chosen from both mathematical and practical
problems are presented, and numerical results are given to confirm the analytical
predictions. It has been shown that the phenomenon of limit cycle exists in many
real problems, and the importance of Hopf bifurcation control is seen from both
theoretical development and practical applications.
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